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1. Introduction 

1.1 Dose individualization and pharmacometric modeling in oncology 

1.1.1 Dose individualization in oncology 

Precision medicine which is defined as a tailored approach to preventing, diagnosing and treating 

diseases in individual patients is an advancing area, especially in the field of oncology [1, 2]. So far, 

precision medicine is mainly focused on genotyping and pharmacogenetic approaches which allow for 

cancer diagnosis and proper drug selection for individual patients. For various anticancer drugs, such 

screening approaches are mandatorily performed. For example, patients with colorectal cancer are 

often treated with the chemotherapeutic agent cetuximab. In order to ensure optimal efficacy, 

patients are screened for mutations of the rat sarcoma (RAS) gene before cetuximab administration. 

If RAS mutations are present, cetuximab should not be administered due to an unfavorable benefit-

to-risk ratio [3]. Other prominent anticancer drugs which require pre-therapeutic genotyping are the 

monoclonal antibody trastuzumab (screening for overexpression of human epidermal growth factor 

receptor 2), or the fluoropyrimidines fluorouracil (5FU) and its oral prodrug capecitabine. The two 

latter drugs will be discussed in further detail in chapters 1.2.1 and 1.2.2, respectively. 

However, besides drug selection, the optimal drug dosage is crucial as well to ensure a safe and 

efficacious therapy. Given the potential large inter-individual differences in pharmacokinetic and 

pharmacodynamic response to anticancer drugs a tailored drug dosage is of high importance as part 

of precision medicine [4, 5]. It is therefore reasonable to target a pharmacokinetic parameter which 

is linked to the pharmacodynamics of a drug or to directly use a pharmacodynamic parameter for dose 

individualization, if feasible. In particular, pharmacokinetic dose individualization of anticancer drugs 

is becoming more present in clinical practice and is described in further detail in the following section. 

Pharmacokinetic dose individualization in oncology 

In order to perform a pharmacokinetic dose individualization, several requirements have to be met. 

An established relationship between dose and the pharmacokinetic parameter of interest is crucial as 

well as a relationship between the pharmacokinetics and pharmacodynamics of a drug. Patients can 

be dosed according to e.g. their body surface area (BSA), renal function, age or sex if these 

characteristics are related to the pharmacokinetics of the drug. In oncology, drug dosing is commonly 

performed based on the patient’s BSA. BSA is mainly calculated by the formula of Du Bois and Du Bois 

which was developed based on data from only nine subjects [6]. BSA usage was implemented into 

animal studies in order to perform allometric scaling and was adopted to determine the individual 

dose of the majority of anticancer drugs since the 1950s [7]. However, for most anticancer drugs, a 
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relationship between BSA and pharmacokinetic parameters could not be established and there is 

manifold evidence that this dosing approach lacks scientific basis [7–9]. In fact, dosing of patients 

according to their BSA results in a wide range of inter-individual variability (IIV) of pharmacokinetic 

parameters in patients. Baker et al. demonstrated that only five of the investigated 33 anticancer 

drugs showed a reduction in IIV after BSA-based dosing. In these five drugs, BSA was able to explain 

15 to 35% of the IIV [10]. Consequently, this may potentially lead to reduced efficacy or the occurrence 

of preventable toxicity in a high proportion of patients given the narrow therapeutic range of most 

anticancer drugs [7, 9]. 

To overcome the disadvantages of BSA-based dosing, measuring drug concentrations, e.g. in serum or 

plasma within the framework of a therapeutic drug monitoring (TDM) is a promising approach for 

pharmacokinetic dose individualization. TDM allows for dose adaptions based on a calculated 

pharmacokinetic target parameter which reflects drug exposure such as the area under the 

concentration-time curve (AUC). Furthermore, a feedback mechanism is the cornerstone of every 

TDM since the quantified target parameter is continuously evaluated and thus, dose adjustments can 

be performed prior to the next drug administration. In order to keep patient burden as low as possible, 

only very few samples are needed for quantification of individual pharmacokinetic target parameters. 

This is possible by using the Bayes method. Here, typical pharmacokinetic parameters, e.g. drug 

clearance or volume of distribution (including patient-specific influence factors such as age, sex or 

renal function) of a population and their distributions are used as a priori information, combined with 

measured individual drug concentrations in order to calculate individual pharmacokinetic parameters. 

This combination allows for a transition from the population-based a priori probability to the 

individualized a posteriori probability. The calculation of individual pharmacokinetic parameters 

requires an existing population pharmacokinetic model which should be based on a patient population 

that is similar to the individual patient. Such a model contains information on pharmacokinetic 

variability and influence factors, the so-called covariates [11]. After estimating individual parameters, 

simulations of the future concentration-time course are performed in order to assess the current and 

alternative dose regimens in silico [12]. 

A detailed insight into TDM of anticancer drugs and its scientific evidence, using the example of 5FU, 

is presented in chapter 3. This comprehensive literature review particularly addressed the possibilities 

of implementing routine TDM as an indispensable part of precision medicine. 

1.1.2 Dose individualization according to body composition of cancer patients 

For cancer patients, nutrition is one of the cornerstones to achieve a successful anticancer treatment 

as proper nutrition is strongly associated with higher quality of life [13, 14] or overall survival [15]. The 
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main nutritional problem in cancer patients is the progressive loss of skeletal muscle mass and muscle 

strength (also called sarcopenia) which occurs regardless of cancer stage [16, 17]. The prevalence of 

low muscle mass in cancer patients was reported to be over 50% which substantially exceeds the 

prevalence in healthy individuals of the same median age (about 15%) [18]. Reduced muscle mass is 

an independent predictor for lower quality of life, tumor progression and reduced overall survival [19–

23]. Notably, sarcopenia is not necessarily associated with loss of body weight as only about 10% of 

cancer patients are underweight [19] and the prevalence of patients with “sarcopenic obesity” was 

reported to vary between 9 and 25% [24]. Therefore, it is insufficient to only assess body weight or 

body mass index of cancer patients in order to properly diagnose a sarcopenic condition. Measuring 

the patient’s body composition by computed tomography (CT) or magnetic resonance imaging are 

considered to be the gold standards to assess not only muscle quantity but also its quality, i.e. 

microscopic and macroscopic aspects describing muscle architecture and composition [16]. Muscle 

quality has been found to be an important aspect of sarcopenia as well [16]. 

The knowledge of body composition is not only important for overall cancer prognosis but also for 

anticancer therapy. As physicochemical properties of drugs are key determinants for distribution into 

different body tissues (e.g. fat or muscle), alterations in body composition therefore potentially impact 

the pharmacokinetics of a drug [25]. In fact, there are several reports suggesting a relationship 

between body composition and anticancer drug pharmacokinetics. Gusella et al. identified significant 

relationships between the volume of distribution of the hydrophilic drug 5FU and total body water as 

well as volume of distribution and fat-free mass. They were better predictors for the pharmacokinetics 

of the drug than BSA which is traditionally used to individualize a 5FU dose [26]. Sarcopenic patients 

under therapy with sorafenib were reported to exhibit significantly higher AUC than non-sarcopenic 

patients [27]. Similar results were observed in patients treated with vandetanib as a low skeletal 

muscle index was associated with higher plasma concentrations [28]. Lean body mass (total body 

weight excluding body fat mass) was a significant predictor for epirubicin clearance as well since it 

explained about 18% of the IIV [29]. Consequently, the altered drug pharmacokinetics may lead to 

increased dose-limiting drug toxicity [21, 27, 28, 30, 31].  

As BSA-based dosing (see chapter 1.1.1) is not able to account for the changes in body composition, 

the need for other dose individualization strategies for anticancer drugs is of high interest [32]. In 

order to gain a better understanding of the influence of body composition on pharmacokinetics and 

toxicity of anticancer drugs the project presented in chapter 5 was conducted. It aimed to provide 

insights into the influence of the skeletal muscle index (SMI) on the pharmacokinetics and toxicity of 

5FU. As SMI can be calculated from routinely performed CT scans it is a rather easily accessible 
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measure of body composition, making it a potentially valuable marker for a deeper understanding of 

body composition influence on this hydrophilic drug. 

1.1.3 Principles of population pharmacometric modeling 

Pharmacometrics is an interdisciplinary research field, combining aspects of mathematics and 

pharmacy. The aim of this discipline is to develop mathematical and statistical models to quantify 

information about drug, patient or patient populations, and disease. These models are used to identify 

covariates as sources of pharmacokinetic or pharmacodynamic variability as well as to explore new 

scenarios via simulations, e.g. by assessing new dose regimens [33]. In general, a population 

pharmacometric model consists of three main elements. First, a structural model has to be developed 

which describes the time course of a dependent variable, such as drug concentration or a drug effect 

parameter on a population level. Such structural models are mainly characterized by a compartmental 

structure which is described by mathematical equations. These equations aim to link pharmacometric 

parameters such as drug clearance or volume of distribution to an independent variable (time, drug 

dose) in order to describe the observed dependent variable, e.g. drug concentration. After establishing 

the structural model, it is extended by a statistical model. It quantifies all types of variability, namely 

IIV, intra-individual (or inter-occasion) variability and the residual unexplained variability (due to e.g. 

measurement or documentation errors). This allows the estimation of individual pharmacometric 

parameters. The third component of pharmacometric models is the covariate model which aims to 

identify predictors of the variability quantified in the statistical model. The selection of such covariates 

is a crucial process in model development as physiological plausibility as well as statistical significance 

of the identified covariate effect should be ensured [33, 34]. 

Most commonly, nonlinear mixed effects (NLME) modeling approaches are applied in 

pharmacometrics. The term “mixed effects” consists of “fixed effects”, referring to population values 

of structural model parameters (e.g. drug clearance or volume of distribution in a population 

pharmacokinetic model) without the inclusion of variability. “Random effects” comprise all of the 

above-mentioned forms of variability [33]. Using NLME models, it is possible to simultaneously analyze 

patients within a population and to obtain population pharmacokinetic/pharmacodynamic 

parameters as well as their variability. Parameter estimation in NLME models is achieved by 

maximizing the likelihood of predicting the observation given the model. Most population modeling 

software packages use this maximum likelihood estimation method to minimize an objective function 

value (OFV) which is expressed as minus twice the natural logarithm of the likelihood. It is a single 

number which provides a summary of how well the model fits the observed data compared to another 

nested model. Most commonly, the maximum likelihood is approximated by gradient-based methods 
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such as the first-order conditional estimation or second-order Laplacian algorithms [34]. Furthermore, 

the NLME approach allows the analysis of datasets with only sparse individual sampling which is 

mainly the case in clinical settings [35]. All of the developed pharmacometric models in this thesis 

(chapters 4 – 6) were developed using NLME modeling approaches with maximum likelihood 

estimation. 

1.1.4 Pharmacometric modeling approaches in oncology 

Development and management of anticancer drug therapies can be substantially supported by 

pharmacometric modeling approaches. As described above, conventional population 

pharmacokinetic models can be used to inform a TDM and thus, continuously optimize individual 

dosing in cancer patients. Drug-drug interactions in oncology can be investigated via population 

pharmacokinetics as well, either by simply including co-medication as a binary covariate (i.e. intake/no 

intake of co-medication) [36] or by exploring the impact of the pharmacokinetics of the perpetrator 

on the victim drug [37]. This particular topic was explored in the publication presented in chapter 4. 

Here, potential drug-drug interactions of two oral anticancer drugs in patients with rectal cancer were 

investigated by applying population pharmacokinetic modeling approaches. Namely, capecitabine 

(chapter 1.2.2) and regorafenib (chapter 1.2.3), which were combinedly administered for the first time 

in a clinical trial, were analyzed in this project. 

In addition, there are various modeling approaches comprising a wide variety of pharmacodynamic 

and clinical endpoints in oncology. Promising approaches are described in the following sections. 

Biomarker analysis 

Generally, biomarkers are defined as characteristics which can be “objectively measured and 

evaluated as [...] indicator[s] of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention” [38]. Their applications include the use for diagnostics, 

disease prognosis, and as surrogate for clinical endpoints. Surrogate endpoints are invaluable for drug 

development as they may allow to conclude on a long-term clinical endpoint such as survival [38]. 

Pharmacogenetic biomarkers are of high interest as supporting tools in anticancer therapy, and partly 

already in clinical use, as described in chapter 1.1.1. Pharmacometric modeling approaches can assist 

in quantifying the impact of such biomarkers on the pharmacokinetics or pharmacodynamics of a drug 

and thus, proper dose adjustments can be proposed. Sáez-Belló et al. identified that single nucleotide 

polymorphisms (SNP) of the ATP-binding cassette transporter gene, which codes for active drug 

transporters such as P-glycoprotein, increased clearances of 5FU and its precursor 5’-deoxy-5-

fluorouridine by 184% and 182%, respectively [39]. A population pharmacokinetic model of the 

anticancer drug mitotane which is the only approved treatment for adrenocortical carcinoma revealed 
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that a SNP of the metabolizing enzyme cytochrome P450 (CYP) 2C19 as well as polymorphisms of the 

genes coding for two different organic anion transporter polypeptides were predictors of mitotane 

clearance [40]. Another example is tamoxifen which is widely used in treating breast cancer. The 

exposure of its active metabolite endoxifen exhibits a wide variability, hence a substantial proportion 

of patients does not attain the target trough concentration of > 5.97 ng/mL. Ultimately, this leads to 

a decreased efficacy. This variability is partly attributed to polymorphisms of the metabolizing enzyme 

CYP2D6 [41]. In a recent population pharmacokinetic study by Puszkiel et al. plasma concentrations of 

tamoxifen and its six metabolites, including endoxifen and intermediate metabolites were analyzed 

along with 63 SNP in 928 breast cancer patients. It was shown that CYP2D6 phenotypes (poor, 

intermediate, normal, ultrarapid metabolizers) as well as SNP of other CYP enzymes (CYP3A4, 

CYP2C19) were predictive for the formation of intermediate metabolites and endoxifen from 

tamoxifen. Based on this analysis, different dose regimens were proposed according to the identified 

genotypes and phenotypes by performing simulation analyses [42].  

Other promising pharmacometric models contain biomarkers which are often surrogate markers for 

pharmacodynamic response. Especially, biomarkers for tyrosine kinase inhibitors (TKI) have 

extensively been investigated. These are soluble forms of vascular endothelial growth factor receptors 

(sVEGFR) which are responsible for tumor angiogenesis and are targeted by various TKI such as axitinib 

and sunitinib. A pharmacometric modeling framework by Schindler et al. successfully identified 

relationships between axitinib pharmacokinetics, sVEGFR subtype 3 (sVEGFR-3), tumor size and 

overall survival [43]. Diekstra et al. and Hansson et al. proposed different modeling frameworks which 

linked sunitinib pharmacokinetics with sVEGFR and progression-free and overall survival, respectively 

[44, 45]. Another example where a pharmacometric model was used to identify a biomarker as a 

predictor for pharmacodynamic response in cancer patients is the relationship between atezolizumab, 

the biomarker interleukin-18 and tumor size [46]. 

Toxicity analysis 

In the recent years, pharmacometric modeling frameworks aiming to combine pharmacokinetics, 

pharmacodynamics and clinical outcome of a drug have been increasingly developed. By using such 

models whole clinical trials can be simulated which allows further guidance for planning future studies. 

This “model-informed drug development” approach can be used in every phase of pre-clinical or 

clinical drug development and is therefore of particular interest for pharmaceutical industry [47].  

Some of the presented models in section “Biomarker analysis” are good examples for such integrated 

modeling frameworks [43–46]. Whereas these modeling approaches focused on different efficacy 

parameters (progression-free survival, overall survival, tumor size), it is at least equally important to 
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investigate the toxicity of anticancer drugs as a clinical outcome. The management of toxic effects of 

anticancer treatment is crucial in order to enable a successful therapy as these adverse events can 

lead to interruptions or discontinuations of therapy as well as possibly causing permanent damage or 

death. Therefore, it is important for clinicians to assess the severity of these adverse events in order 

to initiate appropriate measures. For continuous toxicity data, such as leukocyte concentration as a 

marker for myelosuppression, routine laboratory measurements are sufficient for assessment. 

However, in the case of subjective, categorical data, the Common Terminology Criteria for Adverse 

Events (CTCAE) are widely used in the field of oncology [48]. Here, toxicity is graded on a scale 

consisting of six categories (Tab. 1) by clinicians. Taking diarrhea as an example for a common 

symptom in anticancer therapy, grade 0 corresponds to the absence of diarrhea, grade 1 to an increase 

of up to four stools per day, grade 2 to an increase of four to six stools per day with limited 

instrumental activity of daily living (ADL), grade 3 to an increase of over seven stools per day with 

limited self-care ADL, grade 4 to life-threatening consequences requiring urgent actions and grade 5 

corresponds to death due to the adverse event [48]. In the recent years, however, various studies 

suggested that this clinician-based assessment substantially underestimates adverse event severity 

reported by cancer patients [49–53]. In fact, a systematic review consisting of 28 studies additionally 

concluded that agreements between CTCAE and patient-reported adverse event grading were 

“moderate at best” [54]. Therefore, the focus is shifting towards the patient’s perspective and a 

patient-reported outcome (PRO) version of the CTCAE (PRO-CTCAE) has been developed by the 

National Cancer Institute [55]. The applicability of PRO-CTCAE in anticancer therapy management is 

increasingly explored, with promising results regarding the improvement of quality-of-life measures 

[56].  

Tab. 1 Adverse event grades according to CTCAE v5.0 [48] 

Grade Description 

0 No symptoms 

1 Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only 

2 Moderate; minimal, local or noninvasive intervention indicated 

3 Severe or medically significant but not immediately life-threatening 

4 Life-threatening consequences; urgent intervention indicated 

5 Death related to adverse event 

  

Similar to the presented biomarker models, toxicity data can be equally used in pharmacometrics as 

such models can help to quantify the relationship between pharmacokinetics/pharmacodynamics and 
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drug toxicity. A prominent example for a pharmacometric toxicity model is the model by Friberg et al. 

in which chemotherapy-induced myelosuppression is quantified with a semi-mechanistic model of the 

leukocyte concentration-time course, regardless of the drug used [57]. However, this type of model 

can only be applied to continuous data. For categorical data which are not objectively quantifiable, 

such as (PRO-)CTCAE grades, logistic modeling approaches are more appropriate. Sheiner published 

the first proportional odds (PO) model, i.e. a logistic model for ordered categorical data, in the field of 

pharmacometrics in 1994, modeling the time course of pain relief scores under therapy with 

bromfenac [58]. In PO models, the observed categorical dependent variable is treated as independent 

from the next observation in an individual. However, depending on the frequency of collection, these 

observations may become autocorrelated, i.e. dependent of each other. In order to account for 

autocorrelations, Markov elements can be incorporated into PO models. This approach was first 

applied in the study by Karlsson et al. where sleep stages in insomnia patients were analyzed [59]. 

Such discrete-time Markov models assume that the influence of the present observation on the next 

one is independent of the time interval between them. Especially for observational trials in routine 

care, choosing this modeling approach may not be feasible as time intervals between consecutive 

observations are expected to vary over the time course of the study. Continuous-time Markov models 

account for these varying time intervals as with increasing time, the influence of the present 

observations on the next one decreases. Introduced by Bergstrand et al. in 2009 [60], it has been 

widely adopted since then [61–65]. A comparison between the structures of PO models and these two 

major Markov modeling approaches is depicted in Fig. 1.  

In the recent years, the application of pharmacometric Markov models has been extensively studied 

and multiple adjustments and extensions were successfully implemented. These include a minimal-

continuous time Markov model which is of particular interest in sparse-data situations (see also 

chapter 6) [66], hidden Markov models where a hidden state is modeled representing e.g. an 

underlying disease state [67], as well as modeling frameworks combining Markov models with 

parametric survival models which allow for simultaneous analysis of multiple levels of information 

(e.g. severity, frequency and duration of adverse events) [68, 69]. Whereas the cited models cover a 

wide variety of clinical endpoints, PROs have been a minor focus of these studies with only few studies 

covering this type of data [68–70]. So far, no pharmacometric Markov models of PROs were developed 

for cancer patients. This fact was a major motivation to design the project presented in chapter 6 of 

this thesis. As PRO grading gains more traction in the management of anticancer therapy, it is of 

particular interest to develop pharmacometric models which can potentially support clinical decision-

making. The suitability of using such a model for simulation analyses was analyzed in chapter 6. Grades 
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of palmar-plantar erythrodysesthesia (hand-foot syndrome, HFS) as a common adverse event under 

therapy with capecitabine (chapter 1.2.2) was the investigated clinical outcome. 

 

Fig. 1 Structures of a proportional odds model (top), a discrete-time Markov model (middle) and a 

continuous-time Markov model (bottom), exemplified for adverse event grades consisting of four 

grades (0 to 3). In a proportional odds model, observations are assumed to be independent from each 

other. In a discrete-time Markov model, transition probabilities between grades can be estimated 

which introduce the Markov property. These transition probabilities are assumed to be independent 

from the time between two subsequent observations. In a continuous-time Markov model, the 

transition between two grades is defined by differential equations where the influence of the 

preceding grade declines with increasing time. Constants governing the rate between two grades are 

therefore estimated [66, 70]. Px,y: transition probability between grades x and y; kx,y: transition rate 

constant between grades x and y. 

1.2 Investigated drugs 

1.2.1 Fluorouracil 

Fluorouracil (5FU, Fig. 2) has been developed in the 1950s by Heidelberger et al. following the 

observation that rat hepatoma incorporated the pyrimidine base uracil into RNA to a much greater 

extent than normal tissues. Hence, these findings suggested that targeting uracil metabolism with 

antimetabolites was a suitable approach for anticancer therapy [71, 72]. 5FU is an analogue of 

endogenous uracil with a fluorine atom at position 5 of the pyrimidine ring (instead of hydrogen). 



 

10 
 

 

Fig. 2 Chemical structure of fluorouracil [73] 

Despite its availability for many decades 5FU is still one of the cornerstones for treating colorectal 

cancer [74, 75], head and neck cancer [76], gastric cancer [77] and pancreatic cancer [78]. It is the 

most frequently used anticancer drug for colorectal cancer [74, 75]. Whereas 5FU monotherapy and 

bolus injections were widely applied in the past [79], today’s evidence has shifted toward continuous 

infusions and combination therapies with other cytostatic agents (oxaliplatin, cisplatin, irinotecan) and 

monoclonal antibodies (panitumumab, cetuximab, bevacizumab) due to a more favorable response 

and safety profile [80–86]. Additionally, the combination of 5FU and folinate showed an increased 

response rate along with a prolonged overall survival [87]. Folinate is therefore a substantial part of 

5FU-based regimens [82].  

Pharmacokinetics and pharmacogenetics 

Pharmacokinetics of 5FU is highly variable due to the dependence on route of administration (bolus 

or continuous infusion) and dose. 5FU is a hydrophilic drug so that there is particular interest in 

investigating its pharmacokinetics dependent on different body compositions. As described in chapter 

1.1.2, there are reports that different measures of body composition are indeed associated with 5FU 

pharmacokinetics and toxicity [26, 30, 31]. 5FU is a prodrug which is intracellularly converted to its 

active metabolites fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate 

(FdUTP) and fluorouridine triphosphate (FUTP). However, the conversion to active metabolites 

comprises only a small fraction of 5FU metabolism. The vast majority of a 5FU dose, about 80%, is 

metabolized to the pharmacologically inactive compound 5,6-dihydro-5-fluorouracil (DHF) by the 

enzyme dihydropyrimidine dehydrogenase (DPD) which is the rate-limiting step of 5FU metabolism 

[72]. DHF is eventually converted to fluoro-β-alanine which is renally eliminated [88]. Nonlinear 

elimination was observed because of saturable hepatic metabolism by DPD [89, 90]. In addition, age 

[91], sex [92], BSA [93] and body weight [94] have been reported to contribute to explaining variability 

in 5FU clearance. However, the genotype of the DPD encoding gene, DPYD, potentially has the biggest 

influence on 5FU pharmacokinetics. There are four well-studied genotypes, namely DPYD*2A, 
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DPYD*13, c.2846A>T (rs67376798) and c.1129-5923C>G (rs75017182, c.1236G>A/HapB3) which are 

associated with severe 5FU toxicity [95].  

