
4.83.530

Article

Metrics Assessment and
Streamflow Modeling under
Changing Climate in a Data-Scarce
Heterogeneous Region: A Case
Study of the Kabul River Basin

Fazlullah Akhtar, Christian Borgemeister, Bernhard Tischbein and Usman Khalid Awan

https://doi.org/10.3390/w14111697

https://www.mdpi.com/journal/water
https://www.scopus.com/sourceid/21100255400
https://www.mdpi.com/journal/water/stats
https://www.mdpi.com
https://doi.org/10.3390/w14111697


Citation: Akhtar, F.; Borgemeister, C.;

Tischbein, B.; Awan, U.K. Metrics

Assessment and Streamflow

Modeling under Changing Climate in

a Data-Scarce Heterogeneous Region:

A Case Study of the Kabul River

Basin. Water 2022, 14, 1697. https://

doi.org/10.3390/w14111697

Academic Editor: Renato Morbidelli

Received: 11 April 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Metrics Assessment and Streamflow Modeling under Changing
Climate in a Data-Scarce Heterogeneous Region: A Case Study
of the Kabul River Basin

Fazlullah Akhtar 1,* , Christian Borgemeister 1 , Bernhard Tischbein 1 and Usman Khalid Awan 2

1 Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany;

cb@uni-bonn.de (C.B.); tischbein@uni-bonn.de (B.T.)
2 International Water Management Institute (IWMI), Lahore 53700, Pakistan; u.k.awan@cgiar.org

* Correspondence: fakhtar@uni-bonn.de; Tel.: +49-(0)-228-73-4031

Abstract: Due to many uncertainties in hydrological data and modeling, the findings are frequently

regarded as unreliable, especially in heterogeneous catchments such as the Kabul River Basin (KRB).

Besides, statistical methods to assess the performance of the models have also been called into doubt

in several studies. We evaluated the performance of the Soil and Water Assessment Tool (SWAT)

model by statistical indicators including the Kling-Gupta efficiency (KGE), Nash–Sutcliffe efficiency

(NSE), and the coefficient of determination (R2) at single and multi-outlets in the KRB and assessed

the streamflow under changing climate scenarios i.e., Representative Concentration Pathways (RCP)

4.5 and 8.5 (2020–2045). Because of the heterogeneous nature of the KRB, NSE and R2 performed

poorly at multi-outlets. However, the KGE, as the basic objective function, fared much better at single-

outlet. We conclude that KGE is the most crucial metric for streamflow evaluation in heterogeneous

basins. Similarly, the mean and maximum annual streamflow is projected to decrease by 15.2–15.6%

and 17.2–41.8% under the RCP 4.5 and 8.5, respectively.

Keywords: climate change; spatial heterogeneity; streamflow; Kabul River Basin; data-scarcity;

performance metrics

1. Introduction

The analysis of rainfall-runoff relationships provides essential information necessary
for developing plans for infrastructure development and adaptive water management
under changing climate. Several tools and methods are used for simulating the rainfall-
runoff under a data-scarce environment [1,2]. However, most of these tools have their
limitations in the context of large river basins due to the lack of data as well as the high
cost of obtaining the required datasets and low economic potential, especially in the arid
regions [3]. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) [4] is
used for rainfall-runoff estimation. In such a case, the computed flow goes to the lowest
elevation point within the watershed rather than following the flow path of the stream or
river [5]. Similarly, the Revitalized Flood Hydrograph (ReFH) [6] is also used for rainfall-
runoff modeling, but it has limitations in simulating peak flow in large catchments [7]. The
Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) models can
also be used for rainfall-runoff modeling, although, among others, the snow accumulation
and snowmelt are not yet incorporated [8]. Among all these approaches, the spatially
distributed and physically based Soil and Water Assessment Tool (SWAT) is considered
the most reliable because of its simulating capability of rainfall-runoff, groundwater flow,
and channel routing [9]. However, its comparative performance has not been sufficiently
evaluated at different physio-climatically heterogeneous spatial scales. Few studies show
that the SWAT model’s performance at multi-outlets is poorer than that of a single outlet [10].
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In addition, at the spatial scale, few studies exist about the SWAT model’s evaluation using
additional simultaneous performance measures.

The performance of hydrological models is affected by a variety of parameters and in-
dicators. Therefore, a single statistical metric may not be suitable for evaluating physically-
based models [11]. In the case of large heterogeneous river basins, care must be taken
in choosing the performance metrics. Akhtar et al. [12] used Nash–Sutcliffe efficiency
(NSE) for evaluating the SWAT model’s performance at multi-outlets in the Kabul River
Basin (KRB), whereby NSE performed poorly in the case of seasonal and low streamflow.
Similarly, Zhang et al. [13] and Pfannerstill et al. [14] highlighted NSE’s poor performance
in low streamflow conditions. Ref. [15] reports a rather high NSE, in the range of 0.86–0.89,
while still underestimating the river discharge at four stations of the Ivaí River basin.

