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Abstract

We usually interact with computers by means of specialized tools that are not as common as the
language humans use. This has motivated researchers for already several decades to develop algorithms
that enable interfacing with computer systems using natural language. This is especially prominent
in recent times with the rise of voice assistants like Apple Siri or Amazon Alexa. However, the
research and development of such systems is expensive in terms of human labor. The high expenses
are especially prominent for the evaluation of such systems, which are very often evaluated by human
annotators as a final stage and based on expensive development.

The focus of this thesis is to support the assessment of dialogue systems by creating automatic tools
that support humans. Human conversations involve many intricacies that makes it difficult to develop
an algorithm which could reliably but also informatively evaluate them. To put the challenge into
context, one should consider the Turing test, which is a method of examination in artificial intelligence
(AI) for ascertaining whether a computer is proficient of thinking like a human being. One of its
key components is the ability to decide whether a conversation is natural. There are various criteria
according to which a dialogue is evaluated, and hence, problems that is suffers from. In this work, we
aim to detect of these problems.

In order to emulate human-like intelligence, we stand on the shoulders of techniques in Natural
Language Processing (NLP), machine and deep learning (ML, DL). Since we have the goal to reduce
human effort in the evaluation of dialogues, we focus on methods that can achieve our goal without
the need of additionally annotated data:

1. We apply approaches from various problem domains. The thesis makes use of out-of-distribution
(OoD), and anomaly detection approaches to treat low quality or problematic dialogue utterances
as "unusual."

2. Despite being researched for a few decades, Language Models (LMs) became popular in the
research only in the last few years. In our work, we show that they too can be used to evaluate
dialogue quality.

3. Natural Language Processing as a field aims to teach various human-like language skills to
computers, e.g. abilities like understanding whether two sentences are similar in meaning or
whether a piece of text has a positive or negative sentiment. We show that these skills can be
used as indirect indicators of conversation quality.

4. In addition, we show that dialogue systems can be evaluated not by means of reference, but
"opinion." In other words, instead of asking them to generate a solution for a problem, we show
that you can ask them to evaluate a reference solution and based on develop an understanding
about the abilities of a dialogue system.

All of the proposed approaches in this thesis do not make use of supervision for dialogue evaluation.
They manage to deliver insights using various perspectives that could potentially complement each
other in an overall framework for assessing conversation quality.
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CHAPTER 1

Introduction

Cogito, ergo sum
(Latin; I think, therefore I am)

René Descartes

In this chapter, we make a general introduction of the work done by first presenting the motivation
for the problems and challenges we want to solve. We then outline the key contributions of the work
and finally explain the overall structure of the thesis.

1.1 Motivation

Computers have never been ever so present as they are today. It has even become possible to interact
with them using natural language, e.g., voice assistants like Apple Siri and Amazon Alexa, or the
chatbots on social platforms that let us solve tasks like booking a table or ordering dinner. While they
are all beneficial for solving their jobs, most of us have experienced, on one occasion, problems in
their operations. A typical scenario is how a user makes a specific inquiry, and the system’s response
is about something completely unrelated. As a relatively new technology, there is still a lot to be done
regarding the research and development of such systems. One of the standard processes is evaluating
the ability of a system to converse, i.e., the quality of response it creates in a dialogue. It is usually
done by human annotators, making the development more resource-intensive and time-consuming.
The research of dialogue systems can benefit from automated evaluation procedures.

In Figure 1.1, we present two dialogue conversations generated by dialogue systems participating
in the ConvAI challenge [1]. It is easy to detect the difference between the two samples. The left
one has a final response that has no relation to the history of the conversation. In contrast, the right
one’s last utterance is ideally within the context of the dialogue. The ConvAI challenge invited
researchers and developers of dialogue systems to compete against each other. A winner was selected
based on volunteers who had to converse with the dialogue system and give a score based on their
experience. The competition could have quickly benefited from an automated metric that can quantify
the capabilities of dialogue systems.

Revising the example dialogues in Figure 1.1, we see that they all use fluent language, which is
good. Fluency is already one type of criteria that needs to be evaluated to understand the ability of a

1



Chapter 1 Introduction

(a) Low-quality Dialogue (b) High-quality Dialogue

Figure 1.1: Two sample conversations from the ConvAI challenge [1]. The example on the left demonstrates a
response that does not follow the context and would leave a dialogue participant confused. On the right, there is
a dialogue whose final response is coherent with the context.

dialogue system. However, this is arguably not the most difficult challenge for a modern dialogue
system. Another more exciting and crucial criterion is coherency, i.e., how well does the dialogue
system stay (or not) within context as seen in the samples. Unfortunately, here the possibilities are
practically endless. Dialogue systems suffer from generic responses like: "I don’t know," which can be
considered a safe choice. However, such utterances do not benefit the overall flow of the conversation.
Furthermore, if the response is awful, like in the example, it could lead to what is known as a "dialogue
breakdown," a reply that breaks the flow of the conversation and makes it impossible to continue.

To measure the criteria mentioned above and detect dialogue breakdowns, we employ various
techniques from machine and deep learning, which have already proven effective in natural language
processing. Given the said family of approaches, one might be tempted to consider using supervised
learning to solve the challenge of dialogue evaluation. However, while there is research doing that,
we find it also reasonably trivial. Hence, a significant focus of this thesis is to solve the problem of
dialogue evaluation using approaches that do not require direct supervision - either unsupervised or
distantly supervised.

Overall, the vision of this work is to take steps in progressing toward an automated Turing test, i.e.,
an algorithm that can evaluate conversation just like a human does without having explicit training or
education. Such a method would support the research and development of dialogue systems and allow
a monitoring tool that can enable a fallback scenario once a problem occurs.

1.2 Problem Statement and Challenges

In this section, we specify the problem definition for this thesis. We then break it down into challenges
that we discuss in greater detail.

Research Problem Statement
How can we automatically evaluate conversations to provide insightful feedback enabling
the benchmarking of dialogue systems and requiring no human supervision or references for
functioning?

2



1.3 Research Questions

As mentioned earlier, we observe the following challenges that need to be solved for unfolding our
core problem based on our motivation.

Challenge 1: Developing an algorithm that does not require any labeled data

As we mentioned in our motivation, manual annotation of dialogues is time-consuming. Hence,
we need to develop methods that do not depend on such annotated data, and thus, they have to be
unsupervised or, at least, distantly supervised. While having a supervised algorithm could help reduce
the workload for the short term, we need a more long-lasting solution that does not depend on human
effort.

Furthermore, annotated data is just sometimes not available. Thus, unsupervised dialogue evaluation
approaches would pave the way for algorithms that can be developed to address the issue of dialogue
evaluation in various languages.

Challenge 2: Automatic evaluation should not require a reference

The most common way to evaluate dialogue systems is by employing a reference. In other words, a
sample conversation context is presented, and the algorithm needs to generate a response. It is then
compared to a reference utterance to estimate whether the dialogue system functions appropriately.

First of all, methods for comparing two sentences are still an active area of research. While some
significant advances are made, the research community is still not satisfied with the state-of-the-art
methods. Secondly, even if sentence comparison were a "solved problem," we have the issue of
reference. In many cases, given a dialogue context, the space of possible responses is limitless.
Furthermore, the problem partially overlaps with Challenge 1 since the availability of references could
depend on manual effort.

Hence, the dialogue evaluation algorithms need to function as human annotators. They should be
able to estimate the conversation quality without a reference.

Challenge 3: The automated evaluation methods need to be informative

From a linguistic perspective, there is a set of various criteria that a dialogue needs to meet to be
correct. A better understanding of features like coherency or fluency would also enable researchers to
develop dialogue systems to focus on the "right problems."

Revisiting our example in Figure 1.1, we saw that both target responses are fluent. However, one
of them is not following the topic, i.e., it is out of context. At the same time, the other one could be
considered ideally on topic. Therefore, it is beneficial to know the disadvantages and advantages of
dialogue systems.

1.3 Research Questions

Research Question 1
Can anomaly detection methods be used to infer the quality of a dialogue?

3



Chapter 1 Introduction

Figure 1.2: Overview of the Main Research Problem together with the five Research Questions.

There is the task domain of anomaly detection within machine learning, where systems need to
detect samples that characterize themselves with distinctive features. However, some approaches do
not need exemplary data on anomalies. This thesis hypothesizes that dialogue with lower quality or
mistakes can be treated as anomalies. Hence, we apply standard anomaly detection methods from
computer vision to evaluate dialogues. We assume that erroneous dialogues should appear anomalous,
whereas correct ones - do not.

Research Question 2
Can language models indicate the quality of a conversation?

Language models have been part of NLP research and have found applications for many years.

4



1.3 Research Questions

Their main task is to learn to predict what is the next most probable word given a starting sequence.
They have the advantage that they do not need any human-annotated data to be trained, but just raw
text of any form, e.g., books or Wikipedia articles. In this thesis, we want to investigate if this property
can be used to distinguish a low-quality conversation from a high-quality one. The assumption is that
the former should receive higher probabilities from a language model while the latter has lower ones.

Research Question 3
Are standard NLP tasks helpful with the evaluation of dialogues?

Natural Language Processing deals with tasks that aim to replicate various language skills inherent
to humans. For example, one such benchmark is semantic similarity, where NLP systems need to
grade the semantic similarity between a pair of sentences, or the linguistic acceptability, in other words,
fluency, of a piece of text. We hypothesize that such language understanding skills help indicate if a
conversation is coherent or fluent. We investigate a standard set of such tasks that replicate various
language skills and try to map them to different dialogue quality criteria. We expect these NLP
benchmarks to correlate with multiple measures for dialogue quality.

Research Question 4
Do out-of-distribution detection methods detect breakdown in a conversation?

One of the problems that conversations, and consequently, dialogue systems, suffer from is a
dialogue breakdown. A dialogue breakdown occurs whenever an utterance occurs such that it breaks
the fluency and coherency of a discourse. In machine learning, a specific problem domain deals with
the recognition of data samples that do not belong to a specified statistical distribution. Hence, they
are different and stand out from the "normal" data points. This thesis hypothesizes that we can detect
a dialogue breakdown if we take a similar perspective to utterances in a conversation. We assume that
the "regular" discourse responses should be classified as belonging to the same distribution. In contrast,
erroneous responses that lead to a dialogue breakdown should be perceived as out-of-distribution
(OoD).

Research Question 5
Can generative dialogue systems be evaluated by means of asking them whether a sample
conversation is of low or high quality?

Usually, dialogue systems are evaluated by means of a "reference solution." A system is provided
with a sample dialogue history, and it has to generate a response, which is usually compared to a
reference utterance based on the syntactic overlap. This approach is a problem for two reasons. First,
it assumes that the response should use the exact words in the same order. However, the assumption
does not necessarily need to hold for a dialogue system to generate a correct response. Second, the
overlap in syntax also assumes an overlap in meaning. Yet, these assumptions do not need to hold for
a correct utterance. For example, in most cases, whenever there is a question in conversations, there is
more than one possible answer. Hence, we aim to evaluate dialogue systems by asking them for an
opinion on whether annotated dialogue is of low or high quality. Furthermore, we assume that this
opinion should correlate with human annotators.

5



Chapter 1 Introduction

1.4 Thesis Overview

In this chapter, we lay out the main contributions of the thesis. Furthermore, we present references to
the scholarly articles that contribute to the research questions.

Figure 1.3: Outline of the Contributions with regards to the Research Questions.

6



1.4 Thesis Overview

1.4.1 Contributions

Contributions to Research Question 1
The application of anomaly detection using four different deep learning architectures to indicate
dialogue quality.

We implement anomaly detection for dialogue evaluation inspired by autoencoder neural networks.
Intuitively, autoencoders detect anomalies by learning to create a "lossy compressed" representation
of data points from which they can reconstruct the input. In the case of never-before-seen anomalous
samples, their ability is strongly impaired. We demonstrate with four different architectures that the
method has varying levels of moderate sensitivity to the quality of a conversation in a single overall
score. Using anomaly detection is possible without any supervised training. Depending on the chosen
architecture, we have slight variations as to which of those is more sensitive.

Anomaly detection for dialogue evaluation works by giving a score for an utterance of how
anomalous it is. In other words, we measure how different it is from "ordinary" responses. Then,
based on it, we derive an overall metric that can indicate the general quality of the target utterance, i.e.,
the higher the abnormality score, the lower the quality of the conversation.

Contributions to Research Question 2
Deployment of three state-of-the-art language models for indicating conversation quality.

Language models are a current trend in the field of natural language processing. They are proven to
learn syntactic patterns and representations from regular pieces of text without using any additional
labeled data. In the typical case, they are trained to predict the next word given a context. They predict
a probability distribution over a vocabulary of possible words.

Using three prevalent language model approaches (BERT [2], GPT2 [3], XLNet [4]), we demonstrate
that this ability can be used to indicate the overall quality of dialogues. Like humans, language models
learn to "understand" text by "practicing to read it." Hence, we use the probability distribution over
the words to derive a metric, which we calculate for each word in our distribution. We aggregate it on
the whole utterance to tell us how fluent and coherent it is in one score.

Contributions to Research Question 3
Proxy indication of dialogue quality using the tasks in the General Language Evaluation
Benchmark

For decades the computational linguistics community has been researching how to teach language
skills to computers. Usually, it is done utilizing benchmarks that focus on various specific linguistic
skills. For example, a benchmark would aim to train and test a system to detect similarities in meaning
between pieces of text or classify the sentiment of a document (positive or negative).

The ability to participate in dialogue requires a mixture of those linguistic skills. This thesis
demonstrates that these language abilities can be used as proxy indicators of dialogue quality. We use
the General Language Understanding Evaluation (GLUE) benchmark [5], which contains diverse tasks
focus on various aspects of language understanding. Furthermore, we demonstrate how to combine
them into one score that estimates the overall dialogue quality. Finally, we explain also how we can
control the "mixture" such that one can focus on specific conversation criteria more than others.

7
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Contributions to Research Question 4
Unsupervised dialogue breakdown detection via out-of-distribution detection

One of the problems that dialogue systems often cause is dialogue breakdown. It is characterized
by responses that are not related to the context of the conversation leaving the participants confused
and unable to continue. The Dialogue Breakdown Detectching Challenge (DBDC) series [6, 7] aims
to drive research and development to solve precisely this problem.

To the best of our knowledge, we propose the first unsupervised approach that can detect with
reliable accuracy dialogue responses that could lead to a breakdown. We achieve this by standing on
the shoulders of out-of-distribution detection methods, which can be seen as related as relatives of
anomaly detection. Using a recent neural network architecture, DialoGPT [8], we demonstrate that
OoD detection can be applied to identify utterances that can cause dialogue breakdown. Intuitively,
we treat the problematic responses as unordinary.

Contributions to Research Question 5
Evaluation of dialogue systems by means of an "opinion"

The established procedure to evaluate dialogue systems is to look for overlaps with a reference
response, which, as described, has some severe disadvantages. Hence, we demonstrate an alternative
method for dialogue evaluation where we can "ask" dialogue systems for an opinion on whether a
conversation is of low or high quality. This has the advantage that the dialogue cannot run into the
problem of generating an alternative but equally good response since the possibilities are practically
limitless.

To that end, the dialogue systems need to provide probabilities of each word in response. Then the
set of scores is aggregated, and we apply a correlation analysis between it and a human annotator score.
Ultimately, we use a set of architectures with varying complexity and progress to demonstrate that
dialogue system approaches are comparable. The expectation is that for high-quality conversations, an
approach has to generate high probabilities, and for low quality - the other way around. Indeed, the
mode modern dialogue systems have higher correlations scores as expected.

1.4.2 Publications

The scholarly articles listed below serve as the scientific foundation of the thesis:

1. Conference Papers (peer-reviewed)

a) Rostislav Nedelchev, Ricardo Usbeck, and Jens Lehmann. 2020. Treating Dialogue
Quality Evaluation as an Anomaly Detection Problem. In Proceedings of the 12th
Language Resources and Evaluation Conference (LREC), pages 508–512, Marseille,
France. European Language Resources Association.

b) Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2020. Language Model
Transformers as Evaluators for Open-domain Dialogues. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 6797–6808, Barcelona,
Spain (Online). International Committee on Computational Linguistics (COLING).
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c) Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2021. Proxy Indicators for the
Quality of Open-domain Dialogues. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 7834–7855, Online and Punta
Cana, Dominican Republic. Association for Computational Linguistics.

2. Papers in Review

a) Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2022. An Unsupervised
Baseline For Dialogue Breakdown Detection Using Ouf-of-distribution Detection Methods.
In Review for the 26th International Conference on Artificial Intelligence and Statistics
(AISTATS).

b) Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2022. EDiSOn: Evaluating
Dialog Systems by their Opinion on Open-domain Conversations. In Review for the 26th
International Conference on Artificial Intelligence and Statistics (AISTATS).

1.5 Thesis Structure

The thesis consists of ten chapters. The current Chapter, Chapter 1 layouts the primary research
question, the motivation for conducting scientific work, research questions, the respective contributions,
and a list of publications that formally present the contributions.

Chapter 2 introduces core concepts and background knowledge that function as a basis for this work
and support understanding the line of reasoning necessary for the thesis.

Next, Chapter 3 discusses efforts related to the core research question of evaluating dialogue systems.
We review work done in reference-based and reference-free dialogue evaluation. In addition, we study
state-of-the-art efforts in dialogue breakdown detection.

Chapter 4 studies anomaly detection for dialogue evaluation, where we experiment with four
different architectures for dialogue modeling.

In Chapter 5, we report on how to use the language modeling approach for dialogue evaluation. We
experimented with three LM methods - BERT, GPT2, and XLNet. In addition, we investigate the
ability of some of them to act as dialogue systems.

After that, Chapter 6 investigates the usage of standard NLP benchmarks for conversation assessment.
We perform experiments with the General Language Understanding Evaluation (GLUE) benchmark
and BERT. Furthermore, we research the composition of different metrics into one.

Chapter 7 looks into dialogue breakdown detection. We research an unsupervised method inspired
by out-of-distribution detection. We investigate three OoD detection approaches.

Second, to last, in Chapter 8, we work on an alternative method for evaluating dialogue systems.
The core idea is to ask dialogue systems for an "opinion" rather than ask them to generate a possible
"solution" to a problem.

Finally, Chapter 9 concludes the thesis by first reviewing the research questions and the contributions.
In addition, it presents directions for future work.
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CHAPTER 2

Preliminaries

Consider your origin; you were not born to
live like brutes, but to follow virtue and
knowledge.

Dante Alighieri

In this chapter, we present basic concepts that serve as the foundation for the work done in this thesis.
First, we introduce deep neural networks and their specialized variations - Recurrent Neural Networks,
Sequence-to-Sequence (Seq2Seq) Models, and Transformers, which are all critical milestones in NLP.
After that, we discuss Natural Language Generation, and Dialogue Modeling, since they are an object
of this work. Next, we present the state-of-the-art family of techniques, transformer-based language
models (LMs). Finally, we conclude by visiting anomaly and out-of-distribution (OoD) detection.

We discuss all of the works and methods here on a rather superficial level without going into deep
technical details. Hence, we kindly ask the reader to visit respective citation as for more information,
as we go along with the preliminaries.

2.1 Deep Learning Fundamentals

Deep learning is currently one of the most researched sub-fields of machine learning. It uses artificial
neural networks with many "layers." Hence, they have the name - "deep." This section follows the
evolution of deep learning by discussing architectures that span from the first to the state-of-the-art
ones.

2.1.1 Artificial Neural networks

A deep artificial neural network usually consists of multiple "layers." They can be split into three
groups - "input," "hidden," and "output" layer. Commonly, there are only one each for the input and
output layer. The second category is called "hidden" because it is between the other two, and one does
not directly interact with it. Most commonly, neural networks are compared to the structure of brain.
They consist of "neurons", that interlinked with each other in a complex graph structure, which also
has a direction of the information flow. Due to this directed flow, they are also called feed-forward
neural networks. For example, in Figure 2.1, we show a sample deep neural network as a graph that
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has a total of four layers - one input, two hidden, and one output layer. This type of network is often
called also a feed-forward network, because there is a straight flow of information from the input to
the output layer.

On a more local scale, one can perceive each of the nodes in the hidden layers of the neural network
as neurons. Looking at the big picture, a deep neural network contains nodes that are characterized by
a vast amount of learnable weights.

Figure 2.1: An example for an artificial neural network.

Artificial neural networks employ activation functions for each of the neurons. Their purpose is to
decide whether a neuron should be "activated" and what degree. While the activation functions are
an active research field, there are already a few established activation functions - sigmoid, softmax,
Rectified Linear Unit (ReLU), Gaussian Error Linear Unit (GELU) [9].

Neural networks need to learn their characteristic weights from data. The first important step that
enabled that is backpropagation [10]. Furthermore mathematical optimization helps with the training
of ANNs. Formally, the problem is defined using the transformation 𝑦 = 𝑓 (𝑥) and an error (also
commonly known as a loss) function that measures the difference based on obtaining a value for the
dependent variable, �̂�, and some reference pairs of 𝑥 and 𝑦.

Due to the sheer amount of learnable parameters that neural networks have, they employ a family of
optimization procedures known as Stochastic Gradient Decent (SGD). It requires a (preferably massive)
set of references pair of the independent and dependent variable, (𝑥, 𝑦). Then, the transformation is
applied to a sample of 𝑥, during which gradients are collected for each of the "neurons." Once the
calculation is complete, an error is calculated, whose results are backpropagated from the output layers
to the input one to adjust the learnable weights such that the error is minimized.
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2.1.2 Recurrent Neural Networks (RNNs)

Figure 2.2: A demonstration of a recurrent neural network.

The research community focused on drafting new architecture for neural networks to accommodate
specific properties for certain tasks. In contrast to feed-forward neural networks, Recurrent Neural
Networks focus on modeling temporal sequences, i.e., capturing the information that happens during
the transition between the sequence items. Furthermore, RNNs do not require that their input has a
fixed size. Hence, they find widespread usage in natural language processing, where spoken or written
language can be seen as a dynamic temporal sequence. In Figure 2.2, we show how the recurrent
neural networks is time-wise unfolded, where U, W, and V are weights mapping the data from input,
to hidden, and then to output neuron.

The main advantage of recurrent neural networks is that, theoretically, they can model long-term
dependencies between states. However, it has been discovered that the bigger the distance between
two states is, the more difficult it is for RNNs to capture that information [11]. As a result, they suffer
from memory loss.

Thankfully, Long Short Term Memory (LSTM) networks, a specialized type of RNN, have been
proposed to handle this issue [11]. Its core idea is to use an additional vector parameter, cell state,
which acts as a pipeline that lets information flow through the whole chain of temporal states. However,
LSTMs need to be selective to what flows through since a vector could store only a limited amount of
information. Therefore, it adds neural "gates" that control how much the LSTM should remember or
forget. There is a gate that decides how much to forget from the previous state, and another one one
administers how to include from the current state. Finally, the third gate decides how much to output.

