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Abstract

The Earth’s climate system is highly dimensional and has to be described with the help of probabilities.
Such probability descriptions can be estimated from measured data. Relatively large-scale instrumental
records, however, date back only about 150 years. Paleoclimatology studies the climate history of the
Earth before the period of instrumental measurements. For this purpose, it uses so-called climate
proxies, which indirectly provide information about past climate conditions. In order to produce
quantitative paleoclimate reconstructions based on these data, several problems must be analyzed and
solved in the course of this thesis.

First, we present a new age-depth/distance transformation in a Bayesian formulation by determining
the uncertainty information of depths in sediments and distances in speleothems at a given age. This
allows us to perform a data-driven transformation to past ages that behaves like a convolution with
different kernel smoothers and avoids too much certainty in the statements about these time periods.
Another result of this technique is the determination of the age resolution and its projection onto a
regular grid. Thus, multiple proxies can be linked in time and spectral analyses can be performed.

Furthermore, we introduce a new way to establish transfer functions that map climate variables to
plant distributions. This includes consideration of various machine learning algorithms for solving
the classification problem of taxa absence and presence, taking into account uncertainties in the
proxy-climate relationship. For the models and plant distributions used in this work, a simple
feedforward neural network with one hidden layer wins in 70 % of the cases.

Based on our age-depth/distance transformation and transfer functions, we formulate a new Bayesian
Hierarchical Model that produces local paleoclimate reconstructions. This considers various proxy
sources such as plant data from lake and mire sediments, isotopic information from speleothems,
marine sediments, and ice cores. These are studied not only in temporal space, but also in spectral
space using wavelet power spectra. Such a comprehensive use of the spectral behavior of proxy
information is possible due to the new age-depth/distance transformation and has therefore not been
performed before. In addition, a priori information on the actual climate distribution in specific time
periods are incorporated as further constraints. To solve the local reconstruction model, we use two
different Markov chain Monte Carlo sampling methods called Metropolis-within-Gibbs and random
walk Metropolis-Hastings. During the inference processes, our new method generates taxa weights
that provide information about their importance to each site. As a result, over 600 sites in Europe,
Northwest Africa, Anatolia, and the Levant are being processed, resulting in final 186 accepted local
paleoclimate reconstructions. They show not only small-scale climate changes, which can be identified
as Bond, Heinrich, and Dansgaard-Oeschger events, but also large-scale variations such as the last
deglacialization and various glacial-interglacial cycles. Human influence on plant information in the
lake and mire sediments studied affects our local reconstructions, which can be minimized to some
extent with our new method by paying more attention to isotope-based proxies during the inference
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process.
Finally, these local paleodata are summarized using spatial reconstruction methods over the European

region. In this context, Earth System Models from CMIP5/PMIP3 experiments are linked to our
local information, producing assimilated spatial climate fields. The results compared to present-day
conditions for the Middle Holocene show warming in northeastern Europe and cooling in southern
Europe. The reconstructed annual precipitation indicates an increase in northeastern Europe, a
decrease in western Europe, and an increase in the Eastern Mediterranean and Levant. Compared
to present-day conditions, the spatial reconstruction of the Last Glacial Maximum reveals a general
cooling and an increase in precipitation in the west of the Iberian Peninsula and in northwest Africa,
Anatolia, and the Levant. The latter shows a dipole structure with higher precipitation in the southern
Levant.
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CHAPTER 1

Introduction

The Earth’s climate system is a complex system consisting of the interacting subsystems atmosphere,
ocean, cryosphere, lithosphere, and biosphere. External processes such as plate tectonics, solar activity,
volcanism, meteorites, orbital parameters, and greenhouse gases play a crucial role (Bradley, 2014).
These are on a time scale of 10− 107 years. In addition, spatio-temporal climate variability, such as El
Niño Southern Oscillation (ENSO), Atlantic Meridional Overturning Circulation (AMOC), and North
Atlantic Oscillation (NAO), is determined by nonlinear interactions between the subsystems. These
are on a time scale of less than 10 years. The description of such a high-dimensional system cannot be
deterministic, but must be based on probabilities (Hense, 2005). Such probabilistic descriptions need
to be estimated from measured data, which requires certain model assumptions such as ergodicity or
transitivity. Relatively large-scale instrumental records, however, date back only about 150 years. In
order to make statements about older climate variations, we depend on additional data.

Paleoclimatology studies the climate history of the Earth before the period of instrumental
measurements (Bradley, 2014). For this purpose, it uses so-called climate archives or climate proxies.
These come from natural sources such as tree rings, stalagmites, ice cores, corals, lake or marine
sediments, pollen, or historical records (Bradley, 2014). As climate affects each of these archives,
they indirectly provide information about past climatic conditions. Fig. 1.1 shows time series of some
common proxies. As part of this, information from archives such as ice cores (Panels B and E), marine
sediments (Panel G), and pollen data from lake and mire sediments (Panels C, D, F) are presented.
We also see some correlation of variability among proxies in the last ca. 600 calibrated kiloanni
before 1950 AD (cal ka BP). AD is used as an abbreviation for anno domini, and calibrated means the
calibration of age measurements, e.g. based on radioisotopic methods. The local extreme values of the
respective curves in Fig. 1.1 mark the glacial-interglacial cycles, i.e. the transition from warm to cold
periods (PAGES, 2016). These are also apparent in the external process of solar radiation in panel A.
Other smaller-scale climate variations can be seen in panel G, labeled with a combination of numbers
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Chapter 1 Introduction

Figure 1.1: This figure is from Litt et al., 2014 and shows time series over the last 600 cal ka BP of different
palaeoclimate proxies. Panel A displays solar radiation at 40 ◦N, B 𝛿18OVSMOW from Greenland ice cores, E
atmospheric CO2 concentration from Antarctic ice cores, and G 𝛿18OVPDB from marine sediment cores. In
addition, panels C, D and F show the relative amount of arboreal pollen from Lake Van, Lake Urmia and
Tenaghi Philippon, respectively.

and letters. These describe some of the so-called Marine Isotope Stages (MISs). In this context, stable
oxygen isotopes in marine sediments are used to define further warm and cold periods (Lisiecki and
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Raymo, 2005). MIS 1 marks what is known as the Holocene, the current geologic epoch or warm
interglacial phase (Bradley, 2014). Between this and the last interglacial (MIS 5e) is the last glacial
period. Even shorter climate fluctuations occur there, some of which are called Dansgaard-Oeschger
(DO) events (Bond and Lotti, 1995). The corresponding colder phases within a glacial are called
stadials and the warmer ones are referred to as interstadials (Pickarski et al., 2015a).

A major challenge in paleoclimatology is estimating the age of the respective proxies. These
are determined using a variety of techniques, including radioisotopic methods, paleomagnetism,
tephrochronology, and biological dating methods (Bradley, 2014). Age uncertainties play a large
role, especially when time scales such as those in Fig. 1.1 are considered. By dealing appropriately
with such probability descriptions, an overestimation of statements, e.g. about the timing of past
climate changes, and thus misinterpretations can be avoided. Since there is not yet a simple solution
to this problem, one task of this work will be to incorporate age uncertainties into paleoclimate
reconstructions.

Another difficulty in paleoclimatology is obtaining quantitative climate information from proxies.
For this purpose, so-called transfer functions are created, which are based on a calibration of the proxy
data to the measurement data to be reconstructed (Kühl et al., 2002). When using multiple proxies,
appropriate treatment of their respective uncertainties could lead to more accurate and less uncertain
statements about past climate, as we distinguish between more and less informative proxies. There are
a number of studies that describe different approaches to determining transfer functions (e.g. Peyron
et al., 1998; Lauritzen and Lundberg, 1999; Kühl et al., 2002; Tremaine et al., 2011; Stolzenberger,
2017). To date, however, there is no systematic approach to identifying the most appropriate functions.
Therefore, in this work we want to investigate whether something like this is feasible, which is also
easy to implement and largely automated.

In Fig. 1.1 we see that the different climate archives show similar patterns to some extent. Therefore,
it would be of great advantage to consider information from as many proxies as possible when
reconstructing past climate. Furthermore, it may be beneficial to view such data not only in temporal
space, but also in spectral space to more easily identify possible periods of past climate signals.
Another advantage of spectral analyses is that misinterpretations due to the so-called source effect
can be minimized for isotope-based proxies such as speleothems (Cheng et al., 2015). This effect
describes the source from which the respective stable isotopes under consideration originate. So far,
there have been no attempts to do this using the time series shown as examples. One of the reasons for
this could be that such projects often require high computational power. Therefore, in this work, we
aim to develop a computationally fast method that can consider multiple proxies simultaneously. It
should also be flexible enough to reflect their changes over time in the context of their respective age
uncertainties. Thus, it should be possible to consider not only relatively large-scale climate changes
such as glacial-interglacial cycles or MISs, but also small-scale ones like the DO, Heinrich (H), and
Bond events. The latter is the interglacial counterpart to the DO events and the Heinrich events
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Chapter 1 Introduction

denote particularly pronounced stadials of the last glacial (Rasmussen et al., 2014). Another challenge
in dealing with proxies is human-influenced signals that are not of climatic origin. If possible, a
reconstruction method should be able to filter them out.

The main goal of this work is to develop an alternative way for calculating quantitative paleoclimate
reconstructions that is more automated and relies on statistically based methods and less expert
knowledge. This could provide new insights into the importance of the proxies studied and thus extend
the knowledge from previous studies. Based on proxy information, there are a variety of qualitative
climate reconstructions (e.g. Litt et al., 2014; Panagiotopoulos et al., 2013; Miebach et al., 2016;
Schiebel and Litt, 2018; Panagiotopoulos et al., 2020). We want to use these as a comparison for our
quantitative statements to show similarities and differences and to check whether our new approach
provides realistic results.

In climatology, not only the local-temporal course but also the spatial distribution of climate
variables is of interest. One of the main problems is the spatial interpolation of local paleoinformation.
There are numerous attempts to do this, with varying advantages and disadvantages (e.g. Gebhardt
et al., 2008; Mauri et al., 2015; Weitzel et al., 2019). In this work, we aim to use the new method
of Weitzel et al., 2019 to produce physically consistent estimates of past climate state using Earth
System Models (ESMs) in conjunction with local climate reconstructions. More specifically, we want

Methods and literature review

Bayesian statistics Proxies

Age-depth/distance
modelling

Transfer functions
via machine learning

Local climate reconstructions

Spatial climate reconstructions

Theoretical background

New developments

Application

Figure 1.2: Flowchart of the structure of this work. The arrows indicate the reading direction of the diagram and
the different work steps are marked by various colors. The comments on the right side summarize certain work
steps.
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to examine the time slices of the Middle Holocene (MH) around 6000 cal a BP and the Last Glacial
Maximum (LGM) around 21000 cal a BP for the European region, North Africa, and the Levant. The
periods of the MH and the LGM have already been investigated in some studies (e.g. Simonis et al.,
2012; Bartlein et al., 2010; Mauri et al., 2015; Weitzel et al., 2019; Ludwig and Hochman, 2022),
so we can compare our new results. In order to test the modified spatial reconstruction method of
Weitzel et al., 2019, we also want to generate climate fields for the period 1961 − 1990 AD. This falls
within the historical (HIST) period and can be verified by corresponding climate observations.

The structure of this work is illustrated by the flowchart shown in Fig. 1.2. This includes the
research tasks described above, which are marked with the colours light red, light blue and light
green (from the bottom to the middle). Furthermore, the theoretical background of this work is
presented as a starting point. Specifically, it describes the basics of the various climate proxies and
their databases, and covers the principles of Bayesian statistics. With this knowledge, a new approach
to age-depth/distance modelling can be developed and transfer functions can be created using various
machine learning techniques. Based on these results and with the help of Bayesian statistics, it is
possible to develop a new method for local climate reconstructions. There is not only a detailed section
on this in the first chapter Methods and literature review, but also in the results of this thesis (see. Sect.
3.3). The situation is similar with spatial climate reconstructions (see. Sect. 3.4). Here, the previous
results are combined with the method of Weitzel et al., 2019 to generate new spatial climate data.
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CHAPTER 2

Methods and literature review

2.1 Proxies

Bernhardi, 1832 was the first to propose a Fennoscandian inland glaciation to explain the transport
of the erratic blocks found in northern Germany. Building on this theory, the extent of the glaciers
of the Last Glacial period in northern Europe and North America was determined in the following
decades (Agassiz, 2012; Prest, 1990). Thus, for example, erratic blocks and end moraines are so-called
palaeoclimatic proxies that can provide information about the past climate (Bubenzer and Radtke,
2007). However, such climate archives are quite crude and can only provide information on whether
certain areas were glaciated or not. Over time, paleoclimate research has found other proxies that
can provide much more detailed information about the climate of the past. Table 2.1 shows the
most common climate archives with their characteristic properties. This includes their respective
sampling intervals, temporal range and the potential information they can provide. For a more detailed
description of the respective proxies, the reader is referred to Bradley, 2014. In this thesis, the
focus is on the following climate archives: marine sediments, ice cores, speleothems, lake and mire
sediments, and pollen. By looking at these independent sources together, the quantitative climate
reconstructions carried out later should reduce the respective weaknesses to a minimum in order to
provide a clearer picture of climate history. Each of them offers the possibility of drawing conclusions
about the palaeoclimate in terms of temperature and precipitation. Moreover, climate reconstructions
on the order of ∼ 104 − 106 years are possible, which can cover several glacial cycles. The temporal
resolution for these proxies ranges from year/season to 100 years.
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Table 2.1: Characteristics of natural archives.
T: Temperature; P: Precipitation, humidity or water balance (P-E); C: chemical composition of air Ca or water
Cw; B: information on biomass or vegetation patterns, V: volcanic eruptions; M: geomagnetic field variations;
L: sea level; S: solar activity. After Bradley, 2014

Archive Minimum
sampling interval

Temporal range
(order year)

Potential
information derived

Historical records Day/h ∼ 103 T,P,B,V,L,S
Tree rings Year/season ∼ 104 T,P,B,V,S
Lake sediments Year (varves) to 20 years ∼ 104 − 106 T,P,M,B,V,Cw
Corals Year ∼ 104 L,T,P,Cw
Ice cores Year/season ∼ 106 T,P,M,B,V,S,Ca
Pollen 20 years ∼ 106 T,P,B
Speleothems Year ∼ 5 × 105 Cw,T,P,V,B
Palaeosols 100 years ∼ 106 T,P,B
Loess 100 years ∼ 106 P,B,M
Geomorphic features 100 years ∼ 106 T,P,V,L
Marine sediments 100 years ∼ 107 T,Cw,B,M,L,P,S

2.1.1 Stable oxygen isotopes

In palaeoclimatology, oxygen isotopes are most commonly used (Bradley, 2014). They are found in
ice cores, marine and lake sediments, and cave finds, among others, and provide information about
past climate variability. These fluctuations include not only those with relatively long periods such as
glacial-interglacial cycles (Shakun et al., 2015), but also more frequent ones. To obtain an appropriate
isotopic signal, a standardized ratio, expressed in parts per thousand, is used that takes advantage of
the different molecular weights of the inherent isotopes. Equation 2.1 shows this relationship for the
heavier isotope 18O and the lighter, more abundant 16O (Dansgaard, 1964):

𝛿18O =
©«

( 18O
16O

)
sample( 18O

16O

)
standard

− 1
ª®®¬
· 1000. (2.1)

The particular standard used depends on the context in which the isotope ratio is considered. For
example, when it comes to snow, ice, rain, groundwater or seawater, Coplen, 1996 suggests the
Vienna Standard Mean Ocean Water (VSMOW) as the standard. This refers to the current isotopic
composition of the ocean. In case the oxygen present in calcium carbonate CaCO3 is analyzed, the
standard is the so-called Vienna Pee Dee Belemnite (VPDB). This name comes from a marine fossil
from the Cretaceous period, which consisted of CaCO3 (Ravelo and Hillaire-Marcel, 2007). These
standards were established in 1968 by the International Atomic Energy Agency (IAEA) in Vienna to
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2.1 Proxies

ensure uniformity of regulation. This can be used, for example, to compare 𝛿18OVSMOW in different
ice deposits or 𝛿18OVPDB in different stalagmites.

Marine and greenland-ice cores

The first drillings through the Greenland ice sheet took place in the 1960s (Peel, 2005). These were
carried out by the US Army, which established bases in the north of Greenland during the Cold War.
Even today, these cores are used by scientists to study the climate of the past. In doing so, they rely
on the studies of Dansgaard, 1964, who was the first to show how oxygen isotopes can be used as
a climate proxy. The cores studied not only show a glacial-interglacial cycle, but also significantly
shorter climate fluctuations during the Last Glacial period. These are called Dansgaard-Oeschger
events (Bond and Lotti, 1995). The cause of these abrupt climate changes is thought to be the varying
extent of sea ice in the North Atlantic (Li et al., 2010). In the process, this freshwater supply influences
the AMOC, which in turn determines the meridional heat transport of the ocean (Dokken et al., 2013).
Other prominent climate events in the past discovered on the basis of proxy data are the Heinrich
events (Heinrich, 1988). He found abrupt and cyclic advances of large amounts of rock that could
only have been transported by glaciers of the Laurentide Ice Sheet (LIS) into the northeast Atlantic
(ca. 47°N, 19°W). These then deposited in the corresponding ocean sediments, also known as ice
rafted debris (IRD). A possible connection between DO and Heinrich events is seen in the fact that the
latter are restricted to the stadial phases of DO events (Alvarez-Solas et al., 2011). Further study of
marine sediments led Bond et al., 1997 to conclude that there were other climate fluctuations during
the Holocene, known as Bond events. These are referred to by the authors as mini-DO events and are
considered the interglacial counterpart to these events.

To obtain a climate signal from Eq. 2.1, it is necessary to clarify under what circumstances their
relative occurrence changes. Fig. 2.1 shows a corresponding conceptual idea. At the sea surface, water
with the lighter isotope 16O evaporates more readily than water with 18O (Dansgaard, 1964). As these
air masses are transported toward land, precipitation predominantly releases the heavier isotope 18O
to seawater (Fig. 2.1, upper panel). The result of this so-called fractionation is that 18O is now mainly
present in the ocean. When climatic conditions are relatively warm and large ice masses are reduced
on land, the distribution of these two isotopes balances out again. The precipitation, consisting mainly
of 16O, can thus ultimately run off again from the land into the sea. For example, during the Last
Glacial, large ice masses were able to spread over large parts of northern Europe and North America
(Prest, 1990). These are enriched in the lighter isotope 16O, as shown in Fig. 2.1 (lower panel). This
preserves the fractionation of both isotopes relative to the warm period described above. The whole
process is also called the ice volume effect.

We can see this in Fig. 2.2 for 3 very well-known 𝛿18O-curves. Panel (a) shows the data from the
so-called North Greenland Ice Core Project (NGRIP) (Andersen et al., 2004). This dates back to the
last warm period, which was characterized by an increase in 𝛿18O about 120,000 years before today. In
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Chapter 2 Methods and literature review

Figure 2.1: This figure is from DiVenere, 2017 and represents a conceptual model of the fractionation of lighter
and heavier oxygen isotopes under glacial and non-glacial conditions.

addition, strong fluctuations can be observed during the Last Glacial period, which represent the DO
cycles mentioned above. The described fluctuations are detectable due to the ice volume effect. Using
𝛿18O from Greenland ice, the mean annual temperature (TANN) can be derived (Bradley, 2014). Panel
(b) shows the isotope profile of the calcium carbonate-containing shells of the planktonic foraminifera
(Ravelo and Hillaire-Marcel, 2007). The term Medstack means that data from several sediment cores
studied in the Mediterranean were combined (Wang et al., 2010). An analogous approach was taken
by Lisiecki and Raymo, 2005, who determined the isotope profile shown in (c) using 52 sediment
cores distributed worldwide. Most of the cores come from the Atlantic, but also from the Pacific and
Indian Ocean. In contrast to Medstack, they studied benthic foraminifera, i.e. those that occur on the
deep sea floor. The 𝛿18O of these organisms is a function of the temperature and the 𝛿18O of the water,
which in turn is influenced by the ice volume and salinity (Ravelo and Hillaire-Marcel, 2007). Thus,
higher uncertainties must be taken into account here if the atmospheric TANN is to be reconstructed
from the curves (b) and (c). It is also noticeable that the ocean data are anti-correlated with the ice
core data. This is a consequence of the fractionation described above. If a certain isotope is less
abundant in the ocean, it is correspondingly more abundant in the Greenland ice. Nevertheless, the
broad characteristics are similar to those of NGRIP. Here, too, it is easy to distinguish between warm
and cold periods. However, due to the coarser resolution and bioturbation of the curves in (b) and (c),
it is more difficult to detect shorter climate fluctuations such as the DO or Heinrich events (Bradley,
2014).

As we have seen, paleotemperatures have already been reconstructed from the above isotopic data.
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Figure 2.2: Shown are 3 time series based on isotope data from different sources. Panel (a) depicts 𝛿18O of
ice cores from the North Greenland Ice Core Project. In contrast, panel (b) is based on isotopes of planktonic
foraminifera from cores in the Mediterranean Sea, the so-called Medstack. 𝛿18O of LR04 in (c) are from benthic
foraminifera from marine cores distributed worldwide.

Although Table 2.1 shows that these proxies also contain the potential for precipitation information,
we will only reconstruct it indirectly using these isotopes. That is, we will later (see Sect. 2.5)
compare the curves from Fig. 2.2 with the temperatures reconstructed in this work and link them to
precipitation information in a further reconstruction step.

A common approach to visualize the climate variations described above is the analysis of so-called
wavelet power spectrum (WPS). Here, time series in different frequencies/periods are analyzed with
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Figure 2.3: Wavelet power spectrum based on the time series in Fig. 2.2 (a). The vertical lines indicate the
timing of Heinrich events 1 − 6, and DO events 1 − 20 are marked above the graph. Areas within the thicker
black lines represent significant power and the not grayed out part, the regions within the so-called cone of
influence.

respect to their time dimension. An example of this is shown in Fig. 2.3. This WPS is based on the
first 90 cal ka BP of the NGRIP time series from Fig. 2.2 (a). On the y-axis, the periods of these
data are plotted against time on the x-axis. The redder the colors displayed, the greater the variability
in the time series, i.e. the power of the wavelet spectrum. The opposite is true for the blue colors.
For simplicity, the corresponding normalized color bar is not shown. We see in this WPS that the
DO events 1 − 20 occur with relatively high and significant power in periods between 1 and 2 ka. In
addition, Heinrich events 1 − 6 are intermediate between some DO events because they occur at their
longer stadials (Rasmussen et al., 2014). The technical background of the calculation of such a WPS
is described in the following paragraph.

Time series analysis Since a large number of time series are analyzed in this thesis, the mathematical
convolution and some of its applications are briefly described. The convolution is defined as the
integral of the product of the two functions 𝑓 and 𝑔 after one of them has been inverted and shifted:

( 𝑓 ∗ 𝑔) (𝑥) :=
∫
R

𝑓 (𝜏)𝑔(𝑥 − 𝜏)d𝜏. (2.2)

The bar denotes the complex conjugate. Here, for the mean value 𝑓 ∗ 𝑔, the function value 𝑓 (𝜏) is
weighted with 𝑔(𝑥 − 𝜏). This form of superposition can be used, among other things, to form a moving
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2.1 Proxies

average. We see that ( 𝑓 ∗ 𝑔) (𝑥) depends only on 𝑥. The initial functions contain the information of 𝜏
on the one hand and the information of the relation between 𝜏 and 𝑥 on the other hand. Convolution is
used in the fields of probability, statistics and signal analysis, among others (Honerkamp, 2002).

In this work, a particular interest is the temporal changes of the frequency spectra of a time series.
Therefore, the so-called wavelet transformation is used. In this method, the output signal is convolved
with scaled and translated forms of a temporally localized wave function, the so-called mother wavelets
(Debret et al., 2007). We use the well-known Morlet wavelet, which represents a Gaussian-modulated
sine wave

𝜓[ (𝑡) = 𝜋−
1
4 (𝑒𝑖[𝑡 − 𝑒−[

2/2)𝑒−𝑡2/2, (2.3)

with the reference frequency [. From this mother wavelet we can derive a family of so-called daughter
wavelets with the help of

𝜓𝑎𝑏 (𝑡) =
1
𝑎
𝜓

(
𝑡 − 𝑏

𝑎

)
. (2.4)

The translation parameter 𝑏 scans the signal 𝑠(𝑡) in the time dimension and the scaling parameter
𝑎 over different frequency ranges. The continuous wavelet transform can be described using the
convolution from equation 2.2 as follows:

W𝜓 (𝑎, 𝑏) =
1√
𝑎

∫ ∞

−∞
𝜓

(
𝑡 − 𝑏

𝑎

)
𝑠(𝑡) 𝑑𝑡. (2.5)

The WPS shown in Fig. 2.7 is finally calculated with

WPS =
��W𝜓 (𝑎, 𝑏)

��2 . (2.6)

More specifically, in this work, the discretized forms of the above equations are used to perform
wavelet-based time series analysis. The shaded area in the WPS of Fig. 2.3 describes the region where
the boundary effect can no longer be neglected. This happens when stretched wavelets go beyond the
boundaries of the observation interval (Torrence and Compo, 1998). The unshaded area, called the
cone of influence (COI), shows an accurate time-frequency representation of the data. Outside this
region, the patterns should be considered suspect because of possible boundary effects.

Speleothems

Moore, 1952 coined the term speleothem, by which he meant deposits in caves such as stalagmites,
stalactites, and flowstones. They are mostly composed of the chemical compound calcium carbonate
CaCO3 (Hendy, 1971), which is formed by a series of chemical reactions. As can be seen in Fig. 2.4,
the water H2O in the soil zone above the cave combines with carbon dioxide CO2 to form acidic water
H2CO3. This continues to react with calcium carbonate in the karst zone to form Ca2+ + 2 HCO3

−.
The dissolved carbon dioxide in this solution may degas at a lower CO2 concentration within the
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Chapter 2 Methods and literature review

Figure 2.4: This figure is from Fairchild et al., 2006 and shows the dissolution and precipitation regimes of the
karst system.

cave. The resulting supersaturation leads to the precipitation of calcium carbonate, which provides the
components for speleothems.

The whole process reveals that the molecules of calcium carbonate have different sources. The
calcium comes from the karst zone. Carbon originates from the overlying soil zone and reflects surface
vegetation activity (Bar-Matthews et al., 1997). However, only part of the oxygen stems from the soil
zone. Another source is water infiltrating into the ground, mainly from precipitation events. Thus, the
calcium carbonate of speleothems only partially reflects local conditions. It is not only the source
of precipitation that is important. Another factor are processes in the atmosphere that influence the
oxygen in the water as the air masses are transported to the cave. In Fig. 2.5 the way of 𝛿18O from
the ocean to the cave entrance is depicted. The 𝛿18O𝑣𝑎𝑝𝑜𝑟 reflects that of water and Sea Surface
Temperature (SST), among others. During transport to the cave location, the following factors affect
𝛿18O𝑐𝑙𝑜𝑢𝑑: altitude, longitude, latitude, distance from the source, amount of precipitation, and air
temperature (McDermott et al., 1999).

Hendy, 1971 describes how speleothems can be used as paleoclimate archives. If the 𝛿18O of
the calcite is in isotopic equilibrium with the 𝛿18O of the drip water, a relationship can be found
between these two ratios, which in turn is temperature-dependent (Kim and O’Neil, 1997). Therefore,
isotopic information from speleothems may allow inferences about cave temperature, which is related
to mean annual surface temperature due to ventilation effects (Lauritzen and Lundberg, 1999; Sánchez-
Fernández et al., 2018; Bradley, 2014). This idea of a transfer function must then be calibrated
with data from the appropriate caves, which Tremaine et al., 2011 did for some caves in Florida and
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2.1 Proxies

Figure 2.5: This figure is from Lachniet, 2009 and shows the complexity of the processes that determine the
composition of 𝛿18O with respect to speleothems. In particular, fluctuations in temperature and relative humidity
affect the 𝛿18O values due to different processes and phase changes in the atmosphere, ocean, hydrosphere, soil,
and epikarst zones, and finally in the caves.

compared them with older calibrations like in, e.g. Kim and O’Neil, 1997. If a quantitative climate
reconstruction is to be performed, it is necessary to take into account the ice volume effect mentioned
above. An example of this can be found in Lauritzen and Lundberg, 1999, where temperature
during the Holocene is reconstructed using a speleothem in Norway. Overall, only a few quantitative
climate reconstructions based on speleothems have been carried out so far, which Lachniet, 2009 and
McDermott et al., 2011 attribute to the complexities of the hydrologic water cycle shown in Fig. 2.5.

Since the last decades, the number of speleothems studied worldwide has increased significantly
(Atsawawaranunt et al., 2018) and a large part of them has been made easily accessible through the
speleothem database Speleothem Isotopes Synthesis and Analysis (SISAL). As a result, a huge amount
of proxy information can be easily viewed for specific areas, such as great parts of Europe (Lechleitner
et al., 2018) or China (Zhang et al., 2019). Other advantages include the precise datability of
speleothems (Richards and Dorale, 2003) and their high density of proxy material (Treble et al., 2007).
For these reasons, it is advisable to consider this wealth of information in climate reconstructions.

Particularly striking is the simultaneous occurrence of prominent climatic events. For example,
Genty, 2003 describe speleothems from Villars Cave in France and Soreq Cave in Israel that show
similar cycles to the oceanic sediments and ice cores of Greenland during the Last Glacial (see Fig.
2.2). The 𝛿18O curve of the Soreq cave is shown in the Fig. 2.6. Bar-Matthews et al., 1999 infer from
these data some Heinrich events, the last deglaciation and the Younger Dryas (YD), characterized
by cold and dry climatic conditions in the Eastern Mediterranean. At Jeita Cave in Lebanon, Cheng
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Figure 2.6: Time series of 𝛿18O of a speleothem from Soreq cave, Israel.

et al., 2015 compare their data with these from Israel and find similarities with respect to the Bond
events, the Dryas events, the Bølling-Allerød (BA) interstadial, and the Heinrich stadials. To detect
events during the Holocene, they used spectral analysis. In addition, Bar-Matthews et al., 2003
describe that MIS 7 − 7.5 are detectable in Soreq and Pequin caves. Bar-Matthews et al., 1997 and
Bar-Matthews et al., 2003 find DO cycles not only in speleothems but also in marine cores of the
Eastern Mediterranean. Moreover, these cycles appear to be globally synchronized overall during the
Last Glacial (Bar-Matthews, 2013). Some caves in China, for example, show spectral patterns during
this period and the Holocene that are consistent with those from the North Atlantic and thus have an
influence on the Asian summer monsoon (ASM) (Wan et al., 2011; Cheng et al., 2015). Fleitmann
et al., 2003 also find a link between Greenland ice cores during the Holocene with speleothems from
Oman. The 8.2 event is found, for example, in Romania (Constantin et al., 2007), Norway (Lauritzen
and Lundberg, 1999), or in various caves in Germany (Waltgenbach et al., 2020). Poleva Cave in
Romania (Constantin et al., 2007) additionally shows a correlation with Villars and Soreq Caves and
other Bond events such as the 4.2 and 3.2 events. The latter is also detectable in the Ascunsă Cave, also
located in Romania (Drăguşin et al., 2014). Furthermore, Budsky et al., 2019 find evidence for DO
cycles during MIS 3 − 5e in the western Mediterranean. They associate these DO events with wetter
climatic conditions in much of Western Europe. Many of these aforementioned events are associated
with AMOC disturbances and IRD. For example, Deininger et al., 2016 demonstrate a connection
between 11 speleothems over Europe and important North Atlantic Ocean circulations for the late
Holocene. Demény et al., 2021 also reveal a correlation with the SST of the North Atlantic and thus
with the AMOC during the mid to late Holocene. Their argument is based on a principal component
analysis (PCA) based on speleothem data. In Niggemann et al., 2003, spectral analysis is used to
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Figure 2.7: The top row shows in (a) the time series of 𝛿18O from a speleothem of Soreq Cave and in (b) the
corresponding wavelet power spectrum. The lower row is analogous to the top, except that the time series is
based on the percentage of ice rafted debris from the North Atlantic.

detect Bond events in Germany, with a power peak at about 1500 years. In addition, Bar-Matthews and
Ayalon, 2007 describe the period 8.5 − 7 ka BP shown in Fig. 2.6 as a deluge period with a decrease
in precipitation. Subsequently, the isotopic information indicates a climate more similar to the present
one in the Eastern Mediterranean (Bar-Matthews et al., 1999). In Bar-Matthews and Ayalon, 2011, the
periods between 7 − 4 ka BP are described in more detail. They also found cycles with a period of
about 1.5 ka and associate them with some Bond events. Moreover, these events coincide with some
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important cultural changes caused by major droughts in the Eastern Mediterranean. A famous example
is the local maximum around 4.2 ka BP in Fig. 2.6, which Bar-Matthews et al., 1998 associate with a
dry period that possibly caused the total desertification of the Sahara and the collapse of the Akkadian
Empire. They also describe a transition to drier and more stable conditions during 3 − 1 ka BP. In
particular, Orland et al., 2009 recognize from these isotopic data a decrease in precipitation during the
period 1.9 − 1.3 ka BP. They suggest that this climate change weakened the economic system of the
Roman and Byzantine Empires, which contributed to the decline of their rule in the Levant.

