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1 Introduction 

An effective utilization of nutrients is of central importance for the metabolism and 

survival of organisms. For this purpose, all mammalian species developed a 

gastrointestinal (GI) tract, which disintegrates and absorbs all essential components 

of ingested food. At the same time the GI builds a barrier against the intrusion of 

potentially harmful agents. In humans, the GI tract comprises all organs along the 

passageway of food from the mouth to the anus, including the oesophagus, the 

stomach and the intestines [1]. 

The human stomach plays a central role in the digestive process, having developed 

during evolution from a simple muscular tube into a complex exocrine organ. It is 

mainly involved in the pre-digestion and proportioning of food, as well as the protection 

against pathogenic microorganisms [2]. For this purpose, it harbours a comparable 

extreme environment, producing highly acidic gastric juices enriched with proteolytic 

enzymes. To avoid infections on the one hand and self-digestion processes on the 

other, a complex physiological system needs to be maintained [2]. Imbalances in this 

system can easily lead to adverse effects, such as chronic inflammatory reactions in 

the gastric mucosa. Over time, such conditions can result in a number of pathogenic 

conditions, including the development of gastric cancer (GC) [3]. In the past, the 

identification of environmental risk factors promoting these adverse conditions, such 

as specific dietary habits or the infection with certain microorganisms, as well as 

intended or unintended interventions have led to significant reduction in the incidence 

of GC worldwide [3]. However, up till today, GC is the fourth most common tumour 

entity worldwide with a poor prognosis. Many processes having an influence on GC 

development are not fully understood. 

Beside exogenous noxes, also genetic risk factors are of relevance for GC 

development. However, only a small fraction of GC develops on the background of 

monogenetic tumour syndromes, in which mutations with a high penetrance contribute 

to the development of the phenotype. The majority of GC cases occur sporadically 

and are of multifactorial genesis. As such, an unfavourable combination of 

environmental and genetic risk factors, each with a comparable small effect size, 

trigger the development of cancer in an individual [4–13]. 

The identification of such genetic risk factors is of importance to understand the 

underlying pathomechanisms, for unravelling correlations to other diseases, and to 

predict individual risks for the development of a specific phenotype. However, their 

detection and functional interpretation is laborious, as large patient and control 
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samples are required. Comprehensive genotyping and comparisons between the two 

groups may reveal genetic variants associated to the phenotype under examination, 

utilizing a method called genome-wide association study (GWAS) [14]. 

For the functional interpretations of the identified variants further follow-up analyses 

and the systematic intersection with other omic-studies are required. As such, 

transcriptome data from tissues of relevance have been proven to be a powerful 

resource by unravelling gene regulatory mechanisms [15]. 

In case of GC, multiple GWAS could identify a number of genetic risk loci, but have 

been mainly performed in samples of Asian ethnicity. Studies in the European 

population replicating the Asian findings are scarce [4–13]. In addition, functional 

interpretation of associated variants and the interpretation of the genetic risk 

background beyond the single marker level is lacking. 

In this thesis, we present the results of the largest European case-control GC GWAS 

sample and the follow-up of the results using the largest and most comprehensive 

transcriptome dataset on gastric mucosa. 

In the following chapters the physiology of the human stomach, the current knowledge 

on GC related risk factors and classification systems, as well as the theoretical 

background for the identification and interpretation of genetic risk variants will be 

introduced. 
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1.1 The Human Stomach and Gastric Cancer 

1.1.1 The Human Stomach 

The human stomach is an important part of the human GI tract and is responsible for 

various aspects of the digestion process, including a major part in the disintegration 

and portioning of all kinds of food. Three layers of smooth muscle tissue encapsulate 

a highly specialized mucosa composed of a variety of specialized cell types and 

glands, which take over different parts in food pre-processing [1,2]. 

Anatomically and histologically, the stomach can be subdivided into different regions 

(Figure 1). The oesophagus connects to the stomach at a region called the cardia, 

whereby the transition area is called gastro-oesophageal junction (GOJ). Superior to 

the cardia, the fundus is located. The cardia and fundus connect to the main part of 

stomach, the corpus. The corpus goes over into the pyloric antrum, which funnels 

down to the pyloric sphincter, forming the connection with the duodenum [2]. 

The surrounding muscle layers enable the stomach to expand and shrink, maintaining 

a volume of about 4 litres at its maximal capacity. Furthermore, they enable the mixing 

and the mechanical breakdown of the contained food to chyme [2]. 

The mucosa is highly populated with different types of gastric glands, which produce 

gastric juices of different cellular compositions according to the stomach region. The 

fundus and corpus are the main site of chemical digestion, which is driven by a variety 

of secretory cells, including the parietal-, chief-, mucous neck- and foveolar cells [1]. 

Parietal cells primarily produce hydrochloric acid (HCl) and intrinsic factor. The 

secretion of HCl causes the extremely acidic milieu in the stomach ranging from a pH 

from 1.5 to 2.0. The low pH denatures proteins, activates enzymes, such as pepsin, 

and destroys most of the microorganisms ingested together with food. Intrinsic factor 

is essential for the absorption of vitamin B12 later on in the small intestine [1]. Chief 

cells produce the zymogen pepsinogen, which gets converted at low pH to pepsin, 

playing a major part in protein digestion. The foveolar and mucous neck cells produce 

alkaline mucous that protect the gastric epithelium from acidic erosion. The glands of 

the antrum produce mucous and contain G cells producing the hormone gastrin. 

Gastrin secretion is induced upon the presence of peptides and promotes HCl 

secretion as well as gastric emptying [16]. 

Apart from these functions and cell types, a variety of pathways may have an influence 

the stomach glandular secretions, thereby tightly regulating the production of HCl, 

ensuring stomach emptying and digestion enzyme production. Factors adversely 

influencing this balanced system, can easily harm the integrity of the mucosa, 
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exposing the epithelium to the extreme gastric environment thereby leading to cellular 

damage and inflammation, commonly described as gastritis. If the cellular stress 

prevails, the tissue may gradually change and accumulate genomic alterations, which 

may ultimately culminate in a malignant tumour [3]. 

 

 

Figure 1: Schematic representation of the anatomical regions of the human stomach (modified from 
Smyth et al. 2020 [3]). 

1.1.2 Epidemiology, Prognosis and Treatment of Gastric Cancer 

The vast majority of gastric tumours are adenocarcinomas (80-90%), while the 

remaining entities are mainly attributable to neuroendocrine tumours, lymphomas and 

gastrointestinal stromal tumours. In the following the focus remains on gastric 

adenocarcinomas referred to as GC [3]. 

With more than one million cases and over 750.000 deaths annually, GC is the fourth 

most common and third deadliest malignant neoplasm worldwide [17]. Representing 

the most common cancer entity at the beginning of the 20th century, there has been a 

dramatic and steady decline in incidence over the past decades, especially in 

industrialised nations. However, the relative proportion of GC in malignant tumour 

cases remains at a high level in large parts of East Asia, Eastern Europe and Latin 

America [18]. 
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Due to a late onset of symptoms, GC is often diagnosed at an advanced stage, which 

is one of the main reasons for a rather poor prognosis with a 5-year survival rate below 

25% worldwide [19]. A noteworthy exception is South Korea and Japan with survival 

rates beyond 60%, mainly due to sophisticated screening programs enabling detection 

and treatment at an early stage of the disease [20]. 

The only potentially curative treatment for localized GC is surgical resection. For non-

metastatic advanced GC total or subtotal gastrectomy is indicated, often in 

combination with neo-adjuvant and/or postoperative chemoradiotherapy. However, 

there is no general standard for adjuvant therapies [21].  

1.1.3 Classification of Gastric Adenocarcinoma 

Adenocarcinoma of the stomach summarize a rather diverse groups of tumours with 

significant differences in their aetiology. For a better characterisation a number of 

different GC classification systems have been implemented, which group GC tumours 

either according to their anatomical location, their histological or molecular genetic 

characteristics [22–26]. 

The most widely used system to differentiate GC tumour types histologically is the 

classification according to Lauren, discriminating between a diffuse, intestinal and a 

mixed tumour type [27]. This classification is most often used in combination with an 

anatomical differentiation between carcinomas affecting the proximal (cardia) and 

distal (non-cardia) part of the stomach (Figure 2). 

The intestinal tumour type is characterized by well differentiated cells predominantly 

forming a glandular like epithelium, with cells resembling intestinal columnar cells [28]. 

Tumours of the intestinal type are usually the endpoint of an inflammatory cascade, 

starting with a chronic active gastritis, which can be of multifactorial genesis. During 

the progress of inflammation, a gradual loss of glandular mucosa is observed 

(multifocal atrophy), further progressing to the replacement of the gastric mucosa with 

an epithelium resembling that of the intestine (intestinal metaplasia), which may 

transform to a malignant neoplasm [28]. 

By contrast, the diffuse type is characterized by poorly differentiated and poorly 

cohesive cells with diffuse infiltrative margins. Tumours showing a mixture of both 

types are accounted to the intermediate or mixed type. Carcinomas of the diffuse type 

appear in the absence of any premalignant condition. They seem to occur at an earlier 

age and are reported to appear more frequently in the cardia, as compared to tumours 

of the intestinal type, which are more frequent in the corpus and antrum [28].  
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Figure 2: Classification of gastric adenocarcinoma according to their anatomical location into cardia or 
non-cardia and according to their histological appearance according to Lauren into diffuse or intestinal 
type (modified from Smyth et al. 2020 [3]). 

1.1.4 Environmental Risk Factors 

The dramatic decline of GC cases over the past century and the unequal geospatial 

distribution indicate that GC development is closely linked to modifiable risk factors. 

Indeed, this development can be primarily accounted for intentional and unintentional 

reduction of environmental risk exposures and their unequal distributions across the 

globe [29]. Widely adopted changes in food preservation, like refrigeration, initiated a 

decrease in GC incidences in industrialized countries. These were merely driven by a 

shift of food supply from a primarily salt and smoke based preservation and 

hygienically often insufficient standard, towards a diet that included more fresh fruits, 

vegetables and unprocessed meat. Consequently, a high salt diet, the intake of 

smoked and processed meat contribute to GC cancer risk, primarily by inducing stress 

to the gastric mucosa, leading to gastritis [29]. On the other hand, a Mediterranean 

diet, which is rich in vegetables, unrefined cereals, fruits and fish, and low in non-fish 

meat products has been shown to reduce GC risk [30]. 

Another main risk factor for GC development is infection with Helicobacter pylori (HP), 

a highly specialized gram-negative bacterium. It is able to overcome the harsh gastric 
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environment to colonize the gastric mucosa, thereby inducing a type B gastritis. In 

addition, several strains harbour virulence factors, such as cytotoxin-associated gene 

A (cagA) and vacuolating cytotoxin A (vacA) that can further contribute to the 

progression towards GC [31]. A better monitoring and eradication of HP infections led 

to a further significant reduction of GC, primarily in industrialized countries. Although, 

being of primary significance for the intestinal tumour type, HP infection also 

contributes to the risk of diffuse GC. Due to this correlation, HP is so far the only 

bacterium currently classified as class I carcinogen by the World Health Organization 

[31]. Apart from HP, other infectious agents such as the Epstein-Barr-Virus could be 

identified to confer to GC development [31]. Other environmental risk factors include 

smoking, independent of the tumour type and location, as well as above high level 

alcohol consumption [32]. On the other hand, a high socioeconomic status is 

associated with a reduced risk for the development of GC [33]. 

Gender represents another GC risk factor. In general, males are about twice more 

likely to be diagnosed with GC as compared to females [34]. However, there are 

differences in the ratio regarding the subtypes. For the intestinal type, the male to 

female ratio is reported to be 2.3 and for the diffuse type 1.5 [28]. The reason for this 

gender disparities are not fully elucidated, but are partly attributed to a higher 

prevalence of risk factors such as smoking and high alcohol consumption in males 

[18]. 

Also for the GC location, disparities in risk factors could be identified. As such, obesity 

and gastroesophageal reflux disease (GERD) are only associated to an increased 

cardia GC risk, but not with non-cardia GC [30]. 

1.1.5 Cardia Gastric Cancer and Oesophageal Adenocarcinoma 

Although there is a general decrease in the incidence of GC in Western countries, 

there are discrepancies when examining the tumour location. Compared to non-cardia 

GC, cardia GC is rarer, but the overall incidence increased over the past decades, 

representing one of the fastest growing cancer entities overall [35]. The same 

development is observed for oesophageal adenocarcinoma of the lower oesophagus 

(OAC). Interestingly, both cancer entities share a couple of risk factors, such as GERD 

and obesity, which are not associated to non-cardia GC [35]. This raises the question, 

whether those entities might be related. Indeed, both cancer types arise close or 

across the gastroesophageal junction (GOJ) and discrimination of OAC and cardia GC 

has proven to be problematic [38]. The most prominent system to discriminate 

carcinoma at the GOJ is the Siewert classification, whereby Siewert type I cancers 

belong to OAC and are located between 1 and 5 cm above the GOJ [36]. These 
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carcinomas usually arise on the background of a Barrett’s Oesophagus (BO), 

representing the endpoint of a metaplasia-dysplasia-neoplasia cascade often induced 

by a frequent reflux of gastric juices damaging the oesophageal squamous epithelium 

[36]. By contrast, Siewert type II cancers are located between 1 cm above and 2 cm 

below the GOJ and are considered to gastric cardia tumours. Siewert type III cancers 

are located between 2 and 5 cm below the GOJ, with invasion of the oesophagus, and 

are considered as subcardiac gastric cancers [37]. There is an ongoing discussion 

whether cardia GC should be accounted to the gastric cancer entity, or if it is closer 

related to OAC [38]. 

1.1.6 Genetic Risk Factors for Gastric Cancer 

The majority of GC cases have a multifactorial aetiology and several environmental 

risk factors contributing to GC development could be identified. However, multifactorial 

phenotypes always have a genetic component. Based on a twin study, the contribution 

of genetic factors to GC has been estimated to be 28% [39]. As such, there is a large 

interest in the identification of these risk factors, which is done primarily by utilizing 

genome-wide association studies (GWAS). The theoretical concept of GWAS will be 

introduced in chapter 1.2.2. In the following, the results of the so far conducted GC 

GWAS will be presented. 

A total of ten GC GWAS has been performed to date, identifying a total of twelve risk 

loci. As the incidence of GC is high in East Asia, all but one study has been conducted 

in the Chinese and Japanese population. Four of them focused on non-cardia GC [8–

11] and three also included cardia GC samples [4–6]. No information on 

histopathological types were available in most studies except two [12,13], because the 

Lauren classification is not widely used in Asia. All GWAS are listed in Table 1 along 

with the association findings. In summary, GC risk loci were identified on chromosome 

1q22 (MUC1), 3q11 (NSUN3), 3q13 (ZBTB20), 4q28 (ANKRD50), 5p13 

(PRKAA1/PTGER4), 5q14 (Inc-POLR3G-4), 6p21 (LRFN2), 8q24 (PSCA), 9q34 

(ABO), 10q23 (PLCE1/NOC3L), 12q24 (CUX2), and 20q11 (DEFB16) [4–13]. Only 

one GC GWAS has been carried out in Europeans so far. This study used an Icelandic 

sample and showed GC associations within the gene ATM on chromosome 11q22. In 

addition, the risk East Asian loci on chromosome 1q22 (MUC1), 5p13 

(PRKAA1/PTGER4) and 8q24 (PSCA) were replicated [40]. However, because this 

GWAS only used only 400 cases ‒ along with 2,100 first-/second-degree relatives of 

patients that were counted as cases ‒ only limited information on GC location and 

Lauren type was available. 
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Table 1: Overview of previous GC GWAS in the East Asian and European population. The GC type (Lauren, location) that was used in each GWAS 
is shown. Lead and genome-wide significant associated GC risk SNPs (p < 5 x 10-08) and their chromosomal location and position are indicated. In 
addition, genes are listed that were implicated as GC candidate genes in each study. Replication and/or downstream samples that were used are 
not listed. 

GC GWAS in the East Asian population 

GWAS (publication) GC type  GWAS sample (country) 
Lead-SNP per 

locus 
SNP location (in bp 

(hg38)) 
Implicated 

gene(s) 
Sakamoto et al. (2008) Nat. Genet. 
[13] 

Lauren diffuse 188 cases, 752 controls (Japan) rs2294008 8q24 (142,680,513) PSCA 

Abnet et al. (2010) Nat. Genet. [4] cardia, non-cardia 1,625 cases, 2,100 controls (China) rs3781264 (f) 10q23 (94,310,618) PLCE1, NOC3L 

Shi et al. (2011) Nat. Genet. [8] non-cardia 1,006 cases, 2,273 controls (China) rs9841504 3q13 (11,4643,917) ZBTB20 

   rs13361707 5p13 (40,791,782) 
PRKAA1, 
PTGER4 

Jin et al. (2012) Am. J. Hum. Genet. [9] non-cardia 1,006 cases, 4,016 controls (China) (a) rs2494938 6p21 (40,568,389) LRFN2 

Hu et al. (2015) Gut [5] cardia, non-cardia 2,350 cases, 2,708 controls (China) (b) rs10074991 (g) 5p13 (40,790,449) 
PRKAA1, 
PTGER4 

   rs2294693 (h) 6p21 (41,037,763) UNC5CL 

Wang et al. (2017) Gut [10] non-cardia 2,031 cases, 4,970 controls (China) (c) rs4072037 1q22 (155,192,276) MUC1 
   rs80142782 (i) 1q22 (155,515,486) MUC1, ASH1L 
   rs7712641 5q14 (89,607,397) Inc-POLR3G 
   rs2294008 8q24 (142,680,513) PSCA 

Tanikawa et al. (2018) Cancer Sci. 
[12] 

Lauren diffuse, intestinal 6,171 cases, 27,178 controls (Japan) rs1057941 1q22 (155,216,951) MUC1 

   rs13361707 5p13 (40,791,782) 
PRKAA1, 
PTGER4 

   rs2294008 8q24 (142,680,513) PSCA 

   rs7849280 9q34 (133,251,249) ABO 

   rs6490061 12q24 (111,335,541) CUX2 

   rs2376549 20q11 (31,411,284) DEFB 

Yan et al. (2019) Gut [11] non-cardia 3,771 cases, 5,426 controls (China) (d) rs760077 1q22 (155,208,991) MUC1 

   rs6897169 5p13 (40,726,036) 
PRKAA1, 
PTGER4 

   rs10509671 10q23 (94,309,297) PLCE1, NOC3L 

   rs7624041 3q11 (94,389,819) NSUN3 

   rs10029005 4q28 (124,530,209) ANKRD50 

Ishigaki et al. (2020) Nat. Genet. [6] cardia, non-cardia 6,563 cases, 195,745 controls (Japan) rs760077 1q22 (155,208,991) MTX1, THBS3 

   rs3805495 5p13 (40,755,466) TTC33 

   rs2978977 8q24 (142,674,302) JRK, PSCA 

   rs11167159 20q11 (31,321,457) DEFB16 

GC GWAS in the European population      

     

Helgason et al. (2015) Nat. Genet. [40] cardia, non-cardia 2,500 cases, 205,652 controls (Iceland) (e) rs760077 1q22 (155,209,241) MUC1 

 Lauren diffuse, intestinal  p.Gln852*, 
p.Ser644* (j) 

11q22 (108,222,832-
108,369,099) 

ATM 

(a) samples used in Shi et al. [8]       (f) association was restricted to cardia GC and not present in non-cardia GC 
(b) including samples used in Abnet et al. [4]      (g) association to both cardia and no-cardia GC 
(c) including samples used in Abnet et al. [4] and Shi et al. [8]     (h) association was restricted to non-cardia GC and not present in cardia GC 
(d) including samples used in Abnet et al. [4], Shi et al. [8] and Wang et al. [10]    (i) independent risk locus on chromosome 1q22, still genome-wide significant after conditioning on rs4072037 
(e)    400 GC patients and 2,100 first- or second-degree relatives from GC patients used as cases  (j) identified using whole-genome sequencing data and GWAS significance threshold of p < 3.1 x 10-06 
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1.1.7 Monogenic Gastric Cancer Syndromes 

The majority GC cases are sporadic and arise on the background of environmental 

and genetic risk factors, each contributing only with small effects to the overall 

individual risk. However, in about 10% of the cases a familial aggregation of GC is 

observed. Repeated cases in close relatives are an indication for highly penetrant 

genetic variants contributing with large effect sizes to GC development. And indeed, 

for 1-3% of the total GC cases an underlying genetic mutation can be identified [41]. 

By accounting for 1% of cases, hereditary diffuse gastric cancer (HDGC) is the most 

prominent monogenic cause of GC. This highly penetrant tumour syndrome is caused 

by heterozygous mutations in the gene CDH1, leading to a lifetime risk of 67% males 

and 83% in females for the development GC of the diffuse type or lobular breast 

cancer. In addition to CDH1, there is increasing evidence that also mutations CTNNA1 

are causal for HDGC [42]. 

Apart from HDGC there are several other tumour syndromes increasing the risk for 

the development of GC, although most of them being primarily associated with other 

tumour entities. In general, an increased risk for GC could be observed in patients 

diagnosed with Lynch syndrome, hereditary breast and ovarian carcinoma (HBOC), 

familial adenomatous polyposis (FAP), Li-Fraumeni syndrome, Peutz-Jeghers 

syndrome and juvenile polyposis [43]. Besides, a number of studies implicated further 

genes being of relevance for the development of GC that still need to be confirmed 

[44–46]. 

1.2 The Variability of the Human Genome 

1.2.1 Common Variability of the Human Genome 

In general, the human genome describes the entire heritable information contained in 

cells, whereby this work will focus entirely on the nuclear genome. The genetic 

information is encoded by specific sequences of the four bases adenine (A), cytosine 

(C), guanine (G) and thymine (T) in long chains of deoxyribonucleic acid (DNA). It 

comprises about 3.2 billion base pairs, which are distributed over 23 chromosomes 

and are diploid in most somatic cells, each set originating from one parent respectively 

[47]. 

Although the central dogma of molecular biology states that the most important 

function of the DNA is to encode for ribonucleic acid (RNA) transcripts, which are 

further translated into proteins, less than 2% of the genome sequence code for about 
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21,000 proteins [48]. The majority of the remaining genomic sequence is non-coding 

and assigning specific functions to these sequences is challenging [49]. 

In general, the genomic DNA sequence is more than 99% identical when comparing 

two unrelated individuals and yet it differs in millions of bases. These genetic 

differences can be subclassified according to the number of contiguous bases 

affected. In general, the frequency of variant types found in an individual decrease, 

the more contiguous bases are involved. 

Aberrancies of chromosomal segments or whole chromosomes, represent the largest 

and rarest form of genetic variation [47]. Due to the large number of genes involved in 

such aberrations, it will usually result in non-viable pregnancies or severe phenotypes, 

leading to large selectional pressure. On the other hand, submicroscopic variations 

affecting more than 1 kb are more frequent and found in every individual. On average, 

more than 2000 of such copy number variants (CNVs) are present in every genome, 

deviating from the normal diploid status. 

Deletions or insertions of smaller nucleotide segments (smaller than 1 kb), are referred 

to as indels. Each human genome harbours approximately 500,000 indels [47]. 

The smallest and thereby most common genetic variation is the exchange of single 

nucleotides. They are called single nucleotide variants (SNV) or single nucleotide 

polymorphisms (SNP). It is estimated that each individual carries approximately 4 

million SNPs that differ from the reference sequence [50]. In total, over 700 million 

different SNPs have been described in the human genome so far, of which over 24 

million are common and occur at a minor allele frequency (MAF) ≥ 1% in the respective 

population (Human build 154; [51,52]). For this thesis, the small variants including 

small indels and SNPs are of primary interest and will be introduced in more detail. 