Gated Reccurent Unit (GRU) aims to supersede LSTM by making some efficiency improvements [12].
Namely, the input and forget gates are merged into one that decides a trade off between how much is
forgotten or used from the input.

2.1.3 Sequence-to-sequence Models

The rise of recurrent neural networks gave birth to the sequence-to-sequence (Seq2Seq) model
architecture [13]. Its aim is simple - it allows for the creation of a unidirectional mapping between
two sequences. The most obvious example is machine translation, where we want to map a piece of
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text in one language to a piece of text in a different language. In addition, Seq2Seq models found a
widespread application in dialogue systems where a conversation context can be mapped to a target
response.

The intuition of the architecture is to create a separation of concerns and enable the specialization of
two RNNs. The first has the responsibility to create a fixed-length representation of the input. Hence,
it is often called an encoder. The second recurrent neural network can then use the representation to
generate a new variable-length sequence. Therefore, it is called a decoder.

From a formal perspective, sequence-to-sequence models optimize the two RNNs jointly by
maximizing the conditional probability between the input, 𝑥 = 𝑥1, ..., 𝑥𝑛, and output 𝑦 = 𝑦1, ..., 𝑦𝑚
sequences using the weights (𝑤) of the model:

max
𝑤
𝑙𝑜𝑔𝑃(𝑦 |𝑥) (2.1)

Reusing the established conventions from Section 2.1.2 and Figure 2.2, we present Figure 2.3
visualizing the architecture of the sequence-to-sequence model. We would like to turn the reader’s
attention that ℎ3 is the same vector representation passed from the encoder to the decoder and that we
have two sets of weights, respectively,𝑊𝐸𝑛𝑐 and𝑊𝐷𝑒𝑐.

Figure 2.3: Architecture diagram of the sequence-to-sequence model.

However, the fixed representation passed from the encoder to the decoder acts as a bottleneck.
Hence, Bahdanau [14] proposes the attention mechanism to alleviate the restriction and enable more
information flow between the two RNNs. During each of its temporal steps, the decoder decides how
much information to use from each input item. Hence, the encoder now has the single responsibility to
model the dependencies within the sequence, but it does not need to create a fixed-length representation
anymore. Instead, the decoder uses a single feed-forward layer and softmax to generate a distribution
across the input token, deciding the degree of information flow.
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2.1.4 Transformers

However, recurrent neural networks’ most significant advantage turns out to be their greatest weakness,
as well. Their sequential nature makes them rather slow to compute and does not allow parallel
calculations. This is where the Transformer [15] steps in. It is a new architecture that replaces
recurrence and counts on an attention mechanism to model dependencies globally on the whole
sequence. Figure 2.4 visualizes the two core building blocks of the neural architecture.

(a) Scaled Dot-Product Attention (b) Multi-Head Attention

Figure 2.4: On the left, Scaled Dot-Product Attention. On the right, Multi-head Attention with multiple parallel
attention layers [15]

The inventors of the Transformers discuss the advantages of the new architecture. They claim
that multiplicative attention (shown in Figure 2.4(a)) is the fastest and most efficient thanks to
highly optimized implementations of matrix multiplication software. They further discuss that using
multi-head attention (Figure 2.4(b)) enables the neural network to attend to the input information from
different perspectives but also at other positions. Thanks to these features, the transformers can model
global dependencies in the text without sequentially processing it.

2.2 Natural Language Generation (NLG) & Dialogue Modeling

One of the natural language processing (NLP) core fields is natural language generation (NLG).
Initially and most notably, Reiter and Dale [16] describe NLG as a pipeline consisting of six distinct
stages: 1. Content Determination, 2. Text Structuring, 3. Sentences Aggregation, 4. Lexicalization, 5.
Referring Expression Generation, 6. Linguistic Realization. However, with the recent rise of neural
networks, such staged approaches have become unnecessary. Deep learning is capable of learning
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representations that can model grammatical and semantic abstractions [17, 18].
There are two groups of neural network architectures suitable for dialogue systems. The first

(causal) language models can predict the next word given a preceding sequence. For example, the
work by Sutskever et al. [19] demonstrates the capabilities of LSTMs to predict the next character in
a sequence. Hence, they are also commonly known as generative models due to their unparalleled
ability to create language or other types of sequences like music

The second, encoder-decoder architecture [13] (often referred also as sequence-to-sequence or
shortly, seq2seq), provides a decoupling between creating a fixed length representation of the input
and consequently, decoding it into a sequence. There are many works that have used this approach to
develop a dialogue systems [20–23].

Chen et al. [24] discuss a categorization based on their application - 1. task-oriented systems, 2.
non-task-oriented systems. The former deal with assisting the user in completing certain tasks, e.g.,
booking a restaurant or finding out certain information. Task-oriented dialogue systems are usually
pipeline-based, which means that they employ components with different concerns. The systems first
comprehend the human message, represent it as an internal state, then perform actions in accordance
with the dialogue state’s policy, and lastly, turn the action into its surface form as natural language.
Though not common, there are task-oriented systems that are also end-to-end but not as successful
because there are domain specifics involved, and they are more difficult to incorporate.

The second category, which is also this work’s primary target, is non-task-oriented dialogue
systems. Unlike task-oriented systems, chatbots concentrate on open-domain conversations with
humans. Given the nature of dialogue, sequence-to-sequence models find very widespread for
creating non-task-oriented dialogue systems. However, these approach approaches have to meet some
challenging criteria:

1. They need to provide context-sensitive responses, which requires the ability to model the
complete history up to the current point.

2. The answers need to be diverse in nature. It is a well-known problem that dialogue systems use
generic responses like "I don’t know."

3. These approaches need to have awareness about the current topic and its "own personality"
since these two often drive a conversation in a natural setting.

To converse in an open-domain setting, one needs to have standard knowledge. Without it, a
dialogue system will not be able to chat. It requires an open-domain knowledge base. Finally, the
"holy grail" of dialogue systems is to design an approach that can learn during an interaction with
another human or another system, i.e., itself.

Knowing all of this, it is easy to imagine why open-domain dialogue systems are so difficult to
evaluate, even for humans. Most of the time, overlap-based metrics are used to assess dialogue
systems automatically. However, they are insufficient since they are unaware of the full range of valid
responses for a conversation context. We revisit the topic in Chapter 3, Related Work, where we
discuss previously done work.
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2.3 Statistical Language Modeling

Since very recently, language models based on transformer neural networks [2–4, 15] are enjoying
great popularity.

The first application of n-gram-based language models is recorded in the mid-1970s by two
independent works of Jelinek [25] and Baker [26]. Given a sequence of tokens, 𝑇 = {𝑡1, ..., 𝑡𝑁 }, a
forward language model computes the probability of the sequence by modeling the likelihood of a
token 𝑡𝐾 (𝐾 ≤ N), which has a history up to the 𝐾-th token [27]:

𝑃(𝑡1, 𝑡2, ..., 𝑡𝑛) =
𝑁∏
𝑘=1

𝑃(𝑡𝑘 |𝑡1, 𝑡2, ..., 𝑡𝑘−1) (2.2)

Some of the initial neural network models [28] use initially a context-independent vector repres-
entation for a token, which all pass through one or more LSTM layers [11]. Then, they produce
a context-dependent vector that serves as input to a softmax layer to predict the next token. In a
reversed fashion, backward LM uses the context to the right of the target token to predict it. In contrast,
bi-directional language models use a combination of both to predict the target word:

Figure 2.5: Diagram presenting the possible flows in language models. BOS stands for Begining of Sentence,
while EOS - End of Sentence.

Radford et al. [3] propose generative pre-training (GPT2), where they use the transformer [15] as a
forward (a.k.a. left-to-right) language model due to its superiority in terms of long-term memory
when contrasted to recurrent neural networks like LSTMs.

Furthermore, Devlin et al. [2] suggest an innovative way to train language models, also utilizing
transformers, specifically Bidirectional Encoder Representations from Transformers (BERT). They
invent the masked language model (MLM), where a random subset of tokens from a sequence is
masked or replaced, which the model then predicts using the remaining original context. Furthermore,
BERT uses an additional LM objective: next sentence prediction (NSP). It works by teaching a model
to recognize whether two sentences appear sequentially in a corpus or not.

Yet another innovative transformer-based language model is XLNet by Yang et al. [4]. It combines
the best features of a generative LM like GPT2 and a masked LM like BERT by proposing to use
the permutations of all factorization orders of a sequence to train. Thanks to it, XLNet learns to
utilize knowledge from both sides of the target token and the respective context of other positions.
Golovanov et al. [29] demonstrate that pre-trained transformer language models provide benefits for
conversational agents.

17



Chapter 2 Preliminaries

Figure 2.6: An example demonstrating BERT’s language modeling objectives - Masked Language Modeling
and Next Sentences Prediction. The probability for the masked hidden is predicted to find the most suitable
candidate. In addition, BERT predicts the probability of the next sentence to model the cohesiveness of the two
sentences [2]

For completeness, we mention other language models below that utilize transformers but are not
integral to this work. We do not employ them in this work because the architectures discussed above
already supersede them, or we deem their additions as not adequate for modeling dialogues.

Dai et al. [30] propose Transformer-XL, a new approach that allows transformers to model even
longer sequences by caching and reusing intermediate hidden states. XLNet also utilizes the method
in its implementation. Cross-lingual Language Model, by Lample and Conneau [31], introduces
Translation Language Modeling, i.e., randomly masks words in parallel sequences in two languages to
teach the model leveraging multi-lingual context. Liu et al. [32] present Robustly optimized BERT
by just dropping BERT’s next sentence prediction and a few other modifications in training. Raffel
et al. [33] introduce the Text-to-Text Transfer Transformer, where the language-modeling objective
is using a text-to-text perspective. Finally, conditional Transformer Language model, by Keskar et
al. [34], incorporates conditioning on control codes to guide the generation of tokens.

Besides capturing syntax, LMs are also capable of modeling the semantics of sentences. The
results of Tenney et al. [35] suggest that they can encode both syntax and semantics on a sub-sentence
level. Furthermore, Zhou et al. [36] conducted a systematic benchmark to evaluate seven LM for their
commonsense knowledge and reasoning. Their work suggests that they have a certain degree of those
abilities. Commonsense is what would also help in evaluating open-domain dialogues.

2.4 Anomaly & Out-of-distribution (AD, OoD) Detection

Machine learning models have always operated under one core assumption. The data always comes
from an independent and identically random distribution (i.i.d.). However, in reality, all variations of
data occur frequently. Hence any ML approach can suffer from unseen data samples, including deep
learning methods. In research, several domains focus on the recognition of such cases. Two of the
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fields are namely Anomaly Detection (AD) and Out-of-Distribution (OoD) Detection. While they
have overlaps with each other, they also have some differences.

One of the first mentions of anomaly detection dates back to 1969 [37, 38], where it is defined as
"samples that appear to deviate markedly from other members of the sample in which it occurs." This
definition explicitly assumes a pattern that is followed by the majority of data points. However, to
assert such a deviation, a distance metric needs to be used that is suitable for the target problem.

On the other hand, out-of-distribution detection deals with identifying test samples that are
fundamentally different from the training data and, henceforth, should not be predicted into the known
classes of the problem definition. It can be seen as a meta or addon to other tasks like multi-label
classification or density estimation [39].

Figure 2.7: A visualization demonstrating the differences between anomaly detection and out-of-distribution
detection.

For the purpose of this thesis, we revisit different works in anomaly and out-of-distribution
detection. We review three OoD approaches that are pivotal to the thesis: 1. Maximum probability of
softmax-based classifiers [40]; 2. Out-of-Distribution detector for Neural networks (ODIN) [41] and
its generalized version [42]; 3. Log-likelihood ratios [43].

2.4.1 Autoencoders

Autoencoders are a type of unsupervised neural network that learn how to create a compressed
representation of the input data. They have two core components - encoder and decoder. The first
one is responsible for creating the latent representation of the input data, which is usually of a lower
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Figure 2.8: An example for an autoencoder neural network.

dimension. The decoder uses this compressed version of the data to reconstruct it to its original
form. They are trained by optimizing a reconstruction error function that applies backpropagation
through the whole autoencoder. It aims to minimize the difference between the initial input and its
reconstructed version.

By using the aforementioned training regime, autoencoders learn key patterns and features of the
input data. In the end, the reconstruction loss declines and falls to a minimum.

However, it has been established that they start to struggle whenever presented with a novel sample.
By "novel," we mean a data point that does not follow the pattern of the data used for training. Hence,
the reconstruction loss of these anomalous samples dramatically increases when passed through the
autoencoder (shown in Figure 2.8), especially when compared to the in-train examples.

2.4.2 OoD Detection

The goal of OOD detection is to find test-times samples that are semantically distinct from the training
data categories and so should not be forecasted into recognized classes [39]. For example, we consider
a classification problem with ten classes. Focusing only a subset of those categories would render the
remainder out of distribution.

We start with the work that first coined out-of-distribution detection as a term. Hendrycks and
Gimpel [40] discuss the probability distribution of a softmax classifier and how it can be used for
the task. In their work, they revisit various tasks (vision, natural language processing, and speech
recognition) in deep learning and re-purpose existing datasets to create a benchmark for OoD detection.
They propose to use the maximum softmax probability as an indicator for whether a data point is in
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or out of distribution. They demonstrate that the maximum probability for a softmax distribution is
significantly lower for OoD examples than regular ones. Hence, this discrepancy has established the
approach as a baseline for OoD detection approaches.

Liang et al. [41] propose ODIN (Out-of-Distribution detector for Neural networks). At its core, the
method consists of two components. The first one is temperature scaling that is applied on softmax
output:

𝑆𝑖 (𝑥;𝑇) =
𝑒𝑥𝑝( 𝑓𝑖 (𝑥)/𝑇)∑𝑁
𝑗=1 𝑒𝑥𝑝( 𝑓𝑖 (𝑥)/𝑇)

, (2.3)

for the 𝑖-th output class, 𝑥 is the input, and 𝑇 is the temperature scaling coefficient. The second
component is the application of random perturbations to the input:

�̃� = 𝑥 − 𝜖 · 𝑠𝑖𝑔𝑛(−▽𝑥 log 𝑆(𝑥;𝑇)), (2.4)

where 𝜖 is perturbation magnitude. The authors report that this further pre-processing increases the
softmax score gap between the in- and out-of-distribution data.

However, Hsu et al. [42] criticize the fact that both 𝑇 and 𝜖 require OoD data to be tuned, which in
certain use cases is not available. Hence, they discuss a decomposed confidence that consists of the
joint class-domain probability and the domain probability:

𝑃(𝑦 |𝑑𝑖𝑛, 𝑥) =
𝑃(𝑦, 𝑑𝑖𝑛 |𝑥)
𝑃(𝑑𝑖𝑛 |𝑥)

, (2.5)

𝑥 is the input, and 𝑦 is the output class. To model those probabilities, they propose the following
implementation for training:

𝑃(𝑦 |𝑑𝑖𝑛, 𝑥) = 𝑓𝑖 (𝑥); (2.6)

𝑓𝑖 (𝑥) =
ℎ𝑖 (𝑥)
𝑔(𝑥) ; (2.7)

𝑔(𝑥) = 𝜎(𝑤𝑔 𝑓
𝑝 (𝑥) + 𝑏𝑔); (2.8)

ℎ𝑖 (𝑥) = 𝑤
𝑇
𝑖 𝑓

𝑝 (𝑥) + 𝑏𝑖 , (2.9)

where 𝑓𝑖 (𝑥) is the logit for the 𝑖-th class, 𝑓 𝑝 (𝑥) is the output of the penultimate layer of the network
after applying the input, 𝑥, 𝑤 and 𝑏 are trainable parameters. For performing out-of-distribution
detection inference, they suggest using 𝑆𝐷𝑒𝐶𝑜𝑛 𝑓 = 𝑚𝑎𝑥𝑖 ℎ𝑖 𝑜𝑟 𝑔(𝑥). We report results using both.

In their work on image and genome sequence classification, Ren et al. [43] follow a similar intuition
to Hsu et al. [42], where the OoD detector makes use of two components: a background component
and a semantic component. The former models the population as a whole, whereas the latter captures
patterns related to the domain data.

The background model is trained on perturbed in-domain data. Ren et al., [43] report using an
independent and identical Bernouilli distribution with a rate of ` to decide which characters to be
replaced with a random one. They report that ` ∈ [0.1, 0.2] achieves good performance for most of
their experiments.

The log-likelihood ratio (LLR), i.e., the out-of-distribution detection score, is computed by using
the probability scores from the background and semantic model:
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𝐿𝐿𝑅(𝑥) = log
𝑃\ (𝑥𝑛 |𝑥<𝑛)
𝑃\0

(𝑥𝑛 |𝑥<𝑛)
, (2.10)

where 𝑃\ and 𝑃\0
are the softmax probabilities from semantic and background models, respectively.

𝑥𝑛 is the 𝑛-th token, preceeded by the 𝑥<𝑛 tokens. 𝑥 represents the concatenations of context utterances
and response.
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CHAPTER 3

Related Work

Everything flows and nothing abides;
everything gives way and nothing stays
fixed.

Heraclitus

This chapter reviews the community efforts related to the main research questions and the challenges
outlined. First, we discuss approaches for dialogue evaluation using a reference since the domain acts
as a starting point for the research goal of the thesis. After that, a section that revisits reference-free
approaches follows, where works with similar motivation are presented. Next, we discuss previous
works from the Dialogue Breakdown Detection Challenge series (DBDC) [6, 7] as a separate section
since it is a well defined NLP benchmark. Next, we discuss the General Language Understanding
Evaluation (GLUE) Benchmark since it serves as foundation for one one of our approaches.

3.1 Reference-based Dialogue Evaluation

Significant works in text summarization and machine translation have already proposed their field-
specific metrics for automated assessment. For the former Recall-Oriented Understudy for Gisting
Evaluation, ROUGE [44] is the most popular set of metrics for the problem. First is ROUGE-N,
which measures n-gram (contiguous sequence of 𝑛 items from a given text sample) overlap between
system-generated response and reference. The most common versions of the metric are with uni-
(𝑛 = 1) and bi-grams (𝑛 = 2):

Next is ROUGE-L, which uses the Longest Common Subsequence (LCS) instead of n-grams. The
idea here is that a longer shared sequence would indicate more similarity between the two sequences.
In addition, there are the less popular ROUGE-W, ROUGE-S, and ROUGE-SU, which introduce the
usage of weighting mechanisms and skip-grams.

We move to two machine-translation-focused metrics. First is Bilingual Evaluation Understudy
(BLEU) [45]. The method works by counting n-grams in the candidate translation that match n-grams
in the reference text, where a 1-gram or unigram represents each token, and a bigram comparison
represents each word pair. Regardless of the word order, the comparison is made. The counting of
matching n-grams has been changed to guarantee that the number of times the words appear in the
reference text is considered, rather than rewarding a proposed translation that creates a large number
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of plausible terms.
Finally, we review the Metric for Evaluation of Translation with Explicit ORdering (METEOR) [46].

The difficulty with BLEU is that individual sentence scores suffer because the BP value is based
on mean lengths throughout the whole corpus. To overcome this problem, METEOR replaces the
accuracy and recall calculations with a weighted F-score based on mapping unigrams and a penalty
function for wrong word order.

Dialogue system research [21, 47, 48] constantly uses these metrics. However, Liu et al. [49]
show that these metrics based on word-overlap between prediction and references are not reliable for
evaluating the usefulness of dialogue systems. Hence, the field should use more sophisticated methods
that consider the previous utterances of a conversation and their semantic meaning. This gave rise to a
new line of research that focuses on new natural language evaluation metrics.

Zhang et al. [50] propose BERTscore, which computes a similarity score for each token in the
candidate sentence and each token in the reference sentence, comparable to standard metrics. Although,
instead of precise matches, they use contextual embeddings to calculate token similarity. Their work
has better correlation scores with human judgments and outperforms existing metrics in terms of
model selection.

Lowe et al. present a cornerstone work in dialogue evaluation. [51]. They propose an automatic
dialogue evaluation model (ADEM) (visualized in Figure 3.1) that employs a neural network approach
that approximates human judgment using scored dialogues together with the context, reference
response, and one generated by a dialogue system. Unfortunately, reference responses and human
annotation scores are hard to obtain. It is challenging to employ the approach on large dialogue
datasets.

Figure 3.1: Architecture of the ADEM [51].
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Another cornerstone is the work of Tao et al. [52], a Referenced metric, and Unreferenced metric
Blended Evaluation Routine (RUBER) (show in Figure 3.2). They suggest a method consisting of two
elements: The first one captures the resemblance between a generated and reference response using
word vector pooling. The second one uses a neural network to estimate the relevance of a reply. The
model is trained to distinguish whether an answer in a dialogue is the original or a random one from
another conversation. A drawback of both approaches is that they use reference responses to derive a
score.

(a) Overview of the RUBER approach (b) Prediction of the unreferenced score using a neural network.

Figure 3.2: ARchitecture of the RUBER approach. On the left, we have the high-levevl

Furthermore, Sai et al. [53] demonstrate that machine learning approaches for dialogue evaluation
like ADEM are susceptible to adversarial attacks. Even anything as simple as altering the word order
in the text might cause ADEM to become confused. Experiments in various such hostile settings have
produced unexpected conversation response ratings. They examine the scoring function suggested by
ADEM in detail and tie it to linear system theory to foresee the system’s flaws. Finally, they have
devised an approach that can deceive such a system into giving a good rating to a response-generating
system.

All of these approaches require a reference in order to evaluate a dialogue. It is a major disadvantage
for these methods, since obtaining samples can be expensive. We saw that the early metrics inspired
from other NLP tasks have downsides because they rely too much on the surface form of the text
rather than its semantic meaning. On top of that, they are only consider one or best case, multiple
possibilities, which as discussed do not cover the complete space of possible answers for a conversation
history.

BERTScore [50], ADEM [51], and RUBER [52] could advance the reliance on semantic meaning.
However, they still remain dependent on references.

3.2 Reference-free Dialogue Evaluation

While reference-based evaluation for dialogue is a sensible approach, it has a significant downside.
The space of possible responses in a conversation is practically limited; hence comparing against one
or even multiple references is impractical. Furthermore, obtaining these samples is resource intensive.
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Hence, a big focus in the field is the research of approaches that do not require references to function,
which is also the focus of this thesis.

Inspired by RUBER [52] Sinha et al. [54] propose a Metric for automatic Unreferenced dialogue
evaluation (MaUde), which uses state-of-the-art pre-trained language models, paired with an advanced
discourse aware language encoder and contrastive training technique. Their experiments demonstrate
that MaUde (shown in Figure 3.3) has a strong correlation with human judgments.

Figure 3.3: Architecture of MaUde [54].

