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Abstract 

Soil erosion is a significant problem for most of the agroecosystems worldwide, as it is one of the 

primary causes of soil degradation caused by a loss of the topsoil layer and soil organic matter, 

which are essential for plant development. Soil erosion models, typically developed for large-scale, 

are used to estimate soil loss and its impact on crop production. Numerous experimental and 

modeling techniques have been developed using approaches ranging from analytical to empirical 

techniques to gain a better understanding of runoff and soil erosion processes and their potential 

outcomes (organic carbon and nitrogen losses, soil depth reduction, etc.). While the processes 

driving soil erosion are well understood, the distributed and small-scale nature of erosion processes 

makes it difficult to quantify the severity of the erosion problem at the field scale under spatially 

heterogeneous soil and terrain conditions. A thorough analysis of identifying and categorizing the 

main causes of soil erosion at the field scale based on observations with a high spatial resolution 

for quantitatively assessing the spatial and temporal variability of soil erosion patterns is of great 

importance. This thesis presents a systematic analysis of (i) the limitations and applicability of 

existing modeling approaches (ii) within-field variability of the effects of the interaction between 

soil characteristics, topography, rainfall intensity, and soil cover on soil erosion and surface runoff, 

carbon and nitrogen losses (iii) insights into the uncertainties involved in the simulation of sub-

field scale runoff and soil erosion processes due to the model structure and parameter estimation. 

Three specific studies were designed to increase understanding of these issues: 

(1) Soil erosion models based on their representation of the soil erosion process were 

investigated. In total 51 different models were evaluated based on their representation of the 

processes of soil erosion by water. Secondly, their suitability for assessing soil erosion for more 

complex field designs, such as patch cropping, strip cropping and agroforestry (alley-cropping 

systems), and other land management practices were considered. The results showed that a 

particular shortcoming of most of the existing field scale models is their one-dimensional nature. 

Moreover, only a few models are suitable for dynamic soil erosion assessments at the field-scale. 

To date, there are no field-scale dynamic models available considering complex agricultural 

systems for the simulation of soil erosion. 

(2) A field-scale study in Großmutz (Brandenburg), where an individual field with about 6 ha 

covers several landscape elements and is therefore characterized by a strong soil heterogeneity, 

was conducted to systematically analyze the influence of heterogeneous field conditions and 



  

 

 

rainfall intensities along with their complex interactions on sediment losses and surface runoff. The 

interactive effects of these factors and their combinations were visualized from the analysis of 

signal-to-noise (S/N) responses. Results indicated that interactions between the selected factors and 

soil erosion processes exist and multiple linear regression models were developed to predict 

sediment yields, runoff, carbon, and nitrogen losses at the sub-field scale. Results revealed that (i) 

Rainfall intensity with 40.6% showed the highest contribution to sediment yield followed by Slope 

steepness (23.8%), Vegetation cover (17.74%), Silt and organic matter content (14.77%), and 

Depth to loamy layer (3.17%), indicating a strong rainfall intensity and erosion relationship; (ii) 

the combination of levels of factors generating highest sediment yield was determined; (iii) A 

simple multiple linear regression model developed for predicting local sediment yield showed the 

highest agreement with field observations (R2=82.5%).  

(3) Finally, the accuracy of soil erosion models with different model structures in the same 

field with heterogeneous soil and terrain conditions was tested. For this purpose, two widely used 

methods (Freebairn and Rose) to represent soil erosion and coupled them with a process-based crop 

model within the SIMPLACE framework. Spatiotemporal measurements of the soil and crop 

dynamics were taken in a heterogeneous field to calibrate and evaluate a range of model solutions. 

The accuracy of these model solutions coupling different modeling approaches was compared to a 

statistical model developed for the same field. The results indicated that the simulations of water 

erosion with the dynamic Freebairn and Rose approaches were influenced by the performance of 

the runoff and crop growth sub-models.  However, a pronounced difference was found between 

modeled and measured soil erosion when these predictions were made with an uncalibrated runoff 

model. Hence, our results highlighted that large uncertainties in soil erosion modeling were 

associated with improper performance of the runoff model. 

After an analysis and synthesis of the results of all three studies in this thesis, it was concluded that 

an improved understanding of complex interactions among multiple factors influencing the soil 

erosion process is an important area of research for future soil erosion studies as well as new model 

developments since this understanding of the connection between small-scale field conditions in 

the agricultural landscape is as important as understanding absolute sediment yield. Since plot-

based studies for data collection and for implementing modeling techniques in complex agricultural 

landscapes are difficult and labor intensive, it is important to adequately design further plot-scale 



  

 

 

studies to maximize the usefulness of the collected data for upscaling modeling approaches to 

larger scales.   

  



  

 

 

Zusammenfassung 

Bodenerosion stellt für die meisten Agrarökosysteme weltweit ein erhebliches Problem dar, da sie 

eine der Hauptursachen für die Verschlechterung der Bodenqualität ist: Bodenerosion kann dazu 

führen, dass die oberste Bodenschicht und die organische Bodensubstanz, die für die Entwicklung 

der Pflanzen unerlässlich sind, abgetragen werden und verloren gehen. Bodenerosionsmodelle, die 

in der Regel für den großflächigen Einsatz entwickelt werden, dienen der Abschätzung des 

Bodenverlusts und seiner Auswirkungen auf die pflanzliche Erzeugung. Es wurden zahlreiche 

Versuchs- und Modellierungsmethoden entwickelt, die von analytischen bis hin zu empirischen 

Verfahren reichen, um ein besseres Verständnis der Abfluss- und Bodenerosionsprozesse und ihrer 

potenziellen Folgen (Verluste an organischem Kohlenstoff und Stickstoff, Verringerung der 

Bodentiefe usw.) zu erlangen. Die Prozesse, die zur Bodenerosion führen, sind zwar gut erforscht, 

jedoch können kleinräumige heterogene Boden- und Geländebedingungen die Quantifizierung des 

Ausmaßes des Erosionsproblems auf der Feldskala erschweren. Eine gründliche Analyse zur 

Identifizierung und Kategorisierung der Hauptursachen von Bodenerosion auf Feldskala, basierend 

auf der Grundlage von Beobachtungen mit hoher räumlichen Auflösung, ist, zur quantitativen 

Bewertung der räumlichen und zeitlichen Variabilität von Bodenerosionsmuster, von großer 

Bedeutung. Die vorliegende Arbeit enthält eine systematische Analyse (i) der Grenzen und der 

Anwendbarkeit bestehender Modellierungsansätze, (ii) der Variabilität von Auswirkungen und 

Wechselwirkung zwischen Bodeneigenschaften, Topographie, Niederschlagsintensität und 

Bodenbedeckung auf Bodenerosion und Oberflächenabfluss sowie Kohlenstoff- und 

Stickstoffverluste innerhalb eines Feldes und (iii) der Unsicherheiten bei der Simulation von 

Abfluss- und Bodenerosionsprozessen auf Teilschlägen, die auf die Modellstruktur und die 

Parameterschätzung zurückzuführen sind. Drei spezifische Studien wurden durchgeführt, um das 

Verständnis für diese Fragen zu verbessern: 

(1) Es wurden Bodenerosionsmodelle auf der Grundlage ihrer Darstellung des 

Bodenerosionsprozesses untersucht. Insgesamt wurden 51 verschiedene Modelle auf der 

Grundlage ihrer Darstellung der Prozesse der Bodenerosion durch Wasser bewertet. Zweitens 

wurde ihre Eignung für die Bewertung der Bodenerosion bei komplexeren Feldgestaltungen wie 

Patch-Cropping, Strip-Cropping und Agroforstwirtschaft (Alley-Cropping-Systeme) sowie bei 

anderen Landbewirtschaftungspraktiken untersucht. Die Ergebnisse zeigten, dass ein besonderes 

Manko der meisten bestehenden Modelle im Feldmaßstab ihre Eindimensionalität ist. Außerdem 



  

 

 

eignen sich nur wenige Modelle für die dynamische Bewertung der Bodenerosion auf der 

Feldskala. Bislang gibt es keine dynamischen Modelle im Feldmaßstab, die in der Lage wären 

Bodenerosion in komplexen Anbausystemen  zu simulieren. 

(2) Um den Einfluss heterogener Feldbedingungen und Niederschlagsintensitäten sowie deren 

komplexe Wechselwirkungen auf Sedimentverluste und Oberflächenabfluss systematisch zu 

analysieren, wurde eine Feldstudie in Großmutz (Brandenburg) durchgeführt. Dabei wurde ein 

einzelnes Feld mit etwa 6 ha ausgewählt, das mehrere Landschaftselemente umfasst und daher 

durch eine starke Bodenheterogenität gekennzeichnet ist. Die interaktiven Auswirkungen dieser 

Faktoren und ihrer Kombinationen wurden anhand einer signal-to-noise (S/N) Analyse 

ausgewertet. Die Ergebnisse zeigten, dass es Wechselwirkungen zwischen den ausgewählten 

Faktoren und den Bodenerosionsprozessen gibt. Auf dieser Basis wurden multiple lineare 

Regressionsmodelle entwickelt, um Sedimenterträge, Abfluss, Kohlenstoff- und Stickstoffverluste 

auf der Teilschlagebene vorherzusagen. Die Ergebnisse zeigten, dass (i) die 

Niederschlagsintensität mit 40,6 % den höchsten Beitrag zum Sedimentertrag leistete, gefolgt von 

der Hangneigung (23,8 %), der Vegetationsbedeckung (17,74 %), dem Gehalt an Schluff und  

organischer Substanz (14,77 %) und der Tiefe der lehmigen Schicht (3. 17%), was auf eine starke 

Beziehung zwischen Niederschlagsintensität und Erosion hinweist; (ii) die Kombination von 

Faktoren, die den höchsten Sedimentertrag erzeugen, wurde bestimmt; (iii) ein einfaches multiples 

lineares Regressionsmodell, das zur Vorhersage des lokalen Sedimentertrags entwickelt wurde, 

zeigte die höchste Übereinstimmung mit den Feldbeobachtungen (R2=82,5%). 

(3) Schließlich wurde die Genauigkeit von Bodenerosionsmodellen mit unterschiedlichen 

Modellstrukturen auf dem oben beschriebenen Feld mit heterogenen Boden- und 

Geländebedingungen getestet. Zu diesem Zweck wurden zwei weit verbreitete Ansätze (Freebairn 

und Rose) zur Simulation der Bodenerosion verwendet und mit einem prozessbasierten 

Nutzpflanzenmodell im Rahmen von SIMPLACE gekoppelt. Räumliche und zeitliche Boden- und 

Pflanzendynamik wurden in einem heterogenen Feld gemessen, um eine Reihe von 

Modelllösungen zu kalibrieren und zu bewerten. Die Genauigkeit dieser Modelllösungen, die 

verschiedene Modellierungsansätze verbinden, wurde mit einem statistischen Modell verglichen, 

das für dasselbe Feld entwickelt wurde. Die Ergebnisse zeigten, dass die Simulationen der 

Wassererosion mit den dynamischen Ansätzen von Freebairn und Rose am stärksten von der Güte 

der Teilmodelle für Abfluss und Pflanzenwachstum beeinflusst wurden. Es wurde ein deutlicher 



  

 

 

Unterschied zwischen der modellierten und der gemessenen Bodenerosion festgestellt, wenn die 

Simulationen mit einem nicht kalibrierten Abflussmodell gemacht wurden. Unsere Ergebnisse 

machen deutlich, dass große Unsicherheiten bei der Modellierung der Bodenerosion mit einer 

unzureichenden Leistung des Abflussmodells verbunden sind. 

Nach einer Analyse und Synthese der Ergebnisse aller drei Studien in dieser Arbeit kamen wir zu 

dem Schluss, dass ein verbessertes Verständnis der komplexen Wechselwirkungen zwischen 

mehreren Faktoren, die den Bodenerosionsprozess beeinflussen, ein wichtiger Forschungsbereich 

für künftige Bodenerosionsstudien sowie für die Entwicklung neuer Modelle ist, da dieses 

Verständnis der Zusammenhänge zwischen kleinräumigen Feldbedingungen in der 

Agrarlandschaft ebenso wichtig ist wie das Verständnis des absoluten Sedimentertrags. Da 

parzellenbasierte Studien zur Datenerhebung und zur Umsetzung von Modellierungstechniken in 

komplexen Agrarlandschaften schwierig und arbeitsintensiv sind, ist es wichtig, weitere 

parzellenbasierte Studien angemessen zu konzipieren, um den Nutzen der gesammelten Daten für 

das Upscaling von Modellierungsansätzen auf größere Maßstäbe zu maximieren. 
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1. General introduction 

Sustainable agriculture production depends on the conventional and potential use of available soil 

and water resources (Lichtfouse et al., 2009). Soil erosion is one of the main causes where the soil 

is subjected to degradation as a result of detachment and displacement of topsoil particles. Soil 

erosion is a complex phenomenon as it is governed by various natural processes resulting in a 

decrease in soil fertility, reduction in rooting depth, and consequently reduced crop yield (Pimentel, 

2006). Each year, soil erosion causes 75 billion tons of soil loss annually largely from agricultural 

land, and about 20 million hectares of land is already lost in this process (Pimentel et al., 1995). 

Agricultural practices account for 75% of global soil erosion, affecting 80% of the world’s 

cultivated soils (Pimentel, 2006). Water erosion is responsible for the biggest share of soil loss in 

Central European agricultural ecosystems (Panagos et al., 2015). Studies in Lower Saxony, 

Germany show the highest annual loss on a single field was 53.07 t ha-1 y-1 (Steinhoff-Knopp and 

Burkhard, 2018).  

Effective modeling of water erosion can provide important information about soil erosion patterns 

and trends and additionally allows scenario analysis concerning different climate conditions and 

field characteristics (Krysanova et al., 2007). However, estimating soil erosion is challenging as it 

involves many processes that vary within space and time (Driessen, 1986). These challenges in soil 

erosion modeling are due to the variability and complexity of natural and human intervention in 

the soil erosion process. Soil erosion in agriculture systems is a function of soil characteristics (soil 

texture, soil moisture, and infiltration), land use (crop type), topography (slope steepness), and 

climate (rainfall intensity).   Adding to this the variant nature of these functions; within single field 

agriculture systems can have a vastly variant rate of soil erosion and sediment yield. Due to this 

stochastic nature of field environmental processes, soil erosion models should be able to involve 

multiple natural and field conditions with their complex interactions and integrated with dynamic 

crop growth and soil-water balance. Moreover, plot-based observations need to be combined with 

erosion models to ensure acceptable model performance and for validating model outcomes. 
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1.1. State of the art in modeling soil erosion processes  

In an effort to simulate the impacts of soil erosion on agricultural land, soil erosion models have 

been developed to improve our understanding of how different natural processes and field 

management practices can influence the soil erosion process. Many different algorithms and 

relations have been proposed to define and predict soil erosion by water and associated sediment 

yield, but varying significantly in their objectives, time scale, and in their conceptual basis as well. 

These models are generally  used to study soil loss in different environmental conditions (Alewell 

et al., 2019; Parsons et al., 2004; Renard et al., 1991) and have typically been developed for larger-

scale applications, such as basin or watershed scales under specific field characteristics and climatic 

conditions (Li et al., 2020). At field or plot scale, some soil erosion models by water were also 

developed (Ahmadi et al., 2020; Dilla et al., 2020; Eisazadeh et al., 2018, 2012), but the use of 

such models in conditions of high in-field heterogeneity is challenging.  These uncertainties mainly 

arise from complex processes that can strongly vary within single fields, particularly in undulated 

areas (Cerdan et al., 2010).  

The ability of soil erosion models to consider dynamic interactions among vegetation cover, soil 

moisture conditions, field topography, and spatial heterogeneity of soil physical and hydrological 

properties makes them a strong tool to simulate dynamic soil erosion predictions and also to assess 

the impact of different field and environmental conditions on soil loss.  The application of soil 

erosion models is very promising in understanding and quantitatively assessing the spatial and 

temporal variability of soil erosion patterns at a small scale when integrated with other dynamic 

agroecosystem models. There are especially two areas that require critical reflection in this respect. 

Firstly, individual hydro-geomorphological processes and vegetation dynamics affect the soil 

erosion process differently depending on the scale (Aga et al., 2020; M. A. Nearing et al., 2011; 

Panagos et al., 2015) under specific field conditions.  Thus, when applying soil erosion models 

under highly spatial heterogeneous field conditions, uncertainties about parameters values selection 

have to be handled properly in the calibration and validation of models to produce reliable dynamic 

results for small scale assessments of soil loss and runoff. 

Secondly, the application of small-scale soil erosion models requires detailed information about 

soil, weather, crop, and field management data. Due to the high spatial and temporal variation of 

aforementioned parameters within the field, challenges arise in adequate input data of observing 



  

4 

 

multiple factors and their complex interactions to apply the model at a small scale need to be 

addressed. It is difficult to describe soil erosion over spatial and temporal scales due to limitations 

in the field measurements for each part of the study area. In this regard, it is essential to develop 

experiment strategies under prevailing field and natural environmental conditions to consider the 

multiple factors and their complex interactions that can drive fine-scale spatial soil erosion 

processes.  

Statistical models have been employed to investigate soil erosion by water at different temporal 

and spatial scales (Borrelli et al., 2021). Although easy to implement, these models generally 

present high predictive skills only for the boundary conditions for what these models were 

developed, being difficult to generalize or understand sub-processes of the system. On the other 

hand, the mechanistic models are aimed to provide process-based explanations of the soil erosion 

process caused by multiple factors and their interactions.  

Over the last three decades, different empirical, physical, and conceptual models have been 

developed representing the soil erosion process by water and sediment transportation in overland 

flow. Their differences in the outputs and the uncertainties in model predictions have been the 

subject of several reviews. In the following years, an increasing number of research groups began 

to utilize different soil erosion models as dynamic assessment tools (Cabelguenne et al., 1995; 

Masere and Worth, 2015), especially (but not only) in the context of dynamic field conditions 

(White et al., 2011). Temporally dynamic erosion estimations have been conducted with some 

landscape models such as SWIM (Krysanova et al., 2005), IQQM (Simons et al., 1996), 

TOPMODEL (Beven et al., 1984), and LASCAM (Zammit et al., 2003). Such dynamic models 

tend to predict accurately sediment transport and deposition but their application is normally 

limited due to a lack of input information, a poor representation of vegetation dynamics as well as 

uncertainties related to the parameters involved. Most often, these models require detailed input 

data for calibration and outstanding computing systems, when applied at larger scales. 

Consequently, it’s necessary to establish simulation protocols and to suggest techniques to consider 

temporally and spatially varying field conditions such as soil heterogeneity, crop cover dynamics, 

and rainfall event characteristics within a single field.   

Despite the ability to investigate, and predict the dynamic nature of soil erosion processes, most of 

these models do not provide reliable erosion prediction over spatially and temporally highly 
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heterogeneous soil cover and soil physical properties at the field scale. Nevertheless, a few studies 

found in the literature where attempts were made to investigate the impact of multiple 

environmental and in-field factors to predict sediment yield and runoff, are investigated, including, 

in some cases, carbon and nitrogen losses under natural conditions (Cakula et al., 2012; Meena et 

al., 2020; Wei et al., 2007). Most of these studies consider only a few factors (i.e., rainfall, soil 

cover, or slope) (Guidry et al., 2006; Sepaskhah and Bazrafshan-Jahromi, 2006)to explain the 

erosion process. Studies investigating the uncertainties in field scale erosion model applications 

introduced by parameters (Brazier et al., 2000) and their complex interactions are almost an 

exception. Recent studies (Keller et al., 2021; Masere and Worth, 2015) have proven the 

effectiveness of dynamic soil erosion models when integrated into agroecosystem models (i.e., 

simulating soil-water dynamics and crop growth at high temporal and spatial resolution). The 

integrated model tends to simulate the dynamics of vegetation cover under specified field 

management schemes, runoff, and erosion processes such as APSIM or EPIC modeling 

frameworks. 

In the present study, the terms spatial scale, resolution, and sediment yield will be consistently 

used. Accordingly, scale is used as a synonym for spatial extent and refers to the spatial dimension 

of the area where a phenomenon or a process occurs. The term resolution refers to the ratio between 

the area covered by observations and the total area considered by a study (extent). Finally, the 

sediment yield, during a specified period of time, represents the amount of sediment per unit area 

removed by flowing water. 

1.2. General objective and research questions  

The overarching goal of the current Ph.D. thesis is to methodically identify and address the 

uncertainties arising from the field scale application of soil erosion models under spatially 

heterogeneous field conditions. In response to the need for further understanding of the key 

components and uncertainties inherent to the dynamic modeling of soil erosion, this thesis aims to 

answer the following three questions.  

Question 1 (Q1): What are the existing modeling approaches to assess soil erosion by water at the 

field scale with special emphasis on the heterogeneity of soils and crops? 
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Question 2 (Q2): What are the effects of field and environmental factors influencing water erosion 

at the plot scale? 

Question 3 (Q3): What uncertainties are involved in the dynamic simulation of sub-field scale run-

off and soil erosion processes due to the model structure? 

Q1 mainly focuses on examining the different soil erosion modeling approaches for predicting soil 

losses. This includes reviewing their underlying concepts, data requirements, and sources of 

uncertainties involved. Q2 deals with identifying and categorizing the main causes of soil erosion 

at the field scale based on observations with a strategically designed experiment scheme, especially 

for quantitatively assessing the spatial and temporal variability of soil erosion patterns. Q3 provides 

insight into the capabilities of the integrated soil erosion model solution to simulate soil erosion 

under highly heterogeneous field conditions and to compare its performance with statistical models 

based on in-field observations.  

1.3. Study setting  

In order to answer Q1, a comprehensive review of soil erosion models was conducted. In this study, 

51 models were selected based on their development criteria, model structure, model components, 

their application, simplicity of model calibration, and parameter specifications. Models were then 

categorized according to their capacity to explain the processes of soil erosion, data requirement, 

governing equations, spatial and temporal resolution, and application capabilities and limitations 

within heterogeneous field conditions.  

The investigation of the impact of field and environment conditions on sediment yield and runoff 

dealing with Q2 was carried out on a spatially heterogeneous agricultural field site located in the 

Löwenberger (52° 56' 25.548'' N, 13°7'57.648'' E), Germany. The field which has been selected 

has a size of ~6.25ha and depicts a typical condition in the landscape of North East Germany. This 

region is intensively used as cropland and is characterized by soils formed from the glacial till of 

the last glacial period and later modified by fluvial and erosive processes, which created an 

enormous small-scale heterogeneity in the landscape. As the average field size is about 20 ha, the 

individual fields regularly cover several landscape elements, and, as a result, they are characterized 

by considerable soil heterogeneity. Thus, the advantage of the field is that it is representative of a 

large area and the results obtained can potentially be applied to the entire region. Based on the 
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results, the influence of field characteristics on sediment yield was used to develop a local statistical 

model to estimate runoff volume, sediment yield, and carbon and nitrogen losses in various 

locations in the field. 

Finally, an attempt was made to integrate selected conceptual erosion models and a process-based 

crop growth model to be applied to a large number of locations on the same field in order to answer 

Q3. This was performed using the Scientific Impact assessment and modeling platform 

(SIMPLACE). SIMPLACE is a platform for advanced crop and ecosystem management using 

modular software architecture to simulate complex environmental processes.  The integrated model 

simulates the dynamics of vegetation cover under specified field management schemes, runoff, and 

erosion processes. 

1.4. Structure of the thesis  

The thesis comprises 5 chapters. Chapter 1 is the general introduction, while chapters 2 to 4 deal 

with the three research questions in the order mentioned above. Chapter 2 comprises a review of 

soil erosion modeling techniques. In this chapter, based on their representation of the soil erosion 

process, 51 models were screened and classified according to their application challenges for 

simulating field-scale erosion processes and their consideration of more complex cropping systems 

like alley cropping, patch cropping, and strip cropping. The findings provided the path to select 

adequate models for dynamic simulation of sediment yield at the field scale for an area with high 

spatial in-field variability. In Chapter 3 the effects of the interaction between soil characteristics 

(soil organic matter (SOM), soil texture), topography (slope), rainfall intensity, and soil cover (field 

conditions) on soil erosion, surface runoff, carbon and nitrogen losses were investigated in the same 

field taking advantage of it high in-field variability. Different scenarios of rainfall events under 

different rainfall intensities were generated with a mobile rainfall simulator and combined with 

different levels of vegetation cover, slope inclination, and soil physical conditions. Based on the 

experimental results linear regression models were developed to predict sediment yield, runoff, 

carbon, and nitrogen losses. Additionally, in order to determine the regions of the field that are 

more susceptible to soil erosion, the regression equation for sediment yield was used to predict 

sediment yields within the field. Chapter 4 provides the workflow for integrating the selected soil 

erosion models into the SIMPLACE framework to estimate sediment yield under heterogeneous 

field conditions considering dynamic soil-water fluxes with run-off and crop growth models as 
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well as two different approaches to simulate sediment yield.  Dynamic coupling of two soil erosion 

models was tested and simulated runoff and sediment yield were evaluated by comparing the 

estimations with observations at different temporal and spatial scales to assess the uncertainties 

due to model structure and data limitations.  Moreover, the sensitivity of model calibration with 

respect to the soil physical and hydrological parameters has been analyzed to gain an insight into 

uncertainties resources due to model parameters. Finally, Chapter 5 summarizes and discusses the 

main conclusions of this Ph.D. thesis. Research implications for future research and development 

attention are proposed and a set of recommendations are given related to the uncertainties in the 

application of soil erosion models at a small scale under heterogeneous field conditions.  

1.5. Dissemination 

Since this is a cumulative doctoral thesis, the central parts of the study (Chapters 2, 3, and 4) were 

submitted as scientific publications in peer‐reviewed journals (MDPI/Science Citation Index (SCI) 

Web of Science List). Therefore, the international communities can have access to our research 

methods and results and apply the procedures developed in this thesis to future studies in similar 

regions. Details are listed in Table 1.1. 

Table 1. 1. List of scientific publications in journals that are under MDPI /SCI Web of Science 
List 

Chapter 
SCI-Journal 

 

Impact 
factor 

 

Title 
 

2 LAND 3.90 
Modeling Approaches to Assess Soil Erosion by 
Water at the Field Scale with Special Emphasis on 
Heterogeneity of Soils and Crops 

3 
Science of the Total 
Environment 

10.75 
Using the Taguchi experimental design for 
assessing within-field variability of surface run-
off and soil erosion risk 

4 
Environmental 
Modelling & Software 

5.47 
Comparison of predictive modeling approaches to 
estimate soil erosion under spatially  
heterogeneous field conditions (To be submitted)  
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Chapter 2 
 

 

 

 

 

 

 

 

 

 

Modeling approaches to assess soil erosion by water at the field 
scale with special emphasis on heterogeneity of soils and crops 

 

 

 

 

 

 

 

This chapter has been published as:  

 

Raza, A., Ahrends, H., Habib-Ur-Rahman, M., Gaiser, T., 2021. Modeling approaches to assess soil erosion 

by water at the field scale with special emphasis on heterogeneity of soils and crops. Land. 

https://doi.org/10.3390/land10040422 
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1. Introduction 

Soil erosion is a significant problem worldwide for most of the agro-ecosystems (Boardman and 

Poesen, 2006) because it is one of the primary causes of soil degradation as a result of detachment 

and loss of topsoil layer and soil organic matter, which are essential for plant development. 

Quantification of soil loss related to soil and crop management, climate, and soil conditions has, 

therefore, become a serious concern for water and soil conservation practitioners, as well as 

decision-makers concerned with food security and agricultural policies (Phuong et al., 2017). Soil 

erosion is the process of detachment and transportation of soil particles involving various erosive 

agents from the earth's surface. Categorized into wind and water erosion, water erosion is a much 

more complex process and leads to substantial loss of soil and sedimentation (Liu et al., 2018). 

Water erosion is mainly affected by rainfall/runoff intensity, vegetation cover, soil erodibility, 

topography, and land use management practices (Ahamefule et al., 2018). 

Due to the rapid advancement in data computing techniques in the last three decades, there is a 

substantial enhancement in the analysis of soil erosion through the development of computer 

models (Merritt et al., 2003). However, these models strongly differ in terms of data requirement, 

application scales, and complexity, along with uncertainties in the individual factors of the 

respective models (Swarnkar et al., 2018). Water erosion modeling is about 60 years old, but has 

become a key factor in our understanding of the complexity of erosion processes and for predicting 

future scenarios. Yet, most of the models are still inadequate due to multiple sources of uncertainty  

(Favis-Mortlock and Mullan, 2011; Parsons et al., 2004). 

Many different algorithms and relations have been proposed to define and predict soil erosion by 

water and associated sediment yield, varying noticeably in their objectives, time scale at the plot 

level, and in their conceptual basis as well. The choice of the most suitable model is a logical 

process affected by many factors including land use, the characteristics of the catchment being 

considered, and the data available (Ranzi et al., 2002). Physically based models, for example, 

mainly depend on the principal approach of mass and energy conservation to simulate runoff and 

sedimentation. In addition, physically based models are based on the concept of physics using 

transfer of momentum as a governing equation (Doe et al., 1999). 

Remote Sensing and GIS have huge potential for analysis and mapping of parameters influencing 

soil erosion and degraded lands in quantitative and qualitative manners. However, the use of GIS 
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for soil erosion modeling requires facilitations such as multiple data resources, data scaling, and 

increased complexity in data integration and algorithms. Climate, land use/land cover, topography, 

and slope data can be assessed using LIDAR or Satellite imageries and can be integrated with GIS 

for soil erosion, transport, and sedimentation modeling (El Jazouli et al., 2017; Haregeweyn and 

Yohannes, 2003; Patil et al., 2015; Renschler and Harbor, 2002). 

There is an increasing interest in more complex field designs and crop diversification on the same 

field, e.g. alley cropping systems, as one of the most popular type of agroforestry, patch cropping, 

strip cropping, and uncultivated drylands, wherein rotational grazing livestock are moved to a part 

of the pasture, while the other portions rest, which can impact modeling outcomes. Consequently, 

a need for suitable soil erosion models that can handle and consider more complex field designs is 

raised.  

The key objective of this study is, therefore, to categorize an extensive amount of available soil 

erosion models, review the underlying concepts, data requirements, and sources of uncertainty. We 

especially consider their suitability to simulate soil erosion at the sub-field scale and their 

application for more complex field designs. More specifically, we aim to 

i. Provide a review of a large number of existing soil erosion models with respect to (a) the 

challenges for simulating field-scale erosion processes and (b) consideration of more 

complex cropping systems like alley cropping, patch cropping, and strip cropping, and 

based on these findings, 

ii. Provide suggestions on a way forward for corresponding model improvements. 

2. Materials and Methods 

We performed a systematic model review with the reviewed soil erosion models being based on 

the outcome of a thorough literature screening, identification of suitable models, and model 

classification (Fig. 2.1). This review paper is structured in the following way. A brief explanation 

of soil erosion, transportation, and sedimentation principles is made in section 3.1. In this review, 

more than 60 models were reviewed and 51 models were retained in section 3.2. The shortlisted 

models are reviewed in terms of their objective, model structure, model components, as well as 

their application, ease of model calibration, and parameter requirements. Models are categorized 

in terms of their ability to explain the soil erosion processes, governing equations, their spatial and 

temporal resolution, their capabilities, and their limitations. These models have a wide range of 
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applications from point scale to catchment scale. The focus of this review primarily considers 

models having abilities to simulate soil erosion process at the field scale and in complex cropping 

systems. The selected models are described in section 3.3. in which it is noted that many field scale 

models are implemented for catchment-scale soil erosion simulations. From a wider point of view, 

some of these models are described under their respective categories. In section 4, a discussion 

summarizes descriptions of models to sort out which model fits which conditions and problems 

identified and leads to clear guide-lines to select the appropriate model. This discussion is used to 

identify key points that would enhance the quality of the modeling output and the nature of 

additional components to enhance model capability in most environmental and management 

conditions. Section 5 provides a way forward on how to improve and extend existing models to 

simulate erosion processes at a small spatial scale in complex agriculture systems. 
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Fig. 2. 1: The literature study flow diagram 
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3. Results 

3.1.  Principles of Erosion Modeling  

Sedimentological and hydrological processes involved in the modeling of soil erosion by water are 

explained mainly by two principles representing these processes (Table 2.1). Every erosion model 

can be considered as a unique permutation of these two principles (Favis-Mortlock et al., 2001). 

Table 2. 1. Principles driving process representation in soil erosion models (modified after 
(Favis-Mortlock et al., 2001) 

Principle Summary 

A model must represent all factors significantly 

contributing to the erosion process at the spatial, 

temporal, and locality levels for which the model is 

applied. 

What to represent 

A model may apply different weights to the 

individual processes or it may represent these 

processes directly, indirectly, or using a hybrid 

approach. (Favis-Mortlock et al., 2000). 

How to represent 

One of the critical aspects of the first principle (Table 2.1) is that every erosion model operates at 

different temporal and spatial scales (Kirkby et al., 1998a). Therefore, a plot-scale model must be 

able to represent a different combination of erosion processes as compared to those developed for 

the landscape (i.e., watershed or regional) scale (Table 2.2). Further, if simulating single events, 

the processes represented in the model may differ from those considered in models for long-term 

simulations or the weighting factors for each of the processes may be different. Similarly, erosion 

processes vary depending on the climatic conditions (i.e., humid, arid, etc.) and models developed 

for these specific regions must vary in terms of the number and type of erosion processes that are 

considered (Favis-Mortlock et al., 2000). 
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Table 2. 2. Spatial scale sizes for soil erosion modeling 

Category Spatial Scale Size 

Large scale 

Basin >500 km2 

Catchment 50 – 500 km2 

Watershed 1-50 km2 

Small scale 
Field/hillslope < 1km2 

Plot 0.6-23 m2 

3.2. Soil Detachment and Sedimentation Assessment Model Approaches   

A wide range of modeling approaches has been developed for simulating soil erosion and 

sedimentation over the last decades, differing in their representation of processes involved in soil 

erosion, the complexity of these processes, data requirements and output uncertainties, model 

calibration and use, and their temporal and spatial scale limitations. In general, the model selection 

depends on the intended application and characteristics of the landscape. Therefore, several factors 

must be considered before the model selection i.e., objective, data requirements, data availability, 

accuracy, validity, etc.  

Each model has been designed for a specific spatial scale and purpose and thus is not appropriate 

and suitable for every application. Based on the complexity and the level of dynamic physical 

processes that are implemented, models can be categorized into three different groups, namely 

empirical, conceptual, and physically based models. Due to the increasing application of geospatial 

data, we further distinguish a fourth category: Remote Sensing and GIS-based modeling 

approaches. However, most of the models might be composed of different model categories. For 

example, the runoff-rainfall component of the USLE model (Monjezi et al., 2017) may be 

physically based but an empirical relationship has been developed for the estimation of soil erosion 

and sediment yield with little computational efforts. An example of so-called “hybrid models” is 

the Unit Stream Power-based Erosion Deposition and Automated Geospatial Watershed 

Assessment. The model structure is conceptual in nature considering the number of storages, while 

the configuration of these storages is determined through a statistical identification process for each 

catchment. The accuracy of these models is mainly dependent on the parameters selected and their 

primary implications. (Alewell et al., 2019) noted the primarily different nature of gross (modeled) 

vs net (measured) soil erosion.  
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3.2.1.  Empirical Models 

Empirical models are primarily based on observation data and the relationships be-tween different 

factors and soil erosion levels that were derived from these data sets. The computational and input 

data requirements for empirical models are lower than those required for conceptual or physically 

based models. Hence, empirical models are comparatively flexible, have a simple structure, are 

easily implemented, and useful in identifying the source of sedimentation generation as a first step. 

The most critical limitation of empirical models for soil erosion is their inadequate level of accuracy 

in analyzing large data sets which would require processing and analysis using special complex 

mathematical approaches (Eisazadeh et al., 2012). 

Empirical models have proven to be robust since they are mathematically simple, but their 

application is limited to the extent of area for which they have been developed and calibrated for 

the fact that users will not get benefit from complex models if incomplete input data is available. 

They are often based on standard runoff plot schemes for uniform slopes (Parsons et al., 2004). At 

regional scales, with the identification of sediment settlement and delivery patterns, empirical 

models can be applied to predict average sedimentation, soil erosion rates, and surface runoff using 

the SCS curve number. If soil characteristics spatially do not vary and if spatially explicit 

meteorological data is not available, the application of robust empirical models can provide more 

reliable results as compared with more complex and dynamic models. However, empirical models 

work on the concept of stationarity, which makes them less powerful for predicting soil erosion for 

complex terrains characterized by heterogeneous soil characteristics and climatic conditions. 

Hence, empirical models are often applied when the availability of model input data is limited. 

Most of the empirical models do not provide information regarding sediment deposition and stream 

sedimentation generation, which restricts their application for simulating mass balances. 

There are a few field-scale models such as EPM, TCRP, and SLEMSA which simulate soil 

detachment, transportation, and sedimentation using predominantly empirical approaches at field-

scale (Table 2.3). The PSIAC model has the ability to estimate soil erosion and sedimentation at 

both field and catchment scales. These models are continuous simulation models that are useful for 

predicting the effects of field management practices and the effects of hydrological variations at 

daily time steps (Table 2.3). There are a few empirical models available to study the soil erosion 

processes under agroforestry systems such as WaNuLCAS, SCUAF, and HyPAR. Most of the 
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models contain process-based sub-models to simulate the crop growth based on their vegetative 

and generative stages under specific field conditions (Probert et al., 1998) including all soil 

processes that may affect agricultural systems, such as C, P, N dynamics, and soil erosion (Probert 

et al., 1998). Models such as USLE, MUSLE, RUSLE, and MOSES have long-term simulation 

capabilities at both hillslope and catchment scale. Models are distinguished on the basis of spatial 

and temporal scale as de-tailed in Table 2.3. 
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Table 2. 3. Empirical soil erosion models 

Sr. 

No

. 

Model Description 
Developer 

/year* 

Scale Input Governing 

Equations 

Model  

Capabilities 

Model 

Limitations 

Overland  

Sedimentation 

Channel 

Sedimentation 

Generation 

Source 

Temporal Spatial Demand Variables G* T* D* 

1 USLE 
Universal Soil Loss 

Equation 

(H.Wischmeier 

and Smith, 1949) 
Annual 

Catchment/ 

Hillslope 
High 

Climate data, topography, 

Land use/Land cover, field 

management  

practices, crop  

management factor 

Universal 

Soil Loss 

Equation 

Erosion 

Does not quantify 

the events that are 

likely to result in 

large-scale erosion 

No Yes No No 

(Albaladej

o Montoro 

and 

Stocking, 

1989) 

2 MUSLE 

Modified 

Universal Soil Loss 

Equation 

(J. R. Williams and 

H. D. Berndt, 

1977) 

Annual 
Catchment/ 

Hillslope 
High 

Volume flow rate, peak flow 

rate,  

erosion control practices, 

crop management factor, 

Climate data, topography, 

Land use/Land cover, field 

management practices, 

Modified 

Universal 

Soil Loss 

Equation 

Erosion, prediction 

of sediment yield, 

simulation of 

individual storm 

events 

Calibration is 

complex, shows 

significant 

difference with 

measured 

sediment yield in 

many watersheds 

No Yes No No 

(Chandra

mohan et 

al., 2015) 

3 RUSLE 
Revised Universal 

Soil Loss Equation 

(Renard et al., 

1991) 
Annual 

Catchment/ 

Hillslope 
High 

Climate data,  

topography, Land use/Land 

cover, field management  

practices,  

crop management factor 

Revised 

Universal 

Soil Loss 

Equation 

Erosion, process-

based auxiliary 

components (e.g., 

time-variable soil 

erodibility, plant 

growth, residue 

management) 

Slope length 

factor may not be 

suitable for  more 

than 25° , does not 

estimate gully- or 

stream-channel 

erosion caused by 

raindrops 

No Yes No No 
(Le Roux 

et al., 2008) 

4 MOSES 

Modular Soil 

Erosion System 

project 

(Charles R. Meyer 

et al., 2001) 
Annual 

Catchment/ 

Hillslope 
High 

Climate data, 

topography, Land use/Land 

cover,  

field management practices, 

crop  

management factor 

Enhanced Revised Universal 

Soil Loss Equation 

(RUSLE2), Wind Erosion  

Prediction System (WEPS) 

model 

Wind erosion, 

water erosion 

sediment yield, 

runoff 

Does not  

consider gully 

erosion 

No Yes No No 

(Charles R. 

Meyer et 

al., 2001) 

5 SEDD 
Sediment Delivery 

Distributed 

(Ferro and Porto, 

2000) 

 

Annual 
Basin, large 

catchment 
High 

DEM, a land use  

Map, climate, 

human influence 

Universal Soil Loss 

Equation 

Basin  

sediment yields 

Model  

reliability 

decreases from 

the annual scale to 

the event scale 

No Yes No No 

(Ferro and 

Porto, 

2000) 

6 EPM 
Erosion Potential 

Method 

(Dragičević et al., 
2017) 

 

Annual Field High 

Climate data,  

topography, area of  

catchment, stream network,  

soil erodibility 

coefficient 

Analytical equation for 

spatial and  

temporal variation 

measurement 

Retention  

coefficient 

Erosion intensity, 

sediment production

sediment transport 

Performance 

subjected to the  

specific 

characteristics and 

sedimentary 

regime of the 

study area 

No Yes No No 
(Ahmadi et 

al., 2020) 

7 TCRP 

Tillage-Controlled 

Runoff Pattern 

model 

(Takken et al., 

2001) 
Event/ Annual Field Low 

DEM, a land use map, and 

the major tillage direction 

on each field 

Incorporated with LISEM 

model, 

Generalized  

erosion-deposition mass 

balance,  

Dynamic 

Erosion concept 

eqn. 

 

Runoff pattern, 

erosion patterns, 

runoff network 

Local depressions 

that may exist in a 

DEM need to be 

removed making 

runoff pattern 

more complicated 

No No No No 
(Takken et 

al., 2001) 

8 TMDL 
Total Maximum 

Daily Load 

USA EPA (1991) 

 
Annual Catchment High 

Channel network, 

Groundwater  

exchange, 

Modified  Kilinc-Richardson 

equation for soil erosion, 

advection- 

Multi- 

dimensional,  

Provides 

amount of  

Transport 

capacity must be 

converted into 

erosion 

No No No No 
(Thaxton 

et al., 2004) 
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Topography, unit discharge 

rate, soil cropping factor,  

conservation factor 

dispersion equation for in-

channel sediment 

transportation, general 

transport equation for 

overland sediment transport 

sediment and 

nutrients 

coefficient. , 

determining the 

interdependent 

factors is difficult. 

9 SLEMSA 

Soil Loss 

Estimation Model 

for Southern 

Africa 

(Elwell, 1978) Annual Field High 

Climate data,  

topography,  

vegetation, human influence 

ELWELL equation 

Z = K *X* C 

Where K (Mean annual soil 

loss index, 

X (Topographic  

Factor), C (Crop 

cover/management factor) 

Soil erosion,  

decision on  

land management 

techniques 

High  

sensitivity to the 

input  

factors 

No Yes No No 

(Albaladej

o Montoro 

and 

Stocking, 

1989) 

10 PSIAC 

Pacific Southwest 

Inter-agency 

Committee 

Method 

(PSIAC, 1968)  Annual Catchment/Field High 

Surface geology,  

soil types, Climate, slope, 

stream  

network, land cover/land 

use 

Gravelius Equation, Horton 

Equation, Kiripich Equation, 

Drainage Density Equation, 

upland erosion= 0.25SSF 

(SSF: soil surface  

factor), Channel  

erosion =1.67SSFg  (SSFg: 

Gully erosion factor) 

Upland 

erosion,  

Channel  

erosion,  

sediment  

deposition 

Model sensitivity 

to changes of 

different factors 

under different 

conditions 

 

Yes Yes Yes Yes 
(De Vente 

et al., 2013) 

11 E30 
Soil Erosion at 30o  

slope 
(Kiyoshi, 1993) Annual Watershed Low 

Land use/Land  

cover maps,  

topography 

E = E30 * (S/S30)0.9 

E: rate of soil  

erosion; 

E30: rate of soil  

erosion at 300 slope; S30: 300 

slope 

Soil Erosion 

Model applies  

only to hilly 

regions having 

undulant 

topography and 

steep slopes.  

Does not take into 

account soil 

factors (crirtical 

for erosion 

processes) 

 

No Yes No No 
(Kiyoshi, 

1993) 

12 WaNuLCAS 

water, nutrient 

and light capture 

in agroforestry 

system 

(Van Noordwijk 

and Lusiana, 

1998) 

Annual 
Watershed 

/field 
High 

Land use/Land cover, 

Climate data 
USLE 

Soil erosion, crop 

yield 

The erosion 

component is not 

well  

developed and 

integrated with 

crop yield 

Yes No No No 

(Onsamrar

n et al., 

2020) 

13 SCUAF 
Soil Changes Under 

Agroforestry 

(Magcale-

macandog, 2002) 

Annual/ 

Seasonal 

Watershed 

/field 
High 

Crop, soil physical and 

chemical properties 
USLE 

Predict soil changes  

under  

different 

agroforestry 

systems 

Erosion  

component  

is not well tested 

No No No No 

(Magcale-

macandog, 

2002) 

G: Generation; T: Transportation; D: Deposition; Developer/year: references for model manuals and first research articles describing the respective model 
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3.2.2.  Conceptual Models  

Conceptual models are based on the sediment and runoff continuity equations, and basically take 

a position between physically based and empirical models (Beck, 1987). Unlike empirical models, 

conceptual models reflect the process governing the system behavior. The primary focus of 

conceptual models has been to estimate sediment yield based on the concept of unit hydrograph 

(Chmelová and Šarapatka, 2002). Therefore, they typically consider the most critical catchment 

characteristics and corresponding soil erosion processes, however, without describing the details 

of these processes and interactions that would require data on temporal and spatially distributed 

catchment details (Sorooshian, 1991). As a result, conceptual models can be used to simulate 

quantitative and qualitative impacts of land use changes on soil erosion and sediment yields without 

having to be parametrized with detailed catchment in-formation.  

Jakeman et al. (Jakeman and Hornberger, 1993) noted that conceptual models tend to have issues 

related to the identifiability of their parameter values since those values were generally obtained 

during model calibration with observed values (Abbott et al., 1986) . (Sorooshian, 1991) identified 

the direct relationship between conceptual model complexity and model identification. The 

calibration procedure for medium complex models can find only the local best fit although there 

may be many other local conditions with optimum parameter sets. This problem can be resolved 

by reducing the number of parameters that have to be estimated through calibration and increasing 

the number of parameters that can be estimated based on prior knowledge of the system (Kleissen, 

1990). Such an approach will reduce the goodness of fit to the calibration data. The lack of 

parameter values for conceptual models means limiting the physical interpretability of parameters 

(Pechlivanidis et al., 2011). Though more complex models tend to offer a better fit to calibration 

data they also carry the risk of over-fitting when calibration data are limited (Onof and Wheater, 

1993).  

Most of the conceptual models use equations from empirical approaches (Table 2.4). The empirical 

models USLE and MUSLE, for example, are implemented in conceptual models such as APSIM 

(modeling framework), SWIM, RillGrow, SWRRB, and LASCAM for estimating soil erosion. 

These conceptual models can predict the temporal and spatial distribution of soil detachment and 

sedimentation at a field scale depending on crop and soil management at daily time steps. Among 

these models, APSIM and IQQM are continuous simulation models predicting both overland and 
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channel sediment generation, transportation and deposition, as well as rainfall-runoff associated 

nutrient loss and soil changes. A few models such as APSIM, AGNPS, and AGNPS-UM are event-

based models to predict soil erosion under complex agriculture systems from smaller scales (hill-

slopes) to large (catchment) scales (Table 2.4). 
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Table 2. 4. Conceptual soil erosion models 

Sr. No. Model Description Developer 

/year* 

 

 

Scale Input 
Governing 

Equations 

Model 

Capabilities 

Model 

Limitations 

Overland 

 Sedimentation 

Channel 

Sedimentation 

Generation 

Source 

Temporal Spatial Demand Variables G* T* D* 

1 APSIM Agricultural 

Production 

Simulator 

(McCown et al., 

1996) 

Daily Field High Climate, topography, 

land use, crop, field 

management 

practices 

Modified USLE, 

soil water 

balance equation 

Erosion, * Intensive 

calibration and 

validation 

required 

Yes Yes Yes No (Basche et 

al., 2016) 

2 RillGrow 

 

RillGrow (Favis-

Mortlock, 1996) 

Abstract Plot High Meteorology, Digital 

Terrain Model 

S-Curve stream 

power based 

equations 

Formation and 

simulation of rill 

network 

Depends on 

single storm 

events; Low 

potential for 

integration with 

GIS 

Yes Yes Yes No (Favis-

Mortlock, 

1996) 

3 SWAT Soil and Water 

Assessment Tool 

(Arnold et al., 

1998) 

Daily Regional to 

watershed 

Medium Climate, soil 

characteristics, 

topography, 

land use / Land cover 

MUSLE, 

Manning's 

equation, SCS 

Curve Number, 

Bagnold's stream 

power Concept, 

Continuity 

equation 

Hydrological 

assessments, 

pollutant loss 

studies, 

water erosion, 

sediment yield 

 

Weak in stream 

channel 

degradation and 

sediment 

deposition 

analysis, 

inadequate data 

availability for 

calibration and 

validation 

Yes Yes Yes Yes (Aga et 

al., 2020) 

4 SWIM Soil and Water 

Integrated Model 

(Krysanova et 

al., 1998) 

Daily Watershed Medium Climate, soil 

characteristics, land 

cover, crop types 

water balance 

equation, 

MUSLE, SCS 

Curve Number, 

Simulation of 

runoff, 

soil erosion, 

sedimentation * 

relatively 

complex, no 

simulation of 

gully erosion 

Yes No No No (Krysano

va et al., 

2007) 

5 IQQM Integrated Water 

Quality and 

Quantity Model 

(Simons et al., 

1996) 

 

Daily Watershed Medium Topography, river 

system configuration, 

evapotranspiration 

conceptual 

Sacramento 

model, QUAL2E 

model 

Rainfall-runoff 

generation, * 

No erosion or 

sediment 

generation 

simulation 

Yes No No Yes (Simons 

et al., 

1996) 

6 CAESAR Cellular 

Automaton 

Evolutionary 

Slope and River 

model 

(Murray and 

Paola, 1994) 

 

Annual Catchment High DEM, Rainfall, flow 

parameters, slope 

processes, bedrock 

depth, value of 

Manning coefficient 

Einstein 

equation, 

Wilcock 

& Crowe 

equations 

Erosion,sediment 

transport & 

deposition 

No rainfall-

runoff interactoin 

Yes Yes Yes Yes (Coulthar

d et al., 

2000) 

7 TOPMO

DEL 

Topography 

based 

hydrological 

MODEL) 

(Kirkby, 1997, 

1975) 

Daily Hillslope Medium DEM,  landform 

features, soil 

characteristics, 

geology, 

vegetation, and 

hydrological 

characteristics 

Sediment 

transport 

capacity,  

continuity 

equation 

Soil moisture 

deficit, 

rainfall-runoff, 

Simulation of 

surface/subsurface 

hydrology; 

sediment yield 

and transport 

Suitable only for 

shallow 

homogenous soil 

watersheds 

Yes No No No (Beven et 

al., 1984) 

8 WILSIM Web-based 

Interactive 

Landform 

Simulation 

Model 

(Luo et al., 

2004) 

Abstract Watershed High DEM,  

Topography, Rainfall, 

flow parameters, 

slope 

Cellular 

automata (CA) 

algorithm 

simulation offers 

an ideal tool for 

understanding the 

complex effects of a 

variety of physical 

and geological 

processes and 

erosion 

Many details of 

the physical 

process are not 

included in the 

model. 

Yes No No Yes (Luo et 

al., 2006) 
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9 SWRRB Simulator for 

Water Resources 

in 

Rural Basins 

(Williams et al., 

1985) 

Daily Catchment High Rainfall data, soil 

characteristics, Land 

use 

MUSLE, 

Sediment 

balance equation 

 

Simulation of 

Stream flow, 

Rainfall-runoff, 

Sedimentation and 

plant growth on 

daily time steps 

 

Uncertainties in 

model parameter 

estimations, 

based on many 

assumptions 

leading to 

uncertainties 

 

Yes No No Yes (Williams 

et al., 

1985) 

10 LASCA

M 

Large Scale 

Catchment 

Model 

(Sivapalan et 

al., 1996) 

Daily Catchment High Sediment load, 

runoff, salt 

fluxes 

USLE, Stream  

sediment  

capacity 

Simulation of 

hydrology, 

erosion, 

During 

calibration low 

quality of 

sediment and 

nutrient 

predictions 

Yes Yes Yes Yes (Sivapala

n et al., 

2002) 

11 AGNPS Agricultural 

Non-Point Source 

pollution model 

(Young et al., 

1989) 

Daily Small- to 

medium-sized  

watersheds 

High Climate,  

topography, soil 

characteristics, 

Land use 

SCS Curve 

Number, USLE,  

Foster equation 

Soil erosion, 

sediment transport 

and depositing, 

Does not 

simulate sub-

surface flow, 

only suitable to 

small-medium 

catchments 

Yes No No Yes (De Vente 

et al., 

2013) 

12 ACRU Agricultural 

Catchment 

Research Unit 

(Schulze, 1995) Daily Small  

catchments  

(<10 km2 ) 

Low Climate, soil, land 

use crop 

SCS equation, 

catchment curve  

number, 

Simulate  

runoff, erosion and 

sediment yield, 

land use and 

climate impacts,  

seasonal crop yield 

Require 

extensive GIS 

pre-processing 

Yes No No Yes (Aduah et 

al., 2017) 

13 STREAM Sealing, Transfer, 

Runoff, Erosion, 

Agricultural 

Modification 

model 

(King et al., 

2005a) 

Event Catchment to  

watershed 

High rainfall, temperature, 

topography, soil 

(water holding 

capacity), land cover 

USLE Simulates land use 

impacts, erosion, 

sedimentation 

applicable to 

single rainfall 

events 

Yes Yes Yes Yes (King et 

al., 2005b) 

14 AGNPS-

UM 

Agricultural 

Non-Point Source 

pollution model, 

(Grunwald et 

al., 1997) 

Daily Catchment to  

watershed 

High Climate, topography, 

soil characteristics, 

Land use 

USLE-M Management 

decisions on water 

and  

sediment yields 

Rely on  

single storm 

event; data 

intensive 

Yes No No Yes (Grunwal

d et al., 

1997) 

*additional model capabilities besides soil erosion; G: Generation; T: Transportation; D: Deposition; Developer/year: references for model manuals and first research articles describing respective model 
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3.2.3.  Physically based Models  

In general, physically based soil erosion models are based on the fundamental concepts of physics 

using conservation of momentum, energy, and mass as governing equations (Kandel et al., 2004a; 

Mohamadi and Kavian, 2015) that are solved by various numerical techniques. Thus, these models 

consist of multiple equations and algorithms and a large number of parameters to simulate and 

predict the dynamics of soil erosion and sedimentation rates. They explicitly simulate the water 

fluxes, e.g., overland flow based on the kinematic wave theory (Lighthill and Whitham, 1955), and 

apply the kinematic wave theory based on continuity and momentum equations. The continuity 

equation refers to the balance between inflow into the system and change in system storage and the 

momentum equation represents the pressure gradient between energy gradient and surface slope. 

Other most famous approaches for simulating the water fluxes include the Manning’s and Chézy’s 

equations in large watersheds (Table 2.5).  

