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SUMMARY

The subject of this thesis is the rigorous analysis of the convergence properties of an al-
gorithm – the Merriman, Bence, Osher (MBO) scheme, or thresholding scheme – which
is used both for simulations in materials science and for clustering and classification
in data science.

The original version of the algorithm developed by Merriman, Bence, and Osher is
used to approximate the evolution by (multiphase) mean curvature flow, for which we
use the abbreviation MCF. MCF evolves a closed surface by prescribing the normal
velocity at every point to be given by −H, where H is the mean curvature of the
surface. The multiphase version of this evolution models the dynamics of a partition
of space: each interface separating two different phases evolves by MCF and a balance
of forces condition at triple junctions – i.e. points where three distinct interfaces meet
– is given as a boundary condition.

The MBO scheme produces successive approximations of the evolution by MCF by
alternating between two steps: (i) convolution with a smooth kernel and (ii) pointwise
thresholding. These correspond to an operator splitting for the Allen-Cahn Equation,
which is known to approximate MCF [42]. Since its introduction, several works have
tackled the question of the convergence of the algorithm. In the simple two-phase case,
this dates back to the independent works of Evans [26], and Barles and Georgelin [6].
Twenty years later, the gradient flow structure revealed in the work of Esedoḡlu and
Otto [25] allowed Laux and Otto to prove the conditional convergence of the scheme
in the multiphase setting [53].

Several modifications of the MBO algorithm have been proposed in the literature.
One of them, due to Esedoḡlu and Salvador [72], allows for more freedom in the choice
of some physical parameters – surface tensions and mobilities – which are used when
multiphase MCF is adopted as a model for the slow relaxation of grain boundaries in
polycrystals. This modified version of the scheme retains the simplicity and structure
of the original one, but prior to the work of Laux and the author of this thesis [51],
no rigorous proof of its convergence was known. In Chapter 2 we present the paper
[51], included in Appendix A, which contains the proof of the conditional convergence
of the modified thresholding scheme to a De Giorgi’s solution to multiphase MCF, a
weak notion of solution based on the gradient flow structure.

The MBO scheme was adapted in data science by Bertozzi et al. [62, 61, 78]. In this
context, it is used for data clustering – i.e. for finding a partition of a given data set into
subsets of points similar to each other. The thresholding scheme is part of the family
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of graph-based learning algorithms, which share the common idea of building a graph
structure on top of the data set and exploiting it to detect the underlying geometry of
the data. The MBO scheme for data clustering does this in the following way: given a
proposed clustering, one updates the partition by (i) diffusing the partition through the
graph heat operator, and (ii) updating the clustering by pointwise thresholding. The
thresholding scheme has demonstrated a good benchmark in many clustering contexts,
for instance in image segmentation, but prior to the content of this thesis little was
known about its theoretical justifications. Here we present two papers [50, 52], written
both by Laux and the author of this work, where we initiate and substantially advance
the mathematical understanding of the algorithm in the large data limit – i.e. we
characterize its behavior when the number of data points grows to infinity.

The thesis is organized as follows: after a detailed introduction that motivates this
work and explains it on a conceptual level, two chapters separate the presentation of
the results into two parts.

Chapter 2 is concerned with the analysis of the modified thresholding scheme of
Esedoḡlu and Salvador [25], and contains a detailed overview of the results of the paper
[51], included in Appendix A. We now briefly summarize the core content of the first
part of the thesis in terms of new results and scientific achievements.

Building on the seminal work of Esedoḡlu and Otto [25] and on the work of Laux
and Otto [55], we analyze the modified algorithm of Esedoḡlu and Salvador [25], in
particular:

(a) De Giorgi’s solution. We introduce a new definition of weak solution to mul-
tiphase MCF, which extends the one given in the two-phase setting in [55]. This
solution concept – called De Giorgi’s solution – is based on the general theory of
gradient flows.

(b) Convergence of the scheme. We give the first proof of the (conditional) con-
vergence of the modified thresholding scheme of Esedoḡlu and Salvador [72] to a
De Giorgi’s solution to multiphase MCF.

Chapter 3 is concerned with the analysis of the MBO scheme for data clustering
in the large data limit and contains a detailed overview of the results in the papers
[50, 52], included in Appendix B and Appendix C respectively. In machine learning,
studying the large data limit of an algorithm aims at understanding the asymptotic
behavior of its outcomes as the number of data points grows to infinity. In recent years,
this question has attracted the attention of the mathematical community and is part of
the broad goal of giving solid theoretical justifications to data science. Several recent
works, e.g. [34, 36, 35, 33, 10, 11, 12, 13, 14, 15, 9, 23], have successfully addressed this
problem for some graph-based learning algorithms, developing also some mathematical
techniques that are by now standard in the field – mainly viscosity solution approaches
and variational and optimal transport methods.

We now briefly summarize the core content of the second part of the thesis in terms
of new results and scientific achievements. With Laux, we analyzed the large data limit
for the MBO scheme in two works [50, 52] outlined in Chapter 3. In particular:

1. Γ-convergence of the thresholding energies. By the minimizing movements
interpretation of Esedoḡlu and Otto [25] and Bertozzi et al. [78], outcomes of
multiclass MBO can be seen as (local) minimizers of the graph thresholding
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energy. One is thus interested in characterizing the asymptotic behavior of these
local minimizers. Under the manifold assumption for the data, we have:

(a) Discrete-to-nonlocal. We prove that, almost surely, for each fixed step
size in the scheme, the graph thresholding energies Γ-converge to the corre-
sponding thresholding energy on the weighted data manifold, which in the
simple two-class setting coincides with the heat content with respect to a
suitable weighted heat kernel.

(b) Nonlocal-to-local. We prove that as the step size h goes to zero, the man-
ifold thresholding energies Γ-converge to and are consistent with a weighted
partition’s perimeter on the manifold. These results were known only in
the flat Euclidean setting [1, 67, 25]. The generalization to weighted mani-
folds is of independent interest and is non-trivial because in general the heat
kernel does not enjoy any translation invariance property as the Euclidean
one.

2. Convergence of the dynamics. We study the convergence of the dynamics of
the MBO scheme in the two-class setting. In this case, one can use the comparison
principle for MCF to work with viscosity solutions. We show that over any
sequence of step sizes which go to zero sufficiently slow as the number of data
points grows to infinity, the dynamics of the thresholding scheme converge to a
viscosity solution to MCF. More precisely:

(a) Abstract convergence result. We first concentrate on an abstract ver-
sion of the thresholding scheme, in which on each graph, the heat kernel is
substituted by an abstract operator Sn. We show that whenever Sn approx-
imates the manifold heat semigroup in the large data limit well enough, the
dynamics of the MBO scheme converge to a viscosity solution to MCF on
the manifold.

(b) Random graphs convergence. We show that, when the data points are
randomly and independently sampled from the data manifold, the graph
heat kernel or the composition of the graph heat kernel with the projection
on the space of the first Kn ∈ N eigenvectors of the graph Laplacian are
admissible choices for Sn, in the sense that with either of these choices, the
assumptions in the abstract convergence result hold true with high prob-
ability. This implies that the dynamics of the MBO scheme on random
geometric graphs converge almost surely to a viscosity solution to MCF.

Hence, the present thesis advances the understanding of multiphase MCF and the
MBO scheme in materials science and data clustering.

The content of this work is rigorous and theoretical from a mathematical view-
point, but the results contained in it are of interest also in an applied setting, either
as mathematical foundations or as useful insights for tweaking the algorithms we ana-
lyzed. Furthermore, in the proofs of the main theorems, we combine several techniques
originating from the calculus of variations, the theory of gradient flows, optimal trans-
portation, geometric measure theory, and data science in ways that could be inspiring
for tackling similar open questions in the literature.
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CHAPTER 1

INTRODUCTION

1.1 Outline

The Merriman, Bence, and Osher (MBO) scheme – also known as thresholding scheme
– is a numerical method originally introduced to approximate the evolution by mean
curvature flow (MCF). The algorithm produces a time approximation of MCF by iterat-
ing the following two steps: (i) convolution with a smooth kernel and (ii) thresholding.
The scheme is computationally very efficient: indeed, the first step can be implemented
using the Fast Fourier Transform, while the second one is just a pointwise operation.

Besides being mathematically interesting, MCF is used to model the slow relax-
ation of grain boundaries in polycrystals, and this motivates the interest in finding
good numerical schemes to approximate it. Since its first introduction in [63, 64],
the MBO scheme has been widely studied: it has been tweaked in several ways to
better approximate the physical model of grain growth, and, correspondingly, its con-
vergence properties have been studied from a rigorous mathematical point of view
[26, 6, 53, 56, 55, 57]. More recently, Bertozzi et al. [62, 61, 78] adapted the scheme to
data science. In this context, it is used for clustering, which is the task of splitting a
given data set into clusters – subsets of points similar to each other, where the measure
of similarity is the Euclidean distance. The object of this thesis is the rigorous math-
ematical understanding of (i) a new variant of the thresholding scheme used to better
model grain growth in polycrystals; and (ii) the large data limit of its data clustering
analog.

Before entering into the discussion on the core content of this work, let us take a
step back and focus on MCF. MCF describes the evolution of a closed surface by its
mean curvature. If Σ0 denotes an initial configuration, the surface changes over time
t 7→ Σt according to the law

V = −H on Σt, (1.1)

where V and H denote, respectively, the normal velocity and the mean curvature
of the surface Σt. Equation (1.1) - although formally very simple - presents many
challenges. First of all, it is a degenerate parabolic equation, so the existence of
smooth solutions is already an interesting problem. Short-time existence of a smooth
solution was addressed for the first time by Gage and Hamilton in [32]. Being a
diffusion equation, MCF has the appealing instantaneous regularizing effect, but even
smooth solutions may develop singularities in finite time (e.g. [37]), so that, in general,
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CHAPTER 1. INTRODUCTION

Ωi

Ωk

Ωj

Figure 1.1: The ideal boundaries between different grains in a polycrystal.

long-time existence in the classical sense cannot be obtained. Considerable effort has
thus been made in finding weak notions of solutions that can pass through topological
changes. Successful attempts in this direction rely on two distinguished features of
MCF: it satisfies a comparison principle and it has a gradient flow structure. Given
that the MBO scheme is meant to approximate MCF, it is not too surprising that these
two properties transfer to the algorithm, and are actually the main building blocks in
any proof of its convergence.

The comparison principle for MCF asserts that for two domains with one included
into the other, this inclusion will be preserved if their boundaries evolve by MCF. This
observation allowed Chen, Giga, and Goto [18], and, independently, Evans and Spruck
[27] to develop a viscosity solutions theory for MCF. Correspondingly, the comparison
principle for the MBO scheme has been used to prove its convergence in the viscosity
solutions setting in [26, 6, 68].

The gradient flow structure refers to the fact that MCF is the trajectory of steepest
descent for the area functional: if t 7→ Σt denotes a smooth evolution of smooth
surfaces, it can be shown that

d

dt
Area(Σt) =

∫
Σt

V HdS, (1.2)

from which it easily follows that among all possible choices for V with
∫
Σt
V 2dS =∫

Σt
H2dS, (1.1) makes (1.2) as small as possible. This structure was exploited for the

introduction of Brakke’s solutions [8] and of BV solutions in the sense of Luckhaus and
Sturzenhecker [58]. It took more than twenty years before the gradient flow structure
of the thresholding scheme was understood: in their seminal paper [25], Esedoḡlu
and Otto gave a variational interpretation of the MBO scheme, characterizing each
iteration as a step of minimizing movements for the thresholding energy, which in its
simplest setting corresponds to the heat content. This observation made it possible to
tackle the convergence of the algorithm in the setting of BV solutions [53, 56], Brakke’s
solutions [54] and De Giorgi’s solutions [55, 51].

1.2 The MBO scheme for materials science

MCF is used in materials science to model the slow relaxation of (ideal) grain bound-
aries in polycrystals subject to heat treatment. A polycrystal is a material composed of
several regions, called crystals, where the constituents are disposed in a highly ordered
fashion. Grain boundaries are ideal borders separating two different grains, see Fig-
ure 1.1. When the material is heated, the constituents on the grain boundaries change

Jona Lelmi 10



1.2. The MBO scheme for materials science

orientation, causing the ideal boundaries to move. It was observed by Mullins [69] that
the motion of a common boundary separating two crystals follows the dynamics

V = −σµH, (1.3)

where V and H are, respectively, the normal velocity and the mean curvature of the
grain boundary. In equation (1.3), σ denotes the surface energy, or surface tension,
which describes the free energy per unit area on the boundary, due to the different
orientation of the atomic constituents in the two crystals. The quantity µ is referred
to as mobility, which is a quantity that depends on the temperature of the grains.
Equation (1.3) is the evolution by MCF (up to a constant).

When the material is composed of more than two phases, as in the case of Figure 1.1,
the model prescribes equation (1.3) for each pair of neighboring phases, where the
constants σ and µ depend on the pair that we are considering. Moreover, the model
prescribes a balance of forces condition where three different grain boundaries meet,
i.e. at triple junctions. If we denote by Σij the boundary between phase Ωi and phase
Ωj, we call evolution by multiphase MCF the following system of partial differential
equations:{

Vij = −µijσijHij along the grain boundary Σij,

σijνij + σjkνjk + σkiνki = 0 along triple junctions Σij ∩ Σjk.
(1.4)

Here σij and µij denote, respectively, the surface tension and the mobility coefficient
between Ωi and Ωj, while νij denotes the normal of Σij, pointing from Ωi in direction
of Ωj. For more information about the modeling, the interested reader may consult
[48].

Given the relevance of system (1.4) for applications, many efforts have been made
to develop efficient numerical methods for solving (1.4). The main difficulty in di-
rectly discretizing (1.4) are topological changes in the network of grain boundaries:
for instance, some of the grains could disappear. The MBO scheme handles those
topological changes in a natural way.

In view of the significance for applications, it is natural to study the convergence
properties of the time discretizations produced by the algorithm. The first results
in this direction date back to Evans [26], and Barles and Georgelin [6], where the
authors prove, independently and with different techniques, that in the simple two-
phase setting, the thresholding scheme converges to a viscosity solution of MCF.

The analysis of the MBO scheme in its multiphase version cannot be handled with
these methods, because of the lack of a comparison principle in this vectorial setting.
Laux and Otto gave the first proof of the convergence of the scheme in the multiphase
setting in [53] by exploiting its gradient flow structure. The limiting equation (1.4) is
interpreted in a weak sense using geometric measure theory techniques.

Laux and Otto’s work heavily exploits the minimizing movements interpretation
of the thresholding scheme, which was revealed in the fundamental paper [25]. There,
Esedoḡlu and Otto prove that each step of the scheme is equivalent to a solution of
the following variational problem

min
Σ

{
Eh(Σ) +

1

2h
d2h(Σ,Σ

n−1)

}
, (1.5)

where Eh(Σ) is the thresholding energy, a non-local energy which approximates the area
functional, and dh(Σ,Σ

n−1) is a suitable non-local distance between the configuration
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CHAPTER 1. INTRODUCTION

Σ and the approximation of the grain boundary at the previous time step Σn−1. Since
the work of Jordan, Kinderlehrer, and Otto [47], the importance of the formerly often
neglected metric in such gradient-flow structures has been widely appreciated. It is
well-known that, in the case of MCF, the dissipation mechanism in the gradient flow
structure is completely degenerate [65]. This is why in the noteworthy minimizing
movements scheme for MCF by Almgren, Taylor, and Wang [2], and Luckhaus and
Sturzenhecker [58], the authors had to introduce a proxy for the metric term. For
the same reason, the distance term appearing in (1.5) is a proxy for the dissipation in
MCF. It is worth noticing that from a numerical analysis viewpoint, (1.5) implies that
thresholding behaves like the implicit Euler scheme and is therefore unconditionally
stable. Also in different frameworks, this variational viewpoint turned out to be useful,
such as MCF in higher codimension [57] or the Muskat problem [45].

In the works of Laux and Otto, the authors study the convergence of the MBO
scheme in the form of the generalization [25], which works as follows (we restrict to
the torus, i.e. periodic boundary conditions).

Algorithm 1.2.1. Let h > 0 be a given step-size. Let {Ω0
1, ...,Ω

0
N} be disjoint open

subsets of [0, 1)d such that [0, 1)d = ∪iΩ0
i . For n ∈ N, to obtain the new collection

{Ωn+1
1 , ...,Ωn+1

N } at time t = h(n+ 1) from the collection {Ωn
1 , ...,Ω

n
N} at time t = hn,

perform the following two steps:

1. For any i = 1, ..., N form the convolutions with the standard Gaussian kernel Gh

of width h

ψni = Gh ∗

(
N∑
j=1

σij1Ωnj

)
.

2. Thresholding step: define

Ωn+1
i :=

{
x : ψni (x) < min

j ̸=i
ψnj (x)

}
.

This version of the MBO scheme has the only downside of the somewhat unnatural
implicit choice of mobilities µij = 1

σij
. Only recently, Salvador and Esedoḡlu [72]

have presented a strikingly simple way to incorporate a wide class of mobilities µij.
Their algorithm is based on the fact that although the same kernel appears in the
energy and the metric, each term only uses certain properties of it, which can be tuned
independently: starting from two Gaussian kernels Gγ and Gβ of different widths,
they find positive linear combinations Kij = aijGγ + bijGβ, whose effective mobility
and surface tension match the given µij and σij, respectively. The convolution step in
Algorithm 1.2.1 is then replaced by

ψni =
∑
j ̸=i

Kij ∗ 1Ωnj
.

It is remarkable that this algorithm retains the same simplicity and structure as the
previous ones [64, 25]. In Chapter 2 we present the paper [51] where, together with
Laux, we prove the first convergence result for this new general scheme. We exploit
the gradient-flow structure and show that under the natural assumption of energy
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1.2. The MBO scheme for materials science

convergence, any limit of thresholding satisfies De Giorgi’s inequality, a weak notion
of solution to multiphase MCF.

This result fits into the theory of general gradient flows and crucially depends on De
Giorgi’s abstract framework. This research direction at the level of MCF was initiated
by Laux and Otto and appeared in the lecture notes [55]. There, De Giorgi’s inequality
is derived for the simple model case of two phases. In the first part of this thesis, we
complete these ideas and use a careful localization argument to generalize this result
to the multiphase case. A further particular novelty of this work is that for the first
time, we prove the convergence of the new scheme for arbitrary mobilities [72]. De
Giorgi’s general strategy we are implementing in [51] is also related to the approaches
by Sandier and Serfaty [73] and Mielke [66]. They provide sufficient conditions for
gradient flows to converge in the same spirit as Γ-convergence of energy functionals
implies the convergence of minimizers. In the dynamic situation, it is clear that one
needs conditions on both energy and metric in order to verify such a convergence.

Our proof rests on the fact that thresholding, like any minimizing movements
scheme, satisfies a sharp energy-dissipation inequality of the form

Eh(Σ
h(T )) +

1

2

∫ T

0

(
1

h2
d2h(Σ

h(t),Σh(t− h)) + |∂Eh|2(Σ̃h(t))

)
dt (1.6)

≤ Eh(Σ(0)),

where Σh(t) denotes the piecewise constant interpolation in time of the MBO ap-
proximations, Σ̃h(t) denotes another, intrinsic interpolation in terms of the variational
scheme, cf. Lemma A.1.4, and |∂Eh| is the metric slope of Eh, cf. (A.11).

Our main goal is to pass to the limit in (1.6) and obtain the sharp energy-dissipation
relation for the limit, which in the simple two-phase case formally reads

σArea(Σ(T )) +
1

2

∫ T

0

∫
Σ(t)

(
1

µ
V 2 + µσ2H2

)
dS dt ≤ σArea(Σ(0)). (1.7)

To this end, one needs sharp lower bounds for the terms on the left-hand side of (1.6).
While the proof of the lower bound on the metric slope of the energy

lim inf
h↓0

∫ T

0

|∂Eh|2(Σ̃h(t)) dt ≥ µσ2

∫ T

0

∫
Σ(t)

H2dS dt

is a straightforward generalization of the argument in [55], the main novelty of our
work lies in the sharp lower bound for the distance-term of the form

lim inf
h↓0

∫ T

0

1

h2
d2h(Σ

h(t),Σh(t− h)) dt ≥ 1

µ

∫ T

0

∫
Σ(t)

V 2 dS dt.

This requires us to work on a mesoscopic time scale τ ∼
√
h, which is much larger than

the microscopic time-step size h and which is natural in view of the parabolic nature
of our problem.

It is remarkable that De Giorgi’s inequality (1.7) in fact characterizes the solution
of MCF under additional regularity assumptions. Indeed, if Σ(t) evolves smoothly,
this inequality can be rewritten as

1

2

∫ T

0

∫
Σ(t)

σ
( 1
√
µσ

V +
√
µσH

)2
dS dt ≤ 0,
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CHAPTER 1. INTRODUCTION

Figure 1.2: One iteration of the MBO scheme with relatively large time-step size on
the two moons data set. The initial configuration (left) is diffused in the first step
(middle picture). The thresholding step then turns this into a new clustering (right).

and therefore V = −µσH. For the expository purpose, we focused here on the vanilla
two-phase case. In the multiphase case, the resulting inequality implies both the
PDEs and the balance of forces condition, cf. Remark A.2.3. An optimal energy-
dissipation relation like the one here also plays a crucial role in the recent weak-strong
uniqueness result for multiphase MCF by Fischer, Hensel, Laux, and Simon [29]. There,
a new dynamic analog of calibrations is introduced and uniqueness is established in
the following two steps: (i) any strong solution is a calibrated flow and (ii) every
calibrated flow is unique in the class of weak solutions. In fact, Hensel and Laux
recently showed in [40] that (a slightly weaker version of) De Giorgi’s inequality is
sufficient for weak-strong uniqueness.

1.3 The MBO scheme for data clustering

In the context of data science, the MBO scheme is a particular instance of a graph-
based learning algorithm used for data clustering [62, 61, 78]. Graph-based learn-
ing algorithms build a weighted graph G = (V,W ) on top of a given data set V =
{x1, . . . , xn} ⊂ Rd, with edges weighted by a non-increasing function of the distance of
the data points, and try to exploit this structure to detect the underlying geometry of
the data set to partition it into P ∈ N clusters. The MBO scheme produces successive
proposed partitions by alternating the following two steps: (i) diffusion on the graph;
(ii) thresholding. For the sake of simplifying the exposition, let us assume for the
moment that P = 2, so that a clustering can be encoded by a function χ : V → {0, 1}
(in this case, χ is the indicator function of one of the two clusters). Each iteration of
the algorithm works as follows.

Algorithm 1.3.1. Let χ : V → {0, 1} encode an initial guess for the clustering and
let h > 0 be a given step size. To obtain a new partition of the data set, update the
given one by performing the following two operations:

1. Diffusion. Solve the heat equation on the graph at time h with initial value χ,
i.e. set

u := e−h∆Gχ,

where ∆G is a suitably defined graph Laplacian.

2. Thresholding. Update the partition by defining χ : V → {0, 1} according to{
x ∈ V : χ(x) = 1

}
=

{
x ∈ V : u(x) ≥ 1

2

}
.
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1.3. The MBO scheme for data clustering

The scheme can be implemented very efficiently in this case too, indeed, the first
operation corresponds to solving the heat equation on a finite graph, which can be
done by computing the matrix exponential of a graph Laplacian; while the second step
is just a pointwise operation. See Figure 1.2 for one iteration of the MBO scheme on
the two moons data set.

The MBO scheme has a very good benchmark in clustering problems, it can for
instance be used for image segmentation [62, 61]. After its introduction, several authors
found modifications of the algorithm with better accuracy in semisupervised learning
tasks (i.e. classification problems with low labeling rates): for example, VolumeMBO
[46] and PoissonMBO [12].

In recent years, considerable effort has been made to give theoretical justifications
and mathematical foundations to data science algorithms used in practice. An emerg-
ing area of research focuses on characterizing the large data limit of the outcomes of
graph-based learning methods: given a sequence of weighted graphs Gn = (Vn,Wn)
such that Vn ⊂ Vn+1 and |Vn| = n for each n ∈ N, one considers the outcome of a given
algorithm on each of the graphs and tries to identify its continuum limit as the number
n of data-points grows to infinity. In order to have a well-posed mathematical problem,
one requires the data points to satisfy the manifold assumption: even if they lay in a
high dimensional feature space, i.e. {xi}+∞

i=1 ⊂ Rd, their intrinsic dimension k is lower,
because – as usual in applications – many of the features will be correlated. One then
usually assumes that {xi}+∞

i=1 ⊂ M , for a k-dimensional closed Riemannian submani-
fold M ⊂ Rd. Under this assumptions – and given a sequence of positive localization
parameters {ϵn}n∈N – one constructs the family of weighted graphs Gn = (Vn,Wn) by
setting:

1. Vn = {x1, ..., xn};

2. (Wn)ii = 0 and for 1 ≤ i ̸= j ≤ n

(Wn)ij =
1

ϵkn
η

(
|xi − xj|

ϵn

)
,

where η is a non-increasing, sufficiently regular function, and | · | denotes the
d-dimensional Euclidean distance.

When we additionally assume that the data points {xi}+∞
i=1 are independently sam-

pled on M , with a distribution given by ν := ρVolM , for a smooth, positive function
ρ ∈ C∞(M), the graphs just constructed are referred to as random geometric graphs.
In this context, two predominant methods have emerged as extremely suited for iden-
tifying large data limits: variational methods and viscosity solutions techniques. The
former have been used to study various graph cut algorithms [36, 34], p-Laplacian
regularization [76], and spectral clustering [35], just to name a few. The latter have
for example been used to understand the consistency of Lipschitz learning [10].

Even if the study of large data limits may seem very abstract, the theoretical
results often lead to insights into the choice of parameters for a given algorithm and
its regime of validity. For instance, Laplace learning (also known as Label Propagation)
is a widely used algorithm for classification tasks and has been successfully used in a
semi-supervised setting: one is given a data set made of a few labeled points and many
unlabeled ones, and the goal is to propagate the labels to the whole data set. Laplace
learning does this by extending the classification function – initially defined only on
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CHAPTER 1. INTRODUCTION

the labeled points – to a globally defined harmonic function on the graph. It was
observed in [70] that the algorithm may actually behave badly when the number of
labeled points is too small. In [15], the authors rigorously identify the continuum limit
for Laplace learning, and – by doing this – they precisely relate the regime of validity
of the algorithm in the semi-supervised setting to the labeling rate used.

When working with the MBO scheme for data clustering in practice, one has to tune
two parameters: the step size and the number of eigenvalues of the graph Laplacian
used to approximate the heat operator. It can be observed numerically that poor
choices of these quantities lead to poor accuracy. For instance, on the one hand, if
the step size is chosen too small compared to the characteristic length scale of the
graph, the algorithm will be pinned, because in the first step, there would not be
enough diffusion for any data point to change its label. On the other hand, if the
step size is chosen too large, the algorithm will immediately jump to a trivial state.
It should also be remarked that the actual implementation of the continuum MBO
scheme really corresponds to performing a graph MBO scheme for a very particular
graph: a regular grid. Indeed, computing the convolution of two functions by the Fast
Fourier Transform corresponds to discretizing space by using a regular grid. For all
these reasons, a theoretical analysis of the MBO scheme in its data science formulation
is not only natural but also desirable.

The first rigorous analysis of the graph MBO scheme on regular grids is [68], where
the authors prove the convergence of the space-time discretization of the two-class
algorithm in the viscosity solutions setting. In the general data science framework,
the distribution of the data points is unknown and far from being a regular grid. In
this thesis, we will present two works [50, 52] where, together with Laux, we use both
variational methods and viscosity solutions techniques to study the large data limit of
the MBO scheme for data clustering.

The starting point is once again the minimizing movements interpretation of Esedoḡlu
and Otto [25], which was rephrased in the graph context by Bertozzi et al. in [78]. It
says that in each iteration, the scheme produces a new clustering χnew starting from a
clustering χold by solving the following minimization problem

χnew ∈ argmin
u:V→[0,1]

{
EG
h (u) +

1

2h
d2h,G(u, χold)

}
, (1.8)

where h > 0 is the chosen step size, EG
h is the graph-thresholding energy – which

can be thought of as a nonlocal energy approximating the graph-cut – and dh,G is a
suitable distance. By successively applying the algorithm, one produces a sequence
{χl}+∞

l=0 of clusterings of the data set. The interpretation (1.8) implies that for N ∈ N
large enough, the clustering χN can be thought of as being close to a local minimizer
of the graph thresholding energy. Two questions are then natural:

(i) What is the asymptotic behavior of these local minimizers?

(ii) What is the asymptotic behavior of the dynamics produced by the algorithm?

We give a qualitative answer to Question (i) in [50], and a quantitative answer
to Question (ii) in [52]. Both papers are presented in detail in Chapter 3. Here, we
outline their content.
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1.3. The MBO scheme for data clustering

1.3.1 Γ-convergence of the thresholding energies

To address Question (i), the right tool is Γ-convergence – a notion of convergence
for sequences of functionals that ensures the convergence of local minimizers, which
was originally introduced by De Giorgi and Franzoni in [21]. In [50] we study the
Γ-convergence of the thresholding energies when the number of data points goes to
infinity and the step size h goes to zero. In the setting of random geometric graphs,
we show that it holds almost surely that the first limit – i.e. when we let the number
of data points go to infinity – is the continuum thresholding energy on the manifold
M , which for measurable functions u :M → [0, 1] is defined as

EM
h (u) =

1√
h

∫
M

(1− u)e−h∆ρ2uρ2dVolM .

Here e−h∆ρ2 is the heat operator on the manifold associated to the weighted Laplacian
with weight ρ2 (which on smooth functions f ∈ C∞(M) acts as ∆ρ2f := − 1

ρ2
div(ρ2∇f)).

This Γ-convergence takes place in the weak-TL2 sense, a notion of convergence based
on optimal transport allowing one to compare functions that are in L2-spaces with re-
spect to two different probability measures. The second limit – i.e. when we let h ↓ 0 –
is understood in the sense of Γ-convergence with respect to the strong L1(M)-topology.
We prove that when h ↓ 0, the energies EM

h Γ-converge to a constant multiple of the
weighted perimeter functional, i.e.

Γ(L1(M))− lim
h↓0

EM
h = F,

where for a measurable function u :M → [0, 1] we define

F (u) :=

{
1√
π

∫
∂∗{u=1} ρ

2Hk−1(dx) if u ∈ BV (M, {0, 1}),
+∞ otherwise.

These two results say that, qualitatively, the outcomes of the MBO scheme can be
thought of as local minimizers of the weighted perimeter functional. This formalizes the
intuitive idea that the MBO scheme is driven by minimizing a nonlocal version of the
graph-cut. The results that we just stated are valid also when we consider an arbitrary
number of classes P ≥ 2, in which case the thresholding energy will take into account
the pairwise interaction of the different classes, and the continuum interpretation of
the outcomes of the scheme will correspond to an optimal partition problem. These
facts will be described in detail in Chapter 3, but let us briefly comment on the
key ingredients for proving them. The main point for proving that the thresholding
energies on the graph converge to the nonlocal thresholding energy on the manifold
as the number of data points goes to infinity is the convergence and regularization
properties of the heat operators: we prove that whenever un are functions defined
on the first n data points which converge to u ∈ L2(M) weakly with respect to the
TL2(M)-convergence, then for each fixed h > 0 the corresponding heat operators
e−h∆un converge (up to constants in the weighted Laplacian) to e−h∆ρ2u strongly in
TL2(M). The convergence of the thresholding energies is then just a corollary that
uses the fact that products of weakly convergent functions and strongly convergent
ones converge to the product of their limits.

For the second limit, i.e., letting the step size h go to zero, the main difficulty is that
the heat kernel on a manifold does not enjoy any translation invariance property as
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the Euclidean one. To overcome this problem, we use a careful localization argument
in space-time which allows to approximate the manifold heat kernel with its Euclidean
version on the tangent bundle - this is achieved by means of the asymptotic expansion
for the heat kernel. The Γ-lim sup is obtained by localizing on the reduced boundary
of the set of finite perimeter, while the Γ-lim inf inequality is obtained by means of the
blow-up method of Fonseca and Müller [30], see also [1, 4].

1.3.2 Convergence of the dynamics

The selection of local minimizers of the thresholding energy strongly depends on the
dynamics of the algorithm, which is the main motivation for studying Question (ii)
and is the object of [52]. There, together with Laux, we study the convergence of the
dynamics of the two-class MBO scheme. We restrict to this case because in this setting
one can use the comparison principle for MCF, and thus it allows for the use of viscosity
solutions. When dealing with the multiclass MBO scheme, the lack of a comparison
principle makes the problem much harder and requires different techniques. After the
first works on viscosity solutions [20], the machinery has proven to be a solid way to
develop a theory of weak solutions for many problems satisfying a maximum principle –
and its use is the basis for many fundamental contributions in geometric PDEs [18, 27]
numerical analysis [6, 43] and, more recently, for new results in theoretical data science
[10, 11, 9].

We work with a sequence of weighted geometric graphs Gn = (Vn,Wn) constructed
as before. In this setting, we study the convergence of the sequence of dynamics of the
MBO scheme as the data size n goes to infinity.

The paper [52] contains two main results. For the first one, in the MBO scheme, we
replace the heat operators on the graphs with abstract operators Sn : (0,+∞)×Vn →
Vn which are linear in the second variable (here Vn is the space of real-valued functions
defined on the vertex set Vn) and we show that if the sequence {Sn}n∈N approximates
well enough the heat kernel corresponding to a weighted Laplace–Beltrami operator
on the manifold, then we have the convergence of the dynamics of the MBO scheme
on the graphs to the viscosity solution of MCF on the manifold. The conditions that
the operators {Sn} have to satisfy are three: (i) they should satisfy an approximate
maximum principle, (ii) they should approximate the action of the heat kernel on
smooth functions in a uniform sense, and (iii) their action on the constant function 1
should be close enough to the constant 1. All these properties are made quantitatively
precise in Theorem C.2.2 in Appendix C.

In the second main result of [52] we check that (i), (ii) and (iii) are satisfied with
high probability on random geometric graphs when Sn are chosen to be the heat
operators on the graphs or the operators obtained by cutting off frequencies higher than
a threshold Kn, defined precisely in Item (iv) in Theorem C.2.4 in Appendix C. Let us
stress that the latter result is crucial for applications. Indeed, when one implements
the MBO scheme on a large dataset, computing the full heat kernel is intractable,
and thus one usually works with an approximate version of it, obtained by cutting
off high frequencies in precisely the way described above. Our result gives a solid
mathematical justification for this procedure, proving that the scheme converges in
the large data limit to the viscosity solution to MCF provided the frequency cut-off is
chosen according to Kn ≥ (log(n))q where q is a suitable positive real number and n
is the number of data points. We also notice that our result gives sufficient conditions
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1.3. The MBO scheme for data clustering

on how to choose the length scale ϵn and the time-step size hn in order to ensure
convergence of the scheme. In particular, the choice of hn is not anymore based solely
on rules of thumb but has theoretical foundations. Previously, only a negative result
ensuring pinning of the scheme was known [78, Theorem 4.2]. However, we point out
that the conditions on ϵn and hn are only sufficient, but not sharp. Indeed, we expect
that the convergence of the scheme should hold true whenever ϵn = o(hn), while our

conditions imply that ϵn = o(h
3/2
n ). The sharp rate ϵn = o(hn) was verified in the simple

setting of the deterministic two-dimensional regular grid Z2 in [68], and is based on
the explicit expression for the heat kernel on regular grids. But an extension to the
general setting in which we are working requires different techniques. Let us spend a
few words on the strategy of the proofs used in [52].

For the abstract convergence result, we follow the general scheme of proof of Barles
and Georgelin [6], also used in [68], where the authors prove the convergence of the
classical MBO scheme to a viscosity solution to MCF in the Euclidean space. Given
a smooth open set Ω ⊂ M , the idea is to prove that the upper semicontinuous enve-
lope u∗ and the lower semicontinuous envelope u∗ of the piecewise constant in time
interpolations of outcomes of the MBO scheme (with initial values Ω∩Gn) are, respec-
tively, a viscosity subsolution and a viscosity supersolution to MCF on the manifold.
After doing that, one can use the comparison principle for viscosity solutions to MCF
on weighted manifolds, due to Illmanen [41], to compare u∗ and u∗ with the unique
viscosity solution u to MCF with initial value Ω, to show that sign∗(u) ≤ u∗ and
sign∗(u) ≥ u∗. In order to check that u∗ and u∗ are, respectively, a viscosity subso-
lution and a viscosity supersolution to MCF we have to adapt the strategy in [6] to
our setting: we need to carefully identify admissible error terms for the argument of
[6]. Finally, to apply the comparison principle, it is crucial to show an ordering of the
initial values in the sense that sign∗(u(0, ·)) ≤ u∗(0, ·) and sign∗(u(0, ·)) ≥ u∗(0, ·). We
verify this in the general case of a weighted manifold by carefully checking that one
iteration of the MBO scheme with step size h produces a set whose normal distance
from the previous one is of order h. This issue seems to have been overlooked in the
literature and we believe that our proof fills an important gap in the previous works,
even in the Euclidean setting.

For the result on random geometric graphs, we draw inspiration from [24]. There,
the authors work on a fixed graph with points sampled independently from a weighted
manifold and consider the error in a uniform sense between the restriction of the
manifold heat kernel to the graph and the operator obtained by considering the first
K frequencies of the graph heat kernel. Their estimate, however, cannot be applied
in our setting because, since we want to take the number of data points to infinity,
we have to be able to take the frequency cut-off K to infinity jointly with it. For this
reason, a careful interplay between the chosen rates of convergence for K, the step size
h, and the localization parameter ϵ is needed. In [52] we thus obtain a new estimate
giving precise conditions on the relation between the frequency cut-off and the number
of data points. To get this, we make use of recent results on the convergence of spectra
of graph Laplacians [33, 13, 14].

The rest of the thesis is organized as follows: in Chapter 2 we summarize the results
of the paper [51], which we include, without introduction, in Appendix A. Chapter 3
contains a summary of the results of the papers [50, 52], which we include, without
introduction, in Appendix B and Appendix C respectively.
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CHAPTER 2

THE MBO SCHEME FOR MATERIALS SCIENCE

In this chapter, we present paper [51] containing the proof of the convergence
of a modified thresholding scheme to a De Giorgi’s solution to multiphase
MCF. The paper was written jointly by Laux and the author of the current
thesis, and it was published in

Calc. Var. Partial Differ. Equ. 61(1):Paper No. 35, 42, 2022.

In Appendix A the paper is reproduced, without introduction, in the form
it appeared on the ArXiv at https://arxiv.org/abs/2101.11663.

2.1 The modified thresholding scheme

In this section, we introduce the relevant background on the modified thresholding
scheme of Salvador and Esedoḡlu introduced in [25], which is the object of our analysis.
As explained in the introduction, the algorithm is used to approximate the evolution
by multiphase MCF, and its main novelty is that it allows for great freedom in the
choice of mobilities.

Assume that we are given surface tensions σ := (σij)ij ∈ RN×N and mobilities
µ = (µij)ij ∈ RN×N , where we assume that σii = µii = 0, σij = σji, and µij = µji.
Assume that γ, β ∈ R are two positive constants such that γ > β > 0. For any pair
1 ≤ i ̸= j ≤ N , define aij, bij ∈ R as the solution to the linear system{

σij =
aij

√
γ√

π
+

bij
√
β√
π
,

µ−1
ij =

aij√
π
√
γ
+

bij√
π
√
β
.

We then define the kernel Kij as

Kij(z) := aijGγ(z) + bijGβ(z),

where for any t > 0 the Gaussian Gt is defined as

Gt(z) :=
1

√
4πt

d
exp

(
−|z|2

4t

)
, z ∈ Rd.
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2.1. The modified thresholding scheme

For any h > 0, the rescaled kernel Kh
ij is defined as

Kh
ij(z) :=

1
√
h
d
Kij

(
z√
h

)
.

The algorithm of Salvador and Esedoḡlu used to approximate the evolution of a par-
tition {Ω0

1, ...,Ω
0
N} of the torus [0, 1)d under multiphase MCF with mobilities µ and

surface tensions σ is then as follows.

Algorithm 2.1.1 (Algorithm A.1.1). Let {Ω0
1, ...,Ω

0
N} be disjoint open subsets of [0, 1)d

such that [0, 1)d = ∪iΩ0
i , to obtain the new collection {Ωn+1

1 , ...,Ωn+1
N } at time t = h(n+

1) from the collection {Ωn
1 , ...,Ω

n
N} at time t = hn perform the following operations:

1. For any i = 1, . . . , N form the convolutions

ψni =
∑
j ̸=i

Kh
ij ∗ 1Ωnj

.

2. Thresholding step, define

Ωn+1
i :=

{
x : ψni (x) < min

j ̸=i
ψnj (x)

}
.

Before presenting the results of [51], let us pause for a moment to heuristically
explain why Algorithm 2.1.1 actually works.

Heuristics. Assume that the initial configuration {Ω0
1, . . . ,Ω

0
N} is made of smooth

open sets. We want to provide evidence that one step of Algorithm 2.1.1 actually
approximates the evolution by multiphase MCF, at least away from triple junctions.
To this end, pick 1 ≤ i ̸= j ≤ N and define Σ0

ij := ∂Ω0
i ∩ ∂Ω0

j . Assume that x ∈ Σ0
ij

is away from any triple junction. One can then show that with an exponentially small
in h error, near x we have

ψ0
i ≈ Kh

ij ∗ 1Ω0
j
(x),

ψ0
j ≈ Kh

ji ∗ 1Ω0
i
(x),

ψ0
k ≈ Kh

ki ∗ 1Ω0
i
(x) +Kh

kj ∗ 1Ω0
j
(x), ∀k /∈ {i, j}.

In particular, if aij < aik + aki and bij < bik + bkj for all k /∈ {i, j} we have that the
updated interface Σ1

ij is the set of points y close to x where

Kh
ij ∗ 1Ω0

j
(y) ≈ Kh

ji ∗ 1Ω0
i
(y). (2.1)

Now, by a careful Taylor expansion around x, which can be found in a heuristic form
in [60] and in a rigorous form in [31], we have that if νij(x) denotes the unit normal of
Σ0
ij pointing from Ω0

i to Ω0
j , for r ∈ R small enough

Kh
ij ∗ 1Ω0

i
(x+ rνij(x)) ≈

aij + bij
2

−
(
aij√
γ
+

bij√
β

)
r√
4πh

−
(
aij

√
γ + bij

√
β
) Hij(x)√

4π
+O(h).
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Inserting into (2.1) and solving for r we obtain

r ≈ −hHij(x)
√
γβ
aij

√
γ + bij

√
β

aij
√
β + bij

√
γ
.

It can be checked that √
γβ
aij

√
γ + bij

√
β

aij
√
β + bij

√
γ
= σijµij.

In particular, we have

r ≈ −hσijµijHij(x).

This says that the normal movement of the point x is approximately equal to the
evolution by MCF. In [51] we rigorously prove the convergence of the scheme to a De
Giorgi’s solution to multiphase MCF.

2.1.1 Main results

In [51], we prove the first convergence result for Algorithm 2.1.1. This is the first
proof of De Giorgi’s inequality in the multiphase case. We exploit the gradient-flow
structure and show that under the natural assumption of energy convergence, any limit
of thresholding satisfies De Giorgi’s inequality, a weak notion of solution to multiphase
MCF. This assumption is inspired by the fundamental work of Luckhaus-Sturzenhecker
[58] and has appeared in the context of thresholding in [53, 54].

Before stating the main result of the paper, we present the notion of De Giorgi’s
solution for multiphase MCF that we will use. Hereafter, we denote by A the class of
measurable partitions of the torus and by M its convex relaxation, i.e.

A :=

{
χ : [0, 1)d → {0, 1}P

∣∣∣∣ N∑
i=1

χi = 1

}
,

M :=

{
u : [0, 1)d → [0, 1]P

∣∣∣∣ N∑
i=1

ui = 1

}
.

If χ ∈ A, we set Ωi := {χi = 1} for every 1 ≤ i ≤ N . If χ is such that ∇χ is
a bounded measure, we denote by Σij := ∂∗Ωi ∩ ∂∗Ωj, the intersection between the
reduced boundaries ∂∗Ωi and ∂

∗Ωj. For each h > 0 we denote by Eh the thresholding
energy, defined for any u ∈ M as

Eh(u) :=
1√
h

N∑
i,j=1

σij

∫
[0,1)d

uiK
h
ij ∗ ujdx. (2.2)

The following is a slightly simplified version of Definition A.2.2.

Definition 2.1.2. Given χ0 ∈ A and such that ∇χ0 is a bounded measure, a map
χ : [0, 1)d × (0, T ) → {0, 1}N such that

∑
i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N

is called a De Giorgi solution to the multiphase MCF with surface tensions σij and
mobilities µij provided the following three facts hold:
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1. There exist Hij ∈ L2(Hd−1
|Σij (dx)dt) which are mean curvatures in the weak sense,

i.e., such that for any test vector field ξ ∈ C∞
c ([0, 1)d × (0, T ))d

∑
i,j

σij

∫
[0,1)d×(0,T )

(∇ · ξ − νij · ∇ξνij)Hd−1
|Σij(t)(dx)dt (2.3)

= −
∑
i,j

σij

∫
[0,1)d×(0,T )

Hijνij · ξHd−1
|Σij(t)(dx)dt.

2. There exist normal velocities Vij ∈ L2(Hd−1
|Σij(t)(dx)dt) with∫

[0,1)d
η(t = 0)χ0

i dx+

∫
[0,1)d×(0,T )

∂tη χi dxdt

+
∑
k ̸=i

∫
[0,1)d×(0,T )

ηVik Hd−1
|Σik(t)(dx)dt = 0

for all η ∈ C∞
c ([0, 1)d × [0, T )).

3. De Giorgi’s inequality is satisfied, i.e., for almost every t ∈ (0, T )

∑
i,j

σijHd−1(Σij(t)) +
1

2

∑
i,j

∫
[0,1)d×(0,t)

(
V 2
ij

µij
+ µijσ

2
ijH

2
ij

)
Hd−1

|Σij(s)(dx)ds

≤
∑
i,j

σijHd−1(Σ0
ij).

(2.4)

Definition 2.1.2 is motivated by the fact that for smooth solutions, De Giorgi’s in-
equality (2.4) characterizes the evolution by MCF away from triple junctions and (2.3)
prescribes the boundary condition at triple junctions. For more on this we refer to Re-
mark A.2.3. The definition finds inspiration in the general gradient flows framework
[5, 73], and it generalizes the previous two-phase version [55].

To state our main result, we need to introduce some notation: let χ0 ∈ A be an
initial partition of the torus. For each 1 ≤ i ≤ N define Ω0

i := {χ0
i = 1}. Fix h > 0

and iteratively apply the modified thresholding scheme in Algorithm 2.1.1 with initial
value {Ω0

1, . . . ,Ω
0
N}. For each n ∈ N, denote by χn ∈ A the outcome of each step, i.e.

for each 1 ≤ i ≤ N

χni (x) = 1 ⇔ x ∈ Ωn
i .

We then define the piecewise constant in time interpolation χh as

χh(x, t) = χn(x), t ∈ [nh, (n+ 1)h) for n ∈ N.