MaUde is designed to output a scalar score with values ranging between zero and one. It estimates
how suitable a reply is to a given conversation history. They claim the task to be akin to Natural
Language Inference (NLI), which we shortly discussed in Subsection 3.4.2. Following NLI, they
approach the task by setting up encoders 𝑓 \𝑒 (𝑐) and 𝑓

\
𝑒 (𝑟) to encode the conversation context and the

answer, respectively. Then, a combination function, 𝑓𝑐𝑜𝑚𝑏 (...), is applied to the history and response
representations, followed by a classification function, 𝑓( ...), finally concluded with a sigmoid, 𝜎,
function to normalize the score between zero and one:

score(𝑐, 𝑟) = 𝜎( 𝑓𝑡 ( 𝑓𝑐𝑜𝑚𝑏 ( 𝑓
\1
𝑒 (𝑐), 𝑓 \2

𝑒 (𝑟)))) (3.1)

Driven by the transformer-based language model trend, Sai et al. [55] present DEB (Dialog
Evaluation using BERT). Inspired by BERT’s next sentence prediction, they define the goal of
predicting the future answer as determining if the provided response is a legitimate next response for
the given context. The formal definition follows: provided with a dialogue context 𝐶 = {𝑤𝑐1 , ..., 𝑤

𝑐
𝑛}

and its response 𝑅 = {𝑤𝑟1, ..., 𝑤
𝑟
𝑛} through BERT and retrieve the representation , 𝐻𝐶𝐿𝑆 , of the whole

conversation. The final scoring is done by applying - �̂� = softmax(𝑊𝐻𝐶𝐿𝑆). In addition, they also
perform the standard masked language modeling objective for training DEB.

To evaluate their approach, they propose an extension to the DailyDialog [56] dataset that includes
five relevant and five adversarially crafted irrelevant replies for each conversation history. DEB
demonstrated to have higher correlation coefficients than other reference-based approaches.

Also following the trend with language models, Mehri & Eskenazi [57] propose USR, an UnSu-
pervised and Reference-free evaluation metric for dialog. Unlike DEB, it utilizes on RoBERTa [32].
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They propose two components in their metric. In contrast to BERT, RoBERTa does not have a next
sentence prediction training objective. Hence, as the first component of USR, they use the masked
language training objective of RoBERTa. Given the dialogue context 𝐶 = {𝑤𝑐1 , ..., 𝑤

𝑐
𝑛}, its response

𝑅 = {𝑤𝑟1, ..., 𝑤
𝑟
𝑛}, and their concatenation, they iteratively mask each word in 𝑅 and compute its

likelihood. The final metric of the component is computed as the sum of each probability. The
MLM-based approach (illustrated in Figure 3.4) offers sort of a criterion that involves two aspects -
fluency, i.e., how grammatical is the language, and common sense, since it is known that language
models are capable of encoding some common knowledge.

Figure 3.4: Architecture of the first MLM-based component of USR [57].

The second component is inspired by dialogue retrieval (DR). The same model from the first
component is further fine-tuned for the retrieval goal. The format definition of dialogue retrieval is as
follows: A dialogue context 𝑐, a response 𝑟, and a binary label 𝑦 indicating whether 𝑟 is the actual
response or a random sample are used to train the model. On a high level, the architecture of the
second component looks like the one of MaUde [54], where the significant difference is the usage of
RoBERTa instead of BERT.

All of the approaches so far, DEB [55], USR [57], MaUde [54], utilize transformer-based language
models. However, in all of the cases they use further training on dialogue dataset. Furthermore, the
approaches provide only general quality scores without insights on the separate conversation criteria
like fluency or coherency.

Gao et al. [58] propose DialogRPT. They utilize online forum feedback data (number of replies
and upvotes) to construct a massive training set for feedback prediction. They transform the ranking
issue into a comparison of answer pairs with a few confounding variables to reduce the possibility of a
mismatch between feedback and interest. Based on 133M pairs of human feedback data, they trained
their approach, a collection of DialoGPT-based models, and the resulting ranker exceeded various
baselines.

They train their approach, in particular, the solve the following tasks:

• updown - How likely is the response to get the most upvotes on social media?

• width - How likely is the response to get the most direct responses from other users on social
media?

• depth - How likely is the response to get the longest thread in terms of the number of chained
responses by the other users?
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Figure 3.5: Modeling for online forum conversations as done in DialogRPT [58]

• Human vs. Random - How relevant is the response for the provided conversation context?;

• Human vs. Machine - How likely is it that a human rather than a machine has written the
response?

The approach uses a contrastive learning objective together with the criteria mentioned above,
where it learns to distinguish a "good" from a "bad" forum response.

Zhang et al. [59] propose a method that unifies turn and dialogue level evaluation - DynaEval (show
in Figure 3.6). Their approach consists of four phases:

1. Derivation of contextualized representations of the utterances withing a regular, 𝐷, and a
negative-sampled dialogue, �̄�, using SRoBERTa [60] and LSTMs.

2. Obtaining a directed dialogue graph, whose nodes represent the utterances and the edges - their
temporal relations and respective speakers.

3. Inference of utterance representations based on the graph to model the interactions between the
neighbors in the graph, i.e., the utterances.

4. Calculation of conversation-level metric indicates whether a negative-sample dialogue is
preferred over a real one or the other way around.

While DynaEval does not provide scores for the various criteria, it delivers a comprehensive score
that treats the dialogue as a whole by capturing all possible interactions.

Both works, DialogRPT [58] and DynaEval [59], present advanced approaches for feature engineer-
ing that enables the extraction of useful information from dialogues. The former uses dialogue criteria
which are helpful but only indirectly infer the most fundamental ones like fluency and coherency.
DynaEval proposes good techniques that model the whole dialogue and the interactions with it.
However, the method proposes only an overall criteria rather than informing on specific ones.

3.3 Dialogue Breakdown Detection

In order for a user to receive meaningful replies through interactions with a chat-based dialogue
system, it is crucial to ensure that communication is fluid. The majority of earlier dialogue research
has not concentrated on preventing dialogue breakdown. One of the most significant obstacles is that
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Figure 3.6: The construction of DynaEval. The input consists of two divergent conversations, 𝐷 and �̄�. The
result is a single score that indicates whether D is favored over �̄�. The utterance-level representation produced
from the SRoBERTa model is utilized to initialize conversation graph nodes. Different arrows concerning
edge connection denote various relationships: (1) Solid line denotes intra-speaker dependence. (2) Dotted line
shows inter-speaker interdependence. (3) The color red signifies self-connection. (4) Purple color signifies a
relationship between future statements to prior utterances. (5) Yellow indicates a relationship between past and
future statements [59]

a conversation system may create an unintended statement, resulting in a dialogue breakdown that
affects the quality of the interaction.

This problem has been targeted by a series of challenges, Dialogue Breakdown Detection Challenge
(DBDC), to promote its research since it is a significant issue that requires attention. The first
competition of the series was held in 2016 [61], and the most recent one with results is DBDC4 [7]
from 2019. In this thesis, we focus on the newest one. The task is set up as follows. A conversation
history consists of a sequence of alternating user and system utterances. The target utterance for
dialogue breakdown detection is the next system utterance. Each instance is assigned one of three
candidate classes: Breakdown (B), Possible Breakdown (PB), and Not a Breakdown (NB) by a group
of human annotators. This setup offers a distribution over the possible labels since the evaluators
never agree entirely. The output of a model includes two components: a predicted class from one of
the three candidates B, PB, NB, which is compared against the majority vote of the annotators, and a
probability distribution over the three classes. DBDC4 includes two tracks in two different languages
(Japanese and English) with the same task setting. In this thesis, we work only with the English one.

Shin et al. [63] apply a neural network approach based on bidirectional LSTM. In addition, to
compute the likelihood of each classification, the system uses global and local contextual information
from human and system utterances. The embedding of each input (user speech, system utterance, or
label) is delivered to a global-local attentive encoder (described below). Next, an attention module
computes the external memory associated with system utterances up to turn (n-1) and user utterances
up to turn (n) based on the encoder outputs. Finally, the external memory context, the query (current
system utterance) context, the last user context, and the current label context are sent to the scoring
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module, which estimates the likelihood of the current label.
Sugiyama [62] proposes the usage of an ensemble of BERT models that aim at different dialogue-

specific features in order to make a final prediction for breakdown detection. First of all, an instance
of BERT is used to create a contextual representation of the conversation history. The embeddings of
each utterance are average to deliver a fixed-length vector.

Furthermore, two more instances of BERT are used to estimate the dialogue act (types of an
utterance such as question or greeting) of the dialogue context utterances and a prediction of what the
next one would be based on the context so far. In addition, some hand-crafted features like sentence
length or the number of utterances so far are also utilized. Finally, all of the described features are
concatenated and passed through a feed-forward network to get the probability distribution over the
three classes.

Wang et al. [64] use random forests combined with term frequencies and word embeddings to
predict a probability distribution.

Co-attentive Cross-lingual Neural Model (CXM) by Lin et al. [65] utilizes the most recent
advances in language models to tackle the DBDC4 challenge. They take advantage of a state-of-the-art
cross-lingual pre-trained language model, XLM-R [66], which is pre-trained on large-scale multilingual
corpora. Compared with other cross-lingual language models mBERT [2] and XLM [31], the data
used to pre-train XLM-R is enlarged by orders of magnitude, especially for low-resource languages,
which include both English and Japanese. In addition, they use a co-attentive encoder to compute a
comprehensive representation of dialogue history and the target response to model their relationship
better.

In this sub-section, we discussed multiple works that tackle dialogue breakdown detection using

Figure 3.7: Architecture of BERT-based approach for dialogue breakdown detection combined with handcrafted
features. [62]
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Figure 3.8: Architecture of Co-attentive Cross-lingual Neural Model [65].

approaches. Many of them apply advanced feature engineering and modern neural-network archi-
tectures. However, all of them are supervised and require training data in order to work. While the
DBDC4 benchmark is already in two languages - English, and Japanese, this does not help with other
languages. Hence unsupervised methods are necessary for target languages that are low on resources.

3.4 General Language Understanding Evaluation (GLUE)
Benchmark

This section briefly introduces the General Language Understanding Evaluation benchmark [5],
its sub-tasks, and their relevance to this work. GLUE has two categories of tasks - single- and
pairwise-sentence tasks. They provide annotated data for training models to solve various natural
language understanding problems. The section also discusses how these NLP tasks could be related to
dialogue evaluation since they are initially irrelevant to this work’s core topic. We present an overview
of the whole benchmark in Table 3.1. The presentation of each of the tasks follows.

3.4.1 Single-Sentence Tasks

Corpus of Linguistic Acceptability (CoLA) [67] comprises samples in the English language
that have scores for their grammatical correctness. Formally, this is a binary classification problem,
where sentences are either acceptable (one) or unacceptable (zero) [5]. To evaluate dialogues, CoLA
can provide fluency measures that show how grammatically sound a conversation is.

Stanford Sentiment Treebank (SST-2) [68] contains text excerpts from the movie reviews
that have their sentiments annotated by humans as positive (one) or as negative (zero). Common
sense would suggest that attitude provides no apparent relation to dialogue quality. Nonetheless,
Ghandeharioun et al. [69] perform an ablation study as part of their work to see if knowledge distillation
based on sentiment offers any benefits to evaluating a conversation. Their research shows that there can
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be an improvement depending on the neural network model and the target dataset. So, we investigate
how it relates to annotator scoring on dialogue evaluation.

3.4.2 Pairwise-Sentence Tasks

The pairwise-sentence tasks consider a pair of utterances that appear sequentially in a dialogue.

Microsoft Research Paraphrase Corpus (MRPC) [70] is a dataset of sentence pairs extracted
from news media, where each couple has scores as having the same meaning or not. Formally, it is a
binary classification problem. A paraphrase has a label as positive, and non-semantic equivalence is
negative. In the context of dialogues, a machine learning prediction for this task could imply that a
response to an utterance is just repeating the former. At the same time, a partial degree could suggest
some relevance. The negative case does not have a straightforward interpretation.

Quora Question Pairs (QQP) 1 is a corpus of question pairs extracted from the community
question-answering platform Quora. Similar to MRPC, The focus is to flag a duo of questions as
having the same semantics or not.

Semantic Textual Similarity Benchmark (STS-B) [71] is a dataset of paired-up media
captions, news headlines, and sentences from natural language data that are given a similarity score
from one to five by a human annotator. From a formal perspective, this is a regression problem where
the output ranges between one and five. In a similar fashion to the last two tasks, this task can provide
insights into the relevance and coherence of a response to its preceding utterance by assessing its
semantic similarity.

Question Natural Language Inference (QNLI) [5] dataset is a re-adapted version of the
Stanford Question Answering Dataset (SQuAD) [72]. The original dataset contains question-paragraph
pairs, where an excerpt of the paragraph is an answer to the question. Wang et al. [5] convert it such
that a question is paired up with each sentence from the context paragraph. Only the sentence with the
answer to the questions has a label for textual entailment; the rest do not. The question is a hypothesis
that could entail the sentence or not. It is treated as a relevance ranking problem, where a question can
be more relevant to a sentence than others. Regarding dialogue quality, such a task can help with a
response’s relevancy assessment more straightforwardly than MRPC, QQP, and STS-B.

Recognizing Textual Entailment (RTE) datasets [5] consist of series of challenges: RTE1 [73],
RTE2 [74], RTE3 [75], and RTE5 [76]. Pairs of sentences have been sampled from news and Wikipedia
articles, which have been marked, similarly to QNLI, as textual entailment or no textual entailment2,
a binary classification problem. In a similar fashion to QNLI, RTE can be used to determine the
relevancy of a response to an utterance. However, unlike QNLI, RTE does so for general statements
rather than just questions.

1 https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
2 Originally, there were two additional labels: neutral and contradiction. However, Wang et al. converted the two classes to

no textual entailment [5].
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Task Description Data Sample Label Metric

Single-Sentence Tasks

CoLA Is the sentence
grammatical or un-
grammatical?

"This building is than that one." Unacceptable Matthews

SST-2 Is the movie re-
view positive, neg-
ative, or neutral?

"rich veins of funny stuff in this movie" Positive Accuracy

Pairwise-Sentence Tasks

MRPC Is sentence B a
paraphrase of sen-
tence A?

A) "The DVD-CCA then appealed to the
state Supreme Court."
B) "The DVD CCA appealed that decision
to the U.S. Supreme Court ."

Not
Equivalent

Accuracy
F1

STS-B How similar are
sentences A and
B?

A) "A man is playing the cello."
B) "A man seated is playing the cello."

Very
Similar

Pearson
Spearman

QQP Are the two ques-
tions duplicates?

A) "How do I lose weight fast?"
B) "What is the best way to reduce
weight?"

Duplicates Accuracy
F1

RTE Does sentence A
entail sentence B?

A) "Oil prices fall back as Yukos oil threat
lifted "
B) "Oil prices rise."

No
Entailment

Accuracy

QNLI Does sentence B
contain the answer
to the question in
sentence A?

A) "What percentage of farmland grows
wheat?"
B) "More than 50% of this area is sown for
wheat, 33% for barley and 7% for oats."

Answerable Accuracy

MNLI Does sentence A
entail or contradict
sentence B?

A) "I’ll twist him, sir."
B) "I’ll make him straight."

Contradiction Accuracy

WNLI Sentence B re-
places sentence
A’s ambiguous
pronoun with one
of the nouns. Is
this the correct
noun?

A) "I couldn’t put the pot on the shelf
because it was too tall."
B) "The pot was too tall."

Correct
Referent

Accuracy

Table 3.1: A table overview of all of the tasks in the General Language Evaluation benchmark. Data samples,
together with the labels and evaluation metrics, are included.

Multi-Genre Natural Language Inference Corpus (MNLI) [77] is a compilation of sentence
couples collected via crowd-sourcing that have been annotated for textual entailment, similarly to
QNLI and RTE. However, MNLI does that as a three-class classification problem - textual entailment,
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contradiction, and neutrality. The task is not used for the work due to the lack of a straightforward
mapping of those three classes to an ordinal/continuous variable like a dialogue quality score.

Winograd Schema Challenge (WNLI) [78] aims at reading comprehension where a system
must gain an understanding of a sentence with a pronoun and then choose the suitable referent from a
list of choices. Due to its nature, this task is not relevant and not used for this work.
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CHAPTER 4

Anomaly Detection for Dialogue Evaluation

The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
’Eureka!’ (I found it!) but ’That’s funny ...’

Isaac Asimov

Recently, machine-learning powered dialogue systems have been gathering much attention from
industry and academia alike [24]. These systems have applications in various contexts, starting
from personal speech assistants like Amazon Alexa or Apple Siri, through the “chatbots” on instant
messaging platforms like Skype or Slack. Nowadays, researchers and developers who work on dialogue
systems rely mostly on human annotators to evaluate the quality of a conversation [1, 48, 79]. This
can be very costly in terms of resources. Thus, the research and development of these systems could
benefit significantly from an automated approach that can evaluate conversations.

Human annotators distinguish low from high-quality dialogues similarly to anomaly detection.
Conversations generated from computer systems can appear to human annotators as very unusual, i.e.,
an anomaly. Their perception is based on extensive conversational experience with real people, rather
than using an explicit reference that helps to determine what is correct or wrong.

Research Question 1
Can anomaly detection methods be used to infer the quality of a dialogue?

Thus, the main contribution of this chapter is to investigate whether dialogue modeling approaches
used for dialogue systems can detect anomalous conversations in contrast to normal ones. To the best
of our knowledge, this is the first paper that attempts solving dialogue evaluation by treating it as an
anomaly detection problem.

The chapter is based on the following article:

Rostislav Nedelchev, Ricardo Usbeck, and Jens Lehmann. 2020. Treating Dialogue
Quality Evaluation as an Anomaly Detection Problem. In Proceedings of the 12th
Language Resources and Evaluation Conference, pages 508–512, Marseille, France.
European Language Resources Association.

In this chapter, we investigate four approaches for dialogue modeling that are considered major
milestones in the development of dialogue systems. We adapt them to an anomaly detection task. The
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models provide anomaly detection prediction on utterance-level within a dialogue, which we use for a
correlation analysis with human evaluators

4.1 Background

Larson et al. [80] propose outlier detection to detect erroneous utterances within a dialogue for clean
data annotation in an NLP dataset. The approach averages word embedding of a reply’s content to
obtain an utterance level representation. After that, the second stage clusters the vectors, and the
top-𝑁1 are considered anomalous. The approach provides no dialogue-level information about the
coherency of the conversation and does not offer a replacement for human annotators. So far, this is
the only known work that could be considered related to our specific problem of anomaly detection
combined with dialogue systems to the best of our knowledge.

Anomaly detection, very commonly also outlier or novelty detection, deals with the problem of
finding instances of data that do not belong to the regular pattern like most of the others [37].

There is a long list of works in NLP that have considered using anomaly detection for discovering
incorrect annotations [80–82]. Most of them use handcrafted features to solve the problem.

In the field of deep learning, autoencoders found usage in significant amounts of research to solve
problems from various domains. According to Chalapathy et al. [38], they are at the core of all
unsupervised neural-network-based anomaly detection methods. They have found application in a
wide variety of domains like intrusion or malware detection, bank, or insurance fraud. Autoencoders
learn to create another representation of data (usually, one of lower dimension) and then reconstruct
from it the original input. Their effectiveness is measured using a reconstruction error. Thus, on
examples that an autoencoder has observed and trained on, it has a lower reconstruction rate. At the
same time, on rare or not-previously seen samples, it will exhibit a consistently higher error.

4.2 Methodology

4.2.1 Dialogue Modelling

To investigate the usability of anomaly detection for dialogue evaluation, we consider four neural
network models for dialogue modeling. These approaches tackle conversations by first encoding the
input context and using that representation by decoding it into the response. While this is not the same
as autoencoders, we can use the loss measuring the correctness of mapping the context to the reply in
the same manner as a reconstruction loss. In this subsection, we concisely present the models used for
this study. For more detail on each of the approaches, we would forward the reader to the appropriate
reference, during each of their presentations.

The first model (shown in Figure 4.1(a)) we consider is a recurrent sequence-to-sequence approach,
as described by Vinyals and Le [20]. It models a dialogue as a sequence of pairs of query and response,
i.e., it considers a response as related only to the last utterance before it. The context is encoded using
a recurrent neural network (RNN), and another RNN decodes the representation into the response.
Cross-entropy acts as a reconstruction loss measuring how well the utterance maps to the context.

Next is Hierarchical Recurrent Encoder-Decoder (HRED) by Serban et al. [21], which builds upon
the sequence-to-sequence (Seq2Seq) approach by considering multiple utterances from the context
1
𝑁 is a hyperparameter
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(a) Sequence-to-Sequence Model [20] (b) HRED [21]

(c) VHRED [22] (d) VHCR [23]

Figure 4.1: Architecture diagrams of the four approaches used in this section.

(displayed in Figure 4.1(b)). It does so by using a third RNN. The context utterances are each encoded
using an RNN, and then encoded together one vector representation by the additional RNN. The rest is
as in the sequence-to-sequence approach described earlier.

Thirdly, Serban et al. [22] propose an extended version of HRED, a Hierarchical Latent Variable
Encoder-Decoder (VHRED), by adding a latent variable at the decoder that parametrizes the context
(visualized in Figure 4.1(c)). Kullback-Leibler (KL) divergence provides measures of the reconstruction
between the original context representation and its latent variable version. This way, the approach can
model hierarchically-structured sequences in a two-step generation process-first sampling the latent
variable, and then generating the output sequence-while maintaining long-term context.

Finally, Park et al. [23] report that VHRED sufferers from a degeneration of the latent variable,
which renders the model to behave almost like an HRED. They introduce a global conversation latent
variable such that it is responsible for generating each of the utterances of the dialogue rather than
capturing the whole context post-factum. The method’s architecture is illustrated in Figure 4.1(d).

To train all the models, we use the Cornell Movie-Dialogs Corpus [83]. It has 220,579 conversations
and a total of 304,713 utterances. The training is done by iterating over each dialogue turn and
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considering the full query context. The first sequence-to-sequence approach is using only the last
dialogue turn as a context.

4.2.2 Dialogue Datasets

(a) Distribution of annotator scores.

Feature ConvAI1 ConvAI2

# Dialogues 2154 2237
Avg # Utterances 13.9 18.1
Avg # Words
per Utterance 7.3 8.2

Task Topic
discussion

Person
impersonation

(b) Key features of the dialogue datasets.

Figure 4.2: Overview of the ConvAI1 and ConvAI2 datasets. We see that the majority of dialogues are evaluated
as low quality. Only dialogues with three or more utterances were considered as part of this work.

