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A B S T R A C T   

Phenology models are crucial tools for assessing climate change impacts in forestry, ecology and agriculture. 
Such models are typically calibrated with observational or experimental data and validated with a set of inde
pendent observations. While there have been extensive discussions about validation approaches, systematic 
studies assessing the effects of the calibration data on the predictive performance of the fitted model are scarce. 
We evaluated the impact of marginal seasons in the calibration data set on the predictive power of an integrated 
modeling framework (PhenoFlex) that was recently proposed to predict spring phenology in temperate trees. We 
calibrated PhenoFlex with phenology records of apple trees from a multi-season experiment (59 experimental 
seasons) that included five unusually warm winter seasons. For comparison, we excluded these marginal seasons 
in a second version of the analysis. We fitted the 12 model parameters to data, assessed model performance using 
a common validation data set and evaluated the chill and heat responses during dormancy for both versions. 
Despite high overall accuracy, our results indicated a better model performance (Root Mean Square Errors of 2.3 
versus 5.5 days) when excluding the marginal seasons. We observed a similar shape for the chill response curve 
across versions but a greater chill effectiveness when including the marginal seasons. Fitted parameters suggest a 
hard drop in heat efficiency beyond the optimum temperature when including the marginal seasons, probably 
highlighting the need for more moderate conditions during model calibration. Our results demonstrate a good 
performance of PhenoFlex when calibration and validation data were comparable, but they also indicate risks 
involved in using the framework to project phenology under conditions that differ strongly from those used for 
calibration. Further evaluation and validation under experimentally or naturally occurring warm conditions may 
improve our understanding of the response of temperate trees to mild winter conditions.   

1. Introduction 

Temperature is among the strongest environmental cues modulating 
development stages in many temperate plant species, including decid
uous fruit and nut trees (Chuine and Regniere, 2017). The continuous 
increase in temperature due to global climatic change has already 
modified the phenology (i.e. the occurrence of development stages) of 
many temperate tree species in various regions (Menzel et al., 2006; 
Walther et al., 2002). Analyzing historic records of 542 plant species 
collected in 21 European countries (observations of about 10+ years 
between 1951-2000 depending on the species), Menzel et al. (2006) 

reported an advance of spring and summer phases by up to 4.6 days per 
◦C. Some evidence suggests, however, that for some phenology events 
such as the spring leaf unfolding of European tree species, the rate of 
advance in response to warmer conditions has decreased (Fu et al., 
2015). In line with previous studies (Cook et al., 2012; Luedeling et al., 
2013), an analysis conducted in China by Guo et al. (2015) reported that 
apricot trees cultivated in warm climates are likely to suffer a delay in 
the timing of spring events due to global warming. Many authors have 
suggested that spring phenology in temperate species results from the 
combined effects of both autumn/winter cold and spring heat (Campoy 
et al., 2011; Cook et al., 2012; Guo et al., 2015; Luedeling, 2012). For 
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future scenarios, the potentially dual response of trees to temperature 
variation may become a challenge for scientists studying temperate trees 
as well as for practitioners growing such species. To accurately forecast 
the impacts of climate change on tree phenology, modelling approaches 
must consider the combined effects of environmental conditions 
observed during autumn/winter and spring. 

Temperate tree species experience a dormancy phase during 
autumn/winter, which allows these trees to endure the cold conditions 
usually observed in their habitat of origin (Fadón et al., 2020; Vegis, 
1964). According to Lang et al. (1987), tree dormancy can be classified 
into para-, endo- and eco-dormancy, with the last two frequently asso
ciated with winter dormancy and implying different sub-processes at 
tree and bud level (see Fadón et al. (2020) for a review). Whereas the 
need for cold temperatures has been proposed as characteristic of the 
endo-dormancy phase (represented as Chill Requirement – CR; Luedel
ing (2012)), warm conditions have been suggested as the major driver of 
bud development during the eco-dormancy period (described as Heat 
Requirement – HR; Luedeling (2012)). The need for cold and subsequent 
warm conditions interact to modulate the breaking of dormancy as well 
as bud burst and bloom dates in temperate trees. 

Phenology models usually attempt to represent the processes of chill 
and heat accumulation as well as their interaction during dormancy. The 
extent and nature of this interaction, however, remain mostly unclear. 
Three options representing the chilling/forcing relationship have been 
proposed in the past: “sequential” as suggested by Ashcroft et al. (1977), 
“parallel” as suggested by Landsberg (1974) and “overlapping” as sug
gested by Cannell and Smith (1983). Among these options, the “over
lapping” structure has gained relevance due to its more biologically 
credible nature (Harrington et al., 2010; Pope et al., 2014). An “over
lapping” between the chilling and forcing phases of dormancy may 
indicate that chill and heat can compensate for each other under 
particular circumstances, resulting in similar bloom outcomes for 
different combinations of chill and heat (Pope et al., 2014). Whereas 
phenology models considering a “sequential” or “parallel” relationship 
inherit an evident fixed structure (e.g. heat only accumulates after CR is 
reached in the case of the “sequential” model), the “overlapping” 
approach offers an opportunity to make the link between both phases 
flexible. While several studies have not found the chill overlap approach 
to be an improvement (e.g. Darbyshire et al. (2020); Prats-Llinàs et al. 
(2019)), Darbyshire et al. (2016) reported that a model with 75% 
overlap outperformed a “sequential” approach in explaining apple 
phenology records from different regions of Australia. This and other 
former “overlapping” approaches attempting to model bloom dates 
have, however, failed to add a truly flexible link between phases, instead 
assuming fixed overlapping phases between the chilling and forcing 
periods (Darbyshire et al., 2016; Pope et al., 2014). Using a model 
structure that determines the nature of the interaction as well as the 
shape of the transition from endo- to eco-dormancy based on observa
tions can be expected to improve the accuracy of predicting spring 
phenology events in deciduous fruit trees. The applicability of such a 
model structure, however, would be restricted to the species and con
ditions used in model development, potentially hampering the trans
ferability of modelling outcomes. A trade-off between expected accuracy 
and transferability of results needs to be considered when developing 
phenology models. 