Overall, it can be concluded that many known climatic events are detectable in speleothems
distributed throughout Europe. These can be identified relatively easily by spectral analysis. In
addition, misinterpretations of speleothem isotope curves due to the source effect can be minimized
when viewed in spectral space (Cheng et al., 2015). Therefore, this work will also focus on spectral
characteristics of these proxy information as shown in Fig. 2.7. In order to correctly interpret the
spectral properties of the proxy information in panels (a) and (c), some technical details must be taken
into account. Fairchild et al., 2006 point out that smoothing, aliasing of the respective time series, and
the total period covered must be treated with caution. For these reasons, only time series longer than
2000 years are considered in this work. In addition, the time range is chosen to coincide with that of
the corresponding sediment cores (see Sect. 2.1.2). For example, the Soreq Cave data in Fig. 2.7 (a)
are congruent with those from the Dead Sea pollen record of Litt et al., 2012 (nearly the last 10,000
years). The WPS in (b) reveals within the COI an important branch of significant power between 1500
and 1000 years. It is noticeable that in the early Holocene the highest power is just over 1000 years
and this shifts over time to about 1500 years. Debret et al., 2007 can also show a similar trend using
wavelet analysis for the IRD time series of Bond et al., 2002 with respect to the North Atlantic. In
Fig. 2.7 (c) and (d), we see the time series of the IRD and the respective WPS. Again, the bifurcation
between 1 and 1.5 ka period is striking, consistent with the patterns of Bond events. Debret et al.,
2007 find a correlation between the fast (1 ka period) and slower (2.4 ka period) dominant fluctuations
and solar activity. In contrast, periods around 1.5 ka from the middle to late Holocene could be due to
internal oceanic forcing. In our work, this idea of pattern recognition is used to detect and compare
spatiotemporal similarities between the respective proxies. Furthermore, Cheng et al., 2015 describe a
power peak at 500 years in signals from Jeita Cave, which they hypothesize is due to solar variations.
Based on this research, we will filter out signals smaller than 400 years using a low-pass filter. This
way we can avoid the problem of aliasing as much as possible. The procedures of smoothing and how
irregular time grids are transformed regularly are described in Sect. 2.3.
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2.1.2 Pollen and macrofossils

The first studies of pollen grains began in the mid-seventeenth century (Manten, 1967), when the
development of microscopes was increasingly advanced. Göppert, 1836 was the first to describe fossil
pollen grains found in coal mines, compare them with recent pollen, and study their fossilization
process. Edwards et al., 2017 summarize the work of Lennart von Post, who presented the first
systematic pollen analysis of bog sediments at a meeting in Oslo in 1916. His work included several
pollen diagrams from different sites. In these he showed percentage values of tree pollen on the x-axis
and depth (time) on the y-axis. This systematic palynology, developed more than 100 years ago, has
been preserved in its basic features. A few decades later, Iversen, 1944 reconstructed January and
July temperatures in Scandinavia based on various plants, showing that it is possible to calculate
quantitative climate reconstructions based on palynology. His basic idea was further developed in the
following years and is also used in this work. A detailed description of this can be found in Sect. 2.4.

Fig. 2.8 shows a conceptual model for the deposition of pollen information in lake sediments.

Figure 2.8: This figure is from Chevalier et al., 2020 and describes the influences that affect pollen composition
in lake sediments. These include, as shown by the different symbols of pollen grains, long-distance transport
(by wind, animals, and rivers), high and low pollination rates of different taxa, lower taxonomic resolution, e.g.,
in grasses, and human influence through land use. All of these factors ultimately play a role in lake sediment
analysis.
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Various pollen assemblages based on different taxa are created there. For further illustration, an
example of this is shown in Fig. 2.9, where the percentage occurrence of some pollen grains is
plotted against depth. The data are from a drill core from the Sea of Galilee in the Jordan Valley.
A major advantage of palynology is that the envelope of pollen grains is made of the chemically
stable polymer sporopollenin (Havinga, 1967). As a result, their structure is preserved over very long
periods of time in depositional sites such as lake sediments. A number of factors play an important
role in the collection of pollen information that must be considered in climate reconstructions. First,
different plant species have different pollination rates. The larch, aspen, and pine shown in Fig. 2.8
are representative of this. The latter has a higher pollination rate than the first two. These differences
make it difficult to determine if a particular plant species is present at a particular site, and if so, at
what intensity. Another factor is pollen transport. These include first and foremost the wind, the rivers
and the animals (Chevalier et al., 2020). As a result, pollen assemblages do not necessarily reflect
local vegetation (Huntley, 2012). This is also the case in the Sea of Galilee, where the Jordan River is
the largest inflow and thus mainly determines the catchment size (Schiebel and Litt, 2018). For these
reasons, information about local and regional vegetation may be present in lake sediments. Another
factor is the cultivation of plants by humans. If, for example, the occurrence of Olea europaea in Fig.
2.9 is subject to strong fluctuations at a depth of 1150-1300 cm, this is due to human influences rather
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Figure 2.9: Percent distribution of terrestrial pollen sums as a function of depth for some important taxa from the
Sea of Galilee. In the center, the summarized arboreal pollen (AP) (green) is contrasted with the non-arboreal
pollen (NAP) (red). On the right, we see 5 local pollen assemblage zones (LPAZs) of this sediment core
subdividing different pollen compositions.
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than climatic changes (Schiebel and Litt, 2018). Further uncertainties in the examination of sediment
cores arise from the assignment of pollen to plants. Overall, pollen analyses can be used to determine
the taxonomic rank such as family or genus of a plant (Bradley, 2014). In contrast, macrofossils
found in the core, for example small leaf or stem remains, can be distinguished down to species. In
addition, such plant remains offer the possibility of dating without a reservoir effect, i.e., the carbon is
in equilibrium with the atmosphere, allowing a more meaningful relationship between age and depth
(Giesecke et al., 2013).

One goal of this work is to compute spatial climate reconstructions for the European region, North
Africa, and the Levant (see Sect. 2.6) based on at least these two proxies. For this purpose, different
pollen diagrams like the one in Fig. 2.9 are collected. The European Pollen Database (EPD) provides
such an accumulation of data (Fyfe et al., 2009). It was established in the late 1980s and is constantly
updated. Today it contains several thousand pollen records from natural archives such as lake and
mire sediments. The database can be accessed with the help of the R package EPDr (Nieto-Lugilde
et al., 2019), which provides access to the EPD’s PostgreSQL database structure via R and some other
useful functions. These provide, for example, the possibility to filter out entities for which no age
dating is available or whose use is not permitted. In addition, specific taxa groups can be selected and
taxa names can be changed to those accepted by the EPD. As shown in the pollen diagram Fig. 2.9
from the Sea of Galilee, it is often useful to convert pollen counts into percentages. In this regard,
a corresponding function is also included in this R package. In particular, the ability to select the
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Figure 2.10: As Fig. 2.9, but with a transformation from depth to age of sediment core.
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entities to which Giesecke et al., 2013 assigned new chronologies is of special interest to this work.
In doing so, they included additional control data points with ages and uncertainties for some cores
from the EPD. These include, for example, the onset of the Younger Dryas, the tephra of the Laacher
See eruption, or the estimated age of the top of the core. With such additional data points, they
calculated new age-depth relationships for 1036 sites. For some of them, the R package clam (Blaauw,
2019) was used, which applies a smoothing spline regression to compute such a model along with the
uncertainties. Based on these datings, we build additional age-depth relationships using a Bayesian
accumulation model (Bacon) (Blaauw and Christen, 2011). This can be seen as a successor to clam
and is described in more detail in Sect. 2.3. Ultimately, we obtain about 600 pollen diagrams with
corresponding age-depth models in this way.

Each depth from Fig. 2.9 contains vegetation information from a specific time interval. This
depends on the sedimentation rate and the thickness of the sampling interval of the core. Overall, this
results in an irregular grid in depth. To compare this information with that from other lake and mire
sediments, from speleothems, and from marine and ice cores, a conversion from depth or distance to
age is required. For this purpose, a new method is applied in this work, which generates, for example,
Fig. 2.10. The depth information from Fig. 2.9 is used here as input data. Together with the age
uncertainties, the output data are smoothed percentage curves for each plant, which now have a regular
temporal grid. This procedure is fully described in Sect. 2.3.

2.2 Bayesian statistics

As we have already seen in the Introduction, the high-dimensional climate system must be described
with the help of probabilities. Moreover, in paleoclimatology we are dealing with more or less
large age uncertainties, and the information from the climate archives described above are not only
influenced by climate. For these reasons we have to consider a probabilistic approach to describe the
variables needed in this work.

Bayesian statistics deals with uncertainties using conditional probabilities and has been successfully
used for climate reconstructions for several decades (e.g. Kühl and Litt, 2003; Gebhardt et al., 2008;
Neumann et al., 2007; Simonis et al., 2012; Parnell et al., 2014; Weitzel et al., 2019). The original idea
goes back to Sir Thomas Bayes (Bayes and Price, 1763), who interpreted probabilities as a measure of
the degree of belief that an event will occur given additional information. Bayes’ theorem describes
this situation by relating conditional probability distributions:

P(𝑿 | 𝒀)︸    ︷︷    ︸
Posterior

=
P(𝒀 | 𝑿) · P(𝑿)

P(𝒀) ∝ P(𝒀 | 𝑿)︸    ︷︷    ︸
Likelihood

· P(𝑿)︸︷︷︸
Prior

. (2.7)

The posterior probability distribution describes the quantity 𝑿 inferred from 𝒀 . Because P(𝒀) is
a fixed normalization constant, the posterior is proportional to prior knowledge and the so-called
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likelihood. The latter is used in this thesis in two different versions. First, as a transfer function with
respect to local climate reconstructions and second, as a data operator with respect to spatial climate
reconstructions. In addition, two common methods are used to determine the prior information.
This includes the use of the so-called Jeffreys prior, which is considered non-informative due to its
parameterization invariance (Gelman et al., 2013). This means that an attempt is made to minimize
the information content of the prior distribution so that the posterior distribution reflects as closely as
possible the information about the parameters obtained from the data. Moreover, we use so-called
conjugate priors. These are called such if the posterior distribution belongs to the same probability
distribution family as the prior probability distribution (Gelman et al., 2013). This has the advantage
of a much more efficient determination of the posterior distribution.

As we have already seen, we intend to use a variety of different proxy information to reconstruct
paleoclimate. This is ensured by the multiple application of Bayes’ theorem (see Eq. 2.7), which
is finally called Bayesian Hierarchical Model (BHM), taking into account the uncertainties of the
different variables. This makes it possible to use several sources and combine them into a joint model.
All in all, there are several ways to calculate the posterior distribution of a BHM. Two main methods

Bayesian statistics

Age-depth/distance
modelling

Transfer functions
via machine learning

Synchronization of mul-
tiple proxies from lake and
mire sediments, marine
sediments, ice cores, and
speleothems.

Several machine learning
techniques and algorithms
allow plant data to be
linked to climate.

Local climate reconstructions

Spatial climate reconstructions

BHM BHM, Inverse modeling

BHM
MCMC

BHM
MCMC

Figure 2.11: Flowchart of the applications of Bayesian statistics. The arrows indicate the reading direction of
the diagram and the different work steps are marked by various colors. The descriptions along the arrows show
in more detail how the ideas of Bayesian statistics are used and solved.
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are used in this thesis. First, the different probability distributions are determined and discretized and
finally multiplied together. This has the disadvantage of some inaccuracy, but the advantage of less
computational cost. Second, Markov chain Monte Carlo (MCMC) methods are used. In this process,
the various probability distributions are sampled such that the Markov chain converges to the correct
posterior distribution. In Sect. 2.4, two MCMC methods are described in more detail, namely the
Gibbs and Metropolis-Hastings sampling methods (Betancourt, 2017).

The flowchart in Fig. 2.11 shows how the basic principles of Bayesian statistics just described
are used in the following sections. This includes Bayesian hierarchical modeling with respect to
age-depth/distance transformations solved with matrix multiplications. The purpose of this step is to
allow different climate proxies to be synchronized with respect to age. In parallel, transfer functions
are inversely determined using various machine learning techniques to establish a probabilistic
relationship between plants and climate. The next step is a BHM of local climate reconstructions
based on the data just described and solved with MCMC. All this leads to the possibility of spatial
climate reconstructions, also based on a BHM and solved using MCMC.

2.3 Age-depth/distance modelling

This section deals with the relationship between age dating and depths in lake and mire sediments and
distances in speleothems. The various methods of age dating can be found in Bradley, 2014. For the
relationship between age and depth/distance, we use a Bayesian age-depth/distance model in order to
account for age uncertainties. In contrast, most previous studies are based solely on the mean values.
For example, depths of lake sediments (Litt et al., 2012; Schiebel and Litt, 2018; Torfstein et al.,
2015; Neumann et al., 2007; Miebach et al., 2019; Seppä et al., 2005) or distances (from a reference
point) with respect to speleothems (Drăguşin et al., 2014; Waltgenbach et al., 2020; Akers et al., 2016;
Psomiadis et al., 2018). For the latter, the values are based on models such as StalAge (Scholz and
Hoffmann, 2011) and Bacon (Blaauw and Christen, 2011). In our work, we instead consider the entire
uncertainty domain. The Bayesian age-depth model Bacon just mentioned, which is implemented in
R, is used for this purpose (R Core Team, 2018; Blaauw et al., 2020). We will only briefly explain the
model in this thesis. A detailed description can be found in Blaauw and Christen, 2011.

The Bacon model uses a self-adjusting MCMC simulation to infer the posterior probability
distribution P(\, 𝑥, 𝜔|𝑦), where \ is the model parameter, 𝑥 is the accumulation rate, 𝜔 is the memory,
and 𝑦 are measurements such as 14C data. These are the same variable declarations as in Blaauw and
Christen, 2011 and apply only to this section. The middle and right panels in the top row of Fig. 2.12
show an example of the prior distributions of 𝑥 and 𝜔, which are indicated as green lines. Based
on the MCMC samples, the gray areas represent the corresponding posterior probability densities.
From such a posterior accumulation rate 𝑥, we can obtain the probability distributions P(𝑨|𝑫) and
P(𝑫 |𝑨). 𝑨 is the age and 𝑫 denotes the depth or distance. The Bacon.Age.d function in the Bacon
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Figure 2.12: The lower panel shows an age-distance model of a speleothem from the Ascunsă Cave in Romania
calculated with Bacon. The top panels depict, from left to right, a trace plot of the posterior MCMC samples,
prior (green lines) and posterior (gray area) distributions of accumulation rate and memory.

package returns P(𝑨|𝑫). In our study, however, we need a tool for P(𝑫 |𝑨) (see Eq. 2.10) which has
been implemented since package version 2.5 and can be found under Bacon.d.Age. Examples of both
probability densities are shown in Fig. 2.13, namely P(𝑨|440 mm) and P(𝑫 |6000 cal a BP). The
corresponding age-distance model can be seen in Fig. 2.12. It is based on the dating of a speleothem
from the Ascunsă Cave in Romania (Drăguşin et al., 2014). Originally, the Bacon model was created
for the calculation of age-depth models based on 14C dating from cores of, e.g., peat bogs or lake
sediments. That is, Bacon performs an appropriate calibration from 14C a BP to cal a BP. However,
this option can be disabled and the model assumes that the calibrated dates are already available,
which is the case here. Such datings and their uncertainties can be taken from the speleothem database
SISAL. Roesch and Rehfeld (2019) tested 88 entities for robustness to various age-distance models.
Among them are Bchron (Haslett and Parnell, 2008) and linear interpolations as well as Bacon and
StalAge. Linear interpolations, Bchron and Bacon provide robust results for these entities and the
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Figure 2.13: Probability density distributions based on the age-distance model in Fig. 2.12. Panel (a) depicts
P(𝑨|440 mm) calculated with the R function Bacon.Age.d and (b) P(𝑫 |6000 cal a BP) calculated with the R
function Bacon.d.Age.

latter is the only one that can account for hiatus. Therefore, Bacon is also suitable as an age-distance
model for speleothems. In the upper middle panel of Fig. 2.12, some prior parameters defining the
gamma-distributed accumulation rate are also shown. These values of 𝑥 are set to a mean accumulation
rate of 11 mm/year and a of shape 1.5. This mean is calculated from the assumption of a uniform
slope over the entire age-distance range, and the shape is the default value, which provides a flatter
curve and thus more variability. As the growth rate of this speleothem is relatively constant (except the
8.2 event) during the Holocene (Drăguşin et al., 2014), the default settings of the memory are chosen,
namely mean memory of 0.7 and memory strength of 4 (upper right panel). Overall, the trace plot of
log(P(\, 𝑥, 𝜔|𝑦)) in the upper left panel shows good mixing, indicating stable model performance
with these prior parameters.

Now we need to determine how to use the information from this model to make an appropriate
conversion from distances to ages. As mentioned above, the probability distributions P(𝑫 |𝑨) are
crucial for this, which is shown by the following derivation using the technique of Bayesian Hierarchical
Models:

P(𝒀 , 𝑨, 𝑷) =
∫
D
P(𝒀 , 𝑨, 𝑷, 𝑫) 𝑑 𝑫 (2.8)

=
∫
D
P(𝒀 | 𝑨, 𝑷, 𝑫) · P(𝑫 | 𝑨, 𝑷) · P(𝑨, 𝑷) 𝑑 𝑫 . (2.9)

𝒀 contains variables such as annual precipitation or 𝛿18O for which an age-depth/distance transformation
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is to be performed. 𝑷 means proxy information such as pollen, macrofossils, or any type of isotopic
data. In the following, we assume that 𝑫 is conditionally independent of 𝑷 and thus completely
dependent on 𝑨. This is exactly the information we get from the age-depth/distance model. Moreover,
the variables 𝒀 should not depend on age given 𝑫. This assumption stems from the fact that all
the proxy information we consider initially refers to a depth or distance. Then, we obtain the final
age-depth/distance transformation:

⇒ P(𝒀 | 𝑨, 𝑷) =
∫
D
P(𝒀 | 𝑫, 𝑷) · P(𝑫 | 𝑨) 𝑑 𝑫 . (2.10)

In this thesis, the conditional probability distributions are discretized and stored and evaluated in
predefined matrices.

Examples of a transformation using Eq. 2.10 can be seen in Fig. 2.14. Blue represents 𝛿18O, red
represents 𝛿13C, and black represents the respective smoothings of these values. Each of these 6
different curves can be understood as Y, except that their calculations are different. The colored curves
are based on the mean values of the Bacon model from Fig. 2.12 (dashed red line). The dashed black
curves are analogous to those in Drăguşin et al. (2014) using a 9-point moving average. In contrast,
the solid black lines are calculated with the use of Eq. 2.10.

Here, P(𝒀 |𝑫, 𝑷) represents the relationship of 𝛿18O and 𝛿13C to their distance (with respect to the
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Figure 2.14: 𝛿18O (blue line) and 𝛿13C (red line) data from Drăguşin et al., 2014. The dashed black lines
represent their moving average, and the solid black lines show our data-driven smoothing using the probabilistic
relationship between age and distance.
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top of the speleothem) and to 𝑷, which can be interpreted as the total isotopic information of 18O and
13C, respectively. Thus, the blue and red curves can be defined as P(𝛿18O|𝑫, 𝑷) and P(𝛿13C|𝑫, 𝑷).
The temporal resolution of P(𝑫 |𝑨) can be chosen arbitrarily high. In this thesis, this value is set at 50
years, which is a compromise between all speleothems and sediment cores. If it is specified evenly, this
transformation results in a regular time grid. A regular grid is one requirement for the application of
the wavelet transform introduced above. Nevertheless, there must be an age-depth/distance relationship
per entity. Accordingly, such transformation cannot be performed for entities such as LR04, Medstack,
and NGRIP (see. Fig. 2.2). Mathematically, Eq. 2.10 behaves like a convolution with different kernel
smoother (cf. Eq. 2.2). For this reason, a smoothed pattern is obtained when age uncertainties are
taken into account. Unlike traditional smoothing methods, this one is data-driven and shows what
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Figure 2.15: Panel (a) shows the climate reconstruction of annual precipitation as a function of the depth of the
lake sediment of the Sea of Galilee. The colored contours represent the uncertainties in terms of probability
densities, and the dashed black lines depict the interquartile range based on these data. In it, the median is
shown in the form of a solid black line. Panel (b) corresponds to (a) with the difference that the x-axis is
transformed from depth to age.
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information 𝒀 actually provides in terms of age.
Another advantage of this method is its simple implementation and low computational cost.

Previously, age uncertainties were based on sampling algorithms as in Parnell et al. (2014) or on
ensembles of age depth/distance models (McKay et al., 2020). In our case, we only need to create
P(𝑫 |𝑨) and store it in a matrix with dimensions 𝑚 × 𝑛. 𝑚 is the number of points with respect
to 𝑫 and 𝑛 is the user-dependent number of data points related to age. Pragmatically, P(𝒀 |𝑫, 𝑷)
has dimension 1 × 𝑚 in the case of Fig. 2.14. Thus, Eq. 2.10 can be calculated simply by matrix
multiplication (denoted here by ⊗):

P(𝒀 | 𝑨, 𝑷) ∈1×𝑛= P(𝒀 | 𝑫, 𝑷) ∈1×𝑚 ⊗ P(𝑫 |𝑨) ∈𝑚×𝑛 .

This fact is taken up again in Sect. 2.4, where the advantage of the low computational cost of this
multiplication is exploited.
P(𝒀 | 𝑫, 𝑷) can also have the dimension 𝑘 × 𝑚. 𝑘 > 1 denotes the number of grid points with

respect to 𝒀 . In Fig. 2.15, 𝒀 is the mean annual precipitation (PANN). Probability density values are
available for this variable at each depth (colored contour in (a)). The dimension for the discretized
probability density function (PDF) is also user-dependent and is set to 𝑘 = 300 in this thesis. The
solid black line represents the median of each PDF. All in all, the transformation from depth (a) to age
(b) follows the same procedure as the one described above. In total, the following is calculated:

P(PANN | 𝑨, 𝑷) ∈𝑘×𝑛= P(PANN | 𝑫, 𝑷) ∈𝑘×𝑚 ⊗ P(𝑫 |𝑨) ∈𝑚×𝑛 . (2.11)

This example serves only to illustrate the transformation from depth (a) to age (b). A corresponding
description from a paleoclimatological perspective can be found in Sect. 3.3.2. How such a
reconstruction is calculated in detail is described in the following.

2.4 Local climate reconstructions

The climate reconstruction model used in this thesis is based, among other things, on the idea of the
indicator species approach. In this method, pollen or macrofossils from deposits, such as lake and
mire sediments, are considered as climate indicators. Using this approach, Iversen, 1944 reconstructed
January and July temperatures during the Holocene in Scandinavia based on Ilex, Viscum, and Hedera.
Building on these basics, the Mutual Climate Range (MCR) method has evolved (Grichuk, 1969).
Here, plant distribution maps are linked to recent climate data to define a climate range where the
corresponding taxon occurs. Finally, when considering multiple taxa, these climatic ranges can
be combined to determine the mutual climatic range. This method brings a number of challenges.
First, there is no weighting within the individual climate ranges. This means, for example, that each
temperature range occurs with the same probability. These sharp boundaries in transfer functions
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result from overfitting (Friedman, 2001). This is a general problem in determining such functions and
will be taken up again in more detail in the next section. On the other hand, combining too many taxa
can result in more than one MCR. In contrast, when too few taxa occur in a certain sediment layer,
reconstruction can lead to a relatively broad climatic range (Klotz et al., 2004). In addition, only the
occurrence of the plants is considered. In this method, the percentage information is included only
indirectly, by determining a priori whether a plant is present or not. There are some other climate
reconstruction methods that incorporate such percentage distributions. These include regression
methods in which linear or nonlinear transfer functions are calculated based on modern climate and
plant data (Webb and Bryson, 1972). In addition, there are classification methods, such as Modern
Analogue Technique (MAT) (Overpeck et al., 1985). The same machine learning (ML) algorithms
can be used in both regression and classification (Jed Wing et al., 2019). These are among others
Artificial Neural Network (ANN) or Random Forest (RF) (see Sect. 2.5). Chevalier et al., 2020 present
a table describing the advantages and disadvantages of the above methods. One advantage of the
MCR method is that it can be used globally. In contrast, the regression and classification approaches
are more spatially constrained and often have poorer estimates of uncertainty. In addition to these
methods, Chevalier et al., 2020 mention two more: Bayesian approaches and inverse modeling. Both
are also used in this thesis, so that an attempt is made to balance the disadvantages of all methods with
their respective advantages. In the following, we describe how we incorporate a Bayesian approach
into our reconstruction model.

To do this, we follow the idea of Kühl et al., 2002, who developed a probabilistic interpretation
of MCR. Fig. 2.16 shows the concept of this method. This addresses the problem of overfitting
by calculating uncertainty ranges for each taxon. These are shown here for taxa A, B, and C for
different colored contours (blue, brown, and green). The MCR follows the colors of the color bar. The
uncertainty ranges were initially based on normally distributed PDFs (with respect to temperature),
which is why this is called the PDF method. Later, more complicated models were also used, which will
be discussed in more detail in Sect. 2.5. The PDF method was applied for both local and spatial climate
reconstructions. For example, Kühl and Litt, 2003 calculated January and July temperatures for 3 sites
in Central Europe during the Last Interglacial (LIG) period. Subsequently, spatial reconstructions
of Europe were performed in Gebhardt et al., 2008 for the Eemian, in Simonis et al., 2012 for the
Late Glacial and Holocene, and in Weitzel et al., 2019 for the MH. Schölzel, 2006 describes the
PDF method in the context of a BHM and calls it Bayesian Indicator Taxa Model (BITM). This has
the advantage that additional prior information can regulate the transfer functions. Among others,
the BITM was applied in Neumann et al., 2007 for Birkat Ram in Israel, in Stolzenberger, 2011 for
Meerfelder Maar and Holzmaar in Germany, and in Thoma, 2017 for Lake Prespa in Greece. In all
BITM-based reconstructions, thresholds must be set to define at which point a taxon occurs or does not
occur. Another method presented by Schölzel, 2006 that is based on BHM is the so-called Bayesian
Biome Model (BBM). In this process, certain plant taxa are assigned to different biomes. These are
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Figure 2.16: Illustration of a Mutual Climate Range from Chevalier et al., 2020. Shown are 3 taxa as a function
of two climate variables and their MCR, represented by the yellow/blue contours. The red cross represents the
mean of the MCR, and the dashed rectangles demonstrate the sensitivity of this technique when only a subset of
the MCR data are considered. That is, if the input data contain 99 %, there may be a relatively large difference
from the full input data set ( MCR 100 %).

groups that have similar climatic conditions and predominant vegetation, among other things (Prentice
et al., 1992). One advantage of the BBM is that one does not need recent distribution maps for every
plant occurring in the core, but only for the biomes used. The computational assignment of taxa to
biomes is based on the affinity score (Prentice et al., 1996). This is used to calculate the percentage
distributions of the biomes with respect to the depth of the core. Nevertheless, the information of a
threshold value of the individual taxa is included in the affinity score. Applications of the BBM can be
found in Litt et al., 2012, in Stolzenberger, 2017, and Litt et al., 2021 for the Dead Sea in Israel. Based
on the above summary, the first part of the reconstruction method used here is now described. The
inverse modeling is done in the second part, which is discussed below. The goal of the new method is
to provide an algorithm that performs the calculations regardless of location across Europe. This is
intended to circumvent expert knowledge for setting thresholds for taxa occurrence, which is a major
effort for the approximately 600 sites. Instead, the new method should independently determine which
taxa are important for each reconstruction based on specific constraints. All variables that are relevant
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Table 2.2: List of variables.

Variable shortcut Description

P Probability distribution
𝑪 Climate: contains modern 𝑪𝒎 and past 𝑪𝒑 climate information
𝑷 Proxy: contains modern 𝑷𝒎 and past 𝑷𝒑 proxy information
𝑷𝑷 Proxy pool: explained variances between additional proxies and 𝑪
𝑷𝒔 Selected plant proxy information
𝑨 Age of sediments or speleothems
𝑫 Depth of sediments or distance in speleothems
𝚯 Contains the following parameters:
𝝍 Link between climate 𝑪 and taxa distributions 𝑷
𝝓 Contains all information about the taxa weights:
𝝎 Taxa weights
𝒛 Selection of taxa based on taxa weights 𝝎

for the mathematical formulation of this model can be found in Table 2.2.
Using Bayes’ theorem, we can express the probability distribution for climate 𝑪 given pollen and

macrofossils 𝑷, depth 𝑫, and parameter 𝚯. In the process, we also introduce the selected plant proxies
𝑷𝒔:

P(𝑪 | 𝑷, 𝑫,𝚯) =
∫
P𝑠

P(𝑪 | 𝑷, 𝑷𝒔, 𝑫,𝚯) · P(𝑷𝒔 | 𝑷, 𝑫,𝚯) 𝑑𝑷𝒔 . (2.12)

In the case of a finite number of taxa, the integral is a corresponding sum. Consider P(𝑪 | 𝑷, 𝑷𝒔, 𝑫,𝚯)
in more detail:

P(𝑪 | 𝑷, 𝑷𝒔, 𝑫,𝚯) 1.≈ P(𝑪 |, 𝑷𝒔, 𝑫,𝚯) 2.≈ P(𝑪 | 𝑷𝒔,𝚯) 3.≈ P(𝑪 | 𝑷𝒔,𝝍)
4.≈ P(𝑷𝒔 | 𝑪,𝝍) · P(𝑪 | 𝝍) · P(𝝍)

P(𝑷𝒔,𝝍)
5.≈ P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)

P(𝑷𝒔,𝝍)
. (2.13)

With the following assumptions and applications:

1. 𝑪 is conditionally independent of 𝑷 if 𝑷𝒔 is given. This assumes that 𝑷𝒔 explains enough
variability of the core.

2. The link between 𝑪 and 𝑷𝒔 is conditionally independent of depth. This means that the
relationship between these quantities is assumed to be unchanged for any depth and thus any
age of the core. The assumption that this relationship has not changed over time is an important
part of our reconstruction method. When we look at older time periods, we need to keep this in
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mind, as the relationship may well have changed due to evolutionary processes.

3. The connection between 𝑪 and 𝑷𝒔 is described only by the parameter 𝝍. Furthermore, 𝝍 and 𝝓

are a priori independent: P(𝚯) = P(𝝍) · P(𝝓).

4. Application of Bayes’ theorem.

5. If 𝑪 depends only conditionally on 𝝍, it is assumed that within the considered climate ranges
each value occurs with the same probability. Thus, P(𝑪 | 𝝍) follows a uniform distribution.

If we now substitute Eq. 2.13 into equation Eq. 2.12, we get:

P(𝑪 | 𝑷, 𝑫,𝚯) ≈
∫
P𝑠

P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)
P(𝑷𝒔,𝝍)

· P(𝑷𝒔 | 𝑷, 𝑫, 𝝓) 𝑑𝑷𝒔 . (2.14)

Combined with Eq. 2.10, the following expressions can be found:

P(𝑪 | 𝑷, 𝑨,𝚯) =
∫
D
P(𝑪 | 𝑷, 𝑫,𝚯) · P(𝑫 | 𝑨) 𝑑𝑫

Eq.2.14≈
∫
D

∫
P𝑠

P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)
P(𝑷𝒔,𝝍)

· P(𝑷𝒔 | 𝑷, 𝑫, 𝝓) 𝑑𝑷𝒔 · P(𝑫 | 𝑨) 𝑑𝑫

≈
∫
P𝑠

P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)
P(𝑷𝒔,𝝍)

·
∫
D
P(𝑷𝒔 | 𝑷, 𝑫, 𝝓) · P(𝑫 | 𝑨) 𝑑𝑫 𝑑𝑷𝒔

Eq.2.10≈
∫
P𝑠

P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)
P(𝑷𝒔,𝝍)

· P(𝑷𝒔 | 𝑷, 𝑨, 𝝓) 𝑑𝑷𝒔 . (2.15)

This is the basic model calculated several thousand times for different 𝝓 by systematically sampling
from the pools of plant information of the respective cores using MCMC techniques. In order to be
able to describe this in more detail, certain framework conditions must first be introduced. To this
end, we will now look at reference curves based on pollen and isotope information. As described in
Sect. 2.1.1 and Sect. 2.1.2, many studies use such reference curves. These are shown, for example, in
Fig. 2.2, Fig. 2.6, and the AP/NAP curve in Fig. 2.10. If a reconstruction according to Eq. 2.15 is
performed for certain taxa weights 𝝎, the expectation and/or median values of P(𝑪 | 𝑷, 𝑨,𝚯) can
be compared with these reference curves. Here, the explained variances R2 are used as a similarity
measure and stored in a proxy pool 𝑷𝑷. Based on this idea, an extended BHM can be constructed (the
weighting term is omitted for convenience):

P(𝑪,𝚯 | 𝑷, 𝑨, 𝑷𝑷) ∝P(𝑷𝑷 | 𝑪, 𝑷, 𝑨,𝚯) · P(𝑪 | 𝑷, 𝑨,𝚯) · P(𝑷 | 𝑨,𝚯) · P(𝑨,𝚯). (2.16)

Note that the posterior distribution includes not only the climate variables as in Eq. 2.15, but also
𝚯. Finally, this model provides information on which taxa are important with respect to the selected
reference curves. In this model, one could add a variety of additional reference curves based on, for
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example, solar radiation or CO2 (see Fig. 1.1). However, this work is limited to the consideration of
proxies derived from isotopes and plant information. We know that some sections of the AP/NAP
curves have fluctuations that are not due to climatological changes (e.g. Panagiotopoulos et al., 2013;
Miebach et al., 2016; Schiebel, 2013; Neumann et al., 2007; Litt et al., 2012). In particular, the
influence of humans on the vegetation around the lakes studied during the middle to late Holocene,
complicates the interpretation of these curves. To account for such uncertainties, we specify a priori
that the climate reconstructions should explain about 50 % of the variance of the respective reference
curves. This offers on the one hand the possibility to follow the trends of the references and supports
assumption 1 above that 𝑷𝒔 provides sufficient variability. On the other hand, additional factors that
influence the curves are taken into account. Thus, we specify the same prior distribution for each
reference, namely beta distributions with a mean of 0.5 and a standard deviation of about 0.19. The
latter leads to a better consideration of the wide range of lakes considered in this thesis. This results in
a beta distribution with shape parameters 3. Assuming that all reference curves Nproxy are independent,
the probability distributions of each component 𝑖 of the vector 𝑷𝑷 can be defined as follows:

P(𝑃𝑃𝑖 | ·) = Beta(𝑃𝑃𝑖 | 3, 3). (2.17)

The parameters of the beta distributions can be changed individually depending on the lake studied
and the reference proxy considered. However, for the purposes of this work, they represent a good
compromise for the automatic calculation of all climate reconstructions for the entire European region,
Northern Africa, and the Levant. At this point, instead of using multiple beta distributions, one might
consider using the appropriate multivariate generalization. This is the Dirichlet distribution, which
in our case has the disadvantage of being somewhat slower in MCMC sampling. In addition, other
related metrics could be used in place of explained variance in future work. For example, the target
redundance described in Glowienka-Hense et al., 2020 could be an alternative. This is the information
that both reference curves provide equally, allowing them to be evaluated simultaneously.

