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Abstract

Understanding the formation and evolution of the Universe’s large-scale structure are funda-

mental in modern cosmology. Currently, the most accurate model to describe the LSS and other

observations like the cosmic microwave background (CMB) is the so-called Λ Cold Dark Matter

model (ΛCDM), which is therefore considered the standard model of cosmology.

An ideal tool to measure the total matter distribution in the Universe is gravitational lensing,

which describes how massive objects, regardless of the matter’s nature, bend light rays and

distort the images of distant objects.

To extract the non-Gaussian information, Gruen et al. (2016) introduced the density split statistic

(DSS). The DSS measures the mean tangential shear around line-of-sights of similar galaxy

densities. Since the galaxy densities trace the matter densities, the tangential shear correlates

strongly with the galaxy distribution in a manner that varies with cosmology. Therefore, the

DSS captures information from the number of foreground galaxies in each density bin and the

shape and amplitude of the shear profiles.

In the first part of this thesis, we construct a general filter function, which is used to smooth

the galaxy density field. The filter function is adapted to the shear pattern. We find that the

adapted filter yields a better correlation between the total matter and the galaxy distribution

and a larger signal-to-noise ratio than the previously used top-hat filter function. The latter

eases the detection of the shear signals compared to the previously used top-hat filter functions

making them more suitable for real data analyses.

In the second part, we modify the analytical DSS model described in Friedrich et al. (2018) to

general filter functions. Similar to the previous DSS model, we build on log-normal approxima-

tions of large deviation theory approaches to model the matter density probability distribution

function and on perturbative calculations of higher-order moments of the density field.

In the third part, we validate the modified DSSmodel against several simulations. This validation

reveals that the analytical model is accurate for stage III surveys like the fourth data release

of the Kilo-Degree Survey (KiDS-1000). Furthermore, we find that the model is robust against

baryonic feedback and intrinsic alignment.

In the last part, we perform a cosmological analysis of KiDS-1000 based on the DSS. The

image shapes are taken from the fourth and fifth tomographic bin of KiDS-1000, and the

foreground galaxy sample is constructed from a bright galaxy sample. After marginalising

over the photometric redshift uncertainty and the residual shear calibration bias, we measure

a structure growth parameter of 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 = 0.74

+0.03

−0.02
that is competitive too and

v



consistent with two-point cosmic shear results, a matter density of Ωm = 0.27 ± 0.02, and a

constant galaxy bias of 𝑏 = 1.32
+0.12

−0.11
.

In conclusion, although higher-order statistics are complicated to model and usually rely

on cosmological simulations, we show that the generalised model of the DSS is a powerful

cosmological tool with a significant advantage in breaking the Ωm-𝜎8 degeneracy.
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Introduction 1
‘One of the basic rules of the universe is that nothing is perfect. Perfection simply doesn’t exist.

Without imperfection, neither you nor I would exist.’

Stephen Hawking.

The origin of astronomy dates back to ancient cultures like Mesopotamia, China and Central

America. Back then, the Earth was believed to be the centre of the Universe, while all visible

objects like the Sun, the Moon or the planets revolve around it. Since the telescope had not yet

been invented, astronomy was concerned only with observing and predicting the motion of

objects visible to the naked eye.

The scientific revolution of astronomy began with scientists like Galileo Galilei or Johannes

Kepler using telescopes to observe objects in the sky. Kepler was the first to prove that planets

move on elliptical orbits rather than circular and formulated his famous laws of planetary

motion. However, it was not possible for him to formulate a theory behind the laws he wrote

down. Isaac Newton, with his laws of gravitation published in Philosophiæ Naturalis Principia

Mathematica in 1687 (Newton, 1966) made the motions of celestial bodies predictable based on

first mathematical principles.

Newton’s law of gravity was the dominant scientific description of gravitation until it was

replaced by general relativity (GR) formulated by Einstein (1915). In GR, gravitation is described

as a geometric property of space and time. It is, until today, the most accurate description

of gravitation in modern physics. The first breakthrough of GR was the observation of Sir

Arthur Eddington and Sir Frank Watson Dyson, who compared the apparent positions of stars

in the Hyades cluster during the Solar eclipse of 1919 to the position of the stars at night. This

was the first detection of a gravitational lensing effect (Dyson et al., 1920). Although such

light deflection can also be estimated in the Newtonian description, its prediction differs by a

factor of two from that in GR. Since the observation agreed with the prediction of GR, nothing

could stop the triumph of GR. Another recent success of GR was the first image of a black

hole at the centre of the galaxy Messier 87 shown in Fig. 1.1, measured by the Event Horizon

Telescope (EHT). Before this image was taken, the existence of black holes (Schwarzschild,

1916) could only be shown indirectly, for instance, by measuring the stellar orbits around a

black hole (Gillessen et al., 2009) or by the measurements of gravitational waves (Abbott et al.,

1



1 Introduction

Figure 1.1: EHT image of M87* in units of brightness temperature. At the bottom, images of M87*

are shown, which are measured on different days, showing the equivalence among different days.

Figure taken from Event Horizon Telescope Collaboration: Akiyama et al. (2019).

2016). Gravitational waves are also predicted by GR and are distortions of space-time that can

be created by collisions of black holes or neutron stars.

In modern astronomy, one differs between astrophysics, which employs the nature of the

astronomical objects rather than their positions or motions in space, and cosmology, which

studies the Universe as a whole.

The currently best cosmological model is the so-called ΛCDM model, which can describe many

observations like the cosmic microwave background (CMB) first detected by Penzias andWilson

(1965), the abundance of Helium (Peebles, 1966) and other elements (Wagoner et al., 1967), and

the existence and scale of baryonic acoustic oscillations (BAOs; Cole et al., 2005; Eisenstein et al.,

2



2005). It assumes that the Universe contains baryonic matter
1
and dark matter. This "visible"

baryonic matter, which accumulates in stars, gases, and planets, makes up only a tiny fraction

(about 5%) of the total energy-matter content of the Universe. Nearly 75% of the energy-matter

budget consists of a poorly understood dark energy, which accounts for the observed accelerated

expansion of the Universe (Peebles and Ratra, 2003). The rest consists of matter that acts only

gravitationally and is therefore invisible, which gives it the name dark matter.

The first hint of dark matter was found by measuring the velocities of galaxies in the Coma

cluster (Zwicky, 1933). The visible mass estimated from the luminosity of the galaxies is

insufficient to explain the high galaxy velocities, so Zwicky concluded that the cluster must

contain an additional invisible mass component. Furthermore, the study of Rubin et al. (1980)

found that the rotational velocities of stars inside spiral galaxies stay almost constant for large

radii, which could only be explained by an additional invisible mass component.

One of the biggest successes of the ΛCDM model is its remarkable agreement with the observa-

tion of the CMB measured by the Planck satellite (Planck Collaboration: Aghanim et al., 2020).

The CMB is a relic of the early Universe, where the Universe cooled enough such that photons

decoupled for the first time from the baryonic matter. Since the temperature fluctuations of these

CMB photons reflect the baryonic distribution directly, they give a snapshot of the Universe

approximately 380 000 years after the Big Bang.
2
Based on the theory of gravitational instability

for structure growth, one expects for a Universe without dark matter that the temperature

fluctuations Δ𝑇/𝑇 ∼ 10
−3
. However, one finds that temperature fluctuations Δ𝑇/𝑇 ∼ 10

−5
,

which can only be explained if the baryonic matter falls into potential wells that the dark matter

formed before the decoupling of photons and baryons. Since the CMB is very well described

as a Gaussian random field, two-point statistics like the two-point correlation functions or

its Fourier counterparts, the power spectra, are excellent for extracting all information of the

CMB.

In the late Universe, however, a significant amount of non-Gaussian features are generated by

non-linear gravitational instabilities, whose information can only be completely extracted with

higher-order statistics. An ideal tool to investigate the local (or late) Universe is gravitational

lensing (Bartelmann and Schneider, 2001), which describes the deflection of light by massive

objects, regardless of the nature of matter. However, even for the late Universe, most studies

use second-order statistics both for weak lensing and galaxy clustering analyses because of

their accurate theoretical description and control over systematic inaccuracies (see, e.g. Joudaki

et al., 2018; Hamana et al., 2020; Asgari et al., 2021; DES Collaboration: Abbott et al., 2022;

Amon et al., 2022, for recent analyses). With the ever-increasing accuracy of cosmological

parameters, tensions arose between observations of the early and late Universe. Besides other

interesting tensions, the most interesting tension for gravitational lensing manifests in the

matter clustering parameter 𝑆8 = 𝜎8

√︁
Ωm/0.3, where it seems that the local Universe is less

clustered than observations of the CMB suggest (Hildebrandt et al., 2017; Joudaki et al., 2020;

Heymans et al., 2021; Di Valentino et al., 2021b).

1
The cosmological convention is that all visible matter like neutrons, protons, and electrons is ‘baryonic’, even

though electrons are leptons.

2
The Big Bang is considered as the beginning of space and time.
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1 Introduction

One way to understand these tensions in more detail is to use higher-order statistics as they

scale differently with cosmological parameters, which makes them very valuable to increase

the constraining power on cosmological parameters (see, e.g. Kilbinger and Schneider, 2005;

Bergé et al., 2010; Pires et al., 2012; Fu et al., 2014; Pyne and Joachimi, 2021), and to verify

second-order statistic results. A model has to be constructed to access the information in

higher-order statistics, which is usually more challenging, but can be done through simulations

(Harnois-Déraps et al., 2021; Zürcher et al., 2022) or from analytical calculations (Reimberg and

Bernardeau, 2018; Barthelemy et al., 2021). The simulation-based approach has the advantage

that every measurable statistic can be modelled as long as enough simulations with varying

cosmologies are available and the incorporation of critical systematic effects such as the intrinsic

alignment (IA) of galaxies (Joachimi et al., 2015) or baryonic processes with hydro-dynamical

simulations do not need complicated analytical modelling. However, if derivable, analytical

models help to understand the underlying properties of the cosmic large-scale structure (LSS)

and are usually faster to compute at any point in the cosmological parameter space. In Fig. 1.2

an image taken by the James Webb Space Telescope, which is about the size of a grain of sand

when viewed at an arm’s length distance, nicely demonstrates the LSS and the vast amount of

galaxies that can be found in the Universe.

Figure 1.2: A (2′.2)2
image taken by the James Webb Space Telescope (Pontoppidan et al., 2022),

showing the galaxy cluster SMACS 0723. It is clearly seen how the massive foreground galaxy cluster

distorts the image shapes of many background galaxies. Credit: NASA, ESA, CSA, STScI

One higher-order statistic was introduced by Gruen et al. (2016) and is called density split

statistic (DSS). The idea of the DSS is to measure the mean tangential shear around sub-areas

4



of the survey with similar foreground galaxy densities. High galaxy density regions generally

trace large matter over-density regions, which result in higher tangential shear signals that vary

with cosmology. Therefore, the DSS captures information from the shape and amplitude of the

shear profiles and the distribution of the galaxy density field. Friedrich et al. (2018, hereafter

F18) introduced an analytical model for the DSS that predicts the mean tangential shear profiles

and the probability density function (PDF) of the galaxy counts in each mass density bin for a

given cosmology by just providing it with the mean foreground galaxy density, and redshift

distributions of the foreground and background galaxies. The F18 model was then used in

Gruen et al. (2018, hereafter G18) to constrain cosmological parameters from measurements of

the Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS) data, yielding

results competitive with the main DES second-order analysis (Abbott et al., 2018).

The prime motivation for this work is to improve the filter function of the DSS, which we

achieve by developing a pair of filter functions for the aperture mass and aperture number (see

Schneider, 1996, 1998). These two statistics are strongly correlated if the local galaxy density

distribution is proportional to the local matter density distribution. We adapt the filter functions

to shear signals measured in the Millenium simulation (MS), giving it the name ‘adapted’ filter

functions.

In the second part of this thesis, we modify the analytical model by F18 to general filter functions.

As in the F18 model, we build on log-normal approximations to model the matter density

probability distribution function and on perturbative calculations of higher-order moments of

the density field.

The last part of this thesis consists of validating the analytical model on several simulations

containing IA, baryonic feedback process, different redshift distributions and galaxy bias models.

After showing that the model is accurate for Stage III surveys, we perform the first cosmological

inference of Kilo-Degree Survey (KiDS) data using the DSS. To construct our foreground density

maps, we use the dense sample of bright galaxies presented in Bilicki et al. (2021) and compute

the tangential shear from the lensing catalogue constructed from the fourth data release of the

Kilo-Degree Survey (KiDS-1000).

This work is structured as follows:

• In chapter 2, we review the cosmological standard model and cosmic structure formation,

introduce the concepts of gravitational lensing and review the statistical methods we use.

• In chapter 3, we review all the observed and simulated data used in this work.

• The development of the adapted filter is done in chapter 4.

• The generalized model is described in chapter 5.

• The validation of the analytical model is done in chapter 6.

• In chapter 7, we show our results of the KiDS-1000 analysis.

• Chapter 8 concludes this thesis with a summary of our results and an outlook for future

research.

5





Theoretical background 2
This chapter reviews the basics of cosmology and the usage of the gravitational lensing effect

to explore the relationship between galaxies and the matter distribution of the Universe. The

formation and evolution of galaxies and their relationship to the underlying dark matter depend

on the cosmological model describing the dynamics of the Universe, the formation of the dark

matter structure itself, and physical processes affecting only baryons. All three ingredients

must be understood for measuring and modelling the DSS, whereas the baryonic processes are

subdominant on the scales we are investigating later.

In Sec.2.1, we review the standard model of cosmology, cosmological distances, the formation

of the LSS, and galaxy formation. We introduce the gravitational lensing effect and the DSS

in Sect. 2.2. Finally, we give in Sect. 2.3.2 an overview of the statistical methods used in this

work.

2.1 Cosmology

Cosmology is the science of the origin, evolution and future of the Universe. Common tasks of

a cosmologist are to answer questions about the origin of the LSS of the universe or the age

of the universe, and some cosmologists even try to answer what was before the birth of the

universe, although this is rather a philosophical question. To answer the former questions, a

fundamental theoretical description is needed.

2.1.1 Cosmological standard model

The current understanding of cosmology is based on the theory of GR by Einstein (1915),

which describes space-time as a four-dimensional manifold, where gravitational attraction is a

consequence of the curvature of space-time due to the energy and mass that is present inside

the system. Mathematically this relation is described by Einstein’s field equations

𝑅𝜇𝜈 −
𝑅

2

𝑔𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈 + Λ𝑔𝜇𝜈 , (2.1)

7



2 Theoretical background

where 𝑅𝜇𝜈 is the Ricci tensor describing the curvature of space-time and its trace being the

Ricci scalar 𝑅. The space-time metric is 𝑔𝜇𝜈 describing the spatial and temporal distances

and local inertial frames. It also determines the world lines of freely falling particles or light

rays (geodesics). Lastly, the energy-momentum tensor 𝑇𝜇𝜈 describes the energy content of the

Universe, 𝐺 is the Newtonian gravitational constant, and Λ is the cosmological constant or

energy density of the vacuum if written on the left side of Eq. (2.1).

Assumptions need to be made to solve these ten coupled non-linear differential equations. In

cosmology, the cosmological principle is used. It states that the Universe is spatially isotropic on
large angular scales

1
and that no place in the cosmos is privileged over any other place. It then

follows directly that the Universe is homogeneous.

The distribution of galaxies or the temperature fluctuations of the CMB nicely demonstrates

the isotropy of the cosmic matter distribution (Eisenstein et al., 2011; Planck Collaboration:

Aghanim et al., 2020). Homogeneity is challenging to test because it is impossible to study

the entire Universe at a fixed time or verify observers’ measurements at other points in space.

However, it is reasonable to assume that our spatial position is not unique so that the observed

statistical properties are the same for the entire Universe.

The space-time for a homogeneous and isotropic universe is described by the Robertson-Walker

metric (Robertson, 1935;Walker, 1937). In this idealised case the line element d𝑠, is the separation

between two space-time points at (𝑡,𝑤, 𝜃, 𝜙) and (𝑡 + d𝑡 ,𝑤 + d𝑤 , 𝜃 + d𝜃 , 𝜙 + d𝜙) as

d𝑠2 = 𝑔𝜇𝜈d𝑥
𝜇
d𝑥𝜈 = −𝑐2

d𝑡2 + 𝑎2(𝑡)
[
d𝜒2 + 𝑓 2

𝐾 (𝜒)
(
d𝜃2 + sin

2(𝜃) d𝜙2
) ]

. (2.2)

Here, 𝑡 is the cosmic time, 𝑎(𝑡) the cosmic scale factor which describes the expansion of the

Universe observed by Hubble (1929) normalized that today 𝑎(𝑡0) = 1 and 𝑎 → 0 at early times,

𝜒 is the comoving radial distance, 𝜃 and 𝜙 are angular coordinates. The comoving angular

diameter distance

𝑓𝐾 (𝜒) =


1√
𝐾

sin

(√
𝐾 𝜒

)
for 𝐾 > 0

𝜒 for 𝐾 = 0

1√
−𝐾

sinh

(√
−𝐾 𝜒

)
for 𝐾 < 0

, (2.3)

where 𝐾 describes the spatial curvature of the Universe, with a positive 𝐾 corresponding to

a closed (or positively curved) universe, 𝐾 = 0 to flat space and a negative 𝐾 to an open (or

negatively curved) Universe.

Inserting the metric 𝑔𝜇𝜈 given in Eq. (2.2) into Eq. (2.1) and using that for an ideal fluid with

density 𝜌, pressure 𝑝 and four-velocity 𝑢 the energy momentum tensor

𝑇𝜇𝜈 =

(
𝜌 + 𝑝

𝑐2

)
𝑢𝜇 𝑢𝜈 + 𝑝 𝑔𝜇𝜈 , (2.4)

1
Large scales are usually meant by scales larger than hundreds of Megaparsecs.

8



2.1 Cosmology

the Friedmann equations (Friedmann, 1922) follow to

8𝜋G

3

𝜌 − 𝐾 𝑐2

𝑎2
+ Λ 𝑐2

3

=

(
¤𝑎
𝑎

)
2

= 𝐻2(𝑎) , (2.5)

−4𝜋G

3

(
𝜌 + 3

𝑝

𝑐2

)
+ Λ 𝑐2

3

=
¥𝑎
𝑎

. (2.6)

These equations describe the Universe’s dynamics and expansion history, where 𝐻 = ¤𝑎
𝑎
is the

Hubble parameter determining the expansion rate. Its current value is the Hubble constant 𝐻0.

Interestingly, the actual value is uncertain, since early Universe measurements like the CMB or

BAOs measure a value of 𝐻0 ≈ 68 km s
−1
Mpc

−1
, whereas local or late Universe observations

like supernovae type Ia (SNIa) investigated by Riess et al. (2022) or strong gravitational lensing

time delays (Wong et al., 2020) measure with a 5𝜎 discrepancy a value of 𝐻0 ≈ 73 km s
−1

Mpc
−1
.

Since this tension is currently not solvable and the fact that other parameters depend on it, the

Hubble constant is frequently written as 𝐻0 = 100 ℎ km s
−1

Mpc
−1
.

The Friedmann equations can also be expressed in terms of cosmological parameters. This is

done by solving the first law of thermodynamics transformed to comoving coordinates,

d

(
𝜌𝑐2𝑎3

)
= −𝑝d

(
𝑎3

)
, (2.7)

for each particle species separately by assuming that they all follow the ansatz 𝜌𝑖 = 𝜌𝑖0𝑎
𝜈
but

with different equation of state 𝑤 = 𝑝/(𝜌 𝑐2), the first Friedmann equation can also be written

as

𝐻 (𝑎)2 = 𝐻2

0

[
Ωr 𝑎

−4 +Ωm 𝑎
−3 + (1 −Ωtot) 𝑎−2 +ΩΛ

]
. (2.8)

where

Ωm =
𝜌m,0

𝜌crit

, Ωr =
𝜌r,0

𝜌crit

, Ωb =
𝜌b,0

𝜌crit

, ΩΛ =
Λ 𝑐2

8𝜋𝐺 𝜌crit

, Ωtot = Ωm +Ωr +ΩΛ , (2.9)

and

𝜌crit =
3𝐻2

0

8𝜋𝐺
. (2.10)

This cosmological model is the so-called ΛCDM model and assumes that the Universe contains

baryonic matter 𝜌b and cold dark matter 𝜌CDM, since for hot dark matter, only the largest

perturbations survive. Dark matter does not interact with electromagnetic radiation. Hence

it is invisible but is detectable via its deformation of space-time. Together, baryonic and

dark matter account for the total matter density parameter Ωm, the radiation content by the

density parameter Ωr, and the non-zero cosmological constant Λ by ΩΛ. Equation (2.8) reveals

interesting results. First, it shows that the Universe’s expansion history is fully determined by

the density parameters and the Hubble constant, and second, the Universe experienced three

different expansion epochs. In the early time, the Universe was dominated by radiation, and as
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soon as the scale factor grows above the matter-radiation equality at scale factor 𝑎eq defined

by

𝑎eq =
Ωr

Ωm

≈ 3.2 × 10
−5 Ω−1

m
ℎ−2

, (2.11)

the matter density Ωm starts to dominate. Measurements suggest that Ωtot = 1 so the term

proportional to 𝑎−2
vanishes. Furthermore, since ΩΛ > Ωm the current expansion of the

Universe is dominated by the cosmological constant, where 𝑎 increases exponentially.

Although the ΛCDM model is not able to describe all astrophysical observations, it is still

referred to as the cosmological standard model since it does explain the observed accelerated

expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999) and is also confirmed by

several observations like the spatial galaxy distribution, distances to SNIa and its strongest

proponent the CMB. One of the most famous ‘problems’ is the 𝐻0 Tension between the Hubble

constant measurements from the local Universe to the one from the early Universe (Di Valentino

et al., 2021a). To solve this tension, either the ΛCDMmodel needs to be revised or even replaced,

or observational reasons for this discrepancy need to be found, like the fact that the galactic

supernovae are measured inside a void which would yield a larger local value for the Hubble

constant (Shanks et al., 2019).

Another tension that is of more interest for our work describes the tension between local

Universe measurements and early Universe measurement of the structure growth parameter of

𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 (Hildebrandt et al., 2021; Joudaki et al., 2020), where 𝜎8 is the normalisation

of the matter power spectrum (see Sect. 2.1.5).

Since this work does not aim to solve these tensions, we rely on the ΛCDM model, which is

still the best description of our Universe.

2.1.2 Redshift and other cosmological distances

Considering two flashes of radiation at cosmic time 𝑡 and 𝑡 + Δ𝑡e, which an observer receives at

time 𝑡0 and 𝑡0 + Δ𝑡obs it follows from the expansion of the Universe that Δ𝑡e = 𝑎(𝑡)Δ𝑡obs. The

first consequence of this result is that two events separated by Δ𝑡e in the rest-frame of the

observer are measured by a time interval Δ𝑡obs = Δ𝑡e/𝑎(𝑡) which can be studied in the context

of SNIa. The second consequence is that for Δ𝑡obs and Δ𝑡e being the inverse of the observed and

emitted frequency 𝜈 it follows that

𝜈obs

𝜈e

=
𝜆e

𝜆obs

= 𝑎(𝑡) ≡ (1 + 𝑧)−1
, (2.12)

where 𝑧 is called the redshift, since it describes how photons are redshifted due to time dilation.

In the following parts, we are interested in the redshift of galaxies. However, for galaxies,

the true redshift is unknown, and to estimate their redshift, a distinction is made between

spectroscopic and photometric redshifts.

Spectroscopic redshifts, 𝑧sp, are assumed to be the most accurate and reliable estimates of

the true redshift. They are determined by fitting templates of galaxy spectra with the various
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emissions and absorption lines to the measured spectra of the galaxy. According to Eq. (2.12)

the emission and absorption lines move towards longer wavelengths for larger redshifts, as

shown in Fig. 2.1.

Figure 2.1: Galaxy spectra measured from the Galaxy And Mass Assembly survey (GAMA) for two

different redshifts. In black, the spectrum itself; in green, the 1𝜎 error; and in blue, the mean sky

spectrum is displayed. The vertical dashed red lines, which mark common nebular emission and

stellar absorption lines, clearly show how the emission and absorption lines shift towards higher

wavelengths 𝜆 for increasing redshifts. Figures are taken from Driver et al. (2011).

Photometric redshifts, 𝑧ph, are estimated by measuring the magnitude of galaxies in 𝑛 broad-

band filters, which form 𝑛 − 1 independent colours. If the star formation histories of galaxies

are assumed to be similar, starting at a given redshift 𝑧f and lasting for some time 𝜏, then

they occupy a certain two-dimensional subspace in (𝑛 − 1)-dimensional colour space. This

two-dimensional space changes with redshift 𝑧 < 𝑧f because the photometric filters correspond

to different rest-frame spectral regions, and the spectral energy distributions differ for stellar

populations at different cosmic epochs. This allows estimating the photometric redshifts rapidly

from its broad-band energy distribution for a large number of galaxies, as illustrated in Fig. 2.2.
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However, photometric redshifts are usually inaccurate and have large outliers. Since the more

accurate spectroscopic redshifts are very expensive to determine, in many realistic scenarios,

a small spectroscopic redshift sample is used to calibrate a large photometric redshift sample.

Since the high-dimensional colour space of the photometric images is only imperfectly covered

by the spectroscopic calibration sample, Wright et al. (2020) uses self-organising maps (SOMs)

to discard the data part that can not be calibrated with sufficient precision.

Figure 2.2: A model spectrum of an elliptical galaxy shown at three redshifts with five broad-band

filters illustrating the idea of photometric redshift estimates. With increasing redshift the whole

spectrum moves towards higher wavelengths, such that the measured flux, 𝐹𝜆, at low wavelength

filters decreases. The figure is taken from Padmanabhan et al. (2007).

Another important distance measure is the comoving distance. It is defined through the fact

that in the framework of GR light rays follow null geodesics, d𝑠2 = 0, such that for light rays

that arrive at the centre of the coordinate system

𝑐 d𝑡 = −𝑎(𝑡) d𝜒. (2.13)

Solving this equation, the comoving radial distance

𝜒(𝑡) =
∫ 𝑡0

𝑡

𝑐 d𝑡′

𝑎(𝑡′) = 𝑐

∫ 𝑎(𝑡0)

𝑎(𝑡)

d𝑎′

𝑎′2 𝐻 (𝑎′) , (2.14)
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where 𝜒(𝑡0) = 0. In that context, it is interesting to mention the proper distance or physical

distance is defined as 𝑟 (𝑡) = 𝑎(𝑡)𝜒, which describes the actual distance if the comic expansion

is included.

To this point, the source’s distance to the observer or the time at which the light was emitted to

the observer is characterised in terms of 𝜒, 𝑡, 𝑎(𝑡) and 𝑧. In Euclidean space-time, distance is

defined as the length of a line connecting two simultaneous events, where all distance measures

give coherent results. But in general space-time, two complications occur. The first is that the

space might be curved and the second is that distances change over time, so the unique meaning

of time does not exist anymore. Therefore, different types of ‘distances’ are used in cosmology,

but of particular interest for this work is the angular diameter distance 𝐷ang. This distance

relates the angular diameter 𝛿 of an object at redshift 𝑧 to its physical diameter 2𝑅 by

𝐷ang(𝑧) =
2𝑅

𝛿
= 𝑎(𝑧) 𝑓𝐾 (𝜒) . (2.15)

2.1.3 Large scale structure formation

The foregoing sections introduced the standard model of cosmology, which is based on the

assumption of a (spatially) homogeneous and isotropic universe. But since objects like galaxies

and stars are observable, this assumption is not justified on smaller scales. Galaxies gather

together into clusters and groups of galaxies; even the clusters of galaxies are correlated and

grouped together in superclusters. As illustrated in Fig. 2.3, the three-dimensional distribution of

galaxies obtained from redshift surveys shows that the LSS is structured in large voids separated

by filaments and, therefore, is also called the cosmic web.

At the epoch of the last scattering at 𝑧 ∼ 1000, where the CMB photons decoupled from the

baryons, the density variations in the Universe were small on the order of 10
−5

and Gaussian.

Due to the dark matter that formed potential wells before 𝑧 ∼ 1000, today’s observed structure

assembled, where the density fluctuations grow over time due to their self-gravity. These

fluctuations collapse once they reach a threshold density to form dark matter halos. According

to the bottom-up structure formation (Coles and Lucchin, 2002), the halosmerge into increasingly

more massive halos. After the last scattering, baryons fell inside these potential wells to follow

the dark matter distribution to form stars, which eventually build galaxies, galaxy groups and

galaxy clusters.

To describe the growth of dark matter density fluctuations in the matter-dominated epoch

quantitatively, it is practical to define the density, velocity, and gravitational potential in terms

of the comoving coordinate 𝒙 as the comoving density

𝜌(𝒙, 𝑡) = 𝜌 [𝑎(𝑡) 𝒙, 𝑡] =: 𝜌(𝑡) [1 + 𝛿(𝒙, 𝑡)] , (2.16)

the comoving velocity

𝒖(𝒙, 𝑡) = v [𝑎(𝑡) 𝒙, 𝑡] − 𝐻 (𝑡) 𝑎(𝑡) 𝒙 , (2.17)
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Figure 2.3: Three-dimensional galaxy redshift distribution in the complete 2dF Galaxy Redshift

Survey. The distance of the galaxies to our Galaxy at the centre is given in terms of escape velocity,

or redshift, and the polar angle is given in right ascension. Credit: M. Colless and the 2dF Galaxy

Redshift Survey team

and the comoving potential

𝛷(𝒙, 𝑡) = Φ [𝑎(𝑡) 𝒙, 𝑡] + ¥𝑎 𝑎
2

|𝒙 |2 , (2.18)

where 𝜌 is the mean density and 𝛿 is the three-dimensional matter density contrast. Assuming

gravity is weak and well-described by the Newtonian framework with the potential Φ, and

structure formation occur on length scales much smaller than the comoving horizon (defined in

Eq. 2.14 if one integrates from 0 to scale factor 𝑎), three coupled differential equations emerge

𝜕𝛿

𝜕𝑡
+ 1

𝑎
∇𝑥 · [(1 + 𝛿) 𝒖] = 0 , (2.19)

𝜕𝒖

𝜕𝑡
+ 𝐻 𝒖 + 1

𝑎
(𝒖 · ∇𝑥) · 𝒖 = − 1

𝑎
∇𝑥𝛷 , (2.20)

∇2

𝑥𝛷 = 4𝜋𝐺𝜌𝛿 , (2.21)

where the first is called the continuity, the second the Euler and the third the Poisson equation.

Since these equations are still not solvable analytically, it is common practice to consider small

deviations from the homogeneous solution, where 𝛿 = 0, u = 0,𝛷 = 0 and 𝜌 = 𝜌, such that

|𝛿 | ≪ 1 and |𝒖 | ≪ 𝐻 𝒓, and all terms of second or higher order in 𝛿 and 𝒖 can be neglected.

This regime is also called linear perturbation theory (see, e.g. Peebles, 1980), where the linearized
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differential Eq. (2.19-2.21) read as

𝜕𝛿

𝜕𝑡
+ 1

𝑎
∇𝑥𝒖 = 0 , (2.22)

𝜕𝒖

𝜕𝑡
+ 𝐻 𝒖 = − 1

𝑎
∇𝑥𝛷 , (2.23)

∇2

𝑥𝛷 = 4𝜋𝐺 𝜌 𝛿 , (2.24)

which combined yield the linear growth equation for the density fluctuations,

𝜕2𝛿

𝜕𝑡2
+ 2

¤𝑎
𝑎

𝜕𝛿

𝜕𝑡
= 4𝜋 𝐺 𝜌 𝛿 . (2.25)

This equation does not contain derivatives with respect to spatial coordinates, nor do the

coefficients depend on x. This implies that Eq. (2.25) is solved by

𝛿(𝒙, 𝑡) = 𝐷+(𝑡) Δ+(𝒙) + 𝐷−(𝑡) Δ−(𝒙) , (2.26)

where it has a growing mode 𝐷+(𝑡) Δ+(𝒙) and a decaying mode 𝐷−(𝑡) Δ−(𝒙), which decreases

with time, and is therefore irrelevant at later cosmic time 𝑡. Consequently the growth of

structures in the matter-dominated epoch is determined by the linear growth function

𝐷+(𝑡) = 𝐷 𝐻 (𝑡)
∫ 𝑎(𝑡)

0

d𝑎′
[
Ωm 𝑎

′−1 +ΩΛ 𝑎
′2 − (Ωm +ΩΛ − 1)

]−3/2

, (2.27)

where the normalisation constant 𝐷 is given by the fact that today 𝐷+(𝑡0) = 1.

2.1.4 Formation and evolution of galaxies

For a cosmologist, galaxies, their distribution and their connection to the underlying matter

distribution are of invaluable importance. Whereas their distribution and connection to the

underlying matter distribution will be discussed in the next section, this section reviews some

basic knowledge of their formation and evolution (see Cole et al., 2000, for more details).

Besides the fact that galaxy differs in terms of colour, morphology, size and gas content, they can

be divided roughly into early-type galaxies and late-type galaxies. The former are typically red

ellipticals with little star formation and gas, and the latter are bluer spiral galaxies with active

star formation. The cooling gas, like the dark matter halo itself, accumulates finite angular

momentum due to the gas friction in a disk perpendicular to the angular momentum of the gas.

The gas in the disk then reaches densities at which efficient star formation can begin. In this

way, the formation of disk galaxies, or spirals, with active star formation can be understood

qualitatively. Early-type galaxies are mainly in denser environments like the centres of galaxy

clusters because, in denser environments, more galaxies are found, which increases the merger

events that decrease the star formation and, therefore, are seen as reddish. Late-types, however,

are found frequently in regions with lower density (Kauffmann et al., 2004). Next, we give
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an overview of a general picture of galaxy formation and evolution as described in Mo et al.

(2010).

Before recombination at 𝑧 ∼ 1000, baryons were coupled to the photons and, therefore, are

hindered by the intense pressure to fall into the potential wells formed by dark matter in-

homogeneities. After recombination, the decoupled baryonic matter became pressure-free and

accumulated inside the already formed dark matter haloes. Due to gravitational attraction, the

gas in these halos got compressed and heated, which was then cooled by the Bremsstrahlung

of free electrons or excitation and recombination processes. These processes released some

thermal energy and thus pressure, allowing the baryons to collapse into even denser structures

and eventually form stars, which in turn gathered to form galaxies and even larger structures.

The galaxy halos gain mass by accreting further surrounding matter through the filaments of

the large-scale density field or by merging with other galaxy halos. The outcome of a merger

event depends mainly on the mass ratio of the halos: If one halo is much lighter than the other,

the lighter halo is simply absorbed by the more massive halo. If the masses of the two objects

are of the same order, the stars in both objects obtain a large random velocity component, such

that any forgoing structure in the objects is destroyed, resembling an elliptical galaxy. The

closer objects are, the more frequent merger events happen, meaning many merger events

happen at high redshifts or high-density regions. We note here during a merger event that the

space between individual stars is enormous, so the collision of different stars is very rare.

Various observations show that only a fifth of the baryons is in stars, and most are in the hot

intracluster medium (Roberts et al., 1991; Mathews and Brighenti, 2003). This implies that

‘feedback’ processes hinder the gas from cooling, which in turn reduces the star formation. The

two main feedback processes are core-collapse supernovae and Active Galactic Nuclei (AGN).

The more massive a star is, the shorter its time scale, such that shortly after star formation starts,

the most massive stars explode as a core-collapse supernova, where the mechanical energy

is partly transferred to the surrounding gas and obstructs cooling. Whereas the decreasing

conversion of gas into stars in low-mass halos can be explained by supernova, in higher mass

halos AGN heating is the responsible process. The feedback from AGNs with high accretion

rates is presumably by heating the gas through jets, which are relativistic outflow streams. At a

low accretion rate, the main feedback is the injection of mechanical energy into the surrounding

gas.

Furthermore, galaxies’ compositions and morphology are affected by their motion through the

potential of the halo galaxies by tidal forces that are able to remove material like gas and stars in

a process called tidal stripping. Galaxies also interact with the hot gas surrounding them, which

causes a drag force which eventually removes cold gas from the galaxy in a process called ram
pressure stripping (Gunn and Gott, 1972). These processes change the structure of the galaxies

and their colour as fewer new stars form. Since massive halos contain more gas, this could also

explain why in dense environments, predominantly galaxies with suppressed star formation

are found.

Lastly, several galaxies can find themselves inside the same gravitational well, where lower

mass satellite galaxies move around a higher mass central galaxy. If satellites meet during their
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motion, they can disrupt each other, where they are unlikely to merge but lose some of their gas

and stars due to their large velocities. The tidal forces in these encounters can destroy the disks

of spiral galaxies (Farouki and Shapiro, 1981) or ignite a short period of intense star-formation,

a so-called ‘starburst’. If satellites lose enough kinetic energy, they merge with the central

galaxy due to dynamical friction, which explains the observed large masses of central galaxies

in galaxy clusters (De Lucia and Blaizot, 2007).

2.1.5 Correlation functions and polyspectra

As mentioned above, this works aims to describe the distribution and correlation of the galaxy

distribution to the underlying matter distribution, i.e., how to quantify the large-scale structures

of an inhomogeneous universe. Since the observed 𝛿(𝒙, 𝑡) depends on the unobservable initial

conditions, it cannot be modelled. Therefore, 𝛿(𝒙, 𝑡) is considered as a realisation of a random
field, whose statistical properties we explore andmodel. A randomfield is the statistical ensemble

of all fields with the same statistical properties, where the individual realisations 𝛿(𝒙, 𝑡) are
different due to their initial conditions.

Assuming that the realisations of the random field are determined at 𝑛 grid point 𝛿(𝒙𝑖 , 𝑡) = 𝛿𝑖 ,
then the random field is quantitatively characterised by the joint probability distribution

𝑝 (𝛿1…𝛿𝑛) d𝛿1…d𝛿𝑛 (2.28)

that 𝛿(𝒙𝑖 , 𝑡) lies within d𝛿𝑖 of 𝛿𝑖 . By building the ensemble average over multiple, independent

realisations of the Universe, the n-point correlation functions is defined as

𝜉 (𝑛) (𝒙1, . . . , 𝒙𝑛, 𝑡) ≡ ⟨𝛿(𝒙1, 𝑡) 𝛿(𝒙2, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡)⟩ (2.29)

=

∫
d𝛿(𝒙1, 𝑡) . . . d𝛿(𝒙𝑛, 𝑡) 𝛿(𝒙1, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡) 𝑝 [𝛿(𝒙1, 𝑡), 𝛿(𝒙2, 𝑡) . . . ] .

(2.30)

The ensemble averages above, in principle, require to average over all possible realisations of

the random field. However, we can explore the properties of the one observable Universe. To

still measure our Universe’s statistical properties, the ergodicity of random field is used (Peebles,

1980), which implies that the ensemble averages are equivalent to spatial averages, such that

Eq. (2.30) can be calculated as

𝜉 (𝑛) (𝒙1, . . . , 𝒙𝑛, 𝑡) =
1

𝑉𝑛

∫
𝑉

d
3𝑥1· · ·

∫
𝑉

d
3𝑥𝑛 𝛿(𝒙1, 𝑡) . . . 𝛿(𝒙𝑛, 𝑡) , (2.31)

with 𝑉 being an arbitrary volume.

An equivalent description of the statistical properties of the matter distribution is the polyspectra

𝑃(𝑛)
, which are Fourier transforms of the 𝑛-point correlation functions. The equivalence to

the two-point correlation function 𝜉 (2) (𝒙1, . . . , x2, 𝑡) for which 𝑛 = 2 is the so-called power
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spectrum 𝑃(𝑘), which describes the level of structure as a function of the length-scale 𝐿 = 2𝜋/𝑘
with 𝑘 being the comoving wave number.

By defining the Fourier transform of the density contrast 𝛿(𝒙𝑖 , 𝑡) as

𝛿(𝒌, 𝑡) =
∫

d
3𝑥 𝛿(𝒙, 𝑡) exp(−i 𝒌 · 𝒙) , (2.32)

the polyspectra follow to

(2𝜋)3 𝛿D (𝒌1 + · · · + 𝒌𝑛) 𝑃(𝑛) (𝒌1, . . . , 𝒌𝑛, 𝑡) =
〈
𝛿(𝒌1, 𝑡), . . . , 𝛿(𝒌𝑛, 𝑡)

〉
, (2.33)

with 𝛿D being the Dirac delta function. Making use of the cosmological principal, the power

spectrum depends aside from the comsic time 𝑡 on one, and the bispectrum on three parameter,

such that

𝑃(𝒌,−𝒌, 𝑡) =: 𝑃(𝑘 , 𝑡) , (2.34)

𝐵(𝒌1, 𝒌2,−𝒌1 − 𝒌2, 𝑡) =: 𝐵(𝑘1, 𝑘2, 𝜙, 𝑡) , (2.35)

where 𝑘 is the norm of 𝒌 and 𝜙 is the angle between 𝒌1 and 𝒌2. Most studies deal only with the

matter power spectrum, which contains only second-order or Gaussian information. Since the

CMB is Gaussian, it can be fully characterised by analysing the power spectrum. However, the

bispectrum also contains information about the skewness of the matter distribution, which is of

huge importance for the LSS that are observed in low-redshift surveys.

Since this work uses the information of the power spectra and models higher order statistics

indirectly from it, the following description focus on the prediction of the power spectrum using

linear perturbation theory. Given a primordial power spectrum 𝑃prim(𝑘), which characterises

the initial density fluctuations at some early time, all perturbations in the matter-dominated

area grow proportional to the growth factor 𝐷+ given in Eq. (2.27), such that

𝑃(𝑘 , 𝑡) = 𝐷2

+(𝑡) 𝑃prim(𝑘) . (2.36)

At an early time during the radiation-dominated era, no natural length scale existed in the

Universe to which a wavelength could be compared. Therefore, it is expected that the initial

power spectrum follows a power law, 𝑃prim(𝑘) ∝ 𝑘𝑛s
, since this is the only mathematical

function that depends on a length but does not contain any characteristic scale. The spectrum

with 𝑛s = 1 is called the Harrison–Zeldovich spectrum or scale-invariant spectrum because

for 𝑛s = 1, the amplitude of the fluctuations of the gravitational potential prefers neither

small nor large scales. Most popular inflation models, however, predict a 𝑛s slightly smaller

than 1. Inflation is a period of time right after the Big Bang where the Universe expanded

exponentially, which added to the ΛCMD to explain the ‘flatness problem’ (Dicke et al., 1965)

and ‘horizon problem’ (Rindler, 1956). The flatness problem arises from the fact that to measure

Ωtot ≈ 1 today, it must have been extremely close to 1 at earlier times. The horizon problem

deals with the problem that the temperature fluctuations of the CMB are of the order of 10
−5
,

which is surprising as no signal can travel faster than light and regions of CMB separated

more than one degree were not in causal contact, meaning they could not have exchanged
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any information since the birth of the Universe. The different evolution of perturbations in

different eras also affects the power spectrum. To account for this, the power spectrum is

modified by the transfer function 𝑇 (𝑘), which describes how dark matter density fluctuations

evolve at different scales 𝑘 . For instance, during the matter-dominated epoch, fluctuations at all

scales evolved proportionally to the scale factor 𝑎. However, during the radiation-dominated

epoch, fluctuations at scales smaller than the comoving horizon 𝑑H were suppressed, which is

described by the so-called Meszaros-effect (Meszaros, 1974), where the Universe’s expansion

counteracts the growth of the fluctuations. Fluctuations at large scales, however, without causal

contact, evolved proportionally to 𝑎2
, such that the power spectrum 𝑃(𝑘) is suppressed for

wave numbers 𝑘 ≥ 2𝜋
𝑑H

.

Combining all ingredients, the linear power spectrum 𝑃lin(𝑘 , 𝑡) is
𝑃lin(𝑘 , 𝑡) = 𝐴 𝐷2

+(𝑡) 𝑇2(𝑘) 𝑃prim(𝑘) , (2.37)

where 𝐴 is a normalisation constant that is obtained by setting the variance of matter fluctuations

to one within spheres of comoving radius 𝑅 = 8 ℎ−1
Mpc defined as

𝜎2(𝑅) ≡ ⟨|𝛿2

𝑅 ((𝑥))⟩ =
1

2𝜋2

∫ ∞

0

d𝑘 𝑘2 𝑃(𝑘 , 𝑡0) |𝑊̂ (𝑘 𝑅) |2 . (2.38)

Here 𝑡0 is the cosmic time today and 𝑊̂ is the Fourier transform of a tophat filter, given as

𝑊̂ (𝑥) = 3

𝑥3
(sin 𝑥 − 𝑥 cos 𝑥) . (2.39)

Using the fact that in spheres of radius 𝑅 = 8 ℎ−1
Mpc, galaxies count fluctuations Δ𝑁/𝑁 ≈ 1,

or 〈
(𝑁 − ⟨𝑁⟩)2

⟨𝑁⟩2

〉
≈ 1 , (2.40)

and the assumption that the distribution of galaxies follows that of darkmatter, the normalisation

of the power spectrum can be determined by using that

𝜎2

8
= 𝜎2(8 ℎ−1

Mpc) ≈ 1 , (2.41)

whereas current observations yield 𝜎8 ≈ 0.8. This description ignores that galaxies are biased

tracers of the underlying mass distribution, where the biasing usually depends on scale and

galaxy properties such as luminosity, morphology, colour and redshift. On large spatial scales,

however, a valid assumption is that the relative number fluctuations of galaxies are proportional

to the density contrast,

𝛿𝑔 ≡
Δ𝑛

𝑛
= 𝑏 𝛿 , (2.42)

where 𝑏 is called the bias factor. If the bias factor of galaxies is scale-independent, then the

shape of the power spectrum of galaxies is the same as that of underlying (dark) matter, such

that

𝑃𝑔 (𝑘) = 𝑏2𝑃(𝑘) , (2.43)

and equivalently, the correlation functions of galaxies and the underlying matter are correlated

as

𝜉𝑔 (𝑟) = 𝑏2𝜉 (𝑟) . (2.44)
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2.1.6 Non-linear regime

While in the linear and quasi-linear regime of density fluctuations, the power spectrum can

be computed for any given initial conditions and cosmological parameters using perturbation

theory (Bernardeau et al., 2002), it fails to predict as shown in Fig. 2.4 the power spectrum for

𝑘 > 0.3 ℎMpc
−1
, which corresponds roughly to spatial scales above 20 ℎ−1

Mpc.

Figure 2.4: Shown as the blue crosses is the power spectrum, measured in the IRAS Point Source

Catalog. The linear and non-linear perturbation theory predictions with the cosmological parameters

marked in the figure are shown in red. Figure is taken from Hamilton and Tegmark (2002).

𝑵-body simulations

For 𝑘 > 0.3 ℎMpc
−1
, which is called the non-linear regime, cosmological 𝑁-body simulations

are the ideal tool to study the non-linear structure formation. The creation of dark matter only

𝑁-body simulations that can be summarised to:

1. Choose the number of particles per box. For instance the MS have 2160
3
dark matter

particles of mass 8 × 10
8

M⊙/ℎ.

2. Choose the volume 𝐿3
of the box in which the particles are enclosed. The MS fixed it to

(500 Mpc/ℎ)3
.

3. Choose an N-body code (Springel et al., 2001; Springel et al., 2021) to compute the gravita-

tional evolution of the particles starting from initial Gaussian random fields.
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4. Add galaxies using a semi-analytical galaxy-formation model (Henriques et al., 2015; Smith

et al., 2017) or, as we do it for most mocks, use a Poisson process.

5. Compute the shear information at redshift 𝑧 by tracing the light-ray trajectories from the

observer to 𝑧 (Hilbert et al., 2009).

Simulations including darkmatter particles and baryons have been donemore recently. However,

they require to include gas physics and radiation processes, which are considerably more

complicated; see Chisari et al. (2015) and Huang et al. (2019) for recent comparisons of hydro-

dynamical simulations. Due to the limited mass resolution of 𝑁-body simulation, small scales

which enclose regions with less than ∼ 100 particles should not be trusted. Scales larger than

1/3 of the box-size 𝐿 are affected by the periodic boundary conditions and should not be trusted.

Despite their limitations and the fact that 𝑁-body simulations are expensive to create, they are

still the most accurate way to model non-linear structure formation.

The halo model and its application

Besides the fact that it is computationally expensive to run 𝑁-body simulations from which

statistics (like the power spectrum) can be modelled, physically motivated analytical or semi-

analytical models can provide insight into complex processes and allow predictions for cosmo-

logies that have not been simulated. A famous analytical clustering model is the halo model

(Ma and Fry, 2000; Peacock and Smith, 2000; Seljak, 2000), where all matter is contained within

haloes. The clustering problem is then divided into the clustering that arises between different

haloes (two-halo) and the clustering that arises within individual haloes (one-halo). The halo

model needs several ingredients: the halo-mass distribution function, the halo profile, and

the bias recipe for the clustering between haloes with respect to the matter. Assumptions

must be made for all components, contributing to the halo model’s inaccuracies. Smith et al.