With the use of distinct sets of sensitive parameter values, the multisite calibration
methodology under a physio-climatically heterogeneous environment shows discrepan-
cies in the hydrological behavior of the basin’s upstream and downstream sections [16].
Therefore, the model’s performance at different outlets may be compromised, thereby
balancing the targeted threshold of the objective function during the multisite calibration
approach [12]. Chilkoti et al. [17] found similar limitations in the objective functions based
on conventional evaluation statistics used between actual and simulated flows of NSE,
PBIAS, and logNSE. Willmot [18] states that traditional ways of evaluating geographic
models through statistical comparisons of simulated and observed data are largely criti-
cized; it is being proposed that statistical comparisons using R, coefficient of determination
(R2), and their tests for statistical significance are not enough. That is why the Root Mean
Square Error (RMSE), its relevant measures, and the agreement index are being proposed
to evaluate geographical models. The proposed index of agreement is used as the degree of
predicting the model’s error. A score of 1 indicates complete fitness, whereas 0 indicates
no fitness between the observed and simulated values. Because the index of agreement
has not been utilized extensively in the literature, a more comprehensive range of reported
values is not present [19]. According to Legates and McCabe [20], employing statistics like
R and R2 for correlating observed and simulated data is not appropriate because these are
extremely sensitive to extreme values or outliers and insensitive to proportional differences
between the two different data sets.

Pushpalatha et al. [21] suggest the use of NSE computed on inverse flows and ar-
gues for its suitability under extremely low-flow conditions as compared to the NSE
calculated on logarithm flows since it is not sensitive to high-flow values. According to
Pushpalata et al. [21], the NSE computed on inverse flows focuses on the lowest 20% of
flows, whereas the NSE on natural flows focuses on the largest 20% of flows. Contrary to
other studies, Osuch et al. [22] and Garcia et al. [23] argue that the mean of the Kling-Gupta
efficiency (KGE) applied to the streamflow and the inverse of the streamflow is sufficient to
meet all evaluation requirements, but the KGE applied to the streamflow does not qual-
ify the assessment criteria for modeling low-flow indices while using the conceptually
continuous rainfall-runoff models. Santhi et al. [24] suggest using prediction efficiency
(Pe), which measures the probability distribution of simulated and observed data fitness.
Since its use is rare, its respective value range is seldom used to base models’ performance
decisions on [19]. Therefore, care must be taken to use any of these metrics, e.g., NSE, KGE,
PBIAS, RSR, LogNSE and VE, etc. while considering the diversity in streamflow, e.g., the
simultaneous calibration of low and high flow rates [12–14]. When it comes to the KGE, the
propensity to underestimate flow variability is not as significant as with the NSE [25,26].
Therefore, Chilkoti et al. [17] recommend KGE to tackle the discrepancies of low and high
flow rates at physio-climatically heterogeneous conditions, as it incorporates the bias,
variability, and standard deviation, which may better assess the model’s performance.

Another essential point in evaluating the performance of the SWAT model, besides
other metrics, is the p-factor and r-factor. The p-factor shows the measured data (%)
bracketed by the 95% prediction limit during the calibration process. Its values close to
1 indicate a very high performance and efficient model and vice versa. The r-factor, ranging
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from 0 to infinity, is the average width of the 95% prediction uncertainty (95PPU) band
divided by the standard deviation of the measured data. The p- and r-factors are firmly
connected, indicating that a greater p-factor can only be obtained at the expense of a greater
r-factor; a simulation with a p-factor of 1 and an r-factor of 0 matches perfectly to observed
data [27]. Both of these factors, though extremely important to be considered, are often
ignored in evaluating the SWAT model’s performance, and the model’s evaluation is merely
based on the value limits of a few known metrics such as R2, NSE, VE, and KGE, etc. [28,29].

Snowmelt from the Hindukush and Himalayan mountains provides over 80% of
Afghanistan’s water resources [30] for the country’s 32.9 million population [31]. The
country’s river basins are experiencing data scarcity as a result of long-term insecurity
and political turmoil [12], and water-relevant institutions are under-resourced in terms
of the technical capacities needed for executing sound water management plans [32].
Furthermore, as the country’s population grows, so does the demand for water resources
amid the growing impacts of climate change on snow cover and precipitation patterns,
resulting in increased intersectoral competition among diverse water consumers [32].
According to Moisello et al. [33] runoff variance is subject to the effects of climate change
and human activities in the watershed, therefore, water storage operations in lakes and
reservoirs shall be carried out in such a way that does not a pose risk of flooding in riparian
regions. According to Doummar et al. [34], the integrity of global river systems is regularly
jeopardized by the pressures of human population and development trends, therefore, an
integrated water resources management (IWRM) approach is required to meet the future
demands of water.

According to Akhtar et al. [12], until the end of 2030, streamflow in most KRB tribu-
taries will fall by a maximum of 5% and 8.5% under Representative Concentration Pathways
(RCP) 4.5 and 8.5 scenarios, respectively. Recently, the country’s political turmoil has halted
practically every sector, including academic institutions and service-delivery ministries,
and as a result, research into water resources and climate change implications has been
largely disregarded. Therefore, we conducted a study in the Alingar watershed, the Kabul
River Basin (KRB) to (a) assess the performance of the SWAT model at single and multi-
outlets on comparative bases, (b) evaluate different statistical metrics used for calibration
and validation of the SWAT model, and (c) analyzed the impacts of climate change on
streamflow from 2020–2045. The importance of this study also lies in the fact that the
Alingar watershed contributes about 10% of the mean annual streamflow (i.e., 61.5 m3/s,
calculated as of the base period (2000–2019)) of the Dakah station (i.e., 614 m3/s), the
outlet of the KRB at the downstream. This study not only provides detailed information
about the potential impacts of climate change on water resources in a data-scarce environ-
ment, but also highlights the relevant metrics that could be considered while dealing with
hydrological models and simulating future scenarios in heterogeneous watersheds.

