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Schizotypy refers to a set of personality traits that bear 
resemblance, at subclinical level, to psychosis. Despite ev-
idence of similarity at multiple levels of analysis, direct 
comparisons of schizotypy and clinical psychotic disorders 
are rare. Therefore, we used functional magnetic reso-
nance imaging (fMRI) to examine the neural correlates 
and task-based functional connectivity (psychophysiolog-
ical interactions; PPI) of smooth pursuit eye movements 
(SPEM) in patients with recent onset psychosis (ROP; 
n  =  34), participants with high levels of negative (HNS; 
n = 46) or positive (HPS; n = 41) schizotypal traits, and 
low-schizotypy control participants (LS; n  =  61) using 
machine-learning. Despite strong previous evidence that 
SPEM is a highly reliable marker of psychosis, patients 
and controls could not be significantly distinguished based 
on SPEM performance or blood oxygen level dependent 
(BOLD) signal during SPEM. Classification was, however, 
significant for the right frontal eye field (FEF) seed region 
in the PPI analyses but not for seed regions in other key 
areas of the SPEM network. Applying the right FEF clas-
sifier to the schizotypal samples yielded decision scores be-
tween the LS and ROP groups, suggesting similarities and 
dissimilarities of the HNS and HPS samples with the LS 
and ROP groups. The very small difference between groups 
is inconsistent with previous studies that showed significant 
differences between patients with ROP and controls in both 
SPEM performance and underlying neural mechanisms 
with large effect sizes. As the current study had sufficient 
power to detect such differences, other reasons are discussed.
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Introduction

Schizotypy refers to a set of personality traits that re-
semble the symptoms of psychosis in an attenuated, 
subclinical form.1 Similarities of schizotypy with psy-
chosis include cognitive deficits, morphological and func-
tional neural correlates and environmental risk factors.1–5 
Despite these similarities, 1–14 transition rates from schiz-
otypy to psychosis are low.15,16 This may suggest that 
although persons with high schizotypy carry risk for psy-
chosis, protective mechanisms operate which lower the 
risk of transition.17–19 Alternatively, high schizotypy may 
result from insufficiency of risk factors for psychosis (de-
spite higher risk than in low-schizotypy).16,20 These theo-
retical issues aside, there should not only be similarities, 
but also dissimilarities between schizotypy and psychotic 
disorders. Several such differences have been reported. 
Contradictory to findings of volume reductions in schiz-
ophrenia,10,21–25 schizotypy is associated with increased 
cortical thickness in frontal lobe12 and volume in cingu-
late cortex.26,27 Additionally, positive schizotypy is also as-
sociated with beneficial characteristics, such as enhanced 
creativity.28,29

However, studies directly comparing people with 
high levels of schizotypy and patients with psychotic 
disorders are scant,30 although this is essential to detect 
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both similarities and differences.3,19 The present study, 
therefore, compared positive and negative schizotypal 
individuals to patients with recent onset psychosis 
and low-schizotypy controls in one of the most robust 
biomarkers of psychosis, smooth pursuit eye movements 
(SPEM).31–33 Whilst persons with high schizotypy have 
been reported to show impaired SPEM,34–40 differences 
to psychotic patients have also been detected in indi-
rect comparisons. For example, the neural correlates of 
SPEM in schizotypy and schizophrenia show only par-
tial overlap. Whilst both persons with high schizotypy 
and patients exhibit reduced activity in visual areas (e.g., 
occipital cortex),36,41–44 reductions in frontal areas (e.g., 
frontal eye fields) found in schizophrenia41,42,44 have not 
been observed in schizotypy.36 However, no direct com-
parison between schizotypal individuals and schizo-
phrenia patients is available.

Importantly, previous studies have found not 
only altered brain structure and function in schizo-
phrenia,10,21–25,41–44 but also aberrant brain connectivity,45–48 
a finding that has also been demonstrated in persons 
with high schizotypy.49–55 However, it has not previously 
been investigated whether functional connectivity during 
SPEM is altered in schizophrenia or schizotypy.

A final issue addressed here is that previous fMRI 
studies of SPEM have relied on univariate analyses.36,41–44 
However, classical fMRI analyses involve between-group 
overlap (i.e., despite brain activation differences between 
two groups, they show substantial overlap at certain voxels, 
reducing the likelihood of detecting the differences 56,57), 
a problem addressed by multivariate machine-learning 
analyses 57,58: instead of focusing on between-group 
differences regarding certain voxels, machine-learning 
allows to predict whether a participant belongs to group 
A (e.g., controls) or group B (e.g., patients) based on ac-
tivity or connectivity patterns.57,59 Moreover, the likeli-
hood of a third group (e.g., persons with high schizotypy) 
being identified as controls or patients can be examined. 
Machine-learning has been shown to separate patients 
with a psychotic disorder and controls with high accu-
racy58,60–63 and is sensitive to effects of schizotypy.64,65

We hypothesized that patients and controls would 
be differentiated with significant accuracy.31,58,60–62 The 
strongest contribution to this differentiation was expected 
from brain regions known to underlie SPEM66 or its dys-
function in schizophrenia.43,44,67 Additionally, we explored 
whether persons with high schizotypy would be classified 
more as controls or as patients. We distinguished between 
persons with high schizotypy with primarily positive or 
negative schizotypal traits to explore potential differences 
regarding the classification. As SPEM deficits in schizo-
typy are less pronounced than in schizophrenia,35,39,40 and 
activity reductions during SPEM in schizotypy show only 
partial overlap with those in schizophrenia,36 persons with 
high schizotypy might be classified between patients and 
controls. Certain brain regions (e.g., occipital cortex36) 

might contribute to proximity of persons with high schiz-
otypy and patients with ROP, while other areas (e.g., 
frontal eye fields36) might lead to higher classification of 
persons scoring high on schizotypy to the control group.