Pharmacodynamics and exposure-response relationship 

The three metabolites FdUMP, FdUTP and FUTP are responsible for the pharmacological activity after 

5FU administration. Whereas FUTP and FdUTP directly damage RNA and DNA, respectively, by 

incorporation, FdUMP is a potent inhibitor of the enzyme thymidylate synthase which is the most 

important enzyme for de novo synthesis of pyrimidines [72]. Relevant biomarkers include, as 

described in the section above, DPYD genotypes. Phenotyping DPD activity is applied as well by 

quantifying endogenous uracil concentration as it is also metabolized by DPD or by estimating the 

endogenous dihydrouracil to uracil ratio (UH2/U) which serves as a surrogate for the ratio of DHF to 

5FU [82, 96]. Advantages and disadvantages of these approaches are comprehensively discussed in 

chapter 3. 

Due to its narrow therapeutic index and high pharmacokinetic variability, 5FU is a suitable drug for 

conducting TDM in order to achieve the desired target exposure. Numerous studies showed that an 

AUC target between 20 and 30 mg×h/L was strongly associated with improved therapy response and 

safety [97–102]. A detailed insight into 5FU pharmacokinetics, pharmacogenetics, exposure-response 

relationships and its suitability for TDM is provided in chapter 3. 

Toxicity 

The main dose-limiting adverse events are myelosuppression and gastrointestinal disorders (diarrhea, 

nausea, emesis) [103]. In addition, mucositis and hand-foot syndrome (HFS) are associated with 5FU 

treatment as well [104]. However, 5FU toxicity is highly dependent on the route of administration. 

Whereas myelosuppression is associated with bolus administration, diarrhea, mucositis and HFS occur 

more frequently during continuous infusion [105]. 

1.2.2 Capecitabine 

Various difficulties are associated with clinical use of 5FU including the potential risk of infection or 

thromboembolism as well as increased treatment costs, mainly due to intravenous administration 

[104]. Therefore, there was a clinical need for a more convenient and tolerable fluoropyrimidine 

treatment resulting in the development of the oral prodrug of 5FU, capecitabine (Fig. 3). It is approved 

for the treatment of colorectal and gastric cancer as well as breast cancer [106]. Capecitabine is 

administered as a monotherapeutic agent but similar to 5FU, various combination regimens exist, 

including co-administration of oxaliplatin, irinotecan or docetaxel [107–109]. Like 5FU, capecitabine is 

usually dosed according to the patient’s BSA [106]. The BSA-normalized starting dose is further 
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dependent on either capecitabine mono- or combination therapy or if capecitabine is either 

continuously administered or with a rest period of seven days [106]. A recent retrospective study in 

1126 patients with a fixed dose and in 1193 patients with a BSA-based dose of capecitabine showed, 

however, that fixed-dose capecitabine had a similar toxicity profile and progression-free survival 

[110]. 

 

Fig. 3 Chemical structure of capecitabine [73] 

Pharmacokinetics 

After oral intake, capecitabine is reported to be fully and rapidly absorbed (between 0.3 and three 

hours) [111]. Potential influence factors include age [112], food [113] and alterations in the 

gastrointestinal tract such as gastrectomy [88]. The distribution of capecitabine is a highly discussed 

topic. So far, there are only hints that it might be a substrate for ATP-binding cassette transporters 

[39, 114–116]. Capecitabine is sequentially converted to 5′-deoxy-5-fluorocytidine (DFCR) by hepatic 

carboxylesterase and then metabolized to 5′-deoxy-5-fluorouridine (DFUR) by cytidine deaminase. 

The intermediate metabolite DFUR is finally converted to 5FU by the enzyme thymidine 

phosphorylase, particularly in tumor cells [111]. Potential drug-drug interactions between 

capecitabine and CYP2C9 substrates, particularly warfarin, have been reported with a significant 

increase in warfarin exposure [117]. As mentioned in chapter 1.1.4, drug-drug interactions involving 

capecitabine were explored in chapter 4 of this thesis. Half-life of capecitabine was reported to be 

short (< one hour) and the majority of the capecitabine dose is renally excreted as fluoro-β-alanine 

[111].  
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Toxicity 

The formation of 5FU inside the tumor cells leads to less systemic toxic effects of capecitabine 

compared to intravenous 5FU [111]. For example, myelosuppression occurs less frequently than under 

5FU therapy [104]. However, capecitabine causes a higher incidence of HFS which is the main dose-

limiting toxicity and is observed in up to 77% of patients [118–123]. Although not life-threatening, HFS 

may negatively impact patients’ quality of life [124, 125] and may lead to dose reductions or treatment 

discontinuations [126, 127]. However, studies showed a significant correlation between the 

occurrence of capecitabine-induced HFS and therapy efficacy [128, 129]. The exact pathophysiology 

is still not well understood but reports suggested that inhibition of the main metabolizing enzyme of 

5FU, DPD, decreases the incidence of HFS [130]. Notably, a randomized phase III study by Kwakman 

et al. compared HFS incidence in patients under capecitabine therapy with patients treated with S-1, 

a drug combination consisting of tegafur (another oral prodrug of 5FU), gimeracil (a DPD inhibitor) 

and oteracil (prevents the phosphorylation of 5FU in the digestive tract). The study revealed that S-1 

patients had a significantly lower HFS incidence [127]. 

1.2.3 Regorafenib 

Regorafenib (Fig. 4) was an important part of the population pharmacokinetic analysis in the project 

presented in chapter 4 where its influence on capecitabine pharmacokinetics was investigated. 

Therefore, it is introduced in this chapter. Regorafenib is an orally administered multikinase inhibitor 

approved as monotherapy for second- or third-line treatment of advanced colorectal cancer, 

hepatocellular carcinoma and gastrointestinal stromal tumors at a dose of 160 mg once daily [131].  

 

Fig. 4 Chemical structure of regorafenib [73] 

Pharmacokinetics 

Absorption of regorafenib is highly variable as maximum plasma concentrations are reached between 

one and six hours after administration. Additionally, food intake was reported to have a pronounced 

effect on regorafenib exposure as a low-fat meal and a high-fat meal increased mean regorafenib AUC 
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by 48% and 36%, respectively [132]. Regorafenib is highly bound to plasma proteins (99.5%) [132] and 

was reported to be a clinically relevant inhibitor of the breast cancer resistance protein drug 

transporter [133]. It is predominantly metabolized in the liver with a low hepatic extraction ratio [134], 

mainly by CYP3A4 and UDP-glucuronosyltransferase 1A9 [135]. As a substrate for CYP3A4, regorafenib 

is prone for drug-drug interactions. Indeed, the administration of the strong CYP3A4 inhibitor 

ketoconazole and the strong CYP3A4 inducer rifampicin substantially altered regorafenib exposure 

[136]. Whereas eight metabolites of regorafenib could be identified, only two of these metabolites, 

M-2 (regorafenib N-oxide) and M-5 (N-desmethyl-regorafenib), are of particular interest since they 

are pharmacologically active as well [135]. The exposure of both metabolites is also dependent on a 

food effect. Whereas a low-fat meal increased mean M-2 and M-5 AUC by 40% and 23%, respectively, 

a high-fat meal decreased mean AUC by 20% and 51%, respectively [132]. Elimination of regorafenib 

is predominantly biliary with 71.2% of a regorafenib dose recovered in feces. Only 19.3% of the total 

dose was recovered in urine as water-soluble metabolites. Unchanged regorafenib was the most 

prominent compound found in feces (47.2% of total dose) [135]. In addition, regorafenib and the 

metabolites M-2 and M-5 were reported to undergo enterohepatic circulation as multiple plasma 

concentration peaks were observed six to eight and 24 hours after administration [135, 137]. Mean 

elimination half-lives of regorafenib, M-2 and M-5 were reported to be 28, 25 and 51 hours, 

respectively [136]. 

Pharmacodynamics and exposure-response relationships 

As a multikinase inhibitor, regorafenib has a broad mechanism of action, targeting several protein 

kinases, including tyrosine kinases. It interacts with multiple pathways including tumor angiogenesis 

by inhibiting VEGFR subtypes 1-3 and TIE2, oncogenesis (inhibition of KIT, PDGFR, RET and BRAF) and 

tumor microenvironment (inhibition of PDGFR-β and FGFR) [138].  

The exposure-response relationship does not exhibit a clear picture. Whereas plasma sVEGFR-2 

concentrations decline with increasing regorafenib exposure, overall plasma concentrations of 

sVEGFRs increase [139]. However, a recent study in 34 Japanese cancer patients identified associations 

between the sum of regorafenib, M-2 and M-5 trough concentrations in the first therapy cycle and 

progression-free survival. A cut-off value of 2.9 µg/mL was suggested [140]. 

Toxicity 

Similar to many tyrosine kinase-targeting drugs, the most prominent dose-limiting adverse events of 

regorafenib are skin rash, hypertension, diarrhea and HFS [136, 137]. Whereas a relationship between 

regorafenib exposure and response could not be reliably established, a link between exposure and 

toxicity was identified in two studies in Japanese cancer patients [140, 141]. Fukudo et al. identified 
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that patients above a cut-off value of 4.3 µg/mL (sum of regorafenib, M-2 and M-5 trough 

concentrations) had a significantly higher risk for HFS grade ≥ 2 according to CTCAE [140]. 

2. Aim and objectives 

The overall aim of this work was to develop, evaluate and apply pharmacokinetic and 

pharmacodynamic/clinical outcome models in order to gain new insights and a better understanding 

of the pharmacokinetic-pharmacodynamic behavior of the fluoropyrimidine drugs 5FU and 

capecitabine. Since these models were developed in exploratory settings, it was further intended to 

investigate if such models were generally suitable for application to new scenarios (chapters 4 and 5) 

and new clinical endpoints from a pharmacometric perspective (chapter 6). A further objective was to 

assess the general suitability of pharmacometric modeling approaches as elements of precision 

medicine of 5FU. Specific objectives of the individual projects are described below. 

Therapeutic drug monitoring of fluorouracil 

This project (chapter 3) aimed to review the current evidence on TDM as a method for precision dosing 

of infusional 5FU, especially in comparison to BSA-based dosing. An important objective of this 

research work was to further assess the future perspectives for 5FU-TDM. In particular, the usefulness 

of pharmacometric modeling approaches for combination with 5FU-TDM should be investigated. 

Population pharmacokinetics of combinedly administered regorafenib and capecitabine in patients 

with locally advanced rectal cancer 

The aim of this project, presented in chapter 4, was to develop population pharmacokinetic models of 

regorafenib and its metabolites M-2 and M-5 as well as capecitabine and its metabolites DFCR and 

DFUR. It was intended to investigate if there are any potential drug-drug interactions between both 

drugs as they have not been administered combinedly so far. In the case of an identified drug-drug 

interaction, its impact should be further quantified. 

Influence of skeletal muscle index on fluorouracil pharmacokinetics and toxicity 

This project (chapter 5) was designed to retrospectively evaluate the relationship between the skeletal 

muscle index as a measure of sarcopenia and pharmacokinetics as well as toxicity of 5FU. A major aim 

was to extend an initially developed population pharmacokinetic model by investigating the potential 

influence of different skeletal muscle indices on 5FU pharmacokinetics in a covariate analysis.  
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Markov model of patient-reported hand-foot syndrome under capecitabine 

The project described in chapter 6 was intended to develop a Markov modeling and simulation 

framework to describe and predict patient-reported severity of hand-foot syndrome (HFS) in patients 

treated with capecitabine. It was further aimed to investigate the impact of potential covariates on 

HFS severity. In general, based on this example, the suitability of Markov models for the simulation of 

the time course of patient-reported adverse event severity was assessed as this kind of clinical 

endpoint has not been yet investigated in a pharmacometric model in cancer patients. 
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Contribution: I designed the outline of the review, performed the literature search, analyzed the 

results of the literature search, and finally wrote the manuscript. 

Introduction: Despite its use for many decades, dosing of the anticancer drug fluorouracil (5FU) is still 

suboptimal, as the traditionally applied body surface area (BSA)-based dosing exhibits a wide range of 

pharmacokinetic (PK) inter-individual variability (IIV). This IIV might be partially explained by the status 

of the main metabolizing enzyme dihydropyridimidine dehydrogenase (DPD). Consequently, BSA-

based dosing may lead to reduced efficacy and increased risk in toxicity in a substantial proportion of 

patients [7, 9, 82]. Therapeutic drug monitoring (TDM) is an important tool to overcome these issues 

as it provides the possibility to continuously adjust a drug dose on an individual patient level. 

Therefore, it is potentially useful to further advance precision medicine. However, whereas the 

benefits of TDM of anticancer drugs are often emphasized in literature [5, 142], its implementation in 

routine care is still unsatisfactorily. 5FU-TDM has been investigated for over 30 years [143] but clinical 

implementation is similarly lacking despite manifold evidence [82]. To date, only preemptive 

pharmacogenetic testing of DPD status is routinely performed [96]. The aim of this review was to 

evaluate the current status of TDM of infusional 5FU and to highlight the latest evidence as well as the 

future role for 5FU-TDM as a part of precision medicine in anticancer therapy. 

Methods: A comprehensive literature search was conducted in PubMed between June and September 

2021. The following search terms were used: “fluorouracil” in conjunction with “therapeutic drug 

monitoring”, “pharmacokinetics”, “variability”, “covariate”, “pharmacodynamics”, 

“pharmacogenetics”, “pharmacogenomics”, “analytical methodology”, “toxicity”, “personalized 

medicine” and “precision medicine”. Reference sections of included articles were further screened for 

relevant articles. Randomized controlled trials, systematic and narrative reviews as well as prospective 

and retrospective observational trials were included. 

Results: 5FU PK is highly variable between patients, including dose- and time-dependent elimination 

[89, 144, 145] in combination with a presumable DPD saturation [89, 90, 146]. BSA-based dosing led 

to an up to 10-fold variability in 5FU plasma concentrations [144] and even though limited influence 

of BSA on 5FU PK have been reported [89, 93, 147], its influence is not large enough to justify BSA-

based dosing only. These circumstances are the main reasons to perform 5FU-TDM and an exposure-

response/-toxicity relationship was successfully established, targeting an area under the 

concentration-time curve (AUC) range of 20 – 30 mg∙h/L for the most commonly used 5FU-based 

chemotherapy regimens [82]. However, various studies showed that up to 64% of patients are 

underdosed, i.e. below the recommended AUC range [98, 100–102, 148–152] and about 15% are 

overdosed, thus frequently experiencing severe toxicity [82]. Regarding the routinely performed, pre-
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therapeutic genotyping of the DPD-encoding gene, DPYD, four genotypes are particularly associated 

with severe toxicity [95]. However, they only explain a part of the genetic contribution of DPD activity-

based toxicity as DPD phenotypes were poorly predicted by the four well-studied genotypes [153]. 

Thus, DPD phenotyping is of particular interest, but studies reported inconsistent results regarding 

correlations to 5FU PK and toxicity [144, 154–162], presumably due to different saturation statuses of 

DPD [162, 163]. Current evidence of 5FU-TDM has been comprehensively demonstrated. Still, it plays 

only a minor role in clinical guidelines [164–168]. Only the 2019 Guideline of the International 

Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) systematically 

summarized relevant studies and pointed out the advantages of 5FU-TDM [82]. Studies which were 

published after the IATDMCT guideline further strengthen the evidence for 5FU-TDM, reporting that 

dose adjustments according to measured 5FU plasma concentrations led to a higher proportion of 

patients being within the recommended AUC range [100] and patients below or above this range had 

a weaker response or higher incidence of toxicity, respectively [102]. Another study reported that 

preemptive DPD phenotyping resulted in a higher proportion of patients being underdosed, 

suggesting that phenotyping has to be combined with TDM in order to avoid decreased 5FU efficacy 

[155]. Implementation of 5FU-TDM into clinical routine still faces manifold obstacles, including 

availability of proper analytical methods [169], time and sampling management [82] as well as 

handling of plasma samples [82]. However, commercial analytical kits with sample stabilizers have 

been established which contribute to overcome most of these issues [98, 170]. While simple 5FU-TDM 

dosing algorithms for clinicians do exist [97–99, 101, 171], model-informed precision dosing has the 

potential to further advance 5FU therapy into the digitalized precision medicine area. By developing 

and applying pharmacometric models with Bayesian estimation approaches, dose adaption during the 

whole course of therapy can be supported [172]. 5FU-TDM would be able to inform these models with 

unique patient information, i.e. measured plasma concentrations. However, the proper identification 

of covariates influencing 5FU PK would be crucial for such models. So far, published 5FU models could 

only include a very heterogenous set of covariates [89, 92–94, 173–176]. Particularly, DPYD genotypes 

could not be successfully implemented. Only one of these studies included the measured DPD activity 

[173].  

Discussion: Clinical uptake of 5FU-TDM is still limited. The collected evidence in this review, however, 

further highlights the advantages of performing 5FU-TDM compared to BSA-based dosing. As 

preemptive genotyping/phenotyping approaches are only able to identify a proportion of patients at 

risk while potentially deteriorating efficacy, a combination with TDM is of high importance. A further 

implementation of 5FU-TDM within a pharmacometric modeling framework has the potential to 
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provide additional support for clinicians in dose finding, even before initiating therapy. For that 

purpose, a larger patient cohort would be needed for model development and validation.  
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Contribution: I prepared the datasets used for modeling and simulation, respectively. I 

developed two parent drug-metabolite models, evaluated covariates including model-

generated drug exposure parameters, performed simulations in order to investigate the 

quantitative impact of the identified drug-drug interaction, and finally wrote the manuscript. 

Introduction: Patients with locally advanced rectal cancer (LARC) often experience low treatment 

responses as the rate of complete pathological response is reported to be 10 – 25% [177, 178]. 

Furthermore, about one third of these patients relapse after fluoropyrimidine-based 

chemoradiotherapy and surgery [179]. Therefore, there is a high medical need for this indication and 

in recent studies investigating tyrosine kinase inhibitors (TKI) as add-on to standard neoadjuvant 

chemoradiotherapy, treatment response was reported to be improved while adequate toxicity was 

maintained [180, 181]. In trial SAKK 41/16, the multi-TKI regorafenib was added to a capecitabine-

based, neoadjuvant chemoradiotherapy for the first time. This trial included a pharmacokinetic (PK) 

part in order to investigate potential drug-drug interactions (DDI) between both oral anticancer drugs. 

Although they are metabolized by different enzymes [111, 137], a DDI analysis is nevertheless 

important due to overlapping toxicity, including hand-foot syndrome and diarrhea [138, 182]. Aim of 

this project was to develop population PK models of capecitabine, regorafenib and their metabolites 

(5′-deoxy-5-fluorocytidine [DFCR], 5′-deoxy-5-fluorouridine [DFUR] for capecitabine as well as M-2 

[regorafenib N-oxide] and M-5 [N-desmethyl-regorafenib] for regorafenib) in LARC patients and to use 

these models for investigations of DDI. 

Methods: SAKK 41/16 (clinicaltrials.gov number NCT02910843) was an open-label, multicentric and 

non-randomized phase Ib trial where the recommended dose and pathological response to 

regorafenib which was added to capecitabine-based chemoradiotherapy, was explored. 25 patients 

were recruited between March 2017 and April 2021 of which 12 patients were part of a dose-

escalation cohort and the remaining patients were enrolled in an expansion cohort after dose finding. 

As PK sampling was only conducted in the dose-escalation cohort, data from these 12 patients was 

used for model development. Patients received oral capecitabine 825 mg/m² bidaily on days 1 to 38. 

Regorafenib was administered at three dose levels (40/80/120 mg) once daily on days 1 to 14 and 

days 22 to 35. Local radiotherapy was given in all patients at a total dose of 50.4 Gy. Plasma samples 

for analysis of regorafenib, capecitabine and their metabolites were collected on day 1 (0.5, 1, 2, 3, 4 

and 6 h after dosing) followed by post-dose sampling on days 2, 4, 8, 15, 22, 29 and 36. Population PK 

analysis of the concentration-time data was performed using the nonlinear mixed-effect modeling 

software NONMEM® [183]. Separate parent-metabolite models for regorafenib and capecitabine, 

respectively, were developed in a sequential manner [184]. The established base models were used 
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to generate drug exposure parameters. In a covariate analysis, generated concentrations over time 

and cumulative area under the curve (AUC) over time of regorafenib, M-2 and M-5 were tested on the 

clearance of capecitabine and its metabolites, and the same PK parameters of capecitabine and 

metabolites were also tested on the clearance of regorafenib and its metabolites. Demographic data 

(sex, age, body weight, body surface area), bilirubin and hemoglobin were tested as covariates as well. 

Goodness-of-fit plots, prediction-corrected visual predictive checks [185] and bootstrap analysis were 

used for model evaluation. The final population PK models were used for simulation analyses. Here, 

the quantitative impact of potential covariates including DDIs on the PK of capecitabine, regorafenib 

or their metabolites were analyzed.  

Results: Plasma concentrations of capecitabine, DFCR and DFUR were best characterized by one-

compartment models and absorption was described by parallel first- and zero-order processes. Flip-

flop PK was observed for all three compounds as well. Apparent capecitabine clearance was 286 L/h 

(relative standard error [RSE] 14.9%, inter-individual variability [IIV] 40.1%). The covariate analysis 

revealed that capecitabine clearance was significantly reduced by regorafenib cumulative AUC 

(median reduction of 45.6%) as exponential covariate (estimate -4.10∙10-4, RSE 17.8%). Regorafenib, 

M-2 and M-5 plasma concentrations were best described by two-compartment models with transit 

compartment absorption [186]. Apparent regorafenib clearance was 1.94 L/h (RSE 12.1%, IIV 38.1%). 

Here, no covariates were identified. Simulation analyses revealed significantly negative associations 

between capecitabine clearance and regorafenib exposure. While capecitabine exposure was reduced 

with higher regorafenib dosage, DFCR and DFUR exposures were similar across the dose range. 

Discussion: This is the first study which evaluated the combined administration of regorafenib and 

capecitabine in LARC patients. Both developed population PK models were structurally similar to 

previously published models from literature [112, 187–189]. However, the established capecitabine 

absorption model differed from published ones as its absorption is highly variable in general [88, 112, 

188, 189] and may occur from different sites [113] which may be an explanation for the two identified 

absorption processes. Moreover, an implementation of a reported enterohepatic circulation of 

regorafenib and its metabolites [187] was not supported by the data from this study, presumably due 

to model overparametrization and inadequate sampling times [137]. The negative influence of 

regorafenib cumulative AUC on capecitabine clearance would translate into a reduced formation of 

active metabolites of capecitabine, presumably due to drug transporter inhibition [114, 133]. 

However, as DFCR and DFUR exposure remained unaffected, the same should be assumed for 

fluorouracil which is formed by DFUR. In conclusion, the developed models and the identified 

covariate effect demonstrated a negligible DDI between both regorafenib and capecitabine.
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Contribution: I prepared the dataset used for modeling, extended and externally validated an existing 

population pharmacokinetic model, evaluated covariates, evaluated the final model, performed 

logistic regression analyses, and finally wrote the manuscript. Nigina Zimmermann shared this 

publication as a co-first author due to her contributions towards quantification of skeletal muscle 

indices, dataset preparation, and statistical analyses. 

Introduction: The body composition of patients has been associated with tolerability and effectiveness 

of anticancer therapy. In particular, sarcopenia in cancer patients was reported to be associated with 

low overall survival and higher toxicity [19–23]. Sarcopenia is usually defined by a reduction in skeletal 

muscle index (SMI) which is calculated by the total muscle cross-sectional area at the third lumbar 

vertebra (L3) normalized to the squared patient’s height (cm²/m²) [24]. As a hydrophilic drug, the 

volume of distribution of 5FU is highly correlated with lean body mass (LBM) which includes muscle 

mass [25]. 5FU is usually dosed according to the patient’s body surface area (BSA) which, however, 

does not account for changes in muscle status. Therefore, there is a particular interest in assessing the 

patient’s body composition [32]. In fact, different measures of body composition (total body water, 

fat-free mass, dose per kg LBM) revealed associations to 5FU pharmacokinetics (PK) and toxicity [26, 

30, 31]. The aim of this study was to assess the influence of the SMI as a metric for sarcopenia on the 

PK and toxicity of 5FU. 