The large number of variants present in each individual indicates, that genomic 

variation is not the exception, but the rule in the human genome. Obviously, these 

variants most often do not have adverse or highly penetrant phenotypic effects for 

individual carriers as they are commonly seen across different populations. Most often, 

those variants are located in non-coding regions of the genome and/or do not have a 

direct effect on the function of encoded proteins, which is why they are also referred 

to as polymorphisms [47]. As they are under no, or only small selectional pressure, 

common variants are often quite old and got distributed across the globe. Due to their 

large number and their equal distribution across the genome, SNPs were soon utilized 

as genetic markers, enabling the examination of human genomes at a high resolution, 

providing many insights into the history of human development and events such as 

migrations or genetic bottlenecks. 
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However, from a technical point of view, the direct genotyping of several million SNPs 

across large samples of individuals was not feasible for a long time. This limitation was 

overcome when realizing that SNPs are not inherited independently, but that alleles 

are linked over larger segments in a block like structure across the genome [53]. This 

effect arises from intrachromosomal recombinations that occur during meiosis, in 

which segments of homologous chromosomes are exchanged (crossing-over) [54]. 

The breaking points of these blocks are not randomly distributed, but often affect 

specific genomic regions. Within these regions, the redistribution of alleles occurs less 

frequently, forming so called haplotypes. The allelic patterns within those haplotypes 

are linked, making it possible to deduce allelic information from one variant to another 

[55]. For this reason, this phenomenon is referred to as linkage disequilibrium (LD) 

and it can be quantified by using genotype information from a reference set of larger 

genome studies. Usually, the degree of linkage between variants is expressed by the 

measure r² and D’. Both measures can have values between 0 and 1. A value of 0 

between two SNPs indicates a complete linkage equilibrium and an independent 

inheritance, whereas a value of 1 describes a perfect linkage in which the alleles of 

both SNPs are nearly always inherited together. This phenomenon allows to predict 

the genotype of SNPs in a same haplotype by inferring the genotypic information of 

some known SNPs in LD [56]. This method is called imputation and is mainly used for 

genotyping of large patients and control samples. Thus, the experimental 

determination of a few thousand carefully selected variants in an individual, for 

example by using SNP arrays, allows the statistical prediction of alleles of millions of 

other SNPs with a certain likelihood, given that there are reliable reference datasets 

available [57]. With the technical progress of genome sequencing, nowadays such 

reference datasets include thousands of individuals and allow an increasingly accurate 

imputation of genetic variants. Today, SNPs with a MAF > 0.5% can be imputed with 

sufficient precision in most populations. 

  



Introduction 

13 

1.2.2 Identification of Common Disease-Associated Variants using GWAS 

Although common variants are referred to as polymorphisms, they play an important 

role in the development of multifactorial diseases. Multifactorial diseases are usually 

not confined to a single causal factor, but are the result of an unfavourable combination 

of environmental and genetic risk factors, whereby each risk factor usually contributes 

a relatively low increase to the overall disease risk of the individual carrier [14]. Due to 

the small effect sizes, there is no large selectional pressure on the risk conferring 

variants and they can be common in the population. Due to these characteristics, 

SNPs are usually used to identify such risk conferring genetic loci with a method called 

genome-wide association analysis. The basic principle is to compare genotype 

frequencies between case and control samples. If a specific allelic expression of a 

SNP occurs significantly more often in affected patients than in healthy or population-

based controls, it is assumed that this variant is associated with the disease and, for 

example, increases the risk for the disease under investigation [58]. 

As described above, today several million variants can be genotyped and analysed at 

once. Due to the high number of variants under investigation, a correction for multiple 

testing is required. Here, it has been established that variants with a significance 

threshold of P ≤ 5x10-8 are considered to be genome-wide significantly associated with 

the investigated phenotype [59]. 

At the beginning of the so-called "GWAS era", it was thought that only a few genetic 

risk loci would explain the entire genetic contribution to a specific multifactorial 

phenotype. However, it soon became clear that individual risk loci usually only account 

for a small proportion of the heritability (h²), a measure of the inheritance of traits, and 

the risk of developing the phenotype under investigation [58]. Since then, patient and 

control samples have been increased in size to gain statistical power, making it 

possible to identify risk variants with smaller effect sizes. So far, over 200,000 

associations to hundreds of phenotypes could be identified [60]. Nevertheless, for no 

multifactorial phenotype the genetic background could be fully elucidated. Whether 

this is due to the nature of multifactorial diseases or due to the contribution of 

uninvestigated rare variants is a matter of an ongoing scientific investigations and 

discussions [61,62]. 

Another drawback is that elucidating the biological mechanisms mediated by the 

identified risk loci has turned out to be difficult. In most cases, the identified variants 

are not causal, but are only in linkage to the actual risk conferring variant [63]. In 

addition, a large proportion of the identified risk variants are located in non-coding 

regions and, thus, do not directly affect the structure and function of individual protein, 
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but for example, indirectly regulate their expression being located in regulatory regions 

[49]. 

Still, the hypothesis free approach of this type of analysis, provided a lot of insights 

into pathways involved in disease development and showed up new overlaps and 

connections between phenotypes, which was not possible until the application of 

GWAS.  

1.2.3 Assigning Common Genetic Variants to Function  

As common genetic variants often reside in non-coding regions and only confer to 

disease susceptibility with small effects, elucidating their functional role is often 

difficult. 

Large-scale projects, such as ENCODE, have shown, that large parts of the non-

coding sequences are involved in various biochemical processes, playing an important 

role in regulating gene expression [49]. Due to this orchestration, non-coding 

sequences fundamentally represent the operating system of the genome, which can 

determine tissue differentiation and control responses to external and internal stimuli 

[49]. This highly complex interplay of transcription factor binding, DNA methylation, 

histone modifications, and other processes leads to highly individualized compositions 

of transcribed RNAs contained in each tissue and cell type at a given time, the so-

called transcriptome. Ultimately, these transcriptome profiles mediate a large part of 

phenotypic characteristics of an organism. Consequently, the determination and 

quantification of the transcriptomes has become an important tool when studying 

signal pathways providing an indirect, but comprehensive insight into the outcome of 

gene regulatory processes described above. For this purpose, various gene 

expression array and RNA sequencing methods have been established, enabling 

transcriptome-wide examination of gene expression levels in any tissue of interest. 

For human tissues, the Genotype-Tissue Expression project (GTEx) is the most 

comprehensive data resource of human transcriptome data, comprising 52 different 

tissues from over 800 individuals [64]. The high number of individuals included in this 

project allowed to conduct so called expression quantitative trait locus (eQTL) 

analyses. The aim of these eQTL studies is to identify genetic variants that have a 

quantitative influence on the expression of transcripts. For this purpose, the common 

variants of each individual are genotyped and correlated with the individual gene 

specific expression data. Comparing genotype and related gene expression levels 

across the whole sample may unravel changes in gene expression depending on the 

examined genotypes. Via this hypothesis free approach gene regulatory variants can 

be identified [64]. Cross-referencing such regulatory variants with disease associated 
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variants identified in GWAS, can provide strong hints to an underlying causal 

mechanism.  

Depending on the distance between the variant and the regulated transcript, a 

distinction is made between cis- and trans-regulatory variants. Usually, variants with 

a distance <1 Mb from the effector gene are defined as cis and beyond as trans. Cis-

regulatory effects are believed to be primarily driven by a direct variant transcript 

relationship. For example, a variant may alter the binding site of a transcription factor, 

thereby directly altering the expression of the nearby target gene. By contrast, trans -

regulatory effects usually occur indirectly and independently of the genomic position 

[64]. For example, a regulatory variant may alter the expression of a transcription 

factors in cis, and the change in transcription factor expression then in turn may 

influence the expression of target genes downstream, which can be located on entirely 

different chromosomes. Such cis-trans effects also provide insights into potential 

signalling pathways. The above described GTEx project could identify cis-eQTL 

variants for over 18,000 protein-coding genes. 

Aside from the annotation of single variants identified in GWAS, the genotype-

transcript relationship can also be utilized for association testing of multifactorial 

disorders on a gene-based level. For this purpose, a tissue specific expression model 

is trained with transcriptome and genotype data, allowing to correlate genetic profiles 

with gene expression. This dataset can then be used to predict gene expression 

profiles solely based on genotype data. When imputing the gene expression for case 

and control data, for example for a GWAS dataset, a so-called transcriptome-wide 

association study (TWAS) can be performed. Here, the inferred gene expression 

levels are compared between cases and control groups, testing for an association of 

gene expression levels with a phenotype. The advantage of this method, amongst 

others, is a significant reduction of the multiple testing burden and a direct association 

of a phenotype with the expression status of a specific gene [15]. 

1.2.4 Genetic Correlation of Multifactorial Phenotypes  

Unravelling the architecture of common variation in the human genome, its haplotype 

block structure and the availability of large datasets facilitated the development of 

methods to examine the phenotypes under investigation beyond the single marker 

level. 

First, for cross-referencing significant loci across multiple phenotypes, a phenome-

wide association study (PheWAS) can be performed to uncover pleiotropic effects of 

the investigated risk loci [65]. 
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Another, approach to unravel genetic correlations between different phenotypes is 

LDscore regression (LDSC). This technique is based on a regression analysis 

examining the relationship between a test statistic of a GWAS and linkage 

disequilibrium data, thereby quantifying polygenic effects from confounding factors. 

From that, for a trait under investigation, SNP-based heritability estimates can be 

deducted and correlations to other phenotypes can be estimated. However, this type 

of analysis relies on rather large GWAS sample sizes (> 5000 cases) and heritability 

estimates need to be considered with some caution [66,67]. 

Another method used to estimate the genetic overlap between phenotypes is 

polygenic risk score analysis (PRS). Here, risk alleles identified in a GWAS are 

summed and weighted by their effect sizes. This analysis is not restricted to genome-

wide significant variants, but can also include variants beyond the threshold of 

genome-wide significance. These scores are usually generated in a base dataset and 

then can be applied on a target dataset, e.g. using summary statistics of a trait of 

interest. Correlating these scores can give a strong hint of a causal relationship 

between phenotypes [68]. 
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2 Aim of the Thesis 

This thesis aims at the identification and interpretation of the genetic basis of GC, one 

of the most common malignant tumour entities affecting the human GI tract with a 

multifactorial aetiology. For this purpose, we collected the worldwide largest sample 

of European GC patients analysed so far. Of note, only a few germline genetic studies 

on GC in the European population have been carried out at the time of writing. 

The first aim was to identify common genetic risk variants for GC development through 

a GWAS meta-analysis. Besides analysing the entire sample, we also stratified 

according to tumour location and histologic characteristics in order to identify risk 

variants that show subtype-specific disease association. We then carried out a TWAS 

and eQTL study using our GWAS data and expression data from gastric corpus and 

antrum mucosa in order to identify plausible GC risk genes and mechanisms among 

GWAS loci. 

Another aim of this study was to determine the genetic correlation between GC and 

reported risk factors using LD score regression. Here, we used GWAS data from 

Europeans for various obesity-, reflux-, smoking-, alcohol- and education-

/employment-related phenotypes that are publicly available. Finally, we carried out a 

PRS analysis in order to test whether cardia GC and OAC/BO, which are all located 

at the GOJ, share genetic aetiology. For this analysis we used a large European in-

house OAC/BO GWAS sample. 

In summary, this work should provide new scientific insights into disease-causing 

mechanisms of GC by the integration of different omics data as well as accounting for 

different GC subtypes on the phenotypic level.  
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2 Zielsetzung 

Diese Arbeit befasst sich mit der Identifizierung und Interpretation 

molekulargenetischer Ursachen des Magenkarzinoms, eine der häufigsten malignen 

Tumorerkrankungen des Gastrointestinaltraktes mit multifaktorieller Ätiologie. Zu 

diesem Zweck wurde das bisher größte Kollektiv von Magenkarzinompatienten 

europäischer Herkunft gesammelt und genotypisiert. 

Das erste Ziel war die Identifizierung häufiger genetischer Risikovarianten für die 

Entwicklung von Magenkarzinomen durch eine GWAS-Metaanalyse. Neben der 

Analyse des gesamten Kollektivs, wurde auch nach der Lokalisation und der 

histologischen Klassifikation der Tumore stratifiziert, um Risikovarianten zu 

identifizieren, welche eine subtypspezifische Krankheitsassoziation aufweisen. 

Anschließend wurde eine TWAS- und eine eQTL-Studie durchgeführt, bei welcher die 

GWAS-Daten und intern generierte Transkriptomdatensätze aus verschiedenen 

Bereichen der Magenschleimhaut verwendet wurden, um kausale Gene und 

Mechanismen an den Risikoloci aufzudecken. 

Ein weiteres Ziel dieser Studie war es, die genetische Korrelation zwischen 

Magenkarzinomen und bekannten Risikofaktoren mithilfe von LD score regression zu 

bestimmen. Hierfür wurden öffentlich zugängliche GWAS-Datensätze mit 

übergewicht-, reflux-, rauch-, alkohol- und bildungs-/arbeitsplatzbezogenen 

Phänotypen untersucht. Zusätzlich wurde eine PRS-Analyse durchgeführt, um 

festzustellen ob Karzinome der Kardia und Adenokarzinome des Ösophagus, welche 

beide am gastroösophagealen Übergang lokalisiert sind, eine gemeinsame 

genetische Ätiologie haben. Für diese Analyse wurde ein interner GWAS-Datensatz 

zum Ösophaguskarzinom und Barrett-Ösophagus verwendet. 

Zusammenfassend sollte diese Arbeit neue wissenschaftliche Erkenntnisse über 

krankheitsverursachende Mechanismen für die Entstehung von Magenkarzinomen 

identifizieren. Hierzu wurden omics-Daten verschiedener Ebenen integriert, sowie 

verschiedene Subtypen des Magenkarzinoms berücksichtigt. 
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3 Materials and Methods 

Supplement A gives an overview of the  

▪ devices  

▪ chemicals, buffers, solutions  

▪ commercial systems (kits)  

▪ software and databases 

used to conduct this study. 

3.1 Patient and Control Samples 

The samples described below build the basis for the genetic data generated in this 

work. All studies were conducted in accordance to the Declaration of Helsinki and 

were approved by locally appointed ethic committees at the respective study centres. 

Written informed consent has been obtained from all participants. 

3.1.1 Gastric Cancer GWAS Sample 

For the GC GWAS a total of ten samples were collected across Europe, subdivided 

according to the main nationalities and ethnicities to account for population 

stratification (Figure 3). 

The cases were either collected specifically for this study, were already available in 

different biobanks, or had been collected in the context of other studies. Only cases 

with a histopathologically confirmed gastric adenocarcinoma were included. In 

addition, data on the age of onset, tumour location, classification according to Lauren, 

and the HP status were collected whenever possible. Details on the recruitment 

periods and the different study centres can be found in Supplementary Table 1. For 

the cases retrieved from the Estonian Biobank [69] and the UK Biobank [70] samples 

with a gastric adenocarcinoma according to the ICD-10 code C16 “malignant 

neoplasm of the stomach” were included.  

Population based controls mainly originated from other studies, or were collected and 

genotyped for this study. Controls were selected to match with the respective sample 

of cases with regard to the population and the array technology used for genotyping. 

Details on the control samples regarding the recruitment period and information on the 

original studies are provided in Supplementary Table 2. 
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A total of 5,815 GC patients and 10,999 controls could be included in the GWAS. For 

the subtype-specific analyses 1,291 cardia, 3,183 non-cardia, 1,308 diffuse, and 1,696 

intestinal GC patients were included. A detailed description of all samples is given in 

Table 2. 

The overall sample composition matched roughly to epidemiologic data reported for 

GC, with a total male to female ratio of 1.86 [71]. Also the ratio between non-cardia 

and cardia gastric cancers of 2.47 lies within the margin of what is expected from 

previous reports, while four times more males than females were affected by cardia 

GC.  There was only a marginal difference in the incidence between the intestinal and 

diffuse tumour type (1.3). Male to female ratios regarding tumour type were roughly 

the same for the diffuse, but about twice as high for the intestinal subtype. 

  

Figure 3: European map summarising the different samples collected for the GC GWAS meta-analysis. 
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Table 2: GC-GWAS sample overview. The number of GC patients are listed according to their origin, sex (female, male), location type (cardia, non-cardia) and 
Lauren type (diffuse, intestinal). In addition, the number of controls is listed according to their origin and sex (female, male). 

Samples Entire GC cases 
 

GC location type 
 

GC Lauren type 
 

Controls 
 

 all female/male cardia female/male non-cardia female/male diffuse female/male intestinal female/male all female/male 

German sample 1,837 619/1,218 549 107/442 1,110 444/666 543 253/290 651 158/493 2,701 1,352/1,349 

Iberian sample 931 322/609 175 25/150 733 291/442 281 133/148 408 137/271 871 429/442 

British sample 844 244/600 351 65/286 88 34/54 - -/- - -/- 974 532/442 

Italian sample 597 231/366 75 20/55 401 158/243 100 44/56 271 100/171 1,360 506/854 

Latvian sample 476 188/288 - -/- 83 37/46 127 48/79 100 47/53 475 244/231 

Polish sample 442 172/270 29 6/23 351 141/210 164 82/82 165 46/119 537 268/269 

Swedish sample 246 95/151 27 12/15 135 51/84 - -/- 1 -/1 1,528 842/686 

Lithuanian sample 219 83/136 16 9/7 150 58/92 84 25/59 96 42/54 210 85/125 

French sample 137 37/100 64 9/55 73 28/45 9 5/4 4 1/3 406 122/284 

Estonian sample 86 45/41 5 2/3 59 32/27 - -/- - -/- 1,937 1,101/836 

Total 5,815 2,036/3,779 1,291 (a) 255/1,036 3,183 (b) 1,274/1,909 1,308 590/718 1,696 537/1,159 10,999 5,481/5,518 
 

(a) from 513 cardia GC patients, Lauren information on diffuse GC type (N = 142 (27.68%)) or intestinal GC type (N = 371 (72.32%)) was available 

(b) from 2,156 non-cardia GC patients, Lauren information on diffuse GC type (N = 1,002 (46.47%)) or intestinal GC type (N = 1,154 (53.53%)) was available 
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3.1.2 Gastric Tissue Gene Expression Sample 

In order to determine the transcriptomic differences between stomach regions and to 

conduct eQTL and TWAS analyses, we collected tissue samples from healthy 

individuals undergoing a routine gastroscopy. From all individuals, biopsies from the 

corpus and the antrum were taken. For a subset of participants, additional biopsies 

from the cardia, fundus, and angulus were obtained. To control for environmental 

confounders that may influence the uniformity of the sample, all biopsies were 

collected during the morning and the probands fasted for at least eight hours prior to 

the procedure. Each region was sampled twice in direct proximity. One biopsy was 

preserved for the isolation of nucleic acids and one was taken for histological 

examination. 

Only samples with a regular mucosa, which means no signs of gastritis or low-grade 

gastritis and no infection with HP were included. Histological examination was 

performed at the Institute of Pathology, Clinic of Bayreuth, Bayreuth, Germany. 

A total of 422 participants were included in the study. Details on the recruitment 

centres and number of samples collected are given in Supplementary Table 3. 

3.1.3 Cross-Trait GWAS Sample 

To examine the genetic overlap between the different GC subtypes, OAC, and BO, 

data from a GWAS previously performed at the Institute of Human Genetics, University 

of Bonn, Bonn, Germany was used [72]. Raw genotype data required for several 

analyses were only available for the German in house sample comprising 2,646 cases 

and 2,732 controls. For the overall meta-analysis the entire sample of 10,279 OAC/BO 

cases and 27,326 controls was used. Details on the OAC/BO dataset are given in 

(Supplementary Table 4) 
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3.2 Extraction and Quality Control of Nucleic Acids 

3.2.1 DNA Extraction from EDTA Blood 

In-house array genotyping of samples used in the GC GWAS was performed with 

genomic DNA extracted from EDTA Blood. EDTA blood was collected at different 

study centres, stored at -20°C and sent on dry ice to the Institute of Human Genetics, 

University of Bonn, Bonn, Germany. For DNA extraction, the samples were thawed 

and subjected to the extraction process using the chemagic MSM I Instrument and the 

chemagic DNA Blood 10k Kit (Perkin Elmer, USA) according to the protocol provided 

by the manufacturer. 

For the extraction process, a lysis buffer is added to the blood sample, releasing the 

genomic DNA into solution. The DNA binds to magnetic beads, which are transferred 

through a series of different washing buffers, which clear the sample of proteins and 

other unwanted contaminants. In the last step, the purified DNA is eluted into buffer 

TE and stored until further use at 4°C for short- and at -80°C for long-term storage. 

3.2.2 Nucleic Acid Extraction from Gastric Tissue Samples 

Genotyping and expression analysis for the gastric transcriptome study was 

performed with DNA and RNA extracted from tissue biopsies obtained during routine 

gastroscopies as described above. To prevent RNA degradation, the biopsies were 

directly transferred into vessels containing RNALater Solution (ThermoFisher, USA), 

stored over night at 4°C to immerse the sample with the stabilizing solution and 

subsequently stored at -20°C until shipment and at -80°C until extraction. To prevent 

batch effects, the samples were picked randomly for extraction. 

For DNA and RNA extraction, the tissue biopsies (app. 5-10 mg) had to be 

homogenized first. For this purpose, the samples were transferred into a tube 

containing ceramic beads and a lysis solution. The tubes were loaded into a Precellys 

tissue homogenizer (Bertin Instruments, France), shaking the samples with the beads 

vigorously, thereby grinding the tissue due to bead collisions. The resulting solution 

was subsequently subjected to extraction using the Allprep DNA/RNA Mini Kit 

(Qiagen, Germany) according to the protocol provided by the manufacturer. During 

the silica-column based extraction method, DNA is bound to a silica membrane 

whereas the RNA is collected in the flow-through. After the addition of ethanol to the 

flow-through, it is applied to a second silica-column, binding the RNA. After additional 

washing steps contaminants are removed and the DNA and RNA samples can be 

eluted, subjected to quality control (QC) and stored at -80°C. 
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3.2.3 Quality Control and Quantification of Nucleic Acids 

To determine the quality and quantity of the DNA and RNA samples, all samples were 

measured spectrophotometrically using a NanoDrop ND-1000 or ND-8000 photometer 

(ThermoFisher, USA). The concentration of the samples can be determined by 

absorbance measurements at different wavelengths. This method also allows to make 

assumptions on the presence of protein and salt contaminants, which may impair 

downstream applications. 

For samples that were subjected to RNA-Seq, a more sensitive concentration 

measurement was required. For this purpose, the Qubit RNA BR Assay and the 

Varioscan Platereader (ThermoFisher, USA) were used according to the protocols 

given by the manufacturer. Instead of measuring the absorbance of the sample 

directly, in this assay an intercalating dye is added to the sample. By intercalating with 

the analyte of interest, the dye becomes fluorescent. The fluorescence intensity is 

directly proportional to the amount of analyte present in the sample. Measuring the 

fluorescence intensity with a photometer and by referring it to a previously determined 

standard of known concentrations, allows a precise determination of the concentration 

of the analyte of interest. 

As RNA samples degrade quickly due to contamination with RNAses, the integrity of 

RNA samples had to be determined to prevent a possible confounding effect during 

the expression analysis. For this purpose, the RNA samples were subjected to a high-

resolution gel electrophoresis using the RNA ScreenTape Kit and the TapeStation 

4200 Device (Agilent, USA) as recommended by the manufacturer. For this analysis, 

the RNA in the sample is labelled with an intercalating dye and subjected to a gel 

electrophoresis. A marker added to the sample serves as a start- and end-point 

window during which fluorescent signals are measured. By comparison to a standard 

ladder, the fluorescent intensities can be used to precisely determine the size and 

concentration of RNA molecules present in the sample. To determine the integrity of 

the sample, the abundance of the 28S and the 18S ribosomal RNA (rRNA) subunits 

are set into relation. Briefly, a lower abundance of 28S rRNA in relation to 18S rRNA 

and a low concentration of the rRNA subunits in general indicate RNA degradation. 

From this value, the RNA Integrity Number (RIN) is deduced, which can range from 

10 (no degradation) to 0 (complete degradation) [73]. For this study only samples with 

RIN > 5 were included in transcriptome analysis. 
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3.3 Genotyping and Gene Expression Analysis 

3.3.1 Genome-Wide Genotyping via Illumina Bead Arrays 

For the GC GWAS and the gastric eQTL dataset, genotyping was done using bead 

arrays from Illumina (USA), with exception of genotype data received from the UK 

Biobank (Affymetrix, USA). The array types used for each sample are given in Table 

3. 

