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Abstract

Developing a coupled-cluster theory based on a multiconfigurational reference wave function
still is one of the most challenging problems in quantum chemistry, both from a theoretical and
implementational perspective. Hence, no clear scientific consensus has been reached yet on the
aspects of such theories. The main reason for this is that many different parameterizations are
possible based on several theoretical choices that can be made, e.g., whether to use a contracted
or uncontracted ansatz, which residual conditions to employ, how to treat the available excitation
classes, whether to use a single or sequential similarity transformations of the Hamiltonian, and
more. In this thesis, we further elucidate some aspects of this broad topic, to pave a path
towards a theoretically rigorous, generally accepted multireference coupled-cluster method. To
this end, we focus especially on an efficient implementation, the residual conditions, perturbative
approximations, and a way to reduce the dimensionality of the involved tensors, i.e., foremost,
density matrices.

To implement such theories, especially the internally contracted approaches, automated tools
are required since the theories contain upwards of hundreds of thousands of terms, posing a
formidable challenge. Consequently, we wrote a highly performant toolchain, ORCA-AGE II,
which can derive and implement even the most complicated variants of multireference coupled-
cluster theory. The toolchain consists of an optimized code generation part that keeps the
code generation time as short as possible, as well as sophisticated algorithms to find optimal
transformations of the tensor contractions so that they can be evaluated close to peak CPU
efficiency.

In the multireference theories, more specifically on the topic of residual conditions, we
propose a cumulant-based expansion that connects the many-body to the projective residual
conditions and clearly demonstrates the more complicated nature of the projective variant. This
expansion justifies the truncations present in the many-body expansions used in multireference
equation-of-motion theories. These findings are then used inmultireference equation-of-motion
perturbation theory, which we developed as a perturbative transform-then-diagonalize method.
From benchmarking the novel method on various organic and inorganic systems, we find it
has an accuracy comparable to that of NEVPT2 theory, while being significantly cheaper and
more stable than its parent method, multireference equation-of-motion coupled-cluster theory.
On a different aspect of internally contracted methods with projective residual conditions, we
developed an automated reduction scheme for high-order density matrices that can be applied
to any method. The scheme works exceptionally well on multireference coupled-cluster theory,
being always faster than the unreduced implementation through a combination of asymptotic
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CPU cost reductions and more efficient usage of the CPU caches through lower-dimensional
tensors. These savings are realized even though the maximum order of the density matrices
can be reduced by at most one since the structure of the equations does not allow for higher
reductions. Finally, we also report highly accurate transition energies computed at the single-
reference level benchmarked on indigo dyes, showcasing the applicability yet to be reached with
the more complicated multireference approaches.
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1 Introduction

In this thesis, we mainly deal with multireference (MR) coupled-cluster (CC) theories, including
different formulations and solution schemes, as well as their implementation through automated
tools. We start, however, with a single-reference equation-of-motion (EOM-)CC study of excita-
tion energies on indigo dyes to demonstrate the excellent results obtainable with single-reference
(SR) methods. Furthermore, some EOM-CC methods border the region of single- and multiref-
erence theories, making the multireference regime accessible even from a single-reference wave
function. Compared to the single-reference CC methods, multireference CC theories allow a
genuinely multiconfigurational wave function as their zeroth-order reference, which allows them
to target the most problematic electronic structures. This flexibility, unfortunately, comes at the
expense of highly complicated working equations, which often necessitates automated code
generation to implement the theory. Hence, we developed the ORCA-AGE II code generation
toolchain, which can generate C++ source code for even the most complicated multireference
theories. In this thesis, though, we focus on internally contracted (ic) ansatzes, MR-EOMCC and
its perturbative variant, MR-EOMPT theory, as well as fully internally contracted (fic-)MRCC
theory. Although bothMR-EOMCC theory and fic-MRCC theory share an internally contracted
ansatz, they differ in their solution criteria, which are either many-body or projective residuals
and are theoretically compared in this thesis. Finally, we propose a scheme to automatically
reduce the scaling of the internally contracted theories with the size of the active space, which
reduces the order of the maximum density by one, thereby eliminating the most expensive step
for large active spaces, i.e., the construction of the highest-order density.
In the following, we introduce the most important results for the aforementioned research

areas and then go on to lay out the theoretical foundations for all theories presented in this thesis.
After that, we report our findings for the similarity-transformed equation-of-motion (STEOM)
calculations on indigo dyes, the theoretical comparison between many-body and projective
residual conditions in MRCC theories, and some details of the ORCA-AGE II toolchain, before
discussing theMR-EOMPTmethod and the automated scheme to reduce the scaling of internally
contracted multireference methods. Lastly, we conclude this thesis and give an outlook for the
future of automated code generation in quantum chemistry.

1.1 Single‑Reference Coupled‑Cluster Methods

Coupled-cluster theory is one of the most popular wave function methods, with several hundred
studies pertaining to it published every year [3]. In short, this is due to the excellent accuracy
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of the results, wide availability of state-of-the-art implementations, and desirable theoretical
properties, such as size-consistency [4–6] and -extensivity [7–9]. Consequently, in this thesis,
we will use an excited-state variant—STEOM-CC theory [10–12]—to benchmark a family of
substituted indigo dyes (Ch. 5). Although CC theory has been reviewed and has appeared in
textbooks many times [13–17], we still give a brief overview of the historical and more recent
developments and refer to the references for further information.

The CC ansatz originates from nuclear physics, where it was conceived by Coester and
Kümmel [18, 19]. A few years later, it was introduced to quantum chemistry by the early
works of Čížek [20], who was joined by Paldus and Shavitt soon thereafter [21]. A historical
perspective on these initial stages was given by both Čížek [22] and Kümmel [23]. The origins
of CC theory can further be traced back to many electron theory (MET) by Sinanoğlu [24–26].
Extensive research ensued, which has been reviewed by Bartlett and Musiał [16]. To highlight
a few publications, we mention the works of Stanton, Gauss, Bartlett et al. [27–30], who were
instrumental in popularizing CC theory, in addition to studies on the search for an optimal
factorization of the working equations [31, 32] as well as several works focused on an optimal
computer implementation [33–36].

In most use cases, CC theory is limited to single and double excitations (SD) as a good com-
promise between accuracy and the already quite unfavorable scaling of O.N 6/ with system size
N . However, to achieve chemical accuracy, triples effects must be included in the treatment. In
this regard, the non-iterative perturbative triples-corrected CCSD(T) [37–39] method performs
so well that it is widely recognized as the “gold standard” in quantum chemistry, achieving
chemical accuracy for bond distances, angles, atomization energies and reaction enthalpies [14,
40, 41]. Even so, the accuracy comes at the price of a higher scaling, O.N 7/, which is further
exacerbated by the fact that large basis sets of at least triple-� quality are required to attain
chemical accuracy. The reason for this lies in the poor sampling of the electron cusps in the
wave function with Gaussian basis sets, with the theoretical limit given by and named after
Kato [42]. For configuration interaction (CI) theory, at least, this simple explanation has been
questioned [43]. Two non-exclusive solutions were explored to solve this problem, i.e., local
correlation methods—of which we focus on the popular pair natural orbital (PNO)-based ones
below—and explicitly correlated approaches.

PNOs as a concept were first formulated by Kutzelnigg [44] as well as Edmiston and Krauss [45,
46]. Further developments involving localization approaches allowed the correlation energy,
which can be written as a sum over electron pair contributions, to be divided into contributions
of strong pairs, which are treated exactly, in addition tomedium and weak pairs, for which either
approximate treatments are used, or which are totally neglected. This leads to a compression of
information with potentially linear scaling. For a complete discussion, we refer to a review by
Werner et al. [47]. Specifically for CC theory, early approaches have emerged [48–51], although
the PNO-based methods only caught on later, catalyzed through the works of Neese and co-
workers [36, 52], who also used resolution of the identity (RI) for the integral transformations
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and stored the PNO integrals on disk. These developments culminated in the domain-based,
local pair natural orbital (DLPNO) family of methods [53–56].

In explicitly correlated methods, we try to improve the convergence of the method with
basis set size by explicit introduction of an inter-electronic r12 dependence, first developed by
Kutzelnigg, Noga, and Klopper for CC methods [57–59]. Additional work using automated
techniques led to the implementation of higher-order methods, for example CCSDTQ-R12
theory by Shiozaki et al. [60]. Automated techniques were also used in the development of the
alternative F12 family of methods [61–65]. However, as can be seen from the use of automated
techniques, these methods can be complicated to implement, and need to be carefully calibrated
for cost-effectiveness [66]. The excellent results, though, justify their existence. A fuller account
of this research area is given by Valeev and co-workers [67]. Recently, methods that combine
both local and explicit correlation have emerged, with the efforts in this direction summarized
by Ma and Werner [68].

Let us now turn our attention from ground-state approaches to methods for excited states,
which are of particular importance in chemistry, e.g., for spectroscopic properties. To this
end, two schools of thought have emerged, equation-of-motion (EOM) CC theory and (lin-
ear) response methods, which, at least for excitation energies, give the same results and have
recently been reviewed [69–71]. We begin with the EOMCC ansatz [72, 73], which was ini-
tially described by Emrich [74], although only the standard implementation of Stanton and
Bartlett [75] made it popular. Other developments in this area are spin-flip (SF) [76], ioniza-
tion potential (IP) [77, 78], double ionization potential (DIP) [79], and electron attachment
(EA) [80, 81] EOMCC, which can even be used to describe states that otherwise would require
a multireference method [82]. Unfortunately, EOMCC still scales as ground-state CC theory,
O.N 6/, which precludes application to many systems of interest. Consequently, lower-scaling
perturbative methods were formulated [83–87].

For this reason, Nooijen and co-workers devised STEOM-CCSD theory [10–12], a fully
non-perturbative method that even includes a higher-order triples term not present in EOM-
CCSD [12, 88]. The defining idea lies in the decoupling of the doubles block in the transformed
Hamiltonian, which allows for a much smaller diagonalization space as the final step. Thus,
the last step effectively becomes a CIS problem, same as in hybrid TD-DFT theory, with a
correspondingly lower scaling of O.N 4/. Regardless, some development effort was still required
since the mandatory ground-state calculation still scales as O.N 6/, and the ionization potential
(IP) [77, 78] and electron attachment (EA) [80] steps both scale as O.N 5/. The scaling of the
ground-state calculation was easily solved by using a linear-scaling ground-state method, e.g.,
the locally correlated DLPNO-CCSD method [54]. This left the IP and EA problems to also be
reformulated for the use with PNOs. Several choices of the PNO expansion are possible for the
excited states in the IP and EA problems, namely state-specific PNOs [89, 90], state-averaged
PNOs [91], or, as used in DLPNO-STEOM, simply the ground-state PNOs [92]. Thus, the
transformation steps were recently cast in the locally correlated form for IP [93, 94] and EA [95,
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96]. To summarize, the ground-state calculation as well as the IP and EA transformation steps are
performed in the DLPNO basis, whereas the cheap final diagonalization remains in the canonical
basis. Consequently, DLPNO-STEOM theory has the same formal scaling as TD-DFT, albeit
with a larger prefactor, and an accordingly broad applicability. Naturally, the DLPNO-STEOM
method was carefully compared to the canonical implementation, with no noteworthy loss in
accuracy [92, 93, 95, 97] and has been used to remarkable success for several studies [98–105].
The other approach for excited states, based on response theory, was first presented by Monk-

horst [106] in 1977, and later worked out in more detail by Dalgaard and Monkhorst [107].
The first implementation, with an improved theoretical formulation, is due to Sekino and
Bartlett [108]. Subsequent developments by Koch et al. [109, 110], for example, eventually led
to the well-known CC3 model [111, 112], which includes iterative triples and is known to be
within the chemical accuracy of full CI calculations [111, 113–116]. We note that response
theory is generally not the method of choice for the computation of excitation energies since it
comes at an extra cost compared to EOMCC theory, but works better for calculations of other
properties [117–119]. Lastly, Sneskov and Christiansen [69] give a fuller picture, and further
elucidate the interconnections of EOMCC and linear response theory.

1.2 Introduction to Multireference Coupled‑Cluster Theory

After discussing the single-reference CC methods in the previous section, we now turn to
the multireference equivalents. Tackling the complexity inherent in multireference correlation
approaches is a daunting challenge, which has so far precluded consensus on what features a
robust, fast and widely applicable multireference correlation approach should have. This is in
stark contrast to the “gold standard,” CCSD(T), in single-reference theory. In this thesis, we
hope to shed some light on one aspect of the complex multireference problem: the different
residual conditions that can be employed in internally contracted multireference coupled-cluster
approaches.
Before that, let us turn to the different possible parameterizations. Internal contraction

in multireference methods was first thoroughly discussed by Meyer [120] and later by Sieg-
bahn [121] within the multireference configuration interaction (MRCI) framework, although an
earlier work by Mukherjee et al. already features the essentials in the context of a multireference
coupled-cluster (MRCC) method [122]. Since then, it has provided a complementary alternative
to the uncontracted parameterizations that have been developed even earlier [123, 124]. In short,
the uncontracted approaches have specific excitation operators for each determinant in the mul-
ticonfigurational expansion, whereas internal contraction only uses a single operator that affects
the multiconfigurational expansion as a whole, acting in the same way on each determinant.
Let us briefly summarize the milestones in the uncontracted approaches. First, the uncon-

tracted MRCI, with several early implementations reported [121, 123–126], is straightforward in
structure and has been used to compute highly accurate benchmark data [127, 128]. Apart from
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being a variational method, MRCI shares the same theoretical drawbacks as single-reference
CI, such as not being size-consistent and -extensive [129, 130], which however may be par-
tially corrected for by approximately size-extensive pair theories such as MR-ACPF [131, 132],
MR-AQCC [133–136], as well as several uncontracted MR-CEPA approaches [131, 137, 138],
among others [135, 139] and Davidson-type corrections [140]. Despite their results being an im-
provement over MRCI theory [141, 142], these methods did not find widespread adoption. It is
worth mentioning that partly contracted formulations also exist that have found wide adoption,
such as the formulation of Werner and Knowles [143], which keeps the (semi-)internal classes
uncontracted and contracts all other excitation classes.

There has also been an active research community working on uncontracted MRCC methods
since its inception by Jeziorski and Monkhorst (JM) [144]. Numerous variants of the JM-type
MRCC approach have been published and investigated (we refer to reviews [139, 145, 146] for
details), although Mukherjee’s state-specific variant (Mk-MRCC) [147–149] has received by far
the most attention, both in terms of extensions, such as analytic gradients [150, 151], linear
response [152, 153] or local correlation approaches [154, 155] and applications. Several other
variants only differ in the sufficiency conditions [156], e.g. Brillouin-Wigner BW-MRCC [157–
159] and single-root sr-MRCC [160]. Moreover, Malrieu and co-workers [161] describe pertur-
bative theories based on this ansatz. A somewhat different approach that cures some theoretical
deficiencies shared by the aforementioned methods is Hanrath’s MRexpT theory [162, 163].
Nevertheless, these approaches have severe theoretical deficiencies in terms of lacking orbital
invariance [164, 165] and proper residual conditions [156, 162], making them unattractive in
our opinion. On the one hand, uncontracted approaches have (comparatively) simple working
equations, which do not differ too greatly from their single-reference counterparts. On the other
hand, a downside shared by all uncontracted theories is that the number of parameters grows
proportionally to the number of determinants in the active space, i.e., exponentially with the
number of active orbitals.

Internally contracted methods, in contrast to uncontracted approaches, can be rigorously
orbital invariant and also have a much-reduced parameter set that does not depend on the
number of determinants in the multiconfigurational expansion. Their main drawback does not
lie so much in theoretical limitations, but rather in the formidable complexity of the working
equations. Only the advent of code generators in quantum chemistry [166] made it feasible to
study these equations thoroughly without approximations or allowing only carefully controlled
ones.

Turning to the different correlation methods developed with internal contraction, the predom-
inant approaches employ perturbation theory in an internally contracted fashion relying on a
complete active space self-consistent field (CASSCF) multiconfigurational wave function. These
include complete active space perturbation theory to second order (CASPT2) [167, 168] and the
internally (also called partially) contracted variant of n-electron valence perturbation theory to
second order (fic-NEVPT2) [169–171]. Since these methods are relatively inexpensive, they have
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been applied in a wide range of studies and were also extended to cover explicit correlation [172]
and analytic gradients [173]. Moreover, local approaches such as DLPNO-NEVPT2 [55] further
extend their scope.
Apart from the early internally contractedMRCI (ic-MRCI) approaches [120, 121, 174], newer

developments [175, 176] have focused on using density matrix renormalization group (DMRG)
reference wave functions with cumulant reconstruction [177, 178], explicit F12 correlation [179],
spin-orbit matrix elements [180], and more efficient implementations [181]. A recent review
by Szalay et al. discusses these methods at length [182]. Internally contracted MRCI is still
not size-consistent and -extensive, though, so Fulde and Stoll [183], Fink and Staemmler [184],
and Black and Köhn [185] established several formulations of internally contracted MR-CEPA
theory.
Several internally contracted MRCC approaches also exist. One of the earliest methods came

about in the form of valence-universal Fock-space (FS-)CC theory [186–189], which is often
classified as a separate field of research [139], yet still features an internally contracted cluster
operator. ic-MRCC theory was conceived at around the same time [190–193], although further
development stalled until much later [194, 195] since deriving and implementing the working
equations requires automated symbolic algebra and computational tools due to its enormous
complexity. The early approaches contained severe approximations, through truncating the
BCH expansion and limiting the excitation classes. Linear dependencies in the projection
manifold were also omitted from the discussion entirely [196]. A further implementation was
reported by Bartlett and co-workers [197] including only up to linear terms. The ansatz was also
studied theoretically on several occasions [148, 198, 199].
Despite these early efforts, the first rigorous implementations were reported by Evangelista and

Gauss [194], as well as Hanauer and Köhn [195]. Evangelista and Gauss showed for the first time
the effects of truncating the BCH expansion and concluded that keeping terms up to quadratic
ones offers the best cost-benefit ratio; a conclusion that we also draw upon in our implementation.
Additionally, they rigorously proved that the method is invariant with respect to orbital rotations
in their respective subspaces. Hanauer and Köhn first succeeded in implementing a polynomial-
time version of ic-MRCC and investigated several cluster operators and schemes for discarding
linearly dependent amplitudes from the equations. Köhn and co-workers went on to include
perturbative triples (T) in the fashion well-known from single-reference CC theory [200] and
add F12 explicit correlation [201], response theory and properties [202, 203], among other
developments [204–207].

Internal contraction is also at the core of several different theories that may differ in
their intended goals from the approaches introduced above. To begin with, Nooijen and co-
workers adopted an internally contracted ansatz in the state-specific (SS-)EOMCCmethod [208,
209], partially internally contracted (pIC)-MRCC [210] theory, and eventually in the MR-
EOMCC [211–213] method. Also, a sequence of similarity transforms with different cluster
operators is employed instead of a single one, which has also been investigated in the ic-MRCC
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method in the groups of Gauss and Köhn [214]. Nevertheless, MR-EOMCC theory is not en-
tirely contracted, for it ends with an uncontracted MRCI-type diagonalization of the similarity-
transformed Hamiltonian over a small excitation manifold to efficiently obtain many excited
states; thus being a transform-then-diagonalize approach pioneered by Nooijen and Bartlett in
the context of the STEOMmethod [10, 12]. The excitation energies obtained from the MREOM-
CCmethod have been found to provide excellent accuracy [212, 215–217], even for core-valence
excitations [218].

The MREOM method also extensively makes use of a general normal ordering with respect
to arbitrary reference wave functions, as conceived by Mukherjee [198] and fully developed by
Kutzelnigg andMukherjee (KM) [219, 220], where cumulants arise from 2n-legged contractions
among the operators. This also allowed Datta and Nooijen to employ a set of many-body
residuals [210], initially proposed by Nooijen and Bartlett [221], which are much simpler in
structure than the usual projective conditions used, e.g., in the works of Gauss or Köhn and
co-workers [194, 195]. In addition to the reduced cost, the many-body residuals further do
not require focus on a particular target state [211]. Spin summation rules have also been
reported [222, 223].
Unitary variants of ic-MRCC have also been proposed. Hoffmann and Simons investigated

these methods early on [224, 225]. Currently, Yanai and Chan’s canonical transformation (CT)
theory [226–230] is presumably the most widely known. Since the BCH expansion does not
truncate in a unitary formulation, the authors proposed a recursive approximation to the full
expansion [226], that later was re-formulated in terms of KM normal order [227]. To further
handle the complexity involved in this scheme, the authors also relied on automated tools
during the implementation process. The commutator approximation was also investigated by
Evangelista and Gauss [231] in the single-reference regime, with proposed corrections for higher
accuracy.

The driven similarity-renormalization group (DSRG) approach of Evangelista and co-workers
also falls into the internally contracted category [232, 233]. It is related to CT theory inasmuch
as it sets the off-diagonal elements of the transformed Hamiltonian to zero, although it is an
integration-based approach. Interestingly, the authors decided to use KM normal order and
many-body residual conditions [232], much in the same way as in MREOM theory.
The block-correlated coupled-cluster approach by Li and co-workers [234–237] also has an

internally contracted cluster operator, although here it is defined with respect to orbital blocks
and the active block is described using a Fock space formulation. The authors also relied on a
software tool to derive the working equations.
In this thesis, we elucidate the connection between different residual conditions in Ch. 3.

Furthermore, the necessity of automated tools when working with MRCC theories is described
along with an exposition of our code generation toolchain, ORCA-AGE II, in Ch. 4. We then
introduce a perturbative approximation to MR-EOMCC theory—MR-EOMPT theory—in Ch. 6
and work extensively with fic-MRCC theory in Ch. 7.
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1.3 Code Generation in Quantum Chemistry

As alluded to above, some developments in the multireference field were only made possible
through automated tools. Their advent was in turn aided by the advancements in modern micro-
processor technology. Over the last decades, feasible ab initio wave function-based calculations
have come from simple, self-consistent field (SCF)-level calculations in small basis sets [238, 239]
to regular application of advanced correlated methods, especially the coupled-cluster model, on
medium to large molecules in triple-� basis sets [240], or even very large molecules when local
approximation techniques are employed [54, 241]. This development has been fostered in great
part by the advances in CPU processing power, commonly described by Moore’s law [242]. It is
our opinion that these advances bring more and more computationally demanding theories into
the realm of “routinely feasible” computations. These theories include internally contracted [120,
121] multireference theories and gradients of higher-order CC models, the implementation of
which is in fact beyond human capacity. Traditionally, a quantum chemical theory would be
reformulated for and implemented in computer code entirely manually, which is an onerous
and error-prone [243] approach. In light of these challenges, tools have been developed that
either simplify or completely automate the implementation process, which we will refer to as
automatic code generation. These tools automate at least one of the following general steps
needed to go from theory on paper to computer code: (i) derivation of the working equations
from an ansatz (equation generation), (ii) manipulation thereof to reduce the computational cost
(factorization), and (iii) the actual code generation. We will adopt this distinction throughout
this thesis and expand on each of the steps below. For a more detailed introduction to the field
of automatic code generation, we also recommend the excellent review of Hirata [166].
Automatic derivation of the working equations from a theoretical ansatz is the most straight-

forward part, since it mostly relies on a fixed set of rules that can be deterministically applied.
Most existing toolchains [60, 64, 177, 178, 181, 199, 209, 228, 229, 244–249] rely on Wick’s
theorem [17, 250] to obtain the contractions, which was already used very early on in the
development of equation generation [251]. Despite this prevalence of Wick’s theorem, the first
automated equation generators used diagrammatic approaches, mainly to avoid the tedious
derivation as well as human errors [252–254]. These early developments, however, lack fur-
ther equation processing and code generation. A major benefit of diagrammatic generators is
that only topologically different contractions are generated, i.e., less work needs to be done in
finding equivalent terms in the factorization step [60]. More recent examples of such equation
generators are Smith [60] and Kállay and Surján’s arbitrary-order CC program [255]. Instead
of diagrams or Wick’s theorem, the plain (anti-)commutation rules between second-quantized
operators can also be straightforwardly applied [14]. This strategy was adopted in the first
version of the ORCA-AGE toolchain [1].

The factorization step is arguably the most crucial in the toolchains, since it ensures the
proper, minimal computational scaling with system size and significantly reduces the compu-
tational cost of the generated code. Unfortunately, finding the global minimum in terms of
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computational cost constitutes an NP-hard problem [256]. Hence, virtually all toolchains rely
on heuristics to reduce the complexity of this problem. Core concepts were developed early on,
e.g., by Janssen and Schaefer [251] or Kállay and Surján [255]. However, the perhaps most com-
plete exposition is given by the tensor contraction engine (TCE) [244, 245], which sequentially
uses detection of duplicates, strength reduction, factorization (i.e., application of the distributive
law), and common subexpression elimination to arrive at the final working equations before
generating code [244]. To aid in detecting duplicate terms and common subexpressions, espe-
cially when taking tensor symmetry into account, the tensor contractions are often canonicalized
by relabeling and permuting the indices and tensors [244, 251, 256, 257]. A detailed analysis
of common subexpression elimination was published by Hartono et al. [258]. Overall, these
heuristics perform quite well [259], although they will generally not reach the same efficiency
as hand-optimized [32] code. More advanced schemes have been discussed [256], but, to the
best of our knowledge, only a single tool that uses a genetic algorithm to sample the complete
factorization space has been presented to date [259].

Finally, the equations that have been derived and factorized in the previous steps must be
evaluated (in the correct order) to arrive at the desired result, which may, for example, be
an energy or a residual. To this end, we can either generate code (generally for a compiled
programming language) or use an interpreter to evaluate the tensor contractions. Generated
code frequently relies on further libraries, most often on the basic linear algebra subroutines
(BLAS) [260] to speed up the evaluation of the tensor contractions. BLAS can be extended to
arbitrary (binary) tensor contractions [261] and even faster algorithms have been developed for
the same sake [262]. As an intermediate between low-level generated code and interpreters,
specialized tensor contraction libraries have emerged that more or less completely take care
of the computational kernel such that code generation can be greatly simplified. Examples of
such libraries include the CTF [263, 264], libtensor [265], LITF [266], TCL [262, 267], and
TiledArray [268, 269]. Interpreters even further remove the connection of the contractions to
the (compiled) code or hardware by fully abstracting away the latter two, requiring just the
contractions and the input quantities. This concept is perhaps best illustrated with the super
instruction assembly language (SIAL) of ACES III, which is a fully-fledged virtual machine and
parallel programmingmodel [270] used to evaluate generated and handwritten contractions [271,
272]. An integrated tensor framework (ITF) has been reported byWerner and co-workers for the
implementation of an internally contracted multireference configuration interaction (ic-MRCI)
method [181, 273]. Other toolchains with interpreters using string-based methods [254, 274]
include the general contraction engine (GeCCo) by Köhn and co-workers, first to appear in
the context of explicitly correlated coupled-cluster methods [64, 249], and Kállay and Surján’s
arbitrary-order CC program [255, 275].

To conclude this section, we now briefly discuss applications of existing code generators.
One of the most complete implementations remains the TCE [244, 245], which encompasses
all the steps outlined above. Generated code exists in NWChem [276, 277], and examples
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include higher-order CC methods (up to EOM-CCSDTQ) [278] or combined CC theory and
MBPT [279]. The Smith generator by Shiozaki and co-workers [60, 246], which can be viewed
as the successor to the TCE [280], is another feature-complete tool that was initially used to
implement CCSD-R12 [280], and later extended for state-specific [246] and multistate [281]
CASPT2 gradients. Around the same time, the SQA, used for the automatic implementation of
CT theory [228, 229] and later for the MR-ADC(2) method [282, 283], and FEMTO codes [177,
178, 247] were introduced. FEMTO has specialized features to work with cumulant reconstruc-
tions that appear in internally contracted DMRG-MRCI theory, and has been extended for
PNOs [247]. Also noteworthy are the GeCCo [64, 249] and APG [199, 209, 248] codes, which
have been used to implement the highly complicated ic-MR methods of ic-MRCC [195] theory
and MR-EOMCC [210–213] theory, respectively. For a long time, the APG and SQA were the
only tools that supported Kutzelnigg-Mukherjee normal order [219], with generalized normal
order (GNO) being taken up more recently by the Wick&d program of Evangelista [284]. Last
but not least, the first version of the ORCA-AGE toolchain was introduced in 2017 [1]. Different
multireference contraction schemes were compared with its support [176], and the STEOM
method based on an unrestricted Hartree-Fock (UHF) reference has been implemented [285]
with the aid of the APG into the ORCA [286–289] program package.

In this thesis, we describe the completely rewritten ORCA-AGE toolchain (Ch. 4), henceforth
referred to as ORCA-AGE II, which has been used extensively for the implementation of fic-
MRCC theory as also reported herein (Chs. 3, 7). Wemust emphasize again that essentially none
of the work presented in this thesis would have been possible without this automated toolchain.
Furthermore, we will compare its features to other existing solutions and describe a few internal
algorithms in App. A.

1.4 Multireference Equation‑of‑Motion Perturbation Theory

Electron correlation effects play a vital role in calculating molecular properties and taking them
into account accurately is often inevitable even to obtain a merely qualitative description of a
system. Apart from dynamical correlation effects that arise from the inadequate treatment of
short-range electron repulsion at the single-reference level, static correlation effects must also
be considered in many important chemical systems. Examples include long-range dissociation
problems and situations with near electronic degeneracy [290]. The standard treatment in these
cases accounts for the static effects by a relatively small multiconfigurational expansion, which
also serves as a starting point for quantitatively accurate multireference methods [291] that
may rely on perturbation, configuration interaction or coupled-cluster theory. In contrast to
current density functional theory approaches, such treatment can be systematically improved
upon, possibly until the point of reaching chemical accuracy [292].
Recently, the MR-EOMCC method [211–213] was proposed for the accurate treatment of

strongly correlated electronic states. While this method holds the promise of efficiently cal-

10



1.4 Multireference Equation-of-Motion Perturbation Theory

culating multiple states at the same time, some transformation steps involved therein require
a significant amount of computational effort to carry through. To address this problem, we
propose a multireference perturbation theory (MRPT) approximation to MR-EOMCC, to be
referred to as MR-EOMPT. At their core, both MR-EOMCC and its MRPT variant are transform-
then-diagonalize approaches, where a transformed Hamiltonian is diagonalized over a compact
manifold to obtain the states of interest. However, where MR-EOMCC uses iteratively deter-
mined amplitudes, the MR-EOMPT method foregoes the iterations and uses estimates from
MRPT to yield comparable results at a lower computational cost.

An early approach that shares a close connection [293] to the EOMCC formalism, namely
the valence-universal [193, 294, 295] Fock-space coupled-cluster (FSCC) method [186–188],
allows the computation of excited as well as ionized or electron-attached states from a single
reference state. At its core, FSCC relies on the theory of effectiveHamiltonians, where a similarity-
transformedHamiltonian is set up in a reducedmodel space to reproduce a few eigenvalues of the
exact Hamiltonian once the former has been diagonalized. The model space must be judiciously
chosen to avoid intruder states, which generally cause serious convergence issues in FSCC
calculations [187], although developments such as variants based on the use of intermediate
Hamiltonians [296–300] or Mukherjee and co-workers’ eigenvalue-independent partitioning
technique [301–303] greatly alleviate these issues. This theory further requires a reference for
the cluster operators, which is a fully occupied core determinant [187]. The concepts [189,
304–306] introduced with FSCC theory are integral to all transform-then-diagonalize methods,
of which the single-reference STEOM method has already been mentioned and of which the
MR-EOMCC method can be regarded as a multireference extension.

In contrast to the single-reference approaches, genuine multireference methods require a
reference that is not just a single determinant or configuration state function (CSF). For example,
bond dissociation in N2 with its triple bond is notoriously difficult to describe with single-
reference methods, unless higher-order cluster operators including full triples and quadruples
are also considered. For an overview of the competing developments, we refer the reader to
a review by Lyakh et al. [139] as well as to Sec. 1.2. Here, we are interested in methods
geared at computing excited states, which are often multistate approaches. This means that
several states are obtained in one go, as opposed to state-specific approaches, in which each state
requires a separate calculation. Many of these excited state methods are obtained by extending
single-reference techniques to the genuine multireference regime.

As mentioned above, the MR-EOMCCmethod can be viewed as a multireference extension of
the FSCC approach in that it uses a state-averaged (SA) CASSCF wave function as its reference
state. Using such a multideterminantal reference became possible after the introduction of
generalized normal order, which we reviewed in Sec. 1.2. This many-body aspect of MR-
EOMCC (as well as FSCC and STEOM) further removes the need for higher-rank density
matrices [210]. Additionally, the many-body residuals can be viewed as the natural extension of
FSCC to multireference reference states [221].
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The final ingredient to the MR-EOMPT method proposed in this study is multireference per-
turbation theory. Arguments fromMRPT have already been used in an orbital selection scheme
for the MR-EOMCC method to reduce computational cost, which is nonetheless different from
the novel MR-EOMPT method since the selection scheme retained its iterative nature [217]. In
general, perturbation theory is a well-tested approach to improving results compared to SCF
calculations, especially when the SCF solution is already close to the exact wave function of
the desired state. This assumption can be expected to hold for many CASSCF-based reference
wave functions, since CASSCF itself already recovers a large part of static and, to a lesser extent,
dynamic electron correlation. To discuss the relation of MR-EOMPT to the other MRPT ap-
proaches, we will classify them according to the order of diagonalization or perturbation steps.
In this scheme, the most popular methods, state-specific CASPT2 [167, 168] and NEVPT2 [169–
171], can be called diagonalize-then-perturb methods and generally yield good accuracy. Fur-
thermore, they have been extensively applied to compute excitation energies [307–310], and also
properties such as g-tensors of transition metal complexes [311, 312]. CASPT2 was also studied
in the extensive benchmark by Thiel and co-workers [313, 314], with results from NEVPT2 re-
ported later on [308]. A major drawback is that CASPT2 and NEVPT2, by construction, rely on
the four-body density matrix, which requires significant computational power to construct. To
overcome this, both methods have been combined with approximations to enable larger active
spaces, such as DMRG [315–317] or cumulant approximations [318–320], a full discussion of
which is given below (Sec. 1.5). Local correlation approaches to reduce their overall scaling with
system size have also been successfully implemented [55, 321, 322].

From the viewpoint of MR-EOMPT, a more closely related approach is the diagonalize-then-
perturb-then-diagonalize scheme, which generally describes quasidegenerate (QD) perturbation
theory. First, the degenerate subspace of the Hamiltonian is diagonalized to avoid diverging
perturbation expressions and the resulting eigenfunctions are then used in the subsequent
perturbative treatment and final diagonalization to obtain the states of interest. Examples
of this school are multiconfigurational MC-QDPT [323–325], multistate (MS-)CASPT2 [326]
and QD-NEVPT2 [327], which have been extensively applied in the investigation of conical
intersections [328, 329], among others. In contrast to these methods, however, MR-EOMPT
only uses a single set of amplitudes for all the states obtained in the final diagonalization.

The conceptually closest approach to the transform-then-diagonalizemethods discussed above
are the perturb-then-diagonalize formulations consisting of a single perturbative step and a
subsequent diagonalization step. More precisely, after the effective Hamiltonian is constructed
using perturbation theory methods, the final diagonalization mixes the perturbed model space
functions into the final states. This approach has benefits over diagonalize-then-perturbmethods,
in which dynamic correlation would mix the CASCI functions significantly, for example in ionic-
covalent curve crossings [330, 331] (see also Sec. 6.5). Compared to the more popular methods
discussed earlier, relatively few approaches have been developed, including NOCI-MP2 [332,
333] and DCD-CAS [334].
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Ultimately, however, the MR-EOMPT method should be considered as a multistate transform-
then-diagonalize approach. The non-iterative amplitudes are estimated such that the transformed
Hamiltonian only couples to few determinants outside of the CAS space, which is then accounted
for by a diagonalization over the CAS and remaining first-order interacting space. As will be
demonstrated in the following, the results are still satisfactory in terms of accuracy despite these
approximations, while being cheaper to compute than fully iterative MR-EOMCC results.
In this thesis, we delineate the MR-EOMPT method in Chapter 6. In that chapter, we first

recapitulate the basic ideas behind MR-EOMCC theory, with particular focus on the sequential
similarity transformations. Then, we go on to explain how perturbatively estimated amplitudes
may be used instead of the iterated equations to obtain the final, transformed Hamiltonian that
can be diagonalized over the manifold of holes and particles to obtain the states of interest. We
then present benchmarks and test systems from several problem types to validate the perfor-
mance of MR-EOMPT against accurate reference values, its parent method, MR-EOMCC, and
fic-NEVPT2 [171] theory.

1.5 Reduction of Density Matrices in Internally Contracted
Theories

As discussed above, multireference self-consistent field (SCF) approaches such as CASSCF [335–
338], RASSCF [339, 340], and DMRG [341–347] theory, and even perturbative approaches such
as the widely popular CASPT2 [167, 168, 326] and NEVPT2 [169–171, 327, 348] methods,
do not always give the desired accuracy, e.g., when computing transition energies [308, 313].
Hence, highly correlatedmethods have been developed early on, or even prior to the perturbative
approaches. Unfortunately, in the multireference field, they all suffer from either theoretical or
practical shortcomings that have so far precluded their widespread use. In internally contracted
theories specifically, high-order density matrices pose a significant computational challenge,
which we will address through a fully automated scheme capable of reducing their order by at
least one.
Before going on to discuss reduced-scaling schemes for internally contracted theories, we

first reiterate the advantages and disadvantages of internally contracted approaches, compared
against uncontracted approaches. The specific developements in those fields have already been
discussed at length above (Secs. 1.2, 1.4). First, uncontracted MRCC methods are much simpler
to derive and implement than the contracted approaches, their working equations essentially
being coupled single-reference problems. However, they have severe theoretical deficiencies
in terms of lacking orbital invariance [164, 165] and proper residual conditions [156, 162].
In contrast, internally contracted MRCC theory trivially fulfills these conditions [194]. They
also have the major benefit that the number of parameters is largely independent of the active
space, or determinants in the reference wave function [143]. However, as alluded to above,
a major issue with internally contracted formulations are high-order density matrices, which
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scale exponentially [349] in computational time and polynomially in size with growing active
spaces [143, 181].

Several techniques that aim at alleviating this computational bottleneck have already been
proposed. Broadly speaking, we can either approximate the high-order densities or attempt to
obviate their computation by novel methodologies. The most successful approximate scheme
is undoubtedly based on cumulant reconstruction techniques, in which higher-order densities
are expanded through density cumulants while neglecting the highest-order terms [350–357],
which found early adoption in contracted Schrödinger equation approaches to avoid explicit
knowledge of the 4-RDM [351, 352, 358, 359]. Cumulant approximations were also successfully
used in conjunction with DMRG theory, e.g., in several DMRG-CASPT2 implementations [318,
319, 360] or in DMRG-MRCI theory by Saitow et al. [177] to allow for large active spaces.
Without the use of DMRG, Zgid et al. [320] investigated a cumulant-approximated sc-NEVPT2
implementation and a full comparison of the cumulant approach to prescreening approximations
was reported by Guo et al. [361], which led to the development of the full-rank (FR-)NEVPT2
method [362]. Also, iterative methods such as CT [226–229] and MR-EOMCC theory [210, 211,
213] use this technique to limit the order of the densities or cumulants to at most two, neglecting
all higher orders. A similar scheme is also used for the driven similarity renormalization group
(DSRG) method [232, 363–365].

We can also use different approaches to avoid the computation of high-order densities in the
first place. The simplest such scheme is to decontract the offending excitation classes leading
to the high-order densities, resulting in a mixed contraction scheme. A prominent example
is Werner and Knowles’s MRCI [143], where only the excitation classes with excitations into
two virtual orbitals are contracted, and the rest are left uncontracted. Additionally, Celani and
Werner used such an approach for their MRPT2 theory [366]. Further perturbative methods
falling into this category are t-NEVPT2 theory [367, 368] and matrix product state perturbation
theory (MPS-PT) [369], based on matrix product state linearized coupled-cluster (MPS-LCC)
theory [370], which uses conventional internal contraction for all but two excitation classes,
which are treated with MPSs.

The MPS representation in DMRG also allows approaches that avoid the explicit computation
of the four-body density by implicitly contracting the density with other tensors [315, 316, 370–
372]. A projection scheme developed by Roemelt et al. forDMRG references also circumvents the
construction of the four-body density, but introduces a projection error and slower convergence
rate in exchange [373]. The computation can also be avoided by using stochastic approaches,
such as Sharma and co-workers’ full CI quantum Monte Carlo (FCI-QMC)-based MRCI and
-PT [374] and an FCI-QMC-based sc-NEVPT2 implementation by Booth and co-workers [375].
Perturbation theory based on the DSRG method also features a reduction in the order of the
density matrices by one order compared to conventional internally contracted perturbation
theories [233, 376–379]. We further note that multireference adiabatic connection (AC) can be
used towards the same end [349, 380].
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Our approach is based on the work by Werner and Knowles [34, 143], who contracted
appropriately factorized coupling coefficients with molecular integrals, which avoids the explicit
computation of high-order coupling coefficients, while also not introducing any approximations.
Chatterjee and Sokolov [381] use a similar trick for NEVPT2 theory, developed in the context
of MR-ADC(2) theory. They shift the excitation operators in the densities such that lower-
order “intermediate states” can be formed with molecular integrals, with an accordingly reduced
scaling. Tangentially, they also use automatic equation derivation through SQA [228, 229] for
some aspects of MR-ADC(2), albeit not for automatically reducing the scaling. These ideas were
recently picked up in our group for NEVPT2 and CASPT2 theory [382], where the shifting
technique of the excitation operators was used to reduce the scaling of the terms containing the
highest-order densities. This was, however, achieved manually.
We present our scheme in full detail in Ch. 7 by first recapitulating the origin of the high-order

density matrices that appear in internally contracted methods and summarize the foundations
of ic-MRCI and ic-MRCC theories. Afterwards, we introduce our fully automated scheme to
reduce the order of the density matrices by at least one and describe its implementation in
the ORCA-AGE II code generation package. Both fic-MRCI and fic-MRCC theories are then
benchmarked on unsaturated alkene chains in terms of both scaling with system and active
space sizes.
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2 Theoretical Background

2.1 Conventions

In this section, we introduce conventions on how common quantum chemical quantities will
be denoted throughout the entire thesis. Starting with molecular orbitals, which are denoted
by � or ', we use the indices i; j; k; l to indicate doubly occupied, inactive orbitals; t; u; v; w

to represent active orbitals of varying occupations; a; b; c; d for unoccupied, virtual orbitals;
and p; q; r; s as general labels. Notwithstanding, we will sometimes also use the general labels
p; q; r; s to refer to active orbitals to avoid tedious double-primed labels, e.g., t 00, appearing in
contractions with high-order densities. Atomic orbitals are referred to by �. Given no further
information, we always assume spatial orbitals. Spin orbitals may also be denoted by appending
either ˛; ˇ, or generic spin, �; � . For the spin variable, we generally use !.
Many-electron quantities, such as wave functions, generally use capitalized letters. From

molecular orbitals, we can construct many-electron determinants or configuration state func-
tions (CSFs), which are indicated by ˆ, possibly with a capitalized index I; J if referring to a set
of them, as in ˆI . Self-consistent field solutions, which are normally taken to be zeroth-order
wave functions, are denoted by ‰0, or just 0 for short. Correlated wave functions are referred to
as ‰.

Operators of any sort are indicated by a hat, for example, OT . Tensorial quantities, including
vectors and matrices, are denoted by a boldface symbol when referring to it as a whole, as in A.
However, we will more commonly use indexed notation instead, for example, Aij . We further
use atomic units throughout the entire thesis unless stated otherwise.
We also introduce a simplified notation for general n-body quantitiesX , whichmay be general

tensors or operators with 2n indices. If we do not wish to fully specify indices on X , especially
when we want to focus on which orders of a quantity can appear in a term, we can write

Xpq���
rs���•

2n indices

� Xn: (2.1)

For example, OEp
q �

OE1 and OEpq
rs �

OE2. When we use this notation in equations or contractions,
we assume that index permutations are implicitly included for simplicity.
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2.2 Second Quantization

While quantummechanics is generally taught in first-quantized form, meaning an explicit repre-
sentation including position and momentum operators for the involved particles, the language
of second quantization if far better suited to formulating advanced correlated theories since it
provides a notation free from the number of particles involved. Hence, the entire theory in this
thesis is laid out in second quantization.
We therefore introduce the basics of second quantization in this section. After defining the

basic operators and the molecular Hamiltonian, we discuss the rules that are used to manipulate
the expressions, namely the basic commutation rules as well as normal order in conjunction
with Wick’s theorem, both in its “simple” and generalized variant.

