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Summary

Pulsar timing is a powerful tool for studying a wide range of questions in fundamental physics, including
the equation of state (EOS) of super-dense matter, tests of general relativity (GR) and alternative
theories of gravity, and searching for a gravitational wave (GW) background at nanohertz regime. This
dissertation investigates these problems using new-generation radio telescopes: the MeerKAT telescope,
the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and the future Square Kilometre
Array (SKA).

The first two studies focus on the still unique Double Pulsar system, PSR J0737−3039A/B. Being
one of the most compact binary pulsar systems, a wealth of relativistic phenomena has been tested with
unparalleled precision in the strong-field regime. With the superior sensitivity of new-generation radio
telescopes, various higher-order contributions predicted by GR can be precisely tested, thereby allowing
a measurement of pulsar A’s moment of inertia (MOI). Such a measurement can be made via relativistic
spin-orbit coupling, with the spin-down mass loss taken into account for the first time in the analysis.
Based on the first MeerKAT observations of A, I simulate realistic data expected for MeerKAT and
the SKA in the near future. The results suggest that an MOI measurement with 11% accuracy (68%
confidence) is possible by 2030, which can provide complementary constraints on the EOS of nuclear
matter. If by then the EOS is well constrained, it will allow a 7% test of Lense-Thirring precession or a
3𝜎-measurement of the next-to-leading-order (NLO) GW damping.

With 3-yr MeerKAT observations of PSR J0737−3039A, I then study gravitational signal propagation
effects in the Double Pulsar system, in particular the NLO effects predicted by GR. These include the
retardation effect caused by the movement of pulsar B while the radio signal of A propagates across
the system and the deflection of the signal of A by the gravitational field of B. The result provides an
independent confirmation of the NLO signal propagation effects and is 1.65 times better than the previous
measurement from 16-yr data. Novel effects like lensing and profile variations caused by latitudinal
deflection are also investigated but proved to be not measurable with the current data.

Recently, a new timing model has been developed for testing scalar-tensor gravity with binary
pulsars. As a demonstration of this model, I explore the prospects of testing Damour–Esposito-Farèse
(DEF) gravity by simulating realistic future data of the pulsar-white dwarf system PSR J2222−0137
and hypothetical pulsar-black hole systems for a number of large telescopes, including FAST. The
results indicate that future observations can significantly improve the constraints on DEF gravity, and
pulsar-black hole systems have the potential to place the tightest limit for a large part of the DEF gravity
parameter space.

Finally, to facilitate the detection of nanohertz GWs with pulsar timing arrays, I extend and correct the
time offset measurements between the maser clock at the Effelsberg telescope and UTC. This rescues
more than two years of timing data with Effelsberg and improves the accuracy of the time tagging of
observations, which are critical for pulsar timing. In addition, phased-array observations have been
carried out with Effelsberg and FAST, which can dramatically increase the sensitivity of telescopes and
advance GW detection. By coherently adding data from the largest radio telescopes in Europe and China,
the world’s largest and most powerful pulsar telescope will finally materialise.
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The Chinese word for universe “宇宙 (Yǔ Zhòu)” originates from the Chinese classic Shizi written by
Shi Jiao during the Warring States period:

四方上下曰宇，往古来今曰宙。

尸佼，约前390-前330

Yǔ means the four directions (north, east, south, and west) and up and down,
and Zhòu includes the past and the present.

Shi Jiao, c. 390-330 BCE



Prelude

反者道之动；弱者道之用。天下万物生于有，有生于无。

——老子《道德经》第四十章
道生一，一生二，二生三，三生万物。万物负阴而抱阳，冲气以为和。

——老子《道德经》第四十二章
约公元前五世纪

Reversion is the action of Tao. Gentleness is the function of Tao. The things of this world come from
Being, and Being (comes) from Non-being.

Out of Tao, One is born; Out of One, Two; Out of Two, Three; Out of Three, the created universe. The
created universe carries the yin at its back and the yang in front; Through the union of the pervading
principles it reaches harmony.

Laozi, Tao Te Ching, ch. 40 & ch. 42, c. 5th century BCE
(Translated by Lin Yutang)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When I began to perceive the world, I asked my father what he had studied at university. He said,
“Astrophysics,” with a gleam in his eyes. Even though I did not fully understand what it meant at the
time, a seed was planted in my heart.

For various reasons, my father could not continue to pursue this journey, but some hopes were pinned
on my name. I later learned that the name my father intended to give me at first was寰(Huán)宸(Chén),
meaning the Universe and Polaris, respectively. Unfortunately, the pronunciation of this name is rather
awkward, so it was eventually changed to奂(Huàn)晨(Chén), meaning brilliant morning. The latter
character is composed of the Sun and stars. Interestingly, my family name胡 also contains a celestial
body, the Moon. Regardless of these, I was curious about Nature and in particular the outer space
since my early childhood. My father was always able to answer my one-hundred-thousand whys with
his encyclopedic knowledge. Among these, the most impressive parts (that I still remember) were the
discussions about science fiction and extraterrestrial life.

When I was nine years old, knowing a moderate number of common Chinese characters, my mother
introduced a literary classic to me, the Tao Te Ching. Two of my favourite chapters are presented above.
Without fully understanding the meaning of these ancient words at the time (and even now), I was
absorbed in Laozi’s wise words and amazed by his profound insights into the principle of the universe,
Tao. Undoubtedly, studying this classic had a lasting impact on me later in my life.

On my path forward, the first two physics teachers also play important roles. The principal of my
middle school, Mr. Huaide Niu (牛怀德), gave me my first systematic physics lessons in a clear and
interesting way. His rigorous attitude to physics greatly inspired me. He also encouraged students to do
hands-on experiments to deepen our understanding of physics. My high school teacher, Mr. Wei Chen
(陈巍), also did an excellent job. His lessons had always been vivid and full of passion. His enthusiasm
for physics deeply impressed me and shaped me to think independently. It was clear at the early stage of
my high school time that I wanted to explore more about physics, and one of the things that fascinated
me most was the motion of celestial bodies and the power that governs them — gravity.
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Naturally, I decided to study astrophysics at the university. I’m grateful that my parents have always
been respectful and supportive of my decisions. And so the journey to explore the Universe began! At
university, I voyaged through various fields of astronomy and the one that I was most enthusiastic about
was still gravity — the principle of the Universe at the macroscopic scale. I also became interested in the
ripples in spacetime, especially with the successful direct detection of gravitational waves in 2015.

What really led me here, however, was a crush at the beautiful Lake Como in Northern Italy. In
the summer of 2017, I attended a course on Gravitational Waves and Cosmology in the International
School of Physics “Enrico Fermi”.1 The course covered a variety of topics in these fields given by
renowned researchers, from theories to simulations, and from experiments to observations. I particularly
gravitated to a talk on pulsars given by Prof. Michael Kramer. Not having much knowledge previously, I
was impressed by the wide range of strong-field gravitational experiments offered by pulsars and their
capability to detect gravitational waves in the form of a pulsar timing array. Thankfully, that lecturer
became my Ph.D. supervisor and gave me the opportunity to work on these thrilling projects, so that I
could start this fantastic journey.

1 I heartily appreciate the kind assistance offered by Prof. Nicola Vittorio and the full support of the Italian Physical Society,
which made this trip possible.
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Nomenclature

Physical constants

The values used in this dissertation are based on CODATA recommended values 2018 (Tiesinga et al.,
2021).2

Speed of light in vacuum 𝑐 = 299 792 458 m s−1

Electron charge 𝑒 = 1.602 176 634 × 10−19 C (coulombs)
Electron mass 𝑚e = 9.109 383 7015(28) × 10−31 kg
Gravitational constant 𝐺 = 6.674 30(15) × 10−11 m3 kg−1 s−2

Boltzmann constant 𝑘B = 1.380 649 × 10−23J K−1

Astronomical constants and units

Astronomical unit 1 AU = 1.495 978 707 × 1011 m
Parsec 1 pc = 648 000/𝜋 AU
Milliarcsecond 1 mas = 𝜋/648 000 000 rad
Nominal solar mass parameter (GM)N

⊙ = 1.327 1244 × 1020 m3s−2

(IAU 2015 Resolution B3, Prša et al., 2016) 𝑇⊙ = (GM)N
⊙/𝑐

3 ≈ 4.925 490 947 641 `s
Solar mass (derived) M⊙ = (GM)N

⊙/𝐺 ≈ 1.998 410(45) × 1030 kg

List of symbols

⊙ The Sun
�eff Effective diameter of radio telescope
𝛼 Right ascension (RA) of source position in equatorial coordinate
𝛿 Declination (DEC) of source position in equatorial coordinate
𝛼0, 𝛽0 Coupling strength parameters in STG
𝛽O Dimensionless orbital velocity, (𝐺𝑀𝑛b)

1/3/𝑐
Γ

B
A, Γ

A
B Strong-field coupling function

𝛾E Amplitude of the Einstein delay
Λ𝑢 Argument of the Shapiro delay
`𝛼, `𝛿 Proper motion in RA, DEC
ΔR Rømer delay
ΔE Einstein delay
ΔS Shapiro delay or signal propagation delay (in the case of the Double Pulsar)
ΔA Aberration delay
𝛿𝑟 , 𝛿\ Relativistic deformation of orbit

2 Committee on Data of the International Science Council, see http://physics.nist.gov/constants.
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Θ0 Galactic circular velocity at the location of the Sun
a Pulsar spin frequency
¤a, ¥a First/second spin frequency derivative
𝜋𝑥 Timing parallax
𝜌0 Nuclear density
𝜌drip Neutron drip density
𝜎A,B Generic strong-field spin-orbit coupling constant
𝜎J Jitter noise
𝜎TOA TOA uncertainty
𝜏s Scattering time
Φ Newtonian gravitational potential
𝜙 Rotational phase of pulsar
𝜒

2
, 𝜒

2
red Chi-squared test, reduced

𝜓 Longitude of pulsar with respect to the ascending node
Ω Longitude of the ascending node
Ω

SO
p Geodetic spin precession of pulsar

𝜔 Longitude of periastron
¤𝜔 Relative advance of periastron

A,B Aberration coefficients
𝐴eff Effective collecting area of a telescope
𝑎p Semi-major axis of pulsar’s orbit
𝑎R Semi-major axis of the relative orbit
𝑏 Galactic latitude
𝑙 Galactic longitude
𝑏0 Slope parameter at the radius of the Sun (see Eq. 3.16)
D Dispersion constant
𝐷 Doppler factor between SSB and pulsar system
𝑑 distance
¤𝐸 rot Rotational kinetic energy
𝑒
− Electron
𝑒 Orbital eccentricity (or electron charge for Eq. 2.3)
𝑒T Time eccentricity
𝑓 Frequency
G Generalised gravitational constant
G Telescope gain
𝐻 Hydrogen
ℎ, ℎc Strain/characteristic strain of gravitational waves
𝐼A MOI of pulsar A
𝑖 Orbital inclination
𝐾𝑧 Vertical contribution of the Galactic acceleration
𝑀 Total system mass
𝑚A Mass of pulsar A
𝑚B Mass of pulsar B
𝑚c Mass of companion
𝑚p Mass of pulsar
𝑁 Nuclei
𝑁0 Pulse number at a reference epoch 𝑡0

xiii



𝑁free Degree of freedom
𝑛 Neutron
𝑛b Orbital angular frequency, 2𝜋/𝑃b
𝑛e Electron number density
𝑃 Spin period of pulsar
¤𝑃 Spin period derivative
𝑃b Orbital period of a binary system
¤𝑃b Change of orbital period
𝑝 Proton
𝑅 Mass ratio 𝑚A/𝑚B
𝑅0 Distance from the Sun to the Galactic centre
𝑟 Range parameter of the Shapiro delay
𝑠 Shape parameter of the Shapiro delay
𝑆mean Mean flux density
𝑇0 Epoch of periastron passage
𝑇p Proper time of a pulsar
𝑇sys System temperature
𝑡 Time
𝑡0 Reference epoch
𝑡corr Time correction
𝑡D Dispersive time delay
𝑡int Integration time
𝑡SSB Barycentric TOA
𝑡topo Topocentric TOA
𝑢 Relativistic eccentric anomaly
𝑣 Velocity
𝑊 Pulse width
𝑥 Projected semi-major axis of the pulsar orbit
¤𝑥 Change of projected semi-major axis
𝑥A,B Mass fraction 𝑚A,B/𝑀
𝑧 Galactic height
𝑧𝑠 Logarithmic Shapiro shape, 𝑧𝑠 ≡ − ln (1 − 𝑠)

Frequently used acronyms

BIPM Bureau International des Poids et Mesure
BH Black hole
DD Damour-Deruelle
DEF Damour–Esposito-Farèse
DM Dispersion measure
DNS Double neutron star
EFF Effelsberg 100-m Radio Telescope
EOS Equation of state
EPTA European Pulsar Timing Array
FAST Five-hundred-meter Aperture Spherical Telescope
GBT Green Bank Telescope
GPS Global Positioning System
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GR General Relativity
GW Gravitational wave
GWB Gravitational wave background
IAU International Astronomical Union
IPTA International Pulsar Timing Array
ISM Interstellar medium
JRT Jingdong 120-m Pulsar Radio Telescope
LEAP Large European Array for Pulsars
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LOS Line of sight
LT Lense-Thirring (Chapter 3) or Lovell Telescope (Chapter 5 and 6)
MJD Modified Julian Date
MOI Moment of inertia
MS Main sequence
MSP Millisecond pulsar
NIST National Institute of Standards and Technology
NLO Next-to-leading-order
NRT Nançay Radio Telescope
NS Neutron star
PEAPA Pan-EurAsia Pulsar Array
PK Post-Keplerian
PN Post-Newtonian
PPA Polarisation position angle
PPK Parameterised post-Keplerian
PSR Pulsar
PTA Pulsar timing array
QTT Xinjiang Qitai 110-m Radio Telescope
RM Rotation measure
RMS Root mean square
SKA Square Kilometre Array
SMBHB Supermassive black hole binary
S/N Signal to noise ratio
SRT Sardinia Radio Telescope
SSB Solar System barycentre
STG Scalar-tensor gravity
TAI International Atomic Time
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamical Time
TOA Time of arrival
TOV Tolman-Oppenheimer-Volkoff
TT Terrestrial Time
UTC Coordinated Universal Time
VLBI Very-long-baseline interferometry
WD White dwarf
WRST Westerbork Synthesis Radio Telescope
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CHAPTER 1

Introduction

1.1 An overview of gravity experiments

Gravity, one of the four fundamental interactions in nature, has been systematically studied for over three
centuries.1 The classical gravity theory formulated by Isaac Newton (Newton, 1687) was derived from
empirical observations of planetary motions by Johannes Kepler. Since it came out, Newton’s law of
universal gravitation had reached a great success, including the prediction of the existence of Neptune on
the basis that the motion of Uranus could not be explained by the actions of other planets (for details see
e.g. Grosser, 1979). However, with ∼150 years of observational data on Mercury, in 1859, Urbain Le
Verrier first recognised an unexplained advance in the perihelion of Mercury with Newtonian gravity (Le
Verrier, 1859). The modern value of this discrepancy is about 43" per century.

A half-century search on multiple explanations for this discrepancy, including a hypothetical planet
(“Vulcan”) near Mercury, had yielded no results. Yet things became clearer when an unprecedented
theory came out — General Relativity (GR). Instead of being seen as an attractive force, gravity is
perceived to be the effect of the curvature of four-dimensional spacetime acting on the motion of other
objects. Just one week before Albert Einstein presented his field equations of gravitation to the Prussian
Academy of Science (Einstein, 1915a), he had successfully demonstrated that his gravity theory naturally
explains the anomalous precession of Mercury’s perihelion (Einstein, 1915b). This is regarded as the
first experimental test of GR in hindsight. Four years later, the second test, the deflection of starlight by
the gravity of the Sun, was measured during the total solar eclipse on 29 May 1919 (Dyson et al., 1920),
which is in agreement with GR and disfavours “Newtonian prediction” (half of GR’s value) or prediction
from aether (no deflection).2 Besides deflection, another effect results from curved spacetime is a time
delay, where light takes longer time to travel when passing near a massive body. It was discovered by
radio astronomer Irwin Shapiro in 1964 as a prediction of GR (I. I. Shapiro, 1964). The Shapiro delay,
together with the other two, forms the classical tests of GR.3

Before the 1970s, gravity tests were limited to the Solar System, where only weak-field slow-motion
aspects of gravitation can be investigated. It became evident that the Solar System would not be sufficient
to be the only testbed for gravity theories, since many alternative theories of gravity agreed with GR so
closely in the weak-field slow-motion regime that could pass all the Solar System tests (Will, 1981; Will,

1 The other three fundamental interactions are electromagnetic interaction, strong interaction and weak interaction.
2 A hypothetical matter that fills the Universe as the medium of travelling light or gravity.
3 The three experimental tests proposed by Einstein himself also includes gravitational redshift, in addition to light deflection

and perihelion precession of planetary orbits (Einstein, 1916a). But the gravitational redshift, as a consequence of the
Equivalence Principle, is common to every metric theory of gravity, hence in some regards not a test of GR.
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2018). But it does not necessarily mean that they would also agree with predictions in the strong gravity
regime. In GR, one often distinguishes strong and weak gravity using the quantity 𝜖 = |Φ|/𝑐2, where Φ
denotes the Newtonian gravitational potential and 𝑐 the speed of light in vacuum. For Solar System,
𝜖 ∼ 10−6; in contrast, at the surface of a neutron star (NS) 𝜖 ∼ 0.2, and near the event horizon of a black
hole (BH) 𝜖 ∼ 1, these are the regimes of strong gravity.

The discovery of the first binary pulsar by Russell Hulse and Joseph Taylor in 1974 (Hulse & Taylor,
1975) opened new arenas for precision gravity tests in two new gravity regimes — the quasi-stationary
strong-field regime and the radiative regime (Damour & Taylor, 1992; Wex, 2014). It not only allowed
the classical GR tests to be performed in a regime where the spacetime curvature is 13 orders of
magnitude larger than that caused by the Sun, but also confirmed the existence of gravitational waves
(GWs) predicted by GR for the first time. More specifically, the rate of change of the orbital period
measured in this system was consistent with GR’s prediction for the rate of orbital energy loss due to
GW emission (Taylor et al., 1979). This had immediately excluded certain alternative theories (Will,
1993; Yunes & Siemens, 2013).

Nowadays, thanks to the advanced technology and numerous space missions, Solar System tests have
been much improved in precision. With the astrometric satellite Hipparcos (Froeschle et al., 1997)
in the optical and very-long-baseline interferometry (VLBI) (Lebach et al., 1995; S. S. Shapiro et al.,
2004; Fomalont et al., 2009) in the radio, light deflection was confirmed to agree with GR at a precision
of 1.5 × 10−4. Measurement of frequency shifts in radio signals to and from the Cassini spacecraft,
with signals passing near the Sun, verified the Shapiro delay to an accuracy of 10−5 with GR (Bertotti
et al., 2003). In addition, GR has passed many other Solar System tests, including the Lunar Laser
Ranging experiment for the de Sitter precession of the Moon’s orbit and the strong equivalence principle
(Nordtvedt, 1999), the Gravity Probe B for the geodetic and frame-dragging effects (Everitt et al., 2011),
and the Lense-Thirring effect with satellite laser ranging (Ciufolini & Pavlis, 2004; Ciufolini et al., 2019).

Meanwhile, many more binary pulsars have been discovered, either accompanied by planets, main-
sequence (MS) stars, NSs or white dwarfs (WDs), and even in triple systems.4 Some of them are
excellent laboratories for testing GR and alternative gravity theories, involving the renowned “Double
Pulsar”, which provides so far the most precise test of quadrupolar GWs (Kramer et al., 2006b; Kramer
et al., 2021a). Besides, a global effort using pulsar timing array (PTA) to search for nanohertz GWs
from inspiralling supermassive black hole binaries (SMBHBs) has collected data for over two decades,
and may soon give us the first detection (Antoniadis et al., 2022).

In addition, on 14 September 2015, the centenary year of the publication of Einstein’s general theory
of relativity, the Laser Interferometer Gravitational-Wave Observatory (LIGO), for the first time, directly
detected the signal of GW — a wave in the fabric of spacetime itself — from merging black holes
(B. P. Abbott et al., 2016a). This opens up a new regime for gravity tests: highly dynamical strong field
regime.

To compare pulsars with other gravity tests, it is useful to introduce the four gravity regimes (Wex,
2014, see Figure 1.1 for an illustration):

SW Quasi-stationary weak-field regime: Masses move slowly compared to the speed of light (𝑣 ≪ 𝑐),
and the spacetime is nearly flat (close to Minkowski space). A well known example is the Solar
System.

SS Quasi-stationary strong-field regime: Masses move slowly compared to the speed of light (𝑣 ≪ 𝑐),
but one or more bodies in the system are strongly self-gravitating. The spacetime in the vicinity of
such bodies is strongly curved. Binary pulsars are the prime examples.

4 A pulsar−black hole binary would be a powerful tool for gravity test, but such a system is still missing (Wex & Kopeikin,
1999; Liu et al., 2014a).
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1.2 Pulsars: precision gravity probes

Figure 1.1: Illustration of four different gravity regimes, courtesy of Norbert Wex. SW: quasi-stationary weak-field
regime; SS: quasi-stationary strong-field regime; DS: highly-dynamical strong-field regime; GW: radiation regime.

DS Highly-dynamical strong-field regime: Masses move at a speed closes to the speed of light (𝑣 ∼ 𝑐).
The spacetime is strongly curved and highly dynamical near the masses. This is the case for the
merging BHs and NSs observed by GW detectors (BH-BH, BH-NS, and NS-NS).

GW Radiation regime: Properties of gravitational radiation, or GW. This regime coexists with all three
regimes above. However, the GW luminosity of the Solar System is of the order of 104 W, about
21 orders of magnitude smaller than that of the Double Pulsar. Another relevant example here is
the nanohertz GW emitted by inspiraling SMBHBs, which will soon be detectable with PTA.

To date, after more than a century of observations and examinations, GR has passed all experimental
tests with flying colours, including those with binary pulsars. However, there are still enigmas that
remain unsolved, such as the incompatibility between GR and quantum mechanics, the difficulty in
solving the singularity problem, and the requirement of substantial dark matter and dark energy to explain
the observations (Clifton et al., 2012). That’s why scientists are still putting lots of effort into testing
GR, and seeking for possible deviations from it. Every experimental test is a probe for new physics.
In particular, the Double Pulsar system is a prime laboratory for testing gravity in the quasi-stationary
strong-field regime, which is the main focus of this dissertation. In the next section, we start with the
basics of pulsars, followed by showing how fascinating they are in testing many aspects of gravity.

1.2 Pulsars: precision gravity probes

NSs are named after their main ingredient, neutrons, which were discovered by Chadwick (1932).
Already before that, Chandrasekhar (1931) had presented a calculation of the maximum mass of a stable
WD star, known as Chandrasekhar limit,5 above which the electron degeneracy pressure in the stellar
core cannot support against its own gravitational self-attraction, resulting in further gravitational collapse.
An independent calculation was done by Landau (1932), which also speculated on the existence of stars
heavier than this limit, and concluded that “the density of matter becomes so great that atomic nuclei
come in close contact, forming one gigantic nucleus”. Soon after, based on the observations of supernova
explosions, Baade & Zwicky (1934a) made the actual theoretical prediction of NSs that “supernovae
represent the transitions from ordinary stars to neutron stars”(see also Baade & Zwicky, 1934b; Baade
& Zwicky, 1934c). A few years later, Tolman (1939) and Oppenheimer & Volkoff (1939) independently
derived the equation of hydrostatic equilibrium for a spherically symmetric star in the framework of GR,
known as Tolman-Oppenheimer-Volkoff (TOV) equation. This equation is the basis for constructing
(non-rotating) NS models, when supplementing with the key ingredient — the equation of state (EOS)
of dense matter in NSs, which describes the dependence of pressure on mass density and temperature,
where the temperature dependence is negligible.

5 The accepted value today is about 1.4 solar masses (Hawking & Israel, 1989).
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Despite some attempts to search for NSs in X-rays, the association of those X-ray sources with
NSs were not convincing at that time (Giacconi et al., 1962; Bowyer et al., 1964). NSs remained
theoretical until 1967, when Jocelyn Bell detected repeating radio signals using the Interplanetary
Scintillation Array in Cambridge. Further measurements revealed that this pulsating source — pulsar,
now known as PSR B1919+21, has a great regularity of about 1.337 s, and is located far outside the
Solar System (Hewish et al., 1968). More pulsars were soon discovered, while their nature was hotly
debated, with hypotheses of being oscillating WDs or NSs. This issue was solved by the discoveries of
short-period pulsars: the Vela pulsar (Large et al., 1968) and the Crab pulsar (Staelin & Reifenstein,
1968), with period of only 89 ms and 33 ms. WDs can neither rotate nor oscillate at such a rapid period;
oscillating NSs were also ruled out based on the slowdown observed in the period of the Crab pulsar
(Richards & Comella, 1969). Finally, the model independently developed by Pacini (1967) before the
discovery of PSR B1919+21, and by Gold (1968) shortly after the discovery, won out that pulsars are
rotating magnetised neutron stars.

In Section 1.2.1, we introduce the fundamental properties of NSs and pulsars that are essential for
understanding this work, and refer the interested readers to e.g. Haensel et al. (2007), Lorimer & Kramer
(2004), and A. G. Lyne & Graham-Smith (2006) for details and other aspects. In Section 1.2.2, we
present scientific applications of pulsars, in particular those that are mostly relevant to this dissertation.

1.2.1 Basics of neutron stars and pulsars

Formation

NSs are the finale of the evolution of MS stars with masses between 10 and 25 solar masses (M⊙) (Heger
et al., 2003). A MS star supports itself by balancing the inward self-gravity and outward thermal and
radiation pressure from nuclear fusion. Eventually, all active stars evolve to a point that the nuclear fuel
in the core is exhausted and fails to resist the gravitational force, resulting in the formation of a compact
star. For stars with masses lower than 8 M⊙, like our Sun, its core temperature is insufficient to fuse
carbon. After expelling its outer layers and creating a planetary nebula, a core remnant called WD is
left, typically composed of carbon and oxygen (CO), and supported by electron degenerate pressure.6

For stars with masses above 8 M⊙, an iron-rich core forms at the late stage. Once the mass of the core
exceeds Chandrasekhar limit, electron degenerate pressure is overcome by gravity and leads to further
core collapse and violent explosion, known as core-collapse supernova. A giant neutron-rich nuclei is
formed via electron capture. Neutron degeneracy pressure is the last hope to stop gravitational collapse,
with the help of repulsive nuclear forces. If the mass of the remnant core is smaller than the TOV limit
(Oppenheimer & Volkoff, 1939), i.e., ∼ 3 M⊙, a NS is formed. Otherwise, the combination of neutron
degeneracy pressure and nuclear forces is insufficient to support against gravity, and the core inevitably
collapses into a BH.

Alternatively, a NS can be formed via Type Ia supernova if a WD accretes enough mass from a binary
companion (Nomoto et al., 1984), or merges with a second WD (Webbink, 1984), which exceeds the
Chandrasekhar limit.

Structure and the equation of state

NSs are the smallest and densest object known in the Universe, except for BHs and hypothetical objects
(e.g. quark stars and strange stars). They have a typical mass of 1.4 M⊙ , with a radius of only ∼ 10 km,
and a mean density about 4 × 1014 times of the Sun. The structure and composition of a NS depends on
6 Stars with mass lower than 0.5 M⊙ could form helium WDs, and with mass between 8 M⊙ and 10 M⊙ may form

oxygen–neon–magnesium WDs. The majority known WDs are CO WDs.
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1.2 Pulsars: precision gravity probes

the EOS at supranuclear density, which is still not precisely known, although many models have been
proposed (Lattimer & Prakash, 2001; Lattimer & Prakash, 2016). Quite generally, a NS can be divided
into four regions as shown in Figure 1.2(a) (Degenaar & Suleimanov, 2018). It is surrounded by a thin
atmosphere (a few cm) of hydrogen 𝐻, and an ocean of ion liquid about 100-m thick. Below which is
the crust, covering about 10% of the radius. The solid outer crust consists of electrons 𝑒− and nuclei 𝑁 ,
and extends from the bottom of the atmosphere to the neutron drip density, 𝜌drip ∼ 4 × 1011g cm−3. The
inner crust also contains neutrons 𝑛 as it covers the region from the neutron drip density, where neutrons
begin to drip out from the nuclei, to nuclear density 𝜌0 ∼ 2.3 × 1014g cm−3, where neutrons transform to
superfluid. The density and pressure keep rising with depth, beyond 𝜌0 one enters the core, which makes
up the major portion of a NS. All nuclei are dissolved here, leaving abundant degenerate neutrons and a
few percent of protons 𝑝 and electrons in the outer core. The ingredients of the inner core is unclear,
which may involve exotic matters such as hyperons, pions, and kaons. The central density can be as high
as (10-15)𝜌0, depending on the EOS.

atmosphere

ocean

crust

core

radiusdensity (g 𝐜𝐦−𝟑)

~1 cm

~100 m

~1 km

~10 km~4 × 1015

~6 × 1014

𝜌0~2.3 × 1014

𝜌drip~4 × 1011
~1010

~104

(a) NS structure

Neutron 
star

(b) pulsar model

Figure 1.2: (a) Schematic structure of a NS adapted from Degenaar & Suleimanov (2018). Rough numbers for
density and size of each region are shown along the sides of the sector. Main composition are listed, where 𝐻
stands for hydrogen, 𝑁 for nuclei, 𝑒− for electrons, 𝑛 for neutrons, and 𝑝 for protons. The dashed lines separate the
inner and outer parts of the crust and core. (b) Simplified model of pulsar magnetosphere, adapted from Lorimer
& Kramer (2004).

Pulsar model

Pulsars are strongly magnetised NSs, with dipolar field strength about 107−14 gauss, depending on the age
and the type of pulsars. These strong magnetic fields are consistent with the magnetic flux conservation
from their progenitor stars (Woltjer, 1964). Magnetic dipole radiation is powered by rotational kinetic
energy of the NS, and creates a plasma-filled magnetosphere surrounding the pulsar. A simplified model
is shown in Figure 1.2(b). The magnetosphere co-rotates with the pulsar until it reaches the speed of light.
This limit defines an imaginary surface called light cylinder, with radial distance 𝑟𝑐 = 𝑐/Ω, where Ω is
angular velocity. The magnetic field lines are closed within the light cylinder and open beyond the light
cylinder. Radio beams are emitted along the magnetic axis of the pulsar, which is not necessarily aligned
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J0737-3039A

J0737-3039B

J0348+0432

B0531+21

J1744-1134

J1713+0747

J1012+5307

B1913+16

J0740+6620
B1237+25

J1600-3053

J0613-3053

J2222-0137

Figure 1.3: 𝑃 − ¤𝑃 diagram of known pulsars plotted in log-log scale. Pulsars in binary systems are marked with a
red circle, and pulsars featured in this dissertation are highlighted in blue with their name labelled. The cluster of
pulsars on the top right are normal pulsars, whereas MSPs are on the bottom left. Data were taken from the ATNF
Pulsar Catalogue (version 1.68, Manchester et al., 2005).

with the rotational axis, possibly due to asymmetrical supernova explosion. This misalignment allows
the beam to be seen once or twice (if the magnetic and spin axes are almost orthogonal) per rotation of
the pulsar if it happens to sweep across the Earth, and leads to pulsed signals like a lighthouse. Radio
beams are generally considered to be formed in the open field line region, where the charged particles
are accelerated along the curved field lines due to a large electrostatic field induced by the magnetic
field, and resulting in curvature radiation most readily observed at radio frequencies (A. G. Lyne &
Graham-Smith, 2006).

Pulsar evolution

NSs rotate extremely fast after their formation owing to the conservation of angular momentum. Over
time, pulsars gradually slow down due to the loss of rotational kinetic energy. Both spin period 𝑃 and the
spin-down rate ¤𝑃 can be precisely measured through observations. These quantities provide a classical
way to track the spin evolution of pulsars via the 𝑃 − ¤𝑃 diagram shown in Figure 1.3. To date, more
than 3000 pulsars have been discovered (ATNF Pulsar Catalogue,7 Manchester et al., 2005), where
majority are normal pulsars (𝑃 ∼ 0.5 s and ¤𝑃 ∼ 10−15s s−1) occupying the top right of the diagram, and
millisecond pulsars (MSPs, 𝑃 ≲ 20 ms and ¤𝑃 ∼ 10−20s s−1) populating the bottom left.

A simplified model to explain the evolution of various types of pulsar systems is shown in Figure 1.4

7 https://www.atnf.csiro.au/research/pulsar/psrcat/
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(see e.g. Bhattacharya & van den Heuvel, 1991). We start from a binary star system, as more than 70%
massive stars are found to have companions (Sana et al., 2012). The initially more massive star (primary)
evolves first to form a NS via supernova explosion, where the majority of binaries disrupt during this
catastrophic process and produce a high-velocity isolated NS and a runaway star. The young pulsar is
born with a short spin period, and gradually spins down as a normal pulsar over a timescale of 106−7 yr,
moving from the top left of the 𝑃 − ¤𝑃 diagram towards bottom right, and eventually becomes too faint to
be detected.

For those few binaries that survive, and in which the secondary star is massive enough to evolve into
a red giant and overflows the Roche lobe, the pulsar accretes matter from its companion, forming an
accretion disk and is visible as an X-ray binary. The mass accretion transfers orbital angular momentum
to the NSs and spins them up to a shorter period, hence these pulsars are often referred to as recycled
pulsars. For low-mass systems, the mass transfer lasts longer and spins up the NS to a few milliseconds.
At the end, the secondary star sheds its outer layers and results in a MSP-WD binary. For high-mass
systems, the secondary star is massive enough to undergo a supernova explosion and forms a NS. If
the binary is lucky enough to survive, the result is a double NS (DNS) system. Such systems are rare
because they have to survive two supernova explosions.

Figure 1.4: Evolution scenario cartoon involving binary pulsars. Figure reproduced from Lorimer (2001) under a
Creative Commons Attribution 4.0 International License.
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1.2.2 Interesting science with pulsars

MSPs are very stable in rotation, some of them can rival the best atomic clocks in terms of stability on
long timescales (G. Hobbs et al., 2012; G. Hobbs et al., 2020). This characteristic makes them the ideal
tool for precision measurements. Recording the arrival time of pulses at radio telescopes and keeping
track of their rotational phases provide access to their orbital information. This technique is called pulsar
timing, more details to follow in Chapter 2.

The first gravity tests with NSs were enabled by the discovery of the Hulse-Taylor pulsar, PSR B1913+16,
i.e. the first binary pulsar and also the first DNS system (Hulse & Taylor, 1975). It provides the first
evidence for the existence of GWs through the back reaction of GWs on its orbit (Taylor et al., 1979).
Yet the current record of the most precise measurement of quadrupolar GW comes from the Double
Pulsar, PSR J0737−3039A/B, validating GR at a level of 1.3 × 10−4 with 95% confidence (Kramer et al.,
2021a). This system consists of a recycled 23-ms pulsar (A) and a young 2.8-s pulsar (B), orbiting
each other in a highly relativistic, slightly eccentric 2.45-hr orbit (Burgay et al., 2003; A. G. Lyne et al.,
2004). In addition, this unique system provides a wide range of gravity tests more than in any other
pulsar systems, including orbital precession, time dilation (second order Doppler effect and gravitational
redshift), Shapiro delay, spin precession, and two recently enabled tests: relativistic deformation of the
orbit and higher-order signal propagation effects in a strong-field regime (Kramer et al., 2006b; Breton
et al., 2008; Kramer et al., 2021a). Some of these are rarely tested or only accessible with this system.
Further studies on higher-order signal propagation effects in the Double Pulsar are continued in this
work, based on high precision data from the MeerKAT telescope (Chapter 4).

Binary pulsars are precision gravity probes, not only in testing GR, but also for constraining alternative
theories of gravity. In particular, due to asymmetry in their compactness, PSR-WD systems, such as
PSR J2222−0137, are useful tools to constrain dipolar GWs and the variation of the gravitational constant,
which are predicted in many alternative theories due to a violation of the strong equivalence principle
(Will, 2014; Wex, 2014; Wex & Kramer, 2020; Guo et al., 2021). Despite the similar compactness
of two bodies, PSR J0737−3039A/B also provides some of the best limits on these tests for certain
alternative theories (Kramer et al., 2021a). Prospects of testing certain alternative theories with binary
pulsars of various compactness will be discussed in Chapter 5.

Apart from probing gravity in the strong-field regime, pulsars are also important for understanding NS
structure. The rotational instability observed in pulsars, known as “glitches”, enables studies on NS’s
solid crust, superfluid interior, and couplings between them (Andersson et al., 2012; Haskell & Melatos,
2015). Through the measurement of relativistic effects in binary pulsars, the masses of pulsar and its
companion can be determined with excellent precision. The heaviest pulsars, such as PSR J0348+0432
(Antoniadis et al., 2013) and PSR J0740+6620 (Fonseca et al., 2021), yield that the maximum NS
mass needs to be at least 2M⊙, which excludes a number of EOSs. As will be shown in Chapter 3,
PSR J0737−3039A promises to provide a reliable measurement of the moment of inertia (MOI) via
spin-orbit coupling in the near future, which will further improve our knowledge of the EOS. In fact,
the unrivalled timing precision has already allowed us to start probing the MOI of PSR J0737−3039A
(Kramer et al., 2021a).

Furthermore, pulsars can serve as tools for detecting GWs at nanohertz frequencies (Sazhin, 1978;
Detweiler, 1979) in the form of a PTA (Foster & Backer, 1990). The primary sources of GWs in the
nanohertz band are inspiralling SMBHBs, with orbital timescales of decades. The PTA project is aiming
to search for a common stochastic signal of GW background (GWB) from many superposed SMBHB
GW signals. Such a detection can provide unique insight into SMBHB evolution and place astrophysical
constraints on the SMBHB population. This work has contributed to improving the accuracy of the PTA
in two ways: the accuracy of clocks and the sensitivity of telescopes (Chapter 6).
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In addition, pulsar observations provide valuable information on plasma physics in extreme environ-
ments (Kramer & Stairs, 2008), on the interstellar medium and the structure of the Galaxy (e.g. Han et al.,
2018), and on the processes of stellar and binary evolution (e.g. Tauris et al., 2017), just to name a few.

1.3 Chapter summaries

This dissertation aims to address four scientific questions using pulsar timing: improving our knowledge
of the EOS at supranuclear density, increasing the precision of strong-field gravity tests and exploring
higher-order relativistic effects, constraining certain alternative gravity theories, and enhancing the
sensitivity of nanohertz GW detection. This chapter provided basic knowledge about NSs and pulsars
that helps in understanding this work and demonstrated the important role of pulsars in testing gravity in
the strong-field and radiative regimes. The remainder of this dissertation is organised as follows:

Chapter 2 provides an overview of the pulsar timing technique employed throughout this study. This
includes a description of pulsar observations and propagation effects caused by the interstellar medium,
as well as a basic introduction to data reduction and data analysis methods.

Chapter 3 revisits the previously proposed method for measuring the MOI of binary pulsar via
relativistic spin-orbit coupling and applies it in pulsar analysis for the first time. The prospect of the
MOI measurement of PSR J0737−3039A is studied by simulating realistic future data based on the
early MeerKAT observations, with spin-down mass loss considered in the analysis. Such an MOI
measurement will provide important additional constraints on the EOS of NSs. The prospects for testing
Lense-Thirring effect and measuring the next-to-leading-order (NLO) GW damping are also discussed,
as are expected MOI measurements of DNS systems with shorter orbital periods than the Double Pulsar
from future discoveries.

Chapter 4 reports on the timing results of PSR J0737−3039A based on three years of MeerKAT
observations. It highlights the improved measurements on Shapiro delay and NLO signal propagation
effects, including the retardation effect caused by the movement of pulsar B during the propagation of
the signal of A and the deflection of the signal of A by the gravitational field of B. Novel effects like
lensing and latitudinal deflection are also investigated using observation data and simulated future data.

Chapter 5 explores the prospects of testing Damour–Esposito-Farèse (DEF) gravity using the recently
developed timing model for scalar-tensor gravity with binary pulsars. Included are a basic background
of DEF gravity and a brief summary of this timing model, as well as application to the pulsar-white
dwarf system PSR J2222−0137 using existing and simulated data for a number of large telescopes. The
constraints on DEF gravity expected from pulsar-black hole systems are also investigated.

Chapter 6 mainly discusses two efforts that help to facilitate the detection of nanohertz GWs with
PTAs. The first part documents the work of extending and correcting the clock offsets between the maser
at the Effelsberg telescope and UTC, which rescued more than two years of timing data with Effelsberg
and improves the accuracy of the time tagging of observations. The second part describes a collaborative
project to build the most sensitive pulsar telescope through phased-array observations with the largest
radio telescopes in Europe and China. Preliminary results and prospects based on the first observations
are discussed.

Chapter 7 concludes this dissertation with a brief summary of the main results of this work and a
discussion of ongoing and future work.
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CHAPTER 2

Pulsar timing

As seen in Chapter 1, the rotational stability of pulsars enables studies of a wide variety of phenomena
that affect their pulse propagation by monitoring the pulsar rotation, with a typical cadence of weeks to
months over a span of years to decades. This technique, pulsar timing, aims at creating a coherent timing
solution that accounts for every rotation of the pulsar from the first observation to the last. Dealing with
data at precision from a few microseconds to sub-hundred nanoseconds, a sophisticated timing analysis
process is required to ensure the precision of data and enable high accuracy gravity tests. This chapter
provides an overview of pulsar timing technique, including the effects that need to be considered in the
analysis. The contents are limited to those aspects most relevant to this dissertation and not intended to
be exhaustive. For a more comprehensive description, see e.g., Lorimer & Kramer (2004).

2.1 Effects of propagation through ionised media

The space between the star systems in the Galaxy is filled with a dilute medium called interstellar
medium (ISM), which contains (among others) ionised gas. While propagating through the space from
the pulsar to Earth, the radio waves are influenced by their interactions with the ionised media, primarily
the ISM. In addition, two other distinct media also play a role: the interplanetary medium dominated
by the Solar wind and Earth’s ionosphere. Due to the interaction with the ionised media, the observed
pulsar signals are affected in several ways, including frequency-dependent dispersion delays, change of
polarisation due to Faraday rotation, intensity variations caused by scintillation, and pulse scattering as
a consequence of multi-path propagation. These effects need to be accounted for or carefully treated in
the observation and data analysis. The basic concepts of these effects are described below.

Dispersion

When the electromagnetic radiation from pulsars (and other astronomical sources) travels through the
ISM, it suffers a frequency-dependent index of refraction, causing its group velocity to be smaller than
the speed of light. Consequently, the signal at frequency 𝑓 along a path length 𝑑 from the pulsar to the
Earth suffers a time delay with respect to the signal at infinite frequency by

𝑡D = D × DM
𝑓

2 , (2.1)
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(a) (b)

Figure 2.1: Example of the ISM dispersion effect observed in the timing data of PSR J0737−3039A. Panel (a)
shows a frequency-dependent delay caused by dispersion, whereas panel (b) shows an aligned profile after coherent
de-dispersion with the correct DM. The data were acquired with the MeerKAT L-band receiver with a frequency
range of 896-1672 MHz.

where the dispersion measure

DM =

∫ 𝑑

0
𝑛ed𝑙 (2.2)

is usually expressed in unit of pc cm−3. The quantity 𝑛e is the electron number density and the dispersion
constant is defined as

D =
𝑒

2

2𝜋𝑚e𝑐
, (2.3)

where 𝑒 and 𝑚e are the charge and mass of an electron, and 𝑐 is the speed of light in vacuum.
Most pulsar software adopts the definition introduced by Manchester & Taylor (1972) that 1/D ≡
2.41 × 10−4 MHz−2 pc cm−3 s−1, i.e. D ≈ 4.15 × 103 MHz2 pc−1 cm3 s.1 The time delay between the
two frequencies 𝑓low and 𝑓high is therefore (Lorimer & Kramer, 2004)

Δ𝑡D ≃ 4.15 × 103 s ×
[(

𝑓low
MHz

)−2
−

(
𝑓high

MHz

)−2]
×

(
DM

pc cm−3

)
. (2.4)

Figure 2.1(a) shows an example of this dipersive effect on PSR J0737−3039A. The pulse signal can
be completely smeared out if not taking this effect into account in the observation and data analysis. The
process that corrects for this effect is known as de-dispersion. For timing observations of pulsars with
known DM, the dispersion can be removed completely using coherent de-dispersion (Hankins & Rickett,
1975). This is performed by applying the inverse of the transfer function (which caused the dispersion)
to Fourier-transformed data and then transforming it back to the time domain.

Faraday rotation

In addition to the ISM itself, the presence of a magnetic field (primarily from the Galaxy) also has an
impact, which forces the free electrons to move in a circular motion due to the Lorentz force. This effect
can be characterised as different propagation speeds of the left- and right-hand circularly polarised waves
1 A more precise definition is provided by Kulkarni (2020) based on the latest definitions of physical constants: D =

4.148 806 4239(11) × 103 MHz2 pc−1 cm3 s. The choice of this constant does not have an influence on the results as long as
the analysis is done with the same definition.
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Chapter 2 Pulsar timing

in the magnetised ISM. As the combination of the left- and right-hand circular polarisations composes a
linear polarisation, the differential phase rotation between these two circular polarisations leads to a
change in the linear polarisation position angle (PPA), namely the Faraday rotation. This ISM Faraday
rotation has a dependence on the wavelength of light _:

ΔΨPPA = _
2 × RM , (2.5)

and is therefore different in every frequency channel. The strength of this effect is characterised by the
rotation measure

RM =
𝑒

3

2𝜋𝑚2
e𝑐

4

∫ 𝑑

0
𝑛e𝐵 ∥d𝑙 , (2.6)

where 𝐵 ∥ is the Galactic magnetic field along the line of sight (LOS). With the measurement of both
DM and RM, one can estimate the average Galactic magnetic field strength along the LOS, which can be
used to study the large-scale structure of the Galactic magnetic field (Han et al., 2006; Han et al., 2018).

Scattering and scintillation

So far, the discussions are based on the assumption of a homogeneous ISM. In reality, however, the ISM
is turbulent and inhomogeneous, which leads to two additional effects: scattering and scintillation.

Turbulence in the ISM can bend the pulsar radiation along different LOSs, causing variable path
lengths. As a result, the arrival time of the scattered rays are delayed with different offsets in pulse
phase, which broadens the pulse shape when combining them together, a phenomenon known as pulse
scattering. The scattered profile shows a one-sided exponential tail, where the 1/𝑒 time constant is
referred to as the scattering time 𝜏s. In the thin-screen model developed by Scheuer (1968), the scattering
time is related to the distance of the pulsar and the observing frequency via 𝜏s ∝ 𝑑

2
𝑓
−4. Therefore,

distant pulsars observed at low frequencies are more likely to be scattered. This scatter broadening can
greatly decrease the observed flux density and the timing precision of pulsars.

An effect closely related to scattering is interstellar scintillation. The irregularity of the ISM produces
a strong modulation of the observed pulsar intensity in both the frequency and time domains. This
effect is analogous to the ‘twinkling’ of stars caused by the Earth’s atmosphere. In the thin-screen
model (Scheuer, 1968), the intensity modulation for a given observing frequency 𝑓 has a characteristic
scintillation bandwidth Δ 𝑓ISS ∝ 1/𝜏s ∝ 𝑓

4. Generally, diffractive scintillation occurs over a bandwidth
of kHz to hundreds of MHz on timescales of minutes to hours, and can lead to intensity fluctuations of
up to 100%. Such modulations can be sufficiently extreme to make an otherwise bright pulsar almost
undetectable when it is “scintillated-down”. Refractive scintillation, on the other hand, occurs on
timescales of weeks with amplitudes typically less than a factor of two (Sieber, 1982). Since in many
pulsars the profile shape evolves in frequency, combining this profile evolution with the scintillation
effect can introduce additional noise into the data (see discussions in Section 2.4).

Turbulent ISM, as well as changes in the Solar wind, also leads to variations in the DM, which becomes
a red noise source (i.e. a noise source characterised by long time-scale variations) if not modelled
properly in the timing analysis.

2.2 Basics of pulsar timing

Pulsars are weak radio sources whose single pulses exhibit large variations in their signal-to-noise ratio
(S/N) and shape (see the pulse time series in Figure 2.2). These stochastic pulse-shape variations are
known as jitter noise. For a given pulsar, despite the different shapes of the individual pulses, the
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P
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Figure 2.2: Basic concept of pulsar timing observations. The pulse time series and mean pulse profile are taken
from MeerKAT observations of PSR J0737-3039A, with the red dashed lines marking the spin period of the pulsar.

integrated pulse profile (folded over many hundreds or even thousands of pulses) usually remains stable
for a given frequency. To obtain a significant detection, the incoming pulses received by the radio
telescope are amplified by receivers before being de-dispersed and folded at the topocentric pulsar period.
A sketch of pulsar timing observations is shown in Figure 2.2.

Usually, further (coherent) addition of pulses is needed in order to obtain a high S/N and morphologically
stable pulse profile, which is then cross-correlated with a noise-free template known as the standard
profile (which is different for every pulsar) to obtain the time of arrival (TOA) of a pulse. The TOA
obtained at the telescope is the key observing quantity in pulsar timing. It is usually defined as the arrival
time of the nearest pulse to the midpoint of the span of the averaged pulses (Lorimer & Kramer, 2004).
The timestamp of the profile, i.e. the TOA, is determined from the observatory local time, which is
usually maintained by a hydrogen maser. This topocentric arrival time is then transformed to the Solar
System barycentre (SSB) via a series of clock corrections and barycentric corrections. Finally, these
barycentric TOAs are compared with predictions from a timing model, which describes the rotational
and kinetic properties of the pulsar, resulting in a solution of timing parameters.

More information on timing procedures is outlined in the following sections, although an in-depth
overview is beyond the scope of this dissertation. Section 2.2.1 and 2.2.2 describe the data acquisition
system and telescopes used in this dissertation, and Section 2.2.3 and 2.2.4 introduce the data reduction
methods. The timing model and the data analysis method are explained in Section 2.3 and 2.4 respectively.

2.2.1 Data acquisition

The acquisition of astronomical radio signals involves three core components: a reflecting and focusing
surface, a frontend (receiver), and a backend (data recording machine). These components vary widely
in design and configuration and an example is presented in Figure 2.3. For a typical single-dish parabolic
telescope, the surface reflects the radio waves and directs them towards the focal point of the antenna, so
that the radiations arriving at the receiver are coherently summed in amplitude and phase. Additionally,
some telescopes can redirect the radio waves to a secondary focal point where additional receivers are
available.

The initial portion of the receiving system are typically referred to as frontend. The signal path starts
at the receiver, where the two orthogonal polarisations of the incoming waves are recorded. The weak
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Figure 2.3: Schematic diagram of the signal path through a telescope frontend and backend for a single polarisation
channel. The backend configuration displayed here is that of the baseband sampling. Modern backend systems
such as the Effelsberg Direct Digitization (EDD) backend no longer require mixers and local oscillators (LO).

radio signals are then amplified by a low-noise amplifier that responses in a specific frequency range
centred on the radio frequency (RF), 𝑓RF. Afterwards, the amplified signals pass through a bandpass
filter, which filters out any signals outside of the band of interest. Next, the RF signals arrive at a mixer
and are mixed with a monochromatic signal produced by a local oscillator (LO), to then be converted
to a lower intermediate frequency (IF): 𝑓IF = 𝑓RF − 𝑓LO. This process is necessary to both reduce the
signal loss due to cable transmission, which is worse at higher frequencies, and to choose a frequency
that is easier to be processed by the hardware. Modern backend systems, such as the Effelsberg Direct
Digitization (EDD) backend,2 do not need mixers and LOs anymore. The signals are then processed
through IF bandpass filters and amplifiers before being transmitted to the backend system via cables.

While the frontend is typically designed as a universal instrument that serves multiple astronomical
purposes, the backend is more specialised and are responsible for digitising the data into a format that
can be easily processed. For pulsar observations, the most common types of backend are filterbank,
baseband sampling (Stairs et al., 2000) and folded mode. As filterbank is used for searching unknown
pulsars which is not relevant to this dissertation, we only explain the latter ones here. A simple form of
baseband sampling backend involves mixing the IF signals with a second LO, which produces a real
and an imaginary signal for each polarisation. These signals are then sampled at Nyquist frequency
and combined into complex voltage, followed by channelisation in frequency. Each digital sample is
timestamped by a maser clock. Both the amplitude and phase of the original IF voltages are retained in
these complex data, which allows coherent de-dispersion within each channel bandwidth. The resulting
baseband data can be written directly to storage for later processing, converted to search mode data in
filterbank format, or folded online during timing observations before written to storage. The folded
profiles are averaged over a sub-integration interval (typically ∼10 s), forming a data cube of pulse
amplitude versus pulse phase for each frequency channel.

2 https://mpifr-bdg.pages.mpcdf.de/edd_documentation/index.html
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2.2 Basics of pulsar timing

2.2.2 Telescopes involved in this work

This section briefly introduces the telescopes that are primarily involved in the data collection for
this dissertation. Details relating to the different observations are described in more detail in the
corresponding chapters.

The Effelsberg 100-m Radio Telescope

Figure 2.4: The Effelsberg 100-m telescope.

The Effelsberg 100-m Radio Telescope, operated by
the Max Planck Institute for Radio Astronomy in Bonn,
is one of the largest fully steerable radio telescopes on
Earth. It is located in an Eifel valley about 40 km southw-
est of Bonn, and turned 50 in 2021 since its inauguration
in 1971. This 100-m diameter parabolic telescope can
observe sources with declinations from 90° to approxim-
ately −31°. The receivers are mounted on the primary
and secondary focus and cover frequencies from 0.3 to
96 GHz. The telescope operates primarily as a stand-
alone instrument, but is also actively involved in VLBI
networks, such as the Large European Array for Pulsars
(LEAP, Bassa et al., 2016) and the European VLBI
Network (EVN). For more information, see https:
//www.mpifr-bonn.mpg.de/en/effelsberg.

The Five-hundred-meter
Aperture Spherical radio Telescope (FAST)

Figure 2.5: The Five-hundred-meter Aperture Spherical radio
Telescope (FAST) in China. Credit: Xinhua.

The world’s largest filled-aperture radio tele-
scope is the Five-hundred-meter Aperture
Spherical radio Telescope (FAST) in China.
It was first proposed in 1994 as a prototype
for the Square Kilometre Array (SKA), an in-
ternational project to build the world’s largest
radio telescope. However, the SKA eventually
opted for small antenna arrays in the Southern
Hemisphere. Nevertheless, FAST was built as
a National Key Science & Technology Infra-
structure Project of China under the leadership
of Nan Rendong and was completed in 2016.
It is operated by the National Astronomical
Observatories, Chinese Academy of Sciences.

Located in a natural karst depression in Guizhou, FAST has a 500-m diameter reflective surface which
focuses radio waves onto a feed cabin suspended 140 m above it by six towers. It has an active surface
design that can be deformed into a parabolic antenna aligned with the targeted source. The illuminated
aperture is 300 m for sources with a zenith angle less than 26.4°. It can cover sources with a maximum
zenith angle of 40°, that is, a declination of −15° to 65°. Technical information of FAST can be found,
e.g., in Jiang et al. (2019).
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Chapter 2 Pulsar timing

The MeerKAT telescope

Figure 2.6: The MeerKAT telescope in South Africa. Credit: SARAO.

The MeerKAT telescope is a pre-
cursor for the SKA mid-frequency
array (350 MHz to 14 GHz). It
is located in the Northern Cape
of South Africa and is operated
by the South African Radio As-
tronomy Observatory (SARAO).
MeerKAT is an array of 64 an-
tennas, each with a diameter of
13.5 m. Of these, 48 antennas are
concentrated in a core area with
a diameter of ∼1 km, while the
remaining antennas are placed in a more extended distribution with baselines up to 8 km long. Its
observation elevation ranges from 15° to 88°, therefore allowing the observation of sources with
declination 𝛿 from 40° to −90°. Its location is particularly desirable for observing the Galactic centre
(𝛿 = −29°) and pulsars south of 𝛿 = −35°, which are not optimal or inaccessible by the telescopes in
the Northern Hemisphere. Details of pulsar observations with MeerKAT are described in Bailes et al.
(2020).

2.2.3 Data reduction

Artefacts due to ISM, instrumental or terrestrial interference could contaminate the pulsar signal.
Therefore, before generating TOAs, we need to ensure that these external influences are removed from
the data so that we can get the maximum information from the pulsar itself. Emissions that are not
from the target source are named radio frequency interference (RFI). Modern use of telecommunication
devices, microwave ovens, and ground-based radars are common sources of RFI, which can affect both
the frequency and time domains, either short-term or long-term. The RFI signals can introduce artefacts
in the pulsar profile or even be strong enough to mask the signal of a weak pulsar. Therefore, RFI
mitigation is necessary to restore the intrinsic pulsar signal. This process is commonly carried out with
an automatic algorithm (e.g., Lazarus et al., 2016), followed by a further manual inspection (e.g., with
psrchive, Hotan et al., 2004).

The two orthogonal polarisations of the incoming electromagnetic wave are recorded by the receiver
using independent electronics, resulting in different gains and phases of the signal and thus a distortion
the total intensity profile and systematic errors in timing. Polarisation calibration is therefore important
for precise timing and polarimetry studies and can be done, for example, by observing a noise diode or
a well-studied highly polarised radio source. Furthermore, as described in Section 2.1, ISM Faraday
rotation can change the PPA, which can be corrected by measuring the RM and applying it to each
frequency channel. Additionally, one can calibrate the flux for the studies of emission mechanism and
NS population, but this is not critical for timing analysis.

Lastly, the data need to be reduced to the desired frequency and time resolution in order to be ready for
the TOA creation. The choice of decimation depends on the purpose of the study and the properties of
the pulsar. For the frequency domain, the profile evolution needs to be taken into account. A sufficient
number of sub-bands also allows an accurate measurement of DM. For the time domain, pulsars used for
the pulsar timing array (PTA) experiments are typically averaged over 30 min to 1 hr, whereas pulsars in
relativistic binaries are averaged over shorter time intervals to obtain sufficient orbital coverage. In the
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case of the Double Pulsar, since pulsar A is eclipsed by pulsar B on a timescale of ∼30 s, to keep both a
good S/N and good time resolution, an optimal integration time of ∼30 s is used in order to measure
higher-order light propagation effects (see Section 2.3.2) at and near the eclipse.

2.2.4 Measurement of TOAs

After the above procedures, the data are cross-correlated with a high S/N and noise-free template to
generate TOAs and the associated uncertainties. This template is made by either fitting Gaussian
functions (Kramer et al., 1994; Kramer, 1994) or smoothing with a wavelet transform (P. B. Demorest
et al., 2013) to the best pulse profile. Since the pulse profile varies with the emission frequency of the
pulsar, for observations with wideband receivers, a frequency-dependent template, or so-called “2D
template”, can be employed to improve the accuracy of TOAs (Liu et al., 2014b; Pennucci, 2019).

The accuracy of the TOA measurements can be estimated from the ratio of pulse width𝑊 to profile
S/N. Following the radiometer equation in Dicke (1946), the TOA uncertainty derived from radiometer
noise is expected to scale as follows (Lorimer & Kramer, 2004):

𝜎TOA ≃ 𝑊

S/N
∝

𝑇sys

G
√︁
𝑡intΔ 𝑓

× 𝑊
3/2

𝑆mean
√
𝑃 −𝑊

. (2.7)

Here, 𝑇sys is the system temperature that accounts for the noise contributions from the sky, atmosphere,
ground, and receivers. The telescope gain G = 𝐴eff/(2𝑘B) describes the raw sensitivity of the telescope
and is determined by the effective collecting area of the telescope 𝐴eff , with 𝑘B being the Boltzmann
constant. The first term in Eq. (2.7) describes the dependence of TOA uncertainty on the properties
of the observing system. Observations with a large gain telescope, low system temperature 𝑇sys, long
integration time 𝑡int and broad observing bandwidth Δ 𝑓 yield high accuracy TOAs. The second term
describes the dependence of TOA uncertainty on the characteristics of the pulsar itself. Pulsars with high
mean flux density 𝑆mean, short spin period 𝑃, and narrow pulse width are ideal for high precision timing.

2.3 Timing model

With TOA measurements, a timing model is required in order to extract the information of the pulsar
and the propagation medium. A typical timing model includes 4 fundamental parts: (a) astrometric
parameters describing the position, proper motion, and the parallax of the pulsar; (b) spin parameters
including the pulsar rotation frequency (a), its derivative ( ¤a) and (in some cases) higher derivatives
( ¥a, ä, ...); (c) ISM parameters accounting for the propagation delays in the ISM; (d) binary parameters
characterising the orbital motions and the effects of signal propagation in the binary spacetime.

To study the effects on the pulse TOAs, we employ the following expression, which describes the
pulsar rotation in the comoving reference frame with the pulsar. The “proper time” of a pulsar 𝑇p is
related to its rotational phase 𝜙 via the rotational frequency a and its derivatives (Blandford & Teukolsky,
1976):3

𝜙(𝑇p)
2𝜋

= 𝑁0 + a(𝑇p − 𝑡0) +
1
2
¤a(𝑇p − 𝑡0)

2 + · · · , (2.8)

where 𝑁0 is the pulse number at the reference epoch 𝑡0. The correct counting of the rotational phase
requires the observer to be in an inertial reference frame, which is not the case with a telescope on Earth
due to the movement of the Earth in the Solar System. Therefore, TOAs received by observatories on
3 Actually, this is the proper time as measured by a hypothetical clock on the pulsar (Blandford & Teukolsky, 1976), which is

proportional to the proper time 𝜏.
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Figure 2.7: (a) Geometry of time corrections from the observed TOAs at the telescope to the “proper time” of
the pulsar via the reference frame SSB and binary barycentre (BB).4(b) Geometry of Rømer delay between the
telescope and the SSB. 𝑠 is a unit vector pointing from the SSB to the pulsar, and ®𝑟 is the vector pointing from the
SSB to the telescope. The difference of light travel distance from pulsar to the telescope and to the SSB (marked
in red) is 𝑐 × ΔR⊙ = −®𝑟 · 𝑠. It is easy to imagine that Rømer delay causes an annual sinusoidal variation in pulse
arrival time due to Earth’s orbital motion around the Sun. In both figures, the size of the objects and distances are
not to scale.

Earth need to be transferred to the Solar System barycentre (SSB), which is, to a good approximation, an
inertial reference frame. The transformation from a topocentric TOA, 𝑡topo, to a barycentric TOA (at
infinite frequency), 𝑡SSB, follows

𝑡SSB = 𝑡topo + 𝑡corr + ΔR⊙ + ΔE⊙ + ΔS⊙ − 𝑡D , (2.9)

where 𝑡corr denotes clock corrections, which are discussed in detail in Section 2.3.1. The term ΔR⊙
accounts for the Rømer delay, i.e. the difference in light travel time from pulsar to the observer and to the
SSB. It is calculated as ΔR⊙ = −®𝑟 · 𝑠/𝑐, where 𝑠 is a unit vector pointing from the SSB to the pulsar, and
®𝑟 is the vector pointing from the SSB to the phase centre of the telescope. Therefore, precise knowledge
of the location of the telescope and, of course, the location of the SSB is required. An illustration of the
geometry of the Rømer delay is shown in Figure 2.7(b). The term ΔE⊙ stands for the Einstein delay,
which consists of the time dilation due to the Earth’s motion and the gravitational redshift caused by the
other bodies in the Solar System; and ΔS⊙ describes the Shapiro delay due to the spacetime curvature
caused by the presence of masses in the Solar System, chiefly by the Sun. The computation of barycentric
corrections requires precise knowledge of the positions and masses of all major bodies in the Solar
System, for which a Solar System ephemeris such as the DE ephemerides produced by the Jet Propulsion
Laboratory is used.5 The concepts of these three delays are discussed in more detail in Section 2.3.2
with regard to binary pulsars. From the Rømer and Shapiro delay corrections, the astrometric parameters
of the pulsar can be measured. With the aforementioned corrections, topocentric TOAs are transformed
into barycentric TOAs at barycentric frequency 𝑓SSB, which need to be converted to infinite frequency
by removing the dispersive delay caused by the ISM, i.e. 𝑡D = D × DM/ 𝑓 2

SSB (see Section 2.1).

4 Between BB and the SSB, there should also exist a constant vacuum propagation delay (in addition to the Doppler shift),
which is often neglected as it is not relevant to the results.

5 https://ssd.jpl.nasa.gov/orbits.html#planets
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2.3.1 Clock and barycentric corrections

The term 𝑡corr in Eq. (2.9) summarises various clock corrections, which are explained below. The TOAs
received at the telescope are recorded based on the local time of the observatory, which is usually
maintained by a hydrogen maser. Maser clocks are good frequency standards at short timescales, but
they are known to drift with time and so are inadequate for long-term precision pulsar timing. Therefore,
we constantly compare the observatory time to Coordinated Universal Time (UTC) via the Global
Positioning System (GPS), which provides measurements by the National Institute of Standards and
Technology (NIST) and is often referred to as UTC(NIST). The offsets between these two time standards
are recorded in a clock file. UTC is based on International Atomic Time (TAI) with leap seconds
added to compensate for the time difference due to irregularities and slowdown of the Earth’s rotation:
TAI = UTC+ΔT, with ΔT being a certain integral number of all leap seconds.6 Through this expression,
TOAs are transformed into TAI, a smooth and high-precision time standard as realised on the proper
time of the rotating geoid (mean sea level) of the Earth. Maintained by Bureau International des Poids
et Mesures (BIPM), TAI is a weighted average of time measured by over 400 atomic clocks (mainly
caesium clocks) in more than 50 national laboratories worldwide to overcome the stochastic errors of
individual atomic clocks. Finally, TOAs are transformed from TAI to Terrestrial Time (TT), a theoretical
ideal that is tied to TAI by a constant for historical reasons: TT(TAI) = TAI + 32.184 s. Both TAI and
TT are in units of SI second. Since TAI is never revised once published, the correction of errors are
calculated annually by BIPM. With this correction, TOAs are converted to the timescale of TT(BIPM).

