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Kurzfassung
Die Annahme digitaler Technologien in der Landwirtschaft kann ein wichtiger Treiber
für die Steigerung der landwirtschaftlichen Produktivität und die Transformation hin zu
einem nachhaltigen Landwirtschaftssystem sein. Das Verständnis der Entscheidungen
der Landwirte zur Nutzung von Technologien und die Bewertung ihrer wirtschaftlichen
und ökologischen Auswirkungen sind von entscheidender Bedeutung für die politischen
Entscheidungsträger, um den Annahme- und Verbreitungsprozess solcher disruptiver
Technologien zu steuern.

Diese Dissertation zielt darauf ab, zur Modellierung der Annahme digitaler Technologien
in der Landwirtschaft beizutragen und Methoden für die Bewertung der Auswirkung
solcher Technologien zu entwickeln. Zunächst konstruieren wir einen konzeptionellen
Rahmen für agentenbasierte Modellierung hinsichtlich der Annahme und Verbreitung
digitaler Technologien in der Landwirtschaft. Dieser Rahmen basiert auf den beste-
henden empirischen Studien zur Annahme von Präzisions- und digitalen Technologien
auf Farmebene sowie der agentenbasierten Modellierung landwirtschaftlicher Inno-
vationen. Weiterhin vergleichen wir die Bedeutung verschiedener kontextueller und
technischer Spezifikationen (Landwirtschaftssysteme, Arbeitskosten, Technologieat-
tribute und Parzellenmerkmale) bei der Bestimmung der Zahlungsbereitschaft von
Landwirten und damit ihrer potenziellen Akzeptanz digitaler Technologien am Beispiel
von Unkrautrobotern. Schließlich untersuchen wir die Machbarkeit der Verwendung
modernster neuronaler Netze als Surrogat-Modelle für detaillierte landwirtschaftliche
Betriebsmodelle, um deren Hochskalierung zu erleichtern.

Die Ergebnisse zeigen, dass die Entscheidungen der Landwirte zur Annahme digitaler
Technologien von verschiedenen Faktoren beeinflusst werden, darunter Betriebs- und
Nutzermerkmale, Interaktionen, Technologieattribute sowie institutionelle und psycho-
logische Faktoren. Außerdem spielen kontextbezogene und technische Spezifikationen
eine große Rolle für die Zahlungsbereitschaft der Landwirte und die potenzielle Akzep-
tanz digitaler Technologien. Beispielsweise könnte die Annahme von Unkrautrobotern
zuerst in Bio-Betrieben beginnen, während die hohe Überwachungskosten von Unkrau-
trobotern ein wichtiger Faktor bei der Nutzungsentscheidung konventioneller Betriebe
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sein könnten. Wenn Saisonarbeit kostspieliger wird und der Einsatz von Herbiziden
stark eingeschränkt ist, könnten Unkrautroboter sowohl für biologische als auch für
konventionelle Betriebe attraktiv sein. Die Ergebnisse zeigen auch, dass neuronale Netze
bei der Annäherung detaillierter Betriebsmodelle effizient sind und als Surrogat-Modelle
verwendet werden können, ohne dass die Genauigkeit der Simulation in relevanter Weise
eingeschränkt wird. Diese Dissertation trägt zur Verbindung zwischen Betriebsmodellen
und agentenbasierten Modellen bei und ebnet den Weg für zukünftige Forscher, die
Annahme von Technologien, insbesondere Technologien für die digitale Landwirtschaft,
in großem Maßstab zu modellieren und zu bewerten.

Schlüsselwörter: Technologieannahme, digitale Landwirtschaft, Betriebsmodelle, agen-
tenbasiertes Modell, neuronale Netze



vi

Abstract
Adoption of digital farming technology can be an important driver for agricultural
productivity enhancement and transformation towards a sustainable farming system.
Thus, understanding farmers’ technology adoption decisions and evaluating their
economic and environmental impacts are crucial for policy-makers to steer the adoption
and diffusion process of such disruptive technologies.

This thesis contributes to the modelling of digital farming technologies adoption and
develops modelling tools for impact evaluation of such technologies. First, we develop
a conceptual framework for Agent-based Models (ABMs) that simulate the adoption
and diffusion of digital farming technologies based on the existing empirical farm-
level adoption studies of precision and digital farming technologies and ABMs of
agricultural innovations. Second, we compare the importance of different contextual and
technical specifications (farming systems, labour costs, technology attributes and plot
characteristics) in determining farmers’ investment limits and their potential adoption
behaviour of digital farming technologies, using the example of weeding robots. Finally,
we explore the feasibility of using state-of-the-art Neural Networks (NNs) as surrogate
models of detailed farm-level models to facilitate the upscaling of those models.

The results show that farmers’ adoption decisions of digital farming technologies are
influenced by various factors including farm and operator characteristics, interactions,
technology attributes, and institutional and psychological factors. Further, contextual
and technical specifications matter a lot in farmers’ investment limits and adoption
decisions of digital farming technologies. For example, adoption of weeding robots
might first start among organic farms, while high supervision costs of weeding robots
could be an important factor in the adoption decision of conventional farms. When
seasonal labour becomes more costly and the use of herbicide is severely restricted,
robotic weeding can be attractive to both organic and conventional farms. It also
proves that NNs are efficient in approximating detailed farm-level models and can be
employed as surrogate models without losing accuracy in relevant perspectives. This
thesis contributes to the connections between farm-level models and ABMs and paves
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the way for future researchers to model and assess technology adoption, especially
digital farming technologies, on a large scale.

Keywords: technology adoption, digital farming, farm-level model, surrogate model,
agent-based model, neural networks
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Chapter 1

Overview of the thesis1

1.1 Motivation and structure

Global agriculture faces various challenges to meet the demand for food and fibres
in the coming years because it needs to maintain overall productivity without further
polluting soil, water and other agroecological systems (Finger et al., 2019). Adoption
of more efficient agricultural technology is believed to be an important driver for
productivity enhancement and transformation towards a sustainable farming system
(Ruzzante et al., 2021). Over the past decades, the development of information
communication technology, robotic and sensing technology, and artificial intelligence is
leading the agricultural sector into the era of digital farming (Ehlers et al., 2021). Digital
farming technologies cover a broad spectrum, from small mobile apps for decision
support, to in-field sensors and remote sensing technologies for data collection, and to
drones and robots for the automation of processes (OECD, 2019). Digital farming is
expected to transform agricultural systems to be more sustainable by reducing the use of
agrochemicals and using less of other farming inputs such as land and labour (Khanna
et al., 2022).

The rise of digital farming technologies and their potential disruptive impacts make
it particularly important for agricultural economists and policy-makers to understand

1The research presented in this thesis is funded by the European Union’s research and innovation
program under grant agreement No 817566 - MIND STEP (Modelling INdividual Decisions to Support
The European Policies related to agriculture). It is also supported by the German Research Foundation
under Germany’s Excellence Strategy, EXC-2070 - 390732324 - PhenoRob (Robotics and Phenotyping
for Sustainable Crop Production).

1



Chapter 1. Overview of the thesis

farmers’ adoption decisions and their economic, social and environmental impacts.
However, since the adoption and diffusion of digital farming technologies are still at the
early stage, empirical adoption studies of such technologies are still rare in the literature,
not to mention the impact evaluation studies of them. This makes it challenging to
model the adoption of digital farming technologies and thus evaluate their impacts at
this stage. Therefore, the overarching aim of this thesis is to contribute to the modelling
of digital farming technologies adoption and to develop modelling tools for the impact
evaluation of these novel technologies.

Modelling technology adoption requires an understanding of the mechanism for farmers’
adoption decisions not only at the farm level but also at the system level (Rasch
et al., 2017). The system refers to the collection and organisation of entities (e.g.
farmers, technology providers, and government) relevant to the technology adoption
and diffusion. It evolves over time based on farmers’ behaviour and their interactions
with the environment and one another (Alexander et al., 2013). As examples, farmers
might adopt labour-saving technologies to cope with the shortage of seasonal labour
(Bochtis et al., 2020; Gallardo and Sauer, 2018), or adopt environmentally friendly
technologies due to new environmental requirements or the increasing prices of fertiliser
(Barnes et al., 2019; Guo et al., 2022; Hassen and El Bilali, 2022; Merrigan, 2022).
Further, their technology adoption decisions may also be influenced by the opinions in
their social network (Crudeli et al., 2022; Massfeller and Storm, 2022). It is the system
interaction in combination with, and depending on, individual farm decision-making
that will ultimately determine technology adoption and its economic and environmental
impacts.

These system dynamics among heterogeneous agents and with the environment can be
well captured by Agent-based Models (ABMs). They are “bottom-up” social simulation
approaches, consisting of “agents”, representing entities in the social world, and an
“environment” in which agents act (Gilbert, 2007). In ABMs, agents can perceive the
environment, make decisions autonomously, and interact with each other (Bonabeau,
2002). Thus, ABMs can capture the heterogeneous decision-making of local agents
and their interactions, as well as the emergent phenomena from local interactions and
their feedback to each agent (Zhang and Vorobeychik, 2019). In terms of agricultural
technology adoption and diffusion, ABMs have been employed to simulate various
interactions and system feedback. Examples include social network effects on the use

2
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of mechanical weed control and herbicide (Huber et al., 2022), collective actions of
farmers’ community in adopting irrigation technologies (Perello-Moragues et al., 2019),
the impact of agricultural extension and policy instruments on farmers’ adoption of
beneficial water management practices (Sun et al., 2022), and the feedback from markets
for crops and carbon allowances on farmers’ behaviour in crop production and best
management practice (Ng et al., 2011).

ABMs have not been employed for simulating the adoption and diffusion of digital
farming technologies. This is largely due to a lack of data on the topic since the
widespread use of these technologies is still at an early stage. Therefore, the first section
in the body of this thesis (Chapter 2) aims to build an empirically grounded, conceptual
modelling framework for the adoption and diffusion of digital farming technologies. Due
to the lack of both farm-level and ABM studies on such technologies, Chapter 2 links
empirical farm-level evidence of precursor technologies (i.e. Precision Agricultural
Technologies, PATs) and system interaction simulated by current ABMs of agricultural
innovations. It directly contributes to the research goal of the thesis by laying out a
holistic picture of farmers’ decision-making regarding technology adoption and system
interactions in the context of digital farming technologies.

Robotic weeding is one of the digital farming technologies that is commercially available
(see e.g. FarmDroid, 2022; Naïo Technologies, 2022) but not yet widely adopted by
farmers (Lowenberg-DeBoer et al., 2020; Spykman et al., 2021). As such, the lack of
data prevents empirical studies on farmers’ adoption behaviour. The second section in
the body of this thesis (Chapter 3) uses a Monte Carlo simulation approach to improve
our understanding of farmers’ potential adoption behavior. The simulation systematically
varies certain input parameters to capture contextual and technical specifications relevant
for farmers’ investment limits with respect to weeding robots. This is based on the
existing farm planning data of German sugar beet farming extracted from KTBL (2020)
(In German: Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.; In
English: the Association for Technology and Structures in Agriculture) and the data
of technical attributes from current weeding robot companies. The contextual and
technical specifications varied include farming systems (organic farming vs. conventional
farming), labour costs (wage rate of skilled and unskilled labour), plot characteristics
(plot size and mechanisation level), and technology attributes (e.g. area capacity,
weeding efficiency, required supervision intensity, etc.). The Monte Carlo simulation

3
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approach makes it possible to compare the importance of different input parameters in
determining farmers’ potential adoption behaviour and contributes to the research goal
of this thesis by informing policy-makers and technology providers (a) under which
conditions weeding robots are more likely to be adopted, and (b) which technology
attributes to focus on during technology design and development.

In the context of European agriculture, modelling the impacts of agri-environmental
policies and induced technology adoption behaviour increasingly requires accounting
for detailed farm-level decision-making, spatial conditions, and interactions among
heterogeneous farmers. For example, when evaluating the impact of newly introduced
eco-schemes or collective agri-environmental payments (Kuhfuss et al., 2016; Šumrada
et al., 2022), modellers must be able to not only capture the individual decision-making
but also emergent phenomena from coordination and participation of local communities
and system feedback to each farm . While using separate detailed farm-level models
usually cannot capture the system interaction and dynamics, the current ABMs of
agricultural technology adoption can hardly fulfil the requirement either, due to their
limited complexity of the embedded farm decision-making models (Bradhurst et al.,
2016; Murray-Rust et al., 2014). However, simply combining the two types of models
to take advantage of both could become computationally expensive as the number of
agents or regional coverage increases (Sun et al., 2016). In recent years, the availability
of highly flexible deep learning (Goodfellow et al., 2016) tools offers the opportunity to
build surrogate models (Jiang et al., 2020) for computationally demanding simulation
models (Storm et al., 2020). In spite of the rapid evolution of deep learning in the past
decades, it is still rarely employed in agricultural economics. Therefore, the last chapter
of this thesis (Chapter 4) aims to develop surrogate models approximating detailed
farm-level models within different contexts using deep learning tools. This chapter
contributes to the research goal of the thesis by facilitating the upscaling of detailed
farm-level models into system-level models for future large-scale impact evaluation of
novel farming technologies.

The general research objectives of the three chapters in this thesis are:

1. To develop a conceptual modelling framework that allows us to build empirically
grounded ABM to study the adoption and diffusion of digital farming technologies
by synthesising the knowledge from farm-level studies of precursor technologies

4
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and ABMs of agricultural innovations (Chapter 2).

2. To conduct a cost-based investment analysis of weeding robots and identify the
most important factors (including farming systems, technology attributes, labour
costs, and plot characteristics) in determining farmers’ investment limits and their
potential adoption decisions (Chapter 3).

3. To develop surrogates of detailed farm-level models using deep learning tools and
develop evaluation criteria to assess their performances (Chapter 4).

In the remainder of this introduction, the contributions and main results of the thesis are
highlighted. Afterwards, a conclusion section summarises the thesis and its limitations
and proposes directions for future research.

1.2 Contributions of the thesis

This section summarises the three chapters of the thesis, including research gaps
identified in the literature, how they were addressed, and the main results of each chapter.
The contribution of each chapter to the overarching research goal of the thesis is also
highlighted.

1.2.1 Adoption and diffusion of digital farming technologies - Inte-
grating farm-level evidence and system interaction

Chapter 22 gives a holistic picture of farmers’ decision-making in technology adoption.
It consists of a systematic literature review of empirical farm-level studies on the adoption
of precision and digital farming technologies and ABMs of agricultural innovations. It
then builds a conceptual modelling framework for the adoption and diffusion of digital
farming technologies based on the empirical findings.

While the research of technology adoption has a long tradition in agricultural economics
in general, adoption studies of digital farming technologies only started to emerge in
recent years (see e.g. Drewry et al., 2019). To understand the mechanism of farmers’
adoption decisions of digital farming technologies, we must refer to the lessons of

2Chapter 2 is published as Shang, L., Heckelei, T., Gerullis, M. K., Börner, J., and Rasch, S. (2021):
Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system
interaction, Agricultural Systems, Vol. 190. 103074. https://doi.org/10.1016/j.agsy.2021.103074

5
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the precursor technologies, i.e. PATs, since the similarities between them could be
useful for us to gain insights into the potential adoption determinants of digital farming
technologies. So far, our understanding of the mechanisms of technology adoption
and diffusion mainly comes from empirical farm-level studies on individual adoption
and ABMs simulating systemic diffusion mechanisms. Farm-level adoption studies
usually use regression-type analysis (e.g. Logit, Probit, Poisson models) estimating
the effect of different variables on adoption (such as farm size and farmers’ age) or
qualitative descriptive approaches (e.g. descriptive summary of interviews with farmers)
focusing on technology attributes (such as compatibility of a technology and data
safety) (Klerkx et al., 2019). While farm-level adoption studies usually do not consider
system interaction among farmers or with other entities (Heckelei, 2013), ABMs can
capture system interaction among heterogeneous entities (Zhang and Vorobeychik, 2019).
However, existing ABMs of agricultural innovations have not covered the adoption and
diffusion of digital farming technologies yet. Most importantly, current ABMs are not
well connected with empirical farm-level evidence on the adoption and diffusion of
digital farming and are thus lacking the empirical foundation needed for applications
beyond the toy-model stage so far (Matthews et al., 2007).

We therefore need to establish the connection between empirical farm-level evidence and
ABM studies to explore (a) how farmers’ adoption behaviour influences the system, and
(b) how changed system conditions affect what is happening at the farms. This dynamic
and spatially differentiated process ultimately determines the diffusion of digital farming
technologies, and understanding them can help us to identify effective pathways for
sustainable agricultural systems.

To this end, the objective of this chapter is to connect the dots between the two strands
of literature and build an empirically grounded, conceptual framework for modelling
the adoption and diffusion of digital farming technologies. Chapter 2 first reviews 32
farm-level adoption studies of precision and digital farming technologies and 27 ABMs
studies of agricultural innovations. We classify the determinants of farmers’ adoption
decisions into six categories: 1) farm characteristics, 2) operator characteristics, 3)
interactions, 4) institutions, 5) attributes of technology, and 6) psychological factors.
The importance of the factors is standardised for a fair comparison across factors and
studies. We also find that the majority of farm-level studies focus on farm and operator
characteristics, while only a few recent studies highlight the importance of the attributes

6
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of technology, institutions, and psychological factors. Similarly, ABMs are quite limited
with respect to modelling various types of agents and are largely characterised by profit
maximisation while rarely modelling farmers’ knowledge/capacity, psychological factors,
attributes of technology and institutional arrangements. Based on the identified gaps,
a conceptual framework integrating farm-level evidence on adoption with a systemic
perspective on technology diffusion is developed.

Chapter 2 contributes to the research goals of this thesis by developing a concept on how
to improve the modelling of adoption and diffusion of digital farming technologies. Our
empirically grounded modelling framework is the first holistic approach to connect the
dots between the wealth of empirical research on technology adoption with a more model-
driven investigation of innovation diffusion in ABMs. It can serve as a reference for
future ABMs capable of integrating empirical evidence and system dynamics holistically.
Applying this framework can increase the empirical and theoretical foundation, as well
as improve model coherence and comparability of future ABMs. Furthermore, this
framework can be the basis for contextual applications to inform policy-makers trying
to foster the diffusion of suitable digital technologies through interventions, such as
subsidies and extension services, as it highlights where policy can impact important
aspects of adoption via relevant processes of diffusion.

1.2.2 How much can farmers pay for weeding robots? A Monte
Carlo study

Chapter 3 focuses on the importance of the contextual and technical specifications in
determining farmers’ investment limits thus their potential adoption behaviour in digital
farming technologies, using the example of weeding robots.

Despite the rapid advancement on the engineering side of digital agricultural technologies,
our economic understanding of agricultural robots has lagged due to the limited adoption
and data availability from farm trials of such technologies (Lowenberg-DeBoer et al.,
2020; Spykman et al., 2021). The review of Lowenberg-DeBoer et al. (2020) could
only identify 18 studies that include economic analyses of agricultural automation and
robotics. Profitability is one of the key determinants of technology adoption (Kolady
et al., 2021), which is highly impacted by the investment cost of the technology. Thus, it
is necessary for us to understand how contextual and technical specifications influence

7
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farmers’ maximum investment and their potential adoption behaviour. Such analyses are
highly relevant for farmers’ adoption decisions, technology providers’ machine design
(Shockley et al., 2019), and policy-makers’ strategies to promote adoption.

Therefore, Chapter 3 conducts a cost-based investment analysis with the example of
weeding robots in German sugar beet farming. Specifically, it calculates the Maximum
Acquisition Values (MAVs) (Shockley et al., 2019; Sørensen et al., 2005) of weeding
robots and their determinants for both organic and conventional sugar beet farming
in Germany. The MAV of a weeding robot is defined as the break-even price of the
robot that renders the same net profit as the current weeding methods. It uses empirical
data from KTBL (2020), assumptions about different robotic characteristics (based on
existing literature and information provided by technology development firms), and a
Monte Carlo simulation approach. The Monte Carlo approach systematically varies the
input parameters, including technology attributes (area capacity, weeding efficiency,
required supervision intensity, repair and energy cost, and setup time per plot)3, labour
costs (wage rate of skilled and unskilled labour), and plot characteristics (plot size
and mechanisation level) for both organic and conventional sugar beet farming. This
approach makes the comparison across different contexts and technical specifications
possible.

The results show that the MAVs of mechanical weeding robots for organic farming
are substantially higher than that of spot spraying robots for conventional farming.
Therefore, the adoption and diffusion of weeding robots might also start among organic
farms. Another implication is that the availability of weeding robots (and generally
agricultural robots) might change the conversion decision of conventional farms, for
whom the high labour requirement could have been an obstacle so far. The importance
of different factors in determining the MAVs of weeding robots differ in the two farm
systems: In organic farming, area capacity and weeding efficiency impact the MAVs of
mechanical weeding robots the most. The wage rate of unskilled labour, relevant for
manual weeding, plays a more important role in determining the MAVs than the wage
rate of skilled labour, relevant for supervision of the robot. This implies that a shortage
of seasonal workers and hence increases in the wage of low-skilled labour could be
important drivers in the adoption of mechanical weeding robots. Further, full autonomy
of the mechanical weeding robot might not be critical, as supervision costs are less

3See Chapter 3 for detailed definitions of these technology attributes.
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relevant in determining farmers’ potential adoption decisions; In conventional farming,
supervision costs and the robot’s ability to save herbicides are the most influential factors
in determining the MAV of a spot spraying robot. Plot characteristics such as plot size
and mechanisation level only have limited impacts on the MAVs.

