
Metastability of the Ising model
with random interaction

coefficients

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Saeda Marello
aus

Udine, Italien

Bonn, November 2022



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Prof. Dr. Anton Bovier
Zweitgutachterin: Prof. Dr. Véronique Gayrard

Tag der Promotion: 13.02.2023
Erscheinungsjahr: 2023



Abstract

In this Ph.D. thesis we present results on metastability of random modifications of Ising spin
systems which evolve with Glauber dynamics. Their Hamiltonians have random and possi-
bly inhomogeneous interaction coefficients. We study these models at fixed temperature, with
constant external magnetic field and in the large volume limit.

The stochastic modification adds a level of randomness to the models and makes the direct
study of metastability usually very difficult. Therefore, our main strategy consists in studying the
model with random interaction coefficients by comparison with the model where these coefficients
are replaced by their expectations. Here the latter model is called annealed model.

In the first part of this thesis we summarise a joint paper with A. Bovier and E. Pulvirenti
(2021). Therein we studied metastability of the Ising model on the dense Erdős–Rényi random
graph with constant edge probability, also called randomly dilute Curie–Weiss model (RDCW),
by comparing it with the well-known Curie–Weiss model. The main novelty in the proofs is the
application of Talagrand’s concentration inequality to characterise the randomness of a certain
generalised partition function.

In the second part we prove a simple unpublished extension to more general models of the
generalised partition function methods used in the first part.

The third part contains a summary of a joint paper with A. Bovier and F. den Hollander
(2022), in which we studied in detail metastability of an Ising model with random interaction
coefficients having a product structure. The model we analysed is the annealed version of the
Ising model on a Chung–Lu-like random graph with i.i.d. weights which have finite support
(ICL). We provided detailed information on the metastable regime and analysed the mean
metastable exit time, proving sharp asymptotic estimates and characterising its randomness up
to leading order.

In the last part we give an overview on how the results of the first part were extended to a
wide class of spin systems with more general random interaction coefficients, in a recent joint
work with A. Bovier, F. den Hollander, E. Pulvirenti and M. Slowik. This class of models
includes Ising models on various inhomogeneous dense random graphs (e.g. ICL) and randomly
diluted spin models. In addition to estimates on the tails of the random mean metastable exit
times (showed also in the first part for RDCW), we provided estimates on their moments and
conditions on metastability, always in comparison with the annealed model. The methods used
include McDiarmid’s inequality and novel localisation techniques developed by Schlichting and
Slowik (2019).
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Chapter 1

Introduction

This Ph.D. thesis contains the study of metastable behaviour of some particular spin systems,
which are random modifications of the Ising model and evolve with Glauber dynamics. It is
the result of joint works with Anton Bovier, Frank den Hollander, Elena Pulvirenti and Martin
Slowik.

In this chapter we give a general introduction of the topics with dealt with, present the models
we studied and discuss our results. More precisely, we introduce the concept of metastability in
Section 1.1 and devote a separate section (1.2) to the approach we use throughout this thesis: the
well-established potential-theoretic approach to metastability. Then we move our attention to
the models: we provide a brief introduction of the Ising and Curie–Weiss models in Section 1.3,
which gives us the foundations for presenting our models, quantities of interest and results in
Section 1.4. An overview on the literature surrounding our work and some useful techniques are
given respectively in Sections 1.5 and 1.6. We conclude this introductory chapter in Section 1.7
with an outline of the reminder of the thesis.

1.1 Metastability

1.1.1 Basic introduction

Metastability is a phenomenon occurring in dynamical systems presenting multiple equilibria,
namely multiple states or sets to which the dynamics is attracted. When the system reaches a
local equilibrium it stabilises there, meaning it stays there for a very long time and it appears
stable as if it reached its global equilibrium. The peculiar feature of metastability is that the
system, after a long enough time, moves suddenly to a more stable equilibrium. We stress
that metastability is strictly linked with some randomness in the dynamics of the system, for
instance small random perturbations, and it cannot occur in purely deterministic systems, in
which exiting stable states is impossible.

This phenomenon of metastability appears often in nature. Examples range from physics
(e.g. supercooled liquids, supersaturated solutions, ferromagnets below Curie temperature, . . . )
to chemistry, economy and climatology. In the following we provide a few more details about
some of these phenomena.

Before diving more into the features of metastable behaviour, it is important to have in mind
that the dynamics of the systems we study is usually defined, according to physics laws, in terms
of some energy of the configurations, in a way which favours low energy configurations. Despite
both motion towards higher and lower energy configurations are possible, the probability of the

1



CHAPTER 1. INTRODUCTION

metastable stable

energy

Figure 1.1: One dimensional double well energy landscape.

system decreasing energy is much larger than the one of increasing. Therefore, the minimal
points of the energy are the equilibria, the attractors of the dynamics, and the smaller their
energy the more stable they are. In this framework, local equilibria will be called metastable
states, while the global equilibrium stable state.

In the following it is useful to have in mind Figure 1.1, which helps to understand various
basic features of the metastable behaviour. It represents the paradigmatic one dimensional
double well energy landscape of a metastable system, with two equilibria: the one on the left
is the metastable state and the one on the right is the (more) stable state. We stress that this
picture is much simpler than the landscapes usually studied, which are multidimensional, often
have more than two equilibria and might present various degeneracies or delicate cases.

When in an equilibrium state, what makes it difficult for a metastable system to move to a
more stable equilibrium (lower energy state) is the presence of an energy barrier. It consists in the
increment of energy that the system has to attain before reaching the more stable equilibrium,
namely it is the difference between a (suitably defined) “energy peak” and the starting energy.
For instance, in Figure 1.1 the energy barrier is depicted in red. Since in every step it is much
more likely to move towards lower energy configurations than to higher energy ones, the time it
takes to overcome the energy barrier and to move to a more stable equilibrium, is very large. To
go more into detail, we can divide a path towards a more stable state into two parts, separated
by the maximum energy point in the chosen path. Having in mind the dynamics definition, one
can see that the second part of the path, from the peak of energy to the more stable state, should
be considerably faster than the first part of the path. Indeed, as we shall see later, the leading
order term of the mean time to go from a local equilibrium to a more stable one is essentially
given by the time to reach the energy peak. In practice, this is often reflected in a long time
in which the systems attempts many times to overcome the energy barrier, going unsuccessfully
back near the local equilibrium, followed by a very quick transition to a more stable equilibrium
after reaching a critical configuration.

We stress again that the one dimensional picture in Figure 1.1 is a very simple case: for
instance, while in a one dimensional landscape all paths go through the same maximum, in
higher dimensions there can be many paths with different maxima. Therefore, in general one
should carefully analyse the paths to define the relevant critical points with high energy that
must be be attained by the system for the transition to occur. In multiple dimensions those

2



1.1. METASTABILITY

Figure 1.2: Magnetisation of the global equilibrium in the Curie–Weiss model, parameters β, h.
[Image from [44]]

Figure 1.3: Three sections of Figure 1.2 with fixed increasing β. [Image from [44]]

critical points are not maxima but saddle points of the energy.
From this heuristic description one can already notice that a feature of metastable systems

is the presence of multiple time scales: for each metastable state there is a time scale in which
the system is mostly trapped around it, and a faster one, in which the systems jumps to a lower
energy metastable state. Only in the case in which all the energy barriers have the same height
there is a time scale in which the system jumps among metastable states.

We mentioned examples, described heuristically the metastable behaviour and said that it
occurs when the system presents multiple equilibria, but when does this phenomenon occur?
In statistical physics it occurs in systems which are close to a first order phase transition.
The not expert reader could see this as follows. There is a set of parameters, for example
thermodynamical quantities (temperature, pressure, . . . ), depending on which the energy of the
system, namely its behaviour, changes. A first order phase transition occurs when there is a
first order discontinuity in the global equilibrium landscape, considered as a function of the
parameters. An example can be found in Figure 1.2. It is the graph of the global equilibrium
magnetisation in the Curie–Weiss model, where the parameters are h ∈ R and β > 0 and a first
order discontinuity occurs for h = 0 only (see sections in Figure 1.3). On the parameter region
in which the discontinuity occurs the system has multiple global equilibria that coexist (two in
Figure 1.2, see Figure 1.4b for an example of energy in this case). The relevant point for us
is that when looking closer at the energy landscape near the phase transition one notices the
presence of local equilibria (not visible in the global equilibria landscape) which smoothly reach
the same energy of the global equilibria, while approaching the discontinuity region (Figures 1.4a
and 1.4c).

Understanding this mechanism leads us to two important remarks. First of all, observe that
even physical systems that present metastable behaviour are not always metastable. Indeed, a

3



CHAPTER 1. INTRODUCTION

(a) One global minimum.
In Curie–Weiss h < 0 small, β >
1.

(b) Two global minima.
In Curie–Weiss at phase transi-
tion, h = 0, β > 1.

(c) One global minimum.
In Curie–Weiss h > 0 small, β >
1.

Figure 1.4: Double well one dimensional energy landscape, close to phase transition.

system does not exhibit metastable behaviour per-se but it does when its parameters are in a
specific set, in which case we say that the system is in the metastable regime. Moreover, after
noticing that a modification of the parameters usually yields a change in the energy landscape,
and consequently in the stability of the equilibria and in the height of the energy barrier, we could
further appreciate the power of knowing the energy landscape and in particular the metastable
regime. In fact, by changing suitably the parameters within and out of the metastable regime
one could ideally encourage or dissuade systems from staying long time in specific equilibria.

The presence of local minima close to the phase transition explains the delay which occurs in
nature in the change of phase of certain systems. For instance, in the phenomenon of supercooled
water a delay in change from liquid to solid state of water occurs. The water, initially liquid
at temperature above zero Celsius, is cooled down below zero. Then, despite being at negative
temperature, the water stays in liquid state for long time and becomes all of a sudden solid,
after the creation of some critical, sufficiently large, “ice agglomerates”. The picture described
above helps to explain the phenomenon as follows (see again Figure 1.4 for reference, think of the
temperature decreasing from 1.4a to 1.4c). Before being cooled the water is in its liquid global
equilibrium phase, then, while cooling, it reaches the phase transition. With further decreasing
temperature the liquid phase becomes the local equilibrium in which the water is trapped for
a long time, until it reaches the critical configurations corresponding to the energy peak and
then goes very quickly from that to the global equilibrium. In case some thermodynamical
quantity is suddenly changed, for instance by shaking the water, the energy landscape might be
subsequently modified (e.g. to a landscape with only one equilibrium) and the water may then
reach the solid state immediately, without waiting long time.

Something similar happens in ferromagnetic materials (that will be described in more detail
in Section 1.3.1) below the so-called Curie temperature within the phenomenon called hysteresis
(which is present in many other areas of science [23]). A ferromagnet immersed in an external
magnetic field acquires a magnetisation which has the same sign as the field. Below the Curie
temperature, there is a first order discontinuity in the acquired magnetisation, when the magnetic
field vanishes (as in the right most graph in Figure 1.3). Similarly to the previous example, after
the external magnetic field is decreased from positive to negative the magnetisation does not
jump immediately to the negative “phase”, but stays for long time very close to the positive
value which was the global equilibrium for positive external field, and all of a sudden it goes
very quickly to the negative value. Also in this case the system is trapped in a local equilibrium
and, after long time, it reaches a critical high energy configuration from which it easily moves
to the global equilibrium.

4



1.1. METASTABILITY

We have already encountered two of the main quantities of interest in the study of metasta-
bility: the metastable regime and the equilibria. More precisely, one is interested both in local
minima (the equilibria) and in local saddle points (maxima in one dimension) which are rel-
evant to the dynamics, as we have seen when talking about energy barrier. Furthermore, in
metastability one is particularly interested in quantitative estimates of the transition between
different equilibria. In particular, the interest focuses on the time it takes for such transitions
to occur and on the typical (critical) configurations that the system has to attain in the path
among equilibria. In this thesis, we do not deal with paths between equilibria, as the approach
we use does not allow so, but we focus on precise estimates on metastable transition times from
local equilibria to more stable ones.

1.1.2 Approaches to metastability

Different approaches to study metastability have been developed in the last decades. Freidlin and
Wentzell initiated in the late 1960’s the pathwise approach to metastability, developing a theory
which allows to control the metastable behaviour of dynamical system through large deviation
techniques. Cassandro, Galves, Olivieri and Vares in [26] started to apply the methods of
Freidlin and Wentzell to the study of metastability of interactive particle systems. The pathwise
approach uses large deviations to estimate the exponential leading order term of the transition
times and provides very detailed information on the metastable behaviour of the system: it allows
to characterise with much detail the typical trajectories of the transition between metastable
to stable states, often using combinatorial techniques, which make this approach very model
dependent and often complicated. A general reference for this approach and applications is the
book [64] by Olivieri and Vares.

In the 1980’s another approach was developed by Davies. He characterises metastability of
a Markov process in terms of spectral properties of its generator, in particular on the presence
of a cluster of eigenvalues which are much smaller than the others. The metastable exit times
are large and can be expressed in terms of inverses of eigenvalues. This approach is rarely used
because it is usually very difficult to verify its technical assumptions.

A third approach was developed in the early 2000’s, by Bovier, Eckhoff, Gayrard and Klein
([12, 13]). Called potential-theoretic approach, it derives its name from the central role of the
tools from potential theory it uses. A classical reference for its theory and applications is the
monograph [18] by Bovier and den Hollander, published in 2015, where also many references for
the other approaches can be found. In the last years this approach found plenty of applications,
mainly in the context of reversible Markov processes modelling interacting particle systems, but
also in non-reversible cases (see for instance Gaudillière and Landim [46], the recent work by
Seo [70] and further references in [18, Section 7]).

In this thesis we study metastability using only the potential-theoretic approach, enlarging
the already large number of applications of its methods. We postpone the introduction and
more details to Section 1.2, which is entirely devoted to it.

1.1.3 Quantitative estimates and definitions

We mention here some key facts from the historical survey on metastability made by Bovier and
den Hollander in [18]. The study of quantitative aspects of metastability started at the end of
the nineteenth century with formulas on rates of chemical reactions. Molecules have to acquire
a certain activation energy E before reacting and the Arrhenius law

R = A exp(−E/(kT )) (1.1)

5



CHAPTER 1. INTRODUCTION

gives the reaction rate, in terms of E, of the so-called amplitude A and of the absolute tem-
perature T , where k is the Boltzmann constant (approximately k = 1.38065 × 10−23J/K).
Equation 1.1 is a formula by van ’t Hoff, refined by Arrhenius who added the amplitude factor.
The inverse of R can be seen as the average reaction time in a system at temperature T with
activation energy E. The Arrhenius law is considered to be universal for systems where an event
occurs only after an energy barrier is exceeded.

Kramer provided in 1940 an explicit formula for the activation energy and the amplitude in
the Arrhenius law in a one dimensional diffusive system with a double well potential W . The
so-called Kramer’s formula (see [18, Eq. (2.1.2)]) gives the mean transition time from a local
minimum a of the potential W to a global minimum b via a local maximum s: the exponent
(the activation energy in Arrhenius law) is the difference of potential between the starting point
a and the local maximum s. The prefactor is computed explicitly and depends on the second
derivatives of the potential in a and s.

Kramer’s formula was later refined and extended to further models. Its extension to multiple
dimensions is known as Eyring-Kramer’s formula, despite the fact that Eyring and Kramer gave
only heuristic arguments. Freidlin and Wentzell [43] derived rigorously the exponent in the
1980’s, while the prefactor was computed only later by Bovier, Eckhoff, Gayrard and Klein in
[14]. For a more detailed historical summary on the matter see for instance Berglund [4].

We proceed stating two formal definitions of metastability in the context of Markov processes.
In order to do that we need to introduce the following notation.

Let (X(t))t≥0 be a continuous time Markov chain with countable state space S and gen-
erator L. Let Pν denote the probability distribution of X conditioned on starting with initial
distribution ν and let Eν be the corresponding mean. With abuse of notation we will write Px
and Ex when the initial distribution is non-zero only on the state x ∈ S. The first return time
to a subset A ⊂ S is denoted by

τA ≡ inf {t > 0 : X(t) ∈ A, X(t−) 6∈ A} . (1.2)

Remark 1.1.1 (Continuous vs discrete time). In this thesis we deal not only with continuous
time Markov processes (Chapters 4, 5) but also with discrete time Markov chains (2). Since
the space we consider is discrete, the continuous time processes are piece-wise constant right
continuous and are characterised by the discrete time jump process and the exponential times
between two consecutive jumps. (See Stroock [72].) In this introduction we define quantities and
state results for continuous time Markov processes only (except in Section 1.6.2 where we deal
with discrete time Markov chains), in order to avoid repetitions. Indeed, for the quantities we
deal with, switching from continuous to discrete time is usually natural and straightforward: it
is sufficient to use the proper definitions in the right context and to replace the index t > 0 with
n ∈ N and the transition rates with the transition probabilities. However, if relevant changes
between the two settings occur we will notify the reader.

The following two definitions are taken from the book [18, Chapter 8], but their origin can be
traced back to the earlier paper [13], where a slightly stronger formulation of (1.3) is provided.

Definition 1.1.2 (Metastability and metastable points). If |S| <∞, a Markov process (X(t))t≥0
on S is called ρ-metastable with respect to the set of metastable pointsM⊂ S, if

|S|
supx∈M Px

(
τM\{x} < τx

)
infy/∈M Py (τM < τy)

≤ ρ� 1. (1.3)

6



1.1. METASTABILITY

For later purposes we define here the valley of a metastable Markov process with set of
metastable pointsM.

Definition 1.1.3 (Valley around a metastable point). The valley around a metastable point
m ∈M is defined by

A(m) =
{
σ ∈ S : Pσ(τm = τM) = sup

n∈M
Pσ(τn = τM)

}
. (1.4)

Schlichting and Slowik [68] extended Definition 1.1.2 from metastable points to metastable
sets, allowing them to prove general results which allow easier control on some norms useful
to estimate mean metastable exit times with the potential-theoretic approach. We refer to [68,
Remark 1.2] for detailed comments on the extension. We shall see an example of application of
their results in Chapter 5.

We quote here their [68, Definition 1.1] for completeness.

Definition 1.1.4 (Metastability and metastable sets). For fixed ρ > 0 and K ∈ N, let {M1, . . . ,MK}
be a set of subsets of S such that Mi ∩Mj = ∅ for all 1 ≤ i 6= j ≤ K. The Markov process
(X(t))t≥0 with invariant measure µ is called ρ-metastable with respect to the set of metastable
sets {M1, . . . ,MK}, if

K
maxj∈{1,...,K} Pµ|Mj

(
τM\Mj

< τMj

)
minX⊂S\M Pµ|X (τM < τX ) ≤ ρ� 1, (1.5)

whereM = ⋃K
i=1Mi and µ|X denotes, for any non-empty set X ⊆ S, the measure µ conditioned

on the set X , namely µ|X (x) = µ(x)
µ(X ) for any x ∈ X .

This definition, as explained in detail in [68, Remark 1.2], is an extension of Definition 1.1.2
and its main advantage is, as we shall see in Chapter 5, an easier control on some norms useful
to estimate mean hitting times using the potential theoretic approach to metastability.

The following definition of valley around a metastable set, which can be found in [68], is an
extension of Definition 1.1.3 to sets.

Definition 1.1.5. The valley around a metastable setMi is defined by

Mi ∪
{
σ ∈Mc : Pσ

[
τMi < τM\Mi

]
≥ max

j 6=i
Pσ
[
τMj < τM\Mj

]}
, (1.6)

whereM = ⋃K
i=1Mi is the union of all the metastable sets.

Both definitions of metastability provide, roughly speaking, information on the returning to
the starting point in the following different cases: starting from a metastable set (or point) the
probability of moving to a different metastable set (or point) before going back to the start is
very small, much smaller that the probability of being attracted to some metastable set before
going back to the start, when starting outside any of them. These definitions encode the fact
that metastable sets are attractors of the dynamics, and that moving among of them is very
unlikely.
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CHAPTER 1. INTRODUCTION

1.2 Potential-theoretic approach to metastability

The potential-theoretic approach to metastability was initiated in 2001 by Bovier, Eckhoff,
Gayrard and Klein in [12] and [13], and further extended from Markov chains on a discrete space
to continuous diffusions in [14] by the same authors and in [17] by Bovier, Gayrard and Klein. It
is based on the analogy between electrical networks and finite state Markov chains. This link is
thoroughly analysed in [39] by Doyle and Snell and reviewed by Gaudillière in the lecture notes
[45]. The main idea is to identify an electrical network (meaning an undirected weighted graph
with positive weights, called conductances) with a finite state Markov chain whose transition
graph is the undirected graph of the electrical network and whose transition probabilities are
proportional to the conductances. Thus, notions from potential theory as resistance, current,
equilibrium potential, capacity and their properties can be used in the context of Markov chains.

The problem addressed in [12, 13] was the lack of precise estimates on transition times
between stable points involving the passage through a neighbourhood of an unstable critical
point. The authors provide estimates on mean metastable transition times up to order constant,
in a multidimensional setting, largely improving previous results which were known either up to
leading exponential order or only for specific models in one or two dimensions.

In [12] estimates on transition times between local maxima of the invariant measure are
provided for Markov chains having as state space the intersection of some connected subset of
Rd and a lattice of spacing O(1/N) in Rd. In addition, they prove asymptotic (in the large
volume limit, N → ∞) exponential distribution of the transition times divided by their mean
and give, as an example of application, a precise analysis of the metastable behaviour of the
random field Curie–Weiss model, with random field taking values in a finite set. The main tools
used are the Dirichlet principle from potential theory and renewal estimates.

In [13], after providing a definition of metastable points, the authors extend the results of
[12] to the setting of Markov chains with general countable state space and provide different
proofs with more tools from potential theory. They first prove asymptotic estimates up to order
one of mean exit times from metastable points, in terms of the invariant measure and of certain
transition probabilities. The latter can be written in terms of capacities, which can be estimated
by well-known dual variational principles (as we shall see more in detail later). Moreover, they
prove that each simple eigenvalue of the generator matrix can be associated to a metastable
point and it is essentially equal to the inverse of the mean exit time from that point. Finally,
they prove the exponential distribution of the rescaled metastable exit times.

The first detailed application of the new methods initiated in [12, 13] is provided by Bovier
and Manzo [21] for reversible Markov chains with finite state space, in the zero temperature
limit. In this setting they compute accurately the capacities, obtaining estimates on mean
hitting times which are precise up to a multiplicative error tending to zero exponentially fast.
Their results sharpen largely the ones obtained earlier on the same models with large deviation
techniques using the pathwise approach.

Since then, this approach has been successful for studying metastability in different models.
After introducing some notions from potential theory, later in this introduction we will focus
on models and well-known results which are relevant for this work. We refer again to the
monograph [18] for a more extensive introduction on metastability and the potential-theoretic
approach applied to reversible Markov processes.
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1.2. POTENTIAL-THEORETIC APPROACH TO METASTABILITY

1.2.1 Dirichlet forms, equilibrium potential, last-exit biased distribution, ca-
pacity

We will define here the main tools of potential theory that are needed in this work. Let X be
a Markov chain with countable state space S, generator L, transition rates p(·, ·) and reversible
invariant measure µ. Recall that the first return time to any subset A ⊂ S is denoted by τA
and defined in (1.2).

Consider the following Dirichlet problem{
(Lf) (σ) = 0, σ ∈ S \ (A ∪ B)

f(σ) = 1A(σ), σ ∈ A ∪ B,
(1.7)

where 1A denotes the indicator function of the set A. The first equation corresponds physically
to the Kirchhoff law. The solution of this problem is called equilibrium potential and is denoted
by hA,B. It can be shown that

hA,B(σ) =
{
Pσ(τA < τB), σ ∈ S \ (A ∪ B)
1A(σ), σ ∈ A ∪ B.

(1.8)

As in [18, (7.1.39)] the capacity of two disjoint sets A,B ⊂ S is defined by

cap(A,B) =
∑
σ∈A

µ(σ)Pσ (τB < τA) . (1.9)

The capacity is an essential quantity in potential theory as we shall see in the next sections.
The main reason is the existence of variational characterisations of the capacity that are very
useful for finding upper and lower bounds. As explained in [45], the capacity cap(A,B) is, in
terms of electrical networks, the current associated with the equilibrium potential hA,B.

Another relevant quantity which will arise when characterising capacities is the Dirichlet
form of two functions f, g : S → [0, 1], defined by

E(f, g) = 1
2
∑
σ∈S

∑
σ′∈S

µ(σ)p(σ, σ′)[f(σ′)− f(σ)][g(σ′)− g(σ)]. (1.10)

A crucial distribution in the potential-theoretic approach is the so-called last-exit biased
distribution νA,B of a set A ⊂ SN with respect to a disjoint set B ⊂ SN and it is defined by

νA,B(σ) = µ(σ)Pσ (τB < τA)∑
σ∈A µ(σ)Pσ (τB < τA) , σ ∈ A. (1.11)

Notice that the normalising factor at the denominator is exactly the capacity defined in (1.9).

1.2.2 Variational characterisations of capacities

We state here some of the well-known variational principles characterising the capacity. These
are extremely important as they allow to easily obtain upper and lower bounds on capacities,
and obtaining sharp bounds reduces to the task of finding proper test functions. In addition
to references mentioned above, a summary on the interpretation of Dirichlet and Thomson
principles in terms of electrical networks can be found the appendix of [49], by den Hollander
and Jansen. Furthermore, Slowik’s Ph.D. thesis [71] contains a detailed introduction to the
variational principles with statements in the discrete state space setting.
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Lemma 1.2.1 (Dirichlet principle). For any non-empty disjoint A,B subsets of S,

cap (A,B) = min
f∈HA,B

E(f, f) = min
f∈HA,B

1
2
∑

σ,σ′∈S
µ(σ)p(σ, σ′)[f(σ)− f(σ′)]2, (1.12)

where
HA,B = {f : S → [0, 1] s.t. f |A = 1, f |B = 0} (1.13)

and the minimum is attained for hA,B, the equilibrium potential defined in (1.8).

See Bovier and den Hollander [18, Section 7.3.1 and (7.1.29)] for further details.

Definition 1.2.2. ([71, Definition 1.17]) Given a space S and the transition rates p(·, ·) of a
Markov chain on S, an anti-symmetric flow from A to B, disjoint subsets of S, is a real valued
function φ : S × S → R such that the following conditions hold

1. for any x, y ∈ S, if p(x, y) = 0, then φ(x, y) = 0;

2. for any x, y ∈ S, φ(x, y) = −φ(y, x);

3. the Kirchhoff law holds for every x ∈ S \ (A ∪ B), i.e.∑
y∈S

φ(x, y) = 0 (1.14)

(this condition is often called divergence free, as the divergence of a flow φ at x is the left
hand side of (1.14));

4. the total flow out of A equals the total flow into B, i.e.∑
a∈A,x∈S\A

φ(a, x) =
∑

b∈B,x∈S\B
φ(x, b). (1.15)

A flow from A to B is said to be unit if the quantity in (1.15) equals 1.

We are ready to state the Thomson principle in the version of Slowik [71].

Lemma 1.2.3 (Thomson principle). For any non-empty disjoint A,B subsets of S,

cap(A,B) = sup
φ∈UA,B

1
D(φ) , (1.16)

where UA,B is the space of all unit anti-symmetric flows φ : S × S → R from A to B, and D(φ)
is the norm of φ defined by

D(φ) = 1
2
∑

σ,σ′∈S
1(p(σ, σ′) 6= 0) φ(σ, σ′)2

µ(σ)p(σ, σ′) . (1.17)

The supremum is attained for the so-called harmonic flow φA,B defined by

φA,B(σ, σ′) =
[hA,B(σ′)− hA,B(σ)]+ µ(σ)p(σ, σ′)

cap(A,B) , (1.18)

for σ, σ′ ∈ S, where [·]+ denotes the positive part.
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Dirichlet and Thomson principles are widely used throughout this thesis. Another important
characterisation of the capacity is given by Berman-Konsowa principle, proved by Berman and
Konsowa in [5] for discrete time Markov chains on a finite state space and then extended by den
Hollander and Jansen in [49] to continuous time Markov processes on Polish spaces.

In the literature not only anti-symmetric flows are used in this context but also non-negative
flows, as we shall see in the statement of Berman-Konsowa principle. Here we prefer to state
well-known results as they are most commonly found in the literature, therefore we define also
the notion of non-negative flows.

Definition 1.2.4. ([71, Definition 1.21]) Given a space S and the transition rates p(·, ·) of a
Markov chain on S, a non-negative flow from A to B, disjoint subsets of S, is a non-negative
function ψ : S × S → [0,∞) such that the following conditions hold

1. for any x, y ∈ S, if p(x, y) = 0, then ψ(x, y) = 0;

2. for any x, y ∈ S, if ψ(x, y) > 0, then ψ(y, x) = 0;

3. the Kirchhoff law holds for every x ∈ S \ (A ∪ B)∑
y∈S\{x}

ψ(x, y) =
∑

z∈S\{x}
ψ(z, x), (1.19)

namely the flow into and out of any point (not in A nor in B) is the same;

4. the total flow out of A equals the total flow into B, i.e. (1.15) holds.

As above, a flow from A to B is said to be unit if the quantity in (1.15) equals 1. Moreover,
a non-negative flow from A to B is called loop-free when any finite path x1, . . . , xn of elements
of S, with x1 ∈ A, xn ∈ B, satisfying ψ(xi, xi+1) > 0 for all i ∈ {1, . . . , n − 1} is self-avoiding
(namely no element of the sequence x1, . . . , xn is repeated).

Remark 1.2.5. Given a non-negative unit flow ψ from A to B one can construct the corre-
sponding anti-symmetric flow φ from A to B by setting φ(x, y) = ψ(x, y)−ψ(y, x) and vice versa,
by setting ψ(x, y) = [φ(x, y)]+. The following results do not hold for both flows but equivalent
versions for non-negative flows can be found, for instance by slightly modifying some constants.

Given a non-negative loop-free unit flow ψ from A to B, we can define a probability distri-
bution on the set of self-avoiding paths γ = (x1, . . . , xn) from A to B by

Pψ(γ) =

∑
y∈S

ψ(x1, y)

 n−1∏
i=1

ψ(xi, xi+1)1(xi /∈ B)∑
y∈S ψ(xi, y) . (1.20)

Lemma 1.2.6 (Berman-Konsowa principle). [71, Proposition 1.11] Given two disjoint subsets
A,B of the state space S, it holds that

cap(A,B) = sup
ψ∈ŪA,B

∑
γ

Pψ(γ)

 ∑
(x,y)∈γ

ψ(x, y)
µ(x)p(x, y)

−1

, (1.21)

where ŪA,B denotes the set of all the non-negative loop-free unit flows from A to B, and the first
sum is over all the positive self-avoiding paths γ from A to B.
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In this thesis we do not use the Berman-Konsowa principle directly. However, in [19] we
use a lower bound for capacities derived from that principle by Bovier and den Hollander in
[18, Lemma 9.4]. For completeness we state here the bound, after defining one more quantity.
A defective loop-free non-negative unit flow with defect δ : S → R is a function ψ : S × S → R
satisfying all the conditions in Definition 1.2.4, with (1.19) replaced by∑

y∈S\{x}
ψ(x, y) =

∑
z∈S\{x}

ψ(z, x) + δ(x). (1.22)

We are ready to state [18, Lemma 9.4], for S finite.

Lemma 1.2.7 (Berman-Konsowa defective flow bound). Given two disjoint subsets A,B of
the state space S, for any defective loop-free non-negative unit flow ψ from A to B with defect
function δ, it holds that

cap(A,B) ≥
M∏
i=1

(
1 +

[
max
x∈Ai

δ(x)∑
y∈S ψ(x, y)

]
+

)−1∑
γ

Pψ(γ)


 ∑

(x,y)∈γ

ψ(x, y)
µ(x)p(x, y)

−1
 , (1.23)

where [·]+ denotes the positive part, the sum is over all the positive self-avoiding paths γ from A
to B, Pψ is defined in (1.20) and (Ai)1≤i≤M is a partition of S depending on ψ defined in [18,
Eq. (7.3.31)].

1.2.3 Main formulas

We state here the two main formulas for metastable exit times, that are the core of the potential-
theoretic approach to metastability.

Let X be a metastable Markov chain with metastable setM and invariant measure µ. Let,
for x ∈ S, M(x) = {σ ∈ S : µ(x) ≤ µ(σ)} and A(x) be the valley around x as defined in
Definition 1.1.3. Then for every x ∈M

Ex[τM(x)] = [1 + o(1)] µ(A(x))
cap(x,M(x)) , (1.24)

follows from [18, Theorem 8.15].
Furthermore, for any two non-empty and disjoint A,B subsets of S, the following holds as

in [18, Eq. (7.1.41)],

EνA,B [τB] =
∑
σ∈A

νA,B(σ)Eσ[τB] =
∑
σ∈S µ(σ)hA,B(σ)

cap(A,B) , (1.25)

where νA,B is defined in (1.11) and hA,B is the equilibrium potential defined in (1.8). The
numerator will be often referred to as harmonic sum or ‖hA,B‖µ.

Despite one would like to estimate mean hitting times starting from a specific configuration
within certain sets, for general spaces (1.24) is rarely used, because computing the capacity of a
single configuration at the denominator of (1.24) is often very difficult. An exceptional case are
nearest neighbours random walks on a lattice in εZd with ε positive and usually equal to 1/N
for N ∈ N. In this case one can use the approximation techniques explained in [18, Chapter 10],
and also used in [19] as mentioned later in Chapter 4.

Regardless of being less precise than (1.24), what is often used for general spaces is (1.25),
which characterises mean hitting times starting from a set A with the specific distribution νA,B.
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The advantage of (1.25) compared to (1.24) is that it does not involve capacities of singletons
but only of sets. As mentioned above, estimates on capacities are usually obtained exploiting
variational principles (as the ones in Section 1.2.2) and examples of those estimates are frequent
in this thesis. Therefore, obtaining estimates on the denominator of (1.25) is usually not a
problem. The challenging part when applying (1.25) consists in estimating the harmonic sum.
In [22] we use the same techniques as in [7] which are computationally involved and much model
dependent (see Chapter 2). In [20] a general technique deriving from the work by Schlichting
and Slowik [68] is used. For further details see Chapter 5.

1.3 Ising and Curie–Weiss models
In this section we introduce the concept of ferromagnetism and two well-known spin models, the
Ising and the Curie–Weiss models, which will serve as foundation for presenting in Section 1.4
the models we study in this thesis.

1.3.1 Ferromagnetism

All materials acquire a magnetic moment when immersed in a magnetic field. Most of them lose
their magnetisation when the external field vanishes: these are called either paramagnetic, when
the acquired field is aligned with the external one, or diamagnetic, when it is opposite [67].

Ferromagnetic (and anti-ferromagnetic) materials are an exception. They acquire as well a
magnetisation when immersed in a magnetic field but, below a specific temperature called the
Curie temperature (named after Pierre Curie’s studies in 1895), different for every material, part
of it remains when the external field is removed. This internal acquired magnetisation is often
called spontaneous magnetisation. Above the Curie temperature, ferromagnetic materials lose
their peculiar property and behave as paramagnetic ones. This change in behaviour can be seen
in Figure 1.3 which shows the acquired magnetisation of a ferromagnetic material as a function
of the external magnetic field h at different temperatures (β is the inverse temperature of the
system, as we will see later): from left to right the paramagnetic, critical and ferromagnetic cases,
with temperatures above, equal and below the Curie temperature, respectively. More details can
be found for instance in Baxter [3]. The difference between ferromagnetic and anti-ferromagnetic
behaviour will be shorty explained later.

Similarly to the change of phase in supercooled water, the change in sign of the spontaneous
magnetisation in ferromagnets is not immediate. Indeed, if the external field is decreased to zero
and then reversed in sign, the acquired magnetisation of a ferromagnet decreases continuously,
changing sign only after having been immersed in the negative field for some time. This phe-
nomenon is called hysteresis and the graph of the magnetisation close to vanishing external field
is called hysteresis loop due to its peculiar shape (for more details on hysteresis see for instance
Brokate and Sprekels [23]).

1.3.2 Origin and definition of the Ising model

Pierre Weiss suggested in 1907 [77] that a ferromagnet could be thought as a set of elementary
magnets or interacting magnetic dipoles which can rotate ideally with any angle, and that the
spontaneous magnetisation is motivated by the spontaneous alignment of those dipoles. Based
on Weiss’s theory, Wilhelm Lenz suggested in 1920 [57] a model assuming that the dipoles could
take only two possible opposite directions (namely up and down, or as we will see later positive
or negative). Lenz did not specify the interactions among the dipoles [61].
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Ernst Ising, Lenz’s doctoral student, investigated in his Ph.D. thesis (1924, [51, 52]) the
model Lenz suggested with few additional assumptions: the dipoles interact only with their
nearest neighbours and they are placed on a one dimensional lattice (namely on Z). Starting
from Peierls’ paper [66], Lenz’s model with Ising’s hypothesis of the nearest neighbour interaction
is known as the Ising model.

The Ising model models a spin system. A spin in physics is the angular momentum of a
subatomic particle [75] and it provides the essential information to describe the magnetic dipoles
of Weiss’s theory. Here spins are assumed to be quantised and have only two possible values +1
and −1, following Lenz’s suggestion. Moreover, they are placed at the vertices of a graph so to
provide the nearest neighbour structure necessary to describe the interaction assumed by Ising.
Therefore, one might simply think of the Ising model as a model of particles, or any objects,
which are placed on a grid, can have only two values (+1 or −1) and interact only with their
nearest neighbours on the grid.

Having in mind the up and down position of the dipoles, we say that a spin “flips” when it
changes its value and that two spins are “aligned” when they have the same value.

Let G = (V,E) be a graph with vertex set V and edge set E, and assume that a spin is
placed on every vertex. A configuration specifies the values of every spin, namely it is an element
σ = (σi)i∈V of the configuration space in S = {−1,+1}V , where each σi is the value of the spin
at vertex i ∈ V . As usual in statistical mechanics, given an Hamiltonian function H : S → R,
the system is described by the Gibbs measure which is defined, for any configuration σ ∈ S, by

µ(σ) = e−βH(σ)

Z
, (1.26)

where Z = ∑
σ∈S e−βH(σ) is the normalising factor, called partition function, and

β = 1
kT ∈ (0,∞) is called inverse temperature as T is the absolute temperature and k is the

Boltzmann constant (approximately k = 1.38065 · 10−23J/K). The Gibbs measure corresponds
to the Maxwell-Boltzmann distribution of statistical mechanics, which postulates that the value
µ(σ) defined in (1.26) is the probability that a configuration with energy H(σ) is present in the
system at temperature T .

The Hamiltonian H of the Ising model is defined for each configuration σ ∈ {−1,+1}V by

H(σ) = −J
∑

i,j : (i,j)∈E
σiσj − h

∑
i∈V

σi, (1.27)

where J > 0 represents the interaction strength and h ∈ R the external magnetic field.
The first term of the Hamiltonian H is an interaction term, to which only nearest neigh-

bouring spins contribute. The parameter J is set positive in order to model the ferromagnetic
behaviour in which the configurations with aligned neighbouring spins are more likely. Taking J
negative would lead to a description of a system where pairs of neighbouring spins with opposite
signs are favoured: this is referred to as anti-ferromagnetic behaviour.

The second term of H encodes the influence of the external magnetic field on the system.
Notice that here and in the following the parameter h is independent of i ∈ V , meaning that
the external magnetic field influences equally every spin.

We refer to Selinger [69] and Friedli and Velenik [44] for a more detailed introduction of the
Ising model at stationarity.

14



1.3. ISING AND CURIE–WEISS MODELS

1.3.3 History and importance of the Ising model

Ising proved that no ferromagnetic behaviour, namely no first order phase transition, occurs in
the Ising model on the one dimensional lattice (Z) and inferred that the same would happen
in three dimensions. Later Ising was proved wrong: the Ising model presents ferromagnetic
behaviour in Z2 and Z3 [66]. (For further mathematical history on the Ising model we refer to
Brush [24] and for a more recent overview to Duminil-Copin [40].)

Only few years after Ising’s work, Heisenberg showed that the energy function of ferromagnets
is more complicated that the one assumed by Ising and depends also on the speed of the spin
flips [66]. Therefore, the Ising model lost its physical interest and had been considered for years
interesting only for a purely mathematical point of view. However, in the second half of the last
century the Ising model became very relevant in modern physics and other sciences.

The importance of the Ising model nowadays is essentially threefold. First of all it is one
of the few models in statistical mechanics which is solvable (in dimensions one and two). In
addition, despite being not very realistic in describing ferromagnetism, the model describes a
system which exhibits a phase transition. Moreover, it can be naturally seen as a model of
cooperative phenomena which makes it suitable for many applications. For a deeper insight on
interpretations and importance of the Ising model from the 1920’s to the 1970’s we refer to a
series of three papers ([61, 62, 63]) by Niss, where he reviews how the perception of the model
changed in those decades.

1.3.4 The Curie–Weiss model

Pierre Weiss introduced in [77] the mean-field assumption, trying to explain ferromagnetic be-
haviour, which was earlier studied by Pierre Curie, who identified the Curie temperature and
the Curie’s law. Weiss’s assumption led to what is nowadays known as the Curie–Weiss model.
It models a system of N ∈ N spins, immersed in a uniform external magnetic field h ∈ R, where
all spins interact with each other with uniform interaction strength, namely all in the same way.
The homogeneity of the interaction among all the spins is known as the mean-field property of
this model.

Let
SN = {−1, 1}N (1.28)

be the configuration space. The Hamiltonian of the Curie–Weiss model is defined, for any
σ ∈ SN , by

HN (σ) = − 1
N

∑
i,j : 1≤i<j≤N

σiσj − h
N∑
i=1

σi. (1.29)

Notice that the Curie–Weiss model can be viewed as the Ising model on the complete graph,
i.e. the graph with edges connecting each pair of vertices (with a rescaling 1/N so for the
Hamiltonian not to take values larger than order N). The Gibbs measure is defined as in (1.26)
by

µN (σ) = e−βHN (σ)

ZN
, (1.30)

where ZN = ∑
σ∈SN e−βHN (σ) is the partition function.

The mean-field property of the Curie–Weiss model makes it much easier to treat than most
of the models in statistical mechanics. Indeed, the homogeneity in the interaction allows one to
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rewrite the Hamiltonian as

HN (σ) = −NmN (σ)2 −NhmN (σ), (1.31)

where the function mN : SN → [−1, 1] is called magnetisation and is defined, for any σ ∈ SN ,
by

mN (σ) = 1
N

N∑
i=1

σi. (1.32)

Thus, HN does not depend on the value of each spin but only on their mean. Therefore, as one
usually tries to do in statistical mechanics the focus moves from the microscopical configurations
SN to the following mesoscopic subset of the interval [−1, 1],

ΓN =
{
−1,−1 + 2

N
, . . . , 1− 2

N
, 1
}
, (1.33)

which is the set of all possible magnetisations and it is more treatable than SN . The Gibbs
measure on the set ΓN turns out to be, for any m ∈ ΓN ,

QN (m) = µN (m−1
N (m)) = e−βNFN (m)

ZN
, (1.34)

where ZN = ∑
σ∈SN e−βHN (σ) is the partition function and the free energy FN : ΓN → R is

defined by

FN (m) = −1
2m

2 − hm+ 1
β

[
− 1
N

log
(

N
(1+m)

2 N

)]
, (1.35)

where the first two terms come from the Hamiltonian (see (1.31)) and the last one is the entropy
term.

We refer to Bovier [11] or Friedli and Velenik [44] for an analysis of the Curie–Weiss model
at stationarity. The metastable regime and behaviour for this model with Glauber dynamics
is also very well known: we give a brief summary on the topic in Bovier, den Hollander and
Marello [19] and we refer for instance to Bovier and den Hollander [18, Chapter 13] for further
details.

1.4 Models of interest and results
In this thesis we focus on metastability of reversible Markov chains which model spin systems.
The models we study are stochastic modifications of the Ising and Curie–Weiss models. More
precisely, we study spin systems of (large) size N at fixed inverse temperature β > 0, immersed
in a constant external magnetic field h ∈ R. As for the Curie–Weiss model a configuration is
a sequence of N ∈ N spins, namely an element σ = (σi)i∈{1,...,N} of the configuration space SN
defined in (1.28). For every σ ∈ SN we define the Hamiltonian HN : SN → R as follows

HN (σ) = − 1
N

∑
i,j : 1≤i<j≤N

Jijσiσj − h
N∑
i=1

σi, (1.36)

where h ∈ R is fixed and (Jij)1≤i<j is a triangular sequence of random variables which will be
specified later. The Jij ’s are usually called interaction (or coupling) coefficients. Moreover, Jij
as a function of the natural numbers i and j is also called pair potential.
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One can immediately see that taking Jij ≡ 1 for all i, j ∈ N, the Hamiltonian in (1.36) turns
out to be equal to one of the Curie–Weiss model (see (1.29)). Moreover, if all the variables
(Jij)ij have only the two values 0 and J > 0, then (1.36) is the Hamiltonian of an Ising model
on the graph G = (V,E) with vertex set V = {1, . . . N} and edge (i, j) present in the edge set E
if and only if Jij = J . Similarly to the Curie–Weiss model, there is a rescaling of 1/N in order
for the Hamiltonian not to take values larger than order N , for instance in case of dense graphs.

It is important to notice that, if each Jij is, for instance, a Bernoulli random variable with
mean pij ∈ [0, 1], then we are dealing with an Ising model on a random graph in which the edge
connecting two vertices i and j is present in the graph with probability pij . This connection
with random graphs makes these models more interesting and increases the possible number
of applications. In this thesis the notions needed from random graphs theory are simply the
definitions of Erdős–Rényi [41] and Chung-Lu [28] random graphs. However, if the reader is
interested in exploring the theory, a classical reference is the book by van der Hofstad [47],
where also further references on those two graphs can be found.

1.4.1 The three models

Depending on the choice of the random variables (Jij)ij in (1.36), the model will of course be
different. In this thesis we present three articles. In each of them we studied metastability of a
different model. All three models have the Hamiltonian defined in (1.36) and differ in the choice
of the coupling coefficients as follows:

1. in Bovier, Marello and Pulvirenti [22] (Jij)ij is a sequence of i.i.d. Bernoulli random vari-
ables with fixed mean p ∈ (0, 1): the resulting model is the so-called randomly dilute
Curie–Weiss model, which can be seen as an Ising model on the Erdős–Rényi random
graph with fixed edge probability p (discussed in Chapter 2);

2. in Bovier, den Hollander and Marello [19] (Jij)ij = (J(i)J(j))ij , where (J(i))i∈N is a se-
quence of i.i.d. non-negative random variables with finite support (discussed in Chapter 4);

3. in Bovier, den Hollander, Marello, Pulvirenti and Slowik [20] (Jij)ij is a sequence of random
variables which are uniformly bounded and independent conditionally to a given σ-algebra
(discussed in Chapter 5).

1.4.2 Glauber dynamics and metastable exit times

We study metastability of Markov processes (XN (t))t≥0 with discrete state space SN = {−1,+1}N
(see (1.28)), for large N . As the initial distribution will be specified later, for completing the
definition of the Markov process we are left to define the transition rates of those Markov pro-
cesses. We use the Metropolis transition rates pN (·, ·) defined as follows for any two σ, σ′ ∈ S

pN (σ, σ′) =
{

exp
(
−β
[
HN (σ′)−HN (σ)

]
+
)
, if σ ∼ σ′,

0, otherwise,
(1.37)

where σ ∼ σ′ means that σ′ is obtained from σ by a flip of a single spin and [·]+ denotes
the positive part. This is a so-called Glauber dynamics: the only transitions occur between
configurations which differ exactly on one spin, namely only single spin flips are allowed. The
Markov process (XN (t))t≥0 has the Gibbs measure defined in (1.30) as reversible invariant
measure. We denote with PNν the law of (XN (t))t≥0 with initial distribution ν and with ENν the
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mean with respect to PNν . Moreover, we abbreviate PNσ and ENσ when initial distribution is not
zero only on the configuration σ ∈ SN .

As we explained in Remark 1.1.1 here we define all quantities only in continuous time, despite
in case 1 (Chapter 2, [22]) we deal with discrete time Markov chains.

The main quantity of our interest is the hitting time τNBN of a set BN ⊂ SN of the Markov
process (XN (t))t≥0 starting from a set AN ⊂ SN , disjoint from BN . This hitting time is a
metastable transition time (often called also metastable exit time) if (XN (t))t≥0 is metastable
and AN and BN are metastable sets for the process. We mainly focus on the mean of τNBN starting
from a specific configuration σ ∈ AN or from the last-exit biased distribution νNAN ,BN of AN
(as defined in (1.11)): ENσ [τNBN ] or EN

νNAN,BN
[τNBN ]. The reasons why we focus only on these two

conditions are embedded in the approach we use to study to metastability, potential-theoretic
approach (see Section 1.2.3 for a discussion).

It is important to stress that by introducing some randomness (in the coupling coefficients)
in the Hamiltonian we add levels of randomness in the picture. Indeed, not only the process
we study (the Markov process (XN (t))t≥0 on SN ) is random, but also the transition rates pN
defining the process are themselves random variables, bringing an additional level of randomness
or possibly more than one, as might happen in case 3. Notice that, as a consequence, mean
hitting times as EN

νNAN,BN
[τNBN ] are random variables: the mean EN

νNAN,BN
averages out only one

level of randomness, the Markov process on SN , but leaves untouched the randomness on the
transition rates, which comes from the random coupling coefficients (Jij)ij .

Remark 1.4.1 (Notational remark). We warn the reader that in some of the papers presented
in this thesis the quantities P,E,PNν ,ENν are denoted in a slightly different way. However, the
notation should be consistent within each chapter of this work.

1.4.3 Results

In this section we summarise our results about metastability of the models introduced in the
previous sections, having in mind the definition of the three cases given in Section 1.4.1. More
details will be given in following chapters.

Let us denote with P the (conditional in case 3) law of (Jij)ij and with E the corresponding
mean.

Results on first and third models: a comparison with the averaged model

Clearly, the model with (Jij)ij as in 3 (paper [20]) is an extension of the model with (Jij)ij as in
1 (paper [22]). In both cases we study metastability of the system by comparing the model with
Hamiltonian 1.36 with the averaged model, assuming metastability of the latter. More precisely,
the averaged model (called also annealed model in [20]) is the model defined by the Hamiltonian
in 1.36 in which we replace the random interaction coefficients (Jij)ij with their (conditional)
mean, i.e. the Hamiltonian H̃N : SN → R defined, for σ ∈ SN , by

H̃N (σ) = E(HN (σ)) = − 1
N

∑
i,j : 1≤i<j≤N

E(Jij)σiσj − h
N∑
i=1

σi. (1.38)

Notice that in the model with Hamiltonian H̃N there is one level of randomness less than in
the one with Hamiltonian HN . The model with Hamiltonian HN will be often called quenched
model, when it is compared with the annealed model.
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After taking two specific sets AN and BN which are metastable for the annealed model with
size N , we provide in both [22] and [20], estimates on the tail distribution of the mean hitting
time EN

νNAN,BN
[τNBN ] divided by the corresponding quantity of the annealed (or averaged) model.