So far, TOAs in the TT standard still refer to the Earth’s frame, which needs to be transformed to the
SSB by taking into account other corrections in Eq. (2.9). All these corrections are performed via the
pulsar software tempo (D. Nice et al., 2015)7 or tempo2 (G. B. Hobbs et al., 2006)8. With tempo, the
result is an arrival time in Barycentric Dynamical Time (TDB); whereas with tempo2, TT is transformed
to Geocentric Coordinate Time (TCG)9 and eventually to Barycentric Coordinate Time (TCB) (Edwards
et al., 2006) as recommended by the International Astronomical Union (IAU) 2006 Resolution B3.10

While TDB was never defined in a self-consistent way, TCB was proposed by the IAU in 1991 as a
successor (see Soffel et al., 2003) and is equivalent to the proper time experienced by a clock at rest in a
coordinate frame comoving with the SSB. It therefore ticks faster than TDB and clocks on Earth as it is
outside the gravity well of the Solar System. In IAU 2006 Resolution B3, TDB is defined as a linear
transformation of TCB:

TDB = TCB − 𝐿B × (JDTCB − 𝑇0) × 86400 s + TDB0 , (2.10)

with 𝑇0 = JD 2443144.5003725, 𝐿B = 1.550519768 × 10−8, TDB0 = −6.55 × 10−5s. To transfer from
TDB to TCB, parameters with units of time need to be divided by the constant factor (1 − 𝐿B). Further
information on the definitions of time standards can be found, e.g., in Soffel & Langhans (2013).

2.3.2 Relativistic effects in binary pulsars

For pulsars in binary systems, additional time transformations are needed to account for the binary
motion and propagation effects inside the binary system. The barycentric TOA (at infinite frequency) is

6 As of 28 Feb. 2022, ΔT = 37s.
7 http://tempo.sourceforge.net/
8 https://bitbucket.org/psrsoft/tempo2/src/master/
9 TT is defined to differ from TCG by a constant rate (IAU 2000 resolutions, Soffel et al., 2003).

10 https://www.iau.org/static/resolutions/IAU2006_Resol3.pdf
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Figure 2.8: Schematic diagram of an elliptical Keplerian orbit. The blue ellipse is the orbit of a pulsar projected
onto the plane of the sky (in grey) perpendicular to the LOS of the observer. The ascending node (blue cross) is
the point where the pulsar crosses the plane of the sky travelling away from the observer. The orbital inclination 𝑖
is the angle between the LOS and the orbital angular momentum ®𝐿, and also the angle between the orbital plane
and the plane of the sky. The periastron (green cross) marks the closest point in the pulsar’s orbit to the centre of
mass (red cross), the distance between which is 𝑎p (1 − 𝑒), where 𝑎p and 𝑒 are the semi-major axis and eccentricity
of the pulsar orbit. Both the longitude of periastron 𝜔 and longitude of the pulsar (“orbital phase”) 𝜓 are measured
relative to the ascending node.

therefore linked to the proper time of the pulsar 𝑇p via the expression:

𝑡SSB − 𝑡0 = 𝐷
−1 ×

[
𝑇p + ΔR(𝑇p) + ΔE(𝑇p) + ΔS(𝑇p) + ΔA(𝑇p)

]
, (2.11)

where 𝑡0 is the reference epoch and 𝐷 is the Doppler factor due to the (unknown) radial velocity of
the pulsar system with respect to the SSB. As only temporal changes of 𝐷 are of interest, 𝐷 ≡ 1 can
be chosen at a given epoch (see Damour & Deruelle, 1986). The quantity ΔR accounts for the Rømer
delay due to the orbital motion of the pulsar; ΔE describes the Einstein delay, which to leading order
consists of the gravitational redshift caused by the companion and the second-order Doppler effect; ΔS
comprises delays related to the curved spacetime of the companion object, which to leading order is the
well-known Shapiro delay; and finally, ΔA corresponds to the aberration effects, owing to the fact that
the pulsar acts as a moving “light-house” with beam pointing at a specific direction. The geometry of the
transformation from a topocentric TOA to the proper time of the pulsar is illustrated in Figure 2.7(a).

Unlike Newtonian theory, which has an exact solution for the equation of motion of two gravitationally
interacting masses, general relativity (GR) has no such analytical solution. In GR, the two-body problem
can only be solved numerically or based on approximation methods. To test the quasi-stationary strong-
field regime and the radiation regime with binary pulsars, a phenomenological approach, commonly
known as parameterised post-Keplerian (PPK) formalism, was introduced by Damour & Deruelle (1986)
and developed by Damour & Taylor (1992). The PPK formalism parameterises all observable effects
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2.3 Timing model

that can be independently obtained from observational data of binary pulsars, and accordingly allows
the extraction of theory-independent information from binary pulsar observations by fitting for a set of
Keplerian and post-Keplerian (PK) parameters.

The six Keplerian parameters that describe the Newtonian motion of a binary pulsar are listed below:

• orbital period of the binary system, 𝑃b;
• projected semi-major axis of the pulsar orbit, 𝑥 ≡ 𝑎p sin 𝑖/𝑐;
• orbital eccentricity, 𝑒;
• longitude of periastron, 𝜔;
• epoch of periastron passage, 𝑇0;
• longitude of the ascending node, Ω;

where 𝑎p is the semi-major axis of pulsar’s orbit, and 𝑖 is the orbital inclination defined as the angle
between the orbital angular momentum and the LOS toward the pulsar system. A schematic diagram
of an elliptical pulsar orbit is shown in Figure 2.8. The first five Keplerian parameters can be easily
measured from pulsar timing, whereas Ω can only be measured in specific cases (e.g. with wide orbits)
and is only important for evolutionary studies or certain tests of alternative theories (Zhu et al., 2015;
Zhu et al., 2019).

In many gravity theories, PK parameters can be expressed as a function of Keplerian parameters
and a prior unknown masses of pulsar and companion, 𝑚p and 𝑚c.

11 Two PK parameters allow the
determination of two masses within the framework of the assumed theory. Measuring more than three
PK parameters is thus the key to test gravity theories.

The contributions Δ𝑖 (𝑖 = R,E, S,A) in Eq. (2.11) depend on these Keplerian and PK parameters,
which are briefly explained below. A detailed discussion can be found in Kramer et al. (2021a).

Rømer delay

The orbital motion of binary pulsars can be described with Damour-Deruelle solution to the first
post-Newtonian (PN) equation of motion (simple quasi-Keplerian form) (Damour & Deruelle, 1985;
Damour & Deruelle, 1986). The Rømer delay caused by the orbital motion of the pulsar is given by

ΔR = 𝑥 sin𝜔
[
cos 𝑢 − 𝑒T(1 + 𝛿𝑟 )

]
+ 𝑥 cos𝜔

[
1 − 𝑒2

T(1 + 𝛿\ )
2
]1/2

sin 𝑢 , (2.12)

where the “relativistic” eccentric anomaly 𝑢 is related to the proper time of the pulsar via Kepler’s
equation

𝑢 − 𝑒T sin 𝑢 = 2𝜋

[(
𝑇p − 𝑇0

𝑃b

)
−

¤𝑃b
2

(
𝑇p − 𝑇0

𝑃b

)2]
. (2.13)

This equation describes the motion of a pulsar in an elliptical orbit as shown in Figure 2.8. The time
eccentricity 𝑒T corresponds to the observed eccentricity fitted in the timing model. The PK parameter
¤𝑃b accounts for all secular changes (either intrinsic or external) in the orbital period 𝑃b, and therefore

includes the orbital period decay caused by gravitational wave (GW) damping. The PK parameters 𝛿𝑟
and 𝛿\ describe the relativistic deformation of the orbit, which shows a periodic change to a Keplerian
motion. While 𝛿𝑟 can be absorbed by spin parameters (see discussions in Damour & Deruelle, 1986;
Kramer et al., 2021a), 𝛿\ has been measured in both the Hulse-Taylor pulsar (Weisberg & Huang, 2016)
and the Double Pulsar (Kramer et al., 2021a) with low precision.

11 Some higher-order contributions also depend on the moment of inertia and spin parameters.
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Chapter 2 Pulsar timing

Einstein delay

For an eccentric orbit, the time dilation of the “pulsar clock” changes periodically due to a change of the
gravitational redshift caused by the gravitational field of the companion and a variation in the orbital
velocity of the pulsar (i.e. second-order Doppler effect). This so-called Einstein delay to leading order
follows (Blandford & Teukolsky, 1976; Damour & Deruelle, 1986)

ΔE = 𝛾E sin 𝑢 , (2.14)

where the amplitude 𝛾E is a PK parameter.

Shapiro delay and higher-order corrections

For binary pulsars with a sufficiently edge-on orbit (𝑖 ∼ 90°), the pulsar signal suffers a significant
propagation delay due to the curved spacetime of the companion star. To leading order (LO) we have the
well-known Shapiro delay, which follows (Blandford & Teukolsky, 1976; Damour & Deruelle, 1986)

Δ
(LO)
S = −2𝑟 lnΛ𝑢 , (2.15)

Λ𝑢 = 1 − 𝑒T cos 𝑢 − 𝑠 [sin𝜔 (cos 𝑢 − 𝑒T) + (1 − 𝑒2
T)

1/2 cos𝜔 sin 𝑢] , (2.16)

where 𝑟 and 𝑠 are two PK parameters representing the range and shape of the Shapiro delay. This
expression was obtained by integrating along a straight line in harmonic coordinates and assuming a
static mass distribution as the pulsar signal propagates through the system (Blandford & Teukolsky,
1976). In reality, the pulsar signal propagates along a curved path due to the gravitational field of the
companion, resulting in a lensing correction to the Shapiro delay. This effect has not yet been observed
in any pulsar system, but for completeness one can extend Eq. (2.16) by an adapted version of the
approximation in Eq. (73) of Klioner & Zschocke (2010): Λ𝑢 → Λ𝑢 + 𝛿Λ

len
𝑢 with 𝛿Λlen

𝑢 = 2𝑟𝑐/𝑎R, where
𝑎R is the semi-major axis of the relative orbit. For relativistic binary pulsars such as the Double Pulsar,
one needs to account for the fact that the companion star moves while the pulsar signal propagates across
the system. This is known as retardation effect or 1.5PN correction of the Shapiro delay (Kopeikin &
Schäfer, 1999; Rafikov & Lai, 2006a). The signal propagation delay can be extended as

ΔS = −2𝑟 ln (Λ𝑢 + 𝛿Λ
len
𝑢 + 𝛿Λret

𝑢 ) , (2.17)

where the retardation correction 𝛿Λret
𝑢 can be taken directly from Eq. (130) in Kopeikin & Schäfer (1999).

Aberration

In pulsar timing, the aberration results from the “lighthouse” property of the pulsar that the direction of
the pulse emission changes to compensate for the relative transverse motion of the pulsar and the Earth
(Smarr & Blandford, 1976; Damour & Deruelle, 1986). To leading order, the aberration effect reads

Δ
(LO)
A = A[sin𝜓 + 𝑒T sin𝜔] + B[cos𝜓 + 𝑒T cos𝜔] , (2.18)

where 𝜓 is the longitude of the pulsar with respect to the ascending node, and A and B are aberration
coefficients. This expression assumes a flat spacetime for the propagation of the pulsar signal, which is
no longer sufficient to describe the observations of highly inclined (𝑖 ∼ 90°) relativistic binary pulsars,
such as the Double Pulsar, particularly at the superior conjunction. One needs to additionally account
for the gravitational deflection of pulsar’s signal caused by its companion (Doroshenko & Kopeikin,
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2.3 Timing model

1995; Rafikov & Lai, 2006b), which adds a lensing correction to the classical longitudinal aberration of
Eq. (2.18). Besides, the lensing correction to the latitudinal aberration around the superior conjunction
may lead to a temporal change in the observed pulse profile, as the LOS cuts a different region of the
pulsar beam (Rafikov & Lai, 2006a; Rafikov & Lai, 2006b). Further details are provided in Chapter 4.

2.3.3 Post-Keplerian parameters in GR

In GR, to leading order, the most well-known PK parameters are listed below (Damour & Deruelle,
1986) and expressed in terms of the PN approximation. The first five parameters correspond to the effects
at 1PN order (i.e. order 𝑣2/𝑐2, where 𝑣 is the typical velocity of the relative motion), parameterising the
quasi-stationary strong-field effects. The last parameter, the orbital period decay due to GW damping, is
related to the radiation regime. In GR, the leading order contribution enters the equations of motion at
2.5PN level (order 𝑣5/𝑐5, quadrupolar GWs), whereas in many alternative gravity theories, the leading
order already occurs at 1.5PN level (𝑣3/𝑐3) due to the emission of dipolar GWs.

Relativistic advance of periastron ¤𝜔1PN
= 3 𝑛5/3

b 𝑇
2/3
⊙

1
1 − 𝑒2

T
𝑀

2/3
, (2.19)

Amplitude of the Einstein delay 𝛾E = 𝑛
−1/3
b 𝑇

2/3
⊙ 𝑒T

𝑚c(𝑚p + 2𝑚c)

𝑀
4/3 , (2.20)

Range of the Shapiro delay 𝑟 = 𝑇⊙𝑚c , (2.21)

Shape of the Shapiro delay 𝑠 = sin 𝑖 = 𝑛2/3
b 𝑇

−1/3
⊙ 𝑥

𝑀
2/3

𝑚c
, (2.22)

Geodetic spin precession rate Ω
SO
p = 𝑛

5/3
b 𝑇

2/3
⊙

1
1 − 𝑒2

T

𝑚c(4𝑚p + 3𝑚c)

2𝑀4/3 , (2.23)

Orbital period decay due to GW damping ¤𝑃2.5PN
b = −192𝜋

5
𝑛

5/3
b 𝑇

5/3
⊙

(1 − 𝑒2
T)

7/2

𝑚p𝑚c

𝑀
1/3

(
1 + 73

24
𝑒

2
T + 37

96
𝑒

4
T

)
,

(2.24)

where 𝑛b = 2𝜋/𝑃b is the orbital frequency, and 𝑀 = 𝑚p +𝑚c is the total mass of the system. The constant
𝑇⊙ = (GM)N

⊙/𝑐
3, where (GM)N

⊙ = 1.327 124 4 × 1020 m3s−2 is the nominal solar mass parameter
defined by the IAU 2015 Resolution B3 (Prša et al., 2016). For simplicity, all masses expressed in the
unit of solar mass M⊙ are referred to the nominal solar mass by taking the ratio 𝐺𝑚object/(GM)N

⊙ .

For most known binary pulsars, only the leading-order term of the PK parameters is measurable.
But for highly relativistic systems, such as the Double Pulsar, higher-order contributions for some PK
parameters are now relevant. Further details will be provided in Chapters 3 and 4. The two additional PK
parameters that start to become relevant for some relativistic binary pulsars are the orbital deformation
parameters, 𝛿𝑟 and 𝛿\ . In GR, they take the form (Damour & Deruelle, 1986):

𝛿𝑟 = 𝑛
2/3
b 𝑇

2/3
⊙

3𝑚2
p + 6𝑚p𝑚c + 2𝑚2

c

𝑀
4/3 , (2.25)

𝛿\ = 𝑛
2/3
b 𝑇

2/3
⊙

7
2𝑚

2
p + 6𝑚p𝑚c + 2𝑚2

c

𝑀
4/3 . (2.26)
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Chapter 2 Pulsar timing

2.4 Residuals and noise sources

The goal of pulsar timing is to find a phase-coherent solution that accounts for every single rotation of
the pulsar to within a small fraction of the pulsar’s spin period. With Eqs. (2.9) and (2.11), the observed
topocentric TOAs are converted to the proper time of pulsar emission 𝑇p. Starting from a minimal set of
parameters, one can compare the difference in rotational phase between the pulse emission time 𝜙(𝑇p)
and the arrival time predicted by this model 𝜙(𝑇model), to form timing residuals. The timing model can
be refined by minimising the least squares of these residuals in a 𝜒2 test (Taylor & Weisberg, 1989) with
tempo or tempo2, and the reduced 𝜒2 is given as

𝜒
2
red =

1
𝑁free

∑︁
𝑖

[
𝜙𝑖 (𝑇p) − 𝜙𝑖 (𝑇model)

𝜎𝑖

]2

, (2.27)

where the degree of freedom 𝑁free is the difference between the number of TOAs and the number of fitted
parameters, and 𝜎𝑖 is the uncertainty associated with the 𝑖-th TOA. Lack of parameters in the model can
result in different signatures in the post-fit residuals. A correct and complete timing model should yield
𝜒

2
red ≈ 1, and the residuals follow a Gaussian distribution around zero with a root mean square (RMS)

comparable to the TOA uncertainties. It should be noted that the least-squares approximation assumes
no correlation between timing parameters or TOAs. To obtain more reliable uncertainties for strongly
correlated parameters, one could run through a grid of values for these parameters and create a 𝜒2 map,
or use Bayesian approach (e.g., temponest, Lentati et al., 2014).

Since the timing model is always incomplete to some extent, the residuals often show scatter in
excess of that predicted by the TOA uncertainty, i.e. RMS > 𝜎TOA. This excess can originate from
noises that typically consist of two classes: white noise (uncorrelated between observing epochs) and
time-correlated red noise. If these noise sources are not taken into account in the timing analysis, this
can result in an underestimation of the TOA uncertainties and therefore to a bias in the values and
uncertainties of the timing parameters.

The noise can be intrinsic to the pulsar or extrinsic, and its power spectrum can be white (flat at all
frequencies) or red (increasing power at low frequencies). In addition to the radiometer noise (Eq. (2.7)),
another important source of white noise is jitter noise, which is caused by stochastic pulse-shape variation
intrinsic to the pulse emission (Shannon et al., 2014). These variations can occur both in amplitude
and phase and are usually uncorrelated from pulse to pulse. In almost all pulsars observed with high
sensitivity, the single pulses show variations beyond those expected from radiometer noise, leading to
𝜒

2
red > 1 (e.g., Shannon et al., 2014; Lam et al., 2019; Parthasarathy et al., 2021). For the majority

of pulsars, radiometer noise still dominates jitter noise. However, as the radiometer noise decreases
significantly with the large telescopes such as MeerKAT, FAST, and the SKA, the jitter noise will become
an important noise contributor and limit the timing accuracy for more pulsars in the future. Since
jitter noise scales inversely with the number of averaged pulses (𝑁p) as 𝜎J ∝ 1/

√︁
𝑁p, increasing the

integration time is the only way to overcome it. White noise sources can be modelled by employing the
parameters ‘EFAC’ and ‘EQUAD’ in the timing model to re-scale the initially measured TOA uncertainty
𝜎 to �̂�2

= (𝜎 × EFAC)2 + EQUAD2. EFAC accounts for possible errors in the estimation of formal
TOA uncertainty calculated in the cross-correlation of pulse profiles with a standard template, whereas
EQUAD accounts for additional TOA scatter, such as jitter noise, and is added in quadrature.

The most well-known intrinsic red noise source is spin noise caused by the rotational irregularity of
pulsars, especially the young ones. The nature of spin noise is still poorly understood, while various
mechanisms have been proposed to explain it, including magnetospheric torque variations (A. Lyne et al.,
2010), superfluid turbulence (Melatos & Link, 2014), and coupling between solid crust and superfluid
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2.4 Residuals and noise sources

(Jones, 1990).
The dominant extrinsic red noise source is DM variation, which is primarily caused by turbulence in

the ISM, but is also influenced by the Solar wind (Tiburzi et al., 2021) and local weather in the vicinity of
the pulsar (e.g. from its companion, P. C. Freire et al., 2003). The variations in DM typically range from
10−4 to 10−3 cm−3 pc every year, with a power spectrum ∝ 𝑓

−8/3 (Keith et al., 2013). Normally, DM
variations are undetectable during an observing session, but can be observed between epochs. The best
way to mitigate DM noise is to have sufficient frequency coverage for each observation and to remove
the dispersive delay according to the DM measurement of the corresponding observation.

Other ISM-related sources of red noise include scattering variations, which can be measured by
studying scintillation arcs (Main et al., 2020), and the combined effect of profile evolution and scintillation
(Lentati et al., 2017). If the data are averaged over frequency and the template does not take into account
profile evolution, the change of intensity in frequency caused by scintillation would result in temporal
profile variations and degrade the accuracy of the TOAs generated from the cross-correlation process.

In addition, inaccuracies in the terrestrial time standard (G. Hobbs et al., 2012), errors in the Solar
System ephemeris (Caballero et al., 2018; Guo et al., 2018), and the stochastic GW background (GWB,
Antoniadis et al., 2022) can also induce red noise in the data. Since the primary goal of the PTA
experiment is to detect stochastic GWB, it is very important to understand and minimise red noise from
other sources (Chen et al., 2021). This can be achieved by a simultaneous fitting of timing parameters
and power-law noise models (for both red noise and DM noise) using a Bayesian approach (e.g. with
temponest) that accounts for possible covariance between the timing and noise parameters. From
Bayesian noise analysis, one can obtain the covariance matrix of noise models and perform a generalised
least-squares fit to obtain more accurate timing parameters.
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CHAPTER 3

Constraining the dense matter equation-of-state
with radio pulsars

The work presented in this chapter is reproduced from the following publication under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0).

• H. Hu, M. Kramer, N. Wex, D. J. Champion, and M. S. Kehl, Constraining the dense matter
equation-of-state with radio pulsars, Monthly Notices of the Royal Astronomical Society, Volume
497, Issue 3, September 2020, Pages 3118–3130, DOI: 10.1093/mnras/staa2107

Summary

Radio observations of binary pulsars provide some of the most important constraints for our understanding
of matter at supranuclear densities. So far, these constraints are mostly given by precision mass
measurements of neutron stars (NS). By combining single measurements of the two most massive pulsars
known, PSR J0348+0432 and PSR J0740+6620, the resulting lower limit of the maximum NS mass,
1.98 M⊙ (99% confidence), has excluded a large number of equations of state (EOSs).

Further EOS constraints, complementary to other methods, are likely to come from the measurement
of the moment of inertia (MOI) of binary pulsars via relativistic spin-orbit coupling (Damour & Schäfer,
1988). This spin-orbit coupling leads to a precession of the orbit known as Lense-Thirring precession.
The Double Pulsar, PSR J0737−3039A/B, is the most promising system for the first robust measurement
of the MOI via pulsar timing. Reviewing this method, based in particular on the first MeerKAT
observations of the Double Pulsar, we provided well-founded projections into the future by simulating
timing observations with MeerKAT, MeerKAT+, and SKA 1-mid. We developed a consistent method
to measure the MOI of pulsar A along with the masses of two pulsars using three post-Keplerian (PK)
parameters: the advance of periastron ¤𝜔, the Shapiro shape parameter 𝑠, and the rate of change of the
orbital period ¤𝑃b. For the first time, we accounted for the change of orbital period caused by spin-down
mass loss (of pulsar A) in pulsar analysis, because of its considerable impact on the measurement of the
MOI.

We found that an MOI measurement with 11% accuracy (68% confidence and hereafter) is possible
by the end of this decade, given that sufficient knowledge of the Galactic gravitational potential is
likely to be available in the near future, e.g. from Gaia mission (Gaia Collaboration, 2016). Such a
measurement promises an important constraint on the EOS complementary to those obtained from
LIGO/Virgo and NICER. In the future, with more double NS (DNS) mergers detected by LIGO/Virgo
and other gravitational wave (GW) detectors, more X-ray observations by NICER and future missions,
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3.1 Introduction

and advances in the nuclear theory, our knowledge of the EOS will most likely be sufficient to enable
novel gravity tests with the Double Pulsar.

The first test that can be performed, with a sufficiently well-known EOS, is to in turn test Lense-Thirring
precession in a theory-independent manner. This is done by measuring the relative deviation of the
spin-orbit coupling parameter 𝜎A/G from the prediction by general relativity (GR). Assuming a 5%
error in the MOI of pulsar A and improved knowledge in the Galactic gravitational potential, we found
that the Double Pulsar will allow for a 7% test of Lense-Thirring precession by 2030. This complements
to Breton et al. (2008) where they found a 13% constraint on 𝜎B/G from the geodetic precession of
pulsar B.

The second one that we studied is the measurability of the next-to-leading-order (NLO) GW damping
predicted by GR, i.e. at 3.5PN order. With simulations, we predicted that the uncertainty of the
3.5PN order correction 𝑋3.5PN will fall below its theoretical value starting from SKA-1 mid and a
3𝜎-measurement is possible by 2030. Therefore, in a few years we will start to be sensitive to the 3.5PN
contribution and have to account for it in our analysis.

Finally, we discussed the prospects of measuring the MOI with DNS systems that have much
shorter orbital periods than the Double Pulsar and are likely to be discovered by pulsar surveys from
MeerKAT, FAST and the SKA in the near future. we demonstrated that such systems promise significant
improvements in the MOI measurements. For example, for a DNS system that mimics the evolved
Double Pulsar system with an orbital period of 50 min, the precision of MOI measurement is expected to
be 1.5% after 10-yr timing, which is about one order of magnitude better than that expected from the
Double Pulsar. Such discoveries, if achievable, could place quite competitive limits on the EOS and
improve our understanding of NS matter.

As the lead author of this publication, I developed the simulation code, simulated and analysed the
data, produced the figures (except for Figures 3.1 and 3.6) as well as interpreted the results and wrote the
manuscript.

3.1 Introduction

Neutron stars (NSs) are among the most compact and exotic objects in nature, comprised of extraordinarily
dense matter that is not accessible in laboratory experiments. Determining the properties and structure
of the cold dense matter inside NSs is therefore a tremendous challenge in nuclear physics. Thus far, a
variety of equations of state (EOSs) have been proposed to describe the pressure – density relation inside
NSs (see e.g., Lattimer & Prakash, 2001; Lattimer & Prakash, 2016). Constraining the EOS is crucial
for understanding aspects of fundamental physics, such as the internal structure of NSs, the dynamics of
binary mergers, and r-process nucleosynthesis (for a recent review see Özel & P. Freire, 2016).

Various observational methods have emerged to measure the macroscopic properties of NSs, which
promise to increase our knowledge of the EOS. The gravitational wave (GW) observation of a binary NS
merger with LIGO/Virgo offers the possibility of measuring the tidal deformability (B. P. Abbott et al.,
2017; B. P. Abbott et al., 2018). X-ray observations of emissions from the hot regions on NS surface with
NICER (Watts et al., 2016) allows a joint mass-radius estimation (Riley et al., 2019; Miller et al., 2019).

The largest number of known NSs, however, can be observed as radio pulsars. Currently about 3000
pulsars are known, and the ability of radio astronomers to measure pulsar properties precisely via a
technique known as “pulsar timing”, suggests that important information about the EOS of NSs can
also be derived from such measurements. This is indeed the case. The most direct and best known
route is to measure the masses of NSs precisely. This is possible in binary pulsars using relativistic
orbital effects, potentially combined with other information. The mass range, especially the maximum
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mass observed, must obviously be consistent with the range of masses supported by a proposed EOS. In
addition, there are other orbital effects that also offer the possibility of measuring the moment of inertia
(MOI) in binary pulsars via relativistic spin-orbit coupling, as was first suggested by Damour & Schäfer
(1988). The MOI of a NS depends crucially on the EOS and hence allows us to constrain or even identify
it (Morrison et al., 2004; Lattimer & Schutz, 2005; Greif et al., 2020). Accessing the MOI of isolated
NSs, in contrast, may be possible if one can reliably derive or measure the total loss in rotational energy,
¤𝐸 , which relates the MOI with the observed period and period derivative.

In this work, we provide insight into the various methods using binary pulsars and their current
status in Section 3.2, before we focus specifically on the possibility of using the Double Pulsar (Burgay
et al., 2003; A. G. Lyne et al., 2004) for MOI measurements. We will provide an in-depth study of
the relevant factors in Section 3.3, where we explain how Lense-Thirring (LT) precession affects the
periastron advance. Section 3.4 describes the intrinsic and extrinsic contributions to the orbital period
decay. We describe how we simulate future timing observations in Section 3.5 and evaluate how the
Double Pulsar can measure the MOI and constrain the EOS in Section 3.6. Prospects of testing LT
precession and constraining theories of gravity is discussed in Section 3.7 by assuming the EOS is
known. We investigate potential constraints on next-to-leading-order GW damping in Section 3.8, and
potential constraints from future discoveries of more relativistic binary pulsars in Section 3.9. Finally,
we conclude in Section 3.10.

3.2 Methods to constrain the EOS via pulsar timing

3.2.1 Mass measurements

A given EOS 𝑖 can only sustain a NS up to a certain maximum mass, 𝑀max
𝑖 . Finding a massive NS of

mass 𝑀 𝑗 , consequently excludes all EOS with 𝑀max
𝑖 < 𝑀 𝑗 . This was, for instance possible, by using a

Shapiro delay measurement in PSR J1614−2230, where P. B. Demorest et al. (2010) determined a mass
𝑀 = 1.97 ± 0.04 M⊙. We note that a recent update on continued timing observations (Arzoumanian
et al., 2018), implies a significantly lower mass of 1.908 ± 0.016 M⊙ for this pulsar. As pointed out by
Cromartie et al. (2019), a Shapiro delay measurement and the determined uncertainty can be affected by
the exact orbital sampling (see also Hu et al., 2022).

In 2013, Antoniadis et al. (2013) could determine the mass of PSR J0348+0432 without using a
Shapiro delay measurement. They combined radio timing measurements of the orbit of the pulsar
with precise spectroscopy data of the white dwarf companion in the optical regime to derive a mass of
2.01 ± 0.04 M⊙, confirming the existence of 2-M⊙ NSs via a complementary method.

Recently, Cromartie et al. (2019) used a Shapiro delay measurement in PSR J0740+6620 to determine a
pulsar mass of 2.14+0.10

−0.09 M⊙ . We can use the masses of these latter two most massive pulsars, J0348+0432
(fully accounting for the rather asymmetric probability density distribution found by Antoniadis et al.
(2013)) and J0740+6620, to obtain a 99% confidence lower limit for the maximum mass of a NS,
1.98 M⊙ < 𝑀

max. Such a constraint already rules out a number of soft EOSs as shown in Figure 3.1.1

We can compare this lower limit derived from pulsar timing with an upper limit placed by the NS-NS
merger GW170817 observed by LIGO (B. P. Abbott et al., 2017). Assuming that the NS-NS merger
resulted in the formation of a black hole, one finds an upper limit of about 2.3 M⊙ for the maximum
mass of a NS (Rezzolla et al., 2018; Shibata et al., 2019).

1 Note that in Figure 3.6, we show a different but overlapping set of EOSs. Here, we also show EOSs that have been excluded
by the maximum mass measurement, while at the same time making the plot not too crowded.
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Figure 3.1: The mass of a NS as function of its radius for different EOS (Lattimer & Prakash, 2001). The horizontal
bands indicate the 2-𝜎 range for the masses of the two most massive radio pulsars known to date, PSR J0348+0432
(Antoniadis et al., 2013) in blue and PSR J0740+6620 (Cromartie et al., 2019) in yellow.

3.2.2 Relativistic spin-orbit coupling

Unlike in Newtonian gravity, the gravitational field of a body in general relativity (GR) has contributions
from the mass currents related to the body’s proper rotation. Lense & Thirring (1918) — with substantial
help from Albert Einstein (see Pfister, 2007) — have shown that the rotation of the Sun has, in principle,
an effect on the planetary orbits. This relativistic spin-orbit coupling, also known as LT precession,
has since been well tested in the gravitational field of the rotating Earth with the help of satellite laser
ranging (Ciufolini & Pavlis, 2004; Ciufolini et al., 2019). Similarly, in relativistic binaries, the spin
of a compact rotating body is expected to couple gravitationally with the orbital motion of the system
(Barker & O’Connell, 1975), leading to a precession of the orbit, while the total angular momentum is
conserved.2 This LT precession of the orbit is potentially observable, hence providing a route to access
the MOI of the pulsar (Damour & Schäfer, 1988). An MOI measurement, even with an accuracy of
∼10%, would offer important constraints of the EOS (Morrison et al., 2004; Lattimer & Schutz, 2005).

The LT precession of the orbit may be detected via the variation in the orbital inclination angle, 𝑖, and
hence in the (observable) projected semi-major axis of the pulsar obit, 𝑥 = 𝑎p sin 𝑖/𝑐 (𝑎p is the semi-major
axis, and 𝑐 the speed of light). However, for this to be detectable, the misalignment angle between pulsar
spin and angular momentum vector must be sufficiently large. Also, the orbital inclination angle must
not be too close to 90 degrees (“edge-on” geometry), since the precession leads to a contribution to the
rate of change of the projected semi-major axis given by

¤𝑥LT
= 𝑥 cot 𝑖

(
d𝑖
d𝑡

)
LT
, (3.1)

where (d𝑖/d𝑡)LT is given by Eq.(3.27) in Damour & Taylor (1992). For nearly edge-on systems, i.e.

2 The loss of orbital angular momentum due to the emission of GWs is of higher post-Newtonian order and can be neglected
here.
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Chapter 3 Constraining the dense matter equation-of-state with radio pulsars

𝑖 ≈ 90 deg, this contribution becomes small and most likely undetectable since cot 𝑖 ≪ 1. However, in
relativistic binary systems with smaller inclination angles, such as PSR J1757−1854, this measurement
appears to be possible by Cameron et al. (2018). To achieve this, two challenges will have to be addressed
successfully. Firstly, the precession is expected to cause a variation in the pulse profile with time due
to a change in the viewing geometry (e.g. Kramer, 1998). Special care in the timing procedure is then
needed to obtain sufficient precision and to properly account for possible systematic errors (e.g. Stairs
et al., 2002; Bhat et al., 2008; van Leeuwen et al., 2015). Moreover, since we require access to the
direction of the pulsar spin vector (Damour & Schäfer, 1988; Damour & Taylor, 1992), the geometry of
the binary system and the pulsar needs also to be measured. This is, however, possible via polarisation
measurements, as shown previously (e.g. Kramer, 1998; Stairs et al., 2004; Desvignes et al., 2019;
Venkatraman Krishnan et al., 2020).

Alternatively, rather than using a contribution to ¤𝑥, one can exploit LT precession also via its
contribution to the advance of periastron. If it is possible to isolate the contribution of ¤𝜔LT from the
total periastron advance, then the MOI can be determined (Damour & Schäfer, 1988). This method
was suggested for the Double Pulsar, PSR J0737−3039A/B (A. G. Lyne et al., 2004; Kramer et al.,
2006b). Kramer & Wex (2009) concluded that an MOI measurement of ∼10% accuracy is possible
by ∼2030, with the timing accuracy achievable at the time. Later, Kehl et al. (2017) simulated timing
data from emerging telescopes, i.e., the Square Kilometer Array (SKA; e.g. Kramer & B. Stappers,
2015) and its precursor MeerKAT (Bailes et al., 2016; Camilo, 2018), which greatly improve the timing
precision, and predict an MOI measurement with an accuracy well below 10% by 2030. However, the
timeline of the nominal operation of the SKA assumed by Kehl et al. (2017) was optimistic compared
to the current estimates. With MeerKAT in operation since about 2018 (albeit initially with limited
capability), operations of the first phase of the SKA (SKA 1, initially expected to have about 10% of the
full SKA’s sensitivity) are not expected before 2027. However, first useful data from commissioning
observations may be already available in 2025.3 In addition, compared to Kehl et al. (2017), we now
already have about two years of Double Pulsar timing observations with MeerKAT, and therefore have
more realistic numbers for the timing precision and cadence of observations, not only for the current
MeerKAT configuration but also for future extensions. Moreover, Kehl et al. (2017) did not incorporate
the contribution of spin-down mass loss of pulsar A to the orbital period derivative into the simulations.
As we will show below, considering this effect is important, and its impact on our ability to measure the
MOI needs to be studied in a fully consistent analysis. Hence, more complete simulations of the MOI
measurement in the Double Pulsar should give us a more realistic estimate of the system’s (near) future
capability to constrain the EOS of ultra-dense matter inside a NS.

Consequently, in what follows, we present new and important details of how to measure the MOI of
radio pulsars using the method of isolating the LT contribution to the advance of periastron. Using the
Double Pulsar as the most promising system for this kind of experiment, we simulate timing data of
PSR J0737−3039A that can be expected from MeerKAT and future extensions, to assess our ability to
measure its MOI in the next 10 years.

3.3 Lense-Thirring effect in the Double Pulsar

The Double Pulsar is the only system to-date where both NSs have been observed as pulsars (Burgay
et al., 2003; A. G. Lyne et al., 2004), with an orbital period of only 2.4 h. Breton et al. (2008) used
the system to provide a 13%-test of spin-orbit interaction of strongly self-gravitating bodies using the
relativistic spin precession in pulsar B. The compact, relativistic nature of the system also allows the

3 See skatelescope.org for updates.
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measurement of several post-Keplerian (PK) parameters to an unparalleled level of accuracy. This not
only enables some of the most stringent tests of GR related to strong-field gravity (Kramer et al., 2006b;
Kramer & Wex, 2009; Will, 2018), but it is also crucial for the efforts to measure the MOI and to
constrain the EOS of a NS.

3.3.1 Spin-orbit coupling contribution to the periastron advance

To simplify the problem, we neglect the LT contribution of pulsar B, since it spins about 122 times slower
than pulsar A. Such a simplification is well justified, as will become clear below. In addition, the long
term observations of the pulse profile of PSR J0737−3039A shows that the misalignment angle between
the spin axis of pulsar A and the orbital angular momentum has an upper limit of 3.2° (Ferdman et al.,
2008; Ferdman et al., 2013). Therefore, for all practical purposes, we can assume that the spin of pulsar
A is parallel to the orbital angular momentum, which is consistent with evolutionary considerations for
the Double Pulsar system and a low-kick supernova formation (e.g. Stairs et al., 2006; Tauris et al., 2017).
Pol et al. (2018) confirmed that pulsar A is indeed rotating prograde in its orbit, using the modulation
of pulsar B’s radio emission by the interaction with the wind of pulsar A. Consequently, the spin of
pulsar A only induces a change to the advance of periastron, and does not lead to a change in the orbital
inclination, more specifically, the projected semi-major axis. Following Damour & Schäfer (1988), the
total intrinsic contribution to the periastron advance in the Double Pulsar system can be written, with
sufficient precision, as

¤𝜔intr
= ¤𝜔1PN + ¤𝜔2PN + ¤𝜔LT,A

=
3 𝛽2

O 𝑛b

1 − 𝑒2
T

[
1 + 𝑓O 𝛽

2
O − 𝑔 ∥SA

𝛽O 𝛽SA

]
, (3.2)

where 𝑛b is the orbital frequency, and 𝑒T is the proper-time eccentricity used as the observed eccentricity
in the standard timing model (D. Nice et al., 2015) and defined in Damour & Deruelle (1986). The
factor in front of the right-hand side of Eq. (4.13) is the first post-Newtonian (1PN) contribution; the
higher order corrections due to 2PN effects and LT precession caused by pulsar A are indicated by the
second and third term in the square brackets respectively. The following notations are used to simplify
Eq. (4.13),

𝛽O =
(𝐺𝑀𝑛b)

1/3

𝑐
, (3.3)

𝛽SA
=
𝑐𝐼AΩA

𝐺𝑚
2
A
, (3.4)

𝑓O =
1

1 − 𝑒2
T

(
3
2
𝑥

2
A + 3

2
𝑥A + 27

4

)
+

(
5
6
𝑥

2
A − 23

6
𝑥A − 1

4

)
, (3.5)

𝑔
∥
SA

=
1

(1 − 𝑒2
T)

1/2

(
1
3
𝑥

2
A + 𝑥A

)
. (3.6)

The subscript A stands for pulsar A. 𝐺 is the Newtonian gravitational constant, and 𝑀 = 𝑚A + 𝑚B is the
total mass defined as the sum of the (inertial) masses of pulsar A and B, and 𝑥A = 𝑚A/𝑀. 𝐼A denotes
the MOI and ΩA the angular spin frequency.4

4 Since pulsar A is slowly rotating (∼ 2.5% of break-up velocity), for the purpose of this paper we do not have to distinguish
between rotating and non-rotating quantities when it comes to (gravitational) mass, moment of inertia, etc. (see e.g. Berti
et al., 2005)
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Table 3.1: Contributions to the rate of periastron advance in the Double Pulsar calculated using Eq. (4.13), with
the Keplerian parameters and masses (𝑚A = 1.3381 M⊙ , 𝑚B = 1.2489 M⊙) measured in Kramer et al. (2006b).
𝐼
(45)
A = 𝐼A/(1045g cm2). The current measurement precision for ¤𝜔 is already ∼10−5 deg yr−1 (Kramer et al.,

2021a), which is about 40 times smaller than ¤𝜔LT,A.

Contribution [deg yr−1]
¤𝜔1PN 16.898703
¤𝜔2PN 0.000439
¤𝜔LT,A −0.000377× 𝐼 (45)

A

Table 3.1 lists the values of each term contributing to ¤𝜔intr, using the Keplerian parameters and masses
(𝑚A = 1.3381 M⊙ , 𝑚B = 1.2489 M⊙) measured in Kramer et al. (2006b). We note that the contribution
due to the LT precession ¤𝜔LT,A depends on the MOI, whereby is written as a function of 𝐼 (45)

A defined as
𝐼
(45)
A = 𝐼A/(1045 g cm2). Typical values of 𝐼 (45)

A are around unity for realistic EOSs. It is evident that the
contribution from the LT effect is comparable to that of 2PN, but with opposite signs.

The analysis of timing data from relativistic binary pulsars is based on a particularly simple and
elegant solution of the post-Newtonian equations of motion, the so called Damour-Deruelle (DD) model
(Damour & Deruelle, 1985; Damour & Deruelle, 1986; D. Nice et al., 2015). In the quasi-Keplerian
parametrization of the DD model one can see that the advance of periastron is proportional to the true
anomaly. This behaviour is modified by two periodic terms as part of the generalised quasi-Keplerian
parametrization, which is a natural extension of the DD model when including 2PN and spin-orbit terms
(Damour & Schäfer, 1988; Schäfer & Wex, 1993; Wex, 1995). However, these periodic terms will
remain well below measurability for the foreseeable future, for any of the known binary pulsars. For that
reason, we will ignore them in our analysis.

Besides the coupling to the orbital angular momentum (spin-orbit coupling), the spin of pulsar A also
couples to the spin of pulsar B (spin-spin coupling) (Barker & O’Connell, 1975). However, the spin
of pulsar B is about a factor of 3 × 106 smaller than the orbital angular momentum. Hence, spin-spin
coupling is totally irrelevant here.

Finally there are, at least in principle, also contributions from the rotationally induced mass quadrupole
moments of pulsars A and B to the orbital dynamics (Barker & O’Connell, 1975). These spin-squared
contributions give rise to an additional change in the advance of periastron (Smarr & Blandford, 1976;
Wex, 1998). The contribution from the quadrupole moment of pulsar A is estimated to be ∼ 3 × 10−8

deg yr−1, where we have used the relations in Bauböck et al. (2013) to calculate the mass quadrupole.
This is four orders of magnitude smaller than the second order effects. The contribution from pulsar B is
even smaller (about 104 times) due to its slower rotation. Hence we can totally ignore such contributions
in this study.

3.3.2 The proper motion contribution to the observed periastron precession

Apart from the intrinsic contributions to the periastron advance, the proper motion of a binary system
also can change the apparent geometrical orientation of the orbit, and hence the observed periastron
advance (Kopeikin, 1996). As a consequence, the observed value of periastron advance is shifted from
its intrinsic value by

¤𝜔obs
= ¤𝜔intr + ¤𝜔K

. (3.7)
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Here, ¤𝜔K is the Kopeikin term that satisfies

¤𝜔K
= 2.78 × 10−7 csc 𝑖 (`𝛼 cosΩ + `𝛿 sinΩ) deg yr−1

, (3.8)

where 𝑖 is the orbital inclination as defined in Damour & Taylor (1992), `𝛼 and `𝛿 are the proper motion
in right ascension and declination, and Ω is the longitude of the ascending node (measured from East,
in the sense of rotation towards North). Using the parameters measured by Kramer et al. (2006b) and
the estimated Ω = 25(2)° by Rickett et al. (2014),5 we obtain ¤𝜔K

= −4.0(3) × 10−7 deg yr−1. Given
the current measurement precision Δ ¤𝜔 ∼ 10−5 deg yr−1 (Kramer et al., 2021a), the Kopeikin term is a
small correction to the intrinsic periastron advance that we use in this study. However, since it is three
orders of magnitude smaller than ¤𝜔LT,A (see Table 3.1), it does not have a significant influence on the LT
measurement.

3.3.3 Challenges on extracting the Lense-Thirring contribution and measuring the MOI

Although the current measurement precision Δ ¤𝜔 is already ∼ 40 times smaller than ¤𝜔LT,A, it is not that
straightforward to extract the LT contribution from ¤𝜔obs with Eqs. (4.13) and (3.7), as the two masses
(𝑚A, 𝑚B) are needed to calculate ¤𝜔1PN and ¤𝜔2PN. The masses need to be obtained from any other two
PK parameters, where the best two here are the Shapiro delay shape parameter 𝑠 and the orbital period
derivative ¤𝑃b (see Figure 3.2). For the Double Pulsar, we already have sufficient precision for 𝑠, so the
limitation is mainly from ¤𝑃b (Kramer et al., 2021a). The measurement precision of ¤𝑃b will improve
over time, especially with the addition of MeerKAT and the SKA. However, the observed value of
¤𝑃b is influenced by extrinsic acceleration effects, which depend on the distance of the pulsar and the

Galactic gravitational potential. Moreover, the spin-down mass loss of the pulsars also have an impact
on ¤𝑃b, which itself depends on the MOI, meaning the masses can not be determined independently
from 𝐼A. These are the challenges for measuring the MOI. An alternative option to ¤𝑃b could be the
time dilation amplitude 𝛾, whose fractional error is about one order of magnitude larger than ¤𝑃b (see
Figure 3.2). However, based on the assumptions of observing plan in Section 3.5, it would take at least
two decades from now to obtain a 1𝜎-measurement of ¤𝜔LT,A using only 𝛾, 𝑠 and ¤𝜔, a precision that is
already reached now with ¤𝑃b (Kramer et al., 2021a). Hence, a comprehensive understanding of the
individual contributions to ¤𝑃b is needed, which will be discussed in detail in the following section.

3.4 The intrinsic and extrinsic contributions to the orbital period decay

The observed value of the orbital period decay comprises several effects (Damour & Taylor, 1991). For
the purpose of this study, we only consider the dominant terms( ¤𝑃b

𝑃b

)obs

=

( ¤𝑃b
𝑃b

)GR

+
( ¤𝑃b
𝑃b

) ¤𝑚A

+
( ¤𝑃b
𝑃b

)Gal

+
( ¤𝑃b
𝑃b

)Shk

, (3.9)

where gravitational wave damping (GR) and mass loss of pulsar A ( ¤𝑚A) are intrinsic contributions, and
Galactic acceleration (Gal) and Shklovskii effect (Shk) are extrinsic contributions. Thereby, the intrinsic
orbital period decay can be extracted from the observed value using

¤𝑃 intr
b = ¤𝑃 obs

b − ¤𝑃 Gal
b − ¤𝑃 Shk

b . (3.10)

5 Note, Rickett et al. (2014) use a different definition for the longitude of the ascending node Ω, which we have accounted for.
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Table 3.2: Contributions to the rate of orbital period decay in the Double Pulsar, calculated with Keplerian
parameters and masses measured in Kramer et al. (2006b). The Galactic acceleration is computed using Galactic
measurements by Gravity Collaboration (2019) and slope in Reid et al. (2014), and a distance of 0.80 kpc is
assumed. 𝐼 (45)

B is defined in the same way as 𝐼 (45)
A . The current measurement precision for ¤𝑃b is below 0.1 fs/s

(Kramer et al., 2021a).

Contribution [fs/s]
¤𝑃 2.5PN
b −1248
¤𝑃 Gal
b −0.38
¤𝑃 Shk
b 0.21
¤𝑃 3.5PN
b −0.017
¤𝑃 ¤𝑚A
b 0.023 × 𝐼 (45)

A
¤𝑃 ¤𝑚B
b 6.3× 10−6 × 𝐼 (45)

B

Consequently, the uncertainty in the intrinsic orbital period decay also depends on the error in the pulsar
distance and the uncertainty in the Galactic gravitational potential at the location of the pulsar and the
Earth.

3.4.1 Gravitational wave damping

The binary system loses energy in the form of GW emission, which shrinks the orbit of the system, and
in turn gradually reduces the orbital period. The post-Newtonian approximation is employed to describe
the orbital dynamics of the binary system (see e.g. Damour, 1987; Blanchet, 2014), i.e. the equations
of motion are expanded with respect to 𝑣/𝑐, where 𝑣 denotes a typical orbital velocity. The change
of the orbital period due to GW damping enters at order (𝑣/𝑐)5, i.e. the 2.5PN approximation. The
corresponding change in the orbital period is given by (Peters & Mathews, 1963; Esposito & Harrison,
1975; Wagoner, 1975)

¤𝑃 2.5PN
b = −192𝜋

5
[ 𝛽

5
O

(1 − 𝑒2
T)

7/2

(
1 + 73

24
𝑒

2
T + 37

96
𝑒

4
T

)
, (3.11)

where [ = 𝑚A𝑚B/𝑀
2 is the symmetric mass ratio. Later, Blanchet & Schäfer (1989) extended the

expression to the next-to-leading order (3.5PN),

¤𝑃 GR
b = − 192𝜋
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𝛿𝑚

𝑀

]}
, (3.12)

where 𝛿𝑚 denotes the mass difference of the timed pulsar and its companion, in our case, 𝛿𝑚 = 𝑚A −𝑚B.
Eq. (3.12) can be written in a simplified form as

¤𝑃 GR
b = ¤𝑃 2.5PN

b
(
1 + 𝑋3.5PN

)
, (3.13)

where the relative correction of the 3.5PN order, 𝑋3.5PN, is 1.40 × 10−5 for the Double Pulsar. To
date, only the leading order contribution to the orbital period decay is considered in the analysis and
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interpretation of any of the known binary pulsars. The higher order correction, however, will need to
be included in the future, when we reach the necessary timing precision with emerging powerful radio
telescopes such as the SKA. We will evaluate future measurability of the 3.5PN contribution to ¤𝑃b in
Section 3.8.

Besides the damping of the binary period, the emission of GWs in principle has an additional effect
on the observed ¤𝑃b. Junker & Schäfer (1992) have shown that a double NS system with asymmetric
masses in an eccentric orbit becomes accelerated due to the GW recoil. Since any acceleration along the
line of sight leads to an apparent change in the orbital period (Damour & Taylor, 1991), the GW recoil at
3.5PN order will also affect the observed orbital period at some level. As Junker & Schäfer (1992) have
pointed out, the recoil acceleration changes its direction with the advance of periastron, in our case on a
timescale of about 21 years. However, using Eq. (103) in Junker & Schäfer (1992) we find a maximum
shift in the observed ¤𝑃b due to GW recoil of 4.6 × 10−24, which is seven orders of magnitude below the
current measurement precision.

3.4.2 Galactic acceleration and Shklovskii effect

The contribution of Galactic acceleration can be calculated with (Damour & Taylor, 1991; D. J. Nice &
Taylor, 1995; Lazaridis et al., 2009)( ¤𝑃b

𝑃b

)Gal

= −
𝐾𝑧 | sin 𝑏 |

𝑐
−

Θ
2
0

𝑐𝑅0

×
{

cos 𝑙 + 𝛽

sin2
𝑙 + 𝛽2

[
1 + 𝑏0

(
1 −

√︃
sin2

𝑙 + 𝛽2
)]2

}
cos 𝑏 , (3.14)

where 𝛽 = (𝑑/𝑅0) cos 𝑏 − cos 𝑙. For the Double Pulsar, the Galactic longitude 𝑙 is 245.2° and the
Galactic latitude 𝑏 is −4.5°. As for the distance to the Double Pulsar (𝑑), the VLBI observations made
by Deller et al. (2009) implied a distance of 1.15+0.22

−0.16 kpc, whereas the dispersion measure (DM) favours
a distance of about 0.52 kpc (Cordes & Lazio, 2002). We note that new, preliminary timing and VLBI
measurements indicate a distance closer to the DM distance (Kramer et al., 2021a). Hence, for our
simulation, we consider an intermediate distance of 0.8 kpc with a 10% error. We will see in Section 3.6,
using a different distance does not have a big influence on our results. The vertical contribution of
the Galactic acceleration 𝐾𝑧 for Galactic height 𝑧 ≡ |𝑑 sin 𝑏 | ≲ 1.5 kpc can be approximated with the
expression (Holmberg & Flynn, 2004; Lazaridis et al., 2009)

𝐾𝑧 [10−9 cm s−2] ≃ 2.27 𝑧kpc + 3.68
[
1 − exp(−4.31 𝑧kpc)

]
, (3.15)

where 𝑧kpc ≡ 𝑧[kpc]. For 𝐾𝑧 , we consider a typical error of about 10% (Holmberg & Flynn, 2004;
L. Zhang et al., 2013). The Galactic parameters 𝑅0 is the distance from the Sun to the Galactic center,
and Θ0 is the Galactic circular velocity at the location of the Sun. In our calculation, we adopt the recent
result in Gravity Collaboration (2019), where 𝑅0 = 8.178 ± 0.026 kpc and Θ0 = 236.9 ± 4.2 km s−1.6

The slope parameter at the radius of the Sun is defined as (Damour & Taylor, 1991):

𝑏0 ≡
(
𝑅

𝑣

d𝑣
d𝑅

)
𝑅=𝑅0

. (3.16)

6 We note that the latest measurement of 𝑅0 shows a 2𝜎 difference (Gravity Collaboration, 2020), which will not affect our
results.
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We note this term is often ignored in other studies, as the rotation curve is nearly flat in the vicinity of
the Sun. Its uncertainty, however, could be relevant for measuring the MOI, and as such is included in
our study. The slope of the Galactic rotation curve at the location of the Sun estimated by Reid et al.
(2014) is −0.2 ± 0.4 km s−1 kpc−1, corresponding to 𝑏0 = 0.007 ± 0.014. Lately, Eilers et al. (2019)
found a slope significantly different from zero, i.e. −1.7 ± 0.1 km s−1 kpc−1 (𝑏0 = 0.0603 ± 0.0035),
with a systematic uncertainty of 0.46 km s−1 kpc−1. Both results will be employed later in our simulation,
but for Eilers et al. (2019) we only consider the statistical error and assume that the systematic error can
be well understood in the future.

Besides the Galactic acceleration, there are additional accelerations due to masses in the vicinity of
the Sun or the pulsar, primarily giant molecular clouds (GMCs), but also stars, black holes, and other
external masses (Damour & Taylor, 1991; Kehl, 2015). These have most likely, if at all, only a small
influence on the result, which should not limit our ability of measuring the MOI with a precision lower
than 10% (Kehl, 2015). The influence of these masses mostly depends on the distance to the Double
Pulsar, with which we can, for instance, trace and restrict the presence and influence of GMCs using
Galactic carbon monoxide (CO) surveys (Neininger et al., 1998; Glover & Mac Low, 2011). We expect
that a more firmly established distance measurement in the future will allow a refined analysis to confirm
our conclusions.

Finally, the transverse motion of a pulsar leads to an apparent change in the orbital period. This is
known as the Shklovskii effect (Shklovskii, 1970), and is given as( ¤𝑃b

𝑃b

)Shk

=
`

2
𝑑

𝑐
, with `

2
= `

2
𝛼 + `2

𝛿 . (3.17)

3.4.3 Mass loss

A pulsar loses mass due to its energy emission, which changes the orbital period by (Jeans, 1924; Jeans,
1925) ( ¤𝑃b

𝑃b

) ¤𝑚
= −2

¤𝑚A + ¤𝑚B
𝑀

. (3.18)

Although the emission process of pulsars is not fully understood, the mass-energy loss can be calculated
(with sufficient precision) from the loss in rotational kinetic energy, i.e., ¤𝐸 rot

𝑗 ≃ ¤𝑚 𝑗𝑐
2 (Damour & Taylor,

1991), where ¤𝐸 rot
𝑗 = 𝐼 𝑗Ω 𝑗

¤Ω 𝑗 , with Ω 𝑗 the angular velocity of the (proper) rotation of body 𝑗 ( 𝑗 = A or
B), given in terms of the spin period by Ω 𝑗 = 2𝜋/𝑃 𝑗 . Hence,( ¤𝑃b

𝑃b

) ¤𝑚 𝑗

=
8𝜋2 ¤𝑃 𝑗 𝐼 𝑗

𝑐
2
𝑀𝑃

3
𝑗

. (3.19)

Clearly, the mass-loss correction to the rate of orbital period decay also depends on the MOI, and
therefore on the EOS. Table 3.2 lists the predicted value of each contribution to ¤𝑃 obs

b , where the mass-loss
contributions are written as a function of 𝐼 (45)

j . The contribution due to the mass loss of pulsar A is one
order of magnitude smaller than that of the Galactic acceleration and the Shklovskii effect, and of the
same order of magnitude as the current measurement precision (Kramer et al., 2021a), hence must be
considered. The mass-loss contribution of pulsar B, however, is nearly four orders of magnitude smaller
than that of pulsar A and thus can be safely ignored.
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3.5 Simulations

In order to investigate the capability of measuring the MOI and testing GR with radio pulsars, we
developed a simulation framework to generate and analyse time of arrivals (TOAs) for binary pulsars. In
this section, we will describe how we simulate TOAs from emerging telescopes for PSR J0737−3039A
based on realistic assumptions, and how to measure PK parameters and timing parallax.

To simulate TOAs of PSR J0737−3039A from current and future telescopes, knowledge of the
sensitivity of the telescopes, as well as (realistic) assumptions about a future observing plans are
needed. We consider the best telescopes for observing this pulsar, i.e., MeerKAT and its future arrays.
Unfortunately, this pulsar is not in the field of view of the Five-hundred-meter Aperture Spherical radio
Telescope (FAST; Nan et al., 2011), the largest radio telescope today and in the near future.

MeerKAT is a precursor for the mid-frequency array of the SKA, which comprises 64 dishes, each
with a diameter of 13.5 m. This corresponds to an effective diameter (�eff) of 108 m. Regular timing
observations for the Double Pulsar started in 2019 as a part of the MeerTIME project (Bailes et al.,
2016). The MeerKAT extension, hereafter MeerKAT+, is a joint collaboration of the South African
Radio Astronomy Observatory (SARAO) and the Max-Planck-Society (MPG) to extend MeerKAT by
the addition of 20 SKA-type dishes, each 15 m in diameter, to MeerKAT. MeerKAT+ is expected to
operate from 2022, providing an increase in sensitivity by 50% (Kramer, priv. comm.) The first phase of
the SKA mid-frequency array, SKA 1-mid, is planned to build 112 additional dishes with 15 m diameter,
extending MeerKAT+ further, with first data from 2025 and full operation after 2027. We summarise the
observing plans and the effective diameters of these telescopes in Table 3.3.

In order to estimate the TOA uncertainty of each observing phase, we need to consider noise
contributions for pulsar A. The TOA uncertainty of pulsar A with real MeerKAT observations at L-band
is about 1.06 `s for a 5 minutes integration over the full bandwidth (Bailes et al., 2020). Since the system
performance of MeerKAT+ and SKA 1-mid are expected to be similar to that of MeerKAT, and the
radiometer noise 𝜎rn reduces in reverse proportional to the effective collection area of the telescope 𝐴eff ,
we can therefore calculate the radiometer noise using the relation

𝜎
tel
rn =

𝐴
MK
eff

𝐴
tel
eff
𝜎

MK
rn , (3.20)

where the superscript “MK” stands for MeerKAT. We are not considering noise budgets other than the
radiometer noise, because: 1) The phase jitter has not been detected in the current MeerKAT observations
and must be rather small (Hu et al., 2022; Bailes et al., 2020). It may become important in the future
observing phase as the radiometer noise reduces, but the influence of jitter can potentially be reduced
using Bayesian methods (Imgrund et al., 2015) or binning and combining the data in orbital phase. 2)
The contributions from scintillation and other effects are expected to be one or more orders of magnitude
smaller than the radiometer noise of SKA 1-mid, hence are neglected. As a result, in our simulation, we
adopt the TOA uncertainties solely based on the radiometer noise estimation for each observing phase,
which can be found in Table 3.3.

Based on the above assumptions, we generate TOAs of PSR J0737−3039A that mimic observations
with MeerKAT, MeerKAT+, and SKA 1-mid from 2019 to 2030 covering two full orbits per month (∼5
h), and combine them with the existing TOAs from multiple telescopes (Kramer et al., 2021a) to form a
long-range data set (2003–2030). Technically speaking, we only use the observing cadence and TOA
uncertainties from the existing TOAs, since the data analysis by Kramer et al. (2021a) is still ongoing,
and in the next steps all TOAs will be simulated to fit our model, under the assumption of Gaussian
white noise.
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Table 3.3: Telescope observing plans, effective diameters and TOA uncertainties (L-band, 5 minute integration
time) used for simulation. For 2003 – 2019, 𝜎TOA are based on observations from multiple telescopes, where the
best data are from the GBT. Its typical uncertainty at L-band is shown in the table, whereas the TOAs from the
UHF band are expected to be 1.25 times better (Kramer et al., 2021a). The TOA uncertainty for MeerKAT is
scaled to 5 minute integration based on real observations (Bailes et al., 2020),7and for MeerKAT+ and SKA 1-mid
are scaled referring to MeerKAT.

Year Telescope �eff [m] 𝜎TOA [`s]
2003 – 2019 GBT 100 2.5
2019 – 2022 MeerKAT 108 1.06
2022 – 2025 MeerKAT+ 127 0.76
2025 – 2030 SKA 1-mid 203 0.30

The first step is to create a parameter file (model) for pulsar A. For this, we take precisely measured
masses from Kramer et al. (2006b), 𝑚A = 1.3381 M⊙, 𝑚B = 1.2489 M⊙, and assume EOS AP4 see
Lattimer & Prakash, 2001. This particular choice of EOS satisfies the current lower limit of 1.98 M⊙
(99% confidence level, hereafter C.L.) for the maximum mass of a NS (see Section 3.1 for details), and
also lies in the MOI ranges obtained for pulsar A by Gorda (2016), Lim et al. (2019) and Greif et al.
(2020). The MOI of pulsar A, under this assumption, is therefore 𝐼AP4

A = 1.24 × 1045g cm2. We create a
parameter file by taking the well measured Keplerian parameters of the Double Pulsar (Kramer et al.,
2006b) and the PK parameters computed from 𝑚A, 𝑚B, and 𝐼A. For the advance of periastron ¤𝜔, we
consider first and second order PN terms and the LT contribution. As for the orbital period decay ¤𝑃b, we
consider leading order (2.5PN) GW emission, Galactic acceleration, Shklovskii effect and mass loss in
pulsar A. The 3.5PN GW term is only considered in Section 3.8.

We then adjust the TOAs to perfectly match with our model, and add a Gaussian white noise to each
TOA, according to its 𝜎TOA. The red noise from DM variations is not considered in our simulation,
since it can be in principle corrected for with multi-frequency data. In a final step, we use the pulsar
timing software tempo to fit for the timing parameters and obtain their uncertainties, including the PK
parameters, which are of particular importance here. From 2018 to 2030, the data set is split with a
step size of 6 months, so as to demonstrate how the measurements improve with time. The predicted
fractional errors of the PK parameters are shown in Figure 3.2.

As part of the simulation, we also measure the timing parallax 𝜋𝑥 , which gives an idea of the precision
of future distance measurement from timing parallax. The predicted uncertainty of 𝜋𝑥 is shown in
Figure 3.3. For the uncertainty of pulsar distance, which enters the Galactic acceleration and the
Shklovskii effect, we adopt the value calculated from timing parallax when its uncertainty is smaller than
what we assumed in Section 3.4.2, which is from mid-2021. Aside from timing parallax measurement, in
the future, the VLBI parallax measurements with the SKA can potentially provide an accurate distance
measurement (Smits et al., 2011).

3.6 Measuring the MOI and constraining the EOS

Based on our TOA simulation, we predict the future timing measurement of PK parameters (Figure 3.2).
The three best measured parameters, ¤𝑃 obs

b , ¤𝜔obs and 𝑠, are promising for the determination of 𝐼A. With
Eqs. (3.7) and (3.10), we obtain the intrinsic periastron advance ¤𝜔 intr (𝑚A, 𝑚B, 𝐼A) and the intrinsic
orbital period decay ¤𝑃 intr

b (𝑚A, 𝑚B, 𝐼A). Since both now ¤𝜔 intr and ¤𝑃 intr
b depend on the MOI, we can not

7 The TOA uncertainty obtained from a series of real MeerKAT observations are presented later in Table 4.4.
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Figure 3.2: Improvement in the fractional errors of five PK parameters with time, based on the simulation described
in Section 3.5. From top to bottom are: the Shapiro delay range parameter 𝑟 (blue), the time dilation amplitude 𝛾
(orange), the orbital period derivative ¤𝑃b (green), the Shapiro delay shape parameter 𝑠 (red), and the relativistic
advance of periastron ¤𝜔 (purple). The vertical lines mark the observing phase of MeerKAT, MeerKAT+, and SKA
1-mid.

directly use ¤𝑃 intr
b and 𝑠 to determine the masses and hence measure 𝐼A from ¤𝜔 intr as in Kehl et al. (2017).

Instead, a self-consistent method is employed to solve for the masses (𝑚A, 𝑚B) and 𝐼A jointly from
¤𝑃 intr
b (𝑚A, 𝑚B, 𝐼A), 𝑠 (𝑚A, 𝑚B) and ¤𝜔 intr (𝑚A, 𝑚B, 𝐼A). To estimate the probability distribution function

for 𝐼A, we perform a Monte Carlo simulation to randomise the observed parameters according to their
uncertainties. This process is repeated for the measurements from 2018 to 2030.