Furthermore, we split the local reconstruction module as follows:

P(𝑪 | 𝑷, 𝑨,𝚯) =P(𝑪𝒑 | 𝑪𝒎, 𝑷, 𝑨,𝚯) · P(𝑪𝒎 | 𝑷, 𝑨,𝚯). (2.18)

The first term on the right gives us the ability to constrain the reconstructions based on additional
climate information from the past. These may be, for example, other local climate reconstructions
from the same lake or from nearby lakes. In addition, prior distributions for specific time periods
of the past could also be created from grid points of the particular lake from spatial reconstructions
included in PMIP. It also allows reconstructions to be supplemented with information about past
permafrost. Other information could come from experts who determine relatively accurate climate
conditions for a given age based on vegetation studies of sediments. The last example of possible
P(𝑪𝒑 | ·) is presented and discussed in Sect. 3.3.5. The second term allows us to insert constraints
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on the reconstructed modern climate. We define the transition from modern times to the past at 0
cal a BP, i.e. 1950 AD. This is because the temporal resolution of 50 years limits us, as we can only
define the years 2000 AD or 1950 AD as the most recent period. However, since most of the cores of
the EPD were recovered exactly in this interval, a compromise can thus be found for the definition
of the youngest time interval. For modern climate, we have measurements from which we can use
probability distributions as anchors for the reconstructions. More specifically, we use the Climate
Research Unit (CRU) data from the Koeppen-Geiger classification rather than just one grid point from
each site. This gives us a higher climatologically based variability that should simulate the climate of
the catchment area of the lake or mire in question. We use the normal distribution as an approximation
for the annual temperature and the gamma distribution for the annual precipitation. Again, it can be
decided individually what to use as the basis for P(𝑪𝒎 | ·), with our choice leading to a variety of
useful climate reconstructions (see Sect. 3.4.1). All in all, we refer to the above as the prior climate
module, which can be summarized as follows:

P(𝑪𝒑 | 𝑪𝒎, 𝑷, 𝑨,𝚯) =


P(𝑪𝒑 | ·) if 𝑪𝒑 is available,

Unif(1, ...,Nage) otherwise,
(2.19)

P(𝑪𝒎 | 𝑷, 𝑨,𝚯) =


Γ(PANN,𝑚) and N(TANN,𝑚) if 𝑨(𝐶1) ≤ 0 cal BP,

Unif(1, ...,Nage) otherwise.
(2.20)

This means that reconstructions can be carried out with fewer restrictions even without prior climate
information. This is made possible by the use of uniform distributions that encompass the reconstruction
period and thus all time slices Nage. How useful such reconstructions ultimately are varies from case
to case. Examples of this are discussed in Sect. 3.3.1 and Sect. 3.3.6.

Finally, we consider the third term of Eq. 2.16 in detail:

P(𝑷 | 𝑨,𝚯) =P(𝑷 | 𝑨, 𝝓,𝝍) ≈ P(𝑷 | 𝑨, 𝝓) ≈ P(𝑷 | 𝝓). (2.21)

First, we use assumption 3 above and split the parameter component. Then we state that 𝑷 is
independent of 𝝍 when no 𝑪 is given. Finally, the updated taxa weights P(𝑷 | 𝝓) are determined under
the assumption that they are conditionally independent of A and thus hold for the entire reconstruction
period. At this point, taxa weights could be split temporally based on additional prior information, so
that they differ for specific time periods (e.g. glacials/interglacials). This approach is not explored
further in this thesis and could be included in future work. The last term of Eq. 2.16, which is the joint
distribution of 𝑨 and 𝝓, is treated as follows. First, we consistently follow the above reasoning and
assume that all parameters 𝚯 are a priori independent of 𝑨. Thus, this distribution can be formulated
as follows:

P(𝑨,𝚯) = P(𝑨) · P(𝝍) · P(𝝓). (2.22)
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Here, the last probability distribution describes the prior taxa weights, which are directly related to
equation 2.21. The second term contains the parameters of the transfer functions and 𝑨 is assumed
to be uniform distributed if no depth or distance information are available. We see that already in
the local reconstruction module in Eq. 2.15, the relations between 𝑨 and 𝑫 are inserted into our
reconstruction scheme. With all the reformulations and simplifications listed above, Eq. 2.16 can be
summarized as follows:

P(𝑪,𝚯 | 𝑷, 𝑨, 𝑷𝑷) ∝P(𝑷𝑷 | 𝑪, 𝑷, 𝑨,𝚯) · P(𝑪𝒑 | 𝑪𝒎, 𝑷, 𝑨,𝚯)
· P(𝑪𝒎 | 𝑷, 𝑨,𝚯) · P(𝝍) · P(𝑷 | 𝝓) · P(𝝓). (2.23)

Overall, the taxa should be weighted in such a way that those that better fit the constraints of the prior
climate and proxy pool modules are weighted higher. How this is done in detail is described in the
following. In the context of MCMC sampling, there are two ways to determine P(𝑷 | 𝝓). One of
them is based on updating the weights through the random walk Metropolis-Hastings (rwMH). In the
other case, an additional parameter allows the weights to be determined using Gibbs sampling. In the
first case, 𝝓 contains only the prior taxa weights 𝝎. Without further prior information, we assume a
uniform distribution across all taxa K at the beginning of the MCMC simulations:

P(𝑷 | 𝝓) = P(𝑷 | 𝝎) = Unif(1, ...,K). (2.24)

Such a Dirichlet distribution allows us to determine the taxa weights as we have requested above.
This means that the taxa weights have values between 0 and 1 and add up to 1. The Jeffreys prior
hyperparameters 1

2 of this distribution give each taxon equal prior weight. Furthermore, these values
provide a weaker constraint for determining the posterior taxa weights. This property follows directly
from the characteristics of the Jeffreys prior (Gelman et al., 2013). Since a corresponding full
conditional P(𝝎 | 𝑷) does not follow a probability distribution from which we can sample directly,
the taxa weights in this case are updated by a random walk Metropolis-Hastings.

In contrast, we proceed as follows with Gibbs sampling:

P(𝑷 | 𝝓) = P(𝑷 | 𝒛,𝝎) = Unif(1, ...,K). (2.25)

The additionally introduced parameter 𝒛 follows a categorical distribution, which leads to the following:

P(𝒛 | 𝝎) = Cat(𝑧1, ..., 𝑧K | 𝜔1, ..., 𝜔K). (2.26)

This distribution requires additional information indicating how many taxa are drawn at once. We set
this to t = K/2, which gives us the maximum number of distinct taxa combinations

(K
t
)
. Here, too,

the weights are ultimately determined by Eq. 2.30. Since the Dirichlet distribution is the conjugate
prior to the categorical distribution, we can determine the full conditionals of 𝝎 and 𝒛. Specifically, 𝝎
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Taxa weights
P(𝑷 | 𝝓)
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Local reconstruction module

P(𝑪 | 𝑷, 𝑨,𝚯) =
∫
P𝑠

P(𝑷𝒔 | 𝑪,𝝍) · P(𝝍)
P(𝑷𝒔,𝝍)

·
∫
D
P(𝑷𝒔 | 𝑷, 𝑫, 𝝓) · P(𝑫 | 𝑨) 𝑑𝑫 𝑑𝑷𝒔

Transfer function
parameters
P(𝝍)

Age-depth/distance model
P(𝑫, 𝑨)

Prior climate module

P(𝑪𝒑 | 𝑪𝒎, 𝑷, 𝑨,𝚯) =
{
P(𝑪𝒑 | ·) if 𝑪𝒑 is available,
Unif(1, ...,Nage) otherwise

P(𝑪𝒎 | 𝑷, 𝑨,𝚯) =
{
Γ(PANN,𝑚) and N(TANN,𝑚) if 𝑨(𝐶1) ≤ 0 cal a BP,
Unif(1, ...,Nage) otherwise

Proxy pool module
P(𝑃𝑃𝑖 | 𝑪, 𝑷, 𝑨,𝚯) = Beta(𝑃𝑃𝑖 | 3, 3)

Metropolis-Hastings sampling

Figure 2.17: Directed acyclic graph of the Bayesian framework in Eq. 2.23. The gray boxes represent the
quantities that will be inferred during MCMC sampling, and the white boxes contain fixed quantities. The
corresponding arrows represent the mutual dependencies, with their direction pointing to the ascending hierarchy
levels and the dashed boxes indicate the respective sampling procedures of the modules contained therein.

given 𝒛 can be described as follows:

P(𝝎 | 𝒛) = Dir(1
2
+ 𝑧1, ...,

1
2
+ 𝑧K). (2.27)

Moreover, we can determine the categorically distributed 𝒛 given 𝝎 and 𝑷:

P(𝒛 | 𝝎, 𝑷) = Cat(𝛼1, ...𝛼K), (2.28)
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where, in our case, the following applies to each component 𝛼𝑖:

𝛼i ∼ 𝜔i. (2.29)

The respective weights are determined with the help of an additional prior distribution:

P(𝝓) = P(𝝎) = Dir(𝜔1, ..., 𝜔K | 1
2
, ...,

1
2
). (2.30)

Since we have determined a priori equally distributed weights, this relationship simplifies. However,
if certain taxa are given a higher or lower weight at the beginning, this must be taken into account
accordingly at this point.

Fig. 2.17 summarizes graphically how our local reconstruction framework works in general. The
boxes in the first row contain the input variables, while the variables in the white boxes are not
inferred during the MCMC simulation. For example, the parameters of the transfer functions are
defined in Sect. 2.5. The middle upper gray box describing the inference of the taxa weights can be
optionally determined via Gibbs or rwMH sampling. This is done by comparing the sampled climate
reconstructions with other climate data and/or reference curves and constraining them accordingly.
These comparisons are made using the Metropolis-Hastings sampling, represented by the lower dashed
area.

2.5 Transfer functions via machine learning

This section describes the development of transfer functions. The main attention is paid to the
probability distribution P(𝑷𝒔 | 𝑪,𝝍) from Eq. 2.15. We start with the idea of (Kühl et al., 2002), who
uses multivariate Gaussian distributions for the presence of plants. For this purpose, analogous to this
work, they took plant distribution maps as for the European olive tree in Fig. 2.18 (c) and assigned
certain climate variables to them. In our case, these are the distributions of PANN and TANN over the
years 1961 − 1990 AD from the CRU 4.01 dataset (Harris and Jones, 2017) and are shown in Fig
2.18 (a) and (b). These data, along with those from Fig. 2.18 (c), are presented in the climate feature
space in Fig. 2.19. Sect. 2.1.1 already compiles the relationship between climate variability such
as Heinrich, Bond, and DO events and isotopic information from speleothems. These fluctuations
occurred within several decades to centuries and affected temperature and precipitation in regions
of Eurasia and North America (Asmerom et al., 2010; Wagner et al., 2010; Genty, 2003; Benson
et al., 1996). The assumed relationship between speleothems and these two climate variables differs
from study to study. In the Levant, these are often used as proxies for the mean annual precipitation
(Bar-Matthews et al., 2003; Cheng et al., 2015; Sánchez-Fernández et al., 2018; Bradley, 2014).
However, in Central and Northern Europe it alternates between TANN and PANN (Mauri et al., 2015;
Lauritzen and Lundberg, 1999). Since plants are also sensitive to such climatic variations (Gams,
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Figure 2.18: Maps of the Northern Hemisphere with annual precipitation (a), annual temperature (b), and the
geographical distribution of Olea europaea (c). The climate data are based on those from CRU 4.01 and the
plant distribution is according to Meusel et al., 1974.

1964), a relationship between plant distributions, temperature and precipitation variables is assumed
in this work. This is done in some studies based on the PDF method (Kühl et al., 2002; Kühl and
Litt, 2003; Gebhardt et al., 2008). Thus, the climate variables considered are intended to represent a
compromise between the various proxies.
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Figure 2.19: Summary of the data points from Fig. 2.18 (a) - (c) into a climate space that represents the feature
space of the machine learning algorithms.

After Kühl et al., 2002 successfully used multivariate Gaussian distributions as transfer functions,
Gebhardt et al., 2004 compared normal distributions, kernel densities, and Gaussian mixture models.
Daniel Simonis, 2010 was the first to use precipitation in addition to temperature. Using the inverse
cumulative distribution function (CDF) method (Gentle, 2004), these can be transformed into a
standardized normal distribution. Standardization and scaling of input variables is generally an
important concept in the computations of machine learning models (Butcher and Smith, 2020).
Therefore, we also use the inverse CDF method before passing the climate data to the ML algorithms.
To calculate the best number of components of the mixture model, Daniel Simonis, 2010 uses the
Bayesian information criterion (BIC), in contrast to Gebhardt et al., 2004, who take the log-likelihood.
Also in Chevalier et al., 2014, PDFs are applied as transfer functions that consider only the presence
information in the climate space (feature space). Stolzenberger, 2011, Stolzenberger, 2017, Thoma,
2017, and Weitzel et al., 2019 instead used logistic regression that accounts for not only the presence
but also the absence of plants. In Litt et al., 2012, Stolzenberger, 2017 and in Thoma, 2017, Quadratic
Discriminant Analysis (QDA) is applied with respect to three biomes. The absence of these biomes
(or unknown biomes) has not been used as an additional feature in previous work.

The objective of this work is to systematically test a variety of possible methods and select the most
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appropriate algorithm for the task at hand. For this purpose we use the R package caret (Jed Wing
et al., 2019). This stands for classification and regression techniques and provides a variety of models
that can be used to solve corresponding problems. In our case, it is a binary (presence or absence of a
taxon) classification problem. The package provides a simple way to compare the selected models
via cross-validation. In this process, the provided data (cf. Fig. 2.18) are split into a training and a
validation dataset. Cross-validation is performed on the training data (James et al., 2013), which in
our case accounts for 70 % of all data. Accordingly, this training data is split into a certain number
(k-folds) of training and validation datasets. This partitioning process can be repeated as often as
desired and leads to statistical verification distributions from which the performance of the models
is derived. Cross-validation is also performed for a certain number of different parameters for the
respective machine learning algorithms (model tuning). The entire process is very easily accessible in
caret and runs completely automatically after the initial parameters have been defined. The remaining
30 % (hold-out set) are used to validate the models obtained by cross-validation on the remaining 70 %.
This has the advantage that they can be tested on an independent data set, further minimizing the risk
of overfitting. More precisely, the winner is determined from the first half and its final score from the
second half of the hold-out set. Thus, it is quite possible that the final selected transfer function differs
from the winner of the cross-validation.

As shown in Fig. 2.18 (c), the groups for presence (minority class) and absence (majority class)
are unbalanced. One could reduce the size of the entire map section so that the groups are balanced.
However, the models then deliver significantly worse and sometimes more unrealistic results. This
problem is discussed for example in Thoma, 2017 or in Weitzel et al., 2019. Thus, a model could
provide higher probabilities of occurrence on the one hand where the plant does not occur in the
feature space, and on the other hand where the climate values are biologically unrealistic. When the
map section is enlarged, this problem recedes, especially if the absence values can serve as a boundary.
This is the case when the occurrence domain is enclosed by the absence domain in the feature space.
The reduction of the map section is analogous to the techniques of random under-sampling (Hoens
and Chawla, 2013), wherein the majority class is randomly reduced to the size of the minority class,
potentially losing important information. In contrast, random oversampling of the minority class risks
overfitting. To solve this problem, the Synthetic Minority Oversampling Technique (SMOTE) is used
(Bowyer et al., 2011). Here, a minority class instance a is first randomly selected and its k-nearest
minority class neighbors are determined. A line segment is then formed between one randomly
selected k-nearest neighbor b in feature space. Here, a synthetic instance of the minority class is
created by selecting a random point along this line (Hoens and Chawla, 2013). SMOTE can only do
this with one minority class at a time. The new synthetic data thus generated are the input data for the
calculation of the transfer function in the ML competition. It should be noted that only the training
data is processed with SMOTE. For the model verification on the hold-out set, the original data are
used. The following is a brief description of the ML algorithms used in this work.

41



Chapter 2 Methods and literature review

Generalized Linear Model (GLM)

Logistic regression, listed under the GLM, is similar to linear regression (Agresti, 2003). However,
here the outcome variable is categorical and not continuous (Fahrmeir and Tutz, 1994). In logistic
regression, it is assumed that the outcome variable follows a binomial distribution and the logistic
probability (logit) is accordingly described by a linear function of the logistic regression coefficients
𝝍. The inverse function of the logit is also called the logistic function and is:

P(𝑷𝒔 | 𝑪,𝝍) =
exp(𝑪𝝍)

1 + exp(𝑪𝝍) . (2.31)

Regression coefficients are obtained using maximum likelihood estimation for each taxon (Agresti,
2003). The values of the GLM can be interpreted as probabilities for the presence or absence of the
taxa. In this thesis, quadratic logistic regression is used analogously to Stolzenberger, 2017, Thoma,
2017 and Weitzel et al., 2019. The resulting bilinear terms are crucial for additional flexibility in the
feature space and can be written as follows for the first selected taxon 𝑃1,𝑠:

P(𝑃1,𝑠 | 𝑪,𝝍) = logit(𝜓𝑇
1 + 𝜓𝑇

2 𝐶1 + 𝜓𝑇
3 𝐶2 + 𝜓𝑇

4 𝐶1𝐶2 + 𝜓𝑇
5 𝐶

2
1 + 𝜓𝑇

6 𝐶
2
2 ). (2.32)

When these quadratic terms are not used, the GLM performs significantly worse than the other ML
algorithms (not shown), even though they do not use the additional information. They are deprived
of these, as this hardly leads to any improvement (not shown). The GLM therefore always has an
advantage, but should still be compared in order to be able to establish a reference to the earlier studies.

Artificial Neural Network (ANN)

In the broadest sense, the idea of Artificial Neural Network dates back to the 18th century (Schmidhuber,
2015). The structures described there are variants of logistic regression. Such an ANN is also
called a "logistic perceptron" (Spackman, 1991). The input values (here: climate variables) are
transferred to the output via a simple interface. Analogous to Eq. 2.31, the input is provided with
weights (regression coefficients) and processed via a so-called activation function (here: logistic
function). The counterpart to the coefficients of the axis intercepts is called bias in ANNs. The further
development of ANNs began in the middle of the 20th century (Mcculloch and Pitts, 1943). The
architecture of these networks was modeled on the biological nervous system. The different layers
consist of artificial neurons (interfaces) that "fire" at certain values using the activation functions and
thus pass on their signal. In addition to the input and output layer, a so-called hidden layer is also
used. This allows, in contrast to the logistic perceptron, the modeling of more complex relationships
between input and output (Ayer et al., 2010). Over the course of time, the network structure has
been continuously developed (Schmidhuber, 2015). Among the best known networks is the recurrent
neural network (Rumelhart et al., 1986). In contrast to the feedforward neural network (FNN), the
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connections of neurons of one layer to neurons of the same or a previous layer are guaranteed. This
opened up the possibility that ANNs could also be used for speech and character recognition. In image
recognition the so-called Convolutional Neuronal Networks are used (LeCun et al., 1989). For a
detailed description of the history of ANNs, the reader is referred to the work of Schmidhuber, 2015.

Comparatively simple classification problems arise in this work, so relatively simple network
structures can be used. These give similarly good results with much less computational cost, and the
risk of overfitting is generally lower with simpler structures. The caret package offers a wide range of
different ANNs, including those based on Python. After initial tests, the ANN from the R package
nnet is chosen in this thesis. It is an FNN that allows one hidden layer with an arbitrary number of
hidden neurons (Venables and Ripley, 2002). This enables much more complex correlations to be
found than with the GLM described above. Moreover, for our classification problem, it gives partially
better results than the multilayer perceptrons provided by the caret package and the training time is
also lower.

Discriminant analysis

Discriminant analysis involves the development of discriminants, i.e. linear combinations of
independent variables that discriminate the categories of the dependent variable (James et al., 2013).
Linear Discriminant Analysis (LDA), for example, first extracts linear constructs (discriminants) that
maximize separation between groups and then uses them to perform a Gaussian classification. This step
can also be used as data reduction. At baseline, LDA assumes normality as well as variance-covariance
homogeneity of the groups. Then Bayes’ theorem (see Eq. 2.7) is used to assign the observations to
groups based on the discriminants. In our case, a corresponding equation could look like this:

P(𝑷1,𝒔 | 𝑪,𝝍) =
N(𝑪 | 𝝁1,𝚺) · P(𝑷1,𝒔)∑2
𝑖=1 N(𝑪 | 𝝁𝒊 ,𝚺) · P(𝑷𝒊,𝒔)

.

𝝁1 is the estimated mean value of group 1, which is assumed to be multivariate normally distributed,
e.g. the occurrence of plants. Group 2 is interpreted accordingly as absence. 𝚺 is the joint covariance
matrix and 𝑷𝒊,𝒔 the respective population group proportions (Johnson and Wichern, 2007) of the groups.
The Bayesian approach, based on discriminants, allows the use of separate group discriminant matrices
in addition to the standard use of a covariance matrix. This brings us to Quadratic Discriminant
Analysis (QDA). QDA is a modification of LDA that accounts for heterogeneity in the covariance
matrices of the groups. Therefore, the covariance matrices 𝚺𝒊 estimated separately for each group are
used here:

P(𝑷1,𝒔 | 𝑪,𝝍) =
N(𝑪 | 𝝁1,𝚺1) · P(𝑷1,𝒔)∑2
𝑖=1 N(𝑪 | 𝝁𝒊 ,𝚺𝒊) · P(𝑷𝒊,𝒔)

.

In this thesis, QDA provides much better results compared to LDA due to the higher flexibility of the
respective plant distributions (not shown). The latter is therefore removed from the competition. Next,
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we consider Mixture Discriminant Analysis (MDA). MDA can be seen as an extension of LDA and
thus of the work of Kühl et al., 2002. It modifies the within-group multivariate density of predictors
by a mixture (i.e., a weighted sum) of multivariate normal distributions (Rausch and Kelley, 2009):

P(𝑷1,𝒔 | 𝑪,𝝍) =
∑𝐺1

𝑗=1 𝛾 𝑗 ,1N(𝑪 | 𝝁 𝒋 ,1,𝚺 𝒋 ,1) · P(𝑷1,𝒔)∑2
𝑖=1

∑𝐺𝑖

𝑗=1 𝛾 𝑗 ,𝑖N(𝑪 | 𝝁 𝒋 ,𝒊 ,𝚺 𝒋 ,𝒊) · P(𝑷𝒊,𝒔)
.

G represents the clusters and 𝛾 𝑗 ,𝑖 the mixture weights within each group. In principle, this approach
brings two further advantages over LDA and QDA: (1) more accurate classification by modeling
multivariate nonnormality or nonlinear relationships between variables within each group, and (2) the
possible detection of subgroups in each group (Rausch and Kelley, 2009).

Decision tree-based algorithms

Algorithms based on decision trees are often used for classification of ecological data (De’ath, 2007).
They are divided into so-called branches and leaves, which subdivide the feature space by yes-no
queries. The disadvantage of simple decision trees is their inaccuracy. Often their prediction accuracy
is significantly worse than the achievable (Hastie et al., 2009). This can be increased dramatically in
some cases if bagged or boosted trees are used. The random forest, for example, uses bagging based on
decision trees (Breiman, 2001). This typically involves determining several hundred bootstrap datasets
from the feature space. If multiple features are available, subsets are drawn randomly from these
datasets and the decision trees are finally calculated on the basis of these subsets. This abundance of
different trees forms the random forest. Bootstrapping the data and using the aggregate to make a
decision is called bagging. Now, when a prediction is made with a new data point, the votes of all
decision trees are collected together, from which a probability for that data point can be determined.
However, in the present case, the random forest is not the most appropriate algorithm because the
dataset consists of the two features TANN and PANN. If more features were available, it would make
sense to include the random forest in such a machine learning competition.

Boosted trees are similar to random forests in that a number of decision trees are computed and
considered. However, only shallow trees are considered here. For example, in Adaptive Boosting
(Freund and Schapire, 1996), so-called stumps (trees with two leaves) are almost always used as
"weak" learners (Friedman et al., 2000) and in the Gradient Boosting Machine (GBM) (Friedman,
2001), the "depth" of the trees is also specified at the beginning. To reduce bias and variance, each
decision tree is determined as a function of its predecessor and weighted according to its accuracy.
This combining of many model results can decrease bias and, to some extent, variance. However,
boosting also loses some advantages over simple decision trees, such as speed, interpretability, and, in
the case of Adaptive Boosting, robustness to overlapping group distributions and, most importantly,
mislabeling of the training data. A GBM is a generalization of tree-boosting that attempts to mitigate
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these problems to create an accurate and effective standard procedure (Hastie et al., 2009). For this
reason, GBM is chosen in this thesis to introduce a machine learning algorithm based on decision
trees.

Support Vector Machines (SVMs)

Support Vector Machines determine a function that divides the input data into classes (Jergensen
et al., 2020). In our case, the support vectors are the correctly classified data points closest to the
separation line between the two classes. The distance between this line and the support vectors is
called margin, which is maximized. Although these algorithms provide the best results in some cases,
they consistently failed in comparison with the other algorithms because their computation time is
disproportionately long. Similar difficulties with SVMs are also found in Jergensen et al., 2020, where
a ML competition for forecast models of convective storms is presented. For this reason, we exclude
SVMs from the competition.

2.6 Spatial climate reconstructions

Finally, in this work we aim to create climate field reconstructions (CFRs) based on our local
climate reconstructions. Let us first briefly review the history of spatial reconstructions in the
paleoclimatological context.

For reconstructions within the last two millennia, there are a number of methods based on regression
techniques (Mann et al., 1998). Other examples include Cook et al., 1999 with point-to-point
regression, Ammann and Wahl, 2007 with principal component regression, Arrigo et al., 2006 with
univariate linear regression, Hegerl and Zwiers, 2011 with total least squares, and Mann et al., 2008
with regularized expectation maximization. A different approach is used by Gebhardt et al., 2008.
They combine pollen and macrofossil samples with an advection-diffusion model, which is driven
by insolation changes between the present and past time slices. A corresponding cost function is
minimized and thus the climate of the early Eemian (ca. 125 cal ka BP) is reconstructed. Simonis
et al., 2012 built on this idea and extended the model by importance sampling and reconstructed
the periods 6 cal ka, 8 cal ka, 12 cal ka, and 13 cal ka. Davis et al., 2003 and Mauri et al., 2015,
in turn, calculate CFRs for different time periods using pollen samples primarily from EPD. To
spatiotemporally interpolate these, they use 4D thin plate splines.

Stolzenberger, 2017 and Weitzel et al., 2019 combine the pollen and macrofossil dataset of Simonis
et al., 2012 with a MH climate simulation ensemble from the Paleoclimate Modelling Intercomparison
Project 3 (PMIP3; Braconnot et al., 2011). Each individual model setup is considered a separate
ensemble member. The entire procedure aims to constrain the spatial structures of physically possible
climate states for a given external forcing. In particular, Weitzel et al., 2019 systematically investigate
this procedure using a Bayesian framework. In doing so, they present several ways in which spatial
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Table 2.3: Basic information on the 7 CMIP5/PMIP3 simulations used.

Model Institute Atmospheric grid Simulated years (HIST / MH / LGM)
CCSM4 NCAR 288 × 192 × 𝐿26 156 / 301 / 101
MRI-CGCM3 MRI 320 × 160 × 𝐿48 156 / 100 / 100
CNRM-CM5 CNRM-CERFACS 256 × 128 × 𝐿31 156 / 100 / 200
MPI-ESM-P MPI-M 192 × 96 × 𝐿47 156 / 100 / 100
GISS-E2-R NASA/GISS 144 × 90 × 𝐿40 156 / 100 / 100
IPSL CM5ALR IPSL 96 × 96 × 𝐿39 156 / 500 / 200
FGOALS-g2 LASG-CESS 128 × 60 × 𝐿30 156 / 685 / 100

prior samples can be generated from the ensemble members. The simplest approach is the Gaussian
Model (GM). Here, independent and identically Gaussian distributed simulations are assumed. A
somewhat more complex model is referred to as a Regression Model (RM). This involves inferring
weights for each PMIP simulation using the random walk Metropolis-Hastings sampling. As a result,
simulations that better fit the proxy data are given more weight. Another approach to determine such
weights is described in the so-called Kernel Model (KM). This technique allows the description of full
conditionals and thus the use of Gibbs sampling. Two ways of determining the underlying covariance
matrix of the ensemble are also presented. One uses a graphical lasso (Glasso) to estimate sparse
inverse covariance matrices. The other way is the so-called shrinkage approach. In the latter case, a
weighted average of the empirical correlation matrix of a climate simulation ensemble and a reference
correlation matrix is used. This reference is based on a stationary Matérn correlation matrix and could
include additional spatial modes. The results in terms of Euopean MH show that the shrinkage-based
covariance matrix performs better than the Glasso technique. Also, GM and RM are less biased and
more robust to KM. Ultimately, they choose RM because it uses the derivation of model weights,
which provides a more flexible method of interpolating the proxy data with the PMIP ensemble.

The method from Weitzel et al., 2019 is applied in this work to calculate the CFRs for the HIST
Period, the MH, and the LGM. Again, a multi-model ensemble of climate simulations within the
PMIP3 is used as the climate prior. We select the models so that they are available for all 3 time slices.
For the HIST period, these are from the Coupled Model Intercomparison Project 5 (CMIP5). Table
2.3 gives an overview of these 7 ensemble members and some important features. To ensure that the
simulations adequately reflect the respective time periods, they are updated with the appropriate orbital
settings, greenhouse gas concentrations, and land-sea and ice sheet distributions (Abe-Ouchi et al.,
2015). After each model reaches the so-called equilibrium state (spin-up), the time periods given in
Table 2.3 are simulated. To account for the different spatial resolutions and reconcile them with the
distributions of the local climate reconstructions, we use a common grid of 2.5◦ by 2.5◦ generated
by bilinear interpolation. Finally, the climatological means of TANN and PANN are extracted. In
order to adequately account for precipitation values, we use the anomalies of the corresponding HIST
simulations of CMIP5 with respect to the reference period 1961 − 1990 AD. A similar approach is
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Figure 2.20: Summary of the PMIP ensemble over the area of the CFRs considered in this work. Panel (a) shows
the mean annual temperature of the PMIP ensemble for the MH. In (b) the corresponding annual precipitation is
depicted.

also used by Weitzel et al., 2019 to approximate the assumed normality of the simulations. Using this
technique, we succeed in assuming normality on average for each multi-model ensemble distribution.
To determine this, we use a one-sample Kolmogorov–Smirnov test (Simard and L’Ecuyer, 2011). Fig.
2.20 shows the study area of this work in terms of the reconstructed variables. In order to include some
local climate reconstructions in the Near East, we have extended the field in this respect compared to
Stolzenberger, 2017 and Weitzel et al., 2019.