Methods: Patients under a 5FU-based, infusional chemotherapy from the oncological practice 

UnterEms in Leer, Germany, were retrospectively analyzed. Patients with documented therapeutic 

drug monitoring (TDM) of 5FU and at least one computed tomography (CT) scan of the L3 area were 

included. 5FU plasma concentrations were obtained at steady-state and abdominal skeletal muscle 

areas were quantified in Hounsfield units for the psoas major muscle, back and total skeletal muscle 

to determine the SMI. For the latter, an automated segmentation method was used additionally. CT 

image analysis was performed with the software sliceOmatic® [190]. The influence of the different 

SMI measures on 5FU PK was analyzed in an initially developed population PK model of 5FU, which 

was based on data from Wilhelm et al. [98]. Different covariates, including age, sex, BSA and infusion 

time were tested on 5FU clearance and volume of distribution after development of the base model. 

This final covariate model was then applied to the dataset of this study. SMI measures were 

individually tested as covariates on PK parameters of 5FU. Model development was performed in 

NONMEM® [183]. For model evaluation, goodness-of-fit plots, prediction-corrected visual predictive 

checks [185] and bootstrap analyses were used. Furthermore, regression analyses were performed to 

analyze the influence of SMI measures on the probability of clinically relevant adverse events 

(Common Terminology Criteria for Adverse Events [CTCAE] grades ≥ 2). Here, odds ratios were 
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calculated to assess the relative probability to develop an adverse event grade ≥ 2 when the SMI 

increases by one unit. 

Results: A total of 111 patients with available CT images and 5FU-TDM were included for analysis. 

First, an initial population PK model based on data from the study of Wilhelm et al. [98] was developed 

which consisted of a one-compartment model with linear elimination. Due to model instabilities, 

estimates of the volume of distribution and its inter-individual variability (IIV) had to be fixed to 

previously estimated values which were based on analyses of rich PK data [92, 191, 192]. Therefore, 

volume of distribution could not be used for covariate analysis and all covariates were tested on 

clearance only. BSA was found to be the only significant covariate on 5FU clearance. The subsequent 

application of this model on the dataset from this study revealed that all four SMI parameters showed 

a significant improvement of the model fit. However, IIV of 5FU clearance was only slightly reduced 

whereas the SMI of the back muscle showed the largest reduction (-1.1 percentage points). As the 

inclusion of the SMI of the back muscle also showed the best model fit, this parameter was chosen for 

the final model. The logistic regression analysis showed that lower SMI values of the back muscle 

increased the probability for polyneuropathy and lower SMI of the psoas increased the probability for 

fatigue. An increase of the respective SMI by 1 cm²/m² decreased the probability of developing the 

identified adverse event ≥ grade 2 by 48% and 85%, respectively. 

Discussion: This is the first study evaluating the influence of different SMI measures on 5FU 

pharmacokinetics and toxicity. The developed population PK model described the observed data well 

even though it was not possible to estimate the volume of distribution. The inclusion of the SMI of the 

back muscle led to the largest improvement of the model fit which deserves further investigation on 

physiological plausibility. While this finding gives additional hints that body composition may influence 

PK of 5FU and other anticancer drugs [26–29] the minor reduction of the IIV of 5FU clearance revealed 

that the usage of SMI for dose adjustment purposes may be of limited value. In fact, the inclusion of 

BSA had a higher impact on 5FU clearance in the present model. The findings of the logistic regression 

analysis were generally in accordance with previous studies [30, 31, 148]. The identified higher 

probability of the occurrence of clinically relevant polyneuropathy with decreasing SMI of the back 

muscle, however, deserves further investigation. As the psoas muscle is necessary for everyday 

movement, the reduction of its SMI may be an explanation for the identified increase in the probability 

of clinically relevant fatigue. In conclusion, this study gives first hints that the SMI as a measure of 

body composition may be associated with PK and toxicity of 5FU. 
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Contribution: I prepared the datasets used for modeling and simulation, respectively. I developed a 

population Markov model based on patient-reported severity of hand-foot syndrome over time, 

evaluated covariates, performed simulations in order to investigate the impact of dose adjustments 

on adverse event severity, and finally wrote the manuscript. 

Introduction: As reports of diverging assessments of adverse events between cancer patients and 

clinicians have become more numerous [51, 52, 54] the patient’s perspective has gained a higher 

importance in managing toxicity of anticancer drug therapy. This was a motivation for developing a 

patient-reported outcomes (PRO) version of the widely used Common Terminology Criteria for 

Adverse Events (CTCAE) [48, 55] where toxicity is reported on a categorical scale. One possibility to 

establish a relationship between drug exposure and such categorical toxicity data are pharmacometric 

Markov models which aim to estimate the probability for the respective adverse event grade. Markov 

models are widely applied in the field of pharmacometrics nowadays [59, 62–65, 193]. In this work, 

the severity of hand-foot syndrome (HFS) under treatment with capecitabine was modeled using a 

Markov approach as HFS is reported to be the main dose-limiting toxicity under this therapy [119, 

194]. Although a Markov model for capecitabine-associated HFS was already established [195], this 

model could only consider clinician-based CTCAE grades. Therefore, it was meaningful to provide an 

extension towards PRO. The aim of this project was to develop a modeling and simulation framework 

to describe and predict patient-reported HFS severity in patients treated with capecitabine. Based on 

this example, the general suitability of Markov models to simulate the time course of patient-reported 

toxic symptoms should be assessed.  

Methods: For model development, raw data from two prospective, observational studies which 

included 150 capecitabine-naïve patients [196, 197] were used. HFS severity was assessed by patients 

using an in-house questionnaire where HFS severity grades (0 to 3) were described based on CTCAE 

grades version 3.0 [198]. After each conducted cycle patients were asked to fill out the questionnaire. 

They were observed up to six three-week therapy cycles. A minimal continuous-time Markov model 

(mCTMM) [66] was applied to analyze the HFS time course using the nonlinear mixed effects modeling 

software NONMEM [183]. The developed mCTMM consisted of a compartmental structure with each 

compartment representing one HFS grade. Probabilities of experiencing one of the grades were 

modeled as compartment amounts and described by differential equations consisting of transition 

rate constants between adjacent grades. The Markov property was introduced by setting the 

compartment amount of the observed grade to 1 and the other amounts to 0 before the next 

observation. A feature of the mCTMM is the assumption that the transition rates are independent of 

the grade, only the mean equilibration time (MET) was introduced as additional parameter which 

characterizes transition rates across different grades [66]. The calculation of probabilities was similar 
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to a proportional odds model combined with logit transformation in order to conveniently estimate 

model parameters describing HFS severity (logit intercepts, linear covariate functions, inter-individual 

variability) [58, 66]. After establishing the base mCTMM, a covariate analysis was conducted. Effects 

of dose and time as well as patient-related covariates (age, sex, overall adherence, combination 

therapy, tumor entity) were tested on MET and the logit intercept parameter. Model evaluation 

included visual predictive checks (VPC) [199] and bootstrap analysis. Model applicability was 

evaluated by performing a simulation study to assess the appropriateness of the commonly applied 

capecitabine dose adjustment strategy from the summary of product characteristics (SmPC) [200]. 

Probabilities of HFS grade 0 to 3 in virtual patients at a starting dose of 1250 mg/m² capecitabine with 

and without dose adjustments were simulated and compared. Lastly, the predictive performance of 

the developed model was assessed by simulating HFS severity based on Bayesian estimates of inter-

individual variability for each conducted therapy cycle. The simulated grades were then compared to 

the observed ones by calculating positive and negative predictive values (PPV, NPV) which indicated 

the predictability of HFS grades 2/3 and 0/1, respectively. 

Results: A mCTMM was successfully developed and applied on the dataset. A linear effect of the 

absolute daily dose of capecitabine was found to be the only statistically significant covariate on the 

logit intercept, indicating higher HFS severity probability with a higher dose. The VPC showed an 

accurate description of the observed data by the model whereas the bootstrap indicated a robust 

estimation of model parameters. The simulation study demonstrated a reduction of severe HFS (grade 

3) while increasing the probabilities of HFS grades 0 and 1 using the dose adjustment strategy 

according to the SmPC. Calculated PPV and NPV values were rather low, indicating a poor predictive 

performance on an individual patient level. 

Discussion: This is the first study evaluating the time course of patient-reported adverse event severity 

in clinical routine during anticancer therapy with a Markov modeling approach. By using the mCTMM 

as a parsimonious version of the standard continuous-time Markov models, a robust and well-

performing model was developed despite the sparse-data situation. The identification of the absolute 

daily capecitabine dose as predictor of HFS severity was in line with previous studies [201, 202]. 

Whereas population-based recommendations can be supported using this model, predictive 

performance on an individual level was rather poor. Possible limitations which contributed to this 

circumstance are the low grading frequency by the patients [67], the overall limited number of 

observations per patient, the limited number of covariates and the assumption that the observed, 

patient-reported grade equaled the “true” grade [68]. In conclusion, mCTMM can be set up using PRO 

data. This modeling framework may assist in the optimization of dosage regimens on the population 

level aiming at minimizing symptom burden during anticancer drug therapy.
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7. Conclusions 

The main objective of this thesis was to develop and apply various pharmacometric modeling 

approaches in order to improve anticancer therapy with the fluoropyrimidines 5FU and capecitabine 

by assessing their pharmacokinetic and pharmacodynamic behavior. Population pharmacokinetic 

modeling was successfully applied as it was able to explore drug-drug interactions of a new drug 

combination consisting of capecitabine and regorafenib and the potential influence of the skeletal 

muscle index on pharmacokinetics of 5FU. Markov modeling was successfully applied as well in order 

to link capecitabine dosage to the time course of drug-induced, patient-reported hand-foot syndrome. 

In addition, it was aimed to review the current evidence and future perspectives on therapeutic drug 

monitoring of 5FU as a tool for dose individualization and how pharmacometric models may help to 

achieve individualized 5FU therapy. The performed analyses as well as the literature review should be 

seen as complimentary approaches to contribute to increasing efficacy and safety for cancer patients 

under therapy with fluoropyrimidines. Overall, an integrated pharmacometric framework which is 

continuously improved by constantly providing routinely measured drug plasma concentrations and 

real-world patient data would be the ultimate goal. Using such a framework would allow for a strong 

clinical decision support by performing simulations for individual patients. The major results and 

conclusions of the individual projects are summarized below. 

Therapeutic drug monitoring of fluorouracil 

Although the use of 5FU is well-established for treatment of various solid tumors, dosing has been 

suboptimal with a substantial proportion of patients being over- or underdosed. The literature review 

conducted in this project showed that therapeutic drug monitoring (TDM) of 5FU is a powerful tool to 

individualize therapy in clinical routine. As for several decades, studies demonstrated the advantages 

of 5FU-TDM and new studies further revealed significant benefits regarding 5FU therapy response and 

safety. Whereas pharmacogenetic testing for risk variants of the main metabolizing enzyme 

dihydropyrimidine dehydrogenase (DPD) is a well-established part of precision medicine of 5FU, the 

results of this review strongly support that TDM should also be a vital part of this area. Our review 

demonstrated that genotyping is only able to explain parts of variability in 5FU pharmacokinetics. As 

there is a clear relationship between 5FU exposure and response, accounting for this variability is a 

crucial task which can only be satisfactorily solved in conjunction with TDM. The topic of precision 

dosing in oncology is gaining more attention in the recent years as an emerging number of studies has 

assessed the benefits of TDM, especially for oral anticancer drugs [4, 142, 203–206]. Furthermore, it 

was shown that pharmacometric modeling approaches have a great potential to significantly 

contribute towards precision dosing of 5FU. However, the currently published population 
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pharmacometric models exhibit very heterogenous 5FU pharmacokinetics, presumably due to 

different administration schedules, tumor entities, genotyping/phenotyping methods of DPD as well 

as small patient cohorts. Choosing a proper population size, modern continuous infusion regimens of 

5FU, consistent DPD testing methods as well as coupling the developed model to electronic health 

records would provide a basis for a valuable pharmacometric framework. Such a model would also be 

able to suggest a proper starting dose for initiation of 5FU therapy while continuously improving 

individual patient predictions via TDM. 

Population pharmacokinetics of combinedly administered regorafenib and capecitabine in patients 

with locally advanced rectal cancer 

Current treatment options for locally advanced rectal cancer result in rather low response rates and a 

high proportion of relapses. This emphasizes the need for new treatment strategies. In the present 

study, two oral drugs which are approved for the use in colorectal cancer, capecitabine and 

regorafenib, were combinedly administered for the first time in a clinical study. By developing 

population pharmacokinetic models for both drugs and their main metabolites, a significant negative 

influence of regorafenib exposure, expressed as cumulative area under the plasma concentration-

time curve over time, on capecitabine clearance was identified. Theoretically, this would result in a 

higher capecitabine exposure and a reduced formation of its metabolites, potentially reducing drug 

efficacy as the investigated metabolites are precursors of 5FU. However, a subsequently conducted 

simulation analysis revealed that this drug-drug interaction was of negligible clinical relevance as the 

exposure of the capecitabine metabolites remained virtually unaffected. This translates into an 

unchanged exposure of 5FU which should ultimately result in unchanged efficacy. Since capecitabine-

associated adverse events are mainly attributed to its metabolites [207], a reduced capecitabine 

clearance and hence a higher exposure is expected to be of negligible relevance as well. It should be 

noted, however, that a pharmacodynamic analysis regarding efficacy and safety of this drug 

combination has not been conducted by the time of publication of this project. Therefore, the clinical 

implications of the present analysis are yet to be investigated for the analyzed patient cohort.  

So far, the underlying mechanisms of the identified interaction are unknown as both drugs do not 

share the same metabolizing enzymes. It is however possible that the breast cancer resistance protein 

(BCRP) which is an active drug transporter of the ATP-binding cassette (ABC) family might be involved. 

It has been reported that regorafenib inhibits BCRP [133] and there are potential hints that 

capecitabine is an ABC transporter substrate [114–116]. These developed models could serve as a 

basis for a future double-arm study. One study arm would consist of capecitabine monotherapy and 

the other arm of the combination of capecitabine and regorafenib in order to further investigate the 



 

35 
 

clinical relevance of the present finding. Such a study should also include the approved regorafenib 

dosage of 160 mg daily. 

Influence of skeletal muscle index on fluorouracil pharmacokinetics and toxicity 

Whereas the nutrition and muscle statuses and thus, the body composition of cancer patients are 

widely recognized as cornerstones of a successful anticancer therapy and good prognosis, their 

influence on dosing of anticancer drugs has not been comprehensively researched so far. Most 

importantly, the widely performed body surface area (BSA)-based dosing of anticancer drugs such as 

5FU does not account for changes in body composition. As there have been hints that different 

measures of body composition were potential predictors of 5FU pharmacokinetics and toxicity [26, 

30, 31], it was expected that the skeletal muscle index (SMI) exhibited similar influences. In fact, this 

retrospective study revealed that all investigated SMI measures were significant predictors for 5FU 

pharmacokinetics in a population pharmacokinetic model. Whereas the most significant SMI influence 

on 5FU clearance was identified by including the SMI of the back muscle, it could only explain a tiny 

portion of inter-individual variability of 5FU clearance. BSA was able to explain a much larger portion 

of this variability in this study. A prospective study, in which 5FU pharmacokinetics and SMI measures 

are analyzed, along with more extensive 5FU sampling (in order to obtain plasma concentrations 

before steady-state for estimating 5FU volume of distribution), should provide additional insights. The 

SMI of the back muscle was a predictor for clinically relevant polyneuropathy and lower SMI of the 

psoas increased the probability for fatigue. Whereas development of polyneuropathy deserves further 

investigation, the decrease of the psoas SMI can indeed be linked to fatigue as the psoas muscle is 

important for everyday movement. However, the performed logistic regression analysis was focused 

on evaluating the general susceptibility of experiencing clinically relevant adverse events depending 

on muscle status in patients treated with a 5FU-based chemotherapy. Concomitant chemotherapy 

may contribute to the identified adverse events. However, only qualitative information of the 

administration of other drugs was available. By assessing the influence of individual drug 

pharmacokinetics on adverse event development in a future study, it would be possible to distinguish 

between the respective individual contributions of these drugs.  

Even in the case that the findings of this study are confirmed in future prospective studies, the overall 

translatability of the results into clinical practice remains a crucial aspect. In fact, CT imaging of cancer 

patients is frequently performed in clinical routine, e.g. for tumor staging, in contrast to assessments 

of muscle status. Nevertheless, the availability of such longitudinally collected data would allow for 

the continuous assessment of the patient’s body composition. 5FU-TDM and adverse event grading 

could be integrated into these assessments, ideally within a pharmacometric modeling framework. 

Such a framework could consist of a population pharmacokinetic model in combination with an 
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adverse event grade model, e.g. a proportional odds model [58] or a Markov model (as presented in 

chapter 6). It could be used for predicting individual 5FU concentration-time courses and adverse 

event severity depending on SMI. 

Markov model of patient-reported hand-foot syndrome under capecitabine 

Hand-foot syndrome (HFS) is one of the major causes for dose reductions or treatment interruptions 

as well as discontinuations under capecitabine. As patient-reported symptom burden significantly 

differs from the clinician’s assessment, a model-based approach which specifically describes the 

patient’s perspective would be of high interest. To date, this is the first study in which cancer patient-

reported adverse event severity was analyzed with a Markov modeling approach. A significant 

influence of absolute daily capecitabine dose on the probability of higher adverse event grades was 

identified. Whereas this finding was rather predictable [201, 202], it was nonetheless an important 

study to demonstrate that Markov models are suitable to describe patient-reported burden of HFS in 

a clinical setting. The developed model described the observed adverse event severity data well and 

was suitable to confirm population-based recommendations of dose adjustments as shown in the 

conducted simulation study. However, the individual prediction performance of the developed model 

was rather poor, particularly due to the low number of observations per patient along with long time 

intervals between these observations (grading was performed once per three-week cycle). It is 

conceivable that such models can be implemented into a pharmacometric framework which is 

coupled to the patient’s electronic health record as described in chapter 3 of this thesis. In order to 

apply pharmacometric Markov models to real-world patients, it is important to consider the 

continuous-time structure of these models. As time intervals between patient-reported observations 

may vary in clinical routine, choosing a discrete-time Markov model would be suboptimal. These 

models generally assume equal time intervals between two neighboring observations, regardless of 

the actual time periods [66]. Whereas such models can be used in a regulated setting of a clinical trial, 

they may potentially lack important information in a real-world scenario. Nevertheless, it should be 

aimed towards a more frequent grading of symptom burden. By combining such a pharmacometric 

framework with a recommended weekly grading [208] which can now be conveniently performed with 

electronic questionnaires [56, 209, 210], the potential of continuous-time Markov models can be 

vastly increased in the future.  
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8. Summary 

The fluoropyrimidine drugs fluorouracil (5FU) and capecitabine are widely used for the treatment of 

various solid tumors. Despite the long-term clinical experience with these drugs a substantial 

proportion of patients is suboptimally dosed, leading to a highly variable treatment outcome and 

toxicity, respectively. Pharmacometric modeling is potentially useful to address these issues and to 

provide optimal dose regimens for individual patients. The aim of this work was to develop and apply 

pharmacometric models to gain a better understanding of the pharmacokinetics (PK) and 

pharmacodynamics of 5FU and capecitabine in order to improve anticancer therapy. These models 

were used for simulation of different dosing regimens investigating the influence of various sources 

of variability.  

A comprehensive literature review on the current status and future outlooks on therapeutic drug 

monitoring (TDM) of 5FU was performed. It revealed strong supporting evidence for conducting a 5FU-

TDM to enable optimal therapy response and safety, particularly in combination with routine 

pharmacogenetic testing. Incorporating pharmacometric models into clinical routine can potentially 

assist clinicians in finding a proper 5FU dose even before starting therapy. 

Population PK models of capecitabine, the tyrosine kinase inhibitor regorafenib and their respective 

metabolites were developed to investigate potential drug-drug interactions between both drugs. The 

impact of the interaction was quantified via simulation analyses. Covariate analyses of the successfully 

developed models revealed that the cumulative area under the curve of regorafenib reduced 

capecitabine clearance estimates. Simulations showed significantly negative associations between 

regorafenib exposure and capecitabine clearance. However, the effect on the exposure of 

capecitabine metabolites was negligible. 

The muscle status, expressed as skeletal muscle index (SMI), was assessed as covariate in a population 

PK model of 5FU as well as its influence on the development of 5FU-associated adverse events by 

regression analyses. The SMI of the back muscle was found to be a significant covariate on 5FU 

clearance. However, it was only able to explain a small portion of variability. Lower SMI values of the 

back muscle increased the probability for polyneuropathy and lower SMI of the psoas increased the 

probability for fatigue. 

Capecitabine-induced and patient-reported severity of hand-foot syndrome (HFS) was analyzed with 

a Markov modeling approach. Different covariates were investigated as potential predictors on 

symptom burden. Simulations were performed to assess the influence of dose adjustments on the 

time course of HFS. The successfully developed Markov model revealed that the absolute capecitabine 
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dose was a significant predictor for HFS. Simulations showed a reduction of severe HFS when dose 

adjustments were performed according to HFS severity. 

In conclusion, this work demonstrated the potential of pharmacometric models assisting in dose 

adjustment strategies under therapy with 5FU and capecitabine. 
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Aims: Locally advanced rectal cancer (LARC) is an area of unmet medical need with

one third of patients dying from their disease. With response to neoadjuvant chemo-

radiotherapy being a major prognostic factor, trial SAKK 41/16 assessed potential

benefits of adding regorafenib to capecitabine-amplified neoadjuvant radiotherapy in

LARC patients.

Methods: Patients received regorafenib at three dose levels (40/80/120 mg once

daily) combined with capecitabine 825 mg/m2 bidaily and local radiotherapy. We

developed population pharmacokinetic models from plasma concentrations of capeci-

tabine and its metabolites 50-deoxy-5-fluorocytidine and 50-deoxy-5-fluorouridine as

well as regorafenib and its metabolites M-2 and M-5 as implemented into SAKK

41/16 to assess potential drug–drug interactions (DDI). After establishing parent-

metabolite base models, drug exposure parameters were tested as covariates within

the respective models to investigate for potential DDI. Simulation analyses were con-

ducted to quantify their impact.

Results: Plasma concentrations of capecitabine, regorafenib and metabolites were

characterized by one and two compartment models and absorption was described by
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parallel first- and zero-order processes and transit compartments, respectively.

Apparent capecitabine clearance was 286 L/h (relative standard error [RSE] 14.9%,

interindividual variability [IIV] 40.1%) and was reduced by regorafenib cumulative

area under the plasma concentration curve (median reduction of 45.6%) as exponen-

tial covariate (estimate �4.10 � 10�4, RSE 17.8%). Apparent regorafenib clearance

was 1.94 L/h (RSE 12.1%, IIV 38.1%). Simulation analyses revealed significantly nega-

tive associations between capecitabine clearance and regorafenib exposure.

Conclusions: This work informs the clinical development of regorafenib and capecita-

bine combination treatment and underlines the importance of studying potential DDI

with new anticancer drug combinations.