In both papers we prove that, asymptotically in N , the random ratio is of order constant times a
random factor which behaves like an exponential of a sub-Gaussian random variable. In formulas
our results have the following form

lim
N→∞

P

e−t−CN ≤
ENνAN,BN

[
τNBN

]
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e+t+KN

 ≥ 1− k1 e−k2t2 , (1.39)

where in both papers CN and KN are explicit values, related with the variance of the coefficients
(Jij)ij and of order at most constant in N . In [20] KN is smaller than in [22], while it is not
clear which CN provides a better bound because in [22] it has a quite complicated expression.
However, a clear improvement in [20] consists in the fact that k1 and k2 are explicit constants,
while they are not provided in [22].

Both papers use the potential-theoretic approach to metastability (mainly Section 1.2.2 and
(1.25)), but there are mainly two differences in the strategy. First, Talagrand’s concentration
inequality is used in [22] to deal with the randomness of the interaction coefficients, while
McDiarmid’s inequality is used in [20]. The latter gives the explicit constants k1 and k2 and
allows for more generality because, contrary to Talagrand’s, it does not require convexity checks.
The second difference is in the techniques to estimate the harmonic sum in (1.25): [22] uses the
same model dependent and computationally long techniques used by Bianchi, Bovier and Ioffe
in [7], while [20] exploits definitions and results by Schlichting and Slowik [68] which yield more
general estimates with less technicalities.

We have already pointed out that [20] contains results on more general models and with more
explicit constants than in [22]. Moreover, in [20] we provided two additional results, not present
in [22]. We proved that if the annealed model is metastable with respect to some sets, then also
the quenched model is metastable with respect to the same set. Furthermore, definitely in the
size N of the system, we proved in [20, Theorem 2.13(ii)] order constant upper and lower bounds
on the (conditional) moments of the mean metastable transition time EN

νNAN,BN
[τNBN ], divided by

the corresponding quantity for the annealed model.

Results on the second model: direct estimates and metastable regime

In paper [19] (for the model with (Jij)ij as in 2 in Section 1.4.1), we study directly the metasta-
bility of the system and provide explicit estimates, that hold with high probability, on metastable
exit times and metastable regimes, without comparing it to an averaged model. We found out
that, interestingly, the critical value of the external magnetic field might be not increasing in
β. Moreover, we found explicit sharp estimates on the metastable exit time and an explicit
characterisation, up to order 1, of the randomness of the exponent its leading order term.

Despite the fact the model might be interesting per-se as a model with random interaction
coefficients, our biggest motivation to study its metastability in [19] was the following. It is the
annealed model of the Ising model on a Chung-Lu like random graph, i.e. the model where (Jij)ij
is a sequence of independent Bernoulli random variables with (random) mean J(i)J(j). As a
consequence, one can apply the results in [20] (see the general (Jij)ij in 3) to the Ising model
on a Chung-Lu like random graph, because [19] provides explicit details on the metastability of
its annealed model.

19



CHAPTER 1. INTRODUCTION

1.5 Context and literature

1.5.1 Disordered spin systems at equilibrium

The literature studying equilibrium properties of spin systems having randomness in the inter-
action coefficients is extremely large. Here we give a brief partial review on work which is related
with this thesis, focusing mainly on the Ising model on various different graphs.

Bovier and Gayrard proved in [15] that the free energy and the law of the mean magnetisation
of the randomly dilute Curie–Weiss model (see case 1) converge to the ones of the undiluted
Curie–Weiss model for any fixed β > 0 in the thermodynamic limit, when the dilution parameter
p times the size of the system N diverges with N . Their paper was of inspiration for comparing
the metastable behaviour of those two models in [22]. In [15] the results are proved also for
coupling coefficients satisfying Bernstein’s condition or normally distributed ones.

Recently, Kabluchko, Löwe and Schubert [53], inspired by [15], proved a central limit theorem
for the magnetisation of the same model, referred there as Ising model on dense Erdős–Rényi
random graphs, for high temperatures and zero external field. The same authors provided also
further results for the sparse case in [54] and [55]. In those three papers the reader can find
references for Ising spin systems on sparse random graphs at equilibrium. An additional overview
on the topic, until year 2013, and results on the ferromagnetic Ising model on power-law random
graphs are present in Dommers’ PhD thesis [34].

Moreover, Ising models on dense regular graphs (without external magnetic field) have been
studied very recently from a statistical point of view by Xu and Mukherjee [79].

At equilibrium, the model we considered in [19] (see case 2) was studied by Tindemans and
Capel [76] and Dommers, Giardinà, Giberti, van der Hofstad and Prioriello [36]. To the best of
our knowledge, these are the only two works in the literature which consider that model.

1.5.2 Metastability of the random field Curie–Weiss model with Glauber
dynamics

As a first attempt to approach metastability on random modifications of spin models, attention
was drawn to the random field Curie–Weiss model (RFCW). It is a spin model with Hamiltonian
as the one of the Curie–Weiss model (1.29) where the external field h is a random variable and
might depend on the spin it is applied to (thus, the term h

∑N
i=1 σi becomes ∑N

i=1 hiσi).
Mathieu and Picco [58] and Fontes, Mathieu and Picco [42] were the first to study metastabil-

ity of the RFCW, obtaining exponential asymptotics for metastable exit times, for large volumes
at fixed temperature, when the random field takes only the values 1 and −1. In the case when
the external random field can take a finite number of values, the metastable behaviour was fully
analysed by Bovier, Eckhoff, Gayrard and Klein in [12], as an application of their new established
potential-theoretic approach. Using the same approach, Bianchi, Bovier and Ioffe [7] provided
sharp estimates on the mean metastable exit time of the RFCW with continuous distribution
of the random field. Their methods for estimating the harmonic sum were largely used in our
paper [22] (see Chapter 2). Later, the same three authors proved in [8] the exponential law of
the metastable exit time using coupling methods.

1.5.3 Metastability of the Ising model on sparse random graphs

Studying disorder at the level of the interaction coefficients turns out to be more complicated as
the Hamiltonian strongly depends on all the realisations of the random coefficients and various
techniques used for the RFCW cannon be used in this context.
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However, in the last two decades various dynamical properties of Ising model on random
graphs with Glauber dynamics have been determined. The first results in this context were
given by Bianchi in her Ph.D. thesis [6], where she studied relaxation times of the Ising model
on regular random graphs with Glauber dynamics, for low temperatures. Later, Mossel and
Sly studied mixing times of the Ising model on sparse Erdős-Rényi random graphs [59] and on
random regular graphs [60], both for high temperatures.

Studies on metastability of the Ising model on Zd with dilution on the edges (called dilute
Ising model) have been carried out around the same time: see for instance Bodineau, Graham and
Wouts [9], Wouts [78] and references therein. Later, Dommers [35] and Dommers, den Hollander,
Jovanovski and Nardi [38] focused on random regular graphs and the configuration model,
respectively, and computed metastable transition times for finite volume and low temperature.
In both papers the pathwise approach to metastability is used.

Recently, Can, van der Hofstad and Kumagai [25] extended the results in [60] by studying
mixing times the Ising model on random regular graphs for low temperatures.

All these results are about the Ising model on sparse random graphs.

1.5.4 Metastability of the Ising model on dense random graphs and further
disordered spin systems

To the best of our knowledge, the papers included in this thesis are the first ones dealing with
metastability of the Ising model on dense random graphs, with one exception: the earlier work
by den Hollander and Jovanovski [50]. They studied metastability on the exact same model
we analyse in [22], the randomly dilute Curie–Weiss model (RDCW), at fixed temperature and
large volume, before us, using mainly the pathwise approach to metastability. They proved that
the leading order term of the mean transition time is the same as the one in the Curie–Weiss
and the random correction term is at most polynomial in the size of the system. Despite the
fact that we improved in [22] the precision of the correction term to order constant, their result
remains interesting because it is proved with more generality in the initial distribution: their
estimate is independent from the initial configuration within the starting set, while ours holds
only starting from the last-exit biased distribution.

Acharyya and Štefankovič [1] were the first to study dynamical properties of Glauber spin
dynamics on dense random graphs. They considered a homogeneous ferromagnetic Ising model
on converging dense graphons. They studied phase transitions and estimated mixing times at
fixed temperature, but they considered random graphs only in a very special case. Moreover,
they did not study metastability.

Therefore, our results in [20] (see Chapter 5) are the first on the metastable behaviour of
the Ising model on general dense random graphs (where the presence of edges is independent)
and of a much wider class of spin systems where the interaction coefficients are bounded and
(conditionally) independent.

1.6 Some useful techniques

In this section we introduce some relevant notions and techniques which were used in the papers
presented in this work.
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1.6.1 Coarse-graining

Coarse-graining, as the word suggests, is a technique which consists in considering only part
of the very fine available details of a system, especially when this is sufficient to have enough
information on the system. In practice the grained quantity is the configuration space: one looks
for a not injective function, say m, of the configuration space whose image provides sufficient
information to characterise the quantities of interest, usually the Hamiltonian of the system.

In statistical mechanics the grained quantity is the configuration space S and it is reduced to
some smaller Γ which carries all the relevant information about the system. More precisely, one
looks for a not injective, surjective function m : S → Γ such that the Hamiltonian H(·) : S → R
characterising the system could be written as H(σ) = E(m(σ)) for any σ ∈ S, with some
E : Γ→ R. This means that the Hamiltonian does not depend on all the information carried by
the configuration σ but it is a function only of m(σ).

This technique is extremely useful when dealing with spin systems, because the analysis
is much simplified if the configuration space is reduced for instance from SN = {−1, 1}N to
a discrete smaller subset of Rd, where the critical points of the Hamiltonian can be found by
differentiation. The simplest example of our interest is the Curie–Weiss model in which the
function m is the magnetisation, a one-dimensional function which maps every configuration
σ ∈ SN to the average of its spins in ΓN ⊂ [−1, 1] (see (1.32)).

Coarse-graining is very effectively used in more complicated settings, where finitely dis-
tributed i.i.d. random variables depending on a single spin are present in the Hamiltonian. This
is the case in the random field Curie–Weiss model (with finitely distributed field) (see [12]) or in
the model with “product” coupling disorder studied in [19] (Chapter 4) where i.i.d. random vari-
ables, say (V (i))i∈N having values in a finite set I = {a1, . . . , ak} of cardinality k, appear in the
form ∑N

i=1 V (i)σi. In these cases the strategy is to first randomly partition the set {1, . . . , N}
into k sets (A`,N )`∈{1,...,k} according to the realisations of the random variables, namely

A`,N = {i ∈ {1, . . . , N} : V (i) = a`}. (1.40)

The key point is noticing that one can rewrite

N∑
i=1

V (i)σi =
k∑
`=1

a`
∑

i∈A`,N

σi. (1.41)

Notice that the right hand side is a sum of a finite number of terms (even in the limit N →∞)
depending on σ only through a function of the spins. Thus, one defines the random magnetisation
mN associated to σ ∈ SN as the k-dimensional vector of averages of spins grouped according
to the partition in (1.40), as in (4.5) below. Finally, using (1.41) it is possible to rewrite the
Hamiltonian of the system as a function of the magnetisation mN . An example of application
of this method and consequences of this procedure are explained in Section 4.3.1.

As it is shown in Bianchi, Bovier and Ioffe [7] for the random field Curie–Weiss model (with
continuously distributed field) coarse-graining can be used, in the same spirit, also when the
random variables (V (i))i∈N take values in an infinite bounded set I ⊂ R. In this case the set
I is partitioned in n sets (I`)`∈{1,...,n} of Lebesgue measure vanishing in n, where n is taken to
infinity later. The sets (I`)`∈{1,...,n} play the role of the values {a1, . . . , ak} above. Then, for any
fixed N the set {1, . . . , N} is partitioned in n sets according to the realisations of the random
variables, with respect to the sets (I`)`∈{1,...,n}, as follows

A`,N = {i ∈ {1, . . . , N} : V (i) ∈ I`}. (1.42)

22



1.6. SOME USEFUL TECHNIQUES

As above, one defines the random magnetisation mN associated to σ ∈ SN as the n-dimensional
vector of the averages of the spins with indexes in that partition. Since I` is not a singleton
we cannot obtain something as concise as (1.41). Instead, defining ā` = 1

|A`,N |
∑
i∈A`,N V (i) as

reference value for V (i), it turns out that

N∑
i=1

V (i)σi =
n∑
`=1

ā`
∑

i∈A`,N

σi +
n∑
`=1

∑
i∈A`,N

(V (i)− ā`)σi. (1.43)

Here the first term on the right hand side, similarly to (1.41), is a finite sum depending on σ
only through its magnetisation while the second term is an error term, which turns out to be
treatable despite its dependence on the whole configuration σ (see [7] or [18, Chapter 15] for
further details).

Coarse-graining is particularly useful in processes which are lumpable with respect to the
function m, as we shall see in the next section.

1.6.2 Lumping

We provide here a slightly modified, but equivalent, version of the definition of lumpable process
given by Kemeny and Snell in [56, Section 6.3] and state the main properties. Let be X =
(X(n))n∈N be a Markov chain with state space S, with initial distribution π. and let Γ be a
finite set. Let m : S → Γ be a surjective and not injective function and notice that m induces a
natural partition on S = ⋃

γ∈Γ S[γ], where we denote S[γ] = m−1(γ) (this notation will be used
throughout the thesis). Then, we define the lumped process Y = (Y (n))n∈N with state space
Γ as Y (n) = m(X(n)), with initial distribution πY (γ) = π(S[γ]), for any γ ∈ Γ. Using this
notation we give the following definition.

Definition 1.6.1 (Lumpable process, discrete time). Let S be a finite state space. Then, we say
that X is lumpable with respect to the function m if the process Y = (Y (n))n∈N = (m(X(n)))n∈N
is a Markov process for every initial distribution π of X and the transition probabilities of Y do
not depend on π.

Proposition 1.6.2. As in [56, Theorem 6.3.2], a necessary and sufficient condition for X to
be lumpable with respect to m is that for any y0, y1 ∈ Γ, n ∈ N and any x0 ∈ S[y0], the quantity∑

x∈S[y1]
P (X(n+ 1) = x|X(n) = x0) (1.44)

is independent of x0 ∈ S[y0]. Then, the transition probability P(Y (n + 1) = y1|Y (n) = y0) is
equal to the quantity in (1.44).

Definition 1.6.1 and Proposition 1.6.2 hold true also for continuous time Markov chains on a
finite state space, replacing n ∈ N and n+ 1 with s > 0 and t such that t > s, and the transition
probabilities with the transition rates (recall Remark 1.1.1). We refer to [18, Section 9.3]) for
more general cases.

Applications to potential theory

If a Markov process X is lumpable with respect to a function m then mean hitting times,
equilibrium potentials and capacities of X are equal to the ones of the lumped process m(X).
More precisely, the following holds.
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Proposition 1.6.3. Let X be a Markov process on a finite state space S with invariant measure
µ(X), lumpable with respect to a function m : S → Γ. Let Y = m(X) the lumped process, with
invariant measure µ(Y )(·) = µ(X)(m−1(·)). Then, for all b ∈ Γ and σ ∈ S \m−1(b)

E(X)
σ [τ (X)

m−1(b)] = E(Y )
m(σ)[τ

(Y )
b ] = [1 + o(1)] µ

(Y )(A(m(σ)))
cap(Y )(m(σ), b)

, (1.45)

where A(x) is the valley around x ∈ Γ as in (1.24). Moreover, for any two non-empty disjoint
subsets A,B of S, such that there exist a, b ∈ Γ satisfying A = m−1(a) and B = m−1(b), the
following hold for all σ ∈ S and x ∈ m−1(σ)

h
(X)
A,B(σ) = h

(Y )
a,b (x) (1.46)

and
cap(X)(A,B) = cap(Y )(a, b). (1.47)

The superscripts indicate with respect to which process the quantities are defined.

Proof. In (1.45) the first equality follows from Proposition 1.6.2, while the second one directly
from (1.24). Equalities (1.46) (1.47) are proved for instance in [18, Theorem 9.7].

These properties are very helpful in the study of metastability in case the metastable sets
can be written as counter-images of elements in Γ. Equations (1.46) and (1.47) were used in [22]
on the Curie–Weiss model, while (1.45) and (1.47) were used in [19] where the model is lumpable
with respect to the k-dimensional magnetisation mN mentioned in Section 1.6.1.

Equation (1.45) is very useful because, assuming that we are able to estimate capacities and
invariant measure of the lumped model, it provides mean metastable exit times starting from
any initial configuration in a metastable set. Estimating those quantities in the lumped model
is usually easier than in the original one because of the reduction to a smaller and simpler state
space, for example a subset of Rd. This allows one to use, for instance, the approximation
techniques explained in [18, Chapter 10] (which we used in [19] as mentioned in Chapter 4) and
obtain accurate asymptotic estimates.

When the Markov chain is not lumpable, (1.45) is not necessarily true. Thus, in order to
obtain sharp estimates on mean metastable exit times, one uses either (1.24) or (1.25). The first
one is hardly useful because computing capacities of single configuration is usually not feasible.
Therefore, the second one is the only tool left: we use it in [22] and [20], where the models are
not lumpable.

1.7 Outline
The remainder of this thesis is structured as follows. We summarise in three separate chapters
our three papers where we analysed metastability of the models introduced in Section 1.4.1.In
Chapter 2 our work on metastability of the randomly dilute Curie–Weiss model published in [22]
is summarised. The following Chapter 3 contains a short unpublished generalisation of some
results from [22]. In Chapter 4 we present the results published in [19] on metastability of a
spin model having particular coupling coefficients with product structure. In Chapter 5 we sum-
marise our preprint [20] on metastability of a general class of spin systems with (conditionally)
independent coupling coefficients.

Finally, a summary (Chapter 6) will precede three appendices containing the publications
and preprints summarised in Chapters 2, 4 and 5: [22] is in Appendix A, [19] in Appendix B
and [20] in Appendix C.
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Chapter 2

Randomly dilute Curie–Weiss model

We summarise here the content of the joint work with Anton Bovier and Elena Pulvirenti,
contained in the paper [22] which was published in March 2021 on the Electronic Journal of
Probability.

2.1 Summary
We considered a discrete time Markov chain σ(n)n∈N with state space SN = {−1,+1}N , where
we discarded the N dependence from the notation. We assumed it evolves with a Glauber
dynamics (defined in Section 1.4.2), in particular with the following Metropolis transition prob-
abilities

pN (σ, σ′) =


1
N exp(−β[HN (σ′)−HN (σ)]+), if σ ∼ σ′,
1−∑η 6=σ pN (σ, η), if σ = σ′,

0, else,
(2.1)

for σ, σ′ ∈ SN , where, as usual, σ ∼ σ′ means that σ′ is obtained from σ by a single spin flip
and β > 0 is fixed. The Hamiltonian HN is defined for fixed p ∈ (0, 1) and for any σ ∈ SN by

HN (σ) = − 1
Np

∑
i,j∈[N ],i<j

Jij σiσj − h
∑
i∈[N ]

σi, (2.2)

where (Jij)i<j∈N is a triangular sequence of i.i.d. Bernoulli random variables with mean p. We
denoted with PJ the law of the triangular sequence (Jij)i,j and with E the mean with respect
to it. Notice that, because of the normalisation by p, the mean of the random Hamiltonian
HN is equal to the deterministic Hamiltonian of the Curie–Weiss model H̃N (1.29), namely
E(HN (·)) = H̃N (·).

Remark 2.1.1 (Notational remark). In the paper both quantities with superscript CW and ∼
referred to the Curie–Weiss model. In this section, in order to be consistent with the rest of the
thesis and to uniform the notation, we replace the superscript CW with ∼.

The model defined above is the randomly dilute Curie–Weiss model (RDCW). As the name
suggests, the model is a result of a dilution of the Curie–Weiss model, by means of the random
variables (Jij)ij . With this dilution the strength of the interaction remains unaltered (up to the
1/p rescaling), while the interaction graph is changed from the complete graph to the Erdős–
Rényi random graph with uniform edge probability p. By interaction graph here we mean the
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CHAPTER 2. RANDOMLY DILUTE CURIE–WEISS MODEL

graph which sets the nearest neighbour interaction as in the Ising model (see Sections 1.3.2 and
1.4), namely the one having vertices {1, . . . , N} and edge (i, j) present in the graph if and only if
Jij 6= 0. Notice that, since p is fixed and independent on N , the resulting Erdős–Rényi random
graph is dense because the expected degree of each vertex is Np.

The RDCW was studied at equilibrium by Bovier and Gayrard in [15]: they proved the
convergence of free energy and law of the mean magnetisation of the randomly dilute Curie–
Weiss model to the ones of the Curie–Weiss model (CW). In our paper we studied metastability
of the RDCW, improving, with special initial conditions, the earlier results by den Hollander
and Jovanovski [50]. We studied in particular the tail behaviour of some hitting time of the
RDCW compared to the corresponding one in the CW. In order to be more precise we need to
introduce some notation.

Let m−,m+,m
∗ be the critical points of the limiting free energy limN→∞ FN (see (1.35))

of the Curie–Weiss model (local minimum, global minimum and local maximum, respectively)
within its well known metastable regime, i.e. β ≥ 1, 0 ≤ h ≤ h̄c(β) where h̄c is defined explicitly
for instance in [19, Eq. (A.13)]. Moreover, let m−(N),m+(N),m∗(N) be the closest points to
m−,m+,m

∗ in ΓN (defined in (1.33)) and mN be the magnetisation function defined in (1.32).
The starting set for our dynamics is the set of configurations with magnetisationm+(N), namely
the set SN [m+(N)] = mN (m+(N))−1, with the notation introduced in Section 1.6.2. The initial
distribution is the last-exit biased distribution νNSN [m−(N)],SN [m+(N)] defined similarly to (1.11)
for the RDCW dynamics. We abbreviated it with νNm−,m+ .

Our object of interest was the (random) mean hitting time EνNm−,m+

[
τSN [m+(N)]

]
from the

set SN [m−(N)] (metastable set of CW) to the set SN [m+(N)] (the stable set of CW), where
E is the mean with respect to the law of the Markov chain σ(n). To be more precise, our
main result in [22] is an asymptotic estimate on the tails of that hitting time divided by the
corresponding (deterministic) quantity in the Curie–Weiss model as follows. We quote here
[22, Theorem 1.4], with a slight modification in the denominator of (2.3), for clarity and to
avoid introducing additional notation. The statement is equivalent because of lumpability of
the Curie–Weiss model.

Theorem 2.1.2. For β > 1, h > 0 small enough and for s > 0, there exist absolute constants
k1, k2 > 0 and C1(p, β) < C2(p, β, h) independent of N , such that

lim
N↑∞

PJ

e−2β(1+h)−α+κe−s(1 + o(1)) ≤
EνNm−,m+

[
τSN [m+(N)]

]
Ẽν̃Nm−,m+

[
τ̃SN [m+(N)]

] ≤ e2β(1+h)+2αes(1 + o(1))


≥ 1− k1e−k2s2

(2.3)

where
α = β2(1− p)

4p (2.4)

and κ > α is explicit (see [22, Eq. (1.27)]).

This means that the ratio in (2.3) is asymptotically bounded from above and below by
quantities of order constant times the exponential of a sub-Gaussian random variable.

Definition and characterisations of sub-Gaussian random variables can be found for instance
in Boucheron, Lugosi and Massart [10]. The most relevant for us is the following. A real random
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variable X, with distribution P and expectation equal to 0, is sub-Gaussian if there exists v > 0
such that for every t > 0

max{P(X ≥ t),P(X ≤ −t)} ≤ e−
t2
2v . (2.5)

2.2 Discussion

Our paper is not the first work focusing on this: den Hollander and Jovanovski proved first in
[50, Theorem 1.4] that the same mean hitting time that we studied is, with high probability,
proportional to the Curie–Weiss one times a random unknown prefactor which is at most polyno-
mial in N . They used the pathwise approach to metastability and coupled the randomly dilute
Curie–Weiss model with two versions of the standard Curie-Weiss model (modifying suitably the
magnetic field). As a consequence of their detailed computations, the exponential distribution
of the hitting time follows. In [22] we gave a more precise estimate of the prefactor, losing in
generality because our results hold only for the specific initial last-exit biased distribution, while
their results hold uniformly in any initial configuration in the starting set.

2.3 Techniques and summary of the proofs

Remark 2.3.1 (Notational remark). In this chapter we use notation which is consistent with the
introduction and of this thesis. The notation in the paper [22] differs only in the free energy: here
we use FN , F , there fN,β and fβ were used instead. Moreover, here we discard the dependency
on β also from the notation of the invariant measure µN , on the mesoscopic measure QN and
on the partition function ZN .

The model defined above presents more difficulties compared to the well studied random
field Curie-Weiss (RFCW) model. Despite each random variable in the Hamiltonian has finite
support, our model is not lumpable, not even approximately (as happens for the RFCW with
compact support distributions). Indeed, the Hamiltonian cannot be written, for instance via
coarse-graining, in terms of a function of the configurations because it depends on the values
of every single spin and the model cannot be reduced. Therefore, as explained at the end
of Section 1.6.2 we used (1.25) to write mean hitting times as a ratio of harmonic sum and
capacity. Since dealing directly with these quantities is difficult, our strategy consists in studying
separately how close they are to the corresponding well known quantities of the averaged model,
the Curie–Weiss model.

Our paper is divided in three parts. In a preliminary section, [22, Section 2], we compared
RDCW and CW at equilibrium by estimating what can be seen as a generalised partition
function having as Hamiltonian HN (·) − H̃N (·). Then, using those results together with well
known techniques, we gave estimates on the capacity in [22, Section 3] and the harmonic sum
([22, Section 4]). These estimates were formulated similarly to the one on the mean hitting time
in Theorem 2.1.2 and, together with (1.25), they yielded our main result.

2.3.1 Some estimates at equilibrium

This part, summarises the most innovative part of the paper, i.e. [22, Section 2].
The strategy to estimate capacity and harmonic sum was to rewrite the random quantities of

interest of the RDCW (capacities, Dirichlet form, invariant measure, transition rates, . . . ) with
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two terms, one containing the corresponding well-known CW quantities and the (random) error
term. Thus, we preliminary focused on estimates on the error term. The quantity we would like
to estimate is ∆N (σ) := HN (σ)−E(HN (σ)) = HN (σ)− H̃N (σ) or, more precisely, the following
sum

ZN,g =
∑
m∈ΓN

g(m)
∑

σ∈SN [m]
e−β∆N (σ), (2.6)

for some g : ΓN → [0,∞) deterministic function which might very well depend on N . We recall
that ΓN is defined in (1.33).

Remark 2.3.2. The reader might ask why we are not considering the more general quantity∑
σ∈SN g(σ) e−β∆N (σ) instead, with g : SN → [0,∞). The reason is that, since the E(HN ) is the

Hamiltonian of the Curie–Weiss model and it depends only on the magnetisation, we used only
the more specific ZN,g defined above, for which the proof of our results is slightly simpler that the
general case. However, the techniques used in [19] can be extended to that more general case,
with little effort: this is unpublished work carried out by the author of this thesis (see Chapter 3).

In [22] we proved that ZN,g can be written as a product of the deterministic quantity
exp(E[logZN,g]), which we bounded asymptotically with quantities of order constant, and the
random variable exp(logZN,g − E[logZN,g]), which we characterised to be an exponential of a
sub-Gaussian random variable. More in detail, we proved in [22, Proposition 2.1] that for any
t > 0

PJ (|logZN,g − E [logZN,g]| ≥ t) ≤ c1 exp
(
− γt2

)
, (2.7)

and in [22, Lemmas 2.2 and 2.3]

κ+ logGg + o (1) ≤ E [logZN,g] ≤ α+ logGg + o (1) , (2.8)

where α and κ are the same as in Theorem 2.1.2, and here we abbreviate

Gg :=
∑
m∈ΓN

g(m) exp (−NIN (m)) , (2.9)

where IN (m) is exactly the entropy term appearing in the square brackets in the Curie–Weiss
free energy (1.35).

The bound (2.7) was proved directly using Talagrand’s concentration inequality (see (2.16)).
The upper bound in (2.8) was proved using Jensen’s inequality and estimates of EZN,g obtained
via Taylor expansion. The lower bound in (2.8) is obtained in a more involved way, following
a technique used by Talagrand in [73, Theorem 2.2.1], exploiting Paley-Zygmund inequality
(see (2.17)), an upper bound on EZ2

N,g, obtained via Taylor expansion, and again Talagrand’s
concentration inequality.

Finally, combining (2.7) and (2.8) we obtained [22, Corollary 2.5] which states that, for any
s > 0,

PJ
(
e−s+κGg (1 + o(1)) ≤ ZN,g ≤ es+αGg (1 + o(1))

)
≤ 1− k1 exp

(
−k2t

2
)
, (2.10)

where k1, k2 > 0 are absolute constants independent of s and N coming from Talagrand’s
concentration inequality. This result, largely used in the paper, allowed us to quantitatively
compare the mesoscopic measures QN = µN (SN [m]) of the randomly dilute Curie–Weiss model
and Q̃N = µ̃N (SN [m]) of the Curie–Weiss model in [22, Corollary 2.7].
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2.3.2 Capacity estimates

In [22, Section 3] we obtained estimates on the capacity cap(SN [m1], SN [m2]), for any m1 6=
m2 ∈ ΓN . We quote here upper and lower bonds ([22, Theorems 1.5 and 1.6]). For any s > 0,
there exist absolute constants k1, k2 > 0 such that

PJ

(
ZN cap (SN [m1], SN [m2])
Z̃N c̃ap (SN [m1], SN [m2])

≤ es+2β(1+h)+α(1 + o(1))
)
≥ 1− k1e−k2s2

, (2.11)

and

PJ

(
ZN cap (SN [m1], SN [m2])
Z̃N c̃ap (SN [m1], SN [m2])

≥ e−(s+2β(1+h)+α)(1 + o(1))
)
≥ 1− k1e−k2s2

, (2.12)

asymptotically as N →∞, where α is defined in (2.4).
As usual within the potential-theoretic approach to metastability the well-established strat-

egy to estimate capacities is via the variational principles presented in Section 1.2.2.
For the upper bound we used the Dirichlet principle (1.12), rough estimates of the ratio of

the transition probabilities of RDCW and CW, and (2.10) for a suitably chosen g. The term IN
in Gg (see (2.9)) provided the needed entropy part to reconstruct the CW free energy.

For the lower bound we applied the Thomson principle (1.16) using as test flow the optimal
flow of the Curie–Weiss model. Moreover, rough estimates of the ratio of the transition prob-
abilities of RDCW and the CW, together with (2.10), allowed us to obtain the desired lower
bound in terms of the CW capacity.

2.3.3 Harmonic sum estimate

The last section of the paper is devoted to estimating the “harmonic sum”∑
σ∈SN

µN (σ)hNm−,m+(σ) (2.13)

which is the numerator of (1.25). µN (·) is the invariant measure of the process (σ(n))n∈N and
hNm−,m+ is a short notation for the harmonic function hSN [m−],SN [m+] of (σ(n))n∈N (see (1.8)).
We quote here upper and lower bonds on ([22, Theorems 1.5 and 1.6]). For any s > 0, there
exist absolute constants k1, k2 > 0 such that

PJ

 ∑
σ∈SN

µN (σ)hNm−,m+(σ) ≤ eα+s exp (−βNF (m−))
ZN
√

(1−m2
−)βF ′′(m−)

(
1 + o(1)

) ≥ 1−k1e−k2s2
, (2.14)

and

PJ

 ∑
σ∈SN

µN (σ)hNm−,m+(σ) ≥ eκ−s exp (−βNF (m−))
ZN
√

(1−m2
−)βF ′′(m−)

(
1 + o(1)

) ≥ 1−k1e−k2s2
, (2.15)

asymptotically as N → ∞. α and κ are defined in Theorem 2.1.2, and F = limN→∞ FN the
limit of the CW free energy FN (1.35).

The proof is an involved computation following [7, Section 6]. We summarise here the main
idea. We first partitioned the magnetisation space ΓN in the three sets Uδ,N (m−), Uδ,N (m+), U cδ,N ,
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according to the value of the free energy F . Uδ,N (m−) and Uδ,N (m+) are neighbourhoods
of m−(N) and m+(N), respectively, in which the free energy F is bounded from above by
F (m−) + δ, with δ > 0 chosen sufficiently small. (For a more details of the construction of these
sets we refer to [22, Section 4.1].) Then we partitioned the configuration space SN according
to the magnetisation mN of the configurations, following the partition of ΓN . Thus, we studied
separately the contribution of each set of the SN partition to the sum in (2.13) and proved
that the only relevant contribution to the harmonic sum is given by the configurations with
magnetisation in Uδ,N (m−). Estimating the relevant contribution on Uδ,N (m−) was done using
the saddle point method (see, for instance, de Bruijn [29][7, Chp 5.7]), after approximating the
RDCW mesoscopic measure QN with the explicit expression of CW one Q̃N , using results in
Section 2.3.1. Proving that the contribution of the third set is negligible was simple: it was
sufficient to bound the equilibrium potential by 1 and use that the invariant measure is small
there, by definition of the sets. The most challenging part was to prove that also the contri-
bution on Uδ,N (m+) is negligible. For that we followed the strategy of [7, Proof of Proposition
6.3], where one finds a function which is super-harmonic in a specific interval and uses Doob’s
optimal stopping theorem to obtain bounds on some transition probabilities.

This strategy was simpler in our case. Indeed, while we used the one-dimensional Curie–
Weiss magnetisation mN , in [7] the magnetisation was n-dimensional due to coarse graining,
with n taken to infinity at the end, implying that many quantities were n-dimensional.

2.3.4 Two inequalities

We state here for completeness two inequalities we used in our proofs.
Talagrand concentration inequality, in the version of Tao [74, Theorem 2.1.13], states that if

G : RM → R is a 1-Lipschitz and convex function, and X = (X1, . . . , XM ), a sequence of M ∈ N
independent random variables uniformly bounded by K > 0, then, for any t ≥ 0,

P
(
|G(X)− EG(X)| ≥ tK

)
≤ c1 exp

(
− c2t

2), (2.16)

with positive absolute constants c1, c2.
Paley–Sygmund inequality states that for any non negative random variable X, with law P

and expectation E, and any η ∈ (0, 1)

P
(
X ≥ η EX

)
≥ (1− η)2 (EX)2

EX2 . (2.17)

2.4 Contribution
My contribution to this paper consisted in helping carrying out the proofs and writing them
down, thanks to the other authors’ ideas. I largely contributed in simplifying and adapting the
techniques used by Bianchi, Bovier and Ioffe [7] to our case, which lead to the proofs in Section 4
of the paper concerning estimates on the harmonic sum. Moreover, I created the figure and gave
a major contribution in structuring the paper.
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Chapter 3

Some generalisations

In this chapter we present some unpublished results which generalise Sections 2 and 3 [22],
which were presented in Chapter 2. This work has been carried out by the author of this
thesis, with the supervision and some ideas by Anton Bovier and Frank den Hollander.

3.1 Setting

For N ∈ N, consider a discrete time Markov chain (σN (n))n∈N on SN = {−1, 1}N , which evolves
with Glauber dynamics, defined by the Metropolis transition probabilities pN in (2.1). We
consider a more general Hamiltonian HN than the one in [22] (Chapter 2): we take HN as
in (1.36) with h ≥ 0 fixed and (Jij)ij sequence of independent random variables, defined on
an abstract probability space (Ω,P,F). We assume that the variables (Jij)ij are absolutely
uniformly bounded by a constant kJ > 0. The invariant measure of (σN (n))n∈N is denoted by
µN and the expectation with respect to P by E. Moreover, we denote with H̃N = E(HN ) the
averaged Hamiltonian, as defined in (1.38). Let (σ̃N (n))n∈N be the annealed Markov chain, with
Metropolis transition probabilities. We will denote with a superscript ∼ the quantities referring
to the process (σ̃N (n))n∈N.

Remark 3.1.1. For consistency with [22] we consider discrete time Markov chains, but our
results hold with no modification also for continuous time processes.

3.2 Estimate on a generalised partition function

In this section we extend (2.10) or [22, Corollary 2.5] to the more general setting defined above,
namely to models with random interaction coefficients (not necessarily identically distributed).
This generalisation was announced in Remark 2.3.2.

For any deterministic function g : SN → [0,∞), we are interested in studying the random
quantity ∑

σ∈SN

g(σ) e−β(HN (σ)−E[HN (σ)]), (3.1)

which can be seen as a generalised partition function with Hamiltonian HN (σ)− E[HN (σ)]. In
the same spirit of our results in [22] and [20], we prove that it is equal to the same quantity in
which that Hamiltonian is replaced by its expectation times a prefactor. We characterise the
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prefactor to be, asymptotically, bounded by constants times the exponential of a sub-Gaussian
random variable (see (2.5) for a definition). More precisely, we prove the following.

Proposition 3.2.1. There exist absolute constants k1, k2 > 0 and c1, c2 > 0 such that, for any
deterministic function g : SN → [0,∞), with ∑σ∈SN g(σ) <∞, and for any s > 0

lim
N→∞

P
(

e−s+κN [1 + o(1)] ≤
∑
σ∈SN g(σ) e−β(HN (σ)−E[HN (σ)])∑

σ∈SN g(σ) ≤ es+αN [1 + o(1)]
)

≥ 1− k1e−k2s2
,

(3.2)

where

αN = β2

2N2

∑
1≤i<j≤N

Var(Jij), (3.3)

κN = αN + max
η∈(0,1)

log η − β
[

max
1≤i<j≤N

|Jij − EJij |
] √2αN+log

(
c1

(1−η)2

)
√

2c2

 . (3.4)

where c1, c2 > 0 are the constants appearing in Lemma 3.2.4 below.

Notice that αN in (3.3) is exactly the one defined in (5.3) (i.e. in [20]) and it is an extension
of the quantity α defined in (2.4) (i.e. in [22]) for not identically distributed random variables
(Jij)ij .

Remark 3.2.2. We neglect the N -dependence in the g notation, despite the function g depends
on N in the domain and possibly also in its values.

Remark 3.2.3. (3.2) also holds replacing β with −β.

Notice that an immediate application of Proposition 3.2.1 is the comparison between ZN
and the annealed correspondent Z̃N , taking g(σ) = e−βE[HN (σ)].

Before starting the proof we introduce some more notation. As in [22] we abbreviate

∆N (σ) = HN (σ)− E[HN (σ)]. (3.5)

Moreover, for consistency with the notation in Section 2.3.1, we name the numerator in (3.2)

ZN,g =
∑
σ∈SN

g(σ) e−β∆N (σ) (3.6)

and the denominator in (3.2)
Gg =

∑
σ∈SN

g(σ). (3.7)

To prove Proposition 3.2.1 we go exactly along the lines of [22, Section 2]. Here we indicate
only some steps and the slight modifications we made to extend those proofs. In order to follow
the notation in [22, Section 2] the reader could replace 1

N logZN,g by FN,g and 1
NE[logZN,g]

by pN,g. However, here we decided not to use FN,g and pN,g, in favour of more clarity in our
arguments.
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Proof of Proposition 3.2.1. After rewriting

ZN,g = eE[logZN,g ]e(logZN,g−E[logZN,g ]), (3.8)

the proof proceeds in two steps. First, we prove concentration of logZN,g i.e. we characterise the
random variable (logZN,g−E[logZN,g]) as a sub-Gaussian random variable (Lemma 3.2.4 below).
Second, we derive upper and lower bounds on E[logZN,g]) in terms of logGg (Lemma 3.2.5
below). Thus, combining these two steps we obtain estimates on the ratio ZN,gGg

, concluding the
proof of Proposition 3.2.1.

The following lemma extends [22, Proposition 2.1]

Lemma 3.2.4. For N ∈ N, there exist absolute constants c1, c2 > 0 such that for any t > 0

P (|logZN,g − E[logZN,g]| ≥ t) ≤ c1 exp
(
−c2

2t2
4β2k2

J

)
. (3.9)

Sketch of the proof. Use Talagrand’s concentration inequality as in the proof of [22, Proposi-
tion 2.1], with G = logZN,g

(
β√
2

)−1
as a 1-Lipschitz function of the random variables {(Jij −

EJij) : 1 ≤ i < j ≤ N}. Moreover, here |Jij − EJij | ≤ 2kJ =: K, while K was equal to 1 in
[22].

The following lemma extends [22, Lemmas 2.2 and 2.3] and our proof is a slight generalisation
of those proofs.

Lemma 3.2.5. As N →∞,

κN + logGg + o(1) ≤ E[logZN,g] ≤ αN + logGg + o(1), (3.10)

where αN and κN are defined in (3.3) and (3.4), respectively.

Proof. Step 1. E[ZN,g].
We first calculate

E
[
e−β∆N (σ)

]
= [1 + o(1)] exp

 β2

2N2

∑
1≤i<j≤N

Var[Jij ]

 = [1 + o(1)] eαN , (3.11)

which motivates the definition of αN in (3.3). Here, we used the independence of the Jij ’s
and followed the argument in [22, Proof of Lemma 2.2]. In particular, we used that, for any
random variable Ĵ with E[Ĵ ] = 0, E[Ĵ2] > 0 and all higher moments finite, we have E[exĴ ] =
exp[x2

2 E[Ĵ2]+o(x2)], x→ 0. Here we set Ĵ = Jij−E[Jij ] and x = β
N σiσj , because {Jij−E[Jij ]}i,j

are independent with mean 0 and variance Var[Jij ].
From (3.11), we obtain

E[ZN,g] =
∑
σ∈SN

g(σ)E
[
e−β∆N (σ)

]
= [1 + o(1)] eαNGg. (3.12)

Step 2. Estimate on E[Z2
N,g] in terms of E[ZN,g]2.
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We first estimate the covariance for any σ, σ′ ∈ SN

E
[
e−β∆N (σ)e−β∆N (σ′)

]
=

∏
1≤i<j≤N

exp
[
β2

2N2 [2 + 2σiσjσ′iσ′j ] Var[Jij ] + o
(

1
N2

)]
≤ [1 + o(1)]

∏
1≤i<j≤N

exp
[
4 β2

2N2 Var[Jij ]
]

= [1 + o(1)]E
[
e−β∆N (σ)

]
E
[
e−β∆N (σ′)

]
e2αN ,

(3.13)

where we used (3.11) and the bound [2 + 2σiσjσ′iσ′j ] ≤ 4, in addition to the same argument used
in (3.11), now with x = β

N [σiσj + σ′iσ
′
j ]. Thus,

E[Z2
N,g] =

∑
σ∈SN

g(σ)
∑

σ′∈SN

g(σ′)E
[
e−β∆N (σ)e−β∆N (σ′)

]
≤ [1 + o(1)]E[ZN,g]2e2αN . (3.14)

The upper bound in (3.10) follows from Jensen’s inequality and (3.12). The lower bound in
(3.10) follows as in the proof of [22, Lemma 2.3] after replacing p by 1

2kJ (namely replacing the
2p2

β2 in the exponent of [22, Eq. (2.22) and (2.37)] with the 2
4β2k2

J
in (3.9)), α by αN , and using

(3.14). The motivation for the definition of κN in (3.4) is given in the proof of [22, Lemma 2.3]
as well.

3.3 Capacity estimates

As a consequence of the Proposition 3.2.1, in this section we extend to our more general setting
the capacity estimates stated in [22, Theorems 1.5 and 1.6] or in Section 2.3.2 and proved in
[22, Section 3].

Proposition 3.3.1. For any two disjoint A,B ⊂ SN , asymptotically as N →∞

P
(
ZN capN (A,B)
Z̃N c̃apN (A,B)

≤ es+2β(max1≤i<j≤N |EJij |+h)+αN (1 + o(1))
)
≥ 1− k1e−k2s2

, (3.15)

and

P
(
ZN capN (A,B)
Z̃N c̃apN (A,B)

≥ e−(s+2β(max1≤i<j≤N |EJij |+h)+κN)(1 + o(1))
)
≥ 1− k1e−k2s2

, (3.16)

where αN and κN are defined in (3.3) and (3.4), respectively.

3.3.1 Upper bound

Proof of (3.15). This proof is similar to [22, Section 3.1].
We have the uniform bound

e−β[HN (σ(k))−HN (σ)]+

e−β[E[HN (σ(k))]−E[HN (σ)]]+
= e

−β
[
σk

(
2
N

∑
i : i 6=k Jikσi+2h

)]
+

e
−β
[
σk

(
2
N

∑
i : i6=k EJikσi+2h

)]
+

≤ e2β(max1≤i<j≤N |EJij |+h). (3.17)
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We apply the Dirichlet principle (1.12) and replace the term E(m(·)) in [22, (3.4)] with E(HN (·)).
Moreover, using (3.17) and the fact that the dynamics is single spin flip (see (2.1)), we obtain
the bound

ZN capN (A,B) = min
f∈HA,B

ZNEN (f, f)

= min
f∈HA,B

∑
σ∈SN

e−βHN (σ)
N∑
k=1

e−β[HN (σ(k))−HN (σ)]+ [f(σ(k))− f(σ)]2

≤ min
f∈HA,B

∑
σ∈SN

e−βHN (σ)
N∑
k=1

e−β[HN (σ(k))−HN (σ)]+

e−β[E[HN (σ(k))]−E[HN (σ)]]+
e−β[E[HN (σ(k))]−E[HN (σ)]]+ [f(σ(k))− f(σ)]2

≤ min
f∈HA,B

e2β(max1≤i<j≤N |EJij |+h) ∑
σ∈SN

e−βHN (σ)
N∑
k=1

e−β[E[HN (σ(k))]−E[HN (σ)]]+ [f(σ(k))− f(σ)]2,

(3.18)

where HA,B is defined in (1.13) and σ(k) is the configuration in SN obtained from σ by flipping
the spin σk, i.e. σ(k)

i = σi for all i 6= k, and σ(k)
k = −σk.

Now, let f̃ be the minimizer of the Dirichlet principle for c̃apN (A,B). After recalling that
H̃N (·) = E[HN (·)], we apply Proposition 3.2.1 to the right-hand side of (3.18) with

g(σ) = e−βE[HN (σ)]
N∑
k=1

e−β[E[HN (σ(k))]−E[HN (σ)]]+ [f̃(σ(k))− f̃(σ)]2, (3.19)

and use the Dirichlet principle for c̃apN (A,B) to obtain that there exist absolute constants
k1, k2 > 0 such that for any s > 0

lim
N→∞

P
(
ZN capN (A,B)
Z̃N c̃apN (A,B)

≤ [1 + o(1)] e2β(max1≤i<j≤N |EJij |+h)+s+αN

)
≥ 1− k1e−k2s2

. (3.20)

3.3.2 Lower bound

Proof of (3.16). This proof follows the same idea of [22, Section 3.2]. In order to recover
c̃apN (A,B) from capN (A,B), we use the Thomson principle (1.16) for capN (A,B) using the
harmonic flow of c̃apN (A,B) as test flow.

Recalling (1.17), denote with DN (ψ) the norm of ψ for the process (σN (n))n∈N and with
D̃N (ψ) the norm of ψ for the (σ̃N (n))n∈N.

We use the Thomson principle (1.16) for capN (A,B), choosing as test flow ψ̃ ∈ UA,B the
harmonic flow for c̃apN (A,B) (see (1.18)). Thus, using (2.1) and the definition of the Gibbs
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invariant measure we write

1
ZN capN (A,B) ≤

1
ZN
DN (ψ̃) = 1

2
∑
σ∈SN

N∑
k=1

ψ̃(σ, σ(k))2 eβ[HN (σ(k))−HN (σ)]+ eβ HN (σ)

= 1
2
∑
σ∈SN

eβ[HN (σ)−E[HN (σ)]] eβ E[HN (σ)]

×
N∑
k=1

eβ[HN (σ(k))−HN (σ)]+

eβ[E[HN (σ(k))]−E[HN (σ)]]+
ψ̃(σ, σ(k))2 eβ[E[HN (σ(k))]−E[HN (σ)]]+

≤ e2β(max1≤i<j≤N |Jij |+h)

2
∑
σ∈SN

eβ∆N (σ) eβ E[HN (σ)]
N∑
k=1

ψ̃(σ, σ(k))2 eβ[E[HN (σ(k))]−E[HN (σ)]]+ ,

(3.21)

because

eβ[HN (σ(k))−HN (σ)]+

e−β[E[HN (σ(k))]−E[HN (σ)]]+
≤ eβ[HN (σ(k))−HN (σ)]+ = e

β

[
σk

(
2
N

∑
i : i6=k Jikσi+2h

)]
+

≤ e2β(max1≤i<j≤N |Jij |+h) = e2β(kJ+h).

(3.22)

Recall that, since H̃N (·) = E[HN (·)], by the Thompson principle (1.16) for c̃apN (A,B) and
our choice of ψ̃

1
Z̃N c̃apN (A,B)

= 1
Z̃N
D̃N (ψ̃)

∑
σ∈SN

eβ E[HN (σ)]
N∑
k=1

ψ̃(σ, σ(k))2 eβ[E[HN (σ(k))]−E[HN (σ)]]+ . (3.23)

Now, after changing the sign of β (see Remark 3.2.3), we can apply (3.2) to the right-hand side
of (3.21) with

g(σ) = eβE[HN (σ)]
N∑
k=1

ψ̃(σ, σ(k))2 eβ[E[HN (σ(k))]−E[HN (σ)]]+ , (3.24)

implying 1
Z̃N c̃apN (A,B)

= ∑
σ∈SN g(σ). Thus, we obtain

lim
N→∞

P

Z̃N c̃apN (A,B)
∑
σ∈SN

g(σ) eβ[HN (σ)−E[HN (σ)]] ≤ [1 + o(1)] es+αN
 ≥ 1−k1e−k2s2

. (3.25)

Using (3.21) and (3.23) we get

lim
N→∞

P
(
Z̃N c̃apN (A,B)
ZN capN (A,B) ≤ [1 + o(1)] e2β(kJ+h)+s+αN

)
≥ 1− k1e−k2s2

, (3.26)

concluding the proof of (3.16).
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Chapter 4

Curie–Weiss model with product
coupling disorder

In this chapter we introduce and summarise the joint work with Anton Bovier and Frank den
Hollander, which appears in the paper [19], submitted in July 2021 and published in the journal
Communications in Mathematical Physics in February 2022.

Remark 4.0.1 (Notational remark). In this chapter we use notation which is consistent with
the introduction and the other chapters of this thesis. The notation in [19] is slightly different.
We provide here a list of the main differences, showing on the right the notation we use here
and on the left the one used in the paper: N 7→ n, σ = (σi)i 7→ σ = (σ(i))i (spins), σ(t) → σt
(Markov process), pN (·, ·)→ rn(·, ·).

4.1 Setting and motivation

We studied metastable regime, metastable sets and random mean metastable exit times for the
following random modification of the Curie–Weiss model. For N ∈ N we considered the contin-
uous time Markov process (σ(t))t≥0 on SN = {−1, 1}N which evolves with Glauber dynamics
with Metropolis transition rates as in (1.37) and has Hamiltonian HN defined in (4.1). We
denoted with Pσ and Eσ law and expectation of (σ(t))t≥0 starting at σ(0) = σ, discarding the
N dependence from the notation.