(2003) developed, based on the halo model, the popular semi-analytical model HALOFIT, which

predicts the non-linear power spectrum. Given a functional form, the parameters were fitted

to simulated data over a wide range of cosmologies to account for the inaccuracy of the halo

model for the matter spectrum. The fitting function was updated in Takahashi et al. (2012) to

account for inaccuracies that arose from the limited resolution of the used simulations. It also

provides a more accurate model for dark energy cosmologies with a fixed equation of state

parameter 𝑤. A different halo model ansatz is described in Mead et al. (2015), called HMCODE,

which differs from HALOFIT in that the halo model is the starting point rather than a fitting

function that is based on the halo model.

Tree-level perturbation theory

If the perturbation is no longer small, which happens already inside galaxy clusters with an

average density contrast that exceeds unity by about two orders of magnitude, the linearisation

breaks down. This implies that the neglected second-order term in the fluid equations has to be

included. To do that, we follow the appendix of F18 by introducing the conformal time d𝑡 = 𝑎 d𝜏

such that Eq. (2.25) read as

𝜕2𝛿

𝜕𝜏2
+ H 𝜕𝛿

𝜕𝜏
= 4𝜋 𝐺 𝜌 𝑎2 𝛿 , (2.45)
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where H = d

d𝜏
ln(𝑎) and at linear (first) order in Fourier space

𝛿1(𝒌, 𝜏) = 𝐷+(𝜏)𝛿1(𝒌, 𝜏0) . (2.46)

The second-order term results to

𝛿2(𝒌, 𝜏) =
∫

d
3𝑘1 d

3𝑘2 𝛿D(𝒌 − 𝒌12)𝐹2(𝒌1, 𝒌2, 𝜏)𝛿1(𝒌1, 𝜏0)𝛿1(𝒌2, 𝜏0) , (2.47)

where 𝒌12 = 𝒌1 + 𝒌2 and in a general ΛCDM universe

𝐹2(𝒌1, 𝒌2, 𝜏) = 𝜇(𝜏) + 1

2

𝒌1 · 𝒌2

𝑘1𝑘2

(
𝑘1

𝑘2

+ 𝑘2

𝑘1

)
+ [1 − 𝜇(𝜏)] (𝒌1 · 𝒌2)2

𝑘2

1
𝑘2

2

. (2.48)

In the forgoing equation 𝜇(𝜏) = 1 − 𝐷2,2(𝜏)/𝐷2

+(𝜏), where 𝐷2,2 is defined trough

𝜕2𝐷2,2(𝜏)
𝜕𝜏2

+ H 𝜕𝐷2,2(𝜏)
𝜕𝜏

−
3Ωm𝐻

2

0

2𝑎
𝐷2,2(𝜏) =

(
𝜕𝐷+(𝜏)
𝜕𝜏

)
. (2.49)

Since in perturbation theory

𝛿(𝒌, 𝜏) =
∞∑︁
𝑛=1

𝛿𝑛 (𝒌, 𝜏) , (2.50)

the variance at leading order or at tree-level simplifies to

⟨𝛿(𝒌1, 𝜏)𝛿(𝒌2, 𝜏)⟩tree = 𝐷
2

+⟨𝛿1(𝒌1, 𝜏0)𝛿1(𝒌2, 𝜏0)⟩ , (2.51)

and the skewness

⟨𝛿(𝒌1, 𝜏)𝛿(𝒌2, 𝜏)𝛿(𝒌3, 𝜏)⟩tree = 𝐷
2

+⟨𝛿1(𝒌1, 𝜏0)𝛿1(𝒌2, 𝜏0)𝛿2(𝒌3, 𝜏0)⟩ , (2.52)

where it is assumed that the linear density field is well approximated as a Gaussian random field

𝑔̃(𝒌), for which the correlator ⟨𝑔̃(𝒌)1…𝑔̃(𝒌𝑁 )⟩ vanishes for any odd number 𝑁 per definition,

whereas for even numbers it can be decomposed into second-order correlations

⟨𝑔̃(𝒌1)𝑔̃(𝒌2)𝑔̃(𝒌3)𝑔̃(𝒌4)⟩ = ⟨𝑔̃(𝒌1)𝑔̃(𝒌2)⟩⟨𝑔̃(𝒌3)𝑔̃(𝒌4)⟩ (2.53)

+ ⟨𝑔̃(𝒌1)𝑔̃(𝒌3)⟩⟨𝑔̃(𝒌1)𝑔̃(𝒌4)⟩ (2.54)

+ ⟨𝑔̃(𝒌1)𝑔̃(𝒌4)⟩⟨𝑔̃(𝒌2)𝑔̃(𝒌3)⟩ . (2.55)

In that context, we note that in leading order (tree-level), the bispectrum can be expressed in

terms of the power spectrum and 𝐹2 as

𝐵(𝑘1, 𝑘2, 𝑘3, 𝜏)tree = 𝐹2(𝒌1, 𝒌2, 𝜏)𝑃lin(𝑘1, 𝜏0)𝑃lin(𝑘2, 𝜏0) (2.56)

+ 𝐹2(𝒌1, 𝒌3, 𝜏)𝑃lin(𝑘1, 𝜏0)𝑃lin(𝑘3, 𝜏0) (2.57)

+ 𝐹2(𝒌2, 𝒌3, 𝜏)𝑃lin(𝑘2, 𝜏0)𝑃lin(𝑘3, 𝜏0) . (2.58)

In the literature, also other approaches exist, like the large deviation theory (LDT) to infer

statistical properties of the cosmic density fields beyond the linear regime. The LDT is a branch

of probability theory that deals with the rate at which probabilities of certain events decay as a

natural parameter of the problem varies (Varadhan, 2008).
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2.2 Gravitational lensing

2.2 Gravitational lensing

As predicted by GR, masses distort space-time. Therefore, since light propagates along null

geodesics, it seems like the mass bends light rays similarly to optical lenses (Einstein, 1936),

which gives it the name gravitational lensing. The strength of the deflection of the light ray

depends on the encountered mass and its separation from that mass. Therefore, light bundles

of distant objects appear distorted, such that by measuring the deflection, the total matter

distribution of the Universe can be investigated since gravitational lensing acts identically to

baryonic and dark matter.

The breakthrough of the theory of gravitational lensing started with the expeditions led by

Sir Arthur Eddington, director of the Cambridge Observatory, and Sir Frank Watson Dyson.

By comparing the apparent positions of stars in the Hyades cluster during the Solar eclipse

of 1919 to the position of the stars at night, they made the first detection of the gravitational

lensing effect (Dyson et al., 1920). The measured shifts in the position of the stars caused by the

Sun were consistent with the predictions by GR, which led to its tremendous triumph over the

Newtonian description.

Nowadays, gravitational lensing is divided into different areas, but in this work, we restrict

ourselves to the area of the weak lensing effect, where measuring the distortion of galaxy shapes

is used to infer information about the matter distribution, as first proposed by Zwicky (1937a,b).

With today’s instruments, the distortion of galaxies can be determined so well that the age

of precise cosmologies has begun. See Bartelmann (2010) for a general and recent review of

gravitational lensing.

2.2.1 Basic equations of gravitational lensing

If the light ray impact parameter 𝜉 (see Fig. 2.5) is much larger than the Schwarzschild radius of

the mass, 𝜉 ≫ 𝑅𝑠 ≡ 2G𝑀/𝑐2
, then GR predicts that the deflection angle 𝛼̂ as shown in Fig. 2.5

is

𝛼̂ =
4G𝑀

𝑐2𝜉
≪ 1 , (2.59)

which is twice the value obtained from the Newtonian framework. Considering only small

deflection angles is equivalent to considering gravitational lensing only in the weak-field limit

of GR, where the field equations of GR can be linearised. The weak-field limit further requires

that the gravitational potential Φ, its typical scales 𝐿 and intrinsic velocity v are small:

|Φ| ≪ 𝑐2
, 𝐿 ≪ 𝑐

𝐻0

, |v| ≪ 𝑐 . (2.60)

As discussed by Cuesta-Lazaro et al. (2018) the assumption of weak-field limit is satisfied even

for Stage IV surveys. Another consequence of the deflection angle being small is the Born

approximation, which states that a light ray can be approximated as a straight line in the

neighbourhood of a deflecting mass. While with increasing redshift, this approximation gets

violated, it is negligible for second-order shear statistics (Cuesta-Lazaro et al., 2018).
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Figure 2.5: Sketch of a gravitational lensing sys-

tem. The distances 𝐷s, 𝐷d, and 𝐷ds are the an-

gular diameter distances from the observer to

the source plane, to the lens plane, and from the

lens to source plane, respectively. The angles 𝜽 ,
𝜷, and 𝛼̂ are the apparent, true and deflection

angles, respectively. Image adapted from Bar-

telmann and Schneider (2001) by Sandra Unruh.
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In Fig. 2.5 a sketch of a typical gravitational lens system is displayed. A source is located at the

distances 𝐷s from the observer, with a mass concentration (lens) at distance 𝐷d. An optical

axis (dashed line) connects the observer and the centre of the mass concentration. The lens

and source planes are both perpendicular to the optical axis, where the lens plane is at the

mass concentration at distance 𝐷d and the source plane is at the distance of the source 𝐷s.

The intersections of the optical axis and the planes are chosen as the origins of the respective

coordinate systems. A light beam emitted from the source at the point 𝜼 or angle 𝜷 = 𝜼/𝐷s in

the source plane intersects the lens plane at the point 𝝃 or angle 𝜽 = 𝝃/𝐷d and is deflected by

an angle 𝜶̂. These quantities are all two-dimensional vectors. From the theorem of intersecting

lines, it follows that the source is observed in the direction 𝜽 and is given by the lens equation,

𝜷 = 𝜽 − 𝐷ds

𝐷s

𝜶̂ =: 𝜽 − 𝜶 , (2.61)

where 𝜶 is the scaled deflection angle. The scaled deflection angle can also be expressed in terms

of the surface mass density

Σ(𝝃) =
∫

d𝑟 𝜌(𝜉1, 𝜉2, 𝑟) , (2.62)

with 𝝃 = (𝜉1, 𝜉2) and 𝑟 the propagation direction of the light ray, as

𝜶(𝜽) = 1

𝜋

∫
d

2𝜃′𝜅(𝜽′) 𝜽 − 𝜽′

|𝜽 − 𝜽′|2 . (2.63)
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The definition of the dimensionless surface mass density or convergence is

𝜅(𝜽) = 4𝜋 𝐺

𝑐2

𝐷d 𝐷ds

𝐷s

Σ(𝜽) =:

Σ(𝜽)
Σcrit

, (2.64)

where Σcrit is the critical surface mass density. Given the definition of the convergence and the

identity ∇ ln |𝜽 | = 𝜽/𝜽2
, the lensing potential Ψ is defined, as

Ψ(𝜽) = 1

𝜋

∫
d

2𝜃′ 𝜅(𝜽′) ln( |𝜽 − 𝜽′|) , (2.65)

such that 𝜷 is related to the lensing potential by

𝜷 = 𝜽 − ∇Ψ . (2.66)

This also allows to determine the Poisson equation in two dimensions as

∇2Ψ = 2𝜅 . (2.67)

Taking the gradient of Eq. (2.66) with respect to 𝜽 , it follows

𝜕𝑗 𝛽𝑖 = 𝛿𝑖 𝑗 − 𝜕𝑖𝜕𝑗Ψ =: A𝑖 𝑗 , (2.68)

where A is the Jacobian determinant, and is given by

A(𝜽) =
(
𝛿𝑖 𝑗 −

𝜕2Ψ

𝜕𝜃𝑖𝜕𝜃 𝑗

)
=:

(
1 − 𝜅 − 𝛾1 −𝛾2

−𝛾2 1 − 𝜅 + 𝛾1

)
= (1 − 𝜅)

(
1 − 𝑔1 −𝑔2

−𝑔2 1 − 𝑔1

)
, (2.69)

where the complex shear 𝛾 = 𝛾1 + i 𝛾2 = |𝛾 |e2i𝜙
and the reduced shear

𝑔 ≡ 𝛾

1 − 𝜅 =
|𝛾 |

1 − 𝜅 e
2i𝜙

, (2.70)

got introduced, where the phase 𝜙 is the orientation of distortion. The reduced shear 𝑔 is as 𝛾 a

complex number. As illustrated in Fig. 2.6, the term 1 − 𝜅 only yields an isotropic stretching of

the image without any shape distortion. The components of 𝑔 determine the change of shape

from the source to the image. For instance, it can be shown that a circular source of unit radius

is mapped onto an ellipse with axes | (1 − 𝜅) (1 + |𝑔 |) |−1
and | (1 − 𝜅) (1 − |𝑔 |) |−1

.

Furthermore, it is often more convenient to express the shear relative to a direction 𝜑 instead

of a reference Cartesian coordinate frame. Since the shear is polar, it must be multiplied by

exp(−2𝑖𝜓) for a rotation of 𝜓, such that the rotated shear 𝛾rot(𝜽) is given by

𝛾rot(𝜽) = −e
−2i𝜑 𝛾(𝜽) =: 𝛾t(𝜽 ; 𝜑) + i 𝛾×(𝜽 ; 𝜑) , (2.71)

where 𝛾t is the tangential shear and 𝛾× is the cross shear. Given the definition of the tangential

shear, an important relation between the mean convergence and mean tangential shear on a

circle of radius 𝜃 is

⟨𝛾t⟩(𝜃) = 𝜅(< 𝜃) − ⟨𝜅⟩(𝜃) , (2.72)
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Figure 2.6: Illustration of the mapping of a circular shape to an ellipse by the inverse Jacobian A−1
.

In the absence of shear, the convergence 𝜅 modifies the radius of the image. The shear is responsible

for the change into an ellipse, whereas the orientation depends on the phase of the shear.

where 𝜅 is the mean convergence inside 𝜃.

A big challenge of gravitational lensing is the mass-sheet degeneracy (MSD; Falco et al., 1985),

which provides a transformation of the mass profile, which leaves all lensing observables exactly

invariant. In particular, this means that 𝜅(𝜽) cannot be distinguished from the whole family of

lens models defined as

𝜅𝛼 (𝜽) = (1 − 𝛼) + 𝛼 𝜅(𝜽) . (2.73)

The first term adds a homogeneous surface mass density to the mass distribution, and the second

term scales the original surface mass density. One consequence of the MSD is the introduction

of the aperture statistic described later.

2.2.2 Weak gravitational lensing

The investigation of strongly distorted images as arcs, complete rings, or even multiple images

belong to the regime of strong lensing, where 𝜅 ≳ 1. However, we are interested in the weak
lensing regime, where 𝜅 ≪ 1 or the Jacobi matrix A is close to unity, which implies as seen in

Eq. (2.68) weak distortions (see Bartelmann and Schneider, 2001, for a review). Since the intrinsic

shape of a galaxy is larger than the shape distortion due to weak lensing, it is not possible to

measure the weak lensing shape distortion of each galaxy individually. However, it is possible

to measure the effect of weak lensing statistically. Assuming that the intrinsic orientation of

galaxies is uncorrelated, averaging over many galaxy shapes yields shape distortion caused by

gravitational lensing. Therefore, weak lensing is an ideal statistical tool for the measurements

of the matter distribution.

To measure the shapes and shears of galaxies, the ellipticity of a galaxy needs to be defined.

Assuming the brightness distribution, 𝐼 (𝜽), of an image is isolated in the sky, then the centre of

the image is defined as

¯𝜽 =

∫
d

2𝜃 𝐼 (𝜽) 𝑞𝐼 [𝐼 (𝜽)] 𝜽∫
d

2𝜃 𝐼 (𝜽) 𝑞𝐼 [𝐼 (𝜽)]
, (2.74)
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where 𝑞𝐼 (𝐼) is a suitably chosen weight function. The second brightness moments are defined

as

𝑄𝑖 𝑗 =

∫
d

2𝜃 𝐼 (𝜽) 𝑞𝐼 [𝐼 (𝜽)] (𝜃𝑖 − 𝜃𝑖) (𝜃 𝑗 − 𝜃 𝑗 )∫
d

2𝜃 𝐼 (𝜽) 𝑞𝐼 [𝐼 (𝜽)]
. (2.75)

The size of the image is described by the trace of 𝑄, and ellipticities are given by the traceless

part as

𝜖 =
𝑄11 −𝑄22 + 2i𝑄12

𝑄11 +𝑄22 + 2(𝑄11𝑄22 −𝑄2

12
)1/2

. (2.76)

If 𝑄 is multiplied by a constant factor, the ellipticities remain unchanged, which is important

since the ellipticity should not depend on the size of the image. By defining in analogy the

second brightness moments 𝑄s
for the sources by just exchanging 𝜽 with 𝜷 in Eq. (2.75) the

relation

𝑄s = 𝐴𝑄𝐴 (2.77)

follows, which results with Eq. (2.69) in

𝜖 s =
𝜖 − 𝑔

1 − 𝑔∗𝜖 and 𝜖 =
𝜖 s + 𝑔

1 + 𝑔∗𝜖 s
. (2.78)

With the assumption that in the Universe, the intrinsic orientation galaxies are random, the

expectation value, ⟨⟩, of source ellipticities vanishes, ⟨𝜖 s⟩ = 0, such that in the weak lensing

regime, with 𝜅 ≪ 1,

𝛾 ≈ 𝑔 ≈ ⟨𝜖⟩ . (2.79)

This relation implies that the averaged ellipticity over 𝑁 galaxies in a local region provides an

unbiased estimate of the local reduced shear, where the noise of this estimator is the so-called

shape noise and is determined by the intrinsic ellipticity dispersion

𝜎̂𝜖 =
√
𝜖 s𝜖 s∗

. (2.80)

The standard deviation on the averaged ellipticity is given by 𝜎̂𝜖/
√
𝑁 , such that the noise

becomes smaller the more galaxies are used for the average.

2.2.3 Cosmic shear

This section reviews the principles of cosmic shear.

In order to determine the effective convergence the three-dimensional convergence is projected

along the comoving line-of-sight, 𝜒, weighted by the redshift distribution of sources, 𝑛s(𝑧)d𝑧 =
𝑛
𝜒
s
(𝜒)d𝜒 as

𝜅(𝜽) =
∫

d𝜒 𝑛
𝜒
s
(𝜒) 𝜅(𝜽 , 𝜒) (2.81)

=
3𝐻2

0
Ωm

2𝑐2

∫
d𝜒 𝑔(𝜒) 𝑓𝐾 (𝜒)

𝛿( 𝑓𝐾 (𝜒)𝜽 , 𝜒)
𝑎(𝜒) (2.82)
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where 𝛿 is the three-dimensional matter density contrast, 𝑓𝐾 is defined by Eq. (2.3), and

𝑔(𝜒) =
∫ ∞

𝜒

d𝜒′ 𝑛𝜒
s
(𝜒′) 𝑓𝐾 (𝜒

′ − 𝜒)
𝑓𝐾 (𝜒′)

(2.83)

is the source redshift-weighted lens efficiency factor. By considering the projected 𝜅 as a

two-dimensional random field, we define similar to Eq. (2.33) that

(2𝜋)2 𝛿D(ℓ + ℓ′)𝑃𝜅𝜅 (ℓ) = ⟨𝜅(ℓ) 𝜅(ℓ′)⟩ , (2.84)

where 𝜅 is the Fourier transformation of 𝜅, and the projected convergence power spectrum

𝑃𝜅𝜅 (ℓ) =
9𝐻4

0
Ω2

m

4𝑐4

∫ ∞

0

d𝜒
𝑔2(𝜒)
𝑎2(𝜒) 𝑃(ℓ/ 𝑓𝐾 (𝜒), 𝜒) . (2.85)

Similarly, the angular power spectrum of the projected galaxy density field, 𝑃𝑔𝑔 (ℓ), or the
cross-correlation of galaxies and matter, 𝑃𝜅𝑔 (ℓ), can be determined with the corresponding 𝑛(𝑧)
to

𝑃𝑖, 𝑗 (ℓ) =
∫ ∞

0

d 𝜒
𝑞𝑖 (𝜒) 𝑞 𝑗 (𝜒)

𝑓 2

𝐾
(𝜒)

𝑃(ℓ/ 𝑓𝐾 (𝜒), 𝜒) , (2.86)

where the indices 𝑖, 𝑗 are placeholder for either the galaxy 𝑔 or convergence 𝜅 projection, such

that 𝑞𝑔 (𝜒) = 𝑛l(𝑧[𝜒]) d𝑧[𝜒]
d𝜒

and the lensing efficiency

𝑞𝜅 (𝜒) =
3Ωm𝐻

2

0

2𝑐2
𝑔(𝜒) 𝑓𝐾 (𝜒)

𝑎(𝜒) . (2.87)

In the projections above, the Limber approximation (Kaiser, 1992) is used, assuming that the

weight functions 𝑞(𝜒) vary slightly. This assumption is valid if the angular scales on which, for

instance, 𝑃𝜅𝜅 is evaluated are small, and the weight functions are broad enough. As found by

Kilbinger et al. (2017) the Limber approximation is accurate for cosmic-shear power spectrum

at the sub-percent level for ℓ > 3.

Next, using the tangential and cross shear definition (Eq. 2.71) the two-point correlation functions

(2PCF), 𝜉± (Kaiser, 1992), are formally defined as

𝜉±(𝜃) = ⟨𝛾t𝛾t⟩(𝜃) ± ⟨𝛾×𝛾×⟩(𝜃) . (2.88)

These quantities can also be expressed in terms of the projected convergence power spectrum

to

𝜉+(𝜃) =
∫ ∞

0

dℓ ℓ

2𝜋
𝐽0(ℓ𝜃) 𝑃𝜅 (ℓ) and 𝜉−(𝜃) =

∫ ∞

0

dℓ ℓ

2𝜋
𝐽4(ℓ𝜃) 𝑃𝜅 (ℓ) , (2.89)

where 𝐽𝑛 (𝑥) is the 𝑛-th Bessel function of first kind. The 𝜉± are not independent of each other

as one can derive ∫ ∞

0

dℓ ℓ

2𝜋
𝐽0(ℓ𝜃) 𝜉+(𝜃) =

∫ ∞

0

dℓ ℓ

2𝜋
𝐽4(ℓ𝜃) 𝜉−(𝜃) . (2.90)
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However, the observed shear field generally does not fulfil this relation due to noise and other

systematic effects. In particular, 2PCF are a mixture of E-modes, which are expected to carry

the cosmological signal and satisfy Eq. (2.90), and B-modes, which do not satisfy Eq. (2.90).

B-modes can only be created by a variety of systematic effects like IA or violations of the Born

approximation and, therefore, provide a valuable null test. As a result of this mixing of modes,

the 𝜉± are unsuitable for systematic tests that utilise B-modes.

Schneider et al. (2010) introduced 2PCF defined on a finite angular range {𝜃min, 𝜃max} that

separates all well-defined E- and B-modes within that range, and removes any ambiguous

modes that are not uniquely identified as E- or B-modes. This complete orthogonal sets of

E/B-integrals (COSEBIs) form discrete values and can be measured through 2PCFs as

𝐸𝑛 =
1

2

∫ 𝜃max

𝜃min

d𝜃 𝜃 [𝑇+𝑛 (𝜃)𝜉+(𝜃) + 𝑇−𝑛 (𝜃)𝜉−(𝜃)] , (2.91)

𝐵𝑛 =
1

2

∫ 𝜃max

𝜃min

d𝜃 𝜃 [𝑇+𝑛 (𝜃)𝜉+(𝜃) − 𝑇−𝑛 (𝜃)𝜉−(𝜃)] , (2.92)

where 𝑇±𝑛 are filter functions defined for the given angular range {𝜃min, 𝜃max}.

B-modes can also emerge from the intrinsic correlations of galaxy ellipticities, known as IA

(Joachimi et al., 2015). The correlator of galaxies’ ellipticities at redshift 𝑧𝑖 with the ellipticities

of galaxies at redshift 𝑧 𝑗 > 𝑧𝑖 read as

⟨𝜖𝑖𝜖∗𝑗 ⟩ = ⟨𝛾𝑖𝛾∗𝑗 ⟩ + ⟨𝜖 s

𝑖 𝜖
s∗
𝑗 ⟩ + ⟨𝜖 s

𝑖 𝛾
∗
𝑗 ⟩ + ⟨𝛾𝑖𝜖 s∗

𝑗 ⟩ . (2.93)

The first term ⟨𝛾𝑖𝛾∗𝑗 ⟩, known as the GG term, is the quantity for a cosmological analysis. The

second term ⟨𝜖 s

𝑖
𝜖 s∗
𝑗
⟩, known as the II term, is generated by the fact that galaxies align with each

other. The last two terms are known as the GI terms, which are generated from the fact that

galaxies align with the LSS that also contributes to the gravitational deflection of light from

background galaxies. The GI term ⟨𝛾∗
𝑖
𝜖 s

𝑗
⟩, is expected to vanish as the shear acting on a galaxy

in the foreground 𝑧𝑖 cannot be affected by the ellipticity of a galaxy in background 𝑧 𝑗 . The

term II is only important for galaxies that are in a close neighbourhood, ⟨𝜖 s

𝑖
𝜖 s∗
𝑗
⟩ ≠ 0 for 𝑧𝑖 ≈ 𝑧 𝑗 .

Hence, if redshift information is available (e.g., photometric redshifts), then galaxy distribution

with similar redshifts should not be correlated to get an unbiased cosmic shear signal. The

non-vanishing GI term, however, is important for adjacent redshift bins and becomes stronger

with increasing distance between bins, since it depends on the lensing efficiency 𝑞𝜅 .

2.2.4 Aperture Statistics

One of the major problems of determining the mass profile of clusters from weak lensing

techniques is the MSD, which corresponds to adding a uniform surface mass density. However,

weak lensing is very well suited to finding mass concentrations and measuring mass density

distributions. This is achieved by defining quantities in terms of the surface mass density, which

are invariant under the MSD, summarised in the so-called aperture statistics.

29



2 Theoretical background

Given a convergence field 𝜅(𝜽), the aperture mass map is defined as

𝑀ap (𝜽) B
∫

d
2𝜃′ 𝜅(𝜽 + 𝜽′)𝑈 ( |𝜽′|) , (2.94)

where 𝜽 is the flat sky position, and𝑈 (𝜗) is a compensated, axisymmetric filter function, such

that

∫
𝜗𝑈 (𝜗) d𝜗 = 0. The compensation of 𝑈 ensures that adding a uniform surface mass

density does not affect the aperture mass. The aperture mass, 𝑀ap, can also be expressed in

terms of the tangential shear 𝛾t as

𝑀ap(𝜽) =
∫

d
2𝜃′ 𝛾t(𝜽 + 𝜽′)𝑄( |𝜽′|) , (2.95)

where

𝑄(𝜗) = 2

𝜗2

𝜗∫
0

d𝜗′ 𝜗′𝑈 (𝜗′) −𝑈 (𝜗) , (2.96)

and can be determined by Eq. (2.72) and the fact that 𝑈 is compensated. The inversion from

filter 𝑄 to𝑈 is given by

𝑈 (𝜗) = 2

∞∫
𝜗

d𝜗′
𝑄(𝜗′)
𝜗′

−𝑄(𝜗) . (2.97)

This allows working in principle either with convergence maps or shear catalogues.

Another important definition for this work is the aperture number counts, or simply aperture

number (Schneider, 1998), where the convergence in Eq. (2.94) is replaced by the foreground

galaxy number count 𝑛(𝜽),

𝑁ap(𝜽) B
∫

d
2𝜃′ 𝑛(𝜽 + 𝜽′)𝑈 ( |𝜽′|) . (2.98)

2.2.5 Density split statistic method

Using the quantities defined so far, the general idea of the DSS is as follows:

1. Determine the aperture number, 𝑁ap, by use of Eq. (2.98). An illustration of a flat-sky field

is shown in the left panel of Fig. 2.7.

2. Divide the area into quantiles Q according to the aperture number 𝑁ap, illustrates in the

middle panel of Fig. 2.7. For this illustration, five quantiles are used.

3. Correlate all pixels belonging to one quantile with the shear of the background galaxies

to measure the mean tangential shear in the corresponding quantiles ⟨𝛾t |Q⟩, shown in

the right panel of Fig. 2.7.
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Figure 2.7: Illustration of a 𝑁ap field on the left, the corresponding five quantiles in the middle, and

on the right, the resulting mean tangential shear signals.

The DSS was introduced by Gruen et al. (2016) and was applied to real data for the first time in

G18 to constrain cosmological parameters from measurements of the DES First Year and SDSS

data. For this analysis, they used the model derived in F18, which is based on LDT approaches

and log-normal approximations thereof to model the matter PDF, and on perturbation theory

to determine higher-order moments of the density field.

Since the DSS captures information from the shape and amplitude of the shear profiles and

the clustering of foreground galaxies according to which the quantiles are arranged, it counts

as a higher-order statistic. Its main advantage is that it breaks the Ωm-𝜎8 degeneracy from

which shear two-point statistic normally suffers. Furthermore, the DSS is also very powerful in

measuring the galaxy bias.

2.3 Statistical methods

2.3.1 Probability density distributions

The following chapters use several different PDFs. The simplest is the multivariate normal or

Gaussian distribution written as

𝑝(𝒙 |𝝁,𝐶) = 1

(2𝜋)𝑁/2

√
det𝐶

exp

[
−1

2

(𝒙 − 𝝁)t𝐶−1(𝒙 − 𝝁)
]

, (2.99)

where 𝒙 is the multidimensional data vector, 𝝁 is the expectation value of the same dimension,

and 𝐶 is the corresponding covariance matrix.

Another PDF of large relevance is a zero-mean shifted log-normal random field 𝑧, which is

defined as

𝑧 : R𝐷 → R : 𝒙 → 𝑧(𝒙) = exp[𝑛(𝒙)] − 𝜆 (2.100)
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where 𝑛 is a homogeneous and isotropic normal field with mean 𝜇 and variance 𝜎2
, and the

shift parameter 𝜆 = exp

(
𝜇 + 𝜎2/2

)
, which ensures that the mean vanishes for 𝑧. The one-point

distribution of the random field 𝑧 is then given by (Hilbert et al., 2011)

𝑝(𝑧 |𝜆,𝜎) =
{

1√
2𝜋(𝑧+𝜆)𝜎 exp

(
− 1

2𝜎2
[ln(𝑧/𝜆 + 1) + 𝜎2/2]2

)
for 𝑧 > −𝜆

0 otherwise

, (2.101)

where the negative of the shift parameter 𝜆 defines the lower limit of possible 𝑧 values.

An important PDF for the parameter estimation is the 𝑡-distribution (Gosset, 1908), which arises

when estimating the mean of a normally distributed population if the sample size is small and the

population’s standard deviation is unknown. This is the case for many cosmological situations

since there is only one Universe to observe, and therefore, in many cases, only an estimate of

the covariance matrix is available. For a multidimensional data vector 𝒙, with mean 𝝁 = E[𝒙]
and variance Var[𝒙] = 𝜈

𝜈−2
𝑅 for 𝜈 > 2, where 𝜈 is the number of degrees of freedom (d.o.f.)

and 𝑅 the scale matrix defined trough the covariance matrix 𝐶 to 𝑅 = 𝜈−2

𝜈
𝐶, the multivariate

𝑡-distribution reads

𝑝𝑡,𝜈 (𝒙 |𝝁, 𝑅) = Γ( [𝜈 + 𝑛d]/2)
Γ(𝜈/2) (𝜈𝜋)𝑛d

/2 |𝑅 |1/2

[
1 + (𝒙 − 𝝁)t(𝜈𝑅)−1(𝒙 − 𝝁)

]− 𝜈+𝑛
d

2

, for 𝜈 > 2 , (2.102)

where 𝑛d is the dimension of the data vector, and Γ is the gamma function defined as

Γ(𝑧) =
∫ ∞

0

d𝑥 𝑥𝑧−1
e
−𝑥

. (2.103)

A frequently utilised PDF that is used if the probability of a given number of events occurs with

a constant mean rate in a fixed interval of time or space without being influenced by previous

events is the Poisson distribution (Haight, 1967). Given the mean, 𝜇, the Poisson PDF is defined

as

𝑝𝜇 (𝑘) =
𝜇𝑘e−𝑘

𝑘!

, (2.104)

where 𝑘 is a discrete random variable. The interesting property of a Poisson PDF is that its mean

and variance are given by 𝜇. Of interest for this work is also a super-Poissonian distribution,

which is a PDF with a larger variance than a normal Poisson distribution while having the same

mean. Conversely, a sub-Poissonian distribution has a smaller variance.

Lastly, another important PDF is the 𝜒2
-distribution (Abramowitz and Stegun, 1972), defined

as

𝑝𝜈 (𝑥) =
{

1

2
𝜈/2Γ(𝑘/2) 𝑥

𝜈/2−1
e
−𝑥/2

for 𝑥 > 0

0 otherwise

, (2.105)

where 𝜈 is the d.o.f.. The expectation value is 𝜈, and the variance is 2𝜈. The 𝜒2
-distribution

allows a judgement on the compatibility of a presumed functional relationship with empir-

ically determined measurement points. In other words, since the expectation value of the

𝜒2
-distribution is 𝜈, it follows that under the assumption that the measurement points are nor-

mally distributed the reduced 𝜒2/𝜈 should be close to one, if the variance of the measurement

points are estimated correctly.
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2.3.2 Parameter estimation

In the following chapters, several parameter estimations will be performed. More specifically, the

aim is to interpret measured data 𝒅 in terms of a model 𝒎, which depends on some parameters

𝚯. In other words, the idea is to find the probability of the parameters𝚯 given the observed data

𝒅, which is called the posterior probability 𝑝(𝚯|𝒅). From 𝑝(𝚯|𝒅) the expectation values and

the errors of the parameters can be estimated, where we use the Bayesian view of probability as

a degree of belief rather than a frequency of occurrence in a set of trials. In most cosmological

scenarios it is easier to calculate the opposite, which is the probability distribution of the data

given some parameters, 𝑝(𝒅 |𝚯), and is also called the likelihood function L(𝚯). Using Bayes

theorem (Bayes, 1763) it is connected to the posterior probability as

𝑝(𝚯|𝒅) = L(𝚯)𝑝(𝚯)
𝑝(𝒅) , (2.106)

where 𝑝(𝚯) is the prior knowledge of the parameters that may result from previous experiments

or theory. If no previous information is available, the prior is often assumed to be a constant in

a given range (flat prior). The denominator is the evidence defined as

𝑝(𝒅) =
∫

dΘL(𝚯)𝑝(𝚯) . (2.107)

Since the evidence does not depend on the parameters, it is usually ignored, such that for flat

priors

𝑝(𝚯|𝒅) ∝ L(𝚯) . (2.108)

In order to estimate 𝑝(𝚯|𝒅) in practice, a process called Markov chain Monte Carlo (MCMC) is

used, which generates a set of points in the parameter space (MCMC chain) whose distribution

function is the same as the target density, here L(𝚯) or for flat priors 𝑝(𝚯|𝒅). The general idea
of an MCMC is

1. Compute the target density at some random point in the parameter space, 𝚯.

2. Choose another point in the parameter space,𝚯′
, by taking a proposal step and calculating

the target density at this point.

3. Determine the probability of acceptance. For instance, this could be

𝑝(accept) = min

[
1,

L(𝚯′)
L(𝚯)

𝑞(𝚯|𝚯′)
𝑞(𝚯′|𝚯)

]
, (2.109)

where 𝑞(𝚯′|𝚯) is the proposal distribution, which describes the probability to move from

point 𝚯′
to 𝚯′

.

4. Depending on the acceptance repeat step 2 and 3 from 𝚯 or 𝚯′
.
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To ensure that the whole posterior distribution is sampled, the foregoing steps are performed

from multiple walker, where each walker starts at a different point in parameter space.

The 68% (1𝜎) credible interval is then determined by the area that contains 68% of the generated

points. The parameters that yield the highest posterior probability are called the maximum

a-posterior (MAP),

𝚯MAP = argmax

𝚯
[𝑝(𝚯|𝒅)] . (2.110)

But in general, the MAP is not necessarily the point of the MCMC chain with the highest

likelihood, since the sampling might have missed that point. Therefore, we run a maximisation

process of the likelihood to report the MAP values instead of using the point with the highest

likelihood of the MCMC chain.

As most cosmological studies deal with multiple parameter dimensions, it is suitable for the

illustration of the posterior to marginalise over parameters. In general, a marginal distribution

of 𝑚 parameters of 𝚯 is obtained by integrating over the other 𝑛 − 𝑚 parameters

𝑝(𝚯(𝑚) |𝒅)
∫

dΘ𝑛−𝑚𝑝(𝚯|𝒅) . (2.111)

For the MCMC chain, this means ignoring all parameters except the ones of interest.

A common assumption to determine the posterior distribution is the usage of a Gaussian

likelihood function (see Eq. 2.99), which is only valid if the individual data vector measured from

𝑛r number of realisations that are used to determine the covariance matrix follows a Gaussian

distribution. Furthermore, due to the finite number of realisations, the inverse of the covariance

matrix is not noise-free or unbiased, which would only be the case for an infinite number of

realisations according to the central limit theorem. To unbias the inverse of the covariance

matrix, a general approach is to multiply the covariance matrix by the so-called Hartlap factor

(Anderson, 2003; Hartlap et al., 2007)

ℎ = (𝑛r − 1)/(𝑛r − 𝑛d − 2) . (2.112)

However, only unbiasing with the Hartlap factor is not sufficient. Therefore, Percival et al.

(2022) suggests a more accurate method to unbias an estimated covariance matrix
˜𝐶, which is a

random variable itself. It uses a more general joint prior of the mean and covariance matrix

as the Jeffreys prior proposed in equation 6 in Sellentin and Heavens (2016). Interestingly,

their method leads to credible intervals, which can also be interpreted as confidence intervals,

which are valid for a frequentist, and are a set of ranges that contain, for instance, 68% the

true parameters in repeated trials. If the model vector m depending on 𝑛𝜃 parameters 𝚯 the

likelihood function, or posterior distribution for flat priors, scales as

𝑝

(
m(𝚯) |d,

˜𝐶

)
∝ | ˜𝐶 |− 1

2

(
1 + 𝜒2

𝑛r − 1

)−𝑚/2

, (2.113)

which is a 𝑡-distribution, and

𝜒2 = [m(𝚯) − d]T ˜𝐶−1 [m(𝚯) − d] . (2.114)
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The power-law index 𝑚 is

𝑚 = 𝑛𝜃 + 2 + 𝑛r − 1 + 𝐵(𝑛d − 𝑛𝜃)
1 + 𝐵(𝑛d − 𝑛𝜃)

, (2.115)

with 𝑛d being the number of elements of the model or data vector and

𝐵 =
𝑛r − 𝑛d − 2

(𝑛r − 𝑛d − 1) (𝑛r − 𝑛d − 4) . (2.116)

A correlated formalism is proposed by Sellentin and Heavens (2016) and is recovered by setting

𝑚 = 𝑛r. Finally, to unbias the covariance matrix
˜𝐶 we transform it as

˜𝐶′ =
(𝑛r − 1) [1 + 𝐵(𝑛d − 𝑛𝜃)]

𝑛r − 𝑛d + 𝑛𝜃 − 1

˜𝐶 . (2.117)

In the real data analysis, reporting the goodness-of-fit can be done either in terms of the reduced

𝜒2/d.o.f . or in terms of the 𝑝-value, which is the probability of finding 𝜒2
values that are

larger for the given d.o.f.. For both, the d.o.f. needs to be estimated, which naively is done by

d.o.f . = 𝑛d − 𝑛𝜃 . However, if parameters are correlated and others are constrained by prior

knowledge, the actual d.o.f. is bigger than d.o.f . = 𝑛d − 𝑛𝜃 . Therefore, to estimate the ‘true’ d.o.f.

we create mock data vectors from a multivariate Gaussian distribution, where the mean is the

model prediction at the MAP values, and the covariance is the matrix that was used to get the

MAP. For each mock data vector we determined the lowest 𝜒2
value. The d.o.f. results then

from fitting a 𝜒2
-distribution to the PDF of these 𝜒2

.

Finally, we note that themodel prediction is too slow to run anMCMC, with several ten thousand

model predictions. Hence, for some analysis steps, we used a Gaussian process regression (GPR)

emulator to emulate the 𝜒2
values directly or used an emulation tool contained in CosmoPower

(Spurio Mancini et al., 2022) to emulate the model vector itself. CosmoPower was first developed

to emulate power spectra but can easily be adapted for arbitrary vectors. The advantage of

CosmoPower is that it can be trained on a graphics processing unit (GPU) and also the MCMC

can be run on a GPU, which enables MCMC predictions in a couple of minutes for ∼ 10
4
steps

per walker, and the number of walkers is just limited by the available memory of the GPU.

To train the emulator, the model is computed at several thousand different parameters values

distributed in a Latin hypercube. To quantify the accuracy of the emulator, we calculated the

model at 500 independent points determined with the emulator or directly with the model.

For these independent points, we found that the error of the emulator is better than 2% of the

standard deviation of the measured data (95% confidence level).
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Observed and simulated data 3
This chapter summarises all the simulated and observed data used in this work, which is based

on my three publications:

• B20: Burger, P., Schneider, P., Demchenko, V., Harnois-Deraps, J., Heymans, C., Hildebrandt,

H., and Unruh, S., 2020. An adapted filter function for density split statistics in weak

lensing. Astronomy & Astrophysics, 642:A161. doi:10.1051/0004-6361/20203869.

• B22a: Burger, P., Friedrich, O., Harnois-Déraps, J., and Schneider, P., 2022a. A revised

density split statistic model for general filters. Astronomy & Astrophysics, 661:A137.

doi:10.1051/0004-6361/202141628.

• B22b: Burger, P., Friedrich, O., and Harnois-Déraps, J., Schneider, P., Asgari, M., Bilicki,

M., Hildebrandt, H., Wright, A., Castro, T., Dolag, K., Heymans, C., Joachimi, B., Martinet,

N., Shan, H., and Tröster, T., 2022b. KiDS-1000 Cosmology: Constraints from density split

statistics. Submitted to Astronomy & Astrophysics. arXiv:2208.02171.

The individual contributions will be made clear in the following chapters. These papers are also

attached in the appendix for more details. Most of the data are public, but some are provided by

my co-authors, especially Joachim Harnois-Déraps, so I use the scientific wording ‘we’ in this

chapter.

3.1 Observed data

In our analysis, we focused on the fourth data release (Kuijken et al., 2019) of KiDS (Kuijken

et al., 2015; de Jong et al., 2015, 2017), which is a public survey by the European Southern

Observatory
1
. KiDS is a survey designed for excellent weak lensing applications, producing

high-quality images with VST-OmegaCAM. Due to the infrared data from its partner survey,

VIKING (VISTA Kilo-degree Infrared Galaxy survey, Edge et al., 2013) galaxies are observed in

nine optical and near-infrared bands, 𝑢𝑔𝑟𝑖𝑍𝑌𝐽𝐻𝐾𝑠, where the fourth data release has enormous

control over redshift uncertainties (Hildebrandt et al., 2021). The fact that it contains ∼ 1000 deg
2

of images, which reduce to 777.4 deg
2

after masking gives the fourth data release the name

1
Data products are publicly available through http://kids.strw.leidenuniv.nl/DR4
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3 Observed and simulated data

KiDS-1000. In the following, we will discuss the used lens and source catalogues in more

detail.

3.1.1 Lens catalogues

As the lens catalogue, we used the bright sample of the KiDS-1000 release (KiDS-bright) described

in Bilicki et al. (2021), with photometric redshifts, 𝑧ph, that are derived using 𝑢𝑔𝑟𝑖𝑍𝑌𝐽𝐻𝐾𝑠
photometry from KiDS-1000 and the large amount of spectroscopic calibration data measured

by GAMA. The KiDS-bright sample spans the redshift range of 0 < 𝑧 ≲ 0.6; however, our

analytical model is inaccurate for very small redshifts, and these low redshift estimates are

uncertain, we excluded all galaxies with 𝑧ph < 0.1.

Following the description of Peacock and Bilicki (2018), we estimated the redshift distribution

by taking advantage of the very good match between the GAMA spectroscopic sample and the

KiDS-bright sample. However, it still has some uncertainties, so we investigate the impact of

the resulting posterior if we use instead of the best-estimated 𝑛be(𝑧), the photometric redshift

distribution 𝑛ph(𝑧), or the spectroscopic redshift distribution 𝑛sp(𝑧), coming from the cross-

match of the KiDS-bright sample with GAMA; both also shown in Fig. 3.1. The best estimated

𝑛be(𝑧) =
∫

𝑛ph(𝑧ph) 𝑝𝛿𝑧
(
𝑧ph − 𝑧

)
d𝑧ph . (3.1)

results from smoothing the 𝑛ph(𝑧) of the KiDS-bright sample with a photo-𝑧 error model

𝑝𝛿𝑧 (Δ𝑧) ∝
(
1 + Δ𝑧2

2𝑎𝑠2

)−𝑎
, (3.2)

where Δ𝑧 = 𝑧ph − 𝑧sp is used to determine the parameters 𝑎 and 𝑠 by fitting 𝑝𝛿𝑧 to the KiDS-

bright galaxies that also have GAMA spectroscopic redshifts
2
. The best-fit 𝑎 and 𝑠 values for

our selection are provided in the top row of Table 3.1, where we verified their robustness by

measuring similar values for individual tiles of the survey. Finally, we allow the 𝑛be(𝑧), the
𝑛ph(𝑧) and the 𝑛sp(𝑧) to shift along the redshift axis of the order of 0.01, which we have chosen

as an upper estimate because we expect them to be at the same order as the source’ mean

redshift 𝛿⟨𝑧⟩.

In addition to the full KiDS-bright sample, we also used an empirical split between red and

blue galaxies based on their location on the absolute 𝑟-band magnitude, 𝑀𝑟 , and the rest-frame

𝑢 − 𝑔 colour diagram. We then used the same approach for the full sample to estimate their

underlying redshift distributions.

2
In the arXiv version of B22b, we erroneously determined the 𝑎 and 𝑠 by using Δ𝑧 = (𝑧ph − 𝑧sp)/(1 + 𝑧sp). This
resulted in posteriors that are barely distinguishable. The MAP are also almost identical as seen for instance in

Table 3 of B22b and Table 7.2. In that context, we also changed the notation from the best-estimated 𝑛(𝑧) to
𝑛be (𝑧), the photometric redshift distribution 𝑛(𝑧ph) to 𝑛ph (𝑧), and the spectroscopic redshift distribution 𝑛(𝑧sp)
to 𝑛sp (𝑧).
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3.1 Observed data

Table 3.1: Overview of the observational KiDS-1000 data, describing the lens and source catalogues

in the upper and lower parts of this Table, respectively. The 𝛿⟨𝑧⟩ for the sources are taken from

Hildebrandt et al. (2021), whereas the measured ellipticity dispersion per component, 𝜎𝜖 , are

measured in Giblin et al. (2021), and the shear multiplicative 𝑚-bias correction are updated in van

den Busch et al. (2022). The lenses’ 𝛿⟨𝑧⟩ are unknown, but we expect them to be in the same order

as the source’ 𝛿⟨𝑧⟩, so we used 0.01 as an upper estimate of them. Table taken from B22b.

name 𝑛eff [arcmin
−2] 𝛿⟨𝑧⟩ 𝑎 𝑠

Full KiDS-bright sample 0.325 0.0 ± 0.01 2.509 0.018

Red KiDS-bright sample 0.131 0.0 ± 0.01 2.630 0.016

Blue KiDS-bright sample 0.165 0.0 ± 0.01 2.619 0.020

name 𝑛eff [arcmin
−2] 𝛿⟨𝑧⟩ 𝜎𝜖 𝑚-bias ×10

3

Source sample bin 4 1.26 0.011 ± 0.0087 0.25 8 ± 12

Source sample bin 5 1.31 −0.006 ± 0.0097 0.27 12 ± 10

Figure 3.1: Redshift distributions, 𝑛(𝑧), of the galaxy samples. The cyan, orange, and brown lines

show the third, fourth and fifth redshift bins of the KiDS-1000 data, as estimated in Hildebrandt

et al. (2021). The lens sample is obtained from the KiDS-bright galaxies described in (Bilicki et al.,

2021), where the blue line shows 𝑛sp(𝑧), the red line shows 𝑛ph(𝑧), and the black line shows our

best-estimated 𝑛be(𝑧). Figure adapted from B22b.