Chapter 3 contributes to the research goals of this thesis because it explores the impacts
of contextual and technical specifications on how much farmers can pay for novel
technologies and what factors matter the most for farmers’ potential adoption behaviour.
The results of this study could be enlightening for technology providers and policy-
makers who intend to promote the adoption of weeding robots. In the case of technology
providers, total weeding capacity and weeding efficiency are the two most important
technology attributes for mechanical weeding robots, while supervision intensity and
weeding efficiency are the most important for spot spraying robots. Policy-makers
can learn under what circumstances farmers are more likely to adopt. When seasonal
workforce becomes more costly, mechanical weeding robots would save more labour
costs thus become attractive to organic farms. When herbicide use is severely limited,
conventional farms would have more incentives to convert to more profitable organic
farming because the high seasonal labour cost could be alleviated by mechanical
weeding robots. Therefore, not only the spot spray robots could massively reduce the
negative environmental impacts, but also mechanical weeding robots could bring new
opportunities for conventional farms to convert to organic farms.

1.2.3 Surrogate modelling of detailed farm-level models using state-
of-the-art neural networks

Chapter 4 develops computationally efficient surrogates of the detailed farm-level
model FarmDyn (Britz et al., 2016). The surrogate models can be later integrated into
large-scale ABMs to simulate technology adoption and diffusion with high resolution
on details of farm-level decision-making and to capture system dynamics.

Computational demands have been limiting the complexity of the embedded farm
decision-making model within an ABM for upscaling purposes, i.e. if the number
of agents and the regional coverage of an ABM shall be increased (Bradhurst et al.,
2016; Murray-Rust et al., 2014; Sun et al., 2016). While modelling the impacts of
agri-environmental policies increasingly requires accounting for detailed farm-level
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decision-making, heterogeneous local conditions, and interaction among farmers, the
computational challenge remains a barrier to developing such large-scale ABMs. In
addition, farm-level models and ABMs, developed by different research teams and for
different purposes, have their own advantages and disadvantages in modelling. Detailed
farm-level models can represent individual decision-making with a rich representation
of input choices, investments, and environmental indicators, but do not account for
interaction among farmers and market feedback on larger scales (Heckelei, 2013).
ABMs, on the other hand, capture system interactions and market feedback, but the
embedded decision-making model of farm agents is usually simpler than detailed
farm-level models. Therefore, Chapter 4 addresses this issue by using the surrogate
modelling approach, which allows us to combine the strengths of both types of models
and overcome the computational constraints.

The state-of-the-art Neural Networks (NNs) (Goodfellow et al., 2016) are used as
surrogate models of FarmDyn in Chapter 4. These include Multilayer Perceptron (MLP),
Residual Networks (ResNets) (He et al., 2016), Long Short-term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), and Bidirectional Long Short-term Memory
(BiLSTM) (Graves et al., 2005). In addition to their ability to capture the underlying
linear and nonlinear relationships between input and output data, these highly flexible
deep learning tools are also much more computationally efficient to run than detailed
farm-level models (Razavi, 2021; Storm et al., 2020). In agricultural economics,
however, NNs are rarely used as surrogate models compared to other disciplines, such as
engineering and water resource modelling (Jiang et al., 2020; Razavi et al., 2012). With
the exception of Audsley et al. (2008) and Nguyen et al. (2019) who have employed
the classical MLPs as surrogate crop and biogeochemical models, respectively, the
advantages and disadvantages of state-of-the-art NNs as surrogate models are not yet
studied in our discipline. Thus, Chapter 4 aims to develop surrogates of the detailed
farm-level model FarmDyn using state-of-the-art architectures of NNs and evaluates
their performances from different perspectives.

The results show that NNs are efficient in approximating detailed farm-level models.
All tested NNs achieve a high fit (R2) but differ substantially in inference time. The
best BiLSTM achieves an average R2 of 0.99, while the lowest average R2 is 0.93 by
ResNet. BiLSTM and LSTM achieve better performance than other types of NNs. In
terms of inference time, all trained NNs are much faster than FarmDyn. MLPs are about
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30,000 times faster, and the best performing BiLSTM regarding R2 is still 45 times
faster. Furthermore, we provide generic evaluation metrics to assess the performance
of surrogate models, which can offer future modellers additional help in designing
surrogate modelling approaches in applied modelling. The evaluation metrics consist
of four dimensions: (1) Goodness of fit; (2) Consistency of bivariate relationships; (3)
Accuracy in capturing corner solutions; and (4) Accuracy in holding constraints. They
are calculated for different sizes of samples used for training to understand the effort
needed in data generation. In our specific case, increasing the sample size from 1,000
to 50,000 significantly improves the performance of all types of models. Once the
sample size reaches 100,000, adding more data points for training does not improve the
performance of the surrogate models in any relevant way as defined by the evaluation
metrics.

Chapter 4 contributes to the research goals of this thesis because it develops modelling
tools to upscale detailed farm-level models to enable large-scale simulation of technology
adoption and diffusion. Future studies can construct an integrated modelling system
that consists of a detailed farm-level model, a surrogate model, and an ABM. Such
an integrated modelling system can be used to enable comprehensive analyses of
agri-environmental policies that are targeted at the individual farm level. Besides, the
evaluation metrics in this study are generic and can be extended for other applications
in the future.

1.3 Conclusion

1.3.1 Summary of results

This thesis contributes to the modelling of technology adoption and its impact evaluation
on a large scale. It proposes an empirically grounded modelling framework for the
adoption and diffusion of digital farming technologies and compares the importance
of different contextual and technical specifications (farming systems, labour costs,
technology attributes and plot characteristics) in determining farmers’ investment limits,
thus their adoption behaviour of digital farming technologies, using the example of
weeding robots. It further explores the feasibility of using NNs as surrogates of
detailed farm-level models to facilitate the upscaling of those models. This thesis builds
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the connections between farm-level models and ABMs and paves the way for future
researchers to model and assess technology adoption on a large scale.

We find that farmers’ adoption decisions of digital farming technologies are influenced
by various factors including farm and operator characteristics, interactions, technology
attributes, and institutional and psychological factors. To model technology adoption,
both farm-level and system-level elements must be covered. Furthermore, our cost-based
investment analysis of weeding robots reveals that contextual and technical specifications
are an important consideration: Organic farms are able to pay significantly more for
weeding robots than conventional farms, and technology attributes and labour costs play
an important role in determining the economic value of such novel technologies. We
also proved that NNs are efficient in approximating detailed farm-level models and can
be employed as surrogate models without losing accuracy in relevant perspectives.

1.3.2 Limitations and outlook

Despite the contributions this thesis has made, there are several remaining limitations.
Here, the general limitations and an outlook for future research are summarised. The
more detailed shortcomings are left to each individual chapter of the thesis.

First, the proposed conceptual modelling framework for the adoption and diffusion of
digital farming technologies has not yet been employed for real-world applications. The
fairly broad conceptual framework contains factors that might not be relevant for some
specific technologies. Similarly, there might be factors that are not included yet in our
framework because it is only based on a limited number of studies available at this
time. Future researchers can start from this general framework and adjust it to their own
research goals by specifying the contextual relevance of the adoption determinants.

Second, the contextual specifications represented in the cost-based investment analysis
of weeding robots are limited to the German sugar beet farming system and its
socioeconomic and technological settings. When switching to other contexts (e.g.
another country with much lower labour costs and different policy settings), the results
from our analysis might not be suitable anymore. Further, due to the characteristics
of the KTBL dataset, we could only perform the analysis per plot instead of per farm.
In reality, when a farmer decides on investing in a new technology, the whole farm
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production activities of various crops and plots with different characteristics might be
considered.

Third, the surrogate models developed in this thesis using different NNs have not
been integrated into ABMs for concrete simulations of technology adoption and policy
analysis yet. To assess the impact of digital farming technologies or related agricultural
policies on a large scale, we need to first achieve the technical coupling of the surrogate
model and the ABM, which are usually written in different programming languages
and by different research teams. Therefore, updating and debugging the integrated
modelling system could be challenging. Finally, calibration and validation of such an
integrated modelling system could also be demanding because even a slight deviation of
the surrogate model on the farm level can cause crucial divergence on the regional level,
where heterogeneous farms interact with each other in both the short and long run.

Going beyond what the thesis has achieved and the limitations of each chapter, as
digital farming technologies become more widely adopted in different contexts, future
researchers would have more opportunities to conduct empirical studies contributing
to the modelling of technology adoption and its impact evaluation. For example, the
availability of real-world data on the costs and profitability of using digital farming
technologies or farmers’ acceptance or actual adoption behaviour of such novel tech-
nologies can improve the parameters of our farm-level models as well as ABMs. The
upscaling of detailed farm-level models in large-scale ABMs simulating the adoption
and diffusion of digital farming technologies would also benefit from the increasing
data availability, thus being more sophisticated to evaluate agri-environmental policies.
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Chapter 2

Adoption and diffusion of digital farm-
ing technologies - Integrating farm-level
evidence and system interaction4

Abstract: Adoption and diffusion of digital farming technologies are expected to help
transform current agriculture towards sustainability. Our current understanding of
the mechanisms of adoption and diffusion mainly comes from empirical farm-level
adoption studies and by agent-based models of systemic diffusion mechanisms. To build
an empirically grounded conceptual framework for adoption and diffusion of digital
farming technologies, we synthesise the knowledge from 32 farm-level studies on the
adoption of precision and digital farming technologies and 27 agent-based models on
the diffusion of agricultural innovations. We show farm-level studies focus on farm and
operator characteristics but pay less attention to attributes of technology, interactions,
institutional and psychological factors. Agent-based models, despite their usefulness for
representing system interaction, only loosely connect with empirical farm-level findings.
We then develop a conceptual framework integrating farm-level evidence on adoption
with a systemic perspective on technology diffusion.

Keywords: technology adoption, innovation diffusion, digital farming, agent-based
modelling, farm level, systematic review
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Chapter 2. Adoption and diffusion of digital farming technologies - Integrating
farm-level evidence and system interaction

2.1 Introduction

Digital farming has the potential to transform agricultural systems to be more sustainable
by reducing the use of agrochemicals. Global agriculture faces various challenges to
meet the demand for food and fibres in the coming years because it needs to maintain
overall productivity without further polluting soil, water and other agroecological
systems (Cole et al., 2018; Finger et al., 2019). Digital farming (also referred to as smart
farming or agriculture 4.0) is expected to address these challenges using information
communication technologies to collect and analyse data to support efficient farming
processes (Bacco et al., 2019; OECD, 2019). Digital farming technologies cover a broad
spectrum, from small mobile apps for decision support, to in-field sensors and remote
sensing technologies for data collection, and to drones and robots for the automation of
processes (see OECD (2019) for detailed categories of digital farming technologies).
A sustainable agriculture in the future will need digital farming technologies (Walter
et al., 2017), which use Artificial Intelligence (AI), cloud computing, Internet of Things
(IoT), and blockchain among others (Klerkx et al., 2019; Torky and Hassanein, 2020).
The rise of these technologies and the potential disruptive impact of digital agriculture
make it particularly important to understand the mechanisms of adoption and diffusion
of digital farming technologies.

The mechanisms of adoption and diffusion of digital farming technologies must be
understood on both farm and system level, where system refers to the collection and
organisation of entities relevant for the adoption and diffusion. Adoption behaviour not
only depends on farm and operator characteristics but is also influenced by structural,
political and economic conditions of the agricultural system. The system evolves over
time, based on the behaviour of the farmers and their interactions with their environment
and one another (Alexander et al., 2013). It is the system interaction in combination
with, and depending on, individual farm characteristics that will ultimately determine
technology diffusion and its impact on the sustainability of agriculture. Therefore, it is
necessary to understand not only individual adoption but also system interaction in the
process of adoption and diffusion.

So far, our understanding of the mechanisms of technology adoption and diffusion
mainly comes from separate empirical farm-level studies on individual adoption and
Agent-based Models (ABMs) simulating systemic diffusion mechanisms. Other equally
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important system approaches like system dynamics (Reinker and Gralla, 2018) are beyond
the scope of this study. Farm-level adoption studies of digital farming technologies start
to emerge in recent years, like Michels et al. (2020), Salimi et al. (2020), Caffaro and
Cavallo (2019), Drewry et al. (2019), Pivoto et al. (2019), and Zheng et al. (2018), but
they are still few compared to the large amount of adoption studies of other agricultural
practices (e.g. sustainable farming practice (Dessart et al., 2019) and precision farming
(Pathak et al., 2019)). This lack of information requires us to also refer to the lessons
of precursor technologies, i.e. Precision Agriculture Technologies (PATs). Farm-level
adoption studies usually use regression-type analysis (e.g. logit, probit, poisson models)
testing the effect of different variables on adoption (such as farm size and farmers’ age)
or qualitative descriptive approaches (e.g. descriptive summary of interviews with
farmers) testing less measurable factor (such as compatibility of a technology and data
safety) (Klerkx et al., 2019). These studies usually do not consider system interaction.
When considering the process of adopting a potentially transformative technology like
digital farming, feedback processes may speed up or dampen the technology diffusion.
This requires us to look at mechanisms and models beyond the farm level.

ABMs are gaining popularity in modelling adoption and diffusion of innovations as
they capture system interaction among heterogenous entities (Zhang and Vorobeychik,
2019). In an ABM, a system is modelled as a collection of autonomous decision-making
entities, i.e. agents (Bonabeau, 2002). An agent can be an individual (e.g. a farmer)
or a collective entity (e.g. an organisation). It assesses its environment and behaves
based on rules defined by modellers. ABMs enable researchers to create, analyse and
experiment with models composed of agents that interact with each other and with
their environment (Gilbert, 2007). Nevertheless, our review on ABMs of agricultural
innovations (see section 2.3) shows that existing ABMs have not covered adoption and
diffusion of digital farming technologies yet. Most importantly, we find that current
ABMs are not well connected with empirical farm-level evidence on the adoption and
diffusion of digital farming and are thus lacking the empirical foundation needed for
applications beyond the toy-model stage so far (Matthews et al., 2007).

The objective of this chapter is to build an empirically grounded conceptual framework
for modelling adoption and diffusion of digital farming technologies. To this end, we
synthesise literature from empirical farm-level adoption studies of precision and digital
farming technologies with ABMs simulating systemic diffusion mechanisms. We need
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to establish this connection to later explore how farmers’ (adoption) behaviour influences
the system and how changed system conditions in turn affect what is happening at the
farms. This dynamic and spatially differentiated process ultimately determine diffusion
of digital farming technologies, and understanding them could help us to identify
effective pathways for sustainable agricultural systems. Such a conceptual framework
can be the basis for contextual applications to inform policy-makers trying to foster
implementation of suitable digital technologies through interventions, such as subsidies
and extension services. Our empirically grounded conceptual framework may generally
serve as a reference for those studying the adoption and diffusion of digital farming
technologies beyond farm scale, and it may more specifically interest ABM modellers
aiming to simulate such processes in different contexts. The results of structured – and
in parts quantitative – review of both strands of literature are by themselves relevant
contributions for the respective communities.

This chapter is organised as follows. In section 2.2, we review farm-level adoption
studies of precision and digital farming technologies and summarise determinants of
farmers’ adoption decisions. In section 2.3, we review ABMs of adoption and diffusion
of agricultural innovations and their limitations for modelling adoption and diffusion of
digital farming technologies. Section 2.4 presents the empirically grounded conceptual
framework for modelling adoption and diffusion of digital farming technologies. Section
2.5 concludes the chapter and points out its limitations and directions for future research.

2.2 Empirical farm-level studies of technology adoption

2.2.1 Selection of farm-level studies

The literature search was conducted a final time on 14 April 2020 using the Web of
Science database. Search terms used and numbers of studies identified are presented
in Table 2.1. Search terms of group 1 require that studies must investigate adoption or
diffusion of agricultural technologies/innovations. Group 2 requires that the investigated
technologies must be either precision or digital (including autonomous) farming
technologies. The combination of group 1 and 2 (by logical “AND”) resulted in 1,266
identified studies.
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After reading all 1,266 abstracts, we selected 32 studies that focus on determinants of
farmers’ decision to adopt technologies in crop production (see Appendix 2.A.1). We
only focus on crop production because only two studies of livestock production (Abeni
et al., 2019; Lima et al., 2018) are found by the structured literature search. Nearly
half of the selected studies (14) was conducted in the USA; 12 studies in European
countries; and the rest in Canada (2), Australia (1), Brazil (1), China (1), and Iran
(1). In terms of methods, 26 studies used regression-type analysis (e.g. logit, probit,
poisson models), and 6 studies used qualitative descriptive approaches (like descriptive
summary of interviews with farmers or experts). Among regression-type studies, 21
studies modelled the adoption decision as a binary outcome (yes/no), and 8 studies
modelled intensity of adoption (e.g. number of PATs used). Some studies included both
cases, and some regression-type studies also included qualitative descriptions.

Table 2.1: Search terms used and number of farm-level studies identified

Group Search terms Number of studies

1 TS = (agricultur* OR farm*) AND
TS = (technolog* OR innovation*) AND
TS = (adopt* OR diffusion)

6,694

2 TS = (precision OR digital OR "smart farming" OR robot* OR
autonomous OR automa* OR "unmanned aerial vehicle*" OR drone
OR "cloud computing" OR "site specific" OR "variable rate" OR
"GPS" OR "remote sensing" OR "soil sampling" OR "yield
mapping" OR "yield monitor*" OR "autosteer" OR drip OR
irrigation OR water saving)

1,389,788

Combine 1 and 2 (by logical “AND”) 1,266

Source: own results

Note: TS = Topics, referring to the title, abstract, or keywords of an article.

In this study, we consider not only the significance of factors but also their importance
for explaining adoption. Figure 2.1 illustrates the frequencies with which factors are
considered and identified as significant (significant at least at a 10% level if it is a
regression-type analysis; identified as important if it uses qualitative approach) or
as insignificant. Some studies modelled the binary adoption decision and adoption
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intensity of multiple technologies. Thus, we count the number of cases (in total 54
cases reported in 32 studies, as shown in x-axis of Figure 2.1) instead of the number
of studies. Factors are grouped into 6 categories: farm characteristics (e.g. farm size),
operator characteristics (e.g. age of the operator), interactions (e.g. get information
from consultants), institutions (e.g. regulations), attributes of technology (e.g. relative
advantage) and psychological factors (e.g. attitude towards the technology). Figure 2.2
summarises partially standardised coefficients of factors representing their importance
(i.e. effect size) in farmers’ adoption decisions.

2.2.2 Significance of factors

Farm characteristics

Farm characteristics get a great deal of attention in farm-level studies. 1) Farm size is
identified to be positively related to adoption in 33 out of 43 cases. Large farms can
take advantage of economies of scale and are more likely to be able to afford the high
initial investment of new technologies (Tamirat et al., 2017). One may speculate that
large farms are more targeted by technology providers for their potential of a higher
sales volume. 2) Biophysical conditions like yield variability and locations are found
significant by 15 out of 26 cases. Farmers with higher quality land might anticipate
greater potential benefits from adoption than farmers with lower quality land (Isgin et al.,
2008). 3) Land use like the share of arable land or share of a certain crop determines
if the technology meets the farms’ needs and is found relevant by 11 out of 18 cases.
Barnes et al. (2019) find that farms with a high share of arable land tend to adopt more
PATs. Paustian and Theuvsen (2017) find producing barley negatively influences the
adoption of PATs. 4) Use of complementary technologies positively contributes to the
adoption of other PATs as shown in 18 out 19 cases. For instance, farmers who already
use a variable rate technology are more likely to adopt yield mapping technologies (Isgin
et al., 2008). 5) Land ownership might influence the adoption of technologies requiring
investments tied to the land such as precision irrigation (Abdulai et al., 2011; Moreno
and Sunding, 2005). However, none of the 8 cases that include this as an explanatory
variable find it statistically significant. 6) Labor availability like the number of regular
employees is statistically significant in 3 out of 8 cases. Pivoto et al. (2019) find that
the lack of skilled labour operating the new technology is a constraint for the adoption.
On the other hand, labour availability and cost could be the main drivers of robotic
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farming technologies. 7) Livestock ownership is considered in 6 out of 54 cases,
but only Lambert et al. (2015) find a positive relationship between owning livestock
and adoption of computerised cotton management system with digital maps. 8) Farm
succession could be an important factor influencing farmers’ adoption decision in digital
farming technologies that require high investment, but only Paustian and Theuvsen
(2017) consider this factor and find it statistically insignificant.