All genotypes used for the gastric eQTL dataset and the majority of cases for the GC 

GWAS were generated at the Institute of Human Genetics, University of Bonn, Bonn, 

Germany. The remaining datasets were either obtained from cooperation partners, or 

downloaded from the respective database repositories. 

For in-house genotyping, the different array types were processed semiautomatically 

according to the protocol provided by the manufacturer (Illumina, USA). The prepared 

arrays were scanned by an iScan System (Illumina, USA) to generate genotype raw 

data for downstream analysis. The Infinium array technology relies on silica beads to 

which specific DNA oligos are bound. The oligos contain individual address sequences 

enabling to identify each bead type, and a target sequence, which is complementary 

to a specific human genomic DNA sequence, targeting a single variant of interest. The 

different bead types are mixed, corresponding to the specific SNP content of the final 

array type. The beads are then fixated on the surface of silicon waver, within tiny, 

regular spaced wells. The wells are designed to bind a single bead each. Due to the 

individual address sequences contained in the oligos, the positions of the individual 

beads can be deduced (mapping). For the actual genotyping, the genomic DNA 

sample is prepared and loaded onto the array. Thereby, the respective sequences 

containing the variants of interest hybridize to their complementary oligos attached to 

the beads and get fixated. In a subsequent single base extension step, the target oligo 

is extended with a single fluorescently labelled nucleotide, corresponding to the 

complementary genotype of the SNP under investigation. Afterwards, the array is 

scanned and the fluorescent signals of each position are measured. From the 

fluorescent signal, the intensity and the bead type, the specific genotype of the SNP 

under investigation can be deduced.  

Different array types are designed for different purposes, like examination of specific 

phenotypes or rare variants. Typically, the SNP content ranges from 500.000 up to 

several million. The present study used arrays of the Omni and Global Screening Array 

(GSA) family (see Table 3). These arrays are specifically designed for an efficient 

imputation of common variants. 
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To call the genotypes, the raw data were clustered against a reference dataset using 

the software Genomestudio v2 and the module Genotyping v2 (Illumina, USA) and 

exported in Plink format. 

Table 3: Overview of GWAS genotyping arrays used in each sample. With exception for the data from 
the UK Biobank (Affymetrix, USA), all genotypes were determined using an Illumina (USA) microarray 
platform. 

GC GWAS Sample Array Types Cases Array Types Controls 

British Sample UK Biobank Axiom Array UK Biobank Axiom Array 
Estonian Sample OmniExpress v1.3 OmniExpress v1.3 
French Sample OmniExpressExome v1.3, Omni2.5Exome v1.3 Omni5M 
German Sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.0, OmniExpress v1.1, 

Omni1Quad v1.0 
Iberian sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.3, OmniEURHD 
Italian sample OmniExpressExome v1.3, Omni2.5Exome v1.3 Human1M-Duo 
Latvian sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.3, OmniEURHD 
Lithuanian sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.3, OmniEURHD 
Polish sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.3 
Swedish sample OmniExpressExome v1.3, Omni2.5Exome v1.3 OmniExpress v1.0 

Gastric eQTL Dataset GSA v2.0 

 

3.3.2 Gastric Gene Expression Analysis via Illumina Bead Arrays 

To examine the transcriptomic landscape across different parts of the human stomach, 

gene expression profiles were analysed in 47 RNA samples. The samples were 

derived as described above from tissue biopsies taken from the cardia, fundus, antrum 

and angulus from 9-11 individuals each. 

For expression analysis, the HumanHT‐12v4 Expression BeadChip (Illumina, USA) 

was used according to the protocol provided by the manufacturer. Same as for the 

genotyping array, the gene expression array relies on beads bound to specific oligos 

that can be mapped on the surface of a silica waver. Instead of targeting SNPs, the 

target sequences are complementary to coding regions of specific transcripts. To 

determine the expression levels of the respective transcripts, the RNA samples are 

reversely transcribed into complementary DNA (cDNA) and fluorescently labelled in a 

downstream process. The labelled cDNAs are hybridized to the complementary oligos 

present on the array. Subsequently, the array gets scanned, and the determined signal 

intensities are traced back to each bead and transcript. The fluorescent signal 

intensities thereby correspond to the abundance of the respective transcript in the 

sample and can be set into relation to other samples from different individuals or tissue 

types. 

More than 47.000 transcripts can be analysed utilizing the array type described above. 

The raw data were assigned to the respective transcript and background signal 

intensities were subtracted using the software Genomestudio and the module Gene 

Expression (Illumina, USA). The resulting datasets were then exported for further QC 
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and data normalization. Only probes with a Pdetection < 0.01 in more than 5% of the 

samples were included for analysis. Furthermore, all probes were filtered for unique 

alignment and perfect or good quality as reported in the R package 

illuminaHumanv4.db. The resulting data were then subjected to explorative and 

differential gene expression analyses. 

3.3.3 Gastric Gene Expression Analysis via RNA-Seq 

Due to the discontinued production of the used expression array, the method of 

expression analysis for the larger eQTL and TWAS dataset was changed to 3’ mRNA 

sequencing. 

791 samples from the corpus and antrum were subjected to RNA-Seq using the 

QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen, Austria). 

Libraries were sequenced on a HiSeq 2500 v4 (Illumina, USA) with a read length of 

1x50bp, targeting for a coverage of 10 million reads per sample. To avoid batch 

effects, the samples were randomly picked for the library preparation. 

In contrast to the array technology described above, during RNA-Seq transcripts are 

directly quantified by sequencing. In a first PCR step, oligodT primer containing 

Illumina read linker sequences align to the 3’ poly(A) tail of the mRNA present in the 

sample and synthesize a complementary cDNA strand towards the 5’ end of the 

transcript. Afterwards, the RNA is degraded, and in a second PCR random primers, 

containing an additional linker sequence, are incorporated in the opposite direction. 

This results in a double stranded cDNA library specifically containing the 3’ portion of 

the original transcript. In a subsequent library amplification step, index sequences, 

enabling the identification of a specific sample, as well as adapter sequences are 

added to the cDNA strands. After purification, these samples can be pooled and 

subjected to sequencing. 

The sequencing takes place in a highly parallelized manner. For this, the prepared 

DNA fragments bind randomly to the surface of a glass chamber, called flow cell, by 

hybridizing to printed counterparts of the incorporated adapter sequences. In a 

process called bridge amplification, the bound fragments are amplified. Because the 

fragments are bound to the flow cell surface, the produced copies stay in close 

proximity and form clusters. The actual nucleic acid sequence of these clusters is 

determined in a process called sequencing by synthesis. Thereby, the bound clusters 

are used as template strands in a reversible single base extension PCR with base 

specific fluorescently labelled nucleotides, followed by a scan for fluorescent intensity. 

After each base elongation, the labels are enzymatically cut off and the cycle is 

repeated. The position, the type and the intensity of the fluorescent signals are 
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registered. The resulting changes in fluorescence for the different clusters represent 

the actual nucleotide sequence of the initially bound nucleic acid strand. The 

incorporated index sequences allow the identification of the associated sample, for 

which all sequences are collected and stored in a single fastq file. 

As compared to full transcript sequencing, the 3´-mRNA sequencing approach results 

in a single sequence read per transcript. The advantage is that a comparable low read 

coverage leads to robust data for quantification of gene expression given in transcripts 

per million (TPM). 

To determine the expression levels of single transcripts and to make them usable for 

eQTL and TWAS analyses, the data needs to be controlled for quality issues and the 

expression values need to be normalized between samples. First, the adapter 

sequences need to be removed and the sequences need to be aligned to a reference, 

assigning them to a specific transcript. The quality control (QC) was performed with 

FastQC v0.11.7. For adaptor trimming, bbduk from the BBMap v 37.44 was used. The 

read alignment against GRCh38 was performed with STAR Aligner 2.5.2b. 

FeatureCounts v1.5.1 was used for quantification of gene expression using the 

Ensembl annotation GRCh38.89 as reference [74,75]. All parameters were used as 

recommended by the Lexogen‘s QuantSeq 3’ mRNA-Seq Kit and an integrated data 

analysis platform. All samples covered with at least three million reads were included 

in the downstream analyses. Uninformative transcripts were removed from analysis 

keeping only those with an expression above six counts per million in at least 20% of 

samples. The count values between samples were normalized using edgeR trimmed 

mean of M value normalization and expression for each gene was normalized by 

inverse normal transformation [76]. 

3.4 Quality Control, Statistics and Downstream Analyses 

QC and statistical analyses of the retrieved data were performed in close collaboration 

with the Institute of Medical Biometry, Informatics and Epidemiology (IMBIE) and the 

Institute for Genomic Statistics and Bioinformatics (IGSB), University of Bonn, Bonn, 

Germany. Especially, many analyses were done in close cooperation with PD Dr. 

Michael Knapp, B.Sc. Jan Gehlen, M.Sc. Vitalia Schueller, Dr. Carlo Maj and Dr. Oleg 

Borisov.  
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3.4.1 Preimputation Quality Control of Genotype Data 

Prior to imputation, the genotype datasets were checked for problems concerning data 

quality issues due to mismatched patient-phenotype information or technical reasons 

during processing. Due to the different array platforms used, the QC criteria differed 

slightly between the GWAS and the TWAS/eQTL dataset. 

First, data sets with a call rate < 97% were excluded from further analysis. Insufficient 

call rates may be due to problems during the genotyping procedure or due to 

insufficient DNA quality.  

Second, to identify genotyping issues for specific variants across the datasets, SNPs 

were removed from each control and case sample of the GWAS dataset, if the MAF 

was < 1%, if the genotyping rate was < 95%, or if the P-value for Hardy-Weinberg 

equilibrium (HWE) was < 10-04 in controls and < 10-06 in cases. For the TWAS/eQTL 

the same criteria were applied, except that the limit for the genotyping rate was < 90% 

and the P-value for the HWE was < 10-06. 

In a third step, the reported and the genetic gender were checked for mismatches to 

identify possible sample swaps. For this purpose, the rate of X-chromosomal 

heterozygous genotypes was determined. A rate of heterozygous SNPs < 2% was 

supposed for males and >10% for female individuals. Mismatches with the reported 

gender were followed up to identify the source of given sample swaps and corrected. 

If the swap could not be dissolved, the samples were excluded from further analysis. 

Furthermore, closely related individuals or duplicates were removed from the analysis 

using PLINK version 1.9 [77] and KING [78]. From each pair of individuals with an 

estimated identity by descend probability > 0.2 or kinship coefficient > 0.0884, the 

individual with higher rate of missing genotypes was discarded. 

To account for population stratification, each sample was checked for individuals being 

outliers in a multidimensional scaling analysis indicating an origin deviating from the 

Central European (CEU) population investigated in this study. Respective outliers 

were excluded from the further analysis. 

3.4.2 Imputation and Postimputation Quality Control of Genotype Data 

With the exception of the already imputed British and Estonian case-control samples, 

the genotype datasets were subjected to imputation to deduce the genotypes of 

common variants that were not directly determined by array genotyping. 
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For the GWAS samples, the TOPMed Imputation Server using the TOPMed 

Reference panel was used [79]. For the TWAS/eQTL dataset, Impute2 was used [80], 

utilizing the 1000 Genomes Phase 3 as reference [50]. 

In the post-imputation QC, variants with an r2 < 0.3 (for the GWAS data) and an 

information score < 0.8 (for the TWAS/eQTL dataset), a HWE deviation of P  < 10-6 in 

patients or P  < 10-4 in non-patients, a minor allele frequency (MAF) < 1% or a SNP-

missing rate > 5% for best-guessed genotypes at posterior probability > 0.9 were 

excluded.  

3.4.3 Genome-Wide Association Study and Meta-Analysis 

Significant differences in genotype allele frequencies between cases and controls 

indicate an association of a variant to the phenotype under investigation. Thus, we 

used the imputed genotype data to perform a GWAS in the entire GC sample and the 

GC subtypes. 

We performed an association test considering an additive genetic model adjusting for 

five principal components (PCs) using PLINK2 for each sample [77]. The association 

analysis was performed for all national samples separately. Afterwards, a meta-

analysis considering the fixed-effects inverse variance-weighting approach 

implemented in METAL was performed [81]. The same analysis was repeated after 

filtering the cases for the subtypes considering tumour location (cardia and non-

cardia), tumour type according to Lauren (diffuse and intestinal) and gender. As 

subtype information was not present for all samples, only national collectives with 

Ncases> 10 were included in the respective subtype meta-analyses. By convention, 

variants with a P-value < 5×10-8 were considered being genome-wide significant [82]. 

In order to estimate whether associated loci are subtype specific, the cases of the 

cardia and non-cardia subsamples, and of the intestinal and diffuse cases were 

compared in a case against case comparison as described above.  

To identify independent association signals, which means that an association signal 

prevails after stratification for the top variant at the locus, a conditional analysis was 

performed. For this purpose, a stepwise selection procedure as implemented in 

GCTA-COJO (GCTA version 1.93.0beta) was applied [83]. 

As the study revealed associated variants at the ABO locus, we inferred the ABO blood 

types of the individual samples according to Groot et. al. 2020 [84]. By combining the 

allelic expression of two single variants (rs8176746 and rs8176719), which taq the 

blood groups A/B and O/non-O respectively, the blood types can be determined. The 
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inferred blood groups were then tested for GC association using logistic regression 

analysis. 

3.4.4 Phenome-Wide Association Study 

In order to check whether the identified loci in the GWAS overlap with already identified 

disease associations, the lead variants were tested for significant association in 

already published datasets comprising the GWAS Catalog [60], UKBiobank [85] and 

FinnGen [86]. For this purpose, the database Open Targets Genetics Portal was used 

[87], considering a P < 0.005 as significant. 

3.4.5 Differential Gene Expression across Five Gastric Regions 

To characterize the transcriptomic landscape across the human stomach and in order 

to prioritize the gastric regions of interest for the larger eQTL dataset, the dataset with 

expression array data from five different stomach locations was subjected to 

explorative and differential gene expression (DE) analyses. For explorative analysis, 

the intensity data was quantile normalized using the R package Limma [88]. By 

principle component analysis (PCA) and unsupervised clustering, outliers and 

uniformity of transcriptomes between gastric locations was examined. DE analysis 

was done by determining significant differences in expression intensities (P < 0.05), 

with a delta in expression intensities > 80, and a fold change (FC) ≤ -2 or ≥ 2 across 

the examined groups. For pathway enrichment analysis, the online tool Enrichr was 

used [89]. 

3.4.6 Expression Quantitative Trait Locus Analysis 

To identify variants with an effect on gene expression, it was examined whether the 

identified GC associated variants were listed in the Genotype-Tissue Expression 

project (GTEx) database [64] or were present in the corpus and antrum eQTL datasets 

generated within this study. 

For the eQTL analysis, the quality controlled and normalized RNA-seq and genotype 

datasets were used as described above. The analysis was conducted for the corpus 

and antrum tissue samples separately. eQTLs were called using QTLtools [90] 

according to parameters used by GTEx project [64]. Briefly, sex, three genotype-

based PCs and a set of probabilistic estimations of expression residuals (PEER) 

factors derived from the normalized expression data were used for adjustment. A 

window of 1 Mb around the transcription start site (TSS) of each gene was defined for 

cis-eQTL detection. SNP-gene pairs were considered significant with a nominal P-
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value below a genome-wide empirical P-value threshold (Pt) determined for each gene 

by extrapolation from a Beta distribution fitted to adaptive permutations. 

3.4.7 Transcriptome-Wide Association Analysis 

Using the expression and genotype data from antrum and corpus, a TWAS was 

performed in order to prioritize GC risk genes at GWAS loci. The analysis was done 

for both tissues in all GC subsamples. We created expression prediction models for 

all genes in the transcriptome data with FUSION [91] using local SNPs present in the 

HapMap3 and our GC GWAS data (500 kb up- and downstream of the annotated gene 

TSS). Due to computational reasons, we omitted the use of the bslmm model. For 

each gene, the predicted gene expression was correlated with the GWAS data using 

LD data from prediction models in order to identify significant expression disease 

associations after Bonferroni-correction for the number of tested genes (Pcorpus = 0.05 

/ 3,269 = 1.5 x 10-5, Pantrum = 0.05 / 4,182 = 1.1 x 10-5). Conditioning the data for the 

expression of identified genes was done to ensure that the association at the 

respective locus was sufficiently explained by the identified expression patterns. 

3.4.8 LD Score Regression Analysis 

To estimate the SNP-based heritability of GC and to identify genetic correlation to 

other phenotypes, a LD score regression analysis was performed using LDSC (v1.0.1) 

without changing the default parameters [92]. Thereby, the focus was set on 

phenotypes related to known GC risk factors (obesity, smoking, alcohol intake and 

socio economic status), which were available in the LD Hub database [93] based on 

data from the UKBiobank [85] and other publicly available GWAS summary statistics. 

A minimum number of app. 5.000 cases is required to perform a LD score regression. 

For this reason, only the entire GC GWAS sample was analysed, omitting the GC 

subtypes. Considering the total number of investigated traits, we defined an 

experiment-wide significance threshold using Bonferroni-correction (P = 0.05 / 20 = 

2.5 x 10-3).  
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3.4.9 Polygenic Risk Score Analysis 

As LD score regression was not suitable to determine genetic overlap between GC 

subtypes due to small sample sizes, we utilized PRS analysis to examine whether a 

shared polygenic risk architecture between cardia GC, non-cardia and OAC exists. 

First, individual level PRS were computed by considering in-house GWAS data from 

2,646 German OAC/BO patients and 2,732 German controls as base associations. 

The dataset was part of a GWAS meta-analysis published previously [94] and for 

which individual genotype data were available (Supplementary Table 4). To prevent 

an overlap of controls, all German controls were excluded in the OAC/BO sample, that 

were used in the GC-GWAS before. PRS were calculated after clumping (250 kb 

regions, clump-p = 1, clump-r2 = 0.1) by testing different P-value thresholds (from 

genome-wide significant (P = 5 x 10-8) to the full model (P = 1)) using PRSice tool [95] 

. As for the GWAS, the analysis was performed independently in each national sample 

considering the overall GC status. Logistic regression models between PRS and the 

phenotypic status were computed. The single-sample PRS regression coefficients 

(beta and standard error) were then combined into meta-analysis using the restricted 

maximum-likelihood (REML) estimator as implemented in the R package metaphor. 

3.4.10 Cross-Trait GWAS Meta-Analysis 

As the PRS analysis indicated a significant polygenic correlation between cardia GC 

as well as OAC  and OAC/BO (see chapter 4.3.2), we conducted a cross-trait GWAS 

meta-analysis using the cardia GC and the German OAC/BO samples to identify 

additional risk loci. In addition, we used GWAS summary statistics from the other 

OAC/BO datasets that were published previously [94]. Supplementary Table 4 lists all 

samples that were included in the cross-trait GWAS meta-analysis, which was 

performed considering the fixed-effects inverse variance-weighting approach 

implemented in METAL [81]. 
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4 Results 

4.1 Gastric Cancer GWAS 

4.1.1 Genome-Wide Significant Gastric Cancer Risk Loci 

A total of six loci reached genome-wide significance in the GC meta-analysis across 

all subtypes examined: MUC1 (1q22), NEGR1 (1p31), ALK (2q23), PSCA (8q24), 

HNF1B (17q12), and KLF6 (10p15). One independent signal was revealed by 

conditional analyses on 1q22. In addition, three previously described risk loci in the 

Asian population were replicated to confer to the risk of developing GC in the 

European population: ANKRD50 (4q28), PTGER4 (5p13), and ABO (9q34). For most 

of the identified loci, the eQTL and TWAS analysis revealed functional evidence by 

implicating transcriptional changes. 

Details on the lead variants regarding the association signals in the different subtypes 

and their frequency across populations are given in Table 4. An overview of the 

genomic inflation quantile-quantile (QQ) plots and Manhattan-plots are given in 

Supplementary Figure 1 and Supplementary Figure 2. The effect sizes and directions 

across the single European samples included in the meta-analysis are presented in 

Supplementary Figure 3. 

In the following, each locus will be presented in detail including a presentation of the 

results of the eQTL and TWAS analyses performed. The eQTL and TWAS are 

presented in more detail in the chapters 4.2.2 and 4.2.3. 
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Table 4: Lead associations of genome-wide significant and replicated GC risk loci. The associations are shown for the risk alleles (effect alleles) in the entire GC 
sample as well as in the location-specific (cardia, non-cardia) and Lauren-specific (diffuse, intestinal) GC samples. P-values, odds ratios (ORs) and the 
corresponding 95% confidence intervals (CIs) are shown. Allele frequencies for the associated SNPs among patients and controls are not given, as the GWAS 
samples were meta-analyzed. Instead the frequency of effect alleles in the European population are shown according to gnomAD [52]. In addition, on chromosome 
1q22, 4q28, 5q13, 8q24 and 9q34 the LD between the lead GC SNPs in the present and East Asian GWAS are shown. At all five loci, the same alleles contribute 
to GC risk across populations. 

SNP Chromosome 
(position in bp 

(hg38)) 

Effect / 
other 

allele (a) 

Entire GC sample Cardia GC sample Non-cardia GC sample Diffuse GC sample Intestinal GC sample 

P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI 

rs760077 (b) 1q22 (155.208.991) T/A 5.23E-21 1.27 1.21-1.34 4.45E-02 1.09 1.00-1.19 5.12E-17 1.31 1.23-1.40 7.41E-11 1.35 1.23-1.48 1.78E-07 1.24 1.14-1.35 

rs67579710 (c) 1q22 (155.203.736) G/A 5.89E-13 1.21 1.11-1.31 - - - 4.62E-12 1.27 1.15-1.42 - - - - - - 

rs11677924 2q23 (29.500.326) G/C 2.37E-07 1.19 1.11-1.27 5.91E-03 1.17 1.04-1.32 1.29E-05 1.20 1.10-1.30 1.90E-03 1.20 1.07-1.35 2.04E-08 1.34 1.21-1.49 

rs10029005 (b) 4q28 (124.530.209) A/G 4.69E-04 1.09 1.04-1.15 9.31E-01 1.00 0.91-1.09 4.37E-04 1.12 1.05-1.19 2.24E-02 1.11 1.01-1.21 7.72E-02 1.08 0.99-1.16 

rs6897169 (b) 5q13 (40.726.036) C/T 2.96E-04 1.13 1.06-1.21 2.65E-01 1.07 0.95-1.19 9.40E-05 1.18 1.09-1.28 4.20E-02 1.13 1.00-1.23 1.18E-02 1.15 1.03-1.27 

rs2920293 (b) 8q24 (142.683.996) G/C 2.84E-32 1.39 1.31-1.47 1.14E-01 1.08 0.98-1.19 1.80E-30 1.46 1.36-1.55 8.10E-17 1.46 1.33-1.60 4.05E-09 1.27 1.17-1.37 

rs532436 (b) 9q34 (133,274,414) A/G 7.51E-05 1.22 1.07-1.22 4.95E-01 1.04 0.93-1.17 5.82E-06 1.19 1.10-1.28 8.52E-07 1.29 1.17-1.44 3.02E-03 1.15 1.05-1.26 

rs17138478 17q12 (37.713.312) C/A 4.30E-06 1.19 1.10-1.28 3.96E-02 1.15 1.00-1.31 6.98E-04 1.17 1.07-1.29 8.83E-01 1.00 0.88-1.14 1.83E-08 1.44 1.27-1.64 

 

(a)  Frequency of effect alleles in the European (non-Finnish) population according to gnomAD [52]. rs760077 allele T 59%, rs67579710 allele G 90%, rs11677924 allele G 15%, rs10029005 allele A 42%, 

rs6897169 allele C 17%, rs2920293 allele G 47%, rs17138478 allele C 86%.  

