


Machine learning approaches for adaptive
optics in microscopy

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Ivan Vishniakou
aus

Minsk, Belarus

Bonn, Dezember 2021





Angefertigt mit Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Matthias Hullin

2. Gutachter: Prof. Dr. Reinhard Klein

Tag der Promotion: 04.07.2022

Erscheinungsjahr: 2023





Contents

Abstract iii

List of abbreviations v

Acknowledgements vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Wave optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Imaging systems and aberrations . . . . . . . . . . . . . . . . . . 4

1.1.3 Adaptive optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Two-photon fluorescence laser scanning microscopy . . . . . . . 10

1.1.5 Wavefront sensing . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Related work – adaptive optics in microscopy . . . . . . . . . . . . . . . 16

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Adaptive optics with reflected light and deep neural networks . . 24

1.3.2 Differentiable model-based adaptive optics with transmitted and

reflected light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Differentiable model-based adaptive optics for two-photon mi-

croscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Adaptive optics with reflected light and deep neural networks 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Disentangling excitation and detection phase modulations . . . . 38

2.2.3 Focusing through aberrating layers . . . . . . . . . . . . . . . . . 39

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Differentiable model-based adaptive optics with transmitted and reflected
light 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Experimental setup and data acquisition . . . . . . . . . . . . . . 52

3.3.2 Computational model . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Model optimization . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Differentiable model-based adaptive optics for two-photon microscopy 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Differentiable model-based approach for adaptive optics . . . . . . . . . 60

4.3 Setup and image preprocessing . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Computational modeling and optimization . . . . . . . . . . . . . . . . . 61

4.4.1 Computational model of the optical setup . . . . . . . . . . . . . 61

4.4.2 Fitting the computational model to the experimental setup . . . . 63

4.4.3 Model optimization and loss function . . . . . . . . . . . . . . . 64

4.5 Two-photon imaging through aberrations . . . . . . . . . . . . . . . . . . 67

4.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion 71
5.1 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 79

ii



Abstract

Microscopic imaging is an essential tool for science. For instruments that operate

close to the physically possible diffraction limit, a main remaining challenge are aberrating

operating conditions. For microscopy, such conditions are routinely encountered for

example in biology, where tissue samples induce increasingly stronger aberrations with

increasing imaging depth. Similar problems are also encountered in astronomy where

atmospheric turbulences hinder ground-based telescopes.

Adaptive optics – a method originally developed for earthbound telescopes – can be

applied in microscopy to compensate for sample-induced aberrations. However, a major

challenge for microscopy lies in measuring aberrations and therefore in finding wavefront

corrections.

This thesis presents machine learning methods developed for aberration sensing and

correction compatible with two-photon laser scanning microscopy. A first approach uses

deep learning with labelled datasets of focus images and corresponding aberrations. These

datasets were created using a spatial light modulator, and were then used to train neural

networks for detecting the aberrations in the system.

A second approach for adaptive optics was developed that uses optimization of a

forward model to infer the unknown aberration. This technique relies on a mathematical

model of image formation, including initially unknown aberration parameters. The actual

aberrated system was probed by controlled light modulations and the computational model

was matched to observations using gradient-based optimization, which was efficiently

implemented using a machine learning framework with automatic differentiation and

GPU-accelerated computing. This method was first demonstrated in a proof-of-principle

experiment in two different configurations with scattered light and then using fluorescence

in a two-photon laser scanning microscope.
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CHAPTER 1

Introduction

It is often said that a picture is worth a thousand words and indeed, looking at things is

often the most intuitive way to understand them. This is reflected in the fact that imaging

has become an invaluable tool in science for studying nature from the very small to the

very large. The advancements in technology allow us to see better by perfecting optics

and sensors, and to develop imaging systems that come close to the theoretically possible

limits.

At the same time, computation and digital signal processing are now routinely used

for improving imaging. By using prior knowledge about the image formation process,

computational imaging can help gain information that goes beyond the limits of traditional

optical systems (for example in lucky imaging in astronomy or super-resolution imaging

in microscopy). Some methods even completely discard common optical elements (such

as in lensless imaging or ghost imaging), relying on algorithms that can be extended to

a very broad range of applications across imaging modalities (ultrasound, radio waves,

etc.). Such close integration of computation and imaging for example enables affordable

miniature mass-market cameras in every mobile device.

Similar to other computational imaging approaches, adaptive optics relies on the

integration of computational algorithms and imaging systems. The goal of adaptive optics

is to improve the signal-to-noise ratio and therefore the image quality in situations with

weak signals resulting from non-ideal imaging conditions. Adaptive optics was originally

developed to overcome such non-ideal imaging conditions in astronomy and to correct

atmospheric aberrations in ground-based telescopes. However, it can also be applied

similarly in microscopy, for example when dealing with scattering biological tissue.

In this thesis we present our experiments that combine computational as well as image
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1.1. Background

processing approaches with adaptive optics. In particular, the computational approaches

take advantage of machine learning frameworks closely integrated with the simulation

of the experimental imaging setups, with the goal of improving two-photon fluorescence

microscopy under non-ideal imaging conditions.

1.1 Background
Obtaining an image with traditional optics means collecting light coming from a scene

with a lens and focusing it into an image. The resulting image can be recorded with a

detector which registers the intensity and potentially color of light arriving in different

locations or pixels. This is the basic principle underlying photography, valid for manual

tracing of images with a camera obscura [1] as much as for modern digital cameras with

photosensitive electronic detectors that almost instantaneously read out the signal and save

it in digital format ready to view or process. The quality of an image can be judged by

how accurately it captures a scene, be that geometry, color, or also the amount of detail or

resolution. With increasing resolution, finer details of an object can be distinguished in the

image. This is especially important in a scientific context, where imaging is used to study

the unknown, for example far away objects in space viewed through a telescope or when

looking with a microscope at very small structures.

In this introduction we briefly cover the physics of image formation as relevant for

optical microscopy, describe the phenomena that can disturb it, and how they can be

counteracted or corrected. This description and reasoning are carried out in the framework

of Fourier (wave) optics [2].

1.1.1 Wave optics

Light propagating in free space is described by a complex-valued function of coordi-

nates and time U(r, t) which satisfies the wave equation. Solving for this wave function

using separation of variables results in a solution that is a product of a time-dependent high

frequency oscillation, with the frequency of light ν , and a complex amplitude U(r) which

is only position dependent:

U(r, t) =U(r)exp( j2πνt).

For optical waves the frequency of the time component lies in the range of 1011 – 1016

Hz, making it challenging to measure individual oscillations [3], and therefore typically

2



1. Introduction

time-averaged intensities, equal to the absolute square of the complex amplitude, are

recorded [4, chapter 2.2]:

I(r) = |U(r)|2.

A sensor or photosensitive material responds in proportion to this quantity, and for mod-

elling of imaging applications therefore solving for and analyzing this complex amplitude

is sufficient. The complex amplitude U(r) needs to satisfy the time-independent homoge-

neous Helmholtz equation

∇
2U + k2U = 0.

This equation can be solved analytically for some elementary cases like a plane wave

or a spherical wave. Due to the linearity of the Helmholtz equation, any solution can

be expressed as a superposition of elementary solutions, for example plane waves. A

plane wave solution describes a wave propagating in the direction of the wave vector k [4,

Chapter 2.2]:

U(r) = Aexp(− jk · r) = Aexp [− j(kxx+ kyy+ kzz)].

Although true plane waves, as defined here, are not encountered in nature (since they extend

laterally to infinity), close approximations over some finite volume exist, for example light

arriving from a distant point source to an observer.

Another concept used in the following is that of wavefront. A wavefront is defined as

a surface of equal phase of optical waves, and for a plane wave it is a sequence of planes

separated in space by a wavelength. The direction of propagation of light is normal to the

wavefront at every point, so a plane wave describes a beam of parallel rays.

An arbitrary wave can be described as a complex amplitude defined over a region of

interest, for example over the entrance pupil of an optical system. Alternatively, it can also

be represented as a composition of plane waves travelling in different directions, which is

called the angular spectrum of plane waves. This representation allows to calculate the

evolution of the wave along its travelling direction. The spectrum of plane waves is a

distribution of complex amplitudes and corresponding angles of propagation direction with

respect to the optical axis. All the plane waves are propagated by the free space transfer

function dependent on the travel distance and are finally summed again to reconstruct the

complex amplitude in the new plane (angular spectrum method [5, Chapter 3]).

3



1.1. Background

The calculus of complex amplitudes also conveniently reflects wave interactions:

constructive or destructive interference depending on whether complex amplitudes are

summed in phase or out of phase, respectively. Optical elements can be represented as

complex transmission factors applied to the complex amplitude of the wave. In this case,

the magnitude represents light permeability (apertures, masks), and the phase leads to

phase changes due to refractive elements (lenses, aberrations). Together with the mentioned

method to compute light propagation between these optical elements, this offers a complete

framework for modelling light propagation in an optical system.

For modelling the polarization of light and its effects, independent polarization com-

ponents have to be represented as independent complex amplitudes, taking into account

relative phase offsets and magnitudes to reflect different possible polarization states.

1.1.2 Imaging systems and aberrations

Projection of an image with a (convex) lens relies on focusing light by changing

its direction of propagation. For this purpose, a lens is made of a material with higher

refractive index than the surrounding medium. Describing a lens in terms of geometrical

optics [4, Chapter 1], this leads to a deflection of rays according to Snell’s law. Additionally,

the circularly symmetrical shape and curvature of the lens ensure that parallel incident rays

will meet in the same point in the focal plane.

In terms of wave optics, a lens imposes a phase delay on the wavefront which varies

with distance from its central axis and in this way transforms a plane wave into a converging

spherical wave (or vice versa a diverging spherical wave into a plane wave). The sphericity

of the wavefront means that all of its parts meet at a single point with the same phase and

interfere constructively, which creates a focus. The offset of the focus from the lens’s

optical axis depends on the angle at which the plane wave arrives at the lens. In this way

the lens separates plane waves coming from different directions by projecting them onto

different points of the focal plane and thus forms an image. This is also known as the

Fourier transform property of a lens, since it transforms a frequency representation (angle

with respect to optical axis) into a spatial representation (lateral offset from optical axis).

A general imaging system can be regarded as mapping points of an object plane onto

points in the image plane. If this mapping is flawless, i.e., each point of the object plane is

mapped onto a distinct point of the image, all the details of the object are reproduced in

the image. However, if this imaging process is perturbed in some way, the resulting image
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1. Introduction

Figure 1.1: Schematic of image formation in an unaberrated (left) and aberrated (right) system. A wider PSF
results in overlap of the images of neighboring points, making finer details indistinguishable.

deteriorates. If for example a plane wave coming from a distant point source is aberrated

on its way so that some parts of it are delayed, the wavefront is not planar anymore. This

wave will therefore no longer be transformed by the lens into a perfectly spherical wave

and as a result some parts of the wavefront will arrive at the focus out of phase. This

reduces the brightness of the focus due to destructive interference and also makes the focus

broader and changes its shape. In this case, images of neighboring points start to overlap

and may become indistinguishable, making finer details of the object unresolved in the

image (Fig. 1.1). The loss of intensity additionally results in lower signal in the image. If

the signal is too weak, it might get lost or significantly distorted by the measurement noise.

The shape and intensity of the focus are generally described by the so-called point

spread function (PSF) – the imaging system’s response to a plane wave. The PSF is an

important characteristic of an imaging system affecting its resolution and signal-to-noise

ratio. Since the PSF characterizes how a point source is imaged by the optical system,

an image of a continuous object can be expressed as a convolution of the object function

and the PSF [6, Chapter 9.5]. It has to be noted however, that this holds only for the case

where the PSF is identical across the entire field of view of the imaging system. In practice,
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1.1. Background

because the waves arriving from slightly different directions take different paths through

an aberrating volume, point objects may map to differing PSF images depending on their

location in the field of view. This is referred to as anisoplanatism of the system, and the

region of the image where the PSF remains unchanged is referred to as isoplanatic patch
[7]. Additionally, one has to distinguish the image formation process for coherent and

incoherent systems, and therefore whether interference contributes to image formation or

not [8].

An ideal PSF, resulting in a perfect image, would be the Dirac delta function. In

reality this is however not achievable due to effects related to the wave nature of light.

Even under ideal imaging conditions, there is a limit to the achievable resolution as light

cannot be focused tighter than the diffraction limit. The diffraction limit naturally emerges

when calculating the free space transfer function for the angular spectrum of plane waves

over distances substantially longer than the wavelength (far field): the magnitudes in the

spectrum of spatial frequencies exceeding the inverse of the wavelength exponentially

decay, not allowing details finer than the wavelength to propagate. This therefore imposes

a minimal possible focus size that can be created by any system [4, Chapter 4.1].

Overcoming the diffraction limit (super-resolution) is possible [5, Chapter 6] by com-

bining controlled illumination and computational reconstruction [9, 10]. As one example,

structured illumination microscopy uses controlled laterally periodic illumination inter-

acting with the sample’s spatial frequencies and Fourier space reconstruction to increase

the spatial bandwidth of the imaging system and therefore the resolution [11]. Another

example for super-resolution imaging is near-field scanning optical microscopy: since the

diffraction limit emerges for far field imaging, sub-wavelength resolution is possible in

the near-field [12]. This technique is however limited to surfaces and therefore finds only

limited applications in biology.

Independent of whether a standard or super-resolution far field imaging method is used,

they all rely on the control of light at the diffraction limit. This motivates perfecting the

optical components to compensate for deteriorating factors such as for example dispersion

– the dependence of the refractive properties of light on the wavelength. Due to dispersion,

a lens, as a refractive element, will focus different wavelengths at different focal planes.

These so-called chromatic aberrations can be partially overcome by special lens design

(achromats) [13].
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1. Introduction

However, even a perfectly manufactured imaging system will not reach its theoretical,

diffraction-limited resolution when the operation conditions are sub-optimal. For example,

in ground-based astronomy, atmospheric turbulence causes image distortions. Or in optical

microscopy in vivo in the brain, samples often have a spatially as well as temporally

varying refractive index. Since in both these cases image distortions are short-lived, they

cannot be universally compensated solely by changing the design of the optical system.

This motivates the search for solutions that allow an optical system to actively adapt to

changes in imaging conditions at fast time scales.

1.1.3 Adaptive optics

In adaptive optics (AO) an element is added to the optical system that can be adjusted

to adapt to changing imaging conditions and revert their deteriorating effects. In the case of

atmospheric turbulences affecting ground based astronomical observations, moving layers

of air of varying temperature and refractive index introduce random wavefront aberrations

(random phase delays in different parts of the arriving wavefront). This results in what

appears as twinkling of the stars to the naked eye, or a blurry image in the telescope.

The first adaptive optics systems to correct for such aberrations were conceptualized

for ground based telescopes already in the 1950’s [14], suggesting to correct apparent

object displacements with a controlled tip-tilt mirror. In [15] John W. Hardy described the

development of the first AO system for a satellite tracking telescope intended for military

use. Throughout the 1970’s the main research effort was directed towards two novel

engineering problems. First, to create an adaptive element that would be fast and precise

enough for atmospheric aberration correction, and second, to find a way to identify these

aberrations, i.e., to design a wavefront sensor. The first problem was solved by constructing

a deformable mirror as an adaptive element. This mirror was a thin continuous surface with

segments which could be displaced with piezoelectric actuators in the range of about 10µm

with submicrometer precision to achieve a desired profile. To address the second problem,

a shear interferometer [16] was adapted for wavefront sensing with non-monochromatic

light.