Methods

Recruitment and Selection of Participants

Participants for both schizotypy groups and the low-
schizotypy control group were recruited from the general 
population through an online version of the Oxford-
Liverpool Inventory of Feelings and Experiences short 
(O-LIFE, German version68), advertised via flyers and 
social media. Cut-offs for group assignment were based 
on an O-LIFE database of n = 50061. Assignment to the 
positive schizotypy group (HPS) required a score ≥ 1.25 
SD above the same sex mean on the unusual experiences 
(UE) and ≤ 0.5 SD below the same sex mean on the 
Introvertive Anhedonia (IA) scale, and vice versa for the 
negative schizotypy group (HNS), as described previ-
ously.40 Participants were assigned to the low-schizotypy 
control group (LS) if  they scored ≤ 0.5 SD below the same 
sex mean on both UE and IA scales. Participants who 
met these criteria were invited to a telephone screening in 
order to discuss exclusion criteria (see below for details).

Patients with recent onset psychosis (ROP) were 
recruited from in-patient and out-patient services. They 
were included in the study if  they had i) a diagnosis of 
a psychotic disorder according to DSM-IV or ICD-10 
criteria (F20, F22, F23, F25, F29) for a maximum of 
three years, with no more than one psychotic episode in 
the past, as determined by a medical doctor, and ii) a score 
of 6 on at least one of the P1–P5 items of the Structural 
Interview of Prodromal Symptoms (SIPS69). Moreover, 
patients were screened for exclusion criteria listed below.

The study was approved by the ethics committees of the 
Faculty of Medicine, University of Bonn, and the Faculty 
of Medicine, University of Munich. Participants provided 
written informed consent and were financially rewarded.

Exclusion criteria for all participants were age < 18 
and > 40, insufficient knowledge of German, any neu-
rological disorder, visual impairments (except for glasses/
lenses) or eye surgery, MRI exclusion criteria such as 
pregnancy, claustrophobia and the presence of metal 
in the body, traumatic brain injury with loss of con-
sciousness for more than five minutes, systemic disease 
involving the central nervous system, and a positive result 
in an alcohol (ACE AL5500) or drug screening (Drug-
Screen Multi 5T, nal von minden GmbH) during the time 
of the assessment.

Additional exclusion criteria for the schizotypy and 
control groups were having a first-degree relative with 
a psychotic disorder, regular medication intake ex-
cept for contraceptives or thyroid medication, and any 

1https://osf.io/bfxmt/
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present Axis I disorder or past or present psychotic dis-
order (MINI International Neuropsychiatric Interview 
German Version 5.0.070). In addition, participants with 
clinical high-risk for psychosis criteria according to the 
SIPS69 were excluded. Additional exclusion criteria for 
patients were acute or chronic organic brain syndromes 
such as dementia or delirium, bipolar disorder, and uni-
polar depression with psychotic symptoms.

Study Procedure

Schizotypal and control participants first completed the 
O-LIFE and were then contacted via telephone for an in-
formal briefing on the study, and then screened via tele-
phone or in a personal meeting. For all groups, this initial 
screening was followed by two study sessions at intervals 
of no more than 1 month.

Participants were instructed not to drink alcohol 
starting one day before the study session, not to con-
sume any caffeine 2  h before the session, and to get 
normal sleep the night before the session. The first 
study session included i) a screening for current alcohol 
and drug consumption, ii) SIPS and the Schizophrenia 
Proneness Instrument, Adult Version (SPI-A71), iii) a 
neuropsychological test battery, and iv) the vocabulary 
and matrices subtests of  the WAIS-III as a measure of 
intelligence.72 The second study session included i) a 
screening for current alcohol and drug consumption, 
and ii) an MRI measurement including a structural 
scan and two fMRI scans with concurrent oculographic 
measurement of  SPEM and antisaccades. In addition, 
participants filled out several questionnaires as an on-
line version from home.

SPEM Task.  The SPEM task was programmed in 
ExperimentBuilder (SR Research Ltd., Ontario, 
Canada). Participants viewed a 32-inch MRI-compatible 
TFT LCD monitor (NordicNeuroLab, Bergen, Norway; 
resolution: 1024 × 768 pixels, refresh rate: 120 Hz) via a 
first-surface reflection mirror mounted on the head coil. 
They were instructed to follow a target with their eyes 
(SPEM blocks) and to fixate the target (fixation blocks) 
as accurately as possible whilst keeping the head still. The 
distance from participants’ eyes to screen was 1600 mm. 
The target was a gray (RGB = 128,128,128) circle (diam-
eter = 0.36°, stroke width = 0.11°) moving horizontally 
across the screen in front of a black (RGB = 0,0,0) back-
ground (figure 1). It moved horizontally in a sinusoidal 
pattern at low (0.2 Hz) and high velocity (0.4 Hz), and an 
excursion of ± 5.7° from the center. SPEM blocks (du-
ration: 30 s each) alternated with fixation blocks (dura-
tion: 20  s each). During fixation blocks, the target was 
stationary in the center of the screen. In total, ten SPEM 
blocks (five each with low and high target frequencies) 
and ten fixation blocks were presented. A  horizontal 
three-point calibration was carried out before the task. 
Movements of the right eye were recorded with an 

MRI-compatible video-based eye-tracker (EyeLink 
1000, SR Research Ltd., Ontario, Canada; sampling rate 
1000 Hz).

fMRI Data Acquisition.  A Siemens 3 T Trio Scanner 
(Bonn) and a Philips Ingenia 3 T Scanner (Munich) were 
used. To reduce noise from the scanner, participants 
wore earplugs, and foam pads helped to minimize head 
movements. For radio frequency transmission and re-
ception, both sites used a 32-channel head coil. First, a 
localizer scan was acquired to place the volume of in-
terest. Then, a high-resolution structural scan for image 
co-registration and normalization was acquired, using 
the following parameters in Bonn (and in Munich): 
TR  =  1600  ms, TE  =  2.54  ms (5.53  ms), inversion 
time = 850 ms, flip angle = 9° (8°), FoV = 256 mm, ma-
trix size = 320 × 320 (256 × 256), 160 slices (190 slices), 
slice thickness = 0.8 mm (1.0 mm), sequential slice-order 
with no inter-slice gap, and voxel size = 0.8 × 0.8 × 0.8 
(0.9 × 0.9 × 0.9). During the SPEM task, at both sites, 
T2*-weighted MRI scans were collected with gradient-
echo planar imaging sequences (TR  =  2500  ms, 
TE = 30 ms, flip angle = 90°) that displayed the blood ox-
ygenation level dependent (BOLD) response. Additional 
scan parameters were as follows: FoV  =  192  mm; ma-
trix size = 96 × 96; 37 slices; slice thickness = 3 mm; se-
quential slice-order with inter-slice gap of 0.3 mm; voxel 
size  =  3  ×  3  × 3.  Slices were oriented parallel to the 
intercommissural plane (AC-PC line). 208 whole brain 
images were collected for each participant.