2.2.1 Spin‑Orbital and Spin‑Free Operators

The language of second quantization operates in Fock space, which is in turn spanned by the
molecular orbitals as the basis functions [14]. A vector in Fock space, called the occupation
number vector (ONV), represents our wave function, or Slater determinant,

jˆi D jx1; x2; : : : ; xni ; (2.2)

where xi is the occupation number of the i th spin orbital, with a total of n orbitals. For example,
the ground state of the H2 molecule in a minimal basis may be represented as

jˆH2i D j1; 1; 0; 0i ; (2.3)

with the molecular orbitals defined as

�1.r; !/ D '1.r/˛.!/ D N
�1=2
C Œ�1s;A.r/C �1s;B.r/�˛.!/; (2.4)

�2.r; !/ D '1.r/ˇ.!/ D N
�1=2
C Œ�1s;A.r/C �1s;B.r/�ˇ.!/; (2.5)

�3.r; !/ D '2.r/˛.!/ D N �1=2
� Œ�1s;A.r/ � �1s;B.r/�˛.!/; (2.6)

�4.r; !/ D '2.r/ˇ.!/ D N �1=2
� Œ�1s;A.r/ � �1s;B.r/�ˇ.!/: (2.7)

Here, N
�1=2
C and N �1=2

� are the appropriate normalization factors, �1s;A and �1s;B are the
minimal basis atomic orbitals on atoms A and B , respectively, and ˛.!/ as well as ˇ.!/ are
the spin functions. We further used ' to denote the spatial part of the spin orbitals �. In first
quantization, the above ground state of the H2 molecule may be written in form of an equivalent
Slater determinant,

jˆH2i D j�1�2i D 2�1=2

ˇ̌̌̌
ˇ�1.r1; !1/ �2.r1; !1/

�1.r2; !2/ �2.r2; !2/

ˇ̌̌̌
ˇ : (2.8)

18



2.2 Second Quantization

As with Slater determinants, the antisymmetry of the fermionic electrons is encoded in the
ONV through a phase factor upon swapping the order of two orbitals,

jˆH2i D j�1�2i D � j�2�1i : (2.9)

This phase factor will be used to define the anticommutation rules in Sec. 2.2.4.
Before that, let us define the spin-orbital creation and annihilation operators, Oap � Oa

�
p and

Oap , respectively, through their actions on an ONV,

Oap
jx1; : : : ; 0p; : : :i D Xp jx1; : : : ; 1p; : : :i ; (2.10)

Oap
jx1; : : : ; 1p; : : :i D 0; (2.11)

Oap jx1; : : : ; 0p; : : :i D 0; (2.12)
Oap jx1; : : : ; 1p; : : :i D Xp jx1; : : : ; 0p; : : :i : (2.13)

Here, the indices p; q; : : : refer to spin orbitals, but we dropped the explicit spin label for
readability, i.e., p � p� . A creation operator acting on an already occupied orbital as well
as an annihilation operator acting on an empty orbital annihilate the entire wave function.
In contrast, a creation operator acting on an empty orbital will create it, after which it is
occupied, and an annihilation operator acting on an occupied orbital will annihilate it, leaving it
unoccupied. In both cases, the complex conjugate transpose versions of Eqs. (2.10)–(2.13) also
hold. Furthermore, a phase factor Xp needs to be taken into account for the antisymmetry of
the electrons,

Xp D

p�1Y
iD1

.�1/xp : (2.14)

Staying with the minimal basis H2 system from above, we have, e.g.,

Oa3
jˆH2i D Oa

3
j1; 1; 0; 0i D j1; 1; 1; 0i ; (2.15)

Oa2 jˆH2i D Oa2 j1; 1; 0; 0i D � j1; 0; 0; 0i : (2.16)

Alternatively, this may also be more compactly represented as

Oa3
jˆH2i D Oa

3
j�1�2i D j�1�2�3i ; (2.17)

Oa2 jˆH2i D Oa2 j�1�2i D � j�1i : (2.18)

While the spin-orbital operators form the basis of second quantization, they do not conserve
the number of electrons. For example, in Eq. (2.17), a state describing H2 is turned into
one describing H�

2 . Unless our goal is to describe ionization, number-conserving operators are
preferred, i.e., operators that have an equal number of creators and annihilators. The prototypical
case is the excitation operator Oap Oaq , which takes a single electron from spin-orbital q and places
it on p. Unfortunately, in the spin-orbital basis, these operators are not in general spin adapted,
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i.e., they do not produce a total spin eigenstate when they act on an eigenstate. For example, the
operator Oa3 Oa1 acting on jˆH2i produces an impure spin state. This feature is undesirable for
spin-adapted theories. Of special interest in such theories are operators that preserve the total
spin. This can be achieved by working with spin-free (or spin-traced) excitation operators,

OEp
q D

X
�

Oap�
Oaq�

D Oap˛
Oaq˛ C Oa

pˇ
Oaqˇ : (2.19)

By summing over both ˛ and ˇ spin, these operators are rigorously spin-adapted, and hence
will not change the spin state. Using these operators, we can excite electrons from the S D 0

ground state to the antibonding '2 molecular orbital,

OE2
1 jˆH2i D

OE2
1 j'1˛; '1ˇi

D j'2˛; '1ˇi C j'1˛; '2ˇi : (2.20)

If we now use CSFs, which are essentially linear combinations of Slater determinants such
that a given spin state is achieved [14, 383], along with a theory completely written in terms of
the spin-free excitation operators, we have robustly spin-adapted the entire theory. Moreover,
for a given configuration, i.e., spatial orbital ONV, the number of CSFs with a given total spin is
always less than the number of determinants. This is the main approach followed in the ORCA
software as well as the ORCA-AGE code generator. Hence, in the following body of this thesis,
we will always assume quantities to be spin-adapted.

2.2.2 The Molecular Hamiltonian

In this section, we will make the connection between first and second quantization for molecular
operators, especially for the Hamiltonian. Starting from the full molecular Hamiltonian in first
quantization, we first introduce the Born-Oppenheimer approximation, and then partition it into
its one-electron (core Hamiltonian) and two-electron parts. These parts can then be represented
in the language of second quantization, and the connection to Slater’s rules can be made.
The molecular, non-relativistic Hamiltonian for a system of interacting electrons i; j and

nuclei A; B reads

OH D �
1

2

X
i

r
2
i �

1

2

X
A

1

MA
r

2
A �

X
iA

ZA

ria
C
X

A>B

ZAZB

rAB
C
X
i>j

1

rij
; (2.21)

with (absolute) particle distances indicated by r , and nuclear mass and charge denoted by M

and Z, respectively. However, in quantum chemistry, we almost exclusively use the molecular
Hamiltonian in the Born-Oppenheimer (clamped nuclei) approximation, which allows us to
separate out nuclear motion into a parametric dependence, and thus also gives rise to the
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concept of a potential energy surface (PES). The electronic, or Born-Oppenheimer Hamiltonian,
simply no longer contains the kinetic energy term of the nuclei,

OHBO D �
1

2

X
i

r
2
i �

X
iA

ZA

ria
C
X

A>B

ZAZB

rAB
C
X
i>j

1

rij
; (2.22)

and can further be separated into its one-electron,

Oh D �
1

2

X
i

r
2
i �

X
iA

ZA

ria
; (2.23)

and two-electron parts,

OV D
X
i>j

1

rij
: (2.24)

Now, we can formulate the corresponding one- and two-electron operators in their second-
quantized form [14]. First, we give the expressions for the spin-orbital operators (where we
tacitly drop the spin label, p � p�), beginning with the core Hamiltonian,

Oh D
X
pq

hpq Oa
p
Oaq; (2.25)

hpq D hpj Ohjqi D

Z
dr ��

p .r/ Oh.r/�q.r/: (2.26)

The two-electron operators can be written as

OV D
1

2

X
pqrs

vpqrs Oa
p
Oaq
Oas Oar ; (2.27)

vpqrs D hpqj OV jrsi D

“
dr1dr2 ��

p .r1/��
q .r2/ OV �r.r1/�s.r2/: (2.28)

Note that, even though we have chosen to use the one- and two-electron parts of the Hamil-
tonian in the definition of the second-quantized operators, the above translation from first to
second quantization holds for any one- and two-electron operator, respectively.
The one- and two-electron operators in Eqs. (2.25) and (2.27) reproduce Slater’s rules [14, 384,

385]. For example, evaluating the one-electron operator with determinants that differ in up to
two orbital replacements, indicated by Oaa Oai j0i D j

a
i i and Oa

a Oab Oaj Oai j0i D j
ab
ij i, we obtain

h0j Ohj0i D
X

i

hi i ; (2.29)

h0j Ohjai i D hia; (2.30)

h0j Ohjab
ij i D 0: (2.31)
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For two-electron operators, we obtain

h0j OV j0i D
1

2

X
ij

vij ij � vijj i ; (2.32)

h0j OV jai i D
X

j

vijaj � vijja; (2.33)

h0j OV jab
ij i D vijab � vijba: (2.34)

To summarize, the molecular, electronic Hamiltonian in second quantization is given by

OH D
X
pq

hpq Oa
p
Oaq C

1

2

X
pqrs

vpqrs Oa
p
Oaq
Oas Oar

D
X
pq

hpq Oa
p
Oaq C

1

2

X
pqrs

hpqjrsi Oap
Oaq
Oas Oar ; (2.35)

where we introduced the conventional representation of the two-electron repulsion integrals
in physicist’s notation, hpqjrsi. The other popular, chemist’s notation, .pqjrs/ D hpr jqsi, is
organized by electron number instead of complex conjugation, .11j22/ D h12j12i.
Since this thesis is concerned with spin-adapted theories, it is beneficial to eliminate spin

from the molecular Hamiltonian as well. This can easily be achieved by spin summation, which
allows us to write the Hamiltonian in terms of the spin-free excitation operators introduced in
Sec. 2.2.1,

OH D
X
pq

hpq
OEp
q C

1

2

X
pqrs

hpqjrsi . OEp
r
OEq
s � ıq

r
OEp
s /; (2.36)

where the indices p; q; : : : again denote purely the spatial orbitals instead of spin orbitals.

2.2.3 Quantum Chemistry and Density Matrices

Quantum chemistry as a field builds on the axioms of quantum physics, which are1

1. An observable is represented by self-adjoint operators, indicated by a hat, e.g., OO , in this
thesis.

2. A state of a system is represented by a wave function ‰, i.e., a unit vector in Hilbert space.

3. The expectation value of OO , if the system is in state ‰, is the inner product of ‰ and OO‰,
i.e., h‰j OOj‰i.

1 This list could be amended by the time-dependent Schrödinger equation as the quantum equation of motion, from
which the eigenproblem of the time-independent form derives, and the Pauli (or (anti-)symmetrization) principle.
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2.2 Second Quantization

Each of these axioms can be connected to what we discuss in this section. The operators for
observables are constructed from tensors, e.g., molecular integrals, and excitation operators
(Secs. 2.2.1 and 2.2.2). States are usually given in terms of an ansatz in quantum chemistry, i.e.,

‰ D O� j0i ; (2.37)

where j0i is the reference state and O� is the ansatz or wave operator. The main criterion for
the reference state is that it should have a good overlap with the exact solution, and we will
discuss how to find good reference states in Sec. 2.3. The ansatz operator generates a better
approximation to the true wave function and is specific to a given theory. Based on the reference
they act on, they can be single reference approaches discussed in Sec. 2.4 and multireference
approaches introduced in Sec. 2.6. In second quantization, O� is again written in terms of
excitation operators acting on these reference wave functions. Consequently, expectation values
of excitation operator strings play an important role in quantum chemistry, since their knowledge
allows the computation of any observable, e.g., energies, through contractions of the tensorial
quantities with expectation values, h0j � � � j0i, of operator strings. These central quantities in
quantum chemistry hence have their own names, called density matrices.

We define these density matrices, or densities for short, as

n �  tv���
uw ��� D h0j

OEt
u
OEv
w � � � j0i ; (2.38)

with n denoting the number of index pairs, e.g.,  tv
uw � 2. These density matrices are reduced,

since they only refer to n-body quantities. However, reduced density matrices (RDMs) are
conventionally defined slightly differently [386–388],

� tv���
uw ��� D

X
�� ���

h0j Oat�
Oav�
� � � Oaw� Oau� j0i : (2.39)

The definitions in Eqs. (2.38) and (2.39) are closely related, since either can be written in terms
of the other and lower-order density matrices (see Eq. (2.77) for an example). Our choice in this
thesis is a purely practical one, motivated by our code generation tool, which generates densities
according to Eq. (2.38), not by any further theoretical justification.
In the following, we will give more details on how to evaluate and manipulate operator

strings. In later subsections, we also cover the commonly used reference wave functions, before
eventually discussing correlated single- and multireference theories.

2.2.4 Commutation Rules

With the definition of the operators of second quantization in Secs. 2.2.1 and 2.2.2, we can now
turn to how they can be used to evaluate quantum chemical expressions. To this end, we can
employ (anti-)commutation rules among the operators. When repeated in a strategic fashion,
these rules can be used to remove all operators from the expressions to be left with only tensorial
quantities, such as molecular integrals, densities, and Kronecker deltas.
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2 Theoretical Background

For the spin-orbital creation and annihilation operators, we have a set of anti-commutation
rules,

Œ Oap� ; Oaq� �C D ıp
q ı�

� ; (2.40)
Œ Oap� ; Oaq� �C D 0; (2.41)
Œ Oap� ; Oaq� �C D 0; (2.42)

which encode the antisymmetry of the wave function upon interchange of the orbitals [14]. The
commutation rule for the spin-free operators may be derived from Eqs. (2.19) and (2.40),

Œ OEp
q ; OEr

s � D OEp
s ır

q �
OEr
qıp

s : (2.43)

The commutation rules, by themselves, are of limited usefulness. However, they can be used
in conjunction with termination conditions, which remove an operator from the expression. For
the spin-orbital operators, these conditions have already been set out in Eqs. (2.11) and (2.12).
Note that Eqs. (2.10) and (2.13) do not constitute termination conditions in our sense as they
also change the wave function, which is generally undesired when formulating the working
equations of a theory. Therefore, to remove spin-orbital operators, we

• move all annihilation operators of unoccupied and all creation operators of occupied
orbitals towards the ket, and

• move all annihilation operators of occupied and all creation operators of unoccupied
orbitals towards the bra.

More importantly, these rules also apply to the spin-free excitation operators, in a slightly
modified form,

OEi
p j0i D 2ıi

p j0i ; h0j OE
p
i D 2ı

p
i h0j ; (2.44)

OEp
a j0i D 0; h0j OEa

p D 0: (2.45)

Eqs. (2.44) and (2.45) form the basis of the equation generator [1] used for all generated theories
in this thesis, except for the multireference equation-of-motion (MR-EOM) theories, which use
the generalized Wick’s theorem instead (Sec. 2.2.6).
The aforementioned rules can be easily demonstrated for both the spin-orbital operators,

h0j Oai�
Oaj� j0i D � h0j Oaj� Oa

i�
j0i C h0jŒ Oai� ; Oaj� �Cj0i D ıi

j ı�
� ; (2.46)

and the spin-free excitation operators,

h0j OE
j

b
OEa
i j0i D h0j

OEa
i
OE

j

b
j0i C h0jŒ OE

j

b
; OEa

i �j0i

D h0j OE
j
i ıa

b j0i � h0j
OEa
b ı

j
i j0i D 2ı

j
i ıa

b : (2.47)
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2.2 Second Quantization

The main benefit of using the commutation rules is that they are highly general. Any ansatz
that can be formulated in second quantization can be turned into working equations following
the approach outlined above. Furthermore, implementing the commutation rules in a software
is straightforward, and the computer can easily keep track of the indices and swapped operators.
However, when hand-deriving equations, the large number of (intermediate) terms that may
appear makes this strategy rather unwieldy, and hence more powerful approaches like Wick’s
theorem, to be discussed in the following sections, and diagrammatic techniques have been
developed.

2.2.5 Normal Order andWick’s Theorem

To simplify the evaluation of strings of excitation operators, we can introduce the concept of
normal order [15, 17], which, in conjunction with Wick’s theorem [250], allows us to directly
evaluate the result without having to commute operators multiple times. In this section, we first
introduce normal order for strings of excitation operators, both for a true vacuum reference and
a closed-shell Slater determinant (particle-hole normal order). After defining the contractions
for both formalisms, we outline Wick’s theorem and how it can be applied to the evaluation of
operator strings. We will also address how normal order and Wick’s theorem can be used with
spin-free operators.
For a true vacuum reference state in which no orbitals are occupied, ji, a string of creation or

annihilation operators is said to be in normal order when all creation operators are to the left
of all annihilation operators. This order, which is indicated by curly braces around the operator
string, guarantees that the expectation value of such a string is zero through annihilation of the
reference wave function,

Oap
Oaq
� � � Oar Oas � � � ji D f Oa

p
Oaq
� � � Oar Oas � � � gvac ji D 0: (2.48)

Here, we again dropped the spin function for readability, p � p� .
While the above already gives a working definition of normal order, it is generally more useful

in quantum chemistry to choose a (closed-shell) determinant as the reference wave function j0i
instead of true vacuum ji, as this keeps the operator strings short. This is called particle-hole
normal order, and is generally referred to as normal order. Here, hole and particle creation
operators, Oai and Oaa, respectively, are moved to the left of the string, h0j Oai D h0j Oa

a D 0,
whereas hole and particle annihilation operators, Oai and Oaa, are moved to the right, Oai j0i D

Oaa j0i D 0,

Oai Oa
a
� � � Oaj

Oab � � � j0i D f Oai Oa
a
� � � Oaj

Oab � � � g j0i D 0: (2.49)

Note that, in normal-ordered strings, the usual commutation rules (Sec. 2.2.4) do not apply.
Instead, operators can always be swapped with a phase factor of �1 for fermions,

OX D fOai
Oaag D �f Oaa Oa

i
g; (2.50)

h0j OX j0i D 0: (2.51)
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2 Theoretical Background

This property simplifies reordering of the second-quantized operators, and is used to determine
the final phase in contracted operator strings, shown below.
Before discussing Wick’s theorem, we first introduce the concept of contractions. A con-

traction between two operators OX and OY is the difference between the operator string and its
normal-ordered form,

OX OY D OX OY � f OX OY g; (2.52)

and is conventionally indicated by a connecting bracket over the contracted operators. In a
sense, a contraction can thus be viewed as the result that would be obtained by evaluating the
action of the uncontracted operators on the reference wave function. For vacuum normal order,
there is only one non-zero contraction,

Oap Oa
q
D Oap Oa

q
� fOap Oa

q
gvac D Oap Oa

q
C Oaq

Oap D ıq
p : (2.53)

For particle-hole normal order, two non-zero contractions exist,

Oai
Oaj D Oa

i
Oaj � fOa

i
Oaj g D Oa

i
Oaj C Oaj Oa

i
D ıi

j ; (2.54)

Oaa Oa
b
D Oaa Oa

b
� fOaa Oa

b
g D Oaa Oa

b
C Oab

Oaa D ıb
a ; (2.55)

which can be generalized to

Oap
Oaq D xpıp

q ; (2.56)

Oap Oa
q
D .1 � xp/ıq

p : (2.57)

where xp denotes the occupation of orbital p (see also Sec. 2.2.1).
Now, we can define Wick’s theorem, which states that [17, 250]

an operator string can be written as its normal-ordered string, plus the sum of all
possible contractions.

In mathematical notation, this can be represented as

OA OB OC � � � OM ON � � � D f OA OB OC � � � OM ON � � � g

C
X
single

f OA OB OC � � � OM ON � � � g

C
X
double

f OA OB OC � � � OM ON � � � g

C triple, quadruple, … contractions. (2.58)
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2.2 Second Quantization

In a more general form for a product of two normal ordered operator strings, the contractions
can only run between operators from different normal-ordered strings [15, 389],

{ OA OB OC � � � gf OM ON � � � g D f OA OB OC � � � OM ON � � � g

C
X
single

f OA OB OC � � � OM ON � � � g

C
X
double

f OA OB OC � � � OM ON � � � g

C triple, quadruple, … contractions. (2.59)

Note that Eq. (2.59) is often referred to as a generalized form of Wick’s theorem in the litera-
ture [15]. In this thesis, however, we make no distinction in nomenclature between Eqs. (2.58)
and (2.59). Instead, we use the terms generalized normal order and generalized Wick’s theorem
to refer to the multireference generalizations put forward by Mukherjee and Kutzelnigg [219],
to be detailed in Sec. 2.2.6.
Wick’s theorem is a useful tool to quickly evaluate the expectation value of (products of)

operator strings. This is achieved by the fact that only the fully contracted terms can contribute
to the expectation value, as all other remaining normal-ordered strings annihilate the reference
wave function. For example, the expectation value of a one-electron operator in particle-hole
normal order is X

pq

hpq h0j Oa
p
Oaqj0i D

X
pq

hpq h0jf Oa
p
Oaqgj0i

D
X
pq

hpqxpıp
q D

X
i

hi i : (2.60)

Although Wick’s theorem is primarily used with spin-orbital creation and annihilation oper-
ators, equivalent formulations for spin-free excitation operators have been derived [390, 391].
Kutzelnigg also worked out the respective equations in particle-hole normal order [392, 393].
However, a major drawback of these formalisms is that they are more complicated to use than
the simpler spin-orbital formalism, and thus have not gained widespread traction. An alternative
path, which first converts all operators to the spin-orbital operators through Eq. (2.19), then
contracts the operators according to the rules in Eqs. (2.53)–(2.57), and finally performs the
spin summation will give the same results and may even be easier to execute.
In passing, we remark that even more powerful diagrammatic techniques [394–396] have

been developed based on Wick’s theorem and have found success especially in the development
of coupled-cluster [17, 20, 389, 397, 398] and many-body perturbation theory [17, 398, 399].
Automated approaches based on diagrammatic techniques have also been reported [252–255,
400]. In our opinion, however, it is more feasible to rely on the commutation rules (and Wick’s
theorem) for a generally applicable equation generator, especially considering the multireference
regime. Consequently, we will not further discuss diagrammatic methods.
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2 Theoretical Background

2.2.6 Generalized Normal Order and GeneralizedWick’s Theorem

WhileWick’s theorem is highly useful in evaluating operator strings, it is unfortunately limited to
a single reference determinant. This shortcoming was addressed by Mukherjee and Kutzelnigg,
who developed a generalized normal order and the corresponding contractions and generalized
Wick’s theorem [219, 220, 222, 401], which allows arbitrary linear combinations as reference
wave functions, for example, those appearing in a CASSCF wave function. In this section, we
will outline the foundations of generalized normal order, and refer the reader to the original
works for the derivations.

While the theory has been worked out in Refs. [219, 220, 222, 401], the contraction rules
as we present them have been worked out in Ref. [402] and summarized in Ref. [233]. Most
importantly, we have single contractions, which now result in a density 

p
q or hole density �

p
q ,

Oap
Oaq D p

q ; (2.61)

Oap Oa
q
D ıq

p � q
p D �q

p; (2.62)

and additionally 2k; k D 2; 3; : : :-legged contractions, which are associated with cumulants,

Oap
Oaq
� � � Oas Oar D �pq���

rs��� : (2.63)

Although strictly speaking cumulants are defined for 2 � k, we will also use the convention
�

p
q D 

p
q D ı

p
q � �

p
q . Compared to vacuum or particle-hole normal order, the quantities

resulting from the contractions are more complicated objects, since they may either be matrices
with off-diagonal entries, or, in the case of cumulants, higher-dimensional tensors.

The cumulants arise as a consequence of the multideterminantal expansion of the wave
function [219]. Initially, they were thought of as the “irreducible” parts of the higher-order
densities, i.e., those parts which cannot be constructed as combinations of lower-order density
matrices [354]. This view may have been influenced by the structure of the defining equations,
e.g., for the two-body cumulant [219],

�pr
qs D pr

qs � p
q r

s C p
s r

q : (2.64)

This view, however, has been revised more recently. Instead, the cumulants are now interpreted
as measures of correlation between orbital occupation numbers [403–405]; a view that, unfortu-
nately, precludes a simple pictorial interpretation. Moreover, this revised interpretation is more
in line with the observation that higher-order cumulants need not necessarily have small norms
in genuine multireference situations [405].
The computation of higher-order cumulants is essentially similar to that for the two-body

cumulant (Eq. 2.64). It has been formalized by using Grassmann algebra, which gives access to
cumulants of arbitrary order [358, 405–408].
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2.3 Self-Consistent Field Theory

Despite the new contraction rules for 2k-legged contractions, Wick’s theorem essentially
remains unchanged from its presentation in Sec. 2.2.5. All that is required is to include the new
contraction types into its formulation,

{ OA OB OC � � � gGNOf OM ON � � � gGNO D f OA OB OC � � � OM ON � � � gGNO

C
X
single

f OA OB OC � � � OM ON � � � gGNO

C
X
double

f OA OB OC � � � OM ON � � � gGNO

C
X

4-legged

f OA OB OC � � � OM ON � � � gGNO

C triple, 6-legged, quadruple, … contractions. (2.65)

Although the additions compared to Eq. (2.59) are minor, we find it useful to refer to this form
as generalized Wick’s theorem to emphasize when we refer to multireference theories later on in
this thesis.
Generalized normal order has also been worked out for the spin-free cases [219], but is

once again more complicated to use than in the spin-orbital formalism. In addition to more
complicated contraction rules, spin-adaptation of the cumulants is still an open problem for
cumulants of order > 4 [222, 223, 354, 409, 410]. A major reason for the difficulties is that
cumulants, in contrast to reduced density matrices, are not expectation values of molecular
operators [223].
The relative novelty of generalized normal order, along with its unclear spin adaptation for

cumulants, has so far led to but a few applications. Most notable are multireference equation-of-
motion coupled-cluster (MR-EOMCC) theory [211–213] and the driven similarity renormaliza-
tion group (DSRG) method [232, 233, 363, 365]. When it comes to automated code generation,
only few codes can generate equations based on generalized normal order, e.g., the automated
program generator (APG) [199, 248, 411–413] and Wick&d [284]. However, due to the more
complicated spin-free formalism, the APG internally converts all expressions to the spin-orbital
formalism, and recovers the spin-free working equations only after a final spin summation
step [210]. Furthermore, the APG limits the order of the appearing cumulants to second order
at most [209, 211]. Higher-order density matrices are not entirely neglected, though, but rather
represented through a cumulant expansion [353–355, 414, 415] truncated at second order [209].

2.3 Self‑Consistent Field Theory

All highly accurate, correlated methods are based on zeroth-order wave functions, which are
computed with a self-consistent fieldmethod. In this section, we reiterate the basics of (restricted
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2 Theoretical Background

closed-shell) Hartree-Fock (RHF) theory as the basis for all single-reference calculations pre-
sented in this thesis, as well as the complete active space self-consistent field (CASSCF) method,
which is the most popular multiconfigurational approach and exclusively used in this thesis.

2.3.1 Hartree‑Fock Theory

In 1928, Hartree developed the concept of a self-consistent field, an iterative procedure that
can be used to approximately solve the Schrödinger equation for many-electron systems [416,
417]. However, the initial theory was lacking the exchange contributions that arise from the
physical indistinguishability of electrons, a fact that was pointed out by both Fock [418, 419]
and Slater [420]. These developments were subsequently consolidated into Hartree-Fock the-
ory [421], which still is one of the most regularly used methods in quantum chemistry, be it as
a zeroth-order guess for correlated methods or, in modified form, in density functional theory
through the Kohn-Sham equations [422]. In this section, we give a brief introduction, mainly
since we use restricted Hartree-Fock as the starting point for our single-reference coupled-cluster
calculations. Further details can be found in the excellent textbook by Szabo and Ostlund [384].
Hartree-Fock theory uses a single Slater determinant (Eq. 2.8) to represent a wave function,

which automatically incorporates electron exchange into the equations. The energy of such a
determinant (in spin-orbital basis) can be derived using the Slater-Condon rules [423, 424],

EHF D
X

i

hi i C
1

2

X
ij

hij jjij i : (2.66)

The main goal is then to variationally minimize the energy expression, Eq. (2.66), with respect
to the molecular orbitals �i . The molecular orbitals, in turn, are given as a linear combination
of atomic orbitals, which was a critical development by Roothan [425] that made computer
implementation feasible,

�i D
X

�

c�i��: (2.67)

The condition that will be required of a variational minimum is that the Hartree-Fock energy is
stationary with respect to the orbital coefficients,

@EHF

@c�i
D 0 8c�i : (2.68)

For details of the derivation, we refer the reader to Refs. [14, 384]. The central result of the
derivation is an eigenvalue equation involving the Fock matrix F ,

FC D ESC ; (2.69)
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2.3 Self-Consistent Field Theory

withS being the orbital overlap matrix and the Fockmatrix depending on the orbital coefficients
C itself [384],

F�� D h�� C
X

i

X
��

c�ic
�
�i Œ2.��j��/ � .��j��/� : (2.70)

This dependence, F D F .C /, of the Fock matrix on the solutions of Eq. (2.69), is at the heart
of the self-consistent field procedure. All calculations begin with a guess at the MO coefficients
C , or rather the density matrix [384]

P D 2CC �: (2.71)

Afterwards, Eq. (2.69) is solved for a new set of orbitals C 0, then these new MO coefficients are
used to build a new density and Fock matrix, at which point the procedure starts again with
solving Eq. (2.69). Normally, but this is hard to guarantee, this iterative procedure is carried
out until the calculation converges to a self-consistent solution, i.e., the MO coefficients obtained
by solving Eq. (2.69) are the same that entered the construction of the Fock matrix F in that
iteration. Eventually, the energy and other quantities of interest are computed from the final,
self-consistent set of orbitals.

2.3.2 Complete Active Space Self‑Consistent Field Theory

Single-reference approaches like Hartree-Fock theory, or even correlated methods such as
(single-reference) CI or CC methods, have well-documented shortcomings, e.g., when disso-
ciating bonds or in (low-spin) transition metal complexes. These situations, in which several
configurations contribute with large weights to the wave function, are usually referred to as
problems with large static or nondynamic correlation. Quite commonly, the terms static and
nondynamic are used interchangeably, with some authors further defining that static correlation
refers to the fixed linear combination of determinants to obtain proper spin states, and non-
dynamic correlation to the remaining contributions [13]. In this thesis, we will generally talk
about nondynamic correlation as we consistently use CSFs throughout, which already address
the issue of static correlation.
In essence, these situations appear straightforward to deal with, since the deficiencies of

single-reference approaches can easily be cured by simply constructing a wave function as a
linear combination of the important configurations,

j0i D
X

I

cI jˆI i ; (2.72)

where cI are the expansion coefficients. However, the important configurations, or CSFs jˆI i,
are generally not known a priori. Choosing the important configurations, especially for expensive
(MR)CI calculations in the early days of quantum chemistry [426, 427], used to be more of an
art than science.
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2 Theoretical Background

Therefore, researchers do not pick configurations by hand nowadays, but rather use multi-
configurational self-consistent field (MCSCF) methods that will variationally optimize both the
orbitals as well as the configurations or CSFs in the expansion from Eq. (2.72). Perhaps the most
popular method is the complete active space self-consistent field (CASSCF) method, developed
by Roos, Taylor, and Siegbahn [335], who, among others, also worked on the convergence
schemes for this method [336–338]. Its popularity is also due in part to the CASSCF method
serving as the basis for correlated methods such as CASPT2 [167, 168, 326] and NEVPT2 [169–
171, 327, 348]. The historical developments leading up to this theory have been summarized by
Roos [428].
In CASSCF calculations, we do not directly choose the important configurations, as discussed

above. Instead, an active space is chosen, which encompasses a certain number of active
electrons, nel, and active orbitals, nact, denoted as CAS(nel; nact). This spans an expansion
as in Eq. (2.72), which includes all configurations or CSFs that satisfy any of the electronic
arrangements of the specified multiplicities possible in the active space. Their respective weights
are then simultaneously optimized with the orbitals, resulting in a variational energy that is
stationary with respect to both optimization parameters,

ECASSCF D
X
pq

�p
q hpq C

X
pqrs

�pr
qs .pqjrs/; (2.73)

@ECASSCF

@cI
D 0 8cI ; (2.74)

@ECASSCF

@c�p
D 0 8c�p: (2.75)

In the above equations, we used the one- and two-body reduced density matrices �
p
q and �

pr
qs ,

respectively,

�p
q D h0j

OEp
q j0i ; (2.76)

�pr
qs D

1

2
h0j OEp

q
OEr
s �
OEp
s ır

qj0i : (2.77)

The densitymatrices are important quantities in essentially any quantum chemical calculation. In
CASSCF, perhaps evenmore so since they do not trivially reduce to Kronecker deltas in the active
space, but instead compactly represent the information from the multiconfigurational wave
function. Their importance will become more obvious in multireference correlated methods,
where even higher-order density matrices appear.

Unfortunately, converging CASSCF calculations is more complicated than Hartree-Fock cal-
culations for they need to minimize the energy with respect to two coupled sets of parameters,
the expansion coefficients and the orbitals, which leads to many (spurious) minima. In short,
we are not guaranteed to obtain the global minimum, and are required to carefully assess each
CASSCF wave function with respect to the final active space. Hence, CASSCF is not considered
to be a black-box method, requiring substantial input from the researcher.
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2.3 Self-Consistent Field Theory

A major drawback of the CASSCF method is inherent to the simplicity of the complete
active space, i.e., a factorial scaling of CSFs in the expansion (2.72), which limits the size of the
active space to generally below 16 active orbitals in routine calculations. For example, a singlet
CAS(16,16) calculation involves millions of configurations and tens of millions of CSFs.
This matter motivated the search for other multiconfigurational methods that do not show this

scaling with the active space. These are the density matrix renormalization group (DMRG) [341–
347] and full CI quantum Monte Carlo (FCIQMC) [429] methods, as well as several iterative
CI approaches [129, 430–439], which were pioneered by the “configuration interaction by per-
turbation with multiconfigurational zeroth-order wave function selected by iterative process”
(CIPSI) [430] method. These methods no longer consider the full CASSCF expansion, but
rather attempt to approximate it to varying degrees.

Consequently, these methods only produce approximated densities, which can lead to numeri-
cal issues in subsequent calculations. In both CASPT2 and NEVPT2 theory, false intruder states
have been documented [318, 320, 361, 440]. A recent investigation of this issue for the NEVPT2
method further narrowed down the reason for the false intruders to the eigenvalue equation of
the zeroth-order Hamiltonian, which no longer explicitly holds with approximate methods, and
proposed the full-rank (FR-)NEVPT2 method as a solution [362].
Lastly, we make a distinction between state-specific and state-averaged CASSCF calculations.

A state-specific calculation only targets a single state as in Eq. (2.72), which is normally confined
through a given multiplicity or symmetry. On the other hand, the wave function of a state-
averaged calculation is optimized such that all included states k are best described by a single
set of orbitals and the same model space, but different CI expansion coefficients ck

I ,

jki D
X

I

ck
I jˆI i : (2.78)

This, in turn, leads to reduced density matrices for each of the states k,

�p
q

.k/
D hkj OEp

q jki ; (2.79)

�pr
qs

.k/
D

1

2
hkj OEp

q
OEr
s �
OEp
s ır

qjki ; (2.80)

and weighted, averaged density matrices

x�p
q D

X
k

wk�p
q

.k/
; x�pr

qs D
X

k

wk�pr
qs

.k/
: (2.81)

that can then be used in the evaluation of the energy expression from Eq. (2.73), as well as
for state-specific, correlated methods such as fic-NEVPT2, fic-MRCI, and fic-MRCC. Naturally,
the weights of the individual states wk must sum to unity,

P
k wk D 1. We note that the

state-averaged CASSCF calculation is variational with respect to the averaged state, but not with
respect to the individual states k.
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2.4 Single‑Reference Coupled‑Cluster Theory

With the groundwork on self-consistent fieldmethods now laid out, we go on to discuss advanced,
correlated methods based on restricted Hartree-Fock reference wave functions, more specifically,
single-reference CC theory.

2.4.1 Ground‑State Theory

To begin with, let us first briefly introduce a linear parameterization, CI theory, first. We define
the linear excitation operator containing single and double excitations in the usual way,

OT D
X
ia

t i
a
OEa
i C

1

2

X
ijab

t
ij

ab
OEa
i
OEb
j : (2.82)

One of the most straightforward ways of dealing with the electron correlation makes use of this
truncated excitation operator to define the configuration-interaction with singles and doubles,
CISD, expansion of the wavefunction as

j‰CIi D .1C OT /j0i: (2.83)

The parameters in OT are then determined variationally by making the expectation value of the
energy stationary under the constraint that the wavefunction is (intermediate) normalized. This
results in the following residual conditions

h0j. OH �E/.1C OT /j0i
Š
D 0; (2.84)

ra
i D h0j

QEi
a. OH �E/.1C OT /j0i

Š
D 0; (2.85)

rab
ij D h0j

QE
ij

ab
. OH �E/.1C OT /j0i

Š
D 0: (2.86)

These equations are projections of the Schrödinger equation for ‰CI to the excitation spaces
involved in the wave function. The operators OE define the covariant basis for the ket-functions
in our formulation. Since this basis is not orthonormal, it is often necessary to define a
contravariant basis for bra functions such that

h0j QEkl:::
cd:::
OEab:::
ij ::: j0i D h

Q̂ cd:::
kl::: j

OEab:::
ij ::: j0i D ı

ij :::

kl:::
ıab:::

cd:::; (2.87)

where OEab:::
ij ::: is a product of several OE operators defined in Eq. (2.19), QEab:::

ij ::: denotes the
generator of the corresponding contravariant functions Q̂ cd:::

kl:::
, and ı

ij :::

kl:::
; ıab:::

cd:::
are products of

Kronecker deltas.
This method has fallen into disfavor due to its lack of size-consistency and size-extensivity,

despite having the advantage of being a variational method. To amend these shortcomings, the
coupled-cluster method was introduced, relying on an exponential parametrization,

j‰CCi D e OT
j0i: (2.88)
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2.4 Single-Reference Coupled-Cluster Theory

In this case, a variational solution is impractical since the expansion of the exponential leads to
an infinite series. It is thus usual to define the similarity-transformed Hamiltonian as

xH D e� OT OH e OT ; (2.89)

which has a commutator expansion terminating at fourth order, N D 4, in the closed shell
(more generally, single-reference spin-unrestricted) case,

xH D

NX
kD0

1

kŠ
Œ OH; OT �k D OH C Œ OH; OT �C

1

2
ŒŒ OH; OT �; OT �C � � �

D

NX
kD0

�
OH OT k

�
C

: (2.90)

Eq. (2.90) is well known as the Baker-Campbell-Hausdorff (BCH) expansion, from which it is
obvious that only the connected parts survive, indicated by the subscript C . This expansion also
appears in the multireference case (Sec. 2.6.3), although the expansion only terminates at higher
orders N .

The Schrödinger equation of the transformed Hamiltonian can still be solved using the
projection technique,

h0j. xH �E/j0i
Š
D 0; (2.91)

ra
i D h0j

QEi
a. xH �E/j0i

Š
D 0; (2.92)

rab
ij D h0j

QE
ij

ab
. xH �E/j0i

Š
D 0; (2.93)

However, in this case, the projection solution is not obtained from the variation of the expectation
value of the Hamiltonian with ‰CC. Although it is possible to relate these projection conditions
to the variational CC ones and it is also possible to formulate a variational problem from which
these projection equations follow [441], they are not unique in the sense the projection solutions
are unique for CI. Other methods of solution have also been investigated [442], although the
traditional projection approach remains the method of choice.
Normal ordering does not change this picture much in the single-reference case, although

it certainly makes the evaluation of the second quantized strings easier. The creators and
annihilators in the excitation operators of the closed shell case in Eq. (2.82) commute, and
thus they are essentially normal ordered. This is no longer the case with open shell excitation
operators, which is why they are more difficult to deal with. The Hamiltonian can of course be
written in a normal ordered form,

OH D h0 C OHN ; (2.94)
h0 D h0j OH j0i D E0; (2.95)

OHN D hq
pf
OEp
q g C

1

2
hqs

prf
OEpr
qs g: (2.96)
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Switching to OHN in the above equation thus amounts to a shift with the (HF) reference energy
E0, and then the rules of evaluating normal-ordered products may be applied in evaluating
matrix elements. In practice, this evaluation is usually performed in the simpler spin-orbital
form.

For further details, we refer to a detailed introduction by Crawford and Schaefer [15], as well
as to textbooks [14, 17].

2.4.2 Equation‑of‑Motion Coupled‑Cluster Theory

Coupled-cluster theory, as outlined in Sec. 2.4.1, is a ground-state method. To access excited
states, the EOMCC method has been developed, which uses a linear parameterization to this
end. Because of the projection conditions, the singles and doubles manifolds are decoupled from
the ground state and the excited states can be obtained by diagonalizing the Hamiltonian in the
space of single and double excitations. This would yield an eigenproblem for the energy of the
�th excited state, E� and the linear excitation operator OR� that produces the �th excited state
from the CC ground state. Instead, the EOM equations are formulated in a way to yield the �th
excitation energy !� D E� �E0 directly,

h0j QL
�

�
Œ xH; OR� �j0i D !�ı�� ; h0j QL

�

�
OR� j0i D ı�� : (2.97)

Since this is a non-symmetric eigenproblem, the left-hand solutions OL� are not the same as the
right-hand ones OR� , but it is not necessary to calculate both if only the excitation energy is
needed. Depending on the precise definition of OR� , the above eigenvalue problem can be solved
for excitation energies (EE), ionization potentials (IP) and electron affinities (EA),

OREE
� D

X
ia

r.�/i
a
OEa
i C

1

2

X
ijab

r.�/
ij

ab
OEa
i
OEb
j ; (2.98)

ORIP
� D

X
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r.�/i
Oai C

X
ijb
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ij

b
OEb
j Oai ; (2.99)

OREA
� D

X
a

r.�/a Oa
a
C
X
jab

r.�/
j

ab
OEb
j Oa

a; (2.100)

where the various r.�/i :::
a::: are the EOM excitation/ionization amplitudes. The QL� operators have

a similar structure except they are formulated in terms of contravariants. In the EE case, the
computational cost scales as the sixth power, in the IP/EA cases as the fifth power of the system
size.

2.4.3 Similarity‑Transformed Equation‑of‑Motion Coupled‑Cluster Theory

The STEOM method utilizes a second similarity transformation, compared to EOM-CC theory,
to decouple the singles manifold from the doubles and higher-order excitations,

OG D fe OS
g
�1 xH fe OS

g; (2.101)
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where the operator OS is obtained from the solutions of the IP/EA equations

OS D OS IP
C OSEA; (2.102)

OS IP
D
X
i 0m
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OEm
i 0 g C

X
ijmb

s
ij

mb
f OEb

j
OEm
i g; (2.103)

OSEA
D
X
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se
a0f OE
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X
jabe

s
ej

ab
f OEb

j
OEa
e g: (2.104)

Here, the indices m and e correspond to active orbitals in the occupied and virtual spaces,
respectively, while the corresponding inactive orbitals are denoted as i 0 and a0. The selection of
the active orbitals within the STEOM-CCSD method is discussed elsewhere, and it can be made
entirely automatic [97, 443]. Finally, the connection between the STEOM amplitudes s:::

::: and
the IP/EA amplitudes is given by

si 0

m D �
X

�

r�1.�/m r.�/i 0

; s
ij

mb
D �

X
�

r�1.�/m r.�/
ij

b
; (2.105)

se
a0 D

X
�

r�1.�/e r.�/a0 ; s
ej

ab
D
X

�

r�1.�/e r.�/
j

ab
; (2.106)

where the summation includes a handful of states � in the active space. Once the transformation
is carried out, OG can be diagonalized in the subspace of single excitations. On this basis, the
STEOM working equations can be derived and implemented along the lines first indicated by
Nooijen and Bartlett [12].

2.5 Domain‑Based Pair Natural Orbitals

The DLPNO scheme has been applied with success to obtain ground state CC energies for
molecules containing hundreds of atoms [54]. To this end, it is necessary to reduce the size of
the amplitudes and integrals involved in the CC equations; a process [53, 54] that will be broadly
outlined here. At the basis of PNO schemes is the realization that the CC correlation energy
Ecor can be written as a sum of pair energies "ij for each distinct occupied orbital pair ij ,

Ecor D
X
i�j

"ij : (2.107)

If the occupied orbitals are localized using an appropriate localization scheme [444, 445], then
the number of pair energies above a certain threshold scales linearly with system size. These
pairs can be treated at the CC level, while the smaller contributions can be accounted for at a
lower level of theory [54].