Since then, wavefront sensors and deformable mirrors, running in a closed loop of

sensing and correcting aberrations (Fig. 1.2), have become a standard method in many

earthbound telescopes [17]. In these telescopes, a deformable mirror adjusts its surface to

restore the sphericity of a wavefront and therefore improves focusing. Changing the length

7



1.1. Background

Figure 1.2: Conceptual schematic of adaptive optics for aberration correction as used in astronomy. A planar
wavefront from a distant object gets distorted by atmospheric turbulences, and the distortion is compensated
by an adaptive element (deformable mirror). The compensation is calculated based on the residual aberration
measured with a wavefront sensor in a closed loop.

of the light path locally, depending on its position in the aperture, the mirror performs the

role of a spatial light modulator (SLM), undoing the distortions to the wavefront caused

by the atmospheric turbulences. This is achieved by applying a phase modulation to the

SLM which is the inverse of the wavefront aberration, thus resulting in the correction of

the PSF. Ideally, this would improve the image across the whole field of view. However,

if the optical system has pronounced anisoplanatism, the improvement is observed only

within the isoplanatic patch. The area of correction can be extended by using several SLMs

optically conjugated to different planes within the aberrating volume (multi-conjugate AO)

[18].

Spatial light modulation can not only be achieved with deformable mirrors. Depending

on the modulated property of the light field, one can distinguish amplitude, phase, and

polarization modulation. A variety of devices has been developed for modulating these

different properties of light, each coming with its own engineering characteristics and

limitations. By operating principle they can be split into two major groups: reflective and

refractive SLMs.

Reflective devices control the shape of their reflective surface. Deformable or mem-

brane mirrors (DM), with a continuous surface shaped with either piezoelectric or electro-

static actuators [19], and segmented mirrors, consisting of rigid segments independently

actuated with several degrees of freedom [20], allow phase modulation by varying the

8



1. Introduction

light path length. Digital micromirror devices (DMDs) consist of thousands of small

mirrors arranged in a regular grid, each toggled between either of two possible states,

providing binary amplitude modulation of the wavefront. Due to the small size and periodic

arrangement of the micromirrors, they can also act as diffraction grating [21].

Refractive devices utilize the delay of the phase of light propagating through a medium

of higher refractive index. They impose phase modulation by either varying the refractive

index, as in liquid crystal-based devices [22], or by varying the thickness of the refractive

elements, such as fluid-filled expandable cavities in optofluidic devices [23]. As opposed

to reflective adaptive elements, these are better suited for monochromatic light because

of dispersion. Additionally, liquid crystal-based devices require linear polarization of the

incident light.

Although these devices can control only one parameter of the light field, either am-

plitude or phase, modulation of both parameters at the same time is possible by either

appropriate alignment of the modulator with respect to the beam or by grouping adjacent

modulating elements into so-called superpixels. For example, phase and amplitude control

can be achieved with an amplitude-only binary DMD through off-axis angled placement

adding a phase prefactor to each of the micromirrors [24]. Vice versa, amplitude can

be controlled with a phase-only SLM by grouping adjacent elements into superpixels

and adding phase differences between them to attenuate the resulting amplitude of the

superpixel [25, 26]. Full control of polarization and complex amplitude is also possible,

allowing to create even more complex structured light beams [27, 28].

Such fine and precise manipulation of light has found numerous applications beyond

adaptive optics and imaging, for example in lithography [29], laser fabrication [30], 3D

printing and additive manufacturing [31], optical tweezers [32], digital holography [33],

or pulse shaping [34]. This list is by no means exhaustive, and novel applications are

emerging as the technology advances and the modulation devices become less expensive

and more widely used.

For imaging applications of adaptive optics, and in particular for optical microscopy,

however the main problem remains to find the correction needed to compensate for

aberrations, i.e., determining the distorted wavefront shape.

9



1.1. Background

Figure 1.3: Schematic of the confocal microscope for reflected light detection presented in Marvin Minsky’s
patent in 1957. The illuminated pinhole serves as a light source which is focused onto the sample with
an objective. The same objective collects the reflected light, which is then diverted to the photosensor for
measuring light intensity at the focal spot. A pinhole, confocal to the illumination pinhole and the sample
plane, rejects out of focus light and improves depth selectivity. Scanning of the sample is needed to acquire
an image of the region of interest. Reproduced from [36].

1.1.4 Two-photon fluorescence laser scanning microscopy

In two of the experiments described in this thesis, a two-photon laser scanning micro-

scope was used for fluorescence imaging. Laser scanning microscopy can be traced back

to the confocal microscope invented by Marvin Minsky [35]. In confocal microscopy, a

specimen is illuminated by a focused light beam that is scanned across the sample one

point at a time. The light returning from the sample is imaged onto a pinhole placed in

the plane optically conjugate to the focal plane in the sample (hence confocal). The image

is finally obtained by scanning the focus across the region (or volume) of interest and

measuring the confocal intensity in each position (pixel or voxel).

The pinhole blocks light originating from outside of the focal volume, such as reflec-

tions from the surface or tissue layers above and below the focal plane. The detected

intensity only passes through the pinhole if it originates from the focal plane and is mea-

sured by a point detector (for example a photomultiplier). This configuration suppresses

out-of-focus light and increases the axial resolution compared with a widefield microscope,

which made confocal imaging an important tool for studying typically three-dimensional

and densely labeled biological samples.

10



1. Introduction

Typically, this microscope is used in an epidetection configuration, meaning that the

same objective is used to deliver illumination and to collect light returning from the sample.

The returning light is diverted to the detection path with a semitransparent mirror as shown

in Fig. 1.3.

A similar configuration can be used with a laser as the light source [37]. This enables

a wide range of imaging modalities, for example fluorescence imaging, often also using

pulsed high-power lasers for exploiting nonlinear effects. Fluorescence imaging is the

most widely used approach for microscopy with biological samples thanks to the many

methods for chemical [38] and genetic [39] labelling. Such labels are used for example for

structural imaging or visualizing gene expression, or in neuroscience for imaging changes

in calcium concentration in neurons [40] – allowing to monitor the dynamics of neurons

and biological neural networks.

Nonlinear effects are exploited in two- [41] or multi-photon [42] fluorescence excitation,

which improve imaging in particular in scattering samples such as tissue. Because the

near-simultaneous absorption of two or more photons is needed to induce fluorescence, its

generation becomes proportional to the intensity exponentiated to the number of photons

needed, i.e., square for the two-photon, cubic for three-photon, etc. This makes the

fluorescence PSF smaller and improves the resolution compared to single-photon excitation

at the same wavelength. Additionally, the longer wavelengths of light typically used for

multi-photon excitation (in the near infrared range) are less susceptible to refraction and

scattering. This allows imaging deeper into tissue, for example for in vivo imaging in the

brain [43].

A major advantage of multi-photon-induced fluorescence is that excitation is confined

axially to the focal plane only due to the properties of the excitation PSF. Therefore, no

pinhole is needed in the detection path and fluorescence can be detected with a collecting

lens in front of the photomultiplier tube. This allows collecting scattered fluorescence light

that would otherwise be rejected by the pinhole and increases the signal-to-noise ratio in

particular in aberrating samples such as brain tissue.

The setup for two-photon imaging experiments described in this thesis is shown

schematically in Fig. 1.4 and in full detail in Fig. 2.7. An expanded laser beam with

wavelength λ = 920 nm is focused with a water immersion objective in the sample and

scanned across the region of interest using linear and resonant galvanometer scanning

11



1.1. Background

Microscope objective

PMTDichroic mirror

Scanning mirrors

Sample

Fluorescence

Figure 1.4: Conceptual schematic of a two-photon laser scanning microscope. An expanded laser beam is
focused with an objective and scanned across the sample with two mirrors, while induced fluorescence is
collected with the same objective, separated from the excitation path with a dichroic mirror, and measured
with a photomultiplier (PMT). The image is reconstructed by associating the PMT signal with the position of
the scanned focus. A detailed schematic of the setup used in our experiments is reproduced in Fig. 2.7.

mirrors. The focused light excites fluorescence in a labelled sample through a two-photon

process, resulting in the emission of fluorescence at about half the excitation wavelength.

Excitation at 920 nm as typically used in our experiments thus results in fluorescence in

the blue to green range (detected around 500 nm). The induced fluorescence from the focal

volume is collected with the same objective, separated with a dichroic mirror and detected

by a photomultiplier tube (PMT). We refer to the corresponding optical paths through the

microscope as excitation and detection paths, respectively. Two- or three-dimensional

images of fluorescence intensity are then computationally reconstructed from the PMT

signal by associating the position of the focus (determined by the position of the scanning

mirrors and additionally the axial position of the objective for three dimensional images)

during scanning and the fluorescence intensity measured at each corresponding location.

For image reconstruction the continuous mirror positions are binned into pixels; this

processing as well as hardware control are done with ScanImage software [44].

A liquid crystal phase-SLM is placed in the optical path to enable beam shaping for

adaptive optics. Since a close to monochromatic laser source is used, a refractive adaptive

element with high refresh rate and resolution can be used.
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1.1.5 Wavefront sensing

Aberration is the result of light passing through a medium with locally varying refractive

index. As discussed in the previous sections, the variation in refractive index leads to

irregular phase delays in different regions of the wavefront and consecutively to the

deviation of light from the expected path for which the imaging system was designed. This

alters the point spread function of the system and as a result worsens the image quality. In

order to correct for such irregularities in the wavefront with AO, the aberrations first need

to be measured.

At the time of the creation of the first AO telescopes, the effect of atmospheric aberra-

tions was quantitatively studied and it was found that most variations of the wavefront can

be accurately approximated as a sum of a few basic surface shapes (defocus, astigmatism,

coma, etc.) [45]. They can be conveniently represented by polynomials that are defined

over the aperture, for example Zernike modes [46, 47].

In the work discussed in this thesis we frequently use Zernike polynomials to represent

wavefront shapes. Zernike modes are an orthonormal basis of polynomials defined on a

unit disk, which is convenient for many applications in optics, where radially symmetrical

beams and elements are very common. These polynomials generate balanced aberration

surfaces, i.e., minimize the surface variance for any combination of modes, and are well

studied in applications that require the parametrization of aberrations [48, 49].

Zernike polynomials are functions of two variables. In polar coordinates, each poly-

nomial can be generated by specifying two indices – the radial and azimuthal spatial

frequencies. Using Noll’s indexing scheme [50] they can be sequentially ordered. This

allows representing an arbitrary surface as a linear combination of Zernike modes conve-

niently parametrized as a vector of corresponding coefficients. The larger the number of

modes that are included in the expansion, the finer are the details of the surface that can be

represented.

Methods for measuring aberrations in optical system can be divided in two main

categories:

Sensor-based approaches aim to directly measure the shape of the wavefront. This

raises two practical problems: first, an isolated PSF of the system has to be measured,

and second, this measurement has to be phase sensitive. The first issue can be addressed

by imaging an isolated point source producing a well-defined wavefront. The problem
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of measuring phase can be solved by using a wavefront sensing device that converts

phase variations into intensity variations, for example a Shack-Hartmann wavefront sensor

(SHWS) [51] or an interferometer [15]. This overall approach is commonly used in

astronomy where a distant star can serve as a point source, a so-called guidestar. To

avoid having to rely on the presence of a suitable star in the area of observation, artificial

guidestars can be created, for example through laser-excited resonance fluorescence in the

sodium layer of the atmosphere [52].

Direct wavefront sensing has the advantage that it yields a wavefront measurement in a

single shot. It has become the standard approach in astronomy, allowing for fast correction

control loops. Direct wavefront sensing is however not as conveniently implemented in

microscopy, because it requires imaging of an isolated point source which naturally are

typically not present in biological samples. Therefore, similar to artificial guidestars in

astronomy, point sources have to be introduced into the sample (labelling).

The sensorless approach does not require direct measurements of the wavefront.

Instead, the aberrations are probed by displaying different corrections on the spatial light

modulator while assessing whether the image quality is improved or not. This can be seen

as an optimization process with some image quality metric as the target function, and

correction modulation as the optimization variable. This method is very widely applicable,

and can be formalized into a general framework [53]. The disadvantage of this method

is that multiple measurements need to be taken before an optimum (possibly also only a

local optimum) is reached, which is limiting for real-time corrections. Additionally, in

microscopy repeated exposure of the specimen is preferably avoided due to photobleaching

and phototoxicity.

A challenge that is specific to wavefront sensing in microscopy arises in confocal

imaging with reflected light. Different from fluorescence imaging, this does not require

labeling the sample and this method is therefore broadly applicable. In confocal scanning

microscopy the illumination is focused inside the sample. Therefore, light reflected from

the focal plane and returning into the detection path could potentially be used for wavefront

sensing independent of labelling, similar to a guidestar. However, because the light source

for illumination and the detectors are located on the same side of the aberrating medium

(epidetection configuration), the wavefront can only be measured after light has passed

through the aberration twice, as illustrated in Fig. 1.5. In this roundtrip, some components
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Figure 1.5: Schematic of wavefront sensing in a microscope with reflected excitation light as well as with a
guidestar. When reflected excitation light is used for wavefront sensing, it can be measured after passing
through the sample aberration twice, and one therefore has to disentangle the contribution of the excitation
pass to correct the focus inside the sample (left). If a point source (guidestar) is emitting light from within
the sample, direct wavefront sensing is possible since the wavefront only carries the single pass aberration
(right).

of the aberration can be cancelled out or get amplified, depending on the aberration

symmetry and the reflectivity of the specimen. Disentangling the aberrations occurring on

this forward- and return pass, commonly referred to as the dual-pass problem, is however

necessary for microscopy in an epidetection configuration if a reflected focus should be

used as a guide star.

Generally, depending on the type of the microscope, different aberrations contribute

to the image formation process and therefore need to be corrected. In confocal reflection

or confocal fluorescence microscopy one needs to correct both excitation and detection

aberrations; in multi-photon microscopy one needs to correct excitation aberrations, or in

wide field microscopy only detection aberrations [54].

In the following section we review the wavefront sensing approaches that are commonly

used in laser scanning microscopy.
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1.2 Related work – adaptive optics in microscopy

Sensorless AO

The first AO system for a multi-photon microscope [55] was implemented with a

deformable mirror with 37 electrostatic actuators. The shape of the mirror was optimized

with a genetic algorithm with the aim of maximizing fluorescence intensity [56], which

correlates with the quality of the focus. Running 10 generations with a population size

of 100 took about 3 minutes (with the updating speed of the deformable mirror at the

time being the bottleneck preventing faster performance). Optimization of fluorescence

intensity using hill-climbing and optionally other image metrics was demonstrated in [57];

[58] discusses optimization strategies based on genetic algorithms or hill-climbing, as

well as image-based metrics. An example of an image metric other than brightness is the

magnitude of the low spatial frequency band of an image [59].

When an optimizer is agnostic of the function it minimizes, treating it as a black box, the

process of optimization can be rather inefficient. It will therefore require many iterations

of sample probing to find the direction of improvement and to converge, especially in a

multidimensional search space. One can improve the situation by incorporating some prior

knowledge into the algorithm, either about the sought aberration or about the physical

process generating the optimized signal. This approach is also referred to as model-based
optimization.

For example, if all degrees of freedom of the SLM are treated as independent parameters

(as in the references mentioned above), a rather large number of measurements is needed

for the optimization process to converge. However, as experiments on commonly used,

weakly aberrating specimens have shown [60], often aberrations can be represented using a

small number of low-order Zernike modes. This motivates the use of an aberration model to

reduce the solution search space and to mitigate oversampling. This idea was implemented

in the first demonstration of an adaptive confocal fluorescence microscope [61], where

7 low-order Zernike modes (astigmatism, coma, trefoil and spherical aberration) were

corrected with a deformable mirror. The modes were detected independently with indirect

modal sensing: each mode was applied to the mirror with alternating positive and negative

magnitude, and the corresponding fluorescence intensity was measured as the average

photon count in all image pixels. The difference in intensity between the negative- and

positive-biased measurements for each mode indicated the magnitude of its contribution to
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the sample aberration. The deformable mirror had the same number of degrees of freedom

(37) as in [55], but significantly fewer measurements were needed due to the representation

and sensing of aberrations using Zernike modes.

A different example of model-based representation of aberrations was shown in [62],

where an aberration across the pupil was tiled in several segments, and phase tip and tilt

were determined for each of them independently. Images of the sample were taken with

illumination coming from one segment of the pupil at a time and phase ramps caused these

images to be proportionally displaced in the corresponding direction. By comparing the

lateral displacements of the resulting images, local phase ramp magnitudes and orientations

were determined and finally combined into a whole pupil aberration phase function.

