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1 Einleitung

In klinischen und epidemiologischen Studien unterscheidet man zwischen Quer-

schnittserhebungen, bei denen Daten einmalig zu einem bestimmten Zeitpunkt

erhoben werden, und Längsschnittserhebungen, sogenannten longitudinalen Stu-

dien, bei denen die Datenerhebung mehrfach über die Zeit erfolgt. In longitudina-

len Kohortenstudien wird eine bestimmte Gruppe von Patienten/Patientinnen,

die spezi�sche Einschlusskriterien erfüllt, über einen vorgegebenen Zeitraum hin-

weg beobachtet (Petrie und Sabin, 2019). Die Untersuchungen erfolgen dabei üb-

licherweise zu Beginn der Studie (bezeichnet als �Baseline�-Untersuchung) und

in regelmäÿigen Abständen zu vorab festgelegten, späteren Zeitpunkten (be-

zeichnet als �Follow-up�-Untersuchungen). Im Rahmen dieser Arbeit werden die

Analysen dreier longitudinaler, klinischer Studien vorgestellt, darunter eine Stu-

die unter Patienten/Patientinnen mit odontogenen Infektionen (Heim et al.,

2019), die MODIAMD-Studie (Steinberg et al., 2016) über altersbedingte Ma-

kuladegeneration sowie eine Studie zum Auftreten von Lungenentzündungen un-

ter Patienten/Patientinnen, die auf eine Intensivstation aufgenommen werden

mussten (Wolkewitz et al., 2008). Neben der Bestimmung von klinischen Varia-

blen (z.B. der Funktion von Organen) und Laborparametern (z.B. Cholesterin-

Werten) wird in vielen Studien erfasst ob, und, wenn ja, wann ein bestimmtes Er-

eignis aufgetreten ist. Die statistische Analyse der Zeit bis zum Eintreten dieses

interessierenden Ereignisses bezeichnet man als Ereigniszeit- oder Überlebens-

zeitanalyse (Klein und Moeschberger, 2003). Klassische Beispiele in klinischen

Studien sind die Zeit bis zum Tod und das Auftreten, Fortschreiten oder der

Rückfall einer Krankheit.

In dieser Arbeit werden neuartige Methoden der Ereigniszeitanalyse vorgestellt,

die auf den Fall zugeschnitten sind, dass die Ereigniszeiten auf einer diskreten

Skala gemessen wurden (siehe Kapitel 1.2). Ziel ist es dabei immer, ein Regressi-

onsmodell aufzustellen, das die Beziehung zwischen der Ereigniszeit T und einer

Menge erklärender Variablen X beschreibt (siehe Kapitel 1.4), und damit zu-

sätzlich relevante Risikofaktoren für das Auftreten des interessierenden Ereignis-

ses zu identi�zieren. Ausgangspunkt aller Entwicklungen sind die grundlegenden

Methoden der Arbeit von Tutz und Schmid (2016). Die charakterisierenden Ei-

genschaften von Ereigniszeitdaten, die im Folgenden näher erläutert werden, sind

(i) die sequentielle, longitudinale Struktur, (ii) das Vorhandensein von zensierten

Beobachtungen, und (iii) das eventuelle Aufreten mehrerer, möglicher Ereignisse.
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1.1 Zensierungsmechanismen

Eine wichtige Besonderheit von Ereigniszeitdaten ist die sogenannte Zensierung.

Zensierte Daten liegen vor, wenn der exakte Ereigniszeitpunkt für einen Teil der

Patienten/Patientinnen nicht bekannt ist (Klein und Moeschberger, 2003).

Man spricht von einer rechtszensierten Beobachtung, wenn der Zeitpunkt des

Eintritts in die Studie bekannt ist, der Zeitpunkt, zu dem das Ereignis aufgetreten

ist, jedoch nicht. Dies kann der Fall sein, weil ein/e Patient/in vorzeitig aus

der Studie ausscheidet (z.B. aufgrund von Zeitkon�ikten oder Überbelastung)

oder, weil das interessierende Ereignis erst nach Beendigung der Studie realisiert

wird. Andererseits spricht man von einer linkszensierten Beobachtung, wenn das

interessierende Ereignis bereits vor Beginn der Studie eingetreten ist und man

daher den genauen Zeitpunkt nicht zurückverfolgen kann. Dies ist z.B. der Fall,

wenn bei einer Untersuchung eine Infektionskrankheit diagnostiziert wird, jedoch

nicht nachvollzogen werden kann, wann der/die Patient/in in�ziert worden ist.

Bei allen in dieser Arbeit vorgestellten Anwendungen handelt es sich um rechts-

zensierte Studiendaten. Bezeichne T die Zeit bis zum Eintreten des interessie-

renden Ereignisses und C die Zensierungszeit, so ergibt sich die beobachtete

Ereigniszeit als T̃ = min(T,C) . Das heiÿt, falls T kleiner oder gleich C ist, be-

obachtet man die wahre Ereigniszeit, anderenfalls die Zensierungszeit (Klein und

Moeschberger, 2003).

Ein zweites Phänomen, dem man in Ereigniszeitdaten begegnen kann, ist Trun-

kierung. Trunkierte Daten liegen vor, wenn bestimmte Patienten/Patientinnen

aufgrund ihrer Ereigniszeit systematisch aus der Studie ausgeschlossen werden

(Klein und Moeschberger, 2003). Dabei spricht man von Rechtstrunkierung, falls

nur Patienten/Patientinnen berücksichtigt werden, deren Ereigniszeit kleiner ist

als ein bestimmter Schwellenwert. Ein Beispiel hierfür stellt die Schätzung der In-

kubationszeit von AIDS nach einer HIV-Infektion dar. In eine Stichprobe zur Un-

tersuchung dieser Fragestellung können nur Patienten/Patientinnen eingeschlos-

sen werden, bei denen die AIDS-Erkrankung vor einem fest de�nierten Zeitpunkt

ausgebrochen ist (vgl. Kalb�eisch und Lawless, 1991). Andererseits spricht man

von Linkstrunkierung, falls nur Beobachtungen berücksichtigt werden, deren Er-

eigniszeit gröÿer ist als ein bestimmter Schwellenwert. Ein Beispiel dazu stellen

Studien unter älteren Patienten/Patientinnen dar. Aus einer solchen Stichpro-

be werden alle Patienten/Patientinnen ausgeschlossen, die vor Erreichen eines
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bestimmten Lebensalters verstarben. Methoden für trunkierte Daten stellen ein

eigenes Forschungsgebiet dar und werden in dieser Arbeit nicht behandelt.

Für den Zusammenhang zwischen der Ereigniszeit T und der Zensierungszeit C

unterscheidet man im Allgemeinen drei mögliche Mechanismen, siehe Kalb�eisch

und Prentice (2002).

Zufällige Zensierung (engl. �random censoring�)

Die Gröÿen T und C sind zwei stochastisch unabhängige Zufallsvariablen. Unab-

hängigkeit gilt zumindest bedingt auf eine Menge erklärender Variablen (bedingte

Unabhängigkeit gegeben X).

Unabhängige Zensierung (engl. �independent censoring�)

Die Patienten/Patientinnen, die zum Zeitpunkt t zensiert sind, sind für alle Pa-

tienten/Patientinnen, die zum Zeitpunkt t noch kein Ereignis erlebt haben und

weiter unter Beobachtung stehen, repräsentativ. Dies gilt für jede Untergrup-

pe bezüglich der erklärenden Variablen X. Die zufällige Zensierung stellt einen

Spezialfall der unabhängigen Zensierung dar (Kalb�eisch und Prentice, 2002).

Nicht-informative Zensierung (engl. �non-informative censoring�)

Die Verteilung der Zensierungszeiten C hängt von keinem Parameter ab, der

für die Modellierung der Ereigniszeiten T herangezogen wurde. Der Zensierungs-

mechanismus enthält somit keinerlei Informationen über die Parameter, die die

Verteilung von T bestimmen (Kalb�eisch und Prentice, 2002). Im Fall unab-

hängiger Zensierung gilt in der Regel auch nicht-informative Zensierung. Als

hypothetisches Beispiel mit unabhängiger, aber informativer Zensierung nennen

Kalb�eisch und Prentice (2002) eine Studie, in der die Zensierungszeiten C von

Ereigniszeiten ähnlicher Patienten/Patientinnen abhängen, die jedoch nicht in

die Studie eingeschlossen wurden.

In dieser Arbeit werden ausschlieÿlich Analysemethoden vorgestellt, die voraus-

setzen, dass die Ereigniszeiten die Annahmen von zufälliger und nicht-informativer

Zensierung erfüllen.
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1.2 Diskrete Ereigniszeiten

Der Fokus der Ereigniszeitanalyse liegt darin, die Verteilung der Ereigniszeiten,

d.h. den dynamischen Verlauf über die Zeit, möglichst genau zu erfassen. Für

die Modellierung ist dabei entscheidend, welche Zeitskala in den Daten zugrunde

liegt. Viele Methoden zur Modellierung von Ereigniszeitdaten nehmen an, dass

die Zeit auf einer stetigen Skala gemessen wurde, d.h., dass T Werte aus den posi-

tiven reellen Zahlen annehmen kann (T ∈ R+
0 ). Eine ausführliche Darstellung der

Methodik für stetige Ereigniszeiten �ndet sich unter anderem in Kalb�eisch und

Prentice (2002), Klein und Moeschberger (2003), Lawless (2003) und Kleinbaum

und Klein (2012).

In praktischen Anwendungen, wie z.B. in vielen longitudinalen, klinischen Stu-

dien, wird die Zeit entgegen der obigen Annahme jedoch in der Regel auf einer

diskreten Skala gemessen, d.h. T nimmt lediglich Werte aus den natürlichen

Zahlen an (T ∈ N). Für diskrete Ereigniszeiten lassen sich grundsätzlich zwei

Fälle unterscheiden, die nachfolgend beschrieben werden, siehe Tutz und Schmid

(2016).

Diskretisierte Ereigniszeiten

In klinischen Studien, bei denen Follow-up-Untersuchungen zu festgelegten Zeit-

punkten statt�nden, entsprechen die (diskreten) Ereigniszeiten t = 1, . . . , k , den

Intervallen [qt−1, qt) mit den stetigen Grenzen 0 = q0 < q1 < . . . < qk = ∞.

Die eigentlich zugrunde liegenden, stetigen Ereigniszeiten sind somit gruppiert

und in feste Zeitintervalle unterteilt. Liegen gruppierte Daten vor, spricht man

auch von intervallzensierten Daten, wobei Beobachtungen mit einer identischen

Ereigniszeit als Bindungen (engl. �ties�) bezeichnet werden (Sun, 2007).

Diskretisierte Daten �nden sich auch in Studien zur Hospitalisierung (siehe Ka-

pitel 2.2) oder intensivmedizinischen Behandlung (z.B. bezüglich des Auftretens

von nosokomialen Infektionen, siehe Kapitel 2.4) von Patienten/Patientinnen.

Immanent diskrete Ereigniszeiten

Ereigniszeiten können natürlicherweise von diskreter Struktur sein und Werten

der natürlichen Zahlen entsprechen. Ein oft genanntes Beispiel sind Studien zur

Fertilität, in denen die Zeit von der Pubertät bis zur Geburt des ersten Kin-

des analysiert wird. Für diese Fragestellung ist es sinnvoll, nicht die Zeit selbst,
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sondern die Anzahl an Menstruationszyklen als natürliche Zeiteinheit heranzu-

ziehen, da die Länge eines Zyklus zwischen jungen Frauen variieren kann (vgl.,

Scheike und Keiding, 2006).

Diskrete Hazard- und Überlebensfunktion

Die wichtigste Gröÿe, um die Verteilung des interessierenden Ereignisses über die

Zeit zu beschreiben, ist die diskrete Hazardfunktion

λ(t|X) = P (T = t|T ≥ t,X) , t = 1, . . . , k , (1)

die der Wahrscheinlichkeit entspricht, dass das Ereignis zum Zeitpunkt t eintritt,

unter der Bedingung, dass bis zum Zeitpunkt t noch kein Ereignis aufgetreten

ist (Tutz und Schmid, 2016). Die Hazardfunktion in Gleichung (1) ist spezi�sch

für bestimmte Patienten/Patientinnen, da sie zusätzlich auf die erklärenden Va-

riablen X bedingt. Die zugehörige diskrete Überlebensfunktion ist gegeben durch

S(t|X) = P (T > t|X) =
t∏

s=1

(1− λ(s|X)) , t = 1, . . . , k , (2)

und entspricht der Wahrscheinlichkeit, dass das Ereignis erst nach dem Zeit-

punkt t eintritt (Tutz und Schmid, 2016). Damit berechnet sich die unbedingte

Wahrscheinlichkeit für ein Ereignis zum Zeitpunkt t ∈ {1, . . . , k} durch

P (T = t|X) = λ(t|X)
t−1∏

s=1

(1− λ(s|X)) = λ(t|X)S(t− 1|X) , (3)

wobei S(0|X) := 1. Im Fall gruppierter Daten entspricht P (T = t|X) der Wahr-

scheinlichkeit, dass das Ereignis im Intervall [qt−1, qt) auftritt.

Methoden zur Modellierung der diskreten Hazardfunktion sind Gegenstand der

Kapitel 2.1 und 2.2. Wie bereits in Tutz und Schmid (2016) dargestellt, lassen

sich die vorgeschlagenen Modelle in die Klasse der binären Regressionsmodelle

einbetten. Daraus ergeben sich zahlreiche mögliche Erweiterungen, um komplexe-

re Zusammenhänge zwischen der Hazardfunktion und den erklärenden Variablen

�exibel abzubilden.
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1.3 Konkurrierende Ereignisse

Oftmals ist in klinischen Studien nicht nur ein bestimmtes, einzelnes Ereignis von

Interesse, sondern das Auftreten mehrerer möglicher Ereignisse. Kann dabei jedes

Ereignis zu jedem Zeitpunkt als Erstes eintreten und ist jedes Ereignis ein ab-

sorbierendes Ereignis, sodass ein/eine Patient/in im Studienzeitraum höchstens

eines erlebt, spricht man von konkurrierenden Ereignissen (Beyersmann et al.,

2011). Konkurrierende Ereignisse können unterschiedliche Todesursachen oder

verschiedene Arten einer Erkrankung sein. Ziel der MODIAMD-Studie (Stein-

berg et al., 2016) ist es beispielsweise, das Auftreten zweier unterschiedlicher,

sich gegenseitig ausschlieÿender Ausprägungen der altersbedingten Makuladege-

neration im Spätstadium (der feuchten oder trockenen Form) zu analysieren. In

der Studie von Wolkewitz et al. (2008) können Patienten/Patientinnen entweder

während des Aufenthalts auf der Intensivstation eine Lungenentzündung erlei-

den, gesund aus dem Krankenhaus entlassen werden oder vorzeitig versterben.

Der eventuelle Tod oder eine mögliche Entlassung stellen daher zwei konkurrie-

rende Ereignisse für das Auftreten einer Lungenentzündung dar. Für eine Einfüh-

rung zur Analyse von konkurrierenden Ereignissen in stetiger Zeit sei verwiesen

auf Putter et al. (2007) und Andersen et al. (2012).

Ereignis-spezi�sche Hazardfunktion und kumulative Inzidenzfunktion

Bei der Analyse von diskreten Ereigniszeiten mit konkurrierenden Ereignissen

betrachtet man nicht nur eine diskrete Hazardfunktion, wie in (1) de�niert, son-

dern eine ereignis-spezi�sche Hazardfunktion für jedes der möglichen Ereignisse.

Bezeichne ε ∈ {1, . . . , J} die unterschiedlichen Ereignisse, so ist die diskrete,

ereignis-spezi�sche Hazardfunktion für ein Ereignis vom Typ j de�niert durch

λj(t|X) = P (T = t, ε = j|T ≥ t,X) , j = 1, . . . , J, t = 1, . . . , k . (4)

Die Hazardfunktion (4) entspricht der Wahrscheinlichkeit, dass das Ereignis j

zum Zeitpunkt t eintritt, unter der Bedingung, dass bis zum Zeitpunkt t noch

kein Ereignis aufgetreten ist, und bedingt auf erklärende Variablen X (Tutz

und Schmid, 2016). Kombiniert man alle ereignis-spezi�schen Hazardfunktionen,

kann man insgesamt den dynamischen Verlauf über die Zeit (unabhängig von der
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Art des Ereignisses) über die aggregierte Hazardfunktion

λ(t|X) =
J∑

j=1

λj(t) = P (T = t|T ≥ t,X) , t = 1, . . . , k , (5)

beschreiben. Die Funktion λ(t|X) entspricht der bedingten Wahrscheinlichkeit,

dass ein Ereignis jeglicher Art zum Zeitpunkt t eintritt (Tutz und Schmid, 2016).

Die bedingte Wahrscheinlichkeit, dass ein Ereignis erst nach Zeitpunkt t eintritt,

ergibt sich damit durch P (T > t|T ≥ t,X) = 1 − λ(t). Die zugehörige diskrete
Überlebensfunktion ergibt sich analog zu (2) als

S(t|X) = P (T > t|X) =
t∏

s=1

(1− λ(s|X)) t = 1, . . . , t , (6)

und entspricht hier der (unbedingten) Wahrscheinlichkeit, dass ein Ereignis jeg-

licher Art erst nach dem Zeitpunkt t eintritt (Tutz und Schmid, 2016). Die un-

bedingte Wahrscheinlichkeit für das Auftreten eines Ereignisses jeglicher Art be-

rechnet sich analog zu (3) durch P (T = t|X) = λ(t|X)S(t − 1|X), wobei auch

hier S(0|X) := 1 gilt. Unter Verwendung der Überlebensfunktion (6) lautet eine

gängige Darstellung der ereignis-spezi�schen Hazardfunktion

λj(t|X) =
fj(t|X)

S(t− 1|X)
, j = 1, . . . , J, t = 1, . . . , k , (7)

wobei fj(t|X) der Wahrscheinlichkeit P (T = t, ε = j|X) entspricht (Lee, 2017).

Eine weitere, wichtige Gröÿe, die zur Beschreibung von Ereigniszeitdaten mit

konkurrierenden Ereignissen herangezogen wird, ist die kumulative Inzidenzfunk-

tion für ein Ereignis vom Typ j, de�niert durch

Fj(t|X) = P (T ≤ t, ε = j|X) , j = 1, . . . , J, t = 1, . . . , k . (8)

Die kumulative Inzidenzfunktion Fj(t|X) entspricht der Wahrscheinlichkeit, dass

das Ereignis j vor oder zum Zeitpunkt t eintritt, bedingt auf erklärende Varia-

blen X (Fine und Gray, 1999; Klein und Andersen, 2005). Per De�nition liegt

der Wertebereich von Fj zwischen 0 und Fj(k|X) = P (ε = j|X) ≤ 1. Kombiniert

man die Gleichungen (4) bis (6), lässt sich die kumulative Inzidenzfunktion für
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ein Ereignis vom Typ j zum Zeitpunkt t darstellen als

Fj(t|X) =
t∑

s=1

(
λj(s|X)

s−1∏

q=1

(1− λ(q|X))

)
=

t∑

s=1

(
λj(s|X)S(s− 1|X)

)
, (9)

siehe Lee (2017). Aus Gleichung (9) folgt, dass die kumulative Inzidenzfunktion

für ein Ereignis vom Typ j von den ereignis-spezi�schen Hazardfunktionen aller

möglichen Ereignisse λ1, . . . , λJ abhängt. Insbesondere gibt es keine unmittelbare

Verknüpfung zwischen λj und Fj (Beyersmann et al., 2011).

Im Allgemeinen kann man für die Analyse von Ereigniszeiten mit konkurrieren-

den Ereignissen zwei Vorgehensweisen unterscheiden:

� Modellierung jedes Ereignisses j = 1, . . . , J , über ereignis-spezi�sche Hazard-

funktionen. Im Falle stetiger Ereigniszeitdaten wird dabei ein separates Regres-

sionsmodell für jedes Ereignis j spezi�ziert, wobei alle Patienten/Patientinnen,

die ein konkurrierendes Ereignis erleben, jeweils wie zensierte Beobachtun-

gen behandelt werden (Prentice et al., 1978). Die Modellierung der ereignis-

spezi�schen Hazardfunktionen im Fall diskreter Ereigniszeiten ist Gegenstand

von Kapitel 2.3. Insbesondere wird dargestellt, wie sich das vorgeschlagene

Modell für diskrete Ereigniszeiten auf etablierte Verfahren für kategoriale Da-

tenanalyse zurückführen lässt.

� Modellierung eines einzelnen, interessierenden Ereignisses vom Typ j über die

kumulative Inzidenzfunktion unter Berücksichtigung der anderen, konkurrie-

renden Ereignisse. Für stetige Ereigniszeitdaten wurden Ansätze dieser Art

von Fine und Gray (1999) und Klein und Andersen (2005) vorgeschlagen. Die

Modellierung der kumulativen Inzidenzfunktion im Fall diskreter Ereigniszei-

ten ist Gegenstand der Kapitel 2.4 und 2.5. Es wird gezeigt, wie sich das

vorgeschlagene Modell in die Klasse der binären Regressionsmodelle einbetten

lässt.

1.4 Parametrische und nicht-parametrische Regressionsmo-

delle

Grundprinzip aller in dieser Arbeit vorgeschlagenen Methoden ist es, ein Regres-

sionsmodell aufzustellen, das den Zusammenhang zwischen der Hazardfunktion,

der ereignis-spezi�schen Hazardfunktionen oder der kumulativen Inzidenzfunkti-
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on und einer Menge erklärender Variablen quantitativ beschreibt, und es ermög-

licht, Vorhersagen der Ereigniszeiten für zukünftige Patienten/Patientinnen zu

tre�en. Wie in den Kapiteln 2.1 bis 2.5 dargestellt, lassen sich die Modelle für

diskrete Ereigniszeiten auf die Struktur von klassischen generalisierten Regres-

sionsmodellen (Fahrmeir et al., 2013) zurückführen. Die Konzepte grundlegender,

regressionsanalytischer Verfahren, auf die später Bezug genommen wird, werden

im Folgenden kurz skizziert.

Betrachte man allgemein den Zusammenhang zwischen einer interessierenden,

abhängigen Variablen Y (Zielvariable) und einer Vielzahl an erklärenden Va-

riablen X. In einem generalisierten linearen Regressionsmodell (McCullagh und

Nelder, 2019) wird typischerweise der bedingte Erwartungswert µ = E(Y |X)

einer Zielvariable als Funktion der erklärenden Variablen in der Form

µ = h(η(X)) , (10)

modelliert. Dabei verknüpft die Antwortfunktion h(·) den Erwartungswert mit

einer linearen Vorhersagefunktion der Form

η(X) = β0 +Xβ = β0 +X1β1 + . . .+Xpβp . (11)

Die Parameter β0 und β> = (β1, . . . , βp) stellen reellwertige Regressionskoe�-

zienten dar. In einem generalisierten additiven Regressionsmodell (Wood, 2017)

werden (für einen Teil der erklärenden Variablen) die linearen Terme durch glatte

Funktionen ersetzt und man erhält eine Vorhersagefunktion der Form

η(X) = β0 + f1(X1) + . . .+ fq(Xq) +Xq+1βq+1 + . . .+Xpβp , (12)

wobei die E�ekte der erklärenden VariablenX1, . . . , Xq den unspezi�zierten, glat-

ten Funktionen f1, . . . , fq entsprechen und die erklärenden VariablenXq+1, . . . , Xp

mit linearen E�ekten in die Modellgleichung eingehen (Fahrmeir et al., 2013).

Zur Modellierung der glatten Funktionen wird üblicherweise angenommen, dass

sich jede Funktion als gewichtete Summe von Basisfunktionen darstellen lässt,

nämlich als

fj(Xj) =
M∑

m=1

φm(Xj)βjm , (13)
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mitM festen Basisfunktionen φ1, . . . , φM und zugehörigen, zu schätzenden Koef-

�zienten βj1, . . . , βjM . Eine gängige Wahl der Basisfunktionen sind B-Splines (De

Boor, 1978). Eine �exible Schätzung von fj erhält man, wenn man eine groÿe

Zahl an B-Spline-Basisfunktionen verwendet (z.B., 20 bis 40) und gleichzeitig

einen Penalisierungsterm einführt, der zu groÿer Variabilität der Schätzung vor-

beugt (Eilers und Marx, 1996). Die Modellierung mithilfe von penalisierten Spli-

nes (P-Splines) wird in Kapitel 2.1 und 2.2 im Detail betrachtet.

Für eine binäre Zielvariable Y ∈ {0, 1} mit der Verteilungsannahme Y ∼ B(1, π)

ergibt sich Modellgleichung (10) mit Antwortfunktion h(·) ∈ [0, 1] zu

µ = P (Y = 1|X) = π = h(η(X)) . (14)

Das populärste binäre Regressionsmodell ist das logistische Modell (Logit-Modell)

mit Antwortfunktion h(·) = exp(·)/(1 + exp(·)). Eine Alternative, die für die

Modellierung der kumulativen Inzidenzfunktion in Kapitel 2.4 und 2.5 heran-

gezogen wird, ist das Gompertz-Modell, das über die inverse komplementäre

log-log-Funktion h(·) = 1− exp(− exp(·)) de�niert ist (Fahrmeir et al., 2013). In

Kapitel 2.1 und 2.4 wird erläutert, wie sich die Methoden zur Modellierung der

diskreten Hazardfunktion und der kumulativen Inzidenzfunktion in die Klasse

der (gewichteten) binären Regressionsmodelle einbetten lassen und, wie damit

etablierte Softwareprogramme zur Schätzung der Regressionskoe�zienten her-

angezogen werden können.

Für eine kategoriale Zielvariable Y ∈ {1, . . . , K} mit K Kategorien lässt sich

das Logit-Modell zum multinomialen Logit-Modell erweitern (Tutz, 2012). Mit

Referenzkategorie K lauten die Modellgleichungen

P (Y = r|X) = πr =
exp(ηr)

1 +
∑K−1

s=1 exp(ηs)
, r = 1, . . . , K − 1 , (15)

mit kategoriespezi�schen Vorhersagefunktionen ηr = β0r +Xβr. Für die Wahr-

scheinlichkeit der Referenzkategorie gilt dann πK = 1/(1 +
∑K−1

s=1 exp(ηs)). Die

in Kapitel 2.3 vorgeschlagene Methode zur Modellierung der diskreten, ereignis-

spezi�schen Hazardfunktionen lässt sich in die Klasse der kategorialen Regressi-

onsmodelle einbetten.

Generalisierte additive Modelle sind wesentlich �exibler als generalisierte linea-

re Modelle und behalten aufgrund der additiven Struktur der Vorhersagefunk-
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tion gleichzeitig ihre einfache Interpretierbarkeit. Nachteil von Modellen der

Form (12) ist jedoch, dass die Vorhersagefunktion nur Haupte�ekte der erklären-

den Variablen berücksichtigt. Es ist insbesondere schwierig, mögliche Interaktio-

nen, vor allem höherer Ordnung, ohne konkretes (klinisches) Vorwissen mit einzu-

beziehen. Abhilfe dafür scha�t die nicht-parametrische Modellierung mithilfe von

rekursiver Partitionierung, sogenannten Baum-basierten Verfahren. Die bekann-

testen Methoden sind classi�cation and regression trees, abgekürzt durch CART

(Breiman et al., 1984), conditional inference trees (Hothorn et al., 2006) und

der C4.5-Algorithmus (Quinlan, 1993). Das Grundkonzept von Baum-basierten

Verfahren ist es, den Variablenraum durch sequentielles Aufteilen in disjunkte

Unterräume (Knoten) zu zerlegen und in jedem Unterraum ein einfaches Modell

(z.B. eine Konstante) anzupassen. CART zerlegt in jedem Schritt der Baumkon-

struktion einen Knoten U durch eine binäre Aufteilungsregel in zwei Unterräume

U1 und U2. Nach Abschluss der Baumkonstruktion erhält man eine Menge Q dis-

junkter Endknoten U1, . . . , UQ und eine nicht-parametrische Vorhersagefunktion

der Form

µ = f(X) =

Q∑

q=1

cq I(X ∈ Uq) , (16)

wobei I(·) die Indikatorfunktion bezeichnet und c1, . . . , cQ den Vorhersagen der

Zielvariable in den Endknoten entsprechen (Hastie et al., 2009). Baum-basierte

Verfahren zur Modellierung der Hazardfunktion und der ereignis-spezi�schen Ha-

zardfunktionen werden in den Kapiteln 2.1 bis 2.3 betrachtet. In Kapitel 2.2 wird

eine Baum-basierte Methode vorgeschlagen, um erklärende Variablen zu identi-

�zieren, deren E�ekte auf die Ereigniszeit über den Beobachtungszeitraum der

Studie variieren.

1.5 Anwendungsbeispiele

Im Rahmen dieser Arbeit werden fünf verschiedene Anwendungsbeispiele vor-

gestellt. Dabei handelt es sich um Daten der drei bereits genannten klinischen

Studien, Daten einer Studie zur Dauer der Arbeitslosigkeit US-amerikanischer

Bürger/innen, und Daten einer sozialwissenschaftlichen Studie zur Erforschung

partnerschaftlicher und familialer Lebensformen. Im Folgenden werden die ein-

zelnen Studien in chronologischer Reihenfolge jeweils kurz vorgestellt.
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Dauer der Arbeitslosigkeit

In Kapitel 2.1 wurden Daten des Current Population Survey's der Jahre 1986,

1988, 1990 und 1992 analysiert (Croissant, 2016). Modelliert wurde die Dauer

der Arbeitslosigkeit von 3.343 US-amerikanischen Bürger/innen, die in Zwei-

Wochen-Intervallen erhoben wurde. Entsprechend der Analyse von Cameron und

Trivedi (2005) wurde die Zielvariable de�niert als die Zeit bis zum Antritt einer

Arbeitsstelle jeglicher Art (unter anderem einer Vollzeit- oder Teilzeitstelle). Für

die Analyse wurden die Daten über einen Zeitraum von 40 Wochen betrachtet.

Dies resultierte in 21 diskreten Ereigniszeitpunkten, wobei die Ereigniszeit t = 21

dem Antritt einer Arbeitsstelle zu einem späteren Zeitpunkt nach 40 Wochen

entsprach. Erklärende Variablen, die in die Analyse mit einbezogen wurden, sind

unter anderem die Ersatzrate des Arbeitslosengeldes und das wöchentliche Gehalt

der vorherigen Arbeit.

Akute odontogene Infektionen

In Kapitel 2.2 wurden Daten einer retrospektiven Studie der Klinik und Po-

liklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie des Universitäts-

klinikums Bonn untersucht. Gegenstand der Betrachtung waren 303 Patien-

ten/Patientinnen, die im Zeitraum von 2012 bis 2017 mit einer akuten odon-

togenen Infektion vorstellig wurden (Heim et al., 2019). Hauptziel der Analyse

war die Identi�zierung von Risikofaktoren, die den notwendigen Krankenhausauf-

enthalt der Patienten/Patientinnen nach dem operativen Eingri� entscheidend

verlängern. Eine genaue Vorhersage der Liegedauer kann zur Transparenz der

Kosten und zur Erleichterung des Managements dieser Patienten/Patientinnen

beitragen. Zielvariable war die Zeit bis zur Entlassung aus dem Krankenhaus, die

zwischen einem Tag und 18 Tagen lag. Potentielle Risikofaktoren, die in die Ana-

lyse mit einbezogen wurden, sind unter anderem das Alter und die Erkrankung

an Diabetes Typ 2.

Familiäre Entwicklungen

Als zweites Anwendungsbeispiel dienen in Kapitel 2.2 die Daten des Beziehungs-

und Familienpanels (pairfam), das die Entwicklung von Partnerschafts- und Ge-

nerationenbeziehungen untersucht (Huinink et al., 2011). Zu Beginn der Studie

im Jahre 2008 wurden 12.000 Teilnehmer/innen der Geburtsjahrgänge 1971�1973,

1981�1983 und 1991�1993 und deren Familien rekrutiert. Diese werden seitdem
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jährlich zu Themen der Familienplanung und Einstellungen zur Elternschaft be-

fragt. Basierend auf einer Stichprobe von 861 Frauen wurde in Kapitel 2.2 die

Zeit bis zur Geburt des ersten Kindes modelliert. Entscheidende Faktoren, die für

die Analyse von Interesse waren, sind unter anderem die Anzahl der Geschwister

und die Art der Freizeitgestaltung.

Altersbedingte Makuladegeneration

Das klinische Anwendungsbeispiel in Kapitel 2.3 befasst sich mit Daten der

MODIAMD-Studie (Molecular Diagnostics of Age-related Makular Degenerati-

on). Die MODIAMD-Studie ist eine laufende Beobachtungsstudie der Augenkli-

nik des Universitätsklinikums Bonn an Patienten/Patientinnen mit einem hohen

Risiko, an altersbedingter Makuladegeneration (AMD) im Spätstadium zu er-

kranken (Steinberg et al., 2016). AMD gilt als Hauptursache für Erblindung

im Alter und äuÿert sich entweder in trockener Form, der sogenannten geogra-

phischen Atrophie (GA), oder in feuchter Form, der sogenannten choroidalen

Neovaskularisation (CNV). Ziel der Analyse war die Bestimmung von Risiko-

faktoren für die Entwicklung beider Ausprägungen der AMD. Dies ermöglicht

die Entwicklung von frühzeitigen Maÿnahmen für Risikopatienten. Einbezogen

wurden die Daten von 98 Patienten/Patientinnen, die zwischen November 2010

und September 2011 in die Studie rekrutiert wurden und seitdem jährlich zu

Follow-up-Untersuchungen vorstellig werden. Potentielle Risikofaktoren für die

Entwicklung von AMD, die in die Analyse mit einbezogen wurden, sind unter

anderem die Sehkraft und das Vorhandensein von refraktilen Drusen.

Nosokomiale Lungenentzündungen

In Kapitel 2.4 und 2.5 werden Daten einer Kohortenstudie von Februar 2000 bis

Juli 2001 betrachtet (Beyersmann et al., 2006; Wolkewitz et al., 2008). Untersucht

wurden Daten von 1.876 Patienten/Patientinnen aus fünf Universitätskliniken,

die mindestens zwei Tage intensivmedizinisch behandelt werden mussten. Haupt-

ziel der Analyse war die Bestimmung von Risikofaktoren für die Erkrankung

an nosokomialer Lungenentzündung, die das Risiko der Patienten/Patientinnen,

während oder nach dem Krankenhausaufenthalt zu versterben, deutlich erhöht.

Einbezogen wurden die Daten über einen Zeitraum von 60 Tagen. Dies resul-

tierte in 61 diskreten Ereigniszeitpunkten, wobei die Ereigniszeit t = 61 einer

Infektion zu einem späteren Zeitpunkt nach 60 Tagen entsprach. Wichtige Risi-
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kofaktoren, die für die Analyse von Interesse waren, sind unter anderem die Art

der Operation (geplant oder als Notfall) und die Notwendigkeit einer Intubation.

1.6 Ziele der vorliegenden Arbeit

Die primäre Fragestellung vieler klinischer und epidemiologischer Beobachtungs-

studien bezieht sich auf die Analyse von Ereigniszeiten. Dabei steht insbeson-

dere die frühzeitige, individualisierte Vorhersage möglicher Ereignisse für Pati-

enten/Patientinnen mit einem hohen Risiko im Vordergrund. Vorhersagemodelle

stellen dafür ein unverzichtbares Instrument für die klinische Entscheidungs�n-

dung dar und leisten einen wichtigen Beitrag für den Einsatz von individuellen

Behandlungs- und Therapiestrategien (Moons et al., 2012b; Steyerberg, 2019).

Wie bereits an einigen Anwendungsbeispielen illustriert, werden in der Praxis

die Ereigniszeiten, oftmals bedingt durch den Aufbau der Studien, auf einer dis-

kreten Skala gemessen oder liegen nur in gruppierter Form vor. Dies macht die

Anwendung klassischer Regressionsmodelle für stetige Ereigniszeiten, wie das

Cox-Modell (Cox, 1972), problematisch, und bedarf geeigneter Methoden, die

auf die diskrete Datenstruktur zugeschnitten sind. Aufbauend auf den grundle-

genden Methoden der Arbeit von Tutz und Schmid (2016) wird in dieser Arbeit

ein erweitertes Instrumentarium für die Analyse diskreter Ereigniszeiten entwi-

ckelt, das eine breite Anwendbarkeit sowohl in der klinischen Forschung als auch

in anderen Bereichen der angewandten Forschung ermöglicht. Die Beiträge der

Kapitel 2.1 bis 2.5 lassen sich wie folgt zusammenfassen:

� Semi-parametrische und nicht-parametrische Modellierung der diskreten Ha-

zardfunktion mithilfe von penalisierten Splines und Baum-basierten Verfahren.

� Modellierung der diskreten Hazardfunktion über zeit-variierende Koe�zienten

mithilfe von Baum-basierten Verfahren.

� Baum-basierte Modellierung der diskreten, ereignis-spezi�schen Hazardfunk-

tionen.

� Entwicklung des Subdistribution Hazard-Modells zur Modellierung der diskre-

ten, kumulativen Inzidenzfunktion.

� Explorative und formale Validierung der Kalibrierung von diskreten Subdis-

tribution Hazard-Modellen.
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1.7 Software

Sofern nicht anders angegeben, wurden die Berechnungen in dieser Arbeit mit

dem statistischen Softwareprogramm R (R Core Team, 2021) durchgeführt. Fol-

gende Zusatzpakete wurden für die Durchführung der Analysen herangezogen2:

� discSurv, Version 1.4.1 (Welchowski und Schmid, 2019) in den Kapiteln 2.1

bis 2.5.

� mgcv, Version 1.8-36 (Wood, 2021) in den Kapiteln 2.1, 2.2, 2.4 und 2.5.

� rpart, Version 4.1-15 (Therneau und Atkinson, 2019) in Kapitel 2.1.

� TSVC, Version 1.2.1 (Berger, 2020) in Kapitel 2.2.

� VGAM, Version 1.1-5 (Yee, 2021) in Kapitel 2.3.

� MRSP, Version 0.4.3 (Pöÿnecker, 2014) in Kapitel 2.3.

� cmprsk, Version 2.2-10 (Gray, 2020) in Kapitel 2.4.

Neuimplementierungen von Softwareprogrammen und deren Verfügbarkeit sind

jeweils in den entsprechenden Ergebnisteilen angezeigt.

2Aktuellste auf CRAN verfügbare Version
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2 Ergebnisse

2.1 Berger et al., Statistical Modelling 18, 322-345

Das gängigste Regressionsmodell zur Modellierung der diskreten Hazardfunkti-

on (1) ist das logistische Hazard-Modell der Form

λ(t|X) =
exp(η(t,X))

1 + exp(η(t,X))
, t = 1, . . . , k − 1 , (17)

wobei die Vorhersagefunktion η(·) von den erklärenden Variablen X und der

Zeit t abhängt, siehe Tutz und Schmid (2016) für eine Einführung der grund-

legenden Konzepte. In diesem Kapitel wird die Form des logistischen Hazard-

Modells mit klassischer parametrischer, linearer Vorhersagefunktion rekapituliert

und erläutert, wie die Vorhersagefunktion durch Spezi�zierung von glatten, nicht-

linearen Funktionen noch �exibler gestaltet werden kann. Es wird gezeigt, wie

die resultierenden semi-parametrischen, additiven Modelle mithilfe von P-Splines

geschätzt und die zugehörige Likelihood-Funktion hergeleitet werden können.

Insbesondere weist die Likelihood-Funktion die Form eines klassischen Regres-

sionsmodells für binäre Zielvariablen Y ∈ {0, 1} auf, was es erlaubt, etablierte
Softwareprogramme, die für diese Klasse von Modellen entwickelt wurden, für

die Schätzung der Regressionskoe�zienten heranzuziehen.

Anhand der Daten des Current Population Survey's zur Dauer der Arbeitslosig-

keit US-amerikanischer Bürger/innen wird Schritt für Schritt illustriert, wie die

Datenaufbereitung in R mithilfe des Zusatzpaketes discSurv (Welchowski und

Schmid, 2019) erfolgen kann und die Schätzung diskreter, semi-parametrischer

Hazard-Modelle mithilfe des Zusatzpaketes mgcv (Wood, 2021) durchgeführt

werden kann. Des Weiteren wird zur Modellierung der Arbeitslosendaten das

Baum-basierte Verfahren von Schmid et al. (2016) herangezogen, das als selbst-

implementierte R Funktion survivalTree() zur Verfügung gestellt wurde.

Zur Evaluierung der Anpassungsgüte parametrischer, semi-parametrischer und

Baum-basierter Modelle werden (i) ein Diagramm zur gra�schen Beurteilung der

Kalibrierung, und (ii) Martingal-Residuen zur Beurteilung des Ein�usses ein-

zelner, erklärender Variablen vorgeschlagen. Zuletzt werden die vier vorgestell-

ten Hazard-Modelle bezüglich ihrer Vorhersagegenauigkeit verglichen, wobei das

Baum-basierte Modell bei der Modellierung der Arbeitslosendaten am besten

abschneidet.
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Abstract: Time-to-event models are a popular tool to analyse data where the outcome variable is the
time to the occurrence of a specific event of interest. Here, we focus on the analysis of time-to-event
outcomes that are either intrinsically discrete or grouped versions of continuous event times. In
the literature, there exists a variety of regression methods for such data. This tutorial provides an
introduction to how these models can be applied using open source statistical software. In particular,
we consider semiparametric extensions comprising the use of smooth nonlinear functions and tree-based
methods. All methods are illustrated by data on the duration of unemployment of US citizens.
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1 Introduction

The objective of many statistical analyses is to model a duration time until a specific
event occurs. This is usually referred to as time-to-event or survival analysis. In
biostatistics, for example, one often examines the time to death or the progression
of a disease. In economics and the social sciences, popular examples include the
modelling of the duration of unemployment or the time to retirement. Generally, in
regression models for time-to-event data, the event time itself is the response variable,
and one wants to investigate the association of the response with several explanatory
variables. Most often it is assumed in these analyses that the survival time is given
by a random variable measured on a continuous scale. This case has been studied
extensively in the literature; see, for example, Kalbfleisch and Prentice (2002) and
Klein and Moeschberger (2003). However, in practice, measurements of time are
often discrete. Durations, for example, are often measured in days, years or months.
Moreover, there are situations where the exact event time may not be known, but
only an interval during which the event of interest took place.