In a recent study, Luedeling et al. (2021) proposed a new dormancy 
modelling framework – the PhenoFlex framework – to forecast bud burst 
and bloom dates in temperate fruit trees. Compared to similar ap
proaches reported in the past, PhenoFlex is considerably more flexible in 
its assumptions regarding the dormancy breaking process. PhenoFlex 
uses the Dynamic model (Erez et al., 1990; Fishman et al., 1987a; 
Fishman et al., 1987b) as sub-model to account for the process of chill 
accumulation during the endo-dormancy phase and the Growing Degree 
Hours model (Anderson et al., 1986) as sub-model to represent the 
process of heat accumulation during the eco-dormancy phase. To 
describe the interaction between the chilling and forcing phases, both of 

which contribute to the dormancy breaking process, the authors allowed 
the framework to determine the extent of overlap between phases based 
on temperature and phenology observations. This structure allows the 
model the possibility to represent any of the three formerly reported 
interactions between the chilling and forcing phases (“sequential”, 
“parallel” and “overlapping”). Using 60 years of phenology records for 
apple and pear trees cultivated in a temperate climate in Germany, 
Luedeling et al. (2021) demonstrated that PhenoFlex outperformed 
several other prediction models, including the StepChill model derived 
from the Unified model (Chuine, 2000) and a naïve machine learning 
algorithm based on a Gaussian process with a linear kernel. Despite the 
promising results obtained when predicting bloom dates, the authors 
reported and warned about some implausible fitted parameters for apple 
(e.g. chill response for temperatures up to 30◦C), probably resulting 
from a lack of relevant weather situations (such as greater temperature 
variation during the chilling phase) in the data set used for model 
calibration (Luedeling et al., 2021). Implementing the PhenoFlex 
modelling framework with phenology records obtained from warmer 
environments (from mild-winter locations or greenhouse experiments) 
is therefore likely to help understand the origin of implausible temper
ature response curves as well as identify reliable model parameters. 

The main aim we set for this work was to evaluate the performance of 
the PhenoFlex modelling framework (Luedeling et al., 2021) in response 
to the temperature range covered by the calibration data. We used 
phenology data from 59 experimental seasons (or trials) with varying 
temperature profiles spanning a wide range of environmental settings to 
assess the performance of PhenoFlex when used to forecast bloom dates 
of young apple trees. We evaluated the impact of marginal winter con
ditions in the calibration data set on model performance by using two 
versions of the analysis. Whereas in version 1 (hereafter PhenoFlexall) 
we considered all experimental seasons, in version 2 (hereafter Pheno
Flexexcluded) we removed from the calibration data five marginal 
experimental seasons that still generated bloom records but appeared 
unlikely to be observed in most places where apple trees are cultivated. 
We compared the model performance for both versions of the analysis 
and estimated the response curves for chill and heat accumulation using 
the fitted parameters. 

2. Materials and methods 

2.1. Weather and phenology records 

We analyzed a subset of phenology and weather records reported on 
in an earlier study by Fernandez et al. (2021b). In brief, we collected 
data for 59 experimental seasons (Fig. 1; see supplementary materials 
for additional description) by frequently transferring young potted trees 
across various environments over two consecutive winters (2018/2019 
and 2019/2020). These environments were a heated greenhouse (set to 
maintain a temperature between 5 and 25◦C), an unheated greenhouse, 
three chambers covered with different materials (ethyl
ene-tetrafluoroethylene-copolymer, float glass and frosted glass) and 
field conditions at Campus Klein-Altendorf and Endenich of the Uni
versity of Bonn, Germany. We used 177 three-year-old potted trees of 
apple (Malus domestica Borkh.) cultivar “Elstar” grafted onto “M9” 
rootstock. We collected air temperature records (on an hourly basis) for 
each experimental season using portable data loggers (Tinytag 
TGP-4500, Tinytag TGU-4500 and EasyLog USB 31), as well as fixed 
devices in the case of the heated greenhouse (RAM 224.401) and field 
conditions at Campus Klein-Altendorf (Wilmers NDL485). To obtain 
phenology records, we classified tree phenology twice a week according 
to the BBCH scale (Biologische Bundesanstalt, Bundessortenamt und 
Chemische Industrie) for pome fruit (Meier, 2001). We recorded full 
bloom as the moment we observed at least 50% of flowers open with first 
petals falling (Meier, 2001). We obtained the final bloom dates by 
computing the median across three replicates per experimental season. 
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Fig. 1. Schematic illustration of the experimental seasons used for assessing the performance of the PhenoFlex modelling framework. In panel “A”, we show the 
histogram of mean temperature (computed between October 1 and the date of bloom) across 59 experimental seasons. We show the number of experimental seasons 
in each bin (width of 1◦C) on the inverted x-axis (increasing from right to left) and the mean temperature on the y-axis. The bin color represents the experimental 
seasons used in different versions of the analysis, with red showing the experimental seasons removed from the calibration in PhenoFlexexcluded. In “B” (marginal 
experimental seasons) and “C” (non-marginal experimental seasons), we show the specific experimental seasons (y-axis on the right) and the temperature experi
enced by the trees during the experiment (bar color). The date of bloom is represented by blue open circles and the mean temperature for each experimental season is 
shown in blue after the circle. 
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2.2. Evaluation of the impact of marginal conditions on model 
performance 