The concept of using a physical model to introduce a priori knowledge of the problem

is shown in [63]. The pupil aberration was represented as a Zernike mode expansion, and

the corresponding PSF intensity was analytically calculated as a function of each mode’s

presence. This model was then used as a heuristic for an optimization algorithm and to de-

velop a solution space sampling strategy, requiring 2N +1 measurements for an expansion

of aberrations with N modes. In [59] similarly an analytical model was established but for

a different metric – spectral density of low spatial frequencies in the image as a function of

aberrations, allowing to obtain a correction through optimization based on the fluorescence

image. This strategy was applied for two-photon microscopy in [64] and allowed detecting

11 Zernike modes of an aberration with 23 probing measurements.

Sensor-based AO

Wavefront sensing requires a point source in the sample at the location where the

correction should be applied. Therefore, wavefront sensing methods in microscopy need

to solve the problem of introducing a point source inside the sample. Such a point source

avoids the dual-pass problem described above (Fig. 1.5), and allows direct wavefront

sensing.

Sample labelling is often the technically easiest way to introduce a point source: in

[65] direct wavefront sensing was demonstrated by injecting fluorescent beads into the

sample. The beads acted as point emitters under the excitation light and allowed to directly

measure the aberration with a Shack-Hartmann wavefront sensor. This was practically

applied in a wide field [66] and a confocal fluorescence microscope [67]. In the incoherent

fluorescence process the phase aberration of the excitation beam is lost, so that emitted
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light coming from a point source carries only a single pass aberration. A similar approach

can be applied with two-photon excitation and was demonstrated in [68]. Alternatively to

injecting beads, expressing fluorescent proteins allows genetic labelling in a less invasive

way and in targeted neural structures. In this situation, the fluorescence of cell bodies

or dendrites can be used for generating guidestars with laser illumination for wavefront

correction [69].

In addition, whereas point detectors with large areas (such as PMTs) are not very

sensitive to scattering, imaging with a camera, as required for a wavefront sensor, can

become problematic due to noise and scattering for the dim signals often observed in

fluorescently labeled biological samples. Such problems motivate the use of reflected

excitation light as an alternative for measuring corrections, since these signals are not

limited by the fluorescence photon budget.

However, to overcome the problem of the accumulation of excitation and detection

path aberrations, one needs to detect light coming only from the focal area. This has

been demonstrated with coherence gating in [70], where an interferometer was combined

with confocal reflectance imaging. By adjusting the length of the reference arm of the

interferometer, one can selectively detect light reflected from the focal volume, discard-

ing reflections from deeper or shallower layers. Therefore, only light coming from a

confined volume at the focal plane is modulated by the interferometer, thus resulting in

a scattering point source as required for direct wavefront sensing. This was practically

demonstrated in [71]: the phase of the returning light was measured in several steps using

different path lengths in the interferometer and aberrations were determined by simulating

a Shack-Hartmann wavefront sensor [72]. Due to the technical challenges associated with

interferometric detection of scattered light, this approach has not become widely used in

microscopy.

Alternatively, a simpler setup for scattered light wavefront sensing with a SHWS, only

using a confocal pinhole to remove out-of-focus light while still preserving sufficient

wavefront information, was tested in [73]. However, this approach cannot separate forward-

and return-pass aberrations and additionally was highly dependent on the sample structure

and reflectivity.
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Machine learning

Artificial neural networks as supervised machine learning algorithms date back to the

idea of a biologically inspired artificial neuron, the so-called perceptron, suggested by

Frank Rosenblatt in the 1950’s [74]. This computational unit takes a weighted sum of its

inputs and thresholds the result, and in this way is able to solve some binary classification

problems after correctly setting the weights in a learning procedure. Marvin Minsky and

Seymour Papert extensively explored its abilities and limitations in [75], but the lack

of efficient training procedures for potentially more powerful multilayered models was

limiting at the time.

It was shown later that such a feed-forward network with a single hidden layer and

nonlinear activations can serve as a universal function approximator given enough hid-

den units [76, 77]. Additionally, Rumelhart and Hinton proposed a training procedure

for multilayer networks through backpropagation [78], which has become the standard

approach for training neural networks. For training, the network output is calculated for a

given input. Then, the error between the output and the target is calculated (loss), and the

weights of the network are updated along the gradient of the error. Combined with using

randomly chosen parts of the training dataset (mini-batches) for each of these iterations,

this method is known as stochastic gradient descent. Stochastic gradient descent allows to

optimize multilayer artificial neural networks, commonly referred to as deep learning.

The power of deep learning approaches was demonstrated in 2012 by the Hinton group

with AlexNet [79] which obtained the best score in the ImageNet Large Scale Visual

Recognition Challenge, with an image classification error rate almost twice as low as

that of the nearest competitor. This performance was achieved through a combination

of several state-of-the art ideas. First, convolutional layers introduced by LeCun [80]

replaced computationally costly and parameter-rich fully connected layers with sparsely

and only locally connected ones with much fewer parameters. Second, max pooling [81]

was used, reducing the number of parameters passed to consecutive layers by selecting

the highest-magnitude features. Additionally, AlexNet also used several novel features:

ReLU activation functions [82] and dropout regularization [83] to prevent overfitting,

alongside with dataset augmentation. Further, using a graphical processing unit (GPU)

allowed training a larger model in feasible time. Indeed, the architecture of GPUs turned

out to be very well suited for computations with neural networks, which inherently require
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many parallel operations [84]. Together, these design decisions have become the defining

features of deep learning and contributed to rapidly improving its performance in computer

vision, as well as finding applications in other domains.

Modern deep learning frameworks like Tensorflow [85] or PyTorch [86] efficiently

implement the algorithms listed above. Working within these frameworks formalizes the

problem of specifying the neural network model, providing the training dataset, defining

the loss function, and tuning the training hyperparameters.

Deep-learning-based AO

In the work presented in this thesis we use machine learning methods for image-based

wavefront sensing. This can be viewed as a regression problem of finding parameters of an

aberration model and can be solved for example by (deep) feed-forward neural networks

and in particular deep convolutional neural networks (CNNs).

The idea of applying neural networks to wavefront sensing was first introduced in

astronomy in the early 1990’s, before the modern deep learning architectures were invented.

In [87] a perceptron-like model with a single hidden layer with sigmoid activation and

linear output was trained on simulated star images to detect and correct atmospheric

aberrations for the Multiple Mirror Telescope [88]. Two 13×13 images of the star, from

in- and out-of-focus planes served as the input, and the output were tip, tilt and piston

modes for each of the six mirrors of the telescope. A convenient feature of this approach

is that the network can be trained to directly output adaptive element control signals,

omitting intermediate calculations. Further, no additional wavefront sensor is needed and

the aberrations are measured in a single shot, only based on the images, which combines

the main advantages of sensorless and sensor-based approaches. Another characteristic

feature of this approach is that the neural network extracts phase information using two

separate image planes; two combined images implicitly carry phase information (phase

diversity [89]) which cannot be retrieved from a single image.

More recent works use deep network architectures and handle much higher resolution

images. For example [90] used the Inception architecture [91] and 512×512 PSF images

to recognize phase, however only for very low-order aberrations. Up to 65 Zernike modes

of aberrations were recognized by a convolutional neural network in [92], trained on

simulated images of a guidestar under various aberrations.

Deep learning can also be used to enhance sensor-based approaches for recognizing
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finer details of aberrations. A Shack-Hartmann wavefront sensor is an array of small lenses

(lenslets) placed in front of the camera sensor, each producing its own focus depending on

the local shape of the wavefront arriving. Typically, a SHWS is used to determine the slope

of the phase for each lenslet by the offset of its focus, and to reconstruct the full wavefront

by combining the measurements of all the lenslets. However, a trained deep neural network

can pick up finer details of phase variations, serving as a model for a process for which

we do not have an explicit inverse function. In [93] up to 120 Zernike modes could be

recognized with a trained network from a single SHWS image. This learned mapping can

be quite complex: for example, instead of a lenslet array, a random medium can be used to

provide phase diversity, and a network can be trained to detect aberrations in this situation

[94]. We present the first application of deep learning wavefront sensing for a two-photon

microscope in a sensorless configuration in Chapter 2.

However, a limitation of deep-learning wavefront sensing is that the operating range of

the model is limited by the data that were presented to the neural network during training.

This results in unreliable predictions for inputs beyond the data range covered by the

training dataset. Additionally, the resulting wrong predictions cannot easily be detected,

other than by failure of the wavefront correction process.

Differentiable modelling

Sensorless model-based methods as mentioned above typically utilize an analytical

model to calculate the PSF as a function of aberrations and consecutively the resulting

image brightness or another metric. These analytical models could be reliably established

for modal expansion of small aberrations, and used as heuristic in an optimization process

of finding the sample aberration through several probing measurements.

However a model of an optical system, provided that it is detailed enough, can also

be used in a different way: if image formation can be described mathematically, a phase

aberration can be represented as an unknown model parameter, which can be found by

matching the model’s output to the observed output of the actual system. In this situation,

phase reconstruction is for example not limited to whether an experimentally encountered

aberration is similar to the training dataset, but rather by the accuracy of the model. Another

advantage of this model-based approach is that, unlike in sensorless approaches, it does

not require iterative sample probing, but only relies on some initial measurements recorded

at the beginning of the experiment.
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This idea can be traced back to the Gerschberg-Saxton phase retrieval algorithm which

discovers the phase of a wavefront from two light intensity measurements made in different

planes with known complex amplitude transfer function between them, for example image

and Fourier planes. By iteratively computing complex amplitude transformation between

these two planes, while constraining the resulting magnitudes to the measurements and

keeping the calculated phase, the unknown phase is found when the discrepancy between

measured and computed amplitudes converges to a minimum [95].

In [96] James Fineup modelled more complicated optical systems with multiple ele-

ments and optimized for an unknown phase factor using the gradients of the model with

respect to unknown parameters. These gradients could be computed for either Zernike

mode expansions or for discretized aperture phase representations. A major part of this

process could be automated with algorithmic differentiation [97]. In [98] this is described

as a general approach: first, a model of the optical system, including the unknown pa-

rameters, is written down symbolically. Then, an error metric measuring the mismatch

between the model and observations is introduced. Finally, gradients of the error with

respect to parameters of interest are calculated automatically, and the error is minimized

using gradient-based optimization.

This approach very closely resembles differentiable rendering or inverse graphics [99].

Differentiable rendering can be used to infer parameters of a three dimensional scene (such

as geometry, lighting, or texture) from rendered images [100, 101, 102]. This is achieved

by implementing an end-to-end differentiable rendering equation and by optimizing its

parameters with gradient-based methods. Since this relies on the same algorithmic base

as deep learning – automatic differentiation and gradient-based optimization – it can be

integrated with deep learning frameworks [103].

This integration can be useful in multiple ways. For example, recovering parameters of

a three-dimensional scene with optimization is an ill-posed problem prone to converging

to local minima. Therefore, using a generator network can provide better solutions

[104, 105] similar to a deep image prior [106]. In this case, the unknown parameters are not

optimized directly, but are generated by a suitable network which has a regularizing effect

on the solution [107]. As a second example, machine learning models that require spatial

reasoning, for example estimating geometry or pose, can be trained without requiring

labeled three-dimensional data, but in a self-supervised way with two-dimensional images
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only [108, 109], and the a priori known information can be introduced into the training on

the rendering stage [110].

Differentiable physics [111, 112, 113] generalizes this model-based optimization idea

to simulations of any dynamical physical process. Keeping track of the calculations through

multiple time steps simulating the evolution of the system, the gradients of the end state

with respect to the parameters of interest are propagated, for example to search for initial

conditions [114, 115, 116]. This can be similarly integrated with machine learning in

relevant domains, for example in robotics [117, 118].

Differentiable simulation of optical systems has been demonstrated in several applica-

tions. In ptychography, objects are not imaged directly, but reconstructed computationally

from coherent interference patterns of scattered light and therefore phase information is

crucial for the reconstruction. In [119] differentiable modelling is used to extract phase

information from intensity measurements by directly optimizing the unknown parameters

to match the model to the observations.

Another example uses a differentiable model together with a deep prior for diffraction

tomography [120]. A three-dimensional refractive index distribution of a thick sample

is reconstructed from multiple images taken with alternating illumination angles. In this

application, a deep prior was used to parametrize the sample volume, and the imaging

model incorporated in the loss function generated the images that were compared to the

measurements. Similarly, phase imaging can be done with a generative network and an

image formation model [121, 122].

Apart from image reconstruction, differentiable simulation can be used to optimize an

imaging system’s design for better performance. For example in [123], an illumination

scheme is optimized to reduce the required number of measurements and to improve the

resolution in a Fourier ptychographic microscope for various imaging modes.

1.3 Contributions
In the following sections we discuss the individual technical contributions of the

peer-reviewed publications included in this cumulative thesis. The common theme of the

contributions is the development of wavefront sensing methods based on machine learning

for microscopy in an epidetection configuration as typically used in biology.
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1.3.1 Adaptive optics with reflected light and deep neural networks

The main challenge for wavefront sensing in a two-photon laser scanning microscope

lies in obtaining reliable signals that carry information about the wavefront aberrations.

Biological specimens typically do not contain natural guidestars, i.e., fluorescent point

sources. Guidestars therefore need to be introduced, which might be invasive or impractical.

However, even in labelled samples the signal is often very weak due to the limited photon

budget of small fluorescent structures, such as fluorescent beads with dimensions below

the diffraction limit.

Alternatively, when using reflected excitation light imaged in epidetection, the problem

of disentangling excitation- and detection path aberrations, as well as suppressing out-of-

focus reflections, arises. We solve it by spatial filtering of the returning light through a

pinhole similar to [73], and use deep learning-based wavefront sensing on the resulting

confocal PSF intensity images, similar to astronomy [90, 92]. We used a convolutional

neural network trained on labelled datasets with known excitation and detection path

aberrations, training the network to recognize them independently.

To create such a dataset, a phase SLM was used to independently modulate excitation

and detection paths of a confocal microscope integrated with the two-photon microscope,

and a mirror was used as a fully reflective sample. Confocal volumes were imaged with

3 cameras placed at different focal planes to provide phase diversity. With this setup, 3

datasets were collected: one with entirely independent excitation and detection aberrations,

one with closely linked aberrations in both paths, thus imposing the assumption that the

aberrations should be similar, and one with only detection path aberrations to simulate

the situation of imaging reflective guidestars. Zernike modes were used to generate phase

aberrations, resulting in a representation of aberrations as a vector of mode coefficients,

which was convenient for neural network output.

Deep convolutional neural networks trained on these datasets were tested in the corre-

sponding imaging scenarios. We could achieve corrections based on reflected excitation

light with excitation and detection path aberrations being disentangled by the network.

Additionally, guidestar-based corrections were achieved with reflective particles injected

into the sample.
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1.3.2 Differentiable model-based adaptive optics with transmitted and reflected light

As shown in the previous section, a deep learning approach allows to approximate the

inverse model of image formation given an aberration. Training such a model requires a

large labelled dataset, and the predictions of the model are bound by this (finite) dataset. In

this way, using Zernike modes as an aberration model restricts recognizable distortions in

spatial frequency and in amplitude to the maximal mode order and amplitude represented

in the dataset. Additionally, the distribution and combination of modes is typically not

known, and will vary depending on sample characteristics. This adds to the difficulty of

designing accurate datasets representing sample aberrations. Further, phase variations

within an aberration of an actual sample are not bounded and can exceed the range over

which the model is valid.

In contrast, optimization-based methods are not limited to a prediction range, but

use a trial-and-error approach which is based on probing the sample to find a correction.

Model-based methods improve the situation by utilizing prior information about the system

and thus perform more efficiently.