(b) rs760077 corresponds to the lead GC SNP on chromosome 1q22 in the East Asian population [6, 11]. r2 of 0.63 between rs10029005, the lead GC SNP on chromosome 4q28 in the East Asian 

population [11], and rs7667950, the lead GC SNP at this locus in Europeans (P = 9.42 x 10-05 (OR = 1.12) in non-cardia GC cases). r2 of 0.70 between rs6897169, the lead GC SNP on chromosome 

5q13 in the East Asian population [11], and rs16870224, the lead GC SNP at this locus in Europeans (P = 3.55 x 10-05 (OR = 1.23) in non-cardia GC cases. r2 of 0.88 between rs2920293 and rs2978977, 

the lead GC SNP on chromosome 8q24 in the East Asian population. rs532436 corresponds to the lead SNP rs7849280 in the East Asian population [12] and is in LD (r2=0.76), however, no LD is 

observed in the European population (r2=0.01) [6]. 

(c) rs67579710 was the only variant that showed additional association in the entire study after conditioning on lead SNPs using COJO [83]. The independent association signal on chromosome 1q22 

appeared in the entire and non-cardia GC sample and, thus, the associations are not shown for the other location- or Lauren-specific GC samples 
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4.1.1.1 Genome-Wide Significant Risk Locus on Chromosome 1q22 

On chromosome 1q22 a strong association signal was observed in the entire GC 

sample with rs760077 being the lead variant (odds ratio [OR] = 1.27; 95% confidence 

interval [CI] = 1.21-1.34; P = 5.23 x 10-21). Analysis of the subtypes revealed a strong 

association in the non-cardia (OR = 1.31; 95% CI = 1.23-1.40; P = 5.12 x 10-17) and 

diffuse GC subsamples (OR = 1.35; 95% CI = 1.23-1.48; P = 7.41 x 10-11), whereas 

the signal was considerably lower in the intestinal (OR = 1.24; 95% CI = 1.14-1.35; P 

= 1.78 x 10-07) and almost absent in the cardia GC subsample (OR = 1.09; 95% CI = 

1.00-1.19; P = 0.45) (Table 4 and Figure 4). 

rs760077 is a missense variant located within the coding region of exon 1 of MTX1 

and about 16 kb upstream of MUC1. In the in-house eQTL datasets, significant cis-

eQTLs were identified, showing an upregulation of MUC1 being associated to the GC 

risk conferring genotype in the corpus and antrum, and an upregulation for THBS3 in 

the antrum (Table 9 and Figure 5). 

These results were further supported by the results of the TWAS analyses, showing a 

transcriptome-wide significant upregulation of MUC1 and THSB3 in the antrum and an 

upregulation of MUC1 in the corpus expression dataset for the non-cardia and 

intestinal GC subsamples respectively (Table 10). To assess the amount of residual 

association after accounting for the predicted MUC1-expression, a conditional 

analysis was performed. This revealed that the MUC1-expression explains most of the 

GWAS signals in corpus mucosa (Supplementary Figure 10). The upregulated MUC1-

expression was considerably less significant GC-associated in antrum mucosa (non-

cardia GC: P = 5.26 x 10-06, diffuse GC: P = 1.01 x 10-05) than in corpus mucosa (Table 

10). 

The same variant was already reported be associated to GC in the Asian population 

(Table 4). Moreover, the variant showed a number of significant associations to other 

phenotypes including weight and red blood cell count (Supplementary Table 6). 

After conditioning for rs760077, an independent signal in the entire GC (OR = 1.21; 

95% CI = 1.11-1.31; P = 5.89 x 10-13) and non-cardia GC sample (OR = 1.27; 95% CI 

= 1.15-1.42; P = 4.62 x 10-12) remained for rs67579710, which is located app. 5 kb 

upstream rs760077 within intron 4 of THSB3. 
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Figure 4: Regional association plots of GC risk locus 1q22 for non-cardia and cardia GC. Associations (-log10(P-
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 

Figure 5: eQTL effects for the expression of MUC1 on chromosome 1q22 in (a) corpus and (b) antrum. Log2 gene 
expression, error bars for median log2 expression and standard deviation are shown as box plots (y axis) sorted by 
SNP genotypes (x axis) with the GC risk allele on the left. 
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4.1.1.2 Genome-Wide Significant Risk Locus on Chromosome 2q23 

In the intestinal GC sample, rs11677924 on chromosome 2q23 showed genome-wide 

significant association (OR = 1.34; 95% CI = 1.21-1.49; P = 2.04 x 10-8). The signal 

was also present in the entire GC sample, although not being genome-wide significant 

(OR = 1.19; 95% CI = 1.11-1.27; P = 2.37 x 10-7). By contrast, in the diffuse GC sample 

the variant showed only weak association (OR = 1.20; 95% CI = 1.07-1.35; P = 0.002) 

(Table 4 and Figure 6). 

rs11677924 is located in intron 4 of ALK. The locus has not been described in other 

GC GWAS before. In addition, no significant eQTL effects, TWAS or PheWAS 

associations could be identified for the indicated variant nor the respective locus. 

  

Figure 6: Regional association plots of GC risk locus 2q23 for intestinal and diffuse GC. Associations (-log10(P-values)) 
are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead variant is 
shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of LD (r2) to 
the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their transcription 
direction. 



Results 

39 

4.1.1.3 Genome-Wide Significant Risk Locus on Chromosome 8q24 

The strongest GC association signal in the entire sample was observed for rs2920293 

(OR = 1.39; 95% CI = 1.31-1.47; P = 2.84 x 10-32). The variant was also found to be 

highly significant in the non-cardia GC (OR = 1.46; 95% CI = 1.36-1.55; P = 1.80 x 10-

30) and the diffuse GC sample (OR = 1.46; 95% CI = 1.33-1.60; P = 8.10 x 10-17). By 

contrast, the signal was of considerably lower significance and effect size in the 

intestinal sample (OR = 1.27; 95% CI = 1.17-1.37; P = 4.05 x 10-09), and absent in 

cardia GC (OR = 0.92; 95% CI = 0.83-1.02; P = 0.114) (Figure 7). The direct case to 

case comparison revealed a significant signal for the non-cardia versus cardia cases 

(OR = 1.29.; 95% CI = 1.16-1.45; P = 4.00 x 10-06) (Supplementary Table 5). 

rs2920293 is not biallelic and as such not present in publicly available and the in-

house eQTL datasets. For this reason, we included rs2920292 in the analysis, being 

located 285 bp upstream and showing similar effect sizes in the entire GC sample (OR 

= 1.34; 95% CI = 1.28-1.41; P = 5.53 x 10-31), and the strongest signal in the non-

cardia sample (OR = 1.46; 95% CI = 1.37-1.55; P = 3.48 x 10-31). 

The variant rs2920292 is located in a non-coding region app. 1 kb upstream the TSS 

of PSCA.  

In the in-house eQTL datasets, rs2920292 was found to account for one of the 

strongest eQTL effects observed in the entire sample, whereby the risk allele is 

associated with an increase in PSCA transcription in corpus as well as antrum tissue. 

To a lesser extent, THEM6 is upregulated also in both tissues. Furthermore, in the 

corpus tissue, LY6K is up- and LYNX1 is downregulated (Table 9). 

Comparable effects for the locus were observed in the TWAS analysis, with PSCA, 

LY6K, THEM6 and LYNX1 showing transcriptome-wide significance (Table 10). In 

addition, conditional analyses in the TWAS revealed PSCA as the only gene whose 

expression explained most of the GWAS signals (Supplementary Figure 9). As 

observed in the GWAS, the TWAS signals were not present in the cardia subsample 

and more pronounced in the diffuse type as compared to the intestinal type. 

The 8q24 locus has been described to be associated to GC in several GWAS in the 

Asian population before (Table 4). This finding was replicated in the PheWAS along 

with an increased risk for malignant neoplasms of the bladder and a protective effect 

for the development of gastric and duodenal ulcers (Supplementary Table 7). 
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Figure 7: Regional association plots of GC risk locus 8q24 for non-cardia and cardia GC. Associations (-log10(p- 
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 

Figure 8: eQTL effects for the expression of PSCA on chromosome 8q24 in (a) corpus and (b) antrum. Log2 gene 
expression, error bars for median log2 expression and standard deviation are shown as box plots (y axis) sorted by 
SNP genotypes (x axis) with the GC risk allele on the left. 
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4.1.1.4 Genome-Wide Significant Risk Locus on Chromosome 17q12 

Another genome-wide significant signal was observed in the GC intestinal sample for 

the variant rs17138478 on chromosome 17q12 (OR = 1.44; 95% CI = 1.27-1.64; P = 

1.83 x 10-8) (Figure 9). This variant showed a suggestive association in the entire GC 

(OR = 1.19; 95% CI = 1.10-1.28; P = 4.30 x 10-6), but no association in the diffuse GC 

sample (P = 0.883) (Table 4). The direct case to case comparison between intestinal 

and diffuse GC, indicates a specific association for the intestinal tumour type (OR = 

1.47; 95% CI = 1.25-1.73; P = 4.38 x 10-6). 

The variant rs17138478 is located in the intron 4 of HNF1B. No significant eQTLs or 

TWAS signals were detected at this locus. 

The variant has not been described in the context of GC before. However, in the 

PheWAS the variant could be associated, among others, with an elevated risk for 

prostate cancer, elevated liver enzyme transaminase levels and cholelithiasis 

(Supplementary Table 8).  

  

Figure 9: Regional association plots of GC risk locus 17q12 for intestinal and diffuse GC. Associations (-log10(P -
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 
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4.1.2 Sex-Specific Gastric Cancer Risk Loci 

As incidences and risk factors for developing GC are deviating between males and 

females [34], we also performed GWAS stratifying for gender. For the genome-wide 

significant loci described above, no sex specific effects were observed (data not 

shown). However, two additional genome-wide significant loci could be identified at 

chromosome 1p31 and 10p15, specifically being associated in the female cardia and 

female non-cardia subsamples respectively (Table 5). 

Table 5: Lead associations of genome-wide significant and sex specific GC risk loci. The associations 
are shown for the risk alleles (effect alleles) in the entire GC sample as well as in the location-specific 
(cardia, non-cardia) GC samples stratified according to gender. P-values, odds ratios (ORs) and the 
corresponding 95% confidence intervals (CIs) are shown. Allele frequencies for the associated SNPs 
among patients and controls are not given, as the GWAS samples were meta-analyzed. Instead, the 
frequency of effect alleles in the European population are shown according to gnomAD [52].  

 

(a)  Frequency of effect alleles in the European (non-Finnish) population according to gnomAD [52]. rs2590943 allele A 18%, 

rs1547179 allele G 70%. 

4.1.2.1 Female-Specific Risk Locus on Chromosome 1p31 

One sex-specific locus is located on chromosome 1p31 with rs2590943 showing the 

strongest association signal in the female cardia sample (OR = 1.93; 95% CI = 1.56-

2.38, P = 1.21 x 10-9). The signal was absent in the female non-cardia sample (P = 

0.330), as well as absent in the male cardia sample (P = 0.675). 

rs2590943 is a non-coding variant, app. 125 kb upstream the nearest gene NEGR1. 

No antrum or corpus specific eQTLs could be identified in this region. 

The variant has not been described in the context of GC before. In the PheWAS 

analysis, a strong association for an elevated BMI and related phenotypes such as 

GERD were observed (Supplementary Table 9). We further checked whether for these 

phenotypes sex-specific effects can be observed in publicly available datasets [96], 

however, no clear effect was seen (Table 6). 

  

SNP 
Chromosome 
(position in bp 

(hg38)) 

Effect / 
other 

allele (a) 

Entire GC Cardia GC Non-cardia GC 

P-value OR 95% CI P-value OR 95% CI P-value OR 95% CI 

 Female 

rs2590943 1p31 (72,408,773) A/G 9.02E-03 1.15 1.04-1.28 1.21E-09 1.93 1.56-2.38 3.30E-01 1.07 0.94-1.22 

rs1547179 10p15 (4,379,326) G/T 1.70E-07 1.27 1.16-1.39 2.06E-01 1.13 0.93-1.37 2.18E-08 1.38 1.23-1.54 

   Male 

rs2590943 1p31 (72,408,773) A/G 8.76E-01 1.01 0.92-1.10 8.32E-01 1.01 0.90-1.13 8.32E-01 1.01 0.90-1.13 

rs1547179 10p15 (4,379,326) G/T 1.85E-01 0.95 0.88-1.02 2.20E-01 0.94 0.86-1.04 2.20E-01 0.94 0.86-1.04 
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Table 6: Associations of rs2590943 for BMI and GERD in the UKBB [70] stratified according to gender 
are shown. P-values, odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) are 
shown. 

 

 

 

 

  

SNP 
Chromosome 
(position in bp 

(hg38)) 

Effect / 
other 
allele 

BMI GERD 

P-value OR 95% CI P-value OR 95% CI 

 Female 

rs2590943 1p31 (72,408,773) A/G 3.08E-07 1.02 1.01-1.03 5.01E-04 1.00 1.00-1.00 

   Male 

rs2590943 1p31 (72,408,773) A/G 3.02E-18 1.04 1.03-1.05 9.38E-02 1.00 1.00-1.00 

Figure 10: Regional association plots of GC risk locus 1p31 for female and male cardia GC. Associations (-log10(P-
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 
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4.1.2.2 Female-Specific Risk Locus on Chromosome 10p15 

The second sex-specific genome-wide significant signal was found on chromosome 

10p15. The variant rs1547179 showed the strongest signal in the female non-cardia 

sample (OR = 1.38; 95% CI = 1.23-1.54, P = 2.18 x 10-8) and was absent both in the 

female cardia sample (P = 0.206) and cardia male sample (P = 0.345). 

The variant is located in a non-coding region with AKR1E2 being the closest coding 

gene located app. 450 kb downstream. No antrum or corpus specific eQTLs could be 

identified. Also in the PheWAS, no significant associations could be observed. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

4.1.3 Replication of Asian Gastric Cancer Risk Loci 

As described above, the risk loci on chromosome 1q22 and 8q24 were already known 

to be associated to GC in the Asian population and showed genome-wide significance 

in the present European analysis (Table 4). In addition, we checked the remaining 

eight risk loci reported in the Asian GWAS for replication in our sample (Table 7). We 

confirmed three loci to be associated in the European population, while for the 

remaining five loci no association was found. 

  

Figure 11: Regional association plots of GC risk locus 10p15 for female and male non-cardia GC. Associations (-
log10(P-values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The 
lead variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels 
of LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 
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Table 7: GC associations of East Asian risk loci in Europeans. All associations are shown for the risk alleles (effect alleles) obtained in the 
East Asian GWAS studies. P-values are shown for the entire GC sample in the present study. P-values, odds ratios (ORs) and the 
corresponding 95% confidence intervals (CIs) are shown for the entire GC sample in the present study. 

GWAS SNP SNP location (in bp (hg38)) GWAS (publication) Implicated gene(s) 
Effect allele / 

other allele 
P-value OR 95% CI 

rs4072037 1q22 (155,192,276) Wang et al. (2017) Gut [10] MUC1 T/C 7.88E-07 1.13 1.07 to 1.19 

rs760077 1q22 (155,208,991) 
Yan et al. (2019) Gut [11] ; Ishigaki et al. 

(2020) Nat. Genet. [6] 
MTX1, THBS3 T/A 5.23E-21 1.27 1.21 to 1.34 

rs80142782 (a) 1q22 (155,515,486) Wang et al. (2017) Gut [10] MUC1, ASH1L NA NA NA NA 

rs1057941 1q22 (155,216,951) Tanikawa et al. (2018) Cancer Sci. [12] MUC1 G/A 1.9E-14 1.22 1.16 to 1.28 

rs117950304 1p31 (80,854,393) Tanikawa et al. (2018) Cancer Sci. [12] RPL7P10 A/G NA NA NA 

rs78390645 2q24 (159,394,138) Tanikawa et al. (2018) Cancer Sci. [12] BAZ2B C/A NA NA NA 

rs7624041 3q11 (94,389,819) Yan et al. (2019) Gut [11] NSUN3 G/A 0.251 1.05 0.96 to 1.16 

rs9841504 3q13 (11,4643,917) Shi et al. (2011) Nat Genet [8] ZBTB20 G/C 0.768 1.01 0.92 to 1.11 

rs10029005 4q28 (124,530,209) Yan et al. (2019) Gut [11] ANKRD50 A/G 4.69E-04 1.09 1.04 to 1.05 

rs6897169 5p13 (40,726,036) Yan et al. (2019) Gut [11] PRKAA1, PTGER4 C/T 2.69E-04 1.13 1.05 to 1.20 

rs3805495 5p13 (40,755,466) Ishigaki et al. (2020) Nat. Genet. [6] TTC33 C/T 3.04E-04 1.11 1.04 to 1.17 

rs10074991 5p13 (40,790,449) Hu et al. (2015) Gut [5] PRKAA1, PTGER4 G/A 7.01E-04 1.10 1.04 to 1.16 

rs13361707 5p13 (40,791,782) 
Shi et al. (2011) Nat Genet [8], Tanikawa 

et al. (2018) Cancer Sci. [12] 
PRKAA1, PTGER4 C/T 6.56E-04 1.10 1.04 to 1.16 

rs7712641 5q14 (89,607,397) Wang et al. (2017) Gut [10] Inc-POLR3G T/C 0.422 1.02 0.96 to 1.07 

rs2494938 6p21 (40,568,389) Jin et al. (2012) Am J Hum Genet [9] LRFN2 G/A 0.499 0.98 0.93 to 1.03 

rs2294693 6p21 (41,037,763) Hu et al. (2015) Gut [5] UNC5CL C/T 0.791 0.99 0.93 to 1.05 

rs2978977 8q24 (142,674,302) 
Ishigaki et al. (2020) Nat. Genet. [6], 

Tanikawa et al. (2018) Cancer Sci. [12] 
JRK, PSCA A/C 0.122 1.10 0.97 to 1.26 

rs2294008 8q24 (142,680,513) 

Sakamoto et al. (2008) Nat Genet [6], 

Wang et al. (2017) Gut [10], Tanikawa et 

al. (2018) Cancer Sci. [12] 

PSCA C/T 7.51E-30 0.74 0.70 to 0.78 

rs7849280 9q34 (133,251,249) Tanikawa et al. (2018) Cancer Sci. [12] ABO A/G 0.049 0.99 0.90 to 1.09 

rs532436 9q34 (133,274,414) Replication in European population (b) ABO A/G 7.51E-05 1.22 1.07 to 1.22 

rs10509671 10q23 (94,309,297) Yan et al. (2019) Gut [11] PLCE1, NOC3L G/T 0.992 1.00 0.94 to 1.05 

rs3781264 10q23 (94,310,618) Abnet et al. (2010) Nat Genet [4] PLCE1, NOC3L G/A 0.936 1.00 0.94 to 1.05 

rs6490061 12q24 (111,335,541) Tanikawa et al. (2018) Cancer Sci. [12] CUX2 T/C 0.700 0.99 0.93 to 1.05 

rs11167159 20q11 (31,321,457) Ishigaki et al. (2020) Nat. Genet. [6] DEFB16 G/GT 0.521 1.04 0.91 to 1.19 

rs2376549 20q11 (31,411,284) Tanikawa et al. (2018) Cancer Sci. [12] DEFB121, DEFB119 C/T 0.837 1.01 0.96 to 1.06 

(a) rs80142782 is monoallelic in the European population, therefore no data are given for this variant. 

(b) rs7849280 is in high LD to rs532436 in the East Asian population (r2=0.76), but not in the European population (r2=0.01), as an association for rs532436 was seen it 

was included to examine replication 
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4.1.3.1 Replication of Susceptibility Locus 4q28 

On chromosome 4q28 the variant rs10029005 revealed the strongest association in 

the European GC non-cardia sample (OR = 1.12; 95% CI = 1.05-1.19; P = 4.37 x 10-

4). By contrast, no association was found in the European GC cardia sample (P = 

0.931) (Table 4 and Figure 12).  

rs10029005 is a non-coding variant located app. 130 kb downstream the coding region 

of ANKRD50. A significant upregulation of ANKRD50 in the corpus in risk allele 

carriers was identified in the in-house eQTL dataset (Table 9 and Figure 13). 

 

 

  

Figure 12: Regional association plots of GC risk locus 4q28 for non-cardia and cardia GC. Associations (-log10(P- 
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 

Figure 13: eQTL effects for the expression of ANKRD50 on chromosome 4q28 in corpus mucosa. Log2 gene 
expression, error bars for median log2 expression and standard deviation are shown as box plots (y axis) sorted by 
SNP genotypes (x axis) with the GC risk allele on the left. 
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4.1.3.2 Replication of Susceptibility Locus 5p13 

The second locus that was replicated in the European population is located on 

chromosome 5q13 with rs6897169 showing the strongest association. Again, the most 

significant signal was observed in the non-cardia GC sample (OR = 1.18; 95% CI = 

1.09-1.28; P = 9.40 x 10-5), while there was no significant association in the cardia GC 

sample (P = 0.265) (Table 4 and Figure 14). 

The variant rs6897169 is located in intron 4 of TTCC3 and app. 45 kb downstream of 

PTGER4. A significant eQTL effect could be identified in the corpus as well as the 

antrum mucosa datasets, associating risk allele carriers with an increased expression 

of PTGER4 (Table 9).  

  

Figure 15: eQTL effects for the expression of PTGER4 on chromosome 5p13 in (a) corpus and (b) antrum. Log2 gene 
expression, error bars for median log2 expression and standard deviation are shown as box plots (y axis) sorted by 
SNP genotypes (x axis) with the GC risk allele on the left. 

Figure 14: Regional association plots of GC risk locus 5p13 for non-cardia and cardia GC. Associations (-log10(P-
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 
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4.1.3.3 Replication of Susceptibility Locus 9q34 

No significant association was identified for the reported Asian lead variant rs7849280 

(OR = 0.99; 95% CI = 0.90-1.09; P = 0.810). However, there was a strong association 

for a nearby locus in the European dataset with rs532436 showing the strongest 

association signal in the entire GC sample (OR = 1.22; 95% CI = 1.07-1.22; P = 7.51 

x 10-5). rs7849280 is in high LD to rs532436 (r2=0.76) in the East Asian population, 

but not in the European population (r2=0.01). 

Concerning subsamples, the signal was prominent in the non-cardia GC (OR = 1.19; 

95% CI = 1.10-1.28; P = 5.82 x 10-6) and absent in the cardia GC sample (P = 0.495) 

(Figure 16). The strongest signal was seen in the diffuse GC (OR = 1.29; 95% CI = 

1.17-1.44; P = 8.52 x 10-7) and it was less pronounced in the intestinal GC sample 

(OR = 1.15; 95% CI = 1.05-1.26; P = 3.02 x 10-3) (Table 4). 

eQTL effects were observed for the variant in the corpus and antrum mucosa, 

indicating an upregulation of ABO in risk allele carriers (Table 9). 

The PheWAS analysis revealed a high association of this locus to a number of 

phenotypes including haemoglobin concentration and haematocrit percentage. The 

lead variant was found in a number of other GWAS and could be associated with von 

Willebrand factor, serum alkaline phosphatase and E-selectin levels (Supplementary 

Table 10). 

As different alleles of ABO determine the phenotypic expression of the ABO blood 

groups, we inferred the blood types from the genetic data according to Groot et. al. 

2020 [84], and tested the blood groups for GC association (Table 8). This revealed 

that blood-group O is protective against non-cardia (OR = 0.85; 95% CI = 0.81-0.89; 

P = 2.1 x 10-04) and diffuse GC (OR = 0.76; 95% CI = 0.69-0.82; P = 3.0 x 10-05), while 

blood-group A increases the risk for both GC subtypes (non-cardia GC: OR = 1.28; 

95% CI = 1.23-1.32; P = 9.3 x 10-10), diffuse GC: OR = 1.31; 95% CI = 1.25-1.37; P = 

8.0 x 10-06). 

Table 8: Association of the ABO blood groups with GC. P-values, odds ratios (ORs) and the 
corresponding 95% confidence intervals (CIs) are shown for the comparison between blood types O 
versus non-O, as well as A versus non-A. 