The next step is to choose a compact representation for the virtual space. Since atomic
orbitals (AO) are local by construction, a suitable basis for the virtual space may be found by a
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projection that removes the occupied components from the AO basis. The resulting projected
atomic orbitals (PAO) [446] are given by

j Q�i D
X

�

QP� Q� j�i ; (2.108)

where � is an AO and Q� is a (redundant) PAO. QP� Q� is an element of the PAO coefficient matrix
defined as

QP D 1 � COC
�
OS ; (2.109)

with 1 being the unit matrix, S the AO overlap matrix and CO the occupied block of the
molecular orbital (MO) coefficient matrix. A set of linearly independent or nonredundant PAOs
can be conveniently constructed from the functions Q� by standard orthonormalization/canoni-
calization techniques. Next, a list of PAOs can be generated for each occupied orbital i , called
the domain of i . This will include all members of those shells of PAOs for which at least one
PAO has a differential overlap integral (DOI) with i above a certain threshold,

DOIi Q� D

sZ
dr ji.r/j2j Q�.r/j2: (2.110)

The domain for an occupied pair ij is then simply the union of the domains of i and j .
The pair domains obtained in the previous step can be used to span the virtual subspace that

interacts significantly with a given pair. To achieve this, a perturbative (or other approximate)
pair density Dij is needed,

Dij
D QT ij T ij �

C QT ij �T ij ; QT ij
D

1

1C ıij
.4T ij

� 2T ij �/; (2.111)

where we use the first-order Møller-Plesset amplitudes for T ij , which is the simplest choice. The
PNOs can be obtained by diagonalizing the pair density spanned in the basis of PAOs,

QD
ij

Q�ij Q�ij
D
X
Qaij

d
ij

Qaij Q�ij
n

ij

Qaij
d

ij

Qaij Q�ij
; (2.112)

where Q�ij is a nonredundant PAO belonging to the pair domain of ij , and d
ij

Qaij Q�ij
is the matrix

that transforms the PAOs into the PNOs Qaij of a given pair ij . The fact that for any given
occupied pair there are only a few PNOs that are larger than a threshold is the basis on which
the CC equations can be made linear scaling. The steps outlined above provide a series of
transformations that transform the canonical equations into the DLPNO basis. Used together
with the resolution of identity integral decomposition scheme [447, 448], all quantities can be
reduced to a size as compact as the physics encoded in the pair density matrix allows them to be.
The various thresholds necessary to define these transformations have been studied elsewhere
and predefined defaults are available [449]. The settings we will use in this study have also been
described in an earlier work [103].

38



2.6 Multireference Methods

The procedure described so far makes the ground state linear scaling, but that still leaves the
IP and EA steps that scale with the fifth power of the system size. It is relatively straightforward
to implement the IP equations in the DLPNO basis, and the resulting code will be nearly linear
scaling since all intermediates can be expressed using ground state DLPNO quantities. The
detailed description of this implementation can be found elsewhere [93]. In contrast, the EA
equations are more problematic since the EA singles are difficult to assign to any occupied pair
or orbital. Thus, these equations are partly kept in the canonical basis for a better control of
accuracy. As a result, the algorithm is a quadratic scaling one. Some terms in the EA equations
also need special treatment, and they are expanded in the (larger) diagonal PNO basis. The
accuracy and efficiency of this algorithm has also been investigated in the literature and it
does remove the bottleneck from the DLPNO-STEOM process [95]. Since the final step of
DLPNO-STEOM is essentially a configuration interaction singles (CIS) calculation, it is also
very easy to obtain approximate properties and the required one-body densities for DLPNO-
STEOM [103, 450]. The CIS approximation used with success in the past [103] will also be used
in Ch. 5 to account for solvent effects within the conductor-like polarizable continuum model
(CPCM) [451]. A somewhat more involved formalism [450] can be used to calculate transition
dipoles that are needed for spectral intensities.

2.6 Multireference Methods

Now, we can move on to methods based on multiconfigurational reference wave functions. To
this end, we first recapitulate the concept of internal contraction and discuss the fic-MRCI and
fic-MRCC theories, before stating the salient features of MR-EOMCC theory. We finish this
section by briefly describing how high-order density matrices appear in internally contracted
approaches.

2.6.1 Internal Contraction

Internal contraction was first developed for MRCI theory by Meyer and Siegbahn [120, 121],
and its general form can be written as

j‰i D O� j0i D O�
X

I

cI jˆI i ; (2.113)

where j0i is a multiconfigurational zeroth-order wave function, most likely obtained from a
CASSCF calculation, cI are the expansion coefficients, and jˆI i are individual configuration
state functions (CSFs), or alternatively determinants. O� is a general wave operator depending
on the exact theory, e.g., O� D exp. OT / for coupled-cluster theory. In summary, the defining
feature of internal contraction is that a single wave operator acts as a whole on the zeroth-order

39



2 Theoretical Background

wave function, rather than having one wave operator per CSF as in uncontracted approaches,

j‰i D
X

I

O�.I /cI jˆI i : (2.114)

Eqs. (2.113)–(2.114) further illustrate that internally contracted theories have a much smaller
parameter set for long CI expansions, i.e., calculations with large active spaces. Hence, given
that we can find a way to eliminate high-order densities, internally contracted methods appear
to be the natural choice for systems with large active spaces.

2.6.2 Fully Internally Contracted Multireference Configuration Interaction
Theory

As stated above, the first reports of internally contracted MRCI theory are due to Meyer and
Siegbahn [120, 121]. However, since this theory shares the lack of size-consistency and -
extensivity with its single-reference counterparts, it has never become widely used within the
computational chemistry community. The most popular approach is arguably the partially
contracted MRCI implementation byWerner and Knowles [143], which leaves all but the doubly
external classes uncontracted.
In our implementation, we use the linear parameterization with O� D 1C OT , and
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(2.115)

including all eight excitation classes from CASPT2 and NEVPT2 theory [167, 171]. Eq. (2.115)
can also be graphically depicted to more clearly show the different orbital ranges involved in the
excitation classes (Fig. 2.1).
The energy and residual equations are virtually identical to the single-reference case, save for

the fact that the reference wave function j0i is a CASSCF wave function,

E D h0j OH j‰i ; (2.116)

rP D h Q̂ P j OH �Ej‰i
Š
D 0; (2.117)

with a tilde indicating the (possible) use of contravariant projection functions [33, 452]. In
addition to contravariant projection functions being used, the projection functions are not
linearly independent in the multireference case. The scheme used by us to remove redundant
excitations was published by Sivalingam et al. [176].
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Figure 2.1 Graphical representation of the excitation operators from Eq. (2.115).

2.6.3 Fully Internally Contracted Multireference Coupled‑Cluster Theory

Throughout quantum chemistry, we always strive for faster and more accurate theories to aid
in our understanding of chemical systems. As mentioned before, CCSD(T) has been quite
universally established as the “gold standard” in the single reference domain. In the multirefer-
ence regime, however, no clear-cut “best” approach exists yet. Various approaches to transfer
the coupled-cluster ansatz to multireference wave functions have been introduced [139], some
dating back to the late 1970s and early 80s [144, 188, 190, 453]. In our group, we focus on
the internally contracted variant since it has several desirable properties, such as orbital invari-
ance [194], a limited parameter space [195], and size-extensivity [454]. Furthermore, ic-MRCC
theory is known to be significantly more accurate than ic-MRCI theory, even when the BCH
expansion of the similarity-transformed Hamiltonian is truncated at quadratic terms [185].

Given a zeroth-order wave function j0i obtained from a run of a complete active space self-
consistent field (CASSCF) calculation, the ansatz for the coupled-cluster wave function can be
written as

j‰i D e OT
j0i ; (2.118)

with the cluster operator OT identical to the one we used for fic-MRCI theory, Eq. (2.115). The
energy and residuals are computed as in single-reference CC theory as the expectation value
of the similarity-transformed Hamiltonian or by projecting the transformed Hamiltonian with
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functions from all excitation classes P ,

E D h0j xH j0i ; (2.119)

rP D h Q̂ P j xH j0i
Š
D 0: (2.120)

In Eqs. (2.119)–(2.120), we truncate the BCH expansion of the similarity-transformed Hamil-
tonian after quadratic terms,

xH � OH C Œ OH; OT �C
1

2
ŒŒ OH; OT �; OT �; (2.121)

although the expansion would only naturally terminate after octuple powers, OT 8 [195]. The
reason for this long expansion lies in the active indices, which can easily be contracted in chains
among themselves, delaying the termination of the BCH expansion when compared to closed
shell single-reference CC theory (where it terminates after OT 4, see Sec. 2.4.1). Computing
the full expansion, however, would be prohibitively expensive, so Evangelista and Gauss [194]
investigated the issue and reported that truncating the BCH after quadratic terms leads to
minimal losses in accuracy.
MRCC theory further requires a scheme to deal with linear dependencies among the pro-

jection functions, which is introduced by the overlaps of functions with active orbital indices.
The problem is much more complicated than in SR-CC theory, where linear dependencies
can trivially be removed by restricting the summation indices in the cluster operator, i < j

(Eq. 2.82), and with contravariant projection functions. In MRCC theory, on the other hand, a
new, orthonormal basis must be found for the excitation operators, which is conventionally done
through Löwdin’s canonic orthonormalization [385]. The scheme that we use throughout this
thesis was presented by Sivalingam et al. [176], and a fuller discussion of the possible alternative
schemes is given by Köhn and co-workers [195, 455].
Moreover, implementing fic-MRCC theory is much more involved than SR-CC theory, requir-

ing automated tools for the sheer number of terms that arise from Eqs. (2.119)–(2.120). A full
discussion of our solution is given in Sec. 4.3. We also note the somewhat different behavior of
normal order in MR theories compared to the SR case discussed in Sec. 2.4.1. The Hamiltonian
can essentially be written in the form of Eqs. (2.94)–(2.96), except now using GNO.This implies
that the matrix elements h will contain up to two-body cumulants. In theMR case, the excitation
operator in Eq. (2.115) is not in normal order either. For a generic cluster operator of excitation
level N , the normal order can be given formally as

OT D

NX
p:::q:::

tq:::
p:::
OEp:::
q::: D

NX
p:::q:::

xtq:::
p::: f

OEp:::
q::: gGNO ; (2.122)

where the cluster amplitudes xt in normal order consist of products of the original amplitudes t

and at most N -body cumulants. While we do not make use of normal order in our implemen-
tation, these properties will be useful for the discussion in Ch. 3.
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2.6.4 Multireference Equation‑of‑Motion Coupled‑Cluster Theory

The MR-EOMCC approach is an excellent tool to target multiple excited states simultaneously,
with highly accurate results [210–213, 215, 217]. Over time, several variations on the main
concept have been reported, but an extensive benchmark by Huntington et al. [215] points to
the MR-EOM-T|SXD|U procedure as the overall best in accuracy. Since this variant was also
chosen as the basis for the MR-EOMPTmethod reported in Ch. 6, we reiterate its salient features
here. Furthermore, in the following we will use the term “MR-EOMCC” to refer to this specific
variant, if not stated otherwise.

The method relies on several, sequential similarity transformations with different cluster
operators OO ,

xH 0
D
˚
e OO
	�1 xH

˚
e OO
	
; (2.123)

where xH is a transformed Hamiltonian from a previous step, or just the Born-Oppenheimer
Hamiltonian in the first step. Eq. (2.123) also implies an internally contracted approach, for there
is only one set of amplitudes for the state-averaged CASSCF reference wave function (Eq. 2.78).
These transformation steps are the hallmark of transform-then-diagonalize methods, to which
both MR-EOMCC and STEOM (Sec. 2.4.3) belong. Their main aim is to decouple blocks of
the Hamiltonian, which includes all double excitations in case of MR-EOMCC theory (see also
Fig. 2.1, multireference classes). Then, the final states are obtained by a diagonalization of the
transformed Hamiltonian in a small space of only singles excitations, making MR-EOMCC a
multistate method. Further details of the equations are discussed in Sec. 6.1.1.

Compared to fic-MRCC theory (Sec. 2.6.3), MR-EOMCC theory uses many-body instead of
projective residual conditions (Eq. 3.18). This ties in withMR-EOMCC theory being a multistate
method and further reduces the maximum order of density matrices that appear in the working
equations (see Sec. 2.6.5). The many-body residuals are extensively discussed and compared to
the projective residuals, for which we refer to Ch. 3 for full details.

2.6.5 Density Matrices and Their Appearance in Internally Contracted Methods

In internally contracted theories, the highest-order densities arise frommatrix elements forming
the �-vector or residuals. These matrix elements can generally be written as

rP D h0j. O�
0
P /� OH O�n

j0i ; (2.124)

where O�; O� 0
P are (potentially contravariant [33, 452]) excitation operators, e.g., O�ab

ij D
OEa
i
OEb
j ,

and n indicates the order of the expansion (n D 1 for CI theory, n > 1 for CC theory [195]).
We further use the spin-free molecular Hamiltonian in the Born-Oppenheimer (clamped nuclei)
approximation, Eq. (2.36). In the matrix elements from Eq. (2.124), the index ranges to which
the indices on the excitation operators O� belong depend on the excitation class, with more active
indices directly translating to higher-order densities, for inactive and virtual labels only give
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Kronecker deltas upon contraction. Additional active labels can arise from the Hamiltonian
unless they are forced to be inactive or virtual such as to obtain non-zero matrix elements. All
these active indices then give rise to high-order densities, provided that the number of upper
and lower indices match. For example, terms involving the four-body density 4 are contained
( ) in the linear matrix element

rab
tu D h0j.

OEa
t
OEb
u/� OH OEa0

t 0
OEv0

u0 j0i

 
X

t 00u00v00

ıa0

b .at 00
ju00v00/u

t 0
t
t 00

u00

v00
v0

u0 ;
(2.125)

with a0 contracted with b and a contracted with an index from the Hamiltonian, thus appearing
in the two-electron integral. The remaining active indices, including the double-primed indices
from the Hamiltonian, then form (at most) the four-body density. Nevertheless, not all indices
from the Hamiltonian are required to be active, thus densities from 2 to 4 appear in the full
set of equations.
As a final point, high-order densities can be avoided to a certain degree in internally con-

tracted theories by using a many-body approach [188, 221], examples of which can be found in
MR-EOMCC theory [210] and the DSRG method [232, 233]. The key step is to avoid projection
as in Eqs. (2.124) and (2.125), which adds further excitation operators, O� 0

P , to the residuals, by ex-
panding the transformed Hamiltonian in many-body form, Eq. (3.5), and setting the many-body
elements to zero, xhpr

qs D 0. For similarly constructed ansatzes with up to quadratic amplitudes
OT 2, this leads to only the four-body density being required in many-body approaches [209, 210],
compared to the five-body density in projective schemes. [195] However, many-body theories
cannot be considered state-specific any longer, and intruder states arise more easily [211, 232].

2.7 Vibronic Effects

So far, we have exclusively discussed methods for determining the electronic part ‰ of the total
wave function x‰ of a system, which also includes a nuclear contribution. In other words, ‰

is an (approximate) eigenfunction of the Born-Oppenheimer Hamiltonian, Eq. (2.22), whereas
the total wave function x‰ is an (approximate) eigenfunction of the full molecular Hamiltonian,
Eq. (2.21). Since chemical behaviour depends primarily on electronic structure, much of quan-
tum chemistry focuses on finding solutions of the electronic part. However, when comparing to
experimental reference data, e.g., thermochemistry, kinetics or in the form of spectra, vibrational
and rotational effects must be included at least via the simplest rigid-rotor-harmonic-oscillator
model [456]. When calculating electronic spectra in particular, vibronic, i.e., vibro-electronic,
coupling effects must often be accounted for. In the following, we will outline a simple scheme
to include the most important vibronic effects in spectroscopic calculations and thus provide
a link between some of the involved electronic structure theory discussed in this thesis and
measurable data.
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2.7 Vibronic Effects

The starting point for our treatment [457–459] of vibronic effects is the Fermi-Golden rule
for periodic interactions which establishes that the rate of transition between an initial state j x‰i i

and a final state j x‰f i coupled by an operator OW is

k.!/if D
2�

„
jhx‰i j OW j x‰f ij

2ı.Ei �Ef ˙ „!/; (2.126)

where the plus sign corresponds to absorption leading to a final state with energy Ef D EiC„!

and the minus sign to emission with Ef D Ei � „! as a result of interacting with a photon of
energy „!. Within the dipole approximation, the coupling operator becomes a dipole operator,
and the entire spectrum �˙ is given by summing over thermally weighted initial and all final
states,

�˙.!/ D ˛˙.!/
X
if

Pi .T /jh x‰i j O�j x‰f ij
2ı.Ei �Ef ˙ „!/; (2.127)

where ˛˙ is a frequency dependent prefactor [459] that differs for absorption and emission,
and Pi .T / is the Boltzmann population of the initial states. The Dirac delta function, ı, may
be replaced by various line shape functions to account for line broadening. Integrating this
expression with respect to ! yields the rate of the radiative processes,

k˙ D

Z
d! �˙.!/: (2.128)

To evaluate this formula, the inverse Fourier transform of the Dirac delta is substituted into the
rate expression and the wavefunction is separated into an electronic (‰) and nuclear (vibrational)
part (‚). Denoting final states by a prime, and assuming a single initial and a single final
electronic state, the total wavefunctions can be written as j x‰i i D j‰‚i i and j x‰f i D j‰

0‚0
f
i,

which leads to the following expression,

�˙.!/ D ˛0
˙.!/

Z
dt �˙.t/e˙i!t ; (2.129)

where all constants are contained in ˛0
˙
[459]. This expression can be discretized and evaluated

using the discrete Fourier transformation technique. The correlation function �˙.t/ is given by

�˙.t/ D
X

i

h‚i j j�ej
2e�i OH�e�i OH 0� 0

j‚i ie�i�Et ; (2.130)

where �E is the electronic energy difference between initial and final states, � and � 0 are
appropriately shifted time-like variables [459], and OH and OH 0 are the vibrational Hamiltonians
of the initial and final states. The integral �e D h‰j O�j‰

0i is the electric transition dipole
moment, which also depends on nuclear positions. The normal coordinates Q of the initial
and Q0 of the final states are related by a linear transformation Q D JQ0 C K , where J is
the Duschinsky rotation matrix and K is the displacement vector. Thus, the integral �e may
be regarded as a function of either of these coordinate sets and it can be expanded as a power
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2 Theoretical Background

series. Truncating this series at zeroth order yields the Franck-Condon approximation, while
keeping the first-order terms as well yields the (first-order) Herzberg-Teller approximation. To
specify J and K , it is necessary to choose a model for the initial and final state potential
energy surfaces (PES) [460]. Within the harmonic approximation, the initial state PES V can be
expanded around its equilibrium geometry using the diagonal matrix of frequencies� calculated
at that geometry, V.Q/ D 1

2
Q��2Q. This still leaves us with a choice for the final state PES

V 0. Adiabatic models expand xV around the final state equilibrium geometry, while in vertical
models the expansion is performed around the initial state geometry. In one of the simplest
models, the so-called vertical gradient (VG) approximation, it is further assumed that the final
state Hessian is identical to the initial state one. This yields J D 1 and K D ���2g0, where g0

is the gradient of the excited state surface at the initial state geometry. This means that Q and
Q0 are simply displaced, and that quadratic differences between V and V 0 are neglected.
For the indigo dyes considered in Ch. 5, Barone and co-workers [461] have compared the VG

model to the adiabatic Hessian (AH) approach, in which the final state Hessian is also calculated
at the final state equilibrium geometry, and found that the VG model results agree well with
AH ones for this family of dyes. Since the AH model is considerably more expensive and often
less stable than VG, we will adopt the VG model for our purposes. The necessary ground state
geometries and frequencies can be obtained at the density functional theory (DFT) level, while
the vertical excitation energy and the dipole integrals can be calculated at the DLPNO-STEOM
level. The 0–0 transition energy can then be simply obtained by correcting the DLPNO-STEOM
energy with the VG energy shift obtained from DFT frequencies and displacements, and the
entire spectrum can also be calculated and compared to its experimental counterpart.
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3 Comparison of Projection and Many‑Body
Solution Criteria

In the following, we will compare projection and many-body techniques that yield solutions for
various correlated wavefunction ansatzes. We will also discuss the relevance of normal ordering
in projection techniques, while normal ordering is assumed throughout for the many-body
approach. We begin our discussion with the simple case of single-reference methods before
moving on to the more relevant multireference approaches.

3.1 Single‑Reference Methods

The basic theory which is necessary to discuss the projective and many-body residual conditions
has been recapitulated in Sec. 2.4.1 (single-reference CC theory), Sec. 2.2.5 (normal order and
Wick’s theorem) and Sec. 2.2.6 (generalized normal order and Wick’s theorem). Together, these
concepts can be used to expand the similarity-transformed Hamiltonian xH from CC theory in
a many-body form, given below. The discussion here will be given at a general level, but in this
section we will focus on the consequences for SR methods. However, before doing so, we first
need to slightly recast Wick’s theorem to make the connection of the many-body form to normal
order more obvious.
Starting from Eq. (2.58) in the SR case, or more generally from Eq. (2.65), we consider

now a string OC prt:::
qsu::: which is an arbitrary product of creators Oap; Oar ; Oat ; : : : and annihilators

Oaq; Oas; Oau; : : : The generalized Wick’s theorem (we will drop the GNO index of curly braces
from now on) makes it possible to rewrite such a string in terms of normal ordered strings and
constants

OC prt:::
qsu::: D fOa

p
Oaq Oa

r
Oas Oa

t
Oau : : :g C P.p

q j
rt
su : : :/C p

q f Oa
r
Oas Oa

t
Oau : : :g

C P.pr
qs j

t
u : : :/C pr

qs f Oa
t
Oau : : :g C : : :C C prt:::

qsu::: : (3.1)

Here, the n-body coefficients C
p:::
q::: contain all possible products of cumulants with a particle

rank of at most n such that the total particle rank of the product is n,

C p:::r:::t :::
q:::s:::u::: D �p:::

q::: � � ��
r:::
s::: � � ��

t :::
u::: � � � (3.2)

This further simplifies in the single-reference case as then only the one-particle cumulants
(�p

q D 
p
q D ı

p
q � �

p
q ) survive [219], and those can in fact be reduced to Kronecker deltas
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3 Comparison of Projection and Many-Body Solution Criteria

(Sec. 2.2.5). The fully contracted term C
prt:::
qsu::: D h0j OC

prt:::
qsu::: j0i is often denoted simply as

C0. The permutation operators P.: : : j : : :/ create all possible swaps between the index groups
separated by j with the appropriate sign, essentially accounting for all possible contraction
patterns. This formulation can be extended to the generators of the unitary group to enable a
spin-free formulation, while products of normal ordered operators, as in in Eq. (2.59), are also
conveniently evaluated, since only contractions connecting different terms need to be considered.
With Eq. (3.1), we can now define a normal-ordered (many-body expanded) form of the

similarity-transformed Hamiltonian. From Eq. (2.90),

xH D

NX
kD0

�
OH OT k

�
C
D

NX
kD0

X
pqr
stu

hq:::
p:::
xts:::
r::: � � � xt

u:::
t :::™

k times

f Oap
Oaq : : :gf Oar

Oas : : :g � � � f Oat
Oau : : :g; (3.3)

where we reverted to the spin-orbital form for simplicity and used general labels for the ampli-
tudes xt as in Eq. (2.122). In the SR case, the special form in Eq. (2.82) applies, i.e., the amplitudes
do not contain cumulants (xt D t). Thus, for the purposes of this chapter, we may assume that
the cluster operator is normal-ordered and set xt D t from now on. The normal-ordered Hamil-
tonian contains no cumulants as a result of normal ordering in the SR case, see Eq. (2.96), while
in the MR case we consider these as part of h0, h1 and h2. With these conventions, using
Eq. (2.59), substituting Eq. (3.1) and rearranging the terms leads to the following structure,

xH D

 X
���

h���
���t

���
��� � � � t

���
��� P.� � � j � � � /C ���

���

!
0

C

 X
���

h���
���t

���
��� � � � t

���
��� P.� � � j � � � /C ���

���

!q

p

f Oap
OaqgC X

���

h���
���t

���
��� � � � t

���
��� P.� � � j � � � /C ���

���

!qs

pr

f Oap
Oaq Oa

r
Oasg C : : : : (3.4)

Readopting the spin-free notation, the transformed matrix elements xh can now be easily identi-
fied as a product of untransformed integrals h, amplitudes t and cumulants � (collected in C ).
Thus, we may write

xH D xh0 C
xhq
pf
OEp
q g C

xhqs
prf
OEpr
qs g C : : : ; (3.5)

xh0 D h0j xH j0i D E: (3.6)

Note that this expression does not terminate at two-body terms. Using the product rule in
Eq. (2.59), the projection conditions in Eq. (2.92) and (2.93) take the following simple form in
the SR case,

ra
i �
xhi

a D 0; rab
ij �

xh
ij

ab
D 0: (3.7)

Since we now set conditions on the n-body matrix elements of xH , xhn, directly, we will refer to
this approach as the many-body solution technique, which was first discussed by Nooijen and
Bartlett [221]. In the SR case, this does not lead to simplifications, in fact, we have established
that in the single determinant case, the projection technique and the many-body approach lead
to the same results [210].
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3.2 Multireference Methods

3.2 Multireference Methods

In the multireference regime, the well-known ansatzes from the single-reference limit can also
be applied, albeit at higher complexity since the working equations now also need to encode
the multideterminantal nature of the wave function. We will not discuss multireference CI
approaches here, for which the residual conditions are formally very similar to the single
reference case and for which an excellent review has been published [182]. Instead, we will
solely focus on the internally contracted CC approach, and the flexibility in choosing the
residual conditions for this method.

3.2.1 Similarity‑Transformed Hamiltonian Expansions

The similarity-transformed Hamiltonian xH in coupled-cluster theory is given in Eq. (2.89). For
the multireference case presented here, we do not make any assumptions about the cluster oper-
ator OT contained therein. In particular, the cluster operator may contain all-active excitations,
which are the only ones that may lead to the maximum expansion length in the cumulant
expansion below, since cumulants with virtual or inactive labels vanish [219].
As any operator, the similarity-transformed Hamiltonian xH can be expanded into a sum of

normal-ordered operators of increasing ranks [221],

xH D

N.M �1/C2X
j D0

xhj f OEj g; (3.8)

where N is the order of the commutator expansion (Eq. 2.90), M is the maximum excitation
level of the coupled-cluster theory, e.g., M D 2 for CCD or CCSD, and 1 is subtracted to
account only for the connected part of the Hamiltonian. This many-body expansion is formally
identical to the that in the single-reference case, Eq. (3.5), except for the fact that here we use
normal-order with respect to a multideterminantal reference using the formalism of Kutzelnigg
and Mukherjee [219].

The expansion elements xhj in Eq. (3.8) deserve some attention. The similarity-transformed
Hamiltonian xH is constructed from the Fock matrix elements and two-electron integrals from
the Born-Oppenheimer Hamiltonian (denoted as h1 and h2 in the following, respectively) as
well as the n-tuple amplitudes tn, along the lines indicated in Eq. (3.4). Using these quantities,
the cumulant expansion of the xH matrix elements can be expressed in a more compact form

xhj D
X

kD0;1;2

NX
lDN0

.hk

lY
iD0

tni
ƒkCL�j /C : (3.9)

Here, tn0
D 1, L D

P
ni , 1 � ni �M and N0 is the minimal order of the nested commutator

contributing to hj obtained asN0 D max.0; dj �2
M
e/. For a given order of commutator expansion

l , there are many permutations of operator strings with same total order L. For simplicity,
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3 Comparison of Projection and Many-Body Solution Criteria

summation over these is implicitly assumed but not explicitly denoted. The quantity ƒ connects
the integrals and amplitudes in all possible label permutations, except for the disconnected
terms. ƒm itself consists of the sum of all allowed products of cumulants of the form Eq. (3.2),
the collective rank of which is m, and follows directly from the application of Wick’s theorem
(Eq. 3.1) and the KM normal order contraction rules [219] on the operators in the BCH
expansion (Eq. 2.90).
Although the idea behind the cumulant expansion is the expectation that higher rank cu-

mulants become smaller, this assumption does not hold true in all cases [405]. However, it is
possible to argue independently, based on Eq. (3.9), that for a given M , the many-body terms
xhj become progressively smaller for higher orders j [213]. This is evident, since the minimal
contraction length N0 increases with j . For M D 2, N0 is 1 for j D 3 and it is at least 2

for larger j . Thus, there is at least one t amplitude in every contribution to xhj , j > 2. If the
magnitude of the amplitudes can be assumed to be jjt jj � 1, then that the magnitude of xhj

will decrease with increasing j . It should be noted that the commutator expansion in the BCH
formula Eq. 2.90 is a third way of controlling the complexity of the Hamiltonian, since it affects
the matrix elements xhj . All these, the many-body expansion of the Hamiltonian, the cumulant
expansion of matrix elements, and the cumulant expansion of the Hamiltonian can serve as a
basis for truncation schemes, and all of which are associated with the transformed Hamiltonian.
A fourth possibility related to the residual conditions is discussed in the next section.

3.2.2 Projective and Many‑Body Residual Conditions

The usual residual conditions employed in CC theory are the projective residuals,

rn D h0jf OEng
� xH j0i; (3.10)

which result in jjnjj non-linear equations for jjnjj cluster parameters. In contrast to CI theory,
this does not constitute a variational condition, although one can view this as the zeroth-order
term of such a condition [441]. Note that residual Eqs. (3.10) are generally linearly dependent
in the multireference regime. Consequently, a scheme to remove the dependencies is needed,
which may be achieved through defining the metric

Sij D h0j OE
�
i
OEj j0i (3.11)

for i; j � n and using Löwdin’s canonic orthogonalization procedure to obtain an orthonormal
basis in which the CC ansatz can be written. Since here we discuss concepts, we will not consider
this issue any further, and refer to Refs. [176, 195, 385] for details.
The projective residual equations can be cast using the many-body expansion xH (Eq. 3.8) as

rn D

nN C2X
j D1

h0jf OEng
�xhj f OEj gj0i D

nN C2X
j D1

xhj ƒnCj ; (3.12)
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3.2 Multireference Methods

where ƒnCj again contains products of different orders of cumulants (vide supra) that lead to
the total rank nC j . We may refer to this expression as the cumulant expansion of the projection
conditions.
Yet, in contrast to ƒm in the previous section, we can here impose further restrictions on

the possible products of cumulants in ƒm since we only have two excitation operators and only
obtain the fully contracted part in Eq. (3.12). In particular, we remark that a term containing
only powers of the one-body cumulant, .�1/m, can only appear when the operators in Eq. (3.12)
are of the same order. For example,

h0jf OE2gf OE2gj0i D �4 C �3�1 C �2.�2 C �2
1/C �4

1; (3.13)

whereas for

h0jf OE2gf OE1gj0i D �3 C �2�1: (3.14)

It follows that only a single term in Eq. (3.12) can have products of purely one-body cumulants,
namely when n D j we get .�1/n.

As �1 D 1 and �1 are the only survivors in the single determinant limit, they are also
expected to be among the largest quantities in the multireference case as well. Moreover, higher-
order terms xhj >2 in the many-body expansion are also small since they contain at least one
amplitude t . Thus, separating the leading order term in ƒnCj in Eq. (3.12), we find

rn D
xhn.�1/n

CRn; (3.15)

with the higher order terms collected in Rn.
Eq. (3.15) can be simplified by using the fact that a CASSCF wave function is invariant with

respect to arbitrary rotations within the inactive, active, and virtual orbital blocks. We can
use this flexibility to assume active natural orbitals, i.e., diagonal active blocks of the densities,
�

p
q D niı

p
q ıi

p and �
p
q D na0ı

p
q ıa0

p . In this case, Eq. (3.15) reduces to

rn D

nY
iD1

ni
xhn CRn (3.16)

D nxhn CRn: (3.17)

The orbital occupations 0 � ni � 2 are defined such that for virtual orbitals we have na D 2,
a result of virtual labels being associated with a hole density � (see, e.g., Eq. 3.28). Effectively,
the term .�1/n reduces to a simple prefactor of the n-body elements xhn. Neglecting all higher-
order terms Rn, we find that solving for the residual equations rn is equivalent to setting the
many-body elements xhn themselves directly to zero,

rn D
xhn

Š
D 0; (3.18)
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3 Comparison of Projection and Many-Body Solution Criteria

for non-vanishing occupation numbers (see discussion below). The residual condition in
Eq. (3.18) has been termed many-body residuals by Nooijen and co-workers [210]. In their
approach, instead of taking this as the leading-order term of the projected residual conditions,
they have arrived at these conditions through similar conditions as used in Fock-space CC
theory (FSCC) [210, 221, 462].

As discussed elsewhere, these residual conditions are formally free from linear dependencies
that plague the projective ic-MRCC residual conditions [210]. It should be remarked that these
conditions must not be used for the singles residuals,

ra
i D
xhi

a D 0; (3.19)
ra

t D
xht

a D 0; (3.20)
r t
i D
xhi

t D 0; (3.21)

since these conditions would violate the generalized Brillouin theorem [210]. The higher-order
residuals do not have this restriction. Therefore, the two-body elements xh2 are well suited to
replace the projective doubles residual conditions from Eq. (3.10). These many-body conditions
are much cheaper than the projective residual equations, which is evident from Eq. (3.15), and
an analysis published by Datta et al. [210]. To summarize, we have established that satisfying the
many-body conditions in the multireference case correspond to putting the leading terms in the
projection conditions to zero and leaving only residual terms behind, which may be expected to
be small. We will investigate the validity of this expectation in Sec. 3.3.

3.2.3 A Simplified Ansatz for Comparing Many‑Body and Projection Conditions

In this section, we construct two simplified internally contracted MRCC theories that only differ
in the residual condition; one uses the conventional projective residuals, henceforth denoted
as pr-MRCC, and the other uses the many-body residuals, called mb-MRCC in what follows.
To the best of our knowledge, these two conditions have only been compared in the work of
Datta, Kong, and Nooijen [210] asmixed residuals and were always followed by an uncontracted
MRCI-type diagonalization.
In multireference coupled-cluster theories, it is customary to include all but the active-active

excitations into the cluster operator OT [194, 195], simply for retaining intermediate normaliza-
tion and avoiding even higher-order densities,

h0j‰i D 1: (3.22)

If necessary, the effect of active-active excitations can be included through relaxing the reference
CI expansion coefficients in the presence of OT by solving an effective eigenvalue problem [194,
195]. Different schemes have already been discussed in the literature [195].
In this chapter, we restrict the cluster operator to doubles excitations into the virtual space
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(i.e., two-particle excitations),

OT D
1

2

X
ijab

t
ij

ab
OEa
i
OEb
j C

X
itab

t it
ab
OEa
i
OEb

t C
1

2

X
tuab

t tu
ab
OEa

t
OEb
u : (3.23)

This implies that all excitation operators commute among themselves, in other words, we have
a normal-ordered OT . We remark that this cluster operator is the same as used in MR-EOMCC
theory [211], except for the singles and the fact that we use state-specific instead of state-averaged
densities throughout.
The ramifications of such a restricted cluster operator are as follows. First, due to having

only commuting excitation operators in OT , the BCH expansion terminates exactly after fourfold
nested commutators. However, in the residual and energy expressions of both the projec-
tive and the many-body variant of fic-MRCC, the truncation already occurs after the twofold
commutators,

xH D OH C Œ OH; OT �C
1

2
ŒŒ OH; OT �; OT �: (3.24)

This follows from the excitation ranks of the Hamiltonian, the projection and the cluster opera-
tors in the case of the projective variant. For the many-body variant, due to the constrained OT ,
terms with at least OH OT 3 can only appear inmany-body elements of rank four xh4 or higher. These
terms neither appear in the energy expression (D xh0) nor in the residuals (D xh2). Secondly, the
rank of the cumulants or densities is also limited. For the projective equations, at most terms of
four-body character �4 can appear. In the many-body case, all cumulants are strictly limited to
two-body terms �2 since we only have two-particle excitation classes in Eq. (3.23).

For the chosen cluster operator (Eq. 3.23), the many-body expanded Hamiltonian in Eq. (3.8)
takes the form

xH D xh0 C
xhq
pf
OEp
q g C

xhrs
pqf
OEpq
rs g C

xhrsi
pqaf

OE
pqa
rsi g

C xh
rsij

pqab
f OE

pqab
rsij g C

xh
qijkl

pabcd
f OE

pabcd

qijkl
g C xh

ijklmn

abcdef
f OE

abcdef

ijklmn
g;

(3.25)

where i; j; k; l; m; n are taken to be either inactive or active indices for the sake of brevity.
Inactive/Active and virtual indices appear in Eq. (3.25) instead of all-general indices for the
simple reason that the cluster operator (Eq. 3.23) only contains two-particle excitation classes.
The restricted OT also limits the total order of cumulants in the cumulant expansion of the xH
matrix elements (Eq. 3.9) to ƒ2 since cumulants with non-active indices must vanish [219].
For some indices i 0; j 0; a0; b0 appearing in the excitation classes in Eq. (3.23), and applying

a contravariant projection to eliminate permutations, the relation between projection and the
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many-body conditions thus becomes

h0j. xH �E/j0i D 0; (3.26)

ra0b0

i 0j 0 D h0jf QE
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i 0j 0 g
� xH j0i

D

�
 i 0

r j 0

s �
p
a0�

q
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i 0j 0p
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rsij

pqab

Š
D 0;

(3.27)

which can be written in a more compact fashion (cf. Eq. 3.15) as

ra0b0

i 0j 0 D  i 0

r j 0

s �
p
a0�

q

b0
xhrs
pq CRa0b0

i 0j 0 D 0; (3.28)

in which Ra0b0

i 0j 0 denotes the higher order terms. As we noted earlier, the projection and many-
body conditions are equivalent in the single determinant case (all higher-order cumulants
vanish and the one-body particle and hole densities reduce to Kronecker deltas), whereas they
are obviously different in the current context. By following the analysis from Sec. 3.2.2 in using
natural orbitals, the projection conditions under the present assumptions become

ra0b0

i 0j 0 D ni 0nj 0na0nb0 xh
i 0j 0

a0b0 CRa0b0

i 0j 0 D 0; (3.29)

which lends itself naturally to the approximation

ra0b0

i 0j 0 � ni 0nj 0na0nb0 xh
i 0j 0

a0b0 D 0; ” xh
i 0j 0

a0b0 D 0; if ni 0 ; nj 0 ¤ 0: (3.30)

Thus, if higher order terms can be neglected, and the occupation numbers are non-zero, the
projection and many-body conditions are equivalent under the present assumptions. The active
orbital occupation numbers may become zero as the system approaches the single reference
limit (e.g., for antibonding orbitals included in the active space). In this case, the two conditions
are not equivalent, and it is precisely the case where mb-MRCC has convergence problems. In
pr-MRCC, hi 0j 0

a0b0 is multiplied by the occupation number (the density in general), which becomes
singular and is thus removed as a linear dependency. In the more general case, Eq. (3.28) still
applies, and the fulfillment of the many-body conditions also implies that some of the largest
components of the first term in this equation vanish, while in the terms that do survive the
matrix elements are multiplied with off-diagonal elements of the one body densities that vanish
in the single determinant limit.

3.3 Comparing Projection and Many‑Body Conditions

To assess how close the projective and the many-body solutions are numerically, we evaluated
the residual conditions of each method using the converged amplitudes of the other, according
to Eqs. (3.10) and (3.18), respectively.
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We first turn to the single reference limit (Tab. 3.1), i.e., we choose a fully occupied active
space, CAS(2n; n). In this case, as detailed above, both residual conditions reduce to the same
equations since the many-body and projective residuals are identical in the single-reference case,
and consequently result in the same set of amplitudes for both pr-MRCC and mb-MRCC meth-
ods. Accordingly, the computed correlation energy from all methods and the cross-substituted
variants agrees to within machine precision, which numerically demonstrates the equivalence
of pr-MRCC and mb-MRCC theory in the single-reference case. Moreover, all residuals lie
below the chosen convergence threshold of max.jjrjj/ < 10�6, indicating that also the cross-
substituted variants are converged.

Table 3.1 Single reference limit of projective and many-body methods. pr-MRCC(Tmb): projective
code evaluated with many-body amplitudes, mb-MRCC(Tpr): many-body code evaluated with projective
amplitudes. The N2 molecule had an inter-atomic distance of rNN D 1:0 Å.

pr-MRCC mb-MRCC pr-MRCC(Tmb) mb-MRCC(Tpr)

N2 CAS(2,1) max.jjrjj/ 2.10E-07 9.30E-08 1.60E-07 9.00E-08
Ecor �0.308358 �0.308358 �0.308358 �0.308358

N2 CAS(4,2) max.jjrjj/ 9.80E-07 9.20E-08 1.80E-07 7.40E-07
Ecor �0.308358 �0.308358 �0.308358 �0.308358

In the multireference limit (Tab. 3.2), the situation is more complicated as the residual equa-
tions are no longer the same (Eq. 3.27). We base the comparison on very tightly converged
MRCC calculations (max.jjrjj/ < 10�10) and then cross-substitute the amplitudes.

Table 3.2 Multireference limit of projective and many-body methods. pr-MRCC(Tmb): projective
code evaluated with many-body amplitudes, mb-MRCC(Tpr): many-body code evaluated with projective
amplitudes. Also scaled with orbital occupation numbers to assess magnitude of higher order terms,
mb-MRCC(Tpr)* (see text). Results were computed at fragment or atomic separations of 3–5Å.

pr-MRCC mb-MRCC pr-
MRCC(Tmb)

mb-
MRCC(Tpr)

mb-
MRCC(Tpr)*

Li2 CAS(2,2) max.jjrjj/ 5.14E-11 9.21E-11 2.03E-03 2.99E-02 1.57E-01
Ecor �0.071298 �0.070872 �0.070872 �0.071298 �0.071298

C2H2 CAS(6,6) max.jjrjj/ 4.44E-11 4.17E-11 5.11E-03 2.77E-02 1.05E-01
Ecor �0.141370 �0.137662 �0.137662 �0.141370 �0.141370

C2H4 CAS(4,4) max.jjrjj/ 7.12E-11 7.96E-11 4.33E-03 2.52E-02 1.08E-01
Ecor �0.230057 �0.227539 �0.227539 �0.230057 �0.230057

C2H6 CAS(2,2) max.jjrjj/ 7.14E-11 9.83E-11 2.60E-03 5.27E-02 2.59E-01
Ecor �0.323238 �0.322022 �0.322022 �0.323238 �0.323238
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It is obvious that the correlation energy is the same if the same set of amplitudes is used, as xH
is the same in the case of state-specific densities used here, i.e., pr-MRCC and the many-body
code with pr-MRCC amplitudes (mb-MRCC(Tpr)), and mb-MRCC and pr-MRCC with many-
body amplitudes (pr-MRCC(Tmb)), both give the same value of the correlation energy Ecor. It is
also worth noting that the correlation energy Ecor is consistently lower in the pr-MRCC method
than in the mb-MRCC method.
Let us turn to the magnitude of the residuals. The projective and many-body calculations

that preceded the cross-substitution were converged to almost machine precision so that the
magnitude of the cross-substituted residuals can be judged correctly. The pr-MRCC(Tmb) are
on the order of 2–5 � 10�3. This signals that the cross-substituted pr-MRCC is not converged,
however, the Tmb solution is already better than the perturbative fic-NEVPT2 guess for the
amplitudes used in the pr-MRCC calculations.
The many-body residuals, when evaluated with the pr-MRCC amplitudes (mb-MRCC(Tpr)),

are further away from zero than the other way around. In this case, the residuals are on the order
of 2–5 � 10�2, roughly one magnitude more than for pr-MRCC(Tmb). This seems to indicate
that the converged many-body amplitudes are a better guess of the solution of the projection
method than the other way around. This can be understood by considering that pr-MRCC
never zeroes out elements of the transformed Hamiltonian xH itself, but rather only zeroes the
sum from Eq. (3.27). Seeing as there are no constraints on the individual terms, the many-body
elements may in principle be arbitrarily large. In contrast, the pr-MRCC(Tmb) residuals are
smaller for the fact that the many-body condition explicitly zeroes out the largest elements of
the many-body expanded Hamiltonian, and thus also makes the leading-order terms in the
projection condition from Eq. (3.27) vanish. Nonetheless, higher-order elements still contribute
to the projective residual conditions.
Let us put these findings into the context of higher-order terms according to Eq. (3.27). Substi-

tuting the many-body amplitudes into the projective (pr-MRCC(Tmb)) conditions in Eq. (3.29)
yields the higher order terms

ra0b0

i 0j 0 .Tmb/ D Ra0b0

i 0j 0 .Tmb/; (3.31)

since xhi 0j 0

a0b0.Tmb/ D 0. On the other hand, the pr-MRCC amplitudes satisfy Eq. (3.29), i.e.,

�ni 0nj 0na0nb0 xh
i 0j 0

a0b0.Tpr/ D Ra0b0

i 0j 0 .Tpr/: (3.32)

The left hand side contains the many-body conditions evaluated at the pr-MRCC solution
(xhi 0j 0

a0b0.Tpr/, mb-MRCC(Tpr)) multiplied by the orbital occupation numbers. Thus, the cross
substituted residual conditions contain information about the higher order terms Ra0b0

i 0j 0 . To
assess their relative magnitude for both methods, the mb-MRCC(Tpr) residuals need to be
multiplied by the orbital occupation numbers as shown in Eq. (3.32). These scaled residuals are
denoted as mb-MRCC(Tpr)* in Tab. 3.2 and correspond exactly to the higher-order terms.
We find that the scaled mb-MRCC(Tpr)* residuals are on the order of 0:1, which is larger

by two magnitudes than the higher order terms evaluated with many-body amplitudes (pr-
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MRCC(Tmb)). This observation underpins our earlier finding that the many-body solution is
a better guess of the projection solution than the other way around. In fact, the many-body
solution not only removes the largest contributions from the projection condition but also makes
the remaining terms relatively small. Since the cumulants in these higher order terms are not in
general small, these must be small because the higher order many-body elements that contain
at least one t amplitude are small. Similar conclusions cannot be reached about the projection
solution when used as a guess in the many-body approach. In the final analysis, the many-body
conditions are not only cheaper than the projection solution, but they also provide a good
approximation to it.
This behavior of the many-body solution, in turn, perfectly justifies the truncated sequential

transformation procedure in MR-EOMCC theory. The goal of MR-EOMCC, see Sec. 2.6.4, is
to decouple blocks of the Hamiltonian, which is equivalent to satisfying projection conditions
but MREOM uses many-body conditions instead. Once the many-body solutions for a given
excitation class are obtained, this solution is then used to similarity transform the Hamiltonian.
This procedure is repeated sequentially for several excitation classes and in each step the previous
similarity-transformed Hamiltonian is truncated after the two-body terms since the higher order
terms obtained from the many-body solutions are small. For more details, see Sec. 6.1.1.
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4 Implementation with ORCA‑AGE

In this chapter, we describe the updated code generation toolchain, ORCA-AGE II, of which
I wrote the vast majority of the code. We begin with an overview of the toolchain, which
emphasizes the main improvements over the previous toolchain, ORCA-AGE [1], before com-
paring it to other code generators. Then, we show how we implemented the fic-MRCC method
using ORCA-AGE II, and demonstrate how even complicated contractions can be efficiently
implemented.