K E YWORD S

capecitabine, drug–drug interaction, population pharmacokinetics, rectal cancer, regorafenib

1 | INTRODUCTION

Colorectal cancer (CRC) is the third most common cause of cancer

cases worldwide and ranks second in cancer deaths.1 While the over-

all incidence of CRC declined in many high-income countries in recent

years, CRC incidence in adults younger than 50 years increased

substantially,1,2 mainly driven by rising cases of rectal cancer.3 Rectal

cancer comprises about one third of the total colorectal cancer

cases.4,5 Neoadjuvant chemo-radiotherapy followed by potentially

curative surgery is standard of care in patients with locally advanced

rectal cancer (LARC). Alternatively, the watchful waiting strategy after

complete pathological response of neoadjuvant chemo-radiotherapy

is another approach in LARC patients, requiring intensification of ther-

apy.6 Response to neoadjuvant chemo-radiotherapy is an important

independent prognostic factor,7 still the rate of complete pathological

response is only 10–25%,8,9 and one third of patients with LARC

relapse after chemo-radiotherapy and surgery.10 Recent studies added

tyrosine kinase inhibitors (TKI) such as sorafenib11 or cediranib12 to

capecitabine-based chemo-radiotherapy in LARC to improve clinical

outcome. Trial SAKK 41/16 added the second-generation multi-TKI

regorafenib to capecitabine-based chemo-radiotherapy, and this trial

included a pharmaco-translational part with extensive pharmacoki-

netic (PK) analysis of both anticancer drugs to assess for potential

drug–drug interactions (DDI).

Neoadjuvant chemo-radiation with capecitabine has been shown

to be tolerated both alone and in combination with irinotecan13 or

oxaliplatin.14 Optimal dosing of oral capecitabine in combination with

radiotherapy has been established at 825 mg/m2 bidaily given

throughout the course of radiotherapy.15 Regorafenib is an oral multi-

TKI with broad activity, including inhibition of angiogenesis (VEGFR1–

3, TIE2), impact on the tumour microenvironment (PDGFR-β, FGFR)

and oncogenesis (KIT, PDGFR and RET).16 Regorafenib has been

approved as monotherapy in patients with advanced CRC, hepatocel-

lular carcinoma and gastrointestinal stromal tumours at a daily dose of

160 mg. Regorafenib has a bioavailability of 69%17 and is metabolized

to active metabolites M-2 (regorafenib N-oxide) and M-5 (N-

desmethyl-regorafenib) by CYP3A4 and UGT1A9.18 Mean elimination

half-life of M-2 and M-5 is 24 and 51–64 hours, respectively. Excre-

tion of regorafenib is mainly via faeces (50%) and less via the kidneys

(19%).17 Capecitabine is sequentially converted to 50-deoxy-

5-fluorocytidine (DFCR) by hepatic carboxylesterase and to 50-deoxy-

5-fluorouridine (DFUR) by cytidine deaminase. The intermediate

DFUR is converted to fluorouracil by the enzyme thymidine phos-

phorylase in the final activating step. Capecitabine is a known inhibi-

tor of CYP2C9, but potential DDI based on CYP2C9 are not expected

as regorafenib is not metabolized by this enzyme. However, as regora-

fenib and capecitabine have overlapping toxicity, including palmar-

plantar erythrodysesthesia and diarrhoea,16,19 it is important to iden-

tify potential DDI.

The aim of this study was to implement population PK models of

regorafenib, capecitabine and their metabolites in LARC patients, and

to investigate potential interactions between both drugs.

What is already known about this subject

• Patients with locally advanced rectal cancer suffer from

frequent locoregional and systemic relapse.

• The addition of the tyrosine kinase inhibitor regorafenib

to capecitabine-augmented local radiotherapy is a prom-

ising strategy to improve pathological response rates.

What this study adds

• Our population pharmacokinetic models show a negative

impact of regorafenib cumulative area under the plasma-

concentration curve on capecitabine clearance.

• The drug–drug interaction between regorafenib and

capecitabine seems to be of negligible clinical relevance.
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2 | METHODS

2.1 | Patients and data

This open-label, multi-centre, non-randomized phase IB trial explored

the recommended dose of and pathological response to regorafenib

when added to capecitabine-augmented neoadjuvant chemo-

radiotherapy in patients with AJCC stage II/III rectal cancer

(mrT3/4 N0, mrTx N1–2 cM0). SAKK 41/16 recruited 25 patients

from six Swiss sites between March 2017 and April 2021. The trial

includes a dose-escalation part and an expansion cohort after estab-

lishing the recommended phase-2 dose. All patients were tested for

mutations of the dihydropyrimidine dehydrogenase gene (DPYD), and

patients harbouring one of four dysfunctional DPYD mutations (DPYD

c.1679T>G [rsrs55886062], c.1905+1G>A [rsrs3918290], c.2846A>T

[rs67376798], c.1129-5923C>G [rs75017182]) were excluded from

SAKK 41/16.20,21 Furthermore, only patients between 18 and

75 years with adequate renal (creatinine clearance >50 mL/min) and

hepatic function (markers such as bilirubin, alanine/aspartate amino-

transferase ≤1.5 � the upper limit of normal) were included. The

study was conducted according to the Declaration of Helsinki and

patients provided written informed consent before participation. The

study protocol was approved by the respective regulatory authorities

and registered under clinicaltrials.gov number NCT02910843.

PK data from 12 patients enrolled into the dose-escalation cohort

were used for the development of the population PK models as no

blood samples were obtained from patients belonging to the expan-

sion cohort. Patients received oral capecitabine 825 mg/m2 bidaily on

Days 1 to 38. Regorafenib was administered at three dose levels

(40, 80 and 120 mg) once daily on Days 1 to 14 and Days 22 to 35.

Local radiotherapy was given in all patients at 1.8 Gy per day in

28 fractions (5.6 weeks) for a total dose of 50.4 Gy. Patients under-

went rectal cancer surgery 6–12 weeks (± 1 week) after completion

of chemo-radiotherapy. Plasma samples for analysis of regorafenib,

capecitabine and their metabolites were collected on Day 1 (0.5, 1, 2,

3, 4 and 6 h after dosing) followed by post-dose sampling on Days

2, 4, 8, 15, 22, 29 and 36. PK sampling after Day 1 occurred at the

time of the patient's appointment and was not bound to a specific

time point. Patient characteristics are outlined in Table 1.

2.2 | Quantification of drug concentrations

Plasma concentrations of regorafenib and its active metabolites M-2

and M-5 were quantified using a validated liquid chromatography

coupled to tandem mass spectrometry assay as previously

described.22 Plasma concentrations of capecitabine and its metabo-

lites DFCR and DFUR were quantified using a second validated assay

by liquid chromatography coupled to tandem mass spectrometry

between 0.5 and 10 μg/mL plasma. This assay was validated according

to the US Food and Drug Administration and C62-A of the Clinical

and Laboratory Standards Institute Guidelines.23,24 Validation parame-

ters fulfilled the acceptance criteria of these guidelines. The results of

the validation parameters are shown in Tables S1.1 to S1.4 in the Sup-

porting Information. The lower limit of quantification for the assay

was 0.25 μg/mL. Reference standards for capecitabine and DFCR/

DFUR were obtained from Santa Cruz Biotechnology, Inc.

(Heidelberg, Germany) and TCI Deutschland GmbH (Eschborn,

Germany), respectively. The isotope-labelled internal standards cape-

citabine 2H11, DFCR 13C15N2, DFUR 13C15N2 were obtained from

Toronto Research Chemicals (Toronto, Canada). Stock solutions and

dilutions were prepared in acetonitrile:water 1:1 (v/v). Calibrators

(0.5–10 μg/mL) and quality controls (1.5, 5 and 9 μg/mL) were pre-

pared in pooled plasma (Dunn Labortechnik GmbH). After thawing the

plasma samples at 4 �C, 10 μL acetonitrile:water 1:1 (v/v) (for calibra-

tors and QCs the corresponding standard dilution) and 140 μL aceto-

nitril:ethanol 1:1 (v/v) containing the internal standards were added to

50 μL of plasma in a 96-well plate. The plate was sealed and shaken

on a plate shaker at 1000 rpm and room temperature for 5 minutes.

After centrifugation (4000 relative centrifugal force, room tempera-

ture, 20 minutes), 20 μL of the supernatant was diluted with 300 μL

of water in a new 96-well plate with a pipetting robot (Liquid Handling

Station LHS, Brand, Germany). Finally, the plate was sealed and

shaken on a plate shaker at room temperature at 1000 rpm for

5 minutes. 3 μL of the extracted samples was analysed by reversed-

phase chromatography (Acquity UPLC HSS T3 column, 2.1 � 50 mm,

1.7 μM, Waters) on a triple quadrupole mass spectrometer (Xevo

TQ-S, Waters) coupled to an UPLC Acquity I-Class system (Waters).

Capecitabine, DFCR and DFUR were separated at 0.4 mL/min with a

gradient using water (A) and methanol (B) acidified with 0.05% (v/v)

formic acid as mobile phases (0.0–1.0 min, 1% B; 1.0–4.5 min, 1–95%

B; held for 1 min, then switched back to 1% B and equilibrated from

5.1–7.0 min). The source offset and transition parameters were

TABLE 1 Summary of patient characteristics at baseline (N = 12)

Characteristic n or median (range)

Number of males/females 7/5

Number of patients with regorafenib

dose of 40/80/120 mg

3/6/3

AJCC tumour staging

Tumour stage (T1/T2/T3) 0/0/12

Nodal status (N0/N1/N2/Nx) 1/4/6/1

Metastases (M0/M1) 12/0

Age (years) 57 (48–75)

Weight (kg) 71.7 (55.9–96.0)

Body surface area (m2) 1.86 (1.59–2.16)

Body mass index (kg/m2) 24.4 (20.4–33.2)

Bilirubin concentration (μmol/L) 6 (2–14)

Alanine aminotransferase (U/L) 16 (10–34)

Aspartate aminotransferase (U/L) 20 (13–30)

Haemoglobin concentration (g/L) 138 (127–157)

Absolute neutrophil count (103/μL) 4.76 (4.03–7.98)

Creatinine clearance (mL/min) 98 (63–118)
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optimized for each analyte. The raw data were processed with Targe-

tLynx available in the MassLynx software (version 4.1, Waters).

2.3 | Population pharmacokinetic models

Population PK analysis of the concentration–time data of regorafenib

and capecitabine was performed using the nonlinear mixed-effect

modelling software NONMEM version 7.5 (double precision, level

1.1).25 NONMEM uses a maximum likelihood criterion to simulta-

neously estimate population values of fixed-effects variables (e.g. drug

clearance) and values of random-effects variables (e.g., interindividual,

interoccasion and residual variability). The likelihood-ratio test was

used to discriminate between nested models. The inclusion of an extra

parameter required a statistically significant reduction (P < .05) of the

objective function value (OFV) provided by NONMEM®. Non-nested

models were compared by the Akaike Information Criterion (AIC).

Implemented scripts in PsN (version 5.0.0)26,27 were used for model

development and R (version 4.1.0)28 was used for graphical purposes.

Piraña (version 2.9.7)29 served as front interface.

2.3.1 | Structural model development of the
capecitabine-metabolite model

In order to describe the absorption process of capecitabine, different

absorption models were tested (first-, zero-order absorption, com-

bined zero- and first-order absorption, transit absorption models).

Additionally, we tested absorption models as described previously for

oral capecitabine,30–32 as the corresponding plasma concentrations

supported a fast initial absorption phase (Figure S2.1 in the Support-

ing Information).

The population PK parent-metabolite model was developed in

three sequential steps. After establishing the parent drug model, its

structural parameters were fixed and the subsequent metabolites

were included in a stepwise fashion. Eventually, all parameters were

estimated simultaneously.34 One- and two-compartment models were

evaluated for the description of the plasma concentration–time

course of capecitabine and its metabolites. Since the bioavailability F

of capecitabine and the fractions converted to the metabolites were

structurally unidentifiable, model parameters were estimated relative

to these values (e.g. clearance/F). Overall, plasma concentrations

below the lower limit of quantification (0.25 μg/mL for capecitabine

and metabolites, 0.02 μg/mL for regorafenib and metabolites) were

included for model development.35

2.3.2 | Structural model development of the
regorafenib-metabolite model

Model development steps for regorafenib, M-2 and M-5 were identi-

cal to the procedure for capecitabine and its metabolites. Besides

one- and two-compartment models, three-compartment models were

investigated for the description of the plasma concentrations of the

respective compounds as well. In addition, different enterohepatic cir-

culation (EHC) models as described previously36–38 were additionally

investigated.

2.3.3 | Statistical model development

Population PK parameters were assumed to be log-normally distrib-

uted and interindividual variability (IIV) was implemented as an expo-

nential function.39 We tested different error models (additive,

proportional, combined additive/proportional) to describe residual PK

variability.39 Interoccasion variability (IOV) was explored on clearance

and absorption parameters as well.39

2.3.4 | Covariate analysis

The resulting capecitabine- and regorafenib-metabolite base models

were used to generate drug exposure parameters. In a covariate anal-

ysis, concentrations over time and cumulative area under the curve

(AUC) over time of regorafenib, M-2 and M-5 were tested on the

clearance of capecitabine and its metabolites, and the same PK param-

eters were also tested on the clearance of regorafenib and its metabo-

lites. Laboratory parameters were preselected as covariates if they

were associated with a Common Terminology Criteria for Adverse

Events (CTCAE) grade >040 in at least 15% of total measurements.

Covariates were implemented into the model in a stepwise forward

inclusion and backward elimination approach using the scm script

implemented in PsN.26,27 In the forward selection process, covariates

which led to a significant decrease of the OFV (P < .05) were kept for

further evaluation. The final forward model was re-evaluated by back-

ward elimination of each covariate with a significance level of P < .01.

If a covariate was still significant in this step, the plausibility of its

effect as well as a successful model convergence was assessed and

eventually kept in the model. Exponential and linear parameter-

covariate relations were tested for continuous and categorical covari-

ates, respectively.

For covariate analysis, the above-mentioned drug exposure

parameters as well as demographic data (sex, age, weight, height, body

surface area, body mass index), bilirubin and haemoglobin concentra-

tion were preselected. Even though bilirubin concentration exhibited

a rather narrow range at baseline (Table 1), it was nevertheless

included as the number of CTCAE grades >0 increased during the

course of therapy (concentration range 2–32 μmol/L).

2.3.5 | Model evaluation

The precision of model parameter estimates defined as the relative

standard error (RSE) assisted in model evaluation. Models which con-

verged with a successful covariance step, were considered for further

analysis. In order to assess the model fit, goodness-of-fit plots41 as
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well as prediction-corrected visual predictive checks (pcVPC) were

used. For the development of a pcVPC 5th, 50th and 95th percentiles

with the respective 95% confidence intervals (CI) were generated

from 1000 simulated datasets based on the observed dataset and

superimposed by the observed plasma concentrations over time. Both

simulated and observed plasma concentrations were normalized with

respect to the median prediction.42 pcVPC were constructed in R

using a modified code originally provided by the PMX Solutions web-

site.43 In addition, model robustness as well as precision and bias of

parameter estimates were evaluated by non-parametric bootstrap

analysis without stratification. Median and 95% CI of parameter esti-

mates were derived from 1000 replicate datasets obtained from sam-

pling individuals from the original dataset with replacement.

2.4 | Simulation study

The final population PK and covariate models were forwarded to

extensive simulation studies. Here, the impact of potential covariates

including drug interactions on the PK of capecitabine, regorafenib or

their metabolites were analysed. The PK model of capecitabine con-

taining the identified exposure parameter of regorafenib as covariate

was therefore simulated. Values of this regorafenib drug exposure

parameter were previously generated via simulation of its PK model.

For Days 1, 8, 15, 22, 29 and 36, geometric mean drug clearances of

capecitabine were calculated, along with their respective 95% CI.

3 | RESULTS

3.1 | Model building

For the development of the population PK parent-metabolite

models, 86 capecitabine, 126 DFCR and 132 DFUR plasma concen-

tration measurements were included as well as 151 regorafenib,

141 M-2 and 113 M-5 plasma concentration measurements (Figures

S2.1–S2.6 in the Supporting Information).

3.1.1 | Capecitabine and metabolites

The observed plasma concentration–time course of capecitabine,

DFCR and DFUR were best described by a one-compartment model

(Figure 1). Model parameter estimates and bootstrap results are pre-

sented in Table 2. Residual variability was modelled using a propor-

tional error model. Implementation of IOV was not successful due to

run errors. In order to describe capecitabine absorption, a parallel

first- and zero-order absorption model was most appropriate

(Table S3.1 in the Supporting Information). The relatively slow first-

order absorption process of capecitabine in combination with a rapid

elimination indicated a flip-flop PK for capecitabine. Estimating the

volume of distribution of the metabolite DFUR resulted in values

close to the boundary of zero. This finding in combination with a

similar decay of DFCR and DFUR plasma concentrations (Figures S2.2

and S2.3 in the Supporting Information) indicated a flip-flop PK for

DFUR as well.32 Therefore, only an elimination rate constant for

DFUR (ke, DFUR) was estimated and an IIV term on this rate constant

was implemented.

The covariate analysis for the capecitabine-metabolite model is

presented in Table S3.2 in the Supporting Information. The final

model included regorafenib cumulative AUC as a covariate on capeci-

tabine clearance, which led to a stable model along with a significant

drop in OFV compared to the base model (�33.918, P < .00001).

The identified exponential covariate led to a reduction of capeci-

tabine clearance estimates:

CLCap ¼CLCap,pop�e �θ�AUCReg,cumð Þ �eηi,CLCap,pop ð1Þ

where CLCap denotes the individual capecitabine clearance estimate,

CLCap,pop the population estimate of capecitabine clearance, θ is the

covariate effect estimate, AUCReg,cum is the cumulative AUC over time

of regorafenib and ηi,CLCap,pop represents the IIV term for the capecita-

bine population clearance of the ith individual with a mean of 0 and a

variance of ω2. The median reduction of capecitabine clearance was

F IGURE 1 Model structure of the capecitabine-metabolite model.
DCFR: 50-deoxy-5-fluorocytidine; DFUR: 50-deoxy-5-fluorouridine;
CLCap/F, CLDFCR/F: apparent capecitabine/DFCR clearance; VCap/F,

VDFCR/F: apparent capecitabine/DFCR volume of distribution; ke,
DFUR: elimination rate constant for DFUR; ka: first-order absorption
rate constant.
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45.6% at Day 36 (derived from a median regorafenib cumulative AUC

from Day 0 to Day 36 of 1458.5 μmol�h/L).
Bootstrap estimates were in accordance with estimates from the

final model. The models correctly described the observed data as

depicted in the pcVPC (Figure 2) and in the goodness-of-fit plots

(Figures S3.1–S3.3 in the Supporting Information). The pcVPC addi-

tionally indicated flip-flop PK for capecitabine, DFCR and DFUR due

to a slow absorption or formation process.

3.1.2 | Regorafenib and metabolites

Plasma concentrations of regorafenib, M-2 and M-5 were best described

by two-compartment models with a proportional error model. Due to a

non-significant reduction in OFV, IOV was not incorporated. A summary

of the model parameter estimates including the bootstrap results is pre-

sented in Table 3. A transit compartment model with Erlang distribution

as previously described by Lindauer et al.44 and Rousseau et al.45 was

TABLE 2 Parameter estimates of the capecitabine-metabolite model

Parameter

Estimate (relative

standard error, %) Shrinkage [%]

Bootstrap median

(95% confidence intervals)

CLCap/F [L/h] 286 (14.9) 296 (173–418)

VCap/F [L] 179 (17.8) 187 (101–273)

ka [1/h] 0.0714 (23.2) 0.0828 (0.0387–0.336)

Duration zero-order absorption [h] 0.250 (2.5) 0.336 (0.0910–0.658)

Fraction of the first-order absorption process [%] 21.4 (11.8) 20.2 (13.0–36.1)

CLDFCR/F [L/h] 123 (10.5) 122 (93.5–151)

VDFCR/F [L] 71.9 (17.5) 67.2 (37.3–96.7)

ke, DFUR [1/h] 99.2 (9.6) 100 (82.4–125)

Regorafenib cumulative AUC effect on CLCap/F �4.10 � 10�4 (17.8) �4.06 � 10�4 (�1.00 � 10�3 – (�3.02 � 10�5))

Interindividual variability

CLCap/F [%] 40.1 (26.4) 5.3 39.2 (13.9–91.9)

VCap/F [%] 39.7 (36.7) 20.6 43.9 (12.0–110)

CLDFCR/F [%] 32.2 (25.5) 3.2 32.6 (3.83–63.2)

VDFCR/F [%] 47.6 (35.5) 13.4 50.1 (19.2–96.3)

ke, DFUR [%] 29.3 (25.9) 4.6 27.5 (16.7–40.6)

Residual variability

Capecitabine [%] 60.1 (10.9) 3.9 58.8 (43.4–77.5)

DFCR [%] 46.1 (8.1) 4.7 45.1 (34.2–56.2)

DFUR [%] 45.2 (7.8) 4.7 42.9 (32.2–52.4)

CLCap/F, CLDFCR/F: apparent capecitabine/DFCR clearance; VCap/F, VDFCR/F: apparent capecitabine/DFCR volume of distribution; ke, DFUR: elimination

rate constant for DFUR; ka: first-order absorption rate constant.

F IGURE 2 Prediction-corrected visual predictive checks of capecitabine, DFCR and DFUR. Black dots: Prediction-corrected observations;

dashed lines: 90% interval and median of the prediction-corrected observations; dark grey shaded area: 95% confidence intervals of the 5th and
95th prediction interval; light grey shaded area: 95% confidence interval of median prediction.
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TABLE 3 Parameter estimates of the regorafenib-metabolite model.

Parameter Estimate (relative standard error, %) Shrinkage [%] Bootstrap median (95% confidence intervals)

CLRegorafenib/F [L/h] 1.94 (12.1) 1.91 (1.47–2.46)

Vc/F [L] 10.4 (33.2) 9.83 (2.37–23.2)

MATRegorafenib [h] 3.01 (9.6) 3.05 (2.03–4.05)

Vp/F [L] 63.9 (8.7) 64.4 (50.3–85.2)

Q/F [L/h] 13.5 (10.8) 13.7 (9.64–17.7)

CLM-2/F [L/h] 0.936 (10.8) 0.932 (0.731–1.19)

kg,met [1/h] 0.265 (12.8) 0.267 (0.168–0.449)

MATM-2 [h] 1.90 (14.1) 1.91 (1.31–2.96)

CLM-5/F [L/h] 2.01 (21.7) 2.02 (1.14–3.16)

Interindividual variability

CLRegorafenib/F [%] 38.1 (23.6) 3.1 34.5 (14.8–48.0)

Vc/F [%] 131.5 (24.2) 3.7 126.9 (82.3–238.7)

MAT (Regorafenib) [%] 21.7 (24.7) 4.4 19.9 (5.92–30.0)

CLM-2/F [%] 25.2 (33.6) 11.6 23.7 (6.15–37.9)

CLM-5/F [%] 75.6 (22.3) 0.1 72.6 (50.1–99.3)

Residual variability

Regorafenib [%] 52.6 (7.4) 3.6 51.2 (42.5–59.0)

M-2 [%] 57.9 (8.1) 1.5 57.9 (52.2–63.6)

M-5 [%] 54.1 (9.1) 4.7 53.6 (48.1–59.4)

CLRegorafenib/F, CLM-2/F, CLM-5/F: apparent regorafenib/M-2/M-5 clearance; Vc/F: apparent shared central volume of distribution; Vp/F: apparent shared

peripheral volume of distribution; Q/F: apparent shared intercompartmental clearance; MATRegorafenib/MATM-2: mean absorption time of regorafenib/M-2

defined as n transit compartments/transit constant ktr; kg, met: presystemic metabolic rate constant.

F IGURE 3 Model structure of the regorafenib-metabolite model. CLRegorafenib/F, CLM-2/F, CLM-5/F: apparent regorafenib/M-2/M-5
clearance; Vc/F: apparent shared central volume of distribution; Vp/F: apparent shared peripheral volume of distribution; Q/F: apparent shared
intercompartmental clearance; ktr, Regorafenib/ktr, M-2: transfer rate constants defined as n transit compartments/mean absorption time; kg, met:
presystemic metabolic rate constant
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the most suitable in order to describe regorafenib absorption (Table S3.3

in the Supporting Information). Mean absorption time (MAT) was esti-

mated and a transfer rate constant (ktr) between these compartments

was calculated as follows:

ktr ¼Number of transit compartments
MAT

ð2Þ

The formation of M-2 and M-5 is outlined in Figure 3. M-2 metabo-

lism was best described by presystemic formation occurring from the

first transit compartment of regorafenib. A series of transit compart-

ments was chosen for the description of M-2 absorption as well. Since

PK data after direct administration of M-2 and M-5 were not available

and the conversion percentages were unknown, the volumes of distri-

bution of M-2 and M-5 could not be estimated. Therefore, it was

assumed that their volumes of distribution as well as the intercom-

partmental clearances were the same as that of regorafenib. IIV terms

on the clearances of all three compounds, the shared volume of distri-

bution and the mean absorption time of regorafenib were successfully

included. Available plasma concentration data of regorafenib and its

metabolites did not support the implementation of EHC models.