In general, the equations of individual model components in physically based models are based on 

a large number of assumptions that may not be relevant in the real world. These governing 

equations were often developed under controlled conditions using continuous data observed at 

single observation points or small spatial scales (Beven and Kirkby, 1979). In practice, these 

equations are applied for grid cells representing much larger areas of water-sheds with varying 

physical conditions. Corresponding assumptions required for up-scaling point-based observations 

may compromise the physical significance of models (Seyfried and Wilcox, 1995). (Merritt et al., 

2003) pointed out that there is not enough evidence on the suitability of these equations for 

modeling water erosion beyond a small field scale. (Pechlivanidis et al., 2011), therefore, suggested 

applying simplified computation techniques to represent individual processes which avoid 

unwanted deflection from real field scenarios and additional uncertainties. In practice, parameters 

used in physically based models should be calibrated with observed data that, on the other hand, 

creates a lack of identifiability analysis of optimum parameters and distinctiveness of best fit to the 

veracity of modeling outputs (Blöschl and Sivapalan, 1995). Model comparisons illustrate that the 

application of physically based models (e.g., AGNPS or PESERA) does not necessarily result in 

lower uncertainties compared to more simple structured empirical models such as USLE-type 

algorithms. 
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Physically based field-scale models such as EPIC, EGEM, CREAMS, EROSION 2D/3D, GUEST, 

GLEAMS, MEFDIS, MEDALUS, PERFECT, PEPP-HILLFLOW, etc., are more capable of 

responding to event-based or continuous storms to simulate surface run-off, soil detachment, 

transportation, and sediment yield (Table 2.5). The EPIC model con-siders the effect of several 

best management practices (BMPs) related to crop, soil, and nutrient management on soil erosion 

and soil productivity. CREAMS is another model that is used for describing the hydrology, erosion, 

and sediment size distribution as well as changes in soil depth, chemical, nutrient, and sediment 

yield for field-scale croplands. Productivity, Erosion and Runoff, Functions to Evaluate 

Conservation Techniques (PER-FECT) is a dynamic model suitable for event-based analysis of 

soil erosion and surface runoff over a small scale. This model can also be integrated with a GIS 

tool for visualization of results. The main disadvantage of this model is that it overestimates the 

outputs of surface runoff and surface water retention capacity as influenced by complex tillage pat-

terns and tillage directions.   

 



  

26 

 

Table 2. 5. Physically based soil erosion models 

Sr. 

No. 
Model Description 

Developer 

/year* 

Scale Input 
Governing 

Equations 

Model  

Capabilities 

Model 

Limitations 

Overland 

Sedimentation 
Channel 

Sedimentation 

Generation 

Source 

Temporal Spatial Demand Variables G* T* D* 

1 ANSWERS Areal Nonpoint 

Source 

Watershed 

Environment 

Response Simulation 

(Beasley et al., 

1980) 

Event Regional to 

small 

catchment 

High Climate, soil 

characteristics, 

topography, land 

use, drainage 

network, field 

management 

practices 

USLE, steady-state 

sediment 

continuity 

equation, 

Modified Yalin 

equation, Foster 

equation 

Erosion, 

sediment 

yield, runoff, 

peak flow rate, 

nutrients,* 

Relies on single 

storm 

Event, consider 

erodibility as time 

constant  parameter 

 

Yes Yes Yes No (Bouraoui 

and 

Dillaha, 

1996) 

2 EPIC Erosion-Productivity 

Impact Calculator 

(J. R. Williams 

et al., 1989) 

Daily Plots to field-

sized areas 

High Hydrology, 

meteorology, 

erosion, 

nutrients, plant 

growth, soil 

temperature, and 

tillage. 

curve number 

equation, Onstad-

Foster 

equation, USLE, 

MULSE 

Surface runoff, 

sediment yield, 

soil erosion * 

Applicable to only 

field scale, less 

incorporation with 

GIS tools 

Yes Yes Yes Yes (Pumijum

nong and 

Arunrat, 

2012) 

3 ANSWERS-

continuous  

Areal Nonpoint 

Source watershed 

Environment 

Response 

Simulation-

Continuous 

(Bouraoui and 

Dillaha, 1996) 

Event Regional to 

small 

catchment 

High Climate, soil 

characteristics, 

topography, land 

use, drainage 

network, field 

management 

practices 

USLE, Modified 

Yalin equation, 

Foster equation, 

Manning's 

equation 

Erosion, 

sediment yield, * 

No simulation of 

channel  

sediment 

Yes Yes Yes No (Bouraoui 

and 

Dillaha, 

1996) 

4 EGEM (Ephemeral Gully 

Erosion Model 

(Watson et al., 

1986) 

Event Field to small 

catchment 

Medium Rainfall, soil 

characteristics, 

Topography 

 

Physical-process 

equations  

CREAMS 

empirical 

relationship 

 

Annual 

estimation of 

Transient gully 

erosion  

Requires intensive 

watershed 

information  

Yes No No Yes (Woodwar

d, 1999) 

5 DWSM Dynamic Watershed 

Simulation Model 

(D. K. Borah, 

1989) 

Event  

Catchment 

High Stream network, 

watershed 

hydrology, water 

quality, land use 

continuity 

equation 

Simulation of 

erosion,  runoff,  

erosion, 

sediment yield * 

Slow computing 

speed, uncertainties 

in input parameter 

data  

Yes Yes Yes Yes (D. K. 

Borah, 

1989)  

6 CREAMS Chemicals, Runoff 

and Erosion from 

Agricultural 

Management 

Systems 

(Knisel, 1982) Monthly Plot to Field High Climate, 

vegetation, 

cultural practices 

Foster equation, 

MUSLE, SCS 

Curve Number, 

Yalin's equation 

Erosion, 

sedimentation, 

runoff, from 

agricultural 

area  

suitable only 

for field scale, 

low potential for 

GIS integration 

Yes Yes Yes No (Williams 

et al., 1985) 

7 EROSION-

2D/3D 

EROSION (Schmidt, 

1991) 

Event Field / small 

catchment 

High Climate, soil 

characteristics, 

topography 

Mass balance 

equation 

Simulation of 

erosion  

Requires extensive 

computational 

efforts 

Yes Yes Yes Yes ((Schmidt 

et al., 1999) 

8 EUROSEM European Soil 

Erosion Model 

(R P C 

Morgan et al., 

1998) 

Event Catchment High Climate, soil 

characteristics, 

land 

use, topography 

Dynamic mass 

balance equation  

Simulation of 

erosion, 

sediment 

yield, deposition 

and runoff 

Lower accuracy for 

large catchments 

Yes Yes Yes No (Khaleghp

anah et al., 

2016) 

9 GUEST Griffith University 

Erosion System 

Template  

(Hairsine and 

Rose, 1991) 

Steady State Plot High Climate, 

watershed soil 

characteristics, 

runoff, 

topography 

Mass balance 

equation, 

Deposition 

Equation, Rose 

equation  

Simulation of 

runoff, 

sedimentation  

Low potential for 

GIS integration, high 

data requirement  

Yes Yes Yes No (R.K. 

Misra and 

Rose, 

1996) 
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10 IDEAL Integrated Design 

and Evaluation of 

loading Models 

(Singh and 

Frevert, 2006) 

Event Catchment High Climate, soil 

characteristics, 

land 

Use and land 

cover 

MUSLE Sedimentation 

yield, erosion, *  

Rely on single storm 

events 

Yes Yes Yes Yes (Singh and 

Frevert, 

2006) 

11 GLEAMS Groundwater 

Loading Effects of 

Agricultural 

Management 

Systems 

modelling system 

(Leonard et 

al., 1987) 

Daily Field scale 

and small 

catchment 

High Climate, land use, 

field 

management and 

cultural practices 

MUSLE,  

Foster equation 

Simulation of 

erosion, 

sediment yield, * 

Uncertainties in 

parameter 

estimations and 

model validation  

Yes Yes Yes No (Garnier et 

al., 1998) 

12 KINEROS KINematic runoff 

and 

EROSion model 

(Woolhiser et 

al., 1990) 

Event Small 

Catchment, 

hillslope areas 

High Rainfall, soil, 

topography, land 

cover, 

drainage network 

and channel 

geometry 

Bennett Mass 

balance equation, 

sediment 

transport 

approach, 

Kinematic wave 

equations 

 

Erosion, 

sediment yield, 

peak 

runoff rate, 

runoff 

Runoff estimations 

are based on single 

storm events without 

considering sub-

surface flows 

 

Yes Yes Yes No (Tajbakhsh 

et al., 2018) 

13 LASCAM Large Scale 

Catchment Model 

(Viney and 

Sivapalan, 

1999) 

Daily Catchment High Climate, 

Surface 

topography, 

DEM, streamflow 

and 

sediment data 

 

 

USLE 

 

Erosion, 

sediment yield, 

nutrients  

Uncertainties in the 

model outputs  

Yes Yes Yes Yes (Sivapalan 

et al., 2002) 

14 MEFIDIS Modelo de 

ErosaoFIsico e 

DIStribuido 

(Seixas et al., 

2005) 

Event Field scale 

and small 

catchment 

High Climate, 

topography, 

Surface 

topography, 

DEM, catchment 

characteristics, 

streamflow and 

sediment data 

Diffusive wave 

equation, Foster 

equation 

Kinetic rainfall 

energy equation, 

sediment 

transport 

capacity approach 

Erosion, runoff Soil erosion based on 

extreme rainfall 

events, low potential 

for GIS integration  

Yes Yes Yes Yes (Seixas et 

al., 2005) 

15 MEDALUS Mediterranean 

Desertification and 

Land Use research 

programme Model 

 

(Kirkby, 1998; 

Kirkby et al., 

1998b) 

Event Field scale 

and small 

catchment 

High Climate, soil, 

Land cover/ land 

use, 

Topography 

Mass momentum 

approach 

Erosion,  

impact of land 

use changes 

Rely only on recent 

data for inputs  

Yes Yes Yes Yes (Lamqade

m et al., 

2018) 

16 PERFECT Productivity, 

Erosion and Runoff, 

Functions to 

Evaluate 

Conservation 

Techniques 

(Littleboy et 

al., 1989) 

Daily Field High Climate, soil, 

crop, 

tillage 

MUSLE Erosion, runoff, 

crop 

yield 

Detailed information 

on crop management 

and tillage practices 

No No No No (Littleboy 

et al., 

1992b) 

 

17 PEPP-

HILLFLOW 

Process orientated 

Erosion 

Prediction Program 

(Schramm, 

1994) 

Event Field scale 

and small 

catchment 

High Climate, soil 

characteristics, 

Land cover/ land 

use, 

Topography, 

nutrients  

Sediment 

continuity 

equation, Foster 

equation, Yang’s 
unit stream power 

method 

Runoff, 

Erosion 

Rely on single storm 

Event, intensive data 

requirement  

Yes Yes Yes Yes (Schramm, 

1994) 

18 RUNOFF RUNOFF (D. K. Borah, 

1989) 

Event Small 

Catchment 

Low Rainfall, soil 

characteristics, 

topography, land 

cover, 

Splash erosion, 

flow rate 

equations  

Erosion, runoff, 

sediment yield 

Uncertainties in 

input parameter 

estimations and 

model validation 

Yes Yes Yes No (D. K. 

Borah, 

1989)  
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drainage network 

and channel 

geometry 

19 PESERA Pan-European Soil 

Erosion Risk 

Assessment 

(Kirkby et al., 

2004) 

Annual Regional Medium Climate, soil 

characteristics, 

land 

cover, 

topography 

Mass and 

momentum 

balance equations, 

Runoff, erosion, 

sediment yield, 

crop yield 

Flow routing is not 

well developed  

Yes Yes Yes No (Alewell et 

al., 2019) 

20 SHE/ 

SHESED 

Systeme 

Hydrologique 

Europian/- 

Systeme 

Hydrologique 

Europian Sediment 

(Abbott et al., 

1986) 

Event Hillslope to 

Catchment 

High Rainfall, soil 

characteristics, 

topography, land 

cover 

Mass and 

momentum 

balance equations, 

Yalin’s equation 

Erosion, 

sediment 

transport, 

sediment yield 

No simulation of 

gully erosion 

Yes Yes Yes No (Abbott et 

al., 1986) 

21 WEPP Water Erosion 

Prediction Project 

(Laflen et al., 

1991) 

Daily Hillslope to 

Catchment 

High Climate, soil, 

topography, land 

use, field 

management and 

cultural practices, 

channel network 

Steady-state 

sediment 

continuity 

equation, Foster 

equation 

Runoff, erosion, 

sediment yield 

Large number of 

input parameters, 

neglect the 

simulation in 

permanent channels 

Yes Yes Yes Yes (Brooks et 

al., 2016) 

22 WESP Watershed erosion 

simulation 

program 

(Lopes, 1987) Event Small 

Catchment 

Medium Climate, soil, 

topography, 

channel network 

 

Kinematic wave 

equations,  

Simulation of 

runoff and 

erosion * 

Intensive 

computation  of 

input parameters 

Yes Yes Yes Yes (Lopes, 

1987) 

23 WATEM/ 

SEDEM 

Water and Tillage 

Erosion 

Model/Sediment 

Delivery Model 

(Oost et al., 

2000) 

Annual Field Low Climate, soil 

characteristics, 

land 

cover, flow 

network  

RUSLE Erosion, 

tillage erosion, 

sedimentation 

Require high quality 

detailed watershed 

information 

Yes Yes Yes Yes (Panagos 

and 

Katsoyian

nis, 2019) 

24 SEMMED Soil Erosion Model 

for 

Mediterranean Areas 

(Panagos and 

Katsoyiannis, 

2019)  

Annual Regional scale Medium DEM, climate, 

soil 

characteristics, 

channel network 

and geometry  

Distributed 

transport capacity 

Simulate the 

distributed 

character of the 

erosion process, 

predicts soil loss 

Sensitive to storage 

capacity, soil 

moisture, soil 

detachability index 

Yes Yes Yes No (De Jong et 

al., 1999) 

25 SIMWE Simulation of Water 

Erosion 

(Thaxton et 

al., 2004) 

Event Catchment High Rainfalls, surface 

roughness, DEM 

Saint Venant 

equation for 

continuity of flow, 

Manning’s n 
value.  

 

Erosion, gully 

Formation, 

sediment 

transport and 

deposition * 

Require high quality 

detailed watershed 

information 

Yes Yes Yes No (Fernande

s et al., 

2017) 

26 RHEM Rangeland 

Hydrology and 

Erosion Model 

(M. A. 

Nearing et al., 

2011) 

Event Field scale 

and small 

catchment 

High Climate, soil 

characteristics, 

watershed 

characteristics  

Sediment 

transport 

equation 

uRnoff, erosion, 

sediment yield 

less suitable for 

simulation of 

rangeland surfaces 

 

Yes Yes Yes No (Hernande

z et al., 

2017) 

27 TOPOG TOPOG (Vertessy and 

Wilson, 1990) 

Daily Hillslope to  

Catchment 

High Climate, soil, 

topography, 

Land cover 

Equations for 

sediment 

transport in 

channels 

Erosion  Extensive input data 

requirements and a 

high number of 

physical parameters 

(complex) 

Yes Yes Yes No (Maftei et 

al., 2019) 

*additional model capabilities besides soil erosion; G: Generation; T: Transportation; D: Deposition; Developer/year: references for model manuals and first research articles describing respective model  
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3.2.4.  Remote Sensing (RS) and GIS-based soil erosion modeling 

Remote Sensing data combined with GIS tools provide the powerful capabilities for mapping soil 

characteristics and soil resources over high spatial and temporal resolution in a timely and cost-

effective way (Lu et al., 2004). Soil erosion models can be incorporated into GIS tools and 

combined with RS data. RS derived climate data, land use/land cover information, and their 

integration with GIS can be used for soil erosion modeling (A. Pandey et al., 2007). Remote sensing 

based digital elevation/terrain model (DEM/DTM) is an important tool to provide inputs to the soil 

erosion models, catchment rainfall/runoff relationship development, and sedimentation processes 

(DeVantier and Feldman, 1993; Jenson and Domingue, 1998; Walker and Willgoose, 1999). 

Various GIS techniques (QGIS, ArcGIS) use Digital Elevation Models (DEM) and can derive 

multiple variables for topographical parameterization such as slope, aspect ratio, drainage, stream 

and catchment delineation, surface flow, and soil erodibility factor (Coveney and Fotheringham, 

2011).  

Many well-known soil erosion models i.e., USLE (Universal Soil Loss Equation, 1965) (Liu et al., 

2018), RUSLE (Revised Universal Soil Loss Equation, 1997) (Karamage et al., 2017), SEMMED 

(Soil Erosion Model for Mediterranean Regions, 1999) (De Jong et al., 1999), PESERA (Pan-

European Soil Erosion Risk Assessment, 2003) (De Vente et al., 2013), EUROSEM (European 

Soil Erosion Model, 1993) (R. P.C. Morgan et al., 1998), and EGEM (Ephemeral Gully Erosion 

Model, 1999) (Woodward, 1999), integrated with RS and GIS techniques, have been widely used.  

The use of GIS and RS for soil erosion and sedimentation modeling may involve certain 

consequences including multiple data sources based on vast data requirements, computing 

expertise for model re-scaling and data reliability issues, and complex verification algorithms of 

model outputs (Karydas and Panagos, 2016).  

3.3.  Description of Selected Models with respect to Plot Scale Simulations  

A list of different soil erosion models is presented in section 3.3. These models vary in their range 

of complexity, data requirements, the scale of application, and key limitations. This section aims 

to provide a brief introduction to models selected on their applicability to a plot/field scale. The 

shortlisted models are reviewed in terms of their objective, model structure, components, and their 

assimilation, and model calibration ease and parameter requirements are presented in this section. 
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The review of models is limited to those models with strict consideration of soil erosion generation 

at a plot or field scale. Therefore, many other commonly applied models, for example SWAT, 

EUROSEM, etc., are not discussed in this section (Table 2.6). In order to assess the model 

capabilities to simulate soil erosion, application examples of selected models in different climatic 

zones were reviewed and summarized in Table 2.6. The Nash–Sutcliffe efficiency method was the 

most commonly used method for evaluation of model performance. Further, Root mean square 

error, coefficient correlation, average absolute error, and coefficient of determination were 

commonly applied measures. 

Most studies report a sensitivity of simulated sediment deposition to different environmental and 

management factors, such as rainfall, crop management factors, soil physical properties, and 

vegetation cover. Selected models were tested at field or plot scales under different cropping 

systems and field conditions. Calibration of field scale models based on data from fields that are 

characterized by a high spatial heterogeneity of topography and soil types is more accurate than 

using spatial averaged data from larger catchment areas. Most of the field scale models are based 

on one-dimensional equations (Saint Venant equation or Kinematic wave theory) for estimation of 

overland flows, there-by limiting their capabilities for spatially distributed modeling. Only a few 

models, such as WEPP, TCRP, and CREAMS, also represent the water movement through the 

unsaturated part of the soil profile which influences the runoff on hillslopes (Table 2.6). 
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                Table 2. 6. Examples of applications of some selected field scale soil erosion models 

Sr. No. 
Model Description 

Spatial  
dimensi
on  

Model type Study area Objective Input data used 
Method used 
for evaluation 

Conclusion Remarks Reference 

EPM 
 

Erosion Potential 
Method 

1D Dynamic Alfenas 
Municipality,  
(437ha) 

Simulation of 
surface runoff, soil 
erosion, comparing 
results with RUSLE 
of SLT 

DEM, climate 
data, soil 
characteristics  

Sediment 
retention 
coefficient, 
RMSE, 
correlation- 
coefficient  

Correlations of the 
potential values of 
soil 
erosion between 
EPM and RUSLE 
showed a similar 
pattern for the 
different land 
management types 
and land uses 
despite the different 
orders of magnitude 

For calibration, 
EPM requires 
experimental 
validation, 
which would 
be subjected to 
heterogeneity 
of crop and 
soil in the field   

(Tavares et 
al., 2019) 

2 TCRP 
 

Tillage-Controlled 
Runoff Pattern 
model 

2D Dynamic Multiple sites  Sediment fluxes, 
deposition 
processes in a 2-D 
spatial context 

sediment 
deposition 
equations 

Correlation 
coefficient 

Model is capable of 
simulating both 
spatial pattern and 
size selectivity of 
deposition pattern 
in  tilled  fields      

Understanding 
and 
representation 
of sediment 
delivery and 
deposition 
need to be 
improved  

(Van Oost 
et al., 2004) 

3 WEPP 
 

Watershed Erosion 
Prediction 
Project 

2D Dynamic Demonstration 
farm, 
Ratchaburi 
province, 
Thailand 

Performances of the 
WEPP under 
conservation 
cropping system 

Monthly 
rainfall,  Land 
use map,  Soil 
map,  DEM,   
Daily Sediment 

NSE WEPP model 
predicted lower 
values of runoff and 
sediment yield. 
WEPP coupled 
with MIKE 
SHE/MIKE 11 
capable to simulate 
soil losses in 
different 
conservation 
practices 

Satisfactory 
Performance 
for sediment 
yield 
estimation at 
small scale 

(Heydarnej
ad et al., 

2020) 

4 APSIM 
 

Agricultural 
Production 
Simulation 

1D Dynamic 16 plots, 52 m2 
(4 m × 13 m) in 
area each plot 

Modeling effects of 
tillage on soil water 
dynamics  

Daily 
temperature, 
daily rainfall, 
Tree zoning  

R2, NSE, RSR APSIM is adequate 
for agroforestry 
system 

APSIM 
requires 
modification in 
soil erosion 
component  

(Dilla et al., 
2020) 

5 EPIC 
 

Erosion-
Productivity Impact 
Calculator 

1D Dynamic South-central 
Chile  

Simulation of soil 
erosion  

DEM, climate 
data, soil 
characteristics 

correlation 
coefficient, 
RMSE 

Calculated rates of 
soil 
erosion was 
overestimated as 
slope segment is 
relatively difficult 
to decide  

EPIC predicts 
two times 
more soil 
erosion under 
wheat and 
conventional 
tillage 
comparing to 
WEPP and 
USLE 

(Stolpe, 
2005) 

6 CREAMS 
 

Chemicals, Runoff 
and Erosion from 
Agricultural 

2D Dynamic Finland  Predicting field-
scale runoff 

Mean daily 
temperatures 
and rainfall,  
Evapotranspirati

AERR,  
RMSE, NSE 

Snow accumulation 
and snowmelt 
description, 
adjustable albedo 

SCS curve 
number can be 
introduced for 
more 

(Rekolaine
n and 
Posch, 
1993) 
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Management 
Systems 

and erosion, modify 
the model for 
Finnish conditions  

on,  surface 
albedo,  leaf 
area index,  

introduction into 
CREAMS 
improved 
simulations of 
runoff volumes  

physically 
based 
representation 
of runoff in 
alley cropping 
system 

7 GUEST 
 

The Griffith 
University Erosion 
System Template 

1D Dynamic Tilting flume 
(6 x 1) m.   

Evaluation of 
GUEST and WEPP 
for determining 
sediment transport 
capacity  

Soil samples, 
tilting flume  

ME,  R2,  
RMSE 

GUEST model 
predicted higher 
values of erosion 
than WEPP, this 
difference can be 
due to the particle 
size distribution 
and rill morphology  

GUEST tends 
to overestimate 
sediment yield 
in 
heterogeneous 
soil condition  

(Mahmood
abadi et al., 

2014) 

8 PERFECT 
 

The Productivity, 
Erosion and 
Runoff, Functions 
to Evaluate 
Conservation   
Techniques 

1D Dynamic Plot scale,  
Queensland 

Simulates 
interactions 
between soil type, 
climate, and fallow 
management 
strategy and crop 
sequence. 

Initial soil 
moisture, soil 
characteristics, 
topography, 
Landuse  

R2 PERFECT does not 
consider rainfall 
intensity and 
represents less 
accurate soil 
erosion on daily 
time steps.  

The validated 
model can be 
coupled with 
soil and long-
term climate 
databases to 
simulate 
probabilities of 
production and 
erosion risks 
due to climatic 
variability. 

(Palosuo et 
al., 2011) 

                           R2: Coefficient of determination, NSE: Nash-Sutcliffe efficiency, RSR: RMSE-observations standard deviation ratio, RMSE: Root Mean Square Error, ME: Model efficiency, AERR: average absolute error
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3.3.1.  Erosion Potential Method, EPM 

Erosion Potential Method (EPM) is an empirical model to simulate water erosion from fields to 

small catchments, using input data related to meteorology and the matrix of the catchment physical 

characteristics. The model has been widely applied worldwide. It contains an advanced 

classification procedure using four characteristics including erosion coefficient, land use 

coefficient, soil erodibility, and mean slope in different land units (Ahmadi et al., 2020). 

(Kouhpeima et al., 2011) state that EPM is a method for easy and rapid analysis of erosion risk and 

sedimentation. The accuracy of results depends on the values of erosion coefficients. Moreover, 

EPM considers only four factors for erosion assessment and can be applied to small areas where 

database layers are limited. EPM integration with GIS and remote sensing could be a useful 

technique in the identification of soil loss and sedimentation in areas with insufficient sediment 

gauging stations (Ali et al., 2016). The over-/under-prediction limits of EPM simulations are within 

13 percent from the measured values and are considered to have acceptable accuracy for soil loss 

simulations at the catchment scale (da Silva et al., 2007; S. Pandey et al., 2007). 

3.3.2.  Tillage-Controlled Runoff Pattern model, TCRP 

The TCRP model has been evaluated in different environments globally, mainly for the prediction 

of runoff patterns with the flow along the direction of plow lines in tilled fields within a catchment. 

This model requires a digital elevation model, land use maps, and tillage orientation as inputs. The 

model creates a tillage-controlled runoff pattern along with a topographic controlled runoff pattern. 

The use of the first one in event-based deterministic models results in a much better level of 

accuracy for runoff and erosion pat-terns with field observations. Model simulations show that 

tillage information should be included when estimating runoff directions if erosion pattern accuracy 

is under question. (Souchere et al., 1998) proposed that to analyze the tillage impact on runoff in a 

spatially distributed water model, each cell must be assigned to a tillage direction. This results in 

complexities as flow lines may cross each other and ditches may exist on the field. (Souchere, 

1995) solved these problems by changing the runoff direction manually and assuming the runoff is 

always in the direction of tillage. However, it would be laborious for large catchments to be 

modeled.  

The TCRP model was developed using raster language to specifically integrate with the GIS tool 

(Wesseling et al., 1996). The model requires surface physical characteristics, DEM, land use maps, 



  

34 

 

and tillage direction information as inputs. The maps should have an area larger than that of the 

catchment to be modeled because catchment boundaries can be defined after only the assessment 

of runoff patterns. 

3.3.3.  Soil Loss Estimation Model for Southern Africa, SLEMSA 

SLEMSA was developed by (Elwell, 1978) in Zimbabwe as a framework for estimating local soil 

losses by using details of local environmental conditions driving soil erosion process i.e., climate, 

soil types, topography, soil cover, and field management practices (Elwell and Stocking, 1982; 

Kinama et al., 2008). The SLEMSA modeling approach consists of four major steps: (1) identify 

major control variables (rainfall energy, interception, etc.), for which the values are easily 

measured and have a rational physical explanation, (2) develop a relationship, called submodels, 

be-tween selected variables and soil losses, (3) formulate the model to relate these submodels, (4) 

test the model (Elwell and Stocking, 1982). (Heydarnejad et al., 2020) examined SLEMSA in series 

of tests, with careful monitoring of controlled variables on selected plots; errors of 9 to 18 percent 

were noted. SLEMSA claims to be simpler relatively to the USLE as it is less data demanding with 

high extrapolation capabilities (Albaladejo Montoro and Stocking, 1989). GIS can be used to 

calculate SLEMSA control variables that upon formulation provide potential soil losses within the 

catchment (Breetzke et al., 2013). A study of SLEMSA in mountainous terrain by (Hudson, 1987) 

indicates the sensitivity of potential soil loss to both slope steepness and rainfall erosivity resulting 

in an overestimation of soil loss with steep slopes and high rainfall intensities (Le Roux et al., 

2008). 

3.3.4.  Agricultural Production Simulation, APSIM 

APSIM, a dynamic conceptual modeling platform, was developed by the Agricultural Production 

Systems Research System Unit (APSRU) in Queensland. APSIM modeling platform has been 

evaluated worldwide in different environmental conditions ranging from interpretation of on-farm 

experiments to risk assessment of a range of alternative management options (Masere and Worth, 

2015) mainly to simulate the crop production in relation to climate, soil erosion, and field 

management practices while identifying long-term solutions for natural resource management 

issues at field scale using input data provided at daily time steps (McCown et al., 1996; Teixeira et 

al., 2018). Since APSIM offers many modules (generally categorized as biological and 

environmental modules), the erosion model is capable to simulate the impact of erosion on the soil 
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profile as soil loss occurs. The erosion module remains unaware of the impact of other modules on 

the profile. The estimation of daily soil loss is performed by either of two submodels (1) Freebairn 

and (2) Rose (McCown et al., 1996). The lateral one uses the USLE equation (Freebairn and 

Wockner, 1986; Littleboy et al., 1989). The module was revised to consider runoff and land cover, 

which can be affected by management within the APSIM model. The soil erosion measurements 

required for calibration are based on the runoff volume, soil cover, soil erodibility, and slope-length 

factor along with management practices. A different module within APSIM provides the values of 

these factors i.e., the surface cover is provided by the soil organic matter module, and the SWIM 

module provides surface runoff. (Basche et al., 2016) have successfully calibrated and validated 

the APSIM model to predict runoff and sediment yield. Further, the tested APSIM model was 

implemented for soil loss based risk management and supporting practices. However, the use of 

this model is only recommended when sufficient data is available. Notably, APSIM has high input 

demand; most uses require extensive field investigations.  