In the Hamiltonian we introduced a coupling disorder, replacing the identically 1 interaction
coefficients in the Hamiltonian of the Curie–Weiss model (1.29) with a product of i.i.d. random
variables with finite support. This means that the Hamiltonian HN of our target model writes,
σ ∈ SN ,

HN (σ) = − 1
N

∑
1≤i<j≤N

J(i)J(j)σiσj − h
N∑
i=1

σi, (4.1)

where h ≥ 0 is fixed and (J(i))i∈N is a sequence of i.i.d. random variables which have finite
support {a1, . . . , ak} ⊂ [0,∞) of cardinality k ∈ N and law P defined through the values
{ω1, . . . , ωk} by P(J(i) = a`) = ω`, for any ` ∈ {1, . . . , k} and i ∈ N. We assumed w.l.o.g.
that a1 < a2 < · · · < ak.

The interest in studying metastability on this model is motivated by the fact that the Hamil-
tonian in (4.1) is the mean (with respect to P) of the Hamiltonian of the Ising model on a
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CHAPTER 4. CURIE–WEISS MODEL WITH PRODUCT COUPLING DISORDER

Chung–Lu-like random graph, defined by the Hamiltonian in (1.36) where the coupling coef-
ficients (Jij)ij are a sequence of independent Bernoulli random variables with mean J(i)J(j).
Therefore, paper [19] provides details on the metastable behaviour of the annealed version of
the Ising model on a Chung–Lu-like random graph. Thus, thanks to [19], the latter became
an example of model to which apply the results appeared in paper [20] (see Chapter 5). This
example is particularly relevant because it is the first, to the best of our knowledge, in which
the annealed model has an Hamiltonian with random interactions ((J(i))i∈N in (4.1) are random
variables) and its metastability has been studied in detail.

4.2 Results

4.2.1 Metastable regime

As we explained in Section 1.1.1 an important quantity of interest in the study of metastability
is the regime of parameters in which the system exhibits metastable behaviour, the metastable
regime. In [19] the parameters are (β, h) ∈ (0,∞) × [0,∞) and the metastable regime has the
form β ∈ (βc,∞), h ∈ [0, hc(β)). We recall that the metastable regime of the Curie–Weiss model
is β ∈ (1,∞), h ∈ [0, h̄c(β)), where h̄c is an increasing function of β defined explicitly for instance
in [19, Eq. (A.13)].

We found the value of the critical inverse temperature βc =
[∑k

`=1 a
2
`ω`
]−1

and the following
limits of the continuous critical external magnetic field hc : (βc,∞)→ R:

lim
β↓βc

hc(β) = 0, lim
β→∞

hc(β) = min
`∈[k]∗

(
k∑

`′=`
a` a`′ ω`′ −

`−1∑
`′=1

a` a`′ ω`′

)
, (4.2)

where min`∈[k]∗ is the minimum over all ` ∈ {1, . . . , k} such that the quantity in brackets is
positive. Moreover, in [20, Lemma 3.6] we proved the upper bound

sup
β∈(βc,∞)

hc(β) <
(

max
`∈{1,...,k}

a`

)
k∑
`=1

a` ω`. (4.3)

Contrary to what we expected and what holds in the Curie–Weiss model, hc(·) is not nec-
essarily an increasing function. In other words this is equivalent to the presence of a so-called
“re-entrant” phase transition, meaning that there exist three values βc ≤ β1 < β2 < β3 and a
h > 0 such that the pairs (β1, h) and (β3, h) are in the metastable regime, while (β2, h) is not.
Finding analytical proof of this fact was too complicated, but we found an explicit numerical
example of that (see [19, Appendix C] for details).

Noteworthy, similarly to what stated in [12, Lemma 7.4] for the random field Curie–Weiss
model, the metastable landscape has an underlying 1-dimensional structure, meaning that the
critical points of the k−dimensional free energy, which are relevant for the metastable behaviour,
correspond to the critical points of a 1-dimensional function. The reduction to a 1-dimensional
problem explained below in the proof summary motivates this fact at an intuitive level.

Furthermore, we found numerical evidence of the presence of multiple metastable states, for
some choice of parameters and law of the coupling coefficients (see [19, Appendix B]). Hence,
we conjectured that for any finite k, and any ` ∈ {0, 1, . . . , k} there exist a pair (β, h) and a law
P such that the free energy has exactly 2` + 1 critical points. Thus, due to the 1-dimensional
structure, if ` ≥ 1, there would be `+ 1 metastable magnetisations separated by ` saddle points.
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4.2.2 Metastable exit time

We summarise here in words the main results concerning metastable exit times which can be
found in [19, Theorems 1.1, 1.2, 1.3]. Recall Remark 4.0.1.

In [19, Theorem 1.1], we found an explicit expression, precise to order 1, of the random mean
metastable exit time, namely the time it take to the process σ(t), starting in a configuration
within a metastable set, to hit a metastable set with lower free energy (i.e. more stable). Exactly
as in [18, Theorem 10.9], it turns out to be exponential in N with a prefactor of order constant.
The exponent is proportional to the inverse temperature β times the (random) free energy gap
between the metastable starting set and the saddle point. Our result holds the same hypotheses
of [18, Theorem 10.9], in the metastable regime, uniformly in the starting configuration within
the metastable set and with P-probability tending to 1.

Since the Hamiltonian is random, also the free energy appearing in the exponent of the mean
metastable exit time is random. In [19, Theorem 1.3] we gave a characterisation of that random
free energy gap. It turns out to be equal, in distribution, to its deterministic limit plus a random
correction term, which is 1√

N
times a centered normal random variable. The variance of this

Gaussian random variable can be explicitly computed and depends in a complicated way on the
values {a1, . . . , ak} and {ω1, . . . , ωk}.

Furthermore, with P-probability tending to 1, as in [18, Theorem 10.11], the considered
metastable exit time divided by its mean turns out to be exponentially distributed ([19, Theorem
1.2]).

4.3 Main ideas of the proofs

4.3.1 Preliminary model reduction

The product structure of the random coupling coefficients simplifies very much the model, be-
cause the randomness depends on single spins and not on pairs of spins (or edges). Indeed, one
can rewrite the Hamiltonian in (4.1) (up to add the diagonal term which is a constant shift) as
follows, for σ ∈ SN

HN (σ) = − 1
2N

(
N∑
i=1

J(i)σi
)2

− h
N∑
i=1

σi. (4.4)

Hence, a model reduction is possible through a finite coarse-graining as explained in Sec-
tion 1.6.1. We defined the random level sets A`,N , ` ∈ {1, . . . , k} as in (1.40) (replacing V (i)
with J(i)). Then we set the level magnetisations mN (σ) = (m`,N (σ)

)
`∈{1,...,k} to be the average

of spins in A`,N , namely for ` ∈ {1, . . . , k} and σ ∈ SN

m`,N (σ) = 1
|A`,N |

∑
i∈A`,N

σi. (4.5)

Thus, mN (σ) takes values in the set

ΓN = ×
`∈{1,...,k}

Γ`,N , Γ`,N =
{
−1,−1 + 2

|A`,N | , . . . , 1−
2

|A`,N | , 1
}
. (4.6)

Using this notation and abbreviating ω`,N = |A`,N |N , one can rewrite the Hamiltonian as follows

HN (σ) = −N

1
2

(
k∑
`=1

a` ω`,N m`,N (σ)
)2

+ h
k∑
`=1

ω`,N m`,N (σ)

 = NEN (mN (σ)). (4.7)
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Then it is clear that HN depends on the configurations σ ∈ SN only through the magnetisation
mN (σ)
Remark 4.3.1. In [18, Section 14.4] a very similar coarse-graining is carried out for the random
field Curie–Weiss model. The only two differences are in the notation and in the rescaling in
the definition of m`,N (4.5), which is 1

N in [18]. The choice of the rescaling affects of course the
set ΓN , but consistency with the choice yields the same results.

From (4.7) and the fact that, for any two σ, σ′ ∈ SN satisfying mN (σ) = mN (σ′), the sets
m−1
N (σ) and m−1

N (σ′) have the same cardinality, one proves that the process (σ(t))t≥0 is lumpable
(see Section 1.6.2) with respect to the map mN : SN → ΓN . Hence, we studied first the lumped
process, namely the Markov process on ΓN with transition probabilities

r̄N (m,m′) = e−βN [EN (m′)−EN (m)]+
k∑
`=1
|A`,N |

[1−m`

2 1(m′ = m`,+) + 1 +m`

2 1(m′ = m`,−)
]
(4.8)

for any m ∈ ΓN and m′ ∈ ΓN equal to m in all component but one, say ` ∈ {1, . . . , k}, in which
m′` = m` ± 2

|AN,`| . All other transitions have zero probability to occur. Then, after estimating
capacities and invariant measure at the magnetisation level, we proved our results on SN using
the properties presented in Section 1.6.2.

For later reference we add here few more details on the lumped process. With the nota-
tion SN [·] introduced in Section 1.6.2, its invariant measure is the Gibbs measure QN (m) =
µN (SN [m]) = 1

ZN
e−βNFN (m), m ∈ ΓN , where FN (m) is the free energy given by

FN (m) = −1
2

(
k∑
`=1

a` ω`,N m`

)2

− h
k∑
`=1

ω`,N m` −
1
β

1
N

log
[
k∏
`=1

(
|A`,N |

1+m`
2 |A`,N |

)]
. (4.9)

4.3.2 Metastable regime

Since we were interested in the large volume setting and motivated by [18, Theorem 10.6],
we studied the metastable regime at the limit N → ∞. Differentiating the limit of the free
energy (4.9), we obtained the following system of equations for the k-dimensional critical points
m = (m`)`∈{1,...,k}

m` = tanh
(
β

[
a`

(
k∑

`′=1
a`′ ω`′m`′

)
+ h

])
, ` ∈ {1, . . . , k}. (4.10)

Looking at (4.10), we noticed that a further reduction is possible. Indeed, any solution m ∈
[−1, 1]k of the system of equations in (4.10) is characterised by the 1-dimensional quantity

K = K(m) =
k∑
`=1

a` ω`m`. (4.11)

Thus, (4.10) reduces to the 1-dimensional fixed point equation

K = Tβ,h(K), Tβ,h(K) =
k∑
`=1

a` ω` tanh(β[a`K + h]). (4.12)

Therefore, since (4.12) characterises the critical points of the free-energy, we obtained our results
on the metastable regime by studying the conditions for Tβ,h(K) to have more than three fixed
points not tangent to the diagonal.
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4.3.3 Mean metastable exit time

We recall that, by lumpability and model reduction described in Section 4.3.1, we focused on
the Markov chain on ΓN with transition rates in (4.8). In [19, Hypothesis 1] we imposed on
free energy the same assumptions in [18, Section 10.1]. Thus, we used the techniques explained
in [18, Chapter 10] which have already been applied in a similar way in [18, Chapter 14] to
the random field Curie–Weiss model. Our contribution in this part was to find that a slightly
modification of the matrix BN was needed to adapt the methods of [18, Chapter 10] to the
random interactions and to the continuous time setting.

We summarise here the main idea of the proof on the mean metastable exit time, which
follows the line of proof of [18, Theorem 10.9]. We used the potential-theoretic approach to
metastability, in particular (1.24). For estimates of the numerator in (1.24) we used Taylor
expansions, [18, Lemma 10.12 and Eq. (10.2.33)]. In [19, Section 5] we provided estimates of
the capacity at the denominator: we used the Dirichlet principle (1.12) for the upper bound and
the Berman-Konsova principle (1.21) for the lower bound, as explained in [18, Sections 10.2,
10.3]. Matching upper and lower bounds were obtained via the construction explained in [18,
Sections 10.2] and implemented in [19, Section 4]. The procedure consists in two steps: first
define a suitable function g̃ to be used as test function in the Dirichlet principle and to build
the test flow for the Berman-Konsova principle, second construct a linearised approximated
dynamics, whose Dirichlet form Ẽ(·, ·) in g̃ could be explicitly computed. That will be used as
an approximation of the original E(g̃, g̃) in the Dirichlet principle.

The exponential law follows directly applying [18, Theorem 8.45].
The characterisation of the random exponent followed from a computation which uses mainly

the Central Limit Theorem for the quantity ωN,` (defined below (4.6)) and the equations char-
acterising the critical points of the free energy.

4.4 Contribution
I carried out the detailed computation for the proofs of the main theorems, finding that few de-
tails of well-known had to be adapted to study metastability in our model of interest. Moreover,
I largely contributed in finding the metastable regime. Since the number of metastable points
and the properties of the critical curve βc were not clear to us, as they depend in a complicated
way on all the parameters involved I used the software Mathematica® to produce some plots,
some of which appeared in [19, Appendices B,C]. These allowed us to understand better the
behaviour of the model and to have numerical evidence of two facts: the presence of multiple
metastable states for some choices of (β, h) and the re-entrant phase transition for some choices
of the distribution of J(·). Finally, I contributed in typing and structuring the paper.
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Chapter 5

Ising model with inhomogeneous
coupling disorder

In this chapter we summarise the content of the preprint [20]: Metastability of Glauber dynam-
ics with inhomogeneous coupling disorder, joint work with Anton Bovier, Frank den Hollander,
Elena Pulvirenti and Martin Slowik. The preprint was submitted to arxiv.org in September
2022.

5.1 Setting and summary

We fixed an abstract probability space (Ω,F ,P) and fix G a sub-σ-algebra of F . The model we
considered is a continuous time Markov process (ΣN (t))t≥0 with state space SN = {−1,+1}N ,
modelling a spin system of size N , evolving with Glauber dynamics (defined in Section 1.4.2),
determined by the Hamiltonian HN in (1.36). We took the coupling coefficients (Jij)ij in HN

to be uniformly bounded random variables (i.e. there exists kJ > 0 such that |Jij | ≤ kJ for all
i, j ∈ N) that are independent conditionally to the given σ-algebra G. We denoted with PG a
regular conditional distribution for the sequence (Jij)ij with respect to G, and with EG and VarG
the expectation and the variance with respect to PG .

We proved two theorems which compare the metastable behaviour of this model (called
quenched) with the one of the model (called annealed or averaged) with Hamiltonian H̃N in which
the coupling coefficients (Jij)ij of the Hamiltonian HN are replaced by their conditional mean
EGJij (see (1.38)). Our strategy is based on the potential-theoretic approach to metastability.
In addition, we used the McDiarmid’s inequality and results and techniques from Schlichting
and Slowik [68].

5.2 Examples

Our results are very general. They apply to a wide class of Ising spin systems on (possibly
inhomogeneous) random graphs, in which the presence of the edges is independent. Of particular
interest, due to the rescaling of the interaction term, is the case of dense random graphs.

A first example is the randomly dilute Curie–Weiss model, which is an Ising model on an
Erdős–Rényi random graph with edge probability p. It is obtained by taking (Jij)ij distributed
as i.i.d. Bernoulli random variables with fixed mean p ∈ (0, 1). Its metastability was studied
already in [22] (see Chapter 2), which we extended, and earlier in [50].
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Taking instead the coupling coefficients (Jij)ij distributed as independent Bernoulli random
variables with (random) mean J(i)J(j), with (J(i))i∈N i.i.d. random variables which have finite
support, leads to the Ising model on a Chung–Lu-like [28] random graph. The metastability of
that model can be effectively studied using our results and the information about the metastable
behaviour of its annealed model which we studied, for this very purpose, in [19] and explained
in Chapter 4.

Our general model includes many randomly diluted models. With our results their metastable
behaviour can be studied by comparing it with the one of the corresponding undiluted models.
An example in this category is the randomly diluted Hopfield model. It is obtained by taking as
(Jij)ij the usual coefficients of the Hopfield model multiplied (namely diluted) by i.i.d. Bernoulli
random variables with mean p, and as G the σ-algebra generated by the coupling coefficients of
the Hopfield model. In spite of the fact that the metastable behaviour of the undiluted Hop-
field model is not known yet (except for a small regime of parameters), this example is already
relevant as it motivates why we chose to study the general case of conditional averaging (see
discussion in Section 5.5).

5.3 Results

In the first theorem ([20, Theorem 2.10]) we provided conditions for metastability. More pre-
cisely, we proved that if, for some k1 > 0, the annealed model is e−k1N -metastable with respect
to a finite number of sets (in the sense of Definition 1.1.4 by Slowik and Schlichting [68]), defi-
nitely in N with probability 1, then the quenched model is e−cN -metastable for any c ∈ (0, k1),
definitely in N with probability 1, with respect to the same metastable sets of the annealed
model.

In order to give estimates on metastable exit times, we required a non-degeneracy hypothesis
([20, Assumption 2.11]), similar to the one in [13, Definition 1.2], as in [68, Theorem 1.7], and
assumed in addition the annealed model to be e−k1N -metastable definitely in N with probability
one.

Let µ̃N be the invariant measure of the annealed model. We fixed as starting set AN , one
of the metastable sets (satisfying the non-degeneracy assumption), and as target set BN , the
union of all metastable sets which have measure µ̃N not smaller than µ̃N (AN ). Here, following
the notation in [20], we denote with PNσ the law of (ΣN (t))t≥0 starting in σ ∈ SN , and with
ENνAN,BN

the mean with initial distribution νAN ,BN . Note that the same quantities were denoted
instead by PNσ and EN

νNAN,BN
in Section 1.4. Moreover, quantities with a superscript ∼ will refer

to the annealed model (namely they are defined via the Hamiltonian H̃N ).
For the reasons explained in Section 1.2.3, in our results the starting distribution of (ΣN (t))t≥0

is always the last-exit biased distribution

νAN ,BN (σ) =
µN (σ)PNσ

(
τNBN < τNAN

)
∑
σ∈AN µN (σ)PNσ

(
τNBN < τNAN

) , σ ∈ A. (5.1)

as it is defined in (1.11).
Therefore, the mean hitting time ENνAN,BN

[
τNBN

]
studied in our second theorem is the mean

metastable transition time from the set AN (with distribution νAN ,BN ) to one of the more stable
metastable sets.
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5.4. SUMMARY OF THE PROOFS

We are ready to present in detail the results of [20, Theorem 2.13]. In the first part of the
theorem we provided the following estimates on tails, which are formulated similarly to the ones
in [22, Theorem 1.4]. For t ≥ 0, P-a.s.,

lim
N→∞

PG

e−t−αN ≤
ENνAN,BN

[
τNBN

]
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

 ≥ 1− 4 e−t2/(2βkJ )2
, (5.2)

where

αN = β2

2N2

N∑
i,j=1
i<j

Var[Jij ]. (5.3)

Notice that, in the case of (Jij)ij i.i.d. Bernoulli random variables with fixed mean p, namely for
the randomly dilute Curie–Weiss model, αN is exactly α defined in (2.4), as in [22, Theorem 1.4].

The result in (5.2) shows that the mean metastable exit time ENνAN,BN
[
τNBN

]
is mainly con-

centrated around ẼNν̃AN,BN

[
τ̃NBN

]
(the corresponding quantity for the annealed model) up to

multiplicative constants and random prefactors which are concentrated as exponential of sub-
Gaussian random variables (see (2.5) for a definition).

In the second part of [20, Theorem 2.13] we showed that the q-th conditional moment of
the mean metastable exit time ENνAN,BN

[
τNBN

]
is P-a.s. bounded both from above and below

by constants times ẼNν̃AN,BN
[
τ̃NBN

]
. More precisely, we proved that for any fixed q ≥ 1 and

c ∈ (0,∞),

e−αN
(
1− c√

N

)
≤

EG
[
ENνAN,BN

[
τNBN

]q]1/q (ω)
ẼNν̃AN,BN

[
τ̃NBN

]
(ω)

≤ e4qαN
(
1 + c√

N

)
(5.4)

holds, definitely in N for P-almost every ω ∈ Ω, where αN is defined in (5.3).

5.4 Summary of the proofs

5.4.1 Key idea: control set on the Hamiltonians

One of the main issues in our proofs was the control on the quantity |HN (·)− H̃N (·)|, which is
random and might very well be huge for some realisations of the random coupling coefficients.
Our strategy to overcome this problem consists in defining the set Ξ(aN ) ([19, Eq. (3.1)]) as
the subset of Ω in which that quantity is uniformly bounded by a positive real aN . Then we
proved fine estimates within Ξ(aN ). On the complement Ξ(aN )c we were able to obtain only
rough estimates. However, choosing suitably the sequence (aN )N∈N (for instance to be of order√
N) yields nice estimates within the set Ξ(aN ) and makes P(Ξ(aN )c) vanish sufficiently fast as

N →∞ for our rough estimates within Ξ(aN )c to be precise enough in the limit.

5.4.2 Proof of metastability

By applying the Dirichlet principle, we proved the result on metastability [20, Theorem 2.10]
on the intersection of the set Ξ(aN ) (with some (aN )N∈N of order

√
N) and of the set where

metastability of the annealed model holds. We proved the asymptotic result using Borel Can-
telli’s lemma together with the assumption of metastability definitely in N of the annealed
model.
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5.4.3 Mean metastable exit time estimates

Capacity and harmonic sum

The first step in the proof of [20, Theorem 2.13] consists in writing the mean hitting times
as a ratio of harmonic sum and capacity, using (1.25), as usual within the potential-theoretic
approach. Hence, we first focused separately on estimating those two quantities, then combined
them, and finally took the limit N →∞: only there, at the very end, we used that the annealed
model is assumed to be metastable definitely in N with probability 1.

Two types of estimates

We computed the following two kinds of estimates both for capacities and harmonic sums, more
precisely in the next formulas, both for YN = ZN capN (X ,Y) (for any two disjoint X ,Y ⊂ SN )
and YN = ZN‖hNAN ,BN ‖µN . As we shall see later the estimates on the latter will hold only when
the process (ΣN (t))t≥0 is metastable, with the ones on the capacities hold on the whole Ω.

We use the ∼ notation as mentioned above.

1. Concentration estimates of sub-Gaussian type of the logarithms, i.e. bounds of the follow-
ing form, with explicit c > 0, for any t ≥ 0

PG
[∣∣log YN − EG

[
log YN

]∣∣ > t
]
≤ 2 e−ct2 + o(N). (5.5)

The right most term (vanishing for N →∞) on the right hand side of (5.5) is not present
for the capacity estimates.

2. “Annealed estimates”, namely estimates comparing conditional means of quantities of the
quenched model with quantities of the annealed model. Two types of annealed estimates
are needed:

• Difference of logarithms (needed for the result on the tails (5.2)):

EG
[
log YN

]
− log ỸN . (5.6)

We proved that the quantity in (5.6) for the capacity is equal to αN (5.3) in absolute
value and with an error of order 1√

N
, while for the harmonic sum it is contained in

[0, αN ] with an error of order 1
N ;

• Ratios of powers (needed for the result on the moments (5.4)). For any q ∈ [1,∞)
there exists a c ∈ (0,∞) such that

e−αN
(
1− c

Nu

)
≤

EG
[
Y q
N

]1/q
ỸN

≤ eqαN
(
1 + c

Nu

)
, (5.7)

where u = 1
2 for the capacities and u = 1 for the harmonic sum, and the constant c

is different in the two cases. αN is defined in (5.3).

Combining estimates of these two types, which hold for any finite N ∈ N sufficiently large, and
taking the limit N →∞ yields our final results.
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5.4. SUMMARY OF THE PROOFS

Two main technical tools

McDiarmid’s inequality. The main tool used to prove both concentration inequalities is
the McDiarmid inequality. Its conditional version provides almost sure sub-Gaussian type con-
centration for functions of conditionally independent random variables which satisfy a bounded
differences condition. The exact statement can be found in [20, Appendix A].

The fact that, contrary to Talagrand’s concentration inequality used in [22], no convexity is
required allowed us to prove concentration directly on logarithms of capacities, whose convexity
is hard to prove. In addition, remarkably, the constants in this inequality are given explicitly,
which is an improvement compared to [22].

Invariant measure and transition rates. In [20, Lemma 4.2] we proved two results. First,
the conditional expectation of invariant Gibbs measure is equal to eαN times the invariant Gibbs
measure of the annealed model. Moreover, the conditional expectation of the transition rates of
the quenched model is equal to eαN times the invariant Gibbs measure and the transition rates
of the annealed model. These results hold up to an error vanishing in N . In the proofs we used
conditional independence and boundedness of (Jij)ij , Taylor expansions and Jensen’s inequality
(E[ϕ(X)] ≥ ϕ(E[X]) for integrable real random variables X and convex real functions ϕ).

Capacity estimates

The capacity estimates we provided do not require any assumption on metastability and hold
for any pair of disjoint sets X ,Y ⊂ SN . Moreover, in the proofs we did not use the set Ξ(aN ).

We proved concentration (5.5) by applying McDiarmid’s inequality, using the hypothesis
of conditional independence of the sequence (Jij)ij . The required bounded differences for
log (ZN capN (X ,Y)) were proved using boundedness of the coupling coefficients and the Dirichlet
principle (1.12).

To prove the annealed estimates ((5.6),(5.7)) we used [20, Lemma 4.2], Dirichlet and Thom-
son (1.16) principles, together with Jensen’s inequality. For (5.7) we used also Minkowski’s
inequality (E[(X + Y )q]1/q ≤ E[Xq]1/q + E[Y q]1/q, for any q ∈ [1,∞) and any two q-integrable
random variables X,Y ).

Harmonic sum estimates

We stress that all the estimates we proved for finite N for the harmonic sum hold, contrary to
the generality of the capacity estimates, only in the subset of Ω in which the annealed model is
metastable for that N .

The core of our harmonic sum estimates and main novel technique of this paper (together
with the idea of Ξ(aN ) and the use of McDiarmid inequality) is [20, Proposition 5.2], which
strongly relies on definitions and results of Schichting and Slowik’s [68]. In this proposition
we proved that, on the event Ξ(aN ), the harmonic sum of the quenched model localises on
the metastable valley of AN (see Definition 1.1.5), if the annealed model is metastable, aN is
sublinear in N and N is large enough. In order to prove this we followed mostly the line of proof
of [68, Lemma 3.3] which uses reversibility, [68, Lemma 3.1] and the non-degeneracy assumption.
This is the only point in which we used that assumption.

Similarly to the capacity case, to show concentration (5.5) we proved first bounded dif-
ferences, using the localisation of the harmonics sum on Ξ(aN ) for some aN of order

√
N , in
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addition to boundedness of the coupling coefficients. We concluded the proof by McDiarmid
inequality using conditional independence of (Jij)ij .

To prove the annealed estimates ((5.6),(5.7)), in addition to the localisation of the harmonic
sum on Ξ(aN ) for some aN of order

√
N , we applied [20, Lemma 4.2], together with Jensen’s

and Minkowski’s inequalities.

5.5 Discussion
This paper represents a large development in the study of sharp asympotics on metastability
of systems in inhomogeneous random environments. Before our paper this field was largely
unexplored mainly due to technical difficulties in the computation of harmonic sums. These
problems are related to the fact that those models are not lumpable because the inhomogeneity
involves pairs of spins and thus the Hamiltonians depend highly on every spin and on the
realisation of the random environment. Dealing instead with inhomogeneity on single spins, as
in the random field Curie–Weiss model or the “separable” model studied in [19] (see Chapter 4,
(4.4)), is much easier via coarse-graining techniques (see Section 1.6.1).

The generality of our theorems is remarkable because in the literature most results for
metastability in random environments are given for specific models. The breakthrough to achieve
this generality was given by the results by Schlichting and Slowik in [68], which allow one easier
and much model independent estimates of the harmonic sum which was the bottleneck in the
application of the general potential-theoretic approach (in particular formula (1.25).

We conclude our discussion explaining why we dealt with conditional independence and
expectations, instead of the simple ones as in [22]. We made this choice for our results to hold
for a wide class of models, including randomly diluted models. Looking at the example of the
randomly diluted Hopfield model (RDH) helps visualising why. One would like to compare
RDH with the undiluted Hopfield model, which has random interaction coefficients which are
not independent. Conditioning to a non-trivial σ-algebra in our setting had two consequences.
Defining the annealed model using a conditional mean on the random couplings allowed us
to average only partially on the randomness of interaction coefficients. Thus, we obtained an
annealed model which is “less random” than the quenched but not necessarily fully deterministic,
as it was in [22], where the annealed model was the Curie–Weiss model. Moreover, assuming
conditional independence of the interaction coefficients allowed us to include models whose
dilution terms are independent but the coupling coefficients of their annealed version are not.

5.6 Contribution
I largely contributed in merging two independent original projects which dealt with the randomly
dilute Hopfield model and with the Ising model on inhomogeneous random graphs, respectively,
and in obtaining the current general formulation which includes both models. Moreover, I gave a
contribution in structuring of the paper, writing introduction, explanations and remarks. I also
helped in checking, simplifying and writing hypotheses and proofs, especially for metastability
and harmonic sum estimates.
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Chapter 6

Summary

This Ph.D. thesis contains results on metastability of a large class of Ising-like spin models with
random interaction coefficients, obtained using the potential-theoretic approach.

We started this thesis with a basic introduction to the phenomenon of metastability, which
included two formal definitions and a brief overview of the main approaches used to study it.
Subsequently, we focused on the potential-theoretic approach to metastability, established by
Bovier, Eckhoff, Gayrard and Klein starting with the paper [12]. We gave a sketch of the first
developments in the approach and provided essential elements of potential theory. The most
relevant quantities are capacity and equilibrium potential. We presented the main formulas we
used in our research, including some well-known variational principles characterising capacities,
which represent a core element in the potential-theoretic approach.

We proceeded by introducing the Ising and Curie–Weiss models. After providing a brief
review on the origin of the models for describing ferromagnetism, we dived more into detail
of their mathematical formulation. This set the basic ground for presenting our models of
interest and our results. Afterwards, we mentioned some previous related work which constitutes
the context of our research. We concluded the introductory chapter presenting two relevant
techniques, coarse-graining and lumping, which were essential at various levels in this work.

In this thesis we summarised the work contained in three papers. The first two papers have
been published, while the third one has appeared only on arxiv.org as a preprint and it has
not been peer-reviewed yet:

1. [22] Metastability for the dilute Curie–Weiss model with Glauber dynamics, joint work with
Anton Bovier and Elena Pulvirenti;

2. [19] Metastability for Glauber dynamics on the complete graph with coupling disorder, joint
work with Anton Bovier and Frank den Hollander;

3. [20] Metastability of Glauber dynamics with inhomogeneous coupling disorder, joint work
with Anton Bovier, Frank den Hollander, Elena Pulvirenti and Martin Slowik.

Furthermore, we added an unpublished slight extension of some techniques used in [22].
In our papers we studied metastability of random modifications of Ising models. More in

detail, we studied reversible Markov processes which model the evolution of spin systems of
size N , which are immersed in a constant external magnetic field at fixed temperature. These
Markov processes evolve with Glauber dynamics (with Metropolis transition rates), which allows
only one spin to flip at a time, and have a Gibbs measure as invariant measure. Our results
hold for systems of large size.
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CHAPTER 6. SUMMARY

The Hamiltonian which characterises our models of interest is a random modification of the
Ising model Hamiltonian. We modified only the spin interaction. We took random, possibly
inhomogeneous, interaction coefficients (Jij)ij , with a 1

N rescaling as in the Curie–Weiss model,
to avoid the Hamiltonian to attained values larger than order N . The only earlier work in which
metastability of these models was studied is den Hollander and Jovanovski’s [50].

A peculiar feature of these models is the presence of more than one level of randomness. The
first one, present also in the Curie–Weiss and Ising models, is the randomness of the Markov
process which is by definition random. An additional level is added by having random coefficients
in the Hamiltonian, which characterises the transition rates of the Markov process. Depending
on the definition of the random coefficients, more randomness could be added, e.g. using random
coefficients having random mean. Such cases are included in [20].

The Hamiltonian depends highly on all the spins in a configuration because the randomness
is placed in its interaction terms (namely “on the edges”, if we think in terms of the interaction
graph). Hence, in most cases coarse graining techniques cannot be applied and, even if the
random coefficients have finite support, the models we consider are usually not lumpable. For
these reasons well-established techniques, which rely on model reduction, cannot be used and
studying metastability of those models directly is very difficult.

To overcome these problems, our main strategy in [22] and [20] consisted in studying those
models by comparison with simpler models, meaning models which have less randomness in their
Hamiltonian. Indeed, we compare the metastable behaviour of models which have interaction
coefficients (Jij)ij with the one of models with interaction coefficients (E[Jij ])ij , where E is some
(possibly conditional) mean. Our results show how close these two behaviours are for large
systems.

We conclude this summary with brief reviews of the results presented in the central chapters
of this thesis.

Review of [22] and partial extension

As summarised in Chapter 2, in the first paper [22] we studied the metastable behaviour of
the randomly dilute Curie–Weiss model (RDCW), which can be seen as the Ising model on the
Erdős–Rényi random graph, with fixed edge probability p ∈ (0, 1). In this case the interaction
coefficients are i.i.d. Bernoulli random variables with fixed mean p, multiplied by 1

p . We com-
pared this model with the well-known Curie–Weiss model (CW), whose Hamiltonian is the mean
of RDCW. Assuming metastability of the Curie–Weiss model, we provided asymptotic estimates
on the mean time it takes to the RDCW, starting in the metastable set of the CW with last-exit
biased distribution, to hit the stable set of CW. This quantity can be written as a product of the
corresponding well-known deterministic mean hitting time of CW times a prefactor. We proved
that, asymptotically as N →∞, this prefactor is bounded by terms of order constant times the
exponential of a sub-Gaussian random variable.

Den Hollander and Jovanovski studied in [50] the same model and quantities, using the
pathwise approach to metastability. They proved a weaker result on the random prefactor:
they showed that it is at most polynomial in N . However, their result is uniform in the initial
configuration within the starting set.

Following the potential-theoretic approach, to obtain our estimates we first wrote the mean
hitting times as a ratio of harmonic sum and capacity. The main novelty in our paper consists in
writing capacity and harmonic sum in terms of the corresponding deterministic quantities of the
Curie–Weiss model and in being able to isolate and characterise the random correction term.
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In order to do that we estimated a generalised partition function, involving the difference of
the Hamiltonian of RDCW and CW. Using Talagrand’s concentration inequality and a second
moment method, established as well by Talagrand, we proved that the generalised partition
function is a product of an exponential of a sub-Gaussian random variable and an order constant
factor.

We concluded our proofs using this fact together with well-known methods. Upper and lower
bounds on capacities were obtained via Dirichlet and Thomson principles, using as test function
and test flow the optimal ones of the Curie–Weiss model. To estimate harmonic sums we used
the technique by Bianchi, Bovier and Ioffe [7], which consists in proving that the most relevant
terms of the harmonic sum are concentrates around the local minimum of the Curie–Weiss model
free energy.

The unpublished work presented in Chapter 3 extends the results on the generalised partition
function to a more general setting. This extension yields, together with Dirichlet and Thompson
principles, to bounds on general bounds on capacities similar to the ones obtained in [22].
However, it is important to stress that these results are of no help to estimate harmonic sums.
Hence, more sophisticated techniques are needed to fully extend [22], as was done later in [20].

Review of [19]

In our second paper [19], summarised in Chapter 4, we studied metastability of the averaged (or
annealed) model of the Ising model on a Chung–Lu-like random graph. The interaction coeffi-
cients of the latter model are independent Bernoulli random variables with mean the product of
weights on vertices. Thus, in [19] we considered a model with product interaction coefficients.
More in detail, we choose Jij = J(i)J(j), where (J(i))i∈N is a sequence of i.i.d. random variables
with finite support.

The interest in studying metastability of this model comes from the project of extending the
results of the first paper [22] to the Ising model on further random graphs. Such an extension,
carried out later in [20], allows one to have information about metastability of the Ising model on
a random graph from knowledge on the metastable behaviour of its averaged model (the model
obtained averaging its Hamiltonian). Thus, [19] makes the Ising model on a Chung–Lu-like
random graph a new example of model to which the results in [20] can be effectively applied.
Notice that this example is more interesting that the one of the Ising model on Erdős–Rényi
random graph because of the inhomogeneity of the interactions and the double randomness of
the averaged model.

In [19] we proved results on metastable regime, mean metastable exit times and distribution
of the metastable exit times.

Studying the mean metastable exit times and their distribution was done with well-known
techniques which explained in the monograph by Bovier and den Hollander [18, Chapters 9, 10,
14] and were used already by Bovier, Eckhoff, Gayrard and Klein [12, 13]. Besides providing a
new example of their application, the contribution of this part of the paper consists in adapting
those methods for use on models with random interactions and in continuous time.

Besides this, which is standard, we managed to characterise asymptotically, up to order
constant, the leading randomness of the exponent in the mean metastable exit time. We proved
that it is equal, in distribution, to its deterministic limit plus 1√

N
times a centered normal

random variable, whose variance can be explicitly computed.
The most interesting results in [19] are related to the metastable regime. We found the critical

inverse temperature, and limit and upper bound of the critical external magnetic field. Moreover,
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we showed numerically that, in some cases, the system presents multiple metastable states, up
to k + 1, where k is the cardinality of the support of J(·). Furthermore, we found numerical
evidence of a re-entrant phase transition. This means that the critical external magnetic field
can be not increasing, which, for instance, does not happen in the Curie–Weiss model.

These results show that the metastable regime and its analysis become more complicated
already when a simple product structure disorder is added to the system. As a consequence, we
infer that the development of new more accurate and computationally efficient techniques might
be needed to analyse in detail more complicated systems.

Review of [20]

As summarised in Chapter 5, in our third paper [20] we studied metastability of a large class of
Ising-like models, extending the results obtained on the Ising model on an Erdős–Rényi random
graph in our first paper [22]. In [20] the interaction coefficients are assumed to be independent,
conditionally to a given σ-algebra G, and uniformly bounded. The models considered include
Ising models on (dense) random graphs, with independent edge probabilities, like the Ising
models on Chung–Lu-like random graphs and on the Erdős–Rényi random graph, and randomly
diluted models, like the randomly diluted Hopfield model.

Our results compare the metastable behaviour of a model, called quenched model, with the
one of its averaged (or annealed) model, asymptotically in the sizeN of the system. The annealed
model is the model obtained by averaging (conditionally with respect to G) the interaction
coefficients in the Hamiltonian of the quenched model.

We proved three results. First, if the annealed model is metastable with respect to some sets,
then the quenched model is metastable with respect to the same sets. In addition, we wrote the
mean metastable exit times of the quenched model as the same quantity of the annealed model
times a prefactor, which we proved to be asymptotically of order constant times the exponential
of a sub-Gaussian random variable. These estimates are similar to the ones in [22] for the
particular case RDCW, with the advantage of explicit constants. Furthermore, we estimated
upper and lower bounds of order constant on the conditional moments of the mean metastable
exit of the quenched model divided by the mean metastable exit time of the annealed model.

We stress that in [20] we use the definition of metastability given by Schlichting and Slowik
in [68] and continue this review by mentioning the techniques used in our proofs.

After applying the standard formula to write the mean metastable exit times as harmonic
sum divided by capacity, our strategy consisted in finding two types of estimates on both those
quantities. We proved concentration estimates and so-called annealed estimates (comparing
conditional mean of a quantity of the quenched model with the same quantity of the annealed
model).

In this paper, in addition to well-established variational principles for capacities and standard
inequalities, we used the following three innovative techniques.

The main tool used to prove concentration inequalities is a conditional version of McDi-
armid’s inequality, which has milder hypothesis and higher precision than the Talagrand’s in-
equality used in [22] for similar purposes.

Moreover, for results on metastability and estimates on the harmonic sum we used the
following scheme to overcome difficulties on controlling the random difference of the annealed
and quenched model Hamiltonians. We first proved fine results for finite large N on a specific
control set, in which that difference is bounded by an N -dependent sequence. For diverging
sequences, the probability of being in the control set tends exponentially fast to 1 in limit
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N → ∞. Thus, choosing suitably that sequence, very rough estimates on the complement of
the control set turn out to be sufficient to obtain sharp results in the limit.

Furthermore, to estimate the harmonic sum we widely used the results and model-independent
techniques by Schlichting and Slowik [68]. The key point is the localisation of the harmonic sum
on the valley of the starting metastable set. The generality and precision of our results in [20]
show how powerful their methods are for finding estimates on the harmonic sum, which were
the main issue in studying metastability of non-lumpable spin system.
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Appendix A

Publication: Metastability for the
dilute Curie-Weiss model with
Glauber dynamics

This appendix reproduces exactly the content of the paper [22] with title “Metastability for
the dilute Curie-Weiss model with Glauber dynamics”, authored by Anton Bovier, Saeda
Marello and Elena Pulvirenti, and published in Electronic Journal of Probability, Institute of
Mathematical Statistics and Bernoulli Society, 2021, 26, 1-38, https://doi.org/10.1214/
21-EJP610.
This paper was summarised in Chapter 2.

A.1 Introduction and main results

The randomly dilute Curie–Weiss model (RDCW) is a classical model of a disordered ferromag-
net and was studied, e.g. in Bovier and Gayrard [15]. It generalises the standard Curie–Weiss
model (CW) in that the fixed interactions between each pair of spins is replaced by independent,
identically distributed, random ferromagnetic couplings between any pair of spins. In Bovier
and Gayrard [15] it is proven that the RDCW free energy converges, in the thermodynamic
limit, to that of the CW model, under some assumptions on the coupling distribution. Their
result relies on the fact that the RDCW Hamiltonian can be approximated by that of the CW
model up to a small perturbation which can be uniformly bounded in high probability. In the
last decade the RDCW model have gained again some attention and various results at equilib-
rium have been proven, both in the annealed and quenched case. De Sanctis and Guerra [31]
give an exact expression of the free energy first in the high temperature and low connectivity
regime, and then at zero temperature. The control of the fluctuations of the magnetisation
in the high temperature limit is addressed by De Sanctis [30], while recently Kabluchko, Löwe
and Schubert [53] prove a quenched Central Limit Theorem for the magnetisation in the high
temperature regime.

One of the features which make these random systems with “bond disorder” very appealing
is their deep connection with the theory of random graphs, which attracted great interest in
the last years due to their application to real-world networks. Indeed, if the random couplings
are chosen as i.i.d. Bernoulli random variables with mean p, one can view the model as a spin
system on an Erdős–Rényi random graph with fixed edge probability p, which makes it a dense
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APPENDIX A. METASTABILITY FOR THE DILUTE CURIE-WEISS MODEL WITH
GLAUBER DYNAMICS

graph. There has been an extensive study of the Ising model at equilibrium on different kinds of
random graphs, e.g. in Dembo, Montanari [32] and Dommers, Giardinà, van der Hofstad [37],
where several thermodynamic quantities were analysed when the graph size tends to infinity.
These results were all obtained for sparse graphs which have a locally tree-like structure. We
refer to van der Hofstad [48] for a general overview of these results.

In contrast to the substantial body of literature on the equilibrium properties of the RDCW
model, much less is known about its dynamical properties. The present paper focuses on the
phenomenon of metastability for the RDCW model where, for simplicity, the couplings are
Bernoulli distributed with fixed parameter p ∈ (0, 1), independent of the number of vertices
N , and the system evolves according to a Glauber dynamics. In particular, we give a precise
estimate of the mean transition time from a certain probability distribution on the metastable
state (called the last-exit biased distribution) to the stable state, when the external magnetic
field is small enough and positive and when N tends to infinity. We obtain asymptotic bounds
on the probability of the event that the average time is close to the CW one times some constants
of order 1 which depend on the parameters of the system.

In the context of metastability for interacting particle systems on random graphs, progress
has been made for the case of the random regular graph, analysed by Dommers [35] and for
the configuration model, studied by Dommers, den Hollander, Jovanovski, and Nardi [38], both
subject to Glauber dynamics, in the limit as the temperature tends to zero and the number
of vertices is fixed. Both are dealing with sparse random graphs. In [50] den Hollander and
Jovanovski investigate the same model considered in the present paper and obtain estimates
on the average crossover time for fixed temperature in the thermodynamic limit. They show
that, with high probability, the exponential term is the same as in the CW model, while the
multiplicative term is polynomial in N . Their analysis relies on coupling arguments and on the
pathwise approach to metastability. This method uses large deviations techniques in path space
and focuses on properties of typical paths in the spirit of Freidlin-Wentzell theory. We refer to
the classical book by Olivieri and Vares [65] for an overview on this method.

In contrast, in the present paper, we use the potential theoretic approach initiated by Bovier,
Eckhoff, Gayrard and Klein in a series of papers [12, 13, 14] (see the monograph of Bovier and
den Hollander [18] for an in-depth review of this as well as other approaches). This method
gives less information on the evolution of the system, but leads to more precise estimates of
the metastable transition time. It has been successfully applied to a large variety of systems
such as the random field CW model, where the external magnetic field is given by i.i.d. random
variables, first by Bovier, Eckhoff, Gayrard and Klein in [12] and later by Bianchi, Bovier and
Ioffe in [7]. Furthermore, inspired by the results of Bovier and Gayrard [15], namely that the
equilibrium properties of the RDCW model are very close to those of the CW model, we observe
that, using Talagrand’s concentration inequality, the mesoscopic measure can be expressed in
terms of that of CW.

Before stating our results we give a precise definition of the model.

A.1.1 Glauber dynamics for the RDCW model

Let [N ] = {1, ..., N}, N ∈ N, be a set of vertices. To each vertex i ∈ [N ] an Ising spin σi
with values in {−1,+1} is associated. We denote by σ = {σi : i ∈ [N ], σi ∈ {−1,+1}} a
spin configuration and we define the state space SN = {−1,+1}N to be the set of all such
configurations σ. We fix a probability p ∈ (0, 1). Then the randomly dilute Curie–Weiss model
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(RDCW) has the following random Hamiltonian HN : SN → R

HN (σ) = − 1
Np

∑
1≤i<j≤N

Jijσiσj − h
∑
i∈[N ]

σi, (A.1)

where h ∈ R represents an external constant magnetic field, while Jij/Np is a ferromagnetic
random coupling. In particular, {Jij}i,j∈[N ] is a sequence of i.i.d. random variables with Jij ∼
Ber(p) and Jij = Jji.

Let us denote by PJ the joint probability distribution of the the random couplings Jij with
i, j ∈ [N ] and by E the corresponding mean value.

The RDCW model can be seen as the Ising model on the Erdős–Rényi random graph with
vertex set [N ], edge set E and edge probability p ∈ (0, 1) (see van der Hofstad [47] for a general
overview on random graphs). In this picture the Hamiltonian can also be written as

HN (σ) = − 1
Np

∑
{i,j}∈E

σiσj − h
∑
i∈[N ]

σi. (A.2)

The Gibbs measure associated to the random Hamiltonian HN is

µβ,N (σ) = e−βHN (σ)

Zβ,N
, σ ∈ SN , (A.3)

where β ∈ (0,∞) is the inverse temperature and the partition function is defined as

Zβ,N =
∑
σ∈SN

e−βHN (σ). (A.4)

The Gibbs measure µβ,N is the unique invariant (and reversible) measure for the (discrete
time) Glauber dynamics on SN with Metropolis transition probabilities

pN (σ, σ′) =


1
N exp(−β[HN (σ′)−HN (σ)]+), if σ ∼ σ′,
1−∑η 6=σ pN (σ, η), if σ = σ′,

0, else,
(A.5)

where σ ∼ σ′ means ||σ − σ′|| = 2 with || · || the `1-norm on SN , i.e. σ ∼ σ′ if and only if σ′ is
obtained from σ by a single spin flip. We denote this Markov chain by {σ(t)}t≥0 and write Pν
for the law of the process σ(t) with initial distribution ν conditioned on the realisation of the
random couplings. Analogously, Eν is the quenched expectation w.r.t. the Markov chain with
initial distribution ν. Moreover, we set Pσ = Pδσ . For any subset A ⊂ SN we define the hitting
time of A as

τA = inf{t > 0 : σt ∈ A}. (A.6)

Notice that HN , µβ,N and pN are random variables, with respect to the random realisation
of the random variables {Jij}i,j∈[N ]. In this paper the results involving these random variables
hold pointwise, namely for every realisation of {Jij}i,j∈[N ], unless we specify it differently, as in
our main theorems.
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A.1.2 The Curie–Weiss model

Before stating the main results, we recall some results for the mean-field Curie–Weiss (CW)
model (see e.g. Bovier and den Hollander [18, Section 13] and Bovier, Eckhoff, Gayrard and
Klein [12]). The CW Hamiltonian H̃N can be obtained taking the mean value of (A.1) (namely,
the first equality in (A.8) below). A simplifying feature of the CW model is that its Hamiltonian
depends on the configuration σ ∈ SN only through the empirical magnetisation mN : SN → ΓN
defined as

mN (σ) = 1
N

N∑
i=1

σi ∈ ΓN =
{
−1,−1 + 2

N , ..., 1−
2
N , 1

}
. (A.7)

From now on we will drop the dependency on N from the magnetisation. Then we can write

H̃N (σ) = − 1
N

∑
1≤i<j≤N

σiσj − h
∑
i∈[N ]

σi = −N
(

1
2m(σ)2 + hm(σ)

)
(A.8)

and we can define, for any m ∈ ΓN ,

E(m) = −1
2m

2 − hm, (A.9)

obtaining
H̃N (σ) = NE(m(σ)). (A.10)

The associated Gibbs measure is

µ̃β,N (σ) = e−βNE(m(σ))

Z̃β,N
, σ ∈ SN , (A.11)

where Z̃β,N = ∑
σ∈SN e−βH̃N (σ) is the normalising partition function.

We denote the law of m(σ) under the Gibbs measure by

Q̃β,N = µ̃β,N ◦m−1. (A.12)

Then

Q̃β,N (m) = e−βNE(m)

Z̃β,N

∑
σ∈SN

1m(σ)=m = e−βNE(m)

Z̃β,N

(
N

1+m
2 N

)
= e−βNfβ,N (m)

Z̃β,N
, (A.13)

where
fβ,N (m) = E(m) + β−1IN (m) = −m

2

2 − hm+ β−1IN (m) (A.14)

is the finite volume free energy, while the entropy of the system is given by the following com-
binatorial coefficient

IN (m) = − 1
N

log
(

N
1+m

2 N

)
(A.15)

and it has the following properties: as N →∞,

IN (m)→ I(m) ≡ 1−m
2 log 1−m

2 + 1 +m

2 log 1 +m

2 , (A.16)

more precisely,

IN (m)− I(m) = 1
2N ln 1−m2

4 + lnN + ln(2π)
2N +O

( 1
N2

)
. (A.17)
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As reference see for example Bovier, Eckhoff, Gayrard and Klein [12, (7.18)].
Notice that the previous definitions imply

µ̃β,N (σ) = Q̃β,N (m(σ)) eNIN (m(σ)). (A.18)

We use the notation fβ(m) = limN→∞ fβ,N (m). We refer to Bovier and den Hollander [18,
(13.2.6)] for more details on the following result.

Lemma A.1.1. For m ∈ (−1, 1),

e−βNfβ,N (m) = e−βNfβ(m)(1 + o(1))
√

2
πN(1−m2) (A.19)

and for m ∈ {1,−1}, fβ,N (m) = fβ(m).

Remark A.1.2. Comparing our definitions and the literature (e.g. Bovier and den Hollan-
der [18, Section 13.1]), one notices that the Gibbs measure is often defined with an addi-
tional factor 2−N , corresponding to the reference measure. More precisely, the Gibbs measure
would be µ̃β,N (σ) = 1

Z̃β,N
e−βNE(m(σ))2−N , where the partition function would be defined by∑

σ∈SN e−βH̃N (σ)2−N . We preferred to discard the 2−N from our definitions. Therefore, for con-
sistency, our definition of IN differs from the classical one by a factor 2−N inside the logarithm,
yielding a difference of log(2) in the limit in (A.16) with respect to Bovier and den Hollander [18,
(13.1.14)] or Bovier, Eckhoff, Gayrard and Klein [12, (7.17)].

