
On Modeling and Assessing
Uncertainty Estimates

in Neural Learning Systems

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt
von

Joachim Sicking
aus

Coesfeld

Bonn, 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Stefan Wrobel
2. Gutachter: Prof. Dr. Christian Bauckhage

Tag der Promotion: 14.04.2023
Erscheinungsjahr: 2023

Betreuung der Dissertation am Fraunhofer IAIS:
Dr. Maram Akila, Dr. Tim Wirtz

Acknowledgments

One of the most enjoyable aspects of doing research is developing and discussing ideas with
colleagues, preferably while standing in front of a whiteboard or near a coffee machine.
The hints, sketches, and new perspectives generated in these talks help research activities
to hatch and make them grow. Thank you all for this support.

Some folks deserve special mention: first, Maram Akila, who supervised large parts
of this thesis. His curiosity, sharpness and serenity were of great help more than once.
Whether it is searching for a difficult-to-spot research path, doing something mundane
like debugging code, or discussing Rick and Morty episodes—Maram tends to contribute
thoughts of surprising clarity. Further thanks go to Tim Wirtz, who also supervised me,
for his “always-on” motivation and for being the idea-generation machine he is. I would
also like to mention Max Pintz, who developed from a Bachelor’s student to a PhD student
during the course of this thesis. Among many other contributions, he tamed the previously
wild DenseHMM code base just at the right moment. Not to forget Hojun Lim, who joined
our institute as a Master’s student during COVID-19. While the pandemic tried to reduce
him to a rectangular pane in a communication tool, he fiercely resisted and proved that
remote work can be a pleasant and rewarding experience.

Getting a bit more formal, special thanks go to my professorial supervisor Stefan Wrobel
for his guidance and to Christian Bauckhage for serving as the second examiner. I would
further like to acknowledge Alexander Kister for introducing me to the topic of uncertainty
estimation, Asja Fischer for sharpening some of our research contributions, and Daniel
Trabold for proofreading this thesis. Thanks also for the productive work to my other
collaborators and co-authors over the years, namely, Stefan Eickeler, Matthias Fahrland,
Sebastian Houben, Stefan Rüping, Emanuel Müller, and Jasmin Brandt.

This team “research NRW” is complemented by the team “industry Lower Saxony”,
i.e., Peter Schlicht, Fabian Hüger and Jan David Schneider from Volkswagen. Our projects
on uncertainty estimation for autonomous driving kick-started several research activities
and contributed to this work by providing a well-informed practitioners’ perspective. The
same applies to the publicly sponsored project “KI-Absicherung - Safe AI for Automated
Driving”, which gratefully provided funding for my research activities, as did the Fraunhofer
Center for Machine Learning. Furthermore, it is helpful to have supportive project leads
and department heads. Thanks in this respect go to Dirk Hecker, Stefan Rüping, Tim
Wirtz, Maximilian Poretschkin, Michael Mock, and Sebastian Houben.

Widening the focus, I would like to say a warm thank you to Sven Giesselbach for
cooking evenings, good talks, and a memorable conference trip to North Macedonia
in 2017. Moreover, special thanks to my office mates David Gutmann (at that time,
Knodt), Julia Rosenzweig, and Sujan Sai Gannamaneni for all our small conversations,
the enlightening, and the fun ones. Finally, I am glad to have awesome companions for
adventures and enjoyments in life beyond scientific research. These are my friends, my
parents and siblings, and, of course, my girlfriend Maria. You rock.

Abstract

While neural networks are universal function approximators when looked at from a
theoretical perspective, we face, in practice, model size constraints and highly sparse
data samples from open-world contexts. These limitations of models and data introduce
uncertainty, i.e., they render it unclear whether a model’s output for a given input datapoint
can be relied on. This lack of information hinders the use of learned models in critical
applications, as unrecognized erroneous predictions may occur. A promising safeguard
against such failures is uncertainty estimation, which seeks to measure a model’s input-
dependent reliability. Theory, modeling, and operationalization of uncertainty techniques
are, however, often studied in isolation. In this work, we combine these perspectives to
enable the effective use of uncertainty estimators in practice. In particular, it is necessary
to address (the interplay of) three points. First, we need to better understand the
theoretical properties of uncertainty estimators, specifically, their shortcomings stemming
from constrained model capacity. Second, we must find a way to closely model data
and error distributions that are not explicitly given. Third, for real-world use cases, we
need a deeper understanding of uncertainty estimation requirements and their test-based
evaluations.

Regarding the first point, we study how the estimation of uncertainty is affected (and
limited) by a learning system’s capacity. Beginning with a simple model for uncertain
dynamics, a hidden Markov model, we integrate (neural) word2vec-inspired representation
learning into it to control its model complexity more directly and, as a result, identify
two regimes of differing model quality. Expanding this analysis on model capacity to fully
neural models, we investigate Monte Carlo (MC) dropout, which adds complexity control
and uncertainty by randomly dropping neurons. In particular, we analyze the different
types of output distributions this procedure can induce. While it is commonly assumed
that output distributions can be treated as Gaussians, we show by explicit construction
that wider tails can occur.

As to the second point, we borrow ideas from MC dropout and construct a novel
uncertainty technique for regression tasks: Wasserstein dropout. It captures heteroscedastic
aleatoric uncertainty by input-dependent matchings of model output and data distributions,
while preserving the beneficial properties of MC dropout. An extensive empirical analysis
shows that Wasserstein dropout outperforms various state-of-the-art methods regarding
uncertainty quality, both on vanilla test data and under distributional shifts. It can also
be used for critical tasks like object detection for autonomous driving. Moreover, we
extend uncertainty assessment beyond distribution-averaged metrics and measure the
quality of uncertainty estimation in worst-case scenarios.

To address the third point, we need not only granular evaluations but also have to
consider the context of the intended machine learning use case. To this end, we propose a
framework that i) structures and shapes application requirements, ii) guides the selection
of a suitable uncertainty estimation method and iii) provides systematic test strategies
that validate this choice. The proposed strategies are data-driven and range from general
tests to identify capacity issues to specific ones to validate heteroscedastic calibration or
risks stemming from worst- or rare-case scenarios.

vii

List of Publications

Parts of this thesis have already been published:

• J. Sicking, M. Pintz, M. Akila, T. Wirtz, DenseHMM: Learning HMMs by Learning
Dense Representations, International Conference on Pattern Recognition Applica-
tions and Methods 2022, DOI: 10.5220/0010821800003122

• J. Sicking, M. Akila, M. Pintz, T. Wirtz, S. Wrobel, A. Fischer, Wasserstein Dropout,
Machine Learning (Springer), DOI: 10.1007/s10994-022-06230-8

• J. Sicking, M. Akila, D. Schneider, F. Hüger, P. Schlicht, T. Wirtz, S. Wrobel,
Tailored Uncertainty Estimation for Deep Learning Systems, under review, pre-print
on arXiv: 2204.13963

• J. Sicking, M. Akila, T. Wirtz, S. Houben, A. Fischer, Characteristics of Monte
Carlo Dropout in Wide Neural Networks, Workshop on Uncertainty and Robustness
in Deep Learning at ICML 2020

• J. Sicking, A. Kister, M. Fahrland, S. Eickeler, F. Hüger, S. Rüping, P. Schlicht, T.
Wirtz, Approaching Neural Network Uncertainty Realism, Workshop on Machine
Learning for Autonomous Driving at NeurIPS 2019

• J. Sicking, M. Akila, M. Pintz, T. Wirtz, A. Fischer, S. Wrobel, A Novel Regression
Loss for Non-Parametric Uncertainty Optimization, 3rd Symposium on Advances in
Approximate Bayesian Inference 2021

Two Master’s theses were written in the context of this dissertation:

• M. Pintz, Novel Optimization Schemes for Uncertainty Estimation in Regression
Neural Networks, University of Bonn, Computer Science, June 2021

• H. Lim, Improved Uncertainty Estimation in Object Detection Networks, RWTH
Aachen, Media Informatics, October 2021

ix

List of Code Repositories

Some of the publications listed above are accompanied by publicly available source code
repositories that allow for reproducing most of the numerical results presented in this thesis:

• DenseHMM: Learning HMMs by Learning Dense Representations:
https://github.com/fraunhofer-iais/dense-hmm

• Wasserstein Dropout:
https://github.com/fraunhofer-iais/wasserstein-dropout

• A Novel Regression Loss for Non-Parametric Uncertainty Optimization:
https://github.com/fraunhofer-iais/second-moment-loss

xi

https://github.com/fraunhofer-iais/dense-hmm
https://github.com/fraunhofer-iais/wasserstein-dropout
https://github.com/fraunhofer-iais/second-moment-loss

Contents

1 Introduction 1

2 Basic Concepts 11
2.1 Supervised and unsupervised learning . 11
2.2 Neural networks . 13
2.3 Model optimization . 17
2.4 Model regularization . 23

3 Uncertainty Estimation in Machine Learning 27
3.1 Types of uncertainty . 27
3.2 Modeling uncertainty in neural networks 31
3.3 Evaluating uncertainty estimates . 38

4 Impact of Model Capacity on Uncertainty 41
4.1 Capacity control of HMMs via representations 42

4.1.1 Recapitulation of HMM optimization 44
4.1.2 Structure and optimization of the DenseHMM 45
4.1.3 Impact of nonlinear kernelization 48
4.1.4 Empirical evaluation . 50
4.1.5 Discussion . 53

4.2 Monte Carlo dropout in wide neural networks 53
4.2.1 Prerequisites for Gaussian pre-activation distributions 54
4.2.2 Ambiguous observations for empirical pre-activation distributions . 55
4.2.3 Modeling of strongly correlated systems 57
4.2.4 Discussion . 59

5 Modeling Uncertainty Estimates by Means of Wasserstein Dropout 61
5.1 Motivation and derivation . 62
5.2 Uncertainty assessment beyond standard measures 68
5.3 Empirical evaluation on 1D regression datasets 71

5.3.1 Experiment setup . 72
5.3.2 Toy datasets . 73
5.3.3 Standard ML datasets . 74

xiii

Contents

5.4 Wasserstein dropout for object detection 82
5.5 Discussion . 89

6 Building Uncertainty Estimators for Product-Grade Deep Learning Systems 91
6.1 Regulatory and technical perspectives on trustworthy ML 94
6.2 A framework for developing and testing neural uncertainty estimators . . 96
6.3 Initial demand for an uncertainty estimator 98

6.3.1 Purpose and desired properties . 98
6.3.2 Operational design domain . 99
6.3.3 Modeling uncertainties . 99

6.4 Toward uncertainty acceptance criteria . 104
6.4.1 Categorizing uncertainty requirements 104
6.4.2 Formalizing uncertainty acceptance criteria 107

6.5 Choosing an uncertainty mechanism . 110
6.6 Scope and structure of uncertainty testing 114

6.6.1 Technical tests . 115
6.6.2 Global uncertainty tests . 116
6.6.3 Subset and pointwise uncertainty tests 117
6.6.4 Complementary uncertainty tests 121

6.7 Instantiating, executing, and evaluating uncertainty test cases 122
6.7.1 Instantiation . 122
6.7.2 Execution . 123
6.7.3 Evaluation . 123

6.8 Discussion . 124

7 Conclusion 127

Appendix

A Impact of Model Capacity on Uncertainty 137
A.1 Capacity control of HMMs via representations 137

A.1.1 Full Lagrangians of standard HMM and DenseHMM 137
A.1.2 Nonlinear A-matrix factorization 138
A.1.3 Implementation details and data preprocessing 138

A.2 Monte Carlo dropout in wide neural networks 139
A.2.1 Empirical observations . 141
A.2.2 Modeling of strongly correlated systems 142

B Modeling Uncertainty Estimates by Means of Wasserstein Dropout 147
B.1 Detailed analysis of the Gaussian-likelihood one-sample variant of Wasser-

stein dropout . 147
B.1.1 Analytical properties of the GL-OS Wasserstein dropout loss . . . 147
B.1.2 Composition of the uncertainty estimate 149

xiv

Contents

B.1.3 Detailed analysis of the two loss components 149
B.2 Extension to the empirical study . 152

B.2.1 Experimental setup . 152
B.2.2 Toy datasets: systematic evaluation and further experiments . . . 152
B.2.3 Standard regression datasets: systematic evaluation 154
B.2.4 Residual-uncertainty scatter plots 154
B.2.5 Object detection: systematic evaluation 155

B.3 Stability with respect to hyperparameters p and L 166
B.4 In-depth investigation of uncertainty measures 169

B.4.1 Dependencies between uncertainty measures 169
B.4.2 Discussion of NLL as a measure of uncertainty 169

List of Acronyms 173

List of Figures 177

List of Tables 179

Bibliography 181

xv

1. Introduction

Having attracted great attention in both academia and the digital economy, machine
learning (ML) models are about to become vital components of safety-critical applications.
Examples include autonomous driving (Bojarski et al., 2016; Zeng et al., 2019) and medical
diagnostics (Liu et al., 2014; Zhou et al., 2019), where unrecognized prediction errors
potentially put humans at risk. These systems require methods that are reliable not
only on average and under clean-room conditions, e.g., when only controlled and curated
inputs are being presented, but also in the messy and unforeseeable outside world that is
characterized, e.g., by continuous data shifts or the need to explicitly consider worst-case
scenarios. Autonomous driving (AD) systems, for instance, are employed in open-world
contexts and are thus likely to encounter challenging and structurally new scenarios
during operations (see Fig. 1.1). While such potentially critical situations are (fortunately)
rare, they may significantly impact the safety of operations, as it is typically unclear
whether systems learned from data can be successfully applied to such novel scenarios,
i.e., whether they generalize well. This holds in particular for the widely used model
class of neural networks (NNs), (non-)linear nestings of (sometimes millions or billions
of) atomic units termed neurons. These non-interpretable black-box models provide
unprecedented performance on a broad range of ML tasks; however, their generalization
abilities are notoriously difficult to predict. Cases where a lack of reliability even led
to fatal accidents are well documented for NN-based autonomous driving systems (see,
e.g., NTSB (2019a) and NTSB (2019b)).

Trustworthy machine learning, which is also often called safe machine learning, is a
sub-field of ML that addresses such model insufficiencies that prevent recent ML models,
despite their potential, from being broadly deployed in safety-critical applications (see,
e.g., Amodei et al. (2016); Koopman (2018); Houben et al. (2022)). Safe-ML techniques
for higher reliability1 are motivated by the observation that classical approaches to
improving model quality, which often build on collecting and employing ever larger and
more representative datasets, are subject to limitations. While enormous training sets may
help reduce a model’s uncertainty (Vapnik, 2000) and thus the need to accurately model
it, we can still not hope to “scale away” uncertainty given the sheer size of many model
input and output spaces and irreducible data noise. Instead, modeling techniques are
required that reflect uncertainty, for instance, by generating a distribution over plausible
outputs (for a given input) instead of predicting a seemingly unambiguous point estimate.
Such an output distribution should reflect modeling insufficiencies (e.g., due to model size
constraints and sparse data samples), and, additionally, grasp intrinsic data ambiguity

1Not all safe-ML techniques tackle performance-related issues and may instead concern, e.g., fairness or
interpretability. In this work, however, we focus on prediction quality.

1

1. Introduction

Fig. 1.1.: Examples of challenging and structurally new scenarios that an autonomous
driving (AD) system may encounter during operations and that might cause
insufficient or erroneous model behavior. The ability to detect such scenarios is
crucial for safe AD, as it allows for activating redundant algorithmic systems or
initiating a reduction of the vehicle speed. The displayed scenes differ in their
probability of occurrence: while low contrasts and blurry sensor information
(see left column) can be expected, not all types of traffic participants (see
middle column) can be foreseen. Anticipating concepts that are unrelated to
land transportation (like inflatable objects and parachutes, see right column) is
almost impossible. The images are taken from various sources; see Challenging
Traffic Scenes (2022).

(e.g., due to the stochastic nature of a system or measurement noise). These model and
data limitations are commonly referred to as epistemic uncertainty (also called model
uncertainty) and aleatoric2 uncertainty (also termed data-inherent uncertainty). For a
detailed discussion of these concepts, see Section 3.1. Here, we illustrate them through
two examples:

In Fig. 1.2, manual segmentations3 of human tissue by four radiologists are considered,
which can be used to learn ML models for medical diagnosis. This semantic classification
of pixels as “inconspicuous” or “conspicuous” is subject to data-intrinsic uncertainty
(aleatoric uncertainty) due to the blurriness of the computed tomography (CT) image and
due to (resulting) differences between the experts’ assessments. Their respective image
annotations are visualized in two different ways (see the l.h.s. and r.h.s. of Fig. 1.2). In
some cases, the differences among graders are significant, particularly in the last column of
the l.h.s. image (highlighted by a red frame) where the assessment of the second radiologist
(who classifies the tissue as “inconspicuous”) strongly deviates from those of her colleagues.
While the availability of such multi-annotations is beneficial, as it allows for approximating

2Alea is Latin for dice. The intrinsically stochastic dice roll lends its name to this type of uncertainty.
3Segmentation is the task of assigning pixel-level (semantic) class labels to an image.

2

Fig. 1.2.: Illustration of aleatoric uncertainty via annotated lung CT images from the
LIDC-IDRI dataset (Armato III et al., 2011). Unlike many other ML datasets,
these images come along with multiple annotations and thus provide rough
approximations of uncertainty ground truth distributions. Specifically, the
annotations indicate lung lesions that were marked by four radiologists. Their
labelings are shown as segmentation masks (l.h.s., second row to last row) and
colored contours (r.h.s.), respectively. The image on the l.h.s. is taken from
Kohl et al. (2018) with modifications, the one on the r.h.s. is from Nurfauzi
et al. (2021).

uncertainty ground truth distributions, such uncertainty information is not available for
the vast majority of ML datasets, rendering uncertainty estimation challenging.

While aleatoric uncertainty is due to the ambiguity of given data, epistemic uncertainty is
caused by the sparsity of data samples, which is particularly due to the high dimensionality
of input and output spaces. We exemplify epistemic uncertainty with a probabilistic
(neural) object detector (see Fig. 1.3) that was designed to capture this type of uncertainty.
Being trained to recognize traffic participants, such as pedestrians, cyclists, and cars,
“novel” (semantic) concepts in test inputs like a car with an open trunk lid (see the
largest detection on the l.h.s. image in Fig. 1.3) or a mannequin (see the detection on the
r.h.s. image in Fig. 1.3) cause high model weight uncertainty and thus high predictive
uncertainty (see figure caption for details). If the object detector is part of an autonomous
driving pipeline, such a lack of knowledge about the exact numbers and positions of traffic
participants in a scene may trigger downstream safety or mitigation mechanisms, for
instance, more conservative motion planning.

In reality, we typically observe mixtures of aleatoric and epistemic uncertainty. This calls
for uncertainty mechanisms that capture both these types. Established and theoretically
well-understood (Bayesian) techniques for uncertainty quantification (see, e.g., Section 3.3
of Bishop (2006)), however, do not readily scale to complex (particularly neural) ML
models. Other techniques are more scalable, but come at the cost of strongly simplifying
assumptions. For classification tasks, one may, for instance, rely on basic scores like softmax
statistics (e.g., its largest value (Hendrycks & Gimpel, 2017) or its entropy (Kendall & Gal,
2017)) that come “free of charge” as part of standard modeling approaches.4 However,
while these scores can be interpreted as “ad-hoc” uncertainty estimates, they are typically

4For regression tasks, particularly when modeled by standard neural networks, no such “default” uncer-
tainty measures are available.

3

1. Introduction

Fig. 1.3.: Visualization of (mostly) epistemic uncertainties in object detection. Each
detected “traffic participant” corresponds to a rectangular frame. The thickness
and color of the frame encode the respective position uncertainty, where
green, thin frames indicate low uncertainty and red, thick frames imply high
uncertainty. On the l.h.s., the detection of a dark car (the largest frame) is
highly uncertain, likely because of the “novel” concept of an open trunk lid. On
the r.h.s., the model confuses a mannequin with a pedestrian. Again, a high
uncertainty estimate indicates the model’s lack of confidence. The left image
is taken from the KITTI dataset (Geiger et al., 2012), with modifications from
Pintz (2021), and the right one from the A2D2 dataset (Geyer et al., 2020),
with modifications.

ill-calibrated, and calibrating5 them requires rather fragile additional mappings that
often do not generalize well (see, e.g., Snoek et al. (2019)). These observations foster
the need for more sophisticated (neural) uncertainty mechanisms that are theoretically
well motivated and practically applicable in industry-scale ML systems. A promising
and widely used candidate approach in this regard is Monte Carlo (MC) dropout (Gal
& Ghahramani, 2016a). Its conceptual simplicity from a practitioner’s perspective is,
however, contrasted by more involved inner workings (see Appendix of Gal & Ghahramani
(2016a)) that cause the theoretical understanding of this Bayesian approximation to be
not comprehensive yet, rendering unforeseeable behaviors and error modes more likely.
And while a variety of alternative uncertainty approaches have been established (Maddox
et al., 2019; Malinin et al., 2020; Amini et al., 2020; Barber et al., 2021; Durasov et al.,
2021; Fan et al., 2021), stable quantification of uncertainty is still an open problem. It
is, among others, complicated by the fact that uncertainty mechanisms are (in many
cases) learned as integrated parts of a model, i.e., they are supposed to quantify modeling
insufficiencies resulting from capacity limitations they are themselves subject to. This
raises the question of whether or how strongly the meta-task of uncertainty quantification
is affected by model capacity constraints and how the quality of uncertainty estimates
changes when model capacity is varied.

Apart from well-understood uncertainty estimation techniques, convincing evaluation
schemes (see Snoek et al. (2019) for a positive example) are required that facilitate

5Probabilistic(ally interpreted) model predictions are called (well-)calibrated if they coincide with actually
measured statistics. Assignments of images to image categories that are predicted to be 90% confident,
for instance, are properly calibrated if these assignments are actually correct in 90% of all cases (when
considering a large number of images).

4

a thorough assessment of the obtained uncertainty estimates. The general absence of
uncertainty labels, for instance, does not only complicate modeling uncertainties but
also constrains their evaluation. It necessitates either aggregating set-based evaluation
metrics (e.g., calibration measures like the expected calibration error, see Section 3.3 for
details) that do not allow for assessing the quality of individual uncertainty estimates or,
alternatively, performance-biased measures (like the negative log-likelihood (NLL), see
ibid. for details) that enable pointwise evaluations but reflect distributional properties
only in a very limited fashion. While these measures are statistically well founded (the
NLL, for example, is a so-called proper scoring rule (Gneiting & Raftery, 2007)), they
are not designed to address the (various types of) safety requirements a real-world ML
system is subject to.

From a safety perspective, one may ask for additional measures that resolve uncertainty
quality at a more granular level and provide (sufficient) sensitivity in modeling regimes
that are identified as potentially critical, for instance, in the case of an AD system, when
pedestrians are in the immediate vicinity of the vehicle. Additionally, one may consider
risk weightings of quantities that are typically treated on an equal footing by standard
measures, for instance, over- and underestimated uncertainties: the former ones likely
trigger a more conservative system behavior (causing a delayed arrival but no substantial
risks), as an input scenario is (falsely) “perceived” as more challenging than it actually is.
The latter, on the contrary, lead to overconfident model outputs that may cause potentially
harmful subsequent “actions” that do not adequately reflect the model’s actual ability
to handle the current input. Uncertainty metrics aside, standard evaluation schemes are,
moreover, rather stylized, as they assume, e.g., only discrete domain shifts or consider
solely average model performances while largely neglecting reliability in, for example,
worst-case scenarios. Such coarse uncertainty evaluations are particularly problematic,
as stability, understood as maintaining high quality on individual inputs across a wide
range of datasets and scenarios, is an important characteristic for mechanisms that are
supposed to foster a system’s trustworthiness. Depending on the application context, it
may even be acceptable to choose a more stable uncertainty estimator if it comes at the
cost of (slightly) reduced uncertainty quality in best-case scenarios.

To evaluate such balances between uncertainty properties, systematic testing is required.
Looking more broadly at our abilities to check such properties, we notice, however, that
established safety-critical systems are white boxes. They are manually composed, and
knowledge on physics, materials science, or code frameworks, for example, allows for
an (at least approximate) understanding of how they function and when they break.
Approaches for testing such white-box systems exploit this knowledge and typically rely
on splitting them into smaller semantic (sub-)units and, hierarchically reversed, first
examine these components, their integration, and, finally, the entire system. For non-
interpretable (neural) ML models, such as modern medical imaging and autonomous
driving systems, such assignments of functional blocks to model parts cannot be made.
Thus, traditional testing approaches are not readily applicable to assess learned systems
and their uncertainty estimates. Dedicated techniques for testing ML systems, on the

5

1. Introduction

other hand, exist; however, these approaches often do not reflect application-specific safety
and real-world demands, such as sufficient data coverage in critical input space regions.

To contribute, in light of the above, to trustworthy ML systems, we require uncertainty
estimators

• with well-understood properties and known limitations, which may, for instance,
stem from constraints of model capacity;

• that allow for close and stable approximation of (not explicitly) given data distribu-
tions;

• and that are assessed by evaluation measures and test strategies that address the
(specific) requirements of a given real-world ML use case.

These three research aspects provide the roadmap for this work. In the following, we
outline, for each of these aspects, conceptual and technical difficulties and sketch our
respective research approaches and contributions.

Impact of model capacity on uncertainty Existing uncertainty mechanisms rely on
(implicit) assumptions, for instance w.r.t. model capacity, which are not always guaranteed.
Specifically, they often assume simplifying distributional properties, where in a large-
capacity limit typically Gaussianity is argued. However, the validity of these assumptions
and their limitations are not thoroughly theoretically understood yet and thus bear the
risk of unforeseeable behavior and error modes, particularly for capacity-constrained
real-world learning systems. Therefore, we analyze the impact of model complexity on
the distributional properties of uncertainty estimates as well as on uncertainty quality,
i.e., the ability to correctly predict data-intrinsic uncertainty and model insufficiencies.
Technically, we control a model’s capacity by manipulating its hidden parameter space
(see Chapter 4), either explicitly, by varying its size (see Section 4.2), or implicitly, by
imposing structures on it that de-facto reduce model expressiveness (see Sections 4.1
and 4.2).

We begin in Section 4.1 with a simple model for uncertain dynamics, namely a hidden
Markov model (HMM), and integrate word2vec-inspired (Mikolov et al., 2013b) repre-
sentation learning into it. In this way, non-trivial embeddings for all model parameters
are obtained, and an alternative way to control model complexity is provided. Next, we
analyze the quality of the uncertain transitions of this DenseHMM as a function of model
complexity. The DenseHMM reaches state-of-the-art performance (for HMMs) and thus
confirms the effectiveness of our representation learning approach. We identify different
model regimes as model expressiveness (steered via representation length) changes.

In the context of neural models, MC dropout is a widely used technique for complexity
control that adds uncertainty to otherwise deterministic mappings. Providing, however,
only a rough approximation of Bayesian inference, MC dropout also carries theoretical
and practical drawbacks (see, e.g., Osband (2016); Gal et al. (2017)). For MC dropout
networks, we investigate the different types of output distributions that stochastic neuron

6

dropout can induce in Section 4.2. The model capacity is controlled via layer widths
and correlated initializations of the network parameters. While dropout-evoked output
distributions are commonly assumed to exhibit Gaussian behavior, we demonstrate, using
an explicit construction, novel properties, namely, non-Gaussian asymptotics. This opens
up new possibilities to control and model distributional properties of uncertainty.

Modeling uncertainty estimates by means of Wasserstein dropout A better under-
standing of the “inner mechanics” and the output distributions of probabilistic models, as
sketched above, provides a foundation for more reliable uncertainty quantification. To
practically employ uncertainty estimators as parts of (open-world) learning systems, their
output distributions need to be optimized to (training) data distributions that are typically
characterized by ambiguity and sparsity. Therefore, a combination of accurately modeled
aleatoric uncertainty and stable generalization to unseen (and potentially structurally
different) inputs, i.e., a reliable quantification of epistemic uncertainty, is desirable.

We address these demands with a novel uncertainty mechanism that differently aligns
so-called dropout-based sub-networks that are obtained by randomly switching off some
of the neurons of the full network. In the context of MC dropout, such sub-networks
are used to model NN output distributions in a parameter-free and potentially more
stable way, as they allow for encoding uncertainty information in the entire structure
of a network. While being widely used for estimating epistemic uncertainty as part of
MC dropout, the application of dropout sub-networks to model input-dependent aleatoric
uncertainty has—to the best of our knowledge—not been considered yet. Taking advantage
of the Wasserstein distance (see, e.g., Villani (2008)), we construct a novel uncertainty
mechanism, Wasserstein dropout (abbreviated as W-dropout, see Chapter 5), and its
compute-efficient Gaussian-likelihood one-sample (GL-OS) variant. Both W-dropout and
its GL-OS version simultaneously model the (regression) task at hand and input-dependent
(also called heteroscedastic) aleatoric uncertainty.

We conduct an extensive empirical evaluation where W-dropout outperforms state-of-
the-art uncertainty techniques w.r.t. various benchmark metrics, not only on in-data test
sets, but also under (different types of) data shifts. This finding can be understood as
W-dropout, which is constructed to grasp heteroscedastic aleatoric uncertainty, moreover,
captures epistemic uncertainty—a property “inherited” from the sub-network matching
mechanism of MC dropout. Additionally, we adapt W-dropout to modern 2D object
detection networks, namely, SqueezeDet (Wu et al., 2017) and RetinaNet (Lin et al.,
2017b), and find its before-mentioned beneficial properties confirmed, thus providing
evidence that W-dropout is reliably applicable as part of complex, task-specific model
architectures.

In our evaluations of W-dropout (and other uncertainty estimators), we focus on model
reliability in individual scenarios (in contrast to solely dataset-averaged assessments).
Moreover, lower “bounds” of system quality are studied, as well as different types of data
shifts and potential violations of commonly made modeling assumptions, particularly of
Gaussianity. To this end, we introduce two novel uncertainty measures: on the one hand,

7

1. Introduction

a non-saturating calibration score that allows us to determine previously unresolvable
types of deviations between a model’s predicted uncertainty and its actual error. On the
other hand, a measure for distributional tails that facilitates the analysis of data subsets,
particularly of worst-case scenarios, w.r.t. uncertainty quality.

Building uncertainty estimators for product-grade deep learning systems Striving
for safe and reliable deep learning (DL) systems, it is beneficial to think of uncertainty
estimators as “tools” that come along with specific combinations of strengths and weak-
nesses, e.g., with respect to estimation quality, generalization abilities, and computational
complexity. Given a DL application, uncertainty “tools” need to be picked that address
its use case-specific (and potentially broad) set of requirements. Recall, for instance, the
probabilistic object detection model described above, where uncertainty estimates allow
for distinctions between “familiar” and “novel” objects in traffic scenes. This information
may serve use cases, such as uncertainty-informed motion planning. In Chapter 6, we
structure and shape the requirements of such uncertainty use cases, from both an ML and
a safety perspective, and analyze representative uncertainty modeling approaches (and
our W-dropout technique) w.r.t. them. We finally develop strategies to systematically test
the obtained uncertainty estimates, particularly because established testing approaches
for engineered systems are generally not applicable (see above). Instead, our testing
strategies build on iteratively refined compilations of test datasets, beginning with coarse
data selections to test basic properties of an uncertainty estimator, followed by broad
datasets to analyze its global behavior, toward more specific test datasets that represent
application-critical (semantic and non-semantic) input space areas to uncover (potential)
structural weaknesses of an estimator. Within this data-hierarchical approach, the depth
and focus points of testing are “derived” from the requirements of the uncertainty use
case. This requirement-based (development and) testing framework is broadly applicable
and can help to establish safer ML systems. It also anticipates future machine learning
regulations that require evidence for the technical appropriateness of machine learning
systems. Our test strategies provide such evidence for system components modeling
uncertainty.

Outline In the following, we first provide a brief overview of basic machine learning
concepts in Chapter 2, particularly on learning paradigms (Section 2.1), neural networks
(Section 2.2), model optimization (Section 2.3), and regularization (Section 2.4). Building
on this foundation, we present central aspects of uncertainty quantification in Chapter 3:
the main types of uncertainty and their characteristics (Section 3.1), classes of modeling
approaches to account for them (Section 3.2), and common scores for the evaluation of
uncertainty quality (Section 3.3). The main part of the thesis is structured according
to the overview presented above. Studying uncertainty estimation to contribute to
trustworthy ML systems, we first investigate the impact of the complexity of (neural)
learning systems on the distributional properties and the quality of their uncertainty
estimates in Chapter 4. Specifically, we analyze hidden Markov models enhanced by

8

word2vec-inspired representation learning abilities (Section 4.1) and MC dropout networks
(Section 4.2). Targeting the stable approximation of data distributions, we propose a novel
dropout-based uncertainty mechanism termed Wasserstein dropout and two complementary
uncertainty measures in Chapter 5. To actually harness uncertainty quantification for
trustworthy ML applications, we lastly propose a conceptual framework for uncertainty
use cases in Chapter 6 that allows for systematically addressing application and regulatory
requirements by using uncertainty modeling techniques and hierarchical testing strategies.
A summary and a discussion of our main results, as well as an outlook on promising
follow-up research activities, conclude the work (see Chapter 7).

9

2. Basic Concepts

Before addressing the uncertainty of ML model predictions in the following chapters, we
first provide an understanding of how these predictions are obtained. To this end, we
begin with a concise recapitulation of standard learning paradigms in Section 2.1. Next,
we lay out the building blocks of neural networks, the central model class considered in this
thesis, in Section 2.2, and review fully connected and convolutional layers. Approaches to
optimizing and evaluating (neural) ML models are presented in Section 2.3. Finally, we
discuss model regularization in Section 2.4 to provide a basis for subsequent analyses of
the impact of model capacity on uncertainty estimation (see Chapter 4).

2.1. Supervised and unsupervised learning

When optimizing models on data, two fundamental learning paradigms can be distin-
guished: supervised learning that seeks to map input features to “target” outputs, and
unsupervised learning where no such targets are given and the model instead “distills”
intrinsic structural dependencies from a dataset.

While supervised learning provides a clear notion of how successful a mapping onto
“target” values (also called labels) is, it comes at the cost of requiring pre-defined, task-
specific labels. These labels are typically expensive to obtain, as they need to be provided
by a human expert. This is in contrast to unsupervised learning, which does not require
such labels. A sub-type of unsupervised learning is self-supervised learning that can (in
some sense) be understood as supervised learning with labels that are a natural part
of the data and thus come “free of charge”, for instance, the “future” observations in
a historical time series or the tokens of a text. Combinations of self-supervised and
supervised learning recently gained renewed attention: self-supervised pre-training (of
neural models) on large-scale datasets and a subsequent supervised “fine-tuning” enable
powerful language and vision models while relying on only comparably small sets of labeled
data (see, e.g., Devlin et al. (2019); Chen et al. (2020)). While we study a model for
uncertain dynamics that is trained in an unsupervised fashion in Section 4.1, the focus of
this thesis is on supervised learning.

Within supervised learning, most modeling tasks fall into the categories of classification
or regression. These two types of tasks differ by the structure of their output spaces:
classification assumes a discrete label space (think, for instance, of the assignments of
pictures to categories like “human”, “animal” or “countryside” that can be found under the
term “automatic tagging” on many modern mobile phones), while for regression tasks the
outputs stem from a continuous space (think, e.g., of a navigation system that predicts the

11

2. Basic Concepts

expected time of arrival at a destination). The parts of this thesis concerning supervised
learning put an emphasis on regression tasks.

To model a mapping from input features (e.g., the images to be tagged) to labels, we
first choose a model class, i.e., we predetermine the type of models to be considered. Model
classes differ in their complexity, i.e., their ability to grasp different types of statistical
dependencies between inputs and outputs (a linear model, for instance, is unsuited for
modeling a strongly nonlinear dependence), and their inductive bias (also called learning
bias), i.e., the (often only implicitly given) set of assumptions that a learning algorithm
makes when predicting labels for previously unseen input data points. Given a model class,
one seeks to find a model within that class which closely approximates the input-output
dependencies of so-called training data. This is done via optimization, i.e., the parameters
of a model are adapted such that the model outputs (more) closely match the desired
“target” values. While analytical optimization schemes exist for some model classes, many
more complex ones require (often iterative) numerical procedures (see Section 2.3). This
process of adjusting the model parameters is called model training. It seeks to (iteratively)
reduce the deviations between current model outputs and the labels of the training data,
as measured by a loss function.1

The quality of a model for a previously unseen data point, however, cannot be sufficiently
evaluated by means of training losses, as the training dataset is commonly assumed to be
only one of many possible samples from an unknown (and inaccessible) ground truth (gt)
data distribution Pgt. Due to the finite size of the training sample, it may, on the one hand,
not comprise some relevant statistical patterns of Pgt and, on the other hand, may contain
idiosyncrasies that a model “internalizes” during optimization. Thus, once the model is
optimized, evaluations on another sample from the ground truth distribution, which is
called test dataset, are conducted. Being drawn from the same data distribution, it is
structurally highly similar to the training data, however, contains input data previously
unseen by the model. Applying the trained model to such “new” data points is called
inference. For the reasons outlined above, the resulting performance of the model on these
data points is typically below its performance on the training dataset it was optimized on.
This difference in quality is termed generalization gap. For a discussion on how to steer
(or, at least, influence) model complexity and the generalization gap, see Section 2.4 on
model regularization.

For some model classes, statistical learning theory provides upper bounds for general-
ization errors (see, e.g., Vapnik (1991)). Given the empirical risk (i.e., the training error),
the size of the training dataset and the complexity of a model class as characterized by the
Vapnik-Chervonenkis (VC) dimension, the true risk (i.e., the model error on the unknown
ground truth data distribution) can be bounded. The bounds increase with model com-
plexity and decrease as the size of the training dataset grows. Such theoretical statements
typically assume independent and identically distributed (i.i.d.) datasets and hold for a
broad range of data distributions Pgt. In practice, it is, however, often challenging to

1It is common to split the “original” training dataset into two parts: the “actual” training set used
to minimize the loss function and a (typically smaller) validation set that is employed to determine
hyperparameters of the optimization procedure such as its termination “time”.

12

2.2. Neural networks

readily apply such results from statistical learning theory. On the one hand, it is difficult
to determine the VC dimension of complex models like application-scale neural networks.
Moreover, the bounds provided by statistical learning theory are coarse for many complex
learning systems and thus of reduced practical significance. For many open-world machine
learning (ML) systems, on the other hand, input data points furthermore fail to meet the
i.i.d. assumptions. ML-based systems for automated driving, for instance, process sensor
streams where subsequent recordings are highly correlated. Operating in the open world,
they additionally encounter input data that structurally deviates from training data due
to the sheer size of the input space and due to continuous changes of the environment
over time.

2.2. Neural networks

Among the various model classes considered in machine learning, artificial neural networks
are arguably the most discussed one in recent years. They are at the heart of the notable
progress achieved in various fields of ML ranging from text and speech understanding
(Vaswani et al., 2017; Devlin et al., 2019) over computer vision (He et al., 2016; Chen
et al., 2020) to ML for the sciences (Segler et al., 2018; Jumper et al., 2021), to name just
a few. In the following, we present the basic building blocks of this model class.

The smallest unit of a neural network is called neuron. In its simplest form, it computes
a weighted sum of its inputs and applies a (non-)linear transformation to the result. One of
the first models built that way was the so-called perceptron, a linear classifier (Rosenblatt,
1958). More complex neural networks employ a multitude of connected neurons that are
(in many cases) grouped in so-called layers, which in turn are ordered: the first layer,
termed input layer, takes the components of a given input data point and processes them
as described above. The outputs of the input layer serve as input for the first hidden layer
whose outputs are then handed over to the second hidden layer and so forth until the
final layer, the output layer, is reached that generates the output values of the network.
Unlike the hidden layers, the output layer is often linear for regression networks. For
classification networks, the results of the last layer are typically passed through a softmax
function as it maps onto the simplex. This way, the network outputs can be interpreted
as class probabilities. Neural networks with several hidden layers are termed deep neural
networks.

More abstract, neural networks can be represented as graphs where graph nodes
correspond to the neurons and graph edges to the inter-neuron connections. Neural
networks in which information always flows from input to output then correspond to
cycle-free graphs. They are called feedforward networks. Recurrent neural networks
(RNNs, see, e.g., Rumelhart et al. (1985); Hochreiter & Schmidhuber (1997)), in contrast,
build on cycle connections to model sequential dependencies. RNNs are not considered in
this thesis. In the following, we focus on two widely used types of feedforward networks
that are important for the remainder of this work: fully connected networks (FCNs) and
convolutional neural networks (CNNs). In FCNs (Werbos, 1974; Rumelhart et al., 1985),

13

2. Basic Concepts

 x3

1

....

 x1

 x2

1

....

....

....

....

y1

y2

y3

1 1

 x3

 x2

1 1

Fig. 2.1.: Sketch of a fully connected neural network with multiple hidden layers that
processes three input values (blue circles) and returns three output values
(orange circles). The network output is obtained by repeatedly applying (in
most cases) nonlinear transformations to the input. This is done within the
neurons that are visualized as empty circles. Light gray circles containing
a “1” value indicate additive bias terms. For further details, see the text in
Section 2.2.

all neurons (also called units) of a hidden layer are connected with all hidden units of
the previous and the subsequent layer, while no connections exist within the layer (see
Fig. 2.1). Mathematically, a layer of a FCN reads ϕ(W x + b) with x being the output of
the previous layer (or the input to the network), W a matrix of weights, b an additive bias
term and ϕ a so-called activation function that is applied element-wise. When optimizing
a fully connected network (see Section 2.3), both weights and biases are adapted. The
affine transformation W x + b yields the so-called pre-activations. Applying the typically
nonlinear activation function ϕ, we obtain the activations a(x) := ϕ(W x+b), the outputs
of the layer. A fully connected (regression) network fθ(x) is then given by a composition
of (in this case, L) fully connected layers as

fθ(x) = W (L+1) a(L)
(

a(L−1)
(

a(L−2)
(

. . . a(1)(x) . . .
)))

+ b(L+1) , (2.1)

where θ summarizes all learnable parameters of the FCN. The network maps inputs from
the Rnin onto outputs from the Rnout . As these types of networks can be seen as extensions
of the above described perceptron, they are also called multilayer perceptrons (MLPs).

A central characteristic of a FCN is the repeated application of a nonlinear activation
function ϕ, as, without it, Eq. 2.1 reduces to a single affine transformation. Among the
various proposed activation functions, some of the most widely used ones are the nonlinear
hyperbolic tangent, the nonlinear sigmoid as well as the rectified linear unit (ReLU).

14

2.2. Neural networks

These are defined as

tanh(x) = ex − e−x

ex + e−x
, (2.2)

sigmoid(x) = 1
1 + e−x

, (2.3)

ReLU(x) = max(0, x) . (2.4)

In contrast to tanh and sigmoid, ReLU does not saturate for large positive input values,
a property that may ease model optimization as so-called vanishing gradients generally
occur less often (see Section 2.3 for details). Variants of these activation functions exist
that seek to further improve model optimization, for instance, leaky ReLU (Maas et al.,
2013), which provides, unlike the standard ReLU, a small learning signal for negative
pre-activations. Parametric ReLU (He et al., 2015) extends the idea of leaky ReLU and
allows us to learn its slope parameter for negative-valued inputs as part of the model
training.

FCNs are widely applied as they allow for approximating a broad of set of functions.
A classical result in this regard is due to Hornik et al. (1989) who showed that feedforward
networks with one hidden layer are, in the limit of infinite layer width, universal function
approximators. Comparable results, moreover, exist for networks with fixed layer width
for which the limit of infinitely many hidden layers is considered (see, e.g., Kidger & Lyons
(2020)). An extensive theoretical treatment of deep feedforward networks can be found in
Roberts et al. (2021).

As the number of learnable parameters of FCNs increases linearly with the width of
a hidden layer and the number of input and output components, they do not scale well
to high-dimensional data spaces as are given, for instance, for image processing tasks.
This observation motivates another type of feedforward architecture, convolutional neural
networks (CNNs, Fukushima (1988); LeCun et al. (1999)). Their central building block are
convolutional layers that exploit the “invariance” of many input features under translation:
both low-level features like textures and contours and high-level features such as objects
or humans are typically unrelated to their precise position in an image. This “invariance”
enables to learn parameters that are decoupled from a specific spatial location. Technically,
this is realized by so-called kernels (or filters), parameter matrices with a small number of
elements that are applied to all patches of an image (or to the output feature maps of the
previous convolutional layer). Formally, such a convolutional mapping reads

(X ∗ K)i,j =
H∑

h=1

W∑
w=1

Xh+(i−1)s, w+(j−1)s Kh,w , (2.5)

where K denotes a kernel matrix of size H × W and X the input feature map. For a
patch of this feature map, element-wise multiplications with kernel elements are performed.
Adding a bias term b to the sum of these products and applying an activation function
ϕ yields the element (i, j) of the output feature map, Yi,j = ϕ ((X ∗ K)i,j + b). An

15

2. Basic Concepts

… … … … …

… 𝑋43 𝑋44 𝑋45 …

… 𝑋53 𝑋54 𝑋55 …

… 𝑋63 𝑋64 𝑋65 …

… … ...

… 𝑌43 …

* =

𝐘 = 𝐗 ∗ 𝐊

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

𝐊𝐗

Fig. 2.2.: Schematic illustration of a convolutional mapping. Assuming translational
invariance, a learned (in this case 3 × 3) kernel K is repeatedly applied to all
patches of an input feature map X, yielding an output feature map Y = X ∗ K.
The elements of Y are obtained by element-wise multiplication and summation,
e.g., Y43 = X43 K11 + X44 K12 + X45 K13 + ... In this example, the stride of
the convolutional mapping is 1, the bias term is 0, and no nonlinear activation
function is applied, see the text in Section 2.2 for details. The image is inspired
by a visualization from Velickovic (2016).

important technical parameter of a convolutional mapping is the stride s, the “step size”
of the kernel’s “movement” across the input feature map. This parameter influences the
size of the output feature map, i.e., whether and to which degree its spatial “resolution”
is reduced relative to the input feature map. For a schematic visualization of such a
convolutional mapping, see Fig. 2.2. Early ideas for convolutional mappings such as the
Neocognitron were inspired by biological systems (see Fukushima (1988)), as is true for
other building blocks of neural networks such as the perceptron (Rosenblatt, 1958). A
review of the historical development of neuron-based learning systems can be found in
Schmidhuber (2015).

Convolutional neural networks typically extract features from their input by repeatedly
applying sets of convolutional filters (and pooling layers, see below). The “receptive field”
of the features generated this way, i.e., the patch of the input image they are based on,
increases from layer to layer, rendering the extracted features in the first layers low-level
and the ones in subsequent layers more high-level. Figuratively, one may think, for the
first layers, of simple local features such as contrasts, textures or lines that are iteratively,
from layer to layer, “composed” to larger and more complex shapes and structures. Such
interpretations, however, hold at best approximately, as the features of CNNs (and NNs
in general) are, due to the complexity of the model class, non-interpretable. However, as
the parameters of the convolutional filters are learned from data, the resulting features
are more flexible compared to classical hand-crafted filters in image processing such as
the Sobel-Feldman operator (Sobel & Feldman, 1968) for edge detection, and generalize
significantly better. This renders CNNs the de-facto standard for many computer vision
tasks.

Within the group of CNNs, we distinguish between two types of networks: those that
combine convolutional and fully connected layers and those that are fully convolutional

16

2.3. Model optimization

(see, e.g., Long et al. (2015)), i.e., the latter ones do not require any components from
FCNs. Fully convolutional architectures are typically more lightweight compared to the
more traditional “combined” architectures that contain a parameter-intense transition
between the last convolutional layer and the first fully connected layer. Fully convolutional
networks particularly rely on so-called pooling layers (LeCun et al., 1989) to reduce the two
“spatial” dimensions of their feature maps. These layers “compress” feature map patches
by either reducing them to their mean (average pooling) or by taking their maximum
value (max pooling).

While CNNs are traditionally employed for computer vision tasks (such as image
classification (Krizhevsky et al., 2012) or object detection (Liu et al., 2016)), they moreover
find application in tasks such as time series modeling (see, e.g., Lea et al. (2016)) or
drug discovery (see, e.g., Wallach et al. (2015)). Recent computer vision architectures
increasingly combine convolutional networks with transformer components, see, e.g., Wu
et al. (2020a). In this thesis, we consider, in the context of uncertainty estimation, two
object detection architectures, namely, SqueezeDet (Wu et al., 2017) and RetinaNet (Lin
et al., 2017b), see Section 5.4.

2.3. Model optimization

To find a model within a model class that closely approximates the input-output de-
pendencies as given in a training dataset, many optimization schemes require a loss
function, which is also called objective function, that measures the current deviations
between predicted and “target” outcomes. First, we outline characteristics of widely used
regression loss functions. Next, we describe gradient-based optimization procedures for
neural networks. In the last part of this section, a concise review on parameter estimation
from a probabilistic perspective is given.

In regression setups, deviations between target values and model outputs are commonly
measured by means of (squared) L2 distances (which are also called Euclidean distances).
The average of these squared deviations across a dataset is referred to as the mean squared
error (MSE). Alternatively, one may consider absolute model residuals, i.e., the absolute
differences (also termed L1 distances) between model outputs and labels, and minimize,
for a set of training data points, the corresponding mean absolute error (MAE).

MSE and MAE differ in the uniqueness and the properties of the results obtained when
minimizing them. Estimating, for instance, the parameters θ of a linear model y = Xθ +ϵ

with Gaussian noise ϵ, the MSE yields a unique optimal estimator whereas the MAE in
general does not (see, e.g., Sielken & Hartley (1973)). In return, the MAE is more robust
toward model outcomes largely deviating from the desired “target” values as all model
residuals are equally weighted, unlike the MSE that puts (relatively seen) higher emphasis
on large deviations.

To leverage the respective strengths of L1 and L2 losses, combinations of them were
proposed, e.g., the smooth L1 loss (also called Huber loss, Huber (1992)) that employs
an L2 loss for small deviations below a pre-defined threshold value and an L1 loss above

17

2. Basic Concepts

it. This way, higher stability for small deviations as well as lower susceptibility to large
deviations is obtained. These characteristics render the smooth L1 loss a standard
regression objective in object detection, see, e.g., Fast R-CNN (Girshick, 2015), SSD
(Liu et al., 2016) and RetinaNet (Lin et al., 2017b), the last of which is employed in
Section 5.4. A generalized regression loss that contains several standard regression losses
as special cases (including the L2 and the smooth L1 loss) was proposed by Barron (2019).
It depends on two parameters that can be learned as part of the model optimization and
that allow for flexible adaption of the robustness of the objective function for each output
dimension.

As for many complex model classes (such as DNNs) no closed-form expressions are
known for the optimal parameters given a training dataset, numerical optimization schemes
are employed that minimize loss functions like the ones outlined above. Moreover, these
optimization problems are typically non-convex, i.e., no unique global minimum but many,
qualitatively different local minima exist. Numerical routines seek to find one of these
local optima by iteratively improving a randomly parameterized initial model. For loss
functions that are differentiable w.r.t. the model parameters, this can be done by applying
gradient-descent (GD) procedures (Kiefer & Wolfowitz, 1952). For those, an update of
the parameters θ of a model fθ is given by

θt+1 = θt − µt∇L(θt) = θt − µt

N

N∑
i=1

∇θL
(
fθ(xi), yi

)
(2.6)

with iteration index t, learning rate µt and the gradient of the training data loss ∇L(θt)
for the current model parameters θt. The training data loss L is defined as the arithmetic
mean of the loss function values L

(
fθ(xi), yi

)
for the training data points (xi, yi) with

i = 1, . . . , N . As −∇L(θt) points in the direction of the steepest decrease of the training
loss, a step in this direction is taken, scaled by the learning rate µt. For neural networks,
the gradient w.r.t. the model parameters is calculated by back-propagation (Rumelhart
et al., 1986), i.e., by the iterative propagation of training losses backward through the
network using the chain rule of differentiation.

These gradient descent steps are repeatedly applied until a stopping criterion is fulfilled.
Various such criteria exist that range from fixed maximum numbers of iterations to more
informed ones that take the progress of the optimization more directly into account,
e.g., by stopping when the changes of the training loss fall below a pre-defined (relative)
threshold or when overfitting (see Section 2.4) is indicated by an increase of a validation
set loss.

Performing each GD step on the entire training data (referred to as full-batch gradient
descent) is cumbersome for large datasets and often leads, in particular for neural networks,
to local minima in parameter space that do not generalize well. Instead, so-called mini-
batch gradient descent (also named stochastic GD (SGD)) is applied where in each
optimization step only a small, randomly drawn fraction of the training dataset, termed
mini-batch, is used to calculate the loss gradient. These mini-batches are drawn without
replacement such that each data point is used once before the sampling procedure starts

18

2.3. Model optimization

all over again. One such cycle is called training epoch. The composition and the order of
the mini-batches vary from (training) epoch to epoch.

Both theoretical (Amir et al., 2021) and empirical (Keskar et al., 2017; Masters &
Luschi, 2018) studies provide evidence for the beneficial generalization properties of SGD-
optimized models. The stochasticity in the optimization was shown to ease “escapes” from
saddle points (Fang et al., 2019) and to elicit convergence to “broad” (and thus better
generalizing) minima (Keskar et al., 2017).

Various extensions of SGD exist, among these, AdaDelta (Adaptive Delta, Zeiler (2012))
and Adam (Adaptive Moment Estimation, Kingma & Ba (2015)) that scale the gradient
component-wise, using running averages of gradients and related quantities from previous
optimization steps. These scalings can be seen as approximations of the diagonals of
inverse Hessians. Thus, AdaDelta and Adam can be understood as rudimentary proxies
for second-order optimization methods.

Theoretical results exist that give, under certain assumptions, convergence guarantees
for GD and SGD: (full-batch) gradient descent, for instance, was shown to converge to
a global minimum, assuming convexity of the optimization objective and a sufficiently
small learning rate (see Section 2.1 of Nesterov (2004)). Related results that relax these
assumptions can be found in Lee et al. (2016). In the case of smooth objective functions
and sufficiently decreasing learning rates, SGD almost surely converges to a local minimum
of the empirical risk (see Chapter 5 of Bottou (1999)). An extensive review of optimization
techniques in ML can be found in Bottou et al. (2018).

Once optimized, the quality of trained models is evaluated on a previously unseen
test dataset (see Section 2.1). For regression models, for instance, by means of the
root-mean-square error (RMSE), the square root of the MSE (see above). Performance on
test data is, except for toy problems, rarely perfect for reasons such as data noise, data
generation processes that do not include driving factors of labels y, or due to inadequate
modeling choices (see Section 3.1 for a discussion). To acknowledge such insufficiencies
more directly, the labels y are often assumed to be probability distributions conditioned
on the input variables x. Learning a model can then be rephrased as determining the
parameters θ of P (y | x, θ) given samples from an unknown conditional ground truth
distribution Pgt(y | x, θgt). In the following, we sketch frequentist and Bayesian procedures
to estimate these parameters, namely, maximum likelihood estimation (MLE), maximum a
posteriori estimation (MAP) and estimation by means of the full posterior distribution of
the model parameters. As the latter distribution is often intractable, variational inference
is discussed that approximates probability distributions through optimization.

Maximum likelihood estimation seeks to find parameters θ that maximize the likelihood
of a set of labels Ytrain given the input data points Xtrain. Assuming independence between
the individual training data points, the likelihood reads

L(θ) = P (Ytrain | Xtrain, θ) =
N∏

i=1
P (yi | xi, θ) . (2.7)

19

2. Basic Concepts

The optimal parameter set θML = arg maxθ∈Θ L(θ) within a parameter space Θ is called
maximum likelihood estimate. Inference is then performed by means of P (y | x, θML).

For practical reasons, especially numerical stability, the likelihood is often not directly
maximized. Instead, its negative logarithm is considered.2 Minimizing this negative log-
likelihood (NLL) is, due to the monotonicity of the logarithm, equivalent to maximizing
the likelihood. The NLL of the training dataset reads

NLL(θ) = − log L(θ) = −
N∑

i=1
log P (yi | xi, θ) . (2.8)

In the context of regression, a common choice for modeling P are normal distributions
as the central limit theorem (see, e.g., Fischer (2011)) ensures the Gaussianity of averages
over i.i.d. samples for a broad range of distributions. For a normal distribution in 1D with
mean value µ and standard deviation σ, the NLL of a single data point (xi, yi) reads

NLLnormal(µ, σ) = log(σ) + (µ − yi)2

2 σ2 + c (2.9)

with c = log
√

2π. This Gaussian NLL can be used to illustrate connections between
maximum likelihood estimation and empirical risk minimization: let us assume a model
that parameterizes the mean of a Gaussian distribution with constant standard deviation,

P (yi | xi, σ, θ) = N [µi = fθ(xi), σ] . (2.10)

The NLL of a training dataset under this model is given as
∑

i(log(σ)+(µi −yi)2/(2σ2)+c).
Rescaling and shifting this NLL yields

∑
i(µi − yi)2, the empirical risk when using an L2

loss.
In contrast to the frequentist approach of MLE, Bayesian approaches treat model

parameters as random variables. The initial distribution of these random variables, P (θ),
which is also called prior distribution, reflects pre-existing knowledge and assumptions
concerning the parameters (before observing any data). Bayes’ theorem (see, e.g., Sec-
tion 1.2 of Bishop (2006)) facilitates updates of the prior distribution P (θ) by means of
the data likelihood P (Ytrain | Xtrain, θ), i.e., the probability of observing labels given the
input data. This update procedure yields the posterior parameter distribution

P (θ | Xtrain, Ytrain) ∝ P (Ytrain | Xtrain, θ) P (θ) . (2.11)

Its normalization factor, the so-called evidence (or marginal likelihood), is independent of
the chosen parameters θ and is thus neglected here.

Bayesian approaches now differ in whether the full posterior distribution or approxima-
tions of it are used for inference. Considering only a mode of the posterior distribution

2The negative logarithm transforms the often very small (positive) likelihood values into significantly
larger (positive) values that are numerically better to handle.

20

2.3. Model optimization

yields a maximum a posteriori estimate (MAP) of the model parameters,

θMAP = arg max
θ∈Θ

P (Ytrain | Xtrain, θ) P (θ) . (2.12)

For inference, we then use the distribution P (y | x, θMAP) that is structurally similar to
the one obtained for MLE (see above). Indeed, MLE can be considered a special case of
MAP that results when assuming a uniform prior parameter distribution. Keeping, in
contrast to the MAP, the entire posterior parameter distribution, inference is done using
the posterior predictive distribution

P (y | x, Xtrain, Ytrain) =
∫

Θ
dθ P (y | x, θ) P (θ | Xtrain, Ytrain) , (2.13)

i.e., by calculating the expected value of P (y | x, θ) under the parameter posterior.
For many model classes the calculation of the exact posterior distribution is intractable,

in particular due to its normalization factor, the so-called evidence term, which is an
integral (or a sum) over a high-dimensional parameter space. This motivates approximating
approaches that can be broadly categorized into Markov chain Monte Carlo (MCMC) and
variational inference (VI) techniques. For a detailed comparison of these approximation
techniques, see Blei et al. (2017). Speaking loosely, MCMC techniques are theoretically
better understood but do not scale well to large model spaces whereas VI approaches
exhibit a beneficial scaling behavior at the price of being less well-grounded in theory.
Here, we focus on variational inference as it can be used to motivate dropout-based
uncertainty techniques (see Section 3.2) that are a central object of study in this work.

In variational inference (VI) approaches, the posterior distribution is approximated by a
so-called variational distribution Q(θ) from a pre-specified class of probability distributions.
The optimal Q(θ) is determined by minimizing a dissimilarity function between Q(θ) and
the true posterior P (θ | Xtrain, Ytrain). A common choice for this dissimilarity measure
is the Kullback-Leibler (KL) divergence DKL(·||·) (see, e.g., Subsection 1.6.1 of Bishop
(2006)). As DKL(Q(θ)||P (θ | Xtrain, Ytrain)) still contains the (often intractable) true
posterior, it cannot be readily minimized. Instead, it is re-written as

DKL
(
Q(θ) || P (θ | Xtrain, Ytrain)

)
= log P (Ytrain | Xtrain) − V

[
Q(θ)

]
(2.14)

where the second term

V
[
Q(θ)

]
:= EQ(θ)

[
log P (Ytrain | Xtrain, θ)

]
− DKL

(
Q(θ) || P (θ)

)
(2.15)

is called evidence lower bound (ELBO, see, e.g., Chapter 10 of Bishop (2006)). As
log P (Ytrain | Xtrain, θ) is independent of Q(θ), minimizing DKL(Q(θ)||P (θ | Xtrain, Ytrain))
is equivalent to maximizing the ELBO. This maximization is feasible as the ELBO does
not depend on the true posterior distribution P (θ | Xtrain, Ytrain).

21

2. Basic Concepts

Once optimized, the resulting Q(θ) distribution is used instead of the true parameter
posterior for inference. Thus, the predictive posterior distribution is approximated by

P (y | x, Xtrain, Ytrain) ≈
∫

Θ
dθ Q(θ) P (y | x, θ) = EQ(θ) [P (y | x, θ)] . (2.16)

Since the integral in Eq. 2.16 can generally not be calculated analytically, it is common to
approximate this expectation value over Q(θ) via Monte Carlo (MC) sampling, i.e., by
drawing a sample of parameter estimates {θ(i)}N

i=1 from Q(θ), yielding

P (y | x, Xtrain, Ytrain) ≈ 1
N

N∑
i=1

P
(
y | x, θ(i)

)
. (2.17)

As the comparison and matching of probability distributions is a technical core of
uncertainty estimation, we elaborate on (dis-)similarity measures between distributions
(also called statistical distances) in the following, namely, on the information-theoretical
Kullback-Leibler divergence (see above) and the transport-based Wasserstein distance.