Figure 3.4 shows the predicted measurements of 𝐼A with time, where the new telescopes clearly help
to narrow down the uncertainty of 𝐼A. Here we adopt the Galactic measurements (𝑅0, Θ0) by Gravity
Collaboration (2019) and the slope measurement by Reid et al. (2014). The predicted uncertainty of 𝐼A
with time is also illustrated as the blue line in Figure 3.5. In this case, we expect to achieve an MOI
measurement with 25% precision at 68% C.L. by the year 2030. Our simulation shows that, although the
uncertainty of ¤𝑃 obs

b is initially higher than the Galactic acceleration, it decreases with additional years of
precise timing observations (see Figure 3.2), and by 2030, the error in the Galactic acceleration is three
times higher than the error in ¤𝑃 obs

b , which becomes the limiting factor for measuring the MOI.
However, the measurements of the Galactic potential is expected to improve through various

observational methods, such as Gaia mission (Gaia Collaboration, 2016) and ongoing observations of
Galactic masers (Reid et al., 2014). A recent study by Eilers et al. (2019) provides a precise measurement
of the circular velocity curve of the Milky Way from 5 to 25 kpc. With the distance from the Sun to the
Galactic center 𝑅0 = 8.122 ± 0.031 kpc (Gravity Collaboration, 2018), they determine the rotation speed
of the local standard of rest Θ0 = 229.0 ± 0.2 km s−1, with a slope of −1.7 ± 0.1 km s−1 kpc−1 (statistical
errors), corresponding to 𝑏0 = 0.0603 ± 0.0035. The total uncertainties (including systematic errors)
given by Eilers et al. (2019) are similar to the measurements used in the previous case (blue line), but
here we assume the systematic errors can be well understood in the near future, and only consider the
statistical errors. With this assumption, we expect to measure the MOI with 11% precision at 68% C.L. in
2030. This is nearly the same as using an error-free Galactic model, which is indicated by the red line in
Figure 3.5. Therefore, with future measurements of the Galactic potential and a better understanding of
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Figure 3.3: Predicted uncertainty of the timing parallax Δ𝜋𝑥 as a function of time. The corresponding uncertainty
in distance is smaller than our assumed value from mid-2021, and is therefore used for future corrections of
extrinsic acceleration effects.
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Figure 3.4: Simulated measurements of the MOI of PSR J0737−3039A with time, where two full orbits observation
per month are assumed. The red line indicates the theoretical value of the MOI for the chosen EOS AP4 (𝐼AP4

A ).

the systematic errors, an MOI measurement with 11% precision from the Double Pulsar seems realistic.
One important factor for the result is the influence of the mass loss in pulsar A, which was neglected

in the previous study by Kehl et al. (2017). Without considering this contribution, the uncertainty of 𝐼A
significantly reduces and reaches 7% by 2030 (see the grey line in Figure 3.5), in contrast to the red line.
In addition, we find that increasing the observing cadence does not significantly improve the precision of
MOI measurements.

As mentioned in Section 3.4.2, different approaches provide very different measurement of the distance
of the Double Pulsar, and a compromise distance of 0.8 kpc is thereby employed in our study. To
investigate how distance influences the MOI measurement, we consider two extreme cases, 𝑑 = 0.4 kpc
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Figure 3.5: Predicted uncertainty of 𝐼A as a function of time. The blue line adopts the Galactic measurements (𝑅0,
Θ0) by Gravity Collaboration (2019) and slope measurement by Reid et al. (2014), whereas the red line assumes
no errors in the Galactic model. The grey line is same as the red line but ignores the influence of mass loss to the
orbital period change. The theoretical value 𝐼AP4

A is indicated by the dashed black line, whereas the dash-dotted
line is 10% of the theoretical value.

and 𝑑 = 1.6 kpc, with the same setups as in the 𝑑 = 0.8 kpc simulations. Using the current Galactic
measurements, we find that the uncertainty of the MOI measurement reaches 17% by 2030 when
𝑑 = 0.4 kpc, and has a much higher uncertainty (43%) when 𝑑 = 1.6 kpc. However, with negligible error
in the Galactic potential, both predict ∼11% measurements by 2030, same as for the case of 𝑑 = 0.8 kpc.
Since an improved Galactic model is expected in the near future, the value we employ for the distance
should not have a significant impact on the prediction of the MOI uncertainty.

An 11% precision measurement of the MOI would further improve the constraints of the EOS of NSs
(Lattimer & Schutz, 2005; Greif et al., 2020). Figure 3.6 shows the MOIs of a number of EOSs, which
are scaled by a factor of 𝑀3/2 in order to reduce the range of the ordinate (cf. Lattimer & Schutz, 2005).
The 11% measurement predicted from our simulation is illustrated by the red bar centered at the assumed
EOS AP4, and located at the precisely measured mass of pulsar A. To compare with the constraints
from other methods, we mark the curves in different styles. The observations of the binary neutron-star
merger event GW170817 by LIGO/Virgo (B. P. Abbott et al., 2018) placed a constraint for the radii of
both NSs, 11.9 ± 1.4 km (90% C.L.), which excludes the EOSs in grey dashed curves. Recently, a more
stringent constraint combining GW170817 with nuclear theory was obtained by Capano et al. (2020),
where they found the radius for a 1.4𝑀⊙ NS is 11.0+0.9

−0.6 km (90% C.L.). This further excludes the EOSs
in blue dashed curves. The remaining promising EOSs from this constraint are marked in blue solid
curves, which is already very close to our 11% prediction from the MOI measurement in 2030. With
more and more binary NS mergers expected to be detected in the coming years, tighter constraints on the
EOS are likely to be achieved. Meanwhile, recent NICER observation delivered a joint mass-radius
measurement for PSR J0030+0451 from two independent analyses. Riley et al. (2019) found an inferred
mass and equatorial radius of 1.34+0.15

−0.16𝑀⊙ and 12.71+1.14
−1.19 km (68% C.L.), while Miller et al. (2019)

found 1.44+0.15
−0.14𝑀⊙ and 13.02+1.24

−1.06 km. This is a weak constraint on the EOS, but is expected to improve
with more observations in the near future. The upcoming X-ray missions, such as eXTP (S. N. Zhang
et al., 2016) and ATHENA (Barret et al., 2013), are also promising to improve our understanding of the
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Figure 3.6: Constraints of EOSs from an 11% measurement of the MOI of PSR J0737−3039A (red). EOS AP4
was assumed in the simulation (curve through red dot). The grey dashed curves indicate EOSs that are disfavoured
by the LIGO/Virgo observations of the GW170817 binary neutron-star merger (B. P. Abbott et al., 2018). The
blue dashed curves are additionally excluded by the refined (combined with nuclear theory) GW170817 analysis
by Capano et al. (2020). The following EOSs have been plotted (ascending in their intersection with the left
border): WFF1, WFF2, AP4, BSk20, AP3, SLy4, BSk25, MPA1, BSk21, SLy9, BL, BSk22, H4, PAL1, MS2,
MS0 (https://compose.obspm.fr). All these EOSs are able to support a NS of 1.98 M⊙ , the current lower
limit for the maximum mass (see Section 3.1 for details).

mass-radius relation for NSs.
Therefore, it is fair to assume that the GWs and X-ray observations will place a more stringent

constraint on the EOS within the next 10 years, and if the EOS can be known with sufficient precision,
we can in turn use this information as an input to our analysis, test the LT precession and constrain
theories of gravity with the Double Pulsar. We will discuss this scenario in detail in the next section.

3.7 Testing Lense-Thirring precession

As discussed in the previous section, the MOI measurement of PSR J0737−3039A is expected to reach
11% accuracy by 2030, whereas GWs and X-ray observations are likely to give a better constraint on
the EOS. In this section, we discuss the prospects of testing LT precession and constraining theories of
gravity using the Double Pulsar, if the EOS is known.

We again adopt EOS AP4 and this time assume that a precision of 5% could be achieved when
calculating the MOI of pulsar A, based on a (hypothesized) future improvement in our understanding
of super-dense matter. Given 𝐼A as an input to our simulations, only the masses are unknown for the
intrinsic orbital period decay ¤𝑃 intr

b and the Shapiro shape parameter 𝑠. With the masses measured from
( ¤𝑃intr

b , 𝑠) and the given 𝐼A, we can directly test the LT contribution to the periastron advance ¤𝜔LT,A. To
discuss the physical meaning of such a test, we use the generic framework for relativistic gravity theories
introduced by Damour & Taylor (1992), which is fully conservative and based on a Lagrangian that
includes a generic term 𝐿SO for spin-orbit interaction. As in Damour & Taylor (1992), we will make
no assumption about the (strong-field) coupling function Γ

B
A, which enters 𝐿SO. Since the spin axis of

pulsar A has been found to be practically parallel to the orbital angular momentum, the general form of
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the LT contribution to the periastron advance can be written as

¤𝜔LT,A
= −

2𝑛2
b𝐼AΩA

(1 − 𝑒2
T)

3/2
𝑀

𝜎A
G , (3.21)

where 𝜎A is a generic strong-field spin-orbit coupling constant, defined by

𝜎A =
1
𝑐

2

[
Γ

B
A +

(
Γ

B
A − 1

2
G

)
𝑚B
𝑚A

]
. (3.22)

In GR, the generalised gravitational constant G equals 𝐺, and the coupling function Γ
B
A equals 2𝐺

(Damour & Taylor, 1992), so that

𝜎
GR
A =

𝐺

𝑐
2

(
2 + 3

2
𝑚B
𝑚A

)
. (3.23)

But in other theories, ΓB
A is expected to deviate from 2𝐺, including modifications by self-gravity

contributions from the strongly self-gravitating masses in the system.

We define a parameter 𝛿LT to measure the relative deviation of the theory-independent parameter
𝜎A/G from its GR prediction,

𝛿LT =

(
𝜎A
G

) (
𝜎

GR
A
𝐺

)−1

− 1 . (3.24)

By inserting Eq. (3.22) into the above definition, one obtains for the spin-orbit coupling function

Γ
B
A

2G − 1 =

(
3 + 𝑥A

4

)
𝛿LT , (3.25)

To assess potential constraints on a non-GR spin-orbit coupling, we multiply the expression of ¤𝜔LT,A in
GR (last term in Eq. (4.13)) by (1 + 𝛿LT), and solve for the parameter 𝛿LT using the three PK parameters
¤𝑃 intr
b (𝑚A, 𝑚B), 𝑠 (𝑚A, 𝑚B), and ¤𝜔intr(𝑚A, 𝑚B, 𝛿LT). One has to keep in mind that, for simplicity, we

make here the assumption that the non-spin related parts of the orbital dynamics and signal propagation
are (to sufficient approximation) given by their GR expressions. It goes without saying, that in practice
one has to conduct a fully self-consistent analysis within a given class of alternative gravity theories. For
a discussion that purely focuses on the measurability of a potential deviation in the LT contribution, our
approach is sufficient.

Figure 3.7 shows the expected decrease in the uncertainty of 𝛿LT with future observations. With 𝑅0
and Θ0 measurements from Gravity Collaboration (2019) and the slope measurement from Reid et al.
(2014), we expect to measure 𝛿LT with 18% precision at 68% C.L. by 2030, which is indicated by the
blue line. The red line adopts the Galactic measurements from Eilers et al. (2019), where we expect to
achieve a 9% precision by 2030. In the ideal case, we assume that the Galactic potential, the distance to
the Double Pulsar, and the MOI can be precisely measured in the future, so that we could leave out the
errors. In this scenario, we expect to measure 𝛿LT with 7% precision by 2030 (green line). We have
seen in Section 3.6 that change from the Galactic measurements by Eilers et al. (2019) to an error-free
Galactic model has little enhancement on the measurements of the MOI, and the uncertainty of the
timing parallax is relatively small, therefore, the improvement from 9% (red line) to 7% (green line) is to
a fair fraction (nearly half) related to the uncertainty of the MOI.
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Figure 3.7: Predicted uncertainty of 𝛿LT as a function of time. The blue line adopts Galactic measurements (𝑅0,Θ0)
by Gravity Collaboration (2019) and slope measurement by Reid et al. (2014), the red line adopts Galactic and
slope measurements by Eilers et al. (2019), and the green line assumes no errors in the Galactic model, the distance
and the MOI.

Breton et al. (2008) have conducted a different experiment for spin-orbit coupling in the Double Pulsar
system. Studying the geodetic precession of pulsar B, they were able to show that 𝜎B/G is in agreement
with GR, with a precision of about 13%. Analogously to Eq. (3.22), 𝜎B is related to Γ

A
B . A priori there is

no reason to assume that ΓA
B and Γ

B
A are equal (see discussion in Damour & Taylor, 1992). Consequently,

a LT test with pulsar A would nicely complement the geodetic precession test of Breton et al. (2008),
when investigating the relativistic interaction between the proper rotation of the two NSs and their orbital
motion.

Finally, short range modifications of gravity, related to the strong gravitational field of a NS, could
significantly change the structure of the star and therefore its MOI, without any “direct” impact on the
orbital dynamics or the signal propagation in a binary pulsar system. Examples of such theories are
scalar-tensor theories with a massive scalar field having a sufficiently short Compton wavelength (see e.g.
Ramazanoǧlu & Pretorius, 2016; Yazadjiev et al., 2016). While in such a scenario, PK parameters related
to time dilation, GW damping, and Shapiro delay remain (practically) unaffected (see e.g. Alsing et al.,
2012), one could still expect a deviation in the precession of periastron of the Double Pulsar. The reason
is that due to the modification of the MOI the spin of pulsar A and therefore the spin-orbit coupling
is modified. Testing the LT precession in the Double Pulsar can therefore be used to constrain such
deviations from GR. It is important to note, that ¤𝑃 ¤𝑚

b would also be modified accordingly, and therefore
has to be accounted for. Hence, limits on 𝛿LT would consequently be somewhat weaker than given above
(cf. Section 3.6). In such a scenario it could generally be difficult to disentangle uncertainties in the EOS
and deviations from GR by astronomical observations. For this, a combination of various experiments,
like GWs from binary neutron-star mergers, X-ray observations, and radio pulsar timing might turn
out to be necessary. Nonetheless, the future measurement of the LT precession in the Double Pulsar is
expected to provide important contributions when constraining such deviations from GR.
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Figure 3.8: Same as Figure 3.7 but for the uncertainty of the 3.5PN order GW correction 𝑋3.5PN. The dashed line
denotes the theoretical value of 𝑋3.5PN.

3.8 Next-to-leading-order gravitational wave damping

In GR, the loss of energy of a material system due to GWs is to leading order sourced by a time-dependent
mass quadrupole (Einstein, 1918; Eddington, 1922). This also holds for binary systems where a change
in the mass quadrupole is driven by gravity itself. It enters the two-body equations of motion at the 2.5PN
order (see e.g. Damour, 1987). When computing the next-to-leading-order contribution to GW damping,
one also has to account for the mass-octupole and the current quadrupole moments (Thorne, 1980).
Next-to-leading-order contributions enter the equations of motion at 3.5PN (O(𝑐−7)), and therefore
correspond to the 1PN corrections in the radiation reaction force (Iyer & Will, 1995; Pati & Will, 2002;
Königsdörffer et al., 2003; Nissanke & Blanchet, 2005). The corresponding change in the orbital period
of a binary system has been determined out by Blanchet & Schäfer (1989) and is given by Eq. (3.12). In
this section we will investigate if next-to-leading-order corrections to the GW damping are expected to
become important in the near future for the timing observation of the Double Pulsar.

Again we assume EOS AP4 and a 5% error in the knowledge of the MOI 𝐼A. We implement
the 3.5PN contribution into our model by using Eq. (3.12), and adjust the TOAs accordingly. After
running simulations as described in Section 3.5, we obtain the measured PK parameters. We use
Eq. (3.13) to solve for the relative correction of the 3.5PN order 𝑋3.5PN using the three PK parameters
¤𝑃 intr
b (𝑚A, 𝑚B, 𝑋3.5PN), 𝑠 (𝑚A, 𝑚B), and ¤𝜔intr(𝑚A, 𝑚B).
Figure 3.8 illustrates the predicted uncertainty of 𝑋3.5PN with observing phase, which will fall below

its theoretical value 𝑋 theo
3.5PN in the SKA1-mid era. The colours of the lines represent the same conditions

as in Figure 3.7. The blue line shows the improvements in Δ𝑋3.5PN with Galactic parameters from
Gravity Collaboration (2019) and the slope measurement by Reid et al. (2014), which will reach a
precision of 85% at 68% C.L. by 2030. Adopting the Galactic measurements (statistical errors) by Eilers
et al. (2019), the red line shows that 𝑋3.5PN can be constrained with a precision of 42% by 2030. By
contrast, in the ideal case where there are no errors in the Galactic model, the distance and the MOI,
𝑋3.5PN can be constrained with a precision of 33% by 2030, where nearly half of the improvement is
contributed from the MOI.
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3.9 Potential new discoveries

Large pulsar surveys with MeerKAT, FAST and the forthcoming SKA, such as TRAPUM (B. Stappers &
Kramer, 2016) and CRAFTS (Li et al., 2018), can potentially discover more relativistic double neutron
star (DNS) systems, preferably with a more compact orbit than PSR J0737−3039. An example of such
a system, PSR J1946+2052, with a more relativistic orbit than the Double Pulsar (𝑃b ≃ 1.88 h) and
larger periastron advance ( ¤𝜔 ≈ 26 deg yr−1) and LT precession ( ¤𝜔LT ≈ 0.001 deg yr−1), was recently
discovered in the PALFA survey (Stovall et al., 2018). In its orbital parameters, the PSR J1946+2052
system resembles a system similar to the Double Pulsar, but that has evolved further due to GW damping,
by about 40 Myr. While it is still unclear, if for PSR J1946+2052 the necessary precision in the mass
determination can be reached to rival the Double Pulsar in the tests proposed here,8 it certainly adds
confidence to the hope of finding more relativistic “cousins” of the Double Pulsar in the coming years.
Such binary pulsars would quite likely enable MOI measurements with superior precision within a
comparably short period of time, and improve the constraints of the EOS.

Here we consider two scenarios, one with an orbital period of 100 minutes and one with 50 minutes,
which are within the expected acceleration searches by MeerKAT. Assuming such systems can be found
in 2020 and we start timing them regularly from 2021, with two orbits per month, we run our simulation
again to predict the measurements of the MOI. To simplify the simulation, we assume these systems
satisfy the conditions of the Double Pulsar (inclination 𝑖 close to 90 degrees, similar distance and
brightness, etc.) but with modified orbital parameters, assuming that these systems had an orbit like the
Double Pulsar some time in the past, and then evolved by GW damping to an orbital period of 100 or 50
minutes. In reality, these systems are likely to be further away. Nonetheless, it is also possible that such
systems are bright and nearby, but were missed in the past surveys due to their high acceleration (see
Johnston & Kulkarni, 1991; Ransom, 2001; Jouteux et al., 2002; Ng et al., 2014; Cameron et al., 2018).

We calculate the evolved semi-major axis using Kepler’s third law and the evolved eccentricity using
the 𝑎 − 𝑒 relation in Peters (1964), for the orbital period of 100 minutes and 50 minutes, respectively.
Then we calculate the PK parameters and run simulations as described in Section 3.5 and 3.6. Assuming
the same distance as the Double Pulsar, we convert the uncertainty of timing parallax into an uncertainty
for the distance. The Galactic measurement by Eilers et al. (2019) is adopted in the simulation and, as
before, we assume the systematic uncertainties can be well understood in the future.

Our results show that, for the DNS system with an orbital period of 100 minutes, we could measure
the MOI with 12% precision by 2030 and with 4.5% by 2035 at 68% C.L. As for an orbital period of 50
minutes, we expect an MOI measurement with 1.5% precision by 2030 and with 0.5% by 2035 at 68%
C.L. Such measurements would probably be comparable to the by then available constraints from other
methods (GWs and X-ray observations, nuclear physics, etc.) and help for determining the EOS of NSs.

Furthermore, LISA has the potential to discover ultra relativistic DNS systems with a characteristic
orbital frequency of 0.8 mHz (Lau et al., 2020). Thrane et al. (2020) suggested that following up such
systems with SKA for 10 years could potentially measure the mass-radius relation with a precision <1%.
To this end, we perform a simulation for a DNS system with 20 minute orbital period, and find an MOI
precision of ∼0.2% (68% C.L.) may be possible with 10 years of timing with SKA 1-mid.

However, there is a low chance that the new discovered DNS systems will be edge-on to our line-
of-sight, as is the case for PSR J0737−3039, hence a precise measurement of 𝑠 might not be possible.
Instead, we may need to use 𝛾 to constrain the masses and MOI, whose fractional error is usually a few
orders of magnitude larger than 𝑠 (see Figure 3.2). This is indeed the case for PSR J1946+2052, despite
its relativistic nature, determining the masses with sufficient precision will be challenging.

8 Since PSR J1946+2052 is less luminous compared to the Double Pulsar, and 𝑠 is not measurable due to its orientation.
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Moreover, not all DNS systems are ideal to test the Lense–Thirring precession in terms of periastron
advance ¤𝜔LT. Systems like the aforementioned PSR J1757−1854 have a large eccentricity most likely
caused by a large kick (Tauris et al., 2017) causing a significant misalignment between the spin of pulsar
and the orbital angular momentum, and hence ¤𝜔LT can not be determined as straightforwardly as in
the Double Pulsar. However, as pointed out in Section 3.2.2, this allows an alternate test using the
contribution of LT precession to the rate of change of the projected semi-major axis ¤𝑥LT (Cameron et al.,
2018) if profile changes due to geodetic precession can be accounted for in the timing process and the
spin orientation can be determined with sufficient precision.

3.10 Conclusion

In this paper, we have developed a consistent method to measure the MOI of radio pulsars, which has
been applied to mock data for the Double Pulsar. We simulated TOAs of PSR J0737−3039A assuming
future observations with MeerKAT, MeerKAT+ and SKA 1-mid which cover two orbits per month.
We found an MOI measurement with 11% accuracy (68% C.L.) could be achievable by the end of this
decade, if we have sufficient knowledge of the Galactic gravitational potential (e.g., from Gaia mission
(Gaia Collaboration, 2016)). We also found that the mass loss of pulsar A has a considerable impact
on the measurement of the MOI. Neglecting this contribution to the orbital period change leads to an
overoptimistic prediction. This is the main reason why, even with the better timing precision used in this
paper as compared to Kramer & Wex (2009), by ∼2030 we would still only reach the same accuracy
level as predicted by Kramer & Wex (2009). Additionally, the assumptions made in this paper are more
realistic compared to Kehl et al. (2017), with timing precision from MeerKAT observation, as well as
updated timeline and size of upcoming telescopes.

In the second part of the paper, Section 3.7 and 3.8, we have assumed that a better constraint on the
EOS might be achieved with GWs and X-ray observations in the future, so as to investigate the capability
of testing LT precession and 3.5PN order contributions to the GW damping. This assumption coincides
with Landry et al. (2020) where they found that constraints from GWs and X-ray observations are likely
to have larger contributions in constraining the EOS than the MOI measurement of J0737−3039A.
Assuming a 5% error in the determination of the MOI, we simulated measurements of the relative
deviation of the theory-independent spin-orbit coupling parameter 𝜎A/G from GR’s prediction. We
found a 9% precision measurement is possible by 2030 with an improved Galactic model, whereas a 7%
precision measurement in the ideal case — no errors in the Galactic model, the distance, and the MOI.
This test is a complement to Breton et al. (2008), where they found a 13% constraint on 𝜎B/G. This
measurement would enable a constraint for the coupling function Γ

B
A that enters the spin-orbit Lagrangian

of the two-body interaction for strongly self-gravitating masses. Such a measurement could be sensitive
to short range deviations from GR, which otherwise would not show up in the orbital dynamics of such
systems.

We have also studied the measurability of GR’s next-to-leading-order (3.5PN) GW-damping contribu-
tion. We predicted that the uncertainty of the 3.5PN order correction 𝑋3.5PN will fall below its theoretical
value at the beginning of SKA 1-mid (∼2026) and a measurement of 𝑋3.5PN with 3𝜎-significance is
possible in ∼10 years, if by then we have sufficient knowledge of the Galactic gravitational potential,
pulsar distance, and the EOS. This means that from the SKA 1-mid era, we will have to include the
3.5PN term in our analysis in order to avoid any bias. Binary mergers detected by LIGO/Virgo do
provide constraints on post-Newtonian (PN) terms (B. P. Abbott et al., 2016b). Their way of counting
the PN contributions is relative to the Einstein quadrupole formula, i.e. the order they enter the radiation
reaction force (Blanchet, 2014). Their 1PN term therefore contains 3.5PN contributions from the
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equations of motion. As a comparison to our 3.5PN 3-𝜎 result, (B. P. Abbott et al., 2019) provide a
∼10% measurement (90% C.L.) of the (radiative) 1PN coefficient with GW170817. Future merger
events will most likely lead to even more precise measurements of this term. While at the 2.5PN (0PN
radiative) level, the Double Pulsar is still many orders of magnitude more precise than LIGO/Virgo
mergers (Kramer, 2016; Kramer et al., 2021a). When it comes to higher order PN contributions, we
conclude that binary pulsars are not expected to be competitive, simply because of the much smaller
orbital velocity.

Finally, we discussed potential new discoveries of DNS systems with radio telescopes like MeerKAT,
FAST, and SKA, as well as the space-based future GW observatory LISA. We demonstrated that for a
DNS system which mimics the evolved PSR J0737−3039 with an orbital period of 50 minutes, the MOI
measurement is expected to reach 1.5% precision (68% C.L.) after 10 years observation with MeerKAT,
MeerKAT+ and SKA 1-mid, and 0.5% precision after 15 years. Moreover, LISA is expected to find DNS
systems with a characteristic orbital period of 20 minutes in the near future (Lau et al., 2020). Such
discoveries can significantly tighten the constraints for the EOS.

To conclude, although the EOS constraints resulting from a future MOI measurement with the Double
Pulsar are not likely to exceed those with LIGO/Virgo mergers and X-ray observations in the coming
years, we still anticipating other aspects of science coming from this unique gravity laboratory in future
studies based on an improved understanding of the NS EOS as an input. Furthermore, the discovery
of more relativistic binary pulsars, possible with the unprecedented surveying capabilities of new and
upcoming radio telescopes and advances in data analysis (e.g. Lentati et al., 2018), could ultimately lead
to EOS constraints quite competitive with other methods.
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CHAPTER 4

Gravitational signal propagation in the Double
Pulsar studied with the MeerKAT telescope

The work presented in this chapter is reproduced from the following publication under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0).
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H. Stairs, M. Bailes, S. Buchner, A. D. Cameron, F. Camilo, and M. Serylak, Gravitational signal
propagation in the double pulsar studied with the MeerKAT telescope, Astronomy & Astrophysics,
Volume 667, 2022, A149, DOI: 10.1051/0004-6361/202244825

Summary

The Double Pulsar, PSR J0737−3039A/B, has offered a wealth of gravitational experiments in the
strong-field regime, all of which general relativity (GR) has passed with flying colours. In particular,
among current gravity experiments that test photon propagation, the Double Pulsar probes the strongest
spacetime curvature. Observations with the MeerKAT telescope and, in future, the Square Kilometre
Array (SKA) can greatly improve the accuracy of current tests and facilitate tests of next-to-leading-order
(NLO) contributions in both orbital motion and signal propagation.

In this work, we presented our timing analysis of new observations of PSR J0737−3039A, made using
the MeerKAT telescope over the last three years. The increased timing precision offered by MeerKAT
already yielded improved measurements on the Shapiro delay, where the precision of the Shapiro shape
parameter 𝑠 is two times better compared to the previous study based on 16-yr data (Kramer et al., 2021a).
This also resulted in improved mass measurements. In particular, we studied the NLO signal propagation
effects including the lensing correction to Shapiro delay, the retardation effect due to the movement of
pulsar B while the signal of pulsar A propagates across the system, and the deflection of the signal of
pulsar A by the gravitational field of pulsar B. The significance of lensing, the retardation effect, and the
gravitational deflection in the longitudinal direction can be tested using a common factor 𝑞NLO by scaling
these corrections collectively, where 𝑞NLO = 1 in GR. Based on the 3-yr MeerKAT data, our results
provided an independent confirmation of these NLO signal propagation effects with 𝑞NLO = 0.999(79),
which is 1.65 times more precise than the measurement from the 16-yr data (Kramer et al., 2021a).

We also investigated novel effects which are expected but have not been observed in pulsars. The
gravitational deflection not only results in a time shift in the longitudinal direction but can also lead to a
change in the colatitude of the emission direction towards us. This latitudinal deflection can potentially
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cause profile variations near superior conjunction as our line-of-sight (LOS) cuts a different region of
the pulsar beam (Rafikov & Lai, 2006a; Rafikov & Lai, 2006b). To search for such profile variations,
we folded the search mode data of PSR J0737−3039A that are near superior conjunction (orbital phase
89° < 𝜓 < 91°) and added profiles together for every Δ𝜓 = 0.25°. The added profiles were compared to
a standard profile but no significant evidence of variation were found. In addition, we investigated the
measurability of latitudinal deflection time delay due to unaccounted profile variation using simulations
and found that this time delay effect can be mostly absorbed by Shapiro parameters and is challenging to
be measured with timing.

Furthermore, we explored the prospects of measuring the lensing correction to Shapiro delay
independently from other NLO effects. With the simulated data, we found that the lensing signature
vanished after fitting for the Shapiro shape parameter. We simulated the timing data for MeerKAT and
its future extensions up to 2030 and fitted for a scaling factor 𝑞len for the lensing correction (𝑞len

= 1 in
GR), but the uncertainty of 𝑞len is larger than 1, making it difficult to be measured with this precision.
However, if an instrument with similar performance to the full SKA becomes available in the future, we
found that lensing may be measurable with just a few years of timing.

With continued observations with MeerKAT and its future extensions, the accuracy of tests for signal
propagation effects will be further improved, and a 50-𝜎 detection of 𝑞NLO can be expected by 2030.
For that, we also provided an improved analytical description for the signal propagation in the Double
Pulsar system that meets the timing precision expected from future instruments such as the full SKA.

As the lead author of this publication, I reduced and analysed the MeerKAT data for PSR J0737−3039A,
produced the figures, interpreted the results and wrote the manuscript. Exceptions are Figure 4.3 and
Section 4.5.4 (an improved lensing model for the future), which were contributed by NW.

4.1 Introduction

The Double Pulsar PSR J0737−3039A/B is a rich laboratory for strong-field gravity experiments. The
system consists of a 23-ms recycled pulsar (‘A’) and a 2.8-s ‘normal’ pulsar (‘B’) in a nearly edge-on and
slightly eccentric 2.45-hr orbit (Burgay et al., 2003; A. G. Lyne et al., 2004). Various relativistic effects
have been precisely measured in previous work (Kramer et al., 2006b; Kramer et al., 2021a), including
periastron precession, time dilation (gravitational redshift and second-order Doppler effect), Shapiro
delay due to light propagation in the curved spacetime of the companion, and the orbital period decay,
which currently provides the most precise test of quadrupolar gravitational waves predicted by general
relativity (GR). In addition, the relativistic spin precession of B was measured by Breton et al. (2008)
and the relativistic deformation of the orbit was newly detected in this system (Kramer et al., 2021a). All
these make it a still unique system for gravity experiments.

Comparing with other gravity experiments, the Shapiro delay measured in the Double Pulsar probes
the strongest spacetime curvature (∼ 10−21 cm−2) in a precision experiment with photons, that is, the
interaction between gravitational and electromagnetic fields (Wex & Kramer, 2020). In addition, with
16 yr of data, Kramer et al. (2021a) were able, for the first time, to measure higher-order effects of
signal propagation in the strong gravitational field of a neutron star, which are currently not accessible
via any other method. These include the retardation effect due to the movement of the companion (B)
and aberrational light deflection by the gravitation of the companion. The latter confirms the prograde
rotation of A, which is consistent with the results measured by Pol et al. (2018) using the emission
properties of B and is in line with the expectations from binary evolution models.

In this work, we present observations of PSR J0737−3039A with the MeerKAT telescope, a precursor
for the Square Kilometre Array (SKA) at mid-frequency range. Thanks to its location in the Southern
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Hemisphere, it permits a timing precision more than two times better than that of the Green Bank
Telescope for this pulsar (Bailes et al., 2020; Kramer et al., 2021b). This superior precision enables
an independent and improved measurement of signal propagation effects within a very short time span.
We also investigate effects that have been expected but not been studied in detail before. These include
potential profile variations due to latitudinal deflection, the detectability of latitudinal deflection delay,
and the prospects of measuring the effect of lensing on the propagation time separately.

This paper is organised as follows. Section 4.2 describes the MeerKAT observations on the Double
Pulsar and data processing. In Section 4.3, we introduce the concepts of gravitational signal propagation
effects, including higher-order contributions to the Shapiro and aberration delay. The timing results and
mass measurements are presented in Section 4.4. We then provide an in-depth study on the higher-order
signal propagation effects in Section 4.5, with a focus on latitudinal deflection and lensing. In addition,
we provide an improved analytical description for the signal propagation in the Double Pulsar. Finally,
we discuss the results and future prospects in Section 4.6.

4.2 Observations and data processing

4.2.1 MeerKAT observations

The observations presented in this paper come from the MeerKAT telescope as part of the MeerTIME
project (Bailes et al., 2020), which performs timing of known pulsars with various scientific themes.
Observations on PSR J0737−3039A are conducted under the Relativistic Binary theme (RelBin, Kramer
et al., 2021b), which focuses on testing the relativistic effects in binary pulsars to achieve measurements
of neutron star masses and tests of theories of gravity. MeerTime observations are generally recorded
using the Pulsar Timing User Supplied Equipment (PTUSE) signal processor. This processor receives
channelised tied-array beamformed voltages from the correlator-beamformer engine of the MeerKAT
observing system and is capable of producing coherently de-dispersed full-Stokes data in both the
filterbank (search) mode and the fold (timing) mode, where the data are folded at the topocentric period
of the pulsar. Details on the pulsar observing setup with MeerTime are explained by Bailes et al. (2020).

PSR J0737−3039A is regularly observed with a typical cadence of one month and duration of 3 hr.
As the orbital period of this pulsar is ∼ 2.45 hr, the observations are scheduled to start shortly before an
eclipse and finish after the second eclipse, in order to observe the eclipses twice in one observing session.
The session is typically composed of a 30-min observation with the fold mode and search mode in parallel,
followed by a 2-hr fold-mode observation and another 30-min fold-search dual-mode observation. This
specific arrangement is designed to maximise our sensitivity in detecting signal propagation effects, as
well as in studying the magnetosphere of pulsar B (Lower et al. in prep.). Observations are performed
with two receivers: the L-band receiver that covers the frequency range 856–1712 MHz, and the UHF
receiver that covers the frequency range 544–1088 MHz, both with 1024 channels. The data presented
here started in March 2019 and ran until May 2022. For the analysis in this paper, we use 29 full-orbit
timing observations and 62 search-mode eclipse data sets, which amounts to a total of ∼ 87 hr.

4.2.2 Timing data reduction

The raw timing data from the PTUSE machines are folded every eight seconds, which are then processed
with the meerpipe data reduction pipeline. meerpipe carries out radio frequency interference (RFI)
removal using a modified coastguard algorithm (Lazarus et al., 2016), followed by flux and polarisation
calibration. Details on polarisation and flux calibration are described in Serylak et al. (2021) and Spiewak
et al. (2022), respectively.
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Table 4.1: Information on the MeerKAT observations and data set𝑎 for PSR J0737−3039A.

Receiver Centre Frequency Bandwidth Number of Number of Time span Number of
(MHz) (MHz) channels𝑏 sub-bands (MJD)1 TOAs

L-band 1283.582 775.75 928 16 58568 – 59721 83930
UHF-band 815.734 493 928 32 58936 – 59663 137451

𝑎 Information presented here is for the trimmed data set, see Section 4.4.1.
𝑏 Effective usable channels.

After processing with meerpipe, the calibrated data products are reduced using the pulsar software
package psrchive (Hotan et al., 2004).2 We first correct for the rotation measure (RM) with the value
measured in Kramer et al. (2021b), that is, RM=120.84 rad m−2. As the L-band observations between
March 2019 and February 2020 were restricted to 928 frequency channels (dropping 48 channels each
from the top and bottom bands), to maintain consistency throughout the analysis, we reduce the later
L-band data to the same frequency channels. We treat the UHF-band data in the same way, as the roll-off
adversely affects sensitivity of the top and bottom bands.

For this system, a complete timing model is only available in the pulsar timing software tempo (D. Nice
et al., 2015, more details are given in Section 4.4). Therefore, to fold the data more accurately, all data
are supplied with a polyco-format ephemeris with the values measured in Kramer et al. (2021a). Since
the Double Pulsar rapidly changes its orbital phase, the time span (TSPAN) of a predicted pulse phase
solution has to be as small as possible to retain good precision.3 With the psrchive version 2022-01-14,
we set TSPAN to the minimum possible value, which is 3 min.

There is a known data processing issue with this pulsar, which is that the pulsar moves rapidly to a
different orbital phase during the dispersion delay time. Thus, the pulses received at the same time at
different frequencies correspond to different orbital phases and cannot be folded with the same phase
prediction. If not properly accounted for, this folding issue will cause frequency-dependent orbital
smearing. Standard pulsar software such as psrchive do not take this effect fully into consideration,
even with the frequency-resolved tempo2 predictor.4 To avoid this issue, we first de-disperse the total
intensity data so that all frequencies correspond to the same orbital phase, then average the data, first in
frequency and then in time.5 Because of the profile frequency evolution and scintillation effects, data are
sub-banded in frequency, with 32 sub-bands for the UHF-band and 16 sub-bands for the L-band.

As for the time-averaging, the integration time needs to be short enough in order to properly resolve
the Shapiro delay and the next-to-leading-order (NLO) signal propagation contributions (𝑞NLO, see
Section 4.3), which are largest at superior conjunction. We perform a simulation to test the measurability
of these NLO contributions with different integration times. The results show that a good measurement
of Shapiro delay and 𝑞NLO can be achieved if the integration time is ⪅ 32 s, but it becomes significantly
worse if the integration time is longer than 1 min for 𝑞NLO and 2 min for Shapiro delay. Therefore, we
average all data with a 32-s integration time, consistent with the analysis by Kramer et al. (2021a). After
frequency and time averaging, data are re-dispersed to allow measurements of dispersion measure (DM)
in the timing analysis.

1 Modified Julian Date, subtracting 2400000.5 days from the Julian Date (JD).
2 http://psrchive.sourceforge.net/
3 Our analysis suggests that the choice of TSPAN has a significant impact on the Shapiro parameters: a larger TSPAN leads to

a large deviation from the expected values.
4 This issue is going to be addressed in psrchive 2.0, which is under development.
5 The order of processing matters. If reversed, the pulse phase appears to be different and phase offsets may be introduced.
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Figure 4.1: Pulse profile of PSR J0737−3039A observed at multiple frequencies with the MeerKAT UHF- and
L-band receivers.

4.2.3 Wide-band templates and TOA extraction

Wide-band observations such as MeerTIME can suffer significant profile evolution in frequency, and
thus the traditional 1D template is not favoured. To best determine the pulse time of arrivals (TOAs)
at multiple frequencies, we employ frequency-dependent 2D templates. With this technique, DM
measurements are dependent on the DM value used to align (de-disperse) the 2D template. Due to the
correlation between the DM and profile evolution, DM measurements are to some extent frequency
dependent, which can lead to a DM offset between L-band and UHF-band data. This could potentially
be solved with a simultaneous observation with L-band and UHF-band receivers, which is missing in our
case. Therefore, to avoid this problem, we choose a bright observation from each band for making 2D
templates, and measure DM using data from their overlapping frequencies. Then, we use these DM
values to de-disperse the corresponding full-bandwidth data. This minimises the DM offset between
L-band and UHF-band data, which can be seen in Figure 4.2. These data are then sub-banded and
averaged in time. Finally, by smoothing the profiles with psrsmooth/psrchive, we obtain 2D templates,
with 16 sub-bands at L-band and 32 sub-bands at UHF-band. These templates are then used to measure
frequency-resolved TOAs by cross-correlating with the reduced data using pat/psrchive. The pulse
profile of PSR J0737−3039A at multiple frequencies is shown in Figure 4.1. More information on the
observing systems and data sets is given in Table 4.1.
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Figure 4.2: DM measurement per observing epoch relative to the reference value 48.913 pc cm−3 (see Section 4.2.4).

4.2.4 DM variation

The wide-band observation and high precision of MeerKAT telescope make it possible to obtain an
accurate DM measurement on a per-epoch basis so as to minimise the influence of DM noise in the data.
To do so, we fit for only DM and spin frequency a for each observing epoch using 4-min TOAs, and keep
the other parameters fixed. The DM measurements are shown in Figure 4.2. Following Kramer et al.
(2021a), we use a modified version of tempo for our timing analysis, which corrects dispersive delays for
each TOA based on the exact DM measurement of that epoch.

One should note that our data set does not show the apparent DM variation as a function of orbital
phase, as was seen in Ransom et al. (2004). It had been demonstrated that this effect occurs due to an
unaccounted Doppler shift of the observational frequency as the pulsar moves in a binary system,6 and
this will be revisited by Hu, Porayko et al. (in prep.). A more thorough investigation of this effect, as
well as the frequency-dependent orbital smearing (see Section 4.2.2), is ongoing and will be presented in
detail in the future publication.

4.3 Signal propagation effects at superior conjunction

In this section, we recapitulate the necessary concepts of signal propagation effects in the Double
Pulsar, including the NLO contributions in the Shapiro delay and aberration delay. These concepts were
described in greater detail in Kramer et al. (2021a).

Being a nearly edge-on binary system (i.e. 𝑖 ∼ 90°), the curved spacetime of the companion star
(pulsar B) has a significant effect on the propagation of the pulsar’s signal. To leading-order this is the
well-known Shapiro delay (I. I. Shapiro, 1964), which is expressed in the following form for binary

6 https://arxiv.org/e-print/astro-ph/0406321v2
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pulsars (Blandford & Teukolsky, 1976; Damour & Deruelle, 1986):

Δ
(LO)
S = − 2𝑟 lnΛ𝑢 , (4.1)

Λ𝑢 =1 − 𝑒T cos 𝑢 − 𝑠
[

sin𝜔 (cos 𝑢 − 𝑒T)

+ (1 − 𝑒2
T)

1/2 cos𝜔 sin 𝑢
]
. (4.2)

Here, 𝑢 denotes the eccentric anomaly (from Kepler’s equation with eccentricity 𝑒T), and 𝜔 denotes the
longitude of periastron measured from the ascending node. The time eccentricity 𝑒T corresponds to the
eccentricity parameter in the Damour-Deruelle (DD) timing model (Damour & Deruelle, 1986) that can
be fitted in the pulsar timing software tempo or tempo2 (G. B. Hobbs et al., 2006). The two post-Keplerian
(PK) parameters 𝑟 and 𝑠 represent the ‘range’ and ‘shape’ of Shapiro delay, respectively. The shape
parameter is generally identified with the sine of the orbital inclination 𝑖 as 𝑠 ≡ sin 𝑖, whereas the range
parameter is linked to the mass of the companion 𝑚B, which in GR follows 𝑟 = 𝑇⊙ 𝑚B. The constant
𝑇⊙ ≡ (GM)N

⊙/𝑐
3, where 𝑐 is the speed of light in vacuum and (GM)N

⊙ ≡ 1.327 124 4 × 1026 cm3 s−2 is
the nominal solar mass parameter defined by the IAU 2015 Resolution B3 (Prša et al., 2016). Throughout
the paper, all masses expressed in solar mass M⊙ are referred to the nominal solar mass by taking the
ratio 𝐺𝑚𝑖/(GM)N

⊙ (𝑖 = 𝐴, 𝐵), where 𝐺 is the gravitational constant.
The leading-order expression Eqs. (4.1) and (4.2) were obtained by integrating along a straight line

(in harmonic coordinates) and assuming a static mass distribution when the pulsar’s signal propagates
through the system (Blandford & Teukolsky, 1976). In reality, the pulsar’s signal propagates along
a curved path due to the deflection in the gravitational field of the companion and leads to a lensing
correction to the Shapiro delay. This actually results in a reduced propagation time as a consequence of
Fermat’s principle (Perlick, 2004). The effect of lensing is not yet observable in any pulsar systems, but
for completeness, one can extend Eq. (4.2) by an adapted version of the approximation in Klioner &
Zschocke (2010, Eq. (73)): Λ𝑢 → Λ𝑢 + 𝛿Λ

len
𝑢 with

𝛿Λ
len
𝑢 = 2𝑟𝑐/𝑎R , (4.3)

where the semi-major axis of the relative orbit 𝑎R = (𝑥 + 𝑥B)/𝑠, with 𝑥 and 𝑥B being the projected
semi-major axes of pulsar A and pulsar B, respectively.7 For the Double Pulsar, one needs to account for
the fact that the companion star moves while the pulsar’s signal propagates across the system. This effect
is known as the retardation effect or 1.5PN correction to the Shapiro delay (Kopeikin & Schäfer, 1999;
Rafikov & Lai, 2006a). To sufficient approximation, the signal propagation delay can be extended to

ΔS = −2𝑟 ln (Λ𝑢 + 𝛿Λ
len
𝑢 + 𝛿Λret

𝑢 ) , (4.4)

where the retardation correction 𝛿Λret
𝑢 can be taken directly from Kopeikin & Schäfer (1999, Eq. (130))

as

𝛿Λ
ret
𝑢 =

2𝜋
𝑠

𝑥

𝑃b

𝑚A
𝑚B

𝑒T sin 𝑢 − 2𝜋 𝑠
(1 − 𝑒2

T)
1/2

𝑥

𝑃b

𝑚A
𝑚B[

sin𝜔 (cos 𝑢 − 𝑒T) + (1 − 𝑒2
T)

1/2 cos𝜔 sin 𝑢
][

𝑒T cos𝜔 + (cos 𝑢 − 𝑒T) cos𝜔 − (1 − 𝑒2
T)

1/2 sin𝜔 sin 𝑢
1 − 𝑒T cos 𝑢

]
. (4.5)

7
𝑥B had been observed in Kramer et al. (2006b).
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Figure 4.3: Simplified illustration of effects related to the deflection of A’s radio signals (solid red) in the
gravitational field of B (top down and side perspective). The observer is located at a large distance along the x-axis.
Apart from modifications in the propagation time due to a curved path in the gravitational field of B (lensing), one
has a longitudinal deflection delay (𝛿londef

A ) due to the fact that the pulsar has to rotate by more than 360◦ between
two pulses while approaching the conjunction. After conjunction, it is less than 360◦, which makes pulsar signals
arrive earlier at the observer. In addition, there is a latitudinal effect, due to a latitudinal shift in the emission
direction towards the observer. This can lead to changes in the pulse profile since the line of sight cuts a different
part of the emission region, which can also be accompanied by changes in the pulse arrival times (more details in
Sections 4.5.1 and 4.5.2).

The quantity 𝑃b denotes the orbital period and 𝑚A denotes the mass of pulsar A. It should be noted
that in the Double Pulsar, the mass ratio 𝑚A/𝑚B can be obtained in a theory-independent way (Kramer
et al., 2006b; Damour, 2007). Hence, apart from the Shapiro shape parameter 𝑠, Eq. (4.5) contains only
Keplerian parameters.

Moreover, the classical aberration expression (Smarr & Blandford, 1976) assumes a flat spacetime for
the propagation of the pulsar signals, which is no longer sufficient for describing the observations of
the Double Pulsar, particularly near the superior conjunction of pulsar A. One needs to account for the
gravitational deflection of the pulsar’s signal caused by its companion (Doroshenko & Kopeikin, 1995;
Rafikov & Lai, 2006b), which adds a lensing correction to the classical aberration. For pulsar A the
misalignment angle between its spin vector and the orbital angular momentum is very small (< 3.2°,
Ferdman et al., 2008; Ferdman et al., 2013), which is in line with a low-kick birth event (cf. Piran &
Shaviv, 2004; Willems & Kalogera, 2004; Willems et al., 2006; Stairs et al., 2006; Tauris et al., 2017).
Since the spin of A is practically parallel to the orbital angular momentum, the aberration delay can be
simplified as

ΔA = A
(
sin𝜓 + 𝑒T sin𝜔

)
+ 𝛿 londef

A . (4.6)

The first term on the right-hand side of Eq. (4.6) is the classical aberration delay, where 𝜓 = 𝜔 + \ is the
longitude of the pulsar with respect to the ascending node (\ is the true anomaly, which defines the angle
between the direction of the pulsar and the periastron), and the aberration coefficient

A =
𝑥

a𝑃b(1 − 𝑒2
T)

1/2 sin2
𝑖
≃ 3.65 `s . (4.7)

As A is practically not observable and can be absorbed by a shift in various timing parameters (see
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discussions in Damour & Deruelle, 1986; Damour & Taylor, 1992), we a priori add the aberration
coefficient A as a fixed parameter in our timing model with the value given in Eq. (4.7).

The second term 𝛿
londef
A in Eq. (4.6) is the higher-order correction originating from the longitudinal

deflection delay, and can be written as (Doroshenko & Kopeikin, 1995)

𝛿
londef
A = D cos (𝜓 + 𝛿𝜓ret)

Λ𝑢 + 𝛿Λ
ret
𝑢

,with D =
1
𝜋a

𝑟

𝑥 + 𝑥B
. (4.8)

Just as in the Shapiro delay, retardation correction is also accounted for here. As a sufficiently good
approximation, the position of B when the signal reaches its minimum distance from B can be used
(retardation corrected position; cf. Kopeikin & Schäfer, 1999; Rafikov & Lai, 2006a). The angle 𝛿𝜓ret

denotes the retardation related correction for the angle between the (coordinate) vector from B to A and
the ascending node.

As already discussed in Kramer et al. (2021a), the NLO contributions in the Shapiro and aberration
delays cannot be tested separately in the Double Pulsar due to the similarity of their effects on signal
propagation. In addition, the lensing correction to the propagation delay (Eq. (4.3)) is challenging to
measure as it can be absorbed in the fit of Shapiro shape 𝑠 (see Section 4.5.3 and discussions in Kramer
et al., 2021a). Therefore, to test the significance of the NLO contributions and to obtain an unbiased
timing result, a common factor 𝑞NLO is multiplied by these contributions and can be fitted for in our
timing model:

Λ
ret
𝑢 = Λ

ret
𝑢 × 𝑞NLO , (4.9)

Λ
len
𝑢 = Λ

len
𝑢 × 𝑞NLO , (4.10)

𝛿
londef
A = 𝛿

londef
A × 𝑞NLO . (4.11)

In GR, the scaling factor 𝑞NLO = 1. Figure 4.3 illustrates the different effects related to signal deflection
in the Double Pulsar system.

4.4 Timing results

For the timing analysis, we use the timing model in tempo known as DDS, which is a modification of the
DD model (Damour & Deruelle, 1986) that uses a different parameterisation of the Shapiro delay. In
DDS, the Shapiro shape parameter 𝑠 is replaced by the logarithmic Shapiro shape parameter 𝑧𝑠 via

𝑧𝑠 ≡ − ln (1 − 𝑠), (4.12)

which is more suitable when 𝑠 is very close to one (see Kramer et al., 2006a; Kramer et al., 2021a). The
NLO contributions in the Shapiro and aberration delays are also implemented in the latest DDS model,
which can be measured through a common factor 𝑞NLO. Because the analytic inversion of the timing
model developed in Damour & Deruelle (1986) is no longer sufficient for the Double Pulsar, primarily
due to the NLO contributions, a numerical inversion of the timing model was also implemented in the
latest DDS model in tempo (see Kramer et al., 2021a).

4.4.1 Timing parameters

In our analysis, the full MeerKAT data set shows a large deviation in the Shapiro range parameter 𝑟
compared to the 16-yr result (Kramer et al., 2021a). We perform a drop-out analysis by removing each
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Figure 4.4: Post-fit residuals of PSR J0737−3039A using the DDS binary model as a function of time (top panel)
and the orbital phase of pulsar A with respect to the ascending node 𝜓 (bottom panel). The MeerKAT L-band data
are plotted in blue, whereas the UHF-band data are in red. The epochs of the excluded six observations are marked
as black crosses.

observing epoch and fitting the parameters. We find that 𝑟 is dependent on specific observing epochs,
where six epochs affect 𝑟 by a significant amount while the rest of the epochs do not. These six epochs
are marked as black crosses in Figure 4.4. After excluding all these six epochs, 𝑟 is consistent with
the 16-yr result and the mass measurement in GR (Kramer et al., 2021a). Even though a number of
tests and simulations have been made, we are still unclear about the cause of this problem. Possible
reasons could be systematic errors in the observations or folding techniques. It should be noted that all
data were folded with the tempo2 phase predictor during observations, which has shown outliers in this
pulsar and has been doubly confirmed by our simulations. These outliers disappear after reinstalling
a tempo polyco ephemeris in data processing (see Section 4.2.2), but we cannot rule out underlying
problems due to the folding technique. The results shown here are based on data processed with the
polyco scheme.8 In any case, this issue should not affect the measurement of NLO signal propagation
effects, which is the main focus of this paper. Therefore, we leave this question to future studies. In the
following analysis, we use a trimmed data set that excludes these six epochs.

Table 4.2 and Figure 4.4 present the results obtained from fitting the tempo DDS model to the trimmed
MeerKAT data set. We fix the proper motion (`𝛼, `𝛿) and parallax 𝜋x to the more precise values
determined from the 16-yr timing and the VLBI measurements (see Kramer et al., 2021a). As the time
span of our data is not sufficient to obtain a reliable measurement of the orbital period derivative ¤𝑃b and
the orientation of the orbit (𝜔0 ≈ 0◦) is not at a favourable position for a precise measurement of the
Einstein delay amplitude 𝛾E, we choose to fix these parameters to the more precise measurements from
16-yr data (Kramer et al., 2021a). Fixing the above parameters has no impact on the measurements of
signal propagation effects and masses. The two PK parameters that describe the relativistic deformation
of the orbit, 𝛿𝑟 and 𝛿\ (Damour & Deruelle, 1986), are also held fixed at the GR value in our analysis,
as 𝛿𝑟 cannot be measured (see Kramer et al., 2021a) and 𝛿\ is not yet measurable with the current

8 With the same set of observations, data processed with tempo polyco and tempo2 predictor show a noticeable difference
(∼ 3𝜎) in the Shapiro parameters, where the result with polyco is closer to the 16-yr results and shows a smaller 𝜒2.
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Table 4.2: Timing parameters for PSR J0737−3039A using the tempo DDS binary model. Numbers in parentheses
are 1𝜎 uncertainties applicable to the last digits, obtained from the standard deviation of 1000 MC runs or
maximum error from tempo, whichever is larger. The overall reduced 𝜒2 is 0.99.

Parameter Value
Solar System ephemeris DE436
Terrestrial time standard UTC(NIST)
Timescale TDB
Position epoch (MJD) 55045.0
Timing epoch, 𝑡0 55700.0

Astrometric parameters
Right ascension (R.A.), 𝛼 (J2000) 07:37:51.248 121(26)
Declination (Dec.), 𝛿 (J2000) −30:39:40.705 36(42)
Proper motion R.A., `𝛼 (mas yr−1) −2.567(30)∗

Proper motion Dec., `𝛿 (mas yr−1) 2.082(38)∗

Parallax, 𝜋x (mas) 1.36(+0.12,−0.10)∗

Spin parameters
Rotational frequency (freq.), a (Hz) 44.054 068 642 001(56)
First freq. derivative, ¤a (Hz s−1) −3.415 92(37) × 10−15

Second freq. derivative, ¥a (Hz s−2) −9.5(12) × 10−27

Binary parameters
Orbital period, 𝑃b (days) 0.102 251 559 297 2(29)
Projected semi-major axis, 𝑥 (s) 1.415 028 299(88)
Eccentricity, 𝑒T 0.087 777 036(48)
Epoch of periastron, 𝑇0 (MJD) 55700.233 017 54(10)
Longitude of periastron, 𝜔 (deg) 204.753 72(36)
Periastron advance, ¤𝜔 (deg yr−1) 16.899 321(37)
Orbital period derivative (10−12), ¤𝑃b −1.247 920(78)∗

Einstein delay amplitude, 𝛾E (ms) 0.384 045(94)∗

Logarithmic Shapiro shape, 𝑧𝑠 9.669(77)
Range of Shapiro delay, 𝑟 (`s) 6.163(16)
NLO factor for signal prop., 𝑞NLO 0.999(79)

Derived parameters
𝑠 ≡ sin 𝑖 = 1 − 𝑒−𝑧𝑠 0.999 936 9(+46/ -51)
Orbital inclination, 𝑖 (deg) 89.36(3) or 90.64(3)
Mass of pulsar A, 𝑚A(M⊙) 1.338 186(10)
Mass of pulsar B, 𝑚B (M⊙) 1.248 866(7)
Total mass, 𝑀 (M⊙) 2.587 052(11)

∗ Values adopted from Kramer et al. (2021a).

MeerKAT data.
The values shown in Table 4.2 are the result of 1000 Monte Carlo (MC) runs, where in each run, a

random realisation of proper motion, parallax, DM, 𝛾E, and ¤𝑃b is selected. The DM value is selected
according to the DM measurements and uncertainties shown in Figure 4.2. We use the aforementioned
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Table 4.3: Mass measurements with a new modified DDGR model that accounts for NLO contributions in the
orbital motion and signal propagation in this system. The MOI has been chosen to be 𝐼A = 1.28 × 1045g cm2 in
the fit.

Parameter Value
Mass of pulsar A, 𝑚A (M⊙) 1.338 186(10)
Mass of pulsar B, 𝑚B (M⊙) 1.248 886(5)
Total mass, 𝑀 (M⊙) 2.587 050(8)

modified version of tempo to correct the DM for each TOA and fit for all other timing parameters in each
run. The numbers shown in Table 4.2 are the mean values of the distribution of each parameter after
1000 MC runs, whereas the uncertainties are taken from the larger one among the standard deviation of
the distributions and the maximum error from tempo in all MC runs.

In order to allow direct comparisons with previous publications, parameters shown in Table 4.2 are
measured with respect to the same epochs and the same terrestrial time standard UTC(NIST) within
the ‘Barycentric Dynamical Time’ (TDB) timescale as implemented in tempo.9 Even though TDB
runs at a slower rate than “Barycentric Coordinate Time (TCB)”, which was recommended by IAU
2006 Recolution B3 (see also Soffel et al., 2003),10 this choice does not have any impact on the results
presented in this paper (see discussions in Kramer et al., 2021a). To transfer the topocentric TOAs to the
Solar System Barycentre (SSB), the DE436 Solar System ephemeris published by the Jet Propulsion
Laboratory is used.11

All binary parameters in Table 4.2 are consistent with the 16-yr data, except for 𝑥 being different by
∼ 3𝜎. This is because 𝑥 is highly correlated with 𝛾E, which is kept fixed in our fit. This should be
improved in the future, once we have enough MeerKAT data to fit for 𝑥 and 𝛾E simultaneously. In our
fit, the root mean square (RMS) is very close to the mean TOA uncertainty, and the reduced 𝜒2 of the
individual observation is close to one, suggesting that our result is not affected by jitter noise. We also
perform simulations and single-pulse analysis following the methods in Parthasarathy et al. (2021) and
find little evidence of jitter noise.

The RMS of the MeerKAT data shown in Table 4.4 is more than two times better than that of the Green
Bank Telescope (see Kramer et al., 2021b). Thanks to this much improved precision, the measurements
of the Shapiro parameters improve quickly. Compared to Kramer et al. (2021a), the shape parameter 𝑠
improves by a factor of two and the range parameter 𝑟 improves by a factor of 1.3 (see Table 4.2).

4.4.2 Mass measurements

The standard approach for measuring the masses of a binary pulsar system is using two PK parameters.
Assuming GR, one can calculate the two a priori unknown masses based on the measurements of
Keplerian parameters. For the Double Pulsar, the two most precisely measured PK parameters are
periastron advance ¤𝜔 and the Shapiro shape parameter 𝑠.

For the advance of periastron, in addition to the 1PN contribution, we also need to account for
higher-order corrections due to 2PN effects and Lense-Thirring (LT) precession caused by spin-orbit
coupling of pulsar A, as they are much larger than the measurement error of ¤𝜔 see Hu et al., 2020;
Kramer et al., 2021a. For the analysis of this paper, the total intrinsic contribution to the periastron

9 https://www.nist.gov/pml/time-and-frequency-division/time-realization/utcnist-time-scale-0
10 https://www.iau.org/static/resolutions/IAU2006_Resol3.pdf
11 https://ssd.jpl.nasa.gov/planets/eph_export.html
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advance can be expressed, with sufficient precision, as (Damour & Schäfer, 1988)

¤𝜔 = ¤𝜔1PN + ¤𝜔2PN + ¤𝜔LT,A
. (4.13)

The first and second post-Newtonian (PN) terms ¤𝜔1PN and ¤𝜔2PN are functions of masses and observed
Keplerian parameters. The situation is more complicated for the LT contribution ¤𝜔LT,A, as it requires
the knowledge of the moment of inertia (MOI) of pulsar A, which is still not very constrained because of
our limited knowledge of the equation of state (EOS) of neutron stars. As discussed in detail in Hu et al.
(2020), one could measure the masses and the MOI simultaneously by introducing a third PK parameter
¤𝑃b into the ¤𝜔 − 𝑠 test. Such a test has already been carried out by Kramer et al. (2021a) using the 16-yr

data with an upper limit obtained: 𝐼A < 3.0 × 1045 g cm2 with 90% confidence. This measurement is
expected to improve with the combination of the 16-yr data with MeerKAT data in a forthcoming paper,
and should improve considerably in the coming years as more data becomes available. This promises an
important complementary constraint on the EOS (Hu et al., 2020). For the calculations here, we take
the value of ¤𝜔LT,A from Eq. (35) in Kramer et al. (2021a), which uses the constraints on the EOS from
Dietrich et al. (2020):

¤𝜔LT,A
= −4.83(+29,−35) × 10−4 deg yr−1

. (4.14)

The Shapiro shape parameter 𝑠 is the sine of the orbital inclination 𝑖. In Newtonian gravity, the orbital
inclination is linked to the projected semi-major axis 𝑥 via the binary mass function (e.g. Lorimer &
Kramer, 2004):

sin 𝑖 =
(𝑛b𝑀)2/3

𝑥

𝑇
1/3
⊙ 𝑚B

, (4.15)

where 𝑥 and the orbital frequency 𝑛b ≡ 2𝜋/𝑃b are both measured Keplerian parameters. Equation (4.15)
gets modified by a 1PN term in the 1PN approximation for Kepler’s third law (see Eq. (3.7) in Damour &
Deruelle 1985 and Eq. (3.9) in Damour & Taylor 1992):

sin 𝑖 =
(𝑛b𝑀)2/3

𝑥

𝑇
1/3
⊙ 𝑚B

[
1 +

(
3 − 𝑚A𝑚B

3𝑀2

) (
𝑇⊙𝑀𝑛b

)2/3
]
. (4.16)

Taking the measurements of 𝑃b, 𝑥, and masses from Table 4.2, one can calculate that the 1PN correction
is approximately 1.27 × 10−5. This correction was considered for the first time in pulsar analysis by
Kramer et al. (2021a), where the significance was about 1.3𝜎. Now with MeerKAT data, this 1PN
correction is 2.5𝜎 significant and cannot be ignored in the analysis. We hereby use the full 1PN mass
function Eq. (4.16) to measure the masses.

Combining the PK parameters ¤𝜔 and 𝑠, one obtains the (Doppler-shifted) masses, which are listed in
Table 4.2. These measurements are fully consistent with those obtained with 16-yr data (Kramer et al.,
2021a), and the precision of 𝑚A and 𝑚B are also better.

Alternatively, one can fit for masses using the timing model known as DDGR (Taylor & Weisberg,
1989), which is based on the DD model where the PK parameters are explicitly calculated from the
masses and the Keplerian parameters, assuming GR. Beside the Keplerian parameters, it fits explicitly for
the total mass 𝑀 and the companion mass 𝑚B. To make the measurements, we modify the DDGR model
so that it incorporates all NLO contributions that need to be accounted for in this system, including
NLO signal propagation effects, LT contribution ¤𝜔LT,A, NLO gravitational wave damping and mass-loss
contribution to ¤𝑃b (see Hu et al., 2020; Kramer et al., 2021a). An MOI needs to be provided to the
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Figure 4.5: Aggregated residuals (blue) due to NLO contributions in Shapiro and aberration delay, shown in the
orbital phase 𝜓. Residuals are re-scaled by (1 + 𝑒T cos \)−1 to account for secular variations in amplitude due to
the precession of periastron. The black curve indicates the fitted 𝑞NLO (see Table 4.2) with the 2𝜎 range shown by
the grey shaded areas, which agrees very well with the theoretical prediction indicated by the red dotted line.

model for the calculation of ¤𝜔LT,A and the mass loss contribution to ¤𝑃b. For periastron advance ¤𝜔,
the uncertainty from the MOI is still smaller than that from MeerKAT observations (see Eq. (4.14)
and Table 4.2). Therefore, based on the EOS constraint from Dietrich et al. (2020), we fix the MOI to
𝐼A = 1.28 × 1045g cm2 in our fit. Table 4.3 shows the mass measurements obtained using the DDGR
model. The results are fully consistent with the measurements derived from the DDS model, with smaller
uncertainties in 𝑚B and 𝑀 .

Following Kramer et al. (2021a), one could test the agreement of 𝑟 in GR by comparing 𝑚 (𝑟)
B = 𝑟/𝑇⊙ =

1.2512(33) M⊙ (cf. Table 4.2) with the companion mass determined here, which gives

𝑟
obs/𝑟GR

= 1.0019(26) . (4.17)

This leads to a 5.3 × 10−3 (95% confidence) test of GR.

4.5 Studying NLO signal propagation effects

Because the Double Pulsar system is nearly edge-on to our line of sight (LOS, see 𝑖 in Table 4.2), it is
ideal for measuring signal propagation effects caused by the gravitational field of the companion near
superior conjunction. The leading-order expression Eq. (4.1) is no longer sufficient for describing the
signal propagation in the Double Pulsar. Such a model would result in significant residuals near superior
conjunction when aggregating residuals in the orbital phase, as shown in Figure 4.5. These residuals
agree very well with the expected NLO contributions discussed in Section 4.3, which are shown by the
red curve. The significance of the NLO corrections can be tested by scaling these corrections collectively
by a common factor 𝑞NLO (cf. Eqs. 4.9-4.11; 𝑞NLO=1 in GR) and fitting for it. We find, with the trimmed
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(a) (b)

Figure 4.6: Left: Example of one eclipse observation at UHF band, plotted in intensity against orbital phase 𝜓 and
pulse phase. The intensity modulation occurs when pulsar A is eclipsed by the magnetosphere of pulsar B. Each
integration is a sum of eight pulses. When plotting, the discontinuities between recordings are patched with the
previous sub-integration. Right: Same as for Figure 4.6(a), but masking out the regions without pulses (blocked
by the magnetosphere of pulse B). The dashed red lines indicate the orbital phase bins used in Figures 4.7 and 4.8.

data set,

𝑞NLO = 0.999(79) , (4.18)

which has surpassed the 16-yr result by 1.65 times with only ∼3 yr of data, thanks to the much improved
precision offered by MeerKAT.