We consider the Glauber dynamics associated to the CW Hamiltonian in analogy with (A.5)
and with transition probabilities p̃N (σ, σ′). A particular feature of this model is that the image
process m(t) ≡ m(σ(t)) of the Markov process σ(t) under the map m is again a Markov process
on ΓN , with transition probabilities

r̃N (m,m′) =


exp(−βN [E(m′)− E(m)]+) (1−m)

2 if m′ = m+ 2
N ,

exp(−βN [E(m′)− E(m)]+) (1+m)
2 if m′ = m− 2

N ,

0 else.
(A.20)

The equilibrium CW model displays a phase transition. Namely, there is a critical value of
the inverse temperature βc = 1 such that, in the regime β > βc, h > 0 and small, the free energy
fβ(m) is a double-well function with local minimisers m−,m+ and saddle point m∗. They are
the solutions of equation m = tanh(β(m + h)). Since fβ(m−) > fβ(m+), the phase with m−
represents the metastable state, while m+ represents the stable state for the system. Define
m−(N),m∗(N),m+(N) as the closest points in ΓN to m−,m∗,m+ respectively, with respect to
the Euclidean distance on R. {m−(N),m+(N)} form a metastable set in the sense of Definition
8.2 of Bovier and den Hollander [18]. Let ECW

m−(N) be the expectation w.r.t. the Markov process
m(t) with transition probabilities r̃N and starting at m−(N). Then the following theorem holds.

Theorem A.1.3. For β > 1 and h > 0 small enough, as N →∞,

ECW
m−(N)[τm+(N)] = exp

(
βN [fβ(m∗)− fβ(m−)]

)
× π

1 +m∗

√
1−m∗2
1−m2

−

N(1 + o(1))

β

√
f ′′β (m−)

(
−f ′′β (m∗)

) . (A.21)
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As a reference see Bovier and den Hollander [18, Theorem 13.1]. The difference of sign in the
denominator with respect to our statement is due to the fact that their result holds for h < 0,
while ours for h > 0.

We conclude this section by giving the explicit formula of the capacity for the CW model.
The definition of capacity is given in (A.31), while its relation with the mean hitting time is
given by the key relation (A.30). Let us denote, for any subset U of ΓN , the set of configurations
with magnetisation in U by

SN [U ] = {σ ∈ SN : m(σ) ∈ U} (A.22)

and for simplicity, for any m ∈ ΓN , the set of configurations with given magnetisation m by
SN [m]. Notice that SN [m] has cardinality e−NIN (m), where IN (m) is defined in (A.15).

Then, the following formula,

capCW(SN [m−(N)],SN [m+(N)]) = 1
Z̃β,N

e−βNfβ(m∗)

√
β(−f ′′β (m∗))

πN

√
1 +m∗

1−m∗ (1+o(1)), (A.23)

follows from standard arguments (see e.g. techniques used in the proof of Bovier and den
Hollander [18, Theorem 13.1]).

A.1.3 Main results

For any A,B ⊂ SN disjoint, we define the so-called last-exit biased distribution on A for the
transition from A to B as

νA,B(σ) = µβ,N (σ)Pσ(τB < τA)∑
σ∈A µβ,N (σ)Pσ(τB < τA) , σ ∈ A. (A.24)

Since we are going to use νA,B on the sets SN [m−(N)],SN [m+(N)] defined above, we introduce
the following simplified notation

νNm−,m+ = νSN [m−(N)],SN [m+(N)]. (A.25)

The following theorem gives a description of the dynamical properties of the RDCW model
in the metastable regime where h is positive and small enough, β > βc = 1 (βc is the critical
inverse temperature for the RDCW model) and N is going to infinity. We provide an estimate
on the mean time it takes to the system, starting with initial distribution νNm−,m+ , to reach
SN [m+(N)]. More precisely, we estimate, in the limit as N → ∞, its ratio with the mean
metastable exit time for the CW model to go from m−(N) to m+(N), providing constant upper
and lower bounds independent of N . Because of the random interaction, the result is given in
the form of tail bounds.

After recalling that notation PJ and Eν was introduced in Section A.1.1, while ECW
m−(N) was

introduced in Section A.1.2, we are ready to formulate our main theorem.

Theorem A.1.4 (Mean metastable exit time). For β > 1, h > 0 small enough and for s > 0,
there exist absolute constants k1, k2 > 0 and C1(p, β) < C2(p, β, h) independent of N , such that

lim
N↑∞

PJ

C1e−s(1 + o(1)) ≤
EνNm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] ≤ C2es(1 + o(1))

 ≥ 1− k1e−k2s2
. (A.26)
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The quantities C1 and C2 in the previous theorem can be explicitly written. Set

α = β2(1− p)
4p , κ = α+ max

η∈(0,1)

log η −
β

√
2α+ log

(
c1

(1−η)2

)
p
√

2c2

 , (A.27)

where c1, c2 > 0 are absolute constants coming from Theorem A.2.8. It is easy to see that κ < α.
With this notation

C1 = C1(β, h, p) = e−2β(1+h)−α+κ, (A.28)

C2 = C2(β, h, p) = e2β(1+h)+2α. (A.29)

A.1.4 Proof of the main theorem

The proof of Theorem A.1.4 is based on the potential theoretic approach to metastability, which
turns out to be a rather powerful tool to analyse the main object we are interested in, i.e. the
mean hitting time of SN [m+(N)] for the system with initial distribution νNm−,m+ . The general
ideas of this approach were first introduced in a series of papers by Bovier, Eckhoff, Gayrard and
Klein [12, 13, 14]. We refer to Bovier and den Hollander [18] for an overview on this method.

The crucial formula in the study of metastability is given by the following relation linking
mean hitting time and capacity of two sets A,B ∈ SN , which can be found in Bovier and den
Hollander [18, Eq. (7.1.41)]

EνA,B [τB] =
∑
σ∈A

νA,B(σ)Eσ[τB] = 1
cap(A,B)

∑
σ′∈SN

µβ,N (σ′)hAB(σ′), (A.30)

where the capacity, as in Bovier and den Hollander [18, (7.1.39)], is defined by

cap(A,B) =
∑
σ∈A

µβ,N (σ)Pσ(τB < τA). (A.31)

The function hAB is called harmonic function and has the following probabilistic interpretation

hAB(σ) =
{

Pσ(τA < τB) σ ∈ SN \ (A ∪B),
1A(σ) σ ∈ A ∪B. (A.32)

We refer to Bovier and den Hollander [18, Section 7.1.2] for further details on the latter quan-
tities.

By (A.30), in order to estimate mean hitting times one needs estimates both on the capacity
and on the harmonic function.

We prove bounds on the capacity of two sets SN [m1],SN [m2], stated in the two following
theorems.

Theorem A.1.5. For any m1 6= m2 ∈ ΓN and any s > 0, there exist absolute constants
k1, k2 > 0 such that

PJ

(
Zβ,N cap (SN [m1],SN [m2])

Z̃β,N capCW (SN [m1],SN [m2])
≤ es+2β(1+h)+α(1 + o(1))

)
≥ 1− k1e−k2s2

, (A.33)

asymptotically as N →∞, where α is defined in (A.27).
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Theorem A.1.6. For any m1 6= m2 ∈ ΓN and any s > 0, there exist absolute constants
k1, k2 > 0 such that

PJ

(
Zβ,N cap (SN [m1],SN [m2])

Z̃β,N capCW (SN [m1],SN [m2])
≥ e−(s+2β(1+h)+α)(1 + o(1))

)
≥ 1− k1e−k2s2

, (A.34)

asymptotically as N →∞, where α is defined in (A.27).

We state asymptotic upper and lower bounds on the sum over the harmonic function in the
numerator of (A.30) in the following proposition. We used the simplified notation

hNm−,m+ = hSN [m−(N)],SN [m+(N)]. (A.35)

Theorem A.1.7. For any s > 0, there exist absolute constants k1, k2 > 0 such that

PJ

 ∑
σ∈SN

µβ,N (σ)hNm−,m+(σ) ≤ eα+s exp (−βNfβ(m−))
Zβ,N

√
(1−m2

−)βf ′′β (m−)
(
1 + o(1)

) ≥ 1− k1e−k2s2
,

(A.36)

PJ

 ∑
σ∈SN

µβ,N (σ)hNm−,m+(σ) ≥ eκ−s exp (−βNfβ(m−))
Zβ,N

√
(1−m2

−)βf ′′β (m−)
(
1 + o(1)

) ≥ 1− k1e−k2s2
,

(A.37)
asymptotically as N →∞, and where α and κ are defined in (A.27).

We conclude this section using Theorems A.1.5-A.1.7, to prove the main theorem. First, we
introduce the following notation which will be extensively used:

A
P (s)
R B is equivalent to PJ(A R B) ≥ 1− k1e−k2s2

, (A.38)

for all s > 0 and for some absolute constants k1, k2 > 0, whose values might change along the
paper.

Proof of Theorem A.1.4 . We prove here only the upper bound, as the lower bound follows
similarly. More precisely, we prove

EνNm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] P (s)
≤ C2es. (A.39)

We start from (A.30), which in our case reads

EνNm−,m+

[
τSN [m+(N)]

]
=

∑
σ∈SN µβ,N (σ)hNm−,m+(σ)

cap (SN [m−(N)],SN [m+(N)]) . (A.40)

From (A.36) we obtain

EνNm−,m+

[
τSN [m+(N)]

] P (s)
≤ eα+s exp (−βNfβ(m−)) (1 + o(1))

Zβ,N cap(SN [m−(N)],SN [m+(N)])
√

(1−m2
−)βf ′′β (m−)

. (A.41)
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Via the lower bound on the capacity from Theorem A.1.6, we obtain

EνNm−,m+

[
τSN [m+(N)]

] P (s)
≤ e2s+2β(1+h)+2α

√
1−m∗
1 +m∗

πN exp (βN [fβ(m∗)− fβ(m−)])
β
√

(1−m2
−)f ′′β (m−)(−f ′′β (m∗))

(1 + o(1))

= e2s+2β(1+h)+2α ECW
m−(N)[τm+(N)],

(A.42)
where we used (A.23) and Theorem A.1.3.

A.1.5 Outline

The remainder of this paper is organised as follows. In Section A.2 we use the powerful Ta-
lagrand’s concentration inequality to obtain bounds on the equilibrium measure of the RDCW
model. These bounds allow us to write the RDCW mesoscopic measure in terms of the deter-
ministic CW one, times a random factor which is the exponential of a sub-Gaussian random
variable. In Section A.3 we give the proof of Theorems A.1.5 and A.1.6 via two dual variational
principles, the Dirichlet and the Thomson principles, which are the building blocks of the poten-
tial theoretic approach to metastability. In obtaining upper and lower bounds on the capacity,
the main strategy is to use the results of Section A.2 in order to recover the capacity of the
CW model. In Section A.4 we prove Theorem A.1.7, i.e. we compute the asymptotics of the
numerator in the formula for the mean hitting time using estimates on the harmonic function.

A.2 Equilibrium analysis via Talagrand’s concentration inequal-
ity

In this section we prove that the equilibrium mesoscopic measure of the RDCW model is in
fact very close to that of the CW model. This is done in two steps. First, we prove that
the difference between the random free energy at fixed magnetisation and its average can be
controlled via Talagrand’s concentration inequality. Second, we find upper and lower bounds on
the aforementioned average by estimating first and second moments of the partition function of
the RDCW model at fixed magnetisation.

A.2.1 Mesoscopic measure and closeness to the CW model

We start by analysing the equilibrium measure of the RDCW model. The aim is to express the
equilibrium measure µβ,N , defined in (A.3), in terms of the empirical magnetisation in order to
obtain a mesoscopic description, as we did for the CW model in Section A.1.2. Let us define
the measure Qβ,N on ΓN , and let the partition function be its normalisation

Qβ,N (·) = µβ,N ◦m−1(·) =
∑

σ∈SN [·]
µβ,N (σ), Zβ,N =

∑
m∈ΓN

Qβ,N (m). (A.43)

A priori the Hamiltonian of the RDCW model is not only depending on m, but it depends
of course on the whole spin configuration. Nonetheless, we will see later in this section that
the mesoscopic measure Qβ,N can be written in terms of the mesoscopic measure Q̃β,N of the
standard CW model.

E[HN (σ)] = − 1
Np

∑
i<j

E[Jij ]σiσj − h
∑
i

σi = − p

Np

∑
i<j

σiσj − h
∑
i

σi = H̃N (σ). (A.44)
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Therefore, we can split the Hamiltonian into the mean-field part and the remaining random part
obtaining

HN (σ) = E[HN (σ)] + ∆N,p(σ), (A.45)
where, introducing the notation Ĵij = Jij − p,

∆N,p(σ) = HN (σ)− H̃N (σ) = − 1
Np

∑
i<j

Ĵijσiσj . (A.46)

Note that ∆N,p is a random variable with zero mean. In order to simplify the notation, we drop
from now on the dependence on N and p, from ∆N,p. Next, we write the mesoscopic measure
as

Qβ,N (m) = 1
Zβ,N

e−βNE(m) ·
∑

σ∈SN [m]
e−β∆(σ), (A.47)

where E(m) is defined in (A.8).
We will now focus on proving bounds for functions of ∑σ∈SN [m] e−β∆(σ) more general than

Qβ,N (m). These results will be fundamental to prove our main theorem in the following sec-
tions. We will come back to Qβ,N at the end of this section, proving its closeness to the CW
correspondent Q̃β,N as a consequence of those general results.

Let us introduce the following notation, where we drop the dependence on β for simplicity

ZN,g =
∑
m∈ΓN

g(m)
∑

σ∈SN [m]
e−β∆(σ) = exp (NpN,g) exp (N [FN,g − pN,g]) , (A.48)

FN,g = 1
N

logZN,g, (A.49)

pN,g = E(FN,g), (A.50)

where g : ΓN → [0,∞) is a function which may depend on N .
We are interested in finding precise estimates on ZN,g by writing it in terms of the entropic

exponential term e−NIN (m) times some random factor which takes into account the randomness
of the couplings. We notice that ZN,g is the product of a deterministic factor eNpN,g and a
random factor eN(FN,g−pN,g).

We first characterise the random variable N(FN,g − pN,g) in the following Proposition.

Proposition A.2.1. For any β, t > 0,

PJ
(
|N(FN,g − pN,g)| ≥ t

)
≤ c1 exp

(
− γt2

)
, (A.51)

where γ ∝ p2

β2 .

The previous result intuitively means that the random FN,g is in fact very well concentrated
around its mean pN,g.

As a second step we provide asymptotic bounds on the average of FN,g, i.e. the deterministic
term pN,g.

Lemma A.2.2. Asymptotically, as N →∞,

pN,g ≤
α

N
+ 1
N

log

 ∑
m∈ΓN

g(m) exp (−NIN (m))

+ o

( 1
N

)
, (A.52)

where IN (m) is defined in (A.15) and α in (A.27).
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Lemma A.2.3. Asymptotically, as N →∞,

pN,g ≥
κ

N
+ 1
N

log

 ∑
m∈ΓN

g(m) exp (−NIN (m))

+ o

( 1
N

)
, (A.53)

where IN (m) is defined in (A.15) and κ in (A.27).

Proposition A.2.1 together with Lemmas A.2.2 and A.2.3 imply the following result.

Proposition A.2.4. Asymptotically, as N →∞, we have

ZN,g ≤ eα
 ∑
m∈ΓN

g(m) exp (−NIN (m))

 exp [N(FN,g − pN,g)] (1 + o(1)) , (A.54)

and

ZN,g ≥ eκ
 ∑
m∈ΓN

g(m) exp (−NIN (m))

 exp [N(FN,g − pN,g)] (1 + o(1)) , (A.55)

where ZN,g is defined in (A.48), α and κ in (A.27), and IN (m) in (A.15). Moreover, N(FN,g −
pN,g) is a sub-Gaussian random variable with variance

Var
[
N(FN,g − pN,g)

]
≤ c β2

p2 , (A.56)

where c is a positive constant.

We prove Proposition A.2.1 in Section A.2.2, and Lemmas A.2.2 and A.2.3 in Section A.2.3.
We are ready to state the main result of this section, as a corollary of Proposition A.2.1 and

Proposition A.2.4.

Corollary A.2.5. Asymptotically, as N →∞, using notation (A.38), the following bounds hold
for any β > 0 and any function g : ΓN → [0,∞)

∑
m∈ΓN

g(m)
∑

σ∈SN [m]
e−β∆(σ)

P (s)
≤ es+α

 ∑
m∈ΓN

g(m) exp (−NIN (m))

 (1 + o(1)) , (A.57)

∑
m∈ΓN

g(m)
∑

σ∈SN [m]
e−β∆(σ)

P (s)
≥ e−s+κ

 ∑
m∈ΓN

g(m) exp (−NIN (m))

 (1 + o(1)) , (A.58)

where α and κ are defined in (A.27), IN (m) in (A.15) and ∆(σ) in (A.46).

Proof. By Proposition A.2.1 we obtain, for any fixed s > 0,

exp [N(FN,g − pN,g)]
P (s)
≤ es and exp [N(FN,g − pN,g)]

P (s)
≥ e−s, (A.59)

where k1, k2 > 0 are absolute constants.
To conclude the proof it is sufficient to use the definition of ZN,g (A.48) and Proposition A.2.4.
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Remark A.2.6. The exact same statement of Corollary A.2.5 holds replacing e−β∆(σ) with
eβ∆(σ). The proof remains the same: the Lipschitz constant for the Talagrand concentration
inequality (in Section A.2.2) is the same and the change of sign, being squared, disappears from
(A.72) onwards.

We conclude this section with an immediate application of Corollary A.2.5 which states
the closeness of the random mesoscopic measure Qβ,N to the correspondent deterministic CW
quantity Q̃β,N . This result will be widely used in Section A.4.

Corollary A.2.7. Asymptotically, as N →∞, using notation (A.38), the following bounds hold
for any fixed s > 0 and any function ḡ : ΓN → [0,∞)

∑
m∈ΓN

ḡ(m)Qβ,N (m)
P (s)
≤ es+α Z̃β,N

Zβ,N

 ∑
m∈ΓN

ḡ(m) Q̃β,N (m)

 (1 + o(1)) , (A.60)

∑
m∈ΓN

ḡ(m)Qβ,N (m)
P (s)
≤ es+α 1

Zβ,N

 ∑
m∈ΓN\{1,−1}

ḡ(m) exp
(
− βNfβ(m)

)√ 2
πN(1−m2)

 (1 + o(1))

+ es+α 1
Zβ,N

 ∑
m∈{1,−1}

ḡ(m) exp
(
− βNfβ(m)

) (1 + o(1)) ,

(A.61)

where α and κ are defined in (A.27).

Proof. Using (A.47) we obtain

∑
m∈ΓN

ḡ(m)Qβ,N (m) = 1
Zβ,N

∑
m∈ΓN

ḡ(m) e−βNE(m) ∑
σ∈SN [m]

e−β∆(σ). (A.62)

Now we can apply the upper bound in Corollary A.2.5, with g(m) = 1
Zβ,N

ḡ(m) e−βNE(m), to the
right hand side of (A.62). We conclude the proof of (A.60) using the definition of Q̃β,N (A.13)
and (A.14).

(A.61) follows by (A.60) simply applying Lemma A.1.1.

A.2.2 Sub-Gaussian bounds on the random term

Proposition A.2.1 follows from Talagrand’s concentration inequality, which we cite for complete-
ness in the version of Tao [74, Theorem 2.1.13].

Theorem A.2.8 (Talagrand concentration inequality). Let G : RM → R be a 1-Lipschitz and
convex function. LetM ∈ N, X = (X1, . . . , XM ), with Xi be independent r.v., uniformly bounded
by K > 0, i.e. |Xi| ≤ K, for every 1 ≤ i ≤M . Then, for any t ≥ 0,

P
(
|G(X)− EG(X)| ≥ tK

)
≤ c1 exp

(
− c2t

2), (A.63)

with positive absolute constants c1, c2.
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Proof of Proposition A.2.1. We can apply Theorem A.2.8 to the free energies FN,g as a function
of the N2 coupling constants Ĵij . Indeed it is standard to see that FN,g is convex and Lipschitz
continuous with constant β

Np
√

2 (see e.g. Talagrand [73, Corollary 2.2.5] ). Thus, applying

Theorem A.2.8 for G = FN,g
(

β

Np
√

2

)−1
and K = 1, after defining t′ = t β

Np
√

2 we obtain, for
some positive constants c1, c2 and for any t′ ≥ 0,

PJ
(
N |FN,g − pN,g| ≥ t′

)
≤ c1 exp

(
− c2

2p2

β2 t
′2
)
, (A.64)

concluding the proof of (A.51) and hence Proposition A.2.1.

A.2.3 Asymptotic bounds on the deterministic term

In this section we prove first the upper bound on pN,g (Lemma A.2.2) and then the lower bound
(Lemma A.2.3). The upper bound is obtained by estimates on the first moment of the random
partition function ZN,g, while the lower bound is in the spirit of Talagrand [73, Theorem 2.2.1]
and is more delicate. We will see that it involves also estimates on the second moment of the
random partition function.

Proof of Lemma A.2.2. Observing that {Ĵij}i,j∈[N ] defined in (A.46) are i.i.d. random variables
such that EĴij = 0, we easily obtain

E[ZN,g] =
∑
m∈ΓN

g(m)
∑

σ∈SN [m]
E

exp

 β

Np

∑
i<j

Ĵijσiσj


=

∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

E
(

exp
[
β

Np
Ĵijσiσj

])
.

(A.65)

In order to find estimates for (A.65), we first define

Φ(x) := E[exp(xĴij)], (A.66)

which is a function independent of i, j, being {Ĵij}i,j i.i.d., with first and second derivatives

Φ′(0) = EĴij = 0, (A.67)
Φ′′(0) = EĴ2

ij = p(1− p). (A.68)

Performing a Taylor expansion of Φ we get

Φ(x) = Φ(0) + xΦ′(0) + x2

2 Φ′′(0) + o(x2) = 1 + x2

2 p(1− p) + o(x2). (A.69)

Thus, we can exponentiate Φ(x) to obtain

Φ(x) = exp
(

log
(
Φ(x)

))
= exp

(
x2

2 p(1− p) + o(x2)
)
, (A.70)
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where we used the expansion log(1 + x) = x+ o(x). Therefore, for any sequence of coefficients
x2
ij which are independent of i, j and σ, we have the following

∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

E
[

exp(xij Ĵij)
]

=
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

Φ(xij)

=
∑
m∈ΓN

g(m)
∑

σ∈SN [m]

∏
i<j

exp
(
x2
ij

2 p(1− p) + o(x2
ij)
)

=
∑
m∈ΓN

g(m) e−NIN (m) exp
(
x2
ij

2 p(1− p) + o(x2
ij)
)N(N−1)/2

=
∑
m∈ΓN

g(m) e−NIN (m) exp
(
x2
ijp(1− p)

N(N − 1)
4 + o

(
x2
ijN(N − 1)

))
,

(A.71)

asymptotically, for xij → 0, where the third equality holds only if x2
ij is independent of i, j and

σ. Moreover, we used that the cardinality of SN [m] is e−NIN (m), where IN (m) is defined in
(A.15), and the cardinality of {(i, j) ∈ [N ]2 : i < j} is N(N−1)

2 .
We can apply (A.71) with xij = β

Npσiσj because x2
ij is independent of i, j and σ. Indeed

x2
ij = β2

N2p2 , being σi, σj ∈ {−1,+1} for any i, j ∈ [N ] and σ ∈ SN . Thus, we get, asymptotically
as N →∞,

E [ZN,g] =
∑
m∈ΓN

g(m) e−NIN (m) exp
(
β2(1− p)

4p + o(1)
)

= exp
(
α+ o(1)

) ∑
m∈ΓN

g(m) exp (−NIN (m)) ,
(A.72)

where α is defined in (A.27).
Therefore, by Jensen’s inequality and (A.72), we have

E
[

logZN,g
]
≤ log

(
E[ZN,g]

)
= α+ o(1) + log

 ∑
m∈ΓN

g(m) exp (−NIN (m))

 (A.73)

which proves the upper bound.

Proof of Lemma A.2.3. A key ingredient in the proof is to control the upper bound on the
second moment of ZN,g, i.e. prove that the following bound holds

E
[
Z2
N,g

]
≤ e2α E [ZN,g]2 (1 + o(1)) , (A.74)

where α is defined in (A.27).
We estimate E

[
Z2
N,g

]
using the first two lines of (A.71) with xij = β

Np

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

)
,
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which hold also when x2
ij is not independent on i, j and σ,

E
[
Z2
N,g

]
= E


∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1)∈SN [m],
σ(2)∈SN [m′]

exp
(∑
i<j

β

Np
Ĵij

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

))

=
∑

m,m′∈ΓN

g(m)g(m′)E


∑

σ(1)∈SN [m],
σ(2)∈SN [m′]

exp
(∑
i<j

β

Np
Ĵij

(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

))
=

∑
m,m′∈ΓN

g(m)g(m′)
∑

σ(1)∈SN [m],
σ(2)∈SN [m′]

∏
i<j

exp
(

1
2

β2

N2p2
(
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j

)2
p(1− p) + o

(
β2

N2

))

≤
∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1)∈SN [m],
σ(2)∈SN [m′]

∏
i<j

exp
(
β2

N2p
2(1− p) + o

( 1
N2

))

=
∑

m,m′∈ΓN

g(m)g(m′) e−NIN (m) e−NIN (m′) exp
(
N(N − 1)

2

[
β2

N2p
2(1− p) + o

( 1
N2

)])

=
∑

m,m′∈ΓN

g(m)g(m′) e−NIN (m)e−NIN (m′) exp
(
β2 (1− p)

p
+ o(1)

)
= exp (4α+ o(1))

∑
m∈ΓN

g(m) e−NIN (m) ∑
m′∈ΓN

g(m′) e−NIN (m′)

= e2α E [ZN,g]2 (1 + o(1)) ,
(A.75)

where, similarly to the last steps in (A.71), we used that the cardinality of SN [m] is e−NIN (m),
the cardinality of {(i, j) ∈ [N ]2 : i < j} is N(N−1)

2 . Moreover, in the last line we used (A.72).
We recall the Paley–Zygmund inequality, which states that

PJ
(
X ≥ η EX

)
≥ (1− η)2 (EX)2

EX2 , (A.76)

for any non negative random variable X and any η ∈ (0, 1). Using (A.76) with X = ZN,g, (A.72)
and (A.75) we get, asymptotically as N →∞,

PJ
( 1
N

logZN,g ≥
1
N

log
(
η EZN,g

))
= PJ

( 1
N

logZN,g ≥
1
N

log (EZN,g) + 1
N

log η
)

≥ (1− η)2

exp
(
2α+ o(1)

) .
(A.77)

Moreover, using (A.64) together with (A.49) and the change of variables t′ = Nt′′, we obtain
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∀ t′′ > 0,

PJ
(∣∣∣∣ 1
N

logZN,g − pN,g
∣∣∣∣ ≥ t′′) ≤ c1 exp

(
−2c2N

2p2t′′2

β2

)
. (A.78)

Thus, taking the complementary event, we get

PJ
(
−t′′ ≤ 1

N
logZN,g − pN,g ≤ t′′

)
≥ 1− c1 exp

(
−2c2N

2p2t′′2

β2

)
. (A.79)

Now, using

PJ
( 1
N

logZN,g − pN,g ≤ t′′
)
≥ PJ

(
−t′′ ≤ 1

N
logZN,g − pN,g ≤ t′′

)
(A.80)

and the change of variable t = Np
√

2c2
β t′′ we obtain

PJ
( 1
N

logZN,g ≤ pN,g + tβ

Np
√

2c2

)
≥ 1− c1 exp(−t2). (A.81)

Next we prove that the intersection of the events in (A.77) and (A.81) is non empty. Assuming,
for η ∈ (0, 1), that

PJ
( 1
N

logZN,g ≤ pN,g + tβ

Np
√

2c2

)
> 1− (1− η)2

exp
(
2α+ o(1)

) (A.82)

and comparing (A.77) and (A.82), we notice that the sum of the probabilities of the two events{ 1
N

logZN,g ≤ pN,g + tβ

Np
√

2c2

}
, (A.83)

and { 1
N

logZN,g ≥
1
N

log (EZN,g) + 1
N

log η
}

(A.84)

is strictly greater than 1. Therefore, they intersect in the not empty event{ 1
N

log (EZN,g) + 1
N

log η ≤ 1
N

logZN,g ≤ pN,g + tβ

Np
√

2c2

}
(A.85)

which is contained in the deterministic set{ 1
N

log (EZN,g) + 1
N

log η ≤ pN,g + tβ

Np
√

2c2

}
. (A.86)

As a consequence, the latter set is non empty and, being deterministic,

pN,g ≥
1
N

log (EZN,g) + 1
N

log η − tβ

Np
√

2c2
(A.87)

holds with probability 1.
It remains to choose a suitable t > 0 for assumption (A.82) to hold. A sufficient condition

is, for every η ∈ (0, 1),

c1 exp(−t2) < (1− η)2

exp
(
2α+ o(1)

) , (A.88)
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namely
t2 > 2α+ log

(
c1

(1− η)2

)
+ o(1). (A.89)

Therefore, by (A.87) and (A.89), using (A.72) we obtain, for every η ∈ (0, 1),

pN,g ≥
1
N

log (EZN,g) + 1
N

log η −
β

√
2α+ log

(
c1

(1−η)2

)
+ o(1)

Np
√

2c2

= 1
N

log

 ∑
m∈ΓN

g(m) exp (−NIN (m))

+ κη
N

+ o

( 1
N

)
,

(A.90)

where

κη = α+ log η −
β

√
2α+ log

(
c1

(1−η)2

)
p
√

2c2
. (A.91)

Notice that κη < α. In order to obtain the best lower bound, namely the closer to the upper
bound proven in Lemma A.2.2, we choose η ∈ (0, 1) s.t. α − κη is minimised and we conclude
the proof. This choice motivates the maximum in the definition of κ, in (A.27).

A.3 Capacity estimates
This section is entirely devoted to obtain upper and lower bounds on capacities between sets
with a fixed magnetisation. These bounds are obtained via two dual variational principles,
i.e. the Dirichlet and Thomson principles which are extensively discussed in Bovier and den
Hollander [18, Sections 7.3.1, 7.3.2]. The result will be expressed in terms of the capacity for
the Curie–Weiss model, see (A.23). In particular, we prove Theorem A.1.5 in Section A.3.1 and
Theorem A.1.6 in Section A.3.2.

A.3.1 Asymptotics on capacity: upper bound

In this section we prove Theorem A.1.5, obtaining the upper bound on the capacity of the
RDCW model in terms of the capacity of the CW model.

Proof of Theorem A.1.5. The main idea of the proof is to find an upper bound on the capacity
via the following Dirichlet principle (see Bovier and den Hollander [18, Section 7.3.1 and (7.1.29)]
for details)

cap (SN [m1],SN [m2]) = min
f∈H

∑
σ,σ′∈SN

µβ,N (σ)pN (σ, σ′)[f(σ)− f(σ′)]2, (A.92)

where
H =

{
f : SN → [0, 1] s.t. f |SN [m1] = 1, f |SN [m2] = 0

}
. (A.93)

Later it will be clear that we can restrict the previous variational principle over the functions
on the space ΓN , hence it is useful to define

H̃ = {v : ΓN → [0, 1] s.t. v(m1) = 1, v(m2) = 0} . (A.94)

In order to simplify the notation we will often neglect the dependency on m1,m2 when this will
not generate confusion.
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From (A.92), in view of (A.5) and since [f(σ) − f(σ′)] vanishes for σ = σ′, we are left
only with the terms such that σ ∼ σ′ and obtain the following first equality in (A.95). The
second equality in (A.95) follows by (A.10), (A.44), (A.45) and multiplying and dividing by
exp

(
−βN [E(m(σ′))− E(m(σ))]+

)
. The inequality in (A.95) is obtained restricting the min-

imum on H to the minimum on {f ∈ H : f(η) = f(η′) ∀η, η′ ∈ SN s.t. m(η) = m(η′)} and
noticing that the latter is in bijection with H̃.
Zβ,N cap (SN [m1],SN [m2])

= min
f∈H

1
N

∑
σ,σ′∈SN

1σ∼σ′ exp (−βHN (σ)) exp
(
−β

[
HN (σ′)−HN (σ)

]
+

)
[f(σ)− f(σ′)]2

= min
f∈H

Z̃β,N
∑

m,m′∈ΓN

∑
σ∈SN [m],
σ′∈SN [m′]

1σ∼σ′
exp (−βNE(m(σ)))

Z̃β,NN
exp

(
−βN

[
E(m(σ′))− E(m(σ))

]
+

)

× [f(σ)− f(σ′)]2 exp (−β∆(σ))
exp

(
−β [HN (σ′)−HN (σ)]+

)
exp

(
−βN [E(m(σ′))− E(m(σ))]+

)
≤ min

v∈H̃
Z̃β,N

∑
m,m′∈ΓN

exp
(
− βNE(m)

)
Z̃β,NN

exp
(
− βN

[
E(m′)− E(m)

]
+
)
[v(m)− v(m′)]2

×
∑

σ∈SN [m]
exp

(
− β∆(σ)

) ∑
σ′∈SN [m′]

1σ∼σ′
exp

(
− β [HN (σ′)−HN (σ)]+

)
exp

(
− βN [E(m′)− E(m)]+

) .
(A.95)

We turn now to the last sum in (A.95) and call this quantity G(σ,m′). If σ ∼ σ′, then σ and
σ′ differ on a single vertex, say ` ∈ [N ], i.e. ∀i ∈ [N ] \ {`}, σi = σ′i and σ` = −σ′`. Thus, setting
m = m(σ) and recalling (A.46) and (A.8), we can write

∆(σ′)−∆(σ) = − 2
Np

∑
i:i 6=`

Ĵi`σ
′
iσ
′
` = 2

Np

∑
i:i 6=`

Ĵi`σiσ`, (A.96)

H̃N (σ′)− H̃N (σ) = σ`

 2
N

∑
i:i 6=`

σi + 2h

 = σ`

[ 2
N

(Nm− σ`) + 2h
]
. (A.97)

Moreover, using (A.44), (A.45), the definition of Ĵij below (A.45), the second equality in (A.96)
and the first equality in (A.97) we can write

HN (σ′)−HN (σ) = H̃N (σ′)− H̃N (σ) + ∆(σ′)−∆(σ) = σ`

 2
Np

∑
i:i 6=`

Ji`σi + 2h

 . (A.98)

Due to the presence of the indicator function 1σ∼σ′ , G(σ,m′) vanishes if m′ /∈ {m± 2
N }. More-

over, we can rewrite the sum ∑
σ′∈SN [m′] 1σ∼σ′ in terms of the single vertex ` ∈ [N ] on which σ

and σ′ differ. Notice that if m(σ′) = m + 2
N then σ` = −1 = −σ′` and if m(σ′) = m − 2

N then
σ` = 1 = −σ′`.

Therefore, calling i±(σ) := {j ∈ [N ] : σj = ±1}, and using (A.10), (A.97) and (A.98), we
obtain

G(σ,m+ 2
N ) =

∑
`∈i−(σ)

exp
(
−β

[
− 2
Np

∑
i:i 6=` Ji`σi − 2h

]
+

)
exp

(
−β

[
− 2
N (Nm+ 1)− 2h

]
+

) ≤ N 1−m
2 e2β, (A.99)
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G(σ,m− 2
N ) =

∑
`∈i+(σ)

exp(−β
[

2
Np

∑
i:i 6=` Ji`σi + 2h

]
+

)

exp(−β
[

2
N (Nm− 1) + 2h

]
+

)
≤ N 1 +m

2 e2β(1+h). (A.100)

To obtain the inequalities we used the fact that, for any σ in SN , the cardinalities of i−(σ) and
i+(σ) are respectively N 1−m(σ)

2 and N 1+m(σ)
2 . Moreover, for the inequality in (A.99) we used

the following elementary facts holding asymptotically in N ,

exp

−β
− 2

Np

∑
i:i 6=`

Ji`σi − 2h


+

 ≤ 1, (A.101)

exp
(
β

[
− 2
N

(Nm+ 1)− 2h
]

+

)
≤ exp

(
β

[
−2m− 2

N
− 2h

]
+

)
≤ e2β. (A.102)

Similar inequalities were used to prove (A.100).
Thus, using (A.95), (A.99), (A.100) we obtain

Zβ,N cap (SN [m1],SN [m2])

≤ min
v∈H̃

Z̃β,N
∑

m,m′∈ΓN

exp (−βNE(m))
Z̃β,NN

exp
(
−βN

[
E(m′)− E(m)

]
+

)
[v(m)− v(m′)]2

× e2β(1+h) ∑
σ∈SN [m]

exp (−β∆(σ))
[
N 1+m

2 1m− 2
N

(m′) +N 1−m
2 1m+ 2

N
(m′)

]
.

(A.103)

Using the upper bound in Corollary A.2.5 with

g(m) =
∑

m′∈ΓN

exp (−βNE(m))
Z̃β,NN

exp
(
−βN

[
E(m′)− E(m)

]
+

)
[v(m)− v(m′)]2

× e2β(1+h)
[
N 1+m

2 1m− 2
N

(m′) +N 1−m
2 1m+ 2

N
(m′)

] (A.104)

we obtain

Zβ,N cap (SN [m1],SN [m2])
P (s)
≤ es+2β(1+h)+αZ̃β,N min

v∈H̃

∑
m,m′∈ΓN

exp (−βNE(m)−NIN (m))
Z̃β,NN

exp(−βN
[
E(m′)− E(m)

]
+)

× [v(m)− v(m′)]2
[
N

1 +m

2 1m− 2
N

(m′) +N
1−m

2 1m+ 2
N

(m′)
]

(1 + o(1))

= es+2β(1+h)+αZ̃β,N min
v∈H̃

∑
m,m′∈ΓN

Q̃(m) r̃(m,m′) [v(m)− v(m′)]2 (1 + o(1))

= es+2β(1+h)+α Z̃β,N capCW (SN [m1],SN [m2]) (1 + o(1)) ,
(A.105)

where we used the notation (A.38) and in the middle step we used (A.13), the first equality in
(A.14) and (A.20). Furthermore, we noticed that the variational form appearing in the previous
formula is the Dirichlet principle (see Bovier and den Hollander [18, (7.1.29), (7.3.1)]) applied to
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the random walk performed by the projection of the CW model dynamics onto the magnetisation
space. See Section A.1.2 for the CW model.

We conclude that the minimum equals the capacity of the CW model using lumping tech-
niques. More precisely, here we used Bovier and den Hollander [18, (9.3.6)], stating that the
capacity for the dynamics projected onto the magnetisation space equals the capacity for the
CW dynamics on the configuration space, which holds because of the CW model mean-field
property. For reference on lumping see Bovier and den Hollander [18, Section 9.3].

A.3.2 Asymptotics on capacity: lower bound

In this section we prove Theorem A.1.6, obtaining the lower bound on the capacity of the RDCW
model in terms of the capacity of the CW model. We will prove it without loss of generality, only
for m1 < m2 ∈ ΓN , because the capacity can be proven to be symmetric, using the reversibility
of the dynamics.

The main idea of the proof is to find a lower bound on the capacity of the RDCW model via
the Thomson principle (see e.g. Bovier and den Hollander [18, Theorem 7.37]. For
cap (SN [m1],SN [m2]) it reads

cap (SN [m1],SN [m2]) = sup
{

1
D(Ψ̄)

: Ψ̄ ∈ USN [m1],SN [m2]

}
, (A.106)

where we denote by USN [m1],SN [m2] the space of all unitary antisymmetric flows from SN [m1] to
SN [m2] and D is defined by

D(ψ) = 1
2

∑
σ,σ′∈SN

1σ′∼σ
ψ(σ, σ′)2

µβ,N (σ)pN (σ, σ′) (A.107)

for any ψ : S2
N → R antisymmetric flow. Thus, in order to find a lower bound in terms of the

capacity of the CW model we have to find a unitary flow from which we could reconstruct the
CW capacity term.

For all σ, σ′ ∈ SN , we define the candidate flow ΨN as follows

ΨN (σ, σ′) = φN (m(σ),m(σ′)), (A.108)

where, for all m,m′ ∈ ΓN ,

φN (m,m′) =



[
(1−m)N

2 exp (−NIN (m))
]−1

if m1 ≤ m ≤ m2 − 2
N ,m

′ = m+ 2
N

−
[

(1+m)N
2 exp (−NIN (m))

]−1
if m1 + 2

N ≤ m ≤ m2,m
′ = m− 2

N

0 otherwise.

(A.109)

The proof of Theorem A.1.6 is postponed after two technical intermediate results which are
essential for it. The following lemma allows us to use ΨN in the Thomson principle.

Lemma A.3.1. Let m1 < m2 ∈ ΓN . The flow ΨN on SN , defined in (A.108) is a unitary
antisymmetric flow from SN [m1] to SN [m2], i.e. ΨN ∈ USN [m1],SN [m2].
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Proof. ΨN is antisymmetric because for all m ∈ ΓN , i.e.

(1 +m)
2 N exp (−NIN (m)) =

(
1−

(
m− 2

N

))
2 N exp

(
−NIN

(
m− 2

N

))
. (A.110)

Indeed, using (A.15), the right hand side of (A.110) writes(
1−

(
m− 2

N

))
2 N exp

(
−NIN

(
m− 2

N

))
= (1−(m− 2

N ))N
2

(
N

1−(m− 2
N )

2 N

)

= (1−(m− 2
N ))N

2
N ![

(1−m)N
2 + 1

]
!
[

(1+m)N
2 − 1

]
!

= N ![
(1−m)N

2

]
!
[

(1+m)N
2 − 1

]
!

= (1 +m)
2 N

(
N

1+m
2 N

)
= (1 +m)

2 N exp (−NIN (m)) .

(A.111)

Next we prove that the Kirchhoff law holds, i.e., for all σ ∈ SN \ (SN [m1] ∪ SN [m2])∑
σ′∈SN :σ∼σ′

ΨN (σ, σ′) = 0. (A.112)

For all σ ∈ SN such that m(σ) /∈ (m1,m2), (A.112) holds trivially being all terms zero, by
(A.109). Now, for all σ ∈ SN such that m(σ) ∈ (m1,m2),∑

σ′∈SN :σ∼σ′
ΨN (σ, σ′) =

∑
σ′∈SN :σ∼σ′,

m(σ′)=m(σ)+ 2
N

φN
(
m(σ),m(σ′)

)
+

∑
σ′∈SN :σ∼σ′,

m(σ′)=m(σ)− 2
N

φN
(
m(σ),m(σ′)

)

= (1−m(σ))N
2

[(1−m(σ))N
2 exp (−NIN (m(σ)))

]−1

− (1 +m(σ))N
2

[(1 +m(σ))N
2 exp (−NIN (m(σ)))

]−1

= 0,
(A.113)

where (1∓m(σ))N
2 in the second equality are the cardinalities of the set over which we were

summing, namely the number of negative, respectively positive, spins in a configuration σ ∈ SN .
We are left to show that ΨN is unitary from SN [m1] to SN [m2], namely∑

a∈SN [m1]

∑
σ′∈SN :a∼σ′

ΨN (a, σ′) = 1 =
∑

b∈SN [m2]

∑
σ∈SN :σ∼b

ΨN (σ, b). (A.114)

The left hand side of (A.114) equals

∑
a∈SN [m1]

∑
σ′∈SN :a∼σ′

φN
(
m(a),m(σ′)

)
=

∑
a∈SN [m1]

∑
σ′∈SN :a∼σ′,
m(σ′)=m1+ 2

N

[
(1−m1)N

2 exp (−NIN (m1))
]−1

= exp (−NIN (m1)) (1−m1)N
2

[
(1−m1)N

2 exp (−NIN (m1))
]−1

= 1.
(A.115)
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The right hand side of (A.114) equals∑
b∈SN [m2]

∑
σ∈SN :σ∼b

φN (m(σ),m(b))

=
∑

b∈SN [m2]

∑
σ∈SN :σ∼b,
m(σ)=m2− 2

N

(1−
(
m2− 2

N

))
2 N exp

(
−NIN

(
m2 −

2
N

))−1

= exp (−NIN (m2)) (1+(m2))
2 N

(1−
(
m2− 2

N

))
2 N exp

(
−NIN

(
m2 −

2
N

))−1

.

(A.116)

We use (A.110) to conclude the proof.

Lemma A.3.2. For all σ ∈ SN and m′ ∈ ΓN , the following holds

∑
σ′∈SN [m′]

1σ′∼σ

exp
(
−β

[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
−β [HN (σ′)−HN (σ)]+

)
≤ e2β(1+h)

[
N

1 +m(σ)
2 1m(σ)− 2

N
(m′) +N

1−m(σ)
2 1m(σ)+ 2

N
(m′)

]
. (A.117)

Proof. Let m = m(σ). The left hand side is non-zero only if m′ ∈
{
m+ 2

N ,m−
2
N

}
.

Recalling the definition i±(σ) = {j ∈ [N ] : σj = ±1}, if m′ = m+ 2
N , we have

∑
σ′∈SN

[
m+ 2

N

]1σ′∼σ
exp

(
−β

[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
−β [HN (σ′)−HN (σ)]+

)

=
∑

`∈i−(σ)

exp
(
−β

[
−2p
N (Nm+ 1)− 2h

]
+

)
exp

(
−β

[
− 2
N

∑
i:i 6=` Ji`σi − 2h

]
+

)

≤
∑

`∈i−(σ)
exp

β
− 2

N

∑
i:i 6=`

Ji`σi − 2h


+

 ≤ ∑
`∈i−(σ)

e2β = N
1−m

2 e2β,

(A.118)

where we have used that, since h > 0,

− 2
N

∑
i:i 6=`

Ji`σi − 2h ≤ 2
N

∑
i:i 6=`
|Ji`σi| ≤

2(N − 1)
N

≤ 2. (A.119)

Similarly, if m′ = m− 2
N , we get

∑
σ′∈SN

[
m− 2

N

]1σ′∼σ
exp

(
−β

[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
−β [HN (σ′)−HN (σ)]+

)

=
∑

`∈i+(σ)

exp
(
−β

[
2p
N (Nm− 1) + 2h

]
+

)
exp

(
−β

[
2
N

∑
i:i 6=` Ji`σi + 2h

]
+

) ≤ N 1 +m

2 e2β(1+h). (A.120)
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With the previous lemmas at hand, we are now ready to prove the lower bound on the
capacity.

Proof of Theorem A.1.6. As we mentioned above, since the capacity is symmetric, we will prove
the result only for m1 < m2 ∈ ΓN .

Let ΨN be the test flow defined in (A.108), which by Lemma A.3.1 is in USN [m1],SN [m2].
Thus, using the Thomson principle (A.106), we obtain the following bound

cap (SN [m1],SN [m2]) ≥ 1
D(ΨN ) . (A.121)

Therefore, we are interested in upper bounds on D(ΨN ) which, using (A.3), (A.5) and (A.46),
can be written as follows

D(ΨN ) = 1
2N

∑
σ,σ′∈SN

1σ′∼σ
φN (m(σ),m(σ′))2

exp
(
−β(H̃N (σ) + ∆(σ))

) Zβ,N
exp (−β[HN (σ′)−HN (σ)]+) . (A.122)

By multiplying and dividing by exp(−β[H̃N (σ′)− H̃N (σ)]+) Z̃β,N , and using (A.10), (A.11)
and (A.18), we get

D(ΨN ) = N
Zβ,N

2Z̃β,N

∑
m,m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp (NIN (m)) exp
(
−βN [E(m′)− E(m)]+

)

×
∑

σ∈SN [m]
exp(β∆(σ))

∑
σ′∈SN [m′]

1σ′∼σ

exp
(
−β

[
H̃N (σ′)− H̃N (σ)

]
+

)
exp

(
−β [HN (σ′)−HN (σ)]+

)
≤ N Zβ,N

2Z̃β,N
e2β(1+h) ∑

m,m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp (NIN (m)) exp
(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2 1m− 2
N

(m′) +N
1−m

2 1m+ 2
N

(m′)
] ∑
σ∈SN [m]

exp(β∆(σ)),

(A.123)

where we used Lemma A.3.2 to bound the sum over σ′, uniformly in σ ∈ SN [m]. Then, to
bound the remaining sum over σ, we use the upper bound in Corollary A.2.5 (in the version
with eβ∆(σ), motivated by the Remark therein) with

g(m) =
∑

m′∈ΓN

φN (m,m′)2

Q̃β,N (m) exp (NIN (m)) exp
(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2 1m− 2
N

(m′) +N
1−m

2 1m+ 2
N

(m′)
]
,

(A.124)
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obtaining, with notation (A.38),

D(ΨN )
P (s)
≤ N

Zβ,N

2Z̃β,N
es+2β(1+h)+α ∑

m,m′∈ΓN

φN (m,m′)2 exp (−NIN (m))
Q̃β,N (m) exp (NIN (m)) exp

(
−βN [E(m′)− E(m)]+

)
×
[
N

1 +m

2 1m− 2
N

(m′) +N
1−m

2 1m+ 2
N

(m′)
]

(1 + o(1))

= Zβ,N

2Z̃β,N
es+2β(1+h)+α ∑

m,m′∈ΓN

φN (m,m′)2 exp (−2NIN (m))
Q̃β,N (m)r̃N (m,m′)

×
[
N

1 +m

2 1m− 2
N

(m′) +N
1−m

2 1m+ 2
N

(m′)
]2

(1 + o(1)) ,
(A.125)

where in the equality we only used (A.20).
Now we first substitute φN defined in (A.109) into (A.125) and then use reversibility to

obtain

D(ΨN )
P (s)
≤ Zβ,N

2Z̃β,N
es+2β(1+h)+α ∑

m1≤m<m2,
m∈ΓN

1
Q̃β,N (m)r̃N

(
m,m+ 2

N

) (1 + o(1))

+ Zβ,N

2Z̃β,N
es+2β(1+h)+α ∑

m1<m≤m2,
m∈ΓN

1
Q̃β,N (m− 2

N )r̃N
(
m− 2

N ,m
) (1 + o(1))

= Zβ,N

Z̃β,N
es+2β(1+h)+α ∑

m1≤m<m2

1
Q̃β,N (m)r̃N

(
m,m+ 2

N

) (1 + o(1)) ,

(A.126)

where the last equality follows noticing that the two sums in the previous step are equal.
Therefore, by (A.121) and (A.126), we obtain

Zβ,N cap(SN [m1],SN [m2]) ≥ Zβ,N
D(ΨN )

P (s)
≥ Z̃β,N e−s−2β(1+h)−α

 ∑
m1≤m<m2

1
Q̃β,N (m)r̃N

(
m,m+ 2

N

)
−1

(1 + o(1))

= Z̃β,N e−s−2β(1+h)−α capCW(SN [m1],SN [m2]) (1 + o(1)) ,

(A.127)

where we used the notation (A.38) and we noticed that the inverse of the expression appearing
in brackets in (A.127) gives exactly the capacity for the CW model. Indeed, that expression
gives exactly the capacity for the one-dimensional random walk in ΓN which is the projection of
the CW dynamics onto the magnetisation space ΓN (see the formula for the capacity in Bovier
and den Hollander [18, Section 7.1.4, (7.1.60)]). Using lumping techniques exactly as at the end
of the proof of Theorem A.1.5 (end of Section A.3.1), we have that the aforementioned capacity
equals the CW capacity.