Here, we consider the application of regression models for discrete time-to-event
data, which are characterized by an ordinal response variable taking the numbers
1, 2, . . . , k, with k equal to the number of event times. These numbers either refer to

Address for correspondence: Moritz Berger, Department of Medical Biometry, Informatics and
Epidemiology, University Hospital Bonn, Siegmund-Freud-Straße 25, 53127 Bonn, Germany.
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a situation where event times are intrinsically discrete (such as the time to pregnancy,
which in clinical applications is usually measured by the number of menstrual
cycles) or when continuous event times have been grouped. In the latter case, the
numbers t = 1, 2, . . . , k refer to mutually exclusive time intervals [0, a1), [a1, a2),
. . ., [ak−1, ∞), with fixed boundaries a1, . . . , ak−1. Generally, a great advantage of
discrete time-to-event models is that they can be viewed as regression models with
binary response, giving rise, for example, to the application of logistic regression or
probit regression (Willett and Singer, 1993).

A comprehensive treatment of the statistical methodology for discrete
time-to-event data has recently been given by Tutz and Schmid (2016). Similar to
Gaussian regression, a large part of this methodology has been designed to estimate
predictor-response relationships using a linear combination of the explanatory
variables. In addition, Tutz and Schmid (2016) discuss several (less well known)
approaches for semiparametric discrete time-to-event modelling. The aim of this
tutorial is to provide an in-depth explanation of how these semiparametric models
can be fitted and implemented using the R software for statistical computing (R Core
Team, 2017). In particular, we will explain how smooth nonlinear functions and
tree-based methods can be incorporated into discrete time-to-event models.

A frequently observed phenomenon in time-to-event analysis is censoring.
Generally, a duration time is termed ‘censored’, if its total length has not been fully
observed. In this article, we consider the most common type of censoring, the so-called
type-I or right censoring, which means that the beginnings of the duration times are
observed for all individuals in a study, whereas the respective ends are only observed
for part of the individuals. Hence, for some of the individuals, it is only known that
the event occurred later than the observed time.

All models discussed in this article will be illustrated by means of a publicly
available dataset on the duration of unemployment. The data comprise observations
obtained from n = 3 343 US citizens and were collected between 1986 and 1992
as part of the January Current Population Surveys Displaced Workers Supplements
(DWS). The original dataset is available as part of the R add-on package Ecdat
(Croissant, 2016). The response variable that will be considered here is the time to
re-employment in any kind of job, which includes full-time, part-time or other kind
of jobs. Due to the study design, the observed unemployment durations are discrete,
as they were measured in two-week intervals. In this article, we will analyse the data
over a period of 40 weeks comprising 21 possible event times t = 1, 2, . . . , 21, where
t = 21 refers to event times > 40 weeks. Explanatory variables that will be included
in our analyses are the age of the US citizen in years (age), an indicator on whether
an unemployment insurance claim was submitted (ui), the eligible replacement rate
(reprate, defined by the weekly benefit amount divided by the amount of weekly
earnings in the lost job), the eligible disregard rate (disrate, defined as the amount
up to which recipients of unemployment insurance who accept part-time work can
earn without any reduction in unemployment benefits divided by the weekly earnings
in the lost job), the log weekly earnings in the lost job in US$ (logwage) and the
tenure in the lost job in years (tenure). The summary statistics of the six explanatory
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Table 1 Summary statistics of the six explanatory variables used in the modelling of the US
unemployment data (n = 3 210)

Summary Statistics

Variable xmin x0.25 xmed x̄ x0.75 xmax

age 20 27 34 35.45 43 61
reprate 0.06 0.39 0.50 0.45 0.52 2.05
disrate 0.01 0.05 0.10 0.11 0.15 1.02
logwage 2.70 5.29 5.68 5.69 6.05 7.60
tenure 0 0 2 4.11 5 40

ui no: 1 437 (44.8%) yes: 1 773 (55.2%)

variables are presented in Table 1. Due to missing values in the variables, some
observations were excluded from the data, arriving at a sample containing the data
of 3 210 citizens.

The observed times to re-employment are visualized in Figure 1. If an individual is
still jobless at the end of the survey (i.e., after 40 weeks) or dropped out of the study
before finding a job, it is subject to right censoring. In this case, its observation time
corresponds to the censoring time, otherwise to the true time of re-employment.

The analysis in this tutorial shows how the relationship between the chance of
re-employment and the explanatory variables can be estimated in a flexible way,
using tailored semiparametric models.

The rest of this tutorial is organized as follows: Section 2 provides the basic
theoretical framework and an introduction to parametric as well as semiparametric
discrete time-to-event modelling. Details on model fitting and data preparation are
given in Section 3. Section 4 presents measures that are useful for assessing the
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Figure 1 Observed time to re-employment (measured in two-week intervals) in the US unemployment
data. The median observation time in the data is 4, corresponding to a time period of eight weeks
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goodness of fit of discrete time-to-event models. In Section 5, we illustrate the methods
by presenting a detailed analysis of the US unemployment data, showing how the
various regression models can be applied by use of the R language for statistical
computing. Furthermore, we provide guidance on model choice and compare the
models in terms of their prediction accuracy. Section 6 discusses additional aspects
related to discrete time-to-event modelling and puts the methods considered in this
article into perspective.

The R code to reproduce all the numerical results is provided as electronic
supplement to this tutorial.

2 Notation and basic concepts

Given n observations, let, in the following, Ti denote the event time and Ci

the censoring time of individual i, i = 1, . . . , n. Ti and Ci are assumed to be
independent random variables taking discrete values in {1, . . . , k}. In addition, one
observes a vector of p time-constant explanatory variables xi = (xi1, . . . , xip)�. For
right-censored data, the observation time is defined by T̃i = min(Ti, Ci), that is, T̃i

corresponds to the true event time, if Ti < Ci, and to the censoring time otherwise. If
originally continuous data have been grouped, the discrete event times 1, . . . , k refer
to time intervals [0, a1), [a1, a2), . . . , [ak−1, ∞), where Ti = t means that the event
occurred in time interval [at−1, at). For example, in our application on unemployment
durations, where time was measured in two-week intervals, Ti = 3 implies that
re-employment of individual i took place between four and six weeks after the start
of the study.

The main tool to model discrete time-to-event data is the hazard function, which
captures the dynamics of the survival process at each time point. For a given vector
of time-constant explanatory variables xi, the hazard function is defined by

�(t|xi) = P(Ti = t | Ti ≥ t, xi), t = 1, . . . , k, (2.1)

describing the conditional probability of an event at time t, given that the individual
survived until t. The corresponding survival function is given by

S(t|xi) = P(Ti > t|xi) =
t∏

s=1

(1 − �(s|xi)), t = 1, . . . , k, (2.2)

denoting the probability that an event occurs later than at time t, or, alternatively,
the probability of surviving interval [at−1, at).

An important consequence of the definition of the hazard function in (2.1) is that
for a fixed time t, the hazard �(t|xi) drives a binary variable that distinguishes between
the event taking place at time t or not, conditional on Ti ≥ t. Therefore, a model for
the discrete hazard function can be derived from regression modelling strategies for
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a binary response data. This allows to use established tools and reliable software
packages that have been developed for this class of models.

2.1 Parametric discrete hazard models

A general class of binary response models applied to the discrete hazard function is
defined by

�(t|xi) = h(�0t + x�
i �), (2.3)

where h(·) is a strictly monotone increasing distribution function. A common
assumption is that the model contains a time-varying intercept and a set of covariate
effects that are fixed over time. Hence, the linear predictor of the model, �it =
�0t + x�

i �, comprises the intercepts �0t, t = 1, . . . , k − 1, and a vector of regression
coefficients � = (�1, . . . , �p)� independent of t. Note that there is no intercept
parameter for t = k, as the hazard function in (2.1) is fully determined by h(·) and
the coefficients �01, . . . , �0,k−1, ��. The hazard of the last interval is not explicitly
modelled, but by definition is given by �(k|xi) = 1.

The most popular version of model (2.3) is the logistic discrete hazard model or
proportional continuation ratio model, which is specified by the equation

�(t|xi) = exp(�0t + x�
i �)

1 + exp(�0t + x�
i �)

. (2.4)

By definition, the proportional continuation ratio model uses the logistic distribution
function for h(·). It can be shown that an alternative representation of the model is

log
(

P(Ti = t|xi)
P(Ti > t|xi)

)
= �0t + x�

i �. (2.5)

The ratio P(Ti = t|xi)/P(Ti > t|xi) compares the probability of an event at time t to
the probability of an event later than t. It is also known as continuation ratio; see,
for example, Agresti (2013). One has to note, that the odds in (2.5) are equivalent to
the odds under the condition Ti ≥ t. This representation of the model allows for an
easy interpretation of the effects see the application in Section 5.2.

Generally, the number of parameters in model (2.4) depends on the number of time
points, as there is a separate intercept for each t. The set of intercepts �01, . . . , �0,k−1
defines the hazard that is always present for any given set of covariates. This hazard
is usually referred to as baseline hazard, and the intercepts �0t correspond to the log
continuation ratio when all covariates are zero.

2.2 Semiparametric extensions

The parametric model introduced in the previous section is linear in �, implying
that each covariate has a linear effect on the transformed hazard. In practice, this
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linearity assumption may be too restrictive, as predictor-response relationships are
often characterized by nonlinear functional forms. Furthermore, so far it has been
assumed that the baseline hazard is represented by a separate intercept coefficient
for each t. This can lead to numerical problems, especially when the number of
time points (and, hence, the number of intercept parameters) is large relative to the
sample size, implying that the event counts at some of these time points may become
small. In the following, we will consider popular semiparametric alternatives for the
definition of �it that address these issues. We first consider additive hazard models and
subsequently tree-based methods, which can also be embedded into the framework
of binary response models.

To avoid numerical problems in the estimation of the baseline hazard, it is often
convenient to consider an additive model with predictor

�it = f0(t) + x�
i �, (2.6)

where f0(t) is a smooth (possibly nonlinear) function of time. By relating the values of
the baseline hazard at neighbouring time points via f0(t), the number of parameters
involved in model fitting effectively reduces, and low event counts at some time points
become less problematic. A common way to specify the smooth function in t is to
use splines, which are represented by a weighted sum of M basis functions. One
possible representation of f0(t) is by B-spline basis functions. These are polynomials
of fixed degree d differing from zero in d + 1 adjacing intervals. For a comprehensive
introduction to B-splines, see De Boor (1978). Very flexible spline functions can be
obtained by choosing a relatively large number of basis functions M and at the same
time using a penalty term to prevent estimates becoming too rough (‘wiggly’). This
approach, on which we will focus in this article, is called P-splines and was first
proposed by Eilers and Marx (1996).

An extension of the semiparametric model (2.6) that weakens the linearity
assumption on the effects of the covariates is given by the additive model

�it = f0(t) +
p∑

j=1

fj(xij), (2.7)

where the fj(·) are unknown smooth functions. That is, the effects of the covariates (or
subsets of the covariates) are determined by smooth, possibly nonlinear, functions. A
common approach is again to use P-splines and to expand each function separately
by a weighted sum of B-spline basis functions depending on the covariates.

Possible further extensions of model (2.7) are, for example, the use of smooth
time-varying effects of the form fj(xij) · t or fj(xij, t). This kind of models is extensively
discussed in Bender et al. (2018). The tutorial by Bender et al. (2018) illustrates the use
of generalized additive mixed models for semiparametric continuous time-to-event
modelling and is also part of this special issue.

In the semiparametric models with predictors (2.6) and (2.7), it is assumed that
the predictor is given by an additive function of time and a linear (or additive)
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function of the covariates. Although these models are very flexible, they may not
capture the structure of the data very well, if interactions between covariates are
present. For example, it is quite conceivable that the effect of a covariate on the
hazard depends on the values of a second covariate, implying the presence of an
interaction between the two covariates. The problem when incorporating interactions
in parametric or additive models is that the relevant interactions have to be known and
specified before model fitting. Furthermore, parametric and additive models are hard
to handle if the interaction terms involve more than two covariates. An alternative
regression approach that addresses these problems is recursive partitioning, which
is also known as tree modelling. The most popular tree method is classification
and regression trees (CART), as proposed and described in detail by Breiman et al.
(1984). The basic CART method is conceptually very simple: The covariate space is
partitioned recursively into a set of rectangles, and in each rectangle a simple model
(for example, a covariate-free model) is fitted. A user-friendly introduction to the
basic concepts of tree modelling is found in Hastie et al. (2009). Recently, Schmid
et al. (2016) proposed a recursive partitioning method that is specifically designed to
model discrete time-to-event data. The main principle is to fit a discrete hazard model
of the form

�(t|xi) = f (t, xi), (2.8)

where f (t, xi) is represented by a classification tree with binary outcome. Each split
of this tree is determined by either t (treated as an ordinal variable) or one of the
covariates. As a result, each terminal node of the tree refers to an estimate of the
hazard function for a specific covariate combination and a specific time interval
[t1, t2] ⊂ [1, k]. For details on the calculation of the corresponding estimates, see
Section 5.3.

3 Estimation and data preparation for additive hazard models

To derive the log-likelihood function for discrete hazard models, it is useful to
introduce a binary variable indicating whether the target event was observed or not:

�i =
{

1, if Ti ≤ Ci,

0, if Ti > Ci.
(3.1)

Thus, �i becomes 1, if the exact true time is observed; otherwise, �i = 0. In the case
where continuous time-to-event data are grouped, �i = 1 and T̃i = t implies an event
in interval [at−1, at) and Ti = T̃i = t. Similarly, �i = 0 and T̃i = t implies Ci = T̃i = t

and survival beyond at, that is, Ti > T̃i = t.
Note that when continuous time-to-event data are grouped or rounded, additional

assumptions are implicitly imposed on the censoring mechanism. To see this, consider
the case where both the continuous event time Tcont,i and the continuous censoring
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time Ccont,i are within the same interval, say, [at−1, at). Then, by definition, Ti =
Ci = t, T̃i = t, and �i = 1, leading to the usual interpretation that an event was
observed in interval [at−1, at). At the same time, however, this interpretation implicitly
assumes Tcont,i ≤ Ccont,i, that is, the continuous event time Tcont,i ∈ [at−1, at) is not
allowed to be larger than the continuous censoring time Ccont,i ∈ [at−1, at). Without
this assumption, the scenario where both Tcont,i, Ccont,i ∈ [at−1, at) and Tcont,i > Ccont,i

would result in T̃i = t and �i = 1 but no observed event in [at−1, at). This assumption
on the nature of the censoring mechanism is often referred to as ‘censoring at the end
of the interval’.

With data (T̃i, �i, xi), i = 1, . . . , n, the contribution of the i-th observation to the
likelihood function is given by

Li = P(Ti = T̃i)�i P(Ti > T̃i)1−�i P(Ci ≥ T̃i)�i P(Ci = T̃i)1−�i . (3.2)

A crucial assumption that is usually made to simplify the likelihood function (3.2)
is that the censoring process does not depend on the parameters determining the
event times Ti. A consequence of this assumption is that the terms involving the
censoring times can be ignored in the maximization of the likelihood function for
the time-to-event process. Omitting the terms involving Ci in (3.2) and inserting the
definitions of the hazard function (2.1) and the survival function (2.2), one obtains
(expect for some constants)

Li ∝ �(T̃i|xi)�i (1 − �(T̃i|xi))1−�i

T̃i−1∏
j=1

(1 − �(j|xi)). (3.3)

Note that, by definition of �i in (3.1), one always obtains �i = 1 and �(T̃i|xi) = 1. if
T̃i is equal to the last time point k. For maximum likelihood estimation, it is therefore
convenient to re-code observations with T̃i = k as follows:

T̃i = k, �i = 1, xi 	−→ T̃i = k − 1, �i = 0, xi, (3.4)

making use of the fact that the value of the likelihood contribution in (3.3) will not
be altered by this transformation.

With some algebra, it can be shown that the likelihood function (3.3) is equal to
the likelihood of a binary response model with outcome variables

(yi1, . . . , yiT̃i
) =

{
(0, . . . , 0, 1), if �i = 1

(0, . . . , 0, 0), if �i = 0.
(3.5)

For individuals where the exact event time is observed, one defines the observation
vector (0, . . . , 0, 1) of length T̃i. For censored individuals, the observation
vector contains only zeros. According to this definition, one has T̃i binary
observations for each individual i, resulting in a total of T̃1 + · · · + T̃n observations.
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Using these definitions, the log-likelihood of the proportional continuation ratio
model becomes

� ∝
n∑

i=1

T̃i∑
s=1

yis log(�(s|xi)) + (1 − yis) log(1 − �(s|xi)). (3.6)

The main advantage of this representation of the log-likelihood is that it allows to
use software for fitting binary response models. For example, it follows from (3.6)
that fitting a continuation ratio model is equivalent to fitting a logistic regression
model with predictor (2.6) or (2.7). In this model, the values of the binary responses
yis can be interpreted as binary decisions for the transition from interval [as−1, as) to
[as, as+1). For instance, in the application on unemployment duration, one observes
yis = 0 for each two-week interval as long as the individual i is not re-employed yet.

The models with smooth components (2.6) and (2.7) can be fitted by maximizing
a penalized likelihood of the form

�p = � − ıJ, (3.7)

where ı ∈ R+ is a penalty parameter and J ∈ R+ is the penalty term already mentioned
in Section 2.2, putting restrictions on the weights of the B-spline basis functions
and preventing estimates from becoming too rough. When using P-splines, J is a
difference penalty on adjacent B-spline coefficients. A common procedure is to use
cubic B-splines (d = 3) with second order differences. Then, for example, the penalty
term for the estimation of the smooth baseline hazard f0(t) in model (2.6) contains
only the parameters �01, . . . , �0M, corresponding to f0(t) and has the form

J =
M∑

m=3

(
�2�0m

)2 =
M∑

m=3

(�0m − 2�0,m−1 + �0,m−2)2. (3.8)

For further details, see Eilers and Marx (1996).
The degree of smoothness is determined by the tuning parameter ı. The larger the

value of ı, the smoother is the resulting function, and vice versa. When several smooth
functions are included in the model, one uses a difference penalty for each spline
effect, based on the differences of adjacent B-spline coefficients for the corresponding
covariate. The smoothness of the individual spline estimates can be determined by
the same or separate penalty parameters ıj.

Before fitting proportional continuation ratio models with software for binary
outcome data, one has to generate the required binary observations presented in
(3.5). This is done by the generation of an augmented data matrix. For the setup of
the matrix, one has to distinguish between censored and non-censored individuals.
For an individual whose event was observed (�i = 1) at time T̃i, the augmented data
matrix is given by
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⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 xi1 . . . xip

0 2 xi1 . . . xip

0 3 xi1 . . . xip

...
...

...
...

1 T̃i xi1 . . . xip

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.9)

For an individual that is censored (�i = 0) at time T̃i, the augmented data matrix is
given by

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 xi1 . . . xip

0 2 xi1 . . . xip

0 3 xi1 . . . xip

...
...

...
...

0 T̃i xi1 . . . xip

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.10)

The first column in the augmented data matrices corresponds to the binary responses
yi1, . . . , yiT̃i

. The second column is the time interval running from 1 to T̃i. When
fitting a model with fixed intercept parameters �0t, this column has necessarily to be
coded as a nominal factor, for example, via dummy variables. The remaining part
of the data contains the covariates. When the covariates are constant over time, the
values in each row of columns 3 to (p + 2) are the same, that is, covariate vector xi

is repeated row-wise. This is also the case in the US unemployment data. Otherwise,
when time-varying covariates are considered, the observed time series are entered
in the respective columns of the augmented data matrices. For each individual, the
augmented data matrix has T̃i rows, and the whole data matrix, which is obtained
by ‘glueing’ the individual augmented matrices together, has

∑n
i=1 T̃i rows.

In R, the augmented data matrix can be generated by applying the function
dataLong() in the R package discSurv (Welchowski and Schmid, 2017). The general
interface of the function is

> dataLong(dataSet, timeColumn, censColumn, timeAsFactor = TRUE).

The function requires the original data of class data.frame in ‘non-augmented’
short format (argument dataSet), the column name of the observed discrete event
times (argument timeColumn) and the column name of the binary event indicator
as defined in Equation (3.1) (argument censColumn). The variable required by
timeColumn can either be numeric or coded as an ordinal or nominal factor. If
timeAsFactor = TRUE, the time column in the augmented data matrix will be
returned as a nominal factor. The variable required by censColumn can either be a
numerically coded 0/1 vector or a labelled factor variable. Note that dataLong()
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assumes that the covariates are constant over time. If this is not the case, the
function dataLongTimeDep() should be used instead to generate the augmented
data matrix. For details on the required format of the raw data matrix, we refer to
the documentation in discSurv.

The augmented data matrix returned by dataLong() contains the binary
responses as defined in Equation (3.5) in the form of a numerically coded 0/1 vector
named y. Further details on the output are given by the application in Section 5.1.

4 Goodness-of-fit measures

In this tutorial, we consider two diagnostic tools that are useful to investigate discrete
hazard models in terms of their goodness of fit. By appropriate visualizations, both
tools can be used to check whether a model is well calibrated, that is, to check how
well the fitted probabilities agree with their corresponding observed proportions.
Note that these graphical checks do not constitute ‘formal’ calibration tests, in the
sense that they neither rely on asymptotics nor on distributional results.

First, one can generate a calibration plot. The idea is to compare the estimated
hazards �̂(t|xi), i = 1, . . . , n, t = 1, . . . , T̃i, of the model to the relative frequencies of
observed events (yit = 1) in predefined subsets of the augmented set of observations.
More specifically, one splits the data into subsets Dk, k = 1, . . . , K, defined by the
percentiles of the estimated hazards. Common choices for K are K = 10 or K = 20.
Then the relative frequency of observed events (‘empirical hazard’) is calculated in
each subset by

∑

i,t:�̂(t|xi)∈Dk

yit

|Dk|
, (4.1)

where |Dk| corresponds to the number of observations in subset Dk. If the fit of
the model is satisfactory, the empirical hazard measure in (4.1) should be close to
the average of the estimated hazards in Dk for all k, that is, close to the mean of
�̂(t|xi) ∈ Dk, k = 1, . . . , K. Examples of calibration plots are shown in Figure 3 in
the application.

Second, we consider martingale residuals, which allow for assessing the
importance of single covariates xj. The idea of the martingale residuals is to compare
for each individual the observed number of events with the expected number of events
up to T̃i. Using the binary response variables yi1, . . . , yiT̃i

the residuals are defined as

ri =
T̃i∑

t=1

(yit − �̂(t|xi)), i = 1, . . . , n. (4.2)

For a well-fitting model that includes all relevant predictors, the difference between
yit and �̂(t|xi) should be ‘random’ and therefore uncorrelated with the covariate
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values. To assess the importance of a covariate graphically, one can plot the residuals
against the covariate values. Martingale residuals can be computed by the function
martingaleResid() contained in the discSurv package. Examples are shown in
Figure 3 in the application.

5 Application: Duration of unemployment

In the following, discrete hazard regression modelling is illustrated by means of a
step-by-step analysis of the US unemployment data. Throughout this section, we use
the logistic link function, that is, we consider the fitting of a proportional continuation
ratio model.

5.1 Preprocessing of the data

To fit a logistic discrete hazard model of the form (2.4), the original data matrix
first has to be transformed to an augmented data matrix, as described earlier. The
dataset UnempDur, which (after application of the preprocessing steps outlined in
the Introduction) is a slightly modified version of the data frame available in the R
package Ecdat, has the following form:

> head(UnempDur)

spell age ui reprate disrate logwage tenure status
1 5 41 no 0.179 0.045 6.89568 3 1
2 13 30 yes 0.520 0.130 5.28827 6 1
4 3 26 yes 0.448 0.112 5.97889 3 1
5 9 22 yes 0.320 0.080 6.31536 0 1
6 11 43 yes 0.187 0.047 6.85435 9 0
8 3 32 no 0.373 0.093 6.16121 0 1

The first column named spell is the observed time to re-employment of individual
i and contains the values of T̃i, i = 1, . . . , n. As mentioned earlier, these values
correspond to the lengths of the spells (measured in two week intervals), whose
distribution is displayed in Figure 1. The last column named status indicates
whether the exact event time of individual i has been observed (status = 1) or
if the individual is subject to right censoring (status = 0); it corresponds to the
random variable �i defined in equation (3.1). Summarizing the status column
yields a censoring rate of 0.391:

> table(UnempDur$status)/nrow(UnempDur)

0 1
0.3909657 0.6090343
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Columns two to seven of the data frame UnempDur contain the explanatory variables
described in Table 1. All covariates are constant over the time of the survey.
When using dataLong() to obtain the augmented data matrix, one has to
pass the column names spell and status to the arguments timeColumn and
censColumn, respectively:

> library(discSurv)
> UnempDurLong <- dataLong(UnempDur, timeColumn = "spell",
+ censColumn = "status").

The augmented data matrix UnempDurlong has 10 columns with the following
names:
> names(UnempDurLong)

[1] "obj" "timeInt" "y" "spell" "age" "ui"
[7] "reprate" "disrate" "logwage" "tenure" "status"

The new columns are obj, which is an identifier of the individuals, timeInt, which
contains the discrete time values (i.e., the second column of the augmented matrices
in (3.9) and (3.10), stored as a nominal factor) and y, which contains the binary
response variables yi1, . . . , yiT̃i

∈ {0, 1}. The head of the augmented data matrix is
given by

> UnempDurLong[UnempDurLong$obj==1, ]

obj timeInt y spell age ui reprate disrate logwage tenure status
1 1 1 0 5 41 no 0.179 0.045 6.89568 3 1
1.1 1 2 0 5 41 no 0.179 0.045 6.89568 3 1
1.2 1 3 0 5 41 no 0.179 0.045 6.89568 3 1
1.3 1 4 0 5 41 no 0.179 0.045 6.89568 3 1
1.4 1 5 1 5 41 no 0.179 0.045 6.89568 3 1,

showing that the first individual (obj = 1) had an event after 10 weeks (spell = 5
and status = 1). Accordingly, the augmented data matrix for the first individual
has five rows, where each row corresponds to one time interval (timeInt =
1, . . . , 5). The corresponding vector of responses is y = (0, 0, 0, 0, 1). The values of
the covariates remain constant over time and are therefore the same in each row.

As a second example, consider the augmented data matrix of the 12th individual
(obj = 12). This individual is censored after six weeks (spell = 3 and status = 0).
Hence, the corresponding data matrix has three rows with response y = (0, 0, 0):

> UnempDurLong[UnempDurLong$obj==12, ]

obj timeInt y spell age ui reprate disrate logwage tenure status
14 12 1 0 3 40 yes 0.52 0.13 4.95583 0 0
14.1 12 2 0 3 40 yes 0.52 0.13 4.95583 0 0
14.2 12 3 0 3 40 yes 0.52 0.13 4.95583 0 0.
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5.2 Regression modelling

A parametric proportional continuation ratio model with a linear predictor is
estimated in R by passing the augmented data matrix UnempDurLong to glm()
with the usual specifications:

> model1 <- glm(formula = y ˜ timeInt - 1 +
+ age + reprate + disrate + logwage + tenure + ui,
+ data = UnempDurLong, family = binomial(link = "logit")).

The left-hand side of the formula argument contains the binary response vector y.
In addition to the names of the six covariates, the right-hand side contains the
discrete time variable as a nominal factor without intercept (timeInt - 1). The
family argument binomial(link = "logit") is the same as for ‘usual’ logistic
regression models with binary outcome.

The more complex model with smooth baseline hazard (Equation (2.6)) is
estimated by use of the R package mgcv (Wood, 2017). A detailed introduction to the
estimation procedures is found in Wood (2011). The corresponding function gam()
essentialy has the same interface as glm():

> library("mgcv")
> UnempDurLong$timeIntNum <- as.numeric(UnempDurLong$timeInt)
> model2 <- gam(formula = y ˜ s(timeIntNum, bs = "ps", k = 5, m = 2) +
+ age + reprate + disrate + logwage + tenure + ui,
+ data = UnempDurLong, family = binomial(link = "logit")).

Before passing the nominal factor timeInt to gam(), it has to be transformed to
a continuous variable (timeIntNum). Then a smooth baseline hazard is specified
by use of the function s() on the right-hand side of the model formula. Required
arguments are the type of spline smoother bs, the dimension of the basis k (which
corresponds to the number of basis functions M = k − 1) and the order of the penalty
m. Here, we use P-splines with cubic basis functions (bs = "ps") and a second
order difference penalty (m = 2). The chosen dimension (k = 5) results in four cubic
basis functions. Based on these specifications, the optimal smoothing parameter ı,
see Equation (3.7), is computed by generalized cross-validation (see Wood, 2006). Its
estimate is stored in the argument sp. In case of the US unemployment data, sp is
estimated as:

> model2$sp

s(timeIntNum)
0.08562284.

Generally, the mgcv package implements a large variety of alternative spline
estimators and methods for smoothing parameter optimization. In principle, all of
these methods may be used for discrete hazard modelling, in the same way as they
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Figure 2 Analysis of the US unemployment data. The figure shows the estimated discrete baseline
hazard of model1 (black dots) and the smooth baseline hazard of model2 (grey squares)

would be used in logistic regression (or, more generally, in additive models with a
binary response).

The estimated baseline hazards of model1 and model2 are shown in Figure 2.
The discrete baseline hazard obtained for model1 is visualized by black dots. From
these estimates, a reasonable interpretation is hard to derive. On the other hand, the
smooth baseline hazard obtained for model2, visualized by grey squares, is more
meaningful. It is seen that the conditional probability of re-employment decreases
until week 20 and subsequently increases up to week 32 before it diminishes again.
The reason for this might be that in many US states, workers are eligible for up to 26
weeks of benefits from the state-funded unemployment compensation programme.

Table 2 shows the estimates of the coefficients �, the corresponding estimated
standard errors, and the p-values of the covariate effects obtained for model1 and
model2. Apart from the eligible replacement rate (reprate) and the tenure in

Table 2 Analysis of the US unemployment data. The table contains coefficient estimates (coef), estimated
standard errors (se) and p-values of the covariate effects obtained for model1 and model2 (bh = baseline
hazard)

model1 (discrete bh) model2 (smooth bh)

coef se p-value coef se p-value

age −0.012 0.003 0.000 −0.012 0.003 0.000
reprate 0.285 0.342 0.406 0.301 0.338 0.373
disrate −0.764 0.383 0.046 −0.755 0.379 0.047
logwage 0.231 0.072 0.001 0.236 0.071 0.001
tenure −0.005 0.005 0.280 −0.006 0.005 0.266
ui −1.151 0.052 0.000 −1.175 0.051 0.000
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the lost job, (tenure), the covariates are significantly associated with the time to
re-employment. According to the signs of the estimates of both models, the chance
of getting re-employed decreases with increasing values of age, increasing disregard
rate and with the filing of an unemployment claim. On the other hand, the higher
the earnings in the lost job, the better the chance of re-employment. Table 2 also
shows that the differences in coefficient estimates between the two models are small.
By use of Equation (2.5), the effects can be interpreted in an easy way. For example,
let us compare citizens who submitted an unemployment insurance claim (ui = 1)
to those who did not (ui = 0). Based on the estimate of model1 (�̂ui = −1.151),
one obtains that the probability of re-employment at (any) time t, compared to
the probability of re-employment later than t, decreases for citizens who submitted
an unemployment insurance claim by the factor exp(�̂ui) = 0.316. The chance of
re-employment is therefore much smaller in this group. One might speculate that due
to benefits from the state-funded unemployment, the motivation to search for a new
job is lower.

The goodness-of-fit measures for model1 and model2 are presented in Figure 3.
The left figures show the calibration plots (average fitted hazards against the relative
frequencies of events). It is seen that the values of model1 are closer to the 45
degree line than those of model2, indicating a better model fit. The right figures
show the martingale residuals, defined in (4.2), against the values of the covariate
age for the fit of model1 and model2 without age. The black lines correspond to
the estimated trend obtained by a local polynomial regression using the R function
loess(). The functional form of the trend lines (compared to the zero line) shows a
nonlinear effect on the martingale residuals for both models. This indicates that the
covariate age is an influential variable (cf. Table 2) with a possibly nonlinear effect on
the response.

Therefore, as a possible extension, we consider a model where the baseline hazard
as well as the covariate age are both modelled as smooth P-spline functions:

> model3 <- gam(formula = y ˜ s(timeIntNum, bs = "ps", k = 5, m = 2) +
+ s(age, bs = "ps", k = 25, m = 2) +
+ reprate + disrate + logwage + tenure + ui,
+ data = UnempDurLong, family = binomial(link = "logit")).

As seen from the R code, the estimation of the smooth function of covariate age
in model3 is based on 24 cubic basis functions (dimension k = 25). The estimated
penalty parameter ı̂ for age, stored in sp, is:

> model3$sp["s(age)"]

s(age)
56 860.2.

From the resulting function shown in Figure 4, it is seen that the association between
the time to re-employment and age is definitely not linear. Its form is very similar to
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Figure 3 Analysis of the US unemployment data. The two panels show the calibration plot (left) and the
martingale residuals against the values of age (right) obtained for model1 (a) and model2 (b) without age,
respectively. The trend lines were obtained by local polynomial regression

the loess trend shown in Figure 3. The value on the y-axis of the figure corresponds to
the contribution of age to the predictor �it of the model. The chance of re-employment
has a peak between 20 years and 30 years, and subsequently decreases.

5.3 Tree-based modelling

Finally, we fit a recursive partitioning model of the form (2.8). Again, we consider
a procedure that is based on the augmented data matrix with binary outcomes
yi1, . . . , yiT̃i

.
When growing trees, one has to take two main decisions: First, one has to choose an

appropriate criterion for performing the splits. Criteria that have already been used in
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Figure 4 Analysis of the US unemployment data. The plot shows the estimated P -spline function for the
covariate age in model3

the early days of tree construction are impurity measures. For discrete survival trees,
a natural measure of node impurity is the Brier score, which evaluates the average
squared difference between the binary outcome values yit and the respective hazard
estimate �̂(t|xi) in each node (see Schmid et al., 2016). It can be shown that using the
Brier score is equivalent to the traditional Gini impurity measure. For a single node
m, the Gini impurity is given by

Gm = 2 �m (1 − �m), (5.1)

where �m is the proportion of ones in node m (see Breiman, 1996). This equivalence
implies that the traditional CART algorithm based on the Gini criterion can be used
for the construction of the tree. The latter is done by using the function rpart() of
the eponymous R package rpart (Therneau et al., 2015).

Second, one has to determine the optimal size of the tree. For the discrete survival
tree, an appropriate tuning parameter controlling tree size is the minimal number of
observations in each terminal node (‘minimal node size’). Optimizing this number
avoids overfitting, as the number of terminal nodes is prevented from becoming too
large and, at the same time, the node sizes are prevented from becoming too small.
Growing the largest possible tree with exactly one observation in each terminal node,
for example, is not desirable, as the estimated hazards would all be either 0 or 1
in this case. Accordingly, splitting is stopped when further splitting in any of the
current nodes would result in an additional node containing less observations than the
minimal node size. Given a sequence of tree estimates depending on the minimal node
size, the optimal tree (i.e., the tree with ‘optimal’ minimal node size) is determined
by either minimization of an information criterion (such as AIC or BIC, see in
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the following) or maximization of the predictive log-likelihood. The latter strategy
means to repeatedly draw subsamples from the original non-augmented data (for
example, by cross-validation, bootstrapping or subsampling without replacement)
and to calculate the log-likelihood for the omitted observations. One determines
the optimal tree as the one for which the predictive log-likelihood (averaged across
the subsamples) becomes maximal. The R function survivalTree() automatically
generates the augmented data matrix by dataLong(), estimates the discrete survival
tree by rpart() and returns the optimal one according to the specified performance
criterion. The function is part of the electronic supplement of this article.

Once the optimal minimal node size has been determined, the estimate of �(t|xi) is
given by the relative frequency of events (proportion of ones) in each node, possibly
after applying some sort of correction procedure like the Laplace correction (see in
the following).

To fit a tree model to the US unemployment data, we call the survivalTree
function using the following arguments:

> source("survivalTree.R")
> model4 <- survivalTree(formula = y ˜ timeInt + age +
+ reprate + disrate + logwage + tenure + ui,
+ data = UnempDur, tuning = "BIC",
+ timeColumn = "spell", censColumn = "status",
+ minimal_ns = seq(100, 1500, by = 10),
+ trace = TRUE).

The formula required for the tree model is analogous to the one specified for a
model with linear predictor. Note that internally the time variable timeInt is
coded as a numeric vector. This is in analogy to model2 and model3 with smooth
baseline hazards. The original data frame UnempDur (in non-augmented format)
is passed to the data argument. In addition, one has to specify the timeColumn
and CensColumn arguments used in dataLong(). The performance criterion is
specified by the argument tuning. For tuning, we use the Bayesian information
criterion (BIC) defined by

BIC := −2 � + log(ñ) ns ,

where � is the log-likelihood (3.6), ñ is the number of rows of the augmented data
matrix and ns denotes the number of splits as a measure of the complexity of the
tree. Other possible arguments for tuning are "AIC" (Akaike’s information criterion)
and "ll" (predictive log-likelihood method). When using "ll", survivalTree()
performs a five-fold cross-validation based on subsamples without replacement. To
ensure that each subsample contains a sufficient number of observations per observed
event time, the subsamples are stratified by spell. The survivalTree function
searches for the best model among the sequence of models with minimal node sizes
minimal ns. If minimal ns is not specified, the sequence of minimal node sizes is
set to 1, . . . , �ñ/2�.
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Figure 5 Analysis of the US unemployment data. The plot shows the BIC values for the sequence of
survival trees that was obtained by fitting model4 with minimal node sizes ranging from 100 to 1 500. The
minimal BIC value (obtained for node size 840) is marked by the vertical dashed line

The BICs obtained for model4 with minimal node sizes 100, . . . , 1 500 (in steps of
10) are shown in Figure 5. If an increase of the minimal node size does not change the
number of splits and therefore does not influence the resulting tree, the BIC remains
the same. This is the case, for example, between minimal node sizes 900 and 1 000.
According to the BIC, the optimal tree model has minimal node size 840, marked by
the dashed line in Figure 5. This results in a tree with 11 splits or 12 terminal nodes.
The estimated tree is shown in Figure 6.

The most important covariate, which was chosen in the first split of the tree, is ui.
As already derived from the parametric models, the submission of an unemployment
insurance claim (ui = ‘yes’) has a negative effect on the ‘chance’ of re-employment.
Within the group of citizens who submitted an insurance claim, the chance is lowest
for citizens aged 43 years, or older and with a tenure in the lost job of at least 6
years (leftmost node in Figure 6). For citizens younger than 43 years, all further
splits are performed with regard to the discrete time variable (timeInt). This
confirms the results from Figure 2 in that the chance of re-employment is highly
time-dependent. With the high hazard estimate of 0.110 after 26 weeks (timeInt
>= 13) of unemployment in this group, the tree estimate also indicates similar
tendencies that were already seen in Figure 2 after 20 weeks. The best opportunities
of re-employment are observed for citizens without an unemployment insurance
claim, within the first six weeks (timeInt < 4) of unemployment, and with log
weekly earnings of at least 5.52$ (rightmost node in Figure 6). For this subgroup,
the estimated hazard rate is 0.302. The two covariates reprate and disrate were
not selected in any of the splits and are therefore exluded from the model. This is in
contrast to model1 and model2 (see Table 2), where disrate showed a significant
effect on the hazard.
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Figure 6 Analysis of the US unemployment data. The graph visualizes the survival tree obtained from
fitting model4 with BIC-optimal minimal node size 840. The numbers at the terminal nodes refer to the
estimated hazards. All estimated hazards were additionally post-processed by application of the Laplace
correction, which was suggested by Ferri et al. (2003) to correct for estimates near the boundaries 0 and 1 in
nodes with very few observations. The Laplace correction is automatically performed by survivalTree()

5.4 Comparison and model choice

In the previous sections, we presented the results of the analysis of the US
unemployment data, having used three different parametric models and a tree-based
model. In addition to the goodness-of-fit measures defined in Section 4, the
interpretability of the model coefficients and the performance with regard to
predicting events of future observations can be used as criteria for model choice.

Regarding the interpretation of the covariate effects, there is an important
difference between the parametric models and the tree-based model. After the first
split in the tree, all nodes represent interactions between either the covariates or
between the covariates and time. For example, the second split in the left node
(ui = ‘yes’) in the covariate age implies an interaction between the covariates
ui and age (see Figure 6). In contrast to the interaction effects, it is usually difficult
to detect and quantify main effects using tree modelling (e.g., by age). On the other
hand, in the parametric models, the main covariate effects can easily be interpreted.
For example, according to our analysis, covariate age has a negative linear effect
(see Table 2) or smooth effect (see Figure 4) on the chance of re-employment. Higher
order interactions (e.g., between ui, age and tenure) are usually hard to model by
the parametric models, as they—unlike trees—do not include a data-driven selection
of interaction terms during model fitting. This implies that interactions either need
to be known or that a large number of parametric models (including/excluding the
various interaction terms) need to be fitted and compared.

A common measure for the prediction accuracy of the models is the deviance
D = −2�, evaluated on (yis, �̂(s|xi)), i = 1, . . . , n′, of an independent test dataset
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Figure 7 Analysis of the US unemployment data. The boxplots show the predictive deviance values of
the four models based on 100 subsamples without replacement of size n = 2 568 each. The models were
evaluated on the remaining 100 test sets of n′ = 642 observations each. For a better comparison, the
median of the tree-based model is marked by a dashed line

comprising n′ observations. Because D is small if the log-likelihood � is large, one
should prefer the model with minimal D. To further compare the models, we drew
100 subsamples without replacement of size n = 2 568 (i.e., 80% of the original
sample), estimated the four models on each of the 100 subsamples and computed the
predictive deviances from the remaining 100 test sets of n′ = 642 observations each.
Subsampling was stratified by spell to ensure a sufficient number of observations
per observed event. From the results in Figure 7, it is seen that model1 with discrete
baseline hazard performed better than model2 and model3 with smooth baseline
hazard. This was already indicated by the calibration plots in Figure 3. The tree-based
model (rightmost boxplot) had a smaller predictive deviance on average than the
parametric models and may hence be considered the best-performing model for the
US unemployment data.

