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Summary 

The introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the human 

population presented an enormous medical and economic crisis that required an immediate response 

from the scientific community. In this unprecedented effort, recent developments in the field of 

single-cell omics have proved particularly helpful in deciphering the complex immune response to this 

new pathogen and have contributed significantly to a detailed understanding of the immunopathology 

of COVID-19.  

In this cumulative thesis, I review the major developments in the field of single-cell omics for systems 

immunology, describe ongoing challenges and improvements in their clinical implementation, and 

present my contributions to understanding the systemic immune response in COVID-19 using single-

cell omics approaches through three publications.  

Initially, we developed an optimized and safe workflow for the application of single-cