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Summary 

Floods are prominent in West Africa and are expected to exacerbate due to global changes, 

including climate change, land use change, as well as industrial and infrastructure development. 

It is important to evaluate in advance their patterns and potential impact in order to develop 

proper response and adaptation strategies. Scenarios and models are thus needed to portray and 

simulate possible futures. However, these simulations are often affected by the lack of data and 

uncertainties from models. The aim of this study is to investigate the impacts of future climate 

and land use change scenarios on floods in the Mono river catchment of Benin and Togo, while 

assessing the capacity of the two countries to jointly manage these impacts. 

The performances of four remotely-sensed precipitation datasets were evaluated, to address the 

lack of data. These are: the Climate Hazards Group Infrared Precipitation with Station data 

(CHIRPS), Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks-Climate Data Record (PERSIANN), Tropical Applications of Meteorology using Satellite 

data and ground-based observations (TAMSAT), and the Global Precipitation Climatology Centre 

full daily data (GPCC). The datasets were first assessed at station location, and later used as input 

to the hydrological model HBV-light (Hydrologiska Byråns Vattenbalansavdelning). The HBV-light 

model uses areal precipitation of the catchment as input because it is a lumped model. Results 

indicate that PERSIANN, GPCC and TAMSAT were the best for flood simulation purposes. In 

addition, it was found that applying the kriging interpolation method to compute the areal 

precipitation is enough to deal with gaps in observation data, without any need to fill-in the 

missing values. 

This study also explored the use of a Multicriteria Decision Analysis approach to select the best 

performing Regional Climate Models (RCMs) in the Mono River catchment. The Technique for 

Order Preferences by Similarity to an Ideal Solution, (TOPSIS), was used to rank 15 RCMs 

downloaded from the Coordinated Regional Downscaling Experiment (CORDEX) database. This 

systematic selection process resulted in 6 RCMs. The ensemble of the 6 RCMs was used to assess 

future climate patterns in the Mono river catchment during 2022-2070 in comparison with the 

period 1966-2015. The Representative Concentration Pathways (RCP) RCP 4.5 and RCP 8.5 were 

used as future climate change scenarios. Annual mean temperature showed an increasing trend 

over the period 1966-2070, whereas annual rainfall depicts high variabilities with no statistically 

significant trend. The western and north-western parts of the catchment are expected to receive 

less precipitation in the future, whereas the east central part and the downstream area close to 

the outlet might experience an increase of annual precipitation. Moreover, the annual cycle of 

rainfall is expected to be characterised by rainfall intensification and a delayed start of rainy 

seasons. 

The combined impact of these climate projections and land use/land cover change (LULCC) 

scenarios was assessed using the Soil and Water Assessment Tool (SWAT) for runoff simulation, 

and the TELEMAC-2D model for flood mapping. The effect of the planned Adjarala dam was also 

examined. Due to the missing of discharge data for some years, SWAT was not calibrated and 
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validated over continuous years. The model was calibrated for years 1967-1977, 1990, 1991, 1992 

with a Kling-Gupta Efficiency KGE = 0.83, and validated on 1978-1986, 1988, 1989 and 2010 (KGE 

=0.68). Results show an increase of the magnitude of flood extremes under future climate and 

land use change scenarios. Events of 10-years return periods during 1987-2010 are expected to 

become 2-years return period events under the climate and land use change scenarios 

considered. The planned Adjarala dam showed potentials for extreme peak and flood extent 

reduction. However, flow duration curves revealed that the discharge of the river during low flow 

periods may also reduce if the Adjarala dam was built. 

In addition, the capacity of Benin and Togo to jointly address the impacts of the projected changes 

(climate change, LULCC, and the Adjarala dam) was investigated. The transboundary Water 

Cooperation Quotient (WCQ) was used to assess the current level of water cooperation between 

the two countries. It was done in a participative way with stakeholders from NGOs, academia and 

technical sector, as well as decision making and policy implementation institutions. Results 

indicate existing grounds for transboundary water cooperation (WCQ = 72/100). This finding 

updates the results published in 2017 by the Strategic Foresight Group (SFG). Mechanisms of data 

exchange, alternative dispute resolution, and frameworks for joint and sustainable coordination 

of flood, drought and ecosystems management are still lacking. 

This study contributes to a better understanding of how changes in climate and land use would 

influence floods in the Mono river catchment, and demonstrates the readiness of Benin and Togo 

to collaboratively manage the impacts. The findings of this thesis serve as basis for adaptation 

measures identification and the establishment of an active transboundary water cooperation 

between Benin and Togo, in order to sustainably manage floods in the Mono river catchment.  
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Zusammenfassung 

Hochwasserereignisse sind in Westafrika weit verbreitet, und es wird erwartet, dass sie sich 

aufgrund globaler Veränderungen wie dem Klimawandel, veränderter Landnutzung sowie 

fortschreitender Industrialisierung und dem Ausbau der Infrastruktur noch verstärken werden. Es 

ist wichtig, ihre Muster und potenziellen Auswirkungen im Voraus zu bewerten, um geeignete 

Reaktions- und Anpassungsstrategien zu entwickeln. Szenarien und Modelle werden daher 

benötigt, um mögliche Zukunftsszenarien darzustellen und zu simulieren. Diese Simulationen 

werden jedoch häufig durch den Mangel an Daten und die Unsicherheiten der genutzten  Modelle 

beeinträchtigt. Ziel dieser Studie ist es, die Auswirkungen von Klima- und 

Landnutzungsänderungen Szenarien für auf Hochwasserereignisse im Einzugsgebiet des Mono in 

Benin und Togo zu untersuchen und gleichzeitig die Leistungsfähigkeit der Länder zu bewerten, 

diese Auswirkungen gemeinsam zu bewältigen. 

Um dem Mangel an Daten zu begegnen, wurde die Qualität von vier fernerkundlich generierten 

Niederschlagsdatensätzen bewertet. Dabei handelt es sich um die folgenden Datensätze: CHIRPS 

(Climate Hazards Group Infrared Precipitation with Station data), PERSIANN (Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data 

Record), TAMSAT (Tropical Applications of Meteorology using Satellite data and ground-based 

observations) und die täglichen Daten des Global Precipitation Climatology Centre (GPCC). Die 

Datensätze wurden zunächst an den Stationen ausgewertet und später als Eingangsdaten für das 

hydrologische Modell HBV-light (Hydrologiska Byråns Vattenbalansavdelning) verwendet. Das 

Modell HBV-light verwendet den Gebietsniederschlag des Einzugsgebiets als Eingangsdaten, da 

es sich um ein räumlich ungegliedertes Modell handelt. Die Ergebnisse zeigen, dass PERSIANN, 

GPCC und TAMSAT am besten für Hochwassersimulationen geeignet sind. Darüber hinaus wurde 

festgestellt, dass die Anwendung der Kriging-Interpolationsmethode zur Berechnung des 

Gebietsniederschlags ausreicht, um Lücken in den Beobachtungsdaten zu schließen, ohne dass 

die fehlenden Werte aufgefüllt werden müssen. 

Diese Studie untersuchte auch die Verwendung eines multikriteriellen 

Entscheidungsanalyseansatzes zur Auswahl der leistungsfähigsten regionalen Klimamodelle 

(RCMs) im Einzugsgebiet des Mono-Flusses. Die TOPSIS-Technik (Technique for Order Preferences 

by Similarity to an Ideal Solution) wurde eingesetzt, um 15 RCMs aus der CORDEX-Datenbank 

(Coordinated Regional Downscaling Experiment) zu bewerten. Dieser systematische 

Auswahlprozess führte zur Auswahl von sechs RCMs. Das Ensemble der sechs RCMs wurde 

verwendet, um das zukünftige Klimamuster im Einzugsgebiet des Mono-Flusses im Zeitraum 

2022-2070 dem Zeitraum 1966-2015 gegenüberzustellen. Die repräsentativen 

Konzentrationspfade (RCP) RCP 4.5 und RCP 8.5 wurden als Szenarien für den künftigen 

Klimawandel verwendet. Die Jahresmitteltemperatur zeigte im Zeitraum 1966-2070 eine 

steigende Tendenz, während der jährliche Niederschlag hohe Schwankungen ohne statistisch 

signifikanten Trend aufwies. Es wird erwartet, dass die westlichen und nordwestlichen Teile des 

Einzugsgebiets in Zukunft weniger Niederschlag erhalten werden, während der  zentral-östliche 
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Teil und für das flussabwärts gelegene Gebiet in der Nähe des Gebietsausflusses ein Anstieg der 

jährlichen Niederschläge erwartet wird. Außerdem wird angenommen, dass der jährliche 

Niederschlagszyklus durch eine Intensivierung der Niederschläge und einen verzögerten Beginn 

der Regenzeiten gekennzeichnet sein wird. 

Die kombinierten Auswirkungen dieser Klimaprojektionen und Landnutzungs-/ 

Landoberflächenänderungsszenarien (LULCC) wurden mit dem Soil and Water Assessment Tool 

(SWAT) für die Abflusssimulation und dem TELEMAC-2D für die Hochwasserkartierung bewertet. 

Die Auswirkungen des geplanten Adjarala-Damms wurden ebenfalls untersucht. Da für einige 

Jahre keine Abflussdaten vorlagen, wurde SWAT nicht über kontinuierliche Jahre kalibriert und 

validiert. Das Modell wurde für die Jahre 1967-1977, 1990, 1991, 1992 mit einer Kling-Gupta-

Effizienz KGE = 0,83 kalibriert und für die Jahre 1978-1986, 1988, 1989 und 2010 validiert (KGE 

=0,68). Die Ergebnisse zeigen eine Zunahme der Magnitude von Hochwasserextremen unter 

zukünftigen Klima- und Landnutzungsänderungsszenarien. Es wird erwartet, dass Ereignisse mit 

10-jährigem Wiederkehrintervall im Zeitraum 1987-2010 unter den betrachteten Klima- und 

Landnutzungsszenarien zu Ereignissen mit 2-jährigem Wiederkehrintervall werden. Der geplante 

Adjarala-Damm hat das Potenzial, extreme Hochwasserspitzen und die Ausdehnung von 

Hochwasser zu reduzieren. Die Dauerkurven zeigen jedoch, dass sich der Abfluss des Flusses 

während der Niedrigwasserperioden ebenfalls verringern könnte, wenn der Adjarala-Damm 

gebaut wird. 

Darüber hinaus wurde untersucht, inwieweit Benin und Togo in der Lage sind, die Auswirkungen 

der prognostizierten Veränderungen (Klimawandel, LULCC und Adjarala-Staudamm) gemeinsam 

zu bewältigen. Der grenzüberschreitende Wasserkooperationsquotient (WCQ) wurde verwendet, 

um den aktuellen Stand der wasserbezogenen Kooperation zwischen den beiden Ländern zu 

bewerten. Dies geschah auf partizipative Weise mit Interessenvertreter*innen aus 

Nichtregierungsorganisationen, der Wissenschaft und dem technischen Sektor sowie mit 

institutionellen und politischen Entscheidungsträgern. Die Ergebnisse zeigen, dass es eine Basis 

für eine grenzüberschreitende Wasserkooperation gibt (WCQ = 72/100). Dieses Ergebnis 

aktualisiert die 2017 von der Strategic Foresight Group (SFG) veröffentlichten Ergebnisse. 

Mechanismen für den Datenaustausch, alternative Streitschlichtung und Rahmenbedingungen 

für eine gemeinsame und nachhaltige Koordinierung des Hochwasser-, Dürre- und 

Ökosystemmanagements fehlen bislang noch. 

Diese Studie verbessert das Verständnis der Auswirkungen von Klima- und 

Landnutzungsänderungen auf Hochwasserereignisse im Einzugsgebiet des Mono-Flusses und  

zeigt die Bereitschaft von Benin und Togo auf, diesen Auswirkungen gemeinsam zu begegnen. Die 

Ergebnisse dieser Arbeit dienen als Grundlage für die Identifizierung von Anpassungsmaßnahmen 

und den Aufbau einer aktiven grenzüberschreitenden Wasserkooperation zwischen Benin und 

Togo, um Hochwasserereignisse im Einzugsgebiet des Mono-Flusses nachhaltig zu bewältigen. 
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1. Introduction 

1.1. Background 

Water is at the heart of development and is a key component of all pillars of human security 

(economic, food, health, political, environmental, personal, and community) (UN, 2021; UNDP, 

1994). However, the water cycle in different parts of the world is affected by global changes. From 

global warming to climate change, through land use change, population growth and 

industrialisation, the various changes occurring around the world are interlinked and operate in 

a feedback loop (Hirsch et al., 2017; Sitch et al., 2005). Thus, global warming induces and 

intensifies climate change, which leads to land use and land cover (LULC) change, which in turn 

exacerbates global warming. The impact of such changes on the water cycle translates into 

hydrological hazards such as flood and drought (Alifu et al., 2022; Tabari, 2020), and cause 

substantial loss and damages. Moreover, their frequency and intensity are expected to increase 

over the years (Gründemann et al., 2022; Ingram, 2016). 

However, changes in extreme flood events are not uniform in all parts of the world (Pfahl et al., 

2017; Tabari et al., 2019). Moreover, besides the expectation of dry regions to become drier, they 

may also receive extremely high precipitation and likewise, usually wet regions may experience 

drought (Sillmann et al., 2019). Human actions and regional LULC, among other drivers, affect 

hydrological processes (Mazzoleni et al., 2022; Sofia et al., 2017; Veldkamp et al., 2018). Thus, 

increases in flood frequency and magnitude were reported in eastern and tropical Africa whereas, 

decreases are noticed in south-west Africa (Seneviratne et al., 2021). Furthermore, river flood 

modelling at regional scale embeds more uncertainty due to errors inherent to models and the 

complexity of processes involved including LULC, water infrastructure and their management 

(Hirsch et al., 2018; Seneviratne et al., 2021). In addition, regional flood projections based on 

climate models increase the uncertainty scheme due to biases in regional climate models (RCMs), 

and in the general circulation models (GCMs) that they are derived from (Arnell & Gosling, 2016; 

Hattermann et al., 2018; Krysanova et al., 2017). Therefore, local studies supported by quality in-

situ data are key to effectively and sustainably manage floods. 

Various studies have addressed rainfall pattern and precipitation data gaps management in the 

Mono river catchment. The works of Amoussou, 2010 revealed rainfall deficits in the 1970s and 

1980s and a slight increase in 1988-2000. Rainfall regimes were reported to be latitude-

dependent, with a bimodal regime in the south of the catchment and a unimodal pattern in the 

northern higher latitudes. The authors, as in other studies, reported substantial gaps in 

precipitation data and the unequal distribution of rain gauges over the Mono catchment. 

Amoussou, 2010 filled the missing based on surrounding gauges using the double mass method 

(Brunet-Moret, 1971). Koubodana et al., 2020 also imputed missing values based on neighbouring 

stations, while Batablinle et al., 2018 filled missing data with similar day averages from previous 

years. However, these methods employed for precipitation gap filling in the Mono catchment do 
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not account for the probabilistic aspect of rainfall’s spatio-temporal variability. In addition, 

previous studies, so far, have not explored the possibility of using remotely-sensed precipitation 

datasets, that have shown good performances in difference parts of the world (Atiah et al., 2020; 

Brunetti et al., 2021; Fallah et al., 2020; Stampoulis & Anagnostou, 2012; Sun et al., 2017; Xia et 

al., 2021). 

Batablinle et al., 2018 analysed future precipitation indices in the Mono basin based on 

representative concentration pathways (RCP 4.5 and RCP 8.5), and found that the number of very 

heavy rainfall days and the number of consecutive dry days will increase until 2100. Variabilities 

and rainfall irregularity are projected for 2021-2100 (Amoussou et al., 2020; Batablinlè et al., 

2019; Lawin et al., 2019). As for temperature, all studies carried out in the catchment agree on its 

increasing trend until the 2090s (Koubodana et al., 2020; Lawin et al., 2019). The RCMs used in 

those studies were chosen based on their performance in other countries and mainly based on 

limited computation time. Climate projections and the subsequent hydrological information in a 

given region can significantly differ, depending on the climate model used. The findings of Her et 

al., 2019 highlighted that a careful selection of climate models should be much more prioritized 

than intense attempts to identify a one-among-many perfect calibration parameters set. A 

comprehensive evaluation of climate models prior to climate change impact assessment and 

hydrological studies is therefore recommended to improve future projections and to develop 

appropriate adaptation measures (Pastén-Zapata et al., 2022; Song et al., 2020).  

Runoff and flood related studies in the Mono river catchment were mainly based on rainfall-

runoff models including the HBV model (Hydrologiska Byråns Vattenbalansavdelning), IHACRES 

(Identification of unit Hydrographs and Component flows from Rainfall, Evaporation and 

Streamflow data), GR4J model (the Génie Rural à 4 paramètres Journaliers) and its monthly 

variant, the GR2M model. GR4J was concluded as good for the Mono river catchment (Batablinlè 

et al., 2021; Koubodana et al., 2021), like the GR2M (Amoussou, 2010). IHACRES showed 

satisfactory results as well in the catchment (Koubodana et al., 2021). Houngue, 2018 used the 

regional climate model REMO and the HBV model to simulate discharge and reported that the 

hydrological model performed very well. However, all those models are lumped models that work 

with relatively simple routines to represent hydrological processes. They do not account for 

LULCC. Koubodana et al., 2021 addressed that gap and used the SWAT (Soil and Water 

Assessment Tool) model that allows the integration of LULC maps and soil information. Due to 

the presence of the Nangbéto hydropower dam, the authors performed one simulation before 

the commission of the dam in 1987, and another simulation after the dam. The latter yielded poor 

performances, while the simulation before the dam resulted in good statistics. This is attributable 

to the substantial gaps in input data during the after-dam period. The authors recommended 

further calibration works on the model and an assessment of climate change and LULCC impacts 

for better flood management in the Mono river catchment. Obahoundje et al., 2021 addressed 

climate change and LULCC impacts using the Water Evaluation and Planning model (WEAP), but 

from a hydropower generation perspective. The study revealed that, water demands for domestic 

use, irrigation, livestock and industries in the near future (2020-2050), and on a longer term 
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(2060-2090), will not be met under the combined effect of climate change, LULCC, and 

development projects including the planned Adjarala hydropower plant. 

Notwithstanding the existing studies in the Mono river catchment, the effect of climate change, 

LULCC, and the construction of the planned Adjarala dam on floods is still unclear. LULC during 

1975-2013 in the Mono river catchment was globally characterised by an expansion of built-up 

areas and a decrease of forests (Koubodana et al., 2019), that are expected to continue until 2070 

(Thiam et al., 2022). Thus, imperviousness will increase and infiltration will decrease, which may 

exacerbate flooding. Recurrent and devastating flood events are recorded in the Mono river 

catchment. The most damaging events occurred in 2010, affecting around 686,000 people in 

Benin and Togo (DREF, 2011; OCHA, 2010), and causing USD 300 million of loss and damages 

(UNDP, 2010; WB & UNDP, 2011). Furthermore, the transboundary aspect of the Mono river 

catchment is an essential component of its management especially, regarding flooding, water 

infrastructure, decision making and conflicts resolution. Transboundary cooperation is necessary 

for socioeconomic development, for effective adaptation to climate change, and for mutual and 

equitable sharing of adaptation costs and benefits (Earle et al., 2015; UNECE, 2015b). 

Nonetheless, cross-border water cooperation has so far not been addressed in the Mono river 

catchment. 

1.2.  Aim and research questions 

The overall objective of this thesis is to evaluate the impacts of climate and land use changes on 

floods in the Mono river catchment, while accounting for the transboundary aspect of the basin. 

The study intends to analyse the response of flood hazards to different scenarios on the one hand, 

and on the other, to assess how jointly the catchment is managed by riparian in order to respond 

to potential future changes. The background presented above and the stated objective raise 

different questions that are addressed in this thesis. 

Question 1: What are the alternatives to deal with gaps in precipitation data in the Mono River 

catchment? 

Impact studies like this one mainly require data (quantitative data) to bridge past-to-present 

information with models simulation. However, observation data, especially precipitation data, 

which are key input for climate change impact studies, are known to hold substantial gaps in the 

Mono river catchment. Therefore, the first step in this study was to explore options to deal with 

gaps. Chapter 2 presents the options that were explored and the one recommended for this study. 

Question 2: Which regional climate models best represents the conditions in the Mono River 

catchment and what is the future climate trend in the basin? 

Future climate trend assessments are based on scenario data provided by climate models. Climate 

models from the CORDEX database are targeted for this study. However, there is a multitude of 

models available in that database. Selecting good climate models, is essential to well represent 

the study area. Thus, before undertaking scenarios and trend analyses, a systematic way of 



1. Introduction 

4 
 

selecting best performing models was investigated. Chapter 3 addresses the selection process 

and the projected climate trends. 

Question 3: What is the impact of climate and land use/land cover changes on the discharge of 

the Mono River and how does it affect flood hazards in the lower part of the catchment? 

Climate change information derived from Question 2 were used together with LULCC scenarios 

to assess their combined effect on flood. The impact on discharge was first analysed at the station 

located most downstream of the catchment, and the implication for flood extents was assessed 

for the area downstream of the Nangbéto dam. The catchment actually hosts a hydropower dam, 

the Nangbéto dam, and the two countries are planning to build a second one named the Adjarala 

dam. Thus, the potential effect of the Adjarala dam was also evaluated while addressing this 

research question. Chapter 4 provides a detailed overview of potential impact of climate change, 

LULC change and the construction of the Adjarala dam on floods. 

Question 4: How jointly is the catchment managed by riparian countries in order to respond to 

potential future changes? 

In addition to the scenario and hazard assessment, the study sought an approach to quantify the 

level of cooperation between the riparian in order to stand projected changes. A quantitative 

metric, the Water Cooperation Quotient was used to assess the level of cooperation of the two 

countries with respect to the Mono catchment that they share together. The assessment was 

done in a participative way with local stakeholders. The computation process of the Quotient and 

the results obtained are presented in Chapter 5 

1.3.  Research framework 

This thesis was conducted in the framework of the CIMAFRI (Implementation of Climate-sensitive 

Adaptation strategies to Reduce Flood Risk in the transboundary Lower Mono River catchment in 

Benin and Togo) project. The overall aim of the project is to reduce the current and future flood 

risk through integration of science-based data with information and knowledge from local 

stakeholders and communities. 

The project was structured into 6 work packages (WP) as follow: Data, models and assessment 

(WP 1), Scenario and adaptation measures development (WP 2), Technical integration of flood 

risk analyses (WP 3), Stakeholder engagement (WP 4), Capacity building (WP 5), and 

Implementing adaptation strategies and risk management instruments (WP 6). The research 

questions addressed in this study are part of WP 1, WP 2, and WP 4. Each work package was led 

by a specific project partner that coordinates the implementation with other partners. Therefore, 

partners were complementary and outputs from one serve as input for another. For example, the 

LULC maps used in this study (Thiam et al., 2022) were provided by partners from the Centre for 

Development Research (Zentrum für Entwicklungsforschung ZEF), while the flood hazard 

information presented in this thesis were used by the partners in charge of vulnerability and risk 

assessment. In addition, the flood maps presented in Chapter 4 were not prepared by the PhD 
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candidate, even though they are part the publication which served as basis for the content of the 

chapter.  

The project started in April 2019. The implementation happened in the midst of the Covid 

pandemic which then called for some strategic adaptations. Thus, the following steps were 

thought over and re-adjusted: 

- Fieldwork for river cross-section measurement: the fieldwork was cancelled and the cross-

sections were alternately derived with a model and based on expert judgement; 

- Physical workshops: workshops were held online to validate flood maps and to compute 

the Water Cooperation Quotient together with stakeholders.  

1.4.  The study area 

The Mono River Basin is located within latitudes 6.36 °N and 9.39 °N, and longitudes 0.62 °E and 

1.99 °E in West Africa (Figure 1). It stretches over 340 km north to south with an area of 23,736.64 

km2. The catchment is transboundary and shared by the Republics of Benin and Togo. 89% of the 

catchment area is in Togo, while 11% lies on Benin. Moreover, the Mono River catchment covers 

about 35% of Togo’s territory. The Mono River serves as natural border between both countries 

in the downstream. 

The Mono River Basin has two main climatic zones defined by a subequatorial climate for latitudes 

lower than 7 °N and a tropical climate in the upper part (latitude above 7 °N). Areas of latitude 

lower than 7 °N experience two rainy seasons every year, whereas above 8 °N, the rainfall regime 

is unimodal with only one peak (Amoussou, 2010). Within latitudes 70 °N–8 °N, the rainfall regime 

is halfway between a typical unimodal and bimodal cycle, which is described as a “transitional” 

regime (Lawin, Hounguè, Biaou, et al., 2019). The mean annual temperature ranges between 26 

°C and 28 °C, while an average of 1200 mm precipitation per year is recorded in the catchment. 

Land use and land cover types in the catchment are predominantly savannah, forest, croplands, 

settlements and water bodies. 
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The number of inhabitants living in the catchment in 2022 is estimated to 5,266,832 (MBA, 2022). 

Main economic activities consist of small-scale farming, fishing, small trades, and livestock 

breeding. The valley of the Mono River contributes to food production in Benin and Togo. The 

catchment hosts the Nangbéto hydroelectric dam mutually owned by Benin and Togo. The 

recurrent flood events experienced at the downstream of the Nangbéto dam have become more 

frequent and intense over the past decades. The downstream of the catchment is characterised 

by low elevation and flat lands which favour the persistence of flood events in the area. 

1.5. Structure of the thesis 

The thesis is organised into 6 chapters. Chapter 1 presents the introduction, including the problem 

statement, the aim and research questions and a description of the study area. Chapter 2 explores 

the potential of satellite-based rainfall datasets for gaps filling. Chapter 3 presents a systematic 

approach to select best performing climate models, and the analysis of future climate trends in 

the Mono river catchment. Chapter 4 focused on the impacts of climate change, land use/land 

cover change, and the construction of the Adjarala dam on the river discharge and on flood. 

Chapter 5 addresses the current state of water cooperation between the riparian of the Mono 

river catchment. Table 1 presents a brief overview of the research questions addressed in Chapter 

2-5, the methods used and the key outcomes. Chapter 6 provides a general conclusion to the 

thesis. References are presented in Chapter 7, list of publications in Chapter 8 and conference 

contributions in Chapter 9. 

Figure 1.1. Location of the Mono river catchment 
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Table 1.1. Overview of research questions and key findings 

Research question Methods Key findings Main contribution Publication 
status 

1. What are the 
alternatives to deal 
with gaps in 
precipitation data 
in the Mono river 
catchment? 

 Evaluation of 4 satellite-based and 
remotely sensed precipitation datasets; 

 Evaluation of the Kriging interpolation 
method; 

 Statistical and categorical metrics to 
compare remotely sensed datasets 
against observed time series; 

 Analysis of the ability of the assessed 
datasets to be used as input for 
hydrological modelling 

 All the four datasets assessed reproduced well the 
seasonal cycle in different parts of the catchment 

 The datasets performed poorly at daily and annual 
scale 

 Filling the missing does not necessarily improve 
the quality of the data and that may not be 
needed in the case of the Mono basin if 
interpolation methods like kriging are applied. 

Identification of 
an efficient way of 
dealing with gaps 
in precipitation 
datasets for flood 
simulation 
purposes 

Published in 
Journal of 
Hydrology: 
Regional 
Studies 
doi: 
10.1016/j.ejrh.2
021.100875 

2. Which regional 
climate models best 
represents the 
conditions in the 
Mono river 
catchment and 
what is the future 
climate trend in the 
basin? 

 Download of 15 RCMs from the CORDEX 
database; 

 Ranking of the RCMs to select the best 
performing ones using the MCDA 
approach TOPSIS; 

 Computation of the ensemble of the 
selected RCMs; 

 Assessment of rainfall and temperature 
trends under scenarios RCP 4.5 and RCP 
8.5, and during the period 2022-2070 

 6 RCMs were identified as the best ones; 

 under both climate change scenarios, the annual 

 temperature has an increasing trend during the 
period, whereas annual rainfall presents high 
variability and no statistically significant trend; 

 Seasonal cycles of rainfall are expected to change 
with delayed onset of 

 rainfall, longer dry seasons, and rainfall 
intensification 

Use of a 
systematic RCM 
selection 
procedure and 
assessment of 
future climate 
trends with an 
ensemble model 

Published in 
Atmosphere  
doi: 
10.3390/atmos
13091471 

3. What is the 
impact of climate 
and land use/land 
cover changes on 

 Calibration and validation of the SWAT 
model; 

 Discharge simulation over the period 
2022-2070 using climate change 

 Good calibration and validation results 

 increase of the magnitude of flood extremes 
under future climate and land use change 
scenarios 

Assessment of the 
implication of 
climate change, 
LULCC, and the 

Published in 
Sustainability 
doi: 



1. Introduction 

8 
 

the discharge of the 
Mono river and 
how does it affect 
flood hazards in the 
lower part of the 
catchment? 

scenarios (RCP 4.5, RCP 8.5) and land use 
maps from 2030, 2050 and 2070; 

 Integration of the Adjarala dam in the 
model to simulate its potential effect; 

 Discharge magnitude associated with 
return periods of 2, 5, 10, 50, and 100 
years were estimated 

 Mapping of flood extents corresponding 
to the return periods using the 
TELEMAC-2D model 

 Events of 10-years return periods during 1987-
2010 are expected to become 2-years return 
period events under the climate and land use 
change scenarios considered. The planned 
Adjarala dam showed potentials for extreme peak 
and flood extent reduction; 

 The areas flooded by a 10-years return period 
event under RCP 4.5 will reduce by ~10 km2 with 
the Adjarala dam as compared to without the dam 

construction of 
the Adjarala dam 
for discharge and 
for extreme flood 
events  

10.3390/su150
75862 

4. How jointly is the 
catchment 
managed by 
riparian in order to 
respond to 
potential future 
changes? 

 Computation of the WCQ by 
stakeholders in subgroups and all-
together in a consensual way; 

 Comparison of the WCQ by stakeholders 
with the score published in the report of 
the Foresight Strategic Group (FSG); 

 Identification of cooperation aspects 
that need attention in the Mono 
catchment and ways to improve the 
WCQ 

 During the subgroup computation, cooperation in 
terms of data sharing, conflict management, and 
the management of floods and ecosystems were 
weighted differently by the groups. All other 
parameters were weighted equally by all the 
groups; 

 The score resulting from stakeholders’ 
computation (whether in subgroups or all-
together) implies a stronger cooperation between 
the two countries than the score obtained in the 
FSG report 

 It is recommended to also account for socio-
cultural parameters in the computation the 
Quotient 
 

Assessment of the 
current state of 
water 
cooperation and 
integration of 
stakeholders 
perception 

Under review. 
Submitted to 
Environment, 
development 
and 
sustainability, 
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2. Evaluation of the performance of remotely sensed rainfall datasets for flood 

simulation in the transboundary Mono River catchment, Togo and Benin1 

 

Abstract 

Study region: This study focused on the Mono River Basin in West Africa. 

Study focus: The lack of extensive and functional measurement networks for flood monitoring, 

introduces satellite-based rainfall datasets as an alternative which needs however to be evaluated 

beforehand. This study investigated the performance of four satellite and gauge-based rainfall 

products – Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data 

Record (PERSIANN), Tropical Applications of Meteorology using Satellite data and ground-based 

observations (TAMSAT), the Global Precipitation Climatology Centre full daily data (GPCC) – with 

grid-to-point and hydrologic modelling approaches at different time scales over the Mono basin. 

New Hydrological Insights for the Region: With the grid-to-point assessment, results show poor 

performances at daily and annual scales while the seasonal cycles were well reproduced with 

Nash-Sutcliffe efficiency (NSE) equal or higher than 0.94, and correlation coefficient above 0.9. All 

assessed products exhibited high probability of detection (POD) and low false alarm ratio (FAR) at 

dekadal scale. Based on NSE values of hydrologic modelling, best results were achieved by 

PERSIANN, followed by GPCC and TAMSAT, but CHIRPS performed worst with negative values. By 

filling the gaps of gauge data with the satellite-based products, we noticed that filling the missing 

does not necessarily improve the quality of the data and that may not be needed in the case of 

the Mono basin if interpolation methods like kriging are applied. 

Keywords: Flood; Mono River Basin; Satellite-based rainfall products. 

 

 

 

 

 

                                                        
1 This chapter (2) has been published as: Hounguè, N. R., Ogbu, K. N., Almoradie, A. D. S., & Evers, M. (2021). 
Evaluation of the performance of remotely sensed rainfall datasets for flood simulation in the transboundary Mono 
River catchment, Togo and Benin. Journal of Hydrology: Regional Studies, 36. 
https://doi.org/10.1016/j.ejrh.2021.100875 
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2.1.  Introduction 

Precipitation datasets are important in climate risks management (Jones & Boer, 2004). Lack of 

information on precipitation can jeopardize people’s livelihood and security. That is particularly 

true in the context of global warming and climate change whereby high variability and substantial 

changes are observed in rainfall patterns, along with natural disasters like storm, flood, drought 

and wildfires, which are expected to increase in magnitude and intensity during the next decades 

(IPCC, 2014).However in developing countries like those in sub-Saharan Africa, precipitation 

datasets are characterized by non-existing records or large gaps in time series (Githungo et al., 

2016). 

In the transboundary Basin of Mono River shared by the republics of Benin and Togo, flood events 

are recurrent and trigger enormous damages (UNDP, 2010; WB & UNDP, 2011) which are 

expected to worsen in the future (Amoussou et al., 2020; Batablinlè et al., 2019; Koubodana et 

al., 2020; Lawin et al., 2019). However, majority of rain gauges (about 20) distributed within the 

basin, do not have complete time series of at least 30 years, and previous studies use different 

methods to manage missing data: Pearson correlation with neighbouring station (Koubodana et 

al., 2020), spatial interpolation with ordinary kriging (Amoussou et al., 2014, 2020; Lawin et al., 

2019). 

Remotely sensed rainfall products represent a good alternative in dealing with non-existing or 

incomplete records. Some of the advantages of such data are their relatively fine spatial 

resolution and consistency of their time series. Remotely sensed data can be 

retrieved from infrared sensors, microwave sensors or based on weather radars (Hong et al., 

2018). A number of studies have been carried out in sub-Saharan Africa at various spatial and 

time scales, in order to evaluate the performance of satellite-based rainfall product (Le Coz & Van 

De Giesen, 2020). The increase of such studies supports scientific research and disaster 

management in areas characterized by sparsely gauged rainfall stations network (Dinku, 2019). 

Many studies demonstrated good performances of remotely sensed rainfall products in the fields 

of hydrology, climatology, agriculture, ecosystem management and basically for natural hazards 

management  (Asadullah et al., 2008; Deblauwe et al., 2016; Dinku et al., 2018; Githungo et al., 

2016; Poméon et al., 2017; Romilly & Gebremichael, 2011; Sawunyama & Hughes, 2010). 

Poméon et al. (Poméon et al., 2017) assessed ten satellite and reanalysis precipitation datasets in 

six basins in West-Africa and concluded that CMORPH CRT, PERSIANN CDR, TAMSAT, CHIRPS, 

TMPA 3B42, RFE 2.0, GPCC, and TMPA 3B42 RT provide satisfactory results, whereas CMORPH 

RAW and CFSR performed poorly. Dembélé and Zwart (Dembélé & Zwart, 2016) evaluated seven 

satellite-based precipitation products (ARC 2.0, CHIRPS, PERSIANN-CDR, RFE 2.0, TAMSAT, TRMM 

and TARCAT) over Burkina Faso, at annual, monthly, decadal and daily scales. These authors found 

out that all evaluated products, except TARCAT, performed well at monthly and annual scale, and 

showed poor results at daily scale. Larbi et al. (Larbi et al., 2018) evaluated the performance of 

CHIRPS data at reproducing trend and extremes in the Vea Catchment in Ghana and noticed the 

satellite-based data has high seasonal agreement with station data. Ogbu et al. (Ogbu et al., 2020) 
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analysed CHIRPS, PERSIANN-CDR and TAMSAT over Nigeria and found that CHIRPS is more in line 

with observations in all climatic zones while the performance of PERSIANN and TAMSAT are 

season and location specific. 

The results of these previous studies have shown the good performances of CHIRPS, PERSIANN-

CDR and TAMSAT and GPCC at representing regional and local climate, and their suitability for 

hydrological purposes in different regions in western Africa. Moreover, these products provide 

long time series datasets, of at least 30 years, to support long term analysis of the climate. Thus, 

this study aims at assessing three satellite-based (CHIRPS, PERSIANN-CDR, TAMSAT) and one 

gauge-based (GPCC) rainfall products in the Mono River basin to support gaps handling in 

precipitation datasets and more specifically for flood management purposes. Therefore, the 

ability of the selected products was assessed at daily, dekadal, seasonal and annual scales using 

continuous and categorical statistics. 

2.2. Materials and methods 

2.2.1. Study area 

The Mono River catchment is a transboundary catchment shared by two West-African countries, 

the Republics of Benin and Togo (Figure 2.1). It covers an area of 23,592.56 km2 and is located 

between latitudes 6.36 ◦N and 9.39 ◦N, and longitudes 0.62 ◦E and 1.99 ◦E. 

 

Figure 2.1. Location of the Mono river catchment 
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The catchment is characterized by a subequatorial climate with a bimodal rainfall cycle, two rainy 

seasons and two dry seasons, in the southern part (latitude inferior to 7 ◦N) and a tropical climate 

zone with unimodal rainfall season, one rainy and one dry season, in the central and northern 

parts of the basin (latitude greater than 7 ◦N) (Amoussou, 2010; E. Lawin, Hounguè, Biaou, et al., 

2019). However, between 7◦N and 8 ◦N rainfall regime is “transitional”, the peak is recorded in 

July and is relatively maintained till September. In a typical subequatorial area of the basin, two 

peaks are recorded in June and October, while the peak rainfall is reached in August in tropical 

areas. Average annual rainfall ranges from 1000 mm per year in the south to about 1200 mm per 

year in the north. 

2.2.2. Data 

Rainfall data from 28 rain gauges were collected inside and near the Mono River catchment. The 

catchment disposes of three (3) synoptic stations that provide complete rainfall time series and 

temperature over at least 30 years to allow a long term analysis. These stations are located in 

Tabligbo in the south, Atakpamé in the central part and Sokodé in the northern part of the 

catchment. Further details about their location are provided in Table 1. Rainfall, temperature, and 

discharge data used in this study were collected from national meteorological services of Togo 

(Météo Togo) and Benin (Direction de la Météorologie National). 

The three synoptic stations presented in Table 2.1 were used for the grid-to-point analysis due to 

the completeness of their time series. 

Four rainfall datasets were assessed in this study: the Climate Hazards Group Infrared 

Precipitation with Station data version v2.0(CHIRPS), Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), 

Tropical Applications of Meteorology using Satellite data and ground-based observations 

(TAMSAT)and the Global Precipitation Climatology Centre full daily data (GPCC-FDDv1). The first 

three are satellite based whereas the latter is gauge based. 

Table 2.1. Rain gauges from synoptic stations 

Station name Longitude (°) Latitude (°) Elevation (m) 

Tabligbo 1.50 6.58 40 

Atakpamé 1.12 7.58 400 

Sokodé 1.15 9 387 

The Climate Hazards Group Infrared Precipitation with Station data version 2.0 (Funk et al., 2014), 

(CHIRPS), is a gridded rainfall time series developed by the U.S. Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Centre and the Climate Hazard Group of University of 

California, Santa Barbara (UCSB) for seasonal drought monitoring. It merges in situ observations 

and other data input sources such as the monthly precipitation climatology (CHPClim), the quasi-

global geostationary thermal infrared satellite observations from the Climate Prediction Centre 

(CPC) and from National Climatic Data Centre (NCDC), the Tropical Rainfall Measuring Mission 
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(TRMM) 3B42, and the atmospheric model rainfall fields from the NOAA Climate Forecast System, 

version 2 (CFSv2). 

The precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-

Climate Data Record, hereafter referred to as PERSIANN, uses gridded infrared data from the 

GridSat-B1 satellite and the National Centres for Environmental Prediction (NCEP) stage IV hourly 

precipitation data as input data, which are further adjusted with the version 2.2 of the monthly 

product of the Global Precipitation Climatology Project (GPCP 2.2) (Ashouri et al., 2015; Gehne et 

al., 2016). TAMSAT was developed for Africa by the University of Reading based on thermal 

infrared imagery from the Meteosat satellite (Maidment et al., 2014; Tarnavsky et al., 2014). It 

also uses gauge observations and has a fine resolution of 0.0375◦, approximately 4 km. 

The Global Precipitation Climatology Centre Full Data Daily version.2018 (Ziese et al., 2018) , 

hereafter GPCC, is a gauge-based gridded precipitation dataset developed by the Deutscher 

Wetterdienst with data provided by national meteorological and hydrological services, global and 

regional data collections as well as the Global Telecommunication System (GTS) of the World 

Meteorological Organisation (WMO). It is based on more than 35,000 station gauges per month 

and uses the SPHEREMAP scheme for interpolation (Schneider et al., 2018). The GPCC dataset 

have a relatively coarse spatial resolution of 1°. The characteristics of the satellite and gauge 

products used in this study are shown in Table 2.2. 

Table 2.2. Selected satellite-based precipitation products 

Rainfall product Spatial resolution Spatial coverage Temporal 

coverage 

Temporal 

resolution 

CHIRPS 0.05° x 0.05° 50N-50S 1981 to present Daily 

PERSIANN 0.25° x 0.25° 60N-60S 1983 to present Daily 

TAMSAT 0.0375° x 0.0375° Africa 1983 to present Daily 

GPCC 1° x 1° 90°N - 90°S 1982-2016 Daily 

The four products were selected based on previous studies (Dembélé & Zwart, 2016; Ogbu et al., 

2020; Poméon et al., 2017) that demonstrated satisfactory results over West-Africa. Furthermore, 

GPCC which is typically not a satellite product, is also of interest in this study because of its 

common use as reference precipitation dataset and because of its good performance in other 

studies (Adeyewa & Nakamura, 2003; Poméon et al., 2017; Ziese et al., 2018). 

To harmonize the time span of the various datasets and based on the available gauge data, the 

period 1983-2012 was considered as study period. The products were downloaded and extracted 

at station grid point and evaluated against gauge rainfall time series. Rainfall estimates from a 

satellite product at a given station point, is the value of rainfall in the grid in which that station 

falls. 
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2.2.3. Grid-to-point evaluation 

In the grid-to-point approach, satellite products were evaluated against observed time series by 

assessing the mean annual rainfall, the annual variability and daily variability using continuous 

and categorical statistics. 

The mean annual rainfall is the monthly rainfall values averaged over 30 years study period. It 

gives an overview of the annual rainfall cycle in a given location. 

The annual variability of the products was checked using the total annual rainfall, the 

standardized precipitation index (SPI) and, trend analysis based on Mann-Kendall test (Mann, 

1945)  and Sens’ slope estimator (Theil, 1950) at 95% confidence interval. 

The SPI quantifies precipitation deficit at different time scales from 1 to 24 months. Precipitation 

amounts are cumulated for the selected time period and fitted to a normal distribution. Further 

details about SPI are well documented by McKee et al. (Mckee et al., 1993) and by Edwards and 

McKee (Edwards & Mckee, 1997). In this study the 12-months SPI is computed to characterize 

hydrologically dry and wet years based on scale in Table 2.3.  (WMO, 2012). 

Table 2.3. SPI values and interpretation scale 

SPI Drought and wetness characterization 

>  or = 2 Extremely wet 

1.5 to 1.99 Very wet 

1 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

< or = -2 Extremely dry 

Moreover, four continuous statistics were used: the Pearson correlation coefficient, the Nash-

Sutcliffe efficiency NSE (Nash & Sutcliffe, 1970), the root mean square error RMSE, and the 

percentage of bias (PBIAS). They were applied to the mean annual rainfall, total annual rainfall 

and daily rainfall time series. 

The Pearson correlation coefficient, r, is used to quantify the linear relationship between 

observed and rainfall estimates. it varies from -1 to 1, a negative r corresponds to a negative 

relationship and a positive value denotes a positive correlation. 

𝑟 =
∑ (𝑂𝑖−�̅�)(𝑆𝑖−𝑆̅)
𝑛
𝑖=1

√∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1 √∑ (𝑆𝑖−𝑆̅)
2𝑛

𝑖=1

         (1) 

where Oi and Si are respectively observed and simulated values at time i, �̅� and 𝑆̅ are respectively 

the mean rain gauge and model values, and n the sample size  
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NSE is used to assess how well the satellite-based or gauge-based products predict the observed 

station gauge time series. It ranges from minus infinity to one, with one indicating a perfect match 

between observed and estimated rainfall. 

𝑁𝑆𝐸 = 1 − 
∑ (𝑂𝑖−𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖−�̅�)
2𝑛

𝑖=1

         (2) 

RMSE is a measure of how spread the predicted values are around the 1:1 line of best fit. It varies 

between 0 and infinity. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑖 −𝑂𝑖)2
𝑛
𝑖=1          (3) 

As for the PBIAS, it indicates how the simulated values under or overestimate the observed ones. 

𝑃𝐵𝐼𝐴𝑆 =  
∑ 𝑆𝑖−𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

          (4) 

A positive PBIAS indicates an overestimation while a negative value corresponds to 

underestimation, with 0 being the optimal value. 

To facilitate comparison with the observed time series, the Pearson correlation coefficient and 

RMSE are presented on a Taylor diagram alongside the standard deviation. Taylor diagram 

(Taylor, 2001) is a graphical representation of r, RMSE and standard deviation basically designed 

for evaluating model performance against observation. The X and Y axes are standard deviation. 

The observed is represented by an isoline of standard deviation, and a dot on the x axis which 

corresponds to r = 1 and RMSE = 0. Models’ RMSE are normalized –divided by observed standard 

deviation, and represented by isolines. 

Furthermore, based on a contingency table, two categorical metrics were also used to evaluate 

the rainfall detection ability of the selected products. These are the probability of detection (POD) 

which represents the likelihood of satellite products to detect a rainfall event, and the false alarm 

ratio (FAR) which describes the fraction of predicted rainfall event that did not actually happen 

(Sofiati & Nurlatifah, 2019; Stanski et al., 1989). As this assessment is being conducted for flood 

management purposes, POD and FAR were computed at daily and dekadal (10 days) scale to 

evaluate how effectively the satellite products can capture rainfall events in a short time period. 

Every month comprises three dekads, day 1 to day 10 for the first dekad, day 11 to 20 for the 

second dekad and day 21 to day 28 or 30 or 31 for the third dekad depending on the month and 

year. 

Furthermore, a generalized extreme value (GEV) distribution was used to evaluate the 

performance of the remotely sensed rainfall products for representing extreme rainfall values and 

their return periods. GEV is a combination of three probability distribution types: Gumbel 

characterized by shape = 0, Frechet corresponding to shape >0 and Weibull characterized by 

shape <0 (Jenkinson, 1955; von Mises, 1936). It was applied to annual daily maxima of rainfall 
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predicted by satellite products using the generalized maximum likelihood estimation (GMLE). The 

return levels associated with return periods of 2, 5, 10, 50 and 100 years were compared against 

those of observed time series. 

2.2.4. Hydrologic modeling 

A hydrologic assessment was performed in addition to the grid-to-point evaluation using HBV-

light (Hydrologiska Byråns Vattenbalansavdelning) model (Seibert, 2000; Seibert & Vis, 2012). 

HBV-light is a conceptual rainfall-runoff model widely used for runoff modelling, flood forecasting 

and climate change impact assessment (Cloke et al., 2012; Grillakis et al., 2010; Kebede et al., 

2014; Koutsouris et al., 2017; Shiwakoti, 2017). It has already been applied in various basins of 

Benin with good results (Badou et al., 2018; Bormann & Diekkrüger, 2003; Gado, 2019; U. 

Charlene Gaba, 2015). The model is simple and requires only rainfall, temperature and 

evapotranspiration as input data. HBV comprises four components: the snow routine, the soil 

routine the response routine and the routing routine (Figure 2.2). 

 

Only the last three components and their parameters described in Table 2.4 were considered 

since snow routine is not meaningful for the study area. In the soil routing, actual water storage 

is used to compute groundwater recharge and actual evaporation, while the response and routing 

routines use respectively three linear reservoir equations and a triangular weighting function to 

simulate runoff (Seibert & Beven, 2009).  Further details about the HBV model are provided by 

Bergström, 1992; Seibert and Beven, 2009; Seibert and Vis, 2012.  

Figure 2.2. General structure of HBV model (Seibert, 2000) 
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Table 2.4. HBV parameters and default ranges 

Routine Parameter Description Minimum Maximum Unit 

Soil 
moisture 
routine 

FC Maximum soil moisture storage 100 550 mm 

LP Soil moisture threshold for 
reduction of evaporation 

0.3 1 mm 

BETA Shape coefficient 
 

1 5  

Response 
routine 

PERC Maximum flow from upper to 
lower groundwater box 

0 4 mm.d-

1 

UZL Threshold parameter for K0 
outflow 

0 70  

K0 Recession coefficient 0.1 0.5 d-1 

K1 Recession coefficient 0.01 0.2 d-1 

K2 Recession coefficient 
 

5.10-5 0.1 d-1 

Routing 
routine 

MAXBAS Routing, length of weighting 
function 

1 2.5  

The automatic Genetic Algorithm and Powell (GAP) optimisation tool (Seibert, 2000) embedded 

in the model was used for calibration. With the GAP algorithm, optimized parameters are 

generated and randomly recombined before being fine-tuned using Powell’s quadratically 

convergent method (Seibert & Vis, 2012). Calibration with HBV is basically manual and consists of 

varying parameter ranges with a try and error technique until a good model efficiency is achieved 

for the catchment. Thereafter, that set of parameters can be applied to various input datasets 

e.g., for validation, data quality control or scenario development. Since we are evaluating datasets 

performances in this study, they should be compared on the same ground, which implies that we 

must not run a dataset with the parameters derived from calibration performed with another 

dataset. Therefore, to avoid a biased comparison, the model was automatically calibrated for 

each satellite based product with 10,000 GAP runs and using the default parameter ranges which 

were reported to be realistic especially for catchments in West Africa (Poméon et al., 2017).  

The model was calibrated on the period 1986-2000 and validated on 2002-2010 with a three 

years warm-up period 1983-1985. 

Since HBV-light is a lumped model which needs areal precipitation as input, daily average rainfall 

was computed using ordinary kriging method (Matheron, 1963) for interpolation. The kriging 

approach applied in this study consisted of computing a variogram with the corresponding 

characteristics (nugget, sill and range) for each year separately. The advantage of that approach 

is that it accounts for inter-annual variability of the dataset as opposite to the common kriging 

application whereby a single variogram is used for the entire time series. More details about the 

method are available in (Lawin, 2007; Lawin, Hounguè, Biaou, et al., 2019).  
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Since the final goal of this study is to evaluate the capability of remotely sensed products to deal 

with missing in gauge data, and because gauge data when they exist are preferable to remotely 

sensed ones, we filled-in the gaps of available rain gauges (Figure 2.1) with satellite-based 

products and used the recomposed gauge-satellite dataset as input for hydrologic modelling. 

Thus, a total of 8 models were created: 4 with satellite based sensed products and 4 with gauge-

satellite combinations. 

2.3. Results and Discussion 

2.3.1. Grid to point evaluation 

This section presents the results of the various analyses performed with the grid-to-point 

assessment. 

2.3.1.1. Annual cycle 

For the three selected rain gauges, all the products fairly reproduced the annual rainfall cycle and 

its seasons (Figure 2.3). 