Covariate analyses of regorafenib-metabolite base models are

presented in Table S3.4 in the Supporting Information. None of the

identified covariates remained in the final model. The pcVPC

(Figure 4) as well as the goodness-of-fit plots (Figures S3.4–S3.6 in

the Supporting Information) showed an adequate description of the

observed data although the depiction of the observed data versus the

population predictions of M-2 and M-5 revealed a tendency towards

an underprediction of higher plasma concentration values.

3.2 | Simulation study

The impact of regorafenib cumulative AUC on capecitabine clearance

was submitted to simulation analysis as described above. The final

regorafenib-metabolite model was used to simulate 1000 subjects for

each regorafenib dose level (40/80/120 mg once daily) until Day 36.

The treatment schedule was the same as the schedule from the study

(2 weeks of treatment, 7-day break, another 2 weeks of treatment). A

capecitabine dose of 1500 mg bidaily (corresponding to 825 mg/m2

bidaily) was chosen and simulation was subsequently performed

including the regorafenib cumulative AUC as covariate for the same time

period. In addition, 1000 patients without regorafenib were simulated.

The simulation results are depicted in Figure 5 (from 792–864 hours)

and Figure S4.1 in the Supporting Information (total simulation time

period). Calculated capecitabine clearance values are presented for vari-

ous time points in Table S4.1 in the Supporting Information. A higher

regorafenib dose and subsequent cumulative AUC was associated with

a lower capecitabine clearance (Table S4.1) and hence reduced capeci-

tabine metabolism to active metabolites. Whereas capecitabine

F IGURE 4 Prediction-corrected visual predictive checks of regorafenib, M-2 and M-5 from 0 to 30 hours (upper panel) and from 0 to
200 hours (regorafenib, M-2, lower panel) as well as from 0 to 550 hours (M-5, lower panel). Black dots: Prediction-corrected observations;
dashed lines: 90% interval and median of the prediction-corrected observations; dark grey shaded area: 95% confidence intervals of the 5th and
95th prediction interval; light grey shaded area: 95% confidence interval of the median prediction.
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clearance was comparable between regorafenib dose levels on Day

1, the impact of regorafenib on capecitabine clearance increased with

increasing cumulative regorafenib exposure (Table S4.1). With decreas-

ing capecitabine clearance, formation of DFCR and DFUR was expected

to decrease likewise. Like for capecitabine, CIs of the concentration–

time curves of DFCR and DFUR overlapped in the beginning as well,

whereas they diverged more with increasing cumulative regorafenib

exposure. However, the differences in metabolite exposure were negli-

gible between the different regorafenib dose levels including simula-

tions with 0 mg regorafenib. The respective plots are presented in

Figure 5 as well as in Figures S4.2 and S4.3 in the Supporting

Information.

4 | DISCUSSION

This is the first study to evaluate the addition of the multi-TKI regora-

fenib to capecitabine-augmented local radiotherapy in LARC patients.

We successfully developed population PK and covariate parent-

metabolite models of regorafenib and capecitabine in patients of trial

SAKK 41/16 RECAP. The description of capecitabine absorption by

parallel first- and zero-order processes differed from the absorption

models of published capecitabine models in which parallel first-

order,33 transit compartments32 or first-order absorption with lag

time30,31 were established. In fact, capecitabine absorption is highly

variable due to, for example, double peaks,33 the impact of age,31

food46 or alterations in the gastrointestinal tract including potential

gastrectomy in patients with gastro-oesophageal cancer, for exam-

ple.32 One possible explanation for the identification of a dual absorp-

tion process may be the reflection of different absorption sites,

namely the small intestine and the stomach.33,46 The slow first-order

absorption process as well as comparatively slower metabolite forma-

tions were presumably responsible for the occurrence of flip-flop PK

for capecitabine, DFCR, and DFUR in our model. This was also indi-

cated by biphasic declines of the concentration–time curves despite

using one-compartment models.47 It should, however, be noted that

the patients' first observations were almost exclusively those with the

highest plasma concentrations. An additional sample could be drawn

between 0 and 0.5 hours post dose intake, e.g. after 15 minutes, as

observed in the model of Jacobs et al.32 to gain more certainty about

capecitabine absorption. The establishment of one-compartment

models for capecitabine, DFCR and DFUR was in accordance with

several published population PK models.30,31,33 Additionally, the iden-

tified flip-flop PK of DFUR could also be observed in the model of

Jacobs et al.32

The population PK model structure and parameters of the

regorafenib-metabolite model were similar to the published model of

Keunecke et al.38 However, in our model the formation of M-5 from

M-2 was established, whereas Keunecke et al. assumed that M-5 is

directly formed by regorafenib.38 The proposed metabolic pathway of

Gerisch et al. indicated that M-5 is indeed formed by M-248 and our

population PK model did not allow us to distinguish between both

proposed pathways (Table S3.3 in the Supporting Information). The

implementation of covariates was not successful either since the

inclusion of additional parameters led to model instabilities presum-

ably due to overparameterization. The inclusion of identified covari-

ates from the study of Keunecke et al.38 (sex on clearance of

regorafenib, M-2 and M-5, respectively, as well as BMI on regorafenib

clearance) led to estimated covariate parameters with large RSE (≥

58%) and a non-significant drop in OFV compared to the base model

F IGURE 5 Simulated plasma concentrations of capecitabine, DFCR and DFUR depending on regorafenib dosage from 792 to 864 hours.
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(�6.052, P = .20). Furthermore, the establishment of an EHC could

not be supported by the underlying data of this study. Besides a pre-

sumed overparameterization of the model, the sampling time of regor-

afenib and its metabolites should be adjusted in order to account for

the identification of EHC-caused concentration peaks. Secondary and

tertiary peaks were found to be at about 6 to 8 as well as 24 hours

after dose intake,18 hence additional sampling of regorafenib and its

metabolites should be considered, as in this trial the last sample was

drawn at 6 hours.

The covariate analysis in this study revealed a significant negative

influence of regorafenib cumulative AUC over time on the formation

of capecitabine active metabolites. Already 1 week after regorafenib

intake, capecitabine clearance values were significantly reduced

depending on regorafenib dose levels (Table S4.1). This should lead to

a reduced formation of its metabolites DFCR, DFUR as well as fluoro-

uracil, which is finally converted to active metabolites. However,

DFCR and DFUR exposure remained unaffected by the reduced cape-

citabine clearance (Figures S4.2 and S4.3), which translates to an unaf-

fected exposure of fluorouracil. Accordingly, we assume a negligible

clinical relevance of this DDI since capecitabine-associated adverse

events are mainly attributed to its metabolites.49 However, fluoroura-

cil was not quantified in this study since its formation occurs intracel-

lularly and thus it exhibits very low plasma concentrations after

capecitabine administration. A possible explanation for the identified

DDI could be the inhibition of the ATP-binding cassette (ABC) trans-

porters P-glycoprotein (Pgp) or breast cancer resistance protein

(BCRP) by regorafenib50,51 since there have been hints that capecita-

bine might be a substrate for ABC transporters.52–54 However, a clini-

cal study with regorafenib and the Pgp substrate digoxin as well as

the BCRP substrate rosuvastatin showed no influence on digoxin PK

but on rosuvastatin exposure by regorafenib.51 In addition, similar

effects on capecitabine exposure were observed in two clinical trials

in which capecitabine was administered in combination with sorafenib

which is the defluorinated form of regorafenib. Both studies reported

moderately increased capecitabine AUC while co-administering sora-

fenib compared to control groups with capecitabine monother-

apy.55,56 From published population PK models of capecitabine,

bilirubin concentration as a linear covariate on capecitabine clearance

was tested30 but resulted in a failure of the covariance step. Since

only patients with adequate hepatic and renal function (see

“Methods” section) were included in this study, covariate analysis of

elimination parameters for all compounds was impeded as the respec-

tive laboratory parameters exhibited a rather narrow range. It should

be noted that our identified covariate effect should be carefully inter-

preted due to the small number of patients in this analysis. Further-

more, regorafenib was administered in lower doses than the approved

dose of 160 mg daily. Therefore, the impact of the usual daily dose of

regorafenib could not be evaluated in our study. In order to assess the

clinical relevance of our finding, a future double-arm study which

investigates patients under capecitabine monotherapy and patients

under the combination of capecitabine and regorafenib should be

conducted in a larger number of study participants. Intracellular con-

centrations of active metabolites of fluorouracil such as

5-fluorouridine 50-triphosphate as predictor for capecitabine toxicity57

could be additionally quantified.

In conclusion, the developed population PK models suggest a

negligible effect of regorafenib cumulative AUC on the metabolic acti-

vation of capecitabine. Our models may serve as a basis for future

DDI studies in patients under therapy with both oral anticancer drugs.
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Validation results of the LC-MS/MS assay for capecitabine, DFCR and DFUR 

Tab. S1-1: Intra- and inter-day (n=6) bias and coefficients of variation for capecitabine, DFCR, and DFUR 

Analyte Concentration (ng/mL) Intraday Interday 
Bias (%) CV (%) Bias (%) CV (%) 

Capecitabine 1485 4.4 7.9 6.0 4.8 
4950 -0.8 5.5 0.7 5.1 
8910 2.8 1.8 1.9 2.9 

DFCR 1485 -1.5 8.2 -1.0 4.5 
4950 -1.8 7.3 -2.6 6.1 
8910 1.2 0.1 2.0 4.3 

DFUR 1485 -4.0 5.5 5.6 3.8 
4950 1.1 5.9 2.5 4.8 
8910 4.1 2.7 2.9 3.6 

 
Tab. S1-2: Recoveries of capecitabine, DFCR and DFUR in six different plasma samples  

Name Concentration (ng/mL) Recovery (%) CV (%) 

Capecitabine 1485 105 7.3 
4950 98 5.1 
8910 98 7.2 

DFCR 1485 103 10.7 
4950 97 6.5 
8910 98 7.1 

DFUR 1485 106 7.2 
4950 99 5.6 
8910 98 7.3 

 
Tab. S1-3: Matrix effect of capecitabine, DFCR, and DFUR in six different plasma samples 

Name 
Concentration 

(ng/mL) 
Matrix effect 

(%) 

Capecitabine 1485 91 - 109% 
4950 95 - 103% 
8910 95 - 103% 

DFCR 1485 83 - 104% 
4950 83 - 101% 
8910 84 - 99% 

DFUR 1485 83 - 98% 
4950 85 - 103% 
8910 87 - 103% 

 
Tab. S1-4: Carryover values for capecitabine, DFCR, and DFUR in calibrator 1 (500ng/mL, Cal 1) after 
alternating Cal1 and calibrator 6 (10000 ng/mL, Cal6) measurements 

Name 
Carryover 

Cal 1 (%) Cal 1 IS (%) 

Capecitabine 2.6 1.7 
DFCR 8.6 3.0 
DFUR -10.0 4.1 

 



Observed plasma concentration-time profiles 

 

Fig. S2-1 Log scale plasma concentration-time profile of capecitabine. The red dashed line indicates 
the lower limit of quantification of 0.25 µg/mL. 

  



 

Fig. S2-2 Log scale plasma concentration-time profile of DFCR. The red dashed line indicates the lower 
limit of quantification of 0.25 µg/mL. 

  



 

Fig. S2-3 Log scale plasma concentration-time profile of DFUR. The red dashed line indicates the lower 
limit of quantification of 0.25 µg/mL. 

  



 

 

Fig. S2-4 Log scale plasma concentration-time profile of regorafenib. The red dashed line indicates the 
lower limit of quantification of 0.02 µg/mL. 

  



 

Fig. S2-5 Log scale plasma concentration-time profile of M-2. The red dashed line indicates the lower 
limit of quantification of 0.02 µg/mL. 

  



 

Fig. S2-6 Log scale plasma concentration-time profile of M-5. The red dashed line indicates the lower 
limit of quantification of 0.02 µg/mL. 

 



Model development 

Capecitabine-metabolite base model development 

Tab. S3-1 Important model building steps for the capecitabine-metabolite base model 

Model Model description OFV AIC Comments 

Capecitabine absorption models 
1 First-order absorption 222.422 234.422  
2 Zero-order absorption 216.073 226.073  
3 First-order absorption with lag 

time 
214.867 226.864 Failure of the covariance 

step 
4 Parallel first- and zero-order 

absorption* 
183.454 197.454  

5 Transit compartment model with 
Erlang distribution (n 
compartments = 2) 

216.631 226.631  

6 Transit compartment model with 
Erlang distribution (n 
compartments = 3) 

216.508 226.508  

7 Two parallel first-order absorption 
processes 

184.326 198.326 RSE of one of the ka: 79% 

8 Absorption model with fixed 
parameters according to Jacobs et 
al. [S1] 

- - Run failures 

9 Absorption model with fixed 
parameters according to Urien et 
al. [S2] 

250.412 260.412  

10 Absorption model with fixed 
parameters according to Daher 
Abdi et al. [S3] 

294.242 304.242  

11 Absorption model with fixed 
parameters according to Lunar et 
al. [S4] 

445.151 453.151  

Capecitabine-DFCR model 

12 Model with separated 
capecitabine elimination process 
(clearance + metabolism to DFCR) 

551.030 577.030 Metabolism constant 
estimate to DFCR was 
close to zero (boundary 
issue) 

13 Model with one capecitabine 
elimination process to the DFCR 
central compartment* 

553.989 577.989  

Capecitabine-DFCR-DFUR model 

14 DFUR PK described by clearance 
and volume of distribution 

917.349 953.349 DFUR volume of 
distribution estimate was 
close to zero (boundary 
issue) 

15 DFUR PK described by elimination 
constant* 

921.539 953.539  



AIC: Akaike information criterion, OFV: objective function value, RSE: relative standard error, PK: 
pharmacokinetics 
*Models chosen for further model development  



Covariate analysis of the capecitabine-metabolite base model 

Tab. S3-2 Included covariate-parameter relationships of the capecitabine-metabolite model in 
chronological order 

Covariate 
model 

number 
Covariate effect Difference in OFV compared to 

previous model (forward inclusion step) 

1 Regorafenib cumulative AUC over time on 
capecitabine clearance -33.918 (compared to base model) 

2 Hemoglobin on capecitabine clearance -40.816 
3 M-5 cumulative AUC over time on 

capecitabine clearance -9.334 

4 M-2 concentration over time on ke, DFUR -7.967 
5 Bilirubin on ke, DFUR -6.957 
6 Body mass index on DFCR volume of 

distribution -7.901 

7 M-2 concentration over time on DFCR 
clearance -6.398 

8 Hemoglobin on capecitabine volume of 
distribution* -5.268 

OFV: objective function value, AUC: area under the curve, ke, DFUR: Elimination rate constant for DFUR 
* removed after backward elimination step 

After the forward inclusion and backward elimination steps, seven covariate-parameter relationships 

were included for further analysis. However, the inclusion of all covariates did not seem to be plausible, 

either due to lack of physiological plausibility (hemoglobin as covariate on capecitabine clearance) or 

due to high correlations between the drug exposure parameters. Hence, the effects of hemoglobin, 

M-5 cumulative AUC over time and M-2 concentration over time were removed. A covariate model 

consisting of regorafenib cumulative AUC on capecitabine clearance, body mass index (BMI) on DFCR 

volume of distribution and bilirubin on ke, DFUR resulted in a physiologically implausible covariate effect 

of bilirubin (positive effect on ke, DFUR). Excluding this covariate led to a model with relatively high 

relative standard errors (RSE) of the BMI effect on DFCR volume of distribution (41%) and the IIV term 

of DFCR volume of distribution (48%). In fact, only an implementation of the first identified covariate, 

regorafenib cumulative AUC on capecitabine clearance, led to a stable model with precisely estimated 

parameters along with a significant drop in OFV compared to the base model (-33.918, p < 0.00001). 

  



Goodness-of-fit plots 

 

Fig. S3-1 Goodness-of-fit plots for model-predicted capecitabine concentrations. The black lines 
indicate the lines of identity and the grey lines are the trend in observations.  

  



 

Fig. S3-2 Goodness-of-fit plots for model-predicted DFCR concentrations. The black lines indicate the 
lines of identity and the grey lines are the trend in observations.  

  



 

Fig. S3-3 Goodness-of-fit plots for model-predicted DFUR concentrations. The black lines indicate the 
lines of identity and the grey lines are the trend in observations.  

  



Regorafenib-metabolite base model development 

Tab. S3-3 Important model building steps for the regorafenib-metabolite base model 

Model Model description OFV AIC Comments 

Regorafenib absorption models 

1 First-order absorption 153.683 169.683  
2 Zero-order absorption 181.053 197.053  
3 First-order absorption with lag time 132.116 150.116  
4 2 transit compartments with Erlang 

distribution 
121.694 139.694  

5 3 transit compartments with 
Erlang distribution* 

108.463 126.463  

6 4 transit compartments with Erlang 
distribution 

106.870 124.870  

7 1 transit compartment with first-
order absorption 

123.909 143.909  

8 2 transit compartments with first-
order absorption 

109.294 129.294  

9 3 transit compartments with first-
order absorption 

106.502 126.502 RSE ka 82% 

10 Parallel first- and zero-order 
absorption 

142.827 162.827 Run failure (Minimization 
terminated) 

11 Transit compartment model 
according to Savic et al. [S5] 

195.819 211.819 Run failure (Minimization 
terminated) 

12 Sequential first- and zero-order 
absorption 

- - Run failure 

Regorafenib-M-2 model 

13 Presystemic M-2 formation with 
first-order absorption 

27.483 45.483  

14 M-2 formation from the central 
compartment of regorafenib 

160.851 176.851  

15 M-2 formation from central 
compartment of regorafenib and 
presystemic formation with first 
order absorption 

29.742 49.742  

16 Presystemic M-2 formation with 2 
transit compartments (Erlang 
distribution)* 

16.655 34.655  

17 Presystemic M-2 formation with 3 
transit compartments (Erlang 
distribution) 

16.789 34.789  

Regorafenib-M-2-M-5 model 

18 M-5 formation from the central 
compartment of regorafenib 

- - Run failure 

19 M-5 formation from the central 
compartment of M-2* 

-348.393 -314.393  

*Models chosen for further model development  



Covariate analysis of the regorafenib-metabolite base model 

Tab. S3-4 Included covariate-parameter relationships of the regorafenib-metabolite model in 
chronological order 

Covariate 
model 

number 
Covariate effect Difference in OFV compared to 

previous model (forward inclusion step) 

1 DFCR concentration over time on M-2 
clearance -9.542 (compared to base model) 

2 Sex on shared volume of distribution* -6.591 
3 Age on regorafenib clearance -4.804 
4 Bilirubin on regorafenib clearance -6.876 
5 Body mass index on regorafenib clearance -5.354 
6 Hemoglobin on regorafenib clearance -6.875 

OFV: objective function value 
* removed after backward elimination step 

Similar to the covariate analysis of the capecitabine-metabolite model, the inclusion of all identified 

covariates did not seem to be plausible. The identification of DFCR concentration on M-2 clearance 

was attributed to the influence of regorafenib on capecitabine clearance (Tab. S2). Additionally, it 

should be noted that M-2 cumulative AUC over time was highly correlated with the cumulative AUC 

from the parent drug. M-2 had a similar negative effect on capecitabine clearance as the included 

effect of regorafenib cumulative AUC (with an OFV difference of -32.58). Hence, the DFCR effect on M-

2 was removed from the covariate model. The incorporation of the remaining four covariates only 

resulted in an unsuccessful model convergence due to rounding errors. Further step-wise elimination 

of these covariates did not result in a stable model as well, either due to failures of the covariance step 

or large RSE of model parameters.  

  



Goodness-of-fit plots 

 

Fig. S3-4 Goodness-of-fit plots for model-predicted regorafenib concentrations. The black lines 
indicate the lines of identity and the grey lines are the trend in observations.  

  



 

Fig. S3-5 Goodness-of-fit plots for model-predicted M-2 concentrations. The black lines indicate the 
lines of identity and the grey lines are the trend in observations. 

  



 

Fig. S3-6 Goodness-of-fit plots for model-predicted M-5 concentrations. The black lines indicate the 
lines of identity and the grey lines are the trend in observations. 
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Simulation study 

Simulated plasma concentration-time profiles of capecitabine, DFCR and DFUR depending on 
regorafenib dosage 

 

 

Fig. S4-1 Simulated plasma concentrations of capecitabine depending on regorafenib dosage. Upper 

panel: Simulated capecitabine plasma concentration-time course from 0 – 864 hours. Lower panel: 

Simulated capecitabine plasma concentration-time course from 0 – 72 hours and from 792 – 864 hours, 

respectively. Blue dashed/red dotted/green solid/yellow dash-dotted curves: Geometric mean 

simulated capecitabine plasma concentration under regorafenib 40 mg/80 mg/120 mg/0 mg, 

respectively. Blue/red/green/yellow shaded area: 95% confidence intervals of geometric mean 

simulated capecitabine plasma concentration under regorafenib 40 mg/80 mg/120 mg/0 mg, 

respectively. 

 



 

Fig. S4-2 Simulated plasma concentrations of DFCR depending on regorafenib dosage. Upper panel: 

Simulated DFCR plasma concentration-time course from 0 – 864 hours. Lower panel: Simulated DFCR 

plasma concentration-time course from 0 – 72 hours and from 792 – 864 hours, respectively. Blue 

dashed/red dotted/green solid/yellow dash-dotted curves: Geometric mean simulated DFCR plasma 

concentration under regorafenib 40 mg/80 mg/120 mg/0 mg, respectively. Blue/red/green/yellow 

shaded area: 95% confidence intervals of simulated geometric mean DFCR plasma concentration under 

regorafenib 40 mg/80 mg/120 mg/0 mg, respectively. 



 

Fig. S4-3 Simulated plasma concentrations of DFUR depending on regorafenib dosage. Upper panel: 

Simulated DFUR plasma concentration-time course from 0 – 864 hours. Lower panel: Simulated DFUR 

plasma concentration-time course from 0 – 72 hours and from 792 – 864 hours, respectively. Blue 

dashed/red dotted/green solid/yellow dash-dotted curves: Geometric mean simulated DFUR plasma 

concentration under regorafenib 40 mg/80 mg/120 mg/0 mg, respectively. Blue/red/green/yellow 

shaded area: 95% confidence intervals of geometric mean simulated DFUR plasma concentration 

under regorafenib 40 mg/80 mg/120 mg/0 mg, respectively. 