Following the definition of 𝑞NLO in Section 4.3, a fit for this parameter involves two aspects of gravity:
a 1.5PN correction of the Shapiro delay due to the movement of the companion 𝛿Λret

𝑢 , and corrections
related to the signal deflection in the gravitational field of the companion 𝛿Λlen

𝑢 and 𝛿 londef
A . Even though

these contributions cannot be tested individually in a simultaneous fit because of their similarity, one can
still test one at a time while keeping the other one fixed (cf. Kramer et al., 2021a). We find

𝑞NLO[deflection] = 1.00(15) , (4.19)
𝑞NLO[retardation] = 1.00(17) . (4.20)

4.5.1 Searching for profile variation at eclipse

The lensing correction to the aberration delay may not only lead to a shift in time in the longitudinal
aspect but can also result in a change of the co-latitude of the emission direction towards Earth, namely
the latitudinal deflection delay. This would cause profile variations as the LOS cuts a different region
of the pulsar beam (Rafikov & Lai, 2006a; Rafikov & Lai, 2006b). An illustration of the latitudinal
deflection effect is shown in the right panel of Figure 4.3. Various analyses have confirmed that pulsar A
is an orthogonal rotator (Guillemot et al., 2013; Ferdman et al., 2013; Kramer et al., 2021b), meaning
that the main pulse and the interpulse come from opposite magnetic poles. Therefore, we do not expect
shifts of pulse components in phase, as discussed in Rafikov & Lai (2006b), based on the (incorrect)
assumption of an aligned rotator suggested by P. Demorest et al. (2004).

The profile variation is expected to be maximum at the superior conjunction and symmetric around
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Figure 4.7: Profile variation with respect to orbital phase. Left: Black lines indicate the integrated profile of
L-band data summed from 25 eclipses for orbital phases 89° < 𝜓 < 91° with an interval of Δ𝜓 = 0.25°. The
baseline of the profile is placed at the centre of each interval, and the numbers on the right side of the profiles (np)
indicate the estimated upper limit for the number of pulses in that interval. The red curves indicate the reference
(standard) profile integrated over a 2-hr observation excluding the eclipse part. Right: Residuals of the added
profile with respect to the reference profile.
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Figure 4.8: Same as for Figure 4.7, but for the UHF-band data summed from 37 eclipses.
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𝜓 = 90° (retardation corrected). This study requires high time resolution, for which we use the search
mode data. We select the data that are near the eclipses and fold them into single pulses using tempo
polyco (with TSPAN=1min). Data are then combined, cleaned, and polarisation calibrated before
integrated into total intensity and averaged in frequency. As the single pulses are still very weak, we
average over every eight pulses to increase the signal-to-noise ratio (S/N). An example of eclipse data is
shown in Figure 4.6(a).

In order to get a high S/N profile, we first mask the regions where pulsar A’s emission is blocked
by pulsar B (see Figure 4.6(b)) and split the data into orbital phases with a step of Δ𝜓 = 0.25° for
89° < 𝜓 < 91°. Then for each phase interval, we integrate pulses from all observations of a given band
(L or UHF) together to increase the S/N. The resulting profiles are shown in Figure 4.7 for the L-band
data and in Figure 4.8 for the UHF-band data, which are summed from 25 and 37 eclipses respectively.
The difference between the added profiles at the eclipse and a 2-hr integrated profile at the non-eclipse
part of the orbit is insignificant. The subtle residual structures in these figures can result from interstellar
medium effects (DM variation and scintillation) based on our simulations. Therefore, we conclude that
the current data are not (yet) sensitive to profile variations caused by the latitudinal aberration delay, or
are not significant in the region that is seen by our LOS. These profiles will be used in a subsequent
study on the geometry of the system.

4.5.2 Simulation for latitudinal deflection delay

To investigate whether the deflection delay caused by latitudinal deflection is measurable from pulsar
timing, we perform a simulation based on a simple emission model, which consists of a set of circular
cones. Following Doroshenko & Kopeikin (1995) and Rafikov & Lai (2006b), the latitudinal deflection
delay for pulsar A can be written as

𝛿
latdef
A = −D cos 𝑖 sin (𝜓 + 𝛿𝜓ret)

(Λ𝑢 + 𝛿Λ
ret
𝑢 ) tan 𝜒0

, (4.21)

where 𝜒0 is the angle between the arc connecting the LOS and spin axis and the arc connecting LOS
and magnetic axis. It should be noted that Eq. (4.21) is based on the approximation of Doroshenko &
Kopeikin (1995) for the deflection angle, and therefore assumes that the impact parameter is (sufficiently)
large compared to the Einstein radius. While this is sufficient, at least until full SKA becomes operational,
we present an improved description further below in Section 4.5.4.

We include this deflection time delay in our test model assuming 𝜒0 = 45° (i.e. a relatively large
latitudinal deflection delay) and scale it with a factor 𝑞 latdef .12 We simulate high-precision TOAs using
this test model and fit for the scaling factor. The pre-fit residuals show an advance signature with an
amplitude of −2.8 `s and symmetric to 𝜓 = 90°, which is in a similar shape to Shapiro delay but with
the opposite sign and a smaller amplitude. However, after fitting for Shapiro parameters, the signature
gets mostly absorbed and leaves residuals below 42 ns at superior conjunction.

4.5.3 Prospects of lensing measurement

Even though the retardation and deflection effects can be tested separately while keeping the other
one fixed, as shown in Eqs. (4.19) and (4.20), measuring the lensing correction to Shapiro delay 𝛿Λlen

𝑢

12 It should be noted that 𝜒0 is not a constant, but our purpose here is to get a feeling for the measurability of the effect in timing
rather than a proper account of the effect, which requires knowledge of the latitudinal variation in the emission pattern of the
pulsar. Furthermore, as discussed at the beginning of Section 4.5.1, the beam geometry adopted by Rafikov & Lai (2006b) is
not the correct one anyway.
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Figure 4.9: (a) Lensing simulation: pre-fit residual plotted against orbital phase 𝜓. Data displayed here are centred
on 𝜔 = 180° and span a decade. The scattering at the lower end of the curve is due to the precession of periastron.
(b) Lensing simulation: post-fit residual plotted against orbital phase 𝜓.

independently is challenging. As already pointed out by Kramer et al. (2021a), this effect is difficult
to observe because of its strong covariance with 𝑠, or equivalently 𝑧𝑠. Our simulation also confirms
that the lensing signature can be mostly absorbed by 𝑧𝑠 in timing due to its symmetry with respect
to conjunction. For demonstration purposes, we simulate 1-ns TOAs, which model all NLO signal
propagation contributions, then keep the retardation and deflection delay fixed in the model and fit for the
scaling factor attached to the lensing correction, 𝑞 len (corresponding to 𝑞NLO in Eq. (4.10)). Figure 4.9(a)
shows the residuals when lensing correction is not taken into account, leading to a reduced propagation
time of about 850 ns as a result of Fermat’s principle. However, after fitting for 𝑧𝑠, the lensing signature
gets absorbed and leaves the residuals to be below 70 ns (Figure 4.9(b)), making a detection with the
current timing precision certainly impossible.

To investigate whether lensing can be measured separately in the near future, we simulate TOAs for
MeerKAT, MeerKAT extension, and the first phase of the SKA (SKA 1) until 2030 based on similar
assumptions made in Hu et al. (2020). In addition, as the TOA precision reduces significantly due to
the intermittent signals during the eclipse (see Figure 4.6(a)), we account for this in our simulations
by increasing the uncertainty of these TOAs based on MeerKAT observations. As a simple estimate,
we assume GR and perform the simulation using the modified DDGR model with a grid fit to 𝑞 len. If
lensing is measurable, the value of 𝑞 len should be close to one. However, it turns out that with the
observed and simulated data from 2019 to 2030, the uncertainty of 𝑞 len is still larger than one.

To further push the precision, we assume that an instrument will be available in the future that is
capable of providing a timing accuracy one order of magnitude better than that of the SKA 1 (i.e. 100 ns
for an integration time of 30 s), for example, a future full SKA. As a rough estimate, here we only
consider radiometer noise and ignore any other noise sources, such as jitter noise or scintillation noise.
The uncertainty of 𝑞 len against the time span of the simulated data is shown in Figure 4.10. With such
precision, one would expect to get a 5-𝜎 test of lensing with ∼ 4 yr of data.

From the simulation, we also obtain an estimated uncertainty for the common factor of NLO
contributions 𝑞NLO in the near future. Assuming no jitter noise, with MeerKAT and the SKA 1, we can
expect a 50-𝜎 detection by 2030.
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Figure 4.10: Uncertainty of factor 𝑞 len as a function of time span for the simulated data assumed to be ten times
better than the SKA 1.

4.5.4 Improvements in the timing model for ≲ 50 ns precision

Equations (4.8) and (4.21) are based on the approximation for the signal deflection used by Doroshenko
& Kopeikin (1995). As discussed in detail in Kramer et al. (2021a), this is still sufficient for the analysis
of current timing data. For that reason, the analysis in this paper is still based on Doroshenko & Kopeikin
(1995), which (including corrections for retardation) is already part of the tempo distribution. However,
in the future we can expect to obtain a timing precision of better than ∼ 50 ns near conjunction (±1◦), so
that an improved treatment of the deflection is required. In a series of papers, Rafikov and Lai used the
standard lensing equation to treat the signal propagation in the Double Pulsar near conjunction (Lai &
Rafikov, 2005; Rafikov & Lai, 2006a; Rafikov & Lai, 2006b). This allowed them to drop the assumption
that the impact parameter is much larger than the Einstein radius. The standard lensing equation, however,
is based on the assumption of small angles (see e.g. Schneider et al. 1992). Therefore, strictly speaking,
Lai and Rafikov’s calculations are only valid near conjunction. Similar to the calculations of I. I. Shapiro,
1967 and Ward (1970), Wucknitz (2008) studied the deflection of photons in the gravitational field of
a ‘point mass’ for general lensing scenarios not limited to regions close to the optical axis. Based on
these results, we give an analytic expression for the signal deflection that is valid for the whole orbit, and
recovers the calculations by Lai and Rafikov near conjunction, and those of Doroshenko & Kopeikin
(1995) if the impact parameter is large compared to the Einstein radius.

In the following paragraphs, Θ is the angle between ®𝑟AB′ and the direction towards the observer, where
®𝑟AB′ denotes the vector from the position of pulsar A at emission to the (retardation corrected) position of
pulsar B (the underlying geometry for our calculations is illustrated in Figure 4.11). The deflection ΔΘ

of A’s radio signal by pulsar B can be obtained from Eq. (24) in Wucknitz (2008), with the replacements
𝛼 → ΔΘ, \ → Θ + ΔΘ, and 𝑚 → 𝛼

2
E, where the quantity 𝛼E is the angle corresponding to the Einstein

radius, and is given by

𝛼E =
2
𝑐

√︄
𝐺𝑚B
|®𝑟AB′ | ≪ 1 . (4.22)
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Figure 4.11: Schematic picture of the lensing geometry as used in Section 4.5.4. B’ denotes the retardation corrected
position of B (cf. Klioner & Kopeikin 1992; Kopeikin & Schäfer 1999). In principle there is a second photon path
towards the observer (below B’). However, for the Double Pulsar, this signal is not only significantly weaker, but
the path also comes so close to pulsar B that the photons are absorbed by the plasma-filled magnetosphere of B (cf.
Lai & Rafikov 2005; Rafikov & Lai 2006b).

This is the maximum value ΔΘ can assume. The distance 𝐷d in Wucknitz (2008) corresponds to |®𝑟AB′ |.13

Consequently, one obtains

ΔΘ sin(Θ + ΔΘ) − 𝛼
2
E

2
[1 + cos(Θ + ΔΘ)] = 0 . (4.23)

Since ΔΘ ≤ 𝛼E ≪ 1 for all angles of Θ, we can expand the equation above in ΔΘ while keeping terms
only up to order 𝛼2

E. This leads to a quadratic equation:

ΔΘ
2 + ΔΘ sinΘ − 𝛼

2
E

2
(1 + cosΘ) ≃ 0 , (4.24)

which has, under the assumptions made, one solution:

ΔΘ ≃ 1
2

(√︃
sin2

Θ + 2𝛼2
E(1 + cosΘ) − sinΘ

)
. (4.25)

For Θ ≪ 1 this agrees with the standard lensing equation (see e.g. Schneider et al. 1992).

The angle Θ ∈ [0, 𝜋] needs to be computed from the retardation-corrected orbital phase via
cosΘ = sin 𝑖 sin(𝜓 + 𝛿𝜓ret). The longitudinal and latitudinal deflection delay are given by

𝛿
londef
A =

ΔΘ

2𝜋a
cos(𝜓 + 𝛿𝜓ret)

sinΘ sin 𝑖
, (4.26)

𝛿
latdef
A = − ΔΘ

2𝜋a
sin(𝜓 + 𝛿𝜓ret)

sinΘ tan 𝑖 tan 𝜒0
, (4.27)

respectively (cf. Eqs. (10) and (24) in Rafikov & Lai (2006b), with Z = 𝜋−𝑖 and [ = −𝜋/2 spin of A aligned
with orbital angular momentum). If Θ is much larger than 𝛼E, one has ΔΘ ≃ 𝛼2

E(1 + cosΘ)/(2 sinΘ).
This corresponds to the approximation of Doroshenko & Kopeikin (1995) for the deflection angle, and
one recovers Eqs. (4.8) and (4.21).

13 We note that the 𝐷d in Eq. (24) of Wucknitz (2008) is a typo and should not be there since it is already part of the definition
of 𝑚.
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4.6 Discussion

In this paper, we have presented results from 3-yr timing observations of the Double Pulsar using the
MeerKAT telescope, with a specific focus on studying higher-order signal propagation effects in the
gravitational field of the companion. In order to minimise the effects from profile evolution and DM
variation, we used frequency-dependent 2D templates to generate TOAs and a DM model to correct
dispersive delay in TOAs.

Thanks to its high inclination and orbital compactness, the Double Pulsar is a unique pulsar system for
testing NLO signal propagation effects in strong fields. The significantly increased precision offered
by MeerKAT permits an independent verification of NLO signal propagation effects and has already
surpassed the 16-yr result with only ∼3 yr of data. In our analysis, the Shapiro shape parameter 𝑠 has
been improved by a factor of two compared to the previous result (Kramer et al., 2021a), which also
leads to a better mass measurement. The Shapiro range parameter 𝑟 agrees with GR at 5.3 × 10−3

(95% confidence). The precision of the measurement of NLO signal propagation effects 𝑞NLO has been
improved by a factor of 1.65. In this work, we investigated the potential profile variation due to latitudinal
deflection delay and the possibility of measuring lensing correction to the Shapiro delay, which has never
been studied in detail before in pulsar analysis. With the current MeerKAT data, we found little evidence
of profile variation at superior conjunction. It could be that the profile variation is not significant at the
region we are looking at, or our current data are not sensitive enough to identify it. We also performed
simulations on latitudinal deflection delay based on a simple emission model and found it unlikely to be
detected because of its correlation with Shapiro delay. As for the lensing correction 𝛿Λlen

𝑢 , we found it
can be mostly absorbed by the Shapiro shape parameter. Our simulation showed that lensing is unlikely
to be measured separately from timing before the full SKA or similarly powerful instruments, and may
then be measurable with a few years of timing observations if noises such as phase jitter and scintillation
do not limit our precision.

However, our analysis also showed that adding certain epochs has a significant impact on the measured
Shapiro parameters, but not on 𝑞NLO. This could be due to the fact that the phase predicted using the
polyco scheme is particularly worse at the superior conjunction, which caused the discrepancies in the
Shapiro parameters. Comparison of polyco with different TSPAN values showed residuals oscillating
near the superior conjunction, and we may already be limited by the precision of polyco scheme. Of
course, there may exist other unknown systematic errors in the data.

To support our timing analysis and study of profile variations at eclipse due to latitudinal deflection,
we also checked profiles from all observations. We found variations in the total profile from epoch to
epoch. The differences in the profiles are more prominent at lower frequencies and broadband. Our
simulation suggested that these profile variations are likely to be associated with DM variation and
scintillation. Even though we have sub-banded data into 16/32 frequency bands and used 2D templates,
profile variations may still have an impact on timing. The study of profile variations will be continued in
a subsequent work to improve the constraint on the geometry of the system.

Moreover, although not discussed in this paper, we found evidence of red noise in the spectrum of
timing residuals with an amplitude two orders of magnitude larger than for typical millisecond pulsars.
If not taken into account, it may strongly affect astrometric parameters, as well as influence binary
parameters, according to our simulations. This makes it more difficult to combine the 3-yr MeerKAT
data set and the 16-yr data set. Given that the timing precision of the former significantly outperforms the
latter, the weighting of MeerKAT data already exceeds the 16-yr data and can dominate noise modelling.
For the purpose of this paper, we did not include 16-yr data because of their minor contribution to
the 𝑞NLO measurement (∼10% improvement). However, for studying secular relativistic effects, an
appropriate noise modelling may be required to combine these data. We will investigate this in further
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Table 4.4: Comparison of the MeerKAT timing precision 𝜎RMS assumed in Hu et al. (2020) and from real
observations with L-band and UHF-band receivers, scaled to a 5-min integration time over the full bandwidth.

Telescope / receiver Reference 𝜎RMS (`s)
MeerKAT L band Hu et al. (2020) 1.06
MeerKAT L band this work 0.90
MeerKAT UHF band this work 0.55

ongoing studies.
In the future, continuing observations with MeerKAT and the SKA will further improve the precision

of tests on signal propagation effects, and a 50-𝜎 detection of 𝑞NLO can be expected by 2030. For that,
we have also provided an improved analytical description of the signal propagation in the Double Pulsar.
Furthermore, as demonstrated by Hu et al. (2020), the precision of secular relativistic effects will also
be greatly improved and will eventually enable the measurement of the MOI of pulsar A and the NLO
gravitational wave damping in the near future. The timing precision of the MeerKAT data used in this
work is even better than that assumed in Hu et al. (2020), which is based on early L-band data from
MeerKAT (see Table 4.4). This makes their predictions conservative and we are likely to achieve even
better measurements with future observations.

Acknowledgements

We acknowledge Kuo Liu for helpful discussions on data processing and analysis, and Olaf Wucknitz
for carefully reading the manuscript and discussions on gravitational lensing which were particularly
helpful in Section 4.5.4. The MeerKAT telescope is operated by the South African Radio Astronomy
Observatory, which is a facility of the National Research Foundation, an agency of the Department
of Science and Innovation. MeerTime data is housed on the OzSTAR supercomputer at Swinburne
University of Technology. HH is a member of the International Max Planck Research School for
Astronomy and Astrophysics at the Universities of Bonn and Cologne. This work is supported by the
Max-Planck Society as part of the “LEGACY” collaboration with the Chinese Academy of Sciences
on low-frequency gravitational wave astronomy. Pulsar research at UBC is supported by an NSERC
Discovery Grant and by the Canadian Institute for Advanced Research. Part of this work has been funded
using resources from the research grant “iPeska” (P.I. Andrea Possenti) funded under the INAF national
call Prin-SKA/CTA approved with the Presidential Decree 70/2016.

70



CHAPTER 5

Application of a new timing model for testing
Damour–Esposito-Farèse gravity

Parts of the work presented in this chapter are included in the following publication:
• A. Batrakov, H. Hu, N. Wex, P. C. C. Freire, V. Venkatraman Krishnan, M. Kramer, Y. J. Guo,

L. Guillemot, J. W. McKee, I. Cognard, and G. Theureau, A new pulsar timing model for scalar-
tensor gravity: with applications to PSR J2222−0137 and pulsar-black hole binaries, Astronomy &
Astrophysics, 2023, DOI: 10.1051/0004-6361/202245246

As the second author of this paper, I am responsible for simulating the timing data for PSR J2222−0137
and pulsar-black hole systems as applications of the newly developed timing model for scalar-tensor
gravity. I wrote Sections 5.1, 5.2 and 6.1 of this paper and provided discussions and edits as important
contributions to the paper. In this chapter, I will briefly introduce the necessary background for this new
timing model and present my simulation work (including details that are not in the paper), and discuss
results based on these simulations. More details can be found in the above paper, which is included at
the end of the dissertation.

5.1 Introduction

Einstein’s general relativity (GR) is a geometrical theory of gravity, building upon a rank-2 tensor field, the
metric of the spacetime. To date, predictions by GR has been successfully tested in various experiments,
in and beyond the Solar System (Will, 2014). Presently it is regarded as the standard theory of gravitation.
Despite the broadly acknowledged success of GR, many alternative theories have been proposed which
predict deviations from GR that can not be tested in the weak-field regime of gravity. Among these,
the scalar-tensor gravity (STG) theories are probably the best studied alternatives to GR. Like GR, the
STG theories are metric theories of gravity, but have additional fields, for instance a scalar field 𝜑. A
theory that for many years was seen as the only natural competitor of GR is Jordan-Fierz-Brans-Dicke
(JFBD) gravity (Jordan, 1955; Fierz, 1956; Jordan, 1959; Brans & Dicke, 1961). This theory contains
one free parameter, the Brans-Dicke parameter 𝜔BD, which is tightly constrained by timing observations
of a pulsar in a triple star system (Archibald et al., 2018; Voisin et al., 2020). For the scope of this
work, we focus on the mono-scalar-tensor theory 𝑇1(𝛼0, 𝛽0) of Damour–Esposito-Farèse (DEF) gravity
(Damour & Esposito-Farèse, 1992; Damour & Esposito-Farèse, 1993; Damour & Esposito-Farèse, 1996).
Besides the spacetime metric, it contains a massless scalar field 𝜑 with the asymptotic value 𝜑0 at
spatial infinity. The theory parameters 𝛼0 and 𝛽0 define the two-dimensional space of DEF gravity. GR
corresponds to the case where 𝛼0 = 𝛽0 = 0, and JFBD gravity corresponds to the case that 𝛽0 = 0 and
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𝛼
2
0 = (2𝜔BD + 3)−1. Note that for all 𝛽0, 𝛼0 is well constrained by the Solar System experiments with

Cassini Spacecraft: |𝛼0 | ≲ 0.003 (Bertotti et al., 2003). The so-called “gravitational form factors” of a
body 𝑖 with mass 𝑚𝑖 and moment of inertia 𝐼𝑖 that enter the PK parameters in DEF gravity are

𝛼𝑖 ≡
𝜕 ln𝑚𝑖

𝜕𝜑0

����
�̄�𝑖

, 𝛽𝑖 ≡
𝜕𝛼𝑖

𝜕𝜑0

����
�̄�𝑖

, 𝑘𝑖 ≡ −
𝜕 ln 𝐼𝑖
𝜕𝜑0

����
�̄�𝑖

, (5.1)

where the baryonic mass �̄�𝑖 is kept fixed when taking the partial derivatives. The parameter 𝛼𝑖 describes
the effective coupling strength of the body to the scalar field, and the parameter 𝛽𝑖 describes the derivative
of the effective coupling strength in the scalar field. The last parameter 𝑘𝑖 describes the field dependence
of 𝐼𝑖 . For a weakly self-gravitating body, such as a white dwarf (WD), the gravitational form factors can
be approximated by their weak-field expressions:

𝛼WD ≃ 𝛼0, 𝛽WD ≃ 𝛽0, 𝑘WD ≃ 0 . (5.2)

In the case of a neutron star (NS), if its mass exceeds the critical mass, the effective scalar coupling can
reach the order unity (𝛼NS ≃ O(1)) due to spontaneous scalarization, even if |𝛼0 | << 1. The critical
mass depends on 𝛽0 and the equation of state (EOS) of dense matter. For black holes (BHs), they are
not scalarized in DEF gravity as a consequence of the “no-hair” theorem (Hawking, 1972; Damour &
Esposito-Farèse, 1992), therefore

𝛼BH = 0, 𝛽BH = 0, 𝑘BH = 0 . (5.3)

5.2 Dipolar gravitational wave damping
Neutron stars and white dwarfs are quite different in terms of compactness. This asymmetry in
compactness makes PSR-WD systems ideal laboratories for testing gravity theories that violate the strong
equivalence principle (Will, 2014; Wex, 2014; Wex & Kramer, 2020). A common consequence of such
alternative theories is the emission of dipolar gravitational waves (GWs). Unlike in GR, the leading
contributions in the loss of orbital energy due to GWs are not from quadrupolar radiation but from
dipolar radiation, which enters the equation of motion already at the 1.5 post-Newtonian (PN) level (i.e.
order 𝑣3/𝑐3). The observed orbital period derivative consists of many contributions, here we consider

¤𝑃obs
b = ¤𝑃GR

b + ¤𝑃D
b + ¤𝑃Gal

b + ¤𝑃Shk
b . (5.4)

The term ¤𝑃GR
b denotes the contribution due to GW damping predicted by GR, which to leading order enters

the equation of motion at the 2.5PN level (i.e. quadrupolar GWs) and is given by Eq. (2.24). In specific
cases, one may need to consider other intrinsic contributions, such as the spin-down mass loss of pulsar
or companion (e.g. in the Double Pulsar, see discussions in Section 3.4.3), the next-to-leading-order GW
damping (3.5PN, see Section 3.4.1), tidal effects, and a possible temporal variation of the gravitational
constant𝐺. Besides, one also needs to consider external contributions due to the relative motion between
pulsar binary barycentre and the Solar System barycentre, i.e., Galactic differential acceleration ¤𝑃Gal

b and
Shklovskii effect ¤𝑃Shk

b . Calculations of these kinematic contributions can be found in Section 3.4.2. For
DEF gravity, one finds the contribution of the dipolar radiation follows (Damour & Esposito-Farèse,
1992)

¤𝑃D
b = −2𝜋𝑛b

𝐺∗

𝑐
3

𝑚p𝑚c

𝑚p + 𝑚c

1 + 𝑒2
T/2

(1 − 𝑒2
T)

5/2 (𝛼p − 𝛼c)
2 + O(𝑣5/𝑐5) , (5.5)
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where 𝑛b = 2𝜋/𝑃b is the orbital frequency, 𝑐 is the speed of light in vacuum, and 𝑒T is the time eccentricity
used as the eccentricity parameter in the Damour-Deruelle (DD) timing model (Damour & Deruelle,
1986). 𝑚p and 𝑚c are the masses of the pulsar and the companion. 𝐺∗ is the bare gravitational coupling
constant and is related to the Newtonian gravitational constant 𝐺 (as measured by a Cavendish-type
experiment) via 𝐺 = 𝐺∗(1 + 𝛼2

0). 𝛼p and 𝛼c are the effective scalar couplings of the pulsar and the
companion, respectively. One can see that ¤𝑃D

b depends strongly on the difference in the effective scalar
coupling of two bodies, i.e. 𝛼p − 𝛼c. In addition to the dipole contribution, there are also monopole and
quadrupole contributions related to the scalar field that enter at 2.5PN level O(𝑣5/𝑐5). Usually these
contributions are negligible even when compared to the GR contribution ¤𝑃GR

b . Their expressions can be
found in Damour & Esposito-Farèse (1992).

In order to test dipolar GWs, one needs to measure other contributions in Eq. (5.4) with a good
precision, as

¤𝑃D
b = ¤𝑃obs

b − ¤𝑃GR
b − ¤𝑃Gal

b − ¤𝑃Shk
b . (5.6)

The GR contribution ¤𝑃GR
b can be calculated using mass measurements and orbital parameters measured

from timing. To account for kinematic contributions ¤𝑃Gal
b and ¤𝑃Shk

b , good knowledge of Galactic
gravitational potential and distance and proper motion of the pulsar are required.

5.3 DDSTG: a new pulsar timing model for scalar-tensor gravity

In Batrakov et al. (2023), a new timing model “DDSTG” has been developed as a direct extension
of the DDGR model (Taylor & Weisberg 1989, see also Section 4.4.2) for STG theories. It has been
implemented into an independent version of the standard timing software tempo (D. Nice et al., 2015).
With the DDSTG model, four new parameters need to be provided in the ephemeris file: the theory
parameters {𝛼0, 𝛽0}, the EOS ID (e.g. MPA1), and the type of the companion {NS, WD, BH}.1 The DD
model fits for all PK parameters and could suffer strong correlations between parameters. In contrast,
the DDSTG model works in a similar way to the DDGR model: it fits directly for the total mass of the
system 𝑚tot and the companion mass 𝑚c from timing data and calculates the five PK parameters for an
assumed theory based on these masses, which then breaks the correlation between PK parameters. With
the measured masses, tempo reads the gravitational form factors {𝛼𝑖 , 𝛽𝑖 , 𝑘𝑖} for the selected EOS from
pre-calculated 3D grids. As it is computationally expensive to calculate the neutron star structure for a
given mass on the fly, 3D grids of gravitational form factors have been pre-calculated for eleven EOSs
that are not ruled out by the maximum mass of neutron stars, i.e. 𝑀max > 2M⊙. Once {𝛼𝑖 , 𝛽𝑖 , 𝑘𝑖} are
known, the model computes PK parameters according to their expressions in DEF gravity (see Damour
& Esposito-Farèse, 1992; Damour & Esposito-Farèse, 1996). Details of the DDSTG model are explained
in Batrakov et al. (2023).

Binary pulsars with high asymmetry in compactness, such as PSR-WD systems and PSR-BH systems,
are particularly interesting for constraining STG theories, as these systems are expected to lose orbital
energy at a much higher rate due to dipolar GW emission (Will, 1993; Damour & Esposito-Farèse, 1996;
Damour & Esposito-Farèse, 1998). As a demonstration of the DDSTG model, we apply this model to
existing and simulated data of the PSR-WD system J2222−0137 in Section 5.4 and to the simulated data
of hypothetical PSR-BH systems in Section 5.5. In all these studies, we assume the stiff EOS MPA1
(Müther et al., 1987) for the pulsar, which allows a maximum neutron star mass of 2.461 M⊙. Such a
stiff EOS generally yields more conservative limits in most parts of DEF gravity parameter space (see

1 Note, “WD” can be selected for any weakly self-gravitating body, hence also including a non-degenerate companion such as
a main-sequence star.
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Table 5.1: Effective diameter of telescopes �eff , observing bandwidth, and TOA uncertainty 𝜎TOA of
PSR J2222−0137 used in the simulations. All information are based on the L-band data from real obser-
vations, and are scaled to 15-min integration time over the full bandwidth.

Telescope �eff (m) Bandwidth (MHz) 𝜎TOA (`s)
Effelsberg 100 200/400 2.67
Nançay 94 512 2.02
Lovell 76 400 3.66
MeerKAT 108 856 0.84
FAST 300 500 0.12

however Shibata et al. 2014; Shao et al. 2017; Zhao et al. 2022).

5.4 Application to PSR J2222−0137, a pulsar-white dwarf binary

PSR J2222−0137 is a 32.8 ms pulsar discovered in the Green Bank Telescope (GBT) 350 MHz
drift-scan pulsar survey (Boyles et al., 2013). The pulsar is accompanied by a heavy WD with mass
𝑚c = 1.319(4)M⊙, forming a binary system with an orbital period of 2.4 days (Guo et al., 2021). The
pulsar has an intermediate mass of 𝑚p = 1.831(10)M⊙ (Guo et al., 2021), which helps to constrain
spontaneous scalarization of DEF gravity, yielding strong limits on this highly non-linear phenomenon
(Shao et al., 2017; Zhao et al., 2022). The asymmetry in its compactness makes it a useful tool to
constrain dipolar GWs which are predicted in DEF gravity. As one of the closest pulsars known, it has an
excellent timing precision with a distance well measured by VLBI (see Deller et al. 2013). A significant
Shapiro delay and the rate of periastron advance ¤𝜔 has been detected in this system, which yields precise
mass measurements and ∼ 1% test of GR for the Shapiro delay (Guo et al., 2021). Because of these
properties, PSR J2222−0137 allows a robust test of dipolar GWs.

Since 2012, PSR J2222−0137 has been regularly observed with the three largest European Radio
Telescopes: the 100-m Effelsberg radio telescope (EFF), 94-m Nançay Radio Telescope (NRT), and
76-m Lovell telescope (LT). For convenience, we refer to the combination of these telescopes as “3ERT”.
Based on the GBT and 3ERT follow-up data from 2009 to 2021, Guo et al. (2021) obtained a precise
measurement of the orbital period derivative ¤𝑃b. After accounting for contributions from GR and
kinematic effects, Guo et al. (2021) found an upper limit |𝛼p − 𝛼c | < 0.005 (95% C.L.).

In addition, PSR J2222−0137 has been observed with the MeerKAT telescope since September 2019
(Kramer et al., 2021b) and with the Five-hundred-meter Aperture Spherical radio Telescope (FAST)
since October 2020. The timing precision of PSR J2222−0137 is much improved with these telescopes.
To estimate how the timing parameters of this system will improve in the near future, in the next section
we simulate realistic timing data, i.e. the time of arrivals (TOAs), based on the timing properties of these
telescopes.

5.4.1 Simulation for “3ERT”, MeerKAT, and FAST

We simulate TOAs for PSR J2222−0137 spanning 10 years from 2021 to 2030 based on the TOA
precision obtained with 3ERT (EFF+NRT+LT), FAST and MeerKAT, where we take the median TOA
uncertainties (𝜎TOA) from Effelsberg, Nançay, and Lovell data sets (Guo et al., 2021) as well as the
ongoing observations from MeerKAT and FAST. These simulations are conservative since they assume
no improvement in the existing capabilities of these telescopes.
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Figure 5.1: Predicted uncertainties of proper motion in right ascension (left) and declination (right) with simulated
data from 3ERT (blue), MeerKAT (MK, green), and FAST (red) in combination with the existing data. The grey
line indicates the measurement from VLBI observations (Deller et al., 2013) and the vertical dashed line indicates
the start of simulations.

For TOAs from FAST, the radiometer noise reduces significantly thanks to its large collecting area,
while the jitter noise becomes a limitation of timing precision. We find, however, that increasing the
integrating time to 15 min can largely reduce the jitter noise and eliminate its contribution to the timing
precision, as it scales with the number of averaged pulses 𝑁𝑝 as 𝜎J ∝ 1/

√︁
𝑁𝑝 (Lorimer & Kramer, 2004).

Therefore, the median TOA uncertainty from 15-min TOAs is adopted in the simulation.
Table 5.1 lists the telescopes assumed in our simulation, with the information on their effective

diameter �eff , observing bandwidth, and TOA uncertainties at L-band. All TOA uncertainties are scaled
to an integration time of 15 min over the full bandwidth. For each telescope, we assume a full orbit
observation (∼60 h) per year, and split the observation into monthly cadence, i.e. 5 h per month,2 to
allow a good estimation of the timing parallax (which requires a good coverage of the Earth’s orbit). This
is important for the estimation of the uncertainties in the external ¤𝑃b contributions, which is discussed in
the next section.

The simulation is performed using the program developed in Hu et al. (2020). First, we simulate TOAs
based on the above assumptions, and add the TOAs from Effelsberg, Nançay, and Lovell telescopes
together as “3ERT” to be compared with MeerKAT and FAST. For each group, the simulated TOAs are
combined with the existing TOAs in Guo et al. (2021). Then we adjust the TOAs to perfectly match with
the parameters published in Guo et al. (2021), and add a Gaussian white noise to each TOA based on
its 𝜎TOA. Finally, we fit for the timing parameters and obtain their uncertainties, among which ¤𝑃b and
timing parallax are of most important here. The whole process is done with the DDSTG model, with the
DD model as a comparison.

5.4.2 Contributions in the change of orbital period ¤𝑷b

The predicted uncertainties of the observed ¤𝑃b with time are shown in Figure 5.3, where the blue, green
and red lines denote the results based on the simulated data from 3ERT, MeerKAT and FAST, respectively.
As discussed in Section 5.2, we also need to account for external effects caused by Galactic acceleration

2 This may be unrealistic as telescopes may be oversubscribed. However, we found, e.g. for FAST, that with a more realistic
assumption of 30 minutes per month, the uncertainty in the observed ¤𝑃b is only 5% worse than observing 5 hours per month
after 10-yr timing.
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Figure 5.2: Same as Figure 5.1 but for timing parallax 𝜋𝑥 . The simulated FAST data in combination with existing
data is expected to yield a better measurement than the VLBI parallax (Deller et al., 2013) from 2022 onwards.

and Shklovskii effect: ¤𝑃ext
b = ¤𝑃Gal

b + ¤𝑃Shk
b . The uncertainties of these effects depend on our knowledge of

the Galactic gravitational potential and the measurement errors in the proper motion and distance of the
pulsar, which are expected to become more precise in the future with observations. For proper motion
and distance of the pulsar 𝑑, we can estimate their future uncertainties from timing with our simulations.
The results are shown in Figure 5.1 for the proper motion of the pulsar in right ascension `𝛼 (left panel)
and declination `𝛿 (right panel), and in Figure 5.2 for timing parallax 𝜋𝑥 (mas) = 1/𝑑 (kpc). With the
simulated FAST data, the uncertainty of the timing parallax is expected to be smaller than that of the
VLBI parallax measurement (Deller et al., 2013) from 2022.

For the Shklovskii effect, the current proper motion measurements are already very precise, and its
uncertainty is dominated by the uncertainty in the distance, which comes from VLBI parallax or timing
parallax measurement, whichever is smaller. With the predicted timing parallax measurement with FAST,
the uncertainty of ¤𝑃Shk

b will decrease quickly with time as indicated by the brown line in Figure 5.3.
Compared to the predicted uncertainty of the observed ¤𝑃b with FAST (red line), Δ ¤𝑃Shk

b is always smaller
except when approaching 2030. Since future VLBI parallax measurements are also expected to be
improved, the uncertainty in the Shklovskii effect will likely not be a limiting factor for ¤𝑃b.

As for the contribution from Galactic acceleration, a typical uncertainty in its vertical component
(Δ𝐾𝑧) is about 10% (Holmberg & Flynn, 2004; L. Zhang et al., 2013), which contributes the most in the
uncertainty of ¤𝑃Gal

b and shown as the cyan dashed line in Figure 5.3. With FAST, ¤𝑃b will then be limited
by Δ𝐾𝑧 from 2024 onwards, if there is no improvement for this quantity. We find that Δ𝐾𝑧 needs to be
improved to ≲ 3% to not limit the precision of ¤𝑃b before 2030. The orange and magenta dashed lines
indicate the cases for Δ𝐾𝑧 = 3% and Δ𝐾𝑧 = 1%, respectively. This may be possible with Gaia (Gaia
Collaboration, 2016) in the near future.

With Eq. (5.6), one could obtain a limit on the leading-order contribution from dipolar GWs shown in
Eq. (5.5), and consequently an upper limit for |𝛼p − 𝛼c |. Figure 5.4 shows the upper limit of |𝛼p − 𝛼c |
expected from FAST observations with Δ𝐾𝑧 = 10%, 3%, 1%. For these three cases, the upper limits are
expected to be 0.0020, 0.0015 and 0.0014 (95% C.L) in 2030, which are more than 2.5 times better than
the current limit from PSR J2222−0137 (Guo et al., 2021) and will likely surpass the current best limit
from PSR J1738+0333, i.e., |𝛼p − 𝛼c | < 2 × 10−3 (95% C.L.) (Antoniadis et al., 2012).

For the scope of this work, we assume that with future timing and VLBI observations and measurements
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Figure 5.3: Comparison of contributions in the uncertainty of ¤𝑃b measurement for simulated data from 2021 to
2030. The blue, green and red lines denote the uncertainty of ¤𝑃obs

b with simulated data from 3ERT, MeerKAT
(MK) and FAST, respectively. The brown line indicates the uncertainty of ¤𝑃Shk

b when using the timing parallax
measured from simulated FAST data. The horizontal dashed lines indicate the uncertainties of ¤𝑃Gal

b when assuming
10% (cyan), 3% (orange) and 1% (pink) uncertainties in the vertical component of the Galactic acceleration 𝐾𝑧 .
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Figure 5.4: Upper limit of |𝛼p − 𝛼c | (95% C.L.) as a function of time with simulated FAST data. The blue, green
and red lines indicate the cases when Δ𝐾𝑧 = 10%, 3%, 1%, respectively.

of the Galactic acceleration (especially the vertical component), the precision of ¤𝑃b will not be limited
by external effects, hence we use the observed uncertainty as the uncertainty for the intrinsic ¤𝑃b.

5.4.3 Potential future constraints from PSR J2222−0137

To constrain the DEF gravity parameters {𝛼0, 𝛽0} with the DDSTG model, we run tempo for every
selected pair of {𝛼0, 𝛽0} in a 2D grid and obtain the 𝜒2 value of the fit. To compare these 𝜒2, we subtract
the minimum value 𝜒2

min from them, which results in a quantity Δ𝜒
2
= 𝜒

2 − 𝜒2
min. Then, a Δ𝜒2 map can
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Figure 5.5: Predicted limits on DEF gravity parameters (90% C.L.) for PSR J2222−0137 with simulated data
(2021–2030) from different telescopes. The curves indicate the upper limit obtained with 3ERT (light blue),
MeerKAT (MK, dark blue), FAST (orange), and the combination of three (pink) with its Δ𝜒2 map shown in blue.
The limit from FAST alone is almost as good as the combination of FAST, MeerKAT, and 3ERT. The green curve
denotes the limit from the existing data set (Guo et al., 2021) and the grey dashed line indicates the limit from the
Cassini mission (Bertotti et al., 2003). The EOS MPA1 is assumed. Figure 6 in Batrakov et al. (2023).

be plotted over the {𝛼0, 𝛽0} space to display the constraint for a desired confidence level.
Following this technique, we run the DDSTG timing model on the simulated PSR J2222−0137 data for

a grid of {𝛼0, 𝛽0}. During each run, tempo fits for spin parameters, astrometric parameters, Keplerian
parameters, and masses 𝑚tot and 𝑚c. The external contributions to the change of orbital period ¤𝑃ext

b
is held fixed since, as explained above, its error is negligible. Figure 5.5 shows the Δ𝜒

2 map for the
combination of 3ERT, MeerKAT and FAST data, where the pink curve is the contour of 90% C.L.
limit on the DEF gravity parameters (Δ𝜒2 ≃ 4.6) and the area below is allowed. Compared to the
current limit (green curve) based on data from Guo et al. (2021), the limits expected in 2030 are much
improved with simulated data from 3ERT (light blue), MeerKAT (dark blue), and in particular, FAST
(orange). A significant improvement is expected for large positive 𝛽0, where it is sensitive to dipolar
GW emission. While the tightest constraints can be obtained by combining all three observatories
(FAST+MeerKAT+3ERT), the high accuracy of FAST is sufficient to place a significant constraint by
itself.

5.5 Application to pulsar-black hole systems

Compared to PSR-WD binaries, systems composed of a pulsar and a stellar-mass black hole can be even
more asymmetric in terms of effective scalar coupling 𝛼𝑖 (Damour & Esposito-Farèse, 1998) because of
the “no-hair” theorem for black holes. If discovered, such systems would bring tremendous advances
to black hole physics and strong-field gravity tests. It will not only complement the tests using binary
black holes with GWs observed by LIGO/Virgo (B. P. Abbott et al., 2016b) or the probes of spacetime
of supermassive black holes using interferometric imaging (Event Horizon Telescope Collaboration
et al., 2019; Event Horizon Telescope Collaboration et al., 2022), but it can also provide a novel way to
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Table 5.2: Properties of pulsar-black hole systems assumed in the simulation.

Parameters Values
Right ascension (R.A.), 𝛼 (J2000) 21:20:01.2
Declination (Dec.), 𝛿 (J2000) 12:10:38.2
Dispersion measure, DM (pc cm−3) 67.1
Pulsar mass, 𝑚p (M⊙) 1.4
BH mass, 𝑚BH (M⊙) 10.0
Eccentricity, 𝑒T 0.6
Orbital period, 𝑃b 8 h, 1 d, 3 d
TOA uncertainty, 𝜎TOA (`s) 10, 1
Number of TOAs 3144

measure the spin and the quadruple moment of a black hole, by this testing cosmic censorship conjecture
and no-hair theorem (Wex & Kopeikin, 1999; Liu et al., 2014a). More relevant for this work, PSR-BH
systems are promising to place strong constraints on alternative gravity theories, such as the STG theories
(Damour & Esposito-Farèse, 1998; Liu et al., 2014a).

Although not yet discovered, new-generation radio telescopes such as MeerKAT, FAST and the SKA
are capable of finding them in the near future (Liu et al., 2014a). Therefore, as a further application of
the new timing model, we investigate the potential limits on DEF gravity that may be obtained from
PSR-BH systems using simulations.

5.5.1 Simulation for pulsar-black hole systems

In order to simulate TOAs for PSR-BH binaries, we have to assume some characteristics of these systems
first. We assume that they are composed of a 1.4 M⊙ pulsar and a 10.0 M⊙ black hole in a highly
eccentric orbit (𝑒 = 0.6). As PSR-BH systems are more likely to reside in globular clusters, we assume
them to be located in the globular cluster M15 and take the position (right ascension and declination) and
dispersion measure (DM) of PSR B2127+11C (Jacoby et al., 2006) for our simulation. To investigate the
effect of orbital period on the capacity of constraining DEF gravity, we consider three cases, with orbital
periods of 3 days, 1 day, and 8 hours, respectively. The selected parameters for PSR-BH systems are
presented in Table 5.2.

Due to our lack of knowledge about the real observational properties of PSR-BH systems, we simulate
data sets with two different TOA uncertainties (for 15-min integration time): a moderate case of 10 `s
which is typical for pulsars in globular clusters (with the precision of 3ERT, e.g.), and a precise case of
1 `s which might be possible with FAST. We assume that these systems are observed 6 hours every two
weeks and starts from a random orbital phase each time. All simulations cover a time span of 5 years and
have the same number of TOAs, i.e. 𝑛TOA = 3144.

5.5.2 Potential future constraints from PSR-BH systems

For our tests, the external contributions ¤𝑃ext
b and their uncertainties are not included as we are short

of this information. Table 5.3 shows the comparison of ¤𝑃GR
b and the observed uncertainty Δ ¤𝑃obs

b for
PSR-BH systems with different orbital periods 𝑃b and TOA uncertainties 𝜎TOA.

By applying the same method discussed in Section 5.4.3, with the DDSTG model, we obtain potential
future constraints on DEF gravity parameters from PSR-BH systems, which are shown in Figure 5.6.
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Table 5.3: Comparison of ¤𝑃GR
b and Δ ¤𝑃obs

b for PSR-BH systems with three different orbital periods, given in unit of
10−12 s s−1.

𝑃b ¤𝑃GR
b Δ ¤𝑃obs

b (𝜎TOA = 10 `s) Δ ¤𝑃obs
b (𝜎TOA = 1`s)

3 d −0.22220 0.08031 0.00827

1 d −1.38661 0.01723 0.00185

8 h −8.65279 0.00532 0.00055
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Figure 5.6: Same as Figure 5.5 but for the simulated 5-yr data of PSR-BH systems. The top panel assumes a TOA
uncertainty of 10 `s, whereas the bottom panel assumes a more precise case of 1 `s. The blue, pink, and orange
lines indicate the 90% C.L. limits obtained from PSR-BH systems with orbital period of 3 days, 1 days, and 8 hours,
respectively. The blue area shows the Δ𝜒2 map for the case that 𝑃b = 8 h. Figure 7 in Batrakov et al. (2023).
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5.6 Conclusion

One can see that more relativistic systems, i.e. with shorter orbital periods, provide more stringent limits
on DEF gravity as more areas of the parameter space are excluded. For a moderate timing precision of
𝜎TOA = 10 `s, the orbital period of the PSR-BH system should be a fraction of a day in order to place
new limits on DEF gravity (see the top panel of Figure 5.6). By comparing the top (𝜎TOA = 10 `s)
and bottom (𝜎TOA = 1 `s) panels of Figure 5.6, one finds that increasing the precision of TOAs can
significantly improve the constraining power on DEF gravity and potentially place the tightest limits.

However, it has been discussed in Batrakov et al. (2023) that the quality of these tests would be
degraded if the PSR-BH system is in a globular cluster, as ¤𝑃b can be contaminated by a large kinematic
contribution due to the acceleration of the system in the gravitational field of the globular cluster 𝑎GC:

¤𝑃GC
b =

𝑎GC
𝑐
𝑃b . (5.7)

As shown in Table 5.3, for a 8-h PSR-BH system timed with a precision of 10 `s, the significance of the
radiative test ( ¤𝑃GR

b /Δ ¤𝑃obs
b ) is more than 1600𝜎 if ¤𝑃b is not contaminated. But if the system is at the

location of PSR B2127+11C where |𝑎GC/𝑐 | ≲ 6 × 10−18s−1, only a 50-𝜎 test of the radiative properties
is possible. It becomes even worse if the system is closer to the cluster centre.

5.6 Conclusion

A new timing model “DDSTG” has been developed by Batrakov et al. (2023) for testing STG theories
with binary pulsars and has been implemented into an independent version of the pulsar timing software
tempo. A specific class of STG theories, the DEF gravity, has been studied using this timing model. To
fit for parameters with the DDSTG model, one need to provide the theory parameters {𝛼0, 𝛽0}, the EOS
ID of neutron star, and the type of the companion {NS, WD, BH}. As a demonstration of the DDSTG
model, we applied it to two scenarios with high asymmetry in effective scalar coupling 𝛼𝑖: the PSR-WD
system PSR J2222−0137 and hypothetical PSR-BH systems.

For PSR J2222−0137, the asymmetry in its compactness results in the prediction of a very strong
dipolar GW contribution to the orbital period derivative ( ¤𝑃D

b ) for some areas in the DEF gravity parameter
space. The precise distance measurement from VLBI, excellent timing precision, and well measured
relativistic effects offered by this system allow a precise constraint on dipolar GWs and hence the DEF
gravity parameter space. We applied the DDSTG model to the existing data of PSR J2222−0137 and
simulated realistic TOAs from 2021 to 2030 for large telescopes including 3ERT, MeerKAT and FAST
based on the precision of real observations. The simulation showed that the timing parallax offered by
FAST will soon provide a better distance measurement than the VLBI parallax, so that the uncertainty in
the Shklovskii effect would not limit the precision of ¤𝑃b. The main limiting factor to ¤𝑃b comes from
the uncertainty in the Galactic acceleration, which mostly originates from the uncertainty in its vertical
component Δ𝐾𝑧 . We found that if Δ𝐾𝑧 can be improved to ≲ 3%, which is likely the case in the near
future, in particular with the available Gaia data (Gaia Collaboration et al., 2022),3 then Δ𝐾𝑧 will no
longer limit the precision of ¤𝑃b. Compared to the current limit based on existing data from Guo et al.
(2021), the simulations indicated that future observations can significantly improve the constraints on
DEF gravity, especially with the observations of FAST.

We then investigated the prospects of constraining DEF gravity with PSR-BH systems, which hopefully
will be discovered in the near future from pulsar surveys. We simulated artificial TOAs for eccentric
PSR-BH systems with presumed realistic parameters and different orbital periods (3 days, 1 day and
8 hours) for 5 years. Two timing precision were considered: a moderate case of 10 `s that are typical

3 https://www.cosmos.esa.int/web/gaia/data
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for pulsars in globular clusters, and a precise case of 1 `s that may be possible with FAST. PSR-BH
systems with smaller orbital periods and better timing precision can place the most stringent limits
for a large part of the DEF gravity parameter space. However, depending on the location, it may be
challenging to obtain a precise constraint for the dipolar GW contribution ¤𝑃D

b . For example, if such a
system resides in a globular cluster, ¤𝑃b is likely to be contaminated by a large kinematic contribution
due to the acceleration of the system in the gravitational field of the globular cluster, and therefore the
precision might be reduced.

With this work, we demonstrated that the DDSTG model can be applied to binary pulsar systems
with different compactness. To obtain the best limits on DEF gravity, one shall combine the constraints
from various experiments as their constraining power differs in the DEF gravity space. Note that the
limits on DEF gravity obtained from binary pulsars are EOS-dependent and are further weakened by
the uncertainty in the neutron star EOS due to our imperfect knowledge. Therefore, improving our
knowledge of the EOS is of great importance for testing gravity theories. Such an improvement might
come through a future moment of inertia measurement of PSR J0737−3039A, or observations with
GW detectors such as LIGO/Virgo and X-ray telescopes such as NICER (see Chapter 3 for detailed
discussions).
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CHAPTER 6

Towards nanohertz gravitational wave detection:
improving clock accuracy and telescope sensitivity

This chapter summarises my work that help to facilitate nanohertz gravitational wave (GW) detection
using pulsar timing arrays (PTAs). This is achieved in two ways: improving the accuracy of clocks for
Effelsberg observations while also increasing the sensitivity of telescopes by expanding the collection
area. Section 6.1 provides some background on the detection of GWs with various experiments, and
Section 6.2 introduces the basics of PTAs and discusses some recent progress on nanohertz GW detection,
as well as my contributions on the data combination of PSR J1713+0747, which forms the longest PTA
data set and plays a major role in the GW analysis. Section 6.3 documents my work on the Effelsberg
clock corrections, which rescued over two years of timing data and improved the timing accuracy of
the studied pulsars. The accuracy of clock corrections is essential for high precision pulsar timing,
both for the PTA experiment and for the studies of individual pulsars. Finally, Section 6.4 presents an
ongoing project on building the most powerful pulsar telescope through phased-array observations with
the largest radio telescopes in Europe and China. The increased telescope sensitivity will enhance the
timing precision that fulfils the requirement for GW detection and therefore the sensitivity of PTAs.

6.1 Introduction

Just half a year after Albert Einstein published his field equations and completed general relativity (GR),
he predicted the existence of GWs within his new theory of gravitation (Einstein, 1916b). This marked
the first description of GWs within a complete field theory of gravity (Kennefick, 2007). GWs are
disturbances of spacetime generated by accelerated masses which propagate in all directions at the speed
of light. As a GW propagates, the space is alternatively stretched and compressed, therefore changing
the distance between objects rhythmically at the same frequency of the GW. The amplitude of GWs is
characterised by a dimensionless spatial strain (ℎ). However, this minuscule effect is challenging to
detect and separate from background vibrations that are everywhere on Earth.

The first experimental attempts at GW detection were pioneered by Joseph Weber in the 1960s using
resonant antennas (Weber, 1960). These large metal bars were isolated from external vibrations and
expected to vibrate at a resonant frequency of 1660 Hz when a GW of a similar frequency passes through.
GW bursts, e.g. from supernova explosions, were expected to be detected by such instruments. Even
though detections were reported (Weber, 1968), it turned out that GWs were too weak to be measured
in this way and the claimed detections were most likely noise. Later, the discovery of the first binary
pulsar by Russell Hulse and Joseph Taylor (Hulse & Taylor, 1975) and subsequent observations of the
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Figure 6.1: Noise curves for a selection of GW detectors as a function of frequency. At very low frequencies are
pulsar timing arrays: the European Pulsar Timing Array (EPTA), the International Pulsar Timing Array (IPTA),
and the future Square Kilometre Array (SKA); at low frequencies are space-borne detectors: the evolved Laser
Interferometer Space Antenna (eLISA) and the Chinese mission TianQin; and at high frequencies are ground-based
detectors: the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) and the future Einstein
Telescope (ET). The characteristic strain ℎc of potential astrophysical sources is shown in coloured regions. The
figure is generated using gwplotter developed by Moore et al. (2015).

decay in its orbital period provided the first evidence of the existence of GWs (Taylor & Weisberg,
1989). The discovery of such a unique laboratory opened up new windows for gravity experiments and
earned Hulse and Taylor the 1993 Nobel Prize in Physics. This motivated further GW searches and
substantial efforts had been made, in particular with laser interferometers such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO, Drever et al., 1989; Abramovici et al., 1992) and Virgo detector
(Brillet et al., 1989; Bradaschia et al., 1990). These detectors are modified Michelson interferometers
that measures the GW strain ℎ as a length difference of the orthogonal arms divided by the total length
of one arm, i.e. ℎ = (Δ𝐿1 − Δ𝐿2)/𝐿. Their primary targets are GWs produced by compact binary
coalescences, supernova explosions, and non-axisymmetric neutron stars in the frequency range of
10 Hz to 10 kHz (Riles, 2013). After years of non-detection, LIGO went through an upgrade to the
much improved “advanced LIGO” (aLIGO) and recorded the first GW-like signal when it was back
online in September 2015. This signal was later confirmed as the first GW detection by the LIGO-Virgo
collaboration (B. P. Abbott et al., 2016a), and subsequently the 2017 Nobel Prize in Physics was awarded
to Rainer Weiss, Kip Thorne, and Barry Barish for their key contributions.

Both aLIGO and Virgo are terrestrial GW detectors with arm lengths of 𝐿 ∼ 103 m and are sensitive
to GWs from merging stellar-mass binaries. However, they are limited by seismic noise at low GW
frequencies and one has to get off the Earth to overcome it. Several space-based detectors have been
proposed and are expected to be operational in the 2030s, including the Laser Interferometer Space
Antenna (LISA, Amaro-Seoane et al., 2017), TianQin (Luo et al., 2016), and Taiji (Ruan et al., 2018).
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Figure 6.2: Hellings & Downs curve that describes the degree of correlation between pairs of pulsars as a function
of angular separation between pulsars.

Such detectors are composed of three spacecraft separated by 108 ∼ 109 m and are sensitive to GWs with
frequencies from 0.1 mHz to 1 Hz, e.g. from massive binaries with ∼ 106 M⊙. However, the loudest
GW sources in the Universe — the inspiraling supermassive black hole binaries (SMBHBs, >107M⊙)
— are expected to generate GWs in the nanohertz band which can be detected using an ensemble of
millisecond pulsars (Sazhin, 1978; Detweiler, 1979) called a pulsar timing array (PTA, Foster & Backer,
1990). This experiment monitors a selection of MSPs at diverse sky positions and with a typical distance
of kiloparsecs from the Earth. GWs distort the spacetime between pulsars and the Earth, altering their
proper distance and resulting in a measurable deviation in the time of arrival (TOA) of pulsar signals on
a timescale of decades.

The limiting factor for GW detectors is the noise (either external or instrumental) that competes with
the signals to be detected, which differs in frequency for each detector. In order to detect the signal,
the characteristic strain ℎc (see Moore et al., 2015) of the noise curve must be lower than that of the
target source. A summary of the noise curves for selected GW detectors and the characteristic strain for
potential GW sources is shown in Figure 6.1.

6.2 Pulsar Timing Array

The primary motivating physical sources of GWs in the nanohertz band is inspiraling SMBHBs. The
incoherent superposition of a large number of SMBHB GW signals form a stochastic GW background
(GWB) which can be detected with PTAs by searching for spatially correlated signals (Rajagopal &
Romani, 1995; Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Sesana et al., 2004). In addition, cosmic
strings (Kibble, 1976; Sanidas et al., 2012) or relic GW from the early Universe (Grishchuk, 2005) could
also be detected using this technique. A detection in the PTA band will enable novel tests of gravity
theories and provide unique insights into galaxy formation and evolution (Sesana, 2013).

The stochastic GWB can be parameterised by a power law which describes the dependence of the
characteristic strain ℎc induced by the GWB on the GW frequency 𝑓 (see e.g. Maggiore, 2000; F. A. Jenet
et al., 2006):

ℎc = 𝐴

(
𝑓

𝑓c

)𝛼
, (6.1)

where 𝐴 is the strain amplitude of the GWB at reference frequency 𝑓c (typically set to 1 yr−1), and
𝛼 = (3 − 𝛾)/2 is the spectral index, which depends on the astrophysical origin of the GWB. In the case
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of circular-orbit SMBHBs, the spectral index is expected to be 𝛼 = −2/3, i.e. 𝛾 = 13/3 (Phinney, 2001).

The isotropic GWB induces a spatially correlated signal in the timing residuals of pulsars, which is
comprised of the pulsar term and the Earth term, due to the spacetime distortion at the positions of the
pulsars and the Earth, respectively. Only the Earth term is fully coherent across all pulsars. In GR, GWs
have a quadrupolar spatial correlation, and the correlation between the timing residuals of all pulsar pairs
is expected to follow the Hellings & Downs (HD) relation (Hellings & Downs, 1983). The mathematical
expression of the HD curve follows (F. A. Jenet et al., 2005)

𝑟 (\) = 1
2
− 1

4

(
1 − cos \

2

)
+ 3

2

(
1 − cos \

2

)
ln

(
1 − cos \

2

)
, (6.2)

where \ is the angular separation of pulsars on the sky. An illustration of the HD correlation is shown in
Figure 6.2. To search for GWBs with PTAs, the basic idea is to look for a common red noise signal with
this characteristic spatial correlation in an array of pulsars. This is what distinguishes it from other red
noise sources.

LT
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Figure 6.3: The five largest radio telescopes in
Europe that make up LEAP.

The sensitivity of GW detection with PTAs relies on
the span of observation time and the number of pulsars
(Siemens et al., 2013), as well as their directional position
on the sky. Therefore, the European Pulsar Timing Array
(EPTA, B. W. Stappers et al., 2006; Janssen et al., 2008;
Kramer & Champion, 2013), the Parkes Pulsar Timing
Array (PPTA, Manchester, 2006), the North-American
Nanohertz Observatory for Gravitational Waves (NANO-
Grav, F. Jenet et al., 2009), and the recently joined Indian
PTA (InPTA) have formed the International Pulsar Tim-
ing Array (IPTA, Manchester & IPTA, 2013) to assemble
all the PTA data (Verbiest et al., 2016; Perera et al., 2019)
and carry out GW searches with the combined data set
(Antoniadis et al., 2022). The new PTAs with highly
sensitive telescopes, such as the Chinese PTA (CPTA,
Lee, 2016) based on FAST and the MeerTIME PTA
based on the MeerKAT telescope (Bailes et al., 2020),
will also make important contributions to the IPTA over
the coming years. The EPTA makes use of the five largest radio telescopes in Europe: the Effelsberg
100-m Radio Telescope (EFF) in Germany, the 76-m Lovell Telescope (LT) in Britain, the Nançay Radio
Telescope (NRT) in France, the Westerbork Synthesis Radio Telescope (WRST) in the Netherlands,
and the 64-m Sardinia Radio Telescope (SRT) in Italy. These five telescopes also operate together as a
tied-array telescope known as the Large European Array for Pulsars (LEAP), where data are coherently
combined to form a telescope with an equivalent diameter of 195 m (Bassa et al., 2016). LEAP serves
as the sixth telescope of the EPTA and provides a significant improvement in the sensitivity of pulsar
timing observations.

In the past few years, I have been actively involved in the EPTA and LEAP collaborations, conducting
observations and data processing. In particular, I processed Effelsberg data for PSR J1713+0747 during
2011-2019 and combined them with EPTA first data release (DR1, Desvignes et al., 2016) and new
data from other EPTA telescopes. This extends the data set from 17.7 yr to 24 yr spanning from 1996
to 2019, which is the longest among all PTA data sets. The residuals of the combined data set for
PSR J1713+0747 are shown in Figure 6.4, where the left panel has no noise model and the right panel

86



6.2 Pulsar Timing Array

Figure 6.4: Timing residuals of PSR J1713+0747 for the combined EPTA data. The left panel does not include
noise modelling, whereas the right panel includes EFAC, EQUAD, and has subtracted DM and red noise. With a
noise model considered, the weighted RMS of residuals reduces from 0.460 `s to 0.214 `s.

includes noise models for EFAC and EQUAD, and subtracts DM and red noise. The weighted root mean
square (RMS) of residuals of the latter is approximately half that of the former. PSR J1713+0747 is one
of the most precisely timed MSPs and is ranked as one of the top pulsars in PTAs for nanohertz GW
detection. Therefore, this data set plays an critical role in the EPTA second data release (DR2) analysis
performed by Chen et al. (2021) and Chalumeau et al. (2022), and impacts all of the pulsar pairs that
involves it. Moreover, the precision of binary parameters for this pulsar have improved by at least a factor
of two compared to the previous data sets (Zhu et al., 2015; Desvignes et al., 2016; Zhu et al., 2019),
which can deliver more stringent tests of gravitational symmetries, such as for a temporal variation of the
gravitational constant 𝐺.

Figure 6.5: Comparison of common red noise amp-
litude 𝐴CP from various data sets for a fixed spectral
index 𝛾 = 13/3. Figure 10 in Antoniadis et al. (2022).

Thus far, PTAs have already collected more than
two decades of data. A common red noise has been
detected in the EPTA DR2 six-pulsar data set (Chen
et al., 2021), the NANOGrav 12.5-year data set (Ar-
zoumanian et al., 2020), the PPTA DR2 (Goncharov
et al., 2021), and the IPTA DR2 (Antoniadis et al.,
2022). The amplitudes of common red noise measured
from these data sets are shown in Figure 6.5, where
they are broadly consistent and in line with theoret-
ical expectations. However, little evidence has been
found yet to support the existence of an HD correlation,
which would be required to claim a detection. The
significance of the correlation power of the pulsar pairs
is still insufficient to distinguish between different spatial correlations, including a monopolar correlation
— a uniform correlation for any angular separation, 𝑟 (\) = 1. In addition, monopolar correlations appear
to exist in selected data sets. Possible sources of such signals are errors in the time standard and clocks.
Tiburzi et al. (2016) found that clock errors can lead to large values of GWB amplitude, resulting in false
GWB detections. Therefore, the accuracy of clock correction is important for GWB searches. In the
following section, I will present my contributions on improving the accuracy of clock corrections for
pulsar observations with the Effelsberg telescope, which helps to reduce clock errors and improve the
timing precision.
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6.3 Improving clock accuracy for Effelsberg pulsar observations

Critical to pulsar timing is the accuracy of the timestamp of observations. The observation time is
determined by a local atomic clock, typically a hydrogen maser, which is constantly compared to the
Coordinated Universal Time (UTC) via the Global Positioning System (GPS). The time offsets between
the maser and the GPS are recorded and later used as a “clock correction file” in pulsar timing to transfer
the time tagging of observations to the international time standards, and eventually to the Solar System
barycentre (see Section 2.3.1 for details).

The accuracy of the time tagging of observations depends on the stability of the maser used at each
telescope and accuracy of clock corrections. The long-term instability of masers could induce red noise
in the pulsar timing data, whereas the systematic offsets introduced by tuning or changing of the maser
can result in a monopolar spatial correlation stronger than the HD correlation. Both of them, if not
properly corrected for, may contaminate the signature of nanohertz GWs. Therefore, the stability of
masers and accuracy of clock corrections need to be studied, which is the focus of this work.