In this publication we combined model based adaptive optics [124, 63] with gradient-

based optimization. Similar to the deep learning approach, we showed that not only a single

aberration can be corrected, but also combined excitation and detection aberrations as

encountered in an epidetection setup. For this, we built an experimental setup that repeats

the geometry of reflection imaging: a collimated beam is reflected off a phase SLM and

focused through an aberrating sample onto a mirror. After reflection and a second (return)

pass through the aberration, the beam is imaged with a lens onto a camera. An additional

camera was placed in the focal plane behind the aberration to monitor the focus inside the

sample. For this proof-of-principle experiment we used lenses with a numerical aperture

of 0.04. Using Fourier optics and the angular spectrum method, we built a mathematical

model for this setup. The input to the system was described as a complex amplitude over a

512×512 discrete grid in the SLM plane that encoded the phase-modulated input beam.

Lenses and aberrations were modelled as phase factors of the complex amplitude at the

corresponding planes, and the angular spectrum method was again used to calculate beam

propagation between intermittent planes as well as to the camera. This resulted in an

analytic expression that could be used to calculate a 512×512 pixel camera image output,

given the phase modulation and aberration profile as an input. Additionally, the model was
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differentiable.

This model was used to infer aberrations in the following way: a sample was placed

in the setup and probed with several random phase modulations displayed on the SLM

and corresponding images of transmitted (or reflected) light were recorded. Then, the

computational model was initialized and optimized by adjusting aberration parameters to

match its output to the actually measured camera images based on the provided probing

modulations. This optimization process is similar to training a neural network, where free

parameters (weights) are adjusted to match the network output to the target measurements.

The mismatch between predictions and data was measured by the loss function defined as

negative Pearson’s correlation coefficient between the images.

We used Tensorflow to implement and optimize the model, since, like any modern

machine learning framework, it has all the necessary components: automatic differentiation

of expressions and gradient-based optimizers, as well as the ability to easily deploy the

calculations on a GPU for better performance. We tested this approach in a single-

pass (transmission) configuration as well as a dual-pass (reflection) configuration. We

demonstrated that the technique is able to discover and correct transmission aberrations

based only on backreflected light, and is thus compatible with an epidetection configuration.

The model optimization is happening ”offline” i.e., only based on the initial measure-

ments. Prediction results are not constrained to any particular aberration model and can

therefore include high spatial frequencies corresponding to high-order Zernike modes.

1.3.3 Differentiable model-based adaptive optics for two-photon microscopy

In this chapter we applied the differentiable model-based approach outlined above

to two-photon microscopy. For this, we modelled fluorescence image formation, taking

into account the parameters of the objective and microscope magnification. Further, the

two-photon excitation process was included, where fluorescence intensity depends on the

square of the excitation light intensity or PSF. Similar to the experiment described above,

the resulting differentiable model was then used to infer an aberration based on probing

modulations. These modulations were displayed on the SLM and corresponding images of

the PSF (generated by imaging fluorescent beads) were recorded. The recorded images

were finally compared to images generated with the model using a loss function.

For this, fluorescence images first needed to be preprocessed since the signal had very

low intensity. This was especially the case when aberrations were present, which often
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yielded noisy images resulting from the low signal levels of only a few photons per pixel

combined with shot noise and detection noise. Therefore, spatial low-pass filtering was

applied to suppress high frequency noise. The loss function for minimization had two

components: the negative correlation coefficient between the target PSF and the model PSF,

and the pixelwise sum of the intensities of the prediction. The latter term was introduced,

since the correlation coefficient is magnitude-insensitive, and therefore the optimization

can find a solution with high correlation, but low intensity (for example by dimming some

parts of the PSF through destructive interference or by diverting the light out of the field of

view). By including the total intensity in the loss function, solutions were promoted that

formed a PSF similar to the target while utilizing all of the light.

This first demonstration of combining differentiable optimization with scanning fluores-

cence microscopy allowed us to correct aberrations through layers of aberrating materials,

such as vacuum grease, using fluorescent guide stars imaged using two-photon excitation.

1.4 Thesis outline
In summary, the main problem for adaptive optics in optical microscopy lies in finding

a suitable correction through wavefront sensing to improve the image. A main difficulty in

biological imaging results from the epidetection configuration of the microscope where

the source of illumination and the detector can only be placed on the same side of the

aberration. This configuration requires specialized solutions for direct wavefront sensing

without sample labelling. The existing approaches, as reviewed in Section 1.2, show a

trade-off between several complicating characteristics: increasing setup complexity for

coherence gating, the need to introduce labels into the sample for sensor-based AO, or

the requirement of multiple measurements (sensorless AO) and the corresponding slow

correction refresh rate in dynamic samples.

At the same time, this also suggests guidelines for improving wavefront sensing in

microscopy. First, improved methods should ideally be compatible with laser scanning

microscopy with minimal setup modifications. Second, methods that don’t require sample

labelling would be most broadly applicable. And third, to reduce phototoxicity and increase

imaging speed, rely on only a small number of measurements.

In this thesis, we show that machine learning methods can successfully address some of

the problems outlined above. In particular, we show for the first time that neural networks

are useful for wavefront sensing in two-photon imaging and can recognize aberrations
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Figure 1.6: Comparison of the existing wavefront sensing methods and those developed in this thesis for
adaptive optics in microscopy according to their main characteristics: number of measurements needed and
requirement of sample labelling. Methods contributed in this thesis are marked with (*).

based on single PSF measurement. This is shown in Chapter 2 where we use deep learning

to identify aberration corrections based on confocal images of the excitation light. Further,

we propose and demonstrate a solution for combined excitation and detection aberrations

using deep neural networks. A comparison of the existing methods and those developed in

this thesis is shown in Fig. 1.6.

In Chapters 3 and 4, we show for the first time that using differentiable model opti-

mization, wavefront aberrations can be inferred, based only on a small number of initial

measurements, by taking advantage of prior information about the imaging system embed-

ded in a model. A differentiable model is used for identifying aberrations in the excitation

and detection path in a proof-of-principle experiment in Chapter 3. In Chapter 4 we develop

a differentiable model of fluorescence image formation in a two-photon microscope and

use it to correct aberrations.
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CHAPTER 2

Adaptive optics with reflected light and

deep neural networks

This chapter was published as a peer-reviewed paper in the Optics Express journal by the

Optical Society of America in 2020 [125].

The authors are Ivan Vishniakou and Johannes D. Seelig.

https://doi.org/10.1364/OE.392794

2.1 Introduction
Diffraction limited imaging in many samples, for example in biological tissue, is limited

due to aberrations and scattering. In this situation, combining laser scanning microscopy

with adaptive optics can improve image resolution by correcting for aberrations using

wavefront shaping [128, 129, 130, 131]. Using reflected light for wavefront shaping has

the advantage that it relies on intrinsic sample contrast [132] and is therefore independent

of sample labeling [70, 71, 128]. Additionally, even for fluorescently labeled samples,

particularly for dim or sparsely labeled samples, the scattered light signal can be larger

than the fluorescent signal [70, 71, 54].

Imaging with reflected light comes however with the difficulty that excitation and

detection aberrations are not easily separated [54, 133, 134, 135]. In reflection-mode

imaging, the signal depends on the excitation point spread function (PSF), which undergoes

aberrations, the scattering object, and the detection PSF, which can undergo different

aberrations [133, 134, 136].

For making an accurate correction of the excitation focus under these conditions,

therefore contributions to aberrations accumulated in the excitation and reflected detection
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pathway through the sample need to be disentangled. For strongly scattering samples,

separation of illumination and detection pathways has been achieved using matrix methods

[136, 133, 134, 135], which however require a large number of phase sensitive mea-

surements to obtain a correction. For weakly scattering samples, one option to separate

excitation and detection aberrations is to use a wavefront sensor that only detects light that

is reflected from a tightly constrained focal volume. This can be achieved using coherence

gating with high-bandwidth light sources combined with interferometric detection [70, 71].

A technically less demanding approach was implemented using confocal imaging with

a pinhole sufficiently large to retain wavefront information [73]. In this situation, how-

ever, due to the extended confocal volume, aberrations measured with a wavefront sensor

depended on a combination of sample and detection characteristics [73, 54, 131].

More recently, approaches for wavefront sensing based on deep neural networks have

been developed [87, 137, 90, 138, 92, 139, 140, 141, 94, 93, 142]. These neural network

methods directly compare measured light distributions to computationally generated ones.

These approaches work so far only for a configuration that requires the correction of

a single pass through a scattering medium, such as the atmosphere in astronomy and

therefore cannot be applied for reflected light detection. In the epi-detection configuration

commonly used in biological imaging, aberrations in the excitation and detection pathways

need to be considered.

Here, we extend the deep learning approach for transmission wavefront sensing to

reflection-mode imaging in an epi-detection configuration. Reflected foci for different

aberrating samples are generated by independently modulating the excitation as well as

detection path of the microscope using a spatial light modulator. With this setup, imaging

for example a reflecting planar object through an aberrating layer can be modeled by

modulating both the excitation, as well as the detection pathway while at the same time

recording the light reflected off a mirror at the sample plane. Imaging a guide star through

an aberrating layer can be modeled by only modulating the detection pathway while

forming a focus on the mirror with the unmodulated excitation pathway.

Datasets generated in this way are used to train deep neural networks. We show

that after training, these neural network models can disentangle excitation and detection

aberrations of scattering samples. We verify the resulting excitation corrections using

two-photon imaging.
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2. Adaptive optics with reflected light and deep neural networks

2.2 Results
The experimental approach is shown schematically in Fig. 2.1. A two-photon micro-

scope is combined with a spatial light modulator (SLM) and reflected light detection for

wavefront sensing and correction. The reflected focal spot is monitored at three differ-

ent focal planes using cameras (see for example [87, 143, 140]). Different from other

reflection-mode adaptive optics approaches [61, 70, 71, 73] we separate excitation and

detection such that both pathways can be modulated independently.

This is motivated by the fact that excitation and detection aberrations can differ. Gen-

erally, the incoming beam undergoes aberrations which alters the PSF at the focal plane.

This secondary light source again undergoes sample aberrations on the return path. Due

to the extended nature of the secondary light source, the return path does not necessarily

overlap with the excitation path, thus resulting in different aberrations for the two pathways.

This is illustrated with a simulation in Fig. 2.3 (see Methods for details on simulation).

Fig. 2.3 a shows the simulated optical system, a simplified version of the actual setup:

light is focused through an aberrating phase mask onto a reflecting surface with a lens.

The reflected light passes again through the lens and the phase mask and is focused onto a

detector with a second lens. Fig. 2.3 b shows the resulting reflected focus image (bottom

row) after passing a plane wave (top row) through the optical system (see figure legend

for details). As seen in Fig. 2.3 c, for a weak aberration consisting of radial even Zernike

modes, the combined aberrations accumulated in the excitation and detection pathway

double (as expected, see [54]), resulting in the interference pattern in the focal volume

(bottom row). In contrast, odd radial Zernike modes cancel [54], and a diffraction limited

focal volume is preserved (Fig. 2.3 d, bottom row). However, for stronger aberrations from

odd radial Zernike modes (Fig. 2.3 e) differences in the excitation and detection pathway

lead to only incomplete cancellation of aberrations in the focal volume. Differences in

excitation and detection path lead to the asymmetric reflected phase pattern (Fig. 2.3 e,

second row from top) and result in a distorted reflected focal volume. This also suggests

that in such a situation the odd components can be detected.

Taking such differences in excitation and detection aberrations into account, we gen-

erated datasets modeling three different sample configurations. First, we modeled the

situation of a planar reflecting object with entirely uncorrelated excitation and detection

aberrations with randomly selected Zernike modes of up to order 28 in both pathways
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(Network 1, see Methods for details). Secondly, modeling the expected similarity between

excitation and detection aberrations in weakly scattering samples, we used a dataset with a

variance of ±30 % between excitation and detection Zernike coefficients to constrain the

sample space (Network 2). Third, to model scattering from a guide star, we generated a

dataset with only detection modulations, while focusing with the unmodulated excitation

beam at the mirror surface (Network 3).

These datasets of (pairs of) phase modulations together with the corresponding reflected

focus images, were then used for training deep neural network models. The pairs of phase

patterns in the excitation and detection path served as an output, and images of the reflected

focal spots from the three cameras in different focal planes served as the input. After

training, these networks predict Zernike coefficients for the excitation as well as the

detection pathway based on images of the focal light distribution obtained when imaging

through scattering samples. In this way, a correction of the excitation beam that is not

confounded by aberrations in the reflected beam can be extracted.

2.2.1 Methods

Setup

The setup, shown schematically in Fig. 2.1 and in detail in Fig. 2.7, consists of a custom-

built two-photon microscope equipped with a resonant scanner and controlled through

ScanImage [44] with an added detection path for reflected light. Both the excitation path,

as well as the reflected detection path are independently modulated with a spatial light

modulator (SLM).

The excitation beam is expanded, reflected off the SLM, demagnified, and imaged

onto the scanner through a polarizing beam splitter (PBS) (see legend of Fig. 2.7 for

details). The (linear) polarization direction is adjusted for maximum transmission through

the PBS with a half-wave plate. The scanner is imaged onto the back focal plane of

the objective. A quarter wave plate is placed after the tube lens to achieve circular

polarization and to optimize reflected light transmission through the PBS with orthogonal

linear polarization with respect to the excitation light [71]. Reflected light is detected in

a descanned configuration through the polarizing beam splitter, imaged onto a different

part of the SLM and imaged onto a pinhole. The pinhole is imaged onto three cameras

in different focal planes using 50/50 beam splitters and relay lenses. One camera focal

plane was selected at the focus, one in front and one behind the focus (see for example
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Figure 2.1: Setup schematic. Fluorescence is observed using two-photon scanning microscopy. Excitation
and detection pathways are each controlled with an SLM. Reflected light is imaged in an epi-detection
configuration onto three cameras. MO = microscope objective, DC = dichroic mirror, SM = scanning mirrors,
PBS = polarizing beam splitter, SLM Excitation = spatial light modulator in excitation pathway, SLM
Detection = SLM in detection pathway, PH = pinhole, CMOS 1-3 = cameras, PMT = photomultiplier tube.
See legend to Fig. 2.7 for details.

[87, 143, 140]).

For independent excitation and detection path modulation, the SLM was divided into

two equal parts, each having a size of 960×1080 pixels. The SLM was controlled through

custom software written in Python using Blink SDK provided by Meadowlark Optics. To

precisely center the phase modulations displayed on the SLM with respect to the beam,

for initial alignment a center-symmetric phase pattern was displayed subsequently in both

parts of the SLM. The center pixel of the respective SLM window was found by moving

the pattern until the reflected focus was center-symmetric. The polarization direction of

the beam imaged onto the SLM was optimized for modulation using lambda-half plates in

both the excitation and detection pathways (see Fig. 2.7).

Relationship between excitation and detection path phase patterns

To calibrate the relation between excitation and detection pathways, which was required

for experiments with guide stars (see below), we calculated a linear correspondence model

(matrix) between excitation and detection Zernike modes. For this purpose a mirror was

placed at the sample plane and random modulations were displayed in the excitation path.

35



2.2. Results

C
orrelation

 coefficien
t

Excitation Zernike mode

D
et

ec
ti
on

 Z
er

n
ik

e 
m

od
e

Figure 2.2: Linear correspondence model between Zernike modes displayed in the excitation and detection
pathway (see Methods for details). Even components in the excitation are sensed with the same magnitude
in the detection, and odd ones are sensed with a negative magnitude.

The resulting reflected confocal images were fed into Network 3 (trained on detection

modulations only). With a set of 10 000 modulations applied in the excitation path and

predicted as detection-path aberrations, a matrix relationship was determined (Fig. 2.2).

The magnitude difference between excitation and detection phase corrections in the two

pathways was taken into account in all generated datasets. The matrix shows that, as

expected, even components in the excitation are sensed with the same magnitude in the

detection, and odd ones are sensed with a negative magnitude.

