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Summary

We develop and analyze a numerical two-scale optimization scheme for structural shape
optimization. Whenever cost functionals, such as the elastic energy, are subject to minimization,
while meeting a constraint on the available material, the emergence of microstructures can be
observed. The costs are constantly reduced by fine-scale structures on a decreasing length
scale δ. For an optimum, a generalized notion is required in the limiting case δ → 0, where
materials are macroscopically characterized by an effective density θ ∈ [0, 1] and an effective
behavior only. These are governed by the concrete realization of the underlying microstructure
and there are provable optimal, yet nonunique, constructions. Being mostly of theoretical
interest, they lack a physical counterpart, which could serve as guidance for manufacturing
real materials. The goal of this work is to establish a flexible algorithmic method, that can
assess the approximation quality of alternative, simple microstructure models.

A numerical simulation and optimization can only be computationally feasible when distinct
length scales are treated in a coupled but separated manner. This work builds upon the intuitive
idea of pointwise probing the reaction of the underlying microstructure. A linearization of
the macroscopic displacement serves as an affine-periodic boundary condition for a locally
attached cell problem, whose solution is used as the microscopic correction. The intuitive
approach is rigorously derived and linked to well-known concepts of homogenization, two-scale
convergence and the heterogeneous multiscale method (HMM). This allows to adopt results
on the approximation quality of the two-scale approach and its discretization.

The deformation of the elastic bodies is modeled via the partial differential equations of
linearized elasticity. Within the microscopic cells, the shapes of perforations, parametrized
by few degrees of freedom, will be subject to optimization. For this purpose, the shape
derivative will be computed analytically in the two-scale context via an adjoint approach. Upon
discretization, a finite dimensional optimization problem with constraints on the microscopic
geometries and the globally available amount of material is achieved. The numerical scheme
uses a finite element discretization on the macroscale and a boundary element method on
the microscale. For the optimization problem, an SQP-algorithm of the software Ipopt is
employed.

At first we consider synthetic problems that allow to study the behavior of optimized
microstructures and identify their limits with respect to optimality. On the basis of classical
shape optimization problems, we then compare various microstructures among each other and
study the gap towards optimality, realized by the analytically optimal sequential lamination
model. Furthermore we discuss the influence of numerical parameters and algorithmic speed-up
measures.

Next the two-scale scheme is applied to problems in risk averse stochastic optimization,
where multiple loads with different probabilities of occurrence need to be taken into account
in an appropriate manner. In view of the appearing highly nonlinear functionals, the scheme
proves to be robust. Furthermore the concept of stochastic dominance is introduced, which
allows to compare results with single-scale optimized shapes.
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Summary

Finally we derive a posteriori error estimates for the two-scale scheme, following the dual
weighted residual (DWR) approach. They are employed to adaptively refine the macroscopic
computational grid, which allows to achieve results comparable to uniform refinement with
drastically reduced computational cost. The adaptive scheme is used both with the analytical
sequential lamination model and the numerical two-scale approach. Furthermore an error
estimator is developed, which allows to locally assess the modeling error of the simple
microstructures with respect to optimal materials.

Parts of this work have already been published in:
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B. Geihe and M. Rumpf. “A posteriori error estimates for sequential laminates in shape
optimization.” In: Discrete and Continuous Dynamical Systems - Series S 9.5 (2016),
pp. 1377–1392. doi: 10.3934/dcdss.2016055.

S. Conti, B. Geihe, M. Rumpf, and R. Schultz. “Two-Stage Stochastic Optimization Meets
Two-Scale Simulation.” English. In: Trends in PDE Constrained Optimization. Ed. by
G. Leugering et al. Vol. 165. International Series of Numerical Mathematics. Springer
International Publishing, 2014, pp. 193–211. doi: 10.1007/978-3-319-05083-6_13.

B. Geihe, M. Lenz, M. Rumpf, and R. Schultz. “Risk averse elastic shape optimization
with parametrized fine scale geometry.” In: Mathematical Programming 141.1-2 (2013),
pp. 383–403. doi: 10.1007/s10107-012-0531-1.

vi

https://doi.org/10.1051/m2an/2017004
https://doi.org/10.3934/dcdss.2016055
https://doi.org/10.1007/978-3-319-05083-6_13
https://doi.org/10.1007/s10107-012-0531-1


Contents

Summary v

Notation xi

1. Introduction 1

2. Literature study on shape optimization 9
2.1. Analytical results on optimal shapes . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Numerical shape optimization approaches . . . . . . . . . . . . . . . . . . . . 11
2.3. Multiscale methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5. Stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Fundamentals in elasticity 31
3.1. Derivation of a linearized model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2. Properties of elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3. Solution of the elasticity problem . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5. Periodic homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1. Derivation of the homogenized equation . . . . . . . . . . . . . . . . . 41
3.5.2. Properties of the homogenized elasticity tensor . . . . . . . . . . . . . 43
3.5.3. Remarks as to rigorous justifications . . . . . . . . . . . . . . . . . . . 44

3.6. Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1. Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.2. Boundary element method . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. Fundamentals in shape optimization 53
4.1. PDE constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1. Shape calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2. Lagrangian calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.3. Shape derivative of cost functionals . . . . . . . . . . . . . . . . . . . . 57
4.1.4. Application to the compliance cost functional . . . . . . . . . . . . . . 57

4.2. Optimal shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1. Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2. Bounds on the elastic energy . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3. Sequential lamination model . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4. Further results on optimal microstructures . . . . . . . . . . . . . . . . 66

vii



Contents

5. A two-scale approach 71
5.1. Derivation of the two-scale model . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2. Intuitive idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3. Formal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2. Application of the two-scale model . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1. Solving of the elasticity problem . . . . . . . . . . . . . . . . . . . . . 75
5.2.2. Optimization of microscopic geometries . . . . . . . . . . . . . . . . . 77
5.2.3. Numerical treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3. Relation to other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1. Periodic homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2. Heterogeneous multiscale method . . . . . . . . . . . . . . . . . . . . . 80
5.3.3. Works by Barbarosie and Toader . . . . . . . . . . . . . . . . . . . . . 81

5.4. Investigated microstructure models . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1. Ellipsoidal shaped perforations . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2. Rods with fixed orientation . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3. Rotating orthogonal rods . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5. Aspects of practical realization . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1. Discrete spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2. Implementation of the two-scale elasticity problem . . . . . . . . . . . 87
5.5.3. Implementation of the optimization algorithm . . . . . . . . . . . . . . 88
5.5.4. Implementation of the sequential lamination algorithm . . . . . . . . . 88

5.6. Computational speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.1. Exploitation of matrix structure . . . . . . . . . . . . . . . . . . . . . 89
5.6.2. Exploitation of linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.3. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.4. Microstructure look-up table . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.5. Notes on the microscopic problem . . . . . . . . . . . . . . . . . . . . 91

6. Numerical experiments for the two-scale model 93
6.1. Results for prescribed constant strains . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1. Setting of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.2. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.3. Numerical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2. Results for a classical shape optimization problem . . . . . . . . . . . . . . . 104
6.2.1. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2. Asymptotic analysis of macroscopic discretization . . . . . . . . . . . . 109
6.2.3. Influence of microscopic discretization . . . . . . . . . . . . . . . . . . 111

6.3. Inspection of speed-up measures . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.1. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2. Microstructure look-up table . . . . . . . . . . . . . . . . . . . . . . . 113

6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7. Stochastic Shape Optimization 117
7.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2. Stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1. Definition of stochastic cost functionals . . . . . . . . . . . . . . . . . 119

viii



Contents

7.2.2. Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.3. Numerical results for optimization of stochastic cost functionals . . . . 123

7.3. Stochastic dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.1. Definition of stochastic dominance . . . . . . . . . . . . . . . . . . . . 130
7.3.2. Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.3. Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8. Adaptive schemes for optimal microstructures 137
8.1. Derivation of weighted error estimates . . . . . . . . . . . . . . . . . . . . . . 137

8.1.1. Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2. Application to the sequential lamination model . . . . . . . . . . . . . . . . . 141

8.2.1. A priori estimation of weights . . . . . . . . . . . . . . . . . . . . . . . 142
8.2.2. Numerical approximation of weights . . . . . . . . . . . . . . . . . . . 145
8.2.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.3. Application to the two-scale microstructure model . . . . . . . . . . . . . . . 158
8.4. Modeling error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9. Conclusion 177

A. Adaptive schemes using triangular meshes 181

B. Variation of the two-scale functional 183
B.1. Two-scale variational framework . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2. Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.3. Shape derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.4. Application to the compliance functional . . . . . . . . . . . . . . . . . . . . . 186

B.4.1. Adjoint problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.4.2. Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.4.3. Shape derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C. Software design 187

Acknowledgements 189

Bibliography 191

ix





Notation

Symbols

N natural numbers, including 0
Z integers
R real numbers
R+ positive real numbers, including 0
C complex numbers
Re real part of a complex number
d dimension, mostly d = 2 unless otherwise noted
δij Kronecker delta, δij = 1 if i = j, δij = 0 else
Rd Euclidean vector space of dimension d
vi i-th component of a vector v ∈ Rd

|v| l2 norm of a vector v ∈ Rd: |v| =
√∑d

i=1 v
2
i

ei i-th canonical basis vector of Rd, (ei)j = δij

1 vector v ∈ Rd with vi = 1 for i = 1, . . . , d
Rd×d square matrices of dimension d× d
Rd×d

sym symmetric matrices in Rd×d

Mij entry of matrix M in i-th row and j-th column
∥M∥F Frobenius norm of matrix M : ∥M∥F =

√∑
i,j M

2
ij

SO(d) special orthogonal group
Q rotation matrix in SO(d)

O domain used for elastic objects, subset of Rd

Γ boundary of O
ΓD, ΓN, ΓF Dirichlet, Neumann, and free part of Γ, see Section 3.1
n outer normal of O
D circumjacent working domain, subset of Rd

Y unit cell used for microscale problem, possibly with holes, see Section 3.5
DY circumjacent working domain for cells, mostly the unit cell [0, 1]2
δ microscopic scale, see Section 3.5
θ volume of Y, see Section 3.4,

equals local material density, see Section 4.2

V universal function space
ϑ universal function from a space depending on context
dm

dmx total derivative of order m w. r. t. x (m omitted for m = 1)
∂m

x partial derivative of order m w. r. t. x (m omitted for m = 1)
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Notation

D Jacobian, Dϑ =
(
∂xj

ϑi

)
ij
∈ Rn×m for ϑ : Rm → Rn

Lp space of functions with Lebesgue integrable p-th power of absolute value
Wm,p Sobolev space of Lp integrable functions with mixed weak partial derivatives

up to degree m in Lp

∥ϑ∥m,p,O Wm,p-norm of a function ϑ:

∥ϑ∥m,p,O =
{ ∑

|α|≤m

(∫
O |∂α ϑ|p

) 1
p , for 1 ≤ p <∞

max|α|≤m ess supx∈O |∂α ϑ(x)| , for p =∞
with multi-index α ∈ Nd, ∂α =

(
∂α1

x1
, . . . , ∂αd

xd

)
, |α| = ∑d

i=1 αi

|ϑ|m,p,O Wm,p-seminorm of a function ϑ, involving only derivatives of highest order,
i. e. |α| = m in previous definition

Hm shortcut for Wm,2

H1
ΓD

space of functions in H1 with vanishing trace on ΓD, see Section 3.3
H1

per space of functions in H1, periodic on given domain, see Section 3.4
H1

per,0 space of functions in H1, periodic on given domain with vanishing integral
mean, see Section 3.4

Cm space of functions with smooth derivatives up to order m
F,ϑ[ϑ](v) Gâteaux derivative of functional F in direction v:

F,ϑ[ϑ](v) = limδ→0 δ
−1(F [ϑ+ δv]− F [ϑ])

u solution of elasticity problem, see (3.10)
εx[u] strain tensor 1

2
(
Du+ Du⊤) with derivatives w. r. t. x, see Section 3.1

εij symmetric basis matrix with (εij)kl = 1
2 (δikδjl + δjkδil)

σ stress tensor, see Section 3.1
C elasticity tensor, see Section 3.1
C∗ effective elasticity tensor, see (3.26)
p dual solution, see Section 4.1.2
R reconstruction operator for microscopic quantities, see Section 5.1.3

q vector of coefficients defining microstructure, see Section 5.2.2
l number of coefficients
ϱ, m, θ parameters of sequential lamination model, see Section 4.2.3
χA characteristic function of set A: χA : A→ {0, 1},

χA(x) = 1 if x ∈ A, χA(x) = 0 otherwise
H Heaviside function: H : R→ {0, 1}, H(x) = χ{x>0}(x), see Section 7.2.1
dO shape derivative w. r. t. domain O, see Section 4.1.1

J arbitrary cost functional, see (4.1)
Jc compliance cost functional, see (4.11)
Jtotal total free energy, see (3.12)
L Lagrangian, see (4.2)
Q stochastic cost functionals, see Section 7.2.1

Mh computational grid with mesh width h, see Section 3.6.1
E finite element E ∈Mh, see Section 3.6.1
Pk space of polynomials of maximum degree k, see Section 3.6.1
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V(k)
h finite element space of globally continuous, piecewise polynomials of order

k, see Definition 3.20
I(k)

h Lagrange interpolating polynomial of order k (in each dimension), see
Definition 3.21

Nh degrees of freedom: set of nodes on which discrete values are prescribed
N number of degrees of freedom N := |Nh|, see Section 3.6.1
Uad set of admissible shapes, see Section 4.1.2

Sub- and superscripts

h discretized quantity on gridMh with mesh size function h, see Section 3.6.1
δ quantity with multiple, fully resolved scales, see Section 3.5
∗ macroscopic, effective part of a multiscale quantity, see Section 3.5
~ microscopic, periodic part of a multiscale quantity, see Section 5.1.3
ˆ fundamental solutions, see Section 3.6.2

L quantity in context of the sequential lamination model, e. g. uL

M quantity in context of the two-scale microstructure model, e. g. uM

opt optimized quantity

Operators

· scalar product of two vectors a, b ∈ Rd: a · b =
∑d

i=1 aibi

: inner product of two matrices A,B ∈ Rd×d: A : B =
∑d

i,j=1 AijBij
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CHAPTER 1

Introduction

Shape optimization is a very natural, yet highly complex phenomenon that can be witnessed
in various facets of everyday life. Whenever a body is subject to any kind of outer forcing,

it often has a beneficially adapted shape in order to withstand. At the same time, consuming
as few material as possible comes in as a natural constraint, for saving on weight and material,
or functional reasons. Out of these contradictory goals, fascinating structures emerge. They
can be seen in diverse environments and on highly varying length scales. Examples include
advanced engineering, as in bridges, ogives in classical architecture, patterns in nature and
biology, as in bones or vascular tissue, and self-similar microscopic arrangements of atoms in
crystalline grids.

From a mathematical point of view, shape optimization is by no means less interesting or
complex. An early instance is the Dido problem dating back to antiquity. Told in Virgil’s
Aeneid, Dido was allowed to buy as much land as she could enclose with a bull’s hide. Phrased
mathematically, the task was to find a shape with largest enclosed area among all with a
given, fixed perimeter. The solution being a circle was already proven by the Greek in an
accepted way at that time. However it lasted until the 19th century and the advent of the
calculus of variations that a rigorous proof was available [86]. This historical example is meant
to give evidence that shape optimization problems are often easily comprehensible but hard
to tackle mathematically.

Motivation. The special nature of shape optimization lies in the variability of the domain
itself. This comes along with lacking regularity in the space of the degrees of freedom. In
addition, practical shape optimization problems, governed by a state equation and a constraint
on the amount of material, turn out ill-posed. An optimal shape does not exist and instead,
microstructures, formed on infinitesimally small length scales, allow to incessantly decrease
typically chosen target functionals. This is the practical manifestation of lacking compactness
in theory and has fostered novel research areas and methods. By virtue of relaxation, the
classical notion of a shape comprising bulk and void regions is left behind and intermediate
material densities are allowed as limiting cases of infinitesimally small microstructures. The
theory of homogenization allows to eliminate scales and define corresponding effective material
properties on the macroscale. Here an intriguing fact is that the set of effective tensors,
known as G-closure, lacks an algebraic description. As such it cannot be easily searched
for minimizers of specific functionals. Moreover optimal candidates are not unique and can
possibly be obtained via different microscopic constructions.

A numerical scheme for shape optimization will naturally adopt the creation of fine-scale
structures, but is practically limited by the resolution of the computational grid. An illustrating
example is shown in Figure 1.1. Here a two dimensional domain serves as a model of an

1



Chapter 1. Introduction

Figure 1.1.: Shape optimization of 45× 45 ellipsoidal perforations in an elastic plate subject
to shearing loads, from [183].

elastic plate, fixed at the bottom and subject to a horizontal shearing load at the top. Its
rigidity is to be optimized and a numerical scheme adapts the elongation and orientation of
the ellipsoidal perforations while maintaining a constraint on the overall area cut out. From
the result two fundamental insights can be drawn. First, the distribution of invested material
demarcates different areas. The resulting global shape is reminiscent of a supporting structure.
Second, within the identified areas the perforations establish diverse periodic patterns. A
further numerical optimization, with more ellipsoidal perforations allotted, changes the result
in two aspects. First, the interfaces between the identified areas become sharper. Second,
the periodic patterns remain, but on a smaller scale, corresponding to the refinement w. r. t.
the allotted perforations. Both consequences improve the shape in terms of the optimization
problem.

The fundamental idea of the two-scale shape optimization model developed in this work is
to decouple the observed behaviors. Thereby shapes, characterized by distinct amounts of
invested material, and their demarcating interfaces are realized on a macroscopic scale. Fine
perforations are considered and optimized on a separate microscopic scale, where periodicity
and scale invariance allow to remove the limitation by the computational grid. The established
numerical scheme is easily parallelized and makes use of simple geometries, where only the
boundaries need to be discretized. This results in an efficient and highly versatile framework
for the exploration of optimal microstructures. In contrast to purely theoretical constructions,
realistic material models are obtained, which could actually be manufactured.

The two-scale approach. Starting on the macroscopic scale, a linearized elasticity problem
for given boundary conditions is to be solved. Its weak solution can be characterized as the
unique minimizer of the total free energy

Jtotal [O;u] := 1
2a(O;u, u)− l(O;u)

:= 1
2

∫
O
Cε[u] : ε[ϑ] dx−

∫
O
f · ϑ dx−

∫
ΓN

g · ϑ da(x) ,
(1.1)

where O is the domain, f and g denote volume forces on O and surface loads on a part ΓN of
the boundary, u is the unknown displacement, ε[u] = 1

2 (Du + Du⊤) the strain tensor, and
C the elasticity tensor, characterizing material properties and linearly relating the strain

2



to a stress σ = Cε[u]. The microstructures to be investigated are made of perforations
placed on a regular lattice, as seen in Figure 1.1. Their length scale δ should possibly be
small, leading to rapid oscillations in the corresponding tensor field Cδ and consequently
in the elastic solution uδ. At this point a fully resolving numerical scheme would become
computationally infeasible. Instead, purely macroscopic and smoothly varying quantities C∗

and u∗ are considered, which are enriched by microscopic corrections on demand. In particular
the macroscopic problem is discretized using the finite element method (FEM), where integrals
of the weak problem are computed via numerical quadrature. Whenever the bilinear form
a(O;uδ, uδ) needs to be evaluated at a fixed macroscopic point x, a locally attached cell Y(x),
carrying a representative of the perforation pattern, is considered. On this domain the weak
linearized elasticity corrector problem∫

Y(x)
C(x, y) εy[ũ] (x, y) : εy[ϑ] (y) dy = −

∫
Y(x)

C(x, y) εx[u∗] (x) : εy[ϑ] (y) dy ∀ϑ

is solved for a periodic displacement ũ in the decoupled microscopic variable y, where ϑ is an
appropriate test function. The right hand side is fixed and can be interpreted as inhomogeneous
Dirichlet boundary conditions, deforming the cell by the linear mapping (1+ εx[u∗])(x). This
intuitive idea is sketched exemplarily in Figure 1.2. Practically we solve the cell problems

1 + εx[u∗] + ũ

Figure 1.2.: Macroscopic domain with computational grid and magnified locally periodic
lattice with perforation. Upon applying a linear deformation, the solution of an
elasticity cell problem provides the microscopic displacement correction.

using the boundary element method (BEM), which requires a discretization of the boundaries
of the perforations only. The initially considered bilinear form is finally evaluated using the
corrected displacement as an approximation of the true, fully resolved solution, i. e.(

Cδ ε
[
uδ
]

: ε
[
uδ
])

(x) ≈ Vol(Y)−1
∫

Y(x)
C(x, y) εy[R[u](x, y)] : εy[R[u](x, y)] dy

with εy[R[u](x, y)] = εx[u∗] (x) + εy[ũ] (x, y) .

We elaborate on this intuitive idea and rigorously derive the sketched correction operation.
Thereby links to well-known concepts of periodic homogenization, two-scale convergence, and
the heterogeneous multiscale method (HMM) are established.

In view of optimization, the classical choice of the compliance functional is adopted, which
serves as a measure of rigidity. It is defined by

Jc[O;u[O]] :=
∫

O
f · u[O] dx+

∫
ΓN

g · u[O] da(x) (1.2)
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Chapter 1. Introduction

and is related to the total free energy via Jc[O;u[O]] = −2 Jtotal[O;u]. However, the method-
ology developed in this work is in no way restricted to this special instance. The degrees of
freedom to be optimized are parameters q of the microscopic perforations. To this end we
focus on simple geometries like ellipsoidal and rectangular holes. The optimization is driven
by the external software Ipopt, a sequential quadratic programming (SQP) type algorithm
for constrained finite dimensional optimization. It is able to handle equality and inequality
constraints on the parameters, which are required to impose a global constraint on the amount
of material and to maintain intact cell geometries, respectively. Besides the constraints, the
target functional and its first derivative need to be provided. For the latter we compute the
analytical shape derivative.

Shape calculus is a fully established theory on its own. The aim is to rigorously obtain a
directional derivative, i. e. dO J[O](V ), where V describes the variation of the shape. Ultimately
it can be calculated explicitly for certain functionals. A common difficulty is that the considered
objective functionals typically involve the solution u of the elasticity problem, which in turn
depends on the shape itself. This nested dependence is solved by Lagrangian calculus and the
introduction of an adjoint problem, which is routinely used for single-scale problems. We show
that, due to linearity of the corrector problem, an application within the proposed two-scale
framework is straightforward.

The developed two-scale approach was presented in [138] and the employed geometries were
already used in [184] in the single-scale context.

Applications. The devised numerical two-scale scheme is applied to a range of shape opti-
mization problems, starting with synthetic benchmarks and ultimately leading to multi-load
stochastic programming. In a first step the macroscopic strain tensor εx[u∗] is assumed con-
stant, which allows to check corner cases for optimizing microstructures. When e. g. a uniaxial
compression is imposed, the perforations align with the forcing, see Figure 1.3(a). The shape
realized by rectangular holes seems better suited than the elongated ellipsoidal perforation. In
fact it creates a simple laminate, which is provable optimal in this situation. When shearing
is imposed, there is no dominant axis and both models create a lattice, see Figure 1.3(b). The
overall rotation in case of the rectangular holes allows for a better adaptation, but nevertheless
both models fall short of an optimal microstructure, which is e. g. achieved by sequential
lamination. This construction, however, requires several successive limiting processes, each
on a distinct scale. In total we examine four microstructure models obtained from simple
perforations. We apply the two-scale approach to classical shape optimization problems and
constantly compare to optimal results given by the sequential lamination model. These results
were partly published in [138].

Next we embark on a stochastic perspective, a highly relevant topic for real world applications
where often a lack of full data needs to be faced. In this context we do not consider a single
macroscopic loading anymore, but a great many, each associated with a probability of
occurrence. As concrete events cannot be predicted, all possibilities need to be taken into
account a priori in a suitable manner. We therefore transfer concepts of two-stage stochastic
programming, an established field in operations research, to our two-scale shape optimization
model. A critical aspect is the choice of an objective functional, which initially takes the form

E [r(J[ω,O;u])] ,
where ω denotes possible events. Simply computing the expected value of individual cost
functionals turns out negligent, as events with low probability but critical impact are not
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u∗(x, y) = (x, 0), ε[u∗] =
(

1 0
0 0

)

(a) Uniaxial compression.

u∗(x, y) = (y, 0), ε[u∗] =
(

0 1
21

2 0

)

(b) Shearing.

Figure 1.3.: Representative cell of optimized periodic microstructures using ellipsoidal and
rectangular perforations for two types of loading.

adequately taken into account. Therefore the choice of the ranking function r is important.
We consider r(t) = max{t− η, 0} and r(t) = H(t− η), with the Heaviside function H, leading
to the expected excess and excess probability functionals. Both include a threshold parameter
η, which allows to steer the perception of critical events. Its influence can be seen in Figure 1.4
for the excess probability functional and ellipsoidal perforations in the two-scale scheme.
Depending on its value the amount of material invested to support the upper right or left
hand varies. These results were partly published in [138].

Figure 1.4.: Results of stochastic optimization using the excess probability functional with
increasing threshold parameter η from left to right. The macroscopic domain
is subject to strong loadings with low probability on the upper left boundary,
and weak loadings with high probability on the upper right part. Ellipsoidal
perforations are used in the two-scale scheme and a representative of the underlying
microstructure is shown within each macroscopic grid cell.

A new application is stochastic dominance, a concept where an already existing shape
serves as a benchmark. Competing candidates with less material are searched, while they
need to perform comparable to the benchmark for each loading scenario. The choice of
ranking functions leads to different order relations in this comparison, which possibly allow
for flexibility by balancing a budget of exceeding costs.
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Chapter 1. Introduction

The advanced applications come at the price of more intricate, initially non-smooth func-
tionals, which need to be taken care of. In view of the many possible events, the computational
costs can still be kept low, again by virtue of linearity. In the end the devised two-scale scheme
turns out efficient and remarkably robust.

A posteriori error estimates and grid adaptivity. With an optimization scheme for mi-
crostructures at hand, the improvement of the macroscopic numerical model is approached
next. As motivated before via Figure 1.1, interfaces can be identified across which the effective
amount of spent material jumps. In consequence these interfaces should be resolved sharply,
which can be achieved efficiently via grid adaptivity. To select cells in the computational mesh
that are eligible for refinement, suitable error indicators need to be computed. To this end we
pick up the dual weighted residual (DWR) approach for optimal control problems. Based on
Lagrangian calculus it yields an a posteriori error estimate of the form

|J[q;u∗]− J[qh;u∗
h]| ≤

∑
E

(
ηu

E + ηu
∂E + 1

2η
q
E

)
(qh;u∗

h) +R with

ηu
E :=

∣∣∣∣∫
E

div {C∗[qh] ε[u∗
h]} · (u∗ − ϑu∗

h
) dx

∣∣∣∣ ,
ηu

∂E :=
∣∣∣∣∫

∂E

j (C∗[qh] ε[u∗
h]) · (u∗ − ϑu∗

h
) da(x)

∣∣∣∣ ,
ηq

E :=
∣∣∣∣ d
dqh

(∫
E

C∗[qh] ε[u∗
h] : ε[u∗

h] dx
)

(q − ϑqh
)
∣∣∣∣ .

Here u∗ and q denote the unknown, continuous displacement field and optimal microstructure
parameters, u∗

h and qh their discretized counterparts, and ϑ appropriate test functions. R
is a remainder term of higher order and j defines the jump of normal stresses across edges
of cells E in the computational mesh. The error estimator is goal-oriented, which means it
controls the error in the target functional, rather than the discretization error in the PDE
solution, as done by traditional residual based estimators. Thereby another term ηq

E comes
into play, measuring the sensitivity of the local elastic energy density w. r. t. the optimization
parameters.

We transfer the concept to our two-scale shape optimization approach. For terms still
involving unknown continuous quantities, suitable approximations are defined, based on
interpolation to higher order polynomials. Taking a macroscopic point of view, the gained
adaptive scheme can directly be applied to the sequential lamination construction and our
microscopic perforations. Hereby macroscopic, effective elastic properties stem from analytical
formulae or numerical optimization, respectively. In case of sequential lamination, an explicit
dependence of the parameters on the elasticity solution furthermore allows to derive rigorous a
priori estimates. In Figure 1.5 results using sequential lamination for a bridge type scenario are
shown. Sharp interfaces are established, separating void, solid, and regions with intermediate
amounts of material. These results were partly published in [185].

Likewise, results are obtained for the two-scale scheme with numerically optimized micro-
scopic perforations. In this context the comparison to the functional J[qM;u∗] however is
fallacious. It comprises the continuous, optimized parameters qM, but the employed model is
already known to partly produce suboptimal results. Instead we consider J[qL;u∗] with optimal
sequential lamination parameters qL. To maintain efficiency, these are approximated on the
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Figure 1.5.: Results of the adaptive scheme using sequential lamination as microstructure
model for a bridge fixed at the lower left and right hand side and subject to a
downwards pointing load in between. Refined meshes and corresponding effective
amounts of material after 0, 8, and 16 refinement steps are shown.

fly via a truncated iterative algorithm. In Figure 1.6 outcomes of the resulting scheme for a
cantilever type scenario are shown. A crucial insight is that the error |J[qL, u∗]− J[qM

h ;uM
h ]|

Figure 1.6.: Results of the adaptive scheme steered by modeling error estimation and using
rectangular perforations as microstructure for a cantilever fixed at the left hand
side and subject to a downwards pointing load on the right hand side. Adaptively
refined meshes and corresponding optimized microscopic perforations after 0, 4,
and 8 refinement steps are shown.

cannot be driven to zero anymore. Still the algorithm allows to asses the remaining global
error due to the suboptimal microstructure modeling and its spatial distribution. These results
were partly published in [137].

Overview. This thesis is structured as follows. In Chapter 2 an extensive study of literature
on research fields linked to the method developed in this work is presented. The theory of
linearized elasticity, which is used as the state model throughout this work, is recapitulated
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in Chapter 3. Fundamental aspects of shape optimization, covering the shape derivative,
Lagrangian calculus in PDE constrained optimization, the concept of relaxation and optimizing
microstructures, and especially explicit formulae for sequential lamination, are summarized
in Chapter 4. The two-scale approach is motivated and derived rigorously in Chapter 5.
Fundamental shape optimization concepts are applied in the two-scale context and the approach
is linked to well-known theory. Moreover practical aspects are covered, namely the concrete
construction of investigated microstructures, the implementation of the numerical scheme,
and employed speed-up measures. Chapter 6 presents results of the two-scale approach for
synthetic benchmarks and classical shape optimization problems. Optimal results obtained from
sequential lamination are constantly considered for comparison. Numerical issues, the influence
of numerical parameters, and the effectiveness of speed-up measures are analyzed. Chapter 7
is devoted to stochastic optimization. Basic principles from mathematical programming are
introduced and related to PDE constrained shape optimization. For several stochastic cost
functionals and stochastic dominance the practical realizations are discussed and extensive
results based on two microstructure models are presented. Chapter 8 deals with a posteriori
error estimation and grid adaptivity in the context of two-scale shape optimization. For a
macroscopic, effective formulation the dual weighted residual approach is adopted and applied
to the sequential lamination and the two-scale model. Furthermore an approach to modeling
error estimation with regard to non-optimal microstructures is devised. Finally Chapter 9
draws conclusions and hints at further research perspectives.
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CHAPTER 2

Literature study on shape optimization

Research results in fields close to the topics of the present work are surveyed in this
chapter. Shape optimization problems typically comprise a geometry description, a state

equation modeling physical behavior, and a quantity of interest to be optimized. As such,
they are special instances of optimal control problems, constrained by partial differential
equations, which is a well-established field [260, 398, 228]. However, with the domain itself
being the control, typical regularity results of the control-to-state mapping do not exist. Shape
optimization is therefore a topic on its own and has received a lot of scientific attention.
Comprehensive material can be found in the textbooks [52, 375, 79, 218, 121, 18, 217].

This work deals with structural optimization, where the domain is regarded as an elastic
body. The most classical setting is considered, where the deformation is modeled via the
partial differential equations of linearized elasticity and the compliance cost functional is
used as a measure of rigidity. However, the range of applications for shape optimization is
huge. The following literature survey thus focuses on established results and techniques rather
than applications. Further fundamental concepts, which appear as building blocks in the
developed two-scale approach, are detailed in the respective chapters along with corresponding
references.

2.1. Analytical results on optimal shapes
Naturally, a fundamental question in shape optimization is whether a provably optimal
shape can be found. In contrast to purely geometric settings, as for the Dido problem in the
introduction, such rigorous results are limited in the context of PDE constraints. For general
expositions, see the textbook chapters [331, Chapter 3] and [97, Chapter 5].

Ill-posedness. As hinted in the introduction, optimal solutions for common problems in
shape optimization often do not exist. Instead, microstructures appear on infinitesimally
small length scales. Such counter examples were first given by Murat [298, 299] for a scalar
state equation and coefficients subject to optimization. A vectorial equivalent is described by
Kohn and Strang in [256, Example 8.3]. As a remedy it is either possible to restrict the set of
admissible shapes by adding further constraints, or to enlarge the set by relaxation, which
amounts to allow for generalized, possibly non-physical, designs.

Restriction. An early reference is Cherepanov [118]. Here the state u solves a Neumann
problem on the domain O and a tracking functional J[O] = ∥u−u0∥O,0,2 with prescribed state
u0 is minimized. Admissible domains are required to satisfy a uniform cone property, which
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is equivalent to uniform Lipschitz continuity for the boundary. Under this assumption the
existence of a minimizer is proven, based on continuity of the cost functional and compactness
of the set of admissible shapes. Šverák [390] proves existence in two space dimensions under
the assumption that the complement of O has a limited number of connected components.
This is sufficient to deduce continuity of the state for limiting domains. In [109] Chambolle
shows an analogous result for linearized elasticity. Thereby the existence of solutions to the
cantilever shape optimization problem and the time-continuous fracture evolution model by
Francfort and Marigo [177] is proven. Ambrosio and Buttazzo [32] impose a penalization of
the perimeter Per(O) of the domain by extending the cost functional to J[O] + cPer(O). In
the scalar setting for conductivity and under a growth assumption for J[O], they prove a
compactness property which implies the existence of an optimal solution. Chambolle and
Larsen [110] prove C∞-regularity of the free boundary of a shape minimizing the compliance
and penalizations for the volume and the perimeter. The result holds in the scalar setting
and, with some limitation, for linearized elasticity as well.

Relaxation. The idea of relaxation, which goes back to Hilbert [226], is to re-enable the
direct method of the calculus of variations by defining an appropriate closure of the space
of admissible designs, and corresponding extensions of the state equation and objective
functionals. First rigorous results are attributed to McShane [282] and Young [423]. Textbooks
on the subject are e. g. [424, 142, 168].

In the context of optimal design, homogenization turned out to be an essential tool for
relaxation. It is the mathematical foundation for accurately describing the effect of mixing
materials on a microscopic scale and, as such, is closely related to the study of composite
materials. Kohn and Strang comprehensively describe the interplay of structural optimization
and relaxation by either homogenization or convexification [254, 255, 256].

Apart from the homogenization approach, Buttazzo and Dal Maso [103] use relaxation of a
Dirichlet problem with a general cost functional to show existence of minimizers and derive
optimality conditions. In [104] Buttazzo and Dal Maso study target functionals which are
monotonic w. r. t. set inclusion and lower semicontinuous w. r. t. Γ-convergence. An elliptic
PDE with Dirichlet boundary conditions is considered and the objective is optimized among
all domains with a prescribed volume. No additional regularity is assumed, but admissible
shapes are allowed to be quasi-open, i. e. they are allowed to differ from open sets by an
infinitesimal capacity. Under these conditions the existence of minimizers is proven.

Composite materials. The goal of the study of composite materials is to define an appropriate
notion of an averaging process, which allows to predict the effective macroscopic behavior.
It is thus highly relevant for physical and engineering applications. In this context, often
representative volume elements (RVE) are investigated as samples of a material, whose
microscopic arrangement is typically only given by a stochastic modeling assumption. A first
reference is Maxwell [281] from 1873, who considers the effective conductivity of a material
including spherical particles. Exhaustive expositions on composites can be found in the survey
article by Hashin [214] and the textbooks by Sendeckyj [366] and Milton [285].

Homogenization. From the mathematical point of view, homogenization is a notion of
convergence for the solution operator of the state equation. It allows to derive a limiting
problem on the scale of interest for a sequence of problems associated with a sequence of
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composite material domains. The development started in the 1970s, see [393, 305, 158, 257,
190, 297, 269] for early references and the collection [124] for some English translations.

Textbooks on the subject are, among others, [81, 48, 314, 239, 93, 132, 130]. The idea of
employing homogenization to obtain solutions to optimal design problems first appears in
works by Lurie [266], Tartar [393], and Raitums [337]. In the context of bars and plates early
references are Lurie et al. [270, 271] and Cheng and Olhoff [117]. The full elasticity setting is
treated by Suquet [388] and Franců [180].

G-closure and optimal bounds. The search for optimal microstructures later became more
systematic by studying the G-closure, which is the set of all effective tensors obtained via
homogenization. It can be fully described by algebraic formulae in case of the scalar conductivity
problem, but not for elasticity. Instead, bounds are derived for important quantities defined
on the set. The elastic energy density, which appears in the state equation (1.1) as well as in
the compliance objective (1.2) in our work, received a lot of attention. We present the most
important results in Section 4.2.2 and our employed relaxation procedure in Section 4.2.1.

Optimal microstructures. With the optimal bounds at hand, microscopic constructions have
been proposed that actually attain the bounds, thereby reducing the full G-closure to subsets
of simpler structure. The most universal one is sequential lamination. It will be covered in
detail in Section 4.2.3 and serve as a benchmark for our numerical approach. Further, at least
partially, optimal constructions are presented in Section 4.2.4.

Apart from these constructions, considered in the course of relaxation via homogenization,
many other interesting results were obtained under specialized conditions. Focussing on
shape optimization as considered in this work, an early famous example is the Michell truss
construction from 1904 [283]. Finitely many joints, connected by elastic rods, are considered.
It is assumed that the thickness of the rods is proportional to the stresses they can withstand.
For a given external load, a framework with least volume of material is sought that is capable
of sustaining the inner stresses, and esthetical results are obtained. Buttazzo and Aze [102]
consider periodic frameworks of infinitesimally thin lower dimensional layers with infinite
conductivity and analyze their optimal potential based on Γ-convergence results. Kohn and
Wirth [250, 251] study compliance optimization under volume and perimeter penalization
for uniaxial and shearing loads. They focus on the limiting case of very small perimeter
penalization, thereby allowing for tiny structures. Based on a triangular truss construction,
a hierarchical branching pattern is proposed. Boundary layer estimates are used where the
construction has be fitted to geometric constraints. Finally an optimal scaling law in the
perimeter penalization parameter is obtained.

2.2. Numerical shape optimization approaches
Shape optimization is highly relevant from a practical point of view. However, as seen in the
previous survey, rigorous results are limited to special, often unphysical, settings. Therefore
numerical approaches received a lot of attention as soon as they became available. They
differ in the degrees of freedom allocated for admissible shapes and the way the shapes are
represented. A rough categorization distinguishes sizing, shape, and topology optimization.

In sizing optimization, shapes are a priori fixed and only a small set of parameters is
varied. For structural optimization, e. g. the thickness of rods or the location of joints could
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be controlled. Often the state, e. g. the elastic response of the rods, can directly be evaluated
in terms of the parameters via an appropriate modeling. The associated optimization problem
is inherently discrete and techniques from mathematical programming can be applied. An
early reference is [359] by Schmit. Problems of this type are often well-posed, an existence
result is e. g. proven by Bendsøe [76]. In works by Rozvany et al. [353, 352] optimality criteria
methods are explored, which are based on continuum-type state models and discretizations by
large finite element systems. There is a lot of classical literature available on the subject, see
e. g. the textbooks [427, 355]. A more recent example is [155], dealing with branching patterns
in metallurgy.

In contrast to the discrete setting, the shape is regarded as a continuum for shape and
topology optimization. Here admissible domains are usually arbitrary subsets of a given
working domain. An evident approach is to start from an initial shape O and apply slight
variations to improve its performance w. r. t. a defined measure J[O]. This leads to the
perturbation of identity technique. Considering a vector field ϑ and the perturbed shape Ot, a
shape derivative can be defined as

dO J[O] := lim
t↘0

1
t (J[Ot]− J[O]) , Ot = (Id + tϑ)O .

Early references are [300, 373] by Murat and Simon. The resulting formulae for integral
quantities were already given before by Hadamard [208]. They can be used to compute
sensitivities and steer optimization schemes. Later on, the more general velocity method was
introduced by Zolésio [431, 432]. In special situations both concepts coincide. We follow the
later approach and give further details in Section 4.1.1. By now, important results for second
order shape derivatives are available as well, but will not be employed in this work.

Classical results show that the shape derivative only depends on variations of the boundary
of the shape. Naturally, such variations leave the topology mostly fixed. Opposing parts of
the boundary might merge, but there will not be any spontaneous creation of holes, which
however play a crucial role for optimal shapes. Apart from the rigorous result already presented
above, the formation of microstructures was observed in numerical approaches as well. Early
indications can be found in [108] by Céa et al., or in [117] by Cheng and Olhoff in the context
of plates.

In summary, a numerical approach should on the one hand be able to flexibly represent
the shape and allow for changes in its topology. On the other hand, as shape optimization is
ill-posed, arbitrary fine structures must be avoided or handled in an appropriate manner. Of
course, a natural limitation is induced by the finite discretization, but such a mesh dependence
is to be avoided for a stable numerical scheme. In the following we list different numerical
techniques.

Boundary variation technique. A straightforward application of the shape derivative concept
leads to boundary tracking methods. Here the computational domain is fully resolved and
discretized to allow the evaluation of the derivative for certain variations of the boundary.
These could directly stem from moving nodes of the computational grid or indirectly from
varying parameters, e. g. control points of spline functions or properties of fixed shapes as in
sizing problems. When a profitable variation is found, the domain is updated. Early references
with several examples are [330, 127, 147, 148]. To maintain the quality of the computational
grid, remeshing is typically required after several steps, which has to be integrated in an
automated manner, see e. g. [88]. Using the boundary element method significantly reduces
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the algorithmic workload as only the boundary is discretized, see e. g. [98, 245]. Still the initial
topology is fixed throughout and fundamental changes, such as constricting domains, are
difficult to handle. More recent applications of the boundary variation technique can e. g. be
found in [219, 60], dealing with optimization of microstructures for conductivity and elasticity
problems, or [140], investigating branching patterns in metallurgy.

Level set method. An entirely different approach is offered by the level set method. It
uses an implicit representation via a scalar function ϕ : D ⊂ Rd → R, defining the actual
shape as O = {x ∈ D : ϕ(x) < 0}, i. e. the boundary is the zero level set of ϕ. The method
was originally introduced by Osher and Sethian in [317] in the context of mean curvature
motion. Since then it has been used extensively in many disciplines, like image processing,
computational geometry, and optimization. The evolution of the level set function ϕ is given
by a Hamilton-Jacobi-type equation

d
dt ϕ+ vn |∇ϕ| = 0 .

By this the level set function changes along its gradient, which is precisely the normal to
its level sets. The normal velocity vn needs to be given and the level set equation advanced
via a suitable numerical scheme. A famous first application to shape optimization is [367]
by Sethian and Wiegmann. The aim is to remove as much material as possible from a given
structure while meeting a constraint on the compliance. The van Mises stresses are computed
on the boundary and used as an ad hoc criteria for the evolution. For reasons of efficiency, a
narrow band technique is used in [7]. It allows to compute the required quantities and the
evolution of the level set function only within a small surrounding of the zero level set.

A more systematic approach is to employ the shape derivative and define the normal velocity
as the solution of the variational problem dO J[O]ϑ = g(vn, ϑ) for a given metric g. This
is done by Osher and Santosa [316] to solve a constrained eigenvalue optimization problem
within a two dimensional domain with two phases. Burger [99] sets out an abstract framework
based on gradient flows and studies different choices for the metric g.

Shape optimization as considered in this work is approached with the level set method by
Allaire et al. [27, 28]. They study linearized and nonlinear elasticity problems in two and three
space dimensions under the compliance or tracking objective functional. An adjoint problem
has to be solved to compute the shape derivative, which is then used to define the normal
velocity via a smoothing H−1-metric. Furthermore, design dependent loads, different schemes
for the solution of the Hamilton-Jacobi equation, and time step size control are investigated.
The same problem was independently studied by Wang et al. [414]. They prove that their
choice of the normal velocity actually leads to a decrease in the objective functional.

In these works the boundary is not explicitly represented. In order to solve the state
equation, interpolation is used or the complement is assumed to contain a material with
negligible rigidity, thereby reducing the problem to a two-phase design on the whole working
domain. In contrast, Conti et al. [136, 139] combine the level set approach with composite
finite elements [206] to resolve the interfaces. Abe et al. [6] do so by explicitly constructing
the interface and employing the boundary element method.

The level set method remains of practical importance until today. In [145] a framework
oriented towards application in architecture is presented with emphasis on constraints related
to the mechanical performance or aesthetic requirements. Its drawback is the inability to
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generate additional holes in a purposive way. As such the results of optimization significantly
depend on the initial topology, cf. [28, Figure 11].

Topology optimization. Owing to the structures observed in optimal shapes, the importance
of altering the topology rather than the shape was recognized early. In a naive approach one
could discretize the domain and decide for each cell whether to place material or void. This
leads to a large scale integer programming problem, which however is highly mesh sensitive
and was found to suffer from poor convergence. As workarounds, reformulations are proposed,
see e. g. [387].

Alternatively void regions could be identified based on suitable criteria derived from the
state. This approach, also called hard-kill, is used in evolutionary structural optimization
(ESO), e. g. by Xie and Steven [420], based on heuristic criteria aiming at removing regions
of understressed material. Enhancements by adaptively modifying the mesh, termed reverse
adaptivity, are presented by Reynolds et al. [344]. Also genetic algorithm can be employed,
see e. g. Jensen [237].

A rigorous concept is the topological derivative, introduced by Eschenauer et al. [169] and
Schumacher [364] as the bubble method. It is defined as

dtopo J[O](x) := lim
δ↘0

Vol−1(Bδ(x))
(

J[O \Bδ(x)]− J[O]
)

and measures the sensitivity of a cost functional w. r. t. the insertion of a tiny hole Bδ.
Generalizations to a wider class of shape functionals [376], three space dimensions [377], and
arbitrarily shaped holes [181] were obtained later. For a comprehensive overview see also the
textbook [309].

The concept met with significant reception, especially in combination with establish nu-
merical methods. Feijó et al. [171] work out a connection between the topological and the
shape derivative, such that established results from shape sensitivity analysis can be reused.
Sokołowski and Żochowski [374] formulate optimality conditions based on applying the shape
derivative on the boundary and topological derivative in the interior. Burger et al. [100]
incorporate the topological derivative in an additional source term in the evolution equation
for the level set function based on heuristic considerations. Thereby the inability of the level set
method to introduce new holes is compensated. The approach is generalized in [220] to a wide
range of objective functionals. Also Allaire et al. [26] combine both approaches, generating
new holes after a specified number of gradient descent steps based on the shape derivative.
Amstutz and Andrä [34] alter the evolution equation as well, this time by using a projection
of the topological gradient onto the orthogonal complement of the level set function, i. e.
d
dt ϕ = Pϕ⊤(dtopo J[O]). This implies that, upon convergence, the level set function equals the
normalized topological gradient and therefore the obtained shapes fulfill topological optimality
conditions. In [33] the approach is pursued to generate microstructures leading to optimal
homogenized coefficients. The same problem is addressed by Barbarosie and Toader [60], here
by combining the boundary variation technique with the topological derivative.

Phase field method. Phase fields are another way to implicitly represent a shape. Unlike
level set functions, they are not governed by an evolution equation, but defined as minimizers
of a scalar Ginzburg-Landau-type energy. Their origin is the study of phase separation in
liquids by Cahn and Hilliard [105]. For a phase field function, again denoted by ϕ : Rd → R,
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the energy is given by
1
2

∫
D

ϵ |∇ϕ|2 + 1
ϵ Ψ(ϕ) ,

where Ψ is a potential function that forces ϕ to attain discrete values. Typically {−1, 1}
are considered, representing the different phases, and the smooth double-well potential,
Ψ[ϕ] = (1 − ϕ2)2, or the non-smooth obstacle potential, Ψ[ϕ] = (1 − ϕ2) for |ϕ| ≤ 1 and
Ψ =∞ else. The first term |∇ϕ|2 favors constant values of ϕ, but additionally penalizes steep
transitions where they occur. Balancing the two conflicting terms is enabled by the parameter
ϵ > 0, leading to diffuse interfaces. In fact, a classical result by Modica and Mortola [290]
asserts that the gradient term, with some scaling, Γ-converges to the perimeter for ϵ↘ 0. As
such, phase field approaches directly incorporate a regularization.

Bourdin and Chambolle [89] consider compliance minimization for linearized elasticity
under design-dependent loads. They introduce three phases, namely void, solid, and liquid,
a corresponding triple-well potential, and allow for transitions in between. The existence of
minimizers is proven for the sharp interface model, i. e. when ϵ↘ 0. Numerical experiments
are conducted using a decreasing interface parameter ϵ and a semi-implicit optimization
scheme. Wang and Zhou [415] adopt the phase field model for the classical shape optimization
problem aiming at identifying solid and void regions. They consider a Tikhonov regularization
by an initially arbitrary function g(|∇ϕ|) and point out the relation to image segmentation
problems and the Cahn-Hilliard theory. For the numerical examples, different regularization
terms, including edge-preserving ones, are tested. Burger and Stainko [101] consider the
minimization of volume under stress constraints. They pick up the reformulation of Stolpe
and Svanberg [387] and additionally relax the 0-1-constraints by introducing a phase field
and adding a Cahn-Hilliard term to the objective. For the resulting continuous problem
the existence of a minimizer is proven and for the discretized problem the linear inequality
constraint qualification condition is shown. Blank et al. [85] solve the phase field optimization
problem by a gradient descent method using different metrics. In case of an H−1-flow, a
volume-conserving, forth-order Cahn-Hilliard-type equation is obtained. In case of an L2-flow,
a second order Allen-Cahn-type equation is obtained instead. The latter leads to a variational
inequality and an additional volume constraint but is cheeper to solve using a primal-dual
active set method. Moreover by using an obstacle potential, the phase field only needs to be
computed in the interface region. The numerical experiments show similar final results, but the
observed evolutions differ. In [84] also the sharp interface limit is studied. Penzler et al. [325],
in contrast to linearized elasticity, assume a nonlinear elastic state equation. In consequence,
different formulations of the compliance objective no longer coincide, optimal shapes under
symmetric loading conditions are no longer symmetric, and the elastic deformation, e. g. when
buckling occurs, is no longer unique. This may result in non-existence of optimal shapes when
the deformation yielding the worst compliance is chosen. On the contrary, existence is proven
both for the diffuse and the sharp interface model when the least compliant deformation
is used. The numerical algorithm is based on the phase field model and a trust region and
quasi-Newton scheme. Figure 13 in their work impressively illustrates the effect of varying the
weighting parameters for surface and volume penalizations.

Further regularizing approaches. Belytschko et al. [68] also use an implicit representation
by applying the Heaviside function to a level set function. The Heaviside function is then
regularized to obtain a smooth functional, which amounts to a regularization of the shape
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as well, similar to the phase field setting. A heuristic update scheme is used to optimize the
nodal values of the implicit function. Guo et al. [203] follow the same approach. They observe
that the regularization of the Heaviside function induces a boundary layer where holes can be
created. Moreover they argue that the topological derivative is governed by the same terms
as in their sensitivities of the implicit function. Eventually the regularization parameter is
chosen large such that topological changes can occur globally. Wei and Wang [416] propose
an alternative to the level set method by constraining its values to piecewise constant integers
for connected components. Sensitivities are evaluated based on variation of an augmented
Lagrangian functional including a total variation term. As such the method resembles the
phase field approach in that the function is forced to attain discrete values and jumps and
the perimeter are controlled. The level set function is advanced using an implicit scheme.
Thereby reinitialization and the typical restriction by the CFL condition are circumvented.
Yamada et al. [421] also use a level set function, but constrain its values to the interval [0, 1].
Furthermore the objective is supplemented with a fictitious interface energy |∇ϕ|, similar
to the phase field setting. The evolution is steered based on the gradient of the Lagrangian,
which is observed to be related to the topological derivative. Consistent numerical results are
obtained for different initializations and mesh resolutions, and an additional scaling factor of
the fictitious interface energy allows to control the geometric complexity of optimized shapes.

Homogenization. The other way to overcome the ill-posedness of shape optimization is
relaxation. To this end, homogenization was early adopted for numerical computations, see
e. g. [45, 46, 47, 92]. A first application to optimal design is by Goodman et al. [194]. They
consider a composite of two elastic materials for the cross-section of a rod maximizing its
torsional rigidity and solve a discretized relaxed problem. Rozvany et al. [354] similarly
investigate least-weight perforated plates with prescribed compliance, using first and second
order lamination, which they call ribs. Żochowski [429] assumes the domain to contain
perforations on a regular lattice. The behavior of the full domain is then approximated
using local substitute material coefficients, which are in fact the homogenized coefficients.
Sensitivities of cost functionals w. r. t. parameters describing the local perforations and entering
via the homogenized coefficients are computed. The presented numerical examples employ
circles and ellipsoidal holes, just as in the present work.

In view of the general topology optimization problem, a breakthrough is however mostly
attributed to Bendsøe and Kikuchi [78]. They also consider periodically distributed, in-
finitesimally small holes, this time of rectangular shape, also employed in this work. Via
homogenization, a relation between the local fraction of used material and the macroscopic
material coefficients is established. Thereby the topology optimization problem is transformed
to a sizing problem, where the density is the local design variable taking values in the interval
[0, 1]. In practice, the homogenized coefficients are computed in advance for several samples
of the parameter space and interpolated. The algorithm is based on an iterative scheme for
solving the optimality criteria. In the experiments, the authors conclude that the resulting
density is most crucial and therefore resort to square holes, which require less parameters.
On the other hand, optimized rotations of the local cells are identified as influential as well.
The approach with slight modification is pursued by Suzuki and Kikuchi [389], showing a
lot of numerical examples and verifications. In [73, 77] the meanwhile established results on
optimal sequential lamination composites are discussed. By taking these microstructures into
account, a full relaxation is achieved. The simple periodic constructions are only sometimes
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optimal and therefore amount to a partial relaxation. However the focus is on obtained local
densities only and it is concluded that it be more economical to use simple microstructures.
The situation changes around [80]. In [240] Jog et al. present the relaxation process for the
full shape optimization problem. Using a saddle point theorem by Lipton [262], a result on
optimal alignment of orthotropic materials by [323], and explicit formulae for the optimal
parameters of rank-2 sequential laminates, stepwise analytical optimizations are performed for
the state and the design variables, thus termed self-adaptive materials. The elasticity problem
is treated both based on displacements and stresses, and the former is pursued numerically. It
results in an inf-sup mixed variational formulation for the density and displacement fields and
is solved in alternation using a mixed finite element method, very close to the one employed in
this work, cf. Section 5.5. The stress based formulation is found to coincide with that of Allaire
and Kohn [15]. It had been developed in parallel, based on earlier results concerning optimal
bounds [29, 30], and ultimately results in a single optimization over admissible stress fields
only. The remaining functional however is non-differentiable. For the purpose of demonstration
a regularization is used and piecewise cubic, globally smooth Clough-Tocher finite elements.

Cherkaev and Palais [119] show the first numerical results in three space dimensions. They
follow the same program, but build upon the independently discovered optimality results
of Gibiansky and Cherkaev [190]. Díaz and Lipton [153] consider the three dimensional
problem using two phases based on results in [263, 262, 264]. In [12] Allaire et al. give an
exhaustive treatise. The relaxation result is proven for arbitrary spatial dimensions based on
quasiconvexification and explicit formulae for the three dimensional setting are given, based
on [17]. Furthermore technical aspects of the algorithmic realization are discussed.

Following up on this groundbreaking results, several further applications were investigated.
For multiple loadings the method of Bendsøe and Kikuchi [78] was generalized in [151].
Sequential lamination was considered by Allaire et al. [21]. The relaxation results can mostly
be carried over, however there are no explicit formulae for the optimal parameters anymore, see
also Remark 4.22. They are therefore determined numerically in the course of the alternating
algorithm. For eigenvalue optimization, Díaz and Kikuchi [152] present numerical examples
based on their established method. Allaire et al. [20] derive another relaxation result, based
on a variational characterization of the eigenvalues and a saddle-point theorem. However,
when a sum of eigenvalues is considered, there are again no explicit formulae for optimal
sequential laminates. For other objective functionals there are no corresponding rigorous
results. Sequential laminates can still be employed, as e. g. done in [19], but then merely
amount to a partial relaxation.

Another extension is the inclusion of strains or stresses in the objective or constraints.
This is highly relevant form a practical point of view as structures are supposed to fail first
where the local stresses are high. From the mathematical point of view it complicates matters
because local microscopic concentrations are not captured by the homogenized macroscopic
quantities. This is reflected by the weak and not pointwise convergence of homogenization.
Duysinx and Bendsøe [159] to this end explicitly calculate the von Mises criterion in terms of
macroscopic stresses and parameters for a rank-2 laminate. For their algorithmic realization
they furthermore implement a relaxation of the stress constraint to circumvent discontinuities.
Lipton [265] considers maximization of the torsional rigidity with a constraint on the mean
square stress. The microscopic quantity is defined via a corrector matrix, leading to a relaxed
formulation involving a covariance tensor. Allaire et al. [14] approach minimum stress design
using the objective

∫
O |σ|2 dx, possibly localized to subdomains ω ⊂ O. To pass to a limit with
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homogenized quantities, corrector tensors P δ are required. In particular, σδ − P δσ converges
strongly and the term is used in approximating the objective, corresponding to the approach
by Lipton [265]. For sequential laminates the correctors can be computed explicitly.