6.3.1 Maser-GPS offset measurements

For pulsar observations with the Effelsberg telescope, the observatory instrument used for measuring the
time offsets between the maser and the GPS broke down in 2017 and remained unnoticed until 2019. A
new instrument was later available from May 2019 (see Section 6.3.2), but in order to use the data taken
during the breakdown period, the maser-GPS offsets need to be determined.

Fortunately, a separate instrument used for VLBI observations also measures maser-GPS offsets but at
a more frequent rate. However, there are steps in the VLBI offset measurements due to firmware changes
associated with VLBI observations, and there is also a constant delay compared to observatory offset
measurements. In order to use these data, I checked an overlap span of data for both measurements
starting from MJD 57400 and the comparison is shown in Figure 6.6. The orange line indicates the
measurements with the observatory instrument and the blue line indicates the measurements with the
VLBI instrument (with jumps removed). In order to make the VLBI measurements usable for pulsar
timing data taken during the breakdown period, I searched for, fitted and removed the steps in the VLBI
measurements, then aligned these measurements to the observatory measurements at the starting point
(MJD 57400). This results in a smooth green curve (“VLBI postfit”) shown in Figure 6.6.

The difference of the green and the orange lines is shown in Figure 6.7. For the measurements
before MJD 57790, the residuals are mostly below 35 ns. But at MJD 57790, a 50 ns offset suddenly
appears and increases with time. This offset in the residuals is purely due to the behaviour of the
observatory instrument, which became very unstable from MJD 57830 and eventually broke down
around MJD 58040. Therefore, starting from MJD 57790 (February 2017) I used the post-fit curve of
the VLBI offset measurements to extend the clock file for pulsar timing. Since there are outliers from the
GPS, maser-GPS measurements are usually taken every 15 min. In order to create a smooth clock file
that can be used in pulsar timing software, I removed the outliers and took the running median value
for each day as the clock correction. The resulting clock file (red dots in Figure 6.8) allowed me to
rescue more than 27 months of data for at least 40 pulsars, which is important for PTA experiments and
a number of timing projects.

A new instrument for maser-GPS offset measurements has been available since May 2019 (MJD 58611).
The running median of this recording (green line) is taken to be compared with the VLBI measurements
(red dots) in Figure 6.8, where they agree very well in the overlapping region. Therefore, starting from
MJD 58611, the offsets measured by the new instrument are used for making Effelsberg clock file.
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Observatory

Figure 6.6: Comparison of maser-GPS offsets recorded by the observatory instrument (orange) and the VLBI
instrument (blue, with jumps removed). The green curve is the post-fit of the VLBI measurements, where the steps
are fitted and removed, and the whole curve is aligned with the orange curve from the starting point.

Figure 6.7: Residuals of the VLBI offset measurements and the observatory offset measurements (i.e. difference of
the green line and the orange line in Figure 6.6).

6.3.2 Stability of masers at Effelsberg

The stability of hydrogen masers depends primarily on temperature control, which shall be kept stable
and uniform. In addition, they should be shielded from vibrations and perturbing magnetic fields.
Hydrogen masers have excellent short-term stability, but their stability decreases on a longer timescale.
A new maser (i3000) has been available at Effelsberg since MJD 58670, and the time offsets between
the new maser and the GPS have been constantly recorded. Before switching to the new maser, the old
maser (i45)-GPS and the new maser (i3000)-GPS measurements were monitored for a year in order
to compare their stability. I fitted each of the two measurements with a cubic curve and subtract it
from the data,1 and the residuals are shown in Figure 6.9. For a time span of ∼1 yr, the old maser-GPS

1 Polynomial functions of higher degree were fitted, but did not lead to better results.
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Figure 6.8: Comparison of time offset recordings. The black line shows the clock file generated using the old
observatory instrument (before MJD 57790) and VLBI instrument (after MJD 57790). The VLBI instrument data
are also marked in red, whereas the running median of the new observatory instrument data is shown in green.
They match well in the overlapping region.

(a) (b)

Figure 6.9: Residuals of 1-yr maser-GPS measurements after cubic fitting. Panel (a) shows the measurements for
the old maser (i45), which has a strong red noise signal and a standard deviation of 13.4 ns. Panel (b) shows the
measurements for the new maser (i3000), where the standard deviation is 9.8 ns.

measurements (left panel) shows strong red noise and has a standard deviation of 13.4 ns. In contrast,
the new maser-GPS measurements (right panel) looks quite flat and has a standard deviation of 9.8 ns.
Therefore, the new maser is more stable on longer timescales and has less red noise than the old maser,
which is more favourable for pulsar timing and in particular for GW detection. Therefore, starting from
MJD 59297, the new maser began to be used for pulsar observations.

6.3.3 Measuring clock offsets using LEAP

I also looked back to the earlier maser-GPS measurements in the pulsar clock file, and found unexpected
offsets during MJD 56720–57400 that are not present in the VLBI offset measurements (see the grey
and the cyan line in Figure 6.10). LEAP offers a unique way to verify these offsets because it operates
phased-array observations using multiple telescopes. To correlate the baseband data from different
telescopes, one has to find the time difference of the recorded data between the pairs of telescopes. For
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Figure 6.10: Comparison of clock offset measurements. The cyan line shows the VLBI offset measurements and
the grey line shows the pulsar clock file made with the observatory offset measurements. The coloured data points
are time offsets measured by the timing of four pulsars observed by LEAP, suggesting that the three jumps in the
grey line are not real. The new clock file is shown in purple which corrects the offsets between MJD 56720–57000
using LEAP skipbin numbers and removes the jumps between MJD 57240–57400 based on LEAP timing.

Table 6.1: Time offsets in the EFF clock file measured using the WRST skipbin number from LEAP observations.

MJD offset (s)
56720 – 56981 −1.111 × 10−6

56981 – 57000 −5.45 × 10−7

57000 – now −3.74 × 10−7

LEAP, this measurement is referenced to the Effelsberg telescope and the timing analysis is based on
the Effelsberg clock and its corrections. After accounting for the light travelling time delay between
observatories, there remains instrumentation delays at each observatory, measured as a ‘skipbin’ number.
The skipbin steps the data through an integer number of time samples and one skipbin corresponds to
62.5 ns. In principle, the skipbin number should be invariant, therefore changes in the skipbin number
would indicate possible errors in the clock. Apart from the two major clock jumps at Effelsberg between
MJD 56230 and 56720, the skipbin number for Effelsberg is set to 0 by default.

To examine these time offsets in the Effelsberg clock file, the skipbin numbers measured during
MJD 56720–57400 were checked. The skipbin numbers of the WRST were taken as a reference, as
they are found to be relatively stable during that period of time. In addition, the skipbin numbers of the
NRT were used as a second reference for confirming the existence of the offsets. It cannot be used for
measurements as it drifts very quickly due to the type of clock used. In total, three offsets were spotted
between MJD 56720 and 57000. These offsets were measured by taking the average of the WRST
skipbin numbers from a couple of pulsars over several epochs and then converted into time offsets, as
shown in Table 6.1. I added these offsets to the pulsar clock file and tested it against several pulsars,
all of which showed improvements in their RMS values. The original pulsar clock file is plotted as the
grey line in Figure 6.10, whereas the new clock file with offsets measured from LEAP is shown as the
purple line. These two lines are consistent before MJD 56720. The new clock file has two different
offset measurements at MJD 56720 and MJD 56981, and a new offset measurement at MJD 57000.

Apart from these unexplained “persistent” offsets, there are also temporary jumps in the MJD range
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Table 6.2: RMS residual of five pulsars using LEAP data. The second and third column show the RMS before and
after correcting the clock jump at MJD 57330. The forth column lists the improvements in the RMS.

Pulsar RMS before (`s) RMS after (`s) RMS improvement
J1713+0747 0.329 0.305 7.3%
J1600−3053 0.647 0.637 1.5%
J1012+5307 0.904 0.817 9.6%
J0613−0200 0.686 0.673 1.9%
J1744−1134 0.362 0.314 13.3%

57240–57400 in the pulsar clock file that are not in the VLBI offset measurements (see Figure 6.10).
Unfortunately, WRST was not available for the observations during this period, hence a reliable
measurement of skipbin numbers is not possible. However, one can use pulsar timing to fit for the
best clock offset for a giving epoch. To do this, I used the LEAP data on four high-ranking pulsars:
J0613−0200, J1012+5307, J1600−3053, and J1713+0747, which were the only available data at the time.
I divided the MJD range into three parts where the jumps are present: 57246–57332, 57332–57343,
and 57343–57395. Then in the fit for each MJD range, I added a time offset to the TOAs within this
range and obtained 𝜒2 by fitting a timing model to all TOAs. The time offset was taken from a fine grid
for a reasonable range (±5`s). The optimal time offset is where 𝜒2 reaches minimum, and is plotted
in Figure 6.10 with 1-𝜎 error bar (blue, orange, red, and green). One can see that the majority of the
measurements from pulsar timing favours a smooth curve between MJD 57240–57400, suggesting that
the three jumps in the grey line are not real, in particular the 1 `s jump at MJD 57330. A comparison of
the RMS values of five LEAP pulsars before and after correction for this jump is shown in Table 6.2. In
all cases, the RMS value reduces after removing this jump in the clock file, and the improvement can be
≳ 10% for some of the pulsars. Therefore, I removed these jumps and created a new clock file for pulsar
timing, which is shown as the purple line in Figure 6.10).

6.3.4 Summary

In this section, I summarised my work on extending and correcting the Effelsberg clock file for pulsar
timing. As the instrument used for maser-GPS offset measurements broke in 2017, I extended the clock
file from February 2017 to May 2019 (MJD 57790–58611) by adapting the VLBI offset measurements,
so that the pulsar timing data collected during this period of time can still be used. I then extended the
clock file using the new instrument which has been available since May 2019 (MJD 58611). In addition,
I checked the unexpected offsets and jumps in the clock file using LEAP. The skipbin numbers measured
for correlating multiple telescope data were used to determine the offsets and pulsar timing with LEAP
TOAs were helpful to confirm the false jumps in the clock file. These helped to reduce the clock errors in
Effelsberg and LEAP timing data, which otherwise can result in a monopolar correlation in GW searches.
To conclude, a reliable, more accurate, and up-to-date clock file for pulsar timing with Effelsberg and
LEAP data was produced, which can help to eliminate possible monopolar correlation in the data.

This work improves the accuracy of the Effelsberg clock file and reduces the RMS of residuals for all
five pulsars. Thanks to this clock file, the GW analysis and noise analysis of the six pulsars (including
the five pulsars mentioned in Table 6.2) in EPTA DR2 performed by Chen et al. (2021) and Chalumeau
et al. (2022) are possible. This clock file will continue to be useful for the ongoing EPTA DR2 analysis
of 25 pulsars and for future IPTA work. Apart from PTA experiments, it also benefits many other timing
projects, such as the timing analysis of PSR J2222−0137 by Guo et al. (2021) and the study of TOA
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creation methods by J. Wang et al. (2022). Further investigation into the impact of clock stability and
accuracy on GW detection is planned and will be discussed in Section 7.

6.4 Pan-EurAsia Pulsar Array: the largest pulsar telescope on Earth

Over the last few years, LEAP has proven its strength in terms of data quality (Bassa et al., 2016;
Chen et al., 2021) and its unique application in measuring clock offsets (Section 6.3.3) because of the
phased-array observation mode. The increased sensitivity offered by LEAP not only facilitates the
PTA analysis in Chen et al. (2021) and Chalumeau et al. (2022), but also permits a number of other
pulsar projects that are otherwise limited by the sensitivity of smaller telescopes, such as studies of
single pulses (Liu et al., 2016; McKee et al., 2019), scintillation (Main et al., 2020; Mall et al., 2022),
and quasi-periodic micro-structure of MSPs (Liu et al., 2022). Following the success of LEAP, a
collaboration between the Max-Planck-Gesellschaft (MPG) and the Chinese Academy of Sciences (CAS)
was established a few years ago to conduct the LEAP-type observations by involving FAST and the
upcoming Xinjiang Qitai 110-m Radio Telescope (QTT, N. Wang, 2014; Xie et al., 2022) within the
framework of MPG-CAS Low-Frequency Gravitational Wave consortium (LEGACY).

The Pan-EurAsia Pulsar Array (PEAPA), formerly known as Über-LEAP, was proposed to coherently
combine LEAP, FAST, and eventually QTT in a phased-array mode to deliver the largest collection area,
a 374-m equivalent dish three times larger than the SKA 1.2 It will not rival the sensitivity of the full
SKA, but both LEAP and FAST are readily available and QTT will be available in a few years, while the
full SKA is only expected on a somewhat longer timescale. The PEAPA gains an extra 50% sensitivity
compared to FAST and will become the largest radio telescope in the world, offering the longest baseline
and the highest precision for pulsar timing observations. This unprecedented high precision can greatly
decrease the level of radiometer noise which is currently the dominant source of noise in most PTA
pulsars. Consequently, it will allow more pulsars to be timed with an accuracy <100 ns and therefore
advance the detection of nanohertz GWs through the PTA, which is the primary goal of this project.

As the data are stored in baseband format, it can be processed flexibly to high-time or high-frequency
resolution as required. Therefore, in addition to pulsar timing, the PEAPA enables many other scientific
projects. One of these is to reveal the nature of radio emissions from MSPs in the single-pulse domain.
Potential new algorithms may be developed to correct for pulse jitter (see Section 2.4) via single pulse
studies, which will be greatly valuable for pulsar timing experiments both with FAST itself and with the
SKA. Moreover, the PEAPA will improve our understanding of the variation of interstellar weather. More
specifically, it can help to resolve scattering screens and DM variations, which can be used to reduce
noises related to the interstellar medium (ISM). Furthermore, using an imaging VLBI-like observation
mode, the PEAPA can measure the position, proper motion and parallax of pulsars with high accuracy.
These are useful for breaking the degeneracy between timing parameters and for calculating the external
contributions to the change of orbital period ¤𝑃b (see e.g. Section 3.4). Finally, given its high sensitivity,
the PEAPA is an ideal tool for targeted pulsar searches, for example in globular clusters where exotic
systems like pulsar-black hole binaries may exist.

In January 2019, FAST performed the first joint experimental VLBI observation with the 65-m
Tianma radio telescope and successfully obtained fringes, validating the capability of FAST for VLBI
observations. In the past few years, several proposals have been submitted to FAST for trial observations
with FAST and Effelsberg. The main goal is to obtain the first fringe between FAST and Effelsberg before
involving other LEAP telescopes. In the following, I will present the progress made on this project.

2 The maximum illuminated aperture for FAST is 300 m.
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Table 6.3: List of selected sources that can be observed simultaneously with FAST and Effelsberg. Columns
4 and 5 show the overlapping observable time (in hours) when the zenith angle of FAST is set to 30° and 40°,
respectively.

Name RA DEC Overlap time (30°) Overlap time (40°)
B0531+21 05:34:31.97 +22:00:52.06 0:51 1:36
J0621+1002 06:21:22.11 +10:02:38.74 0:10 0:57
J0751+1807 07:51:09.16 +18:07:38.49 0:40 1:24
J1012+5307 10:12:33.44 +53:07:02.26 2:12 3:43
J1022+1001 10:22:57.99 +10:01:52.68 0:09 0:56
B1237+25 12:39:40.46 +24:53:49.29 1:00 1:44
J1640+2224 16:40:16.75 +22:24:08.82 0:52 1:36
J1713+0747 17:13:49.53 +07:47:37.48 0:00 0:34
J1911+1347 19:11:55.20 +13:47:34.36 0:26 1:11
B1933+16 19:35:47.83 +16:16:39.99 0:18 1:03
B1937+21 19:39:38.56 +21:34:59.12 0:50 1:34
B1957+20 19:59:36.77 +20:48:15.12 0:48 1:32

Figure 6.11: Relation between the overlapping observation time of FAST and Effelsberg and the declination
of pulsars. The orange and blue dots represent the cases where the zenith angle (ZA) of FAST is 30° and 40°
respectively. The black dashed lines are linear fits to the data.

6.4.1 Source lists

Before planning the observations, one needs to work out which sources can be observed simultaneously
with FAST and Effelsberg, as they have 6:40 hr difference in local sidereal time. To do this, I calculated
the rise and set time of selected sources at FAST and Effelsberg that suit the science cases, mainly MSPs
but also ‘slow’ pulsars that emit giant pulses, such as PSR B1237+25, PSR B1937+21, and the Crab
pulsar B0531+21. The overlapping observation time is the difference between the rise time at Effelsberg
and the set time at FAST, and therefore depends on the zenith angle allowed by FAST. The maximum
zenith angle for FAST is 40°, while for best performance, a zenith angle of less than 30° is recommended
(Jiang et al., 2019). Table 6.3 summarises the overlapping time calculated for selected sources in both
cases. Due to the relative geographical position of FAST and Effelsberg, the low declination pulsars like
PSR J1713+0747, PSR J0621+1002 and PSR J1022+1001 can only be observed for a short time. The
relation of the declination of pulsars and the overlapping observation time is plotted in Figure 6.11. One
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Table 6.4: List of joint observations with FAST and Effelsberg. The first observation was only successfully carried
out by FAST.

Epoch Name Type UTC start UTC end
1 J0521+2112 calibrator 2019-07-26 03:30:00 2019-07-26 03:35:00

B0531+21 pulsar 2019-07-26 03:45:00 2019-07-26 04:00:00
2 J1240+2405 calibrator 2019-08-20 09:00:00 2019-08-20 09:05:00

B1237+25 pulsar 2019-08-20 09:15:00 2019-08-20 09:30:00
3 J1900+2722 calibrator 2021-01-14 05:42:00 2021-01-14 05:47:00

J1911+1347 pulsar 2021-01-14 06:00:00 2021-01-14 06:12:00
B1937+21 pulsar 2021-01-14 06:25:00 2021-01-14 06:52:00
J1956+2820 calibrator 2021-01-14 07:03:00 2021-01-14 07:08:00

can see that for the pulsars on our list (declination 7°–53°), the overlapping observation time increases
almost linearly with the declination of the pulsar.

6.4.2 Observations and prospects

So far, three observations (including four pulsars) have been carried out and are summarised in Table 6.4.
For each pulsar, a 5-min scan of a phase calibrator was performed to obtain a sufficiently close initial
estimate for correlating the pulsar data. Due to operational difficulties at Effelsberg, the first observation
on 2019-07-26 was conducted successfully by FAST only. Nevertheless, preliminary processing of FAST
data on the Crab pulsar was carried out. Figure 6.12 shows the pulse profile (left) and the intensity in
time against the pulse phase (right), and the quality of data is excellent. The other two observations were
carried out jointly by FAST and Effelsberg on 2019-08-20 and 2021-01-14. The Effelsberg data have
been preliminary processed, and an example on PSR B1237+25 is shown in Figure 6.13, where mode
changing can be clearly seen in the right panel and can be used to study pulsar emission geometries.

The project has been delayed due to data transfer issues, but eventually all Effelsberg data have been
transferred to China and data processing is underway. Once the data are coherently combined, at least
two papers are expected based on the existing observations: one on the design and technical aspects
of the PEAPA and others on the scientific aspects, as the pulsars observed are suitable for studying
single/giant pulses and ISM effects.

Based on the performance of LEAP and FAST, one can estimate the expected timing precision
of the PEAPA observations using Eq. (2.7). For the same pulsar, the TOA uncertainty scales as
𝜎TOA ∝ 𝑇sys/

(
G
√︁
𝑡intΔ 𝑓

)
, where the system temperature 𝑇sys of these telescopes are similar (20-35K).

Assuming that the system temperature, integration time 𝑡int and bandwidth Δ 𝑓 are the same in the
observations, 𝜎TOA is only inversely proportional to telescope gain G. The total gain of LEAP is about
6 K/Jy where Effelsberg has a gain of 1.5 K/Jy (Bassa et al., 2016), and the gains of FAST and QTT
are 16 K/Jy (Jiang et al., 2019) and 2 K/Jy (estimated), respectively. The gains of EFF+FAST and the

Table 6.5: Comparison of telescope gain and RMS of PSR J1737+0747 for EPTA, LEAP, EFF+FAST, and the
PEAPA.

EPTA LEAP EFF+FAST PEAPA
Telescope gain G (K/Jy) 1.2 (average) 6 17.5 24

RMS (ns) of 680 180 60 45
PSR J1713+0747 Desvignes et al. (2016) Bassa et al. (2016)
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(a) pulse profile (b) intensity in time versus pulse phase

Figure 6.12: FAST observation of the Crab pulsar B0531+21 on 2019-07-26.

(a) pulse profile (b) intensity in time versus pulse phase

Figure 6.13: Effelsberg observation of PSR B1237+25 on 2019-08-20. Mode changing can be clearly seen in
panel (b).

PEAPA are listed in Table 6.5, which are three and four times larger than LEAP respectively. This
makes the PEAPA the most sensitive pulsar telescope. Taking PSR J1713+0747 as an example, the
RMS residual expected from EFF+FAST and the PEAPA observations can be estimated from the scaling
relation 𝜎TOA ∝ 1/G (assuming only radiometer noise) based on LEAP observations (Bassa et al., 2016).
Table 6.5 shows a comparison of telescope gain and RMS residual of PSR J1713+0747 with EPTA,
LEAP, EFF+FAST, and the PEAPA. Because of the large gains of EFF+FAST and the PEAPA, the RMS
residual of PSR J1713+0747 can be reduced to 60 ns and 45 ns, which is better than any other radio
telescope currently available. Similarly, with this observing mode, more pulsars can be timed with an
accuracy below 100 ns, thereby significantly advancing the detection of nanohertz GWs. This could also
save observation time as a very short integration time is sufficient to obtain high accuracy data.

Overall, the PEAPA project is expected to provide high precision data that will benefit nanohertz GW
detection and allow us to carry out other interesting studies. The data analysis will be continued and
future observations are planned, which are subject to further work.
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Discussion

This dissertation explored a range of questions in fundamental physics using pulsar timing. The time
of arrivals (TOAs) of pulsar signals carry information about some of the most extreme objects in the
Universe and provide unique insights into the fundamental properties of the densest matter and two
fundamental interactions — electromagnetism and gravity. New-generation radio telescopes such as the
MeerKAT telescope, the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and the future
Square Kilometre Array (SKA) promise important contributions to our understanding of the Universe.

In the first two projects, we studied the unique Double Pulsar system, PSR J0737−3039A/B. It provides
rich tests of relativistic effects in a strong gravitational field, more than any other known binary pulsar.
The excellent sensitivity of new-generation radio telescopes allows us to study various higher-order
contributions to orbital motion and signal propagation that have not been tested in any other binary
pulsar before.

The first study focused on the higher-order effects in the orbital motion of the Double Pulsar, including
the periastron precession ( ¤𝜔) caused by the Lense-Thirring effect, and the change of orbital period ( ¤𝑃b)
due to spin-down mass loss and next-to-leading-order (NLO) gravitational wave (GW) damping. We
developed a consistent method to measure the moment of inertia (MOI) of radio pulsars using three
post-Keplerian (PK) parameters ( ¤𝜔, 𝑠, ¤𝑃b) and applied it to the simulated data of PSR J0737−3039A.
Based on this method, Kramer et al. (2021a) obtained an upper limit for the MOI of pulsar A with 16-yr
data: 𝐼A < 3.0×1045 g cm2 (90% confidence). Observations with MeerKAT and its future extensions are
expected to improve this measurement considerably and we found an 11% accuracy (68% confidence and
hereafter) could be achievable by 2030. Such a measurement can provide complementary constraints on
the equation of state (EOS) of nuclear matter to other experiments, such as neutron star mergers observed
by GW detectors (LIGO/Virgo, etc.) and X-ray observations by NICER and future missions such as
eXTP. Moreover, discoveries of more relativistic “cousins” of the Double Pulsar could place stringent
constraints on the EOS that are an order of magnitude better than the Double Pulsar and competitive
with other methods. Therefore, we can expect advances in our knowledge of neutron star EOS in the
near future. This in turn would allow a 7% test of Lense-Thirring precession in the Double Pulsar by
2030 and constraining on the gravity theories, or a 3𝜎-measurement of the NLO GW damping which
has not been tested in any binary pulsar.

The second study concentrated on the signal propagation effects in the strong gravitational field of the
Double Pulsar, i.e. the interaction between electromagnetic and gravitational fields. We analysed 3-yr
wideband MeerKAT data of PSR J0737−3039A using modern techniques, i.e. frequency-dependent
(2D) templates and epoch-dependent dispersion measure (DM) modelling, which helped to improve the
accuracy of TOAs. Compared to the 16-yr results, the excellent precision of MeerKAT data already
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allowed better measurements of Shapiro delay and masses, as well as an independent confirmation of
NLO signal propagation effects, which is 1.65 times more significant than before. In particular, we
studied the retardation effect caused by the movement of pulsar B and the deflection of the signal by the
gravitational field of B. In addition, we investigated novel effects that have been expected but not yet
observed, including latitudinal signal deflection and lensing correction to Shapiro delay. We searched
for potential profile changes near superior conjunctions caused by latitudinal deflection and found no
evidence for it, which could be useful to constrain the geometry of the system in a subsequent study. The
expected profile variations, if not taken into account, could affect the determination of TOAs, but we
found this latitudinal deflection delay can be mostly absorbed by the Shapiro delay. Furthermore, our
simulations suggested that the lensing correction to Shapiro delay may be measurable within a few years
with the full SKA or equivalent instruments.

The third study explored the prospects of testing a class of alternative gravity theories, the Damour–
Esposito-Farèse (DEF) gravity, using the recently developed timing model for scalar-tensor gravity
— the DDSTG model. Due to asymmetry in their compactness, pulsar-white dwarf systems such as
PSR J2222−0137 and pulsar-black hole systems are useful tools to constrain dipolar GWs predicted in
many alternative theories due to a violation of the strong equivalence principle (Wex, 2014; Liu et al.,
2014a). By simulating realistic data of PSR J2222−0137 and hypothetical pulsar-black hole systems for
a number of large telescopes such as FAST, we found that future observations will significantly improve
the constraints on DEF gravity. In particular, if pulsar-black hole systems can be discovered, they have
the potential to set the most stringent limits for a large part of the DEF gravity parameter space and
enhance our understanding of gravity.

Finally, the fourth study involved two projects that are conducive to the detection of nanohertz GWs
with pulsar timing arrays (PTAs). Firstly, I extended the clock correction file for Effelsberg from February
2017 to May 2019, which allowed us to still use the data collected during this period in our analysis.
In addition, I corrected the errors in the clock correction file using the information from phased-array
observations with the Large European Array for Pulsars (LEAP) and timing a handful of most precisely
timed pulsars. Since clock errors are a possible source of the monopolar correlation present in the current
gravitational wave analysis, this work improved the accuracy of clock corrections and can potentially help
to eliminate possible monopolar correlation in Effelsberg and LEAP data. Secondly, the Pan-EurAsia
Pulsar Array (PEAPA) has been proposed to coherently combine LEAP, FAST, and the upcoming 110-m
Qitai Radio Telescope (QTT) to deliver the world’s largest pulsar telescope. Phased-array observations
have been carried out with Effelsberg and FAST, and we expect a dramatically increase in the telescope
sensitivity and TOA accuracy, which will greatly advance GW detection.

Of course, to make some of these experiments possible, we also need advances in the knowledge of
other branches of astronomy. For instance, to perform the gravity experiments that involves the orbital
period derivative ¤𝑃b, such as in the first and third studies, good knowledge of the astrometric information
of pulsars and the relative acceleration of pulsars and the Solar System in the gravitational field of the
Galaxy is required. The former can be improved from complementary VLBI observations, while the
latter is expected to improve in the near future with e.g. Gaia data (Gaia Collaboration et al., 2022).

Data combination of the Double Pulsar

Even though the 3-yr MeerKAT data have already shown better measurements of Shapiro delay and
NLO signal propagation effects, the precision of the secular parameters has not yet caught up with the
results of the 16-yr data. To improve the precision on the secular parameters and to perform the tests
proposed in Chapter 3, one needs to combine the two data sets. In fact, we have made extensive efforts
trying to combine these two data sets. The uncertainties of PK parameters are much reduced, but the
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Figure 7.1: DM measurements from the 16-yr data (black) and MeerKAT data (blue) with respect to the reference
value 48.917 208 pc cm−3. The solid curve resulted from a Gaussian learning process with uncertainties in grey.

secular parameters appear to deviate from the result obtained from the individual data sets. This is of
course unexpected and suggests that we have issues in the processing techniques or the analysis software.

This problem can be reproduced also with simulations. We adjusted TOAs of MeerKAT and 16-yr
data separately using the same ephemeris and added only white noise. For each data set we obtained
measurements consistent with the input values, but when combining the two data sets together, the secular
parameters again showed deviations. The precision of MeerKAT data helps to reduce the uncertainties of
parameters quite significantly, but it also skews the derived secular parameters due to their large relative
weight giving their small uncertainties. One possible solution could therefore be to reduce the weighting
of MeerKAT data by a factor of ∼ 5. This is approximately the ratio of the data span of the 16-yr data to
the 3-yr MeerKAT data, which is feasible for obtaining consistent measurements but more studies are
needed. Moreover, in this case the uncertainty of the parameters would increase and the advantage of
MeerKAT precision is depreciated.

The situation is more complicated still as there are also DM noise and red noise in the data. For DM,
the model of the 16-yr data was made by fitting multiple frequency data at 100-d intervals (see Kramer
et al. 2021a for detail), whereas for MeerKAT we used 2D templates and fitted for DM independently at
every observing epoch. As mentioned in Chapter 4, DM measurements depend on the DM to which the
2D template is referenced. As shown in Figure 7.1, one of the problems we encountered is that the two
sets of data have different reference DM values and they have overlapping data. This can potentially
be solved by changing the reference DM of MeerKAT 2D templates, or by correcting TOAs to infinite
frequency before fitting to the timing model. The situation is even more complicated with the addition of
red noise, which is highly correlated with astrometric parameters and DM models. With simulations, we
found that astrometric parameters and some of the binary parameters can be strongly influenced by red
noise. To properly model red noise and account for correlations between parameters, it is common to use
Bayesian approach, e.g. with temponest. However, running temponest analysis for the Double Pulsar is
computationally expensive (> 106 TOAs compared to typically ∼ 103 TOAs for PTA pulsars) and a more
efficient technique may be required. Moreover, as temponest is based on tempo2, the aberration and
orbital deformation parameters are missing in its DD model, as well as the consideration of NLO effects
in the Double Pulsar. These are to be incorporated into the ongoing upgrade of the tempo2 DD model.

To sum up, our findings suggest that the data combination of a long-span less-precision data set and a
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short-span high-precision data set is challenging. This could be a common problem for other pulsars,
especially when combining with high-precision data from MeerKAT and FAST as PTA experiments.
Since the orbital parameters of the Double Pulsar are known so precisely, it is probably the best system
to solve any problem in data combination. We are continuing this study and hope to solve this problem
in the near future.

Impact of clock accuracy on low-frequency gravitational wave detection

As discussed in Chapter 6, a possible source of correlated common red noise seen in PTAs is errors in
Terrestrial Time (TT) to which all TOAs are referred. Any imperfections in this timescale will affect
the TOAs of all pulsars in a fully correlated manner — a monopolar correlation. This effect has been
discussed extensively in Guinot & Petit (1991), G. Hobbs et al. (2012) and G. Hobbs et al. (2020), and it
has been used to create pulsar-based timescales that can complement the atomic timescales. Tiburzi et al.
(2016) also showed that various spatially correlated noise, including errors in the TT standard and a
stochastic clock-like signal, can induce false detections of GWs. Our work on measuring clock offsets
with LEAP and pulsar timing also demonstrated that errors in maser-GPS measurements can reduce
the timing precision and can be corrected with the techniques used in Section 6.3.3. However, more
studies are needed to understand the impact of the stability of local masers and the accuracy of clock
offset measurements on PTA precision and GW detection.

To further investigate this problem, we plan to simulate different types of noises and errors in the
clock offset measurements (white noise, red noise, constant offsets, temporal jumps, etc.) and study how
the different noise/error affect the correlation curve. With simulations, we also expect to find solutions
to minimise the effect of clock noise/error and eliminate possible monopolar correlation in the PTA
analysis. In addition, we can study the impact of combining data from multiple telescopes with different
clock errors on GW detection and find the best way to boost its precision. Moreover, for high sensitivity
telescopes, such as FAST and the SKA, timing accuracy may be already limited by the stability of atomic
clocks, which can also be found out with simulations. Obviously, much more further work is needed.

Future timing: beyond the sensitivity of FAST

FAST is currently the most sensitive radio telescope and has already showed excellent timing precision
(see e.g. Chapter 5). To go beyond the sensitivity of FAST, the PEAPA project has been purposed to
coherently combine the largest radio telescopes in Europe and China. In Chapter 6, the potential of the
PEAPA has been demonstrated and joint observations with FAST and Effelsberg have been conducted.
In addition, two large fully steerable radio telescopes are being planned in China and will be available
in the coming years: the 100-m QTT and the 120-m Jingdong Pulsar Radio Telescope (JRT, M. Wang
et al., 2022). Construction of QTT has started recently and is expected to take six years to complete.
It is located in northwestern China, between FAST and the Europe, which is in particular helpful in
finding fringes for VLBI-mode observations and improving the capability of VLBI network. JRT, on the
other hand, is dedicated to pulsar science and will be built in the southwest of FAST (24.5°N 101.0°E).
Thanks to its excellent location, it can cover 90% of the sky and is capable of observing many Southern
sky sources that are not accessible to many telescopes in the Northern Hemisphere. Moreover, more than
6000 h of observation time can be allocated to millisecond pulsar timing every year which can greatly
advance the nanohertz GW detection (M. Wang et al., 2022). Overall, by combining the power of these
large radio telescopes in VLBI-mode observations, the future is bright for GW detection at nanohertz
frequencies and for many interesting gravity experiments with pulsars.
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ABSTRACT
Radio pulsars provide some of the most important constraints for our understanding of matter at supranuclear densities. So far,
these constraints are mostly given by precision mass measurements of neutron stars (NS). By combining single measurements
of the two most massive pulsars, J0348+0432 and J0740+6620, the resulting lower limit of 1.98 M� (99 per cent confidence)
of the maximum NS mass, excludes a large number of equations of state (EOSs). Further EOS constraints, complementary to
other methods, are likely to come from the measurement of the moment of inertia (MOI) of binary pulsars in relativistic orbits.
The Double Pulsar, PSR J0737−3039A/B, is the most promising system for the first measurement of the MOI via pulsar timing.
Reviewing this method, based in particular on the first MeerKAT observations of the Double Pulsar, we provide well-founded
projections into the future by simulating timing observations with MeerKAT and the SKA. For the first time, we account for
the spin-down mass-loss in the analysis. Our results suggest that an MOI measurement with 11 per cent accuracy (68 per cent
confidence) is possible by 2030. If by 2030 the EOS is sufficiently well known, however, we find that the Double Pulsar will
allow for a 7 per cent test of Lense–Thirring precession, or alternatively provide a ∼3σ -measurement of the next-to-leading order
gravitational wave damping in GR. Finally, we demonstrate that potential new discoveries of double NS systems with orbital
periods shorter than that of the Double Pulsar promise significant improvements in these measurements and the constraints on
NS matter.

Key words: dense matter – equation of state – gravitation – pulsars: general – pulsars: individual: J0737−3039A.

1 IN T RO D U C T I O N

Neutron stars (NSs) are among the most compact and exotic objects
in nature, comprised of extraordinarily dense matter that is not
accessible in laboratory experiments. Determining the properties
and structure of the cold dense matter inside NSs is therefore
a tremendous challenge in nuclear physics. Thus far, a variety
of equations of state (EOSs) have been proposed to describe the
pressure–density relation inside NSs (see e.g. Lattimer & Prakash
2001, 2016). Constraining the EOS is crucial for understanding
aspects of fundamental physics, such as the internal structure of
NSs, the dynamics of binary mergers, and r-process nucleosynthesis
(for a recent review see Özel & Freire 2016).

Various observational methods have emerged to measure the
macroscopic properties of NSs, which promise to increase our
knowledge of the EOS. The gravitational wave (GW) observation
of a binary NS merger with LIGO/Virgo offers the possibility of
measuring the tidal deformability (Abbott et al. 2017, 2018). X-ray
observations of emissions from the hot regions on NS surface with
NICER (Watts et al. 2016) allows a joint mass–radius estimation
(Miller et al. 2019; Riley et al. 2019).

� E-mail: huhu@mpifr-bonn.mpg.de

The largest number of known NSs, however, can be observed
as radio pulsars. Currently about 3000 pulsars are known, and the
ability of radio astronomers to measure pulsar properties precisely
via a technique known as ‘pulsar timing’, suggests that important
information about the EOS of NSs can also be derived from such
measurements. This is indeed the case. The most direct and best
known route is to measure the masses of NSs precisely. This is
possible in binary pulsars using relativistic orbital effects, potentially
combined with other information. The mass range, especially the
maximum mass observed, must obviously be consistent with the
range of masses supported by a proposed EOS. In addition, there
are other orbital effects that also offer the possibility of measuring
the moment of inertia (MOI) in binary pulsars via relativistic
spin-orbit coupling, as was first suggested by Damour & Schäfer
(1988). The MOI of a NS depends crucially on the EOS and
hence allows us to constrain or even identify it (Morrison et al.
2004; Lattimer & Schutz 2005; Greif et al. 2020). Accessing
the MOI of isolated NSs, in contrast, may be possible if one
can reliably derive or measure the total loss in rotational energy,
Ė, which relates the MOI with the observed period and period
derivative.

In this work, we provide insight into the various methods using
binary pulsars and their current status in Section 2, before we focus
specifically on the possibility of using the Double Pulsar (Burgay
et al. 2003; Lyne et al. 2004) for MOI measurements. We will provide

C©The Author(s) 2020. Published
by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.
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an in-depth study of the relevant factors in Section 3, where we
explain how Lense–Thirring (LT) precession affects the periastron
advance. Section 4 describes the intrinsic and extrinsic contributions
to the orbital period decay. We describe how we simulate future
timing observations in Section 5 and evaluate how the Double Pulsar
can measure the MOI and constrain the EOS in Section 6. Prospects
of testing LT precession and constraining theories of gravity is
discussed in Section 7 by assuming the EOS is known. We inves-
tigate potential constraints on next-to-leading order GW damping
in Section 8, and potential constraints from future discoveries of
more relativistic binary pulsars in Section 9. Finally, we conclude in
Section 10.

2 ME T H O D S TO C O N S T R A I N TH E E O S V I A
PULSAR TIM ING

2.1 Mass measurements

A given EOS i can only sustain a NS up to a certain maximum mass,
Mmax

i . Finding a massive NS of mass Mj, consequently excludes
all EOS with Mmax

i < Mj . This was, for instance possible, by
using a Shapiro delay measurement in PSR J1614−2230, where
Demorest et al. (2010) determined a mass M = 1.97 ± 0.04 M�.
We note that a recent update on continued timing observations
(Arzoumanian et al. 2018), implies a significantly lower mass of
1.908 ± 0.016 M� for this pulsar. As pointed out by Cromartie et al.
(2019), a Shapiro delay measurement and the determined uncertainty
can be affected by the exact orbital sampling (see also Hu et al., in
preparation).

In 2013, Antoniadis et al. (2013) could determine the mass of
PSR J0348+0432 without using a Shapiro delay measurement. They
combined radio timing measurements of the orbit of the pulsar with
precise spectroscopy data of the white dwarf companion in the optical
regime to derive a mass of 2.01 ± 0.04 M�, confirming the existence
of 2-M� NSs via a complementary method.

Recently, Cromartie et al. (2019) used a Shapiro delay mea-
surement in PSR J0740+6620 to determine a pulsar mass of
2.14+0.10

−0.09 M�. We can use the masses of these latter two most massive
pulsars, J0348+0432 (fully accounting for the rather asymmetric
probability density distribution found by Antoniadis et al. 2013) and
J0740+6620, to obtain a 99 per cent confidence lower limit for the
maximum mass of a NS, 1.98 M� < Mmax. Such a constraint already
rules out a number of soft EOSs as shown in Fig. 1.1

We can compare this lower limit derived from pulsar timing with
an upper limit placed by the NS–NS merger GW170817 observed
by LIGO (Abbott et al. 2017). Assuming that the NS–NS merger
resulted in the formation of a black hole, one finds an upper limit
of about 2.3 M� for the maximum mass of a NS (Rezzolla, Most &
Weih 2018; Shibata et al. 2019).

2.2 Relativistic spin-orbit coupling

Unlike in Newtonian gravity, the gravitational field of a body in
general relativity (GR) has contributions from the mass currents
related to the body’s proper rotation. Lense & Thirring (1918) –
with substantial help from Albert Einstein (see Pfister 2007) – have
shown that the rotation of the Sun has, in principle, an effect on the

1Note that in Fig. 6, we show a different but overlapping set of EOSs. Here, we
also show EOSs that have been excluded by the maximum mass measurement,
while at the same time making the plot not too crowded.

Figure 1. The mass of a NS as function of its radius for different EOS
(Lattimer & Prakash 2001). The horizontal bands indicate the 2-σ range
for the masses of the two most massive radio pulsars known to date,
PSR J0348+0432 (Antoniadis et al. 2013) in blue and PSR J0740+6620
(Cromartie et al. 2019) in yellow.

planetary orbits. This relativistic spin-orbit coupling, also known as
LT precession, has since been well tested in the gravitational field of
the rotating Earth with the help of satellite laser ranging (Ciufolini
& Pavlis 2004; Ciufolini et al. 2019). Similarly, in relativistic
binaries, the spin of a compact rotating body is expected to couple
gravitationally with the orbital motion of the system (Barker &
O’Connell 1975), leading to a precession of the orbit, while the total
angular momentum is conserved.2 This LT precession of the orbit is
potentially observable, hence providing a route to access the MOI of
the pulsar (Damour & Schäfer 1988). An MOI measurement, even
with an accuracy of ∼10 per cent, would offer important constraints
of the EOS (Morrison et al. 2004; Lattimer & Schutz 2005).

The LT precession of the orbit may be detected via the variation in
the orbital inclination angle, i, and hence in the (observable) projected
semimajor axis of the pulsar obit, x = apsin i/c (ap is the semimajor
axis, and c the speed of light). However, for this to be detectable,
the misalignment angle between pulsar spin and angular momentum
vector must be sufficiently large. Also, the orbital inclination angle
must not be too close to 90 degrees (‘edge-on’ geometry), since
the precession leads to a contribution to the rate of change of the
projected semimajor axis given by

ẋLT = x cot i

(
di

dt

)

LT

, (1)

where (di/dt)LT is given by equation (3.27) in Damour & Taylor
(1992). For nearly edge-on systems, i.e. i ≈ 90 deg, this contribution
becomes small and most likely undetectable since cot i � 1. How-
ever, in relativistic binary systems with smaller inclination angles,
such as PSR J1757−1854, this measurement appears to be possible
by Cameron et al. (2018). To achieve this, two challenges will have to
be addressed successfully. First, the precession is expected to cause a
variation in the pulse profile with time due to a change in the viewing
geometry (e.g. Kramer 1998). Special care in the timing procedure
is then needed to obtain sufficient precision and to properly account
for possible systematic errors (e.g. Stairs et al. 2002; Bhat, Bailes &
Verbiest 2008; van Leeuwen et al. 2015). Moreover, since we require
access to the direction of the pulsar spin vector (Damour & Schäfer

2The loss of orbital angular momentum due to the emission of GWs is of
higher post-Newtonian order and can be neglected here.
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1988; Damour & Taylor 1992), the geometry of the binary system
and the pulsar needs also to be measured. This is, however, possible
via polarization measurements, as shown previously (e.g. Kramer
1998; Stairs, Thorsett & Arzoumanian 2004; Desvignes et al. 2019;
Venkatraman Krishnan et al. 2019; Venkatraman Krishnan et al.
2020).

Alternatively, rather than using a contribution to ẋ, one can exploit
LT precession also via its contribution to the advance of periastron.
If it is possible to isolate the contribution of ω̇LT from the total
periastron advance, then the MOI can be determined (Damour &
Schäfer 1988). This method was suggested for the Double Pulsar,
PSR J0737−3039A/B (Lyne et al. 2004; Kramer et al. 2006). Kramer
& Wex (2009) concluded that an MOI measurement of ∼10 per cent
accuracy is possible by ∼2030, with the timing accuracy achievable
at the time. Later, Kehl et al. (2017) simulated timing data from
emerging telescopes, i.e. the Square Kilometer Array (SKA; e.g.
Kramer & Stappers 2015) and its precursor MeerKAT (Bailes et al.
2018; Camilo 2018), which greatly improve the timing precision,
and predict an MOI measurement with an accuracy well below
10 per cent by 2030. However, the timeline of the nominal operation
of the SKA assumed by Kehl et al. (2017) was optimistic compared
to the current estimates. With MeerKAT in operation since about
2018 (albeit initially with limited capability), operations of the
first phase of the SKA (SKA 1, initially expected to have about
10 per cent of the full SKA’s sensitivity) are not expected before
2027. However, first useful data from commissioning observations
may be already available in 2025.3 In addition, compared to Kehl
et al. (2017), we now already have about two years of Double Pulsar
timing observations with MeerKAT, and therefore have more realistic
numbers for the timing precision and cadence of observations, not
only for the current MeerKAT configuration but also for future
extensions. Moreover, Kehl et al. (2017) did not incorporate the
contribution of spin-down mass-loss of pulsar A to the orbital period
derivative into the simulations. As we will show below, considering
this effect is important, and its impact on our ability to measure
the MOI needs to be studied in a fully consistent analysis. Hence,
more complete simulations of the MOI measurement in the Double
Pulsar should give us a more realistic estimate of the system’s (near)
future capability to constrain the EOS of ultradense matter inside
a NS.

Consequently, in what follows, we present new and important
details of how to measure the MOI of radio pulsars using the method
of isolating the LT contribution to the advance of periastron. Using
the Double Pulsar as the most promising system for this kind of
experiment, we simulate timing data of PSR J0737−3039A that can
be expected from MeerKAT and future extensions, to assess our
ability to measure its MOI in the next 10 yr.

3 LENSE–THIRRING E FFECT IN T H E D O UBLE
PULSAR

The Double Pulsar is the only system to-date where both NSs have
been observed as pulsars (Burgay et al. 2003; Lyne et al. 2004),
with an orbital period of only 2.4 h. Breton et al. (2008) used the
system to provide a 13 per cent-test of spin-orbit interaction of
strongly self-gravitating bodies using the relativistic spin precession
in pulsar B. The compact, relativistic nature of the system also allows
the measurement of several post-Keplerian (PK) parameters to an
unparalleled level of accuracy. This not only enables some of the

3See skatelescope.org for updates.

most stringent tests of GR related to strong-field gravity (Kramer
et al. 2006; Kramer & Wex 2009; Will 2018), but it is also crucial
for the efforts to measure the MOI and to constrain the EOS of
a NS.

3.1 Spin-orbit coupling contribution to the periastron advance

To simplify the problem, we neglect the LT contribution of pulsar
B, since it spins about 122 times slower than pulsar A. Such
a simplification is well justified, as will become clear below.
In addition, the long-term observations of the pulse profile of
PSR J0737−3039A shows that the misalignment angle between
the spin axis of pulsar A and the orbital angular momentum has
an upper limit of 3.2◦ (Ferdman et al. 2008, 2013). Therefore, for
all practical purposes, we can assume that the spin of pulsar A is
parallel to the orbital angular momentum, which is consistent with
evolutionary considerations for the Double Pulsar system and a low-
kick supernova formation (e.g. Stairs et al. 2006; Tauris et al. 2017).
Pol et al. (2018) confirmed that pulsar A is indeed rotating prograde
in its orbit, using the modulation of pulsar B’s radio emission by
the interaction with the wind of pulsar A. Consequently, the spin
of pulsar A only induces a change to the advance of periastron,
and does not lead to a change in the orbital inclination, more
specifically, the projected semimajor axis. Following Damour &
Schäfer (1988), the total intrinsic contribution to the periastron
advance in the Double Pulsar system can be written, with sufficient
precision, as

ω̇intr = ω̇1PN + ω̇2PN + ω̇LT,A

= 3 β2
O nb

1 − e2
T

[
1 + fO β2

O − g
‖
SA

βO βSA

]
, (2)

where nb is the orbital frequency, and eT is the proper-time ec-
centricity used as the observed eccentricity in the standard timing
model (Manchester et al. 2015) and defined in Damour & Deruelle
(1986). The factor in front of the right-hand side of equation (2)
is the first post-Newtonian (1PN) contribution; the higher order
corrections due to 2PN effects and LT precession caused by pul-
sar A are indicated by the second and third term in the square
brackets, respectively. The following notations are used to simplify
equation (2),

βO = (GMnb)1/3

c
, (3)

βSA = cIA�A

Gm2
A

, (4)

fO = 1

1 − e2
T

(
3

2
x2

A + 3

2
xA + 27

4

)
+

(
5

6
x2

A − 23

6
xA − 1

4

)
, (5)

g
‖
SA

= 1

(1 − e2
T)1/2

(
1

3
x2

A + xA

)
. (6)

The subscript A stands for pulsar A. G is the Newtonian grav-
itational constant, and M = mA + mB is the total mass de-
fined as the sum of the (inertial) masses of pulsar A and B,
and xA = mA/M. IA denotes the MOI and �A the angular spin
frequency.4

Table 1 lists the values of each term contributing to ω̇intr,

4Since pulsar A is slowly rotating (∼2.5 per cent of break-up velocity), for
the purpose of this paper we do not have to distinguish between rotating
and non-rotating quantities when it comes to (gravitational) mass, moment of
inertia, etc. (see e.g. Berti et al. 2005)
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Table 1. Contributions to the rate of periastron ad-
vance in the Double Pulsar calculated using equa-
tion (2), with the Keplerian parameters and masses
(mA = 1.3381 M�, mB = 1.2489 M�) measured
in Kramer et al. (2006). I

(45)
A = IA/(1045g cm2).

The current measurement precision for ω̇ is already
∼10−5 deg yr−1 (Kramer et al., in preparation),
which is about 40 times smaller than ω̇LT,A.

Contribution (deg yr−1)

ω̇1PN 16.898703
ω̇2PN 0.000439

ω̇LT,A − 0.000377× I
(45)
A

using the Keplerian parameters and masses (mA = 1.3381 M�,
mB = 1.2489 M�) measured in Kramer et al. (2006). We note
that the contribution due to the LT precession ω̇LT,A depends on
the MOI, whereby it is written as a function of I

(45)
A defined as

I
(45)
A = IA/(1045 g cm2). Typical values of I

(45)
A are around unity for

realistic EOSs. It is evident that the contribution from the LT effect
is comparable to that of 2PN, but with opposite signs.

The analysis of timing data from relativistic binary pulsars is based
on a particularly simple and elegant solution of the post-Newtonian
equations of motion, the so-called Damour-Deruelle (DD) model
(Damour & Deruelle 1985; Damour & Deruelle 1986; Manchester
et al. 2015). In the quasi-Keplerian parametrization of the DD model
one can see that the advance of periastron is proportional to the
true anomaly. This behaviour is modified by two periodic terms
as part of the generalized quasi-Keplerian parametrization, which
is a natural extension of the DD model when including 2PN and
spin-orbit terms (Damour & Schäfer 1988; Schäfer & Wex 1993;
Wex 1995). However, these periodic terms will remain well below
measurability for the foreseeable future, for any of the known binary
pulsars. For that reason, we will ignore them in our analysis.

Besides the coupling to the orbital angular momentum (spin-orbit
coupling), the spin of pulsar A also couples to the spin of pulsar
B (spin–spin coupling) (Barker & O’Connell 1975). However, the
spin of pulsar B is about a factor of 3 × 106 smaller than the orbital
angular momentum. Hence, spin–spin coupling is totally irrelevant
here.

Finally there are, at least in principle, also contributions from
the rotationally induced mass quadrupole moments of pulsars A
and B to the orbital dynamics (Barker & O’Connell 1975). These
spin-squared contributions give rise to an additional change in the
advance of periastron (Smarr & Blandford 1976; Wex 1998). The
contribution from the quadrupole moment of pulsar A is estimated to
be ∼3 × 10−8 deg yr−1, where we have used the relations in Bauböck
et al. (2013) to calculate the mass quadrupole. This is four orders of
magnitude smaller than the second-order effects. The contribution
from pulsar B is even smaller (about 104 times) due to its slower
rotation. Hence we can totally ignore such contributions in this study.

3.2 The proper motion contribution to the observed periastron
precession

Apart from the intrinsic contributions to the periastron advance, the
proper motion of a binary system also can change the apparent ge-
ometrical orientation of the orbit, and hence the observed periastron
advance (Kopeikin 1996). As a consequence, the observed value of
periastron advance is shifted from its intrinsic value by

ω̇obs = ω̇intr + ω̇K. (7)

Figure 2. Improvement in the fractional errors of five PK parameters with
time, based on the simulation described in Section 5. From top to bottom
are: the Shapiro delay range parameter r (blue), the time dilation amplitude
γ (orange), the orbital period derivative Ṗb (green), the Shapiro delay shape
parameter s (red), and the relativistic advance of periastron ω̇ (purple). The
vertical lines mark the observing phase of MeerKAT, MeerKAT+, and SKA
1-mid.

Here, ω̇K is the Kopeikin term that satisfies

ω̇K = 2.78 × 10−7 csc i (μα cos � + μδ sin �) deg yr−1, (8)

where i is the orbital inclination as defined in Damour & Tay-
lor (1992), μα and μδ are the proper motion in right ascension
and declination, and � is the longitude of the ascending node
(measured from East, in the sense of rotation towards North).
Using the parameters measured by Kramer et al. (2006) and the
estimated � = 25(2)◦ by Rickett et al. (2014),5 we obtain ω̇K =
−4.0(3) × 10−7 deg yr−1. Given the current measurement precision

ω̇ ∼ 10−5 deg yr−1 (Kramer et al., in preparation), the Kopeikin
term is a small correction to the intrinsic periastron advance that we
use in this study. However, since it is three orders of magnitude
smaller than ω̇LT,A (see Table 1), it does not have a significant
influence on the LT measurement.

3.3 Challenges on extracting the Lense–Thirring contribution
and measuring the MOI

Although the current measurement precision 
ω̇ is already ∼
40 times smaller than ω̇LT,A, it is not that straightforward to extract
the LT contribution from ω̇obs with equations (2) and (7), as the two
masses (mA, mB) are needed to calculate ω̇1PN and ω̇2PN. The masses
need to be obtained from any other two PK parameters, where the
best two here are the Shapiro delay shape parameter s and the orbital
period derivative Ṗb (see Fig. 2). For the Double Pulsar, we already
have sufficient precision for s, so the limitation is mainly from Ṗb

(Kramer et al., in preparation). The measurement precision of Ṗb

will improve over time, especially with the addition of MeerKAT
and the SKA. However, the observed value of Ṗb is influenced by
extrinsic acceleration effects, which depend on the distance of the
pulsar and the Galactic gravitational potential. Moreover, the spin-
down mass-loss of the pulsars also have an impact on Ṗb, which

5Note, Rickett et al. (2014) use a different definition for the longitude of the
ascending node �, which we have accounted for.
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itself depends on the MOI, meaning the masses cannot be determined
independently from IA. These are the challenges for measuring the
MOI. An alternative option to Ṗb could be the time dilation amplitude
γ , whose fractional error is about one order of magnitude larger than
Ṗb (see Fig. 2). However, based on the assumptions of observing plan
in Section 5, it would take at least two decades from now to obtain a
1σ -measurement of ω̇LT,A using only γ , s, and ω̇, a precision that is
already reached now with Ṗb (Kramer et al., in preparation). Hence,
a comprehensive understanding of the individual contributions to Ṗb

is needed, which will be discussed in detail in the following section.

4 TH E IN TRINSIC A N D E X T R INS IC
C O N T R I BU T I O N S TO T H E O R B I TA L P E R I O D
D E C AY

The observed value of the orbital period decay comprises several
effects (Damour & Taylor 1991). For the purpose of this study, we
only consider the dominant terms
(

Ṗb

Pb

)obs

=
(

Ṗb

Pb

)GR

+
(

Ṗb

Pb

)ṁA

+
(

Ṗb

Pb

)Gal

+
(

Ṗb

Pb

)Shk

, (9)

where gravitational wave damping (GR) and mass-loss of pulsar
A (ṁA) are intrinsic contributions, and Galactic acceleration (Gal)
and Shklovskii effect (Shk) are extrinsic contributions. Thereby, the
intrinsic orbital period decay can be extracted from the observed
value using

Ṗ intr
b = Ṗ obs

b − Ṗ Gal
b − Ṗ Shk

b . (10)

Consequently, the uncertainty in the intrinsic orbital period decay
also depends on the error in the pulsar distance and the uncertainty
in the Galactic gravitational potential at the location of the pulsar
and the Earth.

4.1 Gravitational wave damping

The binary system loses energy in the form of GW emission, which
shrinks the orbit of the system, and in turn gradually reduces the
orbital period. The post-Newtonian approximation is employed to
describe the orbital dynamics of the binary system (see e.g. Damour
1987; Blanchet 2014), i.e. the equations of motion are expanded with
respect to v/c, where v denotes a typical orbital velocity. The change
of the orbital period due to GW damping enters at order (v/c)5, i.e.
the 2.5PN approximation. The corresponding change in the orbital
period is given by (Peters & Mathews 1963; Esposito & Harrison
1975; Wagoner 1975)

Ṗ 2.5PN
b = −192π

5

η β 5
O(

1 − e2
T

)7/2

(
1 + 73

24
e2

T + 37

96
e4

T

)
, (11)

where η = mAmB/M2 is the symmetric mass ratio. Later, Blanchet &
Schäfer (1989) extended the expression to the next-to-leading order
(3.5PN),

Ṗ GR
b = −192π

5

η β 5
O(

1 − e2
T

)7/2

{
1 + 73

24
e2

T + 37

96
e4

T + β 2
O

336
(
1 − e2

T

)

×
[

1273 + 16495

2
e2

T + 42231

8
e4

T + 3947

16
e6

T

−
(

924 + 3381e2
T + 1659

4
e4

T − 259

4
e6

T

)
η

+
(

3297e2
T + 4221e4

T + 2331

8
e6

T

)
δm

M

]}
, (12)

where δm denotes the mass difference of the timed pulsar and its
companion, in our case, δm = mA − mB. Equation (12) can be
written in a simplified form as

Ṗ GR
b = Ṗ 2.5PN

b (1 + X3.5PN) , (13)

where the relative correction of the 3.5PN order, X3.5PN, is
1.40 × 10−5 for the Double Pulsar. To date, only the leading
order contribution to the orbital period decay is considered in the
analysis and interpretation of any of the known binary pulsars. The
higher order correction, however, will need to be included in the
future, when we reach the necessary timing precision with emerging
powerful radio telescopes such as the SKA. We will evaluate future
measurability of the 3.5PN contribution to Ṗb in Section 8.

Besides the damping of the binary period, the emission of GWs
in principle has an additional effect on the observed Ṗb. Junker &
Schäfer (1992) have shown that a double NS system with asymmetric
masses in an eccentric orbit becomes accelerated due to the GW
recoil. Since any acceleration along the line of sight leads to an
apparent change in the orbital period (Damour & Taylor 1991), the
GW recoil at 3.5PN order will also affect the observed orbital period
at some level. As Junker & Schäfer (1992) have pointed out, the recoil
acceleration changes its direction with the advance of periastron, in
our case on a time-scale of about 21 yr. However, using equation (103)
in Junker & Schäfer (1992) we find a maximum shift in the observed
Ṗb due to GW recoil of 4.6 × 10−24, which is seven orders of
magnitude below the current measurement precision.

4.2 Galactic acceleration and Shklovskii effect

The contribution of Galactic acceleration can be calculated with
(Damour & Taylor 1991; Nice & Taylor 1995; Lazaridis et al. 2009)
(

Ṗb

Pb

)Gal

= −Kz| sin b|
c

− �2
0

cR0

{
cos l + β

sin2 l + β2

× [1 + b0(1 −
√

sin2 l + β2)]2

}
cos b, (14)

where β = (d/R0)cos b − cos l. For the Double Pulsar, the Galactic
longitude l is 245.2◦ and the Galactic latitude b is −4.5◦. As for the
distance to the Double Pulsar (d), the VLBI observations made by
Deller, Bailes & Tingay (2009) implied a distance of 1.15+0.22

−0.16 kpc,
whereas the dispersion measure (DM) favours a distance of about
0.52 kpc (Cordes & Lazio 2002). We note that new, preliminary
timing and VLBI measurements indicate a distance closer to the DM
distance (Kramer et al., in preparation). Hence, for our simulation,
we consider an intermediate distance of 0.8 kpc with a 10 per cent
error. We will see in Section 6, using a different distance does not
have a big influence on our results. The vertical contribution of the
Galactic acceleration Kz for Galactic height z ≡ |d sin b| � 1.5 kpc
can be approximated with the expression (Holmberg & Flynn 2004;
Lazaridis et al. 2009)

Kz[10−9 cm s−2] 
 2.27 zkpc + 3.68
[
1 − exp(−4.31 zkpc)

]
, (15)

where zkpc ≡ z[kpc]. For Kz, we consider a typical error of
about 10 per cent (Holmberg & Flynn 2004; Zhang et al. 2013).
The Galactic parameters R0 is the distance from the Sun to the
Galactic centre, and �0 is the Galactic circular velocity at the
location of the Sun. In our calculation, we adopt the recent result in
Gravity Collaboration (2019), where R0 = 8.178 ± 0.026 kpc6 and

6We note that the latest measurement of R0 shows a 2σ difference (Gravity
Collaboration 2020), which will not affect our results.
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�0 = 236.9 ± 4.2 km s−1. The slope parameter at the radius of the
Sun is defined as (Damour & Taylor 1991):

b0 ≡
(

R

v

dv

dR

)

R=R0

. (16)

We note this term is often ignored in other studies, as the rotation
curve is nearly flat in the vicinity of the Sun. Its uncertainty,
however, could be relevant for measuring the MOI, and as such
is included in our study. The slope of the Galactic rotation curve
at the location of the Sun estimated by Reid et al. (2014) is
−0.2 ± 0.4 km s−1 kpc−1, corresponding to b0 = 0.007 ± 0.014.
Lately, Eilers et al. (2019) found a slope significantly different from
zero, i.e. −1.7 ± 0.1 km s−1 kpc−1 (b0 = 0.0603 ± 0.0035), with
a systematic uncertainty of 0.46 km s−1 kpc−1. Both results will be
employed later in our simulation, but for Eilers et al. (2019) we only
consider the statistical error and assume that the systematic error can
be well understood in the future.

Besides the Galactic acceleration, there are additional acceler-
ations due to masses in the vicinity of the Sun or the pulsar,
primarily giant molecular clouds (GMCs), but also stars, black
holes, and other external masses (Damour & Taylor 1991; Kehl
2015). These have most likely, if at all, only a small influence
on the result, which should not limit our ability of measuring
the MOI with a precision lower than 10 per cent (Kehl 2015).
The influence of these masses mostly depends on the distance
to the Double Pulsar, with which we can, for instance, trace and
restrict the presence and influence of GMCs using Galactic carbon
monoxide (CO) surveys (Neininger et al. 1998; Glover & Mac
Low 2011). We expect that a more firmly established distance
measurement in the future will allow a refined analysis to confirm our
conclusions.

Finally, the transverse motion of a pulsar leads to an apparent
change in the orbital period. This is known as the Shklovskii effect
(Shklovskii 1970), and is given as
(

Ṗb

Pb

)Shk

= μ2d

c
, with μ2 = μ2

α + μ2
δ . (17)

4.3 Mass-loss

A pulsar looses mass due to its energy emission, which changes the
orbital period by (Jeans 1924, 1925)
(

Ṗb

Pb

)ṁ

= −2
ṁA + ṁB

M
. (18)

Although the emission process of pulsars is not fully understood, the
mass–energy loss can be calculated (with sufficient precision) from
the loss in rotational kinetic energy, i.e. Ė rot

j 
 ṁj c
2 (Damour &

Taylor 1991), where Ė rot
j = Ij�j �̇j , with �j the angular velocity

of the (proper) rotation of body j (j = A or B), given in terms of the
spin period by �j = 2π/Pj. Hence,

(
Ṗb

Pb

)ṁj

= 8π2Ṗj Ij

c2MP 3
j

. (19)

Clearly, the mass-loss correction to the rate of orbital period decay
also depends on the MOI, and therefore on the EOS. Table 2 lists
the predicted value of each contribution to Ṗ obs

b , where the mass-
loss contributions are written as a function of I

(45)
j . The contribution

due to the mass-loss of pulsar A is one order of magnitude smaller
than that of the Galactic acceleration and the Shklovskii effect,
and of the same order of magnitude as the current measurement

Table 2. Contributions to the rate of orbital period
decay in the Double Pulsar, calculated with Keplerian
parameters and masses measured in Kramer et al. (2006).
The Galactic acceleration is computed using Galactic
measurements by Gravity Collaboration (2019) and slope
in Reid et al. (2014), and a distance of 0.80 kpc is
assumed. I

(45)
B is defined in the same way as I

(45)
A . The

current measurement precision for Ṗb is below 0.1 fs/s
(Kramer et al., in preparation).

Contribution [fs/s]

Ṗ 2.5PN
b −1248

Ṗ Gal
b −0.38

Ṗ Shk
b 0.21

Ṗ 3.5PN
b −0.017

Ṗ
ṁA

b 0.023× I
(45)
A

Ṗ
ṁB

b 6.3 × 10−6 × I
(45)
B

precision (Kramer et al., in preparation), hence must be considered.
The mass-loss contribution of pulsar B, however, is nearly four orders
of magnitude smaller than that of pulsar A and thus can be safely
ignored.

5 SI MULATI ONS

In order to investigate the capability of measuring the MOI and
testing GR with radio pulsars, we developed a simulation framework
to generate and analyse time-of-arrivals (TOAs) for binary pulsars. In
this section, we will describe how we simulate TOAs from emerging
telescopes for PSR J0737−3039A based on realistic assumptions,
and how to measure PK parameters and timing parallax.