6 Concluding remarks

In this tutorial, we have described a basic set of tools to fit semiparametric regression
models with a discrete time-to-event outcome. All presented models are very general,
in that they are applicable to any type of censored discrete response, regardless of
whether the data-generating process is defined by an intrinsically discrete process
or by the rounding/grouping of continuous event times. Furthermore, the presented
methods are applicable in basically any field of research, as for example, in the social
sciences, biostatistics, epidemiology and many more. The US unemployment data
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considered in this article is therefore only one of many possible examples. Further
applications are presented in Tutz and Schmid (2016).

It is important to realize that all models considered in this tutorial can be fitted
easily by use of standard software for binary regression modelling. This has the great
advantage that established tools for estimation and inference can be used, that are
already available. The most important functions in R are glm(), gam() (of the
mgcv package) and rpart() (of the eponymous package). In addition to the P-spline
and CART methodologies considered here, many other options for semiparametric
discrete time-to-event modelling exist in R. For example, mgcv provides a variety
of alternative spline modelling tools such as cardinal splines and smoothing splines,
which can be used for discrete hazard modelling by specifying the bs argument in
gam() accordingly. Further extensions also include time-varying coefficient models as
considered in Bender et al. (2018) for continuous data. Similarly, there is an alternative
tree modelling approach developed by Bou-Hamad et al. (2009) that operates directly
on the non-augmented time-to-event data. This procedure is implemented in the R
package DStree (Mayer et al., 2014).

The basic functionalities required for applying the aforementioned software
packages are all implemented in the discSurv package. Next to the functions used
in this tutorial, discSurv provides additional functions to calculate, for example,
measures for model evaluation like the concordance index (Schmid et al., 2017),
and alternative tools for residual analysis.

We finally note that there exists a number of additional modelling options that are
beyond the scope of this tutorial. These include, among many others, (a) regularized
estimation via boosting or penalized optimization of the log-likelihood, which is
useful for variable selection in higher-dimensional settings, (b) random effects and
finite mixture modelling, which account for unobserved heterogeneity in the data
and (c) competing-risks models, which extend the models considered in this tutorial
by allowing for more than one target event. For details on further methodology,
including semiparametric extensions, see Tutz and Schmid (2016). In particular, a
basic introduction into boosting for regression modelling is given by Mayr and Hofner
(2018) as part of this special issue.

Acknowledgements

The work of MS was supported by the German Research Foundation (DFG), grant
SCHM 2966/1-2.

References

Agresti A (2013) Categorical Data Analysis, 3rd
edition. New York, NY: John Wiley & Sons.

Bender A, Groll A and Scheipl F (2018) A tutorial
on the estimation of time-varying coefficient

models in event data analysis. Statistical
Modelling, 18, 299–321.

Bou-Hamad I, Larocque D, Ben-Ameur H, Mâsse
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In parametrischen und semi-parametrischen diskreten Hazard-Modellen, wie in

Kapitel 2.1 beschrieben, setzt sich die Vorhersagefunktion aus der Baseline-

Hazardfunktion über die Zeit t und einer Funktion der erklärenden Variablen X

zusammen. Dabei wird üblicherweise angenommen, dass die E�ekte der erklären-

den Variablen über die Zeit konstant sind. Diese Annahme kann jedoch oftmals

zu einschränkend sein, beispielsweise wenn Risikofaktoren zu Beginn einer Stu-

die einen stärkeren E�ekt aufweisen als im späteren Verlauf der Studie. Eine

�exiblere Methode, die erlaubt, dass E�ekte über die Zeit variieren, ist ein dis-

kretes Hazard-Modell mit additiver Vorhersagefunktion der Form

η(t,X) = γ0t +X1γ1(t) + . . .+Xpγp(t) , t = 1, . . . , k − 1 , (18)

wobei die Funktionen γj(t) , j = 1, . . . , p , den Koe�zienten der erklärenden Va-

riablen über die Zeit entsprechen. Zur Modellierung dieser Funktionen können,

wie für die semi-parametrischen Modelle in Kapitel 2.1, P-Splines verwendet wer-

den. Dies impliziert, dass sich die E�ekte über die Zeit gleichmäÿig verändern. Im

Fall diskreter Ereigniszeiten, ist es jedoch plausibler, dass sich die E�ekte nur zu

bestimmten Zeitpunkten verändern und in den Zeitintervallen dazwischen kon-

stant bleiben. Damit ergeben sich stückweise konstante E�ekte über die Zeit.

Zur Modellierung stückweiser konstanter Funktionen γj(t) wird in diesem Ka-

pitel ein Baum-basiertes Verfahren eingeführt. Der vorgeschlagene Algorithmus

ermöglicht eine automatische Selektion der erklärenden Variablen, deren E�ekte

über die Zeit variieren, deren E�ekte über die Zeit konstant sind und, welche

gar keinen E�ekt auf das interessierende Ereignis haben. Die Schätzung kann

in R mithilfe des Zusatzpaketes TSVC (Berger, 2020) durchgeführt werden. Ei-

ne Simulationsstudie veranschaulicht den Mehrwert des Baum-basierten Modells

gegenüber dem parametrischen Modell ohne zeit-variierende E�ekte und dem

semi-parametrischen Modell mit gleichmäÿigen E�ekten über die Zeit.

Das Baum-basierte Verfahren wird angewendet, um ein Vorhersagemodell für die

Liegedauer von Patienten/Patientinnen mit einer akuten odontogenen Infektion

zu erstellen und, um die Daten der pairfam-Studie zur Geburt des ersten Kindes

zu analysieren. Die erstere Analyse deckt insbesondere auf, dass die Erkrankung

an Diabetes Typ 2 einen relevanten Risikofaktor darstellt, der die Wahrscheinlich-

keit einer Entlassung innerhalb der ersten vier Tage signi�kant verringert.
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Abstract
Hazard models are popular tools for the modeling of discrete time-to-event data. In
particular two approaches formodeling time dependent effects are in common use. The
more traditional one assumes a linear predictor with effects of explanatory variables
being constant over time. The more flexible approach uses the class of semiparametric
models that allow the effects of the explanatory variables to vary smoothly over time.
The approach considered here is in between these modeling strategies. It assumes that
the effects of the explanatory variables are piecewise constant. It allows, in particular,
to evaluate at which time points the effect strength changes and is able to approximate
quite complex variations of the change of effects in a simple way. A tree-basedmethod
is proposed for modeling the piecewise constant time-varying coefficients, which is
embedded into the framework of varying-coefficient models. One important feature
of the approach is that it automatically selects the relevant explanatory variables and
no separate variable selection procedure is needed. The properties of the method
are investigated in several simulation studies and its usefulness is demonstrated by
considering two real-world applications.
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1 Introduction

Time-to-event models, also referred to as survival models, are a popular tool to analyze
datawhere the outcome variable describes the time to the occurrence of a specific event
of interest. In clinical research, for example, one often examines the time to death,
the progression of a specific disease, the onset of an infection or the length of stay
in hospital (Klein et al. 2016). Further examples from the field of social sciences are
the time to re-employment and family developments, like the time to pregnancy or
relationship durations (Van den Berg 2001).

The objective of statistical analyses typically is the modeling of the hazard func-
tion ξ(t) = lim

Δt→0
{P(t < T ≤ t + Δt |T > t, x)/Δt}, where T denotes the event

time, and to relate ξ to a set of explanatory variables x� = (x1, . . . , xp). Tradi-
tional methods, like the Cox proportional hazards model (Cox 1972), usually assume
that the event times T are measured on a continuous scale. This case has been stud-
ied extensively in the literature, see, for example, Kalbfleisch and Prentice (2002)
and Klein and Möschberger (2003). Yet, in practice, measurements of time are often
intrinsically discrete or the exact (continuous) event times are not recorded, but it
is only known that the event occurred between pairs of consecutive points in time,
i.e. within pre-specified follow-up visits. Thus, time is measured on a discrete scale
t = 1, 2, . . . , k. In the latter case, the event times t refer to mutually exclusive time
intervals [0, a1), [a1, a2), . . . , [ak−1,∞), with fixed boundaries a1, . . . , ak−1. A com-
prehensive treatment of the statistical methodology for discrete time-to-event data has
recently been given by Tutz and Schmid (2016) and Berger and Schmid (2018). Gen-
erally, a great advantage of discrete time-to-event models is that they can be viewed as
regression models with binary outcome variable. This allows to use established tools
and standard software packages that have been developed for the analysis of binary
outcome data, e.g. logistic regression or probit regression (Willett and Singer 1993).

In parametric discrete time-to-event models one usually uses simple linear com-
binations of the explanatory variables, that is, one assumes that the effects of the
explanatory variables on the outcome are linear. Moreover, it is often assumed that the
effects of the explanatory variables on the outcome are constant over the entire obser-
vation time. In many applications, however, this assumption is too restrictive and may
produce artefacts, see, for example, Tutz and Binder (2004). An important example
constitutes the case where the explanatory variables describe an initial condition like
the type of treatment at the beginning of a study. Then, the effect on the hazard at
earlier times is expected to be stronger than at later times during the study.

This phenomenon can be addressed by semiparametric regressionmodels that incor-
porate interactions between the explanatory variables and time. In this class of models
one allows the effects of the explanatory variables to vary smoothly over time. A com-
mon way to specify smooth functions in t is to use splines, which are represented by
a weighted sum of basis functions. In the continuous-time case, smooth time-varying
effects, inter alia, have been considered by Sargent (1997), Cai and Sun (2003), Tian
et al. (2005), Lambert and Eilers (2005), Groll and Tutz (2017) and Ruhe (2018). In
discrete time, the modeling of smooth time-varying has been considered by Fahrmeir
and Wagenpfeil (1996), Tutz and Binder (2004) and Groll and Tutz (2017), and, for
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example, employed byAdebayo and Fahrmeir (2005), Kandala and Ghilagaber (2006)
and Djeundje and Crook (2018) in specific applications.

Smoothly time-varying effects are a quite flexible tool but are typically unable
to model adequately the effects of explanatory variables that can be constant over a
wide range of time though not being constant over the whole range. In particular, if
one is interested in the time points where the strength of effects changes, it is more
appropriate to model the variation of effects over time by using piecewise constant
functions. One should also keep in mind that in discrete survival time points refer to
intervals. Thus, smooth variation of effects on the underlying continuous time scale
may show jumps of the effect strength on the discrete scale. In our approach the
ranges where the effects are constant are identified by the use of recursive partitioning
techniques or tree-based modeling. A tree-based approach for modeling time-varying
coefficients in continuous time has been proposed by Xu and Adak (2002). To the best
of our knowledge for discrete-time models, no tree-based modeling strategy exists so
far.

We propose a tree-based approach for modeling piecewise constant time-varying
effects in discrete time-to-event models. Specifically, our method is based on the
tree-structured varying coefficients (TSVC) approach that was recently proposed by
Berger et al. (2018b). Here we use this approach to allow the effects to be modified
by the time t , the so-called effect modifier, making use of the fact that regression
models incorporating time-varying effects may be seen as varying-coefficient models
(Hastie and Tibshirani 1993). By iterative splitting in one of the explanatory variables
the method yields a tree for each variable that shows time-varying coefficients. For
each explanatory variable the proposed algorithm determines whether the effect varies
across t , is constant over the whole range of t , or if the variable has no effect on the
outcome and should therefore be excluded from the model.

The remainder of the article is organized as follows: In Sect. 2 we give the notation
and definitions focusing on right censored data. Details on modeling smooth time-
varying coefficients and the proposed tree-structured time-varying coefficient model
are introduced in Sect. 3. Section 4 presents the results of several simulation studies.
In these studies we investigated the properties of the TSVCmodel and compared it to a
simplemodel without time-varying coefficients and amodel with smooth time-varying
coefficients. In Sect. 5 we consider two real-world applications dealing with data
collected by the Department of Oral and Cranio-Maxillo and Facial Plastic Surgery
at the University Hospital Bonn and data from the German Family Panel (pairfam;
Brüderl et al. 2018). Section 6 summarizes the main findings of the article.

2 Notation andmethodology

Let in the following Ti denote the event time and Ci the censoring time of an indi-
vidual i , i = 1, . . . , n, with n individuals given. The times Ti and Ci are assumed
to be independent random variables taking discrete values in {1, . . . , k}. For right
censored data, the time period during which an individual is under observation is
denoted by T̃i = min(Ti ,Ci ), i.e., T̃i corresponds to the true event time if Ti ≤ Ci

and to the censoring time otherwise. The random variable Δi := I (Ti ≤ Ci )
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indicates whether T̃i is right-censored (Δi = 0) or not (Δi = 1). If originally
continuous data have been grouped, the discrete event times 1, . . . , k refer to time
intervals [0, a1), [a1, a2), . . . , [ak−1,∞), where Ti = t means that the event occurred
in time interval [at−1, at ).

The main tool to describe the stochastic behavior of the discrete random variable Ti
is the hazard function. For given values of p time-constant explanatory variables xi =
(xi1, . . . , xip)�, the discrete hazard function is defined by

λ(t |xi ) = P(Ti = t |Ti ≥ t, xi ), t = 1, . . . , k, (1)

which is the conditional probability of an event at time t given that the individual
reaches time t . An alternative way to describe the stochastic behavior is to consider
the survival function given by

S(t |xi ) = P(Ti > t |xi ) =
t∏

s=1

(1 − λ(s|xi )), (2)

denoting the probability that an event occurs later than at time t . For further details on
the basic concept of discrete time-to-event data, see Tutz and Schmid (2016), Chapter
1. In the followingwe consider parametric aswell as semiparametric regressionmodels
for the discrete hazard λ(t |xi ).

A class of regression models that relates the discrete hazard function (1) to the
explanatory variables xi is defined by

λ(t |xi ) = h(η(t, xi )), t = 1, . . . , k − 1, (3)

where h(·) is a strictlymonotone increasing distribution function.Usually it is assumed
that the predictor function has the form

η(t, xi ) = γ0t + x�
i γ , (4)

which is composed of time-varying intercepts γ01, . . . , γ0,k−1, referred to as baseline
coefficients, and a linear function of the explanatory variableswith coefficients γ ∈ Rp

that do not depend on t . Using the logistic distribution function for h(·) yields the
widely applied logistic discrete hazard model, specified by

λ(t |xi ) = exp(η(t, xi ))
1 + exp(η(t, xi ))

, (5)

which is also known as proportional continuation ratio model. The continuation ratio
compares the probability of an event at time t to the probability later than t , see,
for example, Agresti (2013). As it is the most common model and as the results
presented in this paper can easily be extended to other link functions h(·) we reduce
our considerations to the logistic model throughout the rest of this article.

By definition, the discrete hazard model (3) has the form of a regression model for
binary response data. Therefore, standard estimation techniques for binary regression

123



Tree-based modeling of time-varying coefficients in discrete… 549

can be used for deriving estimates of themodel parameters.With data (T̃i ,Δi , xi ), i =
1, . . . , n, the log-likelihood of model (5) is given by

� =
n∑

i=1

T̃i∑
t=1

yit log(λ(t |xi )) + (1 − yit ) log(1 − λ(t |xi )), (6)

with binary outcome values

(yi1, . . . , yi T̃i ) =
{

(0, . . . , 0, 1), if Δi = 1 ,

(0, . . . , 0, 0), if Δi = 0 ,
(7)

see, for example, Berger and Schmid (2018). To construct the log-likelihood (6) and to
fit the model with software for binary outcomes, the original data has to be converted
into an augmented data matrix comprising the binary outcome values (7) beforehand.
This results in an augmented designmatrixwith T̃i rows for each individual. Thewhole
data matrix, which is obtained by concatenating the individual augmented matrices
together, has ñ = ∑n

i=1 T̃i rows. For further details on data preparation and the
estimation procedure for discrete hazard models, see Tutz and Schmid (2016) and
Berger and Schmid (2018).

3 Modeling time-varying coefficients

In common models with predictor (4) it is supposed that the coefficients γ do not
depend on t . That is, one assumes that the effects of the explanatory variables are
constant over the entire observation time. This assumption is typically too restrictive,
as, for example, the effect of an explanatory variable on the hazard might be stronger
at the beginning of the study than at later times.

3.1 Smooth and piecewise constant time-varying coefficients

A general approach that allows the effects to vary over time is a model with predictor

η(t, xi ) = γ0t + xTi γ (t). (8)

The predictor of model (8) contains the vector-valued function γ (t) = (γ1(t), . . . ,
γp(t)). Each component γ j (t) represents the coefficients of the j th explanatory vari-
able depending on the time t . The modeling of discrete event times including smooth
time-varying coefficients was, for example, considered by Fahrmeir and Wagenpfeil
(1996) and Tutz and Binder (2004). A conventional way to specify such a smooth
function in t is to use splines, represented by a weighted sum of M basis functions
(e.g. Wood 2017). Then each component γ j (t) has the form
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γ j (t) =
M∑

m=1

φm(t)β jm, (9)

where φ1(t), . . . , φM (t) are M fixed basis functions and β j1, . . . , β jM are the cor-
responding parameters to be estimated. Since the explanatory variables all refer to
the same period of time (i.e. are measured on the same time scale), the basis func-
tions φm(t) are the same for all variables. With this assumption, the expansion in basis
functions yields a model with predictor

η(t, xi ) = γ0t +
p∑

j=1

M∑
m=1

xi jφm(t)β jm, (10)

which constitutes a linear predictor in the parameters γ01, . . . , γ0,k−1, β11, . . . , βpM .
A popular class of basis functions are B-splines, which are defined as polynomials of
fixed degree d differing from zero in d + 1 adjacent intervals, see De Boor (1978).
In practice one typically uses P-splines (Eilers and Marx 1996), i.e., a relatively large
number of B-spline basis functions and an additional penalty term that penalizes
differences of adjacent coefficients. Fitting of the model can be done by maximization
of the corresponding penalized log-likelihood

�p = � − ε J , (11)

where J is the penalty term preventing estimates becoming to wiggly and ε ∈ R+
is a penalty parameter that determines the degree of smoothness of the fitted func-
tions γ j (t). For details on spline fitting, see Wood (2011, 2017).

When using P-splines, a smooth variation of the effect strength tends to miss the
points where the effect strength changes strongly. Although abrupt changes seem
implausible for continuous time data, for discrete time data that refer to intervals of
continuous time abrupt changes are to be expected. Therefore, in the following it is
assumed that the effects of an explanatory variable do not vary over the whole range of
t , but are constant over a certain period of time (or within several time intervals). That
is, one assumes that the time-varying coefficients for the j th variable are piecewise
constant and have the form

γ j (t) =
Q j∑
q=1

γ jq I (t ∈ Tjq), (12)

where Tj1, . . . , TjQ j are Q j time intervals, γ j1, . . . , γ j Q j are the corresponding coef-
ficients, and I (·) denotes the indicator function with I (a) = 1 if a is true and I (a) = 0
otherwise. More specifically, the observation times are divided by the thresholds
1 = t j0 ≤ t j1 ≤ · · · ≤ t j,Q j−1 ≤ t j Q j = k, and one obtains a partitioning into
the time intervals Tj1 = {t j0, . . . , t j1}, Tjq = {t j,q−1 + 1, . . . , t jq}, q = 2, . . . , Q j .
Accordingly, the coefficients γ jq are constant over the adjacent time points collected
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in Tjq . The simplest case, a partition of the coefficients of x j into two time intervals
with regard to threshold t j1, yields the function

γ j (t) = γ j1 I (t ∈ {1, . . . , t j1}) + γ j2 I (t ∈ {t j1 + 1, . . . , k}), (13)

where the parameter γ j1 denotes the effect of x j in the first interval until time t j1 and
γ j2 denotes the effect of x j in the second interval between time t j1 + 1 and k.

For each explanatory variable, the partitioning into the time intervals Tjq can be
determined by using recursive partitioning techniques. We propose to adapt the tree-
based approach that was recently proposed by Berger et al. (2018b). By iterative
splitting in one of the explanatory variables the method yields a tree for each vari-
able that shows time-varying coefficients (see Sect. 3.2). Thereby, the algorithm itself
identifies the coefficients (corresponding to an explanatory variable) that deviate from
a constant, and the corresponding thresholds.

Importantly, the use of the tree-based approach byBerger et al. (2018b) (described in
detail in Sects. 3.2 and 3.3) not only achieves the selection of varying and non-varying
coefficients, but additionally enforces the selection of variables. More specifically, for
each explanatory variable x j the algorithm determines whether the effect varies across
t (by a piecewise constant function), is constant over the whole range of t , or if the
variable is influential at all.

3.2 Modeling piecewise constant coefficients by tree-based splits

Assume that we start with the discrete hazard model without time-varying coefficients
(4). Then the first split in x j of a common tree yields a model with predictor

η(t, xi ) =γ0t + xi j
[
γ

[1]
j1 I (t ≤ t∗j1) + γ

[1]
j2 I (t > t∗j1)

]
+
∑
s 	= j

xisγs . (14)

This model just uses an alternative representation of the function in (13), but the
two intervals regarding x j are constructed by a split at split point t∗j1 with the two

parameters γ
[1]
j1 (left interval) and γ

[1]
j2 (right interval). For given t∗j1, estimates of

the parameters in model (14) can still be obtained by maximizing the log-likelihood
function (6), plugging in an augmented data matrix, where the column associated with
the j th explanatory variable is replaced by two new columns containing the values
xi j I (t ≤ t∗j1) and xi j I (t > t∗j1), see “Appendix 1”.

If the effects of x j are further modified, a second split (for example in the left
interval) with regard to split point t∗j2 yields two new intervals

I (t ≤ t∗j1)I (t ≤ t∗j2) and I (t ≤ t∗j1)I (t > t∗j2),
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and the model with predictor

η(t, xi ) = γ0t + xi j
[
γ

[2]
j1 I (t ≤ t∗j1)I (t ≤ t∗j2) + γ

[2]
j2 I (t ≤ t∗j1)I (t > t∗j2)

+ γ
[2]
j3 I (t > t∗j1)

]
+
∑
s 	= j

xisγs,
(15)

where γ
[2]
j1 , γ

[2]
j2 , γ

[2]
j3 are the new effects in the intervals after the second split. Several

splits in the coefficients of x j , result in a sequence of Q j − 1 selected split points

t∗j1, . . . , t∗j,Q j−1 and coefficients γ
[Q j−1]
j1 , . . . , γ

[Q j−1]
j Q j

. Ordering the selected split
points, such that 1 ≤ t∗( j1) < t∗( j2) < · · · < t∗( j,Q j−1) < k, yields the partitioning into
the Q j time intervals

Tj1 = {1, . . . , t∗( j1)}, Tj2 = {t∗( j1) + 1, . . . , t∗( j2)}, . . . , TjQ j = {t∗( j,Q j−1) + 1, . . . , k},

with the corresponding coefficients γ
[Q j−1]
j1 , . . . , γ

[Q j−1]
j Q j

representing the piecewise
constant function γ j (t).

In general, the effects of all explanatory variables x1, . . . , xp in model (4) are
allowed to vary over time. This results in several tree components γ j (t), i.e. piecewise
constant functions, in the predictor η(t, xi ) of the model. When fitting the model,
the first split is determined by selecting the best model among all the explanatory
variables x j and possible split points t = 1, . . . , k − 1 (see Sect. 3.3 for details on
the selection procedure). The second split is either in the coefficients of the same or
another explanatory variable. As in later steps the search is the same but for variables
that have already been split, one starts from already built time intervals (corresponding
to the current nodes of the tree) which are possibly further split in disjoint intervals.
If an explanatory variable is never selected for splitting during iteration, it is assumed
to simply have a constant effect γ j on the hazard over time.

After termination of the algorithm (see Sect. 3.3 for details on stopping criteria), let
V ⊆ {x1, . . . , xp} denote the subset of explanatory variables that have been selected
for splitting and L ⊆ {x1, . . . , xp} \V denote the subset of explanatory variables with
a constant effect on the hazard (not selected for splitting). If no split is performed at
all, V is an empty set and the result is the simple time-constant model with predictor
(4). In the other extreme case, where all explanatory variables are selected for splitting
at least once, L is an empty set. With this notation, the tree-structured discrete hazard
model has the form

η(t, xi ) = γ0t +
∑
x j∈V

xi jγ j (t) +
∑
x�∈L

xi�γ�. (16)

In the last step of the algorithm, again following the TSVC approach by Berger et al.
(2018b), the time-constant effects γ� of variables that were not chosen for splitting
during iteration are tested for inclusion in the model by using a stepwise elimination
scheme. Accordingly the variables are removed from L or kept in the model. If none
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of the variables is influential at all, the predictor of the model reduces to the baseline
coefficients γ0t only.

3.3 Fitting procedure

In each step of the TSVC algorithm, one selects the best split among all the explanatory
variables and possible split points t = 1, . . . , k − 1. This is done by testing the
equivalence of the two coefficients γ jq and γ j,q+1 that are associated with the new
intervals after splitting. More specifically, one examines all the null hypotheses H0 :
γ jq = γ j,q+1 against the alternatives H1 : γ jq 	= γ j,q+1 and chooses the combination
of x j and t with the smallest p value of the corresponding likelihood ratio (LR) test.

To decide whether the selected split should be performed, the distribution of the
maximally selected LR test statistic, i.e. the maximum of the LR test statistics of
the selected variable x j with regard to t , is investigated. The corresponding p value
provides a measure of the dependence between the outcome values and t at a global
level and already takes the number of observation times (i.e., the number of possible
split points) into account. Therefore, one explicitly accounts for the involved multiple
testing problem. To derive a decision on the null hypothesis we propose to use a
permutation test. That means one permutes the values of t in the relevant part of the
augmented data matrix, which breaks the relation of t and the outcome values in the
selected time interval, and computes the corresponding value of themaximally selected
LR test statistic (Berger et al. 2018b). For a large number of permutations, one obtains
an approximation of the distribution under the null hypothesis and a corresponding p
value.

To summarize, the following steps are carried out during the fitting procedure:

1. (Initial Model) Fit the model without time-varying coefficients (4), yielding the
estimates γ̂01, . . . , γ̂0,k−1 and γ̂1, . . . , γ̂p.

2. (Tree Building)

(a) For all explanatory variables x j , j = 1, . . . , p, fit all the candidate models
with one additional split in one of the already built time intervals.

(b) Select the best model using the p values of the LR test statistics.
(c) Carry out the permutation test for the selected node (defined by a combination

of x j and t) with significance level α. If significant, fit the selected model and
continue with Step 2(a), else continue with Step 3.

3. (Time-Constant Effects) For all explanatory variables x� ∈ L , examine the null
hypotheses H0 : β� = 0 by a stepwise backward elimination scheme. Iteratively,
the variable with the largest p value, obtained from LR permutation tests with
significance level α, is excluded from L . Stop, if none of the p values exceeds α

anymore.
4. (Selected Model) Fit the final model with components γ̂0t , γ̂ j (t) and γ̂ �.

The resulting discrete hazard model is a specific version of a TSVCmodel as proposed
by Berger et al. (2018b) with the time t (treated as an ordinal variable) being the only
permitted effect modifier. The main tuning parameter of the algorithm is the error
level α which is used as significance level of the permutation tests. As outlined in
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Berger et al. (2018b) the error level α constitutes an upper bound for the proportion
of falsely identified variables with time-varying coefficients.

In R, the augmented data matrix for fitting discrete time-to-event models can be
generated by using the function dataLong() of the add-on package discSurv (Wel-
chowski and Schmid 2018). The proposed TSVC model can be fitted by applying the
function TSVC() of the eponymous add-on package (Berger 2018) with the time t
(the only considered effect modifier) specified in the two arguments effmod and
only_effmod.

4 Simulation study

We considered different simulation scenarios in order to evaluate the performance of
the proposed TSVC model and to compare the model to alternative approaches. The
different scenarios are described in detail in the following subsections: we assessed the
performance in terms of a true model without time-varying effects (Sect. 4.1), a true
model with smooth time-varying effects (Sect. 4.2) and a true model with piecewise
constant time-varying effects (Sect. 4.3).

Particularly, we compared the fit of the TSVC model to the fit of a simple discrete
hazard model given by Eq. (4) that did not account for possible time-varying effects
(referred to as NVC model). In R, simple discrete hazard models without time-varying
coefficients were fitted by running glm()with family argument binomial(). Fur-
ther, we considered a discrete hazard model allowing for smooth time-varying effects
as defined in Eq. (9) (referred to as SVC model), using a P-spline for each component
γ j (t). In R, discrete hazard models with smooth time-varying coefficients can be fitted
by applying the function gam() in the add-on packagemgcv (Wood 2018). The mod-
eling of smooth time-varying coefficients was done by using the function s() with
the explanatory variables specified in the by-argument. The number of basis functions
M was set to the default value of mgcv with fixed degree d = 2. We used a first-order
difference penalty J with the optimal smoothing parameter ε, see Eq. (11), computed
by generalized cross-validation (see Wood 2017).

In all the scenarios we simulated data with constant baseline coefficients γ0t =−2,
t = 1, . . . , k − 1, two independent binary explanatory variables, x1, x2 ∼ B(1, 0.5)
and two independent standard normally distributed explanatory variables, x3, x4 ∼
N (0, 1). The definitions of the respective coefficients of the explanatory variables
γ1, . . . , γ4 differed in each scenario, hence they are given in the following subsections.

Each scenario was based on 100 independent samples of size n = 500 each and the
number of discrete time points was set to k = 11. During the estimation procedure, for
each permutation test we used 1000 permutationswith error levelα = 0.05 throughout
all scenarios. Following a strategy already used in Schmid et al. (2017), the censoring
times Ci were sampled independently of T by drawing from a discrete distribution
with probability density function P(Ci = t) = b(k+1)−t/

∑k
j=1 b

j , t = 1, . . . , k.
Three different censoring rates were considered: the value b = 0.1 resulted in low
censoring (∼ 30%), a value of b = 1.0 was used for a medium level of censoring (∼
50%), and for strong censoring (∼ 70%) the value b was set to 1.5. This resulted in
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augmented data matrices with an average number of about ñ = 3000 (low censoring),
ñ = 2000 (medium censoring) and ñ = 1200 (strong censoring) rows.

Using the same data-generating process, the performance of the three approaches
was assessed by computing the predictive log-likelihood based on new samples
with n = 500 observations each. Further, to evaluate the performance of the pro-
posed TSVC model, we generated the true positive rate on the covariate level (TPR)
and the false positive rate on the covariate level (FPR) that have been introduced in
Berger et al. (2018b). The true positive rate describes the amount of all predefined
explanatory variables with time-varying effects that have been correctly identified to
have an effect that changes over time. Specifically, it is given by

T PR = 1

#{ j : ϑ j = 1}
∑
j :ϑ j=1

I ( j : ϑ̂ j = 1),

whereϑ j = 1 if the explanatory variable x j , j = 1, . . . , 4, varies over time. In contrast,
the false positive rate displays the amount of all prescribed explanatory variables with
time constant effects that have falsely been determined to have an effect that varies in
the course of time. It is given by

FPR = 1

#{ j : ϑ j = 0}
∑
j :ϑ j=0

I ( j : ϑ̂ j = 1),

where ϑ j = 0 if the explanatory variable x j , j = 1, . . . , 4, has time-constant effects
only.

4.1 Model without time-varying effects

In the first scenario, the predictor was given by a linear function of the form

η(t, xi ) = γ0t + xi1γ1 + xi2γ2 + xi3γ3 + xi4γ4

with fixed coefficients γ1 = 0.4, γ2 = −0.4, γ3 = −0.2 and γ4 = 0.2. Hence, only
samples with time-constant coefficients for all explanatory variables were generated.
We used this scenario to examine whether the algorithm of the more complex TSVC
model was able to identify the simple model with time-constant coefficients only. This
was evaluated by the false positive rate which is anticipated to meet the error level α.

In our simulation study, the TSVC model (on average over the 100 replications)
yielded false positive rates that approximately met the intended level of α = 0.05
regardless of the censoring rate. In detail, the three different settings resulted in false
positive rates of 0.050 (low), 0.058 (medium) and 0.073 (strong), respectively. For low
censoring, in 82% of all replications none of the four explanatory variables had been
selected for splitting during the fitting procedure. For medium and strong censoring,
this rate slightly reduced to 79% and 74%, respectively.

Comparing the performance of the three competing approaches with respect to the
predictive log-likelihood (see Fig. 1), the log-likelihood values of the TSVC model
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Fig. 1 Results of the simulation study (scenario 1). Thefigure showsboxplots of the predictive log-likelihood
of the TSVC, NVC and SVC model for low (left), medium (center) and strong (right) censoring. The
reference line represents the median log-likelihood value of the TSVC model, respectively

were comparable to the ones of the true model (NVC model) with linear predictor
(which was expected to perform best). Further, the TSVC model exhibited higher
log-likelihood values than the model allowing for smooth time-varying effects (SVC
model), in particular for strong censoring the values of the SVC model showed strong
variability. The TSVC algorithm showed a rather good performance, whichmay partly
be due to the fact that it was a simple time-constant discrete hazard model if none of
the explanatory variables was selected for splitting (see Sect. 3.2).

4.2 Model with smooth time-varying effects

In the second simulation scenario, the underlying model included two explanatory
variables with a smooth time-varying effect each while the other effects were kept
time-constant. The predictor function had the form

η(t, xi ) = γ0t + xi1γ1 + xi2γ2 + xi3γ3(t) + xi4γ4(t)

with fixed coefficients γ1 = −0.3 and γ2 = 0.3. For the time-varying coefficients
of x3 and x4 we used two different sigmoid functions given by

γ3(t) = (1 + exp(5 − t))−1 , t = 1, . . . , k,

and

γ4(t) =
(
1 + exp(5 − t)−1

)−1
, t = 1, . . . , k.

Accordingly, the true data-generating model was a discrete hazard model with smooth
time-varying effects. Nevertheless, the TSVCmodel should still be capable of approx-
imating the functional form of the coefficients of x3 and x4 by piecewise constant
functions. Figure 2 visualizes the true functions γ3(t) (left panel) and γ4(t) (right
panel) and the estimated functions γ̂3(t) and γ̂4(t) obtained by the three approaches
for one randomly chosen sample with low censoring. In this example, both the TSVC
model and SVC model were well able to approximate the true smooth functions.
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Fig. 2 Results of the simulation study (scenario 2). Estimated coefficients γ̂3(t) of explanatory variable
x3 (left) and γ̂4(t) of explanatory variable x4 (right) obtained by the three approaches for one randomly
chosen sample with low censoring. The true functions are represented by solid lines

Table 1 Results of the
simulation study (scenario 2)

Scenario 2 Censoring

Low Medium Strong

FPR 0.060 0.075 0.070

TPR 1.000 0.945 0.395

Average false positive rates (FPR) and true positive rates (TPR)

Table 1 shows that with increasing level of censoring, the average false positive
rate of the TSVC model remained stable while the true positive rate decreased in size.
More precisely, for low and medium censoring, the results were similar, with true
positive rates higher than 90%. However, for strong censoring the performance of the
TSVCmodel considerably deteriorated. Given all the splits that were generated by the
algorithm in any explanatory variable, the proportion of splits in the third or fourth
explanatory variable made up 95% for low censoring, 93% for medium censoring and
84% for strong censoring.

For low andmedium censoring, the TSVCmodel and the SVCmodel provided sim-
ilar median log-likelihood values whereas the NVC model performed worst (Fig. 3).
With increasing level of censoring, theNVCmodel achieved considerably better results
and showed a higher median log-likelihood than the SVC model for strong censoring.
In this setting, the TSVC model performed best. The SVC model performed worse as
there may be only few observations at later points in time, which made it difficult to
correctly identify the time-varying effects of an explanatory variable during the fitting
procedure. Further of note, when fitting the SVCmodel, all four explanatory variables
were modeled by smooth model terms using the function s(). Thus the effects of
x1 and x2 were not forced to be time-constant, but were also allowed to be fitted as
time-varying. This might also be a reason for the high variance of the performance of
the SVC model in the strong censoring case.
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Fig. 3 Results of the simulation study (scenario 2). Thefigure showsboxplots of the predictive log-likelihood
of the TSVC, NVC and SVC model for low (left), medium (center) and strong (right) censoring. The
reference line represents the median log-likelihood value of the TSVC model, respectively

4.3 Model with piecewise constant time-varying effects

The third scenario was based on samples with piecewise constant time-varying effects
in two explanatory variables, whereas the effects of the other two explanatory variables
were kept constant over time. We defined two splits at different event times: for the
binary time-varying explanatory variable x2, one split was defined at event time t = 2.
For the standard normally distributed explanatory variable x4, one split was defined
at event time t = 5. Hence, the predictor function of the true model was specified by

η(t, xi ) = γ0t + xi1γ1 + xi2
[
γ21 I (t ≤ 2) + γ22 I (t > 2)

]

+xi3γ3 + xi4
[
γ41 I (t ≤ 5) + γ42 I (t > 5)

]

with fixed coefficients γ1 = 0.3, γ3 = −0.3. The time-varying effects were generated
by γ21 = −0.3, γ22 = γ21 − δ and γ41 = 0.5, γ42 = γ41 + δ, respectively. In order
to analyze how the amount of change in the effect of the explanatory variable over
the course of time affects the performance of the approaches, we considered different
values of δ. A value of δ = 0 corresponds to a model with time-constant coefficients
only, so δ was set to 0.5, 0.8 or 1.0.

The effect of δ is illustrated in Fig. 4. Without time-varying effects in the coeffi-
cients, the number of events consistently decreased over time (see Fig. 4, left panel).
Increasing the negative effect of the second explanatory variable resulted in a greater
decline of the number of events after time t = 2 (see Fig. 4, right panel). In the
further course, the number of events increased once the positive effect of the fourth
explanatory variable at time t = 5 had been modified (see Fig. 4, right panel).

A summary of the results for the different settings with varying δ and varying
censoring rate is given in Table 2. Overall, the false positive rates showed values that
were close to the anticipated value of 0.05. Irrespective of the level of censoring, the
true positive rate increased for higher values of δ. Further we analyzed the rate of
correctly splitting at the predefined event times. For low censoring, in 68% of all splits
(averaged over the three settings with varying δ) the algorithm correctly generated a
split at t = 2 in x2 and at t = 5 in x4. This rate reduced to average values of 59% and
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Fig. 4 Results of the simulation study (scenario 3). Illustration of the effect of δ on the number of events.
The figure shows boxplots of the number of events over time (observations with Δi = 1) for the 100
samples in the setting with low censoring for δ = 0.0 (left) and δ = 1.0 (right). Note the steep decline after
t = 2 and the increase after t = 5 for δ = 1.0

Table 2 Results of the
simulation study (scenario 3)

Scenario 3 δ Censoring

Low Medium Strong

FPR 0.5 0.070 0.050 0.045

0.8 0.070 0.085 0.075

1.0 0.055 0.075 0.050

TPR 0.5 0.550 0.330 0.110

0.8 0.880 0.655 0.295

1.0 0.950 0.825 0.340

Average false positive rates (FPR) and true positive rates (TPR) for
different vaules of δ

45% formedium and strong censoring, respectively. The resulting trees for a randomly
chosen sample obtained by the TSVC model showing the estimates for the effects of
x2 and x4 are presented in Fig. 5. The true coefficients in this setting were γ21 = −0.3,
γ22 = −1.1 (left panel), and γ41 = 0.5, γ42 = 1.3 (right panel), which were very close
to the estimated effects of γ̂21 = −0.281, γ̂22 = −1.273 (left panel) and γ̂41 = 0.446,
γ̂42 = 1.274 (right panel), respectively.

Throughout all settings, the median log-likelihood values of the TSVCmodel were
among the highest (Fig. 6), whereas the performance of the NVC model and SVC
model strongly varied. For medium censoring, the NVC model and the SVC model
showed values comparable to those of the TSVC model. However, for low censoring
the performance of the NVC model suffered considerably for higher values of δ.
Further, the SVC model (as in the previous scenarios) performed very poorly for
strong censoring.
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Fig. 5 Results of the simulation study (scenario 3). Estimated trees by the TSVCmodel for the explanatory
variables x2 (left) and x4 (right). The results refer to a randomly chosen sample for the setting with δ = 0.8
and low censoring. The estimated time-varying coefficients are given in the leaves of the trees. The true
coefficients were γ21 = −0.3, γ22 = −1.1 (left), γ41 = 0.5 and γ42 = 1.3 (right)

4.4 Computational complexity of the fitting procedure

The computational complexity of the TSVC algorithm (in particular the tree building
step) is mainly determined by the number of explanatory variables p, the number
of time points k and the sample size n. To evaluate this property, we measured the
computation time of the fitting procedure in simulation scenarios with time-constant
effects in all explanatory variables and a low censoring rate. The specification of the
predictor was analogous to the first scenario in Sect. 4.1.We considered scenarios with
a varying number of explanatory variables p = {4, 8}, a varying number of discrete
time points k = {6, 11, 21} and varying sample size n = {100, 500, 1000}. In the
scenario with p = 8 we added two independent binary explanatory variables x5, x6,
and two independent standard normally distributed explanatory variables x7, x8 with
coefficients γ5 = 0.3, γ6 = −0.5, γ7 = −0.3 and γ8 = 0.5. Depending on k and n,
this also led to a varying number of rows in the augmented data matrices. For the
lowest dimensional scenario with p = 4, k = 6 and n = 100, the average number of
rows was ñ = 275. With increasing number of discrete time points (p = 4, n = 100),
the average number of rows increased to ñ = 405 for k = 11 and ñ = 620 for k = 21.
With increasing sample sizes (p = 4, k = 6), the average number of rows increased
to ñ = 1390 for n = 500 and ñ = 2775 for n = 1000.
Figure 7 shows the results (computation time in seconds) based on 100 independent
samples each. It is seen that a higher number of explanatory variables (left panel), a
higher number of discrete time points (middle panel) as well as a larger sample size
(right panel) affected the computation time of the fitting procedure. As the permutation
test in each iteration evaluates the candidate models with an additional split at all
possible time points, the value of k caused the largest rise in time whereas p and n
had a smaller influence.
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Fig. 6 Results of the simulation study (scenario 3). Thefigure showsboxplots of the predictive log-likelihood
of the TSVC, NVC and SVC model values for low (left), medium (center) and strong (right) censoring.
The reference line represents the median log-likelihood value of the TSVC model, respectively
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Fig. 7 Results of the simulation study (computational complexity). The figure shows boxplots of the com-
putation time (Hardware: 504 Cores; Opteron 8431 2.4 GHz, Xeon X5650 2.67 GHz, 2.9TB RAM) when
running the TSVC algorithm for scenarios with low censoring that differ with regard to the number of
explanatory variables p (left), the number of discrete time points k (center) and the sample size n (right)
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5 Applications

To further illustrate the use of the TSVC model we considered two real-world appli-
cations. In those examples, the use of the TSVC model appeared to be appropriate as
the model was able to detect important effects that were easy to interpret but were, for
example, not found by a more simple model. As in the previous sections we compared
the TSVC model to a simple discrete hazard model (NVC model) and to a discrete
hazard model allowing for smooth time-varying effects (SVC model).