Data Processing

Behavioral Data.  Data quality was first examined with 
DataViewer (SR Research Ltd., Ontario, Canada), before 

Fig. 1.  Graphic representation of the fMRI SPEM task. 10 
blocks of fixation (duration: 20 s each) alternate with 10 blocks 
of sinusoidal SPEM (5 blocks with a target velocity of 0.4 Hz, 
5 blocks with a target velocity of 0.2 Hz; duration: 30 s each). 
During SPEM blocks, the target moves with an excursion of ± 
5.7° from the center.
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being processed using scripts (See footnote 1) in Matlab 
(The Mathworks, Natick, MA), calculating SPEM 
parameters from eye position coordinates and time stamps 
in the raw data. Dependent variables were velocity gain 
(mean eye velocity relative to mean target velocity in %), 
root mean square error (RMSE, in degrees) and saccade 
frequency (N/s). SPEM variables were calculated for each 
of the frequencies (0.2 and 0.4 Hz) separately, excluding 
the first half-cycle of each block. Velocity gain was calcu-
lated for segments of pursuit in the middle 50% of each 
half-cycle, excluding blinks and saccades.38 Saccadic fre-
quency was calculated using amplitude (≥ 1°), acceleration 
(≥ 3800°/s2) and velocity (≥ 30°/s) criteria. RMSE scores 
were calculated excluding blinks. A  blink was identified 
automatically when the eye-tracker did not detect any eye 
position. Saccades occurring immediately before or after a 
blink were excluded for all SPEM parameter calculations.

fMRI Data.  Data preprocessing and first-level analysis 
were performed using Statistical Parametric Mapping 
12 (SPM12; https://www.fil.ion.ucl.ac.uk/spm/soft-
ware/) running in MATLAB R2017a (The MathWorks, 
Natick, MA).

Data preprocessing included realignment of the images 
of each participant along the mean image in the time 
series to correct for head motion, using a least squares 
approach and a six-parameter rigid-body transforma-
tion. Additionally, images were unwarped to correct for 
image distortions due to magnetic field in homogeneities. 
Second, functional scans were co-registered to the 
T1-weighted anatomical image. Then, structural images 
were segmented in order to separate grey matter, white 
matter and cerebro-spinal fluid. The segmented images 
were used for normalization, in order to transform all 
images into standard space (Montreal Neurological 
Institute, MNI template) using 12-parameter affine linear 
transformation. Smoothing was applied using a Gaussian 
full-width-at-half-maximum filter of 8 mm.

First-level analyses were conducted to create, for each 
participant, a contrast for i) SPEM vs. Fixation blocks 
and ii) High Velocity vs. Low Velocity blocks (not 
thresholded). These contrasts were then used for pat-
tern classification (see below). For first-level analysis, a 
general linear model was used, including a SPEM vector 
(all SPEM blocks) and a Velocity vector (0.2 Hz, 0.4 
Hz). These vectors were contrasted against fixation. Six 
motion parameters entered the analysis as additional 
regressors. BOLD response was modelled as a canonical 
hemodynamic response-function. At the second level, 
each contrast was compared between-groups using one-
way ANCOVA with site (Bonn, Munich) and sex (male, 
female) as covariates.

In addition, generalized psychophysiological interac-
tion analyses73,74 (gPPI) were performed to explore group 
differences in task-based functional connectivity of the 
pursuit network. Key areas of the pursuit network (LGN, 

V1, V5, posterior parietal cortex [PPC], frontal eye fields 
[FEF]) were selected as seed regions and seed coordinates 
were taken from a previous publication75 (Supplementary 
table  1). To accommodate individual differences in the 
location of task activations and thus define individual 
seed spheres, first, for each region a 12 mm sphere was 
positioned around the coordinates derived from previous 
literature. Second, the largest individual task activation 
peak (omnibus-F-map, corrected at P < .001) within 
this sphere was identified and a smaller (4  mm sphere) 
was centered around these peak coordinates. For those 
participants, for whom no peak could be identified in the 
larger sphere, the 4 mm-sphere was centered around the 
literature-derived coordinates.

To determine the gPPI regressors, the first eigenvariate 
of the timeseries of all voxels within each individual 
sphere was extracted, deconvolved, multiplied with the 
task regressors and reconvolved with the HRF. Then, 
for each seed region, a GLM model was set up which 
included the psychophysiological interaction terms and 
the task and seed region timeseries vectors as regressors 
as well as the six motion vectors from the realignment 
preprocessing step as covariates of no interest. Two first-
level contrasts were determined (PPI SPEM vs. fixation, 
PPI high velocity vs. low velocity SPEM) for each par-
ticipant and each seed region, resulting in a total of 20 
models per participant. These contrasts were taken to the 
second level for one-way ANCOVAs to analyze between-
group differences with site and sex defined as covariates.

All fMRI results were family-wise error corrected 
(FWE, P < .05). Anatomical labels were obtained using 
the Anatomy Toolbox.76

Pattern Classification

Behavioral Data.  To generate a classification model dis-
tinguishing between LS and ROP based on behavioral 
SPEM data, we established a machine-learning pipe-
line using NeuroMiner (http://www.proniapredictors.eu/
neurominer/index.html). As behavioral data we used gain, 
saccade frequency and RMSE at each target velocity.