We are now ready to state our conditional convergence result. The energy convergence
assumption (2.6) appearing in the theorem below is motivated by a similar one on the
implicit time discretization of Luckhaus and Sturzenhecker [58], and has also appeared
in previous work on the thresholding scheme [53, 54, 55]. As of now, this assumption
can be verified only in particular cases, such as before the first singularity [77] or for
certain types of singularities, namely mean convex ones [22, 31].
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Theorem 2.1.3 (Theorem A.2.1). Given χ0 ∈ A and such that ∇χ0 is a bounded
measure and a sequence h ↓ 0, assume that there exists χ : [0, 1)d × (0, T ) → [0, 1]N

such that

χh ⇀ χ in L1([0, 1)d × (0, T )). (2.5)

Then χ ∈ {0, 1}N almost everywhere,
∑

i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N .
If we assume that

lim sup
h↓0

∫ T

0

Eh(χ
h(t))dt ≤

∑
i,j

σij

∫ T

0

Hd−1(Σij(t))dt, (2.6)

then χ is a De Giorgi solution in the sense of Definition 2.1.2.

2.1.2 Outline of the proof

To prove Theorem 2.1.3 we start from the minimizing movements interpretation of
Esedoḡlu and Otto, which says that for each h > 0 and for any t > 0

χh(t) ∈ argmin
u∈M

{
Eh(u) +

1

2h
d2h(u, χ

h(t− h))

}
, (2.7)

where Eh is defined in (2.2), while dh is a distance on M, defined as

d2h(u, v) := −2
√
h
∑
i,j

∫
(ui − vi)K

h
ij ∗ (uj − vj)dx, u, v ∈ M.

It turns out that by the general theory of gradient flows [5], any minimizing movements
dynamics like (2.7) satisfies the following abstract energy-dissipation inequality: for
any T ∈ Nh

Eh(χ
h(T )) +

1

2

∫ T

0

(
1

h2
d2h(χ

h(t), χh(t− h)) + |∂Eh(uh(t))|2
)
dt (2.8)

≤ Eh(χ
h(0)).

Here uh(t) is the so-called variational interpolation, which for n ∈ N and t ∈ ((nh, (n+
1)h] is defined by

uh(t) ∈ argmin
u∈M

{
Eh(u) +

d2h(u, χ
n)

2(t− nh)

}
,

and |∂Eh|(uh(t)) is the metric slope defined by

|∂Eh|(uh(t)) := lim
dh(uh(t),v)→0

(Eh(u
h(t))− Eh(v))+
dh(uh(t), v)

∈ [0,∞]. (2.9)

To prove Theorem 2.1.3 we pass to the limit h ↓ 0 into (2.8):

1. Compactness, Lemma A.2.4. By using that the right hand side is bounded in
h, one can prove that the family of partitions {χh}h>0 is precompact in the strong
L([0, 1)d × (0, T ))N topology. Moreover, any weak limit of the family belongs to
A ∩ BV ([0, 1)d)N . In what follows, we can thus pick a sequence χh converging
to χ ∈ A ∩BV ([0, 1)d)N , and denote by Σij the interfaces of the limit.

Jona Lelmi 24



2.1. The modified thresholding scheme

2. Energy terms. For the first left hand side term and for the right-hand side
term we use the Γ-convergence and consistency of the energies Eh. It is shown
in [25] that Eh Γ-converge in the L1(Rd) topology to the energy E, defined for
u ∈ M as

E(u) :=

{∑
i,j σijHd−1 (Σij) if u ∈ A ∩BV ([0, 1)d)N ,

+∞ otherwise.

Moreover, for any χ ∈ A ∩BV ([0, 1)d)N , Eh(χ) converges to E(χ) as h ↓ 0.

3. Metric slope term, Proposition A.2.6. It can be shown that for each i ̸= j
there exists a mean curvature Hij ∈ L2(Hd−1

Σij(t)
(dx)dt) in the sense of (A.17).

Moreover the following inequality is true:

lim inf
h↓0

∫ T

0

|∂Eh|2(uh(t))dt ≥
∑
i,j

µijσ
2
ij

∫ T

0

∫
Σij(t)

|Hij(x, t)|2Hd−1(dx)dt. (2.10)

4. Velocity term, Proposition A.2.5. One shows that for any 1 ≤ k ≤ N there
exists Vk ∈ L2(|∇χk|dt) such that

∂tχk = Vk|∇χk|dt (2.11)

in the sense of distributions, and if we define Vij(x, t) := Vi(x, t)|Σij(t) then we
have

lim inf
h↓0

∫ T

0

1

h2
d2h(χ

h(t), χh(t− h))dt ≥
∑
i,j

1

µij

∫ T

0

∫
Σij(t)

|Vij(x, t)|2Hd−1(dx)dt.

These steps clearly allow to pass to the limit in the abstract inequality (2.8) and
to derive Theorem 2.1.3. To prove (2.10) and (2.11) we build on the ideas of [51],
where the analogous inequalities are derived in the two-phase case. The main idea in
extending Laux and Otto’s strategy is a careful localization argument, which allows us
to look at the dynamics of χ locally on each interface Σij. In this way, the evolution
of Σij away from triple junctions can be treated as in the two-phase case up to error
terms controlled by our localization method.
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CHAPTER 3

LARGE DATA LIMIT OF THE MBO SCHEME FOR DATA

CLUSTERING

In this chapter, we present papers [50, 52] about the large data limit of the
MBO scheme for data clustering. Both papers have been written jointly by
Laux and the author of the current thesis.

Section 3.2 describes the content of [50], which is reproduced in Appendix B
without introduction. The paper is currently under review, and has appeared
online on the ArXiv at https://arxiv.org/abs/2112.06737.

Section 3.3 describes the content of [52], which is reproduced in Appendix C
without introduction. The paper is currently under review, and has appeared
online on the ArXiv at https://arxiv.org/abs/2209.05837.

A summary of the content of the two papers will also appear as a PAMM
report in [49].

3.1 The large data limit framework

In this section, we introduce the common mathematical framework for [50, 52], which
is the by now standard setting for large data limit results in graph-based learning.

LetM ⊂ Rd be a closed, k-dimensional Riemannian submanifold ofRd. We assume
that we are given a sequence of data points {xi}+∞

i=1 ⊂ M , and a sequence of positive
localization parameters {ϵn}+∞

n=1. We then construct a sequence of weighted graphs
Gn = (Vn,Wn) where for each n ∈ N:

(i) The vertex set Vn is given by Vn := {x1, . . . , xn};

(ii) The weight matrixWn has zeros on the diagonal, and, for every pair 1 ≤ i ̸= j ≤ n

(Wn)ij =
1

ϵkn
η

(
|xi − xj|

ϵn

)
,

where | · | denotes the d-Euclidean distance, and η : [0,+∞) → [0,+∞) is a
sufficiently regular, non-increasing function, such that η(0) = 1.
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3.2. Γ-convergence of the thresholding energies

We now introduce the random walk graph Laplacian. First of all, for each n ∈ N we
define the degree of the node i ∈ {1, ..., n} as

dn(xi) :=
1

n

n∑
j=1,j ̸=i

(Wn)ij,

and we denote byDn the diagonal matrixDn := diag(dn(x1), ..., dn(xn)). The random
walk Laplacian on Gn is the (n× n)-matrix ∆Gn defined as

∆Gn :=
1

ϵ2n

(
In −

1

n
D−1
n Wn

)
.

The random walk Laplacian is a positive definite, self-adjoint operator with respect to
the scalar product ⟨·, ·⟩Vn , which is defined as ⟨u, v⟩Vn := 1

n

∑n
i=1 dn(xi)u(xi)v(xi) for

u, v ∈ Vn := {u|u : Vn → R}.
When working with random geometric graphs, i.e. when the points {xi}i∈N are

drawn independently according to some probability measure ν := ρVolM for some
smooth density ρ, we assume

ϵn ≫
(
log(n)

n

)1/k

,

so that the graphs become almost surely connected for n large enough. In particular,
the degrees are positive and the random walk Laplacian is well-defined.

3.2 Γ-convergence of the thresholding energies

The object of study in [50] is the multiclass version of the MBO scheme, which allows
to perform data clustering with any number P ∈ N of classes. In this section, we work
with random geometric graphs Gn = (Vn,Wn) as previously constructed.

3.2.1 The multiclass MBO scheme

Given P ∈ N, a clustering of a data set Vn can be encoded by a function χ : Vn →
{0, 1}P such that

∑P
m=1 χm = 1, where χm is them-th component of χ, for 1 ≤ m ≤ P .

The MBO scheme works as follows.

Algorithm 3.2.1. Let h > 0 be a given step-size, and let χ : Vn → {0, 1}P be a
proposed partition of the data set into P clusters. To obtain a new clustering, perform
the following steps:

1. Diffusion. For every m = 1, ..., P define

um :=
∑
l ̸=m

e−h∆Gnχl.

2. Thresholding. For every m = 1, ..., P update the clusters by setting

{χm = 1} :=

{
x ∈ Vn : um(x) < min

l ̸=m
ul(x)

}
.
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The minimizing movements interpretation of Esedoḡlu and Otto states that the two
steps in Algorithm 3.2.1 are equivalent to solving the following variational problem

χ ∈ argmin
u:Vn→[0,1]P ,

∑P
i=1 ui=1

{
Eh
n,ϵn(u) +

1

2h
d2h(u, χ)

}
, (3.1)

where Eh
n,ϵn is the thresholding energy, defined for u : Vn → [0, 1]P as

Eh
n,ϵn(u) =

1√
h

∑
i ̸=j

⟨ui, e−h∆Gnuj⟩Vn ,

and dh is a suitable distance on the space of [0, 1]P -valued functions on Vn. Because
of (3.1), by iterating sufficiently many times Algorithm 3.2.1, we can think of the final
outcome as being close to a (local) minimizer of the thresholding energy. The object
of [50] is to study the asymptotic behavior of these (local) minimizers.

3.2.2 Main results

The paper [50] draws a rigorous connection between outcomes of the MBO scheme
and local minimizers of an optimal partition problem on the data manifold. Firstly,
we relate the outcomes of the algorithm with local minimizers of a nonlocal energy on
the manifold by studying the large data limit of the MBO scheme with a fixed step
size h > 0. Secondly, we study the convergence property of the latter by letting the
step size converge to zero.

To precisely state our results, let us introduce, for any h > 0, the thresholding
energy Eh, defined for measurable functions u : M → [0, 1]P , such that

∑P
i=1 ui = 1,

as

Eh(u) :=
1√
h

∑
i ̸=j

∫
M

uie
−κh∆ρ2ujρ

2dVolM ,

where κ := κ(η) is a constant depending on the choice of η, and which hereafter we
assume to be equal to one, and e−κh∆ρ2 denotes the heat semigroup associated to the
weighted Laplacian ∆ρ2 , defined by its action on smooth functions f ∈ C∞(M) by

∆ρ2f := − 1

ρ2
div
(
ρ2∇f

)
.

The first main result of [50] is the following discrete-to-nonlocal convergence.

Theorem 3.2.2 (Theorem B.2.1). Under the scaling regime
(

log(n)
n

) 1
k+2 ≪ ϵn ≪ 1 it

holds almost surely that for every h > 0

Γ(weak − TL2(M))− lim
n→+∞

Eh
n,ϵn = Eh.

The second main result of [50] relates the nonlocal energy Eh to an optimal partition
problem. Before stating the result, let us introduce some notation. If u : M → R
is a BV (M) function, we denote by |Du|ρ2 its ρ2-weighted total variation. If u ∈
BV (M, {0, 1}P ), for every i = 1, . . . , P we set Ωi := {ui = 1}, and for i ̸= j we set
Σij = ∂∗Ωi ∩ ∂∗Ωj, where ∂

∗Ωi denotes the reduced boundary of Ωi. We then have the
following result.
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Theorem 3.2.3 (Theorem B.2.5). It holds that

Γ(L1(M))− lim
h↓0

Eh = E,

where the energy E is defined on measurable functions u : M → [0, 1]P , such that∑P
i=1 ui = 1, as

E(u) :=

{
1√
π

∑
i ̸=j |Dui|ρ2(Σij) if u ∈ BV (M, {0, 1}P ),

+∞ otherwise.

3.2.3 Outline of the proofs

We now give the main ideas for the proof of Theorem 3.2.2 and of Theorem 3.2.3.

Ideas for Theorem 3.2.2. We show that under the stated scaling regime, it
holds almost surely that if un ∈ Vn is a sequence of [0, 1]P -valued functions converging
weakly in TL2(M) to a function u :M → [0, 1]P , then

lim
n→+∞

Eh
n,ϵn(u

n) = Eh(u). (3.2)

This corresponds to proving continuous convergence of the functionals Eh
n,ϵn with re-

spect to weak-TL2(M) convergence, which implies Γ-convergence. To see that (3.2)
holds, we first observe that if we have a sequence of functions vn ∈ Vn converging to
v weakly in TL2(M) and a sequence of functions wn ∈ Vn converging to w strongly in
TL2(M), then

lim
n→+∞

⟨vn, wn⟩Vn =

∫
M

vwρ2dVolM .

We then spell out the definition of the graph thresholding energy

Eh
n,ϵn(u

n) =
1√
h

∑
i ̸=j

⟨uni , e−h∆Gnunj ⟩Vn ,

and we observe that to conclude, it thus suffices to show that the heat operators on the
graphs upgrade weak-TL2(M) convergence to strong-TL2(M) convergence. In fact, we
prove the following result.

Theorem 3.2.4 (Theorem B.2.2). Under the assumptions of Theorem 3.2.2, it holds
almost surely that if un ∈ Vn is a sequence of functions converging weakly in TL2(M)
to u, then for every h > 0 the sequence e−h∆Gnun converges strongly to e−h∆ρ2u in
TL2(M).

The proof of Theorem 3.2.4 relies on the energy-dissipation inequality satisfied
by any gradient flow: by a standard argument, one can reduce to the case in which
u ∈ C∞(M) and the sequence un is obtained by restricting u to the n-th graph.
Denoting by vn := e−t∆Gnun, it holds that for all t > 0

En[v
n(t)] +

1

2

∫ t

0

|∆Gnv
n(s)|2Vnds+

1

2

∫ t

0

∣∣∣∣ ddsvn(s)
∣∣∣∣2
Vn
ds ≤ En[u

n], (3.3)

where En is the Dirichlet energy on the graph. Then one observes:
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1. We have supnEn[u
n] < +∞.

2. The energies En Γ-converge almost surely with respect to the strong TL2-convergence
to the Dirichlet energy EDir on the weighted manifold. Moreover, they satisfy
a Γ-compactness principle ([34, Theorem 1.4] and Theorem B.5.16). In partic-
ular, up to a subsequence, vn(t) converges strongly in TL2(M) to a function
v(t) ∈ L2(M).

3. The sequences ∆Gnv
n and d

dt
vn converge in weak-TL2(M) to ∆ρ2v and, respec-

tively, d
dt
v.

In particular, one can pass to the limit in (3.3) to obtain

EDir[v(t)] +
1

2

∫ t

0

∫
M

|∆ρ2v|2ρ2dVolM ds+
1

2

∫ t

0

∫
M

|dv
ds

|2ρ2dVolM ds

≤ EDir[u],

(3.4)

where EDir denotes the ρ
2-weighted Dirichlet energy on the manifold. Inequality (3.4)

is the energy-dissipation inequality for the heat-flow onM . This completely character-
izes the limit v as the solution to the heat equation on the manifold with initial value
u ∈ C∞(M) and concludes the argument for Theorem 3.2.4.

Ideas for Theorem 3.2.3. The proof relies on a careful space-time localization
argument and on the asymptotic expansion of the heat kernel.

Γ-lim sup. For the Γ-lim sup inequality, we show that whenever u ∈ BV (M, {0, 1}P ),
we have

lim
h↓0

Eh(u) = E(u).

By writing out the definition of Eh(u), one checks that this is a consequence of the
following: Assume that E,F ⊂M are sets of finite perimeter, then

lim
h↓0

1√
h

∫
M

χF
(
χE − e−h∆ρ2χE

)
dµ =

1√
π

∫
∂∗E∩∂∗F

⟨σE(x), σF (x)⟩x|DχF |(x), (3.5)

where ⟨σE(x), σF (x)⟩x denotes the inner product on the tangent space TxM between
the inner unit normals σE(x) and σF (x) of E and, respectively, F at the point x ∈
∂∗E ∩ ∂∗F . One then proves (3.5) in four steps:

1. Rewriting χE−e−h∆ρ2χE as −
∫ h
0

d
dt
e−t∆ρ2χEdt, one checks that (3.5) is equivalent

to proving that for every x ∈ ∂∗E ∩ ∂∗F

1√
π
⟨σF (x), σE(x)⟩ = lim

h↓0

〈
σF (x),

1√
h

∫ h

0

∇e−t∆ρ2χE(x)dt
〉
. (3.6)

2. Using Gaussian upper bounds for the manifold heat kernel, we may localize in
space around x: after this step, (3.7) reduces to proving

1√
π
⟨σF (x), σE(x)⟩ = lim

h↓0

〈
σF (x),

1√
h

∫ h

0

∇e−t∆ρ2χE∩Bhs (x)(x)dt

〉
, (3.7)

for some s < 1
2
.
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3. If we denote by p the heat kernel for ∆ρ2 we have that

1√
h

∫ h

0

∇e−t∆ρ2χE∩Bhs (x)(x)dt =
1√
h

∫ h

0

∫
Bhs(x)

∇xp(t, x, y)χE(y)ρ
2dVolM dt.

Since we are integrating on a small ball around x, we can use the asymptotic
expansion for the heat kernel. We then show that as h ↓ 0, the only relevant term
in the expansion is the zero-th order one. In particular, we are left to proving
that

1√
π
⟨σF (x), σE(x)⟩ = (3.8)

lim
h↓0

1√
h

〈
σF (x),

∫ h

0

∫
M

∇x

(
e−

d(x,y)2

4t

(4πt)k/2
v0(x, y)

)
χE∩Bhs (x)(y)ρ

2(y)dVolM dt

〉
,

where v0 is the zero-th order coefficient in the asymptotic expansion for the heat
kernel.

4. Using normal coordinates around x, one can reduce (3.8) to the analogous state-
ment on the Euclidean space. This is then easily checked by using De Giorgi’s
structure theorem for sets of finite perimeter.

Γ-lim inf. The proof of the Γ-lim inf inequality uses the blow-up technique of Fon-
seca and Müller [30]: this allows for a localization in space which, in turn, allows for
the use of the asymptotic expansion of the heat kernel that reduces the problem to an
analogous one in the Euclidean space.

3.2.4 Extensions

The results in [50] can be extended in various directions:

1. Surface tensions. In the algorithm, it is possible to use different “surface ten-
sions” between different classes, which are additional parameters one can use to
penalize certain interfaces between labels more than others.

2. Forcing. It is possible to adapt the scheme to a semi-supervised setting, i.e. when
same of the data-points are already labeled. In this case, the labeling information
is used to produce a forcing/drift fn : Vn → RP which is then used to slightly

change the threshold value as
{
χq+1
i = 1

}
:=
{
ui −

√
hfi < uj −

√
hfj,∀j ̸= i

}
.

The resulting scheme is just as efficient as the original one. The analysis is almost
unchanged as the forcing only leads to a continuous perturbation in the energy.

3. Volume constraints. These Γ-convergence techniques immediately apply to vari-
ants with volume constraints on the clusters and give a convergence result for
VolumeMBO.

4. Other graph Laplacians. The results apply to a larger variety of graph Laplacians
and data dependent weights.
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3.3 Convergence of the dynamics

The object of study in [52] is the two-class MBO scheme. In [52] we are interested in
the asymptotic behavior of the sequences of partitions obtained by iteratively applying
the MBO scheme: in other words, instead of just focusing on the final outcomes of the
algorithm, we study the MBO dynamics. The analysis is restricted to the two-class
case (i.e. P = 2), because our proof relies on the viscosity solutions framework, which
is not available in the multiclass setting.

3.3.1 Two-class MBO

The two-class MBO scheme is a particular instance of Algorithm 3.2.1. In this case, a
clustering can be encoded by a function χGn : Vn → {0, 1}, which is the characteristic
function of one of the two clusters. The two-class thresholding scheme is then as
follows.

Algorithm 3.3.1. Let hn > 0 be a chosen step-size, and let χGn : Vn → {0, 1} be
a proposed partition of the data-set into two clusters. To obtain a new clustering,
perform the following steps:

1. Diffusion. For every m = 1, . . . , P define

un = e−h∆GnχGn .

2. Thresholding. Update the clusters by setting

{χGn = 1} :=

{
x ∈ Vn : un(x) ≥

1

2

}
.

When implementing the scheme in practice, it is often intractable to compute the
whole matrix exponential e−h∆Gn : usually, one computes an approximate version of the
graph heat kernel by first applying to its argument the operator PKn , the projection on
the subspace generated by the first Kn ∈ N eigenvectors of the graph Laplacian ∆Gn .
If we denote by Sn : [0,+∞) × Vn → Vn an abstract operator, linear in the second
variable, the two-class MBO scheme can be written in an abstract version:

Algorithm 3.3.2. Let hn > 0 be a chosen step-size, and let χGn : Vn → {0, 1} be a
proposed partition of the data set into two clusters. To obtain a new clustering, perform
the following steps:

1. Diffusion. For every m = 1, . . . , P define

un = Sn(hn, χ
Gn).

2. Thresholding. Update the clusters by setting

{χGn = 1} :=

{
x ∈ Vn : un(x) ≥

1

2

}
.

Iterating the algorithm produces a sequence of partitions {χl,Gn}+∞
l=1 of the data-

points Vn. We can then define piecewise constant in time interpolations by

uhn,Gn(t, x) := 2χl,Gn − 1, x ∈ Vn, t ∈ [lhn, (l + 1)hn).

We are interested in the asymptotic behavior of uhn,Gn as the number of data points
goes to infinity.
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3.3.2 Main results

Before presenting the main results of [52], let us informally introduce MCF on a
weighted manifold (M, g, ρ2). MCF is defined as the trajectory of steepest descent for
the weighted area functional: one can prove that a smooth evolution [0,+∞) ∋ t→ Ωt

of smooth open sets evolve by MCF if

g(V, ν) = − 1

ρ2
div(ρ2ν),

where V is the velocity vector field of the evolution and ν is the outer unit normal
field. If u : [0,+∞) ×M → R is a smooth function such that for any s ∈ R the sets
Ωs
t := {x ∈M : u(t, x) > s} evolve by MCF, then u solves

∂tu =

〈
g − Du⊗Du

|Du|2
, D2u

〉
+ g

(
∇ρ2

ρ2
,∇u

)
, (3.9)

which is called the level set formulation of MCF. MCF satisfies a comparison principle
that allows to interpret equation (3.9) in the viscosity sense.

Let Ω ⊂ M be a smooth open set and let Γ0 be its boundary. We denote by
u : [0,+∞) × M → R the unique viscosity solution of the level set formulation of
MCF with density ρ2 (see Section C.3 for the details) with initial value sd(·,Γ0) =
dM(x,Ωc) − dM(x,Ω), the signed distance function from Γ0. For any t > 0 we also
define

Ωt := {x ∈M | u(t, x) > 0} , Γt = {x ∈M | u(t, x) = 0} . (3.10)

For each n ∈ N, we consider the function uhn,Gn obtained as in the previous section
by starting the MBO scheme on Gn with initial value given by χ1,Gn = 1Vn∩Ω. We
introduce the upper semicontinuous limit and the lower semicontinuos limit of uhn,Gn

as

u∗(t, x) := sup

{
lim sup
n→+∞

uhn,Gn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Gn, lim
n→+∞

xn = x

}
,

u∗(t, x) := inf

{
lim inf
n→+∞

uhn,Gn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Gn, lim
n→+∞

xn = x

}
.

We will prove that on random geometric graphs, it holds almost surely that the dy-
namics of the two-class MBO scheme converge to a viscosity solution to MCF in the
following sense: for each t > 0 it holds

u∗(x, t) = 1 if x ∈ Ωt,

u∗(x, t) = −1 if x ∈ (Ωt ∪ Γt)
c.

We get to this result in two steps:

1. First, we show the convergence of the MBO scheme in the abstract setting.
Let uhn,Gn constructed as before but starting from the outcomes of the abstract
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thresholding scheme (where in the diffusion step the heat operator is replaced
by an abstract operator Sn). We show that if the operators Sn approximate
the heat semigroup on the manifold well-enough, then the dynamics of the MBO
scheme converge to the unique viscosity solution to MCF. For this result, the
graphs are not assumed to be random.

2. Secondly, we show that when we work with random geometric graphs and Sn is
either the heat kernel or a suitable approximation of it, then the assumptions
for the previous result hold true with high probability. This allows to conclude
almost sure convergence of the dynamics of the MBO scheme.

More precisely, we have the following two results.

Theorem 3.3.3 (Theorem C.2.2). Assume that:

(i) The operators Sn satisfy the maximum principle up to errors h
3/2
n , i.e., for n large

enough and for each u, v ∈ Vn it holds

u ≤ v ⇒ Sn(hn, u) ≤ Sn(hn, v) +

(
max
Vn

|u|+max
Vn

|v|
)
O(h3/2n );

(ii) The operators Sn approximate the heat operator on the manifold, i.e. there exists
a constant κ > 0 such that for every function f ∈ C∞(M) we have

max
x∈Vn

∣∣S(hn, f)(x)− e−hκ∆ρ2f(x)
∣∣ = (sup |f |) o(

√
hn) + Lip(f)O(h3/2n );

where the functions o(
√
hn), O(h

3/2
n ) are independent of f .

(iii) The operators Sn almost preserve the total mass in the sense that

max
x∈Vn

|Sn(hn,1Gn)(x)− 1| = O(h3/2n );

then the dynamics of the MBO scheme converge to the unique viscosity solution to
MCF on (M, g, ρ2).

Theorem 3.3.4 (Theorem C.2.4 and Corollary C.2.6). Let Gn be random geometric
graphs. Assume that q, α, β > 0 are suitably chosen and

(i) hn ≫ (log(n))−α;

(ii)
(

log(n)
n

) 1
k+4 ≪ ϵn ≪ (log(n))−β;

(iii) Kn ≥ (log(n))q;

(iv) The eigenvalues of ∆ρ2 satisfy infi∈N(λi − λi−1) > 0.

Then, for n sufficiently large, the operators e−t∆n and e−t∆nPKn satisfy conditions (i),
(ii), and (iii) in Theorem 3.3.3 with high probability. In particular, the dynamics of
the MBO scheme converge almost surely to the unique viscosity solution to MCF on
(M, g, ρ2) whenever the number of eigenvectors Kn used for approximating the heat
operator on Gn satisfies (iii).

Jona Lelmi 34



3.3. Convergence of the dynamics

3.3.3 Outline of the proofs

We now give the main ideas for the proof of Theorem 3.3.3 and of Theorem 3.3.4.

Ideas for Theorem 3.3.3. One shows the following two items:

1. The functions u∗ and u∗ are a viscosity subsolution and, respectively, a viscos-
ity supersolution of the level set formulation of MCF on the weighted mani-
fold (M, g, ρ2). This is proved by following the strategy adopted by Barles and
Georgelin in [6], where the result is proved in the Euclidean space for the contin-
uum MBO scheme. The difficulty in extending their result to the graph setting
lays on the fact that we want to substitute the continuum heat semigroup with
the discrete abstract operators Sn. Properties (i), (ii), and (iii) in Theorem 3.3.3
ensure that the errors we make in performing this operation are negligible in the
limit.

2. For the initial values, it holds that

u∗(0, x) ≤ sign∗(u(0, x)),

u∗(0, x) ≥ sign∗(u(0, x)),

where sign∗ and sign∗ are, respectively, the upper semi-continuous envelope and
the lower semi-continuous envelope of the sign function. This step seems to have
been overlooked in the literature.

The result then follows by an application of the comparison principle for MCF on
the weighted manifold (M, g, ρ2), which informally says that whenever v and w are
viscosity subsolution and, respectively, supersolution of MCF, then

v(0, x) ≤ w(0, x), x ∈M ⇒ v(t, x) ≤ w(t, x), t > 0, x ∈M.

.

Ideas for Theorem 3.3.4. One needs to show that with the choice Sn(hn, ·) =
e−hn∆Gn or Sn(hn, ·) = e−hn∆GnPKn the assumptions of Theorem 3.3.3 hold true with
high probability. We concentrate on the second choice, the other is analogous. We
denote by {vln}1≤l≤n an orthonormal basis (with respect to the inner product ⟨·, ·⟩Vn)
made of eigenvectors for the Laplacian ∆Gn corresponding to the eigenvalues {λln}1≤l≤n,
which are ordered in the following way

0 = λ1n < λ2n < ... < λnn.

The operator Sn(hn, ·) = e−hn∆GnPKn is then identified with the matrix

HKn
ϵn (hn, x, y) =

Kn∑
l=1

e−tλ
l
nvln(x)v

l
n(y)

dn(y)

n
, x, y ∈ Vn.

The full graph heat kernel is instead identified with the matrix

Hn
ϵn(hn, x, y) =

n∑
l=1

e−tλ
l
nvln(x)v

l
n(y)

dn(y)

n
, x, y ∈ Vn.

Properties (i) and (iii) hold exactly for the full graph heat kernel, thus one just has to
prove that the difference Hn

n −HKn
n is of the correct order.

Property (ii) is the main technical part in Theorem 3.3.3 and is proved in three
steps:
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1. Denoting by H the manifold heat kernel, one shows that with high probability

max
x,y∈Vn

∣∣∣∣HKn
ϵn (hn, x, y)−

ρ(y)

n
H(hn, x, y)

∣∣∣∣ = o

(√
hn
n

)
.

This corresponds to Lemma C.2.7 and improves a similar estimate obtained in
[24]. It is proved by exploiting recent results on the convergence of the spectrum
of the graph Laplacian to the spectrum of the manifold Laplacian. In particular,
we use the fact that with high probability, the eigenvectors of the graph Laplacian
converge in the L∞ sense to the corresponding eigenfunction of the continuum
Laplacian.

2. After choosing an optimal transport map Tn for the ∞-Wasserstein distance θn
between ν and the empirical probability measure for the data points, one shows
that with high probability, we have for every f ∈ C∞(M),

max
x∈Vn

∣∣Sn(hn, f)(x)− e−hn∆ρ2f(x)
∣∣ ≤L1 sup

M
|f | θn√

hn
e

2θn diam(M)
hn (3.11)

+ sup
M

|f |o(
√
hn) + L2

(
sup
M

|f |+ Lip(f)

)
θn,

where the constants L1, L2 and the function in o(
√
hn) depend only on M .

To show this, one first spells out the definition of Sn(hn, f)(x) at a point x ∈ Vn,

Sn(hn, f)(x) =
∑
y∈Vn

HKn
ϵn (hn, x, y)f(y).

Then, the result in the previous step can be used to substitute HKn
ϵn (hn, x, y)

with the continuum quantity ρ(y)
n
H(hn, x, y). This is the source of the error

supM |f |o(
√
hn) in (3.11). One then has to compare∑

y∈Vn

ρ(y)

n
H(hn, x, y)f(y), (3.12)

with ∫
M

H(hn, x, y)f(y)ρ
2(y)dVolM . (3.13)

This can be done rewriting (3.12) as an integral w.r.t. the empirical probability
measure associated to the data points. One then uses the transport map Tn to
convert this into an integral with respect to the absolutely continuous measure
ρ2VolM , and estimates the difference with (3.13) by using the Lipschitz property
of f and the definition of θn. This is the source of the other errors in (3.11).

3. The final step consists in showing that the right hand side of (3.11) is indeed of
the correct order. This is just a technical calculation.
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APPENDIX A

DE GIORGI’S INEQUALITY FOR THE THRESHOLDING

SCHEME WITH ARBITRARY MOBILITIES AND

SURFACE TENSIONS

A.1 Setup and the modified thresholding scheme

Here and in the rest of the paper, [0, 1)d denotes the d-dimensional torus. Thus when we
deal with functions u : [0, 1)d → R we always assume that they have periodic boundary
conditions. In particular they can be extended periodically on Rd. In general if u is
a function as before and f : Rd → R then by f ∗ u we mean the convolution on Rd

between f and the periodic extension of u, i.e.

f ∗ u(x) :=
∫
Rd

f(z)u(x− z)dz, x ∈ Rd

when this expression makes sense.

A.1.1 The modified algorithm

We start by describing the algorithm proposed by Salvador and Esedoḡlu in [72]. Let
the symmetric matrix σ = (σij)ij ∈ RN×N of surface tensions and the symmetric matrix
µ = (µij)ij of mobilities be given. In this work we define for notational convenience
σii = µii = 0. Let γ > β > 0 be given. Define the matrices A = (−aij)ij ∈ RN×N and
B = (−bij)ij ∈ RN×N by

aij =

√
π
√
γ

γ − β
(σij − βµ−1

ij ),

bij =

√
π
√
β

γ − β
(−σij + γµ−1

ij ),

for i ̸= j and aii = bii = 0. Then aij, bij are uniquely determined as solutions of the
following linear system {

σij =
aij

√
γ√

π
+

bij
√
β√
π
,

µ−1
ij =

aij√
π
√
γ
+

bij√
π
√
β
.
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The algorithm introduced by Salvador and Esedoḡlu is as follows. Let the time step
size h > 0 be fixed. Hereafter Gh

γ := G
(d)
γh denotes the d-dimensional heat kernel (A.3)

at time γh.

Algorithm A.1.1 (Modified thresholding scheme). Let {Ω0
1, ...,Ω

0
N} be disjoint open

subsets of [0, 1)d such that [0, 1)d = ∪iΩ0
i , to obtain the new collection {Ωn+1

1 , ...,Ωn+1
N }

at time t = h(n+ 1) from the collection {Ωn
1 , ...,Ω

n
N} at time t = hn

1. For any i = 1, ..., N form the convolutions

ϕn1,i = Gh
γ ∗ 1Ωni

, ϕn2,i = Gh
β ∗ 1Ωni

2. For any i = 1, ..., N form the comparison functions

ψni =
∑
j ̸=i

aijϕ
n
1,j + bijϕ

n
2,j.

3. Thresholding step, define

Ωn+1
i :=

{
x : ψni (x) < min

j ̸=i
ψnj (x)

}
.

We will assume the following:

The coefficients aij, bij satisfy the strict triangle inequality. (A.1)

The matrices A and B are positive definite on (1, ..., 1)⊥. (A.2)

In particular, for v ∈ (1, ..., 1)⊥ we can define norms

|v|2A = v · Av, |v|2B = v · Bv.

We remark that we need the matrices A,B to be positive definite on (1, ..., 1)⊥ to
guarantee that the functional defined in (A.8) is a distance, see the comment following
(A.8) below.

Observe that condition (A.1) is always satisfied if we choose γ large and β small
provided the surface tensions and the inverse of the mobilities satisfy the strict triangle
inequality. Indeed, define

mσ = min
i,j,k

{σik + σkj − σij} and Mσ = max
i,j,k

{σik + σkj − σij},

where i, j, k range over all triples of distinct indices 1 ≤ i, j, k ≤ N . Define m 1
µ
and

M 1
µ
in a similar way. Then a computation shows that aij and bij satisfy the (strict)

triangle inequality if

β <
mσ

M 1
µ

and γ >
Mσ

m 1
µ

,

which can always be achieved since γ > β > 0 are arbitrary. For the second condition
(A.2), we have the following result of Salvador and Esedoḡlu [72].
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Lemma A.1.2. Let the matrix σ of the surface tensions and the matrix 1
µ

of the

inverse mobilities (for the diagonal we set inverses to be zeros) be negative definite on
(1, ..., 1)⊥. Let γ > β be such that

γ >
mini=1,...,N−1 si
maxi=1,...,N−1mi

, β <
maxi=1,...,N−1 si
mini=1,...,N−1mi

where si and mi are the nonzero eigenvalues of JσJ and J 1
µ
J respectively, where

the matrix J has components Jij = δij − 1
N
. Then A and B are positive definite

on (1, ..., 1)⊥.

In particular, if we choose γ large enough and β small enough, condition (A.2) on
the matrices A,B is satisfied provided the matrices σ and 1

µ
are negative definite on

(1, ..., 1)⊥. By a classical result of Schoenberg [74] this is the case if and only if
√
σij

and 1/
√
µij are ℓ

2 embeddable. In particular, this holds for the choice of Read-Shockley
surface tensions and equal mobilities.

For 1 ≤ i ̸= j ≤ N define the kernels

Kij(z) = aijGγ(z) + bijGβ(z)

where, for a given t > 0, we define G
(d)
t as the heat kernel in Rd, i.e.,

G
(d)
t (z) =

e−
|z|2
4t

√
4πt

d
. (A.3)

If the dimension d is clear from the context, we suppress the superscript (d) in (A.3).
We recall here some basic properties of the heat kernel.

Gt(z) > 0 (non-negativity),

Gt(z) = Gt(Rz) ∀R ∈ O(d) (symmetry), (A.4)

Gt(z) =
1

√
t
d
G1

(
z√
t

)
(scaling), (A.5)

Gt ∗Gs = Gt+s (semigroup property), (A.6)

G
(d)
t (z) =

d∏
i=1

G
(1)
t (zi) (factorization property). (A.7)

We observe that the kernels Kij are positive, with positive Fourier transform K̂ij

provided γ > maxi,j σi,jµi,j and β < mini,j σi,jµi,j. In particular assuming

1. σij and
1
µij

satisfy the strict triangle inequality,

2. σ and 1
µ
are negative definite on (1, ..., 1)⊥,

we can always achieve the conditions posed on A,B and the positivity of the kernels
Kij by choosing γ large and β small.

Given any h > 0 we define the scaled kernels

Kh
ij(z) =

1
√
h
d
Kij(

z√
h
),
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then the first and the second step in Algorithm A.1.1 may be compactly rewritten as
follows

ψni =
∑
j ̸=i

Kh
ij ∗ 1Ωnj

.

For later use, we also introduce the kernel

K(z) =
1

2
Gγ(z) +

1

2
Gβ(z).

A.1.2 Connection to De Giorgi’s minimizing movements

The first observation is that Algorithm A.1.1 has a minimizing movements interpreta-
tion. To explain this, let us introduce the class

A :=

{
χ : [0, 1)d → {0, 1}N

∣∣∣∣ N∑
k=1

χk = 1

}
and its relaxation

M :=

{
u : [0, 1)d → [0, 1]N

∣∣∣∣ N∑
k=1

uk = 1

}
.

If χ ∈ A∩BV ([0, 1)d)N , then each of the sets Ωi := {χi = 1} is a set of finite perimeter.
We denote by ∂∗Ωi the reduced boundary of the set Ωi, and for any pair 1 ≤ i ̸= j ≤ N
we denote by Σij := ∂∗Ωi ∩ ∂∗Ωj the interface between the sets. For u ∈ M we define

E(u) :=

{∑
i,j σijHd−1(Σij) if u ∈ A ∩BV ([0, 1)d)N ,

+∞ otherwise.

For h > 0 fixed we define the approximate energy Eh for u ∈ M

Eh(u) =
∑
i,j

1√
h

∫
[0,1)d

uiK
h
ij ∗ ujdx.

For u, v ∈ M and h > 0 we also define the distance

d2h(u, v) := −2hEh(u− v) = −2
√
h
∑
i,j

∫
(ui − vi)K

h
ij ∗ (uj − vj)dx (A.8)

= 2
√
h

∫
|Gh/2

γ ∗ (u− v)|2A + |Gh/2
β ∗ (u− v)|2B dx,

where we used the semigroup property (A.6) and the symmetry (A.4) to derive the

last equality. We also point out that since
∑

i ui =
∑

i vi = 1 a.e., we have G
h/2
γ ∗ (u−

v), G
h/2
β ∗ (u − v) ∈ (1, ..., 1)⊥. Hence the assumptions on A and B guarantee that dh

defines a distance on M (and on A).

Lemma A.1.3. The pair (M, dh) is a compact metric space. The function Eh is
continuous with respect to dh. For every 1 ≤ i ≤ N and n ∈ N define χni = 1Ωni

,
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where Ωn
1 , ...,Ω

n
N are obtained from Ωn−1

1 , ...,Ωn−1
N by the thresholding scheme. Then

χn minimizes
1

2h
d2h(u, χ

n−1) + Eh(u) among all u ∈ M. (A.9)

Proof. For u, v ∈ M definition (A.8) and the fact that A and B are positive definite
imply that dh is a distance on M. The fact that (M, dh) is compact and Eh is
continuous is just a consequence of the fact that dh metrizes the weak convergence in
L2 on M, the interested reader may find the details of the reasoning in [55]. We are
thus left with showing that χn satisfies (A.9). For u, v ∈ L2([0, 1)d) define

(u, v) =
1√
h

∑
i,j

∫
uiK

h
ij ∗ vjdx,

then by the symmetry (A.4) of the Gaussian kernel and by the symmetry of both
matrices A,B it is not hard to show that (·, ·) is symmetric. In particular we can write
for any u ∈ M

1

2h
d2h(u, χ

n−1) + Eh(u) = −Eh(u− χn−1) + Eh(u)

= −(u− χn−1, u− χn−1) + (u, u)

= 2(χn−1, u)− (χn−1, χn−1).

Thus (A.9) is equivalent to the fact that χn minimizes (χn−1, u) among all u ∈ M.
Since by (2)

(χn−1, u) =

∫ ∑
i

uiψ
n
i dx,

we see that χn minimizes the integrand pointwise, and thus it is a minimizer for the
functional.

The previous lemma allows us to apply the general theory of gradient flows in [5] to
this particular problem. We record the key statement for our purposes in the following
lemma, which will be applied to (M, dh), where dh is the metric (A.8).

Lemma A.1.4. Let (M, d) be a compact metric space and E : M → R be continuous.
Given χ0 ∈ M and h > 0 consider a sequence {χn}n∈N satisfying

χn minimizes
1

2h
d2(u, χn−1) + E(u) among all u ∈ M.

Then we have for all t ∈ Nh

E(χ(t)) +
1

2

∫ t

0

(
1

h2
d2(χ(s+ h), χ(s)) + |∂E|2(u(s))

)
ds ≤ E(χ0). (A.10)

Here χ(t) is the piecewise constant interpolation, u(t) is the so-called variational
interpolation, which for n ∈ N and t ∈ ((n− 1)h, nh] is defined by

u(t) ∈ argminu∈M

{
E(u) +

d2(u, χn−1)

2(t− (n− 1)h)

}
,
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and |∂E|(u) is the metric slope defined by

|∂E|(u) := lim
d(u,v)→0

(E(u)− E(v))+
d(u, v)

∈ [0,∞]. (A.11)

Moreover, the variational interpolation u(t) satisfies

∫ ∞

0

1

2h2
d2(u(t), χ(t))dt ≤ E(χ0), (A.12)

E(u(t)) ≤ E(χ(t)) for all t ≥ 0. (A.13)

A.2 Statement of results

Our main result is the convergence of the modified thresholding scheme to a weak
notion of multiphase mean curvature flow. More precisely, given an initial partition
{Ω0

1, ...,Ω
0
N} of [0, 1)d encoded by χ0 : [0, 1)d → {0, 1}N such that

∑
i χ

0
i = 1, define

χh : [0, 1)d ×R → {0, 1}N by setting

χh(t, x) = χ0(x) for t < h,

χh(t, x) = χn(x) for t ∈ [nh, (n+ 1)h) for n ∈ N.
(A.14)

If χ0 is a function of bounded variation, we denote by Σ0
ij := ∂∗Ω0

i ∩ ∂∗Ω0
j . Our

main result is contained in the following theorem.

Theorem A.2.1. Given χ0 ∈ A and such that ∇χ0 is a bounded measure and a
sequence h ↓ 0; let χh be defined by (A.14). Assume that there exists χ : [0, 1)d ×
(0, T ) → [0, 1]N such that

χh ⇀ χ in L1([0, 1)d × (0, T )). (A.15)

Then χ ∈ {0, 1}N almost everywhere,
∑

i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N .
If we assume that

lim sup
h↓0

∫ T

0

Eh(χ
h(t))dt ≤

∑
i,j

σij

∫ T

0

Hd−1(Σij(t))dt, (A.16)

then χ is a De Giorgi solution in the sense of Definition A.2.2 below.

The convergence assumption (A.16) is motivated by a similar assumption on the
implicit time discretization in the seminal paper [58] by Luckhaus and Sturzenhecker,
and has also appeared in previous work in the context of the thresholding scheme [53],
[54], [55]. As of now, this assumption can be verified only in particular cases, such
as before the first singularity [77] or for certain types of singularities, namely mean
convex ones, meaning H > 0. This was shown for the implicit time discretization in
[22] and a proof in the case of the thresholding scheme will appear in a forthcoming
work by Fuchs and the first author.

Inspired by the general framework [5] and [73], generalizing the previous two-phase
version [55], we propose the following definition for weak solutions in the case of mul-
tiphase mean curvature flow.
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Definition A.2.2. Given χ0 ∈ A and such that ∇χ0 is a bounded measure, a map
χ : [0, 1)d × (0, T ) → {0, 1}N such that

∑
i χi = 1 and χ ∈ L1((0, T ), BV ([0, 1)d))N is

called a De Giorgi solution to the multiphase mean curvature flow with surface tensions
σij and mobilities µij provided the following three facts hold:

1. There exist Hij ∈ L2(Hd−1
|Σij (dx)dt) which are mean curvatures in the weak sense,

i.e., such that for any test vector field ξ ∈ C∞
c ([0, 1)d × (0, T ))d

∑
i,j

σij

∫
[0,1)d×(0,T )

(∇ · ξ − νij · ∇ξνij)Hd−1
|Σij(t)(dx)dt (A.17)

= −
∑
i,j

σij

∫
[0,1)d×(0,T )

Hijνij · ξHd−1
|Σij(t)(dx)dt.

2. There exist normal velocities Vij ∈ L2(Hd−1
|Σij(t)(dx)dt) with

∫
[0,1)d

η(t = 0)χ0
i dx+

∫
[0,1)d×(0,T )

∂tη χi dxdt

+
∑
k ̸=i

∫
[0,1)d×(0,T )

ηVik Hd−1
|Σik(t)(dx)dt = 0

for all η ∈ C∞
c ([0, 1)d × [0, T )).

3. De Giorgi’s inequality is satisfied, i.e.,

lim sup
τ↓0

1

τ

∑
i,j

σij

∫
(T−τ,T )

Hd−1(Σij(t))dt

+
1

2

∑
i,j

∫
[0,1)d×(0,T )

(
V 2
ij

µij
+ µijσ

2
ijH

2
ij

)
Hd−1

|Σij(t)(dx)dt ≤
∑
i,j

σijHd−1(Σ0
ij).

(A.18)

Remark A.2.3. Observe that inequality (A.18) together with the definition of the weak
mean curvatures gives a notion of weak solution for the multiphase mean curvature flow
incorporating both the dynamics Vij = −σijµijHij and the Herring angle condition at
triple junctions. Indeed if χ : [0, 1)d × (0, T ) → {0, 1}N with

∑
i χi(t) = 1 is such that

the sets Ωi(t) = {χi(·, t) = 1} meet along smooth interfaces Σij := ∂Ωi ∩ ∂Ωj which
evolve smoothly and satisfy (A.17), (A.18) then

1. The Herring angle condition at triple junctions is satisfied. Indeed by the diver-
gence theorem on surfaces (see Theorem 11.8 and Remark 11.42 in [59]) for any
ξ ∈ C∞

c ([0, 1)d)d∫
Σij(t)

(∇ · ξ − νij · ∇ξνij) Hd−1
|Σij(t)(dx) =−

∫
Σij(t)

HijνijHd−1
|Σij(t)(dx)

+

∫
∂Σij(t)

ξ · JνijHd−2(dx),
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where J denotes the rotation by ninety degrees in the normal plane to the triple
junction ∂Σij(t). Thus (A.17) and Hij ∈ L2(Hd−1

|Σij(t)(dx)dt) imply that

σi1i2

∫
∂Σi1i2 (t)

ξ · Jνi1i2Hd−2(dx)

+ σi2i3

∫
∂Σi2i3 (t)

ξ · Jνi2i3Hd−2(dx)

+ σi3i1

∫
∂Σi3i1 (t)

ξ · Jνi3i1Hd−2(dx) = 0,

which forces σi1i2νi1i2 + σi2i3νi2i3 + σi3i1νi3i1 = 0 at triple junctions.