3.1.2 Source catalogues

The KiDS-1000 cosmic shear catalogue consists of five tomographic bins, whose redshifts were

calibrated using the self-organising map (SOM) method of Wright et al. (2020) and presented

in Hildebrandt et al. (2021). However, if sources and lenses belong to the same gravitational

potential, IA effects as discussed in Sect. 2.2.3 are important, such that we restricted our DSS

analyses to the last two source bins. The uncertainty on the mean of the redshift distribution,
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3 Observed and simulated data

𝛿⟨𝑧⟩, and the uncertainty on galaxy shear estimates are listed in the last two rows of Table

3.1.

3.1.3 Extracting the observed data vector

The aperture number in Eq. (2.98) assumes full knowledge of 𝑛(𝜽) on the sky, but in the observed
data, it has to be modified in the presence of a mask 𝑚(𝜽). For a filter function𝑈, with a finite

filter radius Θ and exactly one transition from positive to negative values at 𝜃tr the aperture

number calculation modifies to

𝑁ap(𝜽) =
∫ 𝜃tr

0
𝑈 (𝜽′) d

2𝜃′∫ 𝜃tr

0
𝑚(𝜽 + 𝜽′)𝑈 (𝜽′) d

2𝜃′

∫ 𝜃tr

0

𝑛(𝜽 + 𝜽′)𝑈 (𝜽′) d
2𝜃′

+

∫ Θ

𝜃tr

𝑈 (𝜽′) d
2𝜃′∫ Θ

𝜃tr

𝑚(𝜽 + 𝜽′)𝑈 (𝜽′) d
2𝜃′

∫ Θ

𝜃tr

𝑛(𝜽 + 𝜽′)𝑈 (𝜽′) d
2𝜃′ . (3.3)

The integrals were measured on the curved sky using the healpy function smoothing. By

considering the negative and positive parts of the filter separately, we prevent, that missing area

in the negative part of the filter from erroneously increases the 𝑁ap or vice versa. Furthermore,

we included only those pixels where the number of unmasked pixels within the given filter

radius (effective area) is greater than 50% of the maximal area. For compensated filters, we

restricted our selection to those pixels where the effective area for the positive and negative

parts is greater than 50% of their maximal individual area. The 50% threshold was chosen

to avoid as many corrupted pixels as possible without that the measured shear profiles are

dominated by shot noise. The pixels that are above the threshold were then separated into

different quantiles according to their aperture number. The correlation, which we call shear

profiles, between the pixels of each quantile with shear of the background sources are measured

with the treecorr (Jarvis et al., 2004) software in 10 log-spaced bins with angular separation

10 arcmin < 𝜗 < 120 arcmin. The final data vector consists of the shear profiles and the mean

aperture number of the highest two and lowest two quantiles. To avoid a singular covariance

matrix, we had to exclude one quantile, as otherwise, different covariance matrix elements

would be dependent on each other. This is because the average of all shear signals vanishes

and the average over the mean aperture numbers of the quantiles are either fixed by the galaxy

number density (positive filter) or vanish (compensated filter). We excluded the middle quantile

as it has the lowest cosmological information. Overall we end up with a data vector of size

80 + 4 = 84 elements.

3.2 Simulated data

This work aims to analyse the observed data described above by using an analytical model

that predicts the DSS vector. However, to derive a filter function and a KiDS-1000 covariance

40



3.2 Simulated data

matrix and to test, validate and calibrate the model, we made use of many different simulations.

We restrict our description to the usage of the simulations, where detailed descriptions of the

development of the simulations can be found in the attached papers.

3.2.1 Full-sky Log-normal Astro-fields Simulation Kit

Since an analytical covariance matrix for the DSS is currently unavailable, we needed to rely on a

large set of simulations to estimate a reliable covariance matrix. As the DSS covariance matrices

depend strongly on the used area from which the individual data vectors are measured, full-sky

simulations are preferred against the small flat sky simulations, which would require a rescaling

that biases the covariance matrix. Furthermore, since the mask 𝑚(𝜽) influences the resulting
covariance matrix strongly, we use log-normal simulations created by the publicly available

Full-sky Log-normal Astro-fields Simulation Kit (FLASK) tool
3
(Xavier et al., 2016). Log-normal

random fields are a good approximation for the 1-point probability density function (PDF) of

the weak lensing convergence/shear field (Hilbert et al., 2011; Xavier et al., 2016), and accurate

enough for a good estimate of the covariance matrix for higher-order statistics (Gruen et al.,

2018; Halder et al., 2021). For FLASK to predict projected density 𝛿m,2D and shear maps, it needs

to be provided with the angular power spectrum of the projected matter density field 𝑃𝑔𝑔 (ℓ),
the projected convergence power spectrum 𝑃𝜅𝜅 (ℓ), and their combination 𝑃𝜅𝑔 (ℓ), which are all

determined by Eq. (2.86). Furthermore, FLASK needs the log-normal shift parameters, 𝜆, for the

convergence maps determined directly from the fitting formula equation (38) in Hilbert et al.

(2011), and foreground density maps estimated from the model for a top-hat filter function.

We distribute galaxies using a Poisson distribution with parameter 𝜆 = 𝑛(1+𝑏 𝛿m,2D), where 𝑏 =

1.4 is a constant linear galaxy bias estimated from preliminary analyses with a few realisations

and 𝑛 = 0.325 arcmin
−2

is the mean galaxy density of the bright sample. Lastly, we incorporate

shape noise by use of Eq. (2.78), where the source ellipticities 𝜖 s
per pixel are generated by

drawing random numbers from a Gaussian distribution with width

𝜎pix =
𝜎𝜖√︁
𝑛 𝐴pix

, (3.4)

where 𝐴pix is the pixel area of the shear grid, shape noise per component 𝜎𝜖 = {0.254, 0.270},
and effective number density 𝑛 = {1.26, 1.31} arcmin

−2
for the two source bins.

Similar to the real data measurement, we used the healpy function smoothing and used only

pixels with an effective area greater than 50% of the maximal area. The corresponding shear

profiles are measured also with the treecorr software in 10 log-spaced bins with angular

separation 10 arcmin < 𝜗 < 120 arcmin.

3
Available here: http://www.astro.iag.usp.br/~flask/
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3 Observed and simulated data

3.2.2 The Millenium simulation

The MS is a 𝑁-body simulation and is described in Springel et al. (2005). In B20 we used the

MS for the development of the adapted filter described in chapter 4. It consists of 64 pseudo-

independent light cones of size 4 × 4 deg
2
, where each of the Cartesian components of the shear

was inferred from the lensing Jacobi matrix A on a 4096 × 4096 pixel grid for several source

redshifts.

To create the galaxy number density field 𝑛(𝜽), we projected for each light cone the galaxies

that were added to the simulation using a semi-analytical galaxy-formation model, with an

SDSS 𝑟-band magnitude 𝑚𝑟 < 20.25mag. The magnitude cut was chosen such that the galaxy

number density in the MS matches the one in Bilicki et al. (2018).

As B20 was done before the KiDS-1000 release, we mimicked the KiDS shear estimates by

combining the shear information of each source plane weighted by the redshift distribution

𝑛(𝑧) of the third data release of the Kilo-Degree Survey (KV450), described in Hildebrandt et al.

(2020). We considered only sources with 0.5 < 𝑧phot < 1.2, such that our sources are mostly

behind our low-redshift lenses. Since the MS is exclusively used to construct the adapted filter,

we ignored shape noise.

3.2.3 Takahashi simulations

The full-sky 𝑁-body simulation described in Takahashi et al. (2017, hereafter T17), are used in

B22a to test and validate the analytical model described in chapter 6.

With one out of 108 publicly available matter density contrast map 𝛿, we created two realistic

lens galaxy density maps, by projecting 𝛿 weighted by the corresponding 𝑛(𝑧) of the second and
third redshift bins of the luminous red galaxies (LRG) sample constructed from the KiDS-1000

data (Vakili et al., 2019). For both projected density contrast maps 𝛿2D, we distributed galaxies

following a Poisson distribution with parameter 𝜆 = 𝑛(1 + 𝑏 𝛿2D), where 𝑏 = {1.72, 1.74} is a
constant linear galaxy bias, 𝑛 = {0.028, 0.046} arcmin

−2
is the galaxy number density.

We chose a noise-free shear grid at a single source plane located at 𝑧 = 0.8664, which is at a

noticeably higher redshift as the two LRG 𝑛(𝑧).

To estimate the uncertainties of the measured T17 signals, we divided the full-sky map into 48

sub-patches, such that each patch had a size of approximately 859.4 deg
2
. Although we used only

one full T17 map to measure the signals, we used 10 full-sky maps divided into 48 sub-patches

to measure a reliable covariance matrix from 480 realisations with shape noise. To create a

realistic covariance matrix, we transformed the shear field into an observed ellipticity field

using Eq. (2.78), where the source ellipticities 𝜖 s
per pixel are determined with Eq. (3.4) with an

effective number density 𝑛 and 𝜎𝜖 that match the KiDS-1000 data. Finally, as the area of the

sup-patches with an area of 859.4 deg
2

is slightly larger than the KiDS-1000 area of 777.4 deg
2

,

we re-scaled the covariance matrix by 859.4 deg
2/777.4 deg

2 ≈ 1.1.
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3.2 Simulated data

Tomeasure the quantities 𝛿m,𝑈 , 𝑁ap on the full-skywe used the healpy function smoothing. The

tangential shear profiles ⟨𝛾t |Q⟩ were measured for each quantile 𝑄 by the software treecorr

in 15 log-spaced bins with angular separation Θ/20 < 𝜗 < Θ, where Θ is the size of the used

filter. For the top-hat filter, we measured the shear signal up to 120
′
.

3.2.4 Scinet Light Cone Simulations

The 𝑁-body Scinet Light Cone Simulations (SLICS), described in Harnois-Déraps et al. (2018),

are used in B20 to compare the performance of the adapted filter to a top-hat filter, in B22a to

construct a KiDS-1000 like covariance matrix, and in B22b to analyse the galaxy bias model. In

total the SLICS are a set of over 800 fully independent realizations with underlying cosmological

parameters fixed to Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0473, ℎ = 0.6898, 𝜎8 = 0.826 and

𝑛s = 0.969 (see Hinshaw et al., 2013).

For the work in B20, the co-author Joachim Harnois-Déraps provided us with source galaxies

that mimic the KV450 data. These mock galaxies are placed at random angular coordinates on

100 deg
2
flat-sky light cones, with the KV450 number density 𝑛 = 6.93/arcmin

2
and 𝑛(𝑧) from

Hildebrandt et al. (2020). The observed ellipticities 𝜖obs are obtained again by use of Eq. (2.78),

where the source ellipticity 𝜖 s
are generated by drawing random numbers from a Gaussian

distribution with width 𝜎𝜖 = 0.29. To decrease the overlap between the lens 𝑛(𝑧), we selected
only photometric redshifts inside 0.5 < 𝑧phot < 1.2, resulting in a galaxy number density of

𝑛gal = 5.17/arcmin
2
. For the lens sample in B20, we used GAMA SLICS mocks, which are based

on a halo occupation distribution (HOD) prescription (Smith et al., 2017). The HOD describes

the biasing of galaxies to trace the underlying dark matter density field by the probability that a

halo of mass 𝑀 contains 𝑁 galaxies with a certain property. For the GAMA mocks, the galaxy

number density is 𝑛 ∼ 0.25 , arcmin
−2
, and on large scales, they follow a linear bias of about

1.2.

For the work in B22a, we used the KiDS-1000-like sources and KiDS-LRG-like lenses provided

by co-author Joachim Harnois-Déraps to determine a covariance matrix. For these mocks, the

source galaxy number density and 𝑛(𝑧) are matched to the one used in Asgari et al. (2021).

The source mock galaxies were placed at random angular coordinates in 100 deg
2
light cones,

whereas the shear signal 𝛾 and the observed ellipticities 𝜖obs were obtained from several lensing

maps following the KiDS-1000 fourth and fifth tomographic bins. Specifically, we used 𝜎𝜖 = 0.25

and 0.27 for the source bins, as reported in Giblin et al. (2021). To create the lens sample, galaxies

were placed following a Poisson distribution with parameter 𝜆 = 𝑛(1 + 𝑏 𝛿m,2D) for the second
and third tomographic bin of the LRG galaxies described in Vakili et al. (2019). In particular, the

same linear galaxy bias 𝑏 = {1.72, 1.74}, galaxy number density 𝑛 = {0.028, 0.046} gal/arcmin
2
,

and 𝑛(𝑧) as for the T17 were used.

For the work in B22b, we used the GAMA lens mocks used in B20 combined with the KiDS-1000-

like sources used in B22a to test the galaxy bias model.

As the SLICS are flat-sky simulations, we used the scipy (Virtanen et al., 2020) function convolve

to calculate the aperture number, and again treecorr to measure the tangential shear profiles.
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3.2.5 Cosmology-dependent Scinet Light Cone Simulations

The cosmo-SLICS, described in Harnois-Déraps et al. (2019), were used in B20 to investigate

the sensitivity of the top-hat filter and the adapted filter to cosmological parameters, in B22a

to validate the analytical model on an independent simulation suite, and in B22b to test the

robustness of the model if the mocks are infused with IA.

The cosmo-SLICS are a suite of weak lensing simulations sampling 26 points in a broad ΛCDM

parameter space distributed in a Latin hypercube. For every cosmology, 50 pseudo-independent

realisations with 100 deg
2
light cones are available. In these simulations, the matter density

Ωm, the dimensionless Hubble parameter ℎ, the normalisation of the matter power spectrum

𝜎8 and the time-independent dark energy equation-of-state 𝑤0 are varied over a range that is

large enough to complement the analysis of current weak lensing data (see Hildebrandt et al.,

2020).

For the work in B20, we were provided with KV450-like catalogues following the same pipeline

as for the SLICS mocks, with the same galaxy number density and redshift distribution 𝑛(𝑧).
However, the HOD-based mocks are unavailable for the lenses. To generate GAMA-like mocks,

galaxies were distributed with a constant galaxy bias model of one to the projected density

maps that follow the GAMA 𝑛(𝑧).

For the work in B22a, the cosmo-SLICS mocks were used for the validation of the model and

were identically produced as the SLICS mocks. The only difference is that we used noise-free

shear signals for this validation.

For the work in B22b, we used mocks that are created as in B22a to investigate the impact of

IA. Specifically, we used 𝜎𝜖 = 0.25 and 0.27 per component for the source bins four and five, as

reported in Giblin et al. (2021), and the 𝑛(𝑧) described in Hildebrandt et al. (2021). Following

the methods described in Harnois-Déraps et al. (2022), the IA properties of these galaxies were

computed as

𝜖 IA

1
= −𝐴IA

¯𝐶1𝜌(𝑧)
𝐷+(𝑧)

(𝑠𝑥𝑥 − 𝑠𝑦𝑦) , 𝜖 IA

2
= −2𝐴I𝐴

¯𝐶1𝜌(𝑧)
𝐷+(𝑧)

𝑠𝑥𝑦 , (3.5)

where 𝑠𝑖 𝑗 = 𝜕𝑖 𝑗𝜙 are the Cartesian components of the projected tidal field tensors interpolated at

their positions, with 𝜙 being the gravitational potential. The strength of the coupling between

the ellipticities and the tidal field are captured by 𝐴IA, where 𝜌(𝑧) is the matter density, 𝐷+(𝑧)
is the linear growth factor, and the constant

¯𝐶1 = 5 × 10
−14𝑀−1

⊙ ℎ−2
Mpc

3
, as calibrated in

Brown et al. (2002). By use of Eq. (2.78), the intrinsic ellipticity components 𝜖 I𝐴
1/2

were combined

with the cosmic shear signal, which resulted in an IA-contaminated weak lensing sample

that is consistent with the NLA model of Bridle and King (2007). Furthermore, we used for

the lens sample the 𝑛(𝑧) of the KiDS-bright sample, as they gave a cleaner signal in the real

data analysis compared to the LRG sample. By populating the underlying dark matter field

with galaxies following a Poisson distribution, we achieved an effective number density of

𝑛eff = 0.325 arcmin
−2
, where we fixed the linear galaxy bias to 1.4.
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3.2.6 Magneticum

The Magneticum lensing simulations
4
were first introduced in Hirschmann et al. (2014) and

further used in Martinet et al. (2021). In B22b, we used theMagneticum to investigate the impact

of baryon feedback to the DSS data vector.

Baryon feedback affects the distribution of LSS, as the sustained outflow of energy from stellar

winds, supernovae, and AGN reduces the clustering on intra-cluster scales by tens of per cent

(van Daalen et al., 2011). However, to which strength baryons affect the LSS (Chisari et al., 2015)

is still largely uncertain. Since we expect the DSS to be only a little affected by baryons, we

decided to use hydro-dynamical simulations for which the impact is quite high.

We used mocks with dark matter-only light-cones and dark matter+baryon light-cones to test

the difference caused by the presence of baryons. The simulations provided were a cooperation

work by the co-authors Klaus Dolag, Tiago Castro, Nicolas Martinet and Joachim Harnois-

Déraps. The underlying matter field was constructed from Run-2 and Run-2b data described
in Hirschmann et al. (2014) and Ragagnin et al. (2017), which are based on the Gadget3 hydro-

dynamical code (Springel, 2005). They can reproduce a large number of observations (Castro

et al., 2021), where dark matter particles of mass 6.9 × 10
8ℎ−1𝑀⊙ and gas particles with mass

1.4 × 10
8ℎ−1𝑀⊙ are co-evolved in comoving volumes of side 352 and 640 ℎ−1

Mpc, respectively.

The essential mechanisms included are radiative cooling, star formation, supernovae, AGN, and

their associated feedback on the matter density field. Lastly, the galaxy and shear catalogues

were produced from sequences of projected mass planes to mimic the KiDS-1000 sources and

KiDS-bright lenses for ten pseudo-independent 100 deg
2
light-cones.

Similar to the SLICS the Magneticum are flat-sky simulations, so we used the scipy function

convolve to calculate the aperture number, and treecorr to measure the tangential shear

profiles.

4 www.magneticum.org
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An adapted filter for the density
split statistic

4
This chapter is covered by B20, which analysis was mainly developed during my master’s

thesis. However, I improved, wrote and published it during the PhD. Therefore, and because

it is essential for understanding the remaining work, we added it here as a separate chapter.

The general framework was done by me in a corporation with Peter Schneider. Furthermore,

since many discussions with Joachim Harnois-Déraps, Hendrik Hildebrandt and Sandra Unruh

helped to develop this work, I use the scientific wording ‘we’ for this chapter.

In the work of B20 an adapted filter function to compute the aperture number, 𝑁ap, was

developed and compared to the previously used top-hat filter function. The motivation for

the adapted filter was that even if the (foreground) galaxy density 𝑛(𝜽) is proportional to the

lensing convergence field 𝜅(𝜽), the 𝑁ap measured with a top-hat filter with radius 𝜃 is not

perfectly correlated to aperture mass 𝑀ap, measured using the 𝛾t(𝜗) with 𝜗 > 𝜃. To improve

the correlation between 𝑁ap and 𝑀ap, we developed a pair of compensated filters in an iterative

process using the MS with the setup described in Sect. 3.2.2 as follows: The first step was to

calculate the aperture number 𝑁ap with a compensated top-hat filter defined as

𝑈1( |𝜽 |) B


1 arcmin

−2
, if 𝜃 < 1

′

− 1

𝜃2

max
/𝜃2

tr
−1

arcmin
−2

, if 𝜃tr ≤ 𝜃 < 𝜃max

0 arcmin
−2

, if 𝜃 > 𝜃max

(4.1)

where 𝜃max is the size of the filter and 𝜃tr is the transition from positive to negative filter values.

Next, we measured the tangential shear profile 𝛾t(𝜃) up to 𝜃max around the highest 10% 𝑁ap

values. With setting 𝑄(𝜃) ∝ 𝛾t(𝜃) and Eq. (2.97) we created a revised compensated filter𝑈i+1.

This process was repeated iteratively, starting with the revised filter 𝑈𝑖+1 determined in the

previous iteration. In B20 this iteration continues as long as the change in relative signal-to-

noise Δ(𝑆/𝑁)/(𝑆/𝑁)1 > 10
−3

between consecutive iterations, where the noise was estimated

from the 64 MS realisations and ended after eight iterations. After convergence was achieved,

the last step was to extend the 𝑈 and 𝑄 filters by measuring the shear signal up to radius Θ,

which provides the large signal at Θ > 𝜃max. Since the new filter is adapted to the shear profiles,

it is called the adapted filter.
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4 An adapted filter for the density split statistic

Figure 4.1: Pixel-by-pixel comparison of 𝑀ap(𝜽) vs. 𝑁ap(𝜽). To ease the comparison between

𝑀ap(𝜽) and 𝑁ap(𝜽) we re-scaled 𝑀ap(𝜽) → 𝑀ap(𝜽) := (𝑀ap(𝜽) − ⟨𝑀ap⟩)/
√︁
⟨(𝑀ap(𝜽) − ⟨𝑀ap⟩)2⟩,

correspondingly 𝑁ap(𝜽) → 𝑁ap(𝜽), where ⟨…⟩ is the ensemble average over all pixel positions. In

the upper left corner of each plot we state also the Pearson correlation factor between 𝑀ap(𝜽) and
𝑁ap(𝜽). The left panels show the analysis with the adapted filter and the right with the top-hat filter.

The upper panels deviate from the lower ones in respect to the used foreground galaxies. Figure

taken from B20.

In the remaining part of the work in B20, the adapted filter was compared to a top-hat filter,

where the size of the top-hat was adjusted such that the peaks of the resulting shear profiles of

both filters were similar. Using the SLICS (Sect. 3.2.4), we measured with the adapted filter better

𝑆/𝑁 ratios than with the top-hat filter. For this comparison, the signal, 𝑆, was the mean from

64 SLICS realisations and the noise, 𝑁 , was the standard deviation of 64 SLICS tangential shear

profiles around random pixel positions. Since the top-hat filter does not have a corresponding

𝑄-filter, we used the approach from Brouwer et al. (2018), where 𝑄(𝜃) ∼ 1/
√
𝜃 for 𝜃th < 𝜃 < Θ

with 𝜃th the size of the top-hat filter. Especially for the highest and lowest quantiles, the adapted

filter had a better 𝑆/𝑁 , meaning that the signal is more likely to distinguish from pure noise,
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which we exploit later in the real data analysis. To investigate which filter function creates

signals more sensitive to cosmological parameters, we used the cosmo-SLICS (Sect. 3.2.5). For

each cosmological node, we measured a 𝜒2
value as the deviation to the fiducial cosmology

weighted by a covariance matrix measured from the 50 realisations of the fiducial cosmology.

For most cosmological parameters, the adapted filter performs better in distinguishing between

different cosmologies. In the last test, we compared the correlation between both filters’ aperture

number and aperture mass. As shown in Fig. 4.1, we performed this test once with the SLICS

(upper panels), where galaxies are distributed with a HOD, and with the fiducial cosmology of

cosmo-SLICS, where galaxies were distributed with a linear galaxy bias model (lower panel). In

both cases, the adapted filter yielded a better relation, indicating that the overall aim of this

work was achieved.

Since F18 states that their analytical model, which we will use in a modified version, is currently

not accurate enough for top-hat filter functions smaller than 20
′
, we can not use the adapted

filter derived in B20 as it is too small. After several tests, we fixed the filter function size to 120
′
.

However, the MS with 4 × 4 deg
2

fields is too small to generate a filter function of that size. The

100 deg
2

area of the SLICS simulations with a combined fourth and fifth tomographic bin of the

KiDS-1000 source mocks and GAMA lens mocks are very suitable for this task, as wewill analyse

the real KiDS-bright sample that is calibrated with spectroscopic GAMA measurements.

For the iteration process, we fixed the transition scale 𝜃tr = 4
′
and the maximum scale to

𝜃max = 40
′
. In the upper panel of Fig. 4.2, we show the filter functions after each iteration

step, where the solid black line corresponds to the initial compensated top-hat filter. The

corresponding shear profiles of the highest 10% 𝑁ap values are shown in the lower panel of

Fig. 4.2.

After ten iterations, we manually stopped the iteration process since the shapes’ changes were

significantly smaller than the expected uncertainties. Using Eq. (2.97) we extended the final

adapted filter, which is shown as the solid blue line in Fig. 4.3. Although we test the DSS model

also for other compensated filters with a similar angular extent in B22a, we display in Fig. 4.3

only the adapted and top-hat filter as we restrict the review in this thesis to these two filters.
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4 An adapted filter for the density split statistic

Figure 4.2: Resulting filter functions and corresponding shear profiles of the iteration process. The

filter functions on the upper panel result from those shear profiles on the lower panel with the same

colour.
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Figure 4.3: Adapted filter𝑈 used in the following chapters. To ease the comparison, we scaled the

first bin value to 1/arcmin
−2

.
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Generalised model of density split
statistic

5
This chapter reviews the essential ingredients of the analytical DSS model presented in B22a,

and the slight modification presented in B22b. In general, we describe the modifications of the

original F18 model, who showed that the full non-perturbative calculation of the PDF could be

approximated with a log-normal PDF. The basic structure was taken from F18, but every step

in the formalism and its implementation had to be redone for general filters. And although the

work described here was done by me, it resulted from several discussions with Oliver Friedrich

and Peter Schneider, so I use the scientific wording ‘we’.

In analogy to the definition of the convergence 𝜅(𝜽) in Eq. (2.81), we defined for a flat universe

(𝐾 = 0 in Eq. 2.3) the line-of-sight projection of the 3D matter density contrast 𝛿m, weighted by

the projection kernel 𝑞g(𝜒) = 𝑛l(𝑧[𝜒]) d𝑧[𝜒]
d𝜒

as

𝛿2D(𝜽) =
∫

d𝜒 𝑞g(𝜒) 𝛿(𝜒𝜽 , 𝜒) , (5.1)

where 𝜒 is the co-moving distance and 𝑛l(𝑧[𝜒]) is the foreground (lens) galaxy redshift distri-

bution. Next, the two-dimensional matter density contrast was smoothed with a filter𝑈 of size

Θ:

𝛿m,𝑈 (𝜽) ≡
∫

|𝜽 ′ |<Θ

d
2𝜃′ 𝛿2D(𝜽 + 𝜽′)𝑈 ( |𝜽′|) , (5.2)

which simplifies in the case of a top-hat filter of size 𝜗 to

𝛿𝜗
m,th

(𝜽) = 1

𝜋𝜗2

∫
|𝜽 ′ |<𝜗

d
2𝜃′ 𝛿m,2D(𝜽 + 𝜽′) . (5.3)

In analogy, the mean convergence inside an angular separation 𝜗 is

𝜅<𝜗 (𝜽) =
1

𝜋𝜗2

∫
|𝜽 ′ |<𝜗

d
2𝜃′ 𝜅(𝜽 + 𝜽′) . (5.4)
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5 Generalised model of density split statistic

As the tangential shear profiles for given a quantile, ⟨𝛾t |Q⟩, is the average over all 𝑁ap values

that belong to quantile Q, it simplifies to the prediction of ⟨𝛾t |𝑁ap⟩. This conditional expectation
value can in turn be computed by use of Eq. (2.72) as

⟨𝛾t |𝑁ap⟩(𝜗) = ⟨𝜅<𝜗 |𝑁ap⟩ − ⟨𝜅 |𝑁ap⟩(𝜗) = −𝜗
2

d

d𝜗
⟨𝜅<𝜗 |𝑁ap⟩ , (5.5)

where 𝜅 and 𝛾t are the averages on circles of radius 𝜗 from the centre of the filter. In order to

predict the ⟨𝜅<𝜗 |𝑁ap⟩ we use that

⟨𝜅<𝜗 |𝑁ap⟩ ≈
∫

d𝛿m,𝑈 ⟨𝜅<𝜗 |𝛿m,𝑈⟩ 𝑝(𝛿m,𝑈 |𝑁ap) , (5.6)

where we assumed that the expected convergence within 𝜗 only depends on the projected matter

density contrast 𝛿m,𝑈 . Next, we used Bayes’ theorem Eq. (2.106) to express the conditional PDF

as

𝑝(𝛿m,𝑈 |𝑁ap) =
𝑝(𝑁ap |𝛿m,𝑈)𝑝(𝛿m,𝑈)

𝑝(𝑁ap)
, (5.7)

where 𝑝(𝑁ap |𝛿m,𝑈) is the probability of finding 𝑁ap given the smoothed density contrast 𝛿m,𝑈 ,

and 𝑝(𝑁ap) follows by integrating over the numerator.

Summarising, we were left with three ingredients in order to calculate ⟨𝛾t |Q⟩:

1. The PDF of the matter density contrast smoothed with the filter function 𝑈 (used in

Eqs. 5.7)

𝑝(𝛿m,𝑈) . (5.8)

2. The expectation value of the convergence inside a radius 𝜗 given the smoothed density

contrast (used in Eq. 5.6)

⟨𝜅<𝜗 |𝛿m,𝑈⟩ . (5.9)

3. The distribution of 𝑁ap for the given filter function𝑈 given the smoothed density contrast

(used in Eqs. 5.7)

𝑝(𝑁ap |𝛿m,𝑈) . (5.10)

All three components are sensitive to the filter function 𝑈 so we will discuss them in more

detail next.

5.1 𝒑(𝜹m,𝑼)

For the matter density PDF we assumed that it follows a shifted log-normal distribution with

vanishing mean (see Eq. 2.101) as

𝑝(𝛿m,𝑈) =
1

√
2𝜋𝜎(𝛿m,𝑈 + 𝛿0)

exp

(
−
[ln

(
𝛿m,𝑈/𝛿0 + 1

)
+ 𝜎2/2]2

2𝜎2

)
. (5.11)
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5.2 ⟨𝜿<𝝑 |𝜹m,𝑼⟩

The two free parameters, 𝜎 and 𝛿0 are determined in terms of the variance ⟨𝛿2

m,𝑈
⟩ and skewness

⟨𝛿3

m,𝑈
⟩ as

⟨𝛿2

m,𝑈⟩ = 𝛿2

0

[
exp

(
𝜎2

)
− 1

]
, (5.12)

⟨𝛿3

m,𝑈⟩ =
3

𝛿0

⟨𝛿2

m,𝑈⟩2 + 1

𝛿3

0

⟨𝛿2

m,𝑈⟩3
, (5.13)

where the expression of ⟨𝛿2

m,𝑈
⟩ and ⟨𝛿3

m,𝑈
⟩ are derived in Appendix A in B22a, which are based

tree-level perturbation theory discussed in Sec. 2.1.6. The plain log-normal ansatz works well for

exclusively positive filters like a Gaussian. However, for compensated filters, 𝑝(𝛿m,𝑈) is better
described by considering the positive𝑈< and negative𝑈< part separately and then combining

both with a bi-variate log-normal ansatz that read as

𝑝(𝛿m,𝑈>
, 𝛿m,𝑈<

) = 1

2𝜋𝜎> (𝛿m,𝑈>
+ 𝛿0,>) 𝜎< (𝛿m,𝑈<

+ 𝛿0,<)
√︁

1 − 𝜌2

× exp

(
− 1

2(1 − 𝜌2)
[
Δ2

> + Δ2

< − 2𝜌Δ>Δ<
] )

,

(5.14)

with

Δ>,< =
ln

(
𝛿m,𝑈>,<

/𝛿0,>,< + 1

)
+ 𝜎2

>,</2

𝜎>,<

, (5.15)

and

𝜌 = ln

( ⟨𝛿m,𝑈>
𝛿m,𝑈<

⟩
𝛿0,>𝛿0,<

+ 1

)
1

𝜎>𝜎<
. (5.16)

Using the convolution theorem (Arfken and Weber, 2008) it follows that

𝑝(𝛿m,𝑈) =
∞∫

−∞

d𝛿m,𝑈>
𝑝(𝛿m,𝑈>

, 𝛿m,𝑈>
− 𝛿m,𝑈) . (5.17)

5.2 ⟨𝜿<𝝑 |𝜹m,𝑼⟩

To calculate the expectation value of themean convergence inside an angular radius 𝜗, 𝜅<𝜗, given

the matter density contrast 𝛿m,𝑈 , we assumed that both follow a joint log-normal distribution.

In this case, the expectation value can be written as

⟨𝜅<𝜗 |𝛿m,𝑈⟩
𝜅0

= exp

(
𝐶 [2 ln

(
𝛿m,𝑈/𝛿0 + 1

)
+𝑉 − 𝐶]

2𝑉

)
− 1 , (5.18)
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5 Generalised model of density split statistic

where 𝛿0 is determined with Eq. (5.13) and

𝑉 = ln

(
1 +

⟨𝛿2

m,𝑈
⟩

𝛿2

0

)
, (5.19)

𝐶 = ln

(
1 + ⟨𝜅<𝜗 𝛿m,𝑈⟩

𝛿0𝜅0

)
, (5.20)

𝜅0 =
⟨𝜅<𝜗 𝛿m,𝑈⟩2

e
𝑉

⟨𝜅<𝜗 𝛿2

m,𝑈
⟩ − 2⟨𝜅<𝜗 𝛿m,𝑈⟩⟨𝛿2

m,𝑈
⟩/𝛿0

, (5.21)

where detailed derivations of the ⟨𝜅<𝜗 𝛿𝑘
m,𝑈

⟩ moments are given in Appendix A in B22a.

5.3 𝒑(𝑵ap|𝜹m,𝑼)

To derive an expression for 𝑝(𝑁ap |𝛿m,𝑈) we used its characteristic function (CF) (Papoulis and

Pillai, 1991). The CF is an alternative representation of a probability distribution, similar to the

moment generating functions (MF), but based on the Fourier transform of the PDF. Similar to

the MF, the 𝑛-th derivative of the CF can be used to calculate the 𝑛-th moment of the PDF. A

closed expression for the CF of 𝑝(𝑁ap |𝛿m,𝑈) was derived in Appendix A in B22a, and reads as

Ψ(𝑡) = exp

(
2𝜋𝑛0

∫ ∞

0

𝑑𝜗 𝜗
(
1 + 𝑏 ⟨𝑤𝜗 |𝛿m,𝑈⟩

) [
e

i𝑡𝑈 (𝜗) − 1

] )
, (5.22)

with 𝑛0 being the mean number density of foreground galaxies in the sky, 𝑏 is linear galaxy

bias, and

𝑤𝜗 =
1

2𝜋

∫
2𝜋

0

d𝜙 𝛿m,2𝐷 (𝜗, 𝜙) , (5.23)

is the averaged density contrast on a circle of radius 𝜗. Hence, 𝑛0(1+𝑏 ⟨𝑤𝜗 |𝛿m,𝑈⟩) is the effective
number density at 𝜗 given 𝛿m,𝑈 . Similar to ⟨𝜅<𝜗 |𝛿m,𝑈⟩, we also assumed that 𝑤𝜗 and 𝛿m,𝑈 follow

a joint log-normal distribution in order to compute ⟨𝑤𝜗 |𝛿m,𝑈⟩. As shown in B22a, using the

inverse Fourier transformation of the CF is as accurate as using a log-normal distribution for

𝑝(𝑁ap |𝛿m,𝑈), but is significantly slower. Therefore, we calculate 𝑝(𝑁ap |𝛿m,𝑈) from

𝑝(𝑁ap |𝛿m,𝑈) =
1

√
2𝜋𝑆(𝑁ap + 𝐿)

exp

(
−

[
ln

(
𝑁ap + 𝐿

)
− 𝑀

]
2

2𝑆2

)
, (5.24)

where the parameters 𝑆,𝑀 , 𝐿 follow from the 𝑛-th derivative of the CF.

The model derived so far is accurate if galaxies are distributed with a Poisson process. However,

real galaxies are not expected to be perfectly Poisson-distributed. Therefore, we modified in

B22b the distribution of the aperture number to allow for super-Poissonian shot noise by scaling

the galaxy number density 𝑛0 with a free parameter 𝛼 > 0. In that case 𝑛0 𝛼
−1

can be interpreted

as an effective number density of Poissonian tracers, which implies that instead of 𝑝(𝑁ap |𝛿m,𝑈)
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5.3 𝒑(𝑵ap |𝜹m,𝑼 )

the quantity 𝑝(𝑁ap 𝛼
−1 |𝛿m,𝑈) follows a log-normal distribution. This modifies the characteristic

function as

Ψ(𝑡) = exp

(
2𝜋
𝑛0

𝛼

∫ ∞

0

d𝜗 𝜗
(
1 + 𝑏 ⟨𝑤𝜗 |𝛿m,𝑈⟩

) [
e

i𝑡𝑈 (𝜗) − 1

] )
, (5.25)

and the mean aperture number remains constant if

𝑝
(
𝑁ap |𝛿m,𝑈

)
→ 1

𝛼
𝑝

(
𝑁ap

𝛼
|𝛿m,𝑈

)
. (5.26)

With this PDF description we got that the expectation value ⟨𝑁ap |𝛿m,𝑈⟩ ∝ 𝛼 and the variance

⟨(𝑁ap − ⟨𝑁ap |𝛿m,𝑈⟩)2 |𝛿m,𝑈⟩ ∝ 𝛼2
, so their ratio is proportional to 𝛼 as required to describe

deviations from Poissonian distributions. For numerical reasons, similar to Friedrich et al.

(2018), we allowed only 𝛼 > 0.1 in our parameter selection. Moreover, we also compared our

modelling of the 𝛼 parameter with that in Friedrich et al. (2018) and found no differences in the

predictions.

We also tested if the cosmological results are robust for the linear galaxy bias assumption, by

using galaxy samples distributed with a HOD and samples where we distributed galaxies with

a Poisson process with mean 𝜆 = 𝑛eff

[
1 + 𝑏1 𝛿m,2D(𝜽) + 𝑏2 (𝛿2

m,2D
(𝜽) − ⟨𝛿2

m,2D
)⟩

]
. The analysis

using the HOD mocks showed that the smoothing scale of our filter function is large enough

to give unbiased results. Furthermore, we found that a linear galaxy bias model seems to be

sufficient if an analysis using shear and 𝑁ap information is consistent with an analysis that uses

exclusively shear information.
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Model validation and calibration 6
This chapter reviews the validation and calibration of the model performed in B22a and further

repeats the validation in B22b. Furthermore, we restrict this review to the results of the adapted

filter shown in Fig. 4.3 and a top-hat filter of size 20
′
. The used simulations described in

chapter 3.1 are either publicly available or were provided by co-author Joachim Harnois-Déraps.

Although the analysis described here is fully done by me, I continue for this part using the

scientific wording ‘we’, since this work also resulted from discussion with the co-authors.

6.1 Testing the ingredients of the revised model

To test all the essential ingredients of the revised model, we used the T17 simulations described

in Sect. 3.2.3. Although, in principle, the test for the top-hat filter could be done with the original

model of F18, we also used the revised model for it and noted that both models yield almost

identical results. Furthermore, we restrict the comparison the adapted filter of size 120
′
derived

in chapter 4 and a top-hat of size 20
′
, where other filters are also tested in B22a.

6.1.1 Validating 𝒑(𝜹m,𝑼)

The PDF of the smoothed two-dimensional density contrast for the top-hat (upper panel)

and the adapted (lower panel) filter are shown in Fig. 6.1, for the second and third LRG bins.

The predictions agree with the simulations for the two lens bins within 1𝜎 for the expected

variance of KiDS-1000, estimated with the 48 sub-patches of one realisation. For the adapted

filter, the deviations are more substantial than for the top-hat filter when using a log-normal

approximation. However, the results for a Gaussian filter and for the top-hat filter are well

within 1𝜎, indicating that the log-normal approximation is suitable for exclusively positive

filters. That is the reason for using the bi-variate log-normal approach discussed in Sect. 5.1,

which in principle combines two log-normal filters that are exclusively positive. With this

approach, no significant differences in the match between predicted and measured PDF for

compensated filters can be recognised.
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6 Model validation and calibration
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Figure 6.1: In this figure, the PDF of 𝛿m,𝑈 smoothed with the top-hat and adapted filter is shown,

where the orange shaded region is the standard deviation of 48 sub-patches scaled by a 777.4/859.4,

to mimic the effective survey area of KiDS-1000. The red dashed curve is a log-normal PDF with

⟨𝛿2

m,𝑈
⟩ and ⟨𝛿3

m,𝑈
⟩ measured from the smoothed T17 density maps, and indicates the accuracy

using a log-normal PDF. The green and the black dashed lines are both from the model; the green

corresponds to the PDF of 𝛿m,𝑈 when using log-normal and the black using the bi-variate approach

described in Eq. (5.14). The lower panels show the residuals Δ𝑝(𝛿m,𝑈) with respect to the simulations.

Figure taken from B22a.

6.1.2 Validating 𝒑(𝑵ap)

Next, we discuss the validation of the modelled 𝑝(𝑁ap) as shown in Fig. 6.2. For the adapted

filter, we used the model with the bi-variate log-normal 𝑝(𝛿m,𝑈) approach as it better agrees

with the T17 simulations. The resulting 𝑝(𝑁ap) show some discrepancies for the adapted filter,

which indicates that either the remaining inaccuracies in 𝑝(𝛿m,𝑈) propagate into 𝑝(𝑁ap) or the
term ⟨𝑤𝜗 |𝛿m,𝑈⟩ is inaccurate. Since the deviations in 𝑝(𝛿m,𝑈) are much smaller than in 𝑝(𝑁ap),
we expected that the assumptions made in computing ⟨𝑤𝜗 |𝛿m,𝑈⟩ induce additional inaccuracies.
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6.1 Testing the ingredients of the revised model
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Figure 6.2: This figure shows the PDF of 𝑁ap, where the orange lines are the expected KiDS-1000

uncertainties. The black dashed line is the prediction of the new model, and for comparison, the

red dashed line for the top-hat filter is the prediction of the F18 model. The lower panels show the

residuals Δ𝑝(𝑁ap) with respect to the simulations. Figures are taken from B22a.

Nevertheless, these deviations result in shear signals with residuals well within the statistical

uncertainties of KiDS-1000.

6.1.3 Validating ⟨𝜸t |Q⟩

The predicted and measured shear profiles, which are a major result of our work, are shown in

Fig. 6.3. We measured the shear profiles up to 120
′
, using five quantiles as in G18. No significant

deviations between the model and the simulations are visible for the top-hat, but for the adapted

filter, minor discrepancies in some quantiles at large angular scales are seen, which are still

consistent within the KiDS-1000 accuracy.
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6 Model validation and calibration
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Figure 6.3: Predicted and measured shear profiles for the two lens samples and measured shear

profiles for the new model, where the orange shaded region is the expected KiDS-1000 uncertainty.

Figure taken from B22a.

Given the set-up described in Sect. 2.3.2 we ran an MCMC with a Gaussian likelihood for the

adapted and top-hat filter, and use the covariance matrix described in Sect. 3.2.3 scaled by the

Hartlap factor defined in Eq. (2.112). The left panel of Fig. 6.4 shows that the analysis with

the adapted filter results in a biased inference for the Ωm-𝜎8-plane, which is still within 1𝜎.

By rescaling the prediction of the shear profiles of the highest quantile to the measured shear

profile, we found that the bias is due to the systematic offset of the slope of the highest shear

profile, which in turn is highly sensitive to Ωm. The contours shift to smaller 𝜎8 values to

compensate for the bigger Ωm value as these two parameters are highly correlated. In the next

section, we perform the calibration of the model to remove this systematic bias.
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6.1 Testing the ingredients of the revised model
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Figure 6.4: On the left side, the MCMC results are shown if the model and the T17 simulations

for the data vector and covariance are used. The bias for the adapted filter can be removed by

calibrating the model, as shown by the results of the MCMC on the right with the independent

SLICS simulations. Here the data vector is calculated from the fiducial cosmology of cosmo-SLICS

and the covariance matrix with 614 SLICS realisations. The contours are marginalised over the lens

galaxy bias parameters. Figure taken from B22a.

6.1.4 Calibrating the model

In this chapter, we remove the remaining small inaccuracies of the adapted filter’s analytical

model. This calibration was done by rescaling the original model, 𝛾t,ori(𝚯), by the ratio of the

measured shear profiles of the T17 simulations, 𝛾t,T17, to the original predicted shear profiles at

the T17 cosmology, 𝛾t,ori(𝚯T17). The calibrated model at parameters Θ was then defined as
1

𝛾t,cal(𝚯) = 𝛾t,ori(𝚯) 𝛾t,T17

𝛾t,ori(𝚯T17)
. (6.1)

In order to test our calibration on a independent suite of simulations, we made use of the

cosmo-SLICS and SLICS, described in Sect. 3.2.5 and 3.2.5, respectively. Since the 𝑛(𝑧) of the
cosmo-SLICS source galaxies extends over a larger redshift range, we averaged several T17 shear

grids at different redshifts weighted by the source 𝑛(𝑧) of the cosmo-SLICS. For the calibration

test, we performed another MCMC, where we discarded the middle quantile with the lowest

signal to avoid a singular covariance matrix. The shear signals are measured from the fiducial

cosmology of the cosmo-SLICS without shape noise, and the uncertainty was measured from

614 SLICS realisations with shape noise, scaled by the Hartlap factor in Eq. (2.112), and scaled

to mimic the KiDS-1000 effective area. As shown in the right panel of Fig. 6.4 the calibrated

model for the adapted filter resulted in an unbiased inference.

1
We changed the notation from B22a in order to be consistent with rest of this work.
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6 Model validation and calibration

Figure 6.5: On the top: Shear profiles measured for the KiDS-bright-like lenses and KiDS-1000

sources from the cosmo-SLICS with two different IA amplitudes (see Eq. 3.5). On the bottom:

Relative difference between the mean ⟨𝑁ap⟩ measured in the cosmo-SLICS KiDS-bright mocks and

the prediction from the model. The uncertainties for both figures are estimated from the FLASK

mocks with the expected KiDS-1000 statistical uncertainty. Figure adapted from B22b.

6.2 Validation on realistic mock data

This section reviews the validation of the model that is performed in B22b restricted to the

adapted filter, which is important as we used the KiDS-bright sample instead of the LRG in the

real data analysis, which has an 𝑛(𝑧) that is shifted towards lower redshifts, where the model is

slightly less accurate. Additionally, for the real data analysis, the mean of the aperture number

values for each quantile was added to the data vector, so we had to verify if the extended data

yields unbiased inferences. In this validation, we also tested the robustness of our analysis with

respect to the IA in the sources by using the simulations described in Sect. 3.2.5 that are infused
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6.2 Validation on realistic mock data

Figure 6.6: Cosmological inference with the adapted filter using the cosmo-SLICS simulations

with and without IA infusion, analysed with our model that ignores IA. The posteriors are almost

indistinguishable from each other. Figure adapted from B22b.

with IA. Additionally, we tested on a realistic KiDS-1000 data vector, which we accomplished

by using shear signals with shape noise. Since the outer 2 deg
2

are not fully covered by the

filter, we removed the outer 2 deg
2

, so that by averaging over 20 light-cones an effective area of

the KiDS-1000 data was achieved. The resulting shear profiles and the mean aperture number

values for the highest and lowest two quantiles are shown in Fig. 6.5, where we excluded the

middle quantile with the lowest cosmological signal to avoid the singular covariance matrix.

In order to quantify all these effects, we performed MCMC analyses using the data shown

in Fig. 6.5. For the MCMC analyses we used the method of Percival et al. (2022) described in

Sect. 2.3.2, with a 𝑡-distribution as the likelihood function. The resulting posterior for two IA

amplitudes are shown in Fig. 6.6, where we added the galaxy bias 𝑏 parameter and 𝛼 parameter

introduced in Sect. 5.3 as free parameters to the pipeline. The first important observation is

that the IA amplitude does not, as expected, affect the posterior at all, so the modelling of it is

obsolete and can be ignored in the later real data analysis. We do not expect the IA amplitude to
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6 Model validation and calibration

influence our data vector because the 𝑛(𝑧) of the lens galaxies and source galaxies are separated.
Therefore, the II term described in Eq. (2.93) vanishes. Second, and very importantly, the

analyses could recover the input cosmology for all parameters within the 1𝜎, even for the

KiDS-bright redshift distribution with more non-linear effects and the additional information

of the aperture number. The 𝜎8 and the galaxy bias 𝑏 parameter correlate with the model

vector amplitude, which is in concordance with Eq. (2.42), such that 𝜎8 ∝ 𝑏−1
. Although this

anti-correlation between 𝜎8 and 𝑏 could potentially affect the robustness of estimating the

parameters, they are essential for our model and therefore cannot be ignored.