Tab. S4-1 Simulated capecitabine clearance on various days depending on regorafenib dose level 

 
Day 

Regorafenib  

0 mg 

Regorafenib 

40 mg 

Regorafenib 

80 mg 

Regorafenib 

120 mg 

Geometric mean 
capecitabine 
clearance [L/h] 
(95% confidence 
intervals) 

1 
285 

(278 – 293) 

284 

(277 – 291) 

283 

(275 – 290) 

278 

(271 – 285) 

8 
285 

(278 – 293) 

260 

(254 – 267) 

238 

(231 – 245) 

214 

(208 – 221) 

15 
285 

(278 – 293) 

236 

(230 – 243) 

196 

(189 – 203) 

160 

(155 – 166) 

22 
285 

(278 – 293) 

232 

(226 – 239) 

189 

(183 – 196) 

152 

(146 – 158) 

29 
285 

(278 – 293) 

215 

(208 – 221) 

161 

(155 – 168) 

120 

(115 – 125) 

36 
285 

(278 – 293) 

194 

(187 – 200) 

131 

(126 – 137) 

88.0 

(83.8 – 92.5) 

 

 



Final NONMEM codes 

NONMEM code for the final capecitabine-metabolite model 

$PROBLEM Capecitabine + DFCR + DFUR PK 

$INPUT ID TIME DV MDV CMT AMT EVID RATE AUCREG 

$DATA … 

$SUBROUTINES ADVAN6 TOL=4  

$MODEL NCOMP = 4 

 

$PK 

TVCL = THETA(1)*EXP(THETA(12)*AUCREG) ; Regorafenib cumulative AUC effect on capecitabine CL 

CL = TVCL*EXP(ETA(1)) 

 

TVV = THETA(2) 

V = TVV*EXP(ETA(2)) 

 

TVKA = THETA(3) 

KA = TVKA 

 

TVD2 = THETA(5) 

D2 = TVD2 

 

F1 = THETA(6) 

F2 = 1-F1 

 

TVV2 = THETA(7) 

V2 = TVV2*EXP(ETA(3)) 
 

TVCLM = THETA(8) 



CLM=TVCLM*EXP(ETA(4)) 

TVK40 = THETA(10) 

K40 = TVK40 *EXP(ETA(5)) 

S2 = V 

S3 = V2 

S4 = 1 

K23 = CL/V 

K34 = CLM/V2 

$DES  

DADT(1) = -KA*A(1) 

DADT(2) = KA*A(1) - K23*A(2) 

DADT(3) = K23*A(2) - K34*A(3) 

DADT(4) = K34*A(3) - K40*A(4) 

$ERROR  

IPRED = F 

IF(CMT.EQ.2) THEN ; Capecitabine 

W = SQRT(THETA(4)*IPRED)**2 

Y = IPRED+W*EPS(1) 

ENDIF 

IF(CMT.EQ.3) THEN ; DFCR 

W = SQRT(THETA(9)*IPRED)**2 

Y = IPRED+W*EPS(2) 

ENDIF 



 

IF(CMT.EQ.4) THEN ; DFUR 

W = SQRT(THETA(11)*IPRED)**2 

Y = IPRED+W*EPS(3) 

ENDIF 

DEL = 0 

IF(W.EQ.0) DEL =1  

IRES = DV-IPRED 

IWRES = IRES/(W+DEL) 

 

$THETA 

(0, 286) ; CL capecitabine 

(0, 179) ; V capecitabine 

(0, 0.0714) ; ka 

(0, 0.601) ; prop. error capecitabine 

(0, 0.25) ; Duration zero-order absorption 

(0, 0.214) ; Fraction of first-order absorption process 

(0, 71.9) ; V DFCR 

(0, 123) ; CL DFCR 

(0, 0.461) ; prop. error DFCR 

(0, 99.2) ; keDFUR 

(0, 0.452) ; prop error DFUR 

(-0.00041) ; Regorafenib cumulative AUC on capecitabine CL 

 

$OMEGA 

0.161 ; IIV CL capecitabine 

0.158 ; IIV V capecitabine 



0.227 ; IIV V DFCR 

0.104 ; IIV CL DFCR 

0.086 ; IIV keDFUR 

$SIGMA 

1 FIX  

1 FIX  

1 FIX  

 

; $SIM (12345) (54321) ONLYSIM 

$EST METHOD=1 MAXEVAL=9999 NOABORT INTER PRINT=1 SIG=3 

$COV MATRIX=R PRINT=E 

  



NONMEM code for the final regorafenib-metabolite model 

$PROBLEM Regorafenib M2 + M5 PK 

$INPUT ID  TIME DV MDV CMT AMT EVID 

$DATA …  

$SUBROUTINES ADVAN6 TOL=4 

$MODEL NCOMP = 12 

COMP(ABSORPTION) ;Transit compartment 1 regorafenib 

COMP(CENTRAL) ; Central compartment regorafenib 

COMP(PERI) ; Peripheral compartment regorafenib 

COMP(DEPOT1) ;Transit compartment 2 regorafenib 

COMP(DEPOT2) ;Transit compartment 3 regorafenib 

COMP(M2CENT) ; Central compartment M-2 

COMP(M2PERI) ; Peripheral compartment M-2 

COMP(DEPOT1M) ; Transit compartment 1 M-2 

COMP(DEPOT2M); Transit compartment 2 M-2 

COMP(M5CENT) ; Central compartment M-5 

COMP(M5PERI) ; Peripheral compartment M-5 

COMP(REGAUC) ; AUC regorafenib 

 

$PK 

TVCLREG = THETA(1) 

CLREG = TVCLREG*EXP(ETA(1)) 

TVV2 = THETA(2) 

V2 = TVV2*EXP(ETA(2)) 

 

;ERLANG ABSORPTION REGORAFENIB 

TVMAT = THETA(3) 



MAT=TVMAT*EXP(ETA(3)) 

NN = 3 ; Number of transit compartments 

KTR = (NN)/MAT ;Calculate ktr 

 

TVV3 = THETA(4) 

V3 = TVV3  

 

TVQ = THETA(5) 

Q = TVQ 

 

TVCLM2 = THETA(7) 

CLM2 = TVCLM2*EXP(ETA(4)) 

 

K18 = THETA(8) ; Presystemic metabolic rate constant 

 

;ERLANG ABSORPTION M-2 

TVMMAT = THETA(10) 

MMAT = TVMMAT 

MNN = 2 ; Number of transit compartments 

MKTR = (MNN)/MMAT ;Calculate ktr 

K89 = MKTR 

K96 = MKTR 

 

TVCLM5 = THETA(11) 

CLM5 = TVCLM5*EXP(ETA(5)) 

 

S2 = V2 



S6 = V2 

S10 = V2 

K14 = KTR 

K45 = KTR 

K52 = KTR 

K20 = CLREG/V2 

K23 = Q/V2 

K32 = Q/V3 

K60 = CLM2/V2 

K67 = Q/V2 

K76 = Q/V3 

K100 = CLM5/V2 

K1011=Q/V2 

K1110=Q/V3 

 

$DES 

DADT(1) = -K14*A(1)-K18*A(1) 

DADT(2) = K52*A(5) + K32*A(3) - K20*A(2) - K23*A(2) 

DADT(3) = K23*A(2) - K32*A(3) 

DADT(4) = K14*A(1) - K45*A(4) 

DADT(5) = K45*A(4) - K52*A(5) 

DADT(6) = K96*A(9) - K60*A(6) - K67*A(6) + K76*A(7) 

DADT(7) = K67*A(6) - K76*A(7) 

DADT(8) = K18*A(1) - K89*A(8) 

DADT(9) = K89*A(8) - K96*A(9) 

DADT(10) = K60*A(6) - K100*A(10) - K1011*A(10) + K1110*A(11) 

DADT(11)= K1011*A(10) - K1110*A(11) 



 

REGC = A(2)/V2 

DADT(12) = REGC ; cumulative AUC 

 

$ERROR 

AUCREG = A(12) 

 

IPRED = F 

IF(CMT.EQ.2) THEN ; Regorafenib 

W = SQRT(THETA(6)*IPRED)**2 

Y = IPRED+W*EPS(1) 

ENDIF 

 

IF(CMT.EQ.6) THEN ; M-2 

W = SQRT(THETA(9)*IPRED)**2 

Y = IPRED+W*EPS(2) 

ENDIF 

 

IF(CMT.EQ.10) THEN ; M-5 

W = SQRT(THETA(12)*IPRED)**2 

Y = IPRED+W*EPS(3) 

ENDIF 

 

DEL = 0 

IF(W.EQ.0) DEL =1  

IRES = DV-IPRED 

IWRES = IRES/(W+DEL) 



 

$THETA 

(0, 1.94) ; CL regorafenib 

(0, 10.4) ; Central shared V 

(0, 3.01) ; Mean absorption time regorafenib 

(0, 63.9) ; Peripheral shared V 

(0, 13.5) ; Shared intercompartmental CL 

(0, 0.526) ; prop. error regorafenib 

(0, 0.936) ; CL M-2 

(0, 0.265) ; Presystemic metabolic rate constant 

(0, 0.579) ; prop error M-2 

(0, 1.9) ; Mean absorption time M-2 

(0, 2.01) ; CL M-5 

(0, 0.541) ; prop error M-5 

 

$OMEGA 

0.145 ; IIV CL regorafenib 

1.73 ; IIV Central shared V 

0.0469 ; IIV Mean absorption time regorafenib 

0.0637 ; IIV CL M-2 

0.572 ; IIV CL M-5 

 

$SIGMA 

1 FIX  

1 FIX  

1 FIX  

 



; $SIM (12345) (54321) ONLYSIM SUBPROBLEMS=1000 

$COV PRINT=E MATRIX=R 

$EST METHOD=1 INTER MAXEVAL=9999 NOABORT PRINT=1 SIG=3 
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Abstract
Background: The body composition of patients has been associated with 
 tolerability and effectiveness of anticancer therapy. This study aimed to assess 
the influence of the skeletal muscle index (SMI) on the pharmacokinetics and 
toxicity of fluorouracil.
Methods: Patients treated in an oncological practice with fluorouracil- based 
chemotherapy and undergoing therapeutic drug monitoring were retrospec-
tively investigated. Computed tomography images were analyzed to measure 
abdominal skeletal muscle areas in Hounsfield units for the psoas major mus-
cle, back and total skeletal muscle to determine the SMI. For the latter, an auto-
mated  segmentation method was used additionally. SMI measures were tested 
as covariates on fluorouracil clearance in a population pharmacokinetic model. 
Furthermore, regression analyses were performed to analyze the influence of 
SMI measures on the probability of clinically relevant adverse events (CTCAE 
grades ≥ 2).
Results: Fluorouracil plasma concentrations of 111 patients were available. 
Covariate analyses showed significant improvements of the model fit by all SMI 
measures. However, interindividual variability of fluorouracil clearance was only 
slightly reduced, whereas the SMI of the back muscle showed the largest reduc-
tion (−1.1 percentage points). Lower SMI values of the back muscle increased the 
probability for polyneuropathy and lower SMI of the psoas increased the prob-
ability for fatigue.
Conclusions: Our results suggest that pharmacokinetics and toxicity of fluo-
rouracil may be associated with specific SMI measures which deserve further 
investigation.
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2 |   SCHMULENSON et al.

1  |  INTRODUCTION

Fluorouracil (5FU) is still one of the cornerstones for the 
treatment of various solid tumors, particularly colorectal 
and head and neck cancer.1– 3 Typically, 5FU is dosed ac-
cording to the patient's body surface area (BSA), resulting 
in a wide range of variability in 5FU plasma concentra-
tions.4 This pharmacokinetic variability may result in-
dividually in an insufficient response to 5FU therapy or 
intolerable toxicity, leading to treatment discontinuations. 
In fact, approximately 60% of patients treated with 5FU 
are reported being underdosed, whereas about 15% being 
overdosed when BSA- based dosing is applied.5

Due to its hydrophilic nature, the volume of distribu-
tion of 5FU is highly correlated with lean body mass (LBM) 
which includes muscle mass.6 Since BSA does not account 
for changes in body composition, this additional knowledge 
could be of high interest when sarcopenic cancer patients 
are treated with anticancer drugs.7 Several studies found 
that sarcopenia in cancer patients is a predictor for low over-
all survival in various tumors.8– 12 An association between 
muscle status and toxicity under therapy with various an-
ticancer drugs was shown as well.12 In particular, patients 
with a dose- limiting toxicity under 5FU chemotherapy had 
a higher 5FU dose per kg of LBM compared to patients 
with a lower grade toxicity.13,14 Other metrics of body com-
position (total body water, fat- free mass) could be linked to 
5FU pharmacokinetics,15 whereas a LBM- normalized 5FU 
dose was not correlated with 5FU exposure, defined as area 
under the concentration- time curve (AUC).16

Sarcopenia is usually defined by a reduction in skeletal 
muscle index (SMI) which is calculated by the total mus-
cle cross- sectional area at the third lumbar vertebra (L3) 
normalized to the squared patient's height (cm2/m2).17 So 
far, the relationship of SMI with 5FU pharmacokinetics 
has not been evaluated. The aim of this study was there-
fore to investigate the influence of the SMI on 5FU phar-
macokinetics as well as 5FU- associated toxicity.

2  |  METHODS

2.1 | Patients and data

In this study, patients under a 5FU- based, infusional chem-
otherapy from the oncological outpatient clinic UnterEms 
in Leer, Germany, were retrospectively analyzed. Patients 
with documented therapeutic drug monitoring of 5FU, 
that is, quantification of 5FU plasma concentrations, and 
at least one computed tomography (CT) scan of the L3 
area were included for analysis. 5FU plasma concentra-
tions were obtained at steady state during continuous in-
fusion and quantified using the My5- FU™ immunoassay 

(Saladax Biomedical Inc., Bethlehem, PA, USA) with a 
lower limit of quantification of 86 ng/ml.18 Dose adjust-
ments were performed at the discretion of the treating on-
cologist. Adverse events (AE) were graded at each patient 
visit according to the Common Terminology Criteria for 
Adverse Events (CTCAE), version 5.0.19 In order to ensure 
that the muscle status corresponded to measured 5FU 
plasma concentrations and AE, a maximum time frame 
between CT scan and blood sampling/AE documentation 
had to be defined. Chung et al. found a median change in 
SMI values of 8.7% in patients with stage III or high- risk 
stage II colon cancer treated with the FOLFOX scheme 
(5FU, folinate, oxaliplatin) within 210 days between pre-
operative and post- chemotherapy CT.20 In addition, the 
mean measurement error of SMI quantification via CT 
scans was reported to be 8.5%.21 Based on this informa-
tion, a maximum time frame of ±205 days between CT 
scan and blood sampling was defined excluding patients 
with a larger temporal distance between SMI and plasma 
concentration measurements/AE documentations from 
the analysis. The study was approved by the ethics com-
mittee at the Faculty of Medicine of the University of 
Bonn (protocol code 014/18).

2.2 | Image analysis

The SMI was assessed using routinely collected CT im-
ages from different radiological practices. As recom-
mended by the European Working Group on Sarcopenia 
in Older People, measurements were performed at the 
L3 level since the individual skeletal muscle areas corre-
lated the most with overall skeletal muscle.22 Muscle areas 
were measured based on Hounsfield units (HU) as well 
as an automated segmentation method provided by the 
software sliceOmatic® version 5.0 (TomoVision, Magog, 
Canada).23 The HU range was set to the density of skeletal 
muscle (35– 50 HU) to exclude any areas of different tis-
sues.24 Using this “Hounsfield method,” the psoas major, 
back muscle, and total skeletal muscle at the L3 level were 
examined. For the latter, the automated segmentation 
method was additionally used. An overview of the differ-
ent SMI measures and the respective muscle areas is pro-
vided in the Supporting Information (SI) 1, Table S1- 1. All 
SMI measures were obtained by dividing the respective 
measurements by the squared patient's height.

2.3 | Population pharmacokinetic  
analysis

The influence of the different SMI measures on 5FU 
pharmacokinetics (PK) was analyzed in a population PK 
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model of 5FU. This model was initially developed at the 
Department of Clinical Pharmacy at the University of Bonn 
using data from the study of Wilhelm et al.25 Modeling 
was performed with the non- linear mixed effect modeling 
software NONMEM® version 7.226 combined with im-
plemented scripts in PsN (version 3.6.2).27,28 NONMEM® 
uses the maximum likelihood method to simultaneously 
estimate population values of fixed- effect parameters (e.g., 
drug clearance) and values of random- effect variables 
(e.g., interindividual and residual variability) in order to 
obtain individual parameters. Model parameters were es-
timated by the first- order conditional estimation method 
with interaction.26 The likelihood- ratio test was used to 
discriminate between nested models. A nested model was 
considered superior to another when the objective func-
tion value (OFV), provided by NONMEM®, was reduced 
by 3.84 points (chi- square value, p < 0.05, one degree of 
freedom). Covariates which are able to explain interindi-
vidual variability (IIV) in 5FU clearance and volume of 
distribution were investigated as well, including age, sex, 
infusion time (24 or 46 h, coded as a binary covariate), lab-
oratory parameters (creatinine, bilirubin, ALT, AST, GGT, 
LDH), tumor markers (CA 19– 9, CEA), and BSA. These 
were implemented into the model in a stepwise forward 
inclusion and backward elimination approach using the 
scm script provided by PsN with an included fixed set of 
parameter- covariate parametrizations (linear, piece- wise 
linear, exponential, power relations).27,28 In the forward 
inclusion step, covariates which led to a significant de-
crease of the OFV (p < 0.05) were kept for further evalu-
ation. This model was then re- evaluated by backward 
elimination of each included covariate with a significance 
level of p < 0.01. If a covariate was still significant in this 
step, it was eventually kept in the model. Model robust-
ness and precision and bias of parameter estimates were 
evaluated by a non- parametric bootstrap analysis without 
stratification. Median and 95% confidence intervals of pa-
rameter estimates were derived from 1000 replicate data-
sets obtained from sampling individuals from the original 
dataset with replacement.

The population pharmacokinetic model was then ap-
plied to the dataset of this study and revised, where neces-
sary. In this population PK analysis, NONMEM® version 
7.529 and PsN (version 5.0.0)27,28 were used for model 
development and R (version 4.1.0)30 was used for visu-
alization of results. Piraña (version 2.9.7) served as front 
interface.31 Based on this revised model, a covariate anal-
ysis was performed in order to explore if the different SMI 
measures had an influence on 5FU clearance and volume 
of distribution. Each SMI measure was individually tested 
as a covariate on 5FU PK parameters and included if a sta-
tistically significant reduction (p < 0.05) of the OFV was 
found. Exponential functions were tested to describe the 

relationship between the different SMI measures and 5FU 
PK parameters. The model fit was assessed by goodness- 
of- fit plots32 and prediction- corrected visual predictive 
checks33 based on 1000 dataset simulations. Additionally, 
a non- parametric bootstrap analysis without stratifica-
tion, as described above, was performed.

2.4 | Logistic regression

The influence of the SMI on 5FU toxicity was evaluated 
in a logistic regression analysis by correlating SMI meas-
ures with AE severity. For this analysis, every AE with a 
CTCAE grade of 2 or higher was defined as severe and 
hence clinically relevant. The AE were coded binary with 
“0” for CTCAE grades 0 and 1 and “1” for grades 2 to 4, 
respectively. Documented AE included polyneuropathy, 
stomatitis, hand- foot syndrome, fatigue, diarrhea, nausea, 
and emesis. The probability (P) for every AE was calcu-
lated as follows:

The logit of z determines the linear regression model of the 
independent variable and consists of the observed SMI mea-
sures (xk), the regression coefficients (�k), and an error term 
(�):

For every performed logistic regression, odds were calcu-
lated relating the probability of a severe AE to the probabil-
ity of non- occurrence:

Based on the odds obtained, the relative probability to de-
velop a severe AE when the SMI increases by one unit was 
assessed as Odds Ratio (OR):

3  |  RESULTS

3.1 | Patient characteristics

The dataset consisted of routinely collected data from 175 
patients between September 2014 and July 2020. Twenty 
of them had to be excluded due to missing CT images. 

(1)P(AE ≥ CTCAE grade 2) =
1

1 + e−z

(2)z = �0 + �1 × x1 + �2 × x2 + �3 × x3 + … �k × xk + �

(3)

Odds =
P (CTCAE grade ≥ 2)

P(CTCAE grade < 2)
=

P (CTCAE grade ≥ 2)

1 − P (CTCAE grade ≥ 2)

(4)OR =
Odds after 1cm2∕m2 increase in SMI

Odds before 1cm2∕m2 increase in SMI
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Further 44 patients were excluded because the time frame 
between their CT scan and blood sampling was longer 
than 205 days (see “Methods” section). The remaining 
111 patients were included for further analyses (Table 1). 
For the development of the population PK model, 395 
5FU plasma concentration measurements were included. 
All included patients received 24- h infusions of 5FU.

3.2 | Influence of the skeletal muscle 
index on 5FU pharmacokinetics

First, an initial population PK model based on data from the 
study of Wilhelm et al.25 was developed. A one- compartment 
model with linear elimination turned out to be the best model 
to describe 5FU disposition. IIV terms were implemented on 
5FU clearance, volume of distribution, and residual variabil-
ity. The latter consisted of an additive as well as a propor-
tional term.34 However, due to model instabilities, estimates 
of the volume of distribution and its IIV had to be fixed to 
previously estimated values. Based on analyses of rich PK 
data from our group and data from the Cantonal Hospital St. 
Gallen, Switzerland, volume of distribution and its IIV were 
fixed to 46.1 L and 51.1%, respectively.35– 37 Therefore, covari-
ates could only be tested on 5FU clearance. After the forward 
inclusion step of the covariate analysis, BSA, infusion time, 
and LDH concentration were found to be significant lin-
ear covariates on 5FU clearance. LDH concentration was 
excluded after performing the backward elimination step. 
Ultimately, BSA and infusion time remained in the model. 
However, the bootstrap analysis revealed the estimate of the 
infusion time effect to be unreliable since its 95% confidence 
intervals included zero. Hence, this parameter was excluded 
from the final model. In Table 2, the development steps of 
the population PK model are shown. Table 3 depicts the final 
population PK parameter estimates as well as the median 
values of the bootstrap analysis.

The developed population PK model was applied to the 
dataset of this study. Running this initial model revealed 
that the estimate of the additive term of the residual vari-
ability ran into a boundary close to zero. In addition, the 
IIV term on residual variability was estimated with a rel-
ative standard error (RSE) of 86% and shrinkage38 of 76%. 
Both parameters were assumed to be negligible and thus 
removed from the model leading to a non- significant in-
crease in OFV (Table 4).

This revised model was then used for covariate anal-
ysis in which the different SMI measures were individu-
ally tested on 5FU clearance. Its results are presented in 
Table  4. All four SMI parameters showed a statistically 
significant reduction of OFV when included in the model. 
Inclusion of the SMI of the back muscle led to the larg-
est OFV drop along with the highest reduction in IIV of 

5FU clearance (−1.1 percentage points). Therefore, this 
covariate was chosen for the final model. 5FU clearance 
was parametrized as follows (Equation 5):

 Here, CL5FU denotes for the individual 5FU clearance esti-
mate, CL5FU,pop for the population estimate of 5FU clear-
ance, θBSA is the covariate effect estimate of the body surface 
area, BSA is the observed body surface area, θSMI,back de-
notes for the covariate effect estimate of the SMI of the back 

(5)
CL5FU = CL5FU,pop×

(

1+�BSA×
(

BSA−1.97m2
))

×e

(

�SMI,back×

(

SMIback−3.78
cm2

m2

))

×e
�i,CL5FU,pop

T A B L E  1  Patient characteristics

Characteristic Median (range) or n

Demographics

Sex

Male 75

Female 36

Age (years) 64 (35– 84)

Body surface area (m2) 1.97 (1.47– 2.85)

Skeletal muscle indices (SMI)

SMI psoas major (cm2/m2) 1.48 (0.46– 3.78)

SMI back muscle (cm2/m2) 3.78 (0.94– 8.41)

SMI total muscle (Hounsfield method) 
(cm2/m2)

9.58 (4.12– 18.82)

SMI total muscle (Segmentation method) 
(cm2/m2)

50.26 (25.47– 92.67)

Therapy- related details

5FU dose (mg/m2) 2283 (1441– 3641)

5FU AUCa (mg × h/L) 19.7 (2.1– 45.0)

Number of observed cycles per patient 2 (1– 5)

Therapy regimen

AIOb 26

FUFOXc (including monoclonal 
antibodies)

22

Paclitaxel/cisplatin/5FU/folinate 30

Other 32

Tumor entity

Colorectal cancer 56

Gastroesophageal cancer 33

Pancreatic cancer 12

Other 10
aCalculated by multiplying the infusion time with the measured steady- state 
concentration.
bWeekly 5FU infusion (2600 mg/m2) over 24 h in combination with folinate 
(500 mg/m2).
cWeekly 5FU infusion (2000 mg/m2) over 24 h in combination with folinate 
(500 mg/m2) and oxaliplatin (50 mg/m2).
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muscle, SMIback for the observed SMI of the back muscle, and 
ηi,CL5FU,pop represents the IIV term for the 5FU population 
clearance of the ith individual with a mean of 0 and a vari-
ance of ω2. Both covariate effects were centered around the 
respective observed median values of the study population.