In the discussed numerical realizations often checkerboard instabilities were observed, cf. [77,
Figure 20], [12, Figure 4]. Jog et al. [240] suggest it be a numerical artifact similar to patterns
observed in the pressure field for Stokes flow. As a remedy they consider a checkerboard-free
function space on patches of four neighboring elements, according to Johnson and Pitkäranta
[242]. Jouve and Bonnetier [243] look into this phenomenon by an explicit investigation
of the alternating sequential lamination algorithm, applied to a small test problem with
known optimal solution. They linearize the update procedure around the optimal state and
show by an eigenvalue analysis that checkerboard errors are amplified when the degenerate
homogenized elasticity tensor is regularized and the principle stresses are of equal magnitude.
This could explain why instabilities were not observed in the three dimensional setting where
rank-3 laminates in general do not yield degenerate tensors.

Recovery of classical designs. Intermediate densities produced by algorithms based on
homogenization are at the core of the relaxation process and enable unrestricted topology
optimization in the first place. Still they are difficult to interpret in real life design applications
and a lot of effort has therefore been put into regaining classical designs, made from material
and voids, which could actually be manufactured.

As a general concept results can provide initial guesses for a subsequent optimization, e. g.
based on the boundary variation technique as in [315]. Allaire et al. [12] propose a penalization
of intermediate densities as a post processing step, i. e. instead of updating to the optimal
local densities θopt in the alternating algorithm, penalized values θpen := 1

2 (1−cos(π θopt)) are
used. Bourdin and Kohn [91] take a different approach by resorting to single-scale laminates.
Instead of the recursive layering on successive length scales, a superposition on a single scale
is proposed. They prove that, to leading order, the construction performs equally well and
has a simple explicit formula, which scales linearly with weight. Thus they argue that for
low overall volume, or high porosity, the influence of the intersections on the same scale is
negligible. An entirely novel approach is introduced by Pantz and Trabelsi [319], based on the
idea of projecting the underlying microscopic information onto the macroscale. In a first step
the optimal sequential laminate is substituted pointwise by a locally periodic microstructure
made from cells Y(x) containing rectangular holes. It is assumed that the field of orientations
is regular. A smooth function ϕ : D → R2 is then introduced, yielding a perforated domain
Oδ = {x ∈ D : δ−1x ∈ ϕ−1(Y(x))}, where the parameter δ allows to control the fineness of
reconstructed structures. The mapping ϕ is optimized to locally reproduce the underlying
orientation. This is in fact the most delicate step as it requires an orientation of the eigenvector
field and fails when more than one singularity occurs.

Spurred by additive manufacturing techniques, the approach has been adopted and extended.
Groen and Sigmund [201] directly optimize microstructures given by rectangular holes. They
use interpolation of precomputed samples, as in [78], a coarse scale for computational speed, and
project the result onto a fine mesh. The spatial variation of the sizing parameters is represented
using cosine waves, and reconstruction uses a Heaviside function and thresholding. For the local
orientation, the mapping ϕ is picked up, however based on a different optimization approach.
Among other things, the local alignment is enforced only in regions with intermediate density
via a weighting term, a consistent orientation is achieved using the connected component labeling
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approach from image processing, a scaling is used to obtain a desired averaged projected cell
size, and some heuristics prevent overly small structures. Allaire et al. [25] consider the same
microstructure, but pay special attention to the local alignment. The mapping ϕ is required to
be conformal, which is equivalent to the orientation field being harmonic. This is enforced via
an additional constraint and regularization during the alternating algorithm. It is moreover
required to preserve the proportions of the rectangular holes by optimizing a dilation factor. The
final mapping can be constructed provided the rotation field is coherent. In contrast to [201] this
is handled via an abstract manifold, which basically amounts to two instances of the rotation
field with flipped orientations and a corresponding discontinuous Galerkin discretization.
Finally, in a post processing step, thresholding is applied and disconnected components are
removed. In [187] the three dimensional case is considered. Here the microstructure is made
of cubes perforated with rectangular shaped holes from side to side. Instead of local angles,
symmetric matrices corresponding to the local principle stresses are regularized.

Material distribution schemes. In [73] Bendsøe sketches a “naive” approach to topology
optimization by defining the effective material properties via a blending function, i. e.

C∗ = θpC, θ ∈ [0, 1], p ∈ N .

This has a physical interpretation when considering variable thickness sheet problems, where
θ would be the thickness, see e. g. [351]. In the full elasticity setting, however, there is no such
justification. Nonetheless the approach later became enormously popular under the name SIMP,
mostly understood as simple isotropic material with penalization. Penalization here refers to
inhibiting intermediate values of θ and is achieved by choosing the exponent p significantly
larger than 1. This leads to sublinear increase of material stiffness for increasing θ, whereas
the material costs scale linearly, thus rendering intermediate values uneconomical. Similar
relations were observed for the effective coefficients obtained from periodic microstructures or
sequential lamination, cf. [78, Figure 6] or [77, Figures 4, 5], however based on solid grounds
of homogenization.

Applications of the method can be seen in [77, 422, 79]. Bendsøe et al. [77] also compare to
results based on homogenization. In [75] some physical justification is provided by showing
that tensors generated by the SIMP model, under some conditions on the exponent p, satisfy
the Hashin-Shtrikman bounds.

Like the homogenization approach, the method is prone to checkerboard instabilities. In [154,
241] it is asserted that these patterns result from an unphysical overestimation of the strain
energy when using bilinear finite elements. In consequence a lot of effort was put into finding
remedies. Haber et al. [205] introduce perimeter penalization based on an approximation of
the total variation of the artificial density. The approach was later improved by Petersson
[326]. Petersson and Sigmund [327] impose slope constraints, which limit the rate of change
for the artificial density on neighboring cells. Local filtering techniques are surveyed in [370].
Bourdin [90] and Borrvall and Petersson [87] independently propose a regularization of the
density by means of a convolution operator. It allows to prove existence of solutions and
convergence of the finite element approximation. Matsui and Terada [279] propose to keep a
continuous density field and instead employ appropriate finite element functions.

Free material optimization. Instead of considering parameters yielding effective material
properties, one can directly optimize the coefficients of the macroscopic elasticity tensor. The
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idea goes back to Ringertz [346], where the compliance is minimized in two dimensions. A
constraint on the available material is imposed via

∫
D
j(C) dx ≤ θ

∫
D
∥C̄∥F dx, where the cost

function j is chosen as the tensor trace. Moreover C ≼ C̄ needs to hold pointwise, i. e. C̄ − C
must be positive semidefinite, with C̄ corresponding to an isotropic solid. The constraints
are incorporated using a logarithmic barrier function and a convex optimization problem is
obtained. Bendsøe et al. [74] investigate the same approach. Via analytical optimization they
reduce the problem to a single variable.

More recent works are e. g. [386, 385] by Stingl et al. with a focus on optimization techniques.
The sequential convex programming approach is generalized to matrix valued variables by
constructing a sequence of subproblems with block separable convex first-order approximations.
Local stress and displacement constraints are additionally considered by Haslinger et al. [216].
This requires a different proof of the existence of optimal solutions based on H-convergence.

Microstructure identification problem. The crux of free material optimization is that the
generated materials might not have a physical equivalent. Thus, in a post processing step,
a best approximating realization is searched, referred to as inverse homogenization. To this
end, Milton and Cherkaev [287] show that in fact all possible tensors are attainable as
effective elasticity tensors of a two-phase composite when sufficiently weak and stiff materials
are assumed. A numerical approach is used by Sigmund [371], where trusses or continuous
plates with varying thickness are considered in base cells. They are optimized for minimum
weight while matching their homogenized tensor with the target. Haslinger and Dvořák [219]
investigate the problem in the conductivity setting. They consider star-shaped inclusions
parametrized in polar coordinates and prove the existence of optimal solutions. For the
computation of homogenized properties, upper and lower bounds given by the potential and
the complementary energy are used to ensure reliability. Barbarosie [56] considers conductivity
as well as linearized elasticity. The numerical approach uses a periodic finite element mesh
with arbitrary generators. A fixed number of holes is optimized using the boundary variation
technique and remeshing. The approach was pursued in [59, 60] and extended by incorporating
the topological derivative to allow for the nucleation of new holes.

Multiscale optimization. Because of the significance of multiple scales in shape optimization,
it is natural to handle all of them simultaneously in a numerical scheme. Dvořák et al. [160]
consider the conductivity problem in a two-scale context. They thoroughly work out the
relaxation process based on periodic homogenization, H-convergence, and correctors in case of
gradients in the cost functional, and prove the existence of solutions. For numerical experiments
the conductivity field is approximated by piecewise constant homogenized coefficients stemming
from periodic problems with star-shaped inclusions as in [219]. Likewise sensitivities are
obtained to optimize tracking functionals for the state and its gradient. The full relaxation
using optimal rank-2 laminates is described by Haslinger et al. [215] and applied to a torsional
rigidity and a tracking problem. The same approach is followed by Rodrigues et al. [349] in
the elasticity setting under the name hierarchical optimization. They obtain homogenized
coefficients from local microscopic cell problems employing the SIMP model and investigate the
compliance problem under multiple loads. An extension to three dimensions is developed by
Coelho et al. [135]. Also Barbarosie and Toader extend their work to a two-scale setting [61]. It
is in fact very close to the approach developed in this work, see the discussion in Section 5.3.3.
Within this framework Tölkes [397] uses a phase field approach for the microscopic cell
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problems. Applications also include stochastic optimization under dominance constraints.
Aiming at the reduction of computational costs, especially for three dimensional problems,
Valentin et al. [399] revisit the idea of Bendsøe and Kikuchi [78] to compute effective elasticity
tensors for samples of the design parameter space beforehand in an offline phase and use
interpolation during optimization in the online phase. To overcome the curse of dimensionality
when several parameters are used in the construction of the microstructure, an adaptive sparse
grid approach is employed. Hierarchical B-splines are used for interpolation, which are smooth
and allow to use exact continuous gradients for optimization. For numerical experiments
simple microstructures are considered, among others rotating orthogonal rods as in [78] and
the present work.

Schury et al. [365] combine free material optimization, to obtain optimal effective elasticity
coefficients on the macroscale, and subsequent inverse homogenization via the SIMP method, to
obtain microscopic realizations. Motivated by rapid prototyping techniques, they incorporate
manufacturability constraints, thereby achieving graded materials. On the one hand, only
tensors should be considered that can actually be attained by a periodic composite. This is
ensured by deriving reference values from maximally stiff isotropic materials with prescribed
relative densities and allowing for some deviation. On the other hand, the macroscopic variation
of the microstructure is limited by slope constraints, i. e. ∥∂x C

∗∥F ≤ c. Finally additional
transition cells are introduced and optimized to guarantee continuity across neighboring cells.

The advent of low-cost high-resolution additive manufacturing techniques has lately fostered
the adoption of the two-scale framework to produce optimized shapes that can directly be
turned into real life workpieces. Milton et al. [286] showcase theoretical constructions to show
which effective elasticity tensors are actually realizable. In practice one would however resort
to subsets generated from more realistic setups.

Zhu et al. [426] consider isotropic, cubic, orthotropic, or virtual materials given by the SIMP
model, as candidates and realizable by microstructures made from 16d micro cells carrying
materials or void. In a preprocessing phase, attainable tensors are explored by a stochastic
Monte Carlo method and subsequent optimization to obtain extremal structures. The whole
set is encoded via a level set function, which is used in the global optimization to formulate a
realizability constraint. Finally microstructures matching optimized material properties and
being topologically similar to their neighbors are placed on the macroscopic domain to generate
high-resolution printable structures. Examples include tracking for mechanical devices and
compliance optimization. Conti et al. [141] use phase fields to find periodic microstructures
realizing given bulk and shear moduli. They enforce material bridges at preselected parts
of the fundamental cell’s boundary. With each candidate a cost is associated, taking into
account the used amount of material and its perimeter. That way samples are generated and
interpolated by cubic B-splines in a preprocessing step. A macroscopic problem can then be
considered, optimizing a compliance or tracking functional and the interpolated costs.

2.3. Multiscale methods
The multiscale nature of shape optimization requires numerical methods to appropriately
handle the involved scales. While homogenization eventually eliminates the microscopic
components in favor of averaged quantities, a fully resolving discretization, on the other hand,
is prohibitive due to the computational cost, even if a finite separation of the length scales is
assumed. Consequently several techniques have been developed to adequately capture the
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microscopic contributions while remaining efficient.

Multiscale finite element method (MsFEM). The multiscale finite element method was
introduced by Hou et al. [232, 233], see also the textbook [165]. It relies on precomputed basis
functions, specially crafted for resolving local microscopic effects, a concept that can already
be found in [44]. For the scalar elliptic model problem, ∇a( x

δ )∇uδ = f , nodal finite element
basis functions ψi are numerically determined as solutions of ∇a( x

δ )ψi = 0 on each element
E ∈Mh. Here the discretization size h is assumed larger than the microscale δ. Convergence
analysis yields the sharp error estimate

∥uδ − uh∥1,2,O ≤ c1h∥f∥0,2,O + c2
(

δ
h

) 1
2

and a corresponding L2 estimate using the Aubin-Nitsche trick. This is in contrast to standard
estimates, which would yield h

δ terms and dictate a fully resolving scheme, i. e. h < δ. In
particular, convergence of the method is assured also for δ ↘ 0. Problematic is the case h ∼ δ,
termed resonance, which could e. g. happen for continuously varying scales. It is found to
be caused by the boundary layer and can be remedied by imposing specialized boundary
conditions or using a supersampling technique with enlarged discretization h′ > h+ δ. In [166]
multiple separated scales are considered. Allaire and Brizzi [22] develop a generalized version,
where standard conformal finite element base functions are concatenated with solutions of cell
problems. It allows to use higher order elements and obtain corresponding error estimates in
the classical framework, but reduces to the original approach for linear elements. Buck et al.
[96] consider the method for linearized elasticity.

Generalized finite element spaces. Matache et al. [274, 275] construct and analyze general-
ized finite element spaces based on the Fourier-Bochner representation

uδ(x) = (2π)− d
2

∫
Rd

f̂(t)eixtψ
(

x
δ , δ, t

)
dt

from [291, 292], where the kernel ψ solves a microscopic cell problem. From an approximating
finite Fourier series a well-conditioned basis is extracted via singular value decomposition.
Under the assumption of a locally periodic microstructure and further requirements for the
input data, an exponential convergence rate is proven. Both the error and the computational
work thereby do not depend on the microscale δ. In [277] the concept is extended to nonhomo-
geneous periodic media using Bloch waves. A different approach is taken in [278, 276]. Both
scales are handled simultaneously by considering a Bochner space, like H1 (D;H1

per(Y;Rd)
)

in the notation of the present work. This is closely related to the concept of periodic unfolding
by Cioranescu et al. [131]. Matache and Schwab [278] establish two-scale regularity results.
Discretization is then achieved using a two-scale tensor product space and again convergence
rates independent of δ are shown. Due to the interacting scales, an efficient implementation
is more complicated. To this end, [278] suggests parallel computation based on a moment
formulation, whereas [276] introduces a sparse grid approximation. Several scales are addressed
in [230].

Heterogeneous multiscale method (HMM). The heterogeneous multiscale method, intro-
duced by E et al. [163, 161], initially depicts a very general paradigm for coupling multiple
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scales. In particular it takes into account possibly different schemes on the individual scales
and suitable compression and reconstruction operators to pass data among one another. In
the setting of variational homogenization problems an in-depth analysis is presented in [162,
164]. A critical comparison w. r. t. accuracy and performance of the heterogeneous multiscale
method and the multiscale finite element method is done in [289]. Additional major contribu-
tions are made by Abdulle [2], considering the fully discrete setting. In contrast to [164], the
computation of the effective tensor is not assumed exact. Hence in addition to the macroscopic
error, the approximation error in the numerical solution of cell problems and its influence on
the macroscale, as well as a modeling error is analyzed. The latter accounts for the coupling
procedure and depends on assumptions such as periodicity or sampling domain size. A key
finding is that the resolution of the macroscopic and microscopic computational meshes need
to be linked. Based on these results, linearized elasticity is considered in [3] and numerical
experiments are presented in [236]. The approach taken in this work is completely in line
with the heterogeneous multiscale method and thus the error analysis directly applies, see
Section 5.3.2.

Further approaches. Another class are variational multiscale methods introduced by Hughes
[234]. They also build upon an additive decomposition of the solution uδ = u∗ + ũ. A
variational formulation is considered and the subgrid scale solution ũ is expressed analytically
via a Green’s function and in dependence of the coarse scale residual Lu∗ − f . Thereby an
equation depending on u∗ only is obtained, which can be solved numerically. In [234, 235]
the connections to stabilized methods and bubble function used for enriching finite element
spaces are pointed out.

More generally, multigrid methods can be employed to efficiently resolve the different scales,
see e. g. Fish and Belsky [174, 173] and Neuss et al. [304]. Also wavelets have been considered,
see e. g. Dorobantu and Engquist [157].

2.4. Error estimation
Error estimates and their incorporation into adaptive numerical schemes provide the theoretical
and practical foundations to break computational complexity by focussing on the most relevant
parts of the employed model for the desired output. An often-quoted early contribution is the
hypercircle method of Prager and Synge [332], which describes errors in function spaces based
on geometrical intuition. Extensive modern introductions can be found in the textbooks [402,
8, 342].

Basic concepts. Most classical error estimates are residual based. In the canonical setting
of a scalar second order partial differential equation, the finite element discretization error
eu = u− uh is estimated as

∥eu∥1,2,O ≤ c
(∑

E

h2
E η

2
E + h∂E η

2
∂E

) 1
2

,

ηE := ∥div(a∇uh) + f∥0,2,E ,

η∂E := ∥j(∇uh · n)∥0,2,∂E ,
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where ηE measures the residual within each element and η∂E the jump discontinuity across
element edges. This idea goes back to Babuška and Rheinboldt [41, 40]. Bank and Weiser [55]
propose to solve various local Neumann problems on each element, with ηE and η∂E acting as
right hand sides, and use the solutions as error estimators. They prove that they are bounded
by a multiple of the norm of the true error. Zienkiewicz and Zhu [428] develop recovery methods
to produce improved approximations of derivatives of the state. When comparing these to the
directly differentiated state, the difference can be used as an error indicator. In these early
works the computed quantities are already utilized for selecting cells of the computational
mesh that should be refined in order to improve the approximation. The iterative procedure

solve 7→ estimate 7→ mark 7→ refine

remains standard to the present day. Although less popular, there is a rich theory for error
estimation and adaptivity in the framework of the boundary element method as well, see e. g.
the early reference [339] and the survey article [172].

Further research considers the convergence and computational efficiency of adaptive methods,
the extension to other sources of errors and the quality of error bounds. Concerning convergence
analysis, a major contribution is the marking strategy by Dörfler [156], which amounts to
finding a subset of all cells, on which the accumulated estimates make up for a fixed fraction of
the total estimated error. Initial restrictions on properties of the mesh have subsequently been
lifted, cf. [295, 106]. The case of hanging nodes, as occurring in the present work, is considered
as well, see [425]. Concerning computational efficiency, see e. g. the recent contribution [328]
on the complexity of optimal marking strategies. Besides discretization errors, modeling errors
are e. g. considered by Stein and Ohnimus [381]. Goal-oriented error estimates in derived
quantities are discussed below. Concerning the quality of error bounds, a natural requirement
is that an error estimate η provides an upper bound for the error, i. e. c∥e∥ ≤ η with c being
independent of the exact solution and the computational mesh. This is mostly referred to as
being reliable. A further desirable property is a lower bound, i. e. η ≤ C∥e∥, which assures
that the true error is not overestimated. This is sometimes referred to as being efficient.
When the constants are exactly computable, the bounds are termed guaranteed. At best, the
ratio of the estimator and the error, called effectivity index, should be close to unity, at least
asymptotically for decreasing grid size. Furthermore robustness is considered, i. e. insensitivity
to regularity of the solution or the mesh and variations of parameters. An early example
for fully explicit bounds is [150] by Destuynder and Métivet for the Poisson problem. The
starting point is the identity by Prager and Synge

∥∇u−∇ϑ∥2 + ∥∇u− p∥2 = ∥∇ϑ− p∥2 ∀ϑ ∈ H1
ΓD

(O;R), p ∈ H(div,O) ,

where H(div,O) := {p ∈ L2(O;R2) : div p + f = 0} is the set of vector fields fulfilling the
dual equilibrium equation. From this

∥∇u−∇uh∥ ≤ inf
p∈H(div,O)

∥p−∇uh∥

follows and hence, for a good estimate, p has to be as close to ∇uh as possible. This is referred
to as equilibrated flux reconstruction and has attracted much attention, especially in view of
efficient local approaches. A lot of further results are contributed by Repin, collectively called
functional a posteriori estimates to stress that they are purely based on functional analytical
properties and do not involve any approximation or numerical method, see e. g. [341, 340]. Fully
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robust and guaranteed estimates are derived by Vohralík [407], using Raviart-Thomas-Nédélec
elements for the post processed flux fields and a local conservation property of the finite
element method on dual meshes.

Goal-oriented error estimates. From a practical point of view, a numerical simulation is often
employed to obtain the solution or a certain derived quantity on parts of the computational
domain only. In such a situation it not useful to estimate the global discretization error as it
might be largely irrelevant for the actual goal. This motivates goal-oriented error estimates,
which measure the error in a quantity of interest J[u]. An early example is [39] by Babuška
and Miller.

A major contribution is the dual weighted residual (DWR) method by Becker and Rannacher,
see the early reference [66], applications to optimal control problems [65, 67], and the textbook
[50]. The approach is based on a Lagrangian, coupling the quantity of interest and the
state equation. Residual type estimates then get weighted by the solution of an adjoint
problem, reflecting local sensitivities w. r. t. the considered functional. Since its introduction
the approach has found wide application. We pick it up in the present work as well and apply
it to our two-scale shape optimization model, see Chapter 8.

Alternative techniques are proposed by Prudhomme and Oden [334, 310] and Paraschivoiu
et al. [320], focussing on output functionals depending linearly on the state, such as averages
of the solution on subdomains or mollified pointwise stresses. Here the adjoint problem is
considered as well. Prudhomme and Oden refer to its solution p as influence function. With
the errors in the primal and adjoint solution, eu and ep, it follows from Galerkin-orthogonality
and the polarization identity that

J[eu] = a(eu, ep) = 1
4
∥∥∇(seu + s−1ep)

∥∥2
a
− 1

4
∥∥∇(seu − s−1ep)

∥∥2
a
,

where ∥ϑ∥2
a = a(ϑ, ϑ) denotes the energy norm. The introduction of the balancing factor s

extends ideas of [43]. It can be obtained by explicit optimization, but is approximated in
practice. From this point on, classical estimates are used to derive exact lower and upper
bounds. They can be split into contributions on cells of the computational mesh, though the
balancing factor is a global quantity.

Nochetto et al. [307] revisit the dual weighted residual approach. As the weighting terms
involve approximations of the incomputable continuous adjoint solution, the method hinges on
the assumption that the numerical error in the computation of the discrete adjoint solution is
negligible. A counter example is given, which demonstrates underestimation of the true error.
As a remedy, the usual method is enhanced by a safeguarding term. While the usual weighting
is realized with quadratic finite elements, the additional term estimates the approximation
error of the adjoint solution. Asymptotically the combined estimate coincides with the usual
one.

Ainsworth and Rankin [9] further improve the approach by deriving guaranteed bounds
on the error in the quantity of interest, which do not involve any unknown multiplicative
constants. To this end, higher order finite elements are employed for the primal problem as
well. In the numerical experiments the estimators are found to provide tight upper bounds
with efficiency indices approaching unity.

Error estimates for multiscale methods. Error estimates for methods involving several
scales were of interest in the context of hierarchical modeling, cf. Zohdi et al. [430], Babuška
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and Schwab [42], and Stein and Ohnimus [382]. In this setting different models are available
on varying length scales with associated level of details and computational complexity. An
adaptive selection thus requires a concept for modeling error estimation. In a series of works
[311, 312, 401, 400] Oden and Vemaganti employ their goal-oriented error estimation technique
to analyze elastic bodies with possibly complex microstructure. In the beginning, material
properties are given on the coarsest scale, e. g. obtained via homogenization. The difference
in a quantities of interest based on the homogenized and the fully resolved solution is then
estimated and regions are determined where the modeling should be refined. Subsequently
the fully resolved elasticity tensor is directly employed there, or local problems are solved to
enrich the homogenized solution.

In [313] the discretization of the heterogeneous multiscale method is considered as well, but
based on a direct finite element discretization of the two-scale homogenized equation, which
is essentially (5.6) in our context. Results include an a-priori estimate, in line with (5.13),

Henning and Ohlberger [313, 223] derive a posteriori error estimates for elliptic homogeniza-
tion problems with fine-scale diffusion. They employ the heterogeneous multiscale method and
a direct finite element discretization of the associated two-scale homogenized equation, which
is close to the setting in the present work, see Section 5.3.2. The resulting estimates yield
separate terms for errors in the macroscopic and the microscopic discretization, respectively.
Nonlinear problems are approached in [224].

The fully discrete setting, investigated by Abdulle, is pursued in the context of adaptivity
by Abdulle and Nonnenmacher [1]. A posteriori lower and upper bounds are derived following
classical constructions. Thereby the jump of the multiscale flux Vol(Y)−1 ∫

Y a∇ũh dy is
considered, where ũh is the solution of a microscopic cell problem as in the present work.
Additionally data approximation terms appear, from which local relations of the macroscopic
and the microscopic cell sizes can be deduced. Although the analysis is initially not restricted
to separated scales, periodicity, or sampling domain sizes, explicit results are derived for the
periodic setting.

In [4] goal-oriented error estimates are derived, based on the dual weighted residual concept
for the macroscopic problem, similar to the approach taken in this work. The error in a
quantity of interest is represented using the macroscopic bilinear form as usual. This however
also includes the underlying approximation by the heterogeneous multiscale method, which
is subsequently treated as a variational crime. Estimation follows the earlier works, yielding
residual and data approximation terms. The latter can be made explicit under further
assumptions on the spatial structure of the tensor field and the employed quadrature. In case
the microscopic solution is assumed exact, the classical DWR results are recovered.

Regarding adaptivity in the framework of other multiscale methods, the variational mul-
tiscale method was considered by Larson and Målqvist [258], the multiscale finite element
method by Henning et al. [225], and in the goal-oriented context by Chamoin and Legoll [111].

Error estimates in shape optimization. Adaptive schemes have already been employed for
shape optimization. An early reference is [248] by Kikuchi et al. Here the optimization of the
maximum of a local performance measure, like the van Mises stress, under a volume constraint
is considered. A boundary variation technique is used and combined with automatic mesh
generation based on relocation of nodes and refinement. It is triggered by an error indicator
based on explicitly calculated approximation errors of the used finite elements. Banichuk
et al. [53] account both for the error due to discretization of the state equation and the
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approximation of the geometry. Therefore they employ the Zienkiewicz and Zhu estimator and
additionally the norm of the residual for the necessary optimality condition w. r. t. the design.
In numerical examples, weight optimization under displacement constraints is considered
with explicitly parametrized shape boundaries as degrees of freedom. Bartels and Carstensen
[63] consider optimal distributions of two materials in the cross-section of an infinite bar to
maximize its torsional rigidity. They devise an error estimate for the approximation of the
stress and prove convergence of the adaptive scheme. Wollner [419] addresses free material
optimization as studied by Zowe et al. [433]. He derives a goal-oriented error estimate based
on the dual weighted residual approach. Although the degrees of freedom are reduced to a
single variable in the end, the derivation is close to the present work in case of the sequential
lamination model, cf. Section 8.2. In the full elasticity setting, an adaptive finite element
method for shape optimization via boundary tracking, remeshing and perimeter penalization is
established by Morin et al. [293, 294]. Here the dual weighted residual approach is used as well,
but only to assess the error in the elasticity solution. A separate geometric term is estimated
based on the Laplace-Beltrami operator to account for errors in the boundary variation field.
Giacomini et al. [189] introduce the certified descent algorithm for shape optimization via
boundary variation. They consider the error in the shape gradient as quantity of interest E
and aim for descent directions ϑ fulfilling

dO J[O]ϑ+ |E| < 0 .

Such directions guarantee a decrease of the objective functional, notwithstanding any numerical
approximation errors. The error E is estimated using the linearized shape gradient, following
Oden and Prudhomme [310] and the complementary energy principle according to Repin [341].
In particular additional flux and corresponding dual variables are introduced, and the dual
complementary energy is derived. The result is a computable upper bound without unknown
constants, which is used as a reliable stopping criterion and localized to steer adaptive mesh
refinement. Numerical experiments are presented for inverse shape identification in electrical
impedance tomography. In [188] the program is pursued, this time with error estimators based
on the equilibrated fluxes method, cf. [8, 9]. Thereby only small local problems need to be
solved. In the numerical examples efficiency indices approaching unity can be seen.

2.5. Stochastic optimization
The study of uncertainties and their effect on mathematical models has lead to the emergence
of uncertainty quantification (UQ) as an entire research field. Its practical relevance stems
from the fact that influencing factors are often not exactly known or measurable. Examples
include atmospheric turbulence, material properties of porous or inhomogeneous media,
imprecise knowledge of very large or very small working domains, and inaccurate modeling
parameters. These uncertainties enter governing equations via the domain, coefficients, or
data and therefore directly distort solutions with in general unknown variability.

Finite dimensional background. In mathematical programming the study of uncertainties is
an established field, see [144] for an early reference. A wide range of applications can be found
in mathematical finance and operations research. In case merely range information of uncertain
parameters is available, robust optimization considers worst case outcomes, see e. g. [70, 72]
and the textbook [71]. On the other hand, in case randomness is fully described by probability
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distributions, stochastic optimization provides an appropriate mathematical framework. It
has been largely studied for linear [357], linear mixed-integer [361] or nonlinear models [383,
324] and for continuous time [175, 112]. See [369] for a recent textbook. Two-stage stochastic
programming, which is closely connected to the stochastic shape optimization problems
investigated in this work, additionally brings into play the concept of nonanticipativity, see
[333, 83, 244]. Here a first-stage decision must be taken without knowledge of the concrete
outcome of a random variable. Upon commencing of the realization, a second-stage decision
can be made as recourse action. The scheme can naturally be extended to multiple stages, see
[350]. A recent overview can be found in [411]. To take into account all possible outcomes of
randomness simultaneously, a natural choice is to consider the expectation of desired output
functional. Termed risk neutral, this approach might lead to negligence of scenarios with a
low probability but critical impact. Therefore risk averse models have been developed, see
[167, 347, 358], and also combined with expectation based approaches, leading to mean-risk
models, see [329, 362, 369]. In the present work the expected excess and the excess probability
functional, see [395], are considered. The latter leads to an optimization problem with binary
variables, cf. [345] and [222] for applications to stochastic networks. An alternative approach
is stochastic dominance, which entails an ordering of candidates based on their performance
when solving an optimization problem under uncertain realizations. It is popular in portfolio
optimization and was gradually extended from a mere comparison of cumulative distribution
functions to more flexible models, see [336, 209, 417]. It can also be used as a constraint in
stochastic optimization, see [149]. An overview can be found in the textbooks [296, 368].

Application to shape optimization. The discussed concepts have already been applied
to structural optimization, see the early study for beam models by Banichuk [51] and the
textbooks [273, 54, 280]. In general approaches differ in the way stochasticity enters, which
could be via the right hand side data, material coefficients, or the domain itself.

For multiple loadings fi and corresponding solutions ui a weighted sum of objective values∑
i wi J[O;ui] can be optimized, which amounts to the risk neutral expectation approach.

This setting is already included in the seminal work on the optimality of the sequential
lamination construction by Avellaneda [37], and in many subsequent applications, e. g. [12].
Also the recently emerging approaches for the recovery of classical designs from homogenized
solutions have adopted it, see [238]. The microstructure identification problem based on
the SIMP model is extended in [202], level sets are e. g. used in [13], and the free material
optimization approach in [386]. A full adoption of the stochastic setting is presented by Conti
et al. [136] with a focus on approximating continuous probability distributions. Arbitrary
quadratic objective functionals are admitted and linearity of the state equation is exploited to
reduce computations to a set of basis solutions. For the representation of the shape the level
set method is used with a discretization by composite finite elements. The work is extended in
[139] to allow for risk averse measures in terms of the expected excess and excess probability
functionals. Dambrine et al. [143] propose an entirely different approach based on the two-point
correlation of the state. It is obtained as the solution of a tensor-product-type boundary value
problem with the two-point correlation of the random loads as right hand side. Thereby no full
knowledge of the probability distribution is required. The initially high-dimensional problem
is solved efficiently by applying a low-rank approximation.

Robust optimization has received a lot of interest as well. In case of the sequential lamination
construction, Cherkaev et al. [125] suggest rank-3 laminates to obtain stable optimal designs,
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in contrast to rank-2 laminates, which are optimal but degenerate and would thus fail in
case small variations occurred. Later, Cherkaev and Cherkaev [122] introduce the principle
compliance. For unknown loadings, which are only limited by an integral constraint, it amounts
to the maximal possible stored energy. Depending on the constraints, explicit expressions
are obtained and the optimization problem then takes a min-max structure. Numerical
examples include a beam model and continuous optimization with sequential lamination. For
a continuous change of the loading constraint, a bifurcation of the solution is studied. Free
material optimization in the worst case setting is considered in [69]. Here a reformulation of
the problem is developed, the existence of solutions is shown, and interior point algorithms
are employed. The setting is also included in [386]. Level sets are used by Gournay et al. [195].
In their work unknown but constrained perturbations of a given load are considered. They
prove that a, possibly nonunique, worst perturbation leading to maximal compliance exists. It
is characterized as the maximizer of a nonlinear energy and computed numerically. Based
on this reformulation, the shape derivative for steering the level set evolution is computed.
Kogioso et al. [249] investigate robust optimization of compliant mechanisms by considering
a combination of the expectation and variance of the output deformation. They use a two-
scale approach with hexagonal microstructures leading to isotropic homogenized material.
Takezawa et al. [391] employ the SIMP approach and formulate the optimization problem as
the minimization of the maximal eigenvalue of a reduced linear system of equations. Amstutz
and Ciligot-Travain [35] revisit the work by Gournay et al. [195]. They approach robust
optimization in a general theoretical framework and show the existence of critical loads in
the infinite dimensional setting. Furthermore they consider maximization of the stability
radius. This amounts to finding a shape which tolerates the highest variations of loading while
still meeting a constraint on the compliance. In contrast to worst case optimization, not the
magnitude of variations but an acceptable tolerance for the objective has to be specified. For
numerical demonstrations, they apply their level set approach of [34].

Kharmanda et al. [247] consider reliability based topology optimization using the SIMP
model. In this approach the compliance is minimized subject to a volume limit and an
additional constraint measuring the probability of failure in terms of critical states. Banichuk
and Neittaanmäki [54] include material properties and arisen damages as uncertain influence
factors. They consider the worst case approach and present transformations to conventional
structural optimization problems for several examples. Rumigny et al. [356] optimize the
location of prescribed holes in an elastic domain subject to an uncertainty on the actual
placement, i. e. an unknown but constrained variation is allowed for the design variable
itself. The topological derivative is investigated for varying material properties and right
hand side data in [229]. It is shown to continuously depend on the input and is therefore
regarded as stable. Chen et al. [114] employ the level set method for varying material
properties and loadings. They use a combination of expectation and variance as objective
and to this end approximate moments of continuous random fields by the Karhunen-Loève
expansion. In [113] the same approach is used to handle uncertainty in the geometry, given by
a random perturbation field on the boundary. This additionally requires to maintain point
correspondences between the original and the perturbed boundaries. Shape sensitivities are
then computed and mapped back to the original domain. Geometric uncertainty is also tackled
by Wang et al. in [413] and subsequent works. They employ the SIMP method and obtain
classical designs by thresholding. The thresholding parameter is then randomly perturbed to
yield variations of the shape. Alexandersen and Lazarov [10] likewise approach a two-scale
problem, but with finite separation of length scales. They use the multiscale finite element
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approach and prescribe a fixed fine mesh in every macroscopic cell, were a modified SIMP
model is employed. The base functions are then obtained from solutions of eigenvalue problems
and can be utilized as a multigrid-like preconditioner to efficiently solve the elasticity problem.
Constraints are used to enforce connectivity of the periodic fine-scale structures. Allaire and
Dapogny [23] consider uncertainties in the loading, the material properties, and the geometry
in the worst case setting via linearization. Maximization of the linearized functional can be
done explicitly and results in an objective consisting of the unperturbed functional and a
penalization of the perturbations, expressed via an adjoint state. The general framework is
applied to optimization of a plate and shape optimization via the level set method. In [24]
optimization of expectation, variance and failure probability is investigated for a similar set
of problems. Under the assumption of small perturbations, first and second order Taylor
expansions are derived, from which moments and probabilities can be calculated explicitly.
The uncertainties are generated from a small set of random variables, which allow to obtain
efficient numerical schemes with computational costs comparable to multiple load problems.
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CHAPTER 3

Fundamentals in elasticity

Fundamental concepts in linearized elasticity will be revised in this chapter. We present
the derivation of the partial differential equations of linearized elasticity, governing the

deformation behavior of an elastic body when exposed to loadings. Existence and uniqueness
results for classical boundary value problems and periodic cell problems are given. As mi-
crostructured materials loom large in this thesis the theory of periodic homogenization will
be recapitulated. Finally basic concepts for the discretization of the elasticity problem by
conforming finite elements and the boundary element method are discussed.

3.1. Derivation of a linearized model
To model the behavior of a deformable solid under loading we take the viewpoint of continuum
mechanics. In contrast to an atomistic perspective the material under consideration is regarded
as a continuous substance filling the whole occupied space. Applied forces cause stresses inside
the material maintaining an equilibrium, which can be described in a linearized fashion by
an elliptic partial differential equation. A series of assumptions will help in deriving such
a simplified model. First we restrict ourselves to elastic deformations, which means that a
deformed shape will return to its original configuration if the loads hold off again. Secondly
we are only interested in small deformations that rather give a tendency of the deformation
and will allow for linearization. Lastly we only consider two dimensional objects, although the
presented theory and modeling are valid in three dimensions as well. In the following we will
briefly sketch the derivation of the partial differential equations of linearized elasticity. For a
more detailed and rigorous exposition we refer to the textbooks [129, 272].

Let O ⊆ D ⊂ R2 be a domain with possibly several path-components representing the
elastic object and D a surrounding, simply connected working domain. In the setting of
interest for shape optimization the complement D \ O represents void regions. To ease the
mathematical analysis this region is sometimes assumed to comprise a weak substitute material.
That way no interior boundaries within D and no additional extension operators have to be
considered. In general we will consider the perforated setting, unless otherwise noted. We
require a minimal, strictly positive volume of the remaining domain to rule out exceptionally
large deformations. Both O and D are assumed to have a Lipschitz boundary Γ := ∂O and
∂D respectively. On a part ΓD ⊂ Γ∩ ∂D of positive measure a displacement u∂ ∈ H1 (D;R2)
is prescribed. Here H1 denotes the Sobolev space of L2-measurable functions with weak first
partial derivatives in L2. Setting u∂ = 0 allows to fixate the body along ΓD. Mathematically
u∂ takes on a Dirichlet boundary condition. On another part ΓN ⊂ Γ∩∂D, likewise of positive
measure, surface loads g ∈ H1 (D;R2) are applied. The vector field can be interpreted as the
density of forces acting on the surface ΓN. Mathematically these forces constitute Neumann
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boundary conditions. We require the two boundary parts ΓD and ΓN to be disjoint with the
exception of finitely many one dimensional contact points. Furthermore they are fixed in the
context of optimization as they could simply be eliminated otherwise. On the contrary the
remaining part ΓF := Γ \ (ΓD ∪ ΓN) is allowed to evolve freely by specifying homogeneous
Neumann boundary conditions, i. e. g ≡ 0. Finally body forces, again specified by a density
vector field f ∈ L2 (D;R2) are given to model forces acting on volumetric elements of the
elastic body, like e. g. gravity. Usually one is interested in values of u and f restricted to O,
and u∂ and g restricted to ΓD and ΓN, respectively. Due to the requirements, the latter have
traces on Γ in H

1
2 (Γ;R2). For convenience we assume all quantities to have an extension,

usually by zero, to the whole domain D.
Let ϕ : D → R2 denote the deformation caused by the loadings defined above. We assume

that ϕ is smooth enough for the definitions to follow, injective, and orientation-preserving,
i. e. det Dϕ > 0. Quantities superscripted by ϕ shall refer to the deformed configuration, e. g.
Oϕ = ϕ(O) is the body in its deformed state, see also Figure 3.1. To relate the deformation

ΓD
u∂ = 0

ΓF

ΓN
g

f

O
D

ϕ

fϕ

gϕ

Oϕ Dϕ

Figure 3.1.: Sketch of elastic domain with boundary conditions in reference and deformed
configuration.

to the acting loadings, balancing equations are considered for arbitrary, smoothly bounded
test volumes V ϕ ⊆ Oϕ. In particular the Cauchy-Euler stress principle demands existence of
a vector field tϕ(xϕ, nϕ) : Oϕ × S1 → R2, the stress vector, s. t.

tϕ(xϕ, nϕ) = gϕ(xϕ) on (Γϕ
N ∪ Γϕ

F) ∩ ∂V ϕ ,∫
∂V ϕ

tϕ(xϕ, nϕ) da(xφ) +
∫

V ϕ

fϕ dxφ = 0 ,∫
∂V ϕ

tϕ(xϕ, nϕ)× xϕ da(xφ) +
∫

V ϕ

fϕ × xϕ dxφ = 0 .

(3.1)

Here S1 denotes the unit sphere in R2 and nϕ ∈ S1 the normalized outer normal of V ϕ. This
axiom requires that the stress vector exists for any surface within the elastic body, depends,
besides the position xϕ, on the local normal nϕ only and fits to the prescribed surface loads
on the real outer boundary. Moreover any test volume is in static equilibrium, i. e. there is a
balance of internal surface and body forces resulting in a vanishing force vector and vanishing
angular momentum. The latter is expressed by the cross product, which is defined for two
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vectors a, b ∈ R3 as a× b = (a2b3−a3b2, a3b1−a1b3, a1b2−a2b1)⊤. Altogether acting external
forces get transmitted from point to point throughout the whole elastic body.

Cauchy’s stress theorem now states important consequences from the stress principle. Under
the assumption that fϕ is continuous and tϕ(xϕ, nϕ) smooth in xϕ and continuous in nϕ

the dependence of the stress vector on the normal is linear, given by a smooth tensor field
Tϕ : Oϕ → R2×2, called Cauchy stress tensor. In particular Tϕ(xϕ)nϕ = tϕ(xϕ, nϕ) for all
(xϕ, nϕ) ∈ Oϕ×S1. Plugging into (3.1), using the divergence theorem and force balance yields
the partial differential equations

− divϕ Tϕ = fϕ in Oϕ

Tϕ nϕ = gϕ on Γϕ
N ∪ Γϕ

F

ϕ = Id on Γϕ
D

in the deformed configuration. Moreover, by balance of momentum, the tensor turns out to be
symmetric, i. e. Tϕ(xϕ) = Tϕ(xϕ)⊤. Pulling back to the undeformed reference configuration
results in the transformed quantities

T (x) := Tϕ(xϕ) cof (Dϕ(x)) ,
g(x) := gϕ(xϕ) |cof (Dϕ(x))n(x)| ,
f(x) := fϕ(xϕ) det (Dϕ(x)) ,

where cof (Dϕ(x)) = det (Dϕ(x)) Dϕ(x)−⊤ denotes the cofactor matrix. The newly obtained
tensor T is known as the first Piola-Kirchhoff stress tensor. To regain symmetry one furthermore
defines the second Piola-Kirchhoff stress tensor Σ := (Dϕ)−1

T . For the forces often the dead
load assumption is used, stating that the loads actually do not change under deformation, and
allowing a direct identification of f and g with fϕ and gϕ respectively. The partial differential
equations in reference configuration thus read

−div (DϕΣ) = f in O ,
DϕΣ n = g on ΓN ∪ ΓF ,

ϕ = Id +u∂ on ΓD .

At this point a relation of the deformation and the stresses has to be given via constitutive
equations. A fundamental postulate is to consider elastic materials, where the stress tensor
is fully determined by the gradient of the deformation in the reference configuration for
all admissible deformations. To be more precise, a material is called elastic if there is a
response function Σ̂ : O ×R2×2

det>0 → R2×2
sym, s. t. Σ(x) = Σ̂(x,Dϕ). Here R2×2

det>0 denotes the set
of 2× 2 matrices with positive determinant and R2×2

sym the set of symmetric 2× 2 matrices.
Further simplification results from demanding frame indifference, which constitutes the
intuitive requirement that the behavior of the material should not depend on the chosen
coordinate frame. For this, consider another deformation ϕ̃ = Qϕ + b obtained via a rigid
body transformation of ϕ, i. e. Q ∈ SO(2) is a rotation matrix and b ∈ R2 a translation vector.
Then tϕ̃(xϕ̃, nϕ̃) = Qtϕ(xϕ, nϕ) should hold. As a consequence one can show that the response
function has an even simpler form, namely there exists another mapping Σ̄ : O×R2×2

+ → R2×2
sym,

defined for positive-definite matrices, s. t. Σ̂(x,Dϕ) = Σ̄(x,Dϕ⊤Dϕ). Thus the stresses only
depend on the symmetric right Cauchy-Green strain tensor Dϕ⊤Dϕ.
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The establishment of a linear model now occurs in three steps. If a deformation is a rigid
body transformation, which is insignificant for an elastic deformation, its associated strain
tensor becomes 1. Therefore one considers the deviation of strain tensors from the identity, i. e.
E [ϕ] = 1

2
(
Dϕ⊤Dϕ− 1

)
. Let ϕ = Id +u with u being the displacement and define the linearized

strain tensor as ε[u] := 1
2
(
Du+ Du⊤). Then E [ϕ] = 1

2 Du⊤Du+ ε[u] and by neglecting terms
of higher order one approximates E [ϕ] by ε[u]. Secondly one chooses a linear relation to couple
the stress tensor Σ̄ to the linearized strain tensor. This relation is initially given by a fourth
order tensor C ∈ R24 , mapping ε[u] to σ := Cε[u]. From now on we refer to σ as the stress
tensor. The third step is a Taylor expansion around the origin u = 0 under the assumption
that the reference configuration is a natural state, i. e. Σ̄(x,1) = 0, cf. [129, Theorem 6.2-1].
This assumption guarantees a stress free reference state and makes u = 0 a solution to the
elasticity problem in absence of any loading. Ultimately an elliptic system of partial differential
equations of second order is obtained, reading

−div σ = f in O ,
σn = g on ΓN ∪ ΓF ,

u = u∂ on ΓD ,

σ = C ε[u] in O .

(3.2)

Remark 3.1. It is important to emphasize that the derived simple equations are the result
of linearization and can therefore only provide an approximation of the elastic behavior for
the applied loadings close to the reference state. Fundamental properties, that were used
in the derivation, such as frame indifference, are actually violated by the linearized model.
Furthermore large deformations are not adequately modeled. In fact a scaling of the forces
merely results in a scaling of the displacement, which is obviously not realistic. Ciarlet, in
[129, p. 286], even states “Elasticity cannot be linear!”. Still, despite its shortcomings, the
approach has been widely adopted and proven to yield sensible results. Especially for shape
optimization the reaction of the material to loadings by trend seems sufficient for a qualitative
appraisal of the structure.
Remark 3.2. The theory presented in the referenced textbooks is set up for the three
dimensional case. It can be reduced to the two dimensional case by dropping the third
components of deformations, stresses, and related operators, as done here. One can however
not fully justify these omissions by the elastic behavior. Even if there is no strain in a principle
direction, stresses in this direction can very well occur and are indeed required to let the strain
vanish, and vice versa. Therefore one selected quantity has to be set to zero by assumption
and the other has to be neglected. In this work we take the plane strain perspective, i. e. we
assume that no strain occurs in direction of the third spatial component and ignore stresses
in this direction. This assumption leads to a linear stress-strain relation looking familiar to
the fully three dimensional case and can be motivated by workpieces that are very long in
a certain direction, compared to the others. The deformation in this direction is therefore
neglected and only a cross section considered.

3.2. Properties of elastic materials
In the derivation of the elastic model a linear mapping was ultimately chosen as the constitutive
equation. As such it is a forth order tensor operating on the space of square matrices. Initially
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we assume its coefficients to be bounded, i. e. C ∈ L∞(O;R24), making it a bounded operator
with associated operator norm |||C|||. Furthermore we assume that very strong ellipticity holds,
i. e. for a universal constant c > 0

CX : X ≥ c X : X, ∀X ∈ R2×2
sym (3.3)

should hold. This assumption is crucial for the existence theory described in the next section.
Further motivation of the less strict strong ellipticity condition is given in [129, p. 255].

By coupling stresses and linearized strains, the elasticity tensor fundamentally characterizes
the material behavior. Initially there are 24 = 16 degrees of freedom, but most of them are
actually interdependent.

Lemma 3.3. The entries of the elasticity tensor C satisfy the symmetries

Cijkl = Cjikl , Cijkl = Cijlk , Cijkl = Cklij , i = 1, 2 . (3.4)

As to the proof, the first relation follows from the fact that σ has to be symmetric by virtue
of Cauchy’s stress theorem. The third relation requires a more intricate reasoning based on the
theory of hyperelasticity. Here entries of the elasticity tensor appear as second derivatives of a
hyperelastic energy density and symmetry follows from permutability of differentiation under
smoothness assumptions. See e. g. [272, Proposition 4.4, p. 209] for further details. The second
relation finally results from combining the first and the third. As an immediate consequence
of symmetry there holds

C ε[u] = C Du. (3.5)

For providing a better overview of the remaining 6 degrees of freedom of C, it is common to
express the stress-strain relation using Voigt notation. It reads σ11

σ22
σ12

 =

 c11 c12 c14
c12 c22 c24
c14 c24 c44

 ε11[u]
ε22 [u]

2 ε12 [u]

 , (3.6)

where c11 = C1111, c12 = C1122, c14 = C1112, c22 = C2222, c24 = C2212, and c44 = C1212.
Further simplifications arise from special material properties. Orthotropic materials feature
different properties along two orthogonal axes of symmetry, e. g. due to an atomistic lattice,
and one can deduce c14 = c24 = 0. If the behavior in both directions is furthermore identical
we have c22 = c11, referred to as cubic symmetry for the three dimensional case. A final
simplification is the fully isotropic case where the material reaction is uniform for every
direction, resulting in c11 = c12 + 2c44.

Remark 3.4. Under the assumption of isotropy it is in fact possible to directly establish the
stress-strain relation

σ = λ tr (ε[u])1+ 2µ ε[u] . (3.7)

This coincides with the afore mentioned simplifications of (3.6) when setting λ = c12 and
µ = c44. However it is important to remark that this is not just a specific choice for the
constitutive relation, but a result of rigorous mathematical derivation. See [129, pp. 104 sqq.]
for details.
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The elasticity coefficients λ and µ are known as Lamé parameters and can be determined
for real materials by experiment. As they are known to be positive, the ellipticity condition
follows as CX : X ≥ 2µX : X from (3.7). The second parameter µ is also known as the shear
modulus. Further important coefficients are Young’s modulus E, Poisson’s ratio ν, and the
bulk modulus κ, given by

E = µ(3λ+ 2µ)
λ+ µ

, ν = λ

2(λ+ µ) , κ = λ+ 2µ
d
. (3.8)

Roughly speaking µ measures the material reaction to shearing, ν its lateral contraction, i. e.
the decrease in width perpendicular to an applied traction force, E its change in length due to
tensile loads, and κ its compressibility under hydrostatic loads, i. e. uniform normal loads on
the surfaces. Of these coefficients only the bulk modulus depends on the dimension d ∈ {2, 3}.

In this work we usually have isotropic materials in mind, that can be characterized by the
constants above. As the concrete values do not have significant influence on the qualitative
outcome of shape optimization, we will mostly use normalized parameters λ = µ = 1. This
choice does not reflect properties of a realistic material, but simplifies computations. The
two-scale construction, which is the main aspect of this thesis, will however not produce
isotropic materials in general anymore.

3.3. Solution of the elasticity problem

Throughout this work we will rely on the calculus of variations for the analysis of the shape
optimization problem. Accordingly a weak formulation of the elasticity problem (3.2) will
be considered. Let the bilinear form a : H1(O;R2) × H1(O;R2) → R and the linear form
l : H1(O;R2)→ R be defined by

a(O;u, ϑ) :=
∫

O
Cε[u] : ε[ϑ] dx ,

l(O;ϑ) :=
∫

O
f · ϑ dx+

∫
ΓN

g · ϑ da(x) ,
(3.9)

for u, ϑ ∈ H1(O;R2). By convention we separate variables which possibly enter nonlinearly
by a semicolon from the linear dependencies in the definition of functionals. Let H1

ΓD
denote

the space of functions in H1 with vanishing trace on ΓD, i. e. u(x) = 0 for x ∈ ΓD.

Theorem 3.5 (Weak formulation of the elasticity problem). The partial differential equations
of linearized elasticity (3.2) are formally equivalent to the following weak formulation.

Find u0 ∈ H1
ΓD

(O;R2), s. t. u = u0 + u∂ satisfies

a(O;u, ϑ) = l(O;ϑ) ∀ϑ ∈ H1
ΓD

(O;R2) . (3.10)

Proof. For any u, assumed to be smooth enough, we start from (3.2), multiply both sides by
a test function ϑ ∈ H1

ΓD
(O;R2) and integrate over O. Next we apply partial integration row
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wise on the matrix σ, yielding∫
O
f · ϑ dx =

∫
O
−div(σ) · ϑ dx

=
∫

O
σ : Dϑ dx−

∫
ΓN

σn · ϑ da(x)

=
∫

O
Cε[u] : ε[ϑ] dx−

∫
ΓN

g · ϑ da(x)

(3.11)

Replacing Dϑ by ε[ϑ] is possible due to symmetry of C, cf. (3.5). Furthermore we have σn = g
on ΓN ∪ ΓF, and especially g = 0 on ΓF, in virtue of the prescribed boundary conditions.
Rearranging then yields (3.10).

Conversely starting from (3.10) and using partial integration in reverse gives∫
O
−div(σ) · ϑ dx+

∫
ΓN∪ΓF

σn · ϑ da(x) =
∫

O
f · ϑ dx+

∫
ΓN

g · ϑ da(x) .

Restricting the trial space to compactly supported functions onO yields the identity−div(σ) =
f inside O by virtue of the fundamental lemma of the calculus of variations, see e. g. [186]
as a text book reference. The remaining identity for the boundary integrals over ΓN ∪ ΓF
again has to hold for all possible functions ϑ. So likewise choosing appropriate functions with
traces on ΓN ∪ ΓN establishes σn = g on ΓN, and σn = 0 on ΓF. Finally u = u∂ on ΓD is
immediately fulfilled due to the definition of the weak problem.

Remark 3.6. The introduction of u0 ∈ H1
ΓD

(O;R2) in Theorem 3.5 above reflects the usual
procedure of reducing an inhomogeneous Dirichlet boundary condition to a homogeneous one.

Due to its importance for the existence result, we now restate Korn’s inequality.

Theorem 3.7 (Korn’s inequality). There exists a constant c > 0, s. t. for all ϑ ∈ H1(O;R2)

∥ϑ∥1,2,O ≤ c (|ϑ|0,2,O + |ε[ϑ]|0,2,O) .

Consequently the term on the right hand side defines a norm equivalent to the full H1-norm.

The result is especially remarkable as only the symmetric part of the Jacobian appears on
the right hand side. The proof is delicate, but numerous variants have been given throughout
the years, see [129, p. 291] for a list of references. We have now gathered all ingredients to
give the existence and uniqueness result for the weak elasticity problem.

Theorem 3.8 (Existence and uniqueness of a weak solution). Under the assumptions set up
so far, there exists a unique solution u0 ∈ H1

ΓD
(O;R2), s. t. u = u0 + u∂ satisfies the weak

problem of linearized elasticity (3.10).

Proof. The proof is done by applying the Lax-Milgram lemma to the weak problem a(O;u0, ϑ) =
l(O;ϑ)− a(O;u∂ , ϑ) ∀ϑ ∈ H1

ΓD
(O;R2). Therefore note first that the right hand side is linear
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in ϑ. It is moreover bounded because∣∣l(O;ϑ)− a(O;u∂ , ϑ)
∣∣

≤
∣∣∣∣∫

O
f · ϑ dx+

∫
ΓN

g · ϑ da(x) +
∫

O
Cε
[
u∂
]

: ε[ϑ] dx
∣∣∣∣

≤ |f |0,2,O |ϑ|0,2,O + |g|0,2,ΓN |ϑ|0,2,ΓN + |||C||| |u∂ |1,2,O |ϑ|1,2,O

≤
(
|f |0,2,O + ∥g∥1,2,O + |||C||| |u∂ |1,2,O

)
∥ϑ∥1,2,O .