Operator characteristics

Features of farm operators are often researched in farm-level studies. 1) Education
level is found significant in 15 out of 39 cases. Farmers with a high level of education
could better comprehend the application of new technologies (Aubert et al., 2012). 2)
Age is found significant in 12 out of 31 cases, and 11 cases report a negative impact
of age on adoption. The complexity of digital farming technologies is perceived as a
barrier to adoption for older farmers. Moreover, fewer working years until retirement
reduces the planning horizon regarding technology use (Barnes et al., 2019). However,
Pivoto et al. (2019) observe that older farmers tend to adopt autopilot spraying. 3)
Farming as the main occupation is reported to be significant in 3 out of 13 cases. The
more important the farm to the household, the higher the willingness to adopt (Zheng
et al., 2018). 4) Income impacts adoption as shown in 4 out of 13 cases. This might be
due to high initial investments required by digital farming technologies. 5) Computer
use for farm management is examined by 11 cases and 7 of them observe a positive
impact on adoption. Being familiar with computers makes farmers comfortable in
using PATs (D’Antoni et al., 2012). 6) Off-farm income is only found significant by
Schimmelpfennig and Ebel (2016) in the case of adoption of a bundle of technologies
(yield monitor, GPS and variable-rate technologies). 7) Farming experience (in years)
is explored by 6 cases but only 2 cases imply a positive impact (Asare and Segarra, 2018;
Paustian and Theuvsen, 2017). 8) Innovativeness of a farmer is found significant for
adoption by 5 of 6 cases, e.g. Pino et al. (2017) and Aubert et al. (2012). 9) Knowledge
capacity are crucial as 4 out of 5 cases point out. Lack of knowledge in new technologies
(especially in software and data transfer) is a barrier to adoption (Takácsné György et al.,
2018). 10) Risk preference has been rarely investigated (2 out of 54 cases). Farmers
with a higher ratio of debt to asset (a proxy of risk preference) tend to adopt more PATs
(Isgin et al., 2008).
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Interactions

Although interactions within social networks are found influential for adoption of
agricultural innovations (Ramirez, 2013; Sampson and Perry, 2019), they have not
become a focus of adoption studies of precision and digital farming technologies
(Figure 2.1). 1) Having consultants is found by 10 out of 16 cases to be significantly
associated with adoption. Lack of advisory services and the negative opinion on
PATs from advisors influence farmers’ adoption decisions (Pivoto et al., 2019). 2)
Extensions connect researchers and farmers by introducing innovations to farmers,
and they are found to be influential by 3 out of 9 cases. Asare and Segarra (2018)
report a negative impact of having contact with university extensions on adoption of soil
sampling technology, while in Larson et al. (2008) farmers who believe that information
from extensions are helpful tend to be adopters of remote sensing technology. The
interview of Kutter et al. (2011) considers private extension service the most important
promoter of PATs. 3) Farmers’ associations or other organisations are often believed
to be an information source for farmers, but only 2 of 11 cases affirm their impact
on farmers’ adoption decisions (Barnes et al., 2019; Takácsné György et al., 2018).
4) Technology providers offer farmers pre-adoption trials and training, farm system
advice and post-installation technical support. More technical support and training from
technology providers are believed to promote adoption (Barnes et al., 2019; Drewry
et al., 2019). 6 out of 8 cases find a positive effect of having access to technical support
and training from technology providers on farmers’ adoption decisions. 5) Other
farmers can influence farmers’ decisions through information exchange. However,
the 6 regression-type studies we reviewed have not found the statistical significance of
exchanging information with other farmers. But the interviews conducted by Pivoto
et al. (2019) and Kutter et al. (2011) emphasise the impact of neighbours’ negative
opinions on PATs and the importance of obtaining information from other farmers.
6) Contractors provide machinery services to farmers. 4 out of 6 cases emphasise
the impact of getting information from contractors or paying them for related farming
activities, e.g. Gallardo et al. (2019) and Larson et al. (2008). Especially for small
farms, contractors will be a major driver behind the adoption (Kutter et al., 2011). 7)
Attending Events (trade shows, workshops) is identified as influential by Lambert et al.
(2014), Tamirat et al. (2017) and Kutter et al. (2011). 8) Information sources in general
play a role in farmers’ adoption decisions as shown in 5 out of 12 cases.
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Institutions

Institutions are “the rules of the game in a society” (North, 1990, p.3) and devise
constraints that shape human interactions. They consist of formal and informal rules,
norms, beliefs, and potentially organisations. Institutional theories are expansive (see
Ostrom, 2005), thus we only focus on what we found in the literature. 1) Accessibility
of subsidy/credit is believed to have a positive effect on adoption by 6 out of 8 cases.
Reichardt and Jürgens (2009) point out that financial support is a prerequisite for diffusion
of PATs. Lambert et al. (2015) discover that farmers who participate in conservation
easement programs are more likely to adopt PATs. 2) Laws and regulations: 2 cases
(Barnes et al., 2019; Kutter et al., 2011) find that increasing environmental requirements
(e.g. stringent laws on pesticide and nitrogen application) are one of the forces for
adoption of PATs that can significantly reduce chemical use. In the context of digital
farming, regulations that ensure data ownership and prevent misuse of farms’ data can
promote adoption of digital farming technologies (Barnes et al., 2019).

Attributes of technology

Regarding attributes of technology, the theory of Diffusion of Innovation (DOI) of
Rogers (2003) and the Technology Acceptance Model (TAM) of Davis (1985) are often
applied by empirical studies. We organise attributes of technology according to the
DOI because it covers a broader range than TAM. According to the DOI, the perceived
attributes of an innovation (relative advantage, complexity, compatibility, trialability,
and observability) are important explanations of adoption (Rogers, 2003). Surprisingly,
they seem to be less researched regarding adoption of precision and digital farming
technologies. 1) Relative advantage (perceived usefulness in TAM) like increasing
productivity promotes adoption, while high cost and time required for handling data are
barriers (Adrian et al., 2005). Only 10 out of 46 regression-type cases consider this
attribute, and 7 cases identify it as significant, e.g. Walton et al. (2008) and Zheng et al.
(2018). Qualitative descriptive studies pay more attention to attributes of technology
than regression-type studies. They explore the exact advantages and disadvantages of
adopting precision and digital farming technologies. In 7 out of 8 descriptive cases,
better information for farm management, reduction in input-use, and high yield are the
most often mentioned motivations for farmers to adopt such technologies. “High initial
investment” and “time consuming” are the two most often mentioned disadvantages
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(Reichardt and Jürgens, 2009). 2) Complexity (perceived ease of use in TAM) was
considered by 12 cases. Studies using interviews with farmers and experts convey that
complexity in manipulating data and machines is a constraint for adoption (Pivoto et al.,
2019). 3) Compatibility of new farming technologies to existing machinery, poor
telecommunication infrastructure and data interoperability are constraints of adoption of
precision and digital farming technologies, pointed out by 7 qualitative cases, while only
1 regression-type analysis considers this attribute (Aubert et al., 2012). 4) Trialability
actualised in a positive exploratory experience can facilitate the adoption. However, the
only study that considers this attribute (Aubert et al., 2012) reveals a negative relationship
between trialability and adoption. As they interpret, this might be because non-adopters
have a too optimistic prior impression about the ease of use of new technologies. 5)
Observability of the technology by peers is not examined by any of the studies we have
reviewed. This constitutes stark negligence of its stated importance for adoption in the
DOI. 6) We add a sixth attribute, data safety, which is especially relevant for digital
farming. Issues of data safety have been stressed by 4 descriptive cases (Drewry et al.,
2019; Kutter et al., 2011; Pivoto et al., 2019; Reichardt and Jürgens, 2009). They stress
that concern about the misuse of digital data by commercial service providers makes
farmers more cautious. Besides the papers we reviewed, recent studies (e.g. Klerkx et al.,
2019; Pfeiffer et al., 2020; Wiseman et al., 2019) highlight the urgent need for legal and
regulatory frameworks of data collection and use in the context of digital farming.

Psychological factors

Psychological factors are less investigated by models with binary outcomes and inter-
views, but more by models of adoption intensity. The Theory of Planned Behaviour
(TPB), developed by Ajzen (1991), is a theoretical framework often used in examining
the impacts of farmers’ perceptions on technology adoption. The TPB states that a
person’s intention to do something is determined by his or her attitude, subjective
norm and perceived behavioural control. 1) Attitude is a farmer’s positive or negative
evaluation of adoption. It is found to be statistically significant in 10 out of 12 cases.
Farmers who believe the technology is beneficial tend to adopt it (Pino et al., 2017).
2) Subjective norm refers to the perceived pressure or expectation to adopt or not. 5
cases find that external pressure from the community and environmental organisations
positively contributes to adoption of PATs (e.g. Aubert et al., 2012; Lynne et al., 1995).
3) Perceived behavioural control refers to a farmer’s perceived ability to implement
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adoption. It contains self-efficacy and perceived controllability (Ajzen, 2002). 5 out
of 6 cases confirm the importance of this factor. Lynne et al. (1995) declare a positive
relationship between perceived behavioural control and technology adoption, while Pino
et al. (2017) do not.
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Figure 2.1: Influencing factors on farmers’ technology adoption decision
synthesised from 54 cases

Source: own results
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2.2.3 Importance of determinants

Statistical significance of an explanatory factor neither tells anything about the size of
the effect per unit change nor about the variability of variables in the data. Both are
crucial elements to assess the importance of the effect for explaining adoption. As a
consequence, we calculated the partially standardised coefficient of each factor from
regression models. Standardised coefficients make it more meaningful to compare the
relative influence of different independent variables on the dependent variable when these
variables are measured in different scales or ways. Standardised coefficients transform
the independent variables into variables measured in “standard deviation units” (sdx)
(Menard, 2004). However, calculating standardised coefficients also requires knowing
the standard deviation of dependent variables (sdy). In the case of logit models, standard
deviation of transformed dependent variables using logit link (sdlogit(y)) is required
(Menard, 2004), which can be calculated when pseudo R2 and sdlogit(ŷ) are available.
Given the limited data availability, we use partially standardised coefficients. They
allow us to compare the importance of different independent variables assuming that
the variances of the dependent variables from different models are similar. Following
Agresti (2007), we calculate a partially standardised coefficient of an independent
variable as:

βx = bx × sdx, (2.1)

where bx is the non-standardised coefficient of the independent variable x; sdx is the
standard deviation of the independent variable x.

The interpretation of a partially standardised coefficient, βx, is that if the independent
variable x increases by one standard deviation unit (sdx), the dependent variable (y) or
the transformed dependent variable using a logit or probit function (logit(y), probit(y))
will increase by βx unit(s).

A boxplot (Figure 2.2) presents partially standardised coefficients of independent
variables in models with binary outcomes5 (i.e. adopt or not adopt) following the same

5Synthesised partially standardised coefficients of independent variables in models of adoption
intensity are shown in Appendix 2.A.2. We do not include them in the main text due to limited
observations.
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categorisation from section 2.2.1. It shows the minimum, maximum, first quartile,
third quartile, mean, outliers, and the number of observations. The higher the number
of observations (i.e. cases in this study), the more reliable the means of the partially
standardised coefficients are. Thus, we try to interpret the results in the sequence of
the reliability of the synthesised data and by the comparability of factors. Note that
although some factors have no observations that enable us to calculate the partially
standardised coefficients, they are not omitted in Figure 2.2 to keep the consistency with
Figure 2.1. Another advantage of presenting all factors is that the unexplored factors
can highlight potential directions for future research.

Among the most investigated factors i.e. farm size (18 observations), education (20
observations) and age (18 observations), the partially standardised coefficients of farm
size have a higher mean value (0.35) than education (0.15) and age (-0.13). This implies
that an increase by a standard deviation unit in farm size influences farmers’ adoption
decision more than that of education and age. Besides, farm size is consistently shown
to have positive partially standardised coefficients, which means larger farms are more
likely to adopt new technologies. Education also shows relatively consistent positive
impacts with four exceptions. Age, on the contrary, does not seem to be a helpful
predictor for adoption because of its varying and inconsistent pattern.

For biophysical conditions, we calculated the partially standardised coefficients of “yield”
(6 observations, mean = 0.47). A change of one standard deviation unit in yield is shown
to have a bigger impact on adoption than that of land ownership (5 observations, mean
= 0.12) and farming as the main occupation (9 observations, mean = 0.27). Off-farm
income (7 observations, mean = 0.01) is shown to have a smaller impact on adoption
than total income (4 observations, mean = 0.313). Use of complementary technologies
(8 observations, mean = 0.12) and computer use (6 observations, mean = 0.27) both
have positive impacts on farmers’ adoption decisions, with the latter showing overall
larger importance.

Regarding attributes of technology, partially standardised coefficients of “perceived
usefulness” (3 observations, mean = 0.47) and “complexity” (3 observations, mean
= -0.20) were calculated. Together with attitude (3 observations, mean = 0.54), the
importance of these three factors and their consistency remind us that attributes of
technology and farmers’ attitude towards the technology have the potential to be more
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useful predictors for adoption decisions than characteristics of farms and farmers. From
the higher numbers of observations from farm and operator characteristics, we can see
that adoption studies in the past have been focusing on social-demographics, while
overlooking the importance of attributes of technology and psychological factors. Given
the limited information, we do not discuss other factors any further but leave them for
inspection by readers.

As we mentioned in section 2.2.2, the significance of interactions within social networks
has not been investigated as often as one would expect according to researchers like
Rogers (2003), Ramirez (2013), and Sampson and Perry (2019). In terms of their
importance, surprisingly, interaction with other farmers seems less important for
adoption than most of the other factors at first sight, but the evidence on this is very
limited (2 observations, mean = -0.086). We also notice that interaction with other
farmers can negatively impact a farmer’s adoption decision (Pivoto et al., 2019). A
possible interpretation is that this can happen when the attitude of other farmers towards
the new technology is negative as negative opinions can diffuse in social networks as
well (Deffuant, 2006). This highlights the role of social norms and their dissemination
in farmers’ adoption decision. In further investigations, we combined the search term
of TS = (“social network analysis”) with group 1 and 2 (Table 2.1), but no adoption
studies of precision or digital farming technologies yet using the method “social network
analysis” were found in the Web of Science.
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Figure 2.2: Partially standardised coefficients of factors from models with binary
outcome

Source: own results
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2.2.4 Limitations of farm-level studies

When considering the process of adopting digital farming technologies, which potentially
can transform the agricultural system, factors determining each farmer’s adoption
decision change over time and across space. Farmers may learn about the technology
from neighbours who already adopted it. This means farmers’ awareness, knowledge
and attitude may keep changing during the diffusion process of a new technology.
Technology suppliers can offer more mature and/or cheaper versions based on feedback
from users and economies of scale. Additionally, farmers may get more or better services
by outsourcing technology implementation as the technology is spreading over time
(Pedersen et al., 2020). Thus, feedback processes may speed up or dampen technology
diffusion. However, as presented above, farm-level studies of complex technologies
often assume variables to be exogenous and do not capture the interrelationship among
variables. Thus, they do not account for the effects of endogenous feedback within a
system. Consequently, the understanding of the processes leading to the diffusion of a
new technology in the farm population requires us to look at mechanisms and models
beyond the farm level.

2.3 ABMs of adoption and diffusion of agricultural
innovations

As mentioned in the introduction, ABMs are gaining popularity in modelling adoption
and diffusion of innovations as they capture system interaction among heterogenous
entities in a temporal explicit manner (Zhang and Vorobeychik, 2019). For example,
farmers (one type of agents) in Sun and Müller (2012) decide whether to convert
cropland to forest (in response to a payment for ecosystem services) or not, based on
not only their socioeconomic characteristics and features of their land but also on other
farmers’ behaviour. Once farmers have made their decision, macro-level phenomena
(e.g. total amount of area converted by all villagers in this case) can be perceived by
farmers. Those in return may influence farmers’ decisions for the next simulation period
(time-step), thus new macro-level phenomena emerge thereafter (Galán et al., 2009).

ABMs can easily model peer interaction as one of the central elements in the theory of
DOI, which is rarely considered by farm-level studies as shown in Figure 2.1. ABMs have
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been used in various research fields such as geography, urbanisation, agricultural land-use
and political science, etc. (Gilbert, 2007). In the field of agricultural economics, ABMs
are used in modelling farmers’ decisions on crop selection, use of natural resources,
adoption and diffusion of innovations, etc. (see a review of Kremmydas et al., 2018). In
this section, we will explore factors that are considered in current ABMs of agricultural
innovations.

2.3.1 Selection of ABM studies

The literature research was conducted a final time on 05 May 2020 using the Web of
Science database. Search terms used and numbers of studies identified are presented
in Table 2.2. Search terms of group 1 require that ABM studies must investigate
adoption or diffusion of technologies/innovations. Group 2 requires that ABM studies
must be agriculture-related. So far, no ABMs of adoption and diffusion of precision
or digital farming technologies are found. Thus, we did not limit our scope to this
but also included other innovations (e.g. new practices, crops, etc.) to get a better
picture of farmers’ decision-making strategies of adoption and their limitations in current
ABMs. The knowledge from farm-level adoption studies of precision and digital farming
technologies and the knowledge from ABMs of diffusion of agricultural innovations are
then combined to build the conceptual framework.

The combination of group 1 and 2 (by logical “AND”) resulted in 265 identified studies.
After reading all 265 abstracts, we selected only 27 ABM studies (Figure 2.3) that
explicitly modelled adoption or diffusion of agricultural innovations. The innovations
covered by these studies include conservation practices and programs (8 studies, e.g. Sun
and Müller, 2012), innovative crops (7 studies, e.g. Alexander et al., 2013), innovative
farming systems like organic farming and multifunctional agriculture (6 studies, e.g.
Kaufmann et al., 2009), irrigation technologies (5 studies, e.g. Berger, 2001), fertilisers
(2 studies, e.g. Beretta et al., 2018), and others. Note that the number of studies across
all categories exceeds 27 because some articles include multiple innovations and are
therefore counted as multiple times.
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Table 2.2: Search terms used and number of ABM studies identified

Group Search terms Number of studies

1 TS = ("agent-based" OR "agent based" OR "abm" OR
"multi-agent" OR "multi agent") AND
TS = (adopt* OR diffusion OR innovati* OR technolog*)

5,129

2 TS = ("agent-based" OR "agent based" OR "abm" OR
"multi-agent" OR "multi agent") AND
TS = (agricultur* OR farm* OR water OR crop)

1,293

Combine 1 and 2 (by logical “AND”) 265

Source: own results

Note: TS = Topics, referring to the title, abstract, or keywords of an article.

2.3.2 Factors influencing adoption and adoption models in selected
ABMs

To compare factors considered in ABMs and in farm-level studies, we keep using the
six categories summarised from empirical farm-level studies (see section 2.2), but
replace “information sources” with “other types of agents” in the category “interactions”
to better fit the structure of ABMs. Figure 2.3 shows factors that directly affect the
adoption decision process (i.e. triggers) and factors considered elsewhere (i.e. indirect
factors) in the model, as well as the farmers’ adoption model of each ABM. Modelled
factors including triggers and indirect factors are to a large extent influenced by the
adoption model applied by each study. In Figure 2.3, studies are ordered according to
the similarity of their adoption models, so that the advantages and limitations of each
type of adoption behavioural model can be clearly illustrated.

Pure economic models (Bell et al., 2016; Ng et al., 2011; Sorda et al., 2013) usually
depend on data of farm characteristics to maximise farmers’ profit or utility. This type
of model has one trigger for adoption i.e. profit/utility (marked at relative advantage
in the category of “attributes of technology”) and ignores other aspects. Some studies
(like Berger, 2001; Schreinemachers et al., 2007) combine economic models with the
threshold model, which divides farmers into Rogers’ five adopter groups (innovators,
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early adopters, early majority, late majority, and laggards) with percentages that work
as “adoption thresholds” mimicking a contagion process (Rogers, 2003). Although
this type of model allows for farmers’ innovativeness triggering adoption in addition
to economic determinants, it does not explicitly model direct interactions of farmers.
Seven studies (e.g. Cai and Xiong, 2017; Huang et al., 2016) explicitly model the effects
of neighbours’ information or opinion on the adoption decision of a farmer as well
as economic determinants. Farmers’ psychological factors are usually investigated by
cognitive models. Studies like Kaufmann et al. (2009) and Xu et al. (2018) use cognitive
models where farmers’ psychological factors like attitude and subjective norms are
the only triggers, while farm characteristics are to a great extent ignored. Typology
models of Daloğlu et al. (2014a)6 and Sengupta et al. (2005) assign a probability of
adoption according to some features (including farm size, farm income, age of the
operator, land ownership, labour availability, information sources, etc.) of the agent,
thus allow multiple triggers from different categories for adoption. However, assigning
the probability of adoption assumes farmers’ adoption decision is independent from
each other once farmers’ features are determined. Farmers might be able to still interact
in other parts of the simulation (e.g. on the land market), but their adoption decision
would not be affected anymore by the others. The other four ABMs at the end of the
list are less typical: Beretta et al. (2018) only model the impact of social networks on
adoption based on the attributes of the low requirement for investment and knowledge
about the innovation – new fertilisers; Holtz and Pahl-Wostl (2012) model diffusion on
an aggregated level using the Bass Model (Bass, 1969), in which the more widespread
the technology is, the higher the probability that a farmer considers this technology,
without any farm characteristics; the ABM of Schreinemachers et al. (2009) contains an
econometric model that captures the influence of farm and farmer’s characteristics on
adoption; and Sun and Müller (2012) integrate a machine learning algorithm into the
ABM, while farmers’ perception (e.g. attitude) and the effect of neighbours are also
captured.

2.3.3 Limitations of ABM studies

As can be seen from the shading patterns in Figure 2.3, the current ABMs of diffusion of
agricultural innovations are only loosely connected to farm-level findings. Limitations

6See also Daloğlu et al. (2014b).
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are listed by the following four observations.

(1) Agent types and their interactions: Most ABMs represent only a limited number
of agent types. Other agent types highlighted in the theory of DOI (especially extensions
and technology suppliers) are rarely considered. This is somewhat surprising given the
general capacity of ABMs to explicitly model different agent types and heterogeneity
within types (exceptions include Alexander et al., 2013; Cai and Xiong, 2017; Manson
et al., 2016; Sorda et al., 2013). Rounsevell et al. (2012) propose a notion of human
functional types (HFTs), which define an agent by three dimensions (i.e. role, preference
and decision-making strategies), to generalise representations of actors and support the
expansion of ABMs. The advantages of applying HFTs are demonstrated by Arneth
et al. (2014). For example, based on HFTs, Holzhauer et al. (2019) further demonstrate
how institutional agents at global and regional scales can be modelled to study the
impact of institutions on land use change. Similar approaches can be adopted by ABM
modellers who aim to study the impact of interactions among different types of agents
on technology adoption.