The Bayesian framework in Weitzel et al., 2019 needs to be reformulated for this work, as we
combine local climate reconstructions with the PMIP ensemble rather than transfer functions. We
do this by analogy with the approach in Weitzel, 2020, where local climate reconstructions update
a PMIP ensemble in Siberia for the LGM. First, we distinguish between spatial and local climate
information with subscripts 𝑺 and 𝑳. So we can set up the following BHM:

P(𝑪𝑺 ,𝛀 | 𝑪𝑳) ∝ P(𝑪𝑳 | 𝑪𝑺 ,𝛀)︸            ︷︷            ︸
Data level

· P(𝑪𝑺 | 𝛀)︸      ︷︷      ︸
Process level

· P(𝛀)︸︷︷︸
Prior level

. (2.33)

A directed acyclic graph (DAG) of this equation is shown in Fig. 2.21. The labels of the different
levels follow Tingley and Huybers, 2010. The data level contains the climate information of our local
reconstructions 𝑪𝑳 for the particular time period and grid point considered. These are integrated
there into the framework of the spatial reconstruction. In this work, 𝑪𝑳 is embedded in the BHM
in the form of so-called lookup tables (LUTs) to achieve a tradeoff between accuracy and sampling
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PMIP ensemble
`1, ...`7;Σemp

Model parameters
P(𝝀) = Dir(_1, ..., _7 | 1

2 , ...,
1
2 )

P(𝝉) = Unif(1, ..., 7)

Spatial reconstructions
P(𝑪𝑺 | 𝛀) = N(𝑪𝑺 | Σ7

𝑖=1_𝑖`𝑖 , Σprior(𝜏))

Local reconstructions
P(𝑪𝑳 | 𝑪𝑺 ,𝛀) B LUT

Figure 2.21: Directed acyclic graph of the Bayesian framework in Eq. 2.33. The gray boxes represent the
quantities that will be inferred during MCMC sampling, and the white boxes contain fixed quantities. The
corresponding arrows represent the mutual dependencies, with their direction pointing to the ascending hierarchy
levels.

speed. The process level interpolates the local with the spatial climate information 𝑪𝑺 . Based
on the research of Weitzel, 2020 regarding the LGM and MH, we use the Regression Model and
shrinkage approach. This is because RM is the most flexible model and the shrinkage covariance
matrix Σprior provides additional degrees of freedom compared to the empirical covariance matrix
Σemp, which allows for better reconstruction of regional heterogeneity. To complete the BHM, the
model parameters are defined at the prior level. Ω contains the a priori independent variables _ and 𝜏.
The former describes the weights of the 7 PMIP simulations via a Dirichlet distribution with Jeffreys
prior hyperparameter 1

2 . 𝜏 parameterizes the parameter sets of the Matérn correlation model in terms
of a uniform distribution. As with Weitzel et al., 2019, these are determined for each reconstruction
by first applying the shrinkage model to each member of the climate simulation ensemble. In this
process, all other members are taken into account, and the resulting set of parameters is passed to the
reconstruction framework shown in Fig. 2.21.
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CHAPTER 3

Results

3.1 Machine learning competition

In this section we look at the results of the machine learning competition in detail. Table 3.1 gives an
overview of the algorithms used for this purpose. The abbreviations given are used accordingly in the
following. In the evaluation, the focus is on the problem of unbalanced data sets. These are shown
in Fig. 3.1 (a) for each of the classification problems considered here. More precisely, we see the
percentage ratio between presence and absence of 279 plant taxa. The green vertical line corresponds
to the values of Olea europea (cf. Fig 2.18 (c)) of almost 2 %, which are shown graphically in a feature
space in Fig. 3.1 (b). The prediction of the final ML model is also shown with black contour lines.
Such unbalanced data sets are expanded with SMOTE until all values from Fig. 3.1 (a) are at ca. 50 %.
Subsequently, the models from Table 3.1 are trained on these data sets and finally evaluated with a
fraction of the original data, marked with light red dots in Fig. 3.1 (b). In our work, this ranking is
based on what is known as balanced accuracy (BA). How this is determined using the example of
Olea europaea is shown in Table 3.2. This contingency table compares the original data approach
(dots in Fig. 3.1 (b)) with the corresponding predictions of the final selected model (contours in
Fig. 3.1 (b)). For the latter, values above 0.5 correspond to presence and values below 0.5 represent

Table 3.1: Machine learning algorithms used for the competition:

Algorithm: Abbreviations: Citation:
Artificial Neural Networks NNET Venables and Ripley, 2002
Stochastic Gradient Boosting GBM Greenwell et al., 2019
Generalized Linear Model GLM R Core Team, 2018
Quadratic Discriminant Analysis QDA Venables and Ripley, 2002
Mixture and Flexible Discriminant Analysis MDA Leisch et al., 2017
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Figure 3.1: In (a), the percentage ratio of grid points corresponding to the presence or absence of all available
plant distributions is shown. In (b), the respective climate feature space of Olea europaea is depicted along with
the contour lines of a QDA-based transfer function. The latter is ultimately evaluated using the data points
highlighted in light red.

absence. Together with the observation values, true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) values are thus determined in Table 3.2. From this, in turn, the true
positive rate TP

TP+FN and true negative rate TN
TN+FP can be calculated, which are referred to as sensitivity

and specificity, respectively (Chicco et al., 2021). The arithmetic mean of these two measures is the
balanced accuracy, which is an appropriate metric for trained ML models designed to describe an
unbalanced data set (Brodersen et al., 2010). There is also the commonly used F1 score, which is also
used for such classification problems (Chicco et al., 2021). Here, the focus is more on the positive data.
However, we do not want to give preference to these, but consider the information about presence and
absence to be equally important. For this reason, only the BA is used in this work.

The results of all trained models for each taxon are shown in Fig. 3.2 (a). A distinction is made
between models trained on the original data set (without SMOTE) and those trained on data augmented

Table 3.2: Contingency table summarizing the information from Fig. 3.1 (b). In addition, the corresponding
metrics for sensitivity, specificity, and balanced accuracy are provided.

Observation
Presence Absence

Prediction Presence 135 (TP) 1443 (FP)
Absence 10 (FN) 6515 (TN)
Sensitivity/Specificity = 0.93 / 0.82
Balancend Accuracy = 0.875
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3.1 Machine learning competition

with SMOTE. It is immediately noticeable that the results marked by the red boxplots have a BA
of 0.5 in most cases. In these instances, the sensitivity is always 0 (TP = 0) and the specificity is
1 (FP = 0), which means that no presence is predicted (not shown). In contrast, the other models
(green boxplots) have an average BA of about 0.9, which is a significant increase. This is not really
surprising, as we define the entire Northern Hemisphere as the climate region at the beginning (see
Fig. 2.18) and most taxa from our pool occur in the European region. Nevertheless, through this data
augmentation and subsequent SMOTE, we can not only obtain fits with high significance (true positive
rates), but also reduce the boundary effects in the feature space, resulting in more closed contour lines
as in Fig. 3.1 (b). When selecting the best model for each taxon, regardless of the algorithm, we
obtain BAs higher than 0.7, which are summarized in the gray boxplot. We use these as input to our
local reconstruction scheme (see Fig. 2.17). Here, the great advantage of not relying on a single ML
algorithm becomes immediately apparent, but rather comparing a large number of algorithms in a
competition and selecting the best ones.

Finally, let us divide the models used into their different algorithms. This is shown in Fig. 3.2
(b), where we find the relative occurrence of each model. NNET is clearly in the majority with
around 70 %. GBM then follows in second place with about 13 % and GLM close behind. In fourth
place we find QDA with around 5 % and finally MDA with ca. 1 %. Although almost all algorithms
provide at least usable trained models on their own (cf. Abb. 3.2 (a)), the direct comparison between
them yields the clear result that a simple artificial neural network emerges as the clear winner. In
particular, compared to GLM and QDA, which are commonly used for such classification problems,
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Figure 3.2: Panel (a) summarizes the balanced accuracy of all ML algorithms. In (b), the relative frequency of
winning algorithms per competition is shown.
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NNET can achieve a slightly higher BA. Nevertheless, the computational cost for training an NNET is
significantly higher than that of QDA, which also provides good results. For example, the contour
lines in Fig. 3.1 (b) are based on QDA, which achieves the highest BA for Olea europaea.

3.2 MCMC performance

In addition to the isotope data from the Mediterranean Sea (Medstack), from globally distributed
ocean cores (LR04) and from Greenland (NGRIP) described above, proxy data from various lake and
mire sediments and from caves are also used in this study. Specifically, these are the pollen records
and the speleothem isotope data from the caves shown in Fig. 3.3. If a Bayesian age-depth model can
be calculated for a sediment profile from the European Pollen Database, both MCMC methods are
applied to it. These are the Metropolis-within-Gibbs (MG) and random walk Metropolis-Hastings

Locations of pollen records and caves

10° W 0° 10° E 20° E 30° E 40° E

30° N

40° N

50° N

60° N

70° N Pollen records
Caves

Figure 3.3: This map shows the locations marked with green dots where MCMC simulations are performed.
These describe a subset of the European Pollen Database and include fossil and modern pollen records from
natural archives such as lake and mire sediments. The brown dots show the caves where we take isotopic
information from speleothems. These are a subset of SISAL.
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3.2 MCMC performance

algorithms. If caves are within 150 km of a given location with pollen records, our reconstruction
tool compares them according to the lowest mean age resolution, the highest common age range
of sediment and speleothem, and the shortest distance between them. Finally, an entity is chosen
via a corresponding Pareto optimum. This describes the best possible state of all the characteristics
mentioned, whereby it is not feasible to improve one of the characteristics without simultaneously
worsening another (Langenbrunner and Neelin, 2017). In our case, the brown dots in Fig. 3.3 show
the caves used in this work. The respective data come from the speleothem database SISAL.

Our study includes a total of more than 600 MCMC simulations. Below we summarize some
important features of these final results by looking at the most common MCMC indicators. To this
end, all simulations are first examined and then a reconstruction of Lake Prespa is considered in more
detail.

3.2.1 All simulations

Fig. 3.4 shows some insights into all MCMC simulations. First, it is noticeable that the average
computation time in (b) is higher than in (a). This is caused by an increase from 12,500 (MG) to
50,000 (rwMH) iterations and is necessary because of the higher integrated autocorrelation time
(IAT) shown in (g) and (h). IAT is an estimate of the average number of iterations for drawing an
independent sample in a Markov chain (Christen and Fox, 2010). In addition, two further MCMC
diagnoses are given, namely the Gelman-Rubin convergence indicator (Brooks and Gelman, 1998)
in panels (c) and (d) and the acceptance rate in panels (e) and (f). The first is calculated by running
and comparing 10 simulations (chains) for each site and algorithm. More precisely, it measures the
ratio of inter-chain to intra-chain variance. An example of a chain of 4 parameters is shown in Fig.
3.10 for Lake Prespa, which will be discussed in more detail later. Since we consider more than one
parameter in the MCMCs, the multivariate extension of this type of analysis of variance (ANOVA) is
calculated as described in Brooks and Gelman, 1998. The closer this ratio is to 1, the more likely it is
that convergence has been achieved. Gelman et al., 2013 recommend a ratio of less than 1.1, which is
guaranteed in all simulations. Moreover, both medians are quite close to one (two decimal places
are shown), and only a few are above 1.04. The acceptance rate in (e) and (f) is the second MCMC
diagnosis and shows higher values on average for the MG. Note that the Gibbs part of this method has
an acceptance rate of 1, but the MG part can be checked in the same way as with rwMH. In panel (e)
not only the median is higher, but also the variance. The reasons for these differences are explained in
the following.

Since Gibbs sampling in our case uses the categorical distribution to determine the taxa weights
(see Eq. 2.26), only a finite number of different taxa combinations is possible, unlike rwMH. More
precisely, the categorical distribution requires, in addition to the weights, a parameter indicating
the number of taxa considered. We choose half the number of taxa because

(K
t
)

is maximal when
t = K/2. In this case, K is the number of taxa considered and t is the parameter inserted into the
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Figure 3.4: The left column shows MCMC results based on Metropolis-within-Gibbs sampling and the right
column the results based on random walk Metropolis-Hastings. Panels (a) and (b) depict the computation time
of each simulation and (c) and (d) a convergence indicator based on the Gelman-Rubin convergence diagnosis.
In addition, panels (e) and (f) reveal the acceptance rate and (g) and (h) the integrated autocorrelation time of
each MCMC simulation.

categorical distribution. On the one hand, this allows the algorithm to make larger "jumps" in the
parameter space during the inference process, as omitting or adding different taxa can lead to larger
changes in the information. The autocorrelation thus decreases faster than with rwMH. On the other
hand, since not all taxa information are considered at the same time (as with rwMH), the step size
can be relatively small. These extremes could lead to comparatively high and low acceptance rates
(Lynch, 2007), which are shown in Fig. 3.4 (e). Note that each accepted reconstruction contains the
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R2: Isotope information from nearby caves
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Figure 3.5: The left column shows MCMC results based on Metropolis-within-Gibbs sampling and the right
column the results based on random walk Metropolis-Hastings. In summary, all explained variances of the
final sample iterations are shown. Panels (a) and (b) depict R2 with respect to plant information, (c) and (d)
regarding isotopic information from marine or ice cores, and (e) and (f) concerning isotopic information from
speleothems.

uncertainty information of the transfer functions. Therefore, even a single sample corresponding to
our proposal distributions may be sufficient. However, with appropriate MCMC settings, we can still
extract additional information from the proxies.

Fig. 3.5 and Fig. 3.6 give us an overview of all samples of all parameters. There are 5 parameters in
total, namely the explained variances in terms of plant information, in relation to isotopic information
from marine or ice cores, in reference to isotopic information from nearby caves, the annual temperature
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Figure 3.6: Continuous Ranked Probability Skill Score based on reconstructed time periods for ages younger
than 1950 AD for annual temperature and precipitation compared to their respective current measurements.
The "forecasts" are the results of the Metropolis-within-Gibbs method and the "reference forecasts" are selected
from the random walk Metropolis-Hastings samples.

and the annual precipitation of the most recent time layers. Fig. 3.5 shows the explained variances
for both methods and all MCMC simulations. The red lines represent the symmetric proposal prior
distribution of R2. Their means are around 0.5 and their variances are close to 0.2. These moments
are used to find a compromise between the different locations and not to allow relatively high or low
values. For easier comparison, the maximum values of the prior distributions shown correspond to the
maximum values of the respective histograms containing the posterior samples.

In summary, the histograms for both methods look the same with respect to each parameter, which
is also reflected in the medians. From top to bottom, the skewness of the posterior samples becomes
more and more positive, indicating that the respective medians decrease. The explained variances
in terms of the plant information are closest to the proposal distribution. This could be due to the
fact that the taxa used for the reconstructions and the corresponding reference curves are based on
the same sediment information (Giesecke et al., 2017). With regard to the reference curves from
marine or ice cores, the values are somewhat lower. We see that the available taxa information for
each core have sufficient variability so that these reference lines can be approximated in the manner
presented. The lowest mean explained variance is found in panels (e) and (f), where pattern correlation
of wavelet power spectra plays a role. Nevertheless, the medians indicate that the cores contain enough
information to mimic the spectral patterns of nearby caves.

In Fig. 3.6 we see a comparison of the two methods in terms of annual precipitation and annual
temperature. This is done by calculating the Continuous Ranked Probability Skill Score (CRPSS).
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3.2 MCMC performance

Specifically, the CDFs of the two climate variables from periods younger than 1950 AD are compared
with the corresponding CRU data. Therefore, the Continuous Ranked Probability Score (CRPS)
is calculated first, as described in Hersbach, 2000. To compare the two methods, we define the
CRPS from MG as "forecast" and the CRPS from rwMH as "reference forecast". The CRPSS is then
calculated via

CRPSS = 1 − CPRSforecast
CPRSreference forecast

. (3.1)

This means that values close to 0 indicate that both methods have equal skill. We see that the medians
of the two climate variables show that MG and rwMH have relatively similar posterior results. Except
for some outliers, the histograms show distributions centered around 0.

All in all, both methods lead to similar results in parameter space. There are some dissimilarities
in typical MCMC indicators due to differences in the inference of taxa weights. The MG has the
advantage of converging much faster, but the mixing rate is sometimes a bit lower. Nevertheless, both
methods lead to similar final quantitative reconstructions. An example of this is described in the next
section.

3.2.2 Lake Prespa

We will now use the example of Lake Prespa to show how we determine a final reconstruction. Lake
Prespa is located on the border between Greece, Albania and Northern Macedonia at an altitude
of 849 m above mean sea level (amsl) (Aufgebauer et al., 2012). It is one of the oldest lakes in
Europe and one of the three largest in the Balkan Peninsula. The lake has no surface runoff and
drains into Lake Ohrid via karst aquifers. A quantitative paleoclimate reconstruction of Lake Ohrid
is presented in Sect. 3.3.6. In Fig. 3.7 a climate diagram of the CRU grid point closest to Lake
Prespa shows a maritime climate Cfb. Although drier climatic conditions prevail during the warm
summer months, the Mediterranean influence is relatively low due to the orography and there is no
year-round dry season. The mean annual temperature in this region is about 8.8 ◦C, and the average
annual precipitation is around 705 mm. In this work, we use all CRU grid points of the Cfb climate
classification to calculate the climate PDFs. In this way, the catchment area of Lake Prespa should be
better represented than if only the nearest grid point is considered. This results in higher variance for
both climate variables and provides our MCMC algorithms with higher flexibility in anchoring recent
time slices within these distributions. Due to the orography, the climate is highly variable influencing
the vegetation surrounding the lake, which act like an vegetation refuge during Quaternary climate
cycles (Panagiotopoulos et al., 2020). Panagiotopoulos et al., 2013 describe the current vegetation as
a mixture of Central European, Mediterranean, and Balkan endemic plants.

In autumn 2009, core Co1215 was drilled in the central northern part of the lake. The vegetation of
the uppermost 320 cm, i.e., the last ca. 18,000 years, are examined in Panagiotopoulos et al., 2013.
Later, additional samples were added to this palynological dataset to increase temporal resolution
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Figure 3.7: Climate diagram of the Lake Prespa region. The data are based on CRU 4.01 (Harris and Jones,
2017) and represent the grid point which is closest to the Lake Prespa over the period from 1961 − 1990 AD.
The red colors and numbers represent the temperatures in ◦C and the blue ones the precipitation in mm. The
letters on the x-axis indicate the months, which are also shown on the right side of the diagram, where the
climate data are listed in a table.

(Konstantinos Panagiotopoulos, personal communucation). In Fig. 3.8 we see the two reference curves
used for the climate reconstruction below. Panel (a) shows isotopic information from multiple cores in
the Mediterranean Sea, referred to as Medstack (Colleoni et al., 2012). In (b) we see the percentage
of arboreal pollen in relation to the percentage of non-arboreal pollen, based on the palynological
data of the drill core. We correlate AP/NAP and Medstack respectively with the reconstructed annual
temperature. This is based, on the one hand, on the discussion in Wagner et al., 2019, where Medstack
is associated with warm/cold SST. On the other hand, Panagiotopoulos et al., 2013 link AP/NAP
with warmer/cooler temperatures, respectively. As input to our Bayesian age-depth model, we use the
tephra layers and radiocarbon ages described in Aufgebauer et al., 2012. The corresponding result is
shown in Appendix A.

Let us first consider the acceptance rate of the two methods shown in Fig. 3.9 (a) and (b), which are
generated during both MCMC simulations of Lake Prespa. The x-axes show the different number of
iterations. We choose a burn-in size of 2,500 for MG and 25,000 samples for rwMH. Both curves show
that the MCMC simulations seem to converge after these iterations. To account for autocorrelation
(AC), every 5th iteration of the remaining samples is considered. Panels (c) and (d) contain the ACs
of the final sample sizes of 2,000 and 5,000. This type of thinning is a good choice for MG because
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Figure 3.8: Reference curves based on (a) isotopic information from planktonic foraminifera from stacked
marine cores of the Mediterranean Sea (Colleoni et al., 2012), and (b) on total terrestrial pollen sums: arboreal
and non-arboreal pollen taxa from Lake Prespa (Panagiotopoulos et al., 2013).

the corresponding AC in (c) drops immediately after the first lag. In contrast, the rwMH method
requires a larger thinning step. As already explained, the IAT in Fig. 3.4 (g) and (h) gives us an idea
of such step sizes. Therefore, this indicator is chosen not only for further trimming of chains, but also
to obtain independent posterior samples. First, however, we will look at examples based on thinning
without IAT.

In Fig. 3.10 the thinned chains of the MG method are shown for 4 parameters. As SISAL does
not offer a cave near Lake Prespa, this parameter is not included. In addition, panel (d) is based on
isotope data from the Mediterranean Sea (Medstack). At this point it should be mentioned again that
the flexible algorithm gives the users the possibility to include reference curves of their choice. On
the right side we see the corresponding prior distribution and the posterior densities defined by each
chain. For comparison, the posterior distribution of rwMH is also shown in the same diagrams, with
all PDFs normalized to the same range. As far as the annual temperature in panel (a) is concerned,
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Figure 3.9: The left column shows the autocorrelation and acceptance rate of the Metropolis-within-Gibbs
method for Prespa Lake. The right column depicts the same, but for the random walk Metropolis-Hastings
method.

both posterior distributions look relatively similar. They have a higher mean and lower variance than
the prior distribution. In (b) the output converges close to the mode of the prior gamma distributed
annual precipitation. Here we see a bimodality in the MG method, indicating that the algorithm
"jumps" between two convergence zones. However, the rwMH converges within the mode with higher
precipitation. The explained variances with respect to the arboreal percentages from the core shown in
(c) exhibit similar convergence behaviour for both methods, resulting in slightly higher posterior values.
In comparison, the rwMH in (d) has a higher mean value than the MG. Both reference curves show a
relatively high correlation in the case of Lake Prespa. Nevertheless, the additional computational cost
is quite small and the final result contains, although not very much, more information than if only one
reference curve is considered.

Even though there are slight differences in the results just explained, the overall reconstruction
of the two methods is relatively similar. This is shown in Fig. 3.11. Depicted are the PDFs of the
mean values derived by the MCMC parameters described above for both methods. The only obvious
difference can be seen for ages older than 12 cal ka BP in panel (c), where there are two branches of
annual precipitation. This is also reflected in the bimodal posterior distribution of MG in Fig. 3.10 (b).
The comparison between MG and rwMH shows that the mode with higher annual precipitation for
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Figure 3.10: Trace plot and corresponding PDFs of the MCMC simulation of Lake Prespa. The left column
shows the thinned samples from the Metropolis-within-Gibbs method for both climate variables and the
explained variances with respect to the plant and isotope information. The right column depicts the PDFs based
on these samples from both MCMC methods, distinguished by black and blue lines. The red lines show the
respective prior distribution for each parameter.

the most recent time slice leads to the branch with lower precipitation in the late Last Glacial (not
shown). Ultimately, however, this difference does not affect the common trade-off between the other
parameters, as panels (a) and (b) do not show large discrepancies.

So far, we have only examined the mean values of the reconstructions. However, for a final climate
reconstruction, we want to include the uncertainty information that results from the probabilistic
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Figure 3.11: Posterior PDFs of all medians of the two climate variables (first and second row) and for both
methods (first and second column).

transfer functions. There are many ways to do this, and we will briefly introduce some of them below
and finally present the most appropriate one for our concern.

As a first step, the chains in Fig. 3.10 are first pruned by selecting those samples that lie within
the interquartile ranges of the individual prior distributions. In a second step, trimming is continued
until the IAT is below 1.3. Finally, a Pareto optimum is used to select the samples closest to the
corresponding prior means. Here the user can define how many samples are to be selected at the end.
Initial tests show that 10 individual reconstructions contain enough variability to describe large parts
of the MCMC simulation. For this reason, 10 samples are always considered for each quantitative
climate reconstruction in the following discussions.

The Figs. 3.12, 3.13, and 3.14 show different ways in which these 10 final samples can be combined.
Note that each sampled reconstruction contains the uncertainty information from the transfer functions.
So we have to deal with the combination of PDFs. Each of the following calculations is performed
separately for the two climate components of the vector 𝑪 and is also true for the corresponding
random vectors C𝑖. For simplicity, the two expressions are not presented decomposed into their
respective components. Fig. 3.12 shows the final mixture PDF Pmixt(𝑪). These weighted averages are

62



3.2 MCMC performance
T

A
N

N
 [°

C
]

(a) Annual temperature

20 40 60 80 100 140 180 220 260 300

0

5

10

15 [K]−1

0.000

0.005

0.010

0.015

0.020

(b) Annual temperature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15 [K]−1

0.000

0.005

0.010

0.015

0.020

Depth [cm]

P
A

N
N
 [m

m
/a

]

(c) Annual precipitation

20 40 60 80 100 140 180 220 260 300

0

200

400

600

800

1000

1200

1400

[mm/a]−1

0.00

0.01

0.02

0.03

0.04

Age [cal ka BP]

(d) Annual precipitation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

200

400

600

800

1000

1200

1400

[mm/a]−1

0.00

0.01

0.02

0.03

Figure 3.12: Posterior PDFs of the two climate variables (first and second row) and depth (first column) and age
(second column). The basis of this result is the weighted average of all posterior PDFs. The black lines are the
medians of the colored probability density values calculated using the Metropolis-within-Gibbs results. The
blue lines are based on the random walk Metropolis-Hastings method.

calculated as follows:

Pmixt(𝑪) =
1
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖 · PC𝑖
(𝑪);

with: 𝑤𝑖 > 0 and
𝑁∑︁
𝑖=1

𝑤𝑖 =1.

(3.2)

𝑁 = 10 is the number of independent climate reconstructions and 𝑤 the corresponding weights. Here,
each user can decide for themselves which weights they want to pass on to the algorithm. These could
be defined, for example, by the lowest mean variances of the reconstructions or the highest mean
probability values with respect to the prior PDFs. In this study, we use the same weights for each
PDF. To demonstrate the age-depth transformation in relation to these PDFs, we plot the depths in
the left column. The advantage of Eq. 3.2 is the low computational cost, that the input PDFs do not
have to be independent and that the mean of Pmixt(𝑪) (black and blue solid lines) is the average of
the means of the input distributions PC𝑖

(𝑪) (Hill, 2008). This method thus transfers the information
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Figure 3.13: As Fig. 3.12, but the basis is the normalized product of independent posterior samples.

obtained during the MCMC simulation into the final result. Moreover, we can see the great similarity
of both methods in terms of such a final result. A disadvantage of this combination is that the variance
of Pmixt(𝑪) is at least as large as the minimum of the variances of the input distributions PC𝑖

(𝑪)
(Hill, 2008). This leads to the high variances in Fig. 3.12, which make reasonable interpretation of
paleoclimate difficult.

The next method remedies this effect, and the final result shown in Fig. 3.13 has a much lower
uncertainty. This is achieved by calculating the normalized product of the individual input PDFs and
is called conflation (Hill, 2008):

Pconfl(𝑪) =
∏𝑁

𝑖=1 PC𝑖
(𝑪)∫ ∞

−∞
∏𝑁

𝑖=1 PC𝑖
(𝑪) 𝑑𝑪

.

At first glance, we see in panel (b) a big distinction between the black and the blue lines in the Last
Glacial period. This is due to the fact that the conflation takes into account the respective accuracies of
each PC𝑖

(𝑪) by ultimately considering their overlapping regions (Hill, 2008). Therefore, this method
is relatively sensitive to only comparatively small changes in the respective input PDFs, which has a
corresponding effect on the final mean value.
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Figure 3.14: Posterior PDFs of annual temperature in (a) and annual precipitation in (b), based on the average
of independent posterior random variables. In addition, the axis above the graph shows the approximated
Koeppen-Geiger classifications corresponding to the PDFs for the respective periods.

The next method excludes the disadvantages mentioned above. That is, it reduces the variances due
to the additional information of independent reconstructions and has the same average mean as the
input distributions (Hill, 2008). A respective result is shown in Fig. 3.14 and is calculated via the
mean of the input random variables: 𝑍𝑁 = C1+C2+...+C𝑁

𝑁 = C̃1 + C̃2 + ...+ C̃𝑁 . Here the constant 1/𝑁 1
𝛼

is chosen with 𝛼 = 1. The latter is called the characteristic exponent of the stable density (Honerkamp,
2002). As a result, 1/𝑁 compresses the limit distribution around a point. This means that for larger
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values of 𝑁 a realization of 𝑍𝑁 scatters less and less around the mean of 𝑍𝑁 (Honerkamp, 2002),
which explains the shape of the PDFs in Fig. 3.14. To calculate them, we use the fact that the PDF
of the sum of the random variables can be obtained by calculating the convolution of the respective
PDFs (cf. Eq. 2.2): P𝑍𝑁

(𝑪) = PC̃1
(𝑪) ∗ PC̃2

(𝑪) ∗ ... ∗ PC̃𝑁
(𝑪). Although more time-consuming to

compute, all subsequent local climate reconstructions are based on this combination method because
it has exactly the advantageous properties we want for such reconstructions.

At first glance, it can be seen that the course of the annual temperature in Fig. 3.14 (a) is similar
to the reference curves in Fig. 3.8. This also affects the reconstructed annual precipitation, which
is linked to TANN via the transfer functions and shows a similar pattern. It is also noticeable that
both reconstructions (blue and black solid lines) give a very similar final result. We obtain the
Koeppen-Geiger information by comparing the PDFs of the two climate variables with those of all
Koeppen-Geiger classes. For this purpose, the so-called Earth Mover’s Distance (EMD) is used, which
takes into account the entire uncertainty structure (Rubner et al., 2000). The Koeppen-Geiger class
with the lowest EMD is then used as the most likely. It should be noted that this estimate does not
include direct intra-annual climate information. Nevertheless, we will see that this method gives usable
results. In the following, the reconstruction in Fig. 3.14 is explained in more detail and compared with
the corresponding palynological investigations by Panagiotopoulos et al., 2013 and Aufgebauer et al.,
2012. For this purpose, we also predominantly use their temporal subdivision of vegetation history.

During the Late Pleniglacial, which in our case roughly corresponds to the period from 18 − 15 cal
ka BP, Panagiotopoulos et al., 2013 describe a relatively high AP (cf. Fig. 3.8 (b)) with low pollen
influx. They indicate sparse vegetation, which Aufgebauer et al., 2012 describe with cold-tolerant herbs
and pinus typical of stadial conditions. On average, our reconstructed variables show a temperature of
about 6 ◦C and a precipitation of 600 mm/a, leading to the approximated Koeppen-Geiger climate
Dfa, which describes a continental climate with hot summers without dry periods. The reconstructed
values are similar to those in present-day areas in Russia between the Black Sea and Moscow, where
the natural vegetation is described in Bohn et al., 2007 as a transition from forest steppes to herb-rich
and pure feather grass steppes.

The period from 15 − 13.2 cal ka BP encompasses the climatic fluctuations known as Bølling-
Allerød, for which Panagiotopoulos et al., 2013 and Aufgebauer et al., 2012 describe a spread of
tree taxa and a decline of herbaceous steppe taxa. From this they infer an increase in temperature
and moisture availability. These fluctuations are also present in the two reconstructed variables.
In the process, the mean temperature rises to 7 ◦C and precipitation by 50 mm/a. However, the
Koeppen-Geiger class remains the same, indicating a relatively broad climate spectrum in Dfa.

During the Younger Dryas from ca. 13.2−11 cal ka BP, vegetation reverts to near-glacial conditions,
indicating a drier and colder climate (Panagiotopoulos et al., 2013; Aufgebauer et al., 2012). This is
also reflected in the climate reconstruction, where temperatures are partly colder than in the lowest
part of this core. Accordingly, the approximated Koeppen-Geiger classification changes to Dfb, which
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describes a continental climate with warm summers without dry periods.

The early Holocene from ca. 11 − 7.9 cal ka BP is described by Panagiotopoulos et al., 2013
and Aufgebauer et al., 2012 with an increase in vegetation density and the formation of closed oak
forests. From this they deduce a steady increase in temperature and precipitation, which is reflected
in our reconstruction. Here, TANN rises to around 9 ◦C and PANN to ca. 750 mm/a, leading to the
climate classification Csb, which characterizes a Mediterranean climate with warm summers. In the
period from about 9 − 7 cal ka BP, both variables show larger fluctuations that can be attributed to the
8.2 ka event. This Bond event can be seen well in Fig. 3.8 (b) and is described with a decrease in
temperature and precipitation (Panagiotopoulos et al., 2013; Aufgebauer et al., 2012). However, our
reconstruction shows an opposite behaviour in terms of temperature. This is because, for example,
Ulmus is weighted higher due to the approximations of the reference curves and the climate anchor
points. The corresponding transfer function shows a relatively cold and humid climate, which together
with a pollen fluctuation in the period around the 8.2 ka event leads to this reconstructed pattern.

In the middle and late Holocene from about 7.9 cal ka BP onwards, the vegetation shows a
rapid spread of several thermophilous trees (Panagiotopoulos et al., 2013) and thus a return to the
Mediterranean climate with warm summers (Csb). From 1.9 cal ka BP we see in Fig. 3.8 (b) strong
fluctuations in the pollen spectrum and a decrease in AP. This is due to the increasing influence of
humans on vegetation (Panagiotopoulos et al., 2013), which is also partly reflected in our reconstruction.
Both climate variables, however, do not show a steady decline as the reconstructions of the most
recent period are drawn towards the climate anchor points (cf. Fig. 3.7). Furthermore, the a priori
fixed parameters of the beta distributions prevent too close approximation to the reference curves.
The recent Koeppen-Geiger classification of Lake Prespa does not correspond to what is seen in our
reconstruction. Nevertheless, we will see in Sect. 3.3.6 that the neighbouring Lake Ohrid, which
has a similar climate, is referred to as Csb. This means that this area is a transition zone between
Cfb and Csb, which confirms the method for determining the approximated Koeppen-Geiger climate
classification as useful.

With the exception of the period from 9 − 7.9 cal ka BP, our reconstruction agrees with Panagioto-
poulos et al., 2013 and Aufgebauer et al., 2012. This becomes particularly clear when looking at the
Koeppen-Geiger climate classification of the respective periods. This allows them to be compared
well with present-day areas and their vegetation, giving a more comprehensive picture of climate
reconstruction.