We use the data gathered during the ConvAI12 [1, 84] and ConvAI23 [79, 85] challenges. The
organizers invited competitors to develop dialogue systems that had to address specific tasks. For
ConvAI1, the participating systems needed to be able to converse about a topic. In the other
competition, the chatbots had to engage in a small-talk while impersonating a pre-defined personality
profile ("persona"). In both cases, human annotators evaluated the capability of the dialogue systems
to converse by interacting with them and giving a score at the end. For both competitions, the scoring
is on dialogue level. In Figure 4.2, we present some additional details about the data. However, we
do not evaluate the two challenges specifically (topic discussion and role acting). Instead, we aim at
general open-domain dialogue evaluation, which implies relevance, coherence, and fluency of the
utterances.

4.2.3 Scoring

As presented in 2.4.1, the cross-entropy loss function will act as a reconstruction loss to detect
anomalies. For obtaining the scores, the dialogues presented in subsection 4.2.2 go through the same
iterative manner described in subsection 4.2.1. After that, the scores are averaged on the dialogue
level to obtain a single value that summarizes the whole conversation.

Cross-entropy is defined as:

2 http://convai.io/2017/data/
3 http://convai.io/data/
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Dataset ConvAI1 ConvAI2

𝑟 𝜌 𝑟 𝜌

Seq2Seq 0.2150 0.3006 0.3444 0.4892
HRED 0.1869 0.2832 0.3469 0.4876
VHRED 0.2210 0.3009 0.3384 0.4885
VHCR 0.2249 0.3037 0.3408 0.4888

Table 4.1: Pearson’s correlation coefficients, 𝑟, and Speaman’s correlation coefficients, 𝜌, on the two dialogue
datasets’ human scores and cross-entropy scores. All of the scores are with a confidence of 𝑝 < 0.0001

𝐿 =
1
𝑇

𝑇∑︁
𝑡=1

𝑙𝑡

𝑙𝑡 = −𝑤𝑟 (
𝑉∑︁
𝑣=1

𝑦
′
𝑣 log(𝑦𝑣))

(4.1)

where 𝑡 stands for the 𝑡-th token in the response, 𝑦′𝑣, and 𝑦𝑣 are the true and the predicted words
from the vocabulary (𝑉), respectively, 𝑤𝑟 are weights used for ignoring padding tokens in a sequence.
All of the scores obtained from a single model applied to a dataset undergo a rescaling such that the
maximum will have a value of 1.0.

4.3 Evaluation

In this section, we will analyze the dialogue datasets, ConvAI1, and ConvAI2, separately for possible
correlations between the cross-entropy values exhibited from each of the models and the respective
annotator score. The results are summarized in Table 4.1.

The first immediate observation is that all of the models across the two datasets demonstrate a
significant positive correlation with the scores from the human annotators. The result is contrary
to the initial expectation for the following reason. Cross-entropy measures the models’ ability to
reconstruct a response from the given query context. Thus, the higher the loss function’s value is, the
more difficult it is for the model to relate the input to the response. The positive correlation states that
as the annotator’s score increases, so does the cross-entropy. Ideally, the correlation between the two
variables should be negative, since the models used training data with proper examples and, thus have
difficulties to process anomalous conversations from dialogue systems. Then, the outlier exchanges
will be lowly evaluated by the human annotators, and the models should have a comparatively higher
loss score.

Furthermore, all of the approaches appear to have a shared understanding and perspective of the
conversations because they are demonstrating a very similar correlation with the annotators’ scoring.
The sequence-to-sequence approach is also on par with the others, which is noteworthy because unlike
the others, it cannot capture long-term dependencies in dialogues. Thus, long-term context appears to
be not necessary for the scoring of these dialogues by the annotators.
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We see that in Figure 4.2 that the dialogue scores by the annotators have a non-uniform distribution.
Thus, we set to investigate if there are any patterns within the various quality subgroups. For that
purpose, we split the dialogues into five equal-width bins based on the minimum (0.0) and maximum
(1.0) values for the human annotator scores. All of the sub-groups that exhibit somewhat negative
correlation coefficients are in Table 4.2.

For the dialogues in ConvAI1, we discover that all of the models exhibit a very weak negative
correlation in the quality scores between 0.4 and 0.8. The considerably lower amount of examples in
the groups with higher quality contributes to low confidence estimates. Nevertheless, this discovery
hints that there is limited potential in using anomaly detection for dialogue quality evaluation.

Meanwhile, for the conversations in ConvAI2, we identify stronger than in ConvAI1 negative
correlations with the top-most in terms of quality samples. The dialogues in the quality range between
0.8 and 1.0 have negative Pearson’s and Spearman’s correlation coefficients. These samples provide
further evidence to the potential of having an anomaly detection perspective on the issue.

Model Dataset Quality
Range 𝒓 ( 𝒑 ≤) 𝝆 ( 𝒑 ≤)

Seq2Seq ConvAI1 [0.4, 0.6) 0.0141
(0.8087)

-0.0513
(0.3791)

Seq2Seq ConvAI1 [0.6, 0.8) -0.0093
(0.9309)

0.0941
(0.3776)

Seq2Seq ConvAI2 [0.8, 1.0] -0.0093
(0.9309)

-0.0093
(0.3791)

HRED ConvAI1 [0.4, 0.6) 0.0145
(0.8039)

-0.0514
(0.3783)

HRED ConvAI2 [0.8, 1.0] -0.2493
(0.0001)

-0.2778
(0.0001)

VHRED ConvAI1 [0.4, 0.6) 0.0093
(0.8737)

-0.0546
(0.349)

VHRED ConvAI1 [0.6, 0.8) -0.0097
(0.9279)

0.0984
(0.3562)

VHRED ConvAI2 [0.8, 1.0] -0.2613
(0.0001)

-0.282
(0.0001)

VHCR ConvAI1 [0.4, 0.6) 0.0106
(0.8559)

-0.0507
(0.3843)

VHCR ConvAI1 [0.6, 0.8) -0.0196
(0.8546)

0.0958
(0.3689)

VHCR ConvAI2 [0.8, 1.0] -0.2609
(0.0001)

-0.2841
(0.0001)

Table 4.2: Selected sub-groups with negative correlation coefficients. The omitted groups have positive
correlations aligned with the results from Table 4.1.
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4.4 Summary

On a high level, we saw that the method is unfit for replacing human annotators. However, when we
consider only various quality sub-groups of the data, the models demonstrate an expected negative
correlation and show some promise for using their loss function outputs for detecting anomalous
conversations.

Overall, the limited ability to generalize or, otherwise, the insignificant amount of training data
are obstacles for using outlier detection methods for evaluating dialogues. As future work, we would
focus in this direction, so that models can better generalize and be able to demonstrate consistent
behavior across various domains, thus, successfully assessing dialogue quality.
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CHAPTER 5

Language Models as Evaluators

Science is organized knowledge. Wisdom is
organized life.

Immanuel Kant

In Chapter 4, we discussed an anomaly-detection driven approach, that unfortunately suffered from
limited generalization abilities as we saw. Hence we turn our attention to pre-trained language models,
that have been exposed to copious amounts of text data, and it is difficult to "surprise" them with
something they have not seen.

Going back to the analogy of how our indispensable human annotators evaluate a dialogue, they
do not use an explicit reference or necessarily seek word overlap between context and response (or
the lack of it). Rather, their assessment bases itself on experience with the language and the implicit
knowledge they have about it. The core principle of statistical language models (LM) is to capture and
reproduce these properties. LMs have proven themselves invaluable in state-of-the-art approaches in
natural language processing, and natural language understanding [2–4, 27].

Research Question 2
Can language models indicate the quality of a conversation?

Thus, the main aim of this chapter1 is to investigate their usability as means for evaluating dialogues
since they do not need a reference or supervision. We demonstrate that there is a significant positive
correlation between the predictions of language models and human evaluation scores. Furthermore,
we provide insights into the inner-workings and behavior of language models in the dialogue context.

The current chapter of the thesis is using the following publication as a basis:

Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2020. Language Model
Transformers as Evaluators for Open-domain Dialogues. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 6797–6808, Barcelona,
Spain (Online). International Committee on Computational Linguistics.

1 Code and resources to reproduce the results are available on the following link:
https://github.com/SmartDataAnalytics/transformers_dialogue_evaluators
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Chapter 5 Language Models as Evaluators

We investigate three different approach for language models for the purpose of evaluating dialogues.
Each of them is considered pivotal in the research of LMs. However, unlike the anomaly detection
approach from the last chapter, they require no adaptions.

5.1 Background

In this section, we shortly revisit related work that focuses on dialogue evaluation. Furthermore, we
revisit language-model-based transformers, as an extension to the discussion in Section 2.3 and recent
advances in this particular set of approaches.

Earlier works ([51, 52]) that we mentioned in 3.1 are can be seen as direct competitors of the current
approach. However, all of them require a ground truth to provide evaluation output for a dialogue.

On another note, Kann et al. [86] suggest a sentence level fluency metric derived from the perplexity
score of a language model given a sentence without involving any references. Their results demonstrate
significant positive correlations with human annotators.

In Section 3.1, we discussed two works by Mehri & Eskenazi [57] and Sai et al. [55] that can be
considered related to what we propose here. In the case of the former, the authors use a fine-tuned
RoBERTa model on dialogue data together and its masked language modelling objective. In addition,
they employ a dialogue retrieval approach to rate the suitability of the responses. Regarding the work
of the latter, the research team uses BERT’s next sentence prediction that is fine tuned to predict the
next utterance instead on dialogue data. Unlike these two works, our approaches are applied as they
are without any adaptions or modifications. It shall be noted, that all three works, (including ours),
have had their articles published in the same year.

5.2 Methodology

In this section, we report on the used datasets for assessing the usability of transformer language
models for evaluating dialogue quality, introduce the used approaches in greater detail and describe
their relevance to the task at hand.

5.2.1 Datasets

We use the same datasets as in the previous Chapter 4 - ConvAI1 [1, 84] and ConvAI2 [79, 85]
challenges. We kindly forward the reader to Section 4.2.2 for mode details and information on the two
datasets.

5.2.2 Language Model Evaluators

In Section 2.3, we presented an introduction into transformer-based language models. In the current
subsection, we will provide more details about three of those architectures, and how we use them for
conducting this study. Our main goal is to use the LM to assign a probability to the utterances in a
conversation. We used HuggingFace’s Transformers2 [87] for implementation and pre-trained weights
of transformer-based language models.

2 https://github.com/huggingface/transformers
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5.2 Methodology

(a) BERT [2] (b) GPT2 [3] (c) XLNet [4]

Figure 5.1: ARchitecture of the RUBER approach. On the left, we have the high-level

Since intuition dictates that responses are dependent on their preceding context, we condition the
target reply on its history to measure its relevance. Kann et al. [86] showed how language models
could serve as good sentence-level fluency indicators. Thus, the calculated probability from the
transformer-based LM can serve as a combined score for fluency and coherency. The following LMs
are used in this chapter:

1. As previously mentioned, BERT [2] is using two language modeling objectives: masked
language modeling (MLM) and next sentence prediction (NSP). MLM provides no viable way
for computing the probability of a target response because it originally substitutes only a random
subset of tokens. Thus, there is no consistent and deterministic way to use masked language
modeling for assigning a probability score to a response given its context. However, BERT’s
next sentence prediction is an excellent approach for the current task. It can judge if an utterance
is the next one given its contextual predecessor. Thus, we pair up the sequentially appearing
sequences in a conversation and compute a probability score for the second reply:

𝑃(𝑢2 |𝑢1) = 𝑃(𝑡21, 𝑡22, ..., 𝑡2𝑛 |𝑡11, 𝑡12, ..., 𝑡1𝑚) (5.1)

,
where 𝑃(𝑢2 |𝑢1) is the probability score of the target response, while (𝑡11, 𝑡12, ..., 𝑡1𝑚) and
(𝑡21, 𝑡22, ..., 𝑡2𝑛) are the tokens belonging to the query and response utterances prospectively.

2. The approach of GPT2 [3] is the standard language model approach that factorizes the joint
probability over the sequence tokens (𝑡1, 𝑡2, ..., 𝑡𝑛) as a product of the conditional probabilit-
ies [27]:

𝑃(𝑥) =
𝑖∏
𝑖=1

𝑃(𝑡𝑛 |𝑡1, 𝑡2, ..., 𝑡𝑖−1) (5.2)
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In our problem domain, we need to consider two consecutive sequences and capture the
coherence between them. Thus, we concatenate them into one, where the context appears first
and is then followed by the second utterance. We then compute the joint probability for the
second part conditioned on the past:

𝑃(𝑥) =
𝑚+𝑛∏
𝑖=𝑚+1

𝑃(𝑡𝑚+𝑛 |𝑡𝑖 , 𝑡𝑛+1, ..., 𝑡𝑚+𝑛−1) (5.3)

where 𝑚 is the length of the context, and 𝑛 is the length of the target utterance.

3. XLNet [4] follows the same general language model approach as GPT2, however, with some
additions to its training objective and neural network architecture. First of all, unlike GPT2,
XLNet optimizes the model over a sequence w.r.t. all possible permutations of the factorization
orders rather than each one separately. Secondly, compared to conventional neural transformers,
XLNet adds one more attention stream that includes the positional information of the target token
but excluding the content to maintain the autoregressive properties. To compute probabilities
for the utterances, we follow the same procedure as described above for GPT2.

In this work, we use a set of hyper-parameter configurations for each of the three language models.
We present them in Table 5.1.

Name Details

bert-base-uncased 12-layer, 768-hidden, 12-heads BooksCorpus English Wikipedia
bert-large-uncased 24-layer, 1024-hidden, 16-heads BooksCorpus & English Wikipedia
gpt2 12-layer, 768-hidden, 12-heads news, Wikipedia, fiction books
gpt2-medium 24-layer, 1024-hidden, 16-heads news, Wikipedia, fiction books
gpt2-large 36-layer, 1280-hidden, 20-heads news, Wikipedia, fiction books
xlnet-base-cased 12-layer, 768-hidden, 12-heads same as BERT + news
xlnet-large-cased 24-layer, 1024-hidden, 16-heads same as BERT + news

Table 5.1: Hyper-parameter configurations (number of layers, size of the hidden state, number of attention heads)
of the models and used corpora to pre-train them. Source: https://huggingface.co/transformers/
pretrained_models.html

5.2.3 Scoring

In Equations 5.2 and 5.3, we showed how language models compute a probability score for a whole
sequence. However, as an aggregated score over the tokens, it is losing the initial probabilistic
distribution over the tokens. Furthermore, since we are dealing with dialogues, i.e., a sequence of
utterances, we need to perform two levels of aggregation. The first level is an aggregation of the word
tokens within an utterance, while the second is the done while aggregating over the utterances.

Thus, we investigate other possible ways to derive an aggregated score over the word tokens and
over the utterances within a dialogue. Besides a product of probabilities, we also look into a sum
and an unweighted average, which capture the length of the sequences (utterance or dialogue), which

46

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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might prove beneficial for a correlation study with human annotators. We normalize all of the scores
such that they range between 0.0 (population minimum) and 1.0 (population maximum).

For GPT2 and XLNet, our experiments show that the following formulation correlates the highest
with human annotator scores:

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∑︁

𝑢=1

(∑𝑊𝑜𝑟𝑑𝑠
𝑤=1 𝑃(𝑤=𝑤)

#𝑊𝑜𝑟𝑑𝑠

)
(5.4)

In addition, we experimented with the following formulations of a LM-based evaluation score:

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∑︁

𝑢=1

(
𝑊𝑜𝑟𝑑𝑠∑︁
𝑤=1

𝑃(𝑤=𝑤)

)
(5.5)

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
1

#𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠

𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∑︁
𝑢=1

(∑𝑊𝑜𝑟𝑑𝑠
𝑤=1 𝑃(𝑤=𝑤)

#𝑊𝑜𝑟𝑑𝑠

)
(5.6)

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
1

#𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠

𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∑︁
𝑢=1

(
𝑊𝑜𝑟𝑑𝑠∑︁
𝑤=1

𝑃(𝑤=𝑤)

)
(5.7)

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∏

𝑢=1

(
𝑊𝑜𝑟𝑑𝑠∑︁
𝑤=1

𝑃(𝑤=𝑤)

)
(5.8)

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∏

𝑢=1

(∑𝑊𝑜𝑟𝑑𝑠
𝑤=1 𝑃(𝑤=𝑤)

#𝑊𝑜𝑟𝑑𝑠

)
(5.9)

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∏

𝑢=1

(
𝑊𝑜𝑟𝑑𝑠∏
𝑤=1

𝑃(𝑤=𝑤)

)
(5.10)

The correlation coefficients between these aggregations scores and the human annotation are either
of low values, are insignificant (low 𝑝-value), or both.

5.2.4 Baseline

We take RUBER from Tao et al [52] as a baseline. The approach initially employs two components
that perform two functions. The first one is to calculate a resemblance score using word vector pooling
and references. We aim for an unreferenced evaluation approach akin to a human evaluator. Thus, we
use only the second component of the method. This second component can calculate a relevance score
for a given response based on its preceding context. It uses a bidirectional GRU network and negative
sampling. To reproduce as best as possible the original results of RUBER, we sample 1,449,218 pairs
of sequential utterances from the OpenSubtitles dataset [88].

5.3 Evaluation

In this part of the chapter, we will conduct a correlation analysis between the calculated probabilities
from the LM and the scores given to dialogues by human evaluators. We provide a closer look at
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Dataset ConvAI1 ConvAI2

𝑟 𝜌 𝑟 𝜌

bert-nsp-d-sum 0.169 0.273 0.205 0.490
bert-large-nsp-d-sum 0.172 0.277 0.205 0.485

gpt2-u-avg-d-sum -0.027 0.068 0.152 0.323
gpt2-md-u-avg-d-sum -0.005 0.069 0.144 0.325
gpt2-lg-u-avg-d-sum -0.038 0.048 0.127 0.325

xlnet-u-avg-d-sum 0.068 0.157 0.206 0.435
xlnet-lg-u-avg-d-sum 0.087 0.169 0.225 0.437

RUBER-U 0.154 0.129 0.013 -0.005
Table 5.2: Pearson’s 𝑟, and Speaman’s 𝜌, correlation coefficients on the two dialogue datasets’ human scores
and various aggreggated scores from the language models. "u-avg-d-sum" stands for averaged probabilities
on utterance level and then summed up on conversation level. Most of the scores are with a confidence of
𝑝 <= 0.001. Exceptions are GPT2-medium and GPT2 in ConvAI1 with 0.812 and 0.212 respectively, as well
as, RUBER-U for ConvAI2, both 𝑟 and 𝜌, with 0.5309 and 0.8166, respectively.

some auxiliary model outputs as well.

5.3.1 Quantitative Assessment

In Table 5.2, we report the noteworthy Pearson’s and Spearman’s correlation coefficients between the
aggregated probability scores and the evaluations of the dialogues.

The immediate observation of using language models as dialogue evaluators shows that there are
gaps in terms of performance between the three different approaches. Most evident is the difference
between BERT and the others. Its next sentence prediction objective explains this behavior. Unlike
the other two, BERT takes the most structured approach to modeling two sequences. It recognizes the
two utterances as separate and captures their information as a whole. Thus, when we compare it to
GPT2 and XLNet, it has the advantage of not needing score aggregation on utterance level, because it
produces a probability for the whole sentence rather than word for word.

Also, there is a smaller difference in performance between GPT and XLNet. First of all, they share
a core foundation as autoregressive language models, thus are more similar to each other than BERT,
which also explains their overall behavioral similarity. However, XLNet has a structural improvement
in its architecture. Unlike GPT2, it also encodes the positional information of the target token. Thus,
similarly to BERT, it can capture more information about a sequence and consequently have a better
correlation score.

Additionally, we investigate the effect of model size. The difference in correlation coefficients
between the hyperparameter configurations is marginal and, in one of the cases, even non-existent.
The most evident example is the spectrum displayed by the three GPT2 settings. Ultimately, we can
conclude that smaller models perform similarly at a much smaller energy cost.

In regards to score aggregation, all the approaches unanimously show that averaging on utterance
level and summing up the whole conversation is the most informative for dialogue evaluation. At the
same time, the using a product or an unweighted average produce correlation coefficients very close to
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zero and with an extremely low significance (e.g., 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ranging from 0.4 to 0.8). The behavior
indicates that while utterance length is insignificant, the duration of the conversation strongly dictates
its quality score.

5.3.2 Qualitative Assessment

(a) ConvAI1 (b) ConvAI2

Figure 5.2: Regression plots showing the relation between quality score and utterance length in the ConvAI1
and ConvAI2 datasets. The shaded area around the line represents a confidence interval.

In Figures 5.2(a) and 5.2(b), the regression models show the interaction between the annotator
quality score and the length of a conversation in ConvAI1 and ConvAI2, respectively. In both cases,
the regression shows a positive trend that the longer a dialog is, the better its assessment is. We
also see that in the case of ConvAI1, the confidence area is much wider than in ConvAI2. This
behavior further supports the results in Table 5.2, where the language models have considerably lower
correlation coefficients for ConvAI1.

Furthermore, we manually investigated short conversations from both datasets that also have low
quality. Many of the short dialogues show that the system would indeed perform poorly by not
responding at all, or the first couple of utterances would be not diverse or even the same. Thus,
the annotator would terminate the session and evaluate the dialogue with a low score. In contrast,
conversations that were more interactive and had longer duration also performed better in their
assessment.

5.3.3 What Would a Language Model Say?

In this subsection, we report the correlation scores between the maximum probabilities for each token
and the annotator scores. The intuition is that besides being renown for advancing the state-of-the-art
in various NLP benchmarks, language models are prominent for being capable generators of natural
language. Furthermore, Hendrycks and Gimpel [40] have demonstrated that the maximum class
probability of a neural network classifier tends to output lower values for samples that are out of
distribution. Thus, we set to investigate whether the predicted maximum classes of language models
can also indicate the quality of dialogues.
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Although there are some studies [89] demonstrating BERT generating text, we will not consider it
in this part of the work due to the nature of its masked language modeling, which does not aim at
generating text. Considering GPT2 and XLNet, we look into what are the most likely words they
predict for each token of the sequence instead of the original ones.

For the context of dialogue evaluation, it means that on average 𝑚𝑎𝑥 scores should be higher for
fluent and coherent text like the one used for pretraining the language models. At the same time,
erroneous samples should have lower maximum probabilities.

Firstly, we investigate the quantitative relation of the 𝑚𝑎𝑥 scores to human annotator scores.
Similarly to what we did in Section 5.3.1, we have calculated the aggregated probability scores for the
most likely words according to the language models (shown in Equation 5.11).

𝑙𝑚_𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 =
𝑈𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠∑︁

𝑢=1

(∑𝑊𝑜𝑟𝑑𝑠
𝑤=1 𝑃(𝑤=𝑤𝑚𝑎𝑥 )

#𝑊𝑜𝑟𝑑𝑠

)
(5.11)

Original Context Original Response
(as in dataset)

Generated Response
(generated by transformer)

"Wow! Are you man or woman?" "I am! i am a woman." " ’m a I am a man! I"
"How nice! Do you have a
boyfriend?" "I do not. i am a single mom." " ’m . . I am a

virgin woman. i"

"What do you mean?" "granted the right to accept
only one religion" "anted, fact to be or the of"

"Do you know Utrecht?" "granted the right to
accept only one religion"

"ind, title to use donations
Dutch application"

Table 5.3: Sample dialogue exchanges as originally seen in the ConvAI1 and ConvAI2 datasets together with
alternative responses generated by GPT2 by just taking the most likely word. Coherent examples induces the
language models to generate also good response. The top two examples have high human annotator scores,
while the bottom two are rated lowly.