To assess the impact of marginal conditions during winter on the 
performance of the PhenoFlex modelling framework, we defined two 
versions of the analysis. Whereas in PhenoFlexall we included all avail
able experimental seasons, in PhenoFlexexcluded we removed five 
experimental seasons that may have featured thermal conditions that 
were marginal for overcoming the dormancy of apple trees. We identi
fied these seasons (Fig. 1B) according to mean temperature by selecting 
a small cluster of the 5 warmest seasons for exclusion (Fig. 1A). It should 
be noted, however, that some trees among these marginal experimental 
seasons (all obtained during the second year) showed few flower buds 
and slightly irregular bloom. We were unable to evaluate whether this 
behavior resulted specifically from restrictive thermal conditions or 
from any additional factor (e.g. bud initiation and differentiation in 
summer), since trees from other non-marginal experimental seasons 
showed a similar pattern during the second year of the experiment. 

We started the analysis by defining a common set of seasons for 
PhenoFlexall and PhenoFlexexcluded for model calibration purposes. To 
this end, we randomly selected 40 experimental seasons from the set of 
seasons numbered 6 to 59 in Fig. 1C. We used these 40 seasons to cali
brate the PhenoFlexexcluded version of the framework. For PhenoFlexall, 
we calibrated the model using a random subset of 35 experimental 
seasons drawn from the seasons selected in the first step, plus the five 
marginal seasons (Fig. 1B). We therefore obtained 40 seasons for cali
bration under both versions of our analysis. We used the remaining 14 
experimental seasons to validate the phenology modelling approach 
under both versions of the analysis. In this validation, we estimated 
bloom dates using the set of parameters obtained by calibrating the 
model with the different versions of the analysis. 

To provide insights on the importance of using the modelling 
framework with comparable data for calibration and validation, we 
conducted an additional validation of the PhenoFlexexcluded version 
using the five marginal seasons. With this validation, we aimed to assess 
the performance of the framework when used to extrapolate to condi
tions that differed strongly from those used for calibration. Since we 
were unable to systematically compare the results of this analysis with a 
framework calibrated and validated with marginal seasons (due to data 
limitations), we present and discuss major results of this analysis in the 

main manuscript and provide a detailed report on these results in the 
supplementary materials accompanying this manuscript. 

2.3. Calibration of the PhenoFlex modelling framework 

A set of twelve parameters needs to be fitted to data to calibrate the 
PhenoFlex model (Fig. 2; Table 1; see PhenoFlex vignette in Urbach 
et al. (2021) for full description). These parameters include six values for 
the Dynamic model (chill sub-model), three values for the Growing 
Degree Hours model (heat sub-model) and three parameters to link both 
sub-models. We followed the procedure described by Luedeling et al. 
(2021) to implement the calibration of the PhenoFlex modelling 
framework. Apart from phenology and weather records as inputs, the 
fitting function requires initial estimates for all parameters as well as 
lower and upper bounds for these parameters. We initialized the fitting 
procedure by using the original set of parameters reported by the au
thors of both the chill and heat sub-models (Anderson et al., 1986; Erez 
et al., 1990; Fishman et al., 1987a; Fishman et al., 1987b). For the three 
remaining parameters yc, zc and s1 (with yc being the chill requirement, 
zc being the heat requirement and s1 being the slope for the transition 
between the chilling and forcing phases; Table 1), we selected the values 
proposed by Urbach et al. (2021) in the PhenoFlex vignette. Similarly, 
we selected the values proposed in the vignette to define the initial 
values for the lower and upper bounds for all parameters except for yc 
and zc, for which we used considerably wider ranges (20 to 80 for yc and 
100 to 500 for zc). This allowed the model the possibility to find the best 
requirements of chill and heat based on the data used for calibration, 
with rather small restrictions (compared to using narrower ranges). 

In previous similar studies (Chuine et al., 2016; Egea et al., 2021; 
Luedeling et al., 2021), the identification of the best fitted parameters 
was achieved after between 10 and 30 iterations of the optimization 
procedure. In our case, we iterated the fitting procedure ten times for 
each version of the analysis. We defined an iteration as successful when 
the Root Mean Square Error (RMSE) of the new fitted model was smaller 
than the RMSE value from the previous version. As input for each new 
iteration, we used the set of parameters fitted in the previous run as well 
as the lower and upper bounds after adjusting the values, when the 
estimated parameter was close to the boundaries (see supplementary 
materials for the specific sets of parameters used in each iteration). As 
final model parameters, we selected the set of values obtained after the 

Fig. 2. Schematic illustration of the PhenoFlex modelling framework. PhenoFlex consists of two sub models (“Dynamic-style” chill model and “Growing Degree 
Hours-style” heat model), which are linked in a gradual transition to represent the dormancy phase of temperate trees. In the figure, PDBF, DBF, and GDH stand for 
“Precursor of Dormancy Breaking Factor”, “Dormancy Breaking Factor” and “Growing Degree Hour”, respectively. 
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tenth model run, which resulted in the lowest RMSE of our optimization 
procedure. 