(2) Operator characteristics and psychological factors: ABMs lack the attention to
farmers’ ability and confidence to handle the complexity of new technologies with respect
to the adoption decision that farm-level studies show (exceptions include Holtz and
Pahl-Wostl, 2012; Kaufmann et al., 2009; Schreinemachers et al., 2007; Sun and Müller,
2012). Likewise, considerations of substantial investments into complex technologies
are bound to the current stage of farmers’ life and farm succession, which can be well
captured by ABMs, as the empirical findings regarding farmers’ age showed. Due to the
complexity and high requirement of investment of digital farming technologies, farmers’
age, knowledge and self-efficacy7 deserve more attention from ABMs.

(3) Attributes of technology: ABMs usually only consider the change in profit by
adoption (relative advantage) and overlook other attributes of innovations, except for
Olabisi et al. (2015). Since compatibility, complexity and issue of data safety are
becoming concerns of farmers (Figure 2.1), modellers could integrate these attributes of
digital farming technology into ABMs by considering existing farm equipment, farmers’
knowledge and capacity, and risk preference.

7A review of non-agricultural related technology diffusion ABMs revealed that psychological factors
like perceived behavioural control and self-efficacy were modelled more frequently in those models.
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(4) Lack of consideration of institutions: ABMs have shown to be capable of explicitly
modelling institutions like regulations (Ng et al., 2011), social norms (Kaufmann et al.,
2009) and beliefs (Sun and Müller, 2012) that govern agents’ behaviour, but only a few
studies have considered them as shown in Figure 2.3. Here, the failure of ABMs to cover
institutions does match the lack of attention of empirical studies, although regulations,
laws and norms are influential for the acceptance of digital farming technologies (Barnes
et al., 2019). Modelling institutional agents allows important research questions related
to the impact of governance structures and policy formulation (Rounsevell et al., 2012)
in determining the adoption and diffusion of digital farming technologies.
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Figure 2.3: Factors influencing adoption and adoption models in ABMs of
agricultural innovations

Source: own results
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2.4 A conceptual framework for empirically grounded
ABM

Having identified the loose ends of both strands of literature, we aim to build an
empirically grounded conceptual framework for modelling adoption and diffusion of
digital farming technologies of crop production. As suggested by Weersink and Fulton
(2020), adoption should be understood as a process with multiple stages. We apply the
model of five stages in the innovation-decision process from the theory of DOI (Rogers,
2003), i.e. knowledge, persuasion, decision, implementation and confirmation (see an
example of Zheng and Jia, 2017). Because adoption of digital farming technologies is
not a short-term commitment with potentially substantial changes in input use and farm
management, a reasoned action approach is supposed to better capture farmers’ decision
mechanisms (Kaufmann et al., 2009). Thus, we apply the TPB to conceptualise intention
formation due to its success on predicting human behaviour (Ajzen, 2012; Kaufmann
et al., 2009). The TPB has been used in many ABMs of technology adoption outside
the agricultural domain (see Jensen et al., 2016; Rai and Robinson, 2015; Schwarz and
Ernst, 2009; Sopha et al., 2013). Furthermore, the TPB makes it possible to model
farmers’ intentions if actual adoption data is not available, which is a crucial factor
for predicting the spread of new technologies via ABMs. In addition, our review of
ABMs of adoption of agricultural innovations finds that only a few applications are
motivated by social-cognitive theory (e.g. Kaufmann et al., 2009). Groeneveld et al.
(2017) also attest a lack of such theories regarding ABMs of land use change. Thus, for
ABM modellers, applying this framework can increase the empirical and theoretical
foundation, model coherence and comparability of future ABMs.

2.4.1 Description of the framework

Figure 2.4 presents how the model of five stages in the innovation-decision process
and the TPB can be combined as a useful tool to model adoption of digital farming
technologies. Here, we aim at a balance of integrating empirical farm-level evidence
and system interaction. Thus, we made a purposeful selection of empirical variables
that are of importance and connect with system elements at the same time. In this
way, our conceptual framework presents the holistic picture yet highlights important
empirical factors (with red bold squares) that were shown to have considerable impacts
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by empirical studies. Evidence about impacts of other factors needs to be elucidated
in future research. Different theories and categories of determinants are depicted in
different colors (see the legend of Figure 2.4). We present the factors in the category
“psychological factors” (i.e. core concepts in the TPB) and the category “attributes
of technology” (from the DOI) in detail because of their theoretical foundations in
the respective frameworks, which are directly linked with farmers’ adoption decisions.
Factors in the other four categories are collectively illustrated for clarity and simplicity.
It shall be stressed here that it is not our intention to promote future models aiming to
analyse adoption of digital farming technologies to explicitly represent all processes and
factors depicted in our framework. It is rather meant as a systematisation for making
conscious specification choices in view of own specific objectives. The conceptual
framework is explained below.

(1) In the knowledge stage, a farmer becomes aware of a technology’s existence and
eventually gets interested in it. Knowledge (or awareness) about a new technology comes
from “interactions” including learning from other agents and obtaining information
from other sources (Rogers, 2003). Interactions themselves influence the observability
of digital farming technologies by e.g. farm visits, which likewise impact a farmers’
knowledge (Kuehne et al., 2017). The stage of knowledge can usually be modelled
through the spreading of information in a social network (see Beretta et al., 2018).

(2) The persuasion stage is where a farmer ascertains the potential value of adoption.
The TPB postulates that a person’s intention is determined by attitude, subjective norm,
and perceived behavioural control. Attitude, in our case, is a farmer’s positive or
negative evaluation of adoption. It is influenced by farmer’s assumptions about the
relative advantage, compatibility of the technology to the existing farm equipment (see
Shiau et al., 2018), and data safety of the technology. Relative advantage (especially
profitability) depends on the cost and benefit of the technology, farm characteristics
and input and output markets (see the grey dotted box) from an economic perspective
(Robertson et al., 2012). Compatibility refers to the technical adaptability of the
innovation to the existing equipment and practices in the farming system (Robertson
et al., 2012). Subjective norm is the perceived level of approval or disapproval of
adoption by “important others” (Kaufmann et al., 2009). It does describe a receptiveness
to normative sanctioning rather than the prescription or prohibition conveyed by a norm
(Rasch et al., 2016). It is influenced by policies (connected with “institutions”) and
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social norms in farmers’ social networks. Social norms are influenced by institutions
and interactions (mainly with respected farmers and consultants) (Pino et al., 2017).
Perceived behavioural control refers to a farmer’s believed ability to implement
adoption. It is influenced by a farmer’s financial ability, complexity, and trialability of
the technology. Farmers’ financial ability depends on both incomes (included in operator
characteristics) and subsidy/credit accessibility (included in “institutions”) (Pino et al.,
2017). Perceived complexity depends on operator characteristics, especially their
knowledge and capacity, which might change through interactions in social networks.

(3) After the persuasion stage, where intention is formed, a farmer decides to adopt
or reject at the decision stage. This can be done by setting a threshold of intention for
adoption and using either deterministic or probabilistic decision models (Kaufmann
et al., 2009; Ng et al., 2011). The latter might be constructed along observed adoption
rates in farm populations.

(4) The implementation stage is where production activities of a farm are carried
out based on the farmer’s adoption decision. For example, a farm produces with the
objective of maximizing the profit subject to farm endowments (including machinery)
and environmental regulations. Farm-level production activities, potentially influenced
by the new technology if it is adopted, largely depend on the input market and contribute
to the output market. In the long run, changes in markets influence characteristics of
farms and lead to structural change (Appel et al., 2016). The link between the input
market and “interactions” refers to the fact that technology providers, suppliers and
contractors are participating in the input market. Furthermore, production activities
impact on the environment and type and severity of the impact depend on the technology
used (Weersink and Fulton, 2020). Changes in the environment affect a farm’s options of
cultivation, for example by changing soil productivity (Aubert et al., 2012, see connection
with “farm characteristics”). Environmental pressures may induce policy-makers to
adjust regulations (Berger et al., 2007, see connection with “institutions”), and influence
the behaviour of other agents in the system (Sun and Müller, 2012, see connection with
“interactions”).

Note that “implementation” stage is optional to model, depending on whether effect
of adoption on production, market, or environment should be analysed or not. Some
ABMs stop after observing adoption rate at “decision” stage (e.g. Kaufmann et al.,
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2009). But including “implementation” stage and next stage (“confirmation”) completes
the theoretical cycle of adoption.

(5) The confirmation stage refers to an evaluation based on whether the criteria initially
set up for adoption/rejection has been met. The farmer confirms if the technology will be
considered for the next simulation period according to the performance of the technology
and the investment cost. This implies that dis-adoption and mal-adoption are allowed.
Farmers’ evaluations are input for technology providers (included in “interactions”) such
that they can improve some attributes of the technology (see the connection between
the green dotted box and “interactions”). Xu et al. (2020) provide a good example
illustrating how the confirmation stage can be modelled.
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Figure 2.4: Conceptual framework for empirically grounded ABMs of adoption
and diffusion of digital farming technologies

Source: own illustration
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2.4.2 Applying the framework

This framework can be applied in studies investigating impacts of policy measures
(such as subsidy to procure and regulations of data safety), technology attributes (such
as price and compatibility), and interactions in social networks (such as extensions
and contractors) on farmers’ adoption decision on regional level. As results of such
studies will not only improve our scientific understanding of the relevant processes,
its application may also inform policy-makers about the potential impacts of policy
intervention by scenario development or modelling outcomes. A specific application
could be to assess the environmental and economic impacts of adoption and diffusion of
mechanical weeding robots and how these are influenced by pesticide policies.

It is worth noting that the implementation of this framework will require a more detailed
specification in the context of the specific technology, region, and policy to be analysed.
Such more detailed specifications comprise the quantification and aggregation of farmers’
attitude, subjective norm and perceived behavioural control (Schlüter et al., 2017), the
identification of the main processes of interaction between farmers and other types of
agents, and decisions on how other farmers’ decisions (e.g. on production level and
intensity) interact with the adoption and diffusion process and its impacts. A specific
application benefits from the general setup of the framework but the context provides
what matters more and what less.

2.5 Conclusion

To build an empirically grounded conceptual framework for modelling adoption and
diffusion of digital farming technologies, this study combines knowledge of technology
adoption generated from empirical farm-level adoption studies and ABMs simulating
systemic diffusion mechanisms.

We first review 32 empirical farm-level studies on the adoption of precision and digital
farming technologies. Results show that the majority of farm-level studies focus on farm
and operator characteristics, while only a few recent studies highlight the importance of
attributes of technology (e.g. compatibility to existing farming equipment, complexity
and data safety), institutional and psychological factors. To compare the importance of
determinants for adoption, we calculate their partially standardised coefficients. Our
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analysis shows that among the most frequently investigated factors, farm size has the
largest average importance, followed by education, while age does not seem to be a linear
predictor for adoption, because of its varying and inconsistent impacts found by various
studies. Thus, further investigation is needed to find out whether age influences adoption
of digital farming technologies through farmers’ other characteristics (e.g. experience,
innovativeness, and risk preference) or because of farmers’ life stages. Although the
observations of psychological factors and attributes of technology are limited, their
consistency and high level of importance remind us that they could be useful predictors
for farmers’ adoption decisions. To obtain more evidence, future adoption studies of
digital farming should explore the impacts of psychological factors and attributes of
technology on adoption (especially the potential impact of data safety).

Due to the limitation of farm-level studies not capturing linkages between determinants
and feedback within the complex adaptive system, we further review 27 ABMs of
diffusion of agricultural innovations. We find that current ABMs of agricultural
innovations only loosely connect with empirical farm-level findings, despite their
usefulness for representing system interaction. They are quite limited with respect to
modelling various types of agents, and are largely characterised by profit maximisation
while rarely modelling farmers’ knowledge/capacity, psychological factors, attributes
of technology and institutional arrangements. While ABMs are well aligned with the
theory in terms of endogenous macro-phenomena postulated by the theory of diffusion
of innovation, they are not well-grounded in empirical details yet. This latter weakness
might be a characteristic of ABMs of agricultural innovations just recently evolving
from the early toy and proof of concept models to more empirically tuned ones. A
natural next step in this evolution is to consider the wealth of research found in the
empirical farm-level adoption studies.

Based on the loose ends between both literature strands, we present a conceptual
framework integrating farm-level evidence and system interaction for modelling adoption
and diffusion of digital farming technologies in crop production. The framework is
aligned with the theory of diffusion of innovation and with the theory of planned
behaviour. It uses well researched farm-level adoption determinants from a system
perspective and connects important factors based on empirical evidence.

To the best of our best knowledge, this work constitutes the first proposal for a conceptual
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framework for adoption and diffusion of digital farming technologies in crop production.
It improves our current understanding of mechanisms of adoption and diffusion of
digital farming in this context. Our framework also serves as a reference for future
ABMs capable of integrating empirical evidence and system dynamics holistically.
Applying this framework can increase the empirical and theoretical foundation, model
coherence and comparability of future ABMs. Furthermore, the framework provides
structural hypotheses that can be examined by researchers who aim to understand
farmers’ decision-making of adoption using farm-level approaches or by those who
investigate diffusion mechanisms of digital farming technologies using complex systems
approaches.

There are some limitations in this study that could be addressed in future research. First,
we reviewed adoption studies of generic precision and digital farming technologies
in crop production. This leads to a fairly broad conceptual framework containing
factors that might not be relevant for some specific technologies. Focusing on specific
technologies (e.g. mechanical weeding robots) will allow to start from this general
framework but require to specify the contextual relevance of the determinants.

Second, our conceptual framework is only based on a limited number of studies available
at this time. This causes uncertainty regarding the importance of mostly unexplored
factors such as institutions and social networks to farmers’ adoption decision. We
suggest to tackle these context-specific issues with the future development of diagnostic
procedures (Cox, 2011) going hand in hand with our framework to deliver clear-cut
interpretations for institutions and network types.

Last but not least, the proposed framework is largely based on the existing theories
(i.e. DOI, TAM, and the TPB) applied in the reviewed studies. These theories have
certain limitations. Lyytinen and Damsgaard (2001) question the completeness of the
list of technology attributes defined by the DOI and whether all innovations should be
characterised with the same set of attributes. TAM is criticised because it ignores the
social influence on adoption (Beldad and Hegner, 2018). Frequently reported limitations
of the TPB include its predictive validity, rationality assumption, and omitting the effect
of habits and emotions among others (Ajzen, 2011). Therefore, these theories might
need to be adjusted when dealing with different technologies in different social and
political contexts.
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2.A Appendix

2.A.1 Selected empirical farm-level studies of technology adoption

No. Study Technology type Research
Region

Method

1 Adrian et al. (2005) precision farming USA structural equation
model

2 Asare and Segarra (2018) precision farming USA probit model
3 Aubert et al. (2012) precision farming Canada partial least squares
4 Barnes et al. (2019) precision farming Belgium,

Germany,
Greece, the
Netherlands and
the UK

logit model

5 Boyer et al. (2016) precision farming USA probit model
6 Caffaro and Cavallo

(2019)
smart farming Italy structural equation

model
7 D’Antoni et al. (2012) precision farming USA logit model
8 Drewry et al. (2019) digital farming USA descriptive analysis
9 Gallardo et al. (2019) precision farming USA probit model
10 Isgin et al. (2008) precision farming USA logit and poisson

models
11 Kutter et al. (2011) precision farming Germany descriptive analysis
12 Lambert et al. (2014) precision farming USA logit model
13 Lambert et al. (2015) precision farming USA logit model
14 Larson et al. (2008) precision farming USA logit model
15 Lencsés et al. (2014) precision farming Hungary ANOVA test
16 Lynne et al. (1995) Micro-drip irrigation USA tobit model
17 Michels et al. (2020) smart phone in

farming
Germany logit model

18 Mitchell et al. (2018) precision farming Canada descriptive analysis
19 Paustian and Theuvsen

(2017)
precision farming Germany logit model

20 Pedersen et al. (2004) precision farming Denmark descriptive analysis
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21 Pino et al. (2017) water-saving
measures
(micro-drip,
sprinkling irrigation,
plastic sheeting)

Italy structural equation
model

22 Pivoto et al. (2019) smart farming Brazil logit and poisson
models

23 Pokhrel et al. (2018) precision irrigation USA poisson model
24 Reichardt and Jürgens

(2009)
precision farming Germany descriptive analysis

25 Robertson et al. (2012) precision farming Australia logit model
26 Salimi et al. (2020) automation Iran structural equation

model
27 Schimmelpfennig and

Ebel (2016)
precision farming USA probit model

28 Takácsné György et al.
(2018)

precision farming Hungary descriptive analysis

29 Tamirat et al. (2017) precision farming Denmark and
Germany

logit model

30 Vecchio et al. (2020) precision farming Italy logit model
31 Walton et al. (2008) precision farming USA probit model
32 Zheng et al. (2018) unmanned aerial

vehicles
China probit model

Source: own results
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2.A.2 Partially standardised coefficients of factors from models with
binary outcome

Source: own results
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Chapter 3

How much can farmers pay for weed-
ing robots? A Monte Carlo simulation
study8

Abstract: We investigate the Maximum Acquisition Values (MAVs) of weeding robots
and their determinants in both organic and conventional sugar beet farming in Germany.
The MAV is defined here as the price of the weeding robot that renders the same net profit
as the current weeding methods. For our analysis, a Monte Carlo simulation approach is
used, combined with empirical data and data collected from weeding robot companies.
The results show that the MAVs of mechanical weeding robots for organic farming
are substantially higher than that of spot spraying robots for conventional farming.
Technology attributes are more influential than labour market effects in determining
the MAVs of weeding robots: In organic farming, technology attributes such as area
capacity and weeding efficiency impact the MAVs of mechanical weeding robots the
most, while in conventional farming, supervision intensity and the robot’s ability to save
herbicides are the most influential factors. The wage rate of unskilled labour, relevant
for manual weeding, plays a more important role in determining the MAVs than that
of skilled labour, relevant for supervision of the robot. This implies that a shortage
of seasonal workers and hence increases in the wage of low-skilled labour could be
important drivers of the adoption of mechanical weeding robots. Plot characteristics
such as plot size and mechanisation level only have limited impacts on the MAVs.

8Chapter 3 is currently under review in an international journal in the category of "Agriculture,
Multidisciplinary" as Shang, L., Pahmeyer, C., Heckelei, T., Rasch, S., and Storm, H.: How much can
farmers pay for weeding robots? A Monte Carlo simulation study. The data and codes used for this
chapter can be found in the following Github repository: https://github.com/linmeishang/RobotPaperGit
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study

Keywords: weeding robot, labour, technology adoption, supervision, investment

JEL classification: Q12; Q16; Q18

3.1 Introduction

Weed control is a key activity for both organic and conventional farming systems. In
organic farming, manual weeding is labour-intensive and increasingly expensive in the
European Union due to the shortage of workforce in the agricultural sector (Williams
and Horodnic, 2018), which is amplified by the Covid-19 pandemic and the recent
war in Ukraine (Bochtis et al., 2020; Dahm, 2022). In conventional farming, chemical
weeding methods are effective, but they are usually costly, can create herbicide resistance
problems and cause adverse environmental impacts. Thus, the Farm to Fork Strategy
of the European Green Deal sets a goal of reducing chemical pesticide use by 50% by
2030 (European Commission, 2022; Montanarella and Panagos, 2021). In addition,
farmers face regulatory uncertainties about the future availability of herbicides (see e.g.
Stokstad, 2017). Weeding methods that are both cost-effective and environmentally
friendly are urgently needed to ensure food security and the sustainability of agriculture
in the context of a growing world population (MacLaren et al., 2020).

Autonomous weeding robots have great potential to overcome the challenge of agricul-
tural labour shortage and reduce the negative environmental impacts of agricultural
production (Gallardo and Sauer, 2018; Khanna et al., 2022; Lowenberg-DeBoer et al.,
2021a). Combining the recent advances in information and communications technology,
robotics and artificial intelligence, autonomous weeding robots can distinguish weeds
from crops and precisely treat the targeted weeds at the individual plant level (Bawden
et al., 2017). Currently, there are many types of weeding robots that are commercialised
or in development such as GPS-based mechanical weeding robots (e.g. FarmDroid,
2022) and vision-based mechanical weeding robots (e.g. Dino of Naïo Technologies,
2022), vision-based selective spot spraying robots (e.g. AVO of Ecorobotix, 2022), and
vision-based thermal weed control with laser (e.g. LaserWeeder of Carbon Robotics,
2022).

Despite the rapid advancement in the engineering of agricultural robotics, the economic
analysis of agricultural robots has lagged due to their limited adoption and data availability
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from farm trials (Lowenberg-DeBoer et al., 2020; Spykman et al., 2021). In the review
of Lowenberg-DeBoer et al. (2020), only 18 studies that include economic analyses of
agricultural automation and robotics are identified. However, economic analyses are
highly relevant for farmers’ adoption decisions, technology providers’ machine design
(Shockley et al., 2019), and policy-makers’ strategies to promote adoption and tackle
the uncertainties in the labour market. Therefore, this study contributes in this regard by
conducting a cost-based investment analysis of weeding robots.