2. Materials and Methods

2.1. Study Region

This research was carried out in the Alingar watershed, part of the Kabul River basin
(KRB), which is highly heterogeneous in terms of substantial elevation differences between
upstream and downstream. The snowmelt’s significant contribution to runoff is therefore
prone to the impacts of climate change. This watershed is a typical example of challenging
water management tasks due to data-scarce conditions versus the vital need for water
allocation considering climate change adaptation, etc. The total area of this basin is about
6239 km2, which is further divided into 13 sub-catchments (Figure 1). The elevation range of
the study region is from 601 to 5399 m above mean sea level (m.a.s.l.). Based on the Climate
Forecast System Reanalysis Survey (CFSR), the mean annual precipitation received at this
watershed during the baseline (2000–2019) is around 634 ± 177 mm, while the mean annual
temperature observed is about 5.7 ◦C. The Afghanistan land cover atlas [35] shows that
forest and shrubs cover about 31%, rangeland, built-up area, and barren land cover 64%,
glaciers cover 0.27%, water bodies cover 1%, and irrigated agriculture covers only 3% of
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the total area of the watershed. The major rivers flowing in this watershed are the Alingar
and Alishing rivers. The tributaries of Alingar are Noralam, Kolman Dara, Kolam, Poshal,
Chomar, and Bugulchi rivers, whereas the tributaries of the Alishing river are Doab and
Karak rivers. Both the Alingar and Alishing rivers meet at Mihtarlam (Laghman province);
the streamflow gauging station is installed at Pul-e-Qarghayi on the Laghman river.

Figure 1. Study area map and river network with their names as well as the delineated sub-basins

(numbered 1–13).

2.2. Assessment of the Performance of the SWAT Model

2.2.1. Description of the SWAT Model

The SWAT is a commonly used semi-distributed and physically-based continuous-
time simulation model for quantifying streamflow [36], nutrient transport [37], surface
runoff [38], and water demand [39]. The United States Department of Agriculture (USDA)
developed and maintains this model regularly, and it works in daily time steps. This
model has been used globally in small and medium watersheds [40] to large mountainous
watersheds [24]. SWAT has also proven to be very effective in simulating the eventual
effects of climate change (CC) scenarios on streamflow [41], erosion [42], and nutrient
transport [43], etc. The mathematical expression of the water balance equation, which is
the core driving engine of the SWAT model, is given below in Equation (1) [44]:

SWt = SW0 +
t

∑
i=1

(

Rday − Qsur f − Ea − wseep − Qgw

)

(1)

where SWt represents the final soil water content (mm), SW0 represents the initial soil water
content on the day i (mm), and t represents the time (days). The amount of precipitation on
the day i (mm) is Rday, the amount of surface runoff on the day i is shown by Qsurf (mm), Ea

is the sum of evapotranspiration (mm) on the day i and Qgw is the amount of return flow
on the day i (mm).
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2.2.2. Key Input Data and Methodological Processes Used in the SWAT Model

SWAT is a data-intensive model used for streamflow and other biophysical processes’
simulation in diverse, complex and heterogeneous watersheds. The key datasets used
in the SWAT model are the digital elevation model, land use and land cover map, soil
map, meteorological and streamflow data. The key processes including data preparation,
parametrization, discretization of the subbasins, sensitivity analysis, performance evalua-
tion of metrics and simulation of climate change scenarios etc. has been summarized in the
methodological framework (Figure 2).

Figure 2. Methodological framework used for the evaluation of the performance metrics and simulat-

ing streamflow under changing climate in the study region.

The summary of the key data used in the SWAT model is given below in Table 1.

Table 1. Key input data used in the SWAT model.

No Data Type Data Attributes Source of Data

1 Digital elevation model Elevation
Alaska Satellite Facility

https://vertex.daac.asf.alaska.edu
(accessed on 17 February 2021).

2 Land use and land cover Land use [35]
3 Soil type Soil characteristics [45]

4 Meteorological data (CFSR)
Precipitation, Temperature,
Solar radiation, Relative
humidity and wind speed,

[46]

5 Streamflow data River discharge
National Water Affairs Regulatory

Authority (NWARA)

Digital Elevation Model

A digital elevation model (DEM) is a very important and crucial spatial input in the
SWAT model used to automatically extract topographic parameters such as slope, elevation,

https://vertex.daac.asf.alaska.edu
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relative relief, aspect, slope-length, etc. A high spatial resolution DEM can be used as
the best alternative for conventional surveys and manual evaluation of the topographic
conditions of a watershed [47]. Tan et al. [48] investigated the DEM at spatial resolutions
ranging from 20 to 500 m and revealed that the DEM’s spatial resolution significantly
affects the quality of streamflow computation. Dixon and Earls [49] demonstrated that the
DEM’s spatial resolution affects the precision of streamflow estimation through the SWAT
model. Moreover, in larger heterogeneous, mountainous, and diversified river basins, the
use of higher resolution DEM could be more genuine in watershed delineation to higher
accuracy [50]. Therefore, we used an ALOS PALSAR DEM of 12.5 m resolution derived
from the Alaska Satellite Facility (ASF) [51]. The elevation across the study region varies
between 601–5399 m.a.s.l. (Figure 1). While delineating, 13 sub-basins were formed with the
minimum threshold for the sub-basin area of 2000 ha. Using the DEM data, four land slope
classes were created i.e 0–15, 15–25, 25–35, and 35–100%. Around 77% of the watershed
area was covered by the slope class >35, almost 8% was covered by the slope class 25–35,
6% was covered by the slope class 15–25 and 8.5% was covered by the slope class 0–15%
(Figure 3).