Since it is quite time-consuming to obtain the above AP/NAP curves for most sites from the
EPD, we introduce another reference curve based on the results of Giesecke et al., 2017. They
provide reconstructed European maps for 16 taxa based on the EPD datasets. These show the relative
occurrence of these plants in relation to different thresholds in the period 0−15 cal ka BP. The temporal
resolution is 500 years, during which we obtain information on regional occurrence (threshold 1)
to regional dominance (threshold 4) of each taxa. Giesecke et al., 2017 finally interpolate these
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Figure 3.15: Reference curves based on (a) thermophilous tree information from Giesecke et al., 2017 and
(b) on total terrestrial pollen sums: arboreal (AP) and non-arboreal (NAP) pollen taxa from Lake Prespa
(Panagiotopoulos et al., 2013).

results to a 0.5 ◦ × 0.5 ◦ grid. In this way, we can retrieve this information for the respective lakes
and mires. For Lake Prespa, the grid point closest to the lake is considered and all values above
the regional occurrence are taken into account. If only values above threshold 4 were considered,
part of the reference curve would be equal to 0, as the regional dominance of these taxa is missing
(not shown). We consider 7 different thermophilous trees, which are compared with the other 9
taxa, giving us a relative abundance of these plants that varies according to regional occurrence and
regional dominance. The result for Lake Prespa is shown in Fig. 3.15 (a). When comparing with
the AP/NAP curve in (b), one immediately notices a great similarity. The main difference is in the
respective percentages, temporal resolution, and restriction to the period from 0 − 15 cal ka BP. The
latter has the greatest impact on climate reconstruction, as shown in Fig. 3.16. Here the blue line
shows the final reconstruction based on the Giesecke reference curve. Despite the high degree of
resemblance between this and the black solid line with respect to both climate variables, PANN shows
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Figure 3.16: As Fig. 3.14, but the blue line shows the final reconstruction based on the Giesecke reference curve.

greater differences in the lower core, which is also observed in TANN. However, large fluctuations are
also observed in (a) during the middle Holocene. These are directly related to those between 15-18
cal ka BP, as the corresponding reconstruction samples for the entire period are generated at once.
So, for example, if the blue line in the Late Pleniglacial has a colder temperature, this may affect the
entire subsequent course. All in all, Fig. 3.16 shows that a reasonable climate reconstruction can be
determined under the aspects just described.
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3.3 Local climate reconstructions

In Sect. 3.2 we explain how we compute the final local reconstructions and apply this procedure to the
example of Lake Prespa. Here, we will present and discuss other local reconstructions. The respective
results of the Bayesian age-depth models performed with Bacon are shown in Appendix A. First,
some general information about the regional climate are given. Fig. 3.17 (a) and (b) show annual
temperatures and precipitation for parts of southeastern Europe and the Near East. These climate
values are from the CRU dataset with the reference period 1961 − 1990 AD. As we have already seen
with the Lake Prespa example, we use estimated Koeppen-Geiger climate classifications for additional
assessment of the reconstructed climate. The classifications based on our reference period are shown
in Fig. 3.17 (c). Using the table in Fig. 3.17 (d), we can see that the sites presented have a wide
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Figure 3.17: Annual temperature in (a) and precipitation in (b) based on CRU 4.01 data (Harris and Jones,
2017) and the 1961 − 1990 AD reference period. The black dots mark the locations for which the reconstructed
paleoclimate is discussed in detail in this work. Panel (c) shows the corresponding Koeppen-Geiger climate
classifications and the table in (d) describes them based on Chen and Chen, 2013.
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variety of climate classes. This ranges from the steppe climate in the Levant to the continental climate
in Eastern Anatolia to the Mediterranean and maritime climate in the Balkans. The corresponding
explanations can be found in the sections listed below. These are arranged counterclockwise compared
to the locations shown in Fig. 3.17.

The descriptions of the following local reconstructions always follow a similar structure. This
should make it easier for the reader if they are only interested in specific reconstruction sites. In
addition, the results of each site are summarized at the end of the corresponding discussion. For this
reason, no additional summary is provided at the end of this Sect. 3.3.

3.3.1 Dead Sea

The Dead Sea is located at the deepest point of the continents, about 430 m below mean sea level
(bmsl). This region lies on the Dead Sea Transform, a tectonic boundary between the Sinai Plate
and the Arabian Plate (Miebach et al., 2019). It is a terminal lake and is fed primarily by the Jordan
River, which flows year-round, but also by groundwater and several streams. The Dead Sea basin has
been continuously subsiding since its formation in the early Miocene and has served as an important
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Figure 3.18: Climate diagram of the Dead Sea region. The data are based on CRU 4.01 (Harris and Jones, 2017)
and represent the grid point which is closest to the Dead Sea over the period from 1961 − 1990 AD. The red
colors and numbers represent the temperatures in ◦C and the blue ones the precipitation in mm. The letters on
the x-axis indicate the months, which are also shown on the right side of the diagram, where the climate data
are listed in a table.
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sediment trap. The climate diagram in Fig. 3.18 of the grid point closest to the Dead Sea shows
a hot steppe climate BSh. The mean annual temperature in the Dead Sea region is approximately
20 ◦C, and the mean annual precipitation is around 230 mm. Summers are dry and hot, while winters
have a mild and humid climate. Most of the rainfall in this region occurs between October and April.
This hyper-dry climate leads to a predominance of Saharo-Arabian desert vegetation (Miebach et al.,
2019). The unique orography in this region leads to a strong precipitation and temperature gradient.
Therefore, the surrounding mountains are dominated by Irano-Turanian steppe and Mediterranean
woodland (Miebach et al., 2019). Overall, this site is characterized not only by a transition zone of
different climatic classes (cf. Fig. 3.17 (c)), but also by diverse vegetation due to the size of the Dead
Sea catchment area (Litt et al., 2012).

The precursor of the Dead Sea, Lake Lisan, existed from 70 to 15 cal ka BP (Torfstein et al., 2013)
or even 15 − 20 cal ka earlier (Neugebauer et al., 2016). In the following sections, we present two
climate reconstructions for this region. The focus is firstly on the Dead Sea during the Holocene and
secondly on the Dead Sea and Lake Lisan during the period from the Penultimate to the Last Glacial.

Holocene

Introduction In 1997 AD, a 21 m sediment core was recovered during a drilling campaign on the
west coast of the Dead Sea near En Gedi (Schölzel, 2006). This contains the palynological data
for the last 10,000 years, which serves as one climate proxy for the reconstruction described below.
Although the top layer studied reflects the climate circa 1955 AD, we suggest that the range of the
Koeppen-Geiger classification BSh for the hot steppe takes this assumption into account. We also
assume that the choice of such a climate classification better reflects the catchment area of the taxa
source in question than just one grid point. Therefore, this climate information is used to anchor the
recent time slice in the reconstruction.

A problem arises when examining this core. It largely reflects human activity, with various cultures
influencing the vegetation in the Dead Sea basin. The AP/NAP reference curve in Fig. 3.19 (a)
also reveals this information. For this reason, we include another climate proxy, isotopic data of
speleothems from the nearby Soreq Cave (see Fig. 3.19 (b)). In Sect. 2.1.1, the description of
these data are linked to precipitation in the Eastern Mediterranean. Although the temporal space
of this reference could be used for most periods of the Holocene (Bar-Matthews and Ayalon, 2007;
Bar-Matthews and Ayalon, 2011), we choose to use the pattern correlation of the respective WPSs. This
is due to the fact that the signal also reflects the composition of the source water of the Mediterranean
Sea (Litt et al., 2012). In this case, correlation in temporal space poses some problems, but moving
to the appropriate spectral space allows us to circumvent them and take advantage of the variability
within these data. For all reconstructions within the Holocene and Levant, we choose the period
0 − 6.5 cal ka BP as a zone of non-negligible human impact (Schiebel, 2013). To account for this,
the AP/NAP curve is used as a guide to annual precipitation only for ages prior to 6.5 cal ka BP. In
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Figure 3.19: Reference curves based on (a) total terrestrial pollen sums: arboreal and non-arboreal pollen taxa
from Litt et al., 2012 and (b) on isotopic information from speleothems from Soreq Cave (Bar-Matthews et al.,
2003). The latter is expressed in 𝛿18O isotopic ratios in parts per thousand relative to the VPDB scale.

contrast, this climate variable is correlated with patterns of the WPS from the Soreq Cave throughout
the reconstruction period.

The age-depth model data can be found in Litt et al., 2012. They are inserted into the Bayesian-based
age-depth model Bacon and the results are used to convert depths to ages. These 20 radiocarbon dates
indicate mostly continuous sedimentation, although they assume a hiatus at about 16 m core depth.
The Bacon model is able to account for such abrupt events.

Reconstruction In the following, we describe the final reconstruction shown in Fig. 3.20. Panel (a)
displays the reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in

73



Chapter 3 Results

Age [cal ka BP]

T
A

N
N
 [°

C
]

(a) Annual Temperature En Gedi

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

15

20

25

Csa Csa Csa BWh Csa Csa BWh Csa Csa Csa Csa Csa Csa BWh Csa BWh Csa Csa Csa Csa Csa

[K]−1

0.00

0.05

0.10

0.15

Hiatus?Human impact

Age [cal ka BP]

P
A

N
N
 [m

m
/a

]

(b) Annual Precipitation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0

200

400

600

800

Csa Csa Csa BWh Csa Csa BWh Csa Csa Csa Csa Csa Csa BWh Csa BWh Csa Csa Csa Csa Csa

[mm/a]−1

0.00

0.02

0.04

0.06

0.08

Hiatus?Human impact

Figure 3.20: Quantitative reconstruction of the Dead Sea region based on plant and isotopic information in
terms of calibrated kiloanni before 1950 AD (cal ka BP). In (a) is the reconstructed annual temperature in ◦C
and in (b) is the annual precipitation in mm/a. The colors indicate the probability density values, the black solid
lines its median, and the dashed black lines the first and third quartiles. The blue lines represent the medians of
the reconstructions without additional information. The grayed out area on the left shows the zone of increased
human impact and on the right the ages that contain approximately a hiatus. The axis above the graph shows the
approximated Koeppen-Geiger classifications corresponding to the PDFs for the respective periods.

mm/a. At the beginning of the explanations, we focus on the solid black lines. Later, we will work out
the difference between these reconstructions and others whose medians are shown as blue lines. Litt
et al., 2012 divided their vegetation history into different age ranges. These are also used for this study.
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Figure 3.21: This figure is from Litt et al., 2012 and depicts the independently determined height of the Dead
Sea lake level based on the work of Migowski et al., 2006.

First, some general remarks are made. Our reconstructed precipitation and temperature behave
strongly anti-correlated with a value of about -0.95. This is due to the corresponding transfer functions,
where higher temperatures are associated with lower precipitation. In the Levant, this is a typical
pattern (cf. Fig. 3.17 (a) − (c)), as the hotter deserts and steppes (BWh/BSh) have on average much
less precipitation than the colder Mediterranean coastal regions (Csa). When we describe a decrease
in precipitation, it is always associated with an increase in annual temperature, unless otherwise noted.
Although Litt et al., 2012 reconstruct winter and not annual temperature, such an anti-correlation also
exists in their climate reconstruction.

The 10 − 7.6 cal ka BP time interval spans the transition from Pre-Pottery Neolithic to Pottery
Neolithic at ca. 8.4 cal ka BP (Schiebel, 2013) and Litt et al., 2012 describe it with low tree pollen
values. These low percentages in Fig. 3.19 (a) correspond to the relatively low reconstructed lake
levels in Fig. 3.21, including the notable decline from about 8.2 cal ka BP. The influence of humans
during these ages could therefore be neglected. The authors assume a hiatus during these periods,
which is shown in Fig. 3.20 with the right grayed out area. The reconstructed annual precipitation
in (b) shows relatively low values around 300 mm. Together with the respective temperature around
18.5◦, this section lies within the hot Mediterranean Koeppen-Geiger classification Csa. The AP/NAP
reference curve in Fig. 3.19 (a) shows a very similar pattern to PANN. Bar-Matthews et al., 1999
also describe this with a decrease in precipitation. In our reconstruction, the decrease in PANN starts
relatively slowly at first at the same time.

For the remainder of the Pottery Neolithic (7.6 − 6.3 cal ka BP), Litt et al., 2012 describe a decline
in Mediterranean trees and shrubs. They conclude that the Mediterranean vegetation belt has shifted
northward and human influence is relatively low due to low settlement. The reconstructed precipitation
shows the lowest and the temperature the highest values of the whole reconstruction period. This is
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associated with a change from the hot Mediterranean climate to the hot desert climate BWh, which
underscores the conclusion of Litt et al., 2012. Both reference curves show their minimum during
these periods. The AP/NAP curve increases by about 6.5 cal ka BP, while the isotope-based curve
does so 1000 years earlier. This could be the cause of the change to Csa by 7 cal ka BP and the
return to BWh by 6.5 cal ka BP. The quantitative climate reconstruction in Litt et al., 2012 shows a
reduced Mediterranean biome prior to 6.5 cal ka BP with positive winter temperature anomalies and an
expected annual precipitation value of 280 mm/a. As for the trend analysis, their reconstruction shows
a negative trend in PANN for these years. Such features are also evident in our new reconstruction of
En Gedi.

The next time span of 6.3 − 3.2 cal ka BP includes the beginning of the Chalcolithic (ca. 6.5 − 5.5
cal ka BP), the Early and Middle Bronze Age (ca. 5.5 − 4.15 and ca. 4.15 − 3.5 cal ka BP), and the
Late Bronze Age (ca. 3.5 − 3.15 cal ka BP) (Schiebel, 2013). Litt et al., 2012 note an increase in
Mediterranean woodland, which could be due to an increased ratio of precipitation to evapotranspiration.
However, human impact increases during this period. For this reason, the reconstructed PANN is no
longer correlated with the AP/NAP curve. As a guideline, we are left only with the pattern correlation
of this climate variable with the WPS from Soreq Cave. The reconstructed precipitation shows the
highest values with a maximum around 450 mm during this period. On the other hand, the annual
temperature drops to almost 17.5 ◦C. This change in climate is also reconstructed in Litt et al., 2012,
consistent with relatively high lake levels. They found precipitation minimums at about 5.6 and 4.3 cal
ka BP. In comparison, our reconstruction shows minima of PANN at about 5.4, 4.3, and 3.8 cal ka BP.
Since these declines sometimes last several hundred years, the archaeological transitions described
above could be related to these climate fluctuations. Bar-Matthews and Ayalon, 2007 also connect the
corresponding variations in Fig. 3.22 (b) to cultural changes in the Eastern Mediterranean and to the
periodic behavior of Bond events. This can be seen in the corresponding WPS in Fig. 3.22 (a), which
shows a significant power branch with a period of about 1.4 ka. Comparing this with the WPS of
PANN in Fig. 3.22 (c), two branches with significant power of about 1 ka and 2 ka periods stand out at
the beginning of this time interval. Later, both merge to a period of about 1.5 cal ka BP. This spectral
pattern is also evident in the WPS of IRD in the North Atlantic from Bond et al., 2002 in Fig. 2.7 (d),
underscoring that our reconstruction has similar variations to some Bond events.

The next period of 3.2 − 2.3 cal ka BP begins with the transition from the Late Bronze Age to
the Iron Age. Litt et al., 2012 notes a dramatic decline in the Mediterranean biome, reconstructed
precipitation, and lake level, that cannot be explained by human influences. Our reconstruction shows
a similar pattern and a change to a hot desert climate. This climate change could be associated with
the so-called 3.2 ka drought event and with the Late Bronze Age collapse (Schiebel and Litt, 2018).
The corresponding WPS in Fig. 3.22 (c) shows the highest power with a period around 1.5 ka at the
beginning of this period. At the end of the Iron Age (ca. 2.6 cal ka BP), a moderate increase in oak and
olive pollen is accompanied by an increase in precipitation and the transition to a hot Mediterranean
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Figure 3.22: Wavelet power spectrum of (a) isotopic information from speleothems from Soreq Cave (Bar-
Matthews et al., 2003), (c) the reconstructed annual precipitation with additional information, and (d) the
reconstructed annual precipitation without additional information. The gray boxplots in (b) show the results
with the additional information from speleothems. From left to right are plotted, first, the explained variances
between the WPSs of the medians of PANN and the WPSs of the Soreq cave, and second, the medians of PANN
and the entire AP/NAP curve. The thinner boxplot indicate R2 between the medians of PANN and the section of
AP/NAP where human influence is lower. The white boxplots show the same calculations, but without the
additional information from the speleothems. The basis for these calculations are the selected samples of the
posterior reconstruction.

climate.
In the years after 2.3 cal ka BP, human influence continues to increase. Orland et al., 2009, using

77



Chapter 3 Results

isotopic information from Soreq Cave, describe a decrease in precipitation during 1.9 − 1.3 cal ka BP
that is also reflected in the level of the Dead Sea. They assume that this climate change weakened the
economic system of the Roman and Byzantine Empires, which contributed to the decline of their rule
in the Levant. This decrease in precipitation is also evident in the reconstructions of Litt et al., 2012
and in this study. At about 1.3 cal ka BP, the corresponding Koeppen-Geiger climate classification
changes to BWh. Thereafter, PANN increases again, and both reconstructed climate variables approach
the recent climate measurements for the youngest time interval.

Sensitive study The final reconstruction contains the pollen information from the core, including
the AP/NAP, the isotopic data from Soreq cave, the recent climate measurements, and the human
impact. In contrast, the reconstruction represented by the blue line in Fig. 3.20 does not take into
account the additional information from the speleothems and the human influence on the vegetation.

In Fig. 3.22 (b) we can see the different explained variances. The results from the Soreq cave in
the case of additional information from this site are higher (about 0.4) than the results without this
isotopic information (between 0.2 and 0.4). Comparing the medians of PANN of the selected posterior
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Figure 3.23: Posterior taxa weights of the reconstructions with and without additional information. The dashed
line indicates the prior weights for each taxon.
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samples with the whole AP/NAP curve, the corresponding R2 is lower (from 0.15 to 0.4) than for the
reconstructions with the whole AP/NAP information (about 0.55). The thinner boxplots reflect the
explained variances of AP/NAP where human influence is lower. In contrast to the corresponding
calculations for the entire region, R2 is higher (about 0.65) when human influence is taken into account
compared to the thin white boxplot (from 0.05 to 0.45).

This shows that the algorithm is able to properly use the information from the caves and the human
influences to find a Pareto optimum between all these variables. In Fig. 3.22 (c) and (d), these
differences are most pronounced for ages older than about 6 cal ka BP and thus fall within the range of
lower human influence. There, the power is higher when additional information/human influences are
considered, with a local maximum around 7 cal ka BP and a period of about 1000 years. Comparing
this with the annual precipitation in Fig. 3.20 (b), it reflects the local maximum around this time,
which is less pronounced in the blue line. As mentioned earlier, this could be due to the relatively
large variation within the isotopic information. However, two taxa indicate a local maximum during
these ages. Quercus ithaburensis and Pistacia show a slight increase in the pollen spectrum, which
is detected by the algorithm and leads to a relatively higher weighting (see Fig. 3.23). Litt et al.,
2012 associate these plants with Mediterranean vegetation, resulting in a wetter and cooler climate
during this period. In addition, the reconstruction that does not take into account the information
from Soreq Cave and human influences assigns a higher weight to the taxon Ephedra, resulting in
the largest change in the weighting of the taxa. Moreover, the explained variance of the Ephedra
pollen curve compared to AP/NAP is the highest of all plant information used, with a correlation of
about -0.75. This tuning results in an overall lower R2 of the final reconstruction with respect to the
pollen reference curve. Since Ephedra belongs to the semi-arid steppe vegetation corresponding to a
relatively dry and hot climate (Litt et al., 2012), the blue curve shows, on average, a reconstruction
with less precipitation and higher temperatures. The maximum differences for PANN are about 100 mm
and for TANN ca. 0.5◦C.

Summary and conclusion The quantitative climate reconstruction of the Dead Sea region during
the Holocene includes not only paleobotanical data, but also isotopic information from speleothems
from nearby Soreq Cave. In addition, this section outlines a way to deal with the non-negligible impacts
of humans on vegetation. Although the final reconstruction is based only on spectral information
from speleothems for ages younger than 6.5 cal ka BP, the results of PANN are comparable to the
Dead Sea lake level (cf. Fig. 3.21). However, it should be mentioned here that the fluctuations of the
lake level are due to the freshwater balance evaporation - precipitation in the catchment area of the
lake. Therefore, it may be beneficial in future work to additionally link plant proxies to evaporation.
Furthermore, our reconstruction results are in agreement with those of Litt et al., 2012. These describe
the MH (6.5− 3.5 cal ka BP) as a relatively wet period with maximum values more consistent with our
final reconstruction than with the lower precipitation that results when information from speleothems
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and human influences are ignored. Moreover, the algorithm is able to find climate changes that can be
associated with Bond events and known archaeological and cultural changes in the Levant (Schiebel,
2013; Bar-Matthews and Ayalon, 2011; Orland et al., 2009).

For these reasons, we conclude that the use of the above information is beneficial for such
reconstructions. They can be easily extended by other proxy information such as lake levels or climate
constraints from other quantitative reconstructions. In these cases, the first information could be used
as another reference curve and the second as the data basis for additional climate anchor points. The
latter option is described in Sect. 3.3.5 and a reconstruction without any climatic anchors is discussed
in the following section.

Late Penultimate to Last Glacial

Introduction In this section, we aim to reconstruct the climate of the Dead Sea region over a period
of about 14.5−147 cal ka BP. Therefore, we cannot use information from recent climate measurements
for the youngest time slice of this reconstruction period. Thus, this reconstruction tests whether the
algorithm is capable of generating reasonable climate values without such information.

The reconstruction is based on pollen data presented in Chen and Litt, 2018 and Miebach et al., 2019.
They investigate the deepest borehole, 5017-1-A, with a total length of 455.34 m, drilled in 2010/2011
in the northern Dead Sea basin. Unlike the previous AP/NAP references, the corresponding curve of
this core is difficult to correlate with any of the reconstructed climate variables. Miebach et al., 2019
describe the amount of arboreal pollen as an indicator of available moisture, which depends mainly on
precipitation and evapotranspiration. In particular, when studying a period that includes glacials and
interglacials in this region, information on evapotranspiration is needed to use the AP/NAP curve as
a reference. However, since we only consider TANN and PANN, we will not use this reference curve
for the reconstruction. Instead, we include isotopic information not only from Soreq Cave but also
from the Mediterranean Sea, which is shown in Fig. 3.24. The latter are grouped together in the
so-called Medstack, which comprises several locations (Colleoni et al., 2012) and can be linked to the
sea surface temperature of the Mediterranean Sea (Wagner et al., 2019). Therefore, we use this proxy
as a guideline for annual temperature in the Dead Sea region and the WPS of the Soreq Cave for the
reconstructed annual precipitation.

The data for the Bayesian-based age-depth model can also be found in the studies of Chen and Litt,
2018 and Miebach et al., 2019. For most dates younger than about 44 cal ka BP, the uncalibrated
radiocarbon ages are used and fitted to the Bacon model. The corresponding errors are relatively
small, resulting in a much sharper age-depth transformation than for ages older than 40 cal ka BP. This
section mainly uses the calendar ages of the uranium-thorium data from Dead Sea Core 5017-1-A. For
ages older than about 120 cal ka BP, Chen and Litt, 2018 use the anchor ages of LR04 to correctly
determine the transition from MIS 6 to MIS 5.
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Figure 3.24: Reference curves based on (a) isotopic information from planktonic foraminifera from stacked
marine cores of the Mediterranean Sea (Colleoni et al., 2012) and (b) on isotopic information from a speleothem
from Soreq Cave (Grant et al., 2012). Both proxies are expressed in 𝛿18O isotopic ratios in parts per thousand
relative to the VPDB scale. H 1 − 6 describe the relative timing of Heinrich stadials according to Hemming,
2004 and MIS 2 − 6 the marine isotopic stages following Lisiecki and Raymo, 2005. The vertical gray lines
indicate the transitions of the MISs.

Reconstruction In the following, we describe the final reconstruction shown in Fig. 3.25. Panel (a)
displays the reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in
mm/a. At the beginning of the explanations, we focus on the solid black lines. Later, we will work
out the difference between these reconstructions and others whose medians are shown as blue lines.
Chen and Litt, 2018 and Miebach et al., 2019 have divided their explanations into different age ranges.
These are also used for this study.

For this reason, we start with the calibrated years between 147.3 − 130.9 cal ka BP. These include
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Figure 3.25: As Fig. 3.20, but for the Dead Sea. H 1 − 6 describe the relative timing of Heinrich stadials
according to Hemming, 2004 and MIS 2 − 6 the Marine Isotope Stages following Lisiecki and Raymo, 2005.
The vertical gray dashed dotted lines indicate the transitions of the MISs.

the late Penultimate Glacial and late MIS 6. Chen and Litt, 2018 describe that the vegetation is
dominated by wormwood trees and that the proportion of trees and shrubs is relatively moderate. The
reconstructed TANN averages 12.25 ◦C and PANN 470 mm. During 134 − 140 cal ka BP, we find the
respective minimums at about 11.5 ◦C and 450 mm. Inserting these values into the transfer function
P(𝑷𝒔 |𝑪,𝝍) of Quercus ithaburensis and Quercus calliprinos, we obtain probabilities of approximately
45 % and 50 %, respectively. This is consistent with research by Chen and Litt, 2018 that reduced
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temperature still supports survival of temperate trees. They also conclude that this reduction leads to
low evaporation rates, resulting in a positive freshwater balance in the lake’s catchment. Progressive
aridification during the Penultimate Glacial in the Dead Sea region results in the Koeppen-Geiger
approximation BSk. For comparison, this cold steppe climate is found today in some parts of Central
Anatolia (cf. Fig. 3.17 (c) and (d)), where steppe vegetation predominates (Kurt et al., 2006). Looking
at the isotopic data from Medstack and the Soreq cave, a very similar pattern emerges during MIS 6
with local maxima. Nevertheless, a displacement of these by about 5 ka is present. This shift is also
found in the climate reconstruction, where annual temperature increases at about 135 cal ka BP and
annual precipitation ca. 5 ka later.

At the beginning of the 130.9 − 115.5 cal ka BP period, which includes the Last Interglacial
optimum and corresponds to MIS 5e, frost-sensitive pistachio pollen increases (Chen and Litt, 2018).
This should be accompanied by an increase in temperature, which confirms our reconstruction model.
TANN is about 16 ◦C and PANN is about 500 mm. After ca. 125 cal ka BP, there is a further increase
in both climate variables. Here Chen and Litt, 2018 identifies the onset of the LIG optimum, which
duration is about 124.2− 115.5 cal ka BP. This is coupled with an increase in grasses, trees and shrubs
in the mountains. The reconstructed climate values have their maximum in this period with values
around 18 ◦C and 570 mm. This rise in precipitation contrasts with the course of the reconstructed
lake level (Torfstein et al., 2015), which shows a decline during MIS 5e. Chen and Litt, 2018 explain
this with the increased vegetation mentioned above, leading to enhanced evapotranspiration in the area
of the main headwaters of the Dead Sea. This could lead to a decrease in freshwater supply and thus
to a drop in the lake level, even though precipitation has increased. Thus, not only the correlation with
AP/NAP proves difficult, but also the comparison with the reconstructed lake level. After about 120 cal
ka BP, there is a variation in the pollen spectrum with relatively constant pistachio pollen but a decline
in Mediterranean sclerophylls. This change does not affect our climate reconstruction because their
mean values remain comparatively stable. With respect to MIS 6, the Koeppen-Geiger classification
of the Dead Sea region changes to a hot Mediterranean climate Csa throughout the MIS 5 period. This
classification occurs most frequently in the climate reconstruction of En Gedi during the Holocene.
Although the reconstructions do not include information on interannual climate, the Koeppen-Geiger
approximation suggests mild/wet winters and hot/dry summers. This is consistent with the statements
of Chen and Litt, 2018, which indicate the same climate. Furthermore, the reconstructed temperatures
show similar values to those of the Holocene. In contrast, precipitation appears to be somewhat higher.
This is in agreement with the results of Bar-Matthews et al., 2017, which indicate wetter conditions
during the LIG in the southern Levant than today. Both isotope-based reference curves show their
extreme values during the same period with an increase after 120 cal ka BP. In doing so, Medstack
does not rise as steeply as the Soreq cave, resulting in a shift in extrema during the remainder of MIS 5.

The early Last Glacial within 115.5 − 89.1 cal ka BP includes a decline in pistachio and an almost
complete absence of sclerophyllous pollen (Chen and Litt, 2018). From this, they infer a cooling
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trend that could be associated with the MIS 5d stadial. During the period 105-99.6 cal ka BP, there is
a slight rebound of deciduous oaks. Chen and Litt, 2018 interpret this period with the interstadial
MIS 5c. Both climate variations are seen for both climate variables in our reconstruction, with
the corresponding amplitudes in PANN being relatively small. Since 99.6 ka, the steady decline in
pistachio populations has been accompanied by a decline in both climate variables. This could be
indicative of stadial MIS 5b. As mentioned earlier, the alternating MIS 5 stadials and interstadials are
shifted in both isotope-based references. Nevertheless, the shift of MIS 5d with respect to the climate
reconstructions is much smaller and in the opposite direction than indicated in the guidelines. In
contrast, the interstadial MIS 5c fits these marine isotope data quite well, although they are not known
to the algorithm in this case. This behavior emphasizes the restriction of the explained variances
to not too high values, which allows the reconstruction method to find a compromise between all
included proxy information.

Miebach et al., 2019 describe the age 88 − 62.6 cal ka BP with rapid paleoenvironmental changes,
with a dominance of herbs and dwarf shrubs and some moderate Mediterranean woodland elements.
In addition, the pollen spectrum could contain a Dansgaard-Oeschger signature. In our reconstruction,
both climate variables show stable behavior during the end of MIS 5b and during MIS 5a. It should
be noted again that the age-depth transformation leads to a relatively blurry picture due to the high
uncertainties in these periods. Therefore, the information about such rapid climate changes may not
be resolved. After the transition to MIS 4 at about 72 cal ka BP, there is a drop from 16 ◦C to 14.5 ◦C
in TANN. The local minimum at about 63 cal ka BP coincides with the Heinrich stadial 6 (Hemming,
2004). The corresponding amplitudes in PANN continue to decrease. The reference curves show a
relatively correlated pattern, although the timing of H 6 in Fig. 3.24 (a) is more shifted than in Fig.
3.24 (b).

The years 62.6 − 34.7 cal ka BP contain the late MIS 4 and the early/mid MIS 3. Miebach et al.,
2019 characterize this period with the strongest variation in vegetation between MIS 5 and MIS 1
with an increase in AP and the highest mean percentages of Quercus ithaburensis. Relatively high
fluctuations can also be observed for TANN. The variance of PANN increases again after about 42 cal
ka BP, indicated by lower values of the probability density within the uncertainty ranges. Prior to
this, TANN drops by about 1 ◦C at about 47 cal ka BP, which is consistent with H 5. This deviation is
not as clearly visible in the corresponding reference curve (see. Fig. 3.24 (a)) as in the Soreq cave.
This is followed by a temperature increase with a subsequent analogue decrease at about 42 cal ka BP.
In contrast to the previous decline, this can be seen in the Medstack curve, but not so clearly in the
patterns of the speleothem. Furthermore, PANN also shows a decrease. These climate fluctuations
could be related to H 4, which occurs around 40 cal ka BP. The corresponding WPS of PANN in Fig.
3.26 (c) shows a relatively high non-significant power after about 45 cal ka BP with periods between 1
and 3 ka. These variations could include some Dansgaard-Oeschger (9 − 11) events (cf. Fig. 2.3).
From now on, the age-depth model has a much lower variance, which results in a sharper age-depth
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transformation. In this way, the rapid climate fluctuations can be resolved. After these fluctuations,
both variables increase again until about 35 cal ka BP.

During late MIS 3 (34.7 − 30.6 cal ka BP), Miebach et al., 2019 describe a complete absence
of thermophilous Olea europaea and thus a reduced temperature. There are also large proportions
of steppe vegetation accompanied by Mediterranean forest components. To test these observations,
they model a biome shift with a decrease of −3 ◦C and −15 % PANN. These values are taken from
Stockhecke et al., 2016 for MIS 3. The result is a well-mixed equilibrium between the three biomes
included, the Mediterranean woodland, Irano-Turanian steppe and Saharo-Arabian desert, with a
higher probability for the second biome compared to today for the Dead Sea region. Although their
temperature variations are based on the mean summer and winter temperatures, we compare them to
the relative differences we have reconstructed. Our reconstruction shows a mean annual temperature
of about 14.5 ◦C and PANN of 490 mm for MIS 3. The difference between these values and those of
the reconstructed LIG optimum agrees quite well with those of Miebach et al., 2019. Both reference
curves also show an increase for this period, accompanied by a decrease to 12 ◦C and 470 mm. This
decline marks the transition to MIS 2, along with H 3, which is consistent with the climate variations
we simulated.

The period 30.6 − 15.4 cal ka BP includes a high concentration of Artemisia and a complete
absence of Olea and frost-sensitive Pistacia pollen during MIS 2 (Miebach et al., 2019). They conclude
that this is the coolest period after the Penultimate Glacial with a sparse vegetation cover. Again,
they model the distribution of biomes with a decrease of −6 ◦C and −30 % PANN/+100 % PANN. The
results are an under-/overestimation of the Mediterranean biome. In our reconstruction, we have a
mean TANN of about 12 ◦C and PANN of 470 mm for MIS 2. This leads to differences from the LIG
optimum of −6 ◦C and -20 %mm respectively. The reconstructed climate is comparable to that of
the Penultimate Glacial. This is also indicated by the change from the hot Mediterranean climate
classification Csa to the cold steppe BSk. The minimum values for both variables are about 11 ◦C and
425 mm and are located shortly after the H 1 event. The reconstructed lake level of Lake Lisan shows
the highest values during MIS 2 compared to MIS 3 and 4 (Torfstein et al., 2013). This is in contrast
to the reconstructed precipitation, which shows the lowest values during MIS 2. One explanation for
this behaviour could be the changed evaporation and evapotranspiration rate for this period in this
region. During the LGM, Schiebel, 2013 describe a woodland clearance in the northern mountains of
Israel that could reduce plant transpiration and promote a positive freshwater balance in Lake Lisan
(Miebach et al., 2019). In Miebach et al., 2017, vegetation during the late Last Glacial is described for
the Sea of Galilee. In their palynological study they find a similar vegetation pattern with a dominance
of steppe. Due to the lower temperatures and higher relative humidity, Miebach et al., 2019 conclude
that evaporation decreases, resulting in higher effective humidity. Our reconstruction, based on several
proxies, underlines these considerations. Corresponding features can be seen in the isotope curves.
However, the decline of the two curves starts later than in the reconstruction. Furthermore, the WPS
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of PANN shows significant power for the late MIS 2 with a local maximum of a period around 1.5 ka,
although the corresponding reference WPS of the Soreq cave does not contain these features. This
could indicate the last Dansgaard-Oeschger event, which can also be recognized in the pollen spectrum.
At the beginning of MIS 2, H 2 is accompanied by a local minimum in TANN and a local maximum in
PANN. In the corresponding WPSs we can also observe a relatively high power (not significant) with a
period between 1 and 2 ka. This suggests that the pollen data also contain the information from DO 3
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Figure 3.26: As Fig. 3.22, but for the Dead Sea. In contrast, panel (b) does not contain information on AP/NAP.
Instead, the explained variances are presented in relation to Medstack. In this context, it should be added that
the boxplot on the far right shows the results without additional information.
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and/or DO 4 (cf. Fig. 2.3).
The Late Glacial (15.4 − 14.2 cal ka BP) is characterized by a spread of pioneer plants and an

increase in Pistacia and Olea europaea (Miebach et al., 2019). This leads to a return to higher
temperatures, which is also evident in our reconstruction. The Koeppen-Geiger classification returns
to the hot Mediterranean climate Csa with temperatures above 15 ◦C and PANN of 480 mm. This
variation is also marked in the isotopic references and is called BA interstadial or DO 1 (Rasmussen
et al., 2014). All in all, the similarities between the WPS patterns in Fig. 2.3 and the WPS of the
reconstructed annual precipitation for this period in Fig. 3.26 (c) are quite close. On the one hand,
DO 1 is accompanied by significant power, but DO 2 is somewhat more difficult to detect, and DO
3 − 4 is again more noticeable, although significance is lacking in our reconstruction.