The Kullback-Leibler divergence between two continuous probability distributions P1
and P2 reads

DKL(P1||P2) =
∫

Θ
dθ P1(θ) log

(
P1(θ)
P2(θ)

)
. (2.18)

Taking on positive values for P1 ̸= P2 (and a value of 0 if and only if P1 = P2), while not
being symmetric in its arguments, the Kullback-Leibler divergence can be interpreted as
the dissimilarity of a distribution P2 from a reference distribution P1. The KL divergence
is not a metric due to the asymmetry mentioned above and, moreover, as it does not satisfy
the triangle inequality. This is in contrast to the Wasserstein distance (see, e.g., Villani
(2008)) that fulfills all axioms of a metric and that originated in the field of optimal
transport. Formally, the p-th Wasserstein distance is defined as

WSp(P1, P2) =
(

inf
π∈Π(P1,P2)

∫
Θ×Θ

dπ(θ, θ′) d(θ, θ′)p

)1/p

(2.19)

with probability distributions P1 and P2 on Θ, a distance measure d and p ≥ 1. Π(P1, P2)
denotes the space of joint distributions with marginal distributions P1 and P2. The term
dπ(θ, θ′) d(θ, θ′)p can be understood as a cost of moving an infinitesimal element from
θ to θ′. The Wasserstein distance is thus the minimal total cost of “transforming” a
distribution P1 into a distribution P2 or vice versa. As the transport of piles of soil provides
a good intuition of the concept, the Wasserstein distance is also known as the earth mover’s
distance. Its sensitivity to distances between distributions enables, among others, stable
learning signals for gradient-based optimization even when strong divergences between
model and data are present. This property is exploited, for instance, in Wasserstein
generative adversarial networks (Wasserstein GANs, Arjovsky et al. (2017)) that helped

22

2.4. Model regularization

to overcome some of the difficulties connected with the initial KL-divergence-based
formulation of GANs (Goodfellow et al., 2014).

2.4. Model regularization

Optimizing models on training data bears the risk of not only learning general statistical
patterns in the data but moreover idiosyncrasies, e.g., due to noise or due to the limited
size of the training sample. As a consequence, such models often do not generalize well
to previously unseen test data and yield, compared to the training error, significantly
higher test errors, a phenomenon referred to as overfitting. Regularization approaches
seek to minimize this generalization gap between training and test data while keeping the
training error of the optimized model small. In the context of risk minimization, this goal
can be rephrased as aiming for a small true risk.

To better understand how regularization techniques work, we follow Section 2.9 in Hastie
et al. (2009) and consider a noisy function y = fgt(x) + ϵ with ϵ ∼ N (0, σ). Optimizing
a model on a training dataset D sampled from this function, the expected error of the
resulting estimator fD on a test input data point can be decomposed into (squared) bias,
variance and irreducible data noise as follows,

ED,ϵ

[(
y − fD(x)

)2]
= Bias2

D

[
fD(x)

]
+ VarD

[
fD(x)

]
+ σ2 . (2.20)

The bias term

BiasD
[
fD(x)

]
= ED

[
fD(x)

]
− fgt(x) (2.21)

describes the deviation between the (deterministic part) of the ground truth label, fgt(x),
and a mean model obtained by averaging over models fD that result from training on
different datasets D drawn from the data ground truth. The variance term

VarD
[
fD(x)

]
= ED

[(
ED[fD(x)] − fD(x)

)2]
(2.22)

measures the “spread” between the different trained models. High variances indicate that
the outcomes of the trained models strongly depend on the respective training dataset.
A trained model with high bias, on the other hand, may indicate insufficient parameter
optimization or that the chosen model class is not expressive enough to reflect the given
data dependencies. Using instead a more complex model class may decrease model bias,
however, often at the price of a higher variance.3 Regularization techniques are employed
to (at least indirectly) steer these trade-off relations between bias and variance.

3Recently, evidence was provided for a so-called “interpolation” regime of highly parameterized models
where the bias-variance trade-off of the “classical” regime of smaller models does (seemingly) not hold
any longer (Nakkiran et al., 2020). This so-called “double descent” hypothesis may help to improve the
theoretical understanding of the good generalization abilities observed, e.g., for many neural networks.

23

2. Basic Concepts

On a technical level, various approaches for model regularization exist, among these,
adjustments to the learning objective (e.g., by means of penalty terms), changes of the
learning algorithm (e.g., SGD and early stopping) and modifications of the model structure
during optimization (for a neural network, e.g., by randomly “dropping” neurons). In the
following, we motivate and outline some of these techniques.

Structural risk minimization (Vapnik & Chervonenkis, 1974) analyzes model quality and
generalization ability by means of the VC dimension, a measure of model complexity. Based
on the VC dimension (and the size of the training dataset), probabilistic upper bounds for
the true risk can be formulated (for classification models). In practice, however, the VC
dimension is difficult to determine for many model classes and easier-to-handle “proxy”
measures of model complexity are employed instead, for instance, penalty terms. Common
choices for these terms are L1 and L2 norms of the model parameters. L1 penalization
typically leads to sparse solutions whereas L2 penalties entail that the absolute values of the
model parameters are of comparable size. Weighting a penalty term with a regularization
parameter λ ≥ 0 and adding this product to the empirical risk Remp yields the structural
risk R = Remp + λ Rpenalty where the parameter λ determines the relative sizes of the two
summands and thus the strength of the regularization. Interestingly, it can be shown
that structural risk minimization bears conceptual similarities with MAP estimation,
specifically, that L2 regularization can be understood as placing a Gaussian prior on the
model parameters. In this case, the regularization strength corresponds to the variance of
the prior distribution.

Other types of regularization techniques do not change the optimization objective but
modify optimization routines: SGD, for instance, builds on stochastic gradients instead of
full-batch gradients for model parameter updates and yields (as discussed in Section 2.3)
favorable optimization results compared to GD in many applications. Moreover, one
may consider early stopping (Morgan & Bourlard, 1990), i.e., the evaluation of model
performance on a dedicated validation dataset after each training epoch (as a proxy for
the true risk of the model) where increases of the validation set loss indicate overfitting.

While the previously described regularization techniques are rather model-agnostic,
approaches exist that integrate regularizing elements into the structure of a model.
Important examples for such techniques in neural networks are batch normalization and
dropout-based regularization (which is, for brevity, often just referred to as dropout). Batch
normalization (BN, Ioffe & Szegedy (2015)) was introduced to facilitate the optimization
of deep neural architectures that traditionally often suffer from vanishing or exploding
gradients during backpropagation. On a technical level, BN is a re-scaling of the activations
in hidden layers in a way that reduces the distributional differences between training
mini-batches. These “standardized” activations were shown to have advantageous effects
on the generalization ability of a model (Luo et al., 2019).

Like BN, dropout (Srivastava et al., 2014) extends the network architecture by inserting
additional transformations. However, while BN keeps transformed variants of all pre-
activations, dropout-based regularization randomly sets the outputs of some neurons to
zero in each training step. This is equivalent to “dropping” the respective neurons entirely.

24

2.4. Model regularization

 x3

 x1

 x2

....

....

....

....

y1

y2

y3

1 1 1

1

 x1

 x2

 x1

 x2

 x3

y1

y2

 x1

 x2

 x3

y1

y2

Fig. 2.3.: Schematic visualization of dropout regularization in a fully connected network.
In each training step, some neurons of the hidden layers are randomly dropped.
This way, so-called co-adaptations of neurons are reduced (see Srivastava et al.
(2014)) and, in many cases, better generalization to unseen input data is
achieved.

The forward pass is thus performed with a stochastic sub-network instead of the full
network (see Fig. 2.3). As a different sub-network is used for each input, optimizing a
dropout-regularized network can be understood as the concurrent optimization of various
of its sub-networks. Therefore, the network is, figuratively speaking, forced to generate
features redundantly and to avoid fragile dependencies between neurons, as each of
them may be dropped. Technically, this type of dropout is realized by multiplying each
activation in the network with an i.i.d. Bernoulli variable that takes the value 1 with keep
probability q and the value 0 with drop probability p = 1 − q. The drop probability p is a
hyperparameter that needs to be optimized, e.g., by grid search. As dropout is applied
only during training but not at inference, dropout transformations are built in a way that
expectation values of activations are left unchanged. Technically, this is done by rescaling
the outputs of the dropout transformation with 1/q to compensate for the mean value q

of the employed Bernoulli variable, i.e., aout = 1/q ain ◦ z, with incoming and outgoing
activations ain and aout and a Bernoulli “mask” z.

Multiple variants of dropout exist, some of which are adapted to specific neural archi-
tectures like CNNs. Drop-connect (Wan et al., 2013), for instance, drops subsets of model
weights instead of activations. Spatial dropout (Tompson et al. (2015), also termed channel
dropout or 2D dropout) and drop-block (Ghiasi et al., 2018), in contrast, are applied
to activations. However, they zero out groups of activations (entire feature maps and
patches of feature maps, respectively) instead of individual feature map elements as the
“reconstruction” of the latter may not be challenging enough for sufficient regularization
given spatial correlations in the feature maps.

25

3. Uncertainty Estimation in
Machine Learning

Statistical models are inherently uncertain. They are, as outlined in the previous chapter,
optimized on training datasets of limited size and varying quality, and their “final” param-
eter configuration often depends on random initializations and stochastic optimization
processes (think, for instance, of the random composition and order of mini-batches
employed in SGD update steps, as described in Section 2.3). This raises the question
of whether model predictions for previously unseen input data points can be relied on
and how their degree of reliability can be quantified. A promising way forward, in this
regard, is model-internal self-assessment via uncertainty quantification (see Chapter 1 for
a motivation). Here, we lay out the basic technical concepts of uncertainty estimation.
In detail, this chapter is organized as follows: In Section 3.1, we provide an overview of
the main types of uncertainty present in ML models. Next, in Section 3.2, we review
prototypical approaches to model uncertainty and analyze how they capture different
types of uncertainty. Evaluating the resulting estimates is non-trivial, as no unique “gold
standard” for uncertainty quality is given, mainly due to a lack of uncertainty ground
truth labels (see discussion in Chapter 1). Thus, a variety of uncertainty metrics are
commonly used. We outline their assumptions, strengths, and weaknesses in Section 3.3.

3.1. Types of uncertainty

Uncertainties are typically categorized by their source. On a high level, distinctions
between data-intrinsic uncertainty (also called aleatoric uncertainty) and uncertainty
involved in the process of model building (referred to as epistemic uncertainty) are
common. At a lower level, however, categorizations of uncertainty types (e.g., Gal (2016);
Malinin & Gales (2018); Liu et al. (2019)) differ, for instance, in the considered sub-types of
epistemic uncertainty. In this chapter, we loosely follow Hüllermeier & Waegeman (2021),
who subdivide epistemic uncertainty into model (class) uncertainty and approximation
uncertainty (see Fig. 3.1). In the following, we begin, however, on a higher conceptual
level, namely, with the distinction between aleatoric and epistemic uncertainty.

Aleatoric uncertainty, which is also called data(-inherent) uncertainty or data noise,
is either a foundational part of the system to be modeled (think, for example, of the
stochastic nature of a dice roll) or stems from the process of measuring it, as any sensor
(whether it is, e.g., optical, acoustical or tactile) comes with physical limitations. One
may, for instance, think of an image that shows an object placed in front of a background.
Inevitably, there are pixels at the “border” between foreground and background that

27

3. Uncertainty Estimation in Machine Learning

Fig. 3.1.: Categorization and characterization of uncertainty sources, following Hüller-
meier & Waegeman (2021).

cannot be assigned unambiguously to one or the other. Moreover, not only segment
borders but entire segments may not be resolvable (see the medical imaging example in
Chapter 1). This aleatoric uncertainty is, for a given system and data generation process,
irreducible, i.e., it cannot be eliminated by conducting additional measurements.

Aleatoric uncertainty is further characterized by its input dependence. If the occurrence
and strength of the noise vary between input points, it is referred to as heteroscedastic
whereas the input-independent case is termed homoscedastic. For 1D toy examples of
both types of noise, see Fig. 3.2. Probabilistic modeling approaches reflect aleatoric
uncertainty as they assume conditional distributions P (y | x) instead of deterministic
functional mappings (see Section 2.3).

In contrast to data-intrinsic uncertainty, epistemic uncertainty is due to the process of
model building, i.e., due to the chosen model class and optimization routine. Following
Hüllermeier & Waegeman (2021), epistemic uncertainty can be regarded as a lack of
information on an ideal function

f∗(x) := arg min
ŷ∈Y

∫
Y

dy Pgt(y | x) L(y, ŷ) for each x ∈ X , (3.1)

where L denotes a loss function and X and Y input and output spaces. By definition,
the function f∗ minimizes the true risk R(f) = EPgt(x,y)

[
L(y, f(x))

]
and is thus the best

possible point estimator for the supervised learning task given by the conditional ground
truth distribution Pgt(y | x). As this ground truth distribution is typically not accessible,
f∗ is generally unknown. More information on f∗, however, can be acquired by drawing
larger data samples from Pgt(y | x). In this sense, epistemic uncertainty is reducible. For
practical modeling, it is beneficial to consider two sub-concepts of epistemic uncertainty,
namely, model (class) uncertainty and approximation uncertainty.

28

3.1. Types of uncertainty

Fig. 3.2.: Two 1D toy datasets with aleatoric uncertainty that is input-independent
(l.h.s.) and input-dependent (r.h.s.), respectively. Both data distributions
are Gaussian, x → N (0, σ(x)), with σ(x) = σ = 1 on the left-hand side and
σ(x) ∝ e−x2 on the right-hand side.

Model (class) uncertainty refers to the risk that the perfect model f∗ may not be part
of the considered model class. Choosing, for instance, linear functions for a complex,
nonlinear dataset, the solution space will not contain an appropriately fitting model.
Another example is visualized in Fig. 3.3 where a small two-layer FCN is fitted to a
high-frequency ground truth dataset (blue curve). The (mean) outputs of the trained
model (shown in orange) do not reflect the fluctuations of the training data and instead
roughly approximate the mean values of its oscillations. This behavior indicates insufficient
model complexity for the given dataset and deeper or wider neural networks may be
considered to reduce this model (class) uncertainty.

Approximation uncertainty, on the other hand, refers to the discrepancy between i) the
(unknown) best model for a learning task within the chosen model class and ii) the model
that results from optimization on training data. This type of uncertainty is mainly driven
by a lack of knowledge about the ground truth data distribution. The larger the structural
deviations between training data and ground truth distribution, the larger the mismatches
between the true risk R(f) one seeks to minimize (see Eq. 3.1) and the empirical risk
Remp(f) that is actually minimized. Approximation uncertainty may thus be reduced by
improving the data generation process, targeting higher representativeness of the training
data. In case that such an (approximately) “bias-free” data sampling can be established,
the gap between empirical and true risk can be further reduced by increasing the size of
the training set (see discussion in Section 2.1).

Approximation uncertainty manifests in trained models as parameter uncertainty that
in turn induces output uncertainty. The latter type of uncertainty is visualized in Fig. 3.4
for a 1D toy dataset: the data sample (blue points) drawn from a sinusoidal ground
truth curve (dashed blue curve) is not uniformly distributed along x but focuses on the
antinodes of the sinus curve, barely sampling the slopes between them. Consequently,
a model trained on this dataset (red curve) carries larger output uncertainty for these
sparsely covered regions of the input data space (gray intervals surrounding the red curve).

29

3. Uncertainty Estimation in Machine Learning

2 1 0 1 2
x

3
2
1
0
1
2
3

y

ground truth
model (x)

±2 model (x) interval
± model (x) interval

Fig. 3.3.: Illustrative visualization of model class uncertainty. The complexity of the
trained neural network (orange) is not sufficient to closely approximate the high-
frequency ground truth dataset (blue). Instead, the neural network roughly
interpolates the mean values of the data oscillations. In this situation, the
benefits of probabilistic models (see Section 3.2) are apparent as they, at least,
provide coarse, fluctuation-averaged uncertainty estimates that reflect the
magnitudes of the model residuals. The intervals µmodel(x) ± σmodel(x) and
µmodel(x) ± 2 σmodel(x) provided by a parametric modeling approach (see ibid.)
are shown in dark gray and light gray, respectively.

/2 0 /2
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

ground truth
model (x)

training data
± model (x) interval

Fig. 3.4.: Schematic visualization of predictive uncertainty that is induced by model
parameter uncertainty. The latter one, in turn, is due to a lack of knowledge
about the ground truth data. This lack of knowledge arises as the sinusoidal
ground truth (dashed blue curve) is sampled in a non-uniform way (along
the x-axis), resulting in a dataset (blue points) that barely covers the slopes
between the antinodes. A probabilistic model optimized on this data sample
is thus subject to epistemic uncertainty, which is low near the training data
points and grows with the distance to them (see the gray bands around the
red curve that indicates the model’s mean predictions). To create this image,
the publicly available source code accompanying Wang (2020) was used.

30

3.2. Modeling uncertainty in neural networks

3.2. Modeling uncertainty in neural networks

While all models are subject to (some of) the types of uncertainty described above,
uncertainty is often not accounted for by standard modeling techniques. Uncertainty
estimation seeks to enhance (neural) models by according capabilities and attempts to (at
least approximately) quantify their lack of knowledge for a given input. Precise uncertainty
quantification, however, is challenging as various sources of uncertainty need to be grasped
while dealing with often high-dimensional input and output spaces and the absence of
uncertainty labels. To anyhow facilitate uncertainty quantification in neural networks,
most approaches (implicitly or explicitly) make distributional assumptions, especially on
the Gaussianity of model outputs. Normality in this regard can be motivated via the
central limit theorem when assuming that modeling involves averaging across various
i.i.d.-distributed “micro-sources” of uncertainty which, for their part, cannot be modeled
explicitly. On a technical level, approaches to estimate predictive uncertainties can be
broadly categorized into three groups: parametric models, Bayesian approximations and
frequentist techniques. Representative approaches from these three groups are sketched in
the following paragraphs.

Parametric approaches Parametric uncertainty methods assume that the modeled
output distributions lie within a pre-specified family of probability distributions. This
rather strict assumption is technically implemented by networks that map inputs onto
parameter values of the considered probability distributions. In the case of a 1D Gaussian
output distribution, for example, the network outputs are interpreted as mean µθ(x) and
standard deviation σθ(x) (see Nix & Weigend (1994); Heskes (1996)). The optimization of
these networks is done by minimizing the negative log-likelihood (NLL) of the respectively
assumed output distribution (see the discussion on the MLE in Section 2.3). In the
1D Gaussian case, the positivity of the value of the output neuron corresponding to
the standard deviation σ is typically ensured by applying a transformation from R to
R+, such as the softplus(y) = log (1 + ey). Generalizing to n-dimensional Gaussian
output distributions, the positive semi-definiteness of covariance matrices Σθ(x) can,
for instance, be guaranteed by constructing Σθ(x) from a triangular matrix Lθ(x) via
Σθ(x) = Lθ(x)LT

θ (x), where the elements of Lθ(x) are outputs of the neural network
(Harakeh et al. (2020), for instance, use such a construction in the context of object
detection).

A technique that combines parametric output distributions with Bayesian elements is
deep evidential regression (Amini et al., 2020). It treats the output parameters µ and σ of
Gaussian likelihood distributions as random variables that follow a normal-inverse gamma
(NIG) distribution. The specific choice of a NIG is made for analytical tractability, as the
NIG is the conjugate prior for the assumed observation likelihood, namely, for a normal
distribution with unknown mean and variance. This way, a closed-form expression for the

31

3. Uncertainty Estimation in Machine Learning

model evidence can be derived,

P
(
y | ηθ(x)

)
=
∫

Ξ
dξ(x) P

(
y | ξ(x)

)
P
(
ξ(x) | ηθ(x)

)
= St

(
y
∣∣∣ γ, β

1 + ν

ν α
, 2 α

)
, (3.2)

where St denotes the Student’s t-distribution (see Subsection 2.3.7 of Bishop (2006)),
η = (α, β, γ, ν) the four parameters of the NIG distribution that are modeled as network
outputs and ξ = (µ, σ) the Gaussian parameters integrated over the domain Ξ = R × R+.
The corresponding NN is trained by optimizing the negative logarithm of the model
evidence (together with an additive regularization term) by means of gradient-descent
procedures. A prediction of the trained model, E[µ] = γ, then comes along with aleatoric
uncertainty, E[σ2] = β/(α − 1), and epistemic uncertainty, Var[µ] = β/(ν(α − 1)).

While this thesis is concerned with the narrow definition of parametric approaches given
above, one can define a broader notion. For this, the constraint that network outputs
correspond to parameters of probability distributions is relaxed. Quantile regression tech-
niques like Chung et al. (2021b), for instance, are distribution-free and predict multiple
quantiles of the input-conditioned target distributions (instead of mean and standard
deviation parameters). Moreover, one may even abstract from directly modeling statis-
tical properties of an output distribution, and, instead, construct uncertainty estimates
from learned scales in latent spaces, as is done, e.g., by van Amersfoort et al. (2020).
Corresponding approaches are often summarized under the term deterministic uncertainty
methods, see Postels et al. (2022) for a review.

However, the deterministic uncertainty estimates obtained by the outlined techniques
are often ill-calibrated, i.e., they do not adequately reflect the actual model quality.
This is commonly addressed by means of additional deterministic mappings termed
(post-)calibrators that are optimized on holdout validation datasets. On a technical level,
a variety of approaches to calibration were put forward, see, e.g., Guo et al. (2017),
Kuleshov et al. (2018), Kumar et al. (2019), and Gupta et al. (2021). However, concerns
were raised regarding their stability under data shifts, compare, e.g., Snoek et al. (2019),
and thus their usability in real-world applications.

Bayesian approaches Bayesian approaches for uncertainty quantification treat model
parameters as random variables (see Section 2.3). Assuming a prior parameter distribution
P (θ) that reflects pre-existing beliefs and a likelihood P (y | x, θ) for labels y conditioned
on the model parameters θ, Bayes’ rule can be applied to determine the parameter posterior
distribution P (θ | Xtrain, Ytrain) that describes the parameter uncertainty of the trained
model. Inference is then performed by means of the posterior predictive distribution,
P
(
y | x, Xtrain, Ytrain

)
, which is given as the expectation value of the likelihood under the

parameter posterior (see Section 2.3 for details).
While prior distribution and likelihood are chosen to closely approximate the assumed

statistical dependencies of the system to be modeled, in practice, their choice moreover
underlies the constraint of enabling efficient (at least approximate) calculation of parameter
posterior and posterior predictive distribution, e.g., by employing the so-called conjugate

32

3.2. Modeling uncertainty in neural networks

prior distribution for a likelihood to ensure that both the prior and the posterior parameter
distribution lie within the same family of probability distributions.

When neural networks are employed to model these probability distributions, they
are termed Bayesian neural networks (BNNs). Due to the strongly nonlinear nature of
most NNs, the exact calculation of the posterior and the predictive distribution is often
infeasible and approximations are required. Different technical approaches to BNNs can
be categorized by the types of approximations they apply. In the following, we consider
Laplace approximations as well as VI- and MCMC-based techniques.

The Laplace approximation (see Section 4.4 of Bishop (2006)) seeks to simplify the
parameter posterior distribution by approximating it with a Gaussian distribution around
the maximum a-posteriori (MAP) estimate θMAP. Practically, the MAP can be obtained
by optimizing a regression model with an L2-regularized L2 objective (see Section 2.3).
The Laplace approximation of the parameter posterior reads

P (θ | Xtrain, Ytrain) ≈ N
[
θMAP, H−1(θMAP)

]
(θ) , (3.3)

where (H)ij = −∂2/∂θi ∂θjP (θ | Xtrain, Ytrain) denotes the negative Hessian of the param-
eter posterior. As the calculation and inversion of Hessians is prohibitively expensive for
large models, various approximation techniques were put forward: simple approximations,
for instance, keep only the diagonal terms of H and neglect all non-diagonal ones (Becker
& LeCun, 1989). More advanced approaches like in Martens & Grosse (2015); George
et al. (2018); Ritter et al. (2018) exploit that neural models are often structured by
layers, which typically leads to Hessians that exhibit a block structure due to differences
between intra- and inter-layer dependencies. Such block structures are then modeled
using, e.g., Kronecker factorizations (Loan, 2000).

The Laplace-approximated parameter posterior (see Eq. 3.3) is then used, instead of the
intractable exact parameter posterior, to calculate the posterior predictive distribution,
which is used for inference. This calculation typically involves a high-dimensional integral
over the parameter space that is, in most cases, numerically approximated by MC sampling
(see Section 2.3).

Another class of approaches to BNNs is based on variational inference (see ibid.),
i.e., the parameter posterior distribution is approximated by a variational distribution that
typically belongs to a family of probability distributions parameterized by θ. The best
approximating variational distribution within this family is determined by maximizing
the ELBO w.r.t. θ as this optimization is equivalent to minimizing the KL divergence
between variational distribution and exact parameter posterior. To ease the calculation
and optimization of the ELBO, it is common to make simplifying assumptions on the
structure of the variational distribution such as Gaussianity and independence between
the variational parameters, which allows, for instance, for factorization. While the exact
optimization of the ELBO may be possible for small networks (see, e.g., Hinton & van
Camp (1993)), further approximations are required for larger models. Bayes by backprop
(Blundell et al., 2015), for example, applies MC sampling to estimate the ELBO and

33

3. Uncertainty Estimation in Machine Learning

enables its gradient-based optimization by means of a so-called reparameterization trick
(Opper & Archambeau, 2009; Kingma & Welling, 2014) that allows, loosely speaking,
for back-propagating through random variables. At inference, the posterior predictive
distribution is, as for Laplace-approximation-based BNNs, approximated by means of MC
sampling.

For some neural uncertainty techniques, connections to the well-understood framework of
Gaussian processes (GPs, Rasmussen (2003)) can be established, which help to strengthen
the theoretical foundation of the former ones. Before we describe according connections
in the next paragraph, we first present basic properties of GPs in the following: Gaussian
processes are generalizations of multivariate Gaussian distributions that define probability
distributions in infinite-dimensional function spaces. A prior distribution in such a function
space is determined by a mean function m(x) that is often assumed to be zero and a
covariance function k(x, x′), where x and x′ are any two inputs. The covariance function
pre-determines central properties of the considered functions like their smoothness, i.e., the
length scale on which these functions “change”. Observing training data points, the prior
distribution is updated and functions that do not fit the data well are no longer considered
for inference. To make predictions for previously unseen inputs, the defining property
of GPs is exploited, namely, that any finite number of observations follows a Gaussian
distribution. Starting from the joint distribution of train and test data and conditioning
it on the train data, the probabilistic test outputs can be determined. As this calculation
involves the inversion of the covariance matrix k(Xtrain, Xtrain) on training data Xtrain,
standard GPs do not scale well to large datasets. Various approximations were put forward
to improve their scalability, for instance, stochastic variational GPs (SVGP, Hensman
et al. (2013)) and sparse GP regression (SGPR, Titsias (2009)) that apply approximate
VI techniques. Probabilistic quality guarantees for these VI approximations are provided
by Burt et al. (2019). An extension of GPs that is important for Section 4.2 of this work
are so-called deep GPs (Damianou & Lawrence, 2013) that can, grossly simplified, be
understood as “concatenations” of GPs where the outputs of the “intermediate” GPs are
interpreted as latent variables that serve as input for the subsequent GP. Connections
between deep GPs and MLPs can be established by means of neural uncertainty estimation
techniques like Monte Carlo (MC) dropout that is discussed in the following.

Monte Carlo dropout (Gal & Ghahramani, 2016a) is closely related to the dropout
regularization technique (Srivastava et al., 2014) that was outlined in Section 2.4 as
both techniques add stochasticity to an otherwise deterministic network by randomly
dropping a fraction of its neurons for each input during optimization. However, while the
optimization procedures of dropout-regularized and MC dropout networks are alike, their
are operated in different ways during inference: for dropout-regularized networks, neuron
dropping is switched off, whereas it is kept active for MC dropout. Performing multiple
forward passes with a MC dropout network for a given test input yields a set of outputs
that is interpreted as a sample of an output distribution.

A Bayesian motivation of MC dropout can be provided by showing an equivalence
between certain deep Gaussian processes and dropout MLPs, which allows for interpreting

34

3.2. Modeling uncertainty in neural networks

MC dropout as a variational inference technique. The according proof by Gal & Ghahra-
mani (2016a) starts from a deep GP with a specifically chosen covariance function. As
the posterior distribution of this GP is intractable, it is approximated by a Bernoulli-
based variational distribution. Approximating the KL divergence between this variational
distribution and the GP posterior by Monte Carlo integration is then shown to yield an
L2-regularized loss of a dropout MLP. Principled adaptations of Monte Carlo dropout
for convolutional (Gal & Ghahramani, 2015) and recurrent (Gal & Ghahramani, 2016b)
neural architectures exist.

The widespread use of MC dropout for uncertainty estimation can be attributed to
a combination of advantages that it comes along with: given an existing neural model,
MC dropout does not require to modify its objective function and necessitates only minor
changes to its architecture, namely, the insertion of so-called dropout layers that “mask” a
subset of the model’s neurons. Standard deep learning frameworks like tensorflow (Abadi
et al., 2016) and pytorch (Paszke et al., 2019) provide implementations of such dropout
layers as dropout-based regularization techniques, which build on the same types of layers,
are widely used. With dropout layers being available “off-the-shelf”, MC dropout can be
readily implemented. It, moreover, enables uncertainty estimation in dropout-regularized
models (like Zagoruyko & Komodakis (2016); Huang et al. (2017); Chollet (2017)) without
requiring re-training and scales to application-size neural networks unlike many other
Bayesian techniques.

However, these advantages of MC dropout are partially offset by the computational
overhead that results from performing multiple forward passes and, moreover, by limi-
tations of its uncertainty modeling capabilities. While its ability to capture epistemic
uncertainty is a hallmark of MC dropout, it is less suited to accurately model aleatoric
uncertainty (see Section 5.1 for a discussion). To improve on these shortcomings, several
extensions of MC dropout were put forward:

Kendall & Gal (2017), for instance, combine MC dropout with networks that parame-
terize Gaussian distributions with their outputs. This way, MC dropout’s ability to model
aleatoric uncertainty can be improved. The mean prediction of the resulting “Gaussian”
dropout model is then given by averaging over the MC dropout-induced distribution
of the network’s µ-outputs. The variance of the model predictions is composed of two
terms, on the one hand, the mean value of the σ-output of the network (which describes
data-intrinsic uncertainty) and, on the other hand, the MC dropout-induced variance of
the µ-output values (that models parameter uncertainty). For a dropout-based uncertainty
mechanism that captures heteroscedastic aleatoric uncertainty in a fully non-parametric
way, see Chapter 5.

Concrete dropout (Gal et al., 2017) improves the flexibility of MC dropout by learning
layer-specific drop probabilities as part of the model optimization. To do so, Concrete
distributions (Maddison et al., 2017) are employed, continuous relaxations of discrete
variables that render the employed learning objectives, in contrast to MC dropout,
differentiable w.r.t. the drop rates. Optimization of Concrete dropout networks is done by
means of VI, namely, by maximization of an ELBO.

35

3. Uncertainty Estimation in Machine Learning

To avoid multiple stochastic forward passes during inference with MC dropout networks,
Postels et al. (2019) propose to approximate dropout-based (posterior) sampling by
analytical covariance propagation (see, e.g., Taylor (1996)). Another approach to cut
down computational overhead is to apply dropout only to the last layers of a network (see,
e.g., Snoek et al. (2019)). This way, the propagation of an input through the first layers
of the network is deterministic, rendering multiple repetitions of this part of the forward
pass unnecessary. The resulting hidden activations then serve as input for all stochastic
propagations through the subsequent dropout layers of the network.

Another way to realize BNNs is by means of Markov chain Monte Carlo (MCMC)
methods that allow for sampling probability distributions (see Section 11.2 of Bishop
(2006)). These sampling techniques are especially useful for multi-dimensional probability
distributions when direct sampling is infeasible. An important MCMC technique is the
Metropolis-Hastings algorithm (Hastings, 1970) that contains the initial MCMC algorithm
(Metropolis et al., 1953) as a special case. The Metropolis-Hastings algorithm allows for
sampling from distributions P (θ) that are otherwise difficult to assess. To do so, a function
f(θ) is required that is proportional to the density of P (θ). Starting from a random
initial point θ(0) in parameter space, further points θ(t), t ∈ N, are iteratively generated
by means of a Markov chain (see Subsection 11.2.1 of Bishop (2006)). Being at point θ(t)

in iteration t, a so-called candidate point θ′ is drawn by means of a proposal distribution
g(θ′ | θ(t)). A simple mechanism, based on the ratio f

(
θ′)/f

(
θ(t)) = P

(
θ′)/P

(
θ(t)), is

then used to decide whether the candidate point is accepted, i.e., θ(t+1) = θ′, or rejected.
It can be shown that the sets {θ(t)}T

t=1 generated along this chain are samples of the
distribution P (θ) if T is large enough to reach the stationary state of the Markov process.
Due to the sequential nature of data generation along the Markov chain, correlations
between the sample points θ(t) likely occur.

Such MCMC techniques are beneficial for Bayesian inference as they facilitate sampling
of the posterior parameter distribution without requiring to determine its often intractable
normalization factor. Instead, the proportionality between posterior distribution and
the product of prior distribution and likelihood (see Section 2.3) can be exploited. The
MCMC-based samples from the posterior then allow for approximating the posterior
predictive distribution of the model.

A variant of the classical Metropolis-Hastings algorithm outlined above is Hamiltonian
Monte Carlo (Neal, 2010) that helps to generate candidate points θ′ at larger distances from
θ(t) while maintaining high acceptance rates. This way, correlations between sample points
are reduced, which facilitates more efficient sampling of a distribution P (θ) compared
to the (often Gaussian) random walks of classical techniques. However, as Hamiltonian
Monte Carlo requires gradient computations on the entire dataset in each optimization
step, it does not scale well to larger problems. To overcome these limitations, stochastic
gradient MCMC techniques were proposed, e.g., stochastic gradient Langevin dynamics
(Welling & Teh, 2011) and stochastic gradient HMC (Chen et al., 2014).

Mandt et al. (2017) show that the SGD-based optimization of a model can be interpreted
as MCMC sampling from its posterior parameter distribution. In particular, they propose

36

3.2. Modeling uncertainty in neural networks

to approximate the posterior by iterate average stochastic gradient sampling (IASG)
that is based on averages over segments of the model’s parameter space trajectory
during optimization. A conceptually similar approach is the stochastic weight averaging
Gaussian technique (SWAG, Maddox et al. (2019)) that approximates a model’s posterior
distribution by sampling from N [µSWAG, ΣSWAG](θ) where the mean µSWAG and the
covariance ΣSWAG are constructed from the SGD trajectory. To better capture the multi-
modal structure of neural network weight posteriors, Zhang et al. (2020b) propose cyclical
MCMC that explores and samples from multiple, structurally different local minima
(modes of the posterior) during optimization.

Frequentist approaches Unlike Bayesian approaches, frequentist techniques treat model
weights as deterministic parameters and not as random variables. Probabilistic (data)
dependencies are reflected by (implicit) conditional distributions P (y | x) that are typically
approximated by sampling. A common approach to obtain such samples are model
ensembles, i.e., sets of models where each model provides a prediction for a given input.
The spread of the resulting output sample, which is measured, e.g., by quantile values,
describes the ensemble’s predictive uncertainty.

Such model ensembles can be constructed in different ways: a simple approach is to
consider L models from the same model family (e.g., neural networks with the same
architecture) that are optimized, independently of one another, on the entire training
dataset. The resulting models (and thus their respective output values) differ from
one another due to randomness in the optimization process (e.g., due to random model
parameter initializations and the random composition and ordering of the training mini-
batches), which entails convergence to qualitatively different minima. Among the more
advanced ensembling approaches, two techniques are particularly important: bootstrap
aggregation (bagging, see, e.g., Section 14.2 of Bishop (2006)), where models are trained on
randomly drawn subsamples of the full training dataset, and boosting (ibid., Section 14.3),
which relies on “ordered” model training where successive models focus on parts of the
training data that were challenging for the previously trained models. This way, boosting
combines models with (potentially) high biases such that the resulting ensemble exhibits
low bias, whereas bagging yields a low-variance ensemble starting from models with high
variances.

In deep learning, so-called deep ensembles (Lakshminarayanan et al., 2017) are widely
used. For regression tasks, these ensembles typically build on “Gaussian” networks,
i.e., networks whose outputs are interpreted as mean µ and covariance Σ of a Gaussian
distribution. Assuming that all trained “Gaussian” networks contribute equally to the
ensemble, the output distribution of the latter is given by the Gaussian mixture

P (y | x) = 1
L

L∑
l=1

N
[
µl(x), Σl(x)

]
(y) , (3.4)

where l = 1, . . . , L indexes the ensemble components. To reduce the complexity coming
along with such multi-modal Gaussian mixture distributions, they are often approximated

37

3. Uncertainty Estimation in Machine Learning

by simple unimodal Gaussian distributions with matching first and second moments. Deep
ensembles constructed in this way were shown to yield accurate uncertainty estimates
(see, e.g., Snoek et al. (2019); Gustafsson et al. (2020)), rendering them a state-of-the-art
method. Fort et al. (2019) attribute these observations to an ensemble’s ability to capture
the multi-modality of loss landscapes, which allows for providing diverse (and often
well-generalizing) sets of solutions. Several variants of deep ensembles were put forward,
among others, resource-efficient approaches like batch-ensembles (Wen et al., 2020) and
“masksembles”, (Durasov et al., 2021) as well as techniques where component architectures
are varied as part of the optimization procedure, for instance, hyperparameter ensembles
(Wenzel et al., 2020) and NES ensembles (Zaidi et al., 2021).

Moreover, ensembling-based techniques can be combined with Bayesian approaches like
Gaussian processes as is done by so-called Bayesian non-parametric ensembles (Liu et al.,
2019). They facilitate the attribution of predictive uncertainty to aleatoric and (different
kinds of) epistemic uncertainty. This characterization allows for a more adequate handling
of challenging inputs and provides information on whether encountered uncertainty is
reducible, e.g., by increasing the size of the training dataset.

Another type of frequentist approach are so-called jackknife-based methods that build
on jackknife resampling (Quenouille, 1956; Tukey, 1958), which helps (similarly to boot-
strapping) to determine variances and biases of statistical estimates. For a dataset of size
N , N so-called leave-one-out estimates of a parameter are calculated, each of which based
on a dataset of size N − 1 obtained from the original dataset by systematically removing a
single data point. Jackknife+ (Barber et al., 2021), for instance, uses jackknife resampling
to construct model prediction intervals and to provide so-called coverage guarantees
which ensure that test data labels lie (with high probability) within these intervals. The
guarantees given by Jackknife+ hold for a broad range of data distributions.

A naive application of such jackknife methods for uncertainty estimation in neural
networks would typically involve the training of N neural networks on respective leave-
one-out training datasets. As such a procedure is prohibitively expensive in most cases,
approximations of the leave-one-out predictions were proposed, for instance, by means of
smaller ensembles (Kim et al., 2020) or based on techniques that build on the training loss
incurred when optimizing a neural network on the full dataset (Alaa & Van Der Schaar,
2020). The output samples that these approximations yield for a given input are then
used to quantify uncertainties by means of confidence intervals.

3.3. Evaluating uncertainty estimates

Evaluating uncertainty estimates is about comparing (often high-dimensional) probability
distributions. Typically, it is assessed how well a predictive distribution, induced by
uncertainty modeling techniques like the ones discussed above, matches a ground truth
or reference distribution that reflects the given data-intrinsic uncertainty or the task
performance of the model. Such quality assessments of predicted uncertainties are especially
relevant in light of the (often strong) distributional and independence assumptions they

38

3.3. Evaluating uncertainty estimates

rely on, particularly, as the impact of these assumptions on the predicted uncertainties is
difficult to quantify for complex model classes. While comparisons between ground truth
and predicted distributions at the level of individual data points would be desirable, they
are complicated by the (already mentioned) general unavailability of uncertainty ground
truth information. Measures to evaluate the quality of uncertainty estimates vary, among
others, in the way they circumvent this obstacle.

Negative log-likelihoods (NLLs), for instance, facilitate pointwise evaluations by pro-
viding information on how likely a ground truth value occurs given a model’s output
distribution (see, e.g., Blei & Jordan (2006); Walker et al. (2016); Gal & Ghahramani
(2016a)). Motivated by the central limit theorem (CLT) and in accordance with modeling
choices, the predicted output distributions are often assumed to be Gaussian for regression
tasks.1 As measures for likelihoods, NLL values are hybrid scores that entangle uncertainty
quality with task performance and favor, given two models with comparable uncertainties,
the better performing one. Moreover, they capture distributional properties of uncertainty
estimates only in a limited fashion, as is discussed in Appendix B.4.2.

This is in contrast to calibration measures that put emphasis on distributional char-
acteristics. They are set-based, i.e., statements w.r.t. calibration can, due to a lack of
ground truth information, typically not be obtained for single data points but only for
entire datasets or sufficiently large sub-sets of them. An important representative of this
class is the expected calibration error (ECE, DeGroot & Fienberg (1983); Naeini et al.
(2015)) that measures deviations between the distribution of predicted uncertainties and
the distribution of the actually occurring model errors. While most contributions on
ECEs focus on classification tasks as probabilistic classifiers naturally provide confidence
information (see, e.g., DeGroot & Fienberg (1983); Guo et al. (2017)), ECE formulations
for regression tasks also exist: following Kuleshov et al. (2018), an uncertainty estima-
tor for a regression task is perfectly calibrated if, for each quantile value q, q% of all
ground truth labels lie below the q-quantile values of the respectively predicted output
distributions (that are, once again, typically assumed to be Gaussian). The regression
ECE measures deviations from this ideal behavior. For reasons of technical feasibility,
deviations are not determined for individual quantile values, but for quantile intervals
that can be constructed in an overlapping or non-overlapping fashion. Aggregating the
per-interval deviations then yields the regression ECE of a model. For further variants to
calculate the ECE, see Roelofs et al. (2022) and references therein. While we focus on the
ECE measure in this work (see Section 5.2 for technical details), alternative calibration
scores exist. Gupta et al. (2021), for instance, propose a binning-free measure based
on the Kolmogorov-Smirnov (KS) statistic. For detailed analyses and comparisons of
different uncertainty measures (including a KS-based one), refer to Subsection 6.4.2 and
Appendix B.4.1. To not only measure uncertainty calibration but to optimize for it as part
of gradient-based model training, differentiable calibration measures (or approximations

1In some cases, related probability distributions are considered, deep evidential regression models, for
instance, employ NLLs based on Student’s t-distribution (see Section 3.2).

39

3. Uncertainty Estimation in Machine Learning

thereof) are required (compare Kumar et al. (2018), Krishnan & Tickoo (2020), and
Karandikar et al. (2021)).

In particular for real-world applications, not only the calibration of uncertainty estimates
is of interest but also their ability to solve downstream tasks, such as detecting out-of-
distribution (OOD) inputs or adversarial attacks. Simple detection mechanisms can be
obtained by thresholding uncertainty estimates and “raising a flag” when an uncertainty
estimate surpasses a pre-defined threshold value. To evaluate the quality of such binary
classifications independent of the particular choice of the threshold value, areas under the
receiver operating characteristic and areas under the precision-recall curve are considered
(see, e.g., Hendrycks & Gimpel (2017)).

Uncertainty estimators can moreover be assessed by investigating their qualitative
behavior. Kendall & Gal (2017), for instance, analyze if the epistemic uncertainty
decreases when increasing the size of the training dataset, and Wirges et al. (2019) study,
for a 3D regression task, how uncertainty estimates depend on the distances of the detected
objects. Visualizations2, finally, can help to evaluate semantic high-level properties of
uncertainty estimates that are difficult to quantify, as relevant semantic meta-information
is generally not available.

2Think, for instance, of heatmaps that visualize pixel-level uncertainty estimates in the case of a semantic
segmentation network.

40

4. Impact of Model Capacity on Uncertainty

Uncertainty modeling techniques seek, unlike their deterministic counterparts, not only
to encode input-output dependencies but also to capture arising challenges, e.g., due to
intrinsic data uncertainty or model class errors. Take, for instance, Fig. 3.3 (p. 30) as an
illustrative example, where an under-complex probabilistic (neural) model is unable to
closely approximate a high-frequency dataset. Instead, it roughly fits the data mean while
predicting coarse fluctuation-averaged uncertainty intervals. These uncertainty estimates
allow the model, figuratively speaking, to catch a glimpse of the more intricate actual
input-output relations in the data. One may thus think of uncertainty estimation as an
attempt to grasp the data properties, if not exactly, then at least in probability.

Starting from this observation, we study, in the present part of this work, how the
quality and the properties of uncertainty estimates depend on model complexity. For
low-dimensional toy datasets (see Fig. 3.3), inappropriate modeling choices are easily
noticed, and more complex (e.g., deeper and wider neural) models may be chosen instead.
The latter can express a broader range of input-output relations and are thus able to mimic,
e.g., high-frequency data fluctuations. In this way, modeling residuals become small in
magnitude and thus reduce the need to capture them using uncertainty estimates. However,
for high-dimensional datasets (on which most real-world ML applications operate), such
intuitive assessments of model complexity are not feasible, mainly because of their sparsity
due to the “curse of dimensionality” (see, e.g., Section 1.4 of Bishop (2006)). Deterministic
high-frequency relations (which could, in principle, be modeled) and data noise (that is
irreducible) thus become virtually indistinguishable.

Technically, changes to the complexity of a model (with fixed input and output dimen-
sions) can be made by manipulating its latent parameter space, for example, by varying
its size (see Section 4.2) or by imposing correlations on it to effectively reduce model
expressiveness (see Sections 4.1 and 4.2). Specifically, we study two types of models in
this chapter: hidden Markov models (HMMs, see Section 4.1) and fully connected neural
networks (FCNs, see Section 4.2). The former are simple models for uncertain dynamics
of (in our case, discrete) sequential observations. These HMMs come along with an
inherent notion of (inter-class) uncertainty. Thus, model quality and quality of uncertainty
estimates are closely interlinked. The second model class of FCNs, in contrast, typically
yields deterministic point estimates for regression setups and simple, often ill-calibrated
confidence scores in the case of classification tasks. We extend FCNs to Bayesian networks
by employing Monte Carlo (MC) dropout, a widely used regularization and uncertainty
technique based on drawing random sub-networks during training and at inference (see
Section 3.2 for details). For these MC dropout networks, we study how the distributional
properties of their outputs depend on modeling choices, particularly when imposing

41

4. Impact of Model Capacity on Uncertainty

correlations on their hidden parameters. The output distributions carry information on
both task performance and uncertainty quality: the mean values of these distributions are
typically interpreted as the model’s (mean) prediction (see Section 3.2), while uncertainty
estimates are conveyed in their widths, which quantify how likely the mean value is
actually realized. Dropout-enhanced neural models are, even beyond Section 4.2, a central
object of study in this thesis, particularly in Chapter 5.

4.1. Capacity control of HMMs via representations

Hidden Markov models (Rabiner & Juang, 1986) have been a state-of-the-art approach for
modeling sequential data for more than three decades (Hinton et al., 2012). Their success
story is backed by a large number of applications ranging from natural language modeling
(Chen & Goodman, 1999) and automatic speech recognition (Bahl et al., 1986) over
information extraction (Scheffer et al., 2001) to robotics (Fu et al., 2016). While still being
used frequently, many more recent approaches are based on neural networks instead, like
feed-forward neural networks (Schmidhuber, 2015), recurrent neural networks (Hochreiter
& Schmidhuber, 1997), or spiked neural networks (Tavanaei et al., 2019). However, the
recent breakthroughs in the field of neural networks (Deng et al., 2013; LeCun et al., 2015;
Schmidhuber, 2015; Paul et al., 2015; Goodfellow et al., 2016; Minar & Naher, 2018; Wu
et al., 2020b) are accompanied by a substantial lack of their theoretical understanding.
In contrast, HMMs come with a broad theoretical understanding, for instance, of the
parameter estimation (Yang et al., 2017), convergence (Dempster et al., 1977; Wu, 1983),
consistency (Leroux, 1992), and short-term prediction performance (Sharan et al., 2018),
despite their non-convex optimization landscape.

Unlike HMMs, (neural) representation learning became more prominent only re-
cently (Mikolov et al., 2013b; Pennington et al., 2014). From the first day following
their release, approaches like word2vec or Glove (Mikolov et al., 2013a;b; Pennington
et al., 2014; Le & Mikolov, 2014) that yield dense representations for state sequences, have
significantly emphasized the value of pre-trained representations of discrete sequential
data for downstream tasks (Kim, 2014; Wang et al., 2019). Since then, those found
application not only in language modeling (Mikolov et al., 2013c; Zhang et al., 2016b; Li
& Yang, 2018; Almeida & Xexéo, 2019) but also in biology (Asgari & Mofrad, 2015; Zou
et al., 2019), graph analysis (Perozzi et al., 2014; Grover & Leskovec, 2016), and even
banking (Baldassini & Serrano, 2018).

Ever since, the quality of representation models increased steadily, driven especially by
the natural language community. Recently, so-called transformer networks (Vaswani et al.,
2017) were put forward, complex deep architectures that leverage attention mechanisms
(Bahdanau et al., 2015; Kim et al., 2017). Their complexity and tremendously large
amounts of compute and training data led again to remarkable improvements on a
multitude of natural language processing (NLP) tasks (Devlin et al., 2019).

These developments are particularly driven by the question on how to optimally embed
discrete sequences into a continuous space. However, many existing approaches identify

42

4.1. Capacity control of HMMs via representations

Fig. 4.1.: Exemplary DenseHMM to visualize the inner workings of our approach. All
model components are shown before (top row) and after training (bottom row).
The transition matrices A (second column) and B (fourth column) are learned
by learning dense representations (first and third column). All representations
are initialized by a standard Gaussian.

optimality solely with performance and put less emphasis on aspects like conceptual
simplicity and theoretical soundness. Intensified discussions on well-understood and
therefore trustworthy machine learning (Saltzer & Schroeder, 1975; Dwork et al., 2012;
Amodei et al., 2016; Gu et al., 2017; Varshney, 2019; Toreini et al., 2020; Brundage et al.,
2020) indicate, however, that these latter aspects become more and more crucial or even
mandatory for real-world learning systems.

In light of this, we propose DenseHMM – a modification of hidden Markov models
that allows us to learn dense representations of both the hidden states and the discrete
observables (Fig. 4.1). Compared to the standard HMM, transition probabilities are not
atomic but composed of these representations. Concretely, we contribute

• a parameter-efficient, nonlinear matrix factorization for HMMs,

• two competitive approaches to optimize the resulting DenseHMM

• and an empirical study of its performance and properties on diverse datasets.

The remainder of the section is organized as follows: first, we recapitulate established
techniques for HMM optimization in Subsection 4.1.1 that the knowledgeable reader may
skip. Our own contribution, DenseHMM and its optimization schemes are introduced in
Subsection 4.1.2. We study the effect of its softmax nonlinearity and conduct empirical
analyses and comparisons with standard HMMs in Subsections 4.1.3 and 4.1.4, respectively.
A discussion in Subsection 4.1.5 concludes the section.

43

4. Impact of Model Capacity on Uncertainty

4.1.1. Recapitulation of HMM optimization

HMMs are generative models with Markov properties for sequences of either discrete or
continuous observation symbols (Rabiner, 1989). They assume a number of non-observable
(hidden) states that drive the dynamics of the generated sequences. If domain expertise
allows for interpreting these drivers, HMMs can be fully understood. This distinguishes
HMMs from sequence-modeling neural networks like long short-term memory networks
(Hochreiter & Schmidhuber, 1997) and temporal convolutional networks (Bai et al., 2018).
More recent latent variable models that keep the discrete structure of the latent space
make use of, e.g., Indian buffet processes (Griffiths & Ghahramani, 2011). These enable a
dynamic adaptation of the dimension of the latent space depending on data complexity
and thus facilitate more flexible modeling. While we stay in the HMM model class, we
argue that our approach allows for extending or reducing the latent space in a more
principled way compared to standard HMMs.

Various approaches exist to learn the parameters of hidden Markov models: a classical
one is the Baum-Welch algorithm (Rabiner, 1989) that handles the complexity of the
joint likelihood of hidden states and observables by introducing an iterative two-step
procedure that makes use of the forward-backward algorithm (Rabiner & Juang, 1986).
Another algorithm for (local) likelihood maximization was proposed by Baldi & Chauvin
(1994). Huang et al. (2018) study HMM learning on observation co-occurrences instead
of observation sequences. Based on moments, i.e., co- and triple-occurrences, bounds
on the empirical probabilities can be derived via spectral decomposition (Anandkumar
et al., 2012). Approaches from Bayesian data analysis comprise Markov chain Monte
Carlo (MCMC) and variational inference (VI). While MCMC can provide more stable and
better results (Sipos, 2016), it traditionally suffers from poor scalability. A more scalable
stochastic-gradient MCMC algorithm that tackles mini-batching of sequentially dependent
data is due to Ma et al. (2017). The same authors propose a stochastic VI (SVI) algorithm
(Foti et al., 2014) that shares some technical details with the work of Ma et al. (2017).
SVI for hierarchical Dirichlet process (HDP) HMMs is considered by Zhang et al. (2016a).
For our DenseHMM, we adapt two non-Bayesian procedures: the Baum-Welch algorithm
(Rabiner, 1989) and direct co-occurrence optimization (Huang et al., 2018). The latter we
optimize, solely for convenience, using a deep learning framework (see Appendix A.1.3 for
details). Tran et al. (2016) carry this idea further, allowing different modifications to the
original HMM context. Already earlier, combinations of HMMs and neural networks were
employed, for instance for automatic speech recognition (Bourlard et al., 1992; Moon &
Hwang, 1997; Trentin & Gori, 1999).

Non-negative matrix factorization (NMF, Lee & Seung (1999)) splits a matrix into a
pair of low-rank matrices with solely positive components. NMF for HMM learning is used,
e.g., by Lakshminarayanan & Raich (2010) and Cybenko & Crespi (2011). In contrast, we
combine matrix factorization with a nonlinear kernel function to ensure non-negativity
and normalization of the HMM transition matrices. Further foci of recent work on HMMs
are identifiability (Huang et al., 2018), i.e., uniqueness guarantees for an obtained model,
and optimized priors over transition distributions (Qiao et al., 2015).

44

4.1. Capacity control of HMMs via representations

A

B B B

A A

zstart ui1 ui2zi1 ui3zi2 zi3

vj1

wi1

A
π

vj2

wi2
vj3

wi3

Fig. 4.2.: Structure of the DenseHMM. The HMM parameters A, B and π are com-
posed of vector representations such that A = A(U, Z), B = B(V,W) and
π = π(U, zstart).

4.1.2. Structure and optimization of the DenseHMM

A HMM is defined by two time-discrete stochastic processes: {Xt}t∈N is a Markov chain
over hidden states S = {si}n

i=1 and {Yt}t∈N is a process over observable states O = {oi}m
i=1

(see the parts of Fig. 4.2 that are displayed in black). The central assumption of HMMs
is that the probability to observe Yt = yt depends only on the current state of the
hidden process and the probability to find Xt = xt only on the the previous state of
the hidden process, Xt−1 = xt−1 for all t ∈ N. We denote the state-transition matrix
as A ∈ Rn×n with aij = P (Xt = sj | Xt−1 = si), the emission matrix as B ∈ Rn×m

with bij = P (Yt = oj | Xt = si) and the initial state distribution as π ∈ Rn with
πi = P (X1 = si). A HMM is fully parameterized by λ = (A, B, π).

HMMs can be seen as extensions of Markov chains that are in turn closely related to
word2vec embeddings. Let us elaborate on this: a Markov chain has no hidden states
and is defined by just one process {Xt}t∈N over observables. The transition dynamics
of the states of the Markov chain is described by a transition matrix A and an initial
distribution π. Being in a given state sI , the Markov chain models conditional probabilities
of the form p(si | sI). Markov chains are structurally similar to the approaches that learn
word2vec representations, i.e., continuous bag of words and skip-gram (Mikolov et al.,
2013b). Both models learn transitions between the words of a text corpus. Each word wi

of the vocabulary is represented by a learned dense vector ui. The transition probabilities
between words are recovered from the scalar products of these vectors:

p(wj | wi) = exp(ui · vj)∑
k exp(ui · vk) ∝ exp(ui · vj) . (4.1)

The learned word2vec representations are low-dimensional and context-based, i.e., they
contain semantic information. This is in contrast to the trivial and high-dimensional
one-hot (or bag-of-word) encodings.

45

4. Impact of Model Capacity on Uncertainty

Here we transfer the nonlinear factorization approach of word2vec (Eq. 4.1) to HMMs.
This is done by composing A, B and π of dense vector representations such that

aij = aij(U, Z) = exp(uj · zi)∑
k∈[n] exp(uk · zi)

, (4.2a)

bik = bik(V, W) = exp(vk · wi)∑
k′∈[m] exp(vk′ · wi)

, (4.2b)

πi = πi(U, zstart) = exp(ui · zstart)∑
k∈[n] exp(uk · zstart)

, (4.2c)

for i, j ∈ [n] and k ∈ [m]. Let us motivate this transformation (Fig. 4.2) piece by
piece: each representation vector corresponds to either a hidden state (ui, wi, zi) or
an observation (vi). The vector ui (zi) is the incoming (outgoing) representation of
the hidden state i along the (hidden) Markov chain. The vector wi is the outgoing
representation of the hidden state i toward the observation symbols. These are described
by the vi. All vectors are real-valued and of length l. A and B each depend on two
kinds of representations instead of only one to enable non-symmetric transition matrices.
Additionally, to choose A independent of B, as is typical for HMMs, we need wi as a
third hidden representation. It is convenient to summarize all representation vectors of
one kind in a matrix (U , V , W , Z).

A softmax kernel maps the scalar products of the representations onto the HMM
parameters A, B and π. Softmax maps to the simplex and thus ensures aij , bij , πi to
be in [0, 1] as well as row-wise normalization of A, B and π. While a different kernel
function may be chosen, a strong nonlinearity, such as in the softmax kernel, is essential
to obtain matrices A and B with high ranks (compare experiments in Subsection 4.1.3).

This nonlinear kernelization enables constraint-free optimization, which is a central
property of our approach. We use this fact in two different ways: first, we derive a
modified expectation-maximization (EM) scheme (see next paragraph) and, second, study
an alternative to EM optimization that is based on co-occurrences (see paragraph after
next).

EM optimization with a gradient-based M-step We briefly recapitulate the EM-based
Baum-Welch algorithm (see Subsection 13.2.2 of Bishop (2006)) and adapt it to learn the
proposed representations as part of the M-step:

Given a sequence o of length T ∈ N over observations O, the Baum-Welch algorithm
finds parameters λ that (locally) maximize the likelihood of the observations. A latent
distribution Q over the hidden states S is introduced such that the log-likelihood of the
sequence decomposes as follows:

L(Q, λ) = log P (o, λ) = L(Q, λ) + DKL
(
Q || P (· | o, λ)

)
. (4.3)

46

4.1. Capacity control of HMMs via representations

DKL(P ||Q) denotes the Kullback-Leibler divergence from Q to P with P and Q being
probability distributions and

L(Q, λ) =
∑

x∈ST

Q(x) log P (x, o; λ)
Q(x) . (4.4)

Starting from an initial guess for λ, the algorithm alternates between two sub-procedures,
the E- and M-step: in the E-step, the forward-backward algorithm (see ibid.) is used to
update Q = P (· | o; λ), which maximizes L(Q, λ) for fixed λ. The efficient computation of
the conditional probabilities γt(s, s′) := P (Xt−1 = s, Xt = s′ | o) and γt(s) := P (Xt = s | o)
for s, s′ ∈ S is crucial for the E-step. In the M-step, the latent distribution Q is fixed and
L(Q, λ) is maximized w.r.t. λ under normalization constraints. As the Kullback-Leibler
divergence DKL is set to zero in each E-step, the function to maximize in the M-step
becomes

L(Q, λ) =
∑

x∈ST

Q(x) log P (x, o; λ)
Q(x) =

∑
x∈ST

P (x | o; λold) log P (x, o; λ)
P (x | o; λold) (4.5)

with λold being the parameter obtained in the previous M-step. Applying the logarithm
to P (x, o; λ), which has a product structure due to the Markov properties, splits the
optimization objective into three summands. Each term depends on only one of the
parameters A, B, π:

A∗, B∗, π∗ = arg max
A,B,π

L(Q, λ) = arg max
A,B,π

L1(Q, A) + L2(Q, B) + L3(Q, π) . (4.6)

Due to structural similarities between the three summands, we consider only L1 in the
following. The treatment of L2 and L3 can be found in Appendix A.1.1. For L1, we have

L1(Q, A) =
∑

i∈[n]T
P (si | o; λold)

T∑
t=2

log(ait−1,it) (4.7)

with multi-index si = si1 , ..., siT . The next step is to re-write L1 in terms of γt and to use
Lagrange multipliers to ensure normalization. This gives the following part L̄1 of the full
Lagrangian L̄ = L̄1 + L̄2 + L̄3:

L̄1 :=
∑

i,j∈[n]

T∑
t=2

γt(si, sj) log aij +
∑
i∈[n]

φi

(
1 −

∑
j∈[n]

aij

)
(4.8)

with Lagrange multipliers φi for each i ∈ [n] to ensure that A is a proper transition
matrix.

To optimize a DenseHMM, we leave the E-step unchanged and modify the M-step by
applying the parameterization of λ, i.e., Eq. 4.2a - 4.2c, to the Lagrangian L̄. Please note
that we can drop all normalization constraints as they are explicitly enforced by the softmax
function. This turns the original constrained optimization problem of the M-step into an

47

4. Impact of Model Capacity on Uncertainty

unconstrained one, leading to a Lagrangian of the form L̄dense = L̄dense
1 + L̄dense

2 + L̄dense
3

with

L̄dense
1 =

∑
i,j∈[n]

T∑
t=2

γt(si, sj)uj · zi −
∑

i,j∈[n]

T∑
t=2

γt(si, sj) log
∑

k∈[n]
exp(uk · zi) . (4.9)

We optimize L̄dense with gradient-descent procedures such as SGD (Bottou, 2010) and
Adam (Kingma & Ba, 2015).

Direct optimization of observation co-occurrences Inspired by Huang et al. (2018), we
investigate an alternative to the EM scheme: directly optimizing co-occurrence probabilities.
The ground truth co-occurrences Ωgt are obtained from training data o by calculating
the relative frequencies of subsequent pairs (oi(t), oj(t + 1)) ∈ O2. If we know that o

is generated by a HMM with a stationary hidden process, we can easily compute Ωgt

analytically as follows: we summarize all co-occurrence probabilities Ωij = P (Yt =oi, Yt+1 =
oj) for i, j ∈ [m] in a co-occurrence matrix Ω = BT ΘB with Θkl = P (Xt =sk, Xt+1 =sl)
for k, l ∈ [n]. We can further write

Θkl = P (Xt+1 =sl |Xt =sk) P (Xt =sk) = Akl πk (4.10)

under the assumption that π is the stationary distribution of A, i.e., πj =
∑

i Aij πi for
all i, j ∈ [n]. Then, we obtain the co-occurrence probabilities

Ωij =
∑

k,l∈[n]
πk bki akl blj for i, j ∈ [m] . (4.11)

Parameterizing the matrices A and B according to Eq. 4.2a - 4.2b yields

Ωdense
ij (U , V , W , Z) =

∑
k,l∈[n]

πk bki(V, W) akl(U, Z) blj(V, W) (4.12)

for i, j ∈ [m]. Please note that π is not parameterized here. Following our stationarity
demand it is chosen as the eigenvector vλ=1 of AT . We minimize the squared distance
between Ωdense and Ωgt w.r.t. the vector representations, i.e.,

arg minU ,V ,W ,Z ||Ωgt − Ωdense(U , V , W , Z)||2F , (4.13)

using gradient-descent procedures like SGD and Adam.