2.4. Parameter uncertainty estimation and model validation 

Following the procedure proposed by Luedeling et al. (2021), we 
used bootstrapping to assess the uncertainty of our parameter estima
tions. In brief, we randomly sampled (with replacement) the residuals 
for bloom dates estimated during the calibration of the PhenoFlex model 
and added the sampled residuals to the observed bloom dates of our 
calibration data set. This step allowed us to obtain an additional data set 
with 40 new bloom dates. In a second step, we reimplemented the fitting 
procedure with the new bloom dates (observed records plus the sampled 
residuals) to estimate a new set of parameters. We iterated this pro
cedure ten times and saved the fitted parameters after each run. To 
express the uncertainty in our parameter estimation, we computed the 
standard deviation across the ten bootstrapping replications as well as 
the 16th and 84th percentiles, which can be used to characterize the 
standard error in non-normally distributed data (i.e. equivalent to µ ± σ 
in a normal distribution). We then used the different sets of parameters 
to estimate bloom dates (10 times per experimental season according to 
the bootstrapping replicates) using the validation data set. We estimated 
the uncertainty around the estimated bloom dates by computing the 
standard deviation across the ten replications. 

We assessed the performance of the PhenoFlex framework for the 
two versions of the analysis by computing the Root Mean Square Error 
(RMSE) as well as the Ratio of Performance to Interquartile range 
(RPIQ). Whereas RMSE can be considered a good indicator for 
comparing model performance (with lower values indicating better 
performance), this metric may be greatly influenced by the distribution 
of the samples in validation data sets (Bellon-Maurel et al., 2010). RPIQ 
on the other hand (with greater values indicating better performance), 
offers a standardization of standard errors by considering the distribu
tion of the population in validation data sets (Bellon-Maurel et al., 
2010). For calculation of both metrics, we used the respective functions 
contained in the chillR package (version 0.72.4; Luedeling (2021)). In 
addition to RMSE and RPIQ, we computed the Akaike Information Cri
terion corrected for small sample size (AICc; Burnham and Anderson 
(2003)) to compare the results of the fitting procedure (only for model 
calibration) in PhenoFlexall and PhenoFlexexcluded. For the specific 
equation implemented to compute AICc, we refer to the original Phe
noFlex manuscript (Luedeling et al., 2021). In addition, we compared 
the performance of both versions of PhenoFlex with a null model that 
predicts bloom to always fall on the mean bloom date of the calibration 
dataset. To this end, we estimated the RMSE between the average bloom 
date in the calibration data sets (i.e. across 40 experimental seasons) and 
the bloom date in the validation data sets used in PhenoFlexall and 
PhenoFlexexcluded. 

2.5. Fitted chill and heat response curves 

Since the procedure implemented to fit PhenoFlex to data generates 
parameters for the chill and heat sub models that differ from the values 
reported in their original versions, we characterized the idealized 
response curve of these sub models to variation in temperature. To this 
end, we computed the response of the Dynamic model, using the pa
rameters obtained in the calibration procedure, to 1,200 h at tempera
tures between -5◦C and 25◦C using a 0.1◦C interval. This approach 
allowed us to estimate the accumulation of chill (in arbitrary units) to all 
temperatures within the specified range as well as to characterize chill 
effectiveness using the newly fitted parameters for the chill sub model. 
In the case of the Growing Degree Hours model, we estimated the heat 
accumulation efficiency (between 0 and 1) following the same approach 
but using temperatures between -5◦C and 60◦C with a 0.1◦C interval. We 
implemented the same characterization for each version of the analysis 
and compared the response curves graphically. 

2.6. Reproducibility, tools for data preparation, model implementation 
and figure generation 

Data curation and preparation, model implementation, model per
formance analysis and figure generation were done in the R program
ming environment (R Core Team, 2021). For agro-climatic analyses and 
implementation of PhenoFlex we used the chillR package (version 
0.72.4; Luedeling (2021)). For data preparation and figure generation 
we mainly used libraries within the tidyverse framework (Wickham 
et al., 2019). For reproducibility, we deposited all data used in this 
study as well as procedures to implement the analysis in a public 
GitHub repository (https://github.com/EduardoFernandezC/phenoflex 
_exp_data). 

3. Results 

3.1. Model parameters 

We observed considerable differences for some of the 12 fitted pa
rameters between the two versions of the PhenoFlex framework 
(Table 1). Whereas in PhenoFlexall we estimated a chill requirement of 
63.28 ± 0.82 units, in PhenoFlexexcluded this parameter reached a much 
smaller value of 33.70 ± 1.67 units of chill. Regarding the heat 
requirement, we observed greater values in PhenoFlexexcluded (370.97 ±
23.00 heat units) compared to PhenoFlexall (319.10 ± 9.52 heat units). 
Note, however, that these values cannot be interpreted in absolute 
terms, but have to be considered relative to the efficiency of the chill and 
heat response (shown in section “3.2. Fitted chill and heat response 
curves”). When excluding the marginal experimental seasons from the 
calibration procedure (PhenoFlexexcluded), our analysis suggested a 

Table 1 
Description, default values and best fit parameters for the two versions of the PhenoFlex framework that we implemented. The values after the ± signs represent the 
standard errors estimated by bootstrapping. PhenoFlexall included 5 marginal experimental seasons in addition to 35 experimental seasons randomly selected at the 
beginning of the analysis. For detailed description of the parameters, we refer to Luedeling et al. (2021).  