Sensitive study The final reconstruction contains the pollen information from the core, without
the AP/NAP curve. Isotopes used are not only those of a speleothem, but also those of planktonic
foraminifera from the Mediterranean Sea. In contrast, the reconstruction represented by the blue line
in Fig. 3.25 does not take into account the additional information from the speleothem. This results
in explained variances that vary from almost 0 to 0.65 with a mean of about 0.3 (see Fig. 3.26 (b)).
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Figure 3.27: As Fig. 3.23, but for the Dead Sea.
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Since the Pareto calculations in this case correspond to the highest values of a single variable, the
explained variances with respect to Medstack range from 0.55 to 0.65.

By including the additional information, the Pareto optimum involves a compromise between these
two proxies. Thus, R2 from Medstack ranges from 0.4 to 0.6 and is slightly lower than those without
additional information. The explained variance related to the Soreq cave is much higher, ranging
from 0.6 − 0.65 in summary. These higher values lead to the main differences in Fig. 3.26 (c) and
(d). Around 50 cal ka BP, the WPS without additional information shows high significant power for
periods around 16 ka. These higher values lead to the main difference from Fig. 3.26 (c) to (d). For
ages around 50 cal ka BP and periods around 16 ka the WPS without additional information reveals
high significant power. Instead, the WPS with additional information follows the spectral behaviour of
the Soreq cave.

The main difference when looking at the reconstructions is the amplitude of the two variables over
the entire period. The maximum values of the blue lines are relatively similar, while the minima differ
significantly in some areas. Here they are higher for both variables, leading to the largest differences
during the coldest periods, namely MIS 6 and MIS 2. In addition, the fluctuations during the Heinrich
events are not as strong as in the case of the inclusion of isotopes from the Soreq cave.

All in all, the reconstruction with both information agrees better with the qualitative climate
reconstruction of Chen and Litt, 2018 and Miebach et al., 2019 than when only the Medstack reference
is used. This is also confirmed by the fact that the maximum of TANN in the blue line is not during
the LIG optimum, but just after the onset of MIS 5e. Looking at the posterior taxa weights for
both models in Fig. 3.27, it is noticeable that, with respect to oaks, Quercus calliprinos is much
more weighted than for the case without additional information. This taxon has the highest pollen
percentages in cooler periods, resulting in the differences described above. Phillyrea, Olea, and
Pistacia, however, occur mainly during early MIS 5. These taxa have well mixed weights for the case
with additional information and a maximum mean weight for pistachio. Although this is also the case
for the reconstruction without additional information, the other important taxa for early MIS 5 are
much less weighted. This results in the shifted LIG optimum when isotopic information from the
Soreq cave are neglected.

Summary and conclusion In this section we describe a climate reconstruction of annual temperature
and precipitation in the Dead Sea region over a period of about 14.5−147 cal ka BP. Isotopic information
from Soreq Cave and the Mediterranean Sea are used as a reference. Although no a priori climate
anchor points are used for the reconstruction period, the algorithm provides reasonable climate
values for both variables. The reconstructed TANN for the LIG optimum match those of En Gedi
during the Middle Holocene in Sect. 3.3.1. In comparison, PANN is slightly higher than today. The
corresponding Koeppen-Geiger approximations, indicating a hot Mediterranean climate, hold for most
of the reconstruction period. Exceptions are the late Penultimate Glacial (late MIS 6) and the Late
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Glacial (MIS 2). During these periods, the classification transitions to a cold steppe climate caused by
a decrease in TANN and PANN. Nevertheless, the lowest climate averages of these glacial conditions
result in occurrence probabilities P(𝑷 |𝑪𝑮𝒍𝒂𝒄𝒊𝒂𝒍) for Quercus ithaburensis and Quercus calliprinos
of about 45 % and 50 %, respectively. If the isotopic information from Soreq Cave is not taken into
account, the reconstruction shows higher values for both variables during the cold periods. As a result,
the corresponding Koeppen-Geiger classifications remain in the Mediterranean climate. This leads
to the conclusion that a compromise between the two isotopic sources (Medstack and Soreq Cave)
results in a climate reconstruction that is more consistent with what Chen and Litt, 2018 and Miebach
et al., 2019 describe.

3.3.2 Lake Kinneret

Lake Kinneret, also known as the Sea of Galilee or Lake Tiberias, is located about 150 km north
of the Dead Sea in the Jordan Valley. The water level of this freshwater lake is about 212 m bmsl
and is mainly fed by the Jordan River (Schiebel and Litt, 2018). The climate diagram in Fig. 3.28
of the grid point closest to the Sea of Galilee shows a hot Mediterranean climate Csa. The mean
annual temperature in this region is about 18.5 ◦C, and the average annual precipitation is around
470 mm. Summers are dry and hot, while winters have a mild and humid climate. Most rainfall in this
region occurs between October and April. The unique orography of the Jordan Valley results in a
strong precipitation and temperature gradient. Lake Kinneret thus lies on the southern edge of the
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Figure 3.28: As Fig. 3.18, but for Lake Kinneret.
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Mediterranean climate and borders the Irano-Turanian steppe (Miebach et al., 2019). This vegetation
gradient indicates a relatively high climatic variability also during the Holocene. In the following
sections we present such a quantitative climate reconstruction.

Introduction

In 2010 AD, a sediment composite core of 17, 8 m was recovered during a drilling campaign in the
Sea of Galilee. The corresponding vegetational data are described in Schiebel and Litt, 2018 and
covers approximately the last 9,000 years. Later, this palynological dataset was supplemented by
additional samples to increase the temporal resolution (Thomas Litt, and Andrea Miebach, personal
communucation). During the reconstruction process, the Koeppen-Geiger classification shown in Fig.
3.28, is used as an anchor for the most recent time slice. The problem of increasing human influence
after about 6.5 cal ka BP is treated in the same way as for the Dead Sea in Sect. 3.3.1.

Several references were used for the reconstructions of the Dead Sea region. On the one hand,
we include AP/NAP from the core and isotope data from Soreq Cave for a reconstruction during
the Holocene. On the other hand, the AP/NAP curve was replaced by isotopic information from the
Mediterranean Sea (Medstack) for the period from the Penultimate to the Last Glacial. Now all three
proxy information are included, which are shown in Fig. 3.29.

The Bayesian age-depth model of this sediment core is presented in more detail in Miebach et al.,
2022. It mainly includes 14C measurements from terrestrial plants, sedimentary charcoal remains, and
reservoir-corrected data from bulk sediments.

Reconstruction

In the following we describe the final reconstruction shown in Fig. 3.30. Panel (a) shows the
reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in mm/a. At the
beginning of the explanations we focus on the solid black lines. Later, we will work out the difference
between these reconstructions and others whose medians are shown as blue lines. Schiebel and Litt,
2018 divide vegetation history into different ages, which is also used in this work.

The period 9 − 7 cal ka BP can be associated mainly with the Pottery Neolithic (Schiebel, 2013).
The vegetation is described in Schiebel and Litt, 2018 with a strong influence of steppe vegetation in
the catchment area of Lake Kinneret. They conclude that this is due to increasing drought, which is
confirmed by our reconstruction in Sect. 3.3.1, the lake levels of Lake Kinneret (Hazan et al., 2005)
and the Dead Sea (Migowski et al., 2006). Furthermore, Miebach et al., 2022 infers a weak cooling
trend and precipitation decrease during 7.8 − 7 cal ka BP from carbon isotope signals of the Sea of
Galilee. These descriptions are consistent with our new climate reconstruction in Fig. 3.30. Panel
(a) shows a slightly decreasing trend by 0.5 ◦C after 8 cal ka BP. This underlines the assumption that
Medstack can be correlated with TANN. Although the temporal resolution of this proxy is quite low, a
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corresponding increase can also be seen here, which is detected by the reconstruction algorithm. The
average temperature in these years is about 18.5 ◦C. In (b) we see the lowest precipitation values of
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Figure 3.29: Reference curves based on (a) isotopic information from planktonic foraminifera from stacked
marine cores of the Mediterranean Sea (Colleoni et al., 2012), (b) on total terrestrial pollen sums: arboreal
and non-arboreal pollen taxa from Lake Kinneret, and (c) on isotopic data from speleothems from Soreq Cave
(Bar-Matthews et al., 2003).
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the entire reconstruction period with mean values around 400 mm and a local maximum around 8 cal
ka BP. The approximate Koeppen-Geiger classification remains in the hot Mediterranean climate Csa
during the last 9,000 years. Around 7 cal ka BP, an increase in PANN to values of about 550 mm is
observed, with the annual temperature remaining relatively stable.

The beginning of the period 7 − 5 cal ka BP is accompanied by an increase in Olea europaea.
Schiebel and Litt, 2018 assume climate change towards more rainfall, which is also confirmed by
the levels of Lake Kinneret and the Dead Sea. The isotopic data from Lake Kinneret also indicate
an increase in precipitation and a stabilization of temperature during 7 − 6.6 cal ka BP. Likewise,
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Figure 3.30: As Fig. 3.20, but for Lake Kinneret.
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in our reconstruction from the Dead Sea in Sect. 3.3.1, a slight increase in PANN can be detected
during 7 cal ka BP. In relation to the current reconstruction, we can see that these changes are also
depicted. For both climate variables, this period shows the most stable conditions with precipitation
about 550 mm and temperatures surrounding 18 ◦C. After the transition from the Pottery Neolithic to
the Chalcolithic, ca. 6.5 cal ka BP, human influence is dealt with as described in Sect. 3.3.1. During
the Chalcolithic, precipitation shows a local maximum, which decreases after about 5.5 ka BP. The

Figure 3.31: As Fig. 3.22, but for Lake Kinneret. Panel (b) is expanded by the explained variances between
the medians of Tann and Medstack. Moreover, R2 in terms of AP/NAP is not divided based on human impact.
Instead, only the results of the entire reconstruction period are presented.
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second variation is not included in the AP/NAP intercept, but in the isotope data from the Soreq cave.
Such behaviour is also described in the Dead Sea reconstruction and could be related to the transition
from the Chalcolithic to the Early Bronze Age (Schiebel, 2013).

The Early Bronze Age to Iron Age within 5 − 2.3 cal ka BP reflects not only human-induced but
also climatically driven vegetation changes. On the one hand, Schiebel and Litt, 2018 describe the end
of olive cultivation around 5 cal ka BP as a human influence, as this fluctuation does not match the high
water levels of Lake Kinneret and the Dead Sea. On the other hand, the decrease in oak pollen by 4
and 3.3 cal ka BP could be related to the 4.2 and 3.2 drought events. Our climate reconstruction shows
a slight increase in precipitation and a decrease in temperature from 18 ◦C to about 16.5 ◦C for the
period 5 − 4 cal ka BP. Here, both isotopic references affect the reconstruction method, with Medstack
and Soreq Cave showing an increasing trend leading to lower TANN and higher PANN. Accordingly,
the climate change to lower precipitation and higher temperatures around 4 ka BP could be related to
the transition from the Early to the Middle Bronze Age. The second and larger climate change during
3.3 ka BP might be related to the collapse of the Late Bronze Age (Schiebel and Litt, 2018). Due to
the higher resolution of the core samples, we can detect further climate variations. The Iron Age in
the Near East lasted from about 3.1 − 2.5 cal ka BP (Schiebel, 2013). This again corresponds to an
increase in precipitation at the beginning and ends in a minmium with values around 400 mm. 2.5 cal
ka BP marks the transition from the Iron Age to the Babylonian-Persian period, which lasted about
200 years and is accompanied by an increase in PANN.

The years from 2.3 − 0 cal ka BP are marked by the Hellenistic and Roman-Byzantine and the
Islamic periods until today. Orland et al., 2009 describe these ages, based on isotopic data from Soreq
Cave, at the beginning with high precipitation values. At about 1.3 cal ka BP, they found a minmium
in the deposit, which they associate with the transition from the Byzantine to the Islamic period. Our
reconstruction coincides to a certain extent with these explanations. Precipitation increases up to about
1.75 cal ka BP and has a local minimum around 1.3 cal a BP. However, this is not as pronounced as in
the Dead Sea reconstruction, and the reconstructed PANN of Lake Kinneret subsequently drops further
to 0.5 cal ka BP. This shows how difficult it is to carry out a climate reconstruction based on vegetation
data, which can be relatively easily manipulated by human activities. Finally, both reconstructed
climate variables approach the most recent climate measurements for the last time interval.

Sensitivity study

Looking at the gray boxplots in Fig. 3.31 (b) we see, in contrast to the corresponding results from
the Dead Sea (see Fig. 3.22 (b)), a relatively high explained variance with respect to AP/NAP. This
suggests that the different proxies used for this reconstruction are more consistent with each other.
Even if the additional information and human influence are ignored, R2 has a similar median with
respect to Medstack as in the other case. Nevertheless, the difference is greatest in Soreq Cave, as
shown in Fig. 3.31 (c) and (d). The largest changes are found between 3 − 6 cal ka BP and periods
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Figure 3.32: As Fig. 3.23, but for Lake Kinneret.

around 1 ka. When the reconstruction method has the information from the Soreq cave, it attempts to
remove these higher frequencies and concentrate the branch around the 1.5 ka period (see Fig. 3.31
(a)).

In this context, higher weight is given to Chenopodiaceae (see Fig. 3.32). This has a WPS with
relatively high power for such periods around 1.5 ka during these ages (not shown). Some of them are
also characteristic members of the Irano-Turanian steppe territory (Schiebel and Litt, 2018) and occur
mainly between 9 − 7 and 5 − 2.3 cal ka BP. During these periods, the blue curve in Fig. 3.30 (b)
shows the largest differences with higher values compared to the black line. This is consistent with the
relatively low precipitation values of these plants. No such differences can be found with respect to
TANN. This is due to the relatively low variability in mean temperature values within the taxa pool
used.

All in all, the differences are not as large as in the previous reconstructions. However, the algorithm
again finds the best balance (in terms of R2 and the climate anchor distributions) between the additional
information from the proxies.
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Summary and conclusion

The quantitative climate reconstruction of the Lake Kinneret region during the Holocene includes not
only paleobotanical data, but also isotopic information from Soreq Cave and the Mediterranean Sea.
In the period before 6.6 cal ka BP, the reconstructed climate variables reflect the qualitative climate
reconstructions explained in Schiebel and Litt, 2018 and Miebach et al., 2022. Although the final
reconstruction is compared only with isotopic information from speleothems and the Mediterranean
Sea for ages younger than 6.5 cal ka BP, the results from PANN are comparable to the lake level of the
Sea of Galilee (Hazan et al., 2005). Moreover, the algorithm is able to find climate changes that can be
associated with Bond events and known archaeological and cultural changes in the Levant (Schiebel,
2013; Bar-Matthews and Ayalon, 2011; Orland et al., 2009).

Although these changes are not as pronounced as in the Dead Sea reconstruction and the comparat-
ively small difference in terms of sensitivity analysis, we conclude that using the above information is
beneficial. However, after 2.5 cal ka BP, human influence cannot be controlled as well as in the case
of the Dead Sea. This could be addressed by expanding other proxies for this period, such as lake
level or isotopic information from Lake Kinneret. In these cases, both information could be used as
further reference curves.

3.3.3 Birkat Ram

Maar Lake Birkat Ram is located about 70 km north of Lake Kinneret in the northern Golan Heights.
In contrast to the previously described sites in the Levant, the lake level is about 940 m amsl. Its main
source of water is precipitation and local runoff (Schiebel, 2013). The climate diagram in Fig. 3.33
of the grid point closest to Birkat Ram shows a hot Mediterranean climate Csa. The mean annual
temperature in this region is about 16◦C, and the average annual precipitation is around 620 mm.
Summers are dry and warm, while winters have a mild and humid climate. Most rainfall in this region
occurs between October and April. Due to the higher elevation and mountainous orography around
the lake, the annual temperature is lower and the annual precipitation is higher than at sites in the
Jordan Valley. Thus, today Birkat Ram is located in the Mediterranean vegetation zone (Schiebel,
2013). How these present-day features may have changed over the past 30,000 years is discussed in
the next sections.

Introduction

In 1999 AD and 2010 AD, two drilling campaigns returned 543 cm and 10, 96 m composite core,
respectively. The corresponding vegetation data are described in Schwab et al., 2004 and in Schiebel,
2013 and cover approximately the last 6,500 and 30,0000 years. Schiebel, 2013 find a consistent
correlation of pollen ratios as well as magnetic susceptibility signals of the two Birkat-Ram composites.
For this reason, and because the shorter core has a higher sample resolution, we merge these two
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Figure 3.33: As Fig. 3.18, but for Birkat Ram.

palynological data sets. The magnetic susceptibility peaks at 516 cm (Schiebel, 2013) and at 527.7 cm
(Schwab et al., 2004) are used to join both pollen spectra. That means, that for ages younger than ca.
6,250 cal a BP, the information of the shorter core are used. The reconstruction method uses the same
references as for Lake Kinneret (see Sect. 3.3.2) and are mapped in Fig. 3.34.

According to the linkage of the two sediment cores, the Bayesian age-depth model uses the respective
datings. This has already been done in Schiebel, 2013, where the basis of our model is described.
Compared to previous age-depth models, the result shows partially discontinuous sedimentation of
about 7,000 years between about 10 − 17 cal ka BP (Schiebel, 2013). This zone of low sedimentation
is shown in Fig. 3.34 (b) and results in a relatively small deviation of the AP/NAP curve within this
period.

Reconstruction

In the following we describe the final reconstruction shown in Fig. 3.35. Panel (a) shows the
reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in mm/a. Schiebel,
2013 divide vegetation history into different ages, which is also used in this work.

During the period 30 − 18 cal ka BP that encompasses the LGM, Schiebel, 2013 describe a
steppe-like character in the vegetation composition. They argue that human influence is much less than
during the Holocene and conclude that the climate is relatively cold and dry. However, as mentioned
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Figure 3.34: As Fig. 3.29, but for Birkat Ram. The grayed out area in (b) marks the zone with low sedimentation
rates.

in Sect. 3.3.1, the low evaporation rate could lead to high water levels in Lake Lisan (Schiebel, 2013).
Our reconstruction gives an average TANN of about 8 ◦C and PANN of 450 mm. The combination of
both variables leads to an approximated Koeppen-Geiger climate of Dfa, indicating a fully humid
continental climate with hot summers. For comparison, some central parts of the prairie plains in
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Figure 3.35: As Fig. 3.20, but for Birkat Ram. The grayed out areas mark the zone with low sedimentation rates
and human influence. Since no sensitivity study is performed this time, no blue lines are shown.

the USA today have a similar climate and elevation that was dominated by the natural vegetation of
the grass-prairie mixture (Weaver, 1965). The corresponding Dead Sea climate in Fig. 3.25 shows
warmer temperatures but similar precipitation for this period. Between 30 − 25 cal ka BP, some
fluctuations are observed in both variables. In Fig. 3.36 (b) the WPS shows a high significant power
with a period of about 1.5 ka. This is consistent with Dansgaard-Oeschgar events 3 and 4 occurring
between Heinrich stages 3 and 2 (cf. Fig. 2.3). In the WPS of Soreq Cave we see corresponding
periods for ages older than 28 cal ka BP. Although the isotopic information from Greenland is not
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Figure 3.36: Wavelet power spectrum of (a) isotopic information from speleothems from Soreq Cave (Bar-
Matthews et al., 2003) and (b) the reconstructed annual precipitation. Panel (c) shows the explained variances
between the selected reconstructed medians from PANN and the patterns from Soreq Cave and the AP/NAP
reference curve. The corresponding medians from TANN are compared with isotopic information from Medstack.
In (d), the posterior taxa weights of the selected reconstructions are shown as boxplots and the prior weight is
represented by the dashed line.

known to the algorithm, the final result is closer to it than to the data from Soreq Cave. It seems that
there are corresponding features in the palynological data, as the coarse resolution of Medstack cannot
capture such high-frequency variations.

Between 17 − 12.9 cal ka BP the lake level was so low that Schiebel, 2013 suggest a possible
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desiccation of Birkat Ram during the Deglaciation period. They noted an increased amount of
precipitation during DO 1, possibly superimposed by increased evaporation/temperature. This could
explain the discrepancy between the low lake level and the higher precipitation. Due to the vegetation
gap during the Late Glacial, we cannot draw any conclusions about the reconstructed climate within
the grayed-out area.

With the beginning of the Holocene in the period 11.7 − 6.5 cal ka BP, Schiebel, 2013 describe
the strongest change in pollen composition. They note a decline in Irano-Turanian plant populations
and an increase in Mediterranean vegetation. From this they conclude an increase in temperature
and precipitation. Around 8.7 cal ka BP, a decline in Mediterranean vegetation is noted, which they
associate with the 8.2 event, accompanied by colder and drier climatic conditions. In contrast to the
Dead Sea, a rapid recovery of the AP is observed after this event, as shown in Fig. 3.34 (b). Our
reconstruction fits these explanations quite well. At the beginning of this period, temperatures are
around 13 ◦C and precipitation is about 550 mm. The Koeppen-Geiger classification transitions from
Dfa to the hot Mediterranean climate Csa, which remains in this category throughout the Holocene.
Thus, during the 8.2 event, TANN dropped by only 1 ◦C, and a decrease in precipitation is hardly
noticeable. After that, both variables increase to 14 ◦C and 600 mm. A look at the WPS in Fig. 3.36
(a) shows that Soreq Cave has significant periods of about 1.5 ka during the Holocene. With the onset
of the 8.2 event, a similar pattern occurs in the WPS of PANN, which can be related with some Bond
events. Compared to Lake Kinneret and the Dead Sea, it is difficult to determine what fluctuations
might be associated with corresponding events.

As shown in the previous reconstructions of the Levant, the period 6.5 − 0 cal ka BP is treated
with a non-negligible human impact on the vegetation (Schiebel, 2013). It is noticeable that the
reconstructed precipitation no longer follows the AP/NAP reference. The sharp decline of AP/NAP
due to the deforestation of Quercus ithaburensis during the Hellenistic period (Schiebel, 2013) after
ca. 2.3 cal ka BP is therefore not reconstructed in PANN. Instead, the focus is on the pattern from
Soreq Cave and the curve from Medstack, which can be seen in the explained variances in Fig. 3.36
(c). The reconstruction algorithm is able to find higher values in terms of AP/NAP (not shown) than
the specified range between 0.2 − 0.4. In contrast, the explained variances of Medstack are higher
and those of Soreq Cave are lower. All in all, the best combination (Pareto optimum) between these
variables and the climate anchor points emerges again. The core thus contains enough variability
to generate such explained variances. To achieve this, the algorithm weights the oaks, olives, and
pistachios most heavily (see Fig. 3.36 (d)), with the exception of Quercus ithaburensis, which is
the main component of the AP ratio (Schiebel, 2013). The decrease in annual precipitation and
the simultaneous increase in temperature between 1.3 − 0.5 cal ka BP is due to the reoccupation of
vacant areas by evergreen oaks and pistachios during the Islamic period (Schiebel, 2013). Finally, the
reconstructed variables approach the most recent climate anchor point (Csa) for the most recent time
slice.
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Comparison to older climate reconstructions

In Neumann et al., 2007 a reconstruction of the last ca. 6,500 years based on the older, higher
resolution core is presented. In contrast, Thoma, 2017 presents a reconstruction of the last 30,000
years based on the newer, coarser resolution core. The techniques used in both studies are slightly
different. While Neumann et al., 2007 use the indicator taxa method, Thoma, 2017 extend it with
additional biome information.

The two biomes used in the latter case are the Mediterranean and the Irano-Turanian. On the one
hand, the main difference between them in terms of annual precipitation is that the Mediterranean
biome has higher values. The Irano-Turanian biome, on the other hand, has lower winter and higher
summer temperatures. The biome ratio in Thoma, 2017 resembles the AP/NAP curve, with AP
reflecting the Mediterranean biome. This leads to an overall reconstruction that also takes into account
human-induced changes during the Holocene. In addition, the summer temperature during the Last
Glacial is about 28 ◦C and the winter temperature is around 10 ◦C. This is in contrast to the remarks
of Schiebel, 2013. In this context, the addition of another biome, such as the Irano-Turanian steppe
forest (Litt et al., 2021), could help reconstruct more reasonable values during glacial periods.

In contrast, Neumann et al., 2007 present a reconstruction that shows values for the youngest time
slice that are more in line with those in Fig. 3.33. In terms of PANN, it is similar to our reconstruction,
with an overall slight decrease over the last 6,500 years, but with smaller fluctuations than in the
reconstructed temperatures. Except for the above-mentioned variation in our reconstruction during
1.3 − 0.5 cal ka BP, the variables in Neumann et al., 2007 show greater similarity to the variations in
the AP/NAP curve derived from Quercus ithaburensis. In our case, this taxon has on average a lower
posterior weight compared to the prior weights.

Summary and conclusion

The quantitative climate reconstruction of the Birkat Ram region during the last ca. 30,000 years
includes not only paleobotanical data, but also isotopic information from the Soreq Cave and the
Mediterranean Sea. In summary, only 8 taxa information contain enough variation that a trade-off
between these 3 proxies and 2 climate anchor points can be found. Furthermore, the final result
resembles the qualitative reconstruction described in Schiebel, 2013. Thus, the climate classification
assumes a Mediterranean climate throughout the Holocene and a continental climate during the Last
Glacial.

Furthermore, in the period after 6.5 cal ka BP, most human-induced vegetation changes are not
included in the reconstruction. Compared to old quantitative reconstructions, our new algorithm
is better able to avoid anthropogenic fluctuations in palaeo-vegetation and to reconstruct a more
appropriate climate during the Last Glacial.
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3.3.4 Lake Van

Lake Van is located in the East Anatolian High Plateau in a tectonic depression (Litt et al., 2014).
It is the fourth largest terminal lake on earth and is surrounded by the Bitlis massif, which reaches
an altitude of more than 3500 m amsl (Pickarski et al., 2015b). The lake itself is at an elevation of
about 1640 m amsl. The climate diagram in Fig. 3.37 of the grid point closest to Lake Van shows a
Mediterranean-influenced continental climate (Dsb) with warm and dry summers. The average annual
temperature in this region is about 8.5 ◦C, and the average annual precipitation is around 550 mm.
The highest rainfall occurs in winter and spring and is strongly influenced by the orography. Thus,
two vegetation types are found in the vicinity of the site: the Kurdo-Zagrosian oak steppe-forest and
the Irano-Turanian steppe (Pickarski et al., 2015a). How these present-day features may have changed
over the past 130,000 years is discussed in the next sections.

Introduction

Two drilling campaigns in 2004 and 2009 recovered a single core (VAN04-2) and a composite core
from the Ahlat Ridge. The first is described in (Litt et al., 2009) and covers a continuous sequence
from the LGM to the present. Part of the chronology is based on varve information. The second covers
the last 600,000 years (Litt et al., 2014) and the period from about 10 − 130 cal ka BP is described in
Pickarski et al., 2015b and Pickarski et al., 2015a. The corresponding chronology is based on, among
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Figure 3.37: As Fig. 3.18, but for Lake Van.
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other things, the same varve information as for core VAN04-2 (Stockhecke et al., 2014), so we use
the same age-depth model for both cores. For this reason, and because of the proximity of the two
sampling sites to each other (Litt et al., 2009), we summarize the corresponding vegetation spectra as
for Birkat Ram in Sect. 3.3.3. The linkage point is at about 20 cal ka BP. The result of the combined
AP/NAP reference curve in Fig. 3.38 (b) illustrates this procedure. We see a local maximum around
13 cal ka BP and a subsequent local minimum at about 12 cal ka BP. This is consistent with the results
presented in Litt et al., 2009. In addition, we note a sharp decrease in percentages by 3.8 cal ka BP
where Litt et al., 2009 mention an increase in human activity. For this reconstruction, the information
on Pinus was removed from the AP summary. Pickarski et al., 2015b state that this taxon is likely
Pinus nigra, and Pickarski et al., 2015a describe its distribution as an indicator of a colder/drier
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Figure 3.38: As Fig. 3.29, but for Lake Van. Pinus is removed by calculating the percentages of arboreal pollen.
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environment. Therefore, the main components of the AP are the temperate taxon deciduous oak, the
moisture-demanding thermophilic taxa such as Ulmus and Carpinus betulus, and the frost-sensitive
Pistacia (Pickarski et al., 2015b). They also describe each interstadial as a "warm/wet" phase that
could be associated with our AP. So we compare this curve not only for annual precipitation as in the
Levant, but also for annual temperature.

The relationship between age and depth used in this work is described in more detail in Stockhecke
et al., 2014. It is based not only on varve counts, but also on radiocarbon dates and tephra layers.
Furthermore, they derive age control points from a correlation of Lake Van paleoclimate records with
𝛿18O ice core records from NGRIP and GLTsyn SpeleoAge. The latter is a speleothem-based synthetic
Greenland ice-core record. For the last 20,000 years, the reported age errors are relatively small and
increase thereafter. If no errors are specified, we use the mean error of the specified uncertainties
around these ages. All data up to the first gap around 260 cal ka BP are inserted into the Bacon model.
A result of this age-depth transformation can be seen in Fig. 3.38. (b), where we find a much higher
age resolution for years younger than 20 cal ka BP, leading to higher frequencies in the time series.

Reconstruction

In the following, we describe the final reconstruction shown in Fig. 3.39. Panel (a) shows the
reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in mm/a. Litt
et al., 2009, Pickarski et al., 2015b, and Pickarski et al., 2015a divide the corresponding vegetation
history into different periods, which are also used in this work.

Pickarski et al., 2015a describe the late Penultimate Glacial from 133.9 − 131.2 cal ka BP with a
dominance of NAP. They conclude cold and dry climatic conditions, which are also reflected in our
reconstruction. The average TANN of about 6.5 ◦C and PANN of ca. 400 mm lead to a Koeppen-Geiger
classification of continental climate Dsb. At the end of this period, according to the reference curves
in Fig. 3.38 (a) and (b), a climate change toward warmer and wetter conditions can be observed.

The pre-temperate phase from 131.2 − 129.1 cal ka BP shows a decrease in NAP with patches of
temperate trees (Pickarski et al., 2015a). This indicates a generally warmer environment with increased
precipitation, which is also reconstructed in our study. We see a temperature increase of about 2 ◦C
and a precipitation increase of ca. 200 mm. The corresponding climate classification transitions to a
Mediterranean climate with warm summers (Csb) that persisted during the Last Interglacial.

The LIG plateau, which lasted from 129.1 − 115.6 cal ka BP, is described by Pickarski et al.,
2015a as having a distribution of temperate trees and is divided into three vegetation zones. The
Quercus-Ulmus zone 129.1− 127.2 cal ka BP is characterized by a warm-temperate environment with
enhanced precipitation. Here our reconstruction shows the highest annual precipitation and warmest
annual temperatures during the LIG. The Carpinus zone of 127.2 − 124.1 cal ka BP is described
with a slight decrease in temperature but constant humidity. This slight decrease is reconstructed for
both variables. During the Pinus zone 124.1 − 115.6 cal ka BP, a spread of drought-adapted and/or
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Figure 3.39: As Fig. 3.20, but for Lake Van.

cold-tolerant Pinus is observed, suggesting increasing aridity and cooler temperatures. There is a
corresponding successive decline in PANN, with annual temperature increasing again, but not reaching
the level of the Quercus-Ulmus zone. Although both reference curves also describe a decrease in
TANN, the relatively high posterior weight for the warm-temperate Quercus deciduous shown in Fig.
3.40 (b), which still shows comparatively high abundance during this period, could lead to these
temperatures.

The post-temperate phase from 115.6 − 111.5 cal ka BP shows an expansion of NAP, which
Pickarski et al., 2015a describe as a quasi-stadial state marking the end of the LIG at about 111.5 cal

106



3.3 Local climate reconstructions

Medstack AP/NAP (PA NN) AP/NAP (TA NN)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
2

(a) Explained variances

Alnus glutinosa

Ephedra distachya

Filipendula

Juniperus oxycedrus

Olea europaea

Pinus nigra

Plantago lanceolata

Quercus deciduous

Quercus calliprinos

Ranunculus acris

Ulmus minor

0.
0

0.
1

0.
2

0.
3

0.
4

(b): Taxa weights

Figure 3.40: Panel (a) shows the explained variance of the posterior samples compared to the Medstack and
AP/NAP reference curves. The latter is divided into TANN and PANN. Panel (b) depicts the posterior taxa
weights.

ka BP. Both the reconstructed temperatures and precipitation are consistent with these explanations,
as they each show a decrease. The Koeppen-Geiger classification transitions to the continental climate
Dsb.