The aim of this chapter is to investigate the Maximum Acquisition Values (MAV)
(Shockley et al., 2019; Sørensen et al., 2005) of weeding robots and their determinants
in both organic and conventional sugar beet farming in Germany. Following Shockley
et al. (2019) and Sørensen et al. (2005), the MAV of a weeding robot is defined here as
the price of the robot that renders the same net profit as the current weeding methods.
Specifically, this chapter will (1) evaluate the MAVs of weeding robots in both organic
and conventional sugar beet farming in Germany; (2) compare the importance of
technology attributes and labour market effects in determining the MAVs of weeding
robots; and (3) examine the impact of plot characteristics on the MAVs of weeding
robots. Accordingly, we employ a Monte Carlo simulation based on farm planning
data extracted from the KTBL9 (In German: Kuratorium für Technik und Bauwesen in
der Landwirtschaft e.V.; In English: the Association for Technology and Structures in
Agriculture) database. To define the ranges of the robot characteristics for the Monte
Carlo simulation, relevant information about the characteristics of currently available
robots was collected through the homepages of technology firms. Additionally, personal
interviews with leading weeding robot companies were conducted (in total 7 companies:
6 for mechanical weeding robots, 1 for spot spraying weeding robots). Those companies
already offer commercial robots on the market. Interviews were conducted on the DLG
(In German: Deutsche Landwirtschaftsgesellschaft; In English: German Agricultural
Society) field days (14th-16th June 2022, Mannheim, Germany). During the interviews,
the aim was to collect information on the robot characteristics, which is then used to
specify the parameter ranges considered in the Monte Carlo simulation. For the sake
of simplicity, this study focuses on sugar beets since there are many weeding robots
already available that support the cultivation of sugar beets10.

9Homepage of KTBL: http://www.ktbl.de (only in German)
10See a list of weeding robots available for sugar beets: https://www.ducksize.com/robots-for-beets

65

http://www.ktbl.de
https://www.ducksize.com/robots-for-beets


Chapter 3. How much can farmers pay for weeding robots? A Monte Carlo simulation
study

This chapter is organised as follows. Section 3.2 reviews the economic studies of
agricultural robots, especially weeding robots, in the existing literature. Section 3.3
introduces the KTBL dataset and our method for calculating the MAVs. In section 3.4,
the results are analysed and discussed. The last section concludes the chapter and points
out its limitations and the directions for future research.

3.2 Literature review

In this section, existing economic studies of agricultural robots in arable farming are
reviewed. Studies about mechanical weeding and spot spraying robots were firstly
summarised, then those on whole-farm autonomous machinery. Some studies that only
indirectly investigate the economics of agricultural robots but provide some important
insights are also reviewed.

One of the earliest economic studies of mechanical weeding robots was conducted
by Sørensen et al. (2005). Their intra-row mechanical weeding robot was based on a
small autonomous vehicle with vision systems and active tools for weed removal. Their
result showed that mechanical weeding robots could save the labour requirement by
85% in organic sugar beet farming and by 60% for organic carrot production in case of
100% weeding efficiency (i.e. the percentage of weed removed). With a 75% weeding
efficiency, the labour cost could be reduced by around 50%. They also estimated the
MAV of a weeding robot: A farmer could pay up to =C110,000 for the weeding robot
in case of high weeding intensity and high utilisation level of the robot (300 operation
hours per year). With a low weeding intensity and low utilisation level (180 operation
hours per year), the MAV was less than =C40,000. Pérez-Ruíz et al. (2014) evaluated the
labour-saving effect of an intra-row mechanical weeding co-robot on an experimental
tomato plot at the University of California. In the cooperation of the co-robot and a
human, the human provided visual crop detection capability and manually located the
hoes in between row crops, while the co-robot took on the drudgery of repetitive hoe
movement. The result showed that using the co-robotic system replaced nearly 60% of
hand hoeing labour for intra-row weed control.

Turning to spot spraying robots, Pedersen et al. (2006) compared robotic weeding
based on a micro spraying system with a conventional sprayer for sugar beet farming in
Denmark. This system could weed 0.4 ha/h, and it was assumed to save herbicide use
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by 90%. Their economic feasibility assessment showed that robotic weeding was more
profitable than conventional systems: The robotic system could reduce operating costs
by up to 24%. They also estimated an initial cost of nearly =C65,000 for such a weeding
robot. Pedersen et al. (2008) extended the study and estimated the costs of a similar
robotic weeding system for sugar beet farming in Denmark, the US, the UK and Greece.
These countries differ in farm size and labour cost, as well as technical parameters of
the robotic weeding system. The results indicated that the robotic weeder had a cost
advantage in all study regions except Greece, where the wage rate of unskilled labour
was relatively lower than in the other three countries and the total treated area was also
smaller.

There are also studies on the economics of autonomous machinery for the whole farming
system. Shockley et al. (2019) used whole-farm Mixed-Integer Programming (MIP)
considering the entire farming system to compare the net returns of using conventional
and autonomous machinery (including tractor, planter, sprayer, and fertiliser applicator),
guided by intelligent controls, for corn and soybean production in Kentucky, USA. They
investigated the economic feasibility and break-even investment price of intelligent
controls (not including the machinery). For an 850 ha grain farm, the break-even
investment price ranged from around $26,000 up to $160,000, depending on the degree
of input reduction and yield increasing effect. Their sensitivity analysis on farm size
showed that without considering input saving or yield increasing effect, farm size only
had a limited impact on the break-even investment price. However, farm size impacted
the break-even investment price dramatically when input saving and yield-increasing
effects were considered. The study is extended by Shockley et al. (2021). They examined
the farm-level implications of on-site supervisory regulations and a speed restriction.
These regulations reduced the profitability of autonomous machinery, and in some
scenarios, autonomous machines were no longer an economically viable alternative to
conventional machinery.

Lowenberg-DeBoer et al. (2021b) went beyond the economic analysis of Shockley et al.
(2019) showing it is technically possible to use Global Navigation Satellite Systems
and drone autopilot software to retrofit conventional farm equipment to autonomous
operation. They used data from the Hands Free Hectare (HFH) project on a grain-
oilseed farm in the UK to estimate the whole farm profitability of an autonomous
cropping system. The study showed that arable crop production with autonomous
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equipment was economically feasible. Although autonomous farms had no substantial
improvement in gross margins, they had notably higher returns to operator labour,
indicating autonomous farming is more beneficial for production systems that require
more labour and field operations. The study suggests using smaller equipment more
intensively can decrease equipment investment costs. This also hints at the potential of
small robots in utilising small and irregularly shaped farming plots. Lowenberg-DeBoer
et al. (2021a) investigated the impact of supervision time of autonomous equipment and
farm size on the costs of wheat production in the UK based on the HFH project. The
results showed that for a farm of 66 ha, when a 100% supervision time was required,
using autonomous equipment had no cost advantage compared to using conventional
farming equipment. When more supervision time was required, smaller farms tended to
benefit less from autonomous equipment than bigger farms.

Studies that do not directly investigate the profitability of agricultural robots nevertheless
provide some important insights. De Witte (2019) calculated the operating costs of
large and small machine combinations for grain harvesting and tillage using mainly farm
planning data. The study found small machinery for tillage was 7% cheaper than using
large machinery if labour costs were not considered, but small machinery got more
expensive than the latter when considering labour costs. For harvesting, using large
machinery had an economic advantage no matter if labour costs were included. Thus,
it is reasoned that small autonomous machines can become cost-competitive for less
capital-intensive processes like tillage and seeding. Interviews with AgTech startups
conducted by Rübcke von Veltheim and Heise (2020) reveal the expectation that field
crop robots would first be implemented in specialty crops and organic farming as the
economic case for conventional farming is not yet strong enough. They also predicted
that farms with larger fields would adopt field crop robots sooner than farms with
small fields, irrespective of total acreage, due to logistic costs. Rübcke von Veltheim
et al. (2022) further investigated the behavioural intention of German farmers with
respect to their future adoption of autonomous field robots. It is found that farmers’
expected performance and trust in technology had a significant positive impact on
their intention to adopt autonomous field robots. They suggested policy-makers should
create a stable legal situation for autonomous systems to promote the adoption of field
robots. Spykman et al. (2021) investigated farmers’ attitudes towards field crop robots
in Bavaria, Germany. The study showed larger farms focus more on the economic
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advantages of robots and prefer large autonomous tractors. In contrast, small-scale or
organic farms consider the environmental impacts of robots relatively more important
and favour small robots. Organic farming also positively correlates with the intent to
invest in field robots. To our knowledge, quantitative economic analyses explaining
these attitudinal results do not yet exist.

Based on the literature review above, the following research gaps are identified: (1) no
studies have compared the MAVs of weeding robots in organic farming with conventional
farming; (2) no studies have compared the importance of different technology attributes,
labour market effects, and plot characteristics in determining the MAVs of weeding
robots; and (3) no studies have investigated the economic implications of weeding
robot for German sugar beet farms. Given that filling these gaps will provide relevant
information for business strategies and the design of policy measures, this study aims to
investigate the MAVs of weeding robots and their determinants in German sugar beet
farming of both conventional and organic farming systems.

3.3 Data and method

This section first describes the KTBL dataset and the baseline scenario with current
weeding methods (KTBL, 2020). Then, it introduces the weeding robot scenario.
Afterwards, the calculation of MAVs is presented based on the two scenarios.

3.3.1 The KTBL database and the baseline scenario

The KTBL database provides detailed farm planning data for various farm branches
such as arable, livestock and horticultural production in Germany. This extensive data
source mainly serves as a basis for planning calculations and business assessments
on German farms, but it is also regularly used for policy assessments, research and
education (Heinrichs et al., 2021). For arable farming, the dataset provides information
on crops including yields, revenues, and costs of all working steps (e.g. seeding, weeding,
harvesting) in production. For each working step, labour requirements, machinery costs,
and the costs of contractor services are provided. It also includes data about different
types of costs such as variable costs (variable labour costs and variable machine costs),
fixed costs (fixed labour costs and fixed machine costs), and direct costs (e.g. fertiliser
and herbicide, etc.).
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Note that all data on costs and revenues is provided on a per ha basis instead of per farm.
Depending on the plot characteristics, costs and revenue per ha differ from plot to plot.
The KTBL database differentiates plots by plot size, mechanisation level (indicating
the power of the tractor used on the field), farm-plot distance, and yield level. Data on
sugar beet production in both organic and conventional farming systems was extracted.
For simplicity, we only vary plot size and the mechanisation level and fix other plot
characteristics. Plot size is chosen because the average cost of setting up a robot for a
field depends on the plot size assuming the robot only needs to be set up once per field.
The mechanisation level represents the existing technology, thus determining the profit
level of the plot. Other plot characteristics are fixed: The farm-plot distance is fixed at 2
km (the average in Germany), and the yield is fixed at a medium level. In the dataset
used for this study, plot size is a discrete variable including {1, 2, 5, 10, 20, 40, 80}
ha, and the mechanisation level is also discrete including {45, 67, 83, 102, 120, 200,
230} kW. In total, there are 49 combinations (7 plot sizes × 7 mechanisation levels) of
different plot characteristics for organic and conventional farming, respectively.

To present the dataset, the example plot of size of 10 ha and mechanisation level of
102 kW in organic farming is used to illustrate the two tables provided by the dataset:
working steps (Table 3.1) and gross margin (Table 3.2). Table 3.1 shows the costs
(per ha) of each working step. There are multiple weeding steps (i.e. hoeing) from
April to June. Normal hoeing is mechanical weeding with a curry-comb carried by a
tractor, while hand hoeing stands for manual weeding. The labour costs of these two
types of weeding are different. According to the assumption of KTBL, mechanical
weeding is done by a skilled permanent farm worker (hired or family labour, calculated
as fixed labour cost), while the labour requirement of manual weeding consists of 11%
skilled permanent labour (i.e. fixed labour cost) and 89% unskilled seasonal labour (i.e.
variable labour cost). The gross margin table (Table 3.2) presents the revenue, direct
costs, variable costs, and fixed costs of all the farming steps per ha.

In the baseline scenario, farmers use the current weeding methods, i.e. manual weeding
and mechanical weeding with a tractor in organic farming, and chemical spraying in
conventional farming. From Table 3.2, the net profit (per ha) of the baseline scenario
(π1) can be calculated as shown in Equation (3.1):

Net profit=Revenue−Total direct costs−Total variable costs−Total fixed costs (3.1)
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3.3.2 Robot scenario

The previous section has introduced the working steps and gross margin tables. This
section describes the assumptions of the robot scenario and the simulated variables in
this scenario.

3.3.2.1 Assumptions

(1) Two types of weeding robots

It is assumed in this study that a mechanical weeding robot will be used for organic
farming, and a spot spraying robot for conventional farming. The differentiation has
been established since labour intensity is a major driver of the costs in organic sugar beet
cultivation (see Table 3.1 and Table 3.2), whereas in conventional agriculture the cost of
herbicides plays a larger role than labour intensity (KTBL, 2020). The exact technical
execution of the weed removal is not crucial in this study as long as no chemicals are
used in organic farming and conventional farming still uses herbicides to kill weeds.

(2) Working steps replaced by weeding robots

Based on the tables of working steps from KTBL, it is assumed here that weeding
robots go through the fields twice per season in both organic and conventional farming.
For organic farming (see Table 3.1), only manual weeding steps (i.e. hand hoeing) are
replaced by a mechanical weeding robot (twice per season, in May and June, respectively)
because we assume that normal hoeing with a tractor is efficient enough that a robot
cannot compete with it. If a robot is not able to remove 100% of the weed, the rest will
be done by manual weeding (11% fixed labour cost and 89% variable labour cost, as
assumed by KTBL). In conventional farming, weeding is done by a tractor with a sprayer
driven by a permanent farm worker (twice per season, in March and May, respectively),
thus no unskilled labour is required. We assume that the spot spraying robots are able to
kill all weeds in the field, but their ability to save herbicide varies.

(3) Revenue per ha stays the same as in the baseline

It is assumed here that the revenue per ha in the robot scenario is the same as in the
baseline for each plot, meaning the quality of crop output and yield stay the same. Since
the KTBL data only provides the costs and revenue per ha, the costs and revenue in the
robot scenario are also calculated per ha. In this way, the MAV is the price of the robot
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that renders the same net profit per ha as the current weeding methods. Since the KTBL
dataset does not provide information on farm size, this study only focuses on the average
profit of each plot and no farm size is assumed. Thus, our analysis is not at the farm
level but focuses on the profit of the production activity.

(4) Robots are operated at full capacity

The focus on the plot level comes with the assumption that the weeding robots work
at full capacity regardless of farm size. This implies either that the farm has the
appropriate size or that the remaining capacity can be rented out at rates reflecting the
costs. Assuming that a robot works at full capacity may cause an overestimation of
MAVs for small farms that do not manage to rent out excess hours.

(5) Skilled labour for setting up and supervising the robot

It is assumed here that the robot is set up and supervised by skilled labour to ensure safe
operations on the field for both organic and conventional farming. Although Shockley
et al. (2021) and Lowenberg-DeBoer et al. (2021a) see the required level of supervision
time as a regulation, it can also be seen as a technology attribute depending on the
levels of autonomy of the robot. For simplicity, this study includes required level
of supervision time as a technology attribute (see “supervision intensity” in section
3.3.2.2).
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Table 3.1: The costs (per ha) of all working steps of the example plot

Month Working steps Time Depreciation Interest
costs

Other
costs

Maintenance Lubricants Services

OCT1 Soil sample 0.02 0.08 0.01 0 0.07 0.01 1.2
OCT2 Ploughing with a reversible plough 1.13 16.67 4.85 2.08 20.44 18.99 0
FEB2 Harrowing with spring tine harrow 0.32 6.79 2.03 0.94 5.86 4.62 0
FEB2 Nmin-sampling, 0-30 cm 0.19 0.64 0.06 0.01 0.53 0.05 2
MAR1 Spreading liquid manure, from farm 1.01 17.65 4.33 2.3 14.55 7.34 0
MAR1 Harrowing with seedbed combination 0.28 6.73 2.02 0.9 6.06 4.15 0
MAR2 Precision sowing 0.44 24 6.48 1.1 11.88 2.69 0
APR2 Hoeing, 1. and 2. hoeing 0.49 7.31 1.97 0.69 6.02 3.29 0
MAY1 Hoeing, 1. and 2. hoeing 0.49 7.31 1.97 0.69 6.02 3.29 0
MAY2 Crop appraisals 0.1 0.08 0.02 0.06 0.03 0.14 0
MAY2 Hand hoeing (1. hoeing) 85.43 0.92 0.21 1.33 1.1 2.58 0
MAY2 Hoeing, 3. and 4. hoeing 0.41 6.99 1.89 0.64 5.52 2.91 0
JUN1 Hand hoeing (at row closing) 77.74 0.86 0.19 1.26 1.04 2.35 0
SEP2 Harvesting 1.05 96.66 26.1 5.26 65.14 34.65 0
OCT1 Lime fertilisation 0.01 0.13 0.03 0.01 0.08 0.07 0
OCT1 Lime fertilisation 0.03 1.92 0.44 0.2 0.52 0.42 0
OCT1 Processing stubbles, flat, sloped (30°) 0.48 8.41 2.47 1.35 8.63 4.97 0

Sum 169.62 203.15 55.07 18.82 153.49 92.52 3.2
h/ha =C/ha =C/ha =C/ha =C/ha =C/ha =C/ha

Source: KTBL (2020)
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Table 3.2: Revenue and different types of costs (per ha) of the example plot

Gross Margin
Category

Detailed Item Amount Amount Unit Price Price Unit Total
(=C/ha)

Revenue Sugar beet, organic 50 t/ha 105 =C/t 5,250
Direct Costs Seeds, organic 1.23 U/ha 230 =C/U 282.9
Direct Costs Interest (3 month) 91.68 =C/ha 0.03 =C/=C 2.75
Direct Costs Liquid manure 20 m³/ha 0 =C/m³ 0
Direct Costs Calcium carbonate 1 t/ha 40.7 =C/t 40.7
Direct Costs Hail insurance 5,250 =C/ha 8.21 =C/1000 =C 43.1
Variable Costs Variable machine costs / / / / 246.01
Variable Costs Variable labour costs 145.04 h/ha 13.25 =C/h 1,921.78
Variable Costs Services / / / / 3.2
Variable Costs Interest (3 month) 542.75 =C/ha 0.03 =C/=C 16.28
Fixed Costs Fixes machine costs / / / / 277.04
Fixed Costs Fixed labour costs 24.58 h/ha 21 =C/h 516.18

Source: KTBL (2020)
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3.3.2.2 Variables and the accounting system

To calculate the MAVs of weeding robots, variables of technology attributes and their
values need to be defined and chosen, same for the wage rates of skilled and unskilled
labour. Definitions and ranges of value are presented in Table 3.3. The actual values
used to calculate the MAVs are drawn from these ranges in a Monte Carlo simulation.
The ranges of the variables come from various sources: information from technology
providers (through internet or personal interviews as described in the section 3.1), KTBL
database, and existing literature.

(1) Area capacity

The area capacity of a weeding robot is measured by the amount of area (in ha) it can
weed in its useful life. This information is usually difficult to estimate for technology
providers. Thus, the area capacity is approximated based on the lifetime and weeding
capacity per year of a robot. The total lifetime of a robot is assumed to be 10 years
according to Sørensen et al. (2005), Pedersen et al. (2006), and FarmDroid (2022),
which is also similar to the average lifetime of hoeing equipment and self-propelled
machinery. According to FarmDroid (2022), the mechanical weeding robot FD20 is
designed to a farm up to 20 ha per season. When assuming weeding twice per year and
10 years of useful life, the area capacity is 400 ha. According to the personal interviews,
three other robot companies also estimated a similar capacity for their robots. Although
spot spraying robots should have higher area capacity because of their faster speed, due
to the lack of data, we use 400 ha as an average level and set a range between 200 to 600
ha for area capacity for both types of robots. This allows us to compare the MAV of the
two types of robots assuming they have the same characteristics.

(2) Setup time per plot

The setup time per plot is defined as the time required for preparing the robot for the
actual fieldwork. According to robot companies, the setup of the first time involves
settling the GPS station and loading the map, which takes about several hours. But from
the second time, each setup per plot only needs from 10 minutes to 2 h depending on
the situation. Therefore, the range from 0.16 h to 2 h is chosen for this variable. It is
assumed that a robot must only be set up once for a whole plot irrespective of plot size.

(3) Repair and energy costs
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Repair and energy costs are difficult to estimate for technology providers because
they have not got enough experience yet. Therefore, we use the KTBL data for a
standard tractor (all-wheel drive, manual gearbox, 40 km/h, 102 kW) and attached
hoeing machine (3m, row width 45-50cm, 6 rows). The combined repair and energy
costs for this combination are 28 =C/ha. Since the weeding robot can be solar-powered
and the maintenance costs might differ among different robots, for the analysis, the range
is assumed to be a minimum of half the respective costs (14 =C/ha), and a maximum of
twice the costs of the standard tractor (56 =C/ha).

(4) Weeding efficiency

The weeding efficiency of the two types of weeding robots is defined differently. For a
mechanical weeding robot, weeding efficiency measures the percentage of weeds that can
be autonomously removed by the robot, whereas for a spot spraying robot, it measures
the quantity of herbicide that can be saved (compared with the baseline). According to
the information collected from robot companies, the efficiency of a mechanical weeding
robot ranges from 70% to 99%, which is similar to Bawden et al. (2017) and Kunz et al.
(2015). The spot spraying robot can save up to 95% herbicide depending on the weed
density (see e.g. Ecorobotix, 2022). The spot spray technology See & Spray of John
Deere (2021) can reduce herbicide use by 77% on average. Thus, a minimal weeding
efficiency of 50% and a maximum weeding efficiency of 100% are assumed for both
types of robots.

(5) Supervision intensity

Supervision intensity is defined here as a fraction of the field time, which is same as the
level of supervision time in Lowenberg-DeBoer et al. (2021a) and Shockley et al. (2021).
This study assumes a field time (i.e. weeding time) of 3.2 h/ha for a mechanical weeding
robot based on the information collected from the internet (FarmDroid, 2022; Farmers
Weekly, 2021; Naïo Technologies, 2022) and through personal interviews with robot
companies. Spot spraying robots are usually faster, for example, the AVO of Ecorobotix
needs 1.6 h/ha (Ecorobotix, 2022). Due to the limited number of observations for
spot spraying robots, and for the sake of comparability, this study also uses 3.2 h/ha
as the field time for spot spraying robots in this study. As the requirement regarding
supervision intensity is uncertain, we use a range from 0 to 100% for this variable.