Figure 3. Slope classes and their area coverage (%) across the study area.

Land Use and Land Cover Map

Changes in land use and land cover are critical to the hydrologic cycle [52]. The spatial
distribution of different land covers within a watershed is a significant aspect of water
balance and is important in inducing the water flux. According to Akhtar et al. [53], there
was just a 2% change in the KRB’s agricultural land area from 2003 to 2013, which may
not have had a significant influence on the research region’s hydrology. Therefore, we
used the FAO land cover map (30 m) [35], which is based on satellite imagery from SPOT-4
and the Global Land Survey (GLS) Landsat Thematic Mapper. The land cover map was
resampled to 12.5 m. Around 15 land cover types covered the whole study area; among
them, rangeland covers about 54%, forest and shrubs cover approximately 31.5%, while
irrigated agricultural land covers around 3% of the study region (Figure 4).

Soil Data

The SWAT model’s hydrological response to the soil properties, reliability of the soil
and land use data, as well as the pre-processing procedures used on the geographically
dispersed data, is critical to the SWAT model since its internal aggregation procedures
have a substantial impact on the original map’s fragmentation and resolution [54]. A
comparative analysis of two different resolution soil maps for the SWAT model [55] showed
that soil maps with higher resolution yielded better R2 and NSE for simulating streamflow
and water quality. We used the FAO/UNESCO map [45] in this study and resampled
it to 12.5 km to cover the smallest sub-basin. Four dominant soil types represented the
entire study region (Figure 5). The major soil type (Lithosols 2), a combination of Lithosols,
Cambisols, and Rankers, covers approximately 55% of the study area, Haplic Xerosols
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cover approximately 29%, Lithosols (1), a combination of Lithosols and Xerosols, covers
13%, and Gleysols covers approximately 3%.

Figure 4. (a) Land use coverage (%) and (b) land use and land cover map of the study area. Source:

The map and associated statistics have been derived from the Afghanistan land cover atlas [35].

Figure 5. Spatial portrayal of different soil types of the study region.



Water 2022, 14, 1697 8 of 18

Meteorological Data

Hydrological models require meteorological data to simulate any relevant operation.
While this information may be plentiful in some parts of the world, most watersheds and
river basins in Afghanistan lack regular meteorological data. The Alingar watershed is
one such example where the observed data is limited both in space and time [56]. The
two precipitation gauges installed at the extreme outlets at Pul-e-Islamabad and Pul-e-
Qarghayi do not represent the upstream’s meteorological conditions, which receive massive
precipitation and experience minimum temperatures. Therefore, the use of a global dataset
is the only available option in such data-scarce watersheds. The study of Tolera et al. [57]
shows that CFSR performed relatively better in the smaller watershed (i.e., Keleta) than in
the larger watershed (i.e., Melka Kunture). Therefore, we also used the daily CFSR data
of a spatial resolution of 19.2 km while covering the period of 2000–2019; the data was
retrieved from the climate engine in CSV (comma-separated values) format for further
processing [46].

2.2.3. The SWAT Model’s Calibration, Validation, and Uncertainty Analysis

To diagnose the most sensitive parameters in the streamflow modeling with the SWAT
model, the Uncertainty in Sequential Uncertainty Fitting (SUFI-2) algorithm in SWAT
Calibration and Uncertainty Procedures (SWAT-CUP) was utilized, which generates Latin
Hypercube samples for sensitivity analyses. For calibrating the SWAT model for those
watersheds which are snow-fed, it is important to consider snow relevant parameters, e.g.,
Snowfall temperature (◦C) (SFTMP), Snowmelt base temperature (◦C) (SMTMP), Maximum
snowmelt factor (SMFMX, mm of water/◦C day−1), Minimum snowmelt factor (SMFMN,
mm of water/◦C day−1) and Snowpack temperature lag factor (TIMP), and runoff relevant
parameters, e.g., the soil permeability, land use, and antecedent soil-water conditions
that all influence the SCS curve number, soil water content (SOL_AWC) as well as soil
evaporation compensation factor (ESCO) [58]. We used the SUFI-2 algorithm in the SWAT-
CUP to calibrate, validate, and analyze the sensitivity of the SWAT model [27]. The SWAT
model’s simulation accuracy was assessed using the monthly observed streamflow data
collected from the Pul-e-Qarghayi station. Based on the limited streamflow data availability,
the calibration period was 2008–2013, and the validation period was 2014–2019. Via an
iterative method, the SUFI-2 algorithm calculates the range of the 95PPU and brackets
the actual streamflow data points within the band, which is called the r-factor [59]. The
algorithm uses two main metrics to determine the goodness of fit, i.e., (1) the p-factor,
which ranges from 0 to 1, and (2) the r-factor, which is the average 95PPU-band’s width
ratio to the observed variable’s standard deviation [59]. After obtaining appropriate KGE,
NSE, and R2, the parameter ranges thus yielded in the last iteration were considered the
calibrated parameters for the validation of the SWAT model.

2.3. Evaluation of Different Statistical Metrics

While evaluating hydrological models, the performance criteria are used as a single
number to show the similarities between simulated and observed streamflow [25]. In
this study, we used the KGE [25] as the objective function with the SUFI-2 algorithm for
automatic calibration. The minimum threshold of the objective function (i.e., the KGE) for
the behavioral solutions was set to be 0.50. The mathematical expression of these metric
indicators is given below:

KGE = 1 −

√

(α − 1)2 + (r − 1)2 + (β − 1)2 (2)

where the linear correlation between actual and simulated data is expressed by r, the metric
of the streamflow variability error is denoted by α, and the bias is shown by β.