4.1 Software Description

The ORCA-AGE II toolchain has been written from scratch, a decision that has been motivated
by the experience gained while working with its first version [1]. In this section, we first
recapitulate the layout of ORCA-AGE II, which has mainly undergone streamlining, before we
discuss the new internal algorithms, equation and code generators. Further information on the
code generation process can be found in the preceding publication [1].
From an architectural standpoint, ORCA-AGE II still uses the modular structure of its pre-

decessor, organized into three groups: equation generation, equation processing (factorization),
and code generation. Each of these three steps is further split into smaller executables that only
perform a very specific subtask, e.g., merging several contractions into one by exploiting tensor
symmetry. This layout allows highly flexible workflows, where each step can be turned on or
off depending on the user’s preference, although all steps are enabled by default to achieve the
best possible performance of the generated code. In turn, each of these steps may have optional
features like debug output or different contraction engines, which are controlled through easy-
to-understand command line options as well. Furthermore, the user can easily verify or modify
all intermediate stages, which are simply text files containing equations divided into a single
contraction per line, as necessary. An example of such an equation file is given in Listing 4.1. No
further configuration files are required to avoid additional dependencies on additional libraries
or codes, in contrast to the first version of the toolchain.
While the general structure of the toolchain has remained largely unchanged, the code itself is

an entirely new development. Themain reason for redeveloping the software lies in the long code
generation times of the previous version, which required about one month to generate highly
complicated theories such as fic-MRCC, leading to a slow overall development and debugging
process. This was addressed by improving the internal algorithms throughout all factorization
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4 Implementation with ORCA-AGE

Listing 4.1 Example for an equation file used in the ORCA-AGE II toolchain. This particular equation
file contains an excerpt of the full fic-MRCC equations.

1 #S pairIJAB 2 0 pairIJ[AUTOCI_IJAB].GetRows() i0=pairIJ[AUTOCI_IJAB]({0},0) i1=pairIJ[AUTOCI_IJAB]({0},1) pairIJ[AUTOCI_IJAB] 400
2 #S pairIJTU 2 0 pairIJ[AUTOCI_IJTU].GetRows() i0=pairIJ[AUTOCI_IJTU]({0},0) j0=pairIJ[AUTOCI_IJTU]({0},1) pairIJ[AUTOCI_IJTU] 200
3 #T TMatrixContainer Ctuva 4 Ctuva[{1},{3}]({0}-FirstVirtual,{2}-FirstActive)
4 #T TMatrixContainer Cituv 4 Cituv[{1},{3}]({0}-FirstActive,{2}-FirstActive)
5 #T TMatrixContainer Citau 4 Citau[{1},{3}]({0}-FirstVirtual,{2}-FirstActive)
6 #T [...]
7 Sijab(a0,i0,b0,j0) += 1.0 I(b0,j0,a0,i0)
8 Sijab(a0,i0,b0,j0) += 0.5 DC1(P1,P2) Cijtu(P0,j0,P1,I1) I(I1,P2,I2,P0) Cijab(b0,I2,a0,i0)
9 Sijta(t0,i0,a0,j0) += -1/3 Citab(A1,i0,A2,P0) I(I1,A1,a0,A2) DC2(P1,P0,P2,t0) Cijtu(P1,j0,P2,I1)
10 Sijtu(t0,i0,u0,j0) += -0.5 Citua(P0,i0,A0,P1) I(I1,A0,P3,P0) DC3(P2,u0,P3,t0,P4,P1) Cijtu(P2,j0,P4,I1)
11 Situv(u0,i0,t0,v0) += 0.5 I(I1,P0,P4,P5) Cituv(P3,I1,P6,P7) DC5(v0,t0,P3,u0,P4,P5,P6,P7,P1,P2) Cituv(P0,i0,P1,P2)
12 [...]

and generation steps. For example, we introduced a hash-based data compaction method for
eliminating duplicate intermediates generated by the initial, term-wise factorization step. This
reduces the scaling from a quadratic to an expected linear-time algorithm, and consequently
to a speedup of about two orders of magnitude for the fic-MRCC method in this step alone.
While this example shows the biggest improvement over the old toolchain, other parts, such as
the detection of tensor symmetry, have received improvements of up to one order of magnitude
as well. To further ensure good use of multicore architectures, we use OpenMP to allow for
thread-based parallelism in the toolchain. Lastly, the new toolchain has been written in the C++
programming language, compared to the previous implementation in the Python programming
language. Thus, we further obtain small performance improvements, with the major benefit that
ORCA-AGE II fits better into the ORCA ecosystem through a more homogeneous and cleaner
software structure.

Internally, the executables rely on a core library that provides the required basic functionality
to read/write, represent, and manipulate tensor contractions as a set of high-level classes and
functions. This library, and by extension the entire toolchain, has no limitations in terms of
number of indices per tensor, allowed tensor symmetries, or number of source tensors per
contraction, to name a few features. Consequently, any theory that can be written as a set
of tensor contractions can be implemented with ORCA-AGE II. Also, despite this generality,
even costly operations such as determining the tensor symmetry of an intermediate based on
its source tensors are so fast that they can be routinely used for hundreds of tensors with, for
example, ten indices, as is the case in fic-MRCC theory (see Sec. 4.3).

In addition to the improvements to the underlying infrastructure, the functionality (especially
of the code generator) has been extended as well. In terms of performance improvements, the
recent work falls into the two categories of compute and I/O optimizations. We first discuss the
compute optimizations, which are mainly geared towards making BLAS calls more pervasive in
the generated code. To this end, we use the fact that essentially every binary tensor contraction
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can be written as a matrix-matrix multiplication,

Cij D
X

k

AikBkj ; (4.1)

in which the compound indices i; j; k may refer to none, one, or multiple actual indices. As
a result, outer products and matrix-vector and vector-vector multiplications can be viewed
as special cases thereof. Such a scheme has already been discussed in the literature, and
is generally referred to as Transpose-Transpose-DGEMM-Transpose (TTGT, see App. A.3 for
details), since (in the worst case) we might need to reorder (transpose) the axes (indices) on
both source tensors and the target tensor [261, 262]. To the best of our knowledge, none of the
previous implementations are as general as the current implementation in ORCA-AGE II, as our
implementation also allows for further edge cases (trace operations, repeated indices, …) as well
as an I/O-aware strategy for indices associated with a disk read/write penalty. Moreover, indices
can be individually pulled out from the tensor contraction to be processed in outer for-loops,
which is highly useful for integrating the TTGT engine with other specialized functions as well
as enabling easy parallelization over these outer loops. Effectively, such situations are handled
automatically by reordering and tiling [244] the tensors such that the chunks can be treated
most efficiently with large DGEMM calls and are trivial to fetch from disk or memory. This
scheme is especially useful for compute-bound scenarios [262], e.g., contractions involving large
and high-dimensional objects such as the four- and five-body densities, 4 and 5, respectively.
Naïve loop code will almost certainly lead to many cache misses for such objects and can thus
perform well over a factor of 100 slower for multi-MB or -GB tensors.
Also in the category of compute optimizations are further hand-coded routines. Additional

contraction patterns have been added to the ContractionEngine functionality, which works
with 4-index quantities stored in matrix containers discussed below, to perform tasks of the type

C pq
rs D

X
p0q0

Ap0q0

pq Bp0q0

rs ; (4.2)

which complement the features already available since the first version of the code generator [1].
On the note of I/O improvements, we should first delineate how ORCA-AGE II deals with a

mixed strategy of keeping some tensors on disk and some entirely in memory. Ultimately, the
decision is up to the end user, but by default 4-index quantities, called matrix containers, are
stored on disk with two indices encoding disk access, for which a matrix can be retrieved. For
example, given Xrs

pq and using the lower indices for access, we can load matrices of size r � s for
a given index pair p; q. These quantities are stored on disk to integrate nicely with the rest of
the ORCA infrastructure as well as to avoid memory bottlenecks (e.g., the 4-external integrals
.abjcd/ already exceed 10 GB for nvirt > 188 virtual orbitals in double precision).
We optimized the I/O performance by both hand-coded contractions and a new on-the-fly

resorting scheme. The hand-coded functions are mostly geared towards copy/add operations,

Cij ��� D A�.ij ��� /; (4.3)
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which repeatedly occur through the application of the distributive law. Here, �.ij � � � / denotes an
arbitrary permutation of indices on the source tensor. These functions are tailored to the 4-index
tensors that are stored on disk. Throughout the generated code, we try to minimize contractions
that have many different indices associated with I/O operations in them by determining the best
index order on the intermediates, but I/O-intensive operations such as

Xrs
pq D Y pq

rs ; (4.4)

where none of the I/O-associated (lower) indices match, cannot always be avoided. In a naïve
implementation, this will lead to I/O operations being done in inner loops, with the associated
increase in runtime due to disk latency and unnecessary repetitions of I/O operations. To
alleviate the I/O bottleneck of these additions, special functions were coded that read batches
of the tensors up to the allowed memory limit, do the addition in memory, and then efficiently
write the results back to disk.

A more general scheme was introduced by resorting the on-disk quantities on the fly. The
underlying inefficiency is the same as discussed above, namely, that non-matching indices are
associated with I/O operations. In the general case, however, we do not opt for a batching scheme,
but rather exploit the fact that reordering such a 4-index tensor only scales as O.N 4/ and can be
done itself with efficient handwritten functions. Virtually all contractions that use such stored
quantities scale higher than that, and hence the additional reordering step is negligible in cost.
Furthermore, these resorted matrix containers can be kept until the end of the computation to
be reused in multiple contractions, at the expense of additional disk space being used.
Compared to the first ORCA-AGE toolchain, the updated version has also been integrated

much more tightly with the main ORCA source code. Developers can now automatically trigger
a complete (re‐)generation of specific, or all, generated code modules from within the main
build environment for the following reasons: First, this ensures that the autogenerated modules
are consistent and reliable, since the entire procedure required to produce the module has
been programmed. This greatly simplifies maintenance as well as any breaking changes can be
readily compared to a previous state that is known to be good in the version control system.
Second, it guarantees that the modules always feature the latest additions or improvements to
the generated code, e.g., additional hand-coded contraction functions, if a complete rebuild
with the latest version of ORCA-AGE II is triggered before each release build. Effectively, this
automatically brings any new (performance) improvements to the older compute modules, and
keeps the code used in different modules consistent with each other.

4.2 Comparison to Other Toolchains

To summarize the features of ORCA-AGE II and show how it relates to other code generators
used in quantum chemistry, we summarized the main code generation features in Tab. 4.1. To
keep the size of the table manageable, we only included other codes that are sufficiently complete
or have been more widely used.
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4 Implementation with ORCA-AGE

We now highlight a few salient features of the tools from Tab. 4.1. First, only ORCA-
AGE relies on a commutator-based engine to derive the working equations for simplicity and
generality. However, using a Wick’s theorem or diagram-based engine can be significantly faster
and reduce the time required to remove equivalent contractions. Hence, efforts to develop such
an engine is ongoing for ORCA-AGE II. Second, great care is placed by all tools on a complete
factorization toolchain, which is a testament to the importance of this step in obtaining a
performant implementation. Third, the actual evaluation part either relies on generation of
actual code or simply interprets the factorized equations akin to a specialized virtual machine.
To this end, all tools rely on BLAS to maximize computational efficiency. Parallelization support,
however, is not implemented for all toolchains since doing so in a completely automated fashion
is highly non-trivial.

4.3 Internally Contracted Multireference Coupled‑Cluster Theory

fic-MRCC theory (see Sec. 2.6.3) is difficult to implement due to its large number of terms [195];
so many terms, in fact, that an implementation by hand is beyond human capacity. These
terms arise from the non-commuting operators in the excitation classes, Eq. (2.115), and the
commutation rule for spin-free excitation operators, Eq. (2.43). In our formulation, fic-MRCC
theory has 159,173 terms before removing contractions redundant by symmetry and 49,186
terms after removal thereof. After factorization, the resulting 65,848 tensor contractions are
translated to 3,765,810 lines of code.
A theory having so many terms places a high computational workload on the code generator,

which was the primary reason for redeveloping the ORCA-AGE infrastructure. In particular,
removing duplicate intermediates in the equation factorization step proved to be highly de-
manding, as that step creates 93,803 intermediates in the case of fic-MRCC theory, which are
eventually pruned to 15,987 intermediates. In the previous version of ORCA-AGE, a simple
algorithm for detecting duplicates was used that scaled as O.N 2/, thus leading to impractically
long generation times of about one month. In the updated version, this algorithm uses a hash
table-based data compression technique with expected linear time instead, reducing the time to
about 4 hours for the entire toolchain. In both cases, the toolchain, which has time-limiting
steps parallelized with OpenMP threads, was run on 16 cores with 32 hyperthreads.
If we now look at the generator from an end user’s perspective, generating the code is also

much simpler. All that is required is to define the excitation classes from Eq. (2.115) in a
user-friendly input file, an example of which is given in Listing 4.2. Each line corresponds
to an excitation class with an identifier, the amplitudes, and the excitation operators for that
class. Optionally, contravariant projection operators [33] can be defined such that the projection
functions are biorthonormal with functions in the excitation space. The generator itself features
code that can create all necessary terms from the definition of the excitation classes, be it
the similarity-transformed Hamiltonian through application of the Baker-Campbell-Hausdorff
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4.3 Internally Contracted Multireference Coupled-Cluster Theory

(BCH) expansion, residuals through projection or the energy equations. Hence, everything from
changing the cluster operator to the number of terms retained in the BCH expansion is simple
to program and quick to extend to other methods as well.

Listing 4.2 Definition of the excitation classes for fic-MRCC theory (see also Eq. 2.115). Each line
provides an identifier, an amplitude, the excitation operators contained in the cluster operator OT , and
(optionally) contravariant projection functions [33] for the residuals.

1 $class IJAB Cijab(ab,ij) 0.5 E(a,i)E(b,j); 1/6 (2 E(a,i)E(b,j) + E(b,i)E(a,j))
2 $class IJTA Cijta(ta,ij) E(t,i)E(a,j); 1/3 (2 E(t,i)E(a,j) + E(a,i)E(t,j))
3 $class IJTU Cijtu(tu,ij) 0.5 E(t,i)E(u,j); E(t,i)E(u,j)
4 $class ITAB Citab(ab,it) E(a,i)E(b,t); 1/3 (2 E(a,i)E(b,t) + E(b,i)E(a,t))
5 $class ITAU Citau(at,iu) E(a,i)E(t,u)
6 $class ITUA Citua(ta,iu) E(t,i)E(a,u)
7 $class ITUV Cituv(ut,iv) E(u,i)E(t,v)
8 $class TUAB Ctuab(ab,tu) 0.5 E(a,t)E(b,u); E(a,t)E(b,u)
9 $class TUVA Ctuva(at,uv) E(a,u)E(t,v)

To exemplify the efficiency of the generated code, we consider two limiting cases in fic-MRCC
theory: first, large systems with small active spaces, and second, systems with large active spaces.
We further note that the contractions given below are asymptotically limiting, i.e., they need not
be the most expensive contractions for small systems. Large systems with small active spaces,
e.g., using triple-� basis sets and a CAS(2,2), are dominated by the 4-external term, which also
appears in single-reference CC theory,

rab
ij D

X
cd

.acjbd/tcd
ij : (4.5)

This term scales as O.n2
inactn

4
virt/ and thus dominates the computational time for nvirt �

ninact; nact. Therefore, it is crucial to fully optimize this term, which is complicated by the
fact that the 4-external integrals must be stored on disk for their large size. This is where the
hand-coded ContractionEngine functionality is employed: it minimizes I/O through reading
large batches of the amplitudes and integrals (up to a given memory limit) and then applies a
large-scale DGEMM operation to have maximum computational efficiency [1]. This strategy is
also followed in the entirely handwritten CC code in ORCA.
The other extreme is given by systems with large active spaces. In these cases, the runtime is

dominated by contractions such as

Y prt
qsa D

X
p0q0uvw

X
uwq0

vp0a 
tswvp0

rpuqq0 ; (4.6)

which scales as O.n10
actnvirt/ and consequently dominates the other contractions for nvirt > ninact,

nact & 6. The tensor 5 is difficult for the CPU to manage because of its complicated structure
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Listing 4.3 Generated code for the time-limiting step of fic-MRCC theory involving a five-body density
5. This is an example of a BLAS call generated by the TTGT engine (Sec. A.3).

1 for (int p3 = 0; p3 < NActive; ++p3)
2 for (int p6 = 0; p6 < NActive; ++p6)
3 for (int t0 = 0; t0 < NActive; ++t0)
4 for (int u0 = 0; u0 < NActive; ++u0)
5 for (int v0 = 0; v0 < NActive; ++v0)
6 for (int P0 = 0; P0 < NActive; ++P0)
7 for (int P5 = 0; P5 < NActive; ++P5)
8 for (int P4 = 0; P4 < NActive; ++P4)
9 for (int P1 = 0; P1 < NActive; ++P1)
10 for (int P2 = 0; P2 < NActive; ++P2)
11 DC5_T({p3,p6,t0,u0,v0,P0,P5,P4,P1,P2}) = DC5({v0,t0,u0,p3,P4,P0,P5,p6,P1,P2});
12

13 BLAS_Add_Mat_x_Mat(false, false, NActive * NActive * NActive * NActive * NActive, NVirtual,
NActive * NActive * NActive * NActive * NActive, 1.0, &DC5_T({0,0,0,0,0,0,0,0,0,0}),
NActive * NActive * NActive * NActive * NActive, X({0,0,0,0,0,0}), NVirtual, 1.0,
Y({0,0,0,0,0,0}), NVirtual);

,!

,!

,!

with ten dimensions as well as its size (e.g., 80 GB for nact D 10), thus leading to frequent cache
misses if implemented naively with eleven nested loops. Such contractions are ideal candidates
for the TTGT engine discussed above, as BLAS libraries carefully optimize both algorithms and
cache usage. In this case, the generated code is reproduced in Listing 4.3.
The TTGT engine first reorders the five-body density DC5 to optimally align and group the

indices together, thus enabling a single large-scale DGEMM instruction to digest the contraction.
As a result, explicit loops are only used to reorder the tensors, while the actual contraction is
done with implicit loops in the DGEMM matrix-matrix multiplication. Compared to the same
contraction implemented with plain for-loops, the TTGT scheme easily leads to a speedup by a
factor > 100. All tensors are kept in memory since the space requirements are not as high as for
the 4-external term and the number of active indices is limited. The TTGT engine is also capable
of accounting for indices associated with I/O and will dynamically adapt to load (sub-)tensors
from disk in an optimal fashion and perform a DGEMM over the remaining non-I/O indices, if
required.
The improvements made to the code generator in ORCA-AGE II now allow quite large systems

to be computed with the fic-MRCC implementation. We will now present two calculations of
tetradecene, C14H28, and naphthalene, C10H8, for which the requirements are representative of
the computational resources for large systems with small active spaces and systems with large
active spaces, respectively. Both systems were run in serial on an AMD EPYC™ 75F3 processor
and use the def2-SVP basis set [463]. The tetradecene system uses a small CAS(2,2) active
space. Thus, its 112 electrons are filled into 14 frozen core, 41 inactive, 2 active, and 279 virtual
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orbitals (336 in total). On average, a single iteration takes 6.58 hours. The calculation converges
smoothly in 12 iterations for a total runtime of 3.3 days, a timeframe that is manageable for
routine calculations. The naphthalene system, on the other hand, uses a CAS(10,10), and
distributes 68 electrons among 10 frozen core, 19 inactive, 10 active, and 141 virtual orbitals
(180 in total). Each iteration requires 11.35 hours to complete, and an additional 17.46 hours
are spent computing the five-body density, which takes up 80.00 GB of memory. The total
runtime for all 16 iterations is 8.3 days. After full parallelization support, we expect systems of
600–700 basis functions to be practical with fic-MRCC theory (cf. Ch. 7 and Tab. B.6).

From these two examples, we see that increasing the size of the active space severely limits
the system size that remains computationally feasible. This is both due to the asymptotic scaling,
O.n10

actnvirt/, as well as the difficulty of handling a large, high-dimensional tensor like 5 for the
CPU, as discussed above. Calculations of systems with 12 active orbitals are unfeasible for fic-
MRCC theory as computing the five-body density in that case takes 28.4 days, while requiring
495.34 GB of memory. To meet this challenge, we developed a version of fic-MRCC theory that
only requires the four-body density. Hence, the new implementation allows even larger active
spaces, e.g., CAS(12,12) on biphenyl to be computed in 5.4 days per iteration. We present the
full reduced-scaling scheme in Ch. 7.
In summary, ORCA-AGE II has been proven to be a performant toolchain that generates near-

optimal code for the time-limiting steps of fic-MRCC theory. The code optimization strategies
illustrated here are, of course, also applied to the non-limiting contractions in the code. However,
despite the performant implementation, fic-MRCC theory remains a very time-intensive method
due to the large number of contractions it contains.
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5 Study on the Excited States of Indigo Dyes

5.1 Indigo Dyes and Prior Work

In this chapter, we present a benchmark study of indigo dyes where we predict the optical tran-
sition energy including vibronic effects and compare the results against experimental reference
values. To begin with, indigo dyes form an entire class of compounds with different substi-
tution patterns, the most well-known representatives of which are indigo and Tyrian purple.
Indigo is one of the oldest known organic dyes, its use dating back to the 18th dynasty in ancient
Egypt [464]. It was previously produced from several species of plants, which contain the precur-
sors indican along with isatan B and C, which yield indigo upon hydrolysis and oxidation [465].
The first total synthesis was reported by von Baeyer in 1870 [466], well before he also reported
the structure of indigo in 1883 [467]. Nowadays, indigo is almost exclusively synthesized indus-
trially [468] based on a process originally due to Heumann [469, 470]. Industrial production
reached 50,000 metric tons in 2011, most of which is being used for dyeing garments [471].
Tyrian purple, or 6,6’-dibromoindigo, has no commercial importance contemporarily, but is
still infamous for its high price when produced the traditional way from the secretions of a few
species of shellfish [472]. Its synthesis was first reported in 1903 by Sachs and Kempf [473],
again prior to structural elucidation by Friedländer in 1909 [474].
The first theoretical studies, as opposed to the synthetic work, were performed by Lüttke and

co-workers [475–477], who used the semiempirical Hückel [478–481] and Pariser-Parr-Pople
(PPP) [482–484] methods to elucidate spectroscopic properties. Later, using a more rigorous
approach with time-dependent density functional theory (TD-DFT), Jacquemin et al. [485]
published a broadly scoped study, including 86 solvated indigoid dyes, for each of which the
main optical transition was computed and compared to a database of experimental values. In
its wake, further TD-DFT studies were published, each focusing on a different aspect of the
dyes [486–490]. In another TD-DFT study of indigo and its smaller model systems by Barone
et al. [461], vibronic effects were thoroughly investigated.
Fewer studies using ab initio wave function theory have been published to date. The first such

investigation by Serrano-Andrés and Roos [491] employed CASSCF and CASPT2 theory to
compute electronic transition energies and confirmed that the transition in the visible spectrum
is due to the central chromophore of indigo. Domcke and co-workers [492] additionally used
second-order approximate coupled-cluster (CC2) theory in their study of the photostability of
indigo. To the best of our knowledge, no comprehensive benchmark has been published to
date using wave function theory. Therefore, we present the transition energies computed with
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the STEOM method [10–12] on the test set originally proposed by Jacquemin et al. [485]
in the following. As it was shown, for example, by Stanton that both the electronic and
nuclear contributions are important to reproduce absorption spectra quantitatively [493], we
include vibronic contributions as in Barone et al. [461] through time-dependent perturbation
theory [459], which has been found to yield highly accurate absorption and emission spectra
for BODIPY dyes [103] and chlorophyll a [101]. Also, solvation effects are treated implicitly
through a conductor-like polarizable continuum solvation model [451].

5.2 Computational Details and Experimental Methods

All calculations in this chapter were carried out with a development version of the ORCA
program package [287].
Geometry optimizations were performed at the DFT level using the B3LYP functional [494]

with the def2-TZVP basis set [463] and the matching auxiliary basis set [495]. The D3 dispersion
correction as parametrized by Grimme and co-workers was also applied [496]. The B3LYP
functional has already been used with success to obtain geometries in our earlier studies on
other families of dyes [103]. The geometries obtained in this study can be obtained as described
in App. B.1.6. The RIJCOSX [497, 498] approach applying the resolution of identity (RI)
approximation to the Coulomb part and the chain of spheres (COS) seminumerical integration
algorithm to the exchange term was also used to accelerate the optimization process. Harmonic
vibrational frequencies were computed at the same level of theory. The TightSCF keyword was
used to set convergence criteria for energy calculations (thresholds in atomic units: 10�8 for
energy and 10�5 for the orbital gradient) and the TightOpt keyword for geometry optimizations
(thresholds in atomic units: 10�6 for energy and 10�4 for the maximum component of the
gradient). The DFT grid was set to DEFGRID2 (Lebedev angular grid with 302 points and
a Gauss-Chebyshev radial grid with a radial integration accuracy of 4.67) and all the other
parameters were chosen as default.
Vertical excitation energies and transition dipoles were computed with DLPNO-STEOM-

CCSD on the DFT geometries. The basis set dependence of DLPNO-STEOM-CCSD calcula-
tions was studied using the def2-SVP, def2-TZVP and def2-QZVPP basis sets [463, 495]. The
RIJCOSX [497, 498] approximation was used in the STEOM integral dressing step. Five roots
were requested using ORCA’s TightPNO settings [449], i.e., setting the following thresholds:
TCutPairs D 10�5, TCutDO D 5� 10�3, TCutPNO D 10�7, TCutMKN D 10�3. Since the quality of the
singles (diagonal) PNOs is especially important for the EA problem [95], these are generated as
a separate set using a tighter than usual threshold of TCutPNOSingles D 10�11. Furthermore, to
have a sufficiently large active character of the computed states (%active), the cutoff values for
the natural orbital occupation numbers in the active space selection procedure for the occupied
and virtual orbitals (Othresh and Vthresh, respectively) were set to 5:0 � 10�3 [443]. The
CPCM model [451] was used throughout to account for implicit solvent effects. The list of the
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parameters used for the solvents can be found in the Appendix (Tab. B.1).
For all dyes studies here, the computed energies are associated with the HOMO ! LUMO

transition (weight above 80%). The lowest-lying electronic state is well separated from the other
ones, thus it is enough to compare this with experiment. Based on Fig. B.1, we found that
the (first-order) Herzberg-Teller approximation does not significantly improve the normalized
absorption spectra of indigoid dyes, while it is significantly more expensive than a Franck-
Condon calculation. For this reason, vibronic effects were computed at the Franck-Condon
level using the ESD module of ORCA [459] from the STEOM excitation energy and transition
dipole moment and DFT frequencies. A Gaussian line shape is used to model the absorption
spectra together with a linewidth of 700 cm�1. The theoretical and experimental spectra were
renormalized. The VGmodel was used without recalculating the STEOM energy at the displaced
geometry, and the correction for the 0–0 transition energy was obtained from the excited state
TDDFT gradient and ground state DFT frequencies (VGFC keyword).

In the following discussion, the statistical parameters “mean absolute error” (MAE), “mean
error” (ME), “maximal positive and negative deviations” (Max(C) and Max(�)), and “standard
deviation” (SD) will be used in the statistical characterization of our results.
For a quantitative prediction of absorption spectra, it is desirable that the computational

method be able to reproduce the positions of band maxima within about 0.1 eV. Our earlier
experience shows that the DLPNO-STEOM method can deliver such accuracy for various
dyes [100, 103]. In the present study, the settings have also been chosen in such a way that the
expected accuracy should be below 0.1 eV and this threshold value will also be used in judging
whether deviations are significant or not.

The UV-VIS experiments have been carried out using an Ocean Optics Deuterium-Tungsten
Halogen DH-2000-BAL light source and an Ocean Optics Flame detector (FLMS00699) with
Ocean Optics QP400-1-UV-VIS glass fibers for acquisition. The data were collected with the
OceanView 2.0.7 software in absorption measurement mode, and an average of 100 scans of
3 ms integration time was performed for each measurement. The numerical data for the plotted
spectra can be obtained as stated in App. B.1.7.

For the spectra, commercially available dyes were used: indigo (95%) from Sigma-Aldrich,
France and genuine Tyrian purple from Kremer Pigmente, Germany. These materials were used
without further purification.

5.3 Multireference Effects

Prior to computing the STEOM transition energies on the indigoids, we assessed whether these
systems exhibit significant multireference character. Earlier studies using multiconfigurational
wave functions include those carried out by Serrano-Andrés and Roos [491] as well as Domcke
and co-workers [492], including perturbative corrections to second order.

For our investigation, we limited ourselves to the so-called “H chromophore” (Scheme 5.1),
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which has already been used in semi-empirical studies by Lüttke et al. [477] and Dähne and
Leupold [499], and was also considered by Serrano-Andrés and Roos [491]. Given a small
basis set, this compound can be treated with highly correlated multireference methods using a
reasonably large active space of six electrons in six active orbitals (CAS(6,6), including the full
central �-system). We did not consider including the n-electrons in the active space since these
do not contribute significantly to the S0 ! S1 transition [491].

H2N

NH2

O

O

Scheme 5.1 Simplified central “H chromophore” of indigo.

The computed energies for the S0 and S1 states can be found in Tab. 5.1. We should note that
all multireference correlated methods, fic-NEVPT2 [169, 171], uncontracted (uc-)MRCI, and
fic-MRCC (see Sec. 2.6.3) use the same SA-CASSCF wave function averaged over the S0 and S1

states. Furthermore, all methods presented in Tab. 5.1 are truncated after doubles excitations.
The fic-NEVPT2 results are comparable to previous reports [491] and match the results from a
DLPNO-STEOM calculation very well. A higher energy difference is reported by the fic-MRCC
and the single-reference EOMCC methods at about 3.5 eV and 3.4 eV, respectively, with the
results from the uc-MRCI falling roughly between these and the STEOM results.

Table 5.1 Total energies for the S0 and S1 states of the H chromophore (Eh). The excitation energy to the
S1 state, !, is computed in eV. Here, we understand “STEOM” to mean “DLPNO-STEOM” with identical
settings as in the remaining calculations in this chapter. All other methods are canonical.

CASSCF fic-NEVPT2 uc-MRCI fic-MRCC EOMCC STEOM

S0 �413.304138 �414.457377 �414.457254 �414.507567 �414.492813 �414.492887
S1 �413.129797 �414.346606 �414.341664 �414.379725 �414.368914 �414.381096

! 4.744 3.014 3.145 3.479 3.371 3.042

Thus, we conclude that a genuine multireference treatment is not required. This is mainly
evidenced by the fact that, in the state-averaged multiconfigurational wave function, the S0

and S1 states are dominated (� 90%) by a single configuration, and the transition can be
characterized as singles-dominated � ! ��. This could also explain why the fic-MRCC and
EOMCC results are rather close and the DLPNO-STEOM results are lower by� 0:4 eV: STEOM-
CCSD contains an implicit triples term absent in both EOM-CCSD [12, 88] and in fic-MRCCSD.
Since the wave function is dominated by two configurations, implicit higher-order excitations
do not play a significant role in the fic-MRCC results.
Furthermore, EOMCCmethods can be used to treat multiconfigurational situations given that
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certain parameters are fulfilled. For EOM-CCSD, this usually means that the singles character is
required to be greater than %T1 > 90%, and in STEOM calculations the active space character
should be > 95% [97, 443]. Both criteria were fulfilled in our calculations.

5.4 Basis Set Effects

In accordance with our earlier experience [103], triple-� basis sets seem to be a good compromise
between accuracy and efficiency when calculating the optical spectra of dyes. TheMax(+) values
in Tab. 5.2 are calculated using the def2-QZVPP values as reference and they indicate that the
def2-SVP basis set does not produce converged results, with its Max(+) being 0:19 eV. While
these calculations are fast (about 20 min on 8 cores for Indigo) and yield a tolerable accuracy
for some purposes, it is still above our target threshold of 0:1 eV. The def2-TZVP values,
on the other hand, deviates only up to Max(+) D 0:03 eV and 0.01 eV on average from the
def2-QZVPP results, which is not only well below the desired threshold but also still cheap. A
def2-TZVP calculation on Indigo takes about 2 hours on 8 cores, while obtaining the slightly
better def2-QZVPP values takes about 7.5 hours on 16 cores. Thus, the def2-TZVP basis set
will be used in the remainder of this chapter for all geometry optimization, STEOM and ESD
calculations.
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Figure 5.1 Vertical transition energies computed by the DLPNO-STEOM method for a set of symmet-
rically substituted indigo dyes. Data plotted from Tab. 5.2.
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Table 5.2 Vertical transition energies computed by the DLPNO-STEOM method for a set of symmetri-
cally substituted indigo dyes. All values are given in eV.

Compound def2-SVP def2-TZVP def2-QZVPP

Indigo 2.39 2.23 2.23
4,4’-Bromoindigo 2.37 2.21 2.19
4,4’-Chloroindigo 2.38 2.22 2.21
5,5’-Bromoindigo 2.34 2.18 2.16
5,5’-Chloroindigo 2.32 2.17 2.15
5,5’-Nitroindigo 2.44 2.29 2.28
6,6’-Bromoindigo 2.42 2.26 2.24
6,6’-Chloroindigo 2.44 2.28 2.25
6,6’-Nitroindigo 2.33 2.16 2.13
7,7’-Bromoindigo 2.39 2.22 2.21
7,7’-Chloroindigo 2.38 2.23 2.22

Deviation from def2-QZVPP

Max(�) 0.16 0.00
ME 0.17 0.01
Max(C) 0.19 0.03
SD 0.01 0.01
MAE 0.17 0.01

5.5 Solvent Effects

As a last step before calculating the full benchmark set from Jacquemin et al. [485], themagnitude
of the CPCM implicit solvation effects on the STEOM calculations will also be assessed. To this
end, we selected a few symmetrically substituted indigo dyes from the full set, including Tyrian
purple (6,6’-dibromoindigo), and optimized the geometries at the B3LYP-D3(BJ)-CPCM/def2-
TZVP level of theory. Subsequently, we computed the DLPNO-STEOM vertical transition
energies for each of the optimized geometries, again including solvation effects through CPCM.
The results are presented in Tab. 5.3. As expected, the average effect grows as the relative
permittivity increases and ranges between 0.09 eV and 0.16 eV. For the least polar solvents, CCl4,
Xylene and Benzene, the effect is about 0.10 eV, for the solvents of medium polarization, CHCl3
and TCE, it is about 0.135 eV, and for the most polar ones, ethanol and DMSO, the effect is about
0.155 eV. Tab. B.2 of the Appendix also indicates the magnitude of the indirect solvent effects
that are due to solvating the molecular orbitals and the ground state CC amplitudes. It turns out
that on average 75% of the solvent shift is due to indirect effects and this ratio slightly increases
with polarity. Nevertheless, the direct contributions from the STEOM step are not negligible. As
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also discussed by Jacquemin et al. [485], the effects could be larger for polar solvents than the
CPCM numbers indicate. This is especially true for ethanol, where the formation of hydrogen
bonds introduces specific interactions that are not included in the CPCM model. Although we
do not plan to account for such specific interactions in this study, the inclusion of solvent effects
using CPCM is certainly necessary. All subsequent calculations contain the CPCM correction
for the various solvents considered.

Table 5.3 Solvation effects compared to gas-phase STEOM calculations. Solvents sorted with increasing
dielectric constant " from left to right. All values are given in eV.

CCl4 Xylene Benzene CHCl3 TCE EtOH DMSO
" 2.24 2.27 2.28 4.9 8.2 24.3 47.2

Indigo �0.099 �0.101 �0.101 �0.137 �0.153 �0.155 �0.164
4,4’-Bromoindigo �0.100 �0.102 �0.102 �0.137 �0.156 �0.165 �0.173
4,4’-Chloroindigo �0.102 �0.104 �0.104 �0.140 �0.155 �0.166 �0.175
5,5’-Bromoindigo �0.093 �0.095 �0.095 �0.124 �0.138 �0.145 �0.153
5,5’-Chloroindigo �0.096 �0.097 �0.098 �0.121 �0.135 �0.142 �0.150
5,5’-Nitroindigo �0.082 �0.083 �0.075 �0.109 �0.123 �0.128 �0.138
6,6’-Bromoindigo �0.100 �0.102 �0.103 �0.135 �0.151 �0.156 �0.168
6,6’-Chloroindigo �0.102 �0.104 �0.104 �0.138 �0.153 �0.162 �0.170
6,6’-Nitroindigo �0.106 �0.127 �0.127 �0.157 �0.175 �0.185 �0.195
7,7’-Bromoindigo �0.078 �0.080 �0.081 �0.108 �0.120 �0.126 �0.134
7,7’-Chloroindigo �0.087 �0.089 �0.089 �0.116 �0.132 �0.134 �0.142

Average �0.095 �0.099 �0.098 �0.129 �0.145 �0.151 �0.160

5.6 Benchmark Results

The main results of our study are presented in Tab. 5.4. To facilitate comparison with experi-
mental absorption band maxima, the CPCM-corrected DLPNO-STEOM values still need to be
corrected for vibronic effects to arrive at a computational estimate of the 0–0 transition energy.
At the VG level, this correction can be obtained from DFT frequencies and displacements. This
is a relatively small correction: while the STEOM energies are all close to 2.0 eV within a few
tenths of eVs, the VG shift, !VG, is typically �0:05 eV, see Tab. 5.5. Summing up these values
yields the DLPNO-STEOM 0–0 energies, !0–0, which can be compared to experiment.
The deviations between predicted and experimental values (�!; averaged experimental values

computed by Jacquemin et al. [485]; for individual measurements see references therein) are
presented in Tab. 5.4 as well as in Fig. 5.2, while the statistics can be found in Tab. 5.5. On
average, the STEOM error is �0:02 eV for this family of dyes, the maximum deviation being
�0:11 eV. This indicates that in general, the computed values are lower than the measured ones.
The deviation from experiment tends to be larger for polar solvents, as expected. Nevertheless,
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Figure 5.2 Normalized error density distribution with respect to experiment, �!, from Tab. 5.4, with
a Gaussian probability density function overlaid.

even for the most polar EtOH and DMSO solvents, the average deviation from experiment
is only �0:04 eV. The protocol we present here consists of many components including the
DLPNO-STEOM vertical excitation energies, the CPCM correction calculated from STEOM
amplitudes using the CIS formula and the VG shift obtained at the DFT level. The performance
of these have been evaluated independently, to the extent this is possible. Thus, the eventual
excellent agreement between the predicted and measured 0–0 transitions indicates the reliability
of the proposed protocol and it certainly agrees with our initial goal of providing an affordable
computational method that delivers excitation energies within 0.1 eV for a large number of
chemically relevant molecules.

Table 5.4 Benchmark results: the CPCM-corrected DLPNO-STEOM excitation energy (!), the VG
correction !VG, the 0–0 transition energy (!0–0), the experimental absorption band maxima (!exp) [485]
and the error of the total STEOM estimate with respect to experiment (�!). All values reported in eV.

Name Solvent ! !VG !0–0 !exp �!

Indigo Benzene 2.13 �0.05 2.09 2.08 0.00
Indigo CCl4 2.13 �0.05 2.09 2.09 0.00
Indigo CHCl3 2.10 �0.05 2.05 2.05 0.00
Indigo DMSO 2.07 �0.05 2.02 2.00 0.02
Indigo EtOH 2.08 �0.05 2.03 2.04 �0.01
Indigo TCE 2.08 �0.05 2.03 2.02 0.01

continued
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5.6 Benchmark Results

Table 5.4 Benchmark results (continued).

Name Solvent ! !VG !0–0 !exp �!

4-Bromoindigo TCE 2.08 �0.05 2.03 2.03 �0.01
5-Bromoindigo Benzene 2.12 �0.05 2.07 2.05 0.02
5-Bromoindigo TCE 2.07 �0.05 2.02 2.02 0.00
6-Bromoindigo TCE 2.08 �0.05 2.03 2.06 �0.03
7-Bromoindigo TCE 2.08 �0.05 2.03 2.05 �0.02
4,4’-Bromoindigo TCE 2.06 �0.05 2.00 2.03 �0.02
4,4’-Chloroindigo CHCl3 2.08 �0.05 2.03 2.05 �0.02
4,4’-Chloroindigo EtOH 2.06 �0.05 2.00 2.03 �0.02
4,4’-Chloroindigo TCE 2.07 �0.05 2.01 2.02 �0.01
4,4’-Chloroindigo Xylene 2.12 �0.05 2.07 2.07 0.00
4,4’-Methoxycarbonylindigo EtOH 2.03 �0.05 1.98 2.03 �0.04
4,4’-Methoxyindigo TCE 2.09 �0.06 2.03 2.06 �0.02
5,5’-Bromoindigo CHCl3 2.06 �0.05 2.00 2.03 �0.03
5,5’-Bromoindigo EtOH 2.03 �0.05 1.98 2.01 �0.03
5,5’-Bromoindigo TCE 2.04 �0.05 1.99 2.00 �0.01
5,5’-Bromoindigo Xylene 2.08 �0.05 2.03 2.05 �0.02
5,5’-Chloroindigo EtOH 2.02 �0.05 1.97 2.02 �0.04
5,5’-Chloroindigo TCE 2.03 �0.05 1.98 2.00 �0.02
5,5’-Chloroindigo Xylene 2.07 �0.05 2.02 2.05 �0.03
5,5’-Fluoroindigo CHCl3 2.02 �0.05 1.97 2.01 �0.04
5,5’-Fluoroindigo TCE 2.01 �0.05 1.96 2.02 �0.06
5,5’-Methoxyindigo TCE 1.90 �0.07 1.83 1.91 �0.08
5,5’-Methylindigo CHCl3 2.04 �0.05 1.99 2.01 �0.02
5,5’-Methylindigo TCE 2.03 �0.05 1.97 2.00 �0.03
5,5’-Nitroindigo TCE 2.16 �0.05 2.11 2.14 �0.03
6,6’-Bromoindigo TCE 2.11 �0.05 2.06 2.11 �0.05
6,6’-Bromoindigo Xylene 2.16 �0.04 2.11 2.10 0.01
6,6’-Chloroindigo EtOH 2.12 �0.05 2.07 2.18 �0.11
6,6’-Chloroindigo TCE 2.13 �0.05 2.08 2.10 �0.02
6,6’-Chloroindigo Xylene 2.18 �0.04 2.13 2.22 �0.08
6,6’-Fluoroindigo TCE 2.20 �0.05 2.14 2.18 �0.03
6,6’-Methoxyindigo TCE 2.24 �0.06 2.18 2.16 0.02
6,6’-Methylindigo TCE 2.11 �0.05 2.06 2.08 �0.02
6,6’-Methylindigo Xylene 2.15 �0.05 2.10 2.11 �0.01
6,6’-Nitroindigo TCE 1.98 �0.05 1.93 1.95 �0.02

continued
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Table 5.4 Benchmark results (continued).

Name Solvent ! !VG !0–0 !exp �!