5.1 Patients with acute odontogenic infection

We considered data of a 5-year retrospective study investigating in-hospital patients
with abscess of odontogenic origin conducted between 2012 and 2017 by the Depart-
ment of Oral and Cranio-Maxillo and Facial Plastic Surgery at the University Hospital
Bonn. An acute odontogenic infection is a major burden for patients’ health and pub-
lic health care systems in western countries (Burnham et al. 2011). Practically, every
patient suffers from pain, swelling, erythema and hyperthermia. If not treated at an
early stage, odontogenic infections are likely to spread into deep neck spaces and
cause perilous complications by menacing anatomical structures, such as major blood
vessels, the upper airway and even the mediastinum (Biasotto et al. 2004). The main
objective of this study was to investigate risk factors (like age, gender, presence of dia-
betes mellitus type 2) that tend to prolong the length of stay (LOS) in the treatment of
severe odontogenic infections. Predicting the LOS may promote transparency to costs
and management of patients under inpatient treatment. For this purpose a discrete
time-to-event model was considered, where the event of interest was the discharge
from the hospital with the hospitalization measured in days (t = 1, . . . , 18).

Here we focused on the data of 303 patients that underwent surgical treatment in
terms of incision and drainage of the abscess. Intravenous antibiotics were adminis-
tered during the operation and for the length of inpatient treatment. For further details
on the study we refer to Heim et al. (2018). The LOS of the patients and the patients
characteristics considered as explanatory variables in the analysis are summarized in
Table 3. These were: age in years (centered around 48), gender (0: female, 1: male),
an indicator if the infection spread into other facial spaces (0: no, 1: yes), the location
of the infection focus (0: mandible, 1: maxilla), the administered antibiotics (0: ampi-
cillin, 1: clindamycin), the presence of diabetes mellitus type 2 (0: no, 1: yes), and an
indicator if the infection was already removed at admission (0: no, 1: yes).

The results of the NVC model and the proposed TSVC model are given in Table 4.
The simple NVCmodel that was recently applied for statistical analysis by Heim et al.
(2018) indicated that age and spreading of the infection focus significantly increase
the LOS (at the 5% type I error level), while all the other variables showed no evidence
for an effect. In particular, diabetes mellitus type 2 revealed no significant increase
of the LOS in the present study (γ̂ = −0.429, z value=−1.699), although diabetes
stands out as a well investigated cause for an increased LOS (Rao et al. 2010).

As seen from the right part of Table 4, the picture changes when fitting the TSVC
model. The algorithm performed one split with respect to the risk factor diabetes at
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Table 3 Analysis of the odontogenic infection data

Variable Summary statistics

xmin x0.25 xmed x x0.75 xmax
LOS 1 4 5 5.9 7 18
Age 6 31 48 48.6 64 92

Gender 0: 146 (48.2%) 1: 157 (51.8%)

Spreading 0: 268 (88.4%) 1: 35 (11.6%)

Location 0: 263 (86.8%) 1: 40 (13.2%)

Antiobiosis 0: 263 (86.8%) 1: 40 (13.2%)

Diabetes 0: 278 (91.7%) 1: 25 (8.3%)

Remaining focus 0: 118 (38.9%) 1: 185 (61.1%)

Summary statistics of the LOS and the patients characteristics incorporated in the analysis (n = 303)

Table 4 Analysis of the odontogenic infection data

Variable NVC model TSVC model

Coefficient SE z value Estimation Coefficients

Age − 0.007 0.003 − 2.032 Time-constant −0.008

Gender − 0.222 0.139 − 1.592 – –

Spreading − 0.970 0.212 − 4.566 Time-constant −0.939

Location 0.069 0.208 0.332 – –

Antiobiosis − 0.057 0.203 − 0.285 – –

Diabetes − 0.429 0.252 − 1.699 Time-varying −2.437 0.002

Remaining focus − 0.185 0.148 − 1.247 – –

Overview of the results of the NVC (left) and the TSVC model (right). The algorithm performed one split
regarding diabetes at t = 4

split point t = 4. According to the estimates, there was a strong negative effect (γ̂ =
−2.437) at the beginning of the hospitalization (t ≤ 4), but the effect vanished for
later time points (t > 4). This result suggested that patients suffering from diabetes
mellitus type 2 will hardly be released from the hospital before day 4, an important
finding that could not be uncovered by the simple NVC model.

The resulting smooth functions γ j (t) when fitting the SVC model, are shown in
Fig. 8. As in the simulation study we used penalized B-spline basis functions with
degree d = 2 and a first-order difference penalty. In line with the results of the NVC
and the TSVC model, the fitted functions and corresponding confidence intervals
showed no evidence for an effect of gender, the location of the infection focus and the
administered antibiotics. In contrast to the previous results the SVC model revealed
linear time-varying effects for the two risk factors spreading of the infection focus and
diabetes. However, the confidence intervals for later time points were very wide. This
was also the case for γage and γremaining focus, which made the effects rather difficult
to interpret and strongly suggested that the more parsimonious TSVC model is more
appropriate in this analysis.
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Fig. 8 Analysis of the odontogenic infection data. Estimated effects of the explanatory variables in the SVC
model varying over t . Pointwise confidence intervals are drawn by dashed lines, respectively

5.2 Family developments

In a second application, we evaluated data from the first nine waves of the German
Family Panel (pairfam: Panel Analysis of Intimate Relationships and Family Dynam-
ics), which provides data on family processes in Germany (Brüderl et al. 2018). The
first survey in 2008 collected data from a nationwide random sample comprising more
than 12,000 respondents of the birth cohorts 1971–1973, 1981–1983 and 1991–1993
and their families. In the multi-cohort approach the main focus is on so-called anchor
persons of a certain birth cohort, who were annually interviewed to get detailed infor-
mation on topics like the development of partnership, family plans and formation as
well as attitudes regarding parenting in general. In addition, information from parents,
partner and children of the anchor person was gathered as well. For further details on
the study we refer to Huinink et al. (2011).

As all the information was gathered in one-year intervals, the observed duration
times of the pairfam study are discrete. The event of interest was defined by the binary
outcome whether an anchor woman gave birth to her first child or not. In line with
Groll and Tutz (2017), we restricted our consideration to women of the birth cohorts
1971–1973 or 1981–1983 and considered age measured in years as the unit of the
discrete hazard model starting with women of at least 25 years. The analysis data set
comprised 4077 observations of 861 anchor women who stated to have no children in
the initial wave.

As explanatory variables, we included the educational level of the anchor woman
measured in years (yeduc), the educational levels of the parents of the anchor woman
in years (myeduc and fyeduc), the degree of life satisfaction of the anchor woman (sat6,
with higher values indicating a higher life satisfaction), the status of relationship of
the anchor woman (relstat, 0: single, 1: married and/or cohabitation), the employment
status of the anchor woman (casprim, 0: not employed, 1: employed), the number of
siblings of the anchor woman (siblings), the amount of leisure time spent for going to
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Table 5 Analysis of the pairfam data

Variable Summary statistics

xmin x0.25 xmed x x0.75 xmax

Yeduc 8 11.5 13 13.99 17 20

Myeduc 8 10.5 11.5 12.18 13 20

Fyeduc 8 10.5 11.5 12.76 14.5 20

Sat6 0 7 8 7.47 9 10

Siblings 0 1 1 1.69 2 16

Leisure 1 2 2 1.96 2 4

Relstat 0: 460 (53.4%) 1: 401 (46.6%)

Casprim 0: 283 (32.9%) 1: 578 (67.1%)

Summary statistics of the explanatory variables at the first wave in 2008 (n = 861)
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Fig. 9 Analysis of the pairfam data. Distribution of the observed age of the anchor women at the birth of
the first child

bars/cafés/restaurants, doing sport, meeting with friends and/or going to a discotheque
of the anchor woman (leisure, 1: daily, 2: at least once a week, 3: at least once a month,
4: less often, 5: never). A descriptive overview of all explanatory variables at the first
wave in 2008 is summarized in Table 5.

In total, there were 273 observed births in our sample and the amount of censoring
was 40%. The distribution of the observed age of the anchor women at the birth of the
first child is presented in Fig. 9. The median age was 29 years.

The baseline coefficients, which correspond to the effect of age, were fitted by a
smooth function as defined in Eq. (9), using P-splines of degree d = 2 and a second-
order difference penalty. The resulting baseline hazards when fitting the TSVC, NVC
andSVCmodel are presented in Fig. 10. The baseline hazardwas respectively obtained
by transforming the estimated baseline coefficients using the distribution function
exp(γ̂0,age)/(1 + exp(γ̂0,age)) of the logistic model. It can be seen that the baseline
hazards were very similar for the NVC and TSVC model. They were found to show a
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Fig. 10 Analysis of the pairfam
data. The figure shows the
estimated smooth baseline
hazard depending on age for the
three models TSVC, NVC and
SVC
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Table 6 Analysis of the pairfam data

Variable NVC model TSVC model

Coefficient SE z value Estimation Coefficients

Yeduc 0.006 0.026 0.249 Time-varying −0.005 0.044

Myeduc − 0.026 0.034 − 0.760 – –

Fyeduc 0.011 0.030 0.370 – –

Sat6 0.204 0.047 4.333 Time-varying 0.172 0.216

Siblings 0.117 0.043 2.697 Time-constant 0.123

Leisure 0.250 0.111 2.249 Time-constant 0.251

Relstat 1.696 0.172 9.849 Time-constant 1.699

Casprim − 0.135 0.156 − 0.865 – –

Overview of the results of the NVC (left) and the TSVC model (right). The algorithm performed one split
regarding yeduc at age > 36 and one split with respect to sat6 at age > 28

high hazard up to age 35 followed by a strong decline beyond age 35. In contrast the
SVC model yielded a steady decline across time.

The estimated coefficients, standard errors and z values obtained by theNVCmodel
are given in Table 6 (left part). There were significant effects for all variables except
for the years of education (of the anchor woman and her parents) and the employment
status (casprim). The estimates indicate that the chance to have a child increased
with having a relationship, with the number of siblings, with a higher degree of life
satisfaction and a lower amount of leisure time.

In the right part of Table 6, the results when fitting the TSVC model are presented.
As can be seen there, the algorithmperformed two splitswith respect to the explanatory
variables yeduc and sat6. Further, there were time-constant effects of the relationship
status, the number of siblings and the amount of leisure time. The employment status
as well as the educational achievements of the parents were excluded from the model.
Figure 11 shows the estimated trees for yeduc and sat6. In general, the degree of a
woman’s life satisfaction had a positive effect on the chance of having a child (as
already indicated by the NVCmodel) but got even stronger with age (age> 28 years).
The effect of the educational level measured in years of a woman was opposing: while
a higher educational level had a positive effect for relatively old women (age > 36
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yeduc

−0.005  0.044

2 3

●

age<=36 age>36

sat6

0.172 0.216

2 3

●

age<=28 age>28

Fig. 11 Analysis of the pairfam data. The estimated time-varying coefficients by the TSVC model for
explanatory variables yeduc (left) and sat6 (right). The varying coefficients are given in the leaves of the
trees

years), the effect was close to zero for younger women (age ≤ 36 years). This finding
is in line with a previous analysis of the first four waves of the pairfam study which
found that half of the women with an academic degree were at least 35 years at the
birth of the first child (Huininik 2014).

Comparing the results of the TSVCmodel to the NVCmodel, the TSVCmodel was
able to detect a relevant time-varying effect of yeduc which remained undetected by
the simple discrete hazard model. For the explanatory variable sat6, the NVC model
also detected a positive effect, but not the difference over the course of time.

The resulting coefficients when fitting the SVC model allowing for smooth time-
varying effects in all explanatory variables are shown in Fig. 12. As seen from the fitted
functions and the confidence intervals, there was evidence for (i) time-constant effects
of the number of siblings and the amount of leisure time, (ii) time-varying effects of a
woman’s educational level, the degree of life satisfaction and the relationsship status,
and (iii) no effects of the parent’s educational level and the employment status.

Both, the TSVCand the SVCmodel showed similar effects for variable yeduc on the
chances of starting a family, although the function fitted by the SVC model was much
more complex. The function also indicated that the effect was close to zero for young
women, increased and turned into a constant positive effect for relatively old women
(age > 35 years). For the degree of life satisfaction, both models showed a positive
effect on the chance for having a child which became slightly stronger with age.
Time-constant effects that were similar in magnitude were found for the explanatory
variables leisure and sibilings. A difference between the models was obtained for the
explanatory variable relstat, which was estimated to have a time-constant effect by the
TSVCmodel but a time-varying (decreasing) effect by the SVCmodel. The confidence
intervals of the SVC model are very wide making it dubious that the effect is truly
time-varying, which favors the more parsimonious TSVC model.
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Fig. 12 Analysis of the pairfam data. Estimated effects of the explanatory variables in the SVC model
varying over age. Pointwise confidence intervals are drawn by dashed lines, respectively

5.3 Choice of the tuning parameter˛

As described in Sect. 3.3, the main tuning parameter of the algorithm is the error level
α, which was set to α = 0.05 in all the previous simulations and the applications.
To investigate the dependence of the proposed TSVC model on α, we compared
the prediction accuracy for different values of α using the odontongenic infection
data analyzed in Sect. 5.1. We drew 100 subsamples without replacement of size
ntrain = 242 (i.e., 80% of the original sample), fitted the TSVC model using the
grid α = (0.01, 0.05, 0.10, 0.15, 0.20) in each of the 100 subsamples and computed

Fig. 13 Analysis of the
odontogenic infection data. The
boxplots show the predictive
log-likelihood values of the
TSVC model using different
values of α (on the x-axis) based
on 100 subsamples of size
ntrain = 242 each. The models
were evaluated on the remaining
100 test sets of size ntest = 61
each. The reference line
represents the median
log-likelihood value of the
best-performing model
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the predicitive log-likelihood values from the remaining 100 test sets of ntest = 61.
Subsampling was stratified by t to ensure a sufficient number of observations per
observed event time. It is seen from the boxplots in Fig. 13 that the median log-
likelihood value was highest for α = 0.05, but did only slightly vary for the other
values ofα. The variance, however, strongly increased for a high error level (α = 0.20),
which was caused by the fitting of too large trees in some of the replications. These
results underline that the algorithm shows the desired behavior and that the use of
α = 0.05 is a reasonable choice.

6 Concluding remarks

We propose the use of a tree-based algorithm for the modeling of time-varying coeffi-
cients in discrete time-to-event models. The output of the method is a set of piecewise
constant functions that are visualized in small trees and are therefore easily accessi-
ble. The method constitutes a flexible alternative to models with smooth time-varying
coefficients. One of the main features of the algorithm is simultaneous variable selec-
tion (of the explanatory variables to be split and corresponding split points) and model
fitting, because all the model parameters are refitted in each iteration.

The simulation study essentially showed that the proposed TSVC model (i) per-
formed well in terms of true positive and false positive rates, (ii) was competitive to
the simple NVC model in scenarios without time-varying effects, and (iii) was robust
against high censoring rates, where the performance of the SVC model strongly suf-
fered. Obviously, a small number of observations at later time points impedes the
reliable detection of time-varying effects fitted by smooth functions. Both applica-
tions demonstrated the usefulness of the TSVC model, as the model (i) was well able
to identify relevant time-varying effects that could not be detected by the simple NVC
model, and (ii) was more parsimonious than the SVC model, which yielded easier
interpretations of the model fits.

It is important to note that in the representations of the models in Sects. 2 and
3.2 the explanatory variables for simplicity are considered as being constant over
time. This restriction is easily removed by allowing time-dependent values x�

i t =
(xi1t , . . . , xipt ), t = 1, . . . , T̃i , aswas alreadydone in thepairfamdata.Thevectors xi t
simply need to be inserted in the rows of the augmented data matrices (see also
“Appendix 1”) and the analysis can be run in the usual way.

Finally, we restricted our consideration to time-to-event data with a single type
of event. An obvious direction for future research is to extend the TSVC model to
the competing-risks case with more than one target event that could be realized by
embedding the R-package VGAM (Yee 2010, 2017) for fitting vector generalized
additive models into the fitting algorithm. Recent extensions of the discrete hazard
modeling framework to competing-risks models, allowing for more than one target
event, were inter alia considered by Möst et al. (2016), Berger et al. (2018a, c) and
Heyard et al. (2018).
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Appendix 1: Augmented datamatrices of the TSVCmodel given in Eq.
(14)

For an individual whose event was observed (Δi = 1) at time T̃i the augmented data
matrix after a split in x j at split point t∗j1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi t X i

0 1 xi1 . . . xi j 0 . . . xip
0 2 xi1 . . . xi j 0 . . . xip
0 3 xi1 . . . xi j 0 . . . xip
...

...
...

...
...

...

0 t∗j1 xi1 . . . xi j 0 . . . xip

0 t∗j1 + 1 xi1 . . . 0 xi j . . . xip

0 t∗j1 + 2 xi1 . . . 0 xi j . . . xip

...
...

...
...

...
...

1 T̃i xi1 . . . 0 xi j . . . xip

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

For an individual that is censored (Δi = 0) at time T̃i the augmented data matrix after
a split in x j at split point t∗j1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi t X i

0 1 xi1 . . . xi j 0 . . . xip
0 2 xi1 . . . xi j 0 . . . xip
0 3 xi1 . . . xi j 0 . . . xip
...

...
...

...
...

...

0 t∗j1 xi1 . . . xi j 0 . . . xip

0 t∗j1 + 1 xi1 . . . 0 xi j . . . xip

0 t∗j1 + 2 xi1 . . . 0 xi j . . . xip

...
...

...
...

...
...

0 T̃i xi1 . . . 0 xi j . . . xip

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

123



Tree-based modeling of time-varying coefficients in discrete… 571

The matrices (17) and (18) contain two columns associated with the j th explanatory
variable including the values x�

i j I (t ≤ t∗j1) and x�
i j I (t > t∗j1).
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Das gängigste Regressionsmodell zur Modellierung der diskreten ereignis-spezi�-

schen Hazardfunktionen (4) ist das multinomiale logistische Hazard-Modell der

Form

λj(t|X) =
exp(ηj(t,X))

1 +
∑J

j=1 exp(ηj(t,X))
, j = 1, . . . , J , t = 1, . . . , k − 1 , (19)

wobei die Vorhersagefunktionen ηj(·) jeweils von den erklärenden Variablen X

und der Zeit t abhängen, siehe Tutz und Schmid (2016) für eine Einführung

der grundlegenden Konzepte. Parametrische Vorhersagefunktionen, die, wie in

Kapitel 2.1 und 2.2 betrachtet, über eine Linearkombination der erklärenden Va-

riablen de�niert sind, haben im multinomialen Hazard-Modell (19) den Nachteil,

dass sie eine sehr groÿe Anzahl an Parametern beinhalten. Insbesondere wenn

die Anzahl der zu schätzenden Koe�zienten im Vergleich zur Anzahl der Be-

obachtungen in den Daten sehr groÿ ist, kann dies zu numerischen Problemen

führen. Des Weiteren können parametrische Modelle oftmals zu einschränkend

sein, wenn Interaktionen höherer Ordnung zwischen den erklärenden Variablen

vorhanden sind (siehe auch Kapitel 1.4). Um diesen Problemen zu begegnen,

wird in diesem Kapitel ein Baum-basiertes Modell der Form

λj(t|X) = fj(t,X) , j = 1, . . . , J , t = 1, . . . , k − 1 , (20)

vorgeschlagen. Die Funktionen fj(·) sind dabei durch einen CART (Breiman

et al., 1984) mit kategorialer Zielvariable bestimmt. Das Verfahren stellt eine

Erweiterung der Methode von Schmid et al. (2016) dar (siehe auch Kapitel 2.1).

Insbesondere wird neben dem klassischen Gini-Koe�zienten (Breiman, 1996) die

sogenannte Hellinger-Distanz (Cieslak et al., 2012) als Kriterium zur Selekti-

on der optimalen Aufteilungsregeln bei der Baumkonstruktion betrachtet. Die

Schätzung des Modells kann mithilfe eines selbst-implementierten R Programms

durchgeführt werden, das auf GitHub zur Verfügung gestellt wurde.

Der Nutzen der Baum-basierten Methode wird an den Daten der MODIAMD-

Studie illustriert. Das entwickelte Vorhersagemodell für das Auftreten von GA

oder CNV zeigt auf, dass das Vorhandensein von refraktilen Drusen und das Alter

der Patienten/Patientinnen die wichtigsten Risikofaktoren darstellen.
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Abstract
Cause-specific hazard models are a popular tool for the analysis of competing risks
data. The classical modeling approach in discrete time consists of fitting parametric
multinomial logitmodels.Adrawback of thismethod is that the focus is onmain effects
only, and that higher order interactions are hard to handle. Moreover, the resulting
models contain a large number of parameters, which may cause numerical problems
when estimating coefficients. To overcome these problems, a tree-based model is
proposed that extends the survival tree methodology developed previously for time-to-
event models with one single type of event. The performance of the method, compared
with several competitors, is investigated in simulations. The usefulness of the proposed
approach is demonstrated by an analysis of age-related macular degeneration among
elderly people that were monitored by annual study visits.

Keywords Discrete time-to-event data · Competing risks · Recursive partitioning ·
Cause-specific hazards · Regression modeling
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1 Introduction

There aremany clinical and epidemiological studieswhere individualsmay experience
events of various types. The analysis of this kind of data requires a time-to-eventmodel
describing the progression to each of the competing events. Typical examples are the
development of different kinds of diseases or the occurrence of specific causes of
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death that are analyzed in clinical research (Lau et al. 2009; Austin et al. 2016).
Detailed introductions to state-of-the-art techniques for competing risks analysis were
given by Putter et al. (2007) and Beyersmann et al. (2011). The objective typically
is the modeling of the cause-specific hazard functions ξ j (t) = limΔt→0{P(t < T ≤
t + Δt, ε = j |T > t, x) /Δt}, j = 1, . . . , J , where ε ∈ {1, . . . , J } is a random
variable indicating the type of event at T (Prentice et al. 1978), and to relate ξ j to a
set of explanatory variables x� = (x1, . . . , xp).

Traditional methods, like the Cox proportional hazards model (Cox 1972), which
are readily applied to modeling cause-specific hazards, usually assume that the event
times are measured on a continuous scale. In practice, however, the exact (continuous)
event times are often not observed, but only intervals (i.e., pairs of fixed consecutive
points in time) at which the events of interest took place. Thus, time is measured on a
discrete scale. An example, which will be considered in this article, is the development
of age-relatedmacular degeneration (AMD) among elderly people thatweremonitored
by annual study visits (Steinberg et al. 2016).

There exist several established approaches for the modeling of cause-specific haz-
ards in discrete time. A comprehensive treatment of the statistical methodology has
been given by Tutz and Schmid (2016). Recent extensions, among others, have been
proposed by Möst et al. (2016), Luo et al. (2016), Vallejos and Steel (2017) and
Meggiolaro et al. (2017). A large part of this methodology refers to parametric regres-
sion models using linear combinations of the explanatory variables for modeling ξ j .
In many applications, however, parametric models are too restrictive, for example,
when higher-order interactions between the explanatory variables are present. Also,
the specification of a parametric model, like the multinomial logit model, results in a
very large number of parameters relative to the sample size.

These issues can be addressed by the use of recursive partitioning or tree-based
modeling. Tree-based approaches for ordinary discrete time-to-event data with one
single type of event have been proposed by Bou-Hamad et al. (2009) and Schmid et al.
(2016) and have also been referred to as survival trees. In this article, we propose a
novel extension of the approach by Schmid et al. (2016) to discrete time-to-event data
with competing events. The principle is to model the cause-specific hazards by the use
of a classification tree with multi-categorical outcome.

The underlying concept of recursive partitioning has its roots in automatic interac-
tion detection. The most popular version, which the proposed approach is based on, is
due to Breiman et al. (1984) and is known by the name classification and regression
trees (CART). The basic method is conceptually very simple: The predictor space
defined by the explanatory variables (containing the complete set of observations) is
partitioned into a set of disjoint rectangles (i.e., subgroups of observations) by sequen-
tially applying binary splits. On each rectangle, a simple model (e.g., a constant) is
fitted. An easily accessible introduction into the basic concepts is found in Hastie
et al. (2009). A comparison of several recent developments of recursive partitioning
methods has been given by Doove et al. (2014).

In the presence of competing events the outcome variable of a discrete time-to-
event model is a categorical variable, with the outcome categories denoting the type
of the observed event or the censoring event. A tailored classification tree (originally
designed for multi-categorical outcomes) results in a partition composed of disjoint
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subgroups of observations and associated cause-specific hazard estimates that can be
used for the prediction of events of future observations.

The rest of the article is organized as follows: in Sect. 2 we give basic notations and
definitions. The class of parametric cause-specific discrete hazard models is specified
in Sect. 3.1, and the proposed tree-based model is introduced in Sect. 3.2. The results
of several simulation studies will be presented in Sect. 4. Specifically, wewill compare
the performance of the tree-based model to several parametric approaches in terms of
predicting future events. Section 5 contains an application on the aforementioned anal-
ysis of AMDdevelopment. Finally, Sect. 6 summarizes themain findings of the article.

2 The discrete cause-specific hazard function

Let Ti be the event time and Ci the censoring time of individual i, i = 1, . . . , n. Both
Ti and Ci are assumed to be independent random variables taking discrete values
in {1, . . . , k}. In situations where originally continuous data have been grouped, the
discrete event times 1, . . . , k refer to time intervals [0, a1), [a1, a2), . . . , [ak−1,∞),
where Ti = t means that the event has occurred in time interval [at−1, at ). For right-
censored data, the time period during which an individual is under observation is
denoted by T̃i = min(Ti ,Ci ), i.e., T̃i corresponds to the true event time if Ti ≤ Ci

and to the censoring time otherwise. The random variableΔi := I (Ti ≤ Ci ) indicates
whether T̃i is right-censored (Δi = 0) or not (Δi = 1). It is assumed that there are J
competing events and that the event type is denoted by εi ∈ {1, . . . , J }. Throughout
this article, the focus is on modeling the occurrence of one of the J competing events
by also taking into account the censoring event (Δi = 0).

For given values of p explanatory variables xi = (xi1, . . . , xip)� that are constant
over time, the discrete cause-specific hazard function for an event of type j is definedby

λ j (t |xi ) = P(Ti = t, εi = j |Ti ≥ t, xi ), j = 1, . . . , J , t = 1, . . . , k, (1)

which is the conditional probability of an event of type j at time t given that the
individual reaches time t . To describe the whole dynamics of the survival process one
can combine all the cause-specific hazard functions λ1, . . . , λJ to obtain the overall
hazard function given by

λ(t |xi ) =
J∑

j=1

λ j (t |xi ) = P(Ti = t |Ti ≥ t, xi ), t = 1, . . . , k, (2)

which is the probability of experiencing any event at time t given that t has been
reached. The conditional probability of experiencing no event at t , i.e., P(Ti > t |Ti ≥
t, xi ), is then given by 1− λ(t |xi ). The corresponding survival function derived from
Equation (2) has the form

S(t |xi ) = P(Ti > t |xi ) =
t∏

s=1

(1 − λ(s|xi )), (3)
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which denotes the probability that an event (of any type) occurs later than at time t .
For an overview of the basic concepts for modeling competing risks, see Tutz and
Schmid (2016), Chapter 8. The focus of the next sections will be on parametric and
tree-based models for the cause-specific hazards λ j (t |xi ).

3 Methods

The proposed tree-based model (presented in Sect. 3.2) is rooted in the concepts of
classical discrete cause-specific hazard modeling, which will be summarized briefly
in the following.

3.1 Parametric models for discrete cause-specific hazards

To model the cause-specific hazard functions (1) one usually considers the general
class of multi-categorical response models of the form

λ j (t |xi ) = h
(
η j (t, xi )

)
, j = 1, . . . , J , t = 1, . . . , k − 1, (4)

where h(·) is a response function and η j (·) ∈ R are predictor functions. Usually the
predictor functions are specified by η j (t, xi ) = γ0 j (t) + x�

i γ j , which contain time-
dependent intercepts γ0 j (t) (referred to as baseline coefficients) and linear functions
x�
i γ j of the explanatory variables with coefficients γ j ∈ Rp that do not depend on t .

The baseline coefficients γ0 j (t) can either be specified by separate intercepts for each
t using dummy variables, or by smooth (possibly non-linear) functions of unspecified
form using P-splines or smoothing splines. For details on semiparametric approaches
for discrete time-to-event models, see Berger and Schmid (2018).

The most popular model for multi-categorical outcomes is the multinomial logistic
regression model, see Tutz (2012). The associated cause-specific hazard model is
specified by setting h(η j (t, xi )) equal to the logistic response function (Tutz 1995),
yielding

λ j (t |xi ) = exp
(
η j (t, xi )

)

1 + ∑J
j=1 exp

(
η j (t, xi )

) . (5)

Accordingly, the overall hazard function is obtained by

λ(t |xi ) = 1 − 1

1 + ∑J
j=1 exp(η j (t, xi ))

. (6)

The model based on the logistic response function will be used for comparison pur-
poses in the simulation study and the application in Sects. 4 and 5.

Estimates of the parameters γ0 j , γ j are obtained by maximizing the log-likelihood

of Model (4). With data (T̃i ,Δi , εi , xi ), i = 1, . . . , n, the likelihood of the model for
one individual is given by
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Li = P(Ti = T̃i , εi = j |xi )Δi P(Ti > T̃i |xi )1−Δi

= λ j (T̃i |xi )Δi (1 − λ(T̃i |xi ))1−Δi

T̃i−1∏

t=1

(1 − λ(t |xi )). (7)

For the optimization of the likelihood one can exploit the property that Li is the
same as the likelihood of a multi-categorical response model with outcome categories
j ∈ {0, 1, . . . , J }, where j = 0 denotes the reference category (Tutz 2012). For each
t , the corresponding binary outcome variables are defined by

y�
i t = (yit0, yit1, . . . , yitεi , . . . , yit J ) =

⎧
⎪⎨

⎪⎩

(1, 0, . . . , 0, . . . , 0), if t < T̃i ,

(0, 0, . . . , 1, . . . , 0), if t = T̃i , Δi = 1,

(1, 0, . . . , 0, . . . , 0), if t = T̃i , Δi = 0.
(8)

It is assumed that the binary indicator variables are multinomially distributed with
y�
i t = (yit0, yit1, . . . , yit J ) ∼ M (1, 1 − λ(t |xi ), λ1(t |xi ), . . . , λJ (t |xi )). Using this

definitions, the total log-likelihood becomes

� =
n∑

i=1

T̃i∑

t=1

⎛

⎝
J∑

j=1

yit j log
(
λ j (t |xi )

) + yit0 log (1 − λ(t |xi ))
⎞

⎠ . (9)

The cause-specific hazards λ j (t |xi ) can be estimated by fitting a multi-categorical
regression model with outcome values yi t . This is done by the generation of an aug-
mented data matrix, which is composed of smaller (augmented) data matrices for
each individual. More specifically, for an individual that experienced an event of type
j (Δi = 1, εi = j) at time T̃i the augmented data matrix is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0 yi1 . . . yi j . . . yi J t X i

1 0 . . . 0 . . . 0 1 xi1 . . . xip
1 0 . . . 0 . . . 0 2 xi1 . . . xip
1 0 . . . 0 . . . 0 3 xi1 . . . xip
...

...
...

...
...

...
...

1 0 . . . 0 . . . 0 T̃i − 1 xi1 . . . xip

0 0 . . . 1 . . . 0 T̃i xi1 . . . xip

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

In line with the definition of yi t in Equation (8), the outcome values with yi0 = 1 in
the first column indicate that no event has been experienced yet.

For an individual that is censored (Δi = 0) at time T̃i the augmented data matrix
is given by
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0 yi1 . . . yi j . . . yi J t X i

1 0 . . . 0 . . . 0 1 xi1 . . . xip
1 0 . . . 0 . . . 0 2 xi1 . . . xip
1 0 . . . 0 . . . 0 3 xi1 . . . xip
...

...
...

...
...

...
...

1 0 . . . 0 . . . 0 T̃i − 1 xi1 . . . xip

1 0 . . . 0 . . . 0 T̃i xi1 . . . xip

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The overall augmented data matrix, which is obtained by “glueing” the individual
augmented data matrices together, has ñ = ∑n

i=1 T̃i rows and J + 2 + p columns.
The first J +1 columns of the augmented data matrices correspond to the multinomial
outcomes yit0, . . . , yit J . The (J + 2)th column is the time running from 1, . . . , T̃i ,
which is used as an additional explanatory variable to estimate the baseline coefficients.
The values of the explanatory variables are contained in columns (J+3) to (J+2+ p).

Instead of maximizing the “pure” log-likelihood (9), it is often more appropriate
to use a penalized likelihood of the form �p(γ 0 j , γ j ) = �(γ 0 j , γ j ) − ϑP(γ j ),
where P is a functional that penalizes the magnitude of the coefficients γ j and ϑ

is a tuning parameter. A penalized likelihood approach that accounts for the special
structure of multi-categorical response models, called CATS Lasso, was proposed by
Tutz et al. (2015). The corresponding functional P additionally enforces variable
selection among the explanatory variables xi and thus reduces the complexity of the
model. An alternative approach that enforces variable selection inmultinomial logistic
regression models by likelihood-based boosting was proposed by Zahid and Tutz
(2013). An application of the CATS Lasso penalty to discrete competing risks models
was more recently provided by Möst et al. (2016). As the approach is a competitor to
the tree-based method proposed here, it will be compared by means of the application
and the simulations in Sects. 4 and 5.

It is important to note that by the representation of X i in (10) and (11) one assumes
that the explanatory variables are constant over time. This restriction can easily be
removed by inserting time-dependent values x�

i t = (
xi1t , . . . , xipt

)
, t = 1, . . . , T̃i ,

of the explanatory variables in the rows of the individual augmented data matrices.
However, for notational simplicity we reduce our considerations to the case of time-
constant explanatory variables throughout the rest of the article.

3.2 Recursive partitioning for discrete cause-specific hazards

The principle of the tree-based method by Schmid et al. (2016), which was designed
for time to-event models with one single type of event (J = 1), is to fit a discrete
hazard model of the form λ(t |xi ) = f (t, xi ), where the function f (·) is represented
by a classification tree with binary outcome. For the construction of the tree, the
explanatory variables x1, . . . , xp as well as the time t (represented by an ordinal
variable) are considered as candidates for splitting. Schmid et al. (2016) propose to
apply the CART algorithm based on the Gini impurity measure with minimal node
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size pruning. This strategy results in a set of terminal nodes that are represented by sets
of binary outcome values and are used to obtain an estimate of the hazard function.

Building a tree means to successively find a partition of the predictor space defined
by the explanatory variables. The root of the tree is the top node representing the
whole predictor space and the resulting terminal nodes refer to a disjoint partition.
When growing a tree, one successively splits one node M into two subsets M1 and
M2. In each step, a single explanatory variable xs , or the time t , and a corresponding
splitting rule are selected for splitting. The splitting rule is applied depending on the
scale of the variable. For a metrically scaled or ordinal variable xs , the partition into
two subsets has the form ‘M1 = M ∩ {xs ≤ c} and M2 = M ∩ {xs > c}’, with regard
to split point c. For a multi-categorical variable without ordering xs ∈ {1, . . . , r}, the
partition has the form ‘M1 = M ∩ C1 and M2 = M ∩ C2’, where C1 and C2 are
disjoint, non-empty subsets C1 ⊂ {1, . . . , r} and C2 = {1, . . . , r}\C1.

In the presence of competing events (J > 1), we propose to extend the survival
tree method by Schmid et al. (2016) by defining a cause-specific hazard model of the
form

λ j (t |xi ) = f j (t, xi ), (12)

where the functions f j (·) are determined by a classification tree withmulti-categorical
outcome. Similar to the single-event case, the building blocks of the proposed tree-
based method, which will be explained in the following, are: (i) the specification of
the data structure, (ii) the choice of an appropriate splitting criterion, (iii) the choice
of tuning parameters for splitting and pruning of the built tree, and (iv) the estimation
of the cause-specific hazard functions.

Specification of the data structure

The proposed algorithm is based on the multi-categorical representation of the like-
lihood function in (9). The corresponding values of the multinomially distributed
outcomes are given by the first J + 1 columns of the augmented data matrices (10)
and (11). To account for the multi-categorical structure of the outcomes, the indicator
variables yi0, . . . , yi J are replaced by one factor variable yi ∈ {0, . . . , J }. Due to
its ordered structure, the time t , which is additionally considered as a candidate for
splitting during tree building, has to be treated as an ordinal or numerical variable.
Thus, the data structure for one individual is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi t X i

0 1 x�
i

0 2 x�
i

0 3 x�
i

...
...

...

εi T̃i x�
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

if Δi = 1, εi = j and

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi t X i

0 1 x�
i

0 2 x�
i

0 3 x�
i

...
...

...

0 T̃i x�
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

if Δi = 0. (13)
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The resulting concatenated data matrix has ñ = ∑n
i=1 T̃i rows and p + 2 columns.

Choice of the splitting criterion

For the construction of a classification tree with a multi-categorical outcome variable,
popular splitting strategies are based on impurity measures. Important examples are
the entropy (Quinlan 1986) and the Gini impurity (Breiman et al. 1984). Given the
multi-categorical outcome variable yi , the Gini impurity measure in one node M of a
built tree is defined by

GIM =
J∑

j=0

∑

j �=k

π j (M)πk(M), (14)

where π j (M) is the proportion of observations with outcome value j in node M , see
Breiman (1996). In each step of the tree-building algorithm, one chooses the split
(among all explanatory variables and corresponding splitting rules) that minimizes
the pooled Gini impurity

GI (M1, M2) = |M1|GIM1 + |M2|GIM2 , (15)

where | · | denotes the cardinality of the node. The proportions of the outcome
values in each node M yield estimates of the cause-specific hazards λ̂1(M) =
π1(M), . . . , λ̂J (M) = πJ (M) for the subset of individuals and a time interval deter-
mined by the node. An estimate of the overall hazard is obtained by the proportion of
zero values, namely λ̂(M) = 1 − π0(M).

An alternative splitting criterion considered here is theHellinger distance. Hellinger
distance decision tree (HDDT) algorithms have been proposed for binary classification
by Cieslak and Chawla (2008) and Cieslak et al. (2012). Their focus was on tree-based
methods for unbalanced datasets, that is datasets where one of the two outcome classes
is particularly rare. Cieslak and Chawla (2008) showed that HDDT outperforms the
classicalCARTalgorithm in terms of theArea under the curve (AUC) in the presence of
substantial class imbalance. An extension to multi-categorical classification problems
was proposed by Hoens et al. (2012). For the tree-based method proposed here, the
Hellinger distance is an attractive choice, as the augmented data matrix used for tree
building comprises a disproportionately high number of zero values.

Given a single pair of outcome values, e.g. {0, 1}, and one node M that is splitted
into the two subsets M1 and M2, the Hellinger distance is defined by

HD(M1, M2) =
√(√

π1(M1) − √
π0(M1)

)2 +
(√

π1(M2) − √
π0(M2)

)2
, (16)

where π0(·) and π1(·) denote the proportions of zeros and ones in the respective nodes.
To account for the multi-categorical structure of the outcome variable, in accordance
with Hoens et al. (2012), we propose to consider pairs of subsets of outcome values
j1 ⊂ {0, . . . , J } and j2 = {0, . . . , J }\ j1 and to assign the value zero to all categories
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in j1 and the value one to all categories in j2. In each step of the tree construction
HD(M1, M2) is then calculated for all possible pairs of subsets. To determine the
best split, one chooses the split with the minimal distance among all pairs of outcome
values, all explanatory variables and corresponding splitting rules.

Specification of the tuning parameters

When building trees, the most important tuning parameter is the number of splits that
controls the depth and hence the size of the trees. There exist several strategies to
determine the adequate size of classification trees. As in traditional approaches we
propose to grow large trees and to prune them to an adequate size afterward (Breiman
et al. 1984; Ripley 1996). In discrete time-to-event analysis, pruning is essential to
ensure sensible estimates of the cause-specific hazards, as the variance of the estimators
λ̂1, . . . , λ̂J (defined in detail in the next subsection) is inversely related to the terminal
node size. Hence the accuracy of these estimates highly depends on the number of
observations in the terminal nodes.

With traditional approaches, tuning is usually achieved by using cost-complexity
pruning. Starting with the terminal nodes of the grown tree, nodes that result in the
smallest decrease in classification accuracy are successively collapsed. One obtains a
sequence of nested subtrees, where each subtreeminimizes a cost-complexity criterion
among all subtrees with the same size. The optimal tree out of this sequence is then
given by the subtree with the minimal value of the cost-complexity criterion. This
controls the trade-off between classification accuracy and tree size (Mingers 1989).
However, it has been shown in several studies that this pruning strategy is not optimal
for probability estimation from the terminal nodes (which is the main objective here
since the cause-specific hazards (1) are defined in terms of conditional probabilities),
because trees that optimize classification accuracy are usually too small (e.g., Provost
and Domingos 2003).

For these reasons, we propose to optimize the size of the tree by using the minimal
number of observations in the nodes (minimal node size) as themain pruning parameter
for tree building. The latter is specified as the number of observations that has to be
necessarily contained in the current nodes to perform further splits. Thus, if the number
of observations in a current node falls below a (predefined) minimal node size, the
node is flagged as terminal node. The algorithm terminates when all current nodes
are flagged as terminal nodes. For a given sequence of minimal node sizes, the result
is again a sequence of nested subtrees, where each subtree is defined by a specific
minimal node size.

To determine the tree with the optimal minimal node size we propose to use the
log-likelihood of the model. One can either minimize an information criterion (such
as AIC and BIC) or maximize the predictive log-likelihood. In analogy to Schmid
et al. (2016), we define the information criteria by − 2� + ξ(Q − 1), where � is
the log-likelihood (9), Q is the number of terminal nodes (serving as a measure for
the complexity of the tree) and ξ ∈ {2, log(ñ)}. When the predictive log-likelihood is
used for tuning, the algorithm performs five-fold cross validation based on subsamples
without replacement of size 80% (drawn from the original non-augmented data). To
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ensure that each subsample contains a sufficient number of observations per observed
event time, the subsamples are stratified by T̃i .