4.1.3. Impact of nonlinear kernelization

To further motivate our approach, please note that a standard HMM with n hidden
states and m observation symbols has n2 + n (m − 1) − 1 degrees of freedom (DOFs),
whereas a DenseHMM with representation length l has l (3n + m + 1) DOFs. Therefore, a
low-dimensional representation length l leads to DenseHMMs with fewer DOFs compared

48

4.1. Capacity control of HMMs via representations

0.1
0

0.2
0

0.3
3

0.5
0

0.6
0

0.6
7

1.0
0

1.5
0

1.6
7

2.0
0

l/n

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Softmax
normAbsLin

Fig. 4.3.: Approximation quality of nonlinear matrix factorizations. The optimization
errors (median, 25/75 percentile) of softmax (green) and normAbsLin (blue)
matrices are shown over the ratio of representation length l and matrix size n.
The vertical line indicates l = n.

to a standard HMM for many values of n and m. A linear factorization with representation
length l < n leads to rank l for the matrices A and B, whereas a nonlinear factorization
can yield more expressive full rank matrices. This effect of nonlinearities may be best
understood with a simple toy example: assume a 2×2 matrix with co-linear columns:
[[1, 2], [2, 4]]. Applying a softmax column-wise leads to a matrix ∝ [[e, e2], C[e2, e4]] with
linearly independent columns (C denotes a constant). More general, the softmax rescales
and rotates each column of UZ and V W differently and (except for special cases) thus
increases the matrix rank to full rank. It is worth to mention that any other kernel
k : Rl × Rl → R+ could be used instead of the exponential function in the softmax to
recover the HMM parameters from the representations, e.g., sigmoid, ReLU or radial basis
functions (RBFs).

As nonlinear matrix factorization is a central building block of our approach, we
compare the approximation quality of softmax with an appropriate linear factorization in
the following setup: we generate a Dirichlet-distributed ground truth matrix Agt ∈ Rn×n

and approximate it (i) by Ã = softmax(UZ) defined by

(Ã)ij = softmax(UZ)ij =
exp

(
(UZ)ij

)∑
k∈[n] exp

(
(UZ)ik

) , (4.14)

and (ii) by a normalized absolute matrix product Ã = normAbsLin(UZ) defined by

(Ã)ij = normAbsLin(UZ)ij = |(UZ)ij |∑
k∈[n] |(UZ)ik|

. (4.15)

Note that we report the resulting error ||Ã − Agt||F divided by ||Agt||F to get comparable
losses independent of the size of Agt. These optimizations are performed for matrix
sizes n = 3, 5, 10, several representation lengths l and 10 different Agt for each (n, l) pair.

49

4. Impact of Model Capacity on Uncertainty

Tab. A.1 (p. 139) in Appendix A.1.3 provides all considered (n, l) pairs and detailed
results. Fig. 4.3 shows that the softmax nonlinearity yields closer approximations of Agt
compared to normAbsLin. Moreover, we observe on a qualitative level significantly faster
convergence for softmax as l increases. For softmax, vector lengths l ≈ n/3 suffice to
closely fit Agt while the piecewise linear normAbsLin requires l = n. This result is in
accordance with our remarks above.

4.1.4. Empirical evaluation

We investigate the outlined optimization schemes w.r.t. obtained model quality and
behaviors. We compare the following types of models:

HEM
dense: a DenseHMM optimized with the EM optimization scheme (Subsection 4.1.2),

Hdirect
dense : a DenseHMM with directly optimized co-occurrences (Subsection 4.1.2),

Hstand: a standard HMM optimized with the Baum-Welch algorithm (Rabiner, 1989).

These models all have the same number of hidden states n and observation symbols m.
If a standard HMM and a DenseHMM use the same n and m, one of the models may
have fewer DOFs than the other (see Subsection 4.1.3). Therefore, we also consider the
model Hfair

stand, which is a standard HMM with a number of DOFs that is comparable to a
given Hdense model. We denote the number of hidden states in Hfair

stand as nfair, which is
the positive solution of

n2
fair + nfair(m − 1) − 1 = l (3n + m + 1) (4.16)

rounded to the nearest integer. Note that nfair can get significantly larger than n for l > n

and therefore Hfair
stand is expected to outperform the other models in these cases.

We use two standard measures to assess the model quality: the co-occurrence mean
absolute deviation (MAD) and the normalized negative log-likelihood (NLL). The MAD be-
tween two co-occurrence matrices Ωgt and Ωmodel is defined as 1/m2∑

i,j∈[m] |Ωmodel
ij − Ωgt

ij |.
We compute both Ωgt and Ωmodel based on sufficiently long sampled sequences (more de-
tails in Appendix A.1.3). In the case of synthetically generated ground truth sequences, we
compute Ωgt analytically instead. In addition, we take a look at the negative log-likelihood
of the ground truth test sequences {otest

i } under the model, i.e., NLL = −
∑

i log P (otest
i ; λ).

We conduct experiments with n ∈ {3, 5, 10} and different representation lengths l for each
n. For each (n, l) combination, we run 10 experiments with different train-test splits. We
evaluate the median and 25/75 percentiles of the co-occurrence MADs and the normalized
NLLs for each of the four models (see Appendix A.1.3 for details).

In the following, we consider synthetically generated data as well as two real-world
datasets: amino acid sequences from the RCSB PDB dataset (Berman et al., 2000) and
part-of-speech tag sequences of biomedical text (Smith et al., 2004), referred to as the
MedPost dataset.

50

4.1. Capacity control of HMMs via representations

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0

5

10

15

Co
oc

 M
AD

 (1
0

3)

Dense EM
Dense direct
Standard fair
Standard

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d
NL

L

Dense EM
Dense direct
Standard fair
Standard

Fig. 4.4.: Co-occurrence mean absolute deviation (left) and normalized negative log-
likelihood (right) of the models HEM

dense , Hdirect
dense , Hfair

stand , Hstand on synthetically
generated sequences evaluated for multiple combinations of n and l.

Synthetic sequences We sample training and test ground truth sequences from a
standard HMM Hsyn that is constructed as follows: each row of the transition matrices A

and B is drawn from a Dirichlet distribution Dir(α), where all entries in α are set to a
fixed value α = 0.1. The initial state distribution π is set to the normalized eigenvector
vλ=1 of AT . This renders Hsyn stationary and allows a simple analytical calculation
of Ωgt according to Eq. 4.11. For both training and testing, we sample 10 sequences,
each of length 200 with m = n emission symbols. Fig. 4.4 left shows our evaluation
w.r.t. co-occurrence MADs. Note that the performance of Hstand changes slightly with
l for fixed n as training is performed on different sequences for every (n, l) pair. This
is because the sequences are re-drawn from Hsyn for every experiment. The standard
HMMs and Hdirect

dense perform similarly, with Hdirect
dense performing slightly better throughout

the experiments and especially for n = 3. HEM
dense shows a higher MAD than the other

models. The good performance of Hdirect
dense may be explained by the fact that it optimizes

a function similar to co-occurrence MADs, whereas the other models aim to optimize
negative log-likelihoods. The results in Fig. 4.4 right show that the DenseHMMs reach
comparable NLLs, although the standard HMMs perform slightly better in this metric.

Proteins The RCSB PDB dataset (Berman et al., 2000) consists of 512,145 amino acid
sequences from which we only take the first 1,024. After applying preprocessing (described
in further detail in Appendix A.1.3), we randomly shuffle the sequences and split train
and test data 50:50 for each experiment. Fig. 4.5 left shows the results of our evaluation
w.r.t. co-occurrence MADs. HEM

dense performs slightly worse than both Hstand and
Hfair

stand. We observe that Hdirect
dense yields the best results. While the co-occurrence MADs

of HEM
dense, Hstand and Hfair

stand stay roughly constant throughout different experiments,
Hdirect

dense can utilize larger n and l to further decrease co-occurrence MADs. As can be seen
in Fig. 4.5 right, all models achieve almost identical normalized NLLs throughout the
experiments. The results suggest that model size has only a minor impact on normalized
NLL performance for the protein dataset.

51

4. Impact of Model Capacity on Uncertainty

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0.0

0.1

0.2

0.3

0.4
Co

oc
 M

AD
 (1

0
3)

Dense EM
Dense direct
Standard fair
Standard

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0.00

0.25

0.50

0.75

1.00

1.25

no
rm

al
ize

d
NL

L

Dense EM
Dense direct
Standard fair
Standard

Fig. 4.5.: Co-occurrence mean absolute deviation (left) and normalized negative log-
likelihood (right) of the models HEM

dense , Hdirect
dense , Hfair

stand , Hstand on amino acid
sequences evaluated for multiple combinations of n and l.

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0.0

0.1

0.2

0.3

0.4

0.5

Co
oc

 M
AD

 (1
0

3)

Dense EM
Dense direct
Standard fair
Standard

[3,
1]

[3,
2]

[3,
3]

[5,
2]

[5,
3]

[5,
5]

[10
,2]

[10
,3]

[10
,5]

[10
,10

]

[n,l]

0.0

0.5

1.0

1.5

2.0

no
rm

al
ize

d
NL

L

Dense EM
Dense direct
Standard fair
Standard

Fig. 4.6.: Co-occurrence mean absolute deviation (left) and normalized negative log-
likelihood (right) of the models HEM

dense , Hdirect
dense , Hfair

stand , Hstand on part-of-
speech tag sequences (Medpost) evaluated for multiple combinations of n
and l.

Part-of-speech sequences The MedPost dataset (Smith et al., 2004) consists of 5,700
sentences. Each sentence consists of words that were labeled with one of 60 part-of-speech
tags. Sequences of part-of-speech tags are considered such that each sequence corresponds
to one sentence. We apply preprocessing similar to the protein dataset (more details in
Appendix A.1.3). The sequences are randomly shuffled and train and test data is split
50:50 for each experiment. Fig. 4.6 left shows performance of our models in terms of
co-occurrence MADs. We see that the performance of the standard HMM models as well
as Hdirect

dense increases with increasing n. The number of hidden states seems to be a major
driver of performance. Accordingly, Hfair

stand improves with growing nfair(l) ∝ l. Plus, we
have nfair > n for l ≈ n, which fully explains why Hfair

stand is the best performing model in
these cases. Overall, Hdirect

dense performs competitive to Hfair
stand, especially for the practically

more relevant cases with l < n. Similar to the other datasets, HEM
dense performs worse than

the other models and is barely affected by increasing n. Both DenseHMM models have
increasing performance for increasing l. Normalized NLLs (Fig. 4.6 right) are best for

52

4.2. Monte Carlo dropout in wide neural networks

the standard HMM models. Both DenseHMM models achieve similar normalized NLLs,
which are slightly worse than the ones achieved by the standard HMM models.

4.1.5. Discussion

We learn hidden Markov models by learning dense, real-valued vector representations for
their n hidden and m observable states. The involved softmax nonlinearity enables to learn
high-rank transition matrices and thus prevents that the matrix ranks are immediately
determined by the chosen (in most cases) low-dimensional representation length l. In
particular, we empirically find l > n/3 to be sufficient for closely approximating transition
matrices of rank n (see Fig. 4.3). Fulfilling this condition allows for modeling a wide
range of dynamics, whereas l < n/3 typically provides too coarse descriptions and thus
indicates a low-quality modeling regime. Focusing on l > n/3, we successfully optimize
DenseHMMs in two different ways and find direct co-occurrence optimization to yield
competitive results compared to the standard HMM. This optimization technique requires
only one gradient descent procedure and no iterative multi-step schemes. It is highly
scalable with training data size and also with model size—as it is implemented in a modern
deep learning framework. The optimization is stable and does neither require fine-tuning
of learning rate nor of the representation initializations.1

We leave it to future work to adapt DenseHMMs to HMMs with continuous emissions
and study variants of DenseHMM with fewer kinds of learnable representations. First
experiments with DenseHMMs that learn only Z and V lead to almost comparable model
quality. From a practitioner’s viewpoint, it is worth investigating how DenseHMM and
the learned representations perform on downstream tasks. Using the MedPost dataset,
one could consider part-of-speech labeling of word sequences via the Viterbi algorithm
after identifying the hidden states of the model with a pre-defined set of ground truth tags.
For the protein dataset, a comparison with LSTM-based and BERT embeddings (Bepler
& Berger, 2019; Min et al., 2019) could help to understand similarities and differences
resulting from modern representation learning techniques. An analysis of geometrical
properties of the learned representations seems promising for systems with l ≫ 1 as exp(l)
vectors can be almost-orthogonal in Rl. The V representations are a natural choice for
such a study as they directly correspond to observation items. The integration of Bayesian
optimization techniques like MCMC and VI with DenseHMM is another research avenue.

4.2. Monte Carlo dropout in wide neural networks

To better understand the impact of model complexity on a model’s ability to estimate
uncertainty, we imposed correlations on the models’ hidden state spaces in the previous
section. Controlling their strengths by varying internal representation lengths, we identified
regimes of differing model output quality after optimization. Here, we expand our analysis

1We release our tensorflow code to foster active use of DenseHMM in the community. It is available at
https://github.com/fraunhofer-iais/dense-hmm.

53

https://github.com/fraunhofer-iais/dense-hmm

4. Impact of Model Capacity on Uncertainty

of (dense) HMM models to the more complex class of fully connected networks (FCNs)
with Monte Carlo dropout (see Section 3.2). Similar to the analyses before, we study the
effect of correlations on the qualitative properties of the model output after, but in this case
also before, optimization. For FCNs, weight correlations typically result from training and
have an accumulating effect on inputs and features propagated through the network. To
obtain a clearer picture of this effect, we, moreover, conduct investigations with simplified,
manually set global parameter correlations. This accumulating effect is of interest as it
can lead to deviation from otherwise Gaussian model output distributions which are often
assumed to be the default case. This follows from connections between Gaussian processes
(GPs) and Monte Carlo (MC) dropout networks in the limit of infinitely wide layers. We
thus consider layer width as an additional control parameter in our experiments and
investigate the prerequisites under which such limits of wide layers yield Gaussian and
deviating non-Gaussian uncertainty distributions, respectively.

In Subsection 4.2.1, we take a closer look at requirements and boundary conditions
established by previous works under which model output distributions are Gaussian.
Next, we empirically study the pre-activations in randomly initialized and trained NNs
with MC dropout in Subsection 4.2.2 and find that the former are (in accordance with
theory) approximately normal distributed while the latter show a coexistence of Gaussian
and non-Gaussian output distributions. Finally, we investigate how such deviations from
Gaussian behavior accumulate from layer to layer using a toy model and NNs with strongly
correlated weights (see Subsection 4.2.3).

4.2.1. Prerequisites for Gaussian pre-activation distributions

As a first step toward a characterization of NNs under MC dropout, we study a random
feed-forward NN with k + 2 layers. A pre-activation f

(ν)
i (x) in layer ν of this network is

parameterized as follows:

f
(ν)
i (x) =

hν−1(n)∑
j=1

θ
(ν)
ij g

(ν−1)
j (x)√

hν−1(n)
+ b

(ν)
i , (4.17)

where g
(ν)
i (x) = z

(ν)
i ϕ(f (ν)

i (x)) for ν = 1, . . . , k, g
(0)
i (x) = xi denote activations (after

applying dropout) and x ∈ Rd an input vector. Moreover, ϕ is the activation function, zi

are the dropout Bernoulli random variables with keep rate q = 1 − p, and hν(n) is the
neuron count in layer ν. The learnable weights and biases of the network are termed θ

(ν)
ij

and b
(ν)
i , respectively.

In previous work, see Matthews et al. (2018); Lee et al. (2018); Wu et al. (2019);
Tsuchida et al. (2019), the authors considered NNs with independent prior distributions
on the network parameters. The resulting summands in Eq. 4.17 are independent random
variables such that the central limit theorem can readily be applied. In contrast, we
examine a NN with a fixed set of parameters and dropout acting as an independent prior
distribution on the activations. As a consequence, the resulting summands in Eq. 4.17 are

54

4.2. Monte Carlo dropout in wide neural networks

independent random variables only in the second layer (ν = 2) and are dependent random
variables for all successive ones. This follows from an inspection of the covariance of the
pre-activations yielding

Cov
(
f

(ν)
i , f

(ν)
j

)
= q

hν−1

hν−1(n)∑
k,l=1

θ
(ν)
il θ

(ν)
jk

×
(

(δkl + q (1 − δkl))EZ

[
ϕ

(ν−1)
k ϕ

(ν−1)
l

]
− q EZ

[
ϕ

(ν−1)
k

]
EZ

[
ϕ

(ν−1)
l

])
,

(4.18)

where we dropped the arguments of f
(ν)
i and ϕ

(ν−1)
l for simplicity of notation. For finite

hν−1(n) and i ̸= j the expression above is in general non-zero. Thus, we cannot apply
the standard central limit theorem. However, the Gaussianity result of Matthews et al.
(2018) can be extended to random networks with fixed independent weights by using
self-averaging, see Section 2 and Appendix A of Sicking et al. (2020). Nevertheless,
this theoretical insight cannot be easily transferred to trained NNs (of finite size) as
the independence of weights can no longer be used. The empirical evaluations in the
subsequent subsection indicate that non-Gaussianity in fact occurs, even for wide networks.
For this reason, we focus our further investigation on the effects of strong correlations and
their impact on tail behavior (see Subsection 4.2.3).

4.2.2. Ambiguous observations for empirical pre-activation distributions

To substantiate our discussions in Subsections 4.2.1 and 4.2.3 empirically, we study
the pre-activations of a fully connected NN of the form given in Eq. 4.17. We train it
for classification on FashionMNIST (Xiao et al., 2017) using a cross-entropy loss and
hyperbolic tangent (tanh) nonlinearities. We employ a narrow network Hnarrow with k = 9
hidden layers of width hν(n) = h = 100 each as well as a wide network Hwide with k = 7
and h = 1,000. All network weights are initialized with i.i.d. random values. We train for
100 epochs using the Adam (Kingma & Ba, 2015) optimizer and an initial learning rate of
µ = 0.001 (see Appendix A.2.1 for more implementation details). Bernoulli dropout with
p = 0.2 is applied to the activations of all hidden network layers.

First, we study the pre-activation distributions of the untrained Hnarrow and Hwide.
These distributions are generated by running 30,000 forward passes with dropout for
a fixed test image. We randomly pick one neuron from the last hidden layer of each
network and visualize its pre-activation distribution in Fig. 4.7 (top row). To ease visual
comparison between different neurons, we report normalized pre-activations. The resulting
distributions are clearly Gaussian, see our discussion in Subsection 4.2.1. The weight
correlations and pre-activation correlations of these untrained networks are studied in
Appendix A.2.1.

Analyzing the trained networks Hnarrow and Hwide yields more complex results. The
pre-activation distributions for exemplarily selected hidden units from the last hidden

55

4. Impact of Model Capacity on Uncertainty

Fig. 4.7.: Normalized pre-activation distributions of selected neurons from different
networks. We consider randomly initialized (top row) and trained (middle
and bottom row) nets that are either narrow (h = 100, left column) or wide
(h = 1,000, right column). We handpicked the neurons from the trained
networks (see the text in Subsection 4.2.2). Standard normal (orange) and
two-sided exponential (green) probability densities are given for comparison.

layer of the trained Hnarrow and Hwide are shown in Fig. 4.7 (middle and bottom row).
The neurons are handpicked to illustrate the variety of distributions we encounter in
this layer. We observe Gaussian as well as non-Gaussian pre-activation distributions
that range over skewed Gaussians to clearly non-Gaussian, exponential ones2. For Hwide,
approximately 40% of all neurons have Gaussian distributions, 40% skewed Gaussians
and 20% exponential ones. Each histogram in Fig. 4.7 is based on 30,000 forward passes
with dropout.

Moreover, we find these observations to depend on the input image: training inputs
yield less tailed distributions than test inputs that in turn lead to less pronounced tails
than artificial ones that are superpositions of two training images. However, there are
large differences within those input categories, e.g., between test images. Shuffling the
trained weight matrices yields results that are similar to the randomly initialized case.
This indicates that weight and pre-activation dependencies are important while changes

2Technically also the tails of a Gaussian decay exponentially, however, with exp(−ξ2). Throughout this
text we refer to exponential tails only for the cases of exp(−|ξ|) or slower decay.

56

4.2. Monte Carlo dropout in wide neural networks

of the marginal distributions due to model training are not. While these results apply for
the last hidden layer, we observe mostly Gaussians or slightly skewed Gaussians in earlier
layers. In Subsection 4.2.3, we demonstrate on a toy model that non-Gaussian properties
accumulate during the propagation through the network. Further empirical observations
and an analysis of the weight correlations and pre-activation correlations of the trained
networks can be found in Appendix A.2.1.

These complex dependence structures are the result of an interplay of weight distribu-
tions, input-immanent structures, and network nonlinearities that are orchestrated by
network training. A theoretical foundation for the Gaussian results was laid out in the
previous subsection. To address the deviations from Gaussian behavior, we take a closer
look at correlations in the next subsection.

4.2.3. Modeling of strongly correlated systems

As we have seen in Eq. 4.18 the (pre-)activations from any layer ν are, in general, not
independent from one another. We explore possible consequences of this observation in
terms of consecutive toy experiments. For this, the product of two random variables,
Z = XY , is central. On an abstract level, Y represents a random activation from a
previous layer and X the product wijzj . For later simplicity, we model both terms as
Gaussian, X, Y ∼ N (µ, σ). In the case of vanishing mean, µ = 0, one obtains the well
known analytic form for the probability density function (PDF) of Z,

PDFZ(ξ) = 1
π

K0(|ξ|) (σ = 1) , (4.19)

with the modified Bessel function K0. Derivations and further comments are relegated to
Appendix A.2.2. In contrast to the normal distributions its asymptotic,

PDFZ(ξ) ∼ 1√
2π|ξ|

e−|ξ| (σ = 1, |ξ| ≫ 1) , (4.20)

reveals exponentially decaying tails.
For any given neuron we encounter sums over h terms, where h denotes the layer width,

instead of single products. If these summands XiYi were independent as argued for in
Subsection 4.2.1, one would recover a normal distributed outcome for the neuron by the
central limit theorem. But if they are correlated, the result may differ drastically. The
outcome strongly depends on the respective covariance matrices of Xi, Yi, for details see
Appendix A.2.2. As a rule of thumb, larger correlations favor non-Gaussian results. This
can be illustrated in terms of a toy extension choosing

Z =
h∑

i=1
XiYi , Xi = c x0 + (1 − c) xi (4.21)

57

4. Impact of Model Capacity on Uncertainty

and similarly for Yi with Gaussian random variables xγ , yγ for γ = 0, 1, . . . h. The factor c

controls a global correlation among the entries. For this case we find the decomposition

h∑
i=1

XiYi = (1 − c)2
h∑

i=1
xi yi + c2h x0 y0 + c (1 − c)

(
x0

h∑
i=1

yi + y0

h∑
i=1

xi

)
. (4.22)

Heuristically speaking, the first term is of Gaussian nature while the second (and successive
ones) contribute exponential tails, see the limits for c = 0 or 1, respectively. An important
observation is that both terms are on similar footing with respect to h, i.e., also in the
large h limit the Gaussian term will not suppress the first one. This finding is due to the
choice of a global correlation present in all h terms of xi and yi.

Assuming that the input Y has exponential tails, we can investigate how those propagate
for the Z = XY model (given µx = 0). For this, we take

PDFY (ξ) ∝ 1
|ξ|(n−1)/n

exp
(
−α|ξ|2/n

)
, n ∈ N , (4.23)

as an analytically tractable approximation capturing the tail behavior. For n = 1,
i.e., Gaussian-like decay, we obtain a Bessel result for Z comparable to Eq. 4.19, in which
the tail is modeled by n = 2, see Eq. 4.20. More generally, for small values of n we obtain
the explicit asymptotics for Z as

PDFZ(ξ) ∼ 1
|ξ|n/(n+1) exp

(
−κ1/(n+1)|ξ|2/(n+1)

)
(4.24)

with |ξ| ≫ 1 and some positive constant κ > 0 depending on αn/σ2
X . As the decay slows

down with each iteration, this effect might contribute to an “accumulation” of tails.
Inspired by the presented heuristics, we revisit the randomly initialized NN introduced

in Subsection 4.2.2. However, we initialize the weight matrices in a correlated fashion
similar to the toy model in Eq. 4.21, see Appendix A.2.2. The resulting distributions for
the pre-activations given random input are shown in Fig. 4.8. With c = 0.1 the correlation
is deliberately small and the dropout rate p = 0.2 set as before, but we investigate deeper
networks with 50 layers. The left panel shows that for h = 1,000 only the initial layer
follows a Gaussian behavior and all successive ones exhibit exponential tails of increasing
strength. A closer look reveals that the decay, especially for later layers, is slightly weaker
than exponential, which might be caused by the effects presented in Eq. 4.24. On the
right hand side we compare the pre-activations of the 13th layer for different network
widths, from shallow (h = 100) to wide (h = 2,000). Except for small fluctuations of the
tails, which besides statistics are caused by choosing different (fixed) random inputs for
each network, the result is stable with h, suggesting that also the infinite width limit will
not lead to a Gaussian outcome.

Figures A.1 and A.2 (p. 140) in Appendix A.2.1 show the empirical correlations of the
trained network from Subsection 4.2.2. While their structure is more involved, we find
that the correlation of the pre-activations increases for deeper layers. More importantly,

58

4.2. Monte Carlo dropout in wide neural networks

Fig. 4.8.: Normalized pre-activation distributions from networks with correlated random
weights; for details, see the text in Subsection 4.2.3. On the l.h.s., we color-code
hidden layer position, first (dark blue) to last (light blue). The r.h.s. shows
different network widths (narrow (light blue) to wide (dark blue)) for layer 13.
Gaussian (orange) and exponentially tailed distribution (green) are shown for
comparison.

both correlations do not decrease to zero with increased layer width, which satisfies a
central assumption of the toy model here. It might therefore be less surprising that the
trained network can exhibit exponentially tailed pre-activations (see Fig. 4.7).

4.2.4. Discussion

First, we analyze neural networks with dropout and discuss independence assumptions as
a prerequisite for their convergence to Gaussian processes in the limit of infinitely wide
layers. Next, we empirically study wide trained networks. Unlike random networks, they
exhibit a rich dependence structure and reveal a more complex picture: the coexistence
of Gaussian and non-Gaussian exponential latent distributions. Finally, we shed light
on this observation using a simple toy model and a network with correlated random
initialization. These two systems indicate the existence of (at least) two regimes: one of
weakly correlated pre-activations with Gaussian distributions and another one of strongly
correlated pre-activations with exponentially tailed limiting distribution functions. Future
work may investigate these two regimes in more detail to understand how to deliberately
manipulate the properties of these limiting distributions under MC dropout. Searching for
the borders of these regimes and further classes of limiting distributions is another research
path. Our empirical observation of Gaussianity, which decreases from training data over
test data to out-of-distribution data, gives rise to both theoretical and applied future
work: first, to better understand the generalization properties of the learned Gaussian or
non-Gaussian behavior and, second, to employ this knowledge to construct more robust
uncertainty quantifications.

59

5. Modeling Uncertainty Estimates
by Means of Wasserstein Dropout

In the previous chapter, we investigated the assumptions underlying MC dropout and
constructed an example that violates the commonly assumed Gaussianity of output
distributions. In this way, we demonstrated that the distributional properties of dropout-
induced outputs can be influenced and steered. Moreover, we studied how model training
impacts output and latent space distributions and found that 80% of the neurons in
these networks still exhibit standard Gaussian behavior. These observations are relevant
for two reasons: on the one hand, error sources are commonly modeled by Gaussians,
which have the beneficial property that their quantile distributions are fully determined
by (mean value µ and) standard deviation σ.1 Having shown, on the other hand, that
dropout-induced quantile distributions can be influenced, it seems feasible to also control
their standard deviations in the Gaussian regime.

In this chapter, we propose a correspondingly built mechanism to adjust these local
standard deviations, such that uncertainty estimates are better calibrated. Our mechanism
is solely based on neuron dropout and therefore fully non-parametric2, which is in contrast
to widely used other techniques, compare Kendall & Gal (2017) and Lakshminarayanan
et al. (2017), which combine their respective approaches with parametric predictions (see
Section 3.2). Recalling the deviations from Gaussian behavior in the previous chapter, we
stress that our approach to encode uncertainty is not limited to the Gaussian case but
could, for instance, be adapted to the exponential classes considered before.

Concretely, we put forward Wasserstein dropout (W-dropout), which is designed to
capture heteroscedastic data noise via its sub-network distribution.3 It builds on the idea
of matching the network output distribution, resulting from randomly dropping neurons,
to the (factual or implicit) data distribution by minimizing the Wasserstein distance. In
detail, we contribute

• a novel and surprisingly simple Wasserstein-based learning objective for sub-networks
that simultaneously optimizes task performance and uncertainty quality,

1The well-known 68-95-99.7 rule, for example, states the percentages of values covered when considering
the output intervals [µ − n σ, µ + n σ] of a Gaussian distribution for n = 1, 2, 3.

2While the term “non-parametric” can have multiple (related) meanings in different contexts of statistical
modeling, in this thesis, we refer to quantities, in particular output distributions, that are not directly
parameterized, e.g., by µ and σ for Gaussians, but obtained by sampling.

3The code base of Wasserstein dropout is publicly available at https://github.com/fraunhofer-iais
/wasserstein-dropout.

61

https://github.com/fraunhofer-iais/wasserstein-dropout
https://github.com/fraunhofer-iais/wasserstein-dropout

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

• an extensive empirical evaluation where W-dropout outperforms state-of-the-art
uncertainty techniques w.r.t. various benchmark metrics, not only in-data but also
under data shifts,

• and two novel uncertainty measures: a non-saturating calibration score and a
measure for distributional tails that allows us to analyze worst-case scenarios w.r.t.
uncertainty quality.

The remainder of this chapter is organized as follows: first, Wasserstein dropout is
introduced in Section 5.1. Its qualitative properties are analyzed and compared to
MC dropout. Next, two novel uncertainty measures are proposed that address lacks
of sensitivity of existing measures (Section 5.2). We then benchmark the uncertainties
induced by Wasserstein dropout on various toy and standard datasets in Section 5.3, paying
special attention to safety-relevant evaluation schemes and metrics. Finally, W-dropout is
adapted to the complex task of object detection in Section 5.4, using (mostly) the compact
SqueezeDet architecture (Wu et al., 2017). A summary of the obtained results and an
outlook is provided in Section 5.5.

5.1. Motivation and derivation

Before we lay out our dropout-based approach to modeling aleatoric uncertainty, we
analyze some central properties of Monte Carlo dropout. The latter also employs sub-
networks, however, for the purpose of modeling epistemic uncertainty (Gal & Ghahramani,
2016a): Given a neural network fθ : Rnin → Rnout with parameters θ, MC dropout samples
sub-networks fθ̃ by randomly dropping nodes from the main model fθ yielding for each
input xi a distribution Dθ̃(xi) over network predictions. During MC dropout inference
the final prediction is given by the mean of a sample from Dθ̃(xi), while the uncertainty
associated with this prediction can be estimated as a sum of its variance and a constant
uncertainty offset. The value of the latter term requires dataset-specific optimization.
During MC dropout training, minimizing the objective function, e.g., the mean squared
error (MSE), shifts all sub-network predictions toward the same training targets. For a
more formal explanation of this behavior, and without loss of generality, let fθ be a NN
with one-dimensional output. The expected MSE for a training sample (xi, yi) under the
model’s output distribution Dθ̃(xi) is given by

Eθ̃

[
(fθ̃(xi) − yi)2

]
=
(
µθ̃(xi) − yi

)2 + σ2
θ̃
(xi) , (5.1)

with sub-network mean µθ̃(xi) = Eθ̃[fθ̃(xi)] and variance σ2
θ̃
(xi) = Eθ̃[f2

θ̃
(xi)]−Eθ̃[fθ̃(xi)]2.

Therefore, training simultaneously minimizes the squared error between sub-network mean
µθ̃(xi) and target yi as well as the variance σ2

θ̃
(xi).

As we, in contrast, seek to employ sub-networks to model aleatoric uncertainty, mini-
mizing the variance over the sub-networks is not desirable for our purpose. Instead, we
aim at explicitly fitting the sub-network variance σ2

θ̃
(xi) to the input-dependent, i.e., het-

eroscedastic, data variance. That is to say, we not only match the mean values as in

62

5.1. Motivation and derivation

Eq. 5.1 but seek to match the entire data distribution Dy(xi) by means of the model’s
output distribution Dθ̃(xi). This output distribution is induced by applying Bernoulli
dropout to all activations of the network. The matchings are technically realized by
minimizing a distance measure between the two distributions Dθ̃(xi) and Dy(xi). While,
in principle, various distances could be used, we, however, require two properties: i) the
distance needs to be non-saturating, i.e., it needs to grow monotonously and unboundedly
with the actual mismatch between the distributions. This is needed (or desirable) as for
safety reasons, we want to penalize strong mismatches. Additionally, ii) we require the
distance to have a simple, closed form. This is needed for subsequent, bootstrap-inspired
approximations (see below). The (squared) 2-Wasserstein distance (Villani, 2008) fulfills
both of these properties4 and is therefore employed in the following. Assuming that both
distributions Dθ̃(xi) and Dy(xi) are Gaussian5 then yields a compact analytical expression

WS2
2(xi) = WS2

2
[
Dθ̃(xi), Dy(xi)

]
= WS2

2
[
N (µθ̃(xi), σθ̃(xi)), N (µy(xi), σy(xi))

]
=
(
µθ̃(xi) − µy(xi)

)2 +
(
σθ̃(xi) − σy(xi)

)2
,

(5.2)

with µθ̃(xi) = Eθ̃[fθ̃(xi)] and σ2
θ̃
(xi) = Eθ̃[(fθ̃(xi) − Eθ̃[fθ̃(xi)])2], and µy, σy defined

analogously w.r.t. the data distribution.
In practice, however, Eq. 5.2 cannot be readily used as the distribution of y given xi is

typically not accessible. Instead, for a given, fixed value of xi from the training set only a
single value of yi is known. Therefore, we take yi as a (rough) one-sample approximation
of the mean µy(xi) resulting in µy(xi) ≈ yi and σ2

y(xi) ≈ Ey[(y − yi)2]. However, σ2
y(xi)

cannot be inferred from a single sample. Inspired by parametric bootstrapping (Dekking
et al., 2005; Hastie et al., 2009), we therefore approximate the empirical data variance (for
a given mean value yi and input xi) with samples from our model, i.e., we approximate
Ey[(y − yi)2] by

Eθ̃[(fθ̃(xi) − yi)2] = (µθ̃(xi) − yi)2 + σ2
θ̃
(xi) . (5.3)

Inserting our approximations µy(xi) ≈ yi and σy(xi) ≈ (µθ̃(xi) − yi)2 + σ2
θ̃
(xi) into Eq. 5.2

yields the Wasserstein dropout loss (W-dropout) for a data point (xi, yi) from the training
distribution,

WS2
2(xi) ≈ (µθ̃(xi) − yi)2 +

[√
σ2

θ̃
(xi) −

√
(µθ̃(xi) − yi)2 + σ2

θ̃
(xi)

]2
. (5.4)

4This is in contrast to other widely used metrics. The Kolmogorov-Smirnov (KS) statistic, for example,
is saturating and therefore violates the first requirement whereas the KL divergence possesses a more
involved structure that violates the second requirement.

5An assumption shared by, e.g., the NLL optimization or the ECE. While different distributions, for
example exponentially decaying or mixtures, could be used in principle, we restrict the scope here to
this standard Gaussian case.

63

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Considering a mini-batch of size M instead of a single data point, the optimization
objective is given by the arithmetic mean of the corresponding Eq. 5.4 terms. In practice,
µθ̃(xi) and σ2

θ̃
(xi) are approximated by empirical estimators using a sample size L, i.e.,

µθ̃(xi) ≈ 1
L

L∑
l=1

fθ̃l
(xi) , (5.5)

σ2
θ̃
(xi) ≈ 1

L

L∑
l=1

f2
θ̃l

(xi) −
(

1
L

L∑
l=1

fθ̃l
(xi)

)2

. (5.6)

In contrast to MC dropout we require thereby L stochastic forward passes per data point
during training (instead of one), while at inference the procedures are exactly the same.

Besides the regression tasks considered here, our approach could be useful for other
objectives that use or benefit from an underlying distribution, e.g., Dirichlet distributions
to quantify uncertainty in classification, as discussed in the conclusion of this chapter.

An alternative formulation of Wasserstein dropout grounded in error learning While
the approximations of Eq. 5.2 presented above are well-motivated, plausible alternative
approaches exist. In the following, we sketch a different approximation of Eq. 5.2 that
makes use of conceptual overlaps between uncertainty modeling and error learning.

To minimize the Wasserstein distance between the model output distribution and data
distribution (that are both assumed to be Gaussian), the model’s mean prediction µθ̃(xi)
and standard deviation σθ̃(xi) need to be optimized concurrently. As both model outputs,
µθ̃(xi) and σθ̃(xi), are parameterized by a shared set of global parameters (e.g., of a neural
network), trade-off relations may occur between them. For Gaussian parameters, these
trade-off relations can be quantified by means of the Gaussian negative log-likelihood,

NLLnormal ∝ log σθ̃(xi) +
(µθ̃(xi) − yi)2

2 σ2
θ̃
(xi)

. (5.7)

Assuming, for instance, a discrete label yi (i.e., a label distribution p(y | xi) = δ(yi)) and
a model error |µθ̃(xi) − yi| > 0, the NLL is optimized for a standard deviation that equals
this error, σθ̃(xi) = |µθ̃(xi) − yi|. Thinking instead of yi as a realization of a continuous
label distribution p(y | x), the (error) term |µθ̃(xi) − yi| can alternatively be seen as a
rough proxy for (the scale of) the intrinsic uncertainty in the data distribution when
assuming that the model’s mean prediction µθ̃(xi) approximates the mean of the data
distribution. It therefore seems plausible to consider µy(xi) ≈ yi and σy(xi) ≈ |µθ̃(xi)−yi|.
Plugging these approximations into Eq. 5.2 yields for a data point (xi, yi) from the training
distribution

WS2
GL(xi) ≈ (µθ̃(xi) − yi)2 +

(
σθ̃(xi) − |µθ̃(xi) − yi|

)2
. (5.8)

We refer to this objective as the Gaussian-likelihood variant of the Wasserstein dropout
loss (GL-W-dropout). As before, all model outputs µθ̃(xi) and σθ̃(xi) are approximated

64

5.1. Motivation and derivation

by sampling. The mini-batch loss is again obtained by averaging over the respective
per-data-point losses. As stated earlier, this approach to encode the deviation between
|µθ̃(xi) − yi| and σθ̃(xi) is closely linked to the topic of error learning. Objective functions
similar to Eq. 5.8 exist in the literature, see, e.g., Eq. 4 in Feng et al. (2019).

The Gaussian likelihood variant of W-dropout (Eq. 5.8) requires, like standard W-
dropout (Eq. 5.4), L stochastic forward passes per input in each training step. While
training compute is (for many applications) less critical compared to compute at inference,
reductions of the former one are still desirable to render the Wasserstein dropout technique
affordable for large industry-scale networks. As the encoding of uncertainty information
into the spread of the sub-network output distribution requires the concurrent optimization
of several sub-networks, we seek to encode uncertainty information in a computationally
cheaper way. Instead of generating different outputs by imposing different dropout masks
on the network, one may, alternatively, generate different outputs in a binary way by
switching the stochasticity in the network “off” and “on”, i.e., by considering the full
deterministic network fθ(xi) and one randomly drawn sub-network fθ̃(xi) for each input
data point. The deterministic network fθ(xi) is used to fit the data mean whereas the sub-
network fθ̃(xi) is explicitly encouraged not to do so. Instead, sub-networks are employed
to model aleatoric uncertainty and prediction residuals if the prediction of the full network
fθ(xi) is incorrect. This is done by encoding the error of the network, |fθ(xi)−yi|, into the
distance |fθ̃(xi)−fθ(xi)| between deterministic network fθ(xi) and stochastic sub-network
fθ̃(xi). Thus, we deliberately assign different “tasks” to the full network fθ(xi), on the
one hand, and its sub-networks fθ̃(xi), on the other hand. Adapting Eq. 5.8 accordingly,
i.e., replacing µθ̃(xi) by fθ(xi) and σθ̃(xi) by |fθ̃(xi) − fθ(xi)| yields6

WS2
GL-OS(xi) ≈ (fθ(xi) − yi)2 +

(
|fθ̃(xi) − fθ(xi)| − |fθ(xi) − yi|

)2
, (5.9)

which is termed the Gaussian-likelihood one-sample (GL-OS) variant of the Wasserstein
dropout objective. Its first term is the MSE of the full network fθ. Its second term seeks
to optimize7 the sub-networks fθ̃. It aims at finding sub-networks such that the distance
|fθ̃(xi) − fθ(xi)| matches the prediction residual |fθ(xi) − yi|, which also serves as a proxy
for the aleatoric uncertainty. As our choice of the second loss term removes all directional
information of the residual, possible (optimal) solutions for the fθ̃(xi) are not uniquely
determined.8 The standard deviations σtotal(xi) of the predictions of the sub-networks
w.r.t. the prediction of the mean network have two components: the spread σθ̃(xi) of
the sub-networks and an offset

∣∣fθ(xi) − µθ̃(xi)
∣∣ between the full network fθ(xi) and the

sub-network mean µθ̃(xi) that our loss might cause. Concretely,

σtotal(xi) = σθ̃(xi) + |fθ(xi) − µθ̃(xi)| . (5.10)

6Please note that calculating |fθ(xi) − fθ̃(xi)| requires only one stochastic and one deterministic forward
pass, whereas multiple stochastic forward passes are needed to determine σθ̃(xi).

7To avoid unintended optimization of the full network fθ in direction of fθ̃, we only back-propagate
through fθ̃ in the second loss term.

8For an analytical study of the loss landscape induced by Eq. 5.9, see Appendix B.1.1.

65

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

While |fθ(xi) − µθ̃(xi)| is reminiscent of residual matching, σθ̃(xi) is more closely related
to modeling uncertainties. We show in Appendix B.1.2 that σθ̃(xi) accounts on average
for more than 80% of σtotal(xi) in our experiments. Please recall that the calculation of
σtotal(xi) for an input data point xi requires one deterministic and multiple stochastic
forward passes.9 Further note that the one-sample approximation described above can not
only be applied to the Gaussian-likelihood variant of Wasserstein dropout loss (Eq. 5.8)
but also to the standard Wasserstein dropout loss (Eq. 5.4). Preliminary experiments,
however, show that such a “one-sample” Wasserstein dropout loss (OS-W-dropout) leads to
overestimated uncertainties as implicit regularization of σθ̃(xi), due to the coupling of the
sub-networks via global network parameters, is weakened when concurrent optimization
of multiple sub-networks is replaced by sequential optimization of single sub-networks as
is the case for one-sample approximations. The OS-W-dropout variant is therefore not
considered in the following. We moreover discard the GL-W-dropout objective (Eq. 5.8)
as both the quality of the resulting uncertainty estimates (in preliminary experiments)
and its computational “foot print” are similar to standard W-dropout (Eq. 5.4). The
subsequent empirical analysis of Wasserstein dropout thus puts a focus on standard
W-dropout (Eq. 5.4) and its Gaussian-likelihood one-sample variant (Eq. 5.9).

Comparing the properties of dropout-based uncertainty methods To illustrate quali-
tative behaviors of different dropout-based uncertainty techniques, namely, Wasserstein
dropout, its GL-OS variant and MC dropout, we consider two R → R toy datasets. These
benchmarks put emphasis on the handling of heteroscedastic aleatoric uncertainty. The
first dataset (“toy-noise”) is Gaussian white noise with a x-dependent amplitude, see the
blue point cloud in the first row of Fig. 5.1. The second dataset (“toy-hf”) is a polynomial
overlayed with a high-frequency, amplitude-modulated sine, see the blue curve in the
third row of Fig. 5.1. The equations for the toy datasets used here can be found in
Appendix B.2.2.

While the uncertainty in the first dataset (“toy-noise”) is clearly visible, it is less obvious
for the fully deterministic second dataset (“toy-hf”). There is an effective uncertainty
though due to the insufficient expressivity of the model, as the shallow networks employed10

are empirically not able to fit (all) fluctuations of “toy-hf” (see third row of Fig. 5.1). One
might (rightfully) argue that this is a sign of insufficient model capacity. For more realistic,
e.g., higher dimensional and sparser datasets, however, the distinction between actual
noise and complex information becomes exceedingly difficult to make and regularization is
actively used to suppress the modeling of stochastic fluctuations. As the Nyquist-Shannon
sampling theorem states, with limited data deterministic fluctuations above a cut-off
frequency can no longer be resolved (Landau, 1967). They therefore become virtually
indistinguishable from random noise.

Training MC dropout- and Wasserstein dropout-based models on these toy datasets
and visualizing the sub-network distributions of the optimized models (see Fig. 5.1),

9The source code for the GL-OS variant of Wasserstein dropout, which was previously termed second-
moment loss, can be found at https://github.com/fraunhofer-iais/second-moment-loss.

10We employ MLPs with two hidden layers each of which contains 50 neurons with ReLU activations.

66

https://github.com/fraunhofer-iais/second-moment-loss

5.1. Motivation and derivation

Fig. 5.1.: Comparison of dropout-based uncertainty techniques on toy datasets.
MC dropout (left column), the GL-OS variant of Wasserstein dropout (middle
column) and standard Wasserstein dropout (right column) are analyzed for
a dataset with heteroscedastic noise (blue point cloud in first row) and a
high-frequency dataset (blue curve in third row). In particular, their dropout-
induced sub-networks are visualized (gray curves in the first and third row) as
well as the standard deviations of their output distributions (stds, blue dots
in second and fourth row). For the noisy dataset, the ground truth standard
deviation is shown for comparison (dashed light green curve in the second
row). Focusing on epistemic uncertainty, MC dropout yields (rather) narrow
sub-network distributions and fits a constant level of data noise by means of an
input-independent parameter (see left panel in second row). The Wasserstein
dropout techniques, in contrast, allow for capturing heteroscedastic data un-
certainty (second row) and model class uncertainty (fourth row). W-dropout
(right column) induces unimodal sub-network distributions whereas its GL-OS
variant can bring about bimodality due to one-sample approximations. The
deterministic outputs of the GL-OS variant are shown as black curves (first
and third row).

67

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

the conceptual differences between the different dropout techniques are clearly visible:
Wasserstein dropout (Fig. 5.1, right column) and its Gaussian-likelihood one-sample
(GL-OS) variant (Fig. 5.1, middle column) employ sub-networks to model aleatoric
uncertainty. Both input-dependent data noise (of the “toy-noise” dataset, first row)
and model class uncertainty (of the “toy-hf” dataset, third row) are reflected in their
sub-network distributions. This is in contrast to MC dropout (Fig. 5.1, left column) that
uses sub-network distributions to model epistemic uncertainty. This type of uncertainty
is small after training models on densely sampled toy datasets and consequently MC
dropout’s sub-network distributions are significantly more narrow compared to the ones of
the Wasserstein dropout techniques. MC dropout, however, allows for roughly modeling
data-intrinsic uncertainty by means of a tunable “offset” hyperparameter that is chosen
to match the average noise level of a dataset (see the left panels in the second and fourth
row of Fig. 5.1).

Differences between W-dropout and its GL-OS variant manifest in the properties of
the output distributions they induce: standard W-dropout yields unimodal distributions
whereas the GL-OS variant can bring about bimodality. This behavior of GL-OS is due to
the structure of the second summand of its optimization objective (Eq. 5.9) that removes
(as stated above) the directional information of the residuals of the deterministic network.
For 1D datasets, a sub-network output may lie, figuratively speaking, “above” or “below”
the output of the deterministic network (that is visualized as a black curve in Fig. 5.1).
Changes between these “orientations” as a function of x rarely occur for the datasets
in Fig. 5.1 as such “switches” imply an increase of the second loss term and additional
complexity of the respective sub-network. An (approximate) analytical treatment of the
loss landscape of the GL-OS variant as well as further analyses of its loss components can
be found in Appendix B.1. While the GL-OS variant of Wasserstein dropout provides
competitive uncertainty quality, it comes along with output bimodality that does not
reflect any actual (stochastic) input-output relation in the dataset to be modeled. It is a
modeling artifact, which may, moreover, negatively impact downstream tasks that build
on distributional properties beyond the second central moment. In the following empirical
studies, we thus discard the GL-OS loss variant and focus on the standard Wasserstein
dropout technique.

5.2. Uncertainty assessment beyond standard measures

To compare the output distributions induced by Wasserstein dropout more systematically
with those of MC dropout and other uncertainty estimation techniques (see Section 5.3),
measures for similarities and deviations between probability distributions are required.
These scores of uncertainty quality (see Section 3.3 for an overview and the next paragraph
for a concise recapitulation) are typically scalar, i.e., they map (potentially complex)
distributional differences onto single values. Being aggregating in that sense, they neces-
sarily put emphasis on some distributional properties while neglecting others. Here, we
propose two novel uncertainty scores that address shortcomings of established uncertainty

68

5.2. Uncertainty assessment beyond standard measures

measures. We argue that the proposed uncertainty scores complement the existing ones
and thus help to “draw” a more comprehensive picture of uncertainty quality. In particu-
lar, an unbounded calibration measure is introduced (second paragraph) as well as an
uncertainty tail measure for the analysis of worst-case scenarios w.r.t. uncertainty quality
(third paragraph).

Standard evaluation measures In the following experiments, we evaluate both regression
performance and uncertainty quality. Regression performance is quantified by the root-
mean-square error,

√
1/N

∑
i(µi − yi)2 (RMSE, see Section 2.3). We moreover consider

the (Gaussian) negative log-likelihood (NLL), 1/N
∑

i

(
log σi +(µi − yi)2/(2σ2

i) + c
)
, a

hybrid between performance and uncertainty measure (see Section 2.3 and, for further
discussion, Appendix B.4.2). Throughout this chapter, we ignore the constant c = log

√
2π

of the NLL. The expected calibration error (ECE, see Section 2.3) in contrast is not
biased toward well-performing models and in that sense a pure uncertainty measure.
Technically, it is based on so-called normalized prediction residuals ri that are defined as
ri = (µi − yi)/σi. Assuming B equally spaced bins in quantile space, the ECE reads

ECE({ri}) =
B∑

j=1

∣∣∣∣p̃j({ri}) − 1
B

∣∣∣∣ , (5.11)

where p̃j({ri}) = |{ri|qj ≤ q̃(ri) < qj+1}|/N denotes the empirical frequency of data
points falling into the bin [qj , qj+1) and q̃ the cumulative distribution function (CDF) of
the standard normal distribution N (0, 1).

An unbounded uncertainty calibration measure A desirable property for uncertainty
measures is a signal that grows (preferentially linearly) with the misalignment between
predicted and ideal uncertainty estimates, especially when handling strongly deviating
uncertainty estimates. As the Wasserstein metric fulfills this property, we not only use it
for model optimization but propose to consider the 1-Wasserstein distance of normalized
prediction residuals (WS) as a complementary uncertainty evaluation measure. It is
generally applicable and by no means restricted to W-dropout networks. In detail, the
1-Wasserstein distance (Villani, 2008), also known as earth mover’s distance (Rubner
et al., 1998), is a transport-based measure, denoted by dWS, between two probability
densities, with Wasserstein GANs (Arjovsky et al., 2017) as its most prominent application
in machine learning. In the context of uncertainty estimation, we use the Wasserstein
distance to measure deviations of uncertainty estimates {ri}i from ideal (Gaussian)11

calibration that is given if yi ∼ N (µi, σi) with accompanying normalized residuals of
ri ∼ N (0, 1), i.e., we calculate dWS ({ri}i, N (0, 1)). As ECE, this is a pure uncertainty
measure. However, it is not based on quantiles but directly on normalized residuals and
can therefore resolve deviations on all scales. For example, two strongly ill-calibrated

11As stated before, Gaussianity, while not always given, is a standard assumption for uncertainty modeling
and typically used in ECE and NLL.

69

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. 5.2.: Comparison of the proposed Wasserstein-based measure (WS) and the expected
calibration error (ECE). We measure the deviation between a standard normal
distribution N (0, 1) (l.h.s., red) and shifted normal distributions N (µ, 1) (top
left, dark blue) as well as the deviation between N (0, 1) and squeezed or
stretched normal distributions N (0, σ) (bottom left, dark blue). The resulting
ECE values (orange) and WS values (blue) on the r.h.s. emphasize the higher
sensitivity of WS in the case of large distributional differences. For details on
ECE and WS, see the text in Section 5.2.

uncertainties would result in (almost) identical ECE values while WS would resolve this
difference in magnitude. Let us compare ECE and WS more systematically: we consider
normal distributions N (µ, 1) and N (0, σ) (see Fig. 5.2) that are shifted (top left panel,
dark blue) or deformed by squeezing or stretching (bottom left panel, dark blue). Their
deviations from the ideal normalized residual distribution (the standard normal, red) are
measured in terms of both ECE (r.h.s., blue) and WS (r.h.s., orange). For large values of
|µ| and σ, ECE is bounded while WS increases linearly showing the better sensitivity of the
latter toward strong deviations. For small values, σ → 0, ECE takes its maximum value,
WS a value of 1. In Fig. 5.3, we visualize these value pairs (WS(σ), ECE(σ)) (gray lines),
i.e., σ serves as curve parameter. The upper branch corresponds to 0 < σ < 1, the lower
branch to σ > 1. For comparison, the pairs (WS, ECE) of various networks trained on
standard regression datasets are visualized (see Subsection 5.3.3 for experimental details
and results). They approximately follow the theoretical σ-curve, emphasizing that both
under- and overestimated variances are of practical relevance. A given WS value allows,
due to lacking saturation for underestimation, to distinguish these two cases more easily
compared to ECE. While one might rightfully argue that the higher sensitivity of WS
leads to a certain susceptibility to potential outliers, this can be addressed by regularizing
the normalized residuals or by filtering extreme outliers.

A novel uncertainty tail measure We furthermore introduce a measure for distributional
tails that allows us to analyze worst-case scenarios w.r.t. uncertainty quality, thus reflecting

70

5.3. Empirical evaluation on 1D regression datasets

Fig. 5.3.: Dependency between the Wasserstein-based measure and the expected calibra-
tion error for Gaussian toy data (gray curves) and for 1D standard datasets
(point cloud, see Subsection 5.3.3 for details). The toy curves are obtained
by plotting (WS(σ), ECE(σ)) from Fig. 5.2 (bottom right). For 1D standard
datasets, uncertainty methods are encoded via plot markers, data splits via
color. Datasets are not encoded and cannot be distinguished (see Appendix B.4
for more details). Each plot point corresponds to a cross-validated trained
network.

safety considerations. Such potentially critical worst-case scenarios are signified by the
above-mentioned outliers, where the locally predicted uncertainty strongly underestimates
the actual model error. A better understanding of uncertainty estimates in these scenarios
can help to determine lower bounds on operation quality of safety-critical systems. For
this, we consider normalized residuals ri = (µi − yi)/σi based on the prediction estimates
(µi, σi) for a given data point (xi, yi). As stated, we restrict our analysis to uncertainty
estimates that underestimate model errors, i.e., |ri| ≫ 1. These cases might be more
harmful than overly large uncertainties, |ri| ≪ 1, that likely trigger a conservative system
behavior. We quantify uncertainty quality for worst-case scenarios as follows: for a given
(test) dataset, the absolute normalized residuals {|ri|}i are calculated. We determine
the 99% quantile q0.99 of this set and calculate the mean value over all |ri| > q0.99, the
so-called expected tail loss at quantile 99% (ETL0.99, Rockafellar & Uryasev (2002)). The
ETL0.99 thus measures the average uncertainty quality of the worst 1%.

5.3. Empirical evaluation on 1D regression datasets

We first outline the scope of our empirical study in Subsection 5.3.1 and revisit the
illustrative and visualizable toy datasets that were used above in Subsection 5.3.2. Finally,
we benchmark Wasserstein dropout on various 1D datasets (mostly from the UCI machine
learning repository (Dua & Graff, 2017)) in Subsection 5.3.3, considering both in-data
test sets and distribution-shift scenarios.

71

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

5.3.1. Experiment setup

In this subsection, we present the considered benchmark approaches (first paragraph) and
give a brief overview of the employed technical setup (second paragraph).

Benchmark approaches We compare W-dropout networks to archetypes of uncertainty
modeling, namely, approximate Bayesian techniques, parametric uncertainty, and ensem-
bling approaches. From the first group, we pick MC dropout (abbreviated as MC, Gal &
Ghahramani (2016a)) and Concrete dropout (CON-MC, Gal et al. (2017)). The variance
of MC is given as the sample variance plus a dataset-specific regularization term. The
networks employing these methods do not exhibit parametric uncertainty outputs (see
below). We additionally consider SWA-Gaussian (SWAG, Maddox et al. (2019)), which
samples from a Gaussian model weight distribution that is constructed based on model
parameter configurations along the (final segment of the) training trajectory. While these
sampling-based approaches integrate uncertainty estimation into the structure of the entire
network, parametric approaches model the variance directly as the output of the neural
network (Nix & Weigend, 1994). Such networks typically output mean and variance of a
Gaussian distribution (µ, σ2) and are trained by likelihood maximization. This approach is
denoted as PU for parametric uncertainty. Ensembles of PU-networks (Lakshminarayanan
et al., 2017), referred to as deep ensembles, pose a widely used state-of-the-art method
for uncertainty estimation (Snoek et al., 2019). Deep evidential regression (PU-EV,
Amini et al. (2020)) extends this parametric approach and considers prior distributions
over µ and σ. Kendall & Gal (2017) consider drawing multiple dropout samples from a
parametric uncertainty model and aggregating multiple predictions for µ and σ. We denote
this approach as PU-MC. Moreover, we consider ensembles of non-parametric standard
networks. We refer to the latter ones as DEs while we call those using additionally
PU-based uncertainty PU-DEs. All considered types of networks provide estimates
(µi, σi) where σi is obtained either as direct network output (PU, PU-EV), by sampling
(MC, CON-MC, SWAG, W-dropout) or as an ensemble aggregate (DE, PU-DE). For
PU-MC, a combination of parametric output and sampling is employed. Throughout this
section, we subsume PU, PU-EV, PU-DE and PU-MC as parametric methods.

Technical setup Throughout this subsection, we use almost identical networks with two
hidden layers and ReLu activations, employing 50 neurons per layer for the toy datasets
and 100 for the 1D standard datasets. All dropout-based networks (MC, CON-MC,
W-dropout) apply Bernoulli dropout to all hidden activations. For W-dropout networks,
we sample L = 5 sub-networks in each optimization step, other values of L are considered
in Appendix B.3. On the smaller toy datasets, we afford L = 10. For MC and W-dropout,
the drop rate is set to p = 0.1 (see Appendix B.3 for other values of p). The drop rate
of CON-MC in contrast is learned during training and (mostly) takes values between
p = 0.2 and p = 0.5. For ensemble methods (DE, PU-DE) we employ five networks. All
NNs are optimized using the Adam optimizer (Kingma & Ba, 2015) with a learning rate
of µ = 0.001. Additionally, we apply standard normalization to the input and output

72

5.3. Empirical evaluation on 1D regression datasets

Fig. 5.4.: Comparison of uncertainty approaches (columns) on two 1D toy datasets:
a noisy one (top) and a high-frequency one (bottom). Test data ground truth
(respective first row) is shown with mean estimates (resp. second row) and
standard deviations (resp. third row). The light green dashed curve (third
row) indicates the ground truth uncertainty. Similar uncertainty approaches
(columns) are grouped together, W-dropout is highlighted by a yellow frame.

features of all datasets to enable better comparability. The number of training epochs
and cross validation runs depends on the dataset size. Further technical details on the
networks, the training procedure, and the implementation of the uncertainty methods can
be found in Appendix B.2.1. In using a least squares regression, we make the standard
assumption that errors follow a Gaussian distribution. This is reflected in the (standard)
definitions of above named measures, i.e., all uncertainty measures quantify the set of
outputs {(µi, σi)} relative to a Gaussian distribution.

5.3.2. Toy datasets

In this subsection, we revisit the two 1D toy datasets from Section 5.1, namely, the
heteroscedastic noise dataset (“toy-noise”) and the high-frequency dataset (“toy-hf”).
They were employed in Section 5.1 to compare Wasserstein dropout (and a variant of it)
with MC dropout. Here, we extend this qualitative analysis to all uncertainty estimation
techniques outlined in Subsection 5.3.1.

Figure 5.4 shows, similar to Fig. 5.1, the “toy-noise” and the “toy-hf” datasets (first
and fourth row) and the output standard deviations induced by the considered benchmark
methods (third and sixth row). Moreover, the mean predictions of the uncertainty methods
are displayed (second and fifth row). On both datasets, the respective mean estimates

73

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

look almost identical for all uncertainty methods. They approximate the mean value of
the noise and the polynomial, respectively. For “toy-hf”, some methods rudimentarily
fit individual fluctuations. The variance estimation (third and sixth row in Fig. 5.4), in
contrast, reveals significant differences between the methods: MC dropout variants and
other non-parametric ensembles are not capable of capturing heteroscedastic aleatoric
uncertainty. This behavior of MC is expectable as it was primarily introduced to account
for model parameter uncertainty. The non-parametric DE is effectively optimized in a
similar fashion. In contrast, NLL-optimized PU networks have a home-turf advantage
on these datasets since the parametric variance is explicitly optimized to account for
the present heteroscedastic aleatoric uncertainty. W-dropout is the only non-parametric
approach that accounts for the presence of this kind of uncertainty. While the results
look similar, the underlying mechanisms are fundamentally different. On the one hand
explicit prediction of the uncertainty, on the other hand implicit modeling via distribution
matching. Accompanying quantitative evaluations can be found in Appendix B.2.2.
To collect further evidence that W-dropout approximates the ground truth uncertainty
σtrue appropriately, we fit it to “noisy-line” toy datasets in Appendix B.2.2. Both large
and small σtrue values are correctly matched, indicating that W-dropout is not just adding
an uncertainty offset but flexibly spreads and contracts its sub-networks as intended. In
the following, we substantiate the corroborative results of W-dropout on toy data by an
empirical study on 1D standard datasets and an application to a modern object detection
network.