6,6’-Nitroindigo Xylene 2.03 �0.04 1.99 1.96 0.03
7,7’-Bromoindigo TCE 2.10 �0.06 2.05 2.05 0.00
7,7’-Chloroindigo EtOH 2.09 �0.06 2.04 2.10 �0.07
7,7’-Chloroindigo TCE 2.09 �0.06 2.04 2.06 �0.02
7,7’-Fluoroindigo CHCl3 2.09 �0.05 2.04 2.00 0.03
7,7’-Fluoroindigo TCE 2.08 �0.06 2.02 2.05 �0.03
7,7’-Methoxyindigo TCE 1.97 �0.08 1.89 1.93 �0.03
7,7’-Methylindigo CHCl3 2.08 �0.06 2.02 2.03 �0.01
7,7’-Methylindigo Xylene 2.11 �0.06 2.06 2.05 0.00
5,5’,7-Bromoindigo Xylene 2.09 �0.05 2.04 2.03 0.01
4,4’,5,5’-Bromoindigo Benzene 2.07 �0.05 2.02 2.02 0.00
4,4’,5,5’-Chloroindigo TCE 2.03 �0.05 1.98 1.99 �0.01
4,4’,6,6’-Chloroindigo TCE 2.09 �0.05 2.04 2.08 �0.04
4,4’,6,6’-Methylindigo Xylene 2.13 �0.05 2.08 2.09 0.00
4,4’,7,7’-Chloroindigo TCE 2.06 �0.06 2.01 2.03 �0.03
4,4’,7,7’-Chloroindigo Xylene 2.11 �0.05 2.05 2.08 �0.02
4,4’,7,7’-Methylindigo Xylene 2.07 �0.06 2.01 2.06 �0.05
5,5’,6,6’-Chloroindigo TCE 2.05 �0.05 2.00 2.05 �0.05
5,5’,6,6’-Methylindigo Xylene 2.10 �0.05 2.04 2.05 �0.01
5,5’,7,7’-Bromoindigo Benzene 2.08 �0.06 2.03 2.02 0.01
5,5’,7,7’-Bromoindigo CHCl3 2.06 �0.06 2.00 2.02 �0.01
5,5’,7,7’-Bromoindigo EtOH 2.04 �0.06 1.98 2.00 �0.02
5,5’,7,7’-Bromoindigo TCE 2.05 �0.06 1.99 2.00 0.00
5,5’,7,7’-Bromoindigo Xylene 2.08 �0.06 2.03 2.02 0.00
5,5’,7,7’-Chloroindigo EtOH 2.03 �0.06 1.97 2.02 �0.04
5,5’,7,7’-Chloroindigo TCE 2.04 �0.06 1.98 2.00 �0.02
5,5’,7,7’-Chloroindigo Xylene 2.07 �0.06 2.01 2.03 �0.02
6,6’,7,7’-Chloroindigo TCE 2.12 �0.05 2.07 2.10 �0.03
6,6’,7,7’-Methylindigo Xylene 2.08 �0.05 2.03 2.08 �0.06
4,4’-Chloro-5,5’-bromoindigo CHCl3 2.04 �0.05 1.99 2.03 �0.04
4,4’-Chloro-5,5’-bromoindigo TCE 2.02 �0.05 1.97 2.00 �0.03
4,4’-Chloro-5,5’-bromoindigo Xylene 2.07 �0.05 2.02 2.02 0.00
5,5’-Chloro-7,7’-bromoindigo Xylene 2.07 �0.06 2.02 2.03 �0.01
4,4’,5,5’,6,6’-Chloroindigo TCE 2.03 �0.05 1.98 2.03 �0.05
4,4’,5,5’,7,7’-Bromoindigo CHCl3 2.03 �0.06 1.98 1.99 �0.01

continued
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Table 5.4 Benchmark results (continued).

Name Solvent ! !VG !0–0 !exp �!

4,4’,5,5’,7,7’-Bromoindigo Xylene 2.05 �0.05 1.99 2.01 �0.02
4,4’,5,5’,7,7’-Chloroindigo TCE 2.03 �0.06 1.98 2.02 �0.04
4,4’,5,5’,7,7’-Chloroindigo Xylene 2.07 �0.05 2.02 2.02 �0.01
4,4’,6,6’,7,7’-Chloroindigo TCE 2.09 �0.05 2.03 2.08 �0.05
5,5’,6,6’,7,7’-Chloroindigo TCE 2.05 �0.05 2.00 2.07 �0.07
5,5’,7,7’-Bromo-6,6’-aminoindigo Xylene 2.31 �0.07 2.25 2.22 0.03
4,4’,5,5’,6,6’,7,7’-Chloroindigo EtOH 2.03 �0.05 1.98 2.05 �0.07
4,4’,5,5’,6,6’,7,7’-Chloroindigo TCE 2.04 �0.05 1.98 2.02 �0.04
4,4’,5,5’,6,6’,7,7’-Chloroindigo Xylene 2.06 �0.05 2.01 2.04 �0.03

Table 5.5 Statistical evaluation of the VG corrections (!VG) and the errors in DLPNO-STEOM 0–0
transition energies (!0–0) from Tab. 5.4 with respect to the experimental values (eV).

!VG
� !0–0

Max(�) �0.08 �0.11
ME �0.05 �0.02
Max(+) �0.04 0.03
SD 0.01 0.03
MAE 0.05 0.03

� For !VG, the smallest, average, maximum, … shifts are reported instead of errors.

5.7 Chemical Substitution

As a further illustration, we now turn to investigating the effect of chemical substitutions on
the CPCM-corrected DLPNO-STEOM 0–0 transition energy. Fig. 5.3 shows how the excitation
energy of indigo changes as various substituents are added to the core structure. Indigo in TCE
is one of the few dyes for which our protocol predicts a slightly too high value. Most derivatives
lie in the band stretching between perfect agreement and �0:1 eV deviation from experiment.
Among these is 6,6’-dibromoindigo in TCE. It is interesting to note that the shift caused by the
Br substituents is relatively small compared especially to the methoxy and Cl substituents at the
same position. In fact, 6,6’-dichloroindigo is the only dye in Fig. 5.3 that is dissolved in Xylene
and is shown mainly because it features the largest measured positive shift compared to indigo.
The STEOM error for 6,6’-dichloroindigo is also quite large in Xylene (�0:08 eV), and it is the
largest in the test set when EtOH is used as the solvent (�0:11 eV). The methoxy groups are
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notable because they are responsible both for some of the largest positive and negative shifts. In
the 6,6’ positions, these substituents cause a measured positive shift of about 0:14 eV with respect
to the experimental absorption maximum of indigo at 2:02 eV, while in the 5,5’ positions they
are responsible for a �0:11 eV shift. By contrast, two nitro groups in the 6,6’ positions cause
only a �0:07 eV shift. Nevertheless, for all these different substituents, our protocol remains
within the 0:1 eV error bar and as a consequence, it is perfectly suitable for predicting the effects
of chemical changes.

Figure 5.3 The effect of chemical substitutions on excitation energies. The dashed gray line indicates
perfect agreement between theory and experiment, the blue zone signifies the region within which the
agreement is within˙0.1 eV.

5.8 Absorption Spectra

Finally, the protocol under discussion allows for the calculation of entire absorption spectra. As
an illustration, Fig. 5.4 shows the computed and measured spectra of indigo, 6-bromoindigo
and 6,6’-dibromoindigo in DMSO.The spectra predicted by our protocol agrees remarkably well
with the measured ones without any empirical shift. The only empirical parameter in the three
computed spectra is the linewidth, which was determined as a common parameter for all three
of them from the half width at half maximum of the low-energy side of the experimental curves.
This was done to avoid the broadening of the spectra due to a shoulder on the high-energy side.
The stick plots below the computed curves indicate the contributions of vibrational modes. The
highest peak at � 16000 cm�1 corresponds to the 0–0 transition, since at 0 K this is the lowest
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energy transition. As the spectra in Fig. 5.4 are computed at room temperature, transitions from
a vibrationally excited ground state (hot bands) can also just be observed at energies lower than
the 0–0 transition. The shoulder towards higher energies (� 18000 cm�1) is mainly due to two
similar fundamental modes that feature a strong symmetric stretching motion of the CC and CO
bonds in the central chromophore, while the remaining system also participates in a symmetric
stretching/rocking motion (the xyz trajectories can be obtained as described in App. B.1.6).
Vibrational overtones are present in the computed spectra at even higher energies, although
their intensity is extremely low. For a more detailed discussion of the vibrational progression
and temperature effects, we refer to Sec. 2.7 and to App. B.1.4.
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Figure 5.4 Normalized VIS absorption spectra for indigo, 6-bromoindigo, and 6,6’-dibromoindigo in
DMSO. The unshifted computed spectra are presented with an inhomogeneous line width of 700 cm�1

as well as sticks for each vibrational mode. The experimental spectra were obtained from Ref. [500].

As a final touch, we also measured the absorption spectrum of a commercially available Tyrian
purple dye in chloroform. The natural dye is a mixture of different isatinoids, indigoids, and
indirubinoids [500], whose composition may naturally vary between different batches and types
of shellfish used in the production process. Based on our results, the shoulder in Fig. 5.5 at about
� 16500 cm�1 can be assigned to the indigoids, for which we indicated the 0–0 transitions (see
Fig. B.3 for measured and computed spectra of indigo in chloroform). Based on the spectral data
from Ref. [500], the highest peak in Fig. 5.5 corresponds to the region where the indirubinoids
absorb visible light. Note that the isatinoids do not absorb in the energy range shown in Fig. 5.5.
Thus, to reproduce the full spectrum of this particular mixture, the spectra of the indirubinoids
would also need to be calculated and the concentrations of the components would also need to
be known. While this is out of the scope of this thesis, we feel that the accuracy of our method
has been demonstrated and its practical utility is well illustrated by our contribution to the study
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of indigoids in general and Tyrian purple in particular.
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Figure 5.5 The spectrum of Tyrian purple and the 0–0 transition energies of three of its components
studied here. The shaded area corresponds to the region where indirubin dyes absorb (its width chosen
from the spread between the band maxima of indigorubin dyes in Ref. [500] with an additional 500 cm�1

in both directions).
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6 Multireference Equation‑of‑Motion
Perturbation Theory

MR-EOMPT theory, a perturbative variant of the iterative MR-EOMCC method, is presented
in this chapter. To this end, we first delineate the working equations and relate the new method
to other perturbative approaches. Subsequently, six benchmark sets are used to determine the
accuracy and efficacy of the perturbative approximations, in the context of both the parent
method, MR-EOMCC theory, and another popular perturbative approach, fic-NEVPT2 theory.

6.1 Theory

6.1.1 MR‑EOMCC and its Perturbative Variant, MR‑EOMPT

The electronic structure method described in this chapter is closely related to the MR-EOMCC
approach in that it retains the sequential similarity transformations as well as the final, un-
contracted multireference configuration interaction including singles (MRCIS) diagonalization
over a compact manifold. We only recapitulate the relevant features in this section and refer the
reader to the published articles [211–213, 215] for further details, especially regarding technical-
ities of the normal-ordered expansions. Multiple variants of the similarity transformations and
the final diagonalization step have been described, but in the following, “MR-EOMCC” should
be taken to mean the MR-EOM-T|T†|SXD|U-h-v method using the notation of Ref. [215]. In
brief, the vertical lines indicate the sequential transformation steps, and the suffix “h-v” denotes
that the final Hamiltonian is symmetrized (vide infra). We have already discussed the basic
ideas behind MR-EOMCC in Sec. 2.6.4, and in Sec. 3 we have also discussed the connection
between the many-body solution criterion that MR-EOMCC uses to the projection conditions
more commonly used in MRCC methods.
The similarity transformation, as shown in Eq. (2.123), plays a vital role inMR-EOMCC theory.

In fact, it uses four sequential similarity transformations, which has also been investigated in the
context of internally contracted (ic-)MRCC [214]. Of course, since MR-EOMCC is a genuine
MRCC method, the reference state is no longer closed-shell, but rather a (SA-)CASSCF wave
function. Furthermore, the similarity-transformed Hamiltonian is expanded using Kutzelnigg
and Mukherjee’s generalized normal order (GNO) [219, 220, 401] in a many-body form, see
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Ch. 3,
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where the cluster operator OT is defined as
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We note that the cluster operator OT is normal-ordered since the (de-)excitation orbital spaces
are disjoint. Consequently, we did not use curly braces f OE ���

���g around the spin-free excitation
operators in Eq. (6.2) to indicate normal-ordered operators. In line with the arguments in
Ch. 3, the many-body expansion in Eq. (6.1) is also truncated after the two-body term for all
subsequently applied excitation classes discussed in this chapter.
In the fully iterative version, MR-EOMCC, the amplitudes for the cluster operator OT would be

obtained by requiring projective residual conditions for the singles andmany-body residuals [210,
221] for the doubles to be fulfilled (see Ch. 3). In the MR-EOMPT method described in this
chapter, most of the amplitudes are computed from many-body perturbation theory to second
order (MBPT2). In the following, we will list the perturbative formulae in the relevant cases,
while dedicating Sec. 6.1.2 to their theoretical justification. To begin with, the virtual-inactive
block of OT is obtained as
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where �p denotes the orbital energies of the inactive and virtual orbitals of the CASSCF reference.
Amplitudes involving active orbitals are computed using extended Koopmans’ theorem

(EKT) [501–503],
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where cIP
t Qv

are the EKT orbital coefficients and are the EKT orbital energies for ionization
potentials (IP). We also defined the transformed integrals,

. Qvaj Qwb/ D
X
tu

cIPt QvcIPu Qw.tajub/; (6.5)

where a tilde indicates an orbital in the EKT-IP basis.
The t it

ab
amplitudes are computed analogously to the t tu

ab
amplitudes. Explicit equations can

be found in App. B.2.1.
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The singles amplitudes t i
a, t t

a are computed to second instead of first order because the
Brillouin condition requires that the first order amplitudes t i

a
.1/
D 0 [217]. Hence, the singles

amplitudes are initially set to zero and the doubles estimate is performed according to Eq. (6.3)
and its analogs for the t it

ab
and t tu

ab
amplitudes. Subsequently, the doubles-only state is used to

compute the singles residuals,

r i
a D hˆ0j OE

i
a
xH jˆ0i ; (6.6)

which are then employed to estimate the second order singles amplitudes,
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In Eqs. (6.7), the transformed residual matrix elements r Qv
a are defined analogously to the

transformed integrals from Eq. (6.5), again in the EKT-IP basis.
At this point, the Hamiltonian xH is transformed with the de-excitation operator OT � in

complete analogy to Eq. (6.1) to give the Hamiltonian QH . This non-iterative step approximates
the de-excitation amplitudes by setting
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The OT � transformation is included to make the transformed Hamiltonian more Hermitian. For
more details, we refer to Ref. [215].

We then proceed with a third similarity transformation on top of the previous transformed
Hamiltonian,
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where QH2 is the Hamiltonian from after the OT , OT � transformations truncated at two-body terms.
For details on how the inverse of the normal-ordered exponential fe OSC OXC ODg�1 is computed we
refer to Ref. [462]. The individual cluster operators used in this transformation are defined as
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The amplitudes of excitations into active orbitals are again obtained perturbatively in MR-
EOMPT using the electron attachment (EA) results from EKT for the orbital energies, e.g.,
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with the corresponding integral being defined here in the EKT-EA basis,

.iajj Qv/ D
X

t

cEAt Qv .iajjt/: (6.13)

The guess amplitudes for OX and OD are computed equivalently and may be found in App. B.2.1.
The remaining amplitudes OU of the last similarity transformation are computed exactly as in

MR-EOMCC theory. By replacing the first three similarity transformations of the OT , OT � and OSC
OXC OD blocks with perturbatively estimated amplitudes, the MR-EOMPTmethod will, naturally,
be faster than its parent method, MR-EOMCC, although at the cost of accuracy. This tradeoff has
already been partially attempted with an iterative orbital selection scheme, which we mention
here since it used the same definition for the non-iterative amplitude estimates therein [217]. One
of our main foci here will be to investigate the time-accuracy tradeoff. Furthermore, it will be
easier to perturbatively obtain the amplitudes for the aforementioned similarity transformations
since the iterative MR-EOMCC method may face convergence difficulties in the case of nearly
singular amplitudes [209, 210].
The last similarity transformation is described by

xG D e� OU xF2e
OU

D xg0 C xg
p
q f
OEq
p g C xg

pq
rs f
OErs
pqg C : : : ;

(6.14)

with the two-body operator

OU D
1

2
u

ij
tuf
OEtu
ij g: (6.15)

Amplitudes for this transformation are not computed perturbatively, but are solved for iteratively
by requiring that the corresponding elements of the many-body expanded Hamiltonian xG, xgij

tu,
must be zero as in MR-EOMCC theory,

r
ij
tu D xg

ij
tu

Š
D 0: (6.16)

Although these amplitudes could also be estimated from MBPT2, they are iterated because they
are never the rate-limiting step of the entire calculation. Furthermore, we normally observe fast
convergence within up to five iterations.
After symmetrizing the similarity-transformed Hamiltonian xG according to Ref. [215], the

only remaining step is the final diagonalization of xG over a suitable manifold. This step will then
give access to the total energies of the desired states as well as the transition energies between
them. The optimal setup of this final diagonalization step has been investigated several times
by Nooijen and co-workers [212, 213, 215, 216]. In this study, we have chosen to diagonalize
the transformed Hamiltonian xG over the reference CAS space including single hole and particle
excitations with respect to the reference space. In the case ofMR-EOMPT theory, there is a strong
argument to use the smallest reasonable diagonalization space to minimize the computational
costs. Extending the final diagonalization manifold is usually very costly with limited benefits
for accuracy [215].
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6.1.2 Discussion of the Perturbative Approximations

Since we will relate MR-EOMPT theory to other perturbative approaches in the next section, we
will briefly comment on the perturbative concept of MR-EOMPT theory in this section. MR-
EOMPT theory is the lowest-order, iterative approximation to MR-EOMCC theory, as further
discussed below. As such, we do not start from the partitioning of a Hamiltonian into a zeroth-
order and perturbative part, i.e., OH D OH0 C OV , but rather consider MR-EOMPT through an
iterative expansion.

We can define such an iterative expansion that applies to essentially all iterative methods
since the update of the amplitudes, collectively denoted as T , is generally based on the previous
amplitudes along with an incremental update,

T .nC1/
D T .n/

C f .r.T .n///; (6.17)

for the nth order of iteration. The residuals r are a function of the current set of amplitudes, and
the additive update step is another function f of them, in turn. The update function most often
is a denominator, f .x/ D ��1x, which is chosen such that the iterative sequence converges
quickly, i.e., the residuals tend to zero, r.T .n!1// D 0. In MR-EOMPT theory, we use the
iterative sequence to define orders of perturbation, aborting after a single step for the doubles
(first order) and two steps (second order) for the singles amplitudes (see Sec. 6.1.1). To ensure
accurate results, we need to choose the update function, denominators in our case, appropriately.

The scheme for choosing the denominators has already delineated by Nooijen and co-
workers [209]. Accordingly, we will only outline the underlying principle here, and refer to
the publication for further details. The denominators for both electron-attached and ionized
states, Op� j0i and Oq j0i, respectively, are obtained from extended Koopmans states [501–505]
chosen such that the coupling between active and virtual or inactive orbitals, respectively, is
removed. This choice leads to large denominators, as the difference in orbital energies between
the electron-attached and ionized states for the same active label is on the order of multiple eV.
However, this necessitates that we transform the residuals to the new one-particle basis defined
by the extended Koopmans states to compute the denominator update, see, e.g., Eq. (6.7).

We conclude by noting that deriving a perturbation OV is possible, albeit complicated. If we
were to derive such a perturbation OV , we would start from the initial guess, T .0/ D 0, and use
the fact that the full Hamiltonian enters MR-EOMPT theory through the MR-EOMCC working
equations. This happens at first order since we abort after just one step. The MR-EOMCC
working equations effectively couple active space determinants to excitations out of the active
space to achieve a decoupling (see Secs. 2.6.4 and 6.1.3). A perturbation operator that has
the same effect can naturally be found, but is associated with significant theoretical challenges,
making the iterative view our preferred choice for presenting MR-EOMPT theory.
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6.1.3 Relations to Other MRPT approaches

It seems appropriate to elaborate on the differences between the fic-NEVPT2 approach as an
example of a state-specific, diagonalize-then-perturbMRPT and theMR-EOMPTmethod, which
is a state-universal, transform-then-diagonalize approach. Both NEVPT2 and MR-EOMPT rely
on the solution of the CASSCF problem (cf. Sec. 2.3.2),

OHCAS D OPCAS OH OPCAS; OPCAS D
X

I

jˆI i hˆI j ; (6.18)

OHCAS j‰ki D Ek j‰ki D Ek

X
I

cI;k jˆI i ; (6.19)

where jˆI i are individual CSFs from the CASCI space combined with coefficients cI;k into
the solution for the kth state. For fic-NEVPT2, these solutions are then taken to define the
internally contracted perturber functions for MRPT by applying the excitation operators from
the perturbation operator OV to the CASSCF solution. For example, the perturber function space
for a two-hole, one-particle situation is given by [169, 171]

xSC1
ija D

OEa
i
OEt
j j‰mi ; dim. xSC1

ija / D na: (6.20)

Here, na denotes the number of active orbitals. In a similar fashion for all the remaining seven
excitation classes, these perturber functions are state-specific in that they already explicitly con-
tain the state of interest. The perturber functions then enter the expressions for the energy
correction to second order [171]. Another consequence of the state-specific, internally con-
tracted perturbers is that they ensue the presence of four-body (active) densities in the working
equations for the xS .�1/

i and xS .�1/
a spaces [171].

For MR-EOMPT, an equation like (6.20) is conspicuously missing. Instead, a similarity-
transformed Hamiltonian is built in the CASCI model space using perturbatively estimated
amplitudes (vide supra). The working equations depend on the reference state in two ways:
First, the one- and two-body reduced density matrices (RDMs) enter through the EKT orbital
energies, e.g., Eq. (6.4). Second, the one-body RDM is also required to construct the similarity-
transformed Hamiltonians xH , xF , and xG. Hence, this method is state-universal in character
for all states in the CASCI space, as opposed to the state-specific fic-NEVPT2 method. The
purpose of the similarity transformations is to decouple the model space from the outer space,
as thoroughly discussed in both STEOM [10–12] andMR-EOMCC [211–213] theory. Eventually,
the MRCIS diagonalization gives access to the final states of the transformed Hamiltonian. We
note that the diagonalization is not only over the model CASCI space, but rather over the
CASCI space and all single-hole and single-particle excitations relative to it, which is the first-
order interacting subspace based on the (large elements of the) transformed Hamiltonian. The
rationale behind this choice is that any residual coupling to the outer space should be captured
in such a fashion. It is, however, not intended to significantly change the character of the model
space states, which is why MR-EOMCC calculations generally require that the weight of the
CSFs from the CASCI space jˆI i exceed 90% in the final states [217].
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6.2 Computational Details

All calculations presented in this chapter use a (SA-)CASSCF reference wave function and were
computed using a development version of the ORCA [286–288] program package. The detailed
settings regarding the number of active electrons, number of active orbitals, or which roots were
included in the reference state can be found in Tab. B.4 of the Appendix. We normally used
a “standard choice” of the active space, meaning that we included all (anti-)bonding partners,
complete �-systems, and other orbitals involved in excited state transitions, e.g., the n-orbitals.
When comparing the results of the MR-EOMCC and MR-EOMPT methods to pure CASSCF

or fic-NEVPT2 calculations (referred to in the following as CASSCF and NEVPT2, respectively),
we note that the MR-EOM methods do generally not use the same reference wave function
as the CASSCF/NEVPT2 calculations. For the CASSCF and NEVPT2 results, we often simply
included all roots of interest with equal weights in the CASSCF reference, with possible splitting
into separate blocks of different multiplicity and irreducible representation (irrep).
The setup of the MR-EOMCC and MR-EOMPT calculations may be somewhat counterintu-

itive in that the aim of their SA-CASSCF reference is to decouple the active space by virtue of the
similarity transformations; and then obtain the states of interest from the final MRCIS step, while
also taking any residual coupling into account. In more practical terms, our general procedure
was as follows. First, an initial CASCI or CASSCF calculation over a number (. 5) of low-lying
singlet and triplet roots each is done to obtain a “spectrum” of states from which the MR-EOM
reference will be selected. In the second step, we choose all roots beneath a threshold of a few
eV (. 3 eV), while taking care that the selection does not break wave function symmetry. This
will be the reference state used in the MR-EOMCC and -PT calculations. In case of convergence
difficulties in the MR-EOMCC method or final roots with a too low contribution of the CASCI
space (vide supra), the reference state may be modified to achieve convergence. While a detailed
study regarding root selection is out of scope of this study, the MR-EOMCC method (as well as
the MR-EOMPT variant in our testing) has been shown to be relatively invariant with respect to
the choice of the reference state [215]. The exact setup is detailed in Tab. B.4.
When it comes to comparing the MR-EOMCC and MR-EOMPT results, we emphasize that

the reference as well as the calculation settings were strictly the same in both cases, the only
difference being that perturbative amplitudes were used for the MR-EOMPT calculations. The
convergence threshold for the iterative amplitude equations was always set to a maximum
absolute residual of 10�6.

6.3 Diatomic Systems

The first test set that we use to gauge the accuracy of the MR-EOMPT method is a set of small,
diatomic molecules first published as a means to assess the contraction error of a fic-MRCI
implementation [176]. These diatomic molecules are entirely from the second period and are
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computed in the def2-SVP [463] basis set. Hence, we are able to obtain near-full CI (FCI) results
from the iterative configuration expansion (ICE-)CI method [438, 439], a selected CI approach
in the vein of CIPSI (configuration interaction by perturbation with multiconfigurational zeroth-
order wavefunction selected by iterative process) [430], by including all electrons and orbitals
in the active space (ICE-FCI). The iterative cutoffs that were used in the ICE-FCI reference
calculations (Tgen D 10�5, Tvar D 10�12) are expected to yield average deviations of less
than 0.1 mEh when compared to the total energy of a corresponding FCI calculation [439].
Consequently, the aim for this test set is to demonstrate how closely the MR-EOMPT method
can reproduce nearly exact, FCI-quality transition energies.
In all calculations, a full valence CASSCF reference was chosen. The primary reason for such

a comparatively large active space is that some transitions, for example the X 2†C ! 2 2†C

transition on both CN and CO+, describe a 2�� ! 3� excitation out of the antibonding orbital
formed from the atomic 2s orbitals, and neither of these methods can describe excitations
not contained in the active space. For CASSCF, it is immediately clear that states outside
of the active space cannot be described, and therefore also state-specific fic-NEVPT2 cannot
perturbatively improve upon such state. In the case of MR-EOMCC and MR-EOMPT, the
similarity transformations also only account for the states contained in the active space, and the
final MRCIS diagonalization evaluates the residual coupling to the outside space (see Sec. 6.1.3).
The detailed setup is summarized in Tab. B.4.
The results of the CASSCF, NEVPT2, MR-EOMPT, and MR-EOMCC calculations are pre-

sented in Table 6.1. Due to the large, full-valence active space, all methods report rather accurate
results, with the largest deviation in the vertical transition energy (VTE) being 0.48 eV by the
CASSCF method. As expected, the CASSCF method is outperformed by the remaining meth-
ods since it does not account for most of dynamic electron correlation, even despite the large
active space. We wish to emphasize that these results may be of limited applicability to larger
calculations, since the full valence active space comprises an exceptionally large fraction of the
total number of orbitals in the systems, which therefore captures a larger than usual amount of
dynamic correlation in the reference.
The statistical analysis of the errors reported in Table 6.1 shows that the correlated methods

NEVPT2, MR-EOMPT, and MR-EOMCC perform similarly across this test set, judging by the
maximum absolute error (MAE) or the root-mean-square deviation (RMSD). Out of all methods,
fic-NEVPT2 reports the lowest standard deviation. In combination with an average deviation
of 0.05 eV, we can conclude that it yields the most consistent results, despite the MR-EOMCC
method having an average deviation of only 0.01 eV from the ICE-FCI reference. Even so, the
RMSD for all methods beyond CASSCF is below 0.1 eV, which is generally considered to be in
excellent agreement.
We further report the total energies for all the states used in this section in Tab. B.3, as well

as a statistical analysis of the deviations compared to the ICE-FCI reference data in Table 6.2.
While the MR-EOMmethods are primarily targeted at computing transition energies on a single
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Table 6.1 Errors in vertical transition energies (VTEs) with respect to ICE-FCI results (reference values)
on diatomic systems from the second period. The VTEs are given relative to the ground state (GS) in
parentheses. All values given in eV.

�VTE

VTE MR-EOM

System (GS) Exc. State ICE-FCI CASSCF NEVPT2 -PT -CC

CH (2…) 2� 3:04 0:07 �0:01 �0:02 0:00
2†� 3:40 �0:10 �0:02 �0:02 �0:04
2†C 4:15 �0:04 0:04 0:10 0:14

CN (2†C) 2… 1:46 0:09 0:02 0:06 0:01

2 2†C 3:03 0:07 0:04 0:05 0:02

CO (1†C) 1… 8:78 0:47 0:08 0:01 �0:12
1†� 10:3 0:15 0:07 0:06 0:00
1� 10:42 0:09 0:07 0:05 �0:02
3… 6:33 0:20 0:03 �0:01 �0:08
3†C 8:62 0:12 0:09 0:15 0:12
3� 9:55 0:14 0:08 0:11 0:06
3†� 10:04 0:04 0:08 0:10 0:04

CO+ (2†C) 2… 3:59 0:24 0:05 0:01 0:01

2 2†C 5:83 0:31 0:08 0:02 0:02

N2 (1†C) 1… 9:65 0:44 0:07 0:06 0:06
1†� 10:41 0:47 0:08 0:01 0:00
1� 10:8 0:39 0:09 0:06 0:06
3†C 7:94 0:16 0:06 0:09 0:06
3… 8:26 0:48 0:04 0:08 0:10
3� 9:26 0:32 0:07 0:05 0:04
3†� 10:06 0:21 0:09 0:11 0:11

O2 (3†C) 1� 1:07 �0:12 �0:04 �0:04 �0:06
1†C 1:73 �0:26 �0:05 �0:03 �0:06
3� 6:34 �0:19 0:00 �0:01 �0:06

OH (2…) 2†C 4:29 0:34 0:02 �0:03 �0:09

Statistical Evaluation of Errors

Min. �0:26 �0:05 �0:04 �0:12

Avg. 0:16 0:05 0:04 0:01

Max. 0:48 0:09 0:15 0:14

Std. 0:20 0:04 0:05 0:07

MAE 0:22 0:05 0:05 0:05

RMSD 0:26 0:06 0:07 0:07
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system, the total energies may, e.g., also be used to compute energy differences between different
geometries (see also Sec. 6.6). Unsurprisingly, the iterative MR-EOMCC method is the closest
to the ICE-FCI reference, with an RMSD of 0.15 eV. Next are the perturbative methods MR-
EOMPT and NEVPT2 with RMSDs of 0.46 eV and 0.77 eV, respectively. Thus, MR-EOMPT
outperforms NEVPT2 in this regard, despite the RMSD across the transition energies from
Table 6.1 being slightly worse than that of NEVPT2. As usual, the CASSCF results are far off
since even the large full-valence active spaces used in this section are not enough to recover a
substantial amount of dynamic electron correlation.

Table 6.2 Statistical evaluation of the differences of the total energies compared to the ICE-FCI reference
values (given in eV). The total energies of the 32 states can be found in Tab. B.3.

MR-EOM

CASSCF NEVPT2 -PT -CC

Min. 2:03 0:43 0:09 �0:03

Avg. 5:04 0:76 0:43 0:13

Max. 7:56 1:05 0:64 0:32

Std. 1:44 0:16 0:16 0:07

MAE 5:04 0:76 0:43 0:13

RMSD 5:24 0:77 0:46 0:15

6.4 Thiel Test Set

Continuing to focus on excitation energies, Thiel’s extensive test set [313, 314, 506] lends itself
to further benchmarking. This test set contains highly accurate reference data in the form of
CC3 results with a high singles-excitation dominated character (%T1 > 90%) [313]. In the case
of the Thiel benchmark set, multireference methods are not per se required since the included
molecules are of closed-shell type, at least in their respective ground states. Nevertheless, the
reported CC3 values may be used as reference values against which the MR-EOMPT method
can be benchmarked, provided that the same calculation settings and basis set are used. Note
that CC3 is known to have MAEs of well below 0.1 eV for singles-dominated transitions [313].
The reason why this test set is suitable for benchmarking the MR-EOMPT method is that it

contains reference data for accurate excitation energies, which is also what its parent method,
MR-EOMCC, was designed to calculate. Thiel’s test set, or a subset thereof, has already been
used to benchmark other variants of the MR-EOMCC approach [212, 215]. We note that our
choice of the zeroth-order CASSCF reference for theMR-EOMCC andMR-EOMPT calculations
here is not necessarily identical to the references in the published literature. The choice of the
reference was found to have only a minor impact on the calculations [215], which we were able to
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confirm in our testing with the MR-EOMPT and MR-EOMCC methods. The reference state(s)
used were obtained through the procedure outlined in Sec. 6.2 and can be found in Tab. B.4.

Our results are summarized in Tab. 6.3, where we report the reference values (CC3) from
Ref. [313] along with the deviation of the CASSCF, fic-NEVPT2, MR-EOMPT, andMR-EOMCC
methods from our calculations. In line with expectations, the CASSCF results again fail to
reproduce the reference values accurately and consistently. If we turn our attention to the
perturbational approaches, we see that the description is much improved over the CASSCF base
results. Furthermore, extreme outliers are rare, although absolute deviations of up to 0.68 eV
can be found for the MR-EOMPT method. The fully iterative results from MR-EOMCC theory
are closer to the reference values than either perturbative method, as expected from the results
reported in Ref. [215].

The statistical summary of the results on the Thiel benchmark set is presented in Tab. 6.4.
As in the previous publications [215, 313], we compute the statistics over singlets and triplets
separately to see any systematic error in either of the subsets.

The statistical analysis shows that the MR-EOMPT method clearly performs better on the
subset of transitions to triplet excited states, compared to singlet excited states. In the case of
a triplet final state, the RMSD across all transitions is merely 0.11 eV and can be considered in
excellent agreement with the reference values, whereas the RMSD for the singlet transitions is
about four times as large at 0.43 eV. This contrasts with the results from the NEVPT2 method,
which reports almost equal RMSDs for the singlet and triplet transitions. The same effect is
also present in the MR-EOMCC results, albeit much less pronounced at RMSDs of 0.18 eV and
0.07 eV for the singlet and triplet transitions, respectively.

These results may seem surprising initially when they are not carefully compared to the correct
variant of the MR-EOMCC approach in the published literature. The closest variant from
Ref. [215] is called “MR-EOM-T|T†|SXD-h-v,” which is implemented in the ORCA program
package [287] along with the variant used here, which could be analogously called “MR-EOM-
T|T†|SXD|U-h-v” (see Sec. 6.1.1). The published MR-EOM-T|T†|SXD-h-v results lack the final
OU transformation and therefore use a larger MRCI diagonalization space that also includes
2h excitations from the CASCI space. Nevertheless, the MR-EOM-T|T†|SXD-h-v results are
comparable to our own MR-EOMCC results. Furthermore, Ref. [215] shows that especially the
OT � transformation step deteriorates the quality of the singlet transitions, while it has negligible
impact on the triplet transitions. For the MR-EOMPT method, this effect is amplified, making
these results less robust compared to the iterative MR-EOMCC method. In the future, other
variants of the MR-EOMPT approach, e.g., without the OT � transformation, can be explored.
We further remark that a previous study [212] also found that the MR-EOMCC results tend to
perform favorably for the triplet over singlet transitions, at least when compared to CC3 reference
values. Even with this caveat, the MR-EOMPT method compares well with the reference data
for both singlet and triplet states.
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Table 6.3 Errors in transition energies (eV) with respect to CC3 results [313] on molecules from the
Thiel test set, TZVP [507] basis set.

�VTE

VTE MR-EOM

Molecule Transition CC3 (Ref.) CASSCF NEVPT2 -PT -CC

Ethene 1 1Ag ! 1 1B1u 8.37 1.07 0.27 0.41 0.09
1 1Ag ! 1 3B1u 4.48 �0.20 0.13 �0.05 �0.01

Butadiene 1 1Ag ! 1 1Bu 6.58 1.52 �0.31 0.61 0.24
1 1Ag ! 2 1Ag 6.77 �0.18 0.05 �0.10 �0.17
1 1Ag ! 1 3Bu 3.32 �0.14 0.12 0.02 0.01
1 1Ag ! 1 3Ag 5.17 �0.24 0.16 �0.02 �0.02

Cyclopropene 1 1A1 ! 1 1B1 6.90 0.39 �0.06 0.01 �0.09
1 1A1 ! 1 1B2 7.10 1.52 �0.03 0.58 0.25
1 1A1 ! 1 3B2 4.34 �0.14 0.21 �0.03 �0.05
1 1A1 ! 1 3B1 6.62 0.22 �0.05 0.00 �0.07

Benzene 1 1A1g ! 1 1B2u 5.07 �0.11 0.15 �0.02 �0.03
1 1A1g ! 1 1B1u 6.68 1.28 �0.26 0.40 0.13
1 1A1g ! 1 1E1u 7.45 1.92 �0.40 0.68 0.23
1 1A1g ! 2 1E2g 8.43 �0.28 �0.03 �0.13 �0.27
1 1A1g ! 1 3B1u 4.12 �0.27 0.20 �0.03 �0.02
1 1A1g ! 1 3E1u 4.90 0.11 0.06 0.05 0.00
1 1A1g ! 1 3B2u 6.04 1.19 �0.37 0.36 0.09
1 1A1g ! 1 3E2g 7.49 �0.32 0.11 �0.04 �0.17

Pyrrole 1 1A1 ! 2 1A1 6.40 0.05 0.16 0.10 �0.01
1 1A1 ! 1 1B2 6.71 0.91 �0.11 0.46 0.16
1 1A1 ! 3 1A1 8.17 1.35 0.02 0.67 0.19
1 1A1 ! 1 3B2 4.48 �0.44 0.27 �0.02 �0.03
1 1A1 ! 1 3A1 5.51 �0.15 0.20 0.06 �0.03
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Table 6.4 Statistical evaluation of the errors on the subset of the Thiel benchmark reported in Tab. 6.3.
All values are given in eV.

MR-EOM

CASSCF fic-NEVPT2 -PT -CC

�VTE, Singlets

Min. �0.28 �0.40 �0.13 �0.27
Avg. 0.79 �0.05 0.31 0.06
Max. 1.92 0.27 0.68 0.25
Std. 0.74 0.19 0.30 0.17
MAE 0.88 0.16 0.35 0.16
RMSD 1.08 0.20 0.43 0.18

�VTE, Triplets

Min. �0.44 �0.37 �0.05 �0.17
Avg. �0.03 0.09 0.03 �0.03
Max. 1.19 0.27 0.36 0.09
Std. 0.42 0.17 0.11 0.06
MAE 0.31 0.17 0.06 0.05
RMSD 0.43 0.19 0.11 0.07
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6.5 LiF Avoided Crossing

In this section, we present how MR-EOMPT fares against the other multireference methods in
situations with weakly avoided crossings, such as in the dissociation of the LiF system. In this
system, two potential energy surfaces cross at about dLiF � 13 a0. Close to its equilibrium
geometry, the system can be best described as Li+F– , i.e., it is an ionic state. As the system is
pulled apart, the electrostatic penalty of charge separation continues to grow, thus leading to a
lower energy state of neutral Li and F atoms.
Weakly avoided crossings can be difficult to describe. For example, it is well known [330]

that state-specific NEVPT2 theories lead to unphysical double crossings for the LiF system when
employing a minimal CAS(2,2) reference wave function. In this case, the underlying reference
(which is diagonalized before perturbational corrections are considered) is too far off the correct
description of the electronic states such that the perturbational description cannot recover the
correct behavior. The situation changes when we switch to multistate methods since the final
diagonalization, which results in the final states of the system, already includes the perturbational
description. In contrast to the previous section, where we compared the MR-EOMPT results to
state-specific fic-NEVPT2, we here compare against (strongly contracted) QD-NEVPT2 [327],
partly for the known failure of state-specific fic-NEVPT2 to describe the LiF dissociation and
further because this system was also extensively discussed in Ref. [327].
The potential energy surfaces for MR-EOMCC, MR-EOMPT, QD-NEVPT2 (in the strongly

contracted variant) and the reference, ICE-FCI, are shown in Fig. 6.1. The underlying CAS(2,2)
zeroth-order wave function, which included the lithium 2s and fluorine 2p´ orbitals, was
shared among all correlation methods such that any difference must come from the correlation
treatment. Furthermore, the same basis set was employed throughout, with cc-pVDZ on the
lithium atom and aug-cc-pVDZ [508] on the fluorine atom to account for its anionic nature in
one of the potential energy surfaces.
All presented methods accurately predict a single, weakly avoided crossing at about dLiF �

13 a0 and correctly predict the shape of the PES, compared to the ICE-FCI reference. From
Fig. 6.1, it is obvious that the QD-NEVPT2 results are closest to the ICE-FCI reference in
terms of total energy, apart from an artifact at about dLiF � 8 a0. This artifact is located
where state-specific fic-NEVPT2 would exhibit its first, spurious crossing, thus hinting that
the QD-NEVPT2 approach also has difficulties in correcting the deficiencies in the underlying
zeroth-order reference wave function. In contrast, MR-EOMCC and MR-EOMPT do not have
this issue and are both highly parallel to the reference (Tab. 6.5). In fact, out of all methods, MR-
EOMCC is most parallel to the ICE-FCI reference, with the non-parallelity error (NPE) [509]
being 1.289 mEh on the neutral state and even better on the ionic state.
A detailed look at the avoided crossing (inset of Fig. 6.1) shows that both MR-EOMCC and

MR-EOMPT accurately predict the location of the crossing, whereas QD-NEVPT2 slightly un-
derestimates its location at dLiF � 12:5 a0. We further realize that the energy difference between
both 1†C states at any given separation dLiF is overestimated for separations larger than the
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Figure 6.1 Neutral and ionic potential energy surfaces of the two lowest 1†C states of LiF for several
computational methods. The ICE-FCI solution can be considered nearly exact, and thus the reference,
within the given basis set and settings. The inset is a magnification around the region of the avoided
crossing, with a vertical gray line indicating its position for reference.

Table 6.5 Non-parallelity errors across the PESs for the neutral and ionic states of 1†C LiF. All values
are reported in mEh.

State QD-NEVPT2 MR-EOMPT MR-EOMCC

Ionic 10.618 2.647 0.463
Neutral 10.051 2.213 1.289
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6 Multireference Equation-of-Motion Perturbation Theory

avoided crossing in the QD-NEVPT2 results and underestimated for smaller separations. A
statistical evaluation of the transition energies from the neutral to the ionic state, computed at
every point of the PES scan, is shown in Tab. 6.6. It is noteworthy that due to fortuitous error can-
cellation, MR-EOMPT performs even better than MR-EOMCC, which slightly underestimates
the transitions. QD-NEVPT2, also partly due to the artifact at dLiF � 8 a0, underestimates the
transitions and has the largest deviation.

Table 6.6 Statistical evaluation of the errors in the transition energies from the neutral to the ionic state
on the LiF PES. All values are reported in mEh.

QD-NEVPT2 MR-EOMPT MR-EOMCC

Min. �22.916 �0.364 �2.217
Avg. �6.285 0.178 �1.264
Max. �3.152 0.501 �0.548
Std. 4.343 0.160 0.329
RMSD 7.640 0.239 1.306

6.6 CH2 and SiH2 Singlet‑Triplet Splitting

Singlet-triplet splittings in organic diradicals (carbenes) have been historically challenging to
compute [510, 511]. However, with the advent of highly correlatedmethods using large basis sets,
the situation has greatly improved. Nowadays, these systems are also used to assess electronic
structure methods, for example in the development of the NEVPT2 method [512].

In the context of benchmarking the MR-EOMPT method, the singlet-triplet splittings re-
ported in this section differ from the results reported previously in this chapter in that they
are not transitions between different electronic states of a frozen geometry, but rather require
computations on two distinct geometries since the ground-state geometries of singlet and triplet
carbenes are not identical, especially when it comes to the bond angle on the atom carrying the
two unpaired electrons. Generally speaking, singlet carbenes feature significantly smaller bond
angles than do triplet carbenes [510]. Hence, the singlet-triplet splittings can be regarded as a
test of the quality of the ground-state energy reported by various computational methods.
This test has already been used in Ref. [512] for the NEVPT2 method. In contrast to that

publication, we use a larger basis set, def2-SVP, for our computations and use a FCI or ICE-FCI
reference for methylene and silylene, respectively. The results are presented in Tab. 6.7.
We can see from Tab. 6.7 that the iterative MR-EOMCC outperforms all other methods, being

off by < 0:1 kcal mol�1 for both systems. MR-EOMPT betters fic-NEVPT2 on these systems,
with errors of about 0.7 kcal mol�1 and 1.3 kcal mol�1, respectively. Nonetheless, it must be
emphasized that all these errors are small, being well below 0.05 eV in all cases.
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Table 6.7 Singlet-triplet (1A1–3B1) separation (kcal mol�1) for methylene and silylene, computed at
the equilibrium geometries from Ref. [512].