To first train the classification models and then eval-
uate their accuracy, we conducted a repeated nested 
cross-validation (CV77,78), with an inner CV cycle (CV1) 
to train and select optimally discriminative models, and 
an outer CV cycle (CV2) to validate the best models from 
CV1. Preprocessing of CV1 data included correction for 
effects of site and sex. To ensure that we corrected only 
for effects that were not attributable to disease-related 
factors, we added the variables as covariates and calcu-
lated beta coefficients only for the LS group, using partial 
correlation analysis. Then, we residualized the patient and 
healthy control data using the calculated coefficients.78,79 
Finally, data were scaled to [0, 1].

For both inner (CV1) and outer (CV2) cycles, we chose 
a 10 (folds/partitions) × 10 (permutations) CV, with each 
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permutation performing a reshuffling of participants 
within their groups. While in CV2, one partition at 
a time was held back as validation data, the nine re-
maining partitions entered CV1 as training data. In CV1, 
to create the classification models, 10 partitions with 10 
repetitions were used. This means that for each valida-
tion fold at CV2, 100 different training data partitions 
were generated at CV1. In each training partition, linear 
support vector machines (LIBSVM 3.12; http://www.csie.
ntu.edu.tw/~cjlin/libsvm) were used to find the hyperplane 
that separates best between the groups. This is done by 
maximizing the margin between the nearest data points 
of opposite classes.58 Penalty strength was optimized as 
a hyperparameter with a range from 0.015624 to 16 in 11 
steps. In addition, we weighted the hyperplane due to un-
equal sample sizes in the LS and ROP groups. This pro-
cedure yielded decision scores measuring the likeliness 
of a given participant being in the control or the patient 
group. The most discriminative sets of features were de-
termined in each of these 100 training partitions. Each 
of the trained classification models was used to predict 
the group membership of the validation fold in CV2. 
Support vector machine-learning has been intensively 
applied in the study of psychosis during the last years 
and has, therefore, become one of the most established 
methods in this field. 58,60,63,78,80,81 Therefore, and to facili-
tate comparability with previous studies, we applied this 
method in the present study.

To measure the classifier’s performance, we used sen-
sitivity, specificity, and balanced accuracy [(sensitivity + 
specificity)/2]. To calculate the significance of the clas-
sification, we conducted a permutation analysis with 
1000 random class label permutations. The null hy-
pothesis, stating that the classifier cannot predict group 
memberships correctly, was rejected at α =.05.

fMRI Data.  To distinguish LS from ROP based on 
neural correlates of SPEM, we used first-level contrast 
images (SPEM vs. Fixation; high vs. low target velocity; 
10 gPPI SPEM vs. Fixation contrasts and 10 gPPI high 
vs. low target velocity for each seed region in the left and 
right hemisphere) for the machine-learning pipeline.

The preprocessing of the BOLD data was identical to 
the behavioral data analysis, except for three additional 
steps: First, we pruned the data, in order to prevent 
overfitting of the algorithm. More precisely, we removed 
features with no variance within a fold as well as features 
with infinity values. Second, to correct for effects of site, 
we applied ComBat batch effect correction. Next, we ap-
plied principal component analysis (PCA) by mapping 
correlated voxels to a number of uncorrelated principal 
components. PCA was used as a statistical smoothing 
technique to reduce the dimensionality of discrimina-
tive patterns and eliminate noise. 58,78 The number of 
PCA components was optimized within the nested cross-
validation approach described above. Specifically, the 

number of components was determined by the optimal 
PCA energy for class separation ranging from 0.5 to 0.9. 
Finally, data were scaled voxel-wise to [0,  1] following 
again a strict separation of CV1 training, CV1 test and 
CV2 validation data, where the scaling parameters were 
derived from the CV1 training sample and then applied 
to other data partitions.

The training pipeline for the BOLD data was identical 
to the pipeline for the behavioral data.

For reasons of computational efficiency, the permu-
tation analyses for calculating the significance of the 
classification algorithms for the connectivity maps were 
first applied only to the first CV2 fold. If  a classification 
algorithm was significant at trend-level (P < .10) in this 
fold, the permutation analyses were repeated for all 10 
CV2 folds to ensure robustness of the results. Resulting 
P-values were corrected for multiple testing separately for 
each contrast (SPEM and Velocity) using the false dis-
covery rate procedure.82

Sign-based consistency mapping was applied to de-
termine brain areas contributing to classification of LS 
and ROP.83 Images were thresholded at ‐log10(0.05), 
FDR-corrected.

In addition, stacking analyses were performed sepa-
rately for the SPEM and Velocity contrasts in order to 
combine the predictions of  the lower order classifica-
tion algorithms. To do so, the decision scores from all 
modalities of  each contrast (i.e., the standard fMRI con-
trast and all 10 gPPI contrasts) were entered into a single 
analysis, yielding two stacked analyses (SPEM contrast, 
Velocity contrast). The training pipeline of  these stacked 
data sets was identical to the pipeline of  the lower order 
fMRI trainings. The stacking pipeline was wrapped 
into the same repeated nested cross-validation setup as 
described above to exclude the possibility of  informa-
tion leakage, i.e., the first-level decision scores of  a given 
CV1 partition were forwarded to the second-level SVM, 
which was then applied to the second-level CV2 data 
alongside the other trained SVM models of  the given 
CV2 partition.

Model Application to Schizotypal Samples.  In case of a 
significant classification, the trained models used to pre-
dict group membership for LS and ROP were applied 
to persons with high schizotypy. This allows to examine 
whether a schizotypal participant is more likely to be 
classified as LS or ROP, and thus, whether BOLD data 
during SPEM in schizotypy are more similar to those of 
LS or ROP. It produces decision scores indicating whether 
a participant is more likely to belong to the LS (positive 
decision scores) or the ROP group (negative scores). One-
way ANOVA was employed to indicate whether the deci-
sion scores differed between groups.