To simulate TOAs of PSR J0737−3039A from current and future
telescopes, knowledge of the sensitivity of the telescopes, as well as
(realistic) assumptions about a future observing plans are needed. We
consider the best telescopes for observing this pulsar, i.e. MeerKAT
and its future arrays. Unfortunately, this pulsar is not in the field of
view of the Five-hundred-meter Aperture Spherical radio Telescope
(FAST; Nan et al. 2011), the largest radio telescope today and in the
near future.

MeerKAT is a precursor for the mid-frequency array of the
SKA, which comprises 64 dishes, each with a diameter of 13.5 m.
This corresponds to an effective diameter ( /©eff ) of 108 m. Regular
timing observations for the Double Pulsar started in 2019 as a
part of the MeerTIME project (Bailes et al. 2018). The MeerKAT
extension, hereafter MeerKAT+, is a joint collaboration of the South
African Radio Astronomy Observatory (SARAO) and the Max-
Planck-Society (MPG) to extend MeerKAT by the addition of 20
SKA-type dishes, each 15 m in diameter, to MeerKAT. MeerKAT+
is expected to operate from 2022, providing an increase in sensitivity
by 50 per cent (Kramer, private communication). The first phase of
the SKA mid-frequency array, SKA 1-mid, is planned to build 112
additional dishes with 15 m diameter, extending MeerKAT+ further,
with first data from 2025 and full operation after 2027. We summarize
the observing plans and the effective diameters of these telescopes
in Table 3.

In order to estimate the TOA uncertainty of each observing phase,
we need to consider noise contributions for pulsar A. The TOA
uncertainty of pulsar A with real MeerKAT observations at L-band
is about 1.06 μs for a 5 min integration over the full bandwidth
(Bailes et al. 2020). Since the system performance of MeerKAT+
and SKA 1-mid are expected to be similar to that of MeerKAT, and the
radiometer noise σ rn reduces in reverse proportional to the effective
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Table 3. Telescope observing plans, effective diameters and
TOA uncertainties (L-band, 5 min integration time) used for
simulation. For 2003–2019, σTOA are based on observations
from multiple telescopes, where the best data are from the
GBT. Its typical uncertainty at L-band is shown in the table,
whereas the TOAs from the UHF band are expected to be
1.25 times better (Kramer et al., in preparation). The TOA
uncertainty for MeerKAT is scaled to 5 min integrations based
on real observations (Bailes et al. 2020), and for MeerKAT+
and SKA 1-mid are scaled referring to MeerKAT.

Year Telescope /©eff (m) σTOA (µs)

2003–2019 GBT 100 2.5
2019–2022 MeerKAT 108 1.06
2022–2025 MeerKAT+ 127 0.76
2025–2030 SKA 1-mid 203 0.30

collection area of the telescope Aeff, we can therefore calculate the
radiometer noise using the relation

σ tel
rn = AMK

eff

Atel
eff

σ MK
rn , (20)

where the superscript ‘MK’ stands for MeerKAT. We are not
considering noise budgets other than the radiometer noise, because:
(1) The phase jitter has not been detected in the current MeerKAT
observations and must be rather small (Bailes et al. 2020, Hu et al.,
in preparation). It may become important in the future observing
phase as the radiometer noise reduces, but the influence of jitter
can potentially be reduced using Bayesian methods (Imgrund et al.
2015) or binning and combining the data in orbital phase. (2) The
contributions from scintillation and other effects are expected to be
one or more orders of magnitude smaller than the radiometer noise
of SKA 1-mid, hence are neglected. As a result, in our simulation,
we adopt the TOA uncertainties solely based on the radiometer
noise estimation for each observing phase, which can be found in
Table 3.

Based on the above assumptions, we generate TOAs of
PSR J0737−3039A that mimic observations with MeerKAT,
MeerKAT+, and SKA 1-mid from 2019 to 2030 covering two full
orbits per month (∼5 h), and combine them with the existing TOAs
from multiple telescopes (Kramer et al., in preparation) to form
a long-range data set (2003–2030). Technically speaking, we only
use the observing cadence and TOA uncertainties from the existing
TOAs, since the data analysis by Kramer et. al (in preparation) is still
ongoing, and in the next steps all TOAs will be simulated to fit our
model, under the assumption of Gaussian white noise.

The first step is to create a parameter file (model) for pulsar A. For
this, we take precisely measured masses from Kramer et al. (2006),
mA = 1.3381 M�, mB = 1.2489 M�, and assume EOS AP4 (see
Lattimer & Prakash 2001). This particular choice of EOS satisfies
the current lower limit of 1.98 M� (99 per cent confidence level,
hereafter C.L.) for the maximum mass of a NS (see Section 1
for details), and also lies in the MOI ranges obtained for pulsar
A by Gorda (2016), Lim, Holt & Stahulak (2019), Greif et al.
(2020). The MOI of pulsar A, under this assumption, is therefore
IAP4

A = 1.24 × 1045g cm2. We create a parameter file by taking the
well measured Keplerian parameters of the Double Pulsar (Kramer
et al. 2006) and the PK parameters computed from mA, mB, and
IA. For the advance of periastron ω̇, we consider first- and second-
order PN terms and the LT contribution. As for the orbital period
decay Ṗb, we consider leading order (2.5PN) GW emission, Galactic

Figure 3. Predicted uncertainty of the timing parallax 
π x as a function of
time. The corresponding uncertainty in distance is smaller than our assumed
value from mid-2021, and is therefore used for future corrections of extrinsic
acceleration effects.

acceleration, Shklovskii effect, and mass-loss in pulsar A. The 3.5PN
GW term is only considered in Section 8.

We then adjust the TOAs to perfectly match with our model, and
add a Gaussian white noise to each TOA, according to its σ TOA. The
red noise from DM variations is not considered in our simulation,
since it can be in principle corrected for with multifrequency data.
In a final step, we use the pulsar timing software TEMPO7 to fit
for the timing parameters and obtain their uncertainties, including
the PK parameters, which are of particular importance here. From
2018 to 2030, the data set is split with a step size of 6 months, so
as to demonstrate how the measurements improve with time. The
predicted fractional errors of the PK parameters are shown in Fig. 2.

As part of the simulation, we also measure the timing parallax π x,
which gives an idea of the precision of future distance measurement
from timing parallax. The predicted uncertainty of π x is shown
in Fig. 3. For the uncertainty of pulsar distance, which enters the
Galactic acceleration and the Shklovskii effect, we adopt the value
calculated from timing parallax when its uncertainty is smaller than
what we assumed in Section 4.2, which is from mid-2021. Aside
from timing parallax measurement, in the future, the VLBI parallax
measurements with the SKA can potentially provide an accurate
distance measurement (Smits et al. 2011).

6 ME A S U R I N G T H E MO I A N D C O N S T R A I N I N G
T H E EO S

Based on our TOA simulation, we predict the future timing mea-
surement of PK parameters (Fig. 2). The three best measured
parameters, Ṗ obs

b , ω̇obs, and s, are promising for the determination
of IA. With equations (7) and (10), we obtain the intrinsic periastron
advance ω̇ intr (mA, mB, IA) and the intrinsic orbital period decay
Ṗ intr

b (mA,mB, IA). Since both now ω̇intr and Ṗ intr
b depend on the

MOI, we cannot directly use Ṗ intr
b and s to determine the masses

and hence measure IA from ω̇intr as in Kehl et al. (2017). Instead,
a self-consistent method is employed to solve for the masses
(mA, mB) and IA jointly from Ṗ intr

b (mA, mB, IA), s (mA, mB) and
ω̇ intr (mA, mB, IA). To estimate the probability distribution function

7http://tempo.sourceforge.net/
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Figure 4. Simulated measurements of the MOI of PSR J0737−3039A with
time, where two full orbits observation per month are assumed. The red line
indicates the theoretical value of the MOI for the chosen EOS AP4 (IAP4

A ).

Figure 5. Predicted uncertainty of IA as a function of time. The blue line
adopts the Galactic measurements (R0, �0) by Gravity Collaboration (2019)
and slope measurement by Reid et al. (2014), whereas the red line assumes no
errors in the Galactic model. The grey line is same as the red line but ignores
the influence of mass-loss to the orbital period change. The theoretical value
IAP4

A is indicated by the dashed black line, whereas the dash-dotted line is
10 per cent of the theoretical value.

for IA, we perform a Monte Carlo simulation to randomize the
observed parameters according to their uncertainties. This process is
repeated for the measurements from 2018 to 2030.

Fig. 4 shows the predicted measurements of IA with time, where
the new telescopes clearly help to narrow down the uncertainty of
IA. Here we adopt the Galactic measurements (R0, �0) by Gravity
Collaboration (2019) and the slope measurement by Reid et al.
(2014). The predicted uncertainty of IA with time is also illustrated
as the blue line in Fig. 5. In this case, we expect to achieve an MOI
measurement with 25 per cent precision at 68 per cent C.L. by the
year 2030. Our simulation shows that, although the uncertainty of
Ṗ obs

b is initially higher than the Galactic acceleration, it decreases
with additional years of precise timing observations (see Fig. 2),
and by 2030, the error in the Galactic acceleration is three times
higher than the error in Ṗ obs

b , which becomes the limiting factor for
measuring the MOI.

However, the measurements of the Galactic potential is expected
to improve through various observational methods, such as Gaia
mission (Gaia Collaboration 2016) and ongoing observations of
Galactic masers (Reid et al. 2014). A recent study by Eilers et al.
(2019) provides a precise measurement of the circular velocity curve
of the Milky Way from 5 to 25 kpc. With the distance from the Sun to
the Galactic centre R0 = 8.122 ± 0.031 kpc (Gravity Collaboration
2018), they determine the rotation speed of the local standard of rest
�0 = 229.0 ± 0.2 km s−1, with a slope of −1.7 ± 0.1 km s−1 kpc−1

(statistical errors), corresponding to b0 = 0.0603 ± 0.0035. The
total uncertainties (including systematic errors) given by Eilers et al.
(2019) are similar to the measurements used in the previous case
(blue line), but here we assume the systematic errors can be well
understood in the near future, and only consider the statistical errors.
With this assumption, we expect to measure the MOI with 11 per cent
precision at 68 per cent C.L. in 2030. This is nearly the same as
using an error-free Galactic model, which is indicated by the red
line in Fig. 5. Therefore, with future measurements of the Galactic
potential and a better understanding of the systematic errors, an MOI
measurement with 11 per cent precision from the Double Pulsar
seems realistic.

One important factor for the result is the influence of the mass-loss
in pulsar A, which was neglected in the previous study by Kehl et al.
(2017). Without considering this contribution, the uncertainty of IA

significantly reduces and reaches 7 per cent by 2030 (see the grey
line in Fig. 5), in contrast to the red line. In addition, we find that
increasing the observing cadence does not significantly improve the
precision of MOI measurements.

As mentioned in Section 4.2, different approaches provide very
different measurement of the distance of the Double Pulsar, and a
compromise distance of 0.8 kpc is thereby employed in our study.
To investigate how distance influences the MOI measurement, we
consider two extreme cases, d = 0.4 kpc and d = 1.6 kpc, with the
same setups as in the d = 0.8 kpc simulations. Using the current
Galactic measurements, we find that the uncertainty of the MOI
measurement reaches 17 per cent by 2030 when d = 0.4 kpc, and
has a much higher uncertainty (43 per cent) when d = 1.6 kpc.
However, with negligible error in the Galactic potential, both predict
∼11 per cent measurements by 2030, same as for the case of d =
0.8 kpc. Since an improved Galactic model is expected in the near
future, the value we employ for the distance should not have a
significant impact on the prediction of the MOI uncertainty.

An 11 per cent precision measurement of the MOI would further
improve the constraints of the EOS of NSs (Lattimer & Schutz 2005;
Greif et al. 2020). Fig. 6 shows the MOIs of a number of EOSs,
which are scaled by a factor of M3/2 in order to reduce the range of the
ordinate (cf. Lattimer & Schutz 2005). The 11 per cent measurement
predicted from our simulation is illustrated by the red bar centred at
the assumed EOS AP4, and located at the precisely measured mass
of pulsar A. To compare with the constraints from other methods, we
mark the curves in different styles. The observations of the binary NS
merger event GW170817 by LIGO/Virgo (Abbott et al. 2018) placed
a constraint for the radii of both NSs, 11.9 ± 1.4 km (90 per cent
C.L.), which excludes the EOSs in grey dashed curves. Recently, a
more stringent constraint combining GW170817 with nuclear theory
was obtained by Capano et al. (2020), where they found the radius
for a 1.4M� NS is 11.0+0.9

−0.6 km (90 per cent C.L.). This further
excludes the EOSs in blue dashed curves. The remaining promising
EOSs from this constraint are marked in blue solid curves, which
is already very close to our 11 per cent prediction from the MOI
measurement in 2030. With more and more binary NS mergers
expected to be detected in the coming years, tighter constraints
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3126 H. Hu et al.

Figure 6. Constraints of EOSs from an 11 per cent measurement of the MOI
of PSR J0737−3039A (red). EOS AP4 was assumed in the simulation (curve
through red dot). The grey dashed curves indicate EOSs that are disfavoured
by the LIGO/Virgo observations of the GW170817 binary neutron-star merger
(Abbott et al. 2018). The blue dashed curves are additionally excluded by the
refined (combined with nuclear theory) GW170817 analysis by Capano et al.
(2020). The following EOSs have been plotted (ascending in their intersection
with the left border): WFF1, WFF2, AP4, BSk20, AP3, SLy4, BSk25, MPA1,
BSk21, SLy9, BL, BSk22, H4, PAL1, MS2, MS0 (https://compose.obspm.fr).
All these EOSs are able to support a NS of 1.98 M�, the current lower limit
for the maximum mass (see Section 1 for details).

on the EOS are likely to be achieved. Meanwhile, recent NICER
observation delivered a joint mass–radius measurement for PSR
J0030+0451 from two independent analyses. Riley et al. (2019)
found an inferred mass and equatorial radius of 1.34+0.15

−0.16M� and
12.71+1.14

−1.19 km (68 per cent C.L.), while Miller et al. (2019) found
1.44+0.15

−0.14M� and 13.02+1.24
−1.06 km. This is a weak constraint on the

EOS, but is expected to improve with more observations in the
near future. The upcoming X-ray missions, such as eXTP (Zhang
et al. 2016) and ATHENA (Barret et al. 2013), are also promising to
improve our understanding of the mass–radius relation for NSs.

Therefore, it is fair to assume that the GWs and X-ray observations
will place a more stringent constraint on the EOS within the next
10 yr, and if the EOS can be known with sufficient precision, we can
in turn use this information as an input to our analysis, test the LT
precession, and constrain theories of gravity with the Double Pulsar.
We will discuss this scenario in detail in the next section.

7 TESTIN G LEN S E– T H IRRI N G P R E C ES S IO N

As discussed in the previous section, the MOI measurement of
PSR J0737−3039A is expected to reach 11 per cent accuracy by
2030, whereas GWs and X-ray observations are likely to give a better
constraint on the EOS. In this section, we discuss the prospects of
testing LT precession and constraining theories of gravity using the
Double Pulsar, if the EOS is known.

We again adopt EOS AP4 and this time assume that a precision of
5 per cent could be achieved when calculating the MOI of pulsar A,
based on a (hypothesized) future improvement in our understanding
of super-dense matter. Given IA as an input to our simulations, only
the masses are unknown for the intrinsic orbital period decay Ṗ intr

b

and the Shapiro shape parameter s. With the masses measured from
(Ṗ intr

b , s) and the given IA, we can directly test the LT contribution to
the periastron advance ω̇LT,A. To discuss the physical meaning of such

a test, we use the generic framework for relativistic gravity theories
introduced by Damour & Taylor (1992), which is fully conservative
and based on a Lagrangian that includes a generic term LSO for
spin-orbit interaction. As in Damour & Taylor (1992), we will make
no assumption about the (strong-field) coupling function �B

A, which
enters LSO. Since the spin axis of pulsar A has been found to be
practically parallel to the orbital angular momentum, the general
form of the LT contribution to the periastron advance can be written
as

ω̇LT,A = − 2n2
bIA�A(

1 − e2
T

)3/2
M

σA

G , (21)

where σ A is a generic strong-field spin-orbit coupling constant,
defined by

σA = 1

c2

[
�B

A +
(

�B
A − 1

2
G
)

mB

mA

]
. (22)

In GR, the generalized gravitational constant G equals G, and the
coupling function �B

A equals 2G (Damour & Taylor 1992), so that

σ GR
A = G

c2

(
2 + 3

2

mB

mA

)
. (23)

But in other theories, �B
A is expected to deviate from 2G, including

modifications by self-gravity contributions from the strongly self-
gravitating masses in the system.

We define a parameter δLT to measure the relative deviation of the
theory-independent parameter σA/G from its GR prediction,

δLT =
(

σA

G

)(
σ GR

A

G

)−1

− 1. (24)

By inserting equation (22) into the above definition, one obtains for
the spin-orbit coupling function

�B
A

2G − 1 =
(

3 + xA

4

)
δLT. (25)

To assess potential constraints on a non-GR spin-orbit coupling, we
multiply the expression of ω̇LT,A in GR (last term in equation 2) by (1
+ δLT), and solve for the parameter δLT using the three PK parameters
Ṗ intr

b (mA,mB), s (mA, mB), and ω̇intr(mA,mB, δLT). One has to keep
in mind that, for simplicity, we make here the assumption that the
non-spin related parts of the orbital dynamics and signal propagation
are (to sufficient approximation) given by their GR expressions. It
goes without saying, that in practice one has to conduct a fully
self-consistent analysis within a given class of alternative gravity
theories. For a discussion that purely focuses on the measurability of
a potential deviation in the LT contribution, our approach is sufficient.

Fig. 7 shows the expected decrease in the uncertainty of δLT with
future observations. With R0 and �0 measurements from Gravity
Collaboration (2019) and the slope measurement from Reid et al.
(2014), we expect to measure δLT with 18 per cent precision at
68 per cent C.L. by 2030, which is indicated by the blue line. The
red line adopts the Galactic measurements from Eilers et al. (2019),
where we expect to achieve a 9 per cent precision by 2030. In the
ideal case, we assume that the Galactic potential, the distance to the
Double Pulsar, and the MOI can be precisely measured in the future,
so that we could leave out the errors. In this scenario, we expect
to measure δLT with 7 per cent precision by 2030 (green line). We
have seen in Section 6 that change from the Galactic measurements
by Eilers et al. (2019) to an error-free Galactic model has little
enhancement on the measurements of the MOI, and the uncertainty
of the timing parallax is relatively small, therefore, the improvement
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Figure 7. Predicted uncertainty of δLT as a function of time. The blue line
adopts Galactic measurements (R0, �0) by Gravity Collaboration (2019) and
slope measurement by Reid et al. (2014), the red line adopts Galactic and
slope measurements by Eilers et al. (2019), and the green line assumes no
errors in the Galactic model, the distance and the MOI.

from 9 per cent (red line) to 7 per cent (green line) is to a fair fraction
(nearly half) related to the uncertainty of the MOI.

Breton et al. (2008) have conducted a different experiment for
spin-orbit coupling in the Double Pulsar system. Studying the
geodetic precession of pulsar B, they were able to show that σB/G
is in agreement with GR, with a precision of about 13 per cent.
Analogously to equation (22), σ B is related to �A

B . A priori there
is no reason to assume that �A

B and �B
A are equal (see discussion

in Damour & Taylor 1992). Consequently, a LT test with pulsar
A would nicely complement the geodetic precession test of Breton
et al. (2008), when investigating the relativistic interaction between
the proper rotation of the two NSs and their orbital motion.

Finally, short range modifications of gravity, related to the strong
gravitational field of a NS, could significantly change the structure
of the star and therefore its MOI, without any ‘direct’ impact on
the orbital dynamics or the signal propagation in a binary pulsar
system. Examples of such theories are scalar-tensor theories with a
massive scalar field having a sufficiently short Compton wavelength
(see e.g. Ramazanoğlu & Pretorius 2016; Yazadjiev, Doneva &
Popchev 2016). While in such a scenario, PK parameters related to
time dilation, GW damping, and Shapiro delay remain (practically)
unaffected (see e.g. Alsing et al. 2012), one could still expect a
deviation in the precession of periastron of the Double Pulsar. The
reason is that due to the modification of the MOI the spin of pulsar
A and therefore the spin-orbit coupling is modified. Testing the LT
precession in the Double Pulsar can therefore be used to constrain
such deviations from GR. It is important to note, that Ṗ ṁ

b would
also be modified accordingly, and therefore has to be accounted for.
Hence, limits on δLT would consequently be somewhat weaker than
given above (cf. Section 6). In such a scenario it could generally be
difficult to disentangle uncertainties in the EOS and deviations from
GR by astronomical observations. For this, a combination of various
experiments, like GWs from binary NS mergers, X-ray observations,
and radio pulsar timing might turn out to be necessary. Nonetheless,
the future measurement of the LT precession in the Double Pulsar is
expected to provide important contributions when constraining such
deviations from GR.

Figure 8. Same as Fig. 7 but for the uncertainty of the 3.5PN order GW
correction X3.5PN. The dashed line denotes the theoretical value of X3.5PN.

8 N E X T-TO - L E A D I N G O R D E R
G R AV I TATI O NA L WAV E DA M P I N G

In GR, the loss of energy of a material system due to GWs is to leading
order sourced by a time-dependent mass quadrupole (Einstein 1918;
Eddington 1922). This also holds for binary systems where a change
in the mass quadrupole is driven by gravity itself. It enters the two-
body equations of motion at the 2.5PN order (see e.g. Damour
1987). When computing the next-to-leading order contribution to
GW damping, one also has to account for the mass-octupole and the
current quadrupole moments (Thorne 1980). Next-to-leading order
contributions enter the equations of motion at 3.5PN (O(c−7)), and
therefore correspond to the 1PN corrections in the radiation reaction
force (Iyer & Will 1995; Pati & Will 2002; Königsdörffer, Faye
& Schäfer 2003; Nissanke & Blanchet 2005). The corresponding
change in the orbital period of a binary system has been determined
out by Blanchet & Schäfer (1989) and is given by equation (12). In
this section we will investigate if next-to-leading order corrections
to the GW damping are expected to become important in the near
future for the timing observation of the Double Pulsar.

Again we assume EOS AP4 and a 5 per cent error in the knowledge
of the MOI IA. We implement the 3.5PN contribution into our
model by using equation (12), and adjust the TOAs accordingly.
After running simulations as described in Section 5, we obtain the
measured PK parameters. We use equation (13) to solve for the
relative correction of the 3.5PN order X3.5PN using the three PK
parameters Ṗ intr

b (mA, mB, X3.5PN), s (mA, mB), and ω̇intr(mA, mB).
Fig. 8 illustrates the predicted uncertainty of X3.5PN with observing

phase, which will fall below its theoretical value Xtheo
3.5PN in the SKA1-

mid era. The colours of the lines represent the same conditions as
in Fig. 7. The blue line shows the improvements in 
X3.5PN with
Galactic parameters from Gravity Collaboration (2019) and the slope
measurement by Reid et al. (2014), which will reach a precision of
85 per cent at 68 per cent C.L. by 2030. Adopting the Galactic
measurements (statistical errors) by Eilers et al. (2019), the red line
shows that X3.5PN can be constrained with a precision of 42 per cent
by 2030. By contrast, in the ideal case where there are no errors in the
Galactic model, the distance and the MOI, X3.5PN can be constrained
with a precision of 33 per cent by 2030, where nearly half of the
improvement is contributed from the MOI.
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9 POTEN TIAL N E W D I S C OV E R I E S

Large pulsar surveys with MeerKAT, FAST, and the forthcoming
SKA, such as TRAPUM (Stappers & Kramer 2016) and CRAFTS (Li
et al. 2018), can potentially discover more relativistic double neutron
star (DNS) systems, preferably with a more compact orbit than
PSR J0737−3039. An example of such a system, PSR J1946+2052,
with a more relativistic orbit than the Double Pulsar (Pb 

1.88 h) and larger periastron advance (ω̇ ≈ 26 deg yr−1) and LT
precession (ω̇LT ≈ 0.001 deg yr−1), was recently discovered in the
PALFA survey (Stovall et al. 2018). In its orbital parameters, the
PSR J1946+2052 system resembles a system similar to the Double
Pulsar, but that has evolved further due to GW damping, by about
40 Myr. While it is still unclear, if for PSR J1946+2052 the necessary
precision in the mass determination can be reached to rival the Double
Pulsar in the tests proposed here,8 it certainly adds confidence to the
hope of finding more relativistic ‘cousins’ of the Double Pulsar in the
coming years. Such binary pulsars would quite likely enable MOI
measurements with superior precision within a comparably short
period of time, and improve the constraints of the EOS.

Here we consider two scenarios, one with an orbital period
of 100 min and one with 50 min, which are within the expected
acceleration searches by MeerKAT. Assuming such systems can be
found in 2020 and we start timing them regularly from 2021, with
two orbits per month, we run our simulation again to predict the
measurements of the MOI. To simplify the simulation, we assume
these systems satisfy the conditions of the Double Pulsar (inclination
i close to 90 degrees, similar distance and brightness, etc.) but with
modified orbital parameters, assuming that these systems had an
orbit like the Double Pulsar some time in the past, and then evolved
by GW damping to an orbital period of 100 or 50 min. In reality,
these systems are likely to be further away. Nonetheless, it is also
possible that such systems are bright and nearby, but were missed
in the past surveys due to their high acceleration (see Johnston &
Kulkarni 1991; Ransom 2001; Jouteux et al. 2002; Ng et al. 2014;
Cameron et al. 2018).

We calculate the evolved semimajor axis using Kepler’s third law
and the evolved eccentricity using the a − e relation in Peters (1964),
for the orbital period of 100 and 50 min, respectively. Then we
calculate the PK parameters and run simulations as described in
Sections 5 and 6. Assuming the same distance as the Double Pulsar,
we convert the uncertainty of timing parallax into an uncertainty for
the distance. The Galactic measurement by Eilers et al. (2019) is
adopted in the simulation and, as before, we assume the systematic
uncertainties can be well understood in the future.

Our results show that, for the DNS system with an orbital period
of 100 min, we could measure the MOI with 12 per cent precision
by 2030 and with 4.5 per cent by 2035 at 68 per cent C.L. As for
an orbital period of 50 min, we expect an MOI measurement with
1.5 per cent precision by 2030 and with 0.5 per cent by 2035 at
68 per cent C.L. Such measurements would probably be comparable
to the by then available constraints from other methods (GWs and
X-ray observations, nuclear physics, etc.) and help for determining
the EOS of NSs.

Furthermore, LISA has the potential to discover ultra relativistic
DNS systems with a characteristic orbital frequency of 0.8 mHz
(Lau et al. 2020). Thrane, Osłowski & Lasky (2020) suggested that
following up such systems with SKA for 10 yr could potentially

8Since PSR J1946+2052 is less luminous compared to the Double Pulsar,
and s is not measurable due to its orientation.

measure the mass–radius relation with a precision <1 per cent. To
this end, we perform a simulation for a DNS system with 20 min
orbital period, and find an MOI precision of ∼0.2 per cent (68 per cent
C.L.) may be possible with 10 yr of timing with SKA 1-mid.

However, there is a low chance that the new discovered DNS
systems will be edge-on to our line of sight, as is the case for
PSR J0737−3039, hence a precise measurement of s might not be
possible. Instead, we may need to use γ to constrain the masses and
MOI, whose fractional error is usually a few orders of magnitude
larger than s (see Fig. 2). This is indeed the case for PSR J1946+2052,
despite its relativistic nature, determining the masses with sufficient
precision will be challenging.

Moreover, not all DNS systems are ideal to test the Lense–
Thirring precession in terms of periastron advance ω̇LT. Systems
like the aforementioned PSR J1757−1854 have a large eccentricity
most likely caused by a large kick (Tauris et al. 2017) causing
a significant misalignment between the spin of pulsar and the
orbital angular momentum, and hence ω̇LT cannot be determined
as straightforwardly as in the Double Pulsar. However, as pointed
out in Section 2.2, this allows an alternate test using the contribution
of LT precession to the rate of change of the projected semimajor
axis ẋLT (Cameron et al. 2018) if profile changes due to geodetic
precession can be accounted for in the timing process and the spin
orientation can be determined with sufficient precision.

1 0 C O N C L U S I O N

In this paper, we have developed a consistent method to measure the
MOI of radio pulsars, which has been applied to mock data for the
Double Pulsar. We simulated TOAs of PSR J0737−3039A assuming
future observations with MeerKAT, MeerKAT+, and SKA 1-mid
which cover two orbits per month. We found a MOI measurement
with 11 per cent accuracy (68 per cent C.L.) could be achievable by
the end of this decade, if we have sufficient knowledge of the Galactic
gravitational potential (e.g. from Gaia mission; Gaia Collaboration
2016). We also found that the mass-loss of pulsar A has a considerable
impact on the measurement of the MOI. Neglecting this contribution
to the orbital period change leads to an overoptimistic prediction.
This is the main reason why, even with the better timing precision
used in this paper as compared to Kramer & Wex (2009), by ∼2030
we would still only reach the same accuracy level as predicted by
Kramer & Wex (2009). Additionally, the assumptions made in this
paper are more realistic compared to Kehl et al. (2017), with timing
precision from MeerKAT observation, as well as updated timeline
and size of upcoming telescopes.

In the second part of the paper, Sections 7 and 8, we have
assumed that a better constraint on the EOS might be achieved with
GWs and X-ray observations in the future, so as to investigate the
capability of testing LT precession and 3.5PN order contributions to
the GW damping. This assumption coincides with Landry, Essick &
Chatziioannou (2020) where they found that constraints from GWs
and X-ray observations are likely to have larger contributions in
constraining the EOS than the MOI measurement of J0737−3039A.
Assuming a 5 per cent error in the determination of the MOI, we
simulated measurements of the relative deviation of the theory-
independent spin-orbit coupling parameter σA/G from GR’s pre-
diction. We found a 9 per cent precision measurement is possible
by 2030 with an improved Galactic model, whereas a 7 per cent
precision measurement in the ideal case – no errors in the Galactic
model, the distance, and the MOI. This test is a complement to Breton
et al. (2008), where they found a 13 per cent constraint on σB/G. This
measurement would enable a constraint for the coupling function �B

A
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that enters the spin-orbit Lagrangian of the two-body interaction
for strongly self-gravitating masses. Such a measurement could be
sensitive to short range deviations from GR, which otherwise would
not show up in the orbital dynamics of such systems.

We have also studied the measurability of GR’s next-to-leading
(3.5PN) order GW-damping contribution. We predicted that the
uncertainty of the 3.5PN order correction X3.5PN will fall below its
theoretical value at the beginning of SKA 1-mid (∼2026) and a
measurement of X3.5PN with 3σ -significance is possible in ∼10 yr, if
by then we have sufficient knowledge of the Galactic gravitational
potential, pulsar distance, and the EOS. This means that from the
SKA 1-mid era, we will have to include the 3.5PN term in our analysis
in order to avoid any bias. Binary mergers detected by LIGO/Virgo
do provide constraints on post-Newtonian (PN) terms (Abbott et al.
2016). Their way of counting the PN contributions is relative to the
Einstein quadrupole formula, i.e. the order they enter the radiation
reaction force (Blanchet 2014). Their 1PN term therefore contains
3.5PN contributions from the equations of motion. As a comparison
to our 3.5PN 3-σ result, (Abbott et al. 2019) provide a ∼10 per cent
measurement (90 per cent C.L.) of the (radiative) 1PN coefficient
with GW170817. Future merger events will most likely lead to even
more precise measurements of this term. While at the 2.5PN (0PN
radiative) level, the Double Pulsar is still many orders of magnitude
more precise than LIGO/Virgo mergers (Kramer 2016, Kramer et al.,
in preparation). When it comes to higher order PN contributions, we
conclude that binary pulsars are not expected to be competitive,
simply because of the much smaller orbital velocity.

Finally, we discussed potential new discoveries of DNS systems
with radio telescopes like MeerKAT, FAST, and SKA, as well as the
space-based future GW observatory LISA. We demonstrated that for
a DNS system which mimics the evolved PSR J0737−3039 with an
orbital period of 50 min, the MOI measurement is expected to reach
1.5 per cent precision (68 per cent C.L.) after 10 yr observation with
MeerKAT, MeerKAT+, and SKA 1-mid, and 0.5 per cent precision
after 15 yr. Moreover, LISA is expected to find DNS systems with a
characteristic orbital period of 20 min in the near future (Lau et al.
2020). Such discoveries can significantly tighten the constraints for
the EOS.

To conclude, although the EOS constraints resulting from a
future MOI measurement with the Double Pulsar are not likely to
exceed those with LIGO/Virgo mergers and X-ray observations in
the coming years, we are still anticipating other aspects of science
coming from this unique gravity laboratory in future studies based on
an improved understanding of the NS EOS as an input. Furthermore,
the discovery of more relativistic binary pulsars, possible with the
unprecedented surveying capabilities of new and upcoming radio
telescopes and advances in data analysis (e.g. Lentati et al. 2018),
could ultimately lead to EOS constraints quite competitive with other
methods.
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Bauböck M., Berti E., Psaltis D., Özel F., 2013, ApJ, 777, 68
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Blanchet L., Schäfer G., 1989, MNRAS, 239, 845
Breton R. P. et al., 2008, Science, 321, 104
Burgay M. et al., 2003, Nature, 426, 531
Cameron A. D. et al., 2018, MNRAS, 475, L57
Camilo F., 2018, Nat. Astron., 2, 594
Capano C. D. et al., 2020, Nat. Astron., 4, 625
Ciufolini I., Pavlis E. C., 2004, Nature, 431, 958
Ciufolini I. et al., 2019, Eur. Phys. J. C, 79, 872
Cordes J. M., Lazio T. J. W., 2002, preprint (astro–ph/0207156)
Cromartie H. T. et al., 2019, Nat. Astron., 4, 72
Damour T., 1987, in Hawking S. W., Israel W., eds, Three Hundred Years of

Gravitation, Cambridge Univ. Press, Cambridge, p. 128
Damour T., Deruelle N., 1985, Ann. Inst. Henri Poincaré Phys. Théor, 43,
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ABSTRACT

The double pulsar PSR J0737−3039A/B has offered a wealth of gravitational experiments in the strong-field regime, all of which
general relativity has passed with flying colours. In particular, among current gravity experiments that test photon propagation, the
double pulsar probes the strongest spacetime curvature. Observations with MeerKAT and, in the future, the Square Kilometre Array
(SKA) can greatly improve the accuracy of current tests and facilitate tests of next-to-leading-order (NLO) contributions in both
orbital motion and signal propagation. We present our timing analysis of new observations of PSR J0737−3039A, made using the
MeerKAT telescope over the last three years. The increased timing precision offered by MeerKAT yields a measurement of Shapiro
delay parameter s that it twice as good, and an improved mass measurements compared to previous studies. In addition, our results
provide an independent confirmation of the NLO signal propagation effects and already surpass the previous measurement from 16 yr
data by a factor of 1.65. These effects include the retardation effect due to the movement of the companion and the deflection of
the signal by the gravitational field of the companion. We also investigate the novel effects that have been expected. For instance, we
search for potential profile variations near superior conjunctions caused by shifts of the line of sight due to latitudinal signal deflection,
and we find insignificant evidence with our current data. With simulations, we find that the latitudinal deflection delay is unlikely to
be measured with timing because of its correlation with Shapiro delay. Furthermore, although it is currently not possible to detect the
expected lensing correction to the Shapiro delay, our simulations suggest that this effect may be measured with the full SKA. Finally,
we provide an improved analytical description for the signal propagation in the double pulsar system that meets the timing precision
expected from future instruments such as the full SKA.

Key words. stars: neutron – pulsars: individual: J0737–3039A – gravitation – binaries: eclipsing

1. Introduction

The double pulsar PSR J0737−3039A/B is a rich laboratory for
strong-field gravity experiments. The system consists of a 23-ms
recycled pulsar (‘A’) and a 2.8-s ‘normal’ pulsar (‘B’) in a nearly
edge-on and slightly eccentric 2.45-h orbit (Burgay et al. 2003;
Lyne et al. 2004). Various relativistic effects have been pre-
cisely measured in previous works (Kramer et al. 2006a, 2021a),
including periastron precession, time dilation (gravitational red-
shift and second-order Doppler effect), Shapiro delay due to light
propagation in the curved spacetime of the companion, and the
orbital period decay, which currently provides the most precise
test of quadrupolar gravitational waves predicted by general rela-

tivity (GR). In addition, the relativistic spin precession of B was
measured by Breton et al. (2008) and the relativistic deforma-
tion of the orbit was newly detected in this system (Kramer et al.
2021a). All these make it a still unique system for gravity
experiments.

Comparing with other gravity experiments, the Shapiro delay
measured in the double pulsar probes the strongest spacetime
curvature (∼10−21 cm−2) in a precision experiment with photons,
that is, the interaction between gravitational and electromagnetic
fields (Wex & Kramer 2020). In addition, with 16 yr of data,
Kramer et al. (2021a) were able, for the first time, to measure
higher-order effects of signal propagation in the strong gravita-
tional field of a neutron star, which are currently not accessible
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via any other method. These include the retardation effect due
to the movement of the companion (B) and aberrational light
deflection by the gravitation of the companion. The latter con-
firms the prograde rotation of A, which is consistent with the
results measured by Pol et al. (2018) using the emission proper-
ties of B and is in line with the expectations from binary evolu-
tion models.

In this work, we present observations of PSR J0737−3039A
with the MeerKAT telescope, a precursor for the Square
Kilometre Array (SKA) at mid-frequency range. Thanks to its
location in the Southern Hemisphere, it permits a timing preci-
sion more than two times better than that of the Green Bank Tele-
scope for this pulsar (Bailes et al. 2020; Kramer et al. 2021b).
This superior precision enables an independent and improved
measurement of signal propagation effects within a very short
time span. We also investigate effects that have been expected
but not been studied in detail before. These include potential
profile variations due to latitudinal deflection, the detectability
of latitudinal deflection delay, and the prospects of measuring
the effect of lensing on the propagation time separately.

This paper is organised as follows. Section 2 describes the
MeerKAT observations on the double pulsar and data process-
ing. In Sect. 3, we introduce the concepts of gravitational signal
propagation effects, including higher-order contributions to the
Shapiro and aberration delay. The timing results and mass mea-
surements are presented in Sect. 4. We then provide an in-depth
study on the higher-order signal propagation effects in Sect. 5,
with a focus on latitudinal deflection and lensing. In addition, we
provide an improved analytical description for the signal prop-
agation in the double pulsar. Finally, we discuss the results and
future prospects in Sect. 6.

2. Observations and data processing

2.1. MeerKAT observations

The observations presented in this paper come from the
MeerKAT telescope as part of the MeerTIME project
(Bailes et al. 2020), which performs timing of known
pulsars with various scientific themes. Observations on
PSR J0737−3039A are conducted under the Relativistic Binary
theme (RelBin, Kramer et al. 2021b), which focuses on testing
the relativistic effects in binary pulsars to achieve measurements
of neutron star masses and tests of theories of gravity. MeerTime
observations are generally recorded using the Pulsar Timing
User Supplied Equipment (PTUSE) signal processor. This
processor receives channelised tied-array beamformed voltages
from the correlator-beamformer engine of the MeerKAT observ-
ing system and is capable of producing coherently de-dispersed
full-Stokes data in both the filterbank (search) mode and the
fold (timing) mode, where the data are folded at the topocentric
period of the pulsar. Details on the pulsar observing setup with
MeerTime are explained by Bailes et al. (2020).

PSR J0737−3039A is regularly observed with a typical
cadence of one month and duration of 3 h. As the orbital period
of this pulsar is ∼2.45 h, the observations are scheduled to start
shortly before an eclipse and finish after the second eclipse, in
order to observe the eclipses twice in one observing session. The
session is typically composed of a 30 min observation with the
fold mode and search mode in parallel, followed by a 2 h fold-
mode observation and another 30 min fold-search dual-mode
observation. This specific arrangement is designed to maximise
our sensitivity in detecting signal propagation effects, as well
as in studying the magnetosphere of pulsar B (Lower et al.,

in prep.). Observations are performed with two receivers: the
L-band receiver that covers the frequency range 856–1712 MHz,
and the UHF receiver that covers the frequency range 544–
1088 MHz, both with 1024 channels. The data presented here
started in March 2019 and ran until May 2022. For the analy-
sis in this paper, we use 29 full-orbit timing observations and
62 search-mode eclipse data sets, which amounts to a total of
∼87 h.

2.2. Timing data reduction

The raw timing data from the PTUSE machines are folded every
eight seconds, which are then processed with the meerpipe data
reduction pipeline. meerpipe carries out radio frequency inter-
ference (RFI) removal using a modified coastguard algorithm
(Lazarus et al. 2016), followed by flux and polarisation calibra-
tion. Details on polarisation and flux calibration are described in
Serylak et al. (2021) and Spiewak et al. (2022), respectively.

After processing with meerpipe, the calibrated data prod-
ucts are reduced using the pulsar software package psrchive1
(Hotan et al. 2004). We first correct for the rotation measure
(RM) with the value measured in Kramer et al. (2021b), that
is, RM = 120.84 rad m−2. As the L-band observations between
March 2019 and February 2020 were restricted to 928 frequency
channels (dropping 48 channels each from the top and bot-
tom bands), to maintain consistency throughout the analysis, we
reduce the later L-band data to the same frequency channels.
We treat the UHF-band data in the same way, as the roll-off
adversely affects sensitivity of the top and bottom bands.

For this system, a complete timing model is only available
in the pulsar timing software tempo2 (Nice et al. 2015, more
details are given in Sect. 4). Therefore, to fold the data more
accurately, all data are supplied with a polyco-format ephemeris
with the values measured in Kramer et al. (2021a). Since the
double pulsar rapidly changes its orbital phase, the time span
(TSPAN) of a predicted pulse phase solution has to be as small
as possible to retain good precision3. With the psrchive ver-
sion 2022-01-14, we set TSPAN to the minimum possible value,
which is 3 min.

There is a known data processing issue with this pulsar,
which is that the pulsar moves rapidly to a different orbital phase
during the dispersion delay time. Thus, the pulses received at
the same time at different frequencies correspond to different
orbital phases and cannot be folded with the same phase predic-
tion. If not properly accounted for, this folding issue will cause
frequency-dependent orbital smearing. Standard pulsar software
such as psrchive do not take this effect fully into considera-
tion, even with the frequency-resolved tempo2 predictor4. To
avoid this issue, we first de-disperse the total intensity data so
that all frequencies correspond to the same orbital phase, then
average the data, first in frequency and then in time5. Because of
the profile frequency evolution and scintillation effects, data are
sub-banded in frequency, with 32 sub-bands for the UHF-band
and 16 sub-bands for the L-band.

1 http://psrchive.sourceforge.net/
2 http://tempo.sourceforge.net/
3 Our analysis suggests that the choice of TSPAN has a significant
impact on the Shapiro parameters: a larger TSPAN leads to a large devi-
ation from the expected values.
4 This issue is going to be addressed in psrchive 2.0, which is under
development.
5 The order of processing matters. If reversed, the pulse phase appears
to be different and phase offsets may be introduced.
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Fig. 1. Pulse profile of PSR J0737−3039A observed at multiple frequen-
cies with the MeerKAT UHF- and L-band receivers.

As for the time-averaging, the integration time needs to be
short enough in order to properly resolve the Shapiro delay
and the next-to-leading-order (NLO) signal propagation contri-
butions (qNLO, see Sect. 3), which are largest at superior con-
junction. We perform a simulation to test the measurability of
these NLO contributions with different integration times. The
results show that a good measurement of Shapiro delay and qNLO
can be achieved if the integration time is /32 s, but it becomes
significantly worse if the integration time is longer than 1 min
for qNLO and 2 min for Shapiro delay. Therefore, we average all
data with a 32-s integration time, consistent with the analysis by
Kramer et al. (2021a). After frequency and time averaging, data
are re-dispersed to allow measurements of dispersion measure
(DM) in the timing analysis.

2.3. Wide-band templates and TOA extraction

Wide-band observations such as MeerTIME can suffer signifi-
cant profile evolution in frequency, and thus the traditional 1D
template is not favoured. To best determine the pulse time of
arrivals (TOAs) at multiple frequencies, we employ frequency-
dependent 2D templates. With this technique, DM measure-
ments are dependent on the DM value used to align (de-disperse)
the 2D template. Due to the correlation between the DM and
profile evolution, DM measurements are to some extent fre-
quency dependent, which can lead to a DM offset between
L-band and UHF-band data. This could potentially be solved
with a simultaneous observation with L-band and UHF-band
receivers, which is missing in our case. Therefore, to avoid
this problem, we choose a bright observation from each band
for making 2D templates, and measure DM using data from
their overlapping frequencies. Then, we use these DM val-
ues to de-disperse the corresponding full-bandwidth data. This
minimises the DM offset between L-band and UHF-band data,
which can be seen in Fig. 2. These data are then sub-banded

and averaged in time. Finally, by smoothing the profiles with
psrsmooth/psrchive, we obtain 2D templates, with 16 sub-
bands at L-band and 32 sub-bands at UHF-band. These tem-
plates are then used to measure frequency-resolved TOAs by
cross-correlating with the reduced data using pat/psrchive.
The pulse profile of PSR J0737−3039A at multiple frequencies
is shown in Fig. 1. More information on the observing systems
and data sets is given in Table 1.

2.4. DM variation

The wide-band observation and high precision of MeerKAT tele-
scope make it possible to obtain an accurate DM measurement
on a per-epoch basis so as to minimise the influence of DM noise
in the data. To do so, we fit for only DM and spin frequency ν
for each observing epoch using 4-min TOAs, and keep the other
parameters fixed. The DM measurements are shown in Fig. 2.
Following Kramer et al. (2021a), we use a modified version of
tempo for our timing analysis, which corrects dispersive delays
for each TOA based on the exact DM measurement of that epoch.

One should note that our data set does not show the appar-
ent DM variation as a function of orbital phase, as was seen in
Ransom et al. (2004). It had been demonstrated that this effect
occurs due to an unaccounted Doppler shift of the observational
frequency as the pulsar moves in a binary system6, and this will
be revisited by Hu, Porayko et al. (in prep.). A more thorough
investigation of this effect, as well as the frequency-dependent
orbital smearing (see Sect. 2.2), is ongoing and will be presented
in detail in the future publication.

3. Signal propagation effects at superior
conjunction

In this section, we recapitulate the necessary concepts of signal
propagation effects in the double pulsar, including the NLO con-
tributions in the Shapiro delay and aberration delay. These con-
cepts were described in greater detail in Kramer et al. (2021a).

Being a nearly edge-on binary system (i.e. i ∼ 90◦), the
curved spacetime of the companion star (pulsar B) has a signifi-
cant effect on the propagation of the pulsar’s signal. To leading-
order this is the well-known Shapiro delay (Shapiro 1964),
which is expressed in the following form for binary pulsars
(Blandford & Teukolsky 1976; Damour & Deruelle 1986):

∆
(LO)
S = −2r ln Λu, (1)

Λu = 1 − eT cos u − s
[

sinω (cos u − eT)

+ (1 − e2
T)1/2 cosω sin u

]
. (2)

Here, u denotes the eccentric anomaly (from Kepler’s equation
with eccentricity eT), and ω denotes the longitude of periastron
measured from the ascending node. The time eccentricity eT cor-
responds to the eccentricity parameter in the Damour-Deruelle
(DD) timing model (Damour & Deruelle 1986) that can be fitted
in the pulsar timing software tempo or tempo2 (Hobbs et al.
2006). The two post-Keplerian (PK) parameters r and s represent
the ‘range’ and ‘shape’ of Shapiro delay, respectively. The shape
parameter is generally identified with the sine of the orbital incli-
nation i as s ≡ sin i, whereas the range parameter is linked to the
mass of the companion mB, which in GR follows r = T� mB.
The constant T� ≡ (GM)N

�/c
3, where c is the speed of light in

vacuum and (GM)N
� ≡ 1.327 124 4× 1026 cm3 s−2 is the nominal

6 https://arxiv.org/e-print/astro-ph/0406321v2
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Table 1. Information on the MeerKAT observations and data set for PSR J0737−3039A.

Receiver Centre frequency Bandwidth Number of Number of Time span Number of
(MHz) (MHz) channels (a) sub-bands (MJD) TOAs

L-band 1283.582 775.75 928 16 58568–59721 83 930
UHF-band 815.734 493 928 32 58936–59663 137 451

Notes. Information presented here is for the trimmed data set, see Sect. 4.1. (a)Effective usable channels.
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Fig. 2. DM measurement per observing epoch relative to the reference
value 48.913 pc cm−3 (see Sect. 2.4).

solar mass parameter defined by the IAU 2015 Resolution B3
(Prša et al. 2016). Throughout the paper, all masses expressed in
solar mass M� are referred to the nominal solar mass by taking
the ratio Gmi/(GM)N

� (i = A, B), where G is the gravitational
constant.

The leading-order expression Eqs. (1) and (2) were obtained
by integrating along a straight line (in harmonic coordinates)
and assuming a static mass distribution when the pulsar’s signal
propagates through the system (Blandford & Teukolsky 1976).
In reality, the pulsar’s signal propagates along a curved path due
to the deflection in the gravitational field of the companion and
leads to a ‘lensing correction’ to the Shapiro delay. This actu-
ally results in a reduced propagation time as a consequence of
Fermat’s principle (Perlick 2004). The effect of lensing is not
yet observable in any pulsar systems, but for completeness, one
can extend Eq. (2) by an adapted version of the approximation
in Klioner & Zschocke (2010, Eq. (73)): Λu → Λu + δΛlen

u with

δΛlen
u = 2rc/aR, (3)

where the semi-major axis of the relative orbit aR = (x + xB)/s,
with x and xB

7 being the projected semi-major axes of pulsar A
and pulsar B, respectively. For the double pulsar, one needs to
account for the fact that the companion star moves while the pul-
sar’s signal propagates across the system. This effect is known as
the ‘retardation effect’ or 1.5PN correction to the Shapiro delay
(Kopeikin & Schäfer 1999; Rafikov & Lai 2006a). To sufficient
approximation, the signal propagation delay can be extended to

∆S = −2r ln (Λu + δΛlen
u + δΛret

u ), (4)

7 xB had been observed in Kramer et al. (2006a).

where the retardation correction δΛret
u can be taken directly from

Kopeikin & Schäfer (1999, Eq. (130)) as

δΛret
u =

2π
s

x
Pb

mA

mB
eT sin u − 2π s

(1 − e2
T)1/2

x
Pb

mA

mB

×
[
sinω (cos u − eT) + (1 − e2

T)1/2 cosω sin u
]

×
eT cosω +

(cos u − eT) cosω − (1 − e2
T)1/2 sinω sin u

1 − eT cos u

 .

(5)

The quantity Pb denotes the orbital period and mA denotes the
mass of pulsar A. It should be noted that in the double pulsar,
the mass ratio mA/mB can be obtained in a theory-independent
way (Kramer et al. 2006a; Damour 2007). Hence, apart from
the Shapiro shape parameter s, Eq. (5) contains only Keplerian
parameters.

Moreover, the classical aberration expression (Smarr
& Blandford 1976) assumes a flat spacetime for the propagation
of the pulsar signals, which is no longer sufficient for describ-
ing the observations of the double pulsar, particularly near the
superior conjunction of pulsar A. One needs to account for the
gravitational deflection of the pulsar’s signal caused by its com-
panion (Doroshenko & Kopeikin 1995; Rafikov & Lai 2006b),
which adds a lensing correction to the classical aberration. For
pulsar A the misalignment angle between its spin vector and the
orbital angular momentum is very small (<3.2◦, Ferdman et al.
2008, 2013), which is in line with a low-kick birth event (cf.
Piran & Shaviv 2004; Willems & Kalogera 2004; Willems et al.
2006; Stairs et al. 2006; Tauris et al. 2017). Since the spin of A
is practically parallel to the orbital angular momentum, the aber-
ration delay can be simplified as

∆A = A (sinψ + eT sinω) + δlondef
A . (6)

The first term on the right-hand side of Eq. (6) is the classical
aberration delay, where ψ = ω + θ is the longitude of the pul-
sar with respect to the ascending node (θ is the true anomaly,
which defines the angle between the direction of the pulsar and
the periastron), and the aberration coefficient

A =
x

νPb(1 − e2
T)1/2 sin2 i

' 3.65 µs. (7)

As A is practically not observable and can be absorbed
by a shift in various timing parameters (see discussions in
Damour & Deruelle 1986; Damour & Taylor 1992), we a priori
add the aberration coefficientA as a fixed parameter in our tim-
ing model with the value given in Eq. (7).

The second term δlondef
A in Eq. (6) is the higher-order correc-

tion originating from the ‘longitudinal deflection delay’, and can
be written as (Doroshenko & Kopeikin 1995)

δlondef
A = D cos (ψ + δψret)

Λu + δΛret
u

, with D =
1
πν

r
x + xB

· (8)
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Fig. 3. Simplified illustration of effects related to the deflection of A’s
radio signals (solid red) in the gravitational field of B (top down and side
perspective). The observer is located at a large distance along the x-axis.
Apart from modifications in the propagation time due to a curved path
in the gravitational field of B (lensing), one has a longitudinal deflection
delay (δlondef

A ) due to the fact that the pulsar has to rotate by more than
360◦ between two pulses while approaching the conjunction. After con-
junction, it is less than 360◦, which makes pulsar signals arrive earlier
at the observer. In addition, there is a latitudinal effect, due to a latitudi-
nal shift in the emission direction towards the observer. This can lead to
changes in the pulse profile since the line of sight cuts a different part of
the emission region, which can also be accompanied by changes in the
pulse arrival times (more details in Sects. 5.1 and 5.2).

Just as in the Shapiro delay, retardation correction is also
accounted for here. As a sufficiently good approximation,
the position of B when the signal reaches its minimum dis-
tance from B can be used (retardation corrected position;
cf. Kopeikin & Schäfer 1999; Rafikov & Lai 2006a). The angle
δψret denotes the retardation related correction for the angle
between the (coordinate) vector from B to A and the ascending
node.

As already discussed in Kramer et al. (2021a), the NLO con-
tributions in the Shapiro and aberration delays cannot be tested
separately in the double pulsar due to the similarity of their
effects on signal propagation. In addition, the lensing correction
to the propagation delay (Eq. (3)) is challenging to measure as it
can be absorbed in the fit of Shapiro shape s (see Sect. 5.3 and
discussions in Kramer et al. 2021a). Therefore, to test the signifi-
cance of the NLO contributions and to obtain an unbiased timing
result, a common factor qNLO is multiplied by these contributions
and can be fitted for in our timing model:

Λret
u = Λret

u × qNLO, (9)

Λlen
u = Λlen

u × qNLO, (10)

δlondef
A = δlondef

A × qNLO. (11)

In GR, the scaling factor qNLO = 1. Figure 3 illustrates the differ-
ent effects related to signal deflection in the double pulsar sys-
tem.

4. Timing results

For the timing analysis, we use the timing model in tempo
known as DDS, which is a modification of the DD model
(Damour & Deruelle 1986) that uses a different parameterisation
of the Shapiro delay. In DDS, the Shapiro shape parameter s is
replaced by the logarithmic Shapiro shape parameter zs via

zs ≡ − ln (1 − s), (12)

which is more suitable when s is very close to one (see
Kramer et al. 2006b, 2021a). The NLO contributions in the
Shapiro and aberration delays are also implemented in the latest
DDS model, which can be measured through a common factor
qNLO. Because the analytic inversion of the timing model devel-
oped in Damour & Deruelle (1986) is no longer sufficient for the
double pulsar, primarily due to the NLO contributions, a numer-
ical inversion of the timing model was also implemented in the
latest DDS model in tempo (see Kramer et al. 2021a).

4.1. Timing parameters

In our analysis, the full MeerKAT data set shows a large devi-
ation in the Shapiro range parameter r compared to the 16 yr
result (Kramer et al. 2021a). We perform a drop-out analysis by
removing each observing epoch and fitting the parameters. We
find that r is dependent on specific observing epochs, where
six epochs affect r by a significant amount while the rest of the
epochs do not. These six epochs are marked as black crosses in
Fig. 4. After excluding all these six epochs, r is consistent with
the 16-yr result and the mass measurement in GR (Kramer et al.
2021a). Even though a number of tests and simulations have
been made, we are still unclear about the cause of this prob-
lem. Possible reasons could be systematic errors in the obser-
vations or folding techniques. It should be noted that all data
were folded with the tempo2 phase predictor during observa-
tions, which has shown outliers in this pulsar and has been dou-
bly confirmed by our simulations. These outliers disappear after
reinstalling a tempo polyco ephemeris in data processing (see
Sect. 2.2), but we cannot rule out underlying problems due to the
folding technique. The results shown here are based on data pro-
cessed with the polyco scheme8. In any case, this issue should
not affect the measurement of NLO signal propagation effects,
which is the main focus of this paper. Therefore, we leave this
question to future studies. In the following analysis, we use a
trimmed data set that excludes these six epochs.

Table 2 and Fig. 4 present the results obtained from fitting
the tempo DDS model to the trimmed MeerKAT data set. We
fix the proper motion (µα, µδ) and parallax πx to the more precise
values determined from the 16 yr timing and the very long base-
line interferometry measurements (see Kramer et al. 2021a). As
the time span of our data is not sufficient to obtain a reliable mea-
surement of the orbital period derivative Ṗb and the orientation
of the orbit (ω0 ≈ 0◦) is not at a favourable position for a pre-
cise measurement of the Einstein delay amplitude γE, we choose
to fix these parameters to the more precise measurements from
16 yr data (Kramer et al. 2021a). Fixing the above parameters
has no impact on the measurements of signal propagation effects
and masses. The two PK parameters that describe the relativistic
deformation of the orbit, δr and δθ (Damour & Deruelle 1986),
are also held fixed at the GR value in our analysis, as δr cannot be
measured (see Kramer et al. 2021a) and δθ is not yet measurable
with the current MeerKAT data.

The values shown in Table 2 are the result of 1000 Monte
Carlo (MC) runs, where in each run, a random realisation of
proper motion, parallax, DM, γE, and Ṗb is selected. The DM
value is selected according to the DM measurements and uncer-
tainties shown in Fig. 2. We use the aforementioned modified
version of tempo to correct the DM for each TOA and fit for

8 With the same set of observations, data processed with tempo
polyco and tempo2 predictor show a noticeable difference (∼3σ)
in the Shapiro parameters, where the result with polyco is closer to the
16 yr results and shows a smaller χ2.
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Fig. 4. Post-fit residuals of PSR J0737−3039A using the DDS binary
model as a function of time (top panel) and the orbital phase of pulsar
A with respect to the ascending node ψ (bottom panel). The MeerKAT
L-band data are plotted in blue, whereas the UHF-band data are in
red. The epochs of the excluded six observations are marked as black
crosses.

all other timing parameters in each run. The numbers shown in
Table 2 are the mean values of the distribution of each parameter
after 1000 MC runs, whereas the uncertainties are taken from the
larger one among the standard deviation of the distributions and
the maximum error from tempo in all MC runs.

In order to allow direct comparisons with previous publica-
tions, parameters shown in Table 2 are measured with respect
to the same epochs and the same terrestrial time standard
UTC (NIST)9 within the ‘Barycentric Dynamical Time’ (TDB)
timescale as implemented in tempo. Even though TDB runs at
a slower rate than ‘Barycentric Coordinate Time (TCB)’, which
was recommended by IAU 2006 Recolution B310 (see also
Soffel et al. 2003), this choice does not have any impact on the
results presented in this paper (see discussions in Kramer et al.
2021a). To transfer the topocentric TOAs to the Solar System
Barycentre (SSB), the DE436 Solar System ephemeris published
by the Jet Propulsion Laboratory11 is used.

All binary parameters in Table 2 are consistent with the 16-
yr data, except for x being different by ∼ 3σ. This is because
x is highly correlated with γE, which is kept fixed in our fit.
This should be improved in the future, once we have enough
MeerKAT data to fit for x and γE simultaneously. In our fit, the
root mean square (rms) is very close to the mean TOA uncer-
tainty, and the reduced χ2 of the individual observation is close
to one, suggesting that our result is not affected by jitter noise.
We also perform simulations and single-pulse analysis following
the methods in Parthasarathy et al. (2021) and find little evidence
of jitter noise.

The rms of the MeerKAT data shown in Table 4 is more
than two times better than that of the Green Bank Telescope
(see Kramer et al. 2021b). Thanks to this much improved pre-
cision, the measurements of the Shapiro parameters improve
quickly. Compared to Kramer et al. (2021a), the shape param-

9 https://www.nist.gov/pml/time-and-frequency-division/
time-realization/utcnist-time-scale-0
10 https://www.iau.org/static/resolutions/IAU2006_
Resol3.pdf
11 https://ssd.jpl.nasa.gov/planets/eph_export.html

Table 2. Timing parameters for PSR J0737−3039A using the tempo
DDS binary model.

Parameter Value

Solar system ephemeris DE436
Terrestrial time standard UTC(NIST)
Timescale TDB
Position epoch (MJD) 55045.0
Timing epoch, t0 55700.0

Astrometric parameters
Right ascension (RA), α (J2000) 07:37:51.248 121(26)
Declination (Dec), δ (J2000) −30:39:40.705 36(42)
Proper motion RA, µα (mas yr−1) −2.567(30) (∗)

Proper motion Dec, µδ (mas yr−1) 2.082(38) (∗)

Parallax, πx (mas) 1.36(+0.12, −0.10) (∗)

Spin parameters
Rotational frequency (freq.), ν (Hz) 44.054 068 642 001(56)
First freq. derivative, ν̇ (Hz s−1) −3.415 92(37) × 10−15

Second freq. derivative, ν̈ (Hz s−2) −9.5(12) × 10−27

Binary parameters
Orbital period, Pb (days) 0.102 251 559 297 2(29)
Projected semi-major axis, x (s) 1.415 028 299(88)
Eccentricity, eT 0.087 777 036(48)
Epoch of periastron, T0 (MJD) 55700.233 017 54(10)
Longitude of periastron, ω (deg) 204.753 72(36)
Periastron advance, ω̇ (deg yr−1) 16.899 321(37)
Orbital period derivative (10−12), Ṗb −1.247 920(78) (∗)

Einstein delay amplitude, γE (ms) 0.384 045(94) (∗)
Logarithmic Shapiro shape, zs 9.669(77)
Range of Shapiro delay, r (µs) 6.163(16)
NLO factor for signal prop., qNLO 0.999(79)

Derived parameters
s ≡ sin i = 1 − e−zs 0.999 936 9(+46/−51)
Orbital inclination, i (deg) 89.36(3) or 90.64(3)
Mass of pulsar A, mA (M�) 1.338 186(10)
Mass of pulsar B, mB (M�) 1.248 866(7)
Total mass, M (M�) 2.587 052(11)

Notes. Numbers in parentheses are 1σ uncertainties applicable to the
last digits, obtained from the standard deviation of 1000 MC runs or
maximum error from tempo, whichever is larger. The overall reduced
χ2 is 0.99. (∗)Values adopted from Kramer et al. (2021a).

eter s improves by a factor of two and the range parameter r
improves by a factor of 1.3 (see Table 2).

4.2. Mass measurements

The standard approach for measuring the masses of a binary pul-
sar system is using two PK parameters. Assuming GR, one can
calculate the two a priori unknown masses based on the measure-
ments of Keplerian parameters. For the double pulsar, the two
most precisely measured PK parameters are periastron advance
ω̇ and the Shapiro shape parameter s.

For the advance of periastron, in addition to the 1PN con-
tribution, we also need to account for higher-order correc-
tions due to 2PN effects and Lense-Thirring (LT) precession
caused by spin-orbit coupling of pulsar A, as they are much
larger than the measurement error of ω̇ (see Hu et al. 2020;
Kramer et al. 2021a). For the analysis of this paper, the total
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intrinsic contribution to the periastron advance can be expressed,
with sufficient precision, as (Damour & Schäfer 1988)

ω̇ = ω̇1PN + ω̇2PN + ω̇LT,A. (13)

The first and second post-Newtonian (PN) terms ω̇1PN and ω̇2PN

are functions of masses and observed Keplerian parameters. The
situation is more complicated for the LT contribution ω̇LT,A, as it
requires the knowledge of the moment of inertia (MOI) of pul-
sar A, which is still not very constrained because of our lim-
ited knowledge of the equation of state (EOS) of neutron stars.
As discussed in detail in Hu et al. (2020), one could measure
the masses and the MOI simultaneously by introducing a third
PK parameter Ṗb into the ω̇ − s test. Such a test has already
been carried out by Kramer et al. (2021a) using the 16 yr data
with an upper limit obtained: IA < 3.0 × 1045 g cm2 with 90%
confidence. This measurement is expected to improve with the
combination of the 16 yr data with MeerKAT data in a forth-
coming paper, and should improve considerably in the coming
years as more data becomes available. This promises an impor-
tant complementary constraint on the EOS (Hu et al. 2020). For
the calculations here, we take the value of ω̇LT,A from Eq. (35)
in Kramer et al. (2021a), which uses the constraints on the EOS
from Dietrich et al. (2020):

ω̇LT,A = −4.83 (+29,−35) × 10−4 deg yr−1. (14)

The Shapiro shape parameter s is the sine of the orbital incli-
nation i. In Newtonian gravity, the orbital inclination is linked
to the projected semi-major axis x via the binary mass function
(e.g. Lorimer & Kramer 2004):

sin i =
(nbM)2/3x

T 1/3
� mB

, (15)

where x and the orbital frequency nb ≡ 2π/Pb are both mea-
sured Keplerian parameters. Equation (15) gets modified by
a 1PN term in the 1PN approximation for Kepler’s third law
(see Eq. (3.7) in Damour & Deruelle 1985 and Eq. (3.9) in
Damour & Taylor 1992):

sin i =
(nbM)2/3x

T 1/3
� mB

[
1 +

(
3 − mAmB

3M2

)
(T�Mnb)2/3

]
. (16)

Taking the measurements of Pb, x, and masses from Table 2, one
can calculate that the 1PN correction is approximately 1.27 ×
10−5. This correction was considered for the first time in pulsar
analysis by Kramer et al. (2021a), where the significance was
about 1.3σ. Now with MeerKAT data, this 1PN correction is
2.5σ significant and cannot be ignored in the analysis. We hereby
use the full 1PN mass function Eq. (16) to measure the masses.