A.4 Estimates on the harmonic function
As pointed out in Section A.1.4, the proof of Theorem A.1.4 relies on sharp estimates on capac-
ities, carried out in Section A.3, and estimates on the harmonic function. We entirely devote

78



A.4. ESTIMATES ON THE HARMONIC FUNCTION

this section to obtain asymptotic upper and lower bounds on the numerator in (A.40), which is
given by the following sum ∑

σ∈SN

µβ,N (σ)hNm−,m+(σ), (A.128)

that is to give the proof of Theorem A.1.7.
In order to control the sum (A.128), one generally uses a renewal argument which relies

again on estimates over capacities. However, in our case this is not possible, due to the fact that
capacities of single spins are too small.

We first prove the upper bound and then give some details about how to prove the lower
bound, which is very similar and more straightforward. Our proof follows Bianchi, Bovier and
Ioffe [7, Section 6].

A.4.1 Notation and decomposition of the space

Before starting with the proof, we introduce some notation. We refer to Figure A.1 below for a
better visual understanding of the objects we are defining.

Recall that we denote by m+ the global minimum, by m− the local minimum, and by m∗
the local maximum of fβ(·) in [−1, 1], where fβ(·) = limN→∞ fβ,N (·), defined in (A.14). We
want to decompose the space ΓN (and eventually the set of spin configurations SN ) according
to the values of fβ. The notation and the decomposition are organised in 4 steps.

Step 1. First, let δ > 0 be small in a way which will become clear later, and define the set

Uδ = {m ∈ [−1, 1] : fβ(m) ≤ fβ(m−) + δ}. (A.129)

We write U cδ = [−1, 1]\Uδ and we denote by Uδ(m) the connected component of Uδ containingm.
Note that {m−,m+} ∈ Uδ. In general, Uδ(m−) and Uδ(m+) may have non empty intersection,
but we choose δ such that m∗ /∈ Uδ, implying that Uδ is partitioned by the disjoint sets Uδ(m−)
and Uδ(m+). For this to hold, it suffices to take δ < fβ(m∗)− fβ(m−). Moreover, we choose δ
also such that −1 /∈ Uδ(m−). For this to hold, it suffices to take δ < fβ(−1) − fβ(m−). Thus,
we choose δ < min (fβ(−1), fβ(m∗)) − fβ(m−). These conditions are needed to prove (A.138)
below.

Let us denote by mδ the unique point in (m∗,m+) such that

fβ(mδ) = fβ(m−) + δ. (A.130)

Step 2. With δ chosen as above, we define a sequence (δN )N∈N, converging to δ from below,
such that the left extreme of UδN (m+) is in ΓN . Specifically, we define δN as follows:

δN = max
{
δ̄ ∈ (0, δ] : ∃m ∈ Uδ(m+) ∩ ΓN \ [m+, 1] s.t. fβ(m) = fβ(m−) + δ̄

}
, (A.131)

for N sufficiently large. Moreover, set

Uδ,N = UδN ∩ ΓN , U cδ,N = ΓN \ Uδ,N and Uδ,N (m) = UδN (m) ∩ ΓN , (A.132)

for all m ∈ [−1, 1]. Thus, we have the partitions

ΓN = Uδ,N (m−) ∪ Uδ,N (m+) ∪ U cδ,N (A.133)

and

SN = SN [Uδ,N (m−)] ∪ SN [m+(N)] ∪ SN
[
U cδ,N

]
∪ SN [Uδ,N (m+) \ {m+(N)}] . (A.134)
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-1 1

fβ(m−)

fβ(m−) + δ

fβ

m− mδ m+mεm∗

Uδ(m−) Uδ(m+)

Figure A.1: Graph of fβ and decomposition of the magnetisation space [−1, 1]: the two intervals
Uδ(m−) and Uδ(m+) around the two minima are drawn, together with the special points mδ,
mε. Uδ is painted in red.

Remark A.4.1. Notice that, for N sufficiently large, Uδ,N (m−(N)) = Uδ,N (m−) and
Uδ,N (m+(N)) = Uδ,N (m+). Furthermore, with these definitions, mδN ∈ Uδ,N and it is the
left extreme of Uδ,N (m+).

Step 3. Let ε > 0 be arbitrarily small (the choice of ε will be relevant in Section A.4.2). We
denote by mε the only point in a small left neighbourhood of m+, more precisely in Uδ(m+) \
[m+, 1], such that

fβ(mε) = fβ(m+) + ε. (A.135)

Let us define an ε-dependent parameter θ > 0 by

θ = m+ −mε. (A.136)

Step 4. Similarly to Step 2, fixed ε > 0, we want to define a sequence (εN )N∈N converging
to ε from below such that mεN is in ΓN . More precisely, we define εN as follows

εN = max {ε̄ ∈ (0, ε] : ∃m ∈ Uδ,N (m+) \ [m+, 1] s.t. fβ(m) = fβ(m+) + ε̄ } . (A.137)

We will use later that mεN ∈ Uδ,N (m+) and it satisfies fβ(mεN ) = fβ(m+) + εN .
Moreover, given ε > 0, we define the sequence (θN )N∈N, analogously to (A.136), by set-

ting θN = m+(N) − mεN . θN plays an important role in Lemma A.4.4 below. Notice that
limN→∞ θN = θ and, if m+ 6= m+(N), then f(mεN )− f(m+(N)) 6= εN .

A.4.2 Upper bound on the harmonic sum

In this section we prove the first part of Theorem A.1.7 by giving an upper bound on the
harmonic sum in (A.128).

We will estimate the contribution of each set of the partition in (A.134) to the sum in (A.128).
As one expects, the only relevant contribution will be given by the terms in SN [Uδ,N (m−)].
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Indeed, µβ,N is very small in SN [U cδ,N ] while hNm−,m+ is very small in SN [Uδ,N (m+)] and we will
see the two contributions on these two sets turn out to be irrelevant.

The main ingredients in the proof of the upper bound are Corollary A.2.7 and Lemma A.4.2
below. The proof of the latter result is quite technical and it is postponed to Section A.4.3.

Proof of Theorem A.1.7. Upper bound. We are ready to start estimating the contributions of
each disjoint set of the partition in (A.134) to the sum in (A.128).

Part 1. Sum on SN [Uδ,N (m−)]. This will be the relevant part. Using first that hNm−,m+(σ) ≤ 1,
(A.43) and (A.61) of Corollary A.2.7 with ḡ(m) = 1m∈Uδ,N (m−)(m) we obtain

∑
σ∈SN [Uδ,N (m−)]

µβ,N (σ)hNm−,m+(σ) ≤
∑

m∈Uδ,N (m−)
Qβ,N (m)

P (s)
≤ es+α (1 + o(1))

Zβ,N

∑
m∈Uδ,N (m−)

exp (−βNfβ(m))
√

2
πN(1−m2)

= es+α (1 + o(1)) exp (−βNfβ(m−))
Zβ,N

√
(1−m2

−)βf ′′β (m−)
.

(A.138)

In the second line we used our assumption of δN being small enough such that −1 /∈ Uδ,N (m−)
(see Section A.4.1, Step 1). To obtain the last equality we first approximated, for N sufficiently
large, the sum with an integral and then applied the saddle point method (see, for instance
de Bruijn [29, Chp 5.7]), where m− is the maximum point of −βfβ on the considered domain.
Notice that here we use the fact that m∗ /∈ Uδ,N (m−), which holds again for δN small enough
(see Section A.4.1, Step 1). More precisely,

∑
m∈Uδ,N (m−)

exp (−βNfβ(m)) 1√
(1−m2)

≈ N

2

∫ b

a
exp

(
− βNfβ(x)

) 1√
(1− x2)

dx

= exp (−βNfβ(m−)) 1√
(1−m2

−)

√
πN

2βf ′′β (m−) (1 + o(1)) ,

(A.139)

where −1 < a, b ∈ ΓN are the left and right extremes of Uδ,N (m−), respectively.
Part 2. Sum on SN [m+(N)]. Being by definition hNm−,m+(σ) = 0 for all σ ∈ SN [m+(N)], we
trivially have ∑

σ∈SN [m+(N)]
µβ,N (σ)hNm−,m+(σ) = 0. (A.140)

Part 3. Sum on SN [U cδ,N ].
Using hNm−,m+ ≤ 1 and (A.43), we have

∑
σ∈SN [Uc

δ,N
]
µβ,N (σ)hNm−,m+(σ) ≤

∑
σ∈SN [Uc

δ,N
]
µβ,N (σ) =

∑
m∈Uc

δ,N

Qβ,N (m)

=
∑

m∈Uc
δ,N
\{1,−1}

Qβ,N (m) +
∑

m∈Uc
δ,N
∩{1,−1}

Qβ,N (m).
(A.141)
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We bound the right hand side using (A.61) of Corollary A.2.7 with ḡ(m) = 1m∈Uc
δ,N

(m)
obtaining

∑
σ∈SN [Uc

δ,N
]
µβ,N (σ)hNm−,m+(σ)

P (s)
≤ es+α (1 + o(1))

Zβ,N

∑
m∈Ucδ,N\{1,−1}

exp
(
− βNfβ(m)

)√ 2
πN(1−m2)

+ es+α (1 + o(1))
Zβ,N

∑
m∈Uc

δ,N
∩{1,−1}

exp (−βN (fβ(m)))

≤ es+α (1 + o(1))
Zβ,N

exp (−βN (fβ(m−) + δN ))

√ 2
πN

∑
m∈Uc

δ,N
\{1,−1}

1√
(1−m2)

+ 2

 ,

(A.142)

where in the last inequality we used the bound fβ(m) ≥ fβ(m−) + δN given by the definition of
U cδ,N (see (A.129)).

Part 4. Sum on SN [Uδ,N (m+) \ {m+(N)}]. Using (A.32) and the fact that, for any σ ∈ SN
such that m(σ) > m+(N), Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
= 0, we get

∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+(σ)

=
∑

σ∈SN [[mδN ,m+(N))]
µβ,N (σ)Pσ

(
τSN [m−(N)] < τSN [m+(N)]

)
.

(A.143)

Thus, applying Lemma A.4.2 below, the following holds for any γ ∈ (0, 1)

∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+(σ)

≤ exp (−βN(1− γ)fβ(m−))
∑

m∈[mδN ,m+(N))
Qβ,N (m) [exp (βN(1− γ)fβ(m))

+ eβN(1−γ)3εN+N`N (θN ) exp (βN(1− γ)fβ(m+))
]

e−βN(1−γ) δN (1 + o(1)).

(A.144)

Using (A.61) of Corollary A.2.7 with

ḡ(m) = 1m∈[mδN ,m+(N))

× (m)
[
exp (βN(1− γ)fβ(m)) + eβN(1−γ)3εN+N`N (θN ) exp (βN(1− γ)fβ(m+))

]
(A.145)
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we obtain∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+(σ)

P (s)
≤ es+α (1 + o(1))

Zβ,N
exp (−βN(1− γ)fβ(m−)) e−βN(1−γ) δN

∑
m∈[mδN ,m+(N))

exp
(
− βNfβ(m)

)

×
√

2
πN(1−m2)

[
exp (βN(1− γ)fβ(m)) + eβN(1−γ)3εN+N`N (θN ) exp (βN(1− γ)fβ(m+))

]
≤ es+α (1 + o(1))

Zβ,N
exp (−βN(1− γ)fβ(m−)) e−βN(1−γ) δNN

√
2

πN(1−m2
+)

×
[

exp
(
− γ βNfβ(m+)

)
+ eβN(1−γ)3εN+N`N (θN ) exp

(
− βNfβ(m+)

)
exp (βN(1− γ)fβ(m+))

]
= es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)√ 2N
π(1−m2

+) exp
(
− γ βN [fβ(m+)− fβ(m−)]

)
× e−βN(1−γ)(δN−3εN )+N`N (θN )

[
e−βN(1−γ)3εN−N`N (θN ) + 1

]
≤ es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)√ 2
π(1−m2

+)

× exp
[
−βN

(
γ[fβ(m+)− fβ(m−)] + (1− γ)(δN − 3εN )− 1

β `N (θN )− εN
)]
.

(A.146)

In the last step we embedded [e−βN(1−γ)3εN−N`N (θN ) + 1] in the already present (1 + o(1)) and
bounded

√
N by e−βN(−εN ), because for N large enough log(N)

2βN ≤ εN (which converges to ε > 0,
see Step 4 in Section A.4.1).

Now we prove that this part is not relevant compared to the right hand side of (A.138). In
particular, we show that, for a certain choice of γ,

cN = γ[fβ(m+)− fβ(m−)] + (1− γ)(δN − 3εN )− 1
β `N (θN )− εN (A.147)

is positive and its limit,

lim
N→∞

cN = γ[fβ(m+)− fβ(m−)] + (1− γ)(δ− 3ε)− θ
2β (log(2) + 3− log(1−m+))− ε, (A.148)

is positive and finite. In order to achieve this, we choose γ ∈ (0, 1) small enough, such that cN
and its limit are positive, definitely in N . In particular, we want to impose

0 < γ <
δN − 4εN − 1

β `N (θN )
fβ(m−)− fβ(m+) + δN − 3εN

< 1, (A.149)

definitely in N , and

0 < γ <
δ − 4ε− 1

β limN→∞ `N (θ)
fβ(m−)− fβ(m+) + δ − 3ε < 1. (A.150)

First, we notice that it is easy to check that the previous quantities are strictly smaller than
1. Second, we want to show that a strictly positive γ satisfying (A.149)-(A.150) exists. Note
that `N (θN ), defined in (A.164), has the following trivial upper bound for every N ,

`N (θN ) ≤ θN (β + log 2 +O(θN )) . (A.151)
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Thus, a sufficient condition is to choose, for N large enough, γ ≥ γ0, where

γ0 =
δ − 4ε− θ

(
1 + log 2

β +O(θ)
)

fβ(m−)− fβ(m+) + δ
(A.152)

is clearly strictly positive. Indeed, we can choose ε > 0 sufficiently small for the numerator on
the left hand side of (A.152) to be positive, while θ is small accordingly to ε (see Section A.4.1).
We conclude by obtaining, for N sufficiently large,∑
σ∈SN [Uδ,N (m+)\{m+(N)}]

µβ,N (σ)hNm−,m+(σ)
P (s)
≤ es+α+o(1)

Zβ,N
exp (−βN(fβ(m−) + cN ))

√
2

π(1−m2
+) ,

(A.153)
where 0 < cN = O(1).
Conclusion.

With the previous bounds at hand, we are now ready to conclude the proof of the upper
bound. Decomposing the sum over SN using (A.134), and inserting the estimates we computed
above into (A.128), we obtain

∑
σ∈SN

µβ,N (σ)hNm−,m+(σ)

P (s)
≤ es+α (1 + o(1))

Zβ,N
exp

(
− βNfβ(m−)

)e−βNδN

√ 2
πN

∑
m∈Uc

δ,N
\{1,−1}

1√
(1−m2)

+ 2


+
√

2
π (1−m2

+)e−βNcN + 1√
(1−m2

−)βf ′′β (m−)


≤ es+α
Zβ,N

exp
(
− βNfβ(m−)

) 1√
(1−m2

−)βf ′′β (m−)
(1 + o(1)) ,

(A.154)
concluding the proof.

A.4.3 Some technical results

In this section we prove Lemma A.4.2, which is pivotal in obtaining the upper bound in The-
orem A.1.7, (see (A.144)). The proof is quite involved, therefore we split it into subsequent
technical results. Before starting the proof, we give a brief outline of this section. First, we state
Lemma A.4.2 and prove it via Lemmas A.4.4, A.4.5 and A.4.6, which follow later on. Second, we
give the proof of Lemmas A.4.4 and A.4.5. The latter relies on Lemma A.4.6, which we subse-
quently prove using Lemma A.4.7. We conclude the section proving Lemma A.4.7. Throughout
this section we will use the notation introduced in Section A.4.1.
Lemma A.4.2. For all σ ∈ SN [[mδN ,m+(N))], for all γ ∈ (0, 1) and ε > 0,

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ exp (−βN(1− γ)[fβ(m−) + δN ])(1 + o(1))

×
[

exp (βN(1− γ)fβ(m(σ))) + exp (βN(1− γ)[fβ(m+) + 3εN ] +N`N (θN ))
]
,

(A.155)
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where `N (·) is defined in (A.164).

Proof. For all σ ∈ SN [[mδN ,m+(N))], we have

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
= Pσ

(
τSN [m−(N)] < τSN [m+(N)], τSN [m−(N)] < τSN [mεN ]

)
+

∑
η∈SN [mεN ]

Pσ
(
τSN [m−(N)] < τSN [m+(N)], τη < τSN [{mεN ,m−(N),m+(N)}]

)
= Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+

∑
η∈SN [mεN ]

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

∣∣∣ τη < τSN [{mεN ,m−(N),m+(N)}]
)

× Pσ
(
τη < τSN [{mεN ,m−(N),m+(N)}]

)
,

(A.156)

where we notice that,

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

∣∣∣ τη < τSN [{mεN ,m−(N),m+(N)}]
)

= Pη
(
τSN [m−(N)] < τSN [m+(N)]

)
.

(A.157)
Using the Markov property and taking the maximum of the first factor out of the sum, we have
that, for all σ ∈ SN

[
[mδN ,m+(N))

]
,

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+
(

max
η∈SN [mεN ]

Pη
(
τSN [m−(N)] < τSN [m+(N)]

)) ∑
η∈SN [mεN ]

Pσ
(
τη < τSN [{mεN ,m−(N),m+(N)}]

)
= Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+
(

max
η∈SN [mεN ]

Pη
(
τSN [m−(N)] < τSN [m+(N)]

))
Pσ
(
τSN [mεN ] < τSN [{m−(N),m+(N)}]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+
(

max
η∈SN [mεN ]

Pη
(
τSN [m−(N)] < τSN [m+(N)]

))
Pσ
(
τSN [mεN ] < τSN [m+(N)]

)
.

(A.158)

We first consider the case σ ∈ SN [mεN ]. By Lemma A.4.4, we get

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+
(

max
η∈SN [mεN ]

Pη
(
τSN [m−(N)] < τSN [m+(N)]

))(
1− e−N`N (θN )(1 + o(1))

)
.

(A.159)

Taking the maximum over σ and noticing that the same term appears in both right and left
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hand side of the inequality, we obtain

max
σ∈SN [mεN ]

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ max

σ∈SN [mεN ]
Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
eN`N (θN )(1 + o(1))

≤ exp
[
−βN (1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

]
−N`N (θN )

]
(1 + o(1)),

(A.160)

where we used Lemma A.4.5.
By Taylor expansion of fβ

(
mεN − 2

N

)
and definition of mεN , we get

max
σ∈SN [mεN ]

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ exp [−βN (1− γ) [fβ(m−) + δN − 3εN − fβ(m+)]−N`N (θN )] (1 + o(1)),

(A.161)

where the last inequality holds for N sufficiently large. Here we bounded the Taylor expansion
error O

(
1
N

)
with εN , which converges to ε > 0 (see Step 4 in Section A.4.1).

Now we consider the case where σ ∈ SN
[
[mδN ,m+(N)) \ {mεN }

]
. Going back to (A.158)

and using again (A.161) we obtain

Pσ
(
τSN [m−(N)] < τSN [m+(N)]

)
≤ Pσ

(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
+ exp [−βN(1− γ) [fβ(m−) + δN − 3εN − fβ(m+)]−N`N (θN )] (1 + o(1))

≤ exp (−βN(1− γ)[fβ(m−) + δN ])(1 + o(1))

×
[

exp (βN(1− γ)fβ(m(σ))) + exp (βN(1− γ)[fβ(m+) + 3εN ] +N`N (θN ))
]
.

(A.162)

In the last inequality we used Lemma A.4.6, which holds for σ ∈ SN [[mδN ,mεN )], and that
Pσ(τSN [m−(N)] < τSN [{m+(N),mεN }]) = 0 for all σ ∈ SN [(mεN ,m+(N))].

Remark A.4.3. In Lemma A.4.2 one might try to further bound the r.h.s. of (A.155) using
that fβ(m(σ)) is bounded by fβ(mδN ) = fβ(m−) + δN . This would yield to the trivial upper
bound 1 on Pσ(τSN [m−(N)] < τSN [m+(N)]), which is not sufficient for our purpose of proving that
the second term in (A.154) is negligible with respect to the last one. The way to go is, therefore,
to keep the dependence on m(σ) in order to obtain later a more suitable bound, uniform in m,
by exploiting the smallness of Qβ,N (m(σ)) in (A.144) and (A.146).

In order for (A.159) to be true, we have to prove the following result.

Lemma A.4.4. For all σ ∈ SN [mεN ], for ε sufficiently small and for N sufficiently large,

Pσ
(
τSN [m+(N)] < τSN [mεN ]

)
≥ e−N`N (θN )(1 + o(1)), (A.163)

where `N : R→ R is defined by

`N (x) = 1
2

[
x
(

log 2 + β |2− 2h|+ 1
)
− (1−m+(N) + x) log(1−m+(N) + x)

+ (1−m+(N)) log(1−m+(N))
]
. (A.164)
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Proof. Recall that {σ(t)}t≥0 is the Markov chain with transition probabilities (A.5) and, for
σ ∈ SN with m(σ) < m+(N), let

AN (σ) =
{

(σ(0), σ(1), σ(2), . . . ) : σ(0) = σ, ∀i ∈ N, σ(i) ∈ SN , σ(i) ∼ σ(i+ 1),

∃ k ∈ N s.t. σ(k) ∈ SN [m+(N)], and ∀i ≤ k − 1, m(σ(i+ 1)) = m(σ(i)) + 2
N

}
(A.165)

be the set of infinite paths starting in σ and having increasing magnetisation until the set
SN [m+(N)] is reached.

Notice that, for fixed σ and N , the number k of steps of increasing magnetisation to reach
SN [m+(N)] is fixed, namely k = N

2 (m+(N)−m(σ)).
We want to partition AN (σ) according to the values of the first k + 1 elements of its paths.

Given a sequence π ∈ Sk+1
N , let us denote by {π} the set of all paths in AN (σ) in which the first

k + 1 elements are exactly given by π, namely

{π} = {(σ(0), σ(1), . . . , σ(k), σ(k + 1), . . . ) ∈ AN (σ) : (σ(0), . . . , σ(k)) = π} . (A.166)

Notice that, by definition of AN (σ), {π} is empty for many π ∈ Sk+1
N . We denote by BN (σ)

the set of all the sequences π ∈ Sk+1
N such that {π} is not empty. Thus, we obtain the following

partition of AN (σ)
AN (σ) =

⊔
π∈BN (σ)

{π}. (A.167)

Fix σ ∈ SN [mεN ], then one simply notices that

Pσ
(
τSN [m+(N)] < τSN [mεN ]

)
≥ Pσ(AN (σ)) =

∑
π∈BN (σ)

Pσ ({π}) . (A.168)

Thus, we first find a lower bound on Pσ ({π}) independent of π in BN (σ) and later we compute
the cardinality of BN (σ). Fix π = (σ(0), σ(1), σ(2), . . . , σ(k)) ∈ BN (σ), then we have

Pσ ({π}) =
k∏
i=1

pN (σ(i− 1), σ(i)) = 1
Nk

k∏
i=1

exp
(
−β [H(σ(i))−H(σ(i− 1))]+

)

≥ Ck

Nk

k∏
i=1

exp (−βN [E(mi)− E(mi−1)]+) = Ck

Nk

k∏
i=1

exp
(
−β

[
−2mi−1 −

2
N
− 2h

]
+

)
,

(A.169)

where mi = m(σ(i)), C = exp (−β |2− 2h|) and we used the following fact

exp
(
− β[H(σ(i))−H(σ(i− 1))]+

)
exp

(
− βN [E(mi)− E(mi−1)]+

) =
exp

(
− β[H(σ(i))−H(σ(i− 1))]+

)
exp

(
− β

[
− 2mi−1 − 2

N − 2h
]
+
)

≥ exp
(
− β[H(σ(i))−H(σ(i− 1))]+

)
= exp

−β
− 2

N

∑
j:j 6=r

Jjrσ(i− 1)j − 2h


+


≥ exp

(
−β

[
2− 2h− 2

N

]
+

)
≥ exp (−β |2− 2h|) ,

(A.170)
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where r is the index of the spin to be flipped to go from σ(i − 1) to σ(i). Therefore, recalling
that mi ∈ [mεN ,m+(N)], we obtain the following lower bound independent of π

Pσ ({π}) ≥ Ck

Nk

k∏
i=1

exp
(
−β

[
−2mεN −

2
N
− 2h

]
+

)
= Ck

Nk
. (A.171)

Indeed, for εN sufficiently small, mεN is close to m+(N) > 0, allowing us to assume mεN > 0.
Therefore, −2mεN − 2

N − 2h < 0, which implies the last equality in (A.171).
We are left to compute the cardinality of BN (σ), with σ ∈ SN [mεN ], namely we have to

count all paths from σ to SN [m+(N)] with increasing magnetisation and length k + 1. Any of
these paths is characterised by a final spin σ̄ ∈ SN [m+(N)] and a sequence of negative spins
which are flipped. Notice that σ̄ is reachable by σ through a path with increasing magnetisation
if and only if the two following properties are satisfied: σ̄ has k positive spins more than σ and,
for all i ∈ [N ], σi = +1 implies σ̄i = +1. Thus, a configuration σ̄ ∈ SN [m+(N)] reachable by σ
through a path with increasing magnetisation is characterised by the k spins which are negative
in σ and positive in σ̄. Therefore, the number of reachable configurations σ̄ is(

1
2N (1−mεN )

k

)
=
(1

2N [1−m+(N) + θN ]
1
2NθN

)
, (A.172)

being 1
2N(1−mεN ) the number of negative spins of σ ∈ SN [mεN ] and k = 1

2NθN , where θN has
been defined in Section A.4.1.

The number of paths with increasing magnetisation from σ ∈ SN [mεN ] to a reachable
σ̄ ∈ SN [m+(N)], both fixed, is k!, namely the number of permutations of the k negative spins
which are flipped along a path. Thus, being k = 1

2NθN , the cardinality of BN (σ) is

(
1
2NθN

)
!
(1

2N
[
1−m+(N) + θN

]
1
2NθN

)
. (A.173)

Going back to (A.168), we obtain

Pσ
(
τSN [m+(N)] < τSN [mεN ]

)
≥

∑
π∈BN (σ)

Pσ
(
{π}

)

≥
(
C

N

) 1
2NθN (1

2NθN
)
!
(1

2N
[
1−m+(N) + θN

]
1
2NθN

)

= e−
1
2NθN log N

C
N(1−m+(N) + θN )

2 !
[
N(1−m+(N))

2 !
]−1

.

(A.174)

Using Stirling’s approximation n! =
√

2πnnne−n(1 + o(1)) =
√

2πn en(logn−1)(1 + o(1)) and the
notation

kθN = 1−m+(N) + θN
1−m+(N) , (A.175)

we obtain

N(1−m+(N) + θN )
2 !

[
N(1−m+(N))

2 !
]−1

=
√
kθN exp

[
N(1−m+(N))

2 log(kθN ) + 1
2NθN log

(
N(1−m+(N)+θN )

2

)
− 1

2NθN
]

(1 + o(1)).
(A.176)
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Thus, since kθN ≥ 1 and C = exp(−β |2− 2h|), we conclude by

Pσ
(
τSN [m+(N)] < τSN [mεN ]

)
≥
√
kθN e−

N
2 (θN log(NC )+θN−(1−m+(N)) log(kθN )−θN log(N2 (1−m+(N)+θN )))(1 + o(1))

≥ e−
N
2 (θN log(NC )+θN−(1−m+(N)) log(kθN )−θN log(N2 )−θN log(1−m+(N)+θN ))(1 + o(1))

= e−
N
2 (θN log(2)+θN β|2−2h|+θN−(1−m+(N)+θN ) log(1−m+(N)+θN )+(1−m+(N)) log(1−m+(N)))(1 + o(1))

= e−N`N (θN )(1 + o(1)). (A.177)

To prove Lemma A.4.2 we used the following fact.
Lemma A.4.5. For σ ∈ SN [mεN ], for N sufficiently large and any γ ∈ (0, 1),

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ exp

(
−βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

])
.

(A.178)
Proof. Let us denote by WN (m) the event of making the first flip in SN [m].

For σ ∈ SN [mεN ], conditioning on the first step, we obtain

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
= Pσ

(
WN

(
mεN + 2

N

))
Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

∣∣∣WN

(
mεN + 2

N

))
+ Pσ

(
WN

(
mεN − 2

N

))
Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

∣∣∣WN

(
mεN − 2

N

))
= Pσ

(
WN

(
mεN + 2

N

)) ∑
σ′∈SN

[
mεN+ 2

N

]
, σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)

+ Pσ
(
WN

(
mεN − 2

N

)) ∑
σ′∈SN

[
mεN−

2
N

]
, σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
.

(A.179)
The first term vanishes because all the probabilities in the sum are zero. Thus, we get the upper
bound

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤

∑
σ′∈SN

[
mεN−

2
N

]
,σ∼σ′

Pσ′
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
.

(A.180)
Using first Lemma A.4.6 which gives bounds uniform in σ′, we obtain

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤

∑
σ′∈SN

[
mεN−

2
N

]
,σ∼σ′

exp
(
−βN(1− γ)

[
fβ(m−) + δN − fβ(m(σ′))

])

= N
1 +mεN

2 exp
(
−βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)])
= exp

(
−βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− logN+O(1)

βN(1−γ)

])
≤ exp

(
−βN(1− γ)

[
fβ(m−) + δN − fβ

(
mεN − 2

N

)
− εN

])
,

(A.181)
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where in the last inequality we used that, for N large enough, logN+O(1)
βN(1−γ) ≤ εN (which converges

to ε > 0, see Step 4 in Section A.4.1).

In the proofs of Lemmas A.4.2 and A.4.5, we use the following fact.

Lemma A.4.6. For σ ∈ SN
[
[mδN ,mεN )

]
, for N sufficiently large and any γ ∈ (0, 1),

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ exp (−βN(1− γ) [fβ(m−) + δN − fβ(m(σ))]) . (A.182)

Proof. For σ ∈ SN
[
[mδN ,mεN )

]
,

Pσ
(
τSN [m−(N)] < τSN [{m+(N),mεN }]

)
≤ Pσ

(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
, (A.183)

being m−(N) < m∗ < mδN < mεN < m+(N), for N sufficiently large. Therefore, we focus
on finding an upper bound on the right hand side of (A.183). Assume that there exists a
function ψ super-harmonic in SN

[
[mδN ,mεN )

]
. As a consequence, 0 > Lψ(σ) = ∂

∂tEσ [ψ(σ(t))].
This implies Eσ [ψ(σ(t))] ≤ Eσ [ψ(σ(s))], for all s < t. Take s = 0, and σ(0) = σ, therefore
Eσ [ψ(σ(t))] ≤ ψ(σ), for all t > 0. Thus, ψ(σ(t)) is a super-martingale. For the integrable
stopping time T = τSN [mδN ] ∧ τSN [{m+(N),mεN }], we use Doob’s optional stopping theorem for
super-martingales to show that, for all σ in the domain SN

[
[mδN ,mεN )

]
of ψ, Eσ [ψ(σ(T ))] ≤

ψ(σ). Therefore,

ψ(σ) ≥ Eσ [ψ(σ(T ))] ≥ min
σ′∈SN [mδN ]

ψ(σ′)Pσ
(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
, (A.184)

which implies that

Pσ
(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
≤ ψ(σ)

minσ′∈SN [mδN ] ψ(σ′) . (A.185)

For a suitably chosen ψ the latter inequality will yield the desired upper bound. Now we are
left with the choice of a suitable ψ : SN → R such that Lψ(x) < 0, for all x ∈ SN

[
[mδN ,mεN )

]
.

We define a function ψ which depends on a parameter γ ∈ (0, 1) and is constant on fixed
magnetisation sets, i.e, for all σ ∈ SN ,

ψ(σ) = φ(m(σ)), (A.186)

where φ : [−1, 1]→ R is defined by

φ(m) = exp (βN (1− γ)fβ(m)) . (A.187)

Our choice of ψ is similar to the one used by Bianchi, Bovier and Ioffe in [7, Proposition 6.4].
The choice of γ is relevant in (A.149).

We claim and prove later in Lemma A.4.7 that ψ is super-harmonic in SN
[
[mδN ,mεN )

]
.

Therefore, we conclude the proof by inserting ψ in (A.185) and obtaining

Pσ
(
τSN [mδN ] < τSN [{m+(N),mεN }]

)
≤ exp (βN(1− γ)fβ(m(σ)))

minσ′∈SN [mδN ] exp (βN(1− γ)fβ(m(σ′)))
= exp (βN(1− γ) [fβ(m(σ))− fβ(mδN )])
= exp (−βN(1− γ) [fβ(m−) + δN − fβ(m(σ))]) ,

(A.188)

where we used the definition of mδN (see Section A.4.1).
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We are now left with the proof of the super-harmonicity of ψ, which is used in the proof of
Lemma A.4.6.

Lemma A.4.7. ψ defined in (A.186) is super-harmonic in SN
[
[mδN ,mεN )

]
.

Proof. We have to prove that Lψ(x) < 0, for all x ∈ SN
[
[mδN ,mεN )

]
. Fix x in SN

[
[mδN ,mεN )

]
and use the notation m̄ = m(x). As usual, we try to rewrite the terms appearing in the
expression for Lψ(x) in terms of their mean-field version.

Lψ(x) =
∑
y∈SN

p(x, y)[ψ(y)− ψ(x)]

= 1
N

∑
y∈SN

1y∼x exp
(
− β[H(y)−H(x)]+

)
×
[

exp (β(1− γ)Nfβ(m(y)))− exp (β(1− γ)Nfβ(m(x)))
]

= 1
N

∑
m∈ΓN

exp
(
− βN [E(m)− E(m̄)]+

)
×
[

exp (βN(1− γ)fβ(m))− exp (βN(1− γ)fβ(m̄))
]

×
∑

y:m(y)=m
1x∼y

exp
(
− β[H(y)−H(x)]+

)
exp

(
− βN [E(m)− E(m̄)]+

)
≤

∑
m∈ΓN

exp
(
− βN [E(m)− E(m̄)]+

)
φ(m̄)

[
exp (βN(1− γ)[fβ(m)− fβ(m̄)])− 1

]
× e2β

[1 + m̄

2 1m̄− 2
N

(m) + 1− m̄
2 1m̄+ 2

N
(m)

]
,

(A.189)

where φ is defined in (A.187) and we used the upper bound exp(2β) on G(σ,m′) as in the proof
of the upper bound on capacity (see (A.99), (A.100)).

Now, recalling definition (A.20), we use the following notation

r+ = r̃N
(
m̄, m̄+ 2

N

)
= exp

(
−2β

[
− 1
N
− (m̄+ h)

]
+

)
1− m̄

2 , (A.190)

r− = r̃N
(
m̄, m̄− 2

N

)
= exp

(
−2β

[
− 1
N

+ m̄+ h

]
+

)
1 + m̄

2 , (A.191)

and, for all m ∈ ΓN \ {1},

g(m) = N

2
[
fβ
(
m+ 2

N

)
− fβ(m)

]
. (A.192)

Therefore, we can rewrite (A.189) as

Lψ(x) ≤ e2β φ(m̄) r+
[

exp (2β(1− γ)g(m̄))− 1
]

+ e2β φ(m̄) r−
[

exp
(
−2β(1− γ)g

(
m̄− 2

N

))
− 1

]
= e2β φ(m̄) r+G+,

(A.193)
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where

G+ =
(
e2β(1−γ)g(m̄) − 1

)
+ r−
r+

(
e
−2β(1−γ)g

(
m̄− 2

N

)
− 1

)
. (A.194)

Being e2β, φ(m̄) and r+ positive, we have only to show that G+ < 0. First we notice that

g(m) = −m− h+ 1
β
I ′(m) +O

(
1
N

)
(A.195)

and similarly
g
(
m− 2

N

)
= −m− h+ 1

β
I ′(m) +O

(
1
N

)
. (A.196)

Therefore,

g(m)− g
(
m− 2

N

)
= O

(
1
N

)
. (A.197)

Then, since I ′(m) = 1
2 log

(
1+m
1−m

)
(see (A.16)), and using (A.196) we have

r−
r+

= 1 + m̄

1− m̄
exp

(
2β
[
− 1
N − (m̄+ h)

]
+

)
exp

(
2β
[
− 1
N + m̄+ h

]
+

)
= 1 + m̄

1− m̄ exp (−2β(m̄+ h))
(
1 +O

(
1
N

))
= exp

(
2I ′(m̄)− 2β(m̄+ h)

) (
1 +O

(
1
N

))
= exp

(
2β
[
g
(
m̄− 2

N

)
+ m̄+ h+O

(
1
N

)]
− 2β(m̄+ h)

) (
1 +O

(
1
N

))
= exp

(
2βg(m̄− 2

N )
) (

1 +O
(

1
N

))
.

(A.198)

Therefore, rearranging (A.194) and then using (A.197) and (A.198), we obtain

G+ = [exp (2β(1− γ)g(m̄))− 1]
[
1− r−

r+
exp

(
−2β(1− γ)g

(
m̄− 2

N

))]
+ r−
r+

[
exp

(
2β(1− γ)

[
g(m̄)− g

(
m̄− 2

N

)])
− 1

]
= [exp (2β(1− γ)g(m̄))− 1]

[
1− exp

(
2βγg

(
m̄− 2

N

)) (
1 +O

(
1
N

))]
+ r−
r+

[
exp

(
2β(1− γ)O

(
1
N

))
− 1

]
.

(A.199)

Notice that, for everym ∈ [mδN ,mεN ) ⊂ [m∗,m+), g(m) is negative, being fβ strictly decreasing
in [m∗,m+). As a consequence, e2β(1−γ)g(m̄) − 1 < 0. Furthermore, for N sufficiently large,
1− e2βγg(m̄− 2

N
)
(
1 +O

(
1
N

))
> 0, implying that the first term in (A.199) is negative.

Moreover, r−r+
≥ 0 is uniformly bounded from above, for N sufficiently large. Therefore, since

β is finite, γ ∈ (0, 1) and the term
[
exp

(
2β(1− γ)O

(
1
N

))
− 1

]
is positive but converging to

zero as N grows to infinity, the second term in (A.199) is negligible.
Therefore, for N sufficiently large, G+ is negative, concluding the proof.
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A.4.4 Lower bound on the harmonic sum

In this section we provide the main ideas to prove the second part of Theorem A.1.7, namely
the lower bound on the harmonic sum in (A.128).

Proof of Theorem A.1.7. Lower bound. The proof is very similar to the proof of the upper bound
we gave in Section A.4.2, therefore we omit the details. The main contribution is given once
again by the sum on SN [Uδ,N (m−)].

We have,∑
σ∈SN

µβ,N (σ)hNm−,m+(σ) ≥
∑

σ∈SN [Uδ,N (m−)]
µβ,N (σ)hNm−,m+(σ)

=
∑

σ∈SN [Uδ,N (m−)]
µβ,N (σ)−

∑
σ∈SN [Uδ,N (m−)]

µβ,N (σ)(1− hNm−,m+(σ)
)

≥
∑

m∈Uδ,N (m−)\[−1,m−(N))
Qβ,N (m)

−
∑

σ∈SN [Uδ,N (m−)\[−1,m−(N))]
µβ,N (σ)Pσ

(
τSN [m+(N)] < τSN [m−(N)]

)
.

(A.200)

The first term, i.e. the sum on the mesoscopic measure Qβ,N , gives the main contribution.
This sum can be estimated from below using the lower bound in Corollary A.2.5, obtaining a
lower bound similar to the second upper bound in Corollary A.2.7 and applying the saddle point
method as in (A.138). More precisely, using the notation (A.38), we have the following lower
bound for s > 0:

∑
m∈Uδ,N (m−)\[−1,m−(N))

Qβ,N (m)
P (s)
≥ eκ−s exp (−βNfβ(m−))

Zβ,N
√

(1−m2
−)βf ′′β (m−)

(1 + o(1)). (A.201)

The second term in (A.200), appearing with a negative sign in front, is estimated via an
upper bound, obtaining

∑
σ∈SN [Uδ,N (m−)\[−1,m−(N))]

µβ,N (σ)Pσ
(
τSN [m+(N)] < τSN [m−(N)]

)

≤
es+α exp

(
−βNfβ(m−)

)
Zβ,N

√
2

π(1−m2
+) e−βNc(1 + o(1)), (A.202)

which is negligible compared to the right hand side of (A.201), concluding the proof.
We omit the proof of (A.202) being it again technical and very similar to the proof of

the upper bound (A.153) in Part 4 of Section A.4.2. An analogue construction to the one
given in Section A.4.1 and similar proofs to those in Section A.4.3 are needed. The main
difference consists in restricting the analysis on a right neighbourhood of m−(N) instead of a
left neighbourhood of m+(N).
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Appendix B

Publication: Metastability for
Glauber Dynamics on the Complete
Graph with Coupling Disorder

This appendix reproduces exactly the content of the paper [19] with title “Metastability for
Glauber Dynamics on the Complete Graph with Coupling Disorder”, authored by Anton
Bovier, Frank den Hollander and Saeda Marello, and published in Communications in Mathe-
matical Physics, 2022, 392, 307-345, https://doi.org/10.1007/s00220-022-04351-8.
This paper was summarised in Chapter 4.

B.1 Introduction and main results

B.1.1 Background

Interacting particle systems evolving according to a Metropolis dynamics associated with an
energy functional called the Hamiltonian, may be trapped for a long time near a state that
is a local minimum of the free energy, but not a global minimum. The deepest local minima
are called metastable states, the global minimum is called the stable state. The transition from
a metastable state to the stable state marks the relaxation of the system to equilibrium. To
describe this relaxation, one needs to identify the set of critical configurations the system must
attain in order to achieve this transition and to compute the crossover time. These critical
configurations correspond to saddle points in the free energy landscape.

Metastability for interacting particle systems on lattices has been studied intensively in the
past. For a summary, we refer the reader to the monographs by Olivieri and Vares [64], and
Bovier and den Hollander [18]. Successful attempts towards understanding metastable behaviour
in random environments were made for the random field Curie-Weiss model, by Mathieu and
Picco [58], Bovier, Eckhoff, Gayrard and Klein [12] and Bianchi, Bovier and Ioffe [7, 8]. Recently,
there has been interest in metastability for interacting particle systems on random graphs. This
is challenging, because the crossover times typically depend on the realisation of the graph. In
den Hollander and Jovanovksi [50] and Bovier, Marello and Pulvirenti [22], Glauber dynamics
on dense Erdős-Rényi random graphs was analysed. Earlier work on metastability for Glauber
dynamics on sparse random graphs can be found in Dommers [35] (random regular graph) and
Dommers, den Hollander, Jovanovski and Nardi [38] (configuration model). The present paper
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is a first step towards the study of metastability for Glauber dynamics on Chung-Lu-like random
graphs.

To the best of our knowledge, Tindemans and Capel [76] and Dommers, Giardinà, Giberti,
van der Hofstad and Prioriello [36] are the only references where the model with the interaction
Hamiltonian in (B.2) below has been studied in detail. Both focus on equilibrium properties
only.

B.1.2 Glauber dynamics on the complete graph with coupling disorder

Let Kn be the complete graph on n vertices. Each vertex carries an Ising spin that can take
the values −1 or +1. Let Sn = {−1,+1}[n] denote the set of spin configurations on Kn, where
[n] = {1, 2, . . . , n}. Let (Ω,F ,P) be an abstract probability space, and let J = (J(i))i∈[n]
be a sequence of i.i.d. random variables on this probability space taking values in a finite set
{a1, . . . , ak} ⊂ [0,∞) of cardinality k ∈ N. The distribution of these random variables is given
by

P (J(i) = a`) = ω` ∈ (0, 1), i ∈ [n], ` ∈ [k], (B.1)
with ∑`∈[k] ω` = 1.

Let Hn : Sn → R be the interaction Hamiltonian defined by

Hn(σ) ≡ − 1
n

∑
i,j∈[n]
i<j

J(i)J(j)σ(i)σ(j)− h
∑
i∈[n]

σ(i), σ ∈ Sn, (B.2)

where h ∈ [0,∞) is the magnetic field. We consider Glauber dynamics on Sn, defined as the
continuous-time Markov process with transition rates

rn(σ, σ′) =
{

e−β[Hn(σ′)−Hn(σ)]+ , if σ′ ∼ σ,
0, otherwise,

σ, σ′ ∈ Sn, (B.3)

where β ∈ (0,∞) is the inverse temperature, σ′ ∼ σ means that σ′ differs from σ by a single
spin-flip and [·]+ is the positive part. This dynamics is reversible with respect to the Gibbs
measure

µn(σ) ≡ 1
Zn

e−βHn(σ), σ ∈ Sn, (B.4)

where the normalising constant Zn is called the partition sum. Note that the reference measure
for (B.4) is the counting measure on Sn. We write

(σt)t≥0, σt ∈ Sn, (B.5)

to denote a path of the Glauber dynamics on Sn, and Pσ and Eσ to denote probability and
expectation on path space given σ0 = σ (we suppress J, h, β and n from the notation).

For fixed n, if h = 0 the Hamiltonian in (B.2) has two global minima, at σ ≡ +1 and
σ ≡ −1, while if h > 0 it achieves a global minimum at σ ≡ +1 and a local minimum at σ ≡ −1.
The latter is the deepest local minimum not equal to the global minimum (at least for h small
enough). However, in the limit as n→∞, these do not form a metastable pair of configurations
because entropy comes into play.

B.1.3 Metastability on the complete graph with coupling disorder

In this section we state our main results.
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Empirical magnetisations

The relevant quantity to monitor in order to characterise the metastable behaviour is the disorder
weighted magnetisation

Kn(σ) = 1
n

∑
i∈[n]

J(i)σ(i), σ ∈ Sn. (B.6)

The following quantities will be essential for coarse-graining. Define the level sets

A`,n ≡ {i ∈ [n] : J(i) = a`}, ` ∈ [k], (B.7)

and the level magnetisations

m`,n(σ) ≡ 1
|A`,n|

∑
i∈A`,n

σ(i), ` ∈ [k], σ ∈ Sn. (B.8)

Put
mn(σ) = (m`,n(σ)

)
`∈[k] ∈ [−1, 1]k, σ ∈ Sn, (B.9)

and note that Kn(σ) = 1
n

∑
`∈[k] a` |A`,n| m`,n(σ) depends on σ only through mn(σ). Thus, with

abuse of notation, we may define

Kn(m) ≡ 1
n

∑
`∈[k]

a` |A`,n|m`, m = (m`)`∈[k] ∈ [−1, 1]k, (B.10)

so that Kn(σ) = Kn(mn(σ)).

Thermodynamic limit

As n → ∞, by the law of large numbers the random function Kn converges uniformly in
probability to a deterministic function K given by

K(m) =
∑
`∈[k]

a` ω`m`, m = (m`)`∈[k] ∈ [−1, 1]k. (B.11)

Similarly, the random free energy function Fn converges uniformly in probability to a determin-
istic function Fβ,h (see (B.36) and (B.47) below for explicit formulas). In Section B.3, we show
that the stationary points of Fβ,h are given by m = (m`)`∈[k], where

m` = tanh(β[a`K(m) + h]), ` ∈ [k]. (B.12)

Note that, via (B.12), the k-dimensional vector m is fully determined by the real number K(m).
Therefore, finding the stationary points of Fβ,h reduces to finding the solutions of the equation

K = Tβ,h(K), Tβ,h(K) =
∑
`∈[k]

a` ω` tanh(β[a`K + h]). (B.13)
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Metastable regime

It turns out that the critical inverse temperature βc is given by

βc =

∑
`∈[k]

a2
`ω`

−1

. (B.14)

Namely, if β ∈ (0, βc], then the system is not in the metastable regime for any h ∈ [0,∞), while
if β ∈ (βc,∞), then, for h ∈ [0,∞) small enough, it is in the metastable regime (i.e., (B.13) has
more than one solution at which Tβ,h is not tangent to the diagonal). Given β ∈ (βc,∞), the
critical magnetic field hc(β) is the minimal value of h for which the system is not metastable.
The metastable regime is thus

β ∈ (βc,∞), h ∈ [0, hc(β)). (B.15)

In Section B.3, we show that β 7→ hc(β) is continuous on (βc,∞), with

lim
β↓βc

hc(β) = 0, lim
β→∞

hc(β) = C ∈ (0,∞), (B.16)

where the explicit value of C is given in (B.65) below. Interestingly, β 7→ hc(β) is not necessarily
monotone, i.e., the metastable crossover may be re-entrant.

It turns out that there exists an ` ∈ [k] (depending on β, h and on the law of the components
of J), such that Fβ,h has 2`+ 1 stationary points.

Metastable crossover

LetMn be the set of minima of Fn. Given m ∈Mn, define

Mn(m) ≡ {m ∈Mn\m : Fn(m) ≤ Fn(m)}. (B.17)

Let G(A,B) be the gate between two disjoint subsets A and B ofMn. We refer to [18, Section
10.1] for a precise definition of the gate.

Fix mn ∈ Mn as the initial magnetisation. Throughout the paper we assume that the
following hypotheses hold for mn.

Hypothesis B.1.1.

1. Mn(mn) is non-empty.

2. The Hessian of Fn has only non-zero eigenvalues at mn and at all the points in
G(mn,Mn(mn)).

3. There is a unique point tn in G(mn,Mn(mn)), which will often be called simply saddle
point.

4. The saddle point tn is such that r`
[
|A`,n| (1 − t2

`,n)
]−1 takes distinct values for different

` ∈ [k], where r` is defined in (B.89) below.

Hypothesis B.1.1(2) and (3) are made to avoid complications. Hypothesis B.1.1(4) is needed in
the proof of Lemma B.4.2 below (as in [18, Lemma 14.9]). Neither is very restrictive: if for some
parameter choice they fail, then after an infinitesimal parameter change they hold. Moreover, if
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Hypothesis B.1.1(3) fails, it is sufficient to compute separately the contribution to the crossover
time of the various saddle points in the gate.

Let Sn[mn] and Sn[Mn(mn)] denote the sets of configurations in Sn for which the level
magnetisations are mn and are contained inMn(mn), respectively. For A ⊂ Sn, write

τA = {t ≥ 0: σt ∈ A, σt− /∈ A} (B.18)

to denote the first hitting time or return time of A.
We next state our main results for the crossover time. Theorem B.1.2 provides a sharp

asymptotics for the average crossover time from any metastable state to the set of states with
lower free energy. Theorem B.1.3 shows that asymptotically the crossover time is exponential
on the scale of its mean, a property that is standard for metastable behaviour.