Simulations

Using a Rayleigh-Sommerfeld solver [144], we simulated light propagation through the

microscope and sample and monitored the point spread function at the sample and reflected

focal plane (Fig. 2.3). The simulated pathway is illustrated in Fig. 2.3 a: a flat wavefront

enters the microscope objective, propagates to the surface of an aberrating layer (which

adds a spatial phase modulation to the beam), reaches the mirror (the PSF is calculated in

this plane), is reflected back, passes again through the lens and the aberrating layer and is

finally focused with a lens in the reflected focal plane (see legend of Fig. 2.3 for parameters

used).
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Figure 2.3: Simulation of impact of different aberrations on resulting reflected focal volume. a Schematic
of the simulated optical system (see Methods for details). A flat wavefront enters the microscope objective
and undergoes sample-induced phase modulation at the distance of 0.5 mm from a mirror surface on the
excitation and reflected return path; the returning beam is focused with a 200 mm lens. The PSF at the
sample and reflected focal planes are simulated. b Example with no aberrations. Top row: flat wavefront,
second row: reflected wavefront, third row: focus at sample plane, bottom row: focus at reflected volume. c
Aberration of even radial order which magnifies itself on the return path. d Self-correcting aberration of
odd radial order. e Same as d, but with higher magnitude of phase aberration, demonstrating the failure of
self-correction in this situation.
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Data processing and neural network approach

The CNN architecture consisted of a cascade of 4 convolutional layers with ReLu

activations (64 filters 11×11 with stride 4×4 and batch normalization, 64 filters 5×5

with stride 2×2 and batch normalization, 128 filters 3×3 with 2×2 max pooling, and

192 filters 3× 3 with 2× 2 max pooling respectively). These layers are followed by a

dense layer with 3072 elements, sigmoid activation and 0.3 dropout regularization, and an

output dense layer with linear activation, the size of which corresponds to the number of

predicted Zernike modes. The networks were trained by minimizing mean absolute error

(MAE) of the prediction with Adam optimizer at learning rate 0.0001.

The confocal volume (imaged in 3 planes) was normalized by dividing by 255 to

bring the 8 bpp image to the 0 . . .1 range and was stacked into a 192× 192× 3 tensor

serving as input for the network. The output was the corresponding phase modulation,

represented as vector of Zernike coefficients (Z1 . . .Z28); in cases where both excitation

and detection modulations were used, they were both concatenated into as single vector

(Z1exc . . .Z28exc,Z1det . . .Z28det). Each random modulation was generated by shuffling a

harmonic sequence 1.5π/n and randomly choosing the sign of each of its elements. For

both excitation and detection the Z1 (piston) mode was set to 0.

2.2.2 Disentangling excitation and detection phase modulations

We first tested whether neural networks could extract random, independent phase

modulations displayed in the excitation and at the same time in the detection pathway based

on the resulting reflected focus patterns. We therefore generated a dataset by displaying

different random Zernike modes of up to order 28 simultaneously in each pathway. A

mirror was placed at the sample plane of the microscope and the resulting reflected focus

images were recorded. This models a planar sample with entirely uncorrelated excitation

and detection aberrations.

A network (Network 1) was trained on 180 000 such pairs of excitation and detection

phase modulations and the resulting sets of confocal images. Fig. 2.6, top row, shows

examples of predicted and target excitation and detection phase modulation with repre-

sentative mean absolute errors. The mean absolute error (MAE) of the examples is also

indicated in the full MAE distribution shown in the bottom row. The histogram of mean

absolute error (MAE, Fig. 2.6, bottom row) between prediction and target modulations is

compared to the error for random pairing (gray). These results show that the trained neural
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network can reliably disentangle and predict independent excitation and detection phase

patterns based on reflected confocal images resulting from the combined modulation.

2.2.3 Focusing through aberrating layers

We next tested whether such networks could be used to separate excitation and detection

aberrations based on reflected images from actual scattering samples and whether the

resulting corrections could be used for focusing through the encountered aberrations. In

these experiments, we focused through a layer of vacuum grease onto a reflecting surface.

To be able to directly monitor the focus after the scattering layer, we focused on a fifty-fifty

beam splitter. This resulted in a reflected focus image and at the same time allowed

monitoring the focus at the sample surface with a transmission camera for a stationary

beam (non-descanned transmission detection, see Fig. 2.7). To monitor the correction

during scanning, we placed fluorescent beads (0.1 µm diameter) on the beam splitter

surface and detected fluorescence using two-photon imaging.

Corrections were computed using Network 2 which was trained on a dataset of 180 000

examples with a variance of ±30 % between excitation and detection Zernike coefficients.

This allowed better coverage of the sample space compared to Network 1 (with similar

sized training datasets) and was sufficient for correcting aberrations in weakly scattering

samples. Examples of network predictions with representative MAEs are shown in Fig. 2.6,

top row. The MAE of the examples is indicated in the MAE distribution shown in Fig. 2.6,

bottom row.

Representative examples of two-photon images of fluorescent beads on the reflecting

surface with and without excitation correction are shown in Fig. 2.4. Due to aberrations

the center plane of the confocal volume is difficult to determine, and corrections were

therefore obtained by averaging between three and five images of the confocal volume

at different axial positions around the estimated center (separated by 2-5 micrometers).

Confocal images were normalized the same way as training images (see Methods) and

independently fed through the network and the predictions were averaged. The network

output is a vector of Zernike coefficients and excitation and detection aberration were

generated. To correct for aberrations, the complex conjugate of the network output was

displayed on the SLM.

Fig. 2.4 a shows that aberrations in the fluorescence images can be corrected based

on the reflected excitation light using the trained neural network. The improved focus
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(monitored with a transmission camera, 2.4 b and f), leads to improved resolution and

signal as seen in 2.4 a and c, and e and g, respectively. (Note that the beads were placed on

top of a beam splitter, so reflection from the beam splitter will likely distort the axial profile

shown in Fig. 2.4 a and e on the right side.) Overall, the decomposition into an excitation

and detection pathway leads indeed to the formation of an improved focus suitable for

two-photon imaging.

We implemented a second imaging approach based on deep learning with scattering

guide stars. Since for a guide star the observed focus distortion in the sample is a result of

only return path aberrations, we trained a network on detection-only modulations (Network

3). Examples of predicted and target corrections are shown in Fig. 2.6, top row. The MAE

of the examples is shown in the distribution in the bottom row.

The confocal volume was imaged and corresponding aberrations of the return path

were predicted with the network. The correction is carried over to the excitation path

using the correspondence model between excitation and detection path Zernike modes

(see Methods and Fig. 2.2). The sample consisted of a mixture of scattering guide stars (9

µm diameter silver coated silica microspheres, Cospheric) and 0.1 µm fluorescent beads

embedded in 1 % Agarose. (The transmission focus was not monitored directly in this

case, since the focus was inside a volume, not at an interface as above.) The sample was

again imaged through a layer of vacuum grease. Experiments were performed as above,

with averaging over between three and five focal planes. Fig. 2.5 a and Fig. 2.5 d show

two representative examples of corrections achieved with this approach. Both resolution

and intensity improve due to the applied corrections.

2.3 Discussion
We have developed an adaptive optics approach for laser scanning microscopy based

on reflected light imaging and deep neural networks. For network training large datasets

of aberrated focus images were generated by combined excitation and detection pathway

phase modulations, modeling the aberrations observed from extended reflecting objects

in scattering samples. After training on such datasets, deep neural networks can extract

underlying excitation and detection phase aberrations of modeled and actual samples based

on reflected focus images (Fig. 2.6). We validated this approach using two-photon imaging

of fluorescent beads distributed on a mirror through an aberrating sample as well as by

directly imaging the transmitted focus (Fig. 2.4 and Fig. 2.5). The resulting corrections
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Figure 2.4: Aberration correction for imaging through scattering layer on planar reflector. a Left: example of
corrected and uncorrected image of fluorescent beads distributed on reflector surface imaged through a layer
of vacuum grease. Center: white frame in left figure. Right: axial cross section through lines in center figure
recorded in a z-stack with 1 µ m step size. b Top: uncorrected focus at center of field-of-view in a. Bottom:
corrected based on reflected light. Colorscale is saturated in the corrected image, so that aberrations in the
uncorrected image are visible. c Cross sections for uncorrected (blue) and corrected (red) images along the
lines indicated in figure a, center. d Left: excitation and Right: detection phase mask. e-h Same as a-d for a
second example. All scale bars are 5 µm.
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Figure 2.5: Aberration correction for imaging through scattering layer with guide stars. a Left: example
of corrected and uncorrected image of fluorescent beads distributed in a volume of Agarose mixed with
scattering guide stars imaged through a layer of vacuum grease. Center: white highlighted box in left figure.
Right: axial cross section through lines in center figure recorded in a z-stack with 1 µ m step size. b Cross
sections for uncorrected (blue) and corrected (red) images along the lines indicated in a, center. c Excitation
phase mask. d-f Same as a-c for a second example. All scale bars are 5 µm.
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achieved for a planar object rely neither on a tight focal volume nor a guide star, as typically

necessary for wave front sensing.

In a second approach, we obtained corrections by combining guide stars and deep

neural networks. In this situation, training data was modeled using only detection path

modulations and the corresponding corrections were then displayed in the excitation

pathway for excitation correction.

Reflected light detection generally has the advantage of being independent of sam-

ple labeling [70], but comes with the difficulty of separating excitation, detection, and

sample contributions to the scattered signal [134, 136]. We addressed here the problem

of separating excitation and detection aberrations with a deep neural network approach

and independent phase modulation of both pathways. While we used either a reflecting

surface or a guide star as reflectors, sample scattering characteristics could for example be

included by recording training data from biological samples.

For two-photon imaging experiments we introduced a coupling between excitation and

detection corrections with a variance of ±30 % between excitation and detection Zernike

coefficients to constrain the space of possible aberrations and to limit the required amount

of training data. Using larger datasets will allow relaxing this constraint and to address

larger differences in excitation and detection aberrations as observed in more strongly

scattering samples [134]. Additionally, we obtained best corrections by averaging over

three to five different excitation focal planes and larger data sets will likely improve single

shot predictions suitable for the fast frame rates required for dynamic biological samples.

Aberration corrections could additionally be improved by including higher order

Zernike modes. In the current implementation, Zernike polynomials of up to order 28 were

used, similar to previous approaches using wavefront sensors [71]. Up to 120 orders have

for example been measured in a transmission configuration using a combination of deep

neural networks and wavefront sensors [93], suggesting that higher order modes could

also be detected in reflection mode imaging. In addition to larger datasets, also different

network architectures that would benefit from such larger datasets could be used, such as

ResNet [145] or Inception [92].

Alternatively to Zernike polynomials (deep) neural networks can also be trained with

different basis sets (see for example [146]) which could potentially better match actual

sample scattering characteristics. As an alternative to generating training data with an
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Figure 2.6: Top row: Examples of pairs of network predictions and targets for all three networks used for
excitation pathway. Samples are drawn as indicated by colored lines at respective positions in the pertaining
error distributions. Center row: Same as top row for detection pathway phase patterns. Bottom: Histograms
of mean absolute error (MEA) between predicted and target phase masks for the three different networks,
compared with errors obtained for random pairings.
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SLM, also entirely computationally generated datasets could be used (as for example in

[90, 92]). This would allow simulating datasets with scattered light distributions matched

to those observed in samples of interest. Overall, the approach outlined here offers a

versatile framework for excitation and detection aberration corrections that is independent

of sample labeling and can be integrated with laser scanning microscopy.
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Figure 2.7: MO1 = Nikon 16 x, N.A. 0.8, water immersion objective (CFI75 LWD 16X W), MO2 = Olympus
40x, N.A. 0.8, LUMPLFLN. All lenses were from Thorlabs, achromatic doublets, antireflection coated for
650 to 1050 nm. Focal lengths were (in mm) L1 = 300, L2 = 30, L3 = 50, L4 = 125, L5 = 300, L6 = 100,
L7 = 400, L8 = 75, L9 = 250, L10 = 150, L11 = 150, L12 = 40, L13 = 50, L14 = 75, L15 = 75, L16 = 300.
PBS = polarizing beam splitter, BS = beam splitter, (both antireflection coated for 650 nm to 1050 nm),
λ/2 = polymer zero order half-wave plate (WPH05ME-980), PM = reflecting prism mirror, P = pinhole
with 300 µm diameter, CMOS = CMOS cameras (Basler, acA640-750um), SLM = spatial light modulator
(Meadowlark, HSP1920-1064-HSP8), M = mirror, DC = dichroic mirror, SM = resonant scanning mirror,
PMT = photomultiplier tube for fluorescence detection (two-photon imaging). The transmission pathway
(light-gray box) was only used for observing the resulting corrections for a stationary excitation beam and
was not used to compute corrections.
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CHAPTER 3

Differentiable model-based adaptive optics

with transmitted and reflected light

This chapter was published as a peer-reviewed paper in the Optics Express journal by the

Optical Society of America in 2020 [126].

The authors are Ivan Vishniakou and Johannes D. Seelig.

https://doi.org/10.1364/OE.403487

3.1 Introduction
Machine learning offers novel approaches to correct for aberrations encountered when

imaging through scattering materials, [128, 129, 130, 136] from astronomy [87, 90, 138,

92] to microscopy with transmitted (for example [141, 93, 147]) and reflected light [125].

To find aberration corrections in these situations, machine learning typically relies on large

synthetic datasets. Large datasets are required, first, because the many parameters of deep

neural networks need to be adjusted to work under a wide range of conditions and all these

conditions need to be covered in the training data. Secondly, machine learning models are

typically agnostic about the underlying image generating process. Therefore, even a priori

known information, for example the transformations inside the optical system, needs to be

learned from data.

In practice, training datasets are often based on combinations of Zernike polynomials

[87, 90, 138, 92, 141, 93, 147, 125] which might however not accurately capture all aspects

of experimentally encountered aberrations. Additionally, for more strongly scattering

samples, which require increasingly higher orders of Zernike modes, covering all potential
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scattering situations by sampling a sufficient number of different mode combinations

eventually results in very large datasets. This is in particular the case if aberrations in

multiple layers are combined, for example when using reflected light in an epidetection

configuration [125].

While finding inverse models through such data driven strategies is well suited for

situations where the underlying physical model is undetermined, the image formation

process in an optical system is typically at least partially known. This is the basis of model-

based adaptive optics, where optical systems modeling is combined with optimization

to find an unknown phase aberration [148, 149, 150, 151]. Similar situations where

models based on a well known underlying physical process are learned from data are

also encountered in other imaging modalities [152], and more broadly many areas of

engineering and physics (for example [99, 153, 154, 155, 123, 121, 122, 120]). To take

advantage of such prior information, methods have been developed that combine physical

process models with machine learning optimization.

For such optimization, first a model is described as a differentiable function mapping

input to output. Since the function is differentiable, one can take advantage of automatic

differentiation, which is more accurate and computationally efficient than finite differences

[156, 157, 158], and is one of the cornerstones of machine learning frameworks such as

Tensorflow. Automatic differentiation is used in these frameworks to compute gradients

for optimization of a loss function with respect to parameters of interest. The loss function

compares model output to a target output and the discrepancy is minimized by adjusting

model parameters ([99, 153, 154, 155, 123, 121, 122, 120]).

Here, we employ this model optimization strategy for adaptive optics: we describe

light propagation through the optical system, including unknown aberrations represented

as parameters, with a differentiable model (Fig. 3.1). For matching the input-output

relationship of the computational model to the experimental setup we record a number of

output images resulting from corresponding input phase modulations and optimize model

parameters using Tensorflow. We show that this allows extracting an accurate description

of the introduced aberrating layer(s) as verified by focusing in transmission through a single

layer, as well as in a reflection, through two layers. In the latter epidetection configuration

only reflected light is used for optimization and transmission focusing.
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3. Differentiable model-based adaptive optics with transmitted and reflected light

Figure 3.1: Schematic of experimental setup. Light reflected off a spatial light modulator (SLM) passes
through an aberration (A) and is focused onto a camera (transmission camera, shown with illustration of
imaged light distribution). For experiments in an epidetection configuration, light reflected off the mirror M
at the sample plane is additionally recorded with a second camera (reflection camera). BS = beam splitter, L
= lens (see main text and Methods for details).