Model parameter Description Default value PhenoFlexall PhenoFlexexcluded 

yc Chill requirement (value defining the end of chill accumulation) 40 68.28 ± 0.82 33.70 ± 1.67 
zc Heat requirement (value defining the end of heat accumulation) 190 319.10 ± 9.52 370.97 ± 23.00 
s1 Slope for the transition between chilling and forcing phases 0.5 0.85 ± 0.35 0.13 ± 0.02 
Tu (◦C) Optimal temperature for the heat model 25 27.89 ± 0.30 24.95 ± 0.34 
E0 (K) Activation energy for intermediate compound formation (chill model) 3,372.8 3,310.35 ± 0.03 3,371.00 ± 1.22 
E1 (K) Activation energy for intermediate compound destruction (chill model) 9,900.3 9,901.64 ± 0.20 9,901.25 ± 2.86 
A0 (h− 1) Amplitude for intermediate compound formation (chill model) 6,319.5 6,396.17 ± 25.03 6,214.57 ± 55.81 
A1 (h− 1) Amplitude for intermediate compound destruction (chill model) 5.94 • 1013 5.94 • 1013 ± 1.83 • 108 5.94 • 1013 ± 2.08 • 108 

Tf (◦C) Temperature for the transition of the sigmoidal function (chill model) 4 6.48 ± 0.94 1.74 ± 0.44 
Tc (◦C) Upper threshold temperature for the heat model 36 27.91 ± 1.34 53.34 ± 0.18 
Tb (◦C) Base temperature for the heat model 4 5.59 ± 0.42 4.01 ± 0.69 
s (K− 1) Sigmoidal function slope determining the production of Chill Portions 1.6 1.39 ± 12.15 3.17 ± 0.20  
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reduction in the slope for the transition between the chilling and forcing 
periods (s1 parameter) from 0.85 ± 0.35 to 0.13 ± 0.02. We observed 
comparable results for most parameters associated with the Dynamic 
model except for the slope (parameter s) of the sigmoidal function, 
which determines what fraction of the intermediate compound is con
verted into a Chill Portion, and the temperature modulating this tran
sition (parameter Tf). The Tf parameter reached a value about 4 times 
smaller in PhenoFlexexcluded compared to PhenoFlexall and the s 
parameter reached a value about 2.5 times greater in the second version 
of the analysis (PhenoFlexexcluded; Table 1). While we observed compa
rable results among versions for the parameters Tu and Tb (optimum and 
base temperature for the Growing Degree Hours model, respectively), 
the parameter for the upper threshold in the GDH model (parameter Tc) 
differed greatly between PhenoFlexall (27.91 ± 1.34◦C) and Pheno
Flexexcluded (53.34 ± 0.18◦C). 

3.2. Fitted chill and heat response curves 

Despite some differences in the specific values for optimal temper
ature between PhenoFlexall and PhenoFlexexcluded, our analysis produced 
comparable response curves for chill and heat effectiveness (Fig. 3). In 
PhenoFlexall, we found noticeable chill effectiveness (>1 unit of chill) 
for temperatures above 0.8◦C, although some chill response (<0.01 
units of chill) was observed at temperatures below 0◦C. In Pheno
Flexexcluded, noticeable chill effectiveness of 2.12 units was found to 

occur at temperatures of -0.5◦C, increasing rapidly for temperatures 
above 0◦C (8.14 units of chill). Maximum chill efficiency of 36.6 units of 
chill occurred in PhenoFlexall at 8.8◦C, whereas PhenoFlexexcluded 
showed a lower maximum chill efficiency of 26.3 units at 4.0◦C. Fitted 
parameters indicated differing ranges of effective temperatures for chill 
accumulation among versions of the analysis. In PhenoFlexall, chill 
accumulation was registered at temperatures up to 14.1◦C, whereas in 
PhenoFlexexcluded only temperatures up to 11.1◦C were found effective. 

Regarding heat effectiveness for temperatures between 0◦C and 
20◦C, our results suggest a similar response among versions of the 
analysis (despite PhenoFlexexcluded showing a slightly lower base tem
perature for development). We observed major differences for temper
atures >20◦C, with an observed maximum heat efficiency at 27.8◦C in 
PhenoFlexall and 24.9◦C in PhenoFlexexcluded. While we observed a rapid 
drop to 0 heat units after reaching the maximum efficiency in Pheno
Flexall, the heat efficiency in PhenoFlexexcluded showed a more gradual 
decline towards 0 heat units for temperatures above 53.3◦C (Fig. 3). 

3.3. Model performance 

Including the five marginal experimental seasons (PhenoFlexall) in 
the calibration data set appeared to reduce the performance of the 
PhenoFlex framework (Fig. 4). Compared to PhenoFlexexcluded, the re
sults of PhenoFlexall showed a greater RMSE and AICc, and a smaller 
RPIQ for the calibration data set (Fig. 4). 