(6) Wage rate of unskilled labour
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Of relevance is the wage rate of seasonal labour hired to remove weeds for organic
farming. This variable is assumed to be irrelevant in conventional farming as weeds
are not removed manually in this production system. The wage rate of unskilled labour
in the KTBL database is assumed as a minimum (13.25 =C/h), and the maximum is set
to 21 =C/h, which is the wage rate of the permanent farm worker according to KTBL
(2020). Wage rates include employer contributions to social security.

(7) Wage rate of skilled labour

We consider the wage rate of the skilled labour hired to set up and supervise the robot.
The minimum is assumed to be the same as the wage rate of a permanent farm worker
in KTBL database (21 =C/h), and the maximum is assumed to be twice as much as the
minimum (42 =C/h). Wage rates include employer contributions to social security.
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Table 3.3: Definitions and ranges of variables in the Monte Carlo simulation

Variable Definition Range Unit

Area capacity The amount of area the robot can weed in its useful life 200-600 ha
Setup time per plot Time required to set up the robot per plot 0.16-2 h/plot
Repair and energy costs Repair and energy costs of the robot for weeding one ha 14-56 =C/ha
Weeding efficiency Percentage of weeds removed by the robot (organic farming);

Percentage of herbicide saved by the robot (conventional farming)
50%-100% /

Supervision intensity Percentage of field time required to supervise the robot 0-100% /
Wage rate of unskilled labour Wage rate of seasonal labour 13.25-21 =C/h
Wage rate of skilled labour Wage rate of the personal who sets up and supervises the robot 21-42 =C/h

Note: All variables will be drawn from uniform distribution.
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3.3.2.3 Costs in the robot scenario

The costs of working steps that are not replaced by the robot will stay the same as
for the baseline. Depending on the farming system and the weeding efficiency of the
robot, weeding steps might be partially or completely replaced by the robot. For organic
farming, if the weeding efficiency is below 100%, the manual weeding steps can only be
partially replaced because the rest of the weeds that are overlooked by the robot must be
removed by humans (both fixed and variable labour costs are involved). This causes
additional labour and machine costs. The additional costs are fractions of the original
costs of baseline depending on the weeding efficiency. For conventional farming, it
is assumed that weeding steps are completely replaced by the weeding robots, which
means the robot can always achieve the required weeding efficiency. The weeding
efficiency only determines how much herbicide, thus the direct costs, can be saved by
the spot spraying robot.

In both organic and conventional sugar beet farming, there are weeding steps in the
baseline that will be replaced by robotic weeding in our simulation. Following the
structure of Table 3.1, the costs of one robotic weeding step per ha are shown below.

(1) Time (h/ha): It is the labour requirement of robotic weeding per ha. In this study, it is
the sum of the setup time and supervision time per ha as shown in Equation (3.2), where
field time per ha is fixed at 3.2 h/ha as shown above. Since both setup and supervision
are assumed to be conducted by skilled labour paid on an hourly basis, these costs will
be counted as variable labour costs.

Time = Setup time per plot
Plot size + Supervision intensity × Field time per ha (3.2)

(2) Depreciation (=C/ha): The depreciation cost per ha is the MAV of the robot divided
by the area capacity since we assume that the robot depreciates linearly during its useful
life. The MAV will be an unknown variable that must be solved in our simulation.

Depreciation = MAV
Area capacity (3.3)
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(3) Interest costs and other costs (=C/ha): They are assumed to be fractions of the
depreciation (similar to what KTBL assumes) due to the limited data.

Interest costs = Depreciation × 0.3 (3.4)

Other costs = Depreciation × 0.1 (3.5)

(4) Maintenance and lubricants (=C/ha): These two items are merged into “Repair and
energy costs”.

Maintenance + Lubricants = Repair and energy costs (3.6)

(5) Services (=C/ha): No costs of services are calculated because the costs of hiring
skilled labour to set up and supervise the robot are counted as variable labour costs.

After the weeding steps are replaced (partially or completely) by robotic weeding, the
net profit of a robot scenario can be calculated. The following costs are the total costs
of one ha, including the costs of robotic weeding, the costs of other steps that stay the
same as in the baseline, and possibly the costs of additional manual weeding caused by
an imperfect weeding efficiency.

Variable machine costs

= Sum of maintenance + Sum of lubricants
(3.7)

Fixed machine costs

= Sum of depreciation + Sum of interest costs + Sum of other costs
(3.8)
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Variable labour costs

= Skilled labour time ×Wage rate of skilled labour + Unskilled labour time ×Wage

rate of unskilled labour
(3.9)

Fixed labour costs

= Fixed labour time ×Wage rate of fixed labour
(3.10)

At the end, the net profit per ha of the robot scenario (π2) can also be calculated using
Equation (3.1).

Figure 3.1 illustrates the accounting system and how each variable influences the net
profit of using robotic weeding. The types of costs that will change in the robot scenario
are marked in dotted boxes, under which the variables that influence them are noted.

3.3.3 Data generation and calculation of MAVs

In this study, the MAV of a weeding robot is the maximum price of a robot that renders
the same net profit (per ha) as using the current weeding methods. Figure 3.2 depicts
the data generation process and the derivation of MAV of one random draw.

The data generation process of organic farming and conventional farming are separated.
Here, the process for organic farming is described as an example. First, a Monte Carlo
simulation draws a random combination of all variables that matter in organic farming (7
variables here, 6 variables for conventional farming). Then, for each combination of plot
size and mechanisation level i (49 combinations for organic farming and conventional
farming each), the net profits per ha of baseline and robot scenario are calculated given
the randomly drawn values: The net profit per ha of baseline (πi1) is calculated given the
new wage rate of the unskilled labour (this step is unnecessary for conventional farming
because unskilled labour is not used there). The net profit per ha of the robot scenario
(πi2) is a function of technology attributes, wage rates of skilled and unskilled labour,
and an unknown MAV. The “fsolver” of the “SciPy” library (Virtanen et al., 2020) will
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Figure 3.1: Accounting system and how each variable influences the net profit per
ha

Source: based on KTBL (2020)

Note: MAV is not drawn from the Monte Carlo simulation but will be derived from the system.

Figure 3.2: Data generation and the calculation of the MAV of one random draw

Source: authors’ own figure

Note: * only for organic farming.

82



Chapter 3. How much can farmers pay for weeding robots? A Monte Carlo simulation
study

find the MAV that equalises net profits (i.e. πi1 = πi2) and implicitly determines the
MAV.

The same process is iteratively implemented. A large number of draws are needed to
obtain a relatively well-represented sample in the multi-dimensional parameter space.
In this way, a large dataset consisting of the MAVs and the variables is generated.
For organic farming, 32,000 data points were drawn for each combination of plot size
and mechanisation level. In the end, 1,568,000 possible data points for all organic
farms (32,000 × 49) are generated. For conventional farming, 12,000 draws for each
combination are generated, resulting in 588,000 data points.

3.4 Results and discussion

3.4.1 Range of MAVs in two farming systems

Figure 3.3 shows the distributions of the MAVs in organic and conventional sugar beet
farming systems in Germany. First, it shows that the MAVs in the organic farming
system are distinctly higher than in conventional farming. The MAVs of mechanical
weeding robots in organic farming range from =C62,564 to =C694,073 with a mean of
=C279,884. In contrast, the MAVs of spot spraying robots in conventional farming
have a maximum of =C63,364 and a mean of =C10,362. Around 21% of the data points
have negative MAVs in conventional farming, which means under certain conditions
compensation to farmers for using the robot is required to keep the same profitability as
in the baseline.

Second, from the distributions of the MAVs of weeding robots in the two farming systems,
the MAVs in organic farming are more sensitive to the changes in the randomly drawn
variables compared to conventional farming, although the ranges and distributions of the
random variables for the two types of robots are the same. This implies that chemical
spraying robots in conventional farming must have better technology performances (e.g.
higher area capacity, higher weeding efficiency, less repair and energy costs, etc.) to
increase the MAVs.

The implication of our result is consistent with the findings by Rübcke von Veltheim and
Heise (2020) and Spykman et al. (2021). The higher MAVs of weeding robots in organic
farming show that organic farms (especially for high-value crops) can pay much more

83



Chapter 3. How much can farmers pay for weeding robots? A Monte Carlo simulation
study

for weeding robots to obtain the current profit level, thus having a stronger economic
incentive to adopt autonomous weeding robots than conventional farms. Besides, the
availability of weeding robots (and generally agricultural robots) might change the
conversion consideration of conventional farms, for whom the high labour requirement
has been an obstacle to convert to organic farming (Olabisi et al., 2015).

Figure 3.3: Histograms of the MAVs of weeding robots in organic and
conventional sugar beet farming systems

Source: simulation results

Note: Organic farming system contains 1,568,000 data points, and conventional farming contains 588,000
data points.

3.4.2 Importance of different factors

To compare the importance of different factors, Table 3.4 is constructed to show how
the average MAV changes across each quarter of the simulated range of each factor
(averaging across the outcome for all simulations, i.e. averaging across the other
variables). For example, for the variable “area capacity” (ranging from 200 to 600 ha),
the range is split into four quarters to calculate the average MAV of all data points.
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=C175,650 is the average MAV of those data points whose area capacity is between 200
ha and 300 ha in organic sugar beet farming. Besides, for each variable, Table 3.4 also
presents the change of MAV from Q1 to Q4 (∆MAV), which measures the importance
of the variable in determining the MAV of a weeding robot considering the assumed
scale of the variable.

According to this measure, the most important factor in determining the MAVs of
weeding robots in organic farming is the area capacity of a weeding robot. When the
area capacity increases from a low level (Q1: 200-300 ha) to a high level (Q4: 500-600
ha), the average MAV increases by =C208,741. Weeding efficiency (i.e. the percentage of
weeds removed by the mechanical weeding robot in organic farming) is the second most
important factor. A robot that can remove 87.5%-100% (Q4) of the weeds can attract
farmers to pay =C150,118 more than a robot with an efficiency between 50%-62.5% (Q1).
In terms of labour market effects, the wage rate of unskilled labour has a larger impact
than the wage rate of skilled labour on the MAV of a weeding robot in organic farming:
The ∆MAV of the wage of unskilled labour is =C87,345, but =C-9,345 for the wage rate of
skilled labour. This is because changes in the wage rate of unskilled labour influence the
production cost much greater than the wage rate change in skilled labour. This finding
implies that increasingly more expensive seasonal labour could be one important driver
for adopting mechanical weeding robots in organic farming. Supervision intensity is
the fourth most important factor among the seven factors in influencing the MAV of
a weeding robot. When the supervision intensity increases from Q1 (0%-25%) to Q4
(75%-100%), the MAV of a mechanical weeding robot would drop by =C21,111. The
impacts of repair and energy costs and setup time per plot are less influential compared
to other factors.

In conventional sugar beet farming, the most influential factor is supervision intensity.
As can be seen, when supervision intensity increases from Q1 (0%-25%) to Q4 (75%-
100%), the MAV of a spot spraying robot would drop by =C21,934. Both Shockley et al.
(2021) and Lowenberg-DeBoer et al. (2021a) found that high supervision intensity can
lead to a negative profit level in conventional farming. When only looking at the data
points with negative MAVs, the average supervision intensity is 77% (not shown in
the table). This result corresponds with the study of Lowenberg-DeBoer et al. (2021a).
They found that for a 66 ha farm, using autonomous equipment had no cost advantage
anymore when 100% supervision was required. In our simulation, the second most
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important factor is weeding efficiency (i.e. the percentage of herbicide saved by the
spraying robot in conventional farming). Farmers can pay =C17,285 more for a spraying
robot that can save herbicide by 87.5%-100% (Q4) than a robot that is only able to
save 50%-62.5% (Q1) of the herbicide use. Repair and energy costs and the wage rate
of skilled labour are of similar importance in determining the MAV. In conventional
farming, the area capacity of a weeding robot is much less influential than in organic
farming because the economic benefit per ha of using a weeding robot is less than that
in organic farming. However, when considering the environmental impact of applying
less herbicide, with policy incentives, conventional farmers might be willing to switch
to robotic weeding methods.

In both farming systems, setup time per plot plays the least important role in determining
the MAV of a weeding robot because the setup cost is only a minor part of the production
costs. In general, a longer setup time per plot will decrease the MAV of a weeding robot.
However, the differences in MAVs seem to be quite small, in some cases (e.g. in organic
farming from Q3 to Q4) even smaller than the sampling noise.

When comparing the impact of technology attributes and labour market effects, it can be
seen that the first two most important factors in organic farming are area capacity and
weeding efficiency, implying that the advancement of technology will change the MAVs
of weeding robots more than the changes in the labour market. And in conventional
farming, the most important factors are supervision intensity and weeding efficiency.
Thus, in the two farming systems, the results show that the most impact factors are both
technology attributes, and labour market effect - within the chosen ranges - is weaker
than the impact of technology attributes in determining the MAVs of weeding robots.

3.4.3 Impact of plot characteristics

Figure 3.4 (a) and Figure 3.4 (b) show the average MAV of each plot size and
mechanisation level in organic sugar beet farming across all simulation data points.
When the plot size increases from 1 ha to 10 ha, the average MAV increases by =C9,451,
which is only 3.4% of the mean MAV (=C279,884) of a weeding robot in organic farming.
From 10 ha to 80 ha, there is only a minor increase in MAV. Regarding the mechanisation
level, the MAV of a robot that operates on a plot with a mechanisation level of 67 kW is
=C3,712 higher than that of a plot with a mechanisation level 45 kW. But the average
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MAV of farms with a mechanisation level beyond 67 kW does not change. It is because
KTBL assumes that beyond 67 kW, the production costs (specifically machine costs and
labour costs) do not change for organic farming even though the mechanisation level
increases.

Figure 3.4 (c) and Figure 3.4 (d) show the average MAV of each plot size and
mechanisation level in conventional sugar beet farming. When the plot size increases
from 1 ha to 10 ha, the average MAV increases by =C7,468, which is 72% of the mean
MAV (=C10,362) of a weeding robot in conventional farming. From 10 ha to 80 ha,
the average MAV goes up only slightly. It can be observed that the impact of plot size
in conventional farming is bigger than that in organic farming. This indicates that a
sprayer can work more efficiently on larger fields due to less turning time compared to
smaller fields. However, in organic farming, the time requirement of manual weeding
(per ha) stays relatively stable as the plot size increases. In terms of mechanisation level,
the average MAV is the highest when the mechanisation level is 67 kW. From 67 kW
to 120 kW, the average MAV decreases because the average spraying cost goes down
as the mechanisation level increases. However, with a mechanisation level of 120 kW,
KTBL assumes there is another person driving a water tank when spraying. We will not
dig into the assumptions of KTBL but focuses on the overall implication of the results
of the two farming systems: When the mechanisation level is above 40 kW, a higher
mechanisation level reduces the MAVs of spot spraying robots but has no influence on
the MAVs of mechanical weeding robots based on the assumptions of KTBL data.

Comparing the changes in MAVs caused by plot characteristics with the ∆MAVs (Q4 -
Q1) caused by technology attributes and labour market effects, it can be seen that plot
characteristics have only limited importance in determining MAVs of weeding robots in
both farming systems.
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Table 3.4: Average MAV (=C) of each quarter and the change of MAV (=C) from Q1 to Q4

Organic sugar beet farming
(Mechanical weeding robots)

Average MAV
(Q1)

Average MAV
(Q2)

Average MAV
(Q3)

Average MAV
(Q4)

∆MAV
(Q4-Q1)

Area capacity (200-600 ha) 175,650 245,224 314,760 384,391 208,741
Setup time per plot (0.16-2 h/plot) 281,580 280,301 278,674 278,956 -2,624
Repair and energy costs (14-56 =C/ha) 284,029 280,537 278,316 276,700 -7,330
Weeding efficiency (50%-100%) 204,185 255,289 307,269 354,303 150,118
Supervision intensity (0-100%) 290,236 283,126 277,182 269,125 -21,111
Wage rate of skilled labour (21-42 =C/h) 285,200 281,143 277,383 275,855 -9,345
Wage rate of unskilled labour (13.25-21 =C/h) 234,391 266,080 296,884 321,736 87,345

Conventional sugar beet farming
(Spot spraying robots)

Average MAV
(Q1)

Average MAV
(Q2)

Average MAV
(Q3)

Average MAV
(Q4)

∆MAV
(Q4-Q1)

Area capacity (200-600 ha) 6,473 9,324 11,476 14,107 7,634
Setup time per plot (0.16-2 h/plot) 11,984 10,716 9,953 8,830 -3,154
Repair energy costs (14-56 =C/ha) 15,228 11,922 8,975 5,244 -9,984
Weeding efficiency (50%-100%) 1,950 7,430 13,067 19,235 17,285
Supervision intensity (0-100%) 21,170 13,913 6,637 -764 -21,934
Wage rate of skilled labour (21-42 =C/h) 14,436 11,833 8,987 6,153 -8,283

Source: simulation results
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Figure 3.4: Average MAVs of weeding robots of each plot size and mechanisation
level in both farming systems

Source: simulation results
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3.5 Conclusion

This chapter investigates the MAVs of weeding robots and the importance of factors from
different categories (including technology attributes, labour market effects, and plot
characteristics) in determining MAVs of weeding robots in German sugar beet farming.
It uses a Monte Carlo simulation approach combined with empirical data of KTBL and
assumptions about different robotic characteristics based on the information collected
from weeding robot companies. The MAV is defined as the break-even investment price
that renders the same net profit level as using the current weeding methods.

Under the assumption that mechanical weeding robots replace manual weeding in
organic farming, and spot spraying robots replace untargeted herbicide spraying in
conventional farming, and considering plausible ranges for the robot characteristics, the
results show that the MAVs of mechanical weeding robots in organic farming range
from =C62,564 to =C694,073 with a mean of =C279,884. In contrast, the MAVs of spot
spraying robots in conventional farming have a maximum of =C63,364 and a mean of
=C10,362. The huge difference in MAVs between organic and conventional farming
systems indicates that the economic benefit of mechanical weeding robots for organic
farming surpasses that of spot spraying robots for conventional farming, and organic
farms are able to pay considerably more for a weeding robot than conventional farms to
maintain the current net profit level. Therefore, the adoption and diffusion of weeding
robots might also start among organic farms, which is consistent with the findings from
previous qualitative studies. Another implication is that the availability of weeding
robots (and generally agricultural robots) might change the conversion decision of
conventional farms, for whom the high labour requirement could be an obstacle so far.

This chapter also quantifies and compares the importance of factors in determining
the MAVs of weeding robots from different categories. Firstly, technology attributes
are more influential than labour market effects in determining the MAVs of weeding
robots. For organic farming, the area capacity of a robot impacts its MAV the most,
followed by weeding efficiency (the percentage of weeds that can be removed by the
mechanical weeding robot). For conventional farming, supervision intensity is the most
influential factor, and weeding efficiency (the percentage of herbicides that can be saved
by the spot spraying robot) is the second. Secondly, the wage rate of unskilled labour
has a larger impact than the wage rate of skilled labour on the MAV of a weeding
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robot in organic farming because of the high share of unskilled labour costs in the total
production costs. The implication is that the shortage in seasonal labour could be one
important driver for adopting mechanical weeding robots in organic farming. Thirdly,
supervision intensity is the most influential factor in determining the MAVs of spot
spraying robots. Our results indicate that high supervision costs in robotic weeding
can cause economic infeasibility in conventional farming. In addition, we find that plot
characteristics have limited importance in determining the MAVs of weeding robots,
compared to technology attributes and labour market effects.

To the best of our knowledge, this study innovates by comparing the importance of
factors from different categories (technology attributes, labour market effects, and
plot characteristics) in determining the MAVs of weeding robots in both organic and
conventional farming systems. Our approach allows us to experiment with different
performances of weeding robots and changes in the labour market. One of the limitations
of this study is that the robot scenario does not consider the changes in crop yield
and quality, the alternative use of the farm labour after adopting weeding robots,
and the environmental impacts at both farm and regional levels due to the lack of
data. Future research can make use of data collected by large-scale on-farm precision
experimentations (Bullock et al., 2019) with input use decisions and precision and
autonomous farming equipment to capture not only the economic but also environmental
impacts.
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Chapter 4

Surrogate modelling of detailed farm-
level models using state-of-the-art neu-
ral networks11

Abstract: Technological change co-determines agri-environmental performance and
farm structural transformation. Meaningful impact assessment of related policies
requires farm-level models to be rich in technology details and environmental indicators,
integrated with agent-based models capturing dynamic farm interaction. However, such
integration faces considerable computational challenges affecting model development,
debugging and application. Surrogate modelling using machine learning techniques
may enable such integration for simulations with broad regional coverage. We develop
surrogates of the farm model FarmDyn using state-of-the-art neural networks. All tested
neural networks achieve a high fit but differ substantially in inference time. We develop
evaluation metrics allowing practitioners to assess trade-offs among model fit, inference
time and data requirements. The Multilayer Perceptron shows almost equal performance
in all criteria but saves strongly on inference time compared to a Bi-directional Long
Short Term Memory.