3.2 Results
The experimental setup is shown schematically in Fig. 3.1. An expanded and collimated

laser beam is reflected off a spatial light modulator (SLM) with a beam splitter cube (BS1)

and a part of the beam is imaged onto a camera (transmission camera) over a beam splitter

(BS3). For experiments with reflected light, the remaining part of the beam is additionally

sent to a mirror at the sample plane (same focal plane as the transmission camera) which

serves as a proxy for a reflecting sample. Light reflected by the mirror is imaged onto a

second camera (reflection camera) with a beam splitter (BS2). Aberrations (a layer of nail

polish on a microscope slide, see Methods) are introduced between beam splitters BS2 and

BS3. The beam undergoes aberrations once to the transmission camera, and twice to the

reflection camera.

A single transmission pass through the setup is described by the function (see Methods

for details)

S(φSLM,φaberration) =
∣∣Pf1(exp [iφaberration]exp [iφlens]Pf1(U0 exp [iφSLM]))

∣∣2 , (3.1)

where Pd is a propagation operator over the distance d, U0 is the complex amplitude of the
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unmodulated beam at the SLM, φlens is the phase representation of the lens L1, and f1 is its

focal length; φSLM is the (known) SLM phase modulation, and φaberration is the (unknown)

introduced aberration.

For computational efficiency, the aberration is simulated at the same plane as lens L1

(see Methods). Finding the unknown aberration which maximizes the similarity, measured

with Pearson’s correlation coefficient r, of the simulated camera images S(φSLM,φaberration)

and experimentally recorded images I was solved in Tensorflow using automatic differenti-

ation and gradient-based optimization (see Methods):

φaberration = argmax
φaberration

(r [S(φSLM,φaberration), I]). (3.2)

To further refine the focus after a first optimization step, a second step was performed

with a new set of modulations and corresponding images. In this second step, the correction

obtained in the first optimization step was added to all modulations displayed, φSLM +

φcorrection1 . The final correction was the sum of the first and second step correction

φcorrection1 +φcorrection2 . We used 180 modulations for transmission and 540 for reflection

experiments in each of the two iteration steps.

As seen for two representative examples in Fig. 3.2 a, b and d, e, respectively, opti-

mization (which results in the corresponding phase profile in Fig. 3.2 c, f) leads to closely

matching (correlation coefficient r is indicated in Fig. 3.2 b, e) measured and predicted

light distributions at the sample (transmission camera) after applying the correction at the

SLM. The similarity is quantified with the loss function 1− r in Fig. 3.2 o. To verify the

achieved correction, the optimized aberration found at the plane of lens L1 was propagated

back to the SLM (see Methods) and the corresponding correction (Fig. 3.3 c and f) was dis-

played. This led to a focus at the sample or camera plane as shown with two representative

examples in Fig. 3.3 b, e (Fig. 3.3 a, d shows the focus before correction) together with an

increase in enhancement by a factor of 10 and 3.4, respectively (see Methods for definition

of enhancement and details). (Note the difference in color scale between different images,

normalized to maximum (max) values indicated in the subfigures.)

In an epidetection configuration, as typical for imaging in biological samples, only

reflected light can be used for finding a correction. Reflected light however accumulates

a first aberration encountered in the excitation pass and a (generally different) second

aberration in the reflection pass [136, 125]. These need to be disentangled for example
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Figure 3.2: Model matching and optimization: a-f Transmission-based. a, d Two examples of measured,
aberrated transmission light distributions and b, e matching simulated light distributions after the first
optimization step. c, f Corresponding phase profile (obtained at lens plane, after first optimization step). g-n
Reflection-based. g, k Two examples of measured, aberrated, reflection light distributions and h, l matching
simulated light distribution after first optimization step. i, m Corresponding transmission and j, n reflection
phase results after first optimization step at the planes of lenses L1 and L2, respectively. o Transmission,
orange: loss function for training of first example (a-c), and validation (dotted). Vertical line separates first
and second optimization step, see Methods. Transmission, teal: same as orange for second example (d-f).
Reflection, green: same for reflection experiment (g-j). Reflection, violet: same for second example in
reflection experiment (k-n). r in b, e, h, l is Pearson’s correlation coefficient (with corresponding image in in
a, d, g, k), field of view is 1766 µm by 1766 µm.
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to recover a transmission pass correction required for generating a focus inside a sample.

For focusing in transmission using only reflected light therefore the function S (equation

3.1) is extended (see Methods) to include the reflection pass from the mirror at the sample

plane through the aberration to the second camera (reflection camera), now including an

aberration in the transmission as well as in the reflection pass. This model is fitted to match

observed reflected light distributions by optimizing at the same time two independent

aberrations. Optimization is performed as before (see Methods).

Two representative examples of predicted and measured light distributions at the sample

plane (transmission camera) are shown in Fig. 3.2 g, h and k, l, respectively, and the loss

function quantifying the similarity is shown in Fig. 3.2 o (correlation coefficient r between

predicted and measured distributions is indicated in Fig. 3.2 h, l). The corresponding

transmission and reflection phase aberrations at the plane of lens L1 and L2 are shown in

Fig. 3.2 i, j and m, n, respectively. To verify the correction, we generated a focus at the

sample plane by displaying the corresponding transmission correction on the SLM (see

Methods). Fig. 3.3 shows two representative examples (g-i and j-l) of aberrated focus,

corrected focus, and corresponding correction (resulting in an increase in enhancement by a

factor of 10.4 and 8.7, respectively, see Methods). In reflection-based transmission control,

the obtained focus was not necessarily centered in the field of view (as for example seen in

Fig. 3.3 j, k), due to tilt introduced by the sample that was not corrected. Importantly, in

reflection-based transmission control experiments, focusing in transmission is achieved

only using reflected light, compatible with an epidetection configuration.

For reflection-based transmission control, aberrations in two different focal planes are

independently computed at the same time. This is similar to multiconjugate adaptive optics,

where typically however an additional SLM is used to correct for a second focal plane

[159, 160, 161]. Additionally, while we generated single focal spots, arbitrary other focal

distributions could be generated as well (for example for applications in optogenetics).

3.3 Methods

3.3.1 Experimental setup and data acquisition

The laser was from Toptica (iBeam smart, 640 nm), the spatial light modulator from

Meadowlark (SLM, ODP512-1064-P8), cameras were from Basler (acA2040-55um). All

optical parts were from Thorlabs: BS1 in Fig. 3.1 was BS016, BS2 and BS3 were EBS2.
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Figure 3.3: a-f Focusing in transmission. a, d Two examples of aberrations recorded in transmission. b,
e Focus after correction with blow-up of focal spot (white frame and inset). c, f Wavefront correction at
SLM after two-step optimization. g-l Focusing in transmission using reflected light. g, j Two examples of
aberrations recorded in transmission. h, k Transmission focus after correction only using reflected light, with
blow-up of focal spot (white frame and inset). i, l Transmission wavefront correction at SLM after two-step
optimization recovered from only reflected light measurements. In each subfigure, max indicates maximum
of colorbar, η is enhancement (see Methods), field of view is 1766 µm by 1766 µm.

53



3.3. Methods

Lenses were visible achromats, L1 with focal length 300 mm (AC254-150-A) and L2

with 150 mm (AC254-150-A). Data were collected by placing an aberrating sample in

the optical path between BS2 and BS3 (see Fig. 3.1), displaying random SLM phase

modulations, and recording the resulting 512×512 images with the transmission camera,

and additionally with the reflection camera for reflection experiments. Random SLM

phase modulations were generated by summing the first 78 Zernike modes with random

coefficients drawn from a normal distribution with standard deviation π and displayed at a

resolution of 512×512 pixels on the SLM.

The light intensity in transmission and reflection can vary by several orders of magni-

tude, exceeding the dynamic range of the cameras. Therefore, in order to capture the full

range of intensities, multiple frames with different exposure times were recorded (each

frame with a 12-bit per pixel resolution). In transmission, each frame was recorded with

exposures of 60, 120, and 250 ms, respectively, and the resulting image was the sum of

the recorded frames weighted by the inverse of the exposure time. Saturated pixels as

well as pixels below the noise threshold were discarded. For the reflection camera, images

were taken with exposures of 60, 120, 250, 500, and 1000 ms, respectively. Additionally,

transmission light intensity was reduced with a neutral density filter wheel (NDM2/M,

Thorlabs).

3.3.2 Computational model

Light travelling through the setup is modeled as a complex amplitude U(x,y,z), ini-

tialized with U0 =U(x,y,0), and propagating through a sequence of planar phase objects

and intermittent free space along the optical axis (z-axis; x, y, z are spatial coordinates). A

wavefront U(x,y,d) interacting with a phase object φ(x,y,d) at plane d is described as a

multiplication

U(x,y,d)exp [iφ(x,y,d)] . (3.3)

Free space propagation of the wavefront over a distance d is calculated using the angular

spectrum method with the following operator [5]:

U(x,y,z+d) = Pd(U(x,y,z)) =
∫∫

A( fX , fY ;z)circ
(√

(λ fX)2 +(λ fY )2
)

×H exp [i2π( fX x+ fY y)] d fX d fY .
(3.4)
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Here, A( fX , fY ;z) is the Fourier transform of U(x,y,z), fX , fY are spatial frequencies,

the circ function is 1 inside the circle with the radius in the argument and 0 outside [5],

and H( fX , fY ) = exp
[
i2π

d
λ

√
1− (λ fX)2 − (λ fY )2

]
is the optical transfer function. The

intensity measured by the camera is given by

I(x,y,z) = |U(x,y,z)|2 . (3.5)

3.3.3 Model optimization

We used a Python library for diffractive optics [144] to calculate the known factors of

(3.1). By providing the focal lengths and setup dimensions, discretized versions of the

optical transfer functions for the propagation operators and the phase representation of the

lenses were determined. The resulting function which relates displayed, known SLM phase

modulations and unknown sample aberrations to camera images, was then transferred

to Tensorflow. The position of the scatterer, as seen in expression (3.1), was simulated

at the plane of lens L1. This saves computations and memory, since each intermediate

plane requires additional wavefront propagation calculations. Similarly, for computational

efficiency, a single lens L2 with focal length f2 =
f1
2 was used to focus reflected light onto

the reflection camera. While the parameters of the optical model for transmission and

reflection were adjusted manually to match the setup, they can equally be tuned using the

optimization approach described below, for example to obtain a system correction.

The model of light propagation in the setup, equation (3.1), was incorporated in the

loss function according to equation (3.2):

loss = 1− r [S(φSLM,φaberration), I] , (3.6)

where φSLM and φaberration, are the phase modulations at the SLM and due to the introduced

aberration, respectively. All variables are 512×512 real-valued tensors, and φaberration is

the optimization variable.

Similar to the training of neural networks, we split the data into training and validation

sets and used batches. We used Adam optimizer with learning rate 0.1 and batch size 30.

Optimization with the loss function resulted in matching simulated and experimentally

recorded images and yielded the phase profile of the aberration in the setup. The quality of

the solution was quantified with the correlation between modelled and recorded images
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in the validation part of the dataset and was used as the criterion for stopping the opti-

mization. Convergence of the optimization process depended on the magnitude and spatial

frequencies of the aberration and the number of samples. Typically a solution with r > 0.6

was sufficient for focusing.

For experiments with reflected light, the simulation of the setup was extended to include

the reflected light pass,

S(φSLM,φtrans,φrefl) = | Pf1(exp [iφlens2]exp [iφref]

×P2· f1(exp [iφtrans]exp [iφlens]Pf1(U0 exp [iφSLM]))) |2 ,
(3.7)

and the loss function (3.6) is optimized with variables φtrans and φref.

3.3.4 Evaluation

After φaberration is found through optimization at the lens plane, the corresponding

correction at the SLM is found by propagating the conjugate phase of the aberration

backwards to the SLM plane φcorrection = arg(P− f1(exp [−iφaberration])). Additionally, we

smooth the found correction with a low-pass spatial frequency filter: discrete Fourier trans-

form is applied to exp [iφcorrection] and frequencies exceeding 0.1 of the pattern resolution

are discarded. When displayed on the SLM, φcorrection, this results in a compensation of

the aberration.

Aberrations were introduced with a thin layer of transparent nail polish distributed on a

microscope slide (inserted between BS2 and BS3). Two different aberrating samples were

used for transmission and reflection experiments. Generally, the strength of aberrations

varies depending on sample positioning. Optimization parameters (such as number of

phase modulations or learning rate) were only adjusted once for transmission experiments,

and once for reflection experiments. As a simple measure for quantifying the shape of

the uncorrected light distributions, we use its maximum extension as measured by the

length of the first principle component of the pixels above a 30 % intensity threshold,

σ . To quantify the change in the distribution before and after correction we compared

the uncorrected and corrected distribution, σrel = σu/σc. To additionally quantify the

quality of the aberration correction, we also used an enhancement metric defined as ratio

of maximum intensity to mean intensity in the frame, η = max(I)/mean(I), comparing it

before and after correction ηrel = ηc/ηu. The distribution of these values (ηrel,σrel) for a

series of 7 transmission experiments was: (10.0, 25.3), (1.7, 6.5), (3.4, 12.1), (2.6, 10.4),
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(0.8, 1.2), (16.2, 25.4), (3.8, 9.8), ⟨ηrel⟩= 5.5±5.2, ⟨σrel⟩= 13.0±8.5; and in a series of

7 reflection-based transmission control experiments was: (10.5, 17.6), (10.4, 32.6), (11.6,

11.1), (7.2, 13.0), (8.7, 4.3), (4.4, 12.3), (1.9, 2.6), ⟨ηrel⟩= 7.8±3.3, ⟨σrel⟩= 13.4±9.2.

3.4 Discussion
Differentiable model-based approaches for image reconstruction have been introduced

in several domains of imaging [152], for example in ptychography [123]. Instead of

directly optimizing model parameters, an additional deep neural network (a deep image

prior [106, 162]) has also been introduced, for example for phase imaging [121, 122]

or ptychography [120].Even without such additional regularization, the optimization

converged reliably to smooth phase patterns (Fig. 3.2 c, f, i, m, j, n and Fig. 3.3 c, f, i,

l), but for example a DIP could also be combined with the introduced method to further

reduce the number of samples used for optimization.

The number of required samples depends on the magnitude and spatial frequencies of

the aberrations, requiring more samples with stronger aberrations. This can be compared

to the training of deep neural networks, where the number of required samples for model

training similarly increases with increasing aberrations. Compared to deep neural networks,

including a physical model of the imaging process allows finding aberration corrections

with a small number of samples (albeit only for a single field of view at a time). Different

from neural networks which are trained on a predetermined distribution of aberrations (for

example based on Zernike polynomials), optimization is achieved independently in each

pixel without prior assumptions about aberrations.

Similar to other techniques that require multiple measurements for finding a correction

[136, 148], a limitation of the presented approach for dynamic samples is the time it takes

to find a correction. The optimization time, several minutes on a single GPU, could be

reduced by using multiple GPUs. Generally, the gap between optimization and control

(corresponding to rapidly changing corrections in response to aberrations) is expected to

narrow with increasing computational power [163].

Thanks to advanced computational frameworks [144, 85], the introduced model-based

optimization can easily be combined with any optical setup equipped with a spatial light

modulator and a camera without requiring additional hardware such as wavefront sensors

or interferometers. For example, the described technique could be combined with imaging

through scattering materials in a microscope with a high numerical aperture objective in an
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epidetection configuration [125]. In summary, we expect that the developed method will

be useful in many situations that can benefit from correcting aberrations through single

and multiple layers.
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CHAPTER 4

Differentiable model-based adaptive optics

for two-photon microscopy

This chapter was published as a peer-reviewed paper in the Optics Express journal by the

Optical Society of America in 2021 [127].

The authors are Ivan Vishniakou and Johannes D. Seelig.

https://doi.org/10.1364/OE.424344

4.1 Introduction
Using adaptive optics for imaging in aberrating samples requires finding appropriate

corrections, which can be determined using wavefront sensors [128, 129, 130, 136]. Al-

ternatively, a variety of so-called sensorless approaches, that don’t require a wavefront

sensor, have been developed. One class of algorithms takes advantage of optimization. For

example, iteratively modulating and updating an excitation wavefront depending on the

resulting fluorescence intensity can be used for finding aberration corrections [164, 130].