Dataset ConvAI1 ConvAI2

𝑟 𝜌 𝑟 𝜌

gpt2-u-avg-d-sum 0.133 0.261 0.193 0.477
gpt2-md-u-avg-d-sum 0.144 0.263 0.196 0.476
gpt2-lg-u-avg-d-sum 0.146 0.267 0.196 0.477

xlnet-u-avg-d-sum 0.157 0.263 0.211 0.471
xlnet-lg-u-avg-d-sum 0.137 0.251 0.209 0.475

Table 5.4: Pearson’s correlation coefficients, 𝑟, and Speaman’s correlation coefficients, 𝜌, on the two dialogue
datasets’ human scores and various aggregated scores for the 𝑚𝑎𝑥 word instead of the target. "u-avg-d-sum"
stands for averaged probabilities on utterance level and then summed up on conversation level. All of the scores
are with a confidence of 𝑝 < 0.001.
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5.4 Summary

We present the results in Table 5.4. When compared to the analogous results in Table 5.2, we
see that GPT2 and XLNet demonstrate noticeably higher correlation coefficients, especially for the
dialogues in the ConvAI1 dataset. This discrepancy suggests that for some of the cases, the models can
generate text that would fit better into the conversation. Since, ConvAI1 and ConvAI2 happened before
the introduction of transformer-based language models, it is save to assume that the participating
systems are inferior.

In Table 5.3, we present some short sample conversations together with a generated text by a
language model. The top two examples have high scores by the human annotators, while the rest are
of low quality. The model can reconstruct sensible responses that make sense and are still different
from the original reply. On the other hand, whenever there is an incoherent conversation like the third
and fourth examples, GPT2 and XLNet are not able to recreate a response that is either somewhat
fluent or related to the current context. Another peculiarity is that the language model possesses in
a sense, common knowledge. This is demonstrated by the fourth example, while in the preceding
utterance, we see Utrecht, a Dutch city, and the model is then induced to predict "Dutch" as one of the
response tokens.

5.4 Summary

In this study, we investigated whether transformer-based language models can evaluate dialogues
in terms of coherency and fluency. Overall, Pearson’s and Spearman’s correlation coefficients
demonstrate that BERT, GPT2, and XLNet can indicate a conversation’s quality without any additional
supervision or reference. While, in their core, the three use the same approach, transformers, they have
further structural modifications that set them apart when considered for the current problem domain.

GPT2 performs worst due to its standard language modeling approach that incorporates the least
structural information about a sequence. XLNet achieves an improvement in terms of its correlation
score by taking advantage of additional positional information when predicting a target token. Finally,
BERT’s next sentence prediction approach delivered the highest performance thanks to its structured
approach in regards to separate utterances.

While LM-based dialogue evaluators cannot yet replace human annotators, they have additional
value when compared to word-over metrics like BLEU or ones that use word-embeddings. Although
they cannot completely replace human evaluators, They can support as weak indicators for quality.
Additionally, we have shown that they can perform better than competing approaches like the
unreferenced component of RUBER.

Furthermore, the autoregressive language models, GPT2 and XLNet, demonstrate an excellent
initial aptitude for conducting dialogues. They can provide alternative responses that are also coherent
with the context of a discussion.

51





CHAPTER 6

Proxy Indicators for Dialogue Quality

Never discourage anyone...who continually
makes progress, no matter how slow.

Plato

In the last Chapter, Chapter 5, we demonstrated how transformer-based language models with
different training objectives can effectively evaluate dialogue systems. However, they all have one
major disadvantage - they offer only a single score that evaluates only the overall quality, but provides
no targeted insight about the specific dialogue features like fluency or coherency. Hence, we are need
to find a way to measure those features independently.

Once again, we revisit the analogy of how our invaluable human annotators evaluate a dialogue,
instead of using a sample response, they usually would detect issues with conversations based on
natural criteria like fluency or coherency. These are related to a specific skills that people acquire
while learning any language. For decades, NLP researchers have tried to teach such skills to computers.
Usually, this is achieved by the introduction of specific benchmarks.

Research Question 3
Are standard NLP tasks helpful with the evaluation of dialogues?

Thus, the main goal of this chapter1 is to investigate the usability of standard benchmarks as means
for evaluating dialogues since they do not need a reference or supervision. We demonstrate that there
is a significant positive correlation between the predictions on benchmarks and human evaluation
scores. Furthermore, we demonstrate a composable metric based on those predictions that allows
focus on various criteria.

The current chapter of the thesis is using the following publication as a basis:

Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2021. Proxy Indicators for the
Quality of Open-domain Dialogues. In Proceedings of the 2021 Conference on Empirical

1 Code and resources to reproduce the results are available on the following link:
https://github.com/SmartDataAnalytics/proxy_indicators
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Chapter 6 Proxy Indicators for Dialogue Quality

Methods in Natural Language Processing, pages 7834–7855, Online and Punta Cana,
Dominican Republic. Association for Computational Linguistics.

We investigate whether natural language processing (NLP) tasks can serve as proxy indicators for a
conversation’s quality. For that purpose, we use a fine-tuned BERT [2] model trained on the GLUE
benchmark [5]. GLUE provides a comprehensive evaluation of general language understanding. We
demonstrate that a few of the tasks exhibit a limited potential of serving as proxy indicators. The rest
shows negative results.

6.1 Background

More recently, Ghandeharioun et al. [69] propose a framework that uses self-play and two NLP tasks as
an additional source of knowledge to evaluate dialogues in a multi-turn mode scenario. They perform
an ablation study using sentiment and natural language inference as proxy supervision to see whether
their system can better approximate human judgment. Their work shows that dialogue systems can
benefit from using them. Also, Welleck et al. [90] frame the dialogue consistency issue as a natural
language inference problem and propose the DialogueNLI dataset. Its purpose is to benchmark a
model’s ability to select relevant utterances relative to a given context.

6.2 General Language Understanding Evaluation

In Chapter 3.4, we have presented the GLUE benchmark in detail and its respective tasks. It serves as
the foundation of NLP tasks that will act as indicators for the various dialogue criteria. Hence, we
kindly forward the reader to read it for more details.

6.3 Methodology

6.3.1 Dialogue Datasets

To evaluate the ability of a deep-learning model trained on GLUE to indicate the quality of dialogues,
we use the English datasets (TopicalChat, PersonaChat) provided by Mehri & Eskenazi [57]. They
train a few different dialogue system models and use different sequence generation techniques to
generate responses for certain dialogue contexts. The researchers then evaluate 660, in total, dialogue
contexts and responses according to six criteria:

• Understandable (0 - 1) - Can a user understand the final response given the context?

• Natural (1 - 3) - Does the user find the response like something that a real person would say?

• Maintains Context (1 - 3) - Is the response part of the established flow in the conversation?

• Interesting (1 - 3) - Is the utterance boring or does it contribute to the discussion?

• Uses Knowledge (0 - 1) - Given a background knowledge base, how well does the response
make use of it or relate to it?
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6.3 Methodology

• Overall Quality (1 - 5) - Considering the previous criteria, what is the general perception of
the quality of the utterance?

Each of the conversations context has been evaluated by three annotators. The authors of the dataset
report that most inter-annotator agreement or correlation scores for the criteria are above 0.4, which
suggest a moderate to strong agreement.

For further details about the dataset, we forward the reader to the original work of Mehri &
Eskenazi [57].

6.3.2 BERT as a Proxy Indicator for Dialogue Quality

Since the GLUE benchmark is about general language understanding, we are interested to know
whether a model trained on it can indicate the quality of the dialogue. To conduct the investigation,
we use BERT [2] and its fine-tuned models on the GLUE benchmark [91, 92]. We use the version
with 110M parameters. For each investigated GLUE task, there is a separate copy of the whole model
trained to solve that specific problem. While we did not train the models ourselves, the inference is
less demanding. It takes about 30 minutes on a laptop with an eight-generation Intel i7 CPU.

For encoding the text sequence, we use several instances of BERT (shown in Figure 6.1), a

Figure 6.1: An example demonstrating the usage of multiple BERT instances for the various GLUE tasks. In
additon, we see all the scores combined into one using a linear regression.
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pre-trained bidirectional transformer encoder language model. The pre-training has been done using
two unsupervised tasks: masked language modeling and next sentence prediction. This way, it can
learn a contextualized semantic representation of the input text usable for downstream tasks. BERT
can create a vector encoding for a whole sequence by always inserting a control token, [𝐶𝐿𝑆], at the
beginning. For the case of pair-wise sentence tasks, e.g., next sentence prediction, it uses an additional
control token, [𝑆𝐸𝑃], between the two sentences to distinguish them.

When fine-tuned for a specific task, the pre-trained language model weights are reused. In addition,
a layer is added to act as a transformation from BERT’s semantic representation to the space of the
target variable, e.g., the classes of RTE or CoLA.

6.3.3 Scoring

For obtaining model predictions, the dialogue data is provided as input in three possible ways: 1.
single utterance, 2. a dialogue context and a response, or 3. related facts to a conversation and a
response. Depending on the GLUE task, the model can give four different types of output scores:

Single-sentence classification output provides softmax output for CoLA and SST-2. Given
the contextualized semantic representation of a single utterance from the dialogue𝑈 the probability
whether it is linguistically acceptable or with a positive sentiment is:

𝑃𝑟 (𝑐𝑡𝑎𝑠𝑘 |𝑈) = softmax(𝑊𝑇
𝑡𝑎𝑠𝑘 ·𝑈),

𝑡𝑎𝑠𝑘 ∈ {CoLA, SST-2}
(6.1)

where𝑊 are the task-specific weights, 𝑐 is the output class for the target task.

Pairwise text similarity outputs a similarity score, for the STS-B task, between a pair of a context
or fact and a target response from the same dialogue 𝐶 (or 𝐹 for a fact) and 𝑅, concatenated and jointly
encoded by BERT as𝑈:

𝑆𝑖𝑚(𝑈) = (𝑊𝑇
STS-B ·𝑈) (6.2)

𝑊 are the weights specific to STS-B, and𝑈 is the concatenation of a dialogue context or fact with a
target response.

Pair-wise text classification is used for the three relevant tasks of RTE, QQP, and MRPC. It
functions in the same manner as single-sentence classification, with one difference. Two, instead of
one, sequences are used as input to the model. The dialogue context or fact and the target response are
concatenated. Between the two, a special token is inserted to signify that the input sequence has two
components:

𝑃𝑟 (𝑐𝑡𝑎𝑠𝑘 |𝑈) = softmax(𝑊𝑇
𝑡𝑎𝑠𝑘 ·𝑈),

𝑡𝑎𝑠𝑘 ∈ {RTE,QQP,MRPC}
(6.3)
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6.4 Evaluation

Pairwise ranking finds its application in the QNLI task. Likewise to pairwise text similarity, The
dialogue context or fact and the target response are concatenated 𝐶 (or 𝐹) 𝑅 from the same dialogue
are encoded as one𝑈 to calculate a relevance score:

𝑅𝑒𝑙 (𝑈) = 𝑔(𝑊𝑇
𝑄𝑁𝐿𝐼 ·𝑈),

𝑔(𝑥) = 𝑒
𝑥

𝑒
𝑥 + 1

(6.4)

After model predictions are made on all utterances and sequential pairs of those across all tasks, the
outputs have been rescaled between 0 and 1 for each GLUE task independently, as well as the scores
given by the human annotators.

𝑥
′
𝑇𝐴𝑆𝐾 =

𝑥𝑇𝐴𝑆𝐾 − 𝑚𝑖𝑛(𝑥𝑇𝐴𝑆𝐾 )
𝑚𝑎𝑥(𝑥𝑇𝐴𝑆𝐾 ) − 𝑚𝑖𝑛(𝑥𝑇𝐴𝑆𝐾 )

(6.5)

Finally, similarly as Mehri & Eskenazi [57], we train a regression that combines all the scores in
one overall score:

𝑦𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒 = 𝑏 +
𝐺𝐿𝑈𝐸∑︁
𝑖=0

𝑤𝑖 · 𝑥𝑖 (6.6)

6.4 Evaluation

Here, we analyze the dialogue datasets [57] for possible relations between the GLUE task predictions
and the annotator scores.

6.4.1 Baseline: UnSupervised and Reference free (USR) evaluation metric

To bring the results into context, we compare our results to the work of Mehri & Eskenazi [57]. Their
approach is reference-free and unsupervised. So, it acts as a baseline against which we compare the
method proposed in this chapter. The algorithm has three components.

The first component, RoBERTa [32], is fine-tuned on either PersonaChat [85] or Topical-Chat [93].
A concatenation of the input dialogue context and the target response is provided to its masked
language modelling (MLM) objective. The tokens in the response part are iteratively replaced. In the
end, the approach provides a probability score for the whole target sequence that indicates its fluency
given the dialogue context. It is referred to as USR-MLM.

The second component again uses RoBERTa as its foundation. However, this time, it is fine-tuned
on the Ubuntu Corpus [94] to perform dialogue retrieval using negative sampling. It is trained to
distinguish between the proper response of a given context and a randomly sampled one. Mehri &
Eskenazi [57] report that this metric is appropriate for evaluating Maintains Context, Interesting, and,
Uses Knowledge. They refer to it as USR-MLM (𝑥 = 𝑐) or USR-MLM (𝑥 = 𝑓 ) for calculating it against
the dialogue context or dialogue facts, respectively.

Finally, the third component is a combination of the other two. Mehri & Eskenazi [57] propose
using a regression model to obtain one single score based on two separate metrics. This enables
measuring the overall quality of a conversation. It is referred to as only USR.
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Chapter 6 Proxy Indicators for Dialogue Quality

While Mehri & Eskenazi [57] report turn- and system-level correlation scores. We benchmark only
against turn-level scores due to a lack of detail of how the system-level ones are calculated.

6.4.2 Quantitative Assessment

In Tables 6.1(a) and 6.1(b), we present the correlation analysis between the automated quality metrics
and human annotator scores.

In almost all of the criteria, the combined proxy indicators via linear regression outperform the
combined USR metric and its best-performing components. Whereas, in the few cases where USR
performs better than the proxy indicators, it is within a minor relative difference.

Looking at the Understandable and Natural criteria, we see that CoLA as a single proxy indicator
can weakly infer the two measures on the TopicalChat dataset. However, it is outperformed by STSB
and MRPC in PersonaChat, which suggests that the dialogues have a different nature, that involves
context more strongly. This difference is also visible in the weaker performance of USR-MLM for
Understandable and the shift to context-based USR-DR for Natural.
Maintains Context is the only criterion where USR outperforms the proxy indicators. Among the

proxy indicators, Semantic Textual Similarity Benchmark (STSB) is the best performer, suggesting
that some partial semantic overlap between context and response is necessary to model a dialogue’s
cohesiveness. Although, it is common sense that a reply does not need to have a high degree of
semantic overlap with its context. Ultimately, the context-based USR-DR is the best-performing
measure. We contribute its performance to the fact that it has been trained on dialogue data to
distinguish between a correct and randomly sampled response.

We turn our attention to the Interesting quality measure, where USR struggles on the PersonaChat
dataset. The linear regression of the proxy indicators outperforms the rest by a considerable margin.
It is curious to see that the calculated STSB against the conversation data has a relatively higher
correlation score. This performance suggests that responses that used the facts from the dialogue
were also considered as engaging, i.e., there is an overlap between the criteria Interesting and Uses
Knowledge. Aside from that, we recommend using Recognizing Textual Entailment (RTE) to indicate
the interestingness of dialogue using only its context. Our results show a weak correlation with
Pearson’s and Spearman’s coefficients ranging from 0.11 to 0.21.

The lastly mentioned metric is also the best performer for the latter criterion. Furthermore, the
fact-based STSB that is compared against Uses Knowledge delivers the highest correlation score
among all metrics. Thus, a kind of semantic similarity measure can be very indicative of whether a
knowledge base is mentioned in a conversation or not.

The linear regression of all proxy indicators appears as the most consistent performer delivering
the highest scores among several specific criteria and for Overall one except for the context-based
USR-DR, which has a higher Spearman correlation score.

All of the correlation coefficients for all pairs of predictors and human annotator criteria are available
in Appendix A.2.
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TopicalChat

Metric Pearson Spearman

Understandable

USR-MLM 0.3268 0.3264
USR 0.3152 0.2932
CoLA 0.2458 0.2341
Lin-Reg (all) 0.3420 0.3390

Natural

USR-MLM 0.3254 0.3370
USR 0.3037 0.2763
CoLA 0.2069 0.1677
Lin-Reg (all) 0.3357 0.3130

Maintains Context

USR-DR (x=c) 0.3650 0.3391
USR 0.3769 0.4160
STSB 0.2350 0.2340
Lin-Reg (all) 0.3489 0.3409

Interesting

USR-DR (x=c) 0.4877 0.3533
USR 0.4645 0.4555
STSB (fact) 0.4147 0.4103
Lin-Reg (all) 0.5335 0.5364

Uses Knowledge

USR-DR (x=f) 0.4468 0.2220
USR 0.3353 0.3175
STSB (fact) 0.4808 0.4522
Lin-Reg (all) 0.5119 0.5295

Overall

USR-DR (x=c) 0.3245 0.4068
USR 0.4192 0.4220
STSB (fact) 0.3324 0.3220
Lin-Reg (all) 0.4974 0.4877

(a)

PersonaChat

Metric Pearson Spearman

Understandable

USR-MLM 0.1186 0.1313
USR 0.1324 0.1241
STSB 0.1286 0.1159
Lin-Reg (all) 0.1214 0.1218

Natural

USR-DR (x=c) 0.2291 0.1733
USR 0.2430 0.1862
MRPC 0.1794 0.2410
Lin-Reg (all) 0.1728 0.2044

Maintains Context

USR-DR (x=c) 0.5625 0.6021
USR 0.5280 0.6065
STSB 0.3620 0.3463
Lin-Reg (all) 0.4029 0.3707

Interesting

USR-DR (x=c) 0.2634 0.0606
USR 0.0171 0.0315
STSB (fact) 0.3419 0.3378
Lin-Reg (all) 0.3272 0.3306

Uses Knowledge

USR-DR (x=c) 0.6309 0.4508
USR 0.3177 0.4027
STSB (fact) 0.7329 0.7173
Lin-Reg (all) 0.5921 0.5898

Overall

USR-DR (x=c) 0.4814 0.6087
USR 0.4693 0.4115
STSB (fact) 0.3742 0.3898
Lin-Reg (all) 0.5290 0.5382

(b)

Table 6.1: Turn-level correlation results based on the sample dialogues from the TopicalChat (a) and PersonaChat
(b) datasets. The USR metrics are from the original work of Mehri et al [57]. Only the best performing metrics
are shown in the table. All of the correlation coefficients are with a statistical significance of 𝑝 < 0.05.
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6.4.3 Ablation Study

We investigate four configurations for using a different subset of the proxy indicators to calculate
a combined score using linear regression and check the correlation coefficients against the various
dialogue criteria:

• Lin-Reg (single) - a linear regression combining only the single-sentence GLUE tasks applied
on the target response - CoLA, SST-2

• Lin-Reg (context) - a linear regression combining only the pair-wise sentence GLUE tasks that
model the dialogue context, and the target response - MRPC, QQP, STSB, QNLI, RTE

• Lin-Reg (fact) - a linear regression combining only the pair-wise sentence GLUE tasks that
model the dialogue facts, and the target response - MRPC, QQP, STSB, QNLI, RTE

• Lin-Reg (all) - a linear regression combining all of GLUE tasks that model the dialogue context,
fact, and the target response

The combination of single sentence tasks shows signs of capability only on the criteria which can
be evaluated utterance-wise, Understandable, Natural, and Interesting. While in the others, there is a
drop in correlation coefficients and statistical significance, which agrees with general intuition. The
single-sentence tasks cannot model dialogue quality metrics that require a view beyond the single
utterances.

Turning to Maintains Context, we see the inverse perspective. The pair-wise sentence proxy
indicators applied to the dialogue context, and target response demonstrate the best ability, while the
single sentence is the worst. Furthermore, the observation is partially supported by the pair-wise tasks
applied to the dialogue facts.

In regards to Interesting, it is evident that the pair-wise tasks outperform the single-sentence ones
since context dictates what is engaging in a conversation rather than the single utterances.

Moreover, the fact-based pair-wise proxy indicators demonstrate their strong ability to model the
Uses Knowledge criterion since these are the only automatic metrics that have access to the fact
information. In comparison, the others underperform since they are not evaluated against the relevant
data.

Finally, it is evident that to calculate an Overall score, one needs to use all of the proxy indicators.
All of the subset combinations perform worse than the linear regression combining all of the metrics.
Moreover, we see how the correlation improves for the combined score regarding the specific criteria
like Maintains Context, and Interesting.