Keywords: deep neural networks, surrogate model, farm modelling, agent-based model,
upscaling

11Chapter 4 is currently under review in an international journal in the category of "Agricul-
tural Economics & Policy" as Shang, L., Wang, J., Schäfer, D., Heckelei, T., Gall, J., Appel, F.,
and Storm, H.: Surrogate modeling of detailed farm-level models using state-of-the-art neural net-
works. The data and codes used for this chapter can be found in the following Github repository:
https://github.com/linmeishang/SurrogateNN
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JEL classification: C45; C63; Q12; Q18

4.1 Introduction

Modelling the impacts of agri-environmental policies increasingly requires accounting
for detailed farm-level decision-making, heterogeneous local conditions, and interaction
among farmers. Policies that are relatively homogenous across regions (such as tariffs
and export subsidies at the EU level or decoupled income support) are continuously
substituted or complemented with more targeted farm-level policies, e.g. the newly
introduced eco-schemes or collective agri-environmental payments that require coor-
dination and participation of local communities (Kuhfuss et al., 2016; Šumrada et al.,
2022). Detailed farm-level models (Richardson et al., 2014; Weersink et al., 2002),
usually implemented as optimisation models, are capable of representing individual
decision-making with a rich representation of input choices, investments, and envi-
ronmental indicators. However, those farm-level models usually do not account for
interaction among farmers, market feedback, or environmental feedback on larger scales
(Heckelei, 2013; Shang et al., 2021). Here, Agent-based Models (ABMs) (Gilbert, 2007)
step in to model endogenous market feedback and to capture the dynamic interaction
of heterogeneous farms (Kremmydas et al., 2018; Müller et al., 2020; Rasch et al.,
2017). However, computational demands limit the complexity of the employed farm
decision-making model within an ABM or the number of agents and hence the regional
coverage of those models (Bradhurst et al., 2016; Murray-Rust et al., 2014; Sun et al.,
2016). Integrating detailed farm-level models as individual decision-making models
into ABMs - while still covering a larger region - is desirable for policy analysis but
usually comes with high computational costs. This chapter addresses this issue by
training and evaluating computationally efficient surrogates that can be integrated into
ABMs in place of the original farm models without any relevant losses in accuracy and
details of model outcomes.

We demonstrate the training and evaluation of surrogate models of the farm-level
model FarmDyn (Britz et al., 2016), which could be integrated into an ABM like
Agricultural Policy Simulator (AgriPoliS) (Appel and Balmann, 2019; Happe et al.,
2006). FarmDyn simulates farm production and investment decisions under changes
in prices of inputs/outputs, technology, and policy instruments for different farming
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branches in Germany and beyond (Britz et al., 2021). The linkage of biophysical
parameters to highly detailed farming activities enables users to assess both economic
and environmental policies with a wide range of social, economic, and environmental
indicators at the farm level. FarmDyn has been applied to assess the impact of the
German fertilisation regulation (Kuhn et al., 2020), the impact of changes in water levels
of peat soils on farm income (Poppe et al., 2021), and the impact of European fertiliser
laws on legume production (Heinrichs et al., 2021). The profit-maximising solution of a
farm is solved by Mixed-Integer Programming (MIP), which is time-consuming when
many variables and constraints of different types are involved (Seidel and Britz, 2019).
AgriPoliS is a spatial and dynamic ABM that explicitly models farmers’ interaction
on the land market. It has been used to study the impact on agricultural structural
change of different policies, e.g. decoupling direct payment (Happe et al., 2008) and
Germany’s biogas policy (Appel et al., 2016). In AgriPoliS, farmers maximise the
household income/profit, which is also solved by MIP. Compared to FarmDyn, the MIP
in AgriPoliS is simpler because it models less detailed technology choices and faces
fewer constraints (e.g. environmental constraints). If we directly integrate the MIP of
FarmDyn into AgriPoliS to combine the strengths of both, it will be computationally
demanding and quickly prohibitive as the spatial coverage expands (Bradhurst et al.,
2016; Huber et al., 2022; Sun et al., 2016). However, combining the advantages of both
types of models becomes increasingly necessary for agri-environmental policy analysis
(Huber et al., 2018).

Surrogate models, also known as metamodels or emulators, may solve this problem
(Jiang et al., 2020; Ratto et al., 2012). They approximate computationally costly
simulation models by mapping the relationship between inputs and outputs while being
much cheaper to run. The availability of highly flexible machine learning tools such
as Neural Networks (NNs) (Goodfellow et al., 2016) offers the opportunity to build
surrogates of complex and computationally demanding simulation models (Razavi,
2021; Storm et al., 2020). In this way, a surrogate model functions as a bridge between
detailed farm-level models and large-scale ABMs to efficiently utilise the advantages of
both types of models. Surrogate modelling has been applied in various fields, such as
water resource modelling (Razavi et al., 2012), engineering (Jiang et al., 2020), and
weather forecasting (Chen et al., 2020). However, the application of surrogate modelling
using NNs in agricultural economics is relatively rare compared to other fields. Audsley
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et al. (2008) use a classical type of NN, Multilayer Perceptron (MLP), to replace a crop
model and predict crop yields, which are further used in an economic model. Nguyen
et al. (2019) also employ a MLP as a surrogate of a biogeochemical model to predict
crop yields and soil organic carbon. The predictions of the MLP are used to compute
the objective and constraint functions for farm-level optimisation. Nevertheless, to the
best of our knowledge, surrogate modelling using state-of-the-art architectures of NNs
is unexplored in agricultural economics. This chapter aims to develop surrogate models
for FarmDyn as a first step such that it can be integrated into ABMs like AgriPoliS.

We aim to make four main contributions. First, we show it is possible to build well-
fitted surrogates of detailed farm-level models using NNs. Second, we systematically
compare the performances of different state-of-the-art architectures of NNs. Third, we
develop a set of evaluation metrics to assess the quality of surrogate models. Here,
we go beyond criteria such as R2 or Mean Squared Error (MSE) and develop generic
metrics that can also be applied to evaluate other surrogate models. They help judge
if the trained surrogate provides the required accuracy for the intended purposes. It is
essential because different architectures of NNs deviate substantially in inference time
(i.e. the time to make one prediction) with only minor differences in R2 or MSE. Thus,
more detailed and practically relevant evaluation metrics are required to judge if those
differences in R2 or MSE are of practical importance and justify the increased inference
time. Fourth, we investigate the performance of surrogate models given different sample
sizes to provide practical guidance for modellers. While it is possible to increase the
sample size by running the underlying model deliberately, it is often computationally
expensive. Hence, for practical purposes, it is crucial to determine how much data is
required for different architectures of NNs to achieve the desired performance on the
defined evaluation metrics.

This chapter is organised as follows. Section 4.2 reviews existing surrogate models to
identify the common architectures of NNs currently used in the literature. Section 4.3
introduces the overall research design. In section 4.4, we analyse the results and assess
the performance of NNs given different sample sizes. Section 4.5 concludes and points
out directions for future research.
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4.2 NNs as surrogate models in the literature

Surrogate models in the literature are based on a large variety of model types, including
polynomial regression (Hussain et al., 2002), radial basis functions (Amouzgar and
Strömberg, 2017), kriging (Kleĳnen, 2009), Gaussian processes (Picheny, 2015),
support vector machines (Xiang et al., 2017), genetic programming (Fallah-Mehdipour
et al., 2013), Bayesian networks (Gruber et al., 2013), and NNs (Sun and Wang, 2019).
Throughout this study, we focus on NNs as they bring new promise to build cost-effective
surrogate models (Chen et al., 2021). This section introduces basic concepts of NNs
and identifies the common architectures of NNs used as surrogates in the literature.

4.2.1 Basic concepts of NNs

NNs are mathematical models that try to mimic the biological nervous systems. They
are capable of representing highly non-linear relationships and are well-placed to deal
with high dimensions in the input and the output space. Figure 4.1 (a) depicts the most
commonly used architecture of NN: MLP. It consists of an input layer, an output layer,
and at least one hidden layer between the two. Each layer contains a certain number of
neurons. Like a biological neuron, an artificial neuron processes the information from
the inputs in the previous layer and transfers the signal to the next neuron, as shown in
Figure 4.1 (b). An artificial neuron performs two steps of computation. First, a weighted
sum of all inputs is computed as shown in Equation (4.1):

z=
m∑
i=1

wixi + b, (4.1)

where wi is the weight of the input neuron xi, b is the bias, m is the number of input
neurons, and z is the weighted sum.

Second, the weighted sum will be transferred by an activation function (f(z)). Typically,
activation functions are non-linear. For example, the Rectified Linear Unit (ReLU)
returns the value that is equal to the input if it is positive, and it returns zero otherwise12.

12See Goodfellow et al. (2016) for further details.
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Weights and biases are called “parameters” of a NN. Training a NN like MLP is to find
the optimal parameters to minimise the loss function, i.e. a function that measures the
difference between the predicted outputs and the true outputs (e.g. the MSE loss). This
process is usually done iteratively through backpropagation algorithms that compute the
gradient of the loss function with respect to the weights and biases (Rumelhart et al.,
1986). The gradients are then used by an optimisation algorithm, i.e. an optimiser,
to update the parameters. Training the NN with all the training data for one cycle is
called one “epoch”. Usually, NNs are trained for multiple epochs. Within one epoch,
the training dataset can be divided into mini-batches, which will be passed through to
the NN at one time. The number of data points that a mini-batch contains is called the
“mini-batch size”.

While parameters can be estimated by algorithms from the training data, “hyperparame-
ters” cannot be estimated from the data and are usually set manually by the modeller
before training. NNs have various hyperparameters (like the number of layers and
neurons). They may interact with each other in non-linear ways. Hyperparameter
tuning is a procedure of finding the optimal hyperparameters of a NN (or other machine
learning models). We will introduce this in detail in section 4.3.

Figure 4.1: The architecture of a MLP (a) and an artificial neuron (b)

Source: based on Goodfellow et al. (2016)

Note: xi is the value of an input neuron, ŷi is the prediction of an output neuron, wi is the weight of a
neuron, b is the bias, z is the output of the weighted sum, and f(z) represents the activation function.
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4.2.2 Different architectures of NNs used in surrogate modelling

MLPs have been widely used as surrogates in diverse disciplines (Roman et al., 2020).
It has been proven that a MLP of one hidden layer (i.e. a shallow NN) with an adequate
number of neurons can be trained to approximate any measurable function to any
desired degree of accuracy (Hornik et al., 1989). As a result, studies using shallow
MLPs are common in surrogate modelling. For example, Carnevale et al. (2012) use
a one-hidden-layer MLP to learn the relationship between emissions and air quality
indices. In the review of Razavi et al. (2012) about surrogate models in water resource
modelling, 13 out of 14 papers used shallow NNs. However, deep NNs (i.e. with
more than one hidden layer) might require fewer neurons to capture a similar level of
complexity and thus are also applied as surrogates. For instance, Liong et al. (2001) use
a NN with three hidden layers to mimic a hydrological model.

The second common type of NNs used as surrogate models is Convolutional Neural
Networks (CNNs) (LeCun et al., 1990), originally designed for image data. CNNs build
connections across neurons in the same layer by hooking neurons and their neighbours
together through convolution kernels. Neurons of CNNs do not have to be connected
to all the neurons of the next layer (Davies, 2018), and the position of an input neuron
matters. CNNs are also promising in handling time-series data (Fawaz et al., 2019).
Although deeper CNNs might be able to capture more complex relationships, classical
CNNs do not perform well as they grow deeper due to the problem of vanishing gradient
(i.e. the gradients of the loss function approach zero, making NNs hard to train) (Bengio
et al., 1994). To overcome this issue, Residual Networks (ResNets) (He et al., 2016)
allow skip connections to enable the training of deeper networks. Weber et al. (2020)
find ResNets perform better than classical CNNs in surrogate modelling for climate
forecasts.

The third common type of NNs used is Recurrent Neural Networks (RNNs) (Elman,
1990; Rumelhart et al., 1986; Werbos, 1988), designed for sequence prediction tasks,
such as speech recognition (Graves et al., 2013) and time series modelling (Hsu, 2013).
RNNs use their internal state (memory) to process variable-length sequences of inputs
by returning the output of one neuron as input to another neuron of the next time step.
However, as the length of inputs increases, long-term dependencies can hardly be learnt
by classical RNNs (Marhon et al., 2013). Long Short-Term Memory (LSTM) (Hochreiter
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and Schmidhuber, 1997) is a special RNN, capable of learning long-term dependencies.
Rahmani et al. (2021) have developed LSTMs as surrogates of a process-based model
to predict stream water temperature. LSTMs have been used to predict crop yields
(e.g. Sun et al., 2019; Tian et al., 2021), but to our knowledge, they are not yet applied
as surrogates of agricultural models. The BiLSTM (Bidirectional Long Short-term
Memory) (Graves et al., 2005) is an extension of LSTM. It learns the sequence and
the reversed sequence of the inputs. Alibabaei et al. (2021) use a BiLSTM to model
evapotranspiration and soil water content in irrigation scheduling. RNNs are also
helpful for non-sequential data. For example, Chopra et al. (2017) train a RNN with
non-sequential data to predict whether a patient would be readmitted to the hospital.

Although MLPs have been applied as surrogates by Audsley et al. (2008) and Nguyen
et al. (2019) (see section 4.1), and LSTMs have been used to predict crop yields as
mentioned above, using NNs of different architectures as surrogates is unexplored
in agricultural models. Besides, no NN applications to approximate economic farm
models are known to us. Given these research gaps, this study will employ the four
state-of-the-art architectures of NNs including MLP, ResNet, LSTM, and BiLSTM to
develop surrogate models of the detailed farm-level model FarmDyn.

4.3 Method and data

Our research design is shown in Figure 4.2. First, from the underlying farm model
FarmDyn, we generate the data that will be used for training NNs. This involves defining
the inputs/outputs of the farm model, generating data, and some data preparation steps.
Second, for each of the four NN architectures, we define three different implementations
that vary in depth (i.e. the number of layers). This results in 12 variants of depth, for
which we perform optimisation for the remaining hyperparameters. The loss function
used to train NNs is the MSE loss. It should be noted that minimising MSE is by
construction equivalent to maximising R2 (see Equation (4.2)). We then select one best
model in terms of R2 from each variant of depth (in total 12 best models) and compare
their inference time. Third, from each NN architecture, we select the best model with
the most promising hyperparameters and inspect model performance in greater detail.
Specifically, we examine model performance across varying sample sizes by considering
a set of evaluation metrics. The details of these three steps are described below.
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Figure 4.2: The overall research design of this chapter

Source: own illustration
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4.3.1 The underlying model and data generation

4.3.1.1 Define inputs/outputs of the farm model

To build a surrogate model of FarmDyn, it is necessary to define the model interface
clearly. This means we need to define what input variables we pass to the model and
what output variables we aim to obtain. In our case, the surrogate model takes the same
inputs and produces the same outputs as the underlying model FarmDyn. Therefore,
defining the inputs/outputs of FarmDyn will technically define the inputs/outputs of
the surrogate model. FarmDyn models a wide range of farm branches, such as arable,
dairy, beef cattle, pig fattening, and biogas. This study focuses on approximating the
behaviour of arable farming. Table 4.1 summarises the inputs and outputs of arable
farms in FarmDyn. They include variables about crops, farming inputs, machinery,
farm endowment, environmental indicators, and farm accounting. Crops included in the
model are winter wheat, winter barley, winter rapeseed, summer cereal, maize, and sugar
beet. The farming inputs include diesel, fertiliser (urea-ammonium nitrate, phosphorus,
and potassium), seed, lime, herbicide, fungicide, insecticide, growth control, water, and
hail insurance. In total, there are 77 inputs and 248 outputs. There are many constant
parameters in FarmDyn, but we exclude them here since the surrogate model should be
able to learn the underlying constant parameters that reflect the relationship between
inputs and outputs.
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Table 4.1: Summary of inputs and outputs of arable farms in FarmDyn

Inputs (unit) Outputs (unit)

Crops • selling price of crops (=C/t) • production level (ha)
• production quantity (t)
• sale quantity (t)
• crop revenues (=C)
• amount of fertiliser used (kg/ha)
• output quantity of crop residues (t)
• revenue from crop residues (=C)

Farming inputs • price (=C/L, =C/kg, =C/t, =C/ha) • used amount (L, kg, t, ha)
• cost (=C)

Machinery • price (=C) • applied area (ha)
• fixed cost (=C)
• variable cost (=C)

Farm endowment • farm size (ha) • amount of idle land (ha)
• shadow price of land (=C/ha)
• distribution of labour to each month (hours)
• distribution of labour to on-farm and off-farm work opportunities

(hours)
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Environmental indicators • nitrogen needed from mineral fertiliser per
ha (kg/ha)

• phosphate need from mineral fertiliser per
ha (kg/ha)

• average nitrogen/phosphate input (kg/ha)
• average nitrogen/phosphate surplus (kg/ha)
• nitrogen leaching on the farm (kg)
• phosphorus loss on the farm (kg)
• emissions on the farm (e.g. phosphorus, nitrous oxide) (kg)
• global warming potential as CO2 equivalent (kg)
• particulate matter formation potential (kg)
• terrestrial acidification potential (kg)
• freshwater eutrophication potential (kg)
• marine water eutrophication potential (kg)

Farm accounting / • variable costs of crops, fertilisers, phytosanitary, machinery (=C)
• total crop revenue (=C)
• off-farm income (=C)
• sum of investments (=C)
• profit (=C)
• cash flows (=C)
• withdraw (=C)
• depreciation (=C)
• total premium (=C)
• income (=C)

Number of variables 77 248

Source: based on FarmDyn (Britz et al., 2016)
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4.3.1.2 Data generation and preparation

The initial farm data is generated from FarmDyn by Latin Hypercube Sampling (LHS)
(McKay et al., 1979). LHS independently stratifies each input dimension into N equal
intervals, where N is the number of data points. For a given dimension, it generates
one data point in each interval and randomly combines this with the selected interval
of the other dimensions. LHS provides outcomes from a uniform distribution of the
data within the design space (Tyan and Lee, 2019). The optimal sample size to train
a surrogate model depends on the complexity of the problem and the computational
budget available. Since NNs need large datasets for problems with high dimensionality,
we generated as many data points as possible given our time budget. With 10,000
model outcomes (i.e. observations) each time, the data generation process ran 17 times
and produced 163,480 data points (taking about 45 hours) because FarmDyn did not
successfully solve for some input draws due to implausible input combinations. The
whole dataset is then randomly split into two subsets including the training set (90%)
and the test set (10%), each having 147,132 and 16,348 observations, respectively.
The training set is used to train the model, and a test set is solely used to assess the
model. During the training process, 10% of the training set is used as a validation
set to monitor the models’ performance on unseen data to avoid overfitting, meaning
the network learns too much information that is specific to the training data and does
not generalise for other datasets. The validation set is also used to implement “early
stopping” given a stopping criterion, e.g. when the loss function stops decreasing after
a certain number of epochs. The difference between the validation set and the test set
is that the test set is used to assess the final performance of a trained model, but the
validation set is a part of the training set that is used during training to monitor the
performance of the model. Normalisation of data is recommended since it usually leads
to faster convergence (Huang et al., 2020). For the training set, we normalised both
input and output data between 0 and 1 with the “MinMaxScalar” of the python package
“scikit-learn” (Pedregosa et al., 2011). The test set is then normalised by the scalar of
the training set because the unseen data must fit into the trained scale of the NN.
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4.3.2 Developing surrogate models using NNs

4.3.2.1 Training and hyperparameter tuning

Developing surrogate models using NNs means obtaining well-fitted NNs that can
approximate the underlying model. As mentioned above, while the training process
that optimises parameters of a NN is automatically done by computer algorithms,
hyperparameters are usually set by modellers manually before training. Types and
numbers of hyperparameters differ among different types of NNs. Here, we focus on
the main hyperparameters.

The number of hidden layers (i.e. the depth) is a determinant for NNs’ ability to capture
complex relationships. Although deep networks might perform better than shallow
networks, increasing the depth does not always improve the performance (He et al.,
2016). To compare the performance of NNs of different depths, we train three variants
of depth for each architecture of NN: For MLP, LSTM and BiLSTM, we train models
with one, two, and three hidden layers, respectively; for ResNet, we train models with
18, 34, and 50 layers since these are proposed by the original paper of He et al. (2016).
Our ResNets are one-dimensional CNNs due to the characteristics of our input data.
The hyperparameter tuning for the 12 variants was done according to the following steps
(Table 4.2).

Step 1: Number of neurons in a hidden layer/Number of filters in the 2nd stage

For each variant of depth of MLP, LSTM, and BiLSTM, we must tune the number of
neurons in each hidden layer since it is an important hyperparameter determining the
performance of NNs. A small number of neurons could lead to underfitting, meaning
the network is not complex enough to capture underlying relationships in the data. A
high number could cause overfitting. We experiment with the number of neurons of
{32, 64, 128, 256, 512, 1024, 2048} in each hidden layer.

For the three variants of ResNets, we tune the number of filters in the 2nd stage. The
commonly used ResNets have five stages of convolutional process. The number of filters
in the 2nd stage will automatically determine the number of filters in the following
stages (He et al., 2016). The training process of ResNets estimates the weights of all
filters. We explore the space of {16, 32, 64, 128, 256, 512} for this hyperparameter.
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Step 2: Learning rate

The learning rate determines the speed of the algorithm to head to the next solution in
the parameter search space. A small learning rate takes a long time for the network to
converge, and a large learning rate might cause the network not to converge. We explore
the space of {0.0001, 0.0003, 0.001, 0.003, 0.01} for learning rate for all models.

Step 3: Mini-batch size

Mini-batch size determines how often the loss function is computed in one epoch and
thus influences the updates of parameters. We experiment with a mini-batch size of {16,
32, 64, 128} for all models.