Combining the PK parameters ω̇ and s, one obtains the
(Doppler-shifted) masses, which are listed in Table 2. These
measurements are fully consistent with those obtained with 16 yr
data (Kramer et al. 2021a), and the precision of mA and mB are
also better.

Alternatively, one can fit for masses using the timing model
known as DDGR (Taylor & Weisberg 1989), which is based on
the DD model where the PK parameters are explicitly calcu-
lated from the masses and the Keplerian parameters, assuming
GR. Beside the Keplerian parameters, it fits explicitly for the
total mass M and the companion mass mB. To make the mea-
surements, we modify the DDGR model so that it incorporates
all NLO contributions that need to be accounted for in this sys-
tem, including NLO signal propagation effects, LT contribution

Table 3. Mass measurements with a new modified DDGR model that
accounts for NLO contributions in the orbital motion and signal propa-
gation in this system.

Parameter Value

Mass of pulsar A, mA (M�) 1.338 186(10)
Mass of pulsar B, mB (M�) 1.248 886(5)
Total mass, M (M�) 2.587 050(8)

Notes. The MOI has been chosen to be IA = 1.28× 1045 g cm2 in the fit.
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Fig. 5. Aggregated residuals (blue) due to NLO contributions in Shapiro
and aberration delay, shown in the orbital phase ψ. Residuals are re-
scaled by (1 + eT cos θ)−1 to account for secular variations in amplitude
due to the precession of periastron. The black curve indicates the fitted
qNLO (see Table 2) with the 2σ range shown by the grey shaded areas,
which agrees very well with the theoretical prediction indicated by the
red dotted line.

ω̇LT,A, NLO gravitational wave damping and mass-loss contri-
bution to Ṗb (see Hu et al. 2020; Kramer et al. 2021a). An MOI
needs to be provided to the model for the calculation of ω̇LT,A

and the mass loss contribution to Ṗb. For periastron advance
ω̇, the uncertainty from the MOI is still smaller than that from
MeerKAT observations (see Eq. (14) and Table 2). Therefore,
based on the EOS constraint from Dietrich et al. (2020), we fix
the MOI to IA = 1.28 × 1045 g cm2 in our fit. Table 3 shows
the mass measurements obtained using the DDGR model. The
results are fully consistent with the measurements derived from
the DDS model, with smaller uncertainties in mB and M.

Following Kramer et al. (2021a), one could test the agree-
ment of r in GR by comparing m(r)

B = r/T� = 1.2512 (33) M�
(cf. Table 2) with the companion mass determined here, which
gives

robs/rGR = 1.0019 (26). (17)

This leads to a 5.3 × 10−3 (95% confidence) test of GR.

5. Studying NLO signal propagation effects

Because the double pulsar system is nearly edge-on to our line of
sight (LOS, see i in Table 2), it is ideal for measuring signal prop-
agation effects caused by the gravitational field of the companion
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Fig. 6. Example of one eclipse observation at UHF band, plotted in
intensity against orbital phase ψ and pulse phase. The intensity modula-
tion occurs when pulsar A is eclipsed by the magnetosphere of pulsar B.
Each integration is a sum of eight pulses. When plotting, the discontinu-
ities between recordings are patched with the previous sub-integration.

near superior conjunction. The leading-order expression Eq. (1)
is no longer sufficient for describing the signal propagation in the
double pulsar. Such a model would result in significant residu-
als near superior conjunction when aggregating residuals in the
orbital phase, as shown in Fig. 5. These residuals agree very well
with the expected NLO contributions discussed in Sect. 3, which
are shown by the red curve. The significance of the NLO correc-
tions can be tested by scaling these corrections collectively by
a common factor qNLO (cf. Eqs. (9)–(11); qNLO = 1 in GR) and
fitting for it. We find, with the trimmed data set,

qNLO = 0.999 (79), (18)

which has surpassed the 16 yr result by 1.65 times with only
∼3 yr of data, thanks to the much improved precision offered by
MeerKAT.

Following the definition of qNLO in Sect. 3, a fit for this
parameter involves two aspects of gravity: a 1.5PN correction of
the Shapiro delay due to the movement of the companion δΛret

u ,
and corrections related to the signal deflection in the gravita-
tional field of the companion δΛlen

u and δlondef
A . Even though these

contributions cannot be tested individually in a simultaneous fit
because of their similarity, one can still test one at a time while
keeping the other one fixed (cf. Kramer et al. 2021a). We find

qNLO[deflection] = 1.00 (15), (19)
qNLO[retardation] = 1.00 (17). (20)

5.1. Searching for profile variation at eclipse

The lensing correction to the aberration delay may not only
lead to a shift in time in the longitudinal aspect but can also
result in a change of the co-latitude of the emission direction
towards Earth, namely the ‘latitudinal deflection delay’. This
would cause profile variations as the LOS cuts a different region
of the pulsar beam (Rafikov & Lai 2006a,b). An illustration of
the latitudinal deflection effect is shown in the right panel of
Fig. 3. Various analyses have confirmed that pulsar A is an
orthogonal rotator (Guillemot et al. 2013; Ferdman et al. 2013;

Fig. 7. Same as for Fig. 6, but masking out the regions without pulses
(blocked by the magnetosphere of pulse B). The dashed red lines indi-
cate the orbital phase bins used in Figs. 8 and 9.

Kramer et al. 2021b), meaning that the main pulse and the inter-
pulse come from opposite magnetic poles. Therefore, we do
not expect shifts of pulse components in phase, as discussed in
Rafikov & Lai (2006b), based on the (incorrect) assumption of
an aligned rotator suggested by Demorest et al. (2004).

The profile variation is expected to be maximum at the supe-
rior conjunction and symmetric around ψ = 90◦ (retardation cor-
rected). This study requires high time resolution, for which we
use the search mode data. We select the data that are near the
eclipses and fold them into single pulses using tempo polyco
(with TSPAN = 1 min). Data are then combined, cleaned, and
polarisation calibrated before integrated into total intensity and
averaged in frequency. As the single pulses are still very weak,
we average over every eight pulses to increase the signal-to-noise
ratio (S/N). An example of eclipse data is shown in Fig. 6.

In order to get a high S/N profile, we first mask the regions
where pulsar A’s emission is blocked by pulsar B (see Fig. 7)
and split the data into orbital phases with a step of ∆ψ = 0.25◦
for 89◦ < ψ < 91◦. Then for each phase interval, we integrate
pulses from all observations of a given band (L or UHF) together
to increase the S/N. The resulting profiles are shown in Fig. 8 for
the L-band data and in Fig. 9 for the UHF-band data, which are
summed from 25 and 37 eclipses respectively. The difference
between the added profiles at the eclipse and a 2 h integrated
profile at the non-eclipse part of the orbit is insignificant. The
subtle residual structures in these figures can result from inter-
stellar medium effects (DM variation and scintillation) based on
our simulations. Therefore, we conclude that the current data are
not (yet) sensitive to profile variations caused by the latitudinal
aberration delay, or are not significant in the region that is seen
by our LOS. These profiles will be used in a subsequent study
on the geometry of the system.

5.2. Simulation for latitudinal deflection delay

To investigate whether the deflection delay caused by latitudinal
deflection is measurable from pulsar timing, we perform a sim-
ulation based on a simple emission model, which consists of a
set of circular cones. Following Doroshenko & Kopeikin (1995)
and Rafikov & Lai (2006b), the latitudinal deflection delay for
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Fig. 8. Profile variation with respect to orbital phase. Left: black lines indicate the integrated profile of L-band data summed from 25 eclipses for
orbital phases 89◦ < ψ < 91◦ with an interval of ∆ψ = 0.25◦. The baseline of the profile is placed at the centre of each interval, and the numbers on
the right side of the profiles (np) indicate the estimated upper limit for the number of pulses in that interval. The red curves indicate the reference
(standard) profile integrated over a 2 h observation excluding the eclipse part. Right: residuals of the added profile with respect to the reference
profile.
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Fig. 9. Same as for Fig. 8, but for the UHF-band data summed from 37 eclipses.
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Fig. 10. Lensing simulation: pre-fit residual plotted against orbital phase
ψ. Data displayed here are centred on ω = 180◦ and span a decade.
The scattering at the lower end of the curve is due to the precession of
periastron.

pulsar A can be written as

δlatdef
A = −D cos i sin (ψ + δψret)

(Λu + δΛret
u ) tanχ0

, (21)

where χ0 is the angle between the arc connecting the LOS
and spin axis and the arc connecting LOS and magnetic axis.
It should be noted that Eq. (21) is based on the approxima-
tion of Doroshenko & Kopeikin (1995) for the deflection angle,
and therefore assumes that the impact parameter is (sufficiently)
large compared to the Einstein radius. While this is sufficient,
at least until full SKA becomes operational, we present an
improved description further below in Sect. 5.4.

We include this deflection time delay in our test model
assuming χ0 = 45◦ 12 (i.e. a relatively large latitudinal deflec-
tion delay) and scale it with a factor qlatdef . We simulate high-
precision TOAs using this test model and fit for the scaling
factor. The pre-fit residuals show an advance signature with an
amplitude of −2.8 µs and symmetric to ψ = 90◦, which is in a
similar shape to Shapiro delay but with the opposite sign and a
smaller amplitude. However, after fitting for Shapiro parameters,
the signature gets mostly absorbed and leaves residuals below
42 ns at superior conjunction.

5.3. Prospects of lensing measurement

Even though the retardation and deflection effects can be tested
separately while keeping the other one fixed, as shown in Eqs. (19)
and (20), measuring the lensing correction to Shapiro delay
δΛlen

u independently is challenging. As already pointed out by
Kramer et al. (2021a), this effect is difficult to observe because
of its strong covariance with s, or equivalently zs. Our simulation
also confirms that the lensing signature can be mostly absorbed by
zs in timing due to its symmetry with respect to conjunction. For
demonstration purposes, we simulate 1-ns TOAs, which model all
NLO signal propagation contributions, then keep the retardation

12 It should be noted that χ0 is not a constant, but our purpose here
is to get a feeling for the measurability of the effect in timing rather
than a proper account of the effect, which requires knowledge of the
latitudinal variation in the emission pattern of the pulsar. Furthermore,
as discussed at the beginning of Sect. 5.1, the beam geometry adopted
by Rafikov & Lai (2006b) is not the correct one anyway.

Fig. 11. Lensing simulation: post-fit residual plotted against orbital
phase ψ.

and deflection delay fixed in the model and fit for the scaling fac-
tor attached to the lensing correction, qlen (corresponding to qNLO
in Eq. (10)). Figure 10 shows the residuals when lensing correc-
tion is not taken into account, leading to a reduced propagation
time of about 850 ns as a result of Fermat’s principle. However,
after fitting for zs, the lensing signature gets absorbed and leaves
the residuals to be below 70 ns (Fig. 11), making a detection with
the current timing precision certainly impossible.

To investigate whether lensing can be measured separately
in the near future, we simulate TOAs for MeerKAT, MeerKAT
extension, and the first phase of the SKA (SKA 1) until 2030
based on similar assumptions made in Hu et al. (2020). In addi-
tion, as the TOA precision reduces significantly due to the inter-
mittent signals during the eclipse (see Fig. 6), we account for
this in our simulations by increasing the uncertainty of these
TOAs based on MeerKAT observations. As a simple estimate,
we assume GR and perform the simulation using the modified
DDGR model with a grid fit to qlen. If lensing is measurable, the
value of qlen should be close to one. However, it turns out that
with the observed and simulated data from 2019 to 2030, the
uncertainty of qlen is still larger than one.

To further push the precision, we assume that an instrument
will be available in the future that is capable of providing a
timing accuracy one order of magnitude better than that of the
SKA 1 (i.e. 100 ns for an integration time of 30 s), for example,
a future full SKA. As a rough estimate, here we only consider
radiometer noise and ignore any other noise sources, such as jit-
ter noise or scintillation noise. The uncertainty of qlen against the
time span of the simulated data is shown in Fig. 12. With such
precision, one would expect to get a 5-σ test of lensing with
∼4 yr of data.

From the simulation, we also obtain an estimated uncertainty
for the common factor of NLO contributions qNLO in the near
future. Assuming no jitter noise, with MeerKAT and the SKA 1,
we can expect a 50-σ detection by 2030.

5.4. Improvements in the timing model for .50 ns precision

Equations (8) and (21) are based on the approximation for the
signal deflection used by Doroshenko & Kopeikin (1995). As
discussed in detail in Kramer et al. (2021a), this is still sufficient
for the analysis of current timing data. For that reason, the analy-
sis in this paper is still based on Doroshenko & Kopeikin (1995),
which (including corrections for retardation) is already part of
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Fig. 12. Uncertainty of factor qlen as a function of time span for the
simulated data assumed to be ten times better than the SKA 1.

the tempo distribution. However, in the future we can expect to
obtain a timing precision of better than ∼50 ns near conjunction
(±1◦), so that an improved treatment of the deflection is required.
In a series of papers, Rafikov and Lai used the standard lensing
equation to treat the signal propagation in the double pulsar near
conjunction (Lai & Rafikov 2005; Rafikov & Lai 2006a,b). This
allowed them to drop the assumption that the impact parameter is
much larger than the Einstein radius. The standard lensing equa-
tion, however, is based on the assumption of small angles (see
e.g. Schneider et al. 1992). Therefore, strictly speaking, Lai and
Rafikov’s calculations are only valid near conjunction. Similar
to the calculations of Shapiro (1967) and Ward (1970), Wucknitz
(2008) studied the deflection of photons in the gravitational field
of a ‘point mass’ for general lensing scenarios not limited to
regions close to the optical axis. Based on these results, we
give an analytic expression for the signal deflection that is valid
for the whole orbit, and recovers the calculations by Lai and
Rafikov near conjunction, and those of Doroshenko & Kopeikin
(1995) if the impact parameter is large compared to the Einstein
radius.

In the following paragraphs, Θ is the angle between rAB′ and
the direction towards the observer, where rAB′ denotes the vec-
tor from the position of pulsar A at emission to the (retarda-
tion corrected) position of pulsar B (the underlying geometry for
our calculations is illustrated in Fig. 13). The deflection ∆Θ of
A’s radio signal by pulsar B can be obtained from Eq. (24) in
Wucknitz (2008), with the replacements α→ ∆Θ, θ → Θ + ∆Θ,
and m → α2

E, where the quantity αE is the angle corresponding
to the Einstein radius, and is given by

αE =
2
c

√
GmB

|rAB′ | � 1. (22)

This is the maximum value ∆Θ can assume. The distance Dd
in Wucknitz (2008) corresponds to |rAB′ |13. Consequently, one
obtains

∆Θ sin(Θ + ∆Θ) − α
2
E

2
[1 + cos(Θ + ∆Θ)] = 0. (23)

Since ∆Θ ≤ αE � 1 for all angles of Θ, we can expand the
equation above in ∆Θ while keeping terms only up to order α2

E.

13 We note that the Dd in Eq. (24) of Wucknitz (2008) is a typo and
should not be there since it is already part of the definition of m.

ΔΘ

ΔΘ

⃗rAB′ 

A

B’

toward observer

Θ

Fig. 13. Schematic picture of the lensing geometry as used in
Sect. 5.4. B′ denotes the retardation corrected position of B
(cf. Klioner & Kopeikin 1992; Kopeikin & Schäfer 1999). In principle
there is a second photon path towards the observer (below B′). How-
ever, for the double pulsar, this signal is not only significantly weaker,
but the path also comes so close to pulsar B that the photons are
absorbed by the plasma-filled magnetosphere of B (cf. Lai & Rafikov
2005; Rafikov & Lai 2006b).

This leads to a quadratic equation:

∆Θ2 + ∆Θ sin Θ − α
2
E

2
(1 + cos Θ) ' 0, (24)

which has, under the assumptions made, one solution:

∆Θ ' 1
2

(√
sin2 Θ + 2α2

E(1 + cos Θ) − sin Θ

)
. (25)

For Θ � 1 this agrees with the standard lensing equation (see
e.g. Schneider et al. 1992).

The angle Θ ∈ [0, π] needs to be computed from the
retardation-corrected orbital phase via cos Θ = sin i sin(ψ +
δψret). The longitudinal and latitudinal deflection delay are given
by

δlondef
A =

∆Θ

2πν
cos(ψ + δψret)

sin Θ sin i
, (26)

δlatdef
A = −∆Θ

2πν
sin(ψ + δψret)

sin Θ tan i tan χ0
, (27)

respectively (cf. Eqs. (10) and (24) in Rafikov & Lai 2006b),
with ζ = π − i and η = −π/2 spin of A aligned with orbital
angular momentum). If Θ is much larger than αE, one has ∆Θ '
α2

E(1 + cos Θ)/(2 sin Θ). This corresponds to the approximation
of Doroshenko & Kopeikin (1995) for the deflection angle, and
one recovers Eqs. (8) and (21).

6. Discussion

In this paper, we have presented results from 3-yr timing obser-
vations of the double pulsar using the MeerKAT telescope, with
a specific focus on studying higher-order signal propagation
effects in the gravitational field of the companion. In order to
minimise the effects from profile evolution and DM variation,
we used frequency-dependent 2D templates to generate TOAs
and a DM model to correct dispersive delay in TOAs.

Thanks to its high inclination and orbital compactness, the
double pulsar is a unique pulsar system for testing NLO signal
propagation effects in strong fields. The significantly increased
precision offered by MeerKAT permits an independent verifi-
cation of NLO signal propagation effects and has already sur-
passed the 16 yr result with only ∼3 yr of data. In our analysis,
the Shapiro shape parameter s has been improved by a factor
of two compared to the previous result (Kramer et al. 2021a),
which also leads to a better mass measurement. The Shapiro
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range parameter r agrees with GR at 5.3 × 10−3 (95% confi-
dence). The precision of the measurement of NLO signal propa-
gation effects qNLO has been improved by a factor of 1.65. In this
work, we investigated the potential profile variation due to lati-
tudinal deflection delay and the possibility of measuring lensing
correction to the Shapiro delay, which has never been studied in
detail before in pulsar analysis. With the current MeerKAT data,
we found little evidence of profile variation at superior conjunc-
tion. It could be that the profile variation is not significant at the
region we are looking at, or our current data are not sensitive
enough to identify it. We also performed simulations on latitudi-
nal deflection delay based on a simple emission model and found
it unlikely to be detected because of its correlation with Shapiro
delay. As for the lensing correction δΛlen

u , we found it can be
mostly absorbed by the Shapiro shape parameter. Our simula-
tion showed that lensing is unlikely to be measured separately
from timing before the full SKA or similarly powerful instru-
ments, and may then be measurable with a few years of timing
observations if noises such as phase jitter and scintillation do not
limit our precision.

However, our analysis also showed that adding certain
epochs has a significant impact on the measured Shapiro param-
eters, but not on qNLO. This could be due to the fact that the
phase predicted using the polyco scheme is particularly worse
at the superior conjunction, which caused the discrepancies in
the Shapiro parameters. Comparison of polyco with different
TSPAN values showed residuals oscillating near the superior
conjunction, and we may already be limited by the precision of
polyco scheme. Of course, there may exist other unknown sys-
tematic errors in the data.

To support our timing analysis and study of profile variations
at eclipse due to latitudinal deflection, we also checked profiles
from all observations. We found variations in the total profile
from epoch to epoch. The differences in the profiles are more
prominent at lower frequencies and broadband. Our simulation
suggested that these profile variations are likely to be associated
with DM variation and scintillation. Even though we have sub-
banded data into 16/32 frequency bands and used 2D templates,
profile variations may still have an impact on timing. The study
of profile variations will be continued in a subsequent work to
improve the constraint on the geometry of the system.

Moreover, although not discussed in this paper, we found
evidence of red noise in the spectrum of timing residuals with an
amplitude two orders of magnitude larger than for typical mil-
lisecond pulsars. If not taken into account, it may strongly affect
astrometric parameters, as well as influence binary parameters,
according to our simulations. This makes it more difficult to
combine the 3 yr MeerKAT data set and the 16 yr data set. Given
that the timing precision of the former significantly outperforms
the latter, the weighting of MeerKAT data already exceeds the
16 yr data and can dominate noise modelling. For the purpose of
this paper, we did not include 16 yr data because of their minor
contribution to the qNLO measurement (∼10% improvement).
However, for studying secular relativistic effects, an appropri-
ate noise modelling may be required to combine these data. We
will investigate this in further ongoing studies.

In the future, continuing observations with MeerKAT and the
SKA will further improve the precision of tests on signal prop-
agation effects, and a 50-σ detection of qNLO can be expected
by 2030. For that, we have also provided an improved analyt-
ical description of the signal propagation in the double pulsar.
Furthermore, as demonstrated by Hu et al. (2020), the precision
of secular relativistic effects will also be greatly improved and
will eventually enable the measurement of the MOI of pulsar A

Table 4. Comparison of the MeerKAT timing precision σrms assumed in
Hu et al. (2020) and from real observations with L-band and UHF-band
receivers, scaled to a 5 min integration time over the full bandwidth.

Telescope/receiver Reference σrms (µs)

MeerKAT L band Hu et al. (2020) 1.06
MeerKAT L band This work 0.90
MeerKAT UHF band This work 0.55

and the NLO gravitational wave damping in the near future. The
timing precision of the MeerKAT data used in this work is even
better than that assumed in Hu et al. (2020), which is based on
early L-band data from MeerKAT (see Table 4). This makes their
predictions conservative and we are likely to achieve even better
measurements with future observations.
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ABSTRACT

Context. Scalar-tensor gravity (STG) theories are well-motivated alternatives to general relativity (GR). One class of STG theories,
the Damour-Esposito-Farèse (DEF) gravity, has a massless scalar field with two arbitrary coupling parameters. We are interested in
this theory because, despite its simplicity, it predicts a wealth of different phenomena, such as dipolar gravitational wave emission
and spontaneous scalarisation of neutron stars (NSs). These phenomena of DEF gravity can be tested by timing binary radio pulsars.
In methods used so far, intermediate phenomenological post-Keplerian (PK) parameters are measured by fitting the corresponding
timing model to the timing data whose values are then compared to the predictions from the alternative theory under test. However,
this approach loses information between intermediate steps and does not account for possible correlations between PK parameters.
Aims. We aim to develop a new binary pulsar timing model DDSTG to enable more precise tests of STG theories based on a minimal
set of binary parameters. The expressions for PK parameters in DEF gravity are self-consistently incorporated into the model. PK
parameters depend on two masses which are now directly fitted to the data without intermediate steps. The new technique takes into
account all possible correlations between PK parameters naturally.
Methods. Grids of physical parameters of NSs are calculated in the framework of DEF gravity for a set of 11 equations of state.
The automatic Differentiation (AutoDiff) technique is employed, which aids in the calculation of gravitational form factors of NSs
with higher precision than in previous works. The pulsar timing program TEMPO is selected as a framework for the realisation of
the DDSTG model. The implemented model is applicable to any type of pulsar companions. We also simulate realistic future radio-
timing data-sets for a number of large radio observatories for the binary pulsar PSR J2222−0137 and three generic pulsar-black hole
(PSR-BH) systems.
Results. We apply the DDSTG model to the most recently published observational data for PSR J2222−0137. The obtained limits
on DEF gravity parameters for this system confirm and improve previous results. New limits are also the most reliable because DEF
gravity is directly fitted to the data. We argue that future observations of PSR J2222−0137 can significantly improve the limits and
that PSR-BH systems have the potential to place the tightest limits in certain areas of the DEF gravity parameter space.

Key words. gravitation – binaries : close – gravitational waves – pulsars : pulsars – general : individual (J2222−0137)

1. Introduction

General Relativity (GR) proved to be the most successful theory
of gravity for more than a century. Up to now, it has passed all
experimental tests with flying colours. The weak field regime is
verified by the Solar System experiments (Will 2014), whereas
strong field effects are especially well tested by the timing of bi-
nary pulsars (Wex & Kramer 2020). Among other things, pulsar
tests enable precise tests of the radiative properties of gravity and
the strong equivalence principle (SEP). Furthermore, the large-
scale behaviour of gravity (low spacetime curvature and tem-
poral variation) is tested in cosmological observations (Clifton
et al. 2012a). Finally, in the last few years, ground-based grav-

itational wave (GW) detectors observed GWs from coalescing
binary black holes (Abbott et al. 2016, 2017c, 2019a, 2021b), bi-
nary neutron stars (Abbott et al. 2017a,b, 2019b) and also black
hole-neutron star binaries (Abbott et al. 2021a); probing the hith-
erto unexplored highly dynamic, strong-field regime of gravity.
Thus far, GR can account for all observed effects both in weak
and strong gravitational fields, in the quasi-static and the highly
dynamical regime, and on small as well as on large scales.1

Despite such successes, there are still convincing reasons to
investigate modified theories of gravity (Berti et al. 2015). GR

1 Within GR, the large scale requires the introduction of dark matter
and dark energy (latter in form of the cosmological constant Λ).
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describes gravitational interaction by a single massless, spin-
2 tensor field gµν, known as the metric of spacetime. Some of
the best motivated alternative gravity theories, the scalar-tensor
gravity (STG) theories, incorporate additional scalar degrees of
freedom to mediate gravity. Such scalar fields arise naturally in
higher dimensional theories in their low energy limits, e.g., the
old Kaluza-Klein theory (Kaluza 1921; Klein 1926) and string
theories (Fujii & Maeda 2007). Scalar-tensor gravity theories are
also motivated by cosmological questions of inflation, dark en-
ergy and even the thus far undiscovered quantum gravity (Clifton
et al. 2012b).

The STG theory that for many years was considered as the
only natural competitor of GR is known as Jordan-Fierz-Brans-
Dicke (JFBD) gravity (Jordan 1955, 1959; Fierz 1956; Brans &
Dicke 1961).2 JFBD gravity is a metric theory (matter and non-
gravitational fields couple only to one specific spacetime metric)
and therefore fulfils the Einstein equivalence principle by design
(Will 1993; Damour 2012). However, an additional scalar field is
nonminimally coupled to matter via the choice of a special con-
formal coupling function; thus, the strong equivalence principle
(SEP) is violated (Will 2014). This coupling function depends
on a single parameter ωBD, which by now is tightly constrained,
in particular with the pulsar in the stellar triple system (Voisin
et al. 2020). Bergmann (1968) and Wagoner (1970) presented
the most general STG with one scalar field which is in its ac-
tion at most quadratic in the derivatives of the fields. The most
general mono-scalar–tensor theory with second-order field equa-
tions is Horndeski gravity (Horndeski 1974). In 1992, Damour &
Esposito-Farèse (1992b) presented a generic class of STG theo-
ries with an arbitrary number of scalar fields. In the scope of this
paper, we mainly focus on DEF gravity (Damour & Esposito-
Farèse 1993). DEF gravity is a Bergman-Wagoner theory which
has a massless scalar field and a quadratic coupling function with
two arbitrary parameters.

Apart from being well-motivated, DEF gravity predicts in-
teresting effects which are not present in weak fields of the So-
lar System but could be tested by employing pulsar astronomy.
Neutron stars (NSs) have strong gravitational fields and large
gravitational binding energies due to their high compactness. Be-
cause of this, in STG theories they can have large gravitational
form-factors (also known as scalar charges), unlike weakly self-
gravitating objects like normal stars and white dwarfs (WDs).
Consequently, while STG theories generally predict the emission
of dipolar and monopolar GWs, which increase the rate of orbital
period decay relative to the GR expectation; this is expected to
be especially strong in asymmetric binary systems containing a
NS and a WD, due to the significant differences in their com-
pactness and scalar charges.

Furthermore, Damour & Esposito-Farèse (1993, 1996) found
a specific phenomenon in NSs called “spontaneous scalarisa-
tion”. This fully non-perturbative effect excites the scalar field
above the cosmological background value in NSs, allowing
scalar charges of order unity, even if there is no deviation from
GR in the weak-field regime. This could produce, for binary sys-
tems containing NSs with specific masses, a highly enhanced
rate of dipolar GW emission.

Some of the tightest tests of gravity with strongly self-
gravitating objects are provided by the high precision timing
of binary pulsars (Stairs 2003; Wex 2014; Shao & Wex 2016;
Wex & Kramer 2020; Kramer et al. 2021). These tests are per-

2 The first to formulate JFBD gravity was actually Willy Scherrer in
the early 1940s (see Goenner (2012) for a historical review on the gen-
esis of STG).

formed in a quasi-stationary strong-field gravity regime, where
the gravitational field is strong near and inside NSs and produces
high curvature, whereas the velocities are small compared to the
speed of light v/c ∼ 10−3. The first timing model (BT) was in-
troduced by Blandford & Teukolsky (1976) and allowed to ex-
tract information from the timing of binary pulsars. An extended
model covering all relativistic effects in the dynamics of a binary
system up to the first post-Newtonian level was proposed later by
Damour & Deruelle (1985, 1986) (DD).

The DD model gave an opportunity to perform self-
consistent tests of gravity by means of the parametrised post-
Keplerian (PPK) formalism (see, for instance, applications by
Taylor & Weisberg 1989). In this generic framework, theory-
independent Keplerian and post-Keplerian (PK) timing param-
eters, which quantify the relativistic motion of the pulsar and the
propagation of its radio signals, are fitted to the observational
timing data. Apart from the well measured Keplerian parameters
of the orbit, each PK parameter depends only on the masses of
the pulsar and its companion. As soon as the expressions for the
PK parameters in a particular gravity theory are known, these
two masses can be derived from the PK parameters once at least
two of them are known. If more than two PK parameters be-
come available, then a test of the consistency of that gravity the-
ory can be made. Later, Damour & Taylor (1992) expanded the
DD model and introduced pulse structure parameters. They also
showed that the DD model can be applied to a large set of fully-
conservative theories of gravity and presented phenomenological
PK expressions in a framework of generic boost-invariant theo-
ries (the modified Einstein-Infeld-Hoffmann formalism).

However, such an independent measurement of PK parame-
ters means that any correlations between them inadvertently re-
duce the sensitivity of their measurements. Taylor & Weisberg
(1989) solved this problem for GR with the introduction of the
DDGR model, where the GR expressions for PK parameters are
incorporated in the model, and two masses are directly fitted to
the observational timing data. This mitigates or breaks any cor-
relations between the PK parameters.

In this work we present a new pulsar timing model, the
“DDSTG” model. The idea is very similar to that of the DDGR
model: fitting directly for the masses of the components from
pulsar timing data, but instead of GR using a particular member
of the two-parametric DEF gravity. Apart from the theoretical
predictions for all PK parameters within that theory, the model
uses pre-calculated grids of physical parameters (gravitational
form-factors) of NSs in that particular gravity theory. The di-
rect fit of two masses of the companions reduces the model to
a minimal set of parameters and naturally solves all the issues
of possible correlations between the observed parameters. This
feature, achieved by the construction, makes the DDSTG model
superior to the traditional methods, e.g. the “PK method” based
on the measurement of PK parameters.

As an application of the new timing model DDSTG, we use
the most recently published timing data for PSR J2222−0137
from Cognard et al. (2017) and Guo et al. (2021b). This pulsar
is interesting for several reasons: It is one of the closest pulsars
known and has a good timing precision. A precise measurement
of the variation of the orbital period (Ṗb) and the high asymme-
try in compactness between the pulsar and its companion allows
tight constraints on the emission of dipolar GWs. Moreover, the
pulsar’s mass mp = 1.831(10)M� (Guo et al. 2021b) lies in the
range (mp & 1.5M�) subject to the spontaneous scalarisation ef-
fect; the non-detection of dipolar GW emission in this system
has introduced strong constraints on the existence of that phe-
nomenon, at least within the DEF framework (Zhao et al. 2022).
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We organise the paper as follows: in Section 2, we intro-
duce the basics of the Damour-Esposito-Farèse (DEF) gravity
and present our machinery preparations necessary for the imple-
mentation of the new model. In Section 3, we discuss so far used
standard timing models and introduce our new model DDSTG
for testing STG theories. The next sections are devoted to the
applications of our new timing model. In Section 4, we pro-
vide a brief description of the Guo et al. (2021b) data-set on
PSR J2222−0137 and apply the DDSTG model to it, discuss
the limits on DEF gravity and demonstrate that our new method
provides indeed tighter and more reliable constraints than pre-
vious methods. In Section 5, based on simulated data-sets for
the largest radio observatories, we discuss what limits on these
theories might be achieved in the near future with continued tim-
ing of PSR J2222−0137 . In Section 6, we show possible future
constraints from reasonable pulsar-black hole (PSR-BH) binary
systems. We also briefly discuss the possible origin of PSR-BH
systems and how it affects the test if such a system is located in
a globular cluster (GC). Section 7 is devoted to a discussion of
other alternative gravity theories and possibilities of DDSTG ex-
tensions beyond DEF gravity. In Section 8 we discuss the effect
of the time-varying gravitational constant as a perspective future
extension of the DDSTG model. In Section 9 we summarise our
results.

2. Damour-Esposito-Farèse gravity

This paper investigates STG theories, natural alternatives to GR.
Specifically, we mainly focus on DEF gravity. In the following
we summarise aspects of that class of gravity theories that are
relevant for this paper.

2.1. Theoretical aspects

DEF gravity is a STG theory with one long range, massless
scalar field ϕ non-minimally coupled to the curvature scalar. The
theory is fully described by the action, which is most simply pre-
sented in the Einstein frame (Damour & Esposito-Farèse 1993,
1996)

S =
c4

16πG∗

∫
d4x
c

g1/2
∗ (R∗ − 2gµν∗ ∂µϕ∂νϕ) + S m

[
ψm; A2(ϕ)g∗µν

]
,

(1)

where G∗ is the bare gravitational coupling constant, g∗ and
R∗ are the determinant and the Ricci scalar associated with the
Einstein metric (g∗µν). The last term in Eq. (1) describes an ac-
tion associated with any matter fields (ψm). A(ϕ) is the coupling
function and takes a specific exponential form in DEF gravity:
A(ϕ) = exp[α0(ϕ − ϕ0) + 1

2β0(ϕ − ϕ0)2]. Introduced quantities
{α0, β0} are two arbitrary parameters of the theory and ϕ0 is the
scalar field at spatial infinity. The coupling function A(ϕ) plays
the role of a conformal factor connecting the “physical metric”
g̃µν = A2(ϕ)g∗µν with the Einstein metric. The metric g̃µν is the
one measured by laboratory clocks and rods due to the universal
coupling of matter to this metric. The bare gravitational constant
is simply related to the one measured in a Cavendish experiment
by GCav = G∗(1 + α2

0). GR corresponds to vanishing coupling
parameters, i.e. α0 = β0 = 0, and JFBD gravity is recovered by
setting β0 = 0 while keeping α0 , 0.

The field equations are derived by variation of the action in
Eq. (1) and are most simply formulated in terms of the pure-spin

field variables (g∗µν, ϕ) in the Einstein frame:

R∗µν = 2∂µϕ∂νϕ +
8πG∗

c4

(
T ∗µν −

1
2

T ∗g∗µν

)
, (2)

�g∗ϕ = −8πG∗
c4 α(ϕ)T∗, (3)

with a material stress-energy tensor T µν
∗ = 2cg−1/2

∗ δS m/δg∗µν and
α(ϕ) = ∂ ln A(ϕ)/∂ϕ, which measures the coupling strength be-
tween the scalar field and matter.

All weak-field deviations from GR may be described in
terms of the asymptotic behaviour of α(ϕ) at spatial infinity.
The theory parameters α0 = α(ϕ0), β0 = β(ϕ0) can be inter-
preted as asymptotic values of the function α(ϕ) and its deriva-
tive β(ϕ) = ∂α(ϕ)/∂ϕ.

In this work, without loss of generality, we use the formu-
lation of DEF gravity with ϕ0 ≡ 0, two parameters {α0, β0}
appearing in the form of A(ϕ) and A(ϕ0) = 1. There is an
equivalent formulation in terms of parameters {β0, ϕ0}, where
A(ϕ) = exp(β0ϕ

2/2) and ϕ0 = α0/β0. But the latter formula-
tion is not well determined for the JFBD limit β0 = 0 (Damour
2007).

The parameterised post-Newtonian (PPN) framework allows
describing a wide range of metric theories of gravity in their
weak field approximation by ten independent PPN parameters.
DEF gravity is a fully conservative theory and has only two PPN
parameters that deviate from their GR values, which are also
called Eddington parameters (Will 1993):

γEdd = 1 − 2α2
0

1 + α2
0

, (4)

βEdd = 1 +
β0α

2
0

2(1 + α2
0)2

. (5)

The PPN parameter γEdd measures the spatial curvature induced
by unit rest mass and βEdd is a measure of the amount of nonlin-
earity in the superposition law of gravity. Solar System experi-
ments put limits on these parameters. The |γEdd − 1| . 2.3× 10−5

limit comes from the Shapiro time delay observed by the Cassini
spacecraft (Bertotti et al. 2003; Will 2014). The |βEdd − 1| .
8 × 10−5 limit comes from observations of the perihelion shift
of Mercury (Will 2014). The Cassini experiment yields a direct
limit on α2

0 . 1.15 × 10−5, whereas β0 remains unconstrained
from weak-field Solar System experiments, since α0 can be ar-
bitrarily small.

2.2. Scalarisation of neutron stars in DEF gravity

To place firm limits on β0 parameter, we need to explore the
strong-field effects of DEF gravity. One can expect deviations
from GR in the presence of highly compact massive objects, in
particular for NSs, due to the scalar field sourced by the strong
internal gravitational field of the star. When placing limits on
β0 it is important that for certain areas in the DEF gravity pa-
rameter space one has a significant growth of the scalar field in
the NS interior, even if the deviations for weakly self-gravitating
bodies are very small, or even zero (Damour & Esposito-Farèse
1992a; Damour & Esposito-Farèse 1993, 1996). The origin of
this spontaneous scalarisation lies in the tachyonic instability of
the field equations happening when a NS reaches a sufficiently
high compactness. The mechanism of this instability is similar
to what happens in ferromagnets during spontaneous magneti-
sation (Damour & Esposito-Farèse 1996). It is a fully nonlinear
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non-perturbative effect, thus it requires accurate techniques to be
properly analysed.

For testing DEF gravity, it is crucial to introduce three gravi-
tational form-factors appearing in the expressions for PK param-
eters

αA =
∂ ln mA

∂ϕ0

∣∣∣∣
m̄A
, βA =

∂αA

∂ϕ0

∣∣∣∣
m̄A
, kA = −∂ ln IA

∂ϕ0

∣∣∣∣
m̄A
, (6)

where all the derivatives are taken for a fixed baryonic mass
(m̄A). The important quantity αA counts the effective couple
strength between the ambient scalar field and a NS. The sub-
script A refers to the star A. αA is a strong-field counterpart to
the parameter α0, which is its weak field approximation. If a NS
mass exceeds the critical mass of mcrit then αNS can become sud-
denly of order of unity αNS ∼ O(1) due to the scalarisation effect,
while its weak field counterpart stays close to zero α0 ∼ 0. The
value of the critical mass depends on β0 and the chosen equation
of state (EOS). The second parameter βA reflects a change of
the scalar charge when the asymptotic scalar field changes. The
derivative βA can also obtain very large values in the transition
scalarisation region, where αA changes fast with the change of a
mass. The last quantity kA describes the field dependence of the
moment of inertia IA and can become important in the eccentric
systems.

2.3. Calculating grids of NSs

To test DEF gravity in precision timing experiments of binary
pulsars, one must know the exact properties of NSs in that spe-
cific class of alternative gravity. In our work, we follow the pro-
cedure described in Damour & Esposito-Farèse (1996) for cal-
culating NSs in DEF gravity. We assume the slowly rotating NS
approximation with a stationary axisymmetric metric. Assuming
this axial symmetry and neglecting terms of rotational velocity
squared (or higher), the Einstein equations can be written as a
system of 8 first-order ordinary differential equations (ODEs)
for a set of radial functions (see the representation by Damour
& Esposito-Farèse (1996)). The equations are complemented by
appropriate boundary conditions placed at spatial infinity and
the NS centre. Boundary conditions at spatial infinity and thus
properties of NSs depend on the values of the theory parameters
{α0, β0}.

For solving NS structures, we developed a modular program
in the Julia language (Bezanson et al. 2017). The program en-
ables us to calculate both single NSs for selected parameters and
grids of NSs for many desired parameters. The calculations are
performed accurately and efficiently using the methods of par-
allel programming. Currently, DEF gravity is implemented as
the chosen theory of gravity, but our program allows to use any
coupling function A(ϕ) to extend our tests beyond DEF gravity
parametrisation.

The internal structure and NSs parameters significantly de-
pend on EOS. The strong dependence of the scalarisation phe-
nomenon on the choice of EOS was extensively analysed by
Shao et al. (2017) and Zhao et al. (2022) in order to put con-
straints on this non-linear phenomenon from radio pulsars. In
our work, we use a piece-wise polytropic approximation for the
EOSs following the procedure in Read et al. (2009). We select
11 EOSs that allow us to cover a range from soft to stiff while
still being in agreement with the maximum mass observed for
a NS (for more information about selected EOS we refer to Ap-
pendix A.2). For tests in the present paper, we select MPA1 high-
density EOS (Müther et al. 1987) in its piece-wise polytropic
form (Read et al. 2009) with three polytropic pieces. MPA1 is

a stiff EOS with a maximum mass of a NS equal to 2.46 M�.
For low densities, we use an analytic form of the SLy EOS pro-
posed by Douchin & Haensel (2001) and approximated by four
polytropic pieces (Read et al. 2009). In general stiff EOSs (e.g.
MPA1) produce more conservative limits in most parts of DEF
gravity parameter space.

In our program, we utilise the Automatic Differentiation
(AutoDiff) technique (see e.g. Margossian (2018)) for calculat-
ing derivatives of NSs quantities. AutoDiff is a powerful alter-
native to numerical differentiation deprived of numerical errors
(for detailed explanation see Appendix A.1). AutoDiff algorithm
utilises exact expressions of derivatives for elementary functions
and a chain rule to calculate complex derivatives with the work-
ing machine-precision. Thus our program with applied AutoDiff
technique calculates gravitational form-factors {αA, βA, kA}, pre-
sented as derivatives in Eq. (6), with very high numerical preci-
sion.

Using the developed program, we calculate gravitational
form-factors and masses for an extensive grid of DEF parameters
and central pressures {α0, β0, pc} assuming a specific EOS. Our
grids cover ranges of α0 ∈ [−10−1,−10−5], β0 ∈ [−6,+10], pc ∈
[1034, 1036] dyn/cm2 and are sampled linearly for logα0, log pc
and β0. The size of each grid is {101, 351, 121} points respec-
tively. More technical details about the procedure of calculating
NS properties, the AutoDiff technique, and the structure of pre-
calculated grids can be found in Appendix A. We stick to pre-
calculating grids because it is numerically costly to calculate
NS structures for a particular mass on the fly. Further one can
perform interpolation over these pre-calculated grids or meth-
ods beyond interpolation, e.g reduced-order models in Guo et al.
(2021a). The achieved accuracy of grid values and further inter-
polation over the grid is sufficient for our purposes.

The accuracy of the calculations can be checked by com-
parison of the scalar charge (αA) calculated as the derivative
from Eq. (6) αA, deriv and its direct value from the asymptotic
behaviour of the external scalar field obtained after integration
αA, asympt (Damour & Esposito-Farèse 1993). The relative accu-
racy expressed by δrel = |1 − αA, deriv/αA, asympt| lies in the range
δrel ∼ 10−7 − 10−13 for our calculations. The calculated scalar
charges are significantly more accurate compared to previous
works, e.g., Anderson & Yunes (2019) with typical accuracy of
δrel ∼ 10−1 − 10−5. However, it is essential to mention that the
accuracy of several percent is already sufficient for testing DEF
gravity with binary pulsar timing.

Besides, we also find that the NS structure appears to be
very sensitive to internal thermodynamic consistency. The piece-
wise polytropic EOSs fulfil the thermodynamic consistency by
their definition. However, often one uses tabulated EOSs in-
stead, which must be interpolated. Unfortunately, a commonly
used log-log interpolation of tabulated EOSs can lead to sig-
nificant numerical errors in the scalar derivatives of Eq. (6) be-
cause of its thermodynamic inconsistency.3 For this reason, we
use piece-wise polytropic approximations instead of tabulated

3 Doing an interpolation of a tabulated EOS in a way that correctly
accounts for the first law of thermodynamics is not a trivial problem
and requires a formulation in terms of Helmholtz free energy (Swesty
1996). If one uses a simple linear interpolation in {log n, log p} and
{log n, log ε} planes for a tabulated EOS (n is the baryon number density
and ε is the energy density), the accuracy check can fail by the amount
of δrel ∼ O(1) − O(0.1) in the region of strong scalarisation. The reason
is that such interpolations do not obey the first law of thermodynam-
ics dn

dε = n
ε+p which is assumed for structure equations and defines the

baryonic mass m̄A (Hartle 1967; Damour & Esposito-Farèse 1996). As
a consequence, this not only affects NS masses but even more so the
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EOSs, which is absolutely sufficient for conducting our tests and
for exploring the EOS dependence of pulsar constraints on DEF
gravity.

3. A new timing model for scalar-tensor gravity

To place constraints on a gravity theory from the observations
of a binary pulsar, one must know its predictions for the binary
system’s motion and the propagation of the electromagnetic sig-
nal in the curved spacetime of the binary system. The timing
formula is the tool to capture the relativistic effects predicted by
the theory from a sequence of pulse arrival times on Earth. The
timing formula relates the observed (topocentric) time of arrival
(TOA) of the pulse and its time of emission.

3.1. Binary pulsar timing models

The first timing model (BT) was introduced by Blandford &
Teukolsky (1976) in order to describe the timing of the first bi-
nary pulsar, PSR B1913+16, which had been discovered earlier
by Hulse & Taylor (1975). The BT model assumes that the pul-
sar and its companion follow a Keplerian motion with additional
secular changes in the Keplerian parameters of the orbit. utilised
Keplerian parameters are the orbital period (Pb), the epoch of
periastron passage (T0), the orbital eccentricity (e), the longi-
tude of periastron (ω), and the projected semi-major axis of the
pulsar’s orbit (x). The model accounts for a combination of a
special-relativistic time dilation and a gravitational redshift; this
periodic effect is described by an extra parameter called the Ein-
stein delay (γ). The BT model accounts for (linear-in-time) sec-
ular changes in Pb, e, ω and x, introducing PK parameters: rates
of change of the orbital period (Ṗb), eccentricity (ė), longitude
of periastron (ω̇) and projected semi-major axis (ẋ). These sec-
ular changes can be caused by both relativistic and astrometric
effects (Damour & Taylor 1992; Lorimer & Kramer 2004).

Later, Damour & Deruelle (1986) proved that all of the inde-
pendent O(v2/c2) timing effects could be described in a simple
mathematical way for a wide range of alternative gravity theo-
ries. They developed a phenomenological (i.e. theory indepen-
dent) timing model based on the full first post-Newtonian de-
scription of the two-body problem, which we will refer to as the
“DD” model that uses a quasi-Keplerian solution to the equa-
tions of motion of a 2-body problem. This model allows working
within a parametrised post-Keplerian approach (PPK). Damour
& Taylor (1992) then showed that the DD model could be used to
constrain a wide range of conservative theories of gravity obey-
ing the modified Einstein-Infeld-Hoffmann (mEIH) framework
(see also Will 1993).

For the binary system part, the timing formula of the DD
model reads as:

tb − t0 = D−1 [T + ∆R(T ) + ∆E(T ) + ∆S (T ) + ∆A(T )] , (7)

where tb is the Solar System barycentric (infinite-frequency) ar-
rival time, t0 is a chosen reference epoch, T is the pulsar’s proper
time, and D is a Doppler factor accounting for the relative radial
motion of the centre of mass of the binary system and the Solar
System barycentre. The quantities ∆i in Eq. (7) are different time
delays introducing corrections due to internal binary effects.

Splitting the timing formula into a set of different contribu-
tions is to some extent a coordinate-dependent concept, how-
ever, within the approximations used it is convenient to work

derivatives in Eq. (6), including the expression of αA from Eq. (6) as the
derivative of the mass which enters the accuracy check.

with these individual expressions for timing delays. The term
∆R(T ) is called “Roemer delay” and counts for the classical light
travel time through the binary. ∆E(T ) is the “Einstein delay” and
relates the proper emission time to the coordinate time of emis-
sion. ∆S (T ) is the “Shapiro delay” arising from the effect of the
gravitational potential of the companion on the propagation of
the pulsar signals. The “aberration delay” ∆A(T ) places correc-
tions due to the periodic changes in the direction of pulse emis-
sion (as seen in the frame of the rotating pulsar) while the pulsar
follows its binary motion.

All the expressions depend on three sets of parameters. Kep-
lerian parameters are

{pK} = {Pb,T0, e0, ω0, x0} (8)

and remain the same as for the BT model (the subscript 0 means
a value at a given epoch). Separately measurable PK parameters
are

{pPK} = {k, γ, Ṗb, r, s, δθ, ė, ẋ} . (9)

The DD model introduces a periastron-shift parameter k =
ω̇Pb/(2π), Shapiro “shape” (s = sin i, where i is the inclination
angle) and Shapiro “range” (r) parameter for the signal propa-
gation, and a relativistic deformation of the orbit (δθ). Not sepa-
rately measurable PK parameters are

{qPK} = {δr, A, B,D} , (10)

including a second parameter for the relativistic deformation
(δr), two aberration parameters (A and B) and a Doppler factor
(D).

The mentioned delays in the framework of the DD model are
presented by expressions

∆R(T ) = x sinω [cos u − e(1 + δr)]

+ x
[
1 − e2(1 + δθ)2

]1/2
cosω sin u , (11)

∆E(T ) = γ sin u , (12)

∆S (T ) = −2r ln
{
1 − e cos u − s

[
sinω(cos u − e)

+ (1 − e2)1/2 cosω sin u
]}
, (13)

∆A(T ) = A {sin [ω + Ae(u)] + e sinω}
+ B {cos [ω + Ae(u)] + e cosω} , (14)

where the secular changes incorporated in the projected semi-
major axis x and eccentricity e are given by

x = x0 + ẋ(T − T0) , (15)
e = e0 + ė(T − T0) . (16)

The true anomaly (Ae) and ω depend on the eccentric anomaly
(u) via following the relations

Ae(u) = 2 arctan


(

1 + e
1 − e

)1/2

tan
u
2

 , (17)

ω = ω0 + kAe(u) , (18)

where u is itself a function of T and defined by solving Kepler’s
equation

u − e sin u = 2π


(

T − T0

Pb

)
− 1

2
Ṗb

(
T − T0

Pb

)2 . (19)
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The parameters in Eq. (10) cannot be measured separately
from the parameters in Eqs. (9) and (8) as shown by Damour &
Deruelle (1986). It means that all not separately measurable pa-
rameters can be fully absorbed into the change of other parame-
ters. More details about measurable parameters and the connec-
tion between observed parameters and the intrinsic parameters
can be found in Damour & Taylor (1992). The redefinition of
orbital parameters can absorb the Doppler factor (D). Such a re-
definition does not affect the tests because it is only a rescaling
of physical units, thus D is set to 1.4 The aberration parameters
A and B can be absorbed as well by redefinition of T0, x, e, δr and
δθ.

3.2. A timing model in DEF gravity

The DD model can be applied to a wide range of fully-
conservative theories of gravity. DEF gravity is a fully-
conservative theory (Will 1993), thus we can investigate it in the
framework of the DD model.

In different theories of gravity, the functional dependence of
the PK parameters, i.e.

pPK
i = f theory

i (mp,mc; Pb, e0, x0; EOS) , (20)

can differ substantially because of strong-field effects involving
a highly compact NS and its companion. The PK parameters are
functions of two masses, thus one can perform gravity tests if at
least 3 PK parameters are measurable. In general, if there are n
measured PK parameters, one can do n−2 independent tests for a
given gravity theory. A common procedure of making tests using
expressions for PK parameters is discussed in detail in Section 4,
devoted to applications of a new model and comparison between
different techniques.

The core part of the new timing model is the predictions for
PK parameters (20) in DEF gravity. We use expressions for PK
parameters in DEF gravity provided in the literature (Damour &
Esposito-Farèse 1992b; Damour & Esposito-Farèse 1993, 1996).
However, for parameters δθ, δr, A and B there are only more gen-
eral expressions. A phenomenological theory-independent de-
scription of PK parameters from which we derive their expres-
sions in DEF gravity is presented in Damour & Taylor (1992).
The expressions of PK parameters and details are given in Ap-
pendix B.

The aberration parameters A and B can also be calculated in
DEF gravity, provided we know the system’s geometry. The ap-
plications we use in the paper assume a special situation when
the pulsar’s spin axis is aligned to the orbital angular momen-
tum of the system. The alignment is a reasonable assumption
for a recycled pulsar with a WD companion due to the preced-
ing accretion process during the system’s evolution. In this spe-
cial case, A is calculated according to Eq. (B.7) assuming angles
η = −π/2 and λ = i (Damour & Taylor 1992). The second aber-
ration parameter B = 0 in this special situation. In general, an
alignment may not be the case for a particular binary pulsar (e.g.
double neutron star systems), but the new model can also handle
this misalignment. Once the system’s geometry is assumed, real
A and B values can be calculated for a given epoch without the
necessity to redefine other parameters.5

4 Note, however, that a temporal change of D is of relevance for pulsar
timing experiments, as we will discuss later.
5 If the spin of the pulsar is misaligned, this can lead to a further com-
plication of the analysis. In such a case geodetic precession leads to
apparent changes in the binary parameters (Damour & Taylor 1992;
Lorimer & Kramer 2004).

The PK parameters from Eq. (20) depend on the orbital pa-
rameters of the system and the physical properties of the pulsar.
However, we also have to know properties of the companion.
The PK expressions (B.1 - B.13) depend on gravitational form-
factors of the companion {αc, βc}. The quantity kc does not ap-
pear in the expressions because they take into account only lead-
ing order terms, and is therefore of no interest. These quantities,
in turn, depend on the type of companion. If the companion is a
NS, they are calculated in the same way as for the primary pul-
sar using Eq. (6). If the companion is a black hole (BH), then the
gravitational form-factors all vanish:

αBH = 0, βBH = 0, kBH = 0 . (21)

This is a consequence of the “no-hair” theorem; the BH is not
scalarised in DEF gravity (Hawking 1972; Damour & Esposito-
Farèse 1992a). Section 6 is dedicated to a more thorough discus-
sion on binary pulsar systems with a BH and the results which
we can obtain from timing of a pulsar in a relativistic orbit with
a BH. For a WD companion, the gravitational form-factors are
approximated by their weak field expressions

αWD ' α0, βWD ' β0, kWD ' 0 . (22)

Such an approximation is sufficient for our purposes because
WDs are not compact enough to show the strong field effects
present in NSs and BHs. The next order approximation for
weakly self-gravitating objects is αA ' α0(1 − 2sA), where
sA ' G∗mA/(Rc2) is the sensitivity (R is the object’s radius) and
has a typical value of sWD ∼ 10−5 − 10−3 for a WD (Damour &
Esposito-Farèse 1992a; Damour & Esposito-Farèse 1993; Will
2018b). Thus the usage of weak field counterparts {α0, β0} for
a WD companion instead of precisely calculated values is justi-
fied.

To summarise, the timing model in DEF gravity is defined
by two theory parameters {α0, β0}, the chosen EOS for a NS, and
the type of the companion among {WD, NS, BH}. We name the
new model DDSTG arises as direct extension of the DD model
for STG theories.

3.3. DDSTG implementation into TEMPO

Once we obtain the theoretical part of the new DDSTG timing
model, we need to apply it to the timing data. We implemented
the DDSTG model into one of the commonly used pulsar timing
software – the TEMPO6 program (Nice et al. 2015). The local
implementation of DDSTG model in TEMPO and precalculated
grids of masses and gravitational form-factors are supplied with
the paper7. The authors intend to make DDSTG a part of the
official TEMPO distribution to ensure forward compatibility.

There is a standard procedure of analysing radio pulsar tim-
ing data. The preprocessed TOAs are obtained after radio ob-
servations of the desired pulsar system. During the procedure,
TEMPO reads TOAs, parameters of the binary model, and some
coded instructions from supplied files. Then TEMPO fits the se-
lected timing model accounting for the transformation to the So-
lar System barycentre, pulsar rotation, and its spin down for a
chosen binary model.

Specifically for DDSTG, a user selects theory parameters
{α0, β0}, EOS, and the type of a companion. During the initial-
isation TEMPO reads pre-calculated 3D grids of gravitational
form-factors and NS masses {αA, βA, kA,mA} (see Section 2.3)

6 http://tempo.sourceforge.net
7 https://github.com/AlexBatrakov/tempo-13.103_ddstg
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for the chosen EOS. Each 3D grid depends on {α0, β0, pc} pa-
rameters, where pc is the central pressure. Then gravitational
form-factors and masses are interpolated for the selected {α0, β0}
values and saved into a smaller 1D grids (depending only on pc)
in the program memory. The final 1D grids remain unchanged
and are used to interpolate gravitational form-factors for a par-
ticular theory in the mass range during the fitting procedure of
TEMPO.

TEMPO with the selected DDSTG model fits two masses:
the total mass (mtot) of the system and the companion’s mass
(mc). Every time when these masses change, the model recalcu-
lates the gravitational form-factors for the pulsar and the com-
panion. Once the gravitational form-factors (Eq. (6)) are known,
the model calculates all PK parameters (Eqs. (9) and (10)) using
equations given in Appendix B. These calculated PK parame-
ters are used afterwards in the timing formula (7). The details
about the DDSTG implementation and the description of model
parameters can be found in Appendix C.

In the timing formula (7), the Solar System barycentric ar-
rival time (tb) is known. However, to obtain the proper pulsar
time (T ), one has to perform the inversion of the timing formula,
i.e. get T as a function of tb: T = tb − ∆̄(tb). The original DD
model utilises an approximate analytic inversion, which some-
times is not accurate enough, for example, for the Double Pulsar
(Kramer et al. 2021). In contrast, our DDSTG model performs
accurate numerical inversion. Eq. (7) is solved iteratively for T
for each TOA. The discrepancy due to an inaccurate inversion
may influence the test for precise timing in the future or PSR-
BH systems discussed further below. Nowadays, numerical in-
version is considered a new standard and implemented in the
DDS model of TEMPO (Kramer et al. 2021) and generally used
in PINT (Luo et al. 2021).

The DDSTG model produces the best fit to the data for DEF
gravity with a selected set of parameters and a given EOS. The
output of TEMPO stays the same as for other binary models, e.g.
the calculated χ2 value and root mean square error of fit. The χ2

statistics may be applied for further tests to compare the results
for different theory parameters.

3.4. Advantages of DDSTG

The tests with pulsar data allow placing constraints on the grav-
ity theory parameters. The most simple and common way to
achieve this is to compare the measured PK parameters with the
theoretical predictions from the theory. PK parameters are ob-
tained by fitting a phenomenological model to the observational
data, e.g., DD model. A phenomenological model estimates PK
parameters and their uncertainties.

Within a particular gravity theory, each PK parameter de-
pends on the masses of the pulsar and the companion and thus
corresponds to a curve in a mass-mass space. Together with the
measurement error, each PK parameter produces a strip in the
{mp,mc} space. If there are two measured parameters, one may
find the intersection area and obtain the estimated mass values.
If the number of measured parameters is more than two, one can
perform a test of that particular gravity theory. The test is passed
if all three curves intersect in the range of errors at one point.
Generally, n measured PK parameters result in n − 2 indepen-
dent tests.

If a gravity theory has arbitrary parameters, tests can be done
for any fixed values of theory parameters. For DEF gravity, this
procedure results in an “allowed” area in {α0, β0} space that pass
gravity tests within the measurement uncertainties. This area is
bounded within the selected confidence limit by a curve, which

is usually plotted. To date, the regions allowed by different tests
have always included GR.

If the companion is optically bright, one can get information
about the system from optical observations. For example, for a
binary pulsar system with a bright WD it is possible to obtain
the mass ratio and the companion mass using high-resolution
optical spectroscopy of the companion (e.g., Antoniadis et al.
2012, 2013). In such cases, we do not have to measure three
independent PK parameters based on the radio data, but we can
combine several multi-wavelength constraints.

Another issue are possible correlations between PK and
other parameters. Observed correlations can come from the the-
oretical correlation of parameters within the binary model (e.g.
T0 ↔ ω and Pb ↔ ω̇ in a low eccentric case) and from a nonuni-
form data sampling (e.g. a nonlinear correlation in a parametri-
sation of Shapiro delay r ↔ s). Often in the past, measured PK
parameters were published without any information about ob-
served correlations. This additional information from the timing
data is lost in such cases. These days it became a common prac-
tice to publish observed correlations and even provide them ex-
plicitly. Anderson & Yunes (2019) and Anderson et al. (2019)
accounted for possible observed and theoretical correlations be-
tween PK parameters within DEF and MO gravity via computa-
tionally highly demanding Markov chain Monte Carlo (MCMC)
simulations utilising the correlation matrix from the TEMPO
output. However, this elaborate approach would not work if the
relativistic effect is not well measured or the dependence be-
tween the parameters is highly nonlinear. If the relation is non-
linear, the correlation matrix gives information only about the
linear contribution. To fully account for a nonlinear relation one
has to obtain a full probability density function in the parameter
space.

Contrary to the PK method, the DDSTG model accounts for
all even nonlinear correlations naturally and breaks them by a
direct fit of the masses. This was already one of the main ad-
vantages of the DDGR model; and is one of the reasons why the
DDSTG uses the same superior approach while extending it to
STG theories. The model accounts for all effects internally and
extracts all the information from the timing data. The informa-
tion is not lost even if the correlating parameter cannot be mea-
sured but influences other parameters. Such possible correlations
are relevant for PSR J1141−6545 (Venkatraman Krishnan 2019;
Venkatraman Krishnan et al. 2020), where there is a correlation
between the time dilation parameter (γ) of the Einstein delay
and the rate of change of the projected semi-major axis due to
the spin-orbit coupling caused by the fast rotating WD compan-
ion (ẋSO). Furthermore, the Shapiro delay cannot be measured
independently but is still essential (see e.g. Bhat et al. 2008).
We expect the DDSTG model to be of particular advantage for
PSR J1141−6545 and there will be a dedicated paper (Venkatra-
man Krishnan et al. in prep.) about applying the new model to
this system.

Compared to conventional methods, the constraints obtained
by DDSTG may, in general, become either tighter or weaker de-
pending on the particular case. However, the resulting restric-
tions are more reliable by the construction. This weakening of
the limits can happen because of unaccounted correlations.

4. Application to PSR J2222−0137

As a demonstration of the DDSTG model, we now apply
it to published timing data of a binary pulsar. We select
PSR J2222−0137 because of its unusual characteristics, which
we now list in detail.
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Fig. 1. Mass-mass diagrams for the PSR J2222−0137 system at the zone of high nonlinearity where a fast transition to a strongly scalarised pulsar
happens. PK parameters are obtained by fitting the DD model to the timing data from Guo et al. (2021b). Calculations are preformed within DEF
gravity for the MPA1 EOS allowing NSs with maximum mass in GR of MGR ' 2.46M�. Left panel corresponds to the point in the DEF parameter
space with α0 = −10−4, β0 = −4.3, which is not excluded by the test. Right panel shows the same test but for α0 = −10−4, β0 = −4.35. The
prediction of a strong dipolar contribution ṖD

b fails the test for the more negative β0 = −4.35. The axes correspond to the masses of the pulsar mp
and the companion c. The shadowed area is the allowed region at 68% CL limit for a corresponding PK parameter. The solid green line corresponds
to the observed value of ṖGW

b due to the GW emission.

4.1. About the system

We are particularly interested in recycled pulsars because of
their, in general, better timing precision essential for precise
gravity tests. The radio pulsar PSR J2222−0137 was discovered
in the Green Bank Telescope (GBT) 350 MHz drift scan pulsar
survey (Boyles et al. 2013). It is a mildly recycled pulsar which
has a spin period (P) of 32.8 ms. The pulsar is in a binary system
with Pb of 2.44576 days and x of 10.848 light-seconds. We also
expect the pulsar’s spin axis to be aligned to the orbital angular
momentum of the system. The alignment happens as a conse-
quence of the pulsar recycling process, when the pulsar accretes
matter from the companion.

PSR J2222−0137 is already known as a unique laboratory
for testing gravity theories because of its special characteristics;
for more detailed information, we refer the reader to Cognard
et al. (2017) and Guo et al. (2021b). It is one of the closest pul-
sars known, with the most precise distance measured with Very
Large Baseline Interferometry (VLBI, see Deller et al. 2013) and
excellent timing precision. The system has a highly significant
detection of the Shapiro delay as well as the measured rate of
advance of periastron (ω̇), which yield precise mass measure-
ments and ∼ 1% test of the GR predictions for the Shapiro delay
(Guo et al. 2021b).

The most important characteristic in the scope of this pa-
per is the precise measurement of Ṗb. Given the precise masses,
this can be compared with a precise prediction for the orbital
decay due to GW damping, furthermore the kinematic contribu-
tions to Ṗb (see Section 4.4) can be estimated precisely because
of the good distance measurement. The Ṗb measurement con-
strains dipolar GW emission in this system, which would arise
in DEF gravity (Damour & Esposito-Farèse 1992a) because of
the large difference in the compactness of the components (NS
and WD). Finally, the mass of the pulsar (mp = 1.831(10)M�)
(Guo et al. 2021b) lies in the range where spontaneous scalari-
sation happens, yielding strong limits on this highly non-linear
phenomenon (Shao et al. 2017; Zhao et al. 2022).

4.2. Observational data

The PSR J2222−0137 timing data used in this work are the same
as used by Guo et al. (2021b). This includes observations of
this pulsar going back to its original follow-up, which started on
2009 June 23 using the Green Bank Telescope (GBT); however
these ended on 2011 December 26. Regular observations with
the three largest European radio telescopes (3ERT) started the
following years: the Nançay Radio Telescope on 2012 October
4, The Lovell Telescope at Jodrell Bank on 2012 November 20
and the dense orbital campaigns with the Effelsberg 100-m radio
telescope on 2015 October 26. These observations continue to
the present day; however Guo et al. (2021b) only analysed the
data obtained until 2021 May 2; their processing and how the
resulting ToAs were analysed is described in detail by Cognard
et al. (2017) and Guo et al. (2021b).