5.3.3. Standard ML datasets

Next, we study standard regression datasets, extending the dataset selection in Gal &
Ghahramani (2016a) by adding four additional datasets: “diabetes”, “abalone”, “california”
and “superconduct”. Tab. B.2 (p. 156) in Appendix B.2.3 provides details on dataset
sources, preprocessing and basic statistics. Apart from train- and test-data results, we
study regression performance and uncertainty quality under data shift. Such distributional
changes and uncertainty quantification are closely linked since the latter ones are rudimen-
tary self-assessment mechanisms that help to judge model reliability. These judgments
gain importance for model inputs that are structurally different from the training data.

Data splits Natural candidates for such non-i.i.d. splits are splits along the main directions
of data in input and output space, respectively. Here, we consider 1D regression tasks.
Therefore, output-based splits are simply done on a scalar label variable (see Fig. 5.5,
right). We call such a split label-based (for a comparable split, see, e.g., Foong et al.
(2019)). In input space, the first component of a principal component analysis (PCA)
provides a natural direction (see Fig. 5.5, left). Projecting the data points onto this first
PCA-axis yields the scalar values the PCA-split is based on. Note that these projections
are only considered for data splitting, they are not used for model training. Splitting
data along such a direction in input or output space in, e.g., ten equally large chunks,
creates two outer data chunks and eight inner data chunks. Training a model on nine of

74

5.3. Empirical evaluation on 1D regression datasets

Fig. 5.5.: Scheme of two non-i.i.d. splits: a PCA-based split in input space (left) and
label-based split in output space (right). While datasets appear to be convex
here, they are (most likely) not in reality.

these chunks such that the remaining chunk for evaluation is an inner chunk is called data
interpolation. If the remaining test chunk is an outer chunk, it is data extrapolation. For
example, for labels running from 0 to 1, (label-based) extrapolation testing could consider
only data with a label larger 0.9, while training would be performed on the smaller label
values. We introduce this distinction as extrapolation is expected to be considerably more
difficult than bridging between feature combinations that were seen during training.

More general information on training and dataset-dependent modifications to the
experimental setup are relegated to the technical Appendix B.2.1. The presented results
are obtained as follows: for each of the 14 standard datasets, we calculate (for each
uncertainty method) the per-dataset scores: RMSE, mean NLL, ECE and WS. To improve
statistical significance, these scores are 5- or 10-fold cross-validated, i.e., averages across a
respective number of folds. Given the (fold-averaged) per-dataset scores for all 14 standard
datasets, we calculate and visualize their mean and median values as well as quantile
intervals (see Fig. 5.6 and Fig. 5.7). For high-level summaries of the results on in-data
and out-of-data test sets, refer to Tab. 5.1 and Tab. 5.2, respectively. While the mean
values characterize the average behavior of the uncertainty methods, the displayed 75%
quantiles indicate how well methods perform on the more challenging datasets. A small
75% quantile value thus hints at consistent stability of an uncertainty mechanism across a
variety of tasks.

Regression quality First, we consider regression performance, see Tab. 5.1 and the
first two panels in the top row of Fig. 5.6. Averaging the RMSE values across the 14
datasets yields almost identical test results for all uncertainty methods (see Tab. 5.1).
On training data (Fig. 5.6, first panel in top row) in contrast, we find the parametric
methods to exhibit larger train data RMSEs, which could be due to NLL optimization
favoring to adapt variance rather than mean. However, this regularizing NLL training
comes along with a smaller generalization gap, leading to competitive test RMSEs (see
Tab. 5.1 and the second panel in the top row of Fig. 5.6). W-dropout is on a par with
the benchmark approaches, i.e., our optimization objective does not lead to degraded

75

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. 5.1.: Regression performance (RMSE) and uncertainty quality (NLL, ECE, WS) of
W-dropout and various uncertainty benchmarks. W-dropout yields the best
uncertainty scores while providing a competitive RMSE value. Each number
is the average across 14 standard 1D (test) datasets. The figures in this table
correspond to the blue crosses in the second columns of Fig. 5.6 and Fig. 5.7,
respectively. See the text in Subsection 5.3.3 for further details.

unc. method RMSE (↓) NLL (↓) ECE (↓) WS (↓)

SWAG 0.456 7.695 0.828 1.847
DE 0.407 6.184 0.796 1.628
PU 0.447 1.47 · 107 0.614 2.10 · 106

PU-EV 0.442 2.838 0.626 49.180
PU-DE 0.418 0.307 0.515 0.542
PU-MC 0.420 0.250 0.565 0.433
MC 0.412 0.190 0.788 0.643
CON-MC 0.436 1.513 0.669 0.964
W-Dropout 0.421 −0.428 0.501 0.430

regression quality.12 Next, we investigate model performance under data shift, visualized
in the third to sixth panel in the top row of Fig. 5.6. For interpolation setups (fourth
and sixth panel), regression quality is comparable between all methods. As expected,
performances under these data shifts are (slightly) worse compared to those on i.i.d.
test sets. The more challenging extrapolation setups (third and fifth panel) amplify the
deterioration in performance across all methods. Again, W-dropout yields competitive
RMSE values (see also Tab. 5.2).

Expected calibration errors Fig. 5.6 (bottom row) provides average ECE values of
the outlined uncertainty methods under i.i.d. conditions (first and second panel), under
label-based data shifts (third and fourth panel) and under PCA-based data shifts (fifth
and sixth panel). On training data, PU performs best, followed by PU-EV and all other
methods. Interestingly, both SWAG and W-dropout show a relatively broad range of
ECE values on the various training datasets. This could be interpreted as a form of
over-estimation of the present uncertainty and for W-dropout this effect occurs on mostly
smaller datasets with lower data variability. However, looking at the i.i.d. test results
(Tab. 5.1 and second panel in the bottom row of Fig. 5.6) we find W-dropout to provide
the lowest averaged ECE (Tab. 5.1), followed by the PU-based (implicit) ensembles of
PU-DE and PU-MC. The calibration quality of W-dropout is moreover the most consistent
one across the datasets as can be seen from its small 75% quantile value (Fig. 5.6, second
panel in bottom row).

12This observation does not only hold relative to the other uncertainty methods but, moreover, relative to
a deterministic network, see Fig. B.6 (p. 158) and surrounding discussions in Appendix B.2.3.

76

5.3. Empirical evaluation on 1D regression datasets

Tab. 5.2.: Out-of-data analysis of W-dropout and various uncertainty benchmarks. Re-
gression performance (RMSE) and uncertainty quality (NLL, ECE, WS) are
displayed. As for in-domain test data, W-dropout outperforms the other
uncertainty methods without sacrificing regression quality. Each number is
obtained by two-fold averaging: first, across two types of out-of-data test
sets (label-based and PCA-based splits) and second, across 14 standard 1D
datasets. The figures in this table are based on the blue crosses in the last four
columns of Fig. 5.6 and Fig. 5.7, respectively. See the text in Subsection 5.3.3
for further details.

unc. method RMSE (↓) NLL (↓) ECE (↓) WS (↓)

SWAG 0.641 27.602 1.138 3.818
DE 0.599 14.055 0.988 2.554
PU 0.632 1.50 · 107 0.968 1.55 · 106

PU-EV 0.611 6.290 0.941 44.447
PU-DE 0.594 1448.391 0.783 5.892
PU-MC 0.591 397.022 0.823 3.215
MC 0.589 2.330 0.923 1.207
CON-MC 0.621 13.820 0.963 2.109
W-Dropout 0.615 2.287 0.763 1.203

Looking at the stability w.r.t. data shift, i.e., extra- and interpolation based on label-
split or PCA-split, again W-dropout reaches the smallest calibration errors (followed by
PU-DE and PU-MC, see Tab. 5.2). Regarding the 75% quantiles, W-dropout consistently
provides one of the best results on all out-of-data (OOD) test sets.

Negative log-likelihoods For the unbounded NLL (see Tab. 5.1 and the top row of
Fig. 5.7), the results are more widely distributed compared to the (bounded) ECE values.
W-dropout reaches the smallest mean value on i.i.d. test sets, followed by MC and PU-MC
(Tab. 5.1). The mean NLL value of PU is above the upper plot limit in Fig. 5.7 (second
panel in the upper row) indicating a rather weak stability of this method. On PCA-
interpolate and PCA-extrapolate test sets (Fig. 5.7, last two panels in the upper row), MC,
PU-MC and W-dropout networks perform best. On label-interpolate and label-extrapolate
test sets, only MC and W-dropout networks are in first place when considering average
values, followed by PU-EV. The mean NLLs of many other approaches are above the upper
plot limit. Averaging all these OOD results in Tab. 5.2, we find W-dropout to provide the
overall smallest NLL values, narrowly followed by MC. Note that median results are not as
widely spread and PU-DE, MC, PU-MC and W-dropout perform comparably well. These
qualitative differences between mean and median behavior indicate that most methods
perform poorly “once in a while”. A noteworthy observation as stability across a variety
of data shifts and datasets can be seen as a crucial requirement for an uncertainty method.
W-dropout models yield high stability in that sense w.r.t. NLL.

77

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

0.00

0.25

0.50

0.75

1.00

1.25

1.50

rm
se

train test test (extrap.) test (interp.) test (extrap.) test (interp.)
i.i.d. data split label-based data shift pca-based data shift

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

0.0

0.5

1.0

1.5

2.0

ec
e

train test test (extrap.) test (interp.) test (extrap.) test (interp.)
i.i.d. data split label-based data shift pca-based data shift

Fig. 5.6.: Root-mean-square errors (RMSEs (↓), top row) and expected calibration errors
(ECEs (↓), bottom row) of different uncertainty methods under i.i.d. conditions
(first and second panel in each row) and under various kinds of data shift
(third to sixth panel in each row, see the text in Subsection 5.3.3 for details).
W-dropout (light blue background) is compared to 8 benchmark approaches.
Each blue cross is the mean over 14 1D regression datasets. Orange line markers
indicate median values. The gray vertical bars reach from the 25% quantile
(bottom horizontal line) to the 75% quantile (top horizontal line).

Wasserstein distances Studying Wasserstein distances, we again observe the smallest
scores on test data for W-dropout, followed by PU-MC and PU-DE (see Tab. 5.1 and the
second panel in the bottom row of Fig. 5.7). While PU provides the best WS value on
training data, its generalization behavior is less stable: on test data, its mean and 75%
quantile take high values beyond the plot range. Under data shift (Tab. 5.2 and third
to sixth panel in bottom row of Fig. 5.7), W-dropout and MC are in the lead, CON-MC
and DE follow on ranks three and four. On label-based data shifts, MC and W-dropout
outperform all other methods by a significant margin when considering average values. As
for NLL, we find the mean values for PU-DE and PU-MC to be significantly above their
respective median values indicating again weaknesses w.r.t. the stability of parametric
methods. Here as well, not only good average results, but also consistency over the
datasets and splits, is a hallmark of Wasserstein dropout.

Epistemic uncertainty Summarizing these evaluations on 1D regression datasets, we
find W-dropout to yield better and more stable uncertainty estimates than the state-of-
the-art methods of PU-DE and PU-MC. We moreover observe advantages for W-dropout

78

5.3. Empirical evaluation on 1D regression datasets

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

0

5

10

15

20

nl
l

train test test (extrap.) test (interp.) test (extrap.) test (interp.)
i.i.d. data split label-based data shift pca-based data shift

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

0

1

2

3

4

W
as

se
rs

te
in

 d
ist

an
ce

train test test (extrap.) test (interp.) test (extrap.) test (interp.)
i.i.d. data split label-based data shift pca-based data shift

Fig. 5.7.: Negative log-likelihoods (NLLs (↓), top row) and Wasserstein distances
(↓ , bottom row) of different uncertainty methods under i.i.d. conditions (first
and second panel in each row) and under various kinds of data shift (third to
sixth panel in each row, see the text in Subsection 5.3.3 for details). W-dropout
(light blue background) is compared to 8 benchmark approaches. Each blue
cross is the mean over ECE values from 14 standard regression datasets. Orange
line markers indicate median values. The gray vertical bars reach from the 25%
quantile (bottom horizontal line) to the 75% quantile (top horizontal line).

under PCA- and label-based data shifts. These results suggest that W-dropout induces
uncertainties that increase under data shift, i.e., it approximately models epistemic
uncertainty. This conjecture is supported by Fig. 5.8 that visualizes the uncertainties of
MC dropout (blue) and W-dropout (orange) for transitions from in-data to out-of-data.
As expected, these shifts lead to increased (epistemic) uncertainty for MC dropout. This
holds true for W-dropout that behaves highly similar under data shift indicating that it
“inherits” this ability from MC dropout: both approaches match sub-networks to training
data and these sub-networks spread when leaving the training data distribution. Since
W-dropout models heteroscedastic, i.e., input-dependent, aleatoric uncertainty, we notice
a higher variability of its uncertainties in Fig. 5.8 compared to the ones of MC dropout.

For further (visual) inspections of uncertainty quality, see the residual-uncertainty
scatter plots in Appendix B.2.4. A reflection on NLL and comparisons of the different
uncertainty measures on 1D regression datasets can be found in Appendix B.2.3.

Expected tail loss For both toy and standard regression datasets, we calculate the
expected tail loss at the 99% quantile (ETL0.99) on test data. Doing this for all trained

79

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. 5.8.: Extrapolation behavior of W-dropout (orange) and MC dropout (blue). Two
extrapolation “directions” (rows) and two datasets (columns) are considered.
The vertical bar in each panel separates training data (left) from out-of-
data (OOD, right). Scatter points show the predicted standard deviation for
individual data points. The colored solid lines show averages over points in
equally-sized bins and reflect the expected growth of epistemic uncertainty in
the OOD-region. For details on the data splits and extrapolations, refer to
Subsection 5.3.3 and Appendix B.2.3.

networks yields a total of 110 ETL0.99 values per uncertainty method when including cross-
validation. As a tail measure, the ETL0.99 evaluates a specific aspect of the distribution
of uncertainty estimates. Studying such a property is useful if the uncertainty estimate
distribution as a whole is appropriate, as measured, e.g., by the ECE. We thus restrict
the ETL0.99 analysis to the three methods that provide the best ECE values, namely,
PU-MC, PU-DE and W-dropout. The mean and maximum values of their ETL0.99’s are
reported in Tab. 5.3. While none of these methods gets close to the ideal ETL0.99’s of
the desired N (0, 1) Gaussian, W-dropout networks exhibit significantly less pronounced
tails and therefore higher stability compared to PU-MC and PU-DE. This holds true
over all considered test sets. Deviations from standard normal increase from the i.i.d.
train-test split over the PCA-based train-test split to the label-based one. We attribute
the lower stability of PU-DE to the nature of the PU networks that compose the ensemble,
although their inherent instability (see Tab. B.3 (p. 157) in Appendix B.2.3) is largely
suppressed by ensembling. Considering the tail of the distribution of the prediction
residuals |ri|, however, reveals that regularization of PU by ensembling might not work
in every single case. It is then unlikely that larger ensemble are able to fully cure this
instability issue. Regularizing PU by applying dropout (PU-MC) leads to only mild
improvement. W-dropout networks in contrast encode uncertainty into the structure of

80

5.3. Empirical evaluation on 1D regression datasets

Tab. 5.3.: Study of worst-case scenarios for different uncertainty methods: W-dropout
(W-Drop), PU-DE and PU-MC are compared to the ideal Gaussian case
for i.i.d. and non-i.i.d. data splits. Uncertainty quality in these scenarios is
quantified by the expected tail loss at the 99% quantile (ETL0.99). Each mean
and max value is taken over the ETLs of 110 models trained on 15 different
datasets.

measure split N (0, 1) W-Drop PU-DE PU-MC

mean ETL0.99 i.i.d. 2.89 4.68 7.77 6.24
max ETL0.99 i.i.d. 3.01 8.86 31.14 91.75

mean ETL0.99 label 2.89 7.28 86.79 44.00
max ETL0.99 label 3.01 93.55 2267.93 1224.27

mean ETL0.99 pca 2.89 5.93 9.78 8.62
max ETL0.99 pca 3.01 18.35 64.13 93.49

the entire network thus yielding improved stability compared to parametric approaches.
Further analysis shows that the large normalized residuals ri = (µi − yi)/σi, which cause
the large ETL0.99 values, correspond (on average) to large absolute errors (µi − yi).13 This
underpins the practical relevance of the ETL analysis, as large absolute errors are more
harmful than small ones in many contexts, e.g., when detecting traffic participants.

Dependencies between uncertainty measures All uncertainty-related measures (NLL,
ECE, WS, ETL) relate predicted uncertainties to actually occurring model residuals.
Each of them putting emphasize on different aspects of the considered samples: NLL is
biased toward well-performing models, ECE measures deviations within quantile ranges,
Wasserstein distance resolves distances between normalized residuals and ETL focuses
on distribution tails. The empirically observed dependencies between WS and ECE are
visualized in Fig. 5.3. Additionally to WS and ECE, we consider Kolmogorov-Smirnov (KS)
distances (Stephens, 1974) on normalized residuals in Fig. B.15 (p. 171) in Appendix B.4.

While all these scores are expectably correlated, noteworthy deviations from ideal
correlation occur. Therefore, we advocate for uncertainty evaluations based on various
measures to avoid overfitting to a specific formalization of uncertainty. The top panel of
Fig. B.15 reflects the higher sensitivity of the Wasserstein distance compared to ECE: we
observe two slopes, the first one corresponds to models that overestimate uncertainties,
i.e., σθ̃ > |µθ̃ − yi| on average. In these scenarios, WS is typically below 1 as 1 would be
the WS distance between a delta distribution at zero (corresponding to σθ̃ → ∞) and
the expected N (0, 1) Gaussian. The second slope contains models that underestimate

13They are (on average) not due to small absolute residuals ≪ 1 that go along with even smaller uncertainty
estimates.

81

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

uncertainties, i.e., σθ̃ < |µθ̃ −yi|. WS is not bounded in these scenarios and is thus—unlike
ECE—able to resolve differences between any two uncertainty estimators.

5.4. Wasserstein dropout for object detection

After studying toy and standard regression datasets, we turn toward the challenging task
of object detection (OD, Zhao et al. (2019); Liu et al. (2020)), i.e., the localization and
classification of instances of semantic classes in unstructured data such as images or LiDAR
point clouds. One may, for instance, think of the detection of traffic participants like
pedestrians, cyclists and vehicles on camera recordings.14 These extractions of high-level
semantic information from low-level data render OD a central pillar for the automated
perception of environments, which is in turn the basis for more complex ML systems
like autonomous agents, e.g., in the field of mobility. On a technical level, OD models
can be characterized by the type of input data they process (for instance, monocular
or binocular camera images, single frames or video sequences, one or multiple types of
sensors) and the kind of object information they predict (for instance, 2D or 3D object
coordinates, one or multiple object classes). Here, we employ (in these regards rather
basic) OD models that predict 2D object coordinates and object classes from single
images. However, compared to the experiments above on 1D datasets, even this basic
OD model setup comes along with several additional complexities that range from high
input dimensionality over the varying numbers, positions and sizes of ground truth objects
between images to supplementary data pre- and post-processing routines for handling
occluded, truncated or distant (and thus “small”) objects. While OD is, as stated, often a
combination of regression and classification, we focus on its regression part, i.e., object
localization. Predicting positional distributions instead of point estimates (Hall et al.,
2020) is particularly beneficial as detected objects (and thus potential prediction errors)
are typically propagated to subsequent algorithmic tasks, in the case of autonomous
mobility systems, for instance, the prediction of trajectories for dynamic objects and
motion planning for the ego-vehicle. Employing probabilistic models for these tasks that
acknowledge the (potential) ambiguity of current object positions likely facilitates more
informed predictions and thus safer operations.

The outlined challenges of OD have been addressed by specialized neural architectures
like Faster R-CNN (Ren et al., 2015), YOLO (Redmon et al., 2016), SqueezeDet (Wu
et al., 2017) and RetinaNet (Lin et al., 2017b) that are based on convolutional layers
(see Section 2.2) and that are more complex compared to the MLPs used in the previous
empirical evaluations. In particular, we consider the SqueezeDet model (Wu et al., 2017),
a compact, fully convolutional neural network and, as a first step, adapt the Wasserstein-
dropout objective to it (see the following paragraph). Next, we introduce the six considered
OD datasets and sketch central technical aspects of training and inference. Since OD
14Apart from such standard applications of OD, various less obvious OD use cases exist that range from

the OD-based counting of animal and tree populations on satellite images (Xue et al., 2017; Brandt
et al., 2020) to the detection of items (Cai et al., 2021) that are taken from the shelves in supermarkets
to enable, for example, checkout-free billing.

82

5.4. Wasserstein dropout for object detection

networks are often employed in open-world applications (like autonomous vehicles or
drones), they likely encounter various types of concept shifts during operations. In such
novel scenarios, well-calibrated self-assessment capabilities help to foster safe functioning.
We therefore evaluate Wasserstein-SqueezeDet not only in-domain but on corrupted and
augmented test data as well as on other object detection datasets. Lastly, we conduct
comparable analyses for the larger RetinaNet architecture.

Architecture SqueezeDet takes an RGB input image and predicts three quantities:
(i) 2D bounding boxes for detected objects (formalized as a 4D regression task), (ii) a
confidence score for each predicted bounding box and (iii) the class of each detection.
Its architecture is as follows: first, a sequence of convolutional layers extracts features
from the input image. Next, dropout with a drop rate of p = 0.5 is applied to the final
feature representations. Another convolutional layer, the ConvDet layer, finally estimates
prediction candidates. In more detail, SqueezeDet predictions are based on so-called
anchors, initial bounding boxes with prototypical shapes. The ConvDet layer computes
for each such anchor a confidence score, class scores and offsets to the initial position and
shape. The final prediction outputs are obtained by applying a non-maximum-suppression
(NMS) procedure to the prediction candidates. The original loss of SqueezeDet is the
sum of three terms. It reads LSqueezeDet = Lregres + Lconf + Lclass with the bounding box
regression loss Lregres, a confidence-score loss Lconf and the object-classification loss Lclass.
Our modification of the learning objective is restricted to the L2 regression loss,

Lregres = λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

∑
ξ∈{x,y,w,h}

Iijk

[(
δξijk − δξG

ijk

)2
]

, (5.12)

with δξijk and δξG
ijk being estimates and ground truth expressed in coordinates relative

to the k-th anchor at grid point (i, j) where ξ ∈ {x, y, w, h}. See Wu et al. (2017) for
descriptions of all other loss parameters. Applying W-dropout component-wise to this 4D
regression problem yields

Lregres, W = λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

∑
ξ∈{x,y,w,h}

Iijk

[
W(ξijk)

]
, (5.13)

where

W(ξijk) =
(
µδξijk

− δξG
ijk

)2
+
(√

σ2
δξijk

−
√(

µδξijk
− δξG

ijk

)2
+ σ2

δξijk

)2

(5.14)

with µδξijk
= 1/L

∑L
l=1 δξ

(l)
ijk and σ2

δξijk
= 1/L

∑L
l=1

(
δξ

(l)
ijk − µδξijk

)2
being the sample

mean and the sample variance over L dropout predictions δξ
(l)
ijk for ξ ∈ {x, y, w, h}.

83

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. 5.4.: Basic statistics of the harmonized object detection datasets. Dataset size and
number of annotated objects are reported for train data (second and third
column) and test data (last two columns). For details on dataset harmonization,
see the text in Section 5.4 and references therein.

train test

dataset # images # objects # images # objects

KITTI 3,622 15,254 3,387 12,673
SynScapes 19,998 906,827 4,998 226,390
A2D2 22,731 121,320 4,186 36,544
Nightowls 30,064 50,225 6,595 10,766
NuImages 58,803 410,462 14,377 97,014
BDD100k 69,281 843,963 9,919 123,752

Datasets We train SqueezeDet networks on six traffic scene datasets: KITTI (Geiger
et al., 2012), SynScapes (Wrenninge & Unger, 2018), A2D2 (Geyer et al., 2020), Nightowls
(Neumann et al., 2018), NuImages (Caesar et al., 2020) and BDD100k (Yu et al., 2020).
They differ from each other in dataset size (the large BDD100k dataset contains almost 20
times more images than the small KITTI dataset, see Tab. 5.4), time of day (Nightowls
comprises only nighttime images) and data acquisition (SynScapes is simulation-based).
For further information on the datasets, see Tab. B.5 (p. 162) in Appendix B.2.5. We
employ image sizes of 672 × 384 and rescale all datasets (except for KITTI15) accordingly.
To facilitate cross-dataset model evaluations (see paragraphs on OOD analyses in this
section), we group the various object classes of the six datasets into three main categories:
“pedestrian”, “cyclist” and “vehicle” (see Tab. B.6 (p. 162) in Appendix B.2.5 for the
object class mapping). Some static or rare object classes are discarded.

Technical aspects We compare MC-SqueezeDet, i.e., standard SqueezeDet with activated
dropout at inference, with W-SqueezeDet that uses W-dropout instead of the original
MSE regression loss. All models are trained for 300,000 mini-batches of size 20. After
training, we keep dropout active and compute 50 forward passes for each test image. The
detections from all forward passes are clustered using k-means (see Section 9.1 of Bishop
(2006)).16 The number of clusters is chosen for each image to match the average number of
detections across the 50 forward passes. Each cluster is summarized by its mean detection
and standard deviation. To ensure meaningful statistics, we discard clusters with 4 or less
detections. The cluster means are matched with ground truth. We exclude predictions
15For KITTI, we crop images in x-direction to avoid strong distortions due to its high aspect ratio. In

y-direction, only a minor upscaling is applied.
16Using the density-based clustering technique HDBSCAN (Campello et al., 2013) yields comparable

results especially w.r.t. the relative ordering of the methods.

84

5.4. Wasserstein dropout for object detection

from the evaluation if their IoU with ground truth is ≤ 0.1. For each dataset, SqueezeDet’s
maximum number of detections is chosen proportionally to the average number of ground
truth objects per image.

In-data evaluation To assess model performance, we report the mean intersection over
union (mIoU) and RMSE (in pixel space) between predicted bounding boxes and matched
ground truths. The quality of the uncertainty estimates is measured by (coordinate-wise)
NLL, ECE, WS and ETL. Tab. 5.5 shows a summary of our results on train and test data
for the KITTI dataset. The results for NLL, ECE, WS and ETL have been averaged
across the 4 regression coordinates. MC-SqueezeDet (abbreviated as MC-SqzDet) and
W-SqueezeDet (W-SqzDet) show comparable regression results in terms of RMSE and
mIoU, with slight advantages for MC-SqueezeDet. At this point, we only consider versions
of SqueezeDet that provide uncertainty scores. For a discussion regarding performance
degradation w.r.t. the deterministic SqueezeDet (approximately 10%), see Appendix B.2.5.
Considering uncertainty quality, we find substantial advantages for W-SqueezeDet across
all evaluation measures. These advantages are due to the estimation of heteroscedastic
aleatoric uncertainty during training (see also the test statistics “trajectories” during
training for BDD100k in Fig. B.12 (p. 165) in Appendix B.2.5). The test RMSE and
ECE values of all six OD datasets are visualized as diagonal elements in Fig. 5.9. The
(mostly) “violet” RMSE diagonals for MC-SqueezeDet and W-SqueezeDet (top row of
Fig. 5.9) again indicate comparable regression performances. Datasets are ordered by
size from small (top) to large (bottom). The large NuImages test set occurs to be the
most challenging one. Regarding ECE (bottom row of Fig. 5.9), W-SqueezeDet performs
consistently stronger, see the “violet” W-SqueezeDet diagonal (smaller values) and the
“red” MC-SqueezeDet diagonal (higher values). These findings qualitatively resemble those
on the standard regression datasets and indicate that W-dropout works well on a modern
application-scale network.

To analyze how well these OD uncertainty mechanisms function on test data that is
structurally different from training data, we consider two types of out-of-data analyses
in the following: first, we study SqueezeDet models that are trained on one OD dataset
and evaluated on the test sets of the remaining five OD datasets. A rather semantic
OOD study as features like object statistics and scene composition vary between training
and OOD test sets. Second, we consider networks that are trained on one OD dataset
and evaluated on corrupted versions (defocus blur, Gaussian noise) of the respective test
set, thus facing changed low-level features, i.e., less sharp edges due to blur and textures
overlayed with pixel noise, respectively.

Out-of-data evaluation on other OD datasets We train one SqueezeDet on each of the
six OD datasets and evaluate each of these models on the test sets of the remaining five
datasets. The resulting OOD regression scores and OOD ECE values are visualized as
off-diagonal elements in Fig. 5.9 for MC-SqueezeDet (left column) and W-SqueezeDet
(right column). Since datasets are ordered by size (a rough proxy to dataset complexity),

85

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. 5.5.: Regression performance and uncertainty quality of SqueezeDet-type networks
on KITTI data. W-SqueezeDet (W-SqzDet) is compared with the default MC-
SqueezeDet (MC-SqzDet). The values of NLL, ECE and WS are aggregated
across their respective four dimensions, for details see Appendix B.2.5 and
Tab. B.7 (p. 155) therein.

train test

measure MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet

mIoU (↑) 0.705 0.691 0.695 0.694
RMSE (↓) 8.769 9.832 14.666 14.505

NLL (↓) 8.497 2.770 25.704 6.309
ECE (↓) 0.615 0.193 0.825 0.433
WS (↓) 1.421 0.315 2.831 0.900
ETL0.99 22.358 8.853 42.101 18.223

the upper triangular matrix corresponds to cases in which the evaluation dataset is
especially challenging (“easy to hard”), while the lower triangular matrix subsumes
easier test sets compared to the respective i.i.d. test set (“hard to easy”). Accordingly,
we observe (on average) lower RMSE values in the lower triangular matrix for both
SqueezeDet variants. The ECE values of W-SqueezeDet are once more smaller (“violet”)
compared to MC-SqueezeDet (“red”). The ECE diagonal of W-SqueezeDet is visually
more pronounced compared to the one of MC-SqueezeDet since uncertainty calibration
is effectively optimized during the training of W-SqueezeDet. The Nightowls dataset
causes a cross-shaped pattern, indicating that neither transfers of Nightowls models to
other datasets nor transfers from other models to Nightowls work well. This behavior
can be understood as the feature distributions of Nightowls’ nighttime images diverge
from the (mostly) daytime images of the other datasets. The high uncertainty quality of
W-SqueezeDet is underpinned by the evaluations of NLL and WS (see Fig. B.11 (p. 163)
and text in Appendix B.2.5).

Out-of-data evaluation on corrupted datasets In contrast to the analysis above, we
now focus on “non-semantic” data shifts due to technical distortions. For each test set,
we generate a blurred and a noisy version.17 Two examples of these transformations can
be found in Fig. B.10 (p. 163) in Appendix B.2.5. In accordance with previous results,
W-SqueezeDet provides smaller ECE values compared to MC-SqueezeDet on most blurred
and noisy test sets (see Tab. 5.6). We observe a less substantial deterioration of uncertainty
quality for blurring compared to adding pixel noise, possibly because the latter one more
strongly affects short-range pixel correlations that the networks rely on.

17We employ the imgaug library (https://github.com/aleju/imgaug) and apply defocus blur (severity
of “1”) and additive Gaussian noise (i.i.d. per pixel, drawn from the distribution N (0, 20)), respectively.

86

https://github.com/aleju/imgaug

5.4. Wasserstein dropout for object detection

Fig. 5.9.: In-data and out-of-data evaluation of MC-SqueezeDet (l.h.s.) and W-Squeeze-
Det (r.h.s.) on six OD datasets. We consider regression quality (RMSE, top
row) and uncertainty quality (ECE, bottom row). For each heatmap entry, the
row label refers to the training dataset, the column label to the test dataset.
Thus, diagonal matrix elements are in-data evaluations, non-diagonal elements
are OOD analyses. W-SqueezeDet provides substantially smaller ECE values
both in-data and out-of-data.

Complementary analysis of Wasserstein dropout for a larger OD architecture Apart
from the compact SqueezeDet network, we conduct experiments on RetinaNet (Lin et al.,
2017b), a more heavy-weight network that employs a so-called focal classification loss to
compensate for imbalances between foreground classes and background. As a backbone
network for feature extraction, RetinaNet uses a feature pyramid network (Lin et al.,
2017a) that facilitates the detection of objects across multiple scales. RetinaNet is, like
SqueezeDet, fully convolutional and based on anchor boxes, however, it employs a smooth-
L1 loss instead of an L2 loss for box regression (see Section 2.3 for a discussion of the
properties of these losses). As Wasserstein dropout is motivated as an extension of the
standard L2 loss for label distributions, we employ an L2 loss instead of a smooth-L1 loss
for the Wasserstein dropout-enhanced RetinaNet (L2-W-RetinaNet). Technically, it is
constructed as described above for W-SqueezeDet. For better comparison with the smooth-
L1-loss-based standard RetinaNet, we moreover consider a straight forward adaptation of
Wasserstein dropout for the smooth-L1 loss, which yields a network termed Smooth-L1-
W-RetinaNet. To extend the benchmarking beyond dropout-based uncertainty methods,
several OD uncertainty estimation techniques from Feng et al. (2020) are considered, among
others, loss attenuation, BayesOD, and pre-/post-non-maximum-suppression ensembles
(see ibid. for details). While these techniques employ, at their core, standard mechanisms
like parametric modeling and ensembling (and also dropout), they are refined for object

87

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. 5.6.: Out-of-data evaluation of MC-SqueezeDet (MC-SqzDet) and W-SqueezeDet
(W-SqzDet) on distorted OD datasets. Each model is trained on the original
dataset and evaluated on two modified versions of the respective test set:
a blurred one (first two columns) and a noisy one (last two columns), see
the text in Section 5.4 for details. We report the expected calibration error
(ECE) and find W-SqueezeDet to perform better than MC-SqueezeDet on
most datasets.

defocus blur Gaussian noise

dataset MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet

KITTI 1.034 1.082 1.021 1.084
SynScapes 1.081 0.503 0.941 0.910
A2D2 0.921 0.295 1.143 0.617
Nightowls 1.067 0.803 0.992 0.682
NuImages 0.908 0.332 0.760 0.849
BDD100k 1.012 0.390 0.833 0.633

detection and vary, among others, in the way the networks’ final uncertainty estimates
are obtained from the respective per-anchor uncertainty estimates. In Feng et al. (2020),
the best uncertainty quality is obtained for a method termed BayesOD+dropout that
combines MC dropout and BayesOD (Harakeh et al., 2020), a technique that in turn
combines parametric uncertainty estimates per anchor (Truong-Le et al., 2018) with a
specific object proposal merging strategy (see Feng et al. (2020) for details). To foster
fair comparison with this method, we implement L2-W-RetinaNet and Smooth-L1-W-
RetinaNet within the code base18 accompanying Feng et al. (2020). Training all these
probabilistic object detectors on the large BDD100k dataset (see above), we find that
both Smooth-L1-W-RetinaNet and L2-W-RetinaNet yield good results for regression ECE
(0.21 and 0.20, respectively), WS (0.18 and 0.17, respectively) and ETL (5.82 and 5.74,
respectively). In these regards, they outperform the considered benchmark approaches.
BayesOD+dropout is the strongest of these competitors and provides an ECE value of
0.33 while being (approximately) on par with the W-dropout-based uncertainty methods
for WS and ETL. Evaluating these models on OOD data, namely, on the conceptually
broad NuImages dataset (see above), the relative ordering of the uncertainty methods
is preserved, expectedly, however, on a lower absolute quality level. The results are in
accordance with the ones obtained for 1D standard regression datasets and SqueezeDet
and emphasize the stability and uncertainty estimation quality of Wasserstein dropout that
render it beneficial for a broad range of, even complex, deep learning architectures. While
the RetinaNet experiments indicate that W-dropout can be combined with architecture-

18https://github.com/asharakeh/pod_compare.

88

https://github.com/asharakeh/pod_compare

5.5. Discussion

specific regression losses (smooth-L1 loss), preliminary experiments (that are not part of
this thesis) hint for a similar adaptability of our uncertainty method for different object
proposal matching strategies.

5.5. Discussion

The prevailing approaches to uncertainty quantification rely on parametric uncertainty
estimates by means of a dedicated network output. In this chapter, we propose a novel type
of uncertainty mechanism, Wasserstein dropout, that quantifies (aleatoric) uncertainty in
a purely non-parametric manner. By revisiting and newly assembling core concepts from
existing dropout-based uncertainty methods, we construct distributions of randomly drawn
sub-networks that closely approximate the actual data distributions. This is achieved by
a natural extension of the Euclidean metric (for points) to the 2-Wasserstein metric (for
distributions). In the limit of vanishing distributional width, i.e., vanishing uncertainty,
both metrics coincide. Assuming Gaussianity and making a bootstrap approximation, the
Wasserstein metric can be replaced by a compact loss objective affording stable training.
To the best of our knowledge, W-dropout is the first non-parametric method to model
heteroscedastic aleatoric uncertainty in neural networks. It outperforms the ubiquitous
parametric approaches, as, e.g., shown by our comparison to deep ensembles (PU-DE). We
moreover derive, inspired by residual learning, a Gaussian-likelihood one-sample (GL-OS)
variant of Wasserstein dropout that encodes uncertainty and model error information,
unlike standard Wasserstein dropout, not only in the spread of the sub-network ensemble
but mostly in the distance between deterministic network and the mean output value of
the stochastic sub-networks. The GL-OS variant yields competitive uncertainty estimates
and requires less training compute, however, at the price of a bimodality artifact in the
induced output distributions that is due to the one-sample approximations. In particular
due to this artifact, the focus of the subsequent systematic analyses is put on the standard
Wasserstein dropout technique.

Comparing the uncertainty estimates that standard Wasserstein dropout induces under
data shift with those of deep ensembles (PU-DE) and parametric models combined
with dropout (PU-MC), further advantages of our modeling technique are revealed: the
Wasserstein-based technique still provides (on average) better calibrated uncertainty
estimates while coming along with a higher stability across a variety of datasets and
data shifts. In contrast, we find parametric uncertainty estimation (PU) to be prone to
instabilities that are only partially cured by the regularizing effects of explicit or implicit
(dropout-based) ensembling (PU-DE, PU-MC). With respect to worst-case scenarios,
W-dropout networks are by a large margin better than either PU-DE or PU-MC. This
makes W-dropout especially suitable for safety-critical applications like automated driving
or medical diagnosis, where (even rarely occurring) inadequate uncertainty estimates might
lead to injuries and damage. Furthermore, while our theoretical derivation focuses on
aleatoric uncertainty, the presented distribution shift experiments suggest that W-dropout

89

5. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

is also able to capture epistemic uncertainty. Finding a theoretical explanation for this
may be the subject of future research.

Concerning computational demands, W-dropout is roughly equivalent to MC dropout
and, in fact, could be used as a drop-in replacement for the latter. While L-fold sampling
of sub-networks increases the training complexity, we observe an increase in training time
that is significantly below L in our implementation. Inference is performed in the same
way for both methods, and thus, their run-time complexities are equivalent. Compared
to deep ensembles, W-dropout’s use of a single network reduces training and storage
requirements at the expense of multiple forward passes during inference. This property is
shared with MC dropout, and approaches exist to reduce the prediction cost; for instance,
last-layer MC dropout allows sampling-free inference (see also Postels et al. (2019)).

In addition to the toy and 1D regression experiments, SqueezeDet is selected as a
representative of object detection networks. We find the above-mentioned properties
of Wasserstein dropout to carry over to Wasserstein-SqueezeDet, namely, the enhanced
uncertainty quality and the increased stability under different types of data shift. At the
same time, the observed performance losses are minimal. Overall, our experiments on
SqueezeDet show that W-dropout scales to larger networks that are relevant for practical
applications. Complementary evaluations using the RetinaNet architecture confirm these
results.

When intending to employ uncertainty estimation as a safeguard against model errors,
the distributional properties of the normalized residuals gain importance. To address
such properties, we introduce the ETL as a measure for rare and critical cases where
uncertainty is strongly underestimated. While we find that W-dropout leads to more
Gaussian residuals compared to our benchmarks, we still observe remaining deviations. A
priori, it is not clear whether the aleatoric uncertainty in complex data is Gaussian or
whether such rare cases could be better described with heavier-tailed distributions. If
this is the case, the question arises of whether dropout mechanisms are flexible enough to
model distributions outside the Gaussian regime, which we investigate in Section 4.2.

Taking a step back, the idea of exchanging the distributions allows us to apply the
framework to a variety of tasks beyond regression and makes the migration from single-point
modeling to full distributions a rather general concept. Replacing Gaussians with Dirichlet
distributions makes an application to classification conceivable, where Malinin & Gales
(2018) employ parametric (Dirichlet) distributions to quantify uncertainty. Conceptually,
our findings suggest that distribution modeling based on sampling generalizes better
compared to parameterized counterparts. An observation that might find applications far
outside the scope of uncertainty quantification.

90

6. Building Uncertainty Estimators for
Product-Grade Deep Learning Systems

Various technical approaches exist to realize uncertainty estimation in NNs (see Section 3.2
for an overview). Depending on the application context, these uncertainty techniques
serve different purposes. MC dropout, for example, which we studied in Section 4.2, is
well suited to “recognize” whether statistical concepts in previously unseen inputs are
(un-)familiar to the network in terms of epistemic uncertainty (see Section 3.1 for an
overview of uncertainty sources). For our method, Wasserstein dropout (see Chapter 5),
we extended MC dropout to bootstrapped data distributions. This way, it moreover
captures other forms of uncertainty, namely, heteroscedastic aleatoric uncertainty (see
Section 3.1).

In this chapter, we intend to abstract from the technical inner workings of uncertainty
mechanisms (as studied previously) and, instead, take an application perspective. We
consider uncertainty techniques as “tools”, as pre-made building blocks, that come along
with specific combinations of strengths and weaknesses. Existing mechanisms vary, for
instance, not only in their ability to capture different types of uncertainty (as mentioned
above) but also in their stability under data shifts—a critical property when used as part
of real- and open-world learning systems. Apart from stability on structurally new data,
these systems typically involve a variety of further requirements regarding robustness
but also beyond. Making these requirements explicit and closely addressing them is of
particular importance when deploying these systems at scale in safety-critical contexts
(think, for instance, of autonomous driving). To this end, we propose a framework that,
firstly, structures and shapes ML application demands, secondly, guides the selection of a
suitable uncertainty estimation method, and, thirdly, provides strategies to validate this
choice and to uncover structural weaknesses.

To illustrate application demands, we consider two central classes of use cases: uncer-
tainty for safety (e.g., Truong-Le et al. (2018); Shafaei et al. (2018); Aravantinos & Schlicht
(2020)) and uncertainty for (semi-)automation (e.g., Thrun et al. (2005); Giannetti (2017);
Sünderhauf et al. (2018); Papananias et al. (2019)), respectively. The already-mentioned
safety-critical applications (uncertainty for safety) comprise use cases that range from
recommendation engines, e.g., in a medical context, to cyber-physical systems such as
robots, drones, or vehicles. A domain expert’s notion of a “good” uncertainty mechanism
in these fields is likely given by a high-level requirement, such as “do not provide a semantic
segmentation of a computed tomography (CT) image unless you are 99.5% certain about
it” (in a medical application) or even more abstract, such as “contribute to defensive
driving and compliance with the traffic law” (in the case of an automated vehicle).

91

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

Apart from these safety-critical applications, uncertainty quantification is crucial for
(semi-)automation, e.g., when phasing in ML systems for quality assurance (QA) in an
industrial production plant or to (partially) automate the classification of texts (Lewis &
Gale, 1994). For QA purposes, an image-processing model could decide whether or not
the surface of a (mass) product is sufficiently homogeneous and undamaged. If the model
is uncertain regarding its decision, the product is inspected by a human expert to ensure
high quality standards. A practitioners’ requirement regarding this QA model might
be that “uncertainty estimates enable us to flexibly maximize the degree of automated
quality inspection such that less than 1 in 10,000 products leaves the plant despite being
in a defect state”. In the case of an automated text annotator one might similarly ask
for “accurate uncertainty estimates that allow us to hand over difficult examples to a
human annotator such that the results of the ML annotation tool (with occasional human
overrule) have the same quality as the ones of a fully manual annotation process”.

The above-outlined practitioner’s view on uncertainty estimators varies from the perspec-
tive of ML researchers putting forward novel concepts to modeling and testing uncertainty
estimates. Not only does a complexity gap occur between lab-oriented scientific proposals
and actual industrial applications, the practitioner’s focus is moreover on the alignment
of the actual technical state-of-the-art with a desired state, i.e., the respective application
requirements. Such a systematic alignment is a prerequisite for responsibly deploying ML
systems, i.e., in a way that mitigates their risks and thus allows their strengths to play
out safely. We contribute to this alignment by providing a framework for the development
and testing of neural uncertainty estimators based on high-level requirements, aiming at
ML applications with tailored uncertainty mechanisms. By doing this, we bridge the
gap between, on the one hand, industry researchers and safety engineers who develop
standards and set high-level requirements for safe ML such as the sub-committee 42 of
ISO’s and IEC’s joint technical committee 1 (ISO/IEC JTC 1/SC 42, 2017) and, on the
other hand, scientific ML researchers developing uncertainty mechanisms and testing
algorithms. To the best of our knowledge, this is the first work that systematically links
these two perspectives on neural uncertainty estimation.

Developing and testing learned neural models is qualitatively different from developing
and testing (traditional) complex systems that are manually assembled. This becomes
evident when comparing three complex objects, each composed of tens of thousands smaller
units: a car, programmed software and a neural network. While we understand the role
of a battery, an electric motor and tires in a car (and the classes and objects in an object-
oriented software solution) and how they interplay, such knowledge about the semantic
inner workings is inherently inaccessible for a neural network. It is a non-interpretable
black box that is optimized using learning algorithms.

These properties of neural models necessitate novel approaches to testing. While
traditional hardware and software systems have been specified (Dwyer et al., 1999; Tahat
et al., 2001; Grunske, 2008; Pandey et al., 2010; Meth et al., 2015) and tested (Kropp
et al., 1998; Tahat et al., 2001; Nebut et al., 2003; Majzoobi et al., 2008; Klein et al., 2009;
Kavitha et al., 2010; Esteve et al., 2012) for decades, sometimes even with the help of

92

mathematical proofs (Hartman, 2006), respective approaches (often) rely on splitting a
complex system into smaller semantic units (e.g., unit testing to debug software). Smaller
units are easier to safeguard, their roles (in a logical or physics-based cause-and-effect
model) and failures are easier to understand and can either be mitigated by understanding
(and removing) the cause or by adding redundancy as a fail-safe. A deep neural network
(DNN) on the contrary is not composed of semantic building blocks and thus does not
become safer by adding an additional (or redundant) layer. Moreover, the (effective) input
spaces in classical engineering (e.g., the forces and torques a machine part is exposed to) are
small compared to the (often) million-dimensional input spaces, e.g., an image-processing
ML model operates on. Such smaller input spaces allow for more comprehensive testing,
i.e., sampling the input space in ways such that most application scenarios can be seen as
interpolations of these sample points. Furthermore, the physics-based (or logical) models
that describe such assembled systems ensure a certain stability and thus predictability of
the system behavior in these interpolation cases. This is in contrast to (many) ML systems
that are optimized on extremely sparse data samples of high-dimensional spaces such that
distinctions between inter- and extrapolation are hardly possible. These purely data-based
models provide moreover less stable generalization as their outputs are highly susceptible
to certain types of small changes in input space (see adversarial attacks (Goodfellow et al.,
2015)).

This combination of non-interpretable models and high-dimensional input spaces renders
it hardly possible to exhaustively test semantic and high-level requirements for real-world
ML models. Nevertheless, testing does yield insights into multiple aspects of the qualitative
and quantitative behavior of an ML function within a given computing and cost budget.

While these considerations hold for neural models in general, they also apply in the
special case of developing and testing neural uncertainty estimators that are integrated
into deep learning (DL) models. Accurate uncertainty estimators provide an implicit
description of the model’s domain of proper functioning, which makes them promising
tools for safe ML. Testing uncertainties therefore differs from ML performance testing
(e.g., of a specifically designed layout of a hidden layer) not only by the considered metrics
(e.g., uncertainty calibration measures that are “orthogonal” to performance metrics) but
also in the data selection strategies (by putting a focus on transitions to out-of-data or
safety-critical scenarios).

In this chapter, we provide a framework for systematically breaking down high-level
requirements onto uncertainty modeling techniques and uncertainty test cases. Following
the top-down structure of the framework ensures compatibility with many requirement-
based development approaches used for non-ML systems and components. In detail, we
contribute

• by categorizing potential requirements, for instance w.r.t. uncertainty quality, gener-
alization ability (e.g., extrapolation) or technical aspects (e.g., when building upon
previous systems),

93

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

• by analyzing how and to which extend requirements can be addressed by the differing
paradigms of uncertainty modeling and thus, which type of uncertainty estimator to
choose for a given DL use case,

• by providing a hierarchy of model tests to evaluate whether the uncertainty require-
ments are met by the selected estimator, and whether systematic weaknesses exist
that might hinder its further use or deployment.

This chapter is organized as follows: first, we contextualize our work in the fields of
trustworthy ML and ML testing in Section 6.1. Next, we lay out the structure of our
uncertainty framework in Section 6.2. Caveats regarding neural uncertainty estimators
and best practices on how to address them are presented for each of the five steps of the
framework in Sections 6.3 to 6.7. An outlook in Section 6.8 concludes the chapter.

6.1. Regulatory and technical perspectives on trustworthy ML

As a technical tool to establish safe ML systems, uncertainty estimation may form a
cornerstone to satisfy demands of upcoming ML regulations and standards some of which
are outlined in the first paragraph. Next, we sketch already existing approaches to
operationalize trustworthy ML as well as challenges that practitioners face when building
reliable ML systems (second paragraph). Subsequently, algorithmic techniques that
increase the reliability of learned systems are reviewed (third paragraph).

Trustworthy ML from a regulatory perspective Both governmental institutions and
industry are about to set rules for ML systems. Aiming for an effective protection
of basic rights in an era of ubiquitous ML systems, several countries put forward law
initiatives and guidelines for regulating ML models. In November 2020, the White
House released guidelines for public authorities in the US on how to regulate artificial
intelligence (AI) systems (Executive Office of the U.S. President, 2020). In April 2021,
the European commission published a “proposal for a regulation laying down harmonized
rules on AI” (European Commission, 2021) that (among others) classifies and handles
ML applications according to their “criticality”. The proposal moreover asks for technical
documentations that detail how such critical ML systems function. Aside these official
regulations (and, if applicable, in accordance with them), industry and standardization
bodies define minimal requirements, interfaces and liability regimes as prerequisites for
functioning technological markets. International standards are, e.g., developed by the
sub-committee 42 of ISO’s and IEC’s joint technical committee 1 (ISO/IEC JTC 1/SC
42, 2017) that issued technical reports, e.g., on the trustworthiness in AI (ISO/IEC TR
24028:2020, ISO/IEC JTC 1/SC 42 (2020)) and on the assessment of the robustness of
neural networks (ISO/IEC TR 24029-1:2021, ISO/IEC JTC 1/SC 42 (2021a)). Actual
standards, e.g., for AI management systems (ISO/IEC CD 42001, ISO/IEC JTC 1/SC 42
(2021b)) are under way. These international initiatives build on standardization efforts
at the national level, see, e.g., the German standardization roadmap on AI (Wahlster &

94

6.1. Regulatory and technical perspectives on trustworthy ML

Winterhalter, 2020), and harmonize them. Moreover, application-specific norms come
into existence, for instance, the ANSI/UL 4600 standard for safety for the evaluation
of autonomous products (Underwriters Laboratories, 2020) that, among others, targets
applications in the field of autonomous mobility. For the specific context of safe AI for
road vehicles, see ISO TC 22/SC 32 (2021).

Trustworthy ML from a practitioners’ perspective When developing industry-scale ML
applications from (newly invented) ML modeling techniques, corporate researchers and
practitioners face challenges that are often not addressed by basic research in machine
learning: Holstein et al. (2019), for instance, survey ML product teams w.r.t. fairness
in ML and identify challenges such as the unavailability of both high-quality datasets
and tools for fairness-focused debugging. Broadening the focus, Lwakatare et al. (2020)
provide a literature review of obstacles such as adaptability and scalability that ML
practitioners encounter when developing and maintaining ML-based systems. Similarly,
Ishikawa & Yoshioka (2019) interview ML engineers to identify ML-specific challenges
from a software-engineering perspective. Sculley et al. (2015) compile ML-specific risk
factors, e.g., boundary erosion and hidden feedback loops, that are likely to cause technical
debt when operating application-scale ML models.

At the same time, applied researchers and practitioners propose hands-on approaches to
operationalize trustworthy ML. For instance, the concept of model reporting by means of
model cards (Mitchell et al., 2019), and comparably, the idea of providing fact sheets that
outline relevant attributes of an ML service (Arnold et al., 2019). Operationalizations of
trustworthy ML for safety-critical systems take these approaches a step further and require
specific (statistical) evidences (e.g., quantitative tests, see Abrecht et al. (2021)) that are
bound together by an overarching safety argumentation which motivates their setup and
configuration (Koopman et al., 2019; Mock et al., 2021). An important example for such
structured, qualitative argumentations are so-called safety assurance cases (that have
their roots in classical safety engineering, see ISO standard 15026 (ISO/IEC JTC 1/SC 7,
2019)). For concrete approaches to mitigate safety concerns (and thus contributing to
safety argumentations), see, e.g., Koopman & Osyk (2019) and Willers et al. (2020).

Algorithmic approaches to trustworthy ML On a technical level, the trustworthiness
and reliability of models is fostered by a broad range of machine learning techniques.
Apart from uncertainty estimators, this entails: interpretability methods (on the level of
pixels (Selvaraju et al., 2017; Brendel & Bethge, 2019) or semantic concepts (Kim et al.,
2018)), mechanisms to enhance (individual or group) fairness (e.g., Adel et al. (2019)) and
techniques to reduce the susceptibility of ML models w.r.t. adversarial attacks (e.g., by
means of robust training (Madry et al., 2018)). For a survey on practical methods for ML
safety, see, e.g., Houben et al. (2022).

Systematically evaluating the effectiveness of such safe-ML components is crucial to
determine whether they are sufficient w.r.t. high-level requirements. Extensive surveys
of the broad body of work on ML testing are provided by Zhang et al. (2020a), Riccio

95

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

et al. (2020), Braiek & Khomh (2020), and Corso et al. (2021). Of those, Zhang et al.
(2020a) analyze testing properties, testing components and testing workflows and identify
(among others) a lack of research on how different assessment metrics correlate with
one another and with the test’s ability to uncover faults of the model, respectively.
Numerous algorithmic tools to unveil (and debug) model weaknesses were put forward,
e.g., DeepXplore (Pei et al., 2017) and TensorFuzz (Odena et al., 2019) both of which
adapt coverage-guided techniques from software testing to neural models.

Making implementations of such algorithmic approaches publicly available, e.g., in the
form of open-source toolkits, contributes to their widespread application. Noteworthy
examples for uncertainty toolkits comprise UQ360 (Ghosh et al., 2021) and Uncertainty-
Toolbox (Chung et al., 2021a) that ease the usage and evaluation of (custom) uncertainty
estimators and foster their fair comparison. While being promising, for now, these toolkits
do not contain methods that are specifically developed for more complex architectures
like convolutional and recurrent DNNs and support task-specific approaches and measures
(e.g., for autonomous driving (AD)) only in a limited fashion.

6.2. A framework for developing and testing neural uncertainty
estimators

While established frameworks for requirement-based development and testing (see e.g.,
ISO/IEC JTC 1/SC 7 (2014); ISO/TC 22/SC 32 (2018)) provide a hull that remains
applicable to ML systems, these learned models require novel technical realizations (see
introduction). For the task of estimating uncertainties in neural networks, we analyze
these conceptual challenges and propose best practices for tackling them. While the choice
of the DNN architecture is, of course, central to the successful utilization of ML, we focus
on the self-assessment capabilities of the learning system, as they are, to a certain degree,
more agnostic to the task at hand. Based on our practical observations, the features and
development processes of ML models are typically driven from two sides: on the one hand,
from an application-oriented direction governed by the needs and requirements of a given
(or future) product. On the other hand, by dedicated ML researchers and developers who
are focused on feasibility and the state-of-the-art in the field. The proposed development
and testing framework is intended as a structural aid for the interplay between these
points of view.

For our purposes, subdividing the framework into five steps provides sufficient granularity.
These steps and their intermediate results are visualized as a flow chart in Fig. 6.1. In the
following, we describe the purpose of each step and name some of their key elements:

1. First, we grasp the initial demand for an uncertainty estimator by means of high-
level (e.g., textual) requirements. Understanding the intended purpose as well as
the technical modalities of the underlying ML system poses the basis for uncertainty
modeling and testing. Moreover, the operational domain of the uncertainty estimator
is specified, i.e., the set of inputs on which it is supposed to function properly.

96

6.2. A framework for developing and testing neural uncertainty estimators

initial
demand
for an

uncertainty
estimator

towards
uncertainty
acceptance

criteria

choosing an
uncertainty
mechanism

scope and
structure of
uncertainty

testing

instantiate,
running and
evaluating
uncertainty

test cases

intermediate result:

list of textual
requirements, ODD
specification

intermediate result:

list of qualitative and
quantitative acceptance
criteria

intermediate result:

uncertainty mechanism

intermediate result:

test depth and focus for
each quantitative
acceptance criterion

final result:

uncertainty estimator
evaluated w.r.t.
acceptance criteria

initial
demand
for an

uncertainty
estimator

towards
uncertainty
acceptance

criteria

initial demand

for an

uncertainty
estimator

towards
uncertainty
acceptance

criteria

choosing an
uncertainty
mechanism

Fig. 6.1.: A structured approach to obtain an uncertainty estimator that is tailored to a
given deep learning application. The proposed framework is subdivided into five
steps in which uncertainty requirements are collected and quantified (steps 1
and 2), an uncertainty mechanism is selected or constructed (step 3) and the
quality of its uncertainty estimates is systematically tested (steps 4 and 5), see
the following sections for details. The uncertainty acceptance criteria (step 2)
provide the basis for both uncertainty modeling (step 3) and test strategy
(step 4). Inconsistent or failing tests may entail changes of the test cases, of
the testing strategy or of the uncertainty mechanism (see light blue dashed
backward arrows).

2. Next, we structure and refine the high-level requirements by means of requirement
categories that we lay out. Heading toward measurable (and thus testable) acceptance
criteria, the quantitative requirements are “translated” into 3-tuples of semantic
data specification, measure of uncertainty quality and threshold value.

3. We then choose an uncertainty mechanism that seems suitable to meet the accep-
tance criteria, based on mappings of mechanism-specific characteristics onto the
requirement categories. Apart from the complexity of the mechanism, its ability to
model the predominant types of uncertainty is a key property.

4. Given both uncertainty acceptance criteria and uncertainty mechanism, we set the
scope and structure of uncertainty testing. To this end, we introduce a hierarchy of
tests that builds on semantic and non-semantic data selection strategies. For each
acceptance criterion, a testing depth in this hierarchy is determined and focus points
of testing are chosen.

5. Based on the selected testing focuses for each acceptance criterion, we finally
instantiate, run and evaluate uncertainty test cases. This requires to select concrete
test datasets and, e.g., specific search strategies and their initial parameters. Once
executed, the binary results of the test cases are aggregated to decide whether the
uncertainty estimator fulfills the uncertainty acceptance criteria.

97

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

In the following sections, we provide detailed information on each of the five steps of
the framework.

6.3. Initial demand for an uncertainty estimator

Many factors, for instance regulatory contexts and technical specifications, influence
uncertainty modeling. In Subsection 6.3.1, we study how these boundary conditions affect
(directly or indirectly) the desired properties of an uncertainty estimator. The underlying
ML use case moreover determines the operational design domain (ODD), i.e., the sets of
inputs on which the uncertainty estimator is supposed to function (see Subsection 6.3.2).
These input sets are described by semantic dimensions that need to be identified. Technical
specifications may pose additional constraints, e.g., on the uncertainty estimator’s depth
of integration into the ML model (see Subsection 6.3.3). These constraints and the desired
uncertainty properties from Subsection 6.3.1 pose requirements that guide the choice of
the uncertainty estimation technique in a later step of the framework.

6.3.1. Purpose and desired properties of an uncertainty estimator

We broadly distinguish between external and internal purposes of an uncertainty estimator.
External purposes range from regulatory requirements over industry standards to company
guidelines. Alternatively, they may originate from a surrounding ML system or the
need for backward compatibility. Such external purposes are likely to pose additional
constraints on modeling and validating uncertainty functionalities. One may think of
regulations of the financial industry where detailed technical guidelines for quantitative
modeling exist, limiting, e.g., the use of complex model classes.

Internal purposes, in contrast, may be the goal to reach better functional performance
(uncertainty for performance) or to employ well-calibrated uncertainty “sensors” that
could be used to propagate uncertainty information along a chain of ML models or to
initiate a hand-over to a backup system or a human (remote) operator. Such internal
purposes likely go along with less restrictions on modeling compared to external purposes.

Uncertainty estimators are moreover employed as passive or active system components.
Passive components monitor the state of the ML system, collecting information that is,
e.g., used for long-term system optimization without having a direct impact on the recent
situation. Active uncertainty components, on the contrary, may trigger subsequent actions
or changes of the system behavior. The desired properties of these types of uncertainty
estimators may vary accordingly: for the passive observer, a high sensitivity to abrupt
changes or extreme events might be less relevant as long as the uncertainty estimates are
on average accurate and bias-free. A dynamic bias, however, might be welcome for an
active uncertainty component as, e.g., a slight overestimation of the uncertainty could
provide an additional safety margin. While such an uncertainty actor might be inactive
for most input scenarios, it is expected to act accurately in individual critical scenarios (as
opposed to an on-average accurate behavior, see above). In case uncertainty estimates are
used to safeguard against several types of undesired model behavior (e.g., false positives

98

6.3. Initial demand for an uncertainty estimator

and false negatives in a classification setting), the individual “risk profile” of the use case
determines how to balance them appropriately.

6.3.2. Operational design domain of the uncertainty estimator

Next, we approach the intended operational design domain (ODD) of the uncertainty
mechanism, i.e., the areas of input space where it is supposed to work reliably (see,
e.g., NHTSA (2017); Koopman & Fratrik (2019)). Specifying these areas is especially
challenging in open-world settings where input data is not fully under the control of the
operator. In the case of AD systems, for instance, examples for under-specified ODDs
could be geographical ones like fixed routes (e.g., of a regular bus), lanes exclusively
for automated traffic or geo-fenced areas as well as “situational” ones like driving under
stop-and-go traffic conditions. However, specifying an ODD in a complex high-dimensional
space is not only approximate and incomplete by its very nature, the specifications may
moreover have varying degrees of detail and are sometimes even contradictory.