2. We have Vij = −σijµijHij on Σij(t). Indeed in the smooth case inequality (A.18)
reduces to ∑

i,j

σij

∫
(0,T )

d

dt
Hd−1(Σij(t))dt

+
1

2

∑
i,j

∫
[0,1)d×(0,T )

(
V 2
ij

µij
+ µijσ

2
ijH

2
ij

)
Hd−1

|Σij(t)(dx)dt ≤ 0.

Using the Herring angle condition we have∑
ij

d

dt
Hd−1(Σij(t)) =

∑
ij

∫
[0,1)d

VijHijHd−1
|Σij(t)(dx)

and after completing the square we arrive at∑
i,j

σij

∫
[0,1)d×(0,T )

(
Vij√
µijσij

+
√
µijσijHij

)2

Hd−1
|Σij(t)(dx)dt ≤ 0,

which implies Vij = −σijµijHij.

The following lemma establishes, next to a compactness statement, that our con-
vergence can be localized in the space and time variables x and t, but also in the
variable z appearing in the convolution.

Lemma A.2.4. We have the following:

(i) Let {χh}h↓0 be a sequence of {0, 1}N -valued functions on (0, T ) × [0, 1)d that
satisfies χh ∈ A for a.e. t and

lim sup
h↓0

(
esssupt∈(0,T )Eh(χ

h(t)) +

∫ T

0

1

2h2
d2h(χ

h(t), χh(t− h))dt

)
<∞ (A.19)

and that is piecewise constant in time in the sense of (A.14). Such a sequence
is precompact in L1([0, 1)d × (0, T ))N and any weak limit χ is such that χ ∈
L1((0, T ), BV ([0, 1)d))N with

∑
i,j

σij

∫ T

0

Hd−1(Σij(t))dt ≤ lim inf
h↓0

∫ T

0

Eh(χ
h(t))dt. (A.20)
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(ii) Assume that uh is a sequence of [0, 1]N -valued functions with
∑

i u
h
i = 1 such that

(A.16) holds (with χh replaced by uh) and such that uh → χ in L1([0, 1)d×(0, T ))N

holds. Assume also that

lim sup
h↓0

esssupt∈(0,T )Eh(u
h(t)) <∞. (A.21)

Then as measures on Rd×[0, 1)d×(0, T ) we have the following weak convergences
for any i ̸= j

Kij(z)√
h

uhi (x, t)u
h
j (x−

√
hz, t)dxdtdz

⇀ Kij(z)(νij(x, t) · z)+Hd−1
|Σij(t)(dx)dtdz.

(A.22)

Kij(z)√
h

uhi (x−
√
hz, t)uhj (x, t)dxdtdz

⇀ Kij(z)(νij(x, t) · z)−Hd−1
|Σij(t)(dx)dtdz.

(A.23)

Here νij(·, t) denotes the outer measure theoretic unit normal of Ωi(t) restricted
to the interface Σij(t). Here the convergence may be tested also with continuous
functions which have polynomial growth in z ∈ Rd.

The next proposition is the main ingredient in the proof of Theorem A.2.1. It
establishes the sharp lower bound on the distance-term.

Proposition A.2.5. Suppose that (A.15) and the conclusion of Lemma A.2.4 (ii) hold.
Assume also that the left hand side of (A.24) is finite. Then for every 1 ≤ k ≤ N there
exists Vk ∈ L2(|∇χk|dt) such that

∂tχk = Vk|∇χk|dt
in the sense of distributions. Given i ̸= j, it holds that Vi(x, t) = −Vj(x, t) on Σij(t)
and if we define Vij(x, t) := Vi(x, t)|Σij(t) then we have

lim inf
h↓0

∫ T

0

1

h2
d2h(χ

h(t), χh(t−h))dt ≥
∑
i,j

1

µij

∫ T

0

∫
Σij(t)

|Vij(x, t)|2Hd−1(dx)dt. (A.24)

The final ingredient is the analogous sharp lower bound for the metric slope.

Proposition A.2.6. Suppose that the conclusion of Lemma A.2.4 (ii) holds and that
(A.15) holds with χh replaced by uh. Then for any i ̸= j there exists a mean curvature
Hij ∈ L2(Hd−1

Σij(t)
(dx)dt) in the sense of (A.17). Moreover the following inequality is

true:

lim inf
h↓0

∫ T

0

|∂Eh|2(uh(t))dt ≥
∑
i,j

µijσ
2
ij

∫ T

0

∫
Σij(t)

|Hij(x, t)|2Hd−1(dx)dt. (A.25)

We will present the proofs of Theorem A.2.1, Lemma A.2.4, Proposition A.2.5
and Proposition A.2.6 in Section A.4. Before doing that, we need a simple geometric
measure theory construction.
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A.3 Construction of suitable partitions of unity

In the sequel we will frequently want to localize on one of the interfaces. To do so, we
need to construct a suitable family of balls on which the behavior of the flow is split
into two majority phases and several minority phases. Hereafter we will ignore the
time variable and consider a map χ : [0, 1)d → {0, 1}N such that χ ∈ BV ([0, 1)d,RN),∑

k χk = 1. Given 1 ≤ i < j ≤ N we denote by ∂∗Ωi the reduced boundary of the set
{χi = 1} and by Σij = ∂∗Ωi ∩ ∂∗Ωj the interface between phase i and phase j. Given
a real number r > 0 and a natural number n ∈ N we define

F r
n :=

{
B(x, nr

√
d) : x ∈ rZd ∩ [0, 1)d

}
where the balls appearing in the definition are intended to be open. Observe that for
any n ≥ 2 and any r > 0 the collection of balls in F r

n is a covering of [0, 1)d with the
property that any point x ∈ [0, 1)d lies in at most c(n, d) distinct balls belonging to
F r
n, where 0 < c(n, d) ≤ (2n)d is a constant that depends on n, d but not on r. Given

numbers 1 ≤ l ̸= p ≤ N we define

Er :=
{
B ∈ F r

2 : B ∩ Σlp ̸= ∅, Hd−1(Σij ∩ 2B)

ωd−1(4r)d−1
≤ 1

2d
, {i, j} ≠ {l, p}

}
.

Here 2B denotes the ball with center given by the center of B and twice its radius.
Given l, p as above, denote by {Br

m} an enumeration of Er and by {ρm} a smooth
partition of unity subordinate to {Br

m}. Then the following result holds true (for a
proof, see the Appendix).

Lemma A.3.1. Fix 1 ≤ l ̸= p ≤ N . With the above construction the following two
properties hold.

(i) For any 1 ≤ i ̸= j ≤ N , {i, j} ≠ {l, p} and any η ∈ L1(Hd−1
|Σij )

lim
r↓0

∑
m

∫
Brm

ηHd−1
|Σij (dx) = 0.

(ii) For any η ∈ L1(Hd−1
|Σlp)

lim
r↓0

∑
m

∫
ρmηHd−1

|Σlp(dx) =

∫
ηHd−1

|Σlp(dx).

A.4 Proofs

A.4.1 Proof of Theorem A.2.1

Proof. By Lemma A.1.3, we can apply Lemma A.1.4 on the metric space (M, dh) so
that we get inequality (A.10) with (E, d, χ, u) = (Eh, dh, χ

h, uh). Our first observation
is that

lim
h↓0

Eh(χ
0) =

∑
i,j

σijHd−1(Σ0
ij),
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which follows from the consistency, cf. Lemma A.5.2 in the Appendix. Inequality (A.10)
then yields that the sequence χh satisfies (A.19), so that Lemma A.2.4 (i) applies to
get that χ ∈ L1((0, T ), BV ([0, 1)d))N , χ ∈ {0, 1}N a.e.,

∑
i χi = 1 and, after extracting

a subsequence, χh → χ in L2([0, 1)d × (0, T ))N . We claim that this implies uh → χ in
L2([0, 1)d × (0, T ))N . To see this, observe that (A.12) implies

hEh(χ
0) ≥ −

∫ T

0

Eh(u
h(t)− χh(t))dt

≥ C
1√
h

N∑
i=1

(∫
|Gh/2

γ ∗ (uhi − χhi )|2dxdt+
∫

|Gh/2
β ∗ (uhi − χhi )|2dxdt

)(A.26)
where C is a constant which depends on N,A,B but not on h and comes from the
fact that all norms on (1, ..., 1)⊥ are comparable. Inequality (A.26) clearly implies that
Kh ∗uh−Kh ∗χh converges to zero in L2. Observe that inequality (A.13) in particular
yields (A.21). Recalling (A.83) in the Appendix, we learn that uh − χh converges to
zero in L2. This implies that we can apply Lemma A.2.4 (ii) both to the sequence
uh and the sequence χh. In particular, we may apply Proposition A.2.5 for χh and
Proposition A.2.6 for uh. Now the proof follows the same strategy as the one in the
two-phase case in [55]. For the sake of completeness, we sketch the argument here.
First of all, Lemma A.1.4 gives inequality (A.10) for (Eh, dh, χ

h, uh), namely for n ∈ N

ρ(nh) ≤ Eh(χ
0), (A.27)

where we set ρ(t) = Eh(χ
h(t))+ 1

2

∫ t
0

(
1
h2
d2h(χ

h(s+ h), χh(s)) + |∂Eh(uh(s))|2
)
ds. Mul-

tiplying (A.27) by η(nh)− η((n+1)h) for some non-increasing function η ∈ Cc([0, T ))
we get −

∫
dη
dt
ρdt ≤ (η(0) + h sup

∣∣dη
dt

∣∣)Eh(χ0). As test function η, we now choose
η(t) = max{min{T−t

τ
, 1}, 0} and obtain

1

τ

∫ T

T−τ
Eh(χ

h(t))dt (A.28)

+
1

2

∫ T−τ

0

(
1

h2
d2h(χ

h(t), χh(t− h)) + |∂Eh(uh(t))|2
)
dt ≤ (1 +

h

τ
)Eh(χ

0).

Now it remains to pass to the limit as h ↓ 0: to get (A.18) from inequality (A.28) one
uses the lower semicontinuity (A.20) for the first left hand side term, the sharp bound
(A.24) for the second left hand side term, the bound (A.25) for the last left hand side
term and finally one uses the consistency Lemma A.5.2 in the Appendix to treat the
right hand side term. To get (A.18) it remains to pass to the limit in τ ↓ 0.

A.4.2 Proof of Lemma A.2.4

Proof. Argument for (i). For the compactness, the arguments in [55] adapt to this
setting with minor changes. The first observation is that, by inequality (A.83) in the
Appendix, one needs to prove compactness in L2([0, 1)d×(0, T ))N of {Kh ∗χh}h↓0. For
this, one just needs a modulus of continuity in time. I.e. it is sufficient to prove that
there exists a constant C > 0 independent of h such that Ih(s) ≤ C

√
s, where

Ih(s) =

∫
(s,T )×[0,1)d

|χh(x, t)− χh(x, t− s)|2dxdt.
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This can be done applying word by word the argument in [55] once we show the
following: for any pair χ, χ′ ∈ A, we have

∫
|χ− χ′|dx ≤ C√

h
d2h(χ, χ

′) + C
√
h (Eh(χ) + Eh(χ

′)) . (A.29)

Here the constant C depends on N,A,B but not on h.

To prove (A.29) we proceed as follows: let S ∈ RN×N be a symmetric matrix which
is positive definite on (1, ..., 1)⊥. Since any two norms on a finite dimensional space
are comparable, there exists a constant C > 0 depending on S and N such that

|χ− χ′| ≤ |χ− χ′|2 ≤ C|χ− χ′|2S

where | · |S denotes the norm induced by S. For a function u ∈ M write (K̃h∗)uh for
the function

(
(K̃h∗)uh

)
i
=
∑
j ̸=i

Kh
ij ∗ uhj .

Then we calculate

|χ− χ′|2S = −(χ− χ′) · (K̃h∗)(χ− χ′) + (χ− χ′)(S+ (K̃h∗))(χ− χ′). (A.30)

Select S = (sij) where sij = −
∫
Kij(z)dz. Then, by our assumption (A.2) S, is positive

definite on (1, ..., 1)⊥ and after integration on [0, 1)d identity (A.30) becomes

∫
|χ− χ′|2Sdx =

1

2
√
h
d2h(χ, χ

′) +

∫
(χ− χ′)(S+ (K̃h∗))(χ− χ′)dx.

We now proceed to estimate the integral on the right hand side. By the choice of S
and Jensen’s inequality we have

∫
(χ− χ′)(S+ (K̃h∗))(χ− χ′)dx ≤ C

∫
|(S+ (K̃h∗))(χ− χ′)|dx

≤ C
∑
i,j

∫
Kh
ij(z)|(χj − χ′

j)(x− z)− (χj − χ′
j)(x)|dxdz.

Using the triangle inequality and (A.81) in the Appendix we can estimate the right
hand side to obtain the following inequality
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∫
(χ− χ′)(S+ (K̃h∗))(χ− χ′)dx

≤ C
∑
i,j

(∑
k ̸=j

∫
Kh
ij(z)χj(x− z)χk(x)dxdz

+
∑
k ̸=j

∫
Kh
ij(z)χj(x)χk(x− z)dxdz

+
∑
k ̸=j

∫
Kh
ij(z)χ

′
j(x− z)χ′

k(x)dxdz

+
∑
k ̸=j

∫
Kh
ij(z)χ

′
j(x)χ

′
k(x− z)dxdz

)
.

Observing that there is a constant C > 0 such that Kij ≤ CKjk we conclude that∫
(χ− χ′)(S+ (K̃h∗))(χ− χ′)dx ≤ C

√
h (Eh(χ) + Eh(χ

′)) .

This proves (A.29) and closes the argument for the compactness.
We also have to prove (A.20), but this follows from (A.22) with uh replaced by

χh once we have shown that the limit χ is such that |∇χ| is a bounded measure,
equiintegrable in time. Indeed one can check from the proof of (A.22) that the lower
bound of (A.22) does not require the extra assumption (A.16). Thus one gets that

lim inf
h↓0

∫ T

0

Eh(χ
h(t))dt = lim inf

h↓0

∑
i ̸=j

1√
h

∫ T

0

∫
[0,1)d

χhiK
h
ij ∗ χhj dxdt

≥
∑
i ̸=j

lim inf
h↓0

1√
h

∫ T

0

∫
[0,1)d

χhiK
h
ij ∗ χhj dxdt

=
∑
i ̸=j

lim inf
h↓0

1√
h

∫ T

0

∫
[0,1)d

∫
Rd

χhi (x, t)K
h
ij(z)χ

h
j (x− z, t)dzdxdt

≥
∑
i ̸=j

∫ T

0

∫
[0,1)d

∫
Rd

Kij(z)(νij · z)+dzHd−1
|Σij(t)(dx)dt

=
∑
i ̸=j

σij

∫ T

0

Hd−1
|Σij(t)(dx)dt,

where in the last two lines we used (A.22) and the definition of σij. To prove that the
limit χ is such that |∇χ| is a bounded measure, equiintegrable in time one can proceed
with an argument similar to the one used in [55] for the two-phase case. Observe that
this only requires the weaker assumption (A.21).

Argument for (ii). As mentioned in the previous paragraph, we already know
that the limit χ is such that |∇χ| is a bounded measure, equiintegrable in time. We
will prove (A.22). Then (A.23) easily follows by recalling that νij = −νji. A standard
argument (to be found in [55]) which relies on the exponential decay of the kernel yields
the fact that we can test convergences (A.22) with functions with at most polynomial
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growth in z provided we already have the result for bounded and continuous test
functions, thus we focus on this case.

Let ξ ∈ Cb(R
d × [0, 1)d × (0, T )) be a bounded and continuous function. To show

(A.22) we aim at showing that

lim
h↓0

∫
ξ(z, x, t)

Kij(z)√
h

uhi (x, t)u
h
j (x−

√
hz, t)dxdtdz

=

∫
ξ(z, x, t)Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dtdz.

(A.31)

Upon splitting ξ into the positive and the negative part, by linearity we may assume
that 0 ≤ ξ ≤ 1. We can split (A.31) into the local lower bound

lim inf
h↓0

∫
ξ(z, x, t)

Kij(z)√
h

uhi (x, t)u
h
j (x−

√
hz, t)dzdxdt

≥
∫
ξ(z, x, t)Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dtdz

(A.32)

and the global upper bound

lim sup
h↓0

∫
Kij(z)√

h
uhi (x, t)u

h
j (x−

√
hz, t)dzdxdt

≤
∫
Kij(z)(νij(x, t) · z)+Hd−1

Σij(t)
(dx)dtdz.

(A.33)

Indeed we can recover the limsup inequality in (A.31) by splitting ξ = 1− (1− ξ) and
applying the local lower bound (A.32) to 1− ξ.

We first concentrate on the local lower bounds in the case where uh = χ, namely
we will show

lim inf
h↓0

∫
ξ(z, x, t)

Kij(z)√
h

χi(x, t)χj(x−
√
hz, t)dzdxdt

≥
∫
ξ(z, x, t)Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dtdz.

(A.34)

By Fatou’s lemma the claim is reduced to showing that for a.e. point t in time and
every z ∈ Rd

lim inf
h↓0

∫
ξ(z, x, t)

Kij(z)√
h

χi(x, t)χj(x−
√
hz, t)dx

≥
∫
ξ(z, x, t)Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx).

Fix a point t such that χ(·, t) ∈ BV ([0, 1)d, {0, 1}N) and any z ∈ Rd. In the sequel,
we will drop those variables, so χ(x) = χ(x, t), ξ(x) = ξ(z, x, t). By approximation
we may assume that ξ ∈ C∞([0, 1)d). Let ρmij be a partition of unity obtained by
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applying the construction of Section A.3 to the function χ(x) on the interface Σij. Let
νi be the outer measure theoretic normal of Ωi(t). Then by Lemma A.3.1 we have∫

ξ(x)(νij(x) · z)+Hd−1
|Σij (dx)

= lim
r↓0

(∑
m∈N

∫
ρmij(x)ξ(x)(νij(x) · z)+Hd−1

|Σij (dx)

)

= lim
r↓0

∑
m∈N

(∫
ρmij(x)ξ(x)(νi(x) · z)+Hd−1

|∂∗Ωi(dx)

−
∑
k ̸=i,j

∫
ρmij(x)ξ(x)(νij(x) · z)+Hd−1

|Σik(dx)

)

= lim
r↓0

∑
m∈N

∫
ρmij(x)ξ(x)(νi(x) · z)+Hd−1

|∂∗Ωi(dx). (A.35)

We now focus on estimating the argument of the last limit. Observe that (νi(x) ·
z)+Hd−1

|∂∗Ωi(dx) = (∂zχi)+, thus by definition of positive part of a measure, given ϵ > 0

we can select, for any m ∈ N, a function ξ̃m ∈ C1
c (Bm) such that 0 ≤ ξ̃m ≤ 1 and such

that ∫
ρmijξξ̃m∂zχi + 2−mϵ ≥

∫
ρmijξ(νi · z)+Hd−1

|∂∗Ωi(dx). (A.36)

Let ηm := ρmijξξ̃m ∈ C1
c (Bm), then∫

ηm∂zχi = −
∫
∂zηmχidx

= lim
h↓0

∫
ηm(x+

√
hz)− ηm(x)√
h

χi(x)dx

= lim
h↓0

∫
ηm(x)

χi(x)− χi(x−
√
hz)√

h
dx.

Using that χi(x) − χi(x −
√
hz) ≤ χi(x)(1 − χi(x −

√
hz)) (because χi ∈ {0, 1}) and

that 1− χi =
∑

k ̸=i χk we can estimate the last item by

lim inf
h↓0

∑
k ̸=i

∫
ηm(x)

χi(x)χk(x−
√
hz)√

h
dx

≤ lim inf
h↓0

∫
ηm(x)

χi(x)χj(x−
√
hz)√

h
dx

+ lim sup
h↓0

∑
k ̸=i,j

∫
ηm(x)

χi(x)χk(x−
√
hz)√

h
dx

≤ lim inf
h↓0

∫
ηm(x)

χi(x)χj(x−
√
hz)√

h
dx

+
∑
k ̸=i,j

lim sup
h↓0

∫
ηm(x)

χi(x)χk(x−
√
hz)√

h
dx.
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Observe that for each m ∈ N, using also the consistency Lemma A.5.2

lim sup
h↓0

∫
ηm(x)

χi(x)χk(x−
√
hz)√

h
dx

≤ lim sup
h↓0

∫
ηm(x)

χi(x)χk(x−
√
hz) + χi(x−

√
hz)χj(x)√

h
dx

=

∫
ηm(x)|νik(x) · z|Hd−1

|Σik(dx)

≤ |z|Hd−1(Br
mij ∩ Σik).

Thus we obtain

∫
ηm∂zχi ≤ lim inf

h↓0

∫
ηm(x)

χi(x)χj(x−
√
hz)√

h
dx

+
∑
k ̸=i,j

|z|Hd−1(Br
mij ∩ Σik).

Inserting back into (A.35), recalling also Lemma A.3.1 and the inequality (A.36),
using Fatou’s lemma, the fact that ρmij is a partition of unity and that 0 ≤ ξ̃m ≤ 1 we
obtain that

∫
ξ(x)(νij(x) · z)+Hd−1

|Σij (dx) ≤ lim inf
h↓0

∫
ξ(x)

χi(x)χj(x−
√
hz)√

h
dx+ ϵ

and (A.34) follows letting ϵ go to zero. To derive inequality (A.32) we just apply
Lemma A.5.4 in the Appendix.

To get the upper bound (A.33) we argue as follows. First of all, recall Assumption
(A.16) which says

lim sup
h↓0

∫ T

0

Eh(u
h(t))dt ≤

∫ T

0

E(χ(t))dt.

Now, if we define

eijh (u
h) =

1√
h

∫ T

0

∫
uhi (t)K

h
ij ∗ uhj (t)dxdt,

we have that by (A.32) lim infh↓0 e
ij
h (uh) ≥ eij(χ), where eij(χ) is defined in the obvious

way. Assume that there exists a pair i, j such that lim suph↓0 e
ij
h (u

h) > eij(χ), then

∫ T

0

E(χ(t))dt ≥ lim sup
h↓0

∫ T

0

Eh(u
h(t))dt

≥
∑

(l,p)̸=(i,j)

lim inf
h↓0

elph (u
h) + lim sup

h↓0
eijh (u

h)

>

∫ T

0

E(χ(t))dt

which is a contradiction. Thus we have proved (A.33).
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A.4.3 Proof of Proposition A.2.5

Proof. Since we assume that the left hand side of (A.24) is finite, in view of (A.8),
upon passing to a subsequence we may assume that, in the sense of distributions, the
limit

lim
h↓0

1

h
√
h

(∣∣Gh/2
γ ∗ (χ− χ(· − h))

∣∣2
A +

∣∣∣Gh/2
β ∗ (χ− χ(· − h))

∣∣∣2
B

)
= ω

exists as a finite positive measure on [0, 1)d× (0, T ). Here we indicated with χhl (· − h)
the time shift of function χhl . We denote by τ a small fraction of the characteristic
spatial scale, namely τ = α

√
h for some α > 0, which we think as a small number.

Given 1 ≤ l ≤ N we define

δχhl := χhl − χhl (· − τ).

We divide the proof into two parts: first we show that the normal velocities exist,
and afterwards we prove the sharp bound. But first, let us state two distributional
inequalities that will be used later. Namely

• In a distributional sense it holds that

lim sup
h↓0

− 1√
h

∑
i ̸=j

δχiK
h
ij ∗ δχj ≤ α2ω. (A.37)

• There exists a constant C > 0 such that for any 1 ≤ i ≤ N and any θ ∈ {γ, β}
in a distributional sense it holds that

lim sup
h↓0

1√
h
(χi − χi(· − τ))Gh

θ ∗ (χi − χi(· − τ)) ≤ Cα2ω. (A.38)

We observe that it suffices to prove (A.37), then (A.38) follows immediately. Indeed
recall that A and B are positive definite on (1, ..., 1)⊥. In particular there exists a
constant C > 0 such that for any v ∈ (1, ..., 1)⊥ one has |v|2A + |v|2B ≥ C|v|2 ≥ Cv2i for

any i ∈ {1, ..., N}. Applying this to the vector vi = G
h/2
θ ∗ δχi one gets

|Gh/2
θ ∗ δχi|2 ≤

1

C
|Gh/2

θ ∗ δχ|2A + |Gh/2
θ ∗ δχ|2B.

The claim then follows from the definition of ω, (A.37), the symmetry (A.4) and
the semigroup property (A.6). Indeed it is sufficient to check that, in the sense of
distributions

lim
h↓0

1√
h

∑
i ̸=j

δχiK
h
ij ∗ δχj +

1√
h

(
|Gh/2

γ ∗ δχ|2A + |Gh/2
β ∗ δχ|2B

)
= 0.

To this aim, pick a test function η ∈ C∞
c ([0, 1)d×(0, T )). Spelling out the definition

of the norms | · |A and | · |B, the claim is proved once we show that

lim
h↓0

1√
h

∑
i ̸=j

aij

∫
ξ(δχiG

h
γ ∗ δχj −Gh/2

γ ∗ δχiGh/2
γ ∗ δχj)dxdt = 0, (A.39)
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and the same claim with aij, γ replaced by bij, β respectively.
We concentrate on (A.39). Clearly, we are done once we show that for any i ̸= j

lim
h↓0

1√
h

∫
ξ(δχiG

h
γ ∗ δχj −Gh/2

γ ∗ δχiGh/2
γ ∗ δχj)dxdt = 0.

To show this, using the semigroup property (A.6) we rewrite the argument of the limit
as

− 1√
h

∫
[ξ,Gh/2

γ ∗](δχi)Gh/2
γ ∗ δχjdxdt,

where [ξ,G
h/2
γ ∗] denotes the commutator of multiplying by ξ and convolving with G

h/2
γ ,

i.e.

[ξ,Gh/2
γ ∗](f) = ξGh/2

γ ∗ f −Gh/2
γ ∗ (ξf), (A.40)

for every function f for which this expression makes sense. We observe that by the
boundedness of the measures 1√

h
|Gh/2

γ ∗ δχ|2A it suffices to show

lim
h↓0

1√
h

∫
|[ξ,Gh/2

γ ∗](δχi)|2dxdt = 0. (A.41)

To prove this, spelling out the integrand, using the Cauchy-Schwarz inequality and
recalling the scaling (A.5) we observe that

∫
|[ξ,Gh/2

γ ∗](δχi)|2dxdt

≤
∫ (∫

|ξ(x, t)− ξ(x− z, t)|2Gh/2
γ (z)dz

)
Gh/2
γ ∗ |δχi(x, t)|2dxdt

≤ h

2
sup |∇ξ|2

∫
Gγ(z)|z|2dz

∫ T

0

∫
|δχi(x, t)|2dxdt.

(A.42)

Observe that by the compactness of χh in L2([0, 1)d× (0, T )), (A.42) is of order h, thus
(A.41) indeed holds true.

Now we can turn to the proof of (A.37), which is essentially already contained in
the paper [55]. For the convenience of the reader we sketch the main ideas here. One
reduces the claim to proving the following facts:

lim
h↓0

1√
h

∑
ij

δχiK
h
ij ∗ δχj −

1√
h

(∣∣Gh/2
γ ∗ δχ

∣∣2
A +

∣∣∣Gh/2
β ∗ δχ

∣∣∣2
B

)
= 0, (A.43)

lim sup
h↓0

1√
h

∣∣Gh/2
γ ∗ δχ

∣∣2
A − α2 1

h
√
h

∣∣Gh/2
γ ∗ (χ− χ(· − h))

∣∣2
A ≤ 0, (A.44)

lim sup
h↓0

1√
h

∣∣∣Gh/2
β ∗ δχ

∣∣∣2
B
− α2 1

h
√
h

∣∣∣Gh/2
β ∗ (χ− χ(· − h))

∣∣∣2
B
≤ 0. (A.45)

Claim (A.43) was proved in the previous paragraph, while (A.44) and (A.45) are
consequences of Jensen’s inequality in the time variable for the convex functions | · |2A
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and | · |2B respectively. More precisely, assume without loss of generality that τ = Nh
for some N ∈ N, then by a telescoping argument and Jensen’s inequality for | · |2A we
get

1√
h
|Gh/2

γ ∗ δχ|2A

≤ N
N−1∑
n=0

1√
h
|Gh/2

γ ∗ (χh(· − nh)− χh(· − (n+ 1)h))|2A.

Recalling that N = α/
√
h we can rewrite the right hand side as

α2

N

N−1∑
n=0

1

h
√
h
|Gh/2

γ ∗ (χh(· − nh)− χh(· − (n+ 1)h))|2A.

This is an average of time shifts of α2 1
h
√
h
|Gh/2

γ ∗ (χh − χh(· − h))|2A. Since Nh = o(1)
all these time shifts are small, thus the average has the same distributional limit as
α2 1

h
√
h
|Gh/2

γ ∗(χh−χh(·−h))|2A. This proves (A.44). The argument for (A.45) is similar.

Existence of the normal velocities

We now prove the existence of the normal velocities. Fix 1 ≤ i ≤ N and observe that
for w ∈ {γ, β} we have

|χi − χi(· − τ)| ≤(χi − χi(· − τ))Gh
w ∗ (χi − χi(· − τ)) + |χi −Gh

w ∗ χi|
+ |χi(· − τ)−Gh

w ∗ χi(· − τ)|,
(A.46)

which follows simply by observing that |χi−χi(·− τ)| = |χi−χi(·− τ)|2 = (χi−χi(·−
τ)Gh

w∗(χi−χi(·−τ))+(χi−χi(·−τ))(χ−Gh
w∗χ)+(χi(·−τ)−χi)(χi(·−τ)−Gh

w∗χi(·−τ)).
Using Jensen’s inequality and the elementary identity (A.81) in the Appendix we have

|χi −Gh
w ∗ χi| ≤

∫
Gh
w(z)|χi(x)− χi(x− z)|dz

=

∫
Gh
w(z)χi(x)(1− χi(x− z))dz +

∫
Gh
w(z)(1− χi(x))χi(x− z)dz

=
∑
k ̸=i

∫
Gh
w(z)χi(x)χk(x− z)dz +

∑
k ̸=i

∫
Gh
w(z)χk(x)χi(x− z)dz.

Now observe that by testing (A.22) with Gw/Kij (which is bounded, and thus admis-
sible), we learn that

lim
h↓0

1√
h

∫
Gh
w(z)χi(x)χk(x− z)dz =

∫
Gw(z)(νik(x, t) · z)+dzHd−1

|Σik(t)(dx)dt.

Thus, if we divide (A.46) by
√
h and let h ↓ 0, using also (A.38) we obtain
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α|∂tχi| ≤ lim inf
h↓0

|δχi|√
h

≤ lim sup
h↓0

|δχi|√
h

≤ Cα2ω + CHd−1
|∂∗Ωi(t)(dx)dt,

(A.47)

where C is a constant which depends on γ, β,N , the mobilities and the surface tensions.
If we divide by α and then let α → 0 we learn that |∂tχi| is absolutely continuous with
respect to Hd−1

|∂∗Ωi(t)(dx)dt. In particular, there exists Vi ∈ L1(Hd−1
|∂∗Ωi(t)(dx)dt) which is

the normal velocity of χi in the sense that ∂tχi = Vi|∇χi| in the sense of distributions.
The optimal integrability Vi ∈ L2(Hd−1

|∂∗Ωi(t)(dx)dt) will be shown in the second part
of the proof. Let us record for later use that with a similar reasoning we actually
obtain that lim suph

|δχi|√
h

is absolutely continuous with respect to Hd−1
|∂∗Ωi(t)(dx)dt. Thus

in particular inequality (A.47) holds with ω replaced by its absolutely continuous part
with respect to Hd−1

|∂∗Ωi(t)(dx)dt; calling this ωaci , it means

lim sup
h↓0

|δχi|√
h

≤ Cα2ωaci + CHd−1
|∂∗Ωi(t)(dx)dt. (A.48)

Sharp Bound

For a given 1 ≤ i ≤ N we denote by δχ+
i and δχ−

i the positive and negative parts fo δχi
respectively, i.e. we set δχ+

i := (χi − χi(· − τ))+ and δχ−
i := (χi − χi(· − τ))−. Before

entering into the proof of the sharp bound, we need to prove the following property.
For any i ̸= j we have that, in a distributional sense, the following holds

lim
h↓0

1√
h
δχ+

i K
h
ij ∗ δχ+

j = 0 = lim
h↓0

1√
h
δχ−

i K
h
ij ∗ δχ−

j . (A.49)

We focus on the first limit, the second one being analogous. The first observation
is that the limit

λ := lim
h↓0

1√
h
δχ+

i K
h
ij ∗ δχ+

j (A.50)

is a nonnegative bounded measure, which is absolutely continuous with respect to
Hd−1

|Σij(t)(dx)dt. Indeed, spelling out the z-integral and using the fact that δχ+
i = χi(1−

χi(· − τ)) we obtain

1√
h
δχ+

i K
h
ij ∗ δχ+

j =
1√
h

∫
Kh
ij(z)δχ

+
i (x, t)δχ

+
j (x− z, t)dz

≤ 1√
h

∫
Kh
ij(z)χi(x, t)χj(x− z, t)dz.

By (A.22) in Lemma A.2.4, as h ↓ 0, the right hand side converges to∫
Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dt,
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which is absolutely continuous with respect to Hd−1
|Σij(t)(dx)dt.

Now, given ν0 ∈ Sd−1 we claim that

λ ≤
∫
ν0·z≤0

Kij(z)(νij · z)+Hd−1
|Σij(t)(dx)dt

+

∫
ν0·z≥0

Kij(z)(νij · z)−Hd−1
|Σij(t)(dx)dt.

(A.51)

To see this, we rewrite the argument of the limit in (A.50) as

1√
h

∫
Rd

λh(t, x, z)dz,

where we set λh(t, x, z) := χi(x, t)(1−χi)(x, t−τ)Kh
ij(z)χi(x−z, t)(1−χi)(x−z, t−τ).

Using the fact that 0 ≤ χi ≤ 1 and
∑

l χl = 1 we obtain the following inequalities

λh ≤ χi(x, t)K
h
ij(z)χi(x− z, t), (A.52)

λh ≤χj(x, t− τ)Kh
ij(z)χi(x− z, t− τ)

+ C
∑
k ̸=i,j

Kh
ij(z) (|δχk|(x, t) + |δχk|(x− z, t)) . (A.53)

Here C is a constant that does not depend on h. Using inequality (A.52) on the domain
{ν0 · z ≤ 0} and inequality (A.53) on the domain {ν0 · z ≥ 0} we obtain

λ ≤ lim sup
h↓0

1√
h

∫
ν0·z≤0

χi(x, t)K
h
ij(z)χi(x− z, t)dz

+ lim sup
h↓0

1√
h

∫
ν0·z≥0

χj(x, t− τ)Kh
ij(z)χi(x− z, t− τ)dz

+ C
∑
k ̸=i,j

lim sup
h↓0

(
1√
h

∫
Kh
ij(z)|δχk|(x, t)dz +

1√
h

∫
Kh
ij(z)|δχk|(x− z, t)dz

)
.

Observe that for any 1 ≤ k ≤ N we have

lim sup
h↓0

1√
h

∫
Kh
ij(z)|δχk|(x, t)dz = lim sup

h↓0

1√
h

∫
Kh
ij(z)|δχk|(x− z, t)dz.

This can be seen by showing that

lim
h↓0

1√
h

∫
Kh
ij(z) (|δχk|(x, t)− |δχk|(x− z, t)) dz = 0, (A.54)

which can be shown to be true by testing with an admissible test function, and putting
the spatial shift z on it. Thus recalling (A.22) and (A.48), we obtain that

λ ≤
∫
ν0·z≤0

Kij(z)(νij · z)+Hd−1
|Σij(t)(dx)dt

+

∫
ν0·z≥0

Kij(z)(νij · z)−Hd−1
|Σij(t)(dx)dt

+ C
∑
k ̸=i,j

α2ωack +Hd−1
|∂∗Ωk(t)(dx)dt.
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Since we already know that λ is absolutely continuous with respect toHd−1
|Σij(t)(dx)dt, the

same bound holds true if we replace the right hand side with its absolutely continuous
part with respect to Hd−1

|Σij(t)(dx)dt. Observing that for k ̸= i, j by Lemma A.5.1 in the

Appendix the measures Hd−1
|∂∗Ωk(t)(dx)dt and Hd−1

|∂∗Σij(t)(dx)dt are mutually singular, this

yields (A.51).
Writing λ = θ(x, t)Hd−1

|Σij(t)(dx)dt for some L1(Hd−1
|Σij(t)(dx)dt)-function θ we obtain

that inequality (A.51) yields

θ(x, t) ≤
∫
ν0·z≤0

Kij(z)(νij(x, t) · z)+dz

+

∫
ν0·z≥0

Kij(z)(νij(x, t) · z)−dz
(A.55)

for every ν0 ∈ Sd−1 and Hd−1
|Σij(t)(dx)dt-a.e. (x, t) ∈ [0, 1)d × (0, T ). By a separability

argument, we see that the null set on which (A.55) does not hold can be chosen so that
it is independent of the choice of ν0. If we select ν0 = νij(x, t) this yields θ ≤ 0 almost
everywhere with respect to Hd−1

|Σij(t)(dx)dt. Since we already know that λ is nonnegative

this gives λ = 0.
Before getting the sharp bound, we check that for any i ̸= j we have Vi = −Vj

a.e. with respect to Hd−1
|Σij(t)(dx)dt. To see this, we start by observing that if ξ ∈

C∞
c ([0, 1)d × (0, T )), thanks to the fact that

∑
k ̸=i χk = 1− χi, we get

∫
ξViHd−1

|∂∗Ωi(t)(dx)dt = −
∫
∂tξχidxdt

=
∑
k ̸=i

∫
∂tξχkdxdt

= −
∑
k ̸=i

∫
ξVkHd−1

|∂∗Ωk(t)(dx)dt.

Choosing ξ = f(t)g(x) for some f ∈ C∞
c ((0, T )) and g ∈ C∞([0, 1)d), by a separability

argument, we obtain that for a.e. t and every g ∈ C∞([0, 1)d)

∫
gViHd−1

|∂∗Ωi(t)(dx) = −
∑
k ̸=i

∫
gVkHd−1

|∂∗Ωk(t)(dx). (A.56)

Pick t such that (A.56) holds. Let g ∈ C∞([0, 1)d) and let ρm be a partition of
unity obtained by the construction of Section A.3 applied to the function χ(·, t) on the
interface Σij(t). Then

∑
m∈N

∫
ρmgViHd−1

|∂∗Ωi(t)(dx) = −
∑
m∈N

∑
k ̸=i

∫
ρmgVkHd−1

|∂∗Ωk(t)(dx). (A.57)

Passing to the limit r ↓ 0 in (A.57) we get by Lemma A.3.1 that
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∫
gViHd−1

|Σij(t)(dx) = −
∫
gVjHd−1

|Σij(t)(dx).

Since this identity holds for any g ∈ C∞([0, 1)d), a density argument gives Vi(x, t) =
−Vj(x, t) for Hd−1

|Σij(t)-a.e. x. In other words∫
|Vi(x, t) + Vj(x, t)|Hd−1

|Σij(t)(dx) = 0.

Integrating in time yields that Vi = −Vj a.e. with respect to Hd−1
|Σij(t)(dx)dt.

We now proceed with the derivation of the sharp lower bound. Define cij :=∫
Kij(z)dz. Then we have

cij(|δχi|+ |δχj|) = cij(δχ
+
i + δχ−

j + δχ−
i + δχ+

j )

=
1

2

(
δχ+

i K
h
ij ∗ (1− δχ−

j ) + (1− δχ−
j )K

h
ij ∗ δχ+

i + δχ−
j K

h
ij ∗ (1− δχ+

i )

+(1− δχ+
i )K

h
ij ∗ δχ−

j + δχ−
i K

h
ij ∗ (1− δχ+

j ) + (1− δχ+
j )K

h
ij ∗ δχ−

i

+δχ+
j K

h
ij ∗ (1− δχ−

i ) + (1− δχ−
i )K

h
ij ∗ δχ+

j

)
+
(
δχ+

i K
h
ij ∗ δχ−

j

+δχ−
j K

h
ij ∗ δχ+

i + δχ−
i K

h
ij ∗ δχ+

j + δχ+
j K

h
ij ∗ δχ−

i

)
.

Now we rewrite the terms in the second parenthesis using −ab = a+b− + a−b+ −
a+b+−a−b− and then adding and subtracting the contributions of the minority phases
we obtain

cij(|δχi|+ |δχj|) ≤
1

2

(
δχ+

i K
h
ij ∗ (1− δχ−

j ) + (1− δχ−
j )K

h
ij ∗ δχ+

i + δχ−
j K

h
ij ∗ (1− δχ+

i )

+ (1− δχ+
i )K

h
ij ∗ δχ−

j + δχ−
i K

h
ij ∗ (1− δχ+

j ) + (1− δχ+
j )K

h
ij ∗ δχ−

i

+ δχ+
j K

h
ij ∗ (1− δχ−

i ) + (1− δχ−
i )K

h
ij ∗ δχ+

j

)
−
∑
l,p

δχlK
h
lp ∗ δχp

+ δχ+
i K

h
ij ∗ δχ+

j + δχ−
i K

h
ij ∗ δχ−

j + δχ+
j K

h
ij ∗ δχ+

i

+ δχ−
j K

h
ij ∗ δχ−

i +
∑

{l,p}≠{i,j}

δχlK
h
lp ∗ δχp.

(A.58)

Now the main idea is to split the integral of Kij in the definition of cij into two
parts. More precisely, by the symmetry (A.4), for any ν0 ∈ Sd−1 and any V0 > 0 we
have

cij = 2

∫
0≤ν0·z≤αV0

Kij(z)dz + 2

∫
ν0·z>αV0

Kij(z)dz.

Substituting into (A.58) and dividing by
√
h we obtain
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2

∫
0≤ν0·z≤αV0

Kij(z)dz
(|δχi|+ |δχj|)√

h
(A.59)

≤ 1

2
√
h

(
δχ+

i K
h
ij ∗ (1− δχ−

j ) + (1− δχ−
j )K

h
ij ∗ δχ+

i + δχ−
j K

h
ij ∗ (1− δχ+

i )

+ (1− δχ+
i )K

h
ij ∗ δχ−

j + δχ−
i K

h
ij ∗ (1− δχ+

j ) + (1− δχ+
j )K

h
ij ∗ δχ−

i

+ δχ+
j K

h
ij ∗ (1− δχ−

i ) + (1− δχ−
i )K

h
ij ∗ δχ+

j

− 4

∫
ν0·z>αV0

Kij(z)dz(|δχi|+ |δχj|)

− 2
∑
l,p

δχlK
h
lp ∗ δχp + 2δχ+

i K
h
ij ∗ δχ+

j + 2δχ−
i K

h
ij ∗ δχ−

j

+ 2δχ+
j K

h
ij ∗ δχ+

i + 2δχ−
j K

h
ij ∗ δχ−

i

+ 2
∑

(l,p)̸=(i,j),(l,p) ̸=(j,i)

δχlK
h
lp ∗ δχp

)
.

We will be interested in bounding the lim inf of the left hand side. Observe that
the distributional limit of the last five terms is non-positive. Indeed, the limit of first
four terms vanish distributionally by property (A.49), while the last term is bounded
from above by

2
∑

(l,p)̸=(i,j),(l,p) ̸=(j,i)

δχ+
l K

h
lp ∗ δχ+

p + δχ−
l K

h
lp ∗ δχ−

p ,

which vanish distributionally in the limit h ↓ 0 by property (A.49). We thus obtain
that the lim inf of the left hand side of (A.59) is bounded from above by

lim inf
h↓0

1

2
√
h

(
δχ+

i K
h
ij ∗ (1− δχ−

j ) + (1− δχ−
j )K

h
ij ∗ δχ+

i + δχ−
j K

h
ij ∗ (1− δχ+

i )

+ (1− δχ+
i )K

h
ij ∗ δχ−

j + δχ−
i K

h
ij ∗ (1− δχ+

j ) + (1− δχ+
j )K

h
ij ∗ δχ−

i

+ δχ+
j K

h
ij ∗ (1− δχ−

i ) + (1− δχ−
i )K

h
ij ∗ δχ+

j

− 4

∫
ν0·z>αV0

Kij(z)dz(|δχi|+ |δχj|)− 2
∑
l,p

δχlK
h
lp ∗ δχp

)
.

For the last term we use the sharp bound (A.37), relating this term to our dissipa-
tion measure ω. We would like to get a good bound for the other terms. This cannot
be done naively as before, since we want the bound to be sharp. We claim that
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lim sup
h↓0

1√
h

(
δχ+

i K
h
ij ∗ (1− δχ−

j ) + (1− δχ−
j )K

h
ij ∗ δχ+

i + δχ−
j K

h
ij ∗ (1− δχ+

i )

+ (1− δχ+
i )K

h
ij ∗ δχ−

j + δχ−
i K

h
ij ∗ (1− δχ+

j ) + (1− δχ+
j )K

h
ij ∗ δχ−

i

+ δχ+
j K

h
ij ∗ (1− δχ−

i ) + (1− δχ−
i )K

h
ij ∗ δχ+

j

− 4

∫
ν0·z>αV0

Kij(z)dz(|δχi|+ |δχj|)

) (A.60)

≤ 8

∫
0≤ν0·z≤αV0

Kij(z)|νij(x) · z|dzHd−1
|Σij(t)(dx)dt

+ C
∑
k ̸=i,j

(α2ωack +Hd−1
|∂∗Ωk(t)(dx))dt.

Here C is a constant that depends on γ, β,A,B, but not on h. Assume for the moment
that (A.60) is true and let us conclude the argument in this case. Using (A.60) and
(A.37) we obtain

2 lim inf
h↓0

∫
0≤ν0·z≤αV0

Kij(z)dz
(|δχi|+ |δχj|)√

h
(A.61)

≤ α2ω + 4

∫
0≤ν0·z≤αV0

Kij(z)|νij(x) · z|dzHd−1
|Σij(t)(dx)dt

+ C
∑
k ̸=i,j

(α2ωack +Hd−1
|∂∗Ωk(t)(dx)dt

in the sense of distributions on [0, 1)d × (0, T ). Observe also that the left hand side of
(A.61) is an upper bound for

∫
0≤ν0·z≤αV0 Kij(z)dz(|∂tχi| + |∂tχj|), thus the inequality

still holds true if the left hand side is replaced by this term. Remember that ωack
is absolutely continuous with respect to Hd−1

|∂∗Ωk(t)(dx)dt, thus there exist functions

Wk ∈ L1(Hd−1
|∂∗Ωk(t)(dx)dt) such that ωack = Wk(x, t)Hd−1

|∂∗Ωk(t)(dx)dt. We now disintegrate

the measure ω, i.e. we find a Borel family ωt, t ∈ (0, T ), of positive measures on [0, 1)d

such that ω = ωt ⊗ dt. Having said this, it is not hard to see that (A.61) holds in a
disintegrated version, i.e. we have for Lebesgue a.e. t ∈ (0, T )

2α

∫
0≤ν0·z≤αV0

Kij(z)dz(|Vi(x, t)|Hd−1
|∂∗Ωi(t)(dx) + |Vj(x, t)|Hd−1

|∂∗Ωj(t)(dx)) (A.62)

≤ α2ωt + 4

∫
0≤ν0·z≤αV0

Kij(z)|νij(x) · z|dzHd−1
|Σij(t)(dx)

+ C
∑
k ̸=i,j

(α2Wk(x, t) + 1)Hd−1
|∂∗Ωk(t)(dx).