3.3.5.  RillGrow 

The RillGrow model is capable to predict a realistic spatial pattern of the rill network in response 

to a given rainfall event (Favis-Mortlock, 1996). The erosion model series of RillGrow mainly ex-

presses the eroding hillslopes on a small scale as a self-organized dynamical system producing a 

rill network (Horton, 1945). Digital elevation models of the hillslopes used as an input to the 

RillGrow simulates the rill network as a whole system which later on is compared with the field 

and laboratory experiments for validation (Favis-Mortlock et al., 1998). A logistic S-Curve, the 

relationship between flow energy and sediment load, is considered to estimate erosion resulting 

from the surface flow. Hillslope micro-topography could be responsible for the observed vitality 

of rill competition and spatial pattern of overland flow initiating lowering of the surface. Such 

modifications change the path of the soil erosion process as it creates its own surface (Zobeck and 

Onstad, 1987). This simple relationship develops a complex rill network. However, this simplicity 

results in limited model computational abilities as the flow process and erosion have to be predicted 

on a microscale. Also, model data requirement creates issues. These limitations make this model 

impractical for real-world erosion simulations. Simulations have an immense demand of 

computation time if the area is larger than the hillslope plot or laboratory experiment (Meyer and 

Wischmeier, 1969). There are a few articles on GIS integration with the RillGrow model in the 
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latest versions. That needs to be worked out to improve the workability of the RillGrow model in 

the future. 

3.3.6.  Erosion-Productivity Impact Calculator, EPIC 

EPIC is a detailed model developed to simulate, simultaneously and realistically, the physical 

processes involved by developing the relationship between soil losses and soil productivity. EPIC 

mainly uses climate, land cover, tillage, and soil characteristics as in-put variables. Many 

applications of EPIC have been studied in the United States and worldwide under varying 

environmental conditions, for example, climate change effects on crop yield and soil erosion 

(Parsons et al., 1995; Parton et al., 2015), wind erosion (Potter and Williams, 1994), irrigation 

impacts on crop yields (Cabelguenne et al., 1997, 1995), assessment of soil temperature (Roloff et 

al., 1998), and soil carbon sequestration as a function of management and cropping systems 

(Apezteguía et al., 2009; Lee et al., 1993). The model has been extensively tested in many ways. 

The EPIC model has nine major components, namely, weather, nutrients, plant growth, soil 

temperature, hydrology, environment, and economics. Each component was tested (J. R. Williams 

et al., 1984; Knisel, 1982; Nicks and Harp, 1980; Smith et al., 1985; Williams et al., 1985, 1983) 

and the results were found to be acceptable and reliable. (Williams, 1990) proposes that the EPIC 

model works more efficiently over small areal extent (generally ~ 1 ha) because management 

practices and soils are considered homogenous. However, the model can consider all kinds of soil 

properties. Traditionally, EPIC is site-specific, but when integrated with GIS tools, regional crop 

growth and yield can be simulated (e.g. the G-EPIC version (Williams, 1990). GIS is used to 

produce model inputs for DEM, land use/land cover, and soil maps. Due to EPIC's extensive testing 

and high integration with GIS, its application has been increased and has become famous among 

scientists. 

3.3.7.  Chemicals, Runoff, and Erosion from Agricultural Management System, CREAMS 

The Chemicals, Runoff, and Erosion from Agricultural Management System model was developed 

in the United States (Knisel and Nicks, 1981). CREAMS is a physical, daily-based dynamic model 

that simulates runoff, erosion, and sediment yield, having a capacity for assessment of nutrient loss 

and chemicals from agricultural lands suitable at field scale (Williams et al., 1985). Hydrology is 

one of the components of CREAMS that is the principal element to simulate soil erosion neglecting 

the deep percolation. With the daily rainfall data, the SCS curve number is used to estimate surface 
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runoff (Mockus, 1972). These component results provide the in-put to other components of 

CREAMS to estimate nutrient and chemical losses. The erosion component in CREAMS uses 

USLE along with sediment transport for overland flows. Studies show that the CREAMS model 

performs better for field-scale but it can be applied to larger-scales (~400ha) (Merritt et al., 2003). 

This may be due to the fact that the model assumes uniform topography and land use and it does 

not consider temporal variations in soil erodibility which is highly unrealistic in the real world. 

Moreover, (Govers and Loch, 1993) observed that dynamic simulation of water erosion may limit 

the accuracy of estimations because of their extensive dependents on the validated input data. 

However, such limits can be reduced using physically based models rather than empirical models 

such as CREAMS. 

3.3.8.  The Griffith University Erosion System Template, GUEST 

The Griffith University Erosion System Template (Hairsine and Rose, 1991) is a physically based 

steady-state sediment flux model developed to simulate single events of erosion resulting in 

temporal variations in sediment yields at a plot scale. The model uses hydrological and surface 

characteristics of uniform slope and relates rainfall-runoff rates to predict the yield of eroded 

sediments (R. K. Misra and Rose, 1996). The model algorithms explaining erosion, transport, and 

sediment yield are based on single rainfall events at the plot scale. GUEST considers the erosion 

process to mainly be due to rainfall impact and the effect of overland flow generated shear stresses 

exerted on soil, making GUEST a comparatively complex process-based model which requires a 

large number of input data. (Huang et al., 2007) noted the low ac-curacy in predicted soil erosion 

by surface runoff when applied to the catchment scale and that it was limited by the extent of data 

required at the plot scale. 

3.3.9.  The Productivity, Erosion and Runoff, Functions to Evaluate Conservation 
Techniques, PERFECT 

The PERFECT model (Littleboy et al., 1992c) was developed by the Queensland Department of 

Primary Industries and the QDPI/CSIRO Agricultural Production System Research Unit in 

Australia. This model was developed to integrate with other physically based models such as 

CREAMS for studying the impact of soil management factors i.e., field preparation practices and 

soil conservation techniques. CREAMS excludes the land cover variations caused by tillage 

practices to estimate surface runoff. PERFECT model considers management strategies to predict 

surface runoff, erosion (MUSLE), and crop production on daily time steps at the field scale. As 
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other models can be incorporated into the PERFECT model, it is a mix of conceptual, empirical, 

and physically based models. 

(Littleboy et al., 1992a) suggested that the PERFECT model is more accurate than CREAMS for 

estimating runoff, accounting for 77-89 % of the variation in measured (Gaiser et al., 2013a) daily 

runoff volume. However, this model does not consider the impact of rainfall intensity thus resulting 

into over/underestimation of soil erosion based on a single rainfall event. Sediment and nutrient 

components may be added for water quality modeling that may provide an advantage with crop 

cover data and management components where it is needed. 

4. Discussion 

4.1.  Selection criteria for soil erosion models  

Each soil erosion model has its predictive capabilities and modeling processes and its applicability 

depends on its intended use, available input and calibration data, temporal and spatial scale, and 

required accuracies. Based on the review work, the selection of a suitable model for a distinct 

purpose at the field-scale should be guided by the following criteria. 1) Problem recognition: 

Define the problem statement in a clear way to achieve a maximum match between the problem to 

be solved and the model objectives. 2) Spatial scale: the next criteria is to decide whether the model 

is compatible with the plot or field scale. 3) Data availability: make a list of required input data 

(topography, climate, field investigations) and their availability. 4) Temporal scales to be 

considered (event-based or continuous) 5) Elements to be assessed; decide which elements of the 

catchment are to be modeled i.e., overland erosion and sedimentation, hillslope erosion, or 

channel/stream erosion and sedimentation. 6) Model sensitivity; the uncertainties within input data 

should be identified that may impact the reliability of the simulated results before the model 

evaluation. 7) Model validation; simulation results must be compared with field observations that 

may also use for model calibration before the simulation process.    

4.2.  Capabilities and limitations of field scale models  

Soil erosion models are bound to have certain strengths and limitations depending on their different 

development objectives and often specific environmental processes and conditions. Most of the 

available soil erosion models have been developed mainly for larger scales (basin or watershed) 

where spatial variations in soil conditions (soil erodibility, soil cover, slope, and tillage practices) 
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and hydrological conditions (surface runoff, in-filtration rate, and rainfall intensity) are significant 

compared to those at small scales (field or plot). Individual hydro-geomorphological processes and 

vegetation impact differently on soil erosion process across various scales. Slope arguably is one 

of the major factors in the erosion process. For models such as EPIC, WEPP, CREAMS, and 

GLEAMS that use USLE to reflect the effect of slope length on soil erosion, the major problem 

(Table 2.6) is the suitable selection of slope segments in fields with complex topography where 

slope characteristics may vary drastically. EUROSEM is a model that uses a dynamic mass balance 

equation to simulate the erosion process at a field scale for agricultural lands. EPIC predicts soil 

losses from rill and inter-rill areas all together whereas EU-ROSEM, WEPP, and GLEAMS 

estimate each separately.  

The assumptions regarding the soil erodibility and tillage formation have a great influence on 

predicting the volume and direction of surface runoff and subsequently soil losses. TCRP is a 2-D 

empirical model, which simulates runoff patterns with the flow along the direction of plow lines in 

tilled fields assuming runoff direction always in direction of tillage (Table 2.6). TCRP can consider 

both tillage-controlled runoff patterns and topography-controlled runoff patterns. EPIC runoff 

factor considers ridge heights between furrows to estimate total runoff. EUROSEM and WEPP 

coupled with MIKE SHE/MIKE 11 can simulate daily soil losses considering different 

conservation practices at the field scale. 

Although the above mentioned problems are significant, calibration of field scale models in fields 

characterized by spatial heterogeneity of topography and soil is more ac-curate than for larger 

catchment areas. Furthermore, the accuracy of the simulation of erosion rates depends on the spatial 

dimension taken into account, i.e. whether processes are simulated at the soil profile scale (1D, 

point based assuming a field with homogeneous soil and terrain conditions) and/or spatially 

distributed method (2D/3D) (Table 2.6). The quality and accuracy of the calibration of the erosion 

processes in heterogeneous fields should increase with the dimension that is considered. However, 

a major bottleneck for the multi-dimensional models is the availability and accuracy of soil 

information. On the other hand, the accuracy and availability of topographic information has 

considerably improved in the last decade (e.g. radar and laser based sensors carried by UAV or air-

planes).  
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4.3.  Model comparison with respect to simulating soil erosion in complex cropping systems  

Conservation practices like strip and patch cropping or agroforestry systems are important 

management options to improve floristic and faunistic diversity in intensively used agricultural 

landscapes. Tools are required to predict the impacts of such diverse cropping systems on soil 

erosion processes. The Water Erosion Prediction Project (WEPP) for the intercropping system, 

Water Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS), and Agricultural 

Production Simulation (APSIM) models are capable of simulating soil erosion in conventional and 

complex cropping systems at the field scale. WaNuLCAS represents dynamic processes in the 

spatial domain. It was designed to simulate Tree-Soil-Crop interactions under a wide range of 

agroforestry systems. It uses the Rose equation to simulate the erosion process in a simplified 2D 

approach. However, this component of WaNuLCAS has not been tested extensively and requires 

further investigation. APSIM offers many modules (generally categorized as biological and 

environ-mental modules). The erosion model is capable of simulating the impact of erosion on the 

soil profile as soil loss occurs under different management practice options such as strip cropping 

and alley cropping systems, but it considers only one dimension in the field. Notably, APSIM has 

high input demand, most of which requires extensive field investigations. 

Another important aspect is the translation of rainfall to runoff under varying canopy interception 

in complex cropping systems. A realistic representation of the role of canopy cover in rainfall-

runoff modeling is essential when predicting sediment transport in heterogeneous fields along 

hillslopes. A few models such as EPIC, WEPP, EUROSEM, CREAMS, SCUAF, and WaNuLCAS 

account for the intercepted rainfall to estimate total runoff (Table 2.6). However, to this date, there 

is no cropping model available at the field scale that considers the impact of cropping systems like 

strip cropping and patch crop-ping and their complex canopy arrangements affecting runoff 

induced soil erosion processes. EPIC, WEPP, EUROSEM, and CREAMS models may have the 

capabilities to model complex variations in cropping systems when integrated with GIS (Knisel, 

1982; Pumijumnong and Arunrat, 2012; Renschler and Harbor, 2002).   

The review suggests that further studies have to be conducted to develop tools that facilitate the 

integration of modeling components to lower the complexities of source codes and to further 

improve existing models or develop new models that represent soil erosion processes under 

complex cultivation patterns on the same field. Modeling capabilities should be improved and 
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tested with respect to the soil erosion process in strip and patch cropping systems as well as 

agroforestry systems. Existing agroforestry models must be improved to incorporate erosion 

processes in fields with high spatial heterogeneity with respect to soil properties, slope inclination, 

and length, preferably considering three dimensions. Such new developments might also support 

upscaling of soil erosion processes to larger spatial scales (watershed to basin scale). 

4.4. Summary and Conclusions 

Soil erosion processes strongly differ with spatial and temporal scales and environ-mental 

conditions. Thus, a large number of models have been developed that differ in terms of the 

processes considered, temporal and spatial application scale, capabilities, and limitations. Based 

on their processing concepts, these models were classified into three categories 1) Empirical 

models, 2) Conceptual models, 3) Physically based models.  

Most of the empirical models use the universal soil loss equation (USLE) and its derivates RUSLE 

and MUSLE. Though these equations have been developed using data obtained in the United 

States, these equations are applied worldwide for soil loss estimations. Under variable conditions 

of spatial soil characteristics and insufficient meteorological networks, empirical models are less 

complex to operate which makes them a potential choice for predicting soil erosion. Hence, the 

empirical models are more likely to be used with limited availability of input data. Contrary to that, 

physically based models provide a physical description of the erosion process. These models are 

comparatively complex and less user-friendly because of their detailed depictions of processes and 

large data requirements. However, physically based models are more capable when performing 

event-based simulations. Conceptual models typically have been developed for catchment and 

larger scales, requiring a general description of the catchment and involved soil erosion processes, 

without describing the details of their interactions that would require big data sets of temporal and 

spatially distributed catchment details. However, there is currently no model available to represent 

soil erosion processes in more complex cropping at the field scale like strip and patch cropping or 

alley cropping systems. There are some crop models available to simulate alley cropping systems 

such as APSIM or WaNuLCAS, with soil erosion components. However, these models have not 

been tested and validated for erosion estimation and its impacts on subsequent crop yield.  

The literature review indicated that most of the models developed for large agriculture catchments 

using equations developed under specific conditions require site-specific calibration before 
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simulation. Models designed for small time steps perform better than continuous scale modeling. 

Similarly, calibration at a field or smaller scale, where spatial topographic and soil variations on 

erosion process greatly affect the simulation, is more accurate than that of larger catchment areas. 

It is worth indicating that some models such as EPIC, PERFECT, GUEST, EPM, TCRP, APSIM, 

and CREAMS were developed for soil erosion assessment at plot/field scale at daily time steps. 

Limited workability of these models was found for sediment transport, sediment deposit, and 

sediment yield. Models such as EPIC, WEPP, EUROSEM, CREAMS, SCUAF, and WaNuLCAS 

have the capability to account for rainfall interception but further improvements are required to 

deal with complex cropping systems.  

5.  A way forward 

Soil erosion modeling at a field scale is now facilitated by very high spatial and temporal resolution 

remote sensing (RS) data, which allow for frequent estimation of characteristics of crop cover and 

topsoil characteristics at the field scale. RS data can be used as both model input (e.g., micro 

topography, within-field variability of oil and plant characteristics) and validation data (e.g. based 

on LiDAR data (Sankey et al., 2021)). In order to benefit from RS data flexible data assimilation 

methods have to be developed for physically based models whereas their integration into empirical 

and conceptual models is relatively straight-forward. At larger scales, EU wide surveys of topsoil 

(LUCAS) and Land Use/Cover Area (CORINE) are carried out every three years. Such harmonized 

open‐access data are currently not fully exploited by soil erosion models and might be used as input 

data for urgently needed model inter comparisons in order to increase our confidence in predicted 

erosion rates. Further, with increased concerns on future soil erosion rates under climate change 

(Eekhout et al., 2021) the systematic evaluation of soil erosion models and ensemble soil erosion 

models (Borrelli et al., 2020) using harmonized data sets might be used to support land use policies. 

Models such as EPIC, WEPP, EUROSEM, and CREAMS may have the capabilities to model 

complex cropping systems such as strip cropping and patch cropping, their spatial arrangements, 

and their impact on soil erosion when integrated with GIS or into flexible modeling frameworks. 

Integration or coupling of soil erosion components in a modeling framework for dynamic 

simulation can provide an alternative to conventional erosion modeling at a field scale and may 

facilitate upscaling to larger scales.  
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In the context of sustainable agriculture, there has been an increasing interest in the application of 

novel crop arrangements within a field (OECD, 2003) in recent years. Since these novel field 

designs, e.g. alley cropping or strip cropping, are assumed to support the delivery of ecosystem 

services, such as a reduction of soil erosion, there is a need to quantify such effects. A larger number 

of case studies, based on the combined use of high-resolution RS data with soil erosion models, 

are required in order to highlight the potential of novel field designs to reduce the risk of soil 

erosion and to support corresponding changes in agricultural policy. An important conclusion of 

this review is, there-fore, the need for future research and development with respect to modeling 

soil erosion under complex spatial cultivation patterns.  

The present study provides a clear description of individual models to sort out which model fits 

which conditions and problems identified and leads to clear guidelines to select the appropriate 

model. Future studies need to integrate modeling working components to enhance the strength of 

models. There should be models developed for soil erosion process in agroforestry systems and 

existing agroforestry models must be improved to incorporate erosion process and yields. This 

review emphasizes enhancing the quality of the modeling output and should have additional 

components to enhance their applicability in most environmental and management conditions. 
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Using the Taguchi experimental design for assessing within-field 

variability of surface run-off and soil erosion risk 
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1. Introduction  

Soil erosion by water has become a great concern all over the world (Keating et al., 2003; 

Krysanova et al., 2007). Soil erosion has significant impacts on environmental sustainability by 

adversely influencing agricultural production, water quality, and natural resources conservation 

(Issaka and Ashraf, 2017). It reduces the fertile soil depth and crop available soil moisture by the 

removal of essential nutrients and soil organic matter (SOM) and hence reducing the productivity 

of the soil (Jahun et al., 2015). Soil erosion by water is a form of land degradation resulting from 

multiple factors with complex interactions. Among others, these factors are rainfall intensity, 

runoff, small-scale soil heterogeneity in the vertical and horizontal direction, topography, and 

temporal variability of crop conditions (Václavík et al., 2013). Affected by heterogeneous 

environmental and field conditions, soil erosion involves complex processes that can strongly vary 

within single fields, in particular in undulated areas. (Cerdan et al., 2010). Therefore, identifying 

and categorizing the main causes of soil erosion at the field scale based on observations with a high 

spatial resolution for quantitatively assessing the spatial and temporal variability of soil erosion 

patterns are of great importance. Such information can provide support for decision-making for 

improved sub-field management and for farmers to avoid the degradation of fertile soils and for 

maintaining or enhancing crop productivity.  

Numerous experimental and modeling studies have been conducted using approaches ranging from 

analytical to empirical techniques to gain a better understanding of runoff and soil erosion 

processes (Raza et al., 2021) and their potential outcomes (organic carbon and nitrogen losses, soil 

depth reduction, etc.,) under heterogeneous field conditions (Aga et al., 2020; Eslamian, 2014; J. 

R. Williams et al., 1984; Knisel and Nicks, 1981; Syvitski and Kettner, 2008; Viney and Sivapalan, 

1999). Individual hydro-geomorphological processes and vegetation dynamics affect the soil 

erosion process differently depending on the scale (Aga et al., 2020; Nearing et al., 1999; Panagos 

and Katsoyiannis, 2019). In particular, soil physical properties such as soil structure, texture, bulk 

density, compaction, and soil thickness influence the erosion pattern and thus rate and magnitude 

of erosion (Ouyang et al., 2018; Ramezanpour et al., 2010). Other driving factors are the 

topography (i.e., slope gradient, slope length) and ground cover, which modify the physical forces 

and greatly impact hydrological processes (Liu and Singh, 2004). The amount, intensity, and 

frequency of precipitation are critical meteorological factors for surface runoff generation and soil 

erosion.  
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A few authors investigated the interactive impact of environmental and soil conditions on soil 

erosion. (Guidry et al., 2006; Sepaskhah and Bazrafshan-Jahromi, 2006) investigated the runoff 

and soil erosion under rainfall, varying slope, and soil factors, and found that the potentialities of 

both surface runoff and sediment yield varied with the level of rainfall erosivity but the impact 

differed among soil textures and slopes, indicating diverse nonlinearities of rainfall-runoff-soil 

factors-erosion relationships and their complex interaction. (Zambon et al., 2021) studied the 

dependency of soil erosion on soil surface conditions (seal formation) and soil types under 

controlled rainfall intensities. Under the same initial surface conditions, the erosion development 

for increasing rainfall intensity was almost consistent. (Warrington et al., 1989) noticed that 

increasing slope inclination tends to increase erosion, whereas removing surface crusts and 

increasing permeability rate led to decreasing surface runoff. (Gross et al., 1991) concluded that 

even low density vegetation coverage noticeably decreases the sediment yield with increasing 

rainfall intensities. However, different studies yield a different representation of erosion processes 

Differences in the results of the studies are mainly caused by the particular experimental conditions 

(selection of factors) and set-ups which affected the output. To date, there are a few attempts made 

to study the impact of multiple environmental and in-field factors to predict sediment yield and 

runoff, including, in some cases, carbon, and nitrogen losses under natural conditions (Anh et al., 

2014; Li et al., 2017; J. H. Zhang et al., 2015). Most of these studies consider only one (Cerdà et 

al., 2021; Dunjó et al., 2004) or two (Ouyang et al., 2018; Ramos et al., 2019)  factors to explain 

the erosion process and ignore the complex interaction of potential factors and specifically their in-

field variability that may strongly affect the sediment yield and surface runoff. Most of these studies 

used defined rainfall intensities at plot scales to investigate soil erosion using a rainfall simulator.  

Rainfall simulators and soil erosion plots are two widely used research facilities to assess and 

quantify the processes of soil erosion and sediment transport in overland flow (Sharpley and 

Kleinman, 2003). Different types of rainfall simulators with their specifications and sizes being 

optimized for specific pedo-climatic zones, topographies and land uses have been successfully 

applied in several field experiments (Barthès and Roose, 2002; Duiker et al., 2001; Fernández-

Gálvez et al., 2008; Guidry et al., 2006; Lasanta et al., 2000; M. Sheklabadi et al., 2012; Sepaskhah 

and Bazrafshan-Jahromi, 2006; Srinivasan et al., 2007). However, many of these studies used 

standard plot sizes under controlled conditions (Albaladejo Montoro and Stocking, 1989; Raza et 

al., 2021; Renard et al., 1991) and with rainfall intensities far higher than the threshold for soil 



  

47 

 

detachment thus neglecting the interactions of modulated intensities and soil characteristics that 

can drive fine-scale spatial soil erosion processes (Kusumandari et al., 2021; Poulenard et al., 

2001). In summary, there is still a lack of knowledge on the interactive effects of multiple factors 

and their potential levels on soil erosion processes under natural conditions that explicitly consider 

sub-field scale spatio-temporal dynamics. The quantitative knowledge is however of great 

importance for agricultural fields where management activities can lead to changes in the 

vulnerability of soils to erosion. Spatially explicit knowledge will help to understand within-field 

dynamics of erosion and sedimentation and greatly support precision agriculture by developing 

physical-based on empirical-based models. . Further, it provides quantitative validation data for 

high-resolution remote sensing data (such as unmanned aerial vehicle (UAV)-based Lidar 

measurements). 

Most of the previous studies were conducted under controlled conditions with a limited number of 

factors, factor levels, and their interactions (Liu et al., 2019; Rieke-Zapp and Nearing, 2005; 

Sadeghi et al., 2017; Yusuf et al., 2016). Observing multiple factors and their complex interactions 

requires establishing several field experiments to disentangle their effects on spatial variation in 

soil erosion. Therefore, these studies used full factorial experimental designs to investigate the 

magnitude of the effects of factors on soil erosion that require a large sample size because it 

increases exponentially when all combinations of factors, factor levels, and interactions are 

considered (L. D. Meyer, 1981; Li et al., 2019; Meyer and Harmon, 1989). These designs are not 

applicable when the number of experimental runs is limited due to their cost- and labor intensity. 

To handle this challenge, the Taguchi method can be applied to any experimental study where the 

effect of up to ~30 factors on processes is studied while labor and cost intensity are minimized 

without lowering the quality of outputs (Taguchi, 1986). The Taguchi method is a type of general 

fractional factorial design, based on a selected number of factors and factor levels to identify the 

least number of experiments to be performed without compromising the overall output (Taguchi, 

1987, 1986). So far, in an agricultural context, the Taguchi design mainly has been used for 

investigating the impact of fertilizer rates and plant density on cotton yields (Awty-Carroll et al., 

2020; Chou et al., 2010; Ruchika Deo et al., 2007; Sivaiah & Chakradhar, 2019b). Further, it has 

been successfully applied to study soil erosion processes (Sadeghi et al. 2012, Mhaske et al. 2019) 

and results indicate similar performance compared with full factorial designs (Zhang et al. 2015, 

Zhang et al. 2021) and response surface methods (Moosavi & Sadeghi. 2021(F. Zhang et al., 
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2015)). While providing evidence for the suitability of the design to study the effect of multiple 

factors on soil erosion, these studies only used a limited number of factors and their interactions. 

Further, runoff volume and resulting nutrient losses such as organic carbon and nitrogen from the 

field, which are critical variables for sustainable agriculture, were not investigated. 

Encouraged by the successful application of this design in the studies mentioned above, we here 

use the Taguchi design to study fine-scale spatio-temporal dynamics of soil erosion processes 

(surface runoff, sediment yield, carbon and nitrogen losses) as affected by multiple factors at an 

agricultural field located in Western Europe under temperate climate conditions. More specifically, 

the objectives of this study are to 

i. Investigate the within-field variability of the effects of the interaction between soil 

characteristics (soil organic matter (SOM), soil texture), topography (slope), rainfall 

intensity, and soil cover (field conditions) on soil erosion, surface runoff, carbon and 

nitrogen losses  

ii. Quantify the percentage contribution of each of these five factors to soil erosion, surface 

runoff, carbon and nitrogen losses  

iii. Develop empirical models to predict local runoff, sediment yield, carbon and nitrogen 

losses 

iv. Identify erosion risk and sediment yield zones within the field  

2.   Methodology 

2.1.  Study area 

The study was conducted on an agricultural field site located in the Löwenberger Land 

municipality, in the north of the federal state of Brandenburg, Germany (33U 374170E 5866893N) 

(Fig. 3.1). Brandenburg lies in the temperate, continental climate zone with mean annual 

temperatures between 7.8 °C and 9.5 °C and mean annual precipitation of ~ 600 mm (German 

Weather Service 2020, Ihinegbu & Ogunwumi, 2021). The research field comprises ~ 6.25 ha (Fig. 

3.1).  Terrain height averages around 51.5 to 57.5 m a.s.l. with north east facing gentle slope (Fig. 