Thepruning strategydescribed above is designed such that it results in a compromise
between “too small” trees (optimizing classification accuracy but being suboptimal for
probability estimation) and “too large” trees (with too few observations in the terminal
nodes, resulting in cause-specific hazard estimates with an overly large variance).
Analogous to cost-complexity pruning, it generates a sequence of nested trees. In
contrast to the former, however, it is not guaranteed that minimal node size pruning
will always produce a tree that is optimal among all probability estimation trees of the
same size.

Estimation of the cause-specific hazard functions

When a tree has been constructed based on the augmented data matrix, the result is
a set of Q terminal nodes that contain a set of nq multi-categorical outcome values
yq = (yit1, . . . , yitnq )

� ∈ {0, . . . , J }, i ∈ {1, . . . , n}, t ∈ {1, . . . , T̃i }, q = 1, . . . , Q.

Estimates of the cause-specific hazards λ̂1q , . . . , λ̂Jq are derived by the proportions of
the outcome values in the respective terminal node. Because the time t is a candidate
splitting variable, each terminal node of the tree corresponds to a subset defined by the
explanatory variables x1, . . . , xp and to a time interval Tq = [aq , bq ], 1 ≤ aq ≤ bq ≤
k. Splitting in t , which causes the observations from one individual to be allocated
to different nodes of the fitted tree, indicates an interaction between the involved
explanatory variables and time. This implies the presence of time-varying effects on
the cause-specific hazards, which are captured by the tree structure in a very flexible
way. If the time t has never been selected for splitting during tree building, it implies
that the resulting cause-specific hazards are constant over time. In the other extreme
case where only t has been selected for splitting, it implies that the cause-specific
hazards depend on time but that the explanatory variables are not influential. As each
terminal node is directly interpretable in terms of cause-specific hazard estimates
within a specific time interval Tq , estimates of the cause-specific hazard functions
are obtained for each individual by concatenating the terminal nodes to which the
observations of the individual have been allocated to.

If the number of observations in a terminal node is relatively small or one of the
competing events is quite rare, the raw estimate of the associated cause-specific hazard
might be close to zero, or even become exactly zero. This is not desirable, as onemight
observe the samehazard estimates in several nodes independent of the size of the nodes.
Therefore, we propose to apply probability smoothing, which was suggested by Ferri
et al. (2003) to correct for probability estimates near the boundaries zero and one. For
category j in node q, the Laplace-corrected cause-specific hazard estimate is defined
by

λ̂ jq = n j (q) + 1

|q| + J + 1
, (17)
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where n j (q) is the number of observations with outcome value j in node q. Although
pruning of the built tree is already designed to avoid extreme estimates close to zero
and one, we will use the Laplace correction in both the simulations and application.

For a (new) individual with explanatory variables x̃i one obtains the estimated
hazard functions λ̂ j (t |x̃i ) by dropping the set of vectors (x̃�

i , 1), . . . , (x̃�
i , T̃i ) down

the final tree. The estimated conditional survival function Ŝ(t |x̃i ) can then be derived
by applying Eqs. (2) and (3).

3.3 Implementation and available software

In R, the augmented data matrix can be generated by applying the function
dataLongCompRisk() of the add-on package discSurv (Welchowski and Schmid
2017). Parametric cause-specific hazard models can be fitted by the use of the add-
on package VGAM (Yee 2010, 2017); the function vglm() with family argument
multinomial() allows to fit traditional multinomial logit models. Penalized max-
imum likelihood estimation can be performed by using the function MRSP() of the
eponymous add-on package (Pößnecker 2014). The proposed tree-based method is
implemented in aRprogram that is available fromGitHub (https://github.com/jmober/
CompetingRisksTreeDiscSurvival.git).

4 Simulation study

In this section we present the results of numerical experiments to demonstrate the
performance of the tree-based cause-specific hazard model. The aims of the study
were: (i) to compare the two splitting criteria GI and HD, as well as to compare
various pruning strategies for determining the optimal minimal node size, and (ii) to
compare the tree-based model to parametric models in the presence of interactions
between the explanatory variables, and in higher dimensional settings with a large
number of non-influential variables.

4.1 Experimental design

Weconsidered simulation scenarioswith two competing events εi ∈ {1, 2} and discrete
event times T̃i = 1, . . . , 11. In all scenarios we simulated data with four independent
binary explanatory variables x1, . . . , x4 ∈ {1, 2}. The cause-specific hazards were
generated by use of the logistic response function and had the form

λ j (t |x1, . . . , x4) = exp
(
η j (t, x1, . . . , x4)

)

1 + ∑2
j=1 exp

(
η j (t, x1, . . . , x4)

) , j = 1, 2, (18)

with predictors

η j (t, x1, . . . , x4) = γ0 j (t) + η j (x1, . . . , x4)

= γ0 j (t) + γ j1 · x1x2 + γ j2 · x2x3 + γ j3 · x3x4,
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where the baseline coefficients were randomly drawn from a uniform distribution:
γ01(t) ∼ U [− 5,− 4.5], γ02(t) ∼ U [− 4.5,− 4]. The effects of the explanatory
variables were set to γ 1 = (0.4, 0.2, 0.3)� and γ 2 = (0.3, 0.1, 0.5)�. By definition,
η1(x1, . . . , x4) and η2(x1, . . . , x4) were determined by three interaction terms and
could take 16 distinct values in the interval [0.9, . . . , 3.6]. Following a strategy already
used in Schmid et al. (2018), the censoring times were obtained by drawing random
numbers from a distribution with probability density function

P(Ci = t) = b11−t+1/

11∑

s=1

bs, t = 1, . . . , 11, (19)

where the degree of censoring was determined by the parameter b ∈ R+.
The following steps were carried out for data generation:

(a) Compute the cause-specific hazards λ j (t |xi ), t = 1, . . . , 10, j ∈ {1, 2}.
(b) Obtain the associated overall hazard functions λ(t |xi ) and survival functions

S(t |xi ). Set λ(11|xi ) = 1 for all individuals i .
(c) Generate the discrete event times Ti from the discrete distribution with probability

density function P(Ti = t |xi ) = λ(t |xi )S(t − 1|xi ), t = 1, . . . , 11.
(d) Generate the discrete censoring times Ci according to (19).
(e) Compute the observed event times T̃i = min(Ti ,Ci ) and the status indicators

Δi = I (Ti ≤ Ci ).
(f) IfΔi = 1, determine the type of the event by drawing from a binomial distribution

with probabilities P(εi = j |Ti = T̃i , xi ) = λ j (T̃i |xi )/λ(T̃i |xi ).
We simulated data comprising n ∈ {200, 500} individuals. Furthermore, we con-
sidered a scenario with four additional non-influential variables x5, . . . , x8 ∈
{1, 2} (low-dimensional) and a scenario with 50 additional non-influential variables
x5, . . . , x54 ∈ {1, 2} (noisy). The degree of censoring was determined by the param-
eter b of the censoring distribution (19). We used the values b = 0.5 (weak), b = 1
(medium) and b = 1.5 (strong), yielding the approximate censoring rates shown in
Fig. 1. In total this resulted in 2 × 2 × 3 = 12 different scenarios. In each of the
scenarios we performed 100 replications, respectively.

Figure 1 shows the relative frequency of observed events for the three low-
dimensional scenarios with n = 200. It is seen that the number of censoring events
increased with increasing value of b. As the true simulated hazards for a type 2 event
were higher than for a type 1 event across all t , one observed more events of type 2
than of type 1. For varying b, the ratio of observed type 1 and type 2 events remained
approximately the same (∼ 6/10). For the scenarios with n = 500 and the noisy
scenarios, the observed frequencies were almost the same and are thus not shown.

In all 12 scenarios the followingmodeling approaches were considered: (i) the tree-
based approaches introduced in Sect. 3.2, differingwith regard to the splitting criterion
and the pruning strategy, (ii) a fully specified parametric model (referred to as Full)
with linear predictors η j (t, xi ) = γ0 j (t) + x�

i γ j , j ∈ {1, 2}, (iii) a parametric model
without any explanatory variable (referred to asNull), and (iv) a parametricmodel with
linear predictors based on the penalized likelihood with CATS Lasso penalty, where
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Fig. 1 Illustration of the experimental design of the simulation study. The bars display the average relative
frequencies of observed events (0 = censoring event, 1 = event of type 1, 2 = event of type 2) depending
on the degree of censoring that were obtained from 100 simulated data sets (n = 200)

the effects of all explanatory variables were allowed to be event-specific (referred to
as Lasso; Tutz et al. 2015). The tuning parameter ϑ was chosen by ten-fold cross-
validation based on the predictive deviance. We evaluated the performance of the
modeling approaches with regard to predicting events of future observations. In order
to do so, we computed the log-likelihood on an independently drawn test data set with
equal sample size n in each replication.

4.2 An illustrative example

First we consider in detail the results obtained from fitting one tree-based model. We
used an exemplary data set of the low-dimensional scenario with medium censoring
and sample size n = 200. The fitted trees with tuning by BIC and splitting by Gini
impurity (GI) and Hellinger distance (HD) are shown in Fig. 2. It is seen that during
tree building both approaches only selected variables from the pool of influential
explanatory variables x1, . . . , x4, but none of the additional variables x5, . . . , x8. Both
approaches also selected the time t for splitting. Overall, the two approaches yielded
quite different splits, which resulted in trees with five (GI) and seven (HD) terminal
nodes. High estimated hazards (λ̂1 = 0.116, λ̂2 = 0.197) were observed for the subset
of individuals {x2 = 2 ∩ x3 = 2}, which coincided in both trees. The theoretical
(simulated) hazards of this subset were λ1 = 0.117 and λ2 = 0.189 (averaged over
all individuals and time points) and thus were very close to the estimated ones. Rather
small estimates were obtained for the subset {x2 = 1 ∩ x3 = 1}, which was also in
line with the true data-generating process. In this scenario, the two approaches yielded
the same fitted tree (and thus the same estimated hazards for all the observations) in
10 of 100 replications.

Figure 3 shows the predicted survival functions when applying the fitted models to
two exemplary groups of observations in the corresponding test data set containing
n = 200 observations. It is seen from Fig. 3 that the predicted survival functions only
slightly deviated from the true one. Thus the two tree-based models were well able to
describe the true underlying survival mechanism.
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Fig. 2 Fitted trees obtained from one data set (n = 200, low-dimensional setting, medium censoring). The
trees were built by tuning with BIC and splitting with Gini impurity (GI, upper panel) andHellinger distance
(HD, lower panel). The splitting variable timeInt refers to the time column t . At each terminal node the
estimated hazards λ̂1 and λ̂2 (post-processed by application of the Laplace correction) are depicted in the
small subfigure

4.3 Comparison of tree-based approaches

Figure 4 shows the prediction accuracy (i.e. the predictive log-likelihood values on
the test samples) for the six scenarios with sample size n = 200, as obtained from the
various tree-based approaches. Specifically, we compared splitting by Gini impurity

123

Author's personal copy



A classification tree approach for the modeling… 979

0 2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

t

S
(t)

true survival
avg. estimated survival (GI)
avg. estimated survival (HD)

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
(t)

true survival
avg. estimated survival (GI)
avg. estimated survival (HD)

(a) (b)

Fig. 3 Predicted survival functions for two groups of observations from one test data set (n = 200, low-
dimensional setting,medium censoring). Estimateswere obtained using the tree-based approachwith tuning
by BIC and splitting with Gini impurity (GI, orange squares) and Hellinger distance (HD, blue triangles).
The respective true survival functions are marked by gray circles (color figure online)

(GI) and Hellinger distance (HD) and pruning based on AIC, BIC and five-fold cross-
validated log-likelihood (referred to as ll). This resulted in the 2 × 3 = 6 different
approaches shown in each panel of Fig. 4. It is seen that the predictive log-likelihood
values were smallest for AIC-based pruning throughout all scenarios, yielding the
worst performance. BIC-based pruning and ll-based pruning resulted in very similar
predictions in the low-dimensional scenarios (left panels). Differences between the
two pruning strategies occurred in the noisy scenarios (right panels), where ll was
clearly the best-performing pruning method.

Regarding the two splitting criteria, great differences between GI an HD were
observed with AIC-based pruning only (where HD-based splitting resulted in a better
prediction accuracy). With BIC-based pruning and ll-based pruning, GI performed
slightly better than HD in the low-dimensional setting with weak censoring (upper left
panel of Fig. 4). In all the other scenarios the performance of both splitting criteria was
largely the same. This was particularly the case for the scenarios with strong censoring
(lower panels of Fig. 4).Our results thus confirmed the findings reported byHoens et al.
(2012) that HD does not perform significantly better than classical impurity measures
in a multi-categorical classification problem. Overall, the simulations suggested that
both splitting criteria (GI and HD) are equivalent alternatives for data analysis.

The results for sample size n = 500 are shown in Fig. 9 in “Appendix”. There
are only slight differences to the previous results across all the six scenarios. We also
compared the two splitting criteria in the application (see Sect. 5), where HD-based
splitting turned out to be the better choice.

4.4 Comparison to alternative models

The predictive log-likelihood values for the six scenarios with sample size n = 200
obtained from the different modeling approaches are presented in Fig. 5. It is seen that
the tree-based models outperformed the parametric models in all of the six scenarios.
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Fig. 4 Results of the simulation study. The boxplots visualize the predictive log-likelihood values obtained
from the various tree-based approaches for the six scenarios with n = 200. Dark gray boxplots refer to
the results with splitting by Gini impurity (GI), light gray boxplots refer to the results with splitting by
Hellinger distance (HD). High values of the predictive log-likelihood correspond to good model fits, and
vice versa

As expected, the fully specified parametric model (Full) was only competitive in the
low-dimensional scenarios (left panels), but strongly suffered in the noisy scenarios
(right panels). The penalized likelihood approach with CATS Lasso penalty conspic-
uously showed a very poor performance in the scenarios with weak censoring (upper
panels).

The superiority of the tree-based models might be explained in that the linear
modeling approaches were not able to adequately account for the interaction terms
contained in the data-generating model (18). Moreover, the results stress the added
value of variable selection in the noisy scenarios, which was also enforced by the
tailored CATS Lasso penalty.

The results obtained for the scenarios with sample size n = 500 are shown in
Fig. 10 in “Appendix”. For larger sample size the Full model performed best in the
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Fig. 5 Results of the simulation study. The boxplots visualize the predictive log-likelihood values obtained
from various modeling approaches for the six scenarios with n = 200. The first two boxplots (GI and HD)
obtained from the tree-based models refer to the results with tuning by the predictive log-likelihood (ll). The
sixth boxplot in each of the six panels contains the true log-likelihood values of the 100 test data sets (True),
based on the true hazards defined in (18). Dashed lines refer to the median values of the best-performing
tree-based model

low-dimensional scenarios with weak censoring, but again deteriorated in the other
scenarios. Surprisingly, CATS Lasso performed worst in all the scenarios. This can
again be explained by the misspecification of the predictor of the model, but might
also be due to a strong shrinkage of the (influential) parameters by the penalty towards
zero.

5 Application: age-relatedmacular degeneration

To illustrate the application of the tree-based cause-specific hazard model, we ana-
lyzed the database of theMODIAMD (Molecular Diagnostics of Age-relatedMacular
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Degeneration) study, which is an ongoing non-interventional study in patients at
high risk for developing late-stage age-related macular degeneration (AMD, Stein-
berg et al. 2016). Late-stage AMD is the leading cause of blindness among elderly
people in industrialized countries. It either manifests by geographic antrophy (GA) or
by choroidal neovascularization (CNV). GA is an advanced stage of AMD with irre-
versible loss of photoreceptors and severe loss of vision. CNV, also called the “wet”
form of advanced AMD, causes vision loss due to abnormal blood vessel growth.
Currently, there is no therapeutic intervention to delay or stop this progression to
late stage AMD. Although the more common CNV can be treated with anti-vascular
endothelial growth factor therapy, it remains a vision threatening disease. Therefore,
it is of high interest to develop intervention strategies for high-risk patients. For this
purpose, we analyzed the effects of potential risk factors on the development of the
two “competing” disease outcomes GA and CNV.

Patients were enrolled between November 2010 and September 2011 at the Depart-
ment of Ophthalmology, University of Bonn, Germany. There was one study eye per
patient. Criteria for the inclusion in the study were: (i) to be older than 50 years of age,
(ii) to be AREDS stage 3 or 4, according to the Age-Related Eye Disease (AREDS)
classification, and (iii) to have no advanced AMD (GA or CNV) at baseline in the
study eye (Steinberg et al. 2016). All patients were monitored at the time of their
inclusion in the study (baseline visit) and subsequently monitored by annual study
visits. Hence, observing Ti = 1 means that an event occurred during the first year of
the study. For our analysis, the data up to and including the fifth annual study was
available (t = 1, . . . , 5).

In total, 98 patientswere enrolled in the study. Exclusion of one patient withmissing
values in the analyzed risk factors resulted in an analysis data set of size n = 97. On
completion of the fifth visit, 16 study eyes had developed GA and 25 study eyes had
developed CNV; 26 patients were still in the study while 30 patients were censored
(i.e., had dropped out at earlier visits). Only one of the 30 censored patients died before
the fifth visit. Due to this very small number we did not consider death as an additional
competing event. The processing of the analysis data resulted in an augmented data
matrix with ñ = 344 lines.

Summary statistics of the risk factors incorporated in our analysis (all measured
at baseline) are given in Table 1. They included visual acuity (measured as the total
number of correctly identified letters on the Snellen chart), drusen volume (mm3), the
presence of the natural crystalline lens of the eye (phakia), smoking, the presence of
refractile drusen (ref_drusen) and the disease status of the fellow eye.

Table 2 shows the estimates of the coefficients γ j , j ∈ {GA, CNV}, the cor-
responding estimated standard errors and the p-values of the explanatory variables
obtained from fitting a parametric cause-specific hazard model with linear predic-
tors η j (t, xi ) = γ0 j (t) + x�

i γ j , j ∈ {GA,CNV} and logistic response function
(for details, see Tutz and Schmid, 2016, Chapter 8). The p-values in Table 2 indi-
cate that there were risk factors (e.g. visual acuity, drusen volume) with a significant
effect on the development of GA or CNV. However, the specification of one param-
eter vector for each event resulted in a very large number of parameters compared
to the observed number of events in the data. This lead to partly unreliable estimates
and numerical problems (cf. the effect of a GA in the fellow eye on CNV; last row
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Table 1 Analysis of the AMD data

Variable Summary statistics

Min Q1 Median Q3 Max Mean SD

Age (years) 51 70 73 77 89 73.09 7.10

Visual acuity (snellen) 56 75 79 83 91 77.94 6.94

Drusen volume (mm3) 0.09 0.15 0.19 0.25 0.66 0.21 0.10

Phakia No 30 (30.93%) Yes 67 (69.07%)

Smoking No 60 (61.85%) Yes 37 (38.15%)

Ref_drusen No 78 (79.59%) Yes 19 (20.41%)

Fellow eye Healthy 23 (23.71%) GA 5 (5.15%)

CNV 69 (71.14%)

Description and summary statistics of the variables used for the analysis (Q1 = first quartile, Q3 =
third quartile)

Table 2 Analysis of the AMD data

GA CNV

γ̂ se(γ̂ ) p-value γ̂ se(γ̂ ) p-value

Intercept (t = 1) − 3.8228 5.0247 0.4468 1.8512 4.8802 0.7044

Intercept (t = 2) − 3.3412 5.0468 0.5079 3.6576 4.8472 0.4505

Intercept (t = 3) − 3.8007 5.1116 0.4572 3.0804 4.8682 0.5269

Intercept (t = 4) − 2.6469 5.0855 0.6027 3.4437 4.8784 0.4802

Intercept (t = 5) − 2.8738 5.0559 0.5698 4.3565 4.8307 0.3671

Age (years) 0.0257 0.0483 0.5939 − 0.0117 0.0433 0.7869

Visual acuity (snellen) − 0.0629 0.0462 0.1729 − 0.0749 0.0325 0.0212

Drusen volume (mm3) 6.7520 2.3100 0.0035 1.4389 2.1350 0.5003

Phakia 1.0522 0.8500 0.2158 − 0.0836 0.5438 0.8778

Smoking 0.1120 0.5941 0.8505 − 0.5985 0.4961 0.2277

Ref_drusen 1.5514 0.7482 0.0381 1.0211 0.6588 0.1212

Fellow eye (CNV) 0.3518 0.7524 0.6401 0.0874 0.5471 0.8731

Fellow eye (GA) 2.3432 0.9986 0.0190 − 13.3469 1043.4122 0.9898

The table contains the coefficient estimates (γ̂ ), the estimated standard errors [se(γ̂ )] and the p-values
(based onWald test statistics) that were obtained from fitting a parametric cause-specific hazard model with
logistic response function

in Table 2). Moreover, the additional incorporation of possibly relevant interactions
became numerically infeasible. These results suggested the use of a regularized esti-
mation approach that enforces variable selection but still enables an easy interpretation
of effects and accounts for possible non-linear effects as well as interactions between
the explanatory variables.

To compare the approaches introduced in the previous sections, we generated 100
subsamples without replacement of size n = 65 (i.e. 2/3 of the original sample) each
and computed the predictive log-likelihood from the remaining 100 test data sets of
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Fig. 6 Analysis of the AMD
data. The boxplots show the
predictive log-likelihood values
of the tree-based models (GI and
HD with ll-based pruning) and
the penalized likelihood
approach (CATS Lasso). The
models were evaluated on 100
test sets of n′ = 32 each. The
median value of the
best-performing approach is
marked by a dashed line
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Fig. 7 Analysis of the AMD
data. The figure shows the
predictive log-likelihood values
that were obtained by five-fold
cross-validation when fitting the
tree-based model with ll-based
pruning and splitting by HD to
the entire data. The maximal
value (obtained for the minimal
node size 125) is marked by the
vertical dashed line
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n′ = 32 observations each. Figure 6 shows the results obtained from fitting (i) the
proposed tree-based model with ll-based pruning and splitting by either Gini impurity
(GI) or Hellinger distance (HD), and (ii) a parametric model based on the penalized
likelihoodwithCATSLasso penalty. It is seen that the treewith splitting byHDwas the
best-performing method. Furthermore, both tree-based models (on average) yielded
higher values thanCATSLasso. This superioritywas already present in the simulations
in Sect. 4 and suggested that there might be interaction effects or non-linear relations
that were not accounted for by the simple linear predictors.

Finally, we performed an analysis on the entire data by applying the tree-based
model with ll-based pruning and splitting by HD. The values of the predictive log-
likelihood obtained by five-fold cross validation are shown in Fig. 7. If an increase
of the minimal node size did not change the number of splits and therefore did not
influence the resulting tree, the value of the log-likelihood accordingly remained the
same. The optimal minimal node size (with the maximal log-likelihood) was found to
be 125 (referred to the augmented data matrix) resulting in a tree with five terminal
nodes, see Fig. 8. By definition, the number of observations in each of the terminal
nodes of the tree is below 125 and hence no further split is performed.

As seen from Fig. 8, the most important risk factor, which was chosen in the first
split during tree building, was the presence of refractile drusen. Patients with refractile
drusen had a particularly high risk for the development of GA. The corresponding esti-
mated hazard (λ̂GA = 0.145) pictured in the rightmost node in Fig. 8 represented the
highest value among all the estimated hazards. Within the group of patients without
refractile drusen the risk for the development of CNV was very high in patients older
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Fig. 8 Analysis of the AMD data. The figure visualizes the tree that was obtained from fitting the tree-based
model with ll-based pruning and splitting by HD to the entire data. At each terminal node the estimated
hazards λ̂GA and λ̂CNV (post-processed by application of the Laplace correction) are depicted in the small
subfigure

than 75 (λ̂CNV = 0.10). For the subgroup of younger patients, the risk for the devel-
opment of a GA or CNV was high in patients with a low or moderate visual acuity
(snellen <= 84) after the first year of the study (timeInt > 1), yielding λ̂GA = 0.07
and λ̂CNV = 0.11 in the respective terminal node of the tree.

The risk factors drusen volume, phakia, smoking and disease status of the fellow
eye were not selected for splitting during tree building. Thus they were effectively
excluded from the model. In contrast, drusen volume and a GA in the fellow eye
yielded significant effects on the development of a GA in the simple parametric model
(see Table 2), where the higher-order interactions captured by the tree (e.g. between
the presence of refractile drusen and age) were not taken into account.

6 Concluding remarks

This article proposes a tree-based method for the modeling of discrete competing risks
data. Formodels in continuous time, similar approaches based on the Cox proportional
hazardsmodel have been proposed before by Ibrahim et al. (2008) andXu et al. (2016).
The attractive feature of the method proposed here is that it is directly based on the
likelihood of a multinomial logit model. Therefore, the algorithm can be implemented
using established tools for multi-categorical response models.

The results show that ourmethod performswell in both simulations and the analysis
of real-world data. In particular, it outperformed parametric models in the presence of
interactions between the explanatory variables, and in higher dimensional situations
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with a huge number of noisy variables. Both, Gini impurity and Hellinger distance,
turned out to be attractive splitting criteria for tree building. The analysis of theMODI-
AMD study suggests that our method yields plausible results and is an appropriate
modeling strategy for competing risks outcomes in clinical and epidemiological stud-
ies.

As described in Sect. 3.1, it is possible to insert time-dependent values of the
explanatory variables into the augmented data matrices (10) and (11), enabling the
tree-based method to additionally deal with time-varying information. Splitting in a
time-varying explanatory variable then implies that not all the observations belonging
to one individual must necessarily be allocated to the same node of the fitted tree. This
strategy is in line with an alternative tree-based approach for time-varying explanatory
variables in the single-event case, proposed by Bou-Hamad et al. (2011).

A disadvantage of tree-based methods is that the resulting trees are often affected
by a large variance. This means that even a small variation in the data may result in
different trees. Therefore, when the focus is on prediction accuracy, it might be worth
stabilizing the results obtained from single trees by applying ensemble methods, such
as bagging or random forests. Methods of this kind have been suggested by Ishwaran
et al. (2014) for the continuous-time case and investigated by Janitza and Tutz (2015)
in the discrete-time case.

Further extensions of parametric discrete competing risksmodels include, for exam-
ple, the use of regression splines to model non-linear effects (Luo et al. 2016) and the
incorporation of heterogeneity components in hierarchical settings (Meggiolaro et al.
2017). Finally, an attractive modeling approach to enforce variable selection in high-
dimensional settings might also be boosting techniques, as examined by Binder et al.
(2009) and Tapak et al. (2015) for competing risks data in continuous time.
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Appendix: Further simulation results

See Figs. 9 and 10.
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Fig. 9 Results of the simulation study. The boxplots visualize the predictive log-likelihood values obtained
from the various tree-based approaches for the six scenarios with n = 500. Dark gray boxplots refer to
the results with splitting by Gini impurity (GI), light gray boxplots refer to the results with splitting by
Hellinger distance (HD). High values of the predictive log-likelihood correspond to good model fits, and
vice versa
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Fig. 10 Results of the simulation study. The boxplots visualize the predictive log-likelihood values obtained
from various modeling approaches for the six scenarios with n = 500. The first two boxplots (GI and HD)
obtained from the tree-based models refer to the results with tuning by the predictive log-likelihood (ll),
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the best-performing tree-based model

References

Austin PC, Lee DS, Fine JP (2016) Introduction to the analysis of survival data in the presence of competing
risks. Circulation 133:601–609

BergerM, SchmidM (2018) Semiparametric regression for discrete time-to-event data. Stat Model 18:1–24
Beyersmann J, Allignol A, Schumacher M (2011) Competing risks and multistate models with R. Springer,

New York
Binder H, Allignol A, Schumacher M, Beyersmann J (2009) Boosting for high-dimensional time-to-event

data with competing risks. Bioinformatics 25:890–896
Bou-Hamad I, Larocque D, Ben-Ameur H,Mâsse LC, Vitaro F, Tremblay RE (2009) Discrete-time survival

trees. Can J Stat 37:17–32
Bou-Hamad I, Larocque D, Ben-Ameur H (2011) Discrete-time survival trees and forests with time-varying

covariates: application to bankruptcy data. Stat Model 11:429–446

123

Author's personal copy



A classification tree approach for the modeling… 989

Breiman L (1996) Technical note: some properties of splitting criteria. Mach Learn 24:41–47
Breiman L, Friedman JH, Olshen RA, Stone JC (1984) Classification and regression trees. Wadsworth,

Monterey
Cieslak DA, Chawla NV (2008) Learning decision trees for unbalanced data. In: DaelemansW, Goethals B,

Morik K (eds) Machine learning and knowledge discovery in databases. Springer, Berlin, pp 241–256
Cieslak DA, Hoens TR, Chawla NV, Kegelmeyer WP (2012) Hellinger distance decision trees are robust

and skew-insensitive. Data Min Knowl Discov 24:136–158
Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc Series B 34:187–220
Doove LL, Dusseldorp E, Deun KV, Mechelen IV (2014) A comparison of five recursive partitioning

methods to find person subgroups involved in meaningful treatment–subgroup interactions. Adv Data
Anal Classif 8:403–425

Ferri C, Flach PA, Hernández-Orallo J (2003) Improving the AUC of probabilistic estimation trees. In:
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Liegen Ereigniszeitdaten mit konkurrierenden Ereignissen vor, ist oftmals nur

das Eintreten eines der Ereignisse von besonderem Interesse. In diesem Fall ist

es sinnvoll, nicht die ereignis-spezi�schen Hazardfunktionen, wie in Kapitel 2.3

betrachtet, sondern direkt die kumulative Inzidenzfunktion (8) für dieses Ereig-

nis zu modellieren. Diese Vorgehensweise wird bei Vorliegen von konkurrierenden

Ereignissen empfohlen, wann immer der Schwerpunkt auf der Schätzung der In-

zidenz oder auf der Bestimmung von Vorhersagen liegt (Austin et al., 2016).

In diesem Kapitel wird eine neuartige Methode zur Modellierung der kumulativen

Inzidenzfunktion für diskrete Ereigniszeiten vorgeschlagen. Diese fuÿt auf dem

Subdistribution Hazard-Modell, das von Fine und Gray (1999) für stetige Ereig-

niszeitdaten eingeführt wurde und das die Proportionalitätsannahme des Cox-

Modells (Cox, 1972) voraussetzt. Analog zu Fine und Gray (1999) wird o.B.d.A.

die diskrete Subdistribution Hazardfunktion für ein Ereignis vom Typ ε = 1 zum

Zeitpunkt t ∈ {1, . . . , k} de�niert durch

λ1(t|X) = P (T = t, ε = 1 | (T ≥ t) ∪ (T ≤ t− 1, ε 6= 1), X) . (21)

Es wird gezeigt, dass sich eine direkte Verknüpfung der Funktion λ1(t|X) zur

kumulativen Inzidenzfunktion F1(t|X) ergibt. Wie in Kapitel 2.1 und 2.2 wird zur

Modellierung der diskreten Subdistribution Hazardfunktion ein parametrisches

Regressionsmodell der Form

λ1(t|X) = h (γ0t +X1γ1 + . . .+Xpγp) , t = 1, . . . , k − 1 , (22)

vorgeschlagen, wobei in den Simulationen und der praktischen Anwendung die

inverse komplementäre log-log-Funktion h(·) = 1 − exp(− exp(·)) herangezogen
wird. Die Regressionskoe�zienten γ0t, t = 1, . . . , k − 1, und γ = (γ1, . . . , γp)

>

können über gewichtete Maximum-Likelihood-Schätzung berechnet werden und

in R mithilfe des Zusatzpaketesmgcv (Wood, 2021) konsistent geschätzt werden.

Umfangreiche Simulationen veranschaulichen die Unverzerrtheit der gewichteten

Schätzung und den Mehrwert der neuen Methode gegenüber dem stetigen Modell

nach Fine und Gray (1999), insbesondere wenn die Anzahl an diskreten Zeitpunk-

ten klein ist. Zur Illustration werden die Daten der Studie zum Auftreten von

nosokomialen Lungenentzündungen aus Wolkewitz et al. (2008) neu analysiert.
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Summary

A popular modeling approach for competing risks analysis in longitudinal studies is the pro-

portional subdistribution hazards model by Fine & Gray (1999). This model is widely used for

the analysis of continuous event times in clinical and epidemiological studies. However, it does

not apply when event times are measured on a discrete time scale, which is a likely scenario

when events occur between pairs of consecutive points in time (e.g., between two follow-up vis-

its of an epidemiological study) and when the exact lengths of the continuous time spans are

not known. To adapt the Fine & Gray approach to this situation, we propose a technique for

modeling subdistribution hazards in discrete time. Our method, which results in consistent and

asymptotically normal estimators of the model parameters, is based on a weighted maximum

likelihood estimation scheme for binary regression. We illustrate the modeling approach by an

analysis of nosocomial pneumonia in patients treated in hospitals.
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1. Introduction

The purpose of time-to-event analysis is to model the time span T until the occurrence of an event

of interest. In many studies there is not only one single type of event but J > 1 possible events,

called competing events. A multitude of examples are found in clinical and epidemiological studies

(e.g., Lau and others 2009; Austin and others 2016), where competing events such as cause-specific

death, the progression of a disease, or the occurrence of an infection are often strongly related

and therefore need to be analyzed together. In these situations, the use of suitable techniques for

competing risks analysis is of increasing importance (Andersen and others, 2012). The objective

is often to build a regression model that links the occurrence of the event(s) of interest to a set

of predictors x = (x1, . . . , xp)>. For introductions to competing risks analysis, see in particular

Andersen and Keiding (2002) and Putter and others (2007). Recent extensions, among many

others, have been suggested by Bartlett and Taylor (2016) and Cederkvist and others (2018).

Commonly used approaches for competing risks analysis are: (i) To focus on one specific event

j ∈ {1, . . . , J} and to consider individuals experiencing a competing event as random drop-outs.

It has been shown in several studies that this incomplete approach yields biased estimates of the

cumulative event probabilities, cf. Wolbers and others (2009). (ii) The modeling of the cause-

specific hazard function ξj(t) = lim∆t→0{P (t < T 6 t+ ∆t, ε = j|T > t,x)/∆t}, where T is the

time to the first event and ε ∈ {1, . . . , J} is a random variable indicating the type of event at T

(Prentice and others, 1978). In this approach each type of event is analyzed separately, and all

individuals experiencing a competing event may technically be treated as censored observations in

the modeling of ξj . While fitting a separate cause-specific hazard model for each j is technically

simple, the derivation and interpretation of cumulative event probabilities in these models is

involved. This is because the cumulative incidence function, defined as Fj(t) = P (T 6 t, ε = j|x),
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depends on a combination of all cause-specific hazard functions ξj , j = 1, . . . , J . Hence it is

necessary to fit separate cause-specific hazard models for all J events even if the interest is

solely in the modeling of Fj for one specific event j ∈ {1, . . . , J}. Also, interpretation of the

cumulative incidence function may become difficult in this case, as all cause-specific hazards need

to be considered together (Beyersmann and others, 2011). (iii) The modeling of the cumulative

incidence function of one specific event of interest. Direct modeling approaches for Fj(t) that

account for the effects of competing events were proposed by Fine and Gray (1999) and Klein

and Andersen (2005). The method by Klein and Andersen (2005), which uses pseudo values from

a jackknife statistic derived from the cumulative incidence function, will not be dealt with here.

Instead, we focus on the approach by Fine and Gray (1999), which is based on the modeling of

a subdistribution hazard function for the event of interest. The subdistribution hazard, which is

directly linked to Fj(t), is defined in terms of the probability of experiencing j at time t, given

that either no event has occurred yet or that a competing event occurred prior to t. In contrast to

cause-specific hazard modeling, this approach has the advantage that only one model needs to be

considered for interpretation; on the other hand, it does not provide insight in the characteristics

of the cause-specific hazard functions (being the driving forces of competing risks data).

The subdistribution hazard model by Fine and Gray (1999) is based on the proportional

hazards specification by Cox (1972). In particular, it is assumed that survival times are given by

random variables measured on a continuous scale. In this setting, the approach by Fine and Gray

(1999) has become hugely popular, and it has been recommended that analysts use subdistri-

bution hazard models whenever “the focus is on estimating incidence or predicting prognosis in

the presence of competing risks” (Austin and others, 2016). A remaining issue, however, is that

in some clinical and epidemiological studies the exact (continuous) event times are not recorded.

Instead, it may only be known that the events occurred between pairs of consecutive points in

time (i.e. within pre-specified follow-up intervals). In these cases, time is measured on a discrete
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scale t = 1, 2, . . ., where each t refers to a specific time interval. The subdistribution hazard model

in continuous time may not apply to these situations. An example, which will also be considered

in this paper, is the duration to the development of nosocomial pneumonia (NP) in intensive

care patients (measured on a daily basis, Wolkewitz and others 2008). In addition, there are also

situations where event times are ‘intrinsically’ discrete, for example, time to pregnancy, which is

usually measured by the number of menstrual cycles (Scheike and Keiding, 2006).

In the literature, there exists a variety of models for discrete time-to-event data, see e.g. Tutz

and Schmid (2016). A common approach for discrete competing risks analysis is to model the

cause-specific discrete hazard function P (T = t, ε = j|T > t,x), t = 1, 2, . . ., by use of a regression

model for multi-categorical response (Tutz, 1995). Prominent examples are the multinomial logis-

tic regression model and the proportional odds model (Tutz and Schmid 2016, Chapter 8). Again,

a drawback of cause-specific discrete hazard modeling is the lack of a simple and interpretable

model for the discrete cumulative incidence function Fj(t) = P (T 6 t, ε = j|x), t = 1, 2, . . ..

To address these issues, we propose a novel approach for the direct modeling of discrete

cumulative incidence functions with right-censored data. In accordance with the method by Fine

and Gray (1999), our model is specified in terms of a discrete subdistribution hazard function for

the event of interest. For the parameters of the model we will derive consistent and asymptotically

normal estimators which are based on inverse probability (IP) weighting (van der Laan and

Robins, 2003) and on a weighted maximum likelihood estimation scheme for binary regression.

Of note, the consistency proof for the weighted estimators can be embedded in the framework of

unbiased estimation equations (Carroll and Ruppert, 1988) and does not require use of counting

process theory. In the absence of competing events, the discrete subdistribution hazard model

reduces to the standard discrete hazard model presented in Tutz and Schmid (2016).

The rest of the paper is organized as follows: In Section 2.1 we will introduce notations and

definitions. The basic class of subdistribution hazard models will be specified in Section 2.2, and
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the weighted log-likelihood function for these models will be derived in Section 2.3. In addition,

we will show in Section 2.3 that the weighted maximum likelihood estimator is consistent and

asymptotically normal. Section 3 presents the results of several simulation studies. Specifically,

we will compare our estimation approach to situations where all censoring times are assumed to

be known and a standard unweighted estimator is available. Section 4 contains the application

dealing with the analysis of NP infection. Section 5 summarizes the main findings of the paper.

2. Methods

2.1 The Discrete Subdistribution Hazard Function

Let Ti be the event time and Ci the censoring time of individual i, i = 1, . . . , n. Both Ti and Ci

are assumed to be independent random variables taking discrete values in {1, 2, . . . , k}, where k is

a natural number. In situations where originally continuous data have been grouped, the discrete

event times 1, . . . , k refer to time intervals [0, a1), [a1, a2), . . . , [ak−1,∞), where Ti = t means that

the event has occurred in time interval [at−1, at) with ak =∞. For right-censored data, the time

period during which an individual is under observation is denoted by T̃i = min(Ti, Ci), i.e. T̃i

corresponds to the true event time if Ti 6 Ci and to the censoring time otherwise. The random

variable ∆i := I(Ti 6 Ci) indicates whether T̃i is right-censored (∆i = 0) or not (∆i = 1).

It is assumed that there are J competing events and that the event type of the i-th individual

at Ti is denoted by εi ∈ {1, . . . , J}. Throughout this paper, the focus is on modeling the occurrence

of a type 1 event (εi = 1), taking into account that there are J − 1 competing events and also

the censoring event (∆i = 0).

For given values of a set of time-constant predictor variables xi = (xi1, . . . , xip)>, the aim is

to estimate the cumulative incidence function for a type 1 event, given by

F1(t|xi) = P (Ti 6 t, εi = 1|xi) . (2.1)

By definition, F1 is bounded between 0 and F1(k|xi) = P (εi = 1|xi) < 1. The subscript “1” in
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Equation (2.1) indicates that F1 refers to a type 1 event.

In accordance with Fine and Gray (1999), we propose to link the cumulative incidence func-

tion F1 to a subdistribution time ϑi measuring the time to the occurrence of the type 1 event.

In the presence of competing risks, ϑi needs to account for the possible occurrence of an event of

type 2, . . . , J . The basic assumption made by Fine and Gray (1999) is that the type 1 event will

never be the first event to be observed once a competing event has occurred, implying that there

is no finite event time for the occurrence of a type 1 event if εi 6= 1. Accordingly, the discrete

subdistribution time for a type 1 event is defined by

ϑi :=

{
Ti, if εi = 1

∞, if εi 6= 1 .
(2.2)

Analogous to Fine and Gray (1999), we define the discrete subdistribution hazard function by

λ1(t|xi) = P (Ti = t, εi = 1|(Ti > t) ∪ (Ti 6 t− 1, εi 6= 1),xi) = P (ϑi = t|ϑi > t,xi) , (2.3)

t = 1, . . . , k, which is the discrete hazard function of the “event time” ϑi defined in Equation (2.2).

The subdistribution hazard λ1 is linked to the subdistribution function F1 by

F1(t|xi) = 1−
t∏

s=1

(1− λ1(s|xi)) = 1− S1(t|xi) , (2.4)

where S1(t|xi) = P (ϑi > t|xi) is the discrete survival function for a type 1 event. Equation (2.4)

implies that a statistical model for the discrete subdistribution hazard has a direct interpretation

in terms of the cumulative incidence function. The focus of the next sections will be on parametric

regression models for the subdistribution hazard λ1.

2.2 Parametric Regression Models for the Discrete Subdistribution Hazard

To model the discrete subdistribution hazard for a type 1 event, we consider the class of parametric

regression models

λ1(t|xi) = h
(
γ0t + x>i γ

)
, (2.5)
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where h(·) is a strictly monotone increasing distribution function. The linear predictor ηit =

γ0t +x>i γ contains the real-valued time-dependent intercepts γ0t, t = 1, . . . , k− 1 (referred to as

baseline coefficients), and a vector of regression coefficients γ = (γ1, . . . , γp)> independent of t.