6.4.4 GLUE Predictor Feature Importance

In Figure 6.2, we present the inferred weights of the single GLUE predictors via linear regression.
It is immediately evident that in both datasets, the single sentence tasks, CoLA and SST, have an

insignificant influence on the prediction of the overall quality score.
Semantic overlap between the utterances via STS-B and MRPC plays in both cases a significant

role. However, in TopicalChat, the latter of the two has an even more substantial part. The trivia-like
nature of the conversations explains the behavior. The significant scores of QQP and QNLI between
facts and conversation utterances support the observation.
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TopicalChat

Metric Pearson Spearman

Understandable

Lin-Reg (single) 0.2542 0.2470
Lin-Reg (context) 0.1664 0.1638
Lin-Reg (fact) 0.2572 0.2362
Lin-Reg (all) 0.3420 0.3390

Natural

Lin-Reg (single) 0.2148 0.1853
Lin-Reg (context) 0.1986 0.1972
Lin-Reg (fact) 0.2244 0.1805
Lin-Reg (all) 0.3357 0.3130

Maintains Context

Lin-Reg (single) 0.0469 0.0197
Lin-Reg (context) 0.2859 0.2946
Lin-Reg (fact) 0.2272 0.1921
Lin-Reg (all) 0.3489 0.3409

Interesting

Lin-Reg (single) 0.1483 0.0881
Lin-Reg (context) 0.3884 0.4008
Lin-Reg (fact) 0.4358 0.4078
Lin-Reg (all) 0.5335 0.5364

Uses Knowledge

Lin-Reg (single) 0.0699 0.0377
Lin-Reg (context) 0.2455 0.2751
Lin-Reg (fact) 0.5517 0.5182
Lin-Reg (all) 0.5119 0.5295

Overall

Lin-Reg (single) 0.1432 0.1138
Lin-Reg (context) 0.3492 0.3587
Lin-Reg (fact) 0.3897 0.3482
Lin-Reg (all) 0.4974 0.4877

(a)

PersonaChat

Metric Pearson Spearman

Understandable

Lin-Reg (single) 0.0643 0.0603
Lin-Reg (context) 0.1626 0.1345
Lin-Reg (fact) 0.0255 0.0328
Lin-Reg (all) 0.1214 0.1218

Natural

Lin-Reg (single) -0.0285 0.0302
Lin-Reg (context) 0.2033 0.2160
Lin-Reg (fact) 0.0546 0.0319
Lin-Reg (all) 0.1728 0.2044

Maintains Context

Lin-Reg (single) 0.0974 0.1012
Lin-Reg (context) 0.4178 0.3981
Lin-Reg (fact) 0.1783 0.1110
Lin-Reg (all) 0.4029 0.3707

Interesting

Lin-Reg (single) 0.1675 0.1597
Lin-Reg (context) 0.2185 0.2216
Lin-Reg (fact) 0.3446 0.3412
Lin-Reg (all) 0.3272 0.3306

Uses Knowledge

Lin-Reg (single) 0.0464 0.0644
Lin-Reg (context) 0.1909 0.1916
Lin-Reg (fact) 0.6959 0.7020
Lin-Reg (all) 0.5921 0.5898

Overall

Lin-Reg (single) 0.1216 0.1263
Lin-Reg (context) 0.3975 0.3802
Lin-Reg (fact) 0.3990 0.4135
Lin-Reg (all) 0.5290 0.5382

(b)

Table 6.2: Turn-level correlation results for different mixtures of proxy indicators based on the sample dialogues
from the TopicalChat (a) and PersonaChat (b) datasets. All of the correlation coefficients except the ones with
italics have a statistical significance of 𝑝 < 0.05.
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Figure 6.2: The weights as inferred by the linear regression Lin-Reg (all)) for each of the single GLUE
predictors.

Looking at the influence of knowledge-base-related predictors, we see that in PersonaChat, it is
essential to have semantic similarity (STSB) with the knowledge base facts, i.e., that the dialogue
systems use the personal traits in the conversation.

6.4.5 Error Analysis

We provide regression plots with 95% confidence intervals between predictions and human annotator
scores. Figures 6.3, and 6.4 show the correlation between the single GLUE predictions and the human
annotator scores for TopicalChat and PersonaChat, respectively. While, Figures 6.5, and 6.6 show the
correlation between the various combinations using linear regression and the human annotator scores
for TopicalChat and PersonaChat, respectively. The vertical lines represent the prediction distribution
for the given averaged annotator score within a 95% confidence interval. The dot signifies the mean
value. For example, looking at Figure 6.6, subplot "lin-reg_fact | Uses Knowledge," the line overlaps
well with the lowest (0) and the highest score (1), meaning that the prediction can distinguish well
between when a dialogue uses knowledge or not. However, in the cases where the annotators could
not agree, the predictor tends to overestimate them using knowledge since the intervals are below the
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regression line.
Based on the plots, we draw the following key conclusions:

• The linear regression on all scores has a decent general performance. Its weakness is the
lower-end spectrum of the human-annotator overall quality criteria. There is a higher score
variance, i.e., higher disagreement between the annotators.

• STS-B performs well on the "clear-cut" samples where knowledge is used or not. However, on
borderline cases, where annotators disagree, i.e., some say knowledge is used and others not, it
performs worse.

• CoLA performs excellently on the samples that were marked as Understandable by all annotators.
As the scores for understandability decrease, so does the inter-annotator agreement. Hence, also
the performance of CoLA.

Overall, it appears that the approach suffers the most when there is a high disagreement between the
annotators, which are on the lower end of the human annotator scoring.

The USR dataset includes information about the annotators in the form of nicknames. Based
on those, one can assume that they were non-native English speakers with various backgrounds.
Hence, there is a low inter-annotator agreement on "Understandable" and "Natural." For example,
native speakers of a Romance and a Slavic language are more likely to disagree on these two criteria.
Furthermore, it is also confirmed by the higher variance in the annotator score on the lower spectrum
of CoLA predictions, i.e., annotators agree well, what understandable language is, but not the opposite.

6.5 Summary

This chapter considered a model trained on GLUE as a proxy indicator for the quality of knowledge-
grounded dialogues offering different perspectives on dialogue quality criteria. It does not need any
references or supervision and can outperform other competing approaches like USR [57]. Pearson’s and
Spearman’s correlation coefficients suggest that single proxy indicators and their various combinations
via linear regression can infer dialogue quality either on specific criteria or in general. This composable
nature can be used to tune the approach to focus more on particular criteria than others.

While one might be concerned that using the approach might offer an advantage to dialogue systems
incorporating BERT, we think it poses little to no risk. BERT is an encoder approach and is considered
uncommon for sequence generation applications. Hence, the risk of bias is reasonably low. In addition,
one could also use any other base model architecture for training GLUE predictors.

The model has no training or fine-tuning that is specifically geared towards dialogues. However, we
showed that lack of exposure to conversational data could be problematic for metrics likeMaintains
Context. Hence, we set as future work to investigate additional pre-training on dialogue data similarly
as Mehri & Eskenazi [57], but also considering other proxy indicators like DialogueNLI [90], which
frame the natural language inference task in a conversational setting.

Finally, while we used separately trained instances of BERT for each of the GLUE tasks, one could
also consider using a multi-tasking method. For example, Liu et al [95] present Multi-Task Deep
Neural Networks (MT-DNN) that employ a single instance of BERT for all GLUE tasks. We believe
using multi-tasking and BERT together would make its application in a productive environment much
more effortless, since model weights are to a greater extent shared between the tasks.
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Figure 6.3: Regression plots between the single GLUE predictors and the human annotator scores on TopicalChat
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Figure 6.4: Regression plots between the single GLUE predictors and the human annotator scores on PersonaChat
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Figure 6.5: Regression plots between the combined linear regression predictors and the human annotator scores
on TopicalChat

Figure 6.6: Regression plots between the combined linear regression predictors and the human annotator scores
on PersonaChat
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CHAPTER 7

Unsupervised Dialogue Breakdown
Detection

In the midst of chaos, there is also
opportunity

Sun Tzu

In the last three chapters, we discussed potential ways to assess quality of conversations, and
consequently of dialogue systems. However, this only helps with the prevention of issues with these
methods. User experience of dialogue systems can sometimes suffer from a dialogue breakdown when
the system generates a reply that harms the conversation flow. Hence, the automated detection of such
occurrences can prove helpful to the overall experience of dialogue systems. Their identification could
help develop more natural-sounding systems and enable the triggering of a fallback strategy.

The task of dialogue breakdown detection aims to benchmark an algorithm’s ability to detect
responses that could adversely affect the conversation flow and cause a dialogue breakdown. The
Dialogue Breakdown Detection Challenge 4 (DBDC4) [7] is designed to evaluate systems how well
they are identifying such dialogue breakdowns. The shared task has been designed with three possible
classes in mind: Not a Breakdown (NB), Possible Breakdown (PB), and Breakdown (B). Multiple
annotators have labeled the utterances within a conversation. We will revisit the task and its dataset in
greater detail in Section 7.3.1.

Stepping into the the shoes of a human annotator yet again, a person can notice a dialogue
breakdown through contrast, i.e., the conversation feels initially "odd" compared to what we experience
as conversations in everyday life. Humans have a good intuition when a dialogue is "usual", so
when they face a dialogue generated by a machine-learning algorithm, it can potentially feel "out of
distribution."

Research Question 4
Do out-of-distribution detection methods detect breakdown in a conversation?

Earlier work has employed feature-engineered algorithms like random forests [64], LSTM-based
neural networks [63] and even pre-trained language models like BERT [62] or XLM [65]. However,
all of them have one common property. All of these approaches employ supervised models that use

67



Chapter 7 Unsupervised Dialogue Breakdown Detection

labeled data for training.
This chapter uses the following article as a foundation:

Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2022. An Unsupervised
Baseline For Dialogue Breakdown Detection Using Ouf-of-distribution Detection Meth-
ods. In Review for the 26th International Conference on Artificial Intelligence and
Statistics (AISTATS).

In this chapter1, we propose an unsupervised approach that relies only upon dialogue data pre-
training. To the best of our knowledge, this is the first approach for solving the task without any direct
supervision. In our proposal, we combine a pre-trained generative language model, GPT2 [3, 91], with
out-of-distribution approaches to tackle the problem in an unsupervised manner. Our experiments
show that the system has comparable performance to models that use supervision from the DBDC4
data. To our knowledge, it is also the only unsupervised approach on the benchmark that is publicly
known.

7.1 Background

Larson et al. [80] suggest outlier identification for data annotation in dialog datasets to identify
incorrect utterances. Their method averages word embeddings of a reply’s text to achieve an utterance
level representation. The next stage clusters the vectors. It then calculates the distances for each
utterance from the center (mean) of the group, and ones furthest away are deemed abnormal. The
methodology offers little details on the coherence of the discussion. It does not provide a substitute or
even support for human annotators. Until very lately, Sai et al [55], and Mehri et al. [57] propose
the usage of language models as indicator of dialogue quality. All of these approaches require no
references or supervision.

Out-of-distribution detection is also familiar under other names like anomaly or outlier detection.
Depending on the context, it might have slight variations in meaning or problem definition. In the
context of this chapter, we will work with the following general description for out-of-distribution
detection. A machine learning model is trained on in-distribution data and is requested to make
predictions on both in- and out-of-distribution samples. In-distribution test samples are from the same
distribution as the training results. It is assumed that the trained neural network will consistently work
on examples that follow same or similar patterns as the training data.

On the other hand, samples that do not correspond to the distribution are anomalous observations.
Predictions based on those are considered less reliable. The neural network does not know such data
and is not able to model it. Out-of-distribution detection aims to recognize such samples [39].

In the dialogue breakdown detection context, we can assume that a deep-learning-based dialogue
system is trained on a dataset (its in-distribution samples). While performing inference, the generated
response might potentially be erroneous, which is by no means comparable to what is seen in the
original dataset. We want to treat those faulty samples as out-of-distribution. Thus, we can detect if
and to what degree the utterance can lead to a dialogue breakdown.
1 Complete code and resources to reproduce the work can be found on the following link: https://doi.org/10.
60507/FK2/MAVB6H

68

https://doi.org/10.60507/FK2/MAVB6H
https://doi.org/10.60507/FK2/MAVB6H


7.2 Approach

Figure 7.1: An overview of the architectures of the three OoD approaches: Maximum Probability [40],
Decomposed Confidence [42], Likelihood Ratios [43].

We have discussed OoD detection in greater detail in Section 2.4.

7.2 Approach

We have picked the following list of approaches based on previous works. Note, some of them are not
related to natural language processing:

1. According to Hendrycks and Gimpel [40], softmax-based classifiers are likely to have lower
scores when they have OoD inputs compared to regular ones.

2. Hsu et al. [42] propose a modified version of ODIN [41],Decomposed Confidence orGeneralized
ODIN, that does not need tuning on OoD samples, which are hard to define and acquire. Thus,
they use randomly perturbed input instead.

3. Ren et al. [43] suggest likelihood ratios for estimating whether a sample is in- or out-of-
distribution. They apply two instances of the same model. The first one is trained as usual on
in-sample data. The other one is trained on randomly perturbed data. The ratio of probability
scores of the two indicates whether a sample is OoD.

We proceed with a detailed description of the approaches mentioned above for out-of-distribution
detection and show how we apply them for evaluating open-domain dialogues in greater detail. We
present an overview of the three architectures in Figure 7.1.
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7.2.1 Maximum Class Probability

Hendrycks and Gimpel [40] define a framework of tasks in computer vision, natural language
processing, and automatic speech recognition to investigate the behavior of softmax classifiers
depending on the input data. They show that correctly classified examples have higher probability
scores when compared to faulty classifications. Thus, they make a series of experiments where they
look into the maximum scores of softmax outputs. Hendrycks and Gimpel show that the classifier
consistently outputs lower maximums scores for OoD samples. In contrast, in-distribution samples
have higher scores.

Dialogue systems commonly use a softmax distribution over a set of possible tokens (vocabulary)
to generate a response. Similarly, we will use the maximum class probabilities from each position in
an utterance to obtain a sort of quality score on token level:

𝑃𝑂𝑜𝐷 (𝑢2 |𝑢1)
=

𝑃(𝑡21, 𝑡22, ..., 𝑡2𝑛 |𝑡11, 𝑡12, ..., 𝑡1𝑚)
(7.1)

where 𝑢1 and 𝑢2 are two consecutive utterances in a dialogue, and their respective tokens,
(𝑡11, 𝑡12, ..., 𝑡1𝑚) and (𝑡21, 𝑡22, ..., 𝑡2𝑛). The higher the probability is, the less likely a dialogue
breakdown is. In other words, 𝑃𝑂𝑜𝐷 predicts a probability for Not A Breakdown (NB).

7.2.2 Generalized ODIN: Decomposed Confidence

Liang et al. [41] propose ODIN (Out-of-Distribution detector for Neural networks). At its core, the
method consists of two components. The first one is temperature scaling that is applied on softmax
output:

𝑆𝑖 (𝑥;𝑇) =
𝑒𝑥𝑝( 𝑓𝑖 (𝑥)/𝑇)∑𝑁
𝑗=1 𝑒𝑥𝑝( 𝑓𝑖 (𝑥)/𝑇)

, (7.2)

for the 𝑖-th output class, 𝑥 is the input, and 𝑇 is the temperature scaling coefficient. The second
component is the application of random perturbations to the input:

�̃� = 𝑥 − 𝜖 · 𝑠𝑖𝑔𝑛(−▽𝑥 log 𝑆(𝑥;𝑇)), (7.3)

where 𝜖 is perturbation magnitude. The authors report that this further pre-processing increases the
softmax score gap between the in- and out-of-distribution data.

However, Hsu et al. [42] criticize the fact that both 𝑇 and 𝜖 require OoD data to be tuned, which in
certain use cases is not available. Hence, they discuss a decomposed confidence that consists of the
joint class-domain probability and the domain probability:

𝑃(𝑦 |𝑑𝑖𝑛, 𝑥) =
𝑃(𝑦, 𝑑𝑖𝑛 |𝑥)
𝑃(𝑑𝑖𝑛 |𝑥)

, (7.4)

𝑥 being the input and, 𝑦 is the output class. To model those probabilities, they propose the following
implementation for training:
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DBDC4 English Eval

# sessions 200
# instances 2000
# utterances per dialogue 11+

Table 7.1: Key numbers of the DBDC4 evaluation dataset.

𝑃(𝑦 |𝑑𝑖𝑛, 𝑥) = 𝑓𝑖 (𝑥); (7.5)

𝑓𝑖 (𝑥) =
ℎ𝑖 (𝑥)
𝑔(𝑥) ; (7.6)

𝑔(𝑥) = 𝜎(𝑤𝑔 𝑓
𝑝 (𝑥) + 𝑏𝑔); (7.7)

ℎ𝑖 (𝑥) = 𝑤
𝑇
𝑖 𝑓

𝑝 (𝑥) + 𝑏𝑖 , (7.8)

where 𝑓𝑖 (𝑥) is the logit for the 𝑖-th class, 𝑓 𝑝 (𝑥) is the output of the penultimate layer of the network
after applying the input, 𝑥, 𝑤 and 𝑏 are trainable parameters. For performing out-of-distribution
detection inference, they suggest using 𝑆𝐷𝑒𝐶𝑜𝑛 𝑓 = 𝑚𝑎𝑥𝑖 ℎ𝑖 𝑜𝑟 𝑔(𝑥). We report results using both.

Similarly as in 7.2.1, we will use Equation 7.1 to obtain a score from the conversation context and
its following response.

7.2.3 Likelihood Ratios

In their work on image and genome sequence classification, Ren et al. [43] follow a similar intuition
like Hsu et al. [42], where the OoD detector makes use of two components: a background component
and a semantic component. The former models the population as a whole, whereas the latter is
capturing patterns related to the domain data.

The background model is trained on perturbed in-domain data. Ren et al., [43] report using an
independent and identical Bernouilli distribution with a rate of ` to decide which characters to be
replaced with a random one. They report that ` ∈ [0.1, 0.2] achieves good performance for most
of their experiments. Inspired by BERT’s [2] masked language modeling (MLM) objective, we set
` = 0.15 to decide which words from an utterance will be replaced with random other ones.

The log-likelihood ratio (LLR), i.e., the out-of-distribution detection score, is computed by using
the probability scores from the background and semantic model:

𝐿𝐿𝑅(𝑥) = log
𝑃\ (𝑥𝑛 |𝑥<𝑛)
𝑃\0

(𝑥𝑛 |𝑥<𝑛)
, (7.9)

where 𝑃\ and 𝑃\0
are the softmax probabilities from semantic and background models, respectively.

𝑥𝑛 is the 𝑛-th token, preceeded by the 𝑥<𝑛 tokens. 𝑥 represents the concatenations of context utterances
and response.
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7.3 Setup

In this section, we report details on the setup used for conducting experiments. We describe the
used datasets for evaluation and pre-training, the core model that we extended for out-of-distribution
detection, and finally, how we calculate the relevant scores and classification predictions.

7.3.1 Dialogue Datasets

We evaluate our approach against the data from the Dialogue Breakdown Detection Challenge 4 [7].
Initially, the shared task has two tracks for Japanese and English languages. In our work, we focus only
on English. Furthermore, we work only with the evaluation data since our approach is unsupervised
and requires no training on the specialized data.

The dialogues were generated from sessions using the IRIS [96] dialogue system and the Conversa-
tional Intelligence Challenge 2 (ConvAI2) [79] datasets. Fifteen in total annotators have labeled each
of the instances with one of the following labels: Not a Breakdown (NB), Possible Breakdown (PB),
and Breakdown (B).

For further details regarding the DBDC4 dataset, we kindly forward the reader to the original work
of Higashinaka et al. [7].

7.3.2 GPT2

To evaluate the aforementioned out-of-distribution detection approaches, we use DistilGPT2 [91] as
the foundation for conducting experiments. It is based on OpenAI GPT2 [3], which uses the now
common transformer-based language model [15]. DistilGPT2 is a "condensed" version of the original
GPT2 obtained by employing knowledge distillation from a bigger twelve-layer model. It results in a
smaller six-layer version of the neural network, i.e., twice as few parameters, but very similar language
modeling performance.

Originally, GPT2 was trained on non-dialogue data. Hence, it requires tuning on conversational
data. To train the OoD detectors, we use Reddit comment chains collected for the Dialog System
Technology Challenge (DSTC) 8 [97] that were written in October 2017 and November 2018. Also, in
terms of their nature, they have a perfect fit for open-domain dialogues. The data has been filtered in
various ways to improve quality and restrict offensive language use. The final training dataset contains
5,085,113 conversations.

However, we train for only three epochs of random subsets of the dialogues with five percent due to
limited computational resources. However, our results show no difference between training for one or
more epochs. In total, we train three different models for the different OoD approaches. Depending
on the model, an epoch takes between eight and twelve hours. We used an Nvidia Geforce RTX 3080
GPU.

7.3.3 Benchmark

Originally, DBDC4 [7] proposes two sets of evaluation metrics. The first group treats the benchmark
as a classification problem using the following three metrics:

• Accuracy: the number of properly detected utterances in one of the three classes (NB, PB, B)
divided by the total number of examples.
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• F1 (B): F-measure where there two possible outcomes (binary classification):

– Breakdown (B)

– Possible Breakdown (PB) and Not a Breakdown (NB)

• F1 (B+PB): F-measure where there two possible outcomes (binary classification):

– Breakdown (B) and Possible Breakdown (PB

– Not a Breakdown (NB)

In addition, the benchmark uses distribution/based metrics, Jensen-Shannon divergence (JSD) and
Mean Squared Error (MSE) that also use various class configurations. They compare the predicted
distribution with the one done by the fifteen annotators:

• JSD (NB, PB, B): the Jensen-Shannon divergence measured over the three classes.

• JSD (NB, PB+B): the Jensen-Shannon divergence measured over the two classes like in F1
(B+PB).

• JSD (NB+PB, PB): the Jensen-Shannon divergence measured over the two classes like in F1
(B).

• MSE (NB, PB, B), MSE (NB, PB+B), MSE (NB+PB, B): Mean Squared Error used in the
same configurations as Jensen-Shannon

However, due to the inherent nature of OoD detection approaches, we used only the metrics that
model the problem as binary classification, i.e. we do not report on accuracy, JSD (NB, PB, B), and
MSE (NB, PB, B).

We report the scores of the following works to benchmark against our proposal:

• Baseline [7]: A Baseline approach proposed by the organizers of DBDC4. It takes advantage
of conditional random fields (CRF) with extracted textual features from the dialogue context
and response.

• BitTalk [63]: A bi-LSTM combined with self-attention.

• NTT [62]: A BERT-based classifier that uses conversation history, target answer, but also
additional textual features.

• RSL [64]: An ensemble of models that employ random forests regression model and an LSTM
on manually hand-crafted features.