In addition, a regression analysis was conducted where 
the HPS and HNS decision scores were used as a regressor 
to predict BOLD activity in the HPS and HNS groups.
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Univariate Group Comparisons for Behavioral 
SPEM Data

In addition to the classification analysis, we conducted 
mixed ANCOVA based on the behavioral SPEM data, 
with Group as a between- and Velocity as a within-
subjects factor. Three separate analyses were conducted, 
with gain, saccade frequency or RMSE as dependent 
variables, and site (Bonn, Munich) and sex (male, female) 
as covariates.

Results

Descriptive Statistics, Sociodemographic and Clinical 
Variables

No significant group differences were found with respect 
to age and years of formal education. However, there were 
differences in distributions of participants across sites, as 
well as in sex distributions and intelligence (table 1). For 
additional characteristics of the ROP sample see table 2. 
Descriptive statistics of SPEM parameters are in table 3.

Behavioral Results

A total of 174 participants were included for the behav-
ioral analyses (see table 3 for the number of participants 
in each group). Nine participants had to be excluded due 
to poor eye-tracking quality.

Classification Analysis.  Based on behavioral data, LS 
and ROP participants were classified with a balanced ac-
curacy of 52.1% (sensitivity = 71.9%; specificity = 32.4%), 
which was not significant (P = .438, AUC = 0.56).

Univariate Group Comparisons..  Mixed ANCOVA 
with all four groups revealed main effects of  Velocity 
for all three parameters (gain: F(1,168) = 54.02, P < .001, 
ηp

2  =  .24; RMSE: F(1,168)  =  61.46, P < .001, ηp
2  =  .27; 

saccade frequency: F(1,168) = 40.89, P < .001, ηp
2 = .20). 

Additionally, there was a main effect of  Group on RMSE 
(F(3,168) = 2.92, P =  .036, ηp

2 =  .05). Post-hoc pair-wise 
comparisons showed significant differences between 
the LS and ROP group that did not, however, survive 
Bonferroni-correction (table 4). For saccade frequency 
and gain, there were no significant effects of  Group, al-
though there was a trend towards a main effect of  Group 
on gain (P  =  .079). There were no Group by Velocity 
interactions (all P > .126). Statistical parameters and 
effect sizes of  all pairwise group comparisons are in 
table 4.

FMRI Results

A total of 180 participants were included for the fMRI 
analyses. Three participants (2 LS, 1 ROP) had to be 
excluded due to poor fMRI data quality.

BOLD Task and Group Effects.  There were no significant 
group differences for the SPEM or Velocity contrasts. 
However, the smooth pursuit task (SPEM contrast) 
activated areas of the pursuit network (figure  2 and 
Supplementary tables 2 and 3 for results in the LS group). 
The Velocity contrast revealed significant activations 
in visual cortex (figure  2 and Supplementary table  4 
for results in the LS group). There were no significant 
differences for the reverse Velocity contrast.

Table 1.  Sociodemographic and clinical variables of the four study groups

Variable 
LS  
(n = 62) 

HPS  
(n = 41) 

HNS  
(n = 46) 

ROP  
(n = 34) Statistics 

Site (n Bonn/Munich) 31/31 28/13 29/17 12/22 χ² (3) = 10.07, P = .02
Sex (n female/male) 29/33 26/15 25/21 10/24 χ² (3) = 9.28, P = .03
Age (in years; M, SD) 25.94 (4.73) 26.24 (6.33) 26.67 (4.61) 25.09 (4.98) F(3,179) = 0.65, P = .58, ηp

2 = 0.01
O-LIFE scores (M, SD)
  UE 1.21 (1.19) 9.46 (1.80) 1.48 (1.19) N/A F(2,146) = 513.89, P < .001, ηp

2 = 0.88
  IA 1.03 (0.75) 1.27 (0.81) 6.33 (1.01) N/A F(2,146) = 592.55, P<.001, η p

2 = 0.89
  CD 3.17 (2.52) 5.97 (2.98) 6.00 (2.93) N/A F(2,146) = 17.27, P < .001, ηp

2 = 0.21
  Total 5.34 (3.46) 16.62 (4.45) 13.67 (3.62) N/A F(2,146) = 114.49, P < .001, ηp

2 = 0.63
Years of formal  
education (M, SD)

16.83 (3.26) 16.32 (3.15) 16.72 (3.45) 15.20 (3.50) F(3,173) = 1.91, P = .13, ηp
2 = 0.03

Verbal intelligence test 
scorea (M, SD)

12.02 (2.98) 10.98 (2.62) 11.59 (2.61) 9.47 (3.33) F(3,177) = 5.87, P = .001, ηp
2 = 0.09

Nonverbal intelligence 
test scoreb (M, SD)

11.21 (1.91) 11.24 (1.95) 11.22 (1.82) 9.42 (3.56) F(3,178) = 5.57, P = .001, ηp
2 = 0.09

Notes: LS, low-schizotypy; HPS, high positive schizotypy; HNS, high negative schizotypy; ROP, recent onset psychosis; O-LIFE, Oxford-
Liverpool Inventory of Feelings and Experiences; UE, unusual experiences; IA, introvertive anhedonia; CD, cognitive disorganization; 
N/A, not available.
aWechsler Adult Intelligence Scale (WAIS) vocabulary subtest.
bWAIS matrices subtest.
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Connectivity Analysis.  gPPI analyses yielded no signifi-
cant differences between the four groups for any of the 
seed regions or contrasts. However, wide-spread connec-
tivity maps for the SPEM contrast for all seed regions 
could be observed (Supplementary figures  1 and 2 and 
tables 5–14 for results in the LS group). There were no 
significant connectivity maps for the Velocity contrasts.