Method CH2 SiH2

FCI� 14.46 �18.18
CASSCF 14.61 �16.51
fic-NEVPT2 15.75 �17.00
MR-EOMPT 15.10 �17.48
MR-EOMCC 14.54 �18.24

�Full CI for methylene, ICE-FCI (Tgen D 10�5) for silylene.

6.7 Excited States of the Co and Cr Atoms

In the development of the MR-EOMCC method, a benchmark paper on electronic transitions
on bare metal atoms and ions has been published to demonstrate the accuracy of several
variants of the MR-EOMCC approach [216]. These systems are well suited to illustrate the main
benefit of transform-then-diagonalize methods such as the MR-EOM variants, since a small
active space followed by a correlation treatment can give access to basically all states with d-d
transitions. For the purposes of this publication, we will pick two atoms, cobalt and chromium,
and compare the performance of the perturbative variant, MR-EOMPT, and the othermethods to
the experimental reference values from the NIST atomic spectra database (NIST ASD) [513]. It
must, however, be emphasized that different electronic structure programs (ORCA [286, 287] vs.
ACES II [514]) were used to compute the MR-EOMCC values. Furthermore, we note that what
we denote as “MR-EOMCC” most closely resembles “MREOM-T|SXD|U-min” from Ref. [216],
with an additional OT � transformation and the transformed Hamiltonian being symmetrized as
discussed in Sec. 6.1.1.
All calculations in this section were done with Douglas-Kroll-Hess (DKH) scalar relativistic

treatment [515, 516] and the def2-TZVPP basis set [463] with the exponents recontracted for
the DKH procedure. Furthermore, the active space consisted of the 4s and 3d orbitals, with
reference states being chosen such that the average occupation of the 4s orbital is 1.5, as described
in Ref. [216]. In contrast to Ref. [216], we do not align the average energies of the calculated and
experimental states prior to comparing the transition energies, but rather simply zero-align the
lowest computed or experimental state and then compute the transition energies with respect to
that state. We do, nonetheless, use the same J -averaging procedure to obtain a single energy for
the non-degenerate sublevels of the experimental L-S multiplets [216],

ELS D

P
J .2J C 1/EJP

J .2J C 1/
: (6.21)

For both systems in this section, the setup of the CASSCF and NEVPT2 calculations differs from
the general procedure described in Sec. 6.2. The other CASSCF and NEVPT2 calculations in
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6 Multireference Equation-of-Motion Perturbation Theory

this chapter generally include all desired roots in the SA-CASSCF calculation (possibly split into
different multiplicity and irrep blocks), which would lead to detrimental results as we would
average over tens of states at the same time. Hence, we effectively report CASCI results, and
NEVPT2 values computed on top of that, with the input orbitals from the MR-EOMPT and -CC
reference states described below.

The transition energies for a neutral cobalt atom with a CASSCF reference of equal weights of
the two lowest-lying 4F (4s13d8) and 4F (4s23d7) states are summarized in Tab. 6.8. In the Co
atom results, the 2D .4s2/ state was possibly not well described by the either the MR-EOMCC or
the MR-EOMPT method, as indicated by reference weights of 89% and 82%, respectively [215].
Consequently, this state is removed from the final statistical evaluation of the errors in the
transition energies with respect to the experimental reference values. For consistency, it is also
not included in the evaluation of the CASCI and NEVPT2 methods. However, we note that
including the state in the statistical evaluation would have improved the accuracy of the methods.

On the Co atom and with this particular CASSCF reference, fic-NEVPT2 and MR-EOMCC
perform the best, with errors always below 0.17 eV for all transitions. The performance of
the MR-EOMPT method is reasonable and certainly much better than the CASCI results, but
nonetheless a bit disappointing with errors as large as 0.59 eV on the 4F .4s2/ ! 2P .4s2/

transition. We suspect that the reason for this behavior lies in the fact that the CASSCF
reference mixes the 4s and 3d orbitals among themselves in a detrimental way that cannot be
corrected for as in the iterative MR-EOMCC method.

On a different note, we found that the current implementation of MR-EOMPT results in a
slight degeneracy breaking of the L-S states of up to 3 meV, despite the SA-CASSCF reference
being averaged over complete multiplets. However, due to the s-d mixing described above, the
active orbitals differ in their energies depending on how much s-character they possess. Such a
degeneracy breaking is not observed for the MR-EOMCC results.

Our second system is a neutral chromium atom with a CASSCF reference including equal
root weights for the 7S .4s13d5/, 5S .4s13d5/ and 5D .4s23d4/ states [216]. The individual
transition energies are reported in Tab. 6.9, including the statistical evaluation of the errors with
respect to the experimental reference values.

From the reported errors, MR-EOMCC outperforms all other methods on this system with
an RMSD of 0.07 eV over 18 states (118 roots), as expected from Ref. [216]. In contrast to
the Co atom system from above, MR-EOMPT does not perform much worse at an RMSD of
0.12 eV with respect to the NIST values. In fact, the roles are reversed with fic-NEVPT2, which
has deviations of up to 0.47 eV on the X 7S .4s1/! 3D .4s1/ transition. In combination with
Ref. [216], we may again conclude that MR-EOMCC performs accurately on these systems, and
that the MR-EOMPT method is less robust in terms of consistency, but still gives the expected
accuracy of well-established perturbational approaches on these systems.
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6.7 Excited States of the Co and Cr Atoms

Table 6.8 Transition energies (eV) between different states on neutral cobalt. Red values indicate
unreliable results by a too low reference contribution. The errors were computed with respect to the NIST
reference data [513], save for the unreliable 4F .4s2/! 2P .4s2/ transition.

MR-EOM

Config. Term NIST CASSCF NEVPT2 -PT -CC

4s2 4F 0.00 0.00 0.00 0.00 0.00
4s1 4F 0.42 1.78 0.38 0.47 0.28
4s1 2F 0.88 2.43 0.88 0.46 0.71
4s2 4P 1.63 2.16 1.76 1.52 1.73
4s1 4P 1.83 3.94 1.86 2.22 1.77
4s2 2G 1.99 2.16 2.08 2.40 2.14
4s1 2D 1.97 3.11 1.94 1.60 1.88
4s1 2P 2.20 2.86 2.28 1.94 2.13
4s2 2P 2.47 4.62 2.48 3.06 2.62
4s2 2H 2.64 2.88 2.74 3.21 2.76
4s2 2D 2.68 3.79 2.84 2.55 2.83
4s1 2G 2.78 4.78 2.63 2.63 2.70

Statistical Evaluation of Errors

Min. 0.17 �0.15 �0.42 �0.17
Avg. 1.19 0.02 0.07 �0.01
Max. 2.14 0.13 0.59 0.15
Std. 0.72 0.08 0.37 0.12
MAE 1.19 0.07 0.33 0.11
RMSD 1.39 0.08 0.38 0.12
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6 Multireference Equation-of-Motion Perturbation Theory

Table 6.9 Transition energies (eV) between different states on neutral chromium. The errors were
computed with respect to the NIST reference data [513].

MR-EOM

Config. Term NIST CASSCF NEVPT2 -PT -CC

4s1 7S 0.00 0.00 0.00 0.00 0.00
4s1 5S 0.94 1.28 1.07 1.06 0.92
4s2 5D 1.00 1.10 1.15 1.20 1.05
4s1 5G 2.54 3.57 2.63 2.52 2.50
4s1 5P 2.71 4.09 2.94 2.81 2.81
4s2 3P 2.95 3.54 3.40 3.15 3.03
4s2 3H 2.99 3.31 3.27 3.09 2.95
4s1 5D 3.01 4.41 3.11 3.05 3.01
4s1 3G 3.09 4.47 3.42 3.13 3.03
4s2 3F 3.11 3.63 3.49 3.29 3.15
4s1 3P 3.37 4.95 3.66 3.56 3.47
4s2 3G 3.44 3.86 3.60 3.59 3.42
4s1 3D 3.55 5.30 3.91 3.63 3.52
4s1 3D 3.85 5.90 4.32 3.93 3.86
4s1 3I 3.85 5.21 3.94 3.75 3.73
4s1 5F 3.89 5.87 4.07 4.06 4.02
4s2 1G 3.97 4.57 4.31 3.99 3.87
4s2 1I 3.98 4.42 4.30 3.99 3.87

Statistical Evaluation of Errors

Min. 0.09 0.09 �0.10 �0.12
Avg. 1.01 0.25 0.09 0.00
Max. 2.06 0.47 0.20 0.13
Std. 0.61 0.12 0.08 0.07
MAE 1.01 0.25 0.11 0.06
RMSD 1.19 0.28 0.12 0.07
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6.8 Comparison to LR‑ic‑MRCC

To show the differences between the approaches discussed in this chapter and linear response
methods, we now compare some results against the linear response internally contracted mul-
tireference coupled-cluster (LR-ic-MRCC) method developed in the group of Köhn and co-
workers [202]. However, we must emphasize that the LR-ic-MRCC method is expected to yield
results that are of superior accuracy to the perturbative MR-EOMPT method. A more fitting
comparison would be against the MR-EOMCC results, which are also iterative in nature. Still, it
is illuminating to understand in which situations either of the methods may be more applicable.

Response theory describes how a wave function behaves under an external, periodic influence,
e.g., electromagnetic radiation using a series expansion in terms of response functions. From the
response functions, the energies of the excited states can be determined as they correspond to
poles of the response function. As such, the excited states and transition energies are not limited
to lie within an active space, but rather require a satisfactory description of the ground-state
wave function. It is also sufficient to consider only the linear response function if only excitation
energies and transition moments between ground and excited states are desired. Amore detailed
exposition can be found in Refs. [69, 517], of which Ref. [69] also details the relation to EOM
methods in the single-reference case.
Response theory is therefore in stark contrast to the other methods discussed in this chapter,

including the MR-EOMPT method. As discussed in Sec. 6.1.3, these methods require that all
states of interest lie within the CASCI space spanned by the active electrons and orbitals. For
example, given a full-valence active space, it is not possible to describe a valence-to-Rydberg
transition, as the leading configurations of the final state would certainly lie outside the CASCI
space. Hence, to compare to the LR-ic-MRCC results, we generally need to choose larger active
spaces than the minimal spaces in the published reference [202].
We first present the singlet states of the methylene system. A full description of this test

system has already been given in Refs. [113, 202]. Naturally, we use the same geometry and basis
set in our calculations (see Sec. B.2.4). We must, however, remark that the reported [113] FCI
transition energies 1 1A1 ! 2 1A2 and 1 1A1 ! 3 1B1 appear to be in error. While our own
FCI calculation perfectly matched the other reported transition energies, these two transitions
are in error of �0:627 eV and �0:104 eV, respectively. Using our corrected values also improves
the statistics [202] of the LR-ic-MRCC method for this test system (Tab. 6.10).
For our calculations (Tab. 6.10), we need to choose a larger active space than the minimal

CAS(2,2) that may be used with the LR-ic-MRCC method (vide supra). For such a small system,
a full valence active space is in order, which gives six active electrons in six active orbitals: all
four carbon atomic orbitals from the second shell as well as two hydrogen 1s orbitals. The
previous study [202] also reports calculations with a CAS(6,6) active space, including states
outside of the CASCI space. We were forced to omit the 1 1A1 ! 3 1B1 and 1 1A1 ! 4 1A1

transitions in Tab. 6.10 since the leading configurations of the excited states lie outside of the
CASCI space, and hence cannot be treated by our present methods. Otherwise, for the CASSCF
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6 Multireference Equation-of-Motion Perturbation Theory

and fic-NEVPT2 results, each of the four irreps of the C2v point group were computed in a
separate calculation, whereas in the MR-EOMCC andMR-EOMPT calculations, all singlet roots
were obtained in a single run. The SA-CASSCF reference for the latter two methods consisted
of the lowest seven singlet roots with equal weights, regardless of the irrep. This reference was
necessary since otherwise the model space was not decoupled sufficiently from the outside space
and nearly singular OT amplitudes led to convergence difficulties.
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Table 6.10 Transition energies (eV) between different states on singlet methylene, all with respect to the ground state 1 1A1. Transitions may be
either singles- or doubles-dominated, denoted s and d, respectively. We provide two reference values: the FCI results from Ref. [113], and our own
FCI results. The LR-ic-MRCCSD values were sourced from Ref. [202] and use Ncom D 2, � D 10�5 and a CAS(6,6). For the statistical evaluation of
the errors, our own FCI results were chosen as the reference.

MR-EOM

Exc. State Type FCI (Pub.) FCI CASSCF NEVPT2 -PT -CC LR-ic-MRCCSD

2 1A1 d 4.656 4.655 4.614 4.693 4.629 4.679 4.721
3 1A1 s 6.514 6.514 6.398 6.500 6.498 6.645 6.449
1 1B1 s 1.793 1.794 2.500 1.939 1.729 1.778 1.803
2 1B1 d 8.906 8.907 8.861 8.995 8.924 9.108 9.332
1 1B2 s 7.704 7.703 7.232 7.681 7.685 7.790 7.647
2 1B2 d 8.016 8.016 8.259 8.086 7.972 8.052 8.136
1 1A2 s 5.853 5.853 6.032 5.980 5.821 5.885 5.870
2 1A2 d 9.410� 10.036 9.714 10.009 10.073 10.235 10.063

Statistical Evaluation of Errors

Min. �0.471 �0.027 �0.064 �0.015 �0.065
Avg. 0.016 0.050 �0.019 0.087 0.068
Max. 0.707 0.146 0.037 0.201 0.425
Std. 0.341 0.064 0.030 0.077 0.146
MAE 0.266 0.067 0.032 0.090 0.098
RMSD 0.342 0.081 0.035 0.116 0.161

� This appears to be an error in the original reference [113].
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All methods save for the CASSCF calculations show good accuracy and, somewhat sur-
prisingly, the perturbative approaches perform best in this benchmark. In the case of the
fic-NEVPT2 results, this has been aided by the fact that each irrep block was treated separately,
as opposed to the MR-EOMCC and MR-EOMPT calculations, where all roots are obtained in a
one calculation from a single reference. Otherwise, we assume that fortuitous error cancellation
at work, especially since in other benchmark sets discussed in this chapter, non-perturbative
methods generally show better performance.
All methods tend to overestimate transition energies, except MR-EOMPT, which underesti-

mates them by �0.019 eV, on average. When comparing the iterative coupled-cluster methods,
MR-EOMCC and LR-ic-MRCC, we find that the linear response theory is on average closer to
the FCI results, but the larger standard deviation also leads to a higher overall RMSD. This is
largely due to the 1 1A1 ! 2 1B1 transition, a high-lying doubles-dominated transition, which
is in error of 0.423 eV compared to the FCI reference. Had this transition been left out of
the evaluation, then the MR-EOMCC and LR-ic-MRCC results would have been of comparable
accuracy. We further emphasize that, in contrast to single-reference CC theory [69], there is no
simple relation between the multireference EOM-CC and LR-CC theories.
We now present some additional calculations for the all-(E)-hexatriene molecule. The active

space was chosen to be a CAS(6,6) of the �-system orbitals (three each of au and bg symmetry).
We focus on only two singlet transitions, which have already been discussed inThiel’s benchmark
set [313] and in the context of the LR-ic-MRCC method [202]. The transitions are the 1 1Ag !

2 1Ag transition to the optically “dark” state and the 1 1Ag ! 1 1Bu transition to the “bright”
state.
Although MR-EOMCC calculations have already been published for hexatriene, compared

to the results reported here, the calculation from Ref. [212] uses a different MR-EOMCC
implementation that not only differs in the definitions of the cluster operators, but also uses a
larger diagonalization space. Huntington et al. [215] have reported values for these transitions
with a more similar implementation (vide supra), but again chose a different CASSCF reference
with only five active orbitals and reference states of 3Ag and 3Bu symmetry. This choice was
motivated by the fact that convergence with the MR-EOMCC method was problematic due to
nearly singular amplitudes when exciting out of the 3-bg orbital. Nonetheless, projecting out
the offending amplitudes and choosing a reference of a single 3Bu state resulted in successful
convergence of the many-body residual conditions. The same reference state was also chosen
for the MR-EOMPT calculation.
Our results and the cited reference values are summarized in Tab. 6.11. Unfortunately,

choosing the CC3 results [313] to be our reference values is not so simple since the 1 1Ag !

2 1Ag is to a great extent a double excitation, 1a2
u1b2

g2a2
u ! 1a2

u1b2
g2b2

g , which is also
evidenced by the rather low %T1 of 65.8%. When comparing the MR-EOMPT results to the MR-
EOMCC and LR-ic-MRCC results, we find that the order of the excited states is the same, with
the 2 1Ag state having lower total energy than the 1 1Bu state. This contrasts with CC3 results,
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in which the ordering of the states is the reverse. Furthermore, the MR-EOMPT method yields
higher transition energies than both MR-EOMCC and LR-ic-MRCC theories. If we compare the
transition energies of the singles-dominated 1 1Ag ! 1 1Bu transition to the CC3 values, we
find that the MR-EOMPT method is in error of 0.55 eV, compared to only 0.22 eV and 0.08 eV
for the MR-EOMCC and LR-ic-MRCC results, respectively. It does, however, outperform the
fic-NEVPT2 result on this transition, which has an error of 1.19 eV.

Table 6.11 Bright and dark states of all-(E)-hexatriene (eV). The LR-ic-MRCC values were obtained
from Ref. [202], and the CC3 values from Ref. [313].

Transition CAS NEVPT2 MR-EOMPT MR-EOMCC LR-ic-MRCC CC3

1 1Ag ! 2 1Ag 5.45 5.59 5.52 5.43 5.44 5.72
1 1Ag ! 1 1Bu 6.59 6.77 6.13 5.80 5.66 5.58
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7 Reduced Scaling for Internally Contracted
Multireference Theories

7.1 Theory

To convey our reduced-scaling scheme, we first recapitulate salient features of density matrices,
before giving a rigorous description of the scheme to reduce the scaling of terms involving
densities, including a fully worked example. We then conclude by introducing both our variants
of fic-MRCI and fic-MRCC theory, while also describing how the reduced-scaling scheme
was applied to them. Finally, we benchmark the reduced-scaling implementations against the
standard, unreduced codes on a set of linear alkenes and polyenes.

7.1.1 Properties of Density Matrices

In this section, we discuss the twomost important theoretical foundations of the reduced-scaling
scheme presented in this chapter, i.e., the ability to arbitrarily shift the operators, or index pairs,
in densities, as well as the resolution of the identity (RI), which is applied in the construction of
the densities but can also be used to break the densities into smaller parts. The reduced-scaling
strategy is then set forth in Sec. 7.1.2.

Since densities are just expectation values of operator strings, Eq. (2.38), the operators can be
swapped according to the known commutation rule for spin-free orbital replacement operators,
Eq. (2.43). In fact, through repeated application of Eq. (2.43), they can be permuted in a totally
arbitrary fashion, given that additional commutator terms are added to the final expression,

h0j OE1 � � � OEN j0i D h0j�. OE1 � � � OEN /j0i C

MX
iD1

h0j Opi Œ OEn; OEnC1�Osi j0i ; (7.1)

leading to densities of an order reduced by one for the commutator terms,

n D  .�/
n C

MX
iD1


.i/
n�1; (7.2)

which can be seen directly from Eqs. (2.43) and (7.1). Above, � is a permutation of the operators
OEn, with n D 1; : : : ; N denoting the position of the operator in the string. To determine the
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commutator terms, we use the fact that every permutation can be written as a product of
transpositions under the condition that only adjacent operators may be permuted,

� D

MY
iD1

.ni ; ni C 1/; (7.3)

using the cycle notation for the M transpositions of adjacent operators required to form the
permutation � . In each of the transposition steps, we have a prefix Opi D OE1 � � � OEni �1 and a
suffix Osi D OEni C2 � � � OEN , which are the operator strings that are not permuted by the respective
transposition step, and may be empty strings. Both Opi and Osi depend on the order of the
transpositions and are thus not uniquely defined. The result, however, will be the same if the
decomposition of the permutation � into adjacent transpositions is correct. A full example is
presented below in Eqs. (7.5)–(7.10).

As discussed by Knowles and Werner [518], with foundational work on coupling coefficients
by Siegbahn [519], among others [520–524], the densities can be split exactly at an arbitrary
position through a resolution of the identity,

 t
u

���
���

v
w

v0

w 0
���
���

t 0

u0 D h0j OE
t
u � � �

OEv
w
OEv0

w 0 � � � OE
t 0

u0 j0i

D
X

I

h0j OEt
u � � �

OEv
w jˆI i hˆI j OE

v0

w 0 � � � OE
t 0

u0 j0i :
(7.4)

The jˆI i are the CSFs in the RI space, which is equivalent to the CAS space here. The RI is also
used to construct the high-order densities from the coupling coefficients hˆI j OE

t
ujˆJ i through

repeated application, which can be made highly efficient through a matrix-based form [518].
However, constructing the high-order densities can become limiting despite efficient BLAS
operations because of the steep scaling of O.nCSFn

2m
act /, with m denoting the order of the density

m. Here, it is generally tacitly ignored that computing the densities scales exponentially with
the size of the active space, since nCSF � exp.nact/ for CASSCF reference wave functions.

7.1.2 A Scheme for Reduced Scaling

With the necessary groundwork laid out in the previous section, we now present the full scheme
that we implemented in ORCA-AGE II such that we can automatically reduce the scaling of
internally contracted ansatzes. We discuss how the excitation operators are shifted, and how
the subsequent introduction of the RI together with a different contraction pattern leads to the
reduction in scaling. Finally, a fully worked example is given.
The goal can be summarized in that we aim to contract away indices as soon as possible, as

that directly leads to lower-order intermediates and a lower scaling. To this end, the first step
is to shift the operators in the densities according to Sec. 7.1.1 such that summed indices that
are shared with another tensor are grouped together and moved to one side of the density. Note
that, to be useful, the summed indices must be on one excitation operator, e.g., OEt

u, as opposed
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to multiple operators, OEt
�
OEu
� . Sharing the same operator with non-summed indices leads to no

savings as the non-summed indices will be introduced to the intermediate instead. In summary,
the number of the operators involved must be smaller than the number of indices, nop < nidx.
Then, the scaling reduction is from O.nCSFn

2m
act / to O.nCSFn

2m�2o
act /, where o is the number of

operators with both indices shared that can be removed by contraction.

Next, the RI is introduced between the group of summed indices and the remaining operators
in the density. Importantly, we only introduce the RI once into a density, since multiple splits
would lead to transition densities that scale at least as O.n2

CSF/. For large active spaces, would
quickly become unmanageable. Further, our automated scheme so far allows insertion of the RI
after one, two, and three OE operators, dependent on the contraction pattern, which we found
sufficient for all use cases so far. More variability may be required if densities higher than the
five-body 5 appears in the working equations.

Last, the partial densities must be contracted with another tensor that ideally shared many
summed indices with the grouped excitation operators, as discussed above. This can be regarded
as a “compression” of information into lower-order intermediates, thus realizing the scaling
reduction.

The foregoing is perhaps best illustrated with an example. Some concrete examples have
already been presented by Chatterjee and Sokolov [381] and Kollmar et al. [382], although with
a focus on a specific theory. In the following, we aim to demonstrate the concepts laid out above,
and present real-world examples from our automated software below. For this purpose, the
example is simplified, with only two tensors in the contraction, as opposed to working equations
from fic-MRCI and fic-MRCC theory, which contain more tensors.

The binary contraction for which we present the reduced-scaling scheme is

Y tva
uwt 0 D

X
u0v0w 0

tu0a
v0w 0

tv v0 t 0

uu0w 0w ; (7.5)

which scales as O.n8
actnvirt/. Here, we highlighted the summed indices in blue to indicate

the position of the OE operators in the density. Again, the scaling of this contraction appears
to be better than expected because it is generally ignored that it requires the computation
of 4, which scales as O.nCSFn

8
act/. We begin by shifting the index pairs with the summed

indices arbitrarily to the right-hand side of the density, which is described by the permutation
.2; 3; 4/ D .2; 3/ � .3; 4/ in cycle notation. Since two transpositions are required to form the
full permutation and each transposition leads to two commutator terms, we get a total of four
commutator terms, Eqs. (7.7)–(7.10), in addition to the contraction with the permuted density,
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Eq. (7.6),

Y tva
uwt 0  

X
u0v0w 0

tu0a
v0w 0

t t 0 v v0

uwu0w 0 ; (7.6)

Y tva
uwt 0  

X
u0v0

tu0a
v0t 0 

tvv0

uu0w ; (7.7)

Y tva
uwt 0  �

X
u0v0

tu0a
ww 0

tvt 0

uu0w 0 ; (7.8)

Y tva
uwt 0  

X
v0w 0

t t 0a
v0w 0

tvv0

uww 0 ; (7.9)

Y tva
uvt 0  �

X
u0v0w 0

tu0a
v0w 0

t t 0v0

uu0w 0 : (7.10)

In Eqs. (7.6)–(7.10) and below, the left arrow,  , means “add to,” since the single contraction
from Eq. (7.5) is broken up into multiple contributions in the reduced-scaling approach. In
this series, we can easily see that all four commutator terms scale as O.n7

actnvirt/, and more
importantly, only contain the three-body density 3, which only requires O.nCSFn

6
act/ operations

to be computed. The Kronecker deltas in the commutator terms have been removed through
summation.
We can then insert the RI,

Y tva
uwt 0 D

X
u0v0w 0

X
I

tu0a
v0w 0 h0j OE

t
u
OEt 0

w jˆI i hˆI j OE
v
u0
OEv0

w 0 j0i ; (7.11)

and form the first intermediate with a partial density, henceforth referred to as a “CSF interme-
diate” for the appearance of the index I enumerating the CSFs in RI space,

Xa
v;I D

X
u0v0w 0

tu0a
v0w 0 hˆI j OE

v
u0
OEv0

w 0i : (7.12)

Computing Eq. (7.12) scales as O.nCSFn
4
actnvirt/, slightly less than forming the resulting tensor,

Y tva
uwt 0  

X
I

Xa
v;I h0j

OEt
u
OEt 0

w jˆI i ; (7.13)

which scales as O.nCSFn
5
actnvirt/.

All the steps involved in both the “standard” implementation, as well as the reduced-scaling
formulation, are summarized in Tab. 7.1. For large active spaces, nCSF � ninact; nact; nvirt,
it is obvious that either the computation of 4 or Eq. (7.13) become rate-determining. The
dependence of Eq. (7.13) on the number of virtual orbitals is potentially problematic, yet it
only delays the crossover when the reduced-scaling scheme performs better than the standard
implementation. Even for large virtual orbital spaces of nvirt D 1000, this is the case for
nact > 10. Besides, we note that the intermediate in Eq. (7.12) depends on an amplitude, i.e., it
must be recomputed in every iteration.
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Table 7.1 Summary of the computational steps required to compute Y tva
uwt 0 . The “standard” implemen-

tation includes the full computation of 4, whereas the reduced-scaling formulation avoids it, at the cost
of additional commutator terms and a dependence of intermediates on the number of CSFs.

Equation Standard Reduced

3 — O.nCSFn
6
act/

4 O.nCSFn
8
act/ —

(7.5) O.n8
actnvirt/ —

(7.7)–(7.10) — O.n7
activenvirtual/

(7.12) — O.nCSFn
4
actnvirt/

(7.13) — O.nCSFn
5
actnvirt/

7.1.3 fic‑MRCI Theory

The basics of our formulation of fic-MRCI theory are outlined in Sec. 2.6.2 and in Ref. [176].
For both the standard and reduced-scaling implementations, we use the rank reduction trick by
Dyall [525], which is also used in NEVPT2 theory [170, 361, 362], to reduce the order of the
densities from 5 at face value to 4, before we further reduce the scaling to at most 3. We
did not continue to reduce the scaling beyond 3, as we do not consider 3 to become the rate-
limiting contraction, although we might need to revisit this when combining the theory with
approximations to CASSCF, e.g., the iterative configuration expansion (ICE) approach available
in ORCA [438, 439]. The standard implementation in this thesis is identical in ansatz to the one
presented earlier [176], although the implementation has been updated with ORCA-AGE II. We
further remark that in fic-MRCI theory, we can guarantee that all CSF-intermediates have atmost
two additional indices, X

p
q;I , which is why the storage requirements for the CSF intermediates

is rather low.

7.1.4 fic‑MRCC Theory

Our implementation of fic-MRCC theory was introduced in Sec. 2.6.3, where we give the
expressions for the energy, the residuals, and discuss details necessary for the solution thereof.
In this section, we instead focus specifically on the density matrices that appear in the working
equations of the theory.
The highest orders of density matrices appear in the quadratic residual elements,

rP D h Q̂ P jŒŒ OH; OT �; OT �j0i ; (7.14)

with up to the five-body density 5 [195]. Higher expansions of the BCH would incur even
higher orders of densities, until all general indices in the Hamiltonian are contracted with
inactive or virtual indices from the cluster operator. For instance, with terms up to OT 3, we
would need the six-body density 6.
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7 Reduced Scaling for Internally Contracted Multireference Theories

In the reduced-scaling variant, we only eliminate 5 from the working equations, as fic-MRCC
theory has irreducible contractions with 4 that always scale worse when the RI trick is applied.
For example, in

r
pq
ij  

1

2

X
rstu

vwab

tar
is .tajub/tbv

j wutvr
qpws (7.15)

the indices are arranged such that each tensor shares two summed indices with the density 4,
but also has two unshared indices. This would lead to the introduction of additional indices in
the CSF intermediates, and accordingly no computational savings. By keeping the terms with 4,
we also simplify the generation of the equations, since we do not need to make recursive calls,
as reducing 5 produces commutator terms containing 4. In the resulting working equations,
the CSF intermediates carry at most four additional indices, X

pq
rs;I , an increase by two from

fic-MRCI theory, with correspondingly larger storage requirements. As a final remark, please
note that in Eq. (7.15), we used the indices p; q; r; s to refer to active indices to avoid tedious
double-primed labels.

7.2 Computational Methods

In this section we explain how the reduced-scaling versions of fic-MRCI and fic-MRCC theory
were implemented and which computational settings were used to produce the numerical results.
For the implementation, which uses the ORCA-AGE II code generation toolchain, we only
describe the updates that were made specifically for the reduced-scaling scheme and refer to
Ch. 4 for further information. The resulting code was integrated into the ORCA program
package [288, 289], a development version of which was used for all numerical calculations.

7.2.1 Implementation through Automatic Code Generation

The reduced-scaling scheme presented in this thesis has been fully automated, with no user
intervention required. (I) It begins with an additional step after the generation of the canonical,
“standard” working equations, which applies the reduced-scaling scheme in a completelymethod-
agnostic way to the working equations. To this end, all generated tensor contractions are first
checked and filtered for high-order densities. (II) Then, the full scheme is applied independently
to each of these contractions by doing an exhaustive, global search of the full space of sensible
operator permutations and RI splits, of which each permutation/split is factorized in a termwise
optimal fashion (see below). (III) Eventually, we pick the lowest-cost factorization, as estimated
through a simple cost model, which currently assumes 10 active orbitals and 20,000 CSFs in
RI space. In cases such as Eq. (7.15), where no satisfactory reduced-scaling variant exists, the
contraction is left unmodified, and a warning is printed instead. (IV) As the last step, we
check for duplicate contractions or intermediates and continue with the normal code generation
procedure.
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We should emphasize that we found a simple, linear factorization tool to be insufficient, i.e.,
the factorization tool must guarantee that the best possible pattern is found for each contraction.
This is best illustrated with an example from fic-MRCI theory,

� tu
ij D

X
vwt 0

u0v0w 0

.vj jwt 0/vwu0v0

ut 0tw 0 tu0v0

iw 0 : (7.16)

For Eq. (7.16), the only sensible reduced-scaling factorization is

Xu
j;I D

X
vwt 0

.vj jwt 0/ h0j OEv
u
OEw

t 0 jˆI i ; (7.17)

Y t
i;I D

X
u0v0w 0

hˆI j OE
u0

t
OEv0

w 0 j0i t
u0v0

iw 0 ; (7.18)

� tu
ij D

X
I

Y t
i;I Xu

j;I ; (7.19)

which corresponds to a pattern of .AB/.CD/, with A D .vj jwt 0/, D D tu0v0

iw 0 , and B and C

being the partial densities from Eqs. (7.17) and (7.18), respectively. A simple linear factorization
tool can only generate patterns such as ..AB/C /D and permutations thereof, and consequently
would never find the best pattern, leading to unnecessary inefficiencies in the generated code.
The updated factorization tool in ORCA-AGE II can find the optimal termwise factorization
through a global search of all unique factorization patterns. Although this scales as a double
factorial,1

Npatterns D .2Ntensors � 3/ŠŠ; (7.20)

the overall cost of this global search is limited as themaximumnumber of tensors per contraction
in fic-MRCI and fic-MRCC theory is three and four, respectively. If a density is split, this
increases to four and five, leading to at most 15 and 105 possible factorization patterns per term,
which is rapid to evaluate in our toolchain.

Once the working equations have been finalized, the code generation part takes over for the
actual implementation into C++ code. Overall, only three minor modifications were required for
this part since the ORCA-AGE II toolchain is kept as general as possible. The first modification
concerns the contractions of partial densities with other tensors, as, e.g., in Eq. (7.17). These
contractions are handled through hand-coded functions in ORCA that contract a one-, two-, or
three-body partial density with any number of arbitrary tensors through a flexible interface based
on lambda functions [526]. All other contraction types, including CSF intermediates with other
CSF intermediates (Eq. 7.19), are handled through the existing functionality of ORCA-AGE II,
including automatic application of BLAS.
1 An analogy to the number of all unique rooted binary trees can be made since every factorization pattern can be

graphically represented as such a tree.
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The second optimization was required to optimize the performance of the contractions with
partial densities, which is achieved by preloading some quantities normally stored on disk
(partially) into memory. The reason for this lies in the construction of the partial densities,
which always starts at one end of the density and expands them through a RI, as discussed in
Sec. 7.1.1. Therefore, the order of traversal of the indices in the hand-coded function described
above is fixed. This potentially leads to high IO overhead or cache misses, which is why the
tensors are preloaded into memory with the axes aligned for optimal CPU performance.
Third, once the CSF intermediates are computed, they are stored on disk as separate tensor

chunks for every electronic configuration, with each chunk only containing the CSFs belonging
to that configuration. This accounts for the possibly substantial size of these intermediates for
large actives spaces, keeping them out of expensive memory until needed. Since we already
accounted for different storage and tensor layouts as well as special contraction functions in
ORCA-AGE II, no further changes to deal with them were necessary.

7.2.2 Computational Details

The numerical results reported below were run on unsaturated organic molecules, which were
optimized at the B3LYP [494, 527–529], D3BJ [496, 530] / def2-TZVP [463] level of theory, with
the def2/J [495] auxiliary basis set used for integral RI. The resulting geometries were checked
for the existence of imaginary frequencies.
In all cases, the standard settings of the ORCA program package [288, 289] were used,

which include use of the RIJCOSX [497, 498] approximation with the default integration grid,
DEFGRID2 (Lebedev angular grid of 302 points and Gauss-Chebyshev radial grid, integration
accuracy of 4.67). Both the SCF procedure and the geometry optimization were performed
using tight thresholds, TightSCF (10�8 Eh for energy and 10�5 a.u. for the orbital gradient)
and TightOpt (10�6 Eh for energy and 10�4 a.u. for the largest element of the gradient).
The CASSCF calculations were always started from aMP2 natural orbital guess and use a CAS

space indicated with the results. For the highly correlated calculations, we used the def2-SVP
and def2-TZVP [463] basis sets and always performed a full MO transformation. The iterative
methods were considered converged once the largest element of the residual vector falls below
an absolute value of 10�6. We already note here that the reduced-scaling implementations give
identical results to the “standard” implementations and require no further parameters.

The timing benchmarks were all computed on a system containing dual AMD EPYC™ 75F3
processors.

7.3 Results and Discussion

In this section, we present the benchmark results for the standard and reduced-scaling imple-
mentations on two types of systems: linear alk-1-enes and polyunsaturated alkenes. The first
set of systems is to determine if the scaling with system size in a small CAS(2,2) active space
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is still as expected for the reduced-scaling implementation, whereas the second set of polyenes
is to demonstrate the scaling with growing, large active spaces. Finally, we compare how the
implementations scale with both increasing active spaces and system size.

7.3.1 Linear Alk‑1‑ene Chains

Themainmotivation behind investigating the reduced-scaling implementations on linear alkenes
is to demonstrate that the scaling with system size for both fic-MRCI and fic-MRCC theory,
O.N 6/, is not changed by the reduced-scaling scheme. The benchmark is computed on linear
alk-1-enes from ethene (ncarbons D 2) to through octadecene (ncarbons D 18), a subset of which
is presented in Fig. 7.1. All calculations were done in both the def2-SVP and def2-TZVP basis
sets [463] and include the (anti-)bonding � orbitals in the CAS(2,2) active space. The full system
descriptions, including the number of electrons and the exact sizes of the orbital ranges, can be
found in Tab. B.5.

[...]

Figure 7.1 Linear alk-1-enes used for benchmarking of the reduced-scaling implementations. In the
top row, ethene to pentene are shown, ncarbons D 2; : : : ; 5, and octadecene is shown in the bottom row
(ncarbons D 18).

The timings for the standard and reduced-scaling implementations of fic-MRCI and fic-
MRCC theory are shown in Fig. 7.2 for both basis sets (top and bottom row for def2-SVP and
def2-TZVP, respectively). Each set of timings further consists of the pre-iterative and iterative
timings. More specifically, the pre-iterative timings include the computation of the densities,
the fic-NEVPT2 amplitude guess, and the “constant intermediates,” i.e., contractions that do
not depend on amplitudes and can hence be computed once prior to the iterative part. We
note that our implementation of fic-MRCC theory does not use constant intermediates as the
speedup was negligible, since virtually all factorized equations depend on an amplitude, and
consequently cannot be pre-computed. The iterative part includes all other contractions that
depend on amplitudes, and thus are recomputed in every iteration. The raw numerical data is
reported in Tab. B.6.
As presented in Fig. 7.2, the pre-iterative times are negligible in the calculation since they are

much faster than a single iteration of either fic-MRCI and fic-MRCC theory and only need to be
computed once, compared to normally 10–15 times for the iterative parts. The only time when
they are of some significance is in fic-MRCI theory, where the constant intermediates scale as
O.N 4/.2 However, since the constant intermediates scale less than the iterative part, O.N 4/

2 Themost expensive contractions in the standard fic-MRCI constant intermediates scale as n2
inactn

2
virt, ninactn6

actn
2
virt,
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Figure 7.2 Scaling of “standard” and reduced-scaling implementations of fic-MRCI (left column) and
fic-MRCC theory (right column) with system size on linear alk-1-enes (e.g., ncarbons D 5 for pentene).
The top and bottom rows show the results in the def2-SVP and def2-TZVP basis sets [463], respectively.
In each panel, the timings of both the average time per iteration as well as the time for the pre-iterative
densities for the standard and reduced implementations are shown. Irregularities due to IO congestion
issues.
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vs. O.N 6/, they will become less and less important in the overall timings the larger the system
size is. In case of the fic-MRCC method, the fic-NEVPT2 guess dominates the pre-iterative
timings, since the densities, even up to 5, all take less than 0.1 s to compute.

Most importantly, the iteration times of the standard and reduced-scaling implementations
do not differ for either fic-MRCI or fic-MRCC theory. This confirms that the scaling of the
reduced-scaling implementations is the same as the standard implementation for small active
spaces, O.N 6/.

In more detail, this scaling can be observed in Fig. 7.2 both with respect to the number of
carbon atoms, ncarbons, as well as with respect to the increase in basis set size, by comparing
the top and bottom rows. The steep scaling in the def2-TZVP basis set limits the achievable
system size for the fic-MRCC systems to dodecaene (ncarbons D 12), compared to octadecene
(ncarbons D 18) in the def2-SVP basis set. These calculations further show what is “routinely
achievable” with our fic-MRCC implementation, since an average time of 105 s � 28 h per
iteration for these systems corresponds to a total runtime of � 14 days for typically twelve
iterations. It must, however, be emphasized that all these results are from single-threaded
computations, as the parallelization has not yet been completed. Once the generated codes have
been parallelized, we expect systems such as pentadecene (ncarbons D 15) to be viable targets for
our fic-MRCC implementation in a triple-� basis set.

If we compare fic-MRCI and fic-MRCC theory (left and right columns of Fig. 7.2, respectively),
we can immediately see the much higher prefactor of the fic-MRCC method. In the def2-SVP
basis set, the prefactor is about ten times higher, which grows to about 15 for the def2-TZVP basis
set. A reason for this lies in the constant intermediates of fic-MRCI theory, which noticeably
reduce the iterative time in fic-MRCI theory and are absent in fic-MRCC theory. Moreover, the
higher IO and memory pressure that fic-MRCC theory puts on the compute nodes slows down
those calculations slightly.

The high IO pressure of fic-MRCC theory is also evidenced by the distinct irregularities
in the iterative timings for both the standard and reduced-scaling implementation in Fig. 7.2.
This is not due to the fic-MRCC method itself, but rather due to an overloaded shared RAID
IO-system for the dual-CPU compute nodes because two calculations were run simultaneously
on one of two NUMA-nodes on the same server. This does not lead to CPU or memory
resource contention, but the IO system cannot handle heavy IO operations from both processes
simultaneously, thus resulting in irregular iteration times. A hardware issue was also responsible
for some missing calculations of the fic-MRCC method.

and n2
actn

3
virt, the first of which will be limiting for ninact . nvirt � nact, i.e., large systems with small active spaces

like the alk-1-enes. None of the 4-external terms with O.N 6/ scaling appear here since they always contain an
amplitude, and are thus not constant.
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7.3.2 Polyunsaturated Alkenes

We now turn to systems with large active spaces, on which we can also investigate the effect of
an increasing active space size with the other orbital ranges kept at a similar size. To this end,
we chose all-(E)-polyunsaturated alkenes (polyenes) from ethene to tetradecaheptaene in the
def2-SVP basis set [463] (Fig. 7.3).

Figure 7.3 Linear, all-(E)-polyunsaturated alkenes from ethene to octatetraene. Each polyene can be
treated with active spaces ranging from CAS(2,2) to CAS(2n,2n), where n is the number of double bonds.

The polyenes allow us to investigate active spaces ranging from a small CAS(2,2) for a single
double bond up to CAS(2n; 2n) in steps of 2, where n is the number of double bonds. Each
active space contains both the � and corresponding �� bonds. Hence, as the active space size
increases, the orbital ranges change according to the following pattern,

CAS.nact; nact/ W ninact; nact; nvirt;

CAS.nact C 2; nact C 2/ W ninact � 1; nact C 2; nvirt � 1;
(7.21)

which is almost ceteris paribus regarding the number of inactive and virtual orbitals. The
largest active space corresponds to the full �-system of the fully unsaturated polyene, and the
smaller active spaces to a chemically sound subset thereof. In all cases, we used an MP2 natural
orbital guess as the starting orbitals for the subsequent CASSCF calculation. The full system
descriptions can be found in Tab. B.7.