Fig. 3. Chill and heat response curves for the two versions of the analysis. On the y-axis of the left panels, we show absolute arbitrary units for chill effectiveness after 
1,200 hours at a constant temperature between -5◦C and 25◦C. On the y-axis of the right panels, we show heat efficiency (between 0 and 1) for constant temperatures 
between -5◦C and 60◦C. The two versions of the analysis differ in the array of experimental seasons used for calibrating the PhenoFlex framework, with PhenoFlexall 
considering 5 seasons with marginal temperature for overcoming dormancy. 
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Regarding the validation of the PhenoFlex framework, our results 
generated an RMSE value of 5.5 days in PhenoFlexall versus an RMSE of 
2.3 days in PhenoFlexexcluded. In contrast to the results of Pheno
Flexexcluded, our RPIQ estimate in PhenoFlexall was lower compared to 
the value estimated for calibration. Our RPIQ results for validation were 
5.7 in PhenoFlexall and 13.8 in PhenoFlexexcluded. Overall, the boot
strapping procedure suggested small standard errors in the estimation of 
bloom dates (Fig. 4). Validating the performance of the null model 
(predicting that bloom always falls on the mean bloom date of the 
calibration set) in predicting bloom dates of the validation set resulted in 
RMSE values of 18.47 days for the seasons used in PhenoFlexall and 
18.94 days for the seasons used in PhenoFlexexcluded. 

When using the PhenoFlexexcluded version to predict bloom in the five 
marginal seasons, our results suggest an overall poor performance of the 
framework (Fig. S4). In this validation, RMSE and RPIQ reached values 
of 61.2 days and 0.3, respectively. It should be noted, however, that 
these results are greatly influenced by one outlier showing 127 days of 
error (observed versus predicted). When removing the outlier from the 
marginal seasons, the prediction error ranged between 9.3 and 44.4 days 
(Fig. S4). 

The residuals obtained when validating the PhenoFlex framework 
depended on the version of the analysis (Fig. 5). In PhenoFlexall, we 
observed a tendency towards underestimation of bloom dates (a bias 
towards early dates), whereas in PhenoFlexexcluded the model was 
slightly biased towards late bloom. The median for the residuals was 

-4.06 days in PhenoFlexall and 0.71 days in PhenoFlexexcluded. We 
observed a greater absolute error in PhenoFlexall (with a mean of 4.84 
days) compared to the second version of the analysis (mean of 1.93 
days). Finally, we observed a relatively wide distribution of residuals in 
PhenoFlexall compared to a narrow distribution in PhenoFlexexcluded 
(Fig. 5). The interquartile ranges for the residuals in PhenoFlexall and 
PhenoFlexexcluded were 6.17 and 1.92 days, respectively. 

4. Discussion 

4.1. Performance of PhenoFlex in comparison with previous approaches 

Although comparisons with earlier phenology model assessments are 
greatly affected by factors such as the methods used for data collection, 
calibration and validation and possibly the species, some prominent 
former studies may serve as benchmarks to evaluate our results. Pre
diction errors for both the PhenoFlexexcluded (RMSE of 2.3 days) and 
PhenoFlexall (RMSE of 5.5 days) models were much lower than those of 
the naïve null model based on average bloom dates (RMSE of 18-19 
days), indicating their usefulness for forecasting bloom dates in young 
apple trees. Our results mirror the values obtained by Luedeling et al. 
(2021), who validated the same modelling framework with historic data 
from mature apple trees cv. “Boskoop” in Germany (RMSE of 3.82 days) 
but are considerably lower than the values reported by Hoffmann and 
Rath (2013), who developed 6 phenology models to predict bloom and 

Fig. 4. Observed versus predicted bloom dates for calibration (open circles and triangles) and validation (solid blue circles) data sets and model performance metrics 
for the two versions of the analysis. We show the five marginal experimental seasons included in the analysis in PhenoFlexall using red open triangles. The remaining 
experimental seasons used for calibration in both versions are represented by the blue open circles. The solid grey line represents a perfect match between observed 
and predicted bloom dates. The vertical lines in the validation circles represent the error estimated by bootstrapping. 
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frost risk for apple trees in Germany (RMSE of 5.9 days on average). 
Along the same lines, our RMSE results are lower compared to the results 
reported by Darbyshire et al. (2017), who evaluated the phenology of 
apple cv. “Golden Delicious” in 14 locations across the globe and re
ported an RMSE between 6.7 and 17.1 days for a sequential approach 
and between 5.5 and 8.8 days for a chill overlap model. Our RMSE re
sults are also lower than the values reported by Darbyshire et al. (2016), 
who analyzed phenology data of apple cv. “Cripps Pink” in Australia 
using a fixed-overlap structure (RMSE of 5.8 days). Darbyshire et al. 
(2016), hypothesized that chill accumulated after fulfilling the CR can 
modify the HR for a certain share of the forcing phase, suggesting an 
overlap of 75% as best suited for explaining the observations. Compared 
to using a hard threshold for the overlap, the more flexible structure 
used in PhenoFlex to determine the shape of the transition between the 
chilling and forcing phases may explain its better performance relative 

to the approach taken by Darbyshire et al. (2016). With adequate data 
for calibration and after assessing the framework with data from 
different species and environments, the flexible structure included in 
PhenoFlex may offer researchers a good option for improving the ac
curacy of current and future phenology assessments. 