Observations with the MeerKAT radio telescope array and
the Five hundred meter Aperture Spherical Telescope (FAST)
started in 2019 September 24 and 2020 October 5, but these tim-
ing data were not used by Guo et al. (2021b). However, the latter
authors did use FAST data for a detailed study of the emission
properties of PSR J2222−0137. In this work, we also extend the
existing data by simulated data assuming the same timing prop-
erties of all of these telescopes to simulate how the timing pa-
rameters for this system will improve in the near future (see Sec-
tion 5).

4.3. Mass-mass diagrams in DEF gravity

The illustrative and straightforward way to explore if a given
gravity theory agrees with binary pulsar observational data is
to calculate mass-mass diagrams. As mentioned in Section 3.4,
firstly, one measures values of PK parameters with their uncer-
tainties by fitting the phenomenological binary model DD to bi-
nary pulsar data. Then the observed PK values can be compared
with their theoretical predictions of a specific gravity theory. The
PK parameters from Eq. (20) depend on the mass of the pulsar
(mp) and the mass of the companion (mc) (see Appendix B). For
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PSR J2222−0137 we use the measured PK parameters from Guo
et al. (2021b).

To illustrate how the tests are performed, we select two
points in DEF gravity parameter space near the scalarisation re-
gion with large negative β0 and calculate mass-mass diagrams
for them. The test is sensitive to the predicted dipolar contribu-
tion to Ṗb, which rises dramatically in the region of spontaneous
scalarisation. The first point with α0 = −10−4, β0 = −4.3 does
not predict a strong enough dipolar contribution and passes the
test within a 1σ limit. The corresponding mass-mass diagram is
presented in the left panel of Figure 1. In contrast, the second
point with α0 = −10−4 and a bit smaller β0 = −4.35 is already
excluded because of a rather strong scalarisation of the pulsar
leading to significant dipolar GW damping (see the right panel
of Figure 1). The Ṗb curve nicely shows that a significant en-
hancement in the scalarisation happens for a particular interval
in the mass range defined by the EOS.

4.4. Various contributions to Ṗb

At this point we need to discuss the different contributions to the
observed Ṗobs

b and their influence on our results. The observed
orbital decay of the system consists of many terms

Ṗobs
b = ṖGW

b + ṖGal
b + ṖShk

b + ṖTid
b + ṖṀ

b + ṖĠ
b , (23)

where the first term ṖGW
b is due to GW damping and can include

dipolar and monopolar terms in DEF gravity, besides the general
quadrupolar prediction of GR. The full expressions of different
GW contributions are presented in Appendix (B.9). The next two
terms are of kinematic origin: the Shklovskii effect (ṖShk

b ) and
the Galactic contribution (ṖGal

b ). They are the result of a time-
varying Doppler factor D due to an (apparent) radial accelera-
tion between the pulsar binary and the Solar System (Damour
& Taylor 1991). The last three terms come from tidal effects,
mass loss in the system, and a possible temporal variation of the
gravitational constant G.

We are mainly interested in measuring the GW emission
term (ṖGW

b ) and comparing it with the prediction of DEF grav-
ity. The most significant additional effects in PSR J2222−0137
come from kinematic contributions ṖGal

b and ṖShk
b . These two ef-

fects arise beyond the binary system and can be combined in the
overall external contribution

Ṗext
b = ṖGal

b + ṖShk
b . (24)

The last three terms in Eq. (23) are parts of the internal contribu-
tion

Ṗint
b = ṖGW

b + ṖTid
b + ṖṀ

b + ṖĠ
b , (25)

and can be neglected for PSR J2222−0137. Thus the internal
contribution has only one significant term left, the GW term. For
the discussion about possible account of ṖĠ

b we refer the reader
to Section 8. Within the DDSTG model, the parameter XPBDOT
in TEMPO is used for treating both external and internal effects
Ṗext

b + Ṗint
b − ṖGW

b simultaneously subtracting the GW term. In our
case XPBDOT accounts for only external Shklovskii and Galac-
tic effects.

There is an extensive analysis of the external terms for
PSR J2222−0137 by Guo et al. (2021b) and their determined
values are: ṖGal

b = −0.0142(13) × 10−12 s s−1 and ṖShk
b =

0.2794(12)×10−12 s s−1. These values correspond to the external
variation of the observed orbital period of

Ṗext
b = 0.2652(18) × 10−12 s s−1 , (26)

which is consistent within 2σ with the total observed value

Ṗobs
b = 0.2509(76) × 10−12 s s−1 , (27)

leaving the internal contribution Ṗint
b = Ṗobs

b − Ṗext
b =

−0.0143(78) × 10−12 s s−1 consistent with the GR prediction for
quadrupolar GW emission ṖGR

b = −0.00809(5)×10−12 s s−1 (Guo
et al. 2021b).

According to Damour & Taylor (1991), Nice & Taylor
(1995), and Lazaridis et al. (2009), the Galactic differential ac-
celeration may be analytically approximated with the expression

ṖGal
b

Pb
= −Kz| sin b|

c
− Θ2

0

cR0

(
cos l +

β

β2 + sin2 l

)
cos b , (28)

where l is Galactic longitude, b the Galactic latitude and β =
(d/R0) cos b − cos l. The quantity Kz is the vertical compo-
nent of the Galactic acceleration, which for Galactic heights
z ≡ |d sin b| ≤ 1.5 kpc can be approximated with sufficient accu-
racy by

Kz(10−9 cm s−2) ' 2.27zkpc + 3.68(1 − e−4.31zkpc ) , (29)

where zkpc ≡ z(kpc) (Holmberg & Flynn 2004; Lazaridis et al.
2009). From Gravity Collaboration et al. (2021) we can take a
value for the Sun’s Galactocentric distance R0 = 8275±9±33 pc.
The Galactic circular velocity at the location of the Sun (Θ0) is
taken to be 240.5(41) km/s (see Guo et al. 2021b, and references
therein).

The Shklovskii contribution (Shklovskii 1970) can be calcu-
lated using

ṖShk
b =

(µ2
α + µ2

δ) d
c

Pb , (30)

where µα and µδ are the proper motion in Right Ascension (RA)
and Declination, respectively, and d is the distance to the pulsar.
The astrometric values and uncertainties for PSR J2222−0137
are taken from Guo et al. (2021b). For PSR J2222−0137, the un-
certainty in Ṗext

b is small compared to the precision of the Ṗb

measurement. The uncertainty of Ṗext
b in our case can be ne-

glected and therefore we can provide the fixed XPBDOT param-
eter in TEMPO.

4.5. Results of applying DDSTG

Our main goal is to obtain limits on DEF gravity parameters
{α0, β0} by applying the DDSTG model. TEMPO allows to cal-
culate a χ2 value for every particularly selected pair of values
(α0, β0). Therefore we obtain χ2 values for a grid of parameters
and compare them to each other. For straightforward compari-
son we subtract the minimum χ2

min over the {α0, β0} grid from
calculated χ2. The location of the minimum χ2

min is statistically
in agreement with GR (α0 = 0, β0 = 0). The shifted quantity
∆χ2 = χ2 − χ2

min has a χ2(d.o.f. = 2) distribution with 2 degrees
of freedom. Finally we construct contours of a fixed ∆χ2 value
corresponding to desired confidence levels. In this paper we ad-
here to 90% confidence level limits with ∆χ2 ' 4.6.

During each run, TEMPO fits spin parameters, astrometric
parameters, Keplerian parameters, two masses, and other param-
eters of interest, e.g. ẋ. A value of the external contribution to the
rate of the orbital period change (Ṗext

b ) is fixed and selected, so
that it fully accounts for Shklovskii effect and the Galactic Ṗb
contributions (Shklovskii 1970; Brumberg et al. 1975; Damour
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Fig. 2. ∆χ2 map in DEF gravity parameter space for PSR J2222−0137.
The test is performed by applying the DDSTG model to the timing data
of Guo et al. (2021b) and the assuming rather stiff MPA1 EOS. The red
line corresponds to 90% CL limit (∆χ2 ' 4.6), the area above the grey
line is restricted by Cassini mission. GR with α0 = 0, β0 = 0 lies beyond
the plotted domain in the blue region at the bottom at the infinity.
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Fig. 3. Map of the refinement level in DEF parameter space. The test
is the same as in Figure 2. Areas in the parameter space with a higher
refinement level have an exponentially growing resolution. The adaptive
refinement procedure resolves the contour of 90% CL limit and saves
computational time dramatically.

& Taylor 1992). The resulting ∆χ2 map in {α0, β0} space for
PSR J2222−0137 is presented in Figure 2. The limit on DEF
parameters is placed by a contour of 90% confidence level limit
of χ2(d.o.f. = 2) statistics.

Generally, the uncertainty of Ṗext
b can be important for other

systems where it is not well constrained. In this case, the DDSTG
model allows a complete description with account for all the un-
certainty due to external effects Ṗext

b . First we have to assume
a prior distribution for the Ṗext

b value. Then we have to calcu-
late the χ2 value for a 3-dimensional map with {α0, β0, Ṗext

b } as
parameters of the three axes. Finally, we marginalise the proba-
bility density for the Ṗext

b axis using Bayes’ theorem and obtain
the corrected 2-dimensional map of χ2

corr. The details of the pro-
cedure are presented in Appendix E.

Calculating an extensive grid in a 2-dimensional parameter
space with a lot of points (e.g. ∼ 500) for each axis to obtain
a finely resolved contour of the desired ∆χ2 value is too com-
putationally demanding. In this work, we use an adaptive mesh
refinement technique to trace the location of the desired contour.
We start from the sparse grid with 9 × 9 points in the {α0, β0}
space. Then, the algorithm resolves all the cells that can have the
contour line inside them. The algorithm repeats the refinement
of important cells until we obtain the desired curve fineness.

For a N × N grid, the naive approach utilises O(N2) itera-
tions, whereas adaptive mesh refinement has only O(N log2 N)
complexity. For the present work we use the refinement level
of 6, resulting in the final grid with 513 × 513 points. We need
such a large resolution in the parameter space because of the
“horn” feature at large α0 values near β0 ' −2. A simple analy-
sis shows that adaptive refinement requires to calculate 56 times
fewer points to resolve a single contour for a grid with 513×513
points. In Figure 3 we present an adaptive refinement map corre-
sponding to the search of a contour from Figure 2. A high level
of refinement is performed only along the contour of 90% CL
limit. In Appendix D one can also find the mass-mass diagram
showing what happens in the region of the “horn” in terms of PK
parameters.

4.6. Comparison with the PK method

In this section we compare the constraining power of the newly
developed approach of this paper with that of existing proce-
dures. For this reason we perform the test with the traditional
“PK method” based on the PK parameters from the timing data.
The corresponding PK parameters are measured by means of fit-
ting the DD model (Damour & Deruelle 1986) to the same tim-
ing data. Then for each specific choice of the theory parameters
{α0, β0} we fit two masses mp and mc to minimise the χ2 value.
The χ2 is calculated by comparison of the observed PK parame-
ters pobs

i and predicted values ptheory
i from the theory

χ2(pobs
i ; mp,mc) =

∑

i

(
σobs

pi

)−2 (
ptheory

i (mp,mc) − pobs
i

)2
, (31)

where σobs
pi

is the standard deviation of the i-th measured PK pa-
rameter. Finally, we calculate the grid of χ2 values over the de-
sired {α0, β0} space with the same settings as for the DDSTG ap-
proach and shift χ2 values by its minimum χ2

min. The detailed ex-
planation of this common “PK method” can be found in Damour
& Esposito-Farèse (1998). For both methods the minimum χ2

min
is in statistical agreement with the GR value χ2

GR.
Figure 4 shows the comparison between the two methods.

Each point on the plot presents a particular pair of {α0, β0}
parameters. The analysis shows that, for PSR J2222−0137,
the DDSTG model produces higher or equal values of ∆χ2

compared to the traditional “PK method”. Despite the ab-
sence of any strong correlations between the PK parameters in
PSR J2222−0137, the new approach produces slightly more re-
strictive results for the area with negative β0. For certain areas in
{α0, β0} space the difference in the shifted ∆χ2 = χ2−χ2

min values
becomes statistically significant when we calculate contours of
90% confidence level limit (∆χ2 ' 4.6).

5. Predictions for PSR J2222−0137

Our next step is to estimate what enhancement in limits we can
expect with future observations of PSR J2222−0137. For this
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Fig. 4. Comparison in the constraining power between the DDSTG
model and the method based on measured PK parameters with the DD
model. Both methods calculate χ2 values for a grid in {α0, β0} space,
each point corresponds to a unique theory. β0 values are presented by
the colour, while α0 values cover the [−10−1,−10−4] range. Red vertical
line corresponds to the 90% CL limit, all points to the left are allowed
by the test.

Table 1. Parameters of telescopes used in simulations.

Telescope /©eff (m) Bandwidth (MHz) σTOA (µs)

Effelsberg 100 200/400 2.67

Nançay 94 512 2.02

Lovell 76 400 3.66

MeerKAT 108 856 0.84

FAST 300 500 0.12

Notes. Effective diameter of telescopes, observing bandwidth, and TOA
uncertainties of PSR J2222−0137 used in the simulations. All informa-
tion is based on the L-band data from real observations, and is scaled to
15-min integration over the full bandwidth.

purpose we simulate fake TOAs for a set of radio observatories,
assuming realistic timing precision estimated from real timing
data.

5.1. Simulated data-sets for FAST, MeerKAT and 3ERT

The PSR J2222−0137 timing data used up to this point are de-
scribed in Section 4.2. We will now describe our simulations,
which show what we might be able to achieve in the near and
foreseeable future with timing from this system.

We simulate TOAs spanning 10 years from 2021 to 2030
based on the current precision of the TOAs obtained with the
3ERT telescopes, as well as the TOA precisions from ongoing
observations from MeerKAT and FAST. These simulations are
conservative since they assume that there will be no improve-
ment in the existing capabilities at these telescopes.

For TOAs from FAST, the radiometer noise reduces signifi-
cantly thanks to its large collecting area, while the jitter noise be-
comes the primary limitation of timing precision. We find, how-
ever, that increasing the integration time to 15 min can largely
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b , Kz = 10%
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Fig. 5. Comparison of different contributions in the uncertainty of Ṗb
for simulated data from 2021 to 2030. The pink, orange and blue lines
show the uncertainty of Ṗb using the simulated data from 3ERT (EFF,
NC, LT), MeerKAT and FAST, respectively. The brown line indicates
the uncertainty of ṖShk

b when using the timing parallax (πx) measured
from simulated FAST data. The green lines indicate the uncertainties of
ṖGal

b when assuming 10% (dashed) and 3% (dash-dotted) uncertainties
in the vertical component of Galactic acceleration Kz.

reduce the jitter noise and eliminate its contribution to the tim-
ing precision (as it scales with the number of averaged pulses
(Np) as σJ ∝ 1/

√
Np (Lorimer & Kramer 2004). Therefore, the

median TOA uncertainty from 15-min TOAs are adopted in the
simulation.

Table 1 lists the telescopes assumed in our simulation, with
the information on their effective diameter ( /©eff), observing
bandwidth, and TOA uncertainties at L-band. All TOA uncer-
tainties are scaled to an integration time of 15 min over the full
bandwidth. For each telescope, we assume one full orbit obser-
vation (∼60 hours) per year, and split the observations into a
monthly cadence, i.e. 5 hours per month8, to allow a good es-
timation of timing parallax (which requires a good coverage of
Earth’s orbit). This is important for the estimation of uncertain-
ties in the external Ṗb contributions shown in the next section.

The simulations are performed using the program developed
in Hu et al. (2020). First, we simulate TOAs based on the above
assumptions, and add the TOAs from Effelsberg, Nançay, and
Lovell telescopes together to be compared with MeerKAT and
FAST. For 3ERT, the simulated TOAs are combined with the ex-
isting TOAs in Guo et al. (2021b). We then adjust the TOAs to
perfectly match the timing parameters measured in Guo et al.
(2021b), and add a Gaussian white noise to each TOA based on
its σTOA. Finally, we fit for timing parameters and obtain their
uncertainties, among which Ṗb and timing parallax are of most
important here. The whole process is done with the TEMPO
DDSTG model.

5.2. Contributions to the uncertainty of Ṗb

The predicted uncertainties of Ṗb are shown in Figure 5, where
the pink, orange, and blue lines show the improvement in time

8 This may be unrealistic as telescopes may be oversubscribed. How-
ever, we found, e.g. for FAST, that with a more realistic assumption of
30 minutes per month, the uncertainty in the observed Ṗb is only 5%
worse than observing 5 hours per month after 10-yr timing.
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with the simulated data from 3ERT, MeerKAT, and FAST, re-
spectively. As discussed in Section 4.4, we also need to account
for uncertainties from external effects, Ṗext

b . They are also ex-
pected to become more precise in the future because of antici-
pated improvements in the model for the Galactic gravitational
potential, distance, and proper motion from future observations.
Correspondingly improved values for ṖGal

b and ṖShk
b may then

be estimated using Eqs. (28) and (30). For the Shklovskii effect,
we find that it is mostly limited by the uncertainty in the dis-
tance, which comes from VLBI parallax or timing parallax mea-
surement, whichever is better. With the simulated FAST data,
the measurements of timing parallax and proper motion improve
quickly with time. In particular, the uncertainty of timing paral-
lax will soon surpass the VLBI parallax and hence improve the
distance measurement. The corresponding uncertainty in ṖShk

b
will decrease with time as shown by the brown line in Figure 5.
This line is below the predicted uncertainties from observed Ṗb
most of the time, except at the very end of the simulation when
compared to ∆Ṗobs

b with FAST (blue line). In addition, future
VLBI parallax measurements will likely be improved so that
Shklovskii effect will not be a limiting factor for Ṗb.

As for the contribution from the Galactic acceleration, a typ-
ical uncertainty in its vertical component (∆Kz) is about 10%,
which contributes the most in ∆ṖGal

b , shown as the green dashed
line in Figure 5. With FAST, Ṗb will then be limited by ∆Kz
from 2024 onwards, if there is no improvement for this quantity.
In fact, we find that ∆Kz needs to be improved to . 3% (see the
green dash-dotted line) to not limit the precision of Ṗb before
2030. The uncertainties in the Galactic potential do not limit the
precision in this case. For the scope of further analysis, we as-
sume that with future observations on pulsar timing, VLBI par-
allax, and Galactic acceleration, the precision of Ṗb will not be
limited by Shklovskii and Galactic effects. For Shklovskii contri-
bution it is a reasonable assumption at least up to 2030. We also
expect our knowledge about the Galactic potential to improve in
the future especially in the proximity of the Solar System, thus
we assume the improvement of ∆Kz for the selected very close
pulsar to be 3%.

5.3. Potential future constraints on DEF gravity from
PSR J2222–0137

We apply the same techniques as described in Section 4 in-
cluding the adaptive mesh refinement for contours. The map of
∆χ2 for a combined simulated data is presented in Figure 6. By
2030, we can expect a significant improvement in the limits for
large positive β0. This region is susceptible to dipolar gravita-
tional emission. The significant improvement in Ṗb measurement
pushes the limit below the Cassini limit.

In Figure 6 we also present the comparison of constraining
power for different observatories. The tightest constraints may
be obtained for the combination of all three observatories. How-
ever, the precision of FAST is high enough to be significantly
constraining on its own.

6. Simulations for PSR-BH systems

As a further application of the new timing model, we investigate
what limits on DEF gravity we can obtain from a pulsar-black
hole (PSR-BH) system. As mentioned above, our DDSTG im-
plementation already allows to specify a BH as a companion,
even though such a system has so far not been found. We apply
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Fig. 6. ∆χ2 map for PSR J2222−0137 from simulated data (2021–2030)
combining different observatories and using MPA1 EOS. Assumed 1
orbit per year for FAST, MeerKAT, and 3ERT (EFF, NC, LT) based
on their observation precision, appending to the existing data-set (Guo
et al. 2021b). Each contour corresponds to 90% CL limits on DEF grav-
ity parameters from different data-sets, grey line depicts the limit from
the Cassini mission.

Table 2. Properties of pulsar-black hole systems taken for investigation.

Parameters Values

RA (α, J2000) 21:20:01.2

DEC (δ, J2000) 12:10:38.2

DM (pc cm−3) 67.1

Pulsar mass (mp,M�) 1.4

BH mass (mBH,M�) 10.0

Eccentricity (e) 0.6

Orbital period (Pb, d) {1/3, 1, 3}

TOA uncertainty (µs) {1, 10}

Number of TOAs 3144

the same technique used in Sections 4 and 5 to synthetic TOAs
for three different hypothetical PSR-BH systems.

6.1. Simulated FAST data-sets

To investigate possible limits on DEF gravity from PSR-BH
systems, we select presumed realistic parameters for simulating
fake TOAs. These systems are assumed to comprise a 1.4 M�
pulsar and a 10.0 M� BH in a highly eccentric orbit (e = 0.6). As
PSR-BH systems are more likely to reside in GCs (see the dis-
cussion in Section 6.4 and references therein), we assume that
our hypothetical systems are located in the GC M15 and take
the position (right ascension “RA” and declination “DEC”) and
dispersion measure (DM) of PSR B2127+11C (M15C) for our
simulations. To investigate how the limits on DEF gravity de-
pend on the orbital period, we consider three cases with orbital
periods of 3 d, 1 d, and 8 h, respectively. The selected parameters
for PSR-BH systems are presented in Table 2.
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Fig. 7. ∆χ2 map in the DEF gravity parameter space from the simulated 5-yr timing data for three different PSR-BH systems. The left panel
corresponds to 10 µs TOA uncertainty, the right panel to 1 µs. Solid lines show the 90% CL limits for PSR-BH systems with different orbital
periods: 3 d, 1 d and 8 h. The grey dashed line depicts the limit from the Cassini mission and green dash-dotted line is the current limit from
PSR J2222−0137 discussed in Sec. 4 (see Fig. 2).

We simulate data-sets with two different TOA uncertainties
(for 15-min integration time): moderate 10 µs (which is typical
for pulsars in GCs), and precise 1 µs. Taking these two, by an
order of magnitude different TOA uncertainties helps to explore
the dependence of the DEF gravity test on the TOA precision.
We effectively assume a recycled millisecond pulsar, because
they in general produce a better timing precision. We assume 6
hours of timing observation on these systems every two weeks,
each session starts at a random orbital phase. All simulations
cover a time span of 5 years and have the same number of TOAs
(nTOA = 3144).

6.2. How does a BH companion change the test of DEF
gravity?

Binary systems consisting of a pulsar and a white dwarf (PSR-
WD) are particularly interesting for constraining STG theories
due to their high asymmetry in compactness (αWD ' α0). The
theory predicts a higher rate of orbital energy loss due to dipo-
lar radiation from such asymmetric systems (Will 1993; Damour
& Esposito-Farèse 1996). However, generally, PSR-BH systems
are expected to be even more asymmetric up to a certain positive
β0, as was pointed out by Damour & Esposito-Farèse (1998). As
a result of the no-scalar-hair theorem to BHs in STG one has
(Hawking 1972; Damour & Esposito-Farèse 1992a)

αBH = 0, βBH = 0 . (32)

This approximation is only valid for stationary BHs with an
asymptotically flat spacetime and an asymptotically constant
scalar field (Berti et al. 2013), which is not true anymore in the
presence of a compact scalarised companion. However, a justi-
fication that it is still an excellent approximation can be found
in Liu et al. (2014). The pulsar orbiting in an eccentric orbit
will eventually induce a time-dependent scalar field at the lo-
cation of the BH. This scalar field results in an induced effec-
tive scalar charge (αinduced

BH ) which, however, is totally negligible
(. 8 × 10−14 αp; cf. Eq. (50) in Liu et al. 2014).

The absence of scalar charges for the BH results in simpli-
fied relations of the PK parameters. The main consequence of a
BH presence is that all PK parameters except Ṗb are identical to

Table 3. Orbital period properties of simulated PSR-BH systems.

Pb (d) ṖGR
b (10−12 s s−1) ∆Ṗb, 10 µs ∆Ṗb, 1 µs

3 −0.22220 0.08031 0.00827

1 −1.38661 0.01723 0.00185

1/3 −8.65279 0.00532 0.00055

Notes. The rate of the orbital period change in GR (ṖGR
b ) for selected

PSR-BH systems and corresponding uncertainty in Ṗb measurement for
three different orbital periods and two TOA uncertainties. The values of
Ṗb,GR and ∆Ṗb are given in 10−12 s s−1.

their GR expressions with an appropriate rescaling of the masses.
In the GW damping sector, all the multipoles, e.g., monopolar,
dipolar and quadrupolar modes, are still present. Thus PSR-BH
systems are susceptible but only to the test of GW damping via
Ṗb (Damour & Esposito-Farèse 1992a; Mirshekari & Will 2013;
Liu et al. 2014).

6.3. Results

The limits obtained from the DDSTG model for the simulated
PSR-BH systems are shown in Figure 7. For the tests presented
here we do not include any potential uncertainty in the observed
Ṗobs

b value due to the external effects. The restrictive power of the
test increases for more relativistic systems with shorter orbital
periods. To place new limits on DEF gravity with a moderate
TOA precision of 10 µs the orbital period should be a fraction of
a day.

Another way to improve the restrictive power is to increase
the precision of the TOAs (compare left and right panels of Fig-
ure 7). The obtained limits strongly depend on the accuracy of
Ṗb measurement as most of the deviations from GR come from
the predicted dipolar GW emission. Table 3 shows the predicted
GR values of Ṗb and compares them to the corresponding ∆Ṗb
uncertainties. The lower uncertainty and the higher the predicted
value the better the test.
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We expect a dramatic improvement of limits on DEF gravity
from relativistic PSR-BH system. Due to higher asymmetry, the
test is extremely sensitive to the precision of Ṗb measurement.
To answer the possibility of obtaining accurate enough TOAs,
we have to argue where we can find such a system.

6.4. Pulsar-black hole systems origin

A binary pulsar system with a stellar-mass BH may originate
from several different evolutionary scenarios. The first way is a
standard evolution of a massive binary system (Voss & Tauris
2003). It results in a PSR-BH system with a young slow spin-
period (∼ 0.1−1 s) pulsar and a wide, eccentric orbit. The second
path is a reversal mechanism (Sipior et al. 2004) taking place un-
der a specific set of circumstances. The pulsar is formed first and
later spun-up by accretion during the red-giant phase of the com-
panion (Pfahl et al. 2005), later becomes a BH. This is similar to
the origin of PSR J1141−6545, a system where a massive WD
star formed before a more massive NS (Tauris & Sennels 2000).
The reversal mechanism may give a more desirable result of a
recycled pulsar in a system with a BH, because recycled pulsars
have generally more precise timing and a more stable rotation
than the slow “normal” pulsars (Verbiest et al. 2009).

Moreover, the third possible way to form a PSR-BH system
is a multiple body encounter, happening in regions of high stel-
lar density, e.g., GCs and the Galactic Centre region (Verbiest
et al. 2009; Clausen et al. 2014). Such encounters are the rea-
son why there are ∼ 103 times more low-mass X-ray binaries
(LMXBs) per unit stellar mass in GCs than in the Galactic disk
(Clark 1975), which results in a similarly enhanced proportion
of millisecond pulsars (MSPs). In these encounters, an old, in-
active NS approaches a main sequence (MS) binary so closely
that a chaotic interaction ensues. The most likely result of such
an interaction is that the two most massive objects (in this case
the old, recycled NS and the more massive MS star) will form
a more compact binary system, with the lighter MS star com-
ponent being ejected at high velocity (see review by Phinney
1992). That MS will evolve, fill its Roche lobe, and start trans-
ferring matter onto the NS, which is spun up in the process, this
is the aforementioned LMXB stage.

If left undisturbed, many of these then evolve into binary
MSP systems. A consequence of this is that GCs not only have
many MSPs, but that the number of MSPs in each cluster appears
to be roughly proportional to its rate of stellar encounters (Γ)
(Verbunt & Hut 1987).

However, in some GCs - especially those with collapsed
cores - stellar densities are so high that only few binaries evolve
without being disturbed; these GCs have a large interaction rate
per binary (γGC) (Verbunt & Freire 2014). This means that, even
after being recycled, an MSP has a high probability of undergo-
ing further (“secondary”) exchanges.

In such exchanges, an incoming massive star interacts chaot-
ically with the components of either a LMXB or a MSP binary.
Again, the least massive object is the most likely to be ejected,
in this case that will be the low-mass star that recycled (or was
still recycling) the NS. A new binary will form, consisting of the
NS and the intruding massive star. If the latter is degenerate, then
the system will not undergo accretion and the orbital circulari-
sation that comes with it, but will keep the orbital eccentricity it
acquired after formation.

Several such obvious products of secondary exchange en-
counters have been found in GCs, invariably with a large γGC:
PSR B2127+11C, in the core-collapsed M15 GC (Prince et al.
1991; Jacoby et al. 2006), PSR J0514−4002A, in NGC 1851

(Freire et al. 2004; Ridolfi et al. 2019) (recently two addi-
tional such systems, D and E, were found in the same GC,
see Ridolfi et al. 2022), PSR J1807−2500B, in the core-
collapsed NGC 6544 (Lynch et al. 2012), PSR J835−3259A,
in the core-collapsed NGC 6652 (DeCesar et al. 2015) and
PSR J1823−3021G, in the core-collapsed NGC 6624 (Ridolfi
et al. 2021). These discoveries suggest (but by no means assure
us) of the possibility that similar secondary exchange encounters
might produce MSP binaries with even more massive compan-
ions, such as BHs. As for the massive MSP binaries above, such
MSP-BH systems would be preferentially produced in the GCs
with large γGC; this is one of the reasons why they are targeted
by the MeerKAT TRAPUM survey (Ridolfi et al. 2021).

These secondary exchange products are that their orbital pe-
riods vary between 8 h in the case of B2127+11C and 18.8 d in
the case of PSR J0514−4002A, their orbital eccentricities are be-
tween 0.38 and 0.90. Thus the simulated PSR-PH systems listed
in Table 2 have realistic orbital periods and eccentricities.

6.5. Influence of a globular cluster origin

For the pulsars observed in GCs, the derivatives of the spin pe-
riod, P, and in the case of binary pulsars, the derivative of the
orbital period, Ṗb are contaminated (and in most cases domi-
nated) by the line-of-sight component of the acceleration of the
pulsar (or binary) in the gravitational potential of the GC (aGC);
this enters Eq. (23) as an additional term that is similar to ṖGal

b :

ṖGC
b =

aGC

c
Pb . (33)

For pulsars in GCs, the only radiative test done to date was
with PSR B2127+11C (Jacoby et al. 2006). The orbital decay
observed in this system is −3.95 ± 0.13 × 10−12 s s−1, which is
within ∼ 3% of the predicted value. That test, however, is limited
by the fact that the maximum value for |aGC/c| ∼ 6 × 10−18 s−1

(Phinney 1993), i.e., in this case the maximum value for |ṖGC
b | ∼

0.17 × 10−12 s s−1. This is of the same order as their measure-
ment precision, which means that this radiative test cannot be
improved, unless one could measure the acceleration of the
pulsar independently. The situation would be much worse if
PSR B2127+11C were closer to the cluster centre, where ac-
celerations are much larger. For instance, PSR B2127+11A, a
couple of arcseconds from the centre, has P = 0.1106 s and
Ṗ = −2.107 × 10−17; this implies that |aGC/c| > 1.9 × 10−16 s−1

and thus |ṖGC
b | > 5.5 × 10−12 s s−1, a value larger than the orbital

decay predicted by GR.
For the three PSR-BH systems in Table 3, the situation would

be similar. If they were at the locations of PSR B2127+11C,
their values of Pb would imply that the maximum values for ṖGC

b
would be 9, 3 and 1 times larger respectively, i.e., 1.53, 0.51
and 0.17 × 10−12 s s−1. This corresponds to, respectively, ∼ 6.9,
∼ 0.37 and 0.02 times the values of ṖGR

b in Table 3. That means
that, for the latter system, a ∼ 50-σ test of the radiative prop-
erties of a PSR-BH system would be possible. These numbers
illustrate the immense advantage of an increasingly shorter Pb,
either for GW tests in GCs or in the Galaxy: on one hand, the
ṖGR

b increases with P−5/3
b , the “polluting” part ṖGC

b decreases as
Pb. Thus, the significance of a particular GW test grows, every-
thing else being identical, with P−8/3

b .
However, if the 8-h PSR-BH system is placed at the location

of PSR B2127+11A, the test would lose its significance almost
entirely. Fortunately, even in this case, we can get a firm upper
limit for |ṖGR

b |; the reason is that we also measure the spin period
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derivative. That is also affected by the acceleration in the cluster
and by other terms, such as the Shklovskii effect. Adding the
equations for Ṗ and Ṗb, we obtain:

ṖGR
b = Ṗobs

b − Pb

(
Ṗ
P

)obs

+
1

2τc
Pb . (34)

Note that all the terms on the right can be measured precisely,
except for the characteristic age of the pulsar, τc, which cannot
be measured independently. Therefore, the last term then quan-
tifies the uncertainty of the test, which is, again, proportional to
Pb, which implies that the significance of the test is again pro-
portional to P−8/3

b .
However, that last term is necessarily positive. If we assume

the pulsar is extremely old, then this term will be very small and
we obtain, from the other two terms, a hard lower limit for ṖGR

b .
Since the latter is negative, this represents a hard upper limit of
its magnitude. This means that such a test could still, in princi-
ple, falsify GR. An upper limit on the last term can be obtained
from the lowest likely value for τc; for most MSPs τc < 1 Gyr.
This means that, for the 8-h PSR-BH system, this unknown term
would be at most 0.46 × 10−12 s s−1, implying a ∼ 20-σ test of
GR. Thus, this test will be the more significant the larger τc is
compared to the orbital decay timescale for the binary.

Despite such possible mitigation, it is clear that the location
in a GC always degrades the quality of radiative tests. For the
8-h PSR-BH system discussed above, significances of 50 and 20
σ in the measurement of Ṗb represent a significant degradation
relative to the tests listed in Table 3, where for a 8-h PSR-BH
system timed with 10µs the significance of the Ṗb measurement
is larger than 1600.

7. DDSTG and other gravity theories

The approach developed in this work is not restricted to DEF
gravity. It can straightforwardly be extended to investigate a
larger set of alternative gravity theories. Broadly speaking, every
theory that maps to the DD phenomenological model (Damour
& Deruelle 1986; Damour & Taylor 1992) can be put into the
DDSTG framework with a new implementation of appropriate
PK formulae. The DD model is a quasi-Keplerian solution in the
first post-Newtonian approximation to the dynamics of a 2-body
system within the modified Einstein-Infeld-Hoffmann (mEIH)
framework (Damour & Taylor 1992; Will 1993, 2018b). The
mEIH formalism covers a large set of fully-conservative grav-
ity theories without the “Whitehead term” in the post-Newtonian
limit. Later it was extended by Will (2018a) from fully conser-
vative to semi-conservative theories of gravity. However, this ex-
tension requires additional terms in mEIH Lagrangian, which are
not accounted for in the DD model.

The DDSTG model can be directly applied to a certain class
of gravity theories without a modification of the PK parameter
equations. For example, DEF gravity is a specific case of a mass-
less mono-scalar tensor gravity theory with a particular expres-
sion of the conformal coupling A(ϕ). DDSTG covers STG theo-
ries with any conformal coupling function depending on two ar-
bitrary parameters {α0, β0} and a single massless scalar field. To
work, the model only requires pre-calculated gravitational form-
factors for the new coupling function. In case of a more complex
coupling function depending on a higher number of parameters
the TEMPO code needs to be adapted.

Recently, Mendes and Ortiz (MO, Mendes & Ortiz 2016)
introduced an extension of DEF gravity. MO gravity is an exam-
ple of a theory that can be easily incorporated into the DDSTG

model. Its difference from DEF gravity is in the form of the con-
formal coupling

A(ϕ) =
[
cosh

(√
3β0ϕ

)]1/(3β0)
, (35)

where β0 is a free parameter. The second parameter α0 is hid-
den in MO gravity to the scalar field at infinity. MO theory re-
ceived attention in recent years and was originally introduced
as an analytical approximation to a more fundamental theory,
where the action includes quadratic terms of the scalar field cou-
pled to curvature. The developed framework can therefore be
straightforwardly extended to MO gravity without the change of
the TEMPO implementation.

8. DDSTG and a time-varying gravitational constant

Another interesting extension of the DDSTG model—planned
for a future release—is the inclusion of the effects of a tempo-
ral variation of the gravitational constant (G). A time-evolving
asymptotic scalar field (ϕ0) of a gravitating system, generally,
leads to a temporal variation of the local gravitational constant.
In DEF gravity, such a change of the Newtonian gravitational
constant as measured in the Solar System reads

ĠCav

GCav
= 2

1 +
β0

1 + α2
0

α0ϕ̇0 (36)

(see e.g. Uzan 2011). Generally, one expects a temporal change
in ϕ0 to arise from the expansion of the universe and ϕ̇0 to re-
sult from a cosmological model based on DEF gravity (see e.g.
Damour & Nordtvedt 1993). However, as part of a more agnostic
approach, ϕ̇0 can be treated as an additional, independent timing
parameter.

The main impact on the orbital motion of a binary sys-
tem that arises from a time-varying gravitational constant is a
secular change in the orbital period (Damour et al. 1988). For
two weakly self-gravitating masses, one simply has ṖĠ

b /Pb =

−2Ġ/G. However, for binary pulsar systems, this simple ex-
pression needs to be extended by body-dependent contributions
(Nordtvedt 1990, 1993). One then has

ṖĠ
b

Pb
= −2

(
ĠCav

GCav

)
FAB , (37)

where the factor FAB accounts for all the corrections related to
the strong gravitational fields of the pulsar and its companion,
if the latter is also a NS. More specifically, following Nordtvedt
(1993), FAB accounts for a change in the body-dependent part
in the effective gravitational constant GAB as well as a change in
the masses resulting directly from ϕ̇0.9

It has been demonstrated by Wex (2014) that, depending on
the parameter space, pulsar mass and EOS, strong-field effects
can considerably enhance the effect of a time-varying gravita-
tional constant, i.e. FAB � 1. Consequently, accounting for ṖĠ

b
in binary pulsar tests not only provides an independent test for
a varying gravitational constant but also probes strong-field as-
pects related to a time-varying gravitational constant.

9 Detailed expressions for FAB will be given in a future publication.
See also Wex (2014).
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9. Discussion and conclusions

In this work, we developed a new, improved approach for testing
STG. We examined a specific class of STG theories known as
“DEF gravity”. This approach is based on a new timing model,
called the DDSTG model, which is an extension of the DD
model to work within DEF gravity. Analysis of pulsar timing
data with this model overcomes some of the problems of conven-
tional methods, which we have discussed in detail. The DDSTG
timing model uses theoretical predictions for PK parameters in
DEF gravity and therefore uses a minimal set of binary parame-
ters. For that reason, it accounts for all the possible correlations
between these parameters. All the information from the observa-
tional data is used to provide the most reliable tests of an alterna-
tive theory, directly without intermediate steps with phenomeno-
logical parameters of the DD model.

As a demonstration of the DDSTG model, we applied it
to the most recently published timing data of the binary pul-
sar PSR J2222−0137 described and used by Guo et al. (2021b).
This system is of great importance for testing alternative grav-
ity theories because it is very close to us (resulting in the most
precise VLBI distance for any pulsar), has precise timing and
shows a set of well measured relativistic effects. The system has
a high asymmetry in the compactness between the components:
it comprises a massive NS (mNS ∼ 1.82M�) and a massive WD
(mWD ∼ 1.31M�). This high asymmetry results, for some areas
in the DEF gravity parameter space, in the prediction of a very
strong dipolar GW contribution to the rate of orbital decay (ṖD

b ).
The non-detection of dipolar GWs in this system is used to con-
strain the DEF gravity parameter space. Moreover the mass of
the pulsar lies in the “scalarisation gap” (mNS & 1.5M�); this
means that strict limits on the occurrence of spontaneous scalar-
isation, a highly non-linear phenomenon, can be placed (Zhao
et al. 2022).

The results from the new method confirmed and improved
the existing limits on DEF gravity parameters from this system.
The DDSTG model appeared to be more constraining in the area
near spontaneous scalarisation (β0 . −4.0) when compared to
the commonly used PK method. It suggests that the combina-
tion of the DDSTG model with an EOS agnostic approach can
improve limits placed on the spontaneous scalarisation.

Moreover, we applied the DDSTG timing model to the sim-
ulated TOA for PSR J2222−0137 covering the period of 2021–
2030 to see what improvement we can expect from that system in
the future. The mock timing data-sets were simulated for several
large observatories FAST, 3ERT (EFF+NC+LT), MeerKAT with
TOAs uncertainties based on the real timing data. We discussed
the future importance of kinematic contributions (Shklovskii and
Galactic) to Ṗb, and consequently to the precision of these tests.
The main limiting factor to Ṗb comes from the uncertainty in the
Galactic contribution (ṖGal

b ). In particular, the limit comes from
the current uncertainty in the vertical component of the Galac-
tic acceleration (∆Kz). Our analysis predicts that this limitation
will disappear if the current uncertainty of ∆Kz ∼ 10% can be
improved to ∆Kz . 3%, which is likely to be the case in the fu-
ture with improvement of models for the gravitational potential
of our Galaxy. Future observations are expected to significantly
improve the limits on DEF gravity, especially with the use of
FAST data.

One of the most promising systems for testing gravity, which
we hope to have in the near future, are binary pulsar-black hole
systems (PSR-BH). We simulated artificial timing data-sets for
three eccentric PSR-BH systems with reasonable orbital param-
eters for three different orbital periods. The results of applying

the DDSTG model to the simulated PSR-BH data strongly de-
pended on the precision of the Ṗb measurement. We briefly dis-
cussed possible evolution scenarios leading to the formation of
the PSR-BH system, such as GC origin and reversal mechanism.
Depending on the place of origin, there might be issues in obtain-
ing a precise intrinsic Ṗb, i.e. accounting for the contamination
of Ṗb from a kinematic contribution due to the acceleration of
the system in the gravitational field of the GC. Depending on
the timing precision and orbital properties, PSR-BH can place
stringent limits on DEF gravity.

In the future, the DDSTG model can be applied to a
range of different binary pulsar systems to improve the lim-
its on DEF gravity. We expect especially interesting results
from PSR J1141−6545 where DDSTG is expected to be su-
perior to standard approaches (Venkatraman Krishnan 2019).
PSR J1141−6545 is an asymmetric PSR-WD system in 4.7 hours
orbit with significant spin-orbit coupling due to the fast rotating
WD. Due to the spin-orbit coupling the system shows a change
of the projected semi-major axis ẋSO which has a strong corre-
lation with the time dilation parameter γ. The latter parameter
is caused by the precession which cannot be calculated, because
we do not know the exact spin properties of the WD. Moreover,
PSR J1141−6545 shows a weak Shapiro delay in the timing data
which the DDSTG model can fully exploit resulting in a sig-
nificant improvement of the test. The high asymmetry in the
compactness between the components (mp ∼ 1.26M� NS and
mc ∼ 1.02M� WD) makes this system a perfect tool for radiative
tests of gravity. We expect the DDSTG model to be of particular
advantage because it accounts for both possible correlations and
weak relativistic effects (Venkatraman Krishnan et al., in prep.).

Another perspective system to perform DEF gravity tests
with the DDSTG model is the Double Pulsar PSR 0737−3039A
which shows the largest number of PK parameters in the tim-
ing data (Kramer et al. 2021). The system consists of two ra-
dio pulsars with masses of mp ' 1.34 M� and mc ' 1.25 M�.
Properties of NSs in DEF gravity (gravitational form-factors)
strongly depend on the choice of the EOS, which in turn af-
fects the test. Thus to put reliable limits on DEF gravity from
PSR 0737−3039A independent of a choice of EOS, one must
perform an EOS-agnostic analysis. EOS-agnostic test means that
it is performed with a set of EOSs which are diverse in their prop-
erties (see Voisin et al. 2020, who used such an EOS-agnostic ap-
proach to constrain DEF gravity with a pulsar in a stellar triple
system). With this paper we included a set of 11 EOSs varying
from soft to stiff (see Appendix A.2) which can be used for such
agnostic tests in the future.
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Appendix A: Details on calculating grids of NSs

We select slowly rotating axisymmetric approximation of NSs
following Damour & Esposito-Farèse (1996). The internal struc-
ture of such a NS in DEF gravity is described by a set of 8 ordi-
nary differential equations depending on the radial variable (r).
To calculate a single NS the program solves the system of ODEs
by applying appropriate boundary conditions at the centre of a
NS and spatial infinity. We use a shooting technique to match ini-
tial internal parameters with the external structure of the space-
time. The differential equations are solved by means of the Julia
library DifferentialEquations.jl10 (Rackauckas & Nie 2017).

A particular solution is determined by the choice of two the-
ory parameters {α0, β0}, the EOS and the central pressure pc. The
central value of the scalar field ϕc is determined by the shooting
procedure to correspond to the scalar field value at spatial infinity
ϕ0 = ϕ(r = ∞), which in our case is, without loss of generality,
set to zero. Thus ϕc is not an arbitrary parameter. The central
density (pc) uniquely corresponds to the gravitational mass mA
for most masses of interest and fixed theory parameters {α0, β0}.
In general, this is not the case — there may be several stable so-
lutions for a fixed mass in the area of strong scalarisation. How-
ever, multiple solutions happen for large NS masses and very
negative β0 < −4.5 which is already ruled out and thus of no
interest.

In the recent papers devoted to the calculation of NSs in
scalar-tensor gravity (Anderson & Yunes 2019), the gravitational
form-factors from Eq. (6) (they are also often called “scalar
charges”) are calculated using numerical differentiation. Numer-
ical differentiation is performed on a grid of dependent variables.
The precision of this approach is determined by two factors: a)
the error in the calculation of the desired quantity and b) the
error due to the numerical differentiation formula. The first er-
ror depends on the precision of the numerical integration of the
structure equations. The second error strongly depends on the
fineness of the grid on which the derivatives are calculated. If
the grid is too sparse the formula such as the central difference
formula f ′(x) ' [

f (x + δx) − f (x − δx)
]
/ [2δx] is not accurate

enough. On the other hand, if the grid is too fine, the error arises
because of the subtraction of two close numbers in the computer
memory. The total relative errors for calculating gravitational
form-factors usually lie in the range of δrel ∼ 100 − 10−5. In
our work, we propose a more precise way to calculate all the
quantities.

Appendix A.1: Automatic Differentiation

In our program, we utilise the Automatic Differentiation (Au-
toDiff) technique. It is a special technique to calculate deriva-
tives, when the algorithm knows the exact expressions for deriva-
tives of all elementary functions and uses the chain rule to unfold
complex derivatives. A review on the AutoDiff can be found, for
instance, in Margossian (2018). We use an implementation of the
AutoDiff technique in Julia from ForwardDiff.jl library, which is
a part of a broad JuliaDiff framework (Revels et al. 2016). Au-
toDiff allows calculating complex derivatives of quantities with
respect to their arguments with the machine-precision (for Dou-
ble Float numbers the corresponding precision is δ ∼ 2×10−16 on
64-bit systems). It is done by internal implementation of sophis-
ticated arithmetic on a special type of numbers (dual numbers) in
the programming language. A derivative is calculated exactly in
the desired point and does not require points in the vicinity. The

10 https://diffeq.sciml.ai

precision of the method is constant and thus does not depend
anymore on the fineness of the grid.

Automatic differentiation enables us to simultaneously cal-
culate both the function F = F(x, y) and its derivatives with
respect to arguments ∂F

∂x ,
∂F
∂y . It takes twice as long as calculat-

ing a mere function itself and both are done with the machine-
precision . To calculate a complex derivative, then the arguments
are also functions B = B(x, y), C = C(x, y) we apply the chain
rule:

∂A(B,C)
∂B

∣∣∣∣
C

=

(
∂A
∂x

∂C
∂y
− ∂A
∂y

∂C
∂x

)
/

(
∂B
∂x

∂C
∂y
− ∂B
∂y

∂C
∂x

)
. (A.1)

In our program, we calculate the gravitational form-factors
from Eq. (6), which are complex derivatives of quantities ( e.g. a
mass (mA) and moment of inertia (IA) of a NS) taken with respect
to external parameters (the value of the scalar field at spatial in-
finity (ϕ0). The properties of NSs are obtained through numerical
integration of the structure equations and depend on the central
scalar field (ϕc) and central pressure (pc). For example for αA
using Eq. (A.1) we simply obtain:

αA =
∂ ln mA

∂ϕ0

∣∣∣∣
m̄A

=

(
∂ ln mA

∂ϕc

∂m̄A

∂pc
− ∂ ln mA

∂pc

∂m̄A

∂ϕc

)
/

(
∂ϕ0

∂ϕc

∂m̄A

∂pc
− ∂ϕ0

∂pc

∂m̄A

∂ϕc

)
, (A.2)

where every simple derivative is calculated with the machine-
precision due to the AutoDiff.

As a result, the total precision of calculated gravitational
form-factors is determined only by the accuracy of the differen-
tial equation solver and may be easily enhanced. We use the Julia
library DifferentialEquations.jl which allows using AutoDiff
on the results of the numerical integration. The numerical inte-
gration can take advantage of the AutoDiff itself because the Ja-
cobian of the system can be calculated more accurately and used
to integrate the ODE system. We obtain a higher precision if we
select a finer adaptive step in the radial variable r. For our grids
we set the integrator to the relative error of δInt,rel ∼ 10−11. The
obtained relative precision for gravitational form-factors typi-
cally lies in δrel ∼ 10−7 − 10−13 range, which is more precise
than previous calculations.

Appendix A.2: pre-calculated grids of neutron stars

To place limits on the DEF gravity parameters {α0, β0} we need
to know the gravitational form factors {αA, βA, kA} in Eq. (6) as
functions of the mass mA. To approximate these relations we
have to calculate grids of NSs. We calculate grids for several
EOSs, including MPA1 used in this paper. Each grid contains
4 calculated values: masses mA and gravitational form factors
{αA, βA, kA} for a range of values of {α0, β0, pc} with number of
points in each axis respectively {101, 351, 121}. The grid proper-
ties are shown in the Table A.1. α0 and pc are selected to be loga-
rithmically distributed. Whereas, the parameter β0 is piece-wise
linearly distributed. The grid for pc is more dense near the com-
mon masses of NSs 1.4−2.0M�. We also include more points in
the region of spontaneous scalarisation with β0 ∈ [−5.0,−4.0].
The resulting calculated gravitational form-factors are saved in
files which then can be used in DEF gravity tests, the DDSTG
model in particular.

With the developed DDSTG model we supply grids for 11
different EOSs ranging from soft to stiff. Each EOS satisfies the
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Table A.1. Properties of the pre-calculated grids of NSs.

Axis Type # of points Range

α0 Log 101 [−10−1,−10−5]

β0 Lin 21 [−6.0,−5.0]

51 [−5.0,−4.0]

281 [−4.0,+10.0]

pc (dyn/cm2) Log 21 [1034, 5 × 1034]

81 [5 × 1034, 5 × 1035]

21 [5 × 1035, 1036]

Notes. The grids are 3-dimensional and depend on {α0, β0, pc}. Each
axis of a grid can be divided into several intervals and be either linearly
or logarithmically separated.

requirement on a maximal mass in GR: MGR
NS,max > 2M� (Anto-

niadis et al. 2013; Fonseca et al. 2021). Table B.1 presents the se-
lected EOSs with their maximum masses in GR. In our work we
use the piece-wise polytropic approximation described in Read
et al. (2009).

Appendix B: PK parameters in DEF gravity

In this Appendix we present the expressions for the PK param-
eters in DEF gravity as functions of the masses of pulsar (mp)
and companion (mc), and the three Keplerian timing parameters
Pb, e, and x. The formulae for the PK parameters {γ, k, r, s} can
be found in Damour & Esposito-Farèse (1992a) and Damour
& Esposito-Farèse (1996). For the PK parameters {δr, δθ, A, B}
there are only more general theory-independent presentations in
Damour & Taylor (1992), from which the expressions in DEF
gravity, however, can be straightforwardly derived. The total set
of PK parameters in DEF gravity reads:

γ =
e
n

Xcβ
2
O

1 + αpαc

[
Xc(1 + αpαc) + 1 + kpαc

]
, (B.1)

k =
3β2

O

1 − e2


1 − 1

3αpαc

1 + αpαc
− Xpβcα

2
p + Xcβpα

2
c

6(1 + αpαc)2

 , (B.2)

r =
G∗mc

c3 , (B.3)

s =
nx

XcβO

[
1 +

1
3

(
9 − αpαc

1 + αpαc
− XpXc

)
β2

O

]
, (B.4)

δr =
β2

O

m2
tot(1 + αpαc)

[
(3 − αpαc)m2

p

+(6 − αpαc − kpαc)mpmc + (2 − αpαc − kpαc)m2
c

]
, (B.5)

δθ =
β2

O

m2
tot(1 + αpαc)

[(
7
2
− 1

2
αpαc

)
m2

p

+(6 − αpαc − kpαc)mpmc + (2 − αpαc − kpαc)m2
c

]
, (B.6)

A = − βOXc

2πνp(1 − e2)1/2

sin η
sin λ

, (B.7)

B = − βOXc

2πνp(1 − e2)1/2

cos i cos η
sin λ

, (B.8)

Ṗb = Ṗϕ,mon
b + Ṗϕ,dip

b + Ṗϕ,quad
b + Ṗg,quad

b , (B.9)

Table B.1. EOSs selected for the calculation of grids of NSs.

Name Mmax (M�) R1.4 (km) Name Mmax (M�) R1.4 (km)

SLy 2.049 11.736 APR3 2.390 12.094

APR4 2.213 11.428 WFF1 2.133 10.414

WFF2 2.198 11.159 ENG 2.240 12.059

MPA1 2.461 12.473 MS1 2.767 14.918

MS1b 2.776 14.583 H4 2.032 13.759

ALF2 2.086 13.188

Notes. All EOSs have the maximum mass of a NS in GR MGR
NS,max >

2M� and taken in piece-wise polytropic approximation from Read et al.
(2009). R1.4 is the radius of a 1.4M� NS.

where we used variables βO =
(
GpcMn/c3

)1/3
, Gpc = G∗(1 +

αpαc), mtot = mp + mc, Xp = mp/mtot, and Xc = mc/mtot =
1 − Xp. Moreover, n = 2π/Pb is the orbital circular frequency
and νp = 1/P is the pulsar’s rotational frequency. The angle i is
the inclination of the orbital plane with respect to the plane of
sky, while angles λ and η are the polar angles of the spin axis. In
the special case of alignment between the orbital and spin axes
λ = i and η = −π/2 forcing B = 0.

The expression for Ṗb is composed from 4 different contri-
butions (Damour & Esposito-Farèse 1992a)

Ṗϕ,mon
b = − 3πXpXc

1 + αpαc
β5

O
e2(1 + e2/4)
(1 − e2)7/2

×
[
αp + αc +

2
3

(αpXc + αcXp) +
βpαc + βcαp

1 + αpαc

]2

, (B.10)

Ṗϕ,dip
b = − 2πXpXc

1 + αpαc
β3

O
1 + e2/2

(1 − e2)5/2 (αp − αc)2

− 4πXpXc

1 + αpαc
β5

O
1

(1 − e2)7/2

[
8
5

(
1 +

31e2

8
+

19e4

32

)
(αp − αc)

× (αpXp + αcXc)(Xp − Xc) +

(
1 + 3e2 +

3e4

8

)

× (αp − αc)(βcαpXp − βpαcXc)
1 + αpαc

]
, (B.11)

Ṗϕ,quad
b = − 32πXpXc

5(1 + αpαc)
β5

O
1 + 73e2/24 + 37e4/96

(1 − e2)7/2

× (αpXc + αcXp)2 , (B.12)

Ṗg,quad
b = − 192πXpXc

5(1 + αpαc)
β5

O
1 + 73e2/24 + 37e4/96

(1 − e2)7/2 , (B.13)

where scalar field ϕ gives rise to a monopolar Ṗϕ,mon
b , a dipolar

Ṗϕ,dip
b and a quadrupolar Ṗϕ,quad

b contribution. Another quadrupo-
lar term Ṗg,quad

b is associated with metric g∗µν. Following Damour
& Esposito-Farèse (1992a), we have ignored a term of order
(αp − αc)2β5

O in Eq. (B.11).

Appendix C: DDSTG implementation into TEMPO

As part of this work, we implement a new timing model DDSTG
into an independent version of the standard timing software
TEMPO7. The new model is based on the DD (Damour & Deru-
elle 1986) and DDGR (Taylor & Weisberg 1989) models but
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Table C.1. Parameters used in DDSTG timing model in TEMPO.

Name Description

ALPHA0 α0 value ∈ [−10−1,−10−5] ∪ {0}
BETA0 β0 value ∈ [−6,+10]

EOS EOS ID, e.g. MPA1

COMP_TYPE selected from {WD, NS, BH}

modified to work within STG theories. In addition to the parame-
ters present in the DDGR model, the DDSTG model utilises four
additional parameters, added to the corresponding parameter in-
put file. New parameters and their possible values are presented
in Table C.1.

The first two parameters “ALPHA0” and “BETA0” corre-
spond to the values of two arbitrary DEF gravity parameters
{α0, β0}. They can be selected to be zero to recover GR. Oth-
erwise, the applicable range of values is determined by the range
of the supplementary data files, containing grids of the calculated
gravitational form-factors and masses. The grids are calculated
as part of this work and supplied with the model. The supplied
grids cover α0 ∈ [−10−1,−10−5] and β0 ∈ [−6,+10] in the DEF
gravity parameter space.

The third parameter “EOS” selects the equation of state to
be used to perform the test. In the present work, we generally
select the rather stiff EOS MPA1. TEMPO reads the supplied
pre-calculated grids of the gravitational form factors and masses
corresponding to the selected EOS (see also Table B.1).

The last parameter “COMP_TYPE” is used to select the type
of the companion to the pulsar, among a white dwarf (“WD”), a
neutron star (“NS”) and a black hole (“BH”). These three com-
pact objects have different properties in terms of gravitational
form factors. NSs in DEF gravity can be moderately |αNS| . |α0|
or strongly |αNS| ∼ O(1) scalarised depending on the mass mA
and the chosen DEF parameters. WDs are not enough com-
pact to significantly deviate from the weak-field approximation
|αWD| . |α0|. Thus for WDs we apply αWD = α0, βWD = β0.11 In
contrast, BHs in DEF gravity fulfil a no-hair theorem and they
are completely descalarised αBH = 0 and βBH = 0. The choice
of the companion type plays a significant role for the calculated
values of PK parameters.

During initialisation, TEMPO reads the parameter file and
the file with the TOAs. When the {α0, β0} values and the EOS
are provided, it reads the supplementary grids for the selected
EOS. The supplied grids are three-dimensional and consist of
the masses of NSs mA and their gravitational form factors
{αA, βA, kA}. Two axes are {α0, β0} and the third axis is a fixed
range of central pressure (pc) of a NS.

Bilinear interpolation is performed in the {α0, β0} parameter
space for the selected parameters. The result of the interpolation
are four single-dimensional arrays for masses and gravitational
form factors depending on a range of central pressures. Interpo-
lated one-dimensional arrays are saved in the computer memory
and used further without being changed. From this point gravita-
tional form factors are ready to be interpolated in the mass range
during the fitting procedure.

TEMPO with selected DDSTG model fits two masses in ad-
dition to spin, astrometric and Keplerian parameters. The masses

11 Since this is the case for any weakly self-gravitating body, the setting
“WD” can also be selected for any non-degenerate companion such as
a main-sequence star.

are iteratively changed during the fitting procedure. Only when
the masses change TEMPO interpolates the gravitational form
factors from the pre-calculated one-dimensional grids. Gravita-
tional form factors are calculated for both the pulsar and the
companion and are kept constant for all TOAs within a single
iteration.

TEMPO tries to find the companion mass (mc) and the total
mass (mtot = mp + mc) corresponding to the best fit. During the
fitting, it utilises the derivatives of the timing formula (7) with
respect to these two masses. We calculate derivatives separately
for each delay in Equations (11 – 14). We used the approximated
expressions for the derivatives of the delays with respect to PK
parameters provided by Damour & Deruelle (1986). After ap-
plying the chain rule for our derivatives we come to expressions
depending on the derivatives of PK parameters with respect to
the two masses. The model calculates the derivatives of the the
PK parameters of DEF gravity (Eqs. B.1 – B.9) with respect to
the two masses of the timing model,

∂pPK

i (mc,mtot)
∂mc


∣∣∣∣∣∣
mtot

,


∂pPK

i (mc,mtot)
∂mtot


∣∣∣∣∣∣
mc

, (C.1)

which are certainly different to those in GR. Moreover, for
proper convergence of the model in highly nonlinear areas
the additional corrections to the derivatives related to varia-
tion of gravitational form-factors with respect to masses (i.e.
∂αA/∂mA, ∂βA/∂mA) are required.

The formulae in Eq. (C.1) are large but can be obtained
by straightforward differentiation of the PK formulae in Ap-
pendix B. The expressions are incorporated in the model and
depend on gravitational form factors, masses and Keplerian pa-
rameters which are known on each iteration. Once the deriva-
tives of PK parameters are calculated, the model calculates the
derivatives of the timing delays with respect to the two masses
and proceeds the iteration. The outcome of the DDSTG model in
TEMPO is the same as for the DDGR model. The most impor-
tant result is the χ2 value, which is used further to perform tests
of gravity.

The DDSTG timing model converges well if the eccentric-
ity of the orbit is not too small and TEMPO is supplied with
a reasonable initial guess of the orbital parameters. The model
can run into difficulties in the convergence for solutions if those
parameters are far away from GR or if the orbit is almost circu-
lar. The problem can happen if TEMPO changes masses signifi-
cantly during the iteration and reaches a point where the Shapiro
shape parameter calculated with new masses using Eq. (B.4) be-
comes greater than one, i.e. s > 1. In this case the expression of
the Shapiro delay from Eq. (13) does not have a physical mean-
ing and TEMPO breaks with an error for TOAs near conjunc-
tion, as the argument of the logarithm becomes negative. The
convergence can be enforced by applying the special parameter
GAIN, which however comes at the cost of increased computa-
tional time. A GAIN parameter of less than one forces TEMPO
to use smaller steps while iterating. Another way which ensures
the convergence is to supply TEMPO with a good initial guess
for the masses in DEF gravity. The rough estimate of the masses
in DEF gravity can be obtained from the traditional PK method.
The combination of these two methods help to converge systems
with small eccentricity and Shapiro shape parameter near one
(s ' 1) even in the strongly nonlinear part of the {α0, β0} plane.

Appendix D: Mass-mass diagram near the horn

Many binary pulsar tests are not sensitive at high |α0| values
and β0 ∼ −2. In this region near the “horn”, αNS ≈ α0 and the
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Fig. D.1. Mass-mass diagram in DEF gravity corresponding to a point
near the “horn” with α0 = −10−1, β0 = −1.9. The performed test is
the same as for Figure 1. The shadowed area is the allowed region at
68 % CL limit for a corresponding PK parameter. The solid green line
corresponds to the observed value of Ṗint

b .

overall Ṗb is close to the GR value, as the dipolar contribution
is greatly suppressed. As a consequence, the test is passed. In
Figure D.1 we show a mass-mass diagram in DEF gravity with
α0 = −0.1, β0 = −1.9. This point in the DEF gravity parameter
space passes the test with timing data but is excluded by Cassini
experiment (|α0| . 3.4 × 10−3). The picture is dramatically dif-
ferent from what we see in the zone of scalarisation in Figure 1.

Appendix E: Proper account of Ṗext
b

uncertainty

If the observed Ṗb is measured more precisely than the external
contribution Ṗext

b we have to take the uncertainty of the exter-
nal contribution into account. In most situations Ṗext

b consists of
the Shklovskii and the Galactic contribution. The calculation of
the Shklovskii contribution is limited by the uncertainty in the
distance and the one in the proper motion. The uncertainty in
the estimation of the Galactic contribution is determined by the
uncertainty in the distance and our imperfect knowledge of the
Galactic gravitational potential. The latter is partly systematic in
nature and therefore somewhat more difficult to quantify. If the
uncertainty ∆Ṗext

b is the limiting factor we no longer can have
Ṗext

b fixed on one value for the whole experiment (i.e. provide
a fixed value for parameter XPBDOT in TEMPO) because its
uncertainty can affect the derived limits.

To properly account for the uncertainty in Ṗext
b we follow the

method described in Splaver et al. (2002) based on Bayes in-
ference. On the first stage TEMPO calculates χ2 grid for three
independent parameters {α0, β0, Ṗext

b }. Then the shifted value
∆χ2 = χ2 −χ2

min is described by χ2 distribution with 3 degrees of
freedom. The number of degrees of freedom is important when
we calculate confidence level limits. The ∆χ2 maps as usual to a
Bayesian likelihood function,

p({t j} |α0, β0, Ṗext
b ) =

1
2

e−∆χ2/2 , (E.1)

where {t j} refers to the used timing data. We treat the ob-
tained probability density p({t j} |α0, β0, Ṗext

b ) as the likelihood

for Bayes’ theorem

p(α0, β0, Ṗext
b | {t j}) =

p({t j} |α0, β0, Ṗext
b )

p({t j}) p(α0, β0, Ṗext
b ) , (E.2)

where p(α0, β0, Ṗext
b | {t j}) is the desired joint posterior probabil-

ity function and p(α0, β0, Ṗext
b ) is the prior. The Bayesian evi-

dence p({t j}) is obtained from normalisation of posterior proba-
bility over the whole grid {α0, β0}.

In the next stage we select the prior p(α0, β0, Ṗext
b ). We as-

sume no prior information about α0 and β0, so their distributions
are taken uniformly for β0 ∈ (−∞,+∞) and α0 ∈ (−∞, 0]. At
this step, we utilise the information about the uncertainties in
Ṗext

b . For example, we can select the prior p(Ṗext
b ) to be normally

distributed with the mean measured value Ṗext
b and its standard

deviation ∆Ṗext
b . Or we can use more elaborate probability dis-

tribution accounting for our uncertainty in the measurements of
distance, proper motion, and Galactic gravitational potential,

p(α0, β0, Ṗext
b ) = p(α0) × p(β0) × p(Ṗext

b ) . (E.3)

The last step is to marginalise over the Ṗext
b variable using the

correct joint posterior probability with desired priors

p(α0, β0 | {t j}) =

∫
dṖext

b p(α0, β0, Ṗext
b | {t j}) , (E.4)

where the integral is calculated on the grid of Ṗext
b parameter.

The marginalised probability than can be used to derive limits,
for instance going back to χ2 representation with 2 degrees of
freedom.
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