Here ν0 ∈ Sd−1 and V0 ∈ (0,∞) are arbitrary: indeed even if the set of points in time
for which (A.62) holds is a priori dependent on ν0 and V0, a standard separability
argument allows us to conclude that we can get rid of this dependence.

Fix a point t in time such that (A.62) holds. In what follows, we drop the time
variable t which is fixed, so for example Vi(x) = Vi(x, t), Σij = Σij(t) and so on.
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Fix ξ ∈ C([0, 1)d), observe that by definition of Vij and by using the fact that Σij ⊂
∂∗Ωi ∩ ∂∗Ωj we have

4α

∫
0≤ν0·z≤αV0

Kij(z)dz

∫
[0,1)d

ξ(x)|Vij(x)|Hd−1
|Σij (dx)

≤ α2

∫
[0,1)d

ξ(x)ωt(dx) + 4

∫
[0,1)d

∫
0≤ν0·z≤αV0

Kij(z)|νij(x) · z|dzξ(x)Hd−1
|Σij(t)(dx)

+ C
∑
k ̸=i,j

∫
[0,1)d

ξ(x)(α2Wk(x, t) + 1)Hd−1
|∂∗Ωk(t)(dx).

Let us relabel ν0, V0 and ξ to make clear that they may depend on the pair i, j.
Thus νij0 ∈ Sd−1, V ij

0 ∈ (0,∞) and ξij ∈ C([0, 1)d) are arbitrary, and it holds

4α

∫
0≤νij0 ·z≤αV ij0

Kij(z)dz

∫
[0,1)d

ξij(x)|Vij(x)|Hd−1
|Σij (dx)

≤ α2

∫
[0,1)d

ξij(x)ωt(dx) + 4

∫
[0,1)d

∫
0≤νij0 ·z≤αV ij0

Kij(z)|νij(x) · z|dzξij(x)Hd−1
|Σij(t)(dx)

+ C
∑
k ̸=i,j

∫
[0,1)d

ξij(x)(α
2Wk(x, t) + 1)Hd−1

|∂∗Ωk(t)(dx).

Let {ρm} be a partition of unity obtained using the construction of Section A.3
applied to the function χ(·, t) on the interface Σij(t). Use the above inequality with
ξij replaced by ρmξij and sum over m and i, j to get

∑
i<j

∑
m∈N

LHij
m ≤

∑
i<j

∑
m∈N

(Iijm + IIijm + IIIijm)

where we have set

LHij
m = 4α

∫
0≤νij0 ·z≤αV ij0

Kij(z)dz

∫
[0,1)d

ρmij(x)ξij(x)|Vij(x)|Hd−1
|Σij (dx),

Iijm = α2

∫
[0,1)d

ξij(x)ρmij(x)ωt(dx),

IIijm = 4

∫
[0,1)d

∫
0≤νij0 ·z≤αV ij0

Kij(z)|νij(x) · z|dzρmij(x)ξij(x)Hd−1
|Σij(t)(dx),

IIIijm = C
∑
k ̸=i,j

∫
[0,1)d

ρmij(x)ξij(x)(α
2Wk(x, t) + 1)Hd−1

|∂∗Ωk(t)(dx).

Observe that ∑
i<j

∑
m∈N

Iijm ≤
∑
i<j

α2

∫
[0,1)d

ξij(x)ωt(dx)

because ρm is a partition of unity. Moreover by Lemma A.3.1 we get
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lim
r↓0

∑
i<j

∑
m∈N

LHij
m = 4α

∫
0≤νij0 ·z≤αV ij0

Kij(z)dz

∫
[0,1)d

ξij(x)|Vij(x)|Hd−1
|Σij (dx),

lim
r↓0

∑
i<j

∑
m∈N

IIijm =
∑
i<j

4

∫
[0,1)d

∫
0≤νij0 ·z≤αV ij0

Kij(z)|νij(x) · z|dzξij(x)Hd−1
|Σij(t)(dx),

lim
r↓0

∑
i<j

∑
m∈N

IIIijm = 0.

Putting things together we obtain that for any νij0 ∈ Sd−1, any V ij
0 ∈ (0,∞), and

any ξ ∈ C([0, 1)d)

4α
∑
i<j

∫
0≤νij0 ·z≤αV ij0

Kij(z)dz

∫
[0,1)d

ξij(x)|Vij(x)|Hd−1
|Σij (dx) (A.63)

≤
∑
i<j

α2

∫
[0,1)d

ξij(x)ωt(dx)

+ 4
∑
i<j

∫
[0,1)d

∫
0≤νij0 ·z≤αV ij0

Kij(z)|νij(x) · z|dzξij(x)Hd−1
|Σij(t)(dx).

We now claim that by approximation the above inequality is valid for any simple
function ξij ≥ 0. To see this, it is clear that we can concentrate on ξij = wij1Bij ,
where Bij ⊂ [0, 1)d are Borel and wij ≥ 0. Observe that by the dominated convergence
theorem, the family

F :=

{
B =

∏
i<j

Bij : Bij ∈ B([0, 1)d) s.t. ∀wij ≥ 0 (A.63) holds with ξij = wij1Bij

}
is a monotone class. Thus by the monotone class theorem we just need to show that it
contains all the products of open sets. But this is easy because given Bij ⊂ [0, 1)d open
sets, we can always find sequences ηijk of continuous functions with compact support
such that 0 ≤ ηijk ≤ 1Bij and such that ηijk → 1Bij , thus the claim follows by the
monotone convergence theorem.

With this in place one can use an approximation argument to replace the vector νij0
with theHd−1-measurable vector valued function νij obtaining the following inequality:

4α
∑
i<j

∫
[0,1)d

∫
0<νij(x)·z<αV ij0

Kij(z)dzξij(x)|Vij(x)|Hd−1
|Σij (dx) (A.64)

≤
∑
i<j

α2

∫
[0,1)d

ξij(x)ωt(dx)

+ 4
∑
i<j

∫
[0,1)d

∫
0≤νij ·z≤αV ij0

Kij(z)|νij(x) · z|dzξij(x)Hd−1
|Σij (dx).

Now divide by α2 and send α to zero. Record the following limits, which can be
computed spelling out the definition of Kij, and recalling the symmetry property (A.4)
and the factorization property (A.7) for the heat kernel
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lim
α↓0

1

α

∫
0<νij(x)·z<αV ij0

Kij(z)dz =
V ij
0

2µij
.

lim
α↓0

1

α2

∫
0≤νij(x)·z≤αV ij0

Kij(z)|νij(x) · z|dz =
(V ij

0 )2

4µij
.

Then if we insert back into (A.64) we obtain

∑
i<j

2

µij

∫
[0,1)d

V ij
0 ξij(x)|Vij(x)|Hd−1

|Σij (dx) (A.65)

≤
∫
[0,1)d

ωt(dx) +
∑
i<j

∫
[0,1)d

(V ij
0 )2

µij
ξij(x)Hd−1

|Σij(t)(dx).

Now given M > 0 take sequences of simple functions

sijm =

pm∑
k=1

wijk 1Bkij

such that sijm → |Vij|1{|Vij |≤M} as m→ +∞ monotonically almost everywhere with re-

spect toHd−1
|Σij(t). We are assuming that {Bk

ij}k=1,...,pm are disjoint andHd−1-measurable,

with the property that Bk1
ij ∩Bk2

lr = ∅ if {i, j} ≠ {l, r}. Choosing V ij
0 = wijk , ξij = 1Bkij

in (A.65) and summing over k we obtain

∑
i<j

2

µij

∫
[0,1)d

sijm|Vij(x)|Hd−1
|Σij (dx)

≤
∫
[0,1)d

ωt(dx) +
∑
i<j

∫
[0,1)d

(sijm)
2

µij
Hd−1

|Σij(t)(dx).

Taking the limit m→ +∞, using the monotone convergence theorem we obtain

∑
i<j

2

µij

∫
[0,1)d

|Vij(x)|21{|Vij |≤M}Hd−1
|Σij (dx)

≤
∫
[0,1)d

ωt(dx) +
∑
i<j

∫
[0,1)d

|Vij(x)|2

µij
1{|Vij |≤M}Hd−1

|Σij (dx)

or, in other words,

∑
i<j

1

µij

∫
[0,1)d

|Vij(x)|21{|Vij |≤M}Hd−1
|Σij (dx) ≤

∫
[0,1)d

ωt(dx).

Recall that µij = µji, thus the inequality above may be rewritten as

∑
i,j

1

2µij

∫
[0,1)d

|Vij(x)|21{|Vij |≤M}Hd−1
|Σij (dx) ≤

∫
[0,1)d

ωt(dx).

If we now integrate in time we learn by the monotone convergence theorem that
Vij ∈ L2(Hd−1

|Σij(t)(dx)dt) and that the sharp bound (A.24) is satisfied.
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Proof of (A.60)

To prove (A.60) we proceed in several steps.

First of all, we claim that the first eight terms may be substituted by

2

∫
ν0·z≥0

Kh
ij(z)

(
|δχ+

i − δχ−
j (−z)|+ |δχ+

i (−z)− δχ−
j | (A.66)

|δχ−
i − δχ+

j (−z)|+ |δχ−
i (−z)− δχ+

j |
)
dz.

To show this, observe that we may replace the implicit z-integrals in the convolution
in the first eight terms by twice the integrals over the half space {ν0 · z ≥ 0} instead
of Rd. This is clearly true once we observe that, in the sense of distribution

lim
h↓0

1√
h

(
δχ+

i

∫
ν0·z≥0

Kh
ij(z)(1− δχ−

j (· − z))dz

+(1− δχ−
j )

∫
ν0·z≥0

Kh
ij(z)δχ

+
i (· − z)dz

) (A.67)

= lim
h↓0

1√
h

(
δχ+

i

∫
ν0·z≤0

Kh
ij(z)(1− δχ−

j (· − z))dz

+(1− δχ−
j )

∫
ν0·z≤0

Kh
ij(z)δχ

+
i (· − z)dz

)
and that similar identities hold exchanging the roles of i, j and +,− respectively. That
(A.67) holds is not difficult to show. Indeed multiplying the argument in both the limits
by a test function ξ ∈ C∞

c ([0, 1)d×(0, T )) and integrating over space-time one observes
that since the kernel is even, the argument of the second limit is just a spatial shift
of z of the first one. By translation invariance the spatial shift may be put onto the
test function, and thanks to the scaling of the kernel one can get the claim. We may
thus substitute the first eight terms of the left hand side of (A.60) with twice the same
terms with the integration with respect to z on the half space {ν0 · z ≥ 0}. If we rely
again on the fact that δχ+

i ∈ {0, 1}, by identity (A.81) in the Appendix we obtain
(A.66), as claimed.

Now we need two inequalities for the integrand. First note that the integrand is a
mixed space-time second-order finite difference. We claim that

|δχ+
i − δχ−

j (· − z)|+ |δχ+
i (· − z)− δχ−

j |+ |δχ−
i − δχ+

j (· − z)|+ |δχ−
i (· − z)− δχ+

j |(A.68)

≤


|δχ+

i − δχ+
i (· − z)|+ |δχ−

i − δχ−
i (· − z)|+ |δχ+

j − δχ+
j (· − z)|+ |δχ−

j − δχ−
j (· − z)|

+4
∑

k ̸=i,j(|δχk|+ |δχk(· − z)|),

|δχi|+ |δχi(· − z)|+ |δχj|+ |δχj(· − z)|.

The second follows from the triangle inequality. To show the first one, observe that
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|δχ+
i − δχ−

j (· − z)| =(1− δχ+
i )δχ

−
j (· − z) + δχ+

i (1− δχ−
j (· − z))

≤(1− δχ+
i )δχ

+
i (· − z) +

∑
k ̸=i,j

|δχk(· − z)|+ δχ−
j (1− δχ−

j (· − z))

+
∑
k ̸=i,j

|δχk|

and that similarly

|δχ+
i (· − z)− δχ−

j | =(1− δχ+
i (· − z))δχ−

j + δχ+
i (· − z)(1− δχ−

j )

≤(1− δχ+
i (· − z))δχ+

i +
∑
k ̸=i,j

|δχk|+ δχ−
j (· − z)(1− δχ−

j )

+
∑
k ̸=i,j

|δχk(· − z)|.

Summing up the two inequalities we get

|δχ+
i − δχ−

j (· − z)|+ |δχ+
i (· − z)− δχ−

j |

≤ |δχ+
i − δχ+

i (· − z)|+ |δχ−
j − δχ−

j (· − z)|+ 2
∑
k ̸=i,j

(|δχk|+ |δχk(· − z)|) .

Similar bounds hold for the remaining terms in (A.68).

We now split the integral (A.66) into the domains of integration {0 ≤ ν0 · z ≤ αV0}
and {ν0 · z > αV0}. On the first one we use the first inequality in (A.68) for the
integrand. Recalling identity (A.81) and inequality (A.82) in the Appendix we obtain,
and using the fact that

∑
k χk = 1
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2

∫
0≤ν0·z≤αV0

Kh
ij(z)

(
|δχ+

i − δχ−
j (· − z)|+ |δχ+

i (· − z)− δχ−
j |

+ |δχ−
i − δχ+

j (· − z)|+ |δχ−
i (· − z)− δχ+

j |
)
dz

≤ 2

∫
0≤ν0·z≤αV0

Kh
ij(z)

(
|χi − χi(· − z)|+ |χi(· − τ)− χi(· − τ, · − z)|

+ |χj − χj(· − z)|+ |χj(· − τ)− χj(· − τ, · − z)|

+ 8
∑
k ̸=i,j

|δχk|+ |δχk(· − z)|
)
dz

≤ 2

∫
0≤ν0·z≤αV0

Kh
ij(z)

(
χiχj(· − z) + χi(· − z)χj +

∑
k ̸=i,j

χiχk(· − z) + χi(· − z)χk

+χi(· − τ)χj(· − τ, · − z) + χi(· − τ, · − z)χj(· − τ)

+
∑
k ̸=i,j

χi(· − τ)χk(· − τ, · − z) + χi(· − τ, · − z)χk(· − τ)

+χjχi(· − z) + χj(· − z)χi +
∑
k ̸=i,j

χjχk(· − z) + χj(· − z)χk

+χj(· − τ)χi(· − τ, · − z) + χj(· − τ, · − z)χi(· − τ)

+
∑
k ̸=i,j

χj(· − τ)χk(· − τ, · − z) + χj(· − τ, · − z)χk(· − τ)

+8
∑
k ̸=i,j

|δχk|+ |δχk(· − z)|

)
dz.

(A.69)

On the set {ν0 · z > αV0} we use the second inequality in (A.68), obtaining

2

∫
ν0·z>αV0

Kh
ij(z)

(
|δχ+

i − δχ−
j (· − z)|+ |δχ+

i (· − z)− δχ−
j |

+|δχ−
i − δχ+

j (· − z)|+ |δχ−
i (· − z)− δχ+

j |
)
dz

(A.70)

≤ 2

∫
ν0·z>αV0

Kh
ij(z)(|δχi|+ |δχi(· − z)|+ |δχj|+ |δχj(· − z)|)dz.

We now observe that for any 1 ≤ k ≤ N we have, as we already observed in (A.54)

lim
h↓0

1√
h

∫
0≤ν0·z≤αV0

Kh
ij(z)(|δχk(· − z)| − |δχk|)dz = 0, (A.71)

thus in particular

lim sup
h↓0

1√
h

∫
0≤ν0·z≤αV0

Kh
ij(z)|δχk(· − z)|dz

= lim sup
h↓0

1√
h

∫
0≤ν0·z≤αV0

Kh
ij(z)|δχk|dz.
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By putting the time shift τ on the test function it is easy to check that the distributional
limit of the terms of (A.69) which involve the shift τ have the same limit as the
corresponding terms without the time shift. Thus recalling (A.48) and relying on
(A.71) and (A.22) we obtain that inserting (A.69) and (A.70) into (A.66), the left
hand side of (A.60) is bounded by

8

∫
0≤ν0·z≤αV0

Kij(z)((νij(x, t) · z)+ + (νij(x, t) · z)−)Hd−1
|Σij(t)(dx)dtdz

+ C
∑
k ̸=i,j

∫
0≤ν0·z≤αV0

Kik(z)((νik(x, t) · z)+ + (νik(x, t) · z)−)Hd−1
|Σik(t)(dx)dtdz

+ C
∑
k ̸=i,j

(α2ωack +Hd−1
|∂∗Ωk(t)(dx)dt),

which clearly gives the claim once we realize that

∫
0≤ν0·z≤αV0

Kik(z)((νik(x) · z)+ + (νik(x) · z)−)dz

≤ 2

∫
Rd

Kik(z)|z|dz ≤ C.

A.4.4 Proof of Proposition A.2.6

Proof. The proof is along the same lines as Proposition 2 in [55], where the claim is
shown in the case of two phases. For the convenience of the reader, we outline the
strategy of the full proof, providing details only for the required changes. The proof is
split into several steps.
step 1. The first observation is that for any h > 0, any admissible u ∈ M and any
smooth vector field ξ we have the following lower bound for the metric slope, cf. (A.11)

1

2
|∂Eh|(u) ≥ δEh(u)•ξ −

1

2
(δdh(·, u)•ξ)2 .

Here δ denotes the first variation, which is computed considering the curve s → us of
configurations which solve the transport equations{

∂su
s
i + ξ · ∇usi = 0,

usi (·, 0) = ui(·),
and by setting

δEh(u)•ξ :=
d

ds |s=0
Eh(u

s) and δdh(·, u)•ξ :=
d

ds |s=0
d(u, us).

step 2. The second observation is a representation formula for δEh(u)•ξ. Namely

δEh(u)•ξ =
∑
i,j

1√
h

(∫
∇ · ξuiKh

ij ∗ ujdx+
∫

∇ · ξujKh
ij ∗ uidxdt

+

∫
[ξ,∇Kh

ij∗](uj)uidx
)
.
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Here [ξ,∇Kh
ij∗] denotes the commutator obtained taking the convolution with ∇Kh

ij

and multiplying by ξ, the definition is analogous to the one given in (A.40). To
check this formula one starts by assuming u to be smooth and then an approximation
argument gives the result for a general u ∈ M.
step 3. Representation for δdh(·, u)•ξ. One checks that

1

2
(δdh(·, u)•ξ)2

=

√
h

2

∑
i,j

(∫
uiξ · ∇2Kh

ij ∗ (ξuj)dx+
∫
ujξ · ∇2Kh

ij ∗ (ξui)dx

+

∫
ui∇ · ξ∇Kh

ij ∗ (ξuj)dx+
∫
uj∇ · ξ∇Kh

ij ∗ (ξui)dx

−
∫
ui∇ · ξKh

ij ∗ (uj∇ · ξ)dx−
∫
uj∇ · ξKh

ij ∗ (ui∇ · ξ)dx

−
∫
ξui∇Kh

ij ∗ (uj∇ · ξ)dx−
∫
ξuj∇Kh

ij ∗ (ui∇ · ξ)dx
)
.

Once again this formula can be easily checked when u is smooth, an approximation
argument then gives the extension to the case u ∈ M.
step 4. Passage to the limit in δEh. We claim that

lim
h↓0

∫ T

0

δEh(u
h(t))•ξdt =

∑
i,j

σij

∫
(∇ · ξ − νij · ∇ξνij)Hd−1

|Σij(t)(dx)dt. (A.72)

The proof is very similar to the two phases case, and relies on the weak convergence
(A.22) and (A.23). Firstly, testing (A.22) with ∇ · ξ we get

lim
h↓0

∑
i,j

1√
h

∫ (
∇ · ξuhiKh

ij ∗ uhj +∇ · ξuhjKh
ij ∗ uhi

)
dxdt

=
∑
i,j

2σij

∫
∇ · ξHd−1

|Σij(t)(dx)dt.

For the term involving the commutator, one checks that

lim
h↓0

(∫
[ξ,∇Kh

ij∗](uhj )uhi dxdt−
∫

∇ξz · ∇Kh
ij(z)u

h
j (x− z, t)uhi (x, t)dzdxdt

)
= 0.

With this in place, we observe that

lim
h↓0

∫
∇ξz · ∇Kh

ij(z)u
h
j (x− z, t)uhi (x, t)dzdxdt

=

∫
∇ξ(x, t)z · ∇Kij(z)(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dt
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which can be seen by testing (A.22) with
∇ξz·∇Kij(z)

Kij(z)
, which is of polynomial growth in

z. To conclude (A.72) we just need to show that for any symmetric matrix A ∈ Rd×d

and any unit vector ν we have∫
Az · ∇Kij(z)(ν · z)+dz = −σij (trA+ ν · Aν) .

Using the definition of the kernel Kij it suffices to show that∫
Az · ∇Gw(z)(ν · z)+dz = −

√
w√
π
(trA+ ν · Aν) w ∈ {γ, β}.

step 5. Passage to the limit in δdh(·, u)ξ. We claim that

lim
h↓0

1

2

(
δdh(·, uh)•ξ

)
=
∑
i,j

1

2µij

∫
(ξ · νij)2Hd−1

|Σij(t)(dx)dt. (A.73)

To prove this, we observe that the terms which do not involve the Hessian ∇2Kh
ij

are all O(
√
h). For example, to prove that

√
h

∫
uhi∇ · ξ∇Kh

ij ∗ (ξuhj )dxdt = O(
√
h), (A.74)

spell out the integral in the convolution, use the fact that ∇Kh
ij = 1√

h
d+1∇Kij(

z√
h
),

use the fact that ∇ · ξ(x, t)ξ(x −
√
hz, t) is bounded and test (A.22) with ∇Kij/Kij.

The other terms can be treated similarly. For the terms involving the Hessian of the
kernel, we split the claim into

lim
h↓0

√
h

∫
uhi (ξ · ∇2Kh

ij ∗ uj)ξdxdt =
1

2µij

∫
(ξ · νij(x, t))2Hd−1

|Σij(t)(dx)dt, (A.75)

√
h

∫
uhi ξ · [ξ,∇2Kh

ij∗](uhj )dxdt = O(
√
h). (A.76)

The proof of (A.76) is similar to the argument for (A.74). In fact, while the
additional derivative on the kernel gives an additional factor 1√

h
, we gain a factor√

h by the Lipschitz estimate

|ξ(x, t)− ξ(x−
√
hz, t)| ≤

√
h∥∇ξ∥∞.

To prove identity (A.75) observe that by spelling out the z-integral, a change of variable

and by testing (A.22) with
ξ(x,t)·∇2Kij(z)ξ(x,t)

Kij(z)
we obtain

lim
h↓0

√
h

∫
uhi (ξ · ∇2Kh

ij ∗ uhj )ξdxdt

=

∫
ξ · ∇2Kij(z)ξ(νij(x, t) · z)+Hd−1

|Σij(t)(dx)dt.

Now identity (A.73) follows from the following formula: For any two vectors ξ ∈ Rd

and ν ∈ Sd−1 we have
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∫
ξ · ∇2Kij(z)ξ(ν · z)+dz =

1

2µij
(ξ · ν)2. (A.77)

To check (A.77), by relying on the definition of the kernels, we just need to show
that for w ∈ {γ, β} ∫

ξ · ∇2Gw(z)ξ(ν · z)+dz =
1

2
√
πw

(ξ · ν)2.

Since the kernel is isotropic, we can reduce to the case ξ = e1, thus we need to prove∫
∂21Gw(z)(ν · z)+dz =

1

2
√
πw

ν21 .

This can be done after two integration by parts and observing that∫
ν·z=0

Gw(z)Hd−1(dz) =
1

2
√
πw

.

conclusion. By step 1 we have

1

2

∫ T

0

|∂Eh|2(uh) dt ≥
∫ T

0

δEh(u
h)•ξdt−

1

2

∫ T

0

(
δdh(·, uh)•ξ

)2
dt.

Taking the liminf on the left hand side, using step 4 and step 5 we get that for any
smooth vector field ξ

lim inf
h↓0

1

2

∫ T

0

|∂Eh|2(uh)dt ≥
∑
i,j

[
σij

∫
(∇ · ξ − νij · ∇ξνij)Hd−1

|Σij(t)(dx)dt

− 1

2µij

∫
(ξ · νij)2 Hd−1

|Σij(t)(dx)dt

]
.

Since the left hand side is bounded, the Riesz representation theorem for L2 yields
functions Hij ∈ L2(Hd−1

|Σij(t)(dx)dt) such that

∑
i,j

σij

∫
(∇ · ξ − νij · ∇ξνij) Hd−1

|Σij(t)(dx)dt = −
∑
i,j

σij

∫
Hijνij · ξ Hd−1

|Σij(t)(dx)dt

and such that for any ξ ∈ L2(Hd−1
|
⋃
i,j Σij(t)

(dx)dt)

lim inf
h↓0

1

2

∫ T

0

|∂Eh|(uh) dt ≥
∑
i,j

(
− σij

∫
Hijνij · ξHd−1

|Σij(t)(dx)dt

− 1

2µij

∫
(ξ · νij)2Hd−1

|Σij(t)(dx)dt

)
.

Since the integration measures are mutually singular we can test with a vector field
ξ ∈ L2(Hd−1

|
⋃
i,j Σij(t)

(dx)dt) such that ξ|Σij(t) = −µijσijHijνij. This yields

lim inf
h↓0

1

2

∫ T

0

|∂Eh|2(uh) dt ≥
1

2

∑
i,j

σ2
ijµij

∫
H2
ij Hd−1

|Σij(t)(dx)dt.
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A.5 Appendix

A.5.1 Proof of Lemma A.3.1

Before giving the proof of this result, we need a simple technical lemma.

Lemma A.5.1. Fix 1 ≤ l ̸= p ≤ N . Then for any 1 ≤ i ̸= j ≤ N such that
{i, j} ̸= {l, p} the interfaces Σij and Σlp are disjoint. In particular for Hd−1-a.e.
x ∈ Σlp we have that

lim
r↓0

Hd−1(Σij ∩B(x, r))

ωd−1rd−1
= 0. (A.78)

Proof. We first show that the interfaces Σij and Σlp are disjoint. This follows im-
mediately once we recall that every point in the reduced boundary of a set of finite
perimeter has density 1/2 (see [59], Corollary 15.8). Assume for example that i ̸= l, p.
Thus if y ∈ Σlp we have

1 ≥ lim sup
r↓0

|(Ωl ∪ Ωp ∪ Ωi) ∩B(y, r)|
ωdrd

= lim
r↓0

|Ωl ∩B(y, r)|
ωdrd

+ lim
r↓0

|Ωp ∩B(y, r)|
ωdrd

+ lim sup
r↓0

|Ωi ∩B(y, r)|
ωdrd

= 1 + lim sup
r↓0

|Ωi ∩B(y, r)|
ωdrd

which says that y has density zero in Ωi.
The fact that (A.78) holds is now a consequence of the general fact

lim sup
r↓0

Hd−1(Σij ∩B(x, r))

ωd−1rd−1
= 0

for Hd−1-a.e. x ∈ (Σij)
c.

Proof of Lemma A.3.1. The argument for (i) can be found in [53] in the case of two
phases and without localization, i.e. with η = 1 and N = 2. For the sake of complete-
ness, we provide the proof in our case. Upon splitting into the negative and positive
part, we may assume η ≥ 0. Clearly the only nonzero terms in the sum are those for
which Br

m ∩ Σij ̸= ∅. Fix such a ball: by definition there exists y ∈ rZd such that

Br
m = B(y, 2r

√
d). If x ∈ Σij ∩ Br

m then we have that B(x, 2r
√
d) ⊂ B(y, 4r

√
d), and

by definition of Er this yields

Hd−1(B(x, 2r
√
d) ∩ Σij) ≤

ωd−1

2d
(4r)d−1

√
d
d−1

=
ωd−1

2
(2r)d−1

√
d
d−1

.

Thus x belongs to the set of points in Σij ∩Br
m such that

Hd−1(B(x, 2r
√
d) ∩ Σij)

ωd−1(2r
√
d)d−1

≤ 1

2
. (A.79)

By De Giorgi’s structure theorem the approximate tangent plane exists at every
point x ∈ Σij, thus (A.79) cannot hold when r is small enough: moreover every point
x ∈ Σij is contained in at most c(2, d) balls, this means that
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∑
m

1{
z∈Brm∩Σij :

Hd−1(B(x,2r
√
d)∩Σij)

ωd−1(2r
√
d)d−1 ≤ 1

2

}(x)η(x) ≤ c(2, d)η(x) (A.80)

and that the left hand side of (A.80) converges to zero pointwise. By the dominated
convergence theorem we get our claim.

Proof of (ii). Upon splitting into the negative and positive part, we may assume η ≥
0. Given a point x ∈ Σlp, if y ∈ rZd is such that x ∈ B(y, 2r

√
d), then B(y, 4r

√
d) ⊂

B(x, 6r
√
d). Thus for any 1 ≤ i < j ≤ N with (i, j) ̸= (l, p) we have

Hd−1(B(y, 4r
√
d) ∩ Σij) ≤ Hd−1(B(x, 6r

√
d) ∩ Σij)

≤ ωd−1

2d
(4r)d−1

√
d
d−1

provided r is small enough, this follows from Lemma A.5.1. Since F r
2 covers [0, 1)d we

obtain that

x ∈
⋃
m

Br
m

for all r small enough. In other words

lim
r↓0

∑
m

ρm(x)η(x) = η(x)

pointwise on Σlp, and the argument of the limit on the right hand side is dominated
by η. Thus we may once again appeal to the dominated convergence theorem and
conclude the proof.

A.5.2 Consistency and Monotonicity

The following results are essentially contained in [25] and [53], indeed the proofs may
be adapted because we are assuming that aij and bij satisfy the triangle inequality.

Lemma A.5.2. For every χ ∈ A ∩BV ([0, 1)d)N we have

lim
h↓0

Eh(χ) = E(χ).

If χ ∈ L1((0, T ), BV ([0, 1)d)N) such that χ(·, t) ∈ A for a.e. t. Then

lim
h↓0

∫ T

0

Eh(χ)dt =

∫ T

0

E(χ)dt.

Even more is true: for any g ∈ C∞([0, 1)d) and any pair 1 ≤ i ̸= j ≤ N we have

lim
h↓0

1√
h

∫ T

0

∫
g(x)(χi(x, t)K

h
ij ∗ χj(x, t) + χj(x, t)K

h
ij ∗ χi(x, t))dxdt

=

∫
g(x)Kij(z)|νij · z|dzdxdt.

Lemma A.5.3. For any 0 < h ≤ h0 we have

Eh(u) ≥
( √

h0√
h+

√
h0

)d+1

Eh0(u).
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A.5.3 Improved convergence of the energies

The following Lemma is an improvement of the convergence of the energies, the proof
of this result is contained, with minor modifications, in the paper [53], Corollary 3.7.

Lemma A.5.4. Let uh be a sequence of [0, 1]-valued functions such that uh → χ in
L1([0, 1)d × (0, T )) and

lim
h↓0

∫ T

0

Eh(u
h(t))dt =

∫ T

0

E(χ(t))dt.

Then we have that

lim
h↓0

1√
h

∫
Gh
γ(z)|f

γ
h (z)− fγ(z)|dz = 0,

lim
h↓0

1√
h

∫
Gh
β(z)|f

β
h (z)− fβ(z)|dz = 0,

where we set

fγh (z) =
∑
i,j

aij

∫
uhi (x, t)u

h
j (x− z, t)dxdt, fγ(z) =

∑
i,j

aij

∫
χi(x, t)χj(x− z, t)dxdt,

fβh (z) =
∑
i,j

bij

∫
uhi (x, t)u

h
j (x− z, t)dxdt, fβ(z) =

∑
i,j

bij

∫
χi(x, t)χj(x− z, t)dxdt.

A.5.4 Some inequalities

Here we gather some elementary inequalities which are used frequently.

Lemma A.5.5. Let a, b, a′, b′ ∈ {0, 1}, then the following inequalities hold:

|a− b| = a(1− b) + b(1− a), (A.81)

|(a− a′)+ − (b− b′)+|+ |(a− a′)− − (b− b′)−|
≤ |a− b|+ |a′ − b′|.

(A.82)

Proof. The first identity follows by expanding |a − b| = |a − b|2. The second one is
proved in [55]. For the sake of completeness, we reproduce the proof here. There are
two cases. In the first one we have (a − a′)(b − b′) ≥ 0 and we may assume upon
replacing (a, a′, b, b′) with (−a,−a′,−b,−b′) that (a−a′) and (b− b′) are non-negative.
Then (A.82) reduces to

|(a− a′)− (b− b′)| ≤ |a− b|+ |a′ − b′|.

The second case is given by (a − a′)(b − b′) ≤ 0. By an argument as before we may
assume (a− a′) ≥ 0 ≥ (b′ − b), thus (A.82) reduces to

(a− a′) + (b− b′) ≤ |a− b|+ |a′ − b′|.
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Lemma A.5.6. There exists a constant C > 0 depending only on N,A,B such that
for any v ∈ M ∫

|v −Kh0 ∗ v|dx ≤ C
√
h0Eh(v) for all h0 ≥ h. (A.83)

Proof. The proof of (A.83) is contained in the proof of Lemma 3 in [55] for the two
phases case when Kh is the scaled version of the Gaussian with variance 1. The same
proof may be adapted to our setting because we still have monotonicity of the energy
(Lemma A.5.3) and we can prove essentially by the use of Jensen’s inequality that∫

|v −Kh ∗ v|dx ≤ C
√
hEh(v).
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APPENDIX B

LARGE DATA LIMIT OF THE MBO SCHEME FOR DATA

CLUSTERING: Γ-CONVERGENCE OF THE

THRESHOLDING ENERGIES

B.1 The MBO scheme for data clustering

In this section, we provide the rigorous formulation of the MBO algorithm for data
clustering originally given by Bertozzi et al. in [62], [78], [61]. Let G = (V,E) be
a graph with vertex set V = {x1, ..., xn} and let E be the set of edges weighted by
wij = wji, 1 ≤ i, j ≤ n. We assume that wii = 0 for every i = 1, . . . , n. For every
i = 1, . . . , n we define the degree di as

di :=
1

n

n∑
j=1

wij.

We will assume that di > 0 for every 1 ≤ i ≤ n. We let V be the space of real valued
functions defined on V . We define an inner product on V by

⟨u, v⟩V =
1

n

n∑
i=1

diuivi, u, v ∈ V .

We let E be the space of antisymmetric functions on E. We define an inner product
on E as

⟨F,G⟩E =
1

2n2

∑
i,j: wij ̸=0

FijGij
1

wij
, F,G ∈ E .

Given ϵ > 0 we define the derivative operator∇ : V → E acting on functions u : V → R
as

(∇u)ij =
wij
ϵ
(uj − ui). (B.1)

We denote by div : E → V its adjoint with respect to the scalar products on V and E .
Explicitly, we may compute for F ∈ E

(divF )i =
1

2ϵdi

∑
j ̸=i

(Fij − Fji) .
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Finally, we introduce the random walk graph Laplacian ∆ := div ◦∇ : V → V . Explic-
itly, ∆ can be identified with the matrix

1

ϵ2

(
I− 1

n
D−1W

)
,

where D = diag(d1, ..., dn) is the diagonal matrix of degrees and W = (wij)
n
i,j=1 is the

matrix of weights. Given t ∈ R we let e−t∆ be the exponential of the matrix −t∆. If
u ∈ V then the function v(t) = e−t∆u solves the heat equation with initial value u on
the graph, i.e. {

d
dt
v(t) = −∆v(t),

v(0) = u.

We are now ready to introduce the MBO scheme for data clustering. Given a
natural number P ≤ n, a classification of the points of G into P clusters is a function
χ : V → {0, 1}P such that

∑P
m=1 χm(x) = 1 for all x ∈ V . In other words, χ

encodes a partition of the graph G into P clusters Cm = 1{χm=1}, m = 1, ..., P . Let
σ := (σml)1≤m,l≤P ∈ RP×P be a symmetric matrix with σml > 0 form ̸= l and σmm = 0.
Then the MBO scheme for data clustering is as follows.

Algorithm B.1.1 (MBO scheme). Let P be the number of clusters, let h > 0 be the
time-step size, and let N be the number of iterations to run. Let χ0 : V → {0, 1}P be a
given clustering of the graph into P clusters. To obtain a clustering χN : V → {0, 1}P
using the MBO scheme, define inductively a new clustering χq+1 : V → {0, 1}P given
the clustering χq : V → {0, 1}P by performing the following steps for 0 ≤ q < N :

1. Diffusion. For every m = 1, ..., P define

uqm :=
∑
l ̸=m

σmle
−h∆χql

2. Thresholding. For every m = 1, ..., P update the cluster by setting

{χq+1
m = 1} :=

{
x ∈ V : uqm(x) < min

l ̸=m
uql (x)

}
.

We define the set MG :=
{
u : V → [0, 1]P :

∑P
m=1 um = 1 on V

}
. For u ∈ MG

define the thresholding energy

Eh
G(u) =

1√
h

P∑
i,j=1

σij⟨ui, e−h∆uj⟩V .

The following lemma, which is essentially due to Esedoḡlu and Otto, is the main
motivation for our work. We also refer to [78, Proposition 4.6].

Lemma B.1.2 ([25]). Assume that the matrix σ is negative semidefinite on (1, ..., 1)⊥,
that means v · σv ≤ 0 for all v ∈ Rd with v · (1, ..., 1) = 0. In the setting of the
previous algorithm, to obtain the new clustering χq+1 : V → {0, 1}P starting from
χq : V → {0, 1}P define

χq+1 ∈ argmin
u∈MG

{
Eh
G(u)−

1√
h

P∑
i,j=1

σij
〈
(ui − χqi ), e

−h∆(uj − χqj)
〉
V

}
.
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B.2 Main results

In this section we introduce the setting of our problem and we state our main results.
For the technical background and definitions we refer to Section B.5.

We assume that M ⊂ Rd is a k-dimensional compact Riemannian submanifold of
Rd. Let ν = ρVolM ∈ P(M) be a probability measure on M , absolutely continuous
with respect to the volume measure with a smooth and positive density ρ. Assume
that {Xi}i∈N are iid random points on M , distributed according to ν. For any n ∈ N
and ϵ > 0 we define the random graph Gn,ϵ with vertex set given by Vn,ϵ = {X1, ..., Xn}
and weights

w
(n,ϵ)
ij =

1

ϵk
η

(
|Xi −Xj|d

ϵ

)
, i ̸= j,

and w
(n,ϵ)
ii = 0, where η : [0,+∞) → [0,+∞) is a given function and | · |d denotes the

standard Euclidean norm on Rd. Here ϵ is the same as in (B.1). We stress that the
graphs we constructed are random object and sometimes we will make this randomness
explicit by specifying the dependence of the graph on an additional variable ω ∈ Ω,
where Ω is the probability space on which the random objects {Xi}i∈N are defined.
On the function η we set the following conditions:

1. η(0) > 0 and η is continuous at 0,

2. η(t) ≥ 0 for every t > 0, η is nonincreasing and η is C2((0,+∞)),

3. η, η′, η′′ have exponential decay.

Define C1 =
∫
Rk η(|y|k)dy and C2 =

∫
Rk η(|y|k)y21dy. Assume that P ∈ N and let

σ ∈ RP×P be a symmetric matrix, negative definite on (1, ..., 1)⊥. We also assume
that σii = 0 for each i = 1, ..., P and that σij = σji > 0 for all i ̸= j. Finally, we
assume that the coefficients of σ satisfy the triangle inequality, that is

σij ≤ σil + σlj ∀i, j, l ∈ {1, ..., P}.

These assumptions are satisfied, for example, if we let σ be the matrix defined by

σij =

{
1 if i ̸= j,

0 otherwise.

The fact that the matrix σ is negative definite is needed in order that the MBO
scheme dissipates the thresholding energy at every iteration, cf. Lemma B.1.2, while
the triangle inequality ensures the lower semicontinuity of the energy. For each n ∈ N
define the set

Mn :=

{
u : Vn → [0, 1]P :

P∑
i=1

ui = 1

}
.

Given h > 0, define the thresholding energies on Mn as

Eh
n,ϵ(u) :=

1√
h

P∑
i,j=1

σij⟨ui, e−h∆n,ϵuj⟩Vn , u ∈ Mn. (B.2)
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We also define the set

M :=

{
u :M → [0, 1]P measurable :

P∑
i=1

ui = 1 a.e.

}
.

Let µ = ξVolM for ξ ∈ C∞(M), ξ > 0. Given h > 0 we define the thresholding energy
on the weighted manifold (M,µ) as

Eh(u) :=
1√
h

P∑
i,j=1

σij

∫
M

ui(x)e
−h∆ξuj(x)dµ, u ∈ M.

Here, ∆ξ is the weighted Laplacian on (M,µ), which is defined by its action on smooth
functions f ∈ C∞(M) as

∆ξf = −1

ξ
div (ξ∇f) ,

and e−t∆ξ is the corresponding heat operator; we refer to Section B.5 for the relevant
background and definitions. We are now in a position to state our main results.

Theorem B.2.1 (Discrete to nonlocal Γ-convergence). Let M be a k-dimensional
compact Riemannian submanifold of Rd. Let ν = ρVolM ∈ P(M) be a probability
measure, absolutely continuous with respect to the volume element with a smooth and
positive density. Let {Xi}i∈N be a sequence of iid random points in M , distributed
according to ν. Let ϵn > 0 be a sequence such that

lim
n→+∞

ϵk+2
n n

log(n)
= +∞, lim

n→+∞
ϵn = 0.

Let Gn,ϵn be the corresponding random graphs. It holds almost surely that for any h > 0
if vn converge weakly to v in TL2(M) then

lim
n→+∞

Eh
n,ϵn(v

n) =

√
C1C2

2
EC2h

2C1

(v),

where the thresholding energy on the right hand side corresponds to the weight ξ = ρ2.
Moreover, every sequence vn ∈ Mn has a subsequence converging weakly in TL2(M)
and every limit point lies in M.

The main tool for proving Theorem B.2.1 is the following strong convergence of the
heat operators on the graphs to the corresponding heat operator on the manifold.

Theorem B.2.2. Let the assumptions of Theorem B.2.1 be in place. Then it holds
almost surely that if un ∈ Vn is a sequence of functions converging weakly to u ∈ L2(M)
in TL2(M), then for every t > 0 we have

lim
n→+∞

e−t∆n,ϵnun = e
− C2

2C1
t∆ρ2u strongly in TL2(M).

As a corollary of Theorem B.2.2 we also obtain the following result about the
consistency of one step of MBO in the large data limit, which, in the setting of random
geometric graphs, answers positively to a question by Bertozzi et al. [78, Question 7.5].
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Corollary B.2.3. Let the assumptions of Theorem B.2.1 hold true. Then the following
holds almost surely: Let χn : Vn → {0, 1}P be such that the sequence {χn}n∈N converges
weakly in TL2(M) to a function χ : M → {0, 1}P . Denote by χn,h : Vn → {0, 1}P the
outcome of one step (N = 1) of the MBO scheme (Algorithm B.1.1) on the n-th
graph with step size h > 0 and initial clustering χn. Denote by χh : M → {0, 1}P
the outcome of one step of the MBO scheme on the manifold (Algorithm B.5.1) with
initial value χ, step size h > 0 and diffusion parameter κ = C2

2C1
. Then the sequence

{χn,h}n∈N converges weakly to χh in TL2(M). By induction, the convergence holds for
any number N of iterations.

Remark B.2.4. Let us point out that if Ω ⊂M is an open set with smooth boundary,
then the functions χn : Vn → {0, 1} defined as χn := 1Vn∩Ω are such that almost surely

TL2(M)− lim
n→+∞

χn = χ := 1Ω. (B.3)

In particular, the conclusion of Corollary B.2.3 holds true with these choices of ini-
tial values. Equation (B.3) follows by the fact that if Tn is a sequence of transport
maps obtained by applying Theorem C.6.6, then there exists δ > 0 and a constant C
depending only on M and ρ such that if θn := supx∈M dM(x, Tn(x)) ≤ δ then∫

M

|χn(Tn(x))− χ(x)|dν ≤ Cθn

∫
∂Ω

ρdHk−1. (B.4)

The validity of (B.4) is shown in the flat case in [36, Remark 5.1], the analogous
estimate on a closed manifold can be shown in a similar way.

If u ∈ M is such that u ∈ BV (M, {0, 1}P ) then we set Ωi := {ui = 1} and
Σij := ∂∗Ωi∩∂∗Ωj, the intersection of the reduced boundaries of Ωi and Ωj. Again, we
refer to Section B.5 for the relevant background. We have the following result about
the convergence of the nonlocal thresholding energy on the manifold.

Theorem B.2.5 (Nonlocal to local Γ-convergence). LetM be a k-dimensional compact
Riemannian submanifold of Rd weighted by a measure µ = ξVolM with ξ > 0, ξ ∈
C∞(M). Let σ ∈ RP×P be symmetric, σii = 0 and such that σ satisfy the triangle
inequality. Then on M

Γ(L1(M))− lim
h↓0

Eh = E,

where we define for u ∈ M

E(u) =

{
1√
π

∑
ij σij|DχΩi|ξ(Σij) if u ∈ BV (M, {0, 1}P ),

+∞ otherwise.

Moreover, if u ∈ BV (M, {0, 1}P ) ∩ M then we have limh↓0Eh(u) = E(u). Finally,
if uh are functions in M such that suph>0Eh(u

h) < +∞ then the family {uh}h↓0 is
precompact in L1(M) and every limit point is in BV (M, {0, 1}P ) ∩M.

Remark B.2.6. It should be remarked that the geometric assumptions for the previous
result are not sharp. For x ∈M and r > 0 we denote by Br(x) the Riemannian ball of
radius r centered at x. We also denote by p the heat kernel for the weighted Laplacian
∆ξ (cf. (B.5.1)). For our proof to work, we need the following properties.
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(i) Doubling property. There exists N > 0 such that for any x ∈ M and any
r > 0

µ(B(x, 2r)) ≤ 2Nµ(B(x, r)). (B.5)

(ii) Asymptotic expansion for the heat kernel. There exist functions vj ∈
C∞(M × M), j ∈ N, such that for every N > l + k

2
there exists a constant

C̃N <∞ such that∣∣∣∣∣∇l

(
p(t, x, y)− e−

d2(x,y)
4t

(4πt)k/2

N∑
j=0

vj(x, y)tj

)∣∣∣∣∣ ≤ C̃N t
N+1− k

2 , (B.6)

provided d(x, y) ≤ inj(M)
2

, where inj(M) is the injectivity radius of the manifold
M . Moreover we have that v0(x, x) = 1

ξ(x)
.