At Tabligbo, PERSIANN presents higher rainfall values after the first peak and the second peak 

occurred one month earlier than the gauged; as for TAMSAT, it has the first peak occurring in May 

instead of June. At Atakpamé, the peak is underestimated by TAMSAT and PERSIANN, and it 

occurs two months later with GPCC, whereas CHIRPS has one-month delay of the peak. As 

underlined by Lawin et al. (Lawin et al., 2019), the annual cycle in the central part of Mono basin 

(where Atakpamé gauge belongs) is characterized by a “transitory” cycle which is not clearly 

bimodal neither strictly unimodal, and none of the four products assessed in this study fairly 

represent that pattern along with the peak rainfall amount. At Sokodé, the peak is 

underestimated by PERSIANN and GPCC and for the latter the peak happens in September instead 

of August. Overall, CHIRPS reproduced best the annual cycles. 

(a) (b) (c) 

Figure 2.3. Annual cycle of rainfall at Tabligbo (a), Atakpamé (b) and Sokodé (c) 
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This is further supported by results as shown in the Taylor diagrams (Figure 2.4) as well as statistics 

of NSE and PBIAS values in Table 2.5. 

 

 

 Table 2.5. NSE and PBIAS statistics of mean monthly rainfall 

 

 

 

 

 

At Tabligbo, CHIRPS has the highest NSE value and the lowest bias. It is followed by TAMSAT, GPCC 

and PERSIANN. At Atakpamé, the best product after CHIRPS is GPCC, followed by TAMSAT and 

PERSIANN which have almost same results. In Sokodé, TAMSAT shows the second best NSE results 

after CHIRPS. All the products show very high correlation with observed data (r>0.9) for the three 

stations. However, PERSIANN time series globally displayed the lowest NSE, highest bias and 

highest error except at Sokodé where it has slightly outperformed GPCC. 

2.3.1.2. Return period 

The return levels of daily maximum rainfall associated with 2, 5, 10, 50 and 100 years return 

period are presented on Figure 2.5. The return levels simulated by the products are overall 

underestimated compared to observed, except for 50 and 100 years return period of GPCC at 

Tabligbo. TAMSAT predicted the lowest daily extreme values and highly underrated them, 

Station Statistics CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo NSE 0.99 0.85 0.98 0.97 

 PBIAS -1 10.6 3.3 -6 

Atakpamé NSE 0.99 0.94 0.95 0.97 

 PBIAS -1 -8.1 -9.9 2.6 

Sokodé NSE 0.99 0.96 0.98 0.95 

 PBIAS 2.9 -10.1 7.7 -3.5 

Figure 2.4. Taylor diagram of mean monthly rainfall 
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therefore, it cannot be commended for flood management purposes in order to reduce 

unforeseen risks. 

 

The results of CHIRPS and PERSIANN also underestimated the return levels of extreme daily 

maximum precipitation, and that made them not very suitable for flood monitoring activities. 

The closest values to gauges’ data are noted with GPCC. However, the recurrence of the rarest 

events, above 10 years return period, must be regarded with caution because of the short 

length of the evaluation period. 

2.3.1.3.  Trend analysis of annual rainfall 

The Z statistics and p-value of Mann-Kendall trend assessment and Sen’s slope values for gauge 

time series and the satellite-based products are summarized in Table 2.6. Significant trends are 

indicated by bold p-values. The positive Z statistics noted for observed time series at all three 

gauges indicates increasing trends which are however not significant at 95% confidence since p-

values are greater than 0.05 (or alternatively Z values are lower than 1.96).  

Table 2.6. Mann-Kendall statistics and Sen’s slope 

Station Statistics Observed CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo Z 1 1.96 1.07 3.18 1.82 

 p-value 0.32 0.05 0.28 0.001 0.07 

 Sen’s slope 4.25 7.1 4.41 12.46 5.46 

Atakpamé Z 0.79 1.18 0.54 3.12 0.11 

 p-value 0.43 0.24 0.59 0.002 0.91 

 Sen’s slope 3.72 6.34 2.87 9.78 0.95 

Sokodé Z 0.80 1.14 1.43 4.21 0.18 

 p-value 0.42 0.25 0.15 2.55x10-5 0.86 

 Sen’s slope 3.16 4.43 6.28 12.73 0.84 

(a) (b) (c) 

Figure 2.5. 2, 5, 10, 50 and 100 years return levels at Tabligbo (a), Atakpamé (b) and Sokodé (c) 
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Over the three stations, TAMSAT time series exhibit significant increasing trends and the 

magnitude of increase as indicated by slope values are in average three time those of gauge data. 

In the opposite, the other products showed agreement with the observed trends, except CHIRPS 

at Tabligbo where p-value = 0.05. At Tabligbo, PERSIANN and GPCC stand out as the best products 

while at Atakpamé, PERSIANN, and CHIRPS are the best two. At Sokodé, CHIRPS and PERSIANN 

have the closest statistics to observed ones, followed by GPCC that showed an insignificant 

increasing trend as gauge data but with lower slope. 

2.3.1.4.  Standardized Precipitation Index (SPI) 

Figure 2.6 presents the 12-months SPI computed for observed time series and satellite products, 

as well as their correlation coefficient. At Tabligbo (Figure 2.6-a), SPI from all the four satellite 

products CHIRPS, PERSIANN, TAMSAT and GPCC have high correlation with the indexes from the 

observed time series. GPCC has the highest correlation 0.81, followed by CHIRPS 0.78, PERSIANN 

0.68 and TAMSAT 0.62. At Atakpamé (Figure 2.6-b), CHIRPS showed the best correlation and it is 

followed by TAMSAT, GPCC and PERSIANN respectively. As for the station of Sokodé in the 

northern part of the basin (Figure 2.6-c), GPCC has the lowest correlation r=0.35 and CHIRPS the 

best correlation r=0.57. The satellite products showed average to low performance at detecting 

dry and wet years as well as the value of the SPI at Sokodé. SPI values from observed time series 

at Tabligbo station indicate that years 1995, 1996, 1999 and 2010 were wet (SPI ≥ 1). All satellite 

products at Tabligbo found 2010 wet as well; in addition, 1999 was detected by CHIRPS, PERSIANN 

and GPCC. However, years 1995 and 1996 were found wet by none of the products. The satellite 

time series predicted each two wet years over four, except TAMSAT which detected only one. At 

Atakpamé SPI from the station dataset indicate 1988, 1999, 2007, 2008 and 2009 as wet years. 

However, no product detected 1988 and 2009; 1999 was found by CHIRPS, PERSIANN and 

TAMSAT; 2007 was detected only by CHIRPS; and 2008 only by TAMSAT. Over the five actual wet 

years, CHIRPS and TAMSAT detected two each, PERSIANN one and GPCC none. At Sokodé, out of 

the four wet years 1988, 1991, 2003 and 2005 from observed, 2003 was equally detected by all 

the satellite products assessed in this study. Year 1991 was identified as wet by CHIRPS and 

TAMSAT whereas, 2003 and 2005 was detected by no product. CHIRPS and PERSIANN correctly 

predicted two wet years over 4, while TAMSAT and GPCC found one each. 
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(a) 

Tabligbo 

(b) Atakpamé 

(c) 

Figure 2.6. Standardized Precipitation Index and correlation with observed at Tabligbo 
(a), Atakpamé (b) and Sokodé (c) 
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2.3.1.5. Performance at daily scale 

The statistics as presented in Table 2.7 show poor performances at daily scale. A part from GPCC 

at Tabligbo which scored an NSE of 0.59 all other products have their NSE lower than 0.3. At 

Tabligbo, GPCC appears to be the closest to observed, with the highest correlation coefficient, 

0.77 (Figure 2.7), and the smallest error. At Atakpamé and Sokodé, TAMSAT has the highest Nash-

Sutcliffe efficiency value and showed the best correlation coefficient, 0.52, for the two gauges. 

The significance of the correlations was tested at 95% confidence interval and they are all 

significant with p-value = 0. Furthermore, for all the three gauges, GPCC has the closest standard 

deviation to the observed and the lowest PBIAS statistics after CHIRPS data which showed the 

poorest NSE at daily scale. A part from GPCC at Tabligbo, the outputs of all other products do not 

match observed ones based on the statistics and cannot be recommended for flood simulation at 

daily scale without further corrections. Such poor performances at daily scale were also found in 

Burkina-Faso by (Dembélé & Zwart, 2016). 

Table 2.7. NSE and PBIAS statistics of daily rainfall 

 

 

 

 

 

Station Statistics CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo NSE 0.01 0.1 0.24 0.59 

 PBIAS -1 13.9 8.2 -6 

Atakpamé NSE 0.01 0.15 0.27 0.17 

 PBIAS -1 -5.1 -6.5 2.6 

Sokodé NSE -0.03 0.04 0.24 0.15 

 PBIAS 2.9 -7.7 12.2 -3.5 

Figure 2.7. Taylor diagram of daily rainfall 
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2.3.1.6.  Performance at annual scale 

At Tabligbo, the statistics showed that CHIRPS performs better than other products with the 

highest NSE, the lowest bias and r=0.77. It is followed by GPCC, NSE=0.49 and r=0.8. Overall, the 

Pearson correlation between observation and the satellite products at Tabligbo is good, greater 

than 0.6 for the four products. However, TAMSAT and PERSIANN displayed very low NSE values 

(Table 2.8). At Atakpamé, once again, CHIRPS has the best statistics: the highest NSE=0.65, the 

highest correlation r=0.81, the lowest PBIAS 1% underestimation and the lowest RMSE=148. GPCC 

comes second with NSE = 0.31. As for TAMSAT and PERSIANN, their NSE values are very low: 0.09 

and -0.09 respectively. The statistics at Sokodé showed that none of the four products was able 

to fairly simulate rainfall pattern at that gauge (Table 2.8, Figure 2.8). 

Overall, the range of error is relatively high at annual scale with RMSE values above 100mm/year. 

That is opposite to the findings of Larbi et al., 2018 and Dembélé and Zwart, 2016 who reported 

good performance of satellite based products at annual scale respectively in Ghana and Burkina-

Faso. 

Table 2.8. NSE and PBIAS statistics of annual rainfall 

Station Statistics CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo NSE 0.58 -0.02 0.13 0.49 

 PBIAS -1 10.6 3.3 -6 

Atakpamé NSE 0.65 -0.09 0.09 0.31 

 PBIAS -1 -8.1 -9.9 2.6 

Sokodé NSE 0.03 -0.56 -0.76 -0.19 

 PBIAS 2.9 -10.1 7.7 -3.5 

 

Figure 2.8. Taylor diagram of annual rainfall 
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The performance of satellite products to detect rainfall events was assessed at daily and dekadal 

(10-days) scales. Table 2.9 and Table 2.10 present the probability of detection (POD) and the false 

alarm ratio (FAR) of each product. 

Table 2.9. POD and FAR of satellite products at daily scale 

Station Metric CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo POD 0.55 0.89 0.85 0.98 

 FAR 0.47 0.62 0.49 0.54 

Atakpamé POD 0.61 0.91 0.87 0.99 

 FAR 0.44 0.55 0.42 0.52 

Sokodé POD 0.65 0.88 0.91 0.99 

 FAR 0.34 0.51 0.37 0.46 

At daily and for the three gauge points, the highest FAR were recorded by PERSIANN and the 

lowest by CHIRPS. GPCC has the highest POD, almost 1, which can be explained by the fact that 

GPCC uses gauge station as input. In addition, CHIRPS presented the lowest POD values which 

make it less suitable for flood monitoring purposes at such a fine scale as daily. 

Table 2.10. POD and FAR of satellite products at dekadal scale 

Station Metric CHIRPS PERSIANN TAMSAT GPCC 

Tabligbo POD 0.91 1 0.98 1 

 FAR 0.12 0.18 0.12 0.13 

Atakpamé POD 0.98 1 0.99 1 

 FAR 0.14 0.19 0.14 0.17 

Sokodé POD 0.99 1 0.99 1 

 FAR 0.14 0.22 0.14 0.19 

 

All products performed very well at dekadal scale with 0.9 to 1 POD. The detection of rainfall 

within a 10-day time span is almost 100% and the prediction false alarm ratios are low, making 

the products more reliable for flood monitoring and predictions. 

2.3.2. Spatial analysis and hydrologic modelling 

2.3.2.1. Spatial distribution 

Mean annual rainfall from the four datasets range from 938 to 2008 mm. The spatial distribution 

depicted by Figure 2.9 shows similarities between GPCC and PERSIANN with annual precipitation 

amount below 1500m and the lowest amounts being recorded in the south near the outlet. 
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This is in line with previous studies  (Amoussou, 2010; Koubodana et al., 2020) which reported 

simular characteritics in the distribution of annual rainfall in the Mono river Basin, and around 

1000mm/year close to the outlet (Amoussou et al., 2020). The north-south gradient is explained 

by the orographic effect of high latitudes between 400 and 930 m in the north (Amoussou, 2010).  

Although CHIRPS captures relatively well the distibution in the south, it presents however higher 

values with up to 2000 mm/year in the rest of the basin. As for TAMSAT, the distribution of rainfall 

is not properly captured and annual rainfall amounts seem to be overestimated all over the basin. 

2.3.2.2.  Hydrological modelling 

The results of calibration and validation are depicted respectively by Figure 2.10 and Figure 2.11. 

Based on NSE values presented in Table 2.11, the simulation with PERSIANN showed the best 

agreement with observed discharge during both calibration and validation periods; followed by 

GPCC and TAMSAT. It was noticed that TAMSAT overestimated the peaks and that is in line with 

the overestimation earlier highlighted by the spatial map. 

As for CHIRPS, it performed worst with negative NSE values, high base flow and very low peak 

flow. This can be explained by the low POD reported for CHIRPS at daily scale. A low POD implies 

that a high number of rainfall events are not accounted for, which in turn will lead to rainfall 

trends and amount not being well captured. As for the high base flow noticed with CHIRPS, it may 

be related to the values of its false alarm ratio, especially when the ‘false’ rainfall events are 

simulated during the dry season. Overall, these results confirm again that CHIRPS is not an 

appropriate dataset for flood monitoring purposes in the Mono River Basin and also that a fine 

resolution data does not necessarily imply a higher performance. 

Furthermore, by filling in the gaps of stations’ time series with satellite data, we noticed that all 

the combinations of gauge-satellite performed almost the same as if model efficiency does not 

depend on which product is used to fill-in the gaps. Recalling the very poor performance of CHIRPS 

in simulating the hydrograph and the good result from PERSIANN in the first hand, and having the 

combinations gauge-CHIRPS and gauge-PERSIANN performing almost identically on the other 

hand, indicates that filling-in the gaps does not guarantee improvement of the data quality and 

Figure 2.9. Spatial distribution of satellite based products in the Mono basin 
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may not be necessary in the case of the Mono basin when a strong interpolation method like 

kriging is used. 

 

 

Table 2.11. Nash Sutcliff efficiency of hydrologic modelling 

 Satellite based products Gauge-satellite data 

 CHIRPS PERSIANN TAMSAT GPCC CHIRPS PERSIANN TAMSAT GPCC 
Calibration -0.088 0.64 0.5 0.61 0.58 0.55 0.58 0.59 
validation -0.22 0.67 0.42 0.57 0.67 0.64 0.69 0.66 

Figure 2.10. Hydrographs in calibration 1986-2000 

Figure 2.11. Hydrographs in validation 2002-2010 
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2.4. Conclusion 

Precipitation data are essential for hydrological risks management especially for flood protection 

purposes in the context of global climate change. The interest for satellite-based rainfall datasets 

has grown over recent years because of their practicability in solving issues related to the lack of 

reliable, consistent and long measured records. However, their performance can vary with 

location and seasons, which makes it important to evaluate them at local scale. In this study we 

assessed the performance of CHIRPS, PERSIANN, TAMSAT and GPCC using hydrologic modelling 

and grid-to-point analyses at three synoptic stations in the Mono River basin. The grid to point 

analyses conducted over the period 1983-2012 revealed that the four products performed well in 

reproducing the characteristics of annual cycles at Tabligbo, Atakpamé and Sokodé, but the peaks 

at Atakpamé were not well captured. Good results were also exhibited at dekadal scale for all the 

products across the three stations, with low false alarm ratio and almost 100% rainfall detection 

probabilities. Overall, the products performed poorly at daily and annual scales. Based on the grid 

to point evaluation it was noticed that the performance of the products varies with temporal 

scales. Based on Nash Sutcliff efficiency with the hydrologic modelling assessment, the best 

performance was achieved by PERSIANN, followed by GPCC and TAMSAT. CHIRPS showed very 

poor results and is not appropriate for flood monitoring in the Mono River Basin. Furthermore, 

despite the gaps in rain gauge data, attempt to fill them may not be necessary in the case of the 

Mono Basin if an interpolation method like kriging is used. Further research works could address 

the correction of the satellite based rainfall products at local scale using gauge data or Artificial 

Neural Network. 
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3. A Multi Criteria Decision Analysis Approach for Regional Climate Model 

Selection and Future Climate Assessment in the Mono River Basin, Benin and 

Togo2 

 

Abstract 

Regional climate models (RCMs) are key in the current context of global warming and they are 

increasingly used to support decision-making and to identify adaptation measures in response to 

climate change. However, considering the wide range of available RCMs, it is important to identify 

the most suitable ones prior to climate impact studies, especially at small scales like catchments. 

In this study, a multi-criteria decision analysis approach, namely the technique for order 

preferences by similarity to an ideal solution (TOPSIS) was applied to select the best performing 

RCMs in the Mono river basin of Benin and Togo (West Africa). The TOPSIS method was used to 

systematically rank 15 RCMs accessed from the coordinated regional downscaling experiment 

(CORDEX) database. 6 RCMs were finally selected and averaged into an ensemble to assess the 

future climate in the Mono river basin until 2070 compared to the period 1966-2015. Two climate 

change scenarios, RCP 4.5 and RCP 8.5, were considered. The results show that under both cli-

mate change scenarios, the annual temperature has an increasing trend during the period 1966-

2070 whereas annual rainfall for the next 50 years presents high variability and no statistically 

significant trend. Furthermore, seasonal cycles of rainfall are expected to change in the different 

parts of the catchment with delayed onset of rainfall, longer dry seasons, and rainfall 

intensification. In response to the projected changes, impact studies and risk assessments need 

to be carried out to evaluate potential implications for human security in the Mono river basin 

and to provide adequate adaptation measures. 

Keywords: Multi-criteria decision analysis; TOPSIS; climate change; RCP scenarios; Mono River 

basin; Benin; Togo 

 

 

 

 

 

 

                                                        
2 This chapter (3) was originally published as: Houngue, N. R., Almoradie, A. D. S., & Evers, M. (2022). A Multi Criteria 
Decision Analysis Approach for Regional Climate Model Selection and Future Climate Assessment in the Mono River 
Basin, Benin and Togo. Atmosphere, 13. https://doi.org/10.3390/ atmos13091471 
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3.1. Introduction 

Oceans, lands, and the atmosphere have become warmer over the last five decades due to human 

activities (Rosenzweig et al., 2007). As a result, changes in the pattern of climate variables and 

associated consequences such as the rise of mean sea level, ocean acidification, changes in 

precipitation pattern, and increase in temperature are observed (IPCC, 2021a). Climate models, 

whether global circulation models (GCM) or regional climate models (RCM) are increasingly used 

to analyse past and future patterns of climate at the global, regional, or local scale. The 

Intergovernmental Panel on Climate Change (IPCC) bases its assessment reports on scenarios and 

climate model information disseminated on the Earth System Grid Federation (ESGF) portals. In 

that regard, a large number of model data are available for the African region within the 

Coordinated Regional Downscaling Experiment (CORDEX) under the fifth coupled model 

intercomparison project (CMIP 5). 

Due to the coarse resolution and biases embedded in climate models –both GCMs and RCMs, it 

is recommended to downscale or bias-correct them before usage in impact studies especially at 

small scales like catchment scale (Wang et al., 2015). Among other sources, biases in climate 

models arise from model parameterization, imperfect conceptualisation, boundary conditions, 

spatial resolution and averaging over grids (Mishra et al., 2014; Yip et al., 2011). Statistical 

methods are commonly used for bias correction purposes in regional and local climate studies, as 

opposed to dynamical downscaling methods which require substantial computational resources 

(Maraun et al., 2010; Wang et al., 2015). Bias correction approaches are built on the assumption 

that biases remain the same over time, from past to future. The correction consists of comparing 

model historical data against observations to estimate biases that are afterward removed from 

future datasets (Chen et al., 2021). There is a wide range of bias correction methods that have 

proven their suitability with respect to different climate variables and depending on the study 

area. For instance, quantile mapping methods use cumulative distribution functions (CDFs) of 

observation and historical model data to construct a transfer function used in turn to correct 

model outputs (Sarr et al., 2015). The delta change method adds up the difference between 

observation and model data to adjust biases. It is based on the assumption that changes in climate 

data are location-specific and occur only over large distances (Beyer et al., 2020; CCAFS, 2014). 

However, due to its simple transfer function, this method does not capture changes in extreme 

events (Gunavathi & Selvasidhu, 2021). The linear scaling method corrects the mean of future 

data by adjusting the long-term monthly mean of model data to that of the observation 

(Crochemore et al., 2016; Luo et al., 2018). 

In West Africa, data excerpted from the CORDEX database have demonstrated overall good 

performance in simulating climate in the region. A wide range of local studies based on CORDEX 

datasets has been carried out in the region over the recent years with satisfactory results. 

Akinsanola et.al., 2015 (Akinsanola et al., 2015) evaluated the capability of three RCMs, namely 

REMO, RCA4, and CCLM in simulating West-African summer monsoon precipitation and 

concluded that the first two models simulate rainfall adequately in the region. Likewise, 10 RCMs 
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analysed by Gbobaniyi et.al, 2014 (Gbobaniyi et al., 2014) were reported to have acceptable 

performances in reproducing the spatial distribution of rainfall and temperature over the region. 

Akinsanola and Ogunjobi, 2017 (Akinsanola & Ogunjobi, 2017) assessed the performance of RCA4, 

CRCM5, CCLM, REGCM3, PRECIS, HIRHAM and REMO against TRMM and CRU rainfall datasets 

and concluded that they fairly represent the mean annual cycle of rainfall and the interannual 

variations despite some seasonal and region-specific biases. 

Likewise, in the Mono river basin located in West Africa, future climate assessment studies were 

carried out during the past years using various GCMs and RCMs for trend assessment (Batablinle 

et al., 2018; Batablinlè et al., 2019; Djan’na Koubodana et al., 2020; E. Lawin, Hounguè, Biaou, et 

al., 2019), extremes analysis (Amoussou et al., 2020; E. Lawin, Lamboni, et al., 2019) and climate 

change impact studies (Houngue, 2018). However, none of those studies explicitly exposed the 

selection process of the climate model used. Models were basically selected with reference to 

other studies where they were reported to be of good performance, or based on data processing 

constraints, and barely on the basis of a systematic selection. As reported by Browne and Sylla 

2012 (Akinsanola & Ogunjobi, 2017), the performance of a model within a geographical region 

like West-Africa could vary depending on the location under consideration. 

Therefore, the novelty of this study is to carry out a systematic selection of best performing RCMs 

in the Mono River Basin that will be used afterwards to analyse future climate pattern. In that 

vein, Lutz et al., 2016 (Lutz et al., 2016) have used a three-step process to select best performing 

GCMs in the Indus, Ganges and Brahmaputra river basins. The authors first filtered the GCMs 

based on their ability to represent changes in mean temperature and rainfall; next, the first 

selection is refined based on performance vis-à-vis four climate extreme indices; and finally, the 

second list is trimmed down based on model’s ability to capture annual cycles. Therefore, this 

approach basically consists of selecting best performing models based on predefined criteria, 

which are evaluated individually. Refaey et al., 2019 (Refaey et al., 2019) furthered that approach 

by using 5 statistical metrics with 4 multi-criteria decision analysis (MCDA) techniques to 

simultaneously evaluate all selected criteria in the Wadi El-Natrun catchment in Egypt. Recently, 

there has been an increasing interest for MCDA techniques for climate models selection (Homsi 

et al., 2020; Raju & Kumar, 2015; Shiru et al., 2019). 

Our approach in this paper consists of using a MCDA method to rank RCMs in the Mono river 

basin based on statistical and categorical metrics. Furthermore, the RCMs are bias-corrected and 

ensemble-averaged to assess future climate changes or variation in the next 50 years. 
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3.2. Materials and Methods 

3.2.1. Study area 

The Mono River basin is located within latitudes 6.36°N and 9.39°N, and longitudes 0.62°E and 

1.99°E in West-Africa (Figure 3.1.a). It stretches over 340 km North to South with an area of 

23,592.56 km2. The catchment is transboundary and shared by the Republics of Benin and Togo. 

The Mono River basin has two main climatic zones defined by a subequatorial climate for latitudes 

lower than 7 °N and a tropical climate in the upper part (latitude above 7 °N). Areas of latitude 

lower than 7 °N experience two rainy seasons every year whereas, above 8 °N, the rainfall regime 

is unimodal with only one peak (Amoussou, 2010). Within latitudes 7 °N - 8 °N, the rainfall regime 

is halfway between a typical unimodal and bimodal cycle, which is described as “transitional” 

regime (Lawin et al., 2019b).These three rainfall-based climatic zones are further referred to in 

this study as: south (latitudes < 7 °N), centre (7 °N < latitude < 8 °N) and north (latitudes > 8 °N). 

The lower part of the basin is prone to recurrent flood events which trigger economic losses and 

deaths in both countries. An average of 1000 mm precipitation per year is recorded in the south 

and 1200 mm in the northern part. 

 

 

Centre 

South 

North 

(a) (b) 

Figure 3.1. Location of (a) the Mono River Basin and (b) RCM grids 
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3.2.2. Data 

All the RCMs available for the Africa Domain in the CORDEX database and which provide complete 

time series of rainfall and mean air temperature for RCP4.5 and RCP 8.5 until 2070 are considered 

in this study. The list is made of 4 RCMs driven by 8 GCMs. These are in total 15 RCMs that were 

downloaded from the Earth System Grid Federation (ESGF) node at the German Climate 

Computing Centre (DKRZ) https://esgf-data.dkrz.de/projects/esgf-dkrz/, accessed on 05.03.2020. 