To at least partially account for this fundamental problem, we propose to determine
the ODD of an uncertainty estimator by using two techniques that complement each
other and that furthermore help to identify (potentially occurring) contradictions and
inconsistencies: on the one hand, by setting semantic boundaries and, on the other
hand, by a scenario-based (or edge-case-based) approach where various in-domain-, out-
of-domain-, and “borderline” input scenarios are compiled. The former approach seeks
to describe and threshold relevant semantic dimensions of the input space. Taking, for
instance, an ML application that processes traffic images, such descriptions comprise
scene parameters ranging from the type of traffic over lighting conditions to numbers
and positions of traffic participants. One may furthermore build on existing ontologies
or knowledge graphs in the considered field of application, if such representations are
available and appropriate. The latter technique builds on collections of in-domain and out-
of-domain input scenarios as an exploratory tool to sharpen and improve on the ODD as
constructed above. Comparing these scenario sets with the identified semantic boundaries,
may reveal wrongly or unspecified semantic dimensions, e.g., by analyzing whether the
selected “borderline” scenarios are consistent with the chosen semantic thresholds.

One can, moreover, build on the ODD specification of the underlying DNN, if given.
Typically, however, the uncertainty estimator is supposed to also function reliably outside
the original (performance) ODD of the DNN (see Fig. 6.2). Put differently, the uncertainty
ODD is often larger than the performance ODD that may still provide a reasonable ODD
“core”. Both the performance ODD and the areas of the uncertainty ODD not overlapping
with it will be addressed in testing. For those non-overlapping areas of the uncertainty
ODD, a focus of testing are estimates of epistemic uncertainty.

6.3.3. Modeling uncertainties

Technical specifications not only impact, as outlined, the desired properties and the
operational design domain of an uncertainty estimator. Here, we investigate how they may

99

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

Fig. 6.2.: Schematic illustration of the ODD of an ML model (green interval) and the
ODD of its uncertainty estimator (blue interval) in an input space that is
sketched as a 2D plane. While the x-axis is considered to be semantically
interpretable, the y-axis is non-semantic and thus not specifiable. The chosen
semantic boundaries of the uncertainty ODD are wider compared to the model
ODD, i.e., in this example it is supposed to function properly in a larger
area of input space. Moreover, the complementary technique of compiling
in-domain (gray crosses) and out-of-domain (red crosses) input points is in
accordance with the chosen semantic borders in this toy illustration: no red
crosses are within the uncertainty ODD and no gray crosses outside of it. The
non-semantic y-coordinates of these input points cannot be specified and thus
fluctuate randomly.

constrain uncertainty modeling, e.g., when using third-party ML components. Aside, we
analyze how ML model chains determine the “flows” of uncertainty information through
one of their models (see second paragraph). Lastly, output granularities of DL systems and
uncertainty estimators are studied (third paragraph), as well as trade-offs and technical
modeling constraints (last paragraph).

Depth of integration into the ML model To intertwine an uncertainty estimator with
an ML model, the access restrictions the ML model is subject to need to be known as they
impact both uncertainty modeling and testing. Such restrictions typically originate either
from the state of model development (see next paragraph) or from black-box components
with (to us) unknown architectures and weights that are employed in the ML system (see
paragraph after next).

State of model development As the development of a model progresses from initial
planning over engineering its architecture toward optimization and evaluation, a deep
integration of an uncertainty mechanism into it becomes less likely: for a model under
development, uncertainty modeling considerations may affect central building blocks of
a DNN like architecture or objective function. An almost finalized ML model, on the
contrary, that cannot be modified any longer, constrains uncertainty estimators to be
pre- or post-processing units. Such a limitation may also result from requirements on
backward compatibility that ask, e.g., to re-use previously employed model components.

100

6.3. Initial demand for an uncertainty estimator

Black-box components Many (premade) ML models underlie access restrictions,
e.g., black-box models from third parties with (to us) unknown structure and parameter
values. For such models a negative correlation between the extent of the restrictions
and the depth of integration of the uncertainty estimator can be expected. As for final-
ized ML models (see above), one may rely on pre- or post-processing mechanisms or,
for a model in a model chain (see below), on bypassing the uncertainty estimates from
preceding ML components. In contrast to the state of model development, the use of
black-box components with access constraints directly impacts testing as they exclude
testing methodologies that require knowledge about the internal state of a DNN.

Flow of uncertainty information In many real-world ML systems, an ML model is
not stand-alone but part of a model pipeline (see, e.g., Sculley et al. (2015)). Think,
e.g., of a (prototypical) AD module stack that detects and characterizes vulnerable road
users (VRUs), positions them in a 3D model of the recent traffic scene and predicts
their future positions and velocities. Given the information flow along this model chain,
various ways exist to enrich it with uncertainty information. In autonomous driving, for
instance, this information flow may be pedestrian proposals that are passed to a pedestrian
classification network or, further down the AD stack, the 3D phase space coordinates
of a detected pedestrian that serve as input for a motion prediction model. Adding
uncertainty information, the VRU detections may be accompanied by confidence estimates
and predicted future VRU positions (the mean estimates) may go along with estimated
standard deviations. For such flows of uncertainty information along a model chain, we
provide a taxonomy (see Fig. 6.3) and discuss how the desired type of uncertainty flow
impacts the development and testing of the uncertainty estimator.

We broadly distinguish between input, output and internally used uncertainties. Adding
an uncertainty estimate to a model output (see a) and b) in Fig. 6.3) is a standard scenario
of uncertainty quantification. The two sketches in Fig. 6.3 differ by the estimator’s
depth of integration into the considered (turquoise) model (see discussion in the previous
paragraphs). While the estimator in a) is an integral part of the model, the estimator in b)
is a post-processor, i.e., a calculation routine that extracts an uncertainty estimate from
the model’s standard outputs. It may, for instance, calculate the entropy of a classifier’s
softmax output that poses a simple measure of inter-class uncertainty. Alternatively, an
already existing uncertainty flow could be re-calibrated, using routines like temperature
or Platt scaling (Guo et al., 2017).

Incorporating input uncertainties into a model’s uncertainty estimation is crucial for
many practical applications as such a propagation of uncertainty allows us to eventually
evaluate the behavior of an ML application as a whole, assuming a sufficiently high
quality of the uncertainty estimates. Research on the propagation of uncertainties (Wright
et al., 2000; Ji et al., 2019) has to deal with the limited availability of real-world datasets
containing uncertainty-enhanced input features and the fact that such chains of ML
models are highly application-specific, rendering them no typical object of study for a
broad scientific community. For information-restricted black-box models, uncertainty

101

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

© Fraunhofer-Allianz Big Data

Seite 1Fig. 6.3.: Prototypical “flows” of uncertainty information (blue arrows) along a chain of
ML models (gray blocks and gray arrows). While uncertainty estimates for
the entire chain are relevant (see d), we focus on uncertainty estimation for a
single model in the chain (turquoise block, see a, b, c, e). In a) and b), output
uncertainties are modeled and propagated to the subsequent model. The uncer-
tainty estimator is integrated into the model (a) or a separate post-processing
unit (b), respectively. An uncertainty estimator may incorporate propagated
uncertainty information from preceding models (see c and d). Internal uncer-
tainty estimates, on the contrary, are not propagated but generated and used
within a model (see e), e.g., to improve the quality of its output.

propagation can be realized by bypassing uncertainty information, i.e., by circumventing
the considered ML model and instead piping the uncertainty information directly from
the previous model to the subsequent one in the chain. A conservative uncertainty margin
for the black-box model might be added. Instead of modeling only one “segment” of this
uncertainty flow (Fig. 6.3, c), some use cases require to zoom out and consider the entire
model chain (Fig. 6.3, d). A critical capability of such a chain could be to incorporate
external uncertainty information from surrounding software systems, e.g., to flexibly react
to early indicators of a changing environment (such as a confusing traffic situation ahead).
In the remainder of this chapter, however, we focus on one ML model in such a model
chain.

Finally, some ML models employ uncertainty estimates internally, i.e., neither the model
inputs nor its outputs carry uncertainty information and thus there is no uncertainty
information flow along the chain. The uncertainty estimates are instead generated and
processed within the ML model. In such cases, uncertainty information is typically used
to improve the model’s performance, either directly or indirectly, e.g., as a regularizer.
Henaff et al. (2019) perform uncertainty-based regularization for trajectory prediction.

102

6.3. Initial demand for an uncertainty estimator

He et al. (2019) construct a two-stage object detection network whose region-proposal
network uses a so-called var-voting scheme, i.e., final detections are obtained by location-
confidence-based aggregation of neighboring detections. Preliminary detections with low
uncertainty thus have a higher impact on the final detections.

Widening the focus, the flow of uncertainty information moreover influences quantitative
testing (see Sections 6.6 and 6.7). Thoroughly evaluating, for instance, a setup like
Fig. 6.3 c) requires the availability of realistic input uncertainty data, while a setup like
Fig. 6.3 e) may have a focus on performance testing, rendering aspects like uncertainty
calibration less important compared to most other uncertainty use cases.

Uncertainty granularity Given the types of uncertainty propagation presented above,
we provide details on the kind of information that flows and its dynamics. Specifically, we
compare the operation modes and the output granularities of the DNN and its uncertainty
mechanism as they may diverge. For an image-processing DNN, for instance, that operates
frame-wise and at a constant frame rate, the uncertainty estimator may generate estimates
at another frame rate, change-based or solely for inputs that are structurally different from
its training data. This holds true for output granularity where the desired granularity
of uncertainty information could be higher or lower compared to the one of the DNN
outputs. While, for instance, a segmentation network generates outputs on pixel level,
uncertainty information might be required on the level of objects, image parts or entire
images. Contrarily, one may think of a pedestrian detection network to be equipped
with uncertainty estimates on body-part level. Such real-world ML systems often process
structured information, i.e., both model inputs and outputs contain intrinsic (e.g., spatio-
temporal) dependencies, think, e.g., of image-processing DNNs that predict scene graphs
or semantic segmentations. Uncertainty modeling ought to reflect these dependencies,
i.e., ideally generates uncertainty estimates that, e.g., change steadily along a semantic
segment, as opposed to estimates that strongly fluctuate from pixel to pixel.

Trade-offs and technical constraints Requirements are often at odds with one another,
e.g., the functional and the uncertainty-related requirements for an ML model. In most
cases, uncertainty requirements must not be met at the expense of considerably decreased
functional quality and at most small deteriorations are tolerable. Moreover, we might
face trade-offs between uncertainty estimators and other safe-ML techniques (that foster,
e.g., interpretability or fairness) as all of them share the same neural capacities. Further
technical constraints for modeling uncertainties range from system complexity over storage
to latency and vary strongly from use case to use case. Boundary conditions regarding
time and resources not only apply to the uncertainty estimator itself but moreover to its
development process where a simple “off-the-shelf” mechanism on the one hand and a
scientifically novel custom estimator on the other hand mark extreme positions.

103

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

Results and remarks

The technical boundaries of the last section together with the above discussed aspects
of intended functionality pose the high-level requirements the uncertainty estimator is
subject to. All of them can be collected, either in an unstructured way or more formalized,
using a requirement specification language (see, e.g., Reinkemeier et al. (2011)). While
these requirements reflect the initial demand for uncertainty estimation (see Fig. 6.1), they
reside on various levels of abstraction and thus require further concretization to base the
development and testing of uncertainty mechanisms on them. In contrast, the operational
design domain of the uncertainty estimator is already fully specified, i.e., relevant semantic
dimensions have been determined and value ranges along these dimensions were set.

6.4. Toward uncertainty acceptance criteria

In this section, we take steps to derive formalized acceptance criteria from the above
collected high-level requirements. For application-size ML systems, these requirements
are often complex and thus “translate” into a variety of acceptance criteria. These
“translations”, like any modeling, go along with simplifications and assumptions that
inevitably stress and neglect certain aspects of the original requirements. To reduce
resulting blind spots, modeling ideally involves experts from different technical and non-
technical domains (e.g., safety engineers, ML researchers and product owners). The
diversity of the acceptance criteria is further increased by formulating them redundantly,
i.e., by different experts who work independently of each other (also compare the qualitative
“Swiss cheese” model in risk management (Perneger, 2005)). While these practices may
increase the completeness of the acceptance criteria, it is beneficial to explicitly analyze
whether completely fulfilled acceptance criteria actually capture the gist of the underlying
requirements or whether they can be “hacked” (compare reward “hacking” in reinforcement
learning (Hadfield-Menell et al., 2017)).

We help to structure and sharpen uncertainty requirements by providing a categoriza-
tion of desirable uncertainty properties in Subsection 6.4.1. While selected qualitative
requirements can already be considered as acceptance criteria, the quantitative ones should
be further formalized. For those, we introduce a formal notation of acceptance criteria as
3-tuples consisting of (semantic data specification, measure of quality, threshold value) in
Subsection 6.4.2.

6.4.1. Categorizing uncertainty requirements

Despite being case-specific at the level of details, qualitative and quantitative requirements
for uncertainty estimation can be broadly categorized. We identify 10 categories, the
first three of which capture different aspects of uncertainty quality. Categories four and
five target conceptual properties of uncertainty estimation while categories six to nine
focus on technical characteristics. They are complemented by a residual category for

104

6.4. Toward uncertainty acceptance criteria

application-specific requirements that do not fit elsewhere. In the following, we detail
these requirement categories and highlight the benefits of fulfilling them:

Aspects of uncertainty quality

• calibration Uncertainty estimates are calibrated when their distribution matches
the distribution of actual model errors (DeGroot & Fienberg, 1983; Naeini et al.,
2015). These matchings are typically calculated across an entire dataset, rendering
calibration a dataset-wide (or global) property. Global calibration is quantified by
measures like ECE and desirable for both in-data (ID) inputs, i.e., inputs from within
the ODD (or more concretely, from a dataset approximating it) and out-of-data
(OOD)1 inputs. A small ECE, e.g., assures that uncertainty estimates statistically
resemble the model errors. While it does not imply that each individual large
uncertainty estimate goes along with a large model error and vice versa, it allows
us to assess the on-average quality of the uncertainty mechanism and provides a
foundation for more detailed statistical analyses (see subsequent categories).

• local calibration / heteroscedasticity Uncertainty estimates are locally calibrated
when they probabilistically match prediction confidence for each data point (see,
e.g., Zhao et al. (2020)). This allows local inference on the model’s trustworthiness
for a given input. As most datasets do not provide ground truth uncertainties, local
calibration is typically subject to resolution limits.2 An assessable proxy measure is
ECE calculated on (local) data subsets, e.g., on a subset of safety-critical scenes. A
high ECE on such inputs could reveal weaknesses of an uncertainty estimator that
remained undiscovered when calculating the ECE averaged over a large dataset as,
e.g., underestimated uncertainties for safety-critical inputs might have been balanced
by overestimated uncertainties for not safety-critical inputs. While even input-
independent, constant uncertainty estimates could lead to small global ECE values
(DeGroot & Fienberg, 1983), local calibration is closely linked to input-dependent,
i.e., heteroscedastic, uncertainty estimates. Local calibration is desirable for ID data
points and a variety of OOD scenarios. It is a strict criterion that implies global
calibration and the ability to solve downstream tasks (see next category).

• ability to solve downstream tasks In the case that an uncertainty estimator is
used as an active component in an ML system, its estimates are often employed as
input for downstream decision making, especially whether safe and reliable operations
of the system can be ensured on the current input data. The choice of the concrete
downstream task to solve is highly application-specific and may, for instance, be
the detection of inputs that are structurally different from training data (ID-OOD

1Be aware that the abbreviations ODD and OOD bear the risk of confusion. While ODD is the
operational design domain, OOD stands for out-of-data, i.e., they refer to diverging concepts that are
(in a qualitative sense) even contrary to one another.

2Assuming, however, a dataset that comes along with ground truth uncertainties σgt,i, i.e., data points
with labels (µgt,i, σgt,i), and a model with predictions (µi, σi), the model’s local calibration could be
evaluated, e.g., by means of a Wasserstein distance, i.e., as

∑
i

(
(µi − µgt,i)2 + (σi − σgt,i)2).

105

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

detector) to enable, e.g., for AD systems, safe stopping if necessary. Another
example from automated perception is the recognition of false detections (e.g., of
VRU reflections in windows) which are then no longer considered, e.g., for motion
planning. In an industrial context, automated inspections that go along with high
uncertainty estimates might trigger manual re-evaluations of individual workpieces.
Technically, sufficiently strong correlations between uncertainty estimates and actual
model errors are required to enable this kind of self-assessment. Compared to
calibration (see above), less attention is paid to specific distributional properties of
the uncertainty estimates. Instead, they are employed as a tool that often remains
useful even when some desirable distributional properties are not met.

Conceptual properties

• argumentatively substantiated Broad scientific analyses, both theoretical and
empirical, help to draw a realistic picture of the strengths and weaknesses of an
uncertainty mechanism. On the one hand, theoretical justification allows for a
more thorough understanding of the mechanism and thus enables more confident
predictions of its behavior (e.g., on previously unseen data). In the long run,
these investigations aim for theoretical verifications of DNN-based estimates (see,
e.g., Salman et al. (2019)). A large number of empirical analyses, on the other
hand, render unknown structural weaknesses of a mechanism less likely. Thus, for
critical use cases, algorithms are favorable that are both theoretically and empirically
substantiated.

• attribution to type of uncertainty Better understanding what causes (unac-
ceptably) high uncertainty estimates allows us to take appropriate countermeasures.
Attribution is typically given w.r.t. either epistemic or aleatoric uncertainty, see
related work in Section 6.1. The former corresponds to model-weight uncertainty and
may be reduced by adding further input scenarios to the training data. The latter
one, data-intrinsic uncertainty, is more difficult to handle and may require changes
to the data collection process or the modeling task. For many real-world uncertainty
use cases, clear distinctions between epistemic and aleatoric uncertainty are difficult
since their training datasets are very sparse samples from high-dimensional input
spaces.

Technical characteristics

• applicability to large neural networks Most real-world ML systems employ
DNNs with millions of parameters. Applicability to, in that sense, large networks
might thus be a desirable practical prerequisite for uncertainty estimation techniques.

• minimal overhead Calculating uncertainty estimates often requires additional
numerical operations (e.g., for sampling-based approaches) or extensions to the
neural model (e.g., for ensembling-based techniques). As many applications underlie
resource constraints (especially mobile systems such as phones or drones) and more

106

6.4. Toward uncertainty acceptance criteria

generally for sustainability reasons, it is favorable to keep the “foot prints” of
uncertainty estimators minimal w.r.t. storage and computing.

• minimal trade-offs While uncertainty quality and model performance are (in most
cases) orthogonal requirements, there may be trade-offs between them in practice.
This can be seen, for instance, on mechanisms that share weights to perform both
task- and uncertainty-related predictions. It might therefore be desirable to use an
uncertainty mechanism that leads to only minimal deteriorations in performance or
other safety-relevant metrics.

• technical simplicity Being technically simple facilitates the integration of an
uncertainty mechanism into neural architectures. Estimators, on the contrary,
that require substantial changes to a network like additional layers or that rely on
specifically annotated training data are harder to implement. They therefore incur a
larger technical debt, which might make maintenance more challenging and increase
the risk of programming errors.

Application-specific requirements

• Depending on the use case various additional requirements may exist. Semantic
segmentation tasks, for instance, generate highly granular uncertainty outputs that
render the following two requirements plausible: first, one may ask for coherent
uncertainty estimation for the pixels belonging to a single object in an image, and
second, one may expect pixel classification uncertainty to increase when approaching
a boundary between semantic segments as such boundaries go along with irreducible
data uncertainty. For the related computer vision task of object detection, it seems
natural to ask for a positive correlation between estimated uncertainty and the
degree of occlusion of a VRU. In the case of combined segmentation and object
detection, one could require high segmentation uncertainties for image areas that
contain undetected objects (false negatives).

This categorization scheme allows us to delineate the initial requirements more clearly,
e.g., by splitting or merging them. It might moreover help to identify additional re-
quirements that extend the initial set. While some of these requirement categories are
qualitative, e.g., “being argumentatively substantiated”, others are quantifiable, e.g., “be-
ing globally calibrated”. The (relative) importance of the different requirement categories
is moreover not fixed but varies for each uncertainty use case. In the following, we focus
on the quantifiable uncertainty requirements and take steps to derive acceptance criteria
from them.

6.4.2. Formalizing uncertainty acceptance criteria

Having disentangled the textual requirements using the categorization above, we fur-
ther address those sub-parts that are specifically quantitative, e.g., issues of calibration.
Concretely, we “translate” each quantitative requirement into an acceptance criterion

107

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

that consists of three key elements: first, a semantic data specification that reflects those
regions of the input space that are relevant for a given requirement, second, a measure of
quality that quantifies to which degree a requirement is fulfilled and, lastly, a threshold
value that determines whether this degree of fulfillment is sufficient for the given DL
system. While for some requirements, e.g., “minimal overhead”, measures of quality
are not uncertainty-related, e.g., run time, we focus on uncertainty-related aspects in
the subsequent exposition. Please note that one uncertainty requirement may map onto
several acceptance criteria.

Semantic data specification The semantic data specification of an acceptance criterion
can be obtained based on the semantic dimensions that were used to describe the uncer-
tainty ODD (see Subsection 6.3.2). For each of these semantic attributes, it is checked
whether the uncertainty requirement renders it necessary to focus on certain value ranges
and to exclude others. Requiring, for instance, that an autonomous car overtakes a cyclist
only if it is highly certain that a safety distance of at least 1.5 meters can be kept at any
point of this maneuver, might translate into a data specification that not only requires
at least one cyclist per image but moreover a focus on short distances between cyclist
and vehicle. The traffic participants aside, the road type of the input scenario is to be
specified: while highways and country roads are not irrelevant, a clear focus for overtaking
maneuvers are urban environments. In a subsequent step (see Section 6.6), the accordingly
specified regions of the input space are mapped onto concrete datasets. In the following,
we focus on the two other components of uncertainty acceptance criteria and provide
best practices for choosing uncertainty measures (next subsection) and their respective
threshold values (subsection after next).

Measures of uncertainty quality To determine to which degree requirements like global
and local calibration are fulfilled and to quantify potential trade-offs between model
performance and uncertainty estimation, scores of uncertainty quality are needed. Math-
ematically, these scores aim at concise descriptions of the mismatches between (often)
high-dimensional probability distributions, mostly by means of scalar scores. These reduc-
tions of dimensionality bring about different sensitivities and distortions, compare, e.g., 2D
map projections of a 3D globe where no map preserves areas, shapes and distances at the
same time. Considering multiple uncertainty metrics, however, allows us to “construct”
a more complete picture. This is of special relevance when optimizing a model on an
uncertainty-related measure like negative log-likelihood (NLL, see Section 6.1). The
resulting NLL-optimized model may neglect aspects of uncertainty that are not captured
by NLL and alternative measures like ECE can be used to detect such overfitting to the
optimization metric (in some fields also known as Goodhart’s law (Chrystal et al., 2003)).

Aspects to differentiate between uncertainty measures are (among others) their sensitiv-
ity to underestimated and overestimated uncertainties as well as their sensitivity to outliers
(in both directions). NLL, for instance, is unbounded and thus more sensitive to outliers
compared to the bounded ECE. While this insensitivity of ECE to strongly deviating

108

6.4. Toward uncertainty acceptance criteria

uncertainty estimates limits its ability to resolve quality differences for a broad range of
models, such outlier suppression might be acceptable for analyses that aim at measuring
on-average uncertainty quality. Outliers aside, NLL is more sensitive to under-estimated
uncertainties (asymptotically ∝ 1/σ2) compared to over-estimated ones (∝ log(σ)). This
implies that NLL-optimized models (on average) tend to overestimate uncertainties; a
conservative behavior that might be considered advantageous from a safety perspective.
ECE on the contrary treats over- and underestimated uncertainties roughly equivalent.

Taking a testing perspective, a pointwise measure like NLL has favorable properties
compared to set-based measures like ECE. Search-based test (SBT) strategies explore the
input data space to detect, e.g., input regions for which the model’s uncertainty quality
is low. For NLL, each new input data point provides a feedback on the (local) success
of the search strategy as the point can be compared to its predecessors along the search
trajectory. ECE in contrast requires a local data sample or the stored recent history of
the search trajectory. However, NLL is not a calibration measure and thus not suited for
the related requirement categories, namely, global and local calibration.

Both NLL and ECE capture on-average properties of uncertainty estimators as opposed
to scores that “zoom in” and put emphasize on specific (safety-relevant) quantile ranges
of uncertainty distributions. The expected tail loss (ETL, see Section 6.1), for instance,
measures the depth of distributional tails.

Besides these generally applicable scores, task-specific uncertainty measures like prob-
ability-based detection quality (PDQ, Hall et al. (2020)) for object detection and area
under the sparsification error curve (AUSE, Ilg et al. (2018)) for optical flow estimation
exist. Reflecting the respective structures of inputs and outputs, they capture task-
specific aspects of uncertainty and thus complement the generally applicable measures.
For complex uncertainty use cases, one may additionally construct custom uncertainty
measures, e.g., to involve prior knowledge about image segments or object types.

Finally, the standard versions of most uncertainty scores assume Gaussianity for model
errors and uncertainty estimates, e.g., NLL and ECE. While these assumptions are
(partially) justified for some modeling techniques or technical limits, empirical testing is
called to analyze their validity for a given DL system.

Thresholding uncertainty measures To get from quantitative uncertainty measures to
uncertainty tests that are typically formulated as binary decision rules, we require threshold
values that indicate whether a test succeeds or fails. This binarization “transforms”
statistical evaluations, which ask how good the quality of an estimator is, into semantic
evaluations, asking whether the quality of an estimator is good enough for an application
context. The following edge cases illustrate how strongly the notion of a semantically
appropriate threshold value varies from use case to use case. For gambling, on the one
hand, a win rate of 50.1% (for a binary game) may suffice to generate a profit on average,
assuming the absence of fees and unlimited scalability. Critical ML applications, on the
other hand, could require safe operations in each individual situation. In this case, even

109

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

well-functioning in 99.9% of all scenarios could indicate that in 1 out of 1000 situations a
subsequent safety strategy should be considered.

Moreover, the already discussed challenges for breaking down high-level requirements
become especially apparent for threshold values as these are typically formulated on a
system level. To derive, for instance, a threshold value for an object detection (OD)
network from a high-level requirement such as a maximum tolerable VRU collision rate,
this threshold value, the collision rate, can be propagated along the AD model stack to the
considered OD network, an inevitably qualitative process that requires various additional
assumptions.

For a given DL system, an uncertainty metric may go along with several threshold
values as the latter ones are set on the level of acceptance criteria and thus depend on
their data specifications, e.g., whether the entire ODD, parts of it or transitions toward
out-of-data are considered (see Section 6.6 for discussions on test datasets). Setting a
threshold value for the negative log-likelihood (NLL) is especially challenging as it is a
hybrid measure of network performance and uncertainty quality. A threshold value thus
has to reflect both performance- and uncertainty-related requirements.

Results and remarks

The threshold values together with the above discussed uncertainty measures and semantic
data specifications compose the quantitative acceptance criteria. Each quantitative
requirement (from Section 6.3) should be formalized accordingly. Please recall that while
uncertainty measures and threshold values are already fixed, the data specifications are
still qualitative. Test datasets will be derived from them at the level of test cases in
Section 6.7. These quantitative acceptance criteria, together with the qualitative ones,
provide the “gold standard” for the next steps of the framework: first, the actual selection
and adaptation of an uncertainty mechanism (step 3) and second, its quantitative testing
(steps 4 and 5, compare respective arrows in Fig. 6.1).

6.5. Choosing an uncertainty mechanism

Comparisons between the desirable uncertainty properties outlined in the previous section
and the actual properties of modern uncertainty modeling techniques allow us to choose
suitable uncertainty estimators. To this end, we mirror the structure of Subsection 6.4.1
and analyze if and how well the 10 qualitative and quantitative requirement categories
are addressed by representative uncertainty mechanisms.

Aspects of uncertainty quality

• calibration Self-assessing model performance appropriately requires to capture
uncertainty comprehensively, i.e., both aleatoric and epistemic uncertainty. For
transitions from ID to OOD, the importance of epistemic uncertainty (relative
to aleatoric uncertainty) increases, rendering its modeling central for open-world

110

6.5. Choosing an uncertainty mechanism

uncertainty use cases. While post-calibration routines, which often adjust a small
number of global model parameters, help to improve uncertainty calibration in-
distribution, this benefit does not necessarily carry over to out-of-distribution data
(see, e.g., Snoek et al. (2019)). More advanced methods like MC dropout applied
to networks that output the parameters of a Gaussian distribution (Kendall &
Gal, 2017) and deep ensembles (Lakshminarayanan et al., 2017) improve on both
ID and OOD calibration by combining parametric approaches that are optimized
to capture ID aleatoric uncertainty with matching-based strategies for modeling
epistemic uncertainty.

• local calibration / heteroscedasticity Aleatoric uncertainties are typically
heteroscedastic, i.e., the data-intrinsic noise varies from data point to data point.
While a homoscedastic modeling of heteroscedastic aleatoric uncertainty (like MC
dropout) allows us to grasp the average level of data noise, it is more common to
model it more flexibly, e.g., by means of network outputs that are interpreted as the
parameters of a Gaussian distribution (as is done by an extension of MC dropout
due to Kendall & Gal (2017)). Such parametric approaches aside, non-parametric
approaches to model heteroscedastic aleatoric uncertainty exist, such as Wasserstein
dropout (see Chapter 5) that reflect the data-point-dependent noise in the width of
the network’s output distribution that is generated by sampling sub-networks. While
model-inherent (epistemic) uncertainty is in general also heteroscedastic, it typically
increases, unlike aleatoric uncertainty, when leaving the training data distribution.
The (implicit) ensembling methods outlined above model epistemic uncertainty
via the spread of their sub-networks. On training data, these (sub-)networks are
“matched”, resulting in a small spread. Under data shifts, these matchings do not
hold, the (sub-)networks disperse and thus yield larger uncertainty estimates.

• ability to solve downstream tasks While the evaluation of uncertainty estimators
by means of downstream tasks is common in research, the exact tasks considered
vary from method to method, rendering many results not readily comparable.
Common types of tasks are the detections of misclassifications and outliers as well as
distinctions between in- and out-of-distribution data. The latter task is specifically
suited for uncertainty as it touches on the problem of uncertainty attribution (see
respective category). Some methods like prior networks (Malinin & Gales, 2018)
are especially suited to distinguish between different types of uncertainty and thus
simplify downstream OOD detection. Practical limitations of this modeling approach
were addressed by the more recently proposed posterior networks (Charpentier et al.,
2020). In particular for high dimensions, comparisons between ID and OOD are
often realized by evaluations on structurally different datasets (see, e.g., Snoek et al.
(2019)). These analyses pose rather rough approximations of the continuous data
shifts typically encountered in the real world.

111

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

Conceptual properties

• argumentatively substantiated Many uncertainty estimation techniques (e.g., sto-
chastic gradient Langevin dynamics (Welling & Teh, 2011), MC dropout (Gal &
Ghahramani, 2016a), deep evidential regression (Amini et al., 2020)) have their roots
in Bayesian statistics and are, to varying degree, motivated in this regard, giving
them a theoretical basis. Other techniques like deep ensembles take a frequentist
perspective. Deep ensembles as well as MC dropout are considered to be among the
most established uncertainty modeling techniques when judged by the high numbers
of related publications and open-source implementations.

• attribution to type of uncertainty Attributing an uncertainty estimate to uncer-
tainty sources requires a mechanism that models several types of uncertainty in the
first place, especially aleatoric and epistemic uncertainty. As stressed in the related
work, most such mechanisms internally employ combinations of “atomic” uncertainty
mechanisms each of which modeling one type of uncertainty. Attributing uncertainty
comes for such approaches “free of charge”, e.g., for deep ensembles or MC dropout
applied to networks that output the parameters of a learned Gaussian distribution.
A fully parametric approach that provides a comparably easy decomposition is
deep evidential regression. Prior networks for classification (Malinin & Gales, 2018)
take uncertainty-source attribution one step further as they allow us to moreover
distinguish distributional uncertainty from data and model uncertainty.

Technical characteristics

• applicability to large neural networks The methods discussed in the related
work (Section 6.1) were pre-selected having a sufficient scaling behavior to be
employed for application-size ML systems. Ensembling- and subsampling-based
mechanisms, for instance, scale linearly with model size. For use cases employing
small DNNs, the scope of practically applicable uncertainty mechanisms broadens
as various Bayesian neural network (BNN) approximations (e.g., Liu et al. (2019))
become affordable.

• minimal overhead We analyze the overheads of uncertainty mechanisms w.r.t.
numerical operations (processing time) and storage. Depending on the context,
further dimensions may be considered such as the transmitted data volume in
federated-learning applications (see, e.g., McMahan et al. (2017); Kamp et al.
(2018)). Regarding numerical operations, parametric methods (Nix & Weigend,
1994) cause virtually no overhead as opposed to subsampling- and ensembling-based
methods whose overhead is (typically) linear in the number of subsamples and
model components, respectively. Similar considerations hold for networks like the
probabilistic U-net (Kohl et al., 2018) that introduces an additional network branch
and relies on sampling in a latent space. Efficiency-optimized versions of subsampling
mechanisms such as last-layer variants (Snoek et al., 2019) and approximate analytical
moment propagation (Postels et al., 2019) allow for noteworthy reductions of the

112

6.5. Choosing an uncertainty mechanism

numerical operations and thus processing time. Regarding storage, (non-weight-
sharing) ensemble methods (and approaches in that spirit that add, e.g., a network
branch (Kohl et al., 2018)) require additional resources. Subsampling approaches
(e.g., MC dropout or masksembles), i.e., in a sense weight-sharing ensembles, do not
introduce any additional storage overhead.

• minimal trade-offs Uncertainty mechanisms impact network performance, in
most cases, by modifying either the network capacity or its optimization objective.
A parametric model for a regression task, for instance, does the latter as it optimizes
Gaussian likelihoods (NLL) instead of squared errors (RMSE). This simultaneous
optimization of mean and variance typically causes a certain decrease of performance
(at least on training data). On the contrary, both subsampling- and ensembling-based
methods change the network capacity, however, in opposite directions: subsampling
limits the capacity as for each forward pass weights are omitted while ensembling
increases the capacity as multiple models are learned for the same task. Trade-offs
(or synergies) between uncertainty estimators and other trustworthy-ML components
can be expected (see Section 6.1), but are difficult to quantify due to the large
variety of the latter ones.

• technical simplicity Being technically simple is a driving factor for the wide
adoption of an uncertainty mechanism. The modifications on code level induced by
standard approaches such as subsampling-based, ensembling-based, and parametric
ones are in most cases minimal. For the mentioned approaches, the network is
slightly modified (subsampling), a loop over model training is added (ensembling)
and the objective function is modified (parametric). Examples for more involved
techniques are SWAG (Maddox et al., 2019) and probabilistic U-net (Kohl et al.,
2018) that aggregate statistics along the training trajectory and require an additional
network branch, respectively.

Application-specific ones

• The main types of uncertainty estimators are flexible enough to be employed in a
variety of neural architectures and allow us to estimate uncertainties at different
granularity levels. Of special importance is low-level uncertainty information, e.g., on
pixel level, as it enables us to construct custom uncertainty aggregates for ML
applications that require non-standard uncertainty “entities”. Approaches like
probabilistic U-net (see ibid.) and stochastic segmentation net (Monteiro et al.,
2020) help to strengthen the coherence between such pixel-level uncertainty estimates.
To further improve the susceptibility of a segmentation model w.r.t. critical segments
such as VRUs, one may weight the segmentation outputs with pixel-resolved prior
class probabilities (see, e.g., Chan et al. (2019)).

Many state-of-the-art uncertainty estimators combine different types of mechanisms
to mitigate conceptual weaknesses and to leverage their respective strengths, e.g., to
describe both aleatoric and epistemic uncertainty. Complex use cases may require an

113

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

adaption of existing mechanism combinations or even the construction of new ones. One
may further analyze whether an uncertainty mechanism introduces (steerable) trade-off
relations between some of the 10 requirement categories.

Results and remarks

Having picked an uncertainty mechanism, it needs to be optimized. Some mechanisms
render post-training of the ML model or even re-training from scratch necessary, for
others a less involved post-processing routine suffices (see, e.g., temperature scaling (Guo
et al., 2017)). The “original” network without uncertainty estimator may be kept for
comparisons, e.g., to detect side effects of integrating the uncertainty mechanism such as
potentially occurring reduced task performance.

6.6. Scope and structure of uncertainty testing

Given an optimized uncertainty estimator, we are headed to test whether it fulfills the
uncertainty acceptance criteria (see Section 6.4). Before we construct concrete test cases
in Section 6.7, we introduce a test hierarchy that builds on semantic and non-semantic
test data selection strategies and discuss how it aids in the testing of the uncertainty
acceptance criteria. We focus on quantitative testing as qualitative acceptance criteria
(e.g., being theoretically justifiable or allowing for uncertainty attribution) were (in most
cases) already addressed when choosing an uncertainty mechanism in the previous section.
The goal of this step in the framework (recall Fig. 6.1) is to determine the test depth and
the test focuses for each quantitative acceptance criterion.

Different from testing programmed software, approaches that cut a DNN in smaller
pieces are challenging due to the highly interacting nonlinear (black-box) nature of these
models, also referred to as “changing anything changes everything” (CACE, see Sculley
et al. (2015)). We therefore consider the entire DNN as a single unit for testing. Thus,
test hierarchies from classical software testing (from unit over integration to system tests)
are not easily transferable (see, e.g., Gannamaneni et al. (2021)). The complexity of
(real-world) ODDs moreover renders comprehensive testing of (uncertainty) acceptance
criteria difficult (see outline in the beginning of the chapter). Diverse testing types and
testing methods, however, yield a broad overview of the strengths and weaknesses of an
uncertainty estimator within a given computing budget.

We propose a test hierarchy that builds on iteratively refined test data selection
strategies, as it is mostly not possible to conclusively map the ODD (or representative
parts of it) onto a dataset. The data selection hierarchy is a practical vehicle serving a
twofold purpose: on the one hand, it allows us to broadly cover the entire ODD and, on
the other hand, to conduct deep-dive analyses exploring challenging and (safety-)critical
regions of it. Specifically, we distinguish four hierarchy levels:

114

6.6. Scope and structure of uncertainty testing

• Technical tests (Subsection 6.6.1) that check elementary technical properties of
an uncertainty estimator. The semantics of the employed test inputs are (largely)
irrelevant.

• Global uncertainty tests (Subsection 6.6.2) that focus on global properties of an un-
certainty estimator such as its on-average quality within and outside the performance
ODD.

• Subset and pointwise uncertainty tests (Subsection 6.6.3) analyze worst-case behaviors
(and other quantile ranges) of the uncertainty estimate distribution and how well an
uncertainty estimator functions for individual (application-critical) input scenarios.

• Complementary uncertainty tests (Subsection 6.6.4) are an open residual test set to
explore more involved uncertainty properties as well as novel testing methods.

For a schematic visualization of the test data selection concepts on the four hierarchy levels,
see Fig. 6.4. Before introducing the test hierarchy in detail, we stress that it is applied to
each (quantitative) uncertainty acceptance criterion separately: first, we determine the test
depth for the criterion, i.e., the levels of the test hierarchy to be considered for adequately
addressing it. Each of these test hierarchy levels in turn contains several test types, each
of which putting a focus on another relevant characteristic of uncertainty estimates. These
test types are finally broken down onto concrete test cases (see Section 6.7).3

6.6.1. Technical tests

A first step toward thoroughly examined uncertainty estimates is testing their basic techni-
cal properties. We begin by checking the interfaces for uncertainty information, especially
whether they comply with the flows and granularities determined in Subsection 6.3.3.
The data types of the interfaces are relevant as they set the ranges and resolutions of the
uncertainty estimates. Given the interfaces, we test how an estimator handles undefined
or invalid inputs, e.g., a corrupted negative uncertainty estimate from a previous ML
model in a model chain and whether explicit sanity checks for uncertainty outputs are
implemented, e.g., whether a flag is raised for negative or close-to-zero estimates. For
black-box ML models with access constraints, these output-related checks cannot be
conducted as they require knowledge about the model’s inner workings. Some uncertainty
mechanisms (applicable to white-box networks) go along with additional model parameters
(e.g., ensembling methods, see Subsection 6.3.3). Such mechanisms call for analyses of
whether these additional parameters were properly adjusted by network (re-)training,
i.e., if their values are, e.g., continuously distributed or that none of them is undefined.

Running an uncertainty mechanism on a larger test dataset allows us to examine its
processing time distribution that provides insights on average processing times (especially
relative to the processing times of the same DNN without an uncertainty estimator) and

3While out of scope for this thesis, the presented data-driven black-box testing approach is model-agnostic
and could thus be evaluated by using it for a model that can be tested in an additional way. This is
typically true for white-box systems where components can be investigated individually.

115

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

2. Standard quality checks,
e.g…

Fig. 6.4.: Schematic visualization of the data selection concepts on the different levels
of the test hierarchy. The heatmap shows a fictitious data density (violet is
low, red is high). Simple technical tests (left panel) are based on a coarse
data selection. Global uncertainty tests in contrast (second panel), rely on a
broad, density-appropriate sampling of the input space. Subsequent subset and
pointwise uncertainty testing (third panel) focuses on particular input scenarios
and regions. Complementary uncertainty tests (right panel) finally evaluate
more complex properties of uncertainty estimates. The actually conducted
tests strongly depend on the uncertainty use case, see the following subsections
for details.

potentially occurring latency “tails” that need to be handled. Finally, one may require
uncertainty estimators to be deterministic for test reproducibility. As many uncertainty
mechanisms rely on sampling routines, this requirement translates into the question of
whether all employed pseudo-number generators are seeded.

6.6.2. Global uncertainty tests

Recalling Subsection 6.3.2, the uncertainty ODD is, in most cases, intended to be a
superset of the DNN’s performance ODD, i.e., the uncertainty estimator is expected
to reliably predict the model’s confidence on inputs from both within (ID) and outside
(OOD) the model’s training distribution. Therefore, global uncertainty tests investigate
the general functioning of an uncertainty estimator on the broader uncertainty ODD and
are conducted on accordingly compiled datasets. Intermediate test results per data point
are (typically) aggregated to provide dataset-wide uncertainty quality figures.

For testing within the performance ODD, one may build, if available, on the datasets used
for the performance evaluation of the network or otherwise on structurally similar datasets.4

4In general, we assume that both network and uncertainty estimator are (concurrently) trained on the
same dataset. Assuming further that the uncertainty estimator captures epistemic uncertainty, we
expect its “domain of proper functioning” to be larger compared to the one of network performance.

116

6.6. Scope and structure of uncertainty testing

Possibly occurring performance degradation due to the inclusion of an uncertainty estimator
(performance-uncertainty trade-off) should be investigated. While further insights on
performance may arise during the global tests, they are not the primary focus.

Next, we examine the uncertainty estimator’s quality in the “outer” areas of the
uncertainty ODD, i.e., on data structurally different from the training data. Such data
shifts introduce additional epistemic uncertainty and can be characterized by the types
of concepts they change and the degree to which concepts are changed, respectively. An
example are the discrete data shifts that occur when model and uncertainty mechanism are
trained on simulated inputs (as virtual open worlds allow, e.g., to generate arbitrarily many
critical scenarios) and evaluated on real-world data. The (simulation-based) StreetHazards
anomaly segmentation dataset (Hendrycks et al. (2019)) on the other side introduces
high-level shifts as it modifies the semantics of traffic scenes by placing unknown unknowns
(random objects like sheep and airplanes) into them. For a given uncertainty use case,
the data specifications of, e.g., the uncertainty ODD (see Subsection 6.3.2) and the
acceptance criteria (see Subsection 6.4.1) help to select relevant data shifts. Low-level
distortions like noising, blurring or changed colors and contrasts are of interest for most
uncertainty estimators as they imitate flawed measurements and (likely) increase the
aleatoric uncertainty of the input.

For ML models that process, for instance temporal, input streams, we test the (tem-
poral) consistency of uncertainty estimates, i.e., whether the change rates of uncertainty
estimates reflect the input change rates.5 This becomes especially important when (sim-
ple) algorithms for temporal smoothing like Kalman filters (Welch & Bishop, 1995) are
employed that may limit uncertainty change rates.

6.6.3. Subset and pointwise uncertainty tests

An uncertainty estimator that is insufficient w.r.t. the above tests of global functioning is
likely to be discarded. Successfully passing those tests, however, is not a sufficient but
only a necessary condition as they solely check aggregated uncertainty quality. Many
uncertainty use cases, in contrast, require proper functioning in individual situations,
especially in (potentially) critical ones.

One way to study such critical inputs is revisiting the global tests, more concretely,
their pointwise intermediate results (e.g., normalized residuals or NLL values). Instead of
averaging them (e.g., by means of ECE or mean NLL), one may stay at a level of higher
granularity and focus on individual quantiles or quantile ranges of these distributions. For
details on such output-uncertainty-based testing, see the paragraphs below.

Datasets can not only be sliced based on numerical uncertainty scores but moreover
based on high-level annotations, assuming that such information is available for each
input data point. Accordingly derived semantic-dimension-based tests (see below) reveal
high-level strengths and weaknesses of an uncertainty mechanism and moreover allow us

5If scenes are, for instance, only very slowly changing, one would expect the uncertainty estimates to
decrease over time while sudden changes in a scene would expectably lead to an increase in uncertainty.

117

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

Tab. 6.1.: Four technical approaches to subset and pointwise uncertainty testing that are
categorized based on data selection strategy (x-axis) and their (non-)semantic
nature (y-axis), respectively. See Subsection 6.6.3 for details.

subset and pointwise
uncertainty testing

distributional search-based /
curated

non-semantic output-uncertainty-
based testing

testing with
uncertainty-based
search strategies

semantic testing along semantic
dimensions

testing critical semantic
input scenarios

to evaluate how well its domain of proper functioning covers the desired uncertainty ODD
as specified in Subsection 6.3.2.

Going one step further, one may not only slice given datasets but curate (or even
create) potentially critical inputs based on semantics. The sampling-based approach of
determining the uncertainty ODD in Subsection 6.3.2 guides these data compilations that
provide the basis for testing uncertainty properties in critical semantic scenarios (see
below).

Moreover, critical input scenarios may be generated by following hints on low local
uncertainty quality. Such uncertainty-based search strategies (see below) allow us to explore
the input space to uncover regions of insufficient self-assessment. Given the sparsity of
most datasets and the incomplete nature of semantic specifications, this test type poses a
promising technical approach to reduce blind spots of subset and pointwise uncertainty
testing.

In the following paragraphs, we discuss these four testing techniques in detail (see
Tab. 6.1). Fig. 6.5 illustrates the differences between the sketched testing strategies by
means of a symbolic 2D input space with a semantic and a non-semantic axis.

Output-uncertainty-based testing Slicing a dataset based on local output uncertainty
quality requires a pointwise uncertainty measure, rendering set-based (calibration) metrics
like ECE unsuited. More appropriate candidates are absolute values of uncertainty
estimates and measures that put pointwise uncertainty estimates and (absolute) model
errors into relation, like NLL values or normalized residuals. The choice of the measure is
guided by the uncertainty acceptance criteria (see Section 6.4).

Calculating the width of an uncertainty-output distribution (its variance or, for multi-
dimensional output distributions, its covariance) provides insights on the meaningfulness
of on-average uncertainty figures for individual input scenarios as these “width” scores
measure the (average) deviation from mean behavior. Going beyond average deviations,

118

6.6. Scope and structure of uncertainty testing

Fig. 6.5.: Symbolic illustration of three out of four data selection strategies on the
testing hierarchy level of subset and pointwise tests. The data selection for
output-uncertainty-based testing is trivial as it builds on the standard test
dataset used for global testing (see above) and is thus not shown. The high-
dimensional input space is sketched as a 2D plane with a semantic and a
non-semantic axis. Testing along a semantic dimension (orange arrow) requires
(in most cases) a simulation environment that allows us to systematically vary
the corresponding input attribute while keeping all other input properties
unchanged. However, in many real-world use cases, relevant regions of the
input space (blue “cloud”) are too complex to fully capture them this way.
Instead, they can be represented, e.g., by expert-curated datasets. Search
strategies finally do not require semantic information and may, for instance, be
driven by gradients of local uncertainty quality (green trajectory). For details
on all data selection strategies, see Subsection 6.6.3.

we next focus on sub-datasets that cause strongly diverging uncertainty estimates and
thus contribute to the tails of the uncertainty-output distribution. For pointwise measures
like NLL and normalized residuals, these tails correspond to uncertainty estimates that
severely under- or overestimate the actual model errors. As discussed above, one may argue
for the special practical relevance of under-estimated uncertainties, i.e., of overconfident
model predictions. These worst-case scenarios w.r.t. uncertainty quality are measured
by quantile values (e.g., 1% or 99%) or measures that are sensitive to the depth of the
distributional tails, such as conditioned mean values (e.g., the ETL). Since these measures
allow us to detect deviations from Gaussianity (see, e.g., Section 4.2 for an analysis of
these deviations), they may help to identify (overly) simplifying modeling assumptions
and thus provide an additional safeguard.

For ML models processing structured input, it may be insightful to attribute output
uncertainty to input features. Input modifications like obfuscations allow us to analyze,
on the one hand, the sensitivity of output uncertainties w.r.t. input regions (such as
image patches, frequency bands or sub-graphs) and, on the other hand, how susceptible

119

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

an uncertainty estimator is w.r.t. local and global input features (e.g., whether or how
strongly an object-level uncertainty changes when a far-off image patch is modified).

Relying on output uncertainty estimates, these tests do not require (high-level) meta-
information. Being available, however, such semantic information may allow for an
efficient and human-understandable description of the selected sub-datasets. In contrast,
the availability of high-level meta-information is a prerequisite for testing along semantic
dimensions (see the next paragraph).

Testing along semantic dimensions Real-world ML systems likely encounter inputs
at inference that are statistically novel compositions of known concepts (e.g., of known
object types) and moreover structurally new concepts (unknown unknowns). Analyzing
how uncertainty quality changes in the presence of increased epistemic uncertainty due to
varied scene semantics provides a high-level understanding of the estimator’s extrapolation
capabilities and its borders of functioning. Concretely, one may study an ID-OOD
transition along a semantic “direction”,6 e.g., whether object-level uncertainty estimates
for VRUs are sufficiently calibrated as a function of their distance to the vehicle and how
calibration quality may decrease for far away (and thus “small”) VRUs. Another example
of a semantic dimension in the field of AD are (labeled) body parts of VRUs that allow us
to analyze whether uncertainty quality diminishes for various kinds and degrees of VRU
occlusion (another ID-OOD transition).

Such tests enable us to compare the actual abilities of an uncertainty estimator with its
ODD specification that may, e.g., ask for properly calibrated uncertainty estimates for
VRUs that are within the breaking distance of a vehicle. Technically, such analyses are
based on either richly annotated real-world data or simulated data. While the latter ones
allow for a systematic variation along a semantic dimension as well as for “zooming” into
critical sections (as arbitrary amounts of data can be generated), artificial data comes at
the cost of a domain gap between, on the one hand, the accordingly conducted tests and,
on the other hand, the actual usage of the ML model in the real world.

Moreover, these variations along only one semantic “axis” at a time constrain the
variability of the reachable inputs (one may think of a basis scene that is, one after the
other, deflected in various directions). While these semantic-axis tests provide a first
understanding of high-level properties of an uncertainty estimator, further testing on more
realistic input scenarios is required.

Testing critical semantic input scenarios Critical input scenarios are barely represented
in standard datasets. Moreover, they are often too complex to encounter them when
varying a single semantic dimension of a basic input scenario using, e.g., a simulation
engine (see previous paragraphs). Both aspects, their rare occurrence and their complexity,
render a decrease in model performance likely and thus large uncertainty estimates

6We consider only modifications along one semantic “axis” at a time to avoid combinatorial explosions.
Approximate techniques that study the impact of combinations of semantic concepts exist, e.g., pairwise
testing (see Kuhn et al. (2004)).

120

6.6. Scope and structure of uncertainty testing

desirable. Datasets of such critical input scenarios (Chan et al., 2016; Yao et al., 2019;
Bao et al., 2020) can either by curated by domain and safety experts (e.g., Jermakian &
Zuby (2011)) or semi-automatically generated using, e.g., probabilistic scene grammars
(Kar et al., 2019) that set up scenes based on pre-defined probability distributions.7 The
sampling-based approach to determining the ODD from Subsection 6.3.2 provides a notion
of what constitutes a critical scene for an uncertainty use case and is thus a natural
starting point for data curation or data modeling. Also, critical historical scenarios can
be included if available (e.g., data of historical human-induced crashes in the field of AD
(Scanlon et al., 2021)).

For ML models processing spatio-temporal data streams, one may moreover consider
critical scenarios in the temporal domain such as abrupt changes of lighting conditions in
the case of AD, e.g., when driving in a tunnel or when the sun breaks through the clouds,
and test whether uncertainty estimates change accordingly.

Testing with uncertainty-based search strategies Available datasets typically capture
only a small subset of the input space and thus reveal only a potentially small fraction
of the actual weaknesses of an uncertainty estimator. To enlarge the data base, one
could synthesize additional input points, e.g., by interpolating between or extrapolating
from given test data points. More systematic, however, compared to such untargeted
data acquisition strategies, are “pro-active” searches for input space regions that cause,
e.g., large or ill-calibrated uncertainty estimates.

Various algorithmic search strategies to explore input data spaces exist (e.g., Pei et al.
(2017); Odena et al. (2019); Klischat & Althoff (2019)). They (typically) follow hints of
weak model performance, e.g., by means of gradient descent in a latent space. Adversarial
attacks fall into this category as well as coverage-based strategies (see related work in
Section 6.1). While most such approaches focus on model performance, we advocate for
search strategies that are guided by uncertainty quality. They require pointwise uncertainty
measures such as NLLs or normalized residuals and target larger regions of input space
compared to performance testing due to the (in most cases) larger uncertainty ODD.
Depending on the type of uncertainty estimator, detected large uncertainty estimates can
be attributed to either aleatoric or epistemic uncertainty.

Relying on numerical (pointwise) uncertainty scores, search-based tests (SBTs) do not
require any meta-information, unlike testing along semantic dimensions and testing of
critical input scenarios. However, non-semantic SBTs may still benefit from high-level
annotations as the latter ones allow for (approximate) semantic descriptions of detected
weaknesses (compare output-uncertainty-based testing).

6.6.4. Complementary uncertainty tests

The discussed testing approaches (see Tab. 6.1) are by no means definitive and further
(especially application-specific) tests are required. The complementary uncertainty tests

7The parameter distributions are either directly or indirectly (when learned from curated data) set by
experts.

121

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

are intended as an open residual set where as one example we present “cross-analysis”
examinations. We outline two variants of such tests: firstly, combinations of the uncertainty
testing techniques discussed above, e.g., quantile range uncertainty analyses on a curated
dataset of critical input scenarios. Secondly, “cross-analysis” tests in the sense that
uncertainty estimates (and not the predictions of the model) are analyzed w.r.t. other
safe-ML dimensions, such as interpretability or fairness. Considering, e.g., the fairness of
uncertainty estimates, one may test whether uncertainty quality is comparably good across
the values of sensitive input attributes (e.g., gender, color of skin or religious clothing in
the case of a VRU detector).

Results and remarks

The above presented testing hierarchy facilitates structured testing of uncertainty esti-
mators where the sketched testing methodologies help to cover a broad range of relevant
input space regions, paying attention to both their semantic and non-semantic aspects.
More concretely, we choose an appropriate test depth (in the test hierarchy) for each
quantitative uncertainty acceptance criterion. For the respectively selected hierarchy
levels relevant focus points of testing can be determined, e.g., testing of low-level sensory
distortions (on the hierarchy level of global tests) and testing along semantic dimensions
(on the hierarchy level of subset and pointwise tests).

6.7. Instantiating, executing, and evaluating uncertainty test
cases

To enable statistical testing, the identified focus points of uncertainty testing (see previous
section) need to be mapped onto concrete uncertainty test cases. Best practices for
formulating such test cases are outlined in Subsection 6.7.1. Aspects of running the
specified uncertainty tests are sketched in Subsection 6.7.2. Given the (binary) results
of the test cases, we provide guidelines on how to derive an overall evaluation of an
uncertainty estimator w.r.t. the uncertainty acceptance criteria in Subsection 6.7.3.

6.7.1. Instantiating uncertainty test cases

Uncertainty test cases can be understood as instantiations of high-level testing focuses (see
Section 6.6). Similarly to the derivation of uncertainty acceptance criteria from qualitative
requirements, these uncertainty tests are best formulated redundantly and collaboratively,
i.e., involving both domain and ML experts, to reduce blind spots. Each testing focus is
typically addressed by several test cases. Guided by the uncertainty acceptance criteria,
the data bases, threshold values8 and technical configurations (e.g., the meta-parameters)
for these test cases are determined. Such specifications may vary between test cases, even

8While the threshold value is in general given by the underlying acceptance criterion, it might be refined
for some test cases, especially for subset-based ones. When investigating, e.g., worst-case scenarios of a
given dataset, average values no longer hold.

122

6.7. Instantiating, executing, and evaluating uncertainty test cases

between those that address the same acceptance criterion. Uncertainty tests building on
search strategies generate the test dataset during test execution and thus do not require
fully pre-specified datasets. Instead, their meta-parameters need to be set.

A prerequisite for a test to be conceptually meaningful, is its statistical significance that
involves, among others, the following two aspects: first, whether a test dataset contains a
broad set of relevant concepts (for the use and test case at hand) such that evidence-based
conclusions can be drawn regarding the quality of the ML model at inference. Second,
whether the outcome of the test critically depends on low-level technical parameters such
as random seeds for initialization. Insights in this regard may be gained by repeatedly
executing the test in varying configurations and analyzing the sensitivities of the according
test outcomes. Apart from statistical considerations, one may estimate the “foot print”
of a test w.r.t. computation or storage, i.e., the resources its preparation and execution
consume. While the result in absolute terms may determine whether a test is affordable,
relative results are helpful for test ordering and prioritization.

Comparing two test cases, each of their components (test dataset, uncertainty measure,
threshold value, technical specification) might introduce overlaps or discrepancies between
them. While certain overlaps are desirable (see above), we raise awareness for less obvious
(implicit) dependencies between test cases: These range from test data bases that have
superset-subset relations or are strongly overlapping over measures of uncertainty quality
that are correlated to threshold values that might be at odds. Finally, one may analyze
whether the “union” of all test cases sufficiently addresses the chosen focus points of
testing or whether unaddressed blind spots remain.

6.7.2. Running uncertainty test cases

Since the uncertainty test cases are constructed to be (largely) independent of one another,
they may be executed in an arbitrary order. Following the structure of the test hierarchy,
from general technical tests to specific complementary tests, may however be beneficial as
potentially occurring severe weaknesses are detected at an early stage (in the worst case,
fail fast). Having executed the uncertainty tests, their outcomes are uncertainty values
that either exceed or fall below the threshold value of the respective test thus providing a
binary test result (“passed” or “failed”). In the case of conflicting results for conceptually
similar tests, it may be worthwhile to investigate whether the diverging outcomes are,
at least to some extent, attributable to a specific difference in their test setups, e.g., to
varying sensitivities of uncertainty measures. Such insights may result in better designed
or additional test cases (compare respective backward arrow in Fig. 6.1).

6.7.3. Evaluating uncertainty test cases

Addressing uncertainty acceptance criteria by means of test focuses (organized in test
levels) that are in turn mapped onto a set of test cases, introduces hierarchical tree-like
structures. Once the (final) set of tests is executed and all binary test results are available,
these information at the “leaves” of the logical trees must be aggregated to obtain an

123

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

overall evaluation of an uncertainty mechanism w.r.t. the acceptance criteria (the roots
of the logical trees). Aggregating the binary uncertainty test results and, in a second
step, the uncertainty acceptance criteria requires a qualitative, highly application-specific
argumentation that could be formulated using, e.g., a goal structuring notation (Kelly &
Weaver, 2004). Depending on the uncertainty use case and the “level” of the acceptance
criteria, such argumentations may be strict, i.e., all acceptance criteria must be fulfilled
(and maybe even all tests must be passed successfully) or more flexible, i.e., a custom
argumentation (employing, e.g., weightings of tests and a custom “merging” logic) allows
for a positive overall evaluation despite a few non-fulfilled acceptance criteria (or at least
despite a few failed tests).

Results and remarks

Insights during testing and test result aggregation may trigger (iterative) adaptations of
its scope and structure. In the case that a “converged” testing strategy, i.e., one leading
to consistent test outcomes, results in an overall negative evaluation of an uncertainty
estimator, uncertainty modeling may start all over again (compare respective backward
arrows in Fig. 6.1). If, however, testing leads to an overall positive evaluation of an estima-
tor w.r.t. the uncertainty acceptance criteria, the end point of the proposed development
and testing framework is reached. In the case that high-level requirements change at a
later date, e.g. due to external influences such as novel technical regulations, it may be
necessary to re-apply the uncertainty framework. In these situations, its modularity allows
for the re-use of results from the previously conducted development and testing steps.

6.8. Discussion

The importance of uncertainty estimation to establish safe ML systems is widely agreed.
While various technical uncertainty mechanisms were put forward, less light is shed on how
to systematically address application demands with them. We propose a framework that
approaches uncertainty quantification from a practitioners’ perspective, i.e., starting from
the various high-level requirements an uncertainty estimator is subject to. These range
from the underlying use case that predetermines its desired properties and operational
design domain to technical specifications that may limit its depth of integration into the
ML model. For a more systematic analysis, each requirement is grouped into one of ten
requirement categories. Formalizing the requirements as acceptance criteria with semantic
data specification, uncertainty measure and threshold value yields the “gold standard” for
the subsequent modeling and testing steps. While a custom uncertainty modeling technique
may be constructed to fulfill these uncertainty acceptance criteria, it is often worthwhile
to use established uncertainty modeling techniques as building blocks. We guide this
construction of a tailored estimator by matching the uncertainty requirement categories
with central technical properties of uncertainty modeling (e.g., modeled uncertainty types,
generalization ability, attribution to uncertainty source). The resulting requirements-
informed uncertainty mechanism is systematically tested to uncover (potentially existing)

124

6.8. Discussion

structural weaknesses that might hinder its further use or deployment. Technically, this
is achieved by combinations of semantic and non-semantic testing approaches that are
organized in a test hierarchy. For each acceptance criterion, a test depth (according to the
hierarchy) and test focuses are determined. Instantiating these test focuses as concrete test
cases allows us to finally obtain (binary) test results. An overall evaluation of these results
yields an answer whether the uncertainty estimator meets the uncertainty acceptance
criteria, and thus, whether it is suitable for the given DL system. These individual steps
within the framework have well-defined hand-over points that allow for a strong degree
of encapsulation. This can be beneficial for larger projects where multiple mechanisms
are being developed concurrently or when comparable testing approaches are needed for
multiple products.