Here the Cauchy-Schwartz inequality, the continuity property of the trace operator, and the
definitions of the full and semi Sobolev norms were used. The bilinear form on the left hand
side is likewise bounded. Furthermore we have

a(O;ϑ, ϑ) ≥ c
∫

O
ε[ϑ] : ε[ϑ] dx

due to the ellipticity assumption (3.3). To show coerciveness on the space H1
ΓD

(O;R2), i. e.
a(O;ϑ, ϑ) ≥ c∥ϑ∥1,2,O, one has to check that ϑ 7→

∫
O ε[ϑ] : ε[ϑ] dx defines a norm, equivalent

to the H1-norm. For this Korn’s inequality, see Theorem 3.7, is the crucial point. Moreover
one finds that ε[ϑ] = 0 implies ϑ = 0 if Vol(ΓD) > 0. The detailed calculations can be found
in [129, pp. 292 sqq.]. This completes the prerequisites of the Lax-Milgram lemma and the
result follows.

Remark 3.9. When proving the norm properties one finds that ε[ϑ] = 0 actually implies
ϑ(x) = a+ Sx with a ∈ R2 and S ∈ R2×2 skew symmetric, i. e. S⊤ = −S. The mapping by
a skew symmetric matrices can be interpreted as an infinitesimal rotation. Thereby, in the
linearized setting, ϑ corresponds to a translation and rotation, i. e. a rigid body motion. As
described in Section 3.1 such deformations are ruled out in the modeling and in fact they are
here precluded by requiring Vol(ΓD) > 0. From an intuitive point of view this simply means
that a fixation of the domain on a strip prevents translations and rotations.

Remark 3.10. The existence and uniqueness result stated here in fact demands less regularity
of u than needed for the derivation of the strong formulation (3.2) and the formal calculation
in the proof of Theorem 3.5. Under certain assumptions it is furthermore possible to show
that weak solutions are also strong solutions, see [129, Theorem 6.3-6] for details. Throughout
this thesis we will refer to the weak solution of (3.10) as the elasticity solution. Moreover the
regularity requirements for f and g can be weakened, cf. [129, Theorem 6.3-5], but this is not
essential for our exposition.

From the Lax-Milgram lemma we additionally gain a characterization of the elasticity
solution as the unique minimizer of an energy functional, which will reappear in the shape
optimization context.

Corollary 3.11. The weak elasticity solution of (3.10) is the unique solution of the mini-
mization problem

min
ϑ∈H1

ΓD
(O;R2)

Jtotal [O;ϑ+ u∂
]
, where Jtotal [O;u] := 1

2a(O;u, u)− l(O;u) (3.12)

is the total free energy. Note that in accordance to (3.10) the candidates are taken from the
trial space of functions with vanishing trace on ΓD.
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This result follows from considering variations of the energy functional and checking the
necessary and sufficient conditions for a minimizer. We will come across this procedure in the
two-scale context.

3.4. Periodic boundary conditions
Later on we will be required to solve elasticity problems with periodic boundary conditions, a
special setting that was not discussed so far. To this end we consider the domain Y ⊆ DY =
[0, 1]2, also referred to as unit cell. A proper subset is obtained if the domain has holes, which
are admitted here but required to keep a distance to the cell boundary. Let θ := Vol(Y) ∈ [c, 1],
c > 0 denote the volume of the unit cell. The elasticity tensor field C is required to be Y-
periodic, i. e. the tensors given on the boundary of Y have to coincide with their counterparts
on the opposing boundary. We furthermore assume the right hand side f to be Y-periodic and
consequently look for a solution u, which is likewise periodic. Therefore we define the spaces
H1

per :=
{
ϑ ∈ H1 : ϑ Y-periodic

}
and L2

per :=
{
ϑ ∈ L2 : ϑ Y-periodic

}
of Y-periodic functions

from H1 and L2 respectively. The elasticity problem, in strong formulation, now reads{
−div C ε[u] = f in Y ,
u ∈ H1

per(Y;R2) ,
(3.13)

for f ∈ L2
per(Y;R2). The associated weak problem is

a(Y;u, ϑ) =
∫

Y
f · ϑ dx ∀ϑ ∈ H1

per(Y;R2) . (3.14)

One might also think of the problem being defined on the unit torus, leading naturally to
the postulated periodic identifications. In any case there is no real boundary delimiting the
problem domain anymore, where e. g. Dirichlet boundary conditions could be prescribed. In the
context of the preceding section Vol(ΓD) = 0 holds and the existence result is not applicable.
It is however regained by an instance of the Fredholm alternative, cf. [322, Theorem 7.9].

Theorem 3.12 (Fredholm alternative). Under the hitherto assumptions for the elasticity
tensor, exactly one of the following statements holds:

1. For every f ∈ L2
per(Y;R2) there exists a unique solution of (3.14).

2. The homogeneous equation

a(Y;u, ϑ) = 0 ∀ϑ ∈ H1
per(Y;R2) (3.15)

has a nontrivial solution.

In the latter case problem (3.14) has a solution if and only if∫
Y
f · u dx = 0 ∀u solving (3.15) . (3.16)

With respect to the elastic periodic cell problems, that we consider here, the second statement
applies. As noted in Remark 3.9 nonuniqueness is related to rigid body transformations in

39



Chapter 3. Fundamentals in elasticity

the linearized setting. In the preceding section these were ruled out by virtue of the Dirichlet
boundary conditions on ΓD. In the current setting rotations are precluded by the periodic
identification of displacements on opposing boundaries. Translations are however permitted
and lead to a one dimensional family of solutions to the homogeneous equation (3.15).
Consequently, for existence of a solution to the cell problem, we need to require that∫

Y
f · u dx = 0 ∀u ≡ c , c ∈ R .

Furthermore we can identify a unique solution by restricting the trial space to displacements
with vanishing component wise integral mean, defined as

H1
per,0 :=

{
u ∈ H1

per : θ−1
∫

Y
u dx = 0

}
. (3.17)

The following property of Y-periodic functions will be used later on.

Lemma 3.13. In the mean the divergence of a Y-periodic vector field ϑ ∈ H1
per(Y;R2)

vanishes on the unit cell Y, i. e.
∫

Y divϑ dx = 0.

Proof. By Gauss’s theorem ∫
Y

divϑ dx =
∫

∂Y
ϑ · n da(x) .

As ϑ is Y-periodic it has equal values on opposing sides of Y . Due to the opposite sign of the
normal, the contributions cancel each other and the assertion follows.

3.5. Periodic homogenization
Periodic microstructures are at the core of this thesis and homogenization techniques will be
used to decouple the strongly separated macroscopic and microscopic scales. We therefore
recapitulate the theory of homogenization for an elasticity problem with a periodic material.
As reference e. g. the textbooks [81, 314] can be consulted. Often a two-phase setting with
a substitute material in D \ O is considered to simplify the analysis but the results remain
valid for the real perforated setting as well, cf. [133, 130].

To be precise let δ ≪ 1 denote the microscopic scale and consider the possibly perforated
unit cell Y ⊆ DY = [0, 1]2. By scaling and placing copies of this cell on a discrete lattice,
we obtain the full, microstructured domain Oδ :=

⋃
ci∈Z2 δ (ci + Y), cf. Figure 1.2. In this

situation the working domain D simply corresponds to the unperforated domain. The elasticity
tensor is assumed to be Y-periodic, s. t. it is enough to specify its values on Y. We denote it
by Cδ(x) := C( x

δ ) to explicitly state the microscopic dependence. The scaled argument is now
used as a new distinct variable y := x

δ , called fast variable. It reflects the rapid oscillations, in
contrast to the slow variable x, acting on the macroscale. At this point the assumption of
scale separation justifies an independent treatment of the algebraically related variables.

The setting of the elasticity problem laid out in the preceding sections is not substantially
altered by the introduction of the microscopic dependence. In particular, for fixed δ, there
exists a unique solution uδ, which now inherits the microscopic dependence. By virtue of the
Lax-Milgram lemma the solution is bounded. Considering a sequence of scaling parameters
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δ → 0 thus leads to a sequence of problems with a corresponding sequence of solutions, still
denoted by uδ to keep the notation simple. For once assume that due to boundedness a weakly
converging subsequence, still denoted by uδ, can be extracted s. t. uδ ⇀ u∗. In the two-phase
setting this is straightforward, whereas in the perforated case some extra reasoning is required
as each member of the sequence lives in its own space due to the varying domains. Furthermore
observe that Cδ ⇀ C̄ := θ−1 ∫

Y C
δ dy by components. In general this however does not imply

convergence of the product Cδε
[
uδ
]
⇀ C̄ε[u∗]. The challenging task therefore is to find an

equation which is actually solved by u∗. This will then allow to extract material properties
not depending on δ anymore and to properly define a corresponding effective elasticity tensor
C∗.

3.5.1. Derivation of the homogenized equation
To get an idea of how the solution behaves for δ → 0, an asymptotic analysis is done using a
power series approach for uδ, i. e.

uδ(x) =
∞∑

m=0
δm u(m)(x, y) . (3.18)

Here we assume that the solution depends on both x and y and inherits the Y-periodicity in
y. We are going to plug the series into the elasticity PDE (3.13). Therefore first observe that
for components ui, i ∈ {1, 2}, of any displacement vector

∇x (ui(x, y)) =
(
∇xui + δ−1∇yui

)
(x, y)

holds due the definition of y. Here ∇x and ∇y denote the gradient vector w. r. t. the first and
the second argument respectively. Therefore

Cδ(x) ε
[
uδ(x)

]
=

∞∑
m=0

C(y) δm
(

Dxu
(m) + δ−1Dyu

(m)
)

(x, y)

= δ−1C(y) εy

[
u(0)

]
(x, y)

+
∞∑

m=0
δmC(y)

(
εx

[
u(m)

]
+ εy

[
u(m+1)

])
(x, y)

holds with Jacobians Dx, Dy, and linearized strain tensors εx, εy, referring likewise to the
first and the second argument respectively. We now take the divergence and obtain{

divCδε
[
uδ
]}

(x) =− δ−2
{

divy Cεy

[
u(0)

]}
(x, y)

− δ−1
{

divy C
(
εx

[
u(0)

]
+ εy

[
u(1)

])
+ divx Cεy

[
u(0)

]}
(x, y)

−
∞∑

m=0
δm
{

divy C
(
εx

[
u(m+1)

]
+ εy

[
u(m+2)

])
+ divx C

(
εx

[
u(m)

]
+ εy

[
u(m+1)

])}
(x, y) .
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Due to the main equation of the periodic elasticity problem (3.13), the above expression must
be equal to f(x). We equate equal δ-powers and focus on dominant powers for δ → 0. For
δ−2 we get

−divy Cεy

[
u(0)

]
(x, y) = 0 in Y , (3.19)

which is a periodic cell problem in y only, with x acting as a parameter. From Theorem 3.12
in the preceding section we know that constant displacements, which may now depend on x,
are solutions. Thus u(0)(x, y) ≡ u∗(x) with some function u∗ independent of y solves (3.19).
Plugging this into the δ−1-equation and using εy[u∗] = 0 yields

−divy C(y)εy

[
u(1)(x, y)

]
= divy C(y)εx[u∗(x)] in Y . (3.20)

This again is a periodic cell problem in y, but this time with a nontrivial, yet known, right
hand side. In virtue of Theorem 3.12 the equation has a solution if the solvability condition
(3.16) is satisfied. Therefore we take the y-constant test function ϑ(x) ≡ c and obtain∫

Y
divy C(y)εx[u∗(x)] · ϑ(x) dy = c

∫
Y

divy C(y)εx[u∗(x)] · 1 dy = 0 . (3.21)

Here the second integral vanishes component wise in virtue of Lemma 3.13. Thus equation
(3.20) has a solution, which is unique when taken from H1

per,0(Y;R2). We use an approach
with separated variables, reading

u(1)(x, y) =
2∑

i,j=1
(εx[u∗(x)])ij ωij(y) , (3.22)

where each entry of εx[u∗(x)] acts as a coefficient in front of unknown displacement vectors
ωij : Y → R2 in y. Plugging into (3.20) yields

divy C(y)
2∑

i,j=1
(εx[u∗(x)])ij (εij + εy[ωij(y)]) = 0 in Y ,

where εij := 1
2 (ei ⊗ ej + ej ⊗ ei). Here ei, ej are canonical basis vectors in R2 and the tensor

product for two vectors v, w ∈ Rd is defined via (v ⊗ w)ij = viwj . As such, εij constitute a
basis of the matrix space R2×2

sym. To solve the problem in Y, independent of x, thus the set of
problems {

divy C(y) (εij + εy[ωij(y)]) = 0 in Y ,
ωij ∈ H1

per,0(Y;R2) ,

}
i, j = 1, 2 (3.23)

has to be solved. These problems are often referred to as cell problems in homogenization and
ωij are called first order correctors. Finally the δ0-equation reads

−divy C(y)εy

[
u(2)(x, y)

]
= divy C(y)εx

[
u(1)(x, y)

]
+ divx C(y)

(
εx[u∗(x)] + εy

[
u(1)(x, y)

])
+ f(x) .
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Again, for solvability the right hand side has to vanish when integrated against a y-constant
test function ϑ(x). For the first term the same argumentation as in (3.21) applies and the
condition simplifies to

−divx

(∫
Y
C(y)

(
εx[u∗(x)] + εy

[
u(1)(x, y)

])
dy
)

=
∫

Y
f(x) dy . (3.24)

We now insert (3.22) and obtain the homogenized equation

−divx C
∗εx[u∗(x)] = θf(x) in D (3.25)

with the homogenized elasticity tensor

C∗
ijkl :=

∫
Y
Cijkl(y) + C(y) εy[ωkl(y)] : εij dy . (3.26)

The homogenized equation (3.25) is a purely macroscopic problem for the macroscopic
displacement part u∗, which can be equipped with typical boundary conditions as discussed in
Section 3.1. It is well-posed as long as the assumptions of Section 3.2 are not violated for the
elasticity tensor C∗, which will be discussed in the next section. Note that (3.25) is defined
on the whole domain D because C∗ is constant, in contrast to the perforated problem on Oδ

involving Cδ. For f the assumed extension to D is used. The additional scaling factor θ reflects
the fact that volume forces only affect the volumetric part of the full domain. Microscopic
influence enters only implicitly via the homogenized elasticity tensor C∗, whose coefficients can
be computed self-containedly from the correctors ωij , solving microscopic cell problems. Note
that C∗ does not depend on the macroscopic domain, the source term f , and the macroscopic
boundary conditions. Using ωij and u(0) = u∗ allows to set up ũ := u(1) via (3.22), which
means that in view of the power series approach (3.18) an approximation of uδ up to first
order was established.

3.5.2. Properties of the homogenized elasticity tensor
The obtained homogenized elasticity tensor is defined by its entries given in (3.26). They can
be written equivalently as

C∗
ijkl :=

∫
Y
C(y) (εij + εy[ωij(y)]) : (εkl + εy[ωkl(y)]) dy (3.27)

by observing that the additional term
∫

Y C(y) (εkl + εy[ωkl(y)]) : εy[ωij(y)] dy is in fact a
weak formulation of the periodic cell problem (3.23) and therefore vanishes. From (3.27)
one can immediately read off the symmetry of C∗ w. r. t. interchanging the index pairs (i, j)
and (k, l). The basis matrices εij are symmetric by construction which leads to coinciding
correctors ωij = ωji of (3.23). Therefore C∗ is also symmetric w. r. t. interchanging i, j and k, l
respectively. The entries of C∗ are moreover bounded as in view of (3.26) ωij ∈ H1

per,0(Y ;R2)
are bounded solutions of cell problems and the entries of C are bounded by assumption, thus
C∗ ∈ L∞(D;R24). Finally also ellipticity is preserved for C∗. To this end letX ∈ R2×2

sym be given.
Then C∗X : X =

∫
Y C(y)X̃ : X̃ dy with X̃ :=

∑
ij Xij (εij + εy[ωij(y)]) and by ellipticity

properties of C we have C∗X : X ≥ c
∫

Y X̃ : X̃ ≥ 0. In case C∗X : X = 0, it follows that
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X̃ = εy

[∑
ij Xij (εijy + ωij(y))

]
= 0, which implies

∑
ij Xijεijy − Sy = −∑ij Xijωij(y) + b

with a skew symmetric matrix S ∈ R2×2 and a constant vector b ∈ R2. The right hand side is
Y-periodic. On the left hand side a linear mapping is spanned by appropriate basis matrices,
which can only be Y-periodic in the trivial situation when S = 0 and X = 0. This proves
positive definiteness of C∗ from which ellipticity can be deduced.

3.5.3. Remarks as to rigorous justifications
The heuristic power series approach sketched above produces well-posed and decoupled
microscopic and homogenized macroscopic elasticity problems. However it does not provide
a rigorous justification as to whether the obtained homogenized problem coincides with the
limiting problem for δ → 0. Several techniques have been established to prove this fact. We
focus on the concept of two-scale convergence here as it fits to the framework of the two-scale
shape optimization model and only touch on further more general methods.

Two-scale convergence. The framework of two-scale convergence was introduced in [306]
and is presented clearly laid out in [16]. It is specifically tailored to study functions with a
periodic, high frequency oscillatory part and is able to handle perforated domains. In addition
to defining the limiting function, important properties like compactness and error estimates
can be proven. Furthermore the technique allows to derive the homogenized equation in a
self-contained way.

Definition 3.14 (Two-scale convergence). A sequence of functions uδ ∈ L2 (D;R2) is
said to two-scale converge to a limit u ∈ L2(D × Y;R2) if for any test function ϑ ∈
C∞

c

(
D; C∞

per(Y;R2)
)

there holds

lim
δ→0

∫
D

uδ(x)ϑ(x, x
δ ) dx =

∫
D

∫
Y
u(x, y)ϑ(x, y) dy dx .

Here C∞
c and C∞

per denote the spaces of smooth functions with compact support or periodicity,
respectively. The following statement gives an eligible compactness property. Namely bounded
sequences in L2 are relatively compact w. r. t. the notion of two-scale convergence.

Theorem 3.15 (Compactness). Let uδ ∈ L2 (D;R2) be a bounded sequence. Then there is a
subsequence, still denoted by uδ, and a limit u ∈ L2(D × Y;R2), s. t. uδ two-scale converges
to u.

Based on this result the following statement is the important point in view of the mi-
crostructured elasticity problem studied here.

Theorem 3.16. Let uδ ∈ H1 (Oδ;R2) be a bounded sequence. Then there are extensions
of uδ and ε

[
uδ
]
, that, up to a subsequence, two-scale converge to limits u∗(x)χY(y) with

u∗ ∈ H1(D;R2) and (εx[u∗(x)] + εy[ũ(x, y)])χY(y) with ũ ∈ L2 (D;H1
per,0(Y;R2)

)
.

Now the concept of two-scale convergence can be applied to the homogenization problem in
elasticity. Due to boundedness of the solution uδ to the usual elasticity problem (3.10), and
by virtue of Theorem 3.16, there are subsequences of uδ and ε

[
uδ
]
, extended to the whole

domain D, that two-scale converge to limits u∗(x)χY(y) and (εx[u∗(x)] + εy[ũ(x, y)])χY(y)
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respectively. Starting from the governing equations (3.2) again a weak formulation is derived,
but this time using a special test function. Similar to the approximation of uδ at hand,
we choose ϑ∗(x) + δϑ̃(x, x

δ ) with ϑ∗ ∈ C∞
c (D;R2) and ϑ̃ ∈ C∞

c

(
D; C∞

per(Y;R2)
)
, which after

multiplication and integration by parts yields∫
Oδ

C( x
δ )ε
[
uδ(x)

]
:
(
εx[ϑ∗(x)] + εy

[
ϑ̃(x, x

δ )
]

+ δεx

[
ϑ̃(x, x

δ )
])

dx

=
∫

Oδ

f(x) ·
(
ϑ∗(x) + δϑ̃(x, x

δ )
)

dx .

The term C( x
δ )
(
εx[ϑ∗(x)] + εy

[
ϑ̃(x, x

δ )
])

can be regarded as an admissible test function for
two-scale convergence of ε

[
uδ(x)

]
. It is less regular than required in the definition but the

results remain valid as shown in [16]. Thus it is possible to pass to the two-scale limit on both
sides, yielding∫

D

∫
Y
C(y) (εx[u∗(x)] + εy[ũ(x, y)]) :

(
εx[ϑ∗(x)] + εy

[
ϑ̃(x, y)

])
dy dx

=
∫

D

∫
Y
f(x) · ϑ∗(x) dy dx .

(3.28)

This weak formulation is in fact amenable to the Lax-Milgram lemma when using appropriate
spaces. To this end note first that (3.28) remains valid for any (ϑ∗, ϑ̃) from the product space
H1

ΓD
(D;R2)× L2 (D;H1

per,0(Y;R2)
)

by a density argument. Next this space is endowed with
the norm ∥ε[ϑ∗] + εy

[
ϑ̃
]
∥0,2,D×Y and a bilinear form is defined by the left hand side of (3.28).

It is bounded and coercive due to ellipticity of C and Korn’s inequality, Theorem 3.7. The
linear form on the right hand side was not substantially altered. On the whole the Lax-Milgram
lemma guarantees a unique solution of the weak problem (3.28) and consequently the whole
sequences uδ and ε

[
uδ
]

converge.
Integrating (3.28) by parts in x w. r. t. εx[ϑ∗(x)] and in y w. r. t. εy

[
ϑ̃(x, y)

]
produces

equations (3.24) and (3.20). Using the same approach (3.22) for ũ, the homogenized equation
(3.25) and the cell problems (3.23) are derived as before. Altogether the two-scale approach
produces the homogenized equation and proves convergence of the functions involved in a
single step.

Let us finally remark that the heuristic power series (3.18), in view of the findings from
two-scale convergence, was indeed correct up to first order. More precisely, see [81, Chapter 1,
Section 5.5] for details, the error to the solution with full microscopic dependence can be
quantified.

Theorem 3.17. Under the additional assumption that u∗ ∈ W 2,∞(D;R2), and by using
appropriate extensions, there holds∥∥uδ(x)− u∗(x)− δũ(x, x

δ )
∥∥

1,2,D
≤ c
√
δ .

Further approaches. The oscillating test function method, sometimes also called energy
method, was devised by Murat and Tartar, see [302] for an English translation of the original
work from 1977. It is not restricted to a periodic setting, but in this context it shows similarities
to the previous expositions. Starting from the weak formulation (3.10) with ε

[
uδ
]

and Cδ it
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is not possible to directly pass to the limit as a product of two weakly converging sequences is
involved. This difficulty can be obviated by using a specially devised sequence of test functions.
The technique is therefore also known as a compensated compactness result. In the present
situation one chooses

ϑδ( x
δ ) = ϑ∗(x) + δ

2∑
i,j=1

(εx[ϑ∗(x)])ij ωij( x
δ )

with ϑ∗ ∈ C∞
c (D;R2) and cell solutions ωij ∈ H1

per,0(Y;R2) as defined before. After some
calculation the equation can be rearranged to produce a product of uδ and a weakly converging
sequence. By Rellich’s theorem, cf. [31] as to the perforated setting, there exists a subsequence
of uδ that strongly converges in L2 and this enables passing to the limit. Finally a problem,
similar to the homogenized equation above in weak form, is achieved. As it allows for a unique
solution the whole sequences converge and the homogenization result is proven.

Ultimately a fully distinct notion of convergence for homogenization problems as presented
here was established under the name of H-convergence, see [302]. It is a generalization of G-
convergence, devised by Spagnolo in [379], to possibly non symmetric operators. The definition
is given implicitly through the postulated mutual convergence of the elasticity solution and
the microstructured material properties.

Definition 3.18 (H-convergence). Let uδ ∈ H1
ΓD

(
Oδ;R2) be a sequence of solutions to

the elasticity problem (3.10) involving the elasticity tensor Cδ. The sequence Cδ is said to
H-converge to a limit C∗ if uδ satisfies{

uδ ⇀ u∗ weakly in H1
ΓD

(D;R2) ,
Cδε

[
uδ
]
⇀ C∗ε[u∗] weakly in L2(D;R2×2

sym) ,

where u∗ is the solution of the homogenization equation (3.25) corresponding to the effective
tensor C∗.

It can be shown that the definition of the H-limit C∗ is independent of the domain, the right
hand side f and the boundary conditions. Moreover important properties like compactness,
locality of the limit, and convergence of the associated energy density C∗ε[u∗] : ε[u∗] can be
shown, cf. [302]. Here the proofs often make use of the compensated compactness theory.

3.6. Numerical solution
In this thesis numerical experiments for the optimization of microstructured materials are
conducted. Therefore it is necessary to transfer the appearing functions and governing equations
of linearized elasticity into a discrete setting, involving only finitely many degrees of freedom.
Two different methods will be used simultaneously, namely the finite element method on the
macroscopic scale and the boundary element method on the microscopic scale.

3.6.1. Finite element method
For the presentation we focus on the problem setting relevant for this work, i. e. a discretization
of the linearized elasticity problem in two space dimensions (3.10). A reference giving exhaustive
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details is e. g. the textbook [128]. The finite element method is based on the weak formulation
of the partial differential equations. Known as the Galerkin method, the key idea is to replace
the trial and test space, here H1

ΓD
(O;R2), by a finite dimensional subspace Vh. The discretized

problem is then immediately established.

Definition 3.19 (Discrete elasticity problem). Find u0
h ∈ Vh, s. t. uh = u0

h + u∂
h satisfies

a(O;uh, ϑh) = l(O;ϑh) ∀ϑh ∈ Vh , (3.29)

with the bilinear and linear form as defined in (3.9).

Discretized quantities will always be denoted by the subscript h, hinting at a mesh size
function h : O → R to be defined below. Because Vh was chosen as a subspace, all reasoning
from Section 3.3 remains valid. Especially existence and uniqueness of a discrete solution
uh to (3.10) is ensured. The task therefore is to construct appropriate spaces Vh, referred
to as finite element spaces. To begin with, a partition Mh of the domain O ⊂ R2 under
consideration, referred to as computational grid, into finitely many subsets E ∈Mh, called
finite elements, is required. For the time being we assume that E are nondegenerate polygons,
spanned by vertices vi ∈ O connected by edges. The mesh size function hE = h(x) for x ∈ E
is then defined as the longest edge of the element E. We furthermore require

(1) O =
⋃

E∈Mh
E, therefore O is assumed to be polygonally bounded,

(2) distinct E1, E2 ∈Mh do not overlap, i. e.
◦
E1 ∩

◦
E2 = ∅,

(3) any edge of any element E1 ∈Mh is either part of the domain boundary Γ or an edge
of another element E2 ∈Mh, and

(4) each element E ∈Mh is regular, i. e. there exists a constant c > 0, s. t. hE

bE
≤ c, where

bE denotes the maximal diameter of a ball contained in E.

Next a discrete approximation of the continuous quantities is to be constructed on the grid
elements. Here we resort to globally continuous and piecewise polynomial functions.

Definition 3.20 (Finite element space). Let Pk(E) be the space of polynomials of degree
up to k on the domain E. The vector-valued finite element space of globally continuous and
piecewise polynomial functions in each component is defined as

V(k)
h (Mh) =

{
ϑh ∈ C0 (Mh;R2) : (ϑh · ei)

∣∣
E
∈ Pk(E) ∀E ∈Mh, i = 1, 2

}
.

From a computational point of view it is important that all finite element functions from
V(k)

h (Mh) are composable from a finite set of basis functions, which should ideally be locally
supported and easy to evaluate. Therefore note that a polynomial from Pk(E) on an element
E is uniquely determined by a set of prescribed values on a finite number of distinct points
ξk ∈ E, also referred to as nodes. When located on edges, these nodes are shared among
adjacent elements, ensuring continuity of the global finite element function. Denoting by Nh

the union of all nodes ξk on all E ∈Mh and by N := |Nh| its cardinality, this set represents
the overall degrees of freedom for a discrete function. For the setting at hand Lagrangian
basis functions are well suited. They are characterized by

ψi
j(ξk) = δjkei ∀ ξk ∈ Nh, i = 1, 2 ,
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i. e. each basis function attains value 1 for one of the components at a single node while it
is 0 for all other nodes and in the other components. Functions from V(k)

h (Mh) can thus be
written as a linear combination of those basis functions. For this purpose an interpolation
operator is defined.

Definition 3.21 (Lagrangian interpolation). Let ϑ : O → R2 be an arbitrary function, then
its Lagrangian interpolating polynomial of degree k is defined as

I(k)
h [ϑ](x) =

2∑
i=1

N∑
j=1

Θi
jψ

i
j(x) , x ∈ O ,

where the entries of the associated coefficient vector
(
Θi

j

)i=1,2
j=1,...,N

are given by the nodal

evaluations Θi
j = ϑ(ξj) · ei and ψi

j ∈ V
(k)
h (Mh).

By construction the interpolation of any function ϑh ∈ V(k)
h (Mh) is exact. For functions

of different kind suitable approximations in the chosen discrete spaces are obtained. In
particular we define the discretized right hand side and boundary conditions by fh := I(k)

h [f ],
gh := I(k)

h [g], and u∂
h := I(k)

h [u∂ ]. Using the basis functions the discrete problem (3.29) can
be cast into a linear system of equations. To this end we define the mass and the stiffness
matrix as

M :=
(
M (1,1) 0

0 M (2,2)

)
and L :=

(
L(1,1) L(1,2)

L(2,1) L(2,2)

)
,

respectively, with the blocks given by

M
(k,l)
ij :=

∫
O
ψk

i (x) · ψl
j(x) dx and L

(k,l)
ij :=

∫
O
Cε
[
ψk

i (x)
]

: ε
[
ψl

j(x)
]

dx . (3.30)

Likewise a mass matrix for boundary integrals M∂ is defined by integrating over Γ in (3.30).
All those integrals are usually evaluated by using numerical quadrature. With these definitions
the discretized elasticity problem (3.29) is equivalent to the linear system of equations
LU = MF + M∂G where the coefficient vectors U , F , and G of the corresponding finite
element functions uh, fh, and gh contain entries for the two components of the vector-valued
functions in a concatenated way.

Remark 3.22. From the definition of the matrices some properties of the linear system of
equations can be read off immediately.

1. The diagonal blocks are symmetric, i. e. M (i,i) =
(
M (i,i))⊤, L(i,i) =

(
L(i,i))⊤, i = 1, 2.

2. For M the two diagonal blocks moreover coincide, i. e. M (1,1) = M (2,2).

3. The off-diagonal blocks of M vanish because entries in different components never meet
in (3.30).

4. The off-diagonal blocks of L appear transposed to each other, i. e. L(1,2) =
(
L(2,1))⊤.

5. Altogether M and L are symmetric matrices.
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6. The structure of M and L is sparse because distant, locally supported basis functions
do not attain nonzero values simultaneously.

So far we did not comment on the boundary conditions of the elasticity problem, which
we now briefly make up for. Inhomogeneous Dirichlet boundary conditions are treated in the
same way as in the continuous setting, i. e. we consider uh = u0

h + u∂
h, rearrange the equation

to yield LU0 = MF − LU∂ , and solve for U0 with homogeneous Dirichlet conditions. To
take into account homogeneous Dirichlet conditions the corresponding degrees of freedom
have to be eliminated from the linear system of equations because their values are fixed a
priori. This can be achieved by setting all entries in the appropriate rows and columns of L
for both components to 0 and the diagonal entries of L(1,1), L(2,2) corresponding to Dirichlet
nodes to 1. Respective entries in U are set to 0 a priori. This approach avoids a reindexing
of the remaining real degrees of freedom while it accepts an unnecessarily larger system
matrix in return. Similarly periodic boundary conditions are handled. Here the degrees of
freedom on opposing sides of the domain are identified with each other. One part has to
be eliminated, but their contributions to the matrices have to be added to entries of their
remaining counterparts. This is done by adding respective rows and columns to the rows and
columns of the corresponding counterparts before they are set to 0, except for value 1 on the
main diagonal of L, as described before.

The approximation of continuous functions by discrete finite element functions naturally
comes along with a certain deviation. Quantifying this approximation error is of paramount
importance in the theory of the finite element method. The following theorem lays the
foundations for such results.

Theorem 3.23 (Cea’s lemma). There exists a constant c > 0, independent of the chosen
finite element space Vh, s. t.

∥u− uh∥1,2,O ≤ c inf
ϑh∈Vh

∥u− ϑh∥1,2,O .

In essence Cea’s lemma asserts that the error of the discretized solution is proportional
to the least approximation discrepancy achievable within the chosen finite element space.
Therefore interpolation error estimates play a crucial role for devising further results. Here we
restate [128, Theorem 3.1.6], adapted to the setting at hand.

Theorem 3.24 (Interpolation error estimate). Let m, k ∈ N and p ∈ N ∪ {∞} be given
numbers, for which (k + 1) p > d and k + 1 ≥ m hold. Then there exists a constant c >
0, depending on the chosen finite element space Vh, s. t. for all E ∈ Mh and all ϑ ∈
W k+1,p(E;Rd)

∥ϑ− Ihϑ∥m,p,E ≤ c hk+1−m
E |ϑ|k+1,p,E .

The postulated inequalities are due to required Sobolev embeddings. In view of Cea’s lemma
an H1-estimate, i. e. m = 1 and p = 2, is required. Under the assumptions made so far, the
approximation of the elasticity solution fulfills u ∈ H1

ΓD
(O;R2), i. e. d = 2 and k = 0. Hence

Theorem 3.24 is not applicable, unless higher regularity is assumed. In case u ∈ H2(O;R2),
e. g., one can immediately deduce

∥u− uh∥1,2,O ≤ c h|u|2,2,O . (3.31)

Here h = maxE∈Mh
hE is a global measure of the mesh size. Alternatively, for u ∈ H1(O;R2)

only, it is shown in [128, Theorem 3.2.3] that limh→0∥u− uh∥1,2,O = 0 holds, via a density
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argument. In particular those results guarantee convergence of the finite element method, i. e.
they confirm the intuitive idea that an approximation improves as the grid is refined.

3.6.2. Boundary element method
The boundary element method is an entirely different approach. Although in the end finite
elements are employed as well, the discretization only occurs at the boundary. For this reason
the method became popular during the twentieth century when computational resources
were limited. A historical overview can be found in [116]. In order to transform the elasticity
problem into a boundary integral equation a fundamental solution is required. This is a set of
vector-valued functions û1, û2 : R2 ×R2 → R2, s. t.

− divx C(x)εx[ûi(ξ, x)] = δ(x− ξ) ei , i = 1, 2 (3.32)

holds in the sense of distributions. Here δ, for once, denotes the Dirac function. For the
present setting of linearized elasticity in two space dimensions such fundamental solutions
have been devised. They differ w. r. t. the material properties given by the elasticity tensor. In
the isotropic case they read

ûki(ξ, x) = λ+ µ

4π (µ(λ+ 2µ))

(
−δki

λ+ 3µ
λ+ µ

ln|x− ξ|+ (xk − ξk)(xi − ξi)
|x− ξ|2

)
,

where i ∈ {1, 2} denotes the index of the fundamental solution and k ∈ {1, 2} its component,
cf. [384, p. 98]. For the anisotropic case in two space dimensions a complex logarithm can be
employed and they are given by

ûki(ξ, x) = 1
2π

2∑
t=1

Re
{ 2∑

n=1
AknNnt ln (zn(x− ξ))

}
dti ,

where zn(x) = x1 +pnx2 maps x ∈ R2 to the complex plane using calculated constants pn ∈ C
and Akn, Nnt, and dti are appropriately chosen coefficients. The construction originates
from [134], see [259, 182] for details of the derivation. Remarkably the derivation fails for
isotropic materials, even when considered as a limiting case. However, numerical experiments
show convergence of pointwise evaluations of the anisotropic fundamental solutions to those
obtained for the isotropic case when approaching an isotropic configuration in the elasticity
coefficients. Furthermore they behave adequately stable in this regime [259], s. t. both variants
could be used within this thesis.

To make use of the fundamental solutions, the weak formulation (3.11) is considered again
and integrated by parts once more, leading to∫

O
f · ϑ dx = −

∫
O

divCε[ϑ] · u dx+
∫

Γ
Cε[ϑ]n · u da(x)−

∫
Γ
Cε[u]n · ϑ da(x) .

Next, the fundamental solutions are used in lieu of the test function ϑ and their defining
property (3.32) is employed for the first term on the right hand side. Rearranging yields

ui(ξ) =
∫

Γ
Cε[u]n · ûi da(x)−

∫
Γ
Cε[ûi]n · u da(x) +

∫
O
f · ûi dx (3.33)
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for i = 1, 2 and ξ ∈ O. This amounts to an explicit formula for the elasticity solution in
terms of its Dirichlet and Neumann boundary values, known as Somigliana identity [378]. For
ξ ∈ Γ, equation (3.33) is initially not defined due to the appearing singularities. It is however
possible to prove that the integrals exist also in this case, see e. g. [207] and [259, 182] for
further details. If in addition f ≡ 0, which will be the case for the numerical experiments in
this work, a pure boundary integral equation is obtained. If not, a suitable approximation
technique is described in [207, Section 9.5]. The boundary integral equation (3.33) can be
expressed compactly as

u = V [t]−W [u] on Γ (3.34)
with the short notation t = Cε[u]n for the normal stresses on the boundary. Here V denotes
the single layer operator, acting on the normal stresses, and W the double layer operator,
acting on the displacements. Equation (3.34) is therefore also called Dirichlet-to-Neumann
map. It can be shown that the boundary integral operators define linear, bounded, and coercive
mappings

V : H− 1
2 (Γ;Rd)→ H

1
2 (Γ;Rd) ,

W : H 1
2 (Γ;Rd)→ H

1
2 (Γ;Rd) ,

see [384, Section 6.7].
For a numerical treatment only quantities on the boundary have to be taken into account.

As we assumed O to be polygonally bounded, its boundary Γ therefore consists of vertices
vj ∈ Γ, connected by straight line segments. In this setting the finite element space V(1)

h (Γ)
of piecewise linear and globally continuous functions can be considered, defining discretized
displacements uh and normal stresses th via the Lagrange interpolation I(1)

h . They are uniquely
determined by their values on nodes ξj = vj , which are called collocation points and coincide
with the vertices here. After discretization the applications of the single and the double layer
operator to basis functions, i. e. V [ψi

j ] and W [ψi
j ] respectively, have to be computed. In the

special situation here, with a one dimensional integration domain, this can even be done
analytically. Only the case where a nodal basis function needs to be integrated over the
singularity is critical, especially for the double layer operator. Fortunately a trick, based on
applying the operator to a rigid body motion, which has to yield a vanishing displacement,
can be used to implicitly gain the correct entries, see [259, Section 6.4]. Requiring (3.34) to
hold pointwise for all ξj ∈ Nh, a linear system of dN equations is obtained. From the setup
of the elasticity problem (3.2) one can see that on each ξj ∈ Nh either the displacement
u(ξj) or the normal stress t(ξj) is prescribed by a boundary condition, while the other has
to be determined. This results in dN unknowns overall. If a mixed boundary value problem
is considered, equation (3.34) has to be rearranged according to given and unknown values.
As to the periodic cell problem (3.13), displacements and tensions on opposing sides of the
cell are identified, reducing the number of unknowns. As the normal jumps in the corners of
the domain, the nodes for normal stresses are duplicated at those positions, resulting in two
independent degrees of freedom at a single vertex. The system is made solvable by adding
equations for the component wise vanishing mean displacements, cf. (3.17).

The boundary integral equation (3.33) can furthermore be cast into a variational formulation
by multiplying with appropriate test functions and additional integration. This allows to carry
over the established theory of the finite element method. In particular, error estimates for the
approximated displacements and normal stresses on the boundary Γ can be obtained. Via
(3.33) convergence to the continuous solution is ensured for the full domain O.
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CHAPTER 4

Fundamentals in shape optimization

Optimizing the shape of an elastic body is the next building block, which will be tackled
in this chapter. The distinctive feature of such problems is that the variable to be

optimized is the domain itself. Therefore appropriate means for varying the shape of an
elastic domain have to be taken into account and relevant results from shape calculus will
be outlined. To enable a mathematical treatment of the optimization task suitable cost
functionals measuring the performance of a design need to be considered. These will usually
incorporate the elastic displacement, determined as a solution of the underlying governing
equations. Altogether a PDE constrained optimization problem is obtained, which will be
studied via a Lagrangian formulation. The concepts will be applied to the classical compliance
cost functional representing a global measure of rigidity. As it turns out, the resulting shape
optimization problem is in general ill-posed and one needs to restrict or relax the space of
admissible designs. In the latter case the sequential lamination construction provides a model
for provable optimal shapes and will be presented in two space dimensions.

4.1. PDE constrained optimization
In this section we will gather all ingredients needed to ultimately deduce the shape derivative
of the compliance cost functional. For this it is crucial that both the explicit dependence of
the cost functional on the domain and the implicit dependence through the elasticity solution
on this very domain are taken into account.

4.1.1. Shape calculus
Derivatives w. r. t. the domain O will be required in subsequent sections and are therefore
introduced rigorously here. For this purpose, first of all a notion for varying the domain’s
shape has to be established. We follow the velocity method here and refer to the textbook
[146] for details. To provide local variations of the domain, a vector field V : R+ ×D → R2 is
considered. Furthermore we demand for τ > 0

(1) t 7→ V (t, x) ∈ C0([0, τ ];R2) for all x ∈ D,

(2) x 7→ V (t, x) ∈ C0,1(D;R2), i. e. Lipschitz continuous, for all t ∈ [0, τ ],

(3) V (t, x) ∈ Tx∂D for all t ∈ [0, τ ] and x ∈ ∂D, i. e. the velocity vector is in the tangent
space,
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and denote the set of all vector fields fulfilling these assumptions by F(D). A family of
transformations ϕ : R+ ×D → R2 with ϕ(t, x) = x(t) is chosen from V ∈ F(D) in such a way
that the trajectory of a point x0 ∈ D satisfies the ordinary differential equation{

d
dt x(t) = V (t, x(t)) t ≥ 0 ,
x(0) = x0 ,

which has a unique solution due to the requirements (1) and (2). Denoting the deformed
domain at time t by Ot = {ϕ(t, x) : x ∈ O}, the shape derivative can be defined.

Definition 4.1 (Eulerian shape derivative). A functional J has an Eulerian semiderivative
at O in the direction V ∈ F(D) given by

dE
O J[O](V ) := lim

t↘0

J[Ot]− J[O]
t

if the limit exists.
It has an Eulerian derivative at O if the Eulerian semiderivative exists for all directions

V ∈ F and the mapping V 7→ dE
O J[O](V ) is linear and continuous.

A point of concern with this definition is that it depends on values of the chosen field V for
t > 0. Moreover it will not satisfy the chain rule. Thus a stronger notion is required.

Definition 4.2 (Hadamard shape derivative). Let V̄ ∈ C0,1(D;R2) be a fixed vector field,
constant in time. A functional J has a Hadamard semiderivative at O in the direction V̄ if
the limit

dH
O J[O](V̄ ) := lim

V ∈F(D)
V (0)=V̄

t↘0

J[Ot]− J[O]
t

exists, depends on V̄ only, and is independent of the choice of V .
The functional has a Hadamard derivative at O, if the Hadamard semiderivative exists for

all directions V̄ ∈ C0,1(D;R2) and the mapping V 7→ dH
O J[O](V̄ ) is linear and continuous.

As mentioned before, the Hadamard type derivative allows for the chain rule for compositions
of functions, in contrast to the Eulerian type. Both concepts can however be related to each
other. If e. g. an Eulerian semiderivative exists for all appropriate vector fields and the resulting
mapping is continuous, the existence of a Hadamard semiderivative can be established, cf.
[146, Chapter 9, Theorem 3.1]. Subsequently we have the Hadamard type derivative in mind
when speaking of a shape derivative and simply write dO J[O] for the ease of notation.

For basic types of functionals the shape derivative can be given explicitly, cf. [146, Chapter 9,
Theorem 4.2, 4.3].

Lemma 4.3 (Shape derivative for domain integrals). Let V ∈ F(R2) be given, which
additionally satisfies x 7→ V (t, x) ∈ C1

loc(R2;R2). Furthermore let f ∈W 1,1
loc (R2;R) and O be

a bounded, open domain with Lipschitz boundary. Then the semiderivative for domain integrals
is given by

dO

(∫
O
j dx

)
(V ) =

∫
Γ

(V (0) · n) j da(x) .
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Lemma 4.4 (Shape derivative for boundary integrals). Let V ∈ F(R2) be given, which
additionally satisfies x 7→ V (t, x) ∈ C1

loc(R2;R2). Furthermore let g ∈W 2,2
loc (R2;R) and O be

a bounded, open domain with C2 boundary. Then the semiderivative for boundary integrals is
given by

dO

(∫
Γ
k da(x)

)
(V ) =

∫
Γ

(V (0) · n) (∂n k + h k) da(x) ,

where h here denotes the mean curvature of Γ and ∂n is the normal derivative.

A mentionable fact is that the shape derivative in general is supported on the boundary of
the varying domain only, cf. [146, Chapter 9, Theorem 3.6], and solely depends on the normal
component of the velocity field.

4.1.2. Lagrangian calculus
To set up a shape optimization problem, first of all appropriate functionals need to be found
that are amenable to a mathematical treatment and reflect desirable properties of specific
designs O of the elastic domain under given loadings. It is therefore reasonable to incorporate
the displacement u[O], obtained as the unique solution of the elasticity problem. To this end
we consider general cost functionals in integral form.

Definition 4.5 (Cost functional). A cost functional is a mapping J : Uad → R given in
general form by

J[O] = J[O;u[O]] =
∫

O
j[u[O]] dx+

∫
Γ
k[u[O]] da(x) , (4.1)

where Uad denotes the set of admissible shapes, i. e. domains O fulfilling the prerequisites of
Section 3.1, and u[O] is the solution of the weak elasticity problem (3.10).

Whenever the domain is altered, as e. g. in the course of optimization, not only the direct
impact on the cost functional, but also the implicit dependence via the elastic solution has to
be taken into account. This observation makes the problem a PDE constrained optimization
problem, which are commonly approached via a Lagrangian formulation.

Definition 4.6 (Lagrangian). Given an arbitrary cost functional J : Uad → R and bilinear
and linear forms as defined in (3.9), the Lagrangian is defined as

L(O, u, p) := J[O;u] + a(O;u, p)− l(O; p) (4.2)

with arbitrary O ∈ Uad and u, p ∈ V, where V is an appropriate function space for the specific
elasticity problem.

Most important, and in contrast to the definition of the cost functional above, O and u are
initially decoupled in the Lagrangian formulation. Instead the newly introduced function p
ties in the PDE constraint in weak form. A relation is however established via a saddle point
problem, namely

J[O, u[O]] = inf
u∈V

sup
p∈V
L(O, u, p) . (4.3)

To see this, let ū be the unique solution to the elasticity problem in weak form. Choosing
u = ū for the outer minimization in (4.3) above reduces L(O, ū, p) to J[O; ū], not involving p
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anymore, and making the inner maximization dispensable. On the contrary for u ̸= ū there
must be a p s. t. a(O;u, p)− l(O; p) ̸= 0 as there is no further solution to the weak problem.
Since p enters linearly in the Lagrangian it can be scaled s. t. L(O, u, p) approaches ∞ for the
inner maximization, which clearly is worse for the outer minimization.

The saddle point property can be further analyzed if additional prerequisites are deployed.
In detail, let

(1) V be convex, closed, and non-empty,

(2) p 7→ L(O, u, p) be concave and upper semicontinuous for all u,

(3) u 7→ L(O, u, p) be convex and lower semicontinuous for all p,

(4) p 7→ L(O, u, p) be Gâteaux differentiable for all u,

(5) u 7→ L(O, u, p) be Gâteaux differentiable for all p,

(6) there be a u0 s. t. lim∥p∥V →∞ L(O, u0, p) = −∞,

(7) there be a p0 s. t. lim∥u∥V →∞ L(O, u, p0) = +∞.

In our framework V is the respective solution space for the elasticity problem, i. e. H1
ΓD

or H1
per,0, and thus (1) is always fulfilled. As mentioned before L(O, u, p) is linear in p

and therefore (2), (4), and (6) directly hold. An analogous argument applies for u entering
a(O;u, p), so (3), (5), and (7) become assumptions for the cost functional J[O;u]. Within this
setup we restate two important results from [168, Chapter 6], namely Proposition 1.6 and
Proposition 2.2.

Theorem 4.7 (Characterization of saddle points). Under the assumption that (2)–(5) hold,
(ū, p̄) is a saddle point of L(O, u, p) if and only if

L,u(O, ū, p̄)(ϑ) = 0 ∀ϑ ∈ V ,
L,p(O, ū, p̄)(ϑ) = 0 ∀ϑ ∈ V . (4.4)

Theorem 4.8 (Existence of saddle points). Under the assumption that (1)–(7) hold, L(O, u, p)
possesses at least one saddle point.

The stationarity conditions (4.4) are worthy of special attention. Computing the Gâteaux
derivatives explicitly yields

J,u[O; ū](ϑ) + a(O;ϑ, p̄) = 0 ∀ϑ ∈ V , (4.5)
a(O; ū, ϑ)− l(O;ϑ) = 0 ∀ϑ ∈ V . (4.6)

Equation (4.6) is exactly the weak elasticity problem, which was set up here as a constraint.
Equation (4.5) on the other hand defines a new problem, referred to as dual or adjoint problem.
It is based on the same function space and shares the structure of the weak elasticity problem,
but with a different linear form.

The shape was so far considered as a fixed parameter. For optimization it should of course
be varied, but the derivation of analogous optimality criteria is not straightforward. In any
case the stationarity of the Lagrangian w. r. t. the domain is at least a necessary condition for
an optimal shape, i. e. for all V

dO L(O, u, p)(V ) = dO J[O;u](V ) + dO a(O;u, p)(V )− dO l(O; p)(V ) = 0 . (4.7)
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4.1.3. Shape derivative of cost functionals
As mentioned before the derivative w. r. t. the domain is used in characterizing optimality
of a shape. Moreover it is required if a gradient based scheme is employed for numerical
optimization. In the following we presume sufficient differentiability and do a formal calculation.
We differentiate the cost functional (4.1) and use the usual chain rule because of the implicit
dependence via u[O], yielding

dO J[O;u[O]](V ) = dO J[O;u](V ) + J,u[O;u] (dO u[O](V )) . (4.8)

Here the last term is especially intricate as is represents sensitivities of the PDE solution u
w. r. t. arbitrary shape variations. As a remedy the dual solution derived before can be
employed. For this note first that by virtue of (4.5)

J,u[O;u] (dO u[O](V )) = −a,u(O;u, p) (dO u[O](V )) , (4.9)

when dO u[O](V ) is used in lieu of the test function ϑ. On the other hand deriving the weak
problem w. r. t. the domain gives

0 = dO (a(O;u[O], p)− l(O; p)) (V )
= dO a(O;u, p)(V ) + a,u(O;u, p) (dO u[O](V ))− dO l(O; p)(V ) .

Assuming the implicit function theorem can be applied, the last equation is rewritten as

dO u[O](V ) = (a,u(O;u, p))−1 (−dO a(O;u, p)(V ) + dO l(O; p)(V )) .

Plugging into (4.9) yields

J,u[O;u] (dO u[O](V )) = dO a(O;u, p)(V )− dO l(O; p)(V ).

Altogether (4.8) can thereby be reformulated as

dO J[O;u[O]](V ) = dO J[O;u](V ) + dO a(O;u, p)(V )− dO l(O; p)(V ) . (4.10)

In fact, the expression is the same as in the derived necessary condition (4.7) before. The
demonstrated trick of eliminating the sensitivities of the PDE solution by introducing an
adjoint problem is de facto standard for optimal control problems. For an early reference see
[107].

4.1.4. Application to the compliance cost functional
We now apply the presented concepts to a specific cost functional that serves as a global
measure of rigidity, namely the compliance.

Definition 4.9 (Generalized compliance). Let u[O] be the elasticity solution of the weak
elasticity problem (3.10). The generalized compliance cost functional is then defined as

Jc[O;u[O]] :=
∫

O
f · u[O] dx+

∫
ΓN

g · u[O] da(x)−
∫

ΓD

σ[O]n · u∂ da(x) . (4.11)
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The formulation allows for an intuitive explanation of the cost functional. If the elastic
displacement u[O] is aligned with the body forces f within the domain and the surfaces
forces g on the boundary, the scalar products in the first two terms of (4.11) become large
when the absolute value of the displacement is large as well. In this case the deformation
of the domain, so to speak, complies with the loadings. Consequently, when aiming for a
rigid design, these contributions should be minimized. On the contrary in the third term the
boundary displacement is fixed and the normal stresses required to produce those displacements
should be as high as possible when aiming for a rigid design. Due to the negative sign, it
is still appropriate to minimize this contribution and hence the overall functional should be
minimized.

Remark 4.10. In most expositions the compliance is defined by the first two terms on the
right hand side of (4.11) only. The additional term is however required if elasticity problems
with inhomogeneous Dirichlet boundary conditions are considered. Obviously the common
formulation is regained by setting u∂ ≡ 0. For further discussion see [58] and the references
therein.

Remark 4.11. The terms involved in the definition appeared earlier in (3.9) when setting
up the weak formulation of the elasticity problem. In fact the functional can be written
equivalently as

Jc[O;u[O]] = l(O;u[O])−
∫

ΓD

σ[O]n · u∂ da(x)

= a(O;u[O], u[O])− 2
∫

ΓD

σ[O]n · u∂ da(x)

= −2 Jtotal[O;u[O]] .

(4.12)

The first identity is exactly the definition. The second follows from using u0[O] of the elasticity
solution in the weak formulation (3.10) as a test function and applying partial integration
to the remaining term. And the third follows from the second, the definition of the total
free energy (3.12), and again partial integration. In general each term has an innate physical
meaning. The coincidence here is an exclusive feature of the linearized elasticity model and
does not hold anymore for nonlinear models, see [325] as an example.

Remark 4.12. For non-mixed inhomogeneous boundary conditions there is a direct correspon-
dence of the compliance cost functional and the elastic energy a(O;u[O], u[O]). By virtue of
(4.12) we get Jc[O;u[O]] = a(O;u[O], u[O]) for a Neumann problem, possibly with additional
homogeneous Dirichlet boundary conditions, whereas for a Dirichlet problem without volume
forces, and possibly with additional homogeneous Neumann boundary conditions, the sign
is inverted, i. e. Jc[O;u[O]] = −a(O;u[O], u[O]). All test cases investigated in this thesis fall
under these categories and we will therefore often make use of these equivalent formulations.

Following the procedure of the previous section, the adjoint problem (4.5) in case of the
compliance functional reads

a(O;ϑ, p) = −Jc
,u[O;u[O]](ϑ) = 2 a(O;u, ϑ)− 2 l(O;ϑ) = 0

for all ϑ ∈ V. Here we rewrote the compliance functional in terms of the total free energy as
in (4.12), computed the Gâteaux derivative, and used the weak formulation of the elasticity
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problem (3.10). The unique solution of the resulting elasticity problem is trivially given by
p = 0. For the total derivative w. r. t. the domain (4.10) we obtain in virtue of Lemma 4.3
and 4.4

dO Jc[O;u[O]](V ) = dO (−a(O;u, u) + 2 l(O;u)) (V ) + dO a(O;u, 0)(V )− dO l(O; 0)(V )

=−
∫

Γ
(V (0) · n) (Cε[u] : ε[u]) da(x)

+ 2
∫

Γ
(V (0) · n) (f · u) da(x) (4.13)

+ 2
∫

Γ
(V (0) · n) (∂n (g · u) + h (g · u)) da(x) .

Remark 4.13. If the procedure above is followed using a different formulation of the
compliance functional, a different adjoint problem with a different solution may be obtained.
Upon inserting into the expression for the total derivative however the same result as in
(4.13) is recovered. Common to all variants is that the solution of the adjoint problem can
be deduced directly without the need to solve another elasticity problem. This is again
an exclusive property of the compliance functional, which is therefore sometimes termed
self-adjoint.

4.2. Optimal shapes
Having laid the foundations for varying the shape of a domain in elasticity problems, we
now turn to the task of actually finding an optimal layout for the compliance cost functional.
First of all we remark that a trivial solution is obtained by filling the whole working domain
with material, i. e. O = D. It is also intuitively not desirable to have holes in the elastic
domain as they weaken its rigidity. This fact can be inferred rigorously by looking at the
topological derivative of the compliance functional. Measuring the sensitivity for the nucleation
of infinitesimally small holes, positive values are taken throughout the domain, indicating
an increase in compliance, cf. [376, 181]. Hence this exceptional case is usually ruled out by
imposing a volume constraint, i. e.

Vol(O) = Θ with 0 < c < Θ < Vol(D) (4.14)

is required to hold. This can be motivated from a practical point of view as well because
keeping a low volume fraction corresponds to finding a design with low material weight or
costs. Further aspects like manufacturing constraints and design requirements, which could
imply a functional purpose of holes, like e. g. in bones, make up for an own field of research
and are not taken into account here.

The introduced constraint on the available volume on the other hand renders the optimization
problem ill-posed, in the sense that classical designs with solid and void regions never achieve
a minimum. Such counter examples can e. g. be found in [298, 299] for the scalar setting, where
coefficients in the state equation are subject to optimization, and e. g. in [256, Example 8.3]
for elasticity problems. The popular direct method of the calculus of variations fails here
because of lacking compactness. This deficiency becomes apparent in branched out structures,
that achieve a lower energy while retaining the prescribed overall volume. Well-posedness
can be recovered by introducing a larger class of admissible designs, referred to as relaxation.
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In particular arbitrary fine mixtures of material and void regions are allowed, leading to
intermediate local densities θ : D → [0, 1] in the limit. Physical meaningfulness comes from the
theory of homogenization, which allows to derive effective material properties of a microscopic
structure. Its concrete setup is of paramount importance for the optimality of the resulting
shape and in fact for the compliance objective several optimal, yet diverse, constructions
exist. In this regard we present the sequential lamination model in detail and touch on several
other approaches afterwards. We mainly follow the exposition in [12], which nicely compiles
all required ingredients from shape optimization, relaxation and homogenization theory and
eventually derives a fully practical numerical optimization scheme. The individual results
therein usually date back to earlier publications and we will refer to them later on.