(iii) Gaussian bounds I. There exists constants Q1, Q2, Q3, Q4 > 0 such that for
every t > 0 and all x, y ∈M ,

Q1

µ(B√
t(x))

e
− d2(x,y)

Q2t ≤ p(t, x, y) ≤ Q3

µ(B√
t(x))

e
− d2(x,y)

Q4t . (B.7)

(iv) Gaussian bounds II. There exist Ĉ1, Ĉ2 > 0 such that for any x, y ∈ M and
any t > 0

|∇xp(t, x, y)| ≤
Ĉ1√

tµ(B√
t(x))

exp

(
−d

2(x, y)

Ĉ2t

)
. (B.8)

These properties are satisfied in the case of a closed manifold as we work with. Indeed
the doubling property follows from [17], the asymptotic expansion holds by construc-
tion of the heat kernel via the parametrix method, cf. [71, Chapter 3]. Finally, (C.45)
and (C.46) follow from the Li–Yau inequality for weighted manifolds [75].

B.3 Semi-supervised learning

Theorem B.2.1 and Theorem B.2.5 combined together prove the consistency of the
MBO scheme for data clustering: indeed the two Γ-convergence results prove that
(local) minimizers of the energies Eh

n,ϵn converge to (local) minimizers of the weighted
perimeter on the manifold if we let first n → +∞ and then h ↓ 0. Of course, the
only global minimizers for Eh

n,ϵn are partitions where all points are labeled in the
same way, and thus the results may seem of little relevance. The full strength of
Theorem B.2.1 and Theorem B.2.5 is seen in the context of semi-supervised learning.
In semi-supervised learning one is given:

1. A dataset of n distinct points D := {x1, ..., xn} ⊂ Rd.

2. A number of classes P ∈ N to split the data into.

3. A subset O ⊂ D of L ≪ n points and a function u0 : O → {c1, ..., cP} which
assigns a label to every point in O.
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The task is to assign labels to all points in the dataset using both the known labels and
the geometry of the dataset. The MBO scheme can be suitably modified to perform
semi-supervised learning: The main point is to replace the heat operator in the first
step of the algorithm by another differential operator with a fidelity term, see [62]
for the details. This yields an algorithm which still has a minimizing movements
interpretation, but the associated energy involves a different operator than the heat
semigroup for the Laplacian. A different approach looks at changing the thresholding
value in the thresholding step of MBO while leaving the differential operator in the
diffusion step unchanged. This modified version of MBO has the advantage that the
energy in the variational formulation is just the ”standard” thresholding energy plus a
linear term. The ideas behind the SSL MBO algorithm come from the corresponding
MBO scheme for forced mean curvature flow (see [60] and [56]) and have already
been adapted to data classification by Jacobs in [44]. We assume that we are given
D := {x1, ..., xn} ⊂ Rd data points to be classified into P clusters. We assume that we
are given a function f : D → RP , the forcing term. As done in Section B.1, construct
a similarity graph for the dataset. Then the MBO scheme for semi-supervised learning
reads as follows.

Algorithm B.3.1 (SSL MBO). Let h > 0, let N the number of iterations to run. Let
χ0 : V → {0, 1}P be a proposed clustering. To obtain a clustering χN : V → {0, 1}P
using the MBO scheme define inductively for 0 ≤ q < N a new clustering χq+1 : V →
{0, 1}P starting from the clustering χq : V → {0, 1}P by performing the following two
steps:

1. Diffusion. For every i ∈ {1, ..., P} define

ui =
∑
j ̸=i

σije
−h∆χqj

2. Thresholding. Update, for every 1 ≤ i ≤ P{
χq+1
i = 1

}
:=
{
ui −

√
hfi < uj −

√
hfj,∀j ̸= i

}
.

The reason behind this approach to SSL is that the previous algorithm has a varia-
tional interpretation which adds just a linear term to the thresholding energy, namely
we have the following result.

Lemma B.3.2. Each iteration of the SSL MBO scheme decreases the energy

Fh(u) =
1√
h

P∑
i,j=1

σij⟨ui, e−h∆uj⟩V −
P∑
i=1

⟨fi, ui⟩V .

It is then natural to investigate the asymptotic behavior of these energies in the
sense of the following theorems.

Theorem B.3.3. Under the assumptions of Theorem B.2.1, if we additionally assume
that fn : Gn → RP are such that fn → f in TL2(M), then it holds almost surely that
for every h > 0 it holds that if vn converge weakly to v in TL2(M) then

lim
n→+∞

F h
n,ϵn(v

n) =

√
C1C2

2
FC2h

2C1

(v),
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where we set

F h
n,ϵn(v) =

1√
h

P∑
i,j=1

σij⟨vi, e−h∆n,ϵnvj⟩Vn,ϵn −
P∑
i=1

⟨fni , vi⟩Vn,ϵn ,

Fh(u) = Eh(u)−
√

2C1

C2

P∑
i=1

∫
M

fiuiρ
2dVolM u ∈ M,

where M :=
{
u :M → [0, 1]P measurable :

∑P
i=1 ui = 1 a.e.

}
.

Theorem B.3.4. Let M be a k-dimensional compact Riemannian submanifold of Rd

weighted by a measure µ = ξVolM with ξ > 0, ξ ∈ C∞(M). Let f ∈ L1(M). Then on
M,

Γ(L1(M))− lim
h↓0

Fh = F,

where we define

F (u) =

{
1√
π

∑P
i,j=1 σij|Dui|ξ(Σij)−

√
2C1

C2

∑P
i=1

∫
M
fiuiρ

2dVolM if u ∈ BV (M, {0, 1})P ,
+∞ otherwise.

Theorem B.3.3 and Theorem B.3.4 are easy consequences of Theorem B.2.1, The-
orem B.2.5 and the stability of Γ-convergence with respect to continuous perturba-
tions. Of course, these Theorems prove the consistency of SSL MBO once one can
produce suitable forcing functions fn which have a limit in TL2(M). In the follow-
ing, let us for simplicity focus on the simple two-class setting, in which the cluster

is C =
{
u > 1

2
−

√
hf
}
. For a fixed n ∈ N, if one is given a labeling function

u0 : O → {0, 1}, a very intuitive choice of forcing would be

f = −γ(1− 2u0)1O, (B.9)

for some fixed constant γ > 0. Indeed, when x ∈ O and u0(x) = 0, f(x0) = −γ so
that the thresholding value for x gets higher and thus the updated set is more likely
not to contain x. Observe in particular that if one chooses γ > 1√

h
then the values on

O are enforced. Similarly the case u0(x) = 1 forces the updated sets to contain x. The
problem with such a strategy is that this is ill-posed in the large data limit: indeed,
to talk about SSL one usually assumes that

lim
n→+∞

|On|
n

= 0,

i.e., that the proportion of labeled points converges to zero. If we were now given
labels u0,n : On → {0, 1} then the corresponding forcings constructed according to
formula (B.9) would converge to zero in TL1(M), thus the large data limit forgets the
labels. To overcome this difficulty one has first to propagate the labels to the whole
graph to produce a new forcing function. There are several strategies for doing this:
for example, Jacobs uses a forcing fidelity term based on the graph geodesic distance,
see [44]. Here we propose to construct the forcing function by means of Lipschitz
learning.
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Algorithm B.3.5 (SSL MBO with Lipschitz learning). Let h > 0, let N be the number
of iterations to run. Let C be a proposed clustering. Let u0 : O → {0, 1} given labels
for a subset O ⊂ D of data points.

1. Lipschitz learning - forcing construction. Use Lipschitz learning (even-
tually using a reweighted graph with self tuning weights) to propagate the given
labels, i.e. find u : D → R such that{

∆(∞)u = 0 on D \ O,
u = u0 on O.

Then set f = −γ(1− 2u) for some given constant γ > 0. Here ∆(∞) denotes the
infinity Laplacian on the graph.

2. SSL MBO. Perform N iterations of the SSL MBO Algorithm B.3.1 with initial
clustering C and forcing f .

The reason why Lipschitz learning is a good approach to generate the forcing is
because it is a very well-posed algorithm in the large data limit. Indeed let us for
simplicity consider the case when M = Tk, the k-dimensional torus. Fix a set O ⊂
{Xi}i∈N and assume that one is given a labeling function u0 : O → {0, 1}. Denote

by ∆
(∞)
n the infinity Laplacian on the n-th graph, i.e. the operator which acts on

u : Vn → R as

∆(∞)
n ui = max

1≤j≤n
w

(n,ϵn)
ij (uj − ui) + min

1≤j≤n
w

(n,ϵn)
ij (uj − ui).

Define un : Vn → R as solutions of{
∆

(∞)
n un = 0 on Vn \ O,

un = g on O.

Calder showed in [10] that un converges uniformly to u ∈ C0,1(M), the unique viscosity
solution of the ∞-Laplace equation{

∆(∞)u :=
∑k

l,m=1 ∂lu∂lmu∂mu = 0 on M \ O,
u = g on O.

In particular, fn := −γ(1 − 2un) converges to f := −γ(1 − 2u) in TL2(M) and the
assumptions of Theorem B.3.3 are satisfied.

B.4 Discussion

B.4.1 Joint limit and monotonicity

We want to remark that it would be interesting to understand whether we can take
the joint limit n→ +∞ and h ↓ 0, combing Theorem B.2.1 and Theorem B.2.5 to give
that

Γ− lim
n→+∞

Ehn
n,ϵn = E, (B.10)
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where the thresholding energies Ehn
n,ϵn are defined in (B.2) and E is defined in the state-

ment of Theorem B.2.5. Here the Γ-limit has to be understood in the sense of TL1(M)
convergence. At the present moment, we are not able to prove (B.10). However, let us
sketch a possible approach for obtaining the Γ-lim inf inequality for (B.10). Assume
that we knew that for fixed n ∈ N and for h̃ ≥ h

Eh̃
n,ϵn(u) ≤ Eh

n,ϵn(u), u ∈ Mn. (B.11)

Then the Γ-lim inf inequality in (B.10) would follow from Theorem B.2.1 and Theo-
rem B.2.5. Indeed, assume that un ∈ Mn are such that un → u ∈ M in TL1(M). Fix
m ∈ N. Since hn ↓ 0, we have that hn ≪ hm for n large enough. Thus by (B.11) and
by Theorem B.2.1 we would get

Ehm(u) = lim inf
n→+∞

Ehm
n,ϵn(u

n) ≤ lim inf
n→+∞

Ehn
n,ϵn(u

n).

Now letting m→ +∞ and using the consistency Theorem B.2.5 one would get

E(u) ≤ lim inf
n→+∞

Ehn
n,ϵn(u

n).

This means that a key ingredient for the joint limit is the monotonicity (B.11). Of
course, also an approximate version of it would suffice. For example

Eh̃
n,ϵn(u) ≤ g(h)Eh

n,ϵn(u) + f(h̃)Eh
n,ϵn(u) + z(h̃)

where g, f, z are functions such that limh↓0 g(h) = 1, limh̃↓0 f(h̃) = 0 and limh̃↓0 z(h̃) =
0. The reason behind the hope for a monotonicity property for the discrete thresholding
energies comes from the similar property which holds in the continuum in the Euclidean
setting, see Lemma A.2 in [25]. Actually, an approximate version of this monotonicity
is true also for the localized thresholding energies, see Theorem B.7.3 in the Appendix.
By exploiting this result, using a suitable localization argument and the asymptotic
expansion for the heat kernel (B.6) one can actually prove a similar monotonicity
property for the thresholding energies on the manifold. Since the discrete thresholding
energies are approximating the thresholding energy on the manifold, it is reasonable
to believe that such a property holds true in some sense also at the discrete level. To
support this idea, we run some numerical experiments. Quite surprisingly, it seems
that the validity of this property is related to the rate h

ϵ2n
, in particular, it does not hold

when h ≪ ϵ2n and it seems to hold for h ≫ ϵ2n. Observe that the regime h ≫ ϵ2n is the
one which is relevant for applications, because for h≪ ϵ2n the MBO scheme is pinned,
see [78]. It is not too difficult to show that the energies Eh

n,ϵn are actually increasing
if h ≪ ϵ2n. A simple numerical experiment that we run is as follows: sample n data
points from the uniform distribution on the unit sphere, see Figure B.1. Construct the
similarity graph with weight functions η(t) = e−t

2
, randomly choose a {0, 1}-valued

function u which takes the value 1 on half of the data points, and then compute
the thresholding energies Eh

n,ϵn(u) for h ∈ {2−5ϵ2n, ..., 2
4ϵ2n}. The results are depicted

in Figure B.2. We see that when h ≫ ϵ2 the monotonicity seems to hold true: we
experimented the same behavior also when using different distributions for the data
points and different choices of functions u.
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Figure B.1: Sample points from uniform
distribution on the unit sphere.

Figure B.2: The thresholding energy Eh
n,ϵn

for different values of h.

B.4.2 Extensions

Here, we summarize the necessary changes to extend our results to other choices of
graph Laplacians and to data dependent weights. With the notation and in the setting
of Section B.2, given λ ∈ R we define

w
(n,ϵ,λ)
ij =

w
(n,ϵ)
ij(

d
(n,ϵ)
i d

(n,ϵ)
j

)λ , (B.12)

and

d
(n,ϵ,λ)
i =

1

n

n∑
j=1

w
(n,ϵ,λ)
ij . (B.13)

We can then consider the weighted graph Gn,ϵ,λ where the vertex set is given by
Vn := {X1, ..., Xn} and the weights are given by (B.12). Let W (n,ϵ,λ) be the matrix of
weights, and D(n,ϵ,λ) the diagonal matrix of the degrees (B.13). We then consider the
following operators on Vn,ϵ,λ:

∆rw
n,ϵ,λu =

1

ϵ2

(
I− 1

n
(D(n,ϵ,λ))−1W (n,ϵ,λ)

)
u, u ∈ V(n,ϵ,λ),

∆un
n,ϵ,λu =

1

ϵ2

(
D(n,ϵ,λ) − 1

n
W (n,ϵ,λ)

)
u, u ∈ V(n,ϵ,λ).

We define inner products on V(n,ϵ,λ) as

⟨u, v⟩V(n,ϵ,λ),rw =
1

n

n∑
i=1

d
(n,ϵ,λ)
i uivi, u, v ∈ V(n,ϵ,λ),

⟨u, v⟩V(n,ϵ,λ),un =
1

n

n∑
i=1

uivi, u, v ∈ V(n,ϵ,λ).
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We also define inner products on E(n,ϵ,λ) as

⟨F,G⟩E(n,ϵ,λ) =
1

2n2

∑
i,j: w

(n,ϵ,λ)
ij ̸=0

FijGij
1

w
(n,ϵ,λ)
ij

, F,G ∈ E(n,ϵ,λ).

We define the Dirichlet energies

E(n,ϵ,λ)(u) =
1

2
|∇u|2E(n,ϵ,λ) , u ∈ V(n,ϵ,λ). (B.14)

Finally, we define the thresholding energies

Eh
(n,ϵ,λ,rw)(u) =

1√
h

P∑
i,j=1

σij⟨ui, e−h∆
rw
(n,ϵ,λ)uj⟩V(n,ϵ,λ,rw)

, u ∈ Mn,

Eh
(n,ϵ,λ,un)(u) =

1√
h

P∑
i,j=1

σij⟨ui, e−h∆
un
(n,ϵ,λ)uj⟩V(n,ϵ,λ,un)

, u ∈ Mn.

We then have the following results.

Theorem B.4.1. Let λ ∈ R. Under the assumptions of Theorem B.2.1 it holds almost
surely that if un ∈ V(n,ϵ,λ) is a sequence of functions converging weakly to u ∈ L2(M)
in TL2, then for every t > 0 we have

lim
n→+∞

e−t∆
rw
(n,ϵn,λ)un = e

− C2
2C1

t∆ρsu strongly in TL2,

lim
n→+∞

e−t∆
un
(n,ϵn,λ)un = e

− C2
2C2λ

1

tρ1−2λ∆ρs
u strongly in TL2,

where s = 2(1− λ).

Theorem B.4.2. Under the assumptions of Theorem B.2.1, for every λ ∈ R it holds
almost surely that for each fixed h > 0, if vn converges weakly to v in TL2(M),

lim
n→+∞

Eh
(n,ϵn,λ,rw)(v

n) = C
1
2
−2λ

1

√
C2

2
Erw

C2h
2C1

,λ
(v),

lim
n→+∞

Eh
(n,ϵn,λ,un)(v

n) =

√
C2

2C2λ
1

Eun
C2

2C2λ
1

,λ
(v),

where we define, for v ∈ M,

Erw
h,λ(v) :=

1√
h

P∑
i,j=1

σij

∫
M

uie
−h∆ρsujρ

sdVolM ,

Eun
h,λ(v) :=

1√
h

P∑
i,j=1

σij

∫
M

uie
−hρ1−2λ∆ρsujρdVolM ,

with s = 2(1− λ).
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APPENDIX B. Γ-CONVERGENCE OF THE THRESHOLDING ENERGIES

The proofs of Theorem B.4.1 and Theorem B.4.2 are completely analogous to the
proofs of Theorem B.2.2 and Theorem B.2.1 (which consider the random walk Lapla-
cian with λ = 0). The only needed changes are:

1. Replace the use of Theorem B.5.14 with the convergence of the corresponding
Laplacian (see [39, Theorem 30]).

2. Replace the use of Theorem B.5.16 with the analogous statement for the Dirichlet
energies (B.14). It seems that this is not written down anywhere in the literature,
but the proof of Garćıa Trillos and Slepčev [35] should be easily adapted to this
setting.

Using Theorem B.4.2 one can clearly extend also the analogous statement for the
semi-supervised MBO scheme.

B.5 Preliminaries

B.5.1 Weighted manifolds

Hereafter, M = (M, g, µ) will be a compact Riemannian manifold with ∂M = ∅. We
will assume that µ = ξVolM for some ξ ∈ C∞(M) such that ξ > 0.

For every x ∈ M , we denote by ⟨·, ·⟩x the inner product on TxM induced by the
metric g, i.e., for any v, w ∈ TxM we have ⟨v, w⟩x = gx(v, w). Let f : M → R be a
smooth function. Then the gradient ∇f(x) ∈ TxM is defined uniquely by the relation

⟨∇f(x), Y ⟩x = dxf(Y ) ∀Y ∈ TxM.

Let Γ(TM) be the space of smooth vector fields on M . We can define the (weighted)
divergence operator divξ : Γ(TM) → C∞(M) by the requirement that for any f ∈
C∞(M) and Y ∈ Γ(TM)∫

M

⟨∇f(x), Y (x)⟩xdµ(x) = −
∫
M

f(x) divξ Y (x)dµ(x).

It is easy to check that the divergence can be expressed in local coordinates as

divξ Y =
1

ξ
√

det(g)

k∑
i=1

∂i

(
ξ
√
det(g)Yi

)
.

We also define the weighted Laplacian ∆ξ : C
∞(M) → C∞(M) as ∆ξ = − divξ ◦∇. A

distribution on M is a continuous linear functional T : C∞(M) → R. We denote by
D′(M) the space of distributions onM . We follow the terminology of [38] and say that
a distributional vector field is a continuous linear functional V : Γ(TM) → R. If V is a
distributional vector field, we define its divergence as the distribution divξ V ∈ D′(M)
such that divξ V (f) = −⟨V,∇f⟩. We define the Sobolev space

W 1,2(M) :=
{
u ∈ L2(M,µ) : ∇u ∈ L2(TM, µ)

}
,

which is a Hilbert space when endowed with the inner product

(u, v)W 1,2(M) = (u, v)L2(M,µ) + (∇u,∇v)L2(M,µ).
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We also denote W 1,2(M) by H1(M). We denote by H−1(M) its dual. If T is a
distribution, we define ∆ξT ∈ D′(M) by requiring ∆ξT (f) = T (∆ξ(f)). In particular
if u ∈ L2(M,µ), then ∆ξu ∈ D′(M). Define

W2,2(M) =
{
u ∈ W 1,2(M) : ∆ξu ∈ L2(M,µ)

}
.

It is a standard result that ∆ξ can be extended uniquely to a self-adjoint operator on
W2,2(M), see for instance [38, Theorem 4.6]. It can be shown that ∆ξ is a nonnegative
self-adjoint operator in L2(M) and spec(∆ξ) ⊂ [0,+∞). For u ∈ L2(M,µ) we denote
by T (t)u = v(t, ·) the solution to the Cauchy problem{

∂tv = −∆ξv in (0,+∞)×M,

v(0, x) = u(x) on M.

More precisely, the map t ∈ (0,+∞) 7→ T (t)u = v(t, ·) ∈ L2(M) is characterized by
the following properties:

• It is strongly differentiable in L2(M).

• For every t > 0 we have T (t)u ∈ dom(∆ξ) and

dT (t)u

dt
= −∆ξT (t)u.

• T (t)u→ u in L2(M) as t ↓ 0.

One way of constructing T (t) is by means of the spectral resolution of ∆ξ. I.e., one
defines linear operators T (t) : L2(M) → L2(M) by

T (t) :=

∫ ∞

0

e−tγdEγ,

where Eγ is the spectral resolution of ∆ξ. We refer to [38, Chapter 7] for the details.
Furthermore, one can show that there exists a smooth map p : (0,+∞)×M ×M → R
such that for any u ∈ L2(M) and every t > 0

e−t∆ξu(x) := T (t)u(x) =

∫
M

p(t, x, y)u(y)dµ(y).

We call p the heat kernel for ∆ξ.
Another more constructive way to prove the existence of the heat kernel is by

the so-called parametrix method. This has the advantage of giving immediately the
asymptotic expansion (B.6). However, the construction is technical and we think it
is not worth sketching it here. The reader is referred to [71, Chapter 3], where this
construction is carried out in detail for the case of constant density ξ = 1.

B.5.2 The MBO scheme on weighted manifolds

In this subsection, we recall the MBO scheme on weighted manifolds, which can be
used to approximate the evolution by multiphase (weighted) mean curvature flow.
Hereafter M is a k-dimensional closed Riemannian manifold endowed with a weight
ξ ∈ C∞(M), ξ > 0.
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Algorithm B.5.1 (MBO scheme on manifolds). Let P be the number of phases, let
h > 0 be a time-step size and let κ > 0 be a diffusion coefficient. Let χ0 :M → {0, 1}P
be a partition ofM into P phases. To obtain an approximation of the evolution of χ0 by
multiphase mean curvature flow define inductively a new partition χn+1 :M → {0, 1}P
starting from χn :M → {0, 1}P by performing the following steps:

1. Diffusion. For every m = 1, ..., P define

unm :=
∑
l ̸=m

σmle
−κh∆ξχnl .

2. Thresholding. Define a new partition χn+1 : V → {0, 1}P by defining, for every
m = 1, ..., P {

χn+1
m = 1

}
:=

{
x ∈M : unm(x) < min

l ̸=m
unl (x)

}
.

We then have the following minimizing movements interpretation for the previous
algorithm.

Lemma B.5.2 ([25]). Assume that σ is negative semidefinite on (1, ..., 1)⊥, which
means that v ·σv ≤ 0 for all v ∈ Rd with v ·(1, ..., 1)⊥ = 0. Given a step-size h > 0 and
a diffusion parameter κ > 0, to obtain the new partition χn+1 : M → {0, 1}P starting
from χn :M → {0, 1}P one can define

χn+1 ∈ argminu∈M

{
√
κEκh(u)−

1√
h

∑
i ̸=j

σij

∫
M

(ui − χni )e
−κh∆ξ(uj − χnj )ξdVolM

}
.

B.5.3 BV functions on weighted manifolds

We begin this section introducing the total variation |Du|ξ of a function u ∈ L1(M).
We define

|Du|ξ(M) = sup

{∫
M

u divξ Y dµ : Y ∈ Γ(TM), |Y | ≤ 1

}
.

We say that u ∈ L1(M) is in BV (M) provided |Du|ξ(M) < +∞. One can prove the
following result.

Theorem B.5.3. Let u ∈ BV (M), then there exist a Radon measure |Du|ξ ∈ M+(M)
and a |Du|ξ-measurable vector field σu such that |σu| = 1 |Du|ξ-almost everywhere and
such that ∫

M

u divξXdµ = −
∫
M

⟨σu, X⟩d|Du|ξ ∀X ∈ Γ(TM). (B.15)

The proof of the theorem is an adaptation of the classical Riesz representation
theorem: first one works locally on an open set V ⊂ M using an orthonormal frame
{E1, ..., Ek}. Following the same lines of the proof of the Riesz representation theorem
one can check that there exist a Radon measure γV ∈ M+(V ) and a γV measurable
vector field σVu such that |σVu | = 1 γV -a.e. and such that (B.15) holds true for all
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X ∈ Γ(TV ). Then one checks that if V1, V2 are two open subsets ofM , the construction
is consistent on V1∩V2. One can then take a covering {Vi}i and apply the construction
on each element of the covering. Taking a partition of unity {ρi} subordinate to the
covering one defines

• |Du|ξ(W ) :=
∑

i

∫
W∩Vi ρidγVi .

• σ|Vi := σVi .

A subset E ⊂ M is said to be of finite perimeter if χE ∈ BV (M). If E is a set of
finite perimeter, we denote by Perξ(E) := |DχE|ξ(M) its perimeter. We will make use
of the following elementary lemma, which follows easily from Theorem B.5.3.

Lemma B.5.4. Let u ∈ L1(M). Then u ∈ BV (M) if and only if for every chart
(V, ψ) the map u ◦ψ−1 is in BV (ψ(V )). In that case we have that for any chart (V, ψ)

ψ#|Du|ξ = γ|D(u ◦ ψ−1)|,

where γ = ξ ◦ ψ−1
√

det gij.

Remark B.5.5. For a set of finite perimeter E ⊂ M , we define its reduced boundary
∂∗ME as follows:

∂∗ME = {x ∈M : ∃(V, ψ) chart of M s.t. ψ(x) ∈ ∂∗ψ(E)} ,

where ∂∗ψ(E) is the reduced boundary of the set ψ(E) in the usual Euclidean setting.
From now on, we will also denote by ∂∗E the set ∂∗ME. One can check that:

• The definition is well posed.

• |DχE|ξ is concentrated on ∂∗E. In particular |DχE|ξ-a.e. point x is in the reduced
boundary of E.

• If x ∈ ∂∗E, then in normal coordinates (V, ψ) centered around x we have that
σχE(x) = νψ(E)(o), where νψ(E) is the measure theoretic inner unit normal for
ψ(E) and o are the coordinates for the center of the chart x.

• If E,F ⊂M are sets of finite perimeter, then it holds that for |DχF |ξ-a.e. point
x ∈ ∂∗E ∩ ∂∗F we have σE(x) = ⟨σE(x), σF (x)⟩xσF (x).

We also record the following elementary lemma, which can be proved by using
Lemma B.5.4 and the analogous statement in the Euclidean setting.

Lemma B.5.6. Let un be a sequence of functions in BV (M) such that

sup
n∈N

∫
M

|Dun|ξ < +∞.

Then {un} is precompact in L1(M) and every limit point is in BV (M).
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B.5.4 Transportation distance

Here we recall the definition of TLp-convergence introduced in [36] and we introduce the
notion of weak TLp-convergence. Let (M, g) be a k-dimensional compact Riemannian
manifold. For a fixed 1 ≤ p <∞ let µ, ν ∈ P(M), u ∈ Lp(µ), v ∈ Lp(ν), we set

dTLp((µ, u), (ν, v)) := inf
π∈Γ(µ,ν)

{(∫
M×M

dpM(x, y) + |u(x)− u(y)|pdπ
)1/p

}
,

where the infimum is taken over the space of couplings between µ and ν, which we
denote by Γ(µ, ν). For p = ∞, µ, ν ∈ P(M), u ∈ Lp(µ), v ∈ Lp(ν) we set

dTL∞((µ, u), (ν, v)) := inf
π∈Γ(µ,ν)

{
esssupx,y∈M (dM(x, y) + |u(x)− u(y)|)

}
.

We call dTLp the TLp-metric. It can be shown that dTLp is a metric on

Lp := {(µ, u) : µ ∈ P(M), u ∈ Lp(µ)} ,

this is done in[36] for the Euclidean case, the case of a compact manifold is analogous.
Let {πn}n ⊂ Γ(µ, ν) be a sequence of transport plans between µ and ν, we say that
the these are p-stagnating if

lim
n→+∞

∫
M×M

dpM(x, y)dπn = 0.

Transport maps Tn between µ, ν ∈ P(M) are said to be p-stagnating if the corre-
sponding transport plans (Id×Tn)#µ are p-stagnating. The following propositions are
straightforward generalizations of [36, Proposition 3.12] and [35, Proposition 2.6].

Proposition B.5.7. Let (µn, un), (µ, u) ∈ Lp, n ∈ N, 1 ≤ p < +∞. Assume that µ
is absolutely continuous with respect to VolM . Then the following are equivalent:

(i) (µn, un) → (µ, u) in the TLp sense.

(ii) For every sequence of p-stagnating transport maps Tn we have

lim
n→+∞

∫
M

|un(Tn(x))− u(x)|pdµ(x) = 0.

(iii) There exists a sequence of p-stagnating transport maps Tn such that

lim
n→+∞

∫
M

|un(Tn(x))− u(x)|pdµ(x) = 0.

Proposition B.5.8. Suppose that (µn, un) → (µ, u) in TL2(M) and (µn, vn) → (µ, v)
in TL2(M). Then

lim
n→∞

⟨un, vn⟩L2(µn) = ⟨u, v⟩L2(µ).

We will also make use of the following result, which can easily be derived from [33,
Theorem 2].
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Theorem B.5.9. Let M be a k-dimensional compact Riemannian submanifold of Rd.
Let ρ ∈ C∞(M), ρ > 0 such that ν := ρVolM ∈ P(M). Let {Xi}i∈N be iid random
points in M distributed according to ν and let νn := 1

n

∑n
i=1 δXi be the associated

empirical measures. Then there is a constant C > 0 such that almost surely there exist
transport maps Tn such that (Tn)#ν = νn and

lim supn→+∞
n1/2 supx∈M dM (x,Tn(x))

log3/4(n)
≤ Cif k = 2

lim supn→+∞
n1/k supx∈M dM (x,Tn(x))

log1/k(n)
≤ Cif k ≥ 3

(B.16)

The correct notion of convergence for obtaining Theorem B.2.1 is weak TL2-
convergence, because this is the topology in which we get Γ-compactness. More gen-
erally, let us introduce the notion of weak TLp-convergence.

Definition B.5.10. Let µ be a probability measure on M which is absolutely con-
tinuous with respect to the volume measure VolM , and let u ∈ Lp(µ). A sequence
(µn, un) ∈ Lp is said to converge weakly to (µ, u) in TLp if there exists a sequence
of q-stagnating transport maps Tn between µ and µn such that the functions un ◦ Tn
converge weakly to u in Lp(µ). Here, q = p

p−1
is the conjugate exponent for p.

We record the following useful result, which says that the previous definition is
independent of the sequence of q-stagnating transport maps.

Proposition B.5.11. Let 1 < p < +∞ and q = p
p−1

. Let µ be a probability measure on

M which is absolutely continuous with respect to the volume measure and let u ∈ Lp(µ).
Assume that (un, µn) ∈ Lp is a sequence converging weakly to (u, µ) in TLp. Then for
every sequence Sn of q-stagnating transport maps between µ and µn the functions un◦Sn
converge weakly to u in Lp(µ).

Proof. We let Tn the sequence of q-stagnating transport maps as in Definition B.5.10.
Let Sn be an arbitrary sequence of q-stagnating transport maps between µ and µn.
Observe that ∥un ◦ Sn∥Lp(µ) = ∥un∥Lp(µn) = ∥un ◦ Tn∥Lp(µ). In particular, the sequence
un ◦Sn is bounded in Lp(µ) and thus, up to extracting a subsequence, we may assume
that it converges weakly to a limit v ∈ Lp(µ). We need to show that v = u. To do so,
pick φ ∈ C∞(M) and observe that by Hölder’s inequality

∣∣∣∣∫
M

un ◦ Tnφdµ−
∫
M

un ◦ Tnφ|Vn ◦ Tndµ
∣∣∣∣

≤
(∫

M

|un ◦ Tn|pdµ
)1/p(∫

M

(Lipφ)qdM(x, Tn(x))
qdµ

)1/q

,

a similar estimate holds true with Tn replaced by Sn. This clearly implies that

∣∣∣∣∫
M

un ◦ Tnφdµ−
∫
M

un ◦ Snφdµ
∣∣∣∣

≤ C

(∫
M

dM(x, Tn(x))
qdµ

)1/q

+ C

(∫
M

dM(x, Sn(x))
qdµ

)1/q

The right hand side converges to zero as n→ +∞ because the sequences of transport
maps are q-stagnating.
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Finally, we have the following natural improvement of Proposition B.5.8.

Proposition B.5.12. Let 1 ≤ p < +∞. Let µ be a probability measure on M which is
absolutely continuous with respect to the volume element. Assume that (un, µn) ∈ Lp
converges weakly in TLp to (u, µ) and that (vn, µn) is a sequence in Lq converging
strongly in TLq to (v, µ), where q is the conjugate exponent of p. Then

lim
n→+∞

∫
M

unvndµn =

∫
M

uvdµ.

B.5.5 Asymptotics for the graph Laplacian and for the de-
grees

Here we recall the results about the convergence of the graph Laplacian contained
in [19] and [39]. To do so, we need to introduce some definitions. We write ηϵ(t) :=
1
ϵk
η( t

ϵ
), and we introduce the function kϵ :M×M → R defined as kϵ(x, x) = 0, x ∈M

and

kϵ(x, y) = ηϵ(|x− y|d),
where | · |d denotes the standard Euclidean norm in the ambient space Rd. Observe
that

lim
ϵ↓0

∫
M

kϵ(x, y)dν(y) = C1ρ(x) uniformly in x ∈M. (B.17)

Define also

d(n,ϵ)(x) =
1

n

n∑
i=1

kϵ(x,Xi), x ∈M,

so that the weights and the degrees on the graph Gn,ϵn can be expressed via

w
(n,ϵ)
ij = kϵ(Xi, Xj), d

(n,ϵ)
i = d(n,ϵ)(Xi).

In this way the random walk graph Laplacian may be extended to an operator acting
on functions f ∈ C∞(M) as

∆n,ϵf(x) =
1

ϵ2

(
f(x)−

n∑
j=1

kϵ(x,Xj)f(Xj)

nd(n,ϵ)(x)

)
.

Finally, for any ϵ > 0 and any f ∈ C∞(M) we define

∆ϵf(x) =
1

ϵ2

(
f(x)−

∫
M
kϵ(x, y)f(y)dν(y)∫
M
kϵ(x, y)dν(y)

)
.

The following theorem is contained in Coifman and Lafon [19].

Theorem B.5.13. Let the assumptions on M in Theorem B.2.1 be in place. For
K ∈ R define

EK = {f ∈ C∞(M) : ∥f∥C3 ≤ K}.
Then uniformly in x and uniformly on EK we have

∆ϵf(x) =
C2

2C1

∆ρ2f(x) + o(ϵ).
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One can then apply the previous theorem to obtain the following slight modification
of Theorem 28 in [39].

Theorem B.5.14. Let the assumptions of Theorem B.2.1 be satisfied. Then with
probability one, for all f ∈ C∞(M) we have that ∆n,ϵnf → C2

2C1
∆ρ2f in TL2.

In the following, we need also the following simple result about the convergence of
the degrees.

Lemma B.5.15. Let the assumptions of Theorem B.2.1 be satisfied. Then it holds
with probability one that if Tn is a sequence of transport maps such that

lim
n→+∞

sup
x∈M

dM(x, Tn(x)) = 0,

then
lim

n→+∞
∥d(n,ϵn) ◦ Tn − C1ρ∥L∞(ν) = 0. (B.18)

Moreover, limn→+∞ ∥ 1
(d(n,ϵn)◦Tn)1/2

− 1
(C1ρ)1/2

∥L∞(ν) = 0.

Proof. The second assertion follows from (B.18) and the fact that ρ > 0 on the compact
manifold M . In the following we write dn for d(n,ϵn). To prove (B.18) we first observe
that

∥dn ◦ Tn − C1ρ∥L∞(ν) ≤ ∥dn ◦ Tn − C1ρ ◦ Tn∥L∞(ν)

+ Lip(ρ) sup
x∈M

dM(x, Tn(x)).

Thus we only need to prove that ∥dn ◦ Tn − C1ρ ◦ Tn∥L∞(ν) converges to zero. To this
aim, observe that we may write

∥dn ◦ Tn − C1ρ ◦ Tn∥L∞(ν) = max
i=1,...,n

|dn(Xi)− C1ρ(Xi)| ,

and that by the fact that Xi’s are identically distributed, if γ > 0, then

P
(

max
i=1,...,n

|dn(Xi)− C1ρ(Xi)| ≥ γ

)
≤ nP

(
|dn(X1)− C1ρ(X1)| ≥ γ

)
= n

∫
M

P
(
|dn(x)− C1ρ(x)| ≥ γ

)
dν(x).

Fix x ∈M ,then

P
(
|dn(x)− C1ρ(x)| ≥ γ

)
≤ P

(∣∣∣∣∣ 1n
n∑
j=1

kϵn(x,Xj)−
∫
M

kϵn(x, y)dν(y)

∣∣∣∣∣ ≥ γ

2

)

+ P
(∣∣∣∣∫

M

kϵn(x, y)dν(y)− C1ρ(x)

∣∣∣∣ ≥ γ

2

)
.

The second term on the right hand side is zero for n sufficiently large because of (B.17).
Thus for n large enough depending on γ,
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P
(
|dn(x)− C1ρ(x)| ≥ γ

)
≤ P

(∣∣∣∣∣ 1n
n∑
j=1

kϵn(x,Xj)−
∫
M

kϵn(x, y)dν(y)

∣∣∣∣∣ ≥ γ

2

)
.

We now proceed at estimating the right hand side. Observe that Yj := kϵn(x,Xj) are
iid random variables with

E[Yj] =
∫
M

kϵn(x, y)dν(y), |Yj| ≤
∥η∥∞
ϵkn

, Var(Yj) ≤ C1c0
∥η∥∞
ϵkn

.

Thus we can apply Bernstein’s inequality to get the following bound

P

(∣∣∣∣∣ 1n
n∑
j=1

kϵn(x,Xj)−
∫
M

kϵn(x, y)dν(y)

∣∣∣∣∣ ≥ γ

2

)

≤ 2 exp

(
−nγ2

4
ϵkn

2∥η∥∞C1c0 +
2
3
∥η∥∞ γ

2

)

Putting things together and summing over n we have that, for some n(γ) ∈ N depend-
ing on γ

∑
n∈N

P
(
∥dn ◦ Tn − C1ρ ◦ Tn∥L∞(ν) ≥ γ

)

≤ n(γ) +
∑

n=n(γ)+1

2n exp

(
−nγ2

4
ϵkn

2∥η∥∞C1c0 +
2
3
∥η∥∞ γ

2

)
.

The latter sum is finite if nϵkn
log(n)

→ +∞. We conclude by Borel-Cantelli’s lemma that

almost surely ∥dn ◦ Tn − C1ρ ◦ Tn∥L∞(ν) → 0, which concludes the proof.

B.5.6 Γ-convergence of the Dirichlet energies

In the setting of Section B.2, we define for each random graph Gn,ϵn the Dirichlet
energy functional En as:

En(u) =
1

2
|∇u|2En,ϵn , u ∈ Vn. (B.19)

In the proof of Theorem B.2.2 we will need the following result about the Γ-convergence
of the Dirichlet energies defined on the graphs to the Dirichlet energy on the manifold.

Theorem B.5.16. LetM be a k-dimensional compact Riemannian manifold embedded
in Rd, k ≥ 2. Let ρ > 0 be a smooth function on M such that ν = ρVolM ∈ P(M). If

k ≥ 2 and ϵknn
log(n)

→ +∞ as n→ +∞ then

En
Γ−TL2

−−−−→ C2

2
E,
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where the energy E is defined on L2(M) as

E(u) =

{
1
2

∫
M
|∇u|2ρ2dVolM if u ∈ H1(M)

+∞ otherwise.

Moreover if u ∈ C∞(M), then lim supn→+∞En(u) ≤ C2

2
E(u). Finally, we have the

following compactness property: if un are such that

sup
n∈N

En(u
n) < +∞, sup

n∈N
∥un∥L2(M) < +∞

then the sequence un is precompact in TL2.

The proof of Theorem 8 is a straightforward adaptation of the argument given in
Theorem 1.4 in [35] for the flat case. For the sake of completeness, we include a proof
in the Appendix.

B.5.7 The optimal energy dissipation inequality

Let us recall the following notion of weak solution of the heat equation on the weighted
manifold M .

Definition B.5.17. Let (M, g, µ = ξVolM) be a weighted k-dimensional compact
Riemannian submanifold of Rd, with ξ > 0 smooth. Let u0 ∈ L2(µ) and c > 0. A
weak solution for the diffusion equation{

∂tu = −c∆ξu

u(x, 0) = u0
(B.20)

is a function u ∈ L2
loc([0,+∞), H1(M)) such that u′ ∈ L2

loc([0,+∞), H−1(M)) for which

1. u(0) = u0,

2. (∂tu, ξw)H1;H−1 + c
∫
M
gx (∇u,∇w) ξdVolM = 0 for a.e. t and all w ∈ H1(M).

The following lemma is a well-known result, which says that the equation (B.20) is
completely characterized by the energy dissipation inequality (B.21).

Lemma B.5.18. Let u ∈ L2
loc([0,+∞), H1(M)) be such that u′ ∈ L2

loc([0,+∞), L2(M)).
Let u0 ∈ C∞(M). Then u is a weak solution of (B.20) if and only if u(0) = u0 and u
satisfies the optimal energy dissipation inequality for a.e. t ∈ [0,+∞), i.e.,

cE[u(t)] +
1

2

∫ t

0

∫
M

c2|∆ξu|2ξdVolM ds+
1

2

∫ t

0

∫
M

|u′|2ξdVolM ds ≤ cE[u0](B.21)

where we define, for v ∈ H1(M),

E[v] =
1

2

∫
M

|∇v|2ξdVolM .
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Proof. We first observe that whenever u ∈ L2
loc([0,+∞), H1(M)) is a function such

that u′ ∈ L2
loc([0,+∞), L2(M)) and ∆ξu ∈ L2

loc([0,+∞), L2(M)) we have

d

dt
cE[u(t)] = c

∫
M

∆ξu∂tu ξdVolM . (B.22)

Now, assume first that u is a weak solution of (B.20). Then by parabolic regularity, u
is smooth and (B.22) is thus true. Using the equation for ∂tu we obtain that

c

∫
M

∆ξu∂tuξdVolM

= −c
2

2

∫
M

|∆ξu|2ξdVolM −1

2

∫
M

|∂tu|2ξdVolM .

Thus, integrating (B.22) in time we get the required inequality (actually, equality).
Conversely, assume that (B.21) is satisfied. Then we clearly infer that ∆ξu ∈

L2([0,+∞), L2(M)), we can use (B.22) in (B.21) to get, after completing the square,

1

2

∫ t

0

∫
M

(c∆ξu+ u′)
2
ξdVolM ds ≤ 0.

which forces ∂tu = −c∆ξu, thus u is a weak solution of (B.20).

In a similar way, one can prove that solutions of the heat equation on a graph also
satisfy an energy dissipation inequality. Namely, we have the following result.

Lemma B.5.19. Let Gn,ϵ be a graph as constructed in Section B.1. Let u0 ∈ Vn,ϵ.
Let v(x, t) = e−t∆n,ϵu0(x). Then for all t ∈ [0,+∞) the optimal energy dissipation
inequality is satisfied, i.e.

En[v(t)] +
1

2

∫ t

0

|∆n,ϵv(s)|2Vn,ϵds+
1

2

∫ t

0

| d
ds
v(s)|2Vn,ϵds ≤ En[u

0],

where En is the Dirichlet energy defined in (B.19) with ϵn replaced by ϵ.

B.6 Proofs

B.6.1 Convergence of the heat operators

Proof of Theorem B.2.2. We first prove the following result: Assume that u0 ∈ C∞(M),
then for every t > 0 we have

e−t∆n,ϵn (u0|Vn) → e
− C2

2C1
t∆ρ2u0 in TL2. (B.23)

To this aim, observe that it suffices to prove the result for the case C1 = 1; the
general case follows by rescaling the weight functions. Define, for n ∈ N, t ≥ 0 and
x ∈ Vn(ω),

vn(ω, x, t) :=
(
e−t∆n,ϵnu0|Vn(ω)

)
(x).

Here ω is a sample point from some probability space (Ω,P) on which the random
variables {Xi}i∈N are defined. We want to prove that P-a.s. for every sequence of
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2-stagnating transport maps Tn from ν to νn(ω) := 1
n

∑n
i=1 δXi(ω) we have that, for any

t > 0

lim
n→+∞

∫
M

|vn(t, Tn(x))− u(t, x)|2dν = 0, (B.24)

where u(t, ·) = e−
C2
2
t∆ρ2u. To this aim, pick ω ∈ Ω such that the following conditions

are satisfied:

(i) There exists a sequence of 2-stagnating transport maps Tn such that (C.53) is
satisfied.

(ii) En
Γ−TL2

−−−−→ C2

2
E.

(iii) ∆n,ϵnf
TL2

−−→ C2

2C1
∆ρ2f for every f ∈ C∞(M).

(iv) ∥d(n,ϵn) ◦ Tn − C1ρ∥L∞(ν) → 0.

Observe that by Theorem C.6.6, Theorem B.5.16, Theorem B.5.14 and Lemma B.5.15
these conditions hold for P-a.e. ω ∈ Ω. Thus if we prove (B.24) for such an ω we are
done. From now on, we will assume ω to be fixed, so we drop this variable for ease of
notation. Recalling Proposition B.5.7, we just need to show (B.24) for the sequence of
transport maps in (i). Define ṽn(t, x) := vn(t, Tn(x)), for t ∈ [0,+∞), x ∈M . We also
write dn for d(n,ϵn). By condition (iv) and assuming that n is sufficiently large we have
that for all x ∈ Vn,

C1

2c
≤ dn(x) ≤ 2C1c.

Here c > 0 is a constant such that

1

c
≤ ρ ≤ c on M.

In particular we have that there exists a constant C > 0 such that for any w ∈ Vn,ϵn ,
if w̃ := w ◦ Tn

1

C
|w|Vn,ϵn ≤ ∥w̃∥L2(ν) ≤ C|w|Vn,ϵn . (B.25)

Step 1. We claim that given T > 0 there exists a constant CT <∞ for which

sup
n∈N

∥ṽn∥L∞([0,T ],L2(M)) ≤ CT , (B.26)

sup
n∈N

∥dṽ
n

dt
∥L∞([0,T ],L2(M)) ≤ CT . (B.27)

We start by proving (B.26). This is easy: Using the equation we obtain

d

dt

1

2
|vn(t)|2Vn,ϵn = −⟨vn(t),∆n,ϵnv

n(t)⟩Vn,ϵn
= −⟨∇n,ϵnv

n(t),∇n,ϵnv
n(t)⟩Vn,ϵn ≤ 0.
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Thus after integrating in time and recalling (B.25) we easily obtain (B.26), once we
recall that u0 ∈ C∞(M).
To show (B.27) we notice that qn(x, t) := d

dt
vn(x, t) is the unique solution to

d

dt
qn = −e−t∆n,ϵn (∆n,ϵnu

0|Gn)

In particular, arguing as in the proof of (B.26), we get an L∞-bound on the L2-norm
of qn. Namely, for any T > 0 and a possibly different constant CT

sup
n∈N

∥q̃n∥L∞([0,T ],L2(M)) ≤ CT .

From this, it is not hard to show that the map t→ ṽn(t) is weakly differentiable with
derivative given by t→ q̃n(t). In particular (B.27) follows at once.