Although we computed a full set of polyunsaturated alkenes from ethene to all-(E)-dodeca-
hexaene, in the following we will focus on decapentaene and the results from fic-MRCC theory,
as that system allows up to ten active orbitals, i.e., a large active space. The remaining calculations
with smaller active spaces essentially confirm the findings of Sec. 7.3.1, and the corresponding,
full dataset can be found in Tab. B.8.
The timings of the standard and reduced-scaling implementation of fic-MRCC theory on

decapentaene are plotted in Fig. 7.4. From left to right, the panels show the timings of the
pre-iterative step, the iterations, and the total runtime, each of which we will further discuss in
this order below.
The timings of the non-iterative steps contain the computation of the densities, 5 and 4 for

the standard and reduced-scaling implementation, respectively, as well as the fic-NEVPT2 guess.
However, the fic-NEVPT2 guess is entirely negligible for the calculations with large active spaces.
Conversely, the construction of the densities are negligible for small active spaces. Note that the
timings below a few seconds are not entirely reliable, as they were obtained from a single run on
a system subject to random fluctuations.
In the semilogarithmic plot of the pre-iterative times (left panel of Fig. 7.5), we can easily see

the exponential scaling of both 4 and 5 with the size of the active space. The line of 4 has a
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Figure 7.4 Scaling of the density computation and fic-MRCC iterations on decapentaene with sym-
metric actives spaces, CAS(nact,nact). The left panel shows the pre-iterative timings, the center panel the
average iteration time, and the right panel the total time.

lower slope than that of 5, which is consistent with the theoretical scaling (see also Sec. 7.1.1),

nCSF � aebnact ; (7.22)
log.nCSFn

2m
act / � bnact C 2m lognact C log a: (7.23)

This finding is corroborated by the plots from Fig. 7.5, which shows the same scaling in the left
panel with almost identical results since the computation of the densities is independent of the
size of the system.
Continuing with the iterative part, the time per iteration of standard and reduced-scaling fic-

MRCC (Fig. 7.3, center panel) are essentially indistinguishable for active spaces up to nact � 8,
although both show a steep scaling with nact. Only for the largest active space, CAS(10,10), does
the reduced-scaling variant show even shorter iteration times than the standard implementation.
This is unexpected since the scaling of the (limiting contractions of the) reduced-scaling variant
is O.nCSFn

6
activenvirtual/ (Eq. 7.25), compared to O.ninactiven

10
active/ (Eq. 7.24) for the standard

implementation. Given that nCSF D 19404 � 2n4
act for this system, it should be slightly slower

in this case, and the gains should come entirely from avoiding the computation of 5.
The explanation lies in the very slow computation of the terms containing 5: Looking at the

most expensive terms from that computation, the first 23 of 30 terms contain 5. The worst
offender is

.Y92738/
iqsu
prtv  

X
p0q0w

t
wp0

iq0 
vuwp0q
tpsq0r ; (7.24)
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which not only contains the five-body density 5, but also the eight-dimensional target tensor
Y92738. To make matters worse, the tensors are also highly disordered, being stored in memory
in row-major order as Y92738(i,p,q,r,s,t,u,v) and G5(v,t,u,p,w,s,p',q',q,r), making
simultaneous traversal impossible. For large, highly dimensional tensors as in this contraction
(the size of 5 is 80.00 GB, well beyond the size of the CPU caches), this leads to frequent
cache misses, which incur high memory latency and thus a big slowdown.3 The slowdown is
not due to a highly inefficient implementation, but rather inherent to the memory architecture
of current compute hardware. To alleviate this issue, the high-order densities are aligned prior
to computation for optimal usage in high-dimensional BLAS dgemm calls, which operate at
peak CPU efficiency, in our code. For details on the TTGT scheme, we refer to App. A.3. A
recent publication byMatthews [531] gives a full discussion of the problem, including alternative
approaches to its solution.
In comparison, the slowest contraction of the reduced-scaling variant is

.X305/prt
qsa  

X
u;I

.X304/u
a;I hˆI jE

ust
qpri; (7.25)

which only takes 56% of the computational time of Eq. (7.24). This contraction has at most
6-dimensional tensors, limited to a size of 127.2 MB, which is much smaller than 5. The
CSF intermediate X304 is stored in nCFG D 8953 chunks of tensors of average size of 28 KB
(combined size: 246.8 MB) since it is stored per configuration on disk, see also Sec. 7.2.1. The
TTGT scheme is also used for these contractions, and they even have the disadvantage that the
indices are fixed in the order of t,r,w,p,u,q in Eq. (7.25), for the densities must be constructed
from the edge of the zeroth-order wave function, thus dictating the order of four for loops.4

As a final note, the speedup will be greater the fewer configurations there are, since it will
make the reduced-scaling variant even cheaper. The same also holds true for the computation of
the five-body density 5, which then also depends on fewer configurations or CSFs. The iterative
part of the standard fic-MRCC implementation, however, will not experience any speedup since
the size of the density only depends on nact, still leading to large memory requirements and the
corresponding inefficient computation.
Looking at the total computation time (Fig. 7.3, right panel), we find that they are essentially

identical for nact � 8, since the computational cost of the pre-iterative steps is negligible and
each iteration is timed about the same. However, for nact D 10 the reduced-scaling variant runs
faster by 30%, both due to the reduction in the pre-iterative timings due to a reduction in the
density order and the slightly faster iterative timings as well. We should note that we focused on
the time per iteration above because the total timings have the drawback that they also depend

3 The other 6 of 30 most expensive contractions do not contain 5, but 4 and two other six-dimensional tensors
with two virtual labels, scaling as O.n8

activen
2
virtual/.4 This contraction requires reordering of tensors as well, but on lower-dimensional, smaller quantities, which is

much faster.
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on the number of iterations, i.e., introduce another variable not inherently tied to the method,
but rather dependent on the system and the starting orbitals.

These results are reinforced by the series of growing polyenes, all shown with their largest
active spaces, CAS(2,2) for ethene, up to CAS(12,12) for dodecahexaene (Fig. 7.5). The main
difference to the decapentaene plot (Fig. 7.3) is that the scaling of the iterative and total part is
even worse, since both active space and system size grow.
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Figure 7.5 Scaling of the density computation (left panel), fic-MRCC iterations (center panel), and total
timings (right panel) on growing polyenes in full �-systems, CAS(nact; nact), from ethene (nact D 2) to
dodecahexaene (nact D 12).

The situation is more nuanced with the results from the standard and reduced-scaling imple-
mentations of fic-MRCI theory. Since fic-MRCI computations are faster than those of fic-MRCC
theory, we discuss a larger system, all-(E)-dodecahexaene, instead of decapentaene here, with
active spaces up to CAS(12,12). We first look at the timings for the construction of the den-
sities, which appear up to 4 and 3 for the standard and reduced-scaling implementations,
respectively (Fig. 7.6, left panel). As expected, the construction of the four-body density is more
expensive than of the three-body density by roughly an order of magnitude, which translates
to one-time savings of � 1:7 hours for the CAS(12,12) active space on dodecahexaene. It is
immediately obvious that the savings due to constructing only 3 instead of 4 are much less
pronounced compared to the saving of avoiding the computation of 5 in fic-MRCC theory.
Consequently, the reduced-scaling fic-MRCI method must be implemented in a highly efficient
manner, with a correspondingly low prefactor, to be faster for medium-sized active spaces, or it
should be used with much larger active spaces, e.g., those accessible with approximate methods
such as the ICE method [438, 439], to benefit from the scaling reduction.
The computation of the constant intermediates is a significant factor in the fic-MRCI calcu-
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Figure 7.6 Scaling of the density computation and fic-MRCI iterations on dodecahexaene with sym-
metric actives spaces, CAS(nact,nact). The left panel shows the timings of the density construction, the
center panel the time for the constant intermediates, and the right panel the average time per iteration.

lations (Fig. 7.6, center panel). For the standard implementation, we only have a polynomial
scaling (see also Sec. 7.3.1), leading to moderately longer timings with the size of the active
space. For twelve active orbitals, the timing is 853.8 s, well below that of the computation of
4, which requires 6699.9 s. The situation is reversed for the reduced-scaling implementation,
where the constant intermediates show a steep scaling with nact. This is due to some constant
intermediates being CSF intermediates, which introduces a dependence on the number of CSFs,
nCSF, in the scaling.5 Therefore, especially for nact D 12, the timings reflect the predicted
exponential scaling, taking 3572.4 s to compute the reduced-scaling constant intermediates, or
53% of the time taken to compute 4 in the standard implementation.
In some regard, this distinction between the densities and what we call constant intermediates

here is somewhat artificial, since one can make the argument that the densities are “constant
intermediates” as well. A benefit of the densities is that they can indeed be entirely precomputed,
in contrast to the CSF intermediates, which also appear in the iterative part (see below and
Sec. 7.1.2).

A very similar picture presents itself for the average time per iteration (Fig. 7.6, right panel).
Up to a CAS(8,8), the timings between the standard and reduced-scaling implementation are
virtually identical, but the reduced-scaling variant becomes more expensive for CAS(10,10) by
a factor of 1.4, and more expensive for a CAS(12,12) by a factor of 7.1, which is also due to the
exponential scaling with nCSF. The full timings can be found in Tab. B.8.

5 The constant intermediates contractions with the worst scaling are O.nCSFninactn5
act/, O.nCSFn6

act/, and
O.nCSFn4

actnvirt/.
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7.3 Results and Discussion

Looking at the total computation times, we find that the reduced-scaling method takes longer
to compute, at 37.4 h for 13 iterations, compared to only 7.3 h for the standard implementation.
This is a consequence of the three effects discussed above: The reduced-scaling implementation
only saves 1.7 h on the construction of the densities, and takes 0.8 h and 2.4 h more time for the
computation of the constant intermediates and in every iteration, respectively.

To further elucidate this behavior, we now analyze the most expensive contractions for both
the standard and reduced-scaling implementations of fic-MRCI theory, respectively,

�ab
pq  

X
cd

.Z333/
pq

cd
.bd jac/; (7.26)

.X73/
p
a;I  

X
qrst

.X72/prt
qsa hE

qs
rt jˆI i; (7.27)

which scale as O.n2
actn

4
virt/ and O.nCSFn

5
actnvirt/. Interestingly, Eq. (7.26) does not contain any

density, which is in stark contrast to the results reported for fic-MRCC theory above, where
virtually all of the first 30 contractions depend on high-order densities. This is an indication
that the contractions with the densities are (by far) not limiting in the iterative part of fic-MRCI
theory, in contrast to fic-MRCC theory.

To better assess the relative performance of the limiting contractions, Eqs. (7.26)–(7.27), as
well as the construction of the four-body density, we compare the measured and predicted,
relative timings in Tab. 7.2. The timings of Eqs. (7.26)–(7.27) are given per iteration, as 4 is
also computed only once. However, keep in mind that X73 and �ab

pq must be recomputed in
every iteration, i.e., they must be computed niter D 13 times until the fic-MRCI iterations on
dodecahexaene have converged. The predicted relative timings were computed from a simple es-
timation from the asymptotic scaling and the known orbital ranges for dodecahexaene (Tab. B.7),
with the underlying assumption that we have already reached the asymptotic scaling regime, ir-
respective of implementation details and efficiency of the compute hardware. According to the
asymptotic estimate, the computation of Eq. (7.27) and 4 should be 58 and 530 times more
expensive than computation of Eq. (7.26), respectively. In this case, a single iteration of the
reduced-scaling implementation on dodecahexaene would be faster than the computation of 4

by a factor of� 7, for 4 would clearly be the limiting term. Overall, the entire calculation with
niter D 13 would still be slower by 60% than the standard implementation. Regrettably, this is
in stark contrast to the measured relative factors of 9.3 and 21.9. Perhaps most surprising is that
the computation of 4 is only 2.4 times slower than the most time-consuming contraction of the
reduced-scaling implementation, Eq. (7.27), in a single iteration, despite being predicted to be
about an order of magnitude slower. The main reason for this is that the computation of 4 is
truncated with D4TPre 1.0e-14, which reduces the number of electronic configurations in the
CI space by about 50%, and correspondingly the computational effort, by only considering those
with CI coefficients larger than D4TPre. Such a reduction is not yet implemented for the CSF
intermediates. Another reason is that, while high-dimensional tensors do appear in the compu-
tation of 4, these can always be traversed perfectly in storage order through BLAS operations,

125



7 Reduced Scaling for Internally Contracted Multireference Theories

leading to an optimal computer implementation. For the CSF intermediate in Eq. (7.27), we are
required to traverse the intermediate X72 out-of-order, leading to a more inefficient operation
despite use of the BLAS-based TTGT engine (see Sec. A.3). Moreover, the CSF intermediates
are stored on disk (Sec. 7.2.1), compared to the four-body density 4, which is stored entirely in
high-speed memory, slightly skewing the comparison in favor of the standard implementations.
For very large active spaces, though, there is no alternative to keeping the CSF intermediates on
disk, and also the densities would eventually need to be removed from memory.

Table 7.2 Comparison of theoretical scaling, predicted, and measured, relative performance of the
limiting contractions in fic-MRCI theory on dodecahexaene in a CAS(12,12). The most expensive
contraction from the standard implementation, Eq. (7.26), was normalized to 1.0, and all other timings
reported relative to it. The predicted factors were obtained from a simple estimate based on the asymptotic
scaling of the terms.

Equation Scaling Measured Predicted

(7.26) O.n2
activen

4
virtual/ 1.0 1.0

(7.27) O.nCSFn
5
activenvirtual/ 9.3 58.0

4 O.nCSFn
8
act/ 21.9 530.0

Apart from only presenting the timings for the CAS(12,12) active space, we can also compare
the scaling of Eq. (7.27) and the computation of the four-body density to assess when a crossover
will occur (Fig. 7.7). For active spaces of up to nact � 10, computation of X73 appears to scale
worse than computation of 4. As mentioned above, this will be in part due to the highly
efficient implementation of 4. For nact D 12, however, the computation of X73 is faster that of
4. However, since X73 must be recomputed in every iteration, more time is spent computing
X73 during the entire calculation on dodecahexaene than on constructing 4. All in all, we
conclude that we have not reached the asymptotic scaling limit with this system yet.
To summarize, the reduction in asymptotic scaling does not show for the fic-MRCI method

since computing 4 is highly efficient and occurs only once, whereas the CSF intermediates
are comparatively inefficient and must be recomputed in every iteration. Nevertheless, the
asymptotic scaling should guarantee that the reduced-scaling fic-MRCI implementation becomes
faster for sufficiently large active spaces. Since the fic-MRCI method is significantly faster than
the fic-MRCC method and will soon be fully parallelized, we suggest investigating this matter
further, especially in conjunction with approximate schemes such as the ICE method.
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Figure 7.7 Scaling of X73 (Eq. 7.27) and 4 with the number of active orbitals, nact, on dodecahexaene.
All in all, X73;iter must be recomputed in every of the niter D 13 iterations (X73;total), making its total
computation time during the calculation slower than that of 4.
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8 Conclusion

In this thesis, we mainly shed light on open issues in multireference coupled-cluster theories in
quantum chemistry. We state the main conclusions here, before further details and nuances are
given in the following sections.

On the topic of the residual conditions in multireference theories, we developed a new relation
between the many-body and projective residuals. The expansion we propose connects these two
residual conditions in the form of a cumulant expansion, which in turn allows us to justify the
truncations in the many-body expansions apparent in MR-EOMCC theory.

Still on the subject of MR-EOM methods, we also investigated the effects of turning the MR-
EOMCCmethod, a transform-then-diagonalize approach, into a perturbative theory. While this
does cause some loss in accuracy compared to the parent theory, the novel method is as accurate
as another perturbative approach, i.e., NEVPT2 theory.

We also proposed an automated scheme to reduce the order of the density matrices in
internally contracted multireference theories that do use projective residual conditions, e.g., fic-
MRCI and fic-MRCC theory. While the scheme works exceptionally well for fic-MRCC theory,
the high prefactor only justifies its use with fic-MRCI theory for the largest of active spaces and
warrants further research.

Since all the above methods are highly complicated multireference theories, automatic code
generation was required to perform the studies reported in this thesis. To this end, we im-
plemented the ORCA-AGE II toolchain from scratch. It is a major improvement over the old
version [1] in terms of functionality, extensibility, usability, and performance, requiring under
five hours to generate the full version of fic-MRCC theory on a current desktop computer.
Lastly, we report the excellent results of a single-reference STEOM study on excited states of

indigo dyes. Despite not being a multireference approach, STEOM shares a close connection
with MR-EOMCC theory as a transform-then-diagonalize method. The results can be viewed as
a celebration of what can currently be achieved with single-reference CC theories, setting a bar
for multireference approaches both in terms of accuracy and usability.

8.1 Many‑Body and Projective Residual Conditions

In Ch. 3, we provide insight into how well the many-body conditions perform when compared
to the standard projection conditions in solving for a set of internally contracted multireference
coupled-cluster amplitudes. To this end, we use two simplified MR-CCD approaches that differ
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only in the residual conditions, having either many-body or projective equations. For the many-
body equations, we remark that those equations are almost identical to the first OT transformation
of the MREOM method [215]. We provide a strict comparison of both approaches that details
underlying assumptions and approximations in the parameterizations.
We explicitly relate the equations that result from many-body conditions to the projective

equations by expressing the latter in terms of Hamiltonian elements and the associated pre-
factors of density matrices and cumulants. These terms can be arranged into a hierarchy of low-
and higher-rank contributions in the projective conditions suitable for numerical comparison.
The differences in the magnitude of the higher-order terms are analyzed by cross-substituting
converged amplitudes from the many-body or projective conditions into the residual equations
of the opposite condition, which results in a numerical gauge on the importance of the higher-
order terms. The results show that the many-body conditions, which directly zero out elements
of the transformed Hamiltonian, perform much better in keeping these higher-order terms
small compared to the corresponding projective conditions, which just require a sum of terms
to be zero. This, in turn, clearly connects to the idea of the sequential transformations used
in MREOM theory, where higher-order Hamiltonian terms are neglected in the subsequent
similarity transformations.
Our efforts should be viewed in line with the research by Gauss, Evangelista, Köhn, Nooijen

and Chan on how to construct a generally applicable, fast and efficient multireference coupled-
cluster method. Several important aspects such as general parameterization, amplitude removal,
sequential transformations, transform-then-diagonalize strategies and unitary approaches have
been discussed in the literature with their advantages and shortcomings, while the focus of this
thesis was on characterizing the differences between many-body and projective conditions using
a simplified MRCC approach. We hope that the considerations presented in this thesis will
pave the way to understanding what aspects are truly important in designing a “gold-standard”
multireference method.

8.2 Automatic Code Generation in Quantum Chemistry

In Ch. 4, we describe a newer version of ORCA-AGE, ORCA-AGE II, which is a complete over-
haul of the previously introduced toolchain [1]. Due to algorithmic improvements throughout
the code (especially in the time-limiting steps) and a shift in programming language from Python
to C++, the toolchain is faster by a factor of � 150 as measured while generating fic-MRCC
theory. Its highly modular layout has also been refreshed, enabling us to add new code engines
such as the TTGT scheme easily. It is also simpler to use than the old toolchain as external
dependencies were removed and because of an even tighter integration with the main ORCA
source code: all computational modules can be regenerated with a simple command, which
automatically brings new features and better code to existing modules as well.
The new toolchain has proven to be useful in generating even the most complicated theories,
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as demonstrated for fic-MRCC theory, for which an enormous number of terms was successfully
generated through the commutation rule-based equation generator. The generated code is highly
performant despite the large number of terms that must be computed.

In the end, developing automated code generators is beneficial for researchers as it allows them
to spend their resources on their critical projects while at the same time transparently accounting
for an efficient, production-level implementation. We believe that this is the direction in which
ab initio quantum chemistry is evolving and will hence continue to align our development efforts
on ORCA and ORCA-AGE with these trends.

We will now give an outlook of how we think quantum chemical software will develop in the
future. While it is true that this is subjective to a certain degree, we believe that the underlying
trends in ever more complex theories as well as consistent increases in (parallel) computing
power, especially in the field of ab initiomethod development, require better and more powerful
tools than just “handwritten code” to achieve an efficient scientific workflow. First, some theories
such as fic-MRCC are too complex to be implemented in the conventional way in the first place,
and thus obviously require higher-level tools. But even for less demanding theories, an automated
toolchain can lead to higher productivity on the researcher’s end, as tedious implementation
details are transparently automatized, thus freeing time to spend on quantum chemistry instead
of programming. Moreover, any performance improvements or new theoretical developments
in the generator toolchain also transfer to older method implementations as well, without having
to rewrite older codes.
Effectively, we envision a clearer partitioning of quantum chemistry codes in the future into

low-level, mid-level, and high-level parts, to be explicated below. While the exact boundaries
between the hierarchy of codes will be somewhat fluid, we nonetheless believe that the three
main areas identified here successfully capture future directions of code development in quantum
chemistry.
Under “low-level,” we understand the foundational code of any quantum chemical software

package that provides basic quantities such as molecular integrals and other general-purpose
libraries used throughout the codes, e.g., a library for arbitrary-dimensional tensors. Integral
libraries already exist (for example, Libint [532] and SHARK [288, 289, 533]) and have been
extensively tuned for shortest possible runtimes. Interestingly, specialized code generation has
also been employed for the integral libraries Libint [532] and SHARK [288, 289], as especially
loop unrolling allows the compiler to generate the most efficient code. Other low-level libraries
include BLAS, which allows peak efficiency for the ubiquitous matrix multiplications in modern-
day quantum chemistry codes. As a side note, general BLAS-like libraries for arbitrary tensors
that may become more pervasive in the future would also fall in this category. Noteworthy
examples are TBLIS [531] and GETT [262], among others.

Under our classification, the mid-level code would mainly comprise common algorithms
that are implemented by hand, such as general solvers and drivers. Given a flexible interface,
these common algorithms enable the (iterative) computation of the desired molecular properties
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without needing to copy-and-paste code, possibly with minor modifications depending on the
actual method. Doing so guarantees that these core algorithms are free from errors since there
is only the library that needs to be tested; and not multiple, slightly different implementations.
Also, any improvements also apply across all implemented methods consistently.

The highest level is reserved for the actual implementation of quantum chemical theories
such as CCSD, CCSDT, fic-MRCC, gradients, properties, … This is ideally enabled through a
high-level interface that more closely resembles the mathematical equations or ansatzes rather
than computer code. This can be achieved in many possible ways, each with its own benefits
and drawbacks. In our group, we decided to focus on code generation since all contractions and
tensors (with all their dimensions) are already known at compile time. Thus, there is no need to
interpret the data on-the-fly, and the generated code can still be tailored to different architectures
and to different framework backends such as the ones mentioned in the introduction (CTF [263,
264], libtensor [265], LITF [266], TCL [262, 267], and TiledArray [268, 269]). Other approaches
may include interpreters such as SIAL [271, 272, 534, 535] or direct usage of the aforementioned
libraries. Eventually, only the mathematical equations would be stored in the code repository,
which makes them easy to understand for new researchers as well as easy to validate and modify.

In ORCA, first steps have been taken in this direction [289, 533]. In Ch. 4, we outlined
the latest developments in ORCA-AGE’s code generation capabilities, which showcases what we
think will be representative of high-level interfaces in quantum chemical codes in the future.

8.3 Similarity Transformed Equation‑of‑Motion Study of Indigo
Dyes

In Ch. 5, we reported an excited state coupled cluster study of indigoid dyes. After discussing the
significance of these dyes, we investigated multireference effects and found that a single reference
method, such as STEOM, should be sufficient to provide accurate results for this family of dyes.
After studying basis set effects, the def2-TZVP basis set was chosen as an excellent compromise
between accuracy and efficiency. Implicit solvent effects also had to be taken into account in
order to achieve our target accuracy of 0:1 eV. We then presented the DLPNO-STEOM results
for 0–0 transition energies and compared them to experimental absorption band maxima. We
found that in virtually all cases, our predictions agree with experiment within 0:1 eV and that
STEOM also reproduces the effects of chemical substitutions on the excitation energy. Finally,
we presented calculated spectra for some of the main components of Tyrian purple and also
compared these findings to a measured spectrum of the same dye. It is especially important
to emphasize that our protocol was able to reproduce the experimental spectra of individual
components without any empirical shift. Thus, we are confident that the VG-corrected DLPNO-
STEOM method will become a useful tool for computational chemists studying photochemical
processes.
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8.4 Multireference Equation‑of‑Motion Perturbation Theory

In Ch. 6, we presented a new multireference perturbation theory, called MR-EOMPT, which
is based on the MR-EOMCC method. The approach is best classified as a transform-then-
diagonalize method in complete analogy to MR-EOMCC since the general theoretical structure
is the same, except for the fact that perturbatively estimated amplitudes are used for the sequential
similarity transformations. MR-EOMPT also shares the multistate character (which is closely
related to their many-body aspect) with its parent method, and only requires a minimal MRCI
diagonalization space due to the decoupling of the model CASCI space from the external
space through the similarity transformations. Furthermore, MR-EOMPT and -CC only require
one- and two-body RDMs of the CAS reference states, in stark contrast to other multireference
perturbation theories, which formally require up to four-body RDMs. Ourmain goal was to show
that using perturbative amplitudes in the MR-EOMPT method decreases computational cost
while retaining at least the accuracy of other popular perturbational methods. Moreover, since
the MR-EOMPT method foregoes the many-body residual equations, there are no convergence
difficulties as in the MR-EOMCC method for nearly singular amplitudes.
The benchmarks presented mainly focus on vertical transition energies, as calculating these

is the major application of EOM methods in which the excited states can all be obtained from
a single state-universal calculation. The first test set of small diatomic molecules in a double-�
basis set shows that the MR-EOMPT method performs on par with fic-NEVPT2 at an RMSD
of 0.07 eV over a set of 25 transition energies. This test set of small molecules with FCI-quality
reference data is complemented by a subset from Thiel and co-workers’ benchmark [313] with
larger molecules in a triple-� basis set. Compared to the published [313] CC3 reference values
with a singles contribution of %T1 > 90%, we found that the triplet transitions were treated
more accurately than the transitions to singlet final states. For the triplet transitions, the RMSD
across 12 transitions is 0.11 eV, about half of what was found for state-specific fic-NEVPT2 with
an RMSD of 0.19 eV. The situation is the opposite for the singlets, where the RMSD across 11
transitions is 0.43 eV, about twice as much as for fic-NEVPT at 0.20 eV.TheMR-EOMCC results
with the same parent state are much more robust at an RMSD of only 0.18 eV for the singlet
transitions, but still higher than for the triplet transitions (0.07 eV). For the MR-EOMCC results,
this has already been found to be due to the OT � transformation in ORCA [215]. We should note
that in the subset of Thiel’s benchmark, the fic-NEVPT2 calculations use orbitals optimized for
each multiplicity and irrep, whereas the MREOM methods only use a single reference state.
The lithium fluoride PES scan was included to demonstrate the ability of the MR-EOMPT

method to accurately reproduce weakly avoided crossings, which is straightforward with trans-
form-then-diagonalize approaches since only the final step gives the states as combinations of
the model space functions. When comparing the results to QD-NEVPT2, we found that the
PES computed by the MR-EOMPT method is much more parallel to the FCI-quality reference
without any artifacts located in the region of the avoided crossing. The MR-EOMPT method
also performs better when it comes to the vertical transition energies between the neutral and
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ionic states of LiF at each point of the PES, with the results being effectively identical to the
ICE-FCI reference data.
To assess the accuracy of ground-state energy calculation, we chose to compute the singlet-

triplet gaps on methylene and silylene. Despite not being the focus of EOM-like methods, the
ground state calculations on the singlet and triplet geometries demonstrate that the singlet-
triplet gap is reproduced accurately to within 0.7 kcal mol�1, an error comparable to that of
the fic-NEVPT2 method at 1.3 kcal mol�1. This finding is also supported by the quality of
the total energies for the diatomic test systems, where the MR-EOMPT method reproduces the
FCI-quality total energies better than fic-NEVPT2.
A paramount example of the MREOM methods are transition energies on transition metals,

since most of the d-d transitions can be described from a single parent state in a reasonably
small CAS(n,5) calculation. We computed a total of 190 state energies on the cobalt and
chromium atom combined and found again that the perturbative approach is not as robust as
the fully iterative MR-EOMCC with RMDSs of 0.38 eV and 0.12 eV versus 0.12 eV and 0.07 eV,
respectively. The performance is, nonetheless, similar to that of fic-NEVPT2 on the transition
metals. Also, since we used the same orbitals in these fic-NEVPT2 andMR-EOMPT calculations,
the setup of the Co and Cr calculations was more similar than the setup of the Thiel benchmark
calculations, where CASSCF and NEVPT2 used optimized orbitals for each multiplicity and
irrep block.

Furthermore, we included a comparison against the LR-ic-MRCC method [202]. Linear
response methods have the advantage that the states of interest need not lie in the CASCI
space, which in turn allows smaller active spaces that only capture the necessary amount of
static electron correlation. The MR-EOMPT method, as well as fic-NEVPT2, cannot treat states
outside of the CASCI space. Hence, a larger active space is required to compare against the LR-ic-
MRCC results on higher-lying singlet roots ofmethylene and hexatriene [202]. We found that the
MR-EOMPTmethod outperforms even theMR-EOMCCmethod on themethylene singlet roots,
which is attributed to fortuitous error cancellation since normally the MR-EOMCC method is
more accurate. Conversely, on hexatriene, the iterative MR-EOMCC results are superior to the
perturbative results, with MR-EOMPT and NEVPT2 performing similarly.
Overall, we have demonstrated that the accuracy of the MR-EOMPT approach is comparable

to established multireference perturbation theories such as state-specific fic-NEVPT2. When
benchmarked against its parent method, MR-EOMCC, we found that, despite sometimes even
outperforming it, the MR-EOMPT method is less robust, i.e., less precisely reproduces the
reference values. This comes at the benefit of lower computational cost and avoided convergence
difficulties. The newmethod is especially useful in situations where dynamic electron correlation
significantly mixes the model space functions among themselves, as showcased in the PES of the
LiF system. We therefore recommend this new approach in these situations as well as for systems
where the high accuracy of the MR-EOMCC method is not strictly required, but perturbational
results of NEVPT2-like quality are sufficient.
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8.5 Automatic Scaling Reduction for Internally Contracted
Multireference Theories

For the first time, to the best of our knowledge, we presented in Ch. 7 an automated reduced-
scaling scheme that can be applied to any theory with high-order densities, completely irrespec-
tive of any specifics. Our strategy relies on the fact that index pairs in density matrices can be
permuted in an arbitrary fashion, and the permuted density be split with RI into smaller parts
and then contracted with other tensors such that many indices are contracted “away.” Thus, we
can completely avoid the computation of the highest-order densities, whose computation scales
steeply with the size of the active space and the number of CSFs in the CASCI space.
Our automated scheme is straightforward to implement, given an existing code generation

toolchain that allows for easy manipulation of the working equations on-the-fly. The global
search of index permutations and RI split positions is not computationally intensive since the
number of (sensible) possibilities is quite limited, even for contractions containing five-body
densities in the case of fic-MRCC theory. A minor caveat while processing the reduced working
equations is that a termwise optimal factorizer is required, instead of simpler tools that only do
a left-to-right, linear factorization. Sometimes, a linear factorizer cannot find the only sensible
contraction, and consequently may even leave the contraction “unreduced.” We further conclude
that the resulting, large CSF intermediates should be stored on disk, for they contain an index
that scales with the number of CSFs, and thus exponentially with the size of the active space.
We assessed the performance of the reduced-scaling implementations of fic-MRCI and fic-

MRCC theory on two benchmark sets, which are aimed at demonstrating the scaling with the
size of the systems as well as the size of the active space. For the scaling of the standard and
reduced-scaling variants with respect to system size in a series of linear alkenes using a small,
CAS(2,2) active space, we do not observe any meaningful difference in runtime, neither for
the preparation steps, which include the computation of the densities, constant intermediates,
and the initial guess, nor for the iterative part of the calculations. This conclusion holds for
increasing the system size both in terms of adding more carbon and hydrogen atoms, as well as
using larger, triple-� basis sets; the main reason simply being that neither the computation of
the densities nor the contractions involving the densities are time-critical.
For the benchmarks on polyunsaturated alkenes with various active spaces up to a CAS(12,12),

substantial performance differences become obvious. Turning first to fic-MRCC theory, we
observed a clear win for the reduced-scaling implementation in all cases, no matter the size
of the active space. In fact, the reduced-scaling variant was even faster per iteration than the
standard implementation. Normally, the iterative part is expected to be slower than for the
standard implementation, since we introduce a scaling dependence on the number of CSFs
there, and the computational gains should come entirely from avoiding the computation of the
high-order density matrices. This unexpected, but welcome result can, however, be explained by
the fact that the contractions involving a five-body density in the standard implementation are
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very inefficient on modern CPU / memory architectures, which do not handle high dimensional,
multi-GB tensors well. Of course, avoiding the computation of 5 further reduces the runtime
of the reduced-scaling fic-MRCC implementation.
The reduced-scaling scheme, unfortunately, does not work as well for fic-MRCI theory. For

all our polyunsaturated benchmark systems, the standard implementation is always faster than
the reduced-scaling implementation. This is a combination of three main factors: First, the
construction of the four-body density 4 is still relatively fast compared to the subsequent fic-
MRCI calculation, due to a highly efficient implementation. Second, the iterative part of the
reduced-scaling fic-MRCI calculations, which, again, is expected to be slower than that of the
standard implementation, incurs an additional factor of niter compared to the densities that we
avoid (which only need to be computed once). Third, the reduced-scaling implementation also
has a higher prefactor than the standard version since there are more contractions to evaluate
(see Tab. 7.1). In short, we have not reached the truly asymptotic limit for this method. As a
redeeming point we do, however, see from an analysis of the limiting contraction in the reduced-
scaling case that a crossover should occur for very large active spaces, when the computation of
4 becomes completely unfeasible.
These points lead us to the outlook for our reduced-scaling scheme. Obviously, the reduced-

scaling fic-MRCI variant requires some further investigation. To this end, we propose using
both the fic-MRCC and fic-MRCI with approximate solvers for the CASCI problem, e.g., the
DMRG [341, 343–347], FCIQMC [429], or the ICE-CI [438, 439] methods. In these approximate
schemes, fewer CSFs are involved, and thus also the computational effort of the CSF interme-
diates is reduced, as well as the storage space. Conversely, the size of the density matrices is
not reduced by these approximate methods, i.e., the standard implementations do not benefit
in the same way as the reduced-scaling variants do. Moreover, by going up to active spaces of,
e.g., 30 active orbitals, we should be guaranteed to finally be in the asymptotically scaling limit
even for fic-MRCI theory. However, this requires that the method to which the reduced-scaling
scheme is applied is relatively insensitive to approximate densities, which is not true, e.g., for
fic-NEVPT2 theory [361, 362]. A possible solution to this problem was proposed by Kollmar et
al. [382]. Changes to the reduced-scaling scheme as presented in this thesis are not required to
use approximate CASCI solvers.
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A Detailed Description of the ORCA‑AGE
Toolchain

A.1 Overview of ORCA‑AGE

To give a broader overview of the ORCA-AGE II toolchain, we show a high-level overview in
Fig. A.1. Words in typewriter font are names of individual programs, e.g., cgen, or of internal
functionality such as the ContractionEngine. cgen is the default tool to generate the working
equations, and the ContractionEngine is explained in Sec. 4.1.

137



A
D
etailed

D
escription

oftheO
RCA-AGE

Toolchain

Write inputs for
chosen ansatz

• Generate separate inputs
for each matrix element,
e.g., hˆab

ij
j OH jˆcd

kl
i

Obtain working
equations

• Run cgen on generated
inputs ! turn ansatz
into tensor contractions

• Run spinsum to add spin
to equations (UHF)

Canonicalize
equations

• Merge contractions based
on tensor symmetry, e.g.,
C ab

ij
D C ba

ji
• Reduces number of

equations to
non-redundant set

Reorder tensors for
optimal scaling

• Ensure that binary
factorization from left to
right gives lowest
possible scaling

Factorize equations

• Make binary
factorization of tensor
contractions

• Find symmetry of newly
generated intermediates

• Merge intermediates if
they are identical (also
taking symmetry into
account!)

• Ensures lowest possible
scaling

Find summation
intermediates

• Application of
distributive law

• Reduced prefactor of the
theory

Find optimal index
order

• For disk I/O, e.g., when
loading integrals from
TMatrixContainer on
disk

Add (de-)allocation
information

• Allocate intermediates as
late as possible

• Deallocate intermediates
as soon as possible

Generate C++ code

• Find optimal loop order
for I/O

• Apply BLAS where
possible

• Apply
ContractionEngine and
other specialized routines
where possible

Equation generation part
This part can be replaced by any
equation source the user sees fit; it
need not be cgen!

Equation processing part
This part only needs equation files
and some tensor information like
symmetry.

Figure A.1 Overview of all steps involved in generating a functional orca_autoci module. The working equations are derived in the first two
steps, which are then further processed along the arrow to make the final implementation more performant and computer friendly. The last step is
where the final code will be generated.
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A.2 Canonicalizer Enhancements

A.2.1 Introduction

The canonicalizer is an important part of the ORCA-AGE toolchain, since it removes duplicate
contractions by merging the prefactors of identical contractions, e.g.,

A 
1

2
BC; (A.1)

A BC; (A.2)

) A 
3

2
BC; (A.3)

which immediately reduces the prefactor of the overall method being generated.
Given a pairwise comparison function that takes two contractions as arguments, a naive

quadratic-time algorithm, O.N 2/, can be implemented that compares each contraction against
all others, and merges them if they are found to be identical. Doing so, however, quickly
becomes unfeasible for large theories such as fic-MRCC or higher-order CC methods since the
algorithm scales quadratically with the number of contractions, and each comparison step is
rather expensive since all possible index permutations must be checked.

A.2.2 Current Algorithm

To avoid the quadratically-scaling algorithm outlined in Sec. A.2.1, the canonicalizer first parti-
tions the entire set of contractions into bins based on

1. the number of indices on the target tensor,

2. the name of the target tensor,

3. the number of source tensors, and

4. the names of the source tensors.

This process can be viewed as a form of hashing, which leads to a much faster canonicalization
since the expensive, explicit pairwise comparison only needs to be done within each of the
bins for few (or maybe just a single) contractions, leading to an expected linear time algorithm,
O.N /, provided a good hash function with few collisions is used.

Most of the time, the hash function described above performs quite well, leading to speedups
exceeding a factor of 200 compared to the naive Python implementation in the first version of
ORCA-AGE. Unfortunately, the hash function is imperfect for theories such as CCSDTQ, where
many more contractions get hashed to the same bin through the large permutational symmetry
of the quadruples amplitudes, effectively making the algorithm run in O.N 2/ complexity again.
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A.2.3 Canonicalization in the Literature

Strictly speaking, canonicalization does not refer to the process of removing duplicate contrac-
tions in the literature,[244, 251] but rather to reducing a given contraction to a certain canonical
form, i.e., a certain naming and ordering of tensors and indices for a contraction. However, the
ultimate goal of transforming a contraction to a canonical form is to ensure that the pairwise
comparison of two contractions in canonical form becomes trivial, since (ideally) no index or
tensor permutations must be performed to check their equivalence. For ORCA-AGE II, we
refrained from implementing such a scheme because it can still lead to ambiguities that need
more expensive checks, e.g., when a contraction contains two equivalent OT 2 amplitudes.

It might still be worth thinking about implementing “proper” canonicalization in ORCA-AGE.
First, it can still be used to prescreen contractions for equality, and then to use the usual duplicate
detection algorithm for in-depth checks. This is expected to be highly useful for higher-order
CC methods, since most of the triples, quadruples, … amplitudes will be trivially identical,
and thus easy to merge. Second, the contractions should become more human-readable as well.
Nevertheless, canonicalization does not reduce the quadratic scaling of naive equivalence checks,
it just reduces the cost of a single pairwise comparison.

A.2.4 Requirements for Hash Functions

Generally speaking, we are looking for a hash function that maps symmetry-equivalent tensor
contractions to a single value, and symmetry-nonequivalent contractions to a different value. In
other words, given sets of symmetry-equivalent contractions X; Y; : : : in the domain of the hash
function, which may not be known beforehand,

8x; x0
2 X W x � x0; (A.4)

8x 2 X; y 2 Y W x 6� y; (A.5)

we want the hash function f W X ! A to fulfill the following conditions,

8x; x0
2 X W f .x/ D f .x0/; (A.6)

8x 2 X; y 2 Y W f .x/ ¤ f .y/: (A.7)

Note that the codomain A of the hash function need not be identical to the domain X , the set
of all contractions. For example, A might be the set of integer numbers, A D Z, which would
be ideal for a computer, or perhaps the set of all strings. Mapping the contractions to a string
can simplify computer implementation as well, since hash functions that map strings to integer
numbers readily exist in all major programming languages, thus allowing the native hash map
implementations to be reused.
If all conditions (A.4)–(A.7) are met, we actually need not perform an expensive pairwise

check for contraction equivalence. Instead, we can just merge the prefactors for all contractions
from the sets X; Y; : : : and return the final, single contraction from each set.
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If condition (A.6) cannot be met, the resulting theory will have a higher than necessary
prefactor overall, since not all equivalent contractions will have been merged, as they ended up
in different bins.
In case that Eq. (A.7) is relaxed, each bin will be larger than necessary, and may contain

contractions from non-equivalent sets X; Y . Consequently, each contraction that maps to the
same bin f .x/ D a 2 A must be checked against all other contractions in that bin in quadratic
time complexity. This is the case with the rather simplistic hash function defined in Sec. A.2.2.

A.2.5 Proposed Enhancements

We suggest enhancing the hash function from Sec. A.2.2 to restore expected linear time for
the duplicate removal step. The hash function below effectively uses canonicalization as well to
reduce the computational load.
First of all, we need to transform the contractions to a canonical form. This is, in principle,

arbitrary. A rather intuitive scheme is presented by Hirata [244]. If this canonicalization
fulfills Eqs. (A.6)–(A.7), there is no need to do any further duplicate checks, as explained in
Sec. A.2.4. As a possible performance enhancement, especially for many equivalent contractions
with quadruples amplitudes, it may be faster to perform the pruning through a hash map. To
do so, we could translate the canonicalized contractions to strings, and then using C++’s hash
function for strings to check for string equivalence.

However, if Eqs. (A.6)–(A.7) are not fulfilled or, in the case of triple or quadruple excitations,
the number of equivalent contractions, or the size of the bins, will become very large. Then, we
propose to do a two-staged checking to first remove trivially equivalent contractions, and only
then to revert to the expensive pairwise checking.
In the case that no suitable canonicalization can be found for certain equivalent tensors or

symmetry-related indices, we suggest mapping them to the same value, e.g.,

�ab
ij D

X
cd

.acjbd/tcd
ij ! �aa

ii D
X
cd

.acjad/tcd
i i : (A.8)

While such a canonicalization for sure violates Eq. (A.7), it might be the only solution to do an
expensive pairwise checking. Although, as described above, it should already suffice to remove
most of the expensive checks through the aforementioned procedure.
Regardless, any hash function that is better than the current state from Sec. A.2.2 will lead to

faster times for the canonicalization step, through smaller bins.

A.3 Transpose‑Transpose‑DGEMM‑Transpose Engine

A.3.1 Introduction

In theory, any tensor contraction can be evaluated with BLAS DGEMM calls, given that the
tensor axes are properly aligned. Such a scheme, of which TTGT is an example, has been
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discussed in several publications [261, 262], including its limitations [262]. Nonetheless, such a
scheme will always beat naive loop code, especially when addressing of the tensor axes is highly
out-of-order or done through addressing arrays. Consequently, such a general TTGT contraction
engine is crucial to ensuring high-performance tensor operations if no other, possibly manually
tailored, contraction algorithms exist.
In the following, we will assume that the binary tensor contractions treated by the TTGT

algorithm always have the form of

Zc1c2:::cm
D

X
s1:::sk

Xa1:::an
Yb1:::no

: (A.9)

In the worst case, no useful statements can be made about the index sets f ci g, f si g, f ai g, and
f bi g. However, this is usually not the case for “well-behaved” quantum-chemical theories. Yet,
the algorithm presented in the following section still allows for arbitrary tensor contractions as
shown in Eq. (A.9).

A.3.2 Algorithm

We assume that we are given a general tensor contraction as shown in Eq. (A.9) as the input.
Our goal is to produce code for this contraction according to the TTGT contraction scheme.

1. Determine the index sets C D f ci g, S D f si g, A D f ai g, and B D f bi g. From there,
determine the positional (P ), summed (S), and remaining (R) indices for each source
tensor (X and Y , only shown for X):

PA D A \ C (A.10)
SA D A \ S (A.11)
RA D A n .PA [ SA/ (A.12)

For the target tensor, we only need to know which indices are found on any of the source
tensors (P ) and which are not (R).

PC D C \ .A [ B/ (A.13)
RC D C n PC (A.14)

Summed indices cannot appear on the target tensor, as that would be an ill-defined
operation.

2. The next step is to take care of special cases. The general strategy to tackle these cases is to
transpose any of the “misbehaving” tensors such that the “special indices” (defined below)
are the slowest-running indices in memory, open for-loops over the special indices and
address the well-behaved subtensors, and then restart from step 1, while passing on the
information about which loops have already been opened.
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We note that the actual implementation is not written in a reentrant way, since that could
lead to a tensor being reordered twice: once for moving the special indices to the front,
and once for aligning the remaining indices. Instead, we simply “delete” the special indices
and continue with the procedure given below, which will tell us how to reorder the other
indices as well. Then, when generating code, we only need to transpose once to move the
special indices to the front, and then add the reordered indices. Finally, in the BLAS call,
we only need to set a pointer to the correct slice of the reordered tensor. Nevertheless, we
do separate the step of determining and treating the special indices from the remaining
reordering procedure.

a) Remaining indices. Any index from the sets RA, RB , or RC must be treated in this
fashion.

b) Repeated positional indices, PA \ PB ¤ ¿.

c) Repeated positional indices on a single source or the target tensor, e.g., n ¤ jAj,

Zij D
X

k

Ai ikBkj : (A.15)

d) Extra summation indices, S n .SA [ SB/. These are, however, best optimized away
as a simple multiplication. Furthermore, such indices cannot be specified in the
ORCA-AGE contraction format.

e) Trace operations, SA4SB D .SA n SB/ [ .SB n SA/. An example for this case is

Zij D
X
kl

AiklBkj ; (A.16)

with f l g D f kl g4 f k g defining a trace operation. In this case, we would transpose
Aikl ! A0

lik
, which can be “sliced” to give a matrix .A0

l
/ik . This must be done

for every value of l , hence requiring a for-loop. Then, we perform the remaining
computations with a normal DGEMM operation,

Zij D
X

k

.A0
l/ikBkj 8l: (A.17)

The other special cases can be treated in complete analogy.