6.3 Validation on baryonic feedback

As the last validation, we investigated the impact of baryons on the DSS with the Magneticum
simulations described in Sect. 3.2.6. Four combinations emerged by combining the mocks with

DM-only and Hydro (DM + Baryons) for the lenses and source: DM-DM, DM-Hydro, Hydro-DM

and Hydro-Hydro. Figure 6.7 visualise the differences of ⟨𝑁ap⟩ between the DM-only and

Hydro lens mocks. Figure 6.8 visualise the differences between all four data vectors (DM-DM,

DM-Hydro, Hydro-DM and Hydro-Hydro) compared to the dark matter-only vector (DM-DM).

The deviations are well inside the expected KiDS-1000 uncertainty measured with the FLASK.

The biggest differences are seen if baryonic feedback processes are included in the lens mocks,

which is conceivable because pixels close to the 𝑁ap threshold between two quantiles are moved

to another quantile. Other studies of baryonic feedback like Heydenreich et al. (2022a) or

Harnois-Déraps et al. (2021) found that the inclusion of baryons does impact their statistic. For

the DSS, however, baryons have only a minor impact but becoming more relevant at small

scales. Given this, we could safely neglect the effects of baryons in our real data analysis.

Figure 6.7: Comparison of the aperture number measurements from the hydro and dark matter-only

Magneticum simulations. The error bars indicate the expected statistical uncertainty of KiDS-1000.

Figure adapted from B22b.
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6.3 Validation on baryonic feedback

Figure 6.8: Absolute differences between the mean shear profiles for all quantiles using one of the

four combinations DM-DM, DM-Hydro, Hydro-DM, and Hydro-Hydro relative mean shear profiles

using the dark matter-only mocks (DM-DM). The error bands indicate the expected statistical

uncertainty of KiDS-1000. Figure adapted from B22b.
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Results and discussion of
KiDS-1000 analysis

7
This chapter repeats the results of the real DSS analysis presented in B22b, where we used

the KiDS-bright as lenses and the fourth and fifth tomographic bin of KiDS-1000 as sources.

Although I was not involved in the infrastructure to create these catalogues, during the DSS

analysis, I discovered that a subset of the KiDS-1000 tiles had an offset between the galaxy

tile centroids and their corresponding mask centroids. This discovery resulted in a new data

release (DR 4.1), which was used for the DSS analysis (and all subsequent KiDS-1000 analyses).

I use the scientific formulation "we" for the rest of this chapter, since these results emerged

from discussions with the co-authors, highlighting Marika Asgari and Hendrik Hildebrandt in

addition to the first authors. The other authors mentioned are either infrastructure contributors

of KiDS or provided simulations for the validation in the preceding chapter.

For all analyses in this chapter, we varied the two cosmological parameters Ωm and 𝜎8 and

the two astrophysical parameters 𝑏 and 𝛼, and marginalised over the uncertainty of the mean

redshift 𝛿⟨𝑧⟩ and the shear correction 𝑚-bias uncertainty. The prior ranges are summarised in

Table 7.1.

Table 7.1: Uniformly U and normally distributed N priors on the parameters used in our cosmolo-

gical inferences. The 𝛿⟨𝑧⟩ for the sources follow a joint normal distribution with covariance matrix

𝐶𝛿⟨𝑧⟩ shown in figure 6 of Hildebrandt et al. (2021). Table adapted from B22b.

parameter prior

Ωm U(0.20, 0.50)
𝜎8 U(0.45, 1.00)

bias 𝑏 U(0.5, 2.5)
𝛼 U(0.1, 8)

𝛿⟨𝑧⟩ full KiDS-bright sample N(0.0, 0.01)
𝛿⟨𝑧⟩ red KiDS-bright sample N(0.0, 0.01)
𝛿⟨𝑧⟩ blue KiDS-bright sample N(0.0, 0.01)

𝛿⟨𝑧⟩ source bin 4,5 N([0.011,−0.006],𝐶𝛿⟨𝑧⟩)
𝑚-bias source bin 4 N(0.002, 0.012)
𝑚-bias source bin 5 N(0.007, 0.010)
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7 Results and discussion of KiDS-1000 analysis

The resulting shear profiles and mean aperture number are shown in Figs. 7.1 and 7.2, where

the displayed model is computed at the MAP value, listed in the first column of Table 7.2, using

the best-estimated 𝑛be(𝑧) shown as the black solid line in Fig. 3.1. In this table, we also report

the goodness-of-fit in terms of the reduced 𝜒2/d.o.f . and 𝑝-values (see Sect. 2.3.2), which show

that the data are well fitted by the model. For the analyses shown in this chapter, we use the

method of Percival et al. (2022) described in Sect. 2.3.2, with a 𝑡-distribution as the likelihood

function.

Figure 7.1: Shear profiles measured in the observed data, compared to the MAP values listed in the

left colums of Table 7.2. The shaded region shows the statistical uncertainty estimated from 1000

FLASK realisations. Figure adapted from B22b.

Figure 7.2: Comparing ⟨𝑁ap⟩ measurements from the KiDS-bright sample to our model, evaluated

at the MAP values shown in the left column of Table 7.2. Figure adapted from B22b
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The posterior of the DSS using the entire data vector, meaning shear and aperture number

information, and a data vector using only the shear information are presented in Fig. 7.3. We

used the best-estimated lens 𝑛be(𝑧) for both analyses and compared them to posteriors of the

KiDS-1000 cosmic shear constraints (COSEBIs) from Asgari et al. (2021) and to the CMB results

from Planck Collaboration: Aghanim et al. (2020). The DSS has a slightly lower constraining

power on 𝑆8 compared to the COSEBIs analysis but is more constraining in Ωm and 𝜎8 for

both data vectors because clustering information was either included directly with the mean

aperture number or indirectly as the shear profiles are measured according to the aperture

number distribution. The sharp cut resulted from excluding all Ωm < 0.2, where the model and

the cosmo-SLICS disagreed. As both DSS analyses are entirely consistent with the cosmic shear

results and have similar constraining power, we measured a similar tension to the CMB results.

However, if a linear galaxy bias model is insufficient, the inferred 𝑆8 might be smaller than

the truth, as discussed in appendix A of B22b. Nonetheless, this is unlikely as the consistency

between the shear-only DSS analysis and the complete DSS analysis supports the robustness of

our inferred parameters concerning the galaxy bias model. Finally, we noted that the MAP of

the full DSS

𝑆DSS

8
= 0.74

+0.03

−0.02
, (7.1)

compared to the KiDS-1000 cosmic shear constraints

𝑆COSEBIs

8
= 0.76

+0.02

−0.02
. (7.2)

revealed competitive S/N while using only tomographic bins four and five. The benefit of

the COSEBIs is that they marginalised over more cosmological parameters and sampled the

parameter space differently.

In the next section, we investigate the robustness of our results concerning the lens redshift

distribution 𝑛(𝑧) and varying the covariance matrix. We further present our galaxy colour-split

analysis, where we also discuss the galaxy bias 𝑏 and 𝛼 results in more detail.

Table 7.2:Marginalised MAP values and their 68% confidence intervals. Here Ωm, 𝜎8, 𝛼, and the

linear galaxy bias parameter 𝑏 are varied, where ℎ = 0.6898, 𝑤0 = −1 and 𝑛s = 0.969 are fixed.

However, we marginalised over the 𝛿⟨𝑧⟩ and 𝑚-bias uncertainties. Table adapted from B22b.

𝑛be(𝑧) 𝑛ph(𝑧) 𝑛sp(𝑧)
Ωm 0.27

+0.02

−0.02
0.30

+0.03

−0.02
0.32

+0.03

−0.03

𝜎8 0.78
+0.04

−0.04
0.76

+0.04

−0.05
0.74

+0.05

−0.05

𝑆8 0.74
+0.03

−0.02
0.76

+0.03

−0.02
0.77

+0.03

−0.03

𝑏 1.32
+0.12

−0.11
1.31

+0.11

−0.12
1.28

+0.14

−0.12

𝛼 1.34
+0.74

−0.99
1.41

+0.92

−0.82
1.87

+0.97

−0.90

𝜒2/d.o.f . 0.79 0.81 0.82

𝑝-value 0.91 0.89 0.88
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7 Results and discussion of KiDS-1000 analysis

Figure 7.3: Cosmological posteriors of the DSS analysis with the adapted filter for the best-estimated

𝑛be(𝑧) using the full data vector (black) and shear-only (green) compared to the COSEBIs posteriors

(orange) presented in Asgari et al. (2021) and CMB results of Planck Collaboration: Aghanim et al.

(2020) in red. Due to themismatch of the model with the cosmo-SLICS for cosmologies withΩm < 0.2,

we cut the posteriors at Ωm = 0.2. The consistency between the shear-only DSS analysis to the full

analysis supports the assumption of using a linear galaxy bias model. Figure adapted from B22b.

7.1 Impact of the lens redshift distribution

The impact of the shape of the lens galaxy redshift distribution 𝑛(𝑧), shown in Fig. 3.1, is

visualised in Fig. 7.4. For this, we used the best-estimated 𝑛be(𝑧), the photometric redshift

distribution 𝑛ph(𝑧) itself without any smoothing, and the spectroscopic redshift 𝑛sp(𝑧) from
those GAMA galaxies that are also in the KiDS-bright sample. As the 𝑛sp(𝑧) is not fully

representative for the full KiDS-1000 survey, the posterior resulting from 𝑛sp(𝑧) should be taken
with caution. The different posteriors are shifted along the Ωm-𝜎8 degeneracy axis, since the

different 𝑛(𝑧) affect the predicted amplitude and slope of the shear profiles, which are in turn

highly sensitive to Ωm and 𝜎8. We summarise the resulting MAP values in Table 7.2. As the
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7.2 Cosmology scaling of the covariance matrix

true 𝑛(𝑧) is certainly not identical but very close to these tested 𝑛(𝑧), using the difference of
the resulting MAP as additional uncertainties is probably a fair estimate.

Figure 7.4: Posteriors resulting from the real KiDS-1000 data vector and model vector determined

from using the different lens 𝑛(𝑧) shown in Fig. 3.1. The black contour is identical to black contour

shown in Fig.7.3. Figure adapted from B22b.

We additionally tested the impact of the photometric redshift cut at 𝑧ph = 0.1 by measuring the

posterior for the real KiDS-1000 data if we apply the photometric redshift cuts at 𝑧ph > 0.15

and 𝑧ph > 0.2. The posteriors shifted by less than the 68% credibility region, indicating the

robustness of our measurement to this galaxy selection.

7.2 Cosmology scaling of the covariance matrix

The covariance matrices used so far are always determined at a specific point in the parameter

space, which is usually not identical to the MAP. However, it is the subject of current analyses if
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7 Results and discussion of KiDS-1000 analysis

the cosmology should be kept fixed in the covariance matrix (van Uitert et al., 2018) or measured

at each parameter that the MCMC evaluates, as suggested in Eifler et al. (2009). The latter could

result in over-constraints, as discussed in Carron (2013), so we explore both methods here to

check if our analysis is affected.

Figure 7.5: Comparison of posteriors resulting from the real KiDS-1000 data vector and model

vector determined with the 𝑛be(𝑧), if the covariance matrices is scaled by Eq. (7.4). The differences

are negligible. Figure adapted from B22b.

We do not have an analytical description of the DSS covariance matrix yet, so in principle, this

requires measuring a covariance matrix at each step using simulations. As this is not feasible,

we assume that the covariance matrix scales quadratically with the signal, which wrongly

rescales the shape-noise components. Nevertheless, the quadratic scaling is expected to be a

good approximation to check if a varying covariance matrix affects the posteriors of the DSS

analysis. The scaling was done by calculating at a new cosmology 𝚯 the ratio between the

predicted model 𝒎(𝚯) and the model predicted at the original cosmology of the covariance
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7.3 Red and blue split

matrix 𝒎
(
𝚯F

)
,

𝑟𝑖 (𝚯) = 𝑚𝑖 (𝚯)

𝑚𝑖

(
𝚯F

) , (7.3)

where 𝑖 is the 𝑖-th index of the model vector. So we infused the cosmological dependence by

scaling the components 𝑖 𝑗 of the covariance matrix as

𝐶𝑖 𝑗 (𝚯) = 𝐶F

𝑖 𝑗 𝑟𝑖 (𝚯) 𝑟 𝑗 (𝚯) . (7.4)

The determinant of the covariance matrix changes with cosmology, too, and therefore, needs to

be recalculated at each step during the MCMC process.

In Fig. 7.5 we show three posteriors using the best-estimated 𝑛be(𝑧) and marginalise over all

nuisance parameters as before. The black contours are the posterior with the original FLASK

covariance matrix and are identical to the results shown in Fig. 7.4. The red contours are

measured with a covariance matrix scaled to the MAP value. As a scaled covariance matrix

might change the MAP, we found them in an iterative process. Lastly, we show the posteriors

that result if the covariance matrix is scaled to each step during the MCMC process in blue. As

all posteriors are well within 1𝜎, we were not concerned about the robustness of our inferred

parameters regarding a covariance matrix that varies with cosmological parameters.

Table 7.3: The MAP values and 68% confidence intervals resulting from MCMC chains shown in

Fig. 7.6. The first column is the same as in Table 7.2. We fixed ℎ = 0.6898, 𝑤0 = −1 and 𝑛s = 0.969

but marginalised over the 𝛿⟨𝑧⟩ and 𝑚-bias uncertainties. If limits are not given, they are dominated

by priors. Table taken from B22b.

full red + blue

Ωm 0.27
+0.02

−0.02
0.28

+0.02

−0.02

𝜎8 0.78
+0.04

−0.04
0.78

+0.04

−0.02

𝑆8 0.74
+0.03

−0.02
0.76

+0.03

−0.02

𝑏 1.32
+0.12

−0.11
1.85

+0.07

−0.16
1.03

+0.04

−0.11

𝛼 1.34
+0.74

−0.99
0.10

+0.69
2.29

+0.34

−0.12

𝜒2/d.o.f . 0.79 1.01

𝑝-value 0.91 0.46

7.3 Red and blue split

To learn more about the behaviour of different galaxy types and as a cosmological robustness

check, we present here a joint analysis of the red and blue galaxies of the KiDS-bright sample.

We used the best-estimated 𝑛be(𝑧) for this analysis and combined the individual measured red

and blue data vector in a joint analysis that doubles the elements of the model and data vector.

The MAP values with corresponding reduced 𝜒2/d.o.f . and 𝑝-values stated in Table 7.3 indicate

an accurate fit. The resulting posteriors are shown in Fig. 7.6.
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7 Results and discussion of KiDS-1000 analysis

First, it is noticeable that the posterior of the full KiDS-bright sample and that of the joint red

and blue analysis are consistent and within 0.35𝜎, which supports the robustness of the DSS

analysis. Furthermore, we see that the blue sample prefers a smaller linear galaxy bias 𝑏 than

the red sample. This concurs with our discussion in Sect. 2.1.4, where red galaxies are known

to be more strongly clustered than blue galaxies resulting in a larger galaxy bias. Finally, the

𝛼 parameter reveals that blue galaxies follow a super-Poisson distribution and red galaxies a

sub-Poisson distribution, since for the blue galaxies 𝛼 ≫ 1 and the red galaxies have 𝛼 < 1.

Friedrich et al. (2022) found that a higher satellite fraction leads to a higher 𝛼 value, so the blue

sample seems to have more satellites.

Figure 7.6: This figure shows in green the posteriors of the full sample using the real KiDS-1000

data vector and model vector determined with the 𝑛be(𝑧), and are identical to the black posteriors

shown in Fig. 7.4. The joint analysis of red+blue has by construction the same cosmology, which

results in the dark blue contours, but has individual galaxy bias 𝑏 and 𝛼 parameters. Figure adapted

from B22b.
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‘Das Wichtigste ist, daß man nicht aufhört zu fragen. - The most important thing is that you don’t

stop asking.’

– Albert Einstein, speaking courage to a young student.

In this thesis, we modified the density split statistic (DSS) to general filter functions, which

allows selecting optimised filter functions,𝑈, in terms of signal-to-noise ratio (S/N). The overall

idea of the DSS is to measure the mean tangential shear, 𝛾t, for some specific sub-areas of the

survey. These sub-areas or quantiles, Q, are determined according to the aperture number, 𝑁ap,

which in turn is the galaxy number density smoothed with a filter function𝑈. By correlating all

pixels belonging to one quantile with the shear of the background galaxies, the tangential shear

for a given quantile, ⟨𝛾t |Q⟩, follows. The DSS was introduced in Gruen et al. (2016), and the first

cosmological parameter analysis with the DSS was done in Gruen et al. (2018, hereafter G18).

They demonstrated that the DSS is a powerful cosmological tool by constraining cosmological

parameters from the Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS)

data, using the DSS model derived in Friedrich et al. (2018, hereafter F18).

This final chapter summarises our work and concludes with an outlook.

8.1 Summary

In the first series of papers, Burger et al. (2020), reviewed here in chapter 4, we developed a

pair of adapted filter functions for the DSS, which is matched between the aperture mass and

galaxy number statistics. This means that the filter functions smooth with the same angular

weighting the lensing convergence and the galaxy number density. A key result of this work

was that the adapted filter functions yield better correlations between galaxy number density

and shear signal than the previously used top-hat filter, regardless of the galaxy bias model.

Another significant result is that the S/N with the adapted filter was higher for all quantiles

compared to a top-hat filter with approximately the same shear peak positions, indicating that

the adapted filter’s signals can be measured better in observed data. Lastly, we showed in this

work that the adapted filter is more sensitive to different cosmological parameters, resulting in

tighter parameter constraints.
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8 Conclusion

All these advantages motivated us to modify the already existing model of the DSS described

in F18 from solely top-hat filter functions to general filter functions. The results of this work

are published in Burger et al. (2022a, hereafter B22a) and reviewed in this work in chapter

5. By recalculating the probability density function (PDF) of the projected matter density

contrast smoothed with the filter function𝑈, 𝑝(𝛿m,𝑈), the conditional expectation values of the

convergence inside a radius 𝜗 for a fixed smoothed matter density contrast, ⟨𝜅<𝜗 |𝛿m,𝑈⟩, and the
conditional PDF of 𝑁ap given the smoothed matter density contrast, 𝑝(𝑁ap |𝛿m,𝑈), the model was

modified to general filter functions. While for ⟨𝜅<𝜗 |𝛿m,𝑈⟩ and 𝑝(𝛿m,𝑈) we used the approaches of
F18 with modified calculations of the moments, we introduced a fully new approach to calculate

𝑝(𝑁ap |𝛿m,𝑈) by using its characteristic function (CF). With the corresponding expression of the

CF, 𝑝(𝑁ap |𝛿m,𝑈) is either calculated by inverse Fourier transformation or by a log-normal PDF

approximation, where the first three moments follow from derivatives of the CF. For exclusively

positive filters, like a top-hat or Gaussian filter, the description of 𝛿m,𝑈 by a log-normal PDF is

very accurate. However, we used a bi-variate log-normal ansatz for compensated filters, which

improved the accuracy significantly. Since compensated filter functions have a positive and

a negative part, the idea was to consider both parts as exclusively positive filters and then

combine both by using a convolution.

The model’s validation was done in the second half of B22a and the first part of Burger et al.

(2022b, hereafter B22b), and is summarised in chapter 6. We compared each model ingredient to

simulations of Takahashi et al. (2017, hereafter T17), where no significant difference for non-

negative filters was detected for the PDFs and the tangential shear profiles. For compensated

filters, however, discrepancies resulted in a biased inference, although still inside 1𝜎 of the

expected fourth data release of the Kilo-Degree Survey (KiDS-1000) uncertainty. To correct

this, we calibrated the model vector to match the T17. We verified that the bias was gone by

performing another inference on the independent fiducial cosmology of cosmo-SLICS (Harnois-

Déraps et al., 2019). Another advantage of the calibration is that it allows using even smaller

scales, as suggested by F18, which increases the constraining power and potentially enables the

study of baryonic effects that interfere at small scales. We further investigated the impact of

baryons and intrinsic alignment (IA) on the DSS. But for the used scales, none of these affected

our DSS analysis. Whereas baryonic effects might become more important for smaller scales,

IA can be ignored as long as the redshift distributions of the lenses and sources do not overlap

significantly. By investigating IA we also verified that the calibrated model yields unbiased

results even if the means of the aperture number of the individual quantiles are included, and

the shear profiles are measured from realistic source ellipticities.

In the remaining part of B22b, described here in chapter 7, we performed the first cosmological

parameter estimation of the unblinded KiDS-1000 data using the DSS. For this analysis, the

bright sample of the KiDS-1000 release (KiDS-bright) sample, described in Bilicki et al. (2018),

serves to construct the foreground density map, while the shear information was taken from the

fourth and fifth tomographic redshift bins of the KiDS-1000 data, described in Hildebrandt et al.

(2021). One of this analysis’s main uncertainties is the lenses’ redshift distribution, which we

investigated using 𝑛(𝑧) with different shapes. Since the posteriors varied by ∼ 0.5𝜎, with the

highest affect onΩm, we assigned an extra error term on our results, such that 𝑆8 = 0.74
+0.03

−0.02
±0.01

after marginalising over systematic effects. The constraints on 𝑆8 are competitive too and
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consistent with the KiDS-1000 cosmic shear constraints from Asgari et al. (2021), while using

only a subset of all available shear data but varied over fewer parameters. Since the DSS analysis

with the current set-up is not able to constrain parameters like the Hubble parameter ℎ or

the dark energy equation-of-state 𝑤0 parameter, the posterior distribution would increase if ℎ

and 𝑤0 are varied too. However, the DSS analysis with the current set-up is not sensitive to

parameters like the IA amplitude or the primordial power spectrum power law index 𝑛𝑠, so

varying these parameters would not change the resulting posteriors. Finally, as a cosmology

robustness check and to better understand the behaviour of different galaxy types, we split the

full KiDS-bright sample into red and blue galaxies and analysed them jointly in a combined data

vector and a joint covariance matrix. The first important observation was that the posteriors of

the cosmological parameters agree for the full and joint red+blue analyses within 0.35 standard

deviations. The second observation was that linear galaxy bias behaves as expected, with blue

galaxies being less and red galaxies more biased than the full sample. Lastly, we found that

blue galaxies are super-Poisson distributed, and red galaxies are sub-Poisson distributed. This

reveals that blue galaxies have a larger fraction of satellite galaxies according to Friedrich et al.

(2020).

To conclude this work, we find that although higher-order statistics are complicated to model

and so usually rely on cosmological simulations, the DSS model is a powerful cosmological tool

with a significant advantage in breaking the Ωm-𝜎8 degeneracy. Furthermore, it enables the

measurement of the galaxy bias on linear scales and the Poissanity of different galaxy types.

8.2 Outlook

In future analyses that deal with the DSS, it would be interesting to investigate the impact of

the number of quantiles. Adding, for instance, the information of the highest 5% quantile would

increase the information content of the highest density peaks, which potentially results in huge

gain of constraining power.

Furthermore, we adjusted the size of our filter function such that the model is applicable to the

KiDS-1000 analysis. However, smaller scales are promising to increase the constraining power

and learn more about baryonic feedback processes. For this to be feasible, either the model

needs to be improved, or it has to be checked if the calibration removes the model’s inaccuracies

at smaller scales.

Although using lens and sources redshift distributions that overlap significantly introduces

effects like the boost factor described in G18, using overlapping lens-source combinations in

future analyses could help to constrain IA parameters.

Lastly, for stage IV surveys like Euclid (Laureijs et al., 2011), with several tomographic bins, ex-

traordinary resolution and billions of galaxies measured on an area of approximately 15 000 deg
2

,

or the Vera Rubin Observatory Legacy Survey of Space and Time (Ivezic et al., 2008) with even

18 000 deg
2

expected sky coverage, an inference of the dark energy equation-of-state 𝑤0 will

be an interesting new application of the DSS. Furthermore, as the constraining power of these
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stage IV surveys is massively increased, the assumption of a constant galaxy bias is potentially

no longer satisfied. However, with the simulations already in place like the Scinet Light Cone

Simulations (SLICS) with halo occupation distribution (HOD) mocks or soon to be available,

these can be tested so that nothing can prevent an accurate and powerful DSS analysis of a

Stage IV survey. In that context, it might also be interesting to see if stage IV surveys have

enough constraining power to assign a different galaxy bias to each quantile, as galaxies are

probably biased differently in matter density peaks and voids.
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GR general relativity

G18 Gruen et al. (2018)

HOD halo occupation distribution

IA intrinsic alignment

KiDS Kilo-Degree Survey

KiDS-bright bright sample of the KiDS-1000 release

KiDS-1000 fourth data release of the Kilo-Degree Survey
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KV450 third data release of the Kilo-Degree Survey

LDT large deviation theory

LRG luminous red galaxies

LSS cosmic large-scale structure

MAP maximum a-posterior

MCMC Markov chain Monte Carlo

MF moment generating functions

MS Millenium simulation

MSD mass-sheet degeneracy

PDF probability density function

SDSS Sloan Digital Sky Survey

SOMs self-organising maps

S/N signal-to-noise ratio
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SLICS Scinet Light Cone Simulations
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2PCF two-point correlation functions
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ABSTRACT

Context. The density split statistics in weak gravitational lensing analyses probes the correlation between regions of different (fore-
ground) galaxy number densities and their weak lensing signal, which is measured by the shape distortion of background galaxies.
Aims. In this paper, we reconsider density split statistics, by constructing a new angular filter function that is adapted to the expected
relation between the galaxy number density and shear pattern, in a way that the filter weighting the galaxy number density is matched
to the filter that is used to quantify the shear signal.
Methods. We used the results of numerical ray-tracing simulations, specifically through the Millennium Simulation supplemented by
a galaxy distribution based on a semi-analytic model, to construct a matched pair of adapted filter functions for the galaxy density
and the tangential shear signal. We compared the performance of our new filter to the previously used top-hat filter, applying both to
a different and independent set of numerical simulations (SLICS, cosmo-SLICS).
Results. We show that the adapted filter yields a better correlation between the total matter and the galaxy distribution. Furthermore,
the adapted filter provides a larger signal-to-noise ratio to constrain the bias between the total matter and the galaxy distribution, and
we show that it is, in general, a more sensitive discriminator between different cosmologies, with the exception of cosmologies with
very large σ8 values. All analyses lead to the conclusion that our adapted filter should be favoured in future density split statistic
works.

Key words. gravitational lensing: weak – methods: statistical – surveys – Galaxy: abundances – large-scale structure of Universe

1. Introduction

The large-scale structure (LSS) of the Universe is thought to
originate from initially Gaussian density perturbations, a view
supported by the apparent absence of non-Gaussian features in
the cosmic microwave background (see Planck Collaboration V
2020). Correspondingly, at early times, these Gaussian pertur-
bations result in a total symmetry in the abundance and ampli-
tude of over- and under-dense regions. As structures evolve, this
symmetry breaks so over-densities can grow to very large ampli-
tudes. However, the fractional density contrast of under-densities
is bounded from below.

Studying the matter distribution of the present LSS reveals a
wealth of information about the evolution of the Universe. In par-
ticular, its distorting effect on the propagation of light from dis-
tant galaxies, dubbed cosmic shear, can be captured by analysing
weak lensing surveys. By comparing the results of cosmological
models with the observed signal, one can constrain cosmologi-
cal parameters (see Hildebrandt et al. 2017; DES Collaboration
2020; Hamana et al. 2020).

The preferred methods to infer statistical properties of the
matter and galaxy distribution are second- and higher-order
statistics. Two-point correlation functions, or power spectra,
measure the variance of density fluctuations as a function of
scale. More generally, an n-point correlation function describes
how probable it is to find a constellation of n connected objects.

The advantage of analysing three-point statistics, which are more
computationally time-consuming than second-order statistics, is
its connection to the skewness of the density distribution result-
ing from the asymmetric behaviour of over- and under-dense
regions. Another advantage of third-order statistics is that they
scale differently with cosmological parameters. Hence, by simul-
taneously investigating second- and higher-order statistics, the
power to constrain cosmological parameters increases (Pires
et al. 2012; Fu et al. 2014).

First in Gruen et al. (2016), and later in Gruen et al. (2018)
and Friedrich et al. (2018), a new weak lensing approach to anal-
yse the LSS was introduced, the density split statistics (hereafter
DSS), which differs from the usual n-point correlation analyses.
The idea is to divide the sky into sub-areas of an equal size,
according to the foreground (or lens) galaxy density (counts-
in-cells, or CiC), and to measure the mean tangential shear, γt,
around all points within a given sub-area. These sub-areas are
defined by quantiles of the galaxy number density field. One
expects that around points with a high density of (foreground)
galaxies, that is, for the upper quantiles of the CiC, the tangential
shear is larger, given that a high galaxy number density should
correspond to a large matter over-density on average. In order to
extract cosmological information from this DSS, Friedrich et al.
(2018) derived a lognormal model which predicts the shear pro-
files and the probability density of CiC by using the redshift
distribution of sources, lenses, and the mean CiC as inputs. In
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Gruen et al. (2018), the model was used to constrain cosmolog-
ical parameters from DSS measurements from the Dark Energy
Survey (DES) First Year and Sloan Digital Sky Survey (SDSS)
data, where they included in their analysis the tangential shear
profiles for scales greater than the top-hat filter size θth. Their
analysis yields constraints on the matter density Ωm = 0.26+0.04

−0.03
that agree with the DES analysis of galaxy and shear two-point
functions (see Abbott et al. 2018).

Brouwer et al. (2018) applied the DSS to the Kilo-Degree
Survey (KiDS; Kuijken et al. 2015) data, using the catalogue of
Bilicki et al. (2018) for the foreground (lens) galaxies, whereas
the source galaxies used for estimating the shear were taken from
the third data release of KiDS (see de Jong et al. 2017). In order
to parameterised their measured shear signals, they fitted, for
every quantile in the foreground galaxy CiC, a relation of the
form γt = A/

√
θ to their tangential shear profile, for θ > θmin,

where θmin is approximately the radius of the peak of the shear
profile. By using this relation, they defined their signal-to-noise
ratio S/N = A/σA, whereσA is the 1σ error on the best-fit ampli-
tude based on the full analytical covariance matrix of the shear
profiles. With a top-hat of size 5′, they found for the regions with
the highest 20% values of the aperture number a S/N = 21.7 and
for the lowest 20% a S/N = 16.9. We use this fit relation later in
this analysis to compare the S/N of our adapted filter to that of
the top-hat filter.

The prime motivation for this work is based on the fact that
the two components of the DSS – the CiC of galaxies inside a
radius θ, and the tangential shear profile γt(ϑ) for ϑ > θ – are
poorly matched. For example, the shear at radius ϑ > θ around
a given point is affected by the matter distribution at all radii
<ϑ, not just by that inside θ. Hence, even if the (foreground)
galaxy density n(θ) had the same shape as the lensing conver-
gence field κ(θ), the two aforementioned quantities would not be
perfectly correlated. Instead, we consider here a pair of statis-
tics for the foreground galaxy distribution and the shear profile
that are “matched”, in the sense that in the hypothetical case
n(θ) ∝ κ(θ), there would be a one-to-one relation between them.
This is achieved by using the aperture statistics (see Schneider
1996, 1998), that is, aperture mass and aperture number counts.
Although the case n(θ) ∝ κ(θ) is not a realistic assumption, due
to different redshift weighting in the projected galaxy number
density on the sky and the projected matter density between us
and the lensed source population to obtain the convergence, we
nevertheless expect a strong correspondence on the same angular
scales, described by the galaxy-dark matter bias b and correla-
tion coefficient r (Pen 1998). Instead of using the CiC, we now
split the sky into areas of different quantiles of the aperture num-
ber counts, and consider the mean shear profile for each quantile;
the latter is then quantified by the aperture mass. For the purpose
of selecting a suitable filter function for the aperture statistics,
we employ results from the ray-tracing through the Millennium
Simulation (hereafter MS; Springel et al. 2005; Hilbert et al.
2009), supplemented by a galaxy distribution obtained from a
semi-analytic model (Henriques et al. 2015). Hence, our filter
function is adapted to expectations from cosmological simula-
tions.

This work is structured as follows. In Sect. 2 we review the
basics of the aperture statistics. In Sect. 3 we describe the simu-
lation data used in this paper. Beside the MS, we use the Scinet
Light Cone Simulations (SLICS; see Harnois-Déraps et al. 2018,
hereafter HD18) to compare the performance of our new statis-
tics to that of the previously employed DSS. For studying the
sensitivity to cosmological parameters, we use the cosmo-SLICS
simulations (see Harnois-Déraps et al. 2019), which are a suite

of simulations for 26 different cosmologies. The derivation of
the adapted filter is described in Sect. 4, and the comparison of
the original DSS with our new method is performed in Sect. 5.
In Sect. 6 we investigate the different relationships between the
total matter and galaxy distribution for a non-linear and lin-
ear galaxy bias model. This is achieved by calculating aper-
ture masses and aperture numbers with our new method and the
method used in the previous DSS. In Sect. 7 we compare both fil-
ters in their power to distinguish different cosmologies by use of
cosmo-SLICS. In Sect. 8 we conclude and summarise our work.
Furthermore, we give an outlook of possible future work and
applications of our adapted filter.

2. Aperture statistics

Given a convergence (or dimensionless surface mass density)
field κ(θ), the aperture mass is defined as

Map (θ) B
∫

κ(θ + θ′) U(|θ′|) d2θ′, (1)

where U(|θ|) is a compensated filter function, such that∫
θU(θ) dθ = 0. As shown in Schneider (1996), Map can also

be expressed in terms of the tangential shear γt and a related
filter function Q as

Map(θ) =

∫
γt(θ + θ′) Q(|θ′|) d2θ′, (2)

where

Q(θ) =
2
θ2

θ∫

0

θ′U(θ′) d′ − U(θ), (3)

which can be inverted, yielding

U(θ) = 2

∞∫

θ

Q(θ′)
θ′

d′ − Q(θ). (4)

In analogy to Map, we define the aperture number counts
(Schneider 1998), or aperture number, as

Nap(θ) B
∫

n(θ + θ′) U(|θ′|) d2θ′, (5)

where U(θ) is the same filter function as in Eq. (1) and n(θ) is the
galaxy number density on the sky. Our proposed modified DSS
consists of splitting the sky into quantiles of Nap, and stacking
the azimuthal-averaged tangential shear profile around all points
of the given quantile. By setting Q(θ) = γt(θ), we then define
a new U filter for Nap with Eq. (4), and iteratively repeat the
process until we reach convergence (see Sect. 4 for details). This
differs from Gruen et al. (2016) who determine the CiC from
Eq. (5) with a top-hat filter where

Uth(θ) = H(θth − θ), (6)

with θth is the size of the top-hat and H is the Heaviside step
function. Since the top-hat filter Uth is not compensated, we can
not use Eq. (3) to calculate a corresponding filter Qth. Instead,
we set

Qth(θ) ∼
{

1/
√
θ, if 1.2 θth < θ < θmax

0, otherwise
(7)
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following the work of Brouwer et al. (2018), where they used a
1/
√
θ profile to parameterise their shear signals. The radius θmax

is the size up to which we measure the shear profiles.
To efficiently calculate the aperture number we make use of

the convolution theorem

Nap(θ) = F −1 [F {n(θ)}F {U(|θ|)}] , (8)

where F denotes the Fourier transformation and F −1 the inverse
Fourier transformation (see Frigo & Johnson 2005, hereafter
FFT).

3. Mock KiDS data

In this work, we use three different simulation suites, which
we modify to be KiDS-like. As KiDS is not so dissimilar from
DES (see Drlica-Wagner et al. 2018) and Hyper Suprime-Cam
(see Aihara et al. 2019), we expect our conclusion to also hold
for these weak lensing surveys. We use the well tested MS to
develop our adapted filter, and test our filter with an independent
set of simulation, SLICS, to avoid recurring systematic effects.
We also use the cosmo-SLICS to compare the adapted and top-
hat DSS filters in their power to discriminate different cosmolo-
gies.

3.1. Millennium Simulation (MS)

The MS, described in Springel et al. (2005), follows the evo-
lution of 21603 dark matter particles of mass 8 × 108 M� h−1

enclosed in a cube of size (500 Mpc h−1)3. Galaxies are added
to the simulation afterwards using a semi-analytical galaxy-
formation model, where Saghiha et al. (2017) showed that the
best match with the observed galaxy-galaxy lensing and galaxy-
galaxy-galaxy lensing signals from the Canada-France-Hawaii
Telescope Lensing Survey data (see Heymans et al. 2012) is
obtained from the model of Henriques et al. (2015). Hilbert et al.
(2009) described ray-tracing simulations through the MS. They
constructed a suite of 64 pseudo-independent light cones of size
4 × 4 deg2. For each of them, they calculated the lensing Jacobi
matrix A on a 4096 × 4096 pixel grid, for a set of source red-
shifts, using a multiple lens plane algorithm. The Cartesian com-
ponents of the shear for each grid point and each source redshift
zc are then obtained from the corresponding Jacobi matrix A.
We note that the same set of simulations has been used in sev-
eral previous studies, for example, in Sadeh et al. (2016), Simon
et al. (2019), and Unruh et al. (2019, 2020).

3.1.1. Constructing foreground galaxy number densities

To create the galaxy number density field n(θ) for each light
cone, we project all galaxies with an SDSS r-band magnitude
mr < 20.25 mag1 onto pixels of size (4 deg/4096)2. The magni-
tude cut is chosen such that the galaxy number density in the MS
matches the one in Bilicki et al. (2018). The resulting redshift
distribution of the galaxies over all 64 light cones is displayed in
Fig. 1 in orange, together with the redshift distribution of Bilicki
et al. (2018) shown in blue. We note that our lens redshift distri-
butions is broader compared to Gruen et al. (2018); especially at
small redshifts our lenses extend down to z ≈ 0.

1 These magnitudes are provided by the semi-analytical galaxy-
formation model.

Fig. 1. Redshift distribution p(z) of galaxies with mr < 20.25 in the
64 MS light cones, compared to the estimated redshift distribution of
KiDS galaxies with mr < 20.30 (Bilicki et al. 2018, in the plot B18).
Shown in green is the weighted source redshift PDF of the highest three
tomographic bins; from Hildebrandt et al. (2020).

3.1.2. Constructing the source galaxy distribution

In order to mimic the KiDS shear estimates, we create for each
grid point in a light cone a weighted mean of the shear over all
source redshifts. We use the redshift distribution of the combined
data set from the optical KiDS (see de Jong et al. 2013) and the
near-infrared VISTA Kilo degree Infrared Galaxy survey (see
Edge et al. 2013). In this combined data set (hereafter KV450),
redshifts are estimated through photometric redshifts, zphot, and
calibrated with spectroscopic redshifts (Hildebrandt et al. 2020).
We consider only sources with 0.5 < zphot < 1.2, such that our
sources are mostly behind our low-redshift lenses, and adopted
the redshift distribution n(z) from Hildebrandt et al. (2020) to
model these sources (shown in green in Fig. 1). From this distri-
bution the weights for the redshift slices zc (see Sect. 3.1) of the
simulation are calculated to

w(zc) =

zup(zc)∫

zlow(zc)

p(z′) d′, (9)

where zlow,up(zc) are the boundaries of the consecutive redshift
slices in the MS with central redshift zc. With these weights, the
shear at each grid point γ(θ) is given as

γ(θ) =

∑
i
w(zc,i) γ(θ, zc,i)
∑
i
w(zc,i)

, (10)

where γ(θ, zc,i) is the shear value at position θ from the ith red-
shift slice calculated with the corresponding Jacobi matrix A.
Since the MS are exclusively used to construct our new filters,
it is best to ignore shape noise, hence we work directly with the
noise-free shear values provided with Eq. (10).

3.2. Scinet Light Cone Simulations (SLICS)

In order to compare the performance of our adapted filter to that
of the Gruen et al. (2016) top-hat filter, and to find the appro-
priate size of the top-hat filter such that the comparison is rea-
sonable, we use the SLICS. This simulation suite is indepen-
dent of the MS and is described in HD18. The SLICS are a set
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of over 800 realisations, where each run follows 15363 parti-
cles inside a cube of comoving side length Lbox = 505 h−1Mpc
and nc = 3072 grid cells on the side. By use of the Zel’dovich
approximation (see White 2014) each run starts with slightly dif-
ferent initial conditions at z = 120, computes the non-linear evo-
lution of these collision-less particles to z = 0, and produces
on-the-fly the halo catalogues and mass sheets required for a full
light cone construction at 18 different source redshifts from z = 0
to z = 3. The underlying cosmological parameters for each run
are Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0473, h = 0.6898,
σ8 = 0.826 and ns = 0.969 (see Hinshaw et al. 2013). Given
a particle mass of 2.88 × 109 h−1 M�, dark matter haloes with
masses above 1011 h−1 M� and structure formation deep into the
non-linear regime are resolved. Furthermore, it has been shown
in HD18 that for Fourier modes k < 2.0 h Mpc−1, the three-
dimensional dark matter power spectrum P(k) agrees within 2%
with the predictions from the Extended Cosmic Emulator (see
Heitmann et al. 2014), followed by a progressive deviation for
higher k-modes.

3.2.1. KV450 SLICS mocks

We use the KV450 SLICS as source galaxies2. These mock
galaxies are placed at random angular coordinates on 100 deg2

light cones, with the KV450 number density ngal = 6.93
arcmin−2 and the best-estimated redshift distributions from
Hildebrandt et al. (2020, see the DIR method therein). The galax-
ies are assigned their shear information γ from the lensing maps,
following the linear interpolation algorithm described in Sect. 2
in HD18; and the observed ellipticities εobs are obtained as

εobs =
ε int + γ

1 + ε intγ∗
+ η ≈ εn + γ

1 + εnγ∗
, (11)

where εobs, ε int, εn, η, and γ are complex numbers; the aster-
isk ∗ indicates complex conjugation. This equation relates the
observed ellipticity εobs to the intrinsic shape ε int and the shear
γ, and adds measurement noise η to it. In order to combine intrin-
sic and measurement shape noise, both are incorporated into one
pre-sheared noisy ellipticity εn. This ellipticity εn is generated
by drawing random numbers from a Gaussian distribution with
width σ = 0.29, which is consistent with the weighted observed
ellipticity distribution of the KiDS data. Furthermore, we apply
a selection cut on the photometric redshift of 0.5 < zphot < 1.2,
resulting in a galaxy number density of ngal = 5.17 arcmin−2.

3.2.2. Galaxy And Mass Assembly (GAMA) SLICS mocks

For the lens sample we use the publicly available Galaxy And
Mass Assembly (GAMA, see Driver et al. 2011) SLICS mocks,
which are based on the halo occupation distribution (HOD) pre-
scription of Smith et al. (2017, see HD18 for details on its imple-
mentation). The motivation to use these mocks is that they are
an excellent source of lenses for a DSS analysis with KiDS
data as sources, as demonstrated by Brouwer et al. (2018). The
galaxy number density is ngal ∼ 0.25 arcmin−2, which is smaller
compared to Bilicki et al. (2018) due to the smaller limiting
magnitude of mr < 19.8 mag and the smaller redshift range of
0 < z < 0.5, but since we use both data sets in two indepen-
dent analyses it does not matter. Theses different values of ngal

2 These SLICS KV450 mocks are made publicly available on the
SLICS portal at https://slics.roe.ac.uk/

propagate into the aperture number, Nap via Eq. (5), where we
count these GAMA lens galaxies in squares of size 1 arcmin2

and assign the resulting galaxy number density n(θ) to the asso-
ciated pixel. Finally, it was demonstrated in HD18 that on large
scales these mock GAMA galaxies have a linear bias of about
1.2, and that the non-linear bias observed at smaller scales is
similar to that seen in the GAMA data. This match was not guar-
anteed given that the galaxy bias in the simulations emerge from
the HOD, and not from an input model.

3.3. Cosmo-SLICS

We use the cosmo-SLICS simulations described in Harnois-
Déraps et al. (2019), to investigate the sensitivity of the top-hat
filter and the adapted filter to cosmological parameters. These
are a suite of simulations sampling 26 wCDM cosmologies dis-
tributed in a Latin hypercube, ray-traced multiple times to pro-
duce 50 pseudo-independent realisations for every cosmology,
each producing light cones of size 100 deg2. The corresponding
cosmologies are listed in Table A.1. In these simulations, the
matter density Ωm, the dimensionless Hubble parameter h, the
normalisation of the matter power spectrum σ8 and the time-
independent dark energy equation-of-state w0 are varied over a
range that is large enough to complement the analysis of current
weak lensing data (see Hildebrandt et al. 2020).

For each realisation, the algorithm to creates KV450-like
catalogues follows the same pipeline as for the SLICS mocks,
notably it reproduces the same galaxy number density and red-
shift distribution n(z), but the different underlying cosmologies
modify the lensing properties.

In contrast to the SLICS simulations, the cosmo-SLICS dark
matter haloes are not fully post-processed into light cones at the
moment of writing this paper, and therefore HOD-based mocks
are not yet available. This does not prevent us from using the
cosmo-SLICS to generate GAMA-like mocks, however these
are instead based on a linear bias model (see Appendix A2 of
HD18). Given the GAMA n(z), this construction required four
mass sheets3. Following the redshift distribution shown in Fig. 8
in HD18 each of these sheets was populated with a bias of unity,
and accordingly to Sect. 3.2.2 the resulting number density for
all four sheets together is ngal = 0.25 arcmin−2. To be consistent
with Sect. 3.2.2, we sum the galaxies in squares of size 1 arcmin2

and assign the galaxy number density n(θ) to the respective
pixels.

4. The derivation of the adapted filter function

In order to investigate the projected galaxy number density n(θ)
and lensing convergence κ(θ) on the same angular scales, we
generate a compensated filter for θ < 30′ using an iterative pro-
cedure with the MS as an input. Schematically the iterative pro-
cess is structured as follows: The first step is to calculate the
aperture number Nap with a compensated filter Ui defined for
θ < 10′. Next, we extract the pixels which have the highest 10%
aperture number values, and measure the tangential shear profile
γt(θ) around these pixels up to 10′. With setting Q(θ) ∝ γt(θ)
and Eq. (4) we create a revised compensated filter Ui+1. The last
step is to repeat all prevoius steps with the revised filter Ui+1.
This iteration continues as long as the change in relative signal-
to-noise ∆(S/N)/(S/N)1 > 10−3 between consecutive iterations.

3 For the fiducial cosmology these mass sheets are at redshifts zi =
0.130, 0.221, 0.317, 0.410.
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We note that this value is chosen arbitrarily, but it is sufficient,
because the deviation of the resulting shear profiles in Sect. 5,
determined with a filter of a later iteration, would be less than
the uncertainties of the shear profiles. Once we achieve conver-
gence in this iterative process, we extrapolate the U and Q filters
to 30′ to use the strong tangential shear signal beyond 10′.

After presenting the general approach of our derivation, we
next explain the individual steps in more detail. The initial filter
U1 of the pipeline is defined as a compensated top-hat

U1(|θ|) B


1 arcmin−2, if θ < 1′

− 1
99 arcmin−2, if 1′ ≤ θ < 10′

0 arcmin−2, if θ > 10′
, (12)

where the chosen inner radius of 1′ is not crucial, because the
iterative process finds the final shape of the filter independent of
this boundary. The upper bound of 10′ is motivated by the fact
that we expect the shear profiles with our filter to peak at roughly
2/3 of the filter size, which would then coincide with the shear
profiles generated with a top-hat filter of size 5′ in Brouwer et al.
(2018) which had the best S/N. The value −1/99 arcmin−2 arises
from the compensated nature of U. To calculate the aperture
number with Eq. (5), we convolve the galaxy number density
n(θ) with the filter U1 by means of the convolution theorem
Eq. (8). The resulting aperture number for one light cone is
shown in the upper panel of Fig. 2, where over-dense regions
are shown in red and under-dense regions in blue. Following
the pipeline, we extract those pixels that have the highest 10%
values of the aperture number and display them in the lower
panel of Fig. 2. The outer 30′ edges are not considered since
the FFT, which we use to efficiently apply the convolution theo-
rem, assumes periodic boundary conditions. The reason to cut at
30′ instead of 10′ is that we want to use the same area of the light
cones for the extended shear profile as for the ones measured in
the iterative process.

Using the shear grids described in Sect. 3.1, an averaged
shear grid around the extracted pixels is calculated as

γ(θ) =
1

Npeaks

Npeaks∑

i=1

γ(θ + θi), (13)

where Npeaks is the number of extracted pixels with positions θi,
which have the 10% highest values of Nap. Next, we construct
the grids of tangential and cross shear γt,×(θ), with

γt(θ) = −Re
[
γ(θ)e−2iφ

]
; γ×(θ) = −Im

[
γ(θ)e−2iφ

]
, (14)

where φ is the polar angle of θ. For all shear profiles we subtract
the shear signal around random pixel positions per light cone to
reduce the noise in the measurements (Singh et al. 2017).