Theorem B.1.2 (Average crossover time with coupling disorder).
Let An(·) be the k×k Hessian matrix defined in (B.82) below, and γn the unique negative solution
of the equation in (B.100) below. For every mn ∈ Mn satisfying Hypothesis B.1.1 and within
the metastable regime (B.15), uniformly in σ ∈ Sn[mn], and with P-probability tending to 1,

Eσ
[
τSn[Mn(mn)]

]
= [1 + on(1)]

√
[−det(An(tn))]
det(An(mn))

(
π

2β(−γn)

)
eβn[Fn(tn)−Fn(mn)]. (B.19)

Theorem B.1.3 (Exponential law with coupling disorder).
For every mn ∈ Mn satisfying Hypothesis B.1.1 and within the metastable regime (B.15), uni-
formly in σ ∈ Sn[mn] and with P-probability tending to 1,

Pσ
(
τSn[Mn(mn)] > tEσ

[
τSn[Mn(mn)]

])
= [1 + on(1)] e−t, t ≥ 0. (B.20)

As the average crossover time estimated in Theorem B.1.2 is a random variable, we next
provide more information on the randomness of the quantity in the right-hand side of (B.19),
which depends on the realisation of the random variable J . The prefactor in (B.19) converges
with P-probability tending to 1 to a deterministic limit, which depends on the law of J but not
on the realisation of J . However, the exponent does not converge to a deterministic limit. In
Theorem B.1.4 we compute the exponent up to order O(1). Recall that Fn → Fβ,h, mn → m
and tn → t as n→∞.

Theorem B.1.4 (Randomness of the exponent).
For every mn ∈ Mn satisfying Hypothesis B.1.1 and within the metastable regime (B.15), in
distribution,

n[Fn(tn)− Fn(mn)] = n[Fβ,h(t)− Fβ,h(m)] + Z
√
n+O(1), (B.21)

where Z is a normal random variable with mean zero and variance in (0,∞), defined on (Ω,F ,P)
and independent of J .

The variance of Z turns out to be a complicated function of β, h and the distribution of J . We
refer to Section B.6.3 for further details. Computing the exponent up to order 1 is in principle
possible, but the formulas become rather complicated. Without this precision the prefactor in
(B.19) is asymptotically negligible. Still, knowing this prefactor allows us to determine what
the leading order behaviour of the randomness is.
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B.1.4 Discussion on the continuous case

Bianchi, Bovier and Ioffe [7, 8] study the Curie-Weiss model with a random magnetic field
whose distribution is continuous. Lumping techniques work for discrete distributions but not
for continuous distributions. The latter require coarse-graining techniques to approximate the
continuous distribution by a sequence of discrete distributions. In the present paper we consider
pair interaction random variables with a discrete distribution only. It seems hard to obtain
results with a similar precision for continuous distributions. The techniques employed in [7, 8]
do not carry over, because the error introduced by the coarse-graining turns out to be quadratic
rather than linear.

B.1.5 Techniques and outline

In order to prove Theorems B.1.2–B.1.4 we use the potential-theoretic approach to metastability
developed in Bovier, Eckhoff, Gayrard and Klein [13, 14]. More specifically, we first find a sharp
approximation of the Dirichlet form associated with the coarse-grained dynamics. We use these
results, together with lumpability properties and well-known variational principles, to obtain
sharp capacity estimates that are key quantities in the proof. For a more detailed overview of
the methods, we refer the reader to the monograph by Bovier and den Hollander [18].

The remainder of the paper is organised as follows. Section B.2 provides quantities and
notations that are needed throughout the paper. Section B.3 identifies the metastable regime.
Section B.4 provides a sharp approximation of the Dirichlet form associated with the Glauber
dynamics in the presence of the disorder. Section B.5 provides estimates on capacity and on the
metastable valley measure. Section B.6 proves Theorems B.1.2–B.1.4. Appendix B.7 contains a
brief overview on known results for the standard CW model, which corresponds to the setting
without disorder. Appendix B.8 gives numerical evidence for the presence of multiple metastable
states for suitable choices of β, h and of the law of the components of J . Appendix B.9 contains
an example in which β 7→ hc(β) is not increasing, implying the possibility of a re-entrant
metastable crossover. Appendix B.10 provides the limit as n→∞ of the prefactor in (B.19).

B.2 Preparations
Section B.2.1 introduces further notation and writes the Hamiltonian in terms of the level mag-
netisations. Section B.2.2 introduces the Dirichlet form associated with the Glauber dynamics
and rewrites this in terms of the level magnetisations. Section B.2.3 computes gradients and
Hessians of the free energy as a function of the level magnetisations. Section B.2.4 closes with
an approximation of the free energy that will be needed later on.

B.2.1 Hamiltonian

Recall (B.7). Abbreviate

ω`,n = |A`,n|
n

. (B.22)

Since, by the law of large numbers, (ω`,n)`∈[k] → (ω`)`∈[k] ∈ (0,∞)k as n→∞ with P-probability
tending to 1, we may and will assume that A`,n 6= ∅ for all ` ∈ [k] and all n large enough. Recall
(B.8)–(B.9). Note that m`,n(σ) takes values in the set

Γ`,n =
{
−1,−1 + 2

|A`,n| , . . . , 1−
2

|A`,n| , 1
}
. (B.23)
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Hence mn(σ) takes values in the set

Γn =×
`∈[k]

Γ`,n. (B.24)

The configurations corresponding to M ⊆ Γn are denoted by

Sn[M ] = {σ ∈ Sn : mn(σ) ∈M}. (B.25)

For singletons M = {m} we write Sn[m] instead of Sn[{m}].
Let

Hn(σ) = − 1
2n

∑
i,j∈[n]

J(i)J(j)σ(i)σ(j)− h
∑
i∈[n]

σ(i), σ ∈ Sn, (B.26)

which is the Hamiltonian in (B.2), except for the diagonal term − 1
2n
∑
i∈[n] J

2(i), which is a
constant shift. Using the notation above, we can write the Hamiltonian in (B.26) as

Hn(σ) = −n

1
2

∑
`∈[k]

a` ω`,nm`,n(σ)

2

+ h
∑
`∈[k]

ω`,nm`,n(σ)

 = nEn(mn(σ)), (B.27)

where we abbreviate

En(m) = −1
2

∑
`∈[k]

a` ω`,nm`

2

− h
∑
`∈[k]

ω`,nm`, m = (m`)`∈[k] ∈ Γn. (B.28)

B.2.2 Dirichlet form and mesoscopic dynamics

By (B.3)–(B.4), the Dirichlet form associated with the Glauber dynamics equals

ESn(h, h) = 1
2

∑
σ,σ′∈Sn

µn(σ)rn(σ, σ′) [h(σ)− h(σ′)]2

= 1
2Zn

∑
σ∈Sn

∑
σ′∈Sn,
σ′∼σ

e−β Hn(σ)e−β[Hn(σ′)−Hn(σ)]+ [h(σ)− h(σ′)]2,
(B.29)

where h is a test function on Sn taking values in [0, 1]. Because of (B.27), for any h such that
h(σ) = h̄(mn(σ)), with h̄ a test function on Γn, we have

ESn(h, h) = 1
2Zn

∑
m∈Γn

∑
m′∈Γn

e−β nEn(m)e−β n[En(m′)−En(m)]+[ h̄(m)− h̄(m′)
]2 ∑

σ∈Sn,
mn(σ)=m

∑
σ′∈Sn, σ′∼σ,
mn(σ′)=m′

1,

(B.30)
where m = (m`)`∈[k]. If σ′ ∼ σ, then σ′ = σi for some i ∈ [n], with σi obtained from σ by
flipping the spin with label i. Let `′ ∈ [k] be such that i ∈ A`′,n. If σ(i) = ±1 = −σi(i), then

m`,n(σi) =

m`′,n(σ)∓ 2
|A`′,n|

, ` = `′,

m`,n(σ), ` 6= `′.
(B.31)
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For m,m′ ∈ Γn, we write m ∼ m′ when there exists an `′ ∈ [k] such that m′ = m`′,+ or
m′ = m`′,−, where

m`′,±
` =

m`′ ± 2
|A`′,n|

, ` = `′,

m`, ` 6= `′.
(B.32)

Moreover, for ` ∈ [k] and σ ∈ Sn with mn(σ) = m, the cardinality of the set {σ′ ∈ Sn : σ′ ∼
σ, mn(σ′) = m`,±} equals 1∓m`

2 |A`,n|, namely, the number of (∓1)-spins in σ with index in A`,n.
Furthermore,

|{σ ∈ Sn : mn(σ) = m}| =
∏
`∈[k]

(
|A`,n|

1+m`
2 |A`,n|

)
, m ∈ Γn, (B.33)

as is seen by counting the number of (−1)-spins with label in A`,n of a configuration with `-th
level magnetisation m`. Using these observations, we can rewrite (B.30) as

ESn(h, h) = 1
2Zn

∑
m∈Γn

e−β nEn(m) ∑
m′∈Γn

e−β n[En(m′)−En(m)]+[ h̄(m)− h̄(m′)
]2

×
∏
`∈[k]

(
|A`,n|

1+m`
2 |A`,n|

) ∑
`∈[k]
|A`,n|

[1−m`

2 1(m′ = m`,+) + 1 +m`

2 1(m′ = m`,−)
]
.

(B.34)
Next, abbreviate

In(m) = − 1
n

log

∏
`∈[k]

(
|A`,n|

1+m`
2 |A`,n|

) , m ∈ Γn, (B.35)

and put

Fn(m) = En(m) + 1
β
In(m) = −1

2

∑
`∈[k]

a` ω`,nm`

2

− h
∑
`∈[k]

ω`,nm` + 1
β
In(m), m ∈ Γn,

(B.36)
where En(m) is defined in (B.28). Moreover, define

r̄n(m,m′) = e−βn[En(m′)−En(m)]+
∑
`∈[k]
|A`,n|

[1−m`

2 1(m′ = m`,+) + 1 +m`

2 1(m′ = m`,−)
]
.

(B.37)
With this notation, we can write the mesoscopic measure Qn(·) = µn ◦m−1

n (·) on Γn, with µn
defined in (B.4), as

Qn(m) = µn(Sn[m]) = 1
Zn

e−βnFn(m), m ∈ Γn, (B.38)

and so the Dirichlet form in (B.34) becomes

ESn(h, h) = 1
2
∑
m∈Γn

Qn(m)
∑

m′∈Γn
r̄n(m,m′)

[
h̄(m)− h̄(m′)

]2
. (B.39)
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B.2.3 Gradients and Hessians

Denote the Cramér entropy by

IC(x) = 1− x
2 log

(1− x
2

)
+ 1 + x

2 log
(1 + x

2

)
. (B.40)

Define
Īn(m) =

∑
`∈[k]

ω`,nIC(m`). (B.41)

Since |A`,n| = [1 + on(1)]ω`n, we can use Stirling’s formula N ! = [1 + oN (1)]NNe−N
√

2πN to
obtain

In(m) = Īn(m) +
∑
`∈[k]

1
2n log

(
π(1−m2

` )|A`,n|
2

)
+ o(n−1) = Īn(m) +O(n−1 logn), (B.42)

where the error term is uniform in m ∈ Γn. For `, ¯̀∈ [k], we compute
∂Īn(m)
∂m`

= ω`,n
2 log

(1 +m`

1−m`

)
(B.43)

and
∂2Īn(m)
∂m`∂m¯̀

= 0, ` 6= ¯̀,

∂2Īn(m)
∂m`

2 = ω`,n
1−m2

`

.

(B.44)

Recalling (B.28), we compute

∂En(m)
∂m`

= −a` ω`,n

∑
`′∈[k]

a`′ω`′,nm`′

− ω`,nh. (B.45)

Define

F̄n(m) = En(m) + 1
β
Īn(m) = −1

2

∑
`∈[k]

a` ω`,nm`

2

− h
∑
`∈[k]

ω`,nm` + 1
β
Īn(m). (B.46)

Remark B.2.1. By (B.42), Fn(m) = F̄n(m) +O(n−1 logn), where Fn is defined in (B.36). ♠
For m ∈ [−1, 1]k, define

Fβ,h(m) = −1
2

∑
`∈[k]

a` ω`m`

2

− h
∑
`∈[k]

ω`m` + 1
β

∑
`∈[k]

ω`IC(m`), (B.47)

which corresponds to the uniform limit in probability of Fn as n→∞. Compute

∂F̄n(m)
∂m`

= ω`,n

 1
2β log

(1 +m`

1−m`

)
− a`

∑
`′∈[k]

a`′ ω`′,nm`′

− h
 (B.48)

and
∂2F̄n(m)
∂m` ∂m`′

= −a` ω`,n a`′ ω`′,n, ` 6= `′,

∂2F̄n(m)
∂m`

2 = ω`,n
β

1
1−m2

`

− a2
` ω

2
`,n.

(B.49)

The same formulas apply for In, Fn, with an error term O(n−1).
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B.2.4 Additional computation

We conclude with a computation that will be useful later on. Recalling (B.32), we write

n
[
Īn(m`,±)− Īn(m)

]
= nω`,n

[
1 +m`

2 log
(

1± 2
|A`,n| (1 +m`)

)
+ 1−m`

2 log
(

1∓ 2
|A`,n| (1−m`)

)
± 1
|A`,n|

A±`,n

]

= nω`,n

[
± 1
|A`,n|

∓ 1
|A`,n|

+O(n−2)± 1
|A`,n|

∆±`,n

]
= ∆±`,n +O(n−1),

(B.50)

where

∆±`,n = log

1 +
2m` ± 4

|A`,n|
1−m` ∓ 2

|A`,n|

 . (B.51)

The same formula applies for In with an error term of order O(n−1), and hence

n
[
In(m`,±)− In(m)

]
= ∆±`,n +O(n−1). (B.52)

Note that ∆±`,n = O(1). Therefore, using (B.36), we get

n
[
En(m`,±)− En(m)

]
= n

[
Fn(m`,±)− Fn(m)

]
− 1
β
n
[
In(m`,±)− In(m)

]
= n

[
Fn(m`,±)− Fn(m)

]
− 1
β

∆±`,n +O(n−1).
(B.53)

B.3 Metastable regime

Section B.3.1 identifies the stationary points of F̄n. Section B.3.2 identifies the metastable
regime. Section B.3.3 provides details on the 1-dimensional metastable landscape.

B.3.1 Stationary points of F̄n and Fβ,h

By (B.48), the critical points m = (m`)`∈[k] of F̄n solve the system of equations (with ω`,n 6= 0)

0 = ∂F̄n(m)
∂m`

= ω`,n

 1
2β log

(1 +m`

1−m`

)
− a`

∑
`′∈[k]

a`′ ω`′,nm`′

− h
 , ` ∈ [k]. (B.54)

Hence
1
2 log

(1 +m`

1−m`

)
= β

a`
∑
`′∈[k]

a`′ ω`′,nm`′

+ h

 . (B.55)

Since arctanh x = 1
2 log 1+x

1−x , x ∈ (−1,+1), (B.55) can be rewritten as

m` = tanh

β
a`

∑
`′∈[k]

a`′ ω`′,nm`′

+ h

 , ` ∈ [k]. (B.56)
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Similarly, the critical points m = (m`)`∈[k] of Fβ,h solve the deterministic equation

m` = tanh

β
a`

∑
`′∈[k]

a`′ ω`′m`′

+ h

 , ` ∈ [k]. (B.57)

Note that this can also be obtained directly from (B.56) after replacing ω`,n by its mean value
ω`.

B.3.2 Metastable regime

We are interested in identifying the metastable regime, i.e., the set of pairs (β, h) for which Fβ,h
has more than one minimum. Put

K = K(m) =
∑
`∈[k]

a` ω`m`. (B.58)

From the characterisation of the critical points of Fβ,h in (B.57) it follows that

K = Tβ,h(K), Tβ,h(K) =
∑
`∈[k]

a` ω` tanh(β[a`K + h]). (B.59)

Note that any critical point m = (m`)`∈[k] ∈ [−1, 1]k of Fβ,h is uniquely determined by K(m) ∈
R. Consequently, the problem of solving the k-dimensional system in (B.57) can be reduced to
solving the 1-dimensional equation (B.59). Recalling Hypothesis B.1.1(2), the system is in the
metastable regime if and only if (B.59) has more than one solution that is not tangent to the
diagonal.

Compute

T ′β,h(K) = β
∑
`∈[k]

a2
` ω`

(
1− tanh2(β[a`K + h])

)
,

T ′′β,h(K) = −2β2 ∑
`∈[k]

a3
` ω` tanh(β[a`K + h])

(
1− tanh2(β[a`K + h])

)
.

(B.60)

For h = 0, the system is metastable when

β >
1∑

`∈[k] a
2
` ω`

, (B.61)

in which case Tβ,h has a unique inflection point at K = 0, implying that (B.59) has three
solutions K ∈ {−K∗, 0,+K∗} with K∗ > 0. Otherwise (B.59) has only one solution K = 0.

We proceed with the more interesting case h > 0.

Number of solutions

Lemma B.3.1 (Number of solutions). For h > 0, the number of critical points of Fβ,h,
i.e., solutions of (B.59), varies in {1, 3, . . . , 2` + 1}, where ` ∈ [k] and 2` − 1 is the number of
inflection points of Tβ,h.
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Proof. For h > 0 and K positive and large enough, T ′′β,h(K) < 0. Moreover, for h > 0 and K
negative with |K| large enough, T ′′β,h(K) > 0. Therefore, Tβ,h has at least one inflection point and
that the number of inflection points of Tβ,h cannot be even: it takes values in {1, 3, . . . , 2k − 1}
depending on β, h and the law of the components of J . Consequently, if 2` − 1 (` ∈ [k]) is
the number of inflection points, then the cardinality of the solutions of (B.59) takes values in
{1, 3, . . . , 2`+ 1} depending on β, h and on the law of the components of J .

We conjecture that for any finite k there exist β, h and a law of the components of J such that
(B.59) has any number of solutions in the set {1, 3, . . . , 2k + 1}. We found numerical evidence
for this fact for k ∈ {2, 3, 4}. See Appendix B.8.

Lemma B.3.2 (Unique strictly positive solution). For every β > 0 and h > 0, (B.59) has
exactly one strictly positive solution.

Proof. Put W (K) = Tβ,h(K)−K. The solutions of (B.59) are the roots of W . Clearly, W (0) >
0. Moreover, limK→∞W (K) = −∞ because limK→∞ Tβ,h(K) = ∑

`∈[k] a` ω` > 0 is finite.
Therefore, by continuity, a root of W (K) exists in (0,∞).

Let K̃ be the smallest positive root ofW . Next we will prove that this root is unique. Indeed,
W (K)′′ < 0 when K ∈ [0,∞), meaning that K 7→ W (K)′ is strictly decreasing. By continuity,
since W (K) > 0 for all K ∈ [0, K̃), we have W (K̃)′ ≤ 0 and limK→∞W (K)′ = −1. Therefore,
W (K)′ < 0 for all K ∈ (K̃,∞), and so W is strictly decreasing. Moreover, W (K) < W (K̃) = 0
for all K ∈ (K̃,∞). Thus, K̃ is the only positive root of W .

Metastable regime

Lemma B.3.3 (Characterisation of the metastable regime).
(B.59) has at least three solutions not tangent to the diagonal if and only if there exists K̄ < 0
such that K̄ > Tβ,h(K̄), i.e.,

K̄ >
∑
`∈[k]

a` ω` tanh(β[a`K̄ + h]). (B.62)

Proof. Using Lemma B.3.2, we see that (B.59) has at least three solutions if and only if it has at
least two strictly negative solutions. As above, we define W (K) = Tβ,h(K)−K. The solutions
of (B.59) are the roots of W . Now, assume that there exists a K̄ < 0 such that K̄ > Tβ,h(K̄).
Since W (K̄) < 0 and W (0) > 0, W (K) has a root in (K̄, 0), implying that (B.59) has at least
one solution in (K̄, 0). Moreover, since limK→−∞ Tβ,h(K) = −∑`∈[k] a` ω` is finite, we have
limK→−∞W (K) =∞. Because W (K̄) < 0, it follows that W has at least one root in (−∞, K̄).
With the same argument it can be shown that the negative roots of W are always even. The
opposite implication is trivial.

Remark B.3.4. Applying the intermediate value theorem to the derivative ofW (K) = Tβ,h(K)−
K, we get that if the condition in Lemma B.3.3 is satisfied, then there exists a K̄ < 0 such that
T ′β,h(K̄) = 1 and K̄ > Tβ,h(K̄). ♠

Theorem B.3.5 (Metastable regime). Define, as in (B.14),

βc = 1∑
`∈[k] a

2
` ω`

. (B.63)
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The metastable regime is
β ∈ (βc,∞), h ∈

[
0, hc(β)

)
, (B.64)

with β 7→ βhc(β) non-decreasing on [βc,∞). Furthermore, if the support of the law of the
components of J is put into increasing order, i.e., a1 < a2 < · · · < ak, then

lim
β→∞

hc(β) = min
`∈[k]∗

(
k∑

`′=`
a` a`′ ω`′ −

`−1∑
`′=1

a` a`′ ω`′

)
, (B.65)

where the minimum is over all ` ∈ [k] such that the quantity between brackets is positive.

Proof. Recalling Lemma B.3.3, we look for conditions for the existence of a K < 0 satisfying
(B.62). If such a K exists, then by Remark B.3.4 there exists a K̄ < 0 satisfying (B.62) such
that T ′β,h(K̄) = 1, which reads

∑
`∈[k]

a2
` ω` tanh2(β[a`K̄ + h]) =

∑
`∈[k]

a2
` ω` −

1
β
. (B.66)

Since the left-hand side of (B.66) is positive, it admits solutions only if

1
β
<
∑
`∈[k]

a2
` ω` = 1

βc
. (B.67)

Therefore, (B.67) is a necessary condition for the metastable regime.
Now assume (B.67). Since tanh x ∼ x, x→ 0, for |K| � β(max`∈[k] a`)−1 and h ↓ 0, we have

K = Tβ,h(K) =
∑
`∈[k]

a` ω` tanh(β[a`K + h]) ∼
∑
`∈[k]

a` ω` β[a`K + h], (B.68)

which reads

K ∼ −

∑
`∈[k]

a` ω`

( 1
βc
− 1
β

)−1
h (B.69)

and proves the existence of a negative solution. A positive solution is guaranteed by Lemma
B.3.2. The existence of a third (strictly negative) solution of (B.57), for every β > βc and for
h ↓ 0, follows as in the proof of Lemma B.3.3. Therefore, the lower bound on βc is sharp.

Since h 7→ Tβ,h(K) is strictly increasing for every fixed β > 0 and K ∈ R, there exists a
unique critical curve β 7→ hc(β) such that the system is metastable for 0 ≤ h < hc(β) and not
metastable for h ≥ hc(β). We know that hc(β) > 0 for β > βc. By passing to the parametrisation
g = hβ, we get that β 7→ Tβ,g(K) is strictly decreasing for every g and for every K < 0, from
which it follows that β 7→ gc(β) = βhc(β) is non-decreasing.

We next focus on the limit of hc(β) as β → ∞. By Lemma B.3.3, we may focus on the
existence of K̄ satisfying (B.62). In the limit as β →∞, tanh(β[a`K̄ + h])→ 2Θ−h/a`(K̄)− 1,
where Θx(·) is the Heaviside function centred in x. Thus, for all ` ∈ [k + 1],

lim
β→∞

∑
`′∈[k]

a`′ ω`′ tanh(β[a`′K+h]) = −
k∑

`′=`
a`′ ω`′+

`−1∑
`′=1

a`′ ω`′ , K ∈
(
− h

a`−1
,− h

a`

)
, (B.70)
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and, for all ` ∈ [k],

lim
β→∞

∑
`′∈[k]

a`′ ω`′ tanh(β[a`′K + h]) = −
k∑

`′=`+1
a`′ ω`′ +

`−1∑
`′=1

a`′ ω`′ , K = − h
a`
, (B.71)

where we set − h
a0

= −∞ and − h
ak+1

=∞. Thus, for K̄ ∈
(
− h
a`−1

,− h
a`

)
, (B.62) can be written

as

K̄ > −
k∑

`′=`
a`′ ω`′ +

`−1∑
`′=1

a`′ ω`′ . (B.72)

Therefore, (B.62) has a solution if and only if there exists an ` ∈ [k] such that

−
k∑

`′=`
a`′ ω`′ +

`−1∑
`′=1

a`′ ω`′ < −
h

a`
, (B.73)

in which case a solution K̄ of (B.62) exists in(
−

k∑
`′=`

a`′ ω`′ +
`−1∑
`′=1

a`′ ω`′ ,−
h

a`

)
. (B.74)

Note that the quantity between brackets in (B.65) is always positive for ` = 1. Thus, the
minimum is always finite.

The proof is complete after we show why we may drop the case where K̄ = − h
a`

for some
` ∈ [k]. In this case the condition for K̄ to satisfy (B.62) is

−
k∑

`′=`+1
a`′ ω`′ +

`−1∑
`′=1

a`′ ω`′ < −
h

a`
, (B.75)

which implies (B.73). Thus, if K̄ = −h
a`

satisfies (B.62), then also some other K in (B.74) satisfies
(B.62). Therefore, the condition in (B.73) is equivalent to having metastability.

Lemma B.3.6 (Re-entrant crossover). The function β 7→ hc(β) is not necessarily non-
decreasing.

Proof. In Appendix B.9 we provide an example of β 7→ hc(β) that is not increasing.

Bounds on the inflection points and on the critical curve

Lemma B.3.7 (Bounds on inflection points). All solutions of T ′′β,h(K) = 0 are contained
in the interval [

− h

min`∈[k] a`
,− h

max`∈[k] a`

]
. (B.76)

In particular, they are all strictly negative.

Proof. If K > − h
max`∈[k] a`

, then tanh(β[a`K+h]) > 0 for all ` ∈ [k], which implies T ′′β,h(K) < 0.
If K < − h

min`∈[k] a`
, then tanh(β[a`K+h]) < 0 for all ` ∈ [k], which implies T ′′β,h(K) > 0.

Lemma B.3.8 (Upper bound on hc). supβ∈(βc,∞) hc(β) <
(
max`∈[k] a`

)∑
`∈[k] a` ω`.
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Proof. Use Lemma B.3.3 to characterise the metastable regime and Remark B.3.4. We claim
that if a solution K̄ of (B.62) with T ′β,h(K̄) = 1 exists, then it must be negative and strictly
less than an inflection point. Using this fact, together with Lemma B.3.7 and the inequality in
(B.62), we obtain a necessary upper bound on h:

∑
`∈[k]

a` ω` tanh(β[a`K̄ + h]) < − h

max`∈[k] a`
. (B.77)

Using that tanh(β[a`K̄ + h]) > −1, we conclude the proof.
We are left to prove the claim. By Lemma B.3.7, all inflection points are negative, and

T ′′β,h(K) < 0 for K ≥ 0. Assume, by contradiction, that T ′′β,h(K) < 0 for all K ∈ (K̄,∞).
Then T ′β,h is strictly decreasing. Therefore, T ′β,h(K) < 1 for all K ∈ (K̄,∞), which implies
Tβ,h(K)−Tβ,h(0) < K. Since Tβ,h(0) > 0, there exists a K̃ ∈ (K̄, 0) such that Tβ,h(K̃) > 0 > K̃.
Thus, Tβ,h(K̃)−Tβ,h(0) > K̃, which contradicts what we have proved for allK ∈ (K̄,∞).

B.3.3 Quasi 1-dimensional landscape

Given K ∈ R, by standard saddle point approximation, the leading order of

− 1
βn

logµn
(
{σ : Kn(mn(σ)) = K}

)
(B.78)

turns out to be the function Gn : R→ R defined by

Gn(K) = inf
m : Kn(m)=K

F̄n(m). (B.79)

Recalling definitions (B.46) and (B.58), using Lagrange multipliers and integrating the condition
Kn(m) = K, we obtain

Gn(K) = −1
2K

2 − log 2
β
− inf
t∈R

Kt+
∑
`∈[k]

ω`,n
β

log cosh [β(h− ta`)]

 . (B.80)

Lemma B.3.9 (Alternative characterisation for the critical points).

1. If m∗ is a (not maximal) critical point for Fn, then Kn(m∗) is a critical point for Gn.

2. If K is a critical point for Gn, then m∗ = (m∗` )`∈[k] with m∗` = tanh (β [a`K + h]) (recall
(B.56)) is a critical point for Fn.

3. Fn(m∗) = Gn(Kn(m∗)) for any (not maximal) critical point m∗.

Proof. Similar to [12, Lemma 7.4].

We have already seen that Kn(m) fully determines any critical value m of Fn, and is useful
to order them. Lemma B.3.9 exhibits the one-dimensional structure underlying the metastable
landscape and provides a tool to describe the nature of the critical points of Fn.

Remark B.3.10. The above results extend to the limit n→∞: replace Fn by Fβ,h and Gn by
Gβ,`, obtained after replacing ω`,n by ω` in (B.80), and Kn(·) by K(·). ♠
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B.4 Approximation of the Dirichlet form near the saddle point
In this section we approximate the Dirichlet form associated with the coarse-grained dynamics
near the saddle point. This is a key step to obtain capacity estimates in the following section.
Further details and examples on the techniques we use here can be found in [18, Chapters 9, 10
and 14].

Section B.4.1 introduces some key quantities that are needed to express the mesoscopic
measure. Section B.4.2 introduces an approximate mesoscopic measure that leads to an ap-
proximate dynamics. Section B.4.3 approximates the harmonic functions associated with this
dynamics. Section B.4.4 computes an approximate Dirichlet form. Section B.4.5 uses the latter
to approximate the full Dirichlet form.

B.4.1 Key quantities

Let mn = (m`,n)`∈[k] and tn = (t`,n)`∈[k] in Γn be a local minimum of Fn and the correspondent
saddle point, respectively, as defined in Section B.1.3. Note that both mn and tn satisfy (B.56).
Consider the neighbourhood of tn defined by

Dn =
{
m ∈ Γn : d(m, tn) ≤ C ′n−1/2 log1/2 n

}
, (B.81)

where d is the Euclidean distance and C ′ ∈ (0,∞) is a constant. Abbreviate the Hessian of Fn

An(m) = (∇2Fn)(m), m ∈ Γn, (B.82)

and put
An = An(tn). (B.83)

By (B.49),

(An(m))`,`′ = −a` ω`,n a`′ ω`′,n +O(n−1), ` 6= `′,

(An(m))`,` = ω`,n
β

1
1−m2

`

− a2
` ω

2
`,n +O(n−1) = 1

β

∂2Īn(m)
∂m`

2 − a2
` ω

2
`,n +O(n−1).

(B.84)

Note that An(m) is a diagonal matrix minus a rank one matrix. Compute

detAn(m) =

1−
∑
`∈[k]

β a2
` ω`,n[1−m2

` ]

 ∏
`′∈[k]

1
β

ω`′,n
1−m2

`′
[1 +O(n−1)]. (B.85)

B.4.2 Approximate dynamics and Dirichlet form

For any two vectors v,w ∈ Rk, let 〈v,w〉 denote their scalar product. For any k × k matrix M
and any v ∈ Rk, let M · v denote their matrix product, as v was in Rk × 1.

For m ∈ Dn, define

Q̃n(m) = 1
Zn

exp
[
−βn

2
〈
[m− tn],An · [m− tn]

〉]
exp [−βnFn(tn)] , (B.86)

and

r̃n
(
m,m′

)
=


r̄n
(
tn, t`,+n

)
, m′ = m`,+,

r̄n
(
t`,−n , tn

) Q̃n(m`,−)
Q̃n(m) , m′ = m`,−,

0, else,

(B.87)
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where r̄n is defined in (B.37). The transition rates r̃n define a random dynamics on Dn that is
reversible with respect to the mesoscopic measure Q̃n. The corresponding Dirichlet form is

ẼDn(u, u) =
∑
m∈Dn

Q̃n(m)
∑
`∈[k]

r̃n
(
m,m`,+) [u(m)− u(m`,+)

]2
, (B.88)

where u is a test function on Dn. Put

r` = r̃n
(
m,m`,+) = r̄n

(
tn, t`,+n

)
. (B.89)

Using (B.28) and (B.37), we get

r` = |A`,n|
1− t`,n

2 exp

−2β

−h− a`
a`
n

+
∑
`′∈[k]

a`′ω`′,nt`′,n


+

 . (B.90)

Approximation estimates

Next we estimate how close the pairs (r̄n, r̃n) and (Qn, Q̃n) are. By Taylor expansion around
tn, we have

Fn(m)− Fn(tn) = 1
2

〈
[m− tn],An · [m− tn]

〉
+O

(
d(m, tn)3). (B.91)

In particular,

Fn(t`,±n )− Fn(tn) = 1
2

4
|A`,n|2

(An)`,` +O
(
|A`,n|−3 )

= 2
n2ω2

`,n

[
ω`,n
β

1
1− t2

`,n

− a2
` ω

2
`,n + o

(
(nω`,n)−1

)]
+O

(
(nω`,n)−3)

= 2
n2

(
1

β ω`,n(1− t2
`,n) − a

2
`

)
+O

(
(nω`,n)−3),

(B.92)

where the second equality uses (B.84). Moreover, for m ∈ Dn (e` is the unitary vector in Rk
whose `-th component is non-zero),

Fn(m`,±)− Fn(m)

=
〈[
± 2
|A`,n| e`

]
,An · [m− tn]

〉
+ 1

2

〈[
± 2
|A`,n| e`

]
,An ·

[
± 2
|A`,n| e`

]〉
+O

(
d(m, tn)3)

= ± 2
|A`,n|

∑
`′∈[k]

(An)`,`′(m`′ − t`′,n) + 2
|A`,n|2

(An)`,` +O
(
d(m, tn)3)

=
(
± 2
nω`,n

(m` − t`,n) + 2
n2ω2

`,n

)(
ω`,n
β

1
1− t2

`,n

− a2
` ω

2
`,n + o(n−1)

)

± 2
nω`,n

∑
`′∈[k], `′ 6=`

(−a` ω`,n a`′ ω`′,n)(m`′ − t`′,n) +O
(
n−3/2 log3/2 n

)
= ∓ 2

n

∑
`′∈[k]

a` a`′ ω`′,n(m`′ − t`′,n)± 2(m` − t`,n)
β n(1− t2

`,n) +O
(
n−3/2 log3/2 n

)
,

(B.93)
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where the third equality uses (B.84). For m ∈ Dn, we have d(m, tn)3 = O(n−3/2 log3/2 n).
Therefore, combining (B.38), (B.86) and (B.91), we have∣∣∣∣∣Qn(m)

Q̃n(m)
− 1

∣∣∣∣∣ ≤ C ′′n−1/2 log3/2 n, m ∈ Dn, (B.94)

for some C ′′ ∈ (0,∞) constant. Using (B.37) and (B.53), we can write

r̄n(m,m`,±) = exp
[
−β

[
n
[
Fn(m`,±)− Fn(m)

]
− 1
β

∆±`,n +O
(
n−1

)]
+

]
1∓m`

2 , (B.95)

where ∆±`,n is defined in (B.51).
Using (B.87), (B.92), (B.93) and (B.95), we find that, for all m ∈ Dn,∣∣∣∣∣∣
r̄n
(
m,m`,+

)
r̃n (m,m`,+) − 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
r̄n
(
m,m`,+

)
r̄n
(
tn, t`,+n

) − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(1−m`) exp

{
−
[
I1 +O(n−1/2 log3/2 n)−∆±`,n + on(1)

]
+

}
(1− t`,n) exp

{
−
[
I2 +O(n−2 ω−3

`,n)−∆±`,n + on(1)
]

+

} − 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(1−m`) exp

{
−
[
I1 −∆±`,n + on(1)

]
+

}
(1− t`,n) exp

{
−
[
−∆±`,n + on(1)

]
+

} − 1

∣∣∣∣∣∣∣∣
≤ C ′′′n−1/2 log1/2 n,

(B.96)

where C ′′′ ∈ (0,∞) is a constant and we abbreviate

I1 = −2β
∑
`′∈[k]

a` a`′ ω`′,n(m`′ − t`′,n) + 2(m` − t`,n)
1− t2

`,n

,

I2 = 2
n

(
1

ω`,n(1− t2
`,n) − β a

2
`

)
.

(B.97)

Equations (B.94) and (B.96) are relevant for the following approximation.

B.4.3 Approximate harmonic function

Let Bn be the k × k matrix defined by

(Bn)``′ =
√
r`r`′

nω`,nω`′,n
(An)``′ , (B.98)

where An is defined in (B.83). Note that

detBn = (detAn)
∏
`∈[k]

r`
nω2

`,n

. (B.99)

Let γ(`)
n , ` ∈ [k], be the eigenvalues of Bn, ordered in increasing order. Let γn = γ

(1)
n denote

the unique negative eigenvalue of Bn, and v̂ the corresponding unitary eigenvector. Define
v = (v`)`∈[k] by v` = v̂`

ω`,n
√
n√

r`
.
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Remark B.4.1. As in [18, Remark 10.4], it follows by Hypothesis B.1.1 that An has all strictly
positive eigenvalues but one strictly negative. It can be seen that the same property holds for
the eigenvalues of Bn. ♠

Lemma B.4.2 (Eigenvalue). The eigenvalue γn is the unique solution of the equation

1
n

∑
`∈[k]

a2
`

1
nβ ω`,n(1−t2

`,n
) −

γn
r`

= 1 +O(n−1). (B.100)

Proof. We follow the line of proof of [18, Lemma 14.9], using the last point in Hypothesis B.1.1.
In our case, [18, Eq. (14.7.12)] reads

− 1
n
a`
√
r`
∑
`′∈[k]

a`′
√
r`′u`′ +

(
r`

1
nβω`,n(1− t`,n)2 − γn

)
u` +O(n−1) = 0, ` ∈ [k]. (B.101)

Remark B.4.3. As in [18, Lemma 14.9], since the left-hand side of (B.100) is increasing in γn
for γn ≥ 0, a negative solution of (B.100) exists if and only if

β
∑
`∈[k]

a2
` ω`,n(1− t2

`,n) > 1. (B.102)

Using (B.85), (B.102) holds if and only if detAn < 0. By Remark B.4.1 the latter holds true.
♠

Define f : R→ [0, 1] as

f(x) =

√
(−γn)βn

2π

∫ x

−∞
e−

1
2 (−γn)βnu2

du (B.103)

and g : Rk → [0, 1] as
g(m) = f(〈v,m− tn〉). (B.104)

Recall the definition ofMn(mn) given in (B.17).
Let W0 be a strip in Γn of width Cn−1/2 log1/2 n such that tn ∈W0,Mn(mn)∩W0 is empty

andW c
0 consists in two non-neighbouring parts: W1 containing mn andW2 containingMn(mn).

Moreover, we require that, for some fixed constant c > 1, W0 ∩ Dcn ⊆ {m ∈ Γn : Fn(m) >
Fn(tn) + cn−1 logn}. Define

g̃(m) =


0, m ∈W1,

1, m ∈W2,

g(x), m ∈W0 ∩ Dn,
0, m ∈W0 ∩ Dcn.

(B.105)

By choosing W0 and Dn suitably we have, for m ∼ m′ (i.e., r̄n(m,m′) > 0) and c ∈ (0,∞) large
enough (coming from the definition of W0),

Qn(m) ≤ Qn(tn)n−cβ, m ∈W0 ∩ Dcn, (B.106)
(g̃(m)− g̃(m′))2 r̄n(m,m′)Qn(m) ≤ Qn(tn)n−cβ, m ∈W0 ∩ Dn,m′ ∈W c

0 . (B.107)
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B.4.4 Computation of the approximate Dirichlet form

In this section we follow [18, Sections 10.2.2–10.2.3] to approximate ẼDn(g, g) defined in (B.88).
As in [18, Eq. (10.2.24)], for m ∈ Dn and ` ∈ [k] such that m`,+ ∈ Dn, compute

g(m`,+)− g(m) = 2
|A`,n|

v`f
′(〈v,m− tn〉) + 2

|A`,n|2
v2
` f
′′(〈v,m− tn〉) + 4

3 |A`,n|3
v3
` f
′′′(〈v, m̃− tn〉)

= v`

√√√√2(−γn)β
πnω2

`,n

exp
(
−βn2 (−γn) 〈v,m− tn〉2

)

×
(

1− 1
ω`,n

v`(−γn)β 〈v,m− tn〉+O(ω−2
`,n n

−1 logn)
)
.

(B.108)

Recalling (B.88)–(B.89), we have

ẼDn(g, g) =
∑
m∈Dn

Q̃n(m)
∑
`∈[k]

r`
[
g(m`,+)− g(m)

]2
= 1
Zn

∑
m∈Dn

exp
[
−βn

2
〈
[m− tn],An · [m− tn]

〉]
e−βnFn(tn)

×
∑
`∈[k]

r`v
2
`

2(−γn)β
πnω2

`,n

exp
(
−βn(−γn) 〈v,m− tn〉2

)

×
(

1− v`
ω`,n

(−γn)β 〈v,m− tn〉+O(ω−2
`,n n

−1 logn)
)2

= 1
Zn

2(−γn)β
π

∑
m∈Dn

exp
[
−βn

2
〈
[m− tn],An · [m− tn]

〉]
e−βnFn(tn)

× exp
(
−βn(−γn) 〈v,m− tn〉2

) [
1 +O

(
ω−1
`,n n

−1/2 log1/2 n
)]

= 1
Zn

2(−γn)β
π

[
1 +O

(
ω−1
`,n n

−1/2 log1/2 n
)]

e−βnFn(tn)

∏
`∈[k]

|A`,n|
2


×
∫
Dn

dm exp
[
−βn

2
〈
[m− tn],An · [m− tn])

〉]
exp

(
−βn(−γn) 〈v,m− tn〉2

)
= 1
Zn

e−βnFn(tn) (−γn)n√
[−detAn]

(
πn

2β

) k
2−1

∏
`∈[k]

ω`,n

[1 +O
(
ω−1
`,n n

−1/2 log1/2 n
)]
,

(B.109)

where we use [18, Eq. (10.2.33)] with ε = 1
βn and d = k. Here 1

2 |A`,n| is the inverse of the step
in the `–direction, while in [18, Eq. (10.2.33)] the step is ε.

Remark B.4.4. Note that

ẼDn(g, g) = ẼDn(g̃, g̃) [1 + o(1)] (B.110)

because g̃(m) = g(m) [1 + o(1)] for all m ∈ W c
0 ∩ Dn. The latter can be proved by approxi-

mating the Gaussian integral by 0 or 1 when 〈v,m− tn〉 is proportional to −n−1/2 log1/2 n or
n−1/2 log1/2 n, respectively. ♠
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B.4.5 Final Dirichlet form approximation

We are now ready to compare ESn with ẼDn . Let h : Sn → [0, 1] be such that h(σ) = g̃(mn(σ)),
σ ∈ Sn. We split the sum in (B.39) into four subsets of Γn × Γn: m ∈ W0 ∩ Dcn, m′ ∈ Γn;
m ∈ W0 ∩ Dn, m′ ∈ W1; m ∈ W0 ∩ Dn, m′ ∈ W2; m ∈ W0 ∩ Dn, m′ ∈ W0 ∩ Dn. Then, using
(B.105)–(B.107), we obtain

ESn(h, h) = O(n−cβ) + 1
2

∑
m∈W0∩Dn

∑
m′∈W0∩Dn

Qn(m) r̄n
(
m,m′

) [
g̃(m)− g̃(m′)

]2
. (B.111)

Using (B.94) and (B.96), we obtain

ESn(h, h) = O(n−cβ) + 1
2

∑
m∈W0∩Dn

[
1 +O

(
n−1/2 log3/2 n

)]
Q̃n(m)

×
∑

m′∈W0∩Dn

(
1 +O

(
n−1/2 log1/2 n

))
r̃n
(
m,m′

) [
g̃(m)− g̃(m′)

]2
=
[
1 +O

(
n−1/2 log1/2 n

)] 1
2

∑
m,m′∈W0∩Dn

Q̃n(m)r̃n
(
m,m′

) [
g̃(m)− g̃(m′)

]2
=
[
1 +O

(
n−1/2 log1/2 n

)] 1
2

∑
m,m′∈Dn

Q̃n(m)r̃n
(
m,m′

) [
g̃(m)− g̃(m′)

]2
= ẼDn(g̃, g̃)

[
1 +O

(
n−1/2 log1/2 n

)]
= [1 + on(1)] 1

Zn
exp [−βnFn(tn)] (−γn)n√

[−detAn]

(
πn

2β

) k
2−1

∏
`∈[k]

ω`,n

 ,

(B.112)

where the third equality follows from (B.105)–(B.107) together with (B.94), and the last equality
follows from (B.109)–(B.110).

B.5 Capacity and valley estimates
Section B.5.1 provides sharp asymptotic upper bounds and lower bounds on the capacity of the
metastable pair between which the crossover is being considered. These estimates use the results
of the Section B.4 together with the Dirichlet principle and the Berman-Konsowa principle, which
are variational representations of capacity. Section B.5.2 provides a sharp asymptotic estimate
for the mesoscopic measure of the valleys of the minima of Fn, which leads to a sharp asymptotic
estimate for Fn inside this valley.

B.5.1 Capacity estimates

Given a Markov process (xt)t≥0 with state space S, a key quantity in the potential-theoretic
approach to metastability is the capacity cap(A,B) of two disjoint subsets A,B of S. This is
defined by (see [18, Eq. (7.1.39)])

cap(A,B) =
∑
x∈A

µ(x)Px(τB < τA), (B.113)

where µ is the invariant measure and Px is the probability distribution of the Markov process
starting in x.

Recall thatMn is the set of local minima of Fn.
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Proposition B.5.1 (Asymptotics of the capacity). Let mn = (m`,n)`∈[k] ∈Mn and Mn ⊂
Mn\mn, such that the gate G(mn,Mn) consists of a unique point tn = (t`,n)`∈[k]. Suppose that
β ∈ (βc,∞) and h ∈ [0, hc(β)). Then, as n→∞,

cap(Sn[mn], Sn[Mn]) = [1 + on(1)] 1
Zn

e−βnFn(tn) (−γn)n√
[−det(An(tn))]

(
πn

2β

) k
2−1

∏
`∈[k]

ω`,n

 .
(B.114)

Remark B.5.2. Proposition B.5.1 holds for any subset Mn ⊆Mn\mn, separated from mn by
tn, independently on the values of Fn on Mn. ♠

Upper bound: Dirichlet principle

An important characterisation of the capacity between two disjoint sets is given by the Dirichlet
principle. For our quantity of interest this states that

cap(Sn[mn], Sn[Mn]) = inf
u∈H̃
ESn(u, u), (B.115)

where H̃ is the set of functions from Sn to [0, 1] that are equal to 1 on Sn[mn] and 0 on Sn[Mn].
Given that, by assumption, G(mn,Mn) = {tn}, we use the Dirichlet principle in (B.115) to

obtain an upper bound on the capacity. We take as test function h ∈ H̃ defined in Section B.4.5
and, using (B.112), we obtain

cap(Sn[mn], Sn[Mn]) ≤ ESn(h, h)

= [1 + on(1)] 1
Zn

e−βnFn(tn) (−γn)n√
[−det(An(tn))]

(
πn

2β

) k
2−1

∏
`∈[k]

ω`,n

 .
(B.116)

Lower bound: Berman-Konsowa principle

We first note that the process (σt)t≥0 is lumpable. Indeed, the process (mn(σt))t≥0 is Markovian
because the Hamiltonian Hn(σ) depends on mn(σ) only (see (B.27)). Therefore, for A = Sn[A]
and B = Sn[B] with A and B disjoint subsets of Γn,

cap(A,B) = capΓ(A,B), (B.117)

where capΓ denotes the capacity for the process (mn(σt))t≥0, i.e., the projection of the process
(σt)t≥0 on the magnetisation space Γn. We write PΓ and EΓ to denote the law of (mn(σt))t≥0
induced by the law P of (σt)t≥0, and its expectation, respectively. By the lumpability, we can
focus on the dynamics on Γn.

Following the line of argument in [18, Section 10.3] (with ε = 2
n and d = k), we obtain the

lower bound

cap(Sn[mn], Sn[Mn]) = capΓ(mn,Mn) ≥ ẼDn(g̃, g̃)
[
1 +O(n−1/2 log1/2 n)

]
= 1
Zn

e−βnFn(tn) (−γn)n√
[−det(An(tn))]

(
πn

2β

) k
2−1

∏
`∈[k]

ω`,n

 [1 + on(1)] ,

(B.118)
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where we use (B.109) and (B.110).
We sketch the proof. The main idea is to use the Berman-Konsowa principle for a suitable

defective flow. More precisely, given disjoint subsets A,B of the state space, for any defective
loop-free unit flow fA,B from A to B with defect function δ (as defined in [18, Definition 9.2]),
we can estimate (see [18, Lemma 9.4], and notation therein)

cap(A,B) ≥
M∏
i=1

(
1 +

[
max
y∈Ai

δ(y)
F(y)

]
+

)−1∑
γ

PfA,B (γ)


 ∑

(x,y)∈γ

fA,B((x, y))
µ(x)p(x, y)

−1
 , (B.119)

where [·]+ denotes the positive part and γ is a self-avoiding path from A to B. It turns out that,
with a suitable choice of the flow f , the product in the right-hand side of (B.119) is bounded
from below by 1 + O(n−1/2 log1/2 n), and the sum over γ from below by ẼDn(g̃, g̃)[1 + on(1)].
This proves (B.118).

We give a sketch of the test flow definition in our setting. Here A = {mn} and B = Mn.
Let v∗ be the eigenvector corresponding to the unique negative eigenvalue of the Hessian of
Fn at the saddle point tn (unique gate point in G({mn},Mn)). Let Gn be the cylinder in
Rk intersected with Γn, centred at tn, with axis v∗, radius ρ = C n−1/2 log1/2 n and length
ρ′ = C ′ n−1/2 log1/2 n. We will denote by ∂BGn the base facing B and by ∂AGn the central part
of radius C ′′ n−1/2 log1/2 n of the base facing A, with C ′′ < C. Choose the constants so that Gn
is contained in Dn defined in (B.81).

We define a defective flow fA,B from A to B consisting of three parts: fA, a unitary flow
from A to ∂AGn; f , a defective loop-free unit flow from ∂AGn to ∂BGn inside Gn; fB, a unitary
flow from ∂BGn to B. This choice implies that the sum over γ in (B.119) is relevant only on
the paths entering Gn in ∂AGn, exiting Gn in ∂BGn, and afterwards reaching B without going
back to Gn. For this purpose we choose fA and fB such that fA((x, y)) and fB((x, y)) are
proportional to Qn(x). For m ∈ Gn such that m`,+ ∈ Gn, define

f((m,m`,+)) =
Q̃n(m)r`

[
g(m`,+)− g(m)

]
+

N(g) , (B.120)

where g is defined in (B.104), Q̃n in (B.86), r` in (B.89) and

N(g) =
∑

m∈∂AGn

∑
`∈[k]:

m`,+∈Gn

Q̃n(m)r`
[
g(m`,+)− g(m)

]
+
. (B.121)

The contribution to the sum in brackets in (B.119) turns out to be negligible outside Gn.
Therefore, no further conditions on the flows fA and fB are necessary, provided the total flow
out of A is 1 and the total flow fA,B is defective and loop-free.

B.5.2 Measure of the valley

In order to prove Theorem B.1.2, we need the following estimate on the measure of the valley
of the minima of Fn. For mn ∈Mn, let A(mn) ⊂ Γn be the valley of mn as defined in [18, Eq.
(8.2.10)].

Lemma B.5.3 (Gibbs weight of the valley). Given mn ∈Mn,

Qn(A(mn)) = 1
Zn

exp (−βnFn(mn))√
det(An(mn))

(
nπ

2β

) k
2

∏
`∈[k]

ω`,n

[1 +O(n−1/2 log3/2 n)
]
, (B.122)
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where Qn is the mesoscopic measure defined in (B.38), and An(mn) is the k×k Hessian matrix
defined in (B.82).