Technically, the baseline coefficients can be treated as an additional factor variable in Model (2.5)

(see below). When the number of event times is large relative to the sample size, it may also

be useful to represent the baseline coefficients by a smooth (possibly nonlinear) function f0(t) of

unspecified form. For example, estimation of f0(t) may be carried out using P-splines or smoothing

splines (for details see Tutz and Schmid 2016, Chapter 5).

In classical discrete hazard modeling without competing events (J = 1), which is often based

on models of the form (2.5), the most popular distribution functions are the logistic function

h(·) = exp(·)/(1+exp(·)) defining the proportional continuation ratio model and the inverse com-

plementary log-log function h(·) = 1− exp(− exp(·)) defining the Gompertz model. An important

property of the Gompertz model (also called complementary log-log model), is its equivalence to

the Cox proportional hazards model in continuous time. As shown, for example, in Tutz and

Schmid (2016), the Gompertz model holds when continuous time-to-event data satisfying the

proportional hazards assumption have been grouped.

When the aim is to model discrete competing risks data, it is generally possible to use the same

distribution functions in the subdistribution hazard model (2.5) as those used in discrete hazard

modeling with only one event. For example, in the simulation study and the application (Sections 3

and 4), we will use the inverse complementary log-log function, which makes the parameters γ

be the same as those of the continuous-time Fine & Gray model, provided that continuous-time

data satisfying the proportional subdistribution hazards assumption have been grouped.

2.3 Estimation

To estimate the baseline and regression coefficients of Model (2.5), we propose a maximum like-

lihood (ML) estimation scheme that is based on discrete inverse probability (IP) weighting (Fine
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and Gray, 1999; van der Laan and Robins, 2003). Our method is rooted in classical discrete

hazard modeling without competing events (Tutz and Schmid, 2016), which will be summarized

briefly in Section 2.3.1. The main theoretical results of the paper, including the consistency and

the asymptotic normality of the weighted ML estimator, will be presented in Section 2.3.2.

2.3.1 Estimation without Competing Events In the simplified situation where each individual

experiences either a type 1 event or a censoring event, the discrete subdistribution hazard reduces

to the discrete hazard function λ1(t|xi) = P (Ti = t|Ti > t,xi). The subdistribution time equals

νi = Ti in this case, and the likelihood per individual is given by

Li = λ1(T̃i|xi)
∆i
(
1− λ1(T̃i|xi)

)1−∆i

T̃i−1∏

t=1

(1− λ1(t|xi)), (2.6)

see Tutz and Schmid (2016) for details. Estimates of the parameters of Model (2.5) are obtained

by specifying λ1(t|xi) = h
(
γ0t + x>i γ

)
and by maximizing the log-likelihood

l(γ01, . . . , γ0,k−1,γ
>) =

n∑

i=1

log
(
Li(γ01, . . . , γ0,k−1,γ

>)
)

=
n∑

i=1

log

[
h
(
γ0T̃i

+ x>i γ
)∆i

(
1− h

(
γ0T̃i

+ x>i γ
) )1−∆i

T̃i−1∏

t=1

(1− h
(
γ0t + x>i γ

)
)

]
(2.7)

over γ0 := (γ01, . . . , γ0,k−1)> and γ.

Estimation of the model parameters by Equation (2.7) is greatly simplified by the fact that Li

is equivalent to the likelihood of a binary response model with values yit ∈ {0, 1}, t = 1, . . . , k−1.

The latter values indicate whether individual i experienced a type 1 event at time t (yit = 1) or

not (yit = 0). Furthermore, yit is only defined if t 6 T̃i, i.e., as long as individual i is at risk.

Accordingly, one obtains

Li =

T̃i∏

t=1

λ1(t|xi)
yit(1− λ1(t|xi))

1−yit , (2.8)

where (yi1, . . . , yiT̃i
) = (0, . . . , 0, 1) if ∆i = 1 and (yi1, . . . , yiT̃i

) = (0, . . . , 0) if ∆i = 0. The

binomial likelihood in (2.8) implies that standard software for binary regression models can be
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used to fit the discrete hazard model in (2.5). For details, see Berger and Schmid (2018).

An alternative representation of Li, which will become useful when modeling the subdistri-

bution hazard in Section 2.3.2, is given by

Li =
k−1∏

t=1

{
λ1(t|xi)

yit(1− λ1(t|xi))
1−yit

}wit
, (2.9)

where wit = I(t 6 T̃i), i = 1, . . . , n, t = 1, . . . , k − 1, is a set of weights indicating whether

individual i is at risk at time t or not. The corresponding binary values yit used in Equation (2.9)

are defined by

(yi1, . . . , yi,T̃i
, . . . , yi,k−1) =

{
(0, . . . , 0, 1, 0, . . . , 0), if ∆i = 1 ,

(0, . . . , 0, 0, 0, . . . , 0), if ∆i = 0 .
(2.10)

With this representation, the total log-likelihood becomes

` =
n∑

i=1

k−1∑

t=1

wit

{
yit log(λ1(t|xi)) + (1− yit) log(1− λ1(t|xi))

}
. (2.11)

2.3.2 Modeling the Subdistribution Hazard in the Presence of Competing Events In the presence

of competing events of type 2, . . . , J (with λ1 now denoting the subdistribution hazard for a type 1

event), the log-likelihood function (2.11) can be specified in a similar manner as in Section 2.3.1.

To ensure consistency of the estimators of γ0t and γ, the weights wit need to be redefined

appropriately. For this, we consider the risk set r(t) at time t, defined as the set of individuals

that neither experienced a type 1 event nor a censoring event prior to time t. If the i-th individual

is known to be contained in this set, the idea is to define wit = 1 as before. Conversely, we set

wit = 0 if individual i is known not to be a member of r(t). A remaining problem is that r(t)

is not fully known if there are individuals that experienced a competing event before t. In fact,

since ϑi = ∞ for these individuals, they continue to be at risk beyond T̃i until they eventually

experience the censoring event. Consequently, as the censoring times Ci are unobserved if Ci > T̃i,

it cannot be determined whether an individual with εi > 1 is still part of the risk set at t > T̃i.

In accordance with the continuous-time approach by Fine and Gray (1999), we therefore propose
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to estimate the probability of each individual being part of the risk set r(t), and to set the

weights wit in the log-likelihood function (2.11) equal to the estimated probabilities.

More specifically, we propose to define the weights wit as follows:

(i) For uncensored individuals that experience a type 1 event (∆iεi = 1), we propose to define

wit := I(t 6 T̃i). This definition implies that

(wi1, wi2, . . . , wiT̃i
, wi,(T̃i+1), . . . , wi,(k−1)) = (1, 1, . . . , 1, 0, . . . , 0) , (2.12)

accounting for the fact that the individuals cease to be at risk after their respective type 1

events have been observed.

(ii) For individuals that experience the censoring event first (∆iεi = 0), we also propose to

define wit := I(t 6 T̃i). This definition accounts for the fact that the individuals cease to

be at risk after T̃i.

(iii) For uncensored individuals that experience a competing event first (∆iεi > 1), we propose

to define wit := 1 if t 6 T̃i, accounting for the fact that the individuals are known to be at

risk at least until T̃i. For t > T̃i we estimate the probability of being a member of r(t) by

wit :=
Ĝ(t− 1)

Ĝ(T̃i − 1)
, T̃i < t 6 k − 1 , (2.13)

where Ĝ(t) is an estimate of the censoring survival function G(t) = P (Ci > t).

By combining (i) to (iii), the weights wit can be expressed in the closed form

wit = I(Ci > min(Ti, t)) ·
Ĝ(t− 1)

Ĝ(min(Ti, Ci, t)− 1)
·
(

I(t 6 Ti) + I(Ti 6 t− 1, εi 6= 1)
)

=
Ĝ(t− 1)

Ĝ(min(T̃i, t)− 1)
·
(

I(t 6 T̃i) + I(T̃i 6 t− 1,∆iεi > 1)
)
, (2.14)

which is analogous to the estimated risk sets given in Beyersmann and others (2011) for continuous

time-to-event data. Just like in (2.10), the binary values yit are defined by

(yi1, . . . , yi,T̃i
, . . . , yi,k−1) =

{
(0, . . . , 0, 1, 0, . . . , 0), if ∆iεi = 1 ,

(0, . . . , 0, 0, 0, . . . , 0), if ∆iεi 6= 1 .
(2.15)
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Under these assumptions and definitions, it is possible to prove the main result of the paper:

Theorem 1. The solution to the optimization problem

argmax
γ0,γ

`(γ0,γ) =

= argmax
γ0,γ

{
n∑

i=1

k−1∑

t=1

wit

{
yit log(h

(
γ0t + x>i γ

)
) + (1− yit) log(1− h

(
γ0t + x>i γ

)
)
}
}

(2.16)

defines a consistent and asymptotically normal estimator (n → ∞) of the parameters γ0 and γ

of the subdistribution hazard model (2.5).

Proof. The proof of Theorem 1, which is based on the theory of unbiased estimation equations

(Carroll and Ruppert, 1988), is given in Appendix A of the supplementary material. The main

step in the proof is to show that the solution to (2.16) solves an unbiased estimation equation

conditional on the covariates using the true censoring survival function in the definition of the

weights wit. Stacking this estimation equation and another unbiased estimation equation for G(t),

the theory of unbiased estimation equations guarantees consistency and asymptotic normality

when using the estimated censoring survival function in the weights. �

Estimation Using Software for Binary Regression Theorem 1 implies that the parameters of

the subdistribution hazard model (2.5) can be estimated consistently by fitting a weighted bi-

nary regression model with outcome values yit and weights wit. Similar to Geskus (2011) in the

continuous-time case, we propose to use standard software for model fitting. For this it is nec-

essary to set up an augmented data matrix, which is passed to the software routine for binary

regression, and which is composed of a set of smaller (augmented) data matrices defined sepa-

rately for each individual. More specifically, for uncensored individuals that experience a type 1

event (∆iεi = 1), the augmented data matrix and the vector of weights are defined by
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


yi t Xi

0 1 xi1 . . . xip

0 2 xi1 . . . xip
...

...
...

...

1 T̃i xi1 . . . xip

0 T̃i + 1 xi1 . . . xip
...

...
...

...

0 k − 1 xi1 . . . xip




and




wi

1

1
...

1

0
...

0




, respectively , (2.17)

where t is an additional predictor variable that refers to the baseline coefficients. For example, if

the baseline coefficients are defined by a separate intercept γ0t at each time point, t corresponds

to a factor variable that is converted to a set of k−1 dummy variables. If the baseline coefficients

are modeled by a spline function, t corresponds to a numeric variable that is converted to a set

of variables representing the basis functions of the spline.

The augmented data matrix and the vector of weights for censored individuals (∆iεi = 0) are

defined in the same way as in (2.17), except that yi := (0, . . . , 0)> in these cases.

For uncensored individuals that experience a competing event first (∆iεi > 1), we define




yi t Xi

0 1 xi1 . . . xip

0 2 xi1 . . . xip
...

...
...

...

0 T̃i xi1 . . . xip

0 T̃i + 1 xi1 . . . xip
...

...
...

...

0 k − 1 xi1 . . . xip




and




wi

1

1
...

1
Ĝ(T̃i)

Ĝ(T̃i−1)

...
Ĝ(k−2)

Ĝ(T̃i−1)




, respectively . (2.18)

As stated above, the full augmented data matrix is obtained by concatenating the individual

augmented data matrices. The resulting matrix of dimension (n · (k − 1)) × (p + 2) and the

vector of weights of length n · (k − 1) are subsequently passed to a software routine for binary

regression in order to solve the optimization problem (2.16). In R, the augmented data matrix

can be generated by applying the function dataLongSubDist() of the add-on package discSurv.
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Parameter estimates can be obtained by using the functions glm() (for models with a separate

baseline coefficient for each t) or gam() (contained in the R package mgcv, for models with a

smooth baseline function).

Remark. The rows with wit = 0, which have been included in (2.17) for notational convenience,

are, in fact, not included in the output of the dataLongSubDist() function. This is because these

rows are not needed for fitting the binary regression model.

3. Simulation Study

In this section we present the results of numerical experiments to investigate the performance of

the proposed modeling approach. The aims of the study were (i) to analyze both the accuracy of

the weighted ML estimates and the run-time of the method, (ii) to investigate the performance of

IP weighting by comparing the proposed modeling approach to an analysis with known censoring

times, and (iii) to compare the weighted ML estimates to the respective estimates obtained from

application of the continuous-time approach by Fine and Gray (1999).

3.1 Experimental Design

In order to generate data from a given subdistribution hazard model for type 1 events, we used a

scheme adopted from Fine and Gray (1999). This procedure is also described in Beyersmann and

others (2011), where it was termed “indirect simulation”. In all simulation scenarios we considered

data with two competing events, εi ∈ {1, 2}, that was generated under the model specification

of proportional subdistribution hazards. More specifically, our discrete subdistribution hazard

model was based on the discretization of the continuous model

F1(t|xi) = P (Tcont,i 6 t, εi = 1|xi) = 1− (1− q + q exp(−t))exp(x>
i γ1) , (3.19)

where Tcont,i ∈ R+ denotes the continuous time span of individual i and γ1 = (γ11, . . . , γ1p)>

is a set of regression coefficients. The parameter q ∈ (0, 1) affected the probability of a type 1
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event which, according to (3.19), was given by πi1 := P (εi = 1|xi) = 1 − (1 − q)exp(x>
i γ1). By

definition, high values of q resulted in high probabilities of πi1, and vice versa. The probability

of a competing event was given by πi2 := P (εi = 2|xi) = 1− πi1 = (1− q)exp(x>
i γ1).

Continuous time spans for type 2 events were drawn from the exponential model

Tcont,i|εi = 2,xi ∼ Exp(ξ2 = exp(x>i γ2)) ,

where γ2 = (γ21, . . . , γ2p)> denotes a set of regression coefficients linking the rate parameter ξ2

with the values of the predictor variables x.

In order to obtain discrete event times, we generated data according to the indirect simulation

scheme described above and grouped the resulting continuous event times into k = 20 categories.

The latter were defined by the time intervals [0, q5), [q5, q10), . . . , [q95,∞), where qa denotes

the a% quantile of the continuous event times. The values of qa were pre-estimated from an

independent sample with 1,000,000 observations. Accordingly, the same interval boundaries were

used in each simulation run. Censoring times were generated from a discrete distribution with

probability density function P (Cdisc,i = t) = bk−t+1/
∑k

s=1 b
s, t = 1, . . . , k, where the percentage

of censored observations was determined by the parameter b ∈ R+.

Similar to Fine and Gray (1999), we considered two standard normally distributed predic-

tor variables xi1, xi2 ∼ N(0, 1) and two binary predictor variables xi3, xi4 ∼ Binomial(1, 0.5).

All predictor variables were independent. The true regression coefficients were set to γ1 =

(0.4,−0.4, 0.2,−0.2)> and γ2 = (−0.4, 0.4,−0.2, 0.2)>. Three sample sizes (n ∈ {100, 300, 500})

were considered. In addition, we specified three different censoring rates, denoted by weak, medium

and strong. The degree of censoring was determined by the parameter b of the censoring distribu-

tion. We used the values b = 0.85 (weak), b = 1 (medium) and b = 1.25 (strong), resulting in the

censoring rates shown in Supplementary Figure 1. We also considered three different probabilities

of a type 1 event, specifying q ∈ {0.2, 0.4, 0.8}. In total, this resulted in 3 × 3 × 3 = 27 differ-

ent scenarios. All scenarios were analyzed using 1000 independent replications. For estimation
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we used the inverse complementary log-log distribution function, which defines the same values

of γ1 as the Fine & Gray proportional subdistribution hazards model in continuous time.

The following estimation approaches were considered: (i) weighted ML estimation based

on (2.11), and (ii) unweighted ML estimation using the complete censoring information. For

the latter model, we did not estimate the risk sets r(t) via IP weighting but used the complete

censoring times Cdisc,i (which are unknown in practice if ∆iεi > 1) and fitted an ordinary dis-

crete hazard model for type 1 events, as described in Section 2.3.1. In Fine and Gray (1999) this

condition was termed “censoring-complete”. A comparison of the estimates obtained from (i) and

(ii) served to analyze the performance of the weighted ML estimation approach. Estimates of G

were obtained by a life table estimator for the censoring event (cf. Schmid and others 2018).

In addition to the estimation approaches (i) and (ii), we applied the continuous-time Fine &

Gray method to the grouped data, using the same discrete time scale (t = 1, . . . , k) and various

numbers of categories (k = 4, 8, 16, 32, 64). For each k, the discretization procedure was based

on intervals defined by quantiles of the continuous event times, as described above. This part of

the simulation study served to evaluate the differences between the Fine & Gray method and

the discrete-time subdistribution hazard modeling approach, which were to be expected due to

the grouping of the (originally continuous) event times. We also compared the two estimation

approaches with respect to their run-times.

Supplementary Figure 1 shows the relative frequencies of observed events for the nine scenarios

with n = 500 and k = 20. It is seen that the rates of observed type 1 events increased with

increasing value of q and that censoring rates increased with increasing value of b. For constant q

and varying b, the ratio of observed type 1 and type 2 events remained approximately the same.

For q = 0.2 and q = 0.4 we observed more events of type 2 than of type 1, and for q = 0.8 there

were more events of type 1 than of type 2. For the scenarios with n = 100 and n = 300 the

observed relative frequencies were almost the same and are thus not shown.
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3.2 Results

The coefficient estimates γ̂1 obtained from the weighted ML estimation approach with n = 500

and k = 20 are presented in Figure 1. The boxplots show that on average the estimated coefficients

were very close to the true ones, regardless of the degree of censoring and the rate of type 1

events. Figure 1 also shows that the variance of the estimates increased with increasing degree of

censoring, in particular for the two binary predictors x3 and x4. In contrast, the rate of type 1

events (determined by the value of q) had only a small impact on the variance of the estimates.

This shows that weighted ML estimation of the subdistribution hazard λ1 also worked well in

the presence of only a relatively small number of type 1 events (note that, for strong censoring

and q = 0.2 only about 5% type 1 events were observed).

An overview of several performance indicators for the nine scenarios with n = 500 and k = 20

is given in Table 1. For each element of γ̂1 = (γ11, . . . , γ14)> we computed (i) the mean squared

error (MSE) and (ii) the empirical variance from the 1000 samples, and (iii) the average of the

1000 variance estimates obtained from the Fisher scoring algorithm applied for optimizing the

weighted log-likelihood. In case of the weighted ML estimation approach (left part of Table 1),

the three measures took almost identical values. This confirms the results presented in Figure 1

in that weighted ML estimation yielded nearly unbiased estimates. Importantly, the estimators

exhibited only a small finite-sample bias in the scenarios with strong censoring, and the estimated

variances obtained from Fisher scoring were close to the empirical variances obtained from the

1000 samples. In addition, the censoring-complete estimates (right part of Table 1) were nearly

identical to the weighted ML estimates. This demonstrates that the weighted ML estimation

scheme worked well in all analyzed scenarios and that using the estimated survival function Ĝ

instead of the true function G had a negligible effect on the variance of the weighted ML estimator.

The results obtained for the scenarios with n = 100 and n = 300 are shown in Supplementary

Figures 2 and 3. As expected, estimation accuracy deteriorated for n = 100, as in this case
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γ̂

Fig. 1: Results of the simulation study. The boxplots visualize the estimates of the parameters
γ1 = (0.4,−0.4, 0.2,−0.2)> that were obtained from fitting a discrete subdistribution hazard
model using the proposed weighted ML estimation approach (n = 500). The horizontal lines refer
to the true values of the parameters (C = degree of censoring).

only very few type 1 events were observed. For example, in the most extreme scenario (strong

censoring and q = 0.2, only five type 1 events on average), half of the estimates γ̂13 and γ̂14

did not take finite values. Not surprisingly, this result demonstrates that discrete subdistribution

hazard modeling is not recommended when both event numbers and rates are small. On the other

hand, when n was increased to 300, performance indicators were already very similar to those

obtained in the scenario with n = 500 (cf. Figure 1).

The differences between the discrete-time subdistribution hazard model and the continuous-

time Fine & Gray model are illustrated in Figure 2 and Supplementary Figures 4 to 7. It is seen
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Table 1: Results of the simulation study. For each coefficient γ1j , j = 1, . . . , 4, the table contains
the following evaluation criteria: (i) MSE(γ̂), as estimated by the mean squared error of γ̂1j

computed from the 1000 samples, (ii) var(γ̂), as estimated by the empirical variance of γ̂1j

computed from the 1000 samples, and (iii) E(v̂ar(γ)), which denotes the average of the 1000
variance estimates obtained from Fisher scoring. The left part contains the results obtained from
the proposed weighted ML estimation approach, whereas the right part shows the respective
results obtained from fitting a discrete hazard model under the censoring-complete condition.

weighted censoring-complete
estimation estimation

C q x1 x2 x3 x4 x1 x2 x3 x4

weak 0.2 MSE(γ̂) 0.013 0.013 0.051 0.049 0.013 0.013 0.051 0.050
var(γ̂) 0.013 0.013 0.051 0.050 0.013 0.013 0.051 0.050
E(v̂ar(γ)) 0.012 0.012 0.049 0.049 0.012 0.012 0.049 0.049

0.4 MSE(γ̂) 0.006 0.006 0.027 0.027 0.007 0.006 0.027 0.027
var(γ̂) 0.006 0.006 0.027 0.027 0.007 0.006 0.027 0.027
E(v̂ar(γ)) 0.007 0.007 0.026 0.026 0.007 0.007 0.026 0.026

0.8 MSE(γ̂) 0.004 0.004 0.015 0.014 0.004 0.004 0.015 0.015
var(γ̂) 0.004 0.004 0.015 0.014 0.004 0.004 0.015 0.015
E(v̂ar(γ)) 0.004 0.004 0.014 0.014 0.004 0.004 0.014 0.014

medium 0.2 MSE(γ̂) 0.019 0.018 0.079 0.069 0.019 0.018 0.079 0.069
var(γ̂) 0.019 0.018 0.079 0.069 0.019 0.018 0.079 0.069
E(v̂ar(γ)) 0.018 0.019 0.073 0.073 0.018 0.019 0.074 0.073

0.4 MSE(γ̂) 0.010 0.009 0.041 0.040 0.010 0.010 0.042 0.041
var(γ̂) 0.010 0.009 0.041 0.040 0.010 0.010 0.042 0.041
E(v̂ar(γ)) 0.010 0.010 0.038 0.038 0.010 0.010 0.038 0.038

0.8 MSE(γ̂) 0.005 0.006 0.019 0.021 0.005 0.006 0.020 0.021
var(γ̂) 0.005 0.006 0.019 0.021 0.005 0.006 0.020 0.021
E(v̂ar(γ)) 0.006 0.006 0.021 0.021 0.006 0.006 0.021 0.021

strong 0.2 MSE(γ̂) 0.046 0.042 0.197 0.191 0.047 0.043 0.201 0.195
var(γ̂) 0.045 0.042 0.197 0.191 0.047 0.043 0.202 0.195
E(v̂ar(γ)) 0.044 0.044 0.182 0.181 0.045 0.045 0.182 0.182

0.4 MSE(γ̂) 0.022 0.022 0.099 0.093 0.023 0.022 0.101 0.094
var(γ̂) 0.022 0.022 0.099 0.093 0.023 0.022 0.101 0.094
E(v̂ar(γ)) 0.023 0.023 0.091 0.091 0.023 0.023 0.091 0.091

0.8 MSE(γ̂) 0.013 0.013 0.046 0.053 0.013 0.013 0.047 0.054
var(γ̂) 0.013 0.013 0.046 0.053 0.013 0.013 0.047 0.054
E(v̂ar(γ)) 0.013 0.013 0.048 0.048 0.013 0.013 0.049 0.049

that the Fine & Gray estimates showed a downward bias in absolute value when the number of

intervals was small (k 6 16). As expected, the bias became smaller when the number of intervals

became larger and the number of ties decreased. The bias shown in Figure 2 may be attributed to

the Breslow method for handling ties in Cox regression, which is the default (and only available)

tie handling method in the R package cmprsk that was used for fitting the Fine & Gray models
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Fig. 2: Results of the simulation study. The boxplots visualize the estimates of the coefficients
γ11 = 0.4 (panel a) and γ12 = −0.4 (panel b), as obtained from the discrete-time subdistribution
hazard model and the continuous-time Fine & Gray model (n = 500, q = 0.8, b = 0.85). The
horizontal lines refer to the true values of γ11 and γ12. Interval numbers on the x-axes are presented
on the log2 scale.

presented here. In Cox regression without competing events, the Breslow method has previously

been shown to cause a bias in absolute value, similar to the bias observed in our simulation study

(Hertz-Picciotto and Rockhill, 1997). Other tie handling methods will cause different types of bias

(see, e.g., Supplementary Figures 8 and 9). Furthermore, the bias was also seen in the estimates

of the cumulative incidence function F1 (see Supplementary Figure 10).

Run-times of the discrete-time subdistribution hazard method and the continuous-time Fine &

Gray method are illustrated in Supplementary Figure 11. It is seen that increasing the value of k

resulted in a notable increase in the run-time of the discrete method. Although the differences

between the two methods might be affected by different implementations in the R functions crr()

(package cmprsk), dataLongSubDist(), and glm(), increases in the run-time of the discrete

method are mainly attributed to the sizes of the augmented data matrices, which scale linearly

with k. While the average run-time for a scenario with q = 0.8, b = 0.85, n = 500, and k = 64

intervals (19,800 data lines on average) was acceptable (∼ 2.5 seconds), Supplementary Figure 11

clearly indicates the storage limitations of the discrete-time subdistribution hazard modeling

approach when k becomes “too large”. It should be noted, however, that these storage issues are
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inherent to many discrete hazard modeling approaches, regardless of the presence of competing

events. Also, it appears difficult to derive a rule of thumb for the maximum feasible number of k,

as this number does not only depend on computational resources, but also on the sample size,

the rate of type 1 events, and the degree of censoring.

4. Application: Nosocomial Pneumonia Infection in Intensive Care Units

To illustrate the application of the discrete subdistribution hazard model, we analyzed a data

set on the development of pneumonia, which is a common nosocomial, i.e. hospital-acquired

infection in intensive care units (ICUs). The data set was analyzed before in several publications

(e.g., Beyersmann and others 2006; Wolkewitz and others 2008). As nosocomial pneumonia (NP)

has a strong impact on the mortality of patients in ICUs, it is of high interest to determine the

risk factors for the development of the disease.

The data were collected for a prospective cohort study at five ICUs in one university hospital,

lasting 18 months from February 2000 to July 2001. We considered n =1,876 patients with a

duration of ICU stay of at least two days. The outcome of interest was the time to NP infection.

Other possible events that were competing with the onset of NP (being the event of interest) were

death and discharge from hospital alive. Due to the study design, the observed event times were

discrete, as they were measured on a daily basis. We analyzed the data over a period of 60 days,

resulting in 61 possible event times t = 1, 2, . . . , 61, where t = k = 61 refers to all individuals with

event times > 61 days. The observed event times are visualized in Supplementary Figure 12. At

the observed times, each patient either acquired the NP infection (n = 158), was released from

hospital (alive) or died (n =1,695), or was administratively censored (n = 23).

In our analysis we investigated the impact of several baseline risk factors for NP acquisition

by accounting for the competing event death or discharge alive. Descriptive summary statistics

of the baseline risk factors considered in our analysis were presented in Table 1 of Wolkewitz



Subdistribution Hazard Models in Discrete Time 21

and others (2008). In addition to the age of the patients (centered at 60 years), the gender of

the patients, and the simplified acute physiology score (SAPS) II, there were eleven binary risk

factors characterizing the patients and their hospital stay. The binary variables either referred to

the time of ICU admission (on admission) or the time prior to ICU admission (before admission).

Table 2 shows the estimates of the coefficients γ obtained from weighted ML fitting of a

discrete subdistribution hazard model with complementary log-log link. We fitted a model with

discrete baseline coefficients (model 1) and another model with a smooth baseline function rep-

resented by cubic P-splines with a second-order difference penalty (model 2). Model 2 was fitted

using the R package mgcv. The proportional subdistribution hazards assumption was checked

by fitting covariate-free subdistribution hazard models in various subgroups of the data and by

comparing the resulting estimated cumulative incidence functions to the respective cumulative

incidence functions estimated from the complementary log-log model (see Supplementary Fig-

ure 13, which does not indicate any major issues with the proportional subdistribution hazards

assumption). For suggestions on how to analyze goodness-of-fit in the continuous-time case, see,

in particular, Scheike and Zhang (2008) and Zhou and others (2013). The estimated baseline co-

efficients for the subdistribution hazard of NP acquisition are shown in Supplementary Figure 14.

Significant risk factors (on the subdistribution hazard scale and judged by the subdistribution

hazard ratio) for the acquisition of NP at the 5% type I error level were (i) male gender, (ii) an

intubation on admission, (iii) pneumonia on admission, (iv) another infection on admission, (v) an

elective or emergency surgery before admission, and (vi) a cardial/pulmonary or neurological

underlying disease. According to the results in Table 2, there were only minor differences between

models 1 and 2 regarding the magnitude of the coefficient estimates. Female gender reduced the

subdistribution hazard of an NP acquisition (γ̂ = −0.3432, se(γ̂) = 0.1734, model 1). Higher

subdistribution hazards were, for instance, obtained for patients with an intubation on admission

(γ̂ = 0.6546, se(γ̂) = 0.2432) and for patients that underwent an elective surgery before admission
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Table 2: Analysis of the NP infection data. The table contains the coefficient estimates (γ̂), the
estimated standard errors (se(γ̂)) and the p-values (based on Wald test statistics) obtained for
models 1 and 2 (bc = baseline coefficients).

model 1 (discrete bc) model 2 (smooth bc)
γ̂ se(γ̂) p-value γ̂ se(γ̂) p-value

Age (centered around 60) 0.0059 0.0052 0.2627 0.0059 0.0052 0.2608
SAPS II 0.0101 0.0061 0.0991 0.0100 0.0061 0.1008
Gender (female) −0.3432 0.1734 0.0478 −0.3434 0.1734 0.0477
Intubation on admission 0.6546 0.2432 0.0071 0.6564 0.2431 0.0069
Pneumonia on admission −3.6568 1.0099 0.0003 −3.6592 1.0099 0.0003
Urinary tract infection on admission 0.4628 0.5287 0.3814 0.4631 0.5291 0.3814
Other infections on admission 0.6191 0.2640 0.0190 0.6201 0.2638 0.0187
Hospitalization before admission −0.3196 0.1769 0.0708 −0.3199 0.1769 0.0707
Elective surgery before admission 1.4017 0.1940 <0.0001 1.4030 0.1940 <0.0001
Emergency surgery before admission 0.5514 0.1827 0.0025 0.5516 0.1827 0.0025
Cardial/pulmonary underlying disease 0.6274 0.1957 0.0013 0.6304 0.1957 0.0013
Neurological underlying disease 0.4843 0.2087 0.0203 0.4867 0.2088 0.0197
Metabolic/renal underlying disease −0.1198 0.3717 0.7471 −0.1204 0.3715 0.7458

(γ̂ = 1.4017, se(γ̂) = 0.1940). The estimated cumulative incidence function F1(t|xi) referring to

the covariate profile of a randomly selected patient is displayed in Figure 3 (male gender, SAPS II

score = 19, hospitalization before admission, absence of other risk factors). For this profile, there

was only a very low probability of acquiring NP (< 1.5%). This probability would have increased

to more than 5% after 30 days if the patient would have undergone elective surgery before

admission, and to more than 2.5% if there would have been an intubation on admission.

Comparing the results of Table 2 with those of Wolkewitz and others (2008) who used time-

continuous Cox models for all cause-specific hazards, qualitative identification of risk factors is

similar. An interesting example are other infections on admission, which Table 2 identifies as

significantly increasing the subdistribution hazard of nosocomial pneumonia incidence. Interest-

ingly, Wolkewitz and others report a cause-specific hazard ratio of 1.08 (95% confidence interval

[0.59, 1.98]) for pneumonia and a cause-specific hazard ratio of 0.72 [0.59, 089] for discharge. The

interpretation is that patients with other infections on admission have a significantly reduced

immediate ‘risk’ of discharge, while there appears to be no effect on the pneumonia hazard.

Hence, patients stay in the intensive care unit longer while exposed to an essentially unchanged
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Fig. 3: Analysis of the NP infection data (model 1). The figure shows the estimated cumulative
incidence functions for NP acquisition referring to the covariate profile of a randomly selected
study participant (60 years of age, SAPS II score = 19, hospitalization before admission, absence
of any of the other risk factors). Panel (a) refers to a situation where the risk factor elective
surgery before admission would have been present in this patient, whereas panel (b) refers to a
situation where the risk factor intubation on admission would have been present.

immediate risk of pneumonia. Over time, this leads to an increased pneumonia incidence. This

is not an uncommon phenomenon in hospital epidemiology (Beyersmann and others, 2014), and

our result in Table 2 directly identifies this increased incidence.

There is one covariate, intubation on admission, that Table 2 associates with an increased

pneumonia incidence, but Wolkewitz and others (2008) do not. The reason is that Wolkewitz and

others have also included time-dependent intubation status in their models, which was strongly

associated with an increased pneumonia risk (cause-specific hazard ratio 5.90 [2.47, 14.09]). Intu-

bation status is a highly time-dependent process in intensive care, possibly switched on and off

multiple times. We have not included the time-dependent covariate information in our models,

as the aim was regression for the cumulative incidence function (Cortese and Andersen, 2010).

Remark. In the cohort study there were rare instances where both an infection and death were

recorded on the same day in hospital. In the original continuous-time analysis, Wolkewitz and

others (2008) exploited the natural ordering of these events in that the infection was assumed to

occur after half a day while death was assumed to have occured by the end of the day. The discrete-

time modeling approach presented here is also able to deal with the simultaneous occurrence of
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competing events. In fact, since the method is designed to model the risk process for NP events

only (implying that wiT̃i
= 1 even if there has been a death event at t = T̃i), no adjustments are

necessary in this case. An alternative possibility, which could be used in the absence of a natural

ordering, is to introduce an additional competing event modeling simultaneous occurrence.

5. Discussion

We have suggested a discrete-time version of the subdistribution hazard model by Fine and Gray

(1999). To fit the model, we proposed a weighted maximum likelihood estimation approach that

can be implemented by using software for binary regression. An attractive feature of the approach

is the relative ease with which the discrete-time version can be handled, see e.g. Geskus (2011);

Mao and Lin (2017); Bellach and others (2018) for the challenges in the continuous-time case.

As shown in Section 2.3, the resulting weighted ML estimators are consistent and asymptoti-

cally normal as n→∞. Our method performed well in simulations, in particular when compared

to the simpler situation of censoring-complete data.

Similar to the continuous-time case, the subdistribution hazard models considered here cir-

cumvent the difficulties associated with cause-specific discrete hazards modeling. Our framework

also allows for the modeling of non-proportional subdistribution hazards. In fact, there are numer-

ous options for specifying the link function of the binary regression model in (2.5), each yielding

different characteristics and properties of the resulting discrete subdistribution hazard model, see

e.g. Tutz and Schmid (2016), Chapter 3, and also Gerds and others (2012) for details.

In comparison to the continuous-time subdistribution hazard model by Fine & Gray, the

method proposed here is particularly appropriate in applications where event times have been

grouped or rounded (as in the example on nosocomial pneumonia infection). This situation cor-

responds to interval-censored data with fixed boundaries. As shown in the simulation study,

differences between the Fine & Gray model and our method are largest when k is small and the
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number of ties is large. In contrast, the Fine & Gray model may be preferred when the underlying

time scale is truly continuous in the sense that ties rarely occur and patients/experimental units

are monitored in such a way that the exact event or censoring times are practically known.

6. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org. It contains

the proof of Theorem 1 and additional numerical results.
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Bellach, A., Kosorok, M. R., Rüschendorf, L. and Fine, J. P. (2018). Weighted NPMLE

for the subdistribution of a competing risk. Journal of the American Statistical Association.

doi:10.1080/01621459.2017.1401540.



26 REFERENCES

Berger, M. and Schmid, M. (2018). Semiparametric regression for discrete time-to-event

data. Statistical Modelling 18, 322–345.

Beyersmann, J., Allignol, A. and Schumacher, M. (2011). Competing Risks and Multi-

state Models with R. New York: Springer.

Beyersmann, J., Gastmeier, P., Grundmann, H., Bärwolff, S., Geffers, C., Behnke,
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A Proof of Theorem 1

As outlined in the main part of the paper, the key step in the proof is to show that the solu-

tion to (2.16) is the solution of a conditionally unbiased estimation equation. To this end, it is

convenient to first consider the case where the censoring survival function needed for the defini-

tion of the weights is assumed to be known. Estimated weights can subsequently be handled by

stacking estimation equations. To begin, we also first consider the case without competing risks

in Appendix A.1 before allowing for multiple event types in Appendix A.2.

In order to solve the optimization problem in (2.16), it is necessary to determine the roots of

*To whom correspondence should be addressed. †Contributed equally to this work.
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the weighted score function

s(γ0,γ) =
∂`

∂(γ>0 ,γ
>)>

=
∂`

∂λ1
· ∂λ1
∂(γ>0 ,γ

>)>
. (A.1)

It can be shown (Carroll and others 2006, Appendix 6) that the estimator (γ̂>0 , γ̂
>)> solving the

optimization problem (2.16) is a consistent and asymptotically normal estimator of (γ>0 ,γ
>)> if

the estimation equation s(γ0,γ) = 0 is unbiased, i.e., if

E {s(γ0,γ)} = E
{
∂`

∂λ1
· ∂λ1
∂(γ>0 ,γ

>)>

}
= E

{
∂`

∂λ1

}
· ∂λ1
∂(γ>0 ,γ

>)>
= 0 . (A.2)

To prove Theorem 1, we will therefore show that

E
{
∂`i
∂λ1

}
= 0 , i = 1, . . . , n , (A.3)

where `i is the contribution of the i-th individual to the weighted log-likelihood.

Remark: For the sake of simplicity and easier reading, the dependence of the subdistribution

hazard λ1(t|xi) on the vector of explanatory variables xi will be omitted in the following.

A.1 Only Type 1 Events

We first consider the simplified situation where only type 1 events or censoring can occur (Sec-

tion 2.3.1 of the paper). In this case, the contribution of individual i to the weighted log-

likelihood (2.11) can be written as

`i =
k−1∑

t=1

{
I(T̃i = t ∩∆i = 1) log(λ1(t)) (observed type 1 event at t)

+ I(T̃i = t ∩∆i = 0) log(1− λ1(t)) (censoring at t)

+ I(T̃i > t) log(1− λ1(t))
}
, (event after t) (A.4)

where I(·) denotes the indicator function with I(a) = 1 if a is true and I(a) = 0 otherwise. Thus,

in (A.4) the indicator function of the first addend is equal to yit, whereas the indicator functions
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in the second and third addends are equal to 1 − yit. The contribution of the i-th individual to

the score function (`i differentiated with respect to λ1(t)) is given by

si =
∂`i

∂λ1(t)
=

1

λ1(t)
I(T̃i = t ∩∆i = 1)

− 1

1− λ1(t)
I(T̃i = t ∩∆i = 0)

− 1

1− λ1(t)
I(T̃i > t) . (A.5)

For the expectations one obtains

E
{

I(T̃i = t ∩∆i = 1)
}

= P (Ti = t)P (Ci > t) , (A.6)

E
{

I(T̃i = t ∩∆i = 0)
}

= P (Ti > t)P (Ci = t) , and (A.7)

E
{

I(T̃i > t)
}

= P (Ti > t)P (Ci > t) . (A.8)

Combining (A.5) to (A.8) yields

E {si} =
1

λ1(t)
P (Ti = t)P (Ci > t)−

1

1− λ1(t)

[
P (Ci = t) + P (Ci > t)︸ ︷︷ ︸

=P (Ci>t)

]
P (Ti > t)

= P (Ci > t)
[
P (Ti = t)

λ1(t)
− P (Ti > t)

1− λ1(t)

]

= P (Ci > t)
[

P (Ti = t)

P (Ti = t|Ti > t)
− P (Ti > t)

P (Ti > t|Ti > t)

]

= P (Ci > t)
[

P (Ti = t)

P (Ti = t)/P (Ti > t)
− P (Ti > t)

P (Ti > t)/P (Ti > t)

]

= 0 . (A.9)

�
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A.2 Competing Events

In the presence of the competing events of type 2, . . . , J (Section 2.3.2 of the paper), the contri-

bution of the i-th individual to the weighted log-likelihood (2.11) can be written as

`i =
k−1∑

t=1

{
I(T̃i = t ∩∆i = 1 ∩ εi = 1) log(λ1(t)) (observed type 1 event at t)

+ I(T̃i = t ∩∆i = 0) log(1− λ1(t)) (observed censoring event at t)

+ I(T̃i > t) log(1− λ1(t)) (event after t)

+ I(T̃i 6 t ∩∆i = 1 ∩ εi 6= 1)
G(t− 1)

G(T̃i − 1)
log(1− λ1(t))

}
, (event of type 6= 1 at or before t)

(A.10)

where, for the reasons mentioned above, we replaced the estimated function Ĝ(·) by its true

value G(·). The indicator function of the first addend in (A.10) corresponds to yit, whereas the

other indicator functions in (A.10) correspond to 1− yit.

For the expectations one obtains

E
{

I(T̃i = t ∩∆i = 1 ∩ εi = 1)
}

= P (Ti = t, εi = 1)P (Ci > t) , (A.11)

E
{

I(T̃i = t ∩∆i = 0)
}

= P (Ti > t)P (Ci = t) , (A.12)

E
{

I(T̃i > t)
}

= P (Ti > t)P (Ci > t) , and (A.13)

E
{

I(T̃i 6 t ∩∆i = 1 ∩ εi 6= 1)
G(t− 1)

G(T̃i − 1)

}

= G(t− 1)︸ ︷︷ ︸
=P (Ci>t)

t∑

u=1

[
1

G(u− 1)
P (T̃i = u ∩∆i = 1 ∩ εi 6= 1)

]

= P (Ci > t)
t∑

u=1

[
1

G(u− 1)
P (Ci > u ∩ Ti = u ∩ εi 6= 1)

]

= P (Ci > t)
t∑

u=1

[
1

G(u− 1)
P (Ci > u)︸ ︷︷ ︸
=G(u−1)

P (Ti = u ∩ εi 6= 1)

]

= P (Ci > t)
t∑

u=1

P (Ti = u ∩ εi 6= 1)

= P (Ci > t)P (Ti 6 t, εi 6= 1) .