The shear profiles for one light cone result from azimuthally
averaging the γt,×(θ) grids in 40 linearly spaced annuli for 0′ <
θ < 10′. By further averaging the signals over all 64 light cones,
we extract the shear profiles indicated with the blue dots in
Fig. 3, where the error bars are the uncertainties on the mean,
obtained from the sample variance of all 64 light cones. In the
lower panel the γ× profile is displayed, and although a 40 × 40
covariance cannot be reliably calculated from only 64 realisa-
tions, the cross shear profiles appear to be consistent with zero.
The shape of the γt profiles are as expected for a DSS analysis
and similar to those of previous DSS works (Brouwer et al. 2018;
Gruen et al. 2018; Friedrich et al. 2018).

Fig. 2. Upper panel: aperture number Nap on a 4 × 4 deg2 grid of the
MS light cone 37 as an example light cone. Lower panel: extracted pix-
els which have the highest 10% number values of Nap. The outer 30′
margins are not considered since the FFT assumes periodic boundary
conditions. Therefore, the outer margins in the Nap field are disregarded
and marked with the black square in the upper panel.

For determining the filter function U, we quantify the infor-
mation content about these shear profiles through Map, by defin-
ing a signal-to-noise ratio (Schneider 1996),

S
N

=

√
2

σε

∑
i γt(θi) Q(θi)√∑

i Q2(θi)
, (15)

where the noise here is taken to be pure shape noise due to intrin-
sic source ellipticity, with a dispersion of σε = 0.3.

The next step of the pipeline is motivated by Eq. (15), which
following the Cauchy–Schwarz inequality, is maximised if the
filter Q is proportional to the shear γt. We therefore set the Q2
filter function to

Q2(θ) ∝
{
γt(θ), if 0′ < θ < 10′

0, otherwise
. (16)
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Fig. 3. Upper panel: tangential shear profiles, γt, for the first eight iterations, showing how the peak moves to larger radii. Lower panel: γ× profiles
are consistent with zero. The uncertainties are the standard deviation on the mean determined with the 64 MS realisations.

Fig. 4. Resulting filter U , from Eq. (4), after each iteration. With each iteration the filter gets wider until it converges after ∼7 iterations. The filters
are scaled such that the value of the first θ-bin is unity, which eases comparison with the compensated top-hat filter.

With this filter Q2 and Eq. (4), we obtain filter U2, displayed
with the blue colour in Fig. 4.

Now the iterative process starts, where we rerun the pipeline
with the new filters Ui+1. As seen in Fig. 3 the peak of the tangen-
tial shear moves to larger radii after each iteration, as the filter
Ui+1 gets wider with each iteration. This effect is not surprising,
because we are calculating the filters Ui+1 from the shear signals,
and therefore, the changes are strongly related. After some itera-
tions this broadening starts to converge; in order to measure this
convergence, we make use of the S/N calculated with Eq. (15).
As a reference S/N value for the first iteration, we calculate an
initial filter Q1 from Eq. (3) as

Q1(θ) =
1
θ2

(
1 +

1
99

)
H(θ − 1′)H(10′ − θ). (17)

The resulting S/N values relative to the S/N of the first iter-
ation are stated in Table 1. The S/N does not change after
the 7th iteration by more than 10−3, and therefore indicates
convergence.

Once we have converged on a final filter U7, we expand the
range up to a radius of 30′ to make use of the strong tangential
shear signal beyond 10′. This size is restricted to 30′ to minimise
the rejected margins due to the boundary effects of the FFT, as
seen in the lower panel of Fig. 2. The resulting shear profile, and
thus the shape of the final adapted filter Q, is shown in Fig. 5. The

Table 1. S/N relative to the S/N of the first iteration step.

Step 1 2 3 4

(S/N)/(S/N)1 1. 1.819 2.189 2.257

Step 5 6 7 8
(S/N)/(S/N)1 2.271 2.274 2.275 2.275

corresponding adapted filter U, from Eq. (4) using the extended
adapted filter Q, is displayed in Fig. 6. Compared to the filters
in Fig. 4 the zero crossing of the adapted filter U is at larger θ.
This is due to the positive extended tail of the tangential shear
profile (adapted filter Q in Fig. 5), which is used to determine
the adapted filter U. After this point we do not change this filter
anymore, and all filter functions mentioned from now on refer to
this pair of adapted filters. We note that the used angular scales
for the derivation of the filter function (1′, 10′ and 30′) may not
be optimal, but for the purpose of this work in comparing it to
an analysis with a top-hat filter function (Sects. 5–7) the opti-
mised sizes are not crucial. Nevertheless, they will be reviewed
in future analyses. Since the comparisons of the adapted and the
top-hat filter in the following sections is exclusively done with
the SLICS and cosmo-SLICS, the MS is from this point on no
longer used.

A161, page 6 of 12

Appendix

106



P. Burger et al.: An adapted filter function for density split statistics in weak lensing

Fig. 5. Tangential shear profile, γt, around the highest 10% pixel values
of Nap determined with the filter U7 for θ < 10′ and measured up to
radii of 30′ to use the strong tangential shear signal beyond 10′. For
the rest of this analysis, this is the shape of the adapted filter Q. The
uncertainties are the standard deviation on the mean determined with
the 64 MS realisations.

Fig. 6. Adapted compensated filter U(θ) calculated from the shear pro-
file of Fig. 5 and Eq. (4). The filter is normalised such that the first value
is 1 arcmin−2. This final U(θ) filter is adopted for the rest of the analysis.

5. Suitable top-hat size and S/N comparison

In order to compare the DSS measured using the adapted filter U
to the Gruen et al. (2016) top-hat filter function Uth(θ) we must
determine the size of the top-hat filter θth such that the averaged
shear peak positions around the highest and the lowest quantiles
of the aperture number field are comparable between both filters.
For that, we use 64 realisations of SLICS, with KV450 sources
and GAMA lenses.

Following the work of Gruen et al. (2018), we divide the
sky according to the aperture number, Nap, into five sub-areas of
equal size and call them quantiles of the aperture number field.
The aperture number is calculated either with the adapted filter
function U or with three different top-hat filters of size θth = 5′,
6′, and 7′. For each quantile, we calculate the tangential shear
profiles in 25 logarithmic θ annuli with the software treecorr
(see Jarvis et al. 2004); this is different to the approach in Sect. 4,
since for the SLICS and cosmo-SLICS the shear estimates are
not given on a grid but from mock catalogues. The resulting
shear profiles are displayed for the different filter functions in
Fig. 7. We neglect shape noise here to find the optimal top-hat
size.

In order to determine the most comparable top-hat filter, we
calculate for each filter the angular position of the measured peak
of the γt profile of the highest and lowest quantile and report in
the legend of Fig. 7 the average of these two. The averaged peak
position θ = 9.3′ of the shear profiles generated with a top-hat
filter of size θth = 6′ matches the averaged peak position θ = 9.3′
of the shear profiles generated with the adapted filter. Therefore,
we set the size of the top-hat filter for all following analyses to
θth = 6′.

Our first performance comparison is based on a respec-
tive S/N. The signal S is the averaged aperture mass for axis-
symmetric tangential shear profiles γt(θ) = γt(θ), such that
Eq. (2) simplifies to

Mi
ap = 2π

∫
γi

t(θ
′) Q(θ′) θ′d′, (18)

where i denotes the quantile around which the tangential shear
profile γi

t(θ) is azimuthal-averaged. To calculate the aperture
mass with the tangential shear profiles of the DSS with the top-
hat filter, we use Eq. (7) for the Q = Qth filter with θmax = 30′.
We reiterate that Qth is not adapted to Uth, but we use it here
to provide a comparison to the earlier work of Brouwer et al.
(2018). In order to have a S/N, which measures the significance
of a nonzero detection, we estimate the noise N as the standard
deviation of Mrand

ap determined by tangential shear profiles around
Npix random pixel positions from the 64 realisations, where Npix
is the number of pixels in one quantile. Together this gives the
signal-to-noise ratio of the i-quantile to

( S
N

)i

=
〈Mi

ap〉√
〈(Mrand

ap − 〈Mrand
ap 〉)2〉

, (19)

where 〈. . .〉 refers to the ensemble average over all 64 realisa-
tions. For this S/N comparison we use the treecorr γt esti-
mates obtained from ellipticities with shapes noise, so that the
noise here describes the sampling variance as well as the shape
noise in the data. The resulting S/N for each quantile i, shown
in Fig. 8, reveals that the adapted filter performs better, which is
consistent with the higher amplitude of the shear profiles seen in
Fig. 7.

6. Nap versus Map

After deriving the adapted filter and specifying the top-hat filter
size, we want to test our expectation that the adapted filter yields
a better correlation between the galaxy and total matter distri-
bution. For this analysis, we make use of 25 light cones from
SLICS with a non-linear bias model and 25 light cones from the
fiducial cosmology of cosmo-SLICS with a linear bias model,
where we expect that for the latter the correlation is stronger
since n(θ) ∝ κ(θ) here. For both models we calculate the aper-
ture number with Eq. (5) and the aperture mass with Eq. (2) for
all pixels with the corresponding adapted filters and top-hat fil-
ters, where θth = 6′ and θmax = 30′. For the aperture number
we sum, as before, the foreground (lens) galaxies in squares of
size 1 arcmin2, and for the aperture mass we average the elliptici-
ties of background (source) galaxies in squares of size 1 arcmin2.
Although we would expect similar relative correlation coeffi-
cients if we included shape noise in the shear estimates, we opted
for the noise-free estimate to be closer to the true correlation
coefficient. The results for both filter pairs are shown in Fig. 9,
where the upper panels corresponds to the non-linear bias model
(SLICS) and the lower panels to the linear bias model (fidu-
cial cosmology from cosmo-SLICS). The correlation coefficient
specified in the upper left corner of each panel is determined as

ρ =

〈(
Map(θ) − 〈Map〉

) (
Nap(θ) − 〈Nap〉

)〉

√〈(
Map(θ) − 〈Map〉

)2
〉 〈(

Nap(θ) − 〈Nap〉
)2
〉 , (20)
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Fig. 7. Tangential shear profiles, γt, from SLICS generated with the adapted filter and three top-hat filters of different sizes. The measurements
using a top-hat of size 6′ have roughly the same peak position as the adapted filter results. The uncertainties are the standard deviation on the mean
determined with the 64 SLICS realisations, and since shape noise is not included, the error bars are almost unseen.

Fig. 8. Comparison of the |S/N|i between the adapted filter and a top-
hat filter of size θth = 6′ calculated with Eq. (19) for the quantiles i.
The uncertainties of the S/N are calculated with a jackknife estimator
resampling the S/N data 64 times, removing at each draw one of the γt
measurement and are below 2%. The values next to the points in the
plot are the relative differences.

where 〈. . .〉 refers to the ensemble average over all pixel posi-
tions θ of the 25 light cones4. The higher the correlation factor
ρ is, the better the galaxy number density field traces the under-
lying matter field. As expected, the adapted filter yields a bet-
ter correlation as seen in the correlation coefficient ρ, which is
∼20% higher for the adapted filter. Furthermore, it is seen that
for the linear-bias model ρ is ∼10% higher.

7. Sensitivity to constrain cosmological parameters

In this section, we investigate the sensitivity of the adapted and
top-hat filters to varying cosmological parameters by use of the
cosmo-SLICS, based on the aperture mass of Eq. (18). As seen
in Fig. 10 for the highest and lowest quantile, Map and S 8 have
a strong correlation, which indicates that Map is suitable as a
metric for the comparison of different cosmologies.

For each of the 50 realisations per cosmology we first com-
pute the aperture number with the two different filters and the

4 Due to the periodic boundary effects of the FFT we do not consider
the outer 30′ margins.

Fig. 9. Pixel-by-pixel Map(θ) vs. Nap(θ) comparison for a non-linear
bias model (upper panels) and linear bias model (lower panels).
The aperture mass and number are calculated except for the outer
margins for each individual pixel, which is different to Sect. 5
where Mi

ap is calculated from shear profiles of specific quantiles.
To ease the comparison between Map(θ) and Nap(θ) we re-scaled
Map(θ) → M̃ap(θ) := (Map(θ) − 〈Map〉)/

√〈(Map(θ) − 〈Map〉)2〉, corre-
spondingly Nap(θ) → Ñap(θ), where 〈. . .〉 is the ensemble average over
all pixel positions θ. This re-scaling does not affect the correlation coef-
ficient ρ shown in the upper left corner of each panel. The panels on the
left-hand side correspond to the adapted filter, and those on right-hand
side to the top-hat filter. For both bias models, the adapted filter yields
a stronger correlation, computed with Eq. (20).

treecorr γt profiles with shape noise of the five quantiles5.
Afterwards, we calculated an aperture mass Mi

ap by use of
Eq. (18) with the shear profiles of each realisation n. With these

5 Each quantile corresponds to one of the five sub-areas of the aperture
number as in Sect. 5.
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Fig. 10. Comparison between Map and S 8 for the highest and lowest
quantile from Nap with the adapted filter of all cosmologies given in
cosmo-SLICS. These two quantities are strongly correlated which indi-
cates that Map is a useful cosmological probe. For the fiducial case of
S 8 = 0.8231 the blue and the orange dot are both at Map/Mfid

ap = 1, so
that you see only one orange dot since they are on top of each other.

aperture masses we determine for each quantile in each cosmol-
ogy an averaged aperture mass 〈Mi

ap〉, where we average over
the 50 realisation of each cosmology. Additionally we calculate
one 5 × 5 covariance matrix for each filter (adapted and top-hat)
from the shear profiles of the 50 fields for the fiducial cosmology,
which captures the correlation between the individual quantiles
as

Ci j
fid =

1
50 − 1

50∑

n=1

(Mi
ap,n − 〈Mi

ap〉)(M j
ap,n − 〈M j

ap〉), (21)

where i and j indicate the individual quantile and subscript “fid”
indicates the fiducial cosmology. Using these quantities, we cal-
culate for each cosmology with cosmological parameters x a
χ2 as a measure of the deviation from the fiducial cosmology
as

χ2(x|Mfid
ap ,Cfid) =

[
Mfid

ap −Map(x)
]>

C−1
fid

[
Mfid

ap −Map(x)
]
, (22)

where Map is the vector of the averaged amplitudes 〈Mi
ap〉 of the

five quantiles of the respective cosmology, with large χ2 values
corresponding to deviations that are easier to detect.

The resulting χ2-values for the 25 cosmologies are displayed
in Fig. 11, in which the χ2 for both filters are compared to each
other. It can be seen that the top-hat filter performs slightly better
for some cosmologies with a low χ2. But for most cases, the
adapted filter performs better in distinguishing between different
cosmologies.

In order to investigate the sensitivity of the DSS to cosmolog-
ical parameters in more detail, we display the two-dimensional
parameter space in Fig. 12a, where the colour represents the χ2

of the analysis with the adapted filter. We see that the DSS is
particularly powerful to distinguish between different values of
S 8 = σ8

√
Ωm/0.3. Unfortunately, the cosmo-SLICS set does not

cover values of S 8 > 0.9, but we expect that the χ2 would further
increase. In contrast, there is hardly any correlation between χ2

and w0, so that this parameter cannot be well constrained by DSS
without a tomographic analysis.

Returning to the comparison between the adapted and the
top-hat filter, we show in Fig. 12c the two-dimensional param-
eter space, but encoding in colour ∆χ2 = χ2

ad − χ2
th. For most

cosmologies, the adapted filter performs better, or no significant
difference is seen, which is consistent with Fig. 11. Whereas for
most parameter pairs no clear trend with ∆χ2 is seen, a clear cor-
relation is present for S 8: for small S 8 values, the adapted filter
performs better, but for large S 8 and small Ωm values (i.e. large
σ8), the top-hat filter is more sensitive. High σ8 values imply
strong clustering of the matter distribution. As a consequence,

the analysis with the top-hat filter has difficulties to correctly
assign regions of the sky within the lowest four quantiles, result-
ing in shear profiles with quite similar amplitudes, as seen in the
lower right panel of Fig. 13. The adapted filter is less affected by
this effect, and therefore, χ2, which is a measure of the deviation
to the fiducial cosmology, is larger for the top-hat filter than for
the adapted filter (see Fig. A.1 for a visualisation of the ∆χ2 in a
σ8 − Ωm parameter space). Nevertheless, for all other cosmolo-
gies, the adapted filter is the better choice to distinguish different
cosmologies.

Gaussian process regression emulator (GPRE)

As all four cosmological parameters vary between the differ-
ent cosmo-SLICS models, a comparison between the different
cosmologies is non-trivial. To investigate the performance of
the DSS with the two different filters on a continuous two-
dimensional projected parameter space, we make use of a flex-
ible GPRE described in Appendix A1 in Harnois-Déraps et al.
(2019) to emulate averaged tangential shears γt for various cos-
mologies. The training of the emulator for each individual quan-
tile and for both filters is carried out with the 26 cosmo-SLICS
cosmologies. In order to test the accuracy of the GPRE we
apply the “leave-one-out” cross-validation method and show the
results in Fig. A.2. The shear profiles of the highest and low-
est two quantiles can be predicted with an accuracy of gener-
ally better than 10%. The shear profiles of the fourth and third
quantile have a relative accuracy far worse than that, but this is
not surprising since these quantiles have a very low shear signal.
However, we checked that our results are robust with respect to
including or excluding these two quantiles.

In order to produce smooth two-dimensional constraints on
the four cosmological parameters, we vary two of the four
parameters in 41 steps in the same range as the parameters
were given in cosmo-SLICS and fixed the other two remain-
ing parameters to the fiducial cosmology. Next, we calculate for
each grid point the aperture masses Mi

ap from Eq. (18) and χ2

from Eq. (22) as measures of the deviation of the predicted shear
profiles from the predicted fiducial shear profiles. We emulate
directly the averaged shear profiles, so that Map in Eq. (22) is
the vector of Mi

ap calculated with the emulated shear profiles.
The covariance matrix employed is the one calculated with the
50 realisations from the fiducial cosmology of cosmo-SLICS by
use of Eq. (21). The results for the individual parameter pairs
are displayed in Fig. 12b. As expected, the further we deviate
from the fiducial cosmology the higher is the χ2. By inspecting
the individual panels, we see that the S 8 and Ωm parameters are
well constrained. Furthermore, it is clearly visible that these two
parameters are dominating the change in the shear profiles for
all parameter pairs. This can be seen especially in the case when
S 8 and Ωm are fixed and h or w0 are varied, where the χ2 has a
very weak gradient.

We also investigated the difference between the adapted and
top-hat filters, seen in Fig. 12d. Around the fiducial cosmol-
ogy, the χ2 values of both filters are indistinguishable, but as the
trend of the 25 cosmo-SLICS nodes (Fig. 12c) already suggests,
the analysis with top-hat is more sensitive for large σ8 values,
whereas the adapted filter is better for the remaining parameter
regions.

Summarising this section, we find that the top-hat and
adapted filters perform similarly around the fiducial cosmology
to differentiate cosmologies, but moving away from the fiducial
cosmology the adapted filter is more constraining than the top-
hat filter, with the exception of large σ8 values.
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Fig. 11. Comparison of the χ2 for all 25 cos-
mologies between the two filters, where the blue
plus signs represent the top-hat filter and the
red crosses correspond to the adapted filter. The
parameters of the 25 cosmological model are
shown in Table A.1.

(a) Cosmo-SLICS: adapted filter (b) GPRE: adapted filter

(c) Cosmo-SLICS: difference (d) GPRE: difference

Fig. 12. Cosmological parameter space, where the colour in the upper panels indicates the χ2 corresponding to the adapted filter and in the lower
panels to ∆χ2 = χ2

ad − χ2
th. The χ2 of the left-hand side are determined with the cosmo-SLICS data and on the right-hand side with the flexible

Gaussian process regression emulator. The grey cross marks the fiducial cosmology. One should not compare the right-hand side with the left-hand
side directly, since in each node on the left, all four cosmological parameters are varied, whereas on the right, only two of the parameters are varied
and the other two are fixed to the fiducial cosmology.

8. Summary and conclusion

In this work, we constructed a pair of adapted filter functions
for the DSS, using ray tracing and a semi-analytic model galaxy
population in the MS in an iterative process. Our new pair of
filters is matched with respect to the aperture mass and galaxy
number statistics. In other words, the adapted pair of filters
measures the lensing convergence and the galaxy number den-
sity with the same angular weighting. Based on numerical weak

lensing simulations, we confirmed our expectation that the corre-
lation between galaxy number density and shear signal is higher
with our adapted filter than for the top-hat filter. We verified that
this result holds both for a linear and a non-linear galaxy bias
model, using mock GAMA×KV450 data constructed from the
SLICS and the cosmo-SLICS weak lensing simulations.

Furthermore, we showed that the adapted filter is indeed
a useful improvement for the DSS, by comparing it with the
previously used top-hat filter of appropriate scale, using their
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Fig. 13. Tangential shear profiles, γt, for two different cosmologies for
the adapted filter on the left-hand side and the top-hat filter on the right-
hand side. The uncertainties are the standard deviation on the mean
determined with the 50 realisations.

resulting S/N in different sub-areas of the sky and their sen-
sitivity to discriminate between different sets of cosmological
parameters as metrics. These sub-areas are called quantiles of
the aperture number field. For the S/N comparison, we made use
of the wCDM SLICS simulation and showed that the adapted
filter has a higher S/N for most quantiles. For comparing the
sensitivity of both filters to different cosmologies, we employed
the cosmo-SLICS, which is a suite of 26 different cosmologies
with 50 realisations each. From the 50 realisations in each cos-
mology, we calculated a χ2 as a measure for the deviation from
the fiducial cosmology. It turned out that both filters behave sim-
ilarly near the fiducial cosmology, but that the adapted filter is
more constraining in most regions of parameter space probed
by cosmo-SLICS, except for very high values of σ8 where the
top-hat filter yielded higher deviation from the fiducial cosmol-
ogy. In order to investigate the performance of the DSS with the
two different filters on a continuous two-dimensional projected
parameter space, we also made use of a flexible GPRE, which
is a promising tool for future cosmological analyses. Both the
S/N and the cosmological analyses lead to the conclusion that
the adapted filter yields tighter cosmological constraints than the
top-hat filter and should be employed in future DSS analyses.

As an outlook, it would be interesting to investigate the arbi-
trariness of dividing the aperture number field into five quantiles.
For instance, one could optimally combine the shear profiles or
find a way to not bin the sky at all, as binning decreases the infor-
mation content. Furthermore, the filter size used here has not
been optimised and should also be varied. Our first attempt here
to look into the usefulness of the new DSS to constrain cosmo-
logical parameters relied fully on numerical simulations, we aim
to modify the analytical model derived by Friedrich et al. (2018)
to account for the adapted filter, allowing for an alternative mod-
elling option in an up-coming cosmological study, similar to the
approach of Gruen et al. (2018).
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Appendix A: Additional material

Table A.1. Overview of all the different cosmological parameters for the
26 cosmo-SLICS models, which are used in Sect. 7 for the cosmological
analysis.

Ωm h w0 σ8 S 8

fid 0.2905 0.6898 −1.0000 0.8364 0.8231
1 0.3282 0.6766 −1.2376 0.6677 0.6984
2 0.1019 0.7104 −1.6154 1.3428 0.7826
3 0.2536 0.6238 −1.7698 0.6670 0.6133
4 0.1734 0.6584 −0.5223 0.9581 0.7284
5 0.3759 0.6034 −0.9741 0.8028 0.8986
6 0.4758 0.7459 −1.3046 0.6049 0.7618
7 0.1458 0.8031 −1.4498 1.1017 0.7680
8 0.3099 0.6940 −1.8784 0.7734 0.7861
9 0.4815 0.6374 −0.7737 0.5371 0.6804
10 0.3425 0.8006 −1.5010 0.6602 0.7054
11 0.5482 0.7645 −1.9127 0.4716 0.6375
12 0.2898 0.6505 −0.6649 0.7344 0.7218
13 0.4247 0.6819 −1.1986 0.6313 0.7511
14 0.3979 0.7833 −1.1088 0.7360 0.8476
15 0.1691 0.7890 −1.6903 1.1479 0.8618
16 0.1255 0.7567 −0.9878 0.9479 0.6131
17 0.5148 0.6691 −1.3812 0.6243 0.8178
18 0.1928 0.6285 −0.8564 1.1055 0.8862
19 0.2784 0.7151 −1.0673 0.6747 0.6500
20 0.2106 0.7388 −0.5667 1.0454 0.8759
21 0.4430 0.6161 −1.7037 0.6876 0.8356
22 0.4062 0.8129 −1.9866 0.5689 0.6620
23 0.2294 0.7706 −0.8602 0.9407 0.8226
24 0.5095 0.6988 −0.7164 0.5652 0.7366
25 0.3652 0.7271 −1.5414 0.5958 0.6574

Fig. A.1. Cosmological parameter space σ8−Ωm, where the colour indi-
cates ∆χ2 = χ2

ad − χ2
th of the 25 nodes of cosmo-SLICS determined in

Sect. 7. It is clearly seen that for large σ8 the analysis with the top-hat
filter yields higher χ2. The grey cross indicates the fiducial cosmology.

Fig. A.2. “Leave-one-out” cross-validation to test performance of accu-
racy of the GPRE, which is used in Sect. 7 to investigate the perfor-
mance of the DSS with the two different filters on a continuous two-
dimensional projected parameter space. On the y-axis the relative dif-
ference between the predicted shear profile of one cosmology if the
emulator is trained exclusively by the remaining cosmologies and the
corresponding shear profile which the emulator tries to emulate. The
black lines here are correspond to the fiducial case. The quantiles N4
and N3 are quite inaccurate, but the other quantiles are of the 10% level
accurate, which are indicated with horizontal grey lines.
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ABSTRACT

Context. Studying the statistical properties of the large-scale structure in the Universe with weak gravitational lensing is a prime goal
of several current and forthcoming galaxy surveys. The power that weak lensing has to constrain cosmological parameters can be
enhanced by considering statistics beyond second-order shear correlation functions or power spectra. One such higher-order probe
that has proven successful in observational data is density split statistics (DSS), in which one analyses the mean shear profiles around
points that are classified according to their foreground galaxy density.
Aims. In this paper, we generalise the most accurate DSS model to allow for a broad class of angular filter functions used for the
classification of the different local density regions. This approach is motivated by earlier findings showing that an optimised filter can
provide tighter constraints on model parameters compared to the standard top-hat case.
Methods. As in the previous DSS model we built on large deviation theory approaches and approximations thereof to model the
matter density probability distribution function, and on perturbative calculations of higher-order moments of the density field. The
novel addition relies on the generalisation of these previously employed calculations to allow for general filter functions and is
validated on several sets of numerical simulations.
Results. It is shown that the revised model fits the simulation measurements well for many filter choices, with a residual systematic
offset that is small compared to the statistical accuracy of current weak lensing surveys. However, by use of a simple calibration
method and a Markov chain Monte Carlo analysis, we studied the expected sensitivity of the DSS to cosmological parameters and
find unbiased results and constraints comparable to the commonly used two-point cosmic shear measures. Hence, our DSS model can
be used in competitive analyses of current cosmic shear data, while it may need refinements for forthcoming lensing surveys.

Key words. gravitational lensing: weak – large-scale structure of Universe – methods: statistical – galaxies: abundances – surveys

1. Introduction

Studying the matter distribution of the present large-scale struc-
ture reveals a wealth of information about the evolution of the
Universe. In particular, its distorting effect on the propagation
of light from distant galaxies, known as cosmic shear, can be
captured by analysing weak lensing surveys. By comparing the
results of cosmological models with the observed signal, one can
constrain cosmological parameters (see e.g. Asgari et al. 2021;
Abbott et al. 2022; Hamana et al. 2020).

The preferred methods used to infer statistical properties of
the matter and galaxy distribution concentrate on second-order
statistics, such as the two-point correlation functions or their
Fourier counterparts, the power spectra. Although these statis-
tics have an impressive accuracy to describe for instance primor-
dial perturbations visible in the cosmic microwave background
(CMB; e.g. Planck Collaboration V 2020) they probe only the
Gaussian information present in the density fluctuations. How-
ever, these initial conditions developed significant non-Gaussian
features by means of non-linear gravitational instability, which
can only be investigated with higher-order statistics. Although
they are typically more time consuming to model and measure,
these higher-order statistics scale differently with cosmological
parameters, and are not affected in the same way by residual

systematics. Hence, by jointly investigating second- and higher-
order statistics, the constraining power on cosmological parame-
ters increases (see e.g. Bergé et al. 2010; Pyne & Joachimi 2021;
Pires et al. 2012; Fu et al. 2014; Kilbinger & Schneider 2005).

A large number of analytical models for the two-point statis-
tics exists in the literature (Takahashi et al. 2012; Heitmann et al.
2014; Euclid Collaboration 2021; Mead et al. 2020; Nishimichi
et al. 2021); however, the analysis of higher-order statistics is
usually based on simulations. Analytical models for higher-
order lensing statistics are rare, although they are important not
only for scientists to understand physical processes, but also to
cross-check simulations, which are usually only tested against
Gaussian statistics. For example, Reimberg & Bernardeau
(2018) and Barthelemy et al. (2021) used large deviation the-
ory (LDT) to compute the reduced-shear correction to the aper-
ture mass probability distribution function (PDF); Munshi et al.
(2020) and Halder et al. (2021) analytically modelled the inte-
grated shear three-point function; the lensing peak count func-
tion was modelled in Fan et al. (2010), Lin & Kilbinger (2015)
and Shan et al. (2018), while the lensing PDF is modelled in
Boyle et al. (2021).

The examples mentioned above all pertain to the analysis of
cosmic shear data. However, it has been established in recent
analyses that the addition of foreground clustering data, and their
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cross-correlation with the background source galaxies, yield sig-
nificantly better constraints (Abbott et al. 2018; Heymans et al.
2021). While the central analyses focused again on two-point
statistics, Friedrich et al. (2018, hereafter F18) developed a com-
petitive model based on density split statistics (hereafter DSS).
The idea is to measure the mean tangential shear around small
sub-areas of the survey, and to stack the signal according to the
foreground galaxy density in these sub-areas. We expect the tan-
gential shear to be larger around points with a high density of
foreground galaxies, given they correspond to a large matter
overdensity on average. The model derived in F18 is based on
non-perturbative calculations of the matter density PDF, which
predicts the shear profiles and the probability density of galaxy
counts in the sub-areas, for a given cosmological model, a red-
shift distribution for the source and lens galaxy populations, and
a mean galaxy density. In Gruen et al. (2018, hereafter G18), the
F18 model is used to constrain cosmological parameters from
DSS measurements from the Dark Energy Survey (DES) First
Year and Sloan Digital Sky Survey (SDSS) data, which yields
constraints on the matter density Ωm = 0.26+0.04

−0.03 that agree and
are competitive with the DES analysis of galaxy and shear two-
point functions (see Abbott et al. 2018).

One of the motivations of this work is based on Burger
et al. (2020, hereafter B20), who use a suite of numerical sim-
ulations to show that using matched filter functions for search-
ing peaks and troughs in the galaxy and matter density contrast
has clear advantages compared to the top-hat filter used in the
F18 model, both in terms of the overall signal S/N and in
recovering accurately the galaxy bias term. Another motiva-
tion of using compensated filters is that these filters are more
confined in Fourier space and are therefore better at smooth-
ing out large `-modes where baryonic effects play an impor-
tant role (Asgari et al. 2020). Therefore, it is of interest to
generalise the DSS to a broader set of filter functions. Smoothing
cosmic density fields with filters other than top-hat ones signif-
icantly complicates the LDT-like calculations used by F18 and
G18 (cf. Barthelemy et al. 2021) because for top-hat filters the
Lagrangian to Eulerian mapping inherent in LDT is particularly
simple. However, we find here that density split statistics with
non-top-hat filters that are sufficiently concentrated around their
centres can still be accurately modelled with computationally
feasible extensions of approximations made by F18. This paper
describes our modifications to the F18 model that will allow us
to optimise filtering strategies when applying density split statis-
tics to Stage III weak lensing surveys such as KiDS. Through-
out this paper, if not otherwise stated, we assume a spatially flat
universe.

This work is structured as follows. In Sect. 2 we review the
basics of the aperture statistics; we then detail our changes to the
F18 model in Sect. 3. In Sect. 4 we describe the simulations, and
the construction of our mock data used to validate the revised
model. In Sect. 5 we compare the model predictions with simu-
lations, and establish the model’s limitations. We summarise our
work in Sect. 6.

2. Aperture statistics

The lensing convergence κ and shear γ are related via the lensing
potential ψ (Schneider et al. 1992) as

κ(θ) =
1
2

(
∂2

1 + ∂2
2

)
ψ(θ) , γ(θ) =

1
2

(
∂2

1 − ∂2
2 + 2i∂1∂2

)
ψ(θ), (1)

with ∂i = ∂
∂θi

and θ the angular position on the sky; we employ
the flat-sky approximation. Given a reference point in a Carte-

sian coordinate system on the sky and a second point whose sep-
aration to the first is oriented at an angle φ with respect to that
coordinate system, we can express the shear at the second point
in terms of the tangential and cross-shear with respect to the first
point as

γt = −Re
(
γ e−2iφ

)
, γ× = −Im

(
γ e−2iφ

)
, (2)

where the factor 2 in the exponent is due to the polar nature of
the shear. Given a convergence field κ(θ), the aperture mass at
position θ is defined as

Map (θ) B
∫

d2θ′ κ
(
θ + θ′

)
U

(∣∣∣θ′
∣∣∣
)
, (3)

where U(ϑ) is a compensated axisymmetric filter function, such
that

∫
ϑU(ϑ) dϑ = 0. As shown in Schneider (1996), if U is

compensated, Map can also be expressed in terms of the tangen-
tial shear γt and a related filter function Q as

Map(θ) =

∫
d2θ′ γt

(
θ + θ′

)
Q

(∣∣∣θ′
∣∣∣
)
, (4)

where

Q(ϑ) =
2
ϑ2

ϑ∫

0

dϑ′ ϑ′ U(ϑ′) − U(ϑ), (5)

which can be inverted, yielding

U(ϑ) = 2

∞∫

ϑ

dϑ′
Q(ϑ′)
ϑ′

− Q(ϑ). (6)

In analogy to Map, we define, as done in B20, the aperture
number counts (Schneider 1998), or aperture number, as

Nap(θ) B
∫

d2θ′ n
(
θ + θ′

)
U

(∣∣∣θ′
∣∣∣
)
, (7)

where U(ϑ) is the same filter function as in Eq. (3) and n(ϑ) is
the (foreground) galaxy number density on the sky. This defini-
tion of the aperture number is equivalent to the “Counts-in-Cell”
(CiC) from Gruen et al. (2016) if a top-hat filter of the form

Uth(ϑ) =
1
A
H(ϑth − ϑ), (8)

is used, where H is the Heaviside step function and A is the
area of the filter. However, B20 demonstrated that top-hat fil-
ters are not optimal, and that a better performance is achieved
by an adapted filter in terms of signal-to-noise-ratio (S/N) and
in recovering accurately the galaxy bias term. In this paper we
compute aperture mass statistics with Eq. (4) using simulated
weak lensing catalogues of background source galaxies, notably
regarding positions and ellipticities, and aperture number statis-
tics with Eq. (7) from the position of simulated foreground lens
galaxies (see Sect. 4).

3. Revised model

In this section we describe our modifications of the original F18
model. Although the derivations shown here are self-contained,
we recommend the interested reader to consult the original
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F18 paper. In particular, it is shown there that the full non-
perturbative calculation of the PDF within large deviation the-
ory (LDT) can be well approximated with a log-normal PDF that
matches variance and skewness of the LDT result. This allowed
F18 and G18 to replace the expensive LDT computation with a
faster one, hence making the calculation of full Markov chain
Monte Carlo (MCMC) functions feasible. The reason why this
approximation works well is that, for top-hat filters, the scaling
of variance and higher-order cumulants in LDT is similar to that
found in log-normal distributions. This cannot be expected a pri-
ori for other filter functions. However, through comparison with
N-body simulations we find here (cf. Sect. 5) that either a simple
log-normal or a combination of two log-normal distributions still
accurately describes the density PDFs required to analyse den-
sity split statistics with more general classes of filters. The fol-
lowing section describes these calculations. In order to reduce
the mathematical calculations in this section, some derivations
are detailed in Appendix A.

We start by defining the line-of-sight projection of the 3D
matter density contrast δm,3D, weighted by a foreground (lens)
galaxy redshift probability distribution nf(z) as

δm,2D(θ) =

∫
dχ qf(χ) δm,3D (χθ, χ), (9)

where χ is the co-moving distance and the projection kernel qf(χ)
is

qf(χ) = nf
(
z
[
χ
]) dz[χ]

dχ
· (10)

This 2D matter density contrast can then be used together
with a linear bias term to represent a tracer density contrast (see
Sect. 3.3 or Sect. 4). Following F18, the next step consists of
smoothing the results with a filter U of size Θ:

δm,U(θ) ≡
∫

|θ′ |<Θ

d2θ′ δm,2D
(
θ + θ′

)
U

(∣∣∣θ′
∣∣∣
)
. (11)

This simplifies in the case of a top-hat filter of size Θ to

δΘ
m,th(θ) =

1
A

∫

|θ′|<Θ

d2θ′ δm,2D
(
θ + θ′

)
. (12)

Similar to the 2D density contrast, the convergence, which is
needed to describe the DSS signal, is given by

κ(θ) =

∫
dχWs(χ) δm,3D (χθ, χ), (13)

where Ws(χ) is the lensing efficiency defined as

Ws(χ) =
3ΩmH2

0

2c2

∫ ∞

χ

dχ′
χ (χ′ − χ)
χ′a(χ)

qs
(
χ′

)
, (14)

with qs(χ) = ns
(
z
[
χ
]) dz[χ]

dχ being the line-of-sight probability
density of the sources, Ωm the matter density parameter, H0 the
Hubble parameter, and c the speed of light. The mean conver-
gence inside an angular separation ϑ, κ<ϑ, follows then in anal-
ogy to Eq. (12) by substituting δm,2D(θ) with κ(θ).

The aim of our model is to predict the tangential shear pro-
files γt given a quantileQ of the foreground aperture number Nap,
〈γt|Q〉, where for instance the highest quantile is the set of lines
of sight of the sky that have the highest values of Nap. Therefore,
to determine 〈γt|Q〉 the model calculates

〈
γt|Nap

〉
and sums up

all that belong to the corresponding quantile Q. The expectation
value of

〈
γt|Nap

〉
is computed from the convergence profile as

〈
γt(ϑ)|Nap

〉
=

〈
κ<ϑ|Nap

〉
−

〈
κϑ|Nap

〉
= −ϑ

2
d

dϑ

〈
κ<ϑ|Nap

〉
, (15)

where κϑ is the azimuthally averaged convergence at angular sep-
aration ϑ from the centre of the filter, and κ<ϑ is the average con-
vergence inside that radius. The latter quantity, conditioned on a
given Nap, can be specified by

〈
κ<ϑ|Nap

〉
=

∫
dδm,U

〈
κ<ϑ|δm,U ,Nap

〉
p
(
δm,U |Nap

)
(16)

≈
∫

dδm,U
〈
κ<ϑ|δm,U

〉
p
(
δm,U |Nap

)
, (17)

where in the second step we assumed that the expected conver-
gence within ϑ only depends on the projected matter density con-
trast δm,U and not on the particular realisation of shot-noise in
Nap found within that fixed matter density contrast1.

By use of Bayes’ theorem, we can express the conditional
PDF as

p
(
δm,U |Nap

)
=

p
(
Nap|δm,U

)
p
(
δm,U

)

p
(
Nap

) , (18)

where p
(
Nap|δm,U

)
is the probability of finding Nap given

the smoothed density contrast δm,U . The normalisation in the
denominator of Eq. (18) follows by integrating over the numer-
ator,

p
(
Nap

)
=

∫
dδm,U p

(
δm,U

)
p
(
Nap|δm,U

)
. (19)

As seen in the derivation above, we are left with three ingre-
dients in order to calculate the tangential shear profiles given a
quantile Q of the aperture number

〈
γt(ϑ)|Nap

〉
:

(I) the PDF of the matter density contrast smoothed with the
filter function U (used in Eqs. (18), (19))

p
(
δm,U

)
; (20)

(II) the expectation value of the convergence inside a radius ϑ
given the smoothed density contrast (used in Eq. (17))
〈
κ<ϑ|δm,U

〉
; (21)

(III) the distribution of Nap for the given filter function U given
the smoothed density contrast (used in Eqs. (18), (19))

p
(
Nap|δm,U

)
. (22)

Since all three ingredients are sensitive to the filter U, we
need to adjust all of them coherently with respect to the top-hat
case.

1 This assumption is not evident per se, since via mode coupling
the large-scale profile of a given density perturbation may well be
correlated to the shot-noise (i.e. small-scale fluctuations) of galaxy for-
mation in the centre of that perturbation. F18 have found the approxima-
tion

〈
κ<ϑ|δm,U ,Nap

〉
≈ 〈

κ<ϑ|δm,U
〉

to be accurate in the Buzzard N-body
simulations (DeRose et al. 2019), but a more stringent investigation of
this assumption is left for future work.
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3.1. (I) : p (δm,U)

As shown by F18 the full LDT computation of the matter den-
sity PDF can accurately approximated by a shifted log-normal
distribution with vanishing mean (Hilbert et al. 2011), which is
fully characterised by two parameters, σ and δ0, as

p
(
δm,U

)
=

1√
2πσ

(
δm,U + δ0

) exp

−
[
ln

(
δm,U/δ0 + 1

)
+ σ2/2

]2

2σ2

 ·

(23)

The two free parameters can be determined by specifying the
variance

〈
δ2

m,U

〉
and skewness

〈
δ3

m,U

〉
of the PDF as (Hilbert et al.

2011)
〈
δ2

m,U

〉
= δ2

0

[
exp

(
σ2

)
− 1

]
, (24)

〈
δ3

m,U

〉
=

3
δ0

〈
δ2

m,U

〉2
+

1
δ3

0

〈
δ2

m,U

〉3
; (25)

we derive the expression of
〈
δ2

m,U

〉
and

〈
δ3

m,U

〉
in Appendix A

(see Eq. (A.28)).
As we show later, this approximation works well for non-

negative filter functions like top-hat or Gaussian filters. How-
ever, the log-normal PDF approximation becomes less accurate
for compensated filters that include negative weights. In these
cases we instead divide U into U>(ϑ) = U(ϑ)H(ϑts − ϑ) and
U<(ϑ) = −U(ϑ)H(ϑ − ϑts), where ϑts is the transition scale
from positive to negative filter weights. As a consequence, we
obtain two correlated log-normal random variables, δm,U>

and
δm,U<

, whose joint distribution can be represented by a bi-variate
log-normal distribution as

p
(
δm,U> , δm,U<

)
=

1

2πσ>

(
δm,U> + δ0,>

)
σ<

(
δm,U< + δ0,<

) √
1 − ρ2

× exp
(
− 1

2(1 − ρ2)

[
∆2
> + ∆2

< − 2ρ∆>∆<

])
, (26)

where we defined

∆> =
ln

(
δm,U>

/δ0,> + 1
)

+ σ2
>/2

σ>
(27)

and similarly for ∆<. The correlation coefficient ρ is determined
by

ρ = ln
( 〈
δm,U>

δm,U<

〉

δ0,>δ0,<
+ 1

)
1

σ>σ<
, (28)

and in order to calculate the difference of two independent ran-
dom variables δm,U = δm,U>

− δm,U<
we can use the convolution

theorem (Arfken & Weber 2008) to get

p
(
δm,U

)
=

∞∫

−∞
dδm,U>

p
(
δm,U>

, δm,U>
− δm,U

)
. (29)

3.2. (II) :
〈
κ<ϑ|δm,U

〉

In order to calculate the expectation value of the mean conver-
gence inside an angular radius ϑ, κ<ϑ, given the matter density
contrast δm,U , we assume that both follow a joint log-normal dis-
tribution (see e.g. the discussion in Appendix B of G18). In this

case, the expectation value can be written as
〈
κ<ϑ|δm,U

〉

κ0
= exp

(
C

[
2 ln

(
δm,U/δ0 + 1

)
+ V −C

]

2V

)
− 1, (30)

where δ0 is determined with Eq. (25) and the three variables C,
V , and κ0 can be calculated from the moments

〈
δ2

m,U

〉
,
〈
κ<ϑ δm,U

〉
,

and
〈
κ<ϑ δ

2
m,U

〉
, which follow from the derivation in Appendix A

(see Eq. (A.29)):

V = ln

1 +

〈
δ2

m,U

〉

δ2
0

 , (31)

C = ln
(
1 +

〈
κ<ϑ δm,U

〉

δ0κ0

)
, (32)

κ0 =

〈
κ<ϑ δm,U

〉2 eV

〈
κ<ϑ δ

2
m,U

〉
− 2

〈
κ<ϑ δm,U

〉 〈
δ2

m,U

〉
/δ0

· (33)

We note that the assumption that δm,U is log-normal dis-
tributed is not well justified for filters with negative weights
as we mentioned in the previous section. A possible improve-
ment could be done for instance by assuming again that δm,U
is made up of two log-normal random variables, and we would
need to calculate conditional moments like

〈
κ<ϑ|δm,U>

− δm,U<

〉
.

This would significantly increase the amount of joint moments
needed in our calculation and would render fast modelling unfea-
sible. However, an improved modelling is also unnecessary at
present, given the statistical uncertainties we expect for Stage III
weak lensing surveys such as KiDS-1000. We demonstrate this
empirically in Sect. 5 by comparison to N-body simulated data,
but we also want to give a brief theoretical motivation. The aver-
age value of κ<ϑ, given that δm,U lies within the range [δmin, δmax],
is given by

〈
κ<ϑ|δm,U ∈ [δmin, δmax]

〉
=

∫ δmax

δmin
dδm,U p

(
δm,U

) 〈
κ<ϑ|δm,U

〉
∫ δmax

δmin
dδm,U p

(
δm,U

) ·

(34)

If κ<ϑ and δm,U were joint Gaussian random variables, then
p
(
δm,U

)
would be a Gaussian PDF and we would have〈

κ<ϑ|δm,U
〉

= δm,U
〈
δm,Uκ<ϑ

〉
/
〈
δ2

m,U

〉
. We now argue that the

leading-order correction to this Gaussian approximation consists
of replacing p

(
δm,U

)
by our full non-Gaussian model, without

changing
〈
κ<ϑ|δm,U

〉
, since this would be exactly correct in the

limit of strong correlation between the two variables. Our log-
normal approximation to

〈
κ<ϑ|δm,U

〉
is then already a next-to-

leading-order correction and a bi-variate log-normal approxima-
tion for

〈
κ<ϑ|δm,U

〉
would be of even higher order. While this

reasoning is admittedly only heuristic, it is proven correct by
the accuracy of our model predictions for the lensing signals in
Sect. 5.

3.3. (III) : p
(
Nap|δm,U

)

The third basic ingredient is the PDF of Nap given the projected
matter density contrast smoothed with the filter U. Assuming a
Poisson distribution for Nap, which is the most straightforward
ansatz, is unfortunately not possible because negative values are
expected with a compensated filter (i.e. in some of the U< contri-
butions). We use instead a completely new approach compared to

A137, page 4 of 20

Appendix

116



P. Burger et al.: A revised density split statistic model for general filters

F18, and derive an expression for p
(
Nap|δm,U

)
by use of the char-

acteristic function (Papoulis & Pillai 1991, hereafter CF), which
is an alternative representation of a probability distribution, sim-
ilar to the moment generating functions, but based on the Fourier
transform of the PDF. Of interest to us, the n th derivative of the
CFs can be used to calculate the n th moment of the PDF. The
CF corresponding to p

(
Nap|δm,U

)
is defined as

Ψ(t) =
〈
eitNap

〉
δm,U

=

∫

R

dNap p
(
Nap|δm,U

)
eitNap , (35)

where in our particular case, we derive in Appendix A.4 a closed
expression as

Ψ(t) = exp
(
2πn0

∫ ∞

0
dϑ ϑ

(
1 + b

〈
wϑ|δm,U

〉) [
eitU(ϑ) − 1

])
(36)

with n0 being the mean number density of foreground galaxies
on the sky. The assumption of linear galaxy bias enters here by
the term b

〈
wϑ|δm,U

〉
, with

wϑ =
1

2π

∫ 2π

0
dφ δm,2D(ϑ, φ). (37)

Hence, n0
(
1 + b

〈
wϑ|δm,U

〉)
is the effective number density at ϑ

given δm,U . The conditional expectation value
〈
wϑ|δm,U

〉
is given

in analogy to Eq. (30), but replacing
〈
κ<ϑ δ

k
m,U

〉
→

〈
w<ϑ δ

k
m,U

〉
in

Eqs. (31)–(33) for k = 1, 2 and using that

〈
wϑ|δm,U

〉
=

〈
w<ϑ|δm,U

〉
+
ϑ

2
d

dϑ
〈
w<ϑ|δm,U

〉
, (38)

where the joint moments
〈
w<ϑ δ

k
m,U

〉
are also derived in

Eq. (A.30). Next, we re-express Eq. (36) as the product of two
terms,

Ψ(t) = exp[p(t)] exp[iq(t)], (39)

where

p(t) = 2πn0

∫ Rmax

0
dϑ ϑ

(
1 + b

〈
wϑ|δm,U

〉)
(cos[tU(ϑ)] − 1),

(40)

q(t) = 2πn0

∫ Rmax

0
dϑ ϑ

(
1 + b

〈
wϑ|δm,U

〉)
sin [tU(ϑ)], (41)

and Rmax is the angular radius beyond which U vanishes. We
note that G18 and F18 found super-Poisson shot-noise in their
work. They interpret these deviations from Poisson noise as
having a number ,1 of galaxies per Poisson halo. This would
suggest that we could incorporate non-Poissonian behaviour by
replacing n0 with an effective density of Poisson halos and
making this a free parameter of our model. However, more
recent investigations (e.g. Friedrich et al., in prep.) cast doubt
on the simplified interpretation of F18 and G18. A proper
investigation of the problem of non-Poissonian shot-noise is
beyond the scope of this work, and we will address it in future
investigations.