4.2. Impacts of marginal seasons and considerations for future model 
implementation 

We observed a considerable improvement in the performance of 
PhenoFlex when excluding the five marginal experimental seasons from 
the calibration data set. Only to provide a context in terms of growing 
conditions, we estimated a median chill accumulation of 24 Chill Por
tions (CP) for these marginal seasons (using as reference the chilling 
phase statistically delineated by Fernandez et al. (2021b) for apple trees 

Fig. 5. Distribution of residuals for bloom date projections (14 experimental seasons) obtained with the validation data set for the two versions of our PhenoFlex 
modelling framework. The versions represent different approaches for calibrating the framework (with PhenoFlexexcluded excluding five marginal seasons from the 
calibration data set). 
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using the same experimental design), which is substantially lower 
compared to reported chill requirements of about 50 CP for this cultivar 
(Fernandez et al., 2021b; Fernandez et al., 2020a). We hypothesize that 
the difference in model performance resulted from including somewhat 
extreme values in the calibration procedure of PhenoFlexall, a situation 
that potentially hampered the identification of adequate model param
eters. Accordingly, we obtained greater error estimates for the version of 
the analysis that included the marginal seasons for the parameter s1 
(0.35 versus 0.02), which defines the slope for the chilling/forcing 
transition. To some extent, the good performance of the framework we 
observed when excluding the marginal seasons may challenge the hy
pothesis by Luedeling et al. (2021), who suggested the need for 
including relevant environmental conditions in the analysis to reach 
adequate model fits. We highlight, however, that the five marginal 
seasons considered in PhenoFlexall may have been too warm for apple 
trees to overcome dormancy through its regular dormancy release 
mechanisms. We believe the remaining seasons featured an adequate 
inter-seasonal variation that helped the fitting procedure identify an 
appropriate set of parameters and response curves as suggested by 
Luedeling et al. (2021), ensuring a good performance of the framework 
under the kind of conditions that are usually faced by apple trees during 
the dormancy season. 

Even though we were unable to validate both versions of the 
framework using the marginal seasons, the results of our supplementary 
analysis (i.e. validation of PhenoFlexexcluded with the five marginal 
seasons; supplementary materials) highlight the importance of explicitly 
testing the predictive accuracy of the model under environmental con
ditions outside the range of the calibration data. When comparable 
temperature conditions are used for calibration and validation, the 
model is – despite potentially incorrect assumptions – sufficiently flex
ible to be well fitted to data and shows good projection quality. How
ever, when validation data contain conditions outside the calibration 
range, the conceivably inaccurate model structure cannot be compen
sated by parameter fitting and finds expression in high residual errors. 
The lower performance of PhenoFlexexcluded when used to predict bloom 
under marginal conditions may also suggest a limitation of our current 
understanding of the dormancy release process. A related plausible 
explanation is that under extreme conditions, some alternative mecha
nisms to the regular dormancy release processes, which are potentially 
ignored in the current version of the PhenoFlex framework, may be 
involved in breaking dormancy in temperate trees. Further research is 
required to systematically assess the extent of this apparent limitation of 
the framework and improve the applicability of PhenoFlex. 

4.3. Effectiveness of chill and heat models with fitted parameters 

Despite slight differences between PhenoFlexall and Pheno
Flexexcluded, our analysis outlined generally plausible response curves for 
chill and heat accumulation. We observed the start of chill accumulation 
at temperatures near 0◦C in both versions of the analysis, with an upper 
limit around 15◦C in PhenoFlexall and 11◦C in PhenoFlexexcluded. 
Whereas the lower threshold we observed for chill accumulation is 
comparable to the 2◦C reported by Luedeling et al. (2021), the upper 
bounds are clearly different from the >30◦C obtained in the former 
study. The inclusion of relevant environmental conditions (e.g. more 
inter-seasonal variation) in our data set may have helped the model 
identify a more reasonable response to chilling conditions (Luedeling 
et al., 2021). The results for chill accumulation we observed for Phe
noFlexexcluded are comparable to the outputs reported by Egea et al. 
(2021), who recently explored a re-parameterization of the Dynamic 
model using experimental data for apricot in Spain and who reported 
chill accumulation for temperatures between 0◦C and 12.1◦C. For Phe
noFlexall, the overall shape of the chill response curve resembles the 
pattern reported in the original Dynamic model study (Fishman et al., 
1987a). 

Regarding the heat response, our results indicate comparable base 

(5.6◦C in PhenoFlexall and 4.0◦C in PhenoFlexexcluded) and optimum 
(27.9◦C in PhenoFlexall and 25.0◦C in PhenoFlexexcluded) temperature 
thresholds for both versions of the analysis. For the upper bound of the 
heat response, however, the results differed widely across the versions. 
In PhenoFlexexcluded, we observed a smooth decline for above-optimal 
temperatures towards null efficiency for temperatures above 53.3◦C, 
mirroring the shape of the response reported by Luedeling et al. (2021) 
for apple cv. “Boskoop”. While the overall shape of the heat response 
curve observed in PhenoFlexexcluded seems plausible, the apparently 
extreme upper limit (i.e. 53.3◦C) may indicate a need for further 
research on heat efficiency during eco-dormancy. In PhenoFlexall, on the 
other hand, we observed a sharp drop beyond the maximum heat effi
ciency, which mirrors the shape of the response reported in the original 
PhenoFlex study for pear cv. “Alexander Lucas” (Luedeling et al., 2021). 
The sharp drop observed in PhenoFlexall conflicts with our under
standing of biological processes, which rarely feature such abrupt re
sponses to temperature variation (Hatfield et al., 2011). In this regard, 
the five additional seasons included in PhenoFlexall may have been 
unusually marginal, suggesting a need for more intermediate environ
mental conditions to decipher whether the hard drop is a model artifact 
or a genuine plant response during eco-dormancy. 