4.2.1. Relaxation
In the following we consider the elasticity problem in an equivalent stress based formulation,
i. e. instead of u and ε[u] the equations are expressed in terms of the unknown stress tensor field
σ : O → R2×2

sym as in (3.2). Moreover a Neumann problem without volume forces is assumed,
i. e. f ≡ 0 and u∂ ≡ 0. Let χO : D → {0, 1} denote the characteristic function of the elastic
body O and define the set of statically admissible stress fields by

Σ(χO) :=
{
σ ∈ L2 (D;R2×2

sym
)

: σ satisfies (3.2) for χO = 1, σ = 0 else
}
.

An element σ of this set, or ε[u] = C−1σ respectively, is a solution of the elasticity problem for
the domain O and extended by zero outside of the domain. This requirement reflects the fact
that holes in the domain should be stress free. The characteristic function χO assigns material
or void to each point x ∈ D and can therefore be regarded here as subject to optimization. In
case arbitrary characteristic functions χ ∈ L∞ (D; {0, 1}) are permitted, Σ(χ) might be empty
if the associated domain Oχ = {x ∈ D : χ(x) = 1} fails to satisfy the geometric assumptions
of Section 3.1. As per Remark 4.12 the compliance functional in this setting is given by

Jc[Oχ ;σ[Oχ ]] =
∫

D

χO C−1σ : σ dx .

The volume constraint can be tied in via a positive Lagrangian multiplier l ∈ [0,∞) and thus
the final minimization problem for the combined objective functional reads

inf
χ∈L∞(D;{0,1})

Jc[Oχ ;σ[Oχ ]] + l

∫
D

χO dx . (4.15)

In this framework the fundamental relaxation result can be established.

Theorem 4.14 (Relaxed problem). The shape optimization problem (4.15) admits the relaxed
formulation

min
σ∈Σ(D)

∫
D

min
0≤θ≤1

min
C∗∈Gθ

C∗−1σ : σ + lθ dx , (4.16)

where Σ(D) :=
{
σ ∈ L2 (D;R2×2

sym
)

: σ satisfies (3.2) in D
}

denotes an unconstrained set of
admissible stress fields for the whole working domain, θ : D → [0, 1] is the density function,
and the set Gθ comprises all effective homogenized elasticity tensors resulting from mixtures
of material C with fraction θ and void in the sense of H-convergence. In particular for fixed
l ∈ [0,∞)
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1. there exists at least one solution σ ∈ Σ(D) of (4.16), and (4.15) and (4.16) coincide,

2. up to a subsequence, any minimizing sequence σn for (4.15) converges weakly in
L2(D;R2×2

sym) to a minimizer σ of (4.16),

3. for any minimizer σ of (4.16) there exists a minimizing sequence σn for (4.15) which
converges weakly in L2(D;R2×2

sym) to σ,

4. there exists at least one optimal relaxed shape, i. e. a density function θ,

5. up to a subsequence, any minimizing sequence of characteristic functions converges
weakly-∗ in L∞(D; {0, 1}) to an optimal relaxed shape θ.

This theorem depicts the central result for relaxing the shape optimization problem and
calls for some further explanation. In particular existence of an optimal relaxed shape is
guaranteed and (4.16) provides the formula for its computation. Reading from left to right,
at first an admissible stress field is selected. Moving inside the integral makes the following
considerations pointwise for x ∈ D. Here initially a local material density θ(x) is fixed. Then,
in the inner minimization, an elasticity tensor is to be chosen in order to minimize the local
elastic energy. Afterwards minimizations in the preselected variables θ and σ follow. As we
will show later on, all those minimizations can actually be performed explicitly.

The relaxation result has first been derived in [15] in a two dimensional plane stress
setting and was extended to arbitrary dimensions and multiple loads in [12]. Interestingly
the relaxed formulation can be obtained equivalently by the use of homogenization or the
method of quasiconvexification. The later concept was already explored in [254, 255, 256],
where primarily scalar problems are considered, but several remarks as to the vectorial case
in limited configurations are included as well. It is applicable in our setting, as done in [12],
but valid in far more general situations as shown in [176].

Let us now comment on the crucial points in the derivation of the relaxed formulation when
taking the perspective of homogenization. The first step is the actual relaxation, i. e. instead
of the characteristic function, an effective elasticity tensor field C∗ and a density function
θ, which can take any value in [0, 1], is introduced. The shape optimization problem then
becomes

min
0≤θ≤1

min
C∗∈Gθ

Jc[D;σ[C∗]] + l

∫
D

θ dx . (4.17)

Classical designs are still included by setting θ = 1, C∗ = C where χ = 1 and θ = 0, C∗ = 0
where χ = 0. Furthermore any minimizing sequence of characteristic functions χn converges
weakly to a density θ and the corresponding sequence of elasticity tensors Cn converges to
an effective tensor C∗ in the sense of H-convergence, cf. Definition 3.18. This is the main
ingredient of the proof, see [15, pp. 849, 850].

To continue, the principle of minimum complementary energy is used to rewrite the
compliance variationally as

Jc[D;σ[C∗]] = inf
σ∈Σ(D)

∫
D

C∗−1σ : σ dx .

It states that the minimal energy is attained by the actual solution of the elasticity problem,
see e. g. [388], and allows to eliminate the explicit dependence on C∗ here. Assuming that a
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minimizing σ exists, the order of minimization over different variables can be interchanged,
s. t. (4.17) becomes

min
σ∈Σ(D)

min
0≤θ≤1

min
C∗∈Gθ

∫
D

C∗−1σ : σ + l θ dx .

Next the minimization over θ and C∗ is moved inside the integral, i. e.

min
σ∈Σ(D)

∫
D

min
0≤θ≤1

min
C∗∈Gθ

C∗−1σ : σ + l θ dx ,

which is possible due to the local character of H-convergence, cf. [18, Theorem 2.1.2]. Hence
(4.16) is obtained.

We have to remark that the outlined procedure, especially w. r. t. H-convergence, is initially
not applicable to our shape optimization setting, which uses regions of material and voids.
This issue is avoided by replacing perforations with inclusions of a very weak material. The
theory then works and leads to (4.16) with the exception that elasticity tensors in Gθ are
made of a mixture of C and the weak substitute. At this point it is possible to pass to the
degenerate limit, see [15, Section 3B], and to obtain the desired result.

4.2.2. Bounds on the elastic energy
With the relaxed shape optimization problem (4.16) at hand, the next crucial step is to select
the optimal effective elasticity tensor in the inner minimization from the set Gθ. This set
is called G-closure as it comprises all effective tensors obtained by limiting processes from
classical designs via H-convergence, which is a generalization of G-convergence. The selection
is especially difficult as there is no closed algebraic formula for the candidates in Gθ, which is
in contrast to the scalar conductivity setting, see e. g. [267, 268, 392, 297]. Instead candidates
are identified as optimal if they realize lower bounds on the elastic energy. Thereby also
a class of optimal materials is found. The exciting insight is that the employed geometric
constructions are not unique and can in fact be fundamentally different. As it turns out, the
sequential lamination model is most general. It was also often used in proofs. We will discuss
it in the following section and mention some other constructions afterwards.

For the elastic energy as a cost functional the derivation of bounds for two-phase composites
attracted much attention. Let θ be the fixed proportion of the rigid material characterized by
C and let B denote the elasticity tensor for the weak substitute. Unless otherwise noted the
materials are assumed to be isotropic. The most fundamental lower and upper bounds are
given by the harmonic and the arithmetic mean, respectively, i. e.(

θC−1 + (1− θ)B−1)−1
ε[u] : ε[u] ≤ C∗ε[u] : ε[u] ≤ (θC + (1− θ)B) ε[u] : ε[u] .

In the conductivity setting they are attributed to Voigt [408], Wiener [418], and Reuss [343],
whereas for elasticity they are first found in [227, 321]. Hashin and Shtrikman derive improved
bounds on the bulk and shear modulus under the assumption that the composite material is
isotropic as well in [212]. They require that the bulk and shear moduli of the constituents satisfy
the same ordering relation, referred to as well-ordered materials. Walpole in [412] later obtains
similar results without that restriction. Optimality of the bounds in [212], i. e. the fact that
the bounds are actually realized by some candidate, is proven amongst others in the seminal
work [178] by Francfort and Murat in 1986. Here the sequential lamination construction and
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compensated compactness are employed in the proof. Independently Gibiansky and Cherkaev
in 1984 derive and prove optimal bounds in the context of plate theory in [190] and in the
full elasticity setting for two and three spatial dimensions in [193] via the translation method.
English translations are available in [191, 192]. Using different techniques Kantor and Bergman
in [246] obtain similar results that furthermore extend to a class of anisotropic composite
materials. On the other hand the Hashin-Shtrikman variational principle, introduced in [210,
211], is adopted by a large community for the study of optimal bounds and the G-closure
problem. In essence, by using techniques of convex analysis, the variational inequality

C∗−1σ : σ ≥ C−1σ : σ + sup
η

2(1− θ)C∗−1σ : η − (1− θ)(B − C)−1η : η

+ inf
ϑ

∫
DY

Cε[ϑ] : ε[ϑ] + 2(1− χY) η : ε[ϑ] dx
(4.18)

is derived. The key for obtaining bounds then is the estimation of the second term in (4.18),
often referred to as nonlocal term. Kohn and Milton derive results in conductivity [253].
Avellaneda derives optimal bounds on elastic energies for unrestricted composite materials
made from isotropic constituents. Lipton considers the special case of incompressible elasticity
in two space dimensions [261], and in [252] the generalization to higher dimensions can be
found. Optimal and explicitly computable bounds are derived for unrestricted composites.
Composites made from anisotropic constituents are addressed in [288, 36]. Allaire and Kohn
derive bounds equivalent to those in [37] by Avellaneda, but give them explicitly using a
simplified evaluation developed in [30]. Eventually, for our shape optimization problem with
solid and void regions, we rely on the following formulation of an optimal lower bound, see
[15, pp. 854, 857–858] for reference, which builds upon the optimal bounds derived in [30].

Theorem 4.15 (Lower Hashin-Shtrikman bound). In two spatial dimensions the local elastic
energy term in (4.16) for given material density θ and stress σ is bounded from below, in
particular

C∗−1σ : σ ≥ C−1σ : σ + (κ+ µ)θ
4κµ(1− θ) (|λ(1)|+ |λ(2)|)2 , (4.19)

where κ and µ are elasticity coefficients of the material given by C, cf. (3.8), and λ(1), λ(2)

are the eigenvalues of σ.

Remark 4.16. In correspondence to (4.19) there exists an upper bound for the energy
C∗−1σ : σ and there are lower and upper bounds for the elastic energy expressed in terms of
strains, C∗ε[u] : ε[u], as well. All of those can be derived using the same technique and they
are furthermore related in pairs by the Fenchel transform, see [30, Proposition 8.2].

4.2.3. Sequential lamination model
The bounds discussed in the preceding section are optimal in the sense that there exist
composites whose associated elastic energy attains them. A construction based on successive
layering and homogenization turns out to be most flexible and was hence employed in many
proofs. From a physical perspective effective properties of laminated composite materials are
well studied. One of the earliest references is [418] by Wiener from 1912, where bounds on
dielectric coefficients are computed. Bruggeman gives an overview of the earliest achievements
and presents explicit formulae for the dielectric coefficient in [94] and for elasticity coefficients
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in [95] already in 1937. A rigorous treatment, including explicit formulae obtained via
homogenization, starts with works by Murat and Tartar [392, 297]. See [301, 394] for English
translations.

Let us now describe the construction, cf. Figure 4.1. Starting on a scale ϵ1, rigid and weak
materials C and B are stacked in alternation with a certain proportion and along a certain
direction. By means of homogenization, effective material properties are computed and this
newly obtained material is used in the next iteration on a substantially larger scale ϵ2 ≫ ϵ1 in
place of the weak material. The process is iterated and the number of laminations is defined as
the rank. In each step the ratios are chosen in such a way that the resulting overall fraction of
material matches the locally prescribed density θ. At the very end the passage B ↘ 0 is taken
into account, in the sense that the weak material ultimately gives way to real perforations,
cf. [15, Section 3B]. The optimality of the sequential lamination construction for the elastic

ϱ

m

ϵ1
ϵ2

Figure 4.1.: Sketch of the rank-2 sequential lamination construction.

energy was proven in [37] in the two-phase context by showing that the Hashin-Shtrikman
bounds can always be attained by a finite rank sequential laminate. For our two dimensional
setting even stronger results were derived in [252, 30] or [190, 193] respectively. In particular
it is shown that a rank-2 sequential laminate is already sufficient to attain the lower bound.
See [15, Section 3B] for the passage to void. Moreover the parameters of the construction can
be computed directly from the eigenvalues λ(1), λ(2) and the eigenvectors τ (1), τ (2) of the
local stress tensor σ.

Theorem 4.17 (Parameters of sequential lamination). In two space dimensions and for the
compliance cost functional the parameters of an optimal sequentially laminated microstructure
are locally given by a mapping x 7→ q[σ](x) = (ϱ[σ](x),m[σ](x), θ[σ](x))⊤ with

ϱ[σ](x) = arctan
(
τ

(1)
y (σ)
τ

(1)
x (σ)

)
,

m[σ](x) = |λ(2)(σ)|
|λ(1)(σ)|+ |λ(2)(σ)| ,

θ[σ](x) = min
{

1,

√
2µ+ λ

4µ(µ+ λ) l (|λ
(1)(σ)|+ |λ(2)(σ)|)

}
,

(4.20)

where λ and µ are the Lamé parameters of C as seen in (3.8).

The result states that the lamination directions are aligned with the eigenvectors. Here ϱ
specifies the inclination of the first direction, and the second direction is always perpendicular
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due to orthogonality of the eigenvectors. The ratio relates to the ratio of the eigenvalues.
Here m specifies the ratio used in the first iteration, and the second is given by 1−m due
to normalization. The formulae for ϱ and m can be found in [15, Equation (4.23)]. Finally
the local density is proportional to the combined magnitude of both eigenvalues, see [15,
p. 856]. As can be seen there is a threshold behavior for the local density. From a certain
magnitude of stress on it is preferable to resort to solid material, i. e. θ = 1. Naturally this
value also depends on the chosen Lagrangian multiplier. Given those parameters the effective
homogenized elasticity tensor C∗[q](x) can likewise be computed explicitly.

Theorem 4.18 (Effective tensor for sequential lamination). Given the parameters q =
(ϱ,m, θ)⊤ of a twofold sequentially laminated microstructure, the associated homogenized
elasticity tensor is given by

C∗
ijkl[q] = R[ϱ] C̄∗[m, θ] :=

2∑
a,b,c,d=1

Qia[ϱ]Qjb[ϱ]Qkc[ϱ]Qld[ϱ] C̄∗
abcd[m, θ] ,

C̄∗
1111[m, θ] = 4κµ(κ+ µ)θ(1− θ(1−m))(1−m)

4κµm(1−m)θ2 + (κ+ µ)2(1− θ) ,

C̄∗
2222[m, θ] = 4κµ(κ+ µ)θ(1− θm)m

4κµm(1−m)θ2 + (κ+ µ)2(1− θ) ,

C̄∗
1122[m, θ] = 4κµλθ2m(1−m)

4κµm(1−m)θ2 + (κ+ µ)2(1− θ) ,

(4.21)

for i, j, k, l ∈ {1, 2}. Here the effective tensor in reference configuration C̄∗ is rotated by
the linear operator R to the appropriate coordinate frame specified by ϱ using usual rotation
matrices Q ∈ SO(2). The remaining entries of C̄∗, which cannot be identified via the symmetry
properties (3.4), are set to zero.

Explicit formulae for effective tensors of sequentially laminated composites were already
given in [178]. Their evaluation however is tedious in general, but succinctly possible in our
situation of rank-2 sequential orthogonal laminates comprising voids, cf. [15, Equation (4.21)].

Looking back at the relaxed minimization problem (4.16) the solution to the inner min-
imization problem is now known explicitly. It remains to fix the Lagrangian multiplier in
order to fulfill the volume constraint (4.14). To this end, it can be shown that the overall
volume is a decreasing function of l, see [12, Remark 3.5 and Lemma 3.6], which facilitates an
adaptation by bisection in the course of an optimization algorithm.

Remark 4.19 (Degeneracy of the elasticity tensor). The elasticity tensor in (4.21) is degen-
erate, in the sense that C̄∗

1212 = 0. Consequently the composite material cannot sustain a
nonaligned shear stress. An optimal sequential laminate will however always be aligned.

In view of robustness, especially for numerical application, an optimal and nondegenerate
rank-4 laminate can be constructed when detσ > 0, see [11, Proposition 3]. For detσ ≤ 0,
the degeneracy is a general result for optimal elasticity tensors, see [11, Theorem 2].

Remark 4.20 (Higher space dimension). Avellaneda’s result [37] that finite rank sequential
laminates attain the optimal bounds is valid in higher dimensions as well. The fact that rank-d
laminates are sufficient in dimension d is shown in [30]. Explicit formulae for the lamination
parameters and the effective elasticity tensor are given in [17] and independently in [193].

65



Chapter 4. Fundamentals in shape optimization

Remark 4.21 (Effective isotropy). The optimal sequential lamination constructions discussed
so far in general lead to orthotropic effective materials. For an optimal isotropic material,
three lamination steps are required in two space dimensions, and six in three dimensions [179].

Remark 4.22 (Multiple loads). In case multiple state equations (3.2) are considered for
varying loads, finite sums of elastic energies appear in the objective functional. This situation
is already covered in Avellaneda’s work. In two space dimensions, three lamination steps
are required to produce an optimal microstructure [36], in three space dimensions, six are
necessary [179].

Remark 4.23 (Uniaxial loading). For a uniaxial load in two space dimensions a rank-1
laminate is the only possible optimal microstructure, cf. Figure 1.3(a) in the introduction.
This fact was already shown by Ball and James [49], in the context of phase transformations
in metallurgy.

4.2.4. Further results on optimal microstructures
The sequential lamination microstructure is not the only possible construction attaining
optimal values on the elastic energy. Worth mentioning are the following important results.

Concentric spheres. Historically, the concentric spheres assemblage employed by Hashin
in [213] is the first optimal microstructure. It is valid for the special case of C∗1 : 1, i. e. a
hydrostatic strain is considered. Given a domain occupied by one of the constituents, spherical
inclusions of the other constituent are successively introduced. Building upon Eshelby’s result
in [170], the change in stored elastic energy is computed. By theory, the occurring stresses
can only be determined in case of an infinite body loaded at infinity, but for the derivation
of bounds they can be chosen as energetically optimal. A circular boundary around each
inclusion is chosen in such a way that the resulting coating and its core possess the correct
volume ratio.

Bergman [82], Milton [284], and Tartar [392] use a generalized construction made from
coated confocal ellipsoids in the conductivity setting to prove nonuniqueness of optimal
designs and sharpness of bounds. Grabovsky and Kohn carry over this concept to the elasticity
setting and achieve a generalization for anisotropic strains and stresses in [197], i. e. the
optimal bound C∗ε[u] : ε[u] is attained for a certain nontrivial set of strains ε[u]. Their
work is based on Cherepanov [118], where the shape of equally strong holes, i. e. those with
constant tangential stress on their outlines, is derived. The two dimensional isotropic elasticity
problem is transferred to the complex plane using Kolosov-Muskhelishvili potentials [303] and
a conformal mapping of the annulus region is considered. Boundary conditions are chosen in
such a way that the global strain field ε[u] remains uniform and unaltered. As it turns out,
the construction is successful in a certain regime of strains where the hydrostatic part c1 is
large compared to the deviatoric part ε[u]− c1. In this case confocal ellipsoids are obtained,
with concentric circles included as a special case. The eccentricity depends on the strain and
the direction of the semimajor axis is aligned with the eigenvector of ε[u] with larger modulus,
in case the core is made from the weaker material. As the scaling is arbitrary, the whole
domain can finally be covered by scaled copies of the construction, see Figure 4.2(a) for a
sketch. In contrast to the sequential lamination model, which requires possibly several H-limit
passages, the construction is genuine from the start. Still a finite covering would result in only
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a near optimal design. Furthermore there is a limiting regime. Upon approaching its defining
constraint, the eccentricity increases and the ellipsoids resemble a layering. Also an explicit
formula for the elasticity tensor is not available. The construction can be generalized to three
spatial dimension, see [196], but not to anisotropic components.

(a) Confocal ellipsoids. (b) Vigdergauz. (c) Sigmund.

Figure 4.2.: Exemplary sketches of alternative optimal microstructure models.

Vigdergauz microstructure. A fundamentally different construction was given by Vigdergauz
in [406] and further discussed by Grabovsky and Kohn [198]. In a series of papers starting
with [404], Vigdergauz derived an integral equation for holes in plates minimizing the stress
concentration and later extended this concept to periodic arrays and the full elasticity setting.
He then computed the elastic energy and found that it achieved the optimal bounds. The
derivation in [198] proceeds along the same lines as in [197], i. e. the problem is transferred to
the complex plain, optimality criteria are derived, and a conformal mapping to the unit cell is
set up. This time a periodic problem is considered and it is found that the cells should be
aligned with the principal strain direction. Finally an explicit parametrization is obtained
in terms of elliptic integrals. In Figure 4.2(b) resulting shapes for a hydrostatic and a near
uniaxial strain are displayed. The construction has the same limiting regime as the confocal
ellipsoids construction and in fact the defining constraint depicts the demarcation towards
a regime where rank-2 sequential laminations are necessary to achieve the optimal bound.
Upon approaching, the inclusions degenerate to bars, which are in fact rank-1 laminated
microstructures. By changing the unit cell to a rectangle with arbitrary small aspect ratio,
an additional scale can be generated and even rank-2 sequentially laminated microstructures
obtained in the limit. If the volume of the inclusion tends to zero it is shown that an ellipsoidal
shape is obtained. The authors also discuss implications of a stress based shape optimization
setup with solid and void regions. Among other things detσ > 0 turns out to be the constraint
for nondegenerate optimal shapes. An explicit evaluation of the elasticity tensor was claimed by
Vigdergauz but questioned by Grabovsky. It is possible to extent the construction for certain
choices of anisotropic constituents. According to [406] an extension to three space dimensions
is conceivable, but would require fundamentally different techniques. A corresponding result
in case of heat conduction is the subject of [405]. In [403], optimal two dimensional periodic
inclusions yielding isotropic materials were identified on hexagonal and triangular lattices
with the help of numerics.
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Sigmund microstructure. Another microstructure was suggested by Sigmund [372], inspired
by numerical topology optimization results for inverse homogenization. In its general form it
comprises polygonal regions with pure phases and interconnecting sequential laminates of lower
rank, see Figure 4.2(c) for an example. In two and three space dimensions the exact elasticity
solutions for a hydrostatic loading are computed and optimality is proven. Furthermore, the
construction on a hexagonal periodic lattice yields an isotropic effective material which has a
lower shear modulus than previously known composites. This is interesting in the context of
coupled bounds. The bounds described before in Section 4.2.2 are applied independently to
derive optimal effective bulk and shear moduli. In contrast, Cherkaev and Gibiansky [120]
consider both simultaneously and obtain a relation. It is however unknown whether these
coupled bounds can actually be attained.

Michell trusses. The Michell truss construction was already mentioned in Chapter 2. At first
glance, it seems unrelated because of the different material model comprising idealized joints
and rods. However, it turns out that the rods have to be aligned with the principal stress
directions and have to sustain a proportional corresponding load. When the framework is
confined to a fixed region D, then

∫
D
|λ(1)(σ)|+ |λ(2)(σ)| dx is an appropriate cost functional

in this context, to be optimized among all admissible stress fields. Allaire and Kohn argue
that the two dimensional compliance minimization problem under volume constraint (4.15) is
formally equivalent in the low volume limit, i. e. for l→∞, when the overall volume should
tend to zero. They moreover identify a dominant, common term in the relaxed formulation
even when the volume is not small and thereby account for similarities of optimal relaxed
shapes and Michell trusses. Grabovsky and Kohn [198] point out that the periodic array of
Vigdergauz’s inclusions also resembles Michell trusses with specifically designed joints in the
low volume regime.

Results on periodic microstructures. In the context of optimal microstructures there is a
striking fundamental results stating that the set of effective elasticity tensors obtained from
periodic composites is dense in the set obtained from all composites. This allows to resort to
periodic microstructures, enables the use of the rich theory of periodic homogenization, and
justifies our two-scale approach based on assuming local periodicity. The result is attributed
to unpublished work by Dal Maso and Kohn, and has been further generalized in [338, 38].
On the other hand, Allaire and Aubry [11] prove that for detσ < 0 an optimal periodic
microstructure does not exist. In fact, the periodic constructions presented above have a
limiting regime and cease to exist outside. Before the result was published, Cherkaev et al.
[123] solved a related problem of finding an optimally shaped, simply connected cavity in
an infinite elastic plate under shearing loads. They found a curved quadrilateral, but also
remarked that the associated energy was significantly higher than that of an optimal rank-2
laminate. This was not surprising as it was shown before by Grabovsky [196] that an optimal
microstructure in such a regime must have straight interfaces to allow for discontinuities in
the strain field.

Periodic constructions however remain highly relevant due to their approximation properties
and technical manageability. A further important aspect is material symmetry. The effective
properties of homogenized elasticity tensors depend on the properties of the microscopic
constituents and their arrangement. Classical results [204, 239] show how symmetries in the
microscopic arrangement carry over to the macroscale. A more recent, generalized result is
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show by Ptashnyk and Seguin [335]. They consider symmetries of periodic elastic structures
generated by volume-preserving affine transformations

h(y) = y0 + a+H(y − y0) ,

where y0 is the origin of the transformation, a an arbitrary translation vector, and H a
unimodular linear mapping. If such h generates a symmetry of the microscopic periodic
construction, there holds

C∗X = H
(
C∗(H⊤XH)

)
H⊤, ∀X ∈ Rd×d

sym .

This means that the gradient of the linear mapping yields a material symmetry of the
macroscopic effective material. The converse is not true. There are effective materials with
symmetries that do not appear in the periodic microscopic construction. As an example, a
material with hexagonal symmetry is already isotropic [204], cf. the Sigmund microstructure
above.

The models considered in this work will yield orthotropic materials. In this regard, there
is an important result by Pedersen [323], stating that in order to be optimal, the symmetry
axes have to be aligned with the principal stress directions. For the three dimensional case,
optimality conditions were derived by Norris [308].
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CHAPTER 5

A two-scale approach

The two-scale model for shape optimization that is at the core of this thesis will be
developed in this chapter. It builds upon locally periodic assemblages of geometrically

simple perforations located on an underlying lattice of microscopic length scale. Their elastic
behavior is probed at discrete macroscopic points by determining the elastic reaction to given
linearized deformations. The approach turns out to be related to several established concepts
for multiscale problems. For the numerical treatment we will combine a macroscopic coarse
finite element discretization with a boundary element approach for the solution of microscopic
cell problems. The latter requires a discretization of the one dimensional boundaries only and
we therefore achieve a convenient and flexible testing ground for numerical experiments with
different microstructure models.

5.1. Derivation of the two-scale model
We will start by reviewing some decisive analytical and numerical aspects of shape optimization
in the usual single-scale setting. Based upon those we will motivate our two-scale approach
and discuss the basic modeling assumptions. We will then sketch our procedure in an intuitive
manner and embed it into a rigorous framework afterwards.

5.1.1. Motivation
Two aspects motivate the numerical investigation of microstructured materials. Firstly the
classical shape optimization problem for the compliance objective is ill-posed as discussed
in Section 4.2. An optimal shape will develop oscillations in the material distribution on a
microscopic scale whereas numerical approaches will show similar structures on the grid scale
and therefore produce mesh dependent, suboptimal results. The deficiency can be obviated by
allowing generalized materials with intermediate density on the macroscopic scale stemming
from microscopic geometries via homogenization. In fact several microstructure models with
fundamentally different geometric designs exist that deliver an optimal solution. Secondly
these models typically do not generate materials with a physical equivalent. They are of
theoretical importance but cannot provide a guideline for manufacturing real materials.

Consequently our model shall combine two important features. Firstly it shall be able to
capture microstructure formation by employing an additional microscopic scale. Effective
material properties will then enter the macroscale via homogenization and oscillations on the
macroscopic scale as observed for single-scale computations should be obviated. Secondly the
microstructures shall be made up of geometrically simple perforations that could in principle
be manufactured, except for the arbitrary small size.
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Looking at the single-scale results shown in Figure 1.1 it becomes apparent that optimized
shapes are characterized by both a global distribution of material, strongly depending on
the considered loads, and tiny structures in regions with intermediate amount of material.
Within small surroundings these structures show similar shapes and smooth transitions, unless
they jump to a fundamentally different shape when passing a macroscopic interface. Hence
we propose locally periodic perforations on an underlying microscopic lattice, i. e. for every
point on the usual macroscopic domain x ∈ D there will be an underlying lattice of periodic
cells Y(x) with microscopic edge length δ comprising perforations of geometrically simple
shape, which can be described by a small finite set of parameters. Assuming periodicity will
ease the mathematical analysis through available concepts from periodic homogenization and
enable an efficient algorithmic treatment. The separation of scales is justified in the context
of latest achievements in material science, where the characterizing length scale of structures
in composites is extremely small compared to the size of the fabricated components.

It is unsettled how two of these periodic lattices will meet at a microscopic interface.
Practically we think of a smoothly varying microstructure, so there should be some kind of
transition layer or a compatibility condition. In our numerical computations however we will
only consider periodic assemblages at macroscopic points with significant distance to each
other. We thus ignore such imponderables and content ourselves with the assumption that any
effects due to microscopic interfaces can be safely ignored because of the strongly separated
scales. Furthermore we will not impose any constraints on the microscopic shapes, except
that they should not overlap their representative cell. Neither will we take into account a
macroscopic constraint on the variation of the underlying periodic microstructures. We are
aware that such conditions are crucial for a real construction but we rather want to enable
a most unrestricted evolution of microstructures. As to the incorporation of the mentioned
types of constraints we refer to [360, 200, 145] as examples.

5.1.2. Intuitive idea
Let us start on the macroscopic scale, where we want to solve an elasticity problem for given
loads, as described in Section 3.1 for the classical single-scale setting, and compute cost
functionals like the compliance (4.12). Both tasks require evaluations of the bilinear and linear
form defined in (3.9), either for certain test functions ϑ or already known displacements u. As
long as only macroscopic quantities are involved the integration is straightforward and can
be done by numerical quadrature in an actual algorithmic realization. However the material
properties represented by the elasticity tensor now depend on the underlying microscopic
scale.

Evaluating the bilinear form a(O;u, u) =
∫

O Cε[u] : ε[u] dx in a numerical computation
amounts to assess the local energy density on several quadrature points. Hence for a fixed
macroscopic point x ∈ D the locally stored energy due to acting strains and related stresses
in the underlying microstructured material has to be evaluated. Here the shape of the locally
periodic perforations is known. Furthermore the macroscopic displacement and its Jacobian
are available. The latter constitutes a linear approximation to the local displacement in a
neighborhood of x and will be used to probe the influence of the local microstructure. The
crucial idea is to use the displacement gradient to set up a linear mapping 1+ Du(x) ∈ R2×2,
deforming the microscopic lattice. Under the applied linear deformation a microscopic cell
problem is considered. Due to the perforations, its solution will in general not be trivial,
but lead to a decrease of the microscopic elastic energy, when compared to the purely linear
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deformation. Upon proper scaling this corrected microscopic energy can be used as a scale
independent approximation to the macroscopic energy density sought after. This intuitive
procedure was already sketched exemplarily in Figure 1.2.

5.1.3. Formal description
We will now formalize the two-scale model for microstructured shape optimization. To this end
let δ denote the characteristic microscopic length scale. At each point x ∈ D a representative
cell Y(x) ⊂ DY = [0, 1]2 with edge length 1 is considered. As before we allow for perforations
but require them to keep a distance to the cell boundary. The afore mentioned lattice is
obtained via periodic extension, i. e. the local underlying microscopic domain at x is obtained
as Oδ(x) =

⋃
ci∈Z2 δQ (ci + Y(x)), where Q possibly provides an additional rotation of the

lattice. The overall elasticity tensor is correspondingly given by Cδ(x) = C(x, y). As in
Section 3.5 x denotes the slow variable varying with order 1 macroscopically and specifying
pointwise the microscopic geometric setup via a parameter mapping q : D → Rl. The second
argument y := x

δ is the fast variable, rescaled to unit cells, and varies among the actual
representative microscopic geometry. Due to the assumption of scale separation, the two spatial
variables x, y can be considered independent. By the periodicity assumption the elasticity
tensor C : D×R2 → R24 is Y-periodic in y, i. e. for c ∈ QZ2 there holds C(x, y+ c) = C(x, y)
and any considerations on the microscale can be restricted to the representative local cell
Y(x).

When looking at the problem set up so far in terms of the dependent variables x and x
δ we

are still within the framework of classical elasticity problems of Section 3.1. Resolving the
microscopic features by a numerical scheme is however prohibitive due to the required fineness
of a computational grid. Indeed, in the present situation typical regularity estimates like
|u|2,2,D ≤ c δ−1∥f∥0,2,D hold. In view of the approximation error in (3.31) the convergence
rate then degrades to h/δ, cf. [233, Corollary 4.3.] and the preceding discussion therein. This
requires to choose a mesh width of the same order of magnitude as the microscopic scale. It
would moreover counteract the idea of an independent detached microstructure. We therefore
use the approach sketched above to approximate the bilinear form a(Oδ;uδ, uδ). Notably it is
the only term with microscopic dependence, both the right hand side and any boundary forces
are assumed to be defined on the macroscale. The crucial point is to resort to the decoupled
perspective and assume a splitting of the displacement into a macroscopically varying part
u∗, depending on x, and a microscopic part ũ(x, y), being periodic in y for any fixed x, in
analogy to the setup of the two-scale microstructured domain. Locally, at an arbitrary, fixed
point x, the macroscopic part enters the elastic energy density in terms of its symmetrized
gradient εx[u∗] (x). The microscopic part now is to be determined as the elasticity solution of
a microscopic cell problem in presence of the macroscopic displacement linearization. Thus
we define the corrector problem as∫

Y(x)
C(x, y) εy[ũ] (x, y) : εy[ϑ] (y) dy = −

∫
Y(x)

C(x, y) εx[u∗] (x) : εy[ϑ] (y) dy

⇐⇒ : a(Y(x);R[u], ϑ) = 0 ∀x ∈ D,ϑ ∈ H1
per,0(Y(x);R2) . (5.1)

For the newly defined operator R we especially have εy[R[u]] (x, y) = εx[u∗] (x) + εy[ũ] (x, y).
The arrangement in (5.1) reveals a linear form on the right hand side for the given macroscopic
Jacobian, making the corrector problem a periodic cell problem in weak formulation as
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considered in Section 3.4. Its corresponding strong formulation reads{
−divy C(x, y) εy[ũ] (x, y) = divy C(x, y) εx[u∗] (x) in Y(x) ,

ũ ∈ H1
per,0(Y(x);R2)

(5.2)

for all x ∈ D. In this regard the problem admits for a unique periodic solution ũ ∈
H1

per,0(Y(x);R2) because the right hand side vanishes when integrated against constant
test functions, cf. (3.21). Finally the hereby determined two-scale solution is used to evaluate
the microscale elastic energy, i. e. we employ the approximation(

Cδ ε
[
uδ
]

: ε
[
uδ
])

(x) ≈ Vol
(
DY)−1

∫
Y(x)

C(x, y) εy[R[u](x, y)] : εy[R[u](x, y)] dy . (5.3)

Some aspects of the two-scale model are worthy of a more detailed inspection at this point.
Remark 5.1 (Inhomogeneous Dirichlet boundary conditions). The varying variable in (5.2)
is y and hence εx[u∗] (x) simply depicts a constant symmetric matrix. Due to linearity, the
equation can be rearranged to read

−divy C(x, y) εy[ũ(x, y) + (εx[u∗] (x))y] = 0 ,
where the matrix εx[u∗] (x) is applied to the vector y. This superposition resembles the usual
procedure for including inhomogeneous Dirichlet boundary conditions in (3.13) or (3.2), given
here by u∂(y) := (εx[u∗] (x))y. In fact this representation fits the intuitive sketch in Figure 1.2,
insofar as an affine displacement is prescribed and the superimposed reaction of the periodic
assemblage sought.
Remark 5.2 (Scale invariance). The approximation of the elastic energy density as defined
in (5.3) is invariant w. r. t. scaling of the cell problem. To see this let δ̃ > 0 denote an arbitrary
scaling factor and Y δ̃ ⊆ DY δ̃ = [0, δ̃]2 the scaled representative cell with corresponding
variable yδ̃ = δ̃y. Likewise let further quantities defined in the scaled setting be denoted by a
superscript δ̃. Then we have e. g. ϑδ̃(yδ̃) = ϑ(y). We now consider the scaled corrector problem
and transform it to the reference setting, where Y ⊆ DY = [0, 1]2. In particular for fixed x∫

Y δ̃

C δ̃(yδ̃) εyδ̃

[
ũδ̃
]

(yδ̃) : εyδ̃

[
ϑδ̃
]

(yδ̃) dyδ̃ = −
∫

Y δ̃

C δ̃(yδ̃) εx[u∗] : εyδ̃

[
ϑδ̃
]

(yδ̃) dyδ̃

⇐⇒
∫

Y
C(y) δ̃−1

εy[ũ] (y) : δ̃−1
εy[ϑ] (y)δ̃2 dy = −

∫
Y
C(y) εx[u∗] : δ̃−1

εy[ϑ] (y)δ̃2 dy

holds, where δ̃2 is the volume element stemming from the transformation and δ̃
−1 emerges

due to the derivatives. Comparing to (5.1) an additional factor δ̃−1 is present on the left
hand side, which cancels when choosing ũδ̃(yδ̃) = δ̃ũ(y). This is supported by the intuitive
viewpoint, insofar as a displacement given by a linear mapping is proportional to the extent
of the domain and so should be the elastic reaction, at least in the linearized setting.

We now consider approximation (5.3), plug in the scaled periodic correction, and perform
the same transformation as before, leading to

Vol
(
DY δ̃

)−1 ∫
Y δ̃

C δ̃(yδ̃)
(
εx[u∗] + εyδ̃

[
ũδ̃
]

(yδ̃)
)

:
(
εx[u∗] + εyδ̃

[
ũδ̃
]

(yδ̃)
)

dyδ̃

= Vol
(
DY δ̃

)−1 ∫
Y
C(y)

(
εx[u∗] + δ̃

−1
εy

[
δ̃ũ
]

(y)
)

:
(
εx[u∗] + δ̃

−1
εy

[
δ̃ũ
]

(y)
)
δ̃

2 dy .
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Observing Vol
(
DY δ̃

)−1
δ̃

2 = 1 = Vol
(
DY)−1 completes our statement of scale invariance.

Due to the preceding remark, it is justified to restrict all considerations of the microscale
to the reference frame of length scale 1, as assumed initially. If the full elasticity solution for
a microstructured domain is wanted, the scaling is of course relevant and the approximation
used in our two-scale model is ultimately given by uδ(x) ≈ u∗(x) + δ ũ(x, y).

5.2. Application of the two-scale model

In the preceding section the microscale problem has been laid out based on the approximation
of a local energy density in terms of a(Oδ;uδ, uδ) for given macroscopic displacements. We will
now be concerned with finding an actual solution to the two-scale elasticity problem for given
macroscopic boundary conditions. This can be accomplished in analogy to the single-scale
case by searching for minimizers of the two-scale total free energy, cf. Corollary 3.11. Thereby
techniques from the calculus of variations will be used. Furthermore the concepts from shape
calculus presented in Section 4.1.1 will be transferred to the two-scale setting to infer the
sensitivities of the cost w. r. t. the parameters of the underlying microscopic geometries.

5.2.1. Solving of the elasticity problem

We consider the two-scale total free energy Jtotal [Oδ;uδ
]

= 1
2a(Oδ;uδ, uδ) − l(O;uδ) in

analogy to Corollary 3.11. In order to determine minimizers we compute the first order
necessary condition d

dt Jtotal [Oδ;uδ + tϑδ
] ∣∣

t=0 = 0. To this end

d
dt Jtotal [Oδ;uδ + tϑδ

]
= 1

2

∫
Oδ

d
dt C

δ ε
[
uδ + tϑδ

]
: ε
[
uδ + tϑδ

]
dx

−
∫

Oδ

d
dt f · (u

δ + tϑδ) dx−
∫

ΓN

d
dt g · (u

δ + tϑδ) da(x) .

Now we apply the two-scale approach and replace uδ, ϑδ by (u∗, ũ), (ϑ∗, ϑ̃) from the space
H1

ΓD
(D;R2)×H1

per,0(Y ;R2), respectively. A macroscopic inhomogeneous Dirichlet part would
be handled via splitting as before but is not explicitly written here for clarity reasons. According
to (5.3) for fixed x ∈ D the quadratic term is locally approximated by∫

Y(x)
C(x, y) εy[R[u+ tϑ](x, y)] : εy[R[u+ tϑ](x, y)] dy (5.4)

and the cell problem reads∫
Y(x)

C(x, y) εy

[
ũ+ tϑ̃

]
(x, y) : εy[ϑ] (y) dy =−

∫
Y(x)

C(x, y) εx[u∗ + tϑ∗] (x) : εy[ϑ] (y) dy

∀ϑ ∈ H1
per(Y(x);R2) (5.5)

75



Chapter 5. A two-scale approach

with the usual test functions ϑ. For the time being let ũ and ϑ̃ be the unique solutions of the
specific cell problems∫

Y(x)
C(x, y) εy[ũ] (x, y) : εy[ϑ] (y) dy = −

∫
Y(x)

C(x, y) εx[u∗] (x) : εy[ϑ] (y) dy ,∫
Y(x)

C(x, y) εy

[
ϑ̃
]

(x, y) : εy[ϑ] (y) dy = −
∫

Y(x)
C(x, y) εx[ϑ∗] (x) : εy[ϑ] (y) dy ,

respectively. Due to the linearity of εy and εx, multiplying the second equation by t and adding
both regains a cell problem in the shape of (5.5) with the same right hand side. Consequently
ũ+ tϑ̃ is a solution of (5.5) and since the cell problem has a unique solution it already is this
very solution. Thus we can insert the determined microscopic solution into the approximation
of the quadratic term (5.4), yielding∫

Y(x)
C(x, y)

(
εx[u∗ + tϑ∗] + εy

[
ũ+ tϑ̃

])
:
(
εx[u∗ + tϑ∗] + εy

[
ũ+ tϑ̃

])
dy .

Exploiting linearity once again we can now take the derivative w. r. t. t and evaluate at t = 0,
resulting in ∫

D

∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) :
(
εx[ϑ∗] + εy

[
ϑ̃
])

dy dx

for the quadratic term in the first variation. The linear form was assumed to only depend on
functions defined on the macroscale. Indeed, when plugging in our approximation in expanded
form and integrating over Y(x) for every x, we obtain∫

D

∫
Y(x)

d
dt f(x) ·

(
u∗(x) + δ ũ(x, y) + tϑ∗(x) + tδϑ̃(x, y)

)
dy dx

for the volume forces integral. Due to the enforced vanishing component wise integral mean,
integrating the y-constant f against microscale functions over Y(x) yields zero and only the
macroscopic terms remain. The same reasoning holds for the surface integral. Taking the
derivative w. r. t. t and evaluating at t = 0 gives the remaining terms for the first variation.
As it has to vanish for all valid ϑδ we altogether obtain

aM(D;u∗, ϑ∗) = l(D;ϑ∗) ∀ϑ∗ ∈ H1
ΓD

(D;R2) with

aM(D;u∗, ϑ∗) :=
∫

D

∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) :
(
εx[ϑ∗] + εy

[
ϑ̃
])

dy dx
(5.6)

as the first order necessary condition. The linear form is identical to the one in the single-scale
setting, cf. (3.9). The newly introduced bilinear form aM for the approximating microstructure
model depends formally on macroscopic quantities only. Sure enough the microscale is still
involved in terms of the cell integral and the periodic correction but this correction is uniquely
determined for a given macroscopic strain. Moreover the crucial insight is that both are
coupled in virtue of a bounded linear operator. Due to the similarity to the single-scale setting,
we find ourselves in a comfortable situation where we can carry over a lot of results.

Most significantly, the derived two-scale approach admits for a unique solution. To this end
it is sufficient to check boundedness and coerciveness of the bilinear form aM in analogy to
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the proof of Theorem 3.8. Regarding boundedness we see∫
D

∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) :
(
εx[ϑ∗] + εy

[
ϑ̃
])

dy dx

≤ |||C|||
∣∣∣∣∣
∫

D

Du∗ : Dϑ∗ +
∫

Y(x)
Dũ : Dϑ̃+ Du∗ : Dϑ̃+ Dũ : Dϑ∗ dy dx

∣∣∣∣∣ .
The first term reproduces the single-scale setting. The mixed terms can be rewritten and
estimated like maxi,j(Du∗)ij div(ϑ̃) · 1. That way we get an integrated divergence of a Y-
periodic function, which vanishes by virtue of Lemma 3.13. For the last term we use the
Cauchy-Schwartz inequality w. r. t. the cell integral. Altogether this yields

aM(D;u∗, ϑ∗) ≤ |||C|||
(
|u∗|1,2,D|ϑ∗|1,2,D +

∫
D

|ũ|1,2,Y(x) |ϑ̃|1,2,Y(x) dx
)
.

Finally the H1(Y(x);R2)-norm can be estimated by the local macroscopic strains due to the
bounded linear relation. Regarding coerciveness we get by the same computation

aM(D;ϑ∗, ϑ∗) ≥ c
∫

D

εx[ϑ∗] : εx[ϑ∗] +
∫

Y(x)
εy

[
ϑ̃
]

: εy

[
ϑ̃
]

dy dx .

At this point Korn’s inequality, Theorem 3.7, is used both for the macroscopic part on D and
the microscopic part on Y. Finally the H1(Y(x);R2)-norm is once again estimated by the
macroscopic strain as before.

5.2.2. Optimization of microscopic geometries
The key aspect of this thesis is the numerical optimization of microscopic geometries. We
will therefore transfer the concepts from Section 4.1 to the deployed two-scale setting. As
objective we will focus on a two-scale approximation of the total free energy that was already
tackled above. Note that, due to the definition of the weak problem (5.6) and the identity
(4.12), this equals the compliance cost functional. For optimization we allow the shape of
microscopic perforations in the locally periodic cell problems to vary. To this end we assume a
family of smooth functions γ[q(x)] : [0, 1] 7→ ∂Y(x) \ ∂DY for every x ∈ D, which parametrize
the connected components of each perforation’s boundary within the unit cell. Here q ∈ Rl

denotes an, ideally short, vector of coefficients, constituting the actual degrees of freedom that
influence the parametrization and shall be optimized. Furthermore we impose a constraint on
the overall volume stemming from the local material fractions θ(x) in each microscopic cell.
Thus the optimization problem is finally given by

min
q
−2 JM[q;u∗] s. t.

∫
D

θ dx = Θ , (5.7)

JM[q;u∗] := 1
2a

M(q;u∗, u∗)− l(u∗) .

Here we adapted the arguments of the bilinear and linear form to reflect the actual dependence
on the parameters of the microscopic shapes.

For solving the optimization problem we are interested in gradient information and would
therefore like to apply the results of Section 4.1.1. In view of the velocity method we can
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generate a vector field that varies the perforations’ boundaries in each microscopic cell Y(x)
for each direction β ∈ Rl in the coefficient space via

V [x;β](t, y) :=
(

d
dq γ[q(x)](s)

)
(β) (5.8)

for every point y ∈ ∂Y(x) \ ∂DY with y = γ[q(x)](s) for some corresponding s. Note that the
defined vector field is constant w. r. t. the artificial time t, which is in line with Definition 4.2
of the Hadamard shape derivative. Furthermore note that in order to satisfy the prerequisites
of the definitions, technically a suitable extension to the whole domain DY would have to
be constructed, which we will however not detail here. The total derivative of the total free
energy is initially given by

d
dq JM[q;u∗](β) =∫

D

dY(x)

(
1
2

∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) : (εx[u∗] + εy[ũ]) dy
)

(V [x;β]) dx .

Note that purely macroscopic quantities vanish under the derivative as the macroscopic domain
is independent of the chosen parameters q. Furthermore note that the defined velocity field (5.8)
enters naturally here by virtue of the chain rule. To continue we need to observe the implicit
dependence of the two-scale solution (u∗, ũ) on the shape of the microscopic domain. Due to
the common structure, setting up the Lagrangian, deriving the dual problem and computing
the total derivative is a rephrasing of the procedure in the single-scale setting detailed in
Section 4.1.4. The major difference is the two-scale product space H1

ΓD
(D;R2)×H1

per,0(Y ;R2)
that is used in lieu of V . A comprehensive derivation is included in Appendix B. In particular,
the adjoint solution still is trivial, given by (p∗, p̃) = (0, 0), and the total derivative finally
reads

d
dq

(
−2 JM[q;u∗]

)
(β) = d

dq
(
−aM(q;u∗, u∗)

)
(β)

= −
∫

D

∫
∂Y(x)

(V [x;β] · n(y)) C(x, y) (εx[u∗] + εy[ũ]) : (εx[u∗] + εy[ũ]) da(y) dx . (5.9)

5.2.3. Numerical treatment
In the preceding sections the two-scale approach has been described extensively. In order
to gain an approximation of the, still unknown, macroscopic displacement u∗ it is now
straightforward to apply the finite element approach. As was detailed in Section 3.6.1 we
consider a computational gridMh covering the macroscopic domain D, select a suitable finite
element space V(k)

h , and write the unknown macroscopic displacement as a linear combination
of basis functions via its Lagrangian interpolant I(k)

h [u∗]. Since the linear form in the two-scale
weak formulation coincides with the one in the single scale setting we obtain the same right
hand side in the discrete system as before. Concerning the bilinear form we need to compute
aM(q; (ψ∗)k

i , (ψ∗)l
j) for given pairs of macroscopic basis functions via numerical quadrature.

To this end, periodic corrections have to be computed for macroscopic strains (ψ∗)k
i (xm) at

each quadrature point xm ∈ D, which act as given affine displacements, cf. Remark 5.1. For
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the solution of the corresponding cell problems (5.1) in Y(xm) the boundary element method
is employed, as described in Section 3.6.2. It provides numerical approximations (ψ̃h)k

i of the
displacement correction and its normal stresses on the boundary. The volume integral in the
two-scale approximation of the elastic energy (5.3) is conveniently rewritten as a boundary
integral, cf. (3.11), s. t. the stiffness matrix can be setup with entries(

LM)(k,l)
ij

:=
∫

D

∫
∂Y(x)

C(x, y)
(
εx

[
(ψ∗)k

i

]
+ εy

[
(ψ̃h)k

i

])
n ·
(
(ψ∗)l

j + (ψ̃h)l
j

)
da(y) dx .

The overall discretized two-scale approximation can then be determined as the solution of a
sparse linear system of equations, just as in the single-scale setting. In particular all properties
from Remark 3.22 still hold. To this end note that a vanishing macroscopic strain results in
zero displacement for the cell problem.

Remark 5.3 (Symmetrization). It turns out to be numerically favorable to replace the
integrand in

(
LM)(k,l)

i,j
with

1
2

(
C(x, y)

(
εx

[
(ψ∗)k

i

]
+ εy

[
(ψ̃h)k

i

])
n ·
(
(ψ∗)l

j + (ψ̃h)l
j

)
+C(x, y)

(
εx

[
(ψ∗)l

j

]
+ εy

[
(ψ̃h)l

j

])
n ·
(
(ψ∗)k

i + (ψ̃h)k
i

) )
by duplicating the expression and applying partial integration in reverse w. r. t. alternating
functions. Although being equivalent, this representation ensures symmetry of the resulting
matrix, even in presence of any numerical inaccuracy.

With the full two-scale solution at hand the compliance objective can be evaluated in
analogy to the entries of the stiffness matrix. Its shape derivative can be computed using (5.9).
Here it is fortunate that the shape derivative is given by a boundary integral as well. However
the integrand involves full Jacobians whereas we only have numerical approximations of the
normal stress at our disposal. As a remedy finite differences of the periodic displacements on
the boundary provide an approximation of the stress in tangential direction, which can then
be used to reconstruct the required terms, cf. [182, Section 5.5.1].

5.3. Relation to other approaches
Our two-scale model is linked to other approaches for the treatment of multiscale problems,
which we will now briefly discuss. In view of Section 3.5 a relation to periodic homogenization
is immanent. For us this enables a direct computation of locally effective material properties
on the macroscopic scale. Furthermore our model falls under the general paradigm of the
heterogeneous multiscale method (HMM). This allows to adopt discretization error estimates
for homogenization type problems found in the literature. Finally it can be linked to the
works by Barbarosie and Toader [59, 61], whose approach to elastic two-scale optimization
turns out to be equivalent to ours.

5.3.1. Periodic homogenization
The periodic cell problems considered at each macroscopic point and the assumed expansion
uδ(x) ≈ u∗(x)+δ ũ(x, y) of the two-scale model coincide with the setting treated in Section 3.5.
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We can therefore carry over the results to our local problems. In particular our defined corrector
problem (5.2) has the same structure as the cell problems in homogenization (3.23). The
only difference is that we prescribe an arbitrary macroscopic strain matrix εx[u∗] whereas
special base matrices were used in the homogenization context. From the correctors obtained
for those matrices the homogenized effective elasticity tensor could be derived entry wise,
cf. (3.27). The same type of expression is found in our approximation of the elastic energy
(5.3). Thus we can directly obtain entries of the effective elasticity tensors C∗(x) at each
macroscopic point x ∈ D by applying our two-scale approach to the synthetic strains εij ,
i, j = 1, 2. Conversely, when macroscopic strains εx[u∗] are expressed as linear combinations of
εij , the corresponding linear combination of (3.27) shows that C∗ εx[u∗] : εx[u∗] equals (5.3).
Consequently the bilinear form aM(D;u∗, ϑ∗) defined in (5.6) can equivalently be written in a
purely macroscopic fashion as

aM(D;u∗, ϑ∗) =
∫

D

C∗(x) ε[u∗] : ε[ϑ∗] dx . (5.10)

A further aspect is that our local problems are amenable to the theory of two-scale
convergence. Thus the error estimate of Theorem 3.17 holds and shows that our two-scale
approach indeed approximates the fully resolved solution.

5.3.2. Heterogeneous multiscale method

The heterogeneous multiscale method (HMM) as introduced in [163, 161] initially depicts
an abstract methodology for treating multiple scales or multiple levels of physics. It is
termed heterogeneous as the modeling and the employed methods may be entirely different.
The building blocks are a macroscopic and a microscopic scheme, which solve the respective
problems numerically in an autonomous fashion, and compression and reconstruction operators,
which pass information between the involved scales. The key advantage is that no adaption of
the macroscopic scheme to the microscopic problem is required. Instead whenever information
is missing on the macroscopic scale a microscopic cell problem is considered. That way the
computational complexity does not increase when δ is decreased and it is overall restricted
as these microscopic probes are only considered on a small set of points, e. g. in the course
of numerical quadrature. In our proposed two-scale model the macroscopic scheme is a
conventional finite element approach whereas on the microscale we employ the boundary
element method for the solution of periodic cell problems. The reconstruction operator assigns a
microscopic periodic correction ũ to a given macroscopic displacement u∗ and is precisely given
by R[u] in (5.1). Conversely the compression operator Q eliminates microscopic information,
s. t. Q[u∗ + δũ](x) = u∗(x). In our situation it is realized by integration on the local cell Y(x)
and utilizing that the integral mean of the periodic correction vanishes.

Homogenization problems similar to ours, but in the scalar context, are addressed in [162].
Analytical results are elaborated in [164], based on canonical properties of the underlying
elliptic equations, and in [2], where the analysis is extended to the fully discrete setting.
Among others, the following important error estimates are obtained.
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Theorem 5.4. Under appropriate regularity assumptions there holds

∥u∗ − u∗
h∥1,2,D ≤ c(h+ h2

δ)∥f∥0,2,D , (5.11)
∥u∗ − u∗

h∥0,2,D ≤ c(h2 + h2
δ)∥f∥0,2,D , (5.12)∑

E∈Mh

∥∇(uδ − u∗
h − δũh)∥0,2,E ≤ c(

√
δ + h+ hδ)∥f∥0,2,D . (5.13)

In particular, (5.11) [2, (3.18)] and (5.12) [2, (3.19)] measure the approximation error of
the homogenized solution w. r. t. the macroscopic and microscopic discretization h and hδ,
respectively. They correspond to [164, (1.11) and (1.12)], but were improved to not depend
on δ [5, Appendix A], and take into account the microscopic error. The approximation of
the fully resolved multiscale solution by the reconstructed numerical solution is measured
in (5.13) [2, (3.26)] and corresponds to [164, (1.16)], cf. also Theorem 3.17. The results are
extended to the setting of linearized elasticity in [3]. To this end, the approximation errors
w. r. t. the displacement u, the strain tensor ε[u], the stress tensor σ, and the homogenized
coefficients C∗

ijkl are estimated. In [313] the discretization of the heterogeneous multiscale
method is considered as well, but based on a direct finite element discretization of the two-scale
homogenized equation, which is essentially (5.6) in our context. Results include an a-priori
estimate, in line with (5.13), and an a posteriori estimate, which allows to steer an adaptive
algorithm. We retrace its derivation in the context of our problem in Appendix B.2.