(A.14)
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On the other hand, the subdistribution hazard λ1(t) it can be rewritten as

λ1(t) = P (Ti = t, εi = 1|(Ti > t) ∪ (Ti 6 t− 1, εi 6= 1))

=
P (Ti = t, εi = 1)

P (Ti > t) + P (Ti < t, εi 6= 1)︸ ︷︷ ︸
:=Ni

=
P (Ti = t, εi = 1)

Ni
, (A.15)

implying that

1− λ1(t) =
P (Ti > t) + P (Ti < t, εi 6= 1)

P (Ti > t) + P (Ti < t, εi 6= 1)
− P (Ti = t, εi = 1)

Ni

=
P (Ti > t) + P (Ti = t)− P (Ti = t, εi = 1) + P (Ti < t, εi 6= 1)

Ni

=
P (Ti > t) + P (Ti = t, εi 6= 1) + P (Ti < t, εi 6= 1)

Ni

=
P (Ti > t) + P (Ti 6 t, εi 6= 1)

Ni
. (A.16)

Combining (A.10) to (A.16) yields

E {si}
(A.11)

=
P (Ci > t)P (Ti = t, εi = 1)

λ1(t)

(A.12),(A.13)
− P (Ci > t)P (Ti > t)

1− λ1(t)

(A.14)
− P (Ci > t)P (Ti 6 t, εi 6= 1)

1− λ1(t)

(A.15),(A.16)
= P (Ci > t)

[
P (Ti = t, εi = 1)

P (Ti = t, εi = 1)/Ni
− P (Ti > t) + P (Ti 6 t, εi 6= 1)

((P (Ti > t) + P (Ti 6 t, εi 6= 1)) /Ni

]

= P (Ci > t) [Ni −Ni]

= 0 . (A.17)

�
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B Further Numerical Results

C: weak C: medium C: strong
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q=0.8
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Fig. 1: Illustration of the experimental design of the simulation study. The bars display the
average relative frequencies of observed events (0 = censoring event, 1 = event of interest, 2 =
competing event) that were obtained from 1000 simulated data sets (n = 500). The ratio of type 1
and type 2 events was approximately the same in each row (C = degree of censoring).
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Fig. 2: Results of the simulation study. The boxplots visualize the estimates of the parameters
γ1 = (0.4,−0.4, 0.2,−0.2)> that were obtained from fitting a discrete subdistribution hazard
model using the proposed weighted ML estimation approach (n = 100). The horizontal lines refer
to the true values of the parameters. Note that some of the boxplots have been truncated, as for
reasons of comparability we used the same y-axis limits as in Figure 1 of the paper.
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Fig. 3: Results of the simulation study. The boxplots visualize the estimates of the parameters
γ1 = (0.4,−0.4, 0.2,−0.2)> that were obtained from fitting a discrete subdistribution hazard
model using the proposed weighted ML estimation approach (n = 300). The horizontal lines refer
to the true values of the parameters.
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Fig. 4: Results of the simulation study. The boxplots visualize the estimates of the coefficient
γ11 = 0.4, as obtained from the discrete-time subdistribution hazard model and the continuous-
time Fine & Gray model (n = 500). The horizontal lines refer to the true values of γ11. Interval
numbers on the x-axes are presented on the log2 scale.
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Fig. 5: Results of the simulation study. The boxplots visualize the differences between the discrete-
time subdistribution hazard model and the continuous-time Fine & Gray model in the estimates
of the coefficient γ11 = 0.4 (n = 500). Interval numbers on the x-axis are presented on the log2

scale.
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Fig. 6: Results of the simulation study. The boxplots visualize the estimates of the coefficient
γ12 = −0.4, as obtained from the discrete-time subdistribution hazard model and the continuous-
time Fine & Gray model (n = 500). The horizontal lines refer to the true values of γ12. Interval
numbers on the x-axes are presented on the log2 scale.
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Fig. 7: Results of the simulation study. The boxplots visualize the differences between the discrete-
time subdistribution hazard model and the continuous-time Fine & Gray model in the estimates
of the coefficient γ12 = −0.4 (n = 500). Interval numbers on the x-axis are presented on the log2

scale.
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Fig. 8: Results of the simulation study. The boxplots in panel (a) visualize the the estimates
of the coefficient γ11 = 0.4, as obtained from the discrete-time subdistribution hazard model
and the continuous-time Fine & Gray model using the Efron method for tie handling (n = 500,
q = 0.8, b = 0.85, horizontal line = true value of γ11). The boxplots in panel (b) visualize the
respective differences between the discrete-time subdistribution hazard model and the continuous-
time Fine & Gray model in the estimates of γ11. Interval numbers on the x-axis are presented on
the log2 scale. The continuous-time Fine & Gray estimates were obtained using the SAS macro
by Kohl and others (2015).
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Fig. 9: Results of the simulation study. The boxplots in panel (a) visualize the the estimates
of the coefficient γ12 = −0.4, as obtained from the discrete-time subdistribution hazard model
and the continuous-time Fine & Gray model using the Efron method for tie handling (n = 500,
q = 0.8, b = 0.85, horizontal line = true value of γ12). The boxplots in panel (b) visualize the
respective differences between the discrete-time subdistribution hazard model and the continuous-
time Fine & Gray model in the estimates of γ12. Interval numbers on the x-axis are presented on
the log2 scale. The continuous-time Fine & Gray estimates were obtained using the SAS macro
by Kohl and others (2015).
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Fig. 10: Results of the simulation study. The boxplots visualize the estimates of the cumulative
incidence function F1, as obtained from the discrete-time subdistribution hazard model and the
continuous-time Fine & Gray model (n = 500, q = 0.8, b = 0.85). Panels (a) and (b) refer to the
scenarios with k = 4 and k = 8, respectively. All estimates were averaged over the values of the
covariates, i.e., each of the boxplots contains one estimate per simulation run. The continuous-
time Fine & Gray estimates are based on the Breslow method for tie handling. The horizontal
lines refer to the true values of F1(t|·). The two panels demonstrate for almost all time points a
downward bias of the Breslow approximation, which is in line with recent findings by Mehrotra
and Zhang (2018), see their Figure 1. However, when t approaches the last time point, the
bias vanishes (panel b) or turns into an upward bias (panel a). A possible explanation is that
inference in the Fine & Gray model outside model conditions appears to capture the plateau of
the cumulative incidence function, see Grambauer and others (2010) for a detailed investigation.
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Fig. 11: Results of the simulation study. The boxplots illustrate the run-times that were obtained
from fitting discrete-time subdistribution hazard models and continuous-time Fine & Gray models
to the 1000 data sets (n = 500, q = 0.8, b = 0.85). Run-times refer to a computing system with a
2.66 GHz Intel Xeon X5650 CPU and 96 GB RAM. Interval numbers on the x-axis are presented
on the log2 scale.

1 5 9 14 19 24 29 34 39 44 49 54 59

Observed time (days)

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12
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(measured in days) of the n =1,876 patients included in the study. The median observation time
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Fig. 13: Analysis of the NP infection data (model 1). The figure shows the estimated cumula-
tive incidence functions for NP acquisition that were obtained from fitting covariate-free discrete
subdistribution hazard models to subsets of the data. Solid lines refer to subgroups defined by
intubation on admission and/or elective surgery at admission. Dashed lines refer to the respec-
tive average estimated cumulative incidence functions obtained from the complementary log-log
model with all covariates. The figure does not suggest any major violations of the proportional
subdistribution hazards assumption.
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Fig. 14: Analysis of the NP infection data. The figure shows the estimated baseline coefficients
of model 1 (black dots) and the estimated smooth baseline function of model 2 (gray dots). The
baseline coefficients/function were transformed using the distribution function 1−exp(− exp(γ̂0t))
of the complementary log-log subdistribution hazard model. Both models indicate that the part of
the subdistribution hazard that could not be explained by any of the predictor variables strongly
increased up to day 4 and subsequently decreased until about day 25. It was close to zero beyond
day 25.
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Bei der Entwicklung von neuen Vorhersagemodellen ist es entscheidend, dass die

Güte der Modelle anhand von unabhängigen, externen Daten validiert wird (Mo-

ons et al., 2012a). Dabei unterscheidet man grundsätzlich zwischen Diskriminie-

rung, d.h. wie gut sich Fälle von Kontrollen trennen lassen, und Kalibrierung,

d.h. wie gut die vorhergesagten Werte und die beobachteten Werte übereinstim-

men (Steyerberg et al., 2010). Während für die diskreten Hazard-Modelle, die in

den Kapiteln 2.1 bis 2.3 behandelt wurden, bereits Methoden zur Beurteilung

von Diskriminierung und Kalibrierung in der Literatur existieren, ist das für die

neue Methode, die in Kapitel 2.4 eingeführt wurde, nicht der Fall.

In diesem Kapitel wird daher ein Instrumentarium zur Beurteilung der Kali-

brierung von diskreten Subdistribution Hazard-Modellen (22) eingeführt. Dies

beinhaltet (i) ein Diagramm zur gra�schen Beurteilung der Kalibrierung, und

(ii) ein Rekalibrierungsmodell zur formalen Beurteilung der Kalibrierung. Letz-

teres entspricht dem logistischen Regressionsmodell

log

(
λ1(t|X)

1− λ1(t|X)

)
= a+ b log

(
λ̂1(t|X)

1− λ̂1(t|X)

)
, t = 1, . . . , k − 1 . (23)

Modellgleichung (23) enthält den Intercept a zur Messung der �calibration in the

large�, der anzeigt, ob die vorhergesagten Wahrscheinlichkeiten systematisch zu

niedrig oder systematisch zu hoch sind, und den Steigungsparameter b zur Mes-

sung des �re�nement�, der anzeigt, ob die vorhergesagten Wahrscheinlichkeiten

zu wenig oder zu viel Variation aufweisen. Beide Methoden bauen auf Ansätzen

für binäre Regressionsmodelle auf (Miller et al., 1993; Hosmer et al., 2013).

In einer Simulationsstudie, deren Aufbau sich an den Simulationen in Kapitel 2.4

orientiert, wird gezeigt, dass die Methoden sehr gut funktionieren, um sowohl kor-

rekt spezi�zierte Modelle zu erkennen als auch Fehlspezi�kationen aufzudecken.

Insbesondere werden simulierte Daten betrachtet, für die die Annahme unab-

hängiger Zensierung (siehe auch Kapitel 1.1) verletzt ist. Im letzten Abschnitt

wird die Kalibrierung des in Kapitel 2.4 entwickelten Vorhersagemodells für die

Erkrankung an nosokomialer Lungenentzündung evaluiert. Sowohl die Kalibrie-

rungsdiagramme, als auch die Rekalibrierungsmodelle, die durch wiederholtes

Aufteilen des Datensatzes in Trainings- und Validierungsdaten erstellt wurden,

weisen auf eine angemessene Kalibrierung des Modells hin.
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Abstract: The generalization performance of a risk prediction model can be evaluated by its calibration,
which measures the agreement between predicted and observed outcomes on external validation data.
Here, we propose methods for assessing the calibration of discrete time-to-event models in the presence
of competing risks. Specifically, we consider the class of discrete subdistribution hazard models, which
directly relate the cumulative incidence function of one event of interest to a set of covariates. We apply
the methods to a prediction model for the development of nosocomial pneumonia. Simulation studies
show that the methods are strong tools for calibration assessment even in scenarios with a high censoring
rate and/or a large number of discrete time points. The Canadian Journal of Statistics 50: 572–591; 2022
© 2021 The Authors. The Canadian Journal of Statistics/La revue canadienne de statistique published by
Wiley Periodicals LLC on behalf of Statistical Society of Canada.
Résumé: La performance de généralisation d’un modèle de prévision des risques peut être évaluée par sa
calibration qui mesure la concordance entre les valeurs prédites et observées dans des données externes
de validation. Les auteurs proposent des méthodes pour évaluer la calibration de modèles discrets de
durée de vie en présence de risques concurrents. Plus précisément, ils considèrent la classe de modèles à
sous-distribution discrète du risque qui relie directement la fonction d’incidence cumulative d’un événement
à un ensemble de covariables. Les auteurs appliquent leurs méthodes à un modèle de prévision pour le
développement de pneumonie nosocomiale. Ils présentent des études de simulation montrant que les
méthodes sont d’excellents outils pour l’évaluation de la calibration, même dans les scénarios comportant
un haut taux de censure et/ou un large nombre de points temporels discrets. La revue canadienne de
statistique 50: 572–591; 2022 © 2021 Les auteurs. La revue canadienne de statistique/The Canadian
Journal of Statistics, publiée par Wiley Periodicals LLC au nom de la Société statistique du Canada.

1. INTRODUCTION

Over the past decade, risk prediction models have become an indispensable tool for decision
making in applied research. Popular examples include models for diagnosis and prognosis in the
health sciences where risk prediction is used, such as screening and therapy decisions (Moons
et al., 2012b; Liu et al., 2014; Steyerberg, 2019) and models for risk assessment in ecological
research, which have become an established tool to quantify and forecast the ecological impact
of technology and development (Gibbs, 2011).
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A key aspect in the development of risk prediction models is the validation of generalization
performance. This task, which is usually performed by applying a previously derived candi-
date prediction model to one or more sets of independent external validation data, has been
subject to extensive methodological research (Moons et al., 2012a; Steyerberg & Vergouwe,
2014; Harrell, 2015; Steyerberg & Harrell, 2016; Alba et al., 2017). As a result, strategies
for investigating the discriminatory power (measuring how well a model separates cases from
controls), calibration (measuring the agreement between predicted and observed outcomes) and
prediction error (quantifying both discrimination and calibration aspects) of prediction models
have been developed (Steyerberg et al., 2010). Alternative techniques that additionally involve
decision analytic measures include, among others, net benefit analysis (Vickers, Van Calster &
Steyerberg, 2016), decision curve analysis (Vickers & Elkin, 2006) and relative utility curve
analysis (Baker et al., 2009; Kerr & Janes, 2017).

The aim of this article is to develop a set of methods for assessing the calibration of
a prediction model with a time-to-event outcome. This class of models has been dealt with
extensively during the past years, see, for example, Henderson & Keiding (2005), Witten &
Tibshirani (2010), Soave & Strug (2018) and Braun et al. (2018). Here, we explicitly assume
that event times are measured on a discrete time scale t = 1, 2,… (Ding et al., 2012; Tutz &
Schmid, 2016; Berger & Schmid, 2018), and that the event of interest may occur along with
one or more “competing” events (Fahrmeir & Wagenpfeil, 1996; Fine & Gray, 1999; Lau, Cole
& Gange, 2009; Beyersmann, Allignol & Schumacher, 2011; Austin, Lee & Fine, 2016; Lee,
Feuer & Fine, 2018; Schmid & Berger, 2020). Scenarios of this type are frequently encountered
in observational studies with a limited number of fixed follow-up measurements, for instance,
in epidemiology (Andersen et al., 2012). Such study designs do not allow recording the exact
(continuous) event times, so that it is only known whether or not an event of interest (or a
competing event) occurred between two consecutive follow-up times at−1 and at, implying
that the discrete time scale t = 1, 2,… refers to a special case of interval censoring with fixed
intervals.

An important example, which will be considered in this article, is the duration to the
development of nosocomial pneumonia (NP) in intensive care patients measured on a daily basis
(Wolkewitz et al., 2008). As NP infections are associated with an increased length of hospital
stay and have considerable impact on morbidity and mortality, it is highly relevant to build a
statistical model that gives valid predictions for future patients. The case of observational hospital
data is interesting in that early discrete-time competing risks analysis is found in the literature as
early as the 1860s (Nightingale, 1863, Chapter IX). In Section 7 we validate a prediction model
developed by Berger et al. (2020) for this type of data.

In recent years, several authors have developed measures and estimators for analyzing
the generalization performance of discrete time-to-event models. For example, discrimination
measures for discrete time-to-event models were proposed by Schmid, Tutz & Welchowski
(2018). Measures of prediction error were considered in Tutz & Schmid (2016), Chapter
4. Graphical tools for assessing the calibration of discrete time-to-event predictions (not
accounting for the occurrence of competing events) were explored in Berger & Schmid
(2018). Methods for assessing the generalization performance of discrete cause-specific hazard
models (a common approach for competing risks analysis) have been recently proposed by
Heyard et al. (2020).

Here we propose to base the calibration assessments for discrete competing risks models on
the cumulative incidence function F𝑗(t|x) ∶= P(T ≤ t, 𝜖 = 𝑗|x), denoting by T the time to the first
event, by x a set of covariates, and by 𝜖 ∈ {1,… , J} a random variable that indicates the occur-
rence of one out of J competing events at T (Fine & Gray, 1999; Klein & Andersen, 2005). In the
following, we will assume without loss of generality that the event of interest and its cumulative
incidence function are defined by 𝜖 = 1 and F1(t|x), respectively. A popular method to derive
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predictions of F1(t|x) from a set of training data is to fit a proportional subdistribution hazard
model (Fine & Gray, 1999). This approach is designed for the analysis of right-censored event
times, and it will be considered here. This approach has been recommended to analysts “whenever
the focus is on estimating incidence or predicting prognosis in the presence of competing risks”
(Austin, Lee & Fine, 2016). While the original model proposed by Fine & Gray (1999) assumed
the event times to be measured on a continuous time scale, the methods developed in this article
are based on a recent extension of the subdistribution hazard modelling approach to discrete-time
competing risks data (Berger et al., 2020). Specifically, the model proposed by Berger et al.
(2020) is designed for estimating the discrete subdistribution hazard 𝜆1(t|x) ∶= P(T = t, 𝜖 = 1|
(T ≥ t) ∪ (T ≤ t − 1, 𝜖 ≠ 1), x), which defines a one-to-one relationship with the discrete cumu-
lative incidence function F1(t|x) (see Sections 2 and 3 for details). The calibration of a
subdistribution hazard prediction model may thus be characterized by how well the subdis-
tribution hazards observed in a validation sample can be approximated by the respective
predicted subdistribution hazards that are obtained from applying the prediction model to the
validation data.

The proposed methodology for assessing the calibration of a discrete-time subdistribution
hazard model comprises two parts, both of which build on methods for binary regression:
The first part (presented in Section 4) will be concerned with the derivation of an appropriate
calibration plot that visualizes the agreement between the predicted and the observed subdis-
tribution hazards. In the second part (Section 5), we will propose a recalibration model for
discrete-time subdistribution hazard models that can be used to analyze calibration-in-the-large
and refinement (i.e., the bias and the variation, respectively, of the predicted subdistribu-
tion hazards) along the lines of Cox (1958) and Miller et al. (1993). As will be shown in
Sections 4 and 5, the weights used in the subdistribution hazard modelling approach proposed
in Berger et al. (2020) allow defining appropriate versions of the observed and predicted
hazards (to be depicted in the calibration plot) and for fitting a weighted logistic recalibra-
tion model (giving rise to point estimates and hypothesis tests on calibration-in-the-large and
refinement).

The proposed calibration assessments will be illustrated by a simulation study (Section 6) and
by the aforementioned prediction model for the duration to the development of NP (Section 7).
Section 8 summarizes the main findings of the article.

2. DISCRETE SUBDISTRIBUTION HAZARD MODELS

Let Ti be the event time and Ci be the censoring time of an i.i.d. sample with n individuals
i = 1,… , n. Both Ti and Ci are assumed to be independent random variables (random censoring)
taking discrete values in {1, 2,… , k}, where k is a natural number. It is further assumed that
the censoring mechanism is non-informative for Ti, in the sense that Ci does not depend on
any parameters used to model the event time (Kalbfleisch & Prentice, 2002). For instance, in
longitudinal studies with fixed follow-up visits, the discrete event times 1,… , k may refer to
time intervals [0, a1), [a1, a2),… , [ak−1,∞), where Ti = t means that the event has occurred in
time interval [at−1, at) with ak = ∞. For right-censored data, the time period during which an
individual is under observation is denoted by T̃i = min(Ti,Ci), that is, T̃i corresponds to the true
event time if Ti ≤ Ci and to the censoring time otherwise. The random variable Δi ∶= I(Ti ≤ Ci)
indicates whether T̃i is right-censored (Δi = 0) or not (Δi = 1). Here, it is assumed that each indi-
vidual can experience one out of J competing events and that the event type of the ith individual
at Ti is denoted by 𝜖i ∈ {1,… , J}. In accordance with Fine & Gray (1999), our interest is in
modelling the cumulative incidence function F1(t) = P(T ≤ t, 𝜖 = 1) of a type 1 event conditional
on covariates, taking into account that there are J − 1 competing events and also the censoring
event (Δi = 0).
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For given values of a set of time-constant covariates xi = (xi1,… , xip)⊤, the discrete subdis-
tribution hazard function for a type 1 event is defined by

𝜆1(t|xi) = P
(
Ti = t, 𝜖i = 1|(Ti ≥ t) ∪ (Ti ≤ t − 1, 𝜖i ≠ 1), xi

)
(1)

= P(𝜗i = t|𝜗i ≥ t, xi), (2)

where (2) is the discrete hazard function of the subdistribution time

𝜗i ∶=

{
Ti, if 𝜖i = 1,
∞, if 𝜖i ≠ 1,

(3)

see Berger et al. (2020). The subdistribution time 𝜗i measures the time to the occurrence of a
type 1 event first and is not finite if 𝜀i ≠ 1 (as a type 1 event will never be the first event as
soon as a competing event has occurred). The discrete subdistribution hazard is linked to the
cumulative incidence function by

F1(t|xi) = 1 −
t∏

s=1

(1 − 𝜆1(s|xi)) = 1 − S1(t|xi), (4)

where S1(t|xi) = P(𝜗i > t|xi) is the discrete survival function for a type 1 event. Thus, a
regression model for the discrete subdistribution hazard 𝜆1 has a direct interpretation in terms of
the cumulative incidence function F1.

A class of regression models that relate the discrete subdistribution hazard function (2) to the
covariates xi was proposed by Berger et al. (2020). It is defined by

𝜆1(t|xi) = h(𝜂1(t, xi)), (5)

where h(⋅) is a strictly monotone increasing distribution function. In line with classical hazard
models for discrete event times (e.g., Tutz & Schmid 2016), it is assumed that the predictor
function

𝜂1(t, xi) = 𝛾0t + x⊤i 𝜸 (6)

is composed of a set of time-varying intercepts 𝛾01,… , 𝛾0,k−1, referred to as baseline coefficients,
and a linear function of the covariates with coefficients 𝜸 ∈ ℝp that do not depend on t.
As in generalized additive models, it is also possible to extend 𝜂1(t, xi) by interactions and
smooth (possibly nonlinear) functions. A popular choice of h(⋅) is the inverse complementary
log–log function, which yields the Gompertz model 𝜆1(t, xi) = 1 − exp(− exp(𝜂1(t, xi))), which
is equivalent to the original subdistribution hazard model by Fine & Gray (1999) for continuous
time-to-event data.

3. MODEL FITTING

In Berger et al. (2020), it was shown that consistent estimates of the model parameters in (6) can
be derived using estimation techniques for weighted binary regression. This result is based on
the observation that with i.i.d. data (T̃i,Δi, 𝜖i, xi), i = 1,… , n, the log likelihood of model (5) can
be expressed as

𝓁 =
n∑

i=1

k−1∑
t=1

wit
{

yit log(𝜆1(t|xi)) + (1 − yit) log(1 − 𝜆1(t|xi))
}

(7)
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with binary outcome values

(yi1,… , yi,T̃i
,… , yi,k−1) =

{
(0,… , 0, 1, 0,… , 0), if Δi𝜖i = 1,
(0,… , 0, 0, 0,… , 0), if Δi𝜖i ≠ 1.

(8)

For uncensored individuals that experience a type 1 event first (Δi𝜀i = 1) and for censored
individuals (Δi𝜀i = 0) the weights wit are defined as

wit ∶= I(t ≤ T̃i), (9)

whereas for uncensored individuals experiencing a competing event first (Δi𝜀i > 1) they are
defined as

wit ∶=

{
1 if t ≤ T̃i,
V̂(t−1)

V̂(T̃i−1)
if T̃i < t ≤ k − 1.

(10)

The function V̂(t) in (10) is an estimate of the censoring survival function V(t) = P(Ci > t),
implying that the weights in (9) and (10) equal estimates of the individual-specific conditional
probabilities of being (still) at risk for a type 1 event at time t. This is analogous to the respective
weights for subdistribution hazard models in continuous time (Fine & Gray, 1999). As shown in
Berger et al. (2020), maximization of the log likelihood (7) yields consistent and asymptotically
normal estimators of the parameters 𝛾0t and 𝜸. In Sections 4 and 5, we will show that the
weights defined in (9) and (10) also play a key role in the calibration assessment of discrete-time
subdistribution hazard models.

It should be noted that the inclusion of time-varying covariates in model (6) is not without
problems. This is because the weighted log likelihood in (7) requires the time-dependent values
of xi to be known up to time point k − 1 and thus possibly beyond the observed event times T̃i.
When the covariates are not external, this is often unrealistic or even impossible. In particular,
the cumulative incidence function (4) cannot be written as a function of the hazards when the
model includes random (internal) time-varying covariates (Cortese & Andersen, 2010). Finding
an adequate strategy for the analysis of such covariates in the subdistribution hazard modelling
framework remains challenging (Poguntke et al., 2018; Schmid & Berger, 2020).

4. CALIBRATION PLOT

In the following we will assume that an i.i.d. training sample (T̃i,Δi, 𝜖i, xi), i = 1,… , n has been
used to fit a statistical model that can be used to predict the individual-specific subdistribution
hazards 𝜆1(t|x) in some study population. We will further assume that the calibration of the
fitted model is assessed by means of an independent i.i.d. validation sample with N individuals
(T̃m,Δm, 𝜖m, xm), m = 1,… ,N. The starting point of our considerations is the calibration plot pro-
posed in Berger & Schmid (2018), which applies to discrete hazard models with only a single type
of event (J = 1). Note that both the specification of the subdistribution hazard model and the def-
inition of its log-likelihood function remain valid in this case, as the scenario without competing
events (J = 1) is a special case of Equations (5) and (7). The idea underlying the method by Berger
& Schmid (2018) is to split the test data into G subsets Dg, g = 1,… ,G, defined by the percentiles
of the predicted hazards 𝜆̂1(t|xm) = P̂(Tm = t|Tm ≥ t, xm) = P̂(ymt = 1|xm), t = 1,… , T̃m, m =
1,… ,N, which are obtained from the fitted binary model in (5). Following the approach by Hos-
mer, Lemeshow & Sturdivant (2013) for assessing the calibration of binary regression models,
the average predicted hazards in the G groups are subsequently plotted against the empirical
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hazards, which are given by the group-wise relative frequencies of outcome values with ymt = 1.
A well-calibrated model is indicated by a set of points that is close to the 45-degree line.

More formally, the predicted and empirical hazard estimates considered in Berger & Schmid
(2018) can be written as

𝜆̂1g = 1∑
m,t∶𝜆̂1(t|xm)∈Dg

wmt

∑
m,t∶𝜆̂1(t|xm)∈Dg

𝜆̂1(t|xm)wmt,

and yg = 1∑
m,t∶𝜆̂1(t|xm)∈Dg

wmt

∑
m,t∶𝜆̂1(t|xm)∈Dg

ymt wmt,

t = 1,… , k − 1, m = 1,… ,N, (11)

respectively, where wmt ∶= I(t ≤ T̃m) ∈ {0, 1} indicates whether individual m is at risk for a type
1 event at time point t, t = 1,… , k − 1, or not. Note that the definition of wmt in (11) is exactly the
same as the definition of the weight wit in (9). Also note that

∑
m,t∶𝜆̂1(t|xm)∈Dg

wmt = |Dg|, as only

the values 𝜆̂1(t|xm) with wmt = 1 are used for defining the groups D1,… ,Dg. In a well-calibrated

hazard model, the values 𝜆̂1g should be close to their counterparts yg.
Now consider the scenario where, in addition to the type 1 event of interest, competing events

of type 2,… , J may be observed. In this case, 𝜆1 becomes the subdistribution hazard of a type 1
event, as defined in (2). To obtain a calibration plot for a fitted subdistribution hazard model, we
define the quantities ̄̂𝜆1g and ȳg analogous to the single-event scenario considered in (11). Unlike
in the scenario with J = 1, however, the definition of the terms wmt is not straightforward: the
problem is that individuals experiencing a competing event first continue to be at risk beyond
T̃m until they experience the censoring event. Hence, as the censoring times Cm are unobserved
if Cm > T̃m, it usually cannot be determined whether these individuals would still be at risk at
t > T̃m. In accordance with Berger et al. (2020), we therefore propose to predict the probability
of each individual m = 1,… ,N, of being at risk for a type 1 event at time t and to set the terms
wmt equal to the predicted probabilities.

More specifically, the proposed strategy comprises the following steps:

(i) Sort the predicted subdistribution hazards 𝜆̂(t|xm), t = 1,… , k − 1, m = 1,… ,N, obtained
from the fitted subdistribution hazard model and form groups D1,… ,DG defined by the
percentiles of 𝜆̂(t|xm).

(ii) Compute the weights wmt using the formulas in (9) and (10), where V̂(⋅) is estimated from
the training sample with individuals i = 1,… , n.

(iii) Compute ̄̂𝜆1g and ȳg as in (11) using the weights obtained in step (ii). Note that by definition,∑
m,t∶𝜆̂1(t|xm)∈Dg

wmt ≤ |Dg|.
(iv) Plot ̄̂𝜆1g against ȳg (using proportional axes).
(v) Assess the calibration of the fitted subdistribution hazard model by inspecting the plot

generated in step (iv). A well-calibrated model is indicated by a set of points that is close to
the 45-degree line.

For the choice of G, we propose to use the rule by Doane (1976), which was originally developed
for univariate frequency classification. With this rule, the number of subsets is defined by

G =
⌊

1 + log2( ) + log2(1 + |𝜅𝜆̂1
|∕𝜎𝜅𝜆̂1

)
⌋
, (12)
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where 𝜅𝜆̂1
denotes the skewness of the predicted subdistribution hazards,  = N ⋅ (k − 1), and

𝜎𝜅𝜆̂1
=
√

6 ( − 2)∕( + 1)∕( + 3).
It should be emphasized that the calibration plot constitutes an exploratory approach, and

that inspection of the plot in step (v) generally involves subjective impression. Formal tests on
calibration are proposed in the next section.

5. RECALIBRATION MODEL

In addition to the graphical checks presented in Section 4, we propose a recalibration approach
for discrete subdistribution hazard models originating from the method by Cox (1958). The idea
of this method, which was originally developed for assessing the calibration of binary regression
models, is to fit a logistic regression model to the test data in order to investigate the agreement
between a set of predicted probabilities and the respective values of the binary outcome variable.

Based on the binary representation of the subdistribution hazard model in (5) and (7),
we propose to adapt the recalibration framework by Cox (1958) as follows: assuming that
calibration assessments are again based on a validation sample (T̃m,Δm, 𝜖m, xm), m = 1,… ,N,
we fit a logistic regression model of the form

log
(

𝜆1(t|xm)
1 − 𝜆1(t|xm)

)
= 𝜂rc(t|xm) = a + b log

(
𝜆̂1(t|xm)

1 − 𝜆̂1(t|xm)

)
,

t = 1,… , k − 1, m = 1,… ,N, (13)

where 𝜆̂1(t|xm) are the predicted hazards defined in Section 4.
In (13) a simple linear model is placed on the logits of the subdistribution hazards.

Alternatively, one could also use other link functions, like the probit link or complementary
log–log link. The intercept a in model (13) measures “calibration-in-the-large,” that is, it
indicates whether the predicted hazards are systematically too low (a > 0) or too high (a < 0).
Analogously, the slope b measures “refinement,” which indicates that the predicted hazards do
not show enough variation (b > 1), show too much variation (0 < b < 1), or show the wrong
general direction (b < 0, Miller et al., 1993).

To assess the fit of the predicted hazards, we propose to follow the suggestions by
Miller et al. (1993) and to conduct recalibration tests on the following null hypotheses:
(i) H0: a = 0, b = 1, which refers to an overall test for calibration; (ii) H0: a = 0 | b = 1, to test
for calibration-in-the-large given appropriate refinement and (iii) H0: b = 1 | a, to test refinement
given corrected calibration-in-the-large.

Because the predicted hazards 𝜆̂1 are derived from a subdistribution hazard model that was
fitted using weighted maximum likelihood estimation, we fit the recalibration model in (13) by
optimizing a weighted binary log likelihood of the form

𝓁rc =
N∑

m=1

k−1∑
t=1

wmt
{

ymt log(𝜋1(t|xm)) + (1 − ymt) log(1 − 𝜋1(t|xm))
}
, (14)

where the probabilities 𝜋1(t|xm) are given by 𝜋1(t|xm) = exp(𝜂rc(t|xm))∕(1 + exp(𝜂rc(t|xm)). The
binary outcome values ymt and the weights wmt are defined in the same way as in Section 4. Note
that V̂(⋅) is again estimated from the training sample with individuals i = 1,… , n. In the case
where a = 0 (referring to the tests in (i) and (ii) above), the log likelihood (14) can be written as

𝓁rc = b
N∑

m=1

k−1∑
t=1

wmtymt log
(
𝜆̂1(t|xm)

)
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+ b
N∑

m=1

k−1∑
t=1

wmt(1 − ymt) log
(
1 − 𝜆̂1(t|xm)

)

−
N∑

m=1

k−1∑
t=1

wmt log
(
𝜆̂1(t|xm)b + (1 − 𝜆̂1(t|xm))b

)
, (15)

which corresponds to the weighted log likelihood in equation (7) of Cox (1958). The derivation
of (15) is given in Section 1 of the Supplementary Material. It follows that hypotheses (i)–(iii)
can be examined using likelihood-ratio test statistics that asymptotically (as N → ∞) follow
𝜒2-distributions with one (hypotheses ii and iii) and two (hypothesis i) degrees of freedom,
respectively.

6. NUMERICAL EXPERIMENTS

In this section we present the results of numerical experiments to evaluate the proposed
calibration measures under known conditions. The main focus of the study was on measuring
the performance in scenarios with different rates of type 1 events, different levels of censoring,
a varying number of discrete time points, and various forms of misspecification.

6.1. Experimental Design
In order to generate data from a given subdistribution hazard model for type 1 events, we used
a scheme adopted from Fine & Gray (1999). This procedure is also described in Beyersmann,
Allignol & Schumacher (2011), where it was termed “indirect simulation.” In all simulation
scenarios, we considered data with two competing events, 𝜖i ∈ {1, 2}, that was generated
under the assumption of proportional subdistribution hazards. More specifically, our discrete
subdistribution hazard model was based on the discretization of the continuous model

F1(t|xi) = P(Tcont,i ≤ t, 𝜖i = 1|xi) = 1 − (1 − q + q exp(−t))exp(x⊤i 𝜸), (16)

where Tcont,i ∈ ℝ+ denotes the continuous time span of individual i, and 𝜸 = (𝛾1,… , 𝛾p)⊤ is a set
of regression coefficients. The parameter q ∈ (0, 1) determines the probability of a type 1 event
which, according to (16), was given by 𝜋i1 ∶= P(𝜀i = 1|xi) = 1 − (1 − q)exp(x⊤i 𝜸). By definition,
high values of q result in high probabilities of 𝜋i1, and vice versa. The probability of a competing
event was given by 𝜋i2 ∶= P(𝜖i = 2|xi) = 1 − 𝜋i1 = (1 − q)exp(x⊤i 𝜸).

Continuous time spans for type 2 events were drawn from the exponential model

Tcont,i|𝜖i = 2, xi ∼ Exp(𝜉2 = exp(x⊤i 𝜷)),

where 𝜷 = (𝛽1,… , 𝛽p)⊤ denotes a set of regression coefficients linking the rate parameter 𝜉2
with the values of the covariates x.

In order to obtain discrete event times Tdisc,i, we generated data according to the indirect
simulation scheme described above and grouped the resulting continuous event times into
categories k ∈ {5, 10, 15}. The latter were defined by the quantiles of the continuous event
times, which were pre-estimated from an independent sample with 1,000,000 observations. As
a consequence, the same interval boundaries were used in each simulation run. Censoring times
were generated from a discrete distribution with probability density function P(Cdisc,i = t) =
uk−t+1∕

∑k
s=1 us, t = 1,… , k, where the percentage of censored observations was controlled by

the parameter u ∈ ℝ+.
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We considered two standard, normally distributed covariates xi1, xi2 ∼ N(0, 1) and two
binary covariates xi3, xi4 ∼ Bin(1, 0.5). All covariates were independent, and the true regression
coefficients were set to 𝜸 = (0.4,−0.4, 0.2,−0.2)⊤ and 𝜷 = (−0.4, 0.4,−0.2, 0.2)⊤, see Fine &
Gray (1999). We specified three different censoring rates, denoted by weak, medium and strong,
where the degree of censoring was controlled by the parameter u of the censoring distribution.
More specifically, we used the values u = 0.85 (weak), u = 1 (medium) and u = 1.25 (strong),
resulting in the censoring rates shown in Figure S1 of the Supplementary Material. We also
considered three different probabilities of a type 1 event, specifying q ∈ {0.2, 0.4, 0.8}. In
total, this resulted in 3 × 3 × 3 = 27 different scenarios. All scenarios were analyzed using 100
replications with 5000 independently drawn observations each, which were equally split into a
training sample and a validation sample (n = 2500 and N = 2500), respectively.

Figure S1 of the Supplementary Material illustrates the relative frequencies of observed
events for the nine scenarios with k = 5. It is seen that the rates of observed type 1 events
increased with increasing values of q and that censoring rates increased with increasing values
of u. For constant q and varying u, the ratio of observed type 1 and type 2 events remained
approximately the same. For q = 0.2 and q = 0.4, we observed more events of type 2 than of
type 1, and for q = 0.8 there were more events of type 1 than type 2. For the scenarios with k = 10
and k = 15, the observed relative frequencies were almost the same and are thus not shown.

In all scenarios, the following models were fitted to the training samples: (a) the discrete
subdistribution hazard model (5) with the inverse complementary log–log function (Gompertz
model), which defines the same values of 𝜸 as the Fine and Gray proportional subdistribution
hazards model in continuous time; (b) model (5) with a logistic distribution function h(𝜂1(t, xi)) =
exp(𝜂1(t, xi))∕(1 + exp(𝜂1(t, xi))) and (c) a simple discrete hazard model (Gompertz model) for
events of type 1, which does not account for the presence of competing type 2 events. In a
fourth examination (d), we also fitted the discrete subdistribution hazard model as in (a), but
slightly changed the data-generating process. The linear predictor x⊤i 𝜸 in (16) was replaced by
sin(4x1) + sin(4x2) + 𝛾3x3 − 𝛾4x4, which defines nonlinear effects of the two standard normally
distributed covariates. Finally, we considered a setting (e), where the independence assumption
between Ti and Ci was violated in the training sample. For this setting, we generated the censoring
times from the discrete distribution given above with parameters

u(e)i ∶=

{
u + 0.25 if Tdisc,i < median(Tdisc),
u − 0.25 if Tdisc,i ≥ median(Tdisc).

(17)

According to the data-generating process defined by (e), the probability of censoring was much
higher for observations with relatively small event times than for observations with medium or
large event times.

In (a) we fitted the true data-generating model, whereas in (b)–(e) the fitted models were
misspecified.

6.2. Results under Correct Model Specification
The calibration plots for one randomly chosen replication of the nine simulation scenarios
with k = 5 when fitting the true data-generating model (a) are presented in Figure 1. Using
Equation (12), the appropriate number of subsets in the scenario with q = 0.2 and weak
censoring for this example was G = ⌊20.46⌋. Thus, we set G = 20 in all calibration plots of the
simulation study. The plots show that the empirical hazards yg and the average predicted hazards

𝜆̂1g coincided strongly, regardless of the degree of censoring and the rate of type 1 events. This
result illustrates that the calibration plot defined in Section 4 is a strong tool for the graphical
assessment of a correctly specified discrete subdistribution model. Figure 1 further shows that
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FIGURE 1: Results of the simulation study when fitting the true data-generating model. Calibration
plots refer to one randomly chosen replication in each simulation scenario using G = 20 subsets
(k = 5). Note that the y-axis limits differ across the rows, which is the reason why the points are
not spread over the whole plots for q = 0.2 and q = 0.4. The 45-degree lines (dashed) indicate

perfect calibration (C = degree of censoring).

modelling the subdistribution hazard 𝜆1 also works well in the presence of only a relatively small
number of type 1 events (for q = 0.2 only about 10% type 1 events were observed). When fitting
the logistic recalibration model, for example to the dataset with strong censoring and q = 0.2
(upper right panel of Figure 1), we obtained the estimates â = −0.084 and b̂ = 0.957, which
are close to the values a = 0 and b = 1 of perfect calibration. Exemplary calibration plots for
the scenarios with k = 10 and k = 15 are presented in Figures S2 and S3 of the Supplementary
Material. Again, the plots suggest nearly perfect calibration, with the exception of the scenarios
with k = 15 and strong censoring, where the variation and thus the deviation from the 45-degree
lines is more apparent.

The estimates of the calibration parameters a and b for all scenarios with k = 5 are shown in
Figure 2. It is seen from the boxplots that, on average, the estimates were very close to values
a = 0 and b = 1. In particular, for q = 0.8 (lower panel) the results of the recalibration model
correctly indicated nearly perfect calibration. It is also seen that the variance of the estimates
of the intercept a increased with the decreasing rate of type 1 events. In contrast, the degree
of censoring had only a small impact on the variance of the estimates. Figure 3 presents the
corresponding P-values when conducting the recalibration tests (i)–(iii) specified in Section 5.
Throughout all scenarios, the null hypotheses were kept in almost all replications (at the 5% type
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FIGURE 2: Results of the simulation study when fitting the true data-generating model. The
boxplots visualize the estimates of the calibration intercepts a and calibration slopes b that were

obtained from fitting the logistic recalibration model (k = 5).