Proof. The proof follows that of [18, Lemma 10.12 and (10.2.33)]. The relevant contribution to
Qn(A(mn)) is given by the measure of a ball Bρ of radius ρ = C n−1/2 log1/2 n centred in mn,
with C constant, contained in A(mn). Indeed, if y ∈ A(mn) and d(mn, y) > ρ, then by Taylor
expansion of Fn around mn we have

Qn(y) = 1
Zn

exp[−βnFn(y)] = 1
Zn

exp
[
−βn[Fn(mn) + c d(mn, y)2]

]
≤ 1
Zn

exp
[
−βn[Fn(mn) + cρ2]

]
= n−βcC

2

Zn
exp [−βnFn(mn)] ,

(B.123)

where c is a constant. The condition y ∈ A(mn) is needed to ensure that Fn(y) > Fn(mn),
implying that c is positive. Therefore, we obtain the rough estimate

Qn(A(mn)\Bρ) ≤ nk
n−βcC

2

Zn
exp [−βnFn(mn)] , (B.124)

where we use that |Γn| ≤ nk. The bound in (B.124) is sufficient to show that Qn(A(mn)\Bρ) is
negligible in Qn(A(mn)).

Compute

ZnQn(A(mn) ∩Bρ) = ZnQn(Bρ) = Zn
∑
y∈Bρ

Qn(y) =
∑
y∈Bρ

e−βnFn(y)

= e−βnFn(mn) ∑
y∈Bρ

exp
[
−βn2 〈y −mn, (An(mn)) · (y −mn)〉+O(nρ3)

]

= e−βnFn(mn)[1 +O(nρ3)]
∑
y∈Bρ

exp
[
−βn2 〈y −mn, (An(mn)) · (y −mn)〉

]

= e−βnFn(mn)

∏
`∈[k]

|A`,n|
2

 [1 +O(nρ3)]

×
∫
Bρ

dy exp
[
−βn2 〈y −mn, (An(mn)) · (y −mn)〉

]

= e−βnFn(mn)
(
n

2

)k∏
`∈[k]

ω`,n

 [1 +O(nρ3)]
( 2π
nβ

) k
2
√

1
det(An(mn))

= e−βnFn(mn)√
det(An(mn))

(
nπ

2β

) k
2

∏
`∈[k]

ω`,n

 [1 +O(nρ3)],

(B.125)

where we use the Taylor expansion

Fn(y) = Fn(mn) + 1
2
〈
y −mn, (∇2Fn) · (mn)(y −mn)

〉
+O(ρ3), y ∈ Bρ, (B.126)

and the approximation of the sum by an integral is correct up to an error 1 +O(ρ). In the last
lines we approximated the Gaussian integral on intervals [−ρ, ρ] by the Gaussian integral on R,
with an error 1 +O(n−c). We conclude by looking at (B.124) and (B.125), and noting that for
C large enough Qn(A(mn)\Bρ) is negligible compared to Qn(A(mn) ∩Bρ).
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B.6 Proof of the theorems
In this section we prove Theorems B.1.2–B.1.4. Section B.6.1 uses the asymptotics for the
capacity of the metastable pair from Section B.5.1 and the asymptotics for the mesoscopic
measure from Section B.5.2 to prove Theorem B.1.2. Section B.6.2 proves Theorem B.1.3.
Section B.6.3 proves Theorem B.1.4.

B.6.1 Average crossover time

Let us return to the notation of Theorem B.1.2, where mn ∈ Mn and Mn(mn) = {m ∈
Mn\mn : Fn(m) ≤ Fn(mn)}. To prove Theorem B.1.2 we use the relation

EΓ
mn

(τMn(mn)) = [1 + on(1)] µ(A(mn))
capΓ(mn,Mn(mn)) , (B.127)

Recall notation introduced in Section B.5.1. Because Fn(m) ≤ Fn(mn) for all m ∈ Mn(mn),
(B.127) follows from [18, Theorem 8.15] after proving thatMn is a set of metastable points in
the sense of [18, Definition 8.2]. The latter follows along the lines of the proof of [18, Theorem
10.6], where similar values of capacities and invariant measures occur.

Using (B.127) in combination with Proposition B.5.1 and Lemma B.5.3, we obtain that, for
all σ ∈ Sn[mn],

Eσ(τSn[Mn(mn)]) = EΓ
mn

(τMn(mn)) = [1 + on(1)] Qn(A(mn))
capΓ(mn,Mn(mn))

= [1 + on(1)] Qn(A(mn))
cap(Sn[mn], Sn[Mn(mn)])

= [1 + on(1)]
1
Zn

exp(−βnFn(mn))√
det(An(mn))

(
nπ
2β

) k
2
(∏

`∈[k] ω`,n
)

1
Zn

exp [−βnFn(tn)] (−γn)n√
[− det(An(tn))]

(
πn
2β

) k
2−1 (∏

`∈[k] ω`,n
)

= [1 + on(1)]
√

[−det(An(tn))]
det(An(mn))

(
π

2β(−γn)

)
exp [βn(Fn(tn)− Fn(mn))] ,

(B.128)

where we use that the dynamics depends on the starting configuration σ ∈ Sn[mn] only, through
its level magnetisations mn(σ) = mn (see (B.27)), and also use the lumpability.

B.6.2 Exponential law

In this section we prove Theorem B.1.3. Since the dynamics depends on the starting config-
uration σ ∈ Sn[mn] through its level magnetisation mn(σ) = mn only (see (B.27)), we have

lim
n→∞

Pσ
(
τSn[Mn(mn)] > tEσ

[
τSn[Mn(mn)]

])
= lim

n→∞
PΓ

mn

(
τ̄Mn(mn) > tEΓ

mn

[
τ̄Mn(mn)

])
,

(B.129)

where τ̄ is the hitting time of the process projected on Γn. Given the non-degeneracy hy-
pothesis (Hypothesis B.1.1 in Section B.1.3) and the one-dimensional landscape analysis (in
Section B.3.3), we can apply [18, Theorem 8.45] to the right-hand side of (B.129) and conclude
the proof.
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B.6.3 Randomness of the exponent

In this section we prove Theorem B.1.4. In particular, we compute Fn(tn)−Fn(mn)− [Fβ,h(t)−
Fβ,h(m)] to leading order.

Recalling definitions (B.47) and (B.58), we have

Fβ,h(m) = −1
2K(m)2 − h

∑
`∈[k]

ω`m` + 1
β

∑
`∈[k]

ω`IC(m`). (B.130)

Let m = (m`)`∈[k], t = (t`)`∈[k] ∈ [−1, 1]k be the critical points of Fβ,h closest to mn, tn (i.e.,
the critical points of Fn defined above), respectively. Note that m and t satisfy (B.57), while
mn and tn satisfy (B.56). Using (B.42), we get

Fn(tn)− Fβ,h(tn) = −1
2[Kn(tn)2 −K(tn)2]− h

∑
`∈[k]

[ω`,n − ω`] t`,n

+ 1
β

∑
`∈[k]

[ω`,n − ω`]IC(t`,n) +
∑
`∈[k]

1
2n log

(
π(1− t2

`,n)
2

)
ω`,n −

k

2n + o
(
n−1

)
(B.131)

and

Fβ,h(tn)− Fβ,h(t) = −1
2[K(tn)2 −K(t)2] + 1

β

∑
`∈[k]

ω`[IC(t`,n)− IC(t`)]. (B.132)

By (B.55), we have
1
2 log

(
1 + t`,n
1− t`,n

)
= β [a`Kn(tn) + h] ,

1
2 log

(1 + t`
1− t`

)
= β [a`K(t) + h] .

(B.133)

Thus,

IC(t`,n)− IC(t`) = (t`,n − t`)I ′C(t`) +O((t`,n − t`)2)

= (t`,n − t`)
1
2 log

(1 + t`
1− t`

)
+O((t`,n − t`)2)

= (t`,n − t`)β [a`K(t) + h] +O((t`,n − t`)2).

(B.134)

Moreover,

K(tn)2 −K(t)2 =
∑

`,`′∈[k]
a` a`′ ω` ω`′ [t`,nt`′,n − t`t`′ ]

=
∑

`,`′∈[k]
a` a`′ ω` ω`′

(
t`[t`′,n − t`′ ] + t`′ [t`,n − t`] + [t`,n − t`][t`′,n − t`′ ]

)
(B.135)

and
Kn(tn)2 −K(tn)2 =

∑
`,`′∈[k]

a` a`′ [ω`,n ω`′,n − ω` ω`′ ]t`,nt`′,n

=
∑

`,`′∈[k]
a` a`′ t`,nt`′,n

(
ω`[ω`′,n − ω`′ ] + ω`′ [ω`,n − ω`] + [ω`,n − ω`][ω`′,n − ω`′ ]

)
.

(B.136)

120



B.6. PROOF OF THE THEOREMS

Similar equalities hold after we replace t by m and tn by mn. Using the previous computa-
tions, we obtain

Fn(tn)− Fn(mn)− [Fβ,h(t)− Fβ,h(m)]
= Fn(tn)− Fβ,h(tn) + Fβ,h(tn)− Fβ,h(t)− [Fn(mn)− Fβ,h(mn) + Fβ,h(mn)− Fβ,h(m)]

= −1
2
∑

`,`′∈[k]
a` a`′

[
t`,nt`′,n −m`,nm`′,n

] (
ω`[ω`′,n − ω`′ ] + ω`′ [ω`,n − ω`] + [ω`,n − ω`][ω`′,n − ω`′ ]

)
− 1

2
∑

`,`′∈[k]
a` a`′ ω` ω`′

[
t`,nt`′,n − t`t`′ + m`m`′ −m`,nm`′,n

]
− h

∑
`∈[k]

[ω`,n − ω`] [t`,n −m`,n]

+ 1
β

∑
`∈[k]

[ω`,n − ω`] [IC(t`,n)− IC(m`,n)] + 1
β

∑
`∈[k]

1
2n log

(
1− t2

`,n

1−m2
`,n

)

+ 1
β

∑
`∈[k]

ω` [IC(t`,n)− IC(t`) + IC(m`)− IC(m`,n)] + o
(
n−1

)
.

(B.137)

Using(B.134), we find

[Fn(tn)− Fn(mn)]− [Fβ,h(t)− Fβ,h(m)]

= −1
2
∑

`,`′∈[k]
a` a`′

[
t`,nt`′,n −m`,nm`′,n

] (
ω`[ω`′,n − ω`′ ] + ω`′ [ω`,n − ω`] + [ω`,n − ω`][ω`′,n − ω`′ ]

)
− 1

2
∑

`,`′∈[k]
a` a`′ ω` ω`′

[
t`,nt`′,n − t`t`′ + m`m`′ −m`,nm`′,n

]
− h

∑
`∈[k]

[ω`,n − ω`] [t`,n −m`,n]

+ 1
β

∑
`∈[k]

[ω`,n − ω`] [IC(t`,n)− IC(m`,n)] + 1
β

∑
`∈[k]

1
2n log

(
1− t2

`,n

1−m2
`,n

)

+ 1
β

∑
`∈[k]

ω`
[
(t`,n − t`)β [a`K(t) + h] +O((t`,n − t`)2)− (m`,n −m`)β [a`K(m) + h]

+O((m`,n −m`)2)
]

+ o
(
n−1

)
.

(B.138)

Since

t`,nt`′,n − t`t`′ =
(
t`[t`′,n − t`′ ] + t`′ [t`,n − t`] + [t`,n − t`][t`′,n − t`′ ]

)
, (B.139)

we focus on estimating t`,n − t`.
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From Taylor expansion, we get

t`,n − t` = tanh

β
a` ∑

`′∈[k]
a`′ ω`′,n t`′,n + h

− tanh

β
a` ∑

`′∈[k]
a`′ ω`′ t`′ + h


= β a`

∑
`′∈[k]

a`′ [ω`′,n t`′,n − ω`′ t`′ ]

1− tanh

β
a` ∑

`′∈[k]
a`′ ω`′ t`′ + h

2


− β2 a2
`

∑
`′∈[k]

a`′ [ω`′,n t`′,n − ω`′ t`′ ]

2

tanh

β
a` ∑

`′∈[k]
a`′ ω`′ t`′ + h


×

1− tanh

β
a` ∑

`′∈[k]
a`′ ω`′ t`′ + h

2


+O

a3
`

∑
`′∈[k]

a`′ [ω`′,n t`′,n − ω`′ t`′ ]

3
 .

(B.140)

Since

ω`′,n t`′,n − ω`′ t`′ = (ω`′,n − ω`′) t`′ + ω`′,n(t`′,n − t`′), (B.141)

we have

t`,n − t` = β a`
[
1− t2

`

] ∑
`′∈[k]

a`′ [(ω`′,n − ω`′) t`′ + ω`′,n(t`′,n − t`′)]

− β2 a2
` t`

[
1− t2

`

] ∑
`′∈[k]

a`′ [(ω`′,n − ω`′) t`′ + ω`′,n(t`′,n − t`′)]

2

+O

a3
`

∑
`′∈[k]

a`′ [(ω`′,n − ω`′) t`′ + ω`′,n(t`′,n − t`′)]

3
 .

(B.142)

Suppose that t`,n − t` ∼
Y t
√̀
n
. By the Central Limit Theorem, ω`,n − ω` ∼ Z`√

n
, where Z` is the
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normal random variable N(0, ω`(1− ω`)). Hence

Y t
√̀
n

= β a`
[
1− t2

`

] ∑
`′∈[k]

a`′

[
Z`′√
n

t`′ +
(
Z`′√
n

+ ω`′

)
Y t
`′√
n

]

− β2 a2
` t`

[
1− t2

`

] ∑
`′∈[k]

a`′

[
Z`′√
n

t`′ +
(
Z`′√
n

+ ω`′

)
Y t
`′√
n

]2

+O

a3
`

∑
`′∈[k]

a`′

[
Z`′√
n

t`′ +
(
Z`′√
n

+ ω`′

)
Y t
`′√
n

]3


= 1√
n
β a`

[
1− t2

`

] ∑
`′∈[k]

a`′
(
t`′Z`′ + ω`′Y

t
`′

)

+ 1
n
β a`

[
1− t2

`

] ∑
`′∈[k]

a`′Z`′

Y t
`′ − β a`t`t`′

∑
`′′∈[k]

a`′′ω`′′Y
t
`′′

+ o(n−1)

(B.143)

and so

Y t
` = β a`

[
1− t2

`

] ∑
`′∈[k] a`′t`′Z`′

1− β∑`′∈[k] a
2
`′ω`′

[
1− t2

`′
] +O(n−

1
2 ), (B.144)

where the denominator does not vanish because of Remark B.4.3. Thus, up to a factor O(n− 1
2 ),

Y t
` is a normal random variable with mean 0 and variance

β2 a2
`

[
1− t2

`

]2 ∑
`′∈[k] a

2
`′t2

`′ω`′(1− ω`′)(
1− β∑`′∈[k] a

2
`′ω`′

[
1− t2

`′
])2 . (B.145)

Similar results hold after we replace t by m.

Going back to (B.138), using (B.139) and (B.144), and inserting t`,n − t` ∼
Y t
√̀
n
and m`,n −
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m` ∼
Y m
√̀
n

and ω`,n − ω` ∼ Z`√
n
, we obtain

[Fn(tn)− Fn(mn)]− [Fβ,h(t)− Fβ,h(m)]

∼ −1
2
∑

`,`′∈[k]
a` a`′
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)(
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`′√
n

)
−
(

m` + Y m
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(B.146)
Thus,

[Fn(tn)− Fn(mn)]− [Fβ,h(t)− Fβ,h(m)]

= −1
2
∑

`,`′∈[k]
a` a`′ [t`t`′ −m`m`′ ]
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+
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√̀
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[a`K(t) + h]− Y m
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+O
(
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)
.

(B.147)

Since the random variables Y t
` , Y m

` , Z` are centred normal, this concludes the proof of Theo-
rem B.1.4.

From (B.147) it is possible to compute explicitly the variance of Z defined in Theorem B.1.4,
because the variances of all the random variables involved are known (at least to leading order).

B.7 Appendix A: Metastability on the complete graph without
disorder

We give a brief overview of well-known results for the standard Curie-Weiss model. We refer to
[18, Chapter 13] for more details.
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The Glauber dynamics is defined as in Section B.1.2, but with J ≡ 1. For convenience we
write the Curie-Weiss Hamiltonian as

Hn(σ) = − 1
2n

∑
i,j∈[n]

σ(i)σ(j)− h
∑
i∈[n]

σ(i), σ ∈ Sn, (B.148)

which is as (B.26) when J ≡ 1. What makes this case easier than the one with disorder is that
the interaction is mean-field. Indeed, we may write

Hn(σ) = n
[
− 1

2mn(σ)2 − hmn(σ)
]
, (B.149)

with
mn(σ) = 1

n

∑
i∈[n]

σ(i) ∈ [−1, 1] (B.150)

the magnetisation. In this case the magnetisation process (mn(t))t≥0, defined by

mn(t) = mn(σt), (B.151)

is Markovian. More specifically, it is a nearest-neighbour random walk on the grid

Γn =
{
−1,−1 + 2

n , . . . ,+1− 2
n ,+1

}
. (B.152)

In the limit as n → ∞, (B.151) converges to a Brownian motion on [−1,+1] in the potential
Fβ,h given by

Fβ,h(m) = −1
2m

2 − hm+ 1
β
I(m), (B.153)

with
I(m) = 1−m

2 log
(1−m

2

)
+ 1 +m

2 log
(1 +m

2

)
(B.154)

the relative entropy of the Bernoulli measure on {−1,+1} with parameter m with respect to
the counting measure on {−1,+1}. Fβ,h(m) is the free energy at magnetisation m, consisting of
an energy term −1

2m
2− hm and an entropy term 1

β I(m). See [18, Chapter 13] for more details.
Since

F ′β,h(m) = −m− h+ 1
2β log

(1 +m

1−m

)
, F ′′β,h(m) = −1− 1

β

m

1−m2 , (B.155)

the stationary points of Fβ,h are the solutions to the equation

m = Tβ,h(m), Tβ,h(m) = tanh[β(m+ h)]. (B.156)

Since
T ′β,h(m) = β

[
1− T 2

β,h(m)
]
, (B.157)

Tβ,h is strictly increasing and has a unique inflection point at m = −h. Consequently, (B.156)
has either one or three solutions. The latter occurs if and only if

β ∈ (β̄c,∞) and h ∈ (0, hc(β)), (B.158)

where β̄c = 1 is the critical inverse temperature and h̄c(β) is the critical magnetic field, i.e., the
unique value of h for which Tβ,h touches the diagonal at a unique value of the magnetisation,
say −m(β). Clearly, 1 = β(1−m2(β)), i.e.,

m(β) =
√

1− β−1, (B.159)
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and so h̄c(β) solves the equation Tβ,h̄c(β)(−m(β)) = −m(β). Hence (see Fig. B.1)

h̄c(β) = m(β)− 1
2β log

(1 +m(β)
1−m(β)

)
, β ≥ 1. (B.160)

1

1

h̄c(β)

βr
Figure B.1: Plot of β 7→ h̄c(β).

The range of parameters in (B.158) represents the metastable regime in which Fβ,h has a
double-well shape and, in the limit as n → ∞, the Gibbs measure µn in (B.4) has two phases
given by the two minima of Fβ,h: the metastable phase with magnetisation m < 0 and the stable
phase with magnetisation s > 0. The unique saddle point in the gate G(m, s) has magnetisation
t < 0 (see Fig. B.2).

m

Fβ,h(m)

m s
t

−h

1−1

s
ss

Figure B.2: Plot of m 7→ Fβ,h(m) for β, h in the metastable regime.

Theorems B.7.1–B.7.2 can be found in Bovier and den Hollander [18, Chapter 13]. Here the
notation is the same as the one in SectionB.1. Let Sn[m], Sn[s] denote the sets of configurations
in Sn for which the magnetisation is closest to m, s, respectively.

Theorem B.7.1 (Average crossover time).
Subject to (B.158), uniformly in σ ∈ Sn[m],

Eσ
[
τSn[s]

]
= [1 + on(1)] π

1− t

√
1− t2

1−m2
1

β
√
F ′′β,h(m)[−F ′′β,h(t)]

eβn[Fβ,h(t)−Fβ,h(m)]. (B.161)

Theorem B.7.2 (Exponential law).
Subject to (B.158), uniformly in σ ∈ Sn[m],

Pσ
(
τSn[s] > tEσ

[
τSn[s]

])
= [1 + on(1)] e−t, t ≥ 0. (B.162)
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Fig. B.2 illustrates the setting: the average crossover time from Sn[m] to Sn[s] depends on the
energy barrier Fβ,h(t)− Fβ,h(m) and on the curvature of Fβ,h at m and t. The crossover time
is exponential on the scale of its average.

B.8 Appendix B: Examples with multiple metastable states

We provide examples of distributions and parameter choices (in the metastable regime) for which
the model with disorder has multiple critical points. More specifically, we provide numerical
evidence that, for k ∈ {2, 3, 4}, (B.59) can have any number of solutions in the set {3, 5 . . . , 2k+
1}. The cases with strictly more than 3 solutions present multiple minimal critical points, i.e.
multiple metastable states.

B.8.1 Case k=2

(a) 3 critical points. (b) 5 critical points.

Figure B.3: Tβ,h, k = 2.

• Figure B.3a: 3 critical points, parameters a1 = 77, a2 = 45, ω1 = 0.688, h = 1740,
β = 113βc.

• Figure B.3b: 5 critical points, parameters a1 = 774, a2 = 36.84, ω1 = 0.59, h = 1740,
β = 131βc.

B.8.2 Case k=3

• Figure B.4a: 3 critical points, parameters a1 = 77, a2 = 45, a3 = 33.5, ω1 = 0.688,
ω2 = 0.15, h = 1740, β = 113βc.

• Figure B.4b: 5 critical points, parameters a1 = 77, a2 = 45, a3 = 27, ω1 = 0.59, ω2 = 0.15,
h = 1740, β = 113βc.

• Figure B.4c: 7 critical points, parameters a1 = 77, a2 = 45, a3 = 33.5, ω1 = 0.59,
ω2 = 0.15, h = 1740, β = 113βc.
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(a) 3 critical points. (b) 5 critical points.

(c) 7 critical points.

Figure B.4: Tβ,h, k = 3.
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(a) 3 critical points. (b) 5 critical points.

(c) 7 critical points. (d) 9 critical points.

Figure B.5: Tβ,h, k = 4.
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B.8.3 Case k=4

• Figure B.5a: 3 critical points, parameters a1 = 12, a2 = 16, a3 = 139.5, a4 = 24.5,
ω1 = 0.474, ω2 = 0.22, ω3 = 0.111, h = 178, β = 3.8βc.

• Figure B.5b: 5 critical points, parameters a1 = 14, a2 = 27, a3 = 57, a4 = 24.5, ω1 = 0.366,
ω2 = 0.1, ω3 = 0.13, h = 262, β = 38.4βc.

• Figure B.5c: 7 critical points, parameters a1 = 2.32, a2 = 4.92, a3 = 5, a4 = 11.32,
ω1 = 0.6, ω2 = 0.096, ω3 = 0.033, h = 7.6, β = 95.2βc.

• Figure B.5d: 9 critical points, parameters a1 = 12, a2 = 16, a3 = 50.5, a4 = 24.5,
ω1 = 0.474, ω2 = 0.22, ω3 = 0.111, h = 178, β = 63.2βc.

B.9 Appendix C: Example of hc(β) not increasing

We provide here an example of choice of the law of J for which the critical threshold β 7→ hc(β)
is not monotone increasing. This implies the possibility of a re-entrant metastable crossover.

For k = 4, pick a1 = 12, a2 = 16, a3 = 50.5, a4 = 24.5 and ω1 = 0.474, ω2 = 0.22, ω3 = 0.111.
Take h = 100, and plot the function K 7→ Tβ,h(K) varying β. For β1 = 4βc = 0.00762336 the
system is metastable: Tβ,h intersects the diagonal three times (see Figure B.6a), which implies
that h < hc(β1). For β2 = 21βc = 0.04002264 > β1 the system is not metastable: Tβ,h intersects
the diagonal only once (see Figure B.6b), which implies that h > hc(β2). This shows that hc(β)
is not necessarily an increasing function of β.

(a) h = 100, β = 0.00762336. (b) h = 100, β = 0.04002264.

Figure B.6: Tβ,h, fixed h and law of the components of J , varying β.

B.10 Appendix D: Limit of the prefactor

Below Theorem B.1.3 we stated that the prefactor in (B.19) converges. For completeness, in this
Appendix we compute its limit, although, as we mentioned after Theorem B.1.4, it is negligible
because of the order of approximation of the exponent.
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We focus first on γn. Recall notation in (B.10), (B.11) and (B.22). Then (B.100) can be
written as

1 +O(n−1) =
∑
`∈[k]

a2
`ω`,n(1− t`,n) exp

[
−2β

(
−a`

(a`
n +Kn(tn)

)
− h

)
+

]
exp
[
−2β(−a`(a`n +Kn(tn))−h)+

]
β(1+t`,n) − 2γn

=
∑
`∈[k]

a2
`ω`,n (1− tanh (β [a`Kn(tn) + h])) exp

[
−2β

(
−a`

(a`
n +Kn(tn)

)
− h

)
+

]
exp
[
−2β(−a`(a`n +Kn(tn))−h)+

]
β(1+tanh(β[a`Kn(tn)+h])) − 2γn

.

(B.163)

In the first equality we use (B.56) for tn, i.e., the approximation of the stationary points of Fn
by the stationary points of F̄n. This makes t`,n independent of `, so that we can use the law of
large numbers in the limit as n → ∞. Thus, we obtain that γn converges to γ, the solution of
the equation

E

J(1)2(1 + tanhU) e−2U+

1
β(1−tanhU) e−2U+ − 2γ

 = 1, (B.164)

where E denotes expectation with respect to P and U = −β[J(1)K(t) + h], with t solving
(B.57). Note that (B.164) is similar to [18, Eq. (14.4.14)].

We are left to find the limit of the determinants ratio. By (B.85),

detAn(m) =

1−
∑
`∈[k]

β a2
` ω`,n[1− (m`)2]

 ∏
`′∈[k]

1
β

ω`′,n
1− (m`′)2

[
1 +O(n−1)

]
. (B.165)

Using (B.56) for m ∈ {tn,mn}, we have

∑
`∈[k]

β a2
` ω`,n[1− (m`,n)2] =

∑
`∈[k]

β a2
` ω`,n

1− tanh2

β
a` ∑

`′∈[k]
a`′ ω`′,nm`′,n + h

 .
(B.166)

Using the law of large numbers as above and with the same notation, we find

lim
n→∞

[−det(An(tn))]
det(An(mn)) =

−1 + E
(
β J(1)2

[
1− tanh2 [U(t)]

])
1− E

(
β J(1)2

[
1− tanh2 [U(m)]

]) ∏
`′∈[k]

1− (m`′)2

1− (t`′)2 , (B.167)

where U(x) = −β(J(1)K(x) + h).
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Appendix C

Preprint: Metastability of Glauber
dynamics with inhomogeneous
coupling disorder

This appendix reproduces exactly the content of the paper [20] with title “Metastability of
Glauber dynamics with inhomogeneous coupling disorder”, authored by Anton Bovier, Frank
den Hollander, Saeda Marello, Elena Pulvirenti and Martin Slowik, and available as a preprint
on https: // arxiv. org/ abs/ 2209. 09827 , [math.PR], 2022 and not peer-reviewed yet.
This work was summarised in Chapter 5.

C.1 Introduction

Over the last decade there has been increasing interest in metastability under Glauber dynam-
ics of the Ising model with random interactions, in particular, of the Ising model on random
graphs. Dommers [35] considered the case of random regular graphs, Dommers, den Hollander,
Jovanovski, and Nardi [38] the configuration model, in both cases in finite volume and at low
temperature. Mossel and Sly [59, 60] computed mixing times on sparse Erdős-Rényi random
graphs and on random regular graphs, in both cases in finite volume and at high temperature.
Recently, Can, van der Hofstad, and Kumagai [25] analysed mixing times on random regular
graphs, in large volumes and at fixed temperature.

Metastability under Glauber dynamics of the Ising model on dense random graphs has so
far only been studied for the Erdős-Rényi random graph with fixed edge retention probability,
by den Hollander and Jovanovski [50] and by Bovier, Marello, and Pulvirenti [22]. In both
papers, mean metastable exit times of the random model are compared to those of the standard
Curie-Weiss model, in large volumes and at fixed temperature. In [50] the pathwise approach to
metastability (see Olivieri and Vares [65]) was used to prove that mean metastable exit times
are asymptotically equal to those of the Curie-Weiss model, multiplied by a random prefactor
of polynomial order in the size of the system. The prefactor estimate was improved in [22] by
using the potential-theoretic approach to metastability (see Bovier and den Hollander [18]), at
the expense of losing generality in the initial distribution. Recently, Bovier, den Hollander and
Marello [19] studied metastability under Glauber dynamics of the Ising model on the complete
graph with random independent couplings in large volumes and at fixed temperature. In that
model, the product structure of the couplings allows for lumping of states, and for combining
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the potential-theoretic approach with coarse-graining techniques, to obtain sharp estimates on
mean metastable exit times.

The present paper extends the results for the Erdős–Rényi random graph to inhomogeneous
dense random graphs and to more general random interactions. We compare the metastable be-
haviour of a class of spin systems whose Hamiltonian has random and conditionally independent
coupling coefficients, called quenched model, with the corresponding annealed model in which
the coupling coefficients are replaced by their conditional mean. More precisely, we prove that
metastability of the annealed model implies, in large volumes and at fixed temperature, almost
sure metastability of the quenched model with respect to the metastable sets of the annealed
model. Moreover, assuming metastability of the annealed model, we consider the ratio between
the mean hitting times of the quenched model and the annealed model, and estimate both its
tail behaviour and its moments, again in large volumes and at fixed temperature.

As in [22], we follow the potential-theoretic approach to metastability, which allows us to
estimate mean metastable exit times by estimating capacities and weighted sums of the equilib-
rium potential called harmonic sums. Estimates on the former can be obtained with the help
of well-known variational principles, while estimates on the latter are more involved. See, for
instance, Bianchi, Bovier and Ioffe [7] and [22], where long and model-dependent computations
were needed to prove that the relevant contribution of the harmonic sum is localised around
the starting metastable set. Schlichting and Slowik in [68], using an alternative definition of
metastable sets, prove that localisation of the harmonic sum around the starting metastable set
holds in large generality. Their work allows us to derive results for a large class of models. A
second novelty of the present paper compared to [22] concerns the techniques that are used to
prove concentration results. In [22], Talagrand’s concentration inequality was used, while here
we use McDiarmid’s concentration inequality.

C.2 Model, results and methods

This section is structured as follows. In Section C.2.1, we introduce the model. In Section C.2.2,
we define metastability, introduce relevant quantities, and state our main results. In Sec-
tion C.2.3, we summarise our strategy and methods, and give an outline of the rest of the
paper.

C.2.1 The model

Let (Ω,F ,P) be an abstract probability space. Let G ⊂ F be a sub-σ-algebra of F and J =
(Jij)1≤i<j<∞ be a triangular array of real random variables that are conditionally independent
given G and uniformly bounded, i.e., there exists a kJ ∈ (0,∞) such that |Jij | ≤ kJ P-a.s. for all
1 ≤ i < j <∞. We write PG [ · ] to denote a regular conditional distribution for J given G (which
exists because J is a sequence of real random variables; see Chow and Teicher [27, p. 218]).
Write E to denote the expectation with respect to P, and EG and VarG to denote expectation
and variance with respect to PG .

Given 2 ≤ N ∈ N, consider the Ising Hamiltonian with random couplings of the form

HN (σ) := − 1
N

N∑
i,j=1
i<j

Jijσiσj − h
N∑
i=1

σi, σ ∈ SN , (C.1)
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with h ∈ R the magnetic field and SN := {−1, 1}N the set of spin configurations. The corre-
sponding Gibbs measure on SN is denoted by

µN (σ) := Z−1
N e−βHN (σ), σ ∈ SN , (C.2)

with β ∈ (0,∞) the inverse temperature and ZN the normalizing partition function. The spin
configurations evolve in time as a continuous-time Markov chain (ΣN (t))t≥0 with state space
SN and Glauber-Metropolis transition rates given by

pN (σ, σ′) :=
{

exp
(
−β
[
HN (σ′)−HN (σ)

]
+
)
, if σ ∼ σ′,

0, otherwise,
σ, σ′ ∈ SN , (C.3)

where σ ∼ σ′ means that σ′ is obtained from σ by a flip of a single spin. The associated generator
LN acts on bounded functions f : SN → R as(

LNf
)
(σ) :=

∑
σ′∈SN

pN (σ, σ′)
(
f(σ′)− f(σ)

)
, σ ∈ SN . (C.4)

Note that the stochastic process (ΣN (t))t≥0 is irreducible and reversible with respect to the
Gibbs measure µN . We denote by PNν the law of the Markov chain (ΣN (t))t≥0 on D([0,∞),SN )
(the space of SN -valued càdlàg functions on [0,∞)) with initial distribution ν. The corresponding
expectation is denoted by ENν . If the initial distribution is concentrated on a single configuration
σ ∈ SN , then we write PNσ and ENσ , respectively. For a non-empty subset A ⊂ SN , let τNA be
the first return time to A, i.e.,

τNA ≡ τNA
(
(ΣN (t))t≥0

)
:= inf

{
t > 0 : ΣN (t) ∈ A,ΣN (t−) 6∈ A

}
. (C.5)

Our main objective is to compare the evolution of the model with Hamiltonian HN and the
model with Hamiltonian H̃N defined by

H̃N (σ) := EG
[
HN (σ)

]
= − 1

N

N∑
i,j=1
i<j

EG
[
Jij
]
σiσj − h

N∑
i=1

σi, σ ∈ SN , P -a.s. (C.6)

Throughout the paper, we use the superscript ∼ to denote quantities that refer to the model
defined in terms of H̃N . For instance, ((Σ̃N (t))t≥0, P̃Nσ : σ ∈ SN ) denotes the continuous-time
Markov chain with transitions rates (p̃N (σ, σ′))σ,σ′∈SN , which is reversible with respect to µ̃N ,
where both the transition rates and the Gibbs measure are defined as in (C.1) and (C.2), but
with HN replaced by H̃N . For lack of better names and with abuse of terminology, we refer
to the models defined in terms of HN and H̃N as the quenched model and the annealed model,
respectively.

In the sequel, we provide a list of motivating examples for which the results stated later hold.
For this purpose, consider two sequences

(Aij)1≤i<j<∞, (Pij)1≤i<j<∞, (C.7)

of triangular arrays with |Aij | ≤ kJ and Pij ∈ (0, 1) for i, j ∈ N with i < j, and let G :=
σ(Aij , Pij : 1 ≤ i < j ≤ ∞) be the σ-algebra generated by these sequences. Moreover, let

(Uij)1≤i<j<∞ (C.8)
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be a triangular array of i.i.d. random variables distributed uniformly in (0, 1). Define

Jij := AijBij , Bij := 1{Uij≤Pij}, 1 ≤ i < j <∞. (C.9)

Note that (Jij)1≤i<j<∞ and (Bij)1≤i<j<∞ are triangular arrays of conditionally independent
random variables given G. In particular, Bij are Bernoulli random variables with mean Pij .

Example C.2.1 (Ising model on the Erdős–Rényi random graph). By choosing Aij := 1 and
Pij := p ∈ (0, 1] for 1 ≤ i < j < ∞, G becomes the set {∅,Ω} and HN in (C.1) becomes
the Hamiltonian of the Ising model on the Erdős–Rényi random graph with edge retention
probability p, known as the randomly diluted Curie-Weiss model. Its metastable behaviour was
studied in [50] and [22]. In this case the annealed model is the Curie-Weiss model.

Example C.2.2 (Ising model on inhomogeneous random graphs). By taking Aij := 1 for
1 ≤ i < j <∞, HN in (C.1) becomes the Hamiltonian of the Ising model on an inhomogeneous
random graph, in which an edge (ij) is present with probability Pij . Of particular interest is
the case Pij = ViVj with (Vi)i∈N a sequence of i.i.d. random variables with support in (0, 1),
known as the Ising model on the Chung-Lu random graph [28]. The metastable behaviour of
the corresponding annealed model was studied in [19] for the case where the random variables
Vi have finite support.

Example C.2.3 (Randomly diluted Hopfield model). Given n ∈ N random patterns ξ1, . . . , ξn,
with ξk = (ξki )i∈N and ξki ∈ [−1, 1] for 1 ≤ k ≤ n, set Aij := ∑n

k=1 ξ
k
i ξ
k
j . By taking Pij ≡ p ∈

(0, 1) for 1 ≤ i < j < ∞, HN in (C.1) becomes the Hamiltonian of a Hopfield model in which
the interaction coefficients are randomly diluted by i.i.d. Bernoulli random variables with mean
p. See Bovier and Gayrard [16] for a review on the Hopfield model. The metastable behaviour
of the annealed model, i.e., the undiluted Hopfield model, was studied by an der Heiden in [2]
in a restricted (β, h)-regime. We plan to address the metastable behaviour in a more general
(β, h)-regime in a future paper.

C.2.2 Metastability and main results

Before stating our main results, we recall the definition of metastable Markov chains and
metastable sets put forward in Schlichting and Slowik [68, Definition 1.1].

Definition C.2.4 (ρN -metastability and metastable sets). For ρN > 0 and 2 ≤ K ∈ N, let
{M1,N , . . . ,MK,N} be a set of subsets of SN such thatMi,N ∩Mj,N = ∅ for all 1 ≤ i 6= j ≤ K.
The Markov process (ΣN (t))t≥0 is called ρN -metastable with respect to {M1,N , . . . ,MK,N} when

K
maxj∈{1,...,K} PNµN |Mj,N

[
τNMN\Mj,N

< τNMj,N

]
minX⊂SN\MN

PNµN |X
[
τNMN

< τNX

] ≤ ρN � 1, (C.10)

where MN := ⋃K
i=1Mi,N and, for a non-empty set X ⊆ SN , µN |X denotes the Gibbs measure

µN conditioned on the set X .

Remark C.2.5. The advantage of this definition compared to the one given in Bovier and den
Hollander [18, Definition 8.2] is twofold: it allows for direct control of `p(µN )-norms of functions,
and does not depend on the cardinality of the state space. For a more detailed comparison of
the two definitions of metastability we refer to [68, Remark 1.2].
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For fixed 2 ≤ K ∈ N and k1 > 0, define

Ω̃meta(N) :=
{
ω : ∃ {M1,N , . . . ,MK,N}(ω) non-empty disjoint subsets of SN

s.t. (Σ̃N (t))t≥0(ω) is e−k1N -metastable w.r.t. {M1,N , . . . ,MK,N}(ω)
}
, (C.11)

i.e., the event that the Markov chain (Σ̃N (t))t≥0 is ρ̃N -metastable with respect to some
{M1,N , . . . ,MK,N}, where we abbreviate

ρ̃N := e−k1N . (C.12)

Remark C.2.6. Note that both Ω̃meta(N) and {M1,N , . . . ,MK,N} – playing the role ofmetastable
sets – are G-measurable, because they are defined in terms of the annealed Hamiltonian H̃N .

In our main results we impose the following assumption on the annealed model.

Assumption C.2.7 (Metastability of the annealed model). For some (β, h) ∈ (0,∞)× R, the
following holds for the Markov chain (Σ̃N (t))t≥0 of the annealed model. There exist 2 ≤ K ∈ N
and k1 > 0 such that,

P
[
lim inf
N→∞

Ω̃meta(N)
]

= 1, (C.13)

where Ω̃meta(N) is defined in (C.11) and depends on K and k1.

Remark C.2.8. Assertion of Assumption C.2.7 can be rephrased as follows: P-a.s., there exists
a finite random variable N0 ∈ N and a sequence ({M1,N , . . . ,MK,N})N≥N0 of K non-empty
mutually disjoint subsets of SN (possibly depending on ω) such that for any N ≥ N0 the process
(Σ̃N (t))t≥0 is ρ̃N := e−k1N -metastable with respect to {M1,N , . . . ,MK,N}.

Remark C.2.9. Let us illustrate in the case of Example C.2.1 how to identify candidates of
metastable sets. It is well know (cf. [11, Section 3.5]) that, for any β ∈ (0,∞) and h ∈ R,

lim
N→∞

1
βN

log Z̃N = − inf
x∈[−1,1]

F̃β,h(x), (C.14)

where F̃β,h : [−1, 1]→ R denotes the free energy per vertex of the annealed model given by

F̃β,h(x) := −1
2x

2 − hx+ 1
β

(1− x
2 log 1− x

2 + 1 + x

2 log 1 + x

2

)
+ log 2. (C.15)

In particular, for any β > βc := 1 and h ∈ (−hc(β), hc(β)), where the critical strength of the
magnetic field is given by

hc(β) :=
√

1− β2 − 1
2β log

(
β(1 +

√
1− 1/β)2),

the free energy F̃β,h admits two local minima m1,m2 ∈ (−1, 1). For N ∈ N, let m1,N and m2,N
be the closest point in {−1,−1 + 2/N, . . . , 1 − 2/N, 1} to m1 and m2, respectively. Define the
setsM1,N ,M2,N ⊂ SN as the (set-valued) pre-image of the empirical magnetization SN 3 σ 7→
mN (σ) := 1

N

∑N
i=1 σi, i.e.,

M1,N := m−1
N (m1,N ) and M2,N := m−1

N (m2,N ). (C.16)

By using arguments similar to those given in [68, Lemma 4.1], it follows that {M1,N ,M2,N}
forms a pair of metastable sets in the sense of Definition C.2.4.
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For fixed N ∈ N, given the metastable sets {M1,N , . . . ,MK,N}, we can decompose the state
space SN into the domains of attraction with to respect the dynamics of the annealed model.
More precisely, by following [68, Definition 1.4], within the event Ω̃meta(N) the metastable sets
{M1,N , . . . ,MK,N} give rise to a metastable partition {S1,N , . . . ,SK,N} of the state space SN
such that

Mi,N ⊆ Si,N ⊂ Vi,N , i ∈ {1, . . . ,K}. (C.17)

The local valley Vi,N around the metastable setMi,N is defined as

Vi,N :=Mi,N∪
{
σ ∈Mc

N :

P̃Nσ
[
τNMi,N

< τNMN\Mi,N

]
≥ max

j 6=i
P̃Nσ
[
τNMj,N

< τNMN\Mj,N

]}
, (C.18)

where we recall thatMN := ⋃K
i=1Mi,N .

Our first theorem says that, subject to Assumption C.2.7, (ΣN (t))t≥0 also exhibits metastable
behaviour in the sense of Definition C.2.4.

Theorem C.2.10 (Metastability). Suppose that (β, h) ∈ (0,∞)×R satisfies Assumption C.2.7.
Then, for any c0 ∈ (0, k1), the event

Ωmeta(N) :=
{
ω ∈ Ω̃meta(N) : (ΣN (t))t≥0(ω) is e−c0N -metastable w.r.t.

{M1,N , . . . ,MK,N}(ω)
}

(C.19)

satisfies

P
[
lim inf
N→∞

Ωmeta(N)
]

= 1. (C.20)

Let the following assumption hold for all N ∈ N, in Ω̃meta(N).

Assumption C.2.11 (Non-degeneracy). Label the metastable sets M1,N , . . . ,MK,N in such a
way that they are ordered decreasingly according to their weights under the Gibbs measure of the
annealed model, i.e.,

µ̃N
[
M1,N

]
≥ µ̃N

[
M2,N

]
≥ . . . ≥ µ̃N

[
MK,N

]
, P -a.s., ∀N ∈ N, (C.21)

and assume that, for some i ∈ {2, . . . ,K}, there exists a k2 ∈ (0,∞) such that

µ̃N [Sj,N ] ≤ e−k2N µ̃N [Si,N ], P -a.s., ∀j ∈ {i+ 1, . . . ,K}, N ∈ N. (C.22)

Remark C.2.12. The non-degeneracy condition in (C.22) can be relaxed by replacing e−k2N

with some δ̃N satisfying e−k2N ≤ δ̃N < e−c
√
N for some sufficiently large c ∈ (0,∞). The

technical reasons can be found in the proofs in Section C.5.

In view of Assumption C.2.11, fix i ∈ {2, . . . ,K} such that (C.22) holds and put, for N ∈ N,
P-a.s. in Ω̃meta(N),

AN :=Mi,N , BN :=
i−1⋃
j=1
Mj,N . (C.23)
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Note that BN is the union of all metastable sets with weight not smaller than the weight of AN .
Before proceeding, we define, for N ∈ N and non-empty disjoint sets A,B ⊂ SN , the so-called

last-exit biased distribution on A for the transition from A to B by

νA,B(σ) ≡ νNA,B(σ) =
µN (σ) PNσ

[
τNB < τNA

]∑
σ∈A µN (σ) PNσ

[
τNB < τNA

] , σ ∈ A. (C.24)

This distribution plays an essential role in the potential-theoretic approach to metastability, as
can be seen in (C.29) below.

We are now ready to state our second theorem, in which we compare the mean hitting time
of BN for the Markov chain (ΣN (t))t≥0 starting from the set AN according to the distribution
νAN ,BN with the corresponding quantity for the Markov chain (Σ̃N (t))t≥0. Under the regular
conditional distribution PG , we obtain for the ratio of these metastable hitting times estimates
both on its tail behaviour and on its moments.

Theorem C.2.13. Suppose that (β, h) ∈ (0,∞) × R and i ∈ {2, . . . ,K} satisfy Assump-
tions C.2.7 and C.2.11. Set

αN := β2

2N2

N∑
i,j=1
i<j

VarG [Jij ]. (C.25)

(i) For t ≥ 0, P-a.s.,

lim
N→∞

PG

[
e−t−αN ≤

ENνAN,BN
[
τNBN

]
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
≥ 1− 4 e−t2/(2βkJ )2

. (C.26)

(ii) For any q ≥ 1 and c ∈ (0,∞), let

Ωq,c(N) :={
ω : e−αN

(
1− c√

N

)
≤

EG
[
ENνAN,BN

[
τNBN

]q]1/q(ω)

ẼNν̃AN,BN
[
τ̃NBN

]
(ω)

≤ e4qαN
(
1 + c√

N

)}
. (C.27)

Then, for any q ≥ 1 there exists c1 ∈ (0,∞) such that

P
[
lim inf
N→∞

Ωq,c1(N)
]

= 1. (C.28)

Remark C.2.14. (a) Since the random variables (Jij)1≤i<j<∞ are assumed to be uniformly
bounded, it follows that αN = O(1).

(b) Assumption C.2.11 ensures that the metastable sets Mj,N , j ∈ {i + 1, . . . ,K}, are not
relevant for the analysis of the crossing times from AN to BN .
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C.2.3 Methods and outline

Key notions from the potential-theoretic approach to metastability

To prove Theorems C.2.10 and C.2.13, we crucially rely on potential theory, which allows us to
express probabilistic objects of interest in terms of solutions of certain boundary value problems.
It is well-known (see e.g. [18, Corollary 7.11]) that, for any N ∈ N and any non-empty disjoint
A,B ⊂ SN , the mean hitting time of B starting from the last-exit biased distribution νNA,B on A
is given by

ENνA,B
[
τNB
]

=
‖hNA,B‖µN

capN (A,B) , (C.29)

where ‖hNA,B‖µN denotes the `1(µN )-norm of the equilibrium potential hNA,B of the pair (A,B),
i.e., the function hNA,B : SN → [0, 1] that is the unique solution of the boundary value problem{ (

LNf
)
(σ) = 0, σ ∈ SN \ (A ∪ B),
f(σ) = 1A(σ), σ ∈ A ∪ B. (C.30)

Note that the equilibrium potential has a natural interpretation in terms of hitting probabilities,
namely, hNA,B(σ) = PNσ

[
τNA < τNB

]
, for all σ ∈ SN \ (A∪B). The capacity capN (A,B) of the pair

(A,B) is defined by

capN (A,B) :=
∑
σ∈A

µN (σ) PNσ
[
τNB < τNA

]
. (C.31)

From this definition it is clear that

PNµN |A
[
τNB < τNA

]
= capN (A,B)

µN [A] , (C.32)

where µN |A denotes the Gibbs measure µN conditioned on the set A.
Capacities can be expressed in terms of variational principles that are very useful to obtain

upper und lower bounds (see [18, Section 7.3] for more details). Upper bounds are obtained by
using the Dirichlet principle, which states that

capN (A,B) = inf
{
EN (f) : f ∈ HNA,B

}
. (C.33)

Here, HNA,B denotes the set of all functions from SN to R that are equal to 1 on A and 0 on B,
and

EN (f) := 〈f,−LNf〉µN = 1
2

∑
σ,σ′∈SN

µN (σ)pN (σ, σ′)
(
f(σ)− f(σ′)

)2 (C.34)

is the Dirichlet form. We recall that the transition rates pN are defined in (C.3).
Lower bounds are obtained via the Thomson principle, which states that

capN (A,B) = sup
{ 1
DN (ϕ) : ϕ ∈ UNA,B

}
=
(
inf
{
DN (ϕ) : ϕ ∈ UNA,B

})−1
, (C.35)

where UNA,B is the space of all unit antisymmetric AB-flows ϕ : SN × SN → R, and

DN (ϕ) := 1
2

∑
σ,σ′∈SN
σ∼σ′

ϕ(σ, σ′)2

µN (σ) pN (σ, σ′) . (C.36)
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Strategy of proofs

The proof of Theorem C.2.10 relies on Definition C.2.4 and on (C.32), together with an appli-
cation of the Dirichlet principle in combination with a comparison of the quenched Hamiltonian
HN and the annealed Hamiltonian H̃N on a particular event of high probability.

We prove Theorem C.2.13(i) by combining concentration inequalities for the logarithm of the
mean hitting time ENνAN,BN

[
τNBN

]
of the quenched model with bounds on the distance between

the (conditional on G) mean of that logarithm and the logarithm of the mean hitting time
ẼNν̃AN,BN

[
τ̃NBN

]
of the annealed model. Estimates of the latter type, comparing conditional means

with average means, will be called annealed estimates. The results in Theorem C.2.13(ii) are
annealed estimates as well. In view of (C.29), estimates on the mean hitting time ENνAN,BN [τNBN ],
or on its logarithm, will follow once we have separately proven corresponding estimates for both
ZN capN (AN ,BN ) and ZN‖hNAN ,BN ‖µN .

To prove concentration inequalities for the quantities log[ZN capN (AN ,BN )] and
log[ZN‖hNAN ,BN ‖µN ], we use a conditional version of McDiarmid’s bounded differences inequality
(see Proposition C.7.1 below). This strategy for proving concentration is different from the one
used in [22], where Talagrand’s concentration inequality was used. The advantage of McDiarmid
over Talagrand is twofold. First, McDiarmid’s inequality provides exact constants. Second, it
does not require convexity of the map J 7→ log

(
ZN capN (AN ,BN )

)
, which is crucial because we

do not know how to prove convexity.
Estimates on capacities for Theorem C.2.13 are proven by using the Dirichlet principle and

the Thomson principle, and do not require any assumption on metastability. Finding estimates
on the equilibrium potential, however, is more involved. We use a result that is similar to
[68, Theorem 1.7] (Proposition C.5.2 below), for which Assumption C.2.11 is required, together
with the same comparison of the Hamiltonians HN and H̃N that is used in the proof of Theo-
rem C.2.10, both holding with high probability. We emphasise that the constants appearing in
our statements may depend on the parameters of the model.