Table 3.1 presents the RCMs used as well as their driving GCM and the designation under which 

the RCM is subsequently referred to in this study.  

Table 3.1. List of RCMs used and details 

GCM RCM  GCM-RCM  

designation Name Developed by Name Institute 

CNRM-CERFACS-CNRM-

CM5 

Centre National de Recherches 

Météorologiques, Centre, 

France (CNRM) 

CCLM4-8-17 Climate Limited-area 

Modelling Community 

(CLMcom) 

CNRM-CCLM4 

ICHEC-EC-EARTH Irish Centre for 

High-End Computing (ICHEC) 

ICHEC-CCLM4 

MOHC-HadGEM2-ES Met Office Hadley Centre, UK 

(MOHC) 

MOHC-CCLM4 

MPI-M-MPI-ESM-LR Max Planck Institute for 

Meteorology, Germany (MPI) 

MPI-CCLM4 

ICHEC-EC-EARTH ICHEC RACMO22T Royal Netherlands 

Meteorological Institute 

(KNMI) 

ICHEC-RACMO22T 

MOHC-HadGEM2-ES MOHC MOHC-RACMO22T 

CCCma-CanESM2 Canadian Centre for Climate 

Modelling and Analysis 

RCA4 Swedish Meteorological 

and Hydrological 

Institute (SMHI) 

CCCma-RCA4 

CNRM-CERFACS-CNRM-

CM5 

CNRM CNRM-RCA4 

CSIRO-QCCCE-CSIRO-Mk3-

6-0 

Commonwealth Scientific and 

Industrial Research 

Organization, Australia (CSIRO) 

CSIRO-RCA4 

IPSL-IPSL-CM5A-MR Institut Pierre Simon Laplace, 

France (IPSL) 

IPSL-RCA4 

MIROC-MIROC5 The University of Tokyo, 

National Institute for 

Environmental Studies, and 

Japan Agency for Marine-Earth 

Science and Technology, Japan 

MIROC-RCA4 

MOHC-HadGEM2-ES MOHC MOHC-RCA4 

MPI-M-MPI-ESM-LR MPI MPI-RCA4 

ICHEC-EC-EARTH ICHEC REMO2009 Helmholtz-Zentrum 

Geesthacht, Climate 

Service Center, Max 

Planck Institute for 

Meteorology (MPI-CSC) 

ICHEC-REMO 

MPI-M-MPI-ESM-LR MPI MPI-REMO 
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The RCM data have a spatial resolution of 0.44° x 0.44°, about 50 km x 50 km. Figure 3.1.b presents 

the distribution of the RCM grids over the catchment. A grid-to-point extraction of the data was 

performed at location of observation stations in order to facilitate the bias correction process 

afterwards. In-situ data were collected from 38 stations within and around the Mono river basin 

(Figure 3.1.a). 

For observation data, the mean temperature is given by the average of minimum and maximum 

temperature collected from met services whereas, for RCMs, the mean air surface temperature 

(named “tas” in the CORDEX database) was downloaded. Observation data cover the period 1966-

2015 while 2021-2070 is considered as future period. The overlapping period between 

observations and model predictions for the past is 1966-2005. 

3.2.3. Ranking and selection of RCMs 

The selection of RCMs to be used for future climate assessment was based on the TOPSIS method, 

technique for order preferences by similarity to an ideal solution (Hwang and Yoon, 1981). TOPSIS 

is a multi-criteria decision-making approach for sorting alternatives based on a compromise 

solution. The best alternative is identified as the closest to the positive ideal solution and the 

farthest from the negative ideal solution. The TOPSIS method is widely used for ranking 

alternatives and for decision making in water resources management, early warning systems, 

participatory flood risk management, social learning and consensus achievement among 

stakeholders (Almoradie et al., 2015; Evers et al., 2018; Yilmaz & Harmancioglu, 2010; Zeyaeyan 

et al., 2017). It has been increasingly used in the last decade in the field of climatology to select 

among different datasets (Homsi et al., 2020; Lutz et al., 2016; Raju & Kumar, 2015; Refaey et al., 

2019; Senent-Aparicio et al., 2017; Shiru et al., 2019). The backbone of the TOPSIS method is the 

existence of many alternatives that are ordered based on criteria. 

Considering a set of alternatives 𝐴𝑘 , 𝑘 = 1,… , 𝑛, a set of criteria 𝐶𝑗 , 𝑗 = 1,… ,𝑚, 𝑥𝑘𝑗 the 

performance ratings of alternative 𝑘 to criteria 𝑗, and 𝑤𝑗  the weight attributed to each criteria, 

the TOPSIS approach consist of the following steps: 

Considering a set of alternatives 𝐴𝑘 , 𝑘 = 1,… , 𝑛, a set of criteria 𝐶𝑗 , 𝑗 = 1,… ,𝑚, 𝑥𝑘𝑗 the 

performance ratings of alternative 𝑘 to criteria 𝑗, and 𝑤𝑗  the weight attributed to each criteria, 

the TOPSIS approach consist of the following steps: 

 Normalization of performance ratings 

For criteria to maximise, also called benefit criteria (the larger, the better), the normalized rating  

𝑟𝑘𝑗  is given by: 

 

𝑟𝑘𝑗(𝑥) =
𝑥𝑘𝑗−𝑥𝑗

−

𝑥𝑗
∗−𝑥𝑗

−  , 𝑘=1,…, 𝑛 ; 𝑗=1,…, 𝑚 (3.1) 

where  𝑥𝑗
∗ is the aspired/desired level of criteria 𝑗 and 𝑥𝑗

− its the worst level. 
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For criteria to minimise or cost criteria (the smaller, the better), the normalized rating is given by:  

 

𝑟𝑘𝑗(𝑥) =
𝑥𝑗
− − 𝑥𝑘𝑗

𝑥𝑗
− − 𝑥𝑗

∗  
(3.2) 

  

 Calculation of weighted normalized ratings, 𝑣𝑘𝑗(𝑥) 

𝑣𝑘𝑗(𝑥) = 𝑤𝑗𝑟𝑘𝑗(𝑥), 𝑘=1,…, 𝑛 ; 𝑗=1,…, 𝑚  (3.3) 

  

 Derivation of positive ideal solution (PIS) and negative ideal solution (NIS) 

Since there is no good and bad alternative, 𝑃𝐼𝑆 and 𝑁𝐼𝑆 represent respectively the most 

preferable and the less desired set of criteria one wish to achieve. 𝑃𝐼𝑆 and 𝑁𝐼𝑆 are given by: 

 

𝑃𝐼𝑆 = {(max
𝑘
𝑣𝑘𝑗 (𝑥) ∣ 𝑗 ∊  𝐽1) , (min

𝑘
𝑣𝑘𝑗(𝑥) ∣ 𝑗 ∊  𝐽2) , 𝑘

= 1,… , 𝑛} 

(3.4) 

 

𝑁𝐼𝑆 = {(min
𝑘
𝑣𝑘𝑗 (𝑥) ∣ 𝑗 ∊  𝐽1) , (max

𝑘
𝑣𝑘𝑗(𝑥) ∣ 𝑗 ∊  𝐽2) , 𝑘 = 1, … , 𝑛} (3.5) 

where 𝐽1 and 𝐽2 are the benefit and cost elements respectively. 

 

 Estimation of separation from the PIS and the NIS. 

The separation from the 𝑃𝐼𝑆, 𝐷𝑘
+ , and from the 𝑁𝐼𝑆, 𝐷𝑘

−  can be estimated as Euclidean distance 

with equations 6 and 7  

 

𝐷𝑘
+ = √∑[𝑣𝑘𝑗(𝑥) − 𝑣𝑗

+(𝑥)]
2

𝑚

𝑗=1

, 𝑘 = 1, … , 𝑛 

(3.6) 

 

𝐷𝑘
− = √∑[𝑣𝑘𝑗(𝑥) − 𝑣𝑗

−(𝑥)]
2

𝑚

𝑗=1

, 𝑘 = 1,… , 𝑛 

(3.7) 

 Derivation of similarities to the PIS 
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The similarities to the 𝑃𝐼𝑆 are computed as: 

 

𝐶𝑘
+ =

𝐷𝑘
−

𝐷𝑘
+ +𝐷𝑘

−    , 𝑘 = 1,… , 𝑛 
(3.8) 

 Ordering of alternatives according to the similarities to PIS in a decreasing order. 

Finally, the alternatives can be ranked from most preferred to less preferred by ordering 𝐶𝑘
+ in 

decreasing order. 

 

In this study, daily rainfall and temperature from RCMs are the alternatives and the criteria consist 

of a set of statistical metrics. These metrics are the Nash–Sutcliffe efficiency (NSE), the coefficient 

of determination R2, and two categorical metrics: the probability of detection (POD) and the false 

alarm ratio (FAR). POD and FAR are specifically applied to rainfall. POD represents the likelihood 

for RCMs to detect a rainfall event, and the false alarm ratio (FAR) describes the fraction of 

predicted rainfall event that did not actually happen (Sofiati & Nurlatifah, 2019). 

 

𝑁𝑆𝐸 = 1 − 
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2
𝑛
𝑖=1

 
(3.9) 

 

𝑅2 =

(

 
∑ (𝑂𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)
𝑛
𝑖=1

√∑ (𝑂𝑖 − �̅�)2
𝑛
𝑖=1 √∑ (𝑆𝑖 − 𝑆̅)2

𝑛
𝑖=1 )

 

2

 

(3.10) 

 

where Oi and Si are respectively observed and model values at time i, �̅� and 𝑆̅ are respectively the 

mean observed and model values, and n the sample size. 

 

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 +𝑚𝑖𝑠𝑠𝑒𝑠
 

(3.11) 

 

𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

(3.12) 

 

where hits is number of rainfall events that are effectively predicted by the RCM, misses is the 

number of observed rainfall events that were not predicted by the RCM, and false alarms is the 

events predicted by RCMs but did not actually occur. 
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More details on these metrics are provided by Moriasi et al., 2007. All four criteria were weighted 

equally with weight 0.25 for rainfall, whereas NSE and R2 were weighted each 0.5 for temperature. 

The ranking approach with TOPSIS was applied to both precipitation and temperature datasets at 

each station location to determine the performance of each RCM in different parts of the 

catchment. A heatmap was used to visualise at how many locations a given RCM ranked 𝑘𝑡ℎ , 𝑘 =

1,…𝑛 . As this study uses 15 RCMs, the heatmap has a 15 by 15 dimension. 

The overall performance of each RCM respective to the whole catchment (not at individual station 

locations) was determined based on their occurrence frequency at different locations. Following 

the method of Homsi et.al (Homsi et al., 2020), a score is computed using the ranks of RCMs at 

individual locations and their frequency of occurrence. If a RCM got rank 1,2,3, … , 𝑛𝑧 respectively 

at 𝑙1, 𝑙2, 𝑙3, … 𝑙𝑧 locations, the score of that RCM is given by  

∑ (
𝑙𝑧

𝑛𝑧
)𝑧 . Therefore, the higher the occurrence frequency of a RCM as well as its rank at individual 

location, the more weight it is assigned and therefore, the higher its overall rank compared to the 

other RCMs. For instance, if a RCM got rank 1 at 𝑝 locations, rank 2 at 𝑞 locations ,…, rank 15 at 𝑠 

locations, then its overall score in the catchment is given by:  
𝑝

1
+
𝑞

2
+⋯+

𝑠

15
 . 

Finally, the most suitable models for making an ensemble are defined as those falling in the upper 

50th percentile of all RCMs, for both precipitation and temperature  (Homsi et al., 2020; Khan et 

al., 2018). 

3.2.4. Bias correction 

To bias-correct the RCMs, the quantile mapping approach, also called the quantile–quantile 

method or distribution mapping was applied for precipitation and temperature datasets. The 

quantile mapping was used considering its good results in different climatic zones all over the 

world (Boé et al., 2007; Das et al., 2022; Luo et al., 2018; Mendez et al., 2020; Pierce et al., 2015; 

Putra et al., 2020; Soriano et al., 2019; Teutschbein & Seibert, 2012), and in other West African 

catchments similar to the Mono River Basin (Kwawuvi et al., 2022; Lawin et al., 2019; N’Tcha M’Po 

et al., 2016; Sarr et al., 2015). Furthermore, previous studies in the Mono River Basin have 

reported good performances with the quantile method (Batablinle et al., 2018; Djan’na 

Koubodana et al., 2020; Lawin et al., 2019b). Quantile mapping methods use cumulative 

distribution functions (CDFs) of observation and historical model data to construct a transfer 

function used in turn to correct model outputs (Sarr et al., 2015). Generally, in the application of 

the quantile mapping method, the Gamma distribution (Equation (13)) is used for precipitation 

and the Gaussian for temperature (Equation (14)) (Teutschbein & Seibert, 2012). We have 

𝑓𝛾(𝑥𝛼,𝛽) = 𝑥
𝛼−1 ∙

1

𝛽𝛼∙𝛾(𝛼)
∙ 𝑒

−𝑥

𝛽  ;  𝑥 ≥ 0;  𝛼, 𝛽 > 0, 
(

(3.13) 

where 𝛼 is the shape parameter and 𝛽 the scale parameter, and 
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𝑓𝑁(𝑥𝜇,𝜎2) = 𝑥
𝛼−1 ∙

1

𝜎.√2𝜋
∙ 𝑒

−(𝑥−𝜇)2

2𝜎2  ;  𝑥 ∈ 𝑅, 
(

(3.14) 

with µ and σ the location and scale parameters respectively. 

 

3.2.5. Future Climate Trend Assessment 

To visualise the spatial distribution over past and future periods, the kriging interpolation method 

(Lawin et al., 2019b) was used. The past period is defined as 1966–2015 and the future as 2021–

2070. The percentage of change (Equation (15)) was computed to estimate future changes with 

respect to the past. We have 

𝑃𝑉 =
𝑉𝑝𝑟𝑜𝑗−𝑉𝑜𝑏𝑠

𝑉𝑜𝑏𝑠
× 100, (3.15) 

where, 𝑃𝑉 is the percentage of change, 𝑉𝑝𝑟𝑜𝑗  is the average value of variable 𝑉 for the future 

period, and 𝑉𝑜𝑏𝑠  the average value during observation period. 

In addition, the Mann–Kendall test (Mann, 1945) at 95% confidence interval was used to analyze 

trends in annual rainfall accumulation and mean annual temperature. A positive Z value from the 

Mann–Kendall test corresponds to an increasing trend (a negative value to a decreasing trend) 

and a value lower than 1.96 indicates that the trend is statistically not significant. Sens’ slope was 

also computed to estimate magnitudes of increase or decrease. 

3.3. Results and discussion 

3.3.1. Ranking and Selection of RCMs 

3.3.1.1. TOPSIS Results: Best RCM per Location 

The TOPSIS analysis provided a ranking of RCMs at the different locations considered across the 

catchment. Based on the TOPSIS scores presented in Appendix I and Appendix II, the RCMs which 

ranked first were derived and mapped as shown on Figure 3.2. The spatial distribution of rank 1 

RCMs for temperature shows a pattern whereby MPI-CCLM4 predominantly performed best in 

the south, MPI-REMO in the centre, and CSIRO-RCA4 in the north. As for rainfall, there is no spatial 

pattern. However, MPI-RCA4 is the most present all over the catchment from north to south. 

Similar results with spatial pattern were reported by Homsi et.al. (Homsi et al., 2020). The authors 

noticed a spatial pattern dominated by three GCMs for rainfall, whereas temperature displayed a 

different distribution of five new GCMs mixed with only one from the bests of rainfall. Spatial 

patterns in best performing models were also found by Shiru et.al. (Shiru et al., 2019) in Nigeria. 
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An RCM holding the first position in a certain location does not make it a suitable model at 

catchment scale because it may perform poorly elsewhere in the study area (Deepthi et al., 2020). 

Information on the first ranking RCM at an individual location can actually be useful for local 

studies in different parts of the catchment. Moreover, it points out the fact that RCMs perform 

differently depending on the climate variable and from one location to another. For example, 

MPI-CCLM4 ranked first in most areas of the southern part for temperature but came first only at 

one location for rainfall. Nonetheless, the model performed relatively well, occupying rank 2 at 

13 locations (Figure 3.3-b). 

 

Figure 3.2. Distribution of rank 1 RCMs for (a) temperature and (b) rainfall. 

(a) Temperature (b) Rainfall 

Figure 3.3. Ranks of RCMs all over the study area. 
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Figure 3.3-a,b are heatmaps displaying the number of times (at how many locations) a given RCM 

occupied a certain rank. The darker the colour of a cell, the higher the number of stations where 

an RCM occupies the rank corresponding to the cell. For instance, for temperature (Figure 3.3-a), 

MIROC-RCA4 occupied rank 15 at 25 stations of 38. Likewise, Figure 3.3-b shows that CNRM-

CCLM4 occupied rank 15 at 20 locations over the 38 stations considered, and similarly, CCCma-

RCA4 and IPSL-RCA4 occupied only rank 8 onward, making these three RCMs the ones with lowest 

performances for rainfall. 

3.3.1.2. RCMs Selection 

Table 2.2 presents the overall ranking of RCMs for rainfall and temperature in the Mono 

catchment. RCMs perform differently vis-à-vis the two variables, e.g., MPI-RCA4 ranked first for 

rainfall and has rank 6 for temperature. Finally, to make the ensemble of models to be used for 

future climate assessment, only RCMs whose ranks simultaneously fall within the range 1–8 for 

both temperature and rainfall are selected. These are six RCMs, highlighted in bold in Table 2: 

MPI-RCA4, MPI-CCLM4, ICHEC-RACMO22T, MOHC-CCLM4, MOHC-RCA4, and MPI-REMO. All 

three RCMs driven by the MPI global model are part of the final list. In fact, good performances 

of the MPI GCM have been reported in other catchments in Benin and Togo (Badou et al., 2018; 

Kwawuvi et al., 2022; Lawin, Hounguè, M’Po, et al., 2019) and in the Mono River Basin (Amoussou 

et al., 2020; Lawin, Hounguè, Biaou, et al., 2019). Because boundary conditions of RCMs are 

provided by their driving GCMs (Gbode et al., 2021), the high ranking of MPI-driven RCMs 

indicates that those RCMs may better represent local climate in the Mono catchment. 

Table 3.2. Overall ranking of RCMs for rainfall and temperature 

Rank 
Rainfall Temperature 

Model Score Model Score 

1 MPI-RCA4 20.23 MPI-CCLM4 19.99 
2 MPI-CCLM4 15.59 MPI-REMO 18.21 
3 ICHEC-CCLM4 12.40 CSIRO-RCA4 16.03 
4 ICHEC-RACMO22T 11.39 MOHC-CCLM4 12.6 
5 ICHEC-REMO 11 IPSL-RCA4 8.68 
6 MOHC-CCLM4 9.67 MPI-RCA4 8.06 
7 MOHC-RCA4 9.02 MOHC-RCA4 7.18 
8 MPI-REMO 8.73 ICHEC-RACMO22T 6.95 
9 MIROC-RCA4 7.89 CNRM-RCA4 5.79 

10 CSIRO-RCA4 3.96 ICHEC-REMO 5.09 
11 MOHC-RACMO22T 3.77 ICHEC-CCLM4 4.05 
12 CNRM-RCA4 3.41 CNRM-CCLM4 3.94 
13 IPSL-RCA4 3.08 CCCma-RCA4 3.54 
14 CCCma-RCA4 2.97 MOHC-RACMO22T 3.20 
15 CNRM-CCLM4 2.94 MIROC-RCA4 2.76 
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However, an RCM driven by a certain GCM that performs well does not guarantee good results of 

the GCM–RCM model because biases in models arise from both RCM and the driving GCM 

(Amoussou et al., 2020). Furthermore, all four types of RCM in the initial list of models considered 

in this study (RCA4, CCLM4, RACMO22T, and REMO) are actually represented in the final list of 

shortlisted models. Because models’ performances are region- and variable-specific, composing 

the average ensemble with models that performed well for the two climate variables under 

consideration and over the entire catchment, increases the opportunity to capture actual climate 

patterns in the study area. In fact, model ensembles improve on individual models performances 

and even outperform them (Gbobaniyi et al., 2014; Kwawuvi et al., 2022). 

3.3.2. Assessment of Future Climate 

The evaluation of future climate state is based on the mean ensemble of the six best performing 

RCMs identified above. The mean of those RCMs was computed for temperature and for rainfall 

to make the ensemble for each variable. The evaluation was conducted through visualisation of 

variables’ spatial distribution, quantification of relative changes, and annual trend assessment. 

3.3.2.1. Temperature 

Figure 3.4 presents the spatial distribution of average annual temperature for the observation 

period 1966–2015, and for the future period 2021–2070 under climate scenarios RCP 4.5 and RCP 

8.5. An increase of temperature is expected all over the catchment, but more specifically in the 

northern part and in the downstream area (south) (Figure 3.4-b,c). However, RCP 8.5 projects 

warmer conditions than RCP 4.5. 

 

Figure 3.4. Spatial distribution of mean annual temperature for the past 1966–2015, 
and for future scenarios 2021–2070 
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The increase in temperature is also depicted by the annual trend 1966–2070 as shown in Figure 

3.5. 

 

From an average annual temperature of 26.9 °C during the period 1966–2015, it is expected to 

reach 27.8 °C under RCP 4.5 and 28.4 °C for RCP 8.5. Thus, the increase of average annual 

temperature over the Mono catchment during the period 2021–2070 is estimated to be 1 °C and 

1.5 °C under the medium and high pathway scenarios used in this study. This is supported by the 

Mann–Kendall test and Sens’ slope results presented in Table 3.3. 

Table 3.3. Results of Mann–Kendall and Sens’ slope tests on annual temperature. 

 

 

The results are in line with the graphical observation and confirm that the trend in future 

temperature is statistically significant with 95% confidence. Moreover, the Sens’ slope values 

indicate that annual temperature will increase by 0.04 °C every year based on the scenario RCP 

4.5 and 0.06 °C according to projections by RCP 8.5. Overall, there is an agreement of both 

scenarios on the trend of temperature in the Mono catchment for the future period 2021–2070. 

Regardless of the models used, previous studies in the Mono catchment have also reported an 

increase of temperature at horizon 2050 up to 2100 (Djan’na Koubodana et al., 2020; Lawin, 

Hounguè, Biaou, et al., 2019; Lawin, Lamboni, Manirakiza, et al., 2019). Similar trends are also 

found across Africa (Bokhari et al., 2018; Macadam et al., 2020; Niang et al., 2014) and are in line 

with global patterns predicted by the IPCC (IPCC, 2018). 

3.3.2.2. Rainfall 

Figure 3.6 shows the changes in annual rainfall distribution over the Mono river catchment from 

1966–2015 to 2021–2070. Figure 3.6-b,c display similar changes for both RCP 4.5 and RCP 8.5. 

Scenario Z Statistics p-Value Sens’ Slope 

RCP 4.5 6.67 0.00 0.04 
RCP 8.5 7.81 0.00 0.06 

Figure 3.5. Trend of annual temperature 1966–2070 (a) RCP 4.5 and (b) RCP 8.5 
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The western and north-western parts of the catchment are expected to receive less precipitation 

in the future, whereas the east central part and the downstream area close to the outlet might 

experience an increase of annual precipitation. The central part is a mountainous region; thus, 

the increase may be due to local orographic terrain (Amoussou et al., 2020). As for the 

downstream area, it is located near the coast where evaporation and cloud formation above the 

Atlantic ocean may induce the increase of precipitations (Gbode et al., 2021; Lee et al., 2020). 

 

However, as reported by Lischeid et.al. (Lischeid et al., 2021), trend analysis in climate change 

studies may be affected by artefacts in local data. The authors analysed trends of water level and 

groundwater head data in Northeast Germany and found that the apparent inconsistent trends 

observed could be attributed to low-pass filtering of the groundwater recharge signal. As reported 

in the fourth assessment report of the IPCC, artefacts in the models’ data are addressed for 

instance with low-pass filters but may still persist at local scale (IPCC, 2007). 

Overall, average annual rainfall over the Mono catchment depicts high interannual variabilities as 

shown in Figure 3.7. 

 

Figure 3.6. Spatial distribution of mean annual rainfall for the past 1966–2015 
and future scenarios 2021–2070 

Figure 3.7. Trend of annual rainfall 1966–2070 (a) RCP 4.5 and (b) RCP 8.5 
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Based on the climate change scenarios, the average total rainfall per year for the future period 

will be 1091 mm for RCP 4.5 and 1053 mm for RCP 8.5. With both scenarios, the mean annual 

rainfall is expected to be less than the 1195 mm recorded during 1966–2015. The minimum 

annual rainfall for the next five decades is expected to be lower (697 mm for RCP 4.5 and 757 mm 

for RCP 8.5) than the minimum recorded during the past 50 years (854 mm). The high interannual 

variability observed graphically was confirmed by the Mann–Kendall test (Table 3.4). The results 

show no statistically significant trend (p-values > 0.05), whereas the Sens’ slope estimator 

indicates an average increase (decrease) of 0.1 mm (2.94 mm) per year with the scenario RCP 4.5 

(RCP 8.5) during the period 2021–2070. 

Table 3.4. Results of Mann–Kendall and Sens’s slope tests on annual rainfall 

 

 

 

Such high variability and insignificant trend in annual precipitation have been reported in previous 

studies (Djan’na Koubodana et al., 2020; Lawin, Hounguè, Biaou, et al., 2019) in the Mono 

catchment. Moreover, the mean annual cycle indicates changes in seasons and in monthly 

precipitations (Figure 3.8).  