Other approaches for adaptive optics additionally take advantage of prior information

about the optical system by including system information in a computational model

[148, 165, 166, 149, 124, 150, 151]. In this case, optimization can be used for finding

aberrations which enter the model as undetermined parameters. Different from the above

mentioned optimization approaches, all data is already provided at the beginning of the

optimization process and not recorded iteratively [150].

More recently, the development of machine learning frameworks such as Tensorflow

has enabled optimizing computationally demanding models in many areas of physics and
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4.2. Differentiable model-based approach for adaptive optics

engineering (for example [99, 167, 111, 168, 123, 121, 122, 120]) and also in optical

imaging [123, 126, 152].

This approach can be applied for adaptive optics [126]. Using a differentiable model of

the optical system, focusing in transmission through a single aberrating layer as well as in

a reflection, epidetection configuration through two aberrating layers was achieved [126].

Here, we extend this differentiable model-based adaptive optics method to scanning two-

photon microscopy with a high numerical aperture objective as used for in vivo imaging in

brain tissue.

For this, a fluorescent guide star in an aberrated sample is probed with a small number

of excitation modulations. The resulting dataset of pairs of excitation modulations and

guide star images is sufficient for constraining model optimization in Tensorflow. This

approach allows including detailed setup information in the optimization process and finds

corrections independent of prior assumptions about the statistics of aberrations. We show

experimentally that aberrations in a sample can be determined and corrected.

4.2 Differentiable model-based approach for adaptive optics
Modern machine learning frameworks efficiently implement model training by gradient

based minimization of a loss function describing the mismatch between the output of

a model and a target. They provide gradient-based optimizers and an automatic differ-

entiation [156] framework, which leaves for the user only the task of implementing the

desired model and loss function using a composition of differentiable functions. Here, we

implement a model that simulates two-photon image formation in a scanning microscope

depending on a set of free parameters which correspond to the sample aberration and

are found through optimization (Fig. 4.1). An advantage of this approach is also the

efficient implementation of optimization and model evaluation on a GPU, for example in

Tensorflow, which was used here.

This approach is schematically illustrated in Fig. 4.1. First, a computational model

is fitted to the two-photon microscope. This model accurately describes propagation of

the laser beam through the microscope, including the spatial light modulator and the high

numerical aperture objective, as well as image formation with the detected fluorescence.

Then, aberrations are found by optimizing free model parameters corresponding to the

undetermined sample aberrations (see Fig. 4.1 for details).
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4.3 Setup and image preprocessing
The setup is schematically shown in Fig. 4.1. A custom built two-photon scanning

microscope was used with components similar to the one described in [125]. A laser

beam (920 nm, Chameleon Discovery, Coherent) was expanded and reflected off a spatial

light modulator (Meadowlark, HSP1920-1064-HSP8). The spatial light modulator was

imaged onto the resonant scanning mirror with a pair of lenses. The scanning mirrors

were imaged into the back focal plane of the objective and fluorescence was detected

with a dichroic mirror and a lens focusing detected light onto a photomultiplier tube

(Hamamatsu, H7422PA-40) using photon counting. The same excitation and fluorescence

detection arrangement was used as described in [125], however, with a different objective

(Nikon CFI Apo 60X W NIR, N.A. 1.0, 2.8 mm W.D.) and correspondingly adjusted tube

and scan lenses (all lenses used in the setup were achromatic doublets from Thorlabs).

The microscope was controlled with Scanimage [44] which was integrated with custom

software written in Python for SLM control and for synchronizing probing modulations

with image acquisition using Scanimage API callbacks.

Fluorescence images were recorded using photon counting at 512×512 pixels resolu-

tion at 30 Hz. This resulted in sparse images with low counts of photons per pixel, with

many discontinuities (gaps) in intensities hindering the correct estimation of the similarity

with model output. Therefore all fluorescence images were preprocessed with a low-pass

filter: a discrete Fourier transform was applied to the images and frequencies exceeding

0.15 of the pattern resolution were discarded before inverse transformation. Examples

of images before and after preprocessing are shown in Fig. 4.2 (columns two and three,

respectively).

4.4 Computational modeling and optimization

4.4.1 Computational model of the optical setup

To implement differentiable model-based adaptive optics for two-photon microscopy,

first a differentiable model of the setup needs to be established. The main elements of

the setup model are illustrated in Fig. 4.1, right side. The model consists of, first, a

phase modulation describing the spatial light modulator (SLM), second, a phase function

describing the focusing objective, and, third, a (unknown) sample phase aberration. The

optimization process is schematically illustrated in Fig. 4.1 (see figure legend for details).

61



4.4. Computational modeling and optimization

The computational model is based on Fourier optics. Light propagation along the

optical axis (z-axis; x, y, z are spatial coordinates) is represented as a complex amplitude

U(x,y,z). The wavefront propagates in free space and through a sequence of planar phase

objects along the optical axis. The interaction of the wavefront U(x,y,d) with a phase

object φ(x,y,d) at plane d is described as a multiplication:

U(x,y,d) · exp [iφ(x,y,d)] . (4.1)

Free space propagation of the wavefront over a distance d is calculated using the angular

spectrum method with the following operator [5]:

U(x,y,z+d) = Pd(U(x,y,z)) =
∫∫

A( fx, fy;z)circ
(√

(λ fX)2 +(λ fY )2
)

×H exp [i2π( fX x+ fY y)] d fX d fY .
(4.2)

Here, A( fX , fY ;z) is the Fourier transform of U(x,y,z), fX and fY are spatial frequencies,

the circ function is 1 inside the circle with the radius in the argument and 0 outside [5],

and H( fX , fY ) = exp
[
i2π

d
λ

√
1− (λ fX)2 − (λ fY )2

]
is the optical transfer function. Light

intensity as measured at the sensor is given by

I(x,y,z) = |U(x,y,z)|2 . (4.3)

For two-photon imaging [41] the induced fluorescence intensity is proportional to the

square of the excitation intensity:

If ∝ I2 = |U |4 . (4.4)

Using these equations, the image of a fluorescent bead in the microscope (or the PSF) is

simulated with the following function, taking into account that the propagating wavefront

is modulated by the SLM and phase aberration of the sample:

If = S(φSLM,φaberration) =
∣∣PfMO(U0 · exp [i(φSLM +φMO +φaberration)])

∣∣4 , (4.5)

where φSLM is the SLM phase modulation, φaberration is the phase surface of the aberration,
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4. Differentiable model-based adaptive optics for two-photon microscopy

U0 is the beam cross-section (complex) amplitude, and fMO and φMO are the focal length

and the corresponding phase modulation of the microscope objective, respectively. The

SLM modulation is modelled directly at the same z-plane as the objective, which allows

omitting nonessential computations, since it is imaged onto the back focal plane of the

microscope objective. The aberration is also modelled at the same plane, saving computa-

tions and simplifying the correction: since the phase function of the aberration is found

at the SLM plane, its inverse can be directly applied to the SLM without any additional

computations of propagation between different planes.

4.4.2 Fitting the computational model to the experimental setup

The goal of the optimization process is matching the computational model to experi-

mental observations with correlations as a similarity measure. The model images therefore

have to match in each pixel with the images observed in the microscope in the absence

of sample aberrations. When responses to probing SLM modulations are measured under

these aberration-free conditions, model optimization is expected to yield a flat aberration.

Optimization without sample aberrations therefore can be used for validating the corre-

spondence between the model and the microscope. The model equation (4.5) contains fixed

parameters U0 (Gaussian amplitude profile with flat phase, σ = 2.85 mm), λ = 920 nm,

fMO = 1700 mm, and corresponding φMO which were matched to the experimental setup

by taking into account pupil sizes d = 4.0 mm, field of view size (60× 40µm at zoom

level 10), and the resolution of imaging and simulation (512× 512 pixels). Significant

elongation of fMO allows approximate lateral upscaling of simulated images for matching

the microscope zoom level without resampling of the angular spectrum. Additionally,

minor rotational misalignments of the SLM in the image plane were observed and adjusted

for by corresponding counter-rotations of the recorded fluorescence images, since such

rotations could not be corrected by adjusting the SLM phase. A fixed zoom level and field

of view were used for all experiments and the model was adjusted for these conditions. The

parameters were tuned in the following procedure: first, a sparse aberration-free fluorescent

guide star (1 µm diameter fluorescent beads embedded in 3 % agarose) was imaged under

various modulations (Zernike modes Z1 through Z10 displayed one-by-one with alternating

magnitudes). The parameters were then manually tuned to closely match computed to

actual images. For this, zoom level and SLM orientation were varied while displaying

a set of different SLM phase modulations. This procedure needed only to be done once
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and was therefore performed manually, but a computational optimization would also be

possible. The resulting model was validated by running the model optimization for finding

corrections in the absence of introduced sample aberrations. After successful parameter

optimization, the residual aberrations of the system were close to zero, indicating that

the computational model accurately described the experimental microscope setup. As

shown in Fig. 4.2, after tuning of the model parameters, good correspondence between

experimentally observed and computationally generated patterns was achieved (shown

here after optimization in an aberrating sample, see below).

4.4.3 Model optimization and loss function

Sample aberrations introduce an unknown phase function into the optical setup. To

mirror this situation computationally, a phase surface is added as a set of free parameters to

the model [126]. This unknown phase surface needs to be adjusted through optimization in

such a way that it describes the introduced sample aberration. After successful optimization,

the aberration phase surface is known, as verified by the model again matching the optical

setup (Fig. 4.2), and can therefore be corrected.

We found that optimization with a single image of the fluorescent bead and correspond-

ing single SLM phase modulation did often not result in satisfactory results since multiple

possible phase modulations can generate similar planar PSF images. To constrain the

optimization process, we therefore probed the guide star with a set of different excitation

modulations as in [126] by displaying randomly generated phase patterns on the SLM and

imaging the resulting changes in the aberrated guide star.

In total, 20 such pairs of SLM phase aberrations and corresponding two-photon images

served as the input to the computational model. Images were recorded using photon

counting at a frame rate of 30 Hz. (The SLM has a maximum frame rate of more than

500 Hz, but the control loop implemented here ran only at 2 Hz since SLM and image

acquisition were not closely integrated.) Probing phase modulations were generated by

summing Zernike modes Z1 through Z10 with coefficients drawn form a uniform random

distribution in the range of −1 to 1 and were displayed on the SLM while corresponding

fluorescence images If were recorded.

The unknown aberration phase function was then found in an optimization process
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with the goal of matching measured and simulated images:

argmin
φaberration

N

∑
j=1

loss(S(φSLM j ,φaberration), If j). (4.6)

Here, SLM j and φaberration j are pairs of SLM probing modulations and corresponding

fluorescence images recorded in the two-photon microscope. S is the microscope model as

specified in (4.5). The loss function is defined to reflect the similarity between simulated

and measured fluorescent images:

loss(prediction, target) =−r [prediction, target] · ln(
pixels

∑ |prediction|), (4.7)

where r [prediction, target] is Pearson’s correlation coefficient, and ln(∑pixels |prediction|)
is an additional cost factor for light intensity conservation. Since Pearson’s correlation

coefficient is not sensitive to the magnitude of the prediction, the optimizer likely converges

to a solution which provides high correlation, but discards some of the light by redirecting it

out of the field of view, and therefore usually does not result in good corrections. Therefore,

additionally introducing the sum of the total intensity promotes solutions that do not discard

excitation intensity. The logarithm ensures that the slope of this regularization factor is

always smaller than that of the correlation coefficient, making it a secondary optimization

goal.

The model (4.5) was implemented using Tensorflow 2.4 [85], adapting the angular

spectrum method from [144] and using the optimization algorithm Adam with a learning

rate of 0.01. According to expression (4.5), the phase φaberration is represented as a real-

valued tensor, which is a requirement for optimization variables in Tensorflow. All

modulations and sample responses were packed in a single batch and used all at once

in each of the optimizer’s iterations. 1000 optimization steps were typically sufficient

for reaching a correlation coefficient between model and observations of > 0.9. The

optimization took between 1 and 2 minutes on a workstation with four Nvidia Titan RTX

GPUs used in data parallel mode. The optimization was terminated when the correlation

coefficient between computational model and experimental data plateaued. The resulting

aberration phase function was negated (multiplied by −1) for displaying on the SLM and

in this way results in the correction of the aberration.
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Figure 4.1: Left: Schematic of the two-photon microscope and corresponding model optimization. A
laser beam is scanned with scanning mirrors and focused through an objective. Fluorescence light is
collected with a dichroic mirror onto a photomultiplier tube. A computational model is set up to describe the
microscope in the absence of aberrations. After introducing aberrations, the computational model receives
phase modulations displayed on the SLM as input. The model output is a set of point spread function
(PSF) images that are compared with experimentally recorded PSF images through the loss function. The
optimizer (running in Tensorflow on a GPU) finds a sample aberration (and corresponding correction) by
matching of the model output with experimental PSF images. Right: The computational model is formulated
in expression (4.5). The beam cross-section, represented as a complex amplitude, is multiplied by phase
objects representing SLM probing modulation, objective, and aberration, respectively, and is propagated
to the focal plane of the objective using the angular spectrum method to calculate the resulting PSF. The
two-photon image is the convolution of the squared PSF intensity and the object function, resulting in just
the point spread function squared for a guide star. The beam profile U0 and objective parameters are adjusted
to describe the experimental setup. The SLM modulation is the model input, the PSF is the model output, the
aberration is found through optimization.
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max

Figure 4.2: Correspondence between computationally generated and experimentally measured images
of fluorescent beads. Three representative examples (rows), recorded in an aberrating sample: probing
modulations displayed on SLM (first column), and corresponding PSF images as measured with photon
counting (second column), preprocessed for model fitting (third column) and simulated with the optimized
model. Field of view size is 40×40µm.

4.5 Two-photon imaging through aberrations
To test the approach experimentally, a sample aberration was introduced by covering

the fluorescent beads with a layer of vacuum grease on a microscope cover slide. For

correcting the induced aberrations, images were taken with a single guide star at the center

of a field of view with dimensions of 60×40µm.

Two representative results are shown in Fig. 4.3. Three orthogonal maximum intensity

projections, before and after correction, of a fluorescent bead recorded in a volume with

axial step size of 0.25 µm between planes are displayed. The third and sixth rows show the

improved intensity profiles along representative cross-sections through the fluorescent bead

in lateral and axial directions, respectively. Corrections resulted in an increase in intensity

and an improved focus with a full width at half maximum (FWHM) after correction of

0.9µm for both samples, and an axial FWHM of 14µm and 5.2µm, respectively (measured

with a 1µm diameter bead). The intensity profiles before correction could not be fitted with

Gaussians. The slices at the focal plane (at maximum intensity) were averaged over four

frames (axially spaced by 0.25µm). Axial profiles were averaged over 3×3 pixels around

the center of the focus (maximum intensity) and averaged over the lateral dimensions.
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Figure 4.3: Two representative examples of two-photon volume images of a 1µm diameter fluorescent bead
embedded in agarose before and after correction. Sample 1, top row, left: Maximum intensity projection
of volume image of a fluorescent bead in axial (z) direction (see bottom row for color bar). Projections
along x- and y-axes are shown to the right (first row, left center) and below (second row, left). Second
row, left center: slice at maximum intensity, indicated by white lines in x- and y-projections averaged over
4 frames recorded with 0.25µm axial spacing. Image is zoomed-in as indicated by white box in top left
image, size is 10×10µm. Top row, center right: same as left side after correction, again with corresponding
x- and y- projections. Second row, right: slice at maximum intensity, indicated by white lines in x- and
y-projections averaged over 4 frames recorded with 0.25µm axial spacing after correction. Third row, left:
lateral cross-sections before and after correction as indicated by correspondingly colored arrows in row two,
including Gaussian fit of corrected profile (black dashed line). Third row, center: axial cross sections along
the correspondingly colored arrows in the second row including Gaussian fit of corrected image. Third row,
right: aberration correction. Sample 2: as described for sample 1.
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4.6 Discussion and conclusions
We developed a differentiable model-based approach for adaptive optics for two-photon

scanning microscopy. The method takes advantage of combining a differentiable model of

the known microscope and unknown sample with the optimization techniques implemented

in machine learning frameworks [126]. We show that, with an appropriate cost function

(equation 4.7), a small number of probing modulations (recorded at high frame rates and

with low photon count rates as often observed when imaging in vivo) is sufficient for

finding sample aberrations through model optimization and to correct them.