 

 

 

 

GC Sample 
O versus non-O A versus non-A 

P-value OR 95% CI P-value OR 95% CI 

Entire 0.16 0.95 0.91-0.98 2.63E-05 1.14 1.11-1.17 

Cardia 0.07 1.11 1.05-1.17 0.85 1.01 0.95-1.07 

Non-Cardia 2.1E-04 0.85 0.81-0.89 9.27E-10 1.28 1.23-1.32 

Intestinal 0.01 0.86 0.80-0.91 0.03 1.12 1.06-1.17 

Diffuse 3.05E-05 0.76 0.69-0.82 8.01E-06 1.31 1.25-1.37 
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Figure 16: Regional association plots of GC risk locus 9q34 for non-cardia and cardia GC. Associations (-log10(P- 
values)) are shown for SNPs flanking 400 kb on either side of the lead associated SNP (position in hg19). The lead 
variant is shown in purple. Other markers at each locus are displayed by different colours, indicating different levels of 
LD (r2) to the lead SNP. Furthermore, annotated genes within each region are shown with arrows indicating their 
transcription direction. 

Figure 17: eQTL effects for the expression of ABO on chromosome 9q34 in (a) corpus and (b) antrum. Log2 gene 
expression, error bars for median log2 expression and standard deviation are shown as box plots (y axis) sorted by 
SNP genotypes (x axis) with the GC risk allele on the right. 
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4.2 Functional Characterization of Gastric Cancer Risk Variants 

Using Transcriptome Data 

4.2.1 Differential Gene Expression between Stomach Regions 

The expression profiles of five different regions of the stomach (cardia, corpus, fundus, 

antrum, and angulus) were analysed in order to prioritize the tissue of interest for the 

eQTL and TWAS analysis (Figure 1). The primary aim was to identify uniform 

expression patterns within the regions to enable a powerful eQTL analysis, as well as 

to identify the most important regions representing the gastric transcriptome. For this 

purpose, RNA extracted from biopsies from 11 individuals was analysed using the 

HumanHT‐12v4 Expression BeadChip (Illumina, USA) and the data was analysed as 

described in chapter 3.3.2. A total of 47 samples were successfully included in the 

analysis after QC, comprising 9 samples of the cardia, corpus and, antrum, and 10 

samples of the fundus and angulus, respectively. 

Explorative analysis revealed a clear distinction between the corpus/fundus and the 

antrum/angulus datasets, however only few differences within the respective datasets 

were observed. By contrast, the cardia expression profiles did not show a uniform 

expression signature between individuals, but resembled those from either the 

corpus/fundus or antrum/angulus signature (see Supplementary Figure 4). This 

explorative result was confirmed by examination of the differential gene expression 

(DE) between tissues. A large number of DE genes was found in comparisons 

between the corpus/fundus and antrum/angulus samples, but not within those groups. 

Comparisons with cardia showed a considerable overlap with the corpus/fundus, as 

well as antrum/angulus groups (Supplementary Figure 5). 

4.2.2 eQTL Analysis in Corpus and Antrum 

The expression profile analysis of all five stomach regions revealed that the corpus 

and antrum areas cover most of the transcriptomic variation across the human 

stomach (see above, chapter 4.2.1 and Supplementary Figure 5). Thus, we selected 

samples from a total of 434 individuals of which RNA-seq data for corpus (N=410) or 

antrum (N=381) samples from the antrum were generated. Explorative analysis 

revealed two well separated expression profiles according to stomach location 

(Supplementary Figure 6). After QC, 362 samples from the corpus and 342 samples 

from the antrum were included in the eQTL analysis. 

  



Results 

51 

A total of 4,229 genes with at least one significant cis-eQTL were identified in the 

corpus sample as compared to 5,706 genes in the antrum samples. Of those, 3,179 

overlapped between both samples, while 2,526 were specific in the antrum and 1,049 

in the corpus dataset. For five risk loci identified in the GC GWAS, an overlap with cis-

eQTLs was observed (Table 9). 

 

Table 9: Overview of significant cis-eQTLs identified in the in-house antrum and corpus datasets, 
overlapping with the lead genome-wide or replicated risk variants associated with GC. 

GWAS locus rsID Tissue Gene Symbol P-value Effect (beta) 

1q22 

rs760077 Antrum THBS3 9.24E-06 0.20 

rs760077 Antrum MUC1 6.94E-07 0.11 

rs760077 Corpus MUC1 2.80E-08 0.13 

8q24 

rs2920292 Antrum THEM6 7.36E-12 0.22 

rs2920292 Antrum PSCA 1.28E-104 0.92 

rs2920292 Corpus LY6K 4.80E-07 0.33 

rs2920292 Corpus PSCA 3.64E-114 0.97 

rs2920292 Corpus LYNX1 4.77E-21 -0.51 

rs2920292 Corpus THEM6 1.66E-09 0.23 

4q28 rs10029005 Corpus ANKRD50 4.10E-17 0.40 

5q13 
rs6897169 Corpus PTGER4 5.66E-21 -0.53 

rs6897169 Antrum PTGER4 4.67E-06 -0.28 

9q34 

rs532436 Antrum ABO 2.94E-17 0.51 

rs532436 Antrum SURF1 8.90E-05 -0.16 

rs532436 Corpus ABO 4.03E-07 0.34 

 

4.2.3 Transcriptome-wide Association Analysis (TWAS) 

The TWAS using the mucosal corpus and antrum expression dataset revealed 

transcriptome-wide associations at three loci (Table 10). The Manhattan plots for the 

TWAS in the GC subsamples are presented in Supplementary Figure 7 and 

Supplementary Figure 8. The loci 1q22 and 8q24 were already identified to be 

genome-wide significant associated on single marker or eQTL level (see chapter 

4.1.1). In addition to these two loci, one additional locus on 6q24 in the non-cardia GC 

subsample for the corpus expression dataset was identified. However, the association 

level of the locus was not substantially affected by conditioning on the identified gene 

(Supplementary Figure 11). 
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Table 10: Genes with expression models in corpus and antrum that showed transcriptome-wide 
significant GC associations. In total, three risk loci (1q22, 6p24, 8q24) and GC types (non-cardia, 
diffuse, intestinal) as well as seven genes were implicated. The number SNPs with non-zero weights 
included in the model (NWGT SNPs) in the best predicting expression model is shown. In addition, 
TWAS Z scores indicating the effect of GC expression association (downregulated/upregulated) and 
corresponding TWAS P-values are shown. 

Chromosomal 

region 
Tissue GC type Gene NWGT SNPs TWAS Z score TWAS P-value 

1q22 

Corpus 

non-cardia MUC1 2 7.26 3.83E-13 

diffuse MUC1 2 6.33 2.40E-10 

Antrum 

non-cardia 

MUC1 1 4.55 5.26E-06 

THBS3 401 6.52 7.06E-11 

diffuse 

MUC1 1 4.41 1.01E-05 

THBS3 401 6.22 4.97E-10 

 6p24 Corpus non-cardia TMEM14C 50 4.54 5.52E-06 

8q24 

Corpus 

non-cardia 

PSCA 30 11.46 2.14E-30 

LY6K 1 8.73 2.46E-18 

THEM6 1 9.31 1.23E-20 

LYNX1 26 -7.23 4.85E-13 

diffuse 

PSCA 30 8.14 4.11E-16 

LY6K 1 6.31 2.84E-10 

THEM6 1 6.34 2.28E-10 

LYNX1 26 -4.65 3.35E-06 

PSCA 30 5.96 2.60E-09 

intestinal 

LY6K 1 5.11 3.19E-07 

THEM6 1 5.24 1.62E-07 

Antrum 

non-cardia 

PSCA 46 11.34 8.42E-30 

LY6K 26 6.75 1.46E-11 

THEM6 1 9.20 3.48E-20 

LYNX1 1 -6.57 5.17E-11 

diffuse 

PSCA 46 8.04 8.84E-16 

LY6K 26 5.90 3.69E-09 

THEM6 1 6.26 3.87E-10 

LYNX1 1 -4.29 1.81E-05 

intestinal 

PSCA 46 5.81 6.32E-09 

THEM6 1 5.17 2.39E-07 
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4.3 Gastric Cancer Heritability and Correlation with other Traits 

4.3.1 LD Score Regression Analysis 

LD score regression was performed to estimate the SNP-based heritability of GC and 

the genetic correlation between GC and related phenotypes. 

The SNP-based heritability of GC was estimated to be 8.48 ± 3.12% standard 

deviation (SD). 

In the genetic correlation analysis, we examined traits belonging to five phenotype-

categories that represent known risk factors for GC development (smoking, reflux, 

obesity, education, alcohol intake) [30,32,33]. An experiment-wide significant genetic 

correlation with GC was identified for three obesity-related traits, one smoking- and 

one alcohol intake-related trait. The correlations are presented in Figure 18 and are 

listed in Supplementary Table 12. Body mass index (rg = 0.303, P = 6.0 x 10-4), hip 

circumference (rg = 0.269, P = 2.3 x 10-3) and body weight (rg = 0.262, P = 2.4 x 10-3) 

showed a Bonferroni-corrected positive GC correlation along with pack years of adult 

smoking (rg = 0.352, P = 2.0 x 10-3) and alcohol intake 10 years previously (rg = 0.361, 

P = 2.0 x 10-3). Furthermore, all education-/employment-related traits serving as proxy 

for socio-economic status were nominal significant and negatively GC-correlated. 

  

Figure 18: Genetic correlations determined with LD score regression between GC and 20 traits 
belonging to five phenotype-categories that represent risk factors for GC development. For each trait, 
the genetic correlation (dot) and the standard deviation (line) are shown. The significance levels of the 
genetic correlation are indicated by asterisks (* P < 0.05, ** P < 0.0025).  
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4.3.2 Polygenic Risk Score Analysis 

Polygenic risk score (PRS) analysis was carried out to examine the genetic relation 

between cardia GC and OAC. PRS was calculated in the two in-house discovery 

GWAS datasets with OAC as well as OAC and its precursor lesion BO [94]. The cardia 

GC GWAS was used as target dataset to examine the genetic relation to OAC and 

OAC/BO. In addition, the GWAS of the entire GC, non-cardia GC and cardia-versus-

non-cardia GC was used as target sets to determine whether associations between 

cardia GC and OAC as well as OAC/BO are specific. Supplementary Table 13 and 

Supplementary Table 14 show the P-value thresholds, the number of SNPs included 

in each PRS and the observed associations. Figure 19 gives a graphical overview of 

the associations identified using the OAC as a discovery dataset. Highly significant 

associations were identified between cardia GC and PRS derived from OAC (Pthreshold 

= 0.001, Passociation = 2.37 x 10-08) and OAC/BO (Pthreshold = 0.2, Passociation = 2.79 x 10-

17). In contrast, no associations were present between other GC case-control datasets 

and PRS derived from OAC or OAC/BO. Accordingly, the case to case comparison 

(cardia-versus-non-cardia GC) revealed significant associations to PRS derived from 

OAC (Pthreshold = 0.5, Passociation = 2.18 x 10-09) and OAC/BO (Pthreshold = 0.2, Passociation 

= 4.33 x 10-07). 

 

 

Figure 19: Polygenic risk score associations for OAC in the target GC subtypes. The association values 
in dependence of the different significance thresholds for PRS variant selection are given. The 
horizontal black line represents the Bonferroni correction threshold. 
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4.3.3 Cross Trait Meta-Analysis 

Based on the shared polygenic risk architecture of cardia GC and OAC/BO, a meta-

analysis combining the GWAS datasets (1,291 cardia GC cases, 10,279 OAC/BO 

cases, 27,326 controls) was performed. This cross trait meta-analysis revealed 17 

genome-wide significant associated loci for oesophago-gastric adenocarcinoma. Two 

of these loci have not been described before [94]. Figure 20 shows the corresponding 

Manhattan plot an Supplementary Table 15 lists all significant associated loci.  

Of the newly identified risk loci, rs1817002 near HNF4G on chromosome 8q21 showed 

an association with P = 4.10 x 10-08 (OR = 1.11; 95% CI = 1.06-1.14). The second new 

locus is located on chromosome 15q26 near SPATA8 and NR2F2. Here, rs234506 

showed disease association with P = 1.56 x 10-09 (OR = 1.12; 95% CI = 1.07-1.16). 

 

 

 

Figure 20: GWAS Manhattan plot from the GWAS of the combined cardia GC/OAC/BE samples are. All 
SNPs have been plotted against their chromosomal positions (X axis) and the observed -log10(P-values) 
in the GWAS (Y axis). The horizontal red line indicates the threshold of genome-wide significant 
association (P < 5 x 10-8) while the dashed blue line represents the suggestive associations (P < 5 x 10-

5). The red circles indicate the new genome-wide significant signals, not found in the OAC/BE GWAS 
before. 
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5  Discussion 

Gastric adenocarcinoma summarises a group of neoplasms with a complex aetiology. 

So far, the focus for the identification of genetic risk factors has been in the Asian 

population, mainly examining tumours from the non-cardia region without major 

consideration of the tumour histopathology. In the context of this doctoral thesis, we 

collected the to-date largest European sample of GC cases, building the basis for the 

identification of common genetic risk factors contributing GC development by carrying 

out a GWAS. Furthermore, we collected the to-date largest gastric gene expression 

dataset including samples from different stomach gastric regions, which allowed in-

depth functional characterisation of the identified GWAS risk loci.  

In the course of the discussion, the transcriptome dataset will be discussed first, 

followed by the functional interpretation of the identified GWAS loci. Then, all GWAS 

analyses beyond the single marker level and the cross phenotype analysis of cardia 

GC and OAC will be presented. 

5.1 The Transcriptomic Landscape of the Human Stomach 

In general, most GWAS risk loci do not confer to the risk of a disease by directly 

altering the coding sequence and thereby affecting the function of a protein, but by 

having a gene regulatory impact [97]. Although the underlying functional mechanisms 

can be diverse, the phenotypic effect is oftentimes revealed by a change in gene 

expression. For this reason, TWAS and eQTL studies proved to be a powerful tool to 

assign functional relevance to non-coding risk loci. However, as transcriptomes are 

highly tissue and context specific, unravelling the risk conferring effect can be 

challenging [97]. In the context of GC, the tumours arise from the epithelial tissue lining 

the stomach, thereby representing the primary tissue of interest. However, due to the 

different anatomical parts of the stomach and the acidic milieu, gastric transcriptome 

analysis provides specific challenges. So far, the only large eQTL dataset from human 

stomach tissue was published by the GTEx consortium comprising samples from 324 

individuals [64]. However, the GTEx dataset has two major limitations. First, the GTEx 

consortium collects tissue samples post mortem. Due to the highly acidic milieu, 

autolysis progresses rapidly as soon the metabolic processes break down, which 

ensure the maintenance the mucosa, such as the production of alkaline mucus. Such 

autolytic processes may adversely affect RNA quality and confound transcriptome 

profiles [98]. In case of GTEx, a substantial number of samples was collected after 10 

hours or more ischemic time [64]. Thus, possible adverse effects cannot be ruled out 

and are difficult to quantify. A second limitation of the GTEx data is the fact that tissue 

samples were collected from only one gastric region, namely corpus [64]. As there are 
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other gastric regions with substantial histological differences compared to corpus, data 

from this location does not reflect the entire stomach transcriptional landscape. To 

account for these limitations, we generated an in-house dataset derived from fresh 

tissue samples from healthy individuals to examine the transcriptional landscape of 

the human stomach and to perform a TWAS and eQTL analysis in the identified GWAS 

regions. 

For the prioritization of stomach regions, we collected samples from the cardia, fundus, 

corpus, antrum, and angulus and examined the differential gene expression in each 

region exploratively and qualitatively. Aside from expected gender specific differences, 

most variability in gene expression was explained by the different gastric regions, 

showing a distinct grouping in PCA and unsupervised clustering (Supplementary 

Figure 6). In line with the cellular composition of the glandular epithelium, which mainly 

differentiates between oxyntic glands (corpus/fundus) and pyloric glands 

(angulus/antrum) [16], region specific changes in gene expression were detected 

(Supplementary Figure 5). An enrichment of pathways related to protein digestion, 

gastric acid secretion and vitamin B12 absorption was observed in the corpus, 

representing important physiological functions of this gastric region [16]. In the gastric 

antrum, primarily immune response related pathways were enriched, which is in line 

with its function in prolonged food storage leading to mucosal irritation [99] 

(Supplementary Table 11). Transcriptome profiles of the cardia, however, showed 

inter-individual divergent expression patterns. Some samples were indistinguishable 

from the corpus/fundus and others from the antrum/angulus region (Supplementary 

Figure 5). One reason for this observation can be the selection of study participants, 

whose indication for gastroscopy often was related to GERD related symptoms. 

Gastric acid induced irritation of the cardia mucosa due to GERD may explain the 

antrum like inflammatory signature. In addition, identification and taking biopsies from 

the cardia can be difficult during gastroscopy, which may lead to miss-sampling of the 

adjacent oesophagus, corpus or fundus region. Due to the inconsistend expression 

pattern and the small number of DE genes as compared to the other regions 

(Supplementary Figure 5), the cardia region was not taken into consideration for the 

main project. Instead, the corpus and antrum region were prioritized, showing region 

specific and homogenous expression patterns, which represent the expression profile 

of the entire stomach. 

In the following, the worldwide largest and most comprehensive stomach expression 

dataset was collected, building the basis for the TWAS and eQTL analysis. These 

datasets enabled to characterise GC GWAS loci, which will be discussed in the 

following chapters. 
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5.2 Gastric Cancer GWAS 

For the GC-GWAS meta-analysis, 5,815 GC cases and 10,999 ethnically matched 

controls across 10 European subsamples were included.  

On the single marker level, six loci reached genome-wide significance and additional 

three risk loci, previously described in the Asian population, could be replicated. 

Furthermore, their role in specific GC subtypes concerning tumour location and 

histopathological type could be elucidated, demonstrating that the known risk loci on 

chromosome 1q22, 4q28, 5p13, 8q24, and 9q34 [5,6,8,10,12,13] contribute almost 

exclusively to non-cardia GC risk (Table 4). In addition, the data show that the risk loci 

on chromosome 8q24 and 9q34 confer to substantially higher risk for diffuse GC than 

intestinal GC. In the following, each locus will be discussed in detail. 

5.2.1 Genome-Wide Significant Gastric Cancer Risk Loci 

5.2.1.1 Genome-Wide Significant Risk Locus on Chromosome 1q22 

The identified locus on chromosome 1q22 (rs760077) has previously been shown to 

confer to GC risk in the European population [40]. Although, an association to cardia 

GC has been described in the Chinese population [4], we identified a tumour location 

specific signal only for non-cardia GC (OR = 1.31; 95% CI = 1.23-1.40; P = 5.12 x 10-

17) versus cardia GC (P = 0.45). Moreover, the signal was more pronounced for the 

diffuse GC tumour type (OR = 1.35; 95% CI = 1.23-1.48; P = 7.41 x 10-11) versus 

intestinal GC (P = 1.78 x 10-07). 

The locus on chromosome 1q22 is located near MUC1, which has been attributed 

concurringly as the risk conferring gene at the locus [10,12]. Functional studies 

suggest that associated GC risk variants lead to a change in tandem repeats in exon 

2 [40,100] and a change in a splice acceptor site, having an impact on the promotor 

activity and the expressed isoform of MUC1, which leads to an increased expression 

of MUC1 on the risk background [101]. This observation could be partly confirmed by 

our TWAS and eQTL study indicating an upregulation of MUC1 for risk allele carriers 

(Figure 5). 

Mucins comprise a family of O-glycolsylated proteins that play an essential role in 

building protective mucous barriers on epithelial surfaces. MUC1, which is highly 

expressed in the human stomach, encodes for Mucin-1. It belongs to the membrane 

bound mucins, which is cleaved into an alpha and a beta subunit, forming a 

heterodimeric complex [102]. Although primarily forming a protective mucous layer, 

Mucin-1 is considered to confer to the development of cancer via a variety of 
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oncogenic effects during malignant transformation, exerting oncogenic effects via a 

variety of roles in cell signalling and cell adhesion processes. In line, overexpression 

and aberrant glycosylation are described for many cancer entities on the somatic level 

[103]. Interestingly, it has also been shown that Mucin-1 can repress the tumour 

suppressor function of Cadherin-1, which is encoded by CDH1, the causal gene for 

hereditary diffuse gastric cancer (HDGC), representing the most common monogenic 

GC form [104]. This provides a possible link to the fact, that we and others see a 

pronounced effect for the risk of the diffuse GC subtype [101]. 

Beside the upregulation of MUC1, also THSB3 was found to be upregulated in the 

gastric mucosa on the background of the GWAS risk genotype (Table 10). THSB3 

encodes an adhesive glycoprotein that mediates cell-to-cell interactions and cell-to-

matrix interactions. It has been reported to play a role in skeletal maturation, but 

otherwise little is known about its function [105]. A risk conferring role in the context of 

GC cannot be excluded. 

Beside for GC, the risk locus on chromosome 1q22 has also been shown to have 

pleiotropic effects on a variety of cardiometabolic, renal and haematological traits, 

consistently prioritizing MUC1 as the causal gene (Supplementary Table 6). Thus, 

apart from a direct oncogenic effect, there may be other mechanisms conferring to GC 

development, which are only sparsely discussed and lack a direct functional link so far 

[106]. 

5.2.1.2 Genome-Wide Significant Risk Locus on Chromosome 2q23 

The second genome-wide significant locus was identified on chromosome 2q23 

(rs11677924), showing a specific signal in the intestinal GC subsample (OR = 1.34; 

95% CI = 1.21-1.49; P = 2.04 x 10-8). The locus has never been described in the 

context of GC or other phenotypes before and it is the first locus described so far, 

which specifically confers to the risk to intestinal GC. 

The lead variant is located in intron 4 of the gene ALK. ALK encodes a receptor 

tyrosine kinase. Activating mutations in the germline are causal for hereditary 

neuroblastoma [107]. In addition, somatic rearrangements and fusion genes involving 

ALK were identified to drive a variety of cancer entities, such as breast, colorectal, 

thyroid and non-small cell lung cancer [108,109] and is a valuable therapy target [110]. 

In GC, ALK fusions are reported, but occur rarely [111]. The underlying 

pathomechanisms conferring to the GC risk at the identified locus are unclear. A 

possible explanation is a change of enzymatic activity of the tyrosine kinase or a 

priming for gene fusions. However, this needs to be evaluated in future studies. 
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5.2.1.3 Genome-Wide Significant Risk Locus on Chromosome 8q24 

The risk locus at chromosome 8q24 (rs2920293) was the most significantly associated 

risk locus in the whole GC GWAS and already has been reported for GC before 

[6,10,12,13]. The signal was specific for non-cardia GC (OR = 1.46; 95% CI = 1.36-

1.55; P = 1.80 x 10-30) versus cardia GC (P = 0.114) and more pronounced for the 

diffuse GC type (OR = 1.46; 95% CI = 1.33-1.60; P = 8.10 x 10-17) versus the intestinal 

type (OR = 1.27; 95% CI = 1.17-1.37; P = 4.05 x 10-09), which is in line with previous 

studies [13].  

The lead variants lie in close proximity to the gene PSCA, which has been prioritized 

as risk conferring gene in previous studies [6,10,12,13]. Our gastric mucosa 

transcriptome data supports this presumption. The most significant findings in the 

eQTL and TWAS analyses indicate a strong upregulation of PSCA in normal gastric 

mucosa for GC risk allele carriers (Figure 7 and Table 10). This is in line with studies, 

that suggests that a risk allele in high LD (rs2294008, T allele) creates a novel 

translation start site, thereby extending the encoded protein by 9 amino acids, and at 

the same time leads to an upregulation of the transcriptional activity of the gene in 

stomach mucosa and a change in subcellular localization of the encoded protein 

[13,112]. 

PSCA encodes Prostate stem cell antigen, a small 123-amino-acid 

glycosylphosphatidylinositol-anchored cell surface protein, which was originally 

identified and isolated as a tumour antigen over-expressed in prostate cancer [113]. 