Finally, the probability density function p
(
Nap|δm,U

)
follows

from the inverse Fourier transform of the CF

p
(
Nap|δm,U

)
=

1
2π

∫

R

dt exp(−itNap)Ψ(t)

=
1

2π

∫

R

dt cos
(
q(t) − tNap

)
exp[p(t)], (42)

where the second step follows from the fact that the imaginary
part cancels out.

In Appendix A.4 we discuss a similar approach, where
we assume that p

(
Nap|δm,U

)
is log-normal distributed. In that

case, to specify the PDF, only the first three moments are
needed, which follow from derivatives of the CF. As shown in
Appendix A.4 both methods yield almost identical results, and
since the log-normal approach is significantly faster, we use it
hereafter, unless otherwise stated.

To summarise, the major changes compared to the F18 model
are the following:
1. To determine p

(
δm,U

)
we

– updated the calculation of the variance
〈
δ2

m,U

〉
and of the

skewness
〈
δ3

m,U

〉
in Appendix A to general filter func-

tions;
– combine in Eqs. (26)–(29) two log-normal random vari-

ables for the positive and negative parts for compensated
filters to obtain the final expression for any filter shape.

2. To determine p
(
Nap|δm,U

)
we

– calculate the characteristic function of galaxy shot-noise
around a given matter density profile via Eq. (35);

– use log-normal approximation or inverse Fourier trans-
form Eq. (42) to obtain the PDF of shot-noise from its
characteristic function.

3. To determine
〈
κ<ϑ|δm,U

〉
we

– updated the calculations of
〈
κ<ϑ δm,U

〉
and

〈
κ<ϑ δ

2
m,U

〉
to

general filter functions (see Appendix A).

4. Simulation data

Before using our revised model in data analyses, it is mandatory
to quantify its precision and range of validity. We use for this
validation exercise three simulations suites:

– the full-sky gravitational lensing simulations described in
Takahashi et al. (2017, hereafter T17), with which we carry
out a detailed investigation of the model in a simple survey
configuration;

– the cosmo-SLICS simulations, described in Harnois-Déraps
et al. (2019), with which we validate our model on a inde-
pendent simulation suite;

– the SLICS simulations, described in Harnois-Déraps et al.
(2018), with which we construct a KiDS-1000 like covari-
ance matrix.

4.1. T17 simulations

The T17 simulations are constructed from a series of nested
cubic boxes with side lengths of L, 2L, 3L, . . . placed around
a fixed vertex representing the observer’s position, with L =
450 Mpc h−1. Each box is replicated eight times and placed
around the observer using periodic boundary conditions. The
number of particles per box is fixed to 20483, which results in
higher mass and spatial resolutions at lower redshifts. Within
each box three spherical lens shells are constructed, each with
a width of 150 Mpc h−1, which are then used by the public
code GRayTrix2 to trace the light-ray trajectories from the
2 http://th.nao.ac.jp/MEMBER/hamanatk/GRayTrix/

A137, page 5 of 20

117



A&A 661, A137 (2022)

observer to the last scattering surface3. With the N-body code
gadget2 (Springel et al. 2001) the gravitational evolution of
dark matter particles without baryonic processes are followed
from the initial conditions, which in turn are determined by use
of second-order Lagrangian perturbation theory. The initial lin-
ear power spectrum followed from the Code for Anisotropies
in the Microwave Background (CAMB; Lewis et al. 2000) with
Ωm = 1 − ΩΛ = 0.279, Ωb = 0.046, h = 0.7, σ8 = 0.82, and
ns = 0.97. The matter power spectrum agrees with theoretical
predictions of the revised Halofit (Takahashi et al. 2012) within
5%(10%) for k < 5(6) h Mpc−1 at z < 1. In order to account
for the finite shell thickness and angular resolution, T17 provide
correction formulae, which we repeat in Appendix B. Although
various resolution options are available, for our purpose the real-
isations with a resolution of nside = 4096 are sufficient.

We use the publicly available matter density contrast maps
to create a realistic lens galaxy catalogue that mimics the sec-
ond and third redshift bins of the luminous red galaxies sam-
ple constructed from the KiDS-1000 data (Vakili et al. 2019),
as shown by the solid lines in Fig. 1. The reason to mock the
LRG sample is that the galaxy bias for this kind of galaxies
can be roughly described with a constant linear bias, which
is needed for the analytical model. We excluded the lowest-
redshift lens bin, first because of its low galaxy number den-
sity (n0 = 0.012 gal arcmin−2) in which the shot-noise level is
significant, and second because the density field is more non-
linear, and hence we expect the log-normal approximation to
break down. Since there is a significant overlap between the
KiDS-1000 sources and the lenses in the fourth LRG redshift
bin, we reject it as well. To create our lens galaxy samples we
first project the T17 3D density maps δm,3D following the n(z)
shown as the step functions in Fig. 1 to get two δm,2D maps. For
both maps we then distribute galaxies following a Poisson distri-
bution with parameter λ = n

(
1 + b δm,2D

)
, where b is a constant

linear galaxy bias and n is chosen such that the galaxy number
density is n0 = 0.028 gal arcmin−2 for the second bin (hereafter
the low-redshift bin zlow

l ) and n0 = 0.046 gal arcmin−2 for the
third lens bin (hereafter the high-redshift bin zhigh

l ). Since our
method requires a constant linear galaxy bias, we specify a bias
of 1.72 for lens bin two and 1.74 for lens bin three, similar to
those reported in Vakili et al. (2019). F18 found this linear bias
assumption to be accurate enough for year 1 data of the Dark
Energy Survey, which is similar in constraining power to our tar-
get KiDS data (but we note that an investigation of higher-order
biasing is underway in Friedrich et al., in prep.).

In our validation test, we use a shear grid at a single source
plane located at z = 0.8664, indicated by the black dashed line in
Fig. 1. F18 showed that the model works for realistic redshift dis-
tributions, and this choice simplifies the generation of our source
catalogues. Furthermore, in order to determine a realistic covari-
ance matrix, we transform the shear field into an observed ellip-
ticity field by adding shape noise to the shear grid as

εobs =
εs + g

1 + εsg∗
, (43)

where εobs, εs, and γ are complex numbers, and the asterisk
(∗) indicates complex conjugation. The source ellipticities εs

per pixel are generated by drawing random numbers from a
Gaussian distribution with width

σpix =
σε√

ngalApix
≈ 0.29, (44)

3 These maps are freely available for download at http://cosmo.
phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/
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Fig. 1. Lens galaxy redshift distribution constructed from the T17 sim-
ulation given the true n(z) of the second zlow

l and third zhigh
l LRG bin

(Vakili et al. 2019). The black dashed line shows the redshift of the
source galaxies.

where Apix is the pixel area of the shear grid, and the effective
number density ngal and σε are chosen such that they are con-
sistent with the KiDS data. While this transformation is valid in
terms of the reduced shear g = γ/(1 − κ), we use throughout this
paper the approximation γ ≈ g, as the typical values for the con-
vergence are small, |κ| � 1. We neglect the intrinsic alignment
of galaxies in this work.

4.2. Extracting the model components from the T17
simulations

In order to validate the different components of our model, we
need to extract p

(
δm,U

)
, p

(
Nap

)
, and 〈γt|Q〉 from the simula-

tion. The first two follow directly by smoothing the maps of the
projected density contrast and the lens galaxy with the corre-
sponding filters. This smoothing can be performed in two differ-
ent ways. The first is to use the healpy function query_disc,
which finds all pixel centres that are located within a given
radius, whereas the second approach uses the healpy function
smoothing, with a given beam window function created by the
function beam2bl. The two approaches result in PDFs that dif-
fer slightly, since the query_disc does not reproduce an exact
top-hat, while the smoothing approach is only over a finite
`-range. Nevertheless, we found that both approaches are con-
sistent for nside = 4096 well within the uncertainty we estimate
from 48 sub-patches (see discussion below), and hence we use
the second approach which is significantly faster.

The tangential shear information 〈γt|Q〉 is measured for each
quantile Q by the software treecorr (Jarvis et al. 2004) in 15
log-spaced bins with angular separation Θ/20 < ϑ < Θ, where
Θ is the size of the filter being used. For the top-hat filter we
measured the shear profiles from 6′ < ϑ < 120′, corresponding
to a filter with a size of 120′. We note here that for all mea-
sured shear profiles the shear around random points is always
subtracted, which ensures that the shear averaged over all quan-
tiles for one realisation vanishes by definition.

In order to have an uncertainty for all three model quanti-
ties, we divide the full-sky map into 48 sub-patches, such that
each patch has a size of approximately 859.4 deg2. For p

(
δm,U

)

and p
(
Nap

)
we determined for each sub-patch one distribution,

such that we were able to calculate a standard deviation from
48 values for each bin in the PDF. For the covariance matrix we
use 10 out of the 108 realisations and divide each full-sky map in
48 sub-patches, which then results in a covariance matrix mea-
sured from 480 fields. Furthermore, both for the covariance and
for the error bars in the plotted shear profiles we use Eq. (43) to
create noisy shear profiles for each sub-patch, which are then re-
scaled to the effective KiDS-1000 area (see Giblin et al. 2021).
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4.3. Cosmo-SLICS

We use the cosmo-SLICS simulations described in Harnois-
Déraps et al. (2019) to determine the validity regime of our
revised model for different cosmologies. These are a suite
of weak lensing simulations sampling 26 points (listed in
Table B.1) in a broad cold dark matter (CDM) parameter space,
distributed in a Latin hypercube to minimise interpolation errors.
Specifically, the matter density Ωm, the dimensionless Hubble
parameter h, the normalisation of the matter power spectrum σ8,
and the time-independent equation-of-state parameter of dark
energy w0 are varied over a range that is large enough to comple-
ment the analysis of current weak lensing data (see e.g. Harnois-
Déraps et al. 2021). Each simulation follows 15363 particles
inside a cube of co-moving side length Lbox = 505 h−1 Mpc
and nc = 3072 grid cells on the side, starting with initial con-
ditions produced with the Zel’dovich approximation. Moreover,
the cosmo-SLICS evolve a pair of simulations at each node,
designed to suppress the sampling variance (see Harnois-Déraps
et al. 2019, for more details). Each cosmological model is ray-
traced multiple times to produce 50 pseudo-independent light
cones of size 100 deg2.

For each realisation, we create KiDS-1000-like sources
and KiDS-LRG-like lens catalogues, following the pipeline
described in Harnois-Déraps et al. (2018); notably, we repro-
duce exactly the source galaxy number density and n(z) that
is used in Asgari et al. (2021), who report a total number
density ngal = 6.93 arcmin−2 and a redshift distribution esti-
mated from self-organising maps (see Wright et al. 2020). These
mock galaxies are then placed at random angular coordinates
on 100 deg2 light cones. In contrast to the T17 mocks, we test
our model with two source redshift bins, corresponding to the
KiDS-1000 fourth and fifth tomographic bins (hereafter zlow

s and
zhigh

s ). The source galaxies are assigned a shear signal γ from a
series of lensing maps, following the linear interpolation algo-
rithm described in Sect. 2 in Harnois-Déraps et al. (2018). For
our lens sample we opted to include the second and third tomo-
graphic bin of the LRG galaxies described in Vakili et al. (2019)
(zlow

l and zhigh
l ). Compared to the T17 values, the n(z) of the

cosmo-SLICS LRG mocks have a coarser redshift resolution
of the simulations. Moreover, the n(z) vary slightly for differ-
ent underlying cosmologies, due to variations in the relation
between co-moving distance and redshift. Following Vakili et al.
(2019), we generate our LRG catalogues assuming a constant
linear galaxy bias of 1.72 and 1.74, with a galaxy number den-
sity of n0 = 0.028 gal arcmin−2 and n0 = 0.046 gal arcmin−2.

4.4. SLICS

In total the SLICS4 are a set of over 800 fully independent
realisations similar to the fiducial ΛCDM cosmo-SLICS model.
The underlying cosmological parameters for each run are the
same, fixed to Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0473,
h = 0.6898, σ8 = 0.826 and ns = 0.969 (see Hinshaw et al.
2013). For Fourier modes k < 2.0 h Mpc−1, the SLICS and
cosmo-SLICS three-dimensional dark matter power spectrum
P(k) agrees within 2% with the predictions from the Extended
Cosmic Emulator (see Heitmann et al. 2014), followed by a
progressive deviation for higher k-modes (Harnois-Déraps et al.
2018). We use the SLICS to estimate a reliable covariance
matrix, which, combined with the cosmo-SLICS, allows us to

4 The SLICS are made publicly available on the SLICS portal at
https://slics.roe.ac.uk/
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Fig. 2. Redshift distributions of the second and third LRG (lens) bins
and the last two KiDS-1000 (source) bins of the SLICS simulations.
The n(z) are scaled such that a comparison is possible.

test our model for a simulation that is independent of T17. Sim-
ilar to the T17 simulations, the signal of the SLICS is combined
with the randomly oriented intrinsic shapes εs to create elliptici-
ties, whereas εs is drawn from a Gaussian distribution with width
σε directly since the shear information are given here per galaxy.
We added an additional layer of realism and used a redshift-
dependent shape noise that better reproduces the data properties.
Specifically, we used σε = 0.25 and 0.27 for the source bins, as
reported in Giblin et al. (2021).

4.5. Extracting the SLICS and cosmo-SLICS data vector

The extraction of the data vector for the SLICS and cosmo-
SLICS analyses is similar to the T17 case, where shape noise
was not included for the cosmo-SLICS data vector to better cap-
ture the cosmological signal. Another slight difference is that the
light cones are now square, which accentuates the edge effects
when the aperture filter overlaps with the light-cone boundaries.
In principle, it is possible to weight the outer rims for each Nap
map, so that the whole map can be used. Although this would
increase our statistical power, it could also introduce a system-
atic offset. We opted instead to exclude the outer rim for each
realisation resulting in an effective area of (10−2Θ)2 deg2 with Θ
the size of the corresponding filter. This procedure also ensures
that roughly the same number of background galaxies are used
to calculate the shear profile around each pixel.

5. Testing the revised model

We used the simulations described in Sect. 4 to test our revised
model and its accuracy in predicting shear profiles. Following
the results of F18 we chose a top-hat filter of 20′ as our start-
ing point and we considered a number of more general filters
with a similar angular extent, shown in Fig. 3. Our motivation
for studying these filters is as follows: We use a Gaussian filter to
test whether the model performs well for non-constant but posi-
tive filters; the “adapted” filter is the filter that results from B20;
the “Mexican” filter removes the local minimum at ϑ ∼ 40′; the
“broad Mexican” has a larger width; finally, the “wide Mexican”
suppresses the negative tail. In order to lower the amplitude of
the negative part while keeping a similar width, we adjusted the
upper bound of the wide-Mexican filter to conserve the compen-
sation to 150′, which makes it better suited to large contiguous
survey areas.

Before comparing our model to the simulations, we note that
we are using here the revised model even for the top-hat filter,
for which we could instead use the F18 model directly. Notably,
the derivations of

〈
δ2

m,U

〉
and

〈
δ3

m,U

〉
are identical in the revised

model, and we show in the following plots for the top-hat filters
that both models yield almost identical results in predicting the
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shear profiles with a top-hat filter. Therefore, from here on, we
only show results from the revised model. In the following three
sections, we validate the key model ingredients introduced in
Sects. 3.1–3.3.

5.1. Validating p
(
δm,U

)

We show in Fig. 4 the PDF of the smoothed two-dimensional
density contrast for all six filters, and for the two lens bins. We
see by inspecting the different panels that the predictions agree
with the simulations for the two lens bins within 1σ cosmic vari-
ance expected for KiDS-1000. We note here that this PDF cannot
be measured in real data, and that the real test for the accuracy of
our model are the shear signals, with larger uncertainties due to
shape noise. Nevertheless, for the top-hat and the Gaussian we
have an agreement between model and simulation well within
the 1σ, which indicates that the log-normal approximation for
theses filters is good. The other filters show stronger deviations
when using a log-normal approximation, but these are weaker
when the negative part of the filter approaches zero (wide Mex-
ican) or when the width of the filter increases (broad Mexican),
although the negative part of the broad Mexican is stronger than
for the Mexican filter. This indicates that probing on larger scales
either with a broader or wider filter the log-normal approxima-
tion is more accurate. Furthermore, when using the bi-variate
log-normal approach discussed in Sect. 3.1, the residuals are
even more suppressed, and thus we cannot recognise differences
in the match between predicted and measured PDF for all com-
pensated filters. Although the model for the compensated filters
is not as good as for the non-negative filters (top-hat and Gaus-
sian), the revised model remains consistent throughout with the
T17 simulations.

5.2. Validating p
(
Nap

)

We show in Fig. 5 how well the model can predict p
(
Nap

)
given

the galaxy distributions described in Sect. 4. As for p
(
δm,U

)
, the

best matches are observed for the non-negative filters, where the
simple log-normal PDF is used. For the compensated filters with
the bi-variate log-normal p

(
δm,U

)
we note a slight deviation in

the skewness of p
(
Nap

)
. These discrepancies are not seen when

placing galaxies at random positions regardless of any underly-
ing matter density field as shown in Fig. A.1, which indicates that
they must originate either from p

(
δm,U

)
or from the

〈
wϑ|δm,U

〉
term (we set the latter to 0 for uniform random fields). It might be
that the deviations seen in p

(
Nap

)
are exclusively caused by the

deviations in p
(
δm,U

)
, but since they are much smaller, we expect

that the assumptions made in computing
〈
wϑ|δm,U

〉
induce addi-

tional inaccuracies. Nevertheless, we show next that these devi-
ations result in shear signals whose residuals are well within the
statistical uncertainties of Stage III weak lensing surveys such
as KiDS-1000. However the accuracy of the

〈
wϑ|δm,U

〉
term will

likely need to be improved for future surveys like Euclid, as dis-
cussed in Sect. 3.2.

5.3. Validating 〈γt|Q〉
Having quantified the accuracy of the basic ingredients of our
model, we are now in a position to compare the predicted and
measured shear profiles. This is a major result of our paper,
which is shown in Fig. 6. Following G18, we used five quantiles
and we measured the shear profiles up to 120′ (or 150′ for the
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Fig. 3. Different filters U used in this work to verify the new model. For
all filters we scaled the first bin value to 1/arcmin−2 for comparison.
The corresponding Q-filters are shown in Fig. B.1. The wide Mexican
filter extends up to 150′.

wide Mexican case). For the top-hat, Gaussian, and wide Mex-
ican filters we see no significant deviations between the model
and the simulations. For the adapted and the smaller Mexicans
the shear profiles show minor discrepancies in some quantiles
and at large angular scales, but are always consistent within the
KiDS-1000 accuracy. The shapes of the signals are affected by
the choice of the filter. We can observe shifts in the peak posi-
tions and changes in the slope of the signals especially at small
scales. This will allow us in the future to select filters that opti-
mise the signal-to-noise ratio of the measurement, while being
clean of systematics related to small-scale inaccuracies. Finally,
we show in Fig. B.2 that for the compensated filter the difference
in using the proposed bi-variate log-normal approach is slightly
more accurate than using a plain log-normal. Although the differ-
ence does not change the final results noticeably, and although
it introduces some inconsistency in the sense that we use a bi-
variate approach for p(δm,U) but not for

〈
κ<θ|δm,U

〉5, we decided
to stay with the proposed ansatz because it is slightly more accu-
rate, and we plan to use p

(
Nap

)
in future analysis.

In order to check whether the discrepancies seen for some
compensated filters yield biased results, we performed an
MCMC analysis. As our data vector we used the T17 shear pro-
files shown in Fig. 6, where we made a conservative cut and
included only scales above 14′, since as shown in F18 the model
is not fully accurate for small angular scales. For the compar-
ison we decided to use the adapted filter and the top-hat filter
to have one analysis with and one without these discrepancies.
Furthermore, since the mean aperture mass summed over all
quantiles vanishes per definition, one of the five shear signals is
fully determined by the others, and so we discarded for all cases
the middle quantile with the lowest signal. Thus, we ended up
with data and model vectors of size 88. As explained previously,
we measured our covariance matrix from ten T17 simulations,
each divided into 48 sub-patches, for a total of 480 sub-patches.
We note here that the galaxy number density can slightly devi-
ate between the different realisations due to the Poisson sam-
pling. Given the amplitude of these small fluctuations, these can
be safely neglected. Next we de-biased the inverse covariance

5 Since the impact is already quite small when adjusting p
(
Nap

)
, we

are confident that also using a bi-variate approach for
〈
κ<θ |δm,U

〉
would

result in even smaller improvements as discussed in greater detail at the
end of Sect. 3.2.
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Fig. 4. PDF of δm,U smoothed with the filters shown in Fig. 3. The orange shaded region is the standard deviation of 48 sub-patches scaled by
a 777.4/859.4, where 777.4 deg2 is the effective survey area of KiDS-1000 (see Giblin et al. 2021) and 859.4 deg2 is the area of one sub-patch.
The red dashed curve corresponds to a log-normal PDF with the measured moments

〈
δ2

m,U

〉
and

〈
δ3

m,U

〉
from the smoothed T17 density maps, and

indicates the accuracy using a log-normal PDF. The green and the black dashed lines are both from the model; the green corresponds to the PDF
of δm,U when using log-normal and the black using the bi-variate approach described in Eq. (26). Lower panels: residuals ∆p

(
δm,U

)
of all lines

with respect to the simulations.

matrix C−1 following Hartlap et al. (2007),

C−1 =
n − p − 2

n − 1
Ĉ−1, (45)

where n is the number of simulations (480) and p the size of
the data vector (88). Finally, given our data d measured from
only one noise-free T17 realisation, and our model vector m, we
measured the χ2 statistics as

χ2 = [m − d]T C−1 [m − d] . (46)

Given this set-up we ran an MCMC varying the matter den-
sity parameter Ωm and normalisation of the power spectrum σ8
for the adapted and the top-hat filters, where we marginalised
over the biases of the lens samples. As shown in Fig. 7 the
analysis with the adapted filter results in a biased inference for
the Ωm-σ8-plane (although still within 1σ); this is not the case
for the top-hat filter. We note here that this bias is due to the
systematic offset in the slope of the highest quantile, which in
turn is is highly sensitive to Ωm. Since the amplitude of the
shear profiles are correct and these are highly correlated with
the S 8 = σ8

√
Ωm/0.3 parameter, the contours shift to smaller

σ8 values in order to compensate for the bigger Ωm value6. In
the next section we calibrate the model to investigate whether
this systematic bias can be corrected.

6 The calibration of the residual in the highest quantile alone led to an
unbiased result.

5.4. Calibrating the model

In this section we calibrate the remaining small inaccuracies of
the analytical model seen in Fig. 6 which result in the system-
atic bias we had observed in the parameter constraints shown
in Fig. 7. For this we decided to divide out for each quantile
the residuals between the model, γMT , at the T17 cosmologi-
cal parameters, pT17, and the noiseless shear profiles measured
from the T17 simulations, γT17, such that the calibrated model at
parameters p is defined as

γM,cal(p) = γM(p)
γT17

γM(pT17)
· (47)

Since we used the n(z) combinations of the fiducial cosmo-
SLICS shown in Fig. 2 to validate the calibration, we decided to
use the n(z) shown in Fig. 1, and in order to have the source n(z)
as close as possible to the one of the cosmo-SLICS we averaged
several T17 shear grids at different redshifts for the same realisa-
tion weighted by the source n(z) shown in Fig. 2. In Fig. B.4 we
show the calibration vectors for the highest and lowest quantile
for the top-hat and adapted filter, where it can be seen that the
different lens n(z) is more important than the source n(z).

Next, in order to investigate whether the calibration
decreases the systematic biases we performed another MCMC
analysis on independent simulations, where our data vector is
the fiducial cosmology from the cosmo-SLICS shear profiles
shown in Fig. 8, with the original model in red and the cali-
brated one in black. As before we used the adapted filter and
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Fig. 5. PDF of Nap calculated with the filters U in Fig. 3. The orange lines are determined with the simulations and the orange shaded region is the
standard deviation from 48 sub-patches. The black dashed lines correspond to the results from the new model, and for comparison the red dashed
line in the upper left panel is from the old model. Lower panels: residuals ∆p

(
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)
of all lines with respect to the simulations.

the top-hat filter. The match between the predicted and mea-
sured shear profiles is slightly degraded compared to the T17
simulations, which could be caused by edge effects (contiguous
full-sky vs. 100 deg2 patches), the smaller statistic (41 253 deg2

vs. 5000 deg2), or differences in the underlying matter power
spectrum P(k) that is used in the model. We use the Takahashi
et al. (2012) Halofit function throughout this paper, which is
calibrated on the same N-body code that is used to create the
T17 simulations (Springel et al. 2001, Gadget2), and which
is known to have an excess power of 5–8% in the mildly non-
linear regime (Heitmann et al. 2014). The cosmo-SLICS, in
contrast, are produced from cubep3m (Harnois-Déraps et al.
2013), whose P(k) agrees better with the Cosmic Emulator of
Heitmann et al. (2014). We tested different choices of power
spectra models calculated with the pyccl package (Chisari
et al. 2019), but found differences in the predicted shear pro-
files that are negligible compared to the expected KiDS-1000
uncertainties.

Discarding again the middle quantile with the lowest signal,
using four different redshift combinations (Sect. 4.3) and the sig-
nal at all scales because the model is calibrated at all scales, we
have data and model vectors of size 160. In this scenario we cal-
culated our covariance matrix from 614 SLICS simulations7 with
shape noise that mimics the KiDS-1000 data. After de-biasing
the inverse covariance matrix C−1 with Eq. (45) we calculated
the χ2 with Eq. (46). Given this set-up we ran multiple MCMC,
where we used the original model and the calibrated model. As
shown in Fig. 9 the calibrated model for the adapted filter results

7 For the remaining ∼200 realisations we have no corresponding lens
galaxy mocks.

compared to the original model in less a biased inference. Inter-
estingly, the results for the top-hat filter seen in Fig. B.3 are
slightly more biased than the calibrated model for the adapted
filter. Since this offset is still inside 1σ, it is likely to be only a
statistical fluke due to the remaining residual between model and
cosmo-SLICS simulations. The constraining power between top-
hat and adapted filter are different because the smoothing scales
of the two filters were not adjusted as in Burger et al. (2020), and
are here sensitive to different physical scales. Nevertheless, we
show in Table 1 the resulting constrains for both filters, where it
is seen that the calibration moves the results, also for the top-hat
filter, closer to the truth.

In order to compare our results with those of G18, who
derived constraints of Ωm = 0.26+0.04

−0.03 and S 8 = 0.90+0.10
−0.08

with their fiducial analysis, we need to multiply our uncer-
tainty intervals by

√
777.4/1321 to account for the smaller

area of KiDS-1000 (777.4 deg2) compared to the DES Y1
area (1321 deg2). Furthermore, we exclusively used information
about the shear profiles, whereas G18 also used the mean aper-
ture number in each quantile. For this work we were a bit scepti-
cal about using the aperture number here for the compensated fil-
ters because we have significant residual discrepancies between
model and simulation, which would affect our analysis. The
match of the shear profiles in turn is very accurate in our simu-
lations, which shows that they are robust against uncertainties in
P

(
Nap

)
8. For instance, if one monotonically transforms the Nap

values, the predicted P
(
Nap

)
changes, but the segmentation into

8 The predicted shear profiles do not change significantly even if the
predicted P

(
Nap

)
is substituted with the measured P

(
Nap

)
.
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Fig. 6. Predicted shear profiles for the two lens samples (dashed black line) and measured shear profiles (in orange) for the new model with filter U.
The orange shaded region is the standard deviation on the mean from 48 sub-patches, scaled to the KiDS-1000 area. The residuals between model
and simulations were tested to determine whether they can be erased when the PDF of the aperture number is fixed to the measured value from
T17, but the same discrepancies were present.

quantiles is not affected, hence the shear profiles would remain
the same. In order to use P

(
Nap

)
in future analysis we need to

model shot noise in the galaxy distribution and investigate if
the residuals between model and simulations result in system-
atic biases, but we will keep this for future work. Nevertheless,
we see that our constraints from using only information about
the shear profiles can be similar to the ones in G18. In addi-
tion, due to the calibration method used here, smaller smoothing
scales are available than those recommended in F18, where even
the top-hat filter has significant deviations. This could allow us
to further improve the significance for future DSS analyses or to
investigate effects such as baryonic feedback and intrinsic align-
ments, which are typically relevant on scales <10 Mpc h−1.

6. Summary and conclusion

In our previous work (Burger et al. 2020) we showed that using
compensated filters in the density split statistic (DSS) to quan-
tify over- and underdense regions on the sky have advantages
compared to the top-hat filter, both in terms of the overall S/N
and of recovering accurately the galaxy bias term. Furthermore,
we expect that compensated filters are less influenced by bary-
onic effect, since they are more confined in Fourier space and
therefore are better in smoothing out large `-modes where bary-
onic effects play an important role. This will be investigated in
more detail in a follow-up paper, when we start dealing with real
data. Gruen et al. (2016) demonstrated that the DSS is a powerful
cosmological tool by constraining cosmological parameters with
DSS measurements from the Dark Energy Survey (DES) First
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and the T17 simulations as our data vector and a covariance matrix cal-
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the adapted filter a systematic bias for σ8 and Ωm is found, although it
cancels out for the S 8 = σ8

√
Ωm/0.3 parameter. The contours here are

marginalised over the lens galaxy bias parameters.
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Fig. 8. Shear profiles for the top-hat filter (left) and for the adapted filter (right) for the fiducial cosmology of cosmo-SLICS. The orange lines
are the mean shear profiles and the orange shaded region is the expected KiDS-1000 uncertainty. The red dashed line corresponds to the original
model and the black to the calibrated model.

Year and Sloan Digital Sky Survey (SDSS) data, using the DSS
model derived in Friedrich et al. (2018) which uses a top-hat fil-
ter. They found for the matter density parameter Ωm = 0.26+0.04

−0.03,
a constraint that agrees with and is competitive with the DES
analysis of galaxy and shear two-point functions (see Abbott
et al. 2018).

Following these works, we modify the model of Friedrich
et al. (2018) in such a way that it can predict the shear pro-
files 〈γt|Q〉 for a given quantile Q of the aperture number Nap
for general filters (Gaussian and also compensated filters). This
is achieved by recalculating the three basic ingredients, which
are the PDF of the projected matter density contrast smoothed
with the filter function, p

(
δm,U

)
; the expectation value of the

convergence inside a radius ϑ for a fixed smoothed matter den-
sity contrast,

〈
κ<ϑ|δm,U

〉
; and the distribution of Nap for the

given filter function U given the smoothed matter density con-
trast, p

(
Nap|δm,U

)
. For

〈
κ<ϑ|δm,U

〉
we modified the calculation

of the moments for general filters, while we introduced new
approaches to calculate p

(
Nap|δm,U

)
and p

(
δm,U

)
for compen-

sated filters. For non-negative filters, δm,U is well described by
a log-normal PDF, although we found significant deviations for
compensated filters. To solve this issue we used a bi-variate log-
normal ansatz, where we assumed that δm,U can be divided into
two log-normal random variables with each separately following
a log-normal distribution. For the calculation of p

(
Nap|δm,U

)
we

derived an expression for the corresponding characteristic func-
tion, which can be used either directly to calculate p

(
Nap|δm,U

)

by inverse Fourier transformation or by calculating the first
three moments, which then specify a log-normal distribution for
p
(
Nap|δm,U

)
. The differences between these two approaches are

considerably smaller than the statistical uncertainty, and so we
used the latter approach because of its smaller computational
time.
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Fig. 9. MCMC results for the adapted filter using the original and cali-
brated model. The data vector is calculated from the fiducial cosmology
of cosmo-SLICS and a covariance matrix from 614 SLICS realisations.
It is clearly seen that the calibrated model is less biased than the original
one. The contours are marginalised over the lens galaxy bias parameters.

In order to validate the revised model, we compared it to the
Takahashi et al. (2017) simulations. For non-negative filters like
a top-hat or a Gaussian, no significant difference between the
model and simulations for the PDF or the tangential shear pro-
files were detected. For compensated filters, however, we found
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Table 1. Overview of the maximum-posterior cosmologies with the
constraining power that we obtain for the original and calibrated model.

Ωm σ8 S 8

ad. original 0.332+0.089
−0.060 0.760+0.072

−0.077 0.814+0.039
−0.031

th. original 0.320+0.068
−0.048 0.774+0.069

−0.060 0.812+0.028
−0.022

ad. calibrated 0.298+0.084
−0.056 0.809+0.078

−0.080 0.824+0.038
−0.033

th. calibrated 0.309+0.058
−0.051 0.794+0.067

−0.062 0.812+0.027
−0.021

Notes. For all results we marginalise over the biases b of the lenses.
The input cosmology of the fiducial cosmo-SLICS is Ωm = 0.2905,
σ8 = 0.8364 and thus S 8 = σ8

√
Ωm/0.3 = 0.8231. We fixed the time-

independent equation-of-state parameter of dark energy w0 = −1.0 and
Hubble parameter h = 0.6868 to their true values. We note that the
parameter uncertainties increase slightly if we also vary parameters like
w0, h, or the scalar spectral index ns.

some discrepancies in the predicted PDF of Nap and shear sig-
nals, which results in a biased inference, although still inside 1σ.
To correct this biased result, we calibrated the model to match
the noiseless Takahashi et al. (2017) and tested the calibrated
model with the independent fiducial cosmology of cosmo-SLICS
(Harnois-Déraps et al. 2019). With the calibration applied, all
systematic biases are removed, so we are confident that we
can apply the model to Stage III surveys such as KiDS-1000.
Although this calibration is less important for the top-hat and
Gaussian filter, it is still an interesting approach because it allows
even smaller scales to be used for both the shear profiles and the
filter scales. The use of smaller scales, where the original mod-
els fail, makes it possible to increase the constraining power or to
study baryonic effects that normally play an important role only
at small scales.

After passing all these tests, we are confident that the revised
model can be readily applied to Stage III lensing data. We note
that a number of systematic effects related to weak lensing analy-
ses will require external simulations, notably regarding the inclu-
sion of secondary signal from the intrinsic alignments of galax-
ies, or from the impact of baryonic feedback on the matter dis-
tribution. However, our model is able to capture the uncertainty
on the lens and source redshift distribution, the shape calibration
bias, or the galaxy bias at a low computational cost, and is there-
fore ideally suited to perform competitive weak lensing analyses
in the future.
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Appendix A: Detailed derivations for the new model

In this appendix we show more detailed derivations of the results than in the main text. We start with the calculation of the variances
or covariances in the flat-sky approximation, continue with calculations of the third-order moments and finish with the derivation of
the PDF of the aperture number given a smoothed density contrast by use of the characteristic function.

A.1. Variance and skewness for general filters at leading order in perturbation theory

Although analytical possible we decided against using the bi-spectrum to calculate third-order moments like the skewness. Instead
we use a formalism where we calculate the second- and third-order moments of the smoothed density contrasts within cylinder
of physical radius R and physical length L using the flat-sky approximation shown in Appendix B in F18 for a top-hat filter, and
apply it to our case with a general filter U. Numerically, this approach is faster since, as we will see below, it is possible to express
the third-order moments in terms of second-order moments. Another advantage is that the projection is only along one dimension
(radius of the cylinder) compared to the bi-spectrum, where the projection is at least along a 2D grid. Following F18 we start by
considering a cylinder of radius R and length L. In Fourier space the top-hat filter for such a cylinder is given by

WR,L(k) =
1

(2π)3

sin(Lk||/2)
Lk||/2

2J1(k⊥R)
k⊥R

≡ 1
(2π)3

sin(Lk||/2)
Lk||/2

W th
R (k⊥), (A.1)

where J1 is the first Bessel function, and k|| and k⊥ are the components of k parallel and orthogonal to the cylinder, respectively. The
variance of the matter contrast within such a cylinder is given at leading order by

〈
δ2

R,L

〉
(χ) = D2

+

∫
dk|| d2k⊥

sin2(Lk||/2)
(
Lk||/2

)2

[
W th

R (k⊥)
]2

Plin,0(k⊥) ≈ 2πD2
+

L

∫
dk k

[
W th

R (k)
]2

Plin,0(k), (A.2)

where the last expression follows from L � R, and since the integration depends from now on only on k⊥ we write the orthogonal
component as k. The linear matter power spectrum of Plin,0 is calculated using Eisenstein & Hu (1998), and D+ is the growth factor
which depends on the conformal time. We note that the factor 1/L cancels out when projecting the moments in Eq. (A.28-A.30)
using the Limber approximation (Limber 1953). According to this derivation for a top-hat filter we get for a general filter U that

WUχ
(k) =

2π∫

0

∞∫

0

dr dϑUχ(r) e−ikr cosϑ = 2π

∞∫

0

dr J0(kr) r Uχ(r), (A.3)

where Uχ(r) = U(r/χ) = U(ϑ)/χ2, with U(ϑ) being a filter measured in angular coordinates (see Fig. 3). Correspondingly, the
variance of the matter density contrast for a general filter U in the flat-sky approximation is

〈
δ2

U,L

〉
(χ) =

2πD2
+

L

∫
dk k W2

Uχ
(k), Plin,0(k). (A.4)

Following lines similar to those of Appendix B.4 of F18, the leading-order contribution to the skewness of matter density contrast
for the general filter U can be calculated as
〈
δ3

U,L

〉
(χ) = 3ĉπ−1

∫ ∫
dq1 dq2 q1 q2 WUχ

(q1) WUχ
(q2) Plin,0(q1) Plin,0(q2)

∫
dφ WUχ

(√
q2

1 + q2
2 + 2q1q2 cos φ

)
F2(q1, q2, φ)

≡ 3ĉπ−1
∫ ∫

dq1 dq2 q1 q2 WUχ
(q1) WUχ

(q2) Plin,0(q1) Plin,0(q2) ΦUχ
(q1, q2), (A.5)

where ĉ =
4π2D4

+

L2 . The function F2 in a general ΛCDM universe is given by

F2(q1, q2, φ) =
1
2

(
2 +

q1

q2
cos φ +

q2

q1
cos φ

)
+ (1 + µ) (cos2 φ − 1) = 1 +

1
2

cos φ
(

q1

q2
+

q2

q1

)
− (1 − µ) sin2 φ, (A.6)

where µ results from perturbation theory and is a function of the growth factor D+ (see Appendix B.1 in F18 for more details)9, and
φ is the angle between the vectors with absolute values q1 and q2. Given the definition of WUχ

in Eq. (A.3), ΦUχ
can be written as

ΦUχ
(q1, q2) = 2π

∞∫

0

dr r Uχ(r)
∫

dφ J0

(
r
√

q2
1 + q2

2 + 2q1q2 cos φ
)

F2(q1, q2, φ). (A.7)

Next, we use Graf’s addition theorem (see e.g. Abramowitz & Stegun 1972), which states that

J0

(√
q2

1 + q2
2 + 2q1q2 cos φ

)
=

∞∑

m=−∞
(−1)mJm(q1) Jm(q2) eimφ = J0(q1) J0(q2) + 2

∞∑

m=1

(−1)mJm(q1) Jm(q2) cos(mφ), (A.8)

9 For an Einstein-de Sitter universe µ = 5/7.
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such that ΦUχ
(q1, q2) becomes

2π

∞∫

0

r Uχ(r)dr
∫ 2π

0
dφ

J0(rq1) J0(rq2) + 2
∞∑

m=1

(−1)mJm(rq1) Jm(rq2) cos(mφ)


[
1 +

1
2

cos(φ)
(

q1

q2
+

q2

q1

)
− (1 − µ) sin2 φ

]

= 2π2(1 + µ)

∞∫

0

r Uχ(r)dr J0(rq1) J0(rq2)

︸                                              ︷︷                                              ︸
A

− 2π2

∞∫

0

r Uχ(r)dr J1(rq1) J1(rq2)
(

q1

q2
+

q2

q1

)

︸                                                  ︷︷                                                  ︸
B

+ 2π2(1 − µ)

∞∫

0

r Uχ(r)dr J2(rq1) J2(rq2)

︸                                              ︷︷                                              ︸
C

,

(A.9)

where we made use of the orthogonality of the trigonometric functions. Plugging ΦUχ
(q1, q2) back into Eq. (A.5) and considering

each term separately we get

A : 3ĉπ−1
∫ ∫

dq1 dq2 q1 q2 WUχ
(q1) WUχ

(q2) Plin,0(q1) Plin,0(q2) 2π

∞∫

0

dr rUχ(r) π(1 + µ) J0(rq1) J0(rq2)

= 6πĉ(1 + µ)

∞∫

0

dr rUχ(r)
[∫

dq q WUχ
(q) Plin,0(q) J0(rq)

]2

, (A.10)

and by analogy

C : 3ĉπ−1
∫ ∫

dq1dq2 q1q2 WUχ
(q1)WUχ

(q2) Plin,0(q1)Plin,0(q2) 2π

∞∫

0

dr rUχ(r) π(1 − µ) J2(rq1)J2(rq2)

= 6πĉ(1 − µ)

∞∫

0

dr rUχ(r)
[∫

dq q WUχ
(q) Plin,0(q) J2(rq)

]2

, (A.11)

and finally

B : − 3ĉπ−1
∫ ∫

dq1 dq2 q1 q2 WUχ
(q1) WUχ

(q2) Plin,0(q1) Plin,0(q2) 2π

∞∫

0

dr rUχ(r) πJ1(rq1) J1(rq2)
[
q1

q2
+

q2

q1

]

= −12πĉ

∞∫

0

dr rUχ(r)
∫

dq1 q2
1 WUχ

(q1) Plin,0(q1) J1(rq1)
∫

dq2 WUχ
(q2) Plin,0(q2) J1(rq2). (A.12)

The following transformations provide a more compressed expression for
〈
δ3

Uχ,L

〉
(χ), which can then be used to verify our

derivation by comparing it with the result from F18 for a top-hat filter. For this, we rewrite the expression of Bessel functions in
terms of W th

r (q) as

J2(rq) =
1
rq

J1(rq) − 1
q

d
dr

J1(rq) =
1
rq

J1(rq) −
[
r

d
dr

J1(rq)
rq

+
1
rq

J1(rq)
]

= −1
2

d
d ln(r)

W th
r (q), (A.13)

J0(rq) =
1
rq

J1(rq) +
1
q

d
dr

J1(rq) =
1
rq

J1(rq) +

[
r

d
dr

J1(rq)
rq

+
1
rq

J1(rq)
]

= W th
r (q) +

1
2

d
d ln(r)

W th
r (q), (A.14)

and with

1
rq

d2

dr2 J1(rq) =
1
2

d2

dr2 W th
r (q) − 2

r2

[
1
rq

J1(rq) − 1
q

d
dr

J1(rq)
]

=
1
2

d2

dr2 W th
r (q) +

1
r2

d
d ln(r)

W th
r (q), (A.15)

we get

rqJ1(rq) = J2(rq) − rq
1
q2

d2

dr2 J1(rq) = J2(rq) − r2 1
rq

d2

dr2 J1(rq) = −3
2

d
d ln(r)

W th
r (q) − r2

2
d2

dr2 W th
r (q). (A.16)

Using these relations together with the following notation

Q1(r, χ) =
2πD2

+

L

∫
dk k WUχ

(k) W th
r (k) Plin,0(k), (A.17)
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Q2(r, χ) =
2πD2

+

L

∫
dk k WUχ

(k)
d

d ln(r)
W th

r (k) Plin,0(k), (A.18)

Q3(r, χ) =
2πD2

+

L

∫
dk k WUχ

(k)
d2

dr2 W th
r (k) Plin,0(k). (A.19)

we find that

A : 6πĉ(1 + µ)

∞∫

0

dr r Uχ(r)
[∫

dq q WUχ
(q) Plin,0(q) J0(rq)

]2

= 6π(1 + µ)

∞∫

0

dr r Uχ(r)
[
Q1(r, χ) +

1
2

Q2(r, χ)
]2

, (A.20)

C : 6πĉ(1 − µ)

∞∫

0

dr r Uχ(r)
[∫

dq q WUχ
(q) Plin,0(q) J2(rq)

]2

= 6π(1 − µ)

∞∫

0

dr r Uχ(r)
[
−1

2
Q2(r, χ)

]2

, (A.21)

and

B : − 12πĉ

∞∫

0

dr r Uχ(r)
∫

dq1 q1 WUχ
(q1) Plin,0(q1) rq1J1(rq1)

∫
dq2 q2 WUχ

(q2) Plin,0(q2)
1

rq2
J1(rq2)

= −12π

∞∫

0

dr r Uχ(r)
[
−3

2
Q2(r, χ) − r2

2
Q3(r, χ)

]
1
2

Q1(r, χ). (A.22)

Finally, combining A, B, and C, the skewness of δUχ,L simplifies to

〈
δ3

U,L

〉
(χ) = 6π

∞∫

0

dr r Uχ(r)
(
(1 + µ)

[
Q1(r, χ) +

1
2

Q2(r, χ)
]2

+ (1 − µ)
1
4

Q2
2(r, χ) +

3
2

Q1(r, χ)Q2(r, χ) +
r2

2
Q1(r, χ) Q3(r, χ)

)

= 3π

∞∫

0

dr r Uχ(r)
(
2(1 + µ)

[
Q2

1(r, χ) + Q1(r, χ) Q2(r, χ)
]

+ 3Q1(r, χ) Q2(r, χ) + Q2
2(r, χ) + r2Q1(r, χ) Q3(r, χ)

)

= 3π
∫

dr Uχ(r)
d
dr

(
r2

[
(1 + µ) Q2

1(r, χ) + Q1(r, χ) Q2(r, χ)
])
, (A.23)

where it is seen that for a top-hat of size ϑ with Uχ(r) = H(ϑ − χr) the result in Eq. (B.35) immediately follows.
Although all necessary ingredients for specifying the PDF of δm,U are derived already, we still need moments like

〈
δχϑ,L δ

2
U,L

〉
(χ)

to compute quantities like
〈
κ<ϑ|δm,U

〉
or

〈
w<ϑ δ

k
m,U

〉
. With the definitions of two further integrals,

Q4(r, χϑ) =
2πD2

+

L

∫
dq q W th

χϑ(q) Plin(q) W th
r (q), (A.24)

Q5(r, χϑ) =
2πD2

+

L

∫
dq q W th

χϑ(q) Plin(q)
d

d ln r
W th

r (q), (A.25)

and using the result of F18 that for a top-hat filter of size R

Φth
R (q1, q2) =

∫
dφW th

R

(√
q2

1 + q2
2 + 2q1q2 cos φ

)
F2(q1, q2, φ) = π(1 + µ) W th

R (q1) W th
R (q2) +

π

2
d

d ln R

[
W th

R (q1) W th
R (q2)

]
, (A.26)

the joint filter moments between the matter density contrast smoothed with the general filter and the matter density contrast smoothed
with a top-hat of size ϑ follows analogously to the skewness, and is given by

〈
δϑ,L δ

2
U,L

〉
(χ) =

ĉ
π

∫ ∫
dq1 dq2 q1 q2 WUχ

(q1) WUχ
(q2) Plin,0(q1) Plin,0(q2) Φth

χϑ(q1, q2)

+
2ĉ
π

∫ ∫
dq1 dq2 q1 q2 WUχ

(q1) W th
χϑ(q2) Plin,0(q1) Plin,0(q2) ΦUχ

(q1, q2)

= (1 + µ) Q2
1(χϑ, χ) + Q1(χϑ, χ) Q2(χϑ, χ)

+ 2π
∫

dr Uχ(r)
d
dr

(
r2(1 + µ) Q1(r, χ) Q4(r, χϑ) +

r2

2
[
Q1(r, χ) Q5(r, χϑ) + Q2(r, χ) Q4(r, χϑ)

])
. (A.27)
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A.2. Limber projection

Given the moments of the smoothed density contrasts at co-
moving distance χ derived in the previous section, the moments
in Eqs. (24, 25) and Eqs. (31–33) for k = 1, 2, or 3 follow (see
e.g. Bernardeau & Valageas 2000),

〈
δk

m,U

〉
=

∫
dχ qk

f (χ) Lk−1
〈
δk

U,L

〉
(χ), (A.28)

〈
κ<ϑδ

k
m,U

〉
=

∫
dχWs(χ) qk

f (χ) Lk−1
〈
δϑ,L δ

k
U,L

〉
(χ), (A.29)

〈
w<ϑδ

k
m,U

〉
=

∫
dχ qk+1

f (χ) Lk−1
〈
δϑ,L δ

k
U,L

〉
(χ), (A.30)

where qf(χ) is the projection kernel defined in Eq. (10) and Ws(χ)
the lensing efficiency defined in Eq. (14). We note that these
three equations employ a Limber approximation, which consists
of L → ∞ (Limber 1953), and that the physical radius r of filter
U scales with χ as described below Eq. (A.3). We also note that
these expectation values are independent of L.