Outline

The remainder of the paper is organised as follows. In Section C.3 we provide the proof of
Theorem C.2.10 on metastability of the quenched model. In Section C.4 we provide estimates
on capacities. Section C.5 is devoted to stating and proving estimates on weighted sums of
the equilibrium potential, called harmonic sums. In Section C.6 we prove Theorem C.2.13 by
using the results of the previous sections. Appendix C.7 contains the conditional version of the
McDiarmid’s inequality that is used in the paper.

C.3 Metastability

Before proving Theorem C.2.10, we provide in Lemma C.3.1 a comparison of the quenched
Hamiltonian HN and the annealed Hamiltonian H̃N . This lemma will be used both in the proof
of Theorem C.2.10 below and in Section C.5, where we deal with estimates on the equilibrium
potential.

Given a positive real sequence (aN )N∈N, let

Ξ(aN ) :=
{

max
σ∈SN

∣∣HN (σ)− H̃N (σ)
∣∣ < aN

}
⊂ Ω, 2 ≤ N ∈ N, (C.37)
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denote the event that, uniformly in σ ∈ SN , HN differs from H̃N by at most aN . On the event
Ξ(aN ) we have control on the difference between the quantities determining (ΣN (t))t≥0 and
(Σ̃N (t))t≥0. Moreover, for suitably chosen sequences (aN )N∈N, the event Ξ(aN )c turns out to be
negligible in the limit as N →∞.

Lemma C.3.1. For a positive real sequence (aN )N∈N, set bN := a2
N/(2kJ) − N log 2. Then,

P-a.s.,

PG
[
Ξ(aN )c

]
≤ e−bN ∧ 1, ∀N ∈ N, N ≥ 2. (C.38)

Proof. Fix 2 ≤ N ∈ N. Clearly, it suffices to prove (C.38) in case bN > 0. Using that the
triangular array J = (Jij)1≤i<j<∞ is assumed to be conditionally independent given G and that
the map J 7−→ HN (σ) depends linearly on the random coupling (Jij)1≤i<j≤N , we can apply
McDiarmid’s concentration inequality (Theorem C.7.1), together with a union bound, to get
that, P-a.s.,

PG
[
max
σ∈SN

∣∣HN (σ)− H̃N (σ)
∣∣ ≥ aN] ≤ ∑

σ∈SN

PG
[∣∣HN (σ)− H̃N (σ)

∣∣ ≥ aN]
≤ 2N exp

(
− a2

NN
2

2kJN(N − 1)

)
.

(C.39)

Since 2kJ(N − 1)/N ≤ 2kJ , (C.38) follows.

Proof of Theorem C.2.10. We will prove that

P
[
lim sup
N→∞

Ωmeta(N)c
]

= 0, (C.40)

which is equivalent to (C.20). First note that, by the choice of µN and pN in (C.2) and (C.3),

ZNµN (σ) pN (σ, σ′) = e−β(HN (σ)∨HN (σ′)), σ ∼ σ′ ∈ SN . (C.41)

An elementary computation yields that, on the event Ξ(aN ),

H̃N (σ) ∨ H̃N (σ′)− aN ≤ HN (σ) ∨HN (σ′) ≤ H̃N (σ) ∨ H̃N (σ′) + aN , σ, σ′ ∈ SN . (C.42)

Thus, by a comparison of Dirichlet forms it follows that

Z̃N ẼN (f) e−βaN ≤ ZNEN (f) ≤ Z̃N ẼN (f) eβaN , (C.43)

for any f : SN → R. In view of the Dirichlet principle (C.33), we deduce that, on the event
Ξ(aN ),

e−βaN ≤ ZN capN (X ,Y)
Z̃N c̃apN (X ,Y)

≤ eβaN , ∅ 6= X ,Y ⊂ SN disjoint. (C.44)

Moreover, for any 2 ≤ N ∈ N, on the event Ξ(aN ),

e−βaN ≤
ZNµN

[
X
]

Z̃N µ̃N
[
X
] ≤ eβaN , ∅ 6= X ⊂ SN . (C.45)
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It follows from (C.32), (C.44) and (C.45) that, on the event Ξ(aN ),

e−2βaN ≤
PNµN |X

[
τNY < τNX

]
P̃NµN |X

[
τ̃NY < τ̃NX

] ≤ e2βaN , ∅ 6= X ,Y ⊂ SN disjoint. (C.46)

Thus, on the event Ξ(aN ) ∩ Ω̃meta(N),

max
j∈{1,...,K}

PNµN |Mj,N

[
τNMN\Mj,N

< τNMj,N

]
≤ ρ̃N

K
e4βaN min

X⊂SN\MN

PNµN |X
[
τNMN

< τNX

]
. (C.47)

Now set aN =
√

2kJ(k1 + log 2)N for 2 ≤ N ∈ N, and note that, with this choice of aN ,
Lemma C.3.1 implies that

P
[
Ξ(aN )c

]
= E

[
PG
[
Ξ(aN )c

]]
≤ e−bN = e−k1N , N ∈ N, N ≥ 2. (C.48)

By choosingN(k1, c0, β, kJ) ∈ N in such a way that c0 < k1−4βaN/N for allN ≥ N(k1, c0, β, kJ),
it follows from (C.47) that Ξ(aN ) ∩ Ω̃meta(N) ⊆ Ωmeta(N) for all N ≥ N(k1, c0, β, kJ). In par-
ticular,

Ωmeta(N)c ⊆ Ξ(aN )c ∪ Ω̃meta(N)c, N ≥ N(k1, c0, β, kJ). (C.49)
Therefore, using continuity of the probability measure, we get

P
[
lim sup
N→∞

Ωmeta(N)c
](C.49)
≤ P

[
lim sup
N→∞

(
Ξ(aN )c ∪ Ω̃meta(N)c

)]
≤ lim

N→∞

(
P
[⋃

m≥N
Ξ(am)c

]
+ P

[⋃
m≥N

Ω̃meta(m)c
])

= P
[
lim sup
N→∞

Ξ(aN )c
]

+ P
[
lim sup
N→∞

Ω̃meta(N)c
]
. (C.50)

Since, by (C.48), ∑∞N=1 P
[
Ξ(aN )c

]
< ∞, an application of the Borel Cantelli Lemma and As-

sumption C.2.7 yields that

P
[
lim sup
N→∞

Ωmeta(N)c
]
≤ P

[
lim sup
N→∞

Ξ(aN )c
]

+ P
[
lim sup
N→∞

Ω̃meta(N)c
]

= 0. (C.51)

C.4 Capacity estimates
In this section we provide general estimates on the capacity of the quenched model compared
to the annealed model. These estimates are general because we do not require any assump-
tion on metastability, and the sets involved in the estimates are general disjoint subsets of the
configuration space.

In Section C.4.1 we prove concentration for the logarithm of the capacities by using the
Dirichlet principle and McDiarmid’s concentration inequality. In Section C.4.2 we first estimate
the conditional mean of ZNµN and pN in terms of the corresponding quantities of the annealed
model Z̃N µ̃N and p̃N in Lemma C.4.2, and afterwards prove annealed capacity estimates by
using both the Dirichlet and the Thomson principle, together with Lemma C.4.2. The latter is
crucial also in the proof of annealed estimates of ‖hNAN ,BN ‖µN in Section C.5.3.

All formulas in this Section C.4 are intended to hold P-a.s. In order to lighten notation, we
refrain from repeating that.
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C.4.1 Concentration of quenched capacities

Proposition C.4.1. Let 2 ≤ N ∈ N, and consider two non-empty disjoint subsets X ,Y ⊂ SN .
Then, for any t ≥ 0,

PG
[∣∣log

(
ZN capN (X ,Y)

)
− EG

[
log
(
ZN capN (X ,Y)

)]∣∣ > t
]
≤ 2 e−t2/(βkJ )2

. (C.52)

Proof. First, recall that the triangular array (Jij)1≤i<j<∞ is assumed to be conditionally inde-
pendent given G. Hence, in view of McDiarmid’s concentration inequality (Theorem C.7.1), the
assertion in (C.52) is immediate once we show that, for any 2 ≤ N ∈ N, the mapping

(Jij)1≤i<j≤N 7−→ FN
(
(Jij)1≤i<j≤N

)
:= log

(
ZN capN (X ,Y)

)
(C.53)

satisfies a bounded difference estimate. More precisely, it is sufficient to show that, for any
1 ≤ k < l ≤ N ,

∣∣FN((Jij)1≤i<j≤N
)
− FN

(
(J ′ij)1≤i<j≤N

)∣∣ ≤ 2βkJ
N

, (C.54)

where J ′ij := Jij for all 1 ≤ i < j ≤ N such that (i, j) 6= (k, l), and J ′kl is a conditionally
independent copy of (Jij)1≤i<j≤N given G. In the sequel, we write HJ

N , ZJN , EJN and capJN (X ,Y)
to emphasise the dependence on the random coupling J = (Jij)1≤i<j≤N .

We proceed by following the same line of argument that led to (C.44) in the proof of Theo-
rem C.2.10. Since

∣∣HJ
N (σ)−HJ ′

N (σ)
∣∣ =

∣∣Jkl − J ′kl∣∣
N

≤ 2kJ
N

, σ ∈ SN , (C.55)

an elementary computation yields that, for any σ, σ′ ∈ SN ,

HJ ′
N (σ) ∨HJ ′

N (σ′)− 2kJ
N
≤ HJ

N (σ) ∨HJ
N (σ′) ≤ HJ ′

N (σ) ∨HJ ′
N (σ′) + 2kJ

N
. (C.56)

Thus, by a comparison of Dirichlet forms, we obtain, for any f : SN → R,

ZJ
′

N EJ
′

N (f) e−2βkJ/N ≤ ZJNEJN (f) ≤ ZJ ′N EJ
′

N (f) e2βkJ/N . (C.57)

In view of the Dirichlet principle (C.33), we deduce that

ZJ
′

N capJ ′N (X ,Y) e−2βkJ/N ≤ ZJN capJN (X ,Y) ≤ ZJ ′N capJ ′N (X ,Y) e2βkJ/N , (C.58)

which yields (C.54).

C.4.2 Annealed capacity estimates

Notation 1. For any three sequences (aN )N≥0, (bN )N≥0, (cN )N≥0 and N ∈ N, the notation
aN = bN +O(cN ) means that there exists a C ∈ (0,∞) independent of ω and N such that

−CcN ≤ aN − bN ≤ CcN . (C.59)

Before proving annealed capacity estimates, we prove the following lemma which is used
both in the current section and for proving further annealed estimates in Section C.5.3.

Lemma C.4.2. For 2 ≤ N ∈ N the following hold:
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(i) For any σ ∈ SN ,

EG
[
e±β∆N (σ)

]
= eαN

(
1 +O(N−1)

)
, (C.60)

(ii) For any σ, σ′ ∈ SN with σ ∼ σ′,

EG
[
e±β(HN (σ)∨HN (σ′))

]
= e±β(H̃N (σ)∨H̃N (σ′)) eαN

(
1 +O(N−1/2)

)
, (C.61)

where αN is defined in (C.25) and ∆N (σ) := HN (σ)− H̃N (σ), σ ∈ SN .

Proof. (i) Denote by R 3 t 7→ Λij(t) := logEG
[
exp

(
t(Jij−EG [Jij ])

)]
the conditional log-moment

generating function given G. By a Taylor expansion up to the third order, we get that, for any
t ∈ R,

Λij(t) = t2

2 VarG
[
Jij
]

+ t3

2

∫ 1

0
(1− θ)2Λ′′′ij(θt)dθ. (C.62)

Since the random variables are assumed to be uniformly bounded, i.e., |Jij | ≤ kJ , an elementary
computation exploiting Cramér’s measure yields that, |Λ′′′ij(t)| ≤ 6k3

J . Hence

∣∣Λij(t)− t2

2 VarG [Jij ]
∣∣ ≤ k3

J |t|
3 . (C.63)

Since the triangular array (Jij)1≤i<j<∞ is conditionally independent given G, we have

∣∣∣logEG
[
e±β∆N (σ)

]
− αN

∣∣∣ ≤ N∑
i,j=1
i<j

∣∣∣Λij(∓βN σiσj
)
− (∓βσiσj)2

2N2 VarG
[
Jij
]∣∣∣ ≤ (βkJ)3

2N , (C.64)

which concludes the proof of (C.60). In particular, for any σ ∈ SN ,

e±βH̃N (σ)+αN e−(βkJ )3/2N ≤ EG
[
e±βHN (σ)

]
≤ e±βH̃N (σ)+αN e(βkJ )3/2N . (C.65)

(ii) Because the proofs of (C.61) for ±β are similar, we give a detailed proof for +β only. Since
the conditional expectation of the maximum of two random variables is bounded from below
by the maximum of their conditional expectations, it is immediate from (C.65) that, for any
σ, σ′ ∈ SN ,

EG
[
eβ(HN (σ)∨HN (σ′))

]
≥ eβ(H̃N (σ)∨H̃N (σ′)) eαN

(
1− (βkJ)3

2N
)
. (C.66)

Thus, we are left with proving the desired upper bound. For this purpose, we define, for σ ∈ SN
and k ∈ {1, . . . , N},

Hk
N (σ) := −σk

( 1
N

N∑
j=1
j>k

Jkjσj + 1
N

N∑
i=1
i<k

Jikσi + h

)
, (C.67)

and setH 6=kN (σ) := HN (σ)−Hk
N (σ). Denoting by σk ∈ SN the configuration that is obtained from

σ by flipping the spin at site k ∈ {1, . . . , N}, we getH 6=kN (σ) = H 6=kN (σk) andHk
N (σ) = −Hk

N (σk).
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Since for any σ ∈ SN the random variables H 6=kN (σ) and Hk
N (σ) are conditionally independent

given G, it follows that

EG
[
eβ(HN (σ)∨HN (σk))

]
= EG

[
eβH

6=k
N (σ)

]
EG
[
eβHk

N (σ) ∨ eβHk
N (σk)

]
. (C.68)

In order to estimate the second term, note that for any two non-negative random variables X,Y
with finite second moment, we have

E[X ∨ Y ] = E[X] ∨ E[Y ] + 1
2
(
E
[
|X − Y |

]
−
∣∣E[X]− E[Y ]

∣∣)
≤ E[X] ∨ E[Y ] + 1

2
(
E
[
|X − E[X]|

]
+ E

[
|Y − E[Y ]|

])
≤ E[X] ∨ E[Y ] + 1

2
(√

Var[X] +
√
Var[Y ]

)
, (C.69)

where we use the triangular inequality and Jensen’s inequality. Hence,

EG
[
eβHk

N (σ) ∨ eβHk
N (σk)

]
≤ EG

[
eβHk

N (σ)
]
∨ EG

[
eβHk

N (σk)
]

+ 1
2

(√
VarG

[
eβHk

N (σ)
]

+
√
VarG

[
eβHk

N (σk)
])
. (C.70)

Since,

1 +
VarG

[
e±βHk

N (σ)]
EG
[
e±βHk

N (σ)]2 ≤ EG
[
e±2β(Hk

N (σ)−EG [Hk
N (σ)])

]
EG
[
e±β(Hk

N (σ)−EG [Hk
N (σ)])

]2

=
exp

(∑N
j=k+1 Λkj(∓2β

N σkσj) +∑k−1
i=1 Λik(∓2β

N σiσk)
)

exp
(

2∑N
j=k+1 Λkj(∓βN σkσj) + 2∑k−1

i=1 Λik(∓βN σiσk)
) , (C.71)

and |Λij(t)| ≤ k2
J t

2, which follows from a Taylor expansion of Λij(t) up to second order together
with the estimate |Λ′′ij(t)| ≤ 2k2

J , we obtain that

EG
[
eβHk

N (σ) ∨ eβHk
N (σk)

]
≤
(
EG
[
eβHk

N (σ)
]
∨ EG

[
eβHk

N (σk)
])(

1 +
√

e
6(βkJ )2

N − 1
)
. (C.72)

Combining (C.72), (C.68) and (C.65), we see that there exists a c ≡ c(β, kJ) such that for all
2 ≤ N ∈ N,

EG
[
eβ(HN (σ)∨HN (σk))

]
≤ eβ(H̃N (σ)∨H̃N (σk)) eαN

(
1 + c√

N

)
. (C.73)

This concludes the proof of (C.61).

We are ready to prove the annealed capacity estimates.

Proposition C.4.3. Let 2 ≤ N ∈ N, and let X ,Y ⊂ SN be two non-empty and disjoint.

(i) Then, ∣∣∣EG[log
(
ZN capN (X ,Y)

)]
− log

(
Z̃N c̃apN (X ,Y)

)∣∣∣ = αN +O
( 1√

N

)
. (C.74)
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(ii) For any q ∈ [1,∞) there exists a c3 ∈ (0,∞) such that

e−αN
(
1− c3√

N

)
≤

EG
[(
ZN capN (X ,Y)

)q]1/q
Z̃N c̃apN (X ,Y)

≤ eqαN
(
1 + c3√

N

)
, (C.75)

e−αN
(
1− c3√

N

)
≤

EG
[(
ZN capN (X ,Y)

)−q]1/q
(
Z̃N c̃apN (X ,Y)

)−1 ≤ eqαN
(
1 + c3√

N

)
, (C.76)

where αN is defined in (C.25).

Proof. Fix N 3 N ≥ 2 and consider two non-empty disjoint subsets X ,Y ⊂ SN . Recall from
Section C.2.3 the definition of the Dirichlet form EN (f) for functions f ∈ HX ,Y and the Dirichlet
form DN (ϕ) for unit flows ϕ ∈ UX ,Y . In view of Lemma C.4.2(ii) we have that

EG
[
ZNEN (f)

]
= Z̃N ẼN (f) eαN

(
1 +O(N−1/2)

)
∀ f ∈ HX ,Y ,

EG
[
Z−1
N DN (ϕ)

]
= Z̃−1

N D̃N (ϕ) eαN
(
1 +O(N−1/2)

)
∀ϕ ∈ UX ,Y .

(C.77)

(i) The claim in (C.74) is an immediate consequence of the Dirichlet principle and the Thomson
principle combined with Jensen’s inequality. Indeed, in view of (C.77) there exists a c ≡ c(β, kJ)
such that

EG
[
log
(
ZN capN (X ,Y)

)]
≤ inf

f∈HX ,Y
logEG

[
ZNEN (f)

]
≤ inf

f∈HX ,Y
log
(
Z̃N ẼN (f)

)
+ αN + cN−1/2

= log
(
Z̃N c̃apN (X ,Y)

)
+ αN + cN−1/2. (C.78)

Likewise, we obtain that

EG
[
log
(
ZN capN (X ,Y)

)]
≥ − inf

ϕ∈UX ,Y
logEG

[
Z−1
N DN (ϕ)

]
≥ − inf

ϕ∈UX ,Y
log
(
Z̃−1
N D̃N (ϕ)

)
− αN − cN−1/2

= log
(
Z̃N c̃apN (X ,Y)

)
− αN − cN−1/2. (C.79)

(ii) Since the proofs of (C.75) and (C.76) are similar, we present the proof for (C.76) only. To
get the lower bound, note that by Jensen’s inequality it is immediate that

EG
[(
ZN capN (X ,Y)

)−q]1/q ≥ EG
[(
ZN capN (X ,Y)

)−1] ≥ 1
EG
[
ZN capN (X ,Y)

] . (C.80)

Hence, analogously to (C.78), by applying the Dirichlet principle and (C.77) we obtain that
there exists a c ≡ c(β, kJ) such that

1
EG
[
ZN capN (X ,Y)

] ≥ e−αN
Z̃N c̃apN (X ,Y)

(
1− cN−1/2). (C.81)

To get the upper bound, note that, analogously to (C.79), by the Thomson principle we have
that

EG
[(
ZN capN (X ,Y)

)−q]1/q ≤ infϕ∈UX ,Y EG
[(
Z−1
N DN (ϕ)

)q]1/q
. (C.82)
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By Minkowski’s inequality and an application of (C.61) with β replaced by βq, we find that for
any q ∈ [1,∞) there exists a c′ ≡ c′(q, β, kJ) such that, for all ϕ ∈ UX ,Y ,

EG
[(
Z−1
N DN (ϕ)

)q]1/q ≤ Z̃−1
N D̃N (ϕ) eqαN

(
1 + c′N−1/2). (C.83)

Therefore, again applying the Thomson principle, we obtain

EG
[(
ZN capN (X ,Y)

)−q]1/q ≤ eqαN
Z̃N c̃apN (X ,Y)

(
1 + c′N−1/2), (C.84)

and by setting c3 := c ∨ c′ we conclude the proof.

C.5 Equilibrium potential estimates
This section contains all our results concerning the `1(µN )-norm of the equilibrium potential
hNAN ,BN , which we call the harmonic sum. Before proving concentration estimates in Sec-
tion C.5.2 and annealed estimates in Section C.5.3, we provide some preliminary estimate in
Section C.5.1. We emphasise that throughout this section, contrary to Section C.4, metastability
plays an essential role.

C.5.1 Preliminary estimates

As mentioned above, for estimates on the harmonic sum we restrict to the event Ξ(aN ), which
is defined in (C.37) and used in Section C.3 to prove Theorem C.2.10. This event has high
probability for suitably chosen sequences (aN )N∈N (recall Lemma C.3.1). We use two facts: on
Ξ(aN ) we can control the quenched Gibbs measure µN in terms of the annealed Gibbs measure
µ̃N (recall (C.45)), and the harmonic sum localises on the metastable valley of AN . We state
and prove the last result in Proposition C.5.2.

Notation 2. For any two random variables X,Y depending on N ∈ N, writing “X = Y holds
P-a.s. on the event Ω̃meta(N)” means that

1Ω̃meta(N)X = 1Ω̃meta(N)Y, P -a.s.. (C.85)

We stress that all formulas in Section C.5 hold P-a.s. Moreover, formulas involving the
quantities Sj,N ,Mj,N ,AN ,BN , for fixed j ∈ {1, . . . ,K} and N ∈ N, hold P-a.s. on the event
Ω̃meta(N) unless differently specified, because those quantities are not defined in Ω̃meta(N)c.

Remark C.5.1. By G-measurability of Ω̃meta (see Remark C.2.6) we are allowed to compute
expectations and probabilities conditioned to G on the event Ω̃meta.

Proposition C.5.2. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11, and that (aN )N∈N
is a non-negative sequence that is sublinear in N . Then there exists a C ∈ (0, k1 ∧ k2) such that
P-a.s. on the event Ξ(aN ) ∩ Ω̃meta(N), for N sufficiently large depending on (aN )N∈N, β, k1, k2,

‖hNAN ,BN ‖µN = µN [Si,N ]
[
1 +O(e−CN )

]
. (C.86)

Remark C.5.3. Proposition C.5.2 holds true also for aN = cN , with c > 0, in case cβ is
sufficiently small compared to k1 and k2. We do not use this result.
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Remark C.5.4. Although Proposition C.5.2 is similar to [68, Theorem 1.7], it is not an im-
mediate consequence of the latter. Indeed, in (C.86) both ‖hNAN ,BN ‖µN and µN refer to the
quenched Markov chain (ΣN (t))t≥0, but Si,N is a set of the metastable partition of the annealed
Markov chain (Σ̃N (t))t≥0, while in [68, Theorem 1.7] all quantities refer to the same process. We
made this modification for two reasons. First of all, we are not able to prove [68, Theorem 1.7]
for the quenched Markov chain because we cannot prove the non-degeneracy assumption needed
therein. Second, even if we were able to prove it, it would not be useful later on as we do not
have estimates on the measure of the metastable partition of (ΣN (t))t≥0. However, as we shall
see later, Assumption C.2.11 and (C.45) allow us both to prove (C.86) and to use it later having
estimates on its right hand side.

Remark C.5.5. Note that in the following proof of Proposition C.5.2 we use the metastability
of (Σ̃N (t))t≥0 and do not use the metastability of (ΣN (t))t≥0.

Proof of Proposition C.5.2. The proof is inspired by that of [68, Lemma 3.3] and consists of two
steps.
Step 1. Let (aN )N∈N be any non-negative real sequence and fix N ∈ N. We start by showing
that the following is true P-a.s. on the event Ξ(aN )∩ Ω̃meta(N), for any two j 6= k ∈ {1, . . . ,K}
and any ε ∈ (0, 1],∑

σ∈Sk,N

µN (σ)
µN [Sk,N ] h

N
Mj,N ,Mk,N

(σ) ≤ ε+ ρ̃N e4βaN log(1/ε) min
{

1, µN [Sj,N ]
µN [Sk,N ]

}
. (C.87)

Recall that, for ` ∈ {1, . . . ,K}, V`,N and S`,N are, respectively, the local valley around the
metastable set M`,N and a set of the metastable partition of the annealed model. Moreover,
MN = ⋃K

`=1M`,N . By applying (C.32) and (C.46), we have that, for any X ⊂ Vk,N \ Mk,N ,
P-a.s. on the event Ξ(aN ) ∩ Ω̃meta(N),

µN
[
X
](C.46)
≤ e2βaN capN (X ,Mk,N )

P̃NµN |X
[
τ̃NMk,N

< τ̃NX
]

≤ e2βaN ρ̃N

(
max

`∈{1,...,K}
P̃NµN |M`,N

[
τ̃NMN\M`,N

< τ̃NM`,N

])−1
capN (X ,Mk,N )

(C.46)
≤ e4βaN ρ̃N

(
max

`∈{1,...,K}
PNµN |M`,N

[
τNMN\M`,N

< τNM`,N

])−1
capN (X ,Mk,N ), (C.88)

where in the second inequality we used that we are in Ω̃meta(N) and X ⊂ Vk,N \Mk,N to apply
[68, Lemma 3.1]. Moreover, using (C.32) and monotonicity of capacities, we get

max
`∈{1,...,K}

PNµN |M`,N

[
τNMN\M`,N

< τNM`,N

]
≥ max

{capN (Mj,N ,Mk,N )
µN
[
Mk,N

] ,
capN (Mk,N ,Mj,N )

µN
[
Mj,N

] }
. (C.89)

Next, for t ∈ (0, 1] we write XN (t) := {σ ∈ SN : hNMj,N ,Mk,N
(σ) ≥ t} to denote the super

level-sets of hNMj,N ,Mk,N
. Note that, for any t ∈ (0, 1], XN (t) ∩Mk,N = ∅ and Mj,N ⊆ XN (t).

Using reversibility, we have

t cap(XN (t),Mk,N ) ≤ 〈−LNhNXN (t),Mk,N
, hNMj,N ,Mk,N

〉µN
= 〈hNXN (t),Mk,N

,−LNhNMj,N ,Mk,N
〉µN = cap(Mj,N ,Mk,N ). (C.90)
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By expressing the expected value of a non-negative random variable in terms of the integral of
the tail of its distribution, we obtain, for any ε ∈ (0, 1],

∑
σ∈Sk,N

µN (σ)
µN [Sk,N ]h

N
Mj,N ,Mk,N

(σ) ≤ ε+
∫ 1

ε

µN
[
XN (t) ∩ Sk,N

]
µN
[
Sk,N

] dt. (C.91)

Using (C.88) with X = XN (t) ∩ Sk,N , together with (C.89), the symmetry and monotonicity of
capacities and (C.90), we obtain, for t ∈ [ε, 1],

µN
[
XN (t) ∩ Sk,N

]
≤ ρ̃N e4βaN min

{
µN
[
Mk,N

]
, µN

[
Mj,N

]}
capN (Mj,N ,Mk,N ) capN (XN (t),Mk,N )

≤ ρ̃N e4βaN min
{
µN
[
Mk,N

]
, µN

[
Mj,N

]}1
t
. (C.92)

Therefore, recalling thatM`,N ⊆ S`,N , ` ∈ {1, . . . ,K}, we obtain

∑
σ∈Sk,N

µN (σ)
µN [Sk,N ] h

N
Mj,N ,Mk,N

(σ) ≤ ε+ ρ̃N e4βaN min
{
µN
[
Sj,N

]
µN
[
Sk,N

] , 1}∫ 1

ε

1
t
dt, (C.93)

which completes the proof of (C.87).
Step 2. In view of (C.87), the proof of (C.86) runs along the same lines as the proof of [68,
Theorem 1.7]. For the reader’s convenience we provide the details here. Let AN ,BN be defined
as in (C.23). In particular, recall that AN =Mi,N . Then

‖hNAN ,BN ‖µN = µN
[
Si,N

](
‖hNAN ,BN ‖µN |Si,N +

∑
j 6=i

µN
[
Sj,N

]
µN
[
Si,N

]‖hNAN ,BN ‖µN |Sj,N
)
. (C.94)

In order to prove a lower bound, we neglect the last term in the bracket in (C.94), while the
first term is bounded from below by

‖hNAN ,BN ‖µN |Si,N = 1− ‖hNBN ,AN ‖µN |Si,N ≥ 1−
i−1∑
j=1
‖hNMj,N ,Mi,N

‖µN |Si,N , (C.95)

where we used that, for all σ ∈ SN \ (AN ∪ BN ),

hNBN ,AN (σ) = PNσ
[
τN⋃i−1

j=1Mj,N
< τNMi,N

]
≤

i−1∑
j=1

PNσ
[
τNMj,N

< τNMi,N

]
=

i−1∑
j=1

hNMj,N ,Mi,N
(σ).

(C.96)

By applying (C.87) with ε = e−k1N , recalling ρ̃N = e−k1N (see (C.12)), we obtain that P-a.s. on
the event Ξ(aN ) ∩ Ω̃meta(N),

‖hNAN ,BN ‖µN |Si,N ≥ 1−Ke−k1N
(
1 + e4βaN log(1/e−k1N )

)
. (C.97)

Hence, we get

‖hNAN ,BN ‖µN ≥ µN
[
Si,N

](
1−KNe−k1N+βaN (e− logN−βaN + k1

))
. (C.98)
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To get the upper bound, we exploit the fact that Assumption C.2.11, together with (C.45),
implies that µN

[
Sj,N

]
/µN

[
Si,N

]
≤ e−k2N e2βaN for all j ∈ {i+ 1, . . . ,K}. Hence∑

j 6=i

µN
[
Sj,N

]
µN
[
Si,N

]‖hNAN ,BN ‖µN |Sj,N (C.99)

≤ Ke−k2N e2βaN +
i−1∑
j=1

µN
[
Sj,N

]
µN
[
Si,N

]‖hNMi,N ,Mj,N
‖µN |Sj,N ,

where we used that, for j ∈ {1, . . . , i− 1} and σ ∈ SN \
⋃i
`=1M`,N ,

hNAN ,BN (σ) = PNσ
[
τNMi,N

< τN⋃i−1
`=1M`,N

]
≤ PNσ

[
τNMi,N

< τNMj,N

]
= hNMi,N ,Mj,N

(σ). (C.100)

Thus, applying (C.87) with ε = e−k1N min`∈{1,...,i−1} µN
[
Si,N

]
/µN

[
S`,N

]
, we get that, P-a.s. on

the event Ξ(aN ) ∩ Ω̃meta(N),
µN
[
Sj,N

]
µN
[
Si,N

]‖hNMi,N ,Mj,N
‖µN |Sj,N

≤ e−k1N − ρ̃N e4βaN log
(

e−k1N min
`∈{1,...,i−1}

µN
[
Si,N

]
µN
[
S`,N

]) (C.101)

for j ∈ {1, . . . , i − 1}. Since µN
[
Si,N

]
/µN

[
Sj,N

]
≥ e−β(kJ+h)N for j ∈ {1, . . . ,K} and

‖hNAN ,BN ‖µN |Si,N ≤ 1, we can use (C.94) to conclude that

‖hNAN ,BN ‖µN
≤ µN

[
Si,N

](
1 +Ke−k2N+2βaN +K

(
e−k1N + (k1 + β(kJ + h))Ne−k1N+4βaN )). (C.102)

Let

N̄ := min{N ∈ N : − k2N + 2βaN < 0 and − k1N + 4βaN + logN < 0}. (C.103)

Note that N̄ depends on (aN )N∈N, β, k1, k2 and is deterministic. The minimum exists because
β, k1, k2 are fixed and aN is taken sublinear inN . By combining (C.98) and (C.102), the assertion
follows for all N ≥ N̄ .

Corollary C.5.6. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11. Then there exists
a C ∈ (0, k1 ∧ k2) such that, for N sufficiently large depending on β, k1, k2, kJ , P-a.s. on the
event Ω̃meta(N),

EG
[
log
(
ZN‖hNAN ,BN ‖µN

)]
= EG

[
log
(
ZNµN [Si,N ]

)]
+O

(
e−CN

)
. (C.104)

Proof. First observe that P-a.s. e−β(kJ+h)N ≤ ZN‖hNAN ,BN ‖µN ≤ 2Neβ(kJ+h)N for 2 ≤ N ∈ N.
Moreover, let aN =

√
2kJ(k1 + log 2)N . In view of Proposition C.5.2, we know that there exist a

C ∈ (0, k1∧k2) and a c′ ∈ (0,∞) such that, for all N sufficiently large depending on β, k1, k2, kJ ,

EG
[
log
(
ZN‖hNAN ,BN ‖µN

)]
≤ EG

[
log
(
ZN‖hNAN ,BN ‖µN

)
1Ξ(aN )

]
+ (β(kJ + h) + log 2)N PG

[
Ξ(aN )c

]
≤ EG

[
log
(
ZNµN

[
Si,N

])]
+ log

(
1 + c′(e−CN )

)
+ (β(kJ + h) + log 2)N e−k1N , (C.105)
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where we used (C.48), which is implied by Lemma C.3.1 and our choice of aN . Likewise, by
using additionally that ZNµN [Si,N ] ≤ 2Neβ(kJ+h)N , we obtain that

EG
[
log
(
ZN‖hNAN ,BN ‖µN

)]
≥ EG

[
log
(
ZN‖hNAN ,BN ‖µN

)
1Ξ(aN )

]
− β(kJ + h)N PG

[
Ξ(aN )c

]
≥ EG

[
log
(
ZNµN

[
Si,N

])]
+ log

(
1− c′(e−CN )

)
− (2β(kJ + h) + log 2)Ne−k1N . (C.106)

Since C < k1, this concludes the proof.

C.5.2 Concentration inequality

Proposition C.5.7. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11. Then there exist
C ∈ (0, k1 ∧ k2) and c4 ∈ (0,∞) such that, for all N sufficiently large depending on β, k1, k2, kJ ,
and all t ≥ 0, P-a.s. on the event Ω̃meta(N),

PG
[∣∣log

(
ZN‖hNAN ,BN ‖µN

)
− EG

[
log
(
ZN‖hNAN ,BN ‖µN

)]∣∣ > t
]

≤ 2e−
(
t−cN
βkJ

)2

+ e−k1N, (C.107)

where cN := c4 e−CN .

Proof. Let aN =
√

2kJ(k1 + log 2)N . In view of Proposition C.5.2 and Corollary C.5.6, there ex-
ist a C ∈ (0, k1∧k2) and c4 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ ,
P-a.s on the event Ξ(aN ) ∩ Ω̃meta(N),

∣∣log
(
ZN‖hNAN ,BN ‖µN

)
− log

(
ZNµN [Si,N ]

)∣∣ ≤ c4
2 e−CN (C.108)

and ∣∣EG[log
(
ZN‖hNAN ,BN ‖µN

)]
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ ≤ c4
2 e−CN . (C.109)

Hence, by setting cN := c4 e−CN , we obtain that

PG
[∣∣log

(
ZN‖hNAN ,BN ‖µN

)
− EG

[
log
(
ZN‖hNAN ,BN ‖µN

)]∣∣ > t
]

≤ PG
[∣∣log

(
ZN‖hNAN ,BN ‖µN

)
− EG

[
log
(
ZN‖hNAN ,BN ‖µN

)]∣∣ > t,Ξ(aN )
]

+ PG
[
Ξ(aN )c

]
≤ PG

[∣∣log
(
ZNµN [Si,N ]

)
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ > t− cN
]

+ e−k1N , (C.110)

where, as above, we used (C.48), which is implied by Lemma C.3.1 and our choice of aN . In
order to bound the first term on the right-hand side of (C.110), recall that the triangular array
(Jij)1≤i<j<∞ is assumed to be conditionally independent given G. Moreover, in view of (C.55),
for any 2 ≤ N ∈ N it is immediate that the mapping

(Jij)1≤i<j≤N 7−→ F̄N
(
(Jij)1≤i<j≤N

)
:= log

(
ZNµN [Si,N ]

)
(C.111)
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satisfies the estimate ∣∣F̄N((Jij)1≤i<j≤N
)
− F̄N

(
(J ′ij)1≤i<j≤N

)∣∣ ≤ 2βkJ
N

, (C.112)

where J ′ij := Jij for all 1 ≤ i < j ≤ N such that (i, j) 6= (k, l) and J ′kl is a conditionally
independent copy of (Jij)1≤i<j≤N given G, for any 1 ≤ k < l ≤ N . Hence, by applying
McDiarmid concentration inequality in the version of Proposition C.7.1, we get that

PG
[∣∣log

(
ZNµN [Si,N ]

)
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ > t
]
≤ 2 e−t2/(βkJ )2

. (C.113)

Combining (C.110) and (C.113), we get the assertion in (C.107).

C.5.3 Annealed estimate

Proposition C.5.8. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11. Let αN be as
defined in (C.25). Then the following hold:

(i) There exists a c5 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ ,
P-a.s. on the event Ω̃meta(N),

− c5
N
≤ EG

[
log
(
ZN‖hNAN ,BN ‖µN

)]
− log

(
Z̃N‖h̃NAN ,BN ‖µ̃N

)
≤ αN + c5

N
. (C.114)

(ii) For any q ∈ [1,∞) there exists a c6 ∈ (0,∞) such that, for N sufficiently large depending
on β, k1, k2, kJ , q, P-a.s. on the event Ω̃meta(N),

eαN (1− c6N
−1) ≤

EG
[(
ZN‖hNAN ,BN ‖µN

)q]1/q
Z̃N‖h̃NAN ,BN ‖µ̃N

≤ eqαN (1 + c6N
−1). (C.115)

Proof. (i) By using Jensen’s inequality, G-measurability of Si,N and Lemma C.4.2(i), we find
that for 2 ≤ N ∈ N

EG
[
log
(
ZNµN [Si,N ]

)]
≤ logEG

[
ZNµN [Si,N ]

]
= log

(
Z̃N µ̃N [Si,N ]

)
+ log

( ∑
σ∈Si,N

µ̃N (σ)
µ̃N [Si,N ] EG

[
e−β∆N (σ)

])
= log

(
Z̃N µ̃N [Si,N ]

)
+ αN + log

(
1 +O(N−1)

)
. (C.116)

Likewise,

EG
[
log
(
ZNµN [Si,N ]

)]
= log

(
Z̃N µ̃N [Si,N ]

)
+ EG

[
log
( ∑
σ∈Si,N

µ̃N (σ)
µ̃N [Si,N ] e−β∆N (σ)

)]

≥ log
(
Z̃N µ̃N [Si,N ]

)
+

∑
σ∈Si,N

µ̃N (σ)
µ̃N [Si,N ] EG

[
−β∆N (σ)

]
= log

(
Z̃N µ̃N [Si,N ]

)
. (C.117)
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Moreover, since µ̃N [Sj,N ]/µ̃N [Si,N ] ≤ eβ(kJ+h)N for all j ∈ {1, . . . ,K}, we deduce from [68,
Theorem 1.7] that

Z̃N‖h̃NAN ,BN ‖µ̃N = Z̃N µ̃N
[
Si,N

](
1 +O(e−k2N +Nρ̃N )

)
. (C.118)

Thus, recalling that ρ̃N = e−k1N , the assertion in (C.114) follows from Corollary C.5.6 combined
with (C.116), (C.117) and (C.118).
(ii) For given q ∈ [1,∞), take c′ ∈ (0,∞) and

aN :=
√

2kJ(q(c′ + 2β(kJ + h) + log 2) + log 2)N.

It follows from Lemma C.3.1 that, P-a.s.,

PG
[
Ξ(aN )c

] 1
q ≤ e−bN/q = 2−Ne−2β(kJ+h)Ne−c′N . (C.119)

To get an upper bound for the q-th conditional moment given G of the harmonic sum, we
use Minkowski’s inequality, (C.119) and the facts that ZN‖hNAN ,BN ‖µN ≤ 2Neβ(kJ+h)N and
Z̃N‖h̃NAN ,BN ‖µ̃N ≥ e−β(kJ+h)N . This gives

EG
[(
ZN‖hNAN ,BN ‖µN

)q] 1
q

≤ EG
[(
ZN‖hNAN ,BN ‖µN

)q
1Ξ(aN )

] 1
q + 2Neβ(kJ+h)N PG

[
Ξ(aN )c

] 1
q

≤ EG
[(
ZN‖hNAN ,BN ‖µN

)q
1Ξ(aN )

] 1
q + Z̃N‖h̃NAN ,BN ‖µ̃N e−c′N . (C.120)

To analyse the first term of the right-hand side of (C.120), we apply Proposition C.5.2 to obtain
that there exists a C ∈ (0, k1∧k2) such that, for N sufficiently large depending on β, k1, k2, kJ , q,

EG
[(
ZN‖hNAN ,BN ‖µN

)q
1Ξ(aN )

] 1
q = EG

[(
ZNµN

[
Si,N

])q
1Ξ(aN )

] 1
q (1 +O(e−CN )

)
. (C.121)

Moreover, a further application of Minkowski’s inequality yields that

EG
[(
ZNµN

[
Si,N

])q
1Ξ(aN )

] 1
q ≤ Z̃N

∑
σ∈Si,N

µ̃N (σ)EG
[
e−βq∆N (σ)

] 1
q

= Z̃N µ̃N [Si,N ] eqαN
(
1 +O(N−1)

)
, (C.122)

where in the last step we used Lemma C.4.2(i) with β replaced by βq. Thus, combining (C.120)
with (C.121), (C.122) and (C.118), we see that there exists a c′′ ∈ (0,∞) such that for N
sufficiently large depending on β, k1, k2, kJ , q,

EG
[(
ZN‖hNAN ,BN ‖µN

)q] 1
q ≤ Z̃N‖h̃NAN ,BN ‖µ̃N eqαN

(
1 + c′′N−1). (C.123)

We close by proving a lower bound for the q-th conditional moment given G of the harmonic
sum. By Jensen’s inequality we get that

EG
[(
ZN‖hNAN ,BN ‖µN

)q] 1
q ≥ EG

[
ZN‖hNAN ,BN ‖µN

]
≥ EG

[
ZN‖hNAN ,BN ‖µN1Ξ(aN )

]
. (C.124)
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In view of Proposition C.5.2, together with (C.119) and the facts that ZNµN [Si,N ] ≤ 2Neβ(kJ+h)N

and Z̃N‖h̃NAN ,BN ‖µ̃N ≥ e−β(kJ+h)N , we get that there exists a C ∈ (0, k1 ∧ k2) such that, for N
sufficiently large depending on β, k1, k2, kJ , q

EG
[
ZN‖hNAN ,BN ‖µN1Ξ(aN )

]
= EG

[
ZNµN [Si,N ]1Ξ(aN )

](
1 +O(e−CN )

)
≥
(
EG
[
ZNµN [Si,N ]

]
− Z̃N‖h̃NAN ,BN ‖µ̃N e−c′N

)(
1 +O(e−CN )

)
.

(C.125)

Since, by Lemma C.4.2(i),

EG
[
ZNµN [Si,N ]

]
= Z̃N µ̃N [Si,N ] eαN

(
1 +O(N−1)

)
, (C.126)

we conclude from (C.124) combined with (C.125), (C.126) and (C.118) that there exists a
c′′′ ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ , q

EG
[(
ZN‖hNAN ,BN ‖µN

)q] 1
q ≥ Z̃N‖h̃NAN ,BN ‖µ̃N eαN

(
1 + c′′′N−1). (C.127)

By setting c6 := c′′ ∨ c′′′, we get the assertion.

C.6 Estimates on mean hitting times of metastable sets

Before proving Theorem C.2.13, we state two immediate corollaries of the propositions proved
in Sections C.4 and C.5.

Corollary C.6.1. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11. Then there exist
C ∈ (0, k1 ∧ k2) and c4 ∈ (0,∞) such that, for all N sufficiently large depending on β, k1, k2, kJ ,
and all t ≥ 0, P-a.s.,

PG
[∣∣∣log

(
ENνAN,BN

[
τNBN

])
− EG

[
log
(
ENνAN,BN

[
τNBN

])]∣∣∣ > t, Ω̃meta(N)
]

≤ 1Ω̃meta(N)

[
2
(
e−
(
t−cN
2βkJ

)2

+ e−
(

t
2βkJ

)2)
+ e−k1N

]
,

(C.128)

where cN := c4 e−CN .

Proof. In view of (C.29), we have that

PG
[∣∣∣log

(
ENνAN,BN

[
τNBN

])
− EG

[
log
(
ENνAN,BN

[
τNBN

])]∣∣∣ > t, Ω̃meta(N)
]

≤ PG
[∣∣∣log

(
ZN‖hNAN ,BN ‖µN

)
− EG

[
log
(
ZN‖hNAN ,BN ‖µN

)]∣∣∣ > t

2 , Ω̃meta(N)
]

+ PG
[∣∣∣log

(
ZN capN (AN ,BN )

)
− EG

[
log
(
ZN capN (AN ,BN )

)]∣∣∣ > t

2 , Ω̃meta(N)
]
.

(C.129)

Thus, the assertion follows immediately from Proposition C.4.1 and Proposition C.5.7.
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Corollary C.6.2. Suppose that i ∈ {2, . . . ,K} satisfies Assumption C.2.11. Then there exists
a c7 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ , P-a.s. on the event
Ω̃meta(N),

−αN −
c7√
N
≤ EG

[
log ENνAN,BN

[
τNBN

]]
− log ẼNν̃AN,BN

[
τ̃NBN

]
≤ 2αN + c7√

N
, (C.130)

where αN is defined in (C.25).

Proof. In view of (C.29), the assertion in (C.130) follows immediately from Proposition C.5.8(i)
and Proposition C.4.3(i).

Proof of Theorem C.2.13. (i) Recall once again the G-measurability of Ω̃meta(N) (see Remark C.2.6),
and note that an application of Corollary C.6.2 yields that there exists a c7 ∈ (0,∞) such that,
for N sufficiently large depending on β, k1, k2, kJ , P-a.s.,

PG

[
e−t−αN ≤

ENνAN,BN
[
τNBN

]
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
1Ω̃meta(N)

(C.130)
≥ PG

[
e−(t− c7√

N
) ≤

ENνAN,BN
[
τNBN

]
exp

(
EG
[
log ENνAN,BN

[
τNBN

]]) ≤ e+(t− c7√
N

)
, Ω̃meta(N)

]

≥ 1Ω̃meta(N)

− PG
[∣∣∣log

(
ENνAN,BN

[
τNBN

])
− EG

[
log
(
ENνAN,BN

[
τNBN

])]∣∣∣ > t− c7√
N

]
1Ω̃meta(N). (C.131)

Thus, from Corollary C.6.1 it follows that there exists a C ∈ (0, k1 ∧ k2) such that, for N
sufficiently large depending on β, k1, k2, kJ , P-a.s.,

PG

[
e−t−αN ≤

ENνAN,BN
[
τNBN

]
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
1Ω̃meta(N)

≥
(

1− 2
(
e−
(
t−c7N

−1/2−cN
2βkJ

)2

+ e−
(
t−c7N

−1/2
2βkJ

)2)
− e−k1N

)
1Ω̃meta(N). (C.132)

Assumption C.2.7 implies that limN→∞ 1Ω̃meta(N) exists and is P-a.s. equal to 1. Since trivially
1 ≥ 1Ω̃meta(N), taking the limit N →∞ of (C.132) yields (C.26).
(ii) Fix q ∈ [1,∞). In view of (C.29), an application of the Cauchy-Schwarz inequality yields
that, P-a.s.,

EG
[
ENνAN,BN

[
τNBN

]q] 1
q

≤ EG
[(
ZN‖hNAN ,BN ‖µN

)2q] 1
2q EG

[(
ZN capN

(
AN ,BN

))−2q] 1
2q
. (C.133)

Hence, by Proposition C.4.3(ii) and C.5.8(ii), there exists a c ∈ (0,∞) such that forN sufficiently
large depending on β, k1, k2, kJ , q, P-a.s. on the event Ω̃meta(N),

EG
[
ENνAN,BN

[
τNBN

]q] 1
q ≤ ẼNν̃AN,BN

[
τ̃NBN

]
e4qαN

(
1 + c√

N

)
. (C.134)
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On the other hand, by using Jensen’s inequality and Corollary C.6.2, we find that there exists
a c7 ∈ (0,∞) such that, for any q ∈ [1,∞) and N sufficiently large depending on β, k1, k2, kJ , q,
P-a.s. on the event Ω̃meta(N),

EG
[
ENνAN,BN

[
τNBN

]q] 1
q ≥ exp

(
EG
[
log ENνAN,BN

[
τNBN

]])
≥ ẼNν̃AN,BN

[
τ̃NBN

]
e−αN

(
1− c7√

N

)
. (C.135)

Therefore, by letting c1 = c ∨ c7, for N sufficiently large depending on β, k1, k2, kJ , q, P-a.s. on
the event Ω̃meta(N),

e−αN
(
1− c1√

N

)
≤

EG
[
ENνAN,BN

[
τNBN

]q]1/q
ẼNν̃AN,BN

[
τ̃NBN

] ≤ e4qαN (1 + c1√
N

)
. (C.136)

Thus, the set Ωq,c1(N) defined in (C.27) contains Ω̃meta(N). Therefore, using Assumption C.2.7,
and monotonicity of probability

1 = P
[
lim inf
N→∞

Ω̃meta(N)
]
≤ P

[
lim inf
N→∞

Ωq,c1(N)
]

(C.137)

which concludes the proof of (C.28).

C.7 Appendix A: Concentration inequality
We present a concentration inequality for functionals of conditionally independent random vari-
ables that is a slight extension of the classical McDiarmid concentration inequality for functionals
of independent random variables satisfying a bounded difference estimate (cf. [10, Theorem 6.2],
[33, Section 2.4.1]).

Proposition C.7.1. Let (Ω,F ,P) be a probability space, G ⊂ F a sub-σ-algebra of F , 1 ≤ n ∈ N
and X a Polish space. Consider a vector X = (X1, . . . , Xn) of X -valued random variables on
(Ω,F ,P) that are conditionally independent given G, and let fn : X n → R be a measurable
function. Suppose that, for any i ∈ {1, . . . , n},∣∣fn(X1, . . . , Xn)− fn(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn)

∣∣ ≤ ci ∈ [0,∞) P -a.s., (C.138)

where (X ′1, . . . , X ′n) is a conditionally independent copy of (X1, . . . , Xn) given G. Then, P-a.s.
for all t ≥ 0,

P
[
fn(X)− E[fn(X) | G] > +t | G

]
P
[
fn(X)− E[fn(X) | G] < −t | G

] } ≤ e−t2/(2v), (C.139)

where v := 1
4
∑n
n=1 c

2
i .

Proof. Since there exists a regular conditional probability for X (see e.g. [27, p. 217]), the proof
follows the line of proof of the non-conditional McDiarmid concentration inequality.
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