The performance of the model is considered reasonable when −0.41 < KGE < 1 [60].
Similarly, NSE [61] and R2 are the byproducts automatically calculated by the SWAT-CUP
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model by comparing the observed and simulated streamflow. The NSE is calculated by
using Equation (3), as given below:

NSE = 1 −
∑

n
i=0 (Qobs,i − Qsim,i)

2
i

∑
n
i=0 (Qobs,i − Qobs )

2

i

(3)

where Qobs denotes the actual streamflow, Qsim denotes the simulated streamflow and Qobs

denotes the observed mean streamflow and n is the total number of observations.
NSE is varying between −∞ and 1, when the NSE = 1, it is considered to be the

optimal simulation. Values between 0 and 1 are typically considered acceptable levels of
performance; however, a value below 0 means that the mean observed streamflow is a better
predictor than the simulated streamflow, showing unsatisfactory performance. Similarly,
the degree of collinearity between observed and simulated streamflow is denoted by R2.
It indicates the fraction of the variance in observed streamflow that the model explains.
The value of R2 ranges from 0 to 1, with higher values suggesting less error variation,
and values larger than 0.5 are normally regarded as acceptable [24]. The coefficient of
determination (R2) is calculated using the following equation:

R2 =

[

∑
n
i=1

(

Qobs,i − Qobs

)(

Qsim,i − Qsim

) ]2

∑
n
i=1

(

Qobs,i − Qobs

)

2 ∑
n
i=1

(

Qsim,i − Qsim

)

2
(4)

where n is the total number of observations, Qobs and Qsim show the observed and simulated
streamflow, and Qobs and Qsim and are the observed and simulated mean streamflow, respectively.

2.4. Analysis of the Streamflow under Changing Climate

The CORDEX (Coordinated Regional Downscaling Experiment) provides the expected
changes in numerous variables under the climate change (CC) scenarios [62]. The data
(50 km spatial resolution) was retrieved using the regional circulation model (RegCM4-4)
from the South Asia domain of the CORDEX. For analyzing the impacts of CC on streamflow
from 2020 to 2045, the daily maximum and minimum temperature and precipitation data
were downloaded from the CORDEX domain. The study region is expected to receive
mean annual precipitation of 774 ± 229 and 789 ± 203 mm during 2020–2045, respectively,
under the RCP 4.5 and 8.5. Similarly, the mean annual temperature under the RCP 4.5 and
8.5 during 2020–2045 is predicted to be 5.5 and 5.8 ◦C, respectively (Figure 6). The future
streamflow was analyzed in annual (i.e., minimum, and mean) and monthly time steps
to diagnose major shifts at seasonal scales to relate these temporal changes at the water
supply side to periods of peak demand for agricultural purposes.

Figure 6. Monthly mean of (a) precipitation and (b) temperature for the future period (2020–2045)

periods used in the SWAT model.
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3. Results and Discussion

During the calibration procedure, the highest absolute t-Stat value is attributed to the
highest sensitivity of that specific parameter during calibration [27]. In the present study,
the sensitivity analysis tool in the SWAT-CUP model identified eight parameters as being
the most sensitive (Table 2). Following the identification of the sensitive parameters, we
calibrated their values while the default model values of other parameters were retained
throughout the calibration process. The streamflow was sensitive to maximum snowmelt
factor (SMFMX), minimum snowmelt factor (SMFMN), the soil conservation service (SCS)’
runoff curve number (CN2), soil evaporation compensation factor (ESCO), an available
water capacity of the soil layer (SOL_AWC), snowfall temperature (SFTMP), Snowmelt
base temperature (SMTMP), and lag factor for snowpack temperature (TIMP).

Table 2. List of the hydrologic parameters used in calibration and their respective value ranges and ranking.

Sensitivity Rank * Parameter Name Fitted Value Min Value Max Value t-Stat p-Value

1 V__SMFMX.bsn 0.151367 0 5 −57.55 0.0000
2 V__SMFMN.bsn 0.375977 0 5 11.95 0.0000
3 R__CN2.mgt 0.000635 −0.15 0.1 −11.05 0.0000
4 V__ESCO.hru 0.305957 0.2 0.7 −3.77 0.0002
5 R__SOL_AWC(..).sol −0.203369 −0.25 0 3.55 0.0004
6 V__SFTMP.bsn 0.410156 −2 2 −3.22 0.0014
7 V__SMTMP.bsn 0.894531 −2 2 −2.80 0.0053
8 V__TIMP.bsn 0.254199 0.2 0.7 0.49 0.6237

* SMFMX is short for maximum snowmelt factor, SMFMN is abbreviated from minimum snowmelt factor, SCS is
short for the soil conservation service, CN is runoff curve number, ESCO is the short form of soil evaporation com-
pensation factor, SOL_AWC is available water capacity of the soil layer, SFTMP is short for snowfall temperature.
SMTMP denotes Snowmelt base temperature and TIMP is abbreviated for lag factor for snow-pack temperature.

The KGE, the selected objective function, acquired during iterations for the SWAT
model’s calibration at the Pul-e-Qarghayi outlet was 0.72, NSE was 0.59, and R2 was
0.60, which can be classified as “moderate” to “good according to Thiemig” [63]. During
validation of the SWAT model (after considering the new values of the sensitive parameters)
the KGE increased to 0.89, while NSE and R2 increased to 0.98 each (Figure 7).