 

Scenario Z Statistics p-Value Sens’ Slope 

RCP 4.5 0.03 0.97 0.1 
RCP 8.5 −1.54 0.12 −2.94 

Figure 3.8. Rainfall annual cycles over the catchment 
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Overall, the start of the rainy seasons is likely to be delayed all over the catchment. For instance, 

the first rainfall events that usually occur in March in the south, are likely to shift in April based 

on the projections by RCP 4.5 and RCP 8.5. Moreover, the amounts of rainfall recorded in April 

and May in the past are expected to decrease in the future, according to the climate change 

scenarios. The bimodal rainfall cycle in the south will become “transitional” under the scenario 

RCP 4.5 and unimodal under RCP 8.5, whereas the central part will shift to a unimodal regime in 

the future. Such changes would lead to modifications in the agricultural calendar of the concerned 

agro-ecological zones and can be detrimental for crop production and for food security. 

There is an increase of peaks during rainy seasons and a decrease of precipitation during the dry 

season. Therefore, rainy seasons may become wetter and dry seasons dryer compared to the 

past. Receiving higher amounts of precipitation during a shorter period of time will translate into 

rainfall intensification which may increase flood risk and the probability of extreme events in the 

area (Soriano et al., 2019). The percentage of future changes in the annual cycle with respect to 

the past is presented in Figure 3.9. 

 

Figure 3.9 indicates that highest increases are expected in the south during July and August and 

more specifically in August where a greater than 100% increase was found. These projections 

need to be given attention because the period of July and August in the southern part is usually 

characterised by a rainfall cessation time during which farmers harvest and prepare the land for 

the second sowing season of the year (FAO, 2020). Furthermore, the highest decreases of 

precipitation, 93–100%, are expected to occur from December to March all over the catchment. 

In the north, almost all months, except September and October, showed a reduction of rainfall 

amounts. 

Historically, the Mono catchment experiences recurrent flood events (Ntajal, Lamptey, Mianikpo, 

et al., 2016). Nonetheless, considering the potential decrease of rainfall (even statistically not 

significant), the increase of temperature discussed above, and the changes in future land 

use/cover mainly characterized by a “savannification” of forests and agricultural lands (Thiam et 

Figure 3.9. Relative change of monthly rainfall under climate scenarios 
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al., 2022), drought-related studies should be undertaken alongside flood assessments in the 

Mono river catchment. 

3.4. Conclusion 

This study assessed future climate conditions in the Mono River Basin by using the TOPSIS 

multicriteria decision method to identify best-performing regional climate models. RCMs were 

ranked based on four statistical and categorical metrics (NSE, R2, POD, FAR) applied at 38 

measurement stations. Finally, six RCMs were selected out of the initial list of 15 to make an 

ensemble that is further used to evaluate potential changes in future climate by 2070 and under 

climate change scenarios RCP 4.5 and RCP 8.5. Both scenarios suggest a 1 to 1.5 °C increase of 

annual temperature in the catchment, especially in the northern and southern parts. On the other 

hand, a statistically insignificant decreasing trend was found in annual precipitation. The seasonal 

cycle of rainfall during the period 2021–2070 will be characterized by shorter rainy seasons and 

an increase of precipitation. This intensification of rainfall may exacerbate existing flood risks in 

the Mono River Basin. However, the compound effect of temperature rise, dry season 

prolongation and land use/cover changes may introduce drought as a major hazard in the study 

area in addition to floods. Moreover, the concordance between the results of the two climate 

change scenarios used indicates a relatively high possibility that the projections actually occur. 

Nevertheless, the possibilities of potential artefacts in models can be investigated and addressed 

by future studies in the Mono catchment. The findings of this study should be furthered by 

assessing the impact of the projected changes on flood, drought, agriculture, and health to 

support decision making and the identification of appropriate adaptation measures. 
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4. Climate and land use change impacts on flood hazards in the Mono River 

Catchment in Benin and Togo3 

 

Abstract 

Flooding is prominent in west Africa and are expected to exacerbate due to global changes. This 

study assessed the impact of future climate and land use changes on flood hazards in the Mono 

river catchment of Benin and Togo. Climate scenarios from the representative concentration 

pathways, RCP 4.5 and RCP 8.5, and land use projection at the horizon 2070 were used for runoff 

simulation at the Athiémé outlet, and flood mapping in the lower Mono river basin. The planned 

Adjarala dam was also simulated to evaluate its potential impact. The Soil and Water Assessment 

Tool (SWAT) was used to investigate the impact of the projected changes on runoff, while flood 

water extent was simulated using the two-dimensional TELEMAC-2D model. TELEMAC-2D was 

validated with satellite observation and in a participatory way with local stakeholders. SWAT 

showed good performance during the calibration (KGE=0.83) and validation (KGE=0.68) steps. 

Results show an increase of the magnitude of flood extremes under future climate and land use 

change scenarios. Events of 10-years return periods during 1987-2010 are expected to become 2-

years return period events under the climate and land use change scenarios considered. The 

planned Adjarala dam showed potentials for extreme peaks and flood extent reduction. However, 

flow duration curves revealed that the discharge of the river during low flow periods may also be 

reduced if the Adjarala dam is built. Adaptation measures as well as sustainable land use and dam 

management options should be identified to alleviate the projected changes. 

Keywords: Flood hazard, Mono river catchment, Climate change, Land use change, SWAT, 

TELEMAD-2D 

  

                                                        
3 This chapter (4) was originally published as: Houngue, N. R., Almoradie, A. D. S., Thiam, S., Komi, K., Adounkpè, 
J.G., Begedou, K., & Evers, M. (2023). Climate and land use change impacts on flood hazards in the Mono River 
Catchment in Benin and Togo. Sustainability, 15. https://doi.org/10.3390/su15075862 
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4.1. Introduction 

The compound effect of climate change and land use/land cover change jeopardizes human 

security around the world (Adger et al., 2014; Vivekananda, 2022). It has been established that 

the trends of precipitation and temperature observed since the 1950s are imputable to human-

induced climate change (Trisos et al., 2022). With a 50% increase of built-up area, 11.5% increase 

of croplands, and 2.4% decrease of forest area from 2000 to 2020, the global state of land use 

and land cover has substantially changed over the past decades (Potapov et al., 2022). Acting in 

a feedback loop, changes in land use and climate conditions affect the water cycle, and 

exacerbates hydrological hazards including floods, landslides, and droughts (Collins et al., 2013; 

Piao et al., 2007). Furthermore, the magnitude and frequencies of those events are expected to 

increase in the coming decades. 

However, there are uncertainties about the potential trends and patterns of these hazards in the 

future. According to the 6th assessment report of the Intergovernmental Panel on Climate Change 

(IPCC, 2021b), heavy precipitation and flooding are expected to intensify and be more frequent 

in most parts of Africa. In addition, the continent is expected, with medium confidence, to 

experience hydrological droughts. However, precipitation indices in west Africa show mixed 

patterns with few statistically significant trends (Barry et al., 2018). The projected changes in 

heavy precipitation over west Africa have low confidence due to data scarcity and limited 

evidence (Callaghan et al., 2021; IPCC, 2021b; Maidment et al., 2015). Moreover, the uncertainty 

array is further widened with potential uncertainties from climate and hydrological models 

(Moges et al., 2021; Pechlivanidis et al., 2017). Therefore, local and regional studies are needed 

to establish area-specific hazard profiles and to accordingly support decision making. 

During the disastrous flood event of 2010 that caused about USD 300 million of loss and damages 

in Benin and Togo, intense precipitations and the overflow of the Mono river were pointed out 

among other causes (UNDP, 2010; WB & UNDP, 2011). Recent studies reported the increasing 

trend of temperature and above-normal precipitation over the past 50 years, in the Mono river 

catchment shared by Benin and Togo (Amoussou, 2010; Lawin, Lamboni, et al., 2019). In addition, 

the lower part of the catchment is prone to higher risks of flooding (Kissi et al., 2015; Ntajal, 

Lamptey, Sogbedji, et al., 2016). Wetzel et. al. (Wetzel et al., 2022) findings on flood vulnerability 

in the Lower Mono River Basin (LMRB) identified that poverty is a relevant driver of vulnerability 

that is strongly influenced by insufficient income generated through agriculture. Moreover, the 

study also identified that critical infrastructure that includes streets and buildings used as flood 

shelters as well as storage facilities (mainly for agricultural products) are relevant exposed 

elements. Extreme precipitation events in the Mono catchment are expected to become more 

frequent in the future (Amoussou et al., 2020; Houngue et al., 2022), despite the ambiguous 

projected trends (Batablinle et al., 2018; Batablinlè et al., 2019). To the horizon 2050, 

precipitations in the Mono catchment are expected to be characterised by high interannual 

variabilities, changes in seasons, and a mixture of above and below normal precipitations 

compared to the period 1981-2010 (Djan’na Koubodana et al., 2020; Lawin, Hounguè, Biaou, et 

al., 2019). Furthermore, the future land use and land cover (LULC) in the Mono catchment is 
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expected to be characterised by a decrease of forests, and an expansion of settlement and built-

up areas (Koubodana et al., 2019; Thiam et al., 2022). Moreover, the two riparian countries intend 

to build a joint dam, the Adjarala dam, on the Mono river for hydropower energy production, 

flood protection and for agricultural purposes (CNEE, 2014). 

Considering the past and projected changes in the Mono river catchment, this study aims to 

assess the impact of climate and LULC changes, as well as the influence of the forthcoming 

Adjarala dam on flood hazards in the lower part of the catchment. Climate change data from the 

representative concentration pathways RCP 4.5 and RCP 8.5, LULC maps and the Adjarala dam 

information were used for future runoff simulation and, ultimately, for flood mapping. Discharge 

simulations were performed with the Soil and Water Assessment Tool (SWAT), whereas flood 

modelling was carried out with the TELEMAC-2D model. The novelty of this study resides in the 

integrated runoff-flood modelling that was carried out, the assessment of climate and land use 

change impacts, and the simulation of the Adjarala dam. 

4.2. Materials and Methods 

4.2.1. The study area 

Located between latitudes 6.28◦ N and 9.39◦ N and longitudes 0.62 ◦E and 1.99 ◦E, the Mono river 

catchment extends over the territories of Benin and Togo Republics (Figure 4.1). It has a surface 

area of 23,736.64 km2 and hosts the hydroelectric dam of Nangbéto. 

The climate is sub-equatorial in the south and tropical in the northern part of the catchment. Main 

economic activities in the study area are small-scale farming, livestock breeding, fishing and 

trading. Average annual temperature recorded over the past 30 years ranges between 26°C and 

28°C, with an average annual precipitation of 1200mm. Land use and land cover types in the 

catchment are predominantly savannah, forest, croplands, settlements and water bodies. In this 

study, the entire Mono river catchment was used for hydrological modelling whereas only the 

portion of the river located downstream of the Nangbéto dam, and designated as Lower Mono 

River (LMR), was considered for flood hazard mapping with a hydrodynamic model. The 

downstream of the catchment is characterized by low elevation and flat lands which favors the 

persistence of flood events in the area. The main economic activities in the Mono catchment are 

agriculture, fisheries, livestock breeding and trade. 
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4.2.2. Data 

4.2.2.1. Hydro-climatic data 

Precipitation and minimum and maximum temperature were collected for the period 1967-2010. 

Precipitation data was taken at 38 gauging stations and temperature from 3 synoptic stations. 

These observation data were provided by met services of Benin and Togo (METEO-Benin, DGMN-

Togo). In addition, future precipitation and temperature data excerpted from the Coordinated 

Regional Downscaling Experiment (CORDEX) database, https://esgf-data.dkrz.de/projects/esgf-

dkrz/https://esgf-data.dkrz.de/projects/esgf-dkrz/, were used. The period 2021-2070 was 

considered and the Representative Concentration Pathways (RCP) scenarios RCP 4.5 and RCP 8.5 

were used for future projections. Processed and ready-to-use climate model data for future 

projection were provided by Houngue et.al (Houngue et al., 2022) who systematically selected 6 

Regional Climate Models (RCM) that were found to be the best performing in the Mono river 

basin. The 6 RCMs are presented in Table 4.1. 

 

Figure 4.1. Map of study area 

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
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Table 4.1. List of regional climate models used 

RCM Institute Driving model Designation 

CCLM4-8-17 Climate Limited-area Modelling 
Community (CLMcom) 

MOHC-HadGEM2-ES MOHC-CCLM4 

CCLM4-8-17 Climate Limited-area Modelling 
Community (CLMcom) 

MPI-M-MPI-ESM-LR MPI-CCLM4 

RACMO22T Royal Netherlands 
Meteorological Institute (KNMI) 

ICHEC-EC-EARTH ICHEC-
RACMO22T 

RCA4 Swedish Meteorological and 
Hydrological Institute (SMHI) 

MOHC-HadGEM2-ES MOHC-RCA4 

RCA4 Swedish Meteorological and 
Hydrological Institute (SMHI) 

MPI-M-MPI-ESM-LR MPI-RCA4 

REMO2009 Helmholtz-Zentrum Geesthacht, 
Climate Service Center, Max 

Planck Institute for Meteorology 
(MPI-CSC) 

MOHC-HadGEM2-ES MPI-REMO 

Potential evapotranspiration (PET) was computed using the Hargreaves method (Hargreaves & 

Samani, 1985). The Hargreaves method (Equation 4.1) is temperature-based and recommended 

when climate data are limited. 

 

 

where E0 is PET (mm/day), H0 is extra-terrestrial radiation (MJ/m2/day), Tmax  is the maximum 

air temperature for a given day (°C), Tmin is the minimum air temperature of the day (°C), and 

Tmean is the mean air temperature of the day (°C). 

Runoff data and rating curves were provided by water directorate of Benin, DGEau-Benin, and the 

management of the Nangbéto dam (Centrale Electrique du Bénin, CEB) at 3 stations: Athiémé 

(1964-2010), Nangbéto (1987-2019) and Tététou (1965-1991). Runoff data were used for model 

calibration and validation. 

4.2.2.2. Land use and land cover (LULC) maps 

LULC maps from the past, 1986, and the future 2030, 2050 and 2070 were used (Figure 4.2) as 

input for runoff simulation. The maps were taken from the study of Thiam et.al (Thiam et al., 

2022). Thiam et.al, 2022 performed past land use classification and future land use modelling 

using machine learning, a participatory approach with stakeholders’ perspective on land use 

scenarios, and the CA-Markov chain model embedded in the Land Change Modeler (LCM) of IDRISI 

E0 =  0.0023 × H0 × (Tmax − Tmin)
0.5 × (Tmean + 17.8) (4.1) 
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software. The LULC maps present 5 classes: savanna, forest, water bodies, settlement and 

cropland. The authors used the map of 2020 as reference to check the accuracy of the projections. 

 

An classified LULC map of 2020 was compared to the one generated by the Land Change Modeler 

(simulated LULC map 2020). Good results were observed: Kappa Index Agreement resulted in a 

Kappa for no information (Kno) of 0.91, a standard Kappa (Kstandard) of 0.89, and a Kappa for 

grid-cell level location of 0.95 (Klocation). The LULC maps from 1986-2070 indicate a reduction of 

croplands and forests while savanna and settlements are expected to keep increasing in the Mono 

river basin. Forest areas showed 58% decrease, while settlements and built-up areas are expected 

to undergo a 384.47% increase. Land use and land cover changes in the Mono catchment are 

mainly driven by rapid population growth, overexploitation of lands, cites’ expansion and rainfall 

variability (Koubodana et al., 2019; Thiam et al., 2022). 

4.2.2.3. Soil data 

Soil map (Figure 4.3) was derived from the Harmonized World Soil Database (HWSD) v1.2 of the 

Food and Agriculture Organisation of the United Nations (FAO) https://www.fao.org/soils-

portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ and 

provides, among others, information on soil textures. Soil textures in the catchment comprise 

clay, loam and sandy-clay-loam. The map has a 30 arc second resolution, about 1 km, and serves 

as the basis in the SWAT model for soil parameters (soil bulk density, water storage capacity, and 

hydraulic conductivity) computation using pedotransfer functions. 

 

Figure 4.2. LULC maps by Thiam et al. 2022 

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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The catchment is dominated by Luvisols, occupying 61.58% of the surface area. Luvisols are 

characterised by a higher proportion of clay in the subsoil than in the surface (IUSS Working Group 

WRB, 2006). They have a sandy clay loam texture. The western part of the catchment, hosting the 

high elevations areas, is made of Lithosols which cover 17.06% of the catchment area. Lithosols 

are usually found in mountainous regions and are characterised by rocky, gravelly or stony soils 

(IUSS Working Group WRB, 2006; Laplante, 1959). The rest of the catchment is made of Nitosols, 

Vertisols, and Eutric Gleysols, covering respectively 11.26%, 7.44% and 2.47% of the catchment 

area. The Vertisols have a clay texture, while Nitosols and the Eutric Gleysols are mainly made of 

loam. 

4.2.2.4. Digital Elevation Model (DEM) 

Digital surface model from the Advanced Land Observing Satellite (ALOS) provided by the Japan 

Aerospace Exploration Agency (JAXA) was used for elevation information. ALOS data has 1 x 1 arc 

second (about 30 m) resolution and displays height about sea level. As shown on Figure 4.1, 

elevation in the Mono catchment ranges from 0 to 922 m, with highest elevations located in the 

western and northern parts, while the downstream in the south hosts the lowest elevations 

(Figure 4.1). 

Figure 4.3. Soil map 
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4.2.2.5. Reservoirs data 

Two reservoirs were taken into account in this study: the reservoir of the existing Nangbéto dam 

and that of the upcoming Adjarala dam. The Adjarala dam is located 100 km downstream of 

Nangbéto dam. The characteristics of these reservoirs are presented in Table 4.2. 

Table 4.2. Reservoirs characteristics 

Dam parameter Description Unit 
Value at 
Nangbéto 

Value at 
Adjarala 

MORES 
Month the reservoir became 
operational 

 September January 

IYRES Year the reservoir became operational  1987 2022 

RES_ESA 
Reservoir surface area when the 
reservoir 
is filled to the emergency spillway 

ha 18000 9500 

RES_EVOL 
Volume of the water needed to fill the 
reservoir to the emergency spillway 

106 m3 1715 630 

RES_PSA 
Reservoir surface area when the 
reservoir 
is filled to the principal spillway 

ha 4200 8260 

RES_PVOL 
Volume of the water needed to fill the 
reservoir to the principal spillway 

106 m3 373.5 523 

RES_VOL  Initial reservoir volume 106 m3 373.5 523 

Source: CNEE, 2014; HOUESSOU, 2016 

The reservoir of the Nangbéto dam was represented as an existing reservoir while the reservoir 

of Adjarala was simulated as a “scenario”, since the dam is not yet operational. 

4.2.2.6. Cross-sections 

A good representation of river bathymetry is needed to adequately model the water flow in a 

river section. Cross-sections can be derived from field measurements and if field measurements 

are not available or possible due to resource constraints, cross-sections can be extracted from 

DEM. However, caution should be observed when using DEM for cross-section because of the 

resolution and errors on bed elevation due to uncorrected water surface elevation. Due to COVID-

19 travel restrictions, the fieldwork cross-section measurement did not proceed according to 

what was initially planned. With this, cross-sections were derived by extracting the river bed 

elevation from the DEM and were corrected using the slope-area method supported by a 1D river 

model. ArcGIS with the HEC-GeoRAS and HEC-RAS 1D model was used as a tool to derive cross-

sections since these data were not available. The method behind is elaborated on in section 

4.2.6.1. Seventy-seven (77) cross-sections were derived having their locations identified following 

the criteria of changes in width and slope and areas with meanders or bends. 
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4.2.3. River runoff simulation 

The Soil and Water Assessment Tool (SWAT) is a physically-based hydrological model for water 

quality and quantity simulation. The water balance in SWAT is based on equation 4.2 (Arnold et.al, 

2012). 

 

 

 

where SWt is the final soil water content; SWo the initial soil water content; Rd the amount of 

precipitation, Ssurf the surface runoff, ETa the evapotranspiration, Wperc the percolation, and 

Qgw the amount of return flow on day i. 

SWAT has successfully been used with good results in various west African catchments (J Schuol 

& Abbaspour, 2006) such as the Niger basin (Badou et al., 2018; Begou et al., 2016), the Volta 

basin (AMPOFO et al., 2021; Awotwi et al., 2015) and the Ouémé basin in Benin (Bossa et al., 

2014; Hounkpè et al., 2019). Koubodana et.al, (Koubodana et al., 2020) applied SWAT in the Mono 

River catchment and reported good results as well. 

As a semi-distributed model, SWAT splits the catchment into sub-basins that are further divided 

into hydrological response units (HRU). An HRU is a unique combination of land use, soil type and 

slope. HRU are the computation units in SWAT (Adnan et al., 2019). For the Mono river catchment, 

153 sub-basins and 552 HRUs were derived. 

The impacts of climate and LULC changes on the runoff of the Mono river, was evaluated over the 

period 2022-2070. In order to account for the continuous LULC change in the catchment the LULC 

map of 2030 was used for the period 2022-2030, the map of 2050 for the period 2031-2050, and 

the map of 2070 for 2051-2070. 

This study used the sequential uncertainty fitting, SUFI-2, embedded in the calibration and 

uncertainty programs, SWAT-CUP v5.1.6, for calibration, sensitivity analysis and uncertainty 

analysis. One specificity of SWAT-CUP is that its calibration parameters are not assigned single 

values, rather, intervals are defined. This approach accounts for the uncertainties in the definition 

of parameters value, because nothing like a unique perfect set of parameters exists (K. C. 

Abbaspour, 2015). For that purpose, a 95% prediction uncertainty (95PPU) is calculated at the 

2.5% and 97.5% levels of the cumulative distribution of the output variable obtained through Latin 

Hypercube sampling. 

The calibration and validation periods were identified based on the available data, the peak flow 

events and the construction of the Nangbéto dam. Discharge data in the Mono river catchment 

is characterised by a substantial level of missing, especially after the construction of the Nangbéto 

dam in 1987. From 1967-2010, 28% of discharge records are missing, out of which 72% are in 

1988-2010 and occurred mainly during the high flow period April-October. Since the focus of this 

SWt = SWo +∑(Rd − Qsurf − ETa −Wperc −Qgw)

t

i=1

 
(4.2) 
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study is on flood events, only years with no more than 30% missing between April-October were 

used. These are 1964-1986, 1988, 1989, 1990, 1991, 1992 and 2010. The first 3 years, 1964-1966 

were used as warm-up period. As recommended, the different hydrological events in the study 

area should be accounted for during both calibration and validation phases, and the mean and 

standard deviation should be similar during the two periods (Abbaspour, 2020). In that regard, 

the calibration period was made of the years 1967-1977, 1990, 1991, 1992, and the model was 

validated on 1978-1986, 1988, 1989 and 2010. The two periods contain years before and after 

the construction of the dam as well as low and high peaks. The mean discharge values during 

calibration and validation are 106.40 m3/s and 111.38 m3/s respectively, while the standard 

variations are 177.15 m3/s and 170.40 m3/s. 

Thirteen (13) calibration parameters were selected based on previous studies in Benin and Togo 

(Badou et al., 2018; Hounkpe, 2016; Djan’na Koubodana et al., 2021), and in the west African 

region (Poméon et al., 2018; Jürgen Schuol, Abbaspour, Srinivasan, et al., 2008; Jürgen Schuol, 

Abbaspour, Yang, et al., 2008). The Global Sensitivity program embedded in SWAT, was used to 

assess the sensitivity of the parameters after a 1000-runs simulation. Table 4.3 presents the list 

of parameters, their ranking based on the sensitivity analysis, and the ranges used. The goodness-

of-fit between simulation and observation was based on the Kling-Gupta efficiency (KGE) (Gupta 

et al., 2009), the coefficient of determination (R2) and the percentage of bias (PBIAS). In addition, 

the p-factor and r-factor provided by the SUFI-2 program, indicate respectively the percentage of 

measured data bracketed by the 95PPU, and the average thickness of the 95PPU band divided by 

the standard deviation of the measured data. 

Table 4.3. SWAT calibration parameters 

Rank Parameter Definition Range 

1 r_CN2 SCS runoff curve number -0.5 - 0 
2 r_ESCO Soil evaporation compensation factor -0.4 - (-0.1) 
3 v_GW_REVAP Groundwater "revap" coefficient 0.04 - 0.12 
4 r_SOL_AWC Available water capacity of the soil layer 0 - 0.5 
5 r_SOL_BD Moist bulk density -0.1 - 0.5 
6 v_RCHRG_DP Deep aquifer percolation fraction 0 - 0.5 

7 v_REVAPMN 
Threshold depth of water in the shallow 

aquifer for "revap" to occur 
70 - 120 

8 r_SOL_K Saturated hydraulic conductivity -0.3 - 0.3 

9 v_GWQMN 
Threshold depth of water in the shallow 
aquifer required for return flow to occur 

600 - 1200 

10 v_GW_DELAY Groundwater delay 5 - 15 
11 v_ALPHA_BF Baseflow alpha factor 0.1 - 0.3 
12 v_SURLAG Surface runoff lag time 5 - 15 
13 r_EPCO Plant uptake compensation factor -0.3 - 0.3 

 

With the assumption that everything remains equal, those parameter values were applied to 

simulate future climate and land use change impacts on the runoff of the Mono river. 
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4.2.4. Runoff and flood scenarios 

Five scenarios organized in 3 groups are investigated in this study: a base-case scenario, scenarios 

without the Adjarala dam, and scenarios with the Adjarala dam. The base-case (BC) scenario is 

the reference situation since the construction of the Nangbéto dam. It serves as a basis for 

comparison and represents the past-to-present conditions in the catchment. The year of 

construction of the Nangbéto dam is taken as the starting point of the BC in order to assure similar 

hydrological conditions when comparing past-to-present runoff with projected ones. 

The scenarios without Adjarala dam are scenarios that account simultaneously for climate and 

land use change projections. Climate and land use change scenarios were not simulated 

separately, but concomitantly and in subsets in the SWAT model. Climate data from 2022-2030 

are used together with the LULC map of 2030 to simulate runoff from 2022 to 2030; likewise, for 

the period 2031-2050 (and 2051-2070), climate data from 2031-2050 (2051-2070) is used in 

combination with LULC map of 2050 (2070) to obtain runoff projections for the period under 

consideration. Therefore, the scenarios referred to as RCP 4.5 and RCP 8.5 in this study, already 

embed LULC scenarios and stand for “RCP 4.5 + LULC scenario” and “RCP 8.5 + LULC scenarios” 

respectively. 