Classification Analysis.  Based on the SPEM contrast, LS 
and ROP participants were separated with a balanced ac-
curacy of 55.6% (sensitivity = 56.7%, specificity = 54.5%) 
which was not significant (P = .297, AUC = 0.63). Based 
on the Velocity contrast, classification reached a bal-
anced accuracy of 44.5% (sensitivity  =  61.7%; speci-
ficity = 27.3%), which was also not significant (P = .392, 
AUC = 0.47).

Classification results of the gPPI analyses were signif-
icant for the SPEM contrast in right FEF (table 5). For 
this seed region, LS and ROP participants were separated 

with a balanced accuracy of 62.4% (sensitivity = 73.3%; 
specificity  =  51.5%) which was significant (P  =  .009; 
AUC = 0.63) before but not after correcting for multiple 
testing (FDR; P = .090).

Visualization of the machine-learning results revealed 
that classification was based on connectivity from right 
FEF to parahippocampal gyrus and hippocampus, stri-
atum, thalamus, cerebellum, anterior and posterior cin-
gulate gyrus, postcentral gyrus, superior parietal cortex, 
lateral occipital cortex and fusiform gyrus, supramarginal 
and angular gyrus, precuneus, temporal pole, inferior 
temporal gyrus, frontal pole and frontal-medial cortex 
(Supplementary figure 3).

Stacking Analyses.  In the stacking analyses of the 
SPEM contrast, LS and ROP participants were separated 
with a balanced accuracy of 55.4% (sensitivity = 68.3%, 
specificity = 42.4%) which was not significant (P = .748, 
AUC  =  0.56). Based on the Velocity contrast, classi-
fication reached a balanced accuracy of 43.3% (sen-
sitivity  =  53.3%; specificity  =  33.3%), which was not 
significant (P = .941, AUC = 0.35).

Model Application to Schizotypal Samples.  The classi-
fication model of the right FEF SPEM gPPI contrast 
was significant before correction for multiple testing. 
Therefore, in an explorative analysis, we applied the clas-
sification algorithm to the schizotypal samples to deter-
mine whether persons with high schizotypy would be 
classified as LS or ROP. Sixteen HPS and 18 HNS were 
classified as ROP, and 25 HPS and 28 HNS were classified 
as LS. Descriptively, decision scores of persons with high 
schizotypy were in between LS and ROP (Supplementary 
table  15). However, one-way ANOVA for comparison 
of decision scores between groups was not significant 
(F(3,179) = 1.51, P = .214, ηp

2 = 0.025).
In an additional regression analysis in both schiz-

otypal samples, lower decision scores were associated 
with increased gPPI connectivity from right FEF to 
clusters in angular gyrus, precuneus, hippocampus and 
parahippocampus, postcentral and precentral gyrus as 

Table 2.  Clinical characteristics of the ROP group

Variable ROP (n = 34) 

Time since illness onset (in days; M, SD) 281.40 (302.45)
Diagnosis (n)
  Schizophrenia 22
  Delusional disorder 2
  Brief  psychotic disorder 5
  Schizoaffective disorder 4
  Unspecified nonorganic psychosis 1
PANSS scores (M, SD)
  Positive 20.64 (5.52)
  Negative 16.84 (8.37)
  General psychopathology 36.96 (16.29)
Medication (n)
  Typical –
  Atypical 19
  Both 5
  No medication 4
  Unknown 6

Notes: ROP, recent onset psychosis; PANSS, Positive and Nega-
tive Symptom Scale.

Table 3.  Descriptive statistics for SPEM parameters

Target velocity Variable 
LS  

(n = 57) 
HPS  

(n = 41) 
HNS  

(n = 42) 
ROP  

(n = 34) 

0.2 Hz Gain (%) 91.19 (9.59) 90.73 (11.70) 90.36 (11.49) 86.89 (14.50)
 RMSE (°) 1.45 (0.75) 1.45 (0.54) 1.46 (0.64) 1.93 (1.09)
 Frequency of saccades (N/s) 0.67 (0.38) 0.66 (0.38) 0.75 (0.45) 0.82 (0.45)
0.4 Hz Gain (%) 75.95 (11.99) 71.77 (15.28) 71.89 (17.00) 68.53 (18.27)
 RMSE (°) 1.99 (0.76) 2.15 (0.67) 2.09 (0.81) 2.23 (0.93)
 Frequency of saccades (N/s) 1.47 (0.44) 1.50 (0.46) 1.56 (0.51) 1.60 (0.49)

Notes: Data represent means (standard deviations). LS, low-schizotypy; HPS, high positive schizotypy; HNS, high negative schizotypy; 
ROP, recent onset psychosis; RMSE, root mean square error.
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well as superior medial gyrus and ACC (Supplementary 
figure 4 and table 16). This indicates that higher proba-
bility of being categorized as ROP was associated with 
increased task-based functional connectivity from right 
FEF to these clusters. There was no significant effect in 
the reverse (i.e., positive) contrast.

Discussion

The aim of the present study was to directly compare 
individuals with high levels of schizotypy and patients 
with psychotic disorders regarding SPEM performance 
as well as brain function and connectivity. Using tra-
ditional BOLD and connectivity analyses, no group 
differences could be observed. However, using machine-
learning, a model to distinguish patients from controls 
was delineated for the right FEF seed region.

Differences Between Controls and Patients

Based on behavioral SPEM data, LS and ROP 
participants could not be classified as distinct groups. 
However, univariate results revealed higher RMSE in 
ROP compared to LS, in agreement with previous evi-
dence of  reduced SPEM performance in psychosis.31,33 In 
contrast to previous investigations, univariate analyses 
of  gain and saccadic frequency were not significant. The 
small difference in RMSE and the absence of  differences 
in the two other performance measures are surprising 
considering that the SPEM deficit is a highly reliable 
marker of  psychosis.31,33 Importantly, at the descriptive 
level, effects were in the expected direction with small to 
medium effect sizes, but not significant after Bonferroni-
correction (see table 4).