4.4. Model parameters fitted under marginal and non-marginal conditions 

We can provide little comparison regarding the specific parameters 
fitted by the two versions of the analysis. On the one hand, PhenoFlex as 
well as other re-parameterization studies involving the Dynamic and/or 
GDH models are rather recent (Egea et al., 2021; Luedeling et al., 2021), 
and on the other hand, model parameterization is highly sensitive to 
data collection and calibration procedures. The comparisons we conduct 
only aim to contextualize our results. The chill requirement in Pheno
Flexall was about twice as great as in PhenoFlexexcluded, probably because 
of a lower chill efficiency at similar temperature for the version 
excluding the marginal seasons. It should be noted, however, that the 
chill units in PhenoFlex are arbitrary and not necessarily comparable 
across analyses. A similar pattern was reported by Luedeling et al. 
(2021) when comparing the PhenoFlexfitted (all parameters fitted to 
data) versus PhenoFlexfixed (chill sub-model parameters from the orig
inal Dynamic model) approaches. For the remaining parameters E0, E1 
and A0, which define the Dynamic model, our fitting procedure settled at 
slightly lower values than those reported in the original PhenoFlex 
article (Luedeling et al., 2021). For A1 (the amplitude of the interme
diate compound destruction), the results among studies are perfectly 
aligned. We observed strong differences when comparing our values for 
the same parameters to the values reported by Egea et al. (2021), who 
re-parametrized the Dynamic model with experimental data for apricot 
in Spain. The similarities between our results and the results by Lued
eling et al. (2021), who also analyzed apple, and the differences between 
our results and the results by Egea et al. (2021), highlight the impor
tance of considering the species and even cultivar when characterizing 
the chill accumulation process in temperate trees. 

4.5. PhenoFlex outlook and challenges for phenology modelling 
approaches 

Many previous studies have relied on the original sets of parameters 
reported for the Dynamic and GDH models to assess climate change 
impacts on temperate fruit production for particular locations (Buerkert 
et al., 2020; Darbyshire et al., 2013; del Barrio et al., 2021; Delgado 
et al., 2021; Fernandez et al., 2020b) or regions (Benmoussa et al., 2020; 
Fernandez et al., 2021a; Rodríguez et al., 2019). Such general assess
ments can now be fine-tuned with species and cultivar-sensitive 
phenology modelling frameworks (e.g. PhenoFlex). However, imple
menting a framework such as PhenoFlex requires a considerable quan
tity of phenology data, which are scarce in many regions and for many 
cultivars. In line with a previous study by Fernandez et al. (2021b), we 
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demonstrated that multi-environment experiments can be a useful 
strategy to overcome data limitations. Such analyses, however, are 
based on the use of artificial conditions (e.g. heated greenhouses) and 
young potted trees. While artificial environments may offer an oppor
tunity to assess the phenological response of trees under warmer sce
narios, there is little certainty on the probability of observing the same 
settings under field conditions in the future. Along the same lines, we 
acknowledge that young potted trees may show a slightly different 
response to temperature compared to mature trees in the orchard. By 
using this approach, on the other hand, we were able to generate 
phenology records that correspond to 59 seasons under normal condi
tions, a situation that may represent a promising alternative for further 
studies in the context of climate change. 

Apart from being quite data-hungry, PhenoFlex (as well as other 
phenology modeling approaches) strongly relies on sub-models that 
hardly represent the state-of-the-art on processes associated with chill 
and heat accumulation. As suggested by Chuine et al. (2016), including 
the transition point between endo- and eco-dormancy, which is modu
lated by numerous physiological processes (see Fadón et al. (2020) for a 
review), may greatly improve the robustness of PhenoFlex or any 
alternative framework. Accounting for the endo-dormancy release date 
during the calibration of phenology models will enable researchers to 
generate accurate projections for future scenarios, particularly in 
warm-winter regions (Chuine et al., 2016). Such accurate projections 
are expected to support farmers in making informed decisions in 
adapting their orchards to meet future challenges. 

5. Conclusions 

Overall, our experimental seasons helped improve the performance 
of PhenoFlex when compared to the original study. The improved per
formance probably resulted from including relevant environmental 
conditions (e.g. high inter-seasonal variation) in the calibration data set. 
On the other hand, including five marginal seasons (characterized by 
warm conditions during winter) in the calibration data set reduced the 
performance of the model in forecasting bloom dates for the validation 
data set. We hypothesize that these five seasons prevented the model 
from defining a reasonable set of parameters by featuring extreme values 
for calibration. This clearly suggests that researchers and practitioners 
using PhenoFlex may need to include seasons with comparable thermal 
conditions for calibration and validation to maximize the performance 
of the modeling framework. 

In general, we conclude that PhenoFlex outlined reasonable tem
perature responses for both chill and heat accumulation, despite a sharp 
drop in the heat response when the five marginal seasons were included 
and an apparently extreme upper limit in the heat curve when removing 
those seasons. These results indicate that dormancy researchers may 
focus on elucidating whether the sharp drop in PhenoFlexall and the 
apparently extreme upper threshold in PhenoFlexexcluded, both associ
ated with the heat response, are model artifacts or a genuine plant 
response during eco-dormancy. 

Although the approach may be greatly improved by developing 
enhanced sub-models accounting for chill and heat accumulation, Phe
noFlex offers an opportunity to assemble our current knowledge 
regarding dormancy modelling and accurately predict bloom dates in 
temperate trees. To provide useful insights that allow additional im
provements of PhenoFlex or alternative phenology modelling ap
proaches, researchers and practitioners should validate the framework 
in different environments and for different species. 
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