Scenarios with Adjarala consist of climate scenarios and LULC scenarios simulated all together 

with Adjarala dam. They are referred to as “RCP 4.5 + Adjarala dam” and “RCP 8.5 + Adjarala 

dam”. 

4.2.5. Flow trend and pattern analysis 

The trend of discharge was assessed using the Mann-Kendall test (Mann, 1945) at 95% confidence 

level. The Z statistics from the Mann-Kendall test indicates trend (increasing or decreasing) and 

the significance of the test. A positive Z means an increasing trend while a negative value suggests 

a decrease in the time series. The result of the test is considered to be statistically significant (not 

significant) when Z > 1.96 (Z < 1.96). The Mann-Kendall test was applied to the time series of daily 

discharge under the scenario RCP 4.5 and RCP 8.5. 

Mean hydrographs were derived to analyze the overall pattern of the flow in a year. The mean 

hydrographs were obtained by averaging daily discharge over all the years of the study period. 

The mean hydrographs were derived for the scenarios RCP 4.5 and RCP 8.5, before and after the 

construction of the Adjarala dam. 

In addition to the mean hydrographs, flow duration curves (FDCs) were used to assess the effects 

of the yet-to-be-built Adjarala dam. FDCs are obtained with the following steps: 

 discharge records are ordered from highest to lowest values and each discharge value is 

assigned a rank 𝑟, 𝑟 = 1, … , 𝑛 , where n is the total number of records and 1 is assigned 

to the largest value; 

 probabilities of exceedance are calculated as: 
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 discharge values are represented on the y-axis with a logarithmic scale and the 

probabilities of exceedance on the x-axis with an arithmetic scale. 

The probability of exceedance indicates the percentage of time that a given discharge is equalled 

or exceeded (Vogel & Fennessey, 1994), e.g. when a discharge value Q has a percentage of 

exceedance p, it does not mean that the discharge is Q for p% of the time, but that Q is equalled 

or exceeded p% of the time. The shape of the FDC informs on the hydrological characteristics of 

the stream under consideration. A very curved FDC shows the flashy or ephemeral state of the 

stream; a steep shape in the upper end indicates that high runoffs in the study area are rainfall-

caused, unlike snowmelt floods which would depict a flatter shape in the upper end of the curve 

(Berhanu et al., 2015). A flat slope at the lower end of the FDC indicates a high storage or a 

regulation of the streamflow (either artificially or naturally), while a steep slope .indicates a lower 

storage (Searcy, 1959). In this study, discharges with 0-5% percentage of exceedance are 

characterized as extremely high, 5%-20% high, 20%-70% medium, 70%-95% low, and 95%-100 

extremely low (Gordon et al., 2004). 

4.2.6. Flood hazard simulation 

Flood (hazard) or a hydrodynamic model can be a valuable tool to support flood emergency 

managers and planners in making decisions and as well to create community awareness to 

mitigate the impact of flooding. Flood models can be used for both event and long-term 

management of floods, this can be from near-real time flood forecasting to understanding the 

impact of future scenarios in the context of climate and land-use change and evaluating the 

adequacy of current and planned mitigation measures. Such examples are the work of Icyimpaye 

et. al. (Icyimpaye et al., 2022) in Nyabugogo River, Rwanda. The study coupled the hydrological 

and hydrodynamic model that aimed to forecast flooding and assessed the effectiveness of the 

proposed measures to mitigate the impact of floods. 

Flood models can be classified into one dimensions (1D) or 2D or a coupled 1D-2D model. Due to 

the nature of the directional flow of water on rivers and floodplains, 1D models are generally used 

for simulating water flow in the channel and a 2D for the floodplain. However, for wide rivers, a 

2D model can also be used to simulate water flow because water may also flow in 2 dimensions. 

2D models often requires more computational time and resources compared to 1D, nevertheless, 

this type of model is really useful for spatio-temporal hazard impact assessment because it 

provides a better understanding and information about the affected area. The article of 

Mitsopoulos et al. (Mitsopoulos et al., 2022) presented an interesting study on the coupling and 

optimizing of a 1D and 2D hydrodynamic model using HEC-RAS for early warning of flash floods. 

𝑝 =
𝑟

𝑛
× 100 (4.3) 
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Compared to just a 1D or 2D hydrodynamic mode, the coupling of 1D and 2D yielded a faster 

simulation with spatial information on flooding in the floodplain. 

In the current study, the TELEMAC-2D developed by Laboratoire National d'Hydraulique et 

Environnement (LNHE), part of the R&D group of Électricité de France was used. It simulates free-

surface flows in two dimensions of horizontal space solving the Saint-Venant equations using the 

finite-element or finite-volume method in a computational mesh of triangular elements. For pre- 

and post-processing of the TELEMAC-2D model, the Kalypso 1D/2D software from Björnsen 

Consulting Engineers (BCE) GmbH Germany was used. It presents a structured user-oriented 

graphical unit interface to visually set up the model (https://kalypso.bjoernsen.de). ArcGIS with 

the HEC-GeoRAS and HEC-RAS 1D model was used as a tool to derive cross-sections since these 

data were not available. 

4.2.6.1. Data input pre-processing 

The slope-area method (Equation 4.4) was used to correct the DEM derived 77 cross-sections. 

The cross-section DEM was extracted using the HEC-GeoRAS tool and adjustments were 

supported and verified by the HEC-RAS 1D modelling tool. The following are examples of 

adjusted and unadjusted cross-sections (Figure 4.4 and Figure 4.5). 

 

 

 

where, 

 𝑄 = discharge (m3/s) 

 𝑛 = Manning’s roughness coefficient (range between 0.01 and 0.75) 
 𝐴 = cross-section area (m2) 
 𝑅 = the hydraulic radius, equal to the area divided by the wetted perimeter (m) 
 𝑆 = the head loss per unit length of the channel, approximated by the channel slope 

Different land uses can affect water flow where the greater the roughness coefficient the lesser 

the flow velocities. To represent these in the equations, an empirically derived roughness 

coefficient is introduced using the table of Chow (1959) approximating it to Ks values.  Landsat 

satellite imagery (present time) was used for the identification of land use types using the works 

of Thiam et. al. (Thiam et al., 2022). 

As a requirement for the model, using ArcGIS, the river and its banks and DEM spatial model 

boundary and distinct features (e.g., roads) were delineated and exported to shape and ascii files 

respectively. 

𝑄 =
1

𝑛
𝐴𝑅

2
3𝑆
1
2  →  

𝑄 × 𝑛

𝑆
1
2⁄
=
(𝑥 4⁄ )

5
3⁄ × (𝑦)

5
3⁄

((𝑥2 + 4𝑦2)
1
2⁄ )
2
3⁄
 

(4.4) 
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4.2.6.2. Model-setup 

The LMR was initially divided into four sections (S1-S4) (Figure 4.6) for the reasons of model run 

time efficiency, availability of historical discharge and flexibility in the integration of scenarios and 

measures. However, during the first investigation and run analysis, it was decided to combine 

both S1 and S2 sections because of the rather flat terrain in these sections. Coupling these two 

sections allowed us to have a better representation of the flow and interaction of floodwater in 

the terrain. Furthermore, knowing that computational parallelization is possible, a multi-core CPU 

were used when running the model. 

 

 

 

Figure 4.4. Example section of unadjusted and adjusted cross-section 
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Figure 4.5. Upstream to outflow longitudinal profile of the unadjusted and adjusted cross-section 
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In setting-up the model in Kalypso, the discharge data was imported, location of model boundary 

was defined, computational mesh to represent river and floodplain were created, mesh elevation 

and roughness coefficient were assigned, upstream and downstream boundary conditions were 

defined, and calculation units and simulation settings were set. At the end, the model set-up was 

exported to a file format for Telemac2D and the model was run using the command line terminal 

script for Telemac2D. Table 4.4 is the summary of the set-up of the sections. 

 

 

 

 

 

 

 

 

 

Figure 4.6. Lower Mono River (LMR) basin study area showing the 
divided sections for flood modelling 
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Table 4.4. Model set-up of the three sections 

Input data 
Section 

S1-S2 S3 S4 

DEM 30 meters 30 meters 30 meters 

River bathymetry 

30 m DEM – 
Corrected 
theoretically 
Length – 139.5 km 

30 m DEM – 
Corrected 
theoretically 
Length – 52.83 km 

30 m DEM – 
Corrected 
theoretically 
Length – 53.11 km 

Land use for flow 
resistance 

Farmland, water, 
settlement and 
savanna 

Farmland, water, 
settlement and 
savanna 

Farmland, water, 
settlement and 
savanna 

Mesh 2D elements 
Number of elements 
– 477,889 
Area – 2,064 km2 

Number of elements 
– 174,876 
Area – 182.7 km2 

Number of elements 
– 183,325 
Area – 237 km2 

Upstream boundary 
Athiémé/Adjarala 
discharge 

Tététou discharge Nangbéto discharge 

Downstream boundary 
Sea water level 
(constant) 

Athiémé/Adjarala 
rating curve 

Tététou rating curve 

Discharge time series 
August 2010-April 
2011 

August 2010-April 
2011 

August 2010-April 
2011 

Rating curve Not available Yes Yes 

 

4.2.6.3. Calibration and validation 

Calibration of a hydrodynamic model generally makes use of observed water level data to 

compare with the model output. However, due to the unavailability of observed water level data, 

the model results were calibrated and validated by comparing it with a satellite image of a 

flooding event with a similar discharge. Moreover, stakeholders were also engaged in a workshop 

on identifying the most flood-prone areas based on their field and expert knowledge. 

In this context, first, the low and medium flow discharge was used to simulate a riverbank full. 

Then the 1963 and 2010 extreme events were used as a reference case to compare with satellite 

imagery of a similar flood discharge in the year 2019. The 1963 and 2010 extreme events had a 

maximum peak discharge in Athiémé of about 900m3/s. Flooding in the Mono river as shown in 

Figure 4.7 can last up to several months. Thus, the model has to run a 70 to 90-day event to 

capture the rise and fall of water level in the Mono river. 
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The extreme event was spatially validated with the processed satellite imagery from MODIS by 

UNOSAT for the flood event 2019 (https://unosat.org/products/2763) and inputs from the 

stakeholder workshop (Figure 4.8). Unfortunately, UNOSAT published a flood map that only 

shows the side of Togo. Hence the southeast coastal part is not presented. The flood event of 

2010 was more or less comparable to that of 2019 in terms of peak discharge. The results show 

an almost similar flood extent. However, remotely sensed information cannot capture shallow 

water depths which is why some parts look like there is no flooding. 

 

4.2.7. Analysis of extremes and flood hazard scenarios 

For the analysis of extremes, max discharge return periods (HQ) of 2, 5, 10, 50 and 100 years were 

statistically derived for the historical (base case) and future scenarios. The Extreme Valued 

Distribution (EVD) statistical analysis Gumbel (GEV) and Pearson III were used to derive HQ for 

Figure 4.7. Hydrograph Athiémé station- 2010 event 

Figure 4.8. Model results verification 
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stations Nangbéto, Tététou and Athiémé. The work of Millington et.al. (2011) (Millington et al., 

2011) presented an interesting study on the comparison of GEV and Pearson III in the upstream 

of the Thames river basin under different global climate models. 

For the base case, discharge data of 33 years (1987-2019) were used for Nangbéto station, 27 

years (1965-1991) for Tététou and 24 years (1987-2010) for Athiémé. Future scenarios on climate 

(RCP 4.5 and 8.5) and land-use change, with and without Adjarala dam from the years 2022 to 

2070 were used to derive future return periods (HQs) of discharge. Estimates of discharge with 

future scenarios were modelled by the hydrological model at the station Athiémé. Figure 4.9 

presents the plot of the Base Case HQ. 

 

After the analysis of extremes, these HQs were transformed into a hydrograph (Figure 4.10) 

having the shape derived from several high-flow event hydrographs. This was then used as an 

input to the hydrodynamic model to have an idea of the severity of these flooding scenarios. 

Figure 4.9. Base Case (HQ) for different stations 
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4.3. Results and discussion 

4.3.1. Runoff simulation 

4.3.1.1. Model calibration and validation 

Figure 4.11. shows the simulation results during calibration and validation phases.  A visual 

inspection indicates that the pattern of observed discharge at the Athiémé station is well 

represented. That is supported by the statistics presented in Table 4.5.  

Overall, the values of p-factor and r-factor show that the parameter ranges that were used, well 

represent the observation and with relatively low uncertainty. As reported by Schuol et.al. 2008 

(Jürgen Schuol, Abbaspour, Srinivasan, et al., 2008), a p-factor and a r-factor near 1, indicate quite 

good results. The p-factor of 0.91 during calibration (0.85 during validation), means that 91% 

(85%) of observation was bracketed within the 95% certainty range defined by the 95PPU band. 

Moreover, the ability of the model to capture the flow during the period 1970-1985, which is 

known as a drought-dominated period over west Africa (Sharon E Nicholson, 2013), and the 

capacity of the model to represent the peaks, confirms the good performance of the SWAT model 

in both drought and flood periods in the Mono basin. The lower R2 and KGE statistics noticed 

during validation are imputable to the abnormally high values simulated at the beginning of 2010. 

This overestimation may be due to outliers in rainfall records. Despite this lower R2 value, the 

model showed good results during validation, compared to calibration statistics that were very 

good. In addition, the bias level declined during the validation period.  

Figure 4.10. Base Case HQ derived hydrograph for Athiémé station 
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Table 4.5. Goodness of fit during SWAT calibration and validation 

Goodness-of-fit KGE R2 PBIAS p-factor r-factor 

Calibration 0.83 0.80 -13 0.91 1.31 
Validation 0.68 0.57 2.3 0.85 1.46 

 

(a) 

(b) 

Figure 4.11. Observation and 95PPU of the simulation during (a) calibration 
and (b) validation 
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The fact that calibration and validation periods were not selected as continuous periods (e.g. 

1967-1976 and 1977-1986), but rather based on a balanced combination of hydrologic conditions 

(dam and no-dam years, high and low peak years), has led to better results, compared to a 

previous studies conducted with SWAT in the Mono catchment (Djan’na Koubodana et al., 2021). 

In the study by Koubodana et.al (Djan’na Koubodana et al., 2021), known to date as the only 

published work with SWAT in the Mono catchment, the authors created two distinct models: one 

for the period before Nangbéto dam’s construction (1964-1986) and another one for the period 

after the dam (1988-2011). The model calibration with that approach, yielded very good results 

for the period before the construction of the dam (KGE=0.82, R2=0.68), but a lower performance 

during the period post-dam (KGE=0.54, R2=0.2). The decline of the statistics may be attributed to 

the high level of missing discharge data during the post-dam period, 39% (the majority occurring 

in high flow season), which substantially reduced the actual exploitable data. 

4.3.1.2. Future runoff under climate and land use scenarios 

Figure 4.12 presents the pattern of the discharge under climate and land use change scenarios. 

 

During the period 2022-2070, the runoff is expected to be characterized by a mixture of high and 

low peaks. The scenario RCP 4.5 projects higher peak values than the scenario RCP 8.5. This is 

attributable to rainfall and temperature projections in the Mono basin. As reported by Houngue 

et.al. (Houngue et al., 2022), RCP 4.5 projects wetter conditions (higher precipitations peaks and 

lower temperatures) than the high pathway scenario, RCP 8.5, in the Mono basin. With reference 

to 1966-2015, the average annual temperature in 2021-2070 presented a 1.5°C increase under 

RCP 8.5, while the intermediate pathway scenario, RCP 4.5, showed a 1°C increase. 

The Mann-Kendall test performed on annual peaks of runoff from 2022-2070, revealed a 

statistically-insignificant increase with the scenario RCP 4.5 and a significant decrease under RCP 

Figure 4.12. Daily runoff under climate and land use change scenarios. 
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8.5. That is in line with rainfall and temperature scenarios mentioned above. However, regardless 

of the projected trend, a succession of low and high annual peaks is expected in some years; for 

instance, 2058 (464.5 m3/s) and 2059 (1629 m3/s) under RCP 4.5 and the years 2045 (592.1 m3/s) 

and 2046 (1407 m3/s) under RCP 4.5. 

The highest discharge recorded in the Mono catchment, from 1960-2010, is about 900 m3/s, and 

was observed in 1963 and in 2010. That discharge magnitude triggered one of the most disastrous 

flood events in the catchment (UNDP, 2010; WB & UNDP, 2011). Taking 900m3/s as reference 

during the period 2022-2070, it was noticed that discharge under RCP 8.5 has more years (24 

years) above 900 m3/s than the scenario RCP 4.5 (19 years). This means that despite the lower 

peak values projected by the scenario RCP 8.5, potentially high flood events are likely to occur 

often under that scenario. That assumption is corroborated by the discharge values at return 

periods 2, 5, 10, 50, and 100. Table 4.6 presents the return period and associated discharge values 

for scenario RCP 4.5, RCP 8.5, and the base case scenario. 

Table 4.6. Return periods of runoff with climate and land use scenarios 

 Runoff (m3/s) 

Return period Base case RCP 4.5 RCP 8.5 
2 554.80 1014.32 927.28 
5 810.30 1373.82 1228.53 

10 956.2 1584.36 1408.91 
50 1218.00 1981.44 1758.66 

100 1308.50 2125.34 1889.02 

Comparing the base case (BC) with the future scenarios shows, that the peak runoff becomes 

more frequent in the future. For example, the base case HQ10 will become HQ2. 

Figure 4.13 presents the mean hydrograph for the period 1988-2010 (after the construction of 

the Nangbéto dam) and the hydrographs under future climate (2022-2070) and land use change 

scenarios. 

 

Figure 4.13. Past and future mean hydrographs 
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Overall, the peaks are expected to increase during 2022-2070 with a longer overland flow. That is 

attributable to rainfall projections in the Mono catchment which are expected to be more intense 

due to climate and land use changes. As reported by Amoussou et.al (Amoussou et al., 2020), the 

annual maximums of daily precipitation are expected to increase between 2028-2050. The 

authors assessed extreme rainfall patterns in the Mono catchment and concluded that a 

significant increase in the intensity of extreme rainfall events is expected. The analysis of the 

precipitation data used in this study revealed an increase of peaks, a delay in the start of the rainy 

season and a shorter season (Houngue et al., 2022). Moreover, the findings of the study of Wetzel 

et. al. (Wetzel et al., 2022) on assessing flood risk dynamics in the LMR shows that there is a strong 

causality between economic dependence on agriculture and the destruction of ecosystems and 

soil degradation that are driven by the type of agriculture and the agricultural techniques. These 

soil degradation and destruction of ecosystems will also have an impact on the extremity of 

flooding. This will produce more run-off and sedimentation in the river channels. Those factors 

compounded with the decrease of forest areas and the extension of settlements in the catchment 

(Koubodana et al., 2019; Thiam et al., 2022) may trigger low infiltration rates and a higher runoff. 

The works of Thiam et. al. (Thiam et al., 2022) shows a 58% decrease of forest in the year 2070 

that would have an effect on the ecosystems and soil degradation. 

The boxplots in Figure 4.14 illustrate the interannual variability of discharge under the scenarios 

RCP 4.5 and RCP 8.5. 

 

Despite the projected overall increase of discharge, high interannual variabilities are expected at 

monthly scale, especially during the high peak season. The highest variations are noticed from 

July to November. 

4.3.1.3. Effect of the Adjarala dam 

After adding the second, yet to be built, Adjarala dam in the model, the annual maxima have 

globally reduced (Figure 4.15). The average annual maximum dropped from 1050.63 m3/s to 

814.42 m3/s under RCP 4.5, and from 995.29 m3/s to 816.72 m3/s under RCP 8.5. 

(a) (b) 

Figure 4.14. Boxplots of discharge with scenarios (a) RCP 4.5 and (b) RCP 8.5 
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Table 4.7 presents a comparison of return periods of annual maximum discharge, with and 

without the Adjarala dam. 

Table 4.7. Return periods of runoff with climate, land use and Adjarala dam scenarios 

Return period 

 Runoff (m3/s) 

Base case 
LU + RCP LU + RCP + Adjarala dam 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

2 554.80 1014.32 927.28 810.85 772.01 
5 810.30 1373.82 1228.53 1050.35 1127.80 

10 956.2 1584.36 1408.91 1173.24 1420.99 
50 1218.00 1981.44 1758.66 1370.50 2279.85 

100 1308.50 2125.34 1889.02 1430.94 2755.42 

(a) 

(b) 

Figure 4.15. Annual maximum discharge from 2022-2070 under (a) RCP 4.5 and (b) RCP 8.5 
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The results show that constructing the Adjarala dam may reduce the recurrence of extreme 

discharges. Nonetheless, the peaks are expected to remain above the levels experienced till date 

(the base case). Under the scenario RCP 8.5, HQ50 and HQ100 are expected to rather increase if 

the Adjarala dam is constructed. Those obviously off-track values may be due to the limited length 

of the time series used (49 years) and to outliers. 

Figure 4.16 presents the mean hydrographs over 2022-2070, with and without the Adjarala dam. 

The mean hydrographs indicate that from a long-term perspective, building the Adjarala dam may 

reduce the discharge at Athiémé, but only slightly.  

 

(a) 

(b) 

Figure 4.16. Mean hydrograph 2022-2070 under scenarios (a) RCP 4.5 and (b) RCP 8.5, 
with and without the Adjarala dam 
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This is probably attributable to the characteristics of the reservoir which might be relatively small 

for a substantial and long-term flood reduction under future climate and land use change 

scenarios in the Mono catchment. In that regard, the Netherlands Commission for Environmental 

Assessment (CNEE, 2014), has reported that the intended volume and surface area of the 

reservoir of the Adjarala dam, as announced in the dam project, might be underestimated due to 

potential improper elevation considerations. 

The flow duration curves (FDC) presented in Figure 4.17 illustrate the percentage of time that a 

certain amount of discharge is reached or exceeded during the period 2022-2070.  

 

 

(a) 

(b) 

Figure 4.17. Flow duration curves (FDCs) with and without the Adjarala 
dam under scenarios (a) RCP 4.5 and (b) RCP 8.5 
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The shapes of FDCs from scenarios ‘with’ and ‘without’ the Adjarala dam are similar, indicating 

that the overall hydrology of the flow is not expected to change. The FDCs show that peaks of 0-

1% exceedance percentage are reduced with the Adjarala dam. That supports the assumption 

that the dam can reduce the peak of extremely high discharges. However, a lower effect is 

observed for medium (20-70%) and low (70%-95%) flows. 

Furthermore, the very low flows (95%-100% exceedance probability) depict a remarkable 

decrease with the Adjarala dam, especially under the scenario RCP 8.5. It indicates that the 

construction of the Adjarala dam may cause the river to dry-out downstream sometimes in the 

future. It is worth recalling that the current simulation is basically based on the storage 

information for the reservoir of the Adjarala dam. The reservoir simulation did not account for 

other water uses such as irrigation and aquaculture, as announced by the two countries (CNEE, 

2014). The peaks might therefore become lower and the dam more effective for flood protection 

if those components were integrated. However, beyond the flood reduction aspect tackled in this 

study, it is recommended to ensure a minimum environmental flow to sustain water availability 

for local communities and for ecosystem services (IUCN, 2003; WMO, 2019). As reported by King 

and Brown 2018 (King & Brown, 2018), the expansion of hydropower infrastructures in developing 

countries may jeopardise river systems and induce environmental and social impacts. Considering 

the potential reduction of discharge detected during very low flow periods, further studies on the 

management of the Adjarala dam, and on possible options for the regulation of the river flow are 

recommended. 

4.3.2. Flood hazard 

The flood modelling produced 25 hazard maps, modelling the return periods (HQ) 2,5,10,50 and 

100 of the Base Case, RCP4.5 and RCP8.5, and with Adjarala dam. In this section, we present 

selected flood hazard maps that are representative of our findings and analysis. Moreover, RCP 

4.5 return periods were selected for comparison because it shows that this climate scenario 

produces higher discharge compared to RCP 8.5. 

4.3.2.1. Base Case and RCP 4.5 (H2 and HQ10) 

The findings show that flooding considerably affects and is more dynamic from mid to 

downstream sections. Even with low return periods (i.e., HQ2- the probability of occurrence of 

50% every year) many townships/communities are still affected. Figure 4.18 shows a comparison 

of Base Case and RCP 4.5 HQ2 and HQ10. Looking at HQ10 RCP4.5 (Figure 4.18.d) which has a 

peak of ~600 m3/s more compared to the HQ10 base case (Figure 4.18.c), large areas which have 

not experienced flooding in the Athiémé township and the floodplains in the south to the east of 

Grand Popo may be inundated. HQ10 base case is an event comparable to the year 2010, one of 

the most devastating flood events recorded in the study area. 



4. Climate and land use change impacts on flood 

74 
 

 

4.3.2.2. RCP 4.5 and RCP 8.5 (HQ10 and HQ 100) 

The following figures present the scenario RCP 4.5 and RCP 8.5 HQ10 and HQ100 with the base 

case. As shown again in these figures, even with an increase of >47% (HQ10 RCP 8.5) in the 

discharge peak of the HQ10 base case, the areas that did not experience flooding in the township 

of Athiémé and the southern flood plains may also be inundated (Figure 4.19-b and c). 

Furthermore, an increase of >98% (Figure 4.19-e) in the discharge peak of the HQ10 base case 

will also further exacerbate the flooding near the area of Lac Ahémé, in the southwest and also 

the areas in the Upper midsection. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

Flooded area: 557.83 km2 Flooded area: 725.78 km2 Flooded area: 726.64 km2 Flooded area: 834.99 km2 

Figure 4.18. Flood hazard maps- Base case vs RCP 4.5 (HQ2 and HQ10) 
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Flooded area: 726.64 km2 

Flooded area: 834.99 km2 Flooded area: 803.77 km2 

Flooded area: 909.87 km2 Flooded area: 878.04 km2 

(a) (b) (c) 

(d) (e) 

Figure 4.19. Flood hazard maps- HQ10 and HQ100. 
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4.3.2.3. Effect of the Adjarala dam on flood extent 

Presenting the results of the Adjarala dam scenario, Figure 4.20 shows that for HQ10 RCP4.5 the 

Adjarala dam can potentially reduce the impact of flooding. This is clearly shown in the townships 

of Athiémé and the southern coastal areas. The assumptions for Adjarala dam were based on the 

parameters and projected operational management information provided by Communauté 

Electrique du Bénin (CEB), the institution in charge of electric infrastructures detained by Benin 

and Togo (CNEE, 2014). This however can be improved if new data and information are acquired. 