Step 2. Compactness.
We may apply Lemma B.5.19 to obtain that for any n ∈ N and any t > 0

En[v
n(t)] +

1

2

∫ t

0

|∆n,ϵnv
n(s)|2Vn,ϵnds+

1

2

∫ t

0

| d
ds
vn(s)|2Vn,ϵnds ≤ En[u

0|Gn ]. (B.28)

Fix a time horizon T > 0 and a countable dense subset {tp}p∈N ⊂ [0, T ]. From (B.28)
with t = tj and the compactness property in Theorem B.5.16 we have that, for each
p ∈ N, the sequence ṽn(tp) is precompact in L2(M). By a diagonal argument we can
thus find a subsequence nj and functions utp ∈ L2(M) such that

L2(ν)− lim ṽnj(tp) = utp ∀p ∈ N.

We claim that vnj(t) is a Cauchy sequence in L2(ν) for any t ∈ [0, T ). Indeed for
p ∈ N, j, l ∈ N using the triangle inequality and (B.27) we have

∥ṽnj+l(t)− ṽnj(t)∥L2(ν)

≤ ∥ṽnj+l(t)− ṽnj+l(tp)∥L2(ν) + ∥ṽnj+l(tp)− ṽnj(tp)∥L2(ν) + ∥ṽnj(tp)− ṽnj(t)∥L2(ν)

≤ 2CT |t− tp|+ ∥ṽnj+l(tp)− ṽnj(tp)∥L2(ν).

Now given γ > 0 select p ∈ N such that |t− tp| ≤ γ
4CT

and j ∈ N such that ∥ṽnj+l(tp)−
ṽnj(tp)∥L2(ν) ≤ γ

2
for any l ∈ N, then

∥ṽnj+l(t)− ṽnj(t)∥L2(ν) ≤ γ

whenever l ∈ N; thus ṽnj(t) → ut ∈ L2(M). Define u(t) = ut, t ∈ [0, T ]. We have just
proved that

L2(ν)− lim
j→+∞

ṽnj(t) = u(t) ∀t ∈ [0, T ].

We need to show that u is characterized by (B.20), this will be shown in Step 4
where we will pass to the limit into (B.28). To this aim, we will need to be able
to pass to the limit in the second and third terms on the left hand side of (B.28).
By (B.26) and (B.27) over a further, non-relabeled subsequence we have that there
exists v ∈ L2([0, T ], L2(ν)) with v′ ∈ L2([0, T ], L2(ν)) such that

ṽnj
L2(L2)−−−−⇀ v,

d

dt
ṽnj

L2(L2)−−−−⇀ d

dt
v,
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and by uniqueness of the limit this implies u(t) = v(t). For later, we also record that

lim inf
j→+∞

∫ t

0

| d
ds
vnj |2Vnj,ϵnj ds ≥

∫ t

0

∫
M

| d
ds
u(s)|2ρ2dν. (B.29)

This easily follows by the weak lower semicontinuity of the L2((0, t), L2(M)) norm once
we observe that dnj ◦ Tnj ddt ṽ

nj converges weakly to ρu′ in this space.
Step 3. We claim that ∆ρ2u ∈ L2

loc((0,+∞), L2(ν)) and that for every T > 0

lim inf
j→+∞

∫ T

0

|∆nj ,ϵnj
vnj |2Vnj,ϵnj dt ≥

∫ T

0

c2|∆ρ2u|2ρ2dxdt, (B.30)

where c := C2

2
.

To show this we observe that from (B.28) we obtain that up to taking a further subse-

quence, the functions ˜∆nj ,ϵnj
vnj := ∆nj ,ϵnj

vnj ◦Tnj converge weakly in L2([0, T ], L2(ν))

to a function w ∈ L2([0, T ], L2(ν)). We claim that

1

c
w = ∆ρ2u in the sense of distributions. (B.31)

If (B.31) is true, then (B.30) follows by the lower semicontinuity of the L2-norm. To
show (B.31) we take f ∈ C∞

c ((0,+∞)) and g ∈ C∞(M). Then using Theorem B.5.14,
Lemma B.5.15, the convergence of the functions ṽnj and using the fact that the Lapla-
cian on the graph is self-adjoint we have∫ +∞

0

f(t)

∫
M

u(t) (∆ρ2g) ρ
2dVolM dt

= lim
j→+∞

1

c

∫ +∞

0

f(t)

∫
M

ṽnj(t)∆̃nj ,ϵnj
gd̃njdνdt

= lim
j→+∞

1

c

∫ +∞

0

f(t)⟨vnj ,∆nj ,ϵjg⟩Vnj,ϵnj dt

= lim
j→+∞

1

c

∫ +∞

0

f(t)⟨∆nj ,ϵnj
vnj , g⟩Vnj,ϵnj dt

= lim
j→+∞

1

c

∫ +∞

0

f(t)

∫
M

˜∆nj ,ϵnj
vnj g̃nj d̃njdνdt.

Observing that g̃nj := g ◦Tnj converges uniformly to g we get that the last limit equals

1

c

∫ +∞

0

f(t)

∫
M

w(t)gρ2dVolM dt.

In particular for every f ∈ C∞
c ((0,+∞)) and g ∈ C∞(M) we have∫ +∞

0

f(t)

∫
M

u(t)∆ρ2gρ
2dVolM dt =

1

c

∫ +∞

0

f(t)

∫
M

w(t)gρ2dVolM dt,

which clearly gives (B.31).
Step 4. Proof of (B.23).

Using Theorem B.5.16, the weak lower semicontinuity (B.29) and the lower bound
obtained in Step 3 we can pass to the limit in (B.28) to get that for all times t > 0
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C2

2
E[u(t)] +

1

2

∫ t

0

∫
M

(
C2

2

)2

|∆ρ2u|2ρ2dxds+
1

2

∫ t

0

∫
M

|u′|2ρ2dxds ≤ C2

2
E[u0]

In particular, applying Lemma B.5.18 with c = C2/2 we see that u is the unique
solution to {

∂tu = −C2

2
∆ρ2u

u(0) = u0

which, in particular, implies that the limit is independent of the chosen subsequence,
thus the whole sequence converges to u, as claimed.

Step 5. Conclusion.
Let Tn be a sequence of transportation maps obtained by applying Theorem C.6.6. By
Proposition B.5.7 we just need to show that for any t > 0 the functions e−t∆n,ϵnun ◦Tn
converge strongly to e

−t C2
2C1

∆ρ2u in L2(M). For s > 0 define vn(x, s) = e−s∆n,ϵnun. By
differentiating the norm we have

d

ds
|vn|2Vn,ϵn = −|∇nv

n|2En,ϵn .

Thus after integrating in s and by using Fatou’s Lemma we have that for a fixed t > 0∫ t

0

lim inf
n→+∞

|∇nv
n(s)|2En,ϵnds ≤ C∥u∥2L2(ν).

In particular there exist 0 < s < t and a subsequence nj such that

sup
j∈N

Enj [v
nj(s)] < +∞.

By Lemma B.5.19 applied to wnj(r) := e
−r∆nj,ϵnj vnj(s) we infer that

sup
j∈N

Enj [v
nj(t)] = sup

j∈N
Enj [w

nj(t− s)] < +∞.

In particular, by the compactness statement of Theorem B.5.16 we obtain that, upon
taking a further subsequence, the functions vnj(t) converge strongly in TL2(M) to a

function v(t) ∈ L2(M). We claim that v = e
−t C2

2C1
∆ρ2u. To see this, let g ∈ C∞(M).

Setting ṽnj(t) = vnj(t) ◦ Tnj and g̃nj = g ◦ Tnj , using the fact that g̃nj converges
uniformly to g and the fact that e−t∆n,ϵn are self-adjoint operators we get∫

M

vgρ2dVolM = lim
j→+∞

∫
M

ṽnj(t)g̃d̃njdν

= lim
j→+∞

⟨vnj(t), g⟩Vnj,ϵnj
= lim

j→+∞
⟨unj , e−t∆nj,ϵnj g⟩Vnj,ϵnj

= lim
j→+∞

∫
M

ũnj
˜

e
−t∆nj,ϵnj gd̃njdν

=

∫
M

ue
−t C2

2C1
∆ρ2gρ2dVolM ,
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where in the last step we used (B.23). Using the self-adjointness of the heat semigroup
on M we infer that for any smooth function g ∈ C∞(M),

∫
M

vgρ2dVolM =

∫
M

e
−t C2

2C1
∆ρ2ugρ2dVolM .

Thus v = e
−t C2

2C1
∆ρ2u. In particular, the limit does not depend on the chosen subse-

quence, thus we obtain the claim.

B.6.2 Discrete-to-nonlocal

Proof of Theorem B.2.1. The proof follows from Theorem B.2.2, Proposition B.5.11
and the convergence of the degrees in Lemma B.5.15. The precompactness statement
is a consequence of the general fact that bounded sets in L2 are weakly precompact.

B.6.3 Bertozzi’s question

Proof of Corollary B.2.3. By Theorem B.2.1 we know that almost surely, for each h >
0,

Γ(TL2(M)− weak)− lim
n→+∞

Eh
n,ϵn =

√
C1C2

2
EC2h

2C1

.

By the same argument used in the proof of Theorem B.2.1 we have that almost surely,
for every h > 0, the sequence of energies

Dh
n,ϵn(u) :=

1√
h

∑
i ̸=j

σij⟨ui − χni , e
−h∆n,ϵn (uj − χnj )⟩Vn , u ∈ Mn,

Γ-converges in the weak-TL2(M) topology to the energy

Dh(u) =

√
C1C2

2

1√
C2h
2C1

∑
i ̸=j

∫
M

(ui − χj)e
−h C2

2C1
∆ρ2 (uj − χj)ρ

2dVolM , u ∈ M.

In particular for every h > 0 we have

Γ(TL2(M)− weak)− lim
n→+∞

(Eh
n,ϵn −Dh

n,ϵn) =

√
C1C2

2
EC2h

2C1

−Dh.

This yields that the minimizers of Eh
n,ϵn −Dh

n,ϵn converge weakly in TL2(M) to mini-

mizers of
√

C1C2

2
EC2h

2C1

−Dh. The conclusion is then a consequence of the minimizing

movements interpretations in Lemma B.1.2 and Lemma B.5.2.

B.6.4 Nonlocal-to-local

Proof of Theorem B.2.5. Γ-lim sup. The Γ-lim sup inequality is a consequence of the
consistency part of the theorem, namely that for every u ∈ BV (M, {0, 1}P ) ∩M

lim
h↓0

Eh(u) = E(u). (B.32)
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It is clear that (B.32) is a consequence of the following claim: Assume that E,F ⊂M
are sets of finite perimeter, then

lim
h↓0

1√
h

∫
M

χF
(
χE − e−h∆ξχE

)
dµ =

1√
π

∫
∂∗E∩∂∗F

⟨σE(x), σF (x)⟩x|DχF |ξ(x). (B.33)

Indeed, simply apply (B.33) to E = {ui = 1}, F = {uj = 1}, multiply by σij and
sum over all pairs i ̸= j, since then ⟨σE(x), σF (x)⟩x = −1 on ∂∗E ∩ ∂∗F . We now
prove (B.33) in four steps.

Step 1. Recalling the notation (B.5.1), we can rewrite

T (h)χE(x) = χE(x) +

∫ h

0

d

dt
T (t)χE(x)dt.

Using Theorem B.5.3 we obtain that the argument of the limit in (B.33) is equal to

1√
h

∫
M

χF

∫ h

0

∆ξT (t)χE(x)dtdµ(x)

=
1√
h

∫
∂∗F

⟨σχF (x),
∫ h

0

∇T (t)χE(x)dt⟩d|DχF |ξ(x).

Thus by the discussion in Remark B.5.5 it suffices to show that for every x ∈ ∂∗E∩∂∗F
such that σE(x) = ⟨σE(x), σF (x)⟩xσF (x) we have

1√
π
⟨σF (x), σE(x)⟩ = lim

h↓0

〈
σF (x),

1√
h

∫ h

0

∇T (t)χE(x)dt
〉
. (B.34)

Step 2. We claim that for s < 1/2, equation (B.34) is equivalent to

1√
π
⟨σF (x), σE(x)⟩ = lim

h↓0

〈
σF (x),

1√
h

∫ h

0

∇T (t)(χE∩Bhs (x)(·))(x)dt
〉
. (B.35)

To prove this equivalence, we fix s < 1/2 and use (C.46) to show

lim
h↓0

1√
h

∫ h

0

∫
M\Bhs (x)

|∇xp(t, x, y)|dµ(y) = 0. (B.36)

Clearly (B.36) then implies the equivalence between (B.34) and (B.35). For j ∈ N and
t < h we denote by Bj the ball B2jts(x). Observe that M \ Bhs(x) ⊂ M \ Bts(x). To
prove (B.36) we use the Gaussian upper bound (C.46) to estimate

1√
h

∫ h

0

∫
M\Bhs (x)

|∇p(t, x, y)|dµ(y)dt

≤
[diam(M)]∑

j=0

1√
h

∫ h

0

∫
Bj+1\Bj

Ĉ1√
tµ(B√

t(x))
exp

(
−d2(x, y)
Ĉ2t

)
dµ(y)dt

≤
[diam(M)]∑

j=0

Ĉ1√
h

∫ h

0

µ(Bj+1)√
tµ(B√

t(x))
exp

(
− 22j

Ĉ2t1−2s

)
dt. (B.37)
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Observe that the doubling property (B.5) gives
µ(Bj+1)

µ(B√
t(x))

≤ 32jN tsN

tN/2
. Thus (B.37) is

estimated by

Ĉ1

[diam(M)]∑
j=0

1√
h

∫ h

0

2jN tNs√
ttN/2

exp

(
− 22j

Ĉ2t1−2s

)
dt

= Ĉ1

[diam(M)]∑
j=0

2jN
∫ h

0

t−N/2+sN−1 exp

(
− 22j

Ĉ2t1−2s

)
dt

≤ Ĉ1

[diam(M)]∑
j=0

2jN exp

(
− 22j

2Ĉ2h1−2s

)∫ h

0

t−N/2+sN−1 exp

(
− 1

2Ĉ2t1−2s

)
dt,

which converges to zero as h ↓ 0, since the integrand is uniformly bounded and the
prefactor converges to zero as h ↓ 0.

Step 3. We claim that

lim
h↓0

1√
h

〈
σF (x),

1√
h

∫ h

0

∫
M

∇xp(t, x, y)χE∩Bhs (x)(y)dµ(y)

〉
(B.38)

= lim
h↓0

1√
h

〈
σF (x),

∫ h

0

∫
M

∇x

(
e−

d(x,y)2

4t

(4πt)k/2
v0(x, y)

)
χE∩Bhs (x)(y)dµ(y)dt

〉
,

where v0 is the coefficient in the asymptotic expansion (B.6).
To see this, observe that (B.6) applied with l = 1 and some N > k

2
+ l yields

lim
h↓0

1√
h

〈
σF (x),

1√
h

∫ h

0

∫
M

∇xp(t, x, y)χE∩Bhs (x)(y)dµ(y)

〉
= lim

h↓0

1√
h

N∑
j=0

〈
σF (x),

∫ h

0

∫
M

∇x

(
e−

d(x,y)2

4t

(4πt)k/2
vj(x, y)tj

)
χE∩Bhs (x)(y)dµ(y)dt

〉
.

Thus, all we need to show is that the limit as h ↓ 0 of the terms on the right hand side
corresponding to j ≥ 1 vanishes, i.e., that for j ≥ 1

lim
h↓0

1√
h

〈
σF (x),

∫ h

0

∫
M

∇x

(
e−

d(x,y)2

4t

(4πt)k/2
vj(x, y)tj

)
χE∩Bhs (x)(y)dµ(y)

〉
= 0. (B.39)

To verify (B.39), we compute the argument in the limit in normal coordinates around
x. Let Ψ : BR(x) → BR(o) be normal coordinates around x. Then gij(o) = δij is the
identity matrix and d2(x, y) = |Ψ(y)|k. Writing νF for the vector of coordinates of
σF (x), the argument of the limit may be written as

1√
h

∫ h

0

∫
Bhs (x)

νF ·
(
−z
2t
vj(x,Φ(z)) +Dvj(x,Φ(z))

)
e−

|z|2
4t

(4πt)k/2
tjχΨ(E)(z)γ(z)dzdt,
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where we set γ(z) :=
√

det(g)(z)ρ(Φ(z)), with Φ = Ψ−1. By the smoothness of the
coefficients vj, by the compactness of the manifold and by the fact that j ≥ 1, if h < 1
we can bound this integral by

Chj−1 1√
h

∫ h

0

∫
Rk

(
1

2
+ 1

)
e−

|z|2
4t

(4πt)k/2
dzdt ≤ C

√
h, (B.40)

where C is a constant depending on vj, M and ξ. Thus we have (B.39).
Step 4. Conclusion. We now compute the limit on the right-hand side of (B.38).

As before, we work in normal coordinates centered at x. With the same notation as
in Step 3, the argument of the limit may be rewritten as

1√
h

〈
σF (x),

∫ h

0

∫
M

∇x

(
e−

d(x,y)2

4t

(4πt)k/2
v0(x, y)

)
χE∩Bhs (x)(y)dµ(y)dt

〉

=
1√
h

∫ h

0

∫
Bhs (x)

νF ·
(
−z
2t
v0(x,Φ(z)) +Dv0(x,Φ(z))

)
e−

|z|2
4t

(4πt)k/2
χΨ(E)(z)γ(z)dzdt.

As in Step 3, one can show that

lim
h↓0

1√
h

∫ h

0

∫
Bhs (x)

νF ·Dv0(x,Φ(z)) e−
|z|2
4t

(4πt)k/2
χΨ(E)(z)γ(z)dzdt = 0.

Thus, all we need to show is that

lim
h↓0

− 1√
h

∫ h

0

∫
Bhs (o)

νF · z
2t
v0(x,Φ(z))

e−
|z|2
4t

(4πt)k/2
χΨ(E)(z)γ(z)dzdt =

1√
π
νE · νF .

This is essentially already done in [67]. We sketch the short argument for completeness.
After a change of variables in space and time, the argument of the limit may be written
as

−
∫ 1

0

1√
t

∫
B hs√

ht
(o)

νF · z
2
v0(x,Φ(

√
htz))

e−
|z|2
4

(4π)k/2
χΨ(E)√

ht

γ(
√
htz)dzdt.

By De Giorgi’s structure theorem we have

L1
loc − lim

h↓0
χΨ(E)(

√
ht) = χHνE ∀t ∈ [0, 1],

where HνE is the half space given by

HνE :=
{
z ∈ Rk : νE · z ≤ 0

}
.

By an application of the dominated convergence theorem we infer that on any compact
set K ⊂ Rk,

lim
h↓0

∫ 1

0

∫
K

|χΨ(E)√
ht

− χHνE |dzdt = 0.

In particular, upon taking a subsequence, we may assume that

Jona Lelmi 106



B.6. Proofs

lim
h↓0

χΨ(E)√
ht

(z) = χHνE (z) for a.e. (t, z) ∈ [0, 1]×Rk.

Moreover we have that

lim
h↓0

v0(x,Φ(
√
htz))γ(

√
htz) = 1, uniformly in t ∈ [0, 1].

Thus by an application of the dominated convergence theorem we get

lim
h↓0

−
∫ 1

0

1√
t

∫
B hs√

ht
(o)

νF · z
2
v0(x,Φ(

√
htz))

e−
|z|2
4

(4π)k/2
χΨ(E)√

ht

γ(
√
htz)dzdt

= −
∫ 1

0

1

2
√
t

∫
νE ·y≤0

(y · νF )G1(z)dz

=

∫ 1

0

1

2
√
t

∫
νE ·y≤0

(νF · νE)(y · νE)−G1(z)dz

=
1√
π
(νF · νE).

Γ-lim inf. To prove the Γ-lim inf inequality we use the blow-up method of Fonseca
and Müller [30] (see also [1] and [4]).
Given uh ∈ M such that uh → u ∈ M in L1(M), we want to prove that for every
sequence hn ↓ 0

lim inf
n→+∞

Ehn(u
hn) ≥ E(u). (B.41)

Clearly, we may without loss of generality assume that the left hand side of (B.41) is
finite.

Step 1. u ∈ BV (M, {0, 1}P ).
By Lemma B.5.4 we just need to show that u ◦ ψ is in BV (ψ(V )) for every chart

(V, ψ) of M . It is clear that one can restrict to the case when V = Br(x0), r ≤ R <
inj(M)

2
, x0 ∈ M for some fixed R and ψ = exp−1

x0
. The statement for a general chart

then follows by compactness. So we fix V = Br(x0) and ψ = exp−1
x0
. We observe that

if N ≥ k
2
, by the asymptotic expansion for the heat kernel (B.6) with l = 0 and t = h

we get

Ehn(u
hn) ≥ 1√

hn

∑
i,j

σij

∫
Br(x0)

uhni e
−hn∆ξuhnj dµ

≥ 1√
hn

∑
i,j

σij

∫
Br(x0)

uhni (x)

∫
Br(x0)

p(hn, x, y)u
hn
j (y)dµ(y)dµ(x)

≥
N∑
l=0

1√
hn

∑
i,j

σij

∫
Br(x0)

uhni (x)

∫
Br(x0)

e
−d2(x,y)

4hn

(4πhn)k/2
vl(x, y)hlnu

hn
j (y)dµ(y)dµ(x)

− CN
√
hn

If l ≥ 1, with an estimate similar to the one used in (B.40) we obtain that∣∣∣∣∣∣ 1√
hn

∑
i,j

σij

∫
Br(x0)

uhni (x)

∫
Br(x0)

e
−d2(x,y)

4hn

(4πhn)k/2
vl(x, y)hlnu

hn
j (y)dµ(y)dµ(x)

∣∣∣∣∣∣ ≤ C
√
hn,
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where C depends on σ, vl,M and ξ. Thus we have

Ehn(u
hn) ≥ 1√

hn

∑
i,j

σij

∫
Br(x0)

uhni (x)

∫
Br(x0)

e
−d2(x,y)

4hn

(4πhn)k/2
v0(x, y)uhnj (y)dµ(y)dµ(x)

− C
√
hn.

The first term on the right hand side may be rewritten in local coordinates as

1√
hn

∑
i,j

σij

∫
Br(o)

ũhni (x)

∫
Br(o)

e
−d2(ψ−1(x),ψ−1(y))

4hn

(4πhn)k/2
ṽ0(x, y)ũhnj (y)γ(y)dy γ(x)dx, (B.42)

with γ(x) =
√

det(g)ξ(ψ−1(x)), ṽ0(x, y) = v0(ψ
−1(x), ψ−1(y)) and ũ = u ◦ ψ−1. Let L

be such that d(ψ−1(x), ψ−1(y)) ≤ L|x− y|k. Then (B.42) may be bounded from below
by

infx,y∈Br(o) {ṽ0(x, y)γ(y)γ(x)}
Lk+1

Eeuclid
hn
L2

(1Br(o)ũ
hn),

where we set

Eeuclid
hn
L2

(1Br(o)ũ
hn) =

1√
hn
L2

∑
i,j

σij

∫
Rk

ũhni (x)

∫
Rk

e
−L2|x−y|2

4hn

(4π hn
L2 )k/2

ũhnj dy dx.

In particular we obtain that

+∞ > lim inf
n→+∞

Eeuclid
hn
L2

(1Br(o)ũ
hn),

which says that 1Br(o)ũ is in BV (Rk, {0, 1}P ) by an application of, for example, Lemma
A.4 in [25].

Step 2. We now turn to (B.41). By Step 1 we know that u ∈ BV (M, {0, 1}P ). We
set Ωi := {ui = 1}. Passing to a subsequence if necessary, we may assume that

lim
n→+∞

Ehn(u
hn) = lim inf

n→+∞
Ehn(u

hn) < +∞. (B.43)

We define the Radon measures λhnij by setting

λhnij (W ) :=
1√
hn
σij

∫
W

uhni e
−h∆ξuhnj dµ, W ∈ B(M).

Then by (B.43), upon passing to a further subsequence, we may assume that there
exist Radon measures λij such that

lim
n→+∞

λhnij = λij weakly-∗ in the sense of Radon measures. (B.44)

In particular we obtain that

lim inf
n→+∞

Ehn(u
hn) = lim inf

n→+∞

∑
i,j

σijλ
hn
ij (M) ≥

∑
i,j

σijλij(M).
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Thus to conclude the proof of the Γ-lim inf inequality it suffices to show the following:
It holds that if x ∈ Σij then∑

m

σmq
dλmq
d|Dui|ξ

(x) ≥ 2σij√
π
. (B.45)

Indeed, if (B.45) is true, then using the fact that the interfaces Σij = ∂∗Ωi ∩ ∂∗Ωj are
disjoint

(∑
m,q

σmqλmq

)
(M) ≥

∑
i<j

(∑
m,q

σmqλmq

)
(Σij)

≥
∑
i<j

∫
Σij

∑
m,q

σmq
dλmq
d|Dui|ξ

d|Dui|ξ

≥
∑
i<j

2σij√
π

∫
Σij

d|Dui|ξ

=
1√
π

∑
i,j

σij|Dui|ξ(Σij).

We now prove (B.45). Fix δ > 0, then there exists R < inj(M)
2

such that for any
x ∈M

y, z ∈ BR
2
(x) ⇒ d(y, z) ≤ (1 + δ)| exp−1

x (y)− exp−1
x (z)|. (B.46)

Fix i, j ∈ {1, ..., P}, with i ̸= j and x ∈ Σij. For every m, q ∈ {1, ..., P} with m ̸= q
we have that

dλmq
d|Dui|ξ

(x) = lim
r↓0

λmq(Br(x))

|Dui|ξ(Br(x))
.

Observe also that, using Lemma B.5.4 applied with V = Br(x) and ψ(y) = exp−1
x (y),

lim
r↓0

|Dui|ξ(Br(x))

ωk−1rk−1γ(o)
= lim

r↓0

∫
Br(o)

γdHk−1

ωk−1rk−1γ(o)
= 1.

In particular

dλmq
d|Dui|ξ

(x) = lim
r↓0

λmq(Br(x))

ωk−1rk−1γ(o)
.

Observe that there exists an at most countable set Q ⊂ R such that if r ̸∈ Q

λmq(∂Br(x)) = 0.

Thus, by the weak convergence (B.44) of the λhnmq we have

dλmq
d|Dui|ξ

(x) = lim
r↓0,r ̸∈Q

lim
n→+∞

λhnmq(Br(x))

γ(o)ωk−1rk−1
.

We now set ũhn = uhn ◦ expx. Given a measurable function f defined on Br(o) we
define the blow-up at scale r as Rrf(y) := f(ry), y ∈ B1. By De Giorgi’s structure
theorem we know that
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lim
r↓0

Rrũi = χH
ν(i)

in L1(B1), (B.47)

lim
r↓0

Rrũj = χH
ν(j)

in L1(B1) (B.48)

where we define

Hν(m) := {z ∈ Rk : z · ν(m) ≤ 0}, m ∈ {1, ..., P}.
Here ν(m) is the outer unit normal of exp−1

x (Ωm) ⊂ Rk at o. Observe furthermore that
for q ̸= i, j it holds that

lim
r↓0

Rrũq = 0 in L1(B1).

Indeed, this follows by the constraint
∑

mRru
hn
m = 1 and (B.47), (B.48). Upon select-

ing a subsequence, we may thus choose a sequence rn of radii such that

lim
n→+∞

rn = lim
n→+∞

hn
r2n

= 0,

lim
n→+∞

λhnmq(Brn(x))

ωk−1rk−1
n γ(o)

=
dλmq
d|Dui|

(x),

lim
n→+∞

Rrnũ
hn
i = χH

ν(i)
in L1(B1),

lim
n→+∞

Rrnũ
hn
j = χH

ν(j)
in L1(B1),

lim
n→+∞

Rrnũ
hn
m = 0 in L1(B1) for m ̸= i, j.

We now use once more the expansion (B.6) with some N ≥ k
2
and observe that

∣∣∣∣λhnmq(Brn(x))−
N∑
l=0

1√
hn

∫
Brn (x)

uhnm

∫
Brn (x)

e
−d2(x,y)

4hn

(4πhn)k/2
vl(x, y)hlnu

hn
q (y)dµ(y)dµ(x)

∣∣∣∣
≤ C

√
hnr

2k
n .

Moreover, similarly as for (B.40) we get that for l ≥ 1∣∣∣∣∣∣ 1√
hn

∫
Brn (x)

uhnm

∫
Brn (x)

e
−d2(x,y)

4hn

(4πhn)k/2
vl(x, y)hlnu

hn
q (y)dµ(y)dµ(x)

∣∣∣∣∣∣ ≤ C
√
hnr

k
n.

From these two estimates we conclude that

∑
m,q

σmq
dλmq
d|Dui|ξ

(x)

= lim
n→+∞

∑
m,q

σmq
1

ωk−1rk−1
n γ(o)

√
hn

×

∫
Brn (x)

uhnm

∫
Brn (x)

e
−d2(x,y)

4hn

(4πhn)k/2
v0(x, y)uhnq (y)dµ(y)dµ(x).
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By (B.46), for n large enough the previous limit may be estimated from below by

lim inf
n→+∞

cn

γ(o)ωk−1rk−1
n

√
hn

∑
m,q

σmq

∫
Brn (o)

ũhnm

∫
Brn (o)

e
−(1+δ)2|x−y|2

4hn

(4πhn)k/2
ũhnq dydx, (B.49)

where ũ := u ◦ expx and

cn := inf
x,y∈Brn (o)

{
v0(expx(x), expx(y))γ(x)γ(y)

}
.

Observe that cn → γ(o) as n→ +∞. In particular (B.49) equals

lim inf
n→+∞

1

ωk−1rk−1
n

√
hn

∑
m,q

σmq

∫
Brn (o)

ũhnm

∫
Brn (o)

e
−(1+δ)2|x−y|2)

4hn

(4πhn)k/2
ũhnq dydx.

We now perform the changes of variables x 7→ rnx and y 7→ rny, so that the previous
quantity is equal to

lim inf
n→+∞

1

ωk−1(1 + δ)k+1
EB1

hn
r2n(1+δ)2

(Rrnũ
hn1B1), (B.50)

where we define for t > 0 and f ∈ AB1 :=
{
f : B1 → [0, 1]P such that

∑
m fm = 1

}
EB1
t (f) :=

∑
mq

σmq
1√
t

∫
B1

fmGt ∗ fqdx.

Here Gt denotes the standard k-dimensional Euclidean heat kernel at time t. Let
β ∈ C∞

c (B1), 0 ≤ β ≤ 1, then for f ∈ AB1

EB1
t (f) ≥ EB1

t (f, β) :=
∑
m,q

σmq
1√
t

∫
B1

βfmGt ∗ fqdx. (B.51)

We record the following result, a proof of which is given in the Appendix.

Theorem B.6.1. If σ ∈ Rk×k is symmetric, σmm = 0, σ satisfy the triangle inequality
and β ∈ C∞

c (B1) with β ≥ 0, then on AB1

Γ− lim
t↓0

EB1
t (·, β) = E(·, β) in L1(B1),

where we define, for f ∈ AB1,

E(u, β) :=

{
1√
π

∑
m,q σmq

∫
Smq

β(x)dHd−1(x) if f ∈ BV (B1, {0, 1}P ),
+∞ otherwise.

Here, for f ∈ BV (B1, {0, 1}P ), we set Smp := ∂∗{fm = 1} ∩ ∂∗{fq = 1}.

In particular, we may use the Γ-lim inf part of Theorem B.6.1 in (B.50) to obtain
that for any β ∈ C∞

c (B1), 0 ≤ β ≤ 1 we have

∑
m,q

σmq
dλmq

d|Dui|ξ(x)
≥ 1√

πωk−1(1 + δ)k+1
σij

(∫
{ν(i)·x=0}

β(x)dHd−1(x)

+

∫
{ν(j)·x=0}

β(x)dHd−1(x)

)
.
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Taking the supremum over all such β gives

∑
m,q

σmq
dλmq

d|Dui|ξ(x)
≥ 2σij√

πωk−1(1 + δ)k+1
Hk−1(B

(k−1)
1 ) =

2σij√
π(1 + δ)k+1

.

The previous inequality holds for every δ > 0, thus if we let δ ↓ 0 we recover (B.45)
and the proof of the Γ-lim sup inequality is completed.

Compactness. To prove the last item of the theorem we proceed adapting the ideas
of [25] for the flat case. Fix i ∈ {1, ..., P} and define m := minj ̸=i σij. Then if u ∈ M
we have that

Eh(u) =
∑
i,j

σij

∫
M

uje
−h∆ξuidµ

≥ m

∫
M

(1− ui)e
−h∆ξuidµ

=
m

2

∫
M×M

p(h, x, y)((1− ui(x))ui(y) + ui(x)(1− ui(y))dµ(y)dµ(x)(B.52)

≥ m

2

∫
M×M

p(h, x, y)|ui(y)− ui(x)|dµ(y)dµ(x).

We now fix C > 0 to be determined later. By Stokes theorem
∫
M
∇xp(h, x, y)dµ(y) = 0,

thus using the Gaussian upper bound (C.46) and the Gaussian lower bound (C.45) we
observe

∫
M

|De−Ch∆ξui|ξ =
∫
M

|∇e−Ch∆ξui|xdµ(x)

=

∫
M

∣∣∣∣∫
M

∇xp(h, x, y)ui(y)

∣∣∣∣
x

dµ(x)

≤
∫
M×M

|∇xp(h, x, y)|x|ui(y)− ui(x)|dµ(y)dµ(x)

≤ C1

Q1

∫
M×M

µ(B√
C2Ch(x))

µ(B√
Ch)

p

(
C2Ch

Q2

, x, y

)
|ui(y)− ui(x)|dµ(y)dµ(x).

If we take C = Q2

C2
, using the doubling property (B.5) and the bound (B.52) we end

up with

∫
M

|De−Ch∆ξui|ξ ≤
C1

Q1

∫
M×M

µ(B√
Q2h(x))

µ(B√
Q2h
C2

(x))
p(h, x, y)|ui(y)− ui(x)|dµ(y)dµ(x)

≤ C̃Eh(u).

In particular, using this with u = uh we see that for every i ∈ {1, ..., P}

sup
h>0

∫
M

|De−Ch∆ξuhi |ξ < +∞.
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By Lemma B.5.6 we know that up to extracting a subsequence, for every i ∈ {1, ..., P}
there exists vi ∈ BV (M) such that

lim
h↓0

∥e−Ch∆ξuhi − vi∥L1(M) = 0.

The result now follows by observing that

lim
h↓0

∥e−Ch∆ξuhi − uhi ∥L1(M) = 0.

B.7 Appendix

Proof of Theorem B.5.16

The proof is a slight modification of [35, Theorem 1.4]. The idea is still to reduce
the problem to a nonlocal Γ-convergence result, namely to reduce it to the following
statement.

Theorem B.7.1. Let M be a k-dimensional compact Riemannian submanifold of Rd.
Assume that η is as in Section B.2, let ξ > 0 be a smooth function on M . Given ϵ > 0
and u ∈ L2(M) define

Gϵ(u) :=
1

ϵ2

∫
M×M

1

ϵk
η

(
|x− y|d

ϵ

)
(u(x)− u(y))2ξ(x)ξ(y)dVolM(x)dVolM(y),

where | · |d denotes the Euclidean distance in Rd. Then

Γ− lim
ϵ↓0

Gϵ = 2C2E,

where E is the Dirichlet energy (B.5.16). Moreover, for any u ∈ C∞(M) we have that
lim supϵ↓0Gϵ(u) ≤ 2C2E(u). Finally, we have the following compactness property: if
ϵn ↓ 0 and un are such that

sup
n∈N

Gϵn(u
n) < +∞, sup

n∈N
∥un∥L2(M) < +∞,

then the sequence un is precompact in L2(M).

To reduce the proof of Theorem B.5.16 to Theorem B.7.1 one proceeds along the
same lines of the proof of [35, Theorem 1.4]. Let Tn be the optimal transport maps
obtained by applying Theorem C.6.6. To follow the proof of [35, Theorem 1.4] the
only additional observation is that, since M is a Riemannian submanifold of Rd, for
any x, y ∈M we have

|x− y|d ≤ dM(x, y).

In particular this yields

∥I − Tn∥∞ ≤ sup
x∈M

dM(x, Tn(x)).

113 Jona Lelmi



APPENDIX B. Γ-CONVERGENCE OF THE THRESHOLDING ENERGIES

This will give the reduction to Theorem B.5.16. In the case k = 2 the previous
argument works as long as one assumes

ϵnn
1/2

log3/4(n)
≫ 1.

The extra logarithmic factor may be removed by using [13, Proposition 2.11].
We are left with proving Theorem B.7.1. This can in turn be deduced from the

corresponding result in the Euclidean case, namely the following.

Theorem B.7.2. Let D ⊂ Rk be a bounded open set with smooth boundary, let ξ̃ :
D → (0,+∞) be a smooth function. Then

Γ− lim
ϵ↓0

G̃D,ξ̃
ϵ = 2C2Ẽ

D,ξ̃ in L2(D),

and limϵ↓0 G̃
D,ξ̃
ϵ (u) = 2C2Ẽ

D,ξ̃(u) whenever u ∈ L2(D), where we set for u ∈ L2(D)

G̃D,ξ̃
ϵ (u) =

1

ϵk+2

∫
D×D

η

(
|x− y|k

ϵ

)
|u(x)− u(y)|2ξ̃(x)ξ̃(y)dxdy,

and

ẼD,ξ̃(u) =

{
1
2

∫
D
|Du|2ξ̃2dx if u ∈ H1(D)

+∞ otherwise.

Finally, the following compactness property holds true: if ϵn ↓ 0 and un are such that

sup
n∈N

G̃D,ξ̃
ϵn (un) < +∞, sup

n∈N
∥un∥L2(D) < +∞

then the sequence un is precompact in L2(D).

With this result, we can prove Theorem B.7.1.

Proof of Theorem B.7.1. Γ-lim inf. Let un → u in L2(M). We want to prove that for
any sequence ϵn ↓ 0 we have

lim inf
n→+∞

Gϵn(u
n) ≥ 2C2E(u). (B.53)

To this aim, we may assume as before that the left hand side of (B.53) is finite. For
any given R > 0 the family

FR :=
{
Br(x) ⊂M : r ≤ R, Br(x) ⊂⊂ Ψ(U), Ψ 1− Lipschitz chart

}
is a Vitali covering. Since the manifold is compact, or more precisely by the doubling
property (B.5), we can select countably many disjoint balls Bi in the above family,
such that

VolM

(
M \

∞⋃
i=1

Bi

)
= 0. (B.54)

Jona Lelmi 114



B.7. Appendix

By construction, each ballBi is contained in Ψi(Ui) for some 1-Lipschitz local parametriza-
tion Ψi. Here 1-Lipschitz is understood between Euclidean spaces, i.e.

|Ψi(y1)−Ψi(y2)|d ≤ |y1 − y2|k, y1, y2 ∈ Ui.

In particular we have that since η is non-increasing

η

(
|Ψi(y1)−Ψi(y2)|d

ϵn

)
≥ η

(
|y1 − y2|k

ϵn

)
. (B.55)

By (B.55) and since the balls are disjoint we obtain

Gϵn(u
n)

≥
∑
i∈N

1

ϵ2n

∫
Ui×Ui

1

ϵkn
η

(
|x− y|k

ϵ

)
(un ◦Ψi(x)− un ◦Ψ(y))2ξ̃i(x)ξ̃i(y)dxdy

=
∑
i∈N

G̃Ui,ξ̃i
ϵn (un ◦Ψi),

where ξ̃i(y) = ξ(Ψi(y))
√
det(g). Now an application of Fatou’s Lemma, Theorem B.7.2

and (B.54) give the lim inf inequality.
Γ-lim sup. By a diagonal argument, we may reduce to proving the Γ-lim sup in-

equality in the case when u ∈ H1(M)∩C∞(M). For such a function and any sequence
ϵn ↓ 0 we claim that

lim sup
n→+∞

Gϵn(u) ≤ 2C2E(u).

We will in a second moment construct a suitable covering {W1, ...,WN} which
satisfies

M ⊂
N⋃
i=1

Wi,

where N ∈ N and Wi = Ψi(Ui) with Ψi local parametrizations defined on a bounded
domain Ui ⊂ Rk with Lipschitz boundary such that

|Ψi(y1)−Ψi(y2)|d ≥ |y1 − y2|k for y1, y2 ∈ Ui. (B.56)

Let δ be the Lebesgue number of the given covering. Define the set

Fδ := {(x, y) ∈M ×M : d(x, y) ≥ δ} .

It is clear that Fδ is compact, thus by continuity we have that

|x− y|d ≥ cδ > 0, x, y ∈ Fδ.

In particular by the exponential decay of η we get that there exists two positive con-
stants c1, c2 such that

η

(
|x− y|d

ϵ

)
≤ c1 exp

(
−c2cδ
ϵ

)
, x, y ∈ Fδ. (B.57)

Now observe that
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Gϵn(u) =
1

ϵ2+kn

∫
Fδ

η

(
|x− y|d
ϵn

)
|u(x)− u(y)|2ξ(x)ξ(y)dVolM(x)dVolM(y)

+
1

ϵ2+kn

∫
M×M\Fδ

η

(
|x− y|d
ϵn

)
|u(x)− u(y)|2ξ(x)ξ(y)dVolM(x)dVolM(y).

Recalling (B.57) we may observe that the first term on the right hand side converges
to zero as n → +∞. We claim that the lim sup of the second right hand side term is
bounded above by

N∑
i=1

∫
Wi

|∇u|2ξdVolM .

To show this, observe that if (x, y) ∈ M × M \ Fδ then by definition there exists
1 ≤ i ≤ N such that (x, y) ∈ Wi ×Wi, in particular

1

ϵ2+kn

∫
M×M\Fδ

η

(
|x− y|d
ϵn

)
|u(x)− u(y)|2ξ(x)ξ(y)dVolM(x)dVolM(y)

≤
N∑
i=1

1

ϵ2+kn

∫
Wi×Wi

η

(
|x− y|d
ϵn

)
|u(x)− u(y)|2ξ(x)ξ(y)dVolM(x)dVolM(y)

=
N∑
i=1

G̃Ui,ξ̃i
ϵn (u ◦Ψi),

where ξ̃i(y) = ξ(Ψi(y))
√
det(g). Recalling Theorem B.7.2, if we let n→ +∞ we obtain

lim sup
n→+∞

Gϵn(u) ≤ C2

N∑
i=1

∫
Wi

|∇u|2ξdVolM .

We now claim that given any α > 0 we can find N ∈ N and a covering W1, ...,WN

as before such that

N∑
i=1

∫
Wi

|∇u|2ξdVolM −
∫
M

|∇u|2ξdVolM < α. (B.58)

This can be done as follows. Given any point x ∈ M we can find a smooth function
γ : Rk → Rd−k and a number R > 0 such that, upon translating and rotating the
axes, the map

Ψ(y) = (y, γ(y)), y ∈ Q(0, R) := (0, R)k

is a local parametrization around x. Clearly we have that (B.56) is true. Define
Vx := Ψ(Q(0, R

2
)). Since the manifold is compact, we can find N ∈ N and points

x1, ..., xN such that the sets Vi := Vxi , i = 1, ..., N , cover M . Now define Ṽ1 = V1,
Ṽi+1 = Vi+1 \ ∪ij=1Vi. Then {Ṽi} is a partition of M . Define Ai := Ψ−1

i (Vi). Then the

sets Ai ⊂ Q(0, Ri
2
) have Lipschitz boundary. Given θ > 0 sufficiently small define, for

any 1 ≤ i ≤ N
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Aθi := {y ∈ Q(0, Ri) : d(y, Ai) < θ} ,
Wi := Ψi(A

θ
i ).

Clearly, {Wi, ...,WN} is an open covering satisfying (B.56). We now check that it
satisfies (B.58) provided θ is small enough. Observe that there exists a constant C > 0
such that for any 1 ≤ i ≤ N

VolM(Wi \ Ṽi) ≤ CLk
(
Aθi \ Ai

)
≤ CLk ({y ∈ Q(0, Ri) : |y − ∂Ai|k ≤ θ}) .

Recall that, since ∂Ai is (k − 1)-rectifiable, we have

Hk−1(∂Ai) = lim
θ↓0

Lk ({y ∈ Q(0, Ri) : |y − ∂Ai|k ≤ θ})
θ

.

The right-hand side is the Minkowski content, cf. [28, Theorem 3.2.39]. In particular
for a given α̃ > 0, we can choose θ so small that

VolM(Wi \ Ṽi) ≤ Cα̃.

Now observe that since Ṽi ⊂ Wi

N∑
i=1

∫
Wi

|∇u|2ξdVolM −
∫
M

|∇u|2ξdVolM

=
N∑
i=1

∫
Wi

|∇u|2ξdVolM −
∫
Ṽi

|∇u|2ξdVolM

≤ C̃Nα̃.

Choosing α̃ = α
C̃N

we get (B.58). In particular

lim sup
n→+∞

Gϵn(u) ≤ 2C2E(u) + 2C2α,

and letting α ↓ 0 we get the lim sup inequality.
The compactness property follows easily from Theorem B.7.2.

Γ-convergence of the localized thresholding energies

Here we sketch the proof of Theorem B.6.1. The upper bound in the Γ-convergence
is obtained by using Lemma 3.6 in [53]. For the lower bound, one just needs the
following approximate monotonicity, which was proved by Otto and one of the authors
in the first version of the preprint preceeding [53], but did not appear in the published
version.

Theorem B.7.3. Let σ ∈ RP×P be a symmetric matrix such that σij satisfy the
triangle inequality. Let β ∈ C∞

c (B1), where B1 ⊂ Rk is the unit ball. For t > 0 define
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EB1
t (·, β) as in (B.51). Let kt(z) =

1√
t
kk1(

z√
t
), with k1(z) = |z|G1(z). Then, defining

for u : B1 → [0, 1]P with
∑

m um = 1,

Ẽt(u) =
1√
t

∑
i,j

σij

∫
uikt ∗ ujdx,

we have that for all such u and all 0 < h ≤ h0

EB1
h0
(u, β) ≤

(√
h0 +

√
h√

h0

)k+1

EB1
h (u, β) + C∥Dβ∥L∞Ẽh(u)

√
h0. (B.59)

Here C is a constant that does not depend on h nor on h0.

The original proof was based on the ideas used for proving the monotonicity of
the non-localized thresholding energies in [25]. For the convenience of the reader, we
include a proof for the simpler two phase setting. In that case one has to prove (B.59)
with

ẼB1
t (u, β) =

1√
t

∫
B1

β(1− u)Gt ∗ udx, u : B1 → [0, 1]

and

Ẽt(u) =
1√
t

∫
B1

kt ∗ (1− u)udx, u : B1 → [0, 1].

Proof of Theorem B.7.3 in the two phase setting. Clearly, statement (B.59) is a con-
sequence of the following two items.√

h1
k+1

EB1
h1
(u, β) ≤

√
h2

k+1
EB1
h2
(u, β) ∀0 < h1 ≤ h2,(B.60)

EB1

N2h(u, β) ≤ EB1
h (u, β) + C(N − 1)

√
h∥Dβ∥∞Ẽh(u) ∀N ∈ N, ∀h > 0.(B.61)

To see this, let 0 < h ≤ h0. Let N ∈ N be such that

(N − 1)
√
h ≤

√
h0 < N

√
h.