In normal tissues, PSCA is prominently expressed in the epithelial cells of the prostate, 

urinary bladder, kidney, skin, oesophagus, stomach and placenta. The physiological 

functions of PSCA are not fully elucidated and discussed controversially. Overall, an 

involvement of the protein in several cell signalling pathways promoting cell renewal, 

proliferation as well as triggering tumour specific immunity are suspected. This 

mediates oncogenic as well as tumour suppressor effects depending on the cellular 

context and the tissue type investigated [113,114]. Interestingly, the identified risk 

locus has an inverse effect for the risk of the development of duodenal ulcers 

(Supplementary Table 7) [114]. It has also been shown, that the risk locus and PSCA 

expression are associated to the progression from mild to severe atrophic gastritis 

[115,116]. This led to the hypothesis, that a lower expression of PSCA accounts for a 

suppressed epithelial growth upon tissue damage, which would prime for duodenal 

ulcer formation. Vice versa, an increased PSCA expression, as shown in risk allele 

carriers, may promote epithelial proliferation, priming for progressive gastritis and GC 

development [116]. However, so far none of the proposed functional hypothesis have 

been proved sufficiently.  
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Aside from PSCA, also LY6K, THEM6 and LYNX1 showed transcriptome-wide 

significant association to GC (Table 10). However, after conditioning for PSCA 

expression, no significant associations remained (Supplementary Figure 9). Still, a 

causal influence of these genes cannot be ruled out, but PSCA is the most promising 

candidate gene. 

5.2.1.4 Genome-Wide Significant Risk Locus on Chromosome 17q12 

On chromosome 17q12 (rs17138478) a genome-wide significant locus could be 

identified specifically conferring to the risk of intestinal GC (OR = 1.44; 95% CI = 1.27-

1.64; P = 1.83 x 10-8), which has not been described in the context of GC before. 

The lead risk variant is located in intron 4 of HNF1B, which represents an interesting 

candidate gene. It encodes for the hepatocyte nuclear factor 1-beta, which is involved 

in the embryonic and fetal development of the liver, kidney, pancreas and biliary 

system and is also highly expressed in tubule forming epithelia in adult tissue [117]. 

As such, the locus has been reported, to confer to the risk of developing cholelithiasis 

and cholecystitis [118,119]. 

Cholelithiasis and gallbladder stones have previously been identified as a risk factor 

for GC, postulating a duodenogastric bile reflux induced gastritis as a possible causal 

relationship [120,121]. Our data support this hypothesis, as the intestinal tumour type 

usually arises on the background of a gastritis [28], for which the identified risk locus 

specifically confers to. 

5.2.2 Sex-Specific Gastric Cancer Risk Loci 

For the first time, the present GWAS found two sex specific GC risk loci, each 

conferring to the risk of GC development in females. 

5.2.2.1 Female Specific Risk Locus on Chromosome 1q31 

At the locus on chromosome 1p31, rs2590943 showed the strongest association in 

the female cardia sample (OR = 1.93; 95% CI = 1.56-2.38, P = 1.21 x 10-9), while 

being absent in the female non-cardia sample (P = 0.330), as well as in the male cardia 

sample (P = 0.675). 

The locus has been previously described to contribute to the risk of increased BMI and 

obesity [122], GERD [123] and psychiatric disorders, such as depression [124]. As 

obesity and GERD are known risk factors cardia GC [35], there may be an overlap in 

the causal mechanism for this variant between the different phenotypes. 
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Most association studies indicate NEGR1, encoding for neuronal growth regulator 1, 

as the risk conferring gene at the locus. It encodes a neural cell adhesion and growth 

protein, which has been shown to be significantly upregulated in the hypothalamus 

and blood of depression patients [125]. The biological mechanisms contributing to the 

specific risk of disease development are largely unknown. However, in several mouse 

models a relationship between loss of Negr1 expression and priming for lipid synthesis 

and accumulation could be shown [122]. Stratification for sex showed a higher 

tolerance to a high fat diet without excessive weight gain or development of glucose 

intolerance in male mice in comparison to females [122]. In humans, the described 

risk locus was shown to contribute substantially more to the risk of obesity and related 

traits in females than in males [126]. However, when stratifying for sex in large GWAS 

datasets on BMI and GERD, only minor effect sizes and no gender specific effects 

were seen (Table 6).  

In summary, it is inconclusive whether there is a female specific risk effect at this locus, 

or if these results are biased, for example due to an overrepresentation of obese 

females in the cardia GC sample. In general, such biases have recently been 

discussed to contribute to sex specific findings in GWAS [127]. 

5.2.2.2 Female Specific Risk Locus on Chromosome 10p15 

The other sex-specific genome-wide significant signal was found on chromosome 

10p15 with rs1547179 showing a female non-cardia specific association signal (OR = 

1.38; 95% CI = 1.23-1.54, P = 2.18 x 10-8). 

As there were no further PheWAS or TWAS findings, functional interpretation of the 

risk locus is lacking. The most promising gene at the locus is KLF6, encoding Kruppel-

like factor 6, a zinc finger transcription factor with tumour suppressor functions, which 

has been described to be mutated in several cancer types including GC [128]. 

However, KLF6 is located app. 600 kb upstream the risk variant and no data 

elucidating a sex-specific influence of the locus or KLF6 are available. 

5.2.3 Replication of Asian Gastric Cancer Risk Loci 

Apart from the above discussed novel genome-wide significant loci, the present thesis 

examined whether already identified genome-wide significant GC risk loci in the Asian 

population could be replicated in the European sample. In addition to the already 

described loci on chromosomes 1q22 and 8q24, three further loci were successfully 

replicated (Table 7). 
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5.2.3.1 Replication of Susceptibility Locus 4q28 

At the GC risk locus on chromosome 4q28 the variant rs10029005 revealed a non-

cardia specific effect in the European non-cardia sample (OR = 1.12; 95% CI = 1.05-

1.19; P = 4.37 x 10-4). 

The variant was identified in non-cardia GC cases in the Chinese population, however, 

no assumptions on the functional impact of the locus were reported [11]. We observed 

an eQTL effect with an upregulation of the gene ANKRD50 in risk allele carriers in our 

gastric mucosa transcriptome dataset (Table 9). ANKRD50 encodes for the Ankyrin 

Repeat Domain 50, which is involved in endosome-to-plasma membrane trafficking 

and recycling of cargo protein [129]. ANKRD50 was described in the context of 

anorexia nervosa [130]. However, functional descriptions in the context of GC are 

scarce and require further follow-up. 

5.2.3.2 Replication of Susceptibility Locus 5p13  

The second locus that was replicated in the European population is located on 

chromosome 5q13 with rs6897169 showing the strongest association. Again, the most 

significant signal was observed in the non-cardia sample (OR = 1.18; 95% CI = 1.09-

1.28; P = 9.40 x 10-5), while there was no significant association in the cardia sample 

(P = 0.265) (Table 4). 

Based on findings in East Asians it has been hypothesized that rs59133000 is the 

causal GC risk SNP at this locus by conferring to a downregulation of PRKAA1, which 

encodes a AMP-activated protein kinase [11]. However, rs6897169, which is the lead 

associated GC variant in the Asian population, is in nearly perfect LD to rs59133000 

in East Asians (r2 = 0.96), shows only moderate LD to rs59133000 in Europeans (r2 = 

0.60). For rs59133000, no significant eQTL effects could be observed, however, for 

rs6897169, an increased PTGER4-expression in risk allele carriers was observed, 

representing another plausible GC pathomechanism at this locus. PTGER4 encodes 

the prostaglandin E2 (PGE2) receptor 4, which mediates cellular responses to PGE2. 

It has been previously shown that PGE2 is important for the inflammatory 

microenvironment in tumours and maintenance of gastric stemness [131]. 

5.2.3.3 Replication of Susceptibility Locus 9q34  

A third locus was replicated on chromosome 9q34 showing a non-cardia specific effect 

(rs532436; OR = 1.19; 95% CI = 1.07-1.22; P = 7.51 x 10-6) being more pronounced 

in the diffuse subtype (OR = 1.29; 95% CI = 1.17-1.44; P = 8.52 x 10-7). 
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The lead variant is located in an intronic region of the gene ABO, for which a significant 

upregulation in the gastric mucosa transcriptome of risk allele carriers was identified 

(Figure 17), a finding also reported in the Asian population [12].  

ABO encodes a glycosyltransferase whose exact physiological role still remains to be 

clarified. However, by catalysing the transfer of carbohydrates to the so-called 

substance H or H antigen, a polysaccharide presented on red blood cells, it determines 

the ABO blood type. The ABO blood type was the first, and up to today, most important 

blood classification system discovered in humans, differentiating between the blood 

types A, B, AB and O. It is utilized, amongst others, to predict the compatibility for 

blood transfusions. On a genetic level, the different blood groups are determined 

essentially by three different alleles altering the activity of the encoded 

glycosyltransferase. The alleles determining type A and type B differ in four amino acid 

substitutions, which alter the protein function, phenotypically resulting in different 

modifications of H antigen. By contrast, blood type O is genetically determined by a 

truncating variant, which leads to an inactivation of the encoded protein, leaving the H 

antigen unmodified. The combination of the described alleles thereby determines the 

phenotypic appearance of the H antigen and the type of corresponding antibodies 

present in an individual. Confronted with incompatible blood types, immune complexes 

may form and cause agglutination, which may lead to adverse reactions for example 

after blood transfusions [132]. 

Apart from GC, variants at the ABO locus have been shown to be associated with a 

wide spectrum of phenotypes, including duodenal ulcer [114], pancreatic cancer [133] 

and COVID-19 [134]. These studies also described associations of the respective 

phenotype to the actual ABO blood type. Also for GC the ABO blood types are 

described to influence the risk of tumour development, with non-A blood types being 

protective versus non-O types increasing the risk for GC, especially for the non-cardia 

and diffuse tumour type [135,136]. Based on these reports, we inferred the ABO blood 

types from the genotype data and confirmed non-A blood types to decrease and non-

O blood types to increase risk for GC development, especially for non-cardia and 

diffuse type GC (Table 8). 

The observed upregulation of ABO in the gastric mucosa in risk allele carriers may 

also confirm an involvement of blood types as modulators of GC risk. As the O-allele 

encodes a truncated protein, the respective transcript may be subject of nonsense-

mediated decay and thereby appear downregulated in comparison to type A and B 

transcripts. However, no functional studies are available that support this hypothesis. 
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Still, it remains unclear which underlying mechanism may confer to the increased GC 

risk and several hypothesis have been proposed [135]. An unfavourable inflammatory 

response in the context of HP infection is one plausible theory. It could be shown that 

individuals with blood type A were more susceptible to HP infection and the 

development of preneoplastic lesions [135,137]. Another study showed an increased 

acute inflammatory response to HP infection in persons of blood type O, due to an 

enhanced bacterial binding to the gastric mucosa surface. This may prime for the 

development of ulcers [138]. Vice versa, blood group type A may prime for a chronic 

inflammatory response, favouring cancer development through the promotion of a 

preneoplastic cascade [12,138]. In line with this assumption, the risk for the 

development of duodenal ulcers is increased in individuals with non-A blood types 

[114]. However, according to this argumentation an increased risk for intestinal GC 

should be expected for the non-O blood types, which contradicts the pronounced risk 

for the development of diffuse GC observed in our sample. 

To summarise, the present data clearly indicate ABO as risk conferring gene. 

However, to elucidate the underlying mechanism further follow-up studies are 

required. 

5.3 Gastric Cancer Heritability and Correlation with other Traits 

In addition to the comprehensive genetic analysis and functional interpretation on the 

single marker level, the overall genetic architecture concerning SNP based heritability 

and correlations to other traits were analysed. 

Heritability estimates on GC are scarce. Only one twin study is available, estimating 

the h2 to be 28% [39]. With 8.48 ± 3.12% SD, our SNP-based heritability estimate 

thereby explains around one third of the twin-based estimate. Twin- and SNP based 

heritability estimates commonly deviate in that order magnitude for many phenotypes, 

a problem commonly referred to as missing heritability. Several causes for these 

discrepancies are discussed, including the omitted influence of rare variants and the 

lack of power due to limited sample size in GWAS [139]. The present study reveals 

that many signals are subtype specific. An increased sample size and focus on specific 

subtypes probably will lead to the identification of additional loci. 

For the first time, the present dataset revealed genetic correlations between GC and 

risk traits, which have only been described in observational studies before. The LDSC 

analysis confirmed a positive correlation of GC risk with weight, alcohol intake and 

smoking related traits and a negative correlation with traits related to a higher 

education (Figure 18). Observed protective effects of weekly red and white wine intake 
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are probably confounded by their correlation to a higher education and thereby 

awareness of nutrition, lifestyle and disease prevention [140]. Reflux related traits 

showed no correlation to GC. As GERD represents a cardia GC specific risk factor 

[35], it indicates the need for subtype specific LDSC analyses, for which additional 

samples would be required. 

5.4 Genetic Correlation of Gastric Cancer to Oesophageal 

Carcinoma  

Except for the female cardia specific locus on 1p31, none of the genome-wide 

significant loci were associated in the cardia GC subsample (Table 5). This 

observation raised the question, whether cardia GC might be considered as a separate 

cancer entity, being more closely related to carcinomas affecting the nearby GOJ and 

the oesophagus. In general, there is an ongoing debate in the scientific field whether 

both cancer types represent a single disease entity, as they share common 

epidemiological and clinical characteristics, such as a rise in incidence worldwide and 

common risk factors like obesity and GERD [38]. For this reason, we were interested 

in estimating the germline genetic overlap of the cardia GC sample with BO and OAC. 

As the sample size of the respective subsample were not sufficient for a robust LDSC 

analysis, the genetic overlap was examined utilizing PRS. For this purpose, we used 

a subset of a previously published GWAS on BO/OAC as a basis [72] and the cardia 

and non-cardia GC samples as target datasets. Highly significant associations of 

cardia GC with OAC and BO/OAC were observed. By contrast, no significant 

associations to non-cardia GC were identified (Figure 19). In conclusion, the PRS 

analysis enabled to discriminate between cardia and non-cardia GC, giving a strong 

hint on a shared genetic aetiology between cardia GC and OAC as well as OAC/BO 

as opposed to non-cardia GC. 

To examine whether the genetic overlap may even help to identify shared genetic risk 

loci, we combined the OAC/BO GWAS with the cardia GC subsample in a meta-

analysis. This resulted in the identification of two additional risk loci, which were not 

significant in the OAC/BO GWAS published previously (Supplementary Table 15). 

HNF4G, the nearest gene to the risk variant on chromosome 8q21, and NR2F2, the 

second nearest gene to the risk variant on chromosome 15q26, are interesting 

candidate genes on the functional level. NR2F2 is a known co-regulator of HNF4G 

and both genes play a prominent role in the development of intestinal metaplasia in 

gastric cell lineages [141]. It has been shown, that an upregulated HNF4G-expression 
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together with a downregulated NR2F2-expression lead to intestinal-like cell 

transformations [141]. 

In summary, our analysis revealed a strong genetic overlap between cardia GC and 

OAC/BO, and enabled the discovery of two additional risk loci in a meta-analysis of 

both datasets. These findings contribute to the notion that cardia GC should be 

accounted as separate tumour entity when examining GC. 

5.5 Limitations and Outlook 

The present study has several limitations that need to be taken into consideration 

when interpreting the results. In addition, follow-up analyses are indicated needed to 

further dissect the genetic architecture of GC. 

Even though the largest European GC sample with the worldwide most detailed 

phenotypic information on GC subtypes was collected, the power of the study is still 

limited. The GWAS revealed strong subtype specific effects at the individual genome-

wide significant loci. However, the sample sizes within those subtypes was 

considerably smaller, reducing the power to detect risk loci with moderate to small 

effects (Table 2). An increase in sample size within the subtypes would probably lead 

to the identification of additional risk loci, as were seen for non-cardia GC in the Asian 

population [12]. The same issue also limited the utilization of methods for analysing 

genetic correlation between GC subtypes and other traits via LDSC or their causal 

relationships via Mendelian randomization [142], which would be interesting to 

examine in the future. 

Another aspect that should be taken into consideration is the GC classification system. 

The stratification for tumour location and Lauren type represents a rather old GC 

classification system with limited clinical utility [26]. Accordingly, utilizing more state-

of-the-art classification systems, like somatic mutational signatures, as proposed by 

Bass et al. [26], might be beneficial to obtain further insides into tumour development 

and specific risk factors on the germline genetic level. However, decentralized 

collection of samples, missing preservation of matching tumour material and missing 

standards for data acquisition and tumour classification provide high hurdles for the 

collection of relevant sample sizes. 

From a statistical point of view, stratification for various subtypes, as done in the 

present GWAS analysis, would require further correction for multiple testing. Still, we 

reported all variants reaching the genome-wide significant threshold of P <  5 x 10-8. 

This significance threshold is based on the outdated assumption of the presence of 
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one million independent SNPs in the human genome, but is nowadays common sense 

and applied by convention [14]. Thus, most multi-trait and subtype specific analyses 

are based on this conventional P-value threshold, irrespectively of the number of 

analysed traits [143,144]. It is assumed that the applied significance threshold still 

reduces the risk of false positive detection to an acceptable extent. Another way of 

confirming the validity of GWAS associations is the replication of associations in 

independent datasets [14]. As we only had access to one GWAS discovery sample, 

replication of the findings in an independent European sample was not possible. 

However, some loci were already reported in the Asian population and all identified 

loci showed uniform effect directions when dissecting the discovery dataset to national 

samples (Supplementary Figure 3). This provides evidence, that the findings of the 

present GWAS study represent true positives. In addition, the replication of a total of 

five loci from the Asian population indicates that it would be worth to conduct a trans-

ancestry meta-analysis on GC in the near future (Table 7). 

For all identified risk loci this study aimed to provide functional hypothesis in the 

context of GC development, mostly based on the collected mucosa transcriptome 

data. GWAS, eQTL and TWAS analyses, for the detection of single genetic risk 

variants and regulatory variants respectively, are per se hypothesis free approaches 

considering functional causality. As such, an overlap between risk variants for a 

phenotype and regulatory variants for a tissue type do not equate to a causal 

relationship with the phenotype under investigation. Co-regulation of multiple genes 

by single variants, cell type heterogeneity between samples and pleiotropy across 

tissues are some examples for mechanisms, which could result in false positive 

assumptions [145]. Although some of the discussed findings were supported in vitro 

by previously published studies, other loci and deducted hypotheses would need 

further functional follow-up for confirmation. Such functional experiments are usually 

very laborious and often only carried out for individual and carefully selected loci [146] 

and were beyond the scope of this study. However, our study provides valuable 

insights for the design of follow-up in vitro experiments. 

For the present sample, it would be of great value to expand the TWAS and eQTL 

analyses to obtain further functional insights. As such, for the corpus and antrum 

transcriptome datasets, a trans-eQTL analysis may unravel gene interactions and 

pathways of relevance for some risk loci. As an example, we showed in a previous 

study for the risk locus on chromosome 8q24, an involvement of trans-regulatory 

effects, indicating a downregulation of MBOAT7 encoded on chromosome 19 in risk 

allele carriers [147]. However, in the present datasets technical limitations have to be 

solved upfront. For example, the utilized 3’ mRNA-sequencing technology leads to 

many false positive findings due to an overlap with pseudogenic sequences, 



Discussion 

69 

mimicking trans-effects. On the other hand, due to a high burden of multiple testing, a 

larger dataset with more statistical power would be beneficial. 

Another important aspect concerning eQTL and TWAS is the tissue and the context 

of transcriptome datasets used for analysis. While this study focused entirely on the 

transcriptomes of healthy gastric mucosa, some risk variants may exert their effect 

only in a disease relevant cellular context. We were able to show the relevance of such 

disease specific contexts in a previous study, when examining eQTLs in the context 

of an activated innate immune response and their overlap to phenotypes involving the 

immune system, not seen in the naïve state [148]. In the context of GC, an interesting 

setting would be the examination of eQTLs in HP infected mucosa samples, which we 

are currently investigating. 

Finally, we focused in our study on the analysis of common genetic variants conferring 

to GC risk. However, it is widely assumed, that rare variants also contribute to the 

genetic risk in complex genetic phenotypes, which cannot be identified with array-

based genotyping methods applied in this study [139]. This notion is supported by a 

wide spectrum of genes causing tumour syndromes that also lead to a strong increase 

of the risk for GC development. Several additional candidate genes could be identified 

in the past years [149]. However, some of these candidate genes still need to be 

confirmed and others probably remain to be identified. For this purpose, we are 

currently preparing a large whole exome sequencing dataset, including over 500 GC 

cases with an early age-at-onset (diagnosis < 50 years). The results should give 

further hints and insights to the contribution of rare variants in the development of GC 

and thus will complement the findings of the current study. 
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6 Summary 

GC is a clinically heterogeneous and one of the most common malignant tumour 

entities affecting the human GI tract with a multifactorial aetiology. Beside 

environmental risk factors, also genetic risk variants contribute to the development of 

GC. Their identification and functional interpretation using GWAS already resulted in 

valuable insights into the pathophysiology and genetic architecture of the disease. 

However, up to today, these studies were almost exclusively conducted in the Asian 

population and relevant sub-classifications like the tumour location (cardia and non-

cardia) and the histological tumour types (diffuse and intestinal) were often not 

considered. 

The aim of this study was to characterize the genetic risk architecture of GC in the 

European population according to subtypes and to estimate their genetic overlap with 

known risk factors and other tumour entities. To this end, we collected the largest 

European sample of GC cases. In addition, we collected gastric corpus and antrum 

mucosa biopsies from healthy donors to conduct eQTL and TWAS analyses. These 

samples built the basis for the, to date, largest European GWAS meta-analysis, 

comprising 5.816 patients and 10.999 controls, and the largest gastric mucosa 

transcriptome datasets, including 361 samples from the corpus and 342 samples from 

the antrum. 

The GWAS led to the identification and replication of nine GC risk loci. Stratification 

for the tumour location revealed that all but one locus contributed specifically to the 

risk of non-cardia GC, showing no association to cardia GC. Furthermore, two loci 

specifically contributed to the risk of developing tumours of the intestinal type and three 

loci showed a pronounced effect for the risk of developing diffuse type GC. This finding 

highlights the heterogeneous pathophysiology of GC and exemplifies the need for the 

identification and stratification of clinical relevant subtypes. 

The gastric mucosa based TWAS and eQTL analysis provided evidence for the 

prioritization of the gene MUC1 at chromosome 1q22, ANKRD50 at chromosome 

4q28, PTGER4 at chromosome 5p13, PSCA at chromosome 8q24 and ABO at 

chromosome 9q34 as risk conferring genes. In line with the prioritization of ABO, we 

found that the blood group O exerts protective effects for non-cardia and diffuse GC, 

while blood group A increases risk for both GC subtypes. 

Furthermore, NEGR1 at chromosome 1p31, ALK at chromosome 2q23, KLF6 at 

chromosome 10p15 and HNF1B at chromosome 17q12 are promising candidate 

genes at the respective risk loci. 
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On the polygenic level, LDSC revealed a positive correlation of GC with obesity, 

smoking and alcohol consumption related traits, whereas a higher education and 

socioeconomic status have protective effects. For the first time, these findings confirm 

the results of observational studies on a genetic level. 

As cardia GC is suspected to represent a separate tumour entity, being more closely 

related to OAC, the genetic correlation between both entities was examined utilizing 

PRS analysis and a large European in-house OAC/BO GWAS. The analysis revealed 

that cardia GC and OAC are genetically homogenous at the polygenic level and can 

be discriminated from non-cardia GC. This finding was further supported by the 

identification of additional shared risk loci, after meta-analysing cardia GC subtype 

and OAC/BO. 

All in all, the presented GWAS meta-analysis and follow-up studies provided new 

insights into the pathophysiology of GC at the single variant and polygenic level. The 

results indicate that GC is genetically heterogeneous in respect to location and 

histopathology. Moreover, the findings point to common molecular mechanisms 

underlying cardia GC and OAC/BO. 
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Supplement A: Materials and Methods 

Supplement A1: List of used devices, reagents, chemicals, kits, software and databases used 
to conduct this study. 