5.3.3. Works by Barbarosie and Toader
In a series of papers Barbarosie and Toader developed a methodology for multiscale shape
optimization that turned out to be equivalent to our approach. At first, in [59, 60], only
periodic homogenization problems like our cell problems are considered. As described in
the preceding section it is straightforward to derive a macroscopic effective elasticity tensor
from the microscopic geometries. Some entries of this tensor are directly related to certain
characteristic elastic quantities, e. g. C∗1 : 1 yields the bulk modulus, cf. (3.8). The key
idea thus is to prescribe a strain A ∈ R2×2

sym and solve a cell problem for the linear plus
periodic function u = Ax + ũ with ũ ∈ H1

per(Y(x);R2). Upon insertion into the formula
for the homogenized tensor, cf. (3.26), the desired quantity is evaluated. At this point the
analogy to our approach is most evident. The linear part A corresponds to our macroscopic
strain tensor that enters the corrector problem (5.1). As mentioned in Remark 5.1 it can be
regarded as an inhomogeneous Dirichlet boundary condition, just as depicted in Figure 1.2.
As to the implementation, the authors set up a volume constrained optimization problem for
the shape of perforations on the unit torus, resembling the unit cell with periodic boundary
conditions. The microscopic geometry is described by a level set function that is evolved in
the course of optimization. Furthermore the topological derivative is employed to possibly
nucleate additional holes from time to time. The approach has been continuously advanced. A
recent publication [57] deals with multi-objective optimization for obtaining auxetic materials,
i. e. those with negative Poisson ratio.

In [61] the authors transfer their concept to a two-scale setting. They consider a macroscopic
domain with underlying microscopic periodic cells like we do. Correspondingly linear plus
periodic functions are assumed at each macroscopic point. By using basis strains as described
above effective elasticity tensors are obtained and used to solve the macroscopic elasticity
problem and evaluate the compliance objective. Optimization is done in analogy to the earlier
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periodic setting. The approach was further extended in [62], where not only the shape of the
perforations but also the spanning vectors for the local cells are subject to optimization. In
conclusion both methodologies for multiscale shape optimization coincide. The approach by
Barbarosie and Toader was developed in a bottom-up manner, starting from the periodic cell
problems, whereas ours was initiated from macroscopic observations and derived top-down.

5.4. Investigated microstructure models
In this section we present the investigated models which comprise microscopic shapes within
our two-scale framework as well as single-scale models with effective material properties used
for comparison. Due to the boundary element method, employed for solving the microscopic
cell problems, only the one dimensional boundary of the perforation needs to be discretized.
This allows for a convenient and flexible investigation of different microstructure types. Our
focus is on simple constructions with few design parameters. Still it should be possible to
find layouts that are capable of bearing typical loadings encountered in shape optimization
problems adequately. Figure 5.1 shows an overview of the constructions considered.

5.4.1. Ellipsoidal shaped perforations
As the starting point we choose an ellipsoidal perforation as a very simple shape with smooth
parametrization, see Figure 5.1(a). Unequal scaling of the semiaxes allows for a prevailing
direction in which loads are supported. An additional rotation enables the thereby generated
anisotropic effective material to align with the main loading direction. For the ease of notion
we assume the unit cell to be centered at the origin, i. e. DY = [− 1

2 ,
1
2 ]2. The boundary of the

perforation is then given by

γ[q](s) = Q(q3)
(
q1

1
2 cos(s)

q2
1
2 sin(s)

)
, s ∈ [0, 2π] ,

where Q denotes the usual matrix for a rotation by q3. To prevent the perforation from
collapsing and ensure numerical stability in the nearby parameter regime we require the scaling
parameters to be bounded from below by a small constant. In our numerical implementation
we choose c = 10−6. Likewise we require a bound from above to prevent the perforation from
outreaching the cell boundary. This means that the inequality constraints

0 < c ≤ qi ≤ 1− c , i ∈ {1, 2} , (5.14)

have to hold throughout the optimization process. On the contrary the rotation parameter
need not be bounded. The volume of the remaining area in the unit cell is given by

θ = 1− 1
4q1q2π , (5.15)

which enters the macroscopic overall volume equality constraint, cf. (5.7). Following Sec-
tion 5.2.2 it is straightforward to compute the shape derivatives of the cost functional w. r. t.
the design parameters.

Due to the underlying assumption of periodic microstructures, the current description does
not allow for alternating shapes of the perforations, as could be observed in the single-scale
setting, cf. Figure 1.1. However our modeling can easily be extended by dividing each unit cell
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q1q2

q3

(a) 1 ellipsoidal hole. (b) 2 × 2 ellipsoidal holes.

q1

q2

q3

q4
q5

q6

(c) Rods with fixed orientation.

q3

q2

q1

(d) Rotated orthogonal rods.

Figure 5.1.: Sketches of periodic microscopic geometries with indicated design parameters.

uniformly into subcells with individually parametrized perforations. See Figure 5.1(b) for a
sketch with four individual ellipsoidal holes. Every aspect discussed so far remains applicable,
only the reduced size of the individual sub cells has to be observed.

Remark 5.5. The presented geometric description implies several ambiguities. The rotation
parameter is only determined up to additional multiples of π. It is furthermore meaningless
if the scaling parameters coincide and a circle is represented. If the scaling parameters are
swapped and the rotation is adapted adequately by π

2 again the same shape is obtained.

Remark 5.6. The largest perforation possible is a circle whose radius attains the upper
bounds of (5.15). The resulting body is obviously not stiff due to the tiny fillets that remain

83



Chapter 5. A two-scale approach

between neighboring holes. However the volume of the remaining material still is about
1− π

4 ≈ 21%, which is lost for the other cells.

5.4.2. Rods with fixed orientation
Another kind of construction, which might reflect an intuitive approach for building a
supporting shape, makes use of rods with different orientations and thicknesses. In this first
model we fix the orientation and consider six rods that are aligned horizontally, vertically and
along both diagonal directions, see Figure 5.1(c). This results in four perforations that are
isosceles right triangles and are determined by the position of the vertices at the base. Within
DY = [0, 1]2 they are given by

abottom =
(
q5
√

2 + q1
q1

)
, bbottom =

(
1− (q6

√
2 + q1)

q1

)
,

aright =
(

1− q2
q6
√

2 + q2

)
, bright =

(
1− q2

1− (q5
√

2 + q2)

)
,

atop =
(

1− (q5
√

2 + q3)
1− q3

)
, btop =

(
q6
√

2 + q3
1− q3

)
,

aleft =
(

q4
1− (q6

√
2 + q4)

)
, bleft =

(
q4

q5
√

2 + q4

)
.

A piecewise parametrization for each triangle is obtained by considering convex combinations
of the vertices and from those it is straightforward to deduce the velocity fields entering the
shape derivative. The thickness parameters must be bounded from below in order to maintain
a small distance of the perforations to each other, i. e.

0 < c ≤ qi , i ∈ {1, . . . , 6} .

Individual upper bounds could be considered as well, but it is even more restrictive to ensure
that the triangular perforations do not collapse. To this end it is sufficient to require that the
length of the bases does not go to zero, which for the bottom triangle reads as

0 < c ≤ bbottom − abottom

and likewise for the others. Finally some combinations of the thickness parameters lead to
perforations that do not have a triangular shape anymore. In the practical implementation
this would require to insert another vertex and another segment into the polygonal arc. With
suitable constants for numerical stability, like c above, this transition cannot be realized in a
smooth manner and might introduce numerical inaccuracies that could impede an optimization
algorithm. We therefore introduce another set of constraints that preserves the triangular
shape. For the bottom triangle it is given by

0 < c ≤ abottom − q4, 0 < c ≤ q2 − bbottom (5.16)

and likewise for the others. The local volume is computed by the volumes of the triangles
subtracted from 1.
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Remark 5.7. In contrast to the ellipsoidal holes above the boundary of the perforations here
is not smooth anymore. While this is noncritical for the existence of a solution and also does
not hinder the boundary element method from producing a sound numerical approximation,
the velocity field for the variation of the boundary is non-smooth either and therefore violates
the prerequisites of lemmata 4.3 and 4.4. As a fully accurate remedy one could replace the
kinks at the vertices of the triangles by rounded corners with a very small diameter. For this
smoothed boundary the theory is valid and the shape derivative could be computed. The
original triangle would be recoverable by passing to the limit. It then seems obligatory to
resolve the rounded corners by several discretization points on the boundary in a numerical
scheme, especially since it is known that the first derivatives might exhibit a singularity at
reentrant corners. On the other hand such a singularity can never be fully resolved numerically
and tiny segments near the corner would balance its contribution to the boundary integral of
the shape derivative (5.9). Practically our implementation does not allow to distribute the
discretization points in the indicated non uniform way. Moreover we are necessitated to keep
the number of degrees of freedom low in order to save computation time. Therefore we will
actually not work with the smoothed boundary and presume that its influence is in the range
of the immanent discretization error.
Remark 5.8. Ambiguities are introduced by the individual thickness parameters at the top
and bottom and at the left and right hand side, respectively. It would alternatively be possible
to choose q′

1 = 1
2 (q1 + q3), q′

2 = 1
2 (q2 + q4), q′

3 = q5, and q′
4 = q6 as the only design parameters.

Remark 5.9. While it is possible to choose the maximal thickness for a diagonal rod and
leave the others at minimal thickness, this is not possible for the vertical or horizontal rods
due to the triangular shape constraint.

5.4.3. Rotating orthogonal rods
In this second model we only consider two rods in orthogonal directions with varying thickness
and let the whole periodic lattice rotate freely to keep the rods connected over the cell
boundary, see Figure 5.1(d). Due to periodicity, it is equivalent to describe a cell with a
rectangular shaped hole, see the red marking in Figure 5.1(d). Here the inner boundary has
less segments and therefore eases the practical implementation. For DY = [− 1

2 ,
1
2 ]2 the corners

of the unrotated rectangular hole are given by

a =
(− 1

2 + q2

− 1
2 + q1

)
, b =

( 1
2 − q2

− 1
2 + q1

)
, c =

(− 1
2 − q2
1
2 − q1

)
, d =

( 1
2 + q2
1
2 − q1

)
.

The rotation is realized by rotating the mandated affine displacement profile in the opposite
direction, i. e. by −q3. This changes the frame of references but our quantities of interest, as
e. g. the elastic energy, are invariant w. r. t. these changes. Again a piecewise parametrization
is obtained by considering convex combinations of the respective vertices and the velocity
fields are deduced. The explanations of Remark 5.7 apply again. Ambiguities in the design
parameters occur comparable to the ellipsoidal perforations, described in Remark 5.5. The
inequality constraints

0 < c ≤ qi ≤ 1
2 − c , i ∈ {1, 2} ,

prevent the perforations from collapsing and leaving the unit cell and the volume is given by
the volume of the rectangle subtracted from 1.
Remark 5.10. In contrast to the others, this model allows for a nearly void unit cell.
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5.5. Aspects of practical realization

In this section we describe all the technical details required to finally obtain a fully practical
algorithmic scheme of the developed two-scale shape optimization model.

5.5.1. Discrete spaces

In Section 5.2.3 the discrete realization of the two-scale model was described, including the
solving of the microscopic and macroscopic elasticity problems and the evaluations of the
two-scale cost functional and its derivative w. r. t. design parameters. It remains to fix the
concrete setup of the employed numerical approaches. Besides the two-scale displacement,
also the parameter function q, which is to be optimized, needs to be considered. So far q, and
thus the effective macroscopic elasticity tensor C∗(x), was assumed to be smoothly varying
and hence it would take different values at any points occurring in the course of numerical
quadrature. Such a situation is known from physical problems involving highly heterogeneous
media. Building upon Strang’s first lemma one can show that the error caused by sampling
the continuously varying coefficient only at discrete quadrature points can be controlled by
the anyway existing error caused by the approximation of the continuous solution, see [128,
Theorem 4.1.6, Exercise 4.18]. The upshot is that a quadrature scheme that would evaluate the
bilinear form exactly for constant coefficients is sufficient. However we are not only interested
in evaluating the effective elasticity tensor but also in its optimization. To this end it seems
counterintuitive that the number of degrees of freedom available for optimization is dictated
by a numerical parameter. Consequently the coefficient function q needs discretization as well,
and the most easy choice is to put up a piecewise constant approximation, i. e. qh ∈ V(0)

h (Mh).
In fact we implemented both versions but focused on the piecewise constant setting for
multiple reasons. Firstly it seemed more natural to us to discretize the parameter function as
well, secondly we observed checkerboard-like instabilities if we allowed varying coefficients,
and thirdly it enabled a comparison to the well-established literature. While we did not find
references for optimization in the smoothly varying setting, the piecewise constant choice is
classical, see e. g. [79], a textbook on the topic of material distribution problems. Likewise it is
a known fact that numerical schemes dealing with piecewise constant densities are also prone
to checkerboard instabilities, cf. Section 5.5.4. Common suggested remedies are perimeter
penalization, filtering, or the use of higher order elements. The first option is ineligible for
our work as we are aiming for a relaxed, unconstrained setting. Filtering, e. g. averaging of
neighboring coefficients, would ruin the spatial resolution of parameters determined by our,
possibly costly, optimization scheme. So we finally resorted to higher order finite elements on
the macroscale. The classical, most simple choice for second order partial differential equations
in weak formulation (3.29) is V(1)

h , the finite element space of piecewise linear functions.
Consequently we are using V(2)

h , the space of quadratic functions. On a triangle, a quadratic
polynomial is uniquely determined by six values, on each vertex and on each edge midpoint,
and spanned by Lagrangian basis functions written in terms of barycentric coordinates. On a
rectangle, nine values, on each vertex, on each edge midpoint, and in the center, are required
and basis functions can be set up as tensor products of one dimensional quadratic functions,
defined along each spanning direction of the rectangle and referred to as biquadratic, cf. [128,
Section 2.2].
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5.5.2. Implementation of the two-scale elasticity problem
Our algorithm builds upon the QuocMesh library1, developed by the research group of Prof.
Dr. Martin Rumpf at the Institute for Numerical Simulation of the University of Bonn, and
available under an open source license. Its main focus is on finite element based numerical
analysis of various problems motivated from physics and imaging in computer science. A
complete framework for the boundary element method applied to elasticity problems is included
as well. The library is written in the C++ programming language, follows the object oriented
paradigm, and makes extensive use of template programming to provide high performance
while retaining flexibility.

The central part of our code is an Evaluator class that provides an interface to every aspect
of the two-scale shape optimization scheme. It holds the macroscopic finite element matrix
and a Coupling class designated to communicate with the microscopic models. This class
hooks into the QuocMesh finite element operators and triggers the solution and evaluation of
microscopic cell problems needed during assembly of the macroscopic matrix. An overview of
the software design in given in Appendix C. As a special case the call of a microscale problem
can be superseded by the evaluation of a single-scale elastic energy, as e. g. in the context of
sequential lamination where the effective tensor is known. The energy and the gradient needed
for optimization are evaluated by computing (5.7) and (5.9) using numerical quadrature.

For the macroscale problem we use a uniform mesh with quadratic elements dividing the unit
cell. Each element is of size 2−l × 2−l for l ∈ N, referred to as level. Due to the uniformity, an
individual element need not be stored as an object with vertices, edges, and a transformation
to a reference element. Instead values at given quadrature points for the chosen type of basis
functions are always identical and are therefore cached upon the first instantiation of the used
finite element operator class. Indexing is done implicitly by assuming a lexicographic ordering,
which leads to sparse matrices with banded structure. For grid adaptive computations the
QuocMesh library supports refinement of individual cells by uniform subdivision into four
child elements. Additionally a maximal difference of one level between neighboring elements is
enforced. Organization of the actual elements is realized in a hierarchical quadtree structure.
Thereby indexing can be done via a fast hashing strategy, where the level and the position of
an element in the tree is used to obtain a unique identifier, see Figure 5.2 for an illustration. If

10|10|10 10|11|10
10|10|11 10|11|11

1|0|0 1|1|0

1|0|1 1|1|1

0|0|0

Figure 5.2.: Adaptive grid and illustration of the quadtree structure with binary identifiers of
the elements.

neighboring elements differ in their level, condition (3) of the finite element method described
1https://archive.ins.uni-bonn.de/numod.ins.uni-bonn.de/software/quocmesh/index.html
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in Section 3.6.1 is violated due to a generated hanging node. This is handled subsequently by
constraining its value to the value obtained on the opposing, non-refined element. Concerning
quadrature we use a tensor product Gaussian quadrature rule of order 5.

The microscopic models are realized in separate classes derived from a common interface
class and are easily exchangeable due to the template programming. They set up the polygonal
boundary based on passed design parameters, define periodic boundary conditions, and
prescribe the supplied affine displacement part. Evaluation of boundary element operators as
described in Section 3.6.2, assembly of the system matrix, and its solution are undertaken
by the QuocMesh boundary element module, see [259, Section 6.1, 6.2] for technical details.
Furthermore the constraints on the design parameters and the volume fraction are provided.
The number of discretization points on the boundary is chosen individually for each type of
microstructure. Details will be discussed in Section 6.1.3.

5.5.3. Implementation of the optimization algorithm
For optimization we rely on the open source software Ipopt2 [409, 410] for constrained
finite dimensional optimization, which has been successfully applied to PDE constrained
optimization problems previously, e. g. in [380]. For a summary of the involved theory and
methods see [182, Chapter 6]. A class implementing the abstract C++ interface of Ipopt was
created. It holds an Evaluator object and is therefore able to access every information required
by Ipopt while the concrete realization stays separated. Ipopt internally maintains a C-type
array of the design parameters q that are passed through the interface to the microscopic
models where the corresponding set is accessed using the number of the macroscopic cell.
Constraints on those parameters are implemented as inequality constraints. The global volume
condition leads to an additional equality constraint. A termination threshold of 10−4 and
user-scaling with an objective scaling factor typically about 100 was selected.

5.5.4. Implementation of the sequential lamination algorithm
The sequential lamination model is adduced in this work as an optimal microstructure for
comparison. As its optimal parameters and the resulting homogenized elasticity tensor can
be computed explicitly, it is unnecessary to apply a gradient based optimization algorithm.
Instead we reimplemented the alternating scheme proposed in [12]. Starting with some
initialization for the piecewise constant elasticity tensor field, the elasticity problem is solved
using the single-scale specialization of the finite element framework described above. From the
obtained strains stresses are computed using the current elasticity tensors. Optimal lamination
parameters are deduced using (4.20) and the effective tensors are updated using (4.21). In
order to exactly fulfill the volume constraint, the Lagrangian multiplier is adapted using
bisection, cf. Section 4.2.3. As initialization we use a constant, axis aligned, i. e. ϱ = 0, rank-2
sequential lamination microstructure with equal ratios, i. e. m = 0.5, everywhere. The density
parameter is chosen in agreement with the volume constraint. Convergence is detected if
the absolute difference of the cost functional in two subsequent iterations is less than 10−7.
The alternating scheme is guaranteed to converge as the elastic energy is decreased in every
iteration, see [12, p. 56]. However there are some difficulties that need to be heeded. The
piecewise constant approximation of the sequential lamination microstructure is also prone

2https://github.com/coin-or/Ipopt
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to checkerboard instabilities. This special setting was further investigated in [243]. In our
implementation the instabilities are eliminated by using higher order elements as discussed
before. The homogenized elasticity tensor, cf. (4.21), is degenerate, in the sense that a strain
with just off-diagonal entries would be mapped to zero. Additionally to (4.21) we therefore
set C̄∗

1212 to a positive regularization constant of magnitude 10−2 in accordance with [12].
Furthermore we bound the density θ from below by 10−3 to prevent the elasticity tensor from
vanishing and bound the ratio parameter m from below by 10−3 and from above by 1− 10−3

to rule out rank-1 sequential lamination, which results in a degenerate tensor as well.

5.6. Computational speedup
As a matter of course it is important to consider the computational time of the final op-
timization scheme. Here the bottle neck can be easily identified. As the set of degrees of
freedom for optimization is small, the optimization scheme itself does not required much
computational time. In particular Ipopt was designed with large optimization problems in
mind and our small instances do not pose a challenge. It is however costly to evaluate the
cost functional, which entails the solution of the two-scale problem. In this regard Ipopt
tries to behave as economical as possible. To support this effort a general recommendation is
that gradient information should be as precise as possible. Apart from this the termination
tolerances can be tuned to decrease the number of iterations of the optimization algorithm.
Hence each solution of the two-scale problem should be available as fast as possible. Here the
macroscopic part is in fact a small, well behaved finite element problem, which can be solved
without problems due to the sparsity, even by explicit methods. However during assembly of
the finite element stiffness matrix lots of microscale problems have to be tackled. Owing to
the boundary element method, which only requires a discretization on the boundary of our
simple geometries, those are of small size as well. However the resulting matrices are densely
populated and this makes up for almost the entire overall computational time. We therefore
focus on this issue in the following.

5.6.1. Exploitation of matrix structure
To reduce the number of microscale problems it is essential to observe the special structure
of the stiffness matrix. As pointed out in Remark 3.22 there are inherent symmetries and
those still hold for the two-scale setting. Therefore only about half of the entries need to
be effectively computed. The rest can be copied or a specialized matrix implementation be
used that looks up symmetric entries at the same location. The sparsity structure makes
iterative solvers seem attractive as an application of the matrix only requires few operations
and the complexity grows linearly with the problem size. However the instances appearing in
this work are still processible by explicit solvers as well. We use the CHOLMOD solver [115] of
the SuiteSparse3 sparse matrix algorithm library, implementing a Cholesky decomposition
exploiting sparsity and designed to reduce fill-in by permutation. To further support this
solver a special TripletMatrix class is used where entries are stored in triplets comprising
the row and column index, and the corresponding value. Using this format the data in memory
can directly be accessed by CHOLMOD without any copying.

3https://people.engr.tamu.edu/davis/suitesparse.html
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5.6.2. Exploitation of linearity
Up to now it seems that the microscopic elasticity problem (5.2) has to be solved for every
occurring macroscopic strain and at each quadrature point when a two-scale functional like
(5.3) is to be computed. However the macroscopic strain at a quadrature points enters the
microscale problem as right hand side, cf. (5.2). For linearized elasticity the solution depends
linearly on the data, i. e. for a weighted sum of right hand sides, an equally weighted sum of
their corresponding solutions can be considered. Due to linearity, this sum is a solution, and
since the solution is always unique, it is also the right one. This observation opens up the
possibility for a radical algorithmic shortcut. It is sufficient to compute periodic correction
profiles for a basis of macroscopic strains only, e. g.

ε11 =
(

1 0
0 0

)
, ε22 =

(
0 0
0 1

)
, ε12 =

(
0 1

21
2 0

)
.

Thus for each specific realization of a microstructure a basis of correction profiles {ũ11, ũ22, ũ12}
can be computed which can then be linearly combined. This drastically reduces computational
time especially when numerous evaluations are needed for a fixed set of design parameters,
which is the case here as we need a high order quadrature scheme for the macroscopic
biquadratic basis functions and furthermore need to subsequently evaluate the energy and
the gradient. This observation is strongly related to the periodic homogenization context. As
remarked in Section 5.3.1, exactly those basis functions are considered for computation of
the entries of the effective homogenized tensor. This implies that we can directly compute an
effective tensor for our microscale models if we combine our base correction profiles in the
two-scale elastic energy (5.3). For the two-scale elasticity problem it would be sufficient to
compute and store the local effective tensors, and this was in fact done by Barbarosie and
Toader, cf. Section 5.3.3. Since we need the displacement for evaluating the gradient as well
we however decided to store the three periodic solutions for each cell within the Coupling
class. Due to the boundary element method, these vectors are however short.

5.6.3. Parallelization
In view of nowadays developments in computing hardware, where more and more individual
processing cores are integrated instead of trying to accelerate a single unit, a huge speedup
can be achieved by implementing parallel execution of the most time consuming routines.
Ideally one aims for a decrease in computational time which scales with the number of
processors used. In practice such an ideal scaling cannot be expected due to overhead for
setting up and synchronizing the individual processes. A general recommendation for most
effective parallelization is to split the data equally and let instances of the same algorithm
work on each chunk in parallel. In this regard we are in an ideal situation. The most costly
part of our scheme is the solution procedure for the microscopic problems. Many of those
need to be handled for a single two-scale problem, but they are completely independent
of each other. We can therefore proceed as follows. Upon any request by the optimization
algorithm its parameters are compared to the currently saved parameters and every cell where
a difference above numerical tolerance occurs is marked for recomputation of the basis elasticity
solutions. Typically almost all cells are selected after a completed optimization iteration.
Those recomputations are then processed in parallel. The maximal reasonable number of
processes is thus given by the number of marked cells. Within this range we can expect a
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significant speedup. Concerning the implementation we use shared memory parallelization
following the OpenMP4 specification.

5.6.4. Microstructure look-up table
A totally different idea was motivated by the observation that in the final results several cells
comprised identical microstructures. In this situation it would be more efficient to compute the
microscopic base solutions only once and let all cells with the same microstructure reference
them. Certainly it is not possible to provide such data for all possible configurations. Therefore
the parameter space needs to be discretized. To be precise, assume without loss of generality
that normalized parameters qi ∈ [0, 1], i = 1, . . . , l are used. The range of each parameter is
now divided into L intervals of equal width. That way, for any given value qi a containing
interval with lower and upper end points q

i
and qi, respectively, can be found. If from each

interval one fixed parameter value, e. g. the midpoint, would be taken for the computation of
the corresponding elasticity problem, its solution and the cost functional would effectively
become step functions of the continuously varying parameters. In particular they would not
be smooth anymore and a gradient based optimization scheme would be crippled. Instead we
have to resort to an interpolation of several elasticity solutions. Therefore we consider the
unique convex combination qi = λiqi

+ (1− λi)qi with λi = (qi − qi)/(qi − qi
). Likewise an

elasticity solution can be interpolated from elasticity solutions for the interval endpoints using
the same weights. This idea can be generalized to higher dimensions via a tensor product
approach. An arbitrary function f : Rl → Rd whose values at the corners of the l-dimensional
cube are known can then be evaluated for any parameter vector q by f(q) =

∑
q̃ λ

q̃f(q̃),
where q̃ is a coefficient vector with q̃i ∈ {qi

, qi}, λq̃ is meant as a product over i with factors
λiqi

, or (1 − λi)qi, respectively, and the sum is taken over all possible assignments of q̃.
Elasticity solutions for arbitrary parameters can then be computed from elasticity solutions
for parameter sets at the corners of the l-dimensional cube. Due to the linear combination,
gradients can likewise be computed as weighted sums of gradients for parameter sets at the
corners. In contrast to all other speedup measures this approach effectively alters the numerical
scheme and a new source of errors due to discretization of the parameter space needs to be
observed. Certainly the concrete choice of the number of intervals L plays a crucial role both
for the overall accuracy and the speedup gained.

5.6.5. Notes on the microscopic problem
The solving process of the microscale problem itself could not be accelerated significantly.
Shared memory parallelization was employed for the explicit computation of boundary
integrals of basis functions on segments of the polygonal arc in the course of matrix assembly,
cf. Section 3.6.2. In contrast the used QR decomposition based on Householder reflections is
not amenable to parallel execution and no satisfactory scaling w. r. t. the number of processors
could be achieved. A promising approach for speeding up the treatment of boundary element
based discretized problems are hierarchical matrices, where matrices are split into blocks
based on clustering algorithms and low-rank approximations of the boundary integrals are
computed for each block. In particular the AHMED library [64] was successfully employed in
[183] for a single-scale shape optimization problem. This application showed that the overall

4https://www.openmp.org
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computational time could be improved for a large system and an iterative solver. The full
potential however is only unleashed if preconditioning based on a low-rank LU decomposition
is used, as demonstrated in [259] for a problem in material science. To this end the involved
matrices need to have full rank and this is not the case in our situation due to the periodic
identification of some of the boundary nodes.
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CHAPTER 6

Numerical experiments for the two-scale model

Results of numerical shape optimization employing the two-scale model as developed
before are presented in this section. In this regard we will first consider synthetic examples

that allow to specify the elastic state and, in view of the sequential lamination model, an
optimal microstructure a priori. This will enable us to analyze capabilities of the implemented
microscopic geometries, but also reveal challenges of the applied optimization scheme. A
classical shape optimization problem from the literature will then be examined to get an
impression of the two-scale optimization and to compare the different microstructure models
among each other. It will also be used to assess numerical aspects of the macroscopic and the
microscopic discretization and for an analysis of the asymptotic behavior for increasingly finely
resolved shapes. Finally the effects of the applied speed-up measures will be investigated.

6.1. Results for prescribed constant strains
For the assessment of the two-scale material model it is desirable to consider scenarios where
an optimal shape and the associated displacement field are known a priori and can be consulted
for comparison. Setting up such a synthetic benchmark is however not trivial. Firstly the
solution to an elasticity problem for fixed domain and boundary conditions can be given
explicitly only in very few special cases. Secondly the domain here is not fixed but subject to
optimization, which in turn influences the elasticity solution. Therefore both have to be given
and need to be in correspondence.

6.1.1. Setting of the problem
The simplest strategy is to aim for a uniform microstructure within the whole domain,
resulting in homogeneous effective elastic properties on the macroscale. In view of the
sequential lamination construction the stress field should therefore be homogeneous as well.
Both together imply a homogeneous strain field, which can be obtained from an affine
displacement Ax + b for A ∈ R2×2 and b ∈ R2. Such a solution arises from an elasticity
problem with affine-periodic boundary conditions. To be precise, we choose A ∈ R2×2

sym, as only
the symmetric part will appear as the strain tensor, and set u(x) = Ax+ ũ(x) with ũ ∈ H1

per,0.
Rearranging equation (3.14) yields

a(Y; ũ, ϑ) = −a(Y;A, ϑ) ∀ϑ ∈ H1
per(Y;R2) ,

where A is to be understood as a linear mapping, Y is the unit cell, now used as the macroscopic
domain, and no body forces are prescribed, i. e. f ≡ 0. Thereby we arrive at an elasticity
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problem with usual periodic boundary conditions for ũ and a modified right hand side.
Existence and uniqueness is ensured by Theorem 3.12 as discussed before in Section 3.4 and
Section 5.1.3. We act on the assumption that ũ ≡ 0 will be the periodic solution, and thus
ε[u] = A and σ = C∗A. We however do not fix this solution a priori as the optimization
scheme should in principle be able to choose nonhomogeneous macroscopic material properties,
resulting in nontrivial periodic parts.

We remark that this problem is practically identical to the cell problems we consider on
the microscale for the two-scale approach. However we face perforated domains there, leading
to nontrivial periodic parts, which ultimately let the homogenized material differ from its
constituents. Furthermore we only solve the cell problems for basis displacement gradients
and use the boundary element method. Here on the macroscale we are using a finite element
approach. Hence we need to restrict the matrices according to the periodically identified
degrees of freedom as described in Section 3.6.1. The system is then solved using a conjugate
gradient method with projection to prevent a drifting of the solution away from zero integral
mean. To be precise we calculate the deviations M (i,i)1 · ui for i ∈ {1, 2} in every tenth
iteration and apply a projection Pui = ui −

(
M (i,i)1 · ui

)
1 if the deviation exceeds a certain

threshold. The compliance cost functional is used for optimization as detailed in Section 5.2.2
and in accordance to Remark 4.12 its value will be negative here.

6.1.2. Numerical results
We now turn to the experiments. In reference frame, i. e. aligned with the coordinate axes, we
consider five strain tensors to be prescribed, ranging from hydrostatic over uniaxial to biaxial,
opposing loads, given by

A(1) =
(

0.5 0
0 0.5

)
, A(2) =

(
0.6 0
0 0.4

)
,

A(3) =
(

1 0
0 0

)
, A(4) =

(
0.6 0
0 −0.4

)
,

A(5) =
(

0.5 0
0 −0.5

)
.

The entries are chosen s. t. |λ(1)(A)|+ |λ(2)(A)| = 1, where λ(1) and λ(2) are the eigenvalues
of A, sorted according to their absolute value. Each strain tensor is furthermore rotated to
two additional frames by π

8 and π
4 , producing strains

A(i,j) = Q(j π
8 )A(i)Q⊤(j π

8 ), i ∈ {1, 2, 3, 4, 5}, j ∈ {0, 1, 2} .

Note that A(1,0) = A(1,1) = A(1,2) as the identity mapping does not change for any change of
basis. The lamination parameter functions (4.20) applied to the strain tensors consequentially
take the values

m[A(i,j)] ∈ {0, 0.4, 0.5} , ϱ[A(i,j)] ∈ {0, π
8 ,

π
4 } .

These will be compared to the corresponding parameters of the ultimately obtained macroscopic
stress tensors σ after optimization to analyze the alignment of principle strains and stresses.
Specifically we will consider the discrepancies

∆m := |m[ε[u]]−m[σ]| , ∆ϱ := |ϱ[ε[u]]− ϱ[σ]| ,
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6.1. Results for prescribed constant strains

where ε[u] is the finally obtained strain. It should be identical to A, and we checked this to
ensure there was no drift. As the rotation parameter is ambiguous we will always compute
the difference to the closest equivalent value.

The numerical experiments to be described in the following are performed on a macroscopic
grid of level 0, i. e. with just one element. In case of homogeneous effective properties there
should not be any difference when using a grid with more elements, and we will consider an
example in this regard later on. The global volume constraint is set to 50%. Unless otherwise
noted all computations indeed arrive at the predicted affine solution with vanishing periodic
part. The effective macroscopic elasticity tensor field is then homogeneous and the local
density matches the globally prescribed volume fraction.

Sequential lamination. We start with the sequential lamination model, which will also serve
as a benchmark due to its established optimality. In Table 6.1 we show for each prescribed
strain the ratio parameter m and inclination ϱ of the finally obtained stress field and their
discrepancies to the corresponding parameters of the strain. Furthermore we list the value of
the cost functional. The results agree with the findings of Pedersen [323] that an orthotropic

m[σ] ∆m ϱ[σ]/π ∆ϱ/π JM

A(1,0) 0.49997 0.00003 −0.51166 0.48834 −0.50000
A(2,0) 0.29991 0.10009 −0.99897 0.00103 −0.54000
A(2,1) 0.30000 0.10000 −0.87577 0.00077 −0.54000
A(2,2) 0.30000 0.10000 −0.74977 0.00023 −0.54000
A(3,0) <0.00001 <0.00001 −0.99981 0.00019 −1.33333
A(3,1) <0.00001 <0.00001 −0.87515 0.00015 −1.33333
A(3,2) <0.00001 <0.00001 −0.75008 0.00008 −1.33333
A(4,0) 0.00322 0.39678 −1.00000 <0.00001 −0.48000
A(4,1) 0.00191 0.39809 −0.87513 0.00013 −0.48000
A(4,2) 0.00334 0.39666 −0.75009 0.00009 −0.48000
A(5,0) 0.50010 0.00010 −0.99979 0.00021 −0.40000
A(5,1) 0.50000 <0.00001 −0.87515 0.00015 −0.40000
A(5,2) 0.50002 0.00002 −0.75020 0.01002 −0.40000

Table 6.1.: Results of the sequential lamination model for prescribed strains: ratio and incli-
nation parameters of the finally obtained stress, discrepancies to corresponding
parameters of the strain, and compliance costs.

material with a certain condition on its material parameters, which is fulfilled here, must be
aligned with the principal strains in order to be optimal. Furthermore principal strains and
stresses coincide. The discrepancy for A(1,0) is due to the afore mentioned arbitrary choice of
a basis. As per the results of Section 4.2.3 the sequential lamination construction generates an
effective elasticity tensor that represents an orthotropic material in the respectively rotated
coordinate frame. Hence the cost functional is actually independent of the additional rotation,
which can also be seen from the numerical results. The comparison of the ratio parameter
shows that unequally strong principal strains lead to unequal principal stresses with an
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Chapter 6. Numerical experiments for the two-scale model

amplified disparity, in particular when the eigenvalues have opposite signs.

Remark 6.1 (Explicit example). For these simple problems formulae (4.21) allow an explicit
computation of the elasticity tensor, the resultant stress tensor, and the cost functional. Let us
consider the hydrostatic setting as an example. Assume that the stress tensor corresponding to
ε[u] = A(1) is likewise given by σ = A(1). Then optimal parameters for a sequential lamination
construction are ϱ[σ] = 0, m[σ] = 0.5, and, owing to the volume constraint, θ = 0.5. With
λ = µ = 1 the corresponding elasticity tensor has entries C∗

1111 = C∗
2222 = 0.9 and C∗

1122 = 0.1
and so C∗ε[u] = σ indeed holds. Finally the negative elastic energy −ε[u] : σ = −0.5 equals
the numerical results.

The elasticity tensor for the rigid constituent has entries C1111 = C2222 = 3, C1122 = 1, and
C1212 = 1, see Section 3.2. In order to achieve the same stress tensor as above the strain has
to be chosen as ε[u] = 1

81, and the elastic energy then evaluates to 1
8 . This allows to compute

the Hashin-Shtrikman bound (4.16) and it turns out to be 0.5. As mentioned in Remark 4.16
there is a relation to the bounds on the elastic energy for strain based problems and in fact for
this example − 1

2 ≤ −σ : ε[u] is obtained. Altogether this verifies the optimal result obtained
with the sequential lamination model for hydrostatic strains.

Ellipsoidal perforations. Next we consider ellipsoidal perforations as the microstructure
in the first genuine two-scale model. As before we show the ratio of the eigenvalues and
orientation of the eigenvectors for the obtained stresses along with their discrepancies to the
corresponding values of the prescribed stains, and the value of the cost functional in Table 6.2.
Additionally we state the ratio of the scaling parameters of the ellipsoidal perforation, i. e.

m[q1, q2] := q2
q1 + q2

and its rotation parameter q3, which could be different from the orientation of the eigenvectors.
The finally obtained shapes are shown in Figure 6.1. For A(1,0) we see nearly identical
scaling parameters after optimization, hence the shape created is close to a circle. The
hydrostatic strain is transformed to a corresponding stress and there is nearly no rotation. As
before a numerical artifact stemming from the calculation of the under-determined system
of eigenvectors is responsible for the discrepancy between ϱ[σ] and q3 here. For the other
outcomes of the optimization it is important to realize that only the perforation is able to
rotate, but not the full unit cell. Therefore, in the periodic assemblage, the inclusions are only
aligned whenever q3 is a multiple of π

2 . For q3 = π
4 an alignment along the diagonal can be

achieved, but it has a larger spacing and every other row of perforations appears shifted. It is
therefore no surprise that the observed elastic energies for a fixed strain and varying rotation
do not coincide. In fact the ellipsoidal shapes align with horizontal or vertical, or diagonal
principal strains, but for q3 = π

8 they neither coincide with the strain eigenvectors nor with
the stress eigenvectors. For A(2,0) the perforation is a nontrivial ellipse, but it is not fully
elongated as for all other strains with a dominant eigenvalue. The energies corresponding to
the different rotations are close to each other for A(2), but become worse for larger rotations
both for A(3) and A(4). Finally for A(5) a circle is obtained for all rotations. Here it is striking
how much worse the energy gets when the principal strains rotate out of the cells spanning
axes. Comparing to the results of the sequential lamination microstructure we see that the
ellipsoidal perforations are competitive for A(1) and A(2) where the elastic energy differs
only by a magnitude of 10−2. It is worse for the other strains where only the axes aligned
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m[σ] ∆m ϱ[σ]/π ∆ϱ/π m[q1, q2] q3/π JM

A(1,0) 0.50000 <0.00001 −0.50182 0.00182 0.50000 −0.00324 −0.48441
A(2,0) 0.32381 0.07619 <0.00001 <0.00001 0.44522 <0.00001 −0.51892
A(2,1) 0.32084 0.07916 −0.86129 0.01371 0.38899 0.19087 −0.52602
A(2,2) 0.34270 0.05730 −0.75000 <0.00001 0.38899 −0.25000 −0.52768
A(3,0) 0.02810 0.02810 <0.00001 <0.00001 0.38898 <0.00001 −1.16868
A(3,1) 0.19612 0.19612 −0.93077 0.05577 0.38898 0.13972 −0.95251
A(3,2) 0.27390 0.27390 −0.75000 <0.00001 0.38898 0.25000 −0.86913
A(4,0) 0.06909 0.33091 −1.00000 <0.00001 0.38900 <0.00001 −0.42792
A(4,1) 0.01054 0.38946 −0.92550 0.05050 0.38899 0.18594 −0.27068
A(4,2) 0.11990 0.51990 −0.75000 <0.00001 0.38898 −0.25000 −0.21293
A(5,0) 0.50000 <0.00001 <0.00001 <0.00001 0.50000 −0.00323 −0.34795
A(5,1) 0.50000 <0.00001 −0.95616 0.08116 0.50000 −0.00336 −0.22315
A(5,2) 0.50000 <0.00001 −0.75000 <0.00001 0.50000 −0.00324 −0.09834

Table 6.2.: Results of the two-scale model with one ellipsoidal perforation for prescribed
strains: ratio of eigenvalues and inclination of eigenvector of the finally obtained
stress with discrepancies to corresponding parameters of the strain, ratio of scaling
parameters, rotation parameter, and cost functional.

Figure 6.1.: Results for prescribed strains with one ellipsoidal perforation per cell: strains A(i)

from left to right, rotations from top to bottom.

settings yield close results, up to differences of magnitude 10−1. These observations seem
plausible as the ellipsoidal shape can be viewed as an approximation of an optimal Vigdergauz
microstructure, cf. Section 4.2.4. This construction is however not possible for A(3), A(4), and
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Chapter 6. Numerical experiments for the two-scale model

A(5).

Figure 6.2.: Results for prescribed strains with 2× 2 ellipsoidal perforations per cell: strains
A(i) from left to right, rotations from top to bottom.

An obvious enrichment of the microstructure model is achieved by allowing for more than
one perforation in each cell. We therefore display the outcomes for 2×2 ellipsoidal perforations
in Figure 6.2. In the trivial case all four perforations can take identical shapes and thereby
reproduce the same microstructure as with a single perforation due to the periodic setup. As
it turns out this situation occurs for every strain except for the hydrostatic, for A(5,2), which
is a shearing, cf. Figure 1.3(b), and, to lesser extend, A(2,0). Only the former two achieve
a significant improvement in the cost functional, cf. Table 6.4. For A(2,0) the difference is
small, but the attained cost is indeed better than for a uniform design. The difference for all
other scenarios is smaller by orders of magnitude and has to be attributed to the numerical
approximation. The nontrivial results however exhibit a remarkable microstructure. Here
the geometric flexibility of the ellipsoidal holes to create anisotropic elongations and align
themselves, is not used. Instead merely volume is distributed at the microscopic scale by
growing and shrinking circles in an alternating fashion. Through periodic extension this leads
to an approximation of an infinitesimal criss-crossing pattern, which seems to be well suited
to withstand stresses that do not possess a dominant direction.

Rods with fixed orientation. We turn to microstructures built from rods next. In Figure 6.3
we display the results with optimized thicknesses of six rods at fixed positions. For a hydrostatic
strain two orthogonal rods of maximal possible thickness each are formed. It can be seen,
cf. Table 6.4, that the thereby obtained square holes perform worse than circular perforations
obtained before. The microstructure is also unsuitable for alignments of π

8 as no rods in this
direction are provided. Accordingly the cost functional values are worse for A(2,1) and A(3,1),
and about the same for A(4,1) and A(5,1), where the determinant is negative. Unfortunately a
horizontal alignment for scenarios A(2,0), A(3,0), and A(4,0), which exhibit a dominant direction,
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6.1. Results for prescribed constant strains

Figure 6.3.: Results for prescribed strains with rods of fixed orientation: strains A(i) from left
to right, rotations from top to bottom.

is hindered by the geometric constraint that triangular shaped holes have to be maintained,
cf. (5.16). Interestingly enough additional diagonal rods are selected as long as the determinant
is non negative, and vertical rods as soon as it becomes negative. The situation improves
drastically for strains aligned with the diagonal rods. For scenarios with a dominant direction
the expected rods receive more material, but at the same time a certain ratio to the other
diagonal rods, corresponding to the ratio of the eigenvalues, is maintained. In those cases the
ellipsoidal perforations are outperformed, especially when the determinant is negative. For
the axes aligned A(5,0) a good result is obtained, too. Indeed it corresponds to the rotated
shape for A(5,2) and the cost functional values are identical within the approximation error.

Rotating orthogonal rods. Finally we consider a pair of orthogonal rods that are allowed to
rotate freely. In contrast to the ellipsoidal perforations this is realized by rotating the whole
unit cell, cf. Section 5.4.3. In Figure 6.4 we show the obtained results. Here a representative
of the local microstructure is drawn inside a macroscopic, unrotated cell as before, but it is
important to keep in mind that the microscopic lattice is actually rotated along. In Table 6.3
we list important quantities of the optimized shapes as we did for the ellipsoidal perforations
before. The most noticeable difference is that, up to some tolerance, cost functional values
are close to each other for all rotations of each prescribed strain. This is clearly due to the
rotating lattice, and comparable to the sequential lamination model. For the hydrostatic
strain, the axes aligned A(5,0), and the diagonally aligned A(5,2), square holes are obtained
as with the fixed rods before, and indeed the costs are comparable, cf. Table 6.4. All other
scenarios lead to holes with varying aspect ratios, corresponding to the changing ratios of
the eigenvalues. These are moreover rotated along with the prescribed strain. The fixed rods
cannot compete for a horizontally aligned stress due to the mentioned geometric constraint.
They can neither compete for diagonally aligned stresses with unequal eigenvalues because in
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m[σ] ∆m ϱ[σ]/π ∆ϱ/π m[q1, q2] q3/π JM

A(1,0) 0.50000 <0.00001 −0.50016 0.00016 0.50000 0.24781 −0.47499
A(2,0) 0.21632 0.18368 1.00000 <0.00001 0.38981 <0.00001 −0.52284
A(2,1) 0.21632 0.18368 −0.87500 <0.00001 0.38981 0.12500 −0.52284
A(2,2) 0.21632 0.18368 −0.75000 <0.00001 0.38981 0.25000 −0.52284
A(3,0) 0.00147 0.00147 <0.00001 <0.00001 0.33360 <0.00001 −1.33138
A(3,1) 0.00147 0.00147 −0.87500 <0.00001 0.33360 0.12500 −1.33138
A(3,2) 0.00147 0.00147 −0.75000 <0.00001 0.33360 0.25000 −1.33138
A(4,0) −0.00500 0.39500 <0.00001 <0.00001 0.33433 <0.00001 −0.47921
A(4,1) −0.00500 0.39500 −0.87500 <0.00001 0.33433 0.12500 −0.47921
A(4,2) −0.00500 0.39500 −0.75000 <0.00001 0.33433 0.25000 −0.47921
A(5,0) −0.50000 <0.00001 −1.00000 <0.00001 0.50000 −0.50000 −0.36615
A(5,1) −0.50000 <0.00001 −0.87500 <0.00001 0.50000 −0.37500 −0.36615
A(5,2) −0.50000 <0.00001 −0.75000 <0.00001 0.50000 0.25000 −0.36615

Table 6.3.: Results of the two-scale model with rotating orthogonal rods for prescribed strains:
ratio of eigenvalues and inclination of eigenvector of the finally obtained stress with
discrepancies to corresponding parameters of the strain, ratio of scaling parameters,
rotation parameter, and cost functional.

Figure 6.4.: Results for prescribed strains with rotating orthogonal rods: strains A(i) from left
to right, rotations from top to bottom.

this case the periodic extension would result in diagonal rods with notches. Thereby all other
two-scale models are outperformed by the rotating orthogonal rods microstructure. Moreover
we observe that the costs are remarkably close to optimal values given by the sequential
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lamination model. The discrepancies are largest for A(1) and A(5), which are characterized by
rank-2 sequential lamination with equal ratios, i. e. m = 0.5, as an optimal microstructure.
It seems that the gain of the additional scales employed in the derivation of the sequential
lamination microstructure is most prominent for these scenarios.

sequential
lamination

ellipsoidal
1× 1

ellipsoidal
2× 2

rods
fixed

rods
rotating

A(1,0) −0.50000 −0.48441 −0.49946 −0.47315 −0.47499
A(2,0) −0.54000 −0.51892 −0.52237 −0.49555 −0.52284
A(2,1) −0.54000 −0.52602 −0.52649 −0.49216 −0.52284
A(2,2) −0.54000 −0.52768 −0.52815 −0.49531 −0.52233
A(3,0) −1.33333 −1.16868 −1.16882 −0.84567 −1.33138
A(3,1) −1.33333 −0.95251 −0.95544 −0.85535 −1.33138
A(3,2) −1.33333 −0.86913 −0.87232 −0.97533 −1.33138
A(4,0) −0.48000 −0.42792 −0.42840 −0.38452 −0.47921
A(4,1) −0.48000 −0.27068 −0.27318 −0.27838 −0.47921
A(4,2) −0.48000 −0.21293 −0.21568 −0.40230 −0.47921
A(5,0) −0.40000 −0.34795 −0.34764 −0.36549 −0.36615
A(5,1) −0.40000 −0.22315 −0.22455 −0.22095 −0.36615
A(5,2) −0.40000 −0.09834 −0.16052 −0.36511 −0.36615

Table 6.4.: Comparison of cost functional values for all investigated models.

Comparison to Barbarosie and Toader. As an amendment to the investigations in the context
of prescribed strains we revisit the work by Barbarosie and Toader [60] as it includes numerical
examples that can be compared to our results. Firstly they consider the maximization of the
bulk modules, which is equivalent to maximizing the elastic energy for a prescribed strain
A = −1, cf. [60, Section 6.2]. Up to scaling it is the same problem that we considered with
A(1) above. The target volume is set to 30% and different elasticity coefficients, namely λ = 3
and µ = 1, are used. Both influence the concrete values of the cost functional. Secondly they
investigate the rigidity for shear response, cf. [60, Section 6.5], which corresponds to our A(5,2)

scenario up to scaling. Here a final volume of 57.29% was achieved, which we prescribe as
the volume constraint. In Table 6.5 we list the finally obtained cost functional values of our
optimization runs. We can see that our microstructures made from rods basically agree with
the values obtained by Barbarosie and Toader. Neither of them is able to bridge the gap
towards the results of the sequential lamination model.

6.1.3. Numerical issues
The considered synthetic shape optimization scenarios follow a most simplistic setup but are
already rich enough to hint at emerging numerical challenges. Most prominent here are local
minima. In fact the considered compliance cost functional is convex in its arguments and their
originating spaces are convex as well. However, due to constraints that couple multiple design
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Barbarosie,
Toader

sequential
lamination

ellipsoidal
1× 1

ellipsoidal
2× 2

rods
fixed

rods
rotating

compression 1.23300 1.26316 0.95323 0.97299 1.23351 1.23746
shearing 0.47700 0.51783 0.18112 0.36432 0.47321 0.47515

Table 6.5.: Comparison of cost functional values for all investigated models with results by
Barbarosie and Toader.

parameters, like the global volume constraint, the effective defining set becomes non-convex
and the optimization scheme might not be able to find a unique, globally optimal result. First
of all nonunique parameter sets arise from the geometrical setup, cf. remarks 5.5 and 5.8, but
these just lead to identical instances of the same shape. In addition the periodic modeling
induces further ambiguities. This can nicely be seen from the results for shearing using four
ellipsoidal perforations, cf. Figure 6.2 lower right. Exactly the same cost functional value
would be obtained for the mirrored version because it generates the same pattern by periodic
extension. This symmetry also hints at another issue. If the perforations are initialized as
exact circles it is not clear which of those should grow and which should shrink. In fact the
optimization algorithm terminates in such a situation without any progress. We avoid this
peculiarity by applying a very small random perturbation to the initial values. However there
are also instances of local minima that are critical and cannot be easily avoided. In particular
the rotating rods microstructure sometimes seems to get stuck at a non-optimal inclination,
when it has already attained a significant volume.

Another aspect is the discretization, especially of the microscopic elasticity problem. In
Table 6.6 we list final objective values for the hydrostatic strain scenario obtained for different
microstructure models with varying number of discretization points on the boundaries. At

points
perforation JM volume

16 −0.52692 0.48725
32 −0.49280 0.49679
64 −0.48441 0.49920

(a)

points
edges JM

6 −0.49498
12 −0.49280
24 −0.49217

(b)

points
edges JM

6 −0.49085
12 −0.47499
24 −0.46823

(c)

Table 6.6.: Comparison of cost functional values for a hydrostatic strain and varying number
of discretization points on (a) the boundary of the ellipsoidal perforation within
a square with 12 discretization points on each edge, (b) the edges of the square
cell containing an ellipsoidal perforation with 32 discretization points, and (c) the
edges of the inner rectangular perforation and the outer square.

first we consider ellipsoidal perforations. In Table 6.6(a) we use 12 discretization points for
each edge of the cell boundary and vary the number of discretization points of the boundary
of the perforation. As can be seen the influence on the cost functional is tremendous. In fact
the value obtained for 16 points is obviously wrong as it would be better than for the optimal
sequential lamination microstructure. The influence of discretization on this type of geometry
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is especially severe as a shape with a smooth curved boundary is approximated by a polygonal
arc. The volume of the shape is however computed based on the formula for an exact ellipse,
and this enters the equality constraint. Thereby also an error in the size of the void region,
which should be 0.5 here, is introduced and the outcome of optimization is naturally falsified,
cf. Table 6.6(a). We next use 32 points on the boundary of the perforation and vary the
number of points on the outer boundary. The influence is much less severe, and the effective
difference is lower by more than one order of magnitude, cf. Table 6.6(b). Finally we consider
the rotating rods microstructure model and vary the number of discretization points on edges,
which influences both the outer and inner boundary. Again a significant influence can be
observed, although smaller than for the ellipsoidal holes, cf. Table 6.6(c). Here it is important
that the shape is reproduced exactly by the polygonal arc. On the other hand the non-smooth
boundary induces further difficulties as discussed in Remark 5.7. In [182, sections 8.1, 8.2] a
further analysis of errors in the elasticity solution and depending quantities can be found. To
consider meaningful examples in our numerical studies we will accept the depicted deficiencies
and aim for a good compromise between accuracy and computational complexity.

Issues with the macroscopic resolution were ruled out in the previous investigations by
only considering one macroscopic cell. As noted we expect homogeneous strain, stress, and
elasticity tensor fields also for higher resolutions. In this regard we show an example in
Figure 6.5, where a macroscopic grid of level 3, i. e. 8× 8 cells and ellipsoidal perforations
as the microstructure model were used for the prescribed strain A(1). A completely random
initialization was used but the optimization algorithm nevertheless finds the homogeneous
solution and its associated cost functional value is within machine precision of the value
obtained before for macroscopic level 0. Of course this is just one example, and there are
indeed instances where the homogeneous solution is not recovered. This especially occurs
when the microstructure in some cells has adopted an extremely anisotropic shape or very
low volume. From this observation we draw the conclusion that shapes in the initialization
should be as neutral as possible.

Figure 6.5.: Random initialization and optimized result for prescribed hydrostatic strains and
ellipsoidal perforations as the microstructure model on a macroscopic grid of level
3.
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6.2. Results for a classical shape optimization problem
So far we focused on the behavior of the different microstructure models under optimization
for a prescribed synthetic macroscopic homogeneous strain field. In this section we turn
our attention to a classical, less trivial shape optimization scenario. We again investigate
the different microscopic models and compare them to each other. Since the macroscopic
resolution determines the number of degrees of freedom for optimization we compute series
for increasing macroscopic grid levels to investigate the asymptotic behavior of the optimized
shapes and compliance functional values. As to the microscopic discretization, which was
already studied in the preceding section, we check its influence in this more complex situation.
Finally we asses the effectiveness of the employed speed-up measures.

As described in Section 5.5.2 we are restricted to the unit cell as the computational domain.
Therefore we consider the following example, which we call a carrier plate. As the working
domain the unit cell is used, i. e. D = [0, 1]2. The lower boundary ΓD = [0, 1]×{0} is assumed
to be fixated, i. e. homogeneous Dirichlet boundary conditions are prescribed. On the upper
boundary ΓN = [0, 1]× {1} shearing forces are applied in terms of inhomogeneous Neumann
boundary conditions, i. e. g ≡ (1, 0) on ΓN. The left and right boundaries are allowed to evolve
freely in terms of homogeneous Neumann boundary conditions. The overall volume fraction is
constrained to 67%. No volume forces are considered, i. e. f ≡ 0.

6.2.1. Numerical results
In figures 6.6–6.9 we display the results of optimization for the two-scale shape optimization
model using different microscopic models on grids of increasing macroscopic resolution. As
before we visualize each two-scale result in a single image by drawing the macroscopic domain
subdivided into its square cells and a representative of the underlying microstructure in
each individual cell. One has to keep in mind that the actual microstructure is obtained by
repeating the representative shape on a periodic lattice, which was assumed to reside on a
much smaller length scale. On the macroscale it only becomes apparent by means of a volume
density and an effective elasticity tensor. The volume distribution is visualized in addition
below each two-scale image using a grayscale plot.