1 error level). In particular, the tests for calibration-in-the-large given appropriate refinement
(hypothesis ii) yielded very large P-values (corresponding to small negative log 10-transformed
values). For example, in the scenario with q = 0.2 and strong censoring, this hypothesis was
never rejected at the 5% type 1 error level. Overall, the results in Figures 2 and 3 illustrate
that the proposed logistic recalibration model properly assessed the calibration of the fitted
subdistribution hazard models, even in the case of strong censoring and a small rate of type 1
events.

The parameter estimates â and b̂ and the P-values for the scenarios with k = 10 and k = 15
are given in Figures S4–S7 of the Supplementary Material. These results largely confirmed
the previous findings for k = 5. Although the estimated calibration parameters deviated more
strongly from a = 0 and b = 1, the associated null hypotheses were still kept at the 5% type
1 error level. The only exception was the scenario with k = 15, strong censoring, and q = 0.2
(upper right panel of Figure S7 of the Supplementary Material), where about half of the null
hypotheses (i) and (iii) were rejected. These results, which were clearly related to the number of
time intervals, can be explained by the fact that very few type 1 events were observed at later
points in time when k was increased. For example, with k = 15, strong censoring, and q = 0.2,
fewer than four type 1 events occurred at time points t > 10 in most of the training and validation
samples.
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FIGURE 3: Results of the simulation study when fitting the true data-generating model. The
boxplots visualize the negative log 10-transformed P-values obtained from the recalibration
tests (k = 5). The dashed lines correspond to a P-value of 0.05. A value above the dashed line

indicates a significant result at the 5% type 1 error level.

6.3. Results under Model Misspecification
In our second investigation (b), we fitted the discrete subdistribution hazard model with a logistic
link function to the training samples. Regarding the calibration of the models, there was no
noticeable difference to the correctly specified Gompertz model. Thus, the results were largely
the same as those in Section 6.2 in all scenarios (not shown).

When fitting the simple discrete hazard model (c) to the training samples, the calibration of the
models strongly deteriorated, which was clearly indicated by the proposed calibration measures.
Exemplary calibration plots for the replication chosen in Figure 1 are shown in Figure 4. It is
seen that, in particular, for the scenarios with weak and medium censoring, the set of points
are mostly below the 45-degree line. Therefore, the predicted hazards were systematically too
high. This result was also confirmed by the estimates of the recalibration intercepts a (Figure
S8 of the Supplementary Material), which were all below zero. In the scenarios with a small
number of type 1 events (q = 0.2), the mean of estimates â were smaller than −1. Accordingly,
the associated recalibration tests of the null hypotheses (i) and (ii) were consistently rejected
(Figure S11 of the Supplementary Material). Rejection of the conditional null hypothesis (ii)
again confirmed a systematic shift of the predicted hazards to higher values. Only in the scenario
with strong censoring and q = 0.8 (lower right panel of Figure S11 of the Supplementary
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FIGURE 4: Results of the simulation study under the misspecified model (c). Calibration plots
refer to one randomly chosen replication in each simulation scenario using G = 20 subsets
(k = 10). The 45-degree lines (dashed) indicate perfect calibration (C = degree of censoring).

Material), the recalibration tests still indicated good calibration. This result is clearly related to
the small number of type 2 events, which did not substantially affect the fit of the simple discrete
hazard model in this scenario.

Figure 5 depicts exemplary calibration plots obtained from the model fits under the third
source of misspecification (d), where the predictor of the model was falsely specified to be linear.
In comparison to Figure S2 of the Supplementary Material, the points are spread considerably
wider around the 45-degree line. This result was confirmed by the estimated recalibration slopes b
(Figure S9 of the Supplementary Material), which were distinctly less than 1 (in particular, in
the scenarios with q = 0.2). Remarkably, the test on null hypothesis (ii) was not affected
by this form of misspecification throughout all scenarios (Figure S12 of the Supplementary
Material). This demonstrates that calibration-in-the-large was still sufficient given appropriate
refinement (b = 1). On the other hand, the two null hypotheses (i) and (iii) were more prone to
the misspecification of the predictor function of the model, as they indicated poor calibration
particularly in the scenarios with q = 0.2.

In the last setting (e) with violation of random censoring (calibration plots in Figure 6), the
deviation from the 45-degree line is most evident in the scenarios with a high number of type 1
events (q = 0.8). This is also seen from the fits of the recalibration model (Figures S10 and S13
of the Supplementary Material), where the estimated coefficients were clearly too small and the
three null hypotheses were rejected to a large extent. In contrast to the misspecification in (c),
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FIGURE 5: Results of the simulation study under the misspecified model (d). Calibration plots
refer to one randomly chosen replication in each simulation scenario using G = 20 subsets
(k = 10). The 45-degree lines (dashed) indicate perfect calibration (C = degree of censoring).

the scenario with strong censoring and q = 0.8 appeared to be most problematic. This is likely
because the violation of random censoring mainly affects the estimation of V̂ , which is even
more inaccurate in the case of a small number of type 2 events.

To sum up, the findings in cases (c)–(e) demonstrate that the proposed calibration measures
are sensitive to the severity of misspecification of the fitted models. Here, calibration issues
were most pronounced for models with an incorrect form of the predictor function (and weak
censoring), and when the random censoring assumption was violated (and the number of type
1 events was small). Note that, because it did not gain any further insight, we reduced our
considerations to the scenarios with k = 10 in this section.

7. NP INFECTION IN INTENSIVE CARE UNITS

To illustrate the use of the proposed calibration measures, we validated the prediction model by
Berger et al. (2020) by analyzing a dataset on the development of pneumonia, which is a common
nosocomial, that is, hospital-acquired infection in intensive care units (ICUs). This dataset was
also considered earlier by Beyersmann et al. (2006), Wolkewitz et al. (2008), and other authors.
As NP has a strong impact on the mortality of patients in ICUs, it is of high interest to determine
the risk factors for the development of the disease.

The data were collected for a prospective cohort study at five ICUs in one university hospital,
lasting 18 months (from February 2000 to July 2001) and comprising n = 1876 patients with a
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FIGURE 6: Results of the simulation study under the misspecified model (e). Calibration plots
refer to one randomly chosen replication in each simulation scenario using G = 20 subsets
(k = 10). The 45-degree lines (dashed) indicate perfect calibration (C = degree of censoring).

duration of ICU stay of at least 2 days. The outcome of interest was the time to NP infection.
Other possible events that were competing with the onset of NP (being the event of interest)
were death and discharge from hospital alive. Owing to the study design, the observed event
times were discrete, as they were measured on a daily basis. Berger et al. (2020) analyzed
the data over a period of 60 days, resulting in 61 possible event times t = 1, 2,… , 61, where
t = k = 61 referred to all individuals with event times ≥ 61 days. At the observed times, each
patient acquired the NP infection (n = 158), died, was released from hospital (n = 1695), or was
administratively censored (n = 23). Descriptive summary statistics of the baseline risk factors
considered in the analysis were presented in Table 1 of Wolkewitz et al. (2008). In addition to
the age of the patients (centred at 60 years), the gender of the patients, and the simplified acute
physiology score (SAPS II), there were 11 binary risk factors characterizing the patients and
their hospital stay. Note that SAPS II measures the severity of disease for patients admitted to
ICUs aged 15 years or older. The score is calculated from 12 routine physiological measurements
during the first 24 h, resulting in a range of [0, 163] points (Le Gall, Lemeshow & Saulnier,
1993). The binary variables either referred to the time of ICU admission (on admission) or the
time prior to ICU admission (before admission).

We fitted the discrete subdistribution hazard model used in Berger et al. (2020) to the data
described above. This model incorporates the baseline risk factors and a set of smooth baseline
coefficients represented by cubic P-splines with a second-order difference penalty (fitted using
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FIGURE 7: Analysis of the nosocomial pneumonia infection data. The calibration plot refers to
a randomly chosen partition of the data into a training and a validation sample using G = 24
subsets. According to Equation (12), the appropriate number of subsets is G = ⌊24.21⌋. The

45-degree line (dashed line) indicates perfect calibration.

the R package mgcv). This model was referred to as Model 2 in Berger et al. (2020). To assess the
calibration of the model, we conducted a benchmark experiment which was based on 100 random
partitions of the data. Each partition consisted of a training sample of size n = 1500 (80%) and a
validation sample of size N = 376 (20%).

The main results in Berger et al. (2020) can be summarized as follows: risk factors
significantly increasing the risk of NP acquisition at the 5% type I error level were (i) male
gender, (ii) an intubation on admission, (iii) no pneumonia on admission, (iv) another infection
on admission, (v) an elective or emergency surgery before admission and (vi) a cardio/pulmonary
or neurological underlying disease.

Figure 7 presents the calibration plot of the model that was obtained for one randomly chosen
partition of the data. It is seen that apart from the three subsets defined by the largest percentiles,

the empirical hazards yg and the average predicted hazards 𝜆̂1g were very small (<0.005).

Furthermore, the plot showed strong agreement between yg and 𝜆̂1g, indicating satisfactory
calibration of the fitted model. The calibration plots obtained for 25 further partitions of the data
are shown in Figure S14 of the Supplementary Material. Except single values, the plots do not
reveal severe deviations from the 45-degree line. However, the bundle of small hazard values
makes the evaluation of the plots rather difficult.

Boxplots of the estimated calibration parameters â and b̂ and the P-values when performing the
associated recalibration tests are shown in Figure 8. The estimates related to the calibration plot
in Figure 7 were â = 0.039 and b̂ = 0.984 with P-values 0.809 (hypothesis i), 0.518 (hypothesis
ii), and 0.935 (hypothesis iii). The mean estimates of a and b (left panel of Figure 8) indicate
that the predicted hazards tended to be too high (a < 0) and that they varied a little too much
(0 < b < 1). Importantly, this trend was also seen in the simulations in Section 6.2 with weak
censoring and q = 0.2 (see Figure 2 and Figures S4 and S5 of the Supplementary Material),
which is the setting that is most comparable to the characteristics of the NP infection data. Also
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FIGURE 8: Analysis of the NP infection data. Estimates of the calibration intercepts a and cali-
bration slopes b (left) and negative log 10-transformed P-values obtained from the recalibration

tests (right) obtained for 100 partitions of the data into training and validation samples.

note that the number of observed type 1 events in the data is smaller than 3 at time points t > 20.
According to the recalibration tests (right panel of Figure 8), the deviations of the calibration
parameters from a = 0 and b = 1 were not substantial, as the majority of the null hypotheses on
calibration-in-the-large and refinement were not rejected at the 5% type 1 error level. This result
is again in line with the findings in the simulation study and also indicated a good calibration of
the discrete subdistribution model derived in Berger et al. (2020).

8. CONCLUDING REMARKS

Discrete time-to-event models have gained widespread popularity in applied research in recent
years (Tutz & Schmid, 2016; Lee, Feuer & Fine, 2018). Therefore, methodology for the
proper validation of their generalization performance is increasingly necessary. In this regard,
the methods presented here constitute a new set of tools to assess the calibration of discrete
subdistribution hazard models for competing risks analysis. They consist of a calibration plot for
graphical assessments as well as a recalibration model including tests on calibration-in-the-large
and refinement. Both methods are well connected to analogous approaches for binary regression
(Miller et al., 1993; Hosmer, Lemeshow & Sturdivant, 2013). In the single-event scenario, the
graphical tool presented here naturally reduces to the calibration plot proposed in Berger &
Schmid (2018).

Unlike Heyard et al. (2020), who proposed tools to assess the calibration of cause-specific
hazard models, we considered the subdistribution framework originally proposed by Fine &
Gray (1999) for competing risks data in continuous time. In contrast to cause-specific hazard
modelling, this approach has the advantage that only one model needs to be considered if
the interest is in the occurrence of one specific event. Subdistribution hazard modelling is of
high practical importance, as it allows the interpretation of regression coefficients in terms of
increasing/decreasing effects of the covariates on the incidence of the target event (Austin &
Fine, 2017). Furthermore, Young et al. (2020) suggested using differences in the cumulative
incidence functions as estimands in causal modelling. To evaluate the calibration of cumulative
incidence functions, Lee (2017) generated an alternative kind of calibration plot that compared
predictions of the cumulative incidence function to their respective nonparametric estimates.
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The simulation study and the analysis of the NP infection data suggest that the methods work
well under both correct and incorrect model specifications, even in “unfavourable” scenarios
with a high censoring rate and few type 1 events. However, one should be careful in situations
with a large number of time intervals when the observed number of type 1 events at later time
points is rare.

All evaluations presented in this article were performed using the R add-on package discSurv
(Welchowski & Schmid, 2019). It contains the function dataLongSubDist() to generate
the binary outcome vectors (8) and the corresponding weights (9) and (10). Parameter estimates
of the recalibration model were obtained by using the function glm() with the family function
binomial() for logistic regression.

ACKNOWLEDGEMENTS

We thank Jan Beyersmann for fruitful discussions on subdistribution hazard modelling and for
helpful suggestions on how to improve the manuscript. We thank the SIR-3 study investigators
for providing us with the NP infection data. Support by the German Research Foundation (DFG),
grant SCHM 2966/2-1, is gratefully acknowledged.

REFERENCES
Alba, A. C., Agoritsas, T., Walsh, M., Hanna, S., Iorioand, A., Devereaux, P. J., McGinn, T., & Guyatt,

G. (2017). Discrimination and calibration of clinical prediction models: Users’ guides to the medical
literature. Journal of the American Medical Association, 318, 1377–1384.

Andersen, P. K., Geskus, R. B., de Witte, T., & Putter, H. (2012). Competing risks in epidemiology:
Possibilities and pitfalls. International Journal of Epidemiology, 41, 861–870.

Austin, P. C., Lee, D. S., & Fine, J. P. (2016). Introduction to the analysis of survival data in the presence
of competing risks. Circulation, 133, 601–609.

Austin, P. C. & Fine, J. P. (2017). Practical recommendations for reporting Fine–Gray model analyses for
competing risk data. Statistics in Medicine, 36, 4391–4400.

Baker, S. G., Cook, N. R., Vickers, A., & Kramer, B. S. (2009). Using relative utility curves to evaluate
risk prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172, 729–748.

Berger, M. & Schmid, M. (2018). Semiparametric regression for discrete time-to-event data. Statistical
Modelling, 18, 322–345.

Berger, M., Schmid, M., Welchowski, T., Schmitz-Valckenberg, S., & Beyersmann, J. (2020). Sub-
distribution hazard models for competing risks in discrete time. Biostatistics, 21, 449–466,
https://doi.org/10.1093/biostatistics/kxy069.

Beyersmann, J., Gastmeier, P., Grundmann, H., Bärwolff, S., Geffers, C., Behnke, M., Rüden, H., &
Schumacher, M. (2006). Use of multistate models to assess prolongation of intensive care unit stay due
to nosocomial infection. Infection Control & Hospital Epidemiology, 27, 493–499.

Beyersmann, J., Allignol, A., & Schumacher, M. (2011). Competing Risks and Multistate Models with R.
Springer, New York.

Braun, D., Gorfine, M., Katki, H. A., Ziogas, A., & Parmigiani, G. (2018). Nonparametric adjustment
for measurement error in time-to-event data: Application to risk prediction models. Journal of the
American Statistical Association, 113, 14–25.

Cortese, G. & Andersen, P. K. (2010). Competing risks and time-dependent covariates. Biometrical Journal,
52, 138–158.

Cox, D. R. (1958). Two further applications of a model for binary regression. Biometrika, 45, 562–565.
Ding, A. A., Tian, S., Yu, Y., & Guo, H. (2012). A class of discrete transformation survival models with

application to default probability prediction. Journal of the American Statistical Association, 107,
990–1003.

Doane, D. P. (1976). Aesthetic frequency classifications. The American Statistician, 30, 181–183.
Fahrmeir, L. & Wagenpfeil, S. (1996). Smoothing hazard functions and time-varying effects in discrete

duration and competing risks models. Journal of the American Statistical Association, 91, 1584–1594.
Fine, J. P. & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk.

Journal of the American Statistical Association, 94, 496–509.

DOI: 10.1002/cjs.11633 The Canadian Journal of Statistics / La revue canadienne de statistique



590 BERGER AND SCHMID Vol. 50, No. 2

Gibbs, M. (2011). Ecological risk assessment, prediction, and assessing risk predictions. Risk Analysis: An
International Journal, 31, 1784–1788.

Harrell, F. E. (2015). Regression Modeling Strategies. Springer, New York.
Henderson, R. & Keiding, N. (2005). Individual survival time prediction using statistical models. Journal

of Medical Ethics, 31, 703–706.
Heyard, R., Timsit, J.-F., Held, L., & COMBACTE-MAGNET Consortium. (2020). Validation of discrete

time-to-event prediction models in the presence of competing risks. Biometrical Journal, 62, 643–657.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. Hoboken, NJ,

John Wiley & Sons.
Kalbfleisch, J. D. & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data, 2nd ed., Wiley,

Hoboken.
Kerr, K. F. & Janes, H. (2017). First things first: Risk model performance metrics should reflect the clinical

application. Statistics in Medicine, 36, 4503–4508.
Klein, J. P. & Andersen, P. K. (2005). Regression modeling of competing risks data based on pseudovalues

of the cumulative incidence function. Biometrics, 61, 223–229.
Lau, B., Cole, S. R., & Gange, S. J. (2009). Competing risk regression models for epidemiologic data.

American Journal of Epidemiology, 170, 244–256.
Le Gall, J.-R., Lemeshow, S., & Saulnier, F. (1993). A new simplified acute physiology score (SAPS II)

based on a European/North American multicenter study. Journal of the American Medical Association,
270, 2957–2963.

Lee, M. (2017). Inference for cumulative incidence on discrete failure times with competing risks. Journal
of Statistical Computation and Simulation, 87, 1989–2001.

Lee, M., Feuer, E. J., & Fine, J. P. (2018). On the analysis of discrete time competing risks data. Biometrics,
74, 1468–1481.

Liu, D., Zheng, Y., Prentice, R. L., & Hsu, L. (2014). Estimating risk with time-to-event data: An application
to the women’s health initiative. Journal of the American Statistical Association, 109, 514–524.

Miller, M. E., Langefeld, C. D., Tierney, W. M., Hui, S. L., & McDonald, C. J. (1993). Validation of
probabilistic predictions. Medical Decision Making, 13, 49–57.

Moons, K. G. M., Kengne, A. P., Grobbee, D. E., Royston, P., Vergouwe, Y., Altman, D. G., & Woodward,
M. (2012a). Risk prediction models: II. External validation, model updating, and impact assessment.
Heart, 98, 691–698.

Moons, K. G. M., Kengne, A. P., Woodward, M., Royston, P., Vergouwe, Y., Altman, D. G., & Grobbee,
D. E. (2012b). Risk prediction models: I. Development, internal validation, and assessing the incre-
mental value of a new (bio) marker. Heart, 98, 683–690.

Nightingale, F. (1863). Notes on Hospitals. Longman, Green, Longman, Roberts, and Green, London.
Poguntke, I., Schumacher, M., Beyersmann, J., & Wolkewitz, M. (2018). Simulation shows undesirable

results for competing risks analysis with time-dependent covariates for clinical outcomes. BMC Medical
Research Methodology, 18, 79.

Schmid, M. & Berger, M. (2020). Competing risks analysis for discrete time-to-event data. Wiley
Interdisciplinary Reviews: Computational Statistics, e1529. https://doi.org/10.1002/wics.1529.

Schmid, M., Tutz, G., & Welchowski, T. (2018). Discrimination measures for discrete time-to-event
predictions. Econometrics and Statistics, 7, 153–164.

Soave, D. M. & Strug, L. J. (2018). Testing calibration of Cox survival models at extremes of event risk.
Frontiers in Genetics, 9, 177.

Steyerberg, E. W. (2019). Clinical Prediction Models, 2nd ed., Springer, New York.
Steyerberg, E. W. & Harrell, F. E. (2016). Prediction models need appropriate internal, internal–external,

and external validation. Journal of Clinical Epidemiology, 69, 245–247.
Steyerberg, E. W. & Vergouwe, Y. (2014). Towards better clinical prediction models: Seven steps for

development and an ABCD for validation. European Heart Journal, 35, 1925–1931.
Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., Pencina, M. J.,

& Kattan, M. W. (2010). Assessing the performance of prediction models: A framework for some
traditional and novel measures. Epidemiology, 21, 128.

Tutz, G. & Schmid, M. (2016). Modeling Discrete Time-to-Event Data. Springer, New York.
Vickers, A. J. & Elkin, E. B. (2006). Decision curve analysis: A novel method for evaluating prediction

models. Medical Decision Making, 26, 565–574.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11633



2022 CALIBRATION OF SUBDISTRIBUTION HAZARD MODELS 591

Vickers, A. J., Van Calster, B., & Steyerberg, E. W. (2016). Net benefit approaches to the evaluation of
prediction models, molecular markers, and diagnostic tests. BMJ, 352, i6.

Welchowski, T. & Schmid, M. (2019). discSurv: Discrete Time Survival Analysis. R package version 1.4.1.
http://cran.r-project.org/web/packages/discSurv.

Witten, D. M. & Tibshirani, R. (2010). Survival analysis with high-dimensional covariates. Statistical
Methods in Medical Research, 19, 29–51.

Wolkewitz, M., Vonberg, R. P., Grundmann, H., Beyersmann, J., Gastmeier, P., Bärwolff, S., Geffers, C.,
Behnke, M., Rüden, H., & Schumacher, M. (2008). Risk factors for the development of nosocomial
pneumonia and mortality on intensive care units: Application of competing risks models. Critical Care,
12, R44.

Young, J. G., Stensrud, M. J., Tchetgen Tchetgen, E. J., & Hernán, M. A. (2020). A causal framework for
classical statistical estimands in failure-time settings with competing events. Statistics in Medicine, 39,
1199–1236.

Received 6 August 2020
Accepted 22 December 2020

DOI: 10.1002/cjs.11633 The Canadian Journal of Statistics / La revue canadienne de statistique



The Canadian Journal of Statistics
Vol. xx, No. yy, 2020, Pages 1–25
La revue canadienne de statistique

1

Assessing the Calibration of Subdistribution
Hazard Models in Discrete Time

– Supplementary Material –

Moritz Berger1* and Matthias Schmid1

1Institute of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University
of Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany

1. LOG-LIKELIHOOD OF THE RECALIBRATION MODEL (12)

To derive the log-likelihood of the logistic recalibration model for the discrete
subdistribution hazard model, it is assumed that a = 0, hence the predictor re-
duces to
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2. FURTHER NUMERICAL RESULTS
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Figure S1: Illustration of the experimental design of the simulation study. The bars display the mean relative
frequencies of observed events (0 = censoring event, 1 = event of interest, 2 = competing event) that were
obtained from 100 simulated data sets (k = 5). The ratio of type 1 and type 2 events was approximately the

same in each row (C = degree of censoring).
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Figure S2: Results of the simulation study when fitting the true data-generating model. Calibration plots
refer to one randomly chosen replication in each simulation scenario using G = 20 subsets (k = 10). The

45-degree lines (dashed) indicate perfect calibration (C = degree of censoring).
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Figure S3: Results of the simulation study when fitting the true data-generating model. Calibration plots
refer to one randomly chosen replication in each simulation scenario using G = 20 subsets (k = 15). The

45-degree lines (dashed) indicate perfect calibration (C = degree of censoring).
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Figure S4: Results of the simulation study when fitting the true data-generating model. The boxplots visu-
alize the estimates of the calibration intercepts a and calibration slopes b that were obtained from fitting the

logistic recalibration model (k = 10).
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Figure S5: Results of the simulation study when fitting the true data-generating model. The boxplots visu-
alize the estimates of the calibration intercepts a and calibration slopes b that were obtained from fitting the

logistic recalibration model (k = 15).
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Figure S6: Results of the simulation study when fitting the true data-generating model. The boxplots visu-
alize the negative log10-transformed p-values obtained from the recalibration tests (k = 10). The dashed
lines correspond to a p-value of 0.05. A value above the dashed line indicates a significant result at the 5%

type 1 error level.
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Figure S7: Results of the simulation study when fitting the true data-generating model. The boxplots visu-
alize the negative log10-transformed p-values obtained from the recalibration tests (k = 15). The dashed
lines correspond to a p-value of 0.05. A value above the dashed line indicates a significant result at the 5%

type 1 error level.
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Figure S8: Results of the simulation study under the misspecified model (c). The boxplots visualize the
estimates of the calibration intercepts a and calibration slopes b that were obtained from fitting the logistic

recalibration model (k = 10).
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Figure S9: Results of the simulation study under the misspecified model (d). The boxplots visualize the
estimates of the calibration intercepts a and calibration slopes b that were obtained from fitting the logistic

recalibration model (k = 10).
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Figure S10: Results of the simulation study under the misspecified model (e). The boxplots visualize the
estimates of the calibration intercepts a and calibration slopes b that were obtained from fitting the logistic

recalibration model (k = 10).
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Figure S11: Results of the simulation study under the misspecified model (c). The boxplots visualize
the negative log10-transformed p-values obtained from the recalibration tests (k = 10). The dashed lines
correspond to a p-value of 0.05. A value above the dashed line indicates a significant result at the 5% type

1 error level.
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Figure S12: Results of the simulation study under the misspecified model (d). The boxplots visualize
the negative log10-transformed p-values obtained from the recalibration tests (k = 10). The dashed lines
correspond to a p-value of 0.05. A value above the dashed line indicates a significant result at the 5% type

1 error level.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2020 15

●●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●
●

●●
●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

C: weak C: medium C: strong

q=0.2

q=0.4

q=0.8

i ii iii i ii iii i ii iii

0

5

10

15

0

5

10

15

0

5

10

15

Hypothesis

−
lo

g1
0(

P
−

va
lu

e)

Figure S13: Results of the simulation study under the misspecified model (e). The boxplots visualize
the negative log10-transformed p-values obtained from the recalibration tests (k = 10). The dashed lines
correspond to a p-value of 0.05. A value above the dashed line indicates a significant result at the 5% type

1 error level.
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Figure S14: Analysis of the NP infection data. Calibration plots refer to 25 randomly chosen partitions
of the data into a training and a validation sample using G = 24 subsets. The 45-degree line (dashed line)

indicates perfect calibration.
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3 Diskussion

Im Rahmen dieser Arbeit wurden eine Vielzahl von Methoden für die Analyse von

diskreten Ereigniszeitdaten entwickelt, die in umfangreichen Simulationsstudien

und anhand von verschiedenen Anwendungsbeispielen evaluiert wurden.

Alle Methoden können ganz allgemein nicht nur in klinischen und epidemiologi-

schen Studien, sondern auch in allen Bereichen der angewandten Forschung, wie

beispielsweise in den Sozial- und Wirtschaftswissenschaften, eingesetzt werden.

Dabei ist nicht relevant, ob es sich bei den Daten um gruppierte stetige Ereig-

niszeiten oder um immanent diskrete Ereigniszeiten handelt (vgl. Kapitel 1.2).

Es ist zu beachten, dass es sich bei gruppierten Daten auch um einen Spezialfall

von intervallzensierten Daten mit festen Intervallgrenzen handelt (Lindsey und

Ryan, 1998; Sun, 2007). Methoden für intervallzensierte Ereigniszeitdaten stel-

len ein eigenes Gebiet aktueller Forschung dar, das über diese Arbeit hinausgeht,

siehe z.B. Gómez et al. (2009), Bogaerts et al. (2017), Fu und Simono� (2017)

und Yao et al. (2021).

Ein groÿer Vorteil der in den Kapiteln 2.1 bis 2.4 vorgestellten Hazard-Modelle

ist, dass sie sich auf die Struktur von klassischen generalisierten Regressions-

modellen für binäre und kategoriale Zielvariablen zurückführen lassen. Dies er-

möglicht die Verwendung von etablierten Softwareprogrammen zur Schätzung

der Regressionskoe�zienten und gegebenenfalls zur Berechnung von zugehöri-

gen Varianzschätzern. Wichtige R Funktionen, die in dieser Arbeit herangezo-

gen wurden, sind glm() aus dem Basispaket und gam() aus dem Zusatzpaket

mgcv sowie rpart() und TSVC() aus den jeweils gleichnamigen Zusatzpake-

ten. Um die Likelihood-Funktionen der Modelle zu bilden und die Schätzungen

durchzuführen, müssen die originalen Daten im Vorfeld jeweils in eine erweiter-

te Datenmatrix (engl., �augmented data matrix�) umgewandelt werden, die sich

wiederum aus kleineren Datenmatrizen für jede/n Patienten/Patientin zusam-

mensetzt. Die konkrete Form der erweiterten Datenmatrix unterscheidet sich je

nach Modell und wurde in den Ergebnisteilen im Detail beschrieben. Zur Auf-

bereitung der Daten und zur Erstellung der erweiterten Datenmatrix wurden

jeweils die Funktionen des Zusatzpaketes discSurv in R verwendet.

Klassische Regressionsmodelle für stetige Ereigniszeiten setzen die Proportiona-

lität der Hazardfunktion über die Zeit voraus (Cox, 1972; Fine und Gray, 1999).

Diskrete Hazard-Modelle hingegen sind �exibler, da sie auch die Modellierung

184



von nicht proportionalen Hazardfunktionen erlauben. Die Wahl der Antwortfunk-

tion h(·) entscheidet dabei jeweils, welche Proportionalitätseigenschaft durch das
Modell abgebildet wird (Tutz und Schmid, 2016). Das logistische Hazard-Modell,

das in Kapitel 2.1 und 2.2 betrachtet wurde, wird im Englischen auch entspre-

chend als �proportional continuation ratio model� bezeichnet. Denn es kann ab-

geleitet werden, dass für zwei Patienten/Patientinnen mit erklärenden Variablen

X und X̃ das Verhältnis der sogenannten Fortsetzungsraten

P (T = t|X)

P (T > t|X)
/
P (T = t|X̃)

P (T > t|X̃)
, t = 1, . . . , k , (24)

nämlich der Verhältnisse der Wahrscheinlichkeit, dass das Ereignis zum Zeit-

punkt t eintritt zur Wahrscheinlichkeit, dass das Ereignis zu einem späteren

Zeitpunkt eintritt, über die Zeit als proportional angenommen wird. Für das

Gompertz-Modell mit inverser komplementärer log-log-Funktion kann gezeigt

werden, dass die Proportionalität über die Zeit für das Verhältnis der Loga-

rithmen der Überlebensfunktionen

log(S(t|X)) / log(S(t|X̃)) , t = 1, . . . , k , (25)

gilt. Für weitere Alternativen sei auf Tutz und Schmid (2016) verwiesen. Eine

wichtige Eigenschaft des Gompertz-Modells, die in Kapitel 2.4 und 2.5 genutzt

wird, ist dessen Verknüpfung zu stetigen Ereigniszeiten. Tutz und Schmid (2016)

zeigen, dass das Gompertz-Modell gilt, falls den diskreten Ereigniszeiten grup-

pierte, stetige Daten zugrunde liegen, die die Proportionalität der Hazardfunk-

tionen über die Zeit erfüllen. Für das diskrete Subdistribution Hazard-Modell be-

deutet dies, dass bei Verwendung der inversen komplementären log-log-Funktion

die Parameter γ denen des stetigen Modells nach Fine und Gray (1999) entspre-

chen.

Die Einbettung der diskreten Hazard-Modelle in die Klasse der binären und ka-

tegorialen Regressionsmodelle bietet, wie in den Ergebnisteilen beschrieben, die

einfache Möglichkeit zahlreicher Erweiterungen der klassischen Parametrisierung.

Kapitel 2.2 befasst sich dabei explizit mit der Modellierung von zeit-variierenden

Koe�zienten. Diese können als glatte Funktionen, z.B. über P-Splines, oder

als stückweise konstante Funktionen über die Zeit mithilfe des vorgeschlagenen

Baum-basierten Algorithmus spezi�ziert werden. Für diskrete Ereigniszeiten ist

zweitere Betrachtungsweise attraktiv, da es sehr plausibel ist, dass sich E�ek-
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te über bestimmte Zeitintervalle hinweg sprunghaft ändern. Auch die Baum-

basierten Modelle in Kapitel 2.1 und 2.3 ermöglichen es, zeit-variierende E�ekte

abzubilden, da sowohl die erklärenden Variablen X als auch die Zeit t für die

Baumkonstruktion herangezogen werden und somit jeder Endknoten einem Un-

terraum der erklärenden Variablen und einem Zeitintervall entspricht. Ein Ver-

gleich gängiger Methoden für die Modellierung von zeit-variierenden E�ekten für

stetige Ereigniszeiten �ndet sich in Bansal und Heagerty (2019).

In den Darstellungen dieser Arbeit wird weitgehend davon ausgegangen, dass die

Werte der erklärenden Variablen X über die Zeit konstant sind. Diese Einschrän-

kung kann prinzipiell aufgehoben werden, indem zeit-variierende Werte der er-

klärenden Variablen Xt = (X1t, . . . , Xpt)
> in die erweiterte Datenmatrix, die zur

Schätzung der Modelle gebildet wird, eingefügt werden. Im logistischen Hazard-

Modell (17), im multinomialen logistischen Hazard-Modell (19), sowie im Baum-

basierten Modell (20) ist dies ohne Weiteres möglich. Auch eine Kombination von

zeit-variierenden Koe�zienten und zeit-variierenden Variablen in Modell (18) ist

denkbar. Im Subdistribution Hazard-Modell (22) sind zeit-variierende Variablen

dagegen problematisch. Der Grund dafür ist, dass die gewichtete Likelihood-

Funktion, die für die Schätzung herangezogen wird, die (zeit-variierenden) Wer-

te der erklärenden Variablen bis zum Zeitpunkt k − 1 benötigt, d.h. über die

beobachtete Ereigniszeit T̃ hinaus. Sind die erklärenden Variablen nicht extern

(d.h. an den untersuchten Patienten/Patientinnen gemessen), sind diese Werte

in der Regel jedoch nicht bekannt (Kalb�eisch und Prentice, 2002). Der Um-

gang mit zeit-variierenden erklärenden Variablen mit einem Fokus auf das stetige

Cox-Modell und das Konzept von internen und externen Variablen wird unter

anderem in Fisher und Lin (1999) diskutiert.

Parametrische und semi-parameterische diskrete Hazard-Modelle erlauben über

die Ansätze in dieser Arbeit hinaus die Verwendung von regularisierten Schätz-

verfahren wie Lasso (Tibshirani, 1996) oder Boosting (Bühlmann und Hothorn,

2007) zur Selektion von ein�ussreichen Variablen. Dies ist in hochdimensionalen

Situationen von Nutzen, insbesondere wenn die Anzahl an Parametern die Anzahl

an Beobachtungen in den Daten übersteigt. Eine Lasso-Schätzung des logisti-

schen Hazard-Modells (17) kann in R beispielsweise mit dem Zusatzpaket pena-

lized (Goeman, 2018) durchgeführt werden. Eine penalisierte Schätzmethode,

die speziell auf die Struktur des multinomialen logistischen Hazard-Modells (19)

zugeschnitten ist, wurde von Möst et al. (2016) vorgeschlagen (siehe auch Ka-
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pitel 2.3). Bei entsprechender Spezi�kation der Strafterme bewirkt die Methode

nach Möst et al. (2016), dass alle Koe�zienten, die mit einem der Ereignisse vom

Typ j assoziiert sind, gemeinsam in Richtung Null geschrumpft werden.

Wichtige Alternativen zu den genannten regularisierten Schätzverfahren, die

ebenfalls eine datengesteuerte Selektion von ein�ussreichen Variablen ermögli-

chen, sind nicht-parametrische, Baum-basierte Methoden. Dazu zählen in erster

Linie das Verfahren von Schmid et al. (2016), das in Kapitel 2.1 rekapituliert

wurde, und dessen Erweiterung für konkurrierende Ereignisse, das in Kapitel 2.3

eingeführt wurde. Weitere Baum-basierte Verfahren zur Modellierung diskreter

Ereigniszeiten (inkl. Random-Forest-Algorithmen) wurden unter anderem von

Bou-Hamad et al. (2009), Bou-Hamad et al. (2011), Janitza und Tutz (2015),

Tiendrébéogo et al. (2019), Kretowska (2019), Schmid et al. (2020) und Moradi-

an et al. (2021) vorgeschlagen.

Neben dem Vergleich der neu entwickelten Methoden mit existierenden Verfah-

ren lag ein Fokus der Simulationsstudien in dieser Arbeit darauf, die Güte der

neuen Methoden in Situationen mit (i) unterschiedlich hohem Anteil zensierter

Beobachtungen, und (ii) unterschiedlicher Anzahl an diskreten Zeitpunkten k zu

untersuchen. In allen Fällen zeigte sich, dass die vorgeschlagenen Methoden auch

bei verhältnismäÿig hoher Zensierung (von bis zu 75%) sehr gut funktionieren.

Des Weiteren wurde o�ensichtlich, dass die diskreten Modelle den Methoden für

stetige Ereigniszeiten überlegen sind, wenn die Anzahl an diskreten Zeitpunkten

klein (z.B. k = 5), und damit die Anzahl an Bindungen groÿ ist. Der systemati-

sche Vergleich anhand des Subdistribution Hazard-Modells in Kapitel 2.4 zeigte

auf, dass die Schätzungen des stetigen Modells nach Fine und Gray (1999) so-

wohl mit der Korrekturmethode nach Breslow als auch nach Efron systematisch

nach unten verzerrt waren.

Bei der Analyse von Ereigniszeiten mit konkurrierenden Ereignissen kann man

prinzipiell entweder jedes Ereignis über die ereignis-spezi�schen Hazardfunktio-

nen modellieren (wie in Kapitel 2.3) oder nur ein einzelnes Ereignis über die

Subdistribution Hazardfunktion (wie in Kapitel 2.4). Während die Schätzung der

ereignis-spezi�schen Hazardfunktionen einfacher umsetzbar ist, ist zu beachten,

dass die Herleitung und Interpretation der kumulativen Inzidenzfunktionen dabei

erschwert sind (Beyersmann et al., 2011). Der Grund dafür ist, dass die kumu-

lative Inzidenzfunktion für ein Ereignis vom Typ j von den ereignis-spezi�schen

Hazardfunktionen aller möglichen Ereignisse λ1, . . . , λJ abhängt, siehe auch Glei-
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chung (9). Die Subdistribution Hazardfunktion für ein Ereignis vom Typ j hat

hingegen eine direkte Verknüpfung zur zugehörigen kumulativen Inzidenzfunkti-

on (vgl. Kapitel 2.4). Eine Übersicht aktueller Methoden für diskrete Ereigniszeit-

daten mit konkurrierenden Ereignissen inklusive einer Schritt-für-Schritt-Analyse

�ndet sich auch in Schmid und Berger (2020).

Neben der Entwicklung neuartiger Methoden zur Erstellung von Vorhersagemo-

dellen widmete sich diese Arbeit auch der externen Validierung neuer Modelle.

Zur Beurteilung der Kalibrierung stehen für die Anwender insgesamt die Me-

thoden aus Kapitel 2.1 für diskrete Hazard-Modelle, von Heyard et al. (2019)

für diskrete ereignis-spezi�sche Hazard-Modelle und aus Kapitel 2.5 für diskrete

Subdistribution Hazard-Modelle zur Verfügung.

4 Zusammenfassung

Die Ereigniszeitanalyse stellt ein weitverbreitetes, wichtiges Instrument für die

angewandte Forschung dar. Wie der Name schon sagt, wird dabei die Zeit bis

zum Eintreten eines oder mehrerer interessierender Ereignisse in Abhängigkeit

von Risikofaktoren analysiert. Dies kann vor allem im Rahmen der Präzisions-

medizin einen entscheidenden Beitrag zur Individualisierung von Medikamenten

und zur genauen Abstimmung von Therapien leisten. Da in der Praxis die Er-

eigniszeiten generell auf einer diskreten Skala gemessen werden, bedarf es dafür

geeigneter Methoden. In dieser Arbeit wurden zahlreiche parametrische, semi-

parametrische und nicht-parametrische Verfahren vorgestellt, die auf diskrete

Daten zugeschnitten sind. Diese sind den jeweiligen Methoden für stetige Er-

eigniszeiten vor allem dann vorzuziehen, wenn die Anzahl diskreter Zeitpunkte

verhältnismäÿig klein ist.

Ein wichtiger Vorteil von diskreten Hazardfunktionen im Vergleich zu stetigen

Hazardfunktionen ist, dass sie bedingte Wahrscheinlichkeiten beschreiben und

damit für Anwender deutlich einfacher zu interpretieren sind als Hazardraten aus

stetigen Modellen. Daraus ergibt sich auch die Analogie von diskreten Hazard-

Modellen zur Klasse der sequentiellen Regressionsmodelle für ordinale Zielva-

riablen, die in ihrer Form übereinstimmen (Tutz, 2012). Sequentielle Modelle

wurden jüngst über den Kontext der diskreten Ereigniszeitanalyse hinaus ver-

wendet, um die Verteilung von Einkommenskategorien (Tutz und Berger, 2020)

und Zähldaten (Berger und Tutz, 2021) zu modellieren.
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Die verschiedenen Anwendungsbeispiele in dieser Arbeit illustrieren den Nutzen

und den Mehrwert der neuen, diskreten Methoden. Die Analyse der Studie unter

Patienten/Patientinnen mit odontogenen Infektionen (siehe Kapitel 2.2) deck-

te beispielsweise auf, dass die Erkrankung an Diabetes Typ 2 einen wichtigen

Risikofaktor darstellt, der die Liegedauer dieser Patienten/Patientinnen deut-

lich verlängert. Durch die Auswertungen der Daten der pairfam-Studie wurde

der zeit-variierende E�ekt des Ausbildungsniveaus und der Lebenszufriedenheit

der Frauen auf die Zeit bis zur Geburt des ersten Kindes deutlich. Die Analyse

der MODIAMD-Studie in Kapitel 2.3 unterstrich auÿerdem den relevanten Ef-

fekt von refraktilen Drusen und des Alters der Patienten/Patientinnen auf die

Entwicklung von altersbedingter Makuladegeneration im Spätstadium.

Aufbauend auf der Arbeit von Tutz und Schmid (2016) bilden die hier entwi-

ckelten Methoden eine umfangreiche Auswahl an Alternativen für die Analyse

diskreter Ereigniszeiten. Fragestellungen, die über den Rahmen dieser Arbeit

hinausgehen, sind unter anderem (i) die Analyse von Daten mit Messwieder-

holungen (siehe Tutz und Schmid, 2016, Kapitel 9), und (ii) die Analyse von

sogenannten Multi-Spell-Daten, in denen ein oder mehrere mögliche Ereignisse

wiederholt auftreten können (siehe Tutz und Schmid, 2016, Kapitel 10).
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