Figure 7. Calibration (2008–2013) and validation (2014–2019) of the SWAT model.
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3.1. Performance Evaluation of the Statistical Metrics

During iterations for calibration of the SWAT model at the Pul-e-Qarghayi outlet,
the KGE achieved was 0.72, the NSE was 0.59, and R2 was 0.60 (Figure 7). The mean
annual simulated streamflow during calibration was 54.53 ± 53.69 m3/s, while for the
same period the mean annual observed streamflow was 50.93 ± 63.06 m3/s. During the
calibration, the p- and r-factors were 0.86 and 1.58, respectively. During calibration, there
has been considerable improvement in the p-factor (i.e., 0.92) which shows that 92% of
the observed data points have been successfully bracketed during the simulations. In
contrast, the r-factor reduced from 1.58 (during calibration) to 0.83 (during validation),
which shows considerable model development in simulating the streamflow at monthly
time intervals. As a result, the KGE improved from 0.72 (during calibration) to 0.89
(during validation). Similarly, the NSE increased from 0.59 (during calibration) to 0.98
(during validation), reflecting a considerable development in the model’s prediction of
the streamflow. Improvement has been observed in the RSR value, which reduced from
0.64 (during calibration) to 0.14 during validation. During the validation period, the
mean annual simulated and observed streamflow were 73.81 ± 115.40 and 81.56 ± 121.58,
respectively, which are close to each other. Further statistical details are found in Table 3.
The mean annual simulated and observed streamflow increased by around 35% and 29% in
the validation period compared to the calibration period, respectively; this increase was
caused by a 123% and 41% increase in total monthly precipitation, especially in the months
of February and March.

Table 3. Summary of the performance evaluation metrics’ statistics during calibration and validation.

p-Factor r-Factor R2 NSE PBIAS KGE RSR VOL_FR
Mean Annual SSF

(Mean Annual OSF) (m3/s)
STD_S

(STD_O)

Calibration 0.86 1.58 0.600 0.59 −7.1 0.72 0.64 0.93 54.53 (50.93)
53.69

(63.06)

Validation 0.92 0.83 0.986 0.98 9.5 0.89 0.14 1.11 73.81 (81.56)
115.40

(121.58)

Note: p—factor refers to the percentage of observations covered by the 95PPU, r—factor depicts the thickness of
the 95PPU, R2, is the coefficient of determination, NSE is the Nash—Sutcliffe Efficiency, PBIAS is the Percent bias,
KGE is the Kling–Gupta Efficiency, RSR is the ratio of the RMSE and standard deviation, VOL_FR is the fraction
of the overall water balance which is predicted, Mean annual SSF refers to mean annual simulated streamflow,
Mean annual OSF refers to mean annual observed streamflow, STD_S refers to Simulated standard deviation and
STD_O refers to Observed standard deviation,.

According to Thiemig [63], the simulations’ performance can be grouped as intermedi-
ate when 0.75 > KGE > 0.5 and good when KGE > 0.75; according to Moriasi et al. [19], the scat-
ter plots shown in Figure 8 depict a satisfactory result for calibration where 0.50 < NSE < 0.65,
whereas for validation the NSE values are very good, i.e., 0.75 < NSE < 1.00. According to
Knoben et al. [60], if the mean streamflow was used as a benchmark, model output in the
range of −0.41 < KGE ≤ 1 may be considered “reasonable” as the model outperforms the
benchmark; based on this, the KGE was 0.72 during calibration and 0.89 during validation,
which rationalizes the model’s performance as acceptable. A SWAT model was also used
in Pakistan at the Simly Dam watershed, and while evaluating the model’s performance,
an NSE of 0.85 and 0.79 for validation were yielded for calibration and validation periods
respectively [64]. Another similar experiment by Shrestha et al. [65] shows that R2 values
were 0.67 and 0.75 while NSE values were 0.63 and 0.74 during calibration (1984–1993) and
validation periods (1994–2001), respectively [65]. Zare et al. [66] evaluated soil water content
through the SWAT model for Southern Saskatchewan (SK, Canada) and achieved NSE of
0.62 and 0.78, during calibration and validation (of streamflow) respectively. Son et al. [67]
calibrated and validated the SWAT model with streamflow in the Nam Rom catchment
(Vietnam), and the NSE achieved during calibration and validation was 0.76 and 0.64.
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Figure 8. Correlation of mean monthly observed streamflow during (a) calibration and (b) validation.

3.2. Temporal Analysis of the Variation in Streamflow under Changing Climate from 2020 to 2045

The mean annual streamflow during the base period (2000–2019) was 61.48 ± 69.0 m3/s,
while it was 52.12 ± 48.3, and 51.87 ± 37.3 m3/s under the RCP 4.5 and 8.5 (2020–2045),
respectively (Figure 9). There was not much difference between the mean annual streamflow
under both CC scenarios; however, we recorded high variability under the based period and
RCP 4.5. The statistical evaluation of the annual streamflow shows that by 2045, approxi-
mately a 15 and 16% reduction in the mean annual streamflow is expected under RCP 4.5
and 8.5, respectively.

Figure 9. Mean annual variation in the streamflow under changing climate.

Table 4 summarizes the mean annual variation in the streamflow compared to the base
period; the annual minimum streamflow under scenarios RCP 4.5 and 8.5 are expected to
increase by 48.2 and 125.6%, respectively. The annual maximum streamflow is projected to
decrease by 17.2 and 41.8%, respectively. Similarly, the annual mean streamflow is projected
to decrease by 15.2 and 15.6%, respectively.