3.2). The soil was classified as Ferric Luvisol at up slopes (WRB, 2007) and in the marginal areas 

of the depression as Gley-Kolluvisol (Gleyic Anthrosol). 
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Fig. 3. 1: Location of the study area (left) and an aerial image of the research field (May 8th, 
2020, Google Earth) 

2.2. Soil sampling 

To characterize the spatial heterogeneity of soil characteristics soil augers (100 cm depth) were 

obtained from 87 different locations within the field (Fig. 3.2) in December 2019. At selected 

points, soil samples were analyzed for soil texture (proportion of silt, sand, and clay fractions) and 

SOM content, and the depth from the soil surface to a loamy layer. In soils derived from glacial 

deposits, the thickness of the sandy topsoil layers that are followed by a loamy layer, restricting 

vertical water movement compared to the sandy topsoil, is considered to increase the risk of water 

ponding at the soil surface and hence the risk of surface runoff and erosion. Samples were air-dried 

and sieved through a 2 mm mesh. Particle size distribution was determined with the Pipett method 

after SOM and carbonate destruction. Soil texture varied from silty loam to silt and medium sand 

according to the German soil taxonomy. According to Hofmann et al. (2016) and the soil taxation 

values in the German field cadastre of the state of Brandenburg (BB ATKIS), however, the topsoil 

is dominated by loamy sand.  
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Fig. 3. 2: Study site with soil augering points (A) and the locations of the rainfall simulation 
experimental plots (B, Numbers 1 to 16) 

2.3. Experimental design 

In contrast to classical statistical designs the “Taguchi design” is a type of general fractional 

factorial design,  based on a selected number of factors and factor levels to identify the least number 

of experiments to be performed (Taguchi, 1987, 1986).  The main factors and interactions that are 

most likely to be significant and the levels at which they are varied have to be defined in advance. 

Based on this knowledge Taguchi orthogonal arrays are selected with the choice depending on the 

tradeoff between time, resources, and quality of outputs (Medan et al., 2017; Rafidah et al., 2014; 

Woll & Burkhard, 2005). Subsequently to the experimental runs, the effect of each variable can be 

studied based on the signal-to-noise ratio (SN) (i.e., maximizing or minimizing SN ratios). 

The Taguchi method systematically yields the best possible combination of factors and their levels 

to produce quality output at lower experimental cost and time. Based on the literature review 

(Chmelová and Šarapatka, 2002; P.U. et al., 2017; A. Pandey et al., 2007; Raza et al., 2021), For 

this study, five factors were selected: Sum of the percentage of silt and soil organic matter 

(SiltOM), vegetation cover (VC), slope steepness (SS), rainfall intensity (RI), and depth to loamy 

layer (DLL). For each factor, four levels are considered (Table 3.1). The ranges of these levels are 

based on soil surveys, site-specific scheduling of crop residue management (affecting vegetation 

cover), and the field topography derived from 2008 Lidar data with 1m spatial resolution 

(https://geobroker.geobasis-bb.de). The selection of rainfall intensity levels is based on an analysis 

B A 
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of 10-minute precipitation data provided by the German Weather Service for a nearby 

meteorological station (Brandenburg weather station (ID # 3552)) and adjusted to the capability 

and sensitivity of the mobile rainfall simulator (described below).  

Table 3. 1. Experimental factors and their levels 

*the % of SiltOM decreases from level 1 to level 4, decided based on laboratory soil texture 
analysis. C, B, E, and L represent field conditions as cultivation, seedbed preparation, plant 
emergence, and Leaf development stage (3 Leaves unfold) respectively. 

Due to the number of factors (5) and levels (4) as defined in Table 3.1, the orthogonal array L16 

(45) for the Taguchi DOE was selected consisting of 16 experiments (factor combinations) (Table 

3.2).  

Table 3. 2. Taguchi fractional factorial design L16 (45) used in this study 

Factors 
\ 

Plot ID 

Combination 
of levels 

SiltOM 
(%) 

Vegetation 
cover 
(%) 

Slope 
steepness 

(%) 

Rainfall 
intensity 

(mm min-1) 

Depth to 
loamy 

layer (cm) 

1 2 3 4 5 
1 1 1 1 1 1 >20 1-5 <1 <2.5 <40 
2 1 2 2 2 2 >20 0 1-3 2.7-3.3 40-55 
3 1 3 3 3 3 >20 10-15 3-5 3.4-4 55-70 
4 1 4 4 4 4 >20 >15 >5 >4 >70 
5 2 1 2 3 4 18-20 1-5 1-3 3.4-4 >70 
6 2 2 1 4 3 18-20 0 <1 >4 55-70 
7 2 3 4 1 2 18-20 10-15 >5 <2.5 40-55 
8 2 4 3 2 1 18-20 >15 3-5 2.7-3.3 <40 
9 3 1 3 4 2 16-18 1-5 3-5 >4 40-55 

10 3 2 4 3 1 16-18 0 >5 3.4-4 <40 
11 3 3 1 2 4 16-18 10-15 <1 2.7-3.3 >70 
12 3 4 2 1 3 16-18 >15 1-3 <2.5 55-70 
13 4 1 4 2 3 <16 1-5 >5 2.7-3.3 55-70 
14 4 2 3 1 4 <16 0 3-5 <2.5 >70 
15 4 3 2 4 1 <16 10-15 1-3 >4 <40 
16 4 4 1 3 2 <16 >15 <1 3.4-4 40-55 

Factor Description Unit Level 1 Level 2 Level 3 Level 4 
1  (SiltOM)* % > 20 18 - 20 16 - 18 < 16 
2 vegetation cover % 1 - 5 (C) 0 (B) 10 - 15 (E) > 15 (L) 
3 Slope steepness % < 1 1-3 3-5 > 5 
4 Rainfall intensity  mm min-1 < 2.5 2.7 - 3.3 3.4 - 4 > 4 
5 Depth to loamy layer cm < 40 40 - 55 55 - 70 > 70 
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2.4. Plot selection 

To select plot locations for experimental runs covering each of the 16 factorial combinations (Table 

3.2), field maps on the depth to a loamy layer, slope inclination, and the sum of silt and OM were 

prepared, using SAGA within QGIS 3.16 (Fig. 3.3). Data on the depth to a loamy layer was derived 

from field surveys. Point data were spatially interpolated using ordinary kriging in SAGA. The 

topography was derived from 2008 LiDAR imagery (https://geobroker.geobasis-bb.de). 

Subsequently, map overlays were used to identify 16 plot locations. The 16 locations were 

considered to be well distributed in the research site (Fig. 3.2).  At each location, rainfall simulator 

experiments were carried out at the respective intensity levels with 4 repetitions. To integrate the 

factors “vegetation cover”, simulations were performed on multiple dates with vegetation cover 

ranging from 0% (seedbed preparation), over 5% (cultivation) and 10% (crop emergence, DAS: 

20) to >15% (leaf development stage 3, DAS: 204) (Table 3.3). 

 

Fig. 3. 3: Schematic diagram of the workflow for the rainfall simulation experiment: (a) 
Preprocessing of soil samples and remote sensing data (b) Preparing within-field factor levels 
for the Taguchi design (c) Selecting the locations of experimental plots (d) collecting 
sediments and runoff (e) Filtering and weighing sediment samples, runoff and CN 
concentration in sediments  
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2.5. Rainfall simulator 

In this study, in order to generate targeted levels of rainfall intensity (Table 3.2), the portable non-

pressurized rainfall simulator (Kamphorst, 1987) was used (Fig. 3.3d). The simulator was produced 

by Eijkelkamp (Eijkelkamp Agrisearch Equipment, Netherlands) and the design is owned by 

Wageningen University Research Centre. The ground coverage area is 0.0625 m2 enclosed from 

three sides with stainless steel frame.  The basic unit of the simulator consists of two Plexiglas 

containers connected with the frame. The upper container has a calibrated cylindrical reservoir 

having a capacity of 2300 ml. The lower container has 49 capillaries with a diameter of 0.6 mm. 

The basic unit is supported with four adjustable legs, 0.4 m average in height, on various slopes. 

Rainfall intensity is controlled by varying the atmospheric pressure inside the basic unit through 

an adjustable aeration pipe attached to the upper container. Fig. 3.3d illustrates the operation of the 

rainfall simulator in the field. Before the beginning of the experiments, the rainfall simulator was 

calibrated in order to generate the four different rainfall intensities (Table 3.2) (Kamphorst, 1987; 

“Rainfall simulator - Field measurement equipment | Eijkelkamp,” 2018). Each experiment was 

carried out for the duration of 8 minutes keeping in view the storage capacity of the reservoir and 

rainfall intensity levels. However, for the rainfall simulator, it is recommended to use it at the 

wettest season i.e., soil moisture content near to field capacity, when the soil surface is most 

vulnerable to erosion. For that purpose, a pre-wetting of the plot was carried out in the dry season. 

The water for pre-wetting is carefully applied through a plastic container with a perforated lid on 

it to avoid splash and runoff.  

2.6. Sample preparation  

The runoff from each plot and repetition and the corresponding sediment yields were collected in 

a 2L plastic bucket installed at the downslope end of the stainless steel frame of the simulator. The 

samples were thoroughly mixed by stirring before transferring them into plastic bottles. The 

volume of samples (runoff + sediment) was determined using glass flasks in the laboratory 

followed by wet sieving through a sieve with a mesh size of 2 mm. The samples were then placed 

in the oven at 60 oC for drying the dried samples and were later weighted to determine the sediment 

yield. There were no stones > 2 mm collected in any of the samples. A pycnometer with distilled 

water was used to determine the volume of sediments collected from each experimental plot 

(Benjeddou et al., 2017; Heiskanen, 2008). Surface runoff volume was calculated by subtracting 

the sediment volume from the total sample volume collected in the field. The sediment samples 
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were then dried at 60 oC till samples were fully dried to prepare them for carbon and nitrogen (CN) 

analysis. The dried samples were transferred then into separate glass scintillation vials and analyzed 

for CN content by instantaneous oxidation of the sample via combustion with oxygen at an 

approximate temperature of 1020° C using an Elemental Analyzer Euro EA 3000 (EuroVector - 

RK Tech Ltd., Pavia)  

2.7. Statistical analysis 

In Minitab 17.0 software tool, signal-to-noise ratio analyses (SN) were used for the evaluation of 

experiment results (Chou et al., 2010; Sivaiah and Chakradhar, 2019). Three types of SN ratios are 

used (1) Nominal is better, (2) Higher is better, (3) Lower is better. Because the objective of this 

study is to identify the areas with the highest risk of erosion, “the higher the better (HB)” approach 

was used. The following equation was used to calculate the SN-ratio:  𝑆𝑁𝑠 = −10 ∗ log⁡(1𝑛∑ 1𝑦2)                                                                      (1)          

where, n represents the number of repetitions at each rainfall simulation plot, and y represents the 

studied variable. Here, y is sediment yield, runoff, nitrogen, or carbon content in the sediments 

from each experimental plot. 

The statistical approach of analysis of mean (ANOM) was used to derive optimal conditions (Parr 

and Taguchi, 1989). ANOM is a graphical method for multiple group comparisons with an overall 

mean (“grand mean”). The mean 
𝑆𝑁𝑠 ratio of each factor I at a specific level i (Eqn. 2) was 

determined using the following equation: 

𝑀⁡𝐹𝑎𝑐𝑡𝑜𝑟𝐿𝑒𝑣𝑒𝑙 = 1𝑛𝐼𝑖∑ 1𝑛𝐼𝑖𝑗=1 [( 𝑆𝑁𝑠) 𝑙𝑒𝑣𝑒𝑙 = 𝑖.𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐼] ..𝑗               (2) 

In equation (2), nIi is the number of occurrences of factor I in level i. 
𝑆𝑁𝑠 response figures and tables 

were obtained, and optimum conditions were established for each concerning output. J? 

In addition, an analysis of variance (ANOVA) was used to investigate the influence of individual 

factors on sediment yield, runoff, and CN content (Cox et al., 2008). The percentage contribution 

of each experimental factor to the four output variables was estimated using the following equation: 
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ρF = 𝑆𝑆𝐹−(𝐷𝑂𝐹𝐹𝑉𝐸𝑅)𝑆𝑆𝑇 × 100                    (3) 

Where VER is the variance of error, SSF is the factorial sum of squares, and DOFF represents a 

degree of freedom obtained by subtracting one from the number of levels of each factor (L). The 

total sum of squares, SST, was calculated using the following equation: 

𝑆𝑆𝑇 = ∑ 1𝑚𝑗=1 (∑ 𝑌𝑖2𝐿𝑖=1 )..𝑗 − 𝑚𝑛(⁡𝑌𝑡⁡)2.1                (4) 𝑌𝑡 is obtained as: ⁡𝑌𝑡 = ∑ 1𝑚𝑗=1 (∑ 𝑌𝑖𝐿𝑖=1 )..𝑗⁡/⁡𝑚𝑛                  (5) 

Where, m represents the number of experimental plots covered in this study, and n represents the 

number of repetitions under the same experimental plot. The factorial sum of squares, SSF, is given 

by: 𝑆𝑆𝐹 = 𝑚𝑛𝐿 ∑ 1𝐿𝑘=1 (𝑌𝐾𝐹 − 𝑌𝑡)                  (6) 

YKF    is the average value of the measurement results of a certain factor in the kth level. Furthermore, 

the variance of error,⁡𝑉𝐸𝑅  was given by: VER = 𝑆𝑆𝑇−(∑ 1𝐷𝐹=𝐴 𝑆𝑆𝐹)𝑚(𝑛−1)                   (7) 

3. Results and discussion 

3.1. Sediment yield  

The variation of sediment yield depending on the five factors and their levels is shown in Fig 3.4A 

and 5A respectively. The average amount of sediment yield across replicates varies from 499.2 + 

20.6 to 60.5 + 17.3 g m-2. Plot-based rainfall simulation data show pronounced relative differences 

in sediment yield among different combinations of factors and their respective levels (Fig. 3.4A). 

Experimental plot B10 (0 % vegetation cover, a rainfall intensity of 3.4-4 mm min-1, the slope of 4 

%, SiltOM 16-18% of and DLL of < 40cm) shows the highest sediment mass with 499.2 g m-2, 

indicating the highest erosion levels under these conditions. The lowest sediment mass (60.5 g m-

2) was obtained at plot L12 (vegetation cover was >15 %, rainfall intensity < 2.5 mm min-1, and 

slope between 1 and 3 %). Fig 3.5 shows the means of sediment yield for each factor and each level 
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and compares them to the overall factor mean (grand mean, dashed line) (ANOM). These graphs 

show that the amount of sediment increases with an increase in rainfall intensity (Fig. 3.5A). The 

minimum rainfall intensity needed to initiate soil erosion, in this study, was 2.5 mm min-1. At lower 

rainfall intensities, the infiltration rate is higher in the beginning. The potential kinetic energy of 

raindrops is small and the splash effect is weak and so is the sediment yield. In addition, runoff 

volume is relatively small under lower rainfall intensities (Mohamadi and Kavian, 2015). The 

relationship between rainfall intensity and sediment yield varied across intensity levels in a 

systematic way (Fig. 3.5A). The sediment yield increased to 204.9 g m-2 when the RI increased to 

level 2, which was 73.5 g m-2 higher than at RI level 1. The increment was 253.3 g m-2 and 310.7 

g m-2 with RI levels 3 and 4 respectively, where sediment yields were respectively 1.9 and 2.4 

times higher than at RI level 1 (Fig. 3.5A). This result may indicate that at the plot scale, soil loss 

would linearly increase up to a threshold of rainfall intensity, beyond which soil loss would increase 

non-linearly. Similarly, (Kandel et al., 2004b) found a non-linear relationship between high-

intensity rainfall and soil erosion processes. Therefore, it can be suggested that high rainfall 

intensities resulted in greater soil losses. This is also confirmed by other studies where high 

intensity rainfall events increased sediment yield (Jebari et al., 2008; Sukartaatmadja et al., 2003; 

Ziadat and Taimeh, 2013a) and sediment transport.  

Soil detachment and runoff significantly increased with rainfall intensity for both uncultivated and 

cultivated lands (Ziadat and Taimeh, 2013b) but the level of vegetation cover has a significant 

effect on the soil detachment. As for plot B10, the same rainfall intensity of 3.4−4 mm min-1 was 

applied to plots E3, C5, and L16 producing 188.1 g m-2, 207 g m-2, and 199 g m-2 average sediment 

yield respectively (Fig. 3.4). However, in plot B10 the sediment yield was 499.2 g m-2. Among the 

rates of sediment yield for four vegetation covers analyzed in this study, vegetation cover level 4 

was found most beneficial for preventing soil losses.  The eroded sediment yield was below 149 g 

m-2 when the vegetation cover was more than 15 % (level 4). The sediment yield generally tended 

to decrease with an increase in vegetation cover (Table 3.3). The highest mean sediment yield 

(averaged across all other factors) was observed after seedbed preparation (vegetation cover 0 %) 

with 292.16 g m-2 (Fig. 3.5A). In this study, increasing vegetation cover dramatically reduces 

sediment yield which is in accordance with the results of (Donjadee and Chinnarasri, 2012; Lin et 

al., 2018). (Zapata et al., 2021) mentioned that the vegetation cover interception reduces the 

diameter of the drops reaching the soil surface and hence reduces the kinetic energy of a raindrop. 
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(Huang et al., 2012) also described that vegetation cover increases soil surface roughness that acts 

as a barrier to impede surface runoff and increases infiltration time. Thus, vegetation cover reduces 

the sediment yield by reducing the kinetic energy of raindrops, intercepting rainfall, increasing 

surface roughness, and enhancing infiltration times.  

A positive relationship was further detected between slope and sediment yield. The sediment yield 

increased from 162.24 g m-2 at a slope of 1 % to 297.44 g m-2 at a slope of 5 % Fig. 3.5A. Previous 

studies also show that the sediment yield increases with increasing slopes. This indicates a strong 

positive relationship between slope and sediment yield (Grismer, 2012). Under extreme rainfall 

intensities, it has been observed that surface runoff velocity and sediment yield are primarily driven 

by slope inclination (Yan et al., 2018).  These observations are likely related to higher overland 

flow velocities at higher slope gradients (Defersha and Melesse, 2012) resulting in higher sediment 

yield. A gentle slope is less subject to activation and transportation of eroded sediments. 

Additionally, the splashing effect of raindrops generates surface sealing on gentle slopes producing 

more surface runoff carrying sediments.  Soil particles are detached from the steep slopes where 

downward gravity is comparatively large. Therefore, there is a tradeoff between rainfall intensity 

and slope gradient. (Wu et al., 2018b) proved that rainfall intensity has more influence than slope 

gradient on sediment yield.  

The surface soil texture also governs the sediment yield under varying rainfall intensity events.  

Water availability and water holding capacity are largely dependent on the texture of the soil 

profile, especially under rain-fed conditions (Libohova et al. 2018; Wang et al. 2020; Zhou et al. 

2020). The decreasing concentration of SiltOM in the surface soil showed an increasing trend in 

sediment yield except for level 4 (2.5 %) which produced a mean sediment yield of 263.52 g m-2 

which was slightly lower than at level 3 (275.84 g m-2 ). The detachment of soil is mainly affected 

by the size and weight of soil particles, organic matter, and the kinetic energy of the raindrops 

(Sadeghi et al., 2017). The silt content varies from 10.2 to 19.5 % in the study area. The loose 

particles of silt showed a higher tendency to detachment and erosion process. Soil erodibility 

increases with increasing silt content (Baruah et al., 2019) but it reduces drastically once the crust 

is formed. However, SiltOM explicated the strong negative effects of mean weight diameter on 

splash erosion, and the indirect impact of high organic matter (> 2%) on splash erosion by 

improving the aggregate stability (Sun et al., 2021). Moreover, With high rainfall intensity and 
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longer test duration, detaching capacity was achieved faster and a surface seal appeared on the soil 

surface (Michel et al., 2014).  

3.2. Surface runoff 

At different growth stages of the crop, the runoff process at different rainfall intensities, slope 

gradients, and soil textures are shown in Fig. 3.4B.  The observed mean runoff volume varies 

between 23.5+1.07 and 6.54+0.62 mm among the plots. The plots where rainfall intensity level 4 

was applied showed 42.5 % more surface runoff compared to those plots with rainfall intensity 

level 1. The increase of runoff in the low rainfall intensities was gentle and later it tend to be large. 

In general, for the highest rainfall intensity, the recorded runoff depth varied from 23 mm to 17.2 

mm. On the other hand, for the events with the lowest rainfall intensity, the recorded runoff depth 

varied from 10. 4 to 6.8 mm. According to the comparison with local meteorological data from the 

closest weather station, these two classified intensities can be termed as moderate rainfall intensity 

events and high-intensity storm events respectively. Both of which can produce surface runoff on 

local slopes in the study area. In our simulation experiments, the rainfall intensity shows a positive 

relationship with the depth of surface runoff under all vegetation covers. The high rainfall intensity 

occurring in short duration results in a higher runoff depth (Krisnayanti et al., 2021). The diameter 

and threshold raindrop velocity tends to increase with higher intensity rainfall. This event is 

particularly noticeable when the rainfall intensity is at level 4. Heavy raindrops provide more 

kinetic energy which changes the surface roughness producing pores blockage and soil crusts, 

which yield higher surface runoff (Lu et al., 2016). 

The increasing surface runoff depth is positively related to rainfall intensity at the same slope 

inclination level and displayed order of 2.5 mm min-1 <2.7-3.3 mm min-1 < 3.4-4 mm min-1 <4 mm 

min-1 (Fig. 3.5B). However, the analyses of the relationship between slope gradient and runoff 

show increasing surface runoff were observed when the slope increased from 1−3 % (level 2) to 

>5% (level4) with runoff depth of 10.66 mm and 15.93 mm, respectively. However, it was 

decreased from 13.573 mm to 10.66 mm despite an increasing slope gradient from <1 % (level 1) 

to 3 % (level2) and also dropped to 15.08 mm when the slope was >5 % (level 4). The main reason 

is that observations at slope levels 1 and 2 are performed for soil class 1 and class 2, with high and 

moderate permeability, respectively (Fig. 3.2A). Previous studies also indicate that surface flow 

decreases with increasing slope gradient as the rain-bearing area becomes small as at smaller slope 

gradient the infiltration time is longer at the beginning with high permeable soil conditions (Deng 
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et al., 2019; Wu et al., 2018a). Also, other studies show that surface runoff increases and tend to 

stabilize with the further increase of the slope gradient (Zhong and Zhang, 2011) but some studies 

also show that runoff increases first and then start decreasing with increasing slope gradient 

(Jourgholami et al., 2021; Li et al., 2020; Li and Yu, 2012). The present study shows similar results. 

Guo et al., (2018) showed that runoff depth is directly related to rainfall intensity and in a negative 

relationship with slope gradient. Infiltration rates decrease as slope increases from 6° to 35° and, 

thus, runoff depth increases to a certain extent until a critical slope gradient of 11°  is reached at 

which infiltration rate trend starts changing (Liu et al., 2015). With further increments in slope, the 

runoff depth gradually decreases (Jourgholami et al., 2021; Nassif and Wilson, 1975). The rainfall 

intensity has more impact on runoff than slope gradient in this study which is in line with the work 

by (Wu et al., 2018b). Since the slope gradients at our research site are well below 10 degrees the 

stronger impact of rainfall intensities agrees with other studies (Liu et al., 2015) 

In this study, vegetation cover had a positive relationship with runoff depth. Fig. 3.5B shows that 

from level 1 (1-5 %) to level 2 (0 %) of vegetation cover there is an abrupt increase in surface 

runoff as on bare soil there are no interception losses. Then the runoff depth increases with 

increasing vegetation cover from level 3 (10-15 %) to level 4 (>15 %). The runoff depth was in the 

order of level 4 > level 2 > level 3 > level 1 of vegetation cover for both high and low rainfall 

intensity and all slope gradients. However, many studies show that runoff decreases with increasing 

vegetation cover due to higher canopy interception and rain redistribution reduces energy and 

runoff depth (He et al., 2020; Loch, 2000; Meng et al., 2007; Tong Li et al., 2020). The reason for 

high runoff depth at high vegetation cover can be hydrophobic repellency (De Jonge et al., 2007; 

Hermansen et al., 2019; Knadel et al., 2016) of the surface soil, as higher vegetation cover extracts 

more soil water. In fact, low soil moisture conditions under higher vegetation cover as noted during 

the field experiments. Many studies have reported that surface runoff depth increases under dry 

conditions such as drought periods (Burch et al., 1989; Buttle and Turcotte, 1999; Gomi et al., 

2008; Sosa-Pérez and MacDonald, 2017). These studies suggested that the generation of 

hydrophobic soil surface conditions was one of the main reasons for this phenomenon under dry 

conditions. (Burch et al., 1989) for example, found that runoff depth increases from 5 % to 15 % 

due to the hydrophobic conditions after drought or dry summer. These previous studies suggest 

that because of drought development water repellent soil surface conditions produce more surface 

runoff regardless of high vegetation cover. The size of the plot can also have a significant impact 
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on the runoff depth. Results obtained by Smets et al. (2008) indicate that there is significant 

variation in the effectiveness of vegetation cover on runoff if the plot is less than 11m long. Plot 

scale significantly affects the influence of surface roughness and vegetation cover on sediment 

yield and runoff depth (Jourgholami and Labelle, 2020).   

The runoff depth changed with changing silt and organic matter content among plots and results 

suggest that effects are significant (p < 0.027). The results agree with Vaezi et al. (2010), who also 

observed that runoff significantly correlated with silt (p < 0.001) and organic matter (p < 0.05). 

Organic matter positively affects the soil permeability, hence reducing the surface runoff depth 

(Sepaskhah and Bazrafshan-Jahromi, 2006). A similar pattern was observed for levels 1, 2, and 4 

of this factor with the runoff averaging 14.05 mm, 13.82 mm, and 12.50 mm, respectively. Slightly 

increasing runoff depth at level 3 was observed. Results agree with studies indicating that the 

primary factors affecting surface runoff during rainfall simulation experiments are current soil 

moisture levels, soil texture, slope, and rainfall intensity (Y. Wang et al., 2016; Ziadat and Taimeh, 

2013b). The highest runoff was recorded with 23 mm at plot B10 where SiltOM was at level 3 (Fig. 

3.4) (Table. 3.4) and depth to loamy layer < 40 cm (Fig. 3.2).  Later the runoff depth tends to 

decrease to 12.4 mm as SiltOM percentage increases in the field to level 4. A general trend in this 

study depicts that with increasing SiltOM content there is a decrease in surface runoff depth with 

a slight difference at level 3. The depth to a loamy layer (DLL) may act contrary to the effect of 

the silt content on runoff depth. A thicker sandy topsoil (i.e. deeper depth to loamy layer) may 

positively affect the soil permeability increasing the infiltration and consequently reducing the 

surface runoff depth. Thus, spatial variation in these soil properties in the study area noticeably 

influences the runoff generation in the test plots. This has been also proved in previous studies 

(Brakensiek and Rawls, 1994; Hrabovskỳ et al., 2020; Meena et al., 2020) mentioning that spatial 

variability of infiltration capacity is related to the spatial variability of topsoil characteristics that 

consequently affect the runoff generation. 

3.3. Carbon and Nitrogen concentration in sediment yield 

Soil carbon and nitrogen concentration redistribution is strongly governed by the amount of 

detached sediment within cultivated lands and it is generally accepted that C and N are 

preferentially transported during soil erosion (Holz and Augustin, 2021). The average values of 

carbon and nitrogen losses under each level of vegetation cover, slope, and rainfall intensities are 

presented in Fig. 3.4C & D respectively. Nitrogen and carbon contents of observed sediment yields 
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are highly correlated and vary among experimental plots (Fig 3.4. C & D). Total C and N losses 

ranged between 12+1.02 to 3.29+0.496 g m-2 and 0.948+0.073 to 0.106+0.016 g m-2 respectively 

with moderate to high standard deviation, depending on RI, vegetation cover percentage, and 

SiltOM content (Fig. 3.4. C & D). As reported for the soil loss, C and N losses on the plots were 

positively related to the rainfall intensity ranging between 2.8 to 7.7 g m-2 and 0.2 to 0.4 g m-2 (Fig. 

3.4).  

In Fig. 3.5C and 3.5D, it is obvious that the highest nutrient losses were found at vegetation cover 

more than 0 % despite other land covers percentages contributing less to the nutrient losses (Fig. 

3.5 C & D). However, C and N losses were higher in at a vegetation cover of 15 % and in barren 

land when the soil was subjected to rainfall intensity level 4 (4 mm min-1) (Fig. 3.4. C & D). This 

behavior is related to the absence of topsoil protective cover that reduces the impact of raindrops 

and detachment of soil particles (Nunes et al., 2011).  The highest C loss was found under RI of > 

4 mm min-1 with values ranging between 12+1.02 g m-2  and 7.68 +1.12 g m-2  after 8 min rainfall, 

respectively for vegetation cover levels 4 and 3 (Fig. 3.5C). Regarding N losses, the highest losses 

were recorded in the plots with the highest C losses.  The smallest C and N loss was observed as 

2.8 and 0.2 g m-2 respectively at low rainfall intensities when detachment forces were small (Fig. 