Furthermore, several steps of our conceptual framework can be operationalized and
automatized in software frameworks. For instance, the selection of uncertainty models and
metrics, as is done in existing frameworks like UQ360 (Ghosh et al., 2021) and uncertainty-
toolbox (Chung et al., 2021a). Testing and artifact management may be made traceable
and reproducible using ML lifecycle platforms like MLflow. Desirable enhancements of
such tools might moreover contain components such as requirement templates, building
blocks for qualitative (safety) argumentations and backlogs of standard tests. Particularly,
the (semi-)automation and optimization of quantitative testing bears potential. Promising
technical approaches in this regard range from ML-based strategies to speed-up a concrete
test case (e.g., by predicting, right after starting the test, whether its outcome will be
negative), over the (e.g., Bayesian) generation of the best follow-up test configuration for a
pre-defined test type to the development of heuristics on how to effectively react on failing
test cases. Such software frameworks may moreover enable effective test-driven design
and development of uncertainty estimators. Gained insights and uncovered weaknesses
could even fuel research on novel uncertainty modeling techniques.

While our framework structures the testing of a single model, industry applications
often have a multi-step development approach. It might be worthwhile to investigate to
which extend early, and therefore easier to obtain, test results are indicative for success
or failure of later stages of development. The proposed encapsulation of testing from
development might help in the necessary transfer of results. Achieving a strong correlation,
for instance with respect to qualitative uncertainty properties, may help to streamline the
development process or to identify critical conceptual building blocks of the DL system.

Technical requirements aside, various official regulations for learned systems are about
to emerge, especially in the EU (European Commission, 2021), where, likely from 2025
on, newly created and substantially changed DL applications will be regulated by an “AI
Act” if the respective application type is considered to be critical. Our framework may
be of help for associated product and process examinations, especially those concerning
model reliability and the handling of unknown inputs. It might also serve as a structural
aid for the technical documentations required by the prospective EU regulations.

While uncertainty estimates help to fulfill requirements for trustworthy ML, there are
multiple other ways to either increase reliability, e.g., robustified training (Madry et al.,

125

6. Building Uncertainty Estimators for Product-Grade Deep Learning Systems

2018), or other aspects of trustworthiness, for instance fairness or interpretability. The
proposed framework, despite its specific focus on uncertainty quantification, remains
applicable in these cases. The main difficulties it addresses, namely, the black-box
nature of the neural models and their high-dimensional input spaces, are common to
most safe-ML techniques and approaches. The proposed hierarchical test strategy, for
instance, is transferable, as it addresses the high-dimensional input spaces by specific
combinations of (semantic and non-semantic) testing methodologies and test data selection
routines. Moreover, the ways in which the underlying use case and technical specifications
predetermine the conception and implementation of the safe-ML techniques carry over
to other dimensions of safe ML. At the level of technical properties, however, some
requirement categories like “calibration” or “attribution to type of uncertainty” as well as
mechanisms and measures are uncertainty-specific and need to be replaced by appropriate
(statistical) concepts for the respective dimension of safe ML (e.g., by “interpretable-by-
design” for qualitative interpretability requirements or “group and individual fairness” as
a quantitative demand for fair ML models).

Such procedures for developing and testing safe-ML tools may be complemented,
especially in larger organizations, by role-based access and rights management that builds
on the encapsulation of our approach and enhances the interfaces between the various steps
and the teams involved (e.g., development and product). Distributing responsibilities in
that way seems especially advantageous for the development and testing of ML components:
development teams, for instance, may not have access to the concrete test cases to avoid
model optimization that overfits to these cases. Alternatively, a part of the test cases
may be hidden from the developers, while others are still accessible to them. This may
be compared to the public and private datasets of ML challenges. Taking inspiration
from IT security (Roy et al., 2010; Zhang & Zhuang, 2019), testing teams could moreover
act as attackers that continuously challenge the uncertainty estimators developed by the
modeling team, a competitive serious game that may result in more robust ML systems.

In many real-world applications, the deployed DL systems are not static, but further
improve during operations, either due to continuous learning or, and more likely for most
safety-critical applications, after scheduled updates that are reviewed before going into
production. For such an updated model, the question arises whether testing and validation
need to be done all over again or whether existing test results from previous versions of the
model can be re-used. In particular, an interesting aspect could be to determine whether
mild deviations in high-level tests of the hierarchy can yield insights on the transferability
of previous results on the deeper parts of the hierarchy. Should this hold, the testing
hierarchy may contribute to more efficient model validation in the long run.

By proposing the presented framework, we contribute a holistic, application-driven
perspective on uncertainty estimation in DL models. Our guidelines may assist in a
more appropriate choice or development of uncertainty estimators, allowing for a use of
this promising modeling technique that is tailored to match application demands. The
multi-staged testing procedure not only helps to satisfy upcoming ML regulations but
also increases the overall reliability, and thus the quality, of the DL systems.

126

7. Conclusion

A promising and feasible approach toward trustworthy ML applications is to establish
a “safety net” of interlinked technical and non-technical measures. Threads of this “net”
are i) basic learning and estimation mechanisms that are thoroughly understood, ii) ML
methods constructed on top of them that leverage the strengths of these building blocks
while mitigating their weaknesses, and iii) ML systems that are designed and evaluated in
ways that reflect use case requirements in each step of their development. In this work, we
contribute (as detailed below in “Summary”) to weaving this “safety net” with a focus on
uncertainty estimation. Techniques to quantify uncertainty form an important sub-field
of trustworthy ML, as they explicitly acknowledge limitations of prediction quality due
to model size constraints and finite, ambiguous datasets. Uncertainty quantification can
thus be regarded as a self-assessment—as the meta-task of estimating a model’s lack of
knowledge about the “true” answer.

Summary Regarding the “threads” mentioned above, we contribute, firstly, by investi-
gating how uncertainty is affected by model capacity, and, in this way, more thoroughly
understand the uncertainty modeling abilities of MC dropout. Based on these insights, we
construct, secondly, Wasserstein dropout, which extends the dropout mechanism by more
strongly diversifying ensemble members. Thus, it additionally captures heteroscedastic
data uncertainty. Finally, we structure and address use case-specific requirements on
uncertainty estimation. More concretely, we provide a hierarchical testing methodology
based on data-driven test cases to examine not only global uncertainty properties but,
more fine-grained, uncertainty quality on critical data “slices” and in individual scenarios.

Within the first part of this work (Chapter 4), we investigate how capacity constraints
affect uncertainty modeling, specifically, the properties of predictive uncertainty distribu-
tions (see Section 4.2) and the quality of modeled uncertain dynamics (see Section 4.1).
On a technical level, we influence and steer model complexity by varying the (actual or
effective) size of a model’s hidden parameter space.

For models with discrete parameter spaces, namely, hidden Markov models (Rabiner &
Juang, 1986), we analyze the transition between high-quality and low-quality modeling
regimes and demonstrate the benefits of a novel word2vec-inspired (Mikolov et al., 2013b)
reparameterization that facilitates the close approximation of stochastic data dynamics
while requiring significantly fewer parameters compared to the standard parameterization.

The properties of uncertain outputs are studied in more detail for neural models (see
Section 4.2) that are equipped with Monte Carlo (MC) dropout (Gal & Ghahramani,
2016a), an implicit ensembling technique with a Bayesian motivation that performs
training and inference using randomly drawn sub-networks instead of the full deterministic

127

7. Conclusion

network. Being motivated as corresponding to Gaussian processes in the limit of infinite
layer widths, we shed light on the validity and borders of this equivalence: introducing
correlations between the weights and thus the (pre-)activations of the networks (by model
training or by correlated initialization), commonly assumed independence assumptions
are broken that in turn pose the basis for Gaussianity in the infinite capacity limit (via
the central limit theorem). Specifically, we construct randomly initialized networks with
global parameter correlations that induce two-sided exponential (instead of Gaussian)
output distributions, even for very wide layers. This non-Gaussian dropout modeling
regime was—to the best of our knowledge—not systematically studied before.

In the second part of the thesis (Chapter 5), we pick up on dropout-based uncertainty
estimation that is promising, as uncertainty information is encoded in the entire structure of
the network (which is in contrast to parametric modeling approaches). This characteristic
renders stable generalization of dropout-based uncertainty estimates to previously unseen
inputs more likely—an important property, given high-dimensional input and output
spaces and thus sparse training data samples for many open-world learning systems.
Motivated by the previous result that the distributional properties of dropout-induced
outputs can be influenced (see Section 4.2), we seek to manipulate the widths of these
distributions. This appears worthwhile because the prevailing dropout-based uncertainty
technique, MC dropout, does not tune the output widths of its implicit sub-network
ensemble and instead contracts all sub-networks in all training data points, as it primarily
targets the modeling of epistemic uncertainty. In contrast, we optimize the sub-network
distribution to match the (implicitly given) output distribution for each training input
by minimizing the Wasserstein distance. The resulting uncertainty estimation technique,
Wasserstein dropout (W-dropout), yields strong uncertainty quality without deteriorating
regression performance on a broad set of standard benchmarks. It outperforms not only
MC dropout on these datasets but also various state-of-the-art uncertainty techniques.
These approaches all rely, to a certain extent, on parametric uncertainty estimates, which
is in contrast to W-dropout, which is fully non-parametric.

This property may explain the consistently high stability of W-dropout on a variety
of regression tasks, even under continuous and discrete data shifts.1 As we aim for
uncertainty estimates that foster the reliability of real-world ML systems, we finally adapt
W-dropout to object detection (OD) architectures, particularly to SqueezeDet (Wu et al.,
2017), and find the resulting W-SqueezeDet to outperform MC-SqueezeDet, i.e., an MC-
dropout-enhanced version of SqueezeDet. For the RetinaNet architecture, we find these
results confirmed. Thus, also for OD, W-dropout is characterized by good uncertainty
quality not only when considering averaged scores for in-data test sets but moreover under
data shifts—a crucial property for a self-assessment mechanism that is supposed to detect,
among others, model insufficiencies. A Gaussian-likelihood one-sample (GL-OS) variant
of W-dropout performs similarly well. It reduces, compared to standard W-dropout,

1Continuous data shifts (also called drifts) imply small changes to in-data input scenarios, such as newly
emerging details (in the case of traffic scenes, e.g., pedestrians on electric scooters), whereas discrete
data shifts refer to structurally new inputs (e.g., rural scenarios for a system optimized on urban
scenes).

128

the required amount of training compute, however, at the price of output distributions
with a bimodality artifact. As a side result, we propose two uncertainty measures to
better quantify uncertainty stability: first, a measure of the depth of distribution tails
that enables us to evaluate the likeliness and severity of underestimated uncertainties,
i.e., those for which the actual model error is significantly higher than the predicted
uncertainty. Second, a measure that considers the entire uncertainty distribution (just
like standard calibration scores) that is, however, not calculated in quantile space but in
(normalized) residual space and is thus more sensitive to strongly deviating uncertainty
estimates. Regarding these two measures, W-dropout outperforms various state-of-the-art
uncertainty modeling techniques.

In the third and last part of the work (Chapter 6), we shift the focus from methodological
aspects of predicted uncertainties to ML use cases in which uncertainty estimation
is employed to increase reliability and thus trustworthiness. Aiming at uncertainty
estimators that are tailored to the respective application demands, we propose a conceptual
framework for their requirement-based development and testing. Factors that impact
uncertainty modeling include regulatory contexts and technical specifications. They
determine, for instance, the operational design domain of an uncertainty mechanism,
i.e., the regions of the input space where the estimator is supposed to function, and
the downstream tasks the estimator is supposed to solve. Technical specifications may
introduce additional constraints on the estimator’s depth of integration into the ML
model, the uncertainty information flow through a surrounding ML model chain, or the
granularity of uncertainty estimates. We structure and shape these initial demands by
introducing requirement categories that cover aspects of uncertainty quality (e.g., being
globally calibrated), conceptual properties (e.g., being argumentatively substantiated),
technical characteristics (e.g., coming along with minimal trade-offs), and application-
specific requirements (e.g., spatial coherence between pixel-level uncertainty estimates in
the case of a model that processes images). Heading for uncertainty acceptance criteria, the
quantitative requirements are further formalized as 3-tuples of a semantic data specification,
a measure of (uncertainty) quality, and a respective threshold value. Given these desirable
uncertainty properties, we guide the selection of an uncertainty mechanism by analyzing
how well these desiderata are addressed by widely used uncertainty modeling techniques
(and by W-dropout). To determine whether a chosen uncertainty estimator fulfills the
respective uncertainty acceptance criteria, a hierarchical test strategy is proposed that
is based on iteratively refined (semantic and non-semantic) test data selections. Such
novel approaches to test learned uncertainty estimators are required, as established
testing strategies for safety-critical applications can hardly be employed for learned
systems. These established approaches were often developed for manually assembled
systems and (typically) rely on a semantic understanding of a system’s (sub-)components
that is not given for intrinsically non-interpretable ML systems. Our uncertainty test
strategy comprises four hierarchy levels: first, we suggest tests of elementary technical
properties based on a coarse data selection, which are followed by tests of global uncertainty
properties that build on conceptually broad datasets that are supposed to cover large

129

7. Conclusion

parts of the respective operational design domains. The third test category contains subset
and pointwise uncertainty tests focusing on specific, e.g., application-critical, regions of
input space and quantile ranges of uncertainty estimate and model residual distributions.
Complementary uncertainty tests, finally, are an open residual set for “cross-analyses” of
uncertainty properties and, moreover, for novel testing methodologies. To apply this test
strategy, the depth of testing (within this hierarchy) and its focus points need to be set
for each uncertainty acceptance criterion. Given the resulting instantiation of the test
strategy, concrete test cases can be derived. Based on the (binary) outcomes of these
test cases and a subsequent test result “aggregation” strategy, it is determined whether
the use case-specific uncertainty acceptance criteria are (overall) fulfilled by the selected
uncertainty estimator.

Discussion and outlook Picking up on the metaphor of a “safety net”, the question
of its resilience arises, i.e., how reliable uncertainty estimators and downstream safety
mechanisms are. This holds, in particular, in the context of modern open-world ML
applications that are often based on highly nonlinear (and mathematically hard-to-tame)
neural networks. These models also typically operate on high-dimensional data spaces
that bring about “unknown unknowns”, i.e., entirely novel (high- and low-level) concepts
that an ML application needs to handle. Such complex inference scenarios may cause
unforeseen model failures or error modes and challenge uncertainty modeling techniques.
While approaches like MC dropout come with a theoretical (often Bayesian) motivation
that promises, at least to a certain extent, safeguarding against unexpected behavior, we
raise awareness of the (inevitably existing) limitations of such theoretical justifications.
We analyze (the criticality of) their assumptions, in particular, by explicitly constructing
a non-Gaussian “counter”-example of a two-sided exponential output distribution (see
Section 4.2). A more precise understanding of when a method’s theoretical foundation is
stable and when it erodes may increase the confidence in the ML system in the former
type of scenario while raising awareness in the latter type of situation. Such information
on (evidence for) the validity of underlying (theoretical) assumptions may moreover be
used to extend popular summaries of model properties and intended application contexts,
such as “model cards” (Mitchell et al., 2019) or “fact sheets” (Arnold et al., 2019).

A central assumption for reliable uncertainty quantification is the use of estimators
that are expressive enough to capture the given probabilistic data relations (see, e.g., the
DenseHMM in Section 4.1). This is particularly important, as (probabilistic) ML systems
in critical applications are supposed to function reliably in individual situations, which
renders coarse, e.g., dataset-averaged, uncertainty estimates unsuitable. The idea of
capturing distributional properties for each individual datapoint motivated the derivation
of Wasserstein dropout (see Chapter 5).

While Wasserstein dropout and its one-sample “efficiency” variant focus on the optimiza-
tion of second moments, they are only two of potentially many ways to actively influence
distributional properties of sub-network ensembles. The modeling of second moments
is, however, of particular importance, as variances and standard deviations are widely

130

used as coarse summaries of distributional uncertainty. It therefore seems rewarding to
further improve the theoretical basis of W-dropout, specifically, to better understand its
empirically observed ability to model epistemic uncertainty. Moreover, one may analyze
whether the Bayesian derivation of MC dropout (see Appendix of Gal & Ghahramani
(2016a)) can be adapted for heteroscedastic modeling or even for non-Gaussian settings,
for instance, by flexibly adjusting the type of output distribution to the training data (see,
e.g., Meudt et al. (2015); Sick et al. (2020)).

Such methodological developments should be guided by a clear understanding of how to
evaluate the resulting uncertainty estimates. To advance the assessment of uncertainties,
it seems worthwhile to, on the one hand, better integrate safety aspects into uncertainty
scores and, on the other hand, to better comprehend the relationships between the
various already existing uncertainty measures. From a safety perspective, for instance,
even seemingly minor deviations between often high-dimensional model distributions and
data distributions may be critical. This motivates the further development of sensitive
(dis-)similarity measures between (samples from) such distributions (like the maximum
mean discrepancy (Gretton et al., 2012)). As “manual translations” of complex safety
requirements into mathematical quantities are generally challenging, it seems rewarding
to moreover consider learning-based approaches to assess probabilistic models. In this
respect, one may take inspiration from inverse reinforcement learning (see, e.g., Arora
& Doshi (2021)) where objectives and rewards are learned by observing the behavior of
an agent (e.g., of a human driver in the case of autonomous driving). However, even
when relying on established uncertainty metrics, the dependencies and discrepancies
between them (see, e.g., Fig. B.15 (p. 171) in Appendix B) are not yet fully understood,
particularly in the field of object detection, where probabilistic models gained interest only
recently. Once better understood, these dependencies should be reflected in practitioners’
tools for uncertainty assessment that are particularly helpful when “digestible”, carefully
composed summaries are presented instead of a multitude of unrelated uncertainty scores.
The development and use of metrics aside, recent activities in the ML community to
strengthen (uncertainty and model) assessments are promising. Positive examples include
the publication of datasets with real-world concept shifts (see Koh et al. (2021) and
Malinin et al. (2021)) and dedicated conference workshops that focus attention on the
topic (see, e.g., the recent ICLR 2022 workshop on ML evaluation standards).

Taking a step back and recalling the general absence of uncertainty ground truth infor-
mation (see Chapter 1), it seems desirable to improve the data “fundament” of uncertainty
quantification, as this may strengthen the development of uncertainty mechanisms and
evaluation schemes. Practically feasible ways to generate such extended label information
are, for instance, by means of artificial environments or—simple but costly—by labeling
real-world datasets multiple times (as was done for the LIDC-IDRI lung image dataset
(see Chapter 1) and, recently, for the ImageNet test set (see ImageNet ReaL-H in Tran
et al. (2022))). A more scalable, however, approximate approach of varying quality is to
learn uncertainty estimates for data labels (see, e.g., Northcutt et al. (2021)).

131

7. Conclusion

Moreover, uncertainty information can be extracted from unlabeled data. Specifically,
it seems promising to equip self-supervised representation learning approaches with
corresponding capabilities (see, e.g., Park et al. (2022)), since a variety of downstream
tasks could benefit from learned probabilistic embeddings. This holds in particular because
latent (deterministic) representations form the backbones of the enormously large neural
networks that emerged in recent years and that handle an unprecedented variety of tasks
and (in some cases even) data types (Brown et al., 2020; Rae et al., 2021; Ramesh et al.,
2022; Alayrac et al., 2022; Reed et al., 2022). Given their broad potential for practical
applications, observed overconfident behavior in this new model class (see, e.g., Tab. 8 in
Rae et al. (2021)) may have particularly harmful consequences. Self-assessments through
reliable uncertainty estimates therefore remain vital to bridge the gap between early and,
in part, impressive showcases of these models and actually deployed corresponding learning
systems that prove useful and safe in the real world.

132

Appendix

A. Impact of Model Capacity on Uncertainty

This appendix supplements our analyses on model capacity and uncertainty in Chapter 4.
Mirroring the two-part structure of said chapter, we first outline technical details on
dense hidden Markov models in Section A.1. Further information on the second part
of Chapter 4, Monte Carlo (MC) dropout in wide neural networks, can be found in
Section A.2.

A.1. Capacity control of HMMs via representations

Extending Section 4.1 on dense hidden Markov models (DenseHMMs), we first provide
the full Lagrangians of standard HMMs and DenseHMMs in Subsection A.1.1. Next, we
present the numerical results of nonlinear A-matrix factorizations in Subsection A.1.2.
Finally, implementation details and technical aspects of data preprocessing are stated in
Subsection A.1.3.

A.1.1. Full Lagrangians of standard HMM and DenseHMM

The full Lagrangian of the standard HMM model in the M-step reads

L̄ = L̄1 + L̄2 + L̄3

=
∑

i,j∈[n]

T∑
t=2

γt(si, sj) log aij +
∑
i∈[n]

φi

(
1 −

∑
j∈[n]

aij

)

+
∑
i∈[n]

T∑
t=1

γt(si) log bi,jot
+
∑
i∈[n]

εi

(
1 −

∑
j∈[m]

bij

)
+
∑
i∈[n]

γ1(si) log πi + φ̄
(
1 −

∑
i∈[n]

πi

)
,

(A.1)

where jot describes the index of the observation observed at time t and φ̄, εi are La-
grange multipliers. Applying the transformations A = A(U, Z), B = B(V,W) and
π = π(U, zstart) yields the full Lagrangian of the DenseHMM:

137

A. Impact of Model Capacity on Uncertainty

L̄dense = L̄dense
1 + L̄dense

2 + L̄dense
3

=
∑

i,j∈[n]

T∑
t=2

γt(si, sj) uj · zi −
∑

i,j∈[n]

T∑
t=2

γt(si, sj) log
∑

k∈[n]
exp(uk · zi)

+
∑
i∈[n]

T∑
t=1

γt(si) vjot
· wi −

∑
i∈[n]

T∑
t=1

γt(si) log
∑

j∈[m]
exp(vj · wi)

+
∑
i∈[n]

γ1(si) ui · zstart −
∑
i∈[n]

γ1(si) log
∑

j∈[n]
exp(uj · zstart) .

(A.2)

A.1.2. Nonlinear A-matrix factorization

All matrix sizes n and representation lengths l that contribute to the visualized l/n ratios
in Fig. 4.3 are shown in Tab. A.1.

A.1.3. Implementation details and data preprocessing

Implementation details The backbone of our implementation is the library hmmlearn1

that provides functions to optimize and score HMMs. The optimization schemes for the
DenseHMM models HEM

dense and Hdirect
dense are implemented in tensorflow (Abadi et al.,

2016). Both models use tf.train.AdamOptimizer with a fixed learning rate for opti-
mization. At this point we note that experiments done with other optimizers such that
tf.train.GradientDescentOptimizer lead to similar results in the evaluation. The
representations are initialized using a standard isotropic Gaussian distribution. NLL
values are normalized by the number of test sequences and by the maximum test sequence
length.

Hardware used All experiments are conducted on a Intel(R) Xeon(R) Silver 4116
CPU with 2.10GHz and a NVidia Tesla V100.

Protein dataset preprocessing The first 1,024 sequences of the RCSB PDB dataset
have 22 unique symbols. We cut each sequence after a length of 512. Note that less than
4.9% of the 1,024 sequences exceed that length. Additionally, we collect the symbols of
lowest frequency that together make up less than 0.2% of all symbols in the sequences
and map them onto one residual symbol. This reduces the number of unique symbols in
the sequences from 22 to 19.

Part-of-speech sequences preprocessing We take 1,000 sequences from the Medpost
dataset (from tag_mb.ioc) and cut them after a length of 40, which affects less than 15%
of all sequences. We also collect the tags of lowest frequency that together make up less

1https://github.com/hmmlearn/hmmlearn.

138

https://github.com/hmmlearn/hmmlearn

A.2. Monte Carlo dropout in wide neural networks

Tab. A.1.: Approximation errors (median with 25/75 percentile) of normAbsLin-based
and softmax-based matrix factorizations for different matrix sizes n and
representation lengths l.

n l median (25/75 percentile) of loss(Ã, Agt)

Ã = normAbsLin(UZ) Ã = softmax(UZ)

3 1 0.678 (0.652/0.696) 0.048 (0.004/0.110)
3 2 0.162 (0.002/0.270) 0.001 (0.000/0.001)
3 3 0.001 (0.001/0.001) 0.001 (0.000/0.001)
3 5 0.001 (0.001/0.001) 0.001 (0.001/0.001)
5 1 0.769 (0.745/0.827) 0.453 (0.321/0.505)
5 3 0.346 (0.093/0.396) 0.001 (0.001/0.003)
5 5 0.001 (0.001/0.002) 0.001 (0.001/0.001)
5 10 0.001 (0.001/0.002) 0.002 (0.001/0.003)
10 1 0.862 (0.851/0.868) 0.616 (0.581/0.645)
10 5 0.310 (0.235/0.345) 0.012 (0.005/0.028)
10 10 0.002 (0.002/0.002) 0.003 (0.002/0.005)
10 15 0.002 (0.002/0.002) 0.003 (0.003/0.043)

than 1% of all tags in the sequences and map them onto one residual tag. This reduces
the number of tag items from 60 to 42.

Calculation of Ωgt and Ωmodel The co-occurrence matrices Ωmodel and Ωgt used to
calculate the co-occurrence MADs in Subsection 4.1.4 are estimated by counting subsequent
pairs of observation symbols (oi(t), oj(t + 1)) ∈ O2. For real-world data, Ωgt is estimated
based on the test data ground truth sequences. Equally long sequences sampled from the
trained model are used to estimate Ωmodel. In the case of synthetic data, Ωgt is calculated
analytically (Eq. 4.11) instead.

A.2. Monte Carlo dropout in wide neural networks

This section contains additional information on our analyses of wide neural networks
(see Section 4.2). In particular, we provide implementation details and further results
of our numerical experiments on correlations in (un-)trained neural networks in Subsec-
tion A.2.1. Detailed analytical calculations for strongly correlated systems can be found
in Subsection A.2.2.

139

A. Impact of Model Capacity on Uncertainty

Fig. A.1.: Weight correlations of randomly initialized (top row) and trained (bottom row)
networks that are either narrow (h = 100, left column) or wide (h = 1,000,
right column). The different hidden layers are color-coded: from first (melon)
to last (purple) hidden layer. The Pearson correlation coefficient is used.

Fig. A.2.: Pre-activation correlations of randomly initialized (top row) and trained
(bottom row) networks that are either narrow (h = 100, left column) or
wide (h = 1,000, right column). The different hidden layers are color-coded:
from first (green) to last (dark blue) hidden layer. The Pearson correlation
coefficient is used.

140

A.2. Monte Carlo dropout in wide neural networks

A.2.1. Empirical observations

Further implementation details All biases of the networks are set to zero. Training is
done on shuffled mini-batches of size 100 using the standard train-test data split without
any further preprocessing. All experiments were run in pytorch (Paszke et al., 2019) using
a Intel(R) Xeon(R) Gold 6126 CPU and a NVidia GeForce GTX 1080 Ti GPU.

Correlations in random networks We analyze the weight correlations and pre-activation
correlations of the untrained Hnarrow and Hwide. The (row-wise) Pearson correlations of
the weight matrices (Fig. A.1, top row) are centered around zero with estimation errors
that are determined by the width of the respective network. The column-wise weight
correlations look the same. To calculate pre-activation correlations, we run 10,000 forward
passes with dropout for a fixed test image. Fig. A.2 (top row) shows that these correlations
are largely similar to the weight correlations—as can be expected.

Correlations in trained networks For Hnarrow, we find similar weight correlations for all
hidden layers with correlations coefficients that range from −1 to 1 (Fig. A.1, bottom left).
While the distributions for Hwide are even more homogeneous across layers, they span
only from approximately −0.5 to 0.5 (Fig. A.1, bottom right). More importantly, these
distributions resemble the central part of the Hnarrow distributions and do by no means
collapse to zero, i.e., although network width varies by one order of magnitude, the global
dependence structures are similar in both networks. Next, we study the dependencies
between pre-activations that are (mainly) induced by the weight dependencies. Fig. A.2
shows roughly the same dependence pattern as Fig. A.1, however, for Hwide the pre-
activation correlation distribution gets broader with layer depth (Fig. A.2, bottom right).
Intuitively, we can make sense of this observation: the network iteratively withdraws
input information to finally only keep what is useful for classification, and less information
distributed over a fixed number of neurons means stronger correlations. Moreover, not
only pre-activation correlations increase with layer depth but also their variances and thus
covariances.

Further observations for trained networks We find that sigmoid activations suppress
non-normal distributions, which is in contrast to tanh, ReLU, and linear activation
functions. Further experiments with a custom nonlinearity that is a proxy to sigmoid
suggest that the combination of being constrained and mapping onto only one half-axis
might be a critical condition for a Gaussian inducing nonlinearity.

141

A. Impact of Model Capacity on Uncertainty

A.2.2. Modeling of strongly correlated systems

Here, we provide additional information accompanying the calculations in Subsection 4.2.3.
For instance, the PDF in Eq. 4.19 can be calculated using a filter integral,

PDFf̃ (ξ) ∝
∫

dx dy δ(ξ − xy) e−x2/2−y2/2

∝
∫

dx dy dk e−ik(ξ−xy) e−x2/2−y2/2

=
∫

dk e−ikξ
∫

dx dy exp
(

−1
2bTA b

) (A.3)

with the shorthand notations

b =
(

x

y

)
and A =

(
1 −ik

−ik 1

)
. (A.4)

Evaluating the inner integrals thus leads to

PDFf̃ (ξ) ∝
∫ +∞

−∞
dk

e−ikξ

√
1 + k2

= 2K0(|ξ|) . (A.5)

The differing prefactor in Eq. 4.19 follows from the normalization condition for a PDF.
For convenience, we omitted any prefactors here.

A direct extension of this calculation to non-zero mean is challenging. Instead we
provide a heuristic explanation where we include this aspect via

X = µX + σXϵX with ϵX ∼ N (0, 1) (Y analogous) , (A.6)

leading to
XY = µXµY︸ ︷︷ ︸

const.

+ µXσY ϵY + µY σX ϵX︸ ︷︷ ︸
“Gaussian”

+ σXσY ϵXϵY︸ ︷︷ ︸
“tail”

. (A.7)

Neglecting the first term as constant, the two middle summands follow a Gaussian behavior
while the last one contains a product giving rise to exponential tails. While this heuristic
breakdown ignores the correlations of the twice occurring ϵ’s it qualitatively captures
the behavior of XY . Indeed, we find a stronger emphasis toward exponential tails for
σ > µ and for Gaussian behavior the other way around. For illustration, Fig. A.3 shows
the empirical distribution of Z for µX = µY = 0 (left) and µX = µY = 10 (right). As a
guide we added a numerically obtained PDF as well as an approximation following the
logic of our explanation for Eq. A.7. In this second case we used the addition of two
independent random variables Z̃ = X̃ + Ỹ , where X̃ ∼ N

(
µXµY ,

√
(σXµY)2 + (σY µX)2

)
is a Gaussian which models the first three terms in Eq. A.7. For Ỹ we use an exponential
distribution,

PDFỸ (ξ) = 1
2σXσY

exp
(

− |ξ|
σXσY

)
, (A.8)

142

A.2. Monte Carlo dropout in wide neural networks

Fig. A.3.: Logarithmic visualization of the PDF for the product of two Gaussian random
variables X, Y . Shown in blue and green are an approximation to the PDF (see
the text in Section A.2.2) and an exact numerical result, respectively. Left side
shows µX = µY = 0 and right µX = µY = 10, in both panels σX = σY = 1.

designed to capture the tail properties of the Bessel function. Here, we neglected the
additional |ξ|−1/2 dependence of the asymptotic, Eq. 4.24, to keep the resulting integrals
of a Gaussian type. This allows us to give an explicit expression for Z̃,

PDFZ̃(ξ) = e
σ2

1
2σ2

2

4σ2

(
e

µ−ξ
σ2 Erfc

(
σ2

1 + (µ − ξ)σ2√
2σ1σ2

)

+ e
ξ−µ
σ2 Erfc

(
σ2

1 + (ξ − µ)σ2√
2σ1σ2

))
.

(A.9)

Therein we used the short hand notations µ = µx µY , σ1 =
√

(σXµY)2 + (σY µX)2) and
σ2 = σX σY . Also,

Erfc(ζ) = 1 − Erf(ζ) = 1 − 2√
π

∫ ζ

0
dt e−t2 (A.10)

denotes the complementary error function. As can be seen in Fig. A.3 this approximation
roughly captures the exponential tails. Furthermore, we find that for µ > σ the tail
behavior is suppressed and the distribution becomes asymmetric, a property we similarly
observe in the real data, see Fig. 4.7.

The extension of the Z = XY toy model to a sum of random variables Z =
∑h

i=1 XiYi

can be treated, at least theoretically, in the same way as the original problem:

PDFZ(ξ) ∝
∫

dx dy δ(ξ − xT y) e−xT Σ−1
X x/2−yT Σ−1

Y y/2

=
∫

dk e−ikξ
∫

dx dy exp
(

−1
2bT Ab

)
,

(A.11)

143

A. Impact of Model Capacity on Uncertainty

where in this case b ∈ R2h is instead a stacked vector of both x and y, compare Eq. A.4.
Furthermore,

A =
(

Σ−1
X −ik 1

−ik 1 Σ−1
Y

)
. (A.12)

Evaluating the inner integrals gives rise to

PDFZ(ξ) ∝
∫ +∞

−∞
dk

e−ikξ√
det

(
Σ−1

z̃ Σ−1
g̃ + k21

) , (A.13)

where we used the identity

det
(

E B

C D

)
= det (ED − BC) (A.14)

valid for arbitrary square matrices B, C, D, E as long as CD − DC = 0 holds. Assuming
that the matrix Σ−1

z̃ Σ−1
g̃ is diagonalizable with (positive) eigenvalues σ2

i leads to

PDFZ(ξ) ∝
∫ +∞

−∞
dk

e−ikξ√∏h
i=1

(
σ2

i + k2) . (A.15)

Depending on the eigenvalue spectrum the resulting function can exhibit quite different
tail behaviors. To briefly illustrate this, let us make two remarks: If we assume doubly
degenerate eigenvalues we can “ignore” the square root and Eq. A.15 instead has poles of
first order at the positions k = ±i σi. Based on the residue theorem we then find

PDFZ(ξ) ∝
h∑

i=1

e−σi|ξ|

2σi
∏h

j ̸=i(σ2
j + σ2

i)
. (A.16)

In a loose sense this might be seen as a discrete variant of a Laplace transform and
therefore has a similar variety of outcomes. Those could be largely restricted if one
assumes the spectrum of the σi to be bounded. In the body of Section 4.2, we omitted
this discussion and instead chose an easier example closer to the intended application.

The correlation expressed in Eq. 4.21 can be seen as stemming from a multivariate
Gaussian with zero mean and covariance matrix

Σij =
{

1 i = j

c i ̸= j
. (A.17)

While this matrix has a very simple structure with only two distinct eigenvalues of
1 + (h − 1)c and 1 − c, the latter is h − 1 fold degenerate. Therefore, our considerations
from Eq. A.16 do not directly apply. Instead, we use this model to build the weight
matrices Wν for the random network shown in Fig. 4.8. To this end, we draw for each Wν

two sets of such multivariate Gaussian distributed vectors {ai, bi ∈ Rh}. These vectors

144

A.2. Monte Carlo dropout in wide neural networks

form two matrices A = (a1, . . . , ah) ∈ Rh×h (B analogous) with correlated rows such
that each W is given by Wν = (Aν + BT

ν)/(2
√

qh), where q = 1 − p denotes the keep
rate. This way we ensure independent correlations both among rows and columns of the
matrices.

145

B. Modeling Uncertainty Estimates
by Means of Wasserstein Dropout

This part accompanies Chapter 5 on Wasserstein dropout and provides further in-depth
information. In Section B.1, we present both theoretical and numerical insights into
the uncertainties induced by the Gaussian-likelihood one-sample (GL-OS) variant of
Wasserstein dropout. We then shift the focus to “standard” Wasserstein dropout, which
is our object of study in the remainder of this appendix. Large parts of its empirical
evaluation on toy data and standard regression datasets can be found in Section B.2,
including details on the datasets, more granular evaluations, and additional toy data
experiments. Details on the object detection datasets and supplementary evaluations of
SqueezeDet are located in Subsection B.2.5. As W-dropout exhibits the hyperparameters
p (drop rate) and L (sample size), we test various values in Section B.3, finding no strong
correlation between result and parameter choices. We close with a discussion on the
relation between uncertainty measures and their respective sensitivity in Section B.4.

B.1. Detailed analysis of the Gaussian-likelihood one-sample
variant of Wasserstein dropout

In Section 5.1, we observed that the Gaussian-likelihood one-sample (GL-OS) variant of
Wasserstein dropout may induce bimodal output distributions. A theoretical analysis of
this behavior is provided in Subsection B.1.1. The uncertainty estimates of GL-OS Wasser-
stein dropout are not only encoded in the widths of these (bimodal) output distributions
but moreover in the distances between the deterministic and the (mean) probabilistic
outputs of the networks. This composition of the uncertainty estimates is empirically
studied in Subsection B.1.2. Finally, we visualize different components of the GL-OS
objective for trained models to gain insights into the concurrent optimization of uncertainty
estimates and regression performance during model training (see Subsection B.1.3).

B.1.1. Analytical properties of the GL-OS Wasserstein dropout loss

In the following, we look closer at the behavior of the GL-OS Wasserstein dropout loss
with respect to aleatoric uncertainty. For this, we assume that the residuals (see Eq. 5.9)
are given by a Gaussian distribution with, for simplicity, µRes. = 0 and σRes. = 1. We want
to determine the resulting loss for the second summand in Eq. 5.9, termed L2, that governs
the uncertainty estimation of the model.1 It depends on the underlying distribution of

1In this subsection, the argument xi is omitted for clarity of exposition.

147

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. B.1.: Shown is the value of the second loss component in Eq. 5.9, termed L2, over
µθ̃ and σθ̃ that describe the implicit dropout ensemble. The blue line shows
the position of the minima of L2 for fixed values of σθ̃. Clearly visible are the
global minima at σθ̃ = 0 and the bifurcation at σθ̃ = 2/π.

the effective MC dropout distribution, which we model as N (µθ̃, σθ̃) such that

L2 =
∫ ∞

−∞
dy1dy2 (|y1| − |y2|)2 p1(y1) p2(y2) , (B.1)

where p1 and p2 are the Gaussian distributions discussed above. After some calculation
this yields

L2 = − 4
π

σθ̃ exp
(

−1
2

µ2
θ̃

σ2
θ̃

)
−
√

8
π

µθ̃ Erf
(

µθ̃√
2 σθ̃

)
+ σ2

θ̃
+ µ2

θ̃
+ 1 , (B.2)

which is visualized in Fig. B.1. The two global minima can be found for (µθ̃, σθ̃) =
(±
√

2/π, 0). However, as we model a randomized residual y1 these minima do not reach
zero. We find that it is favorable to move µθ̃ away from the network prediction of
µRes. = 0, the mean of the underlying data distribution. But, this is only the case as long
as the inherent uncertainty in the dropout distribution can be brought below σθ̃ < 2/π,
which is still smaller than the uncertainty of σRes. = 1 assumed within the training data
distribution. Otherwise, it is more favorable to have µθ̃ = µRes. = 0. In the following
sections we investigate the practical implications of this finding. For instance, as detailed
in Subsection B.2.2, the highly oscillating or noisy toy model experiments clearly exhibited
the type of separation discussed here. Decomposing the uncertainty for the standard 1D
regression datasets in Subsection B.1.2, on the other hand, showed mixed behavior with
indications for bimodal shifts in µθ̃ as well as improved values of σθ̃.

We already showed the effect of this bimodality in Fig. 5.1 in Section 5.1, where various
sub-networks where sampled. Clearly visible is a stronger variation between the networks
compared to MC, but also a concentration around the two possible minima. While Fig. 5.1
provides a good visual estimate of σθ̃, the total uncertainty σtotal would additionally

148

B.1. Detailed analysis of the GL-OS variant of Wasserstein dropout

contain the systematic shift |fθ − µθ̃|. Given the roughly symmetric distribution of the
sub-networks we can expect it to be comparatively small.

B.1.2. Composition of the uncertainty estimate

The uncertainty estimate of the GL-OS Wasserstein dropout loss is comprised of two
parts: σtotal(xi) = σθ̃(xi) + |fθ(xi) − µθ̃(xi)|. Fig. B.2 reveals that σθ̃(xi) contributes
to more than 80% of σtotal(xi) for the three presented datasets and for all applied data
splits. A highly similar behavior can be observed for all other datasets. The analytical
consideration in Appendix B.1.1 suggests that for cases without data-inherent uncertainty
the GL-OS Wasserstein dropout loss provides no incentive for |fθ(xi) − µθ̃(xi)| > 0. The
same holds true in the presence of aleatoric uncertainty as long as σθ̃(xi) is comparably
large. For aleatoric uncertainty and small σθ̃(xi) larger |fθ(xi) − µθ̃(xi)| are favorable.
However, as our loss is radial symmetric, all directions are equivalent and initialization
and randomness determine the direction of the spread |fθ(xi) − µθ̃(xi)| for each individual
sub-network. This symmetry leads again to a small averaged |fθ(xi) − µθ̃(xi)|. The term
σθ̃(xi) on the contrary describes the width of a bimodal set of sub-networks in these cases.

B.1.3. Detailed analysis of the two loss components

A deeper look into the structure of the GL-OS Wasserstein dropout loss is possible if we
investigate its behavior component-wise. To clarify the results presented in Fig. B.3, we
recall the loss structure as L = L1 + L2 =

∑M
i=1

[
a2

i + (|bi| − |ai|)2] with ai = fθ(xi) − yi

and bi = fθ̃(xi) − fθ(xi). Histograms of the ai (Fig. B.3, first column) enable a detailed
view on network performance. The uncertainty quality of the networks can be judged by
studying the L2 loss term more closely, namely, by visualizing histograms of |bi| − |ai|
(fourth column). The second and third column zoom into L2 and show histograms of
the bi and scatter plots of (bi, ai), respectively. Only test datasets are visualized and as
we applied 90:10 train-test splits, this explains the low resolution of some histograms in
the first column. All quantities involving bi require the sampling of sub-networks. We
draw 200 sub-networks. This sampling procedure explains the higher plot resolutions in
columns two to four.

Qualitatively, we observe that both the ai’s and bi’s are centered around zero, which
hints at successful optimization of regression performance and of uncertainty quality.
Details on how the optimization is realized on a technical level can be gained from the
scatter plots. They show three qualitative shapes: a “cross” (first row), a “line” (second
row) and a “blob” (third and fourth row). The “cross” occurs for “toy-hf” and reflects the
bimodal sub-network structure we found in Fig. 5.1. For an in-detail discussion of the uni-
and bimodality of the GL-OS Wasserstein dropout loss landscape, see Appendix B.1.1.
A “line” shape reflects that all sub-networks occupy the same minimum given a bimodal
case. Following Appendix B.1.1, a “blob” indicates a unimodal case that might be evoked
by large standard deviations σθ̃(xi).

149

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

0.0 0.2 0.4 0.6 0.8 1.0
fraction_dropout_std

0

200

400

600

800

1000

#

train
test-iid
test-label
test-pca

0.0 0.2 0.4 0.6 0.8 1.0
fraction_spread

0

200

400

600

800

1000

#

train
test-iid
test-label
test-pca

0.0 0.2 0.4 0.6 0.8 1.0
fraction_dropout_std

0

200

400

600

800

#

train
test-iid
test-label
test-pca

0.0 0.2 0.4 0.6 0.8 1.0
fraction_spread

0

200

400

600

800

#

train
test-iid
test-label
test-pca

0.0 0.2 0.4 0.6 0.8 1.0
fraction_dropout_std

0

500

1000

1500

2000

#

train
test-iid
test-label
test-pca

0.0 0.2 0.4 0.6 0.8 1.0
fraction_spread

0

500

1000

1500

2000

#

train
test-iid
test-label
test-pca

Fig. B.2.: The GL-OS Wasserstein dropout loss induces uncertainties σtotal(xi) = σθ̃(xi)+
|fθ(xi) − µθ̃(xi)|. The relative contribution of both components (“frac-
tion_dropout_std”, “fraction_spread”) is shown for three exemplary datasets
(top: “toy-noise”, middle: “superconduct”, bottom: “protein”) and i.i.d. (train:
blue, test: orange) as well as non-i.i.d. data splits (test-label: red, test-pca:
yellow).

150

B.1. Detailed analysis of the GL-OS variant of Wasserstein dropout

Fig. B.3.: Visualization of the components (columns) of the GL-OS Wasserstein dropout
loss for selected test datasets (rows). The prediction residual fθ(xi) − yi (first
column), model spread fθ̃(xi) − fθ(xi) (second column), a scatter plot of both
quantities (third column) and |fθ̃(xi) − fθ(xi)| − |fθ(xi) − yi| (fourth column)
are shown. The chosen datasets from top to bottom are: “toy-hf”, “wine-red”,
“power” and “california”.

151

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

B.2. Extension to the empirical study

Complementing the evaluation sketched in Section 5.3, we provide more details on the
training setup and benchmark approaches in the following subsection. Further information
on the toy dataset experiments can be found in Subsection B.2.2. The same holds for the
1D regression experiments in Subsection B.2.3, which we extend by evaluations on dataset
level that were skipped in the main text. A close look at the predicted uncertainties (per
method) on these datasets is given via scatter plots in Subsection B.2.4. Details on OD
dataset preprocessing and SqueezeDet results are found in the last subsection.

B.2.1. Experimental setup

The experimental setup used for the toy data and 1D regression experiments is presented
in two parts: first, technical details of the benchmark approaches we compare with and
second, a description of the neural networks and training procedures we employ.

For MC dropout, we choose the regularization coefficient λ by grid search on the
set λ ∈ {0, 10−6, 10−5, 10−4, 10−3, 10−2} and find λ = 10−6 to provide the best overall
results for the 1D regression datasets. A variant of MC dropout that optimizes its layer-
specific drop rates during training is Concrete dropout (CON-MC): all its initial drop
rates are set to pinitial = 0.1. The hyperparameters wr = l2/(τN) and dr = 2/N are
determined by the number of training data points N , prior length scale l = 10−3 and
τ(N) ∈ [10−3, 2] that decreases monotonically with N. For PU and PU-EV networks, we
ensure positivity constraints using softplus (Glorot et al., 2011) and optimize Gaussian
NLL and t-distribution NLL, respectively. The regularization coefficient of PU-EV is
set to λ = 10−2, determined by a grid search considering the parameter range λ ∈
{10−4, 10−3, 10−2, 0.1, 0.5}. For SWAG, we start to estimate the low-rank Gaussian proxy
(rank r = 20) for the NN weight distribution after training for n/2 epochs, with n being
the total number of training epochs.

We categorize the toy and 1D regression datasets as follows: small datasets {“toy-hf”,
“yacht”, “diabetes”, “boston”, “energy”, “concrete”, “wine-red”}, large datasets {“toy-
noise”, “abalone”, “kin8nm”, “power”, “naval”, “california”, “superconduct”, “protein”}
and very large datasets {“year”}. For small datasets, NNs are trained for 1,000 epochs
using mini-batches of size 100. All results are 10-fold cross-validated. For large datasets,
we train for 150 epochs and apply 5-fold cross validation. We keep this large-dataset
setting for the very large “year” dataset but increase mini-batch size to 500.

All experiments are conducted on Core Intel(R) Xeon(R) Gold 6126 CPUs and
NVidia Tesla V100 GPUs. Conducting the described experiments with cross validation
on one CPU takes 20 h for toy data, 130 h for 1D regression datasets and approximately
100 h for object regression on the GPU.

B.2.2. Toy datasets: systematic evaluation and further experiments

The “toy-noise” and “toy-hf” datasets are sampled from fnoise(x) ∼ N (0, exp(−0.02 x2))
for x ∈ [−15, 15] and fhf(x) = 0.25 x2 − 0.01 x3 + 40 exp(−(x + 1)2/ 200) sin(3 x) for

152

B.2. Extension to the empirical study

Tab. B.1.: Regression performance and uncertainty quality of networks with different
uncertainty mechanisms. All scores are calculated on the test set of “toy-hf”
and “toy-noise”, respectively.

measure dataset swag de pu pu-ev pu-de

RMSE (↓) toy-hf 0.696 0.660 0.691 0.691 0.690
NLL (↓) toy-hf 85.331 52.444 −0.098 1.855 −0.100
ECE (↓) toy-hf 1.472 1.584 0.548 0.500 0.524
WS (↓) toy-hf 9.043 7.413 0.233 0.242 0.243

RMSE (↓) toy-noise 1.006 1.006 1.006 1.006 1.006
NLL (↓) toy-noise 6934.498 1.14 · 104 −0.374 1.555 −0.374
ECE (↓) toy-noise 1.541 1.642 0.062 0.098 0.084
WS (↓) toy-noise 63.760 83.590 0.028 0.064 0.048

measure dataset pu-mc con-mc mc w-drop

RMSE (↓) toy-hf 0.694 0.701 0.696 0.678
NLL (↓) toy-hf −0.083 17.616 13.370 −0.055
ECE (↓) toy-hf 0.544 1.380 1.352 0.428
WS (↓) toy-hf 0.233 4.356 3.830 0.222

RMSE (↓) toy-noise 1.007 0.995 1.006 1.013
NLL (↓) toy-noise −0.370 6.57 · 104 1.723 −0.330
ECE (↓) toy-noise 0.066 1.730 0.645 0.107
WS (↓) toy-noise 0.030 5.03 · 104 0.693 0.054

x ∈ [−15, 20], respectively. Standard normalization is applied to input and output values.
Detailed evaluations of the considered uncertainty methods on these datasets are given in
Tab. B.1.

To illustrate the capabilities and limitations of MC dropout regarding the modeling
of aleatoric uncertainty, we consider the “toy-noise” dataset again and systematically
vary MC’s regularization parameter λ (see Fig. B.4, λ decreases from left to right). As
MC dropout’s uncertainty estimates contain an additive constant term proportional
to λ, tuning this parameter allows for modeling the average aleatoric uncertainty (the
ideal λ in Fig. B.4 is between λ = 10−6 and λ = 10−5). Input dependencies of noise
(heteroscedasticity) can, however, not be incorporated, i.e., even an optimized λ causes
systematic over- and under-estimations of the data uncertainty in many cases. This is in
contrast to W-dropout.

Having shown that W-dropout can approximate input-dependent data uncertainty
appropriately (see Fig. 5.1), we now analyze its ability to match ground truth uncertainties
σtrue more systematically. Therefore, we fit a “noisy line” toy dataset that is given by

153

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. B.4.: MC dropout and aleatoric uncertainty. The regularization parameter λ of
MC dropout allows us to model the average (homoscedastic) noise level of a
dataset. As the regularizer is not input-dependent, it does not capture the
x-dependency of the noise level, i.e., the heteroscedasticity of the dataset, see
third row.

(xi, yi) with xi ∼ U(−1, 1) and yi ∼ N (0, σtrue). The ground truth standard deviations
take the values σtrue = 0, 0.1, 0.2, 0.5, 1, 2, 5, 10. Fig. B.5 emphasizes that W-dropout
provides accurate uncertainty estimates for both small and large noise levels. Minor
x-dependent fluctuations (see whiskers in Fig. B.5) decrease monotonically with σtrue.

B.2.3. Standard regression datasets: systematic evaluation

An overview on the 1D regression datasets providing basic statistics and information on
preprocessing is given in Tab. B.2. Evaluations of RMSE, NLL, ECE and WS on dataset
level can be found in Tab. B.3. Moreover, we extend our evaluation by a deterministic
network that we obtain as one of the members of the DE ensemble. For better overview, we
reproduce Fig. 5.6 (top row) with this member added, see Fig. B.6. The small performance
deterioration of this member compared to the full DE ensemble can be attributed to the
averaging over the outcomes of the five ensemble components that suppresses stochastic
fluctuations.

B.2.4. Residual-uncertainty scatter plots

Visual inspection of uncertainties can be helpful to understand their qualitative behavior.
We scatter model residuals µi−yi (respective x-axis in Fig. B.8) against model uncertainties
σi (resp. y-axis in Fig. B.8). For a hypothetical ideal uncertainty mechanism, we expect
(yi − µi) ∼ N (0, σi), i.e., model residuals following the predictive uncertainty distribution.
More concretely, 68.3% of all (yi − µi) would lie within the respective interval [−σi, σi]
and 99.7% of all (yi − µi) within [−3 σi, 3 σi]. Fig. B.7 visualizes this hypothetical ideal.
It is generated as follows: We draw 3,000 standard deviations σi ∼ U(0, 2) and sample
residuals ri from the respective normal distributions, ri ∼ N (0, σi). The pairs (ri, σi)

154

B.2. Extension to the empirical study

Fig. B.5.: Standard deviation σw-drop of W-dropout (y-axis) when fitted to a toy dataset
with ground truth standard deviation σgt (x-axis, see the text in Subsec-
tion B.2.2 for details). The bisecting line is shown in gray. While σw-drop
exhibits fluctuations (black whiskers at 10% and 90% quantile), it provides on
average accurate estimates of the ground truth uncertainty. Both mean value
(blue cross) and median value (orange bar) of σw-drop are close to the bisector.

are visualized. By construction, uncertainty estimates now ideally match residuals in a
distributional sense.

Geometrically, the described Gaussian properties imply that 99.7% of all scatter points,
e.g., in Fig. B.8, should lie above the blue 3σ lines and 68.3% of them above the yellow
1σ lines. For “toy-noise”, “abalone” and “superconduct” (first, third and fourth row in
Fig. B.8), PU, PU-DE and W-dropout qualitatively fulfill this requirement while MC,
MC-LL and DE tend to underestimate uncertainties. This finding is in accordance with our
systematic evaluation. The “naval” dataset (second row in Fig. B.8) poses an exception
in this regard as all uncertainty methods lead to comparably convincing uncertainty
estimates. The small test RMSEs of all methods on “naval” indicate relatively small
aleatoric uncertainties and model residuals. Epistemic uncertainty might thus be a key
driving factor and coherently MC, MC-LL and DE perform well.

B.2.5. Object detection: systematic evaluation

We report basic information on the object detection (OD) datasets and their harmonization
in the first paragraph of this subsection. Supplementary evaluations of SqueezeDet can be
found subsequently in the second paragraph.

Details on OD datasets The six OD datasets we consider are diverse in multiple
dimensions as they capture traffic scenes from three continents (Asia, Europe and North
America) and cover a broad set of scenarios ranging from cities and metropolitan areas
over country roads to highways (see Tab. B.5). They moreover differ in the average number
of objects per image (see Tab. 5.4) that reaches its highest values for the simulation-

155

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. B.2.: Details on 1D regression datasets. The ground truth annotations are partially
preprocessed to match the 1D regression setup: for the “energy” and the
“naval” dataset, we use only the “cooling load” and the “turbine” label,
respectively. For the “abalone” dataset, we omit the categorical input feature
“sex”.

dataset source # features # data points

yacht UCI 6 308
diabetes StatLib 7 442
boston StatLib 13 506
energy UCI 8 768
concrete UCI 8 1,030
wine-red UCI 11 1,599
abalone UCI 7 4,176
kin8nm Delve 8 8,192
power UCI 4 9,568
naval UCI 16 11,934
california StatLib 8 20,640
superconduct UCI 81 21,263
protein UCI 9 45,730
year UCI 90 515,345

based SynScapes dataset.2 Finally, both random and sequence-based train-test splits are
considered. This variety is moreover reflected in the numerous object classes the different
datasets provide. Their mappings to three main categories (“pedestrian”, “cyclist”,
“vehicle”) can be found in Tab. B.6. Rare or irregular classes are removed. For KITTI, we
moreover discard “van”, “truck” and “person-sitting”, following the original SqueezeDet
paper. To analyze uncertainty quality on distorted images, blurred and noisy versions of
the test datasets are created. Fig. B.10 shows these transformations for two exemplary
images from BDD100k (top row) and SynScapes (bottom row), respectively.

Comparison with the deterministic SqueezeDet A comparison of the results of the
deterministic SqueezeDet, MC-SqueezeDet and W-SqueezeDet for the KITTI test dataset
can be found in Tab. B.4. There, we additionally consider the mean average precision
(mAP) score of these networks as well as the closely related measures of precision and
recall.3 In contrast to the regression results on the 1D standard datasets, we observe
more pronounced deviations between the different types of SqueezeDet and, in particular,

2For A2D2, 2D bounding boxes are inferred from semantic segmentation ground truth.
3In object detection, average precision (AP) can be understood as the area under the precision-recall curve

that is obtained when sorting all predicted bounding boxes (for a given dataset) by their confidence
scores.

156

B.2. Extension to the empirical study

Tab. B.3.: Regression performance and uncertainty quality of networks with different
uncertainty mechanisms. The scores are calculated on the test sets of 14
standard regression datasets. Please note that the deterministic network does
not provide uncertainty information.

measure dataset deterministic swag de pu pu-ev pu-de pu-mc con-mc mc w-drop

RMSE (↓) yacht 0.045 0.055 0.042 0.062 0.051 0.049 0.076 0.103 0.074 0.075
NLL (↓) yacht − −3.010 −3.560 −2.370 −0.438 −3.017 −2.881 −2.059 −2.202 −2.489
ECE (↓) yacht − 0.757 0.653 0.863 0.890 1.087 1.093 1.010 1.093 1.113
WS (↓) yacht − 0.470 0.379 0.668 1.228 0.544 0.560 0.481 0.536 0.537

RMSE (↓) diabetes 0.971 0.990 0.920 0.816 0.832 0.790 0.773 0.792 0.843 0.886
NLL (↓) diabetes − 61.217 7.629 1712.520 11.505 7.423 2.302 3.427 6.014 2.356
ECE (↓) diabetes − 1.456 0.942 1.353 1.370 0.945 0.854 0.975 1.108 0.909
WS (↓) diabetes − 7.704 1.717 19.552 19.182 1.936 1.230 1.630 2.229 1.265

RMSE (↓) boston 0.345 0.352 0.322 0.339 0.349 0.329 0.287 0.317 0.310 0.318
NLL (↓) boston − 10.739 6.116 553.188 4.003 3.590 0.050 −0.371 −0.040 −0.287
ECE (↓) boston − 1.170 0.882 1.294 1.240 0.876 0.644 0.636 0.688 0.624
WS (↓) boston − 2.987 1.593 9.233 5.288 1.490 0.658 0.493 0.674 0.581

RMSE (↓) energy 0.097 0.077 0.118 0.166 0.106 0.079 0.107 0.080 0.075
NLL (↓) energy − −1.048 0.628 5.882 1.751 −2.007 −2.056 −1.703 −1.815 −2.047
ECE (↓) energy − 0.567 0.602 1.037 0.819 0.502 0.705 0.637 0.819 0.648
WS (↓) energy − 0.672 0.723 2.183 1.508 0.374 0.379 0.332 0.424 0.339

RMSE (↓) concrete 0.258 0.258 0.241 0.263 0.260 0.244 0.237 0.270 0.235 0.248
NLL (↓) concrete − 2.726 4.899 34.402 2.496 0.208 −0.978 −0.672 −0.890 −0.868
ECE (↓) concrete − 0.672 0.649 0.871 0.763 0.528 0.384 0.395 0.431 0.400
WS (↓) concrete − 1.279 1.402 3.217 2.605 0.773 0.230 0.256 0.267 0.253

RMSE (↓) wine-red 0.981 0.931 0.835 0.824 0.817 0.771 0.783 0.748 0.784 0.807
NLL (↓) wine-red − 10.343 1.352 1.41 · 105 10.201 3.578 11.142 2.485 1.962 0.830
ECE (↓) wine-red − 0.946 0.488 0.765 0.816 0.456 0.541 0.677 0.664 0.549
WS (↓) wine-red − 2.487 0.717 35.052 55.450 0.813 0.914 1.154 1.014 0.536

RMSE (↓) abalone 0.673 0.798 0.701 0.653 0.657 0.654 0.636 0.636 0.684 0.718
NLL (↓) abalone − 13.289 31.002 2.05 · 108 2.486 −0.073 −0.111 9.206 1.017 0.256
ECE (↓) abalone − 1.181 1.276 0.252 0.250 0.238 0.270 1.082 0.496 0.402
WS (↓) abalone − 3.149 4.624 3.07 · 107 286.448 0.157 0.141 2.630 0.726 0.462

RMSE (↓) kin8nm 0.269 0.259 0.246 0.272 0.276 0.253 0.269 0.313 0.266 0.261
NLL (↓) kin8nm − −0.393 1.905 −0.142 1.274 −0.866 −0.631 −0.612 −0.678 −0.855
ECE (↓) kin8nm − 0.453 0.677 0.462 0.362 0.205 0.561 0.223 0.491 0.151
WS (↓) kin8nm − 0.552 1.202 0.629 0.405 0.185 0.334 0.203 0.306 0.080

RMSE (↓) power 0.224 0.228 0.219 0.225 0.227 0.221 0.228 0.234 0.226 0.226
NLL (↓) power − 1.682 12.696 −0.921 0.870 −1.024 −1.007 −0.470 −0.720 −0.788
ECE (↓) power − 0.755 1.075 0.154 0.176 0.135 0.172 0.415 0.656 0.264
WS (↓) power − 1.306 2.943 0.127 0.193 0.071 0.098 0.520 0.393 0.318

RMSE (↓) naval 0.087 0.250 0.030 0.163 0.194 0.165 0.169 0.345 0.118 0.100
NLL (↓) naval − −0.198 −2.815 −2.358 0.327 −1.405 −1.464 −0.522 −0.701 −1.479
ECE (↓) naval − 1.230 0.898 0.677 0.887 1.235 0.760 0.378 1.233 0.888
WS (↓) naval − 0.615 0.487 0.357 0.931 0.606 0.454 0.297 0.632 0.483

RMSE (↓) california 0.453 0.444 0.430 0.674 0.514 0.475 0.549 0.456 0.436 0.448
NLL (↓) california − 0.813 7.305 −0.494 1.266 −0.612 −0.560 1.441 −0.236 −0.213
ECE (↓) california − 0.469 0.829 0.248 0.212 0.251 0.314 0.625 0.650 0.251
WS (↓) california − 0.745 1.965 0.181 306.628 0.162 0.194 0.989 0.357 0.312

RMSE (↓) superconduct 0.309 0.305 0.290 0.340 0.341 0.326 0.346 0.345 0.318 0.310
NLL (↓) superconduct − −0.242 3.045 −0.558 0.622 −1.340 −1.169 −0.065 −0.341 −0.954
ECE (↓) superconduct − 0.346 0.515 0.151 0.181 0.204 0.243 0.381 0.916 0.183
WS (↓) superconduct − 0.451 1.126 0.204 0.250 0.129 0.141 0.569 0.487 0.161

RMSE (↓) protein 0.612 0.615 0.575 0.723 0.696 0.701 0.666 0.654 0.610 0.610
NLL (↓) protein − 0.560 4.314 0.117 1.515 −0.132 −0.080 3.149 0.141 0.073
ECE (↓) protein − 0.440 0.649 0.225 0.567 0.288 0.325 0.809 0.565 0.265
WS (↓) protein − 0.592 1.379 0.156 8.242 0.182 0.183 1.483 0.336 0.245

RMSE (↓) year 0.825 0.800 0.765 0.789 0.803 0.775 0.785 0.785 0.786 0.812
NLL (↓) year − 11.250 12.064 0.169 1.861 −0.023 0.940 7.952 1.148 0.477
ECE (↓) year − 1.151 1.003 0.249 0.230 0.261 1.043 1.126 1.219 0.369
WS (↓) year − 2.848 2.543 0.187 0.163 0.164 0.539 2.461 0.625 0.454

157

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

de
te

rm
in

ist
ic

sw
ag de pu

pu
_e

v
pu

_d
e

pu
_m

c
m

c
co

n-
m

c
w-

dr
op

0.0

0.5

1.0

1.5

rm
se

train test test (extrap.) test (interp.) test (extrap.) test (interp.)
i.i.d. data split label-based data shift pca-based data shift

Fig. B.6.: Root-mean-square errors (RMSEs (↓)) of different network types under i.i.d.
conditions (first and second panel) and under various kinds of data shift (third
to sixth panel). W-dropout (light blue background) is compared to 9 bench-
mark approaches, including a deterministic model (light green background).
Each blue cross is the mean over 14 1D regression datasets. Orange line
markers indicate median values. The gray vertical bars reach from the 25%
quantile (bottom horizontal line) to the 75% quantile (top horizontal line).

note that the deterministic SqueezeDet yields OD scores that are 5 − 15% better than the
ones of MC- and W-SqueezeDet. This finding equally concerns mAP and the regression
scores of mIoU and RMSE. The OD capabilities of the two probabilistic networks are
comparable, see also Fig. B.9. It shows that performance losses are less caused by our
specific version of dropout but rather generally by using dropout-based techniques.