Then we have

EB1
h0
(u, β)

(B.60)

≤

(
N
√
h√

h0

)k+1

EB1

N2h(u, β)

(B.61)

≤

(
N
√
h√

h0

)k+1 (
EB1
h (u, β) + C(N − 1)

√
h∥Dβ∥∞Ẽh(u)

)
≤

(√
h+

√
h0√

h0

)k+1

EB1
h (u, β) + C

√
h0∥Dβ∥∞Ẽh(u).

We are thus left with proving (B.60) and (B.61).
Item (B.60). This follows by showing that

d

d
√
h

(√
h
k+1

EB1
h (u, β)

)
≥ 0,
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which follows by differentiation. Indeed,

d

d
√
h

(√
h
k+1

EB1
h (u, β)

)
=

d

d
√
h

∫
B1

β(1− u)G1

(
z√
h

)
udx

= − 1√
h

∫
B1

β(1− u)∇G1

(
z√
h

)
· z√

h
udx ≥ 0.

Item (B.61). We let 0 < h0 be such that
√
h0 =

√
h1 +

√
h. Then we observe that

√
h0E

B1
h0
(u, β) =

∫
B1

∫
Rk

β(x)(1− u)(x)G1(z)u(x−
√
h1z −

√
hz)dzdx

≤
∫
B1

∫
Rk

β(x)(1− u)(x−
√
h1z)G1(z)u(x−

√
h1z −

√
hz)dzdx

+

∫
B1

∫
Rk

β(x)(1− u)(x)G1(z)u(x−
√
h1z)dzdx,

where we used the inequality

(1− u)u′′ ≤ (1− u′)u′′ + (1− u)u′, ∀u, u′, u′′ ∈ [0, 1],

applied to u = u(x), u′ = u(x−
√
h1z), u

′′ = u(x−
√
hz −

√
h1z). We record that the

second term on the right hand side is equal to

√
h1E

B1
h1
(u, β).

The other term is estimated as follows. First we change variable in x, and then we
estimate |β(x)− β(x−

√
h1z)| ≤ ∥Dβ∥∞

√
h1|z| to get

∫
Rk

∫
B1−

√
h1z

β(x+
√
hz)(1− u)(x)G1(z)u(x−

√
hz)dzdx

≤
∫
Rk

∫
B1−

√
h1z

β(x)(1− u)(x)G1(z)u(x−
√
hz)dxdz

+
√
h1∥Dβ∥∞

∫
Rk

∫
B1−

√
h1z

(1− u)(x)|z|G1(z)u(x−
√
hz)dzdx

=

∫
Rk

∫
B1

β(x)(1− u)(x)G1(z)u(x−
√
hz)dxdz

+
√
h1∥Dβ∥∞

∫
Rk

∫
B1−

√
h1z

(1− u)(x)k1(z)u(x−
√
hz)dzdx,

where in the last equality we used the fact that β is supported in B1. Observe that
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∫
Rk

∫
B1−

√
h1z

(1− u)(x)k1(z)u(x−
√
hz)dzdx

≤
∫
Rk

∫
Rk

(1− u)(x)k1(z)u(x−
√
hz)dzdx

=

∫
Rk

∫
Rk

(1− u)(x)kh(z)u(x− z)dzdx

=

∫
Rk

∫
Rk

(1− u)(x)kh(z − x)u(z)dzdx

=

∫
Rk

∫
B1

(1− u)(x)kh(z − x)u(z)dzdx

=

∫
B1

kh ∗ (1− u)(z)u(z)dz =
√
hẼh(u).

Here we used that u is supported in B1. Putting things together we obtain that

√
h0E

B1
h0
(u, β) ≤

√
h1E

B1
h1
(u, β) +

√
hEB1

h (u, β) (B.62)

+
√
h1
√
h∥Dβ∥∞Ẽh(u).

If we now apply inductively (B.62) with h1 = (N − 1)2h and h0 = N2h one gets

N
√
hEB1

N2h(u, β) ≤ N
√
hEB1

h (u, β) +
N−1∑
i=1

ih∥Dβ∥∞Ẽh(u)

= N
√
hEB1

h (u, β) +
(N − 1)N

2
h∥Dβ∥∞Ẽh(u).

Dividing by N
√
h yields (B.61).

Data Availability

The datasets generated during and/or analysed during the current study are available
in the GitHub repository https://github.com/jonalelmi/Data-th-en.
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APPENDIX C

LARGE DATA LIMIT OF THE MBO SCHEME FOR DATA

CLUSTERING: CONVERGENCE OF THE DYNAMICS

Notation. In the present work, we make extensive use of the Landau symbols o, O.
To explain these, we let {aω}ω∈Ω, {bω}ω∈Ω be two families of real numbers, with bω > 0,
indexed by ω ∈ Ω ⊂ R. Let ω0 ∈ R∪{−∞,+∞} be a limit point for the set Ω, which
will be clear from the context. We say that aω = O(bω) if

lim sup
ω→ω0

aω
bω

< +∞.

We say that aω = o(bω) if

lim
ω→ω0

aω
bω

= 0.

We also alternatively write aω ≲ bω for aω = O(bω) and aω ≪ bω for aω = o(bω). In
the following, usually (Ω, ω0) will be (N,+∞) or (R+, 0), and this will be clear from
the context.

C.1 The MBO scheme on graphs

In this section, we describe the MBO algorithm on graphs originally given by Bertozzi
et al. in [62, 78, 61]. We refer to [50] for more information about its use in data
clustering. We consider a weighted connected graph G = (V,W ) with n vertices, with
Wii = 0 for every i = 1, ..., n. For each vertex xi ∈ V, i ∈ {1, ..., n}, we can define

d(xi) =
1

n

n∑
j=1

wij.

We define D := diag(d(x1), ..., d(xn)). We let V := {u|u : V → R}, the set of functions
defined on V , which we endow this with the inner product

⟨u, v⟩V :=
1

n

n∑
i=1

d(xi)u(xi)v(xi).

We define the random walk Laplacian ∆ : V → V as the operator induced by the
matrix

∆ :=

(
I − 1

n
D−1W

)
.

121



APPENDIX C. CONVERGENCE OF THE DYNAMICS

One can check that ∆ is non-negative and self-adjoint with respect to ⟨·, ·⟩V , in partic-
ular, it has n eigenvalues (counted with multiplicity) which we order in the following
way

0 = λ1 ≤ ... ≤ λn.

We denote by {vl}1≤l≤n a basis of corresponding eigenvectors, orthonormal with respect
to ⟨·, ·⟩V . For 0 < K ≤ n we define a kernel HK : (0,+∞)× V × V → R via

HK(t, x, y) :=
K∑
l=1

e−tλ
l

vl(x)vl(y)
d(y)

n
.

The choice K = n corresponds to the heat kernel associated to ∆, which is the unique
function H : (0,+∞) × V × V → R with the property that for every u0 ∈ V , the
function

u(t, x) := e−t∆u0(x) :=
∑
y∈V

H(t, x, y)u0(y), x ∈ V, t > 0

satisfies {
∂tu = −∆u on (0,+∞)× V,

limt↓0 u(t, x) = u0(x) on V.

We are now ready to introduce the MBO scheme on graphs.

Algorithm C.1.1 (MBO scheme). Fix a time-step size h > 0 and initial conditions
χ0 : V → {0, 1}. For each l ∈ N define inductively χl+1 : V → {0, 1} as follows:

1. Diffusion. Define
ul := e−h∆χl.

2. Thresholding. Define χl+1 by

{
χl+1 = 1

}
=

{
ul ≥ 1

2

}
.

We then define the piecewise constant in time, right-continuous interpolation

χh,G(t, x) = χl(x) for t ∈ [lh, (l + 1)h) and x ∈ V.

We are interested in understanding whether this approximation is consistent at the
level of the evolution by mean curvature flow on the manifold.

In practice, computing the exact diffusion in the first step of the algorithm may be
computationally intractable. For this reason, one usually implements the MBO scheme
by considering only a smaller number of eigenvectors of the Laplacian, say K. In other
words, one uses the following more efficient variant of MBO.

Algorithm C.1.2 (Approximate MBO scheme). Fix a time-step size h > 0 and initial
conditions χ0 : V → {0, 1}. For each l ∈ N define inductively χl+1 : V → {0, 1} as
follows:

1. Diffusion. Define

ul(x) :=
∑
y∈V

HK(h, x, y)χl(y).
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2. Thresholding. Define χl+1 by{
χl+1 = 1

}
=

{
ul ≥ 1

2

}
.

Again, we then define the piecewise constant in time, right-continuous interpolation

χh,G,K(t, x) = χl(x) for t ∈ [lh, (l + 1)h) and x ∈ V.

At present, the choice of h and the exact value of K to pick in order to get a good
approximation of the MBO scheme is obtained by trial and error. In this work, under
the standard manifold assumption, we rigorously justify that an admissible regime to
get a consistent result in the large-data limit is K ≥ (log(n))q, h ≫ (log(n))−α for
some q, α > 0 (see Theorem C.2.4 for the precise choices of q, α).

C.2 Main results

Hereafter M ⊂ Rd is a k-dimensional closed Riemannian submanifold. We denote by
{xi}+∞

i=1 a sequence of points on M , and for each n ∈ N we define weighted graphs
Gn = (Vn,Wn) where the vertex set Vn is given by {x1, ..., xn} and the adjacency matrix

Wn = (w
(n,ϵn)
ij )1≤i,j≤n is given by

w
(n,ϵn)
ii = 0 for 1 ≤ i ≤ n,

w
(n,ϵn)
ij =

1

ϵkn
η

(
∥xi − xj∥d

ϵn

)
for 1 ≤ i, j ≤ n, i ̸= j.

Here ϵn > 0 are given length scales and η : [0,+∞) → [0,+∞) is a non-increasing
function with support on the interval [0, 1], whose restriction to the interval [0, 1] is
Lipschitz continuous. We define

C1 :=

∫
Rk

η(|y|k)dy, C2 :=

∫
Rk

η(|y|k)y21dy, κ(η) :=
C2

2C1

.

We also define, for every x ∈M and every n ∈ N

dn(x) :=
1

n

n∑
j=1

1

ϵkn
η

(
∥x− xj∥d

ϵn

)
1{x ̸=xj}.

Note that, when x = xi for some 1 ≤ i ≤ n, then dn(x) is the degree of the i-th node.
We denote by Dn := diag(dn(x1), ..., dn(xn)) the diagonal matrix of the degrees. The
random walk Laplacian ∆n is the linear operator induced by the (n× n)-matrix given
by

∆n :=
1

ϵ2n

(
I − 1

n
D−1
n Wn

)
.

We denote by {vln}1≤l≤n an orthonormal basis (with respect to the inner product
⟨·, ·⟩Vn) made of eigenvectors for the Laplacian ∆n corresponding to the eigenvalues
{λln}1≤l≤n, which are ordered in the following way
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0 = λ1n ≤ λ2n ≤ ... ≤ λnn.

Like in Section C.1, for every 0 < K ≤ n we define

HK
n (t, x, y) =

K∑
l=1

e−tλ
l
nvln(x)v

l
n(y)

dn(y)

n
,

and we set Hn = Hn
n when K = n. Assume that we are given a sequence of operators

Sn : (0,+∞)× Vn → Vn which are linear in the second variable, we then consider the
following abstract version of the MBO scheme on the n-th graph.

Algorithm C.2.1 (Abstract MBO scheme). Fix a time-step size hn > 0 and initial
conditions χ0,Gn : Vn → {0, 1}. For each l ∈ N define inductively χl+1,Gn : Vn → {0, 1}
as follows:

1. Diffusion. Define
uln := Sn(hn, χ

l,Gn).

2. Thresholding. Define χl+1,Gn by

{
χl+1,Gn = 1

}
=

{
uln ≥ 1

2

}
.

We then define χhn,Gn : [0,+∞)× Vn → {0, 1} by

χhn,Gn(t, x) := χl,Gn(x), x ∈ Vn, t ∈ [lhn, (l + 1)hn).

For convenience, we will mostly work with the {−1, 1}-valued functions

uhn,Gn(t, x) := 2χhn,Gn(t, x)− 1.

We also define the upper and lower limits of the family {uhn,Gn}n∈N as

u∗(t, x) := sup

{
lim sup
n→+∞

uhn,Gn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Gn, lim
n→+∞

xn = x

}
,

(C.1)

u∗(t, x) := inf

{
lim inf
n→+∞

uhn,Gn(tn, xn)

∣∣∣∣ tn > 0, lim
n→+∞

tn = t,

xn ∈ Gn, lim
n→+∞

xn = x

}
.

(C.2)

Let ξ > 0 be a smooth function on the manifold M . Let Ω ⊂ M be an open set with
smooth boundary Γ0. We let u : [0,+∞) ×M → R be the unique viscosity solution
of the level set formulation of the mean curvature flow with density ξ (see Section C.3
for the details) with initial value sd(·,Γ0) = dM(x,Ωc)− dM(x,Ω), the signed distance
function from Γ0. For any t > 0 we also define

Ωt := {x ∈M | u(t, x) > 0} , Γt = {x ∈M | u(t, x) = 0} . (C.3)
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Let us denote by ∆ξ the weighted Laplacian on M with weight µ := ξVolM , i.e.,

∆ξf = −1

ξ
div (ξ∇f) for f ∈ C∞(M).

Let H : (0,+∞)×M ×M → R denote the corresponding heat kernel.
Our first main result is the following conditional convergence of the abstract for-

mulation of the MBO scheme.

Theorem C.2.2. Assume that:

(i) The operators Sn satisfy the maximum principle up to errors h
3/2
n , i.e., for n large

enough and for each u, v ∈ Vn it holds

u ≤ v ⇒ Sn(hn, u) ≤ Sn(hn, v) +

(
max
Vn

|u|+max
Vn

|v|
)
O(h3/2n ).

(ii) The operators Sn approximate the heat operator on the manifold, i.e. there exists
a constant κ > 0 such that for every function f ∈ C∞(M) we have

max
x∈Vn

∣∣S(hn, f)(x)− e−hκ∆ξf(x)
∣∣ = (sup |f |) o(

√
hn) + Lip(f)O(h3/2n ). (C.4)

where the functions o(
√
hn), O(h

3/2
n ) are independent of f .

(iii) The operators Sn almost preserve the total mass in the sense that

max
x∈Vn

|Sn(hn,1Gn)(x)− 1| = O(h3/2n ).

Then u∗ and u∗ defined in (C.1) and, respectively, (C.2) satisfy

u∗(x, t) = 1 if x ∈ Ωt, (C.5)

u∗(x, t) = −1 if x ∈ (Ωt ∪ Γt)
c. (C.6)

Here Ωt and Γt are defined as in (C.3).

Remark C.2.3. Let us compare Theorem C.2.2 with the work [68], where the authors
prove convergence of the dynamics of the graph MBO scheme to a viscosity solution
to mean curvature flow in the case of regular, two-dimensional grids. More precisely,
they work in the following setting: the manifold M is the standard Euclidean plane
R2, the sequence of graphs Gn are given by Gn := ϵnZ

2 for a sequence of localization
parameters ϵn ↓ 0 and for (i, j), (l,m) ∈ Z2 one sets

w(i,j),(l,s) =

{
1 if |i− l|+ |m− j| = 1,

0 otherwise.
(C.7)

In this way we can define an infinite dimensional weight matrix Wn whose entries are
indexed by Z2 × Z2 and are defined as (C.7). To put ourselves in a setting that is
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precisely the one we are working in we could actually work with M = T2, the 2-
dimensional torus, and the sequence of graphs Gn ∩ T2, but to keep the discussion
simple we prefer to continue this discussion in the precise setting of [68]. Let v :
ϵnZ

2 → R be a function which is zero outside a compact subset of R2. We denote by
Sn(t, v) : [0,+∞) × ϵnZ

2 → R the solution to the heat equation on Gn with initial
value v, i.e., u := Sn(t, v) solves



d

dt
u(t, (i, j)) =

1

ϵ2n

[
u(t, (i+ 1, j)) + u(t, (i− 1, j))

+ u(t, (i, j + 1)) + u(t, (i, j − 1))

− 4u(t, (i, j))

] for (i, j) ∈ ϵnZ
2,

u(0, (i, j)) = v((i, j)) for (i, j) ∈ ϵnZ
2.

In other words, Sn(·, v) is the heat operator on Gn applied to v. By using Fourier
analysis methods, it can be shown that for every h > 0 and every (x1, x2) ∈ ϵnZ

2

Sn(h, v)((x1, x2)) =
∑

(i,j)∈ϵnZ2

Qi−x1

(
2h

ϵ2n

)
Qj−x2

(
2h

ϵ2n

)
v((i, j)),

where

Ql(α) :=
1

2π

∫ π

−π
cos(lξ)eα(cos(ξ)−1)dξ. (C.8)

Using the asymptotic expansions [68, Proposition 3] for (C.8) it is not hard to prove
that for any smooth, compactly supported function f ∈ C∞

c (R2)

sup
(i,j)∈ϵnZ2

∣∣∣Sn(h, f)((i, j))−GR2

h ∗ f((i, j))
∣∣∣ =Lip(f)o(ϵn) + sup |f |O

(
ϵ2n
h

)
(C.9)

+ sup |f |O
(
ϵn√
h
log

(
ϵn√
h

))
,

where GR2

h denotes the heat kernel in the Euclidean plane at time h. In particular,
when ϵn = hαn for α ≥ 3

2
, we see that (C.9) implies (C.4). This allows us to use

Theorem C.2.2 to recover the results of [68] when α ≥ 3
2
. Actually, an inspection

of the proof of Theorem C.2.2 shows that to check that u∗ and u∗ are, respectively, a
viscosity subsolution and a viscosity supersolution to mean curvature flow, the estimate
(C.4) can be replaced by

max
x∈Vn

∣∣S(hn, f)(x)− e−hκ∆ξf(x)
∣∣ = (sup |f |) o(

√
hn) + Lip(f)O(hγn),

for some γ > 1. In particular, we see that in the setting of the two-dimensional regular
grid this is satisfied whenever ϵn = hγn. This allows to recover the full parameter range
γ > 1 of [68]. We need the slightly sharper assumption γ = 3

2
for checking the initial

conditions for u∗ and u∗.
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C.2.1 Results on the MBO scheme and on the approximate
MBO scheme

The MBO scheme as stated in Algorithm C.1.1 corresponds to the choices Sn(t, ·) =
e−t∆n(·), the heat semigroup on the n-th graph, which acts on functions u ∈ Vn by

e−t∆n(u)(x) =
∑
y∈Vn

Hn(t, x, y)u(y).

Let 0 < Kn ≤ n be a sequence of numbers converging to +∞, then the approximate
MBO scheme as stated in Algorithm C.1.2 corresponds to the choices Sn = Pn, where
the operators Pn act on functions u ∈ Vn by

Pn(t, u)(x) :=
∑
y∈Vn

HKn
n (t, x, y)u(y). (C.10)

Our second main result states that on random geometric graphs the operators e−t∆n(·)
and Pn satisfy the assumptions of Theorem C.2.2 with high probability.

Theorem C.2.4. Let us assume that ν := ρVolM is a probability measure with a
smooth and positive density ρ. Assume that the points {xi}+∞

i=1 in the above construction
are i.i.d. random points sampled from M , distributed according to ν. Assume that
q > 0, 2

k
> s > 0 are such that:

(i) q > 1
2
k
−s ,

(ii) We have that infi∈N(λi+1 − λi) > 0.

(iii) Kn ≥ (log(n))q,

(iv) hn ≫ (log(n))−α, with α = −1 + 2q
k
− sq ≥ 0,

(v) ϵn ≪ (log(n))−β, with β = −1
2
+ 4q + 13q

k
− sq

2
≥ 0,

(vi) We have

ϵn ≳


(

log(n)
n

) 1
k

if k ≥ 3,(
log(n)
n

) 1
8

if k = 2,

Then the operators e−t∆n(·) and Pn satisfy conditions (i), (ii) and (iii) in Theorem C.2.2
(with ξ = ρ2 and κ = κ(η)) on Gn with probability greater than

1− Cϵ−6k
n exp(−nϵ

k+4
n

C
)− Cn exp(− n

C(log(n))2q
).

Remark C.2.5. Let us comment on this second result.

(i) For each k ≥ 2, the space of admissible parameters (s, q) in Theorem C.2.4 is
quite large. To see this, we plot the space of admissible parameters. The shaded
region represents the space of admissible pairs (s, q).
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f(s) = 1

2
k

−s

s = 2
k s

q

Figure C.1: Parameter space.

(ii) Condition (ii) in Theorem C.2.4 concerns the geometry of the manifoldM . It im-
plies in particular that the eigenvalues of the Laplacian ∆ρ2 are simple. Condition
(ii) in Theorem C.2.4 is for example satisfied by the k-torus and by the k-sphere
with standard unit density, see [16, Chapter II, Section 2] and [16, Chapter II,
Section 4].

(iii) Let us observe that conditions (v) and (vi) in Theorem C.2.4 are compatible,
indeed the right-hand side of (v) in Theorem C.2.4 is a rational function of log(n),
while the lower bound in condition (vi) in Theorem C.2.4 converges to zero as a
power of n, up to a logarithmic factor. We also remark that items (iv) and (v)
of Theorem C.2.4 imply

ϵn ≲ h3/2n ,

while we expect that the convergence of the scheme should be true up to the
critical scaling

ϵn ≪ hn.

Observe furthermore that condition (iv) in Theorem C.2.4 gives a lower bound
for hn of the form

hn ≫ (log(δn))
α,

where δn = ( 1
n
)1/k is the characteristic distance between the nodes of the graph.

This is perhaps not too surprising because the diffusion needs some time to smear
out the fine details in the graph that appear at its characteristic length scale. A
similar condition already appeared in [24].

(iv) In the proof of Theorem C.2.4 we will assume, for simplicity, that Kn = log(n)q ∈
N. In this setting we will use condition (v) of Theorem C.2.4 in the form

ϵn ≪
√

log(n)

K
1+ 1

k
− s

2
n

(
λ

2
k
+1

Kn
+ 1
)2 (

λ
4+ k

2
Kn

+ 1
) . (C.11)

Observe that condition (v) of Theorem C.2.4 implies (C.11) because by Weyl’s

law we have λKn ∼ K
2/k
n .

Corollary C.2.6. In the setting of Theorem C.2.4, if we additionally assume that

ϵn ≫
(
log(n)

n

) 1
k+4

, (C.12)

then the conclusion of Theorem C.2.2 holds almost surely both for the MBO scheme,
Algorithm C.1.1, and the approximate MBO scheme, Algorithm C.1.2.

Jona Lelmi 128



C.3. The level set equation for MCF on a weighted manifold

An important ingredient for the proof of Theorem C.2.4 is the following lemma,
which gives an estimate of the distance between the approximate heat kernel on the
graph and the heat kernel on the manifold in a uniform sense. Such heat kernel esti-
mates are of independent interest, for example, one should compare with [24, Theorem
3], where the authors obtain a similar estimate when the frequency cut-off Kn and the
time-scale hn are fixed. In Lemma C.2.7 we improve their result by showing how to
choose Kn in terms of n as n→ +∞.

Lemma C.2.7. In the setting of Theorem C.2.4, there exist constants a1, a2, a3, a4 > 0
such that if n is large enough, then, with probability greater than 1−a1ϵ−6k

n exp(−a2nϵk+4
n )

− a3n exp(−a4 n
(log(n))2q

), we have

max
x,y∈Vn

∣∣∣∣HKn
ϵn (hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ = o

(√
hn
n

)
. (C.13)

C.3 The level set equation for MCF on a weighted

manifold

In this section, we provide the basic framework for viscosity solutions to mean curvature
flow in weighted Riemannian manifolds.

Hereafter (M, g) is a k-dimensional closed Riemannian manifold, and ξ > 0 is a
smooth function on M . Recall that the evolution of a smooth open set Ω0 by mean
curvature follows the trajectory of steepest descent of the area functional, which is
defined as

Ω 7→
∫
∂Ω

dS,

where Ω ranges over all open sets in M with a smooth boundary. When we consider
a weight ξ on the manifold, the correct functional to consider is the weighted-area
functional, defined as

Ω 7→
∫
∂Ω

ξdS,

where Ω ranges over all open sets inM with smooth boundary. We define the evolution
of mean curvature flow with density ξ - hereafter denoted as MCFξ - as the trajectory
of steepest descent of this functional. To derive an equation for MCFξ we consider a
family {Ω(t)}0≤t<T of smooth open sets evolving smoothly in time with normal velocity
vector V . Denote by ν(t) a suitable extension of the outer unit normal of ∂Ω(t). We
then have by Gauss’ Theorem

d

dt

∫
∂Ω(t)

ξdS =
d

dt

∫
Ω(t)

1

ξ
div(ξν(t))ξdVolM

=

∫
∂Ω(t)

1

ξ
div(ξν(t))g(V (t), ν(t))ξdS.

We thus see that the trajectory of steepest descent is given by

g(V, ν) = −1

ξ
div(ξν).
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We are thus led to the following definition.

Definition C.3.1. Let (M, g) be a smooth k-dimensional closed Riemannian manifold.
Let ξ > 0 be a smooth function on M . A family {Ωt}t≥0 of smooth open subsets of M
is said to evolve by MCFξ if

g(V, ν) = −1

ξ
div(ξν). (C.14)

where V is the velocity vector field of the evolution and ν is the outer unit normal
field.

Remark C.3.2. Using that the mean curvature H(t) of ∂Ω(t) satisfies div(ν(t)) = H(t),
equation (C.14) can be rewritten as

g(V, ν) = −H − g

(
∇ξ
ξ
, ν

)
, (C.15)

which yields the following interpretation for (C.14): the evolution by MCFξ as defined
in Definition C.3.1 is driven by the minimization of two quantities, area and density.
The first term on the right-hand side of (C.15) forces the evolution to follow a trajectory
which decreases as much as possible the area of ∂Ω(t), whereas the second term on
the right-hand side forces the evolution to move towards regions where the density ξ
is low.

We now derive the corresponding level set formulation for the above evolution in
the spirit of [27, 18]. Let u : [0,+∞)×M → R be a smooth function, assume for this
heuristic discussion that Du ̸= 0 everywhere. For any s ∈ R define Ωs

t := {x ∈ M :
u(t, x) > s} and assume that {Ωs

t}t≥0 evolves by MCFξ defined in Definition C.3.1.
Let s ∈ R and let x : (0, T ) →M a smooth curve such that x(t) ∈ ∂Ωs

t for every time
0 < t < T . Then

0 =
d

dt
u(t, x(t))

= (∂tu)(t, x(t)) + g(∇u(t, x(t)), ẋ(t)).

Using the fact that the outer normal to the super level set Ωs
t is given by ν(t, x) =

− ∇u(t,x)
|∇u(t,x)| and plugging in (C.14) we obtain

(∂tu)(t, x(t)) = |∇u(t, x(t))|g(ν(t, x(t)), V (t, x(t)))

= −|∇u(t, x(t))| 1

ξ(x(t))
div(ξν)(t, x(t)).

Using the product rule for the divergence and recalling that ν = − ∇u
|∇u| we observe that

u solves

∂tu =

〈
g − Du⊗Du

|Du|2
, D2u

〉
+ g

(
∇ξ
ξ
,∇u

)
, (C.16)

where we denoted by ⟨·, ·⟩ the extension of g to the linear bundle of T ∗M ⊗ T ∗M , i.e.
for A,B sections of T ∗M ⊗ T ∗M we have in local coordinates
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⟨A,B⟩ :=
k∑

i,j,k,l=1

Aijg
jkgklBli.

From (C.16) we are led to the following definition.

Definition C.3.3. Let u : (0, T ) × M → R be a smooth function with Du ̸= 0
everywhere. Then u is said to solve the level set formulation of MCFξ if (C.16) holds
on (0, T )×M .

Remark C.3.4. Another way of deriving directly equation (C.16) without relying on
(C.14) is by computing the steepest descent of the total variation functional

∫
M
|∇u|ξdVolM

with respect to the metric

(δu, δu) =

∫
M

(
δu

|∇u|

)2

|∇u|ξdVolM .

Indeed, consider a smooth function u : (0, T )×M → R with Du ̸= 0, we then compute

d

dt

∫
M

|∇u(x, t)|ξ(x)dVolM =

∫
M

g

(
∇u(x, t)
|∇u(x, t)|

,∇∂tu(x, t)
)
ξ(x)dVolM

= −
∫
M

div

(
ξ
∇u
|∇u|

)
(t, x)∂tu(t, x)dVolM .

Thus the steepest descent of the total variation functional with respect to the metric
defined above is given by requiring

∂tu = |∇u|1
ξ
div

(
ξ
∇u
|∇u|

)
,

which is equivalent to (C.16).

We are now ready to introduce a weak notion of solution for (C.16) based on the
notion of viscosity solution. In the context of mean curvature flow with constant density
ξ = 1 it was introduced in [27] and [18] in the Euclidean case, and in [41] on curved
manifolds. If U ⊂ (0, T )×M is an open set, (t0, x0) ∈ U and if u : (0, T )×M → R is
an upper (lower) semi-continuous function, a smooth function φ : U → R is said to be
tangent to u at (t0, x0) from above (below), if u− φ has a local maximum (minimum)
at (t0, x0).

Definition C.3.5. An upper (lower) semi-continuous function u : (0, T ) ×M → R
is said to be a viscosity subsolution (supersolution) for (C.16) if for every (t0, x0) ∈
(0, T )×M and every smooth function φ tanget to u from above (below):

(i) If Dφ(t0, x0) ̸= 0 then

∂tφ ≤
〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
+ g

(
∇ξ
ξ
,∇φ

)
(≥) at (t0, x0)

(ii) Otherwise there exists ν ∈ T ∗
x0
M with |ν| ≤ 1 such that

∂tφ ≤ ⟨g − ν ⊗ ν,D2φ⟩ (≥) at (t0, x0)
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We say that u is a viscosity solution if it is both a subsolution and a supersolution.

In [41] the author introduces the notion of viscosity subsolution/supersolution to
mean curvature flow on a manifold (which corresponds to choosing the constant density
ξ = 1) requiring continuity of the function u. We need to work with this slightly more
general definition because the functions u∗ and u

∗ in Theorem C.2.2 are not continuous.
We recall the following useful characterization of Definition C.3.5, which says that we
need to check condition (ii) only when also D2φ(t0, x0) = 0.

Proposition C.3.6. Let u : (0, T ) × M → R be an upper (lower) semicontinuous
function. Then u is a viscosity subsolution (supersolution) of the level set formulation
of MCFξ if and only if whenever φ is tangent to u at (t0, x0) from above (below), (i) is
satisfied and if Dφ(t0, x0) = 0 and D2φ(t0, x0) = 0, then

∂tφ(t0, x0) ≤ 0 (≥).

Proposition C.3.6 is proved in the Euclidean case in [6, Proposition 2.2]. On a
manifold, the proof is analogous. We recall the following comparison principle.

Theorem C.3.7. Let M be a closed k-dimensional Riemannian manifold. Let ξ > 0
be a smooth function on M . Let u be a subsolution of (C.16) on (0, T ]×M and let v
be a viscosity supersolution of (C.16) on (0, T ]×M . Define

u∗(x) := lim sup
y→x, t→0

u(t, y), v∗(x) := lim inf
y→x, t→0

v(t, y).

Assume that u∗ ≤ v∗ and that either u∗ or v∗ is continuous. Then for every t ∈ (0, T ]

u(t, ·) ≤ v(t, ·).

Theorem C.3.7 is proved when ξ = 1 is the constant density and the functions u, v
are assumed to be continuous in [41]. A careful look at the proof reveals that the
same argument goes trough with the above assumptions. When M = Rk is the flat
Euclidean space, an even more general version of Theorem C.3.7 can be found in [3,
Theorem 18]. We also recall the following result concerning the existence of viscosity
solutions, which can be again found in [41] for the case of a constant density ξ = 1.

Theorem C.3.8. Let M be a k-dimensional closed Riemannian manifold, and let
ξ > 0 be a smooth function on M . Let u0 : M → R be continuous. Then there exists
a unique viscosity solution u : [0, T )×M → R to (C.16) such that u(0) = u0.

Finally, we recall the following relabeling property, which is proved in [41] in the
case of a constant density ξ = 1.

Lemma C.3.9. Let M be a k-dimensional closed Riemannian manifold, and let ξ > 0
be a smooth function on M . Let u : [0, T )×M → R be a viscosity solution to (C.16).
Then for every continuous map Ψ : R → R, the function v := Ψ ◦ u is a viscosity
solution to (C.16).
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C.4 MBO scheme on manifolds

As in the previous section, M will denote a k-dimensional closed Riemannian manifold
and ξ > 0 will denote a smooth function on M . The following algorithm can be used
to approximate the evolution of an open set Ω0 ⊂M with smooth boundary by MCFξ.

Algorithm C.4.1 (MBO scheme on manifolds). Fix a time-step size h > 0, a diffusion
coefficient κ > 0 and a (bounded) drift f : M → R. Let Ω0 ⊂ M be an open set with
a smooth boundary. For each n ∈ N define inductively Ωl+1 as follows.

1. Diffusion. Define
ul := e−hκ∆ξ1Ωl .

2. Thresholding. Define Ωn+1 by

Ωl+1 =

{
ul ≥

1

2
+ f

√
h

}
.

We then have the following result for one step of MBO.

Theorem C.4.2. Let M , ξ be as above. Let Ω0 be a smooth open set such that
diam(Ω0) <

inj(M)
2

. Let Ω1 be obtained by applying one step of MBO with a bounded
drift f : M → R to Ω0 with a given step size h > 0 and a given diffusion coefficient
κ > 0. Let x ∈ ∂Ω0. Let ν(x) ∈ TxM be the outer unit normal to ∂Ω0 at x and define

z(x) :=

{
sup {s ∈ R−| expx(sν(x)) ∈ Ω1} if x ̸∈ Ω1,

inf {s ∈ R+| expx(sν(x)) ̸∈ Ω1} if x ∈ Ω1.

Then we have
|z(x)| ≤ V h,

where the constant V depends only on κ, the L∞-norm of f , the ambient manifold M ,
and the C0-norm of the second fundamental form of ∂Ω0.

Corollary C.4.3. Let x0 ∈ M and R < inj(M)
4

be fixed. Then there is a constant
CR < +∞ such that if R

2
< r ≤ R and, in the above theorem, Ω0 = Br(x0), then

|z(x)| ≤ CRh

for every x ∈ ∂Br(x0).

Finally, we have the following consistency result, which will be crucial in proving
Theorem C.2.2.

Theorem C.4.4. Let hn be a sequence of positive real numbers converging to zero.
Assume that ψhn : (0,+∞)×M → R are C1,2((0,+∞)×M) functions converging in
C1,2((0,+∞) ×M) to a function ψ : (0,+∞) ×M → R. Assume that (shn , zhn) ∈
(0,+∞) × M are converging to a point (s, z) ∈ [0,+∞) × M . Assume also that
δn := ψhn(shn , zhn) are such that

lim
n→+∞

δn√
hn

= 0. (C.17)

Then we have that:
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(i) If Dψ(s, z) ̸= 0 then

lim inf
n→+∞

1√
κhn

(
1

2
−
∫
{ψhn (thn−hn,·)≥0}

H(κhn, zhn , y)ξ(y)dVolM

)
≥ 1

2
√
π|Dψ(s, z)|

(
∂tψ −

〈
g − Dψ ⊗Dψ

|Dψ|2
, D2ψ

〉
− g

(
∇ξ
ξ
,∇ψ

))
(s, z).

(C.18)

(ii) Otherwise if Dψ(s, z) = 0, D2ψ(s, z) = 0 and

1

2
−
∫
{ψhn (thn−hn,·)≥0}

H(κhn, zhn , y)ξ(y)dVolM ≤ o(
√
hn),

then
∂tψ(s, z) ≤ 0.

C.5 Proofs

C.5.1 Conditional convergence: Proof of Theorem C.2.2

The purpose of this section is the proof of Theorem C.2.2, which is inspired by the
works [6] and [68].

Proof of Theorem C.2.2. Let u be the unique viscosity solution to MCFξ from Theorem
C.3.8 with ξ = ρ2, starting from u(0, ·) = sd(·,Γ0) := dM(x,Ωc

0)− dM(x,Ω0). We will
show later that u∗ and u∗ are, respectively, a viscosity subsolution and a viscosity
supersolution of the level set formulation of MCFξ according to Definition C.3.5. We
furthermore claim that for every x ∈M ,

u∗(0, x) ≤ sign∗(u(0, x)), (C.19)

u∗(0, x) ≥ sign∗(u(0, x)), (C.20)

where sign∗ and sign∗ are, respectively, the upper semi-continuous envelope and the
lower semi-continuous envelope of the sign function.

Once these facts are proved, it follows from Theorem C.3.7 that for every x ∈ M
and every t ≥ 0,

u∗(t, x) ≤ sign∗(u(t, x)), (C.21)

u∗(t, x) ≥ sign∗(u(t, x)). (C.22)

To see this, we observe that if Ψ : R → R is a continuous function such that Ψ ≥
sign∗, then the relabeling property in Lemma C.3.9 implies that Ψ ◦ u is a continuous
solution to (C.16) with u∗(0, x) ≤ sign∗(u(0, x)) ≤ Ψ(u(0, x)) for every x ∈ M , thus
Theorem C.3.7 implies that for every 0 ≤ t ≤ T and every x ∈M

u∗(t, x) ≤ inf
Ψ∈C(R),Ψ≥sign∗

Ψ(u(t, x)) = sign∗(u(t, x)).
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A similar argument gives (C.22). Let us now conclude the proof of the theorem as-
suming that (C.21) and (C.22) hold. If x ∈ Ωt, then u(t, x) > 0, thus (C.22) yields
u∗(t, x) = 1. In a similar way (C.21) implies that u∗(t, x) = −1 on (Ωt ∪ Γt)

c. We
are thus left with proving that u∗ is a subsolution, that u∗ is a supersolution and with
verifying the initial conditions (C.19) and (C.20).

We now show that indeed u∗ is a viscosity subsolution. Pick a test functions φ
tangent to u∗ at (t0, x0) ∈ (0,+∞)×M from above. We may assume without loss of
generality that

lim
t→+∞

max
M

φ(t, ·) = +∞, (C.23)

and that u∗ −φ has a strict global maximum at (t0, x0). Thanks to Proposition C.3.6,
we only need to check that

1. Either Dφ(t0, x0) ̸= 0 and

∂tφ ≤
〈
g − Dφ⊗Dφ

|Dφ|2
, D2φ

〉
+ g

(
∇ξ
ξ
,∇φ

)
at (t0, x0).

2. Or Dφ(t0, x0) = 0, D2φ(t0, x0) = 0 and

∂tφ(t0, x0) ≤ 0.

If (t0, x0) ∈ {u∗ = −1} or (t0, x0) ∈ Int{u∗ = 1} the claim is trivial, because in that case
u∗ is constant in a neighborhood of (t0, x0). We thus assume that (t0, x0) ∈ ∂{u∗ = 1}.
By definition, there exists a sequence (tnj , znj) such that znj ∈ Gnj for every j ∈ N
and, as j → +∞,

nj → +∞,

znj → x0,

tnj → t0,

unj ,Gnj (tnj , znj) → u∗(t0, x0).

For every j ∈ N, pick

(sj, xj) ∈ argmaxx∈Gnj ,s∈(0,+∞)

{
unj ,Gnj (s, x)− φ(s, x)

}
. (C.24)

We observe that, up to extracting a subsequence, (sj, xj) → (t0, x0) as j → +∞.
Indeed by the compactness of M and the assumption (C.23), we may assume that the
sequence (sj, xj) converges to some limit point (s, x). Then by definition of u∗, by the
choice (C.24) and by the properties of the points (tnj , znj) we must have

(u∗ − φ)(s, x) ≥ lim sup
j→+∞

(unj ,Gnj − φ)(sj, xj)

≥ lim sup
j→+∞

(unj ,Gnj − φ)(tnj , znj)

= (u∗ − φ)(t0, x0).

This forces (t0, x0) = (s, x), because (t0, x0) is a strict global maximum for u∗−φ. It is
also easy to check that unj ,Gnj (sj, xj) = 1 for j large enough. We now pick a sequence
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δj ↓ 0 to be determined later, and we define θj : R → [−1, 1] to be a smooth function
such that

θj(t) = sign(t) for |t| ≥ δj,

∥θ′j∥∞ ≤ 2

δj
.

We claim that
unj ,Gnj (s, z) ≤ θj(φ(s, z)− φ(sj, xj) + δj) (C.25)

for every j large enough, z ∈ Gnj and s ∈ (0,+∞). Indeed, inequality (C.25) holds

trivially if unj ,Gnj (s, z) = −1. If instead unj ,Gnj (s, z) = 1, probing (C.24) with (s, z),
we have

1 = unj ,Gnj (s, z) ≤ unj ,Gnj (sj, xj)− φ(sj, xj) + φ(s, z)

= 1− φ(sj, xj) + φ(s, z),

where we used that unj ,Gnj (sj, xj) = 1 for j large enough. In particular

0 ≤ −φ(sj, xj) + φ(s, z),

which, by definition of θj, yields (C.25).
We now choose s = sj − hnj in (C.25), we apply Snj(hnj , ·) to both sides of the

inequality and we evaluate at xj. Recalling assumption (i) of Theorem C.2.2 we get

Snj(hnj , u
nj ,Gnj (sj − hnj , ·))(xj)

≤ Snj(hnj , θj(φ(sj − hnj , ·)− φ(sj, xj) + δj))(xj) +O
(
h3/2nj

)
.

We now apply sign∗ to both sides of the inequality to get

1 = unj ,Gnj (sj, xj) ≤ sign∗
(
Snj(hnj , θj(φ(sj − hnj , ·)− φ(sj, xj) + δj))(xj) +O

(
h3/2nj

))
,

which, by definition of the function sign∗, implies

0 ≤ Snj(hnj , θj(φ(sj − hnj , ·)− φ(sj, xj) + δj))(xj) +O
(
h3/2nj

)
.

We now divide both sides of the previous inequality by 2 and we add 1/2 to both sides
of the inequality. Using assumption (iii) of Theorem C.2.2 and the linearity of Sn in
the second variable yields

1

2
≤ Snj

(
hnj ,

(
1 + θj

2

)(
φ(sj − hnj , ·)− φ(sj, xj) + δj

))
(xj) +O

(
h3/2nj

)
.

Define

fj(z) :=

(
1 + θj

2

)(
φ(sj − hnj , z)− φ(sj, xj) + δj

)
.

Then by applying the estimate (C.4) in assumption (ii) in Theorem C.2.2 we obtain

1

2
≤ (e−hnjκ∆ξfj)(xj) + o(h1/2nj

) +
2

δj
O(h3/2nj

).
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In other words, we have

o
(
h1/2nj

)
+

2

δj
O
(
h3/2nj

)
≥ 1

2
−
∫
M

H(hnjκ, xj, y)fj(y)ξ(y)dVolM(y)

≥ 1

2
−
∫
{φ(sj−hnj ,·)−φ(sj ,xj)+δj≥0}

H(hnjκ, xj, y)ξ(y)dVolM(y).

We divide the previous inequality by
√
hnjκ, and we choose δj = h

2/3
nj so that on the one

hand
hnj
δj

→ 0 and on the other hand we can apply Theorem C.4.4. If Dφ(t0, x0) ̸= 0,

then by (i) in Theorem C.4.4,

0 ≥ 1

2
√
π|Dψ(s, z)|

(
∂tψ −

〈
g − Dψ ⊗Dψ

|Dψ|2
, D2ψ

〉
− g

(
Dξ

ξ
,Dψ

))
(t0, x0),

which gives (i) in Definition C.3.5. If Dφ(t0, x0) = 0 and D2φ(t0, x0) = 0 then we
can apply (ii) in Theorem C.4.4 to get the second item in the equivalent description
of viscosity subsolution in Proposition C.3.6. Thus u∗ is a viscosity subsolution. In a
similar way one can prove that u∗ is a supersolution.

We are left with checking the initial conditions for u∗ and u∗. Again, we focus on
the inequality (C.19) for u∗, since the argument for u∗ is similar. Observe that

sign∗(u(0, x)) =

{
1 if x ∈ Ω0

−1 if x ∈M \ Ω0

and since u∗ ∈ {−1, 1}, we just have to show that u∗(0, x) = −1 for x ∈M \Ω0. To this
aim, pick a sequence (tn, zn) ∈ (0,+∞)×Gn such that tn → 0 and zn → x as n→ +∞.
We have to show that un,Gn(tn, zn) = −1 for n large enough. For q ∈ R, denote by
T q,Gn(hn)(Ω0) the outcome of the abstract thresholding scheme with thresholding value
given by q and step size hn on the graph Gn with initial value Ω0 ∩ Vn. For m ∈ N we
also write (T q,Gn(hn))

m for T q,Gn(hn) ◦ ... ◦ T q,Gn(hn). Since x ∈ M \ Ω0 there exists
R > 0 such that BR(x) ⊂M \Ω0. We denote by wn : Vn → [0,+∞) a sequence of non-
negative functions which, for n large enough and for every u, v ∈ Vn, |u| ≤ 1, |v| ≤ 1,
satisfy

u ≤ v ⇒ S(hn, u) ≤ S(hn, v) + wn, (C.26)

an := ∥wn∥L∞(Gn) = O(h3/2n ),

max
x∈Vn

|S(hn,1Gn)(x)− 1| < an. (C.27)

Such functions exist by assumptions (i) and (iii) in Theorem C.2.2. We now check that

Vn \
(
T 1/2,Gn(hn)

)m
(Ω0) ⊃

(
T 1/2+2man,Gn(hn)

)m
(BR(x)). (C.28)

To see this, we proceed by induction over m. We treat just the base case m = 1, the
inductive step being analogous. To prove (C.28) for m = 1, we show

Vn \ T 1/2,Gn(hn)(Ω0) ⊃ T 1/2+an,Gn(hn)(M \ Ω0) ⊃ T 1/2+2an,Gn(hn)(BR(x)). (C.29)

To see this, let y ∈ T 1/2+an,Gn(hn)(M \ Ω0), observe that by (C.27) we have

S(hn,1Ω0)(y) +
1

2
+ an ≤ S(hn,1Ω0)(y) + Sn(hn,1M\Ω0)(y) < 1 + an,
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in particular, we have that y ∈ Vn \ T 1/2,Gn(hn)(Ω0). Thus Vn \ T 1/2,Gn(hn)(Ω0) ⊃
T 1/2+an,Gn(M \Ω0). We now observe that since 1BR(x) ≤ 1M\Ω0 , (C.26) yields that for
y ∈ T 1/2+2an,Gn(hn)(BR(x))

1

2
+ 2an ≤ S(hn,1BR(x))(y) ≤ S(hn,1M\Ω0)(y) + an,

which yields (C.29).
We will show that there is a constant C < +∞ such that(

T 1/2+2[ tnhn ]an,Gn(hn)
)[ tnhn ]

(BR(x)) ⊃ BR−Ctn(x) ∩ Vn. (C.30)

Once this is proved, we have that using also (C.28), since tn ↓ 0,

M \
(
T 1/2,Gn(hn)

)[ tnhn ] (Ω0) ⊃ BR
2
(x)

when n is large enough. In particular, since zn is converging to x, we must have
that un,Gn(tn, zn) = −1 for n large enough. Finally, to show (C.30) we argue as
follows. Let CR be the constant in Corollary C.4.3. Let f ∈ C∞

c (BR(x)) such that
1BR−CRhn (x)

≤ f ≤ 1BR(x) with Lip(f) ≤ c/hn, using assumptions (i) and (ii) in
Theorem C.2.2 we have for y ∈M ∩ Vn

Sn(hn,1BR(x))(y) ≥ Sn(hn, f)(y) +O(h3/2n )

≥ e−hnκ∆ξf(y) +O(h1/2n )

≥ e−hnκ∆ξ1BR−CRhn (x)
(y) +O(h1/2n ).