In line with the behavioral results but in contrast to 
previous investigations36,41–44 no significant differences 
between ROP, HPS, HNS and LS groups could be de-
termined at the neural level for the SPEM or Velocity 
contrasts. The same pattern emerged for the connec-
tivity maps of all seed regions and contrasts. Of note, the 
task networks associated with the SPEM and Velocity 
contrasts showed substantial overlap with previous 
investigations, tightly replicating the neural network 
underlying SPEM36,75,84–90 and its modulation by target 
velocity36,75,87. This highlights the validity of our task de-
sign and data analytic approach. Similarly, task-related 
connectivity maps showed substantial overlap with a re-
cent investigation75 studying pursuit-related functional 
connectivity in a healthy sample performing the same 
task employed in this study. However, in the current in-
vestigation, SPEM-related connectivity maps were even 
more widespread, especially from LGN, V1 and V5 seed 
regions, potentially related to greater statistical power 
stemming from a larger sample size.

Classification of functional connectivity maps was sig-
nificant only before correction for multiple comparisons 
(achieving trend-level significance after correction) for 
the right FEF seed region. As the analyses did not sur-
vive correction for multiple comparison, results should 
be interpretated with great caution. The PPI seed region 
was located in right medial FEF. Classification was based 
on connectivity from there to subcortical (e.g., striatum 
and thalamus) and cortical structures encompassing 
early visual areas, cingulate gyrus, parietal cortex (e.g., 
precuneus, superior parietal cortex), frontal cortex (e.g., 
superior frontal gyrus and frontal-medial cortex), hip-
pocampus and cerebellum. These areas partially overlap 

Table 4.  Between-group comparison of SPEM performance

Groups Variables 0.2 Hz 0.4 Hz 

LS vs. ROP Gain (%) t(89) = 2.01, P = .047, d = 0.44 t(89) = 2.34, P = .021, d = 0.51
 RMSE (°) t(89) = ‐2,51, P = .014, d = ‐0.54 t(89) = ‐1.32, P =.189, d = ‐0.29
 Frequency of saccades (N/s) t(89) = ‐1.68, P =.096, d = ‐0.36 t(89) = ‐1.28, P =.203, d = ‐0.28
LS vs. HNS Gain (%) t(97) = 0.39, P =.695, d = 0.08 t(97) = 1.39, P =.166, d = 0.28
 RMSE (°) t(97) = ‐0.10, P =.921, d = ‐0.02 t(97) = ‐0.60, P =.550, d = ‐0.12
 Frequency of saccades (N/s) t(97) = ‐0.97, P =.334, d = ‐0.20 t(97) = ‐0.90, P =.368, d = ‐0.18
LS vs. HPS Gain (%) t(96) = 0.21, P =.832, d = 0.04 t(96) = 1.52, P =.132, d = 0.31
 RMSE (°) t(96) = 0.003, P =.997, d = 0.00 t(96) = ‐1.06, P =.293, d = ‐0.22
 Frequency of saccades (N/s) t(96) = 0.20, P =.845, d = 0.04 t(96) = ‐0.27, P =.784, d = ‐0.06
HNS vs. ROP Gain (%) t(74) = 1.42, P =.159, d = 0.33 t(74) = 0.83, P =.410, d = 0.19
 RMSE (°) t(74) = ‐2.34, P =.022, d = ‐0.54 t(74) = ‐0.71, P =.481, d = ‐0.16
 Frequency of saccades (N/s) t(74) = ‐0.65, P =.518, d = ‐0.15 t(74) = ‐0.36, P = 0.723, d = ‐0.08
HPS vs. HNS Gain (%) t(81) = 0.15, P =.883, d = 0.03 t(81) = ‐0.03, P =.973, d = ‐0.01
 RMSE (°) t(81) = ‐0.11, P =.910, d = ‐0.02 t(81) = 0.37, P =.710, d = 0.08
 Frequency of saccades (N/s) t(81) = ‐1.05, P =.299, d = ‐0.23 t(81) = ‐0.58, P =.565, d = ‐0.13
HPS vs. ROP Gain (%) t(73) = 1.53, P =.131, d = 0.35 t(73) = 0.84, P =.406, d = 0.19
 RMSE (°) t(73) = ‐2.50, P =.014, d = ‐0.58 t(73) = ‐0.43, P =.665, d = ‐0.10
 Frequency of saccades (N/s) t(73) = ‐1.69, P =.095, d = ‐0.39 t(73) = ‐0.94, P =.352, d = ‐0.22

Notes: LS, low-schizotypy; HPS, high positive schizotypy; HNS, high negative schizotypy; ROP, recent onset psychosis; RMSE, root 
mean square error.
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with the known SPEM network but also include addi-
tional areas. For example, classification was based in part 
on connectivity from right FEF to hippocampus, which 

is in line with previous reports that hyperactivity of that 
area during SPEM may be related to inhibitory dysfunc-
tion in schizophrenia.44,91

Three explanations of the absence of group effects 
using traditional analyses and the rather subtle results 
combining functional connectivity and machine-learning 
approaches may be offered. First, the results could be 
explained by the diagnostic heterogeneity of the ROP 
group, given that the SPEM deficit is more pronounced in 
schizophrenia patients compared to patients with other 
disorders in the psychosis spectrum.33 The inclusion of a 
variety of such spectrum disorders into our ROP group 
might have led to the rather subtle effects. However, the 
PANSS scores obtained here were similar to those of pre-
vious investigations that did find significant differences 
between patients and controls.67,91 All patients had ROP 
with average disorder duration of less than a year which 
could imply that SPEM deficits may not yet be fully 
developed. On the other hand, however, it has been 
demonstrated in a meta-analysis that duration of illness 
does not significantly influence SPEM dysfunction31.