3.5 C & D). The experiments carried out in this study confirm the soil susceptibility to loose 

nutrients under specific vegetation cover, even at a low rainfall intensity level (< 2.5 mm min-1). 

All the study plots have varying silt and organic matter contents, which made soils to lose nutrients 

defining crusting indexes (Awadhwal and Thierstein, 1985).  The different values of runoff induce 

differences in sediment yield and transport of nutrients. Higher rainfall intensities produce higher 

runoff depth. It could be confirmed that nutrient losses increase exponentially with higher rainfall 

intensities. The analysis of slope gradient effect on nutrient loss, where higher soil losses occur, 

shows that soil sealing can be the main factor that limits runoff as it does not increase significantly 

with increasing slope (Fig. 3.5B) (Ramos et al., 2019). However, as sediment yields are increasing 

with an increasing slope so do the C and N losses captured in the collected sediments except at 

slope level 3 where C and N losses are reduced as slope increases from level 2 to level 3. The 

reason is probably that the plots with slope level 3 lie in soil class 3 with throughout sandy texture 

and lower C and N concentrations in the topsoil (Yost and Hartemink, 2019). The results suggest 

that a permanent vegetation cover is essential to reduce C and N losses.  
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Fig. 3. 4: Mean temporal variations and standard error (SE) in sediment yield, runoff, 
carbon, and nitrogen in relation to heterogeneous field conditions   

 

Table 3. 3. Mean sediment yield observed under changing soil surface conditions 
(vegetation cover factor levels) 

Field condition Vegetation cover  Mean sediment yield Standard error 
% g m-2 g m-2 

Cultivation     5 241 31.1 
Seedbed reparation     0 292 35.8 
Emergence stage       10 219 22.5 
Leaf development 
(3 Leaves unfold)      

15 149 17.7 
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Fig. 3. 5: Analysis of means (ANOM)) for A: Sediment yield (g m-2), B: Runoff (mm), C: 
Carbon (g m-2), D: Nitrogen content (g m-2). Mean values for each level of each factor (blue 
dots) and the overall mean of each factor (dashed green line) are shown.  

3.4. Optimal conditions for maximum sediment yield, surface runoff, Nitrogen, and Carbon 
content 

The obtained S/N ratio responses for sediment yield, surface runoff, carbon, and nitrogen content 

are shown in Table 3.4 and Table 3.5. A Higher S/N ratio implies low variations between the 

desired output and the measured output. The maximum S/N ratio values among the 16 experiments, 

indicated in table 3.4 were 53.97 for sediment yield and 26.21 for runoff, 21.59 and -0.81 for C and 

N losses respectively in the test plot 10 with factor combination of SiltOM3-VC2-SS4-RI3-DLL1 

(Table 3.4). Inserting these values from table 3.4 into Eqn. 2 resulted in mean values of S/N ratios 

for each factor level. The maximum values of means of the S/N ratio were then identified. The bold 

values in Table 3.5 show the factor level with the highest S/N ratio for each factor and output 

variable (sediment yield, runoff, C and N losses). The highest mean S/N ratio for sediment yield 

A 

C D 

A 

C 

Sediment yield Runoff volume 

Carbon content 

A 

C D 
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was obtained at factor level 4 for SiltOM, SS, and RI, at level 2 for VC, and level 1 for DLL (Table 

3.5). Thus, we can predict that the highest sediment yield should be obtained with the factor level 

combination SiltOM4-VC2-SS4-RI4-DLL1 (Table 3.5). On the other hand, the lowest sediment yield 

should be obtained with the factor combination SiltOM1-VC4-SS1-RI1-DLL2. The estimated 

optimum factor level combination for obtaining the highest surface runoff was found to be 

SiltOM3-VC4-SS3-RI4-DLL1 (Table 3.5). The highest rainfall intensity (>4 mm min-1) led to the 

highest volumes of runoff, followed by the factor vegetation cover (maximum values at Level 4) 

(Table 3.5). Earlier studies showed that surface runoff depth is sensitive to the plot size and type 

of vegetation (Herweg and Ludi, 1999; Kort et al., 1998; Zuazo and Pleguezuelo, 2008). The 

optimum condition for maximum C and N losses were found to be SiltOM4-VC2-SS4-RI4-DLL1 

and SiltOM4-VC2-SS4-RI4-DLL1 respectively (Table 3.5). The results indicate that rainfall intensity 

was the main factor that most influenced the sediment yield, runoff, C and N losses in the study 

area followed by vegetation cover and then slope steepness.  
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Table 3. 4. The S/N ratio of each experiment resulting from a different combination of 
factors and levels. 

 

 

 

 

 

 

 

 

 

 

Factors/ 
Plot Combination of levels 

Silt  
OM 

 
(%) 

vegetation 
cover 

 
(%) 

Slope 
steep-
ness 
(%) 

Rainfall 
intensity 
(mm 
min-1) 

Depth to 
loamy 
layer 
(cm) 

S/N 

Silt
OM 

VC SS RI DLL Sediment 
yield 

Runoff C N 

1 1 1 1 1 1 >20 1-5 <1 <2.5 <40 36.08 16.53 1.65 -19.47 

2 1 2 2 2 2 >20 0 1-3 2.7-3.3 40-55 41.98 19.05 10.35 -11.20 

3 1 3 3 3 3 >20 10-15 3-5 3.4-4 55-70 45.47 24.62 13.96 -8.48 

4 1 4 4 4 4 >20 >15 >5 >4 >70 46.70 27.42 17.71 -3.72 

5 2 1 2 3 4 18-20 1-5 1-3 3.4-4 >70 46.31 17.70 11.96 -10.69 

6 2 2 1 4 3 18-20 0 <1 >4 55-70 49.35 26.12 17.55 -4.56 

7 2 3 4 1 2 18-20 10-15 >5 <2.5 40-55 43.60 19.87 9.65 -12.44 

8 2 4 3 2 1 18-20 >15 3-5 2.7-3.3 <40 45.95 24.87 11.01 -10.35 

9 3 1 3 4 2 16-18 1-5 3-5 >4 40-55 51.39 25.48 11.43 -10.58 

10 3 2 4 3 1 16-18 0 >5 3.4-4 <40 53.97 26.21 21.59 -0.81 

11 3 3 1 2 4 16-18 10-15 <1 2.7-3.3 >70 44.75 21.98 13.13 -9.09 

12 3 4 2 1 3 16-18 >15 1-3 <2.5 55-70 35.63 18.42 6.02 -15.45 

13 4 1 4 2 3 <16 1-5 >5 2.7-3.3 55-70 50.18 16.31 12.41 -8.20 

14 4 2 3 1 4 <16 0 3-5 <2.5 >70 47.97 20.32 13.99 -8.54 

15 4 3 2 4 1 <16 10-15 1-3 >4 <40 51.18 24.95 21.05 -0.46 

16 4 4 1 3 2 <16 >15 <1 3.4-4 40-55 41.52 23.76 15.01 -7.19 
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Table 3. 5. Mean S/N ratio response table for the investigated experimental factors 

Output 
Parameter 

Experimental  
factors 

Mean S/N ratio Delta Rank 
Level 1 Level 2 Level 3 Level 4 

Sediment 
Yield 

Silt+Organic 
matter 

42.56 46.30 46.44 47.71 5.15 4 

Vegetation Cover 45.99 48.32 46.25 42.45 5.87 2 
Slope Steepness 42.92 43.78 47.69 48.61 5.69 3 
Rainfall Intensity 40.82 45.71 46.82 49.65 8.83 1 
Depth to Loamy 
Layer 

46.79 44.62 45.16 46.43 2.17 5 

        
Runoff Silt+ Organic 

matter 
21.91 22.14 23.02 21.34 1.69 5 

Vegetation Cover 19.01 22.93 22.86 23.62 4.61 2 
Slope Steepness 22.1 20.03 23.82 22.45 3.79 3 
Rainfall Intensity 18.79 20.56 23.07 25.99 7.21 1 
Depth to Loamy 
Layer 

23.14 22.04 21.37 21.86 1.78 4 

        
Carbon Silt+ Organic 

matter 
10.92 12.54 12.91 15.75 4.83 3 

Vegetation Cover   9.36 15.74 14.58 12.44 6.37 2 
Slope Steepness 11.83 12.48 12.60 15.21 3.37 4 
Rainfall Intensity   7.83 11.73 15.50 17.07 9.24 1 
Depth to Loamy 
Layer 

13.83 11.61 12.49 14.20 2.59 5 

        
Nitrogen Silt+ Organic m -10.72 -9.51 -8.98 -6.10 4.61 3 

Vegetation Cover -12.24   -6.28 -7.62 -9.18 5.95 2 
Slope Steepness -10.08   -9.45 -9.49 -6.29 3.78 4 
Rainfall Intensity -13.97   -9.71 -6.79 -4.83 9.14 1 
Depth to Loamy 
Layer 

  -7.77 -10.35 -9.17 -8.01 2.58 5 

 

3.5. Percentage contribution of the experimental factors to sediment yield, runoff, C and N 
losses 

ANOVA was used to estimate the contribution of the individual factors to sediment yield, runoff, 

C and N losses (Table 3.6). Rainfall intensity contributed most strongly to sediment yield (40.55 

%) followed by slope steepness (23.76 %) and vegetation cover (17.73 %). (Peng and Wang, 2012) 

indicated that soil loss is positively related to rainfall events with high antecedent precipitations. 

The slope gradient can be more important than vegetation cover because of its relation with the 
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underlying geological formations resulting in varying soil characteristics. In consequence, slope 

gradients are related to soil moisture and hence the soil’s susceptibility to soil detachment. 

Vegetation cover yields higher soil moisture at low to moderate slopes but it falls sharply at steeper 

slopes as soil permeability decreases that increases runoff till a threshold slope, moreover, the flow 

velocity becomes larger with increasing slope gradient due to increasing shear stress (Defersha and 

Melesse, 2012). The impact duration of runoff on steeper slopes becomes smaller and hence it 

weakens the protecting effect of surface seal, increasing the impact of rainfall splashing on the soil 

surface (Zhao et al., 2015). It produces more detachment of soil particles and transportation. 

However, the sum of silt content and organic matter only contributes 14.77 % to sediment yield. 

(Ziadat and Taimeh, 2013a) showed a significant correlation between the ultimate infiltration rate 

and soil properties such as organic matter (R = 0.48) and silt content (R = 0.72). The low 

contribution of silt and organic matter to our results is most likely related to their comparatively 

low variation among measurement plots and due to the high content of organic matter that is 

varying from 2.3 to 2.4 % among the test plots. The high organic matter improves the aggregate 

stability, reduces the bulk density, and increases moisture retention and soil shear strength that 

helps in soil stability and resistance against erosion (Ekwue, 1990). Previous studies also concluded 

that aggregate stability is closely and negatively related to the soil detachment from field 

experiments under rainfall simulators on micro plots (Roth et al., 1987; Van Dijk et al., 1996). The 

factor of least importance in our study was the depth to the loamy layer (DLL) (3.17 %). This can 

be explained by the fact that the loamy layer with low permeability generally starts at relatively 

deep depths (lowest depth approximately 38 cm) and at many locations sand-filled pre-glacial ice 

cracks with higher permeability were observed in the loamy layer (Kühn, 2003). Therefore, 

differences in permeability and water storage capacity (risk of waterlogged soils) between 

experimental plots were probably relatively low. ANOVA results for the nitrogen (N) and carbon 

(C) content of sediment yield were similar (Table 3.6). As for sediment yield, rainfall intensity 

contributed most to the overall variation of C and N contents. The respective percentage 

contribution of rainfall intensity, vegetation cover, SiltOM content, slope and depth to loamy layer 

was 51.70%, 21.50 %, 12.55 %, 9.63 % and 4.62 % respectively for Nitrogen content and 52.31 

%, 24.07 %, 12.39 %, 6.81 % and 4.41 % respectively for Carbon content. Runoff was mostly 

influenced by rainfall intensity (55.45 %) followed by vegetation cover, slope, depth to loamy 

layer, and SiltOM content. The respective contribution was 55.45 %, 24.71 %, 3.18 %, and 2.78 % 

(Table 3.6), agreeing with the findings of (Kirkby et al., 2004). The stronger impact of vegetation 
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cover compared with the slope can be explained by the stronger variability of vegetation cover at 

different soil management stages during the experimental period in the study area. In addition, at 

different slope levels varying soil compositions and moisture content affect the potential of surface 

runoff.  

Table 3. 6. Percentage contribution of each factor (ρF %) for the different output 
parameters as estimated by ANOVA 

Output 
Parameters 

𝛒𝐅 % 

SiltOM 
Vegetation 
cover 

Slope 
steepness 

Rainfall 
intensity 

Depth to Loamy 
Layer 

Sediment yield 14.77 17.74 23.77 40.56 3.17 
Runoff   2.78 24.71 13.88 55.45 3.18 
Nitrogen content 12.55 21.50   9.63 51.70 4.62 
Carbon content 12.39 24.07   6.81 52.31 4.41 

 

3.6. Linear regression models 

Linear regression models are used to predict sediment yield, runoff, as well as C and N losses as a 

function of Silt + OM, vegetation cover, slope, rainfall intensity, and depth to the loamy layer. No 

transformation has been performed on the response variables. The estimated regression models are 

shown in the Eqns. (8-11). 

Sediment yield = -7.2 + 40.9 SiltOM - 35.1 VC + 46.9 Slope + 58.6 RI - 18.4 DLL   

 (R2 = 82.53)                  (8) 

Runoff = 0.10 - 0.341 SiltOM + 1.807 VC + 0.933 Slope + 3.743 RI - 0.641 DLL                         

(R2 = 79.66)                    (9) 

C = -2.08 + 0.810 SiltOM + 0.371 VC + 0.446 Slope + 1.736 RI - 0.440 DLL     

 (R2 = 60.97)                  (10) 

N = -0.172 + 0.0629 SiltOM + 0.0299 VC + 0.0445 Slope + 0.1373 RI - 0.0381 DLL   

(R2 = 62.13)             (11) 

Where sediment yield, runoff depth, C and N are g m-2, SiltOM and VC reprsents levels. 

The capability of these empirical regression models was checked by using the coefficient of 

determination R2. Regression models for sediment yield, runoff, carbon, and nitrogen yielded R2 
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values of 82.53 %, 79.66 %, 60.97 %, and 62.13 % respectively. Residual plots (Fig. 3.6 A, B, C 

& D) indicate that residuals are independent and normally distributed. Sediment yield is positively 

related to SiltOM but runoff depth is negatively related. This indicates that a high amount of SiltOM 

would increase the erodibility of the soil but would reduce the runoff rate. This is also evident from 

Fig. 3.5A and B. The sediment yield is more sensitive to SiltOM compared to runoff. Coefficients 

of SiltOM for C and N losses show a positive relationship. C was more responsive to SiltOM as 

compared to N. It is suggested to have further research to find a threshold point for SiltOM in the 

soil to achieve the lowest sediment yield and runoff. Fig. 3.7 represents the scatter plot of predicted 

vs observed values with high R2. The shaded band is a pointwise 95 % confidence interval on the 

fitted values. These results confirm the ability of the Taguchi method for the prediction of soil 

erosion in response to different combinations of factors/levels. The regression equation for 

sediment yield was further applied to predict sediment yields across the entire field for identifying 

areas within the field that have a higher susceptibility to soil erosion (Fig. 3.8).  

 
Fig. 3. 6: Distribution of residuals of the regression models for sediment yield, runoff, 
carbon, and nitrogen 

A B 

C D 
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Fig. 3. 7: Predicted versus observed sediment yield, runoff depth, carbon, and nitrogen 
losses 
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Fig. 3. 8: Identification of potential soil erosion risk areas 

4. Conclusion 

Different scenarios were tested with 16 effective simulated rainfall events under different rainfall 

intensities, vegetation cover, heterogeneous in-field slope, and soil conditions. The results 

indicated that runoff, soil, and CN losses increase with increasing rainfall intensity. it was observed 

that sediment yield, overland flow, CN content were greatly affected by rainfall intensity having a 

contribution of 40.56 %, 55.45 %, 51.70 %, and 52.31 % respectively among the other factors. 

However, the least contributing factor was depth to loamy layer for all output variables except for 

surface runoff. The results show that the worst conditions among 16 plots were at SiltOM3-VC2-

SS4-RI3-DLL1 for sediment yield. However, predicted experimental factors for the highest 

sediment yield were found with the factor combination SiltOM4-VC2-SS4-RI4-DLL1 and the lowest 

sediment yield was observed with the factor combination SiltOM1-VC4-SS1-RI1-DLL2. The 

threshold rainfall intensity for soil erosion was 2.5 mm min-1.  VC and DLL are inversely correlated 

with sediment yield, while SiltOM, slope, and rainfall intensity are directly correlated.  
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The surface runoff was negatively related to SiltOM and DLL, but the vegetative cover, slope, and 

rainfall intensity positively affect the runoff. Regarding, C and N, except the DLL, other factors 

show a positive correlation.  Based on the experimental results, statistical regression models were 

developed, which were applied for identifying the erosion risk areas at the field scale. The applied 

workflow allowed for efficiently predicting soil erosion and identifying areas susceptible to soil 

loss at a high spatial resolution. The study approved the capabilities of Taguchi’s fractional 

factorial design to efficiently analyze the response of soil erosion to dominant driving factors and 

detect and quantify in-field heterogeneity of erosion risk areas. The statistical models generated in 

this study can be used by environmental agencies and farmers for spatially explicit application of 

erosion control measures within fields with high spatial heterogeneity. Further, it is suggested that 

combining GIS with such numerical models can give great benefits for water quality control and 

soil management on larger scales with intensive spatial heterogeneous field conditions.  
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Chapter 4 
 

 

 

 

 

 

 

 

 

 

Comparison of predictive modeling approaches to estimate soil 

erosion under spatially heterogeneous field conditions  
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1. Introduction 

Soil systems are one of the key components affecting ecosystem services (Baer and Birgé, 2018; 

Baveye et al., 2016; Bouma et al., 2022) upon which many policies depend, including those crucial 

for water and nutrient cycling, agricultural sustainability, and climate change (Elbasiouny et al., 

2022). However, soil systems are subjected to degradation processes such as soil loss through water 

and wind erosion, which can be caused by inappropriate land management and is expected to 

intensify with climate change (Chalise et al., 2019). Soil erosion causes loss of fertile topsoil, 

organic matter, and essential nutrients (Peri et al., 2022), as well as reduction of rootable soil depth 

leading to crop yield losses (Pimentel, 2006). Soil erosion by water accounts for the biggest share 

of soil loss in Central European agricultural ecosystems (Panagos et al., 2015). Studies in Lower 

Saxony, Germany show the highest annual loss on a single field was 53.07 t ha-1 y-1 (Steinhoff-

Knopp and Burkhard, 2018). In addition, a significant increase is predicted in the frequency and 

magnitude of soil losses due to increasing rainfall intensities caused by changing climatic patterns 

(Fonseca et al., 2014). 

In recent years, a large number of runoff and soil erosion models with different representations of 

erosion and sedimentation processes have been developed (Raza et al. 2021). Their output 

differences and the resulting influence on model predictions have been the subject of several 

reviews (Raza et al., 2022a, 2021). Laboratory studies, small-scale in-field experiments, and 

empirical and physically-based erosion models have proved to be good tools to investigate these 

processes (Pandey et al., 2016). Moreover, these tools can help to understand the impact of 

heterogeneous soil physical and hydrological characteristics, climate variability, and floods on soil 

erosion, and hence help to improve controlling measures.  

Several large-scale soil erosion modeling approaches such as EUROSEM (Kinnell, 1999), MUSLE 

(Sadeghi et al., 2014), SEDD (Ferro and Porto, 2000), and PSIAC (Garg and Jothiprakash, 2012) 

have been studied and examined (Raza et al., 2021). Despite their ability to investigate, and predict 

soil erosion processes, most of these models do not provide reliable erosion prediction over 

spatially heterogeneous soil cover and soil physical properties at the field scale (Jetten et al., 1999). 

The main reasons for uncertainties in the erosion predictions are (1) Low spatial and temporal 

resolution of input data (de Vente and Poesen, 2005) (2) inefficient parameterization (Feng et al., 

2010) (3) unfitting calibration (Mondal et al., 2017). For instance, quality erosion predictions with 
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a simple empirical RUSLE model using low detailed input data over a large catchment require 

intensive calibration. Another limitation comes from the assumption that the soil properties (e.g., 

particle composition, and soil moisture content) are spatially uniform, whereas the spatial 

variability of these properties can be very high, even at the scale of a single field. In particular, 

spatial variability is known to have significant impacts on crop growth and soil water relationship 

in dynamic erosion modeling. Moreover, a few dynamic models have been developed to simulate 

erosion processes over a certain period, but they do not necessarily consider dynamic variables 

such as soil-water balance and vegetation cover (Schymanski et al., 2009). 

Temporally dynamic erosion estimations have been conducted with several landscape models such 

as SWIM (Krysanova et al., 2005), IQQM (Simons et al., 1996), TOPMODEL (Beven et al., 1984), 

and LASCAM (Zammit et al., 2003). Such models tend to predict accurately sediment transport 

and deposition but their application is normally limited due to a lack of input information, poor 

representation of vegetation dynamics as well as uncertainties related to the parameters involved. 

Most often, these models require detailed input data and outstanding computing systems.  

To address some of these issues related to conventional soil erosion modeling, a few erosion models 

are integrated into agroecosystem models (i.e., simulating soil water and crop growth in high 

temporal resolution). In this study, an attempt was made to integrate dynamic erosion models and 

a crop growth model to be applied at the field scale using the Scientific Impact assessment and 

Modeling (SIMPLACE) platform. SIMPLACE is a flexible modeling platform for advanced 

agroecosystem analysis that allows the combination of multiple components in a model solution 

(Gaiser et al., 2013b). The integrated model simulates the dynamics of vegetation cover under 

specified field management schemes, runoff, and erosion processes.  

Only a few studies have been conducted using dynamic models to simulate erosion under 

heterogeneous soil and crop growth conditions at the field scale. Therefore, this study was 

undertaken to test the capabilities of the integrated model solution to simulate soil erosion under 

highly heterogeneous field conditions and to compare its performance with a statistical model for 

the field conditions. Given the foregoing, the main objective of this research is to provide insights 

into the uncertainties involved in the simulation of sub-field scale runoff and soil erosion processes 

due to the model structure and parameter estimation. 
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2. Material and methods  

2.1. Experimental site description 

Measurements were conducted at a field site at Großmutz in Löwenberger Land municipality, in 

the north part of the federal state of Brandenburg, Germany (52° 56' 25.548'' N, 13°7'57.648'' E) 

(Fig. 4.1). Brandenburg has a temperate humid climate zone.  The research area has 6.25 ha and is 

characterized by heterogonous soil conditions with undulated slopes ranging between 1% and 7 %. 

Topsoil texture is classified as silty and medium to loamy sand. Soil physical and hydrological 

properties vary across the slopes in the research site. The field is undulating which has led to 

differences in edaphic and hydrological features, with terrain height averages from 51.5 to 57.5 m 

a.s.l. and pronounced slope gradients (Fig. 4.1). The climate of the region is temperate and humid 

with average rainfall of 554 mm year−1 (Gutzler et al., 2015) and mean annual temperatures 

between 7.8 °C and 9.5 °C (Ihinegbu and Ogunwumi, 2021, German weather station 2020). The 

daily mean weather data from (January 2019–September 2022) are presented in Fig. 4.2. 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 4. 1: Experimental site in Löwenberger Land, Brandenburg, Germany, (May 8th, 2020, 
Google Earth). The site topography was derived from the 2008 LiDAR imagery 
(https://geobroker.geobasis-bb.de). 

Crop growth and development stages were regularly monitored with biomass sampling and leaf 

area index (LAI) measurements. Destructive samples were taken for monitoring cop phenological 

stages and fresh and dry biomass. Non-distractive samples were taken for crop height and LAI 

https://geobroker.geobasis-bb.de/
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measurements. Data on the soil physical and hydrological properties was derived from field surveys 

at 87 different soil augering locations and subsequent laboratory analyses (Table 4.1). Erosion 

measurements were taken from 16 plots with factorial combinations of the depth to a loamy layer, 

slope inclination, and soil organic matter (SOM). On-field erosion, runoff, and crop-related 

observations and measurements were conducted at different times (Table 4.2). The 16 locations 

were considered to be well distributed in the research site (Fig. 4.1, Table 4.1) (Raza et al., 2022b). 

Details of the scheme for the selection of these points have been mentioned in  (Raza et al., 2022).  

Table 4. 1. Tests plots with factorial combinations for measuring soil erosion using a 
rainfall simulator 

Plot Slope 
% 

SOM 
% 

K LAI 
m2/ m2 

𝛌 Rainfall 
intensity 
mm/min 

Applied 
rainfall 

Mm 

Total soil 
water 

holding 
capacity 

mm 
1 1.48 2.30 0.30 0.01 0.165 <2.5 16.24 103.42 
2 2.9 2.48 0.33 0 0.200 2.7-3.3 18.72 84.78 
3 3.1 2.27 0.34 0.15 0.115 3.4-4 29.88 95.05 
4 4.8 1.88 0.37 0.2 0.083 >4 35.52 73.09 
5 3.8 2.47 0.29 0.1 0.165 3.4-4 22.9 92.54 
6 1.79 2.40 0.32 0 0.200 >4 32.4 92.45 
7 4.78 1.85 0.33 0.15 0.115 <2.5 19.96 90.76 
8 3.3 2.15 0.35 0.2 0.083 2.7-3.3 30.72 92.45 
9 4.07 2.03 0.31 0 0.165 >4 30.72 87.21 
10 5 2.20 0.29 0 0.200 3.4-4 32.56 76.62 
11 2.47 2.63 0.25 0.15 0.115 2.7-3.3 23.44 69.63 
12 2.23 2.12 0.27 0.2 0.083 <2.5 19.44 76.80 
13 8.02 2.50 0.34 0.1 0.165 2.7-3.3 16.8 73.52 
14 4.65 2.47 0.28 0 0.200 <2.5 19.8 90.45 
15 4.36 2.43 0.25 0.15 0.115 >4 30.2 88.78 
16 2.57 2.42 0.31 0.2 0.083 3.4-4 28.24 87.85 

 
SOM: soil organic matter, K: soil erodibility factor, LAI: leaf area index measured with SunScan 
Canopy Analysis System, λ: efficiency of entrainment, 
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Table 4. 2. List of data collection activities for calibration and validation   

Purpose Activity Date Crop 
calibration Runoff/Erosion 2020-2021 -  

LAI/Biomass 2019-2020 Winter Triticale  
LAI/Biomass 2021-2022 Rapeseed1    

 

validation Runoff/Erosion 2021 -  
LAI/Biomass 2020-2021 Winter Triticale  
LAI/Biomass 2021-2022 Rapeseed2 

    

Rapeseed1: Half samples (13 points) were used for calibration, Rapeseed2: Half samples (13 points) 
were used for validation 
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Fig. 4. 2: Weather in research site; (A) cumulative daily precipitation; (B) mean daily 
maximum (red) and minimum (blue) temperature; (C) mean daily irradiation over the 
experimental period. This weather data was collected from the weather station network 
maintained by the Deutscher Wetterdienst (DWD). 

A) 

B) 

C) 
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2.2. General overview of the modeling structure  

Within the modeling framework SIMPLACE (simplace.net), a model solution was designed which 

combines dynamic crop growth (Lintul5) (Ewert et al., 2011), and soil water balance (SlimWater, 

(Addiscott and Whitmore, 1991) with the runoff curve number approach (Shi et al., 2009) and two 

soil erosion methods, namely Freebairn and Rose. A third approach was the application of a locally-

based statistical model developed for the site conditions by (Raza et al., 2022c). The three 

approaches to model soil erosion were chosen for the following reasons: 

1. The approaches of Freebairn (Freebairn and Wockner, 1986) and Rose (Silburn, 2011) have 

been widely used, e.g, Freebairn model in (Bahri et al., 2019; Connolly et al., 2002; Dang 

et al., 2015; Yang et al., 2018), and Rose model in (Rose, 2001) 

2. Freebairn and Rose models provide provision to understand soil water dynamics by 

integrating runoff parameter  

3. A local statistical model was developed based on the observations from rainfall simulator 

experiments at the study site  (Raza et al., 2022c) 

The selected Freebairn and Rose soil erosion models are empirical approaches to simulate sediment 

yield and were combined with sub-models for estimating runoff and aboveground soil cover in a 

mechanistic way. The main drivers determining the sediment yield in these models include site 

topography, soil physical characteristics, soil moisture content, runoff, soil cover percentage, and 

supporting practice factors. The statistical model does not simulate soil erosion in a mechanistic or 

process-based way but takes into account rainfall intensity, slope, vegetation cover, soil texture, 

and depth to loamy layer in the field as predictors. Detailed information about the statistical model 

can be found in Raza et al. (2022), whereas the SIMPLACE model solutions are described in the 

following section (2.2.1). 