A.3. Non-linear regime

In order to go to the non-linear regime for second-order
moments, we replace the linear power spectrum in the above cal-
culations with the non-linear power spectrum, which in turn is
determined with the halofit model from Takahashi et al. (2012)
using an analytic approximation for the transfer function (Eisen-
stein & Hu 1998).

For the third-order moments we use that for a top-hat filter
of size R the filter simplifies to Uχ(r) = 1

πR2H(R − r), such that

Q1(R, χ) =
2πD2

+

L

∫
dk k WUχ

(k) W th
R (k) Plin,0(k)

=
2πD2

+

L

∫
dk k W th

R (k) W th
R (k) Plin,0(k)

=
〈
δ2

R,L

〉
(χ), (A.31)

and

Q2(R, χ) =
2πD2

+

L

∫
dk k WUχ

(k)
d

d ln(r)
W th

R (k) Plin,0(k)

=
2πD2

+

L

∫
dk k W th

R (k)
d

d ln(R)
W th

R (k)Plin,0(k)

=
1
2

d
d ln(R)

〈
δ2

R,L

〉
(χ). (A.32)

Furthermore, the skewness simplifies in the this case to:

〈
δ3

R,L

〉
(χ) = 3(1 + µ)

〈
δ2

R,L

〉2
(χ) +

3
2

〈
δ2

R,L

〉
(χ)

d
〈
δ2

R,L

〉
(χ)

d ln(R)
.

(A.33)

This then helps to define

S 3 ≡
〈
δ3

R,L

〉
(χ)

〈
δ2

R,L

〉2
(χ)

= 3(1 + µ) +
3
2

d
d ln(R)

ln(
〈
δ2

R,L

〉
), (A.34)

which in the linear and the non-linear regime is approximately
the same (Bernardeau et al. 2002), meaning that in order to get
the skewness in the non-linear regime we approximate
〈
δ3

R,L

〉
non-linear

(χ) ≈ S 3

〈
δ2

R,L

〉2

non-linear
(χ). (A.35)

For the general filter we use that the numerical integration of r
in

〈
δ3

Uχ,L

〉
(χ) results basically in a sum of top-hat filters, such

that we make use of S 3 to scale each term individual to the non-
linear regime. For the joint filter moment

〈
δχϑ,L δ

2
Uχ,L

〉
(χ) we use

a generalised version of S 3, which states that for two different
top-hat filters of size R1 and R2

〈
δ2

R1,LδR2,L

〉
(χ) ∝ 〈

δR1,LδR2,L
〉

(χ)
〈
δ2

R1,L

〉
(χ). (A.36)

Using again that the r-integration results in a sum of top-
hat filters and factoring out the non-derivative terms similar to
Eq. (A.34), we scale individually all the non-derivative terms to
the non-linear regime.

A.4. Characteristic function

We consider a large circle of radius R, inside of which there are
N = n0πR2 galaxies, where n0 is the galaxy number density. The
probability of finding a galaxy at separation ϑ is

p(ϑ; δm,U) =
2ϑ
R2η

(1 + b
〈
wϑ|δm,U

〉
), (A.37)

where
〈
wϑ|δm,U

〉
is the expectation of the mean 2D density con-

trast on a circle at ϑ (see Eq. (37)) given the smoothed density
contrast defined in Eq. (38). The assumption of linear galaxy bias
enters here by the term b

〈
wϑ|δm,U

〉
. The normalisation is

η =

∫ R

0

2ϑ
R2 (1 + b

〈
wϑ|δm,U

〉
) dϑ, (A.38)

which goes to unity for R→ ∞. The characteristic function (CF)
of the aperture number Nap, given the smoothed 2D density con-
trast δm,U , is given by

Ψ(t) =
〈
eitNap

〉
δm,U

=

∫

R

dNap p
(
Nap|δm,U

)
eitNap

=


N∏

i=1

∫ R

0
dϑi p(ϑi; δm,U)

 eit
∑

j U(ϑ j)

=

[∫ R

0
dϑ

2ϑ
R2η

(1 + b
〈
wϑ|δm,U

〉
)eitU(ϑ)

]N

=

[∫ R

0
dϑ

2ϑ
R2η

(1 + b
〈
wϑ|δm,U

〉
)
(
eitU(ϑ) − 1 + 1

)]N

=

[
1 +

πn0

Nη

∫ R

0
dϑ 2ϑ (1 + b

〈
wϑ|δm,U

〉
)
(
eitU(ϑ) − 1

)]N

−→︸︷︷︸
N,R→∞

exp
[
2πn0

∫ ∞

0
dϑ ϑ (1 + b

〈
wϑ|δm,U

〉
)
(
eitU(ϑ) − 1

)]
,

where we used in the second line that

Nap =

∫ ∞

0
d2ϑU

(|ϑ|) n
(
ϑ
)

=
∑

j

U
(
ϑ j

)
,

with n(ϑ) =
∑

j δD(ϑ−ϑ j), and that the galaxy positions ϑi inde-
pendently trace the density profile

〈
wϑ|δm,U

〉
. As discussed in

Sect. 3.3, the exact approach is to transform the CF to the proba-
bility density function p

(
Nap|δm,U

)
by use of the inverse Fourier

transformation. Alternatively, we assume that the PDF is well
approximated by a log-normal distribution as
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p
(
Nap|δm,U

)
=

1√
2πS

(
Nap + L

) exp


−

[
ln

(
Nap + L

)
− M

]2

2S 2

 ,

(A.39)

where the parameters S ,M, L are fixed with the first raw moment

µ′1 =
〈
Nap|δm,U

〉
=

〈
Nap

〉
δm,U

= exp
(
M +

S 2

2

)
− L, (A.40)

and the central moments

µ2 =

〈(
Nap −

〈
Nap

〉)2
〉

δm,U

= exp(2M + S 2)
[
eS 2 − 1

]
, (A.41)

µ3 =

〈(
Nap −

〈
Nap

〉)3
〉

δm,U

= exp
(
3M +

3
2

S 2
) [

eS 2 − 1
]2 [

eS 2
+ 2

]
.

(A.42)

The raw moments can be calculated from the derivatives of the
CF,

µ′n =
dnΨ(t)
d(it)n

∣∣∣∣∣
t=0
. (A.43)

With the definition

En = 2πn0

∫ ∞

0
dϑ ϑ (1 + b

〈
wϑ|δm,U

〉
)Un(ϑ), (A.44)

it follows that

µ′0 = 1,
µ′1 = E1, (A.45)

µ′2 = (E1)2 + E2,

µ′3 = (E1)3 + 3E1E2 + E3,

and so

µ2 = µ′2 − (µ′1)2 = (E1)2 + E2 − (E1)2 = E2, (A.46)

µ3 = µ′3 − 3µ′1µ
′
2 + 2(µ′1)2 = E3. (A.47)

To find the parameters of the log-normal distribution Eq. (A.39)
by use of the raw and central moments in Eqs. (A.45–A.47) we
define

γ =
µ3

µ3/2
2

=

√
exp(S 2) − 1

[
2 + exp(S 2)

]

=
√

q − 1 (2 + q) , (A.48)

where we defined in the last step q = exp(S 2). Modifying γ we
get

0 = q3 + 3q2 − 4 − γ2, (A.49)

which always has one real solution q0, and so the parameters
follow to

S =
√

ln(q0), (A.50)

M =
1
2

ln


µ2

q2
0 − q0

 , (A.51)

L =

√
µ2

q0 − 1
− µ′1. (A.52)

To check this derivation and compare it to the direct approach
of using the inverse Fourier transform, we created an idealised
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Fig. A.1. Probability distribution of the aperture number resulting in a
uniform random field smoothed with the top-hat filter of size 20′ in the
upper panel and for the adapted filter U of size 120′ in the lower panel.
The orange shaded region is the standard deviation determined from 48
sub-patches.
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Fig. A.2. Comparison between the two approaches to calculate p
(
Nap

)
.

It is clearly seen that both methods yield almost the same result.

case of a full-sky uniform random field nside = 4096 with a num-
ber density n0 ≈ 0.034/arcmin2. Next we calculated by use of
the healpy internal smoothing function Nap for the top-hat
filter of size 20′ and the for the adapted filter. In the determi-
nation of the predicted PDF we set,

〈
wϑ|δm,U

〉
= 0 so p

(
Nap

)

follows immediately with Eq. (A.39) or Eq. (42). It is clearly
seen in Fig. A.1 that the model for both filters has an excellent
fit with the measured PDF of the aperture number. Additionally,
we show in Fig. A.2 a comparison between the predicted p

(
Nap

)

using the full characteristic function Eq. (36) versus the log-
normal approach Eq. (A.39) for the low-redshift bin zlow

l from
the Takahashi set-up. In the lower panel the residual difference
between the two methods is three orders of magnitude smaller
than the signal itself, which shows that the two approaches are
identical given the uncertainties we expect for Stage III surveys.
Since the log-normal approach is faster to compute we can use
this approach in future analyses where computational speed is
essential.
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Appendix B: Correction formulae for the power
spectra of the T17 simulations

0 20 40 60 80 100 120 140
 [arcmin]

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Q(
) [

ar
cm

in
2 ] adapted

Mexican
broad Mexican
wide Mexican

Fig. B.1. Different filters Q resulting from the corresponding U filters
shown in Fig. 3 used in this work to verify the new model.

Table B.1. Overview of all the different cosmological parameters for the
26 cosmo-SLICS models, which are used in Sect. 5 for the cosmological
analysis.

Ωm h w0 σ8 S8

fid 0.2905 0.6898 −1.0000 0.8364 0.8231
1 0.3282 0.6766 −1.2376 0.6677 0.6984
2 0.1019 0.7104 −1.6154 1.3428 0.7826
3 0.2536 0.6238 −1.7698 0.6670 0.6133
4 0.1734 0.6584 −0.5223 0.9581 0.7284
5 0.3759 0.6034 −0.9741 0.8028 0.8986
6 0.4758 0.7459 −1.3046 0.6049 0.7618
7 0.1458 0.8031 −1.4498 1.1017 0.7680
8 0.3099 0.6940 −1.8784 0.7734 0.7861
9 0.4815 0.6374 −0.7737 0.5371 0.6804
10 0.3425 0.8006 −1.5010 0.6602 0.7054
11 0.5482 0.7645 −1.9127 0.4716 0.6375
12 0.2898 0.6505 −0.6649 0.7344 0.7218
13 0.4247 0.6819 −1.1986 0.6313 0.7511
14 0.3979 0.7833 −1.1088 0.7360 0.8476
15 0.1691 0.7890 −1.6903 1.1479 0.8618
16 0.1255 0.7567 −0.9878 0.9479 0.6131
17 0.5148 0.6691 −1.3812 0.6243 0.8178
18 0.1928 0.6285 −0.8564 1.1055 0.8862
19 0.2784 0.7151 −1.0673 0.6747 0.6500
20 0.2106 0.7388 −0.5667 1.0454 0.8759
21 0.4430 0.6161 −1.7037 0.6876 0.8356
22 0.4062 0.8129 −1.9866 0.5689 0.6620
23 0.2294 0.7706 −0.8602 0.9407 0.8226
24 0.5095 0.6988 −0.7164 0.5652 0.7366
25 0.3652 0.7271 −1.5414 0.5958 0.6574

To account for the finite angular resolution T17 suggested a sim-
ple damping factor at small scales as

Cκ
` →

Cκ
`

1 + (`/`res)2 , (B.1)

where `res = 1.6 × Nside. Additionally, to take the shell thickness
into account they conducted a simple fitting formula by which
the matter power spectrum should be modified to

Pδ(k)→ PW
δ (k) =

(1 + c1k−α1 )α1

(1 + c2k−α2 )α3
Pδ(k), (B.2)
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Fig. B.2. Comparison between the uncalibrated shear profiles for the
adapted filter with and without using the bi-variate log-normal approach
discussed in Sect. 3.1 The ratio is calculated between the measured
shear profiles from T17 for the lower LRG source bin and for sources
where several T17 shear grids were averaged, weighted by the n(z) given
in Fig. 2. The bi-variate log-normal shear profiles are more consistent
with the measured shear profiles and thus (although the shear signals
were calibrated) the more accurate model was chosen. Here only the
highest and lowest two quantiles are shown because the middle one is
to close to zero.
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Fig. B.3. MCMC results for the top-hat filter using the original and cali-
brated model. The data vector is calculated from the fiducial cosmology
of cosmo-SLICS and a covariance matrix from 614 SLICS realisations.
The systematic biases are likely to be statistical flukes due to the noise
in the data vector. The contours are marginalised over the lens galaxy
bias parameters.

where the parameters are simulation specific and are c1 =
9.5171 × 10−4, c2 = 5.1543 × 10−3, α1 = 1.3063, α2 = 1.1475,
α3 = 0.62793, and the wavenumber k is in units of h/Mpc.
We note that although we incorporated these corrections in
the following, they have very little effect on the scales we are
considering.
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Fig. B.4. Calibration of the model γMT (pT) by the T17 simulations
γT(pT) explained in Eq. (47), shown for the highest and lowest quantile
for the adapted and top-hat filter. The corresponding redshift distribu-
tions of the lenses are given in Fig. 1 and for the sources several T17
shear grids are averaged, weighted by the n(z) given in Fig. 2.
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ABSTRACT

Context. Weak lensing and clustering statistics beyond two-point functions can capture non-Gaussian information about the matter
density field, thereby improving the constraints on cosmological parameters relative to the mainstream methods based on correlation
functions and power spectra.
Aims. This paper presents a cosmological analysis of the fourth data release of the Kilo Degree Survey based on the density split
statistics, which measures the mean shear profiles around regions classified according to foreground densities. The latter is constructed
from a bright galaxy sample, which we further split into red and blue samples, allowing us to probe their respective connection to the
underlying dark matter density.
Methods. We use the state-of-the-art model of the density splitting statistics and validate its robustness against mock data infused
with known systematic effects such as intrinsic galaxy alignment and baryonic feedback.
Results. After marginalising over the photometric redshift uncertainty and the residual shear calibration bias, we measure for the full
KiDS-bright sample a structure growth parameter of S 8 ≡ σ8

√
Ωm/0.3 = 0.74+0.03

−0.02 that is competitive to and consistent with two-point
cosmic shear results, a matter density of Ωm = 0.28 ± 0.02, and a constant galaxy bias of b = 1.32+0.12

−0.10.

Key words. gravitational lensing: weak – (cosmology:) cosmological parameters – (cosmology:) large-scale structure of Universe

1. Introduction

Gravitational lensing, the theory which describes the deflection
of light by massive objects, reveals a wealth of information
about the evolution of matter structure in the Universe (see, e.g.
Hamana et al. 2020; Asgari et al. 2021; Amon et al. 2022, for re-
cent cosmic shear analyses). The most commonly used methods
focus on two-point statistics, namely the two-point correlation
functions and their Fourier counterparts, the power spectra, be-
cause of their accurate theoretical description and control over
systematic inaccuracies. These statistics are excellent for cap-
turing the Gaussian information contained in the data and are
complete if the data is Gaussian-distributed, such as the cosmic

microwave background (CMB; e.g. Planck Collaboration et al.
2020). In the late Universe, however, non-linear gravitational
instabilities generate a significant amount of non-Gaussian fea-
tures, whose information can only be accessed with higher-order
statistics. Furthermore, since higher-order statistics scale differ-
ently with cosmology and are affected differently by residual
systematic effects, the constraining power on cosmological pa-
rameters increases by jointly investigating second- and higher-
order statistics (see, e.g. Kilbinger & Schneider 2005; Bergé
et al. 2010; Pires et al. 2012; Fu et al. 2014; Pyne & Joachimi
2021).

As the current analysis of cosmological parameters estima-
tion reaches the per-cent level, tensions arise between observa-
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tions of the early and late or local Universe. A famous tension is
the one for the Hubble parameter H0 (Di Valentino et al. 2021a)
but is not subject to this work. More interesting for us is the ten-
sion in the matter clustering parameter S 8 = σ8

√
Ωm/0.3, where

it seems that the local Universe is less clustered than observa-
tions of the CMB suggest (Hildebrandt et al. 2017; Joudaki et al.
2020; Heymans et al. 2021; Di Valentino et al. 2021b).

Recent development in analysis methods have enabled the
joint investigation of weak lensing and galaxy clustering data
(van Uitert et al. 2018; Joudaki et al. 2018; Abbott et al. 2018;
DES Collaboration et al. 2021), yielding significantly better
constraints, especially along the σ8-Ωm degeneracy axis. Even
though foreground clustering data introduces largely uncertain
astrophysical parameters, such as the galaxy bias, that compli-
cate the analysis, these joint analyses inform us better about the
correlation between galaxies and the underlying matter distribu-
tion (Sánchez et al. 2017). Here again, two-point statistics have
been favoured so far for the reasons mentioned above, such that
the combination of all measurements (cosmic shear, galaxy clus-
tering and galaxy-galaxy lensing) are generally referred to as
‘3×2pts’ statistics.

To access the additional information contained in the non-
Gaussian features, a competitive statistics to the 3×2pts method
was recently proposed in Gruen et al. (2016), coined the
‘density-split statistics’ (DSS hereafter). This technique mea-
sures the tangential shear on the full pixelated survey footprint
and bins the resulting shear profiles as a function of the fore-
ground mass density. For example, high galaxy density regions
generally trace large matter over-density regions, in which the
tangential shear is expected to be larger, which varies with cos-
mology. The DSS, therefore, captures information both from the
shape and amplitude of the shear profiles and from the number of
foreground galaxies in each density bin, with the latter helping
significantly in measuring the galaxy bias.

The first ingredient needed is a prediction model to interpret
the measurements and constrain cosmological and astrophysi-
cal parameters. This can be constructed either from simulations
(see, e.g., Harnois-Déraps et al. 2021; Zürcher et al. 2022, for ex-
amples of simulation-based inference using lensing peak count)
or from analytical calculations, where for instance Reimberg &
Bernardeau (2018) and Barthelemy et al. (2021) made use of
large deviation theory (LDT) to model the reduced-shear correc-
tion to the aperture mass probability distribution function (PDF).
On the one hand, the simulation-based approach has advantages
regarding the numerical incorporation of critical systematic ef-
fects such as the intrinsic alignment (IA) of galaxies (see, e.g.
Harnois-Déraps et al. 2022, hereafter HD22) and baryonic pro-
cesses extracted from hydrodynamical simulations. However, it
typically requires large simulation suites that jointly vary all the
parameters under consideration. On the other hand, analytical
modelling of the DSS can better dissect the basic underlying
properties of the LSS, and it can be sufficiently fast computed
at any point in the cosmological parameter space. Such a model
was derived in Friedrich et al. (2018, hereafter F18), based on
non-perturbative modelling of the matter density PDF. For a
given cosmology, mean foreground galaxy density, and redshift
distributions of the foreground and background galaxies, the F18
model, predicts the mean tangential shear profiles and the PDF
of the galaxy counts in each mass density bin. In Gruen et al.
(2018, hereafter G18), the F18 model is used to constrain cosmo-
logical parameters from measurements of the Dark Energy Sur-
vey (DES) First Year and Sloan Digital Sky Survey (SDSS) data,
yielding results competitive with the main DES 3×2 pt analysis
(Abbott et al. 2018).

To date, no cosmological constraints from DSS exist except
that of G18. However, the methods have been improved signif-
icantly. In particular, Brouwer et al. (2018) presented a con-
temporary measurement of the DSS extracted from the third
data release of the Kilo-Degree Survey data (KiDS), wherein
in the foreground galaxies are selected to mimic the spectro-
scopic Galaxy And Mass Assembly survey (hereafter GAMA;
Driver et al. 2011). They developed an optimal methodology in
their work, notably showing how the resulting signal-to-noise
(S/N) depends on the smoothing scale for the density map of
foreground galaxies.

Burger et al. (2022, hereafter B22) modified the analyti-
cal model by F18 for an application to galaxy density fields
smoothed with general filters. As discussed in Burger et al.
(2020), compensated filter functions outperform the previously
used top-hat filter functions in terms of the overall S/N of
the shear signals and in recovering the correlation between the
galaxy and matter density contrast. B22 mention another advan-
tage of compensated filter functions: they are more compact in
Fourier space and, therefore, can better suppress large-ℓ modes
where baryonic effects play an important role, as studied in As-
gari et al. (2020). On the downside, compensated filters compli-
cate the LDT-like calculations (Barthelemy et al. 2021). Never-
theless, B22 show that the density split statistics with compen-
sated filters can still be accurately modelled in a computationally
tractable manner after calibrating residual inaccuracies at large
and small scales on the simulations of Takahashi et al. (2017).

The current paper presents the first cosmological inference
based on a DSS analysis of the KiDS data. We exploit the model
advances presented in B22, using the dense sample of bright
galaxies presented in Bilicki et al. (2021) to construct our fore-
ground density maps, and compute the tangential shear from the
lensing catalogue constructed from the fourth KiDS data release.
Our inference includes a marginalisation over several residual
systematic uncertainties. We verify with numerical N-body and
hydrodynamical simulations that our measurements are robust
against IA of galaxies and baryonic feedback.

This work is structured as follows. In Sect. 2 we review
the basics of the DSS and introduce small modifications of our
model to the one from B22. In Sect. 3 we present the observed
data used in our analysis, then describe in Sect. 4 the simula-
tions needed for the validation of our inference pipeline that is
described in Sect. 5. In Sect. 6 we perform our validation of the
model together with an investigation on IA and baryonic physics
that could potentially contaminate our results. In Sect. 7 we fi-
nally present our main results and conclude with a discussion
and summary in Sect. 8.

2. Theoretical background

The DSS essentially measures the tangential shear around sub-
areas of the sky that are assigned according to the galaxy fore-
ground density. It is therefore closely related to aperture statis-
tics, which we introduce here first. Given a convergence field
κ(θ), the aperture mass map is defined as

Map (θ) B
∫

d2θ′ κ(θ + θ′) U(|θ′|) , (1)

where θ is the position on the flat sky, and U(ϑ) is a compen-
sated, axisymmetric filter function, such that

∫
ϑU(ϑ) dϑ = 0.

The aperture mass, Map, can also be expressed in terms of the
tangential shear γt (Schneider 1996) and a second filter function
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Q as

Map(θ) =
∫

d2θ′ γt(θ + θ′) Q(|θ′|) , (2)

where

Q(ϑ) =
2
ϑ2

ϑ∫

0

dϑ′ ϑ′ U(ϑ′) − U(ϑ) . (3)

The above relation between the two filters U and Q can be in-
verted,

U(ϑ) = 2

∞∫

ϑ

dϑ′
Q(ϑ′)
ϑ′
− Q(ϑ) , (4)

allowing us to work either with convergence maps or shear cat-
alogues. Replacing the convergence by the foreground galaxy
number count n(θ) in Eq. (1), we define the aperture number
counts, or simply aperture number, as (Schneider 1998)

Nap(θ) B
∫

d2θ′ n(θ + θ′) U(|θ′|) . (5)

This definition is equivalent to the ‘Counts-in-Cell’ (CiC) statis-
tics mentioned in Gruen et al. (2016) if the filter U is defined as
a top-hat. In that case, however, U is not compensated; hence,
one cannot relate the filters U and Q.

The general idea of the DSS is to divide the survey area into
quantiles Q according to the aperture number Nap and then mea-
sure the mean tangential shear in the corresponding quantiles
⟨γt|Q⟩. We detail in Sect. 2.1 how we achieve this in the data and
in Sect. 2.2 how we predict it analytically.

2.1. Measuring the DSS vector

We follow several ordered pipeline steps to extract the DSS data
vector for the cosmological inference.

1. Distribute the foreground (lens) galaxies onto a HEALPix
(Górski et al. 2005) grid n(θ) of nside = 4096, which re-
sults in a pixel area of AHP ≈ 0.74 arcmin2.

2. Determine the aperture number field Nap with a filter func-
tion U, with a finite filter radius Θ and maximal one transi-
tion from positive to negative values at θtr. This is achieved
with the healpy function smoothing, with a beam window
function that is the U-filter in the spherical harmonic space
determined with healpy function beam2bl. Since Eq. 5 as-
sumes full knowledge of n(θ) on the sky which has to be
modified in the presence of a mask m(θ) as

Nap(θ) =

∫ θtr

0 U(θ′) d2θ′
∫ θtr

0 m(θ + θ′)U(θ′) d2θ′

∫ θtr

0
n(θ + θ′)U(θ′) d2θ′

+

∫ Θ
θtr

U(θ′) d2θ′
∫ Θ
θtr

m(θ + θ′)U(θ′) d2θ′

∫ Θ

θtr

n(θ + θ′)U(θ′) d2θ′ ,

(6)

where in this work m(θ) is the KiDS-1000 mask. For exam-
ple, the second part of this equation vanishes for a top-hat fil-
ter. We divide the filter in this way to prevent the masked area
from entering the positive part to decrease Nap systematically
and artificially increase the aperture number when entering

the negative filter region. By separating the compensated fil-
ter into its positive and negative parts, we can correct both
individually. Furthermore, since this correction becomes less
accurate in heavily masked regions, we include only those
pixels where the number of unmasked pixels within the given
filter radius (effective area) is greater than 50% of the to-
tal number of pixels inside the same circle (maximal area),
which we treat as our ‘good’ pixels. We note that this can
change from pixel to pixel because our HEALPix map origi-
nates from a flat sky mask. To avoid that a pixel is considered
good, but more than 50% pixels are missing in the negative
part, we included for compensated filters only those pixels
where the effective area for the positive and the negative part
is greater than 50% of their individual maximal area. With
our choice of the 50% threshold, we attempt to achieve a
compromise between statistical power and falsely measured
Nap values. G18 considered only regions with at least 80%
coverage, but since the KiDS footprint is very narrow, we
had to relax that threshold to avoid shot noise-dominated
data vectors. Therefore, we decided to use the highest thresh-
old that yields shear profiles that do not deviate significantly
from shear profiles with smaller threshold values. The result
is shown in Fig. A.1, where it is seen that the shear profiles
with threshold values of 50% or smaller are quite similar and
start to deviate for higher threshold values.

3. Next, we allocate those good pixels to five quantiles Q ac-
cording to their Nap value. The pixels from each quantile
are then correlated with the tangential shear information
from the source catalogues using the treecorr (Jarvis et al.
2004) software in 10 log-spaced bins with angular separation
10 arcmin < ϑ < 120 arcmin. This results in measurements
of the five tangential shear profiles ⟨γt|Q⟩, i.e., one per quan-
tile. We note here that for all measured profiles, the shear
around random points is subtracted, which ensures that the
average over all quantiles vanishes by definition.

4. Finally, we construct our data vector, which consists of the
shear profiles from the highest two and lowest two quantiles,
plus the mean of the aperture number values in the same four
quantiles. We must exclude the information of one quantileQ
since the other four quantiles fully determine it by construc-
tion, for the reason explained above. The same is true for
mean aperture number values in those quantiles, whose aver-
age is fixed by the total galaxy number density measured in
the data. This results with 10 θ bins, four quantiles and two
source bins in a data vector of 80 + 4 = 84 elements. We ex-
clude the middle quantile for the whole analysis since it has
the least cosmological information.

2.2. Modelling the DSS vector

Our modelling of the DSS signal is inspired by the LDT ap-
proach and builds from the original F18 model and the subse-
quent improvements presented in B22. We refer the reader to
these two references for the complete details on the model cal-
culations and highlight here only the broad principles and the
minor modifications we have made. Briefly, the model consists
of three key ingredients: (i) the PDF of the matter density con-
trast, smoothed with the filter function U, labelled δm,U ; (ii) the
expectation value of the convergence inside a radius ϑ given the
smoothed matter density contrast defined above; (iii) the distri-
bution of Nap values given δm,U . B22 shows how these are com-
puted for arbitrary filter functions and quantile counts. We, how-
ever, focus here on the ‘adapted compensated’ filter case, intro-
duced in B20 and shown in figure 3 in B22, and five quantiles.
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As in B22, the model is calibrated using the full-sky simulations
described in Takahashi et al. (2017) to suppress the residual dif-
ferences of the modelled and measured data vector. The KiDS-
1000 lens distribution used in the current paper peaks at a lower
redshift than that in B22, and we know that the DSS model is
slightly less accurate in that case, but we will show that the cali-
bration is accurate enough to yield unbiased results.

Since real galaxies are not expected to be perfectly Poisson-
distributed, we modify the distribution of the aperture number
computed in the B22 model in a way that allows for super-
Poissonian shot noise. Inspired by F18, we achieve this by
scaling the galaxy number density n0 with a free parameter
α > 0, such that n0 α

−1 can be interpreted as an effective num-
ber density of Poissonian tracers. This implies that the quan-
tity p(Nap α

−1|δm,U) follows a log-normal distribution, instead of
p(Nap|δm,U) as in B22. Consequently, the characteristic function
Ψ, determining the parameters of the log-normal distribution,
must be modified to (see equation 36 of B22)

Ψ(t) = exp
(
2π

n0

α

∫ ∞

0
dϑ ϑ

(
1 + b ⟨wϑ|δm,U⟩)

[
eitU(ϑ) − 1

])
, (7)

where wϑ is the mean 2D density contrast on a circle at ϑ (see
Eq. 37 in B22), and b is the linear galaxy bias. Moreover, to en-
sure that the mean aperture number remains constant, we further
modify the calculation of p

(
Nap|δm,U

)
as (see equation A39 of

B22):

p
(
Nap|δm,U

)
→ 1

α
p
(
Napα

−1|δm,U

)
. (8)

Since the expectation value ⟨Nap|δm,U⟩ ∝ α and the variance
⟨(Nap − ⟨Nap|δm,U⟩)2|δm,U⟩ ∝ α2 we see that the ratio of vari-
ance to expectation value is proportional to α as required to de-
scribe deviations from Poissonian samples. Similar to Friedrich
et al. (2018), we require α > 0.1 in our parameter sampling for
numerical reasons. We also compared our definition of this α
parameter to the one implemented in Friedrich et al. (2018) and
found no differences in the predictions.

Compared with numerical simulations, this model has been
shown in B22 to be accurate, with residual inaccuracies to be
everywhere significantly smaller than the statistical noise of the
KiDS-1000 data. We, therefore, do not need to include a mod-
elling error in our uncertainty budget. Furthermore, we also
tested a non-linear galaxy bias model, where we exchanged the
constant galaxy bias b with b = b1+b2δm,U > 0. However, b2 was
highly correlated with other parameters likeΩm which prevented
our parameter estimation from converging and therefore had to
be excluded for this analysis. We also test if the assumption of a
linear galaxy bias is satisfied (see Fig. A.2 and its description),
and the results of that test can be summarised as follows: a lin-
ear galaxy bias model is sufficient if an analysis using shear and
Nap information gives similar cosmological results as using only
shear information since the shear profiles are basically insensi-
tive to the galaxy bias model.

3. Observational data

In our analysis, we exploit the fourth data release of the KiDS
(Kuijken et al. 2015, 2019; de Jong et al. 2015, 2017), which
is a public survey carried out at the European Southern Observa-
tory1. KiDS was designed for weak lensing applications, produc-
ing high-quality images with VST-OmegaCAM camera. Thanks
1 The KiDS data products are public and available through http://
kids.strw.leidenuniv.nl/DR4

to the infrared data from its overlapping partner survey VIKING
(VISTA Kilo-degree Infrared Galaxy survey, Edge et al. 2013),
galaxies are observed in nine optical and near-infrared bands,
u, g, r, i,Z,Y, J,H,Ks, allowing for better control over redshift
uncertainties (Hildebrandt et al. 2021, hereafter H21) to earlier
releases. The weak lensing data in KiDS DR4 are collectively
called ‘KiDS-1000’ as they cover ∼ 1000 deg2 of images; this
reduces to 777.4 deg2 of the effective area after masking. These
galaxies are further split into lens and source samples, which we
discuss in more detail in the following sections, with properties
summarised in Table 1.

3.1. Lens catalogues

Our primary lens catalogue is the ‘KiDS-bright’ sample de-
scribed in Bilicki et al. (2021, hereafter Bi21), a flux-limited
galaxy catalogue with accurate and precise photometric red-
shifts, zph, derived using the nine photometric bands available
in the KiDS-1000 data. This highly pure and complete2 galaxy
dataset was selected to match the properties of the partly overlap-
ping Galaxy And Mass Assembly (GAMA, Driver et al. 2011)
spectroscopic dataset. KiDS-bright is limited to r < 20 mag, cov-
ers ∼ 1000 deg2 and contains about one million galaxies after
artifact masking. To obtain photometric redshift estimates, Bi21
took advantage of the large amount of spectroscopic calibration
data measured by GAMA and trained a supervised machine-
learning neural network algorithm implemented in the ANNz2
software (Sadeh et al. 2016) to map an input space of 9-band
magnitudes to an output redshift. The ANNz2 training sam-
ple consists of matched KiDS galaxies with spectroscopic red-
shifts from the GAMA equatorial fields, where that survey is
the most complete and provides representative training data.
The trained model was subsequently applied to the entire infer-
ence dataset, the photometrically-selected KiDS galaxies with
the same r < 20 cut and magnitudes detected in the same nine
bands. This sample spans the redshift range of 0 < z ≲ 0.6; how-
ever, since our analytical DSS model is less accurate for very
small redshifts, we further exclude all galaxies with zph < 0.1.
This cut only slightly lowers the number of lenses and results in
a projected number density of 0.325 arcmin−2, as summarised in
the first row of Table 1.

The main properties of interest to us are the galaxy bias,
which has not been measured before for the KiDS-bright sample,
the galaxy number density, and the redshift distribution, which
is needed in the modelling. As shown in Bi21, the photometric
redshift distribution of the full KiDS-bright sample is measured
with high precision: jackknife subsampling reveals negligible
mean bias, with a small overall scatter of σz ≈ 0.018(1 + z).
However, for our theoretical model, we need to estimate our
newly selected foreground sample’s true n(z) distribution. We
take advantage of the very good match between the GAMA spec-
troscopic sample and the KiDS-bright dataset, allowing us to
build an accurate model of the photometric redshift error dis-
tribution, as discussed in Bi21. Following the description in Pea-
cock & Bilicki (2018), an estimate of the true n(z) can be ob-
tained from a convolution between the normalised photometric
redshift distribution of all the galaxies in our selected sample,
p(zph), and a photo-z error model pδz(∆z),

n(z) =
∫

p(zph) pδz(∆z) dzph . (9)

2 By purity, we mean very low fractions of stars and quasars (point
sources) or artefacts. Completeness is evaluated with respect to GAMA.
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Fig. 1: Redshift distributions, n(z), of the galaxy samples. The lens sam-
ple is obtained from the KiDS-bright galaxies described in Bi21. The
blue line shows n(zspec), i.e. the redshift distribution of KiDS galaxies
for which we have spectra from the GAMA survey. The red line shows
n(zph), the distribution of the full KiDS-bright sample as estimated by
ANNz2 with a photometric redshift cut of zph < 0.1. The black line
shows our fiducial n(z): a smoothed version of n(zph) that better accounts
for photometric redshift errors. The cyan, orange, and brown lines show
the third, fourth and fifth redshift bins of the KiDS-1000 data, as esti-
mated in H21. As the third bin strongly overlaps the sources, it is ex-
cluded from the analysis.

Following (Bilicki et al. 2014), we adopt a ‘modified
Lorentzian’,

pδz(∆z) ∝
(
1 +
∆z2

2as2

)−a

, (10)

which was shown in Bi21 to reproduce the photo-z errors bet-
ter than a Gaussian error model. In the above expression, ∆z =
(zph − zspec)/(1 + zspec), while the parameters a and s are fitted
directly from the KiDS-bright galaxies that also have GAMA
spectroscopic redshifts. The best-fit a and s values for our selec-
tion are provided in the top row of Table 1, and the resulting n(z)
is shown in black in Fig. 1.

In order to estimate the uncertainty on our n(z) estimate, we
notice that Eq. (9) has two ingredients: the photometric red-
shift distribution n(zph), which is ‘exact’ in the sense that they
are directly measured, and the photo-z error model pδz. Putting
aside possible systematic effects related to adopting this machine
learning approach in this framework, we only need to quantify
the uncertainty associated with our choice of the error model.
To account for this, we measured how much the output n(z)
changes when the a and s parameters are determined from differ-
ent sub-samples on the sky. For this, we split the KiDS-bright ×
GAMA matched sample into 10 sub-samples along the right as-
cension, where each sub-sample has the same number of objects.
We fit a and s to each sub-sample with Eq. (10) and convolve
the resulting pδz with the full p(zph) of the KiDS-bright sample.
The resulting 10 n(z) distributions are almost indistinguishable
from our best estimate, as displayed in Fig. A.3. We, therefore,
conclude that we can safely neglect the error coming from the
Lorentzian fit.

It is difficult to estimate all uncertainties accurately on the
n(z) estimate since, for this, we would need to test the ANN2z
algorithm on another spectroscopic survey with the same selec-
tion. We investigate this further and study the impact of chang-
ing the shape and the mean of the n(z). Therefore, beside the
best estimated n(z), we also consider to use the n(zph) directly,
as well as the spectroscopic redshift distribution n(zspec) itself,
coming from the matched KiDS-bright × GAMA galaxies; both
also shown in Fig. 1. We further allow the n(z) to shift along the
redshift direction to give the analysis some flexibility, where the

shift value δ⟨z⟩ is drawn from a Gaussian with a standard devi-
ation of 0.01 and vanishing mean, motivated by the uncertainty
on the mean of the source redshift distribution.

In addition to the full lens sample described above, we take
advantage of the colour information contained in the KiDS-
bright data to construct colour-selected subsamples. This allows
us to constrain the bias of blue and red galaxy populations sepa-
rately from the DSS signal. Following Bi21, we use an empirical
split between red and blue galaxies based on their location on the
absolute r-band magnitude Mr and the rest-frame u−g colour di-
agram. The rest-frame quantities are based on LePhare (Arnouts
et al. 1999) with the derivations presented in Bi21. We apply a
cut through the green valley in the colour-magnitude diagram,
which results in a line that delimits the red and blue samples that
satisfy

u − g = 0.825 − 0.025 Mr . (11)

We identify those galaxies that are at least 0.05 mag above (be-
low ) the cut line as red (blue) galaxies. We estimate their under-
lying redshift distributions following the same approach as for
the full sample, and the resulting n(z) are shown in Fig. B.1. The
effective number densities and best-fit parameters of the mod-
ified Lorentzian redshift error model are also listed in the sec-
ond and third rows of Table 1. We finally note that, while these
colour-selected sub-samples are particularly interesting from a
galaxy formation perspective, our main cosmological results are
obtained from the full lens sample, which has the highest signal-
to-noise.

3.2. Source catalogues

The fiducial KiDS-1000 cosmic shear catalogue consists of five
tomographic bins, whose redshifts are calibrated using the self-
organising map (SOM) method3 of Wright et al. (2020) and pre-
sented in Hildebrandt et al. (2021). Although the five bins can be
exploited in a cosmic shear analysis as in Asgari et al. (2021), for
the DSS analyses, one must also be cautious about source-lens
coupling, which arises if sources and lenses belong to the same
gravitational potential. This can significantly affect our signal
and bias our cosmological inference if left unmodeled. A signifi-
cant redshift overlap between the source and lens distribution can
result in further contamination by the IA of source galaxies that
are tidally connected with the foreground lenses. We measure
this effect in Sect. 4.2 from IA-infused weak lensing simulations
and show that, given the KiDS-bright n(z), this can be avoided
by excluding the first three tomographic bins of the KiDS-1000
sources from the analysis. An additional lens-source coupling
complication is the so-called boost factor, which arises due to the
clustering of sources with over-dense and the anti-correlation of
sources with under-dense regions. This can be taken into account
by modifying the source n(z) depending on clustering properties
(Gruen et al. 2018). Since we exclude the third bin, we do not
need to consider this further complication. The fourth and fifth
redshift bins, shown as the orange and brown lines in Fig. 1, are
separate enough from the lens n(z) to avoid any appreciable lens-
source coupling and are therefore used in our cosmological anal-
ysis. The uncertainty on the redshift distribution and the residual
systematic offsets are very small, as listed in the last two rows of
Table 1.
3 The SOM method organises galaxies into groups based on their
nine-band photometry and finds matches within spectroscopic samples.
Galaxies for which no matches are found are removed from the cata-
logue.
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Table 1: Overview of the observational KiDS-1000 data, describing the lens and source catalogues in this table’s upper and lower parts, respec-
tively. The a and s parameters enter the Lorentzian fitting function (see Eq. 10) and capture the uncertainty on the redshift of our lens sample. The
uncertainties on the mean redshift, ∆⟨z⟩, for the lenses is motivated by the uncertainty from the sources, although it is probably an upper limit of
the error. We show the mean and uncertainty on the redshift bias for the source samples, taken from H21 and used in Asgari et al. (2021). The
rightmost columns displays the measured ellipticity dispersion per component, σϵ measured in Giblin et al. (2021), and the shear multiplicative
m-bias correction updated in van den Busch et al. (2022).

name neff[arcmin−2] δ⟨z⟩ a s
Full KiDS-bright sample 0.325 0.0 ± 0.01 2.613 0.0149
Red KiDS-bright sample 0.131 0.0 ± 0.01 3.099 0.0133
Blue KiDS-bright sample 0.165 0.0 ± 0.01 2.845 0.0166

name neff[arcmin−2] δ⟨z⟩ σϵ m-bias ×103

Source sample bin 4 1.26 0.011 ± 0.0087 0.25 8 ± 12
Source sample bin 5 1.31 −0.006 ± 0.0097 0.27 12 ± 10

The galaxy shear estimates are provided by the lensfit tool
(Miller et al. 2013; Fenech Conti et al. 2017) and are described in
more detail in Giblin et al. (2021), where it is shown that shear-
related systematic effects do not cause more than a 0.1σ shift in
S 8 ≡ σ8(Ωm/0.3)0.5 when measured by cosmic shear two-point
functions.

4. Simulated data

Besides the real KiDS-1000 data, we validate our inference
pipeline on several simulated data sets, study the impact of key
systematic uncertainties and carry out the cosmological infer-
ence. Namely, we use:

– The publicly available FLASK tool (Full-sky Log-normal
Astro-fields Simulation Kit) described in Xavier et al. (2016)
to estimate the covariance of errors in the DSS data vector of
the KiDS-1000;

– the cosmo-SLICS+IA simulations, described in HD22, to
quantify the impact of IA on our measurements and to val-
idate the new Nap segment in our pipeline (see the end of
Sect. 2) that was not present in the B22 model;

– the Magneticum lensing simulations, first introduced in
Hirschmann et al. (2014), to investigate the impact of stel-
lar and AGN feedback.

More details are provided in the following sections.

4.1. FLASK log-normal simulations

Our cosmological inference analysis requires an estimate of the
error covariance of the DSS data vector. Since an analytical co-
variance matrix for the DSS is challenging to compute, we make
use instead of an ensemble of log-normal simulations produced
with the publicly available FLASK tool4 (Xavier et al. 2016). In
Hilbert et al. (2011) it is shown that log-normal random fields
are a good approximation to the 1-point PDF of the weak lensing
convergence and shear field, and Friedrich et al. (2020) show that
they are in fact accurate enough to estimate the covariance ma-
trix for higher-order statistics in Stage-III lensing surveys (see
their figure 4).5 Compared to full N-body simulations, FLASK
4 FLASK: http://www.astro.iag.usp.br/~flask/
5 We tested that an area-rescaled covariance matrix coming from over
600 fully independent N-body simulations (see Harnois-Déraps et al.
2018, for a description of the SLICS simulation suite) results in similar
constraints.

log-normal random fields are computationally cheap to create.
The fact that FLASK outputs full-sky maps has the advantage that
it can easily be masked to match the footprint of the data, mak-
ing area re-scaling unnecessary. For the creation of our mock
catalogues, we use the cosmological parameters that approxi-
mately match current cosmological analyses and fixed the matter
density parameter to Ωm = 0.3, the normalisation of the matter
power spectrum to σ8 = 0.74, the dimensionless Hubble param-
eter to h = 0.7, the dark energy equation-of-state parameter to
w0 = −1 and the power spectrum power law index to ns = 0.97.
Furthermore, we provide FLASK with the angular power spec-
trum of the projected matter density field, the convergence power
spectrum for both source bins, and the two matter-lensing cross-
spectra. By assuming a flat universe throughout this paper, given
the n(z) shown in Fig. 1, and using the PYCCL software pack-
age6 (Chisari et al. 2019) to get the 3D matter density con-
trast power spectrum Pδ(ℓ/χ, χ), we calculate the angular power
spectrum by use of the Limber-approximated projection (Kaiser
1992) as

Ci, j(ℓ) =

∞∫

0

d χ
Wi(χ)W j(χ)

χ2 Pδ(ℓ/χ, χ) , (12)

where i, j are placeholder for either the galaxy or convergence
projection, such that Wg(χ) = nl(z[χ]) dz(χ)

dχ for the lenses with
redshift distribution nl, while for the source with redshift distri-
bution ns we have instead

Ws(χ) =
3ΩmH2

0

2c2

∫ ∞

χ

dχ′
χ(χ′ − χ)
χ′a(χ)

ns(z[χ′])
dz[χ′]

dχ′
. (13)

Besides these angular power spectra, FLASK needs the log-
normal shift parameters κ0 and δ0, where −κ0 and −δ0 defining
the lower limits of the log-normal random variable of the conver-
gence and matter density fields, respectively. Whereas the shift
parameter κ0 = {0.02, 0.03} for the convergence power spec-
tra for the two source bins can be determined directly from the
fitting formula equation (38) in Hilbert et al. (2011), we esti-
mated the shift parameter δ0 = {0.57, 0.59, 0.56} for the three
lens samples (full, red, blue), as described in Gruen et al. (2016),
by assuming that it can be approximated by the shift parame-
ter of the smoothed density contrast, which in turn is calculated

6 Currently available here: https://github.com/LSSTDESC/CCL
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from our model for a top-hat filter function (see equation 23 in
B22). Given this setup, FLASK returns a foreground density map
δm,2D(θ) and two sets of correlated shear and convergence grids
γ1,2(θ), κ(θ), one per tomographic source bin. We populate our
mock KiDS-bright galaxies on the density map by sampling,
for each pixel θ, a Poisson distribution with mean parameter
λ = neff

[
1 + b δm,2D(θ)

]
, where b = 1.4 is the (constant) lin-

ear galaxy bias estimated from preliminary analyses with only
some realisations7 and neff = 0.325 arcmin−2 is the mean galaxy
density of the KiDS-bright sample. Similarly, we populate the
two source planes by Poisson-sampling for each pixel a number
of source galaxies npix with parameter λ = neffApix, where Apix

is the area of the pixel under consideration8, and the effective
number density neff is taken from Table 1. We finally combine
the two shear components of each object with their convergence
to construct reduced shear components g1,2, and further combine
these with a shape noise contribution ϵs taken from sampling
a Gaussian distribution with vanishing mean and deviation σϵ
also taken from Table 1. This results in catalogues containing ob-
served ellipticities ϵobs transformed as (Seitz & Schneider 1997)

ϵobs =
ϵs + g

1 + ϵs,∗g
. (14)

Note that the quantities in bold here are all complex numbers,
and the asterisk ‘∗’ indicates complex conjugation. This proce-
dure ensures that we match the number of foreground and back-
ground galaxies in the data and the associated shape noise level.