We start with the microstructure made from a single ellipsoidal perforation, see Figure 6.6.
Here we expect analogies to the single-scale case shown in Figure 1.1. In fact the two-scale
model has been motivated by the single-scale results, which show a problem specific volume
distribution and in addition a local adaptation of the considered perforations. Hence it is
expected to be able to capture both phenomena on distinct scales. Although the macroscopic
resolution of 45× 45 ellipsoidal perforations for the single-scale setting is not exactly reflected
in the two-scale setting, strong similarities can indeed be observed in the overall distribution of
available volume. The hereby identifiable macroscopic shapes are not superimposable because
the effective elastic properties of the arbitrary fine periodic lattices have a different influence
locally than the macroscopic perforations. As already discussed in Remark 5.6 a fundamental
cell can never be void using this microstructure. Therefore no white regions are present in
the volume plots, but only light gray ones. With respect to the microstructure we can clearly
identify an alignment of anisotropically shaped perforations with the main stress directions
within the two macroscopic trusses rising from the lower corners. This has also been observed
for the single-scale setting and is now successfully captured in the two-scale model as well.
Remark 6.2 (Symmetry of optimal shapes). The obtained shapes, in terms of the optimized
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Figure 6.6.: Two-scale results for the carrier plate scenario and one ellipsoidal perforation
as the microstructure model on macroscopic grids of level 1, 3, 5, and 7. In the
upper row a representative of the microstructure is drawn in each macroscopic
cell. In the lower row the effective macroscopic volume distribution is shown, with
white corresponding to void and black corresponding to solid matter.

parameters qopt
h , are symmetric about the central vertical axis. In the context of linearized

elasticity and for a scenario like the one considered, this is indeed expected, with the following
reasoning. Assume that the parameter field, and hereby the elasticity tensor field C∗[qopt

h ],
is not symmetric and consider a reflection of the entire problem about the central vertical
axis. Thereby the horizontal orientation is reversed, which amounts to a change of the frame
of reference. In particular, the cost functional value does not change. Let Ď denote the
mirrored working domain and ǧ the corresponding boundary value. Now consider another
elasticity problem in the mirrored configuration with an inverted loading, i. e. −ǧ. Due to
linearity of the PDE, −ǔh is the unique solution. It enters the bilinear form aM(q̌ opt

h ;−ǔh,−ǔh)
quadratically and thereby the cost functional value again does not change, cf. the equivalent
expressions in (4.12). Furthermore, for the scenario considered, there holds Ď = D and
−ǧ = g. Thus the newly obtained solution in the mirrored configuration solves the original
problem as well. Now divide the working domain into halves along the central vertical axes, i. e.
D = Dleft ∪Dright and consider the cost functional for each of them separately. There holds
JM[qopt

h , uh]
∣∣
Dleft = JM[q̌ opt

h ,−ǔh]
∣∣
Dright and JM[qopt

h , uh]
∣∣
Dright = JM[q̌ opt

h ,−ǔh]
∣∣
Dleft . Choose

the half with the lower value in the original setting and combine it with the corresponding half
in the mirrored setting. Thereby a symmetric tensor field and corresponding displacements
are obtained, which satisfy the elasticity PDE and yield a cost functional value which is
less or equal to the initial value. Hence we expect a symmetric result, especially when the
initialization is already symmetric.

A deficiency that can be observed is that the oscillating pattern seen in the upper middle
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region for the single-scale case has not been reproduced. Seemingly a criss-crossing pattern
is to be realized here, but such a construction is ruled out in the two-scale setting with just
a single perforation. We therefore consider the microstructure made from 2 × 2 ellipsoidal
perforations, see Figure 6.7. This model led to an oscillating pattern in the preceding section,

Figure 6.7.: Two-scale results for the carrier plate scenario and 2× 2 ellipsoidal perforations
as the microstructure model on macroscopic grids of level 1, 3, 5, and 7. In the
upper row a representative of the microstructure is drawn in each macroscopic
cell. In the lower row the effective macroscopic volume distribution is shown, with
white corresponding to void and black corresponding to solid matter.

cf. Figure 6.2, and indeed this pattern is also developed here for the carrier plate scenario as
expected. In the other regions the same microstructure as before is reproduced by copying
the shape of the former single perforation. The volume distributions are nearly identical to
the previous ones.

We now turn to microstructures made from rods. In Figure 6.8 the results for six rods at
fixed positions are shown. The model is perfectly suited for the criss-crossing pattern observed
previously and indeed it is captured in the upper middle region. Furthermore it is present in
the lower middle region where the amount of material increases from bottom to top. Diagonal
rods with a single dominating direction can be found in the upper left and right region, at
least for the coarse and medium fine macroscopic grids. The thick trusses rising from the
lower corners are made from solid material here and do not show any specific microstructure.
This is because the main trusses are not inclined in such a way that any of the offered rods
would be beneficial. Consequently the macroscopic shapes differ from the ones obtained for
the ellipsoidal perforations. The main trusses are thinner and the upper supporting structure
seems flatter. For the fine macroscopic grids the auxiliary trusses on the left and right hand
side are however thicker than in the results before.

Finally we consider rotating orthogonal rods as the microstructure model, which allow
both for a criss-crossing pattern and for alignment with arbitrary directions. The results are
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Figure 6.8.: Two-scale results for the carrier plate scenario and rods with fixed orientation
as the microstructure model on macroscopic grids of level 1, 3, 5, and 7. In the
upper row a representative of the microstructure is drawn in each macroscopic
cell. In the lower row the effective macroscopic volume distribution is shown, with
white corresponding to void and black corresponding to solid matter.

shown in Figure 6.9. As expected the criss-crossing pattern is captured and a microstructure
with an aligned dominating axis is produced within the thick trusses. Solid material is only
found in the lower corners and the center region where the trusses meet. Beyond that the
microstructure seems to vary smoothly within the upper region below the loaded boundary
and in the vicinity of the lower thick trusses. Sharp interfaces are only formed on the lower left
and right edge of the upper supporting structure, which besides are much more curved than
in the previous results. For the finest grid a break in symmetry can be observed in the upper
middle region and tiny trusses are built instead of the criss-crossing pattern. This might be a
hint of non-optimal local minima that are attained due to inaccuracies in the approximated
gradient. The influence of single parameters on the cost functional decreases for increasingly
fine cells and as a consequence non-optimal optimization steps might get accepted.

A comparison of the optimized shapes for the different microstructure models suggests
itself. We will see in the next section that the performance effectively increases in the order of
the presentation of the results here. As pointed out before we cannot aim for optimal shapes
because of our geometrically simple constructions, but it is meaningful to investigate the gap
towards optimality. Therefore we also compute optimized results for the carrier plate scenario
with the sequential lamination model, see Figure 6.10. Here only the macroscopic volume
distribution is shown, which corresponds to the parameter θ. The other parameters are known
from their relation to the stresses, cf. (4.20). As can been seen the volume distribution shares
some characteristic features with the distribution seen previously for the rotating orthogonal
rods microstructure model. The upper supporting structure with its lower curved boundary
is nearly identical. The lower trusses with intermediate density in the middle section are
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Figure 6.9.: Two-scale results for the carrier plate scenario and rotating orthogonal rods as
the microstructure model on macroscopic grids of level 1, 3, 5, and 7. In the upper
row a representative of the microstructure is drawn in each macroscopic cell. In
the lower row the effective macroscopic volume distribution is shown, with white
corresponding to void and black corresponding to solid matter.

Figure 6.10.: Results for the carrier plate scenario and the sequential lamination model
on macroscopic grids of level 1, 3, 5, and 7. The effective macroscopic volume
distribution θ is shown, with white corresponding to void and black corresponding
to solid matter.

also present for both models. There are however distinctive interfaces of the lower trusses’
boundaries for the sequential lamination model, which, in contrast, were smeared out for the
rotating rods model. Furthermore we observed, in spite of the applied stabilization by higher
order finite elements, a light checkerboard pattern in a small region around the center. Such
oscillations were not found in the results for the two-scale model.
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6.2.2. Asymptotic analysis of macroscopic discretization
In this section we do a quantitative comparison of the shape optimization results obtained
for the carrier plate scenario and different microstructure models on macroscopic grids of
different resolutions. The two-scale optimizations can be run on macroscopic grids of level 7
with acceptable computational time. For the sequential lamination model, which does not
require the solution of microscopic cell problems, we use grids up to level 10. In Table 6.7 we
list the finally obtained compliance values. As can been seen, from grid level 2 the different

level ellipsoidal
1× 1

ellipsoidal
2× 2

rods
fixed

rods
rotating

sequential
lamination

1 4.18550 3.61328 4.16885 3.76358 2.78695
2 2.92714 2.76865 2.70341 2.51117 2.25219
3 2.48219 2.44227 2.41991 2.16348 2.04026
4 2.27240 2.25742 2.15789 1.99244 1.93584
5 2.17419 2.16656 2.08473 1.91864 1.88600
6 2.12508 2.12468 1.99909 1.88294 1.86230
7 2.09675 2.09445 1.96623 1.86587 1.85091
8 1.84537
9 1.84264

10 1.84130

Table 6.7.: Comparison of cost functional values for the carrier plate scenario and all investi-
gated models on macroscopic grids of different resolution.

microstructure models rank in the order they were presented in the preceding section. For
coarse and medium fine macroscopic grids the gain by advancing to the next level is typically
larger than the improvement realized by changing the model. For fine grids the improvement
due to discretization gradually decreases, but an innate gap between the different models
remains. To support this claim we analyze the asymptotic behavior of the computed cost
functional values. To this end we assume that the compliance values JM[qopt

h , uh] of optimized
shapes will converge to an asymptotic value JM

0 if the macroscopic mesh is successively refined,
i. e. h→ 0. We also assume a decay behavior, expressed as

JM − JM
0 = c hp . (6.1)

The constants JM
0 , c, and p are unknown, but can be determined numerically using least

squares fitting to our recorded results. In Table 6.8 the obtained parameters are listed. In
Figure 6.11 the decay c hp is plotted along with the discrepancy JM − JM

0 for the different
microstructure models and varying macroscopic resolution. As shown the fitting of the assumed
decay behavior to the recorded results is very good. For most models a linear decay, i. e.
p ≈ 1, was found, which meets with our expectations due to the applied numerical approach.
The most interesting results however are the obtained asymptotic cost functional values JM

0 ,
which can be regarded as approximations of the true, grid converged compliance values. They
show that the ranking of the microstructure models and the gaps demarcating the different
models remain. On the other hand it is noteworthy that the rotating rods microstructure has
a relative discrepancy towards the optimal sequential lamination construction of just about
0.56 % and as such is a close approximation.
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model JM
0 c p error

ellipsoidal 1× 1 2.07901 3.71 1.07 0.00001
ellipsoidal 2× 2 2.06611 2.53 0.92 0.00004

rods fixed 1.89318 2.23 0.72 0.00122
rods rotating 1.85024 3.00 1.09 0.00001

sequential lamination 1.83992 1.76 1.05 <0.00001

Table 6.8.: Results of least squares fitting of the results obtained from computed series using
the different microstructure models: obtained parameters for (6.1) and least squares
error.

10−3

10−2

10−1

100

2 3 4 5 6 7 8 9 10

JM
−

JM 0

Level l

1x1 ellipsoidal holes
2x2 ellipsoidal holes

fixed rods
rotating rods

sequential lamination

Figure 6.11.: Plot of the error in the left hand side of (6.1), using points, and the right hand
side of (6.1), using lines, for the different microstructure models and varying
macroscopic resolution using the parameters from Table 6.8.

Remark 6.3 (Objective scaling). The results presented here differ from previously published
results in [137]. We now use an objective scaling for the optimizer Ipopt, that had not yet been
implemented at that time. As a guideline the Ipopt manual suggests to scale the optimization
problem so that all nonzero first partial derivatives are of magnitude 10−1 – 10. Indeed we
observed for our two-scale optimization problems that a large scaling caused the optimization
algorithm to not converge anymore for problems on coarse grids. On the other hand a small
scaling led to premature termination with apparently non-converged results on fine grids. This
is due to the scaling by the macroscopic cell size when evaluating the cost functional (5.7)
or the gradient (5.9) respectively. For the objective functional the values on the macroscopic
cells add up to a cost functional value that is of the same order of magnitude for different
macroscopic grid levels as expected. For the gradient however, a separate set of parameters
is given on each macroscopic cell and the total number of degrees of freedom increases with
macroscopic refinement. Consequently the sensitivity w. r. t. a single parameter decreases. It is
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6.2. Results for a classical shape optimization problem

divided by 4 for each macroscopic refinement to be precise. Therefore increasing the objective
scaling by a factor of 4 for each macroscopic refinement has proven useful.

6.2.3. Influence of microscopic discretization

To investigate the influence of the number of discretization points used in the microscopic cell
problems we focus on microstructures made from singe ellipsoidal perforations and rotating
orthogonal rods, as we did before in the context of prescribed strains. We take the carrier
plate scenario on a macroscopic grid of level 3 as an example and consider several variants
of discretizations. First of all we have to remark that by an optical inspection almost no
differences in the outcomes of optimization can be identified. We therefore do not display the
individual results but focus on a quantitative analysis. The cost functional values as well as
the number of iterations the optimization algorithm needed for convergence are summarized in
Table 6.9. As before we notice the effect of the discretization on the cost functional to be more

points
edges

points
perforation iterations JM

3 12 30 2.33570
4 16 33 2.42458
8 16 39 2.47202

16 16 40 2.48719
8 32 39 2.54873

16 64 47 2.59463

(a)

points
edges iterations JM

4 47 2.13301
8 37 2.15811

12 90 2.16304
16 118 2.16701
32 134 2.16569
64 198 2.17078

(b)

Table 6.9.: Comparison of cost functional values and numbers of iterations needed for optimiza-
tion for the carrier plate scenario and (a) ellipsoidal perforation as microstructure
with varying number of discretization points on the outer edges and the inner
perforation, and (b) rotating rods as microstructure with varying number of
discretization points on the outer and inner edges.

drastic for the ellipsoidal perforations. In particular the discretization of the perforation has a
strong influence. Again, this can be attributed to the polygonal discretization of a smooth
curve. Common to both models is that the objective functional increases for increased numbers
of discretization points. The number of iterations increases as well, but here the differences
are larger for the rotating rods microstructure. From these observations we draw the following
conclusions. Meaningful results are already achievable for low numbers of discretization points.
This is indeed plausible as the cost functional and gradient are computed on the same grid.
Moreover the convergence of the optimizer is faster then, especially for the rotating rods
microstructure. Both conclusions justify the use of a rather coarse discretization to save
computational time. The cost functional however is underrated then, which must be kept in
mind when comparing different models.
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6.3. Inspection of speed-up measures
Finally we take a look at the employed speed-up measures. Regarding the different approaches
explained in Section 5.6 the benefits of exploiting the linear dependence on the microscopic
cell problem solutions and the a priori known macroscopic system matrix structure are
indisputable. They represent equivalent formulations of the original scheme and obviously
require less computational time. The effects of parallelization, on the contrary, are hard to
estimate beforehand. Finally the introduction of a look-up table for microscopic solutions
adds another layer of approximation to the overall scheme and hence needs to be evaluated.

6.3.1. Parallelization
Measuring the parallel performance of an algorithm receives much attention in the field of high
performance computing (HPC), see e. g. [199]. For a computer program relying primarily on
computing cycles of the central processing unit (CPU) it is common to consider a representative
problem of fixed, typical size. The workload is distributed among several processes, each of
which is assigned to an individual and independent central processing unit. Finally the time
until termination is measured for a varying number of such processes. Modern computing
hardware makes use of various sophisticated methods to speed up the execution, like individual
overloading within the thermal and electric budget, out of order execution, and shared access
to distributed cache memory. All of these might interfere with an unbiased comparison of the
runtimes for varying number of processes and we therefore try to disable such technology
where possible. Our experiments are done on a computing server with 40 individual processing
units. We choose the optimization run for the carrier plate scenario with rotating rods as the
microstructure model on a macroscopic grid of level 4, i. e. 256 cells on which microscopic
solutions need to be computed. For each number of processes we perform three individual
runs, check the difference in execution time to be within reasonable limits, and take the mean
runtime. As absolute values highly depend on the used hardware, we list normalized values
in Table 6.10, where the mean runtime of the program with one process corresponds to a
normalized time of 100. To assess the parallel performance we consider two benchmark values.
First the speedup when doubling the number of processes, i. e.

Sspeedup := tn
t2n

,

where tn is the runtime when using n processes. In an idealized setting its best value would
be 2, when doubling the number of processes would reduce the runtime by half. The second
benchmark is more common in HPC, namely the strong scaling efficiency

Sscaling := t1
n tn

100% .

Here an ideal value of 100% would correspond to a perfect parallel executing without any
communication or synchronization overhead and no serial parts in the algorithm. As can be
seen, the speedup is near 2 only when moving from 1 process to 2 processes. But it does
not decrease much until 16 processes are used. The continued decrease of the strong scaling
benchmark also confirms a non-ideal parallelization, which however is a usual observation for
a realistic algorithm. Strong scaling values for up to and including 16 processes are in fact
quite good, especially when keeping in mind that only the most computationally intensive
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processes normalized
runtime

Sspeedup Sscaling

1 100.00
2 50.54 1.98 98.93
4 27.21 1.86 91.87
8 14.62 1.86 85.47

16 8.40 1.74 74.38
32 5.36 1.57 58.31

Table 6.10.: Normalized runtime, speedup and strong scaling benchmark values for the op-
timization of the carrier plate scenario with the rotating rods microstructure
model on a macroscopic grid of level 4 for different numbers of processes used in
parallel.

part was parallelized, using rather simple techniques. The bottom line is that it is reasonable
to run the algorithm with the investigated number of processes.

6.3.2. Microstructure look-up table
As described in Section 5.6.4 a look-up table can be employed to reuse previously computed
microscopic solutions corresponding to certain parameter sets. In order to evaluate the
objective functional and its gradient for arbitrary choices of the parameters a multi-linear
interpolation has to be used, which adds another type of approximation to the overall scheme.
It is in particular controlled by the number of intervals L each parameter range is divided into.
We investigate one example to get an idea of the effects of this approach. The optimization of
the carrier plate scenario on a macroscopic grid of level 3 with one ellipsoidal perforation or
rotating rods as the microstructure model is considered again. It is run using the ordinary
algorithm without a look-up table, using a look-up table built up during the optimization
from scratch, and using a previously saved look-up table. Here we choose L = 100. For each
setup we perform three individual runs, check the difference in execution time to be within
reasonable limits, take the mean runtime, and normalize it to the mean runtime of the setup
without a look-up table. In Table 6.11 we list the results. Most importantly the obtained cost

ellipsoidal perforation rotating rods
time iter. comp. JM time iter. comp. JM

no table 100.00 23 1536 2.48460 100.00 58 8796 2.16348
new table 537.31 30 8311 2.48559 131.93 58 12362 2.16412

loaded table 13.22 30 0 2.48559 2.45 58 0 2.16346

Table 6.11.: Comparison of the normalized runtimes, the number of iterations until termination,
the number of computations of microscopic cell solutions, and the final objective
functional value for the carrier plate scenario on a macroscopic grid of level 3 and
one ellipsoidal perforation or rotating rods as the microstructure model, without
a look-up table, with a look-up table built up from scratch, and with a loaded
precomputed look-up table.
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functional values are close to each other for all the setups and both microstructure models,
respectively. The qualitative outcomes do not show any obvious differences to the results
displayed before and are therefore not shown here. The course of the optimization scheme
however changes and thereby influences the runtime.

For the ellipsoidal perforations the convergence without a look-up table is fast, only 23
iterations are needed and Ipopt reports just 24 evaluations of the objective functional. For
every evaluation every cell problem is solved, leading to a total number of 24 × 23 = 1536
computations as reported. When using a look-up table that is empty at the beginning of the
algorithm the number of considered cell problems increases drastically. This is plausible as
for every interpolation 23 neighboring parameter sets and their corresponding cell solutions
are taken into account. Furthermore Ipopt needs significantly more iterations and objective
function evaluations, leading to an increased number of different required parameter sets
in the course of the algorithm. Consequently the runtime increases, in fact proportional to
the number of cell problems solved by more than a factor of 5. We remark that the number
of considered cell problems is still far away from the theoretical maximum of 1013 possible
combinations in the discretized parameter space. The full potential of the look-up table
approach becomes apparent when a previously saved table is loaded at the beginning of the
optimization scheme. Not a single solution of a cell problem needs to be recomputed and the
overall runtime drops to about 13% of the runtime without a look-up table. It seems strange
that the final objective values are not exactly identical for the two runs with an initially empty
and a loaded look-up table. This has to be attributed to technical specifics of the compiled
software code. There might be a difference in computer arithmetic precision if a calculation
is done with a cell solution that has just been recomputed in comparison to a solution that
had been written to a file in a specified binary format. These tiny differences give rise to a
divergent behavior of the optimization algorithm, starting at some point, e. g. in the course of
line search, and leading to a slight difference in the ultimate results.

For the rotating rods microstructure the situation is different. The optimization algorithm
without a look-up table requires more than twice the number of iterations than for the
ellipsoidal perforation microstructure and Ipopt reports about six times more evaluations
of the objective functional. Thereby also the number of computed cell problems is increased.
Since the computational time for the two microstructure models is not comparable in any case
we normalize the runtimes individually. When using the look-up table approach the number
of cell problems increases only mildly. Seemingly several parameter sets and their solutions
can already be reused during the same run. By chance the number of iterations remains the
same, but the actually required number of evaluations changes. When the saved look-up table
is loaded in advance, again no cell solution needs to be recomputed. Here the runtime drops
to about 2% and the gain is even more significant due to the slower convergence and higher
number of evaluations for the run without a look-up table.

We conclude that the employed look-up table approach with linear interpolation provides
an outstanding speed-up for the two-scale shape optimization scheme. Although the course
of optimization changes and typically more iterations are required the overall runtime is
decreased by one or even two orders of magnitude in the investigated examples. The saved
tables of these optimization runs require only 33 and 78 megabytes of disk space, respectively.
For macroscopic domains with higher refinement levels the look-up tables will certainly
grow up to a certain extend as further, different microscopic cell geometries will emerge.
The important point however is that their sizes, and thereby the computational times, are
actually not coupled to the number of cells. We therefore expect an even higher gain for larger
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problem sizes and cases where several optimization runs need to be performed for the same
microstructure model. On the other hand the size of a look-up table depends on the number
of parameters required for the microstructure model and the approach therefore suffers from
the curse of dimensionality. For the fixed rods model, e. g., 26 = 64 neighboring parameter
sets would have to be considered for each evaluation, whereas only 8 were required in the
examples above. It is thus foreseeable that the overall scheme will become computationally
infeasible for more complex microscopic geometries.

6.4. Conclusion
First of all, the two-scale shape optimization method devised and realized in this work per-
formed very well and produced the anticipated results. Optimizations for varying prescribed
macroscopic strains displayed the distinctive capabilities of the different investigated mi-
crostructure models. Here the ability for an arbitrary rotation of the complete microscopic
cell turned out to be crucial. The reason is that a shape with symmetry axes and a dominant
elongation leads to an orthotropic effective elasticity tensor, whose frame of reference should be
aligned with the principal strain and stress directions in order to be optimal. Furthermore the
ability to create a criss-crossing pattern was favorable, especially for strains with eigenvalues
of equal magnitude. Exactly those scenarios also revealed the most significant discrepancies to
optimal shapes, represented by the sequential lamination model. As expected the geometrically
simple constructions did not lead to optimal results, but the approximation by the rotating
rods microstructure was remarkable in cases where the ratio parameter of the sequential
lamination model was not too close to 0.5. The carrier plate scenario was investigated as
a macroscopically more complex scenario and in analogy to the single-scale results that
motivated this work. Indeed the two-scale results showed a characteristic distribution of
material on the macroscale and microstructures within regions of intermediate density. The
macroscopic shapes varied with the employed microscopic model due to the different effective
material properties. Mostly, sharp interfaces, separating regions with significant difference
in the effective density, but also smooth transitions were observed. Within certain regions
patterns known from the single-scale setting were indeed captured in the microscopic part of
the two-scale approach, provided they could be realized by the actual microstructure model.

The impact of discretization of the microscopic model was investigated and turned out
to be significant for the synthetic scenarios with prescribed macroscopic strain. While the
qualitative outcomes were comparable, the cost functional values clearly differed. This was in
particular observed for the smooth perforations due to the non-exact geometric discretization.
For the carrier plate scenario the impact was in general less critical. Regarding the macroscopic
discretization a series of computations was done for all microscopic models and increasingly
refined macroscopic grids. By an extrapolation, ideal, grid converged functional values were
obtained, which still showed distinct gaps between the different models and towards optimal
shapes. In this connection a predominant linear error decay rate in the cost functional was
confirmed. Local minima were an issue for the employed optimization scheme. However they
could often be attributed to an ambiguous choice of design parameters and did not deteriorate
the final results. More critical instances were observed as well. For their avoidance an unbiased
initialization turned out as best practice.

Several speed-up measures were directly incorporated in the implementation. The effect
of parallelization on the contrary had to be evaluated. It turned out that for numbers of
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processes typically used on modern workstations the parallel efficiency was acceptable. An
optimal scaling behavior is never realistic and in particular for our algorithm only the most
time consuming part was parallelized. Finally look-up tables proved to be a powerful tool
to overcome the computational complexity caused by the microscopic cell problems. They
were applicable as long as the dimension of the design parameter space was low, and became
otherwise infeasible due to the curse of dimensionality. The number of intervals in the range
of the individual parameters could be chosen in a way that results remained comparable to
those obtained without the look-up table approximation.
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CHAPTER 7

Stochastic Shape Optimization

Uncertainty is a prevailing issue in the simulation of natural scientific phenomena. In
this chapter we broaden our perspective by allowing for stochastically varying loadings

in the context of the two-scale shape optimization model. This takes into account that for
shape optimization problems met in reality a deterministic loading is usually not a realistic
assumption. Instead, when e. g. thinking about atmospheric exposure, surface loadings may
change abruptly and typically vary continually over time. These variations can be modeled
by probability distributions or practically given by frequency distributions resulting from
measurements and quantization. In terms of shape optimization this implies that for a fixed
shape each realization of the stochastic load determines a particular elasticity solution and a
corresponding value of the cost functional. Effectively this turns the objective into a random
variable and shape optimization then amounts to finding the best candidate from a set of
random variables for admissible shapes. Borrowing concepts from finite dimensional two-stage
stochastic programming we will establish suitable ranking functions for those random variables
reflecting both a risk neutral and a risk averse perspective. While in the former different
realizations of the cost will get weighted by their probability, in the later special statistical
parameters will give precedence to realizations regarded as risky for the structural setup.
Finally we will introduce the concept of stochastic dominance, which provides means for
ordering shapes according to their performance and allows for an optimization based on
comparison to a reference design.

The presented ideas and concepts for treating shape optimization problems in the stochastic
context as well as the considered numerical examples trace back to the work by Conti et al.
in [136, 139]. For this thesis it is worth to study the performance of the two-scale model in
matters of the considered nonlinear, more complex objective functionals.

7.1. Preliminaries
Let (Ω,Σ,P) be a probability space with finitely many events ωi ∈ Ω, i = 1, . . . , S, and a
discrete probability distribution function with P(ωi) = πi. For shape optimization a surface
loading g turns into a random variable, indicated by writing g(ω), where ω can be any of the
ωi above. Leaving volume forces aside as before, the realizations of the random variable g(ωi)
will be referred to as loading scenarios, which define different vector-valued normal stresses
prescribed on ΓN . Consequently the elastic displacement becomes a random variable as well.
Its realizations u[ωi] are given by the unique solutions of the elasticity problem (3.10) for the
corresponding realizations of the load g(ωi). Finally also the cost functional takes the role of
a random variable, with realizations J[ωi,O;u] obtained by evaluating the objective for given
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u[ωi]. Within this setting the ultimate goal is to find a shape Oopt that is admissible, denoted
by Oopt ∈ Uad, and performs best when taking into account all possible loadings g(ωi).

The concepts introduced here originate from two-stage stochastic programming, see [221]
for an in-depth discussion. To illustrate the connection we will sketch a generic problem
formulation in this context and relate the problem of shape optimization to it afterwards.
Therefore consider the stochastic optimization problem

min
{
c⊤x+ q⊤y : Tx+Wy = z(ω), x ∈ X, y ∈ Y

}
, (7.1)

for fixed cost vectors c and q, linear operators T and W , a vector-valued random variable z,
and polyhedra X and Y in Euclidean spaces. Furthermore take into account the information
constraint

decide x 7→ observe z(ω) 7→ decide y = y(x, z(ω)) .
This constraint constitutes a two-stage scheme of alternating decision and observation. Here
the first-stage decision x must not anticipate future outcomes of the random variable z(ω).
The second-stage decision y = y(x, z(ω)), often referred to as a recourse action, is given by
the optimal solution to the second-stage problem, a minimization problem remaining after x
and z(ω) have been fixed. This is clarified by rewriting (7.1) into

min
x

{
c⊤x+ min

y
{q⊤y : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X

}
,

where the second-stage decision corresponds to the inner minimization problem. Due to the
dependence on the random outcome z(ω), finding an optimal x from the set X amounts to a
minimization problem over a family of random variables.

Coming back to shape optimization, O now takes the role of x and the elastic displacement
replaces y. The surface load g(ω) represents the random data z and the cost functional
J[ω,O;u] is the cost to be minimized, i. e. c⊤x in the example above. First, and independently
of g(ω), a shape O has to be found. Then, after commencing of g(ωi), the elasticity solution
is determined by virtue of (3.10), which corresponds to the second-stage problem, and
finally J[ωi,O;u] is evaluated. The second-stage problem here can in fact be expressed as a
minimization problem as well, because the displacement u can equivalently be characterized
as a minimizer of the elastic energy, cf. Corollary 3.11. Altogether we obtain the minimization
problem

min

J[ω,O;u] : u[ω,O] = arg min
u∈H1

ΓD
(O;R2)

Jtotal[ω,O;u], O ∈ Uad

 .

The solution of the inner minimization is however uniquely determined, s. t. there is actually
no decision to make. Still the analogy to the two-stage problem is noteworthy.

7.2. Stochastic optimization
As seen in the preceding section a shape optimization problem involving stochastic loads
amounts to a minimization over a family of random variables. This can be enabled by applying
suitable ranking functions. Here different functionals lead to different perceptions of the
occurring loads. In the following we will introduce the considered optimization problems.
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7.2. Stochastic optimization

7.2.1. Definition of stochastic cost functionals
The general procedure is to compute the expected value of the costs, possibly transformed
beforehand by a monotonically increasing function r : R→ R, which could also be nonlinear.
Then the corresponding minimization problem reads

min
{

Q(O) := E [r(J[ω,O;u])] =
S∑

i=1
πi r(J[ωi,O;u]) : O ∈ Uad

}
. (7.2)

Note that by this approach the stochastic problem is actually converted to a deterministic
problem, which however involves several objectives and solutions for the different realizations
of the loading.
Remark 7.1 (Expected value of the loads). For the sake of completeness let us mention
that it is of course also possible to reduce the stochastic shape optimization problem to a
deterministic one by considering the expectation of the loads ḡ =

∑
i πig(ωi). This however

can lead to full cancelation of certain realizations of the load, excluding them from the
optimization. A striking example is given in [136, Figure 4.2] but the phenomenon can also be
seen in the numerical results later on.

The trivial choice of r being the identity, i. e. r(t) = t, reduces (7.2) to a minimization
problem of the expected value of the costs.
Definition 7.2 (Expected value of the costs). The expected value of the costs functional is
given by

QEV(O) := E [J[ω,O;u]] . (7.3)
Apparently the formulation is entirely different from the deterministic objective w. r. t. the

expected value of the loads. In particular all possible loads are taken into account via their
induced elastic displacements and cost functional values. This influence is moreover weighted
by the corresponding probability of the realization. A deficiency is that any variability of the
random variable is ignored. Referred to as risk neutral, the ranking might not adequately
account for a scenario with low probability but fatal outcome for the elastic structure, in
terms of high objective values. As a consequence risk aversion can be added by introducing a
statistical parameter, supposed to realize a specific perception of risk.
Definition 7.3 (Expected excess). Let η be a preselected threshold value for the cost functional
and consider r(t) = max{t− η, 0}. The expected excess functional is then given by

QEEη
(O) := E [max{J[ω,O;u]− η, 0}] .

For minimization thereby only values above the threshold are taken into account unaltered.
Values below the threshold are mapped to 0 and practically ignored. This gives room, in
terms of available volume, to further improve the situation for the exceeding scenarios. Their
influence is controlled by both the amount of excess and their probability. Another alternative
is the excess probability functional.
Definition 7.4 (Excess probability). Let η be a preselected threshold value for the cost
functional and consider the Heaviside function as r, i. e.

r(t) = H(t− η) with H(t) =
{

1 t > 0
0 t ≤ 0

.
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The excess probability functional is then given by

QEPη
(O) := E [H (J[ω,O;u]− η)] = P [J[ω,O;u] > η] .

Here the second identity justifies the naming. Just as for the expected excess functional only
values exceeding the threshold are taken into account. In contrast, the amount of excess is
not relevant anymore, but rather a binary decision is made whether the threshold is exceeded
or not.

7.2.2. Practical aspects
Having set up suitable stochastic cost functionals we can now approach their optimization.
Besides fundamental algebraic expressions the newly obtained functionals only contain terms
that are known from the previous chapters in the deterministic setup. We will now discuss
remaining aspects for a numerical realization.

Non-differentiability. The introduction of the nontrivial transfer functions r(t) above comes
along with non-differentiability of the resulting cost functionals at the threshold value η. As
discussed before, we are employing a gradient based optimization scheme and therefore need
to restore the differentiability via smooth approximations of the transfer functions. For the
max function we use

max{t, 0} = 1
2 (|t|+ t) = 1

2

(√
t2 + t

)
≈ 1

2

(√
t2 + ϵ+ t

)
for a small regularization parameter ϵ > 0, which smoothes the kink at t = 0. For the Heaviside
function we use

H(t) ≈ 1
2 + 1

2 tanh
(
t

ϵ

)
= 1

2 + 1
2

sinh
(

t
ϵ

)
cosh

(
t
ϵ

) = 1
2 + 1

2
e

t
ϵ − e− t

ϵ

e
t
ϵ + e− t

ϵ

= 1
2 + 1

2
e2 t

ϵ − 1
e2 t

ϵ + 1
= 1

1 + e
−2t

ϵ

.

Thereby the jump from 0 to 1 at t = 0 is replaced by a smooth transition. Its width is
determined by the regularization parameter ϵ. Note that the values 0 and 1 can only be
attained here asymptotically. In summary we approximate the max and the Heaviside function
in the definition of the stochastic cost functionals by

M ϵ
η(t) := 1

2

(√
(t− η)2 + ϵ+ (t− η)

)
, (7.4)

Hϵ
η(t) :=

(
1 + e− 2(t−η)

ϵ

)−1
. (7.5)

See also Figure 7.1 for an illustration. Obviously the newly introduced regularization parameter
ϵ has immediate influence on the functionals in the optimization. In fact it is of minor
importance for the expected excess functional and can be chosen rather small. Objective
values below threshold then get mapped to nearly 0 and the gradient indicates a plateau.
Hence corresponding scenarios are not taken into account anymore. Above threshold the
smoothed transfer functional behaves like the identity leading to unvaried consideration of
those scenarios. Only when crossing the threshold, smoothing comes into play, ensuring valid
conditions for the optimization algorithm. On the contrary the regularization parameter is
highly significant for the excess probability functional. If it is chosen too small, the energy
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Figure 7.1.: Smooth approximations of the (a) max and (b) Heaviside function with regular-
ization parameter ϵ = 10−2 and ϵ = 0.2 respectively, and threshold η = 1.

landscape constitutes a plateau almost everywhere except for values very close to the threshold.
As a result there will not be any optimization at all. On the other hand, if ϵ is chosen too
high, costs for many scenarios might fall into the transition zone of the Heaviside function, cf.
Figure 7.1(b). In the vicinity of the threshold it approximately behaves like a linear profile,
possibly leading to results comparable to those for the expected value of the costs. Effectively
the distinguishing risk aversion is lost then. In the end ϵ has to be carefully and individually
selected for each investigated shape optimization problem to ensure the desired effect of
the excess probability functional. For the expected excess functional no further attention is
required. The resulting minimization problems finally read

min
{

Qϵ
EEη

(O) := E
[
M ϵ

η(J[ω,O;u])
]

: O ∈ Uad

}
, (7.6)

min
{

Qϵ
EPη

(O) := E
[
Hϵ

η(J[ω,O;u])
]

: O ∈ Uad

}
. (7.7)

Algorithmic shortcut. Up until now we have required that the elasticity problem (3.10) has
to be solved for every realization of the load g(ωi). As pointed out earlier, in a realistic setup
one is interested in the approximation of continuous probability distributions leading to a
huge number of equations to be solved. By exploiting the linearity of the considered linearized
elasticity system, a significant speedup is possible if the occurring loads can be expressed
as linear combinations of basis functions. To this end let g1, . . . , gK be a set of base surface
loadings, s. t. each realization g(ωi) can be written as a linear combination

g(ωi) =
K∑

j=1
cj(ωi) gj . (7.8)

Now gj are deterministic loads and cj : Ω→ R are random variables, whose realizations for an
event ωi precisely give the corresponding fractions of the base forces. For each deterministic
load gj an elasticity solution uj can be computed as before by virtue of (3.10). The crucial
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observation is that by linearity the linear combination

u[ω,O] :=
K∑

j=1
cj(ω)uj (7.9)

is an elasticity solution for the linear combination on the right hand side of (7.8). Since this
solution is unique we can always directly construct the wanted solution from the set of base
solutions. This trick has appeared before when we devised speedup measures for the two-scale
approach, cf. Section 5.6.2. Here it is used on the macroscale. In case of S ≫ K a lot of
computations can be spared.

Shape derivative. For the employed optimization algorithm gradient information w. r. t.
the presented stochastic cost functionals is needed. We will now reduce the corresponding
expressions to the shape derivative known from the deterministic setting. First of all, for
the derivative not only the primal solution u, but also the dual solution p is required. If we
assume that the considered deterministic cost functional J is at most quadratic in u, then
its derivative in the adjoint equation (4.5) is at most linear in u and we can again apply
the algorithmic shortcut as before. Given an elasticity base solution uj and the derivative
J,u[ω,O;uj ](φ), a dual solution pj can be obtained. By linearity and uniqueness the linear
combination

p[ω,O] :=
K∑

j=1
cj(ω) pj (7.10)

then is the wanted solution for the right hand side
∑

j J,u[ω,O;uj ](φ) = J,u[ω,O;u[ω,O]](φ).
With the primal solution (7.9) and the dual solution (7.10) at hand we can compute the
derivatives of the stochastic cost functionals. Due to the additional transformation r, the
chain rule has to be applied. Specifically we get

dO QEV(O)(V ) =
S∑

i=1
πi dO J[ωi,O;u](V ) ,

dO Qϵ
EEη

(O)(V ) =
S∑

i=1

πi

2 dO J[ωi,O;u](V )

 J[ωi,O;u]− η√
(J[ωi,O;u]− η)2 + ϵ

+ 1

 ,

dO Qϵ
EPη

(O)(V ) =
S∑

i=1

2πi

ϵ dO J[ωi,O;u](V ) e− 2
ϵ (J[ωi,O;u]−η)

(
1 + e− 2

ϵ (J[ωi,O;u]−η)
)−2

,

where the shape derivative dO J[ωi,O;u](V ) of the deterministic cost functional is given by
(4.10) as before.

Application of the two-scale model. So far shape optimization in the stochastic setup was
presented in a generic fashion with a shapeO as the object to be optimized. Our two-scale shape
optimization model is however directly applicable. Therefore it is most convenient to take the
macroscopic perspective. A shape then is an effective elasticity tensor field C∗ ∈ L∞(D,R24)
that is locally obtained via homogenization from an underlying microstructure. It is considered
admissible, i. e. from the set Uad, if the parameters comply with the constructive constraints,
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as e. g. (5.14) for the ellipsoidal perforations, and if the effective densities globally fulfill the
volume constraint, cf. (5.7). As done for optimization in the deterministic context, we use the
two-scale compliance type functional (5.7) as objective. Here we already know that the dual
problem is trivial and that the shape derivative w. r. t. the microscopic parameters is given by
(5.9). Therefore all information needed by the optimization scheme in the stochastic context
is explicitly available.

7.2.3. Numerical results for optimization of stochastic cost functionals

We are now ready to present and discuss the outcomes of our numerical optimization scheme
for the presented stochastic cost functionals. Here we focus on two types of microstructures
for the two-scale model, namely ellipsoidal perforations and rotating orthogonal rods. The
former model has proven to be robust and has yielded fast convergence of the optimization
algorithm, while the latter model has demonstrated the best performance in the deterministic
setting. As a showcase scenario we again consider the unit square with homogeneous Dirichlet
boundary conditions on the bottom. This time we prescribe loads on either the upper left
or the upper right edge with different probabilities. To be more precise, the surface loading
g either attacks at [0, 1

6 ]× {1} with a constant direction and constant magnitude of 0.1, or
at [ 5

6 , 1] × {1} with a constant direction and a constant magnitude of 0.05. On each side
five individual scenarios are realized by an inclination of the force by 0, π

4 , π
2 , 3π

4 , and π
in radians, cf. Figure 7.2. All forces can be linearly combined using four basis loads, which

1% 1% 1% 1% 1%

19% 19% 19% 19% 19%

EV

Figure 7.2.: Illustration of the loads acting on the top boundary of the carrier plate domain
along with their probabilities and their expected value, in the context of stochastic
optimization.

consist of the two unit vectors on each supporting edge. As remarked above this reduces the
number of macroscopic elasticity problems to be solved from ten, the number of scenarios,
to four, the number of basis loads. Scenarios on the right hand side appear with probability
19% each, whereas the stronger loads on the left hand side occur with probability 1% only.
The overall volume fraction is constrained to 67% and a grid of refinement level 6 is used
on the macroscale. The qualitative features of the results and especially the mode of action
of the applied risk averse ranking functions have been discussed extensively in the original
paper [139], in [138] for the two-scale model, and in [184, 183] for the single-scale setting
with parametrized geometries. We summarize the essential observations in the following and
display the two-scale results.
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Figure 7.3.: Optimized two-scale designs using ellipsoidal perforations and rotating orthogonal
rods, respectively, for optimization w. r. t. expectation of the loads.

Expected value cost functional. We start with the expected value of the costs functional
(7.3) and present the results of optimization in Figure 7.4(a). The outcomes for the ellipsoidal
holes and the rotating rods model are shown in the left and middle column, respectively.
For comparison we also show the results in case a deterministic optimization problem for
the expected value of the loads is considered instead, see Figure 7.3. As already mentioned,
and apparent in Figure 7.2, the horizontal components of the forces cancel each other in the
expectation of the loads. Consequently, for both microstructure models, a structure is laid out
that is capable of withstanding vertical compression. Due to the different intensities, most of
the available material is used on the right hand side to build a massive pillar consisting of
solid material. Loads on the left hand side are sustained using trusses, which run along the
upper boundary and through the center of the domain, and connect to the large pillar. They
comprise material of intermediate density and, as seen in the deterministic setting before,
microstructures have developed that are aligned with the truss direction, with the exception
of a junction in the upper left region. For the rotating rods model a small pillar can also be
found on the left hand side that connects to the afore mentioned junction. This is in contrast
to the ellipsoidal perforations model, where however a lattice with tiny bonds is always present
due to the design constraints (5.14). The shapes obtained w. r. t. the expectation of the costs
look entirely different, cf. Figure 7.4(a). There is still a vertical pillar on the right hand side
consisting of nearly solid material but it is much thinner. Instead most of the material is used
to build a diagonal truss running from the lower left to the upper right hand side, which
has an intermediate density and once again aligned microstructures, except for a junction as
seen before. Its purpose is to support the high probability load with corresponding diagonal
orientation. This can also be seen from the bar charts in the right column of Figure 7.4(a). Here
we plot the finally attained compliance values for each individual scenario with red and blue
bars, corresponding to the ellipsoidal holes and the rotating rods microstructure, respectively,
and bar thicknesses indicating the different probabilities of the loadings. Clearly the vertical
and the diagonal load in the direction of the built truss are best supported. Another truss in
the other diagonal direction passes through the former at the junction. It is much thinner and
has a lower effective density. Furthermore trusses can be observed on the upper and left hand
side boundary. They are rather thick in case of the rotating rods microstructure model and
lead to a frame-like structure. For the ellipsoidal perforations they exist as well but are harder
to detect as the vertical alignment fades out towards the center of the domain. An overall
comparison shows that the shapes using the rotating rods microstructure perform better
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than the counterparts using the ellipsoidal perforations model for every individual scenario.
Furthermore the stronger loadings on the left hand side in general receive little consideration
in the optimization due to their low probabilities. This leads to excessively higher individual
cost functional values and illustrates the drawback of the risk neutral approach as discussed
before.

Expected excess cost functional. We now turn to the risk averse cost functionals, beginning
with the expected excess. First of all it is important to note that the choice η = 0 again
leads to the expected value of the cost functional, despite the involved regularization. When
increasing the threshold parameter, a continuous evolution of the shape can be observed,
where more and more material is shifted to the left hand side, cf. figures 7.4 and 7.5. For
η = 0.0002 the individual costs for the loadings on the right hand side have fallen below the
threshold for the first time, indicated by the horizontal line in the corresponding bar chart.
Consequently from then on the optimization can focus on the left hand side scenarios. A
configuration reflecting a balanced state between left and right hand side loadings is expected
for a threshold value between 0.0002 and 0.0003. From η = 0.0003 on the thickness of the
diagonal truss supporting the right hand side is reduced while it is increased for the other
diagonal truss. The outer frame does not undergo significant transformation for the ellipsoidal
holes microstructure while for the rotating rods microstructure the pillar on the right hand
side receives less and less effective density. From the bar charts we can see that for increasing
threshold the cost functional values for the right hand side scenarios increase again as they
are far below the threshold and practically ignored in the optimization. For η = 0.0006 the
diagonal rod that was dominating for η = 0 is nearly removed. Ultimately for η = 0.0009 the
compliance for every scenario can easily be kept below the threshold. An indistinct shape is
obtained that is rather close to the initialization.

Excess probability cost functional. Finally we consider the excess probability cost functional
and display the results in figures 7.6 and 7.7. By trend similar effects in correspondence to
the threshold can be observed. The concrete designs however seem more radical. In fact for
both microstructure models the strong loads with low probability on the left hand side are
completely ignored for low η and no structure in this direction is built at all. This is due to
the Heaviside function, which transfers the initially high cost functional values to a plateau
with value 1. The scenarios thus exceed the threshold in such a way that they are practically
lost for the optimizer, which can also be seen from the bar charts. In fact their costs increase
during optimization. Instead massive pillars made from nearly solid material are placed
along the right boundary and the diagonal support of the upper right edge. For η = 0.0003
all compliance values for the right hand side loadings are clearly below the threshold and
moreover lower than for the expected excess cost functional. Some more material is used
below the pillars. For the ellipsoidal holes model another diagonal truss is built whereas for
the rotating rods model a rather smoothly varying microstructure can be observed, especially
for η = 0.0003. A shift of volume to the left hand side can first be observed for η = 0.0004 and
thereby later as for the expected excess model. From η = 0.0005 on the focus is clearly on the
left hand side loadings. A thick diagonal truss supports these and an outer framework as seen
similarly in the results for the expected excess functional can be identified. For increasing
threshold the structures supporting the upper right edge are gradually cut back until they
are ultimately removed and almost mirrored versions of the results for low η are obtained. In
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(a) Expectation of costs (η = 0)
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(b) η = 0.0002
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(c) η = 0.0003

Figure 7.4.: Optimized two-scale designs for the expected excess cost functional and varying
threshold parameter η using ellipsoidal perforations (left column) and rotating
orthogonal rods (middle column), respectively, and bar charts (right column)
showing the final objective function values, scaled by 104, for each individual
scenario.

this situation with η about 0.0009 all scenarios are below the threshold. The ones on the left
hand side are still taken into account because of the relatively large regularization parameter,
cf. Section 7.2.2. The ones on the right are further away and ignored, which leads to increasing
costs as can be seen from the bar charts.
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(a) η = 0.0004
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(b) η = 0.0006
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(c) η = 0.0009

Figure 7.5.: Continuation of Figure 7.4: Optimized two-scale designs for the expected excess
cost functional and varying threshold parameter η using ellipsoidal perforations
(left column) and rotating orthogonal rods (middle column), respectively, and bar
charts (right column) showing the final objective function values, scaled by 104,
for each individual scenario.

Cross-check. We complete this section on numerical results for stochastic optimization by
presenting a cross-check of the obtained results as was also done in [139]. To this end the
optimized shapes for the risk neutral and the two risk averse cost functionals, with η = 0.0003
as an example, are considered and every functional is evaluated for each of them. Clearly
the candidate stemming from optimization w. r. t. a functional should always rank best when
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(a) η = 0.0001
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(b) η = 0.0003
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(c) η = 0.0004

Figure 7.6.: Optimized two-scale designs for the excess probability cost functional and varying
threshold parameter η using ellipsoidal perforations (left column) and rotating
orthogonal rods (middle column), respectively, and bar charts (right column)
showing the final objective function values, scaled by 104, for each individual
scenario.

comparing this functional’s values among all candidates. As can be seen from Table 7.1 this is
indeed the case in the example considered here.
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(a) η = 0.0005
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(b) η = 0.0006
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Figure 7.7.: Continuation of Figure 7.6: Optimized two-scale designs for the excess probability
cost functional and varying threshold parameter η using ellipsoidal perforations
(left column) and rotating orthogonal rods (middle column), respectively, and bar
charts (right column) showing the final objective function values, scaled by 104,
for each individual scenario.

7.3. Stochastic dominance
The introduced stochastic cost functionals enable us to thoroughly handle shape optimization
problems involving stochastic loadings. By the additional threshold parameter η it is moreover
possible to make allowance for variability of the random variable J[ω,O;u]. Tuning of this
parameter however requires a priori knowledge of the range and spread of the individual
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Oopt
EV Oopt

EEη
Oopt

EPη

QEV · 104 1.63 1.83 2.14
Qϵ

EEη
·104 0.34 0.33 0.93

Qϵ
EPη

0.10 0.12 0.09

(a)

Oopt
EV Oopt

EEη
Oopt

EPη

QEV · 104 1.53 1.68 26.20
Qϵ

EEη
· 104 0.31 0.28 25.07

Qϵ
EPη

0.09 0.10 0.08

(b)

Table 7.1.: Cross-check of expected value of costs, expected excess and excess probability
cost functionals with η = 0.0003 for the optimized shapes using (a) ellipsoidal
perforations and (b) rotating orthogonal rods as the microstructure model.

objectives. It is not obvious at all how and based upon which criterion a best value of
η could be determined. In this section we therefore change our viewpoint and consider
optimization under comparison constraints. Suppose we already have a reference design Oref

that is known to perform well for a given loading scheme. This body might be the result of a
previous optimization or an intuitive layout, an assumption that seems realistic for real world
applications. We would now like to compare other candidates O to the reference, or benchmark,
shape and select those that perform at least as well as Oref. Thereby risk aversion is realized
not just via a single scalar value η. Instead the benchmark allows to include distributional
information as well. The concept of stochastic dominance facilitates this comparison by virtue
of a mathematical partial order on the space of admissible shapes, or among random variables
respectively. From the set of acceptable designs, i. e. those candidates that compare favorably,
the best one can be chosen based on other quantities of interest, as for instance the total
amount of material.

7.3.1. Definition of stochastic dominance
We will follow the exposition in [318] and summarize the main ideas. Further details can be
found in [318] and the referenced textbook [296] therein. The definition will be based on the
cumulative distribution function of a random variable X, given by FX(x) = P[X ≤ x].

Definition 7.5 (First order stochastic dominance). Let X and Y be real valued random
variables. X is said to dominate Y to first order, denoted by X ⪯1 Y , if

FX(η) ≥ FY (η) ∀ η ∈ R . (7.11)

As to the interpretation, inequality (7.11) means P [X ≤ η] ≥ P [Y ≤ η], i. e. the probability
that X takes values less than η is greater than for Y . As we have the objective functional for
shape optimization in mind, smaller values are better, and therefore X is said to dominate Y .
An equivalent characterization is

X ⪯1 Y ⇐⇒ E [r(X)] ≤ E [r(Y )] ∀ r : R→ R nondecreasing. (7.12)

In fact “⇒” follows from r being nondecreasing and X(ω) < Y (ω), which in turn can be shown
if (7.11) holds. Furthermore “⇐” is obtained by choosing r(t) = H(t− η) as in Definition 7.4
of the excess probability. The alternative characterization establishes a link to decision making
under risk, where r would be regarded as a disutility function. Higher costs mean worse
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performance in shape optimization, so the disutility function should be nondecreasing as
above.

Coming back to perceptions of risk, it seems meaningful to regard a single high outcome
of the random variable X as more risky than a high averaged value E[X], which would be
properly taken care of even in a risk neutral setting. This motivates to choose a disutility
function s. t. r(E[X]) ≤ E[r(X)], which is just a convexity condition.

Definition 7.6 (Second order stochastic dominance). Let X and Y be real valued random
variables. X is said to be stochastically smaller than Y in increasing convex order, or to
dominate Y to second order, denoted by X ⪯2 Y , if

E[r(X)] ≤ E[r(Y )] ∀ r : R→ R nondecreasing and convex. (7.13)

Remark 7.7. As the set of functions in (7.13) is contained in the set in (7.12), it is clear
that first order dominance is a stricter condition and thus implies second order dominance.

Again there is an alternative characterization available, which makes second order dominance
easier manageable, namely

X ⪯2 Y ⇐⇒ E [max{X − η, 0}] ≤ E [max{Y − η, 0}] ∀ η ∈ R . (7.14)

In fact “⇒” follows by choosing r(t) = max{t − η, 0}. The other implication involves an
approximation of an arbitrary convex function by a piecewise linear one and is more involved.
As to the interpretation, inequality (7.14) states that on average X exceeds threshold values
η less than Y does. By (7.11) and (7.14) we have now defined stochastic dominance via the
already familiar excess probability and expected excess functionals. Still each relation poses
an infinite number of constraints, hindering a practical application. Fortunately the next
theorem states that for discrete probability distributions only a discrete number of constraints
needs to be taken into account.

Theorem 7.8. Assume the random variables X and Y have discrete distributions, i. e.
X(ωi) = xi and Y (ωi) = yi for i = 1, . . . , S. Then there holds

X ⪯1 Y ⇐⇒ P [X ≤ yi] ≥ P [Y ≤ yi] ∀ yi, i = 1, . . . , S ,
X ⪯2 Y ⇐⇒ E [max{X − yi, 0}] ≤ E [max{Y − yi, 0}] ∀ yi, i = 1, . . . , S .

The proof makes use of the monotonicity property and for the second statement again uses
a piecewise linear approximation together with the convexity property.

We are finally ready to transfer the presented concepts to the shape optimization setting.
Given the reference shape Oref, the associated costs

bi := J[ωi,Oref;u] , i = 1, . . . , S ,

represent a random variable that is to be dominated and thus defines our benchmark. Another
shape O compares favorably to the benchmark if the stochastic dominance constraint of
chosen order holds, i. e. if for all bi, i = 1, . . . , S,

J[ω,O;u] ⪯1 J[ω,Oref;u] ⇐⇒ P [J[ω,O;u] ≤ bi] ≥ P
[
J[ω,Oref;u] ≤ bi

]
, or (7.15)

J[ω,O;u] ⪯2 J[ω,Oref;u] ⇐⇒ E [max{J[ω,O;u]− bi, 0}] ≤ E
[
max{J[ω,Oref;u]− bi, 0}

]
,
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respectively. Thereby a set of acceptable designs is obtained, from which we can choose the
best candidate based on another quantity of interest. For simplicity we will here aim for a
reduction of the total effective volume. Altogether our shape optimization problem under the
stochastic dominance of order k reads

min
{

Vol(O) : J[ω,O;u] ⪯k J[ω,Oref;u] , O ∈ Uad
}
.

For obvious reasons we here do not require a shape to fulfill the volume constraint for being
admissible.

7.3.2. Practical aspects
As before we need to replace the Heaviside function, used for first order dominance, and
the max function, used for second order dominance, by smooth approximations to regain
differentiability. To this end we can again employ (7.5) and (7.4), respectively. For the given
benchmark Oref the associated stochastic cost functionals can be computed a priori leading
to the bounds

c
(1)
i := E

[
Hϵ

bi
(J[ω,Oref;u])

]
=

S∑
j=1

πj H
ϵ
bi

(bj) ,

c
(2)
i := E

[
M ϵ

bi
(J[ω,Oref;u])

]
=

S∑
j=1

πj M
ϵ
bi

(bj)

with i = 1, . . . , S for the inequality constraints during optimization. Based on this derivation,
practical shape optimization problems under dominance constraints read

min
{

Vol(O) : E
[
Hϵ

bi
(J[ω,O;u])

]
≥ c(1)

i ∀ i = 1, . . . , S , O ∈ Uad

}
,

min
{

Vol(O) : E
[
M ϵ

bi
(J[ω,O;u])

]
≤ c(2)

i ∀ i = 1, . . . , S , O ∈ Uad

}
for first and second order dominance, respectively. As before we can reduce the computation
of derivatives of the constraints w. r. t. the shape, or its parameters, respectively, to the
deterministic case. We like to point out the strong similarity of the above problem to the
risk averse stochastic shape optimization problems (7.6) and (7.7). In fact we there have a
preselected but arbitrary statistical parameter η entering the ranking functions to construct
risk averse objectives. The same functionals reappear here, posing a number of constraints,
which possibly have a risk averse impact via the benchmark shape Oref. Furthermore we
had the total effective volume as constraint in (5.7) before, which now takes the role of the
objective function. For the practical implementation this basically means that objectives
and constraints and their derivatives have to switch roles when passed to the optimization
algorithm.

7.3.3. Numerical example
In this section one example will be presented to demonstrate the concept of stochastic
dominance. The loading scheme will be more complex than before, hinting at a more realistic
scenario. We still consider the carrier plate scenario but this time the upper boundary is split
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7.3. Stochastic dominance

into the three segments [0, 0.25] × {1}, [0.25, 0.75] × {1}, and [0.75, 1] × {1}. We allow for
constant shear and pull forces on the left and the right hand side, which require two base loads
each, and for linear profiles in between, which require four base loads to enable a blending of
the vertical and horizontal forces. Using these bases a stochastic loading scheme as depicted
in Figure 7.8 is built up. For each scenario varying loads are applied on the complete upper
boundary. The first scenario comprises an exceptionally strong shearing force on the left hand
side. As before the horizontal components cancel in the expectation of the loads.