2.2.1. Description of the SIMPLACE model solution 

Two model solutions were developed to represent sediment yield in a daily timestep with the 

SIMPLACE framework. Each solution employed either Freebairn or Rose methods to represent 

soil erosion but shared the same structure for soil-plant-atmosphere processes, e.g.: 

SIMPLACE<Lintul5, SlimWater, Freebarin> and SIMPLACE<Lintul5, SlimWater, Rose>. In this 

way, the fraction of soil cover is dynamically simulated taking into account the green and senesced 

leaf area index (LAI) calculated by the Lintul5 module. Soil moisture is calculated based on soil 
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water holding characteristics and atmospheric demand obtained by the Penman-Monteith and dual 

coefficient methods described in Allen et al. (1998). Both soil cover and moisture status are 

employed to calculate rainfall runoff, which in turn is an input for the erosion simulations with 

Freebairn or Rose method. An overview of the main interconnections across data inputs, model 

components, and variables to calculate sediment yield is provided in Fig. 4.3. 

 

 

Fig. 4. 3: Simplified illustration of the model solutions developed for sediment yield in 
SIMPLACE (A) Freebairn model (B) Rose model. Green circles represent model input data 
and parameters, blue boxes are the modules within the SIMPLACE modeling platform, and 
orange boxes are the state variables.  

A) 

B) 
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2.2.2. Runoff 

A SIMPLACE<RunoffCurveNumber_APSIM> component was implemented in this study 

following the same framework used in the widely used APSIM platform (Keating et al., 2003a). 

This component uses the soil cover fraction, daily rainfall, and soil moisture content to simulate 

the runoff volume according to the Curve Number approach (Munna et al., 2021). In addition, the 

calculations also consider the effects of surface organic matter deposited on the soil surface as 

described in the APSIM platform, which was originally adapted from the PERFECT model 

(Hajigholizadeh et al., 2018). Parameters describing the reduction of runoff due to surface residue 

(CNcov and CNred) and soil characteristic curve number (CN2) can be modified to represent 

different field conditions. The soil cover fraction is expressed by the Beer-lambert law as a function 

of LAI and surface organic matter. 

𝐶𝑜𝑣𝑒𝑟𝐺𝑟𝑒𝑒𝑛 = ⁡1⁡ −⁡e(−KGreen ⁡∗⁡LAIGreen)⁡        (1) 𝐶𝑜𝑣𝑒𝑟𝑆𝑒𝑛𝑒𝑠 = ⁡1⁡ −⁡e(−KSenes⁡∗⁡LAISenes)        (2) 𝐶𝑜𝑣𝑒𝑟𝑆𝑢𝑟𝑓𝑂𝑀 = ⁡1⁡ −⁡e(−KSurfOM⁡∗⁡SurfOM⁡)                 (3) 𝐶𝑜𝑣𝑒𝑟𝑇𝑜𝑡𝑎𝑙 = ⁡1⁡ − (1 − 𝐶𝑜𝑣𝑒𝑟𝐺𝑟𝑒𝑒𝑛) ∗ (1 − 𝐶𝑜𝑣𝑒𝑟𝑆𝑒𝑛𝑒𝑠)     (4) 

The surface cover is estimated considering the surface organic matter using the add cover principle  𝐶𝑜𝑣𝑒𝑟𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛⁡ = ⁡⁡ (1⁡ −⁡(1⁡ −⁡𝐶𝑜𝑣𝑒𝑟𝑇𝑜𝑡𝑎𝑙) ⁡∗ ⁡(1⁡ −⁡𝐶𝑜𝑣𝑒𝑟𝑆𝑢𝑟𝑓𝑂𝑀))    (5) 

Where LAIGreen is Green Leaf Area Index (m2/m2), LAISenes is Senesced Leaf Area Index (m2/m2), 

SurfOM (t/ha) is the soil surface residues; KGreen, KSenes, and KSurfOM are the extinction 

coefficients for green LAI, for senesced LAI and SurfOM, respectively.  

Under the presence of soil cover, the CN2 value is internally adjusted to account for the runoff 

reduction due to surface residues and canopy interception. Surface residues inhibit the transport of 

water across the soil surface during runoff events and so the method uses a linear response curve 

to reduce runoff as a function of the amount of crop and residue cover. The effect on runoff is 

specified by a threshold surface cover (CNCov), above which there is no effect, and the 

corresponding curve number reduction (CNRed) (Eqn. 6). A second step correction is applied to 

account for the preceding status of soil moisture, which scale a new CN value between dry and wet 
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conditions of soil moisture in the top 45 cm soil depth (Eqn. 12 to 14). Runoff is then calculated 

with the corrected 𝐶𝑁𝑓𝑖𝑛𝑎𝑙for soil moisture and soil cover conditions as shown in Eqn. 15-16. 

 

Reduction in CN due to surface cover: 𝐶𝑁𝐶𝑜𝑣𝑒𝑟𝑅𝑒𝑑 = 𝑚𝑖𝑛(𝐶𝑜𝑣𝑒𝑟𝐹𝑟𝑎𝑐CNcov ∗ 𝐶𝑁𝑟𝑒𝑑, 𝐶𝑁𝑟𝑒𝑑)    (6) 𝐶𝑁2 = (max(0, CNbare − 𝐶𝑁𝐶𝑜𝑣𝑒𝑟𝑅𝑒𝑑))      (7) 

Soil moisture factor: 𝐹𝐶𝑓𝑟𝑎𝑐[𝑖] = (𝑆𝑊𝐶[𝑖] −𝑊𝑃[𝑖])/(𝐹𝐶[𝑖] −𝑊𝑃[𝑖])  where 0 ≤ 𝐹𝐶𝑓𝑟𝑎𝑐 ≤ 1  (8) 𝑆𝐹 = 1/(1 − exp⁡(−4.16))          (9) 𝑝𝑊𝑒𝑖𝑔ℎ𝑡[𝑖] = 𝑆𝐹 ∗ (1 − exp⁡(−4.16 ∗ min⁡(1, 𝐷[𝑖]⁡/⁡𝐸𝐷))     (10) 𝐶𝑁𝑆𝑊𝑓𝑎𝑐 =⁡∑ (𝐹𝐶𝑓𝑟𝑎𝑐[𝑖] ∗ 𝑝𝑊𝑒𝑖𝑔ℎ𝑡[𝑖])𝑁𝑖=1        (11) 

Where, 𝑆𝑊𝐶 is the soil water content (m3/m3), FC is the field capacity (m3/m3), WP is the wilting 

point (m3/m3), 𝑝𝑊𝑒𝑖𝑔ℎ𝑡 is a weighting factor as a function of soil depth, SF is the scaling factor 

used for 𝑝𝑊𝑒𝑖𝑔ℎ𝑡, D is the depth of soil layer [i] and ED is the effective depth for which soil 

moisture exerts influence in runoff (e.g., 45 cm); CNSWfac is the integrated soil moisture factor 

for the runoff calculations. 

 

Calculate CN at wet and dry conditions and scale with CNSWfac (Boughton, 1989): 𝐶𝑁1 = (𝐶𝑁2/(2.334 − 0.0133400 ∗ 𝐶𝑁2))       (12) 𝐶𝑁3 = (𝐶𝑁2/(0.4036 − 0.005964 ∗ 𝐶𝑁2))        (13) 𝐶𝑁𝑓𝑖𝑛𝑎𝑙 = (𝐶𝑁1 + (𝐶𝑁3 − 𝐶𝑁1) ∗ CNSWfac)      (14) 

Where CNSWfac⁡is⁡soil water factor to correct CN 

Potential max retention (s): 𝑠 = 254 ∗ ( 100𝐶𝑁𝑓𝑖𝑛𝑎𝑙 − 1)         (15) 
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Runoff (Q): 𝑄 =⁡ (𝑃 − 𝑎 ∗ 𝑠)2/(𝑃 + (1 − 𝛼) ∗ 𝑠)     (16) 

 

Where Q is runoff (mm), s is the retention parameter, P is depth of rainfall (mm),  𝛼 is constant to 

correct rainfall after the start of runoff.   

2.2.3. Crop growth and LAI dynamics (Lintul5) 

The model component LINTUL5 is used in this study to simulate crop growth and LAI dynamics 

(Srivastava et al., 2016) including a module to simulate 1D root growth (SLIMRoots) (Seidel et 

al., 2022). In LINTUL5, daily temperature sums and crop-specific requirements are used to 

simulate the crop development stage (DVS) and progression from emergence (DVS = 0.0) to 

anthesis (DVS = 1.0) and maturity (DVS = 2.0). The model uses the concept of radiation use 

efficiency, which can vary throughout the crop’s growth cycle and is depending on average air 

temperature and atmospheric CO2 concentration. Potential biomass growth is reduced by low soil 

moisture, whereas the effects of atmospheric CO2 concentration on radiation use efficiency and 

transpiration rates are detailed in (Oomen et al., 2016). Biomass is partitioned into roots, stems, 

leaves, and yield as a function of DVS, and water dynamics. Soil water is simulated by estimating 

daily changes in soil water content in a given number of soil layers based on the soil water balance 

approach. Evapotranspiration is calculated using a dual crop coefficient according to FAO56 

methods (Allen et al., 1998). Soil temperature is simulated using methods from the APEX model 

(Gassman et al., 2010).   

2.2.4. Soil erosion model approaches   

2.2.4.1.  Freebairn 

A modified Universal Soil Loss Equation proposed by Freebairn and Wockner (Freebairn and 

Wockner, 1986) predicts soil erosion considering variations in soil loss with runoff volume and 

cover fraction. This approach uses MUSLE erodibility, slope length, and a support factor 

(Djoukbala et al., 2019).  

The model has the following form: 𝑆𝑒𝑑𝐶𝑜𝑛𝑐 =⁡ 16.52⁡ − ⁡0.46 ∗ 𝐶𝑂𝑉⁡ + ⁡0.0031 ∗ 𝐶𝑂𝑉2 (When Soil Cover < 0.5)  (17) 
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𝑆𝑒𝑑𝐶𝑜𝑛𝑐 = 2.54 − 0.0254 ∗ 𝐶𝑂𝑉 (When Soil Cover >= 0.5)    (18) 𝐴 = 𝑆𝑒𝑑𝐶𝑜𝑛𝑐∗𝐿𝑆∗𝐾∗𝑃∗⁡𝑄10              (19) 

Where A (t/ha) is the event soil loss, COV (%) is the cover fraction (e.g., CoverFraction * 100), 

LS is the slope length and steepness factor, K (dimensionless) is the soil erodibility factor, P 

(dimensionless) is the supporting practice factor (in this study set equal to 1), and Q (mm) is the 

event runoff. The 1/10 resolves the unit’s conversion to obtain A in t/ha.  

LS is a slope and length factor in USLE, is based on the equation (Presbitero et al., 1995), 

 LS⁡ = ⁡ (65.41⁡ ∗ ⁡S2 ⁡+ ⁡4.56 ∗ S⁡ + ⁡0.065) ∗ ⁡(L/22.1)𝑚      (20) 𝑚 = 0.6 ∗ (1 − 𝑒−35.835∗S)         (21) 

LS is the slope length and steepness factor, S is sine of slope angle, and L (m) is the length of the 

catchment. 

2.2.4.2.  Rose model  

The Rose model is a simplified sediment concentration function developed in 1985 (Rose, 1985). 

The equation is given as  𝐸 = 2700 ∗ 𝑆 ∗ (1.0 − 𝑐𝑜𝑣𝑒𝑟) ∗ 𝜆 ∗ 𝑄100       (22) 

Where E (t/ha) is Event soil loss, S is sine of slope angle, cover (0-1) is fractional surface cover, Q 

(mm) Event runoff, and λ is factor approximating efficiency of entrainment. 

The efficiency of entrainment λ is calculated as follows (Rose, 1985) 

λ =⁡λ𝑏𝑎𝑟𝑒⁡𝑒−𝛽∗𝑐𝑜𝑣          (23) 

Where λ𝑏𝑎𝑟𝑒⁡⁡𝑡ℎ𝑒⁡efficiency of entrainment of bare surface, COV (%) is surface cover. 𝛽 is cover 

‘sensitivity’ factor 

2.3. Local statistical model 

The locally developed sediment model ((Raza et al., 2022c) is a simple empirical model used to 

predict sediment yield as a function of Silt + OM (SiltOM), vegetation cover (VC), slope (S), 
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rainfall intensity (RI), and depth to the loamy layer (DLL). The model is represented by the 

following equation  𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡⁡𝑦𝑖𝑒𝑙𝑑 = [−7.2 + 40.9𝑆𝑖𝑙𝑡𝑂𝑀 − 35.1𝑉𝐶 + 46.9𝑆 + 58.6𝑅𝐼 − 18.4𝐷𝐷𝐿]/100       (24) 

Where Sediment yield is in t ha-1. SiltOM, VC, Slope, RI, and DLL represent their levels. 

2.4. Sensitivity analysis 

A sensitivity analysis was performed for all parameters relevant to the sediment yield models to 

find the most influential parameters. The results were subsequently used to understand model 

behavior and guide calibration. To achieve this analysis, MUSLE model input factors were 

categorized into three groupings based on the MUSLE model structure: physical, conceptual, and 

hydrological input factors. Physical factors were length and slope, which were estimated by remote 

sensing and GIS. Conceptual factors were cover fraction and K, which were optimized through 

calibration, and the crop management factor which was assumed as 1 in this study. Hydrological 

factors were CN values for runoff estimation.  

The global sensitivity analysis for model parameters was performed using Sobol2007 (Lucay et al., 

2020). It applies the Monte Carlo estimation (Dagum et al., 2000) of Sobol's indices for both first-

order and total indices at the same time.  The effect of the model factor Xi on the output variance 

V can be described by the two Sobol’s sensitivity indices: “Total sensitivity index (STi)” and “First 

order index (Si)”. STi expresses the ratio between the variance caused by the ith factor when 

interacting with all the other model factors, while Si is calculated as the ratio between the variance 

directly caused by the ith factor (Vi) and the total variance of the model output (V): 𝑆𝑖 = 𝑉𝑖𝑉             (25) 

𝑆𝑇𝑖 = 1− 𝑉~𝑖𝑉            (26) 

Where 𝑉~𝑖⁡is the variance not related to the ith factor. 𝑆𝑇𝑖 ⁡considers all the possible interactions 

between model parameters, providing an understanding of the sources of uncertainties. 

Consequently, it is possible to prioritize the factors and exclude the non-sensitive (i.e. factors with 

low indices) from the further analysis of model calibration.    
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2.5.   Model calibration and validation  

2.5.1. Calibration procedure and setup 

A classical approach was followed to: (a) evaluate model performance using statistical indexes of 

performance between the simulated and the observed values, and (b) adjust the parameters using 

an optimization algorithm. Root mean square error (RMSE) and Nash–Sutcliffe model efficiency 

coefficient (NSE) were used for model evaluation. An automatic calibration procedure with the 

Nelder-Mead method was implemented in Rscript to calibrate multiple parameters at the same time 

using the RMSE as the objective function. The procedure was reproduced several times considering 

different initial conditions to approximate the global minima. Maximum and minimum parameter 

values were imposed based on previous literature to select parameter values at plausible ranges. 

2.5.1.1. Runoff and erosion 

To calibrate the Runoff model, we used the observed runoff data from rainfall simulator field 

experiments conducted at different crop stages of winter triticale from September 2020 to February 

2021 (Table 4.2). Model fit was optimized also using the RMSE and NSE values between the 

dataset of field observations and the model results. The important parameter is the runoff curve 

number (Hawkins, 1996) at bare field cover, used in partitioning rainfall between infiltration and 

runoff, which is usually derived from guidelines based on soil texture and soil surface 

characteristics (Ringrose-Voase et al., 2003). Under high spatial heterogeneity of soil 

characteristics, CNbare was calibrated to obtain the optimum CNfinal that represents all the 16 points 

distributed across the field. 

The selected erosion models were calibrated with the data set from the field experiments for 

sediment yield at different crop stages of winter triticale between September 2020 and February 

2021. Both Freebairn and Rose erosion models calibration were done separately for all sampling 

points. Soil erodibility factor K was calibrated for the Freebairn model to find the best suitable 

value for K that represents the spatial heterogeneity across all sampling points. The same procedure 

was applied to calibrate the efficiency of the entrainment factor for bare surface (λbare) in the Rose 

model. While by definition 0 < λ𝑏𝑎𝑟𝑒⁡< 1, at present λ can only be determined accurately by 

calibrating the model against measurement data on sediment concentration. Values of 

λ𝑏𝑎𝑟𝑒⁡depend on soil type,  and field management practices. As the factor λ plays an important 

role in the performance of the Rose model, we calibrated the λ𝑏𝑎𝑟𝑒⁡for further analysis. Parameter 
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values obtained on the field experiment in 2020-2021 were used for the calibration of soil erosion 

models and observed field data collected betrween September 2021 and November 2021 were used 

for the validation of the models (Table 4.2).  

2.5.1.2. Lintul5  

Lintul5 crop parameters were calibrated (1) for the winter triticale cropping season in 2019-2020 

and (2) for the rapeseed cropping season in 2021-2022 (Table 4.2). The data used for calibration 

was the phenological stage, LAI, and total aboveground biomass collected at different times within 

the growing season. The first step consisted of adjusting the phenological parameters TSUM1 and 

TSUM2 to match the observed data. Then, the parameters controlling the “crop radiation use 

efficiency and specific leaf area” were adjusted to calibrate LAI and aboveground simulations. A 

third step consisted in adjusting the maximum rooting depth, necessary to better represent the crop 

response to drought. The parameters for calibration of Lintul5 were selected based on the literature 

review for winter wheat growth simulation (Asseng et al., 2013). As the observed data for rapeseed 

were collected in only one cropping season, the crop model (LINTUL5) was calibrated with the 

half dataset of crop observation points in the season, whereas the other half was used to validate 

the model for rapeseed growth. The base parameter values used as the starting point to calibrate 

Lintul5 for both crops were those used by (Webber et al., 2020) to simulate winter wheat and 

rapeseed across Germany. 

2.5.2. Validation  

Validation for runoff and sediment yield was performed by assessing the fit of models to the 

observed data collected from the field experiments in September and November 2021 during the 

rapeseed crop growing season. The crop model (LINTUL5) was also validated for the winter 

triticale data observed in 2020-2021 (Table 4.2). The validation of the crop model was performed 

with half the dataset observed for rapeseed crop in 2022 to support the performance of runoff and 

erosion models in rapeseed crop cover (Table 4.2). 

3. Results and discussion 

3.1. Sensitive parameters and input information for the erosion models 

The sensitivity analysis presented consistent results regarding the importance of the input data on 

runoff volume and slope angle for both the Freebairn and Rose erosion models. The simulations of 
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sediment yield from the Rose model showed a sensitivity to the cover fraction between 0% and 

25% compared to that of the Freebairn model (Fig. 4.4a). The selected parameters with the highest 

influence were used for model calibration (Table. 4.3). Soil erodibility factor K was the highest 

influential parameter after slope angle for Freebairn model. The values of the Sobol indices for 

other parameters which were used as observable inputs, identified the importance of the quality of 

collected input data.  The most significant change in sensitivity for the Freebairn model occurred 

in the vegetation cover transition from 0% to 50% (Fig. 4.4b). The interception of rainfall by the 

vegetation cover is low with less vegetation cover and hence raindrops are reaching the soil surface 

with higher kinetic energy. In a field, with sandy topsoil textures causing a high soil erodibility 

factor K presents a higher sediment yield (Bonilla and Johnson, 2012). On the other hand, the 

ranking of the sensitivity of the parameters changed for the Rose model (Fig. 4.4a). The λ𝑏𝑎𝑟𝑒⁡was 

the most influential parameter in the Rose model. The changes in sensitivity of the parameters of 

Rose model occurred within a small range of vegetation cover i.e. in the transition from 0% to 25% 

cover. This may represent a limitation in the applicability of the Rose model at higher vegetation 

cover (Silburn, 2011). Entrainment by the surface flow is thus the dominant mechanism 

contributing to sediment transport in the Rose model when vegetation cover is small (Rose, 1985).  

 
Table 4. 3. Ranking of parameters  

Model Parameter Ranking Range for sensitivity 
   Min max 
Freebairn Slope angle 1 0.01 45 

K 2 0.01 0.3 
Q 3 1 25 

     
Rose  λ𝑏𝑎𝑟𝑒⁡ 1 0 1 

Q 2 1 25 
Slope angle 3 0.01 45 

Slope angle: degrees of slope in the field (degree), K: soil erodibility factor, Q: surface runoff (mm) 
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Fig. 4. 4: Evolution of the Sobol sensitivity indices of the (A) Rose and (B) Freebairn model 
parameters from cover = 0 % to cover = 100%. The upper subplot shows the extreme (colored 
dashed -lines), inter-quartile (grey), and median (bold line) output values of soil erosion at all 
cover steps. The lower subplot represents the sensitivity indices at all cover steps for the main 
effects and the first-order interactions. 
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3.2. Calibration results 

The ranges of values of the parameters used for calibration and the final calibrated values are 

shown in Table 4.4. 

Table 4. 4. The ranges of values of the parameters used for calibration 

Model Parameter  Calibration range Calibrated 
value 

Uncalibrated 
value 

  min max   
Runoff  

 CNred 5 20 6.44 20 
 CNbare 61 85 83.99 80 
 𝛼 0.05 0.3 0.05 0.2 

Rose  
 λ𝑏𝑎𝑟𝑒⁡ 0.1 1 0.20 0.7 

 𝛽 0.01 0.5 0.04 0.15 
Freebairn  

 K 0.15 0.4 0.2 0.3 

CNred: CN value at residue cover,  CNbare: CN value at bare land, λbare: efficiency of entrainment 
at the bare surface,  𝛽 is cover ‘sensitivity’ factor, K: soil erodibility factor  

3.2.1. Runoff 

Simulation of daily runoff during the growing season is shown in Fig. 4.5. The comparison of 

runoff volumes observed in the field during the measurements with the rainfall simulator and the 

simulated values is shown in Fig. 4.6.  

After calibration of the model on the 16 observation points, the average curve number for the soil 

with no vegetation cover (CNbare, in Eqn. 7) was 83.9, the value of CNred was 6.4 and 𝛼  was 0.05. 

Before calibration, the standard CN method underestimated the runoff depths for all 16 plots with 

RMSE and NSE of 10.34 mm and -0.06 respectively (Fig. 4.6b). Similar underestimation was 

reported by (Van Mullem, 1991) suggesting that multiple factors might cause this underestimation 

of runoff depth, but the soil cover and moisture are considered one of the most influential factors 

which affect the values for CN and α for initial abstraction (Littleboy et al., 1996). (Huang et al., 

2007) evaluated that tabulated CN values are almost always lower than that of measured CN values 

which results in underestimated runoff depths. These observations by (Huang et al., 1999) that the 

underestimation of runoff depth by the standard SCS method is due to underestimating the CNfinal 

with the available soil moisture content value, which results in underestimated runoff. However, 

the value of 𝛼 for initial abstraction could be calibrated to improve the runoff predictions. A 
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comparison of Fig. 4.6a and Fig. 4.6b indicates that runoff estimations are in better agreement with 

observed runoff measurements with 𝛼 value of 0.05. Based on the calibration results, the used 𝛼  

value as 0.05 would be appropriate rather than the commonly used value of 0.2. This increased the 

model NSE from -0.06 to 0.89 compared to the uncalibrated CN approach. This agrees with 

findings by  (Shi et al., 2009), who showed that modified 𝛼  and CNbare values  improved the 

agreement between measured and predicted direct runoff to a high degree. 

 
Fig. 4. 5:  Simulation of Runoff during the cropping season 2020-2021 of Winter Triticale 
after calibration on 16 distinct points in the field where rainfall simulator experiments were 
conducted between September 2020 and April 2021 (see black dots in each figure) 
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Fig. 4. 6: Comparison of observed and simulated runoff with calibrated (A) and uncalibrated 
(B) parameter values 

 
3.2.2. Performance of the Erosion models 

Simulation of daily sediment yield during the growing season 2020-2021 by the Freebairn and 

Rose models are shown in (Fig. 4.7 & 4.8) for the calibration. The comparison of observed and 

simulated values along the 1:1 line for calibration is shown in (Fig. 4.9, 4.10 & 4.11). 

Soil erosion observation results showed that higher rainfall intensities produce more runoff and 

sediment yield in each event with 0 % vegetation cover expressed by an LAI of 0 (Table 4.5).  The 

highest rate of erosion was estimated in plot 10, where the simulated soil loss was 4.39 and 4.11      

t ha-1 d-1 by Freebairn and Rose models, respectively, whereas the local statistical model predicted 

the highest soil loss of 4.19 t ha-1 d-1 at plot 9.  

 

 

 

 

A) B) 



  

94 

 

Table 4. 5. Simulated sediment yield and runoff resulting from event rainfall simulations in 
2020-2021 on 16 experimental rainfall simulator plots  

Test 
Plot 

Slope 
% 

K 
 

Measured 
LAI 

m2/ m2 

Applied 
rainfall 

mm 

runoff 
mm 

 
Simulated sediment yield 

t ha-1 d-1 

Observed Simulated  Observed Freebairn Rose 
Local 
model 

1 1.48 0.30 0.01 16.24 6.71 6.55  0.64 0.43 0.54 0.86 
2 2.9 0.33 0 18.72 8.97 8.15  1.26 0.93 1.02 1.38 
3 3.1 0.34 0.15 29.88 17.01 16.55  1.88 1.73 1.64 1.90 
4 4.8 0.37 0.2 35.52 23.50 20.19  2.16 1.57 0.86 2.42 
5 3.8 0.29 0.1 22.9 7.67 11.39  2.07 2.05 2.39 2.36 
6 1.79 0.32 0 32.4 20.22 18.90  2.93 1.29 1.46 2.31 
7 4.78 0.33 0.15 19.96 9.85 8.87  1.51 1.63 1.35 1.79 
8 3.3 0.35 0.2 30.72 17.53 16.28  1.98 0.78 0.48 1.74 
9 4.07 0.31 0.1 30.72 18.80 17.69  3.71 3.49 3.98 4.19 
10 5 0.29 0 32.56 20.44 19.03  4.99 4.39 4.11 3.90 
11 2.47 0.25 0.15 23.44 12.57 11.46  1.73 0.93 0.91 1.01 
12 2.23 0.27 0.2 19.44 8.34 7.87  0.60 0.24 0.16 0.72 
13 8.02 0.34 0.1 16.8 6.54 6.93  3.23 3.60 3.07 3.71 
14 4.65 0.28 0 19.8 10.38 8.92  2.50 1.86 1.79 2.12 
15 4.36 0.25 0.15 30.2 17.69 16.82  3.62 2.73 2.35 3.61 
16 2.57 0.31 0.2 28.24 15.41 14.32  1.19 0.51 0.33 2.02 

 
In Fig. 4.7, simulated sediment yield by the Rose model tends to match with observed data except 

for the points where the slope is small without vegetation cover (Plot 6) and where the slope is 

steep and  LAI is around 0.2 (plots 8, 12 and 15) regardless of the rainfall intensity (Table. 4.5, Fig. 