Different from optimization approaches that directly aim to optimize focus intensity,

the first optimization objective here was matching the focus shape of the model to the one

observed in the microscope. However, we added an additional, secondary term to the cost

function to also optimize image intensity directly.

A limitation of the current implementation for dynamic samples is the required cor-

rection time. Here, we used 20 probing modulations recorded at a frame rate of 30 Hz,

thus requiring a minimum of 0.66 seconds for data acquisition. Model optimization took

between 1 and 2 minutes, which is ultimately limited by the computational speed of the

GPU and could be accelerated with improved or more GPUs.

As seen in Fig. 3.3, the focus after optimization did in particular in axial direction not

reach the diffraction limit (as measured with 1 µm diameter fluorescent beads). While

such axially extended point spread functions are often used for in vivo imaging (see for

example [169] for a recent discussion), the quality of the corrections could be improved

in several ways. A limitation of the current data, in particular for correcting higher order

aberrations, is their limited dynamic range. The dynamic range could for example be

extended by combining multiple fluorescence images recorded with different integration

times [170]. Additional improvements in performance are expected from using a model

approximation that is more accurate for high numerical aperture objectives than the one

used here [171]. Together, such improvements will more accurately reflect the physical

setup and aberrations and therefore improve optimization results. As an alternative to

using multiple modulations recorded in the same focal plane, also axial slices or an entire

volume could be used for optimization.

Compared with other optimization approaches that rely on iterative methods, including

prior information about the experimental setup additionally constrains the optimization
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process [150]. Compared to neural network approaches [87, 90, 138, 92, 172, 141, 93,

147, 125, 173], differentiable model-based approaches have the advantage that they don’t

rely on a predetermined model of sample aberrations.

Overall, the presented approach, similar to other iterative approaches, can be used for

correcting aberrations that are approximately stationary, and is under these conditions

compatible with imaging in biological samples.
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CHAPTER 5

Conclusion

This thesis presents our work on machine learning methods for wavefront sensing for

adaptive optics in laser scanning microscopy. As described in the introduction, this is a

challenging problem due to the imaging geometry which hinders direct wavefront sensing

without introducing or generating guidestars in some form, which however is often invasive

or impractical. The alternative of using backscattered light raises the problem of aberration

identification accumulated in the excitation and detection paths.

From a computational imaging point of view, we have a system that produces images

conditioned by an unknown aberration. The resulting inverse problem that has to be solved

therefore lies in finding this aberration based on the recorded images. Since an analytical

inverse solution does not exist, and since the problem might be ill-posed (considering

for example that intensity imaging discards phase information), wavefront sensing is

challenging.

However, in the absence of an analytical model, deep learning can be applied to

establish a mapping between input and output. For this, a neural network is trained on

datasets of images and corresponding aberration labels and serves as a proxy of the inverse

model. An alternative way to solve the inverse problem is by optimizing the forward

model, which in our case exists, since image formation can be mathematically described

using Fourier optics. We implemented the forward model with a deep learning framework

allowing automatic differentiation to enable its efficient optimization using gradient-based

methods.

In the following, we discuss the results of the projects presented in Chapters 2, 3 and 4,

as well as their limitations, and make an outlook for future work.
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5.1 Limitations and future work

Adaptive optics with reflected light and deep neural networks

We relied on a deep neural network model to recognize aberrations from reflected light

distributions imaged in an epidetection configuration. Reflected light provides a much

stronger signal source than fluorescence for aberration detection, and was used for both

finding excitation corrections with reflective guidestars as well as for separating excitation

and detection aberrations with a planar reflective sample.

While the latter planar reflective sample can not be embedded in biological specimens,

the developed method for dual-pass corrections could be extended to arbitrary scattering

samples in future work. Datasets could be collected for example from tissue phantoms

in the same way as described in this thesis and networks could be trained to recognize

excitation and detection aberrations under these conditions.

Although the problem of finding two combined aberrations, such as excitation and de-

tection aberration, at the same time can be problematic because of possible self-cancellation

of some aberration modes [54], some asymmetry between excitation and detection paths

could be beneficial, and is even introduced in some systems by design [174]. A slight

asymmetry has been measured in our microscope in a calibration step, and it could be

intentionally amplified to improve performance.

Further, one could take advantage of improved methods for wavefront sensing. Re-

flected focus images vary over a wide range of intensities and are therefore problematic to

capture and to use as network input. Intensities can change by several orders of magnitude

across a few pixels within one image, and finer details are potentially lost in quantization

errors. Therefore, for example distinguishing between two weakly aberrated foci can rely

on small intensity variations in only a few pixels. This in turn can be ambiguous and could

contribute to overfitting during model training.

To address this issue, such high intensity features could alternatively be transformed

and distributed across the whole field of view of the camera by optical preconditioning of

the wavefront sensor. In [94] several transformations of the light field before imaging were

tried out. A microlens array could be a good candidate for preconditioning (which was for

example used in combination with deep learning in [93]), or even a random scatterer, with

the purpose of increasing signal variance across more camera pixels. Another advantage

of optical preconditioning is that it allows the phase information of the wavefront to be
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extracted from a single image, eliminating the need of out-of-focus images (as used in our

work described in Chapter 2).

For obtaining corrections we found it useful to diversify the network input by varying

the focal plane over a small axial range of the sample. This resulted in slight variations

of the confocal volume images, and the aberrations could be inferred by averaging the

predictions based on these images. Instead of using mechanical scanning, this input

diversification could also be achieved with SLM modulations, which would allow to probe

the sample with arbitrary excitation modulations. The deep learning model could therefore

be adjusted to accept diversified inputs with a suitable probing strategy.

Another practical problem encountered when using deep learning methods with confo-

cal light images is that the intensity of the images cannot be universally calibrated in the

microscope for different specimens. The training dataset was normalized to the maximum

intensity of each sample, therefore discarding the relative intensity variations between

differently aberrated foci. This situation could be improved by implementing a probing

strategy and normalizing the images within a batch of probes, which could carry more

information about the PSF than a single image.

Differentiable model-based adaptive optics with transmitted and reflected light

We demonstrated a model-based approach to infer the unknown aberrations of an

imaging system through a gradient-based optimization process implemented within a deep

learning framework. The imaging system was mathematically modelled, yielding a function

that simulates image formation, is differentiable, and contains unknown aberrations as

optimization parameters.

A proof-of-concept setup was built based on the geometry of epidetection imaging in a

confocal microscope, reproducing the dual-pass problem of backscattered light detection.

Our method was able to disentangle the excitation and detection path aberrations and to

correct the focus inside the sample based on reflected light only.

While the setup for demonstrating this method recreated the illumination and detection

geometry of a laser scanning reflection microscope it also had some important differences:

first, the lenses used to focus the light in the sample had low numerical aperture (NA),

making it qualitatively different from focusing light with a high NA objective as commonly

used for two-photon or confocal imaging. Additionally, we used a mirror as a sample

behind the aberrating material (as in the deep learning method presented in Chapter 2).
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Lastly, the angular spectrum method used to calculate light propagation relies on the

paraxial beam approximation, meaning that the angle of convergence of the beam is

shallow and the transverse direction of wave propagation is neglected. For applications

with high NA microscope objectives a different model might be needed.

Another challenge was scattered light that did not reach the detector and could therefore

not be accounted for by the model, resulting in only partial corrections. This was observed

with some more strongly aberrating samples and could be remedied by introducing a

non-random sample probing strategy as well as by optimizing the detection path of the

microscope to ensure that most of the light is detected.

Differentiable model-based adaptive optics for two-photon microscopy

We adapted the differentiable model-based aberration inference described above for

a two-photon microscope with fluorescent guidestars. For this, we modelled image for-

mation in a two-photon microscope conditioned by an aberration which was treated as an

optimization variable. The aberrated sample was probed with several phase modulations

and the model was matched to observations with gradient-based optimization by altering

the aberration parameters. This gradient-based optimization made the process efficient and

required only a few samples to converge.

Image formation in the microscope was modelled by calculating propagation of the

aberrated wavefront through free space after modulation with the SLM, objective, and (un-

known) phase aberration, respectively. Fluorescence images of a guidestar were modelled

as the square of the intensity of the resulting PSF, which accounted for the two-photon

process. The angular spectrum method was used for this, and the simulation parameters

(resolution, geometry) were fitted to match the model’s output to images of the unaberrated

microscope with pixel-to-pixel precision.

This however presented a challenge, since modelling a focused beam can become

computationally expensive, especially when a high-NA objective is used. First, the focal

region is discretized with a specified resolution. Then, in every point of that grid all the

complex amplitudes of the source angular spectrum are integrated with their corresponding

amplitude and phase offsets that are accumulated over their respective paths of propagation.

Naı̈ve computation of that integral is inefficient, so we used the angular spectrum method

together with two-dimensional FFT. This however imposes limitations on the input and

output resolution of the model, because of the algorithm’s constraints: FFT calculates the
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transform at the same resolution as the input, making it impossible to sample the focal

region at an arbitrary desired resolution, and in order to increase the sample density, zero

padding of the input has to be used. On the other hand the k-space (angular spectrum)

is typically populated very sparsely, with only a small low spatial frequency band being

used, and additional zero padding would only make the situation worse. To remedy that,

a different algorithm for the angular spectrum integration could be used that allows to

change the resolution of the output, such as non-uniform fast Fourier transform or chirp-z

transform [175]. One has to be careful with selecting the resolutions of the pupil and focal

planes to make sure that aliasing errors do not appear due to undersampling. Additionally,

for high NA objectives a more suitable modelling approach would be the Debye-Wolf

integral using a vectorial electric field model, that is, taking light polarization into account

[176]. Nevertheless, the simpler model used here could be accurately fitted to the setup

and could be used to find corrections.

5.2 Discussion and outlook
In this thesis we introduced two novel approaches for aberration correction suitable

for two-photon fluorescence microscopy. The first method, based on deep-learning, is

fast at predicting corrections. However, as with any neural network, the resulting model

is constrained by the training dataset to a limited range of predicted corrections. The

second method, which relies on optimization, does not have this limitation, but comes at

the cost of requiring additional computations and therefore slower correction speeds. Both

approaches address the same problem from different perspective and both have their own

advantages and disadvantages.

Some improvements could be introduced that would benefit both methods. The deep

learning method could be extended to take advantage of the SLM located in the excitation

path to probe the sample and take several measurements as input. This is reminiscent of

tomographic approaches for reconstructing a sample, or in this case an aberration. For

example in [177] a recurrent neural network is designed to take a sequence of projection

images to reconstruct the volume of a sample.

The differentiable model could be further improved for a high-NA objective calculation

by using the vectorial Debye-Wolf integral. This computation is rather slow even with

GPU acceleration, and therefore a more efficient integration algorithm should be used.

Currently, the computational cost of extending the model to also include a reflected light
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path is prohibitive.

The current implementation of the differentiable models relies on reconstructing the

PSF of the system conditioned on aberrations, which requires imaging of a guidestar.

While fluorescent guidestars are routinely used in biological imaging, a more flexible

approach without guidestars could be envisioned. Image formation with arbitrary objects

could be simulated (using the convolution of the unknown PSF and the unknown object

function), and both, the PSF as well as the object function could be free parameters for

differentiable optimization.

Both, the neural network and the optimization approach, could be combined to com-

plement each other to improve correction results, and a seamless integration is possible

since both rely on the same algorithmic framework. For example, adding a deep prior

could improve optimization performance of the differentiable forward model: a pretrained

neural network could serve as deep prior and provide initial estimates of aberrations. These

estimates could then be refined in the differentiable model. This could reduce the number

of iterations required for optimization and the differentiable model would at the same time

refine and improve the neural network solution, therefore allowing corrections beyond

those included in the training dataset.

A different combination of the (known) forward model and the inverse model acquired

through training could also be implemented. Both models could be combined and the

inverse model could be learned with synthetic data, using the forward model as a generator

of PSF images that are then fed directly into the trainable inverse model. In this way, one

could avoid creating a labelled dataset with the setup, at least for imaging with guidestars

which do not depend on the sample properties. An approach similar to this one was

implemented in a paper that appeared shortly after our deep learning publication [173],

however using a model that was not optimized for a specific setup and included only low

order aberrations. Such a self-supervised learning loop can also be utilized to optimize

probing strategies to detect aberrations, like in [123].

The developed approaches for detecting two aberrations at the same time, either

using deep neural networks or using model optimization, could also be applied for multi-

conjugate adaptive optics. Using these methods for finding corrections at the same time

in multiple layers would potentially allow to compensate for more strongly aberrating

samples.
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Finally, in this thesis, we only considered two-dimensional images, which is a common

approximation in adaptive optics [64, 178]. However, biological samples typically vary

similarly in all three dimensions, and therefore the common assumption that all corrections

occur within the same focal plane, as also used in our model, is a limitation. Therefore,

in the future it will be important to extend the approaches developed here by taking into

account three-dimensional focal distributions and samples.
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[153] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable

monte carlo ray tracing through edge sampling. ACM Transactions on Graphics

(TOG), 37(6):1–11, 2018.

[154] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis Wyffels. A differen-

tiable physics engine for deep learning in robotics. Frontiers in neurorobotics, 13:6,

2019.

[155] Eric Heiden, Ziang Liu, Ragesh K Ramachandran, and Gaurav S Sukhatme. Physics-

based Simulation of Continuous-Wave LIDAR for Localization, Calibration and

Tracking. arXiv preprint arXiv:1912.01652, 2019.

94



References

[156] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jef-

frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal

of machine learning research, 18, 2018.

[157] Charles C Margossian. A review of automatic differentiation and its efficient

implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 9(4):e1305, 2019.

[158] Lu Lu, Xuhui Meng, Zhiping Mao, and George E Karniadakis. DeepXDE: A deep

learning library for solving differential equations. arXiv preprint arXiv:1907.04502,

2019.

[159] François Rigaut and Benoit Neichel. Multiconjugate adaptive optics for astronomy.

Annual Review of Astronomy and Astrophysics, 56:277–314, 2018.

[160] Zvi Kam, Peter Kner, David Agard, and John W Sedat. Modelling the application

of adaptive optics to wide-field microscope live imaging. Journal of microscopy,

226(1):33–42, 2007.

[161] Jörgen Thaung, Per Knutsson, Zoran Popovic, and Mette Owner-Petersen. Dual-

conjugate adaptive optics for wide-field high-resolution retinal imaging. Optics

express, 17(6):4454–4467, 2009.

[162] Reinhard Heckel and Mahdi Soltanolkotabi. Denoising and Regularization via

Exploiting the Structural Bias of Convolutional Generators. arXiv preprint

arXiv:1910.14634, 2019.

[163] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning

for fluid mechanics. Annual Review of Fluid Mechanics, 52:477–508, 2020.

[164] Ivo M Vellekoop. Feedback-based wavefront shaping. Optics express, 23(9):12189–

12206, 2015.

[165] Stuart M Jefferies, Michael Lloyd-Hart, E Keith Hege, and James Georges. Sensing

wave-front amplitude and phase with phase diversity. Applied optics, 41(11):2095–

2102, 2002.

95



References

[166] Bridget M Hanser, Mats GL Gustafsson, DA Agard, and John W Sedat. Phase-

retrieved pupil functions in wide-field fluorescence microscopy. Journal of mi-

croscopy, 216(1):32–48, 2004.

[167] Markus Giftthaler, Michael Neunert, Markus Stäuble, Marco Frigerio, Claudio
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