Table 4. Projected changes (%) in the annual mean, minimum, and maximum streamflow (m3/s)

under the RCP 4.5 and 8.5 in comparison to the base period.

Period
Annual Minimum
Streamflow (m3/s)

Change from
Baseline (%)

Annual Maximum
Streamflow (m3/s)

Change from
Baseline (%)

Annual Mean
Streamflow (m3/s)

Change from
Baseline (%)

Base Period
(2000–2019)

1.45 - 200.1 - 61.5 -

RCP 4.5
(2020–2045)

2.15 48.2 166.3 −17.2 52.1 −15.2

RCP 8.5
(2020–2045)

3.27 125.6 117.0 −41.8 51.9 −15.6
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Figure 10 depicts that the peak hydrograph under the base period is usually in June
when increased temperature melts down most of the accumulated snow on the upstream
heights of the watershed. Under the CC scenarios, the peak hydrograph is expected to split
into two peaks, one formed in Mar-Apr which indicates earlier snowmelt, and the second
one in August, which is due to an increase in summer or Monsoon rains contrary to the base
period, which is adding to the peak hydrograph in August. The comparative analysis of the
monthly streamflow under the RCP 4.5 shows that streamflow in January, February, and
March increased by 48, 30, and 74%, respectively. With 262 and 207%, the highest increase is
projected for October and November, respectively. Under the same scenario (i.e., RCP 4.5),
the mean streamflow in May and June is expected to decrease by 78 and 87%, respectively.
Likewise, under the RCP 8.5, streamflow in November, December and January is expected
to increase by 240, 226, and 126%, respectively; this change can be explained by a partial
shift from snowfall to rain (as a consequence of higher temperature) or by snow melting
periods in winter. Conversely, the highest decrease is projected for May and June by 71 and
66%, respectively. Overall, the shift in hydrograph is similar under both scenarios.

Figure 10. Comparative analysis of the monthly streamflow, (a) hydrograph analysis of the base

period and climate change scenarios; (b) percent change in streamflow under the RCP 4.5 and

8.5 compared to the base period (2000–2019).

3.3. The Impact of Spatial Scale on the Performance of the SWAT Model

The calibration of the SWAT model for multi outlets, especially in large river basins un-
der highly heterogenic conditions of land use, soil types, climate, and elevation differences,
is quite challenging [68]. This is because if one outlet is being calibrated for a targeted
objective function, any increase in any variable may equally influence the streamflow (by
decreasing or increasing the hydrograph peak), actual evapotranspiration, and runoff gen-
eration as well as other water balance components [69]. Therefore, as a standard iteration
exercise, it is challenging to achieve a common range of sensitive parameters, which boosts
the calibration results equally [70,71]. Therefore, in this study, we used the KGE, which
incorporates the model’s bias, temporal fitness, and variability instead of NSE, which
underestimates the variability in the simulated streamflow [25]. Moreover, to evaluate the
SWAT model’s performance at a single outlet in the Alingar watershed, i.e., Pul-e-Qarghayi,
the results were compared to the SWAT model’s performance at multi-outlets, which in-
cluded Pul-e-Qarghayi together with five other outlets reported in Akhtar et al. [12], while
ensuring that there are no storage structures or large diversions upstream of the specified
outlets that might affect the volume of river discharge. Table 5 reveals that the KGE (as
the chosen objective function) yielded a value of 0.72 (during calibration) and 0.89 (during
validation), which according to Thiemig [63] can be classified as intermediate to good
performance. During calibration, the NSE achieved was 0.59, which suddenly increased
to 0.98 (during validation) and indicated a perfect correspondence between the observed
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and simulated streamflow per the criteria suggested by Moriasi et al. [19] and highlighted
estimation error variance almost equal to 2%.

Table 5. Evaluation results of single-outlet and multi-outlet simulation effect.

Simulation
Type

Performance Metrics’ Value
Range (Multi-Outlet Simulation) Period

Performance Metrics’ Value Range
(Single Outlet Simulation) Period

NSE R2 KGE NSE R2

Calibration 0.74 0.79 2008–2010 0.72 0.59 0.60 2008–2013
Validation 0.62 0.86 2011–2013 0.89 0.98 0.98 2014–2019

The SWAT model’s calibration for a single outlet improved the model’s performance by
increasing the objective function and other relevant performance metrics and confined the
list of sensitive parameters that are very much specific to the physiographic conditions of
the rather smaller watershed with a single outlet. Table 6 shows that the fitted values for the
common parameters under both single and multi-outlets-based calibration have considerably
changed. The reason behind this is that any parametric values under multi outlets are strongly
driven by the spatial heterogeneity of parameters, errors incurring during the acquisition of
hydrological data, and errors resulting from optimizing the model’s behavior that reach a
compromise between the different outlets [69]. Besides, calibrating multi-outlets at spatially
large and heterogenic watersheds is computationally intensive [72]. Likewise, the sensitivity
ranking has also changed with a greater difference. The number of parameters used in the
calibration phase was reduced while calibrating at a single outlet, and simulation performance
was also improved by selecting spatially homogenous parameters. The results of this study
are in line with a similar study from the Yellow River, where the comparative performance
did not change, but the number of sensitive parameters did [10].

Table 6. A comparative analysis of the parameters used for sensitivity while simulating streamflow

at multi and single outlets.