4.7). Similarly, the simulated sediment yields with the Freebairn model were underestimated on 

these plots (Fig. 4.8). The local statistical model, on the other hand, shows better agreement 

between observed and predicted sediment yields  (Fig. 4.11). Rose and Freebairn models produced 

relatively similar predictions, however, the Freebairn model showed a slightly better accuracy of 

erosion estimations among plots having significant soil characteristics variations among these test 

plots. The Freebairn model was quite sensitive to the erodibility factor K, which explains the high 

underprediction of the sediment yield in plot 6 and plot 8 (Fig. 4.8) when the calibrated value of  

0.2 compared to the measured values of K as 0.32 and  0.35 respectively for these plots was used 

(Table 4.5). The K factor is controlled by intrinsic soil properties such as texture and is also 

influenced by more dynamic soil properties such as soil moisture content, aggregation, and SOM 

(Marques et al., 2019; G. Wang et al., 2016; Webb and Strong, 2011). However, these studies were 

specific to local soil conditions and for a given area.  Relationships among the soil properties and 
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the soil erodibility indicator K in the rainfall experiment using Pearson’s correlation coefficients 

were calculated for the local application (Table 4.6). The results showed that the SOM contents (R 

= −0.48) were negatively correlated with soil erodibility, which suggested that erodibility is highly 

controlled by SOM. However, the current definition of the Freebairn K factor does not take these 

relationships into account. These results are consistent with the findings of (Stanchi et al., 2015) 

that erodibility is negatively correlated with organic content within the range of 0 to 10%.  

Table 4. 6. Pearson’s correlation coefficients (R) between soil properties variables for all 
rainfall simulation samples 

 
Slope 
% 

SOM 
% 

SAWHC1 

mm 
Sand 
% 

Silt 
% 

Clay 
% 

Topsoil 
layer 
moisture 
content 
mm 

Bulk 
density 
kg m-3 

K 

Slope 1 
     

 
  

SOM -0.11 1 
    

 
  

SAWHC* -0.42 -0.02 1 
   

 
  

Sand 0.18 0.14 -0.4 1 
  

 
  

Silt -0.05 -0.32 0.37 -0.89 1 
 

 
  

Clay 0.22 0.11 0.02 -0.77 0.69 1  
  

Topsoil layer 
moisture content  

-0.13 -0.51 -0.19 -0.01 0.19 0.02 1 
  

Bulk density  0.56 0 -0.24 0.19 -0.14 0.07 -0.31 1 
 

K 0.24 -0.48 0.09 -0.43 0.7 0.43 0.47 -0.08 1 
1SAWHC: soil available water holding capacity 
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Fig. 4. 7: Sediment yields of Rose model simulation after calibration during the cropping 
season 2020-2021 of Winter Triticale. SAWHC*: Soil available water holding capacity; SM*: 
Soil moisture content before the experiment 

The Rose model showed clear underprediction for the plots with LAI higher than 0.15 in plots 4, 

8, 12, and 16 (Fig.  4.7). The LAI simulation results for calibiration are presented in Fig. 1 in 

Appendix.The performance of the Rose model depends on the λ which relies on soil type, 

management, and the fraction of soil surface exposed to overland flow (Rose et al., 1983). The 

value of λ for high vegetation cover was considerably lower (Table. 1). (Silburn, 2011)  suggested 

that λ is in reverse relation with a cover fraction which is also evident in this study where λ is 

negatively correlated with cover (-0.93) (Table. 4.7). Moreover, lower λ  values for cultivated soils 

are related to their erodibility leading to low sediment yield with high runoff amounts at plot 6 (Fig. 

4.7) (Table. 4.1) which agrees with reports by (Silburn, 2011). 
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Table 4. 7. Pearson’s correlation coefficients (R) between soil properties and cover for all 
rainfall simulation samples 

 Slope SOM sand silt clay Bulk density cover λ 
Slope 1        
SOM -0.11 1       
sand 0.18 0.14 1      
silt -0.05 -0.32 -0.89 1     
clay 0.22 0.11 -0.77 0.69 1    
Bulk density 0.56 0 0.19 -0.14 0.07 1   
cover -0.15 -0.38 0.34 -0.21 -0.51 -0.43 1  
λ 0.07 0.34 -0.24 0.14 0.5 0.41 -0.93 1 

 
 

 
Fig. 4. 8: Sediment yields produced by the Freebairn model simulations after calibration 
during the cropping season 2020-2021 of Winter Triticale  

The simulated sediment yields were close to the observed values (Fig. 4.9, 4.10, 4.11) showing that 

all three models had a positive relationship between estimated and observed sediment yield. The 

local statistical model showed the highest accuracy with NSE = 0.82. However, the performance 

parameters of dynamic model simulation of the Freebairn and Rose models showed that the 

Freebairn model more accurately estimated the sediment yield compared to predictions made by 
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a
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 d
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the Rose model. The Freebairn model predicted sediment yield with NSE = 0.71 and RMSE = 0.69 

which is better than the model efficiency of Rose (NSE= 0.62, RMSE = 0.83). This value of model 

efficiency is satisfactory for sediment yield calibration as reported by (Onsamrarn et al., 2020). 

When Rose and Freebairn models were run with calibrated lintul5, sediment yield predictions were 

slightly lower in efficiency (Fig 4.9a, Fig. 4.10a) compared to the predictions when models were 

run with an observed cover fraction (Fig. 4.9b, Fib. 4.10b). Disagreement in predictions tended to 

increase when models were run with calibrated runoff model and uncalibrated lintul5 (Fig. 4.9c, 

Fig, 4.10c). However, the errors in sediment yield for both models were drastic when models were 

run with calibrated Lintul5 only as evident from NSE values of -0.13 and -0.1 for Freebairn and 

Rose models respectively (Fig. 4.9d, Fig. 4.10d). Similar trend in NSE was found with uncalibrated 

runoff and lintul5 models (Fig. 4.9e, Fig, 4.10e). 

These results showed that a performance assessment of the runoff model is important to accurately 

predict the sediment yield with Freebairn and Rose models within SIMPLACE. This is also evident 

from the correlation coefficients between erosion models and cover with -0.01 and -0.14 for 

Freebairn and Rose models respectively, whereas, there is a strong positive correlation with runoff 

(Table. 4.8). This was explained in the study by (Raza et al., 2022b) where  Rainfall intensity 

contributed most strongly to sediment yield (40.55%) followed by slope steepness (23.76%) and 

vegetation cover (17.73%). (Panagos and Katsoyiannis, 2019; Peng and Wang, 2012) indicated 

that sediment yield was positively related to the runoff events with high rainfall storms.   

Table 4. 8. Pearson’s correlation coefficients (R) between output variables produced by 
different erosion, runoff, and vegetation models for all rainfall simulation tests  

 Slope 
Lintul5 

LAI 
Applied 
rainfall 

USDA 
runoff 

Freebairn Rose 
Local 
model 

Slope 1       

Lintul5 LAI 0.11 1      

Applied 
rainfall 

-0.05 0.46 1     

USDA runoff -0.03 0.42 0.99 1    

Freebairn 0.74 -0.01 0.26 0.32 1   

Rose 0.61 -0.14 0.21 0.29 0.97 1  

Local model 0.68 0.04 0.44 0.49 0.92 0.89 1 
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Fig. 4. 9:  1:1 line relationship between simulated and observed sediment yield for the 
calibration of the Freebairn. When Freebairn model; (a) calibrated with pre-calibrated 
Lintul5 & runoff models, (b) Calibrated with observed LAI and pre-calibrated runoff, (c) 
Calibrated with pre-calibrated runoff model only, (d)  Calibrated with pre-calibrated Lintul5 
only, (e) Calibrated with uncalibrated Lintul5 and runoff models 
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Fig. 4. 10: 1:1 line relationship between simulated and observed sediment yield for the 
calibration of the Rose model. When Rose model; (a) calibration with pre-calibrated Lintul5 
& runoff models, (b) Calibrated with observed LAI and pre-calibrated runoff, (c) Calibrated 
with pre-calibrated runoff model only, (d)  Calibrated with pre-calibrated Lintul5 only, (e) 
Calibrated with uncalibrated Lintul5 and runoff models 
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Fig. 4. 11:    1:1 line relationship between simulated and observed sediment yield for local 
model 

3.3. Validation 

An attempt was made to validate the runoff model after the calibration with data from September 

2021 to November 2022 rapeseed cropping season. The LAI simulation results for validation are 

presented in Fig. 2. in Appendix. The simulation results showed that RMSE values of runoff with 

the validation data set (Fig. 4.12b) were slightly higher than after calibration (Fig. 4.6a). 

Nevertheless, many tested models have difficulties in simulating the runoff at extremely low and 

high rainfall events. (Chahinian et al., 2005) investigated that this problem is caused by difficulties 

in determining the soil moisture conditions during flood events, which do not necessarily consider 

the soil moisture distribution during the duration of the rainfall events.    
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        A)

  

 
Fig. 4. 12: Validation of the runoff model during the cropping season 2021-2022  on 16 distinct 
points in the field (A) where rainfall simulator experiments were conducted between 2021 
and  2022 (see black dots in each figure) (B) 1:1 line relationship between simulated and 
observed runoff yield during the validation period 

B) 
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Simulation of daily sediment yield during the growing season 2020-2021 by the Freebairn and 

Rose models are shown in (Fig. 4.13a & 4.14a) for validation. The comparison between the 

simulation and observed values along the 1:1 line for validation is shown in (Fig. 4.13b, 4.14b & 

4.15).  Both Freebairn and Rose models performed well (Fig. 4.13b & 4.14b) when the runoff 

model efficiency indicator was acceptable (Fig. 4.12b). Results of the validation assessment of 

erosion models showed that the Freebairn model had a good performance in sediment yield 

predictions during the validation period (Fig. 4.13b). In contrast, the Rose model had a limitation 

in sediment yield prediction and showed slightly higher RMSE (0.89 t ha-1 d-1) and NSE (0.8) under 

the highly heterogeneous soil conditions of the experimental site (Fig. 4.14b). The λ values from 

the rainfall simulator plots may tend to underestimate soil loss on longer slopes and overestimates 

on high rainfall intensity events (Silburn, 2011). The performance of the local model with the 

validation data set, on the other hand, showed the highest uncertainties in simulating sediment yield 

with an RMSE value of 1.1 t ha-1d-1 among erosion models in this study (Fig. 4.15). This is because 

of the specific environmental conditions (soil physical characteristics, topography, and vegetation 

cover) during the development of the local statistical model.  
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Fig. 4. 13: Freebairn model simulation for sediment prediction; (A) validation of sediment 
yield during the cropping season 2021-2022 of Rapeseed crop (B) 1:1 line relationship 
between simulated and observed sediment yield for the validation of the Freebairn erosion 
model combined with the outputs of calibrated or uncalibrated vegetation and runoff models; 
(a) Freebairn model combined with calibrated Lintul5 & runoff models, (b) Freebairn model 
combined with calibrated Lintul5 model only, (c)  Freebairn model combined with calibrated 
runoff model only, (d) Freebairn model combined with  uncalibrated Lintul5 and runoff 
models  
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Fig. 4. 14: Rose model simulation for sediment prediction; (A) validation of sediment yield 
during the cropping season 2021-2022 of Rapeseed crop (Black points represent 
observations) (B) 1:1 line relationship between simulated and observed sediment yield for the 
validation of the Rose erosion model combined with the outputs of calibrated or uncalibrated 
vegetation and runoff models; (a) Rose model combined with calibrated Lintul5 & runoff 
models, (b) Rose model combined with calibrated Lintul5 model only, (c)  Rose model 
combined with calibrated runoff model only, (d) Rose model combined with  uncalibrated 
Lintul5 and runoff models  
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Fig. 4. 15: Validation of local model for sediment prediction 

4. Conclusion  

This study aimed to provide insight into the uncertainties that are involved in the simulation of sub-

field scale run-off and soil erosion processes due to the model structure. Therefore, three different 

sediment yield models (local statistical model, dynamic Freebairn, and Rose model) were 

combined with the outputs of calibrated and uncalibrated runoff and vegetation models as well as 

vegetation cover (LAI) observations.  The simulations of water erosion with dynamic Freebairn 

and Rose models were influenced by the performance of runoff and crop growth models.  However, 

a pronounced difference was found between modeled and measured soil erosion when these 

predictions were made with an uncalibrated runoff model. Hence, our results highlighted that large 

uncertainties in soil erosion modeling were associated with improper performance of the runoff 

model.  

The most sensitive parameters affecting sediment yield simulation in the Freebairn model were 

field topography, soil erodibility factor, and runoff. The most sensitive parameter affecting 

sediment yield in the Rose model was the efficiency of entrainment λ. Entrainment by the surface 
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flow became the dominant mechanism contributing to sediment transport when vegetation cover is 

small and it drastically influences the sediment yield. Our results demonstrated that these 

parameters are the key site factors affecting the performances of predicting soil loss by the 

Freebairn and Rose models in heterogeneous field conditions. 

The dynamic models and local statistical model were successfully applied in the study area, the 

obtained outcomes were relatively close to the observations. The findings give considerable 

confidence in the model structure. Therefore, it can be concluded that both Freebairn and Rose 

models can be used as tools to predict sediment yield within the SIMPLACE framework. However, 

it should be noted that selected models were tested with prevailing local environmental and field 

conditions in the study area, which implies that these conclusions only apply to the field with 

characteristics similar to the study area. The preferred criteria to select these models were identified 

through the combined consideration of model structure, data availability, and the SIMPLACE 

framework. Further improvements of soil erosion models should focus on enhancing the data 

quality for model applications and improving the representation of these models in terms of their 

scales and objectives. 
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1. General Discussion and Conclusions  

1.1.  Challenges in field scale erosion process modeling under heterogeneous field 
conditions   

Results of chapter 2 showed that soil erosion models are subjected to certain limitations sourced 

from their development objectives (Q1-Table 1). These objectives most often are derived from the 

site-specific environmental conditions and scale of the erosion process. However, individual hydro-

geomorphological processes and vegetation cover impact differently on the soil erosion process 

across various scales which influences the model calibration and model performance. Calibration 

of field-scale models based on data from fields that are characterized by a high spatial heterogeneity 

of topography and soil types is more accurate than using averaged data from larger catchment areas. 

Hence, calibration of the field scale model requires a large input data set with multiple factors 

which may spatially vary drastically even in a single field.  

Field conditions predominantly influence the model input data requirement and data quality. Thus, 

controlling the level of complexity in the model calibration process.  This has a remarkable 

influence on the simulation of soil erosion, runoff transportation capacity, and sediment deposition. 

Our results depicted that among different field conditions, “slope” is particularly one of the major 

factors in the erosion process and plays a key role in modeling process. For models using USLE to 

reflect the effect of slope length on soil erosion, the major problem (Q1-Table 3) is the suitable 

selection of slope segments in fields with complex topography where slope characteristics may 

vary drastically at field scale. The other important factor is the soil physical and hydrological 

properties with spatially heterogeneous nature within a field that define the limitations of field scale 

models in representing the soil erosion process. For instance, EPIC predicts soil losses from the 

flows in rill areas only. Whereas EUROSEM, WEPP, and GLEAMS estimate soil losses from rill 

and inter-rill areas separately (Q1-Table 3). 

Furthermore, the accuracy of the simulation of erosion rates depends on the spatial dimension taken 

into account, i.e. whether processes are simulated at the soil profile scale (1D, point based assuming 

a field with homogeneous soil and terrain conditions) and/or whether spatially distributed or multi-

dimensional method (2D/3D) are applied. A particular shortcoming of most of the existing field 

scale models is their one-dimensional nature. The quality and accuracy of the calibration of the 

field scale models in heterogeneous fields should increase with the dimension that is considered 
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(Q1-Table 6). However, the results of this study revealed that the availability of accurate soil 

information is a major bottleneck for multi-dimensional models. 

1.2.  Challenges in field scale erosion process modeling under complex cropping systems 

Similar to the impact of heterogeneous field conditions (slope, soil physical, and hydrological 

properties), the field scale soil erosion process is also greatly affected by the type and the dynamics 

of the cropping system. Tools are required to predict the impact of diverse cropping systems on the 

soil erosion process. The results of Q1 showed that there are no modeling techniques yet available 

to represent the soil erosion process in complex cropping systems such as alley cropping, row and 

strip intercropping, patch cropping, and agroforestry (Fig. 5.1). Motivated by the previous section 

(5.1), models were specifically studied to evaluate their capabilities to simulate the erosion process 

under such cropping systems.    

 

Fig. 5. 1: Agroforestry system at research site 

A few soil erosion models coupled with dynamic cropping models investigated the soil loss and 

surface runoff but they do not explicitly focus on the impact of mixed vegetation cover on soil 



  

111 

 

detachment and generation of surface runoff at the field scale. For instance, Water Nutrient and 

Light Capture in Agroforestry Systems (WaNuLCAS) potentially is able to simulate processes in 

agroforestry systems but there is a lack of evidential reports on its capabilities to simulate soil 

erosion in agroforestry systems. Although some attempts are being made to improve soil erosion 

models, there is still room to develop tools that consider the representation of soil erosion processes 

under complex cultivation patterns on the same field. 

An important cause of model simulation uncertainties in complex cropping systems is the 

increasing importance to estimate overland flows under varying spatial arrangements and temporal 

dynamics of different canopies on an agricultural field. Modeling capabilities should be improved 

and tested with respect to the soil erosion process in strip and patch cropping systems as well as 

agroforestry systems. Existing agroforestry models must be improved to incorporate erosion 

processes in fields with high spatial heterogeneity with respect to soil properties, slope inclination, 

and length, preferably considering three dimensions. Such new developments might also support 

upscaling of soil erosion processes to larger spatial scales (watershed to basin scale). 

1.3.  Challenges in measuring soil erosion considering the multiple drivers involved: 
Understanding the fine-scale spatio-temporal dynamics of soil erosion processes  

The results of chapter 3 reveal that spatial heterogeneity of soil physical characteristics, 

topography, and temporal variations in soil cover has a considerable impact on the soil erosion 

process (Q2-Fig. 4) in the study area. A key challenge in soil erosion studies is understanding the 

connectivity of landscape characteristics and their interactions.  In order to better understand soil 

erosion and soil movement in agricultural systems, research needs to be conducted at the correct 

temporal and spatial scale at the farm field with intensive data of field conditions. This research 

was conducted in a field which has been selected to represent a typical situation in the landscape 

formed by the last glaciation in North East Germany. This region is intensively used as cropland 

and is characterized by soils formed from the glacial till of the last glacial period and later modified 

by fluvial and erosive processes. Thus, it created an enormous small-scale heterogeneity in the 

landscape and in vulnerability to the soil erosion process.  

In concordance with the results, different scenarios tested showed that soil erosion and runoff 

responded differently under different combinations of factors and their complex interactions within 

a single field of 6 hectares (Chapter 3-Table 3.1). Thus, the combination of factors and their 
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interactions were identified causing potential soil loss and runoff under given field conditions 

(Chapter 3-Table 3.4). Rainfall intensity and slope steepness had a remarkable influence on the 

amount of sediment yield and volume of runoff. Based on the results, it was suggested that the 

highest sediment yield should be obtained with the factor levels combination of 4, 2, 4, 4, 1 of Silt 

and organic matter, vegetation cover, slope steepness, rainfall intensity, and depth to loamy layer 

respectively. On the other hand, the lowest sediment yield should be obtained with the factor levels 

combination of 1, 4, 1, 1, 2 of Silt and organic matter, vegetation cover, slope steepness, rainfall 

intensity, and depth to loamy layer respectively. The highest rainfall intensity (>4 mm min−1) led 

to the highest volumes of runoff, followed by the factor vegetation cover (maximum values at Level 

4). Runoff was mostly influenced by rainfall intensity followed by vegetation cover, and slope. The 

stronger impact of vegetation cover compared with the slope can be explained by the stronger 

variability of vegetation cover at different soil management stages during the experimental period 

in the study area. Moreover, earlier studies showed that surface runoff depth is sensitive to the plot 

size and type of vegetation. From our results, it is also depicted that erosion studies are limited by 

their size, i.e., constrained to experimental research plots, it can be difficult to interpret the results 

in both space and time to represent landscape connectivity and small-scale process domains. The 

results point out the need for further research to quantify the influence of the plot size on sediment 

yield and surface runoff.  

Although the previous studies have already considered the simultaneous influence of a few factors 

on the soil erosion process (Barthès and Roose, 2002; Ouyang et al., 2018; Panagos and 

Katsoyiannis, 2019; Ramezanpour et al., 2010), the work described in chapter 3 is the unique 

approach of fractional factorial design to investigate the combined impact of multiple factors and 

their complex interactions on soil erosion process by selecting an optimized number of 

experiments.  The applied workflow allowed for efficiently predicting soil erosion and identifying 

areas susceptible to soil loss at a high spatial resolution (Chapter 3-Table 3.4). Based on the 

findings, statistical regression model were developed for runoff volume and sediment yield and 

applied to the whole study field. When statistical model are up-scaled to the whole field, the 

statistical model performed well for the lower rainfall intensity (< 2.7 mm min-1) but its 

performance declined when rainfall intensity further increased (> 4 mm min-1). The results show 

that the South West of the study area is subjected to potential soil loss due to erosion, which is in 

accordance with the on-site field observation and measurements (Chapter 3-Fig. 3.8).  However, 
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these studies were specific to local soil conditions and for a given area. The performance of the 

local model with the validation data set showed the highest uncertainties in simulating sediment 

yield with an RMSE value of 1.1 t ha-1d-1 among erosion models in this study (Chapter 4-Fig. 4.15). 

This is because of the specific environmental conditions (soil physical characteristics, topography, 

and vegetation cover) during the development of the local statistical model. Further, this model 

might facilitate the application of erosion control measures within fields with high spatial 

heterogeneity if improved with different field conditions at different sites.  

An improved understanding of complex interactions among multiple factors influencing the soil 

erosion process is an important area of research for future soil erosion studies, since this 

understanding of connectivity between small scale field conditions in the agricultural landscape is 

as important as understanding absolute sediment yield. Since plot-based studies have complexities 

in upscaling the predictive modeling techniques at complex agricultural landscapes, it is important 

to quantify the collected data quality and adequacy from plot-scale studies to better understand soil 

movement at large scale. From the results of our study it can also be recommended, that for regions 

where soil characteristics and topography are unevenly distributed, methods such as Taguchi 

fractional factorial design might be suitable and sufficient to represent the factors that influence the 

soil erosion process at the field scale. Such design is limited by the number of experimental arrays, 

application of these designs on the agricultural fields with heterogeneous field conditions, and lack 

of explicit randomization of that limit its utility, but many other competing fractional factorial 

designs have some of same limitations and significantly more complex (montgomery, 1990).  

However, this approach allows for an accurate representation of the soil erosion process in the 

context of agricultural systems.  

1.4.  An overview of the workflow of soil erosion modeling 

The parameters of plot/field scale soil erosion models affect the soil erosion process simulations 

and therefore typically are valid for the scale and field conditions for which they were determined. 

Due to spatial and temporal variations in factors influencing the soil erosion process (i.e., slope, 

soil characteristics, vegetation cover, and rainfall intensity), it is crucial for the calibration of 

models used in plot scale applications that model parameters reflect the spatial variability of such 

soil erosion influencing factors. Uncertainties in soil erosion simulations due to input parameters 

have been studied in for many models and environmental conditions (Brazier et al., 2000). 

However, the majority of studies undertaken in the context of plot scale soil erosion simulation 
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have not investigated uncertainties caused by the approaches to couple processes, such as soil water 

fluxes, crop growth, and soil erosion. In this dissertation, chapter 4 (Q3) deals with the soil erosion 

estimates from three different sediment yield models (local statistical model, dynamic Freebairn, 

and Rose model) combined with a soil water balance, a runoff and a crop model to identify the 

uncertainties involved in the simulation of sub-field scale runoff and soil erosion processes due to 

parameter estimation and model structure. The study did not pursue simulating the long term soil 

erosion process but to identify sources of uncertainties in simulation results when soil erosion 

models coupled with crop growth and runoff models within the SIMPLACE modeling platform.  

In this dissertation, a workflow was established to couple the Lintul5 crop model, with the 

SlimWater soil water balance model including the CN runoff model and with three different soil 

erosion models as a solution of within the SIMPLACE platform. The objective of this solution was 

to simulate the soil loss on the agricultural field, where plot-scale erosion processes where 

monitored in chapter 3. This novel workflow allowed us to directly quantify the seasonal 

distribution of soil erosion processes across plots with different soil conditions and topography. In 

conjunction with our plot-scale erosion measurements, we used a LiDAR digital surface model of 

the farm field as topographic inputs, SlimWat model to give us further insights into the soil 

hydrology. 

The results from model calibration based on plot-scale measurements showcased that water erosion 

estimations with Freebairn and Rose models were influenced by the accuracy of runoff and crop 

growth models in simulating runoff and vegetation cover respectively. However, a pronounced 

difference between modeled and measured soil erosion was observed when these predictions were 

made with the uncalibrated runoff model. Hence, our results highlighted that large uncertainties in 

soil erosion simulations were associated with the runoff model. Clearly, our results emphasize the 

need to consider uncertainty due to calibration as integrated part of the general reporting of 

uncertainty (Keating et al., 2003b). It should thus also be part of a common protocol to assess 

uncertainty in soil erosion modeling applications. 

The accurate predictions of the Freebairn and Rose models, when validated with our plot-scale 

measurements, allowed us to simulate sub-annual crop growth and soil water dynamics across our 

study site which provided insights into key parameters influencing the temporal distribution of 

erosion processes. Most notably, the Rose model had a limitation in sediment yield prediction and 
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showed slightly higher RMSE (0.89 t ha-1 d-1) and NSE (0.8) compared to the Freebairn model 

when coupled with the same soil water balance and crop model approaches. On the other hand, the 

performance of the local statistical model, when compared against the validation data set, showed 

the highest uncertainties in simulating sediment yield among all erosion models in this study with 

an RMSE value of 1.1 t ha-1d-1. These uncertainties may reflect the limitations of applying statistical 

models under conditions which do not correspond to the prevailing specific environmental 

conditions under which they were developed (soil physical characteristics, topography, and 

vegetation cover). The Freebairn and Rose models were specifically selected to integrate with crop 

growth and soil water balance models to simulate short/long-term soil loss estimates by the process-

based representation of climate, vegetation dynamics and hydrology. 

The newly developed SIMPLACE<Lintul5, SlimWater, Erosion model> workflow can be used to 

provide time series of detailed spatially distributed simulations of soil erosion. However, the 

workflow was tested under the prevailing local environmental and field conditions in the study 

area, which implies in the first place, the workflow should only be applied to areas with similar 

climate, soil and terrain characteristics. This may provide the motivation for future researchers to 

improve the modeling framework for a better representation of the soil erosion process in the 

context of the spatial and temporal distribution of model input data and its quality. Furthermore, 

there is room to assimilate UAV-based data, for instance, UAV-based estimates of crop height, 

LAI or above-ground dry biomass to be implement into this workflow for soil erosion studies in 

agricultural systems. These additional datasets can be explored as additional source of information 

for reducing the uncertainties in the model simulations when extrapolated to larger regions or for 

model validation in other landscape settings. 

1.5.  Conclusion 

After having a systematic evaluation of the impact of spatial and temporal heterogeneous field 

conditions on the soil erosion process, and assessment of sources of uncertainties in soil erosion 

model simulation results, the following general conclusions can be drawn: 

1. In agricultural systems with complex spatial arrangements of crops, where vegetation 

dynamics and spatial configuration plays a crucial role for the soil erosion process, current 

modeling approaches do not necessarily represent their effect in complex agriculture 

systems on soil loss estimations.   
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2. A range of experimental settings with different rainfall intensities, spatial variations of soil 

characteristics, vegetation cover, and slope inclination produced a wide range of sediment 

yields and volume of runoff. Highest sediment yield was found with the factor combination 

of rainfall intensity (> 4 mm min-1) and slope steepness (5%) in bare land field with SiltOM 

content of 16%. and the lowest sediment yield was observed with the factor combination 

of rainfall intensity (> 2.5 mm min-1) and slope steepness (<1 %) with vegetation cover > 

15% 

3. Since a combination of multiple factors and their interactions have complications in 

representing the soil erosion process, the developed workflow in chapter 4, allows for 

efficiently predicting soil erosion and identifying areas susceptible to soil loss at a high 

spatial resolution of field conditions. 

4. The uncertainties, resulting from the model structure, in the performance of dynamic soil 

erosion models are very important to consider when applied at plot scale as have been 

shown in this study (Chapter 4).  

5. The Freebairn and Rose models can be used as tools to predict sediment yield within the 

SIMPLACE framework with prevailing local environmental and field conditions in the 

study area. However, the performance of runoff component plays a key role in accurate 

sediment yield predictions. Further improvements in meaningful input data to up-scale the 

model applications need to be given attention in the future.  
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Appendix 
 

 

Fig. 1. Modelled (Line) and observed (Dots) leaf area index for the calibration 
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Fig. 2. Modelled (Line) and observed (Dots) leaf area index for the validation 
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