 

In addition to the findings, in Figure 4.21, the simulation shows that certain sections on the 

western coast drain the water coming from the flood plains. These existing flood plains and drains 

play a vital role in storage and drainage thus it needs to be preserved to not exacerbate flooding. 

 

 

 

 

 

 

Flooded area: 834.99 km2 

Flooded area: 825.41 km2 

(a) (b

) 

Figure 4.20. Flood hazard map- RCP 4.5- (b) with and (a) without Adjarala Dam 
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4.3.2.4. Limitations 

The model has been set up with the limited data we have collected and to compensate for this, 

scientifically derived inputs such as the cross-section were also used as input. If additional 

information and data are made available in the future, this will significantly improve the model 

results, especially in the southern section. 

The east and west coastal area and the south-eastern floodplain are beyond the scope of the 

basin boundary defined in this study. We tried to integrate these into the model but in our 

investigation, the interaction here is more complex, thus current results in the coastal area must 

be dealt with caution because of uncertainty. This requires an in-depth investigation integrating 

the other system and as well (new) data regarding discharge, storm surge/tides and bathymetry. 

See the Figure 4.22 below for the areas (in red) that need caution for further use. 

 

Figure 4.21. Flood hazard maps- Western coast drainage 

Figure 4.22. Modelled area for further investigation 
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4.4. Conclusion 

This study assessed the combined impact of climate and land use change on floods in the Lower 

Mono River catchment, and the potential effect of the forthcoming Adjarala dam. Results show 

that flood extreme events will persist in the future based on the climate and LULC change 

scenarios investigated. A high interannual variability of runoff is expected from 2022 to 2070, with 

possibilities of drought and flood occurring in consecutive years. During the wet season, more 

intense precipitation is expected that translates to more extreme flood events. This is clearly seen 

on the mean hydrographs from 2022-2070 that depict higher runoff during the peak season 

August-November. In addition, HQ10 events of the base case become HQ2 under the climate and 

land use change scenarios. Although the sole investigation of land-use change impact on flooding 

was not explicitly investigated here, it is already clear that urban growth will also exacerbate 

flooding producing higher runoffs. This will have an increased impact on communities and the 

agricultural economy which is the main economic activity in the study area. The Adjarala dam may 

reduce the magnitude of extreme flood events in the future. However, it may also affect water 

availability during low flow periods, and thus, jeopardize environmental flow and related benefits 

in the LMR basin. Based on the observed variability of spatio-temporal impacts on flood hazard in 

the LMR basin, both local and basin scales need to be taken into account by decision makers. 

Expansion of settlements in flooded areas that are currently not settled should be avoided. The 

integrated and participatory approach used in this study with the engagement of stakeholders for 

flood maps validation, should be maintained and furthered for the identification of sustainable 

adaptation measures. Further studies could investigate the capabilities of other models for flood 

hazards mapping in the LMR basin. In addition, improved model performances may be achieved 

with more in situ data, e.g., longer discharge time series, measured cross-sections of the river, 

and tide data. Furthermore, a system analysis of floods, involving water intrusion from the sea, 

and the influence of the nearby Ahémé lake, are recommended in order to have a holistic 

perspective of floods hazards in the LMR basin. Finally, vulnerability and risk assessments are 

recommended for effective preparedness, response and adaptation to floods in the LMR basin. 
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5. Water cooperation in face of climate and land use changes in the 

transboundary Mono river basin4 

 

Abstract 

Effective cooperation between riparians is essential for sustainable development in 

transboundary river catchments. It is relevant in the current context of global changes. This study 

focuses on the Mono river catchment shared by Benin and Togo in west Africa. The study aims at 

assessing the present state of water cooperation in the Mono river catchment, and the readiness 

of the two countries to manage and respond to potential climate and land changes in a 

transboundary way. The water cooperation quotient (WCQ) was used to perform a participative 

assessment of the level of cooperation in the basin. Stakeholders and experts from NGOs, 

academia and technical sector, as well as decision making and policy implementation institutions, 

were involved in the assessment. Results indicate existing grounds for transboundary water 

cooperation (WCQ = 72/100). That finding updates the results published in 2017 by the Strategic 

Foresight Group (SFG). Mechanisms of data exchange, alternative dispute resolution, and 

frameworks for joint and sustainable coordination of flood, drought and ecosystems management 

are still lacking. 

Keywords: Water cooperation, Transboundary basin, WCQ, Mono river catchment, Climate 

change, Land use change. 

 

  

                                                        
4 This chapter (5) is submitted for publication and is under review as: Houngue, N. R., Evers, M., & Almoradie, A. D. 
S. (2023). Water cooperation in face of climate and land use changes in the transboundary Mono river basin. 
Environment, development and sustainability. 
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5.1. Introduction 

Water is abundant on earth and represents an important resource for living beings. However, less 

than 3% of water stock on earth is freshwater, out of which, only 0.26% is stored in lakes and 

rivers which supply most human water consumption needs (Shiklomanov, 1993). Freshwater, 

from both surface and underground, is essential for socio-economic development. 

Climate change is likely to affect freshwater availability, quality and demand. Changes in air and 

water temperature, and the modification of precipitation pattern (intensity, magnitude and 

distribution) are expected to increase water related risks (Bayramoglu et al., 2020). Sectors like 

agriculture, food security, health and sanitation, transport and industries are the most vulnerable 

and at risk (UNFCC, 2011). Moreover, inadequate land use is expected to aggravate climate 

change effects. 

Climate and land cover changes have accelerated over the past five decades in West Africa 

(Abdulraheem et al., 2022; Herrmann et al., 2020; Ofori et al., 2021). The impacts of those changes 

have been extensively analysed in various catchments of the region (Coulibaly et al., 2018; 

Dembélé et al., 2022; Idrissou et al., 2022; Stanzel et al., 2018; Yéo et al., 2016). Transboundary 

catchments involving many countries, require attention in the current global change conditions. 

In fact, the compound effect of climate and land use change, and the difference of socio-politico-

economic development strategies in riparian nations, emphasize the need to establish 

cooperation channels among the countries. Due to the borderless nature of water, riparian 

countries are bounded, and the actions from upstream countries may affect downstream 

residents (Benzie & Persson, 2019). 

Climate change impact studies in the Mono river catchment, revealed an increase of mean 

temperature since the 1960s, and that is expected to continue until the end of the century 

(Amoussou, 2010a; Koubodana et al., 2020; E. Lawin, Lamboni, et al., 2019). Precipitation from 

the 2020s until 2100 are expected to be characterised by high variabilities, extreme rainfall, and 

delays and shift of seasons (Houngue et al., 2022; Lawin, Hounguè, et al., 2019). These changes 

will translate into modifications in the runoff of the Mono River, and potential flood and drought 

events (Batablinlè et al., 2021; Houngue, 2018). Moreover, changes in land use and land cover 

(LULC), including decline of forests and expansion of built-up areas, have been reported over the 

period 1980-2010, and are expected to keep on until 2070 (Koubodana et al., 2019; Thiam et al., 

2022). Population growth, urbanization, climate change, soil degradation, and the lack of 

environmental and political commitment, among others, were reported as the drivers of land use 

and land cover change (LULCC) in the Mono catchment (Thiam et al., 2022). Moreover, the 

development plans being set up by the Governments of Benin and Togo in the Mono region may 

increase water demand and competition in the catchment. There are plans to build dams for 

agriculture and fish farming purposes, to extend fluvial transportation and tourism, and to 

develop water supply infrastructure (Benin Government, 2021; Togo Government, 2018). In 

addition to the existing Nangbéto dam, the two countries are planning to build a second 

hydropower dam on the Mono river, at Adjarala. Obahoundje et al., (Obahoundje et al., 2021) 
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reported that water demands for irrigation, consumption, livestock, industries and dams 

operation, will not be met under the future climate and land use change conditions projected for 

the Mono catchment, and if the Adjarala dam was built. A strong cooperation is therefore needed 

to effectively and sustainably adapt to existing flood risks (Kissi et al., 2015; Ntajal et al., 2017; 

Wetzel et al., 2022), and to prepare for the projected impacts of future climate, land use and 

socio-economic development actions. 

Water cooperation plays a key role for water security. In that regard, transboundary water 

cooperation over rivers, lakes and aquifers is set as an indicator (indicator 6.5.2) of the Sustainable 

Development Goal 6 (SDG 6). The indicator 6.5.2, defined as “the proportion of transboundary 

basin area with an operational arrangement for water cooperation”, focuses on the importance 

of transboundary cooperation. A first round of reports on the indicator were produced in 

2017/2018 by countries around the world, while the second and latest reports were published in 

2020/2021 (UN-Water, 2018, 2021). The Water Cooperation Quotient (WCQ) developed by the 

Strategic Foresight Group (SFG) in 2013 and updated in 2015 and 2017, serve as a metric for 

transboundary water cooperation assessment (SFG, 2013, 2015, 2017).  

Considering the projected changes in the Mono river catchment, this study aims at assessing the 

current state of water cooperation in the catchment, as an indicator of the readiness of the two 

countries to jointly respond to potential climate and land use change impacts. The WCQ of the 

Mono River catchment was computed in a participatory way with national and local stakeholders. 

The results were compared with scores published by the SFG and official information 

communicated by Benin and Togo in their report on the SDG6 indicator 6.5.2. The WCQ is a 

dynamic metric, and this study attempts to provide an updated quotient for the Mono catchment 

since the last computation carried out in 2017 by the SFG. 

5.2. Materials and Methods 

5.2.1. The study area 

The Mono River catchment located in west Africa is shared by the Republics of Benin and Togo, 

and covers an area of 23,736.64 Km2. 89% of the catchment area is in Togo, while 11% is on Benin 

territory. The Mono River serves as natural border between both countries in the downstream. 

The two countries dispose of two joint bodies: the Mono Basin Authority (MBA), and a company 

(named Communauté Electrique du Bénin - CEB) that manages the common Nangbéto 

hydropower dam. It was reported that the effect of the Nangbéto dam constructed in 1987 is 

twofold: a positive impact characterised by the reduction of high flow peaks and the increase of 

baseflow; and undesirable consequences related to water releases from the dam, that create 

flooding in the downstream (MBA, 2022). Flood events are recurrent in the Mono catchment and 

communities living in the downstream are at higher risk (Kissi et al., 2015; Ntajal et al., 2017; 

Ntajal, Lamptey, & Sogbedji, 2016). Thus, 12,839 people lost their houses and 3,337 hectares of 

crops were inundated in 2007 in the commune of Grand-Popo at the downstream. Yet, a second 

and common hydropower dam is planned by the two countries over the Mono river, at the 
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downstream of the existing Nangbéto dam. The number of inhabitants living in the catchment is 

estimated to 5,266,832 in 2022, and is expected to reach 13,354,360 in 2050 (MBA, 2022). The 

main economic activities of the population are agriculture, fishing, livestock breeding (by 

transhumant breeders and small-scale farmers), and trade. 

 

 

5.2.2. The water cooperation quotient 

The water cooperation quotient (WCQ) is a metric developed by the Strategic Foresight Group 

(FSG) and meant to assess water cooperation and risk of conflicts in transboundary river basins. 

The first attempt to quantify transboundary water cooperation with the WCQ was done in 2013 

(SFG, 2013). The computation was updated in 2015 and the last version was published in 2017 

(SFG, 2015, 2017). The motto emphasized in each of those reports is that “any two countries 

engaged in active water cooperation do not go to war for any reason”. The Quotient is presented 

as an assessment and decision-making tool that Governments of riparian countries can build on 

to establish strong and basin-specific cooperation. The WCQ is linked to SDG 6, but also SDG 16 

on peace, justice and strong institutions. In the 2017 report, the WCQ was computed for 231 

Figure 5.1. Location of the transboundary Mono river catchment 
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watercourses in 146 countries all over the world, including the Mono river basin. The report was 

based on publically available information like the Global Environmental Facility (GEF) database, 

and the transboundary water treaties database of the Oregon State University. Information were 

also elicited from various experts. The Quotient computation method was developed by the SFG 

with experts from around the world.  

The computation of the Quotient is based on 10 parameters organised into 3 groups: technical 

parameters, political parameters and, parameters for alternative conflict resolution and 

environmental protection. These are: 

Technical parameters 

1. Agreement 

2. communication mechanism 

3. technical projects 

4. exchange of data 

Alternative conflict resolution and environmental protection parameters 

5. alternate dispute resolution 

6. Flood, drought and infrastructure protection 

Political parameters 

7. Water infrastructure 

8. Inclusion 

9. Political commitment 

10. institutional functioning 

Climate and land use changes are accounted for in the quotient through parameter 6 on flood, 

drought and ecosystem. To compute the WCQ according to the FSG method, each parameter is 

assigned a weight of 1, 5 or 3 when it belongs to technical, political or to conflict resolution and 

environmental protection group respectively. Each parameter is assessed based on criteria 

presented in Table 5.1. 
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Table 5.1. WCQ parameters description 

Parameter 
group 

Parameter Criteria Weight 

Technical 
cooperation 

Agreement The riparian countries have a legally binding agreement acknowledging the water 
relationship between them. The agreement may provide for allocation of water 
resources or for cooperation with or without any reference to allocation 

1 

Communication 
mechanism 

There is a mechanism for regular and formal communication between riparian countries 
in various forms, including meetings of officials of water ministries. The mechanism may 
include meetings of Water Ministers, but not other ministers such as Foreign Ministers 
and Finance Ministers and certainly not Heads of Government. The mechanism may be 
in the form of committees within respective water ministries. Regional economic 
cooperation organisations with water charters are not taken into consideration under 
the parameter of Communication Mechanism unless they are the only cooperative body 
on water and they are specifically dealing with shared watercourses. 

1 

Technical 
Projects 

The riparian countries engage in collaborative scientific and technical projects in relation 
to their shared watercourse such as small demonstration projects relating to navigation, 
irrigation, electricity or livelihood creating activities. It is to be noted that these projects 
are not those that are carried out by individual countries domestically but are those that 
are either basin wide or international in nature and are often implemented by or through 
River Basin Organisation or River Basin Commission (RBO/RBCs) or jointly by the riparian 
countries. It is to be further noted that these projects are different from large 
infrastructure projects 

1 

Exchange of 
data 

The riparian countries agree to exchange data on quantity and quality of shared water 
resources where the data is collected nationally, but exchanged on a regular basis 
through an agreed channel or it is collected and shared through a basin organisation. 

1 

alternative 
conflict 
resolution 
methods 
and/or 

Alternative 
Dispute 
Resolution 

The riparian countries have a well-defined mechanism for resolving disputes, which could 
be either through a River Basin Organisation, to which they belong, or through reference 
to a specific third party. If the countries approach the International Court of Justice (ICJ) 
to complain against other riparian countries, it is not to be taken into account in this 
context. 

3 
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environment
al, drought or 
flood control 
measures 

Floods, 
Droughts and 
Ecosystem 
Protection 

The riparian countries agree on long term coordination and cooperation mechanisms to 
manage floods, drought and ecosystem in a collaborative way, including early warning, 
rapid response, pollution control, coordination on deforestation, coordination on 
farming patterns and agricultural trade, and explicit long term coordination mechanism 
for emergency response. 

3 

Political 
cooperation 

Water 
Infrastructure 

Riparian countries agree that all infrastructure related to transboundary water resources 
such as dams, reservoirs, irrigation networks, navigation are built with active 
collaboration and transparency in a way that takes into account the interest of all 
relevant riparian countries and not merely the host country of the concerned project. 
They could have any one of the following: a. Infrastructure in any country built only with 
prior approval and consent of other riparian countries. b. Infrastructure built through 
joint or coordinated planning; joint investment. c. Infrastructure that has joint 
ownership. It is essential however, that the countries have no other projects that do not 
have prior approval and have been built over the objections of any of the other riparians. 

5 

Inclusion All countries in the basin, without exception, are members of the regional or basin wide 
arrangement. 

5 

Political 
Commitment 

The riparian countries commit to cooperate at the highest political level with either one 
or both of the following components: 1. Regular engagement at a level higher than Water 
Ministers, such as: a) Foreign Ministers b) Heads of Governments And/Or 2. Co-
ordination and harmonization of national laws/policies to satisfy common standards. 

5 

Institutional 
Functioning 

The riparian countries have (a) A permanent, independent and joint organisation for 
transboundary water cooperation such as a River Basin Organisation with an 
independent secretariat or (b) Permanent, though separate entities located in the 
respective riparian countries, acting as a joint mechanism for water governance, and 
having regular formal communication in the form of meetings and approval authority for 
projects in any of the countries In addition and essentially, The riparian countries make 
joint strategic plans and implement them ensuring that the projects are executed within 
an agreed time frame and are not reduced to mere statements of intention. 

5 
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Thus, the maximum score that a basin can reach is 30. The score is afterward translated into 

percentage to get the WCQ. Therefore, a score of 30/30 would be equivalent to a WCQ of 100, 

and a score of 10/30 corresponds to WCQ 33.33. However, when a watercourse is shared by only 

two countries, parameter 8 on inclusion turns out to be irrelevant and should not be evaluated. 

Thus, the maximum score corresponding to WCQ 100 in that case would be 25. The WCQ of the 

Mono river, shared only between Benin and Togo, will therefore be computed on that basis and 

it is given by: 

WCQ = S/25 x 100       (5.1) 

where S is the score obtained after assigning weights to parameters. 

The parameters are assigned the full weight only when the associated criteria are fully met. A 

weight of 0 is applied when the criteria are not fulfilled, including partially. 

5.2.3. Stakeholders engagement 

Experts from 26 institutions were involved in the participatory computation of the WCQ of the 

Mono catchment. 13 institutions from Benin, 11 from Togo, and 2 common institutions jointly 

managed by the two countries (CEB and the Mono Basin Authority), were consulted during a 3-

day workshop. The experts are the stakeholders of the transboundary CLIMAFRI project 

(Implementation of Climate-sensitive Adaptation strategies to Reduce Flood Risk in the 

transboundary Lower Mono River catchment in Benin and Togo). They were identified through a 

purposive sampling carried out at the beginning of the project, based on their local knowledge 

and their key role in flood and water management in the Mono River basin. The stakeholders 

come from different sectors and their diversity enriched the assessment process with mixed 

perspectives. The list of stakeholders is presented in details in the following section (2.4. 

Computation of the water cooperation quotient). During day 1, stakeholders were introduced to 

the concept and context of transboundary water cooperation as well as the WCQ. The aim was to 

assure a common understanding of parameters definition, criteria and weighting, and to pave the 

way for the actual computation process. Day 2 was dedicated to computation in small groups. 

Finally, all stakeholders came together on day 3 to discuss and consensually compute the WCQ of 

the Mono catchment. 

5.2.4. Computation of the water cooperation quotient 

The calculation of the WCQ was done in two steps: first, at sub-group level and after, with all 

stakeholders together. The stakeholders were organised into three main groups: non-

governmental organisations (NGOs), research/academia/technical, and policy 

implementation/public administration. Table 5.2 presents the repartition in each group. 
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Table 5.2. Stakeholder groups for WCQ computation 

NGOs Research/Academia/Technical Policy implementation/Public admin 

JVE Benin 
JVE-Togo 
Red-Cross Benin 
Red-Cross Togo 
Caritas Benin 
Caritas Togo 
PNE-Benin 
GIZ Benin 
Eau-Vive Togo 

INRAB (Benin) 
ITRA (Togo) 
DG-Eau Benin 
DRE Togo 
WASCAL Benin experts 
WASCAL Togo experts   
Directorate of Vegetal 
Production (Togo) 
 

ANPC Benin 
ANPC Togo 
MCVDD (Benin) 
Ministry of Environment (Togo) 
Ministry of Agriculture (Benin) 
Ministry of Agriculture (Togo) 
FNEC Benin 
Mono Basin Authority - MBA 
Commune of Athiémé 
CEB - Management of Nangbéto dam 

JVE : Jeunes volontaires pour l’environnement (Young Volunteers for the Environment) 
PNE : Programme national de l’eau (National Water Partnership) 
GIZ : Deutsche Gesellschaft für Internationale Zusammenarbeit (German Agency for International Cooperation) 
INRAB : Institut National des Recherches Agricoles du Bénin (National Agricultural Research Institute of Benin) 
ITRA: Institut Togolais de Recherche Agronomique (Agronomic Research Institute of Togo) 
DG-Eau Benin : Direction Générale de l’Eau (General Directorate of Water of Benin) 
DRE Togo: Direction des Ressources en Eau du Togo (Directorate of Water Resources of Togo) 
WASCAL: West African Climate Service Centre on Climate Change and Adapted Land Use 
ANPC : Agence Nationale de la Protection Civile (National Civil Protection Agency) 
MCVDD : Ministre du Cadre de Vie et du Développement Durable (Ministry of Living Environment and Sustainable 
Development) 
FNEC : Fond National pour l’Environnement et le Climat (National Fund for Environment and Climate) 

 

Most of the institutions involved exist or have their counterpart in both countries (e.g. Red-Cross, 

JVE, ANPC, water directorates, agricultural research institutes, ministries of environment and 

agriculture). Although the NGOs act at country level, they are national representations of big 

international organisations. They work on the ground and deal with environmental, water-related 

and disaster management topics in the two countries. Red-Cross and Caritas usually intervene for 

flood risk preparation, response and resilience in the Mono catchment. NGOs like JVE (Benin and 

Togo), PNE and Eau-Vive Togo are part of the Platform of Civil Society Organisations of the Mono 

basin (GWP, 2017). The 2nd group of researchers and technical stakeholders comprises experts of 

water, climate, and land use topics. The members of the 3rd group are from policy, decision 

making and implementation side. 

The WCQ was computed in each group based on discussions, and the expert knowledge and 

judgment of the stakeholders. Finally, a plenary discussion was engaged in order to carry out a 

consensual computation by all stakeholders together. 
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5.3. Results and discussion 

5.3.1. Group assessment 

The results from groups computation are summarized in Table 5.3. 

NGOs group, group 1, has a score of 25/25. Group 2 (research/academia/technical experts) got a 

score of 24/25, while group 3 (policy implementation and public administration experts) came up 

with a score of 18/25. Thus, the WCQ values as computed by group 1, group 2 and group 3 are 

respectively 100, 96 and 72. The value obtained by group 1 suggests a perfect and active water 

cooperation in the Mono basin. Members of group 2 found flaws only in the data exchange 

parameters. These are researchers and technical experts who generate and regularly used data, 

and are therefore in good position to report on actual data exchange between the two countries. 

Data exchange was also weighted 0 by group 3. 

Table 5.3. Results of WCQ group computation 

Parameter Weight allocated 

NGOs Research/ 
Academia/ 
Technical 

Policy implementation/ 
Public administration 

1. Agreement 1 1 1 
2. Communication mechanism 1 1 1 
3. Technical projects 1 1 1 
4. Data exchange 1 0 0 
5. Alternative dispute resolution 3 3 0 
6. Flood, drought and ecosystem 
protection 

3 3 0 

7. Water infrastructure  5 5 5 
9. Political commitment 5 5 5 
10. Institutional functioning 5 5 5 
Score (S) 25 24 18 

In addition, group 3 allocated 0 to parameter 5 (alternative dispute resolution) and parameter 6 

(flood, drought and ecosystem). The members of the group indicated that an agreement was hard 

to reach for parameters that were given 0. The reasons given by stakeholders who initially did not 

agree with the weight 0 are: 

- Data exchange: data exchange occurs in the framework of projects and publications led 

together by institutions and researchers from the two countries; 

- Alternative dispute resolution: the existence of the Mono Basin Authority sets the ground 

for conflict resolution in the catchment; 

- Flood, drought and ecosystem protection: institutions from the Benin and Togo work 

sometimes together for flood and ecosystem protection: e.g. managers of the Nangbéto 

dam inform authorities of the two countries before opening water gates; the creation of 
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the transboundary biosphere reserve of the Mono delta (GIZ, 2013) is an example of joint 

ecosystem protection. 

Table 5.4 presents an overview of the reasons why all the three groups assigned full weight to 

parameter 1, 2, 3, 7, 9 and 10. 

Table 5.4. Parameters that were equally weighted during group computation 

Parameter Reason 

1. Agreement Existence of the Convention on the Statute of the Mono River and 
Creation of the Mono Basin Authority 

2.Communication 
mechanism 

The Council of Ministries in charge of water resources meets once 
a year in ordinary session or in extraordinary session if needed. 

3.Technical projects The Nangbéto dam that was jointly built in 1987 and is commonly 
managed by Benin and Togo through CEB; upcoming Adjarala 
dam project led by both countries 

4. Data exchange not equally weighted by all groups. Reasons explained above 

5.Alternative dispute 
resolution 

not equally weighted by all groups. Reasons explained above 

6.Flood, drought and 
ecosystem protection 

not equally weighted by all groups. Reasons explained above 

7.Water infrastructure  The Nangbéto dam that was jointly built in 1987 and is commonly 
managed by Benin and Togo through CEB; upcoming Adjarala 
dam project led by both countries 

9.Political commitment Commitment of both Governments to cooperate 

10.Institutional 
functioning 

Existence and functioning of the MBA and CEB 

 

5.3.2. All-together assessment of the WCQ 

This step built on the results and discussion from group assessments. Here, the discussion and 

search of consensus were focused on parameters that were not equally weighted in the first step. 

Data exchange 

Stakeholders agree that there is currently no agreement between the riparians to share data 

collected at national level on water quality and quantity, on a regular basis and through a 

predefined channel. Therefore, the parameter was assigned 0. 