1% 10% 5% 14% 8%

2% 10% 5% 15% 30%

EV

Figure 7.8.: Illustration of the loads acting on the top boundary of the carrier plate domain
along with their probabilities and their expected value, in the context of stochastic
dominance.

.

Obtaining a suitable benchmark. The investigation of shape optimization under stochastic
dominance constraints was motivated by the assumption that in real life an eligible reference
design Oref would be available, which a new shape has to compete with. For a numerical
experiment such a benchmark needs to be generated. On the one hand the shape has to be
well adapted to the posed loadings in order to make the dominance constraint not trivially
satisfiable. On the other hand some room for improvement is needed to be able to study the
effect of the employed functionals based on qualitative and quantitative numerical results. We
propose to use a single-scale design optimized for the expectation of the costs. This way a
nontrivial shape that is suitable for the stochastic loading is obtained. On the other hand
we expect to find superior results using our developed two-scale approach. Regarding the
benchmark we employ the SIMP model, with the abbreviation standing for solid isotropic
material with penalization. In this approach a parameter θ : D → [0, 1] is introduced to scale
the elasticity tensor C of a rigid material. The effective tensor is then given by C∗ = θnC,
where n is an additional fixed constant. The idea is that, after optimization, regions with θ ≈ 0
correspond to void whereas θ ≈ 1 indicates solid material. The scaling of the elasticity tensor
ensures that the effective material becomes weaker in a smooth fashion when θ is decreased.
However for any intermediate value of θ there is no sound physical interpretation of the
resulting effective material. Unlike in case of the sequential lamination model the parameter
cannot be interpreted as an effective material density. The elastic energy, used as the cost
functional as before, is evaluated in its macroscopic form, cf. equation (5.7) and (5.10), and its
derivative w. r. t. θ is trivially obtained. To practically avoid regions of intermediate density,
it has turned out to be beneficial to choose values n > 1 for the additional constant. The
approach can readily be integrated into our algorithmic two-scale framework by evaluating
only effective macroscopic functionals as described in Section 5.5.2. To maintain coercivity
of the effective material tensor, θ is bounded from below by a small threshold value of 10−2.
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Figure 7.9.: Optimized results for the expected value of the costs functional for the carrier
plate scenario and the SIMP model with n = 1 and n = 3, n = 5 in continued
optimization runs.

As no perimeter penalization is taken into account, microstructures could start to form,
constrained only by the discretization. This implies that the benchmark shape will depend on
the mesh we use for our computations. Since we will however use the same macroscopic mesh
for the two-scale model afterwards, the comparison remains fair.

We performed an optimization for the loading scheme depicted above and the expectation
of the costs functional using the SIMP model with a volume constraint of 50%. Initially
n = 1 was used which resulted in large regions of intermediate density, see Figure 7.9. This
shape was then used as initialization for another run using n = 3, and this result was reused
again for the third run using n = 5. The final shape did not contain significant regions with
intermediate values anymore. Starting directly with n = 5, on the other hand, led to spurious
results with tiny bars of cell width.

Numerical results. We performed an optimization under stochastic dominance constraints
of first and second order, respectively, for the loading scheme depicted above and the SIMP
benchmark. An unbiased initialization with 50% volume as for the benchmark was used.
Upon termination the void volume was increased to 0.5446 and 0.5683, respectively, which
corresponds to savings of 8.9% and 13.7%, respectively. Given the fact that the benchmark
itself was stemming from optimization, this is a remarkable gain. In Figure 7.10 we show the
corresponding two-scale visualizations. Obviously they differ a lot from the shapes seen before.
In particular many tiny trusses have developed on the macroscale, some of which only span a
single cell. We observed this tendency before for the SIMP benchmark and suspect it could
be attributed to the different kind of loads. In the preceding sections the loading was uniform
or concentrated on just small parts of the boundary. Now it is varying and applied along the
full upper boundary.

More important however is the fulfillment of the dominance constraints. We therefore display
the cumulative distribution functions of the random variables J[ω,O;u] for the benchmark
and the two obtained results in Figure 7.11. Due to the condition (7.15), it is clear that
for first order dominance the graph always has to stay above the graph of the benchmark.
As we only have a finite number of realizations and the ranking of those w. r. t. the costs
has not changed compared to the benchmark, it means that the jumps in the distribution
function are allowed to occur at lower cost functional values, but not at higher ones. This is
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(a) (b)

Figure 7.10.: Optimized shapes for stochastic dominance of (a) first and (b) second order.
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Figure 7.11.: Distribution functions w. r. t. the loading scenarios for the benchmark shape
(black) and the optimized results for first (red) and second (green) order stochastic
dominance.

the case here with a single exception at about J[ω,O;u] ≈ 5.3. In fact the optimizer reports
zero constraint violation and this overshoot must be attributed to the applied regularization.
It had to be chosen rather large and thus some balancing with the constraints at smaller
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costs is enabled. Choosing second order dominance adds more flexibility as the conditions
only need to be satisfied on average. We can nicely see how this is used in the results. For
the scenarios with higher costs some buffer is gained which is expended for the scenarios
with lower costs. Thereby also the ranking of the scenarios is changed at some place, which
can be seen in the distribution function around J[ω,O;u] ≈ 5.5 where the jumps occur in a
different sequence compared to the benchmark. Looking back at Figure 7.10 it seems that the
additional flexibility was exploited to build a more sophisticated shape with fewer tiny rods
and an underlying structure that is familiar from the deterministic carrier plate results.

7.4. Conclusion
In this chapter the developed two-scale model was applied to shape optimization problems
in the context of stochastic loadings. Apart from the more realistic nature of those the
crucial difference was the introduction of nonlinear transfer functions into the cost functionals.
Furthermore stochastic dominance brought in an entirely different concept for optimization
based on ordering relations and led to a role reversal of objective and constraints. Regarding
the two-scale materials similar observations as before could be made. Macroscopic structures
were built with large regions of intermediate densities and microstructures therein, which
aligned with the main stress directions. The most important insight however was that the
two-scale scheme and the employed optimizer performed really robust. For the presented
cross-check, e. g., the authors of [139] report that several restarts of the algorithm with adapted
initializations were necessary to pass the test. For our computations, which were however done
for a simpler loading scheme, no further action was required. All computations were started
from unbiased initializations and found reasonable optima. We believe that the relatively
small and simple parameter space of our microstructures, compared to the level set approach
in [139], is the main reason for this.
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Adaptive schemes for optimal microstructures

Arrangements of microstructured regions have been observed in the optimized shapes
throughout the preceding sections. While in areas with almost solid material or hardly

any material an underlying microstructure model seems dispensable, there are indeed large
regions with intermediate material density where complex geometric patterns emerge on the
microscale. Their spatial evolution within the identified regions seems rather smooth, whereas
sharp interfaces separate regions of diverse characteristics. The devised two-scale approach
bears on the assumption of a smoothly varying microstructure. Hence it should benefit from
sharply resolved interfaces across which jumps in the describing parameters may occur. With
respect to computational costs, regions in which parameters do not show significant variation
should be discretized on a coarse grid. Overall an adaptive meshing strategy is desirable,
which ideally leads to better approximations of optimal shapes with reduced computational
costs. To this end we pick up the dual weighted residual approach (DWR). In this chapter we
will detail its derivation and application in the context of our two-scale shape optimization
model.

8.1. Derivation of weighted error estimates
In this section we will derive weighted error estimates for two-scale shape optimization
problems based on the dual weighted residual approach. The technique is based on a rigorous
analytical foundation and has, among diversified applications, already been employed for
optimal control problems, e. g. in [65]. It is goal-oriented, i. e. it controls the error in the costs
|J[Oopt;u[Oopt]] − J[Oh;uh]|, for an optimal shape Oopt, the associated elasticity solution
u[Oopt], and approximations Oh, uh. For our application this is an essential feature as we
want to lessen the gap toward an optimal shape. A classical a posteriori estimate on the other
hand, measuring the discrepancy in the discrete PDE solution ∥u− uh∥, will not necessarily
lead to refinement of regions that cause large errors in the costs.

We will use generic variables in the following to fit all models that have been discussed
previously. In subsequent sections we will then apply the estimates to the analytical sequential
lamination model and the numerical two-scale model and elaborate on further specific details.
Let q : D → Rl be a vector-valued parameter function that characterizes a material pointwise
by its effective elasticity tensor C∗[q(x)]. The concrete terms here depend on the microstruc-
ture model and could e. g. be given numerically or by analytical homogenization formulae.
Concerning the solution of the elasticity PDE we take the macroscopic perspective, i. e. the
bilinear form (5.10) is considered, which only contains macroscopic quantities explicitly. Let
u∗ be the associated solution for the given tensor field C∗[q]. In optimal control theory the
parameter function q is referred to as control and the elastic displacement u∗ as state. Let
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qh be the discretized parameter function that could either be constant on each element of
the macroscopic computational grid Mh or be defined on the finite set of quadrature points
on Mh. And let u∗

h be the associated discrete solution. As objective we will use the same
compliance type functional as before. In the following the parameters q and their discretized
counterparts are assumed optimal, in the sense that they minimize the cost functional.

We start by considering the Lagrangian L(q;u∗, p∗) := JM[q;u∗] + aM(q;u∗, p∗)− l(p∗) as
in Definition 4.6, such that the primal solution u∗ is decoupled from the elasticity tensor
parameters q. We already know that the dual solution is trivially given by 0, cf. Section 5.2.2,
and therefore drop the dependence of the Lagrangian on p∗ in the following. In the general case,
u∗ and u∗

h are solutions of the continuous and discrete weak elasticity problem, respectively.
Either way there holds

eL := L(q;u∗)− L(qh;u∗
h) = JM[q;u∗]− JM[qh;u∗

h] .

Error estimation can therefore be realized by inspecting the difference in the Lagrangian.
Next a first order expansion of the Lagrangian is computed. As a shortcut notation we write
eu∗ = u∗ − u∗

h and eq = q − qh for the differences in the continuous and discrete elasticity
solutions and controls, respectively. The error in the Lagrangian is now rewritten as a one
dimensional integral

eL =
∫ 1

0

d
ds L (qh + seq;u∗

h + seu∗) ds ,

where we interpolate linearly between continuous and discrete quantities. Let f(s) define the
above integrand, i. e. f(s) := d

ds L (qh + seq;u∗
h + seu∗). We now apply the trapezoidal rule∫ 1

0 f(s) ds = 1
2 (f(0) + f(1)) + 1

2
∫ 1

0 f
′′(s)s(s− 1) ds. As the Lagrangian is a polynomial in its

arguments all derivatives indeed exist. For f(1) we use that q was assumed optimal and that
u∗ is the corresponding displacement. As such (q, u∗) is a stationary point of the Lagrangian
and we get

f(1) = ∇L(q;u∗) · (eq, eu∗)T = 0

because (eq, eu∗) is a valid test function in the weak problem. For f(0) we introduce arbitrary
discrete functions ϑqh

and ϑu∗
h
, such that

f(0) = ∇L(qh;u∗
h) · (eq, eu∗)T

= ∇L(qh;u∗
h) · (q − ϑqh

, u∗ − ϑu∗
h
)T +∇L(qh;u∗

h) · (ϑqh
− qh, ϑu∗

h
− u∗

h)T .

Here the second term vanishes because (qh, u
∗
h) was assumed to be a stationary point and

(ϑqh
− qh, ϑu∗

h
− u∗

h) is a valid discrete test function. The remainder term is defined as
R := 1

2
∫ 1

0 f
′′(s)s(s− 1) ds. Altogether

eL = 1
2L,u∗

h
(qh;u∗

h)(u∗ − ϑu∗
h
) + 1

2L,qh
(qh;u∗

h)(q − ϑqh
) +R (8.1)

is obtained. Next we compute the remaining terms explicitly by taking the compliance type
cost functional (5.7) in its macroscopic form (5.10) into account. Moreover we split up the
resulting integral according to the elements E of the computational grid Mh and use Green’s
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first identity, resulting in
1
2L,u∗

h
(qh;u∗

h)(u∗ − ϑu∗
h
)

= 1
2

(
−
∫

D

C∗[qh] ε[u∗
h] : ε[u∗

h] dx+ 2
∫

ΓN

g · u∗
h da(x)

)
,u∗

h

(
u∗ − ϑu∗

h

)
=
∫

D

−C∗[qh] ε[u∗
h] : ε

[
u∗ − ϑu∗

h

]
dx+

∫
ΓN

g · (u∗ − ϑu∗
h
) da(x)

=
∑

E

(∫
E

div {C∗[qh] ε[u∗
h]} · (u∗ − ϑu∗

h
) dx

−
∫

∂E

C∗[qh] ε[u∗
h]n · (u∗ − ϑu∗

h
) da(x) +

∫
∂E∩ΓN

g · (u∗ − ϑu∗
h
) da(x)

)
.

We can now define the first contributions toward an error estimate.
Definition 8.1 (Primal volume and edge residuals). For an element E ∈Mh the full primal
volume residual and the full primal edge residual are defined as

ηu
E :=

∣∣∣∣∫
E

div {C∗[qh] ε[u∗
h]} · (u∗ − ϑu∗

h
) dx

∣∣∣∣ ,
ηu

∂E :=
∣∣∣∣∫

∂E

j (C∗[qh] ε[u∗
h]) · (u∗ − ϑu∗

h
) da(x)

∣∣∣∣ , (8.2)

with j(σ) being the jump of the normal stress across an edge of E given by

j(σ)(x) =


1
2 [σ(x) · n(x)] x ̸∈ ∂D
σ(x) · n(x)− g(x) x ∈ ΓN ∪ ΓF
0 x ∈ ΓD

and [σ(x) · n(x)] = |(σ(x)|E − σ(x)|E′) · n(x)| for x ∈ E ∩E′ with the outer normal n on ∂E
and E′ being a neighbor of E. Here ϑu∗

h
may be chosen arbitrarily from its discrete space.

The primal volume residual, primal volume weight, primal edge residual, and primal edge
weight are defined as

ρu
E := ∥div {C∗[qh] ε[u∗

h]}∥0,2,E , ωu
E :=

∥∥u∗ − ϑu∗
h

∥∥
0,2,E

,

ρu
∂E := ∥j (C∗[qh] ε[u∗

h])∥0,2,∂E , ωu
∂E :=

∥∥u∗ − ϑu∗
h

∥∥
0,2,∂E

.
(8.3)

With these definitions and the Cauchy-Schwarz inequality we get
1
2L,u∗

h
(qh;u∗

h)(u∗
h − ϑu∗

h
) ≤

∑
E

(ηu
E + ηu

∂E) ≤
∑

E

(ρu
Eω

u
E + ρu

∂Eω
u
∂E) .

We now turn to the second term of the derived expansion (8.1) and obtain
1
2L,qh

(qh;u∗
h)(q − ϑqh

)

= 1
2

(
−
∫

D

C∗[qh] ε[u∗
h] : ε[u∗

h] dx+ 2
∫

ΓN

g · u∗
h da(x)

)
,qh

(q − ϑqh
)

=
∑

E

1
2

(
−
∫

E

C∗[qh] ε[u∗
h] : ε[u∗

h] dx
)

,qh

(q − ϑqh
) .

Hence we can define the next contributions.
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Definition 8.2 (Control residuals). For an element E ∈ Mh the full control residual is
defined as

ηq
E :=

∣∣∣∣∣
(∫

E

C∗[qh] ε[u∗
h] : ε[u∗

h] dx
)

,qh

(q − ϑqh
)
∣∣∣∣∣ . (8.4)

Here ϑqh
may be chosen arbitrarily from its discrete space. The control residual and control

weight are defined as

ρq
E :=

∥∥∥(C∗[qh] ε[u∗
h] : ε[u∗

h]),qh

∥∥∥
0,1,E

, ωq
E := ∥q − ϑqh

∥0,∞,E . (8.5)

Concerning the splitting in equation (8.5) we have to assume that for admissible controls,
which do not lead to degenerate microstructures and are therefore always bounded, the derived
entries of the effective elasticity tensor will again be bounded. Then the whole integrand of
ηq

E will be bounded in L1 and we obtain using Hölder’s inequality with exponents 1 and ∞
1
2L,qh

(qh;u∗
h)(q − ϑqh

) ≤
∑

E

1
2η

q
E ≤

∑
E

1
2ρ

q
Eω

q
E .

Finally we have a look at the remainder term. As the linear form does not explicitly depend
on the parameters q and is linear in u∗ it vanishes under the derivative and

R = −1
2

∫ 1

0

d3

ds3 a(qh + seq;u∗
h + seu∗ , u∗

h + seu∗)s(s− 1) ds (8.6)

is obtained. We summarize the derived goal-oriented error estimate in the following theorem.
Theorem 8.3 (Weighted error estimate). For given optimal, continuous and discrete parame-
ters q, qh, and corresponding continuous and discrete elasticity solutions u∗, u∗

h the following
error estimate holds for the compliance objective.∣∣JM[q;u∗]− JM[qh;u∗

h]
∣∣ ≤∑

E

ηE(qh;u∗
h) +R .

Here R is a remainder term of higher order in the differences eu∗ = u∗ − u∗
h and eq = q − qh

and the local error indicators ηE of first order are given by

ηE(qh;u∗
h) = ηu

E + ηu
∂E + 1

2η
q
E

≤ ρu∗

E ωu∗

E + ρu∗

∂Eω
u∗

∂E + 1
2ρ

q
Eω

q
E

with the individual residual and weighting terms as in Definition 8.1 and 8.2.
Remark 8.4. The primal volume and edge residuals reflect the error in the elasticity solution
due to discretization and are known from classical PDE a posteriori error estimates, cf. the very
first example in [8]. Additionally the control residual comes into play here, measuring locally
the sensitivity of the elastic energy density and constituting the relation to the compliance
energy to be minimized.
Remark 8.5. The residual terms only involve discrete quantities and can therefore be
computed a posteriori, once the discrete PDE constrained optimization problem has been
solved. In the weighting terms, however, still the unknown continuous state and controls enter
in differences to their discrete counterparts. These terms can often be tackled analytically by
a priori interpolation estimates and for this purpose the additional splitting into residual and
weighting terms (8.3), (8.5) is beneficial. In a numerical scheme we will instead evaluate the
full terms (8.2), (8.4), and need to devise a suitable approximation of the differences.
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8.1.1. Practical aspects
Based on the previously presented work our numerical algorithm can be extended. An adaptive
numerical scheme typically comprises a recurring sequence of steps, namely

solve 7→ estimate 7→ mark 7→ refine .

In the solve-step the optimization problem is solved on a given meshMh as done previously in
Section 6.2. With the elasticity solution and the optimal parameters at hand, error estimators
are computed for each element E ∈ Mh in the estimate-step, as detailed in the following
sections. Based on the locally estimated errors it has to be decided which elements should be
marked for refinement. In this regard several strategies exist to choose a subset K ⊂Mh. We
follow Dörfler’s approach [156] which amounts to determine K such that∑

E∈K
ηE ≥ r

∑
E∈Mh

ηE ,

i. e. the accumulated error in the marked elements should make up for a fixed fraction r of
the total estimated error. The set should be optimal in terms of cardinality, entailing as few
additional finite elements as possible. We therefore sort the estimated values in decreasing
order and add corresponding elements sequentially to the set K until the prescribed fraction
is attained. For sorting we use std::sort of the C++ Standard Library, which has linear-
logarithmic runtime. One usually aims for linear complexity, cf. [328], but in our situation
the computational cost of the optimization rises far above every other part of the algorithm
anyway. Finally all grid elements in K are refined using the quadtree structure as described in
Section 5.5.2. Furthermore the discrete quantities are interpolated onto the new mesh. In our
implementation we add an outer loop around the code interfacing with Ipopt, that is run
until a prescribed number of refinement sequences has been performed. When passing to a
new grid as much information of the optimizer as possible is transferred. This allows to use
Ipopt’s warm starting capabilities, which generally lead to faster convergence. The software
design is sketched in Appendix C.

8.2. Application to the sequential lamination model
The error estimates derived before can directly be applied to shape optimization problems with
any parametrized microstructure model that allows to set up a macroscopic effective tensor
and associated sensitivities w. r. t. the describing parameters. At first we will consider the
sequential lamination model where the rotation, ratio and density parameters qL := (ϱ,m, θ),
cf. Section 4.2.3, take the roles of the controls q above. Here the effective homogenized
material parameters CL[qL] are given explicitly by (4.21). Discretized controls are denoted
by qL

h := (ϱh,mh, θh) and the associated continuous and discrete solutions by uL and uL
h,

respectively. To distinguish the models later on, the cost functional is denoted by JL here.
Before dwelling on numerical aspects we will exploit the fundamental difference between
the sequential lamination model and the two-scale model, namely the existence of explicit
analytical formulae providing optimal parameters qL from local stresses via (4.20). This
relation will enable us to derive rigorous a priori error estimates. On the contrary parameters
in the context of the two-scale model stem from numerical optimization schemes and effective
tensors depend on numerical approximations of cell problem solutions. We will therefore not
be able to establish similar results in that case.
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8.2.1. A priori estimation of weights
In view of the weighting terms’ definitions (8.3), (8.5), classical interpolation error estimates are
available for the difference between sufficiently regular continuous and discrete primal solutions
uL, uL

h. For the lamination parameters qL, however, we can merely assume boundedness.
Therefore we aim for exploiting the explicit relations of the controls and the state, given
by (4.20). First of all the parameters depend on the stress, which is coupled linearly to
the strain tensor. Of the stress tensor eigenvalues and eigenvectors, or rather their rotation,
have to be considered. This is the crucial point as indeed eigenvalues depend continuously
on their matrices, whereas eigenvectors do not. This is illustrated by the following simple
counterexample.

Example 8.6. Consider the following two stress tensors σ(1)
ϵ , σ(2)

ϵ and observe the limiting
process

σ(1)
ϵ :=

(
1 + ϵ 0

0 1− ϵ

)
−−−→
ϵ→0

(
1 0
0 1

)
←−−−
ϵ→0

(
1 ϵ
ϵ 1

)
=: σ(2)

ϵ = Q

(
1 + ϵ 0

0 1− ϵ

)
QT .

Clearly both of them have eigenvalues (1 + ϵ, 1 − ϵ) tending to (1, 1) for ϵ → 0. However
σ

(1)
ϵ has the unit vectors as eigenvectors whereas σ(2)

ϵ has them rotated by 45° via Q. Both
eigenvector pairs are independent of ϵ and the orientation therefore jumps when ϵ passes 0.

Remark 8.7. The given counterexample has an interesting interpretation in the context of
the sequential lamination construction. For σ proportional to 1, also referred to as hydrostatic
stress, the optimal microstructure is not unique. In fact any orthonormal basis of R2 is a set
of optimal lamination directions, cf. [12, Remark 4.3].

On grounds of these preliminary considerations, we cannot continue with estimating the
weighting terms unless the contribution from the rotation parameter ϱ is removed from the
control residual (8.4). But this is indeed possible by observing that the elastic energy density
in case of optimal sequential lamination is invariant w. r. t. rotation. Intuitively it follows
from the fact that the local lamination direction is always aligned with the local main stress
direction, yielding orthotropic material properties within the likewise rotated coordinate frame.
We formalize this observation in the following lemma.

Lemma 8.8 (Invariance of optimal elastic energy w. r. t. rotation). For any fixed x ∈ D let
CL[qL](x) be the local effective elasticity tensor stemming from an optimal rank-2 sequential
lamination microstructure. Let uL[qL] be the corresponding solution to the weak elasticity
problem which in turn depends on the local elasticity tensors and therefore on qL. The local
elastic energy density in x is then invariant w. r. t. the rotation parameter ϱ, in particular

d
dϱ

(
CL[qL] ε

[
uL[qL]

]
: ε
[
uL[qL]

])
(x) = 0 .

Proof. In the following all terms are considered pointwise for x arbitrary but fixed. Indepen-
dence can be seen directly from the Hashin-Shtrikman bounds, which are given in terms of
stresses. Let therefore σL[qL](x) := CL[qL] ε

[
uL] and rewrite the elastic energy density as

CL[qL] ε
[
uL] : ε

[
uL] =

(
CL[qL]

)−1
σL[qL] : σL[qL] .
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By assumption CL[qL] is an optimal effective elasticity tensor and the local elastic energy
density thereby attains the lower Hashin-Shtrikman bound, cf. Theorem 4.15, i. e.(

CL[qL]
)−1

σL[qL] : σL[qL] = C−1σL[qL] : σL[qL] + (κ+ µ)θ
4κµ(1− θ) (|λ(1)|+ |λ(2)|)2 .

The eigenvalues λ(1), λ(2) of σL do not depend on the rotation parameter, which is deduced
from the orientation of the eigenvectors. Hence ϱ only enters the first term of the right hand
side via σL. This term represents an elastic energy density as well, but this time involving
the isotropic constituent C. Isotropy just means that the material’s response to strains does
not depend on their principal directions. Altering the alignment of σL, e. g. by rotating to
reference configuration, therefore does not change the term. Altogether we see that the right
hand side is not influenced by the rotation parameters ϱ, so the derivative of the left hand
side w. r. t. ϱ has to vanish.

Some aspects are important for the application of the above result in context of our error
estimates. First of all we have to restrict ourselves to boundary value problems that allow
to write the compliance cost equivalently in terms of the elastic energy, cf. Remark 4.12.
Secondly the state uL and the controls qL have to be in correspondence at every point, i. e.
the lamination parameters have to be optimal for σL in the sense of formula (4.20) and
uL has to be the elasticity solution for the continuous, spatially varying tensor field CL[qL].
Lastly this dependence of uL on qL has to be taken into account in the derivation of the
error estimates and the total derivative has to be considered in order to track the mutual
alignment of the material and the principal direction of the stress tensor. We can therefore
not directly apply the invariance result to the control residual (8.4), where only partial
derivatives appear. Instead we have to modify the calculations leading to Theorem 8.3 to
explicitly generate the total derivative w. r. t. ϱ. To this end we formally introduce an artificial
dependence uL[ϱ] of the elasticity solution on the rotation parameter ϱ, which were technically
decoupled by means of the Lagrangian formulation before. The error in the state then becomes
euL(s) = uL[ϱ] − uL

h[ϱh + s(ϱ − ϱh)], yielding uL
h[ϱh + s(ϱ− ϱh)] + seuL(s)

∣∣
s=1 = uL[ϱ] and

uL
h[ϱh + s(ϱ− ϱh)] + seuL(s)

∣∣
s=0 = uL

h[ϱh] as before. In the following we assume sufficient
differentiability and that uL

h is a discrete weak solution for continuous, spatially varying
parameters as postulated above. With d

ds

(
uL

h[ϱh + s(ϱ− ϱh)] + seuL(s)
) ∣∣

s=0 = uL
h,ϱ[ϱh](ϱ−

ϱh) + euL(0) the error in the Lagrangian (8.1) changes to

eL = 1
2f(0) +R = 1

2L,uL
h
(qL

h , u
L
h[ϱh])(uL

h,ϱ[ϱh](ϱ− ϱh)) + 1
2L,uL

h
(qL

h , u
L
h[ϱh])(uL[ϱ]− uL

h[ϱh])

+ 1
2L,ϱh

(qL
h , u

L
h[ϱh])(ϱ− ϱh) + 1

2L,(mh,θh)(qL
h , u

L
h[ϱh])

(
m−mh

θ − θh

)
+R

= 1
2L,uL

h
(qL

h , u
L
h[ϱh])(uL[ϱ]− uL

h[ϱh]) + 1
2L,(mh,θh)(qL

h , u
L
h[ϱh])

(
m−mh

θ − θh

)
+ d

dϱh

1
2L(qL

h , u
L
h[ϱh])(ϱ− ϱh) +R .

In the last step we combined terms to obtain the total derivative w. r. t. ϱ. Under the
assumptions already made we see

d
dϱh

1
2L(qL

h , u
L
h[ϱh]) = 1

2

∫
O

d
dϱh

CL[qL
h ] ε
[
uL

h[ϱh]
]

: ε
[
uL

h[ϱh]
]

dx
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and thus the corresponding term of eL vanishes by virtue of Lemma 8.8. Plugging in arbitrary
discrete functions ϑu∗

h
, ϑmh

, and ϑθh
we exactly regain the primal residual terms of Defini-

tion 8.1 and the control residual terms of Definition 8.2 except for the one w. r. t. the rotation
parameter. Altogether, in consideration of (4.21), we now have

ρuL

E =
∥∥div

{
(R[ϱh] C̄L [mh, θh]) ε

[
uL

h

]}∥∥
0,2,E

, ωuL

E =
∥∥uL − ϑu∗

h

∥∥
0,2,E

,

ρuL

∂E =
∥∥j ((R[ϱh] C̄L [mh, θh]) ε

[
uL

h

])∥∥
0,2,∂E

, ωuL

∂E =
∥∥uL − ϑu∗

h

∥∥
0,2,∂E

,

ρm
E =

∥∥(R[ϱh] C̄L
,m [mh, θh]) ε

[
uL

h

]
: ε
[
uL

h

]∥∥
0,1,E

, ωm
E = ∥m− ϑmh

∥0,∞,E ,

ρθ
E =

∥∥(R[ϱh] C̄L
,θ [mh, θh]) ε

[
uL

h

]
: ε
[
uL

h

]∥∥
0,1,E

, ωθ
E = ∥θ − ϑθh

∥0,∞,E .

(8.7)

Let us remark that for bounded parameters mh, θh the differentiated entries of C̄L [mh, θh]
will again be bounded, s. t. the control residual terms for m and θ are indeed bounded in L1.
We are now ready to present the rigorous estimation of the weighting terms.
Theorem 8.9 (Rigorous estimates of weighting terms). Under the additional assumption
that uL ∈W 2,∞(D;R2) the following estimates for the weighting terms hold.

ωuL

E ≲ h2
E |uL|2,2,E ,

ωuL

∂E ≲ h∂E ∥uL∥2,2,E ,

ωm
E ≲ hE |uL|2,∞,E ,

ωθ
E ≲ hE |uL|2,∞,E ,

where “≲” stands for “≤” up to multiplication on either side by a fixed constant.
Proof. Starting from equation (8.7) we choose ϑu∗

h
= Ihu

L, i. e. the Lagrangian interpolant of
the continuous solution in the employed finite element space, for the so far arbitrary discrete
function in the primal weighting term. Interpolation estimates of Theorem 3.24 for m = 0,
p = 2 and k = 1, d = 2 or k = 0, d = 1, respectively, then give

∥uL − Ihu
L∥0,2,E ≲ h2

E |uL|2,2,E ,

∥uL − Ihu
L∥0,2,∂E ≲ h∂E |uL|1,2,∂E .

The final result for the boundary term follows by virtue of the trace theorem. Next we estimate
the control weight for the ratio parameter m. The argument for the density parameter θ is
completely analogous. Let σ = CLε

[
uL] be the stress tensor for the continuous elasticity

solution and σh = CLε
[
Ihu

L] likewise for the discrete interpolated solution. We then choose
ϑmh

= m[σh], i. e. the discrete function ϑmh
is obtained by pointwise evaluation of the

interpolated solution Ihu
L, computing the corresponding stress σh, deriving its eigenvalues

and inserting them into formula 4.20. Thereby we obtain

∥m− ϑmh
∥0,∞,E = ∥m[σ]−m[σh]∥0,∞,E = sup

x∈E
|m[σ(x)]−m[σh(x)]| .

Since E is bounded a maximum is attained at some x̄ ∈ E with stresses σ̄ = σ(x̄) and
σ̄h = σh(x̄). The function m[σ] is Lipschitz continuous in the eigenvalues λ(1)(σ), λ(2)(σ) of σ
as long as σ is bounded away from the zero matrix. We then obtain

|m[σ̄]−m[σ̄h]| ≲
(
|λ(1)(σ̄)− λ(1)(σ̄h)|2 + |λ(2)(σ̄)− λ(2)(σ̄h)|2

) 1
2
.
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8.2. Application to the sequential lamination model

The eigenvalues are Lipschitz continuous functions of their matrices. In particular the Wielandt-
Hoffmann inequality, [231] for n = 2, yields(

|λ(1)(σ̄)− λ(1)(σ̄h)|2 + |λ(2)(σ̄)− λ(2)(σ̄h)|2
) 1

2 ≤ ∥σ̄ − σ̄h∥F

where ∥.∥F denotes the Frobenius norm. We then have

∥σ̄ − σ̄h∥F ≤ sup
x∈E
∥σ(x)− σh(x)∥F = ∥σ − σh∥0,∞,E .

Due to linearity of the mapping from strain to stress tensors by CL, there holds

∥σ − σh∥0,∞,E =
∥∥CL (ε[uL]− ε[Ihu

L])∥∥
0,∞,E

≤
∣∣∣∣∣∣CL∣∣∣∣∣∣ ∥∥ε[uL]− ε[Ihu

L]∥∥
0,∞,E

,

where
∣∣∣∣∣∣CL∣∣∣∣∣∣ is an appropriate operator norm for the elasticity tensor. Finally we pass from

the symmetrized strain tensor to the full Jacobian, yielding∥∥ε[uL]− ε[Ihu
L]∥∥

0,∞,E
≲
∣∣uL − Ihu

L∣∣
1,∞,E

≤
∥∥uL − Ihu

L∥∥
1,∞,E

.

Now the interpolation estimates of Theorem 3.24 for m = 1, p =∞ and k = 1 give∥∥uL − Ihu
L∥∥

1,∞,E
≲ hE |uL|2,∞,E

concluding the proof.

Remark 8.10. While the error estimates of Theorem 8.3 merely provide an upper bound
for the error in the cost functional, the additional result of Theorem 8.9 guarantees that
this upper bound will itself remain bounded and thus not become insignificant for the error
control.

8.2.2. Numerical approximation of weights
For a practical numerical scheme the weighting terms in (8.7), involving the unknown contin-
uous quantities uL, m, and θ, need to be approximated using the numerical solution uL

h and
the derived parameters mh, θh. A common approach is to exploit potential higher regularity
of the continuous solution via a further discrete solution obtained by a higher order scheme.
This however is computationally demanding and counteracts the typical requirement for an
error estimator to be efficiently evaluable with negligible cost compared to the optimization.
Instead [66] suggests to merely interpolate the discrete quantities to higher order polynomials.
For our type of adaptive meshes, described in Section 5.5, this is instantly applicable. Due
to the quadtree structure, each element E ∈ Mh is always part of a super patch S ⊂ Mh

consisting of the four children of its parent element. On this patch a higher order polynomial
can be constructed taking into account the combined degrees of freedom from all sub-elements.
For triangulated domains this approach is not easily applicable. See Appendix A for comments
and results in this context.

For the primal solution uL
h we use biquadratic finite element functions as explained in

Section 5.5.1. They are determined by 3× 3 degrees of freedom per element. On a super patch
S we therefore have 5× 5 nodal values at our disposal, giving rise to a biquartic polynomial,
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Figure 8.1.: Illustration of a super patch in an adaptive grid with a biquartic function on
the patch (green) and the a usual biquadratic finite element function on one
sub-element (blue).

denoted by I(4)
h uL

h

∣∣∣
S

. See Figure 8.1 for an exemplary illustration. The norm of its difference
to the discrete solution is then evaluated using numerical quadrature.

Concerning the controls we first of all have to observe that the parameters qL
h were assumed

to vary continuously in space in the preceding section, especially in view of the application
of Lemma 8.8. Obviously this is not practicable in a numerical algorithm. However, as
remarked before in Section 5.5.1, the error due to discrete sampling is controlled as long as
the chosen quadrature scheme is exact in the context of constant coefficients, which we will
guarantee in our computations. The parameters ϱ, m, θ therefore exist as degrees of freedom
on all quadrature points. For the density parameter θ this could again lead to checkerboard
instabilities and it is therefore replaced by a piecewise constant average of the values on
the element’s quadrature points. The final approximation of the weights is hence different
in each case. For the ratio parameter m the interpolated elasticity solution I(4)

h uL
h and the

existing elasticity tensor field CL can be taken into account at each quadrature point. However
lamination parameters corresponding to the interpolated solution, i. e. m[I(4)

h uL
h], cannot be

directly computed from the stress CL ε
[
I(4)

h uL
h

]
as they would enter the effective elasticity

tensor themselves. To overcome this chicken-and-egg situation we consider the rephrased
linear strain-stress relation

C̄L
[
m[λ(i)], θ

]
ε
[
I(4)

h uL
h

]
−Q[ϱ]

(
λ(1)

λ(2)

)
Q[ϱ]⊤ = 0 ,

which consists of three independent equations due to symmetry. We use Newton’s method to
solve for the rotation parameter ϱ and the eigenvalues λ(i), from which m can be computed,
while the density θ is held fixed. The difference to the existing discrete ratio parameter can then
be evaluated. This procedure is applicable for the rotation parameter ϱ as well, which however
was eliminated from the error estimate. For the density parameter θ the piecewise constant
approximations on a super patch of four neighboring elements can be used to construct a
bilinear profile. We summarize the approximation strategy in the following remark.

Remark 8.11 (Approximation of local weights). To approximate the weighting terms for
the primal and the control error indicator on every element E we consider a patch S of four
neighboring elements including E and proceed as follows.
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• For the primal error indicator 5× 5 degrees of freedom stemming from all elements of
the patch are used to construct a biquartic polynomial on the patch. This interpolation
I(4)

h uL
h is then compared to the original approximation.

ωuL

E ≈
∥∥∥I(4)

h uL
h − uL

h

∥∥∥
0,2,E

, ωuL

∂E ≈
∥∥∥I(4)

h uL
h − uL

h

∥∥∥
0,2,∂E

• For the ratio error indicator lamination parameters are computed iteratively from the
interpolated elasticity solution and compared to the original parameters. For the density
error indicator four piecewise constant values are used to construct a bilinear profile on
the patch which is then compared to the original value.

ωm
E ≈

∥∥∥m[I(4)
h uL

h]−m[uL
h]
∥∥∥

0,∞,E
, ωθ

E ≈
∥∥∥I(1)

h θh − θh

∥∥∥
0,∞,E

8.2.3. Numerical results
In this Section we present results obtained by the derived adaptive scheme using the sequential
lamination model for several classical shape optimization problems. The parameter for the
Dörfler marking was always set to r = 0.3.

Carrier plate. Our first example is the carrier plate under shearing that was already considered
in Section 6.2. In Figure 8.2 generated meshes at selected intermediate refinement steps are
shown. Figure 8.3 displays the optimal density distribution obtained by the fully converged
sequential lamination algorithm on the respective meshes. Obviously interfaces within the
domain are captured by the adaptive scheme and become increasingly resolved during the
course of the algorithm. The results are reminiscent of Figure 6.10 where uniform refinement

Figure 8.2.: Generated meshes after 0, 3, 6, 9, 13, 17, 21, and 29 refinement steps for the
carrier plate scenario and the sequential lamination model.

147
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Figure 8.3.: Optimal density obtained after 0, 3, 6, 9, 13, 17, 21, and 29 refinement steps for
the carrier plate scenario and the sequential lamination model.

was used. The crucial point is that comparable results are obtained here much more efficiently
using the adaptive scheme. This is underlined by Figure 8.4, where the error in the costs is
plotted against the number of elements in the computational grid. The error is computed

10−4

10−3

10−2

10−1

26 28 210 212 214 216 218 220

JL
−

JL 0

Number of elements |Mh|

uniform refinement
adaptive refinement

Figure 8.4.: Difference to the optimal cost value from Table 6.8 plotted against the number of
elements in the computational grid for the carrier plate scenario and the sequential
lamination model.
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as JL − JL
0 using the asymptotic value from Table 6.8 as the optimal cost JL

0 . After 19
refinement steps in the adaptive scheme the cost functional has dropped below the value
obtained after 10 uniform refinements. At this point there are 14 356 elements in the adaptive
mesh. Compared to 10242 elements in the uniform grid this implies a reduction by almost
two orders of magnitude.

A further striking observation in Figure 8.4 is the staircasing in the error of the adaptive
scheme. It can be explained by examining the different contributions to the overall estimated
error. This is done for four subsequent refinement steps in Figure 8.5.

In general the full primal volume residual ηuL

E and the full control residual w. r. t. the
density parameter ηθ

E dominate the estimated error, but in different areas. The first column
in Figure 8.5 depicts the situation after 8 refinement steps, where a set of elements is selected
for refinement that will lead to a significant drop in the difference to the optimal objective,
cf. Figure 8.4. The volume indicator shows high values in the vicinity of the lower corners. Due
to the change from homogeneous Dirichlet to homogeneous Neumann boundary conditions,
stress concentrations are found here. The density control indicator has several cells with even
higher estimated values and these cells are located near the already established interfaces.
This leads to further refinement of the interfaces as can be seen when comparing the grids
in the first and second column. In the next step the volume indicator shows some cells as
before. Those elements were ultimately not within the refinement set and are now candidates
once again. Moreover cells appear in the central solid block. The density control indicator
is now focused on other regions. Selected cells are still near interfaces, which appear clearer
afterwards in the third column. However the difference in the density across the newly refined
interfaces is less than before and thus the drop in the objective is less significant. More of the
cells selected by the volume indicator are refined, but this seems to have less effect. In the
next step the density control indicator induces a new refinement level for the interfaces toward
the lower near void region. This again leads to a significant reduction in the costs. A similar
behavior was observed in [4]. According to the authors, it was caused by calculating the global
error as a sum of absolute values for each of the cells, which prevents error cancelation across
elements.

Table 8.1 summarizes all important figures of the adaptive algorithm for the carrier plate.
A new important quantity is the ratio between the total estimated error and the difference to
the optimal objective in the last column. In view of Theorem 8.3 it is bounded from below
by 1 if the estimator, and especially the weights, are evaluated exactly using the optimal
continuous state and controls. In the numerical examples the condition is violated due to the
approximation of the weighing terms. An important insight however is that the factor does
not degenerate during the course of the algorithm. In fact it is always within the interval
(0.096, 0.178). This implies that the error in the cost functional and its estimate show the same
behavior in decrease. The numerical quantity does not over- or underestimate the true error
and thus neither leads to irrelevant refinements nor misses relevant ones. Underestimation of
errors in the dual weighted residual approach is also discussed in [307].

After 21 refinement steps the lower corner cells have reached the maximal refinement level.
This is a technical limitation due to the binary representation of elements’ hash keys, which
could be lifted easily. However in this example the subsequently missing refinement does not
impede the overall scheme.
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Chapter 8. Adaptive schemes for optimal microstructures

Figure 8.5.: Different terms in the estimated error after 8, 9, 10, and 11 refinement steps
(left to right) for the carrier plate scenario and the sequential lamination model:
optimized density as in Figure 8.3, ηuL

E , ηuL

∂E , 1
2η

m
E , and 1

2η
θ
E (top to bottom),

visualized using color map with consistent ranges of mapped values for
each refinement step.
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|Mh|
∑

E η
uL

E

∑
E η

uL

∂E

∑
E

1
2η

m
E

∑
E

1
2η

θ
E JL

∑
E ηE

JL−JL
0

0 64 0.00801 0.00346 0.00005 0.00979 2.04031 0.10637
1 82 0.00723 0.00224 0.00012 0.00849 1.95462 0.15758
2 106 0.00424 0.00141 0.00008 0.00760 1.94747 0.12385
3 148 0.00326 0.00139 0.00007 0.00589 1.94171 0.10428
4 220 0.00237 0.00070 0.00004 0.00407 1.89705 0.12567
5 286 0.00167 0.00072 0.00005 0.00315 1.89389 0.10370
6 406 0.00116 0.00048 0.00003 0.00251 1.87112 0.13375
7 520 0.00089 0.00037 0.00002 0.00191 1.86690 0.11835
8 670 0.00073 0.00030 0.00002 0.00146 1.86600 0.09614
9 898 0.00060 0.00022 0.00001 0.00113 1.85461 0.13313

10 1186 0.00044 0.00019 0.00002 0.00089 1.85361 0.11295
11 1576 0.00032 0.00014 0.00002 0.00069 1.84746 0.15422
12 2212 0.00026 0.00011 0.00002 0.00053 1.84697 0.12935
13 2956 0.00021 0.00008 0.00002 0.00041 1.84398 0.17742
14 3844 0.00015 0.00007 0.00002 0.00032 1.84367 0.14852
15 5038 0.00011 0.00005 0.00001 0.00025 1.84345 0.12028
16 6736 0.00008 0.00004 0.00001 0.00020 1.84201 0.15759
17 8650 0.00007 0.00003 0.00001 0.00016 1.84186 0.14105
18 11044 0.00006 0.00003 0.00001 0.00013 1.84171 0.12677
19 14356 0.00005 0.00002 0.00001 0.00010 1.84096 0.17480
20 18640 0.00003 0.00002 0.00001 0.00008 1.84089 0.14670
21 24430 0.00003 0.00002 0.00001 0.00007 1.84084 0.12984
22 31522 0.00002 0.00001 0.00001 0.00005 1.84047 0.16997
23 40840 0.00002 0.00001 0.00001 0.00004 1.84044 0.14155
24 53224 0.00001 0.00001 <0.00001 0.00003 1.84040 0.11976
25 69748 0.00001 0.00001 0.00001 0.00003 1.84022 0.15588
26 89353 0.00001 0.00001 <0.00001 0.00002 1.84021 0.13038
27 115849 0.00001 <0.00001 <0.00001 0.00002 1.84011 0.15005
28 151183 0.00001 <0.00001 <0.00001 0.00001 1.84010 0.12874
29 194737 <0.00001 <0.00001 <0.00001 0.00001 1.84010 0.11046

Table 8.1.: Listing of important quantities obtained by the adaptive scheme for the carrier
plate scenario and the sequential lamination model.

Cantilever. When dealing with classical shape optimization problems in Section 6.2, the
underlying geometry was restricted to the unit square. In this regard the adaptive meshes
allow for more flexibility. Given the quadtree structure, cf. Section 5.5.2, it is possible to
leave out subtrees by supplying appropriate masks. Their roots are thereby identified via
corresponding elements in the tree. The first instance is a cantilever with a rectangular
working domain D = [0, 1] × [0, 1

2 ]. The left boundary ΓD = {0} × [0, 1
2 ] is assumed to be

fixated. In the middle of the right boundary, ΓN = {1} × [ 3
16 ,

5
16 ], a downwards pointing load

g ≡ (0,−1) is applied. The remaining part of the boundary is allowed to evolve freely in terms
of homogeneous Neumann boundary conditions. The overall volume fraction is constrained
to 50% and no volume forces are considered, i. e. f ≡ 0. In Figure 8.6 generated meshes at
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Figure 8.6.: Generated meshes after 0, 4, 8, 12, 16, and 20 refinement steps for the cantilever
scenario and the sequential lamination model.

selected intermediate refinement steps are shown. Figure 8.7 displays the optimal density
distribution obtained by the fully converged sequential lamination algorithm on the respective
meshes. First of all a symmetric shape is obtained. This is expected for the same reasons

Figure 8.7.: Optimal density obtained after 0, 4, 8, 12, 16, and 20 refinement steps for the
cantilever scenario and the sequential lamination model.

as discussed previously for the carrier plate scenario. The optimized configuration has two
thick beams starting at the Dirichlet boundary with near solid material. Along their paths
they become thinner and the effective density decreases as well. They finally overlap at the
right hand side, where the loading is applied, within a triangular shaped area, filled with
bulk material. On the left hand side a near void right-angled triangular area can be seen,
which is similar to the lower central region in the carrier plate scenario. Moving toward
the right hand side two pairs of small curved trusses can be recognized between the outer
beams. In the right half of the enclosed area the density is overall homogeneous. Refinement
occurs mainly for the boundaries of the thick beams and the left hand side void region. As
observed previously it is stronger where the jump in density is higher. Additionally cells in
the upper and lower left corners are refined. As for the carrier plate scenario, this is where
the Dirichlet and Neumann boundaries meet. Table 8.2 summarizes all important figures of
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8.2. Application to the sequential lamination model

the adaptive algorithm. Similar to before the full primal volume residual ηuL

E and the full
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∑
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JL−JL
0

0 128 0.00131 0.00070 0.00004 0.00151 0.23375 0.05397
1 152 0.00074 0.00040 0.00005 0.00129 0.20078 0.07538
2 182 0.00071 0.00037 0.00004 0.00108 0.19971 0.06914
3 260 0.00045 0.00025 0.00003 0.00082 0.19930 0.04942
4 344 0.00035 0.00020 0.00003 0.00064 0.19881 0.03941
5 428 0.00026 0.00016 0.00003 0.00050 0.18356 0.06027
6 566 0.00021 0.00013 0.00003 0.00038 0.18325 0.04834
7 764 0.00016 0.00008 0.00002 0.00029 0.17572 0.06990
8 998 0.00012 0.00007 0.00002 0.00023 0.17555 0.05571
9 1352 0.00009 0.00005 0.00002 0.00017 0.17526 0.04346

10 1754 0.00006 0.00004 0.00002 0.00013 0.17160 0.06476
11 2372 0.00005 0.00003 0.00002 0.00010 0.17152 0.05121
12 3146 0.00003 0.00002 0.00001 0.00008 0.17145 0.03929
13 4124 0.00002 0.00001 0.00001 0.00006 0.16962 0.05971
14 5420 0.00002 0.00001 0.00001 0.00004 0.16959 0.04713
15 7400 0.00001 0.00001 0.00001 0.00003 0.16869 0.07485
16 9902 0.00001 0.00001 0.00001 0.00002 0.16866 0.06010
17 12758 0.00001 0.00001 0.00001 0.00002 0.16865 0.05134
18 17120 0.00001 <0.00001 0.00001 0.00001 0.16820 0.09066
19 23534 0.00001 <0.00001 0.00001 0.00001 0.16819 0.08146
20 31787 <0.00001 <0.00001 0.00001 0.00001 0.16818 0.06897
21 42845 <0.00001 <0.00001 0.00001 0.00001 0.16796 0.15323
22 57938 <0.00001 <0.00001 0.00001 0.00001 0.16795 0.15000
23 78464 <0.00001 <0.00001 0.00001 <0.00001 0.16795 0.14530
24 110294 <0.00001 <0.00001 0.00001 <0.00001 0.16784 2.99946

Table 8.2.: Listing of important quantities obtained by the adaptive scheme for the cantilever
scenario and the sequential lamination model.

control residual w. r. t. the density parameter ηθ
E dominate the estimated error. This can be

seen based on selected steps in Figure 8.8 as well. Especially in the later stages the density
indicator concentrates on interfaces, whereas the volume indicator is active within regions of
bulk material, as e. g. in the left hand side corners. All indicators decrease during the course
of the adaptive scheme, along with the difference to the optimal objective JL

0 , which was again
obtained by running a series of computations and the asymptotic analysis as described in
Section 6.2.2. The factor between both terms is kept within bounds until after refinement step
21. Here a significant jump occurs as the control residual ηm

E stagnates. Consequences can been
seen in the last image of Figure 8.6. Additional refinement occurs in the void regions where it
is obviously unnecessary. The root cause is the determination of the ratio parameter from the
local stresses, which becomes an ill-posed problem when the effective density approaches zero.
Apparently it is also not meaningful to compute the ratio of material in the two lamination
directions when there is hardly any material. At the beginning spurious values of this indicator
in the discussed regions are dominated by the other terms but at some point they become
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Chapter 8. Adaptive schemes for optimal microstructures

noticeable. This can be observed clearly in Figure 8.6. Although not justified by the derivation

Figure 8.8.: Different terms in the estimated error after 4, 10, and 16 refinement steps (left to
right) for the cantilever scenario and the sequential lamination model: ηuL

E , ηuL

∂E ,
1
2η

m
E , and 1

2η
θ
E (top to bottom), visualized using color map with consistent

ranges of mapped values for each refinement step.

of the error estimate, the situation for this scenario can be improved by ignoring the control
residual w. r. t. the ratio parameter. For demonstration we run the adaptive scheme again
with this setup and show some steps of the refinement process in Figure 8.9. As can be seen,
no more unnecessary refinement occurs in the near void region, cf. Figure 8.6.

Bridge. The next scenario resembles a bridge. Again the rectangular working domain D =
[0, 1]× [0, 1

2 ] is used. On the lower boundary, supports are set on ΓD =
(
[0, 1

16 ] ∪ [ 15
16 , 1]

)
×{0}.

Here the y-component of the displacement is forced to zero whereas the x-component is
unconstrained. This is sometimes referred to as roller boundary condition as it allows
movements in the horizontal direction. To maintain a unique solution the x-component
is additionally set to zero for a single node in the center of the lower boundary. In between
the supports, ΓN = ( 1

16 ,
15
16 ) × {0}, a downwards pointing load g ≡ (0,−1) is applied. The

remaining part of the boundary is allowed to evolve freely in terms of homogeneous Neumann
boundary conditions. The overall volume fraction is constrained to 33% and no volume forces
are considered, i. e. f ≡ 0.

In Figure 8.10 generated meshes at selected intermediate refinement steps are shown.
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8.2. Application to the sequential lamination model

Figure 8.9.: Generated meshes after 4, 12, and 20 refinement steps for the cantilever scenario
and the sequential lamination model with excluded control residual w. r. t. the
ratio parameter in the error estimation.

Figure 8.11 displays the optimal density distribution obtained by the fully converged sequential

Figure 8.10.: Generated meshes after 0, 4, 8, 12, 16, and 20 refinement steps for the bridge
scenario and the sequential lamination model.

lamination algorithm on the respective meshes. As before an overall symmetric picture is
obtained. Along the lower boundary a horizontal bar from bulk material is established, which
becomes thicker toward the center. Above an arc-shaped solid beam spans from one side to the
other, utilizing the working domain to full extend. In between material with a homogeneous
intermediate density is placed. Near void regions are left in the upper corners. No additional
structures can be recognized in Figure 8.11 and the refinement process is fully focused on the
boundaries of the beams and the supporting regions. The behavior of the adaptive scheme is
comparable to the cantilever scenario before. Also here unnecessary refinement occurs in the
near void regions due to spurious estimates of the control residual w. r. t. the ratio parameter.
Table 8.3 summarizes all important figures and again shows the stagnation of the control
residual estimator w. r. t. the ratio parameter.
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Figure 8.11.: Optimal density obtained after 0, 4, 8, 12, 16, and 20 refinement steps for the
cantilever scenario and the sequential lamination model.
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0

0 128 0.02008 0.01027 0.00024 0.01264 0.84652 0.24094
1 134 0.00926 0.00589 0.00017 0.01133 0.77227 0.25330
2 158 0.00598 0.00502 0.00017 0.00995 0.73678 0.30313
3 194 0.00464 0.00338 0.00017 0.00863 0.71706 0.33665
4 248 0.00405 0.00273 0.00017 0.00647 0.69809 0.43291
5 326 0.00344 0.00191 0.00017 0.00552 0.68744 0.54282
6 470 0.00222 0.00124 0.00014 0.00434 0.68410 0.46659
7 590 0.00204 0.00120 0.00015 0.00345 0.68150 0.47496
8 764 0.00149 0.00082 0.00012 0.00283 0.67814 0.47623
9 986 0.00127 0.00071 0.00014 0.00227 0.67479 0.57004

10 1268 0.00104 0.00058 0.00013 0.00174 0.67270 0.62141
11 1664 0.00073 0.00038 0.00012 0.00146 0.67140 0.62439
12 2150 0.00058 0.00034 0.00010 0.00118 0.67021 0.70456
13 2846 0.00049 0.00031 0.00009 0.00090 0.66938 0.78782
14 3848 0.00037 0.00023 0.00009 0.00070 0.66882 0.80640
15 4946 0.00027 0.00019 0.00008 0.00055 0.66839 0.83618
16 6509 0.00022 0.00013 0.00008 0.00043 0.66807 0.88104
17 8570 0.00016 0.00011 0.00008 0.00033 0.66785 0.89601
18 11261 0.00011 0.00008 0.00007 0.00024 0.66766 0.90927
19 14879 0.00008 0.00006 0.00007 0.00019 0.66753 0.92561
20 19316 0.00007 0.00005 0.00007 0.00015 0.66742 1.02171
21 26381 0.00006 0.00004 0.00007 0.00011 0.66732 1.25007
22 34358 0.00004 0.00003 0.00007 0.00009 0.66727 1.38833
23 45857 0.00003 0.00003 0.00007 0.00007 0.66722 1.70958

Table 8.3.: Listing of important quantities obtained by the adaptive scheme for the bridge
scenario and the sequential lamination model.
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8.2. Application to the sequential lamination model

L-shaped domain. In the last example an L-shaped domain is considered, which is obtained
by excluding the upper right quadrant of the unit square, i. e. D = [0, 1]2 \ ( 1

2 , 1]2. The upper
boundary, ΓD = [0, 1

2 ]×{1}, is fixated. In the middle of the right boundary, ΓN = {1}×[ 3
16 ,

5
16 ],

a downwards pointing load g ≡ (0,−1) is applied. The remaining part of the boundary is
allowed to evolve freely in terms of homogeneous Neumann boundary conditions. The overall
volume fraction is constrained to 50% and no volume forces are considered, i. e. f ≡ 0. In
Figure 8.12 generated meshes at selected intermediate refinement steps are shown. Figure 8.13

Figure 8.12.: Generated meshes after 0, 3, 6, 9, 12, 15, 18, and 24 refinement steps for the
L-shaped domain and the sequential lamination model.

displays the optimal density distribution obtained by the fully converged sequential lamination
algorithm on the respective meshes. The overall outcome of the optimization is reminiscent
of a hook and shows different structures in each of the three quadrants. Solid beams are
formed on the sides of the upper part, connecting the Dirichlet boundary to the rest of the
domain. The region in between is near void. In the lower left quadrant the beams bend toward
the right and continue similar to the cantilever. The region in between the beams shows an
intermediate density. For coarser meshes it is homogeneous as in the bridge scenario, but in
later refinements steps an additional arc and cross braces can be seen. As before refinement
occurs for interfaces and is especially strong when the jump in density is high. Another focus
is on the reentrant corner, where a singularity in the elasticity solution is expected. In fact
Figure 8.14 shows that in this scenario the primal volume residual indicator attains higher
values than the control residual w. r. t. the density parameter. In the upper corners, where
Dirichlet and Neumann boundaries meet, refinement occurs as well, but at a later stage and
with less intensity. The second column of Figure 8.14 clearly shows that the density indicator
is active along the interfaces whereas the volume indicator also attains high values within the
beams. As in the examples before unnecessary refinement occurs in the near void regions in
later stages of the algorithm. The increasing influence of the control residual w. r. t. the ratio
parameter can be seen in the third row of Figure 8.14. Table 8.4 lists details of the adaptive
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Figure 8.13.: Optimal density obtained after 0, 3, 6, 9, 12, 15, 18, and 24 refinement steps for
the L-shaped domain and the sequential lamination model.

scheme.
Summarizing the presented results, the derived goal-oriented error estimator works well for

the sequential lamination model. Sharply resolved interfaces, separating regions with almost
no material from regions with bulk material or intermediate density, are generated. The main
driver is the control residual w. r. t. the density parameter. This is in accordance with the
general observation that the rigidity of a shape is mostly improved by an optimal distribution
of the available material.