• CXM [65]: Co-attentive Cross-Lingual Neural Model is based on XLM-R [66], which is a variant
of RoBERTa [32] pre-trained with cross-lingual data. In addition, it also employs co-attentive
encoding to better model the interaction between dialogue history and target response. The
model is applied in two configurations, single language (CXM-S) and cross-lingual (CXM-D),
with two languages.
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Model F1
(B)

F1
(B+PB)

JSD
(NB, PB+B)

JSD
(NB+PB, B)

MSE
(NB, PB+B)

MSE
(NB+PB, B)

Baseline 0.3421 0.5803 0.3176 0.2670 0.2788 0.2295

BitTalk 0.3901 0.6492 0.0706 0.0570 0.0734 0.0513

LIIR 0.0981 0.0984 0.4193 0.4186 0.2641 0.2853

NTT-1 0.4641 0.7664 0.0389 0.0504 0.0444 0.0465
NTT-2 0.4482 0.6369 0.0391 0.0481 0.0432 0.0429
NTT-3 0.4547 0.6724 0.0417 0.0449 0.0472 0.0399
NTT-4 0.4403 0.6079 0.0407 0.0433 0.0455 0.0384

RSL-1 0.4411 0.6740 0.0420 0.0438 0.0480 0.0398
RSL-2 0.4483 0.7276 0.0439 0.0462 0.0506 0.0414
RSL-3 0.4554 0.6961 0.0401 0.0424 0.0455 0.0381
RSL-4 0.4650 0.7174 0.0412 0.0438 0.0469 0.0389
RSL-5 0.4690 0.6947 0.0389 0.0416 0.0439 0.0369

CXM-S 0.5303 0.6471 0.0351 0.0333 0.0396 0.0318
CXM-D 0.5825 0.7756 0.0336 0.0323 0.0370 0.0315

Max-Prob 0.4149 0.6425 0.0916 0.0396 0.1566 0.0575
ODIN-h-max 0.4132 0.6434 0.0857 0.0403 0.1460 0.0584
ODIN-g 0.4105 0.6434 0.0847 0.0406 0.1440 0.0588
LLR 0.2758 0.3631 0.1825 0.0582 0.2956 0.0782

Table 7.2: Benchmark results on the DBDC4 English track. We have not included Accuracy, JSD (NB, PB, B),
and MSE (NB, PB, B), because our proposal models the problem as binary classification and those measures
cannot be applied. The scores of the competing approaches have been retrieved from [7], and [65]

7.3.4 Scoring

To convert dialogues into a language modelling problem, all utterances within a dialogue are
concatenated into one long sequence that ends with a special end-of-text token. The preceding
utterances in the dialogue history are denoted as 𝑆 = 𝑥1, ..., 𝑥𝑚 and the corresponding response as
𝑇 = 𝑥𝑚+1, ..., 𝑥𝑛, then the conditions probability between the two is the following:

𝑃(𝑇 |𝑆) =
𝑛∏

𝑖=𝑚+1
𝑃(𝑥𝑖 |𝑥1, ..., 𝑥𝑖−1), (7.10)

which will then be adjusted to incorporate the necessary modifications in converting it to an
out-of-distribution detector. 𝑚 is the amount of tokens in the dialogue context, while 𝑛 is the number
of tokens in the whole concatenated sequence. Finally, after all probability outputs are obtained
(including the human annotator evaluation), the scores are normalized between zero and one for each
model separately:
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�̃�𝑠𝑐𝑜𝑟𝑒 =
𝑥𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑖𝑛(𝑥𝑠𝑐𝑜𝑟𝑒)

𝑚𝑎𝑥(𝑥𝑠𝑐𝑜𝑟𝑒) − 𝑚𝑖𝑛(𝑥𝑠𝑐𝑜𝑟𝑒)
(7.11)

(a) Score distribution of the Max Prob approach (b) Score distribution of the g-component of ODIN

(c) Score distribution of the LLR approach (d) Score distribution of the h-component of ODIN

Figure 7.2: Gaussian kernel density estimation of the normalized score for each of the OoD approaches. Each
of the testing samples has been labeled into one of the three classes based on majority vote of the annotators.

Finally, since the out-of-distribution detection offers a binary prediction for whether the data is in
(positive, one) or out (negative, zero) of the distribution, we need to inverse the score to make it fit
with the problem definition of DBDC4:

𝑥𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑥𝑠𝑐𝑜𝑟𝑒 (7.12)

7.4 Evaluation

This section presents comparison results to previous works and performs qualitative analysis to better
understand OoD-based approaches’ performance.
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7.4.1 Model Comparison

In Table 7.2, we show the benchmark results on the DBDC4 English track. We do not report the
multi-class evaluation metrics. The inherent binary nature approaches are based on out-of-distribution
detection. Some of the methods participated with more than one run in the shared task. Hence, they
are listed with an integer suffix.

Immediately, it is visible that that three out of the four OoD approaches have comparable performance
to the competing works, including the most current state-of-the-art system. While out-of-distribution
detection does not outperform better than the other suggestions, however, the big advantage is that our
proposal did not use any of the training data of DBDC4 in contrast to the other systems.

The major disadvantage of the OoD approaches is that they have worse performance when PB and B
are treated as one label when compared to the supervised models. The behavior suggests that they are
struggling with discriminating between cases with no breakdown or a possible one. Furthermore, we
can see similar behavior with the two extremes of NB and B. Overall, the out-of-detection approaches
struggle with discriminating the "middle" type of cases, where it is more challenging to make a clear
distinction.

The performance of likelihood ratios (LLR) stands out as particularly bad. It fails to outperform
even the original baseline of DBDC4. In the Section 7.4.2, we will attempt a qualitative analysis to
understand the issue better.

7.4.2 Qualitative Analysis

In Figure 7.2, we present the distribution of the normalized scores of the four OoD approaches. Their
differences in behavior become immediately apparent.

Firstly, we notice the issues with LLR. The approach is entirely unable to discriminate between
a dialogue breakdown or none and all the possible degrees of them in between. Although Ren at
al. [43] demonstrate LLR to work with autoregressive networks, we experience that the proposed
perturbations are not as suitable for a model like GPT2, since it was initially trained with a different
goal in mind. Unfortunately, the final result is a severely maimed model that cannot discriminate
normal from erroneous dialogues.

We proceed with Max-Prob, which can better detect a dialogue breakdown. However, the, more or
less, complete density overlap of PB and B indicates that the model is oversensitive to possible dialogue
breakdowns. Unfortunately, the overlap between no breakdown and possible/certain breakdown is still
too significant.

The kernel density estimates of the two ODIN components hint at what the ideal distribution should
look like. For each of the three classes, there should be a peak. With no breakdown (NB) being to
the leftmost side, breakdown (B) to the rightmost one, and possible breakdown (PB) between the
two. Unfortunately, with ODIN, this is not quite the case, and there is a significant overlap between
the three categories. However, when we compare with Max Prob, we see that ODIN has a better
variance and manages to move the peak of B slightly more to the right. Furthermore, it has a smaller
overlap between PB and B. These two differences show ODIN as the best performer between the OoD
approaches on dialogue breakdown detection.
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7.4.3 Error Analysis

We manually examined the dialogues and the various out-of-distribution scores to look for patterns in
the predictions of the approaches. We made the following discoveries:

• Short and not so engaging responses - In few cases, the good performers (Max Class Prob,
ODIN) score rather highly on not-engaging responses (e.g. -"how old are you?" -"16 years").
While being passive, i.e., not asking a question back, conversationalist is a negative feature, it is
not a breakdown. In contrast, LLR gives lower probability scores, despite its worse performance.

• Irrelevant responses to specific questions - In situations where the target response was
completely unrelated to the context (e.g. -"Congrats! I hope I’ll win something too some day."
-"I am so sorry to hear that."), LLR has absolutely no sensitivity to the issue. Hence, it always
gives very low scores. On the other hand, the two other approaches demonstrate a behavior that
is more akin to common sense.

• Very long sentences in the context - All three approaches seem to have difficulties modelling
unusually long sentences. Whenever there is a long and difficult sentence to read, OoD tends to
give high scores, although there is no dialogue breakdown.

7.5 Summary

This chapter has proposed a well-performing unsupervised model for dialogue breakdown detection,
which is based on three different out-of-distribution detection methods. It performs relatively well
compared to the systems that have used direct supervision, and it even outperforms a few of them.
Furthermore, it is the only unsupervised approach with usable accuracy. Hence, OoD-based dialogue
breakdown detection can be employed for scenarios where no labeled data is available.

Among the three OoD techniques, log-likelihood ratios, perform the worst, and maximum probability
is next, closely behind generalized ODIN. We saw that the latter two could detect a dialogue breakdown.
However, they cannot discriminate effectively enough. Hence, we set as future work to investigate
how one could improve their sensitivity to the varying degrees of dialogue breakdown, and its minor
robustness issues that we mentioned earlier.
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CHAPTER 8

Evaluating Dialogue Systems via an Opinion

A young man is embarrassed to question an
older one.

Homer

So far, we have been discussing how to evaluate dialogue systems externally via the response they
provide. In other words, we ask them to provide a sample solution to a sample problem. To this day,
there are two established ways to evaluate open-domain dialogue systems that are common in industry
and academia alike, [79, 98]:

• Dialogue systems are asked to provide replies for specific scenarios, which are either compared
against one or more possible reference responses.

• Dialogue systems are manually evaluated by a human annotator via its responses.

Both of these evaluation options are costly but also offer a by definition limited perspective.
In Chapter 5, we proposed using language models (LM) to indicate the quality of dialogues by

checking their output probabilities of a given conversation. A few of the applied LMs that are also
causal (GPT2, [3], XLNet, [4]) can be seen as dialogue systems in their own right since they can
generate language conditioned on an input, e.g. a response to a conversation history.

Research Question 5
Can generative dialogue systems be evaluated by means of asking them whether a sample
conversation is of low or high quality?

We propose1 to use the dialogue systems themselves to evaluate open-domain dialogues. In
particular, we ask already trained dialogue systems to provide opinions on a set of sample problems
with their sample solutions. In other words, they shall produce output probabilities on dialogues
they have not seen before and we then conduct a correlation analysis between that output and human
annotator scores. The intuition behind the idea is that a well-working approach should give low
probabilities for dialogues with low evaluation scores and higher when it has a positive assessment.
1 All resources to reproduce the work are available under the following link: https://doi.org/10.60507/FK2/
FX37GD.
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Chapter 8 Evaluating Dialogue Systems via an Opinion

We show that the state-of-the-art systems have higher correlations than earlier works. Hence, such a
procedure can offer an additional perspective on benchmarking dialogue systems.

This chapter has its foundations in the following publication:

Rostislav Nedelchev, Jens Lehmann, and Ricardo Usbeck. 2022. EDiSOn: Evaluating
Dialog Systems by their Opinion on Open-domain Conversations. In Review for the 26th
International Conference on Artificial Intelligence and Statistics (AISTATS).

8.1 Background

In their cornerstone work on natural language generation (NLG), [16] describe NLG as a pipeline
consisting of six distinct stages: 1. Content Determination, 2. Text Structuring, 3. Sentences
Aggregation, 4. Lexicalization, 5. Referring Expression Generation, 6. Linguistic Realization.
However, with the recent rise of neural networks, such staged approaches have become unnecessary.
Deep learning is capable of learning representations that can model grammatical and semantic
abstractions in an end-to-end fashion, [17, 18].

There are two groups of neural network architectures that are suitable for dialogue systems.
First, (causal) language models are capable of predicting the next word given a preceding sequence.
Significant work by [19] demonstrates the capabilities of LSTMs to predict the next character in a
sequence. Recently, language models based on transformer neural networks became popular, [2–4,
15].

Second, the encoder-decoder architecture, [13] (often referred also as sequence-to-sequence or
shortly, Seq2Seq), provides a decoupling between creating a fixed length representation of the input
and consequently, decoding it into a sequence. There are many works that have used this approach to
develop a dialogue system, [20–23].

8.2 Approach

8.2.1 Dialogue Systems

We use a set of milestone works in the field of dialogue systems to test their "opinions." As described
in Chapter 2, the set consists of two groups, namely encoder-decoder and language model architectures.
We start with the former of the two.

The first model we consider is a recurrent Seq2Seq approach, as described by [20]. It models a
dialogue as a sequence of pairs, where each pair consists of a query and a response. That is, the model
considers a response as related only to the last utterance before it. The context is encoded using a
recurrent neural network (RNN), and another RNN decodes the representation as the response.

Next, we use the work by [21], Hierarchical Recurrent Encoder-Decoder (HRED), which builds on
the method of sequence-to-sequence (Seq2Seq) through considering several contextual utterances.
The overall meaning of the utterances are encoded with RNN and then encoded by an additional RNN
together. The rest is as stated previously in the sequence-to-sequence method.

Third, [22] propose adding a latent variable that parametrizes the context, i.e., an extended version
of the HRED, Hierarchical Latent Variable Encoder-Decoder (VHRED). Via a two-stage process, the
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8.2 Approach

Figure 8.1: An example demonstrating how dialogue systems are asked for an "opnion", and compared to human
evaluators.

method can model hierarchically ordered sequences and generate the output sequence while retaining
long-term contexts.

Finally, [23] report that VHRED has a latent variable degeneration, which makes the model almost
HRED-like. They add a latent variable to the global discourse, such that it produces every word of the
dialogue, instead of post-factum of the whole thread (VHCR).

We use the Cornell Movie-Dialogs Corpus to train the four models [83]. The dataset has 220,579
conversations and a total of 304,713 utterances. The training is executed by iteratively considering
each utterance and its preceding context. The first of the four sequence-to-sequence approaches works
only with a pair of utterances.

We now discuss the second group of approaches based on causal language modelling. GPT2
(Generative Pre-trained Transformer) by [3] is a standard causal LM that calculates the probability for
the target token by conditioning on the series of previous ones. In the problem domain of dialogues,
to use GPT2, we consider two or more consecutive utterances and capture the coherence between
them. Thus, we concatenate them into one, where the source context, 𝑆 = 𝑥1, ..., 𝑥𝑚, appears first and
is then followed by the target response, 𝑇 = 𝑥𝑚+1, ..., 𝑥𝑛:

𝑃(𝑇 |𝑆) =
𝑛∏

𝑖=𝑚+1
𝑃(𝑥𝑖 |𝑥1, ..., 𝑥𝑖−1) (8.1)

We use models of various sizes, [87], i.e., with 117M, 345M, and 774M parameters, that are
pre-trained on English Wikipedia and various fictional works.

We also investigate DialoGPT, [8]. In essence, it uses the same architecture as GPT2. However, it
has been trained on English Reddit comment threads, instead of non-dialogue data like Wikipedia.
The dataset has been processed to reduce offensive language and nonsensical examples. The final data
contains 147,116,725 conversations. Similarly to GPT2, we use different model sizes, i.e., 124M,
355M, and 774M parameters.

We evaluate both language models in two different settings: 1. utterance pairs, where only the
last utterance before the target response is considered; 2. full context, where the whole conversation
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Dataset ConvAI1 ConvAI2

𝑟 𝜌 𝑟 𝜌

Seq2Seq 0.0088
(0.6820)

0.0748
(0.0005)

0.2754
(0.0001)

0.3061
(0.0001)

HRED 0.1048
(0.0001)

0.1234
(0.0001)

0.2567
(0.0001)

0.2967
(0.0001)

VHRED 0.0303
(0.1601)

0.0639
(0.0030)

0.2803
(0.0001)

0.2992
(0.0001)

VHCR 0.0284
(0.1872)

0.0654
(0.0024)

0.2891
(0.0001)

0.3043
(0.0001)

Table 8.1: Pearson’s correlation coefficients, 𝑟 , and Spearman’s correlation coefficients, 𝜌, on the two dialogue
datasets’ human scores and aggregated probability scores from the encoder-decoder based architectures. The
numbers in parenthesis are the statistical significance scores (𝑝 <).

history up until the target response is used.

8.2.2 Assessed Dialogue Datasets

Like in Chapter 4, we utilize the datasets of the ConvAI1 [1, 84] and ConvAI2 [79, 85] challenges.
We would like to forward the reader to Section 4.2.2 for information regarding the data.

8.2.3 Scoring

In Chapter 5.4, we reported on experimenting with various techniques to aggregate the probabilities
on the dialogue level. However, one is selected due to its best results, which we also use here. We
then perform a correlation analysis between 𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒 and the human annotator scores using
Pearson’s and Spearman’s metrics.

8.3 Evaluation

We discuss the correlation results between the output probabilities (𝑑𝑖𝑎𝑙𝑜𝑔_𝑠𝑐𝑜𝑟𝑒) of the approaches
mentioned above and the human annotator scores. We compare earlier to more advanced approaches
for dialogue modeling. Intuition dictates that more modern systems should have higher correlation
with the human annotator scores.

We start with the encoder-decoder architectures, whose correlations are displayed in Table 8.1.
Among the four approaches, the hierarchical encoder-decoder stands out as the best performing system
on ConvAI1. The vanilla sequence-to-sequence approach performs the worst, which is expected since
it has the most basic architecture compared to the others. The two variational approaches exhibit
similar behavior. Thus, they cannot be distinguished using opinion-based evaluation. However, we
see a performance increase from basic sequence-to-sequence through VHRED and VHCR to HRED.
In contrast, all of them perform very similar on ConvAI2.

We move to the language model architectures and the correlation coefficients (Table 8.2) between
output probabilities and human annotator scores. First of all, there is an immediate difference in the
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Dataset ConvAI1 ConvAI2

𝑟 𝜌 𝑟 𝜌

gpt2-sm
(pair)

-0.0347
(0.1073)

0.0520
(0.0158)

0.1345
(0.0001)

0.3055
(0.0001)

gpt2-sm
(context)

-0.0217
(0.3132)

0.0773
(0.0003)

0.1252
(0.0001)

0.3350
(0.0001)

gpt2-md
(pair)

-0.0127
(0.5547)

0.0559
(0.0095)

0.1308
(0.0001)

0.3089
(0.0001)

gpt2-md
(context)

-0.0222
(0.3035)

0.0523
(0.0152)

0.1095
(0.0001)

0.3438
(0.0001)

gpt2-lg
(pair)

-0.0460
(0.0326)

0.0351
(0.1032)

0.1173
(0.0001)

0.3106
(0.0001)

gpt2-lg
(context)

-0.0224
(0.2986)

0.0631
(0.0034)

0.1002
(0.0001)

0.3334
(0.0001)

dialogpt-sm
(pair)

-0.0067
(0.7565)

0.0878
(0.0001)

0.0828
(0.0001)

0.3426
(0.0001)

dialogpt-sm
(context)

0.0461
(0.0323)

0.1274
(0.0001)

0.2098
(0.0001)

0.4333
(0.0001)

dialogpt-md
(pair)

0.0421
(0.0506)

0.1308
(0.0001)

0.0930
(0.0001)

0.3204
(0.0001)

dialogpt-md
(context)

0.0253
(0.2409)

0.1154
(0.0001)

0.1416
(0.0001)

0.3608
(0.0001)

dialogpt-lg
(pair)

-0.0218
(0.3122)

0.0989
(0.0001)

0.1597
(0.0001)

0.3512
(0.0001)

dialogpt-lg
(context)

-0.0287
(0.1828)

0.0644
(0.0028)

0.1638
(0.0001)

0.3947
(0.0001)

Table 8.2: Pearson’s correlation coefficients, 𝑟 , and Spearman’s correlation coefficients, 𝜌, on the two dialogue
datasets’ human scores and aggregated probability scores from the language-model based architectures. The
numbers in parenthesis are the statistical significance scores (𝑝 <).

behavior between GPT2 and DialoGPT. While they have the same architecture, they have been trained
on different datasets. The former on Wikipedia and fiction, while the latter on conversational texts.
This difference gives DialoGPT an advantage that is visible in the comparatively higher correlations
than GPT2.

GPT2 shows sensitivy towards the number of parameters in the network. The higher the number of
layers, the better it performs on, i.e. the higher the correlation. DialoGPT follows mostly the same
behavior with the exception of the small version on the whole context.

Furthermore, we perform an ablation study by comparing the response of the systems to changes to
the input data. Intuitively, a dialogue system should perform better when presented with the complete
context, and worse, when it is working with only the last utterance of the conversation history.
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GPT2 is undecided between pair utterances or full context, although there is a visible difference.
However, the specialized DialoGPT prefers the full context over just the last utterance before the target
response.

Comparing the two groups of fundamental architectures, it is challenging to decide on a "winner".
The encoder-decoder-based models seem to have the edge over the language models on the ConvAI1
dialogues. However, we observed the opposite when it comes to ConvAI2 conversations.

8.4 Summary

In this paper, we propose a new way to evaluate dialogue systems. Namely, to ask them to assess a
sample solution to a sample problem instead of asking them to provide their solution to the sample
problem. In other words, we ask dialogue systems to evaluate dialogues rather than to respond
themselves.

We showed that a deep-learning-based system’s performance depends on various factors like
its architecture, number of parameters (number of layers), or the data it has been trained through
calculating the correlation coefficients.

The opinion-based approach is suitable for evaluating dialogue systems. It provides an automatic
metric that serves as an additional perspective on the systems’ performance. Hence, it can support the
research and development of such algorithms.

What the procedure is missing is a consistently structured benchmark dataset with human annotator
scores. The data from the ConvAI1 and ConvAI2 challenges has a random nature and cannot guarantee
it covers a comprehensive and complete spectrum of high and low-quality dialogues. Thus, we set as
future work to investigate the creation of such a dataset, which will enable a consistent and even more
insightful evaluation of dialogue systems.
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CHAPTER 9

Conclusion and Future Work

The unexamined life is not worth living.

Socrates

The main research objective of this thesis is to enable automatic evaluation of dialogue systems. In
Chapter 1, we laid out the research problem and examined what are the significant challenges relevant
to the issue. As part of Chapter 2, we reviewed all fundamental concepts and background knowledge
that serves as a basis to this thesis. Chapter 3 discussed the related work that is significant for the
research goals. In the following Chapters (4, 5, 6, 7, and 8), we presented our proposals that handle
the earlier defined research questions.

9.1 Review of Research Questions

To conclude this work, it is of importance to review each of the research questions and interpret the
outcomes of the contributions. The core research problem was divided into five specific research
questions. The first one had the goal to use autoencoders and anomaly detection for detecting low-
from high-quality dialogues. The second research question demonstrated that language models can
effectively infer the quality of conversations without any special training on dialogue data. The
third research questions address the disadvantages of the second one by finding a component based
approach that allows the measurement of separate dialogue criteria. The fourth research question aims
to discover what utterances can cause a dialogue breakdown using unsupervised out-of-distribution
detection methods. Finally, the fifth research question shows how dialogue systems can take the role
of annotators and use this behavior to evaluate their abilities.

Research Question 1
Can anomaly detection methods be used to infer the quality of a dialogue?

Chapter 4 investigated whether anomaly detection could contrast dialogues in terms of their quality.
For the purpose, we used four different dialogue modeling approaches as if they are autoencoders.
Correlation scores with human annotators reveal only limited potentials. Only for a limited amount of
cases the proposal could evaluate conversations. The experiments showed that the discussed neural
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network architectures have a limited ability to generalize, and hence, they can properly model only
certain type of conversations. The issue is mostly caused due to the limited scope of the training data.

Research Question 2
Can language models indicate the quality of a conversation?

This research aims to solve the generalization weaknesses discussed in the first RQ. For the purpose,
we investigated whether pre-trained language models can deduce the quality of a conversation. They
have two main advantages that makes them suitable for the task. Firstly, they are trained on massive
amounts of text data. This enormous exposure makes them very versatile, and there is little in terms
of language usage that could "surprise" them. Second, they do not require any labelled data, but only
fluent text that can have various origins.

We infer conditional probabilities using three language model approaches and dialogue data.
Then, we perform a correlation analysis that demonstrates that these neural networks can evaluate
conversation quality. BERT’s next sentence prediction proves to be the most effective method due to
its structured approach. Its then closely followed by XLNet and GPT2, which handle the task on the
word level. In addition, we show that they are capable "conversationalists."

In general, all of them can be used for the task. However, the offer only a single general metric that
offers no insights for the separate dialogue criteria.

Research Question 3
Are standard NLP tasks helpful with the evaluation of dialogues?

In the previous two research questions, we offered approaches that provide a metric that measures
the overall dialogue quality. However, conversations are complex concepts that can be evaluated
according to various criteria , e.g. fluency (i.e., how grammatical is the language use) , or coherence
(i.e., how well do the responses follow the dialogue flow and topic). These dialogue features are related
language skills that are specific to humans and that are also being researched as part of standardized
benchmarks.