Devices 

Autoclave  

‐ Systec D-150, Systec GmbH  

‐ Varioklav® 135 S Dampfsterilisator, H+P Labortechnik GmbH 

 

Automated liquid handling 

‐ Biomek® NX MC Laboratory Automation Workstation, Beckman Coulter GmbH  

‐ Biomek® NX S8G Laboratory Automation Workstation, Beckman Coulter GmbH  

 
DNA-Biobanking  

‐ SmartScan Solo™ 2D Barcode Reader, Thermo Fisher Scientific GmbH  

‐ SmartScan 96 2D Barcode Reader, Thermo Fisher Scientific GmbH 

 
Genotyping System  

‐ iScan System, Illumina Inc. 
 

Lab water purification system 

‐ Milli-Q A10 Synthesis, Merck KGaA  

 
Nucleic acid extraction 

‐ Homogenisator, Precellys® 24, VWR International GmbH 

‐ Magnetic Separation Module I, Perkin Elmer Chemagen Technologie GmbH 

‐ QIAcube, Qiagen GmbH 

 
Nucleic acid quantification and quality control 

‐ NanoDrop® 1000 Spectrophotometer, Peqlab Biotechnology GmbH  

‐ NanoDrop® 8000 Spectrophotometer, Peqlab Biotechnology GmbH  

‐ Qubit 3 Fluorometer, Thermo Fisher Scientific GmbH 

‐ Varioskan™ LUX multimode microplate reader, Thermo Fisher Scientific GmbH 

‐ 4200 TapeStation System, Agilent Technologies Deutschland GmbH 

 

Pipettes 

‐ accu-jet® pro, BRAND GmbH & Co. KG  

‐ Eppendorf Research® (variabel), different sizes, Eppendorf GmbH  

‐ Multipette® plus, Eppendorf AG  

‐ Transferpette®, BRAND GmbH & Co. KG  

‐ Transferpette® S-8, BRAND GmbH & Co. KG  
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‐ Transferpette®-8/-12 electronic, BRAND GmbH & Co. KG  

Shakers and heating devices 

‐ Overheadshaker REAX 2, Heidolph Instruments GmbH & Co. KG  

‐ Platformshaker UNIMAX 1010, Heidolph Instruments GmbH & Co. KG  

‐ Thermomixer comfort, Eppendorf AG  

‐ Platformshaker TITRAMAX 101, Heidolph Instruments GmbH & Co. KG.  

‐ Vortex Genie 2, Scientific Industries Inc.  

‐ Vortex Mixer IKA MS2-S8, Agilent Technologies Deutschland GmbH  
 

Sequencer 

‐ cBot System, Illumina Inc. 

‐ HiSeq 2500 v4, Illumina Inc. 
 

Thermocycler  

‐ Eppendorf Mastercycler X50, Eppendorf AG 

 

Centrifuges  

‐ Megafuge 1.0 R, Heraeus GmbH  

‐ Biofuge stratos, Heraeus GmbH  

‐ Biofuge fresco, Heraeus GmbH  

‐ Biofuge pico, Heraeus GmbH  

‐ neoLab Mini-Zentrifuge Spectrafuge®, neoLab  

‐ Concentrator Plus System, Eppendorf AG  

Chemicals and buffers 

‐ Ethanol absolut (C2H5OH) (EtOH) (100%), AppliChem GmbH  

‐ RNAfree water, Qiagen GmbH 

‐ RNAlater™ Stabilysing solution, Thermo Fisher Scientific GmbH 

‐ 10X TBE Puffer, Life Technologies GmbH 

‐ Tris-EDTA (TE-4; 0,1 mM EDTA, 10 mM Tris-HCl pH 8,0) 

‐ Water, HPLC grade, Merck KGaA 

Commercial Systems (Kits) 

‐ AllPrep DNA/RNA Mini Kit, Qiagen GmbH 

‐ Chemagic DNA Blood 10k, PerkinElmer Chemagen Technologie GmbH 

‐ D1000 ScreenTape & Reagents, Agilent Technologies Deutschland GmbH 

‐ HiSeq SBS Kit V4 50 cycle kit, Illumina Inc. 

‐ Infinium Omni2.5Exome-8 Kit, Illumina Inc. 

‐ Infinium Global Diversity Array-8 Kit, Illumina Inc. 

‐ QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina, Lexogen Inc. 

‐ Qubit dsDNA HS Assay Kit, Thermo Fisher Scientific GmbH 

‐ Qubit RNA BR Assay Kit, Thermo Fisher Scientific GmbH 
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‐ RNA ScreenTape & Reagents, Agilent Technologies Deutschland GmbH 

Software and Databases 

‐ Biomek® Software 3.2, Beckman-Coulter GmbH  

‐ dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP/) 

‐ edgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html) 

‐ ENCODE database (https://www.encodeproject.org/) 

‐ Enrichr (https://maayanlab.cloud/Enrichr/) 

‐ ENSEMBL genome browser (http://www.ensembl.org/index.html) 

‐ FastQC v0.11.7 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

‐ FeatureCounts v1.5.1 (http://subread.sourceforge.net/) 

‐ FinnGen (https://www.finngen.fi/en) 

‐ FUSION (http://gusevlab.org/projects/fusion/) 

‐ GCTA-COJO (GCTA version 1.93.0beta) 

‐ Genomestudio 2.0, Illumina Inc. 

‐ Genotype-Tissue Expression project (GTEx) database (https://gtexportal.org/) 

‐ GWAS Catalog (https://www.ebi.ac.uk/gwas/) 

‐ Impute2 (https://mathgen.stats.ox.ac.uk/impute/impute.html)  

‐ KING (https://www.kingrelatedness.com/) 

‐ LD Hub (https://ldsc.broadinstitute.org/) 

‐ LDlink (https://ldlink.nci.nih.gov/) 

‐ LDSC (v1.0.1) (https://github.com/bulik/ldsc) 

‐ Limma (https://www.bioconductor.org/packages/release/bioc/html/limma.html) 

‐ Locus Zoom (https://my.locuszoom.org/) 

‐ MatrixEQTL (http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/) 

‐ METAL (https://github.com/statgen/METAL) 

‐ NanoDrop® ND-1000 v3.3.0, Peqlab Biotechnology GmbH  

‐ NanoDrop® ND-8000 v2.2.1, Peqlab Biotechnology GmbH  

‐ Open Targets Genetics Portal (https://genetics.opentargets.org/) 

‐ PLINK v1.9 & 2.0 (http://pngu.mgh.harvard.edu/~purcell/plink/) 

‐ PRSice tool (https://www.prsice.info/) 

‐ Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/)  

‐ QTLtools (https://qtltools.github.io/qtltools/) 

‐ R (https://cran.r-project.org/bin/windows/base/) 

‐ SAS Software (SAS Institute 2008) 

‐ STAR Aligner 2.5.2b (https://github.com/alexdobin/STAR) 

‐ TOPMed Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov/#!) 

‐ UCSC Genome Browser (https://genome.ucsc.edu/)  

‐ UKBiobank (https://www.ukbiobank.ac.uk) 
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Supplementary Table 1: Description of GC GWAS samples. All patients were of European descent and were recruited across nine different countries. Only 
patients were included with a primary and histopathologically confirmed diagnosis of gastric adenocarcinoma. Informed consent was obtained from all cases 
and approval was obtained from ethic boards at each participating site. Patients from Spain and Portugal were merged as Iberian cases. In addition, patients of 
European descent from the from the UK Biobank [70] and The Estonian Biobank (EstBB) [69] with a gastric adenocarcinoma according to ICD-10 code C16 
were included (British and Estonian samples, not listed). 

Country Recruiting site Recruitment 
period 

Cases 
(female/male) 

Involved clinical institutions 

Sweden Stockholm 2014-2017 246 (95/151) Patients were recruited through the Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, through 
the National Registry for Esophageal- and Gastric Cancer (NREV) 

Latvia Riga 2007-2017 476 (188/288) Patients were recruited at the Institute of Clinical and Preventive Medicine at the Latvia Oncology Centre, Riga East University 
Hospital, University of Latvia, Riga 

Lithuania Kaunas 2010-2017 219 (83/136) Patients were recruited at the Gastroenterology Department and Institute for Digestive Research, Lithuanian University of 
Health Sciences, Kaunas 

Poland Szczecin 1990-2007 388 (158/230) Patients were recruited at the Department of Gastroenterology, Pomeranian Medical University, Szczecin  
Lublin 2016-2017 37 (6/31) Patients were recruited at 2nd Department of General Surgery, Medical University of Lublin, Lublin 

Germany Magdeburg 2013-2017 688 (427/261) Patients were recruited through the Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke 
University Hospital, Magdeburg, in a nation-wide study involving university or community hospitals in Magdeburg, Bonn, 
Erlangen, Solingen, Mainz and Leipzig  

Bonn 2013-2017 75 (27/48) Patients were recruited through the Institute of Human Genetics, University Hospital Bonn, Bonn, at oncological centres in 
Dortmund and Troisdorf and the community hospital Koblenz  

Frankfurt 2010-2015 384 (102/282) Patients were recruited through the Krankenhaus Nordwest, University Cancer Center, Frankfurt, as part of a therapy study 
at 38 German trial sites  

Hamburg 2005-2014 77 (23/54) Patients were recruited at the Department of General and Abdominal Surgery, University Hospital Hamburg-Eppendorf, 
Hamburg  

Heidelberg (DKFZ) 1996-2003 92 (32/60) Patients were recruited through the Division of Clinical Epidemiology and Aging Research at the German Cancer Research 
Center (DKFZ) in Heidelberg at community hospitals in the state Saarland (Germany)  

Heidelberg (University) 1999-2017 261 (89/172) Patients were recruited at the Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 
Heidelberg  

Cologne 1998-2016 70 (44/26) Patients were recruited at the Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of 
Cologne, Cologne  

Berlin 1999-2006 136 (51/85) Patients were recruited at the Department of Surgery and Surgical Oncology, Robert-Rössle Klinik, Charité, Berlin 
 München 1999-2005 66 (13/53) Patients were recruited at the Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, München 
France Lille 2015-2017 147 (42/105) Patients were recruited through the clinicobiological database French EsoGastric Tumours (FREGAT Database), CHU de 

Lille, CHU de Lyon, CHU de Rennes, Centre Oscar Lambret (Lille), and CHU de Bordeaux 
Spain Zaragoza 2002-2012 652 (226/426) Patients were recruited through the Instituto de Investigación Sanitaria Aragón, Zaragoza, in a nation-wide study involving 16 

community hospitals belonging to seven regions of Spain (Aragon, Catalonia, Basque Country, Madrid, Castile and Leon, 
Andalusia, Canary Islands)  

Madrid 2008-2013 223 (66/157) Patients were recruited through collaborating hospitals from 10 regions of Spain (Asturias, Barcelona, Cantabria, Granada, 
Huelva, León, Madrid, Murcia, Navarra and Valencia) 

Portugal Porto 2001-2008 55 (30/25) Patients were recruited at the Digestive Clinic at the Portuguese Institute of Oncology of Porto, Porto 
Italy San Giovanni Rotondo 2004-2016 185 (74/111) Patients were recruited at the Division of Gastroenterology of IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo  

Rome 2002-2012 168 (74/94) Patients were recruited at the A. Gemelli’’ teaching hospital, Rome  
Aviano 2012-2014 91 (31/60) Patients were recruited at the Unit of Oncological Gastroenterology, Centro di Riferimento Oncologico, National Cancer 

Institute, IRCCS Aviano, Aviano  
Cremona 2016-2017 146 (50/96) Patients were recruited at the Medical Oncology Unit, ASST of Cremona, Cremona 
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Supplementary Table 2: Description of control GWAS samples. All controls were of European descent 
and were recruited across eight different countries. The Spanish controls were used for the association 
analysis with GC patients from Spain and Portugal (Iberian sample, see supplementary table 3). As for 
cases, informed consent was obtained from all controls and approval was obtained from ethic boards 
at each participating site. In addition, healthy controls of European descent without history of oncological 
diseases from the UK Biobank [70] and The Estonian Biobank (EstBB) [69] were used at a ratio of 1:1 
(British sample) and 1:20 (Estonian sample). 

Country Recruiting 
site 

Recruitment 
period 

Subjects 
(female/male) 

Involved clinical institutions 

Sweden Umea 1988 1,528 (824/686) Controls were part of the Betula study, a population-based 
longitudinal cohort with the objectives to study how 
memory and health develop across the adult lifespan, and 
to determine factors underlying the heterogeneity in aging 

Latvia Riga 2013-2017 475 (244/231) Controls were part of the GISTAR study (general middle-
aged population), a randomized study of H. pylori 
eradication and pepsinogen testing for prevention of GC 
mortality 

Lithuania Kaunas 2008-2016 210 (85/125) Controls were blood donors recruited at the Lithuanian 
University of Health Sciences in Kaunas, Lithuania 

Poland Poznan 2013 537 (268/269) Controls were blood donors attending the Regional Centre 
of Blood Donation and Treatment in Poznan, Poland 

Germany Essen 2000-2003 2,701 (1,352/1,349) Controls were part of the Heinz Nixdorf Recall Study 
(HNR), a population-based cohort investigating 
cardiovascular diseases 

France Paris 2011-2012 406 (122/284) Controls were recruited through a systematic urologic 
screening program by the CeRePP network and included 
subjects without history or symptoms of urological cancers 

Spain Santiago de 
Compostela 

2006-2008 871 (429/442) Controls were recruited through the Spanish 
meningococcal disease (MD) research network ESIGEM 
involving 43 university or community hospitals. A healthy 
and geographically matched control was selected for each 
MD patient 

Italy Milan 1993 1,360 (506/854) Controls were part of the HYPERGENES project and were 
collected in continental Italy or Sardinia. All subjects were 
healthy and were clinically followed for more than 15 years 
up until at least 55 years of age (hyper-controls) 

 

Supplementary Table 3: Overview and description of study samples with expression data for the 
TWAS and eQTL analyses. All individuals were of German descent and were recruited according to 
standardised procedures at five sites between 2016 and 2017. In all participants, a gastroscopy was 
performed because of unclear upper abdominal symptoms. In addition to diagnostic biopsies, mucosa 
tissue samples from five defined parts of the stomach were collected from each individual, namely 
cardia, corpus, antrum, angulus and fundus. Only participants who showed a regular gastric mucosa 
without HP infection in the histopathologic examination at the Institute of Pathology in Bayreuth, 
Germany, were included in the study. In addition, only subjects were included in whom other medical 
causes for the unclear upper abdominal symptoms could be excluded. Among others, this included a 
normal complete blood count. Informed consent was obtained from all participants and a study approval 
was obtained from the ethic board at the University of Bonn, Germany. 
 
Recruiting site Participants 

(female/male) 

Involved clinical institutions 

Ahrweiler 27 (15/12) Department of Gastroenterology, Marienhaus Hospital Ahrweiler, Ahrweiler 

Bayreuth 123 (77/46) Gastroenterological Centre, Dr. Geppert, Bayreuth  

Bonn 133 (57/76) Gastroenterological Centre, Dr. Plaßmann, Bonn  

 19 (12/7) Department of Gastroenterology, St. Elisabeth Hospital Bonn, Bonn 

Cologne 25 (17/8) Gastroenterological Centre, Dr. Hofer, Cologne  

 2 (2/-) Department of Gastroenterology, Cologne-Holweide and Merheim Medical 

Centre, Cologne 

Koblenz 67 (46/21) Gastroenterological Centre, Dr. Benner, Dr. Dommermuth, Koblenz 

Magdeburg 10 (10/-) Department of Gastroenterology, Otto-von-Guericke University Hospital, 

Magdeburg 

Siegburg 16 (16/-) Department of Gastroenterology, Helios Hospital Siegburg, Siegburg 
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Supplementary Table 4: Description of the OAC/BO PRS and OAC/BO cross-trait GWAS samples. 
The OAC/BO GWAS datasets that have been published previously [94] consist of a German case-
control sample (German/Bonn sample) and of three case-control samples from UK and US/Australia. 
Only for the German OAC/BO sample individual GWAS data were available that were used in the 
OAC/BO PRS study (2,646 patients, 2,732 controls). Prior to this analysis we excluded all German 
controls in the OAC/BO sample that were also used in the GC GWAS study to ensure that no individual 
was subject to both datasets. In the cross-trait GWAS meta-analysis, the German and all remaining 
OAC/BO samples were used together with the cardia GC sample. 

OAC/BO samples Cases 
 

Controls 
 

 all female/male all female/male 

     

GWAS individual in-house data      

‒ German/Bonn sample 2,646 548/2,098 2,732 1,344/1,388 

     

GWAS summary statistic data     

‒ BEACON (US/Australia) 3,914 754/3,160 6,718 2,704/4,014 

‒ Cambridge sample 1,868 368/1,500 3,408 1,711/1,697 

‒ Oxford sample 1,851 364/1,487 3,469 1,769/1,700 

Total 10,279 2,034/8,245 16,327 7,528/8,799 
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Supplementary Figure 1: GC GWAS Quantile-Quantile (Q-Q) plots. Q-Q plots for association P-values 
obtained from the GWAS of the entire (a), cardia (b), non-cardia (c), diffuse (d) and intestinal (e) GC samples 
are shown. The X axis shows the expected distribution of -log10(P-values) under the null hypothesis of no 
association. The Y axis shows the distribution of the observed -log10(P-values) in each GWAS. The dashed 
indicator lines show where X=Y. The genomic inflation factor lambda was 1.11, 1.07, 1.11, 1.06 and 1.07 for 
entire, cardia, non-cardia, diffuse and intestinal GC GWAS, respectively. 
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Supplementary Figure 2: GC GWAS Manhattan plots. The associations obtained from the GWAS of the 
entire (a), cardia (b), non-cardia (c) diffuse (d) and intestinal (e) GC samples are shown. All SNPs have been 
plotted against their chromosomal positions (X axis) and the observed -log10(P-values) in the GWAS (Y axis). 
All SNPs on each chromosome are shown in the same colour but a distinct colour from that of the adjacent 
chromosome. The horizontal lines indicate the threshold of genome-wide significant association. 
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Supplementary Figure 3: Forest plots of genome-wide associated GC SNPs across all 
included European samples. Single country and meta-analysis association for the entire GC: 
(a) leading variant rs760077 at the 1q22 locus, (b) leading rs2920293 at the 8q24 locus; and 
for intestinal GC: (c) leading variant rs11677924 at the 2q23 locus, (d) leading variant 
rs17138478 at the 17q12 locus. In the figure are reported the beta (and 95% CI) from the 
single GWAS and from the fixed effect meta-analysis (due to limited information on GC type 
for some subsamples only samples with at least 50 cases are reported in panel c and d). 
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Supplementary Figure 4: Explorative analysis of expression array data of tissue biopsies taken from 
the cardia (N=9), corpus (N=9), fundus (N=9), antrum (N=10) and angulus (N=10). a) Plot of the first 
two principle components of the top 250 most variable expressed genes. Stomach locations are 
indicated by colour and batches of array processing by shape of plot symbols b) Unsupervised 
hierarchical clustering of the top 250 most variable expressed genes. Both plots show a clear 
differentiation between samples from the corpus and fundus compared with samples from antrum or 
angulus. Cardia expression data showed no uniform expression pattern among individuals, resembling 
either the corpus/fundus or the antrum/angulus profiles. 

a) 

b) 
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Supplementary Figure 5: Venn diagram showing the overlap of DE genes (P < 0.05; FC ≤ -2; FC 
≥ -2 ) comparing transcriptome data from different parts of the stomach.  
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Supplementary Figure 6: Explorative analysis of RNA-Seq data from tissue biopsies of the corpus 
(N=362) and antrum (N=342). a) Plot of the first two principle components of the top 250 most variable 
expressed genes. Stomach locations are indicated by the colour of plot symbols. b) Unsupervised 
hierarchical clustering of the top 250 most variable expressed genes derived from RNA-Seq data from 
tissue biopsies of the corpus (N=362) and antrum (N=342). 

b) 

a) 
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Supplementary Figure 7: Association between antrum gene expression and GC. Manhattan plots of TWAS-
identified genes with predicted expression models that are associated with entire GC (a) as well as with GC types 
according to location (cardia (b), non-cardia (c)) and Lauren type (diffuse (d), intestinal (e)). Each point represents a 
single gene with physical position plotted on the x-axis and P-values of GC association plotted on the y-axis. The 
threshold for transcriptome-wide significant association is highlighted as dashed line. 
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Supplementary Figure 8: Association between corpus gene expression and GC. Manhattan plots of TWAS-identified 
genes with predicted expression models that are associated with entire GC (a) as well as with GC types according to 
location (cardia (b), non-cardia (c)) and Lauren type (diffuse (d), intestinal (e)). Each point represents a single gene with 
physical position plotted on the x-axis and P-values of GC association plotted on the y-axis. The threshold for 
transcriptome-wide significant association is highlighted as dashed line. 
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Supplementary Figure 9 Regional TWAS association plot on chromosome 8q24 in antrum mucosa. The 
associations of PSCA, LY6K, THEM6 and LYNX1 expression in non-cardia GC are shown. The top panel 
shows all genes at this locus. TWAS genes associated with non-cardia GC are highlighted in green. The 
bottom panels show the TWAS associations before (grey) and after (blue) conditioning on the green genes. 

Supplementary Figure 10: Regional TWAS association plot on chromosome 1q22 in corpus mucosa. 
The associations of MUC1 and THBS3 expression in non-cardia are shown. The top panel shows all 
genes at this locus. TWAS genes associated with non-cardia GC are highlighted in green. The bottom 
panels show the TWAS associations before (grey) and after (blue) conditioning on the green genes. 
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Supplementary Figure 11: Regional TWAS association plot on chromosome 6p24 in corpus mucosa. The 
association of TMEM14C expression in non-cardia GC is shown. The top panel shows all genes at this locus. 
TWAS genes associated with non-cardia GC are highlighted in green. The bottom panels show the TWAS 
associations before (grey) and after (blue) conditioning on the green genes. 
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Supplementary Table 5: GC case-case comparison according to location and Lauren type. Associations of genome-wide significant GC SNPs between 
non-cardia and cardia GC patients as well as diffuse and intestinal GC patients are shown. All associations are shown for the risk alleles (effect alleles) 
in the entire GC sample (see table 1 in the main manuscript). P-values, odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) are 
shown. 

SNP Chromosome (position 
in bp (hg38)) 

Effect allele / 
other allele 

Non-Cardia versus Cardia GC sample Intestinal versus diffuse GC sample 
 

P-value OR 95% CI P-value OR 95% CI 

rs760077 1q22 (155.208.991) T/A 0.045 1.11 1.00 to 1.23 0.090 1.09 0.98 to 1.22 

rs11677924 2q23 (29.500.326) G/C 0.269 1.08 0.94 to 1.24 0.040 0.86 0.75 to 0.99 

rs2920293 8q24 (142.683.996) G/C 4.00E-06 1.30 1.16 to 1.45 0.012 1.15 1.03 to 1.28 

rs17138478 17q12 (37.713.312) C/A 0.921 0.99 0.84 to 1.16 4.38E-06 0.68 0.58 to 0.80 
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Supplementary Table 6: Top 10 PheWAS results (a) and overlap with lead variants of previously 
published GWAS studies (b) for rs760077, being the lead variant of locus 1q22 in the GC-GWAS.  