8.3. Application to the two-scale microstructure model
In this section we will apply the derived error estimates in the context of the two-scale shape
optimization model that was presented in Chapter 5. Here the controls q are the parame-
ters describing the perforations of the local, periodic microstructure for each investigated
model, cf. Section 5.4. By solving cell problems, effective elasticity tensors CM

h := C∗
h[qh] are

obtained via numerical homogenization as described in Section 5.3.1. Taking this macroscopic
perspective, the error estimator can be computed directly. To be precise, the primal residual
terms (8.2) can be evaluated as soon as the two-scale problem has been solved for a given
configuration. For the control terms (8.4) entry-wise sensitivities of the effective elasticity
tensor, and thereby of the associated two-scale elastic energy densities, are required. Those
were already derived in the course of the shape derivative, cf. (5.9).

In the following we present results obtained by the adaptive scheme using ellipsoidal shaped
perforations and rotating orthogonal rods as microscopic models, cf. Section 5.4. We will focus
on the carrier plate scenario that was already considered in Section 6.2 and in the preceding
section in context of the sequential lamination model. The microstructures are discretized by
12 points for each side of the outer boundary, each side of the inner boundary for rotating rods,
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8.3. Application to the two-scale microstructure model

Figure 8.14.: Different terms in the estimated error after 0, 6, 12, and 18 refinement steps (left
to right) for the L-shaped domain and the sequential lamination model: ηuL

E ,
ηuL

∂E , 1
2η

m
E , and 1

2η
θ
E (top to bottom), visualized using color map with

consistent ranges of mapped values for each refinement step.

and the ellipsoidal perforation, respectively. As was discussed in Section 6.2.3 this provides a
good tradeoff between accuracy and computational effort. The adaptive scheme was started
from a uniform grid of level 3 and the Dörfler marking parameter was set to r = 0.4. As done
in Section 6.2 we display two-scale results by drawing the macroscopic domain subdivided
into its square cells with a representative of the underlying microstructure in each cell. One
has to keep in mind that the actual microstructure is obtained by repeating the representative
shape on a microscopic periodic lattice.
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0 192 0.00174 0.00151 0.00006 0.00163 0.27651 0.06421
1 204 0.00149 0.00094 0.00005 0.00163 0.27732 0.05293
2 225 0.00098 0.00059 0.00004 0.00134 0.23909 0.07454
3 258 0.00070 0.00046 0.00005 0.00124 0.23880 0.06240
4 312 0.00060 0.00036 0.00004 0.00095 0.23831 0.05023
5 399 0.00048 0.00026 0.00004 0.00081 0.22827 0.05553
6 525 0.00038 0.00022 0.00004 0.00061 0.21871 0.06494
7 669 0.00029 0.00017 0.00003 0.00051 0.21827 0.05371
8 858 0.00023 0.00013 0.00003 0.00043 0.21793 0.04486
9 1110 0.00017 0.00010 0.00004 0.00032 0.20906 0.06579

10 1407 0.00014 0.00008 0.00003 0.00027 0.20875 0.05714
11 1797 0.00011 0.00006 0.00003 0.00021 0.20857 0.04618
12 2334 0.00008 0.00005 0.00003 0.00017 0.20632 0.04797
13 3024 0.00006 0.00003 0.00002 0.00013 0.20406 0.05594
14 3912 0.00005 0.00003 0.00002 0.00010 0.20290 0.05990
15 4959 0.00004 0.00002 0.00002 0.00008 0.20283 0.04802
16 6339 0.00003 0.00002 0.00002 0.00006 0.20173 0.05659
17 8295 0.00002 0.00001 0.00002 0.00004 0.20117 0.06253
18 10953 0.00002 0.00001 0.00002 0.00003 0.20114 0.05110
19 14439 0.00001 0.00001 0.00002 0.00003 0.20059 0.06236
20 19119 0.00001 0.00001 0.00002 0.00002 0.20032 0.07311
21 25356 0.00001 0.00001 0.00001 0.00002 0.20031 0.06391
22 34185 0.00001 <0.00001 0.00001 0.00001 0.20003 0.09087
23 45087 0.00001 <0.00001 0.00001 0.00001 0.19990 0.12894
24 59559 <0.00001 <0.00001 0.00001 0.00001 0.19989 0.11610
25 81387 <0.00001 <0.00001 0.00001 0.00001 0.19975 0.21661

Table 8.4.: Listing of important quantities obtained by the adaptive scheme for the L-shaped
domain and the sequential lamination model.

Ellipsoidal perforations. Figure 8.15 shows generated meshes and visualizations of the two-
scale results for selected intermediate refinement steps. The refined interfaces are striking
and clearly draw an outline of the trusses and the upper supporting structure. In later stages
refinement also takes place within the dominating structures and the central bulk region
becomes visible in the adaptive mesh. At some point a break in symmetry occurs, as was
already observed for the uniform case in Section 6.2. It is probably caused by inaccuracies
in the evaluation of the shape derivative for the microscopic cell problems. As the influence
of single parameters on the cost functional decreases for increasingly fine cells, non-optimal
optimization steps might get accepted. In the uniform setting we were able to partly counteract
this issue by applying a scaling that was proportional to the uniform cell size. Naturally
this is not possible anymore for adaptive meshes. Overall the obtained shapes match with
results on uniform grids, cf. Figure 6.6. Only the small additional trusses that appeared on
fine uniform meshes below the supporting structure are not present anymore. In fact they
cannot be realized because the error estimate never predicts a need for refinement in those
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8.3. Application to the two-scale microstructure model

Figure 8.15.: Two-scale results after 0, 5, 10, and 18 refinement steps for the carrier plate
scenario and one ellipsoidal perforation as the microstructure model. In the
upper row the macroscopic mesh is shown. In the lower row a representative of
the microstructure is drawn in each macroscopic cell.

regions, which are filled with as less material as possible. Still the adaptive strategy proves to
be meaningful. After 7 refinement steps the adaptive mesh has 874 cells and the objective
functional is below the value that was obtained on a uniform grid of level 7. Due to differences
in the discretization of the microscopic problem, the values are not truly comparable, still the
saving is significant.

In Table 8.5 we list figures of the error estimation in detail. Most conspicuous is that the
objective functional increases after 10 refinement steps. Besides the already reported break in
symmetry this is a clear indication that the results are not trustworthy at this stage anymore.
In fact the cost value is close to the asymptotically determined, cf. Table 6.8, but as more and
more cells fail to provide sound optimized shapes, the error indicators produce false values as
well.

As an example for the spatial distribution of the error indicators during the sound phase of
the algorithm we depict the situation after 6 refinement steps in Figure 8.16. Here we summed
up the primal volume and edge residual, which are usually active within similar regions. We
also summed up the control residual terms w. r. t. the scaling parameters of the ellipsoidal
perforations. For elongated shapes one parameter corresponds to the dominant semiaxis, but
the selection during the course of the algorithm is arbitrary. The visualization shows that
the control residual terms w. r. t. the scaling parameters are active along the interfaces. The
primal residual terms contribute there as well, but also at the lower corners, as seen previously.
The control residual w. r. t. the rotation has less influence, which is expected as it does not
account for a redistribution of material.
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0 64 0.03653 0.02229 0.02719 0.00716 0.00198 2.41602 0.28230
1 94 0.03061 0.01599 0.01546 0.00422 0.00142 2.25959 0.37483
2 142 0.01549 0.00972 0.01310 0.00438 0.00128 2.23060 0.29003
3 232 0.01363 0.00943 0.00942 0.00300 0.00216 2.16069 0.46079
4 322 0.01160 0.00686 0.00742 0.00245 0.00167 2.14328 0.46670
5 454 0.00911 0.00529 0.00576 0.00196 0.00045 2.13068 0.43675
6 646 0.00625 0.00367 0.00457 0.00172 0.00033 2.10073 0.76103
7 874 0.00456 0.00258 0.00347 0.00132 0.00028 2.09635 0.70407
8 1183 0.00314 0.00199 0.00288 0.00106 0.00020 2.09157 0.73764
9 1573 0.00225 0.00134 0.00224 0.00079 0.00018 2.08141 2.83506

10 1969 0.00192 0.00105 0.00185 0.00093 0.01175 2.08187 6.13112

Table 8.5.: Listing of important quantities obtained by the adaptive scheme for the carrier
plate scenario and one ellipsoidal perforation in the two-scale model.

Figure 8.16.: Different terms in the estimated error after 6 refinement steps for the carrier
plate scenario and one ellipsoidal perforation as microstructure model: ηuL

E +ηuL
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2 (ηq1

E + ηq2
E ), ηq3

E , visualized using color map with consistent ranges of
mapped values.

Rotating orthogonal rods. We now turn toward the rotating orthogonal rods microstructure
model. In Figure 8.17 we show generated meshes and visualizations of the two-scale results
for selected intermediate refinement steps. The situation here is different from before. Overall
the obtained shapes match with the results on uniform grids, cf. Figure 6.9. However distinct
features in the refined meshed can be recognized only at later stages of the algorithm. Apart
from the lower curved boundary of the upper supporting structure no sharp interfaces have
formed. This is in accordance with earlier observations that the microstructure for this
model varies rather smoothly. The adaptive scheme still aids in finding more optimal shapes.
Regions with intermediate density, where the orientation of the perforations varies, receive
refinement whereas regions with bulk or hardly any material do not. As an example we show
the error indicators after 5 refinement steps in Figure 8.18 as done before. Consistent with the
observation just described, marked cells are distributed throughout large parts of the working
domain, which is especially different from the situation in Figure 8.16. In Table 8.5 we list
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8.3. Application to the two-scale microstructure model

Figure 8.17.: Two-scale results after 0, 3, 9, and 13 refinement steps for the carrier plate
scenario and rotating orthogonal rods as the microstructure model. In the upper
row the macroscopic mesh is shown. In the lower row a representative of the
microstructure is drawn in each macroscopic cell.

Figure 8.18.: Different terms in the estimated error after 5 refinement steps for the carrier
plate scenario and rotating orthogonal rods as microstructure model: ηuL

E + ηuL

∂E ,
1
2 (ηq1

E + ηq2
E ), ηq3

E , visualized using color map with consistent ranges of
mapped values.

figures of the error estimation in detail. As before for the ellipsoidal perforations the objective
function increases at some point. Also a break in symmetry can be observed. However, in
contrast to all preceding examples, the cost never comes close to the asymptotic value of
Table 6.8. Consequently the ratio in the last column of Table 8.5 becomes small. The error
indicators still seem plausible but the shape is not correctly optimized anymore. On the whole
the adaptive scheme seems to suffer more severely from numerical deficiencies, which could be
attributed to the non-smooth boundary, cf. Remark 5.7, the coarse microscopic discretization,
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0 64 0.03993 0.01756 0.02677 0.01526 0.00773 2.16324 0.34262
1 100 0.02724 0.01151 0.02639 0.01105 0.00565 2.04100 0.42905
2 148 0.01912 0.01020 0.01698 0.00708 0.00469 2.01734 0.34755
3 226 0.01179 0.00456 0.01398 0.09923 0.00426 1.95985 1.22084
4 229 0.01274 0.00606 0.01345 0.00612 0.00324 1.94581 0.43552
5 358 0.00859 0.00367 0.00840 0.00795 0.00268 1.93051 0.38979
6 493 0.00674 0.00270 0.00678 0.00406 0.00184 1.91493 0.34218
7 679 0.00424 0.00179 0.00516 0.00256 0.00128 1.91016 0.25050
8 973 0.00451 0.00160 0.00364 0.00244 0.00094 1.89196 0.31492
9 1273 0.00225 0.00085 0.00275 0.00958 0.00087 1.89822 0.33966

10 1276 0.00311 0.00113 0.00289 0.00185 0.00081 1.88629 0.27126
11 1753 0.00250 0.00097 0.00266 0.00177 0.00060 1.88267 0.26194
12 2356 0.00151 0.00060 0.00202 0.00115 0.00052 1.87748 0.21255
13 3349 0.00095 0.00036 0.00142 0.00082 0.00036 1.87994 0.13170
14 4570 0.00060 0.00021 0.00094 0.00060 0.00027 1.88510 0.07485
15 6085 0.00040 0.00013 0.00068 0.00038 0.00019 1.89392 0.04060

Table 8.6.: Listing of important quantities obtained by the adaptive scheme for the carrier
plate scenario and rotating orthogonal rods in the two-scale model.

and the strongly varying scaling due to different cell sizes.
Summarizing the presented results, the derived goal-oriented error estimator can directly

be applied to the numerical two-scale model. In case of the ellipsoidal perforations the results
meet with expectations. Regions of high and low material density are sharply separated
and the objective functional soon becomes near optimal. For the rotating orthogonal trusses
however the adaptive scheme seems to suffer from numerical instabilities. Although the error
indicators show meaningful values the objective functional falls short of the optimum.

8.4. Modeling error estimation
In this section we continue with error estimation for the numerical two-scale model. Bearing
in mind that the ultimate goal is to approximate an optimal shape, the approach taken in
the previous section is flawed. In particular the employed error estimate aims at minimizing
the error |JM[q;u∗]− JM[qh;u∗

h]|, which means that the target is an optimal shape within the
class of the considered microstructure model. As expected, and seen from previously presented
results, the investigated geometrically simple models can, however, never be optimal. Instead
we need to consider the error |J[Oopt;u[Oopt]]−JM[qh;u∗

h]|, which includes both the modeling
error, caused by the choice of the mechanically simple but non-optimal microstructure model,
and the numerical discretization error. An appropriate adaptive scheme cannot be expected
to fully cancel the error for decreasing mesh size, but allows to asses the remaining global
modeling error and its spatial distribution.

With some rephrasing the previously obtained error estimate can be reused. Let CL be
an optimal tensor field, realized by the sequential lamination construction, and uL the
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8.4. Modeling error estimation

associated elasticity solution. On the other hand let CM
h be a discrete effective elasticity

tensor field, obtained via numerical homogenization from the discrete two-scale model, and
uM

h the associated discrete solution. In the following we consider the full tensors CL, CM
h as

the controls qL, qM
h , respectively. Using this notation the derivation in Section 8.1 remains

valid. In particular the full primal residuals (8.2) now read

ηuM

E =
∣∣∣∣∫

E

div
{
CM

h ε
[
uM

h

]}
·
(
uL − ϑu∗

h

)
dx
∣∣∣∣ ,

ηuM

∂E =
∣∣∣∣∫

∂E

j
(
CM

h ε
[
uM

h

])
·
(
uL − ϑu∗

h

)
da(x)

∣∣∣∣ . (8.8)

For the control residual (8.4) observe that the elasticity tensors enter the Lagrangian linearly.
The derivative w. r. t. the controls can therefore be directly given, resulting in

ηqM

E =
∣∣∣∣∫

E

(
CL − C∗[ϑqh

]
)
ε
[
uM

h

]
: ε
[
uM

h

]
dx
∣∣∣∣ . (8.9)

Besides that, the remainder term (8.6) can be further evaluated. With eu = uL − uM
h and

eq = CL − CM
h we get d3

ds3L
(
qM

h + seqM ;uM
h + seuM

)
= −6aM (eqM ; euM , euM

)
, yielding

R = 1
2 a

M (eqM ; euM , euM
)
.

As before differences involving the unknown continuous quantities CL, uL need to be
approximated for a practical numerical scheme. In contrast to the preceding sections the terms
however stem from different material models and, as already seen, the individual outcomes
from shape optimization are in general locally unrelated. For the purpose of illustration we
consider a splitting of a potential primal weighting term

uL − uM
h =

(
uL − uL

h

)
+
(
uL

h − uM
h

)
. (8.10)

The first term on the right hand side could again be approximated using interpolation to
higher order polynomials as done in Section 8.2.2, but for this the discrete solution uL

h

corresponding to the sequential lamination model would be needed. It could be computed from
scratch on the same grid that was used to compute the solution uM

h of the two-scale model.
Solving another optimization problem in full detail would however impair the efficiency of our
scheme, especially because the alternating algorithm is known to exhibit slow convergence.
We therefore propose a truncated iteration, starting from stresses obtained for the two-scale
model. To be precise we start with σ = CM

h ε
[
uM

h

]
and perform n iterations, obtaining uL

h,n.
Using this as an approximation for uL

h is promising because the alternating algorithm typically
shows a reasonable distribution of material already after few iterations. We claim that changes
during later iterations are less significant and show some evidence in Figure 8.19. For this
we did another run of the sequential lamination algorithm until convergence for the carrier
plate scenario on an intermediate mesh of the adaptive scheme. The actual results will be
discussed later. Here we evaluate the differences in the cost functional and the elasticity
solution, between the truncated and the final result. A significant drop can be seen already in
the early iterations. For our application we are in fact content with an approximation of the
difference to the sequential lamination solution by trend and therefore consider the approach
reasonable. Coming back to (8.10) we use uL

h ≈ uL
h,n, which allows to directly evaluate the
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Figure 8.19.: Exemplary convergence behavior of the sequential lamination algorithm for the
carrier plate scenario in terms of errors in the cost functional and the elasticity
solution.

second term. For the first term interpolation to higher order polynomials is applied to the
approximate solution, i. e. uL ≈ I(4)

h uL
h,n. Practically the computation of the approximate

solution is an intermediate step only and we directly evaluate the difference between I(4)
h uL

h,n

and uM
h .

For the weighting term involving the effective elasticity tensors the situation is a little
more complex. Here not only the continuous elasticity solution for the sequential lamination
microstructure uL comes into play, but also its corresponding optimal continuous tensor field
CL. As before we start from the elasticity tensor CM

h and the associated stresses σ = CM
h ε
[
uM

h

]
obtained by the two-scale scheme. Using the truncated sequential lamination algorithm we
obtain the approximation uL

h,n and interpolate to higher order polynomials I(4)
h uL

h,n on super
patches. For this higher order solution we locally compute optimal elasticity tensors via the
sequential lamination model. As they mutually depend on the stress and the strain we employ
a Newton scheme as discussed in Section 8.2.2. This can be done at each quadrature point
to approximate a continuously varying tensor field, cf. the discussion in Section 5.5.1. We
summarize our approach in the following remark.
Remark 8.12 (Approximation of local weights). To approximate the weighting terms for
the primal and the control error indicator we first compute an approximation uL

h,n of the
elasticity solution for the sequential lamination microstructure. We start from stresses of the
two-scale model and perform a small number n of iterations of the alternating algorithm. On
every element E we consider a patch S of four neighboring elements including E and proceed
as follows.

• For the primal error indicator 5 × 5 degrees of freedom stemming from all elements
of the patch are used to construct a biquartic polynomial I(4)

h uL
h,n on the patch. The

interpolation is then compared to the two-scale solution.

ωuM

E ≈
∥∥∥I(4)

h uL
h,n − uM

h

∥∥∥
0,2,E

, ωuM

∂E ≈
∥∥∥I(4)

h uL
h,n − uM

h

∥∥∥
0,2,∂E
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8.4. Modeling error estimation

Practically we will evaluate the full residual terms (8.8).

• For the control error indicator corresponding stresses and effective elasticity tensors
are locally computed from the interpolated solution using a Newton scheme. Then the
elasticity tensors are compared.

ωC
E ≈

∥∥∥CL
[
I(4)

h uL
h,n

]
− CM

h

[
uM

h

]∥∥∥
0,∞,E

Practically it is not reasonable to compare the elasticity tensors entry wise. For instance
the sequential lamination construction always results in a rank deficiency, which needs to
be compensated by a numerical regularization parameter. Instead it is more natural to
consider the full residual term (8.9) and compare the respective elastic energy densities.

In the following we present results of the adaptive scheme steered by the derived modeling
error estimate. We focus on rotating orthogonal rods as the microstructure model within the
two-scale approach as it has proven to be closest to optimal shapes. As before the microscopic
geometry is discretized by 12 points for each side of the outer and inner boundary. The Dörfler
marking parameter is set to r = 0.4. For the approximation of the sequential lamination
solution the truncated algorithm is run for k = 50 iterations. We consider the scenarios of
Section 8.2.3. As before we visualize the results by drawing the macroscopic domain subdivided
into its square cells with a representative of the underlying microstructure in each cell.

Carrier plate. The first scenario is the carrier plate. In figures 8.20, 8.21, and 8.22 we show
generated meshes, visualizations of the two-scale results, and the effective material density
for selected intermediate refinement steps. The shape that was previously observed for this

Figure 8.20.: Generated meshes after 2, 3, 6, 7, 9, 10, 12, and 14 refinement steps of the
adaptive scheme using model error estimation for the carrier plate scenario and
rotating orthogonal rods.
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Chapter 8. Adaptive schemes for optimal microstructures

Figure 8.21.: Two-scale results after 2, 3, 6, 7, 9, 10, 12, and 14 refinement steps of the adaptive
scheme using model error estimation for the carrier plate scenario and rotating
orthogonal rods.

Figure 8.22.: Effective material density after 2, 3, 6, 7, 9, 10, 12, and 14 refinement steps of
the adaptive scheme using model error estimation for the carrier plate scenario
and rotating orthogonal rods.

scenario and microstructure model, with curved interfaces at the upper supporting structure,
bulk parts in the upper center and lower corners, and a near void region in the lower center,
is again recovered. When comparing to Figure 8.17, the mesh refinement however is different.
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8.4. Modeling error estimation

Here the upper interfaces are first formed near the central region, interfaces at the lower
trusses become visible as well, and, overall, the break of symmetry is less severe. Table 8.7,
which lists figures of the error estimation in detail, reveals that again the cost functional does
not come close to the asymptotic value. In fact the best value after nine refinement step is
still larger than in the preceding section, cf. Table 8.6. We examine the error indicators in

|Mh|
∑

E η
uL

E

∑
E η

uL

∂E

∑
E

1
2η

qM

E JM
∑

E ηE

JM−JL
0

0 64 0.37190 0.21676 0.72643 2.16304 3.89684
1 100 0.10974 0.08996 0.49644 2.14281 2.29836
2 154 0.10728 0.08021 0.41047 2.02650 3.20490
3 262 0.05725 0.04534 0.35528 2.00626 2.73456
4 382 0.03040 0.03295 0.29010 1.99237 2.31847
5 598 0.02132 0.02462 0.21672 1.94141 2.58793
6 868 0.02216 0.02142 0.18847 1.93266 2.50205
7 1318 0.02034 0.02035 0.16594 1.90660 3.09896
8 2077 0.01844 0.01918 0.14089 1.90172 2.88868
9 3241 0.01852 0.02071 0.12824 1.89092 3.28367

10 5002 0.01958 0.02280 0.10735 1.89830 2.56470
11 7576 0.02195 0.02683 0.09668 1.90133 2.36862
12 11365 0.02528 0.03159 0.10013 1.91487 2.09491

Table 8.7.: Listing of important quantities obtained by the adaptive scheme using model error
estimation for the carrier plate scenario and rotating orthogonal rods.

Figure 8.23. Throughout the run of the algorithm the control error indicator dominates the
classical primal error estimate, cf. Table 8.7. As can be seen in Figure 8.23 it is active in regions
where intermediate density is expected. This leads to the formation of interfaces toward areas
of full and hardly any material, but also to even more refinement in the intermediate regions.
In the first phase of the algorithm the shape thereby improves. The estimates decrease as well
and the factor between estimated and real error, cf. last column of Table 8.7, stays within
bounds. At some point additional structures from bulk material appear in the optimized
shape. This can be seen after seven refinement steps in Figure 8.22. Initially this improves
the costs and decreases the control error indicator, which reflects an averaged discrepancy
between the two-scale model and an optimal shape in terms of the elastic energy density.
The primal error estimates on the other hand start to increase only two steps later, due to
the jumps. Later on the cost functional rises again. At this point optimization is not fully
carried out anymore and the control error indicator starts to increase soon after. As before
the scheme seems to suffer from numerical deficiencies.

The additionally built fine structures were already observed on uniform grids, see Figure 6.9.
Their appearance indicates that the microscopic model is not able to capture a locally optimal
shape. In fact the upper central part, where they first appear, is subject to shearing loads.
Those require a genuine rank-2 sequential lamination construction and are less well sustained
by the rotating rods microstructure, cf. Section 6.1.2.

Remark 8.13 (Comparison of two-scale error estimation techniques). We claim that the
modeling error approach is more profound with regard to optimal shapes. But, as just seen,
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Chapter 8. Adaptive schemes for optimal microstructures

Figure 8.23.: Different terms in the modeling error estimate after 6, 9, and 12 refinement
steps (left to right) for the carrier plate scenario and rotating orthogonal rods:
ηuL

E + ηuL

∂E and 1
2η

qM

E (top and bottom), visualized using color map with
consistent ranges of mapped values for each refinement step.

it does not yield better results than the straightforward application of the general error
estimation in the preceding Section 8.3. This is not necessarily a shortcoming of the approach.
In fact it aids in finding regions where there is a deficiency in the microscopic model. The
resulting mesh refinement leads to the creation of fine-scale structures, which is the only
means in the context of simplified geometric models, but undesirable in view of the two-scale
approach with locally optimal microstructures. Only after that numerical difficulties impede
the scheme. When comparing the spatial distribution of the error indicators in the respective
figures 8.16 and 8.23, modeling error estimation seems to deliver a clearer picture, in particular
with respect to separating the error due to the PDE solution and the controls. This might
however also be attributed to the assessment of the control error in terms of the effective
elastic energy density. It comprises all parameters of the microstructure model, in contrast to
evaluating individual sensitivities as in the preceding section.

Cantilever. The next scenario is the cantilever. In figures 8.24, 8.25, and 8.26 we show
generated meshes, visualizations of the two-scale results, and the effective material density
for selected intermediate refinement steps. The adaptive scheme initially runs smoothly and
familiar features of the cantilever shape are visible. Regions with full material are established
at the left corners and along the upper and lower boundaries, as well as in the front where
the loading attacks. Thick arcs with intermediate densities are formed in between. The
microstructure aligns with the direction of the trusses and varies smoothly in between. Rather
sharp interfaces emerge only at the front toward the region with full material and toward the
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8.4. Modeling error estimation

Figure 8.24.: Generated meshes after 2, 4, 5, 6, 7, and 8 refinement steps of the adaptive
scheme using model error estimation for the cantilever scenario and rotating
orthogonal rods.

Figure 8.25.: Two-scale results after 2, 4, 5, 6, 7, and 8 refinement steps of the adaptive scheme
using model error estimation for the cantilever scenario and rotating orthogonal
rods.

corners where there is almost no material.
Regarding the error estimation we list details in Table 8.8 and show the spatial distribution

for a selected intermediate step in Figure 8.27. As before the control error indicator is
dominating throughout the run and is mainly active within regions of intermediate density.
The objective functional decreases until after seven refinement steps. At this point some
cells within the trusses are refined, where in the next step of the algorithm optimization
is not carried out to full extent anymore, cf. Figure 8.26. As a consequence fluctuations of
the effective density appear, whereas it is supposed to stay homogeneous. In the following
both the costs and the error indicators start to grow. The optimal asymptotic value is not
approached closely.

Bridge. The bridge scenario is considered next. In Figure 8.28 we show generated meshes, vi-
sualizations of the two-scale results, and the effective material density for selected intermediate
refinement steps. The overall bridge shape is clearly visible. Regions with almost full material
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Figure 8.26.: Effective material density after 2, 4, 5, 6, 7, and 8 refinement steps of the adaptive
scheme using model error estimation for the cantilever scenario and rotating
orthogonal rods.

|Mh|
∑

E η
uL

E

∑
E η

uL

∂E

∑
E

1
2η

qM

E JM
∑

E ηE

JM−JL
0

0 128 0.01524 0.00908 0.07064 0.24167 1.29182
1 158 0.00688 0.00452 0.05039 0.20831 1.53938
2 224 0.00434 0.00253 0.04229 0.19248 2.02236
3 362 0.00263 0.00184 0.03244 0.19132 1.59390
4 548 0.00263 0.00233 0.03040 0.18896 1.70111
5 902 0.00258 0.00275 0.02502 0.18073 2.41551
6 1508 0.00226 0.00278 0.02200 0.17729 2.96643
7 2357 0.00315 0.00356 0.01828 0.17615 3.13240
8 3593 0.00500 0.00611 0.02189 0.17761 3.68775
9 5333 0.00733 0.00909 0.02429 0.17946 3.69057

Table 8.8.: Listing of important quantities obtained by the adaptive scheme for the cantilever
scenario and rotating orthogonal rods.

Figure 8.27.: Different terms in the modeling error estimate after 7 refinement steps for the
cantilever scenario and rotating orthogonal rods: ηuL

E +ηuL

∂E and 1
2η

qM

E , visualized
using color map with consistent range of mapped values.

are created where the loading acts and where the structure is fixated. Strong refinement
occurs where the two types of boundary conditions meet in the lower corners. The spanned
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Figure 8.28.: Generated meshes, two-scale results, and effective material density after 3, 6,
and 9 refinement steps for the bridge scenario and rotating orthogonal rods.

arc is of intermediate density and the microstructure within follows its path. Underneath
the arc less material is used. The microstructure here depicts trusses that connect the arc
to the floor. Thereby their orientation varies smoothly. In later stages of the algorithm the
lower interface of the arc becomes more sharply resolved. This is different from the preceding
examples, cf. figures 8.20 and 8.24. When looking at the spatial distribution of the error
indicators in Figure 8.29 it becomes clear that the control error indicator is responsible. It

Figure 8.29.: Different terms in the modeling error estimate after 6 refinement steps for the
bridge scenario and rotating orthogonal rods: ηuL

E + ηuL

∂E and 1
2η

qM

E , visualized
using color map with consistent range of mapped values.

emphasized the discussed interface and the lower boundary, and is less spread out than before.
This can be interpreted as a less severe deficiency of the two-scale model in this scenario. The
construction can apparently better be realized by rank-1 lamination. Full details are listed in
Table 8.9. The control error indicator dominates the primal indicator, which is initially high
in the lower corners. A decrease in the cost functional and the indicators can be seen until
after five refinement steps. Later on fluctuations in the so far homogeneous effective density
appear, see Figure 8.28, and the costs and indicators rise. Again this must be attributed to
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|Mh|
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E η
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∑
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uL

∂E

∑
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2η

qM

E JM
∑

E ηE

JM−JL
0

0 128 0.34209 0.39693 0.35527 0.92393 3.54671
1 137 0.15273 0.15309 0.38306 0.84661 3.78035
2 191 0.10004 0.11316 0.29093 0.79316 2.56143
3 263 0.05219 0.04898 0.24219 0.76323 2.86348
4 380 0.02626 0.02571 0.21399 0.74361 2.56739
5 575 0.02170 0.01965 0.22099 0.73552 1.56570
6 929 0.02097 0.02271 0.26207 0.73543 0.48351
7 1430 0.12674 0.17389 0.45120 0.85853 3.85990

Table 8.9.: Listing of important quantities obtained by the adaptive scheme for the bridge
scenario and rotating orthogonal rods.

incomplete optimization. A tendency to build fine-scale structures is only seen in later steps.

L-shaped domain. The final scenario is the L-shaped domain. In Figure 8.30 we show
generated meshes, visualizations of the two-scale results, and the effective material density for
selected intermediate refinement steps. Regarding the volume distribution the overall shape is
comparable to the results obtained via the sequential lamination construction, cf. Figure 8.13.
The lower arc consists of nearly full material, whereas the upper part in the right quadrant is
of intermediate density. Here the alignment of the microstructure can be clearly recognized,
as in the bridge and cantilever scenarios before. In the lower inner part few material is used.
A smoothly varying inclination of the microstructure can be seen as in the bridge scenario
before. Interfaces are also visible in the generated adaptive meshes, especially toward the near
void regions in the right and lower left corners. However refinement is stronger at the reentrant
corner and the upper corners where different type of boundary conditions meet. In fact, the
spatial distribution of the error indicators in Figure 8.31 shows that initially the primal error
indicator has larger contributions than the control error indicator. In later stages the control
indicator dominates, as seen before. It is active along the interfaces but also in the areas in
between. Full details of the error estimation are listed in Table 8.10. The costs and indicators
start to rise after eight and seven refinement steps, respectively. At this point the optimized
shapes are not fully converged anymore and the mesh shows spurious overrefinement near the
reentrant corner.

In conclusion a profound approach was presented that incorporates optimal shapes, realized
by the sequential lamination construction, into the error estimation process. It is initially
unclear if a shape resulting from a different modeling, which usually shows a different global
volume distribution, is a suitable candidate for local comparisons. Yet the scheme performs
well, with hardly increased computational cost. Interfaces are identified and resolved, but
also homogeneous regions are refined. It was observed that this either happens where the
microstructure varies smoothly or in regions where the two-scale model is actually outclassed
by the superior sequential lamination technique. In the latter case fine-scale structures started
to build up on the macroscale. In view of the two-scale approach this in undesired, but
nevertheless the estimates aid in finding respective regions of interest.
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Figure 8.30.: Generated meshes, two-scale results, and effective material density after 2, 6, 7,
and 8 refinement steps for the L-shaped domain and rotating orthogonal rods.

|Mh|
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E η
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∑
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2η

qM

E JM
∑

E ηE

JM−JL
0

0 192 0.03245 0.03445 0.07295 0.28484 1.64872
1 240 0.01615 0.01706 0.05088 0.24597 1.83000
2 321 0.01020 0.01045 0.03592 0.22702 2.09511
3 474 0.00616 0.00651 0.03230 0.22132 2.11040
4 702 0.00428 0.00460 0.02644 0.21988 1.77868
5 1068 0.00248 0.00285 0.02399 0.21905 1.54039
6 1593 0.00411 0.00478 0.02138 0.21473 1.78013
7 2418 0.00471 0.00611 0.02211 0.21132 0.64246
8 3729 0.00779 0.01078 0.02916 0.21240 0.60986

Table 8.10.: Listing of important quantities obtained by the adaptive scheme for the L-shaped
domain and rotating orthogonal rods.
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Figure 8.31.: Different terms in the modeling error estimate after 0, 4, and 8 refinement steps
for the L-shaped domain and rotating orthogonal rods: ηuL

E + ηuL

∂E and 1
2η

qM

E ,
visualized using color map with consistent ranges of mapped values for
each refinement step.

8.5. Conclusion
In this chapter the dual weighted residual approach was adopted to devise error estimation for
the two-scale shape optimization model. It was derived on the basis of effective macroscopic
elasticity tensors and could therefore directly be applied to the sequential lamination model
as well. Although the considered compliance cost functional has a global nature and depends
on the elasticity solution, the goal-oriented estimates provided significant benefit over the
usual PDE estimates. In context of the sequential lamination model the parameter controlling
the effective material density turned out crucial. Where the density changed rapidly interfaces
were identified and sharply resolved. Overall the adaptive scheme performed well and robust.
In context of the two-scale model parameters influencing the local volume fraction were found
dominating as well. Resolution of interfaces however was less intense and refinement was
observed in regions with homogeneous density as well. As an alternative approach, local
comparisons to optimal sequential lamination microstructures were incorporated. The resulting
modeling error estimates, expressed in terms of effective elastic energies, provided an even
clearer picture. Refinement in homogeneous areas could be attributed to smoothly varying
parameters, but also to regions where the simple microstructures were outclassed. The adaptive
scheme initially performed well but was soon impeded by numerical issues preventing fully
optimized microscopic geometries subsequently. Due to the different sizes of the cells, this
could not be counteracted as in the deterministic context.
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Conclusion

Microstructures lie at the heart of this thesis. They can be observed in nature and
they emerge in mathematical theory as well. Their appearance in classical solid-void-

constructions is a manifestation of ill-posedness of the shape optimization problem and an
associated weak convergence of the indicator function to a relaxed material density function.
To make shape optimization numerically feasible, we devised a two-scale approach. The
elasticity problem was formulated in a macroscopic setting, but its elastic properties stemmed
from underlying locally periodic lattices on a distinct length scale, where classical shapes,
made from geometrically simple perforations, were considered. Known concepts from shape
and Lagrangian calculus were transferred to the two-scale setting and ultimately led to a
finite dimensional constrained optimization problem.

Discussion of results. The devised numerical scheme was applied to synthetic benchmark,
classical shape optimization, and stochastic optimization problems. From the outset the
synthetic scenarios provided corner cases, where the optimized two-scale structures turned
out suboptimal. As such, the method is not able to produce optimal microstructures in every
situation. Instead its strength is the approximation of optimal shapes by simple structures,
which besides result in realistic materials that could actually be manufactured. In practical
applications the degree of underachievement is problem dependent, but the considered example
showed a very small discrepancy only. Another feature is the versatile implementation, which
easily allowed for ample comparisons of different models. Overall the numerical scheme turned
out very robust, presumably due to the simple nature of the considered shapes. Local minima
were encountered, but did not deteriorate the final outcomes significantly. Discretization of the
perforations had a measurable influence, especially for geometries with non-smooth corners,
but a good compromise between accuracy and efficiency was found. In the end the overall
algorithmic realization proved to be efficient as well, due to extensive use of linearity and
parallel computation of cell problems. An innovative extension is the storing of cell problem
solutions for uniformly distributed samples of the parameter space. This could be done in a
preparatory step, while the actual optimization run could make use of a lock-up table and
interpolation. Hereby the performance became comparable to a single-scale simulation.

The method was applied in the context of stochastic programming and the aspired behavior
was verified. In particular when telling apart the effects of the different stochastic cost
functionals, the method proved very robust. Meaningful optimized results were obtained
without any further intervention. The concept of stochastic dominance brought in a further
perspective but also a suitable instrument to assess the performance of the two-scale materials.
A single-scale benchmark shape was obtained by optimization and in the following a two-scale
shape was found which was at least as well suited but required significantly less material.
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Finally macroscopic grid adaptivity was added by deriving an error estimator in the two-
scale context, following the dual weighted residual approach. This allowed to sharply mark
out regions with fundamentally different elastic properties, as motivated by the introductory
example. An application to the sequential lamination model was smooth and the obtained
adaptive scheme proved efficient. In view of the considered examples, the cell count was
reduced by almost two orders of magnitude when compared to uniform refinement. Also no
overrefinement was observed, suggesting that the algorithm be efficient as well. When applied
to two-scale shape optimization, the adaptive scheme initially worked just as well. In later
stages numerical issues and incomplete optimization were encountered. Most likely they were
caused by the different cell sizes in the adaptive mesh, leading to widely varying scaling of
terms in the objective functional. Ultimately a direct comparison of the two-scale model to
optimal materials realized by sequential lamination was incorporated into the error estimator.
Due to the suboptimal shapes, the error could never reach zero, but it enabled a notion of
modeling error estimation. For intermediate steps it was thereby possible to identify regions
where the gap towards optimality was most prominent.

Research perspective. An extension of the two-scale model to three spatial dimensions
suggests itself. Here it is important to realize that the presented theory of linearized elasticity
and homogenization directly applies to the three dimensional setting. Thereby the macroscopic
part of the model and the microscopic corrector problems can be set up straightforwardly.
Especially the approximation (5.3) of the elastic energy density in the microstructured setting
remains valid. Of course the computational complexity rises drastically but it is governed by
the solving of the many cell problems and can thus be tackled using massive parallelization,
thanks to the scalability.

Concerning the microscopic problem, it is important to realize that it is by no means
restricted to solving full elasticity problems. Instead, any model lending itself to a good
prediction of the reaction of the periodic lattice to macroscopic strains can be employed. For
example in [396] a discrete surrogate model taking into account finitely many idealized elastic
rods was used. Such an approach is computationally fast, even in a three dimensional setting.
On the other hand more sophisticated models can be considered as well. In [397] a phase
field approach is used. In the works by Barbarosie and Toader, as discussed in Section 5.3.3,
a level set function is combined with successive insertions of small holes via the topological
derivative and an additional rotation and skew of the unit cell. This brings a lot of flexibility
for the shapes, but for corner cases, such as the pure shearing benchmark investigated in
Section 6.1.2, the results do not necessarily improve.

On the algorithmic side, parallelization typically leaves room for improvement. The loop-
up table approach turned out to be a powerful tool. It however suffered from the curse
of dimensionality in case more than a few parameters were needed for the microstructure.
In fact, the modeled microstructures turn the elasticity problem into a parametrized PDE
where the elastic properties are drawn from a possibly high dimensional space. A major
achievement would be a strategy allowing to select only a few instances, which are already
sufficient to approximate nearby candidates. This is reminiscent of sparse approximation
problems. For example [126] deals with higher order moments in stochastic PDEs and proves
sufficient approximation capabilities for a low dimensional submanifold of the employed tensor
product space of polynomials. The situation here is different as a single choice of parameters
entails the solution of a microscopic PDE. In this regard, an approach based on adaptively
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constructed sparse grids in the parameter space and hierarchical B-spline interpolation of the
corresponding effective elasticity tensors has recently been presented in [399].

With regard to stochastic optimization, recent works have sufficiently shown that concepts
from two-stage programming can be successfully applied to optimal control problems. In
particular shape optimization had already been considered before and was extended to the
two-scale setting here. Naturally further concepts like e. g. stochastic dominance of third order
[417] or the conditional value at risk [348, 363] could be approached.

The introduction of error estimation made two important contributions. First, it enabled a
goal-oriented and efficient adaptation of the macroscopic grid. Second, it allowed to quantify
the modeling error. Just as for the macroscopic grid, the microscopic discretization could be
adapted as well. While this is less common for the boundary element method used here, it is
fully established for finite elements, which would be used in a microscopic phase field or level
set approach. An extension of the error estimate to both scales is required, which we sketch in
Appendix B.2. The estimated modeling error could be exploited to adapt the underlying type
of microstructure. In an imaginable adaptive scheme a cascade of microstructure models with
increasing complexity could be considered. It could e. g. range from single-scale, unphysical
blending of elasticity tensors, as in the SIMP model, over microscopic perforations with fixed
geometry, to freely evolving shapes based on phase fields and supported by microscopic grid
adaptivity.
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APPENDIX A

Adaptive schemes using triangular meshes

Before the decision was made to incorporate adaptive meshing into the QuocMesh library, a
proof-of-concept study was conducted using a programming course code. Its implementation
had been aimed at flexibility rather than performance. Thereby unstructured triangular
grids were used and adaptivity was realized following a recursive bisection strategy. The
alternating shape optimization algorithm for the sequential lamination model was implemented,
as described in Section 5.5.4, with the exception of using quadratic finite elements on triangles.
Also the dual weighted residual approach, as detailed in sections 8.1.1 and 8.2.2, was followed. In
Figure A.1 we display obtained refined meshes and corresponding optimal density distributions
for the carrier plate scenario. The results are very similar to those obtained with quadratic

Figure A.1.: Generated meshes and optimal density in the sequential lamination model after
0, 6, 12, and 18 refinement steps of the adaptive scheme on triangular meshes for
the carrier plate scenario.

mesh cells, cf. figures 8.2 and 8.3. In particular the already known macroscopic supporting
structures can be recognized. Interfaces have been resolved by grid adaptivity, especially where
curved outlines have been formed. An interesting observation is that the boundary of the mid
lower, void area is not refined, in contrast to the situation in Figures 8.2. This is a fortuitous
consequence of the isosceles right triangle shape. After some refinement steps the triangular
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Appendix A. Adaptive schemes using triangular meshes

cells cover the area exactly, which is impossible with square cells.
The crux in this implementation was the approximation of weighting terms, as described in

Section 8.2.2. Due to the unstructured mesh, an arbitrary triangle is not necessarily embedded
into a super patch of uniformly shaped triangles, cf. the situation in Figure 8.1 and the sketch
in Figure A.2. To begin with, we used global refinement of all triangles and let the alternating

Figure A.2.: Sketch of unstructured triangular mesh. The 1-ring of the central element is
highlighted in red. Thin lines indicate uniform refinement.

algorithm run again, starting from the prolonged solution on the actual grid. This allowed to
compare current quantities to those obtained on a refined grid. Obviously this yields a better
approximation of the weighting terms, compared to the finally used interpolation to higher
order polynomials, cf. Remark 8.11. However it was computationally demanding and thus
rendered the adaptive scheme infeasible. In this regard, managing the additional refinement
was not an issue, as newly created elements were reused in the next steps anyway, either
because they were selected for refinement or being used for computing the weighting terms
again. Instead the runtime of the alternating algorithm was the limiting factor. First, it needed
to be run for four times the number of degrees of freedom when compared to the actual
problem. Second, it exhibited slow convergence towards the end and thus did not benefit
much from the good initialization.

As an alternative strategy we tried to compute refined solutions on subsets of the global
mesh only. In particular we considered 1-rings, i. e. the first layer of triangles, around an
element, cf. Figure A.2. Only those elements were refined, the current solution on their outer
boundary was imposed as boundary values, and the alternating algorithm was run. This could
be realized in an efficient manner by refining the full mesh, assembling the required matrices
only once, and using appropriate restrictions to the actual degrees of freedom when solving
the subproblems. In the end, the approach turned out still too demanding. Although the
subproblems were small, the slow convergence of the alternating algorithm prevailed in the
overall scheme.
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APPENDIX B

Variation of the two-scale functional

Computing variations of the introduced two-scale functionals is mostly a rephrasing of the
single-scale setting presented in Section 4.1. Here we give the details.

B.1. Two-scale variational framework
The starting point is the two-scale elasticity problem in weak formulation

aM (q; (u∗, ũ), (ϑ∗, ϑ̃)
)

= l(ϑ∗) ∀ (ϑ∗, ϑ̃) ∈ H1
ΓD

(D;R2)×H1
per,0(Y;R2) with (B.1)

aM (q; (u∗, ũ), (ϑ∗, ϑ̃)
)

:=
∫

D

∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) :
(
εx[ϑ∗] + εy

[
ϑ̃
])

dy dx ,

l(ϑ∗) :=
∫

D

f · ϑ∗ dx+
∫

ΓN

g · ϑ∗ da(x) .

This is (5.6) with slightly adapted notation. For the time being, we consider an arbitrary cost
functional JM[q; (u∗, ũ)] depending on the solution of the two-scale elasticity problem and the
parameters of the microscopic shapes. Following Section 4.1.2 we consider the Lagrangian

L (q, (u∗, ũ), (p∗, p̃)) := JM [q; (u∗, ũ)] + aM (q; (u∗, ũ), (p∗, p̃))− l(p∗) . (B.2)
Computing the first variation in (p∗, p̃) recovers the weak formulation of the two-scale problem
(B.1), referred to as primal problem. The first variation in (u∗, ũ) yields the two-scale adjoint
problem

JM
,(u∗,ũ) [q; (u∗, ũ)] (ϑ∗, ϑ̃) + aM (q; (ϑ∗, ϑ̃), (p∗, p̃)

)
= 0 ∀ (ϑ∗, ϑ̃) . (B.3)

B.2. Error estimation
The error estimates derived in Chapter 8 were based on a macroscopic perspective with
effective material properties stemming either from the optimal, analytical sequential lamination
construction or the underlying, numerically optimized, periodic perforations. Thereby the
microscopic model only entered implicitly when computing sensitivities of the macroscopic cost
functional. Following Ohlberger [313] it is alternatively possible to derive an error estimate in
closed form for both scales simultaneously. Starting from (B.2), the dual weighted residual
approach is applied, similar to Section 8.1. The crucial point is to compute (8.1), which here
reads

eL = 1
2L,(u∗,ũ)(qh; (u∗

h, ũh), (p∗
h, p̃h))(u∗ − ϑu∗

h
, ũ− ϑũh

)
+ 1

2L,(p∗,p̃)(qh; (u∗
h, ũh), (p∗

h, p̃h))(p∗ − ϑp∗
h
, p̃− ϑp̃h

)
+ 1

2L,q(qh; (u∗
h, ũh), (p∗

h, p̃h))(q − ϑqh
) +R

(B.4)
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Appendix B. Variation of the two-scale functional

The second term is the primal problem (B.1), with a different test function. Using Green’s
first identity w. r. t. x and the macroscopic finite element partition O =

⋃
E yields

L,(p∗,p̃)(qh; (u∗
h, ũh), (p∗

h, p̃h))(p∗ − ϑp∗
h
, p̃− ϑp̃h

) (B.5)

=
∫

D

∫
Y(x)

C(x, y) (εx[u∗
h] + εy[ũh]) :

(
εx

[
p∗ − ϑp∗

h

]
+ εy[p̃− ϑp̃h

]
)

dy dx

−
∫

ΓN

g · (p∗ − ϑp∗
h
) da(x)−

∫
D

f · (p∗ − ϑp∗
h
) dx

=−
∑

E

∫
E

divx

{∫
Y(x)

C(x, y) (εx[u∗
h] + εy[ũh]) dy

}
· (p∗ − ϑp∗

h
) dx (I)

+
∑

E

∫
∂E

{∫
Y(x)

C(x, y) (εx[u∗
h] + εy[ũh]) dy

}
n · (p∗ − ϑp∗

h
) da(x) (II)

−
∑

E

∫
E

f · (p∗ − ϑp∗
h
) dx (III)

−
∑

E

∫
∂E∩ΓN

g · (p∗ − ϑp∗
h
) da(x) (IV)

+
∫

D

∫
Y(x)

C(x, y) (εx[u∗
h] + εy[ũh]) : εy[p̃− ϑp̃h

] dy dx . (V)

By means of the results from homogenization there holds∫
Y(x)

C(x, y) (εx[u∗
h] + εy[ũh]) dy = C∗ εx[u∗

h] = σh ,

cf. the terms on the left hand sides of (3.24) and (3.25). Thus (I) plus (III) reads∑
E

∫
E

(−divx σh − f) (p∗ − ϑp∗
h
) dx ,

and (II) plus (IV)∑
E

∫
∂E

σhn · (p∗ − ϑp∗
h
) da(x)−

∫
∂E∩ΓN

g · (p∗ − ϑp∗
h
) da(x) .

These terms are the typical residual and jump discontinuity indicators on the macroscale. Term
(V) contains microscopic cell problems for every macroscopic x ∈ D. In case the microscopic
domain has a finite element partition Y =

⋃
Y as well, the expression can likewise be localized,

now w. r. t. y, yielding

−
∫

D

∑
Y

∫
Y

divy {C(x, y) (εx[u∗
h] + εy[ũh])} · (p̃− ϑp̃h

) dy dx

+
∫

D

∑
Y

∫
∂Y

C(x, y) (εx[u∗
h] + εy[ũh])n · (p̃− ϑp̃h

) da(y) dx .
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B.3. Shape derivative

These terms are corresponding residual and jump discontinuity indicators on the microscale.
They can be employed to steer grid adaptivity in each microscopic cell Y(x). Furthermore
Ohlberger [313] suggests to use the integrated quantities over each cell as additional macro-
scopic indicators. They provide information on where the microscopic modeling is macroscopi-
cally underresolved. This is in the same vein as our modeling error approach in Section 8.4,
which however was based on an estimated error in the objective functional and not an a error
in the PDE solution.

Our algorithmic realization uses the boundary element method on the microscale. In this
situation (V) can be recast into the, analytically equivalent, boundary integral expression∫

D

∫
∂Y(x)

C(x, y) (εx[u∗
h] + εy[ũh])n · (p̃− ϑp̃h

) da(y) ,

cf. (3.11). Localization is then achieved by splitting the polygonal boundary ∂Y into the line
segments connecting the collocation points ξj ∈ Nh. This is merely an example in analogy to
the finite element setting. Although less popular, there is a rich theory for error estimation
and adaptivity for the boundary element method as well, see e. g. the early reference [339]
and the survey article [172]. The remaining terms in (B.4), L,(u∗,ũ) and L,q, are problem
dependent because of the included cost functional.

B.3. Shape derivative
Computing the derivative of the cost functional w. r. t. the microscopic design parameters q in
direction β initially leads to

d
dq JM[q; (u∗, ũ)[q]](β) = JM

,q [q; (u∗, ũ)](β) + JM
,(u∗,ũ)[q; (u∗, ũ)] ((u∗, ũ),q[q](β)) .

Following the steps in Section 4.1.3, the derivative of the PDE solution is eliminated using
the adjoint solution of (B.3) and

JM
,q [q; (u∗, ũ)](β) + aM

,q (q; (u∗, ũ), (p∗, p̃)) (β)− l,q(p∗)(β) (B.6)

is obtained. In any case, the linear form contains macroscopic quantities only and hence
the last term vanishes. Concerning the bilinear form aM, the shape derivative w. r. t. the
microscopic domain Y has to be considered. Varying the parameters q varies the shape of the
domain by virtue of the velocity field V [x;β] defined in (5.8). Thereby

d
dq a

M (q; (u∗, ũ), (p∗, p̃)) (β) =∫
D

dY(x)

(∫
Y(x)

C(x, y) (εx[u∗] + εy[ũ]) : (εx[p∗] + εy[p̃]) dy
)

(V [x;β]) dx =∫
D

∫
∂Y(x)

(V [x;β] · n(y)) C(x, y) (εx[u∗] + εy[ũ]) : (εx[p∗] + εy[p̃]) dy dx

is obtained, using Lemma 4.3.
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Appendix B. Variation of the two-scale functional

B.4. Application to the compliance functional
In Section 5.2.2 a variant of the compliance cost functional, cf. (4.12), was chosen, namely

−2 JM[q; (u∗, ũ)] = −aM(q; (u∗, ũ), (u∗, ũ)) + 2 l(u∗) .

B.4.1. Adjoint problem
For the choice of the compliance functional, the adjoint problem (B.3) reads

−2 aM (q; (u∗, ũ), (ϑ∗, ϑ̃)
)

+ 2 l(ϑ∗) + aM (q; (ϑ∗, ϑ̃), (p∗, p̃)
)

= 0 ∀ (ϑ∗, ϑ̃) .

Using the primal problem (B.1), this simplifies to

aM (q; (ϑ∗, ϑ̃), (p∗, p̃)
)

= 0 ∀ (ϑ∗, ϑ̃) ,

from which the trivial solution (p∗, p̃) = (0, 0) follows.

B.4.2. Error estimates
Due to the vanishing adjoint solution, the Lagrangian (B.2) simplifies to

L (q, (u∗, ũ)) = −2 JM [q; (u∗, ũ)] .

To compute the error representation (B.4) there holds

L,(u∗,ũ)(qh; (u∗
h, ũh))(u∗ − ϑu∗

h
, ũ− ϑũh

) =
− 2

(
aM(q; (u∗

h, ũh), (u∗ − ϑu∗
h
, ũ− ϑũh

))− l(u∗ − ϑu∗
h
)
)
,

which equals (B.5), except for the factor −2 and the different test functions here. The error
indicators derived above therefore almost coincide with those in (8.2). Furthermore there is

L,q(qh; (u∗
h, ũh))(q − ϑqh

) =
(
−aM(q; (u∗

h, ũh), (u∗
h, ũh)) + 2 l(u∗)

)
,q

(q − ϑqh
) ,

as handled for (8.4).

B.4.3. Shape derivative
The derivative w. r. t. the microscopic design parameters (B.6) becomes(

−aM(q; (u∗, ũ), (u∗, ũ)) + 2 l(u∗)
)

,q
(β) = −aM

,q (q; (u∗, ũ), (u∗, ũ))(β) =

−
∫

D

∫
∂Y(x)

(V [x;β] · n(y)) C(x, y) (εx[u∗] + εy[ũ]) : (εx[u∗] + εy[ũ]) dy dx ,

cf. (5.9).
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APPENDIX C

Software design

In the following a UML (unified modeling language) class diagram containing the most impor-
tant building blocks of the C++ implementation for the simulation, optimization, and error
estimation of the two-scale scheme is shown.

1

1

1

1

≪interface≫
Ipopt::TNLP

MSShapeOptNLP

EvaluatorType evaluator
. . .

eval f
eval grad f
. . .

EvaluatorType

DWREstimator

EvaluatorType evaluator
. . .

computeErrorEstimates
markForRefinement
refine
. . .

EvaluatorType

DWRLaminatesErrorEstimator

DWRModelErrorEstimator

MSEvaluator

GridType grid
MSCoupling〈MicroType〉 coupling
QuocMesh::FEOperator msStiffOp
MultiVector solution
. . .

solveElasticProblem
evalObjective
evalObjectiveGradient
getEffectiveTensor
. . .

MicroType, GridType

MSCoupling

MicroType microstructure
Vector parameters
Vector〈MultiVector〉 cellSolutions
. . .

getMircoCellEnergy(cellNum : int)
parallelRecomputation
. . .

MicroType MicroBEMHoles

int numberOfHoles
int discretizationPoints
Tensor elasticityTensor
IsotropicGreen greensFunction
. . .

recomputeElasticSolution
evalCompliance
evalGradCompliance
. . .

≪interface≫
MicroBase
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