Hence in research question three, we investigated whether the tasks in the General Language
Understanding Evaluation benchmark can be used to measure the quality of dialogues. For the
purpose, we trained instances of the same model on the different tasks. Then, we performed inferences,
collected probabilities scores related to the benchmarks, that we compared to human annotator scores
on dialogue criteria in a correlation study. Our results revealed that a few of the tasks map very well to
the conversation features, and can be used for automatic evaluation.

Furthermore, we demonstrated how the single evaluators can be combined together to provide a
metric for overall quality. The strength of the approach is that it can use training data from other
benchmarks that are not necessarily related to dialogues and still effectively infer conversation quality.
In addition, the composition can be tuned to focus on different criteria which makes the metric versatile,
and it can be applied on a big variety of scenarios.

Research Question 4
Do out-of-distribution detection methods detect breakdown in a conversation?

So far, in the first three research questions we discussed methods that allow to benchmark and
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compare dialogue systems to each other. However, another purpose to evaluate dialogue systems
is to monitor them if they could run into problems where they cause a dialogue breakdown, state
where an utterance breaks the conversation flow completely. Hence, we set in research question four
to investigate unsupervised approaches for detecting dialogue breakdowns.

We seek inspiration in out-of-distribution detection approaches, where we adapt a standard dialogue
modeling approach to the task. Among the approaches, maximum probability and ODIN show great
potential in the Dialogue Breakdown Detection Challenge (DBDC) 4 benchmark. They can outperform
some of the supervised approach, and according to some of the benchmark metrics, OoD-based
approaches are within striking distance to the best performing method, which is also supervised.

The strength of our approach is that it is unsupervised. Hence, it requires no labelled data, but only
dialogue conversations, and it can be easily applied in other languages where annotated data is scarce.

Research Question 5
Can generative dialogue systems be evaluated by means of asking them whether a sample
conversation is of low or high quality?

Most of the work so far focused on evaluating dialogue systems by means of samples responses,
i.e. they are presented with an example conversation, and they have to provide a response based on
that history. It is they either compared to a reference answer or it is evaluated by human annotators.
Ideally, we want dialogue systems to behave like humans. Hence, instead of comparing whether they
"answer" like a human, we can rather check if they "evaluate" like one. So, we propose to evaluate
them by their opinion.

In research question five, we investigate how we can evaluate dialogue systems by means of
"opinion." We use a set of 16 different models or configurations respectively that include some of
the very initial to the most advanced works. Via a correlation analysis of dialogue system’s output
probabilities, we demonstrate how the more recent the approach is, the better are its results. Hence,
we show that dialogue modeling approaches can be evaluated by means of behavior, we do not need to
generate individual response that require comparison or evaluation.

9.2 Limitations and Future Work

Future efforts that would build upon or continue the discussed works should consider the following
limitations:

1. Many of the discussed methods here focus on the word or utterance level of a conversation, i.e.
the provide feedback on a lower level. This requires aggregation steps (e.g. taking the average)
to be taken in order to have a metric representing the whole dialogue. It is a disadvantage that
definitely wastes some of the information that was captured and leads to inaccuracies. Hence,
future work should focus on methods that treat a conversation as an atomic unit besides the
word- and utterance-level modeling. This way, it will not be necessary to perform aggregations
that loose some of the information.

2. Many of the approaches have a very strong dependency on data, especially on copious amounts,
which is a disadvantage for a few reasons. In certain scenarios like languages that are spoken by
significantly less people than English, it can be difficult to obtain such big datasets. Furthermore,
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even if the data was somehow readily available, the training of the approaches would still require
computational resources, which could be also expensive to acquire. Therefore, as a first step,
future work should confirm the efficacy of the results in other languages than English that have
less resources. In addition, improvements in direction of reducing the amount of necessary data
should be further investigated.

3. We saw that the proxy indicators could suffer from the lack of exposure to the dialogue data.
Therefore, the method could benefit from training on dialogue data, e.g. DialogueNLI [90]. In
addition, the approach made use of multiple instances of BERT, which costs more computational
resources. It would be beneficial to investigate a multi-tasking approach as described in the
work of Liu et al. [95], where only one instance of BERT is used to tackle all the tasks in the
GLUE benchmark.

4. The discussed approaches are not perfect, yet. As the various metrics (e.g. correlation or
classification scores) demonstrate, there is still room for improvement. There is still a gap
between human annotators the new metrics that have been discussed here. The same applies for
our unsupervised dialogue breakdown detection approach.

9.3 Closing Remarks

This works investigates how dialogue evaluation can be automated to achieve parity with human
annotators. Despite the challenges, we demonstrated through our experiments that machine learning
and natural language processing methods can be used to estimate the quality of conversations.

In this thesis, we progressed the state of the art in referenceless, but also unsupervised, dialogue
evaluation on several frontiers. In Appendix A.1, an overview with links to all resources can be found
that were result of this thesis. We made the following contributions:

• We demonstrated that anomaly and out-of-distribution detection methods have potential for
indicate dialogue quality.

• Our experiments showed how language models can assess conversations without training on
any dialogue data.

• Our work showcased the usage of standard NLP benchmarks for dialogue evaluation, and how
they can be composed together in a tuneable manner.

• We illustrated an alternative approach for evaluating dialogue systems by means of "opinion",
and not "sample solution."

Future work can use our methods to further advance the state of the art in dialogue systems. The
proposed methods already have practical value and can support the research and development of
conversational artificial intelligence.
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APPENDIX A

Appendix

A.1 Overview of Publicly Available Resources

Ch. Title Link

Peer-reviewed Works

5 Language Models as Evaluators https://github.com/
SmartDataAnalytics/transformers_
dialogue_evaluators

6 Proxy Indicators for Dialogue Qual-
ity

https://github.com/
SmartDataAnalytics/proxy_
indicators

Works in Review

7 Unsupervised Dialogue Breakdown
Detection

https://doi.org/10.60507/FK2/
MAVB6H

8 Evaluating Dialogue Systems via an
Opinion

https://doi.org/10.60507/FK2/
FX37GD

Table A.1: Overview of the publicly available resources that are results of the work done in the thesis. The
works in review are provided with anatomized links since they are still being reviewed.
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Appendix A Appendix

A.2 Complete correlation scores for all predictors

We present complete tables with correlation scores of all pairs of predictors and human annotator
scores. In Tables A.2, and A.3 are the correlation scores for the single GLUE tasks. Furthermore,
Tables A.4, and A.5 present the correlation coefficients for on the GLUE predictions of the knowledge
base facts and the dialogue utterances. Finally, Tables A.6, and A.7 show the correlation scores for the
various combinations of the GLUE predictors using linear regression.
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A.2 Complete correlation scores for all predictors

TopicalChat
Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

cola-Understandable 0.2458 0.0001 0.2341 0.0001
cola-Natural 0.2069 0.0001 0.1677 0.0014
cola-Maintains Context 0.0449 0.3959 0.0119 0.8226
cola-Engaging 0.1518 0.0039 0.0935 0.0765
cola-Uses Knowledge 0.0727 0.1686 0.0481 0.3623
cola-Overall 0.1418 0.0070 0.1136 0.0312
sst-Understandable 0.1253 0.0173 0.1114 0.0346
sst-Natural 0.1107 0.0358 0.0826 0.1176
sst-Maintains Context 0.0260 0.6225 -0.0064 0.9041
sst-Engaging 0.0146 0.7825 -0.0328 0.5346
sst-Uses Knowledge -0.0006 0.9906 -0.0517 0.3280
sst-Overall 0.0471 0.3731 0.0139 0.7924
mrpc-Understandable 0.1216 0.0210 0.0890 0.0918
mrpc-Natural 0.1366 0.0095 0.1171 0.0264
mrpc-Maintains Context 0.2083 0.0001 0.2131 0.0001
mrpc-Engaging 0.0985 0.0619 0.0823 0.1191
mrpc-Uses Knowledge -0.0395 0.4545 -0.0266 0.6147
mrpc-Overall 0.1419 0.0070 0.1258 0.0170
qnli-Understandable -0.0076 0.8864 0.0062 0.9069
qnli-Natural -0.0095 0.8571 -0.0032 0.9515
qnli-Maintains Context -0.0078 0.8824 -0.0015 0.9768
qnli-Engaging 0.1409 0.0074 0.1538 0.0034
qnli-Uses Knowledge 0.1382 0.0086 0.1509 0.0041
qnli-Overall 0.0853 0.1060 0.0952 0.0711
qqp-Understandable -0.0311 0.5569 -0.0369 0.4858
qqp-Natural -0.0510 0.3346 -0.0142 0.7879
qqp-Maintains Context -0.0173 0.7439 0.0529 0.3173
qqp-Engaging -0.0845 0.1095 -0.0910 0.0848
qqp-Uses Knowledge -0.1103 0.0365 -0.1352 0.0102
qqp-Overall -0.0751 0.1548 -0.0708 0.1804
rte-Understandable 0.0598 0.2577 0.0758 0.1510
rte-Natural 0.0833 0.1147 0.0936 0.0761
rte-Maintains Context -0.0131 0.8043 -0.0419 0.4282
rte-Engaging 0.2024 0.0001 0.2116 0.0001
rte-Uses Knowledge 0.2478 0.0001 0.2523 0.0001
rte-Overall 0.1619 0.0021 0.1554 0.0031
stsb-Understandable 0.0343 0.5160 0.0473 0.3711
stsb-Natural 0.0270 0.6094 0.0430 0.4158
stsb-Maintains Context 0.2350 0.0001 0.2340 0.0001
stsb-Engaging 0.1457 0.0056 0.1704 0.0012
stsb-Uses Knowledge -0.0056 0.9150 0.0360 0.4962
stsb-Overall 0.1129 0.0322 0.1429 0.0066

Table A.2: Correlation scores between the GLUE tasks on the conversation utterances and the human annotator
scores and their respective p-values on the TopicalChat dataset.
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Appendix A Appendix

PersonaChat
Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

cola-Understandable 0.0318 0.5828 0.0673 0.2451
cola-Natural 0.0838 0.1475 -0.0309 0.5945
cola-Maintains Context -0.0862 0.1365 -0.1935 0.0008
cola-Engaging -0.0665 0.2510 -0.1568 0.0065
cola-Uses Knowledge -0.0190 0.7425 -0.1403 0.0150
cola-Overall -0.0252 0.6635 -0.1931 0.0008
sst-Understandable 0.0743 0.1996 0.0723 0.2119
sst-Natural -0.0064 0.9119 0.0294 0.6123
sst-Maintains Context 0.0760 0.1890 0.0988 0.0875
sst-Engaging 0.1530 0.0080 0.1242 0.0315
sst-Uses Knowledge 0.0422 0.4663 -0.0034 0.9531
sst-Overall 0.1172 0.0424 0.1068 0.0647
mrpc-Understandable 0.0857 0.1385 0.1098 0.0574
mrpc-Natural 0.1794 0.0018 0.2410 0.0001
mrpc-Maintains Context 0.3129 0.0001 0.3684 0.0001
mrpc-Engaging -0.1266 0.0284 0.0695 0.2301
mrpc-Uses Knowledge -0.0656 0.2574 -0.0112 0.8468
mrpc-Overall 0.1959 0.0006 0.2576 0.0001
qnli-Understandable -0.1356 0.0188 -0.1434 0.0129
qnli-Natural -0.1821 0.0015 -0.2058 0.0003
qnli-Maintains Context -0.3795 0.0001 -0.3982 0.0001
qnli-Engaging 0.0163 0.7780 0.0318 0.5832
qnli-Uses Knowledge -0.0430 0.4580 -0.0490 0.3981
qnli-Overall -0.2553 0.0001 -0.2434 0.0001
qqp-Understandable 0.0529 0.3613 0.0830 0.1514
qqp-Natural 0.1071 0.0639 0.1857 0.0012
qqp-Maintains Context 0.1646 0.0043 0.3472 0.0001
qqp-Engaging -0.3205 0.0001 -0.0071 0.9029
qqp-Uses Knowledge -0.1725 0.0027 0.0208 0.7198
qqp-Overall 0.0276 0.6345 0.2125 0.0002
rte-Understandable -0.0519 0.3704 -0.0976 0.0916
rte-Natural -0.0710 0.2200 -0.1184 0.0404
rte-Maintains Context -0.2789 0.0001 -0.2999 0.0001
rte-Engaging 0.1131 0.0503 0.1269 0.0280
rte-Uses Knowledge 0.0752 0.1939 0.0827 0.1531
rte-Overall -0.0842 0.1459 -0.0766 0.1860
stsb-Understandable 0.1286 0.0259 0.1159 0.0448
stsb-Natural 0.1140 0.0486 0.1317 0.0225
stsb-Maintains Context 0.3620 0.0001 0.3463 0.0001
stsb-Engaging 0.0889 0.1242 0.0805 0.1645
stsb-Uses Knowledge 0.0988 0.0877 0.0828 0.1525
stsb-Overall 0.2591 0.0001 0.2396 0.0001

Table A.3: Correlation scores between the GLUE tasks on the conversation utterances and the human annotator
scores and their respective p-values on the PersonaChat dataset.
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A.2 Complete correlation scores for all predictors

TopicalChat

Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

fact_mrpc-Understandable 0.1357 0.0100 0.1935 0.0002
fact_mrpc-Natural 0.0564 0.2859 0.1186 0.0244
fact_mrpc-Maintains Context 0.0827 0.1174 0.1981 0.0002
fact_mrpc-Engaging 0.2017 0.0001 0.3052 0.0001
fact_mrpc-Uses Knowledge 0.3162 0.0001 0.3839 0.0001
fact_mrpc-Overall 0.1749 0.0009 0.2647 0.0001

fact_qnli-Understandable -0.2597 0.0001 -0.2355 0.0001
fact_qnli-Natural -0.2419 0.0001 -0.1981 0.0002
fact_qnli-Maintains Context -0.2239 0.0001 -0.1842 0.0004
fact_qnli-Engaging -0.4034 0.0001 -0.3727 0.0001
fact_qnli-Uses Knowledge -0.5291 0.0001 -0.5457 0.0001
fact_qnli-Overall -0.3784 0.0001 -0.3390 0.0001

fact_qqp-Understandable 0.1656 0.0016 0.2147 0.0001
fact_qqp-Natural 0.1217 0.0209 0.1788 0.0007
fact_qqp-Maintains Context 0.1607 0.0022 0.1917 0.0003
fact_qqp-Engaging 0.3197 0.0001 0.3824 0.0001
fact_qqp-Uses Knowledge 0.4373 0.0001 0.5350 0.0001
fact_qqp-Overall 0.2683 0.0001 0.3347 0.0001

fact_rte-Understandable -0.1823 0.0005 -0.1896 0.0003
fact_rte-Natural -0.1512 0.0040 -0.1408 0.0075
fact_rte-Maintains Context -0.1297 0.0138 -0.1398 0.0079
fact_rte-Engaging -0.2565 0.0001 -0.2620 0.0001
fact_rte-Uses Knowledge -0.3900 0.0001 -0.5263 0.0001
fact_rte-Overall -0.2312 0.0001 -0.2360 0.0001

fact_stsb-Understandable 0.1994 0.0001 0.1999 0.0001
fact_stsb-Natural 0.1346 0.0106 0.1249 0.0178
fact_stsb-Maintains Context 0.1832 0.0005 0.1739 0.0009
fact_stsb-Engaging 0.4147 0.0001 0.4103 0.0001
fact_stsb-Uses Knowledge 0.4808 0.0001 0.4522 0.0001
fact_stsb-Overall 0.3324 0.0001 0.3220 0.0001

Table A.4: Correlation scores between the GLUE tasks on the conversation utterances evaluated against the
knowledge base facts and the human annotator scores and their respective p-values on the TopicalChat dataset.
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Appendix A Appendix

PersonaChat

Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

fact_mrpc-Understandable 0.1219 0.0349 0.1938 0.0007
fact_mrpc-Natural 0.0417 0.4721 0.0550 0.3425
fact_mrpc-Maintains Context 0.0252 0.6642 -0.0532 0.3589
fact_mrpc-Engaging 0.1302 0.0241 0.0461 0.4265
fact_mrpc-Uses Knowledge -0.0046 0.9367 -0.0571 0.3247
fact_mrpc-Overall 0.0149 0.7972 -0.0726 0.2101

fact_qnli-Understandable -0.1256 0.0296 -0.1494 0.0095
fact_qnli-Natural -0.0642 0.2674 -0.0584 0.3131
fact_qnli-Maintains Context -0.1478 0.0103 -0.1014 0.0794
fact_qnli-Engaging -0.1157 0.0453 -0.0817 0.1583
fact_qnli-Uses Knowledge -0.2733 0.0001 -0.2613 0.0001
fact_qnli-Overall -0.1899 0.0009 -0.1734 0.0026

fact_qqp-Understandable 0.0476 0.4113 -0.0767 0.1850
fact_qqp-Natural 0.0762 0.1881 -0.0591 0.3072
fact_qqp-Maintains Context 0.0397 0.4936 0.0774 0.1813
fact_qqp-Engaging 0.1400 0.0152 0.1365 0.0180
fact_qqp-Uses Knowledge 0.2099 0.0003 0.4352 0.0001
fact_qqp-Overall 0.1613 0.0051 0.2230 0.0001

fact_rte-Understandable -0.0296 0.6098 -0.0914 0.1142
fact_rte-Natural 0.0289 0.6181 0.0305 0.5993
fact_rte-Maintains Context -0.0371 0.5225 -0.0041 0.9440
fact_rte-Engaging -0.1091 0.0591 -0.0726 0.2100
fact_rte-Uses Knowledge -0.4052 0.0001 -0.3481 0.0001
fact_rte-Overall -0.1232 0.0330 -0.1122 0.0522

fact_stsb-Understandable 0.0250 0.6660 0.0307 0.5961
fact_stsb-Natural 0.0302 0.6025 -0.0032 0.9555
fact_stsb-Maintains Context 0.1537 0.0077 0.0876 0.1300
fact_stsb-Engaging 0.3419 0.0001 0.3378 0.0001
fact_stsb-Uses Knowledge 0.7329 0.0001 0.7173 0.0001
fact_stsb-Overall 0.3742 0.0001 0.3898 0.0001

Table A.5: Correlation scores between the GLUE tasks on the conversation utterances evaluated against the
knowledge base facts and the human annotator scores and their respective p-values on the PersonaChat dataset.
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A.2 Complete correlation scores for all predictors

TopicalChat

Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

lin-reg_pair-Understandable 0.1664 0.0015 0.1638 0.0018
lin-reg_pair-Natural 0.1986 0.0001 0.1972 0.0002
lin-reg_pair-Maintains Context 0.2859 0.0001 0.2946 0.0001
lin-reg_pair-Engaging 0.3884 0.0001 0.4008 0.0001
lin-reg_pair-Uses Knowledge 0.2455 0.0001 0.2751 0.0001
lin-reg_pair-Overall 0.3492 0.0001 0.3587 0.0001

lin-reg_fact-Understandable 0.2572 0.0001 0.2362 0.0001
lin-reg_fact-Natural 0.2244 0.0001 0.1805 0.0006
lin-reg_fact-Maintains Context 0.2272 0.0001 0.1921 0.0002
lin-reg_fact-Engaging 0.4358 0.0001 0.4078 0.0001
lin-reg_fact-Uses Knowledge 0.5517 0.0001 0.5182 0.0001
lin-reg_fact-Overall 0.3897 0.0001 0.3482 0.0001

lin-reg_single-Understandable 0.2542 0.0001 0.2470 0.0001
lin-reg_single-Natural 0.2148 0.0001 0.1853 0.0004
lin-reg_single-Maintains Context 0.0469 0.3753 0.0197 0.7094
lin-reg_single-Engaging 0.1483 0.0048 0.0881 0.0952
lin-reg_single-Uses Knowledge 0.0699 0.1855 0.0377 0.4754
lin-reg_single-Overall 0.1432 0.0065 0.1138 0.0308

lin-reg_all-Understandable 0.3420 0.0001 0.3390 0.0001
lin-reg_all-Natural 0.3357 0.0001 0.3130 0.0001
lin-reg_all-Maintains Context 0.3489 0.0001 0.3409 0.0001
lin-reg_all-Engaging 0.5335 0.0001 0.5364 0.0001
lin-reg_all-Uses Knowledge 0.5119 0.0001 0.5295 0.0001
lin-reg_all-Overall 0.4974 0.0001 0.4877 0.0001

Table A.6: Correlation scores between the combined GLUE scores with linear regression and the human
annotator scores and their respective p-values on the TopicalChat dataset.
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Appendix A Appendix

PersonaChat

Predictor-Criteria Pearson’s 𝒓 𝒑 < Spearman’s 𝝆 𝒑 <

lin-reg_pair-Understandable 0.1626 0.0047 0.1345 0.0198
lin-reg_pair-Natural 0.2033 0.0004 0.2160 0.0002
lin-reg_pair-Maintains Context 0.4178 0.0001 0.3981 0.0001
lin-reg_pair-Engaging 0.2185 0.0001 0.2216 0.0001
lin-reg_pair-Uses Knowledge 0.1909 0.0009 0.1916 0.0009
lin-reg_pair-Overall 0.3975 0.0001 0.3802 0.0001

lin-reg_fact-Understandable 0.0255 0.6606 0.0328 0.5720
lin-reg_fact-Natural 0.0546 0.3456 0.0319 0.5823
lin-reg_fact-Maintains Context 0.1783 0.0019 0.1110 0.0548
lin-reg_fact-Engaging 0.3446 0.0001 0.3412 0.0001
lin-reg_fact-Uses Knowledge 0.6959 0.0001 0.7020 0.0001
lin-reg_fact-Overall 0.3990 0.0001 0.4135 0.0001

lin-reg_single-Understandable 0.0643 0.2668 0.0603 0.2978
lin-reg_single-Natural -0.0285 0.6226 0.0302 0.6024
lin-reg_single-Maintains Context 0.0974 0.0922 0.1012 0.0801
lin-reg_single-Engaging 0.1675 0.0036 0.1597 0.0056
lin-reg_single-Uses Knowledge 0.0464 0.4230 0.0644 0.2661
lin-reg_single-Overall 0.1216 0.0353 0.1263 0.0287

lin-reg_all-Understandable 0.1214 0.0355 0.1218 0.0350
lin-reg_all-Natural 0.1728 0.0027 0.2044 0.0004
lin-reg_all-Maintains Context 0.4029 0.0001 0.3707 0.0001
lin-reg_all-Engaging 0.3272 0.0001 0.3306 0.0001
lin-reg_all-Uses Knowledge 0.5921 0.0001 0.5898 0.0001
lin-reg_all-Overall 0.5290 0.0001 0.5382 0.0001

Table A.7: Correlation scores between the combined GLUE scores with linear regression and the human
annotator scores and their respective p-values on the PersonaChat dataset.
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