This performance gap between deterministic and probabilistic models can be understood
when recalling that the anchor-based object proposals of SqueezeDet are piped through a
multi-step post-processing to obtain the final detections. Dropout-enhanced models, in
particular, require an additional step of clustering the stochastic proposals, which may
in some cases cause incorrect cluster assignments. Moreover, fewer resulting proposals
can be matched with ground truth objects (see the precision values in Tab. B.4). This
might be attributed to the stochastic nature of the bounding boxes, which leads to slightly
increased errors and therefore, and in combination with the IoU threshold, to less matched
proposals. Early experiments suggested that changes to the post-processing routines can
contribute to mitigating large parts of these performance losses. As demonstrated in
Fig. B.9, we believe that the questions of performance and W-dropout are detached and
therefore relegate a deeper exploration of proposal matching to future work.

Further results on SqueezeDet Coordinate-wise regression results and uncertainty scores
for MC-SqueezeDet and W-SqueezeDet on KITTI are shown in Tab. B.7. While we observe
noteworthy differences between coordinates, the relative ordering of MC-SqueezeDet and
W-SqueezeDet for a given measure remains the same.

Analyzing in-data and out-of-data NLL and WS values for all six datasets (see Fig. B.11),
we find results that qualitatively resemble those on ECE in Fig. 5.9. W-SqueezeDet

158

B.2. Extension to the empirical study

4 2 0 2 4
pred_residual

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

pr
ed

_s
td

1
3

Fig. B.7.: Prediction residuals (x-axis) and predictive uncertainty (y-axis) for a hypo-
thetical ideal uncertainty mechanism. The Gaussian errors are matched by
Gaussian uncertainty predictions at the exact same scale. 68.3% of all uncer-
tainty estimates (plot points) lie above the orange 1σ-lines and 99.7% of them
above the blue 3σ-lines.

outperforms MC-SqueezeDet on the respective i.i.d. test set and also under data shift.
For both uncertainty approaches, some NLL values are affected by outliers.

Finally, Fig. B.12 visualizes how various regression and uncertainty (test) scores evolve
during model training on the BDD100k dataset. MC-SqueezeDet (dashed) and W-
SqueezeDet (solid) “converge” with comparable speed (no changes to test RMSE and
mIoU after 100,000 training steps) and reach similar final performances. W-SqueezeDet’s
explicit optimization of uncertainty estimates yields larger standard deviations (center
panel) and smaller values for NLL, ECE, WS and ETL compared to MC-SqueezeDet (center
right panel, bottom row). For the unbounded scores NLL, WS and ETL, W-SqueezeDet
exhibits higher stability during training.

159

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. B.8.: Prediction residuals (respective x-axis) and predictive uncertainty (respective
y-axis) for different uncertainty mechanisms (columns) and datasets (rows).
Each light blue dot in each plot corresponds to one test data point. Realistic
uncertainty estimates should lie mostly above the blue 3σ-lines. The datasets
“toy-noise”, “naval”, “abalone” and “superconduct” are shown, from top to
bottom.

160

B.2. Extension to the empirical study

Tab. B.4.: Regression performance and uncertainty quality of SqueezeDet-type networks
on KITTI test data. W-SqueezeDet (W-SqzDet) is compared with MC-
SqueezeDet (MC-SqzDet) and the deterministic network (SqzDet). Extending
our set of measures, we additionally report mean average precision (mAP) as
well as (class-averaged) recall and precision.

measure SqzDet MC-SqzDet W-SqzDet

mAP (↑) 0.692 0.618 0.619
recall (↑) 0.758 0.686 0.688
precision (↑) 0.324 0.296 0.277

mIoU (↑) 0.730 0.695 0.694
RMSE (↓) 13.058 14.666 14.505

NLL (↓) - 25.704 6.309
ECE (↓) - 0.825 0.433
WS (↓) - 2.831 0.900
ETL0.99 - 42.101 18.223

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

Det. SqzDet
MC-SqzDet
W-SqzDet

Fig. B.9.: Recall-precision curves of the deterministic SqueezeDet (blue), MC-SqueezeDet
(orange) and W-SqueezeDet (green) for the object class “vehicle” in the KITTI
test dataset. The AP values of the respective networks (for class “vehicle”)
are given by the areas under the curves.

161

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. B.5.: General information on the object detection datasets.

dataset place of data collection type train/test split

KITTI metropolitan area of Karlsruhe real semi-custom (seq.-based)
SynScapes simulation (only urban scenes) synthetic custom (random split)
A2D2 highways and cities in Germany real custom (seq.-based)
Nightowls several cities across Europe real pre-defined
NuImages Boston and 3 diverse areas of Singapore real pre-defined
BDD100k New York, San Francisco Bay, Berkeley real pre-defined

Tab. B.6.: Harmonization of the object detection datasets. The various object classes
of the six object detection datasets (rows) are grouped into the three main
categories “vehicle”, “pedestrian” and “cyclist” (columns). Some classes are
too rare or irregular and are thus discarded.

dataset vehicle cyclist pedestrian discarded

KITTI car cyclist pedestrian van, truck, tram, person-
sitting, misc, do-not-care

SynScapes car, motorbike, truck,
bus

cyclist pedestrian train

A2D2 car, truck cyclist pedestrian -
Nightowls motorbike cyclist pedestrian ignore-area
NuImages car, motorbike, truck,

vehicle-other
cyclist pedestrian movable-object

BDD100k car, motorbike, truck,
bus, trailer, vehicle-
other

cyclist pedestrian,
other-person

train, rider, traffic-light,
traffic-sign

162

B.2. Extension to the empirical study

Fig. B.10.: Two exemplary object detection images from BDD100k (top row, real-world
image) and SynScapes (bottom row, synthetic image), respectively. For
each original image (left column), two corrupted versions are generated: a
blurred one (middle column) and a noisy one (right column), see the text in
Section 5.4 for details.

Fig. B.11.: In-data and out-of-data evaluation of MC-SqueezeDet (l.h.s.) and W-
SqueezeDet (r.h.s.) on six OD datasets. We consider the negative log-
likelihood (NLL, top row) and the Wasserstein measure (WS, bottom row).
For each heatmap entry, the row label refers to the training dataset and the
column label to the test dataset. Thus, diagonal matrix elements are in-data
evaluations, non-diagonal elements are OOD analyses.

163

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Tab. B.7.: Regression performance and uncertainty quality of SqueezeDet-type networks
on KITTI train/test data. W-SqueezeDet is compared with MC-SqueezeDet.

train test

measure MC-SqzDet W-SqzDet MC-SqzDet W-SqzDet

mIoU (↑) 0.705 0.691 0.695 0.694
RMSE (↓) 8.769 9.832 14.666 14.505

NLLx (↓) 14.793 2.808 34.827 6.941
NLLy 6.135 2.170 13.364 3.808
NLLw 6.916 3.305 36.384 8.579
NLLh 6.146 2.796 18.241 5.908

ECEx (↓) 0.560 0.148 0.748 0.330
ECEy 0.659 0.180 0.835 0.419
ECEw 0.523 0.147 0.888 0.520
ECEh 0.716 0.296 0.83 0.465

WSx (↓) 1.729 0.283 3.06 0.830
WSy 1.370 0.299 2.260 0.680
WSw 1.145 0.243 3.485 1.203
WSh 1.442 0.437 2.517 0.888

ETL0.99,x 34.443 9.316 55.772 21.310
ETL0.99,y 18.202 7.677 26.675 11.772
ETL0.99,w 19.914 10.835 53.408 23.202
ETL0.99,h 16.872 7.584 32.547 16.608

164

B.2. Extension to the empirical study

0 100 200 300
training step (×103)

0

100

200

300

n
(×

10
3)

n_net_matched_cls_correct
n_gt
n_net_proposals
n_net_matched

0 100 200 300
training step (×103)

0.0

0.5

1.0

re
l.

fre
qu

en
cy

correct_class_perc
recall

0 100 200 300
training step (×103)

0

10

20

30

rm
se

rmse

0 100 200 300
training step (×103)

0.00

0.25

0.50

0.75

1.00

io
u

mean_ious_mean_mc

0 100 200 300
training step (×103)

0

5

10

st
d

mean_std_x
mean_std_w
mean_std_y
mean_std_h

0 100 200 300
training step (×103)

0

100

200

nl
l

mean_nll_y
mean_nll_x
mean_nll_w
mean_nll_h

0 100 200 300
training step (×103)

0.0

0.5

1.0

1.5

2.0

ec
e

ece_x
ece_w
ece_h
ece_y

0 100 200 300
training step (×103)

0

5

10

ws

ws_dist_w
ws_dist_y
ws_dist_x
ws_dist_h

0 100 200 300
training step (×103)

0

50

100

et
l

etl_99_y
etl_99_x
etl_99_w
etl_99_h

Fig. B.12.: Various test statistics of W-SqueezeDet (solid lines) and MC-SqueezeDet
(dashed lines) during model optimization on the BDD100k dataset. We
consider performance scores (recall, RMSE, IoU, see first and second row)
and uncertainty measures (NLL, ECE, WS, ETL, see second and third row).
W-SqueezeDet yields comparable task performance while providing clearly
better uncertainty estimates.

165

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

B.3. Stability with respect to hyperparameters p and L

W-dropout possesses two hyperparameters: the neuron drop rate p and the sample size L

used to calculate the empirical estimates µθ̃(xi) and σθ̃(xi). Here, we analyze the impact
of these parameters on the quality of accordingly trained models.

For p = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, we observe only relatively small differences in both
RMSE (see top panel of Fig. B.13) and ECE (see bottom panel of Fig. B.13). On train
data, RMSE slightly deteriorates with increasing p, i.e., with decreasing complexity of the
sub-networks. For ECE, we find minor improvements with growing drop rate, which might
be explained by the fact that the L sub-networks in a given optimization step overlap less
for higher p-values, thus allowing them to approximate the actual data distribution more
closely. We choose p = 0.1 as the complexity of the resulting sub-networks is only mildly
reduced compared to the deterministic full network.

Studying the impact of sample size L = 4, 5, 8, 10, 20, we find RMSE (see top panel
of Fig. B.14) to be largely stable w.r.t. this parameter. For ECE (see bottom panel of
Fig. B.14), train scores grow with L, indicating a certain over-estimation of the present
aleatoric uncertainties. This artifact is not generalized to test data though, where
we observe broadly similar mean values and 75% quantiles. Under data shift, certain
fluctuations of ECE occur as sample size L changes, however, there is no clear trend. We
thus choose the rather small L = 5 to keep the computational overhead down.

166

B.3. Stability with respect to hyperparameters p and L

Fig. B.13.: Dependence of Wasserstein dropout on drop rate p. Root-mean-square errors
(RMSEs (↓), top row) and expected calibration errors (ECEs (↓), bottom
row) are shown for neuron drop rates of p = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 under
i.i.d. conditions (first and second panel in each row) and under various kinds
of data shift (third to sixth panel in each row, see the text in Subsection 5.3.3
for details). W-dropout with p = 0.1 (used for evaluations on toy and 1D
regression data) is highlighted by a light blue background. Each blue cross is
the mean over 10 standard regression datasets. Orange line markers indicate
median values. The gray vertical bars reach from the 25% quantile (bottom
horizontal line) to the 75% quantile (top horizontal line).

167

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

Fig. B.14.: Dependence of Wasserstein dropout on sample size L. Root-mean-square
errors (RMSEs (↓), top row) and expected calibration errors (ECEs (↓),
bottom row) are shown for sample sizes of L = 4, 5, 8, 10, 20 under i.i.d.
conditions (first and second panel in each row) and under various kinds of
data shift (third to sixth panel in each row, see the text in Subsection 5.3.3
for details). W-dropout with L = 5 (used throughout the remainder of the
chapter) is highlighted by a light blue background. Each blue cross is the
mean over 10 standard regression datasets. Orange line markers indicate
median values. The gray vertical bars reach from the 25% quantile (bottom
horizontal line) to the 75% quantile (top horizontal line).

168

B.4. In-depth investigation of uncertainty measures

B.4. In-depth investigation of uncertainty measures

In the following, we employ the Kolmogorov-Smirnov distance as a supplementary uncer-
tainty score and compare it with expected calibration error (ECE) and Wasserstein distance
(WS). Finally, limitations of negative log-likelihood (NLL) for uncertainty quantification
are discussed.

B.4.1. Dependencies between uncertainty measures

Extending the analysis of empirically observed dependencies between WS and ECE in
Fig. 5.3, we additionally consider Kolmogorov-Smirnov (KS) distances (Stephens, 1974) in
Fig. B.15 (middle and bottom panel). These KS-distances are calculated between samples
of normalized residuals and a standard Gaussian. Different from the Wasserstein distance,
the KS-distance is not transport-based but determined by the largest distance between the
empirical CDFs of the two samples. It is therefore bounded to [0, 1] and unable to resolve
differences between two samples that both strongly deviate from a standard Gaussian.
Again, we find the dependencies between these measures to clearly deviate from ideal
correlation.

The data splits in Fig. 5.3 and Fig. B.15 are color-coded as follows: train is green,
test is blue, PCA-interpolate is green-yellow, PCA-extrapolate is orange-yellow, label-
interpolate is red and label-extrapolate is light red. The mapping between uncertainty
methods and plot markers reads: SWAG is “triangle”, MC is “diamond”, MC-LL is “thin
diamond”, DE is “cross”, PU is “point”, PU-DE is “star”, PU-MC is “circle”, PU-EV
is “pentagon” and W-dropout is “plus”. The data base of this visualization are the 14
standard regression datasets. Some Wasserstein distances lie above the x-axis cut-off and
are thus not visualized.

B.4.2. Discussion of NLL as a measure of uncertainty

Typically, DNNs using uncertainty are often evaluated in terms of their negative log-
likelihood (NLL). This property is affected not only by the uncertainty, but also by
the DNNs performance. Additionally, it is difficult to interpret, sometimes leading to
counterintuitive results, which we want to elaborate on here. As a first example, take
the likelihood of two datasets x1 = {0} and x2 = {0.5}, each consisting of a single point,
with respect to a normal distribution N (0, 1). Naturally, we find x1 to be located at the
maximum of the considered normal distribution and deem it the more likely candidate.
But, if we extend these datasets to more than single points, i.e., x̃1 = {0, 0.1, 0, −0.1, 0}
and x̃2 = {0.5, −0.4, 0, −1.9, −0.7}, it becomes obvious that x̃2 is much more likely to
follow the intended Gaussian distribution. Nonetheless, NLL(x̃2) ≈ 1.4 > 0.9 ≈ NLL(x̃1),
where

NLL(y) := log
√

2πσ2 + 1
N

N∑
i=1

(yi − µ)2

2σ2 . (B.3)

169

B. Modeling Uncertainty Estimates by Means of Wasserstein Dropout

This may be seen as a direct consequence of the pointwise definition of NLL, which
does not consider the distribution of the elements in x̃i. From this observation also
follows that a model with high prediction accuracy will have a lower NLL score as a
worse performing one if uncertainties are predicted in the same way. Independent of
whether those reflected the “true” uncertainty in either case. This issue can be further
substantiated on a second example. Consider two other datasets z1, z2 drawn i.i.d. from
Gaussian distributions N (0, σi) with two differing values σ1 < σ2. If we determine
the NLL of each with respect to its own distribution the offset term in Eq. B.3 leads
to NLL(z2) = NLL(z1) + log (σ2/σ1) with log (σ2/σ1) > 0. Although both accurately
reflect their own distributions, or uncertainties so to speak, the narrower z1 is more
“likely”. This offset makes it difficult to assess reported NLL values for systems with
heteroscedastic uncertainty. While smaller is typically “better”, it is highly data- (and
prediction-)dependent which value is good in the sense of a reasonable correlation between
performance and uncertainty.

170

B.4. In-depth investigation of uncertainty measures

Fig. B.15.: Dependencies between the three uncertainty measures ECE, Wasserstein dis-
tance and Kolmogorov-Smirnov distance. Uncertainty methods are encoded
via plot markers, data splits via color. Datasets are not encoded and cannot
be distinguished (see the text in Subsection B.4.1 for more details). Each plot
point corresponds to a cross-validated trained network. The clearly visible
deviations from ideal correlations point at the potential of these uncertainty
measures to complement one another.

171

List of Acronyms

AD Autonomous driving
BNN Bayesian neural network
CDF Cumulative distribution function
CLT Central limit theorem
CNN Convolutional neural network
DE Deep ensemble
DL Deep learning
DNN Deep neural network
DOF Degree of freedom
ECE Expected calibration error
ELBO Evidence lower bound
EM Expectation-maximization
ETL Expected tail loss
FCN Fully connected network
GD Gradient descent
GL Gaussian likelihood
GL-OS Gaussian-likelihood one-sample
GP Gaussian process
HMM Hidden Markov model
ID In-distribution
IoU Intersection over union
MAD Mean absolute deviation
MAP Maximum a posteriori
MC Monte Carlo
MCMC Markov chain Monte Carlo
ML Machine learning
MLE Maximum likelihood estimation
MLP Multilayer perceptron

173

List of Acronyms

MSE Mean squared error
NLL Negative log-likelihood
NMF Non-negative matrix factorization
NMS Non-maximum suppression
NN Neural network
OD Object detection
ODD Operational design domain
OOD Out-of-distribution
PDF Probability density function
PU Parametric uncertainty
RMSE Root-mean-square error
SGD Stochastic gradient descent
VI Variational inference
VRU Vulnerable road user
WS Wasserstein distance

174

List of Figures

1.1 Complex and unforeseeable traffic situations that challenge algorithmic
driving systems . 2

1.2 Annotated lung CT images as an example for data-inherent uncertainty . 3
1.3 Illustrative out-of-distribution inputs for a machine perception system . . 4

2.1 Schematic illustration of a fully connected neural network 14
2.2 Schematic visualization of a convolutional mapping 16
2.3 Schematic illustration of dropout regularization 25

3.1 Categorization and characterization of uncertainty sources 28
3.2 Schematic visualization of homoscedastic and heteroscedastic aleatoric

uncertainty . 29
3.3 Schematic illustration of model class uncertainty 30
3.4 Schematic visualization of model parameter uncertainty 30

4.1 Visualization of the dense representations of DenseHMM before and after
training . 43

4.2 Structure of the DenseHMM . 45
4.3 Approximation quality of nonlinear matrix factorizations 49
4.4 Co-occurrence mean absolute deviation and normalized negative log-likeli-

hood of the models HEM
dense , Hdirect

dense , Hfair
stand , Hstand on synthetically gener-

ated sequences evaluated for multiple combinations of n and l 51
4.5 Co-occurrence mean absolute deviation and normalized negative log-likeli-

hood of the models HEM
dense , Hdirect

dense , Hfair
stand , Hstand on amino acid sequences

evaluated for multiple combinations of n and l 52
4.6 Co-occurrence mean absolute deviation and normalized negative log-likeli-

hood of the models HEM
dense , Hdirect

dense , Hfair
stand , Hstand on (Medpost) part-of-

speech tag sequences evaluated for multiple combinations of n and l . . . 52
4.7 Normalized pre-activation distributions of selected neurons from randomly

initialized and trained networks that are either narrow or wide 56
4.8 Normalized pre-activation distributions from networks with correlated

random weights . 59

5.1 Comparison of three dropout-based uncertainty techniques (MC dropout,
GL-OS W-dropout, W-dropout) on toy datasets 67

175

List of Figures

5.2 Comparison of the Wasserstein-based measure and the expected calibration
error on 1D Gaussian distributions . 70

5.3 Dependency between the Wasserstein-based measure and the expected
calibration error for Gaussian toy data and for 1D standard datasets . . . 71

5.4 Comparison of uncertainty mechanisms on a noisy and a high-frequency
1D toy dataset . 73

5.5 Schematic visualization of a PCA-based and a label-based data split . . . 75
5.6 Root-mean-square errors and expected calibration errors of different un-

certainty methods under i.i.d. conditions and under various kinds of data
shift . 78

5.7 Negative log-likelihoods and Wasserstein distances of different uncertainty
methods under i.i.d. conditions and under various kinds of data shift . . . 79

5.8 Extrapolation behavior of W-dropout and MC dropout for two datasets
and two extrapolation directions . 80

5.9 In-data and out-of-data evaluation of RMSE and ECE for W-SqueezeDet
and MC-SqueezeDet on six object detection datasets 87

6.1 A framework to obtain uncertainty estimators that are tailored to given
deep learning applications . 97

6.2 Schematic illustration of the operational design domain of an ML model
and the operational design domain of its uncertainty estimator 100

6.3 Prototypical flows of uncertainty information along a chain of ML models 102
6.4 Schematic visualization of the data selection concepts on the different levels

of the test hierarchy . 116
6.5 Symbolic illustration of three out of four data selection strategies on the

testing hierarchy level of subset and pointwise tests 119

A.1 Weight correlations of randomly initialized and trained networks that are
either narrow or wide . 140

A.2 Pre-activation correlations of randomly initialized and trained networks
that are either narrow or wide . 140

A.3 Logarithmic visualization of the PDF for the product of two Gaussian
random variables X, Y . 143

B.1 Second component of the GL-OS Wasserstein dropout loss over µθ̃ and σθ̃ 148
B.2 Relative sizes of the two uncertainty components induced by the GL-OS

Wasserstein dropout loss for a toy and two standard 1D datasets 150
B.3 Components of the GL-OS Wasserstein dropout loss for standard 1D test

datasets . 151
B.4 Capability of MC dropout to model the aleatoric uncertainty of a 1D toy

dataset . 154
B.5 Standard deviation σw-drop of a Wasserstein dropout network after training

on a toy dataset with ground truth standard deviation σgt 155

176

List of Figures

B.6 Root-mean-square errors of different network types, including a deter-
ministic model, under i.i.d. conditions and under various kinds of data
shift . 158

B.7 Prediction residuals and predictive uncertainty for a hypothetical ideal
uncertainty mechanism . 159

B.8 Prediction residuals and predictive uncertainty for different uncertainty
mechanisms and datasets . 160

B.9 Recall-precision curves of SqueezeDet-type networks for the object class
“vehicle” in the KITTI test dataset . 161

B.10 Two exemplary object detection images from BDD100k and SynScapes . . 163
B.11 In-data and out-of-data evaluation of negative log-likelihood and Wasser-

stein measure for MC-SqueezeDet and W-SqueezeDet on six object detection
datasets . 163

B.12 Various test statistics of W-SqueezeDet and MC-SqueezeDet during model
optimization on the BDD100k dataset . 165

B.13 Dependence of Wasserstein dropout on the drop rate p 167
B.14 Dependence of Wasserstein dropout on the sample size L 168
B.15 Empirically observed dependencies between the three uncertainty measures

expected calibration error, Wasserstein distance and Kolmogorov-Smirnov
distance . 171

177

List of Tables

5.1 Regression performance (RMSE) and uncertainty quality (NLL, ECE, WS)
of W-dropout and various uncertainty benchmarks on standard 1D test
datasets . 76

5.2 Out-of-data analysis (RMSE, NLL, ECE, WS) of W-dropout and various
uncertainty benchmarks on standard 1D test datasets 77

5.3 Uncertainty quality of W-dropout, PU-DE and PU-MC in worst-case
scenarios . 81

5.4 Basic statistics of the harmonized object detection datasets 84
5.5 Regression performance and uncertainty quality of W-SqueezeDet and

MC-SqueezeDet on the KITTI dataset . 86
5.6 Out-of-data evaluation of W-SqueezeDet and MC-SqueezeDet on blurred

and noisy object detection datasets . 88

6.1 Four technical approaches to subset and pointwise uncertainty testing that
are categorized based on their data selection strategy and their (non-)se-
mantic nature . 118

A.1 Approximation errors of normAbsLin-based and softmax-based matrix
factorizations for different matrix sizes n and representation lengths l . . . 139

B.1 Regression performance and uncertainty quality of networks with different
uncertainty mechanisms on two 1D toy datasets 153

B.2 Characteristics of the employed standard 1D regression datasets 156
B.3 Regression performance and uncertainty quality of networks with different

uncertainty mechanisms for 14 standard regression datasets 157
B.4 Regression performance and uncertainty quality of SqueezeDet-type net-

works on KITTI test data . 161
B.5 Characteristics of the employed object detection datasets 162
B.6 Object class mappings to harmonize the object detection datasets 162
B.7 Per-coordinate regression performance and uncertainty quality of W-Squeeze-

Det and MC-SqueezeDet on the KITTI dataset 164

179

Bibliography

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In Kimberly Keeton and
Timothy Roscoe (eds.), 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pp. 265–283.
USENIX Association, 2016. URL https://www.usenix.org/conference/osdi16/t
echnical-sessions/presentation/abadi. 35, 138

Stephanie Abrecht, Lydia Gauerhof, Christoph Gladisch, Konrad Groh, Christian Heinze-
mann, and Matthias Woehrle. Testing deep learning-based visual perception for
automated driving. ACM Trans. Cyber Phys. Syst., 5(4):37:1–37:28, 2021. doi:
10.1145/3450356. URL https://doi.org/10.1145/3450356. 95

Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network
adversarial fairness. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, pp. 2412–2420. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33012412. URL
https://doi.org/10.1609/aaai.v33i01.33012412. 95

Ahmed Alaa and Mihaela Van Der Schaar. Discriminative jackknife: Quantifying uncer-
tainty in deep learning via higher-order influence functions. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 165–174. PMLR, 7 2020.
URL http://proceedings.mlr.press/v119/alaa20a.html. 38

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman,
and Karen Simonyan. Flamingo: a visual language model for few-shot learning. CoRR,
abs/2204.14198, 2022. doi: 10.48550/arXiv.2204.14198. URL https://doi.org/10.4
8550/arXiv.2204.14198. 132

181

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/3450356
https://doi.org/10.1609/aaai.v33i01.33012412
http://proceedings.mlr.press/v119/alaa20a.html
https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.48550/arXiv.2204.14198

Bibliography

Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. CoRR, abs/1901.09069,
2019. 42

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential
regression. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 14927–14937, 2020.
URL https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee
9f607f3f7d18f-Paper.pdf. 4, 31, 72, 112

Idan Amir, Tomer Koren, and Roi Livni. SGD generalizes better than GD (and regu-
larization doesn’t help). In Mikhail Belkin and Samory Kpotufe (eds.), Conference
on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, vol-
ume 134 of Proceedings of Machine Learning Research, pp. 63–92. PMLR, 2021. URL
http://proceedings.mlr.press/v134/amir21a.html. 19

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. CoRR, abs/1606.06565, 2016. URL
http://arxiv.org/abs/1606.06565. 1, 43

Animashree Anandkumar, Daniel J. Hsu, and Sham M. Kakade. A method of moments
for mixture models and hidden Markov models. In Shie Mannor, Nathan Srebro, and
Robert C. Williamson (eds.), COLT 2012 - The 25th Annual Conference on Learning
Theory, June 25-27, 2012, Edinburgh, Scotland, volume 23 of JMLR Proceedings, pp.
33.1–33.34. JMLR.org, 2012. URL http://proceedings.mlr.press/v23/anandkumar
12/anandkumar12.pdf. 44

Vincent Aravantinos and Peter Schlicht. Making the relationship between uncertainty
estimation and safety less uncertain. In 2020 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020, pp. 1139–
1144. IEEE, 2020. doi: 10.23919/DATE48585.2020.9116541. URL https://doi.org/
10.23919/DATE48585.2020.9116541. 91

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 214–223. PMLR, 8 2017. URL https://proceedings.mlr.press/v70/
arjovsky17a.html. 22, 69

Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R
Meyer, Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A
Hoffman, et al. The lung image database consortium (LIDC) and image database
resource initiative (IDRI): a completed reference database of lung nodules on CT scans.
Medical physics, 38(2):915–931, 2011. 3

Matthew Arnold, Rachel K. E. Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,
Aleksandra Mojsilovic, Ravi Nair, Karthikeyan Natesan Ramamurthy, Alexandra

182

https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
http://proceedings.mlr.press/v134/amir21a.html
http://arxiv.org/abs/1606.06565
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
https://doi.org/10.23919/DATE48585.2020.9116541
https://doi.org/10.23919/DATE48585.2020.9116541
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html

Bibliography

Olteanu, David Piorkowski, Darrell Reimer, John T. Richards, Jason Tsay, and Kush R.
Varshney. Factsheets: Increasing trust in AI services through supplier’s declarations of
conformity. IBM J. Res. Dev., 63(4/5):6:1–6:13, 2019. doi: 10.1147/JRD.2019.2942288.
URL https://doi.org/10.1147/JRD.2019.2942288. 95, 130

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges,
methods and progress. Artif. Intell., 297:103500, 2021. doi: 10.1016/j.artint.2021.103500.
URL https://doi.org/10.1016/j.artint.2021.103500. 131

Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed representation
of biological sequences for deep proteomics and genomics. PloS One, 10(11):e0141287,
2015. 42

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.),
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/ab
s/1409.0473. 42

Lalit Bahl, Peter Brown, Peter De Souza, and Robert Mercer. Maximum mutual in-
formation estimation of hidden Markov model parameters for speech recognition. In
ICASSP’86. IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 11, pp. 49–52. IEEE, 1986. 42

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018. 44

Leonardo Baldassini and Jose Antonio Rodríguez Serrano. client2vec: towards systematic
baselines for banking applications. arXiv preprint arXiv:1802.04198, 2018. 42

Pierre Baldi and Yves Chauvin. Smooth on-line learning algorithms for hidden Markov
models. Neural Computation, 6(2):307–318, 1994. 44

Wentao Bao, Qi Yu, and Yu Kong. Uncertainty-based traffic accident anticipation with
spatio-temporal relational learning. In Chang Wen Chen, Rita Cucchiara, Xian-Sheng
Hua, Guo-Jun Qi, Elisa Ricci, Zhengyou Zhang, and Roger Zimmermann (eds.), MM ’20:
The 28th ACM International Conference on Multimedia, Virtual Event / Seattle, WA,
USA, October 12-16, 2020, pp. 2682–2690. ACM, 2020. doi: 10.1145/3394171.3413827.
URL https://doi.org/10.1145/3394171.3413827. 121

Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani.
Predictive inference with the jackknife+. The Annals of Statistics, 49(1):486 – 507,
2021. doi: 10.1214/20-AOS1965. URL https://doi.org/10.1214/20-AOS1965. 4, 38

Jonathan T. Barron. A general and adaptive robust loss function. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,

183

https://doi.org/10.1147/JRD.2019.2942288
https://doi.org/10.1016/j.artint.2021.103500
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/3394171.3413827
https://doi.org/10.1214/20-AOS1965

Bibliography

June 16-20, 2019, pp. 4331–4339. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00446. URL http://openaccess.thecvf.com/content_CVPR_2
019/html/Barron_A_General_and_Adaptive_Robust_Loss_Function_CVPR_2019_p
aper.html. 18

Sue Becker and Yann LeCun. Improving the convergence of back-propagation learning
with second order methods. In David S. Touretzky, Geoffrey E. Hinton, and Terrence J.
Sejnowski (eds.), Proceedings of the 1988 Connectionist Models Summer School, pp.
29–37. San Francisco, CA: Morgan Kaufmann, 1989. 33

Tristan Bepler and Bonnie Berger. Learning protein sequence embeddings using information
from structure. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019. 53

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge
Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids
research, 28(1):235–242, 2000. 50, 51

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738. 3, 20, 21,
32, 33, 36, 37, 41, 46, 84

David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures.
Bayesian Analysis, 1(1):121 – 143, 2006. doi: 10.1214/06-BA104. URL https:
//doi.org/10.1214/06-BA104. 39

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.
21

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 1613–1622, Lille, France, 7 2015. PMLR. URL
https://proceedings.mlr.press/v37/blundell15.html. 33

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016. 1

Léon Bottou. On-Line Learning and Stochastic Approximations, pp. 9–42. Cambridge
University Press, USA, 1999. ISBN 0521652634. 19

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pp. 177–186. Springer, 2010. 48

184

http://openaccess.thecvf.com/content_CVPR_2019/html/Barron_A_General_and_Adaptive_Robust_Loss_Function_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Barron_A_General_and_Adaptive_Robust_Loss_Function_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Barron_A_General_and_Adaptive_Robust_Loss_Function_CVPR_2019_paper.html
https://doi.org/10.1214/06-BA104
https://doi.org/10.1214/06-BA104
https://proceedings.mlr.press/v37/blundell15.html

Bibliography

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Rev., 60(2):223–311, 2018. doi: 10.1137/16M1080173. URL
https://doi.org/10.1137/16M1080173. 19

Hervé Bourlard, Nelson Morgan, and Steve Renals. Neural nets and hidden Markov
models: Review and generalizations. Speech Communication, 11(2-3):237–246, 1992. 44

Houssem Ben Braiek and Foutse Khomh. On testing machine learning programs. J. Syst.
Softw., 164:110542, 2020. doi: 10.1016/j.jss.2020.110542. URL https://doi.org/10.1
016/j.jss.2020.110542. 96

Martin Brandt, Compton J Tucker, Ankit Kariryaa, Kjeld Rasmussen, Christin Abel,
Jennifer Small, Jerome Chave, Laura Vang Rasmussen, Pierre Hiernaux, Abdoul Aziz
Diouf, et al. An unexpectedly large count of trees in the West African Sahara and
Sahel. Nature, 587(7832):78–82, 2020. 82

Wieland Brendel and Matthias Bethge. Approximating CNNs with bag-of-local-features
models works surprisingly well on ImageNet. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=SkfMWhAqYQ. 95

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.h
tml. 132

Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger, Gillian
Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, et al. Toward
trustworthy AI development: Mechanisms for supporting verifiable claims. arXiv
preprint arXiv:2004.07213, 2020. 43

David R. Burt, Carl Edward Rasmussen, and Mark van der Wilk. Rates of convergence
for sparse variational gaussian process regression. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pp. 862–871. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/burt19a.html. 34

185

https://doi.org/10.1137/16M1080173
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542
https://openreview.net/forum?id=SkfMWhAqYQ
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://proceedings.mlr.press/v97/burt19a.html
http://proceedings.mlr.press/v97/burt19a.html

Bibliography

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes:
A multimodal dataset for autonomous driving. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pp. 11618–11628. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CV
PR42600.2020.01164. URL https://openaccess.thecvf.com/content_CVPR_2020/
html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2
020_paper.html. 84

Yuanqiang Cai, Longyin Wen, Libo Zhang, Dawei Du, and Weiqiang Wang. Rethinking
object detection in retail stores. In Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 947–954. AAAI Press,
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/16178. 82

Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering
based on hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing
Cao, Hiroshi Motoda, and Guandong Xu (eds.), Advances in Knowledge Discovery
and Data Mining, 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia,
April 14-17, 2013, Proceedings, Part II, volume 7819 of Lecture Notes in Computer
Science, pp. 160–172. Springer, 2013. doi: 10.1007/978-3-642-37456-2_14. URL
https://doi.org/10.1007/978-3-642-37456-2_14. 84

Challenging Traffic Scenes, 2022. top left: https://commons.m.wikimedia.org/wiki
/File:Manifestacio_en_Erevano_la_23-an_de_novembro_2021_%2801%29_10.jpg,
top middle: https://commons.wikimedia.org/wiki/File:Jersey_Town_Criterium
_2010_recumbent_056.jpg, top right: https://static.independent.co.uk/s3fs-
public/thumbnails/image/2015/08/03/18/minioncrop.jpg, with kind permission
of Erin Van Londen, bottom left: https://commons.wikimedia.org/wiki/File:Hara
juku_-_pedestrians_on_Omotesando_07_%2815716216586%29.jpg, bottom middle:
https://commons.wikimedia.org/wiki/File:Road_for_Cow_-_panoramio.jpg,
bottom right: https://picryl.com/media/members-of-the-combined-allie
d-parachute-demonstration-team-land-on-17th-of-141be9 (all accessed on
2022-07-06). 2

Fu-Hsiang Chan, Yu-Ting Chen, Yu Xiang, and Min Sun. Anticipating accidents in
dashcam videos. In Shang-Hong Lai, Vincent Lepetit, Ko Nishino, and Yoichi Sato
(eds.), Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision,
Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part IV, volume 10114
of Lecture Notes in Computer Science, pp. 136–153. Springer, 2016. doi: 10.1007/978-3-
319-54190-7_9. URL https://doi.org/10.1007/978-3-319-54190-7_9. 121

186

https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
https://ojs.aaai.org/index.php/AAAI/article/view/16178
https://doi.org/10.1007/978-3-642-37456-2_14
https://commons.m.wikimedia.org/wiki/File:Manifestacio_en_Erevano_la_23-an_de_novembro_2021_%2801%29_10.jpg
https://commons.m.wikimedia.org/wiki/File:Manifestacio_en_Erevano_la_23-an_de_novembro_2021_%2801%29_10.jpg
https://commons.wikimedia.org/wiki/File:Jersey_Town_Criterium_2010_recumbent_056.jpg
https://commons.wikimedia.org/wiki/File:Jersey_Town_Criterium_2010_recumbent_056.jpg
https://static.independent.co.uk/s3fs-public/thumbnails/image/2015/08/03/18/minioncrop.jpg
https://static.independent.co.uk/s3fs-public/thumbnails/image/2015/08/03/18/minioncrop.jpg
https://commons.wikimedia.org/wiki/File:Harajuku_-_pedestrians_on_Omotesando_07_%2815716216586%29.jpg
https://commons.wikimedia.org/wiki/File:Harajuku_-_pedestrians_on_Omotesando_07_%2815716216586%29.jpg
https://commons.wikimedia.org/wiki/File:Road_for_Cow_-_panoramio.jpg
https://picryl.com/media/members-of-the-combined-allied-parachute-demonstration-team-land-on-17th-of-141be9
https://picryl.com/media/members-of-the-combined-allied-parachute-demonstration-team-land-on-17th-of-141be9
https://doi.org/10.1007/978-3-319-54190-7_9

Bibliography

Robin Chan, Matthias Rottmann, Fabian Hüger, Peter Schlicht, and Hanno Gottschalk.
Application of decision rules for handling class imbalance in semantic segmentation.
CoRR, abs/1901.08394, 2019. URL http://arxiv.org/abs/1901.08394. 113

Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior network:
Uncertainty estimation without OOD samples via density-based pseudo-counts. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/0eac690
d7059a8de4b48e90f14510391-Abstract.html. 111

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4):359–394, 1999. 42

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte
Carlo. In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference
Proceedings, pp. 1683–1691. JMLR.org, 2014. URL http://proceedings.mlr.press/
v32/cheni14.html. 36

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pp. 1597–1607. PMLR,
2020. URL http://proceedings.mlr.press/v119/chen20j.html. 11, 13

François Chollet. Xception: Deep learning with depthwise separable convolutions. In
2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pp. 1800–1807. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.195. URL https://doi.org/10.1109/CVPR.2017.195. 35

K Alec Chrystal, Paul D Mizen, and PD Mizen. Goodhart’s law: its origins, meaning
and implications for monetary policy. Central banking, monetary theory and practice:
Essays in honour of Charles Goodhart, 1:221–243, 2003. 108

Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty
toolbox: an open-source library for assessing, visualizing, and improving uncertainty
quantification. CoRR, abs/2109.10254, 2021a. URL https://arxiv.org/abs/2109.1
0254. 96, 125

Youngseog Chung, Willie Neiswanger, Ian Char, and Jeff Schneider. Beyond pinball loss:
Quantile methods for calibrated uncertainty quantification. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,

187

http://arxiv.org/abs/1901.08394
https://proceedings.neurips.cc/paper/2020/hash/0eac690d7059a8de4b48e90f14510391-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0eac690d7059a8de4b48e90f14510391-Abstract.html
http://proceedings.mlr.press/v32/cheni14.html
http://proceedings.mlr.press/v32/cheni14.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR.2017.195
https://arxiv.org/abs/2109.10254
https://arxiv.org/abs/2109.10254

Bibliography

virtual, pp. 10971–10984, 2021b. URL https://proceedings.neurips.cc/paper/202
1/hash/5b168fdba5ee5ea262cc2d4c0b457697-Abstract.html. 32

Anthony Corso, Robert J. Moss, Mark Koren, Ritchie Lee, and Mykel J. Kochenderfer. A
survey of algorithms for black-box safety validation of cyber-physical systems. J. Artif.
Intell. Res., 72:377–428, 2021. doi: 10.1613/jair.1.12716. URL https://doi.org/10.1
613/jair.1.12716. 96

George Cybenko and Valentino Crespi. Learning hidden Markov models using nonnegative
matrix factorization. IEEE Transactions on Information Theory, 57(6):3963–3970, 2011.
44

Andreas C. Damianou and Neil D. Lawrence. Deep Gaussian processes. In Proceedings of
the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, volume 31 of JMLR Workshop and
Conference Proceedings, pp. 207–215. JMLR.org, 2013. URL http://proceedings.ml
r.press/v31/damianou13a.html. 34

Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22,
1983. 39, 105

Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Ludolf Erwin
Meester. A Modern Introduction to Probability and Statistics: Understanding why and
how. Springer Science & Business Media, 2005. 63

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series
B (Methodological), 39(1):1–22, 1977. 42

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer,
Geoff Zweig, Xiaodong He, Jason Williams, et al. Recent advances in deep learning
for speech research at Microsoft. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 8604–8608. IEEE, 2013. 42

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics,
2019. doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/n19-1423.
11, 13, 42

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml. 71

188

https://proceedings.neurips.cc/paper/2021/hash/5b168fdba5ee5ea262cc2d4c0b457697-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5b168fdba5ee5ea262cc2d4c0b457697-Abstract.html
https://doi.org/10.1613/jair.1.12716
https://doi.org/10.1613/jair.1.12716
http://proceedings.mlr.press/v31/damianou13a.html
http://proceedings.mlr.press/v31/damianou13a.html
https://doi.org/10.18653/v1/n19-1423
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

Nikita Durasov, Timur M. Bagautdinov, Pierre Baqué, and Pascal Fua. Masksembles
for uncertainty estimation. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 13539–13548. Computer Vision
Foundation / IEEE, 2021. URL https://openaccess.thecvf.com/content/CVPR20
21/html/Durasov_Masksembles_for_Uncertainty_Estimation_CVPR_2021_paper
.html. 4, 38

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel.
Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 214–226, 2012. 43

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Barry W. Boehm, David Garlan, and
Jeff Kramer (eds.), Proceedings of the 1999 International Conference on Software
Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, pp. 411–420. ACM,
1999. doi: 10.1145/302405.302672. URL https://doi.org/10.1145/302405.302672.
92

Marie-Aude Esteve, Joost-Pieter Katoen, Viet Yen Nguyen, Bart Postma, and Yuri
Yushtein. Formal correctness, safety, dependability, and performance analysis of a
satellite. In Martin Glinz, Gail C. Murphy, and Mauro Pezzè (eds.), 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
pp. 1022–1031. IEEE Computer Society, 2012. doi: 10.1109/ICSE.2012.6227118. URL
https://doi.org/10.1109/ICSE.2012.6227118. 92

European Commission. Proposal for a regulation laying down harmonised rules on artificial
intelligence, 2021. URL https://digital-strategy.ec.europa.eu/en/library/pro
posal-regulation-laying-down-harmonised-rules-artificial-intelligence.
(accessed on 2021-05-26). 94, 125

Executive Office of the U.S. President. Guidance for regulation of artificial intelligence
applications, 2020. URL https://www.whitehouse.gov/wp-content/uploads/2020
/11/M-21-06.pdf. (accessed on 2021-05-26). 94

Xinjie Fan, Shujian Zhang, Korawat Tanwisuth, Xiaoning Qian, and Mingyuan Zhou.
Contextual dropout: An efficient sample-dependent dropout module. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=ct8_a9h1M.
4

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex SGD escaping
from saddle points. In Alina Beygelzimer and Daniel Hsu (eds.), Conference on
Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of
Proceedings of Machine Learning Research, pp. 1192–1234. PMLR, 2019. URL http:
//proceedings.mlr.press/v99/fang19a.html. 19

189

https://openaccess.thecvf.com/content/CVPR2021/html/Durasov_Masksembles_for_Uncertainty_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Durasov_Masksembles_for_Uncertainty_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Durasov_Masksembles_for_Uncertainty_Estimation_CVPR_2021_paper.html
https://doi.org/10.1145/302405.302672
https://doi.org/10.1109/ICSE.2012.6227118
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf
https://www.whitehouse.gov/wp-content/uploads/2020/11/M-21-06.pdf
https://openreview.net/forum?id=ct8_a9h1M
http://proceedings.mlr.press/v99/fang19a.html
http://proceedings.mlr.press/v99/fang19a.html

Bibliography

Di Feng, Lars Rosenbaum, Claudius Gläser, Fabian Timm, and Klaus Dietmayer. Can
we trust you? on calibration of a probabilistic object detector for autonomous driving.
CoRR, abs/1909.12358, 2019. URL http://arxiv.org/abs/1909.12358. 65

Di Feng, Ali Harakeh, Steven L. Waslander, and Klaus Dietmayer. A review and
comparative study on probabilistic object detection in autonomous driving. CoRR,
abs/2011.10671, 2020. URL https://arxiv.org/abs/2011.10671. 87, 88

Hans Fischer. A history of the central limit theorem: From classical to modern probability
theory. Springer, 2011. 20

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
‘In-between’ uncertainty in Bayesian neural networks. ICML Workshop on Uncertainty
and Robustness in Deep Learning, 2019. 74

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective. NeurIPS Workshop on Bayesian Deep Learning, 2019. 38

Nick Foti, Jason Xu, Dillon Laird, and Emily Fox. Stochastic variational inference for
hidden Markov models. In Advances in Neural Information Processing Systems, pp.
3599–3607, 2014. 44

Rongrong Fu, Hong Wang, and Wenbo Zhao. Dynamic driver fatigue detection using
hidden Markov model in real driving condition. Expert Systems with Applications, 63:
397–411, 2016. 42

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual
pattern recognition. Neural Networks, 1(2):119–130, 1988. doi: 10.1016/0893-6080(88)9
0014-7. URL https://doi.org/10.1016/0893-6080(88)90014-7. 15, 16

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016. 27

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli
approximate variational inference. CoRR, abs/1506.02158, 2015. URL http://arxiv.
org/abs/1506.02158. 35

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger
(eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp. 1050–1059, New York, New York,
USA, 6 2016a. PMLR. URL http://proceedings.mlr.press/v48/gal16.html. 4,
34, 35, 39, 62, 72, 74, 112, 127, 131

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing

190

http://arxiv.org/abs/1909.12358
https://arxiv.org/abs/2011.10671
https://doi.org/10.1016/0893-6080(88)90014-7
http://arxiv.org/abs/1506.02158
http://arxiv.org/abs/1506.02158
http://proceedings.mlr.press/v48/gal16.html

Bibliography

Systems 29: Annual Conference on Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain, pp. 1019–1027, 2016b. URL https://proceedings.ne
urips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html.
35

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 3581–3590, 2017. URL https://proceedings.neurips.cc/pap
er/2017/hash/84ddfb34126fc3a48ee38d7044e87276-Abstract.html. 6, 35, 72

Sujan Sai Gannamaneni, Sebastian Houben, and Maram Akila. Semantic concept testing
in autonomous driving by extraction of object-level annotations from CARLA. In
IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021,
Montreal, Canada, October 11-17, 2021, pp. 1006–1014. IEEE, 2021. doi: 10.1109/IC
CVW54120.2021.00117. URL https://doi.org/10.1109/ICCVW54120.2021.00117.
114

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the KITTI vision benchmark suite. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pp. 3354–3361.
IEEE Computer Society, 2012. doi: 10.1109/CVPR.2012.6248074. URL https:
//doi.org/10.1109/CVPR.2012.6248074. 4, 84

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent.
Fast approximate natural gradient descent in a Kronecker factored eigenbasis. In
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pp. 9573–9583, 2018. URL https:
//proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a7
0b3-Abstract.html. 33

Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier Ricou, Rupesh Durgesh,
Andrew S. Chung, Lorenz Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebastian
Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Mirashi, Chiragkumar Savani, Martin
Sturm, Oleksandr Vorobiov, Martin Oelker, Sebastian Garreis, and Peter Schuberth.
A2D2: Audi Autonomous Driving Dataset, 2020. URL https://www.a2d2.audi. 4, 84

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock: A regularization method for
convolutional networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10750–10760,

191

https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/84ddfb34126fc3a48ee38d7044e87276-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/84ddfb34126fc3a48ee38d7044e87276-Abstract.html
https://doi.org/10.1109/ICCVW54120.2021.00117
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://www.a2d2.audi

Bibliography

2018. URL https://proceedings.neurips.cc/paper/2018/hash/7edcfb2d8f6a659
ef4cd1e6c9b6d7079-Abstract.html. 25

Soumya Ghosh, Q. Vera Liao, Karthikeyan Natesan Ramamurthy, Jirí Navrátil, Prasanna
Sattigeri, Kush R. Varshney, and Yunfeng Zhang. Uncertainty quantification 360:
A holistic toolkit for quantifying and communicating the uncertainty of AI. CoRR,
abs/2106.01410, 2021. URL https://arxiv.org/abs/2106.01410. 96, 125

Cinzia Giannetti. A framework for improving process robustness with quantifica-
tion of uncertainties in industry 4.0. In Piotr Jedrzejowicz, Tülay Yildirim, and
Ireneusz Czarnowski (eds.), IEEE International Conference on INnovations in In-
telligent SysTems and Applications, INISTA 2017, Gdynia, Poland, July 3-5, 2017,
pp. 189–194. IEEE, 2017. doi: 10.1109/INISTA.2017.8001155. URL https:
//doi.org/10.1109/INISTA.2017.8001155. 91

Ross B. Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1440–1448. IEEE
Computer Society, 2015. doi: 10.1109/ICCV.2015.169. URL https://doi.org/10.1
109/ICCV.2015.169. 18

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), Proceedings of Machine
Learning Research, volume 15, pp. 315–323, Fort Lauderdale, FL, USA, 4 2011. JMLR
Workshop and Conference Proceedings. 152

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378, 2007. doi:
10.1198/016214506000001437. URL https://doi.org/10.1198/016214506000001437.
5

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pp. 2672–2680, 2014. URL https://proceedings.neurip
s.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html. 23

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.
93

192

https://proceedings.neurips.cc/paper/2018/hash/7edcfb2d8f6a659ef4cd1e6c9b6d7079-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7edcfb2d8f6a659ef4cd1e6c9b6d7079-Abstract.html
https://arxiv.org/abs/2106.01410
https://doi.org/10.1109/INISTA.2017.8001155
https://doi.org/10.1109/INISTA.2017.8001155
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1198/016214506000001437
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://arxiv.org/abs/1412.6572

Bibliography

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL
http://www.deeplearningbook.org/. 42

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexan-
der J. Smola. A kernel two-sample test. J. Mach. Learn. Res., 13:723–773, 2012. URL
http://dl.acm.org/citation.cfm?id=2188410. 131

Thomas L Griffiths and Zoubin Ghahramani. The Indian buffet process: An introduction
and review. Journal of Machine Learning Research, 12(Apr):1185–1224, 2011. 44

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 855–864. ACM, 2016. 42

Lars Grunske. Specification patterns for probabilistic quality properties. In Wilhelm
Schäfer, Matthew B. Dwyer, and Volker Gruhn (eds.), 30th International Conference
on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pp. 31–40.
ACM, 2008. doi: 10.1145/1368088.1368094. URL https://doi.org/10.1145/136808
8.1368094. 92

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnera-
bilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733,
2017. 43

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1321–
1330. PMLR, 2017. URL http://proceedings.mlr.press/v70/guo17a.html. 32, 39,
101, 114

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian
Sminchisescu, and Richard Hartley. Calibration of neural networks using splines. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/for
um?id=eQe8DEWNN2W. 32, 39

Fredrik K. Gustafsson, Martin Danelljan, and Thomas B. Schön. Evaluating scalable
Bayesian deep learning methods for robust computer vision. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020,
Seattle, WA, USA, June 14-19, 2020, pp. 1289–1298. Computer Vision Foundation /
IEEE, 2020. doi: 10.1109/CVPRW50498.2020.00167. URL https://openaccess.the
cvf.com/content_CVPRW_2020/html/w20/Gustafsson_Evaluating_Scalable_Bay
esian_Deep_Learning_Methods_for_Robust_Computer_Vision_CVPRW_2020_paper
.html. 38

193

http://www.deeplearningbook.org/
http://dl.acm.org/citation.cfm?id=2188410
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1145/1368088.1368094
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=eQe8DEWNN2W
https://openreview.net/forum?id=eQe8DEWNN2W
https://openaccess.thecvf.com/content_CVPRW_2020/html/w20/Gustafsson_Evaluating_Scalable_Bayesian_Deep_Learning_Methods_for_Robust_Computer_Vision_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w20/Gustafsson_Evaluating_Scalable_Bayesian_Deep_Learning_Methods_for_Robust_Computer_Vision_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w20/Gustafsson_Evaluating_Scalable_Bayesian_Deep_Learning_Methods_for_Robust_Computer_Vision_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w20/Gustafsson_Evaluating_Scalable_Bayesian_Deep_Learning_Methods_for_Robust_Computer_Vision_CVPRW_2020_paper.html

Bibliography

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca D.
Dragan. Inverse reward design. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6765–6774, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/32fda
b6559cdfa4f167f8c31b9199643-Abstract.html. 104

David Hall, Feras Dayoub, John Skinner, Haoyang Zhang, Dimity Miller, Peter Corke,
Gustavo Carneiro, Anelia Angelova, and Niko Sünderhauf. Probabilistic object detection:
Definition and evaluation. In IEEE Winter Conference on Applications of Computer
Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, pp. 1020–1029.
IEEE, 2020. doi: 10.1109/WACV45572.2020.9093599. URL https://doi.org/10.110
9/WACV45572.2020.9093599. 82, 109

Ali Harakeh, Michael Smart, and Steven L. Waslander. BayesOD: A Bayesian approach
for uncertainty estimation in deep object detectors. In 2020 IEEE International
Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August
31, 2020, pp. 87–93. IEEE, 2020. doi: 10.1109/ICRA40945.2020.9196544. URL
https://doi.org/10.1109/ICRA40945.2020.9196544. 31, 88

Alan Hartman. Software and hardware testing using combinatorial covering suites. Journal
of Graph Theory - JGT, 34:237–266, 03 2006. doi: 10.1007/0-387-25036-0_10. 93

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media,
2009. 23, 63

W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970. doi: 10.1093/biomet/57.1.97. URL
http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97. 36

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pp. 1026–1034. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.123. URL
https://doi.org/10.1109/ICCV.2015.123. 15

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE
Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.110
9/CVPR.2016.90. 13

Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding
box regression with uncertainty for accurate object detection. In IEEE Conference

194

https://proceedings.neurips.cc/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html
https://doi.org/10.1109/WACV45572.2020.9093599
https://doi.org/10.1109/WACV45572.2020.9093599
https://doi.org/10.1109/ICRA40945.2020.9196544
http://biomet.oxfordjournals.org/cgi/content/abstract/57/1/97
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Bibliography

on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 2888–2897. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00300. URL http://openaccess.thecvf.com/content_CVPR_2
019/html/He_Bounding_Box_Regression_With_Uncertainty_for_Accurate_Objec
t_Detection_CVPR_2019_paper.html. 103

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with
uncertainty regularization for driving in dense traffic. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=HygQBn0cYm. 102

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. CoRR, abs/1610.02136, 2017. 3, 40

Dan Hendrycks, Steven Basart, Mantas Mazeika, Mohammadreza Mostajabi, Jacob
Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
arXiv preprint arXiv:1911.11132, 2019. 117

James Hensman, Nicoló Fusi, and Neil D. Lawrence. Gaussian processes for big data.
In Ann E. Nicholson and Padhraic Smyth (eds.), Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA,
August 11-15, 2013. AUAI Press, 2013. URL https://dslpitt.org/uai/displayArt
icleDetails.jsp?mmnu=1&smnu=2&article_id=2389&proceeding_id=29. 34

Tom Heskes. Practical confidence and prediction intervals. In Michael Mozer, Michael I.
Jordan, and Thomas Petsche (eds.), Advances in Neural Information Processing Systems
9, NIPS, Denver, CO, USA, December 2-5, 1996, pp. 176–182. MIT Press, 1996. URL
http://papers.nips.cc/paper/1306-practical-confidence-and-prediction-in
tervals. 31

Geoffrey Hinton and Drew van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Lenny Pitt (ed.), Proceedings of the Sixth
Annual ACM Conference on Computational Learning Theory, COLT 1993, Santa Cruz,
CA, USA, July 26-28, 1993, pp. 5–13. ACM, 1993. doi: 10.1145/168304.168306. URL
https://doi.org/10.1145/168304.168306. 33

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012. 42

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.116
2/neco.1997.9.8.1735. 13, 42, 44

195

http://openaccess.thecvf.com/content_CVPR_2019/html/He_Bounding_Box_Regression_With_Uncertainty_for_Accurate_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Bounding_Box_Regression_With_Uncertainty_for_Accurate_Object_Detection_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Bounding_Box_Regression_With_Uncertainty_for_Accurate_Object_Detection_CVPR_2019_paper.html
https://openreview.net/forum?id=HygQBn0cYm
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2389&proceeding_id=29
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2389&proceeding_id=29
http://papers.nips.cc/paper/1306-practical-confidence-and-prediction-intervals
http://papers.nips.cc/paper/1306-practical-confidence-and-prediction-intervals
https://doi.org/10.1145/168304.168306
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography

Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miroslav Dudik, and
Hanna M. Wallach. Improving fairness in machine learning systems: What do industry
practitioners need? In Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and
Vassilis Kostakos (eds.), Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019, pp. 600.
ACM, 2019. doi: 10.1145/3290605.3300830. URL https://doi.org/10.1145/329060
5.3300830. 95

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.101
6/0893-6080(89)90020-8. URL https://doi.org/10.1016/0893-6080(89)90020-8.
15

Sebastian Houben, Stephanie Abrecht, Maram Akila, Andreas Bär, Felix Brockherde,
Patrick Feifel, Tim Fingscheidt, Sujan Sai Gannamaneni, Seyed Eghbal Ghobadi, Ahmed
Hammam, et al. Inspect, understand, overcome: A survey of practical methods for AI
safety. In Deep Neural Networks and Data for Automated Driving - Robustness, Uncer-
tainty Quantification, and Insights Towards Safety. Springer International Publishing,
2022. 1, 95

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp.
2261–2269. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.243. URL
https://doi.org/10.1109/CVPR.2017.243. 35

Kejun Huang, Xiao Fu, and Nicholas D. Sidiropoulos. Learning hidden markov models
from pairwise co-occurrences with application to topic modeling. In Jennifer G. Dy
and Andreas Krause (eds.), Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 2073–2082. PMLR, 2018.
URL http://proceedings.mlr.press/v80/huang18c.html. 44, 48

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics,
pp. 492–518. Springer, 1992. 17

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Mach. Learn., 110(3):457–506, 2021.
doi: 10.1007/s10994-021-05946-3. URL https://doi.org/10.1007/s10994-021-059
46-3. 27, 28

Eddy Ilg, Özgün Çiçek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter,
and Thomas Brox. Uncertainty estimates and multi-hypotheses networks for optical
flow. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
(eds.), Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany,

196

https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/CVPR.2017.243
http://proceedings.mlr.press/v80/huang18c.html
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3

Bibliography

September 8-14, 2018, Proceedings, Part VII, volume 11211 of Lecture Notes in Computer
Science, pp. 677–693. Springer, 2018. doi: 10.1007/978-3-030-01234-2_40. URL
https://doi.org/10.1007/978-3-030-01234-2_40. 109

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis R. Bach and David M. Blei
(eds.), Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pp. 448–456. JMLR.org, 2015. URL http://proceedings.mlr.press/v3
7/ioffe15.html. 24

Fuyuki Ishikawa and Nobukazu Yoshioka. How do engineers perceive difficulties in en-
gineering of machine-learning systems?: questionnaire survey. In Marcus Ciolkowski,
Dusica Marijan, Matthias Galster, Weiyi Shang, Andreas Jedlitschka, Rakesh Shukla,
and Kanchana Padmanabhan (eds.), Proceedings of the Joint 7th International Work-
shop on Conducting Empirical Studies in Industry and 6th International Workshop
on Software Engineering Research and Industrial Practice, CESSER-IP@ICSE 2019,
Montreal, QC, Canada, May 27, 2019, pp. 2–9. IEEE / ACM, 2019. doi: 10.1109/CE
SSER-IP.2019.00009. URL https://dl.acm.org/citation.cfm?id=3338708. 95