The prediction- corrected visual predictive check 
(Figure  1) as well as goodness- of- fit plots (see SI 2, 
Figure S2- 1) of the final model showed a reasonable model 
fit. Final parameter estimates along with bootstrap results 
are presented in Table 5. The NONMEM® code of the final 
model is outlined in SI 3.

3.3 | Influence of skeletal muscle indices 
on toxicity under 5FU therapy

For every AE, the number of patients suffering from AE 
grade 2 or higher is presented in SI 4, Table  S4- 1. The 

logistic regression analysis showed statistically significant 
correlations for two AE. The SMI of the psoas major was 
significantly correlated to the fatigue syndrome as well as 
the SMI of the back muscle to the occurrence of clinically 
relevant polyneuropathy. An increase of the respective 
SMI by 1 cm2/m2 decreased the probability of develop-
ing the identified AE ≥ grade 2 by 85% and 48%, respec-
tively. The final logistic regression analyses are depicted 
in Figure 2. Presentations of the odds ratios for all investi-
gated AE are outlined in SI 4, Table S4- 2.

4  |  DISCUSSION

This is the first study evaluating the influence of different 
SMI measures on 5FU PK and toxicity. The results suggest 
that selected SMI measures may be associated with 5FU 
PK. Interpreting the individual SMI measures, it should 

T A B L E  2  Development steps and covariate analysis of the initial 5FU population pharmacokinetic model based on data from Wilhelm 
et al.25

Model number Description OFV ∆OFV p value

1 Base model
• One compartment with linear elimination
• Fixed values for volume of distribution and its IIV
• Combined additive and proportional residual error model

−611.310 0 — 

2 Covariate model after forward inclusion step
• Inclusion of BSA, infusion time, and LDH concentration on 5FU 

clearance

−653.107 −41.797 <0.0001a

3 Covariate model after backward elimination step
• Exclusion of LDH concentration as covariate

−647.132 +5.975 0.0145

4 Final model
• Exclusion of infusion time as covariate after bootstrap analysis

−637.090 +10.042 0.0064

Abbreviations: ∆OFV, Difference in objective function value; BSA, Body surface area; IIV, Interindividual variability; OFV, Objective function value.
aThree degrees of freedom.

Parameter Estimate
Bootstrap median (95% 
confidence intervals)

CL5FU [L/h] 209 209 (198– 220)

V5FU [L] 46.1 (fixed) 46.1 (fixed)

BSA effect on CL5FU 0.681 0.688 (0.455– 0.933)

Interindividual variability

CL5FU [%CV] 16.3 15.5 (10.3– 19.2)

V5FU [%CV] 51.1 (fixed) 51.1 (fixed)

Residual variability [%CV] 37.5 36.1 (18.7– 52.2)

Residual variability

Additional error term [ng/ml] 77.4 87.2 (54.7– 139)

Proportional error term [%] 19.8 18.8 (14.7– 23.6)

Abbreviations: BSA, body surface area; CL, clearance; CV, coefficient of variation; V, volume of 
distribution.

T A B L E  3  Parameter estimates of the 
initial 5FU population pharmacokinetic 
model based on data from Wilhelm et al.25
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be kept in mind that SMI parameter values which were 
obtained by the Hounsfield method were quantified using 
a range of 35– 50 HU. This range differed from HU ranges 
of other studies13,14,39 and resulted in lower absolute val-
ues when, for example, comparing the SMI of the total 
muscle obtained by the Hounsfield method to the same 
SMI quantified by the segmentation method. However, 
the observed trends and associations were the same for all 
SMI measures analyzed in this study. Provided that these 
findings are confirmed in future prospective studies, the 
question remains how these findings may be transposed 
in real- world patients. In clinical routine, CT imaging of 
cancer patients is frequently performed, for example, for 
tumor staging. Therefore, even though muscle status as-
sessment by CT imaging is not routinely conducted, there 
would already be raw data available to quantify different 
SMI measures.40

Our population PK model was able to adequately 
describe the observed routine data. However, the sole 
availability of steady- state concentrations impeded 
model development. The estimate of 5FU volume of 
distribution had to be therefore fixed and could not 
be used for covariate analysis. Gusella et al. found a 
significant relationship between total body water and 
5FU volume of distribution as well as fat- free mass and 
5FU volume of distribution.15 The initially developed 
5FU population PK model, which was based on data 
from Wilhelm et al.,25 included BSA as the only signifi-
cant covariate on 5FU clearance. In general, the identi-
fied covariates on 5FU PK vary considerably. A similar 
influence of BSA was identified in two other published 
population PK models as well,41,42 whereas other mod-
els revealed significant effects of sex,36,43 age,44 or body 
weight.45 When applying the initial model on the new 

T A B L E  4  Model development steps and covariate analysis of the revised model

Model number Description OFV ∆OFV p value

IIV 
Clearance 
[%CV]

1 Initial model without BSA as covariate 
(Table 3)

−754.341 0 — 26.6

2 Initial model with BSA as covariate (Table 3) −792.218 −37.877 <0.00001 22.0

3 Initial model with BSA as covariate (Table 3), 
without additive term and IIV term of 
residual variability (Revised model)

−791.624 +0.594 (0.74a, referring to model 2) 22.0

3a Revised model + SMI total muscle 
(Hounsfield method)

−798.302 −6.678 0.0098 21.5

3b Revised model + SMI total muscle 
(segmentation method)

−798.408 −6.784 0.0092 21.1

3c Revised model + SMI psoas major −799.070 −7.446 0.0064 21.1

3d Revised model + SMI back muscle −803.910 −12.286 0.00046 20.9

Abbreviations: ∆OFV, Difference in objective function value; BSA, Body surface area; CV, Coefficient of variation; IIV, Interindividual variability; OFV, 
Objective function value; SMI, Skeletal muscle index.
aTwo degrees of freedom.

F I G U R E  1  Prediction- corrected 
visual predictive check of the final 
population pharmacokinetic model of 
5FU. Black dots: Prediction- corrected 
observations, dashed lines: 90% interval 
and median of the prediction- corrected 
observations, dark gray shaded area: 95% 
confidence intervals of the 5th and 95th 
prediction interval, light gray shaded area: 
95% confidence interval of the predicted 
median.
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dataset, all SMI measures were positively associated 
with 5FU clearance when adding them as covariates 
and significantly improved the model fit. The inclu-
sion of the SMI of the back muscle led to the largest 
improvement which deserves further investigation 
on physiological plausibility. While this finding gives 
additional hints that body composition may influence 
the PK of 5FU and other anticancer drugs,15,46– 48 the 
minor reduction of IIV of 5FU clearance revealed 
that the usage of SMI for dose adjustment purposes 
may be of limited value. In fact, the inclusion of BSA 
had a higher impact on 5FU clearance (Table 4). The 

wide range of SMI measures (Table 1) may further ex-
plain the limited reduction of variability in clearance. 
Interestingly, Molenaar- Kuijsten et al. could not iden-
tify any relationships between the SMI- derived skele-
tal muscle mass and the 5FU elimination rate constant 
in 151 patients treated with its oral prodrug capecit-
abine.39 Williams et al. investigated the influence of 
LBM which was derived from the SMI on 5FU AUC but 
could not find any significant differences between sar-
copenic and non- sarcopenic patients.16 However, they 
investigated a smaller patient cohort (25 patients) and 
only used first cycle plasma concentrations of 5FU, 

T A B L E  5  Parameter and bootstrap estimates of the final model

Parameter
Estimate (relative standard  
error, %) Shrinkage [%]

Bootstrap median (95% 
confidence intervals)

CL5FU [L/h] 223 (2.4) 223 (212– 234)

V5FU [L] 46.1 (fixed estimate) 46.1 (fixed estimate)

BSA effect on CL5FU 0.794 (14.5) 0.796 (0.543– 1.02)

SMIBack effect on CL5FU 0.0570 (29.8) 0.0575 (0.0283– 0.0885)

Interindividual variability

CL5FU [%CV] 20.9 (7.4) 15.1 20.4 (15.8– 24.5)

V5FU [%CV] 51.1 (fixed estimate) 100 51.1 (fixed estimate)

Residual variability

Proportional error [%] 21.4 (3.3) 10.6 21.4 (19.0– 23.8)

Abbreviations: BSA, body surface area; CL, clearance; CV, coefficient of variation; SMIback, skeletal back muscle index; V, volume of distribution.

F I G U R E  2  Probability of fatigue and polyneuropathy grade ≥ 2 versus different skeletal muscle indices. Black solid lines are the mean 
probabilities and the gray shaded areas are the respective 95% confidence intervals.
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whereas in our study, plasma concentrations from dif-
ferent cycles were available.

As a limitation of our study, it should be noted that 
the genotypes and the activity of the main metaboliz-
ing enzyme, dihydropyrimidine dehydrogenase (DPD), 
which are important predictors for 5FU exposure49,50 
were not available for our patient cohort. However, IIV 
of 5FU clearance was already lower than the average IIV 
of 40% as reported in an extensive review on 5FU thera-
peutic drug monitoring by Beumer et al.5 This could be 
explained by the comparatively low prevalence of DPD 
risk variants which are associated with alleles producing 
DPD with minimal/no activity (DPYD*2A or DPYD*13) 
or with alleles producing DPD with decreased metabolic 
function (c.2846A > T or c.1129– 5923C > G). Up to 1% of 
the European population are carriers of the non- active 
variants, whereas the two latter variants are present in 
about 5% of Europeans.51 Keeping in mind the number 
of patients used for model development (n = 75 in the 
study of Wilhelm et al.,25 n = 111 in the present study), 
only few patients presumably were carriers of these DPD 
risk variants that are associated with a substantial influ-
ence on the variability in 5FU clearance.

The findings of the logistic regression analysis 
showed several significant associations between spe-
cific SMI measures and adverse events under 5FU ther-
apy which was generally in accordance with previous 
studies.13,14,16 Williams et al. found a significant posi-
tive association of LBM and oxaliplatin clearance and 
LBM and volume of distribution as well as a signifi-
cant association of low LBM and high- grade toxicity 
in older patients with colorectal cancer. Similar results 
were identified for cisplatin even though dose- limiting 
toxicity was not significantly correlated with body com-
position.53 Our finding of a higher probability of the 
occurrence of clinically relevant polyneuropathy with 
decreasing SMI of the back muscle deserves further 
investigation. Since the psoas muscle is necessary for 
everyday movement, the reduction of its SMI may be 
an explanation for the identified increase in the proba-
bility of clinically relevant fatigue. It should be noted, 
however, that our analysis was focused on evaluating 
the general susceptibility of experiencing clinically rel-
evant AE depending on body composition in patients 
treated with a 5FU- based chemotherapy. Regarding 
concomitant chemotherapy, only qualitative informa-
tion of its administration was available for our study. 
In a future study, it would be of high interest to inves-
tigate the influence of individual drug PK on AE devel-
opment in order to distinguish between the respective 
individual contributions of these drugs. In addition, 
the patient's performance status should be included in 
such an analysis as it was reported to be significantly 

associated with SMI54 and a significant predictor for 
drug toxicity under 5FU- based chemotherapy.55

In conclusion, this retrospective study gives first 
hints that the SMI as a measure of body composi-
tion may be associated with the pharmacokinetic dis-
position and the development of toxicity of 5FU. A 
prospective study in which SMI measures and 5FU 
pharmacokinetics are investigated should provide 
additional insights into these relevant relationships 
between body composition and clinical outcome of 
5FU- based chemotherapy.
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Image analysis 

Tab. S1-1 Measured skeletal muscle areas and methods used 

Skeletal muscle 

index (SMI) 
Measured skeletal muscle areas Method 

SMI Psoas Psoas major Hounsfield 

SMI back muscle 
Erector spinae 

Quadratus lumborum 
Hounsfield 

SMI total skeletal 

muscle 

Psoas major 

Erector spinae 

Quadratus lumborum 

Transversus abdominalis  

Internal/external Musculus obliquus 

abdominis 

Rectus abdominis 

Hounsfield/Segmentation 

 



Population pharmacokinetic analysis 

 

Fig. S2 Goodness-of-fit plots for model-predicted fluorouracil concentrations. The black lines indicate 

the lines of identity. 

 



NONMEM code of the final model 

$PROBLEM 5FU PK model  

$INPUT 

ID 
SMIB ; SMI of the back muscle 
EVID 
BSA 
TIME 
RATE 
DV 
AMT 
MDV 

$DATA … 

$SUBROUTINES ADVAN1 TRANS2 

 

$PK 

CLCOV = (1 +THETA(4) * (BSA - 1.97))*EXP(THETA(5)*(SMIB-3.78)) ; Covariate relations 

TVCL = THETA(1) * CLCOV 

CL = TVCL * EXP(ETA(1)) 

 

TVV=THETA(2) 

V = TVV * EXP(ETA(2)) 

S1 = V 

 

$ERROR 

IPRED = F 

DEL = 0 

W =SQRT((THETA(3) * IPRED)**2)  

Y = IPRED + W * EPS(1)   

IF(W.EQ.0) DEL = 0.0001 

IRES = DV-IPRED 



IWRES = IRES/(W+DEL) 

 

$THETA 

(0, 223) ; CL 

46.1 FIX ; V 

(0, 0.214) ; prop. error 

0.794 ; BSA on CL 

0.057 ; SMIB 

 

$OMEGA 

0.0437 ; IIV CL 

0.261 FIX  ; IIV V 

 

$SIGMA 1 FIX 

 

$EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC 

$COV UNCONDITIONAL SLOW MATRIX=S 

 



Toxicity analysis 

Tab. S4-1 Frequency of clinically relevant adverse event severity 

Adverse event Number of patients with CTCAE grade ≥2 (% of total patients) 
Diarrhea 38 (34.2) 
Stomatitis 2 (1.8) 
Polyneuropathy 9 (8.1) 
Hand-foot syndrome 4 (3.6) 
Fatigue 8 (7.3) 
Nausea 13 (11.7) 
Emesis 15 (13.5) 

CTCAE: Common Terminology Criteria for Adverse Events 

  



Tab. S4-2 Results of the logistic regression analysis  

Skeletal muscle index Adverse event Odds ratio 95% confidence intervals 
Psoas major Diarrhea 0.793 0.461 – 1.46 
 Stomatitis 0.125 0.002 – 2.43 
 Polyneuropathy 0.513 0.127 – 1.75 
 Hand-foot syndrome 1.78 0.288 – 7.96 
 Fatigue 0.155 0.033 – 0.595* 
 Nausea 0.657 0.227 – 1.71 
 Emesis 0.428 0.137 – 1.19 
Back muscle Diarrhea 0.922 0.706 – 1.20 
 Stomatitis 0.522 0.128 – 1.65 
 Polyneuropathy 0.524 0.287 – 0.900* 
 Hand-foot syndrome 1.80 0.806 – 4.40 
 Fatigue 0.853 0.523 – 1.37 
 Nausea 0.940 0.617 – 1.42 
 Emesis 0.760 0.491 – 1.15 
Total muscle 
(Hounsfield method) 

Diarrhea 0.977 0.87 – 1.09 

 Stomatitis 0.800 0.386 – 1.31 
 Polyneuropathy 0.882 0.674 – 1.11 
 Hand-foot syndrome 1.07 0.751– 1.43 
 Fatigue 0.869 0.678 – 1.07 
 Nausea 0.901 0.733 – 1.08 
 Emesis 0.859 0.691 – 1.04 
Total muscle 
(Segmentation 
method) 

Diarrhea 0.982 0.948 – 1.02 

 Stomatitis 0.876 0.708 – 1.03 
 Polyneuropathy 1.00 0.937 – 1.07 
 Hand-foot syndrome 1.04 0.941 – 1.13 
 Fatigue 0.947 0.882 – 1.01 
 Nausea 0.949 0.892 – 1.00 
 Emesis 0.975 0.920 – 1.03 

*significant at p<0.05 
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Abstract
Purpose The inclusion of the patient’s perspective has become increasingly important when reporting adverse events and 
may assist in management of toxicity. The relationship between drug exposure and toxicity can be quantified by combin-
ing Markov elements with pharmacometric models. A minimal continuous-time Markov model (mCTMM) was applied to 
patient-reported outcomes using hand–foot syndrome (HFS) induced by capecitabine anti-cancer therapy as an example.
Methods Patient-reported HFS grades over time of 150 patients from two observational studies treated with oral capecit-
abine were analyzed using a mCTMM approach. Grading of HFS severity was based on the Common Terminology Criteria 
for Adverse Events. The model was evaluated by visual predictive checks (VPC). Furthermore, a simulation study of the 
probability of HFS severity over time was performed in which the standard dosing regimen and dose adjustments according 
to HFS severity were investigated.
Results The VPC of the developed dose–toxicity model indicated an accurate description of HFS severity over time. Indi-
vidual absolute daily dose was found to be a predictor for HFS. The simulation study demonstrated a reduction of severe 
HFS using the recommended dose adjustment strategy.
Conclusion A minimal continuous-time Markov model was developed based on patient-reported severity of hand–foot 
syndrome under capecitabine. Thus, a modeling framework for patient-reported outcomes was created which may assist in 
the optimization of dosage regimens and adjustment strategies aiming at minimizing symptom burden during anti-cancer 
drug therapy.

Keywords Markov model · Capecitabine · Hand–foot syndrome · Patient-reported outcomes

Introduction

Anticancer treatment is frequently associated with adverse 
events. Thus, the management of toxic effects is a major 
aspect of a successful therapy. To account for the severity 
of adverse events, the Common Terminology Criteria for 
Adverse Events (CTCAE) are widely used for evaluation 

of toxicity [1]. The grading of adverse events is conducted 
by the study personnel. However, since reports suggest that 
this method is associated with underestimations of adverse 
event severity [2, 3], the patient’s perspective has become 
increasingly important. Therefore, a version of Patient-
Reported Outcomes (PRO-CTCAE) has been developed and 
is increasingly used [4].

Pharmacokinetic–pharmacodynamic (PKPD) modeling 
approaches have proved to be useful to quantify the rela-
tionship between drug exposure and toxicity. Whereas some 
adverse events can be classified by metric data, such as mye-
losuppression [5], others, such as the severity of hand–foot 
syndrome or fatigue, lack objectively quantifiable param-
eters. Particularly, patient-reported data are often categorical 
as they are generated by subjective grading. One possibil-
ity to link categorical longitudinal toxicity data with drug 
exposure are Markov models. By applying these models, the 
probability of developing an adverse event of a certain grade 
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can be estimated. Karlsson et al. introduced Markov models 
into the field of PKPD by analyzing sleep stages in insomnia 
patients [6]. Since then, Markov models were applied to a 
wide field of scenarios, such as diarrhea and rash, in can-
cer patients [7, 8], proteinuria [9] or improvement scores in 
rheumatoid arthritis [10].

Capecitabine is an orally administered prodrug of the 
cytotoxic agent fluorouracil (5-FU) used for the treatment 
of various tumor entities, such as colorectal and breast can-
cer. The metabolic activation of capecitabine to 5-FU occurs 
primarily in tumor cells minimizing the systemic toxic 
effects of 5-FU [11]. However, it causes a higher incidence 
of hand–foot syndrome (HFS) than intravenously adminis-
tered 5-FU [12, 13]. Because the occurrence and severity of 
HFS were assumed to be dose-dependent the management of 
HFS toxicity includes dose reductions [14, 15]. Hénin et al. 
already linked capecitabine exposure to HFS toxicity using 
a Markov modeling approach [16] but could only consider 
CTCAE grades which were described by clinicians. There-
fore, a model-based extension towards a patient perspective 
would allow to improve the management of adverse events.

The aim of this project was to develop a modeling and 
simulation framework to describe and predict patient-
reported HFS severity in patients treated with capecitabine. 
Based on this example, the suitability of Markov models to 
simulate the time course of patient-reported toxic symptoms 
should be assessed.

Methods

Patients and data

For this work, raw data from a total of 150 capecitabine-
naïve patients were pooled from two open, prospective 
multi-centered observational cohort studies. Both stud-
ies aimed at evaluating the effect of pharmaceutical care 
on adherence of capecitabine-treated patients and were 
approved by the ethics committee at the Faculty of Medi-
cine of the University of Bonn [17, 18]. A summary of the 
observed data can be found in Table 1. Capecitabine was 
administered orally twice daily as an intermittent regimen in 
3-week cycles (14 days of treatment and seven-day break). 
Dose modifications, treatment interruptions and discontinu-
ations were conducted at the sole discretion of the treating 
oncologists.

Occurrence and severity of HFS were assessed by the 
patients using a questionnaire developed at the Department of 
Clinical Pharmacy at the University of Bonn. The description 
of HFS severity grades (0 to 3) was based on the descriptions 
provided by the CTCAE grades, version 3.0 [1]. Grade 0 was 
described as the absence of symptoms, patients with grade 1 
had minimal skin alterations (e.g. redness) without any pain. 

Grade 2 was described as skin reactions (e.g. fissures, blisters, 
swelling) and/or pain without impairment of activities of daily 
living and patients with HFS grade 3 had severe skin reactions 
(e.g. peeling, blisters, bleeding) and/or severe pain, including 
impaired activities of daily living. Patients were asked to com-
plete the questionnaire after each conducted cycle. Therefore, 
up to six HFS grade assessments per patient were collected. 
Before starting capecitabine treatment, patients were consid-
ered asymptomatic.

Data analysis

This population pharmacodynamic analysis was performed 
using non-linear mixed effect modeling. Model parameters 
were estimated by the Laplacian method implemented in the 
software NONMEM 7.4.3 [19]. The likelihood-ratio test was 
used to discriminate between nested models. The inclusion of 
an extra parameter or covariate required a statistically signifi-
cant reduction (p ≤ 0.01) of the objective function value (OFV) 
provided by NONMEM. Furthermore, visual predictive checks 
(VPC) assisted in model selection.

Implemented scripts in PsN (version 4.8.1) [20, 21] were 
also used for model development and R (version 3.5.1) [22] 
was used for visualization of results as well as generating ran-
dom numbers for simulation analyses. Piraña (version 2.9.7) 
[23] served as a front interface.

Model building

Since HFS can only be graded on a categorical scale, the prob-
ability of each grade was modeled with a proportional odds 
model which was extended with Markov elements. In this 
work, a minimal continuous-time Markov model (mCTMM) 
was applied to analyze the severity of HFS. The mCTMM was 
developed by Schindler and Karlsson and is a simplification 
of standard continuous-time Markov models [24]. A compart-
mental structure with four compartments was used, with each 
compartment representing one HFS severity grade (0, 1, 2, 
and 3) [7]. The probability of each grade was modeled as an 
amount in the respective compartment and described by dif-
ferential equations in which solely transitions between adjacent 
states were considered (Eq. 1):

(1)

dP(0)

dt
= K10 ⋅ P(1) − K01 ⋅ P(0)

dP(1)

dt
= K01 ⋅ P(0) + K21 ⋅ P(2) − K10 ⋅ P(1) − K12 ⋅ P(1)

dP(2)

dt
= K12 ⋅ P(1) + K32 ⋅ P(3) − K21 ⋅ P(2) − K23 ⋅ P(2)

dP(3)

dt
= K23 ⋅ P(2) − K32 ⋅ P(3)
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 dP(grade)/dt represents the rate of change over time of the 
probability of experiencing grades 0, 1, 2 or 3, P(grade) 
is the probability of experiencing one of the HFS grades, 
Kgrade,grade+1 and Kgrade,grade−1 are transition rate constants 
for worsening to higher grades and for recovering to lower 
grades, respectively.

When an observation event occurred, the amount in 
the compartment corresponding to the respective sever-
ity grade was set to 1 whereas the other compartments 
were set to 0 before the next observation. This introduced 
the Markov property. Between two observations, rate con-
stants defined the transitions of probabilities between dif-
ferent grades. In an mCTMM, it is assumed that the transi-
tion rate between two consecutive grades is independent of 
the grade resulting in fewer model parameters than in other 
Markov models. Only the mean equilibration time (MET) 
was introduced as a constant parameter characterizing the 
transition rates across different grades. The transition rate 
constants govern the rate at which the probability of the 

adverse event severity distributes between two observa-
tions. They were defined as functions of the MET and the 
probabilities of the respective severity grades [24].