Trait P-value Effect (beta) Author (Year) 
Number 
of Cases 

Number overall 

Haematocrit percentage 5.81E-45 0.099 UKB Neale v2 NA 350475 

Haemoglobin 
concentration 

6.91E-35 0.029 UKB Neale v2 NA 350474 

Red blood cell 
(erythrocyte) count 

2.79E-27 0.009 UKB Neale v2 NA 350475 

Benign neoplasm of 
other parts of digestive 

system 

1.13E-17 0.173 UKB SAIGE 5280 400581 

Impedance of leg (left) 7.17E-14 0.584 UKB Neale v2 NA 354811 

Impedance of leg (right) 4.27E-13 0.566 UKB Neale v2 NA 354817 

Leg fat-free mass (right) 4.96E-09 -0.017 UKB Neale v2 NA 354798 

Leg predicted mass 
(right) 

6.23E-09 -0.016 UKB Neale v2 NA 354798 

None of the above | 
mouth/teeth dental 

problems 

1.05E-08 -0.028 UKB Neale v2 141495 359841 

Dentures | mouth/teeth 
dental problems 

1.45E-08 0.035 UKB Neale v2 60977 359841 

 
 

 

 

Trait Lead Variant P-value 
LD (r²) to 
variant 

examined 
Author (Year) Study PMID 

Serum cancer antigen 
15.3 levels 

rs760077 1.00E-300 1.00 Olafsson S PMID:31666285 

Blood urea nitrogen 
levels 

rs760077 6.00E-126 1.00 Sakaue S PMID:34594039 

Hematocrit rs760077 1.00E-82 1.00 Chen MH PMID:32888493 

Hematocrit rs6676150 8.80E-77 0.88 Chen MH PMID:32888493 

Blood urea nitrogen 
levels 

rs760077 2.00E-67 1.00 Wuttke M PMID:31152163 

Hematocrit rs6676150 3.40E-61 0.88 Vuckovic D PMID:32888494 

Hemoglobin 
concentration 

rs760077 6.00E-59 1.00 Chen MH PMID:32888493 

Hemoglobin 
concentration 

rs6676150 1.80E-54 0.88 Chen MH PMID:32888493 

Hematocrit rs760077 2.00E-53 1.00 Sakaue S PMID:34594039 

Red blood cell count rs760077 3.00E-50 1.00 Chen MH PMID:32888493 

a) PheWAS 

b) Overlap GWAS 
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Supplementary Table 7: Top 10 PheWAS results (a) and overlap with lead variants of previously 
published GWAS studies (b) for rs2920293, being the lead variant of locus 8q24 in the GC-GWAS.  

Trait P-value Effect (beta) Author (Year) 
Number 
of Cases 

Number overall 

Cancer of bladder 2.25E-11 0.20 UKB SAIGE 2427 407223 

Duodenitis 3.59E-11 -0.11 UKB SAIGE 7655 385779 

Malignant neoplasm of 
bladder 

6.07E-11 0.20 UKB SAIGE 2146 406942 

Ankle spacing width 7.81E-11 -0.08 UKB Neale v2 NA 206589 

Duodenal ulcer 1.46E-10 -0.17 UKB SAIGE 3002 404527 

Gastroduodenal ulcer 5.30E-10 -0.14 FINNGEN_R5 4510 194205 

Duodenal ulcer 9.20E-09 -0.20 FINNGEN_R5 1691 191386 

Malignant neoplasm of 
stomach (all cancers 

excluded) 
1.65E-08 0.32 FINNGEN_R5 633 174639 

Trunk fat mass 2.05E-08 -0.07 UKB Neale v2 NA 354597 

Malignant neoplasm of 
stomach 

3.17E-08 0.31 FINNGEN_R5 633 218792 

 
 

Trait Lead Variant P-value 
LD (r²) to variant 

examined 
Author (Year) Study PMID 

Gastric cancer rs2920280 4.00E-49 0.88 Sakaue S PMID:34594039 

Gastric cancer rs2294008 1.00E-44 1.00 Tanikawa C PMID:30281874 

Gastric cancer rs2978977 3.00E-43 0.57 Ishigaki K PMID:32514122 

Duodenal ulcer [Additive] rs2294008 2.00E-33 1.00 Tanikawa C PMID:22387998 

Pepsinogen I/II ratio rs2920283 4.00E-27 0.99 Hishida A PMID:30753327 

Gastric ulcer rs35464379 3.00E-25 0.88 Sakaue S PMID:34594039 

Gastric ulcer rs2976397 6.00E-24 0.56 Sakaue S PMID:34594039 

Peptic ulcer disease rs2976388 2.00E-14 0.92 Wu Y PMID:33608531 

Severe gastric atrophy rs2920283 2.00E-13 0.99 Hishida A PMID:30753327 

Gastric cancer rs2976394 2.00E-13 1.00 Park B PMID:30189721 

  

a) PheWAS 

b) Overlap GWAS 
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Supplementary Table 8: Top 10 PheWAS results (a) and overlap with lead variants of previously 
published GWAS studies (b) for rs17138478, being the lead variant of locus 17q12 in the GC-GWAS.  

Trait P-value Effect (beta) Author (Year) 
Number 
of Cases 

Number overall 

Prostate cancer 5.92E-24 0.12 Schumacher FR 79148 140254 

Liver enzyme levels 
(alanine transaminase) 

4.90E-23 -0.01 Pazoki R NA 437267 

Sex hormone-binding 
globulin levels adjusted 

for BMI 
3.30E-14 0.01 Ruth KS NA 368929 

Sex hormone-binding 
globulin levels 

4.90E-11 0.02 Barton AR NA 397043 

Sex hormone-binding 
globulin levels 

8.20E-09 0.01 Ruth KS NA 370125 

Cholelithiasis and 
cholecystitis 

3.21E-08 0.10 UKB SAIGE 16225 407532 

Cholelithiasis 6.50E-08 0.10 UKB SAIGE 13777 405084 

Sex hormone-binding 
globulin levels adjusted 

for BMI 
2.20E-07 0.01 Ruth KS NA 188908 

Sex hormone-binding 
globulin levels adjusted 

for BMI 
2.50E-07 0.01 Ruth KS NA 180094 

Cholelithiasis 5.04E-07 0.08 FINNGEN_R5 19023 214167 

 
 

Trait Lead Variant P-value 
LD (r²) to variant 

examined 
Author (Year) Study PMID 

C-reactive protein rs17138478 2.00E-25 1.00 Sakaue S PMID:34594039 

Liver enzyme levels 
(alanine transaminase) 

rs17138478 4.90E-23 1.00 Pazoki R PMID:33972514 

Alanine aminotransferase 
levels 

rs17138478 2.00E-22 1.00 Ward LD PMID:34315874 

C-reactive protein levels rs17138478 3.00E-20 1.00 
Sinnott-

Armstrong N 
PMID:33462484 

Alanine aminotransferase 
levels 

rs17138478 5.00E-18 1.00 
Sinnott-

Armstrong N 
PMID:33462484 

Alanine aminotransferase 
levels 

rs17138478 2.00E-15 1.00 Chen VL PMID:33547301 

Aspartate 
aminotransferase to 

alanine aminotransferase 
ratio 

rs17138478 4.00E-15 1.00 
Sinnott-

Armstrong N 
PMID:33462484 

Alanine aminotransferase 
levels 

rs17138478 2.00E-14 1.00 Sakaue S PMID:34594039 

Sex hormone-binding 
globulin levels adjusted 

for BMI 
rs17138478 3.30E-14 1.00 Ruth KS PMID:32042192 

Cholelithiasis rs17138478 1.00E-11 1.00 Sakaue S PMID:34594039 

a) PheWAS 

b) Overlap GWAS 
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Supplementary Table 9: Top 10 PheWAS results (a) and overlap with lead variants of previously 
published GWAS studies (b) for rs2590943, being the lead variant of locus 1p31 in the GC-GWAS.  

Trait P-value Effect (beta) Author (Year) 
Number 
of Cases 

Number overall 

Comparative body size 
at age 10 

2.79E-24 0.02 UKB Neale v2 NA 354996 

Leg fat percentage (left) 1.31E-21 0.15 UKB Neale v2 NA 354791 

Body mass index (bmi) 3.47E-21 0.13 UKB Neale v2 NA 359983 

Body mass index (bmi) 7.06E-21 0.13 UKB Neale v2 NA 354831 

Leg fat mass (left) 2.92E-20 0.04 UKB Neale v2 NA 354788 

Leg fat mass (right) 2.90E-19 0.04 UKB Neale v2 NA 354807 

Weight 8.13E-19 0.37 UKB Neale v2 NA 360116 

Leg fat percentage 
(right) 

9.95E-19 0.14 UKB Neale v2 NA 354811 

Weight 2.32E-18 0.36 UKB Neale v2 NA 354838 

Whole body fat mass 7.86E-18 0.23 UKB Neale v2 NA 354244 

 
 

Trait Lead Variant P-value 
LD (r²) to 
variant 

examined 
Author (Year) Study PMID 

Body mass index rs1993709 1.00E-52 0.84 Pulit SL PMID:30239722 

Body mass index rs2613498 4.00E-40 0.85 Kichaev G PMID:30595370 

Body mass index rs61765651 2.00E-38 0.86 Zhu Z PMID:31669095 

Leg fat percentage (left) rs34361149 1.25E-27 0.85 UKB Neale v2 NA 

Body mass index (bmi) rs34361149 3.34E-27 0.85 UKB Neale v2 NA 

Body mass index (bmi) rs1460940 6.95E-27 0.82 UKB Neale v2 NA 

Adult body size rs2613499 1.00E-26 0.85 Richardson TG PMID:32376654 

Body mass index rs34361149 2.00E-26 0.80 Sakaue S PMID:34594039 

Leg fat mass (left) rs34361149 2.66E-26 0.85 UKB Neale v2 NA 

Leg fat mass (right) rs34361149 2.39E-25 0.85 UKB Neale v2 PMID:30239722 

a) PheWAS 

b) Overlap GWAS 
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Supplementary Table 10: Top 10 PheWAS results (a) and overlap with lead variants of previously 
published GWAS studies (b) for rs532436, being the lead variant of locus 9q34 in the GC-GWAS.   

Trait P-value Effect (beta) Author (Year) 
Number 
of Cases 

Number overall 

Haemoglobin 
concentration 

1.94E-141 -0.0761949 UKB Neale v2  350474 

Red blood cell 
(erythrocyte) count 

2.85E-121 -0.0252011 UKB Neale v2  350475 

Haematocrit percentage 5.73E-121 -0.207538 UKB Neale v2  350475 

Blood clot in the leg 3.22E-64 0.36287686 UKB Neale v2 7386 360527 

Deep venous thrombosis 5.23E-64 0.36588362 UKB Neale v2 7237 361141 

Phlebitis and 
thrombophlebitis of lower 

extremities 
4.94E-47 0.465 UKB SAIGE 3587 373179 

Phlebitis and 
thrombophlebitis 

2.43E-45 0.437 UKB SAIGE 3900 373492 

Pulmonary embolism 9.94E-44 0.46440584 UKB Neale v2 2999 361141 

Blood clot in the lung  1.70E-42 0.45870702 UKB Neale v2 2984 360527 

Pulmonary heart disease 5.08E-36 0.367 UKB SAIGE 4257 406632 

 
 

Trait Lead Variant P-value 
LD (r²) to 
variant 

examined 
Author (Year) Study PMID 

vWF levels rs8176685 4.49E-324 0.98 
Sabater-Lleal 

M 
PMID:30586737 

Serum alkaline 
phosphatase levels 

rs2519093 4.49E-324 1.00 Kanai M PMID:29403010 

Serum alkaline 
phosphatase levels 

rs507666 4.49E-324 1.00 
Sinnott-

Armstrong N 
PMID:33462484 

E-selectin levels rs8176643 2.20E-308 0.99 Folkersen L PMID:33067605 

Serum 25-Hydroxyvitamin 
D levels 

rs115478735 2.20E-308 0.99 Manousaki D PMID:32059762 

Sulfhydryl oxidase 2 
measurement 

rs115478735 2.20E-308 0.99 Pietzner M PMID:33328453 

E-selectin levels rs11244061 2.20E-308 0.55 Folkersen L PMID:33067605 

Soluble E-selectin levels rs2519093 4.00E-305 0.99 Sliz E PMID:31217265 

Platelet endothelial cell 
adhesion molecule levels 

rs8176643 7.89E-302 0.99 Folkersen L PMID:33067605 

Red blood cell count rs550057 
1.00E-296 

 
0.97 

Chen MH 
 

PMID:32888493 
 

  

a) PheWAS 

b) Overlap GWAS 
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Supplementary Table 11: Top 10 results of a pathway analyses using the Enrichr tool and the pathway 
database BioPlanet 2019 as source [89]. DE genes comparing transcriptome data of tissue samples 
taken from the a) antrum (378 genes) and the b) corpus (357 genes) were used as input.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Pathway P-value Adjusted P-value Odds Ratio Combined score 

Interferon signaling 7.4E-10 6.0E-07 6.73 141.42 

Immune system signaling by interferons, 
interleukins, prolactin, and growth 
hormones 

6.8E-09 2.8E-06 4.75 89.28 

Interferon alpha/beta signaling 3.8E-08 1.0E-05 10.77 184.08 

TGF-beta regulation of extracellular 
matrix 

6.9E-08 1.4E-05 3.22 53.06 

Oncostatin M 2.0E-07 3.3E-05 4.02 61.9 

Drug metabolism: cytochrome P450 4.6E-06 6.3E-04 7.08 86.96 

Metapathway biotransformation 8.0E-06 9.3E-04 4.55 53.42 

Type I hemidesmosome assembly 1.6E-05 1.6E-03 40.85 450.4 

Biological oxidations 1.7E-05 1.6E-03 4.9 53.64 

TAp63 pathway 8.9E-05 7.3E-03 7.49 69.83 

Pathway P-value Adjusted P-value Odds Ratio Combined score 

Branched-chain amino acid catabolism 9.1E-09 4.8E-06 39.27 727.1 

Amino acid metabolism 8.5E-08 2.2E-05 5.47 89.02 

Valine, leucine and isoleucine 
degradation 

9.6E-07 1.7E-04 12.48 172.94 

Ghrelin-mediated regulation of food 
intake and energy homeostasis 

2.0E-06 2.7E-04 34.86 457.21 

Creatine metabolism 3.3E-06 3.5E-04 74.18 935.22 

Metabolism 2.3E-05 2.1E-03 1.97 21.02 

Response to elevated platelet cytosolic 
calcium 

1.2E-04 8.8E-03 5.98 54.13 

Amino acid biosynthesis and 
interconversion (transamination) 

1.5E-04 1.0E-02 18.54 162.82 

Insulin-like growth factor (IGF) activity 
regulation by insulin-like growth factor 
binding proteins (IGFBPs) 

2.0E-04 1.2E-02 17.11 145.94 

Gastric acid secretion 3.5E-04 1.9E-02 5.84 46.48 

a) Top 10 pathways upregulated in antrum. 

b) Top 10 pathways upregulated in corpus. 
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Supplementary Table 12: Genetic correlations using LD Score regression between GC and 20 traits belonging to five phenotype-categories that 
represent risk factors for GC development. For each trait the genetic GC correlation (rg) along with the standard error (SE) and the corresponding 
significance level (P-value) are shown. 

Phenotype category Trait rg SE Z P-value 

Obesity-related traits Body mass index (BMI) 0.3031 0.0881 3.4424 6.0E-04 

 
Hip circumference 0.2692 0.0884 3.0458 2.3E-03 

 
Weight 0.2628 0.0865 3.04 2.4E-03 

 
Waist circumference 0.2368 0.0846 2.7978 5.1E-03 

Reflux-related traits ICD10 K21 (Gastro-esophageal reflux disease (GERD)) 0.0383 0.1764 0.217 0.828 

 
Self-reported: gastro-esophageal reflux/gastric reflux 0.0016 0.1541 0.0101 0.991 

Smoking-related traits Pack years adult smoking  0.3521 0.1133 3.1064 2.0E-03 

 
Pack years of smoking  0.3281 0.1139 2.8799 4.0E-03 

 
Number of cigarettes previously smoked daily 0.3425 0.1212 2.8251 4.7E-03 

 
Current tobacco smoking 0.2406 0.0902 2.6685 7.6E-03 

 
Number of cigarettes currently smoked daily  0.3102 0.2381 1.3028 0.193 

Alcohol intake-related traits Alcohol intake 10 years previously 0.3615 0.1191 3.0339 2.0E-03 

 
Alcohol intake frequency 0.2807 0.0943 2.9772 3.0E-03 

 
Average weekly red wine intake -0.2327 0.1018 -2.2853 0.022 

 
Average weekly champagne plus white wine intake -0.2353 0.1153 -2.0413 0.041 

 
Average weekly intake of other alcoholic drinks 0.0447 0.3498 0.1279 0.898 

Education-/employment-related traits Qualifications: O levels/GCSEs or equivalent (a) -0.343 0.1167 -2.9405 3.3E-03 

 
Qualifications: College or University degree -0.183 0.0745 -2.4563 0.014 

 
Current employment status: In paid employment or self-employed -0.4335 0.2086 -2.0783 0.036 

 
Age completed full time education -0.1807 0.0921 -1.9631 0.049 

 

(a) GCSE refers to General Certificate of Secondary Education 
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Supplementary Table 13: Genetic relation between cardia GC and OAC. PRS for OAC were calculated 
using different P-value thresholds and different numbers of SNPs, respectively. The proportion of 
variance explained by each PRS was then tested in four GC target samples. P-values indicate, whether 
PRS derived from OAC are associated to the target samples. 

P-value threshold Number of SNPs Target sample P-value 

5.00E-08 10 

cardia GC 0.109 

entire GC 0.165 

non-cardia GC 0.761 

cardia versus non-cardia GC 0.229 

1.00E-06 28 

cardia GC 0.001 

entire GC 0.021 

non-cardia GC 0.960 

cardia versus non-cardia GC 0.020 

1.00E-04 287 

cardia GC 3.75E-07 

entire GC 0.01 

non-cardia GC 0.4 

cardia versus non-cardia GC 4.30E-04 

1.00E-03 1,602 

cardia GC 2.37E-08 

entire GC 0.003 

non-cardia GC 0.151 

cardia versus non-cardia GC 0.008 

0.01 9,878 

cardia GC 2.65E-06 

entire GC 0.009 

non-cardia GC 0.187 

cardia versus non-cardia GC 0.005 

0.05 34,794 

cardia GC 4.40E-04 

entire GC 0.047 

non-cardia GC 0.277 

cardia versus non-cardia GC 1.42E-04 

0.1 58,522 

cardia GC 0.683 

entire GC 0.012 

non-cardia GC 0.168 

cardia versus non-cardia GC 3.30E-08 

0.2 96,776 

cardia GC 0.069 

entire GC 0.009 

non-cardia GC 0.147 

cardia versus non-cardia GC 3.49E-09 

0.5 176,876 

cardia GC 0.095 

entire GC 0.005 

non-cardia GC 0.085 

cardia versus non-cardia GC 2.18E-09 

1 244,252 

cardia GC 0.021 

entire GC 0.005 

non-cardia GC 0.089 

cardia versus non-cardia GC 1.85E-08 
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Supplementary Table 14: Genetic relation between cardia GC and OAC/BO. PRS for OAC/BO were 
calculated using different P-value thresholds and different numbers of SNPs, respectively. The 
proportion of variance explained by each PRS was then tested in four GC target samples. P-values 
indicate, whether PRS derived from OAC/BO are associated to the target samples. 

P-value threshold Number of SNPs Target sample  P-value 

5.00E-08 17 

cardia GC  2.88E-06 

entire GC  0.045 

non-cardia GC  0.743 

cardia versus non-cardia GC  1.47E-03 

1.00E-06 46 

cardia GC  8.84E-04 

entire GC  0.096 

non-cardia GC  0.920 

cardia versus non-cardia GC  0.030 

1.00E-04 354 

cardia GC  0.135 

entire GC  0.202 

non-cardia GC  0.792 

cardia versus non-cardia GC  0.064 

1.00E-03 1,812 

cardia GC  0.018 

entire GC  0.312 

non-cardia GC  0.864 

cardia versus non-cardia GC  0.012 

0.01 10,431 

cardia GC  5.20E-08 

entire GC  0.077 

non-cardia GC  0.701 

cardia versus non-cardia GC  2.30E-03 

0.05 35,81 

cardia GC  4.02E-05 

entire GC  0.205 

non-cardia GC  0.678 

cardia versus non-cardia GC  3.51E-05 

0.1 60,117 

cardia GC  9.05E-16 

entire GC  0.140 

non-cardia GC  0.778 

cardia versus non-cardia GC  7.20E-07 

0.2 98,276 

cardia GC  2.79E-17 

entire GC  0.082 

non-cardia GC  0.627 

cardia versus non-cardia GC  4.33E-07 

0.5 177,268 

cardia GC  1.13E-16 

entire GC  0.062 

non-cardia GC  0.469 

cardia versus non-cardia GC  3.50E-06 

1 244,383 

cardia GC  4.52E-17 

entire GC  0.067 

non-cardia GC  0.535 

cardia versus non-cardia GC  1.99E-06 
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Supplementary Table 15: Lead associations of genome-wide significant loci for oesophago-gastric 
adenocarcinoma. The associations are shown for the risk alleles (effect alleles) in the combined cardia 
GC/OAC/BO sample. P-values, odds ratios (ORs) and the corresponding 95% confidence intervals 
(CIs) are shown. The heterogeneity P-values (Het P-value) indicate whether the observed associations 
are equally attributable to cardia GC and OAC/BO. Allele frequencies for the associated SNPs among 
patients and controls are not given, as the GWAS samples were meta-analysed. Instead the frequency 
of effect alleles in the European population are shown according to gnomAD [52]. 

SNP 

Chromosome 

(position in bp 

(hg38)) 

Effect allele / other 

allele (a) 
P-value OR 95% CI Het P-value 

rs7255 
2p24 

(20.679.060) 
T/C 2.46E-12 1.13 1.09 to 1.17 0.910 

rs896350 
2q33 

(199.163.981) 
G/A 6.66E-09 1.11 1.07 to 1.14 0.590 

rs2687202 
3p13 

(70.880.832) 
T/C 6.91E-09 1.11 1.07 to 1.15 0.110 

rs3749615 
5p15 

(601.370) 
T/C 3.43E-10 1.14 1.09 to 1.19 0.864 

rs9257809 
6p22 

(29.388.554) 
A/G 3.68E-09 1.21 1.13 to 1.28 0.267 

rs62423175 
6q11 

(61.485.463) 
A/G 2.81E-09 1.16 1.11 to 1.22 1.000 

rs73014164 
6q25 

(160.555.588) 
C/T 3.49E-08 1.13 1.08 to 1.18 0.932 

rs17451754 
7q31 

(117.616.658) 
G/A 1.13E-11 1.18 1.12 to 1.24 0.988 

rs4382480 
8p23 

(8.863.963) 
A/G 1.04E-08 1.10 1.06 to 1.14 0.684 

rs28630503 
8p23 

(10.151.506) 
T/C 1.36E-08 1.11 1.07 to 1.15 0.202 

rs1478892 
8p23 

(11.591.020) 
T/G 6.07E-09 1.11 1.07 to 1.14 0.427 

rs1817002 
8q21 

(75.653.577) 
G/A 4.10E-08 1.11 1.06 to 1.14 0.907 

rs7852462 
9q22 

(97.548.219) 
C/T 2.39E-08 1.11 1.06 to 1.14 0.072 

rs2464469 
15q21 

(58.069.827) 
G/A 9.39E-11 1.12 1.08 to 1.15 0.214 

rs234506 
15q26 

(97.035.863) 
A/G 1.56E-09 1.12 1.07 to 1.16 0.815 

rs2353694 
 16q24 

(86.431.413) 
G/C 2.80E-08 1.12 1.07 to 1.14 0.584 

rs10404726 
19p13 

(18.723.704) 
C/T 3.94E-09 1.11 1.07 to 1.14 0.198 

 

(a) Frequency of effect alleles in the European (non-Finnish) population according to gnomAD [52]: rs7255 allele T 49%, 

rs896350 allele G 60%, rs2687202 allele T 32%, rs3749615 allele T 17%, rs9257809 allele A 91%, rs62423175 allele A 17%, 

rs73014164 allele C 83%, rs17451754 allele G 84%, rs4382480 allele A 44%, rs28630503 allele T 29%, rs1478892 allele T 

34%, rs1817002 allele G 64%, rs7852462 allele C 60%, rs2464469 allele G 42%, rs234506 allele A 28%, rs2353694 allele 

G 25%, rs10404726 allele C 54%. 
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