ISO/IEC JTC 1/SC 7. ISO/IEC 25000:2014: Systems and software engineering - systems
and software quality requirements and evaluation (SQuaRE) - guide to SQuaRE, 2014.
URL https://www.iso.org/standard/64764.html. 96

ISO TC 22/SC 32. ISO/AWI PAS 8800: Road vehicles — safety and artificial intelligence,
2021. URL https://www.iso.org/standard/83303.html. 95

ISO/IEC JTC 1/SC 42. Standardization in the area of artificial intelligence, 2017. URL
https://www.iso.org/committee/6794475.html. 92, 94

ISO/IEC JTC 1/SC 42. ISO/IEC TR 24028:2020: Information technology - artificial
intelligence - overview of trustworthiness in artificial intelligence, 2020. URL https:
//www.iso.org/standard/77608.html. 94

ISO/IEC JTC 1/SC 42. ISO/IEC TR 24029-1:2021: Artificial intelligence - assessment of
the robustness of neural networks - part 1: Overview, 2021a. URL https://www.iso.
org/standard/77609.html. 94

ISO/IEC JTC 1/SC 42. ISO/IEC CD 42001: Information technology - artificial intelligence
- management system, 2021b. URL https://www.iso.org/standard/81230.html. 94

ISO/IEC JTC 1/SC 7. ISO/IEC/IEEE 15026-1:2019: Systems and software engineering
- systems and software assurance - part 1: Concepts and vocabulary, 2019. URL
https://www.iso.org/standard/73567.html. 95

ISO/TC 22/SC 32. ISO 26262-1:2018: Road vehicles - functional safety - part 1: Vocabu-
lary, 2018. URL https://www.iso.org/standard/68383.html. 96

197

https://doi.org/10.1007/978-3-030-01234-2_40
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://dl.acm.org/citation.cfm?id=3338708
https://www.iso.org/standard/64764.html
https://www.iso.org/standard/83303.html
https://www.iso.org/committee/6794475.html
https://www.iso.org/standard/77608.html
https://www.iso.org/standard/77608.html
https://www.iso.org/standard/77609.html
https://www.iso.org/standard/77609.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/73567.html
https://www.iso.org/standard/68383.html

Bibliography

Jessica S Jermakian and David S Zuby. Primary pedestrian crash scenarios: factors
relevant to the design of pedestrian detection systems. Insurance Institute for Highway
Safety, Arlington, VA, 2011. 121

Weiqi Ji, Zhuyin Ren, and Chung K. Law. Uncertainty propagation in deep neural network
using active subspace. CoRR, abs/1903.03989, 2019. URL http://arxiv.org/abs/19
03.03989. 101

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko,
et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):
583–589, 2021. 13

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim
Wirtz, and Stefan Wrobel. Efficient decentralized deep learning by dynamic model
averaging. In Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley,
and Georgiana Ifrim (eds.), Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018,
Proceedings, Part I, volume 11051 of Lecture Notes in Computer Science, pp. 393–409.
Springer, 2018. doi: 10.1007/978-3-030-10925-7_24. URL https://doi.org/10.100
7/978-3-030-10925-7_24. 112

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak,
David Acuna, Antonio Torralba, and Sanja Fidler. Meta-Sim: Learning to generate
synthetic datasets. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 4550–4559.
IEEE, 2019. doi: 10.1109/ICCV.2019.00465. URL https://doi.org/10.1109/ICCV.2
019.00465. 121

Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lakshminarayanan, Jonathon
Shlens, Michael C. Mozer, and Becca Roelofs. Soft calibration objectives for neural net-
works. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 29768–29779, 2021. URL https://proceedings.ne
urips.cc/paper/2021/hash/f8905bd3df64ace64a68e154ba72f24c-Abstract.html.
40

R. Kavitha, V.R. Kavitha, and N. Suresh Kumar. Requirement based test case prioriti-
zation. In 2010 International Conference on Communication Control and Computing
Technologies, pp. 826–829, 2010. doi: 10.1109/ICCCCT.2010.5670728. 92

Tim Kelly and Rob Weaver. The goal structuring notation – a safety argument notation.
In Proceedings of the Dependable Systems and Networks 2004 Workshop on Assurance
Cases, pp. 6. Citeseer, 2004. 124

198

http://arxiv.org/abs/1903.03989
http://arxiv.org/abs/1903.03989
https://doi.org/10.1007/978-3-030-10925-7_24
https://doi.org/10.1007/978-3-030-10925-7_24
https://doi.org/10.1109/ICCV.2019.00465
https://doi.org/10.1109/ICCV.2019.00465
https://proceedings.neurips.cc/paper/2021/hash/f8905bd3df64ace64a68e154ba72f24c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f8905bd3df64ace64a68e154ba72f24c-Abstract.html

Bibliography

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning
for computer vision? In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5574–5584,
2017. URL https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640
c5e85b2b88265dc2b-Abstract.html. 3, 35, 40, 61, 72, 111

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=H1oyRlYgg. 19

Patrick Kidger and Terry J. Lyons. Universal approximation with deep narrow networks.
In Jacob D. Abernethy and Shivani Agarwal (eds.), Conference on Learning Theory,
COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pp. 2306–2327. PMLR, 2020. URL http://proceeding
s.mlr.press/v125/kidger20a.html. 15

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, pp. 462–466, 1952. 18

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B.
Viégas, and Rory Sayres. Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TCAV). In Jennifer G. Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pp. 2673–2682. PMLR, 2018. URL
http://proceedings.mlr.press/v80/kim18d.html. 95

Byol Kim, Chen Xu, and Rina Barber. Predictive inference is free with the jackknife+-
after-bootstrap. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 4138–4149.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/2b346a0aa375a07f5a90a344a61416c4-Paper.pdf. 38

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1746–1751, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1181. URL https://www.aclweb.org/anthology/D14-1181. 42

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention
networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=HkE0Nvqlg. 42

199

https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://openreview.net/forum?id=H1oyRlYgg
http://proceedings.mlr.press/v125/kidger20a.html
http://proceedings.mlr.press/v125/kidger20a.html
http://proceedings.mlr.press/v80/kim18d.html
https://proceedings.neurips.cc/paper/2020/file/2b346a0aa375a07f5a90a344a61416c4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2b346a0aa375a07f5a90a344a61416c4-Paper.pdf
https://www.aclweb.org/anthology/D14-1181
https://openreview.net/forum?id=HkE0Nvqlg

Bibliography

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980. 19, 48, 55, 72

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings
of the 2nd International Conference on Learning Representations, 2014. 34

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In
Jeanna Neefe Matthews and Thomas E. Anderson (eds.), Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, October 11-14, 2009, pp. 207–220. ACM, 2009. doi: 10.1145/1629575.1629596.
URL https://doi.org/10.1145/1629575.1629596. 92

Moritz Klischat and Matthias Althoff. Generating critical test scenarios for automated
vehicles with evolutionary algorithms. In 2019 IEEE Intelligent Vehicles Symposium,
IV 2019, Paris, France, June 9-12, 2019, pp. 2352–2358. IEEE, 2019. doi: 10.1109/IV
S.2019.8814230. URL https://doi.org/10.1109/IVS.2019.8814230. 121

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena
Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran
Haque, Sara M. Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine,
Chelsea Finn, and Percy Liang. WILDS: A benchmark of in-the-wild distribution
shifts. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pp. 5637–5664. PMLR, 2021. URL
http://proceedings.mlr.press/v139/koh21a.html. 131

Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R.
Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, and Olaf
Ronneberger. A probabilistic u-net for segmentation of ambiguous images. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 6965–6975, 2018. URL https://proceedi
ngs.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstra
ct.html. 3, 112, 113

Philip Koopman. The heavy tail safety ceiling. In Automated and Connected Vehicle
Systems Testing Symposium, volume 1145, 2018. 1

Philip Koopman and Frank Fratrik. How many operational design domains, objects, and
events? In Huáscar Espinoza, Seán Ó hÉigeartaigh, Xiaowei Huang, José Hernández-

200

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/IVS.2019.8814230
http://proceedings.mlr.press/v139/koh21a.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html

Bibliography

Orallo, and Mauricio Castillo-Effen (eds.), Workshop on Artificial Intelligence Safety
2019 co-located with the Thirty-Third AAAI Conference on Artificial Intelligence 2019
(AAAI-19), Honolulu, Hawaii, January 27, 2019, volume 2301 of CEUR Workshop
Proceedings, 2019. URL http://ceur-ws.org/Vol-2301/paper_6.pdf. 99

Philip Koopman and Beth Osyk. Safety argument considerations for public road testing
of autonomous vehicles. SAE Technical Paper Series, 2019. 95

Philip Koopman, Uma Ferrell, Frank Fratrik, and Michael D. Wagner. A safety standard
approach for fully autonomous vehicles. In Alexander B. Romanovsky, Elena Troubitsyna,
Ilir Gashi, Erwin Schoitsch, and Friedemann Bitsch (eds.), Computer Safety, Reliability,
and Security - SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE,
and WAISE, Turku, Finland, September 10, 2019, Proceedings, volume 11699 of Lecture
Notes in Computer Science, pp. 326–332. Springer, 2019. doi: 10.1007/978-3-030-2625
0-1_26. URL https://doi.org/10.1007/978-3-030-26250-1_26. 95

Ranganath Krishnan and Omesh Tickoo. Improving model calibration with accuracy versus
uncertainty optimization. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/d3d9446802a44259755d38e6d163e820-Abstract.h
tml. 40

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher
J. C. Burges, Léon Bottou, and Kilian Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, pp. 1106–1114, 2012. URL https://proceedings.neurips.cc
/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html. 17

Nathan P. Kropp, Philip J. Koopman Jr., and Daniel P. Siewiorek. Automated robustness
testing of off-the-shelf software components. In Digest of Papers: FTCS-28, The
Twenty-Eigth Annual International Symposium on Fault-Tolerant Computing, Munich,
Germany, June 23-25, 1998, pp. 230–239. IEEE Computer Society, 1998. doi: 10.1109/
FTCS.1998.689474. URL https://doi.org/10.1109/FTCS.1998.689474. 92

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng., 30(6):418–421, 2004.
doi: 10.1109/TSE.2004.24. URL https://doi.org/10.1109/TSE.2004.24. 120

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for
deep learning using calibrated regression. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, volume 80

201

http://ceur-ws.org/Vol-2301/paper_6.pdf
https://doi.org/10.1007/978-3-030-26250-1_26
https://proceedings.neurips.cc/paper/2020/hash/d3d9446802a44259755d38e6d163e820-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d3d9446802a44259755d38e6d163e820-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d3d9446802a44259755d38e6d163e820-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/FTCS.1998.689474
https://doi.org/10.1109/TSE.2004.24

Bibliography

of Proceedings of Machine Learning Research, pp. 2796–2804. PMLR, 7 2018. URL
http://proceedings.mlr.press/v80/kuleshov18a.html. 32, 39

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 3787–3798, 2019. URL
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b
1a494967f-Abstract.html. 32

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for neural
networks from kernel mean embeddings. In Jennifer G. Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 2810–2819. PMLR, 2018. URL http://proceedings.
mlr.press/v80/kumar18a.html. 40

Balaji Lakshminarayanan and Raviv Raich. Non-negative matrix factorization for param-
eter estimation in hidden Markov models. In 2010 IEEE International Workshop on
Machine Learning for Signal Processing, pp. 89–94. IEEE, 2010. 44

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6402–6413, 2017. URL https://proceedings.neurips.cc/p
aper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html. 37, 61, 72,
111

Henry Jacob Landau. Sampling, data transmission, and the Nyquist rate. Proceedings of
the IEEE, 55(10):1701–1706, 1967. doi: 10.1109/PROC.1967.5962. 66

Quoc V. Le and Tomás Mikolov. Distributed representations of sentences and documents.
In Proceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference
Proceedings, pp. 1188–1196. JMLR.org, 2014. URL http://proceedings.mlr.press/
v32/le14.html. 42

Colin Lea, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolutional
networks: A unified approach to action segmentation. In Gang Hua and Hervé Jégou
(eds.), Computer Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands,
October 8-10 and 15-16, 2016, Proceedings, Part III, volume 9915 of Lecture Notes
in Computer Science, pp. 47–54, 2016. doi: 10.1007/978-3-319-49409-8_7. URL
https://doi.org/10.1007/978-3-319-49409-8_7. 17

202

http://proceedings.mlr.press/v80/kuleshov18a.html
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
http://proceedings.mlr.press/v80/kumar18a.html
http://proceedings.mlr.press/v80/kumar18a.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1007/978-3-319-49409-8_7

Bibliography

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a
back-propagation network. In David S. Touretzky (ed.), Advances in Neural Information
Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30,
1989], pp. 396–404, 1989. URL http://papers.nips.cc/paper/293-handwritten-d
igit-recognition-with-a-back-propagation-network. 17

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with
gradient-based learning. In David A. Forsyth, Joseph L. Mundy, Vito Di Gesù, and
Roberto Cipolla (eds.), Shape, Contour and Grouping in Computer Vision, volume 1681
of Lecture Notes in Computer Science, pp. 319. Springer, 1999. doi: 10.1007/3-540-46
805-6_19. URL https://doi.org/10.1007/3-540-46805-6_19. 15

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015. 42

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999. 44

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL https://openreview.net/forum?id=B1EA-M-0Z. 54

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir
(eds.), Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York,
USA, June 23-26, 2016, volume 49 of JMLR Workshop and Conference Proceedings, pp.
1246–1257. JMLR.org, 2016. URL http://proceedings.mlr.press/v49/lee16.html.
19

Brian G Leroux. Maximum-likelihood estimation for hidden Markov models. Stochastic
Processes and Their Applications, 40(1):127–143, 1992. 42

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers.
In W. Bruce Croft and C. J. van Rijsbergen (eds.), Proceedings of the 17th Annual
International ACM-SIGIR Conference on Research and Development in Information
Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), pp.
3–12. ACM/Springer, 1994. doi: 10.1007/978-1-4471-2099-5_1. URL https:
//doi.org/10.1007/978-1-4471-2099-5_1. 92

Yang Li and Tao Yang. Word embedding for understanding natural language: a survey.
In Guide to Big Data Applications, pp. 83–104. Springer, 2018. 42

203

http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
https://doi.org/10.1007/3-540-46805-6_19
https://openreview.net/forum?id=B1EA-M-0Z
http://proceedings.mlr.press/v49/lee16.html
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1

Bibliography

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J.
Belongie. Feature pyramid networks for object detection. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pp. 936–944. IEEE Computer Society, 2017a. doi: 10.1109/CVPR.2017.106. URL
https://doi.org/10.1109/CVPR.2017.106. 87

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pp. 2999–3007. IEEE Computer Society, 2017b.
doi: 10.1109/ICCV.2017.324. URL https://doi.org/10.1109/ICCV.2017.324. 7, 17,
18, 82, 87

Jeremiah Z. Liu, John W. Paisley, Marianthi-Anna Kioumourtzoglou, and Brent A.
Coull. Accurate uncertainty estimation and decomposition in ensemble learning. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8950–8961, 2019. URL
https://proceedings.neurips.cc/paper/2019/hash/1cc8a8ea51cd0adddf5dab5
04a285915-Abstract.html. 27, 38, 112

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul W. Fieguth, Jie Chen, Xinwang Liu,
and Matti Pietikäinen. Deep learning for generic object detection: A survey. Int.
J. Comput. Vis., 128(2):261–318, 2020. doi: 10.1007/s11263-019-01247-4. URL
https://doi.org/10.1007/s11263-019-01247-4. 82

Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng. Early
diagnosis of Alzheimer’s disease with deep learning. In IEEE 11th International
Symposium on Biomedical Imaging, ISBI 2014, April 29 - May 2, 2014, Beijing, Chin,
Beijing, China, pp. 1015–1018. IEEE, 2014. doi: 10.1109/ISBI.2014.6868045. URL
https://doi.org/10.1109/ISBI.2014.6868045. 1

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part I, volume 9905 of Lecture Notes in Computer Science, pp. 21–37. Springer, 2016.
doi: 10.1007/978-3-319-46448-0_2. URL https://doi.org/10.1007/978-3-319-46
448-0_2. 17, 18

Charles F. Van Loan. The ubiquitous Kronecker product. Journal of Computational and
Applied Mathematics, 123(1):85–100, 2000. ISSN 0377-0427. doi: https://doi.org/10.101
6/S0377-0427(00)00393-9. URL https://www.sciencedirect.com/science/articl
e/pii/S0377042700003939. Numerical Analysis 2000. Vol. III: Linear Algebra. 33

204

https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/ICCV.2017.324
https://proceedings.neurips.cc/paper/2019/hash/1cc8a8ea51cd0adddf5dab504a285915-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1cc8a8ea51cd0adddf5dab504a285915-Abstract.html
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1109/ISBI.2014.6868045
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://www.sciencedirect.com/science/article/pii/S0377042700003939
https://www.sciencedirect.com/science/article/pii/S0377042700003939

Bibliography

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 3431–3440. IEEE
Computer Society, 2015. doi: 10.1109/CVPR.2015.7298965. URL https://doi.org/
10.1109/CVPR.2015.7298965. 17

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards understanding
regularization in batch normalization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=HJlLKjR9FQ. 24

Lucy Ellen Lwakatare, Aiswarya Raj, Ivica Crnkovic, Jan Bosch, and Helena Holmström
Olsson. Large-scale machine learning systems in real-world industrial settings: A review
of challenges and solutions. Inf. Softw. Technol., 127:106368, 2020. doi: 10.1016/j.infs
of.2020.106368. URL https://doi.org/10.1016/j.infsof.2020.106368. 95

Yi-An Ma, Nicholas J. Foti, and Emily B. Fox. Stochastic gradient MCMC methods for
hidden Markov models. In Doina Precup and Yee Whye Teh (eds.), Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pp. 2265–2274. PMLR, 2017. URL http://proceedings.mlr.press/v70/ma17a.html.
44

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, Atlanta, Georgia, 2013. 15

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete distribution: A
continuous relaxation of discrete random variables. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
S1jE5L5gl. 35

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32, 2019. URL https://proceeding
s.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf.
4, 37, 72, 113

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=rJzIBfZAb. 95, 125

205

https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://openreview.net/forum?id=HJlLKjR9FQ
https://doi.org/10.1016/j.infsof.2020.106368
http://proceedings.mlr.press/v70/ma17a.html
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://openreview.net/forum?id=rJzIBfZAb

Bibliography

Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Testing techniques for
hardware security. In Douglas Young and Nur A. Touba (eds.), 2008 IEEE International
Test Conference, ITC 2008, Santa Clara, California, USA, October 26-31, 2008, pp.
1–10. IEEE Computer Society, 2008. doi: 10.1109/TEST.2008.4700636. URL
https://doi.org/10.1109/TEST.2008.4700636. 92

Andrey Malinin and Mark J. F. Gales. Predictive uncertainty estimation via prior
networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 7047–7058, 2018.
URL https://proceedings.neurips.cc/paper/2018/hash/3ea2db50e62ceefceaf
70a9d9a56a6f4-Abstract.html. 27, 90, 111, 112

Andrey Malinin, Bruno Mlodozeniec, and Mark J. F. Gales. Ensemble distribution
distillation. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://open
review.net/forum?id=BygSP6Vtvr. 4

Andrey Malinin, Neil Band, Yarin Gal, Mark J. F. Gales, Alexander Ganshin, Ger-
man Chesnokov, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan
Provilkov, Vatsal Raina, Vyas Raina, Denis Roginskiy, Mariya Shmatova, Panagiotis
Tigas, and Boris Yangel. Shifts: A dataset of real distributional shift across multi-
ple large-scale tasks. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad6
1ab143223efbc24c7d2583be69251-Abstract-round2.html. 131

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as
approximate Bayesian inference. J. Mach. Learn. Res., 18:134:1–134:35, 2017. URL
http://jmlr.org/papers/v18/17-214.html. 36

James Martens and Roger B. Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pp. 2408–2417.
JMLR.org, 2015. URL http://proceedings.mlr.press/v37/martens15.html. 33

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural
networks. CoRR, abs/1804.07612, 2018. URL http://arxiv.org/abs/1804.07612.
19

Alexander Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahra-
mani. Gaussian process behaviour in wide deep neural networks. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

206

https://doi.org/10.1109/TEST.2008.4700636
https://proceedings.neurips.cc/paper/2018/hash/3ea2db50e62ceefceaf70a9d9a56a6f4-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3ea2db50e62ceefceaf70a9d9a56a6f4-Abstract.html
https://openreview.net/forum?id=BygSP6Vtvr
https://openreview.net/forum?id=BygSP6Vtvr
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html
http://jmlr.org/papers/v18/17-214.html
http://proceedings.mlr.press/v37/martens15.html
http://arxiv.org/abs/1804.07612

Bibliography

April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=H1-nGgWC-. 54, 55

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Aarti Singh and Xiaojin (Jerry) Zhu (eds.), Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 2017. URL http://proceedings.mlr.press/v54/mcmahan17a.h
tml. 112

Hendrik Meth, Benjamin Müller, and Alexander Maedche. Designing a requirement mining
system. J. Assoc. Inf. Syst., 16(9):2, 2015. URL http://aisel.aisnet.org/jais/vo
l16/iss9/2. 92

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
Journal of Chemical Physics, 21(6):1087–1092, 1953. 36

Frederik Meudt, Martin Theissen, Rudi Schäfer, and Thomas Guhr. Constructing
analytically tractable ensembles of stochastic covariances with an application to fi-
nancial data. Journal of Statistical Mechanics: Theory and Experiment, 2015(11):
P11025, nov 2015. doi: 10.1088/1742-5468/2015/11/p11025. URL https:
//doi.org/10.1088/1742-5468/2015/11/p11025. 131

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Yoshua Bengio and Yann LeCun (eds.), 1st
International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings, 2013a. URL http://arxiv.org/ab
s/1301.3781. 42

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. In Christo-
pher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 26: 27th Annual Confer-
ence on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States, pp. 3111–3119, 2013b. URL
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4
923ce901b-Abstract.html. 6, 42, 45, 127

Tomás Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continu-
ous space word representations. In Proceedings of the 2013 Conference of the North
American Chapter of the Association For Computational Linguistics: Human Language
Technologies, pp. 746–751, 2013c. 42

207

https://openreview.net/forum?id=H1-nGgWC-
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://aisel.aisnet.org/jais/vol16/iss9/2
http://aisel.aisnet.org/jais/vol16/iss9/2
https://doi.org/10.1088/1742-5468/2015/11/p11025
https://doi.org/10.1088/1742-5468/2015/11/p11025
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

Bibliography

Seonwoo Min, Seunghyun Park, Siwon Kim, Hyun-Soo Choi, and Sungroh Yoon. Pre-
training of deep bidirectional protein sequence representations with structural infor-
mation. Neural Information Processing Systems, Workshop on Learning Meaningful
Representations of Life, 2019. 53

Matiur Rahman Minar and Jibon Naher. Recent advances in deep learning: An overview.
arXiv preprint arXiv:1807.08169, 2018. 42

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for
model reporting. In Danah Boyd and Jamie H. Morgenstern (eds.), Proceedings of the
Conference on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA,
USA, January 29-31, 2019, pp. 220–229. ACM, 2019. doi: 10.1145/3287560.3287596.
URL https://doi.org/10.1145/3287560.3287596. 95, 130

Michael Mock, Stephan Scholz, Frédérik Blank, Fabian Hüger, Andreas J. Rohatschek,
Loren Schwarz, and Thomas Stauner. An integrated approach to a safety argumentation
for AI-based perception functions in automated driving. In Ibrahim Habli, Mark
Sujan, Simos Gerasimou, Erwin Schoitsch, and Friedemann Bitsch (eds.), Computer
Safety, Reliability, and Security. SAFECOMP 2021 Workshops - DECSoS, MAPSOD,
DepDevOps, USDAI, and WAISE, York, UK, September 7, 2021, Proceedings, volume
12853 of Lecture Notes in Computer Science, pp. 265–271. Springer, 2021. doi: 10.1007/
978-3-030-83906-2_21. URL https://doi.org/10.1007/978-3-030-83906-2_21.
95

Miguel Monteiro, Loïc Le Folgoc, Daniel Coelho de Castro, Nick Pawlowski, Bernardo
Marques, Konstantinos Kamnitsas, Mark van der Wilk, and Ben Glocker. Stochastic
segmentation networks: Modelling spatially correlated aleatoric uncertainty. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/95f8d99
01ca8878e291552f001f67692-Abstract.html. 113

Seokyong Moon and Jenq-Neng Hwang. Robust speech recognition based on joint model
and feature space optimization of hidden Markov models. IEEE Transactions on Neural
Networks, 8(2):194–204, 1997. 44

Nelson Morgan and Herve Bourlard. Generalization and parameter estimation in feedfor-
ward nets: Some experiments. In D. Touretzky (ed.), Advances in Neural Information
Processing Systems, volume 2, 1990. URL https://proceedings.neurips.cc/paper
/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf. 24

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using Bayesian binning. In Blai Bonet and Sven Koenig (eds.),

208

https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1007/978-3-030-83906-2_21
https://proceedings.neurips.cc/paper/2020/hash/95f8d9901ca8878e291552f001f67692-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/95f8d9901ca8878e291552f001f67692-Abstract.html
https://proceedings.neurips.cc/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf

Bibliography

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA, pp. 2901–2907. AAAI Press, 2015. URL http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9667. 39, 105

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/f
orum?id=B1g5sA4twr. 23

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 54:113–162, 2010. 36

Clémentine Nebut, Franck Fleurey, Yves Le Traon, and Jean-Marc Jézéquel. A requirement-
based approach to test product families. In Frank van der Linden (ed.), Software
Product-Family Engineering, 5th International Workshop, PFE 2003, Siena, Italy,
November 4-6, 2003, Revised Papers, volume 3014 of Lecture Notes in Computer
Science, pp. 198–210. Springer, 2003. doi: 10.1007/978-3-540-24667-1_15. URL
https://doi.org/10.1007/978-3-540-24667-1_15. 92

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course,
volume 87 of Applied Optimization. Springer, 2004. ISBN 978-1-4613-4691-3. doi:
10.1007/978-1-4419-8853-9. URL https://doi.org/10.1007/978-1-4419-8853-9.
19

Lukás Neumann, Michelle Karg, Shanshan Zhang, Christian Scharfenberger, Eric Piegert,
Sarah Mistr, Olga Prokofyeva, Robert Thiel, Andrea Vedaldi, Andrew Zisserman,
and Bernt Schiele. Nightowls: A pedestrians at night dataset. In C. V. Jawahar,
Hongdong Li, Greg Mori, and Konrad Schindler (eds.), Computer Vision - ACCV
2018 - 14th Asian Conference on Computer Vision, Perth, Australia, December 2-6,
2018, Revised Selected Papers, Part I, volume 11361 of Lecture Notes in Computer
Science, pp. 691–705. Springer, 2018. doi: 10.1007/978-3-030-20887-5_43. URL
https://doi.org/10.1007/978-3-030-20887-5_43. 84

U.S. National Highway Traffic Safety Administration NHTSA. Automated driving systems
2.0: A vision for safety, 2017. URL https://www.nhtsa.gov/sites/nhtsa.gov/file
s/documents/13069a-ads2.0_090617_v9a_tag.pdf. (accessed on 2022-01-14). 99

David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target
probability distribution. In Proceedings of 1994 IEEE International Conference on
Neural Networks (ICNN’94), volume 1, pp. 55–60 vol.1, 1994. doi: 10.1109/ICNN.1994.
374138. 31, 72, 112

Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating
uncertainty in dataset labels. J. Artif. Intell. Res., 70:1373–1411, 2021. doi: 10.1613/ja
ir.1.12125. URL https://doi.org/10.1613/jair.1.12125. 131

209

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9667
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9667
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr
https://doi.org/10.1007/978-3-540-24667-1_15
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-3-030-20887-5_43
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://doi.org/10.1613/jair.1.12125

Bibliography

U.S. National Transportation Safety Board NTSB. Highway accident brief - collision
between car operating with partial driving automation and truck-tractor semitrailer,
Delray Beach, Florida, March 1, 2019, 2019a. URL https://www.ntsb.gov/investi
gations/AccidentReports/Reports/HAB2001.pdf. 1

U.S. National Transportation Safety Board NTSB. Accident report - collision between
vehicle controlled by developmental automated driving system and pedestrian, Tempe,
Arizona March 18, 2018, 2019b. URL https://www.ntsb.gov/investigations/acci
dentreports/reports/har1903.pdf. 1

Rizki Nurfauzi, Hanung Adi Nugroho, Igi Ardiyanto, and Eka Legya Frannita. Au-
tocorrection of lung boundary on 3D CT lung cancer images. J. King Saud Univ.
Comput. Inf. Sci., 33(5):518–527, 2021. doi: 10.1016/j.jksuci.2019.02.009. URL
https://doi.org/10.1016/j.jksuci.2019.02.009. 3

Augustus Odena, Catherine Olsson, David G. Andersen, and Ian J. Goodfellow. Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 4901–4911. PMLR, 2019.
URL http://proceedings.mlr.press/v97/odena19a.html. 96, 121

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited.
Neural Comput., 21(3):786–792, 2009. doi: 10.1162/neco.2008.08-07-592. URL
https://doi.org/10.1162/neco.2008.08-07-592. 34

Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers
of dropout. In Neural Information Processing Systems Workshop on Bayesian Deep
Learning, volume 192, 2016. 6

Dhirendra Pandey, U. Suman, and A.K. Ramani. An effective requirement engineering
process model for software development and requirements management. In 2010
International Conference on Advances in Recent Technologies in Communication and
Computing, pp. 287–291, 2010. doi: 10.1109/ARTCom.2010.24. 92

Moschos Papananias, Thomas E. McLeay, Mahdi Mahfouf, and Visakan Kadirkamanathan.
A Bayesian framework to estimate part quality and associated uncertainties in multistage
manufacturing. Comput. Ind., 105:35–47, 2019. doi: 10.1016/j.compind.2018.10.008.
URL https://doi.org/10.1016/j.compind.2018.10.008. 91

Jungin Park, Jiyoung Lee, Ig-Jae Kim, and Kwanghoon Sohn. Probabilistic representations
for video contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14711–14721, 2022. 132

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

210

https://www.ntsb.gov/investigations/AccidentReports/Reports/HAB2001.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAB2001.pdf
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://doi.org/10.1016/j.jksuci.2019.02.009
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1162/neco.2008.08-07-592
https://doi.org/10.1016/j.compind.2018.10.008

Bibliography

Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 8024–8035, 2019. URL https://proceedings.neurip
s.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html. 35,
141

Sandeep Paul, Lotika Singh, et al. A review on advances in deep learning. In 2015 IEEE
Workshop on Computational Intelligence: Theories, Applications and Future Directions
(WCI), pp. 1–6. IEEE, 2015. 42

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28-31, 2017, pp. 1–18. ACM, 2017. doi:
10.1145/3132747.3132785. URL https://doi.org/10.1145/3132747.3132785. 96,
121

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pp. 1532–1543. ACL, 2014. doi: 10.3115/v1/d14-1162.
URL https://doi.org/10.3115/v1/d14-1162. 42

Thomas Perneger. The Swiss cheese model of safety incidents: Are there holes in the
metaphor? BMC Health Services Research, 5:71, 02 2005. doi: 10.1186/1472-6963-5-71.
104

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online learning of social
representations. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and
Rayid Ghani (eds.), The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pp.
701–710. ACM, 2014. doi: 10.1145/2623330.2623732. URL https://doi.org/10.114
5/2623330.2623732. 42

Maximilian Pintz. Novel optimization schemes for uncertainty estimation in regression
neural networks. Master’s Thesis, Computer Science, University of Bonn, 2021. 4

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico Tombari.
Sampling-free epistemic uncertainty estimation using approximated variance propagation.
In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pp. 2931–2940. IEEE, 2019. doi:

211

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732

Bibliography

10.1109/ICCV.2019.00302. URL https://doi.org/10.1109/ICCV.2019.00302. 36,
90, 112

Janis Postels, Mattia Segù, Tao Sun, Luca Daniel Sieber, Luc Van Gool, Fisher Yu,
and Federico Tombari. On the practicality of deterministic epistemic uncertainty. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and
Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pp. 17870–17909. PMLR, 2022. URL https://proceedings.mlr.press/v1
62/postels22a.html. 32

Maoying Qiao, Wei Bian, Richard Yi Da Xu, and Dacheng Tao. Diversified hidden Markov
models for sequential labeling. IEEE Trans. Knowl. Data Eng., 27(11):2947–2960, 2015.
doi: 10.1109/TKDE.2015.2433262. URL https://doi.org/10.1109/TKDE.2015.2433
262. 44

Maurice Henri Quenouille. Notes on bias in estimation. Biometrika, 43(3-4):353–360, 12
1956. ISSN 0006-3444. doi: 10.1093/biomet/43.3-4.353. URL https://doi.org/10.1
093/biomet/43.3-4.353. 38

Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989. 44, 50

Lawrence R Rabiner and Biing-Hwang Juang. An introduction to hidden Markov models.
IEEE ASSP Magazine, 3(1):4–16, 1986. 42, 44, 127

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Fran-
cis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza
Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese,
Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor,
Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant M.
Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan,
Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur
Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz,
Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cy-
prien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew
Johnson, Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward
Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey
Irving. Scaling language models: Methods, analysis & insights from training gopher.
CoRR, abs/2112.11446, 2021. URL https://arxiv.org/abs/2112.11446. 132

212

https://doi.org/10.1109/ICCV.2019.00302
https://proceedings.mlr.press/v162/postels22a.html
https://proceedings.mlr.press/v162/postels22a.html
https://doi.org/10.1109/TKDE.2015.2433262
https://doi.org/10.1109/TKDE.2015.2433262
https://doi.org/10.1093/biomet/43.3-4.353
https://doi.org/10.1093/biomet/43.3-4.353
https://arxiv.org/abs/2112.11446

Bibliography

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. CoRR, abs/2204.06125, 2022. doi:
10.48550/arXiv.2204.06125. URL https://doi.org/10.48550/arXiv.2204.06125.
132

Carl Edward Rasmussen. Gaussian processes in machine learning. In Olivier Bousquet,
Ulrike von Luxburg, and Gunnar Rätsch (eds.), Advanced Lectures on Machine Learn-
ing, ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen,
Germany, August 4-16, 2003, Revised Lectures, volume 3176 of Lecture Notes in Com-
puter Science, pp. 63–71. Springer, 2003. doi: 10.1007/978-3-540-28650-9_4. URL
https://doi.org/10.1007/978-3-540-28650-9_4. 34

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 779–788. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.91. URL
https://doi.org/10.1109/CVPR.2016.91. 82

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias
Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess,
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A
generalist agent. CoRR, abs/2205.06175, 2022. doi: 10.48550/arXiv.2205.06175. URL
https://doi.org/10.48550/arXiv.2205.06175. 132

Philipp Reinkemeier, Ingo Stierand, Philip Rehkop, and Stefan Henkler. A pattern-based
requirement specification language: Mapping automotive specific timing requirements.
In Ralf H. Reussner, Alexander Pretschner, and Stefan Jähnichen (eds.), Software
Engineering 2011 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-
Fachbereichs Softwaretechnik, 21.-25.02.2011, Karlsruhe, volume P-184 of LNI, pp.
99–108. GI, 2011. URL https://dl.gi.de/20.500.12116/19877. 104

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. In Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 91–99,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e4
5bba028a21ed38046-Abstract.html. 82

Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss,
and Paolo Tonella. Testing machine learning based systems: a systematic mapping.
Empir. Softw. Eng., 25(6):5193–5254, 2020. doi: 10.1007/s10664-020-09881-0. URL
https://doi.org/10.1007/s10664-020-09881-0. 95

213

https://doi.org/10.48550/arXiv.2204.06125
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.2205.06175
https://dl.gi.de/20.500.12116/19877
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.1007/s10664-020-09881-0

Bibliography

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation
for neural networks. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=Skdvd2xAZ. 33

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory.
CoRR, abs/2106.10165, 2021. URL https://arxiv.org/abs/2106.10165. 15

R. Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss
distributions. Journal of Banking & Finance, 26(7):1443–1471, 2002. ISSN 0378-4266.
doi: https://doi.org/10.1016/S0378-4266(02)00271-6. URL https://www.sciencedir
ect.com/science/article/pii/S0378426602002716. 71

Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, and Michael C. Mozer. Mitigating
bias in calibration error estimation. In Gustau Camps-Valls, Francisco J. R. Ruiz, and
Isabel Valera (eds.), International Conference on Artificial Intelligence and Statistics,
AISTATS 2022, 28-30 March 2022, Virtual Event, volume 151 of Proceedings of Machine
Learning Research, pp. 4036–4054. PMLR, 2022. URL https://proceedings.mlr.pr
ess/v151/roelofs22a.html. 39

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958. 13, 16

Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Cyber security analysis using
attack countermeasure trees. In Frederick T. Sheldon, Stacy J. Prowell, Robert K.
Abercrombie, and Axel W. Krings (eds.), Proceedings of the 6th Cyber Security and
Information Intelligence Research Workshop, CSIIRW 2010, Oak Ridge, TN, USA,
April 21-23, 2010, pp. 28. ACM, 2010. doi: 10.1145/1852666.1852698. URL
https://doi.org/10.1145/1852666.1852698. 126

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions with
applications to image databases. In Proceedings of the Sixth International Conference
on Computer Vision (ICCV-98), Bombay, India, January 4-7, 1998, pp. 59–66. IEEE
Computer Society, 1998. doi: 10.1109/ICCV.1998.710701. URL https://doi.org/10
.1109/ICCV.1998.710701. 69

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985. 13

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, 1986. 18

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,

214

https://openreview.net/forum?id=Skdvd2xAZ
https://arxiv.org/abs/2106.10165
https://www.sciencedirect.com/science/article/pii/S0378426602002716
https://www.sciencedirect.com/science/article/pii/S0378426602002716
https://proceedings.mlr.press/v151/roelofs22a.html
https://proceedings.mlr.press/v151/roelofs22a.html
https://doi.org/10.1145/1852666.1852698
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701

Bibliography

and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 9832–9842, 2019. URL https:
//proceedings.neurips.cc/paper/2019/hash/246a3c5544feb054f3ea718f61adf
a16-Abstract.html. 106

Jerome H Saltzer and Michael D Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. 43

John M Scanlon, Kristofer D Kusano, Tom Daniel, Christopher Alderson, Alexander Ogle,
and Trent Victor. Waymo simulated driving behavior in reconstructed fatal crashes
within an autonomous vehicle operating domain, 2021. 121

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden Markov models
for information extraction. In Frank Hoffmann, David J. Hand, Niall M. Adams,
Douglas H. Fisher, and Gabriela Guimarães (eds.), Advances in Intelligent Data Analysis,
4th International Conference, IDA 2001, Cascais, Portugal, September 13-15, 2001,
Proceedings, volume 2189 of Lecture Notes in Computer Science, pp. 309–318. Springer,
2001. doi: 10.1007/3-540-44816-0_31. URL https://doi.org/10.1007/3-540-4481
6-0_31. 42

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. doi: 10.1016/j.neunet.2014.09.003. URL https://doi.org/10.1016/
j.neunet.2014.09.003. 16, 42

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner,
Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison. Hidden
technical debt in machine learning systems. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 2503–2511, 2015.
URL https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf267
4f757a2463eba-Abstract.html. 95, 101, 114

Marwin H. S. Segler, Mike Preuss, and Mark P. Waller. Planning chemical syntheses
with deep neural networks and symbolic AI. Nat., 555(7698):604–610, 2018. doi:
10.1038/nature25978. URL https://doi.org/10.1038/nature25978. 13

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 618–626. IEEE Computer Society,
2017. doi: 10.1109/ICCV.2017.74. URL https://doi.org/10.1109/ICCV.2017.74.
95

215

https://proceedings.neurips.cc/paper/2019/hash/246a3c5544feb054f3ea718f61adfa16-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/246a3c5544feb054f3ea718f61adfa16-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/246a3c5544feb054f3ea718f61adfa16-Abstract.html
https://doi.org/10.1007/3-540-44816-0_31
https://doi.org/10.1007/3-540-44816-0_31
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://doi.org/10.1038/nature25978
https://doi.org/10.1109/ICCV.2017.74

Bibliography

Sina Shafaei, Stefan Kugele, Mohd Hafeez Osman, and Alois C. Knoll. Uncertainty in
machine learning: A safety perspective on autonomous driving. In Barbara Gallina,
Amund Skavhaug, Erwin Schoitsch, and Friedemann Bitsch (eds.), Computer Safety,
Reliability, and Security - SAFECOMP 2018 Workshops, ASSURE, DECSoS, SASSUR,
STRIVE, and WAISE, Västerås, Sweden, September 18, 2018, Proceedings, volume
11094 of Lecture Notes in Computer Science, pp. 458–464. Springer, 2018. doi: 10.1007/
978-3-319-99229-7_39. URL https://doi.org/10.1007/978-3-319-99229-7_39.
91

Vatsal Sharan, Sham M. Kakade, Percy Liang, and Gregory Valiant. Prediction with
a short memory. In Ilias Diakonikolas, David Kempe, and Monika Henzinger (eds.),
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pp. 1074–1087. ACM, 2018. doi:
10.1145/3188745.3188954. URL https://doi.org/10.1145/3188745.3188954. 42

Beate Sick, Torsten Hothorn, and Oliver Dürr. Deep transformation models: Tackling
complex regression problems with neural network based transformation models. In 25th
International Conference on Pattern Recognition, ICPR 2020, Virtual Event / Milan,
Italy, January 10-15, 2021, pp. 2476–2481. IEEE, 2020. doi: 10.1109/ICPR48806.2021
.9413177. URL https://doi.org/10.1109/ICPR48806.2021.9413177. 131

Joachim Sicking, Maram Akila, Tim Wirtz, Sebastian Houben, and Asja Fischer. Charac-
teristics of Monte Carlo dropout in wide neural networks. ICML 2020 Workshop on
Uncertainty and Robustness in Deep Learning, 2020. 55

R.L. Sielken and H.O. Hartley. Two linear programming algorithms for unbiased estimation
of linear models. Journal of the American Statistical Association, 68(343):639–641, 1973.
17

I. Robert Sipos. Parallel stratified MCMC sampling of AR-HMMs for stochastic time series
prediction. In Proceedings of the 4th Stochastic Modeling Techniques and Data Analysis
International Conference with Demographics Workshop (SMTDA 2016). Valletta, Malta:
University of Malta, pp. 361–364, 2016. 44

Lawrence H. Smith, Thomas C. Rindflesch, and W. John Wilbur. MedPost: a part-of-
speech tagger for biomedical text. Bioinform., 20(14):2320–2321, 2004. doi: 10.1093/bi
oinformatics/bth227. URL https://doi.org/10.1093/bioinformatics/bth227. 50,
52

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin,
D. Sculley, Joshua V. Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,

216

https://doi.org/10.1007/978-3-319-99229-7_39
https://doi.org/10.1145/3188745.3188954
https://doi.org/10.1109/ICPR48806.2021.9413177
https://doi.org/10.1093/bioinformatics/bth227

Bibliography

December 8-14, 2019, Vancouver, BC, Canada, pp. 13969–13980, 2019. URL https:
//proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2e
b1d-Abstract.html. 4, 32, 36, 38, 72, 111, 112

Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing. A
Talk at the Stanford Artificial Project, pp. 271–272, 1968. 16

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/
v15/srivastava14a.html. 24, 25, 34

Michael A Stephens. EDF statistics for goodness of fit and some comparisons. Journal of
the American Statistical Association, 69(347):730–737, 1974. 81, 169

Niko Sünderhauf, Oliver Brock, Walter J. Scheirer, Raia Hadsell, Dieter Fox, Jürgen
Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, and Peter
Corke. The limits and potentials of deep learning for robotics. Int. J. Robotics Res., 37
(4-5):405–420, 2018. doi: 10.1177/0278364918770733. URL https://doi.org/10.117
7/0278364918770733. 91

Luay Ho Tahat, Atef Bader, Boris Vaysburg, and Bogdan Korel. Requirement-based
automated black-box test generation. In 25th International Computer Software and
Applications Conference (COMPSAC 2001), Invigorating Software Development, 8-12
October 2001, Chicago, IL, USA, pp. 489–495. IEEE Computer Society, 2001. doi: 10.1
109/CMPSAC.2001.960658. URL https://doi.org/10.1109/CMPSAC.2001.960658.
92

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothee Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:
47–63, 2019. 42

John R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements. University Science Books, 2 sub edition, 1996. ISBN 093570275X. 36

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Intelligent
robotics and autonomous agents. MIT Press, 2005. ISBN 978-0-262-20162-9. 91

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In David A. Van Dyk and Max Welling (eds.), Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach,
Florida, USA, April 16-18, 2009, volume 5 of JMLR Proceedings, pp. 567–574. JMLR.org,
2009. URL http://proceedings.mlr.press/v5/titsias09a.html. 34

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
Efficient object localization using convolutional networks. In IEEE Conference on

217

https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1109/CMPSAC.2001.960658
http://proceedings.mlr.press/v5/titsias09a.html

Bibliography

Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pp. 648–656. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.7298664.
URL https://doi.org/10.1109/CVPR.2015.7298664. 25

Ehsan Toreini, Mhairi Aitken, Kovila P. L. Coopamootoo, Karen Elliott, Carlos Gonzalez
Zelaya, and Aad van Moorsel. The relationship between trust in AI and trustworthy
machine learning technologies. In Mireille Hildebrandt, Carlos Castillo, L. Elisa Celis,
Salvatore Ruggieri, Linnet Taylor, and Gabriela Zanfir-Fortuna (eds.), FAT* ’20:
Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, January
27-30, 2020, pp. 272–283. ACM, 2020. doi: 10.1145/3351095.3372834. URL https:
//doi.org/10.1145/3351095.3372834. 43

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren,
Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan
Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton,
Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal,
Zoubin Ghahramani, Jasper Snoek, and Balaji Lakshminarayanan. Plex: Towards
reliability using pretrained large model extensions, 2022. URL https://arxiv.org/ab
s/2207.07411. 131

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Unsu-
pervised neural hidden Markov models. In SPNLP@EMNLP, pp. 63–71, 2016. URL
https://doi.org/10.18653/v1/W16-5907. 44

Edmondo Trentin and Marco Gori. Combining neural networks and hidden Markov models
for speech recognition. Neural Nets WIRN VIETRI-98, pp. 63–79, 1999. 44

Michael Truong-Le, Frederik Diehl, Thomas Brunner, and Alois C. Knoll. Uncertainty
estimation for deep neural object detectors in safety-critical applications. In Wei-Bin
Zhang, Alexandre M. Bayen, Javier J. Sánchez Medina, and Matthew J. Barth (eds.),
21st International Conference on Intelligent Transportation Systems, ITSC 2018, Maui,
HI, USA, November 4-7, 2018, pp. 3873–3878. IEEE, 2018. doi: 10.1109/ITSC.2018.85
69637. URL https://doi.org/10.1109/ITSC.2018.8569637. 88, 91

Russell Tsuchida, Fred Roosta, and Marcus Gallagher. Richer priors for infinitely wide
multi-layer perceptrons. arXiv preprint arXiv:1911.12927, 2019. 54

John Wilder Tukey. Bias and confidence in not quite large samples. The Annals of
Mathematical Statistics, 29(2):614 – 623, 1958. doi: 10.1214/aoms/1177706647. URL
https://doi.org/10.1214/aoms/1177706647. 38

Underwriters Laboratories. Standard for evaluation of autonomous products, 2020. URL
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600.
(accessed on 2022-01-14). 95

218

https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1145/3351095.3372834
https://doi.org/10.1145/3351095.3372834
https://arxiv.org/abs/2207.07411
https://arxiv.org/abs/2207.07411
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.1109/ITSC.2018.8569637
https://doi.org/10.1214/aoms/1177706647
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600

Bibliography

Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation
using a single deep deterministic neural network. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp. 9690–9700. PMLR, 2020. URL
http://proceedings.mlr.press/v119/van-amersfoort20a.html. 32

Vladimir Vapnik. Principles of risk minimization for learning theory. In John E. Moody,
Stephen Jose Hanson, and Richard Lippmann (eds.), Advances in Neural Information
Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991],
pp. 831–838, 1991. URL http://papers.nips.cc/paper/506-principles-of-risk-
minimization-for-learning-theory. 12

Vladimir Vapnik. The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, 2000. ISBN 978-1-4419-3160-3. doi: 10.1007/978-1-
4757-3264-1. URL https://doi.org/10.1007/978-1-4757-3264-1. 1

Vladimir Vapnik and Alexei Chervonenkis. Theory of Pattern Recognition [in Russian].
Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie
der Zeichenerkennung, Akademie–Verlag, Berlin, 1979). 24

Kush R Varshney. Trustworthy machine learning and artificial intelligence. XRDS:
Crossroads, The ACM Magazine for Students, 25(3):26–29, 2019. 43

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017. URL https://proceedings.ne
urips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
13, 42

Petar Velickovic. Pgf/tikz figures, 2016. https://github.com/PetarV-/TikZ/tree/mas
ter/2D%20Convolution (accessed on 2022-06-14). 16

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008. 7, 22, 63, 69

Wolfgang Wahlster and Christoph Winterhalter. German standardization roadmap on
artificial intelligence, 2020. URL https://www.din.de/resource/blob/772610/e9
6c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf. (accessed on
2022-01-12). 94

Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain future:
Forecasting from static images using variational autoencoders. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision - ECCV 2016 - 14th

219

http://proceedings.mlr.press/v119/van-amersfoort20a.html
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory
https://doi.org/10.1007/978-1-4757-3264-1
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf

Bibliography

European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part VII, volume 9911 of Lecture Notes in Computer Science, pp. 835–851. Springer,
2016. doi: 10.1007/978-3-319-46478-7_51. URL https://doi.org/10.1007/978-3-
319-46478-7_51. 39

Izhar Wallach, Michael Dzamba, and Abraham Heifets. AtomNet: A deep convolutional
neural network for bioactivity prediction in structure-based drug discovery. CoRR,
abs/1510.02855, 2015. URL http://arxiv.org/abs/1510.02855. 17

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of
neural networks using DropConnect. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of
JMLR Workshop and Conference Proceedings, pp. 1058–1066. JMLR.org, 2013. URL
http://proceedings.mlr.press/v28/wan13.html. 25

Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, and C-C Jay Kuo. Evaluating
word embedding models: Methods and experimental results. APSIPA Transactions on
Signal and Information Processing, 8, 2019. 42

Jie Wang. An intuitive tutorial to Gaussian processes regression. CoRR, abs/2009.10862,
2020. URL https://arxiv.org/abs/2009.10862. Source code is available at
https://github.com/jwangjie/Gaussian-Processes-Regression-Tutorial
(accessed on 2022-03-01). 30

Greg Welch and Gary Bishop. An introduction to the Kalman filter. Technical Report
95-041, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995. URL
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html. 117

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Lise Getoor and Tobias Scheffer (eds.), Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pp. 681–688, 2011. URL https://icml.cc/2011/papers/398_icmlpap
er.pdf. 36, 112

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to
efficient ensemble and lifelong learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=Sklf1yrYDr. 38

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter en-
sembles for robustness and uncertainty quantification. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/481fbfa59da2581098e841b
7afc122f1-Abstract.html. 38

220

https://doi.org/10.1007/978-3-319-46478-7_51
https://doi.org/10.1007/978-3-319-46478-7_51
http://arxiv.org/abs/1510.02855
http://proceedings.mlr.press/v28/wan13.html
https://arxiv.org/abs/2009.10862
https://github.com/jwangjie/Gaussian-Processes-Regression-Tutorial
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
https://icml.cc/2011/papers/398_icmlpaper.pdf
https://icml.cc/2011/papers/398_icmlpaper.pdf
https://openreview.net/forum?id=Sklf1yrYDr
https://proceedings.neurips.cc/paper/2020/hash/481fbfa59da2581098e841b7afc122f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/481fbfa59da2581098e841b7afc122f1-Abstract.html

Bibliography

Paul Werbos. Beyond regression: new tools for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University, 1974. 13

Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie Abrecht. Safety
concerns and mitigation approaches regarding the use of deep learning in safety-critical
perception tasks. In António Casimiro, Frank Ortmeier, Erwin Schoitsch, Friedemann
Bitsch, and Pedro M. Ferreira (eds.), Computer Safety, Reliability, and Security. SAFE-
COMP 2020 Workshops - DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE
2020, Lisbon, Portugal, September 15, 2020, Proceedings, volume 12235 of Lecture Notes
in Computer Science, pp. 336–350. Springer, 2020. doi: 10.1007/978-3-030-55583-2_25.
URL https://doi.org/10.1007/978-3-030-55583-2_25. 95

Sascha Wirges, Marcel Reith-Braun, Martin Lauer, and Christoph Stiller. Capturing
object detection uncertainty in multi-layer grid maps. In 2019 IEEE Intelligent Vehicles
Symposium, IV 2019, Paris, France, June 9-12, 2019, pp. 1520–1526. IEEE, 2019. doi:
10.1109/IVS.2019.8814073. URL https://doi.org/10.1109/IVS.2019.8814073. 40

Magnus Wrenninge and Jonas Unger. Synscapes: A photorealistic synthetic dataset for
street scene parsing. CoRR, abs/1810.08705, 2018. URL http://arxiv.org/abs/18
10.08705. 84

W. A. Wright, Guillaume Ramage, Dan Cornford, and Ian T. Nabney. Neural network
modelling with input uncertainty: Theory and application. J. VLSI Signal Process., 26(1-
2):169–188, 2000. doi: 10.1023/A:1008111920791. URL https://doi.org/10.1023/A:
1008111920791. 101

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, José Miguel Hernández-
Lobato, and Alexander L. Gaunt. Deterministic variational inference for robust Bayesian
neural networks. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=B1l08oAct7. 54

Bichen Wu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. SqueezeDet: Unified,
small, low power fully convolutional neural networks for real-time object detection
for autonomous driving. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 446–454. IEEE Computer Society, 2017. doi: 10.1109/CVPRW.2017.60. URL
https://doi.org/10.1109/CVPRW.2017.60. 7, 17, 62, 82, 83, 128

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Masayoshi Tomizuka,
Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision. CoRR, abs/2006.03677, 2020a. URL https:
//arxiv.org/abs/2006.03677. 17

CF Jeff Wu. On the convergence properties of the EM algorithm. The Annals of Statistics,
pp. 95–103, 1983. 42

221

https://doi.org/10.1007/978-3-030-55583-2_25
https://doi.org/10.1109/IVS.2019.8814073
http://arxiv.org/abs/1810.08705
http://arxiv.org/abs/1810.08705
https://doi.org/10.1023/A:1008111920791
https://doi.org/10.1023/A:1008111920791
https://openreview.net/forum?id=B1l08oAct7
https://openreview.net/forum?id=B1l08oAct7
https://doi.org/10.1109/CVPRW.2017.60
https://arxiv.org/abs/2006.03677
https://arxiv.org/abs/2006.03677

Bibliography

Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Recent advances in deep learning for
object detection. Neurocomputing, 2020b. 42

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 55

Yifei Xue, Tiejun Wang, and Andrew K. Skidmore. Automatic counting of large mammals
from very high resolution panchromatic satellite imagery. Remote. Sens., 9(9):878, 2017.
doi: 10.3390/rs9090878. URL https://doi.org/10.3390/rs9090878. 82

Fanny Yang, Sivaraman Balakrishnan, and Martin J Wainwright. Statistical and compu-
tational guarantees for the Baum-Welch algorithm. The Journal of Machine Learning
Research, 18(1):4528–4580, 2017. 42

Yu Yao, Mingze Xu, Yuchen Wang, David J. Crandall, and Ella M. Atkins. Unsupervised
traffic accident detection in first-person videos. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China, November
3-8, 2019, pp. 273–280. IEEE, 2019. doi: 10.1109/IROS40897.2019.8967556. URL
https://doi.org/10.1109/IROS40897.2019.8967556. 121

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 2633–2642. Com-
puter Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00271. URL
https://openaccess.thecvf.com/content_CVPR_2020/html/Yu_BDD100K_A_Diver
se_Driving_Dataset_for_Heterogeneous_Multitask_Learning_CVPR_2020_paper
.html. 84

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C. Wilson,
Edwin R. Hancock, and William A. P. Smith (eds.), Proceedings of the British Machine
Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press,
2016. URL http://www.bmva.org/bmvc/2016/papers/paper087/index.html. 35

Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C. Holmes, Frank Hutter, and
Yee Whye Teh. Neural ensemble search for uncertainty estimation and dataset shift.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 7898–7911, 2021. URL https://proceedings.ne
urips.cc/paper/2021/hash/41a6fd31aa2e75c3c6d427db3d17ea80-Abstract.html.
38

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012. URL http://arxiv.org/abs/1212.5701. 19

222

https://doi.org/10.3390/rs9090878
https://doi.org/10.1109/IROS40897.2019.8967556
https://openaccess.thecvf.com/content_CVPR_2020/html/Yu_BDD100K_A_Diverse_Driving_Dataset_for_Heterogeneous_Multitask_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Yu_BDD100K_A_Diverse_Driving_Dataset_for_Heterogeneous_Multitask_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Yu_BDD100K_A_Diverse_Driving_Dataset_for_Heterogeneous_Multitask_Learning_CVPR_2020_paper.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://proceedings.neurips.cc/paper/2021/hash/41a6fd31aa2e75c3c6d427db3d17ea80-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/41a6fd31aa2e75c3c6d427db3d17ea80-Abstract.html
http://arxiv.org/abs/1212.5701

Bibliography

Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and Raquel
Urtasun. End-to-end interpretable neural motion planner. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8660–8669, 2019. 1

Aonan Zhang, San Gultekin, and John Paisley. Stochastic variational inference for the
HDP-HMM. In Artificial Intelligence and Statistics, pp. 800–808, 2016a. 44

Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering, pp. 1–1, 2020a.
doi: 10.1109/TSE.2019.2962027. 95, 96

Jing Zhang and Jun Zhuang. Modeling a multi-target attacker-defender game with multiple
attack types. Reliab. Eng. Syst. Saf., 185:465–475, 2019. doi: 10.1016/j.ress.2019.01.015.
URL https://doi.org/10.1016/j.ress.2019.01.015. 126

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.
Cyclical stochastic gradient MCMC for Bayesian deep learning. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020b. URL https://openreview.net/forum?id=rkeS1RVtPS.
37

Ye Zhang, Md. Mustafizur Rahman, Alex Braylan, Brandon Dang, Heng-Lu Chang,
Henna Kim, Quinten McNamara, Aaron Angert, Edward Banner, Vivek Khetan, Tyler
McDonnell, An Thanh Nguyen, Dan Xu, Byron C. Wallace, and Matthew Lease.
Neural information retrieval: A literature review. CoRR, abs/1611.06792, 2016b. URL
http://arxiv.org/abs/1611.06792. 42

Shengjia Zhao, Tengyu Ma, and Stefano Ermon. Individual calibration with randomized
forecasting. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 11387–11397. PMLR, 2020. 105

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with
deep learning: A review. IEEE Trans. Neural Networks Learn. Syst., 30(11):3212–3232,
2019. doi: 10.1109/TNNLS.2018.2876865. URL https://doi.org/10.1109/TNNLS.20
18.2876865. 82

Li-Qiang Zhou, Jia-Yu Wang, Song-Yuan Yu, Ge-Ge Wu, Qi Wei, You-Bin Deng, Xing-
Long Wu, Xin-Wu Cui, and Christoph F Dietrich. Artificial intelligence in medical
imaging of the liver. World Journal of Gastroenterology, 25(6):672, 2019. 1

Quan Zou, Pengwei Xing, Leyi Wei, and Bin Liu. Gene2vec: gene subsequence embedding
for prediction of mammalian N6-methyladenosine sites from mRNA. RNA, 25(2):
205–218, 2019. 42

223

https://doi.org/10.1016/j.ress.2019.01.015
https://openreview.net/forum?id=rkeS1RVtPS
http://arxiv.org/abs/1611.06792
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

	Introduction
	Basic Concepts
	Supervised and unsupervised learning
	Neural networks
	Model optimization
	Model regularization

	Uncertainty Estimation in Machine Learning
	Types of uncertainty
	Modeling uncertainty in neural networks
	Evaluating uncertainty estimates

	Impact of Model Capacity on Uncertainty
	Capacity control of HMMs via representations
	Recapitulation of HMM optimization
	Structure and optimization of the DenseHMM
	Impact of nonlinear kernelization
	Empirical evaluation
	Discussion

	Monte Carlo dropout in wide neural networks
	Prerequisites for Gaussian pre-activation distributions
	Ambiguous observations for empirical pre-activation distributions
	Modeling of strongly correlated systems
	Discussion

	Modeling Uncertainty Estimates by Means of Wasserstein Dropout
	Motivation and derivation
	Uncertainty assessment beyond standard measures
	Empirical evaluation on 1D regression datasets
	Experiment setup
	Toy datasets
	Standard ML datasets

	Wasserstein dropout for object detection
	Discussion

	Building Uncertainty Estimators for Product-Grade Deep Learning Systems
	Regulatory and technical perspectives on trustworthy ML
	A framework for developing and testing neural uncertainty estimators
	Initial demand for an uncertainty estimator
	Purpose and desired properties
	Operational design domain
	Modeling uncertainties

	Toward uncertainty acceptance criteria
	Categorizing uncertainty requirements
	Formalizing uncertainty acceptance criteria

	Choosing an uncertainty mechanism
	Scope and structure of uncertainty testing
	Technical tests
	Global uncertainty tests
	Subset and pointwise uncertainty tests
	Complementary uncertainty tests

	Instantiating, executing, and evaluating uncertainty test cases
	Instantiation
	Execution
	Evaluation

	Discussion

	Conclusion
	Impact of Model Capacity on Uncertainty
	Capacity control of HMMs via representations
	Full Lagrangians of standard HMM and DenseHMM
	Nonlinear A-matrix factorization
	Implementation details and data preprocessing

	Monte Carlo dropout in wide neural networks
	Empirical observations
	Modeling of strongly correlated systems

	Modeling Uncertainty Estimates by Means of Wasserstein Dropout
	Detailed analysis of the Gaussian-likelihood one-sample variant of Wasserstein dropout
	Analytical properties of the GL-OS Wasserstein dropout loss
	Composition of the uncertainty estimate
	Detailed analysis of the two loss components

	Extension to the empirical study
	Experimental setup
	Toy datasets: systematic evaluation and further experiments
	Standard regression datasets: systematic evaluation
	Residual-uncertainty scatter plots
	Object detection: systematic evaluation

	Stability with respect to hyperparameters p and L
	In-depth investigation of uncertainty measures
	Dependencies between uncertainty measures
	Discussion of NLL as a measure of uncertainty

	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