The following period of 111.5−107.8 cal ka BP could be associated with MIS 5d, also known as the
Herning Stadial. Pickarski et al., 2015b describe a significant spread of steppic herbaceous plants and
conclude cold and/or dry climatic conditions with pronounced seasonality of precipitation during the
stage. This is supported by a reconstructed summer-dry continental climate with annual temperatures
around 6.5 ◦C and annual precipitation of about 420 mm. The relatively wide climatic range of Dsb
becomes clear here when we compare the difference of the reconstructed to the current climate values
from Fig. 3.37. If we look at the corresponding WPSs in Fig. 3.41, we see a comparatively high power
with a period of about 23 ka, lasting at least from 30 − 100 cal ka BP. This could be related to orbital
precession, which has a similar period on average and primarily controls the intensity of summer
solar radiation (Huybers, 2006). Moreover, in the period of at least 50 − 80 cal ka BP, we see another
branch of relatively high power with a period around 41 ka, which could indicate another Milankovic
cycle, namely obliquity. Bosmans et al., 2015 mention that this variation also controls solar radiation
in summer. So both cycles are connected to this forcing. In Pickarski et al., 2015b, summer solar
radiation is used as an additional climate proxy, which often coincides with the vegetation variations
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Figure 3.41: Wavelet power spectrum of (a) the median of the annual temperature and (b) the median of the
annual precipitation.

of Lake Van. Although no intra-annual climate information is known to the algorithm, we see patterns
in this spectral analysis that confirm these descriptions.

After the Herning stadial, the so-called Brørup interstadial (MIS 5c) lasted from ca. 107.8 − 87.3
cal ka BP. Pickarski et al., 2015b describe it with a dominance of cold and/or summer-dry adapted
Pinus. During this period, the reconstruction shows an increase in both variables. Nevertheless, the
level of MIS 5e is not reached again, which could be explained by the lower proportion of Quercus
deciduous during the Last Glacial. Accordingly, the Koeppen-Geiger classification alternates between
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Csb and Dfb. The latter describes a continental climate without a dry season.

The Rederstall stadial of 87.3− 84.9 cal ka BP (MIS 5b) behaves like the Herning stadial (Pickarski
et al., 2015b) and is accompanied by a reconstructed decline of TANN and PANN. The latter shows a
local minimum at the end of this period, but the temperature continues to drop. A Mediterranean
climate with cold summers (Csc) appears.

MIS 5a, also known as the Odderade interstadial, lasted from about 84.9 − 77.5 cal ka BP and is
accompanied by a slight increase in AP (Pickarski et al., 2015b). They infer an increased moisture
supply at the beginning and a decrease in precipitation and/or an increase in evaporation during
this period. This interstadial is not as clearly visible in the reconstruction as MIS 5c. Nevertheless,
the reconstructed precipitation increases slightly at the beginning of this interstadial, leading to the
continental climate Dfb.

Pickarski et al., 2015b describe the period 75 − 28 cal ka BP with a dominance of Artemisia,
Chenopodiaceae and Poaceae. They mention a strong aridification and cooling in Eastern Anatolia
after 70 cal ka BP. Our reconstruction shows a relatively stable level in both variables, namely a
moderate variation around 6.5 ◦C and an averaged precipitation of about 450 mm. Although the
climate reveals colder temperatures and less precipitation than today, the Koeppen-Geiger estimate
remains within Dfb. Pickarski et al., 2015b mention a high variability of the tree population during
MIS 3. They associate these alternations of warmer/moist interstadials and cooler/drier stadials with
some Dansgaard-Oeschger cycles. Due to the relatively large uncertainty taken into account when
transforming depth into age within this period, these fluctuations cannot be detected. This can be
verified in Fig. 3.41, where no relatively high power is shown for the typical DO period of about 1.5
ka. We tested a reconstruction with a different age-depth model based on lower age errors for this
period. A WPS of these results reveals such high frequencies (not shown), highlighting the importance
of accounting for uncertainty in the age-depth transformation. Although the core of Pickarski et al.,
2015b and Pickarski et al., 2015a is investigated with a comparatively high resolution, the information
of the DO events cannot be resolved after the conversion from depth to age.

MIS 2 from 28 − 14.5 cal ka BP is described in Pickarski et al., 2015b with cooler and drier
conditions compared to MIS 3. The temperature we reconstructed is consistent with this description.
However, precipitation increases at the beginning and decreases after about 22 cal ka BP. This is
due to Ranunculus acris with comparatively low TANN but high PANN. Nevertheless, the amount of
precipitation is not greater than in the interstadial MIS 5c. In Litt et al., 2009, the period from circa
20 − 14 cal ka BP that includes the LGM is characterized by cold and semi-desert steppe vegetation.
As a result, both climate variables decrease to a minimum of about 5.5 ◦C and about 400 mm.

The onset of MIS 1 from 14.5 − 11.5 cal ka BP is indicated by higher pollen values from trees and
shrubs (Litt et al., 2009). In both WPSs in Fig. 3.41 we see significant power with periods of about
0.8 − 2 ka. This could include the variations of DO 1 and YD. As far as the climate reconstruction
is concerned, both variables show high-frequency fluctuations during their increase. However, the
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relatively low amplitudes make it difficult to detect DO 1 and YD.
During the Holocene from 11.5− 0 cal ka BP, Litt et al., 2009 mention a sharp increase in moisture.

From a growth delay of 3,000 years in deciduous oaks, they infer a dry spring and summer in the early
Holocene. This is reconstructed in both variables and we still see a continental climate classification.
During the MH (7 − 4 cal ka BP) this transitions to a warm Mediterranean climate with temperatures
around 9 ◦C and around 620 mm. The following period until today is characterized by increased
human influence (Litt et al., 2009). We treat this as with the reconstructions before (e.g. section
3.3.1). As a result, temperature and precipitation do not show a strong decrease around 3.8 ka BP as
in the AP/NAP curve. The WPS show significant power at higher frequencies during the Holocene,
enabled by the relatively small age errors. They also cover the typical period of Bond events around
1.5 ka, but it is difficult to determine which climate fluctuation belongs to which event. Finally, both
reconstruction variables of the recent time slices approach the current climate measurements.

Summary and conclusion

The quantitative climate reconstruction of the Lake Van region during the last ca. 130,000 years
includes not only paleobotanical data, but also isotopic information from the Mediterranean region.
Compared to the reconstructions from the Levant, the AP/NAP values do not contain Pinus components
and are correlated with both climate variables. As a result, the posterior taxa weights in Fig. 3.40 (b)
show a relatively low weight for Pinus nigra. In contrast, Quercus deciduous and Ulmus minor have
mean posterior weights that are higher than the prior values. They are important to determine the
warmer and wetter interstadials. On the other hand, Ephedra distachya has the highest mean posterior
weight and is used by the algorithm to describe the end of the late Penultimate and late Last Glacial.
In summary, only 10 taxa information contain enough variation to find a compromise between these
two proxy references and two climate anchor points. This can be checked in Fig. 3.40. (a), where the
corresponding explained variances have values between 0.4 − 0.6.

Moreover, the final result resembles quite well the qualitative reconstructions described in Pickarski
et al., 2015b; Pickarski et al., 2015a; Litt et al., 2009. Interestingly, the most recent climate classification
also occurs at the end of the Penultimate Glacial. Nevertheless, the respective reconstructed climate
values are about 1.5 ◦C and about 200 mm lower than today, which does not contradict the qualitative
reconstructions mentioned above. This finally leads to a comparatively low variation of TANN and a
relatively high variability of PANN throughout the reconstruction period.
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3.3.5 Lake Iznik

Lake Iznik is the largest lake in the Marmara region, which lies between the Mediterranean and the
Black Sea (Miebach et al., 2016). The lake is surrounded by mountain ridges with peaks between
810 and 1293 m amsl. In Fig. 3.42 we see a climate diagram of the grid point closest to Lake Iznik,
describing a warm-summer Mediterranean climate Csb with warm/dry summers and mild/wet winters.
The average annual temperature in this region is about 12.2 ◦C, and the average annual precipitation is
610 mm. Due to the orography, this value varies greatly, which affects the vegetation around Lake Iznik.
Litt et al., 2021 describe it with a transition from Mediterranean woodland and mesic Euxinium forest.
The latter is adapted to lower temperatures and higher precipitation than Mediterranean vegetation.
How these present-day features might have changed over the last 31,000 years is discussed in the next
sections.

Introduction

In 2005 AD and 2009 AD, several cores were taken during two drilling campaigns. Miebach et al.,
2016 use a composite of some of these cores and investigate the corresponding vegetation history of
the last ca. 31,000 years. The proxy references used are shown in Fig. 3.43, which are applied in the
same way as in Sect. 3.3.4. For tree pollen, we only consider temperate trees and shrubs (Miebach
et al., 2016). As with the reconstruction of the Dead Sea during the Holocene (see Sect. 3.3.1), we use
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Figure 3.42: As Fig. 3.18, but for Lake Iznik.
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the recent Koeppen-Geiger classification Csb as the climate anchor point, although the most recent
period is 1400 AD. This assumption is confirmed by ca. 80 % of our local reconstructions over the
area depicted in Fig. 3.3, where no change in classifications is apparent in the last 600 years. The
marginal probability density distributions of the recent climate anchors are shown here as light green
areas in Fig. 3.44.

In contrast to the previous reconstructions, we add an additional climate anchor point for a past
period. This can be seen in Fig. 3.44 (b) at 21 cal ka BP, which corresponds to the LGM. Miebach
et al., 2016 mention that precipitation during this period was relatively low and can be compared to
that of the steppe in central Anatolia. In Fig. 3.17 (c) we see some grid points in central Anatolia
indicating a cold steppe climate (BSk). Therefore, these are used to create the PDF of the annual
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Figure 3.43: As Fig. 3.38, but for Lake Iznik. Only temperate trees and shrubs are considered.
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precipitation shown in Fig. 3.44 (b).
The Bayesian age-depth model is based on the data presented in Roeser et al., 2016. They use a

mixture of two tephra and radiocarbon measurements with and without reservoir corrections.

Reconstruction

In the following we describe the final reconstruction shown in Fig. 3.44. Panel (a) shows the
reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in mm/a. At the
beginning of the explanations we focus on the solid black lines. Later we will work out the difference
between these reconstructions and others whose medians are shown as blue lines. Miebach et al., 2016
divide the corresponding vegetation history into different periods, which are also used in this work.

The period of 31.1 − 28.4 cal ka BP is described by Miebach et al., 2016 as steppe vegetation
and they conclude dry and cold climatic conditions. Our reconstruction in Fig. 3.44 shows a mean
TANN of about 6.5 ◦C and PANN of about 600 mm. This results in an approximate Koeppen-Geiger
climate classification Dfa, which describes a fully humid continental climate with hot summers. For
comparison, such climate variables are similar to the current climate in central Minnesota. This
area shows a transition zone from savannah to mixed forest in the time before settlement (Goring
et al., 2016). Such sensitive conditions fit the explanations of Miebach et al., 2016 regarding two
different rapid vegetation changes, including an increase in pine and deciduous trees. Therefore,
even a relatively small increase in the two climate variables, as indicated in Fig. 3.44 with DO 3
and DO 4, can be sufficient for such a vegetation change. The WPSs in Fig. 3.45 confirm these two
Dansgaard-Oeschgar events with a relatively high significant power of periods about 1.5 ka. In the
corresponding reference curves in Fig. 3.43 we see that at least in (b) these features are also present.
The resolution of Medstack is too coarse to resolve these high-frequency cycles.

The period that includes the LGM (28.4 − 18.4 cal ka BP) shows a cool and dry steppe (Miebach
et al., 2016). During these ages, the reconstructed variables show a mean TANN of about 5 ◦C and
PANN of about 550 mm. These values lead to a fully humid continental climate with warm summers
(Dfb). A similar climate can be found today in eastern North Dakota, around the city of Fargo. In the
pre-settlement period, this place was located on the prairie (Goring et al., 2016). In Fig. 3.44 (b) we
see the additional climate anchor at 21 cal ka BP based on the explanations of Miebach et al., 2016.
Without this anchor, the annual precipitation would be about 100 mm higher (blue line). This shows
that the reconstruction algorithm is able to find reconstruction patterns that approximate this prior
PDF.

During the post-LGM from 18.4 − 15 cal ka BP, a change in steppe components is observed by
Miebach et al., 2016. The dominance of Artemisia in combination with the presence of Ephedra
indicates higher temperatures and lack of precipitation. This transition can also be seen in our
reconstruction. The temperature rises to about 6.5 ◦C, but precipitation decreases to approximately
500 mm. This in turn leads to a fully humid continental climate with hot summers. Climate change is
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also evident in both reference curves, as they each show an increase. Nevertheless, the algorithm is
able to recognize the vegetation information described above.

The Late Glacial from 15 − 12.1 cal ka BP is described by Miebach et al., 2016 with an increase of
deciduous trees and a peak of Pinus. They indicate a warmer and wetter climate than DO 3 and DO 4.
Although the Koeppen-Geiger classification is the same, both reconstructed climate variables have
higher values. TANN is about 7 ◦C and PANN is around 650 mm. With the onset of 15 cal ka BP, we
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Figure 3.44: As Fig. 3.25, but for Lake Iznik. The gray shaded areas indicate the period when human influence
is not negligible. Furthermore, the light green regions show the PDFs of recent climate anchor points. In terms
of precipitation, another climate anchor point for the LGM is shown.
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can observe relatively high power with periods around 1.5 ka BP in both WPSs. Here, Miebach et al.,
2016 recognize DO 1 (Bølling-Allerød) at about 14.6 cal ka BP, which is associated with an expansion
of temperate tree species. They also see a drop in AP throughout 13.3 − 12.3 cal ka BP, suggesting
a drier and/or cooler climate during the YD. The first event is clearly visible in both reconstructed
variables. However, the YD is only slightly seen in PANN, where a decrease of about 50 mm occurs.

During the early Holocene from 12.1 − 9 cal ka BP a transition from open woodland to dense
forests took place (Miebach et al., 2016). Accordingly, both the climate variables and the reference
curves increase. The approximate climate classification transitions to a Mediterranean climate Csb,
which is the current climate in this region.

Miebach et al., 2016 describe the Holocene from 9 − 0.6 cal ka BP with a temperate deciduous
forest and warm climatic conditions. They note many high-frequency fluctuations in the vegetation
spectrum, which could be climatic or human-induced. After about 4.8 cal ka BP, more anthropogenic
indicator taxa (olives, cereals, walnuts) emerge, and we use the corresponding method described in
Sect. 3.3.1, to take this into account. This leads to ignoring the decrease in AP by 3 ka BP, which is
not reconstructed in either variable. Although this coincides with the collapse of the Late Bronze
Age, according to Miebach et al., 2016 this vegetation development was superimposed by human
influences. Both WPSs show the typical pattern of Bond events in the Holocene. This means an
increase of periods from 1 ka in the early Holocene to 1.5 ka during the Middle Holocene (cf. Fig. 2.7
(d)). With respect to PANN, the fluctuations show a much higher frequency when human influence
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Figure 3.45: As Fig. 3.41, but for Lake Iznik.
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increases (4.8 cal ka BP). This leads to another idea of how to deal with such an influence. In the zone
of human impact we could use only a low-frequency part of the reference WPS, e.g. the periods higher
1000 years. The focus would increasingly be on the above-mentioned climatically driven periods,
and the faster fluctuating human-induced patterns could thus be more and more neglected. Finally,
both reconstructed climate variables approach the most recent climate measurements for the last time
interval.

Summary and conclusion

The quantitative climate reconstruction of the region around Lake Iznik during the last 31,000 years
includes not only paleobotanical data but also isotopic information from the Mediterranean Sea.
During the Late Glacial, the reconstruction resembles the explanations from Miebach et al., 2016.
This is shown by describing modern analogue transitions from prairie to mixed forests in the USA.
Furthermore, an a priori climate anchor distribution for annual precipitation inspired by Miebach et al.,
2016 is inserted into the algorithm, resulting in lower PANN during the LGM. The deglacialization
period also follows the qualitative reconstruction from Miebach et al., 2016. The human influence
from about 4.8 cal ka BP onwards is treated as before, resulting in much smaller fluctuations than
recorded in the AP reference curve. In summary, the reconstruction reveals many well-known climate
changes such as deglacialization, the Dansgaard-Oeschger and Bond events.

3.3.6 Lake Ohrid

Lake Ohrid is located on the border between Albania and Northern Macedonia at an altitude of 695 m
amsl (Panagiotopoulos et al., 2020). It is surrounded by mountain ranges that reach a height of more
than 2, 000 m amsl. The climate diagram in Fig. 3.46 of the grid point closest to Lake Ohrid shows
a warm Mediterranean climate Csb with warm/dry summers and mild/wet winters. The average
annual temperature in this region is 9.2 ◦C, and the average annual precipitation is 790 mm. Due to
the orography, these values are highly variable and influence the vegetation surrounding the lake,
which acted as a vegetation refuge during the Quaternary climate cycles (Panagiotopoulos et al.,
2020). Panagiotopoulos et al., 2013 describe the current vegetation as a mixture of Central European,
Mediterranean and Balkan endemic plants. How these present-day features might have changed during
the Early Pleistocene is discussed in the next sections.

Introduction

In 2013 AD, a composite core was drilled in the middle of the lake area as part of a drilling campaign
(Wagner et al., 2019). Its length is about half a kilometre and covers the last 1.36 million years. In
this study we want to focus on the period from 1, 165 − 1, 365 cal ka BP within the Early Pleistocene.
The corresponding vegetation survey is described in Panagiotopoulos et al., 2020. As with the
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Figure 3.46: As Fig. 3.18, but for Lake Ohrid

reconstruction of the Dead Sea in Sect. 3.3.1, we cannot include climate measurements as anchor
points. Medstack and the percentages of temperate trees are used as proxy references, which are shown
in Fig. 3.47. We exclude Pinus from the AP to correlate it with the reconstructed annual temperature.
This is based on the explanations in Wagner et al., 2019, where Medstack is linked to warm/cool SST
and compared to this plant information from the lake.

An important aspect of the pollen spectrum is the occurrence of relict taxa in the Early Pleistocene
Ohrid catchment (Panagiotopoulos et al., 2020). During the transition from the Early to the Middle
Pleistocene, a vegetation shift led to the extinction of these taxa. In our reconstruction we include
some modern distributions of Cedrus libani, Liquidambar orientalist, Pterocarya fraxinifolia, Zelkova
carpinifolia, Carya, and Tsuga to establish analogies with the most important relict species (Konstantinos
Panagiotopoulos, personal communication). Therefore, we compare one climate reconstruction that
includes this plant information with another that excludes these taxa. At this point, it should be
mentioned again that our method uses modern taxa distributions in conjunction with current climate
data. That these conditions have not changed in the last 1,300,000 years is a strong assumption that
must always be kept in mind in the following discussion.

We use tephra layers, orbital tuning points and two palaeomagnetic age reversals as input to our
Bayesian age-depth model. These data are presented and explained in more detail in Wagner et al.,
2019.
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Reconstruction

In the following we describe the final reconstruction shown in Fig. 3.48. Panel (a) shows the
reconstructed annual temperature TANN in ◦C and (b) the annual precipitation PANN in mm/a. At the
beginning of the explanations we focus on the solid black lines. Later, we will work out the difference
between these reconstructions and others whose medians are shown as blue lines. Panagiotopoulos
et al., 2020 divide vegetation history into different periods, which is also used in this work. They are
more or less consistent with the MISs presented. For the sake of simplicity, we do not go into the
differences between these periods below.

We start with the period from 1, 365 − 1, 346 cal ka BP (ca. MIS 43), which is described in
Panagiotopoulos et al., 2020 with closed evergreen and mixed forests. Using only the two references
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Figure 3.47: As Fig. 3.38, but for Lake Ohrid.
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3.3 Local climate reconstructions

shown in Fig. 3.47, our reconstruction for TANN shows a mean annual temperature of 9 ◦C and a
precipitation of about 700 mm. These are close to the present-day climate of this region (cf. Fig.
3.46) and lead to the same approximate Koeppen-Geiger climate classification, which indicates a
warm summer Mediterranean climate. Both reconstructed variables reveal a phase-shifted pattern,
with TANN showing a local maximum around 1,355 cal ka BP. To achieve this in accordance with
the references, the algorithm uses Olea, which occurs at this time. The relatively high temperatures
and low precipitation associated with this taxon result in this contrasting pattern. At the end of this
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Figure 3.48: As Fig. 3.20, but for Lake Ohrid. The dashed vertical lines show the transitions of the respective
Marine Isotope Stages.
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interglacial, both variables show a decreasing behaviour.
The glacial period of 1, 345 − 1, 322 cal ka BP (ca. MIS 42) reveals a dominance of pine forests

and grassland associated with open steppe vegetation (Panagiotopoulos et al., 2020). Based on the
decrease in reconstructed temperature and precipitation during 1,335 cal ka BP, the Koeppen-Geiger
classification changes to a fully humid continental climate with hot summers (Dfa). The corresponding
TANN and PANN resemble recent areas about 1000 km north of the Caucasus, where the natural
vegetation is described in Bohn et al., 2007 as a transition from forest steppes to herb-rich and pure
feather grass steppes. This also applies to the following glacial periods during MIS 36 and 40.

In the years from 1, 321 − 1, 305 cal ka BP (ca. MIS 41) the vegetation is similar to that in MIS 43.
Accordingly, the reconstruction shows similar values, although the annual temperature is cooler by
about 1.5 ◦C. This is due to the reference curves and is achieved by using the relatively cold genus
Abies, which is predominant during this period.

Panagiotopoulos et al., 2020 describe the periods 1, 304 − 1, 292 cal ka BP (ca. MIS 40) and
1, 291 − 1, 265 cal ka BP (ca. MIS 39) analogous to MIS 42 and MIS 41, respectively. According to
this, our reconstruction results are quite similar.

The glacial of 1, 264 − 1, 243 cal ka BP (ca. MIS 38) is described by Panagiotopoulos et al., 2020
with a dominance of pine forests and, in contrast to earlier time slices, with extensive open steppe
vegetation. The reconstructed climate variables reveal their respective lows during the study period.
TANN has values around 3 ◦C and PANN about 500 mm. Therefore, the Koeppen-Geiger classification
transitions to a warm-summer continental climate Dfb without a dry season. These climate values are
similar to the recent climate in northwestern Minnesota, where the natural vegetation is described in
Goring et al., 2016 as a mixture of savannah and prairie.

The interglacial from 1, 242 − 1, 218 cal ka BP (ca. MIS 37) shows a similar vegetation pattern as
MIS 39. Nevertheless, the reconstruction shows higher maximum temperatures around 10 ◦C and
higher precipitation amounts at about 800 mm. This is due to the rising values of Carya. As a proxy
for this relict taxa we use Carya glabra/tomentosa, which occur today in the eastern USA (Konstantinos
Panagiotopoulos, personal communication). They are therefore associated with relatively high
precipitation and temperatures.

Panagiotopoulos et al., 2020 describe the period from 1, 217 − 1, 191 cal ka BP (ca. MIS 36)
analogous to the preceding glacial (MIS 38), but without extensive open steppe vegetation. This is
noted by the reconstruction method, which leads to somewhat higher climatic variables.

The last interglacial within this study period from 1, 190 − 1, 165 cal ka BP (ca. MIS 35) is similar
to MIS 38. Again, the algorithm uses Carya to determine similar climate values.

Sensitivity study

The blue line in Fig. 3.48 shows the median of the reconstructions that do not contain the relict taxa
mentioned above. Nevertheless, the AP reference curve still contains all relict information. Therefore,
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3.3 Local climate reconstructions

we can compare both reconstructions with regard to these additional species.
At first glance, it can be seen that the blue line of the annual temperature is lower during the

entire study period. Calculating the mean TANN and PANN values of the transfer functions used and
comparing them with the subset where no relict species are considered results in a difference of about
+4 ◦C and +150 mm. Furthermore, the percentage of all relict taxa used correlates with the reference
curve AP in Fig. 3.47 of about 0.79. This causes the main difference between the black line and
the blue line during the interglacials. In summary, the inclusion of relict taxa can increase the final
reconstruction by up to about 2 ◦C and 100 mm.

Summary and conclusion

The quantitative climate reconstruction of the Lake Ohrid region for the period 1, 165 − 1, 365 cal
ka BP includes not only paleobotanical data but also isotopic information from the Mediterranean
Sea. Both references are correlated with the reconstructed annual temperature. Several relict species
were added to the taxa pool, which eventually led to higher temperature and precipitation values. The
climate variables during the 5 interglacials are thus similar to those of the most recent measurements
in this region.

We can see these glacial-interglacial cycles in the WPSs in Fig. 3.49 by looking at the branches
with the highest power. These lie in a period of about 41 ka and describe the typical value of
obliquity. During the Early Pleistocene, these climate cycles were driven by this Milankovitch cycle
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Figure 3.49: As Fig. 3.41, but for Lake Ohrid.
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(Panagiotopoulos et al., 2020), which can also be seen in this study. In addition, both plots within
the COI consistently show relatively high power with a period of about 23 ka. This reflects the
precession that influences the intensity of summer solar radiation (Huybers, 2006) and is also noted by
Panagiotopoulos et al., 2020. They mention that this could control the response of mesophilic species
during interglacial periods.

Although the assumptions we make in order to carry out such a climate reconstruction are strong,
all in all the result fits the explanations in the vegetation analysis in Panagiotopoulos et al., 2020. We
therefore assume that our reconstruction technique provides realistic climatic values for the Early
Pleistocene of Lake Ohrid.
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3.4 Spatial climate reconstructions

In the following sections, we summarize 186 finally selected local reconstructions from the total 600
sites considered in this thesis. These are selected according to the criteria described in Sect. 3.2.2
and mapped onto the spatial grid shown in Fig. 2.20. This forms the background for the spatial
reconstruction method described in Sect. 2.6, which is based on the 7 CMIP/PMIP experiments listed
in Table 2.3. From this multi-model ensemble, we estimate a prior distribution that is updated using
our local reconstruction information. These assimilated posterior climate distributions include not
only the proxy details from the local reconstructions such as plant data from lakes and mires, isotopic
information from speleothems, marine sediments, and ice cores, but also the appropriately adjusted
boundary conditions of the CMIP/PMIP simulations such as greenhouse gas concentrations, land-sea
distributions, ice sheets, topography, and orbital configurations (Abe-Ouchi et al., 2015).

We want to apply this approach for 3 different time periods. First, we consider the historical CMIP
ensemble within the reference period 1961 − 1990 AD. The corresponding assimilated spatial climate
structures are verified using CRU data. Subsequently, the Middle Holocene and Last Glacial Maximum
periods are reconstructed and analyzed. For consistency, all of the following anomalies are calculated
with respect to the CMIP ensemble mean. Note that the results of each period are summarized at the
end of the corresponding discussion. For this reason, no additional summary is provided at the end of
this Sect. 3.4.

3.4.1 Historical

In this section, we will take a closer look at a spatial climate reconstruction based on the historical
CMIP multi-model ensemble and 20 local reconstructions from this thesis. Therefore, we will test
whether the spatial reconstruction method provides a useful result based on our reconstructed local
climate information. To this end, we first consider local results that fall roughly within the HIST
reference period. Specifically, we assume that due to the relatively coarse temporal resolution of
our local reconstruction method of 50 years and the climate information smoothed by the age-depth
transformation, time slices younger than 1950 AD can be compared to the reference period. This
data is then used to assimilate the HIST CMIP ensemble. The corresponding parameter set of the
shrinkage matrix is determined as described in Weitzel et al., 2019 (see Sect. 2.6).

Fig. 3.50 contains statistical information about the local reconstructions and shows where they are
located. If there are multiple locations within a grid point, the mean values of the corresponding
distributions are displayed. For this reason, only 13 and not 20 grid points are shown in Fig. 3.50.
Significant anomalies are calculated grid box-wise. The significance level is 5 %, i.e. it is tested
whether the CMIP reference is below the 2.5th percentile and above the 97.5th percentile of the
respective posterior distribution. In these cases, the null hypothesis, which states that the anomaly is
0, is rejected. With respect to the annual temperature in (a), the grid points farther north show an
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Figure 3.50: Panels (a) and (b) show the mean TANN and PANN anomaly with respect to the CMIP ensemble for
the grid points for which local reconstruction information are available. The grid points with crosses indicate
significant anomalies. In (c) and (d), the corresponding 90 % credible intervals are depicted.

overall positive temperature anomaly. In contrast, the corresponding locations in (b) have a negative
precipitation anomaly. The three southernmost grid points include the local climate reconstructions of
En Gedi (Sect. 3.3.1), Lake Kinneret (Sect. 3.3.2), Birkat Ram (Sect. 3.3.3), and Lake Prespa (Sect.
3.2.2). For further information, the reader is referred to the respective sections.

When these local data are incorporated into the spatial reconstruction scheme, the results shown
in Fig. 3.51 are obtained. The panels (a) to (d) are analogous to those in Fig. 3.50. It is noticeable
that the corresponding values of these two figures are similar. This shows that the uncertainty in
the prior distribution is large enough to lead to a posterior reconstruction that is mostly determined
by the available local information. Overall, the spatial mean of the mean posterior temperature in
Fig. 3.51 (a) is 11.08 ◦C with a mean 90 % credible interval (CI) from 10.14 ◦C to 11.97 ◦C. The
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Figure 3.51: Panels (a) and (b) show the mean posterior anomaly of TANN and PANN with respect to the CMIP
ensemble. The grid points with black dots contain local reconstruction information, and those with crosses
indicate a significant anomaly. In (c) and (d), the corresponding 90 % credible intervals are depicted. The ratios
between the 90 % credible interval of the posterior and prior simulations are given in panels (e) and (f).

corresponding values for annual precipitation are 563.85 mm with a mean 90 % CI from 506.9 mm to
624.22 mm. On average, the values are 0.62 ◦C warmer and precipitation is 54.16 mm less than the
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CMIP reference climatology. For further analysis, we consider the posterior means over land. These
are 10.48 ◦C and 553.26 mm, representing a decrease of 0.6 K and 10.59 mm, respectively, from the
values of the full map section. The decrease in temperature is related to the fact that the grid points
within the area under consideration have relatively high temperatures above water. This does not apply
to precipitation, where comparatively low amounts in the south and east are balanced by high values
in the northwest. In addition to the predominantly positive temperature anomalies in Fig. 3.51 (a),
there are also some negative anomalies in the following areas: Iberian Peninsula, Atlas Mountains,
Northern Levant, Anatolia and northwestern part of the reconstruction domain. The situation is
similar with precipitation anomalies, although these have more grid points with significance. This is
due to the relatively low variance of the respective local reconstructions, which thus constrain the
posterior distribution more. In panel (b), the predominantly negative anomalies in the middle of the
reconstruction area are surrounded by positive anomalies. This pattern emerges from local information
approximating the CRU data of the reference period for the most recent time slice (see Prior climate
module in Fig. 2.17). In summary, Fig. 3 (a) and (b) reveal the systematic errors between the ensemble
members and observations, with temperature on average too low and precipitation on average too high.

We also see in panel (c) that the temperature uncertainties are greatest in the eastern Norwegian Sea
and the western Barents Sea. This is the area where the CMIP ensemble has the greatest spread and
the local data are relatively far away. The same applies to the precipitation in panel (d). Here, the
highest values are found mainly on the western coasts of the reconstruction domain, with a maximum
in southeast Norway, which is also the area with the highest annual precipitation. The mean values of
the uncertainties in (c) are 5.71 ◦C and in (d) 342.69 mm. These are lowest where local information
most constrain the CMIP ensemble.

In panels (e) and (f) we see the relationship between posterior and prior uncertainties. Again, it is
noticeable that the grid points with local reconstruction information exhibit a reduction in uncertainties,
which is 63.01 % on average. This compares to 17.77 % for the other grid points. The reduction of the
total uncertainty is higher for PANN than for TANN, which is due to a stronger constraint from relatively
lower variances of the respective local reconstructions.

To find a compromise between the local reconstructions and the CMIP ensemble, the spatial
reconstruction method determines weights for each ensemble member. These are shown in Fig. 3.52
in the form of boxplots, showing which simulation combination best fits the local climate distributions.
On average, only the MRI has higher posterior weights than the prior weights. The reason for this
is that this most closely reflects the patterns of the local reconstructions in Fig. 3.50 (a) and (b). In
particular, the positive/negative anomalies in temperature/precipitation in Central Europe are striking
in this respect.

As mentioned earlier, the climate values of the considered local reconstructions of more recent
periods are designed to approach the corresponding CRU data from 1961−1990 AD. This would mean
that the assimilated posterior CMIP structures in Fig. 3.51 (a) and (b) should be more similar to the
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Figure 3.52: The boxplots represent the selected MCMC samples of the posterior weights of each ensemble
member. The corresponding prior weight is depicted by the horizontal dashed line. The order of the boxplots is
from left to right with descending horizontal resolution of the underlying models (cf. Table 2.3).

corresponding CRU climate data than the prior CMIP ensemble containing the systematic errors of the
individual models. To test whether this is the case, we use the CRPS to compare the posterior and prior
distributions with the CRU data. If we define CRPSprior in terms of the prior as the reference forecast
and CRPSposterior as the forecast, we can calculate the CRPSS via Eq. 3.1. In contrast to CRPS, this
value is positively oriented, and the respective grid point-wise results are shown in Fig. 3.53 (a) and
(b). For both variables, the CRPSS is highest in Central Eastern Europe, where most local information
are available. In panel (a) we see two grid points with negative scores. One is located in the Southern
Carpathians, the other in En Gedi on the Dead Sea. For the latter, the mean difference between the
prior CMIP ensemble and CRU is on the order of 10−6. This makes it difficult to make improvements
through our local reconstruction data. However, the posterior assimilated CMIP ensemble does not
differ substantially either, so that the CRPSS is only slightly negative here. The situation is different
with the more northern grid point in the Southern Carpathians. There, the mean difference between
CMIP and CRU is about 1.3 K. Since the posterior CMIP ensemble extends this to about 1.5 K, we
see the corresponding negative CRPSS. Annual precipitation shows a similar pattern to temperature.
However, in this case, all grid points with local information have a positive CRPSS. If we now consider
CRPS in terms of TANN in (c), we see directly that the assimilated posterior CMIP ensemble not only
achieves a mean improvement for the grid points with local reconstructions, but also for the others.
Similar results are obtained for precipitation in (d), although the grid points without local sites show
much lower mean improvement. This is due to the relatively large differences in Southeast Europe, as
indicated by the negative CRPSS values in panel (b). However, a two-sample Kolmogorov-Smirnov
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Figure 3.53: Panels (a) and (b) show the CRPSS of the posterior TANN and PANN, respectively. The grid points
with the black dots contain local reconstruction information. In (c) and (d), the corresponding CRPS of the grid
points with black dots (gray boxplots) and those without (white boxplots) are shown. Additionally to the output
of the posterior simulations (Assimilated CMIP), the analogous results of the prior distribution (CMIP) are also
presented.

test suggests that when comparing the respective samples from the boxplots, only the prior CMIP
distributions of (c) and (d) were drawn from the same probability distribution. In particular, this
means that the differences between the samples of the white boxplots from (d) are so large that no
equal probability distribution can be assumed. This supports the statement above that not only the
representative samples of grid points with local information, but also the rest of the data shows a
non-negligible change to lower CRPS values after assimilation.