Alternative dispute resolution 
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Despite the existence of the MBA, the Mono basin does not dispose of a well-defined mechanism 

for dispute resolution at the moment. Stakeholders highlighted however, the intervention of 

NGOs and national institutions towards communities affected by the Adjarala dam project in 

order to calm tensions and mediate. Nonetheless, a formal dispute and conflict management 

mechanism agreed upon by the two countries is lacking. Thus, this parameter is given 0. 

Flood, drought and ecosystem protection 

Benin and Togo respond separately to flood events in the Mono basin, even in the valley where 

communities from both countries equally endure flood impact, and even when alerts are 

simultaneously given to the two countries by Nangbéto managers. Drought has not been a critical 

concern in Togo and Benin since the 1970s-1980s (Nicholson et al., 2000). However, future 

climate projections in the Mono catchment indicate potential dry years in the next five decades. 

So far, the two countries are lacking official and well-defined early warning systems for those 

hazards, emergency response mechanisms, and a common and long-term coordination of 

environmental issues including pollution, deforestation and farming patterns. Such a framework 

is even more necessary considering the changes projected for in the catchment. Finally, 

stakeholders agree to allocated 0 to this parameter. 

Stakeholders emphasized however, the fact that assigning 0 to those three parameters does not 

mean a nonfulfillment of all the criteria. Rather, some things are being done and there a need to 

improve and to establish appropriate cooperation frameworks. 

Ultimately, the score as computed by all the stakeholders is 18/25. Therefore, water cooperation 

in the Mono catchment has a WCQ of 72 

5.3.3. Discussion 

The results obtained in this study, either at group level or consensually by all stakeholders, differ 

from the score published by the SFG report in 2017. The report indicates a score of 1/25, and thus 

WCQ = 4. That WCQ value was attributed to the fact that the MBA was created only in 2014, 

shortly before the preparation of the report in 2017. Only parameter 1 on agreement was taken 

as fulfilled. All other parameters were considered as unfulfilled, although the criteria e.g., for 

water infrastructure and political commitment are actually met on the ground. This raises 

questions on how detailed are the information used by the SFG on the one hand, and on the 

other, whether authorities from Benin and Togo, regularly communicate and make necessary 

information on the Mono basin publicly available.  Furthermore, in spite of the detailed criteria 

description provided in the methodology of the SFG to quantify transboundary water 

cooperation, subjective analyses based on stakeholders’ experience on the ground played a role 

in their perception. However, the involvement of stakeholders and their diversity has proven to 

be important for water cooperation assessment in the Mono catchment. Overall, the current 

state of water cooperation in the Mono catchment does not fulfil necessary criteria for an 

effective transboundary management of projected climate and land use change impacts. In that 

regard, Benin and Togo in their country report on SDG indicator 6.5.2, point out that no mutual 

assistance or mitigation measure with respect to transboundary water pollution and extreme 
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meteorological events resulting from climate change is in place (Benin, 2020; Togo, 2020). Data 

exchange, establishment of long-term coordination and cooperation agreements for flood, 

drought and ecosystems, political commitment, and institutional functioning will be essential to 

achieve that goal. Stakeholders pointed out the lack of socio-cultural dimensions in the 

parameters. For example, as in other west African countries, it is common in Benin and Togo to 

have disputes settled by traditional Chiefs without recourse to legal or judicial proceedings 

(Bagayoko & Koné, 2017; Fauvelle-Aymar, 2001). Likewise, gods’ belief and fear of their 

chastisement prevent some communities from overexploiting forest and fish resources which 

therefore, contribute to the protection of the resources (DJOSSOU, 2014; Juhé-Beaulaton, 2007, 

2008; Nobimè, 2020). These socio-cultural realities are specific to Benin and Togo, and they are 

important leverages for the protection of natural resources in both countries. 

5.4. Conclusion 

This study assessed the current state of water cooperation in the Mono catchment and its 

capacity to stand future climate and land use changes in a transboundary way. It was found that 

grounds for transboundary cooperation and joint coordination exist in the catchment, namely 

through the creation of the MBA and the existing actions at national level. However, the riparians 

of the Mono catchment, considering their current level of cooperation, do not dispose of all the 

mechanisms and frameworks to jointly coordinate their response and to sustainably manage the 

adverse impacts of future climate and land use changes. The riparian countries mainly respond 

separately at national scale. Therefore, emphasis should be put on data sharing, dispute 

resolution alternatives, and the harmonization of laws and policies to foster political commitment 

and institutional functioning. 
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6. Conclusion and recommendations 

This thesis aimed at assessing climate and land use change impacts on floods in the Mono river 

catchment, while evaluating the capacity the riparian to respond to the impacts in a 

transboundary manner. Floods were analysed based on scenarios: RCP climate change scenarios, 

land use change scenarios and the scenarios of the construction of the Adjarala dam. The 

quantitative and model-based approaches used in this study were complemented with 

stakeholders’ engagement. The key findings as well as limitations and outlook are presented 

below. 

6.1. Key highlights 

6.1.1. Alternatives to deal with gaps in precipitation data 

The performance of three satellite-based precipitation product (CHIRPS, PERSIANN, TAMSAT), 

and one gauge-based product (GPCC) were evaluated as an alternative to station data that 

contain substantial gaps. Based on a grid-to-point analysis, all four products performed poorly at 

daily scale, but captures very well the seasonal cycles. GPCC exhibited the best results with 

respect to extreme precipitation representation. Further insight was explored using the products 

as input to the HBV hydrological model. CHIRPS depicted poor results when used for runoff 

simulation, and is therefore not recommended for flood modelling in the Mono river catchment. 

PERSIANN, GPCC and TAMSAT are rather recommended for such purposes. The study revealed 

that regardless of the product used to fill-in gaps in observation datasets, the resulting runoff 

remains almost identical to when observation datasets are used without being filled. The findings 

point out that using a strong interpolation method like Kriging in the Mono catchment could be 

enough to compute realistic areal precipitation, without any need to fill-in the missing values. 

That is specifically convenient when using lumped hydrologic models or when the focus is to 

display catchment averages for trend and pattern analyses.  

6.1.2. RCM selection and future climate trend assessment 

The CORDEX database provide a wide range of RCMs for climate change scenarios assessments. 

However, RCMs perform differently from one location to the other. This study proposed a 

systematic approach to select RCMs that best represent the temperature and precipitation 

patterns in the Mono river catchment. The TOPSIS MCDA method applied, led to the selection of 

6 RCMs that were used to explore future climate in the catchment. This systematic ranking and 

selection of RCMs is a novelty in the Mono catchment and represent a major contribution for 

impact studies. Temperature depicts an increasing trend during the period 2022-2070, and for 

both scenarios RCP 4.5 and RCP 8.5. The concordance of the two scenarios on the trend, suggest 

a high likelihood of the projected changes. From an average annual temperature of 26.9°C during 

the period 1966–2015, it is expected to reach 27.8°C under RCP 4.5 and 28.4°C for RCP 8.5. As for 
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rainfall, it is expected to be characterized by variabilities, longer dry seasons and rainfall 

intensification during the period 2022-2070. Flood risks in the Mono catchment are expected to 

persist in the future due to rainfall intensification. However, the shrinkage of rainy seasons 

noticed on rainfall seasonal cycles, together with the increase of temperature, and changes in 

land use, may lead to drought episodes. Unlike flood, drought in the Mono catchment is so far 

not recurrent. Nonetheless, it may become a major hazard in the catchment based on the 

projected changes. Therefore, it is recommended to account for drought as a potential hazard in 

the next 50 years, and to identify appropriate adaptation measures. 

6.1.3. Impact of climate change, land use change and Adjarala dam on floods 

Extreme flood events will continue in the future, based on the climate change and land use change 

scenarios investigated in this study. A high interannual variability of runoff is expected from 2022 

to 2070, with possibilities of drought and flood occurring in consecutive years. Floods that were 

known as 10-year return period events, HQ10, since the construction of the Nangbéto dam, are 

expected to become HQ2 events under climate and land use change effect. Therefore, it is 

recommended to strengthen flood protection measures and to avoid the expansion of 

settlements in flood prone areas that not yet settled. The Adjarala dam may reduce the 

magnitude and extent of extreme floods. For example, the Adjarala dam in combination with 

scenario RCP 4.5 reduces the magnitude of HQ10 by 26%. However, the new dam may reduce as 

well water availability during low flow period. This may affect ecosystems and the socio-economic 

activities of local communities. The projected impacts of climate and land use changes, call for 

both local and basin-scale measures to sustainably adapt.  

6.1.4. Transboundary water cooperation 

The investigation of transboundary water cooperation between riparians of the Mono river 

revealed that some cooperation elements are in place. These include the creation of the MBA, 

the existence of the Council of water Ministers from both countries, the common management 

of the Nangbéto dam, and the joint planning of the Adjarala dam. However, there is a lack of 

essential mechanisms like regular data sharing, early warning system for hazards, and an absence 

of long-term agreements for the management of environmental issues, including pollution and 

deforestation. This raises concerns on the coordinated response capacity of the two countries, in 

view of the cross-border projections of climate and land use in the catchment. This study provided 

an updated value of the WCQ. The participatory assessment of water cooperation with 

stakeholders and experts resulted in a WCQ of 72/100, which is different for the 4/100 score 

published in 2017 by the SFG. This is due to the dynamic aspect of the Quotient, and the added 

value of involving a diversity of stakeholders for both countries. An active and strong cooperation 

in the Mono catchment will require well-defined frameworks for data sharing, dispute resolution, 

and formal mechanisms for the management of ecosystems, flood, drought and other hazards. 

Joint actions will complement existing strategies at national scale. 
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6.2. Limitations and recommendations for future research 

This thesis provides valuable findings towards a better understanding of climate and land use 

change impacts in the transboundary Mono river catchment. However, there is room to improve 

on some of the methods used, and to explore additional research elements. 

The attempt of using remotely-sensed datasets to deal with gaps in precipitation records was 

based on four products, despite the enormous number of satellite-based and reanalysis datasets 

that exist. The selection of those four products was basically guided by how well they performed 

in other west African catchments. However, more products, including reanalysis datasets can be 

explored. In addition, the fours datasets were used in their raw state without correction. 

Undertaking a correction may improve their performance and provide an opportunity of using 

them for flood studies. 

This study made use of the TOPSIS MCDA method to rank RCMs based on four statistical metrics 

used as criteria. For a stronger analysis, more criteria may be introduced to fine-tune the ranking 

and selection process. Moreover, using the ensemble (average) derived from the selected RCMs 

may be limiting, because some RCMs can outperform ensembles. Therefore, it is recommended 

to first compare the ensemble with individual RCMs. Furthermore, the assessment of future 

climate was based only on temperature and rainfall. This is due to the limited observation data 

available for other variables. However, the pattern of evapotranspiration, computed with a 

temperature-based method, can also be explored for a broader understanding of future climate 

impacts. 

Climate and land use change impacts were not evaluated separately. This would have provided 

an in-depth view on the contribution of each of them to the projected changes in runoff, 

extremes, and flood hazard. Moreover, the effect of the Adjarala dam as analysed in this study 

did not account for other purposes of the dam like agriculture. Although SWAT was successfully 

calibrated and validated with good results, exploring other physically-based hydrological models 

could the subject of further studies. The same applies for new flood models that can be tested in 

the Mono basin. In addition to the SUFI-2 calibration programme used in this study, other 

programmes such as GLUE and Parasol, embedded in the SWAT model can also be examined. One 

limitation of this study was the restriction of flood modelling only along the main course of the 

Mono river. This was mainly due to the lack of data from major tributaries. The availability of long 

and good quality discharge data would improve the calibration of models and their subsequent 

output. Another limitation that can be addressed in further studies is the absence of measured 

cross-section information from the field. This was alternatively compensated with sections 

correction, however, field measurements could improve the results. It is also recommended to 

analyse the effect of tides and the Ahémé lake on floods in the lower Mono river basin. 

Transboundary water cooperation, including transboundary hazards management in this study 

were addressed mainly from a general and quantitative perspective. Thus, the participatory 

approach involving stakeholders remained in the scope of quantifying the cooperation, and lacks 

an in-depth investigation of the management strategies in each country. Therefore, further 
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studies can focus on extensive examination of processes and practical operation: e.g., legislations 

and policies in place, the actors involved and their interconnection, the flood preparation, 

response and resilience chain, identification of country-specific socio-cultural realities in play, and 

how cooperation operates at local level among communities that cohabitate on both sides of 

frontiers. Understanding the mechanisms in each country will help to analyse commonalities and 

differences in order to establish an active and mutually benefiting cooperation. 
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8. Appendices 

8.1. Appendix I. TOPSIS ranking scores for rainfall 

Station 
CNRM- 

CCLM4 

ICHEC- 

CCLM4 

MOHC- 

CCLM4 

MPI- 

CCLM4 

ICHEC-

RACMO22T 

MOHC- 

RACMO22T 

CCCma- 

RCA4 

CNRM- 

RCA4 

CSIRO- 

RCA4 

IPSL- 

RCA4 

MIROC- 

RCA4 

MOHC- 

RCA4 

MPI-

RCA4 

ICHEC-

REMO 

MPI-

REMO 

Abomey 0.03 0.84 0.83 0.87 0.87 0.13 0.10 0.76 0.25 0.16 0.88 0.94 0.94 0.84 0.27 

Adeta 0.12 0.87 0.84 0.84 0.83 0.11 0.10 0.11 0.22 0.08 0.25 0.28 0.89 0.87 0.22 

Afagnan 0.01 0.10 0.11 0.11 0.11 0.08 0.06 0.06 0.11 0.07 0.14 0.16 0.17 0.11 0.90 

Agouna 0.03 0.51 0.52 0.93 0.92 0.49 0.06 0.11 0.16 0.09 0.52 0.21 0.53 0.88 0.18 

Akaba 0.36 0.87 0.61 0.62 0.62 0.08 0.32 0.13 0.20 0.11 0.39 0.21 0.64 0.64 0.34 

Aklakou 0.10 0.16 0.18 0.18 0.17 0.16 0.16 0.16 0.21 0.18 0.24 0.26 0.27 0.18 0.81 

Amou-Oblo 0.18 0.49 0.74 0.76 0.53 0.49 0.12 0.18 0.22 0.16 0.26 0.55 0.48 0.55 0.47 

Aneho-Glidji 0.11 0.20 0.19 0.23 0.77 0.23 0.21 0.18 0.27 0.25 0.29 0.34 0.35 0.66 0.96 

Anie-Mono 0.26 0.91 0.60 0.93 0.30 0.45 0.46 0.53 0.33 0.19 0.59 0.59 0.94 0.35 0.52 

Aplahoue 0.02 0.80 0.83 0.85 0.89 0.12 0.10 0.14 0.22 0.15 0.87 0.96 0.94 0.82 0.25 

Atakpame 0.10 0.91 0.53 0.53 0.90 0.49 0.10 0.13 0.19 0.49 0.53 0.53 0.54 0.90 0.23 

Athieme 0.03 0.14 0.14 0.87 0.91 0.13 0.13 0.79 0.18 0.14 0.20 0.25 0.25 0.83 0.18 

Bante 0.47 0.85 0.92 0.91 0.53 0.49 0.46 0.17 0.23 0.09 0.54 0.53 0.93 0.53 0.53 

Bassila 0.34 0.84 0.91 0.90 0.90 0.33 0.33 0.12 0.21 0.09 0.39 0.41 0.94 0.86 0.40 

Blitta 0.37 0.89 0.81 0.83 0.67 0.61 0.33 0.34 0.19 0.07 0.37 0.41 0.87 0.94 0.34 

Bohicon 0.02 0.52 0.51 0.52 0.84 0.10 0.09 0.49 0.18 0.11 0.52 0.54 0.54 0.84 0.21 

Bopa 0.02 0.16 0.17 0.18 0.89 0.12 0.11 0.10 0.19 0.14 0.91 0.25 0.25 0.83 0.20 

Dogbo 0.03 0.11 0.10 0.11 0.11 0.08 0.07 0.06 0.12 0.07 0.95 0.16 0.16 0.12 0.12 

Grand-Popo 0.05 0.09 0.10 0.12 0.17 0.16 0.14 0.11 0.17 0.15 0.18 0.22 0.22 0.10 0.91 

Kara 0.38 0.89 0.89 0.90 0.41 0.29 0.30 0.38 0.32 0.30 0.46 0.40 0.92 0.46 0.65 

Kougnohou 0.19 0.82 0.63 0.65 0.53 0.31 0.30 0.31 0.24 0.18 0.33 0.38 0.67 0.77 0.27 

Kpewa-Aledjo 0.31 0.90 0.75 0.91 0.66 0.29 0.28 0.30 0.23 0.29 0.36 0.35 0.92 0.78 0.54 

Lokossa 0.02 0.17 0.89 0.86 0.82 0.79 0.17 0.12 0.23 0.17 0.22 0.27 0.30 0.80 0.25 

Lonkly 0.03 0.84 0.87 0.87 0.86 0.11 0.08 0.14 0.19 0.10 0.24 0.26 0.95 0.21 0.21 

Malfacassa 0.35 0.66 0.68 0.91 0.68 0.34 0.33 0.34 0.20 0.34 0.40 0.22 0.94 0.67 0.38 

Nangbeto 0.05 0.86 0.93 0.90 0.79 0.15 0.11 0.06 0.26 0.07 0.80 0.89 0.31 0.84 0.29 

Niaouli 0.03 0.12 0.12 0.13 0.94 0.10 0.09 0.07 0.15 0.11 0.16 0.20 0.20 0.87 0.15 

Notse 0.08 0.88 0.18 0.92 0.15 0.09 0.07 0.10 0.16 0.07 0.19 0.22 0.98 0.16 0.18 

Penesoulou 0.27 0.90 0.76 0.76 0.53 0.27 0.26 0.28 0.17 0.25 0.31 0.30 0.53 0.52 0.32 

Savalou 0.07 0.87 0.52 0.92 0.52 0.49 0.09 0.09 0.17 0.08 0.50 0.52 0.53 0.88 0.18 
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Sokode 0.28 0.91 0.53 0.93 0.92 0.28 0.28 0.28 0.19 0.10 0.32 0.33 0.75 0.75 0.33 

Sotouboua 0.13 0.93 0.59 0.59 0.43 0.22 0.22 0.22 0.16 0.06 0.25 0.28 0.78 0.62 0.23 

Tabligbo 0.01 0.17 0.18 0.89 0.83 0.12 0.12 0.10 0.19 0.14 0.19 0.24 0.25 0.81 0.23 

Tchamba 0.29 0.91 0.74 0.90 0.32 0.27 0.26 0.26 0.30 0.07 0.33 0.32 0.75 0.53 0.50 

Tchetti 0.04 0.84 0.88 0.90 0.85 0.79 0.08 0.14 0.19 0.10 0.86 0.24 0.93 0.83 0.22 

Toffo 0.04 0.17 0.13 0.16 0.90 0.08 0.06 0.10 0.15 0.11 0.19 0.22 0.21 0.88 0.89 

Wahala 0.11 0.87 0.24 0.91 0.89 0.11 0.09 0.13 0.21 0.11 0.23 0.27 0.97 0.88 0.24 

Yegue 0.34 0.66 0.68 0.91 0.40 0.63 0.33 0.35 0.19 0.10 0.40 0.40 0.93 0.67 0.40 

 

8.2. Appendix II. Topsis ranking scores for temperature 

Station 
CNRM- 

CCLM4 

ICHEC- 

CCLM4 

MOHC- 

CCLM4 

MPI- 

CCLM4 

ICHEC- 

RACMO22T 

MOHC- 

RACMO22T 

CCCma- 

RCA4 

CNRM- 

RCA4 

CSIRO- 

RCA4 

IPSL- 

RCA4 

MIROC- 

RCA4 

MOHC- 

RCA4 

MPI- 

RCA4 

ICHEC- 

REMO 

MPI- 

REMO 

Abomey 0.34 0.53 0.80 0.83 0.75 0.37 0.43 0.39 0.53 0.46 0.08 0.21 0.76 0.62 0.76 

Adeta 0.23 0.75 0.67 0.63 0.56 0.31 0.46 0.26 0.43 0.31 0.00 0.18 0.89 0.46 0.64 

Afagnan 0.38 0.49 0.75 0.84 0.75 0.35 0.41 0.42 0.56 0.48 0.00 0.22 0.67 0.67 0.82 

Agouna 0.29 0.24 0.89 0.74 0.76 0.47 0.38 0.38 0.62 0.47 0.20 0.33 0.47 0.57 1.00 

Akaba 0.52 0.22 0.58 0.31 0.30 0.21 0.24 0.66 0.83 0.72 0.48 0.56 0.27 0.18 0.74 

Aklakou 0.44 0.31 0.67 0.72 0.50 0.50 0.53 0.51 0.65 0.56 0.03 0.29 0.42 0.53 0.94 

AmouOblo 0.46 0.34 0.68 0.41 0.39 0.09 0.18 0.59 0.79 0.67 0.37 0.48 0.41 0.23 0.86 

AnehoGlidji 0.44 0.31 0.67 0.72 0.50 0.50 0.53 0.51 0.65 0.56 0.03 0.29 0.42 0.53 0.94 

AnieMono 0.41 0.14 0.69 0.49 0.50 0.38 0.30 0.55 0.70 0.60 0.38 0.45 0.27 0.38 0.86 

Aplahoue 0.34 0.58 0.77 0.83 0.75 0.37 0.44 0.40 0.54 0.46 0.08 0.21 0.82 0.63 0.76 

Atakpame 0.31 0.21 0.75 0.64 0.63 0.39 0.31 0.43 0.62 0.50 0.21 0.33 0.41 0.49 0.89 

Athieme 0.38 0.49 0.75 0.84 0.75 0.35 0.41 0.42 0.56 0.48 0.00 0.22 0.67 0.67 0.82 

Bante 0.40 0.29 0.56 0.65 0.53 0.41 0.40 0.46 0.67 0.52 0.12 0.42 0.45 0.51 0.51 

Bassila 0.45 0.28 0.55 0.63 0.48 0.32 0.33 0.51 0.68 0.56 0.23 0.53 0.43 0.49 0.49 

Blitta 0.52 0.34 0.45 0.43 0.34 0.31 0.37 0.58 0.76 0.67 0.25 0.56 0.39 0.28 0.38 

Bohicon 0.34 0.53 0.80 0.83 0.75 0.37 0.43 0.39 0.53 0.46 0.08 0.21 0.76 0.62 0.76 

Bopa 0.38 0.49 0.75 0.84 0.75 0.35 0.41 0.42 0.56 0.48 0.00 0.22 0.67 0.67 0.82 

DogboTota 0.38 0.49 0.75 0.84 0.75 0.35 0.41 0.42 0.56 0.48 0.00 0.22 0.67 0.67 0.82 

GrandPopo 0.59 0.53 0.65 0.62 0.43 0.12 0.17 0.62 0.68 0.68 0.37 0.62 0.56 0.47 0.46 

Kara 0.59 0.53 0.65 0.62 0.43 0.12 0.17 0.62 0.68 0.68 0.37 0.62 0.56 0.47 0.46 

Kougnohou 0.46 0.34 0.68 0.41 0.39 0.09 0.18 0.59 0.79 0.67 0.37 0.48 0.41 0.23 0.86 

KpewaAledjo 0.50 0.33 0.54 0.58 0.39 0.11 0.16 0.60 0.64 0.64 0.36 0.68 0.45 0.39 0.42 

Lokossa 0.38 0.49 0.75 0.84 0.75 0.35 0.41 0.42 0.56 0.48 0.00 0.22 0.67 0.67 0.82 
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Lonkly 0.34 0.58 0.77 0.83 0.75 0.37 0.44 0.40 0.54 0.46 0.08 0.21 0.82 0.63 0.76 

Malfacassa 0.40 0.23 0.54 0.60 0.44 0.25 0.25 0.52 0.57 0.55 0.24 0.60 0.43 0.42 0.44 

Nangbeto 0.31 0.21 0.75 0.64 0.63 0.39 0.31 0.43 0.62 0.50 0.21 0.33 0.41 0.49 0.89 

Niaouli 0.38 0.49 0.78 0.85 0.75 0.32 0.39 0.42 0.57 0.48 0.00 0.22 0.69 0.67 0.82 

Notse 0.24 0.66 0.80 0.89 0.80 0.44 0.54 0.28 0.45 0.33 0.00 0.18 0.94 0.68 0.80 

Penesoulou 0.50 0.29 0.57 0.61 0.45 0.21 0.24 0.57 0.66 0.62 0.32 0.59 0.44 0.47 0.48 

Savalou 0.31 0.17 0.82 0.60 0.63 0.39 0.33 0.45 0.65 0.51 0.26 0.34 0.34 0.49 0.97 

Sokode 0.49 0.27 0.50 0.55 0.39 0.27 0.29 0.55 0.66 0.61 0.25 0.57 0.40 0.39 0.42 

Sotouboua 0.52 0.34 0.45 0.43 0.34 0.31 0.37 0.58 0.76 0.67 0.25 0.56 0.39 0.28 0.38 

Tabligbo 0.38 0.51 0.75 0.85 0.75 0.35 0.43 0.42 0.57 0.49 0.00 0.22 0.73 0.68 0.77 

Tchamba 0.50 0.33 0.54 0.58 0.39 0.11 0.16 0.60 0.64 0.64 0.36 0.68 0.45 0.39 0.42 

Tchetti 0.29 0.24 0.89 0.74 0.76 0.47 0.38 0.38 0.62 0.47 0.20 0.33 0.47 0.57 1.00 

Toffo 0.34 0.53 0.80 0.83 0.75 0.37 0.43 0.39 0.53 0.46 0.08 0.21 0.76 0.62 0.76 

Wahala 0.24 0.33 0.89 0.88 0.86 0.47 0.33 0.30 0.60 0.38 0.18 0.39 0.57 0.70 1.00 

Yegue 0.44 0.25 0.50 0.68 0.53 0.41 0.38 0.51 0.68 0.59 0.16 0.48 0.44 0.48 0.43 
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