A second possibility is insufficient power, which is why 
we conducted a post-hoc power analysis. According to 
this analysis, we had sufficient power to detect SPEM 
differences between controls and patients: Meta-analytical 
results from studies comparing SPEM performance of 
schizophrenia patients and controls show large effect 
sizes (d=.70 for RMSE, d =.78 for saccade frequency, and 
d = .87 for gain).31 With our sample size of n = 62 in the 
LS and n = 34 in the ROP group and an alpha-level of 
.05 we had a power of 0.94–0.99 to detect effect sizes in 
this range (t-tests, difference between two independent 
means). In addition, we used substantially larger samples 
than all previous BOLD fMRI investigations of SPEM 
in psychosis spectrum disorders36,41–44 suggesting that also 
at the neural level lack of power is not the main driver of 
the absence of group effects.

Third, it should be noted that behavioral performance 
in the LS group was lower than in other healthy control 
groups performing the same task in previous studies.36,92,93 
It is therefore possible that the detection of significant 
group differences was impeded by the unusually poor 
performance in the control group. However, it has to be 
emphasized that control group participants were thor-
oughly screened and selected based on strict criteria to 
ensure suitability.

Schizotypy

Descriptively, at the behavioral level, both schizotypal 
samples showed intermediate SPEM performance levels 
between patients and control. This pattern of results 
was not significant, but reflects the expected direction of 
effects.35,37,38 At the neural level, in contrast to a previous 
study36 traditional BOLD or functional connectivity 
analyses did not yield any evidence for group differences. 

Fig. 2.  Results of one-sample t-tests of the SPEM vs. fixation 
contrast (left, higher activation during SPEM is depicted in red, 
higher activation during fixation is depicted in blue) and high 
vs. low velocity contrasts (right, higher activation during high 
velocity SPEM is depicted in green, there was no higher activation 
during low velocity vs. high velocity SPEM), respectively (n = 
60). Results are reported whole-brain family-wise error rate 
(FWE) corrected (P < .001, peak level) for clusters of at least 
25 voxels. Labels on the left refer to the z-coordinate [Montreal 
Neurological Institute (MNI) space]. Slices were generated in 
MRIcroGL.
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However, we also explored similarities and dissimilarities 
between psychosis and schizotypy by applying a machine-
learning algorithm for SPEM seed regions trained on the 
LS and ROP groups to the schizotypal samples, thereby 
obtaining evidence of an involvement of right FEF. As 
the HPS and HNS groups did not differ from each other 
regarding SPEM performance, and the percentage of 
participants classified as ROP was virtually the same in 
both groups (HPS 39.0% vs HNS 39.1%), we treated them 
as one schizotypy group for subsequent analysis. Machine-
learning decision scores for schizotypy groups were in be-
tween the LS and ROP groups and thus suggested that 
persons with high schizotypy could not be reliably clas-
sified as either LS or ROP. To identify brain areas that 
contributed to the assignment of HPS and HNS to ROP or 
LS, we explored how decision scores in the HPS and HNS 
samples were related to BOLD activity in those groups. 
Lower decision scores were associated with increased con-
nectivity from right FEF to clusters in precuneus and an-
gular gyrus, bilateral hippocampi, as well as postcentral 
and precentral gyrus. This pattern of results suggests 
that persons with high schizotypy may share some of the 
features underlying the pursuit deficits in ROP. Specifically, 
persons with high schizotypy may also show some degree 
of inhibitory dysfunction in hippocampus.44,91

Conclusions

Overall, the present study constitutes a significant 
first step toward closing a crucial gap in the psychosis 

literature, which is the lack of  direct comparisons be-
tween individuals with high schizotypy and patients 
with psychosis. Critically, however, our data suggest 
that abnormalities of  the pursuit response along the 
psychosis spectrum may be more subtle than previ-
ously reported. The data are partly in line with our 
initial suggestion that schizotypy is characterized by 
both similarities and dissimilarities with schizophrenia, 
which might explain why the SPEM deficit in schizotypy 
does not seem to be as consistent as may be expected 
from previous publications. Specifically, our results 
highlight that more emphasis should be placed on brain 
connectivity approaches which proved to be the most 
promising analyses for distinguishing groups along the 
psychosis spectrum. In summary, we strongly call for 
more large-scale, well-powered multi-center studies in 
order to gain a deeper understanding of  SPEM-related 
deficits along the psychosis spectrum at both the behav-
ioral and neural level.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin Open online.
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Table 5.  Results of the machine-learning analyses for the gPPI contrasts

Seed region Hemisphere 
Con-
trast Sensitivity Specificity BAC AUC P Pcorr 

LGN l SPEM 63.6 36.4 49.8 0.51 .834 .834
LGN r  53.3 39.4 46.4 0.54 .633 .707

V1 l  65.0 48.5 56.7 0.63 .184 .368
V1 r  63.3 30.3 46.8 0.49 .636 .707
V5+ l  78.3 27.3 52.8 0.58 .350 .583
V5 r  85.0 27.3 56.1 0.52 .135 .338

PPC+ l  81.7 36.4 59.0 0.61 .096 .338
PPC r  76.7 33.3 55.0 0.61 .135 .338
FEF l  63.3 48.5 55.9 0.56 .534 .707
FEF+ r  73.3 51.5 62.4 0.63 .009 .090
LGN l Velocity 51.7 48.5 50.1 0.47 .948 .949
LGN r  46.7 45.5 46.1 0.46 .880 .949

V1 l  71.7 30.3 51.0 0.50 .897 .949
V1+ r  83.3 30.3 56.8 0.56 .117 .949
V5 l  81.7 21.2 51.4 0.50 .517 .949
V5 r  78.3 24.2 51.3 0.44 .685 .949

PPC l  0 100.0 50.0 0.26 .653 .949
PPC r  50.0 48.5 49.2 0.45 .949 .949
FEF l  70.0 39.4 54.7 0.53 .462 .949
FEF r  11.7 69.7 40.7 0.43 .495 .949

Notes: gPPI, generalized psychophysiological interaction analyses; LGN, lateral geniculate nucleus; PPC, posterior parietal cortex; FEF, 
frontal eye fields; BAC, balanced accuracy; AUC, area under the curve; Pcorr, corrected P-value (false discovery rate correction82).
+Permutation analyses with all 10 CV2 folds.
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