Sensitive Parameters for Calibrating Multi-Outlets at the KRB Including
Pul-e-Qarghayi Streamflow Measurement Station of Alingar Watershed

Sensitive Parameters for Calibrating Single Outlet at Pul-e-Qarghayi
Streamflow Measurement Station of Alingar Watershed

Sensitivity
Rank

Parameter
Fitted
Value

Min
Value

Max
Value

Sensitivity
Rank

Parameter
Fitted
Value

Min
Value

Max
Value

1 * r__CN2.mgt −0.49 −0.49 −0.48 1 v__SMFMX.bsn 0.1513 0 5
2 r_SOL_BD(..).sol −0.02 −0.02 −0.01 2 v__SMFMN.bsn 0.3759 0 5
3 ** v__ALPHA_BF.gw 0.19 0.18 0.22 3 r__CN2.mgt 0.0006 −0.15 0.1
4 v__GW_DELAY.gwwww 160.64 160.34 166.11 4 v__ESCO.hru 0.3059 0.2 0.7
5 v__REVAPMN.gw 19.89 19.51 19.93 5 r__SOL_AWC(..).sol −0.203 −0.25 0
6 v__GWQMN.gw 43.49 43.43 44.24 6 v__SFTMP.bsn 0.4101 −2 2
7 v__EPCO.bsn 0.28 0.27 0.28 7 v__SMTMP.bsn 0.8945 −2 2
8 v__ESCO.bsn 0.49 0.44 0.5 8 v__TIMP.bsn 0.2541 0.2 0.7
9 v__CH_N2.rte 0.19 0.18 0.19
10 v__SMTMP.bsn −3.61 −3.7 −3.55
11 v__SMFMX.bsn 13.41 12.55 13.6
12 v__SMFMN.bsn 8.9 8.55 9.25
13 v__TIMP.bsn 0.15 0.15 0.16
14 v__SURLAG.bsn 1.76 1.52 1.97

* r means an existing parameter value is multiplied by (1+ a given value), ** v__ means the existing parameter
value is to be replaced by a given value. SOL_BD refers to soil bulk density (g/cm3), ALPHA_BF is baseflow
alpha factor (1/day), GW_DELAY shows groundwater delay time (days), GWQMN is the threshold depth of
water in the shallow aquifer required for return flow to occur (mm H2O), REVAPMN is the threshold water depth
in shallow aquifer for “revap” or percolation to occur (mm), GWQMN is threshold depth of water in the shallow
aquifer needed for return flow to occur (mm H2O), EPCO is the plant uptake compensation factor, CH_N2 is the
hydraulic conductivity of the main channel (mm/h) and SURLAG is the surface runoff lag coefficient.

4. Conclusions

The performance of NSE, as an objective function, was poor for both single and
multi-outlets. However, the KGE performed better when used as an objective function for
streamflow estimation by using the SWAT model. The NSE values improved many times
as the KGE value increased. The KGE is recommended as the best performance indicator
and an alternative to NSE for multi-outlets simulation, especially under a heterogeneous
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environment. The KGE is based upon the balanced optimization of the model’s bias,
temporal fitness, and variability. While using the KGE, low values were well expressed for
correlation and bias present in the data compared to the NSE, which didn’t perform well,
especially under low streamflow conditions.

The SWAT model’s performance is compromised at multi outlets in large river basins;
this is more evident especially under physiographically and climatically large and hetero-
geneous river basins. Therefore, to overcome these shortcomings during model evaluation,
it is recommended to test the SWAT model’s performance at the individual outlet. More-
over, simulating multi-outlets is computationally intensive to achieve the desired objective
function for enhanced performance of hydrological modeling. For hydrological models’
performance in regions with higher heterogeneity in climatic and physiographic conditions,
land cover, cropping pattern, streamflow, etc., using the KGE as a performance metric in
combination with R2, p- and r-factors enhances the SWAT model’s simulation performance.

The modeling of CC scenarios demonstrates that the mean annual streamflow under
RCPs 4.5 and 8.5 is not much different from each other. Under these scenarios, the model
project will see a 15.2% to 15.6% decline in mean annual streamflow by 2045 under the
RCPs 4.5 and 8.5, respectively. The results of Akhtar et al. [73] have also demonstrated the
decreasing trend in groundwater storage not only in the KRB but also across the entire Indus
Basin; the groundwater storage is directly linked to the amount of surface water flow as well
as anthropogenic interventions that hamper the groundwater recharge as well as accelerate
unsustainable groundwater withdrawal. The mean monthly minimum streamflow is
anticipated to rise by 48.2% and 125.6% under the RCP 4.5 and 8.5, respectively; the monthly
maximum streamflow is expected to fall by 17.2% and 41.8%, respectively. Furthermore,
the peak hydrograph is expected to split into two peaks: one in March-April, indicating
earlier snowmelt, and the second peak in August, indicating that the increase in summer
or Monsoon rains, contrary to the base period, is contributing to the peak hydrograph
in August. The information on a simulated considerable decrease of streamflow in the
period from May until July and the increase from August until December can support
water management in conceiving adaptation strategies in terms of (i) re-arranging irrigation
schedules (and eventually even cropping patterns) towards lower water availability in
the beginning and middle of the cropping season and higher water availability in the late
season, and (ii) considering the introduction of facilities to store a part of the increased
runoff at the end of and after the vegetation period for utilization in agriculture during
demand periods taking into account the effects of changing low flow conditions on ecology.
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