Step 4: Optimiser

Optimisers determine how the parameters of a network are changed to reduce the loss
function. We experiment with {Adam (adaptive moment estimation), Adamax (a variant
of Adam based on the infinity norm), RMSprop (root mean square propagation), SGD
(stochastic gradient descent)}13 .

Since we only tune one hyperparameter at each step, the rest of the hyperparameters
should be set with default values in order to start training. The last column of Table 4.2
indicates the default setting of other hyperparameters at each step besides the tuned
hyperparameter. As can be seen, we do not tune the activation function. For MLP
and ResNet, we use the ReLU activation function; for LSTM and BiLSTM, we use
the tanh activation function (i.e. hyperbolic tangent function) to enable faster training
on GPU (Graphics Processing Unit). Early stopping is used to determine when the
training process should be stopped. The maximum number of epochs is set to 200, but
the training process will be terminated when the validation error stops decreasing after
15 epochs. The performance of a NN is recorded after each epoch, and the model with
the lowest MSE on the validation set will be saved as the trained model. All NNs are
built and trained using the “Keras” library (Chollet, 2015). To run the experiments, we
use a 11 GB GPU (NVIDIA GeForce RTX 2080 Ti).

13See the Github repository of the “Keras” library (Chollet, 2015).
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4.3.2.2 Selecting the best models and evaluating the inference time

After hyperparameter tuning, we select the 12 best models (three variants of depth
from each architecture) according to the R2 on the test set. Then, we examine the
inference time, defined as the time to make one prediction (i.e. one forward run of the
NN), of the selected models. Inference time determines the efficiency of the surrogate
model in future applications. To make a fair comparison between the trained NNs and
FarmDyn, we record the simulation time of FarmDyn and the inference time of NNs on
the same machine (with Intel Xeon CPU E5-2699 V4, 2.20GHz). The same experiment
is repeated five times, and the average inference time per data point of each NN is
calculated to avoid fluctuations in computing time.
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Table 4.2: Steps and search spaces of hyperparameter tuning of different NNs

Steps Tuned
hyperparameter at
this step

MLP
with hidden
layer(s) of
{1, 2, 3}

LSTM
with hidden
layer(s) of
{1, 2, 3}

BiLSTM
with hidden
layer(s) of
{1, 2, 3}

ResNet
with
layer(s) of
{18, 34, 50}

The default setting of other hyperparameters
at this step

Step 1
Number of neurons
in each hidden layer

{32, 64, 128, 256, 512, 1024, 2048} / learning rate = 0.001
mini-batch size = 32

Number of filters in
the 2nd stage

/ {16, 32, 64,
128, 256,
512}

optimiser = Adam
activation function = ReLU (for MLP and
ResNet), tanh (for LSTM and BiLSTM)
epochs = 200 (early stopping)

Step 2 Learning rate {0.0001, 0.0003, 0.001, 0.003, 0.01} for all NNs mini-batch size = 32
optimiser = Adam
activation function = ReLU (for MLP and
ResNet), tanh (for LSTM and BiLSTM)
epochs = 200 (early stopping)

Step 3 Mini-batch size {16, 32, 64, 128} for all NNs optimiser = Adam
activation function = ReLU (for MLP and
ResNet), tanh (for LSTM and BiLSTM)
epochs = 200 (early stopping)

Step 4 Optimiser {Adam, Adamax, RMSprop, SGD} for all NNs activation function = ReLU (for MLP and
ResNet), tanh (for LSTM and BiLSTM)
epochs = 200 (early stopping)
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4.3.3 Evaluating surrogate models

4.3.3.1 Motivation to evaluate surrogate models besides R2

The training process described above uses the entire training set we have generated.
However, from a practical perspective, there are two aspects we must consider when
developing and applying the surrogate model: (1) Generating data from highly detailed
farm-level models could be time-consuming. Although increasing the sample size is
always possible, it is time-consuming and computationally expensive for modellers.
From a practitioner’s perspective, a natural question is how to determine when to stop
generating data. For this, we need to assess how additional data can affect model
performance, and we need to determine when the surrogate model has obtained an
accuracy that is sufficient for the envisioned application. The latter is usually difficult
to assess based on the R2 measure; (2) Different model architectures might differ
substantially in inference time, with MLPs being much faster than the other architectures
and possibly only minor differences in model performance in terms ofR2. Thus, we need
additional evaluation metrics that are more targeted to the application of the surrogate
model to judge if those differences in model performance are relevant from a practical
perspective and justify a longer inference time.

Therefore, we first develop evaluation metrics besides R2 (see section 4.3.3.2) that are
relevant for the application of the surrogate model. Secondly, we perform a simulation
exercise (see section 4.3.3.3) where we evaluate the performance of the four different
architectures when trained with varying sample sizes. These simulations allow us to
assess if similar performance could be achieved with a smaller sample or if we can expect
performance increases from additional data. Additionally, it allows us to inspect how
the alternative model evaluation criteria (besides R2) behave when varying sample sizes.
This helps us decide which sample size is required to achieve acceptable performance
from an application point of view.

4.3.3.2 Evaluation metrics

(1) Goodness of fit

Like many other studies (see Roman et al., 2020), we use R2 to measure the overall
goodness of fit of a surrogate model on the test set. R2 measures the proportion of the
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total variation in an output variable explained by the model. For an output variable y,
the R2 in terms of this output is calculated with Equation (4.2).

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
, (4.2)

where yi is the true value of the output y of the observation i, ŷi is the predicted value
of the output y of the observation i, and ȳ is the mean of the true values of the output y.

The R2 typically ranges from 0 to 1. However, when a model’s performance is worse
than simply predicting the mean of the output for all observations, it becomes negative.
Since we only select models that have a positive R2, it ranges from 0 to 1 in this study.
We calculate the average R2 across all outputs with Equation (4.3).

R2 =
1

K

∑
R2

yk
, (4.3)

where K is the number of outputs (K = 248 in this study).

(2) Consistency of bivariate relationships

From an application perspective, it is crucial to assess whether some fundamental
relationships between an input and an output or between two outputs are learnt by the
surrogate model. This is particularly important for applications where the results of
scenarios strongly depend on the relationship between certain variables. For example,
when simulating scenarios about nitrogen fertilisation and its environmental impact,
modellers would want to check if the surrogate model can correctly capture the
relationship between fertilisation decision and the environmental outcomes. Here, we
consider if the relationship between the amount of nitrogen applied and the amount
of nitrogen leaching on a farm is learnt by the surrogate model. In FarmDyn, for a
specific crop of a certain yield level, the relationship between the two variables is
linear. However, it becomes non-linear at the farm level depending on the crop rotation
decisions. To capture the non-linear relationship between two variables, we use the
Maximum Information Coefficient (MIC) (Reshef et al., 2011, see Appendix 4.A), a
non-parametric method that has been widely applied (Cao et al., 2021). MIC ranges
from 0 to 1. The higher the MIC is, the stronger the relationship between the two
variables. We use the python package “minepy” (Albanese et al., 2013) to calculate the
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MICs. Then, we calculate the Absolute Percentage Error (APE) between the true and
predicted MICs between the two variables with Equation (4.4).

APErelationship = |MICtrue - MICpred| / MICtrue, (4.4)

where MICtrue is the MIC between the amount of nitrogen applied and nitrogen
leaching on a farm calculated from the true data, and MICpred is calculated from the
predicted data.

(3) Accuracy in capturing corner solutions

Another important aspect for the application of surrogate models is if the surrogate
model is capable of capturing corner solutions. These are special solutions to an
optimisation problem in which the quantity of one of the arguments in the objective
function is zero (Debertin, 2012). In arable farming, examples of corner solutions are
an available technology that is not chosen or a particular crop that is not produced. A
previous study has shown that corner solutions are usually challenging for surrogate
models to capture (Seidel and Britz, 2019). The ability of the model to capture corner
solutions is difficult to assess from R2. When R2 is low, it would be interesting to see if
the surrogate model is able to capture corner solutions, i.e. if it at least gets the farmers’
choices correct without considering the level. This dimension becomes particularly
relevant if farmers’ choices are the focus of the analysis in applying surrogate models,
e.g. when simulating farmers’ technology adoption decisions.

For example, we measure NNs’ ability to capture corner solutions of farmers’ crop
choices. For a crop c, we first transform its true and predicted production levels for each
observation into binary: 0 (if not produced14) and 1 (if produced). Then, we count the
number of farms whose decisions are correctly predicted. The accuracy in capturing
corner solutions of crop c is calculated with Equation (4.5).

Ac = 1
N
ac, (4.5)

14In practice, this threshold is < 0.01 because NNs usually do not predict a strict “0” but rather a very
small number like 0.000001.
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where ac is the number of observations whose decision on crop c is correctly predicted,
and N is the number of observations in the test set.

The average accuracy in capturing corner solutions across all crops is calculated with
Equation (4.6).

Accuracycorner = 1
C

∑
Ac, (4.6)

where C is the number of crop types (C = 6 in this study).

(4) Accuracy in holding constraints

Individual farm optimisation models simulate farmers’ choices to maximise an output
subject to a set of constraints (e.g. land/labour endowment). When employing a
surrogate model of such an individual farm model, it is crucial that those constraints
hold. For example, the sum of the planted areas of all farm crops cannot exceed the
farm size if renting land is impossible. From an economic modelling point of view, a
smaller violation of these constraints by the surrogate model is often more problematic
than a larger deviation from the underlying model behaviour within the feasible solution
space (e.g. some underutilisation of a resource). R2 does not capture this, as they do
not distinguish between feasible and infeasible solution space given by the constraints
of the underlying model. Therefore, a dedicated measure of how well the prediction of
the surrogate model obeys the constraints is warranted.

As an example, we measure NNs’ accuracy in holding constraints of farm size with
Equation (4.7).

Accuracyconstraint = 1
N
aconstraint, (4.7)

where aconstraint is the number of observations whose constraints of farm size are not
violated, and N is the number of observations in the test set.

Table 4.3: Summary of the evaluation metrics

Criterion Example Measurement Notation Range

Goodness of fit Average R2 across all outputs R2 (0, 1)

116



Chapter 4. Surrogate modelling of detailed farm-level models using state-of-the-art
neural networks

Table 4.3: Summary of the evaluation metrics

Consistency of bivariate
relationships

APE between true and
predicted MICs between the
amount of nitrogen applied and
nitrogen leaching on a farm

APErelationship (0, +∞)

Accuracy of capturing corner
solutions

Accuracy in capturing corner
solutions of crop choices

Accuracycorner (0, 1)

Accuracy in holding constraints Accuracy in holding the
constraint of farm size

Accuracyconstraint (0, 1)

4.3.3.3 Training with different sample sizes

To investigate the impact of sample size on the performance of the surrogate model,
we choose the best model with the most promising hyperparameters from each NN
architecture and train them with varying sample sizes. We split the original training set
(section 4.3.1.2) into sizes of {1000, 5000, 10000, 50000, 100000, 14713215}. The test
set is the same as before, containing 16,348 samples, but it is normalised according to
the scale of each training set. To avoid fluctuations, we average the performances of five
models trained with the same data using different random seeds for each architecture of
NN and for each sample size.

4.4 Results and discussion

4.4.1 The best models and their inference time

We select the 12 best models in total (three variants of depth from each architecture) in
terms of R2 on the test set. Table 4.4 shows the architecture of the selected NNs. As
can be seen, BiLSTM3 (BiLSTM with three hidden layers) has the highest R2 of 0.99,
while ResNet18 has the lowest R2 of 0.93. This shows NNs can capture the variance
in the data very well. In terms of R2, we observe that BiLSTMs and LSTMs perform
better than MLPs and ResNets. RNNs, although designed for sequential data, can also
adapt to non-sequential data.

15This is the maximum amount of observations in the original training set.
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As shown in Figure 4.3, the inference time of different NNs differs substantially. MLPs
are the fastest in predicting, while LSTMs and BiLSTMs are much slower, reflecting
the larger number of parameters than MLPs (see Table 4.4). FarmDyn takes 0.96s
to generate one data point on average. In comparison, the MLP3 (MLP with three
hidden layers) (R2 = 0.95) needs 0.000026s to predict one data point being 38,400 times
faster than FarmDyn, and the BiLSTM3 (R2 = 0.99) takes 0.021s being 45 times faster.
Whether this speed is satisfying depends on the time budget of future applications.
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Table 4.4: The architectures of the 12 selected models based on R2 on the test set

Number of
hidden layers

Number of
neurons in each
hidden layer

Number of
filters in the 2nd
stage

Learning
rate

Mini-batch
size

Optimiser Number of
parameters

R2

MLP1 1 128 / 0.001 32 RMSprop 41,976 0.94
MLP2 2 64, 512 / 0.0003 32 Adam 165,496 0.96
MLP3 3 128, 32, 256 / 0.0003 32 Adam 86,296 0.95
ResNet18 18 / 32 0.001 128 Adam 1,119,960 0.93
ResNet34 34 / 8 0.0003 32 Adam 171,648 0.94
ResNet50 50 / 16 0.001 64 Adam 1,666,648 0.94
LSTM1 1 256 / 0.001 32 Adam 327,928 0.97
LSTM2 2 128, 64 / 0.001 32 Adam 132,088 0.97
LSTM3 3 32, 128, 1024 / 0.001 32 Adam 5,063,672 0.98
BiLSTM1 1 2048 / 0.001 32 Adamax 34,603,256 0.98
BiLSTM2 2 32, 256 / 0.001 32 Adamax 793,336 0.98
BiLSTM3 3 32, 128, 512 / 0.001 32 Adamax 3,610,360 0.99

Source: training results
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Figure 4.3: Inference time per data point of each NN

Source: simulation results

4.4.2 Model performance and impact of sample size

According to Table 4.4, we select the four best model specifications in terms of R2 to
experiment with different sample sizes as described in section 4.3.3.3. They are MLP
with 2 hidden layers (MLP2), ResNet with 50 layers (ResNet50), LSTM with 3 hidden
layers (LSTM3), and BiLSTM with 3 hidden layers (BiLSTM3). In the following, we
refer to them as MLP, ResNet, LSTM, and BiLSTM without repeating the number of
layers.

4.4.2.1 Goodness of fit

Figure 4.4 (a) shows the change of R2 of the selected NNs with varying sample sizes.
With a training set of 1,000 observations, BiLSTM and MLP can achieve an average R2

of 0.8, while LSTM can only achieve around 0.55. For ResNet, 1,000 observations for
training are insufficient to converge because the R2 of ResNet trained with this sample
size is negative (not shown in the figure16) . As the sample size increases from 1,000 to
5,000, we see a steep increase in R2 for all four types of models. With a sample size of

16Because of the poor performance, the evaluations of ResNet with 1,000 observations are not shown
in the following figures, either.
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50,000, BiLSTM and MLP can already achieve a R2 of around 0.95. Interestingly, with
a sample size of 100,000, all models except for LSTM achieve the performance level
where additional observations hardly increase the performance anymore.

4.4.2.2 Consistency of bivariate relationships

Figure 4.4 (b) shows the measure for the ability to capture the relationship between the
amount of nitrogen applied and nitrogen leaching on a farm (APErelationship). As we
can see, MLP and BiLSTM can achieve an APE below 2% given 5,000 data points for
training, while LSTM can only reach the lowest APE with 100,000 observations. We
also observe that for all architectures of NNs excluding LSTM, 50,000 observations are
sufficient (APE < 1%) to learn the relationship between nitrogen applied and nitrogen
leaching on a farm.

4.4.2.3 Accuracy in capturing corner solutions

Figure 4.4 (c) shows the accuracy in capturing corner solutions of crop choices
(Accuracycorner) of each NN architecture given different sample sizes. With a sample
size of 10,000, BiLSTM can achieve accuracy near to 100% in capturing the corner
solutions of crop choices. Once the sample size exceeds 50,000, the accuracy does not
increase much for most models except for LSTM. We can also see that MLP is as good
as BiLSTM in capturing corner solutions at and beyond 50,000 data points.

4.4.2.4 Accuracy in holding constraints

Figure 4.4 (d) shows the accuracy of NNs in holding constraints of farm size
(Accuracyconstraint). With a smaller sample size (less than 20,000), MLP outper-
forms BiLSTM with an accuracy of 0.98, but BiLSTM dominates once the sample size
reaches 50,000. Furthermore, the accuracy of BiLSTM in holding the constraints is
very close to 100%, given a sample size of 50,000. After this point, adding more data
points does not improve the performance of BiLSTM.

Figure 4.4 (e) shows the total score of each NN, which is calculated by simple addition
and subtraction of all criteria (Total score = R2 - APErelationship + Accuracycorner +
Accuracyconstraint) because they all turned out to be in the range of 0 and 1 in this study.
As can be seen, increasing the sample size from 1,000 to 50,000 significantly improves
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the performance of all types of models. Once the sample size reaches 100,000, adding
more observations to the training process does not necessarily improve the performance
of surrogate models. Thus, in our case, a sample size between 50,000 to 100,000 should
be sufficient to develop surrogate models that perform well concerning all our evaluation
metrics. In terms of model preferability, BiLSTM almost always dominates over other
types of NNs given different sample sizes but has a close competitor - MLP. Considering
the inference time of the trained model, MLP may be the go-to model in many surrogate
model applications that require a large number of model runs.
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Figure 4.4: Performance of different architectures of NNs given different sample
sizes

Source: simulation results
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4.5 Conclusion

This chapter investigates the performance of NNs of different architectures in ap-
proximating the behaviour of a detailed farm-level model FarmDyn. We compare
the performances of four architectures of NNs (MLP, ResNet, LSTM, and BiLSTM),
considering 12 different implementations in terms of model depth. The trained NNs are
supposed to accurately map the relationship between 77 input variables and 248 output
variables of the farm model. The high goodness of fit of the selected surrogate models
shows that NNs can explain most of the variation in the output variables. The BiLSTM
with three hidden layers achieves an average R2 of 0.99 across all output variables, while
the lowest average R2 is 0.93 by ResNet with 18 layers. BiLSTM and LSTM achieve
better performance than other types of NNs, although they are originally designed to
handle sequential data. In terms of inference time, all trained NNs are much faster
than FarmDyn. MLPs are about 30,000 times faster, and the best performing BiLSTM
regarding R2 is still 45 times faster.

We also provide generic evaluation metrics to assess the performance of surrogate
models, which can offer future modellers additional help in selecting surrogate models
in applied modelling. The evaluation metrics consist of four dimensions: (1) Goodness
of fit; (2) Consistency of bivariate relationships; (3) Accuracy in capturing corner
solutions; and (4) Accuracy in holding constraints. They are calculated for different
sizes of samples used for training to understand the effort needed in data generation. In
our specific case, increasing the sample size from 1,000 to 50,000 significantly improves
the performance of all types of models. Once the sample size reaches 100,000, adding
more data points for training does not improve the performance of the surrogate models
in any relevant way as defined by the evaluation metrics. MLP performs the second best
in general, and its performance on other criteria is close to the best model - BiLSTM.
Since it has a strong advantage on inference time, MLP might be the prime choice for
many cases with strong computational demands.

Our research shows NNs are efficient in approximating detailed farm-level models. Thus,
they can offer upscaling possibilities of ABMs with detailed farm-level model outcomes.
Specifically, the integrated modelling system can be used to enable comprehensive
analyses of agri-environmental policies that are targeted at the individual farm level. It
will be worth exploring whether the slight deviation (like 1%) of the surrogate model at
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the farm level can cause crucial divergence at the regional level, where heterogeneous
farms interact with each other in both the short and long run. Furthermore, updating and
debugging the integrated modelling system could be challenging since three different
models (i.e. farm model, surrogate model, and ABM) that are potentially operated by
different teams are involved.

Finally, future research may move towards more systematic development and integrated
application of surrogate models going beyond their stand-alone methodological as-
sessment. An interesting alternative avenue in training surrogate models might be
the use of Generative Adversarial Networks (GANs) (Goodfellow et al., 2020). They
could learn the criteria for making the outcomes from the original and surrogate model
indistinguishable in a data-driven way or could allow us to derive more natural stopping
criteria for data generation. The rapid development of machine learning will likely
further improve the performance of surrogate models and make the training of NNs a
more standard approach.
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4.A Appendix

Maximum Information Coefficient (MIC) (Reshef et al., 2011)

For two variables x and y, the MIC is calculated with Equation (4.A.1).

MICx,y = max{I(x, y)/log2min{nx,ny}} (4.A.1)

where I(x, y) is the mutual information (Cover and Thomas, 2006) between x and y;

log2min{nx,ny} is the minimum joint entropy (Cover and Thomas, 2006) between x
and y;

nx and ny are the number of bins of x and y.

Citations in the appendix

Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory. John Wiley
& Sons, Inc. 2nd Edition.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh,
P. J., Lander, E. S., Mitzenmacher, M., and Sabeti, P. C. (2011). Detecting novel
associations in large data sets. Science, 334(6062), 1518–1524.

133


	Danksagung
	Kurzfassung
	Abstract
	List of Figures
	List of Tables
	Overview of the thesis
	Motivation and structure
	Contributions of the thesis
	Conclusion
	References

	Adoption and diffusion of digital farming technologies - Integrating farm-level evidence and system interaction
	Introduction
	Empirical farm-level studies of technology adoption
	ABMs of adoption and diffusion of agricultural innovations
	A conceptual framework for empirically grounded ABM
	Conclusion
	References
	Appendix

	How much can farmers pay for weeding robots? A Monte Carlo simulation study
	Introduction
	Literature review
	Data and method
	Results and discussion
	Conclusion
	References

	Surrogate modelling of detailed farm-level models using state-of-the-art neural networks
	Introduction
	NNs as surrogate models in the literature 
	Method and data
	Results and discussion
	Conclusion
	References
	Appendix