All in all, this demonstrates that the spatial reconstruction method can assimilate the local
reconstruction information into the prior CMIP ensemble. We were not only able to determine
this from the mean values between Fig. 3.50 and 3.51, but also quantify it in Fig. 3.53. It also
shows that our local reconstructions are approaching the current anchor points as intended. Since the
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reconstructions for the MH and LGM that now follow are based on the same CMIP models, but with
modified boundary conditions, we assume that the respective uncertainties in the prior distributions
are large enough to show similar flexibility to HIST.

3.4.2 Middle Holocene

In this section, we will take a closer look at a spatial reconstruction of the Middle Holocene. The
procedure and presentation is analogous to that described in the previous section. Here we use 152
available local reconstructions with information on 6 cal ka BP and the shrinkage matrix parameters
based on the PMIP experiments of the MH. These have orbital parameters and greenhouse gas
concentrations adjusted according to the PIMP3 protocol described in Sueyoshi et al., 2013.

Fig. 3.54 shows statistical information of the local reconstructions created in this work. As for the
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Figure 3.54: As Fig. 3.50, but for Middle Holocene. Again, the anomaly relates to the CMIP ensemble mean.
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mean temperature anomalies in (a), it is noticeable that northeastern Europe is significantly warmer.
In contrast, predominantly significant negative anomalies are observed in the Mediterranean region
and in Western Europe. We find a similar dipole structure for the mean precipitation anomalies with
the difference that the local reconstructions in Northwest Africa, Anatolia, and the Levant indicate
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Figure 3.55: As Fig. 3.51, but for Middle Holocene. Again, the anomaly relates to the CMIP ensemble mean.
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wetter conditions. The largest negative precipitation anomalies are found in the mountainous regions
of the British Isles, the Alps, and the Caucasus. These are due to the large variability of PANN within
the relatively coarsely resolved grid points. Dipole structures also stand out in the uncertainties of the
local reconstructions in (c) and (d). These characterize in (c) the more maritime areas of Western
Europe with predominantly lower uncertainties and the more continental regions of Eastern Europe
with mostly higher variability. The reverse is true for the annual precipitation in (d). Such structures
are due to the transfer functions of the respective taxa on which the local reconstructions are based.
Thus, in more continental areas, the plants considered are those that have lower precipitation and
higher temperature differences. In the more maritime areas of Western Europe, the opposite is true.

In Fig. 3.55, we see the spatial reconstructions based on the local information from Fig. 3.54. It
is immediately noticeable that the prior PMIP ensemble, as in the previous section, has sufficient
variability to adapt to local information. Thus, in (a) and (b) we see similar spatial structures and
amplitudes as in Fig. 3.54 (a) and (b). The spatially averaged posterior temperature in Fig. 3.55
(a) is 10.96 ◦C with a mean 90 % CI from 10.56 ◦C to 11.36 ◦C. The corresponding values in (b)
are 575.24 mm with a mean 90 % CI from 545.69 mm to 606.36 mm. Hence, overall conditions are
0.49 K warmer and precipitation is 42.77 mm less than in the CMIP reference climatology. The mean
values of the grid points over land give a temperature of 10.74 ◦C and a precipitation amount of
574.02 mm. In contrast to the reconstruction of HIST, relatively high temperatures prevail over land,
as can be seen from the positive temperature anomalies in Fig. 3.55 (a). This reduces the difference
between the land and the entire map section to 0.22 K. Similar to HIST, there are no meaningful
differences in precipitation. For the strongly negative anomalies in Fig. 3.55 (b), we have additionally
created a reconstruction that disregards the above-mentioned local information within the mountainous
regions. However, this resulted in minor differences in the posterior structures (not shown). Panels
(c) - (f) show similar patterns to those of the posterior CMIP reconstruction from Fig. 3.51. These
can be summarized as the multi-model CMIP/PMIP ensemble being most constrained where local
information are available.

To obtain the posterior patterns of Fig. 3.55, the spatial reconstruction method assigns weights
to each PMIP ensemble member depicted in Fig 3.56. In the case of the Middle Holocene, the MPI
simulation receives by far the highest weights on average and is well above the prior distribution. In
contrast to the results of the previous section, the second highest posterior weights from the GISS
experiment are also above the corresponding prior distribution. Thus, the combinations of these two
simulations best fit the local reconstruction data. Specifically, MPI shows dipole structures most
similar to those in Fig. 3.55 (a) and (b).

Now, we want to compare the results of the MH with other studies. Even if in some cases not the
annual temperature but the January temperature, the July temperature or the mean temperature of the
coldest/warmest month (MTCO/MTWA) is reconstructed, it should be checked whether the dipole
structures shown above is present. The spatial reconstructions of TANN and PANN from Mauri et al.,
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Figure 3.56: As Fig. 3.52, but for Middle Holocene.

2015 reveal a very similar overall pattern to ours. As far as annual precipitation is concerned, the
only notable difference is in northwest Africa and eastern Spain. There, in contrast to our work, they
reconstruct predominantly positive anomalies. The largest differences in the respective temperature
anomalies are found in the southeastern Levant and on the Kola Peninsula in the northeast of the
reconstruction area. For both areas Mauri et al., 2015 indicate negative temperature anomalies. In
terms of their reconstruction values, both variables have lower amplitudes than ours in Fig. 3.55 (a)
and (b). However, looking at the fields of the upper and lower boundaries of the 90 % CI, the results of
Mauri et al., 2015 are mostly within these value ranges. As for temperature, there is a difference only
over the Kola Peninsula, where we find no negative anomalies in our intervals. Regarding precipitation,
the values of Mauri et al., 2015 in the Alpine region and the British Isles are outside our 90 % CI.
There our reconstruction shows minima of the anomaly with relatively small interval size (cf. Fig.
3.55 (d)). The plots of the spatial fields of the upper and lower boundaries of the 90 % CI are shown
in Appendix B.2. Bartlein et al., 2010 summarize a variety of pollen-based local reconstructions,
whereby data from TANN and PANN can also be viewed. Their dipole structure and amplitude of TANN

is similar to that of our reconstruction in Fig. 3.55 (a) and (b), with the difference that our maxima are
located in northern Fennoscandia and those of Bartlein et al., 2010 in southern Sweden. In terms of
precipitation, they also reconstruct negative anomalies of similar magnitude over the western part
of the Scandinavian Peninsula. Our results show mainly negative anomalies in Central and Western
Europe, which do not become positive within the 90 % CI (cf. Fig. 3.55 (d)). In comparison, Bartlein
et al., 2010 reports slightly positive values for these regions.

In addition to our local reconstructions, we can also insert the corresponding local information from
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Figure 3.57: Panel (a) shows the mean temperature difference between a spatial reconstruction with additional
local information from Simonis et al., 2012 and Fig. 3.55 (a). The grid points with additional information are
shown with black dots and those with crosses indicate a significant anomaly. Panel (b) is like (a), but for annual
precipitation.

Simonis et al., 2012 for the MH. They present a pollen and macrofossil synthesis as part of the DECVeg
project (Dynamic European Climate-Vegetation impacts and interactions). In particular, information
on the occurrence of taxa combining macrofossil and pollen data are provided for 50 palaeosites of the
MH. We use our new transfer functions for each of these taxa to obtain the probabilities P(𝑷𝒔 | 𝑪,𝝍)
(see Sect. 2.5). These are integrated into the Bayesian Indicator Taxa Model (Neumann et al., 2007)
to calculate P(𝑪 | 𝑷𝒔,𝝍), which is done for each additional palaeosite. The resulting differences in
spatial reconstruction are shown in Fig. 3.57. However, the additional data points from Simonis et al.,
2012 have little impact on the posterior distribution of the two variables in northern Europe. This
is because the respective local anomalies are already consistent with the patterns of the posterior
reconstruction in Fig. 3.55 (a) and (b). Nevertheless, the new information leads to lower posterior
temperatures in Central Eastern Europe. Here, we are at the inflection point of the dipole structure (see
Fig. 3.55 (a)). Further information from the southeast of the Iberian Peninsula indicates colder, but
also wetter conditions. This ultimately leads to a positive precipitation anomaly in the northern Sahara
that is close to the reconstruction of Mauri et al., 2015. Overall, the inclusion of the additional data
points results in a 0.36 K colder and 18.62 mm wetter reconstruction in contrast to Fig. 3.55 (a) and
(b). Analogous to the plots shown here, which are based on our new local reconstructions, others are
depicted in Appendix B.1 that additionally include the dataset from Simonis et al., 2012 for the MH.

We now proceed to compare our spatial reconstructions with others based solely on the dataset
from Simonis et al., 2012. For example, the July temperature in Simonis et al., 2012 shows positive
anomalies in Fennoscandia, the British Isles, France and south-eastern Europe. This means that the
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dipole structure is not as clear as it is in our work. In addition, January temperatures in Eastern Europe
exhibit positive anomalies. These differences could be due to the different methods. In contrast,
the January temperature assimilated in Stolzenberger, 2017 shows a dipole structure with warmer
anomalies in northeastern Europe. The corresponding July temperature, on the other hand, does
not show quite such clear structures. The spatial patterns of Weitzel et al., 2019 reveal a general
dipole structure for MTCO and MTWA that is similar to the annual temperature we reconstructed. By
incorporating the local information from Simonis et al., 2012, these are additionally aligned, especially
in Central Eastern Europe. As in our case, the PMIP3 experiment of MPI in Weitzel et al., 2019
receives the highest weighting in fitting their simulation ensemble to their local proxy data.

All in all, the spatial reconstruction of the MH reveals that the corresponding method works as
intended. The temperature anomaly results show similar structures and magnitudes to many other
studies, although the new local data are mostly automatically generated, meaning that our new
reconstruction method requires less expert knowledge, such as setting thresholds for occurrence or
the importance of specific taxa. In terms of precipitation, there is a strong similarity with Mauri
et al., 2015, but also some differences with the local reconstructions in Bartlein et al., 2010. In this
respect, the results of our work also show a dipole structure within Europe. Additionally, positive
precipitation anomalies are reconstructed in the southwest of the Iberian Peninsula, in northwest
Africa and throughout the Eastern Mediterranean, including the Levant.

3.4.3 Last Glacial Maximum

Finally, let us look at the spatial reconstruction of the Last Glacial Maximum (LGM). For this purpose,
15 available local reconstructions with information on 21 cal ka BP are combined with the PMIP3
multi-model ensemble and the corresponding shrinkage parameters are used. The PMIP3 experiments
are adapted to the boundary conditions of orbital parameters, greenhouse gas concentrations, ice sheet
extent, land surface elevation and coastlines (Sueyoshi et al., 2013). The latter can additionally be
seen in Fig. 3.58, where the information of the local reconstructions are shown. These coastlines are
based on the PMIP3 boundary condition dataset (Abe-Ouchi et al., 2015).

The temperature and precipitation anomalies of the local data indicate predominantly negative
values. In Fig. 3.58 (a), the easternmost grid point is notable for a not significant temperature
anomaly. However, the corresponding 90 % CI is of the order of 7 K (see panel (c)). This grid point
includes Lake Van, which is located in the mountainous region of the East Anatolia High Plateau. The
corresponding local reconstruction is discussed in more detail in Sect. 3.3.4. There, the low variability
of annual temperature in the temporal reconstruction process is particularly striking, leading to the low
anomaly shown here. In Fig. 3.58 (b) we see higher precipitation in Anatolia and the southern Levant.
The latter is not significant and has the lowest 90 % CI, as seen in panel (d). This grid point contains
the information about the Dead Sea, which is described in more detail in the Sect. 3.3.1. In contrast,
the grid point farther north, which includes Birkat Ram (see Sect. 3.3.3), reveals significant negative
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Figure 3.58: As Fig. 3.50, but for the Last Glacial Maximum. Again, the anomaly relates to the CMIP ensemble
mean. In addition, the altered ice sheets and land-sea distributions are shown as gray areas.

anomalies. A comparison of our data with those of Bartlein et al., 2010 shows, with the exception of
southern Anatolia, a similar pattern and amplitudes of both climate variables. They do not present any
reconstruction results for the Levant. In contrast to the time slices of the local information of the MH,
Fig. 3.58 (c) and (d) do not show a systematic pattern with respect to the 90 % CI.

The mean posterior anomalies for the LGM are shown in Fig. 3.59 (a) and (b). With respect to the
temperature in (a), note that each grid point has a significant negative anomaly. For reasons of clarity,
the respective crosses are not additionally marked. The spatially averaged posterior temperature is
0.1 ◦C with a mean 90 % CI from −1.02 ◦C to 1.32 ◦C. The corresponding values in (b) are 423.84 mm
with a mean 90 % CI from 364.99 mm to 487.86 mm. Hence, overall conditions are 10.37 K colder
and precipitation is 194.17 mm less than in the CMIP reference climatology. Furthermore, we see in
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Figure 3.59: As Fig. 3.51, but for the Last Glacial Maximum. Again, the anomaly relates to the CMIP ensemble
mean. In addition, contour lines are drawn to indicate modified coastlines (black) and ice sheet boundaries
(gray). Furthermore, the crosses indicating significant anomalies are removed in panel (a).

(a) that according to the PMIP experiments the coldest temperatures are above the ice sheet. The grid
points with local data show negative anomalies of similar magnitude as in Fig. 3.58 (a). Regarding
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Figure 3.60: As Fig. 3.52, but for Last Glacial Maximum.

precipitation in (b), there are some areas with non-significant deviations from the reference. These
are mainly located in the southern reconstruction domain and in the southern parts of the European
Ice Sheet. In the latter case, there is relatively much precipitation, so that values similar to those in
the recent past are simulated. An exception is the maximum of the negative anomalies. Although
precipitation is also relatively high there, it does not come close to today’s values in southwest Norway.
In contrast, positive precipitation anomalies are simulated on the western edge of the Iberian Peninsula
and in northwest Africa. The situation is similar in the Eastern Mediterranean, where the local
reconstructions from Fig. 3.58 (b) record higher precipitation. Although the grid point containing
Birkat Ram has a significant negative anomaly, these are not visible in Fig. 3.59 (b). This could be
due to the relatively coarse spatial resolution, which makes the reconstruction method not flexible
enough. However, if only the grid point with Birkat Ram in the area of Anatolia and the Levant
is considered, the mean posterior precipitation anomaly in these areas shows exclusively negative
deviations (not shown). To reconstruct the anomalies from Fig. 3.59 (a) and (b), we see in Fig. 3.60
that the spatial reconstruction method weights the simulations of IPSL the highest, which is also the
only experiment that has higher values than the prior weights. It includes the positive precipitation
anomalies in the eastern reconstruction area. The uncertainty distributions in Fig. 3.59 (c) and (d)
indicate the highest values with respect to temperature northwest and east of the ice sheet. This is
where the PMIP experiments of the LGM have the greatest variability. These are located in (d) in the
areas with the highest precipitation. Panels (e) and (f) show where the local data most constrain the
prior PMIP ensemble.

To analyse the positive precipitation anomalies from Fig. 3.59 (b), we compare them with the
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experiments of Ludwig et al., 2018 and Ludwig and Hochman, 2022. In both studies, the PMIP3
experiment MPI served as the initial and boundary condition of the LGM for a dynamic downscaling
with the regional weather research and forecast model (WRF). In this way, Ludwig et al., 2018 find
predominantly positive precipitation anomalies in the western part of the Iberian Peninsula, which
is consistent with our results. Conversely, a local reconstruction in Bartlein et al., 2010 in southern
Andalusia still shows slightly negative anomalies. We therefore conclude that additional data points
and higher spatial resolution could provide more insight into this area. In Ludwig and Hochman,
2022, the focus is on the Levant and it is noted that overall evaporation has decreased more than
precipitation. We have already discussed this issue in detail in Sect. 3.3.1 and Sect. 3.3.3, where
our local reconstructions of the Levant during the LGM show lower precipitation compared to the
interglacials. This is also consistent with a pollen-based reconstruction from Lake Hula, located about
20 km southwest of Birkat Ram. In this context, Langgut et al., 2021 note 5 K colder conditions and
115 mm less precipitation compared to present-day climate. In contrast, the simulations from Ludwig
and Hochman, 2022 show that precipitation increased in the southern and eastern areas of the Levant
during the LGM. They assume a connection with the so-called active Red Sea Trough, which may
have led to increased flood events in the Dead Sea region within this period. Moreover, Cheng et al.,
2015 compare speleothems in the northern and southern Levant and find contrasting patterns as well.
From this, they conclude that comparatively drier conditions prevailed in the north during the period
from the LGM to Heinrich stadial 1. Such a dipole structure of precipitation in the Levant during the
LGM is consistent with local information from the Dead Sea, Lake Hula, and Birkat Ram (cf. Fig.
3.58 (b)). However, these are not shown in the spatial reconstruction in Fig. 3.59 (b). Looking at
the precipitation field at the lower bound of the 90 % CI, a slight dipole structure can be seen, with
only the grid point containing the Dead Sea showing a positive anomaly. This pattern could be better
captured with a higher resolution of the spatial reconstruction method.

In summary, this method works as intended. This time, however, it is noticeable that a higher spatial
resolution would be advantageous with regard to the Levant in order to be able to analyse the dipole
structure of the precipitation more precisely. The situation is similar for the areas of the western
Iberian Peninsula and northwest Africa, where positive precipitation anomalies are also simulated.
Since we have relatively little local data in this area, further reconstructions would be particularly
useful. Apart from that, the results are largely consistent with those of other studies.
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Summary, Conclusion and Outlook

In this work, we present new techniques for generating local paleoclimate reconstructions based on
multiple proxies. For this purpose, we use a newly developed BHM solved with MCMC sampling
methods such as Metropolis-within-Gibbs or random walk Metropolis-Hastings. To place the various
proxies in a temporal context, a new method is used to assign age information to depths in sediments
and distances in speleothems. In particular, the uncertainty of age is accounted for by another BHM
introduced in this thesis. Climate variables such as annual temperature and precipitation were included
using transfer functions based on plant occurrence. We determined these functions with a machine
learning competition. Such a systematic identification of the best model to describe the relationship
between plants and climate is made here for the first time. Finally, these local scale plant information
from lake and mire sediments and speleothems are matched with global scale isotopic data from
marine sediments and ice cores. As a result, over 600 sites in Europe, Northwest Africa, Anatolia, and
the Levant are being processed, resulting in 186 selected local climate reconstructions using these new
reconstruction methods. On this basis, we additionally calculate spatial reconstruction fields of the
above mentioned regions using the CMIP5/PMIP3 experiments from HIST, MH, and LGM. In this
context, these ESMs are linked to our local information, resulting in assimilated spatial climate fields.
The corresponding BHM is a modified version of the BHM of Weitzel et al., 2019, which is solved
using a random walk Metropolis-Hastings MCMC technique.

A basis for the calculation of the local reconstructions in this work is the age-depth/distance
transformation. This is considered in a Bayesian formulation by determining the uncertainty
information of the depth or distance at a given age P(𝑫 | 𝑨). In this way, we can perform a data-driven
transformation of the local reconstructions that behaves like a convolution with different kernel
smoothers. This approach avoids too much certainty in statements about past events. Another result
of this technique is the determination of the age resolution and its projection onto a regular grid.
This allows us to match proxy information from the EPD and SISAL databases and perform spectral
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analysis.

Another step in computing our local reconstructions is to establish transfer functions that map
climate variables to plant distributions. Various machine learning algorithms are used to solve this
classification problem of absence and presence of taxa. For this purpose, 70 % of the respective
imbalanced datasets are first balanced with SMOTE. To test which method works best, the respective
performances are identified with a cross-validation. In addition, a number of different parameter
settings of the respective algorithms are made. The winner of these tuned models is validated on
the remaining 30 % unsmoted hold-out datasets. For the models and plant distributions used in this
work, a simple feedforward neural network with one hidden layer wins in 70 % of the cases. Each of
the machine learning algorithms considered takes into account the uncertainties in the proxy-climate
relationship to avoid the risk of making overly confident inferences about past climate.

The subsequent more than 600 MCMC simulations for MG and rwMH assign weights to the taxa
considered. The higher these turn out during the inference process, the more important is their
inclusion in the final reconstruction, taking into account additional proxy information. These are
based on isotopic information from speleothems, marine sediments, and ice cores. The respective
reconstruction should approximate these reference curves to a certain degree. This is verified not only
in temporal space but also in spectral space using wavelet power spectra. Such a comprehensive use of
the spectral behavior of proxy information is possible due to the new age-depth/distance transformation
and has therefore not been performed before. In addition, a priori information on the actual climate
distribution in specific time periods are incorporated as further constraints. Specifically, anchor points
of recent climate are often used to ensure that local reconstructions approach them. Overall, both
MCMC techniques show similar flexible and stable results when all simulations are considered.

The local reconstructions discussed in this study show realistic results if the corresponding qualitative
reconstructions of Aufgebauer et al., 2012, Panagiotopoulos et al., 2013, Litt et al., 2012, Chen
and Litt, 2018, Miebach et al., 2019, Schiebel and Litt, 2018, Miebach et al., 2022, Schiebel, 2013,
Neumann et al., 2007, Pickarski et al., 2015b, Pickarski et al., 2015a, Litt et al., 2009, Miebach et al.,
2016, and Panagiotopoulos et al., 2020 are used as a comparison. Relatively small-scale climate
changes are simulated, which can be identified as Bond, Heinrich, and Dansgaard-Oeschger events. In
addition, large-scale changes such as the last deglacialization and different glacial-interglacial cycles
can also be detected. During certain time periods, human influence on plant information in lake and
mire sediments is clearly evident. This thus also affects the local reconstructions, where additional
climate variations are simulated. These can be minimized to some extent with our new method by
giving more attention to isotope-based proxies during the inference process.

The final 186 accepted local paleoclimate reconstructions are summarized using a modified version
of the spatial reconstruction method of Weitzel et al., 2019. In this context, the posterior spatial
climate distributions of the reference period show that the prior multi-model ensemble of CMIP5
experiments, in combination with the local data fitted to the current climate, converges toward the
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CRU fields. This applies not only to temperature, but also to precipitation. Moreover, the areas with
more local information show a closer approximation of the prior ensemble to the CRU reference
period, indicating sufficient flexibility of this reconstruction method. This also holds true for the
reconstructions of the MH and the LGM. The former shows warming in the northeast and cooling in
southern Europe according to local data, which is similar to Stolzenberger, 2017, Weitzel et al., 2019,
Mauri et al., 2015, and Bartlein et al., 2010. Annual precipitation indicates an increase in the northeast
and a decrease in the west of Europe. In addition, we note an increase in precipitation in the Eastern
Mediterranean and Levant, which is also true for Mauri et al., 2015. The spatial reconstruction of the
LGM reveals an increase in precipitation in the west of the Iberian Peninsula and in Northwest Africa,
Anatolia, and the Levant. The latter shows a dipole structure with higher precipitation in the southern
Levant, which is consistent with the work of Ludwig and Hochman, 2022 and the interpretations of
Cheng et al., 2015. TANN exhibits no particular pattern during this time interval, only a cooling of the
entire reconstruction area.

Overall, it appears that our new method provides an additional way to calculate quantitative
paleoclimate reconstructions. Comparisons with qualitative and other quantitative studies show
realistic and to some extent similar results. We therefore conclude that more automatic, statistics-based
methods are an alternative to those that require additional expert knowledge. Furthermore, our method
provides complementary information such as the importance of taxa with corresponding uncertainty
estimates. From this, we can gain new insights into possible biological mechanisms behind past
climate changes.

Therefore, an examination of important taxa and why they lead to certain patterns at certain ages
could be useful for future work. This might be done by an additional BHM based on the local
reconstructions produced in this thesis. Considering these as constraints, one could focus on specific
time periods and analyze the resulting taxa weights in more detail. Finally, using all available local
reconstructions, this procedure would yield a spatial distribution of the most important taxa for specific
time slices.

In addition, the techniques presented in this work could be performed at higher resolutions. This
might be done by replacing the CRU data used for the transfer functions and climate anchor points with
regional reanalysis data such as COSMO-REA6 (Bollmeyer et al., 2015). On the other hand, it could be
helpful to increase the number of reference curves used. Examples of additional proxies are lake level
curves, CO2 data, and solar radiation information. Since not only reference curves but also climate
distributions were used as boundary conditions, such additional information could also be helpful.
Examples would include various simulation results from ESMs or available permafrost information on
the sites in question. Moreover, a larger number of taxa considered would allow higher flexibility of
our MCMC methods and provide a more comprehensive view of past climate variability. Performing
spatial reconstructions based on the more recent CMIP6/PMIP4 experiments could also provide new
understanding. It would also allow the preparation of climate reconstructions for the Last Interglacial
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period. Furthermore, simulation of additional variables such as evaporation could be beneficial. This
would provide more information on dry periods and areas. Machine learning techniques could be used
to test the importance of these additional climate variables for each plant distribution. For comparison
with reference curves, other metrics besides explained variance can provide useful additional findings.
An example of this is the so-called target redundance of Glowienka-Hense et al., 2020. This is the
information that, for example, two reference curves provide equally. In terms of our age-depth/distance
transformation, an attempt could be made to apply this technique to existing proxies such as Medstack,
LR04, and NGRIP. In particular, for stacked data, the alignment of the underlying time series may
provide new insights.

Analogous to transfer functions based on plant data applied to the appropriate sites, one could
attempt to do this for speleothem data currently being collected. In the course of this work, initial tests
have already been conducted with the SISAL database. However, we found no relationship between the
geographic coordinates, altitude, and geologic characteristics of the caves, the temporal characteristics
of the growth of the individual dripstones, and the various climatic variables related to temperature
and precipitation. This may change with the steady expansion of speleothem data in future studies.

It would also be interesting to try to use our method of local reconstruction to detect human activity
where little is known about past civilizations. This could be done by analyzing the spectral and
spatiotemporal patterns of known activities. If the differences between the plant data and the other
proxies stand out in a similar way during certain time periods, this could be an indication of human
activity.

In summary, the reconstruction methods presented in this work represent an attempt to solve
complex BHMs with low computational cost, capable of considering multiple proxy sources. This can
not only diagnose past climate changes, but also provide a better understanding of its mechanisms.
Extending this method and applying it to other geographic areas could further enhance this knowledge.
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APPENDIX A

Age-depth models

In the following, Bayesian age-depth models using the Bacon algorithm are presented. The order
corresponds to that of the local climate reconstructions in this thesis.
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Figure A.1: The bottom panel shows an age-depth model calculated with Bacon from a sediment core from
Lake Prespa. The top panels depict, from left to right, a trace plot of the posterior MCMC samples, prior (green
lines) and posterior (gray area) distributions of accumulation rate and memory.
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Figure A.2: As Fig. A.1, but for En Gedi. In addition, prior and posterior distributions of hiatus size are
presented.
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Figure A.3: As Fig. A.1, but for Dead Sea.
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Figure A.4: As Fig. A.1, but for Lake Kinneret.
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Figure A.5: As Fig. A.1, but for Birkat Ram.
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Figure A.6: As Fig. A.1, but for Lake Van.
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Figure A.7: As Fig. A.1, but for Lake Iznik.

168



0 500 1000 1500 2000

−
50

0
−

48
0

−
46

0

Iteration

Lo
g 

of
 O

bj
ec

tiv
e

0 50 100 150 200 250
Acc. rate (a/cm)

acc.shape:  1.5 
acc.mean:  31

0.0 0.2 0.4 0.6 0.8 1.0
Memory

mem.strength: 4
mem.mean: 0.7
448 100 cm sections

0 10000 20000 30000 40000

0
20

00
00

40
00

00
60

00
00

80
00

00
10

00
00

0
12

00
00

0
14

00
00

0

Depth [cm]

A
ge

 [c
al

 a
 B

P
]

Lake Ohrid

Figure A.8: As Fig. A.1, but for Lake Ohrid.
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APPENDIX B

Spatial climate reconstructions

B.1 Middle Holocene results incorporating the Simonis dataset
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Figure B.1: Panels (a) and (b) show the mean TANN and PANN anomaly with respect to the CMIP ensemble for
the grid points where the new local information from this work and from the Simonis dataset are available for
the MH. The grid points with crosses indicate significant anomalies. In (c) and (d), the corresponding 90 %
credible intervals are depicted.
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Figure B.2: Panels (a) and (b) show the mean posterior anomaly of TANN and PANN with respect to the CMIP
ensemble. The grid points with black dots contain local reconstruction information shown in Fig. B.1, and
those with crosses indicate a significant anomaly. In (c) and (d), the corresponding 90 % credible intervals
are depicted. The ratios between the 90 % credible interval of the posterior and prior simulations are given in
panels (e) and (f).
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B.2 Spatial fields of the lower and upper boundary of the 90 % CI
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Figure B.3: The boxplots represent the selected MCMC samples of the posterior weights of each ensemble
member of the MH. The corresponding prior weight is depicted by the horizontal dashed line.

B.2 Spatial fields of the lower and upper boundary of the 90 % CI
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(b) Posterior anomaly of the lower boundary of 90% CI, P ANN
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(c) Posterior anomaly of the upper boundary of 90% CI, T ANN
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(d) Posterior anomaly of the upper boundary of 90% CI, P ANN

Figure B.4: In (a) and (b), the lower bound of the 90 % credible interval of annual temperature and annual
precipitation of the Middle Holocene is shown. Panels (c) and (d) present the same, but for the upper boundary.
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(b) Posterior anomaly of the lower boundary of 90% CI, P ANN
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(c) Posterior anomaly of the upper boundary of 90% CI, T ANN

−600

−400

−200

0

200

400

600

[mm/a]

●

●

●

● ●

● ● ● ● ●

● ●

●

10° W 0° 10° E 20° E 30° E 40° E

30° N

40° N

50° N

60° N

70° N

(d) Posterior anomaly of the upper boundary of 90% CI, P ANN

Figure B.5: As Fig. B.4, but for the Last Glacial Maximum.
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Acronyms

PANN Mean annual precipitation.

TANN Mean annual temperature.

AC Autocorrelation.

AdaBoost Adaptive Boosting.

AMOC Atlantic Meridional Overturning Circulation.

amsl Above mean sea level.

ANN Artificial Neural Network.

ANOVA Analysis of variance.

AP Arboreal pollen.

ASM Asian summer monsoon.

BA Bølling-Allerød.

Bacon Bayesian accumulation.

BBM Bayesian Biome Model.

Bchron A Bayesian based age-depth model.

BHM Bayesian Hierarchical Model.

BIC Bayesian information criterion.

BITM Bayesian Indicator Taxa Model.

bmsl Below mean sea level.

CDF Cumulative distribution function.
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Acronyms

CFR Climate field reconstructions.

CI Credible interval.

CMIP Coupled Model Intercomparison Project.

COI Cone of influence.

CRPS Continuous Ranked Probability Score.

CRPSS Continuous Ranked Probability Skill Score.

CRU Climate Research Unit.

DAG Directed acyclic graph.

DO Dansgaard-Oeschger.

EMD Earth Mover’s Distance.

ENSO El Niño Southern Oscillation.

EPD European Pollen Database.

ESM Earth System Model.

FNN Feedforward neural network.

GBM Gradient Boosting Machine.

Glasso Graphical lasso.

GLM Generalized Linear Model.

GM Gaussian Model.

H Heinrich.

HIST Historical.

IAEA International Atomic Energy Agency.

IAT Integrated autocorrelation time.

IRD Ice rafted debris.
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Acronyms

KM Kernel Model.

LDA Linear Discriminant Analysis.

LGM Last Glacial Maximum.

LIG Last Interglacial.

LIS Laurentide Ice Sheet.

LPAZ Local pollen assemblage zone.

LR04 Globally distributed benthic 𝛿18O stack.

LUT Lookup table.

MAT Modern Analogue Technique.

MCMC Markov chain Monte Carlo.

MCR Mutual Climate Range.

MDA Mixture Discriminant Analysis.

Medstack Mediterranean stack from planktonic 𝛿18O.

MG Metropolis-within-Gibbs.

MH Middle Holocene.

MIS Marine Isotope Stage.

ML Machine learning.

NAO North Atlantic Oscillation.

NAP Non-arboreal pollen.

NGRIP North Greenland Ice Core Project.

PCA Principal component analysis.

PDF Probability density function.

PMIP Paleoclimate Modelling Intercomparison Project.

QDA Quadratic Discriminant Analysis.
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Acronyms

RF Random Forest.

RM Regression Model.

rwMH Random walk Metropolis-Hastingsn.

SISAL Speleothem Isotopes Synthesis and Analysis.

SMOTE Synthetic Minority Oversampling Technique.

SST Sea Surface Temperature.

StalAge Speleothem age modelling.

SVM Support Vector Machine.

VPDB Vienna Pee Dee Belemnite.

VSMOW Vienna Standard Mean Ocean Water.

WPS Wavelet power spectrum.

WRF Regional weather research and forecast model.

YD Younger Dryas.
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