The calculation of the probabilities experiencing one of 
the HFS grades was similar to a proportional odds model 
[25]. Since four different HFS grades were considered, 
three probabilities had to be estimated. The fourth prob-
ability was defined as 1 minus the sum of the three others. 
Logit transformation was conducted to express the respec-
tive probability as a value within the interval between 0 
and 1 (Eq. 2):

Grij is the HFS grade for the ith individual at the jth 
occasion. P(Grij ≥ n) represents the probability that the 
HFS grade is greater than or equal to grade n. This can be 

(2)

logit
(

P
(

Grij ≥ n
))

= log

( (

P
(

Grij ≥ n
))

1 −
(

P
(

Grij ≥ n
))

)

= �n + g
(

xi
)

+ �i

Table 1  Summary of observed 
data [17, 18] Patients analyzed (male/female) 150 (39/101)

Age (years), median (range) 62 (28–93)
Tumor entity
  Colorectal cancer 71
  Breast cancer 67
  Other 12

Therapy-related details
  Capecitabine monotherapy 71
  Capecitabine combination therapy 79
  Absolute daily dose (mg), median (range) 3000 (1000 – 5000)
  Number of observed cycles per patient, mean (range) 5.2 (1 – 6)
  Number of patients with treatment interruptions 33
  Duration of treatment interruptions (days), median (range) 8 (1 – 118)
  Number of treatment discontinuations 56

Number of observed transitions between adverse event grades
  0 → 0 254
  0 → 1 93
  0 → 2 41
  0 → 3 7
  1 → 0 26
  1 → 1 125
  1 → 2 44
  1 → 3 9
  2 → 0 8
  2 → 1 34
  2 → 2 69
  2 → 3 12
  3 → 0 2
  3 → 1 6
  3 → 2 9
  3 → 3 22
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also defined as the cumulative probability of grade n. αn is 
the intercept on the logit scale and g(xi) represents a linear 
function on the logit scale which contains explanatory fac-
tors, such as drug exposure or covariates, such as age or 
sex. These factors are related to the probability experienc-
ing HFS. ηi represents the interindividual random effect for 
the ith individual assuming a normal distribution with a 
mean of 0 and a variance of ω2. To ensure that the cumu-
lative probability of the respective next higher grade is 
lower, the following parametrization of the logit intercept 
was used (Eq. 3):

The parameter bn+1 is negatively constrained and has to 
be estimated in the model.

Using the inverse logit function (also called expit func-
tion), P

(

Grij ≥ n
)

 can be directly calculated as follows 
(Eq. 4):

Additionally, an interindividual variability (IIV) as an 
exponential function of the MET was included.

After building the base model, the effects of dose and 
time on the MET and the logit intercepts were tested. Here, 
dose was tested as a time-varying covariate between therapy 
cycles. Moreover, a covariate analysis was performed. Con-
tinuous (patient’s age) as well as categorical covariates (sex, 
tumor entity and concomitant chemotherapy) were included 
based on their statistical significance of reducing the OFV, 
i.e. improving the model fit. For one additional parameter 
in the model the OFV had to decrease by at least 6.64 which 
corresponds to a p value ≤ 0.01 in the case of one degree of 
freedom. Additionally, adherence was tested as a covariate. 
It was measured using an electronic medication event moni-
toring system (MEMS™) [17, 18] and assessed as pooled 
overall adherence per patient over the course of therapy. 
Patients were allocated to one of three groups (Overall 
adherence > 100%, 90–100% or < 90%).

Model evaluation

To assess the model fit, visual predictive checks for categori-
cal data were used. 95% confidence intervals (CI) were gen-
erated from 1000 dataset simulations based on the observed 
dataset and superimposed by the observed proportions of 
patients experiencing the individual HFS grades over time.

In addition, model robustness as well as precision and 
bias of parameter estimates were evaluated by a non-par-
ametric bootstrap analysis without stratification. Median 
and 95% CI of parameter estimates were derived from 1000 

(3)�n+1 = �n + bn+1

(4)P
(

Grij ≥ n
)

=
1

1 + e−(�n+g(xi)+�i)

replicate datasets obtained from sampling individuals from 
the original dataset with replacement.

Simulation study

The developed model was used to perform a simulation 
study based on 1000 virtual patients to assess the appro-
priateness of the standard dosing regimen for capecitabine 
monotherapy of 1250 mg/m2 twice daily and the proposed 
dose adjustments based on HFS severity according to the 
summary of product characteristics (SmPC) [15]. Since no 
information of body surface areas (BSA) of the patients 
from the observational studies [17, 18] was provided, ran-
dom BSA values were generated using the rnorm function 
in R. BSA means and standard deviations were obtained 
from published data [26]. Two simulation approaches were 
performed: (1) A simulation was performed in 1000 virtual 
patients with the above-mentioned starting dose of 1250 mg/
m2 for six cycles without dose adjustments. (2) A step-wise 
simulation was performed in the same 1000 patients with 
the same dose and total simulation duration as in (1). When 
meeting the criteria for dose adjustment according to the 
SmPC [15], the capecitabine dose was adjusted after each 
conducted cycle. To have an equal number of patients in 
both simulation scenarios, patients for whom a treatment 
discontinuation would be recommended were kept in the 
analysis. After adjusting the dose, the simulation of the sub-
sequent cycle was performed. The HFS grade correspond-
ing to the highest simulated probability was used to assess 
toxicity.

Predictive performance

The ability of the model to predict individual HFS severity 
was assessed by a simulation of patients with the same char-
acteristics as in the original dataset. Therefore, the included 
random effect parameters were estimated by a Bayesian 
approach up to a certain cycle. Then, the HFS severity of the 
subsequent cycle was simulated based on the Bayesian esti-
mates and covariate effects. This approach was conducted 
for predictions of cycle 2 up to cycle 6. Since Markov mod-
els can only predict the probability for each toxicity grade 
but not the grade itself, the grade corresponding to the high-
est probability was compared to the respective observed HFS 
grade. All grades were allocated to one of the following two 
groups: The first group consisted of HFS grades ≥ 2 which 
were classified as clinically relevant since dose reductions 
or treatment interruptions are conducted at grade 2 or higher 
[15], the second group consisted of HFS grades 0 and 1. 
For the first group, a positive predictive value (PPV) was 
calculated. It indicated the ability of predicting clinically 
relevant HFS:
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The ability of predicting the absence of toxicity ≥ grade 
2 was assessed by calculation of a negative predictive value 
(NPV) within the second group:

Since patients were considered asymptomatic before 
starting therapy, predicted HFS grades at baseline were not 
included for calculation of both NPV and PPV.

Results

Model building

In total, 911 observations from 150 patients were used for 
model building (Table 1). Three exemplary time profiles of 
individual HFS severity are depicted in Fig. 1. It should be 
noted that 25 patients sent back HFS questionnaires after 
they discontinued therapy. These patients were also included 
in this analysis and their capecitabine dose was set to zero 
after discontinuation. A base minimal continuous-time 
Markov model (mCTMM) for hand–foot syndrome (HFS) 
was developed including interindividual variability (IIV) for 
both mean equilibration time (MET) and logit intercept αn, 
respectively. The results of the analysis of various covariates 
are presented in Table 2.

The final mCTMM included a linear effect of absolute 
daily capecitabine dose on the logit intercept αn indicating 
larger probabilities of experiencing HFS with an increas-
ing dose (∆OFV = − 23.45, p < 0.00001). None of the other 
examined covariates or time effects resulted in a statistically 
significant reduction of the OFV after inclusion. Addition-
ally, after the dose effect was included into the base model, 
a further analysis of the mentioned covariates or time effects 
did not result in a significant improvement of the model fit. 
The final equation described the cumulative probabilities as 
follows (Eq. 7):

ΘDose represents the slope of the linear dose effect on the 
logit scale. The dose effect was centered on the population 
median daily dose of 3000 mg. The final model code used 
in NONMEM is provided in the electronic supplementary 
material.

A summary of the parameter estimates including the 
bootstrap results is depicted in Table 3. Parameters were well 

(5)PPV =
N true predicted events with grade ≥ 2

N total predicted events with grade ≥ 2

(6)NPV =
N true predicted events with grade ≤ 1

N total predicted events with grade ≤ 1

(7)P
(

Grij ≥ n
)

=
1

1 + e−(�n+�Dose×(Dose (mg)−3000mg)+�i)

estimated with relative standard errors below 25%, except 
for the IIV parameter associated with α1.

Model evaluation

The categorical visual predictive check revealed an accurate 
description of the provided data. The simulated proportions 
of patients experiencing one of the HFS grades described 
the respective observed proportions of patients over time 
well (Fig. 2).

Simulation study

Based on the developed dose–toxicity model and on the 
results of the simulation study (Fig. 3), it was evident that 
dose adjustments decreased the probability of severe HFS 
during therapy while increasing the probabilities of the 
absence of clinically relevant toxicity (grades 0 and 1). 

Fig. 1  Observed hand–foot syndrome (HFS) grades over time of 
three representative individuals. ID #1 was a patient with a median 
daily starting dose of capecitabine including a dose reduction and 
dose increase, indicated by downwards and upwards pointing arrows, 
respectively. ID #7 was a patient of median age who had a dose 
reduction (cycle 5). ID #124 was a patient who took the median daily 
capecitabine dose over the whole observed period of six cycles
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In particular, grade 3 toxicity was more probable when 
no dose adjustments were performed whereas the prob-
abilities of grade 2 did not differ between the two simula-
tion approaches. The simulation study also clearly showed 
that patients without dose adjustments tended to remain in 
grade 3 for a longer period of time which is characterized 
by a higher transition count from grade 3 to 3 compared 
to the approach which included dose adjustments (transi-
tion count of 442 and 234, respectively). However, the 
transition counts from grade 2 to 2 were comparable in 
both simulation groups (769 without and 774 with dose 
adjustments).

Predictive performance

The predictive ability of the model for individual patients 
was assessed by calculating the positive and negative pre-
dictive value (PPV, NPV) for each cycle (from cycle 2) 
based on Bayesian estimates of both random effect param-
eters from the previous cycle as well as the dose effect. 
PPV ranged from 21.9 to 34.2% whereas NPV ranged from 
61.9 to 73.3%. Both values indicated a rather poor predic-
tive performance on an individual patient level.

Table 2  Development of the 
final model including various 
covariates

∆OFV difference in the objective function value between the covariate model and the base model, MET 
mean equilibration time
a Two degrees of freedom

Model ∆OFV p value

Base model 0 –
Sex effect on logit intercept αn − 3.454 0.063
Sex effect on MET − 1.348 0.246
Absolute daily dose on logit intercept αn − 23.45 < 0.00001
Absolute daily dose on MET − 0.445 0.505
Capecitabine monotherapy (yes/no) on logit intercept αn − 1.358 0.244
Capecitabine monotherapy (yes/no) on MET + 1.006 –
Breast cancer (yes/no) on logit intercept αn − 1.274 0.259
Breast cancer (yes/no) on MET − 0.139 0.709
Colorectal cancer (yes/no) on logit intercept αn − 1.978 0.160
Colorectal cancer (yes/no) on MET − 0.467 0.494
Other tumor entities (yes/no) on logit intercept αn − 0.391 0.532
Other tumor entities (yes/no) on MET + 0.488 –
Age effect on logit intercept αn − 0.077 0.930
Age effect on MET − 0.132 0.716
Overall adherence (> 100%/90–100%/ < 90%) on logit intercept αn − 0.130 0.937a

Overall adherence (> 100%/90–100%/< 90% adherence) on MET − 1.316 0.518a

Time effect on logit intercept αn − 4.179 0.041
Time effect on MET − 1.4 0.237

Table 3  Parameter estimates

α1 intercept parameter on the logit scale for HFS grade 1, bn parameter for grade n such that αn = αn-1 + 
bn, MET mean equilibration time, ΘDose slope of the linear daily dose effect on the logit scale, ωP standard 
deviation of the interindividual variability of parameter P

Parameter Estimate (relative 
standard error, %)

Bootstrap median Bootstrap 95% confidence intervals

α1 1.81 (14) 1.88 1.38 to 2.51
b2 − 1.80 (11) − 1.79 − 2.23 to (− 1.45)
b3 − 2.08 (13) − 2.05 − 2.73 to (− 1.57)
MET (cycle) 1.09 (10) 1.11 0.896 to 1.430
ΘDose 8.33 ×  10–4 (24) 8.28 ×  10–4 4.05 ×  10–4 to 1.48 ×  10–3

ωα1 1.12 (37) 0.981 0.0112 to 1.65
ωMET 0.542 (22) 0.560 0.310 to 0.842
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Discussion

This is the first study evaluating the time course of patient-
reported adverse event severity in clinical routine during 
anti-cancer therapy with a Markov modeling approach. 
A heterogeneous patient group with different tumor enti-
ties was analyzed regarding the occurrence and severity of 

HFS during treatment with capecitabine. A parsimonious 
version of a continuous-time Markov model, the mCTMM, 
was applied requiring fewer model parameters to be esti-
mated compared to other Markov modeling approaches 
[24]. Thus, the mCTMM can also be applied to sparse-
data situations to obtain precisely estimated parameters. 
Additionally, only transitions between adjacent grades 

Fig. 2  Categorical visual 
predictive check showing 
the proportions of patients 
experiencing patient-reported 
CTCAE-based HFS grades from 
0 to 3 over time. Solid black 
lines indicate the observed 
proportion of patients and the 
grey shaded areas are the 95% 
confidence intervals of simu-
lated proportions based on 1000 
simulated datasets using the 
final model

Fig. 3  Simulated probabilities 
versus time for HFS grades 0–3 
of 1000 virtual patients. Solid 
lines indicate the median prob-
ability when dose adjustments 
were performed according to the 
capecitabine SmPC [15]. Grey 
shaded areas are the respective 
95% confidence intervals of the 
median. Dashed lines indicate 
the median probability when 
no dose adjustments were per-
formed. Blue shaded areas are 
the respective 95% confidence 
intervals of the median
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were allowed since only a small proportion of transitions 
between non-neighboring grades were observed (Table 1). 
Therefore and because of the generally small number of 
observations per patient, a mCTMM was chosen instead of 
a continuous-time Markov model. The absolute daily dose 
of capecitabine was found to be a predictor of development 
of HFS which was in accordance with the observed dose-
dependency [14, 27]. Since data on height and weight were 
not gathered in the studies used for this model, effects 
of normalized doses could not be investigated. Other 
covariates did not lead to a significant model improve-
ment including overall adherence. A previous study found 
a possible influence of over-adherence on high-grade tox-
icity [28]. In addition, the study of Hénin et al. in which 
clinician-reported HFS severity in patients with colorectal 
cancer was analyzed with a discrete-time Markov model, 
found that creatinine clearance was a significant covariate 
for HFS severity [16]. However, renal function was not 
estimated in both studies used for our model. Therefore, a 
wider selection of covariates would potentially be able to 
improve the model fit.

Model parameters could be well estimated except for 
a comparatively higher standard error of the IIV of α1. 
This phenomenon was also observed by Schindler and 
Karlsson [24]. They suggested that the absence of HFS 
before starting therapy (at therapy cycle zero) caused these 
large uncertainties of IIV [24]. However, the logit inter-
cept parameter itself could be precisely estimated in this 
study. Another reason for larger uncertainties of the IIV 
parameter estimate may be due to the overall low num-
ber of transitions between HFS grades per patient. Only a 
maximum of seven time points could be analyzed (one per 
therapy cycle plus baseline grade) in which the patients 
reported the maximum HFS grade per therapy cycle. 
Therefore, distinguishing between HFS severities within 
the respective cycle was not possible which resulted in a 
low transition number. For the same reason, time delays 
due to treatment interruptions could not be considered for 
this model. The time variation of covariates within one 
cycle (such as dose) could not be implemented either. A 
more frequent grading would be required to improve the 
ability of Markov models of predicting the probabilities 
of the respective grades for individual patients as shown 
in the study of Lu et al. [29]. For example, an already 
validated one-week recall period as in the PRO-CTCAE 
item library [30, 31] would be more suitable for model 
development. However, our questionnaire was developed 
before a German version of the PRO-CTCAE question-
naire was available [32]. Using a validated, entity-specific 
PRO-CTCAE questionnaire would enhance the develop-
ment and application of Markov models for evaluation of 
categorical adverse event severity.

Despite the subjectivity of the patient-reported HFS 
severity, the limited number of both observed grades and 
potential covariates as well as the real-world setting, the 
model was able to accurately describe the observed data on 
the population level. It also showed that the recommended 
dosage regimen of 1250 mg/m2 for capecitabine monother-
apy is appropriate to minimize the probability of HFS grade 
3 and increase the probability of the absence of clinically rel-
evant toxicity. Thus, population-based recommendations of 
dose adjustments can be supported using this model. How-
ever, the predictive performance for individual patients was 
not satisfactory which is probably due to the limited number 
of observations. As mentioned above, a more frequent grad-
ing, particularly within a therapy cycle, might enhance the 
individual predictive performance. Another reason could be 
the assumption that the patient-reported HFS grade equaled 
the “true” grade. Therefore, a misclassification of the actual 
grade could not be excluded. A possibility to account for 
the error between a categorical observation and the actual 
grade would be a model extension towards a hidden Markov 
model [33]. In such a model the unobserved “true” grade 
could be described as well. Therefore, our model has to be 
further improved before it can be applied to make individual 
predictions.

In conclusion, minimal continuous-time Markov models 
can be set up using patient-reported outcomes. Our modeling 
framework may assist in the optimization of dosage regi-
mens and adjustment strategies on the population level aim-
ing at minimizing symptom burden during anti-cancer drug 
therapy. Predictive performance on the individual patient 
level may be improved by more frequent PRO measurements 
and more sophisticated modeling approaches.
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NONMEM code of the final model 

$PROBLEM Capecitabin HFS mCTMM  

$INPUT 

ID ; No. of the patient 

TIME ; Therapy cycle no. as time unit 

DV ; No AE -> DV = 1, otherwise DV = 2-4 (grades 1-3) 

AMT ; Probability for AE compartments 

CMT ; 1-4 = AE compartments 

DOSEDAY ; Absolute dose per day 

EVID 

MDV 

AGE 

SEX 

MAMMA ; tumor entity: mamma carcinoma 

COLON ; tumor entity: colorectal cancer 

OTHER ; other tumor entity 

MONO ; Capecitabin monotherapy yes/no 

 

$DATA HFS_total.csv  

$SUBROUTINES ADVAN6 TOL = 4         

$MODEL 

NCOMP = 4 

COMP = (G0) ; No AE 

COMP = (G1) ; Mild AE 

COMP = (G2) ; Moderate AE 

COMP = (G3) ; Severe AE 

 

 



$ABB COMRES = 1 

$PK 

IF(NEWIND.NE.2) THEN 

PSDV = 0 

COM(1) = 0 

ENDIF 

PRSP = PSDV ; Previous DV  

IF(TIME.EQ.0) F1 = 1 

IF(PRSP.EQ.1) COM(1) = 0 

IF(PRSP.EQ.2) COM(1) = 1 

IF(PRSP.EQ.3) COM(1) = 2 

IF(PRSP.EQ.4) COM(1) = 3 

 

F1=0 

F2=0 

F3=0 

F4=0 

 

IF(COM(1).EQ.0) F1 = 1 

IF(COM(1).EQ.1) F2 = 1 

IF(COM(1).EQ.2) F3 = 1 

IF(COM(1).EQ.3) F4 = 1 

 

;--- mCTMM model parameters 

MET = THETA(4)*EXP(ETA(2))    ; Mean equilibration time 

ET1 = ETA(1) 

 

 



$DES 

A1 = THETA(1)+ET1 + THETA(5)*(DOSEDAY-3000)              ; alpha_1 with linear dose effect 

B2 = THETA(2)                   ; beta_2 

B3 = THETA(3)               ; beta_3 

 

; Logit of the cumulative probabilities 

LGE1 = A1                       ; >=Grade 1  

LGE2 = LGE1 + B2                    ; >=Grade 2 

LGE3 = B3 + LGE2               ; Grade 3 

 

; Cumulative probabilities 

PGE1 = EXP(LGE1)/(1+EXP(LGE1))    ; >=Grade 1 

PGE2 = EXP(LGE2)/(1+EXP(LGE2))    ; >=Grade 2 

PGE3 = EXP(LGE3)/(1+EXP(LGE3))    ; Grade 3 

 

; Probabilities 

P0   = (1-PGE1)                   ; Probability of grade 0 

P1   = (PGE1-PGE2)                ; Probability of grade 1 

P2   = (PGE2-PGE3)                ; Probability of grade 2 

P3   = PGE3                       ; Probability of grade 3 

 

; Transfer rate constants 

L01 = 1/(MET*(1+P0/P1)) 

L10 = L01 *P0/P1 

L12 = 1/(MET*(1+P1/P2)) 

L21 = L12 *P1/P2 

L23 = 1/(MET*(1+P2/P3)) 

L32 = L23 *P2/P3 



; Differential equations for the probability of each grade 

DADT(1) = L10*A(2)         - L01     *A(1) ; Grade 0 

DADT(2) = L01*A(1)+L21*A(3)-(L10+L12)*A(2) ; Grade 1 

DADT(3) = L12*A(2)+L32*A(4)-(L21+L23)*A(3) ; Grade 2 

DADT(4) = L23*A(3)         - L32     *A(4) ; Grade 3 

 

$ERROR 

;--- Redefine variables from $DES 

A1X = THETA(1) + ET1+ THETA(5)*(DOSEDAY-3000)  

B2X = THETA(2) 

B3X = THETA(3)  

 

LGE1X = A1X 

LGE2X = LGE1X + B2X 

LGE3X = B3X + LGE2X 

 

PGE1X = EXP(LGE1X)/(1+EXP(LGE1X)) 

PGE2X = EXP(LGE2X)/(1+EXP(LGE2X)) 

PGE3X = EXP(LGE3X)/(1+EXP(LGE3X)) 

 

P0X = (1-PGE1X) 

P1X = (PGE1X-PGE2X) 

P2X = (PGE2X-PGE3X) 

P3X = PGE3X 

 

; --- Define Y 

P0X = A(1) ; Probability of observing grade 0 

P1X = A(2) ; Probability of observing grade 1 



P2X = A(3) ; Probability of observing grade 2 

P3X = A(4) ; Probability of observing grade 3 

 

IF(DV.EQ.1.AND.CMT.EQ.0) Y=P0X 

IF(DV.EQ.2.AND.CMT.EQ.0) Y=P1X 

IF(DV.EQ.3.AND.CMT.EQ.0) Y=P2X 

IF(DV.EQ.4.AND.CMT.EQ.0) Y=P3X 

 

; Cumulative probabilities 

CUP0 = P0X 

CUP1 = CUP0 + P1X  

CUP2 = CUP1 + P2X  

CUP3 = CUP2 + P3X  

 

; Start of simulation 

IF(ICALL.EQ.4) THEN  

IF(CMT.EQ.0) THEN 

  CALL RANDOM (2,R)  

     IF(R.LE.CUP0) DV = 1  

     IF(R.GT.CUP0.AND.R.LE.CUP1) DV = 2  

     IF(R.GT.CUP1.AND.R.LE.CUP2) DV = 3 

     IF(R.GT.CUP2) DV = 4      

ENDIF 

ENDIF 

; End of simulation 

; Store DV 

PSDV = DV 

 



$THETA 

(1.81) ; 1 alpha_1 

(-1000000, -1.8,0) ; 2 beta_2 

(-1000000, -2.08,0) ; 3 beta_3 

(0, 1.09) ; 4 MET 

(0.00083) ; Dose effect 

 

$OMEGA  

1.25 ; IIV alpha_1 

0.294 ; IIV MET 

 

$COV PRINT=E MATRIX=R 

$ESTIMATION MAXEVAL=9999 METHOD=1 LAPLACE LIKE PRINT=1 NOABORT SIG=2 

;$SIM (7776) (8877 UNIFORM) ONLYSIM NOPREDICTION 

 