3. Once we have taken care of the special cases in step 2, we have the following guarantees:1

PA \ PB D ¿; (A.18)
PC D PA [ PB ; (A.19)

S D SA D SB : (A.20)
1 This, of course, refers to the “new” contraction that we get by removing the special indices and using the determined

tensor slices.
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These guarantees now allow using the DGEMM operation, which can be symbolized by

ZPAPB
D
X

S

XPASYPBS ; (A.21)

barring necessary tensor transpositions, which will be determined in the following steps.

4. Now, let us consider the order of the indices on the tensors. For a DGEMM operation to
be feasible, the summed indices on X and Y must be

a) in the same order, s1; s2; : : : ; sk ,

b) and be situated either entirely at the left or right edge of the tensor, i.e., XSPA
or

XPAS .

We can achieve this by explicitly transposing the tensor axes until the aforementioned
conditions are met. This poses an optimization problem since we only want to do the
minimum amount of work possible when transposing the tensors.

In this step, we first determine which tensors must be transposed. This is the case for the
following cases:

a) Condition 4b is not met, i.e., the summed and positional indices are interleaved on
either source tensor.

b) The positional indices on the target tensor are interleaved, i.e., the target does not
fulfill ZPAPB

or ZPB PA
.

5. In the next step, we determine which tensors may need to be transposed. Even if the
conditions from item 4 are met, the indices in the sets may still be out of order. Since
either tensor with out-of-order indices may be transposed, this can be used to define a
graph with edges between out-of-order tensors, e.g., Z  ! X when

Zijk D
X

l

Xj ilYlk; (A.22)

as we need to transpose axes i $ j on either Z or X .

There are only a two possible edge types:

a) Positional indices on X or Y are not in the same order as on Z, of which Eq. (A.22)
is an example (notwithstanding that they may also be interleaved as described in 4b).

b) The summed indices on X and Y are not in the same order, for example, indices
k $ l in

Zij D
X
kl

AiklBlkj : (A.23)
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We can find which tensors need (or can) be permuted by any vertex cover on (the
connected parts of) this graph.2 Note that all permissible vertex covers must include the
tensors determined in step 4. Once we have found a permissible vertex cover, we estimate
its cost by adding up the cost of transposing the tensors, which itself is defined as

cost.Xa1a2:::an
/ D

Y
i

dim.ai /: (A.24)

After this step, we have determined which tensors are to be transposed to allow a DGEMM
call while having the minimal possible transposition cost.

6. After determining which tensors are to be transposed, we need to determine how the
indices on those tensors need to be rearranged. To this end, we loop over all tensors that
need transposing and permute their indices according to the graph edges determined in
step 5. After processing a tensor, we delete the graph edges corresponding to the resolved
index transpositions to avoid erroneously shuffling the indices on the other tensor.

7. The final step is to generate the actual DGEMM call. This is straightforward as all
indices are now in the correct order, and thus we can exactly match the general DGEMM
contraction prototype (Eq. A.21).

A.3.3 Details on Repeated “Special” Indices

Repeated “special” indices must, naturally, also be repeated in the transposed contraction. To
this end, simply counting them in the original contraction suffices, and we do not need to
uniquely identify any axes with “dummy” indices.

For example, let us assume we are given the contraction

Cab D
X
ik

AiakiBkb: (A.25)

After moving the last axis of A to the second position, the contraction reads

Cab D
X
ik

A0
i iakBkb (A.26)

D
X

i

"X
k

.A0
i i /akBkb

#
; (A.27)

where the outer loop over i must be done separately, and the inner loop over k can be accom-
plished through a BLAS DGEMM call.

2 In the highly constrained graphs possible here, it may be faster to just enumerate the distinct cases. However, this
will lead to code bloat and will not be as extensible as the graph-based approach.
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Note that, despite transposing two axes A $ A0, we are not required to fully transpose the
tensor. The above equations holds when the condition

A0
i iak D Aiaki (A.28)

is fulfilled, which is the case for code such as

1 for (int i = 0; i < i_max; ++i)
2 for (int a = 0; a < a_max; ++a)
3 for (int k = 0; k < k_max; ++k)
4 A_p[i][i][a][k] = A[i][a][k][i];

Hence, there is no need to use a “dummy” index to uniquely identify all axes if we have
repeated indices, i.e., we only operate on parts of the full tensor. Instead, it is even beneficial not
to transpose the entire tensor since that results in less IO overhead.
Had we introduced a dummy index j $ i , our condition for tensor equality would have been

A0
ijak D Aiakj ; (A.29)

which makes obvious that we transposed the last axis to the second position. However, the code
required to transpose the tensor accordingly now looks like

1 for (int i = 0; i < i_max; ++i)
2 for (int j = 0; j < i_max; ++j)
3 for (int a = 0; a < a_max; ++a)
4 for (int k = 0; k < k_max; ++k)
5 A_p[i][j][a][k] = A[i][a][k][j];

which is more expensive than the first variant by a factor of imax!
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B.1 Study on the Excited States of Indigo Dyes

B.1.1 Solvation Parameters

In Tab. B.1, we gather the settings that were used for the CPCM solvation model used in Ch. 5.
Most of the values were set to the defaults used in the ORCA program package [287], except
for the dielectric constants of xylene and TCE (sourced from Jacquemin et al. [485] and the
refractive index of TCE [536]. The refractive index of xylene was set to ORCA’s default for
toluene.

Table B.1 Settings used for the dielectric constant " and refractive index �.

Solvent " �

Xylene 2.27 1.497
CHCl3 4.9 1.45
TCE 8.2 1.4922
EtOH 24.3 1.361
Benzene 2.28 1.501
CCl4 2.24 1.466
DMSO 47.2 1.479

B.1.2 Herzberg‑Teller Effects from DFT

Computing Herzberg-Teller effects is significantly more expensive than the zeroth-order Franck-
Condon results. To assess their magnitude on indigoid systems, we computed their effect on
6,6’-dibromoindigo in DMSO (Fig. B.1).

We note that the spectrum in Fig. B.1 does not contain the energetic shift computed from
STEOM as do all other plotted spectra in Ch. 5, but is exclusively computed at the B3LYP-
D3(BJ)-CPCM/def2-TZVP level of theory.
Fig. B.1 shows that the first-order Herzberg-Teller effects are minor in that they are more than

one order of magnitude smaller than the Franck-Condon results. Additionally, they also do not
change the overall shape of the spectrum. Consequently, we did not include them in our results
and other computed spectra.
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Figure B.1 Contributions of the Franck-Condon and Herzberg-Teller effects to the total spectrum of
6,6’-dibromoindigo in DMSO.

B.1.3 Solvation Effects

In the main body of the text (Tab. 5.3), we presented the effects of a CPCM implicit solvation
model on the STEOM transition energies, where CPCM was taken into account for both the
geometry optimization as well as in the STEOM calculation and compared that data to all-gas-
phase STEOM transition energies.
For completeness’ sake, we here also give the corresponding shifts vs. the gas-phase results if

we only include the indirect solvation effects on the STEOM calculation (Tab. B.2). The solvated,
optimized geometries are identical in these two cases. The direct solvation effects do not have a
large impact on the transition energies: on average, the direct effects lead to an additional shift
of� �0:03 eV.

B.1.4 Effect of Temperature on the Spectra

In all spectra in Ch. 5, we include the electronic ground state and the first excited electronic state.
Since we also include vibrational effects to be able to compare to the experimental 0-0 transition
energies, the computed spectra will show several discrete “lines” if the linewidth is artificially set
to low values, e.g., 1 cm�1. In case of the spectrum being computed at absolute zero (0 K), the
transition lowest in energy corresponds to the 0-0 transition, and all others to “0-n” transitions
to a vibrationally excited mode n of the first excited electronic state (Fig. B.2). Note that the
following discussion is limited to indigo in DMSO, without loss of generality.
In case we compute the spectrum at a temperature higher than absolute zero, e.g., room tem-

perature (298.15 K), we obtain additional transitions. These are visible in the right spectrum of
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Table B.2 Solvation effects compared to gas-phase STEOM calculations with the “fast” CPCM term
omitted. Solvents sorted with increasing dielectric constant " from left to right. All values given in eV.

CCl4 Xylene Benzene CHCl3 TCE EtOH DMSO
" 2.24 2.27 2.28 4.9 8.2 24.3 47.2

Indigo �0.067 �0.068 �0.068 �0.105 �0.120 �0.128 �0.131
4,4’-Bromoindigo �0.069 �0.070 �0.070 �0.107 �0.125 �0.139 �0.143
4,4’-Chloroindigo �0.071 �0.072 �0.072 �0.109 �0.124 �0.139 �0.144
5,5’-Bromoindigo �0.063 �0.063 �0.063 �0.095 �0.107 �0.119 �0.122
5,5’-Chloroindigo �0.065 �0.066 �0.066 �0.092 �0.104 �0.116 �0.120
5,5’-Nitroindigo �0.056 �0.056 �0.048 �0.075 �0.097 �0.111 �0.113
6,6’-Bromoindigo �0.068 �0.069 �0.069 �0.103 �0.118 �0.128 �0.135
6,6’-Chloroindigo �0.070 �0.071 �0.071 �0.106 �0.120 �0.135 �0.138
6,6’-Nitroindigo �0.088 �0.089 �0.089 �0.121 �0.137 �0.153 �0.157
7,7’-Bromoindigo �0.046 �0.047 �0.047 �0.077 �0.087 �0.098 �0.101
7,7’-Chloroindigo �0.054 �0.055 �0.055 �0.083 �0.098 �0.106 �0.108

Average �0.065 �0.066 �0.065 �0.098 �0.112 �0.125 �0.128
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Figure B.2 Computed spectra of indigo in DMSO. The left plot has been computed at absolute zero
(0 K), whereas the right spectrum was computed at room temperature (298.15 K).

Fig. B.2 and correspond to n-0 (and possibly n-m) transitions where the molecule is vibrationally
excited in its electronic ground state. These transitions are only available at higher-than-zero
temperatures since the vibrational modes of the ground state are populated according to the
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Boltzmann distribution (see Sec. 2.7). In contrast, we always see the vibrational progression of
the final electronic state since the molecule can be electronically and vibrationally excited at the
same time (cf. Eq. 2.127).

Notwithstanding, the 0-0 transition remains the by far the strongest and the n-0 transitions
are still fairly weak at room temperature since the vibrational ground state of the electronic
ground state will still be the most populated one. Moreover, the geometric displacement to the
first excited electronic state is small in this case, which also leads to a strong 0-0 transition.

B.1.5 Spectrum of Indigo in CHCl3

In addition to the spectra shown in Ch. 5, we also measured the absorption spectrum of indigo
in CHCl3 (Fig. B.3). This commercially available sample is not as pure as the dyes measured in
Fig. 5.4, as there are two ‘bumps’ towards lower energies and a much higher background towards
higher energies. Nevertheless, the main peak of indigo is well resolved and coincides almost
perfectly with our computed 0-0 transition at 16516.0 cm�1. Furthermore, the left shoulder is
very well reproduced after choosing an inhomogeneous linewidth of 700 cm�1 for the computed
vibrational transitions.
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Figure B.3 Normalized experimental and computed spectra of indigo in CHCl3. The unshifted com-
puted spectrum is presented once with an inhomogeneous line broadening of 700 cm�1 and once with
sticks to indicate the vibrational transitions.

B.1.6 Optimized Geometries and Vibrational Trajectories

The optimized geometries for all substituted indigo dyes can be obtained from https://doi.
org/10.6084/m9.figshare.15183383.v3. Among these files are also the xyz vibrational
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B.2 Multireference Equation‐of‐Motion Perturbation Theory

trajectories containing the dominant fundamental modes for the spectrum of indigo in DMSO
for the spectra discussed in Sec. 5.8.

B.1.7 Experimental Data

The raw experimental data for indigo and genuine Tyrian purple (both measured in CHCl3) is
available in plain text format under https://doi.org/10.6084/m9.figshare.15183383.v3.

The experimental data has been smoothed slightly with cubic splines prior to plotting using
the scipy.interpolate.splrep function of the SciPy [537] software package.

B.2 Multireference Equation‑of‑Motion Perturbation Theory

B.2.1 Explicit Equations for all Perturbative Amplitudes

In this section, we give explicit expressions for the amplitudes used in MR-EOMPT theory that
were not fully described in Ch. 6.

In the first similarity transformation of with the cluster operator OT , the amplitudes are
computed with the results of the EKT-IP calculation,

t it
ab D

X
Qv

cIPt Qv

. Qvajib/

�IP
Qv
C �i � .�a C �b/

; (B.1)

and the transformed integral being defined as

. Qvajib/ D
X

t

cIPt Qv.tajib/: (B.2)

The OX and OD operators describe the spin-flip and spectator excitations, respectively. Hence,
their estimates are effectively identical. They require both the EKT-EA and -IP results,

xti
au D d it

au D
X
Qv Qw

cIPt QvcEAu Qw

. Qvaji Qw/

�IP
Qv
C �i � .�a C �EA

Qw
/
; (B.3)

and the transformed integrals are defined as

. Qvaji Qw/ D
X
Qv Qw

cIPt QvcEAu Qw.tajiu/ (B.4)

B.2.2 Total Energies for the Diatomic Systems

The total energies for the diatomic systems can be found in Tab. B.3.

B.2.3 Summary of Active Spaces

The active spaces for the systems in Ch. 6 are summarized in Tab. B.4.
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Table B.3 Total energies for all the states of the diatomic test systems (Eh).

MR-EOM

State ICE-FCI CASSCF NEVPT2 -PT -CC

CH 2… �38.341204 �38.262875 �38.324470 �38.333238 �38.340435
2� �38.229473 �38.148534 �38.213131 �38.222298 �38.228601
2†� �38.216293 �38.141776 �38.200474 �38.209134 �38.216941
2†+ �38.188757 �38.111817 �38.170641 �38.177167 �38.182974

CN 2†+ �92.411165 �92.256484 �92.387161 �92.397334 �92.406678
2… �92.357545 �92.199593 �92.332711 �92.341581 �92.352792
2 2†+ �92.299721 �92.142378 �92.274137 �92.283921 �92.294449

CO 1†+ �112.956081 �112.757326 �112.928519 �112.938722 �112.948687
1… �112.633516 �112.417543 �112.603116 �112.615749 �112.630480
1†� �112.577475 �112.373032 �112.547200 �112.557868 �112.570080
1� �112.573236 �112.371343 �112.543189 �112.553937 �112.566753
3… �112.723349 �112.517232 �112.694774 �112.706374 �112.718998
3†+ �112.639166 �112.436013 �112.608350 �112.616281 �112.627272
3� �112.605164 �112.401214 �112.574667 �112.583921 �112.595651
3†� �112.587212 �112.386993 �112.556752 �112.566144 �112.578439

CO+ 2†+ �112.457861 �112.306248 �112.435987 �112.454541 �112.454541
2… �112.326110 �112.165787 �112.302484 �112.322395 �112.322395
2 2†+ �112.243498 �112.080508 �112.218682 �112.239518 �112.239518

N2
1†+ �109.180593 �108.987865 �109.152424 �109.164935 �109.178091
1… �108.826143 �108.617307 �108.795425 �108.808434 �108.821585
1†� �108.797986 �108.588103 �108.766897 �108.781815 �108.795314
1� �108.783765 �108.576669 �108.752244 �108.765952 �108.779008
3†+ �108.888730 �108.690236 �108.858394 �108.869729 �108.883982
3… �108.877161 �108.666838 �108.847484 �108.858646 �108.870944
3� �108.840258 �108.635921 �108.809593 �108.822670 �108.836396
3†� �108.811041 �108.610542 �108.779487 �108.791419 �108.804613

O2
1� �149.813573 �149.540200 �149.776548 �149.791507 �149.809050
1†+ �149.789449 �149.520996 �149.752842 �149.766966 �149.785038
3†+ �149.852988 �149.575157 �149.814595 �149.829455 �149.846299
3� �149.619889 �149.349011 �149.581360 �149.596704 �149.615225

OH 2… �75.492499 �75.344410 �75.471198 �75.479295 �75.490188
2†+ �75.334985 �75.174579 �75.312906 �75.322854 �75.335956
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Table B.4 Summary of the active spaces (all calculations) and reference states for theMR-EOMCC andMR-EOMPT calculations. In this condensed
notation, “Mult. 4,2 Roots 1,2” would be interpreted as a single quartet and two doublet roots, for example.

System Active El. Active Orb. Mult. Roots Project singular? Notes

Diatomic Systems
CH 5 5 4,2 1,2 Yes Full valence
CN 9 8 2 1 Yes Full valence
CO 10 8 3 2 Yes Full valence
CO+ 9 8 2 4 Yes Full valence
N2 10 8 3 1 Yes Full valence
O2 12 8 3 3 No Full valence
OH 7 5 2 2 Yes Full valence

Selected Systems from Thiel Benchmark
Cyclopropene 4 3 3 2 No
Ethene 2 2 3,1 1,2 No �-system
Butadiene 4 4 3 2 No �-system
Benzene 6 6 3,1 3,2 Yes �-system, Stol 8e-5
Pyrrole 6 5 3,1 2,1 Yes �-system, Stol 3e-5

Example Systems
LiF 2 2 1 2 Yes Li 2s + F pz
CH2 S/T Splitting 6 6 3 1 Yes SA-CASSCF not possible b/c different geometries
CH2 S/T Splitting 6 6 1 1 Yes
SiH2 S/T Splitting 6 6 3 1 Yes SA-CASSCF not possible b/c different geometries
SiH2 S/T Splitting 6 6 1 1 Yes
Co 9 6 4 14 No
Cr 6 6 7,5 1,6 Yes 50% weight on S states, 50% weight on five roots for D state

Comparison with LR-ic-MRCCSD
CH2 6 6 1 7 Yes Full valence
Hexatriene 6 6 1 3 Yes �-system
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B.2.4 Methylene

The geometry of this test system for comparison to the LR-ic-MRCC method has already been
published in Refs. [113, 202]. Note that the distances are given in Bohr radii, a0, and not in
Ångstrom. The basis set is a slightly augmented variant of the cc-pVDZ [538] basis, with an
s-function added each to carbon and hydrogen with exponents of 0.015 and 0.025, respectively.
For ORCA, the input is:

1 ! cc-pVDZ Bohrs [...]
2

3 %basis
4 AddGTO C
5 s 1
6 1 0.015 1.0
7 end
8 AddGTO H
9 s 1
10 1 0.025 1.0
11 end
12 end
13

14 [... method settings ...]
15

16 * xyz 0 1
17 C 0.0 0.0 0.0
18 H 0.0 1.644403 1.32213
19 H 0.0 -1.644403 1.32213
20 *

In total, this system has 8 electrons and 27 orbitals, which generally allows FCI calculations
to be performed on single servers given a recent CPU and sufficient RAM.

B.3 Reduced Scaling for Internally Contracted Multireference
Theories

B.3.1 Linear Alk‑1‑ene Chains

In this section, we give the full system descriptions (Tab. B.5) for the linear alk-1-enes bench-
marked in Sec. 7.3.1. We further present the raw, numerical data (Tab. B.6) that was used to
discuss the scaling of the reduced-scaling implementations with system size.
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Table B.5 System descriptions for linear alk-1-enes. We show the total number of electrons, nel, the
number of active electrons, nel,act, as well as the basis set, including the total number of basis functions
and the size of the individual orbital ranges.

Geometry nel nel,act Basis Basis func. Core Inactive Active Virtual

Ethene 16 2 def2-SVP 48 2 5 2 39
2 def2-TZVP 86 2 5 2 77

Propene 24 2 def2-SVP 72 3 8 2 59
2 def2-TZVP 129 3 8 2 116

Butene 32 2 def2-SVP 96 4 11 2 79
2 def2-TZVP 172 4 11 2 155

Pentene 40 2 def2-SVP 120 5 14 2 99
2 def2-TZVP 215 5 14 2 194

Hexene 48 2 def2-SVP 144 6 17 2 119
2 def2-TZVP 258 6 17 2 233

Heptene 56 2 def2-SVP 168 7 20 2 139
2 def2-TZVP 301 7 20 2 272

Octene 64 2 def2-SVP 192 8 23 2 159
2 def2-TZVP 344 8 23 2 311

Nonene 72 2 def2-SVP 216 9 26 2 179
2 def2-TZVP 387 9 26 2 350

Decene 80 2 def2-SVP 240 10 29 2 199
2 def2-TZVP 430 10 29 2 389

Undecene 88 2 def2-SVP 264 11 32 2 219
2 def2-TZVP 473 11 32 2 428

Dodecene 96 2 def2-SVP 288 12 35 2 239
2 def2-TZVP 516 12 35 2 467

Tridecene 104 2 def2-SVP 312 13 38 2 259
2 def2-TZVP 559 13 38 2 506

Tetradecene 112 2 def2-SVP 336 14 41 2 279
2 def2-TZVP 602 14 41 2 545

Pentadecene 120 2 def2-SVP 360 15 44 2 299
2 def2-TZVP 645 15 44 2 584

Hexadecene 128 2 def2-SVP 384 16 47 2 319
2 def2-TZVP 688 16 47 2 623

Heptadecene 136 2 def2-SVP 408 17 50 2 339
2 def2-TZVP 731 17 50 2 662

Octadecene 144 2 def2-SVP 432 18 53 2 359
2 def2-TZVP 774 18 53 2 701
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Table B.6 Scaling of standard and reduced-scaling fic-MRCI and fic-MRCC theory on linear alk-1-enes. CIType denotes the method being run,
D4Step indicates the standard (disk) and reduced-scaling versions (efficient), followed by the timings for the constant intermediates, the average
time per iteration, the time for all pre-iterative steps, the total time for all iterations as well as the total, overall time for the calculation. All timings
given in seconds.

Geometry Basis nbas CIType D4Step Const. inter. Avg. Pre-iter. Total Iter. Total

ethene def2-SVP 48 ficmrci disk 0.1 0.2 0.1 2.0 2.1
def2-SVP 48 ficmrci efficient 0.1 0.2 0.1 2.4 2.5
def2-SVP 48 ficmrcc disk 5.7 0.0 62.3 62.3
def2-SVP 48 ficmrcc efficient 6.2 0.0 68.3 68.3
def2-TZVP 86 ficmrci disk 0.4 1.1 0.4 11.0 11.4
def2-TZVP 86 ficmrci efficient 0.4 1.1 0.4 11.0 11.4
def2-TZVP 86 ficmrcc disk 21.3 0.0 255.7 255.7
def2-TZVP 86 ficmrcc efficient 22.4 0.0 268.3 268.3

propene def2-SVP 72 ficmrci disk 0.2 0.9 0.2 9.0 9.2
def2-SVP 72 ficmrci efficient 0.2 0.9 0.2 9.0 9.2
def2-SVP 72 ficmrcc disk 18.6 0.0 205.1 205.1
def2-SVP 72 ficmrcc efficient 17.7 0.0 194.6 194.6
def2-TZVP 129 ficmrci disk 1.3 6.0 1.3 60.0 61.3
def2-TZVP 129 ficmrci efficient 1.4 6.2 1.4 62.0 63.4
def2-TZVP 129 ficmrcc disk 104.4 0.0 1148.8 1148.8
def2-TZVP 129 ficmrcc efficient 107.2 0.0 1179.5 1179.5

butene def2-SVP 96 ficmrci disk 0.5 2.9 0.5 28.7 29.2
def2-SVP 96 ficmrci efficient 0.5 2.9 0.5 29.0 29.5
def2-SVP 96 ficmrcc disk 48.6 0.0 534.8 534.8
def2-SVP 96 ficmrcc efficient 50.8 0.0 559.0 559.0

continued
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Table B.6 Scaling results on alkenes (continued).

Geometry Basis nbas CIType D4Step Const. inter. Avg. Pre-iter. Total Iter. Total

def2-TZVP 172 ficmrci disk 4.1 22.9 4.1 228.6 232.7
def2-TZVP 172 ficmrci efficient 4.2 23.1 4.2 231.1 235.3
def2-TZVP 172 ficmrcc disk 366.1 0.0 4026.6 4026.6
def2-TZVP 172 ficmrcc efficient 372.5 0.0 4097.2 4097.2

pentene def2-SVP 120 ficmrci disk 1.0 8.2 1.0 90.2 91.2
def2-SVP 120 ficmrci efficient 1.1 8.2 1.1 90.6 91.7
def2-SVP 120 ficmrcc disk 118.9 0.0 1426.2 1426.2
def2-SVP 120 ficmrcc efficient 123.4 0.0 1480.4 1480.4
def2-TZVP 215 ficmrci disk 10.4 70.8 10.4 778.7 789.1
def2-TZVP 215 ficmrci efficient 10.7 71.1 10.7 782.0 792.7
def2-TZVP 215 ficmrcc disk 1074.8 0.0 12897.7 12897.7
def2-TZVP 215 ficmrcc efficient 1092.8 0.0 13113.8 13113.8

hexene def2-SVP 144 ficmrci disk 1.9 19.8 1.9 217.9 219.8
def2-SVP 144 ficmrci efficient 2.0 19.9 2.0 218.8 220.8
def2-SVP 144 ficmrcc disk 267.8 0.0 3213.5 3213.5
def2-SVP 144 ficmrcc efficient 261.9 0.0 3143.2 3143.2
def2-TZVP 258 ficmrci disk 21.6 184.0 21.7 2024.1 2045.8
def2-TZVP 258 ficmrci efficient 21.1 183.6 21.2 2019.6 2040.8
def2-TZVP 258 ficmrcc disk 2588.9 0.1 31066.8 31066.9
def2-TZVP 258 ficmrcc efficient 2619.1 0.1 31429.6 31429.7

heptene def2-SVP 168 ficmrci disk 3.5 41.7 3.5 458.2 461.7
def2-SVP 168 ficmrci efficient 3.6 42.2 3.6 464.1 467.7
def2-SVP 168 ficmrcc disk 524.1 0.0 6289.0 6289.0

continued
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Table B.6 Scaling results on alkenes (continued).

Geometry Basis nbas CIType D4Step Const. inter. Avg. Pre-iter. Total Iter. Total

def2-SVP 168 ficmrcc efficient 513.8 0.0 6166.0 6166.0
def2-TZVP 301 ficmrci disk 39.4 423.6 39.5 5083.4 5122.9
def2-TZVP 301 ficmrci efficient 39.9 425.6 40.0 5107.3 5147.3
def2-TZVP 301 ficmrcc disk 5582.1 0.1 66985.7 66985.8
def2-TZVP 301 ficmrcc efficient 5624.0 0.1 67488.4 67488.5

octene def2-SVP 192 ficmrci disk 8.2 85.5 8.3 1025.9 1034.2
def2-SVP 192 ficmrci efficient 8.4 86.4 8.5 1037.0 1045.5
def2-SVP 192 ficmrcc disk 1168.9 0.1 14026.7 14026.8
def2-SVP 192 ficmrcc efficient 1135.2 0.1 13622.9 13623.0
def2-TZVP 344 ficmrci disk 92.2 888.8 92.5 12443.4 12535.9
def2-TZVP 344 ficmrci efficient 90.7 888.1 91.0 12433.6 12524.6
def2-TZVP 344 ficmrcc disk 11850.9 0.3 142210.5 142210.8
def2-TZVP 344 ficmrcc efficient 15064.3 0.4 180771.8 180772.2

nonene def2-SVP 216 ficmrci disk 13.3 165.5 13.4 1985.5 1998.9
def2-SVP 216 ficmrci efficient 13.5 165.5 13.6 1986.2 1999.8
def2-SVP 216 ficmrcc disk 2080.9 0.1 24970.9 24971.0
def2-SVP 216 ficmrcc efficient 2076.2 0.1 24914.4 24914.5
def2-TZVP 387 ficmrci disk 149.8 1741.9 150.3 26128.3 26278.6
def2-TZVP 387 ficmrci efficient 148.8 1740.3 149.3 26104.8 26254.1
def2-TZVP 387 ficmrcc disk 25837.6 0.5 310050.6 310051.1
def2-TZVP 387 ficmrcc efficient 21316.7 0.6 255799.9 255800.5

decene def2-SVP 240 ficmrci disk 20.5 292.5 20.7 3802.8 3823.5
def2-SVP 240 ficmrci efficient 20.5 292.6 20.7 3804.4 3825.1

continued
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Table B.6 Scaling results on alkenes (continued).

Geometry Basis nbas CIType D4Step Const. inter. Avg. Pre-iter. Total Iter. Total

def2-SVP 240 ficmrcc disk 3617.7 0.2 43412.0 43412.2
def2-SVP 240 ficmrcc efficient 3511.0 0.2 42131.7 42131.9
def2-TZVP 430 ficmrci disk 221.8 3285.9 222.5 49287.9 49510.4
def2-TZVP 430 ficmrci efficient 229.6 3254.7 230.3 48820.6 49050.9
def2-TZVP 430 ficmrcc disk 38569.9 1.7 462838.8 462840.5
def2-TZVP 430 ficmrcc efficient 39143.0 1.3 469715.7 469717.0

undecene def2-SVP 264 ficmrci disk 29.9 495.1 30.1 6436.0 6466.1
def2-SVP 264 ficmrci efficient 41.9 499.7 42.2 6496.1 6538.3
def2-SVP 264 ficmrcc disk 5565.5 0.2 66785.6 66785.8
def2-SVP 264 ficmrcc efficient 5468.2 0.2 65618.3 65618.5
def2-TZVP 473 ficmrci disk 333.4 5759.6 334.4 92154.3 92488.7
def2-TZVP 473 ficmrci efficient 335.6 5718.4 336.7 91495.1 91831.8
def2-TZVP 473 ficmrcc disk 60499.5 1.1 786493.4 786494.5
def2-TZVP 473 ficmrcc efficient 58321.3 1.0 758177.0 758178.0

dodecene def2-SVP 288 ficmrci disk 44.5 801.7 44.9 12827.8 12872.7
def2-SVP 288 ficmrci efficient 42.4 832.4 42.8 13319.0 13361.8
def2-SVP 288 ficmrcc disk 10141.5 0.5 121698.0 121698.5
def2-SVP 288 ficmrcc efficient 10368.4 0.5 124420.6 124421.1
def2-TZVP 516 ficmrcc disk 99812.4 1.7 1297561.2 1297562.9
def2-TZVP 516 ficmrcc efficient 99722.4 1.6 1296391.7 1296393.3

tridecene def2-SVP 312 ficmrci disk 57.8 1257.9 58.3 20127.0 20185.3
def2-SVP 312 ficmrci efficient 58.1 1261.0 58.6 20175.2 20233.8
def2-SVP 312 ficmrcc disk 14576.9 0.6 174923.0 174923.6

continued
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Table B.6 Scaling results on alkenes (continued).

Geometry Basis nbas CIType D4Step Const. inter. Avg. Pre-iter. Total Iter. Total

def2-SVP 312 ficmrcc efficient 12315.4 0.5 147784.8 147785.3

tetradecene def2-SVP 336 ficmrci disk 77.0 1963.4 77.7 35340.3 35418.0
def2-SVP 336 ficmrci efficient 77.8 1908.2 78.5 34348.0 34426.5
def2-SVP 336 ficmrcc disk 17953.5 0.7 215442.0 215442.7
def2-SVP 336 ficmrcc efficient 21022.6 0.9 252271.2 252272.1

pentadecene def2-SVP 360 ficmrci disk 124.5 2818.4 125.6 53550.5 53676.1
def2-SVP 360 ficmrci efficient 110.5 2891.9 111.5 54945.4 55056.9
def2-SVP 360 ficmrcc disk 25825.1 1.0 309901.4 309902.4
def2-SVP 360 ficmrcc efficient 26147.7 1.0 313772.4 313773.4

hexadecene def2-SVP 384 ficmrci disk 133.0 4065.3 134.2 77240.5 77374.7
def2-SVP 384 ficmrci efficient 168.7 4017.7 170.3 76335.4 76505.7
def2-SVP 384 ficmrcc disk 44927.2 1.2 539126.3 539127.5
def2-SVP 384 ficmrcc efficient 43458.4 1.4 521501.1 521502.5

heptadecene def2-SVP 408 ficmrci disk 251.3 5742.2 253.3 114844.2 115097.5
def2-SVP 408 ficmrci efficient 170.1 5704.3 171.7 114085.8 114257.5
def2-SVP 408 ficmrcc disk 48698.0 1.6 584375.9 584377.5
def2-SVP 408 ficmrcc efficient 49284.2 1.6 591410.7 591412.3

octadecene def2-SVP 432 ficmrci disk 214.4 7957.6 216.3 159152.9 159369.2
def2-SVP 432 ficmrci efficient 214.7 7909.8 216.6 158195.5 158412.1
def2-SVP 432 ficmrcc disk 67774.5 1.9 813294.5 813296.4
def2-SVP 432 ficmrcc efficient 76574.2 2.2 918890.7 918892.9
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B.3.2 Polyunsaturated Alkenes

In this section, we give the full system descriptions (Tab. B.7) for the polyunsaturated alkenes
benchmarked in Sec. 7.3.2. We further present the raw, numerical data (Tab. B.8) that was used
to discuss the scaling of the reduced-scaling implementations with size of the active space.
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Table B.7 System descriptions for polyunsaturated alkenes. We show the total number of electrons, nel,
the number of active electrons, nel,act, as well as the basis dimension (def2-SVP basis set [463]) and the
sizes of the individual orbital ranges.

Geometry nel nel,act Basis Core Inactive Active Virtual

Ethene 16 2 48 2 5 2 39

Butadiene 30 2 86 4 10 2 70
30 4 86 4 9 4 69

Hexatriene 44 2 124 6 15 2 101
44 4 124 6 14 4 100
44 6 124 6 13 6 99

Octatetraene 58 2 162 8 20 2 132
58 4 162 8 19 4 131
58 6 162 8 18 6 130
58 8 162 8 17 8 129

Decapentaene 72 2 200 10 25 2 163
72 4 200 10 24 4 162
72 6 200 10 23 6 161
72 8 200 10 22 8 160
72 10 200 10 21 10 159

Dodecahexaene 86 2 238 12 30 2 194
86 4 238 12 29 4 193
86 6 238 12 28 6 192
86 8 238 12 27 8 191
86 10 238 12 26 10 190
86 12 238 12 25 12 189

Tetradecaheptaene 100 2 276 14 35 2 225
100 4 276 14 34 4 224
100 6 276 14 33 6 223
100 8 276 14 32 8 222
100 10 276 14 31 10 221
100 12 276 14 30 12 220
100 14 276 14 29 14 219
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Table B.8 Scaling of standard and reduced-scaling fic-MRCI and fic-MRCC theory on polyunsaturated alkenes. CIType denotes the method being
run, D4Step indicates the standard (disk) and reduced-scaling versions (efficient), followed by the timings for the computation of 4, 5, for the
constant intermediates, the average time per iteration, the time for all pre-iterative steps, the total time for all iterations as well as the total, overall
time for the calculation. All timings given in seconds.

Geometry nel norb CIType D4Step 4 5 Const. inter. Avg. Pre-iter. Total iter. Total

ethene 2 2 ficmrci disk 0.0 0.1 0.2 0.1 2.0 2.1
ethene 2 2 ficmrci efficient 0.0 0.1 0.2 0.1 2.2 2.3
ethene 2 2 ficmrcc disk 0.0 0.0 5.6 0.0 61.6 61.6
ethene 2 2 ficmrcc efficient 0.0 5.7 0.0 62.4 62.4
butadiene 2 2 ficmrci disk 0.0 0.4 1.8 0.4 21.6 22.0
butadiene 2 2 ficmrci efficient 0.0 0.4 1.8 0.4 21.6 22.0
butadiene 2 2 ficmrcc disk 0.0 0.0 32.9 0.0 460.9 460.9
butadiene 2 2 ficmrcc efficient 0.0 34.8 0.0 487.4 487.4
butadiene 4 4 ficmrci disk 0.0 1.0 3.2 1.0 32.0 33.0
butadiene 4 4 ficmrci efficient 0.0 1.0 3.3 1.0 33.0 34.0
butadiene 4 4 ficmrcc disk 0.0 0.0 75.4 0.0 1131.4 1131.4
butadiene 4 4 ficmrcc efficient 0.0 78.4 0.0 1175.4 1175.4
hexatriene 2 2 ficmrci disk 0.0 1.2 9.9 1.2 118.8 120.0
hexatriene 2 2 ficmrci efficient 0.0 1.2 10.1 1.2 121.0 122.2
hexatriene 2 2 ficmrcc disk 0.0 0.0 139.7 0.0 2235.7 2235.7
hexatriene 2 2 ficmrcc efficient 0.0 144.5 0.0 2311.4 2311.4
hexatriene 4 4 ficmrci disk 0.0 3.0 15.0 3.0 179.7 182.7
hexatriene 4 4 ficmrci efficient 0.0 3.2 15.3 3.2 183.2 186.4
hexatriene 4 4 ficmrcc disk 0.0 0.0 294.5 0.0 4711.8 4711.8
hexatriene 4 4 ficmrcc efficient 0.0 303.8 0.0 4861.3 4861.3
hexatriene 6 6 ficmrci disk 0.1 8.2 24.6 8.3 246.4 254.7
hexatriene 6 6 ficmrci efficient 0.0 7.8 25.3 7.9 252.8 260.7
hexatriene 6 6 ficmrcc disk 0.1 6.7 711.5 6.8 7826.6 7833.4
hexatriene 6 6 ficmrcc efficient 0.1 711.1 0.1 7822.3 7822.4

continued

163



B
Supplem

entary
Inform

ation

Table B.8 Scaling results on polyenes (continued).

Geometry nel norb CIType D4Step 4 5 Const. inter. Avg. Pre-iter. Total iter. Total

octatetraene 2 2 ficmrci disk 0.0 3.6 36.2 3.6 470.0 473.6
octatetraene 2 2 ficmrci efficient 0.0 3.4 36.3 3.4 471.3 474.7
octatetraene 2 2 ficmrcc disk 0.0 0.0 440.4 0.0 6165.5 6165.5
octatetraene 2 2 ficmrcc efficient 0.0 449.7 0.0 6295.6 6295.6
octatetraene 4 4 ficmrci disk 0.0 10.0 53.1 10.0 690.7 700.7
octatetraene 4 4 ficmrci efficient 0.0 8.1 52.6 8.1 684.2 692.3
octatetraene 4 4 ficmrcc disk 0.0 0.0 0.0 0.0
octatetraene 4 4 ficmrcc efficient 0.0 0.0 0.0
octatetraene 6 6 ficmrci disk 0.2 19.5 77.9 19.7 1012.8 1032.5
octatetraene 6 6 ficmrci efficient 0.0 18.5 78.3 18.6 1018.3 1036.9
octatetraene 6 6 ficmrcc disk 0.1 6.6 1897.0 6.7 26557.8 26564.5
octatetraene 6 6 ficmrcc efficient 0.2 1923.6 0.2 26930.1 26930.3
octatetraene 8 8 ficmrci disk 4.6 50.1 120.3 55.6 1323.0 1378.6
octatetraene 8 8 ficmrci efficient 1.0 45.7 123.8 48.2 1361.3 1409.5
octatetraene 8 8 ficmrcc disk 4.6 884.5 5469.7 889.9 60166.4 61056.3
octatetraene 8 8 ficmrcc efficient 4.6 5123.4 5.4 56357.4 56362.8
decapentaene 2 2 ficmrci disk 0.0 9.8 110.0 9.9 1760.5 1770.4
decapentaene 2 2 ficmrci efficient 0.0 9.4 109.6 9.5 1753.0 1762.5
decapentaene 2 2 ficmrcc disk 0.0 0.0 1419.8 0.1 22716.6 22716.7
decapentaene 2 2 ficmrcc efficient 0.0 1375.2 0.1 22003.5 22003.6
decapentaene 4 4 ficmrci disk 0.0 23.3 149.4 23.4 2241.4 2264.8
decapentaene 4 4 ficmrci efficient 0.0 23.5 148.5 23.6 2227.7 2251.3
decapentaene 4 4 ficmrcc disk 0.0 0.0 0.1 0.1
decapentaene 4 4 ficmrcc efficient 0.0 0.1 0.1
decapentaene 6 6 ficmrci disk 0.1 53.7 213.2 54.1 3197.4 3251.5
decapentaene 6 6 ficmrci efficient 0.0 50.8 204.9 51.2 3073.9 3125.1
decapentaene 6 6 ficmrcc disk 0.1 6.8 4922.7 7.2 68917.6 68924.8
decapentaene 6 6 ficmrcc efficient 0.1 4903.4 0.4 68648.2 68648.6

continued
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Table B.8 Scaling results on polyenes (continued).

Geometry nel norb CIType D4Step 4 5 Const. inter. Avg. Pre-iter. Total iter. Total

decapentaene 8 8 ficmrci disk 4.9 110.5 298.5 116.7 3582.3 3699.0
decapentaene 8 8 ficmrci efficient 0.8 95.2 309.1 97.9 3709.4 3807.3
decapentaene 8 8 ficmrcc disk 5.0 930.6 11036.8 936.8 165551.8 166488.6
decapentaene 8 8 ficmrcc efficient 4.9 11075.7 6.1 166135.3 166141.4
decapentaene 10 10 ficmrci disk 172.0 243.7 429.6 424.3 5584.4 6008.7
decapentaene 10 10 ficmrci efficient 13.8 285.7 718.5 312.4 9339.9 9652.3
decapentaene 10 10 ficmrcc disk 175.7 80592.2 39678.7 80776.6 436466.2 517242.8
decapentaene 10 10 ficmrcc efficient 171.0 36492.8 179.6 401420.5 401600.1
dodecahexaene 6 6 ficmrcc disk 0.2 6.7 12249.5 7.3 183742.9 183750.2
dodecahexaene 6 6 ficmrcc efficient 0.2 12191.3 0.6 182868.9 182869.5
dodecahexaene 8 8 ficmrci disk 4.8 186.1 654.2 192.3 9813.6 10005.9
dodecahexaene 8 8 ficmrci efficient 0.8 181.1 664.0 184.0 9959.3 10143.3
dodecahexaene 8 8 ficmrcc disk 4.8 1358.9 23957.6 1365.2 383321.2 384686.4
dodecahexaene 8 8 ficmrcc efficient 5.1 6.7 6.7
dodecahexaene 10 10 ficmrci disk 178.1 476.9 1011.5 664.3 16183.7 16848.0
dodecahexaene 10 10 ficmrci efficient 15.1 510.3 1435.7 538.9 22971.0 23509.9
dodecahexaene 10 10 ficmrcc disk 176.8 65231.5 65417.4 65417.4
dodecahexaene 10 10 ficmrcc efficient 177.5 186.7 186.7
dodecahexaene 12 12 ficmrci disk 6699.9 853.8 1423.3 7685.2 18503.0 26188.2
dodecahexaene 12 12 ficmrci efficient 463.2 3572.4 10034.8 4187.1 130451.8 134638.9
dodecahexaene 12 12 ficmrcc disk 0.0 0.0
dodecahexaene 12 12 ficmrcc efficient 6692.1 6819.2 6819.2
tetradecaheptaene 2 2 ficmrci disk 0.0 0.4 0.4
tetradecaheptaene 2 2 ficmrci efficient 0.0 0.3 0.3
tetradecaheptaene 4 4 ficmrci disk 0.0 0.4 0.4
tetradecaheptaene 4 4 ficmrci efficient 0.0 0.4 0.4
tetradecaheptaene 6 6 ficmrci disk 0.1 229.9 1108.7 230.9 22174.0 22404.9
tetradecaheptaene 6 6 ficmrci efficient 0.0 231.9 1122.2 232.8 22444.9 22677.7

continued
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Table B.8 Scaling results on polyenes (continued).

Geometry nel norb CIType D4Step 4 5 Const. inter. Avg. Pre-iter. Total iter. Total

tetradecaheptaene 8 8 ficmrci disk 5.9 309.9 1310.1 317.8 26202.7 26520.5
tetradecaheptaene 8 8 ficmrci efficient 0.8 303.8 1333.4 307.2 26667.9 26975.1
tetradecaheptaene 10 10 ficmrci disk 175.0 763.7 1969.6 948.9 39392.0 40340.9
tetradecaheptaene 10 10 ficmrci efficient 13.9 800.0 2514.3 828.6 50285.3 51113.9
tetradecaheptaene 12 12 ficmrci disk 6597.8 1188.9 2379.5 7919.4 38071.4 45990.8
tetradecaheptaene 12 12 ficmrci efficient 463.1 4314.2 13038.5 4929.8 208615.5 213545.3
tetradecaheptaene 14 14 ficmrci disk 241931.1 2582.4 3519.4 247659.1 56310.2 303969.3
tetradecaheptaene 14 14 ficmrci efficient 12088.2 15286.3 15286.3
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