Observe that 1
2
+ 2

[
tn
hn

]
an = 1

2
+O(h

1/2
n ), in particular, we can apply Corollary C.4.3

to obtain, for n large enough, whenever y ∈ BR−2CRhn(x) ∩ Vn

e−hnκ∆ξ1BR−CRhn (x)
(y) +O(h1/2n ) ≥ 1

2
+ 2

[
tn
hn

]
an.

By an induction argument we get (C.30).

C.5.2 Heat kernel estimate in random geometric graphs: Proof
of Theorem C.2.4

The main purpose of this subsection is the proof of Theorem C.2.4. We first introduce
some notation. We denote by {λl}+∞

l=1 the eigenvalues of the weighted Laplacian ∆ρ2

on the manifold (M, g), which are ordered in the following way (recall that we are
assuming that the eigenvalues are simple)

0 = λ1 < λ2 < λ3 < ...

We denote by {fl}+∞
l=1 an orthonormal basis (with respect to the L2(ρ2VolM)-inner

product on M) made of the corresponding eigenvectors. Then, for x, y ∈M , the heat
kernel on M can be written as

H(t, x, y) =
+∞∑
l=1

e−tλlfl(x)fl(y). (C.31)

Jona Lelmi 138



C.5. Proofs

Proof of Theorem C.2.4. As we pointed out in Remark C.2.5, in the present proof we
will for simplicity assume that Kn = log(n)q ∈ N. We will indicate by γ the quantity
γ := infi∈N(λi+1 − λi), which is positive by Item (ii) in Theorem C.2.4.

Observe that items (i) and (iii) in Theorem C.2.2 hold exactly (i.e. without error)
for the choice Sn(t, ·) = e−t∆n(·). To show that these hold true with high probability
also for the choice Sn = Pn defined in (C.10) we take w ∈ Vn and we consider, for
x ∈ Vn, the difference∣∣∣∣e−hn∆nw(x)− Pn(hn, w)(x)

∣∣∣∣ =
∣∣∣∣∣∑
y∈Vn

n∑
l=Kn+1

e−hnλ
l
nvln(x)v

l
n(y)

dn(y)

n
w(y)

∣∣∣∣∣
≤ nmax

z∈Vn
|w(z)|max

z∈Vn
|dn(z)|

1

n
max
z∈Vn

n∑
l=Kn+1

e−hnλ
l
n(vln(z))

2,

where in the last line we used the Cauchy–Schwarz inequality. To get items (i) and
(iii) in Theorem C.2.4 for Pn, it thus suffices to show that

Rn := max
z∈Vn

dn(z)max
z∈Vn

1

n

n∑
l=Kn+1

e−hnλ
l
n(vln(z))

2 = O

(
h
3/2
n

n

)
.

To show this, we start by observing that for every n ∈ N, every z ∈ Vn and 1 ≤ l ≤ n

1 = ⟨vln, vln⟩Vn ≥ dn(z)

n
(vln(z))

2. (C.32)

By applying Theorem C.6.5 we can also choose n so large that, with probability greater
than 1−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n ), we have

max
z∈Vn

|dn(z)− C1ρ(z)| ≤ Q8ϵn,

and we can clearly assume that n is so large that

C1
min ρ

2
≤ dn ≤ 2C1max ρ.

Using (C.32) and the ordering λln ≥ λKnn for n ≥ l ≥ Kn we get

Rn ≤ C

n

(
n2e−λ

Kn
n hn

)
=
C

n

(
n2e−κ(η)λKnhne−(λ

Kn
n −κ(η)λKn)hn

)
.

We now use Theorem C.6.4 and Theorem C.6.1 to infer that with probability greater
than 1−Q1ϵ

−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n (λKn + 1)−k) we have

Rn ≤ C

n

(
n2e−κ(η)λKnhne

Cϵn
γ

(
λ
4+ k2
Kn

+1

)
hn

)
.

By Weyl’s law we have that λKn ∼ K
2/k
n , thus

Rn ≤ C

n

(
n2e−cK

2/k
n hne

C̃ϵn
γ
K

8
k
+1

n

)
.
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Recalling the conditions (iv), (v) and (ii) in Theorem C.2.4, as well as the scaling
Kn = (log(n))q we get

Rn ≤ C

n

(
n2e−c(log(n))

2q
k

−α
)

=
Ch

3/2
n

n

n2−c(log(n))
2q
k

−1−α

h
3/2
n


≤ Ch

3/2
n

n

(
n2−c(log(n))

2q
k

−1−α
(log(n))

3α
2

)
.

So Rn = O
(
h
3/2
n

n

)
because by the definition of α in (iv) in Theorem C.2.4 we have

2q
k
− 1− α > 0.

We are left with proving item (ii) in Theorem C.2.2 for both e−t∆n(·) and Pn. We
prove it for e−t∆n(·), the proof for Pn being analogous. The proof is divided into three
steps.

Step 1. We claim that with probability greater than 1 − a1ϵ
−6k
n exp(−a2nϵk+4

n ) −
a3n exp(−a4n (λKn + 1)−k)

max
x,y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ = o

(√
hn
n

)
. (C.33)

To show (C.33) we pick two points x, y ∈ Vn and we compute∣∣∣∣Hn
ϵn(hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ ≤∣∣∣∣HKn
ϵn (hn, x, y)−

ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣
+

∣∣∣∣ n∑
l=Kn+1

e−hnλ
l
nvln(x)v

l
n(y)

dn(y)

n

∣∣∣∣.
From Lemma C.2.7 we get that the first term on the right-hand side is o

(√
hn
n

)
with

probability greater than 1− a1ϵ
−6k
n exp(−a2nϵk+4

n )− a3n exp(−a4n (λKn + 1)−k), while
the second term is estimated in the same way as the term Rn in the previous part of
the proof.

Step 2. We choose an optimal transport map

Tn ∈ argmin
T#ν=νn

sup
x∈M

dM(x, T (x)), θn := sup
x∈M

dM(x, Tn(x)).

We claim that, with probability greater than 1 − a1ϵ
−6k
n exp(−a2nϵk+4

n )
− a3n exp(−a4n (λKn + 1)−k), we have for every f ∈ C∞(M),

max
x∈Vn

∣∣∣e−hn∆nf(x)− e−κ(η)hn∆ρ2f(x)
∣∣∣ ≤L1 sup

M
|f | θn√

hn
e

2θn diam(M)
hn .

+ sup
M

|f |o(
√
hn) + L2

(
sup
M

|f |+ Lip(f)

)
θn,(C.34)

where the constants L1, L2 and the function in o(
√
hn) depend only on M .
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To show (C.34), we work under the assumption that we are in the event in which
the estimate of Step 1 holds true; this happens with probability greater than

1− a1ϵ
−6k
n exp(−a2nϵk+4

n )− a3n exp(−a4n (λKn + 1)−k).

We take f ∈ C∞(M) and x ∈ Vn. Then by using the triangle inequality

|e−hn∆nf(x)− e−κ(η)hn∆ρ2f(x)|

=

∣∣∣∣∣∑
y∈Vn

Hn
ϵn(hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM(y)

∣∣∣∣∣
≤
∑
y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)f(y)−

ρ(y)

n
H(κ(η)hn, x, y)f(y)

∣∣∣∣
+

∣∣∣∣ ∑
y∈Vn

ρ(y)

n
H(κ(η)hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM(y)

∣∣∣∣.
For the first term on the right-hand side, we use the estimate in Step 1 to infer

∑
y∈Vn

∣∣∣∣Hn
ϵn(hn, x, y)f(y)−

ρ(y)

n
H(κ(η)hn, x, y)f(y)

∣∣∣∣ ≤ n sup
M

|f |o
(√

hn
n

)
= sup

M
|f |o(

√
hn).

For the second term, we recall that (Tn)#ν = νn, thus∣∣∣∣ ∑
y∈Vn

ρ(y)

n
H(κ(η)hn, x, y)f(y)−

∫
M

H(κ(η)hn, x, y)f(y)ρ
2(y)dVolM(y)

∣∣∣∣
=

∣∣∣∣ ∫
M

H(κ(η)hn, x, Tn(y))f(Tn(y))ρ(Tn(y))dν(y)−
∫
M

H(κ(η)hn, x, y)f(y)ρ(y)dν(y)

∣∣∣∣.
By the smoothness of ρ and f , we observe that∣∣∣∣ ∫

M

H(κ(η)hn, x, y) (f(Tn(y))ρ(Tn(y))− f(y)ρ(y)) dν(y)

∣∣∣∣ ≤ L2

(
sup
M

|f |+ Lip(f)

)
θn,

so we are left with showing that∣∣∣∣∫
M

(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν(y)

∣∣∣∣
≤ L1 sup

M
|f | θn√

hn
e
θn diam(M)

hn . (C.35)

To prove (C.35) we fix x, y ∈M and we consider the length minimizing constant-speed
geodesic σn,y : [0, 1] →M from y to Tn(y), i.e.,

Length(σn,y|[0,s]) = dM(y, σn,y(s)).
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By the fundamental theorem of calculus, the Cauchy–Schwarz inequality and the
boundedness of ρ we obtain∣∣∣∣∫

M

(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν(y)

∣∣∣∣
≤ C sup

M
|f |
∫ 1

0

∫
M

|∇H(hn, x, σn,y(s))||σ̇n,y(s)|dν(y)ds

≤ Cθn sup
M

|f |
∫ 1

0

∫
M

Q̂1√
hnµ(B√

hn(x))
exp

(
−d

2
M(x, σn,y(s))

Q̂2hn

)
dν(y)ds, (C.36)

where in the last line we used the fact that the speed of the constant-speed geodesic
σn,y is equal to its length – which can be bounded by Cθn by definition of θn – and
we estimated the gradient of the heat kernel by an application of Theorem C.6.2. We
now observe that by the reverse triangle inequality

|d2M(x, σn,y(s))− d2M(x, y)| = (dM(x, y)− dM(x, σn,y(s)))(dM(x, σn,y(s)) + dM(x, y))

≤ 2θndM(x, y).

Inserting this estimate into (C.36) and using the Gaussian lower bound for the heat
kernel from Theorem C.6.2 yields∣∣∣∣∫

M

(H(hn, x, Tn(y))−H(hn, x, y))f(Tn(y))ρ(Tn(y))dν

∣∣∣∣
≤ C

θn√
hn
e

2θn diam(M)
hn sup

M
|f |
∫
M

H(Q̃hn, x, y)dν(y)

≤ L1 sup
M

|f | θn√
hn
e

2θn diam(M)
hn .

Step 2. Conclusion. To conclude the proof of the theorem from (C.34) one clearly
just needs to prove that

lim sup
n→+∞

θn

h
3/2
n

< +∞.

We first treat the case k ≥ 3. Observe that, by Theorem C.6.6

lim sup
n→+∞

n1/kθn

log1/k(n)
< +∞.

In particular, using also assumption (vi)

lim sup
n→+∞

θn

h
3/2
n

= lim sup
n→+∞

(
n1/kθn

log1/k(n)

log1/k(n)

ϵnn1/k

ϵn

h
3/2
n

)
< +∞,

provided

lim sup
n→+∞

ϵn

h
3/2
n

< +∞. (C.37)

To check that (C.37) is satisfied, we observe that by the assumptions (iv) and (v) in
Theorem C.2.4 we get

lim sup
n→+∞

ϵn

h
3/2
n

≤ lim sup
n→+∞

(log(n))
3
2
α−β,
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the right-hand side of which is finite since assumption (i) in Theorem C.2.4 implies
3
2
α− β ≤ 0.

For the case k = 2 we proceed analogously. Recall that by Theorem C.6.6

lim sup
n→+∞

n1/2θn

log3/4(n)
< +∞.

In particular, using also assumption (vi) in Theorem C.2.4 we obtain

lim sup
n→+∞

θn

h
3/2
n

= lim sup
n→+∞

(
θnn

1/2

log3/4(n)

(
log(n)

ϵ8nn

)1/2
ϵ4n log

1/4(n)

h
3/2
n

)
< +∞,

provided

lim sup
n→+∞

ϵ4n log
1/4(n)

h
3/2
n

< +∞.

To show this, we estimate ϵn using assumption (v) in Theorem C.2.4 and esimate hn
using assumption (iv) in Theorem C.2.4

lim sup
n→+∞

ϵ4n log
1/4(n)

h
3/2
n

≤ lim sup
n→+∞

(log(n))
1
4
+ 3

2
α−4β < +∞,

which follows from (i) in Theorem C.2.4.

Proof of Lemma C.2.7. As in the proof of Theorem C.2.4, we will for simplicity assume
that Kn = log(n)q ∈ N. We will indicate by γ the quantity γ := infi∈N(λi+1 − λi),
which is positive by Item (ii) in Theorem C.2.4.

To show (C.13), fix two points x, y ∈ Vn. By using the expansion (C.31) and the
triangle inequality we have∣∣∣∣HKn

ϵn (hn, x, y)−
ρ(y)

n
H(κ(η)hn, x, y)

∣∣∣∣ ≤ In + IIn,

where we define

In =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλ
l
nvln(x)v

l
n(y)

dn(y)

n
− e−hnκ(η)λ

l

fl(x)fl(y)
ρ(y)

n

∣∣∣∣∣ ,
IIn =

∣∣∣∣∣
+∞∑
l=Kn

e−hnκ(η)λ
l

fl(x)fl(y)
ρ(y)

n

∣∣∣∣∣ .
We now proceed to show that these two terms are both of order o

(√
hn
n

)
.

To control term IIn we follow the ideas in [24] and [7]. By the Cauchy–Schwarz
inequality and by the fact that ρ is bounded we get

IIn ≤ C

n
max
z∈M

+∞∑
l=Kn

e−hnκ(η)λlf 2
l (z).

To control the right hand side, fix z ∈M . We define a measure ωz on R by

ωz :=
+∞∑
l=Kn

f 2
l (z)δλl(dλ).
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Then an integration by parts yields

+∞∑
l=Kn

e−hnκ(η)λlf 2
l (z) =

∫
R

e−κ(η)hnλdωz(dλ)

=
[
e−κ(η)hnλωz([0, λ])

]+∞
λ=0

+

∫
R

κ(η)hne
−κ(η)hnλωz([0, λ])dλ

≤ lim sup
λ→+∞

e−hnκ(η)λ ∑
λKn≤λl≤λ

f 2
l (z)


+

∫ +∞

λKn

hnκ(η)e
−hnκ(η)λωz([0, λ])dλ.

Now we use Theorem C.6.2 to show that the first term on the right hand side van-
ishes. Recalling the notation µ := ξVolM , and using the Gaussian upper bounds in
Theorem C.6.2 we get in particular∑

λKn≤λl≤λ

f 2
l (z) ≤ e

∑
0≤λl≤λ

e−
λl
λ f 2

l (z) ≤ eH

(
1

λ
, z, z

)
(C.38)

≤ C

µ(Bλ−1/2(x)))
≤ Cλ

k
2 ,

so that indeed

lim sup
λ→+∞

e−hn
κ(η)
2
λ

∑
λKn≤λl≤λ

f 2
l (z) ≤ lim sup

λ→+∞
e−hn

κ(η)
2
λCλ

k
2 = 0.

We thus obtain, using (C.38) once more with λKn replaced by zero,

IIn ≤ C

n

∫ +∞

λKn

hnκ(η)e
−hnκ(η)λλk/2dλ

=
C

n
(hnκ(η))

− k
2

∫ +∞

κ(η)hnλKn

e−λλk/2dλ

≤ C

n
h
− k

2
n

∫ +∞

chnK
2/k
n

e−λλk/2dλ,

where we used Weyl’s law in the last step. If chnK
2
k
n − k

2
≥ 1, we can estimate the

right hand side by

C

n
h
− k

2
n

(
chnK

2
k
n

) k
2
+1

e−chnK
2
k
n =

C̃

n
Kne

−AA,

where A = chnK
2
k
n . Now we follow the reasoning in the proof of [24, Theorem 3] to

obtain KnAe
−A ≤ 1

Kn
e−

A
2 provided A ≥ 8 log(Kn), which is satisfied because of our

assumption (iv) in Theorem C.2.4. Thus, using again our assumptions on hn

IIn ≤ C̃
√
hn
n

 e−c(log(n))
2q
k

−α

(log(n))q
√
hn


≤ C̃

√
hn
n

(
e−c(log(n))

2q
k

−α
(log(n))

α
2
−q
)
.
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Thus we obtain that IIn = o
(√

hn
n

)
because of the definition of α.

Regarding the term In, we use the triangle inequality, to decompose this into four
terms

In ≤ Ian + Ibn + Icn + Idn,

where

Ian =

∣∣∣∣∣
Kn−1∑
l=1

(
e−hnλ

l
n − e−κ(η)hnλl

) ρ(y)
n

fl(x)fl(y)

∣∣∣∣∣ ,
Ibn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλ
l
n

(
C1
ρ(y)

n
− dn(y)

n

)
fl(x)

C
1/2
1

fl(y)

C
1/2
1

∣∣∣∣∣ ,
Icn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλ
l
n
dn(y)

n

(
fl(x)

C
1/2
1

− vln(x)

)
fl(y)

C
1/2
1

∣∣∣∣∣ ,
Idn =

∣∣∣∣∣
Kn−1∑
l=1

e−hnλ
l
n
dn(y)

n
vln(x)

(
fl(y)

C
1/2
1

− vln(y)

)∣∣∣∣∣ .
We now proceed at estimating these four terms.
Term Ian. We observe that λ1n = λ1 = 0, thus in the sum we can neglect the term
corresponding to l = 1, i.e.

Ian ≤ C

n

Kn−1∑
l=2

∣∣∣e−hnλln − e−hnκ(η)λl
∣∣∣ ∥fl∥2C0(M).

Since s 7→ e−s is 1-Lipschitz continuous on [0,+∞), for every 2 ≤ l ≤ Kn − 1 we have∣∣∣e−hnλln − e−κ(η)hnλl
∣∣∣ ≤ |λln − κ(η)λl|hn ≤ Q5

∥fl∥C3(M)

γ
ϵnhn,

where the last inequality holds with probability greater than 1−Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )

−Q3n exp(−Q4n (λl + 1)−k) because of Theorem C.6.4. In particular using also Theo-
rem C.6.1 to control the C0 and C3 norm of the eigenfunctions and using the fact that
for l ≤ Kn we have λl ≤ λKn we can bound

Ian ≤ Chn
n

Kn

(
λ
1+ k

2
Kn

+ 1
)2 (

λ
4+ k

2
Kn

+ 1
)
ϵn

γ

 .

From this, we obtain that Ian = o
(√

hn
n

)
, because by our assumptions on ϵn in (v) of

Theorem C.2.4 and our assumptions on the spectral gap in (ii) of Theorem C.2.4 we
clearly have Kn

(
λ
1+ k

2
Kn

+ 1
)2 (

λ
4+ k

2
Kn

+ 1
)
ϵn

γ

 = o(1).

Term Ibn. Using Theorem C.6.4, Theorem C.6.5 and Theorem C.6.1 we have that
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with probability greater than 1 − Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n ) − Q3n exp(−Q4n (λl + 1)−k)

−Q6ϵ
−k
n exp(−Q7nϵ

k+2
n ), for each 1 ≤ l ≤ Kn − 1 we can estimate∣∣∣∣∣e−hnλln
(
C1
ρ(y)

n
− dn(y)

n

)
fl(x)

C
1/2
1

fl(y)

C
1/2
1

∣∣∣∣∣
≤ C

n
e−hnκ(η)λle−hn(λ

l
n−κ(η)λl)∥C1ρ− dn∥L∞(Gn)∥fl∥2L∞(M)

≤ C

n
eChn

(
λ
4+ k2
Kn

+1

)
ϵn

γ

(
λ
1+ k

2
Kn

+ 1
)2
ϵn.

In particular, multiplying and dividing by
√
hn and summing over l = 1, ..., Kn, we

obtain

Ibn ≤ C
√
hn
n

 Kn√
hn
echn

(
λ
4+ k2
Kn

+1

)
ϵn

γ

(
λ
1+ k

2
Kn

+ 1
)2
ϵn

 .

By Weyl’s law and our by assumptions (v), (iv) and (ii) in Theorem C.2.4, this is again

an o
(√

hn
n

)
term.

The terms Icn, I
d
n are treated similarly. In particular In = o

(√
hn
n

)
provided we are

in the event in which Theorem C.6.4 and Theorem C.6.5 apply. This happens with
probability greater than

1−Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n (λl + 1)−k)−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n )

≥ 1− (Q1 +Q6)ϵ
−6k
n exp(−min(Q2, Q7)nϵ

k+4
n )−Q3n exp(−Q4n (λl + 1)−k)

= 1− a1ϵ
−6k
n exp(−a2nϵk+4

n )− a3n exp(−a4n (λKn + 1)−k),

provided n is large enough, this concludes our argument for (C.13).

Proof of Corollary C.2.6. We know from Theorem C.2.4 that for n large enough, as-
sumptions (i), (ii), (iii) of Theorem C.2.2 hold for both the choices of the operators
e−t∆n and Pn on the graph Gn on an event An such that

P(An) ≥ 1− Cϵ−6k
n exp(− 1

C
nϵk+4

n )− Cn exp(− n

C(log(n))2q
).

For n ∈ N large enough we consider the set

Cn :=
⋂
n≥n

An.

Theorem C.2.2 says that, in the event Cn, for both the choices of the operators e−t∆n

and Pn we have that (C.5) and (C.6) hold true. Observe that

P(Cn) ≥ 1−
∑
n≥n

Cϵ−6k
n exp(− 1

C
nϵk+4

n )− Cn exp(− n

C(log(n))2q
),
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In particular, we have that

P ({u∗ and u∗ satisfy (C.5) and (C.6)}) ≥ P

(⋃
n∈N

Cn

)
= lim

n→+∞
P(Cn)

≥ 1− lim
n→+∞

∑
n≥n

(
Cϵ−6k

n exp(− 1

C
nϵk+4

n )

− Cn exp(− n

C(log(n))2q
)

)
.

(C.39)

We thus just need to show that

lim
n→+∞

∑
n≥n

(
Cϵ−6k

n exp(− 1

C
nϵk+4

n )− Cn exp(− n

C(log(n))2q
)

)
= 0,

in other words, we need to prove that the series is convergent. To this end, observe
that

Cϵ−6k
n exp(− 1

C
nϵk+4

n ) = C exp

(
−6k log(ϵn)−

1

C
nϵk+4

n

)
= C exp

(
log(n)

(
−6k

log(ϵn)

log(n)
− 1

C

nϵk+4
n

log(n)

))
= Cn

(
−6k

log(ϵn)
log(n)

− 1
C
nϵk+4
n

log(n)

)
.

In a similar way, we have

Cn exp(− n

C(log(n))2q
) = Cn

(
1− 1

C
n

(log(n))2q+1

)
.

To prove the convergence of the series appearing in (C.39) it is sufficient to show

lim
n→+∞

(
−6k

log(ϵn)

log(n)
− 1

C

nϵk+4
n

log(n)

)
= lim

n→+∞

(
1− 1

C

n

(log(n))2q+1

)
= −∞.

The second limit is easily treated. To treat the first limit, observe that by assumption
(C.12) in Corollary C.2.6 we have

lim
n→+∞

nϵk+4
n

log(n)
= +∞.

To conclude the proof, we show that

inf
n∈N

log(ϵn)

log(n)
> −∞. (C.40)

Indeed, we have

log(ϵn)

log(n)
=

log

(
ϵnn

1
k+4

log
1
k+4 (n)

)
log(n)

− 1

k + 4
+

log log(n)

log(n)
,

The first term is bounded from below because it is asymptotically nonnegative by
(C.12) . The last term converges to zero as n→ +∞. Thus (C.40) holds and the proof
is complete.

147 Jona Lelmi



APPENDIX C. CONVERGENCE OF THE DYNAMICS

C.5.3 MBO on manifolds

Proof of Theorem C.4.2. We let x̂ := expx(z(x)ν(x)). Then we have

1

2
+ ω1

√
h =

∫
Ω0

H(κh, x̂, y)ρ2(y)dVolM

By the Gaussian upper bounds on the heat kernel in Theorem C.6.2, we have that
dM(x̂, ∂Ω0) ≤ C̃

√
h, for a fixed constant C̃, independent of Ω0. In particular, we infer

from the asymptotic expansion of the heat kernel in Theorem C.6.3 that

1

2
+ ω1

√
h =

∫
Ω0

e−
d2M (x̂,y)

4κh

(4πκh)k/2
v0(x̂, y)ρ

2(y)dVolM +O(h). (C.41)

Since d(x̂, ∂Ω0) ≤ C̃h, and diam(Ω0) ≤ inj(M)
2

, we can rewrite the integral in (C.41) in
exponential coordinates around x̂, i.e.

1

2
+ ω1 ◦ expx̂

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
v0(x̂, expx̂(y))ρ

2(expx̂(y))dy +O(h),

where Ω̃0 := exp−1
x̂ (Ω0). Recalling that v0(x̂, x̂) = 1

ρ2(x̂)
, a Taylor expansion of the

function y 7→ v0(x̂, expx̂(y))ρ
2(expx̂(y)) around zero reveals that

1

2
+ ω1 ◦ expx̂

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
dy +O(

√
h).

In other words, there exists a bounded function ω2 on Rk such that

1

2
+ ω2

√
h =

∫
Ω̃0

e−
|y|2
4κh

(4πκh)k/2
dy.

In other words, we have that 0 ∈ ∂E, where

E =

{
v ∈ Rk| 1

2
+ ω2(v)

√
h ≤

∫
Ω̃0

e−
|v−y|2
4κh

(4πκh)k/2
dy

}
,

and thus the normal distance z(x) coincides with the normal distance of ∂Ω̃0 and E at
the point exp−1

x̂ (x) ∈ ∂Ω̃0. The conclusion of the proof is then obtained by applying
the following result.

Proposition C.5.1. Let Ω ⊂ Rk be a smooth open set. Let E be obtained by applying
one step of MBO with diffusion coefficient κ > 0, bounded drift ω : Rk → R and step
size h > 0. Let x ∈ ∂Ω. Let ν(x) be the outer unit normal to ∂Ω at x, define

z(x) :=

{
sup {l ∈ R−| x+ lν(x) ∈ E} if x ̸∈ E

inf {l ∈ R+| x+ lν(x) ̸∈ E} if x ∈ E.

Then we have
|z(x)| ≤ C̃h,

where the constant C̃ depends only on k, κ and the C0-norm of the second fundamental
form of ∂Ω.
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Proposition C.5.1 is a weaker version of [31, Theorem 4.1], which makes rigorous
the original ideas in [60]. In those works, the authors identify the exact first order
coefficient of the expansion of z(x) in h. Since we do not need this, we present a proof
of our weaker statement.

Proof of Proposition C.5.1. For ease of notation, we assume that κ = 1. We treat the
case when z(x) > 0, the other case is similar. First of all, we observe that z(x) ≤ C̃k

√
h,

for a constant C̃k depending just on the dimension k. We now choose a coordinate
system in which x = 0 and ν(x) = ek. We may find an open set U containing the
origin and a smooth function ζ : Rk−1 → R such that ζ(0) = 0, Dζ(0) = 0 and

U ∩ Ω =
{
v ∈ Rk| vk < ζ(v1, ..., vk−1)

}
.

Using the fact that z(x) = O(
√
h) and the exponential decay of the heat kernel, we

have that there exists a bounded function ω : Rk → R such that

1

2
+ ω((0, z(x)))

√
h =

∫
Rk−1

∫ ζ(y)+z(x)

−∞

e−
|y|2+|s|2

4h

(4πh)k/2
dsdy. (C.42)

Recalling that the Gaussian integrates to 1/2 over half-spaces, we get that (C.42) reads

ω((0, z(x)))
√
h =

∫
Rk−1

∫ ζ(y)+z(x)

0

e−
|y|2+|s|2

4h

(4πh)k/2
dsdy.

Since ζ(0) = 0 and Dζ(0) = y, there exists a bounded function ζ1 such that ζ(v) =
ζ1(v)|v|2. We also observe that

e−t ≥ 1− t, t ≥ 0.

In particular

ω((0, z(x)))
√
h ≥ 1

(4πh)k/2

∫
Rk−1

e−
|y|2
4h

∫ ζ(y)+z(x)

0

(
1− s2

4h

)
dsdy

=
1

(4πh)k/2

∫
Rk−1

e−
|y|2
4h

(
ζ1(y)|y|2 + z(x)− 1

12h

(
ζ1(y)|y|2 + z(x)

)3)
dy.

By using the change of variable y →
√
hy we obtain

ω((0, z(x))
√
h ≥ 1

h1/2

(
z(x) +

q1
h
z(x)3 + q2h+ q3h

2 + q4z(x)
2
)
,

where q1, q2, q3, q4 are coefficients depending on the first six moments of the function
y 7→ e−|y|2 . By multiplying both sides by

√
h we get

ω((0, z(x))h−
(
q2h+ q3h

2 + q4z(x)
2
)
≥ z(x) +

q1
h
z(x)3.

By applying [31, Lemma 6.1] (which holds true even if we additionally consider a
bounded drift ω), we have that z(x) = O(h3/2). In particular, for h small enough

1

2
< 1− q1

h
z(x)2,

in other words

2ω((0, z(x))h− 2
(
q2h+ q3h

2 + q4z(x)
2
)
≥ z(x) ≥ 0,

from which we conclude that z(x) = O(h).
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Proof of Corollary C.4.3. Denote by C̃r,x0 the constant obtained by applying Theo-
rem C.4.2 to Ω0 = Br(x0). Since C̃r,x0 depends on Ω0 only through the C0 norm of
the second fundamental form Sr,x0 of ∂Br(x0), it is sufficient to show that this can be
bounded independently of R

2
≤ r ≤ R and x0 ∈M . We clearly have that

(0, diam(M))×M ∋ (r, x0) 7→ ∥Sr,x0∥C0

is a continuous function. It is thus bounded on the compact set

W :=

{
(r, x) ∈ (0,+∞)×M :

R

2
≤ r ≤ R, x ∈M

}
.

Proof of Theorem C.4.4. For ease of notation, let us assume that κ = 1. We start by
observing that ∫

M\B
h
1
4
n

(zhn )

H(hn, zhn , y)ξ(y)dVolM(y) = o
(√

hn

)
.

This is proved by using the Gaussian bounds from Theorem C.6.2, as we did in [50,
Theorem 3, Step 2]. In particular, both in (i) and in (ii) of Theorem C.4.4 we can
replace the domain of integration with

{ψhn(shn − hn, ·) ≥ 0} ∩B
h

1
4
n

(zhn).

In this way, the sequence of integrals can be computed in normal coordinates around
zhn , i.e.,∫

{ψhn (shn−hn,·)≥0}∩B
h
1
4
n

(zhn )

H(hn, zhn , y)ξ(y)dVolM(y)

=

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

H(hn, zhn , expznn (y))ξ(expznn (y))
√
det(g)dy,

where we set
ψ̃hn(t, y) := ψhn(t, expzhn (y)), y ∈ B inj(M)

2

(0).

Using the asymptotic expansion for the heat kernel in Theorem C.6.3, it is easy to see
that ∫

{ψ̃hn (shn−hn,·)≥0}∩B
h
1
4
n

(0)

H(hn, zhn , expznn (y))ξ(expznn (y))
√
det(g)dy

=

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
v0(zhn , expzhn (y))ξ(expznn (y))

√
det(g)dy

+ o(
√
hn).

In particular, in both (i) and (ii) in Theorem C.4.4 the integrals may be substituted
with ∫

{ψ̃hn (shn−hn,·)≥0}∩B
h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
v0(zhn , expzhn (y))ξ(expznn (y))

√
det(g)dy.
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These integrals may be furthermore decomposed into the sums In + IIn,

In :=

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
dy,

IIn :=

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
(wn(y)− 1)dy,

where we define

wn(y) := v0(zhn , expzhn (y))ξ(expznn (y))
√
det(g).

We claim that

lim
n→+∞

IIn =

{
0 if ∇ψ(s, z) = 0,

1
2
√
π|∇ψ(s,z)|⟨

∇ξ
ξ
(z),∇ψ(s, z)⟩ otherwise.

(C.43)

Using (C.48) we see that

wn(y) =

√√√√ ξ(expznn (y)) det(g)

ξ(zhn) det(dexp−1
zhn

(y)(expzhn ))
.

In particular, denoting ξ̃n = ξ ◦ expzhn and Dn := det(dexp−1
zhn

(y)(expzhn )) we get

Dwn =
1

2wn(y)

(
(Dy ξ̃n) det(g) + ξ̃nDy det(g))ξ̃n(0)Dn − ξ̃n det(g)ξ̃n(0)DyDn

)
ξ̃n(0)2D2

n

.

We now recall that, in normal coordinates g(zhn) = Id, Dg(zhn) = 0, in particular

Dwn(zhn) =
1

2

Dξ̃n

ξ̃n
(0),

and by a Taylor expansion

Dwn(y) = 1 +
1

2

Dξ̃n

ξ̃n
(0) · y +O(|y|2);

in particular, we infer that

IIn =
1

2

Dξ̃n

ξ̃n
(0) ·

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
ydy +O(hn).

Now we claim that

lim
n→+∞

1

2
√
hn

Dξ̃n

ξ̃n
(0) ·

∫
{ψ̃hn (shn−hn,·)≥0}∩B

h
1
4
n

(0)

e−
|y|2
4hn

(4πhn)k/2
ydy (C.44)

=
1

2
√
π|∇ψ(s, z)|

Dξ̃

ξ̃
(0) ·Dψ̃(s, 0),
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where ξ̃ = ξ ◦ expz. Of course (C.44) gives (C.43).
To see that (C.44) holds, we start by changing variable in the integral by setting

y = y√
hn
, which gives that the argument in the limit equals

1

2

Dξ̃n

ξ̃n
(0) ·

∫
{y| ψ̃hn (shn−hn,

√
hny)≥0}∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
ydy.

We now let Rn be a sequence of orthogonal matrices such that RT
ne1 = Dξ̃n(0)

|Dξ̃n(0)|
and

without loss of generality we assume that the sequence converges to an orthogonal
matrix R. We change variable by setting y = RT

ny and we get that the argument of
the limit becomes

|Dξ̃n(0)|
2

∫
Cn∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
y1dy,

where we define

Cn :=
{
y ∈ Rk| ψ̃hn(shn − hn, Rn

√
hny) ≥ 0

}
.

We now observe that, by Taylor expanding ψ̃hn(thn − ·, ·) around (0, 0)

ψ̃hn(shn − hn, Rn

√
hny) =δhn +

√
hnR

T
nDψ̃hn(shn , 0) · y

− hn∂sψ̃hn(shn , 0) + o(|y|2 + h2n),

thus

Cn =

{
y ∈ Rk| δhn√

hn
+RT

nDψ̃hn(shn , 0) · y

−
√
hn∂sψ̃hn(shn , 0) + o(

√
hn|y|2 + h

3
2
n ) ≥ 0

}
.

Recalling assumption (C.17) this re-reads

Cn =

{
y ∈ Rk| RT

nDψ̃hn(shn , 0) · y + o(1) ≥ 0

}
.

Observe also that

RnDξ̃n(0) = |Dξ̃n(0)|e1
=
√

⟨∇ξ(zhn),∇ξ(zhn)⟩e1 →
n→+∞

√
⟨∇ξ(z),∇ξ(z)⟩e1,

but also

RnDξ̃n(0) = Dξ̃ ◦RT
n (0) = Dξ ◦ expzhn ◦R

T
n (0)) →

n→+∞
RD(ξ ◦ expz)(0).

In other words we must have Dξ̃(0) = |Dξ̃(0)|RT e1. In particular
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lim
n→+∞

|Dξ̃n(0)|
2

∫
Cn∩B

h
− 1

4
n

(0)

e−
|y|2
4

(4π)k/2
y1dy =

|Dξ̃(0)|
2

∫
{y| RTDψ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
y1dy

=
|Dξ̃(0)|

2

∫
{y| Dψ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
Ry · e1dy

=
1

2

Dξ̃

ξ̃
(0) ·

∫
{y| Dψ̃(s,0)·y≥0}

e−
|y|2
4

(4π)k/2
ydy.

If ∇ψ(t, z) = 0, then the last integral is zero, being component-wise the integral
over the whole space of on odd-function. Otherwise we change variable according to
y = OTy, where O is an orthogonal matrix such that ODψ̃(s, 0) = |Dψ̃(s, 0)|e1, which
gives that the last integral equals

1

2

ODξ̃

ξ̃
(0) ·

∫
{y| y1≥0}

e−
|y|2
4

(4π)k/2
ydy =

1

2

ODξ̃

ξ̃
(0) · e1

1√
π

=
1

2
√
π|Dψ̃(s, 0)|

Dξ̃

ξ̃
(0) ·Dψ̃(s, 0).

We are now in a position to prove (i) and (ii) in Theorem C.4.4.
Item (i). By the discussion above, the left hand side of (C.18) may be substituted

with

lim inf
n→+∞

1√
hn

(
1

2
− In − IIn

)
≥ lim inf

n→+∞

1√
hn

(
1

2
− In

)
− 1

2
√
π|∇ψ(s, z)|

⟨∇ξ
ξ
(z),∇ψ(s, z)⟩,

where we used (C.43) in the second line. To estimate

lim inf
n→+∞

1√
hn

(
1

2
− In

)
we can use [6, Proposition 4.1] applied with

(th, xh) = (sh, 0),

(t, x) = (s, 0),

ϕh(t, ·) = ψ̃h(t, ·).

The only difference is that here we do not assume that ϕ(th, xh) = 0, but ϕ(th, xh) =
o(
√
h) - one can check that the result holds true also with this modification by the

same proof of [6, Proposition 4.1]. In particular, we get

lim inf
n→+∞

1√
hn

(
1

2
−
∫
{ψhn (thn−hn,·)≥0}

H(hn, zhn , y)ξ(y)dVolM

)
≥ 1

2
√
π|Dψ̃(s, 0)|

(
∂tψ̃ +∆ψ̃ − Dψ̃ ·D2ψ̃Dψ̃

|Dψ̃|2
− Dξ̃

ξ̃
·Dψ̃

)
,
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which is equal to the right hand side of (C.18) because we are using exponential
coordinates around z (recall our convention ∆ = −

∑k
i=1 ∂

2
ii).

Item (ii). Once again, by the above discussion, we can assume that

1

2
− In ≤ o(

√
hn),

and the result follows by applying [6, Proposition 4.1] with

(th, xh) = (sh, 0),

(t, x) = (s, 0),

ϕh(t, ·) = ψ̃h(t, ·).

In this case, there are two differences from the original version [6, Proposition 4.1]. First
of all, we again do not assume that ϕh(th, xh) = 0, but we assume ϕh(th, xh) = o(

√
h).

Then, we assume that 1
2
− In ≤ o(

√
hn) and not the stronger 1

2
− In ≤ 0. But a quick

inspection of the proof of [6, Proposition 4.1] reveals that these changes are irrelevant
for the argument to work.

C.6 Appendix

C.6.1 Results on weighted manifolds

Hereafter we collect some results about weighted Laplacians and heat kernels on closed
manifolds. Let (M, g) be a k-dimensional, compact Riemannian manifold endowed with
a measure µ := ξVolM , with ξ ∈ C∞(M), ξ > 0. We denote by ∆ξ the associated
Laplacian, which is defined on f ∈ C∞(M) as

∆ξf := −1

ξ
div (ξ∇f) .

We denote by H the corresponding heat kernel, i.e., H is a real valued function defined
on (0,+∞)×M ×M such that for any u ∈ L2(M) the function

e−t∆ξu(x) := T (t)u(x) =

∫
M

H(t, x, y)u(y)dµ(y),

defined for (t, x) ∈ (0,+∞)×M , is the unique solution to the Cauchy problem{
∂tv = −∆ξv in (0,+∞)×M,

v(0, x) = u(x) on M,

where the initial value at t = 0 is attained in the sense that

lim
t↓0

e−t∆ξu = u in L2(M).

We will use the following results.

Theorem C.6.1. Let M , ξ be as above. Let f be an L2(ξ)-normalized eigenfunction
of ∆ξ corresponding to the eigenvalue λ, then for each integer m ≥ 0

∥f∥Cm(M) ≤ CM,m

(
λm+1+ k

2 + 1
)
.
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Theorem C.6.2. LetM , ξ be as above. There exists constants Q1, Q2, Q3, Q4, Q̂1, Q̂2 >
0 such that for every t > 0 and all x, y ∈M ,

Q1

µ(B√
t(x))

e
− d2M (x,y)

Q2t ≤ H(t, x, y) ≤ Q3

µ(B√
t(x))

e
− d2M (x,y)

Q4t . (C.45)

|∇xH(t, x, y)| ≤ Q̂1√
tµ(B√

t(x))
exp

(
−d

2
M(x, y)

Q̂2t

)
. (C.46)

Theorem C.6.3. LetM , ξ be as above. There exist functions vj ∈ C∞(M×M), j ∈ N,
such that for every N > l + k

2
there exists a constant C̃N <∞ such that∣∣∣∣∣∣∇l

H(t, x, y)− e−
d2M (x,y)

4t

(4πt)k/2

N∑
j=0

vj(x, y)t
j

∣∣∣∣∣∣ ≤ C̃N t
N+1− k

2 , (C.47)

provided d(x, y) ≤ inj(M)
2

. Moreover we have

v0(x, y) =
1√

ξ(x)ξ(y) det(dexp−1
x (y) expx)

. (C.48)

Theorem C.6.1 follows by the Sobolev embedding theorem and the L2-regularity
theory for elliptic equations on manifolds. Theorem C.6.2 follows from the Li–Yau
inequality for weighted manifolds [75]. The asymptotic expansion in Theorem C.6.3
follows by constructing the heat kernel by means of the parametrix method: this
construction is technical and we refer to [71], where this is carried out for the case
ξ = 1. Here we just sketch the first part of the construction for a general density ξ,
which gives (C.48). The idea is that when x, y are close enough, say d(x, y) < inj(M)

2
,

a good approximation for the heat kernel should be given by

HN(t, x, y) := Gt(x, y)
(
v0(x, y) + ...+ tNvN(x, y)

)
, (C.49)

for smooth functions vj and t > 0. Here

Gt(x, y) :=
e−

d2M (x,y)

4t

(4πt)k/2
.

Since the Ansatz (C.49) should be an approximation of the heat kernel, we would like
to have

0 = ∂tHN +∆ξHN , (C.50)

where ∆ξ denotes the weighted Laplacian with respect to the y-variable. We now
compute the right hand side of the above equation by using exponential coordinates
around x: we denote them by (r, θ) ∈ [0, R)× Sk−1. Observe that

∂tHN = ∂tGt(v0 + ...+ tNvN) +Gt(v1 + ...+NtN−1vN)

=

(
r2

4t2
− k

2t

)
Gt(v0 + ...+ tNvN) +Gt(v1 + ...+NtN−1vN).

155 Jona Lelmi



APPENDIX C. CONVERGENCE OF THE DYNAMICS

Furthermore

∆ξHN = Gt

(
∆ξv0 + ...+ tN∆ξvN

)
+∆ξGt(v0 + ...+ tNvN)− 2⟨∇Gt,

(
∇v0 + ...+ tN∇vN

)
⟩.

Using Gauss’ Lemma and the fact that Gt is independent of θ we get

2⟨∇Gt,
(
∇v0 + ...+ tN∇vN

)
⟩ = 2∂rGt(∂rv0 + ...+ tN∂rvN)

= −r
t
Gt(∂rv0 + ...+ tN∂rvN).

We also observe that by definition of ∆ξ and by using again Gauss’ Lemma and the
independence of Gt from θ

∆ξGt = ∆Gt − ⟨∇ξ
ξ
,∇Gt⟩ = ∆Gt +

r

2t

∂rξ

ξ
Gt.

We define
D(y) := det(dexp−1

x (y) expx).

Using the expression of the Laplacian in spherical coordinates and the invariance of
Gt with respect to θ we get

∆Gt = −∂
2Gt

∂r2
− ∂rGt

(
∂rD

D
+
k − 1

r

)
= −

(
r2

4t2
− k

2t

)
Gt +

r

2t

∂rD

D
Gt.

Putting things together we have

∂tHN +∆ξHN = Gt

(
(v1 + ...+NtN−1vN)− (∆ξv0 + ...tN∆ξvN)

+
r

2t
∂r log(Dξ)(v0 + ...+ tNvN) +

r

t
(∂rv0 + ...+ ∂rvN))

)
.

Although we cannot get (C.50) exactly, we can choose vj in such a way that

∂tHN +∆ξHN = Gtt
N∆ξvN .

In other words, we choose the coefficients in such a way that

r

2t
∂r log(Dξ)v0 +

r

t
∂rv0 = 0, (C.51)

jtj−1vj − tj−1∆ξvj−1 + tj−1 r

2
∂r log(Dξ)vj + rtj−1∂rvj = 0, for 1 ≤ j ≤ N.(C.52)

Once one solves (C.51), one can show inductively that (C.52) admits a smooth solution
vj. It is easily seen that (C.51) can be solved explicitly to give

v0(x, y) =
1√

ξ(x)ξ(y) det(dexp−1
x (y) expx)

.

From here, the construction of the heat kernel and the estimate (C.47) follow verbatim
as in [71].
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C.6.2 Results on random geometric graphs

In this subsection we use the setting and the notation of Section C.2, with the points
{xi}+∞

i=1 being given by i.i.d. random points onM , distributed according to a probability
distribution ν = ρVolM ∈ P(M), with ρ ∈ C∞(M), ρ > 0. The following two results
are proved in [13, 14] for the unnormalized graph Laplacian, but the proof of the
statements extends when we work with the random walk Laplacian. Hereafter, given
l ∈ N, we set

γl := inf
j<l,j∈N

(λj+1 − λj).

Theorem C.6.4. In the above-mentioned setting, if additionally, the eigenvalues of
∆ρ2 are simple, then for every l ∈ N we have that with probability greater than

1−Q1ϵ
−6k
n exp(−Q2nϵ

k+4
n )−Q3n exp(−Q4n (λl + 1)−k)

we have for every l ≤ l

|λln − κ(η)λl|+max
z∈Vn

∣∣∣∣∣vln(z)− fl(z)

C
1/2
1

∣∣∣∣∣ ≤ Q5

∥fl∥C3(M)

γl
ϵn.

Theorem C.6.5. In the above-mentioned setting, if n is large enough, with probability
greater than 1−Q6ϵ

−k
n exp(−Q7nϵ

k+2
n ), we have that

max
z∈Vn

|dn,ϵn(z)− C1ρ(z)| ≤ Q8ϵn.

We also recall the following result, which may be easily derived from [33, Theorem
2].

Theorem C.6.6. Let (M, g) be a k-dimensional closed Riemannian manifold. Let
ρ ∈ C∞(M), ρ > 0 such that ν := ρVolM ∈ P(M). Let {Xi}i∈N be i.i.d. random
points in M distributed according to ν and let νn := 1

n

∑n
i=1 δXi be the associated

empirical measures. Then there is a constant C > 0 such that almost surely there exist
transport maps Tn such that (Tn)#ν = νn andlim supn→+∞

n1/2 supx∈M dM (x,Tn(x))

log3/4(n)
≤ C if k = 2,

lim supn→+∞
n1/k supx∈M dM (x,Tn(x))

log1/k(n)
≤ C if k ≥ 3.

(C.53)
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