4.2. cosmo-SLICS+IA

As mentioned earlier, the second suite of simulations is used to
validate the inference pipeline and study the impact of IA on
our DSS measurements. We use for this the fiducial suite of the
cosmo-SLICS presented in Harnois-Déraps et al. (2019), which
consists of a set of 50 simulated light-cones of 100 deg2 each,
run in a ΛCDM universe with Ωm = 0.2905, ΩΛ = 0.7095,
Ωb = 0.0473, h = 0.6898, σ8 = 0.836 and ns = 0.969.
The mocks follow the non-linear evolution of 15363 particles
up to z = 0, computed by the cubep3m N-body code (Harnois-
Déraps et al. 2013). For Fourier modes of comoving wave num-
ber k < 2.0 h Mpc−1, the cosmo-SLICS three-dimensional dark
matter power spectrum P(k) agrees within 2% with the pre-
dictions from the Extended Cosmic Emulator (Heitmann et al.
2014), followed by a progressive deviation for higher k-modes
(Harnois-Déraps et al. 2019), offering a sufficient resolution to
model Stage-III galaxy surveys. The particle data were assigned
onto mass sheets at 18 redshifts and then post-processed into
10 × 10 deg2 light-cones. Lensing maps were produced at 18
source redshift planes for each cosmo-SLICS light cone and used
to interpolate lensing information onto galaxy catalogues.

Like B22, we construct cosmo-SLICS mock source samples
that reproduce a number of key data properties, including the
tomographic n(z), the galaxy number density neff and the shape
noise levels. As for the FLASK simulations, we use Eq. (14) to
add shape noise to the reduced shear signal. Source galaxies
are placed at random positions on the light cones, and the shear

7 Also different values would not affect the posteriors as we discuss in
Sect.7.2.
8 Note that the public KiDS-1000 mask is provided on a flat sky with
a resolution of 0.01 arcmin2. This will result in a HEALPix mask that
varies from pixel to pixel given the fact that the pixelation is different
and have a size of 0.74 arcmin2.

quantities (γ1/2, κ) are interpolated at these positions from the
enclosing lensing maps.

We also construct mock KiDS-bright samples by populating
the light-cone mass maps with galaxies that trace the underly-
ing dark matter field linearly, following the method presented in
Harnois-Déraps et al. (2018). We here again fix the galaxy bias
to 1.4 and an effective number density of neff = 0.325 arcmin−2.

4.2.1. IA infusion

The impact of galaxy IA is a known secondary signal to the cos-
mic shear measurements that have been neglected in past DSS
studies. In this paper, we verify the validity of this assumption
by measuring our statistics in simulated source data that are in-
fused with IA. We will find that IA influences our data vector
only if the lenses’ n(z) overlap with that of the sources. Follow-
ing the methods described in HD22, the IA properties of these
galaxies are computed as

ϵIA
1 = −

AIAC̄1ρ̄(z)
D(z)

(sxx − syy) , ϵIA
2 = −

2AIAC̄1ρ̄(z)
D(z)

sxy , (15)

where si j = ∂i jϕ are the Cartesian components of the projected
tidal field tensors interpolated at their positions, with ϕ being the
gravitational potential. In the above expression, AIA captures the
strength of the coupling between the ellipticities and the tidal
field, ρ̄(z) is the matter density, D(z) is the linear growth fac-
tor, C̄1 = 5 × 10−14M−1

⊙ h−2 Mpc3, as calibrated in Brown et al.
(2002). These intrinsic ellipticity components ϵIA

1/2 are then com-
bined with the cosmic shear signal by Eq. (14), resulting in an
IA-contaminated weak lensing sample that is consistent with the
NLA model of Bridle & King (2007). We refer the reader to
HD22 for full details about the IA infusion method. We test sev-
eral values of AIA, more precisely, we infused AIA = {1, 1.5, 2},
and inspect in each case the impact on the DSS data vector.

4.3. Magneticum

Baryon feedback is also known to affect the distribution of the
large-scale structure significantly, as the sustained outflows of
energy arising from stellar winds, supernovae and AGN reduce
the clustering on intra-cluster scales by up to tens of per cent
(van Daalen et al. 2011). The exact strength of this suppression
is still largely uncertain, with different hydro-dynamical simu-
lations predicting different redshift and scale dependencies (see,
e.g. Chisari et al. 2015, for a review of recent results). With-
out consensus, we opted to measure the DSS in one of these
hydro-dynamical simulations for which the impact is quite high
and inspect how an extreme baryon impact would affect our data
vector.

The Magneticum lensing simulations were first introduced
in Hirschmann et al. (2014) and used to mock up KiDS-450 and
Stage-IV cosmic shear data (Martinet et al. 2021), and subse-
quently in Harnois-Déraps et al. (2021) to study the impact of
baryons in the peak count analysis of the Dark Energy Survey Y1
data. The underlying matter field is constructed from the Mag-
neticum Pathfinder simulations,9 more specifically by the Run-2
and Run-2b data described in Hirschmann et al. (2014) and Ra-
gagnin et al. (2017). These are based on the Gadget3 smoothed
particle hydrodynamical code (Springel 2005) and are able to re-
produce a large number of observations (see Castro et al. 2021,
for more details). These both co-evolve dark matter particles of

9 www.magneticum.org
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mass 6.9×108h−1M⊙ and gas particles with mass 1.4×108h−1M⊙,
in comoving volumes of side 352 and 640 h−1 Mpc, respectively.
Included key mechanisms are radiative cooling, star formation,
supernovae, AGN, and their associated feedback on the matter
density field. From sequences of projected mass planes, we use
the procedure outlined above for the cosmo-SLICS simulations
to generate KiDS-1000 sources and KiDS-bright lenses for 10
pseudo-independent light-cones, each covering 100 deg2. We re-
peat the same procedure on dark matter-only light-cones, such
that any difference is caused by the presence of baryons.

We note that the cosmo-SLICS+IA and Magneticum light-
cones are square-shaped, a geometry that accentuates the edge
effects when the aperture filter overlaps with the light-cone
boundaries. One could, in principle, weight the outer rims for
each Nap map, such that the whole map can be used; although
this would increase our statistical power, it could also introduce
a systematic offset. We opted instead to exclude the outer rim for
each realization, resulting in an effective area of 36 deg2, where
a 2 deg band has been removed, matching the size of the adapted
filter. This procedure also ensures that roughly the same number
of background galaxies are used to calculate the shear profile
around each pixel.

5. Cosmological parameter inference

Before performing several Markov chain Monte Carlo (MCMC)
samplings in the following two sections, we describe here the
pipeline of our Monte-Carlo sampler. In our different MCMC
runs, the model vector, the data vector and the covariance matrix
are varied, but the overall pipeline stays the same.

Table 2: Uniformly U and normally distributed N priors on the pa-
rameters used in our cosmological inferences. The normally distributed
priors on the multiplicative shear m-bias and photometric redshift er-
rors δ⟨z⟩ are used only for the real data analysis, not for the simulations
where we set them to zero. The δ⟨z⟩ for the sources follow a joint nor-
mal distribution with covariance matrix Cδ⟨z⟩ shown in figure 6 of H21.

parameter prior
Ωm U(0.20, 0.50)
σ8 U(0.45, 1.00)

bias b U(0.5, 2.5)
α U(0.1, 8)

δ⟨z⟩ full KiDS-bright sample N(0.0, 0.01)
δ⟨z⟩ red KiDS-bright sample N(0.0, 0.01)
δ⟨z⟩ blue KiDS-bright sample N(0.0, 0.01)

δ⟨z⟩ source bin 4,5 N([0.011,−0.006],Cδ⟨z⟩)
m-bias source bin 4 N(0.002, 0.012)
m-bias source bin 5 N(0.007, 0.010)

Our statistical analysis has two free cosmological parameters
that we fit for: the matter density parameter Ωm and the normali-
sation of the power spectrumσ8. We additionally vary the galaxy
bias term b and the super-Poisonnian shot-noise parameter α (see
Eq. 7). We detail the prior ranges of all parameters in Table 2,
where we also show the Gaussian priors for the nuisance param-
eters used in the data analysis (but not in the simulation-based
validation runs).

For the estimated covariance matrix C̃, which itself is a ran-
dom variable, Percival et al. (2022) suggested a procedure that

uses a more general joint prior of the mean and covariance ma-
trix as the Jeffreys prior proposed in equation 6 in Sellentin &
Heavens (2016). The method by Percival et al. (2022) leads to
credible intervals that can also be interpreted as confidence in-
tervals with approximately the same coverage probability. From
a data vector d and a covariance matrix C̃ measured from nr sim-
ulated survey realisations, the posterior distribution of a model
vector m that depends on nθ parameters Θ is

P
(
m(Θ)|d, C̃

)
∝ |C̃|− 1

2

(
1 +

χ2

nr − 1

)−m/2

, (16)

where

χ2 = [m(Θ) − d]T C̃−1 [m(Θ) − d] . (17)

The power law index m is

m = nθ + 2 +
nr − 1 + B(nd − nθ)

1 + B(nd − nθ)
(18)

with nd being the number of data points and

B =
nr − nd − 2

(nr − nd − 1)(nr − nd − 4)
. (19)

By setting m = nr the formalism of Sellentin & Heavens (2016)
is recovered.

Finally, since the model prediction is too slow for our
MCMC, we use the emulation tool contained in CosmoPower
(Spurio Mancini et al. 2022), which was first developed to emu-
late power spectra but can easily be adapted for arbitrary vectors.
We trained the emulator on 2000 model points in the parameter
space {Ωm, σ8, b, α} distributed in a Latin hypercube, where we
also included δ⟨z⟩ Gaussian distributed values with the mean as
shown in Table 2 but twice the standard deviation. To quantify
the accuracy of the emulator, we calculated the model at 500
independent points in the same parameter space, as determined
with the emulator or directly with the model and show the model
vector accuracy in Fig. A.4. The fractional error is better than 2%
(95% confidence level).

5.1. Reporting parameter constraints and goodness-of-fit

In this work, we followed the approach of Joachimi et al. (2021)
to report our parameter constraints. In particular, we seek to re-
port the global best fit to the data, i.e. the set of parameter values
that provide the maximum a posteriori (MAP) distribution, com-
puted as

ΘMAP = argmax
Θ

[
P (m(Θ)|d, C̃)

]
. (20)

where we found the maximum by running several minimisa-
tion processes. To estimate the resulting uncertainties around the
MAP, we use the suggested projected-joint-highest-posterior-
density (PJ-HPD) method, which calculates the parameter
ranges that encompass the 68% and 95% credible intervals.

Furthermore, with the degrees of freedom (d.o.f.), we also re-
port the reduced χ2/d.o.f. to quantify the goodness-of-fit, where
the χ2 results from the point in the high-dimensional parameter
space that has the highest posterior probability. To unbias the co-
variance matrix C̃, which is used to estimate the χ2-values, we
instead of inverting C̃ h with the known Hartlap factor (Hartlap
et al. 2007) defined as h = (nr − 1)/(nr − nd − 2), but rather use

C̃′ =
(nr − 1) [1 + B(nd − nθ)]

nr − nd + nθ − 1
C̃ . (21)
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To estimate the d.o.f. we measure for 1000 mock data vectors
the best χ2 and fit a χ2 distribution to it. The 1000 mock data vec-
tors are drawn from a multivariate Gaussian distribution, where
the mean is the model prediction at the MAP values, and the
covariance is the corresponding covariance matrix for that par-
ticular model. As we have only four free parameters and the rest
are fixed by prior knowledge, we expect that the resulting d.o.f.
is only slightly less than the raw number of elements in the data
vector.

Lastly, we report the p-value in each case, which provides
the probability of finding a χ2 that is more extreme for the given
d.o.f., and therefore indicates the goodness of fit. For our analy-
sis, we choose a significance level of 0.01 to be a reliable fit.

We note here that we have verified with some selected
cosmo-SLICS nodes that the theoretical model for the KiDS-
bright sample is valid and accurate for σ8 < 1.0, with indications
that it loses accuracy for larger values of σ8. This does not affect
our results, given that the preferred values of σ8 are well below
this limit.

6. Validating the model on simulations

In this section, we validate our model on simulated measure-
ments, several of which are infused with known and controlled
systematic effects. The first (fiducial) test establishes that our
model is unbiased in the simplest setup, where lens galaxies
linearly trace the pure dark matter density maps, while source
galaxies are given by the noise-free pure gravitational shear. The
second test verifies that our results are unchanged in the pres-
ence of IA, as described in Sect. 4.2, while, lastly, we investigate
the impact of baryonic physics on our statistics. The fiducial and
the IA tests use 20 light cones, which have an unmasked area
close to that of the KiDS-1000 footprint10. The measurements
on the Magneticum mocks use the 10 available light-cones. Fur-
thermore, we measured the shear profiles from KiDS-like mocks
with shape noise to validate our model on a realistic data vector.

Fig. 2: Shear profiles measured with the adapted filter for the KiDS-
bright-like lenses and sources from the cosmo-SLICS+IA simulations
for two different IA amplitudes (see the legend). The orange regions are
estimated from the covariance matrix, while the black dashed lines are
obtained from our IA-free analytical predictions at the input cosmology
and using the n(z) shown in Fig. 1. As the differences between the shear
profiles with varying IA amplitude can barely be seen, we display the
relative difference between them in the bottom panels for the highest
and lowest two quantiles.

10 After removing the outer strip, each light-cone has an effective area
of 36 deg2, which roughly matches the unmasked area of the KiDS-1000
data if 20 light cones are added.

Fig. 3: Relative difference between the mean ⟨Nap⟩ measured in the
cosmo-SLICS+IA bright mocks for four quantiles, and the value of
⟨Nap⟩ predicted by the model at the same cosmology. The blue error
bars show the KiDS-1000 statistical uncertainty measured from FLASK.

6.1. Validation on intrinsic alignment

To quantify the influence of IA on our results, we performed an
MCMC analysis on the mock infused with a strong IA amplitude
(AIA = 2.0) and compared it to our fiducial model (AIA = 0). For
this, we used the mocks described in Sect. 4.2, excluding the
third source tomographic bin due to the lens-source coupling.
The resulting profiles and mean relative number counts that are
used for our pipeline validation are shown in Figs. 2 and 3, re-
spectively. Although the aperture number is not affected by IA, it
has a slight effect on the profiles, and hence we verify how it im-
pacts the full data analysis. We performed this validation test for
the adapted and top-hat filters but show the resulting shear sig-
nals, and the corresponding mean aperture number values only
for the adapted filter since those of the top-hat filter are very
similar and would not yield more insights.

To quantify our decision to discard the third source tomo-
graphic bin from our analysis, we show in Fig. A.5 the same
shear profiles as in Fig. 2 but also the ones resulting from the
third redshift bin, where we clearly see the third tomographic bin
is heavily affected by IA, due to a significant overlap in redshift
between the lens and source populations, and therefore would
need additional modelling of IA, which we disregard for this
work, and thus we exclude the third bin.

The MCMC results for the two IA amplitudes (no IA and
IA = 2.0) are shown in Fig. 4. First, it is clearly shown that
changing the IA amplitude does not affect the posterior at all.
Second, and very importantly, the input cosmology is recovered.
We observe a small offset on the parameter α, but the other pa-
rameters are all recovered within the 1σ region. This confirms
that the < 6% deviations seen on the aperture number count pre-
sented in Fig. 4 do not impact our cosmological inference. Fi-
nally, we observe an anti-correlation between the S 8 or σ8 pa-
rameter and the galaxy bias b parameter, which is expected since
all three parameters are directly correlated with the amplitude of
the shear signal. This correlation and the correlation of S 8 and
σ8 to the α parameter could potentially impair the robustness
of the later constrained parameters. However, these parameters
are particularly important for our model and, therefore, can not
be ignored. The same validation is done for the top-hat filter in
Appendix C.

6.2. Validation on baryonic feedback

As a last important verification, we investigate for the first time
the impact of baryons on the DSS with the Magneticum simula-
tions described in Sect. 4.3. By combining the different DM-only
and Hydro mock data for the lenses and sources, we end up with
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Fig. 4: Pipeline validation: Cosmological inference with the adapted fil-
ter using the cosmo-SLICS simulations with and without IA infusion,
analysed with our model that ignores IA. The posteriors are almost in-
distinguishable from each other.

four scenarios (lens-source = DM-DM, DM-Hydro, Hydro-DM
and Hydro-Hydro). Figure 5 shows the residuals between the
shear profiles measured from dark matter-only mocks (DM-DM)
to the other three combinations for each quantile. Clearly, the
deviations are well inside the expected KiDS-1000 uncertainty.
The biggest differences are seen if baryonic feedback processes
are included in the lens mocks: some pixels, close to the Nap
threshold between two quantiles, are shifted to another quantile
by the presence of baryons. This is in concordance with the mean
aperture numbers reported in Fig. 6, which shows that the mean
aperture numbers with baryons are slightly lower. Different to
our studies of baryonic feedback like Heydenreich et al. (2022)
or Harnois-Déraps et al. (2021), the inclusion of baryons in the
sources has only a minor impact on the DSS, but as expected,
becoming more important at small scales. In light of this, we can
safely neglect the impact of baryons in our real data analysis.

7. Results and discussion

After validating our model to simulations in B22 and our ad-
ditional testing on the impact of IA and baryonic physics, we
are well equipped to analyse real lensing data accurately. As de-
scribed in Sect. 3, we use the KiDS-bright sample as our fore-
ground lenses and the fourth and fifth KiDS-1000 tomographic
bins as our cosmic shear data. To recap, in our fiducial analysis,
we used the n(z) shown as the black solid line in Fig.1, we var-
ied the two cosmological parameters Ωm and σ8 as well as the
two astrophysical parameters b and α. We marginalised over the
systematic effects parameters describing the δ⟨z⟩ and m-bias un-
certainty. In Figs. 7 and 8 we display the resulting shear profiles
and mean aperture number. The model shown on these figures
is computed at the best-fit MAP values, listed in the first col-
umn of Table 3. In that table, the p-values indicate that the data
are well fitted by the model, being all well above our threshold

Fig. 5: Absolute differences between the mean shear profiles for all
quantiles using either dark matter-only or full hydrodynamical Mag-
neticum simulations. The residuals are with respect to the dark matter-
only mocks for the lenses and sources and are always within the ex-
pected statistical uncertainty shown as the orange bands.

Fig. 6: Same as Fig. 3, but here comparing measurements from the hy-
dro and dark matter-only Magneticum simulations. The relative differ-
ence is always well inside the expected statistical uncertainty of KiDS-
1000.

value fixed at p = 0.01. The d.o.f. are estimated as described in
Sect. 5.1, where we show in Fig. A.6 the distribution of χ2 val-
ues and for which a χ2-distribution with 81 d.o.f. fits well. As
expected, the resulting d.o.f is slightly lower than the raw num-
ber of elements. The reduced χ2 values are slightly below the
expectation of 1.0, potentially indicating that the uncertainties
could be slightly overestimated, although they are well inside
the expected reduced χ2 scatter of ±√2, hence do not warrant
further investigation.

Using the approach described in Sect. 5.1 to estimate the un-
certainty around the MAP, we find

S DSS
8 = 0.743+0.030

−0.024 , (22)

which is consistent with and competitive to the KiDS-1000 cos-
mic shear constraints from Asgari et al. (2021),

S COSEBIs
8 = 0.759+0.021

−0.024 . (23)

We present the posterior of these two analyses in the left panel
of Fig. 9, where the consistency between the two probes is ob-
vious. The DSS has a slightly lower constraining power on S 8;
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Fig. 7: Shear profiles measured in the data, compared to the best-fit pre-
dictions (MAP) obtained with values listed in Table 3, for the adapted
filter. The shaded region shows the statistical uncertainty estimated from
1000 FLASK realisations.

Fig. 8: Same as Fig. 3, but here comparing measurements from the
KiDS-bright sample and our model, evaluated at the MAP values shown
in Table 3. The measured ⟨Nap⟩ are all greater than the predicted ⟨Nap⟩
at MAP just indicating that the measured p(Nap) is broader than the pre-
dicted one.

however, the Ωm-σ8 degeneracy is broken, thanks to the addi-
tional information provided by the foreground data. But even for
the shear-only case shown in green in Fig. 9, the DSS has bet-
ter constraining power for the Ωm and σ8 parameters, although
the lower bound should be taken with caution as we excluded all
Ωm < 0.2, as the model does not agree with the cosmo-SLICS
for smaller Ωm values. Furthermore, although the results of Fig.
A.2 show that the inferred S 8 might be smaller compared to the
truth if a linear galaxy bias model is not sufficient, the consis-
tency between the shear-only DSS analysis to the complete DSS
analysis supports the robustness of our inferred parameters with
respect to the galaxy bias model (see the discussion at the end
of Sect. 2.2). The comparison to the COSEBIs analysis reveals
competitive S/N for the S 8 parameter while using only a fraction
of the lensing sources (tomographic bins four and five). Caution
should be taken when comparing their respective constraining
power, as the COSEBIs analysis marginalises over more cosmo-
logical parameters and samples the parameter space differently.
Nevertheless, it seems that a joint COSEBIs-DSS analysis could
further improve the constraints, which we leave for future work.
Lastly, as the DSS estimates of S 8 are slightly lower but with
higher uncertainty, we measure a similar tension to the CMB re-
sults as the COSEBIs analysis.

In the next section, we investigate the robustness of our re-
sults with respect to the lens redshift distribution n(z), of varying
the covariance matrix. We further present our galaxy colour-split
analysis and additionally discuss the galaxy bias b and α results.

7.1. Impact of lens redshift distribution

To estimate the impact of the shape of the lens galaxy redshift
distribution (on top of shifting the mean by δ⟨z⟩ in the sam-
pling), we repeat the analysis for the three n(z) shown in Fig. 1.
These are the smoothed version of the photometric redshift dis-
tribution n(z), the photometric redshift distribution n(zphot) itself
without any smoothing, and the spectroscopic redshift n(zspec)
from those GAMA galaxies that are also in the KiDS-bright
sample. Although Bi21 showed that GAMA is representative
and that mismatches should be rare, the results from the GAMA
spectroscopic n(zspec) should be taken with caution because the
equatorial fields have a relatively small sky coverage, leading to
features in the n(z) that are caused by the large-scale structure
present in these fields. For this investigation, we use the same
setup as for the fiducial analysis, varying the two cosmological
parameters Ωm and σ8 together with the α and the linear galaxy
bias b parameter. We also marginalised over the nuisance param-
eters shown bottom half of Table 2. In the right panel of Fig. 9
we display the different posteriors following from the three alter-
native n(z). It is clearly seen that the posteriors are shifted along
the Ωm-σ8 degeneracy axis, whereas these shifts partially cancel
out for S 8. Due to the different lens n(z), the amplitude and the
slope of the shear signal predictions are slightly different. In par-
ticular, higher amplitude and steeper slope of the shear profiles
result in larger σ8 and smaller Ωm, and vice-versa. Furthermore,
we notice that the linear galaxy bias b and the noise α are stable
against changes in the n(z).

Lastly, in order to investigate the impact of our photometric
redshift cut at zph = 0.1 (see Sect. 3.1), we perform two ad-
ditional analyses, this time modifying the photometric redshift
threshold to zph > 0.15 and zph > 0.2. We find that the posteriors
shifts are smaller than the 68% credibility region, indicating that
removing low-redshift galaxies does not result in systematically
different Ωm or σ8.

Table 3: Overview of the marginalised MAP values and 68% confi-
dence intervals resulting from MCMC chains where Ωm, σ8, α, and the
linear galaxy bias parameter are varied. We fixed h = 0.6898, w0 = −1
and ns = 0.969 but marginalised over the δ⟨z⟩ and m-bias uncertainties.

adapted n(z) n(zph) n(zspec)
Ωm 0.28+0.02

−0.02 0.30+0.03
−0.02 0.32+0.03

−0.03

σ8 0.78+0.04
−0.04 0.76+0.04

−0.05 0.74+0.04
−0.05

S 8 0.74+0.03
−0.02 0.76+0.03

−0.03 0.77+0.04
−0.03

b 1.32+0.12
−0.10 1.31+0.14

−0.10 1.28+0.13
−0.13

α 1.35+0.79
−0.91 1.42+0.82

−0.94 1.86+0.92
−0.89

χ2/d.o.f. 0.80 0.81 0.81
p-value 0.91 0.90 0.90

7.2. Cosmology scaling of the covariance matrix

The covariance matrix used in the main analysis is determined
at a specific point in the parameter space (see Sect. 4.1), which
is not identical to the MAP. However, assuming the MAP val-
ues are the true parameters, the most robust likelihood analysis
would be achieved with a data covariance matrix estimated at
the MAP values. This section, therefore, explores the impact of
considering a cosmology-dependent covariance matrix.

In the related literature, there are two common approaches on
whether the cosmology should be kept fixed in the covariance
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Fig. 9: On the left: Cosmological posteriors for the adapted filter for the best estimated n(z) in black using the full data vector and in green using
only shear information compared to the COSEBIs posteriors in orange presented in Asgari et al. (2021) and to the (TT, TE, EE+lowE) results of
Planck Collaboration et al. (2020) in red. The sharp cut of the green posterior is due to the conservative prior of Ωm > 0.2, as the model does not
agree with the cosmo-SLICS for smaller Ωm values. The shear-only posterior is shown in this figure to support the assumption of using a linear
galaxy bias model. On the right: Posteriors of the full DSS vector resulting from using the different lens n(z) shown in Fig. 1. The n(zphot) and
n(z) have, by construction, the same mean redshift, while the mean redshift of the spectroscopic redshift estimate is ∼ 0.015 lower. The main
DSS results include a marginalisation over our uncertainty in the mean redshifts of both the lens and source samples, which partially compensates
for some of these differences. The posterior obtained using the GAMA spectroscopic n(z), shown in blue, should be taken with caution as it is
estimated from a smaller sky coverage and, as such, contains larger statistical fluctuations.

matrix (van Uitert et al. 2018) or varied at each point sampled
by the MCMC, as in Eifler et al. (2009). It is argued in Carron
(2013) that the latter could result in over-constraints, whereas
Kodwani et al. (2019) argues that the effect is small. We, there-
fore, explore both methods here.

We achieve our cosmology rescaling by assuming that the
covariance matrix scales quadratically with the signal. This is
only strictly true in the Gaussian regime; nevertheless, it is a
good first approximation, even though the impact on the non-
linear mode coupling is neglected in this approach.

To achieve the rescaling, we compute at a new cosmology
Θ the ratio between the predicted model m(Θ) and the model
predicted at the FLASK cosmology m

(
ΘF

)
,

ri(Θ) =
mi(Θ)
mi

(
ΘF) . (24)

We then multiply each element of the fiducial covariance matrix,
CF

i j, by the scaling factors,

Ci j(Θ) = CF
i j ri(Θ) r j(Θ) , (25)

and obtain a cosmology-rescaled covariance matrix.
As explained in Eifler et al. (2009), this method is only valid

for a noise-free covariance matrix since it wrongly rescales the
shape-noise component and possibly over-estimates the cosmol-
ogy changes. Finally, we note that in Eq. (16) the determinant of
the covariance matrix changes with cosmology as well and needs
to be recalculated.

Using our fiducial setup, we determine the posterior distri-
bution in two distinct ways: first, by varying the covariance ma-
trix alongside the model vector at each step of the MCMC, and
second, by scaling the covariance matrix to the MAP value. For
the latter approach, we use an iterative process, where we first
estimate the MAP with the fiducial covariance matrix, then use
the MAP parameters to scale the covariance matrix and find new
MAP parameters; we repeated that process 100 times. As seen
in Fig. A.7 after approximately 20 iterations the MAP values
converged. The results are shown in Fig. 10, where the red pos-
teriors used a covariance rescaled to the converged MAP value;
the blue posteriors are for a full parameter-dependent covariance
matrix varied in the MCMC; the black posteriors show the fidu-
cial covariance. The red and black posteriors are almost identi-
cal, which is not surprising given the fact that the MAP values
are very close to the parameters used to determine the covariance
matrix. However, the blue contours slightly differ from the other
two but are still within half 1σ; we are therefore not concerned
about the impact on our constraints of this analysis choice. In
Stage IV surveys, this will be even less important due to the
tighter posterior and the, therefore, smaller cosmology variation.

7.3. Red and Blue split

In this section, we present our final investigation, dividing the
KiDS-bright sample into red and blue galaxies according to their
colour as described in Sect. 3.1, and carry out a joint analysis.
The motivation for this is to learn more about the behaviour of
different galaxy types and as a cosmological robustness check.
As for the main analysis, we use the best estimated n(z), result-
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Fig. 10: Comparison between the posteriors obtained from our fiducial
setup (with the covariance matrix calculated at the initial cosmology,
see the black contours), with those obtained after scaling the covariance
at the best-fit parameters (red) and to those obtained by varying the
covariance with the parameters.

ing from smoothing the photometric redshifts after applying a
zph > 0.1 cut. In this setup, our data vector has 168 elements. But
given the likelihood modelling described in Sect. 5, we are still
confident in our results with respect to the remaining noise in the
covariance matrix. As shown in Table 4, the reduced χ2/d.o.f. =
1.07 indicates a valid fit. The resulting posteriors are shown in
Fig. 11 and the MAP values are stated in Table 4.

First, we notice that the cosmological parameters of the full
KiDS-bright sample analysis and the joint red and blue analy-
sis are consistent and within 0.35σ. Of particular interest in this
investigation are the results obtained for the two astrophysical
parameters, where we see that, as expected, the blue (red) sam-
ple prefers a smaller (larger) linear galaxy bias b compared to
the full sample. This is in line with the fact that red galaxies
are known to be more strongly clustered than blue galaxies and
therefore have a larger galaxy bias (Mo et al. 2010). Further-
more, we find that the α parameter for the blue sample is sig-
nificantly larger than unity, whereas the red sample tends to be
below one. This shows that blue galaxies follow a super-Poisson
distribution and red galaxies a sub-Poisson distribution. Follow-
ing the results of Friedrich et al. (2022) who found that a higher
satellite fraction leads to a higher α value, the blue sample has
more satellites. The full sample overlaps with the blue and red
posteriors and is consistent with a normal-Poisson distribution
(α = 1.0).

8. Summary and conclusions

In this work, we present an unblinded density split statistic anal-
ysis of the fourth data release of the Kilo-Degree survey (KiDS-
1000). The analytical model used to infer cosmological and as-
trophysical parameters was first developed in Friedrich et al.
(2018) then modified in Burger et al. (2022), and we further val-

Table 4: Overview of the MAP values and 68% confidence intervals
resulting from MCMC chains shown in Fig. 11. The first column is the
same as in Table 3. We fixed h = 0.6898, w0 = −1 and ns = 0.969
but marginalised over the δ⟨z⟩ and m-bias uncertainties. If limits are not
given they are dominated by priors.

adapted full red + blue
Ωm 0.28+0.02

−0.02 0.28+0.03
−0.02

σ8 0.78+0.04
−0.04 0.78+0.04

−0.03

S 8 0.74+0.03
−0.02 0.75+0.03

−0.01

b 1.32+0.12
−0.10 1.86+0.11

−0.14 1.03+0.05
−0.10

α 1.35+0.79
−0.91 0.10+0.67 2.25+0.34

−0.15

χ2/d.o.f. 0.80 0.99
p-value 0.91 0.51

Fig. 11: Same as Fig. 9, but including a colour split. The posterior for
the full KiDS-bright sample is shown in green, while the joint red+blue
posteriors represent the results of the colour-selected samples. Note that
in the latter case, the red and blue samples share the same cosmology
(the dark blue contours) by construction. The resulting measured and
best-fit predicted shear profiles for the red and blue samples are dis-
played in Fig. B.2 and the corresponding mean aperture number values
are seen in Fig. B.3.

idated it on realistic simulated data. The lenses used to construct
the foreground density map are taken from the KiDS-bright sam-
ple described in Bi21, while for our sources, we used the fourth
and fifth tomographic redshift bins of the KiDS-1000 data de-
scribed in H21.

We investigated for the first time the impact of baryons and
IA on the DSS. While the effect of the former is suppressed due
to the implied smoothing of the density map, IA can have an im-
portant role if the redshift distributions of the lenses and sources
overlap. We carried out a full analysis on contaminated mock
data without overlapping redshift distributions and found that for
our selected data, we are immune to both of the systematic ef-
fects at the level of the inferred posteriors.
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We explored the uncertainty of the redshift distribution of the
lenses by investigating the impact on the posterior of changing
the mean and the shape of the n(z). In particular, we used for
this the photometric redshift distribution n(zph) with and without
smoothing, as well as the distribution obtained directly from the
overlapping spectroscopic GAMA galaxies. We found that the
posteriors vary by less than ∼ 0.5σ. Notably, we observed that
of all parameters, Ωm is the most affected and is generally lower
for broader n(z); in contrast, σ8 is increased, leaving S 8 values
changed by ∼ 0.3σ. We assigned an extra error term to this un-
certainty, resulting in S 8 = 0.743+0.030

−0.024 ± 0.01 for the n(z) shape
after marginalising over the other systematic effects. These con-
straints are competitive to and consistent with the KiDS-1000
cosmic shear constraints from Asgari et al. (2021).

Furthermore, we investigated the impact of varying the co-
variance matrix with cosmological parameters, where once we
used an iterative process to scale the covariance matrix to the
MAP best-fit parameters, and once we varied alongside the pa-
rameters in the MCMC process; for all cases, we record no sig-
nificant deviations.

As our final result, we divided the full KiDS-bright sam-
ple into red and blue galaxies as a cosmology robustness check
and to learn more about different galaxy types. For this, we per-
formed a joint analysis of the red and blue samples with a joint
covariance matrix with the smoothed version of n(zph) as our
best redshift estimate. The resulting posteriors of the full and
joint red+blue analyses agree on the cosmological parameters
within 0.35σ. Furthermore, it shows the expected behaviour of
the linear galaxy bias, where blue (red) galaxies have a lower
(higher) bias than the full sample. The α parameter, which ac-
counts for super-/sub-Poisson shot noise, also revealed interest-
ing results. Whereas red galaxies have an α value that tends to
be smaller than one (≈ 1σ), blue galaxies have an α value sig-
nificantly larger than one (≈ 6σ), meaning that blue galaxies
are super-Poisson distributed and red galaxies sub-Poisson dis-
tributed. According to Friedrich et al. (2020) this reveals infor-
mation about the halo occupation distribution, with samples with
a larger fraction of satellite galaxies tending to have larger α val-
ues than central.

We conclude from our results that the density split statistic
is a valuable tool with a major advantage in the Ωm-σ8 degen-
eracy breaking. Besides this, it also yields a new way to mea-
sure the galaxy bias on linear scales and the Poissanity of dif-
ferent galaxy types. We save for future analysis the inference
of the dark-energy-equation of state w, which can be achieved
by a tomographic analysis of high-precision lensing and cluster-
ing data. Another aspect for future analysis is the modelling of
a more complex galaxy bias model, and lastly the impact of the
filter size, where we expect that smaller filter sizes are more con-
straining but also more sensitive to non-linear scales and bary-
onic analysis.
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Appendix A: Additional plots

In this section, we show additional plots which belong to the
main text. We start by visualising the shear profiles that result
in different threshold values for the effective area above which
pixels are used for the analysis in Fig. A.1.

Fig. A.1: Residual shear profiles of the highest quantile filter for dif-
ferent threshold values that the effective area must exceed to be used
with respect to the shear profiles with a 0.5 threshold. It is seen that
for threshold values above 0.6 the shear profiles deviate more than one
standard deviation (grey band) due to decreasing remaining area.

Fig. A.2: Posterior distributions, using different b2 values to distribute
galaxies to the same density contrast, from which a data vector is mea-
sured. The lower right panel shows the posterior results from simula-
tions, where galaxies are distributed with a HOD. The model vector
uses for all four cases a linear galaxy bias model.

In Fig. A.2 we show different posterior distributions, to test
whether our analytical model with a linear galaxy bias model
gives robust cosmological results even if galaxies are placed
with Poisson process with mean λ = neff

[
1 + b1 δm,2D(θ) +

b2 (δ2
m,2D(θ)−⟨δ2

m,2D)⟩], where δm,2D is the projected density con-
trast or with with an halo occupation distribution (HOD) descrip-
tion (Smith et al. 2017). For the Poisson process test, we use the
simulation of Takahashi et al. (2017) with sources that mimic the

fourth and fifth KiDS-1000 bins and lenses that mimic the KiDS-
bright sample. For the HOD analysis, we measure the data vec-
tor, and the covariance from 614 SLICS realisations with noisy
KiDS-1000 sources and GAMA lens mocks (see Harnois-Déraps
et al. 2018, for a detailed description), where the covariance is
scaled to approximately match the KIDS-1000 footprint. It is
clearly seen that the posterior for b2 > 0 are strongly biased if
shear and Nap information are used, whereas using only shear
information, the posterior are unbiased as they are almost insen-
sitive to the galaxy bias model. Although the HOD analysis al-
ready shows that the linear galaxy bias assumption is sufficient,
if the posterior using shear and Nap information is consistent with
the posterior using only shear information gives additional con-
fidence that b2 ≈ 0.

In Fig. A.3 we show that negligible difference of the lens n(z)
if the Lorentzian fitting parameters (a and s) are estimated from
different patches of the sky.

Fig. A.3: Redshift distribution of the full KiDS-bright sample resulting
from Lorentzian fitting parameters (a and s), which in turn are deter-
mined from different patches on the sky. In the bottom panel, the abso-
lute differences to the best estimated n(z) are shown.

Fig. A.4: Upper panel: Relative difference of the χ2 predicted from the
emulator to ones predicted from the model. The mean and standard de-
viation is shown in the legend indicate the predictions from the emula-
tor to be mostly below 0.5%. Lower panel accuracy of the emulated full
model data vector m(Θ) scaled by the expected KiDS-1000 uncertainty.
Both plots indicate that the error of the emulator is negligible.

In Fig. A.4 we display the accuracy of the emulator, and in
Fig. A.5, that the third tomographic bin is indeed contaminated
by IA, in Fig. A.6 the χ2 distribution of mock data vectors around
the MAP for the adapted filter with the best estimated n(z), and
lastly in Fig. A.7 the iterative process to find the optimal MAP
values by scaling the covariance matrix to the previously found
MAP.

Appendix B: Additional material for the red and
blue analysis

Here in this chapter, we show the complementary plots for the
joint red+blue analysis. In Fig. B.1 the redshift distribution for
the red and blue samples is shown, resulting from the smooth-
ing method described in Sect.3.1. In Fig. B.2 we show the shear
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Fig. A.5: Shear profiles of the cosmo-SLICS for the bright lens and all
three source mocks with the n(z) shown in Fig. 1 for two different IA
amplitudes for the adapted filter. The third source tomographic bin is
strongly contaminated by IA due to the significant overlap with the lens
n(z) and is therefore excluded from this analysis.

Fig. A.6: Distribution of χ2 values of mock data vectors that follow
from multivariate Gaussian distributions, where the mean is the model
prediction at MAP and the covariance is the corresponding covariance
for that particular model. The red line shows the χ2 values using the real
data vector. The orange line is a χ2 distribution with d.o.f. = 81, which
is slightly smaller than the 84 elements of the data vector.

Fig. A.7: Change of MAP values due to scaling of the covariance to
the previously measured MAP values. Roughly after 10 iterations, the
process converged, where the occasional outliers happened if the min-
imisation process stopped to early by coincidence.

profiles; in Fig. B.3 the mean aperture number values for both
samples which are used as the model and data vectors.

Fig. B.1: Best estimated redshift distributions of the red and blue KiDS-
bright samples in red and blue, with the full KiDS-bright sample in
green.

Fig. B.2: Measured and predicted shear profiles at the MAP values for
the adapted filter for the red and blue samples. The shaded region is
the expected KiDS-1000 uncertainty estimated from the 1000 FLASK
realisations with shape noise.

Fig. B.3: Mean aperture number of the red and blue sample, where the
predictions follow from a joint minimisation process. Different to the
full bright sample the measured p(Nap) is smaller than the predicted
Map, resulting in the measured ⟨Nap⟩ being smaller.
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Appendix C: Top-hat filter analysis

This section shows the corresponding plots that belong to the
analysis with the top-hat filter. We start by showing in Fig. C.1
the validation for the top-hat with the cosmo-SLICS, which
shows that the true parameters are always inside 1σ. The dis-
cussion from Sect. 7.1 about the impact of different redshifts
distributions is summarised for the top-hat filter in Table C.1,
which shows with the given reduced χ2 and corresponding p-
value that the model is well fitted to the data given the covari-
ance matrix, and result in parameters that are consistent to the
ones constrained with the adapted filter.

Fig. C.1: MCMC results for the top-hat filter using the model and simu-
lations where we infused the pure shear signal with different amplitudes
of IA.

Table C.1: Overview of the marginalised MAP values and 68% con-
fidence intervals resulting from MCMC chains where Ωm, σ8, the α
and the linear galaxy bias parameter are varied. We fixed h = 0.6898,
w0 = −1 and ns = 0.969 but marginalised over the δ⟨z⟩ and m-bias un-
certainties. If limits are not given, they are dominated by priors.

top-hat n(z) n(zph) n(zspec)
Ωm 0.31+0.04

−0.03 0.34+0.05
−0.04 0.36+0.05

−0.04

σ8 0.68+0.05
−0.05 0.65+0.05

−0.05 0.62+0.05
−0.05

S 8 0.68+0.04
−0.02 0.69+0.04

−0.01 0.68+0.04
−0.02

b 1.66+0.14
−0.20 1.69+0.15

−0.22 1.73+0.15
−0.23

α 0.10+2.09 0.10+2.12 0.10+2.24

χ2/d.o.f. 1.02 1.03 1.04
p-value 0.44 0.41 0.39

Finally we show in Fig. C.2 and Table C.2 the analogous re-
sults for the top-hat filter to the adapted filter as shown in Fig. 11
and Table 4. The p-value for the joint red+blue indicates that the
given d.o.f. has a significant tension between the measured data
and the best fit model. Although this reduced χ2 is not ideal for

Fig. C.2: The posterior for the full KiDS-bright sample is shown in
green, while the joint red+blue posteriors represent the results of the
individual colour-selected samples. Note that in the latter case, by con-
struction, the red and blue samples share the same cosmology (the dark
blue contours).

the given d.o.f., we still perform the analysis, but note that the
posteriors should be taken with caution, which is already true
because we are uncertain about the true n(z) of the sub-samples.
Overall the results show the same trends as for the adapted fil-
ter, where the blue galaxies result in smaller bias b and larger α
than the red galaxies. The reason for the top-hat filter performing
worse than the adapted filter is unclear. Nevertheless, besides the
fact that the n(z) of the red and blue sample is quite uncertain,
both filters are probing on fundamentally different scales so that
different behaviours are not surprising.

Table C.2: Overview of the MAP values resulting from MCMC chains
shown in Fig. C.2. We fixed h = 0.6898, w0 = −1 and ns = 0.969
but marginalised over the δ⟨z⟩ and m-bias uncertainties. If limits are not
given, they are dominated by priors.

top-hat full red + blue
Ωm 0.31+0.04

−0.03 0.27+0.03
−0.02

σ8 0.68+0.05
−0.05 0.79+0.06

−0.04

S 8 0.68+0.04
−0.02 0.76+0.04

−0.01

b 1.66+0.14
−0.20 1.78+0.10

−0.20 0.94+0.08
−0.11

α 0.10+2.09 0.10+1.20 3.35+0.44
−0.15

χ2/d.o.f. 1.02 1.35
p-value 0.44 0.001
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Contribution summary

In this additional chapter, I summarise all my work during my PhD.

In the publication B20, I derived in cooperation with Peter Schneider a new filter function for the

density split statistic (DSS), that is optimised in terms of signal-to-noise ratio (S/N). Although

this work is based on my master’s thesis, I started writing the paper during the first period of

my PhD, updated several results during this process, and went through the full Kilo-Degree

Survey (KiDS) consortium review process.

The first main project of my PhD was then published in B22a, where I modified in cooperation

with Peter Schneider and Oliver Friedrich the original DSS model presented in Friedrich et al.

(2018, hereafter F18) in such a way that it can use general filter functions. During this work, I

changed the mathematical calculations and the implementation of all necessary components

of the analytical model, introducing entirely new approaches to the solution. Furthermore,

using the public available Takahashi et al. (2017, hereafter T17) simulations, I created the lens

and source galaxy catalogues that mimic the fourth data release of the Kilo-Degree Survey

(KiDS-1000) data. With these mocks, I tested, validated and calibrated the model. Afterwards,

I tested the calibrated model with the independent Scinet Light Cone Simulations (SLICS)

simulations. As many of the lens catalogues of the SLICS were originally done for me, I also

contributed by analysing them to their accuracy.

In B22b, I published the last major project, where I analysed the real KiDS-1000 data using

the DSS. While measuring the DSS data vector, I discovered that a subset of the KiDS-1000

tiles demonstrated an offset between the galaxy tile centroids and their corresponding mask

centroids. This discovery resulted in a new data release (DR 4.1), which was used for the DSS

analysis (and all subsequent KiDS-1000 analyses). Furthermore, I measured the covariance

matrix using the FLASK simulations (Xavier et al., 2016). I implemented an inference pipeline,

which can predict converged posterior distributions within a minute, by running Markov chain

Monte Carlo (MCMC) samplers on a graphics processing unit (GPU) using the CosmoPower

emulator (Spurio Mancini et al., 2022). In this work, I also tested the robustness of the DSS

model concerning baryonic feedback processes, intrinsic alignment (IA), the assumption of

the linear galaxy bias, the shape of the lens galaxy redshift distribution, and the impact on the

posterior if the covariance matrix is changed with cosmological parameters. Finally, after these

validation steps, I analysed the KiDS-1000 data. Additionally, I split the bright sample of the

KiDS-1000 release (KiDS-bright) sample into red and blue galaxies and analysed them jointly.

Besides the central DSS project, I also contributed to other works during my PhD, which I will

summarise next.
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Contribution summary

The most significant additional contribution was in the work of Heydenreich et al. (2022b).

This work performs a cosmological parameter analysis with third-order cosmic shear using the

shear three-point correlation functions Γ𝑖 and the third-order aperture statistics ⟨𝑀3

ap
⟩. My first

contribution to this work was to measure a ⟨𝑀3

ap
⟩ KiDS-1000-like covariance matrix and data

vector using the T17 simulations. This covariance and data vector were used for the key figure,

which forecasts the constraining power of second-order aperture statistics, third-order aperture

statistics and their combination. My second contribution to this work was that I implemented

the inference pipeline to measure the posterior distributions using the CosmoPower emulator,

which enabled the determination of MCMC chains on a GPU within several minutes. Lastly, I

wrote those parts of the paper that I also analysed. In a companion paper by Linke et al. (in

preparation), which develops an analytic description of the covariance matrix of the third-order

aperture statistic ⟨𝑀3

ap
⟩, the T17-covariance matrix is used as a reference with which the analytic

covariance matrix should agree. Furthermore, the inference pipeline used for Heydenreich

et al. (2022b) is also used in Linke et al. (in preparation) to compare the constraining power of

different covariance matrices.

In another side project, I contributed in Heydenreich et al. (2022a). The idea of this project, which

is similar to peak statistics (Harnois-Déraps et al., 2021) or Minkowski functionals (Shirasaki

and Yoshida, 2014), is to cut off an aperture mass map at a certain threshold and count the

number of holes and connected components. By varying the threshold and keeping track of

when these features are ‘born’ and ‘die’, it is shown in Heydenreich et al. (2021) that persistent

Homology is at least as informative, if not better than the peak statistics. My contributions to

this paper are many statistical notes regarding the evaluation during the weekly meetings, the

measurement of two-point statistics for comparison with the persistent homology statistics,

and partial writing of the paper.

As further side project, I implemented python modules for CosmoSIS (Zuntz et al., 2015), that

can read in the power spectrum emulator CosmoPower. CosmoSIS is a modular cosmological

parameter estimation tool used for many state-of-the-art analyses (Asgari et al., 2021; Heymans

et al., 2021). Using CosmoPower instead of Camb (Lewis et al., 2000) reduced the run-time to

predict the power spectrum from ∼ 2.1 s to ∼ 0.04 s. The publication Johnston et al. (in prep)

uses these modules to improve their analysis, which the previous runtime of Camb prevented.

Also, I have already implemented Python modules that calculate power spectra of the halo

model from CosmoSIS, which in turn will be used to train CosmoPower.

The last project, which resulted in a presentation at a KiDS busy week, is a simulation-based

inference using convolutional neural networks (CNN). The CNN is trained on 𝑀ap maps

measured from the cosmo-SLICS, which have several different cosmologies. The overall idea

was that the CNN could learn features in the 𝑀ap maps that are correlated with cosmological

parameters. Although I achieved some exciting results, the feasibility of using a CNN is highly

correlated with the number of training sets, which will significantly increase for the next

generation of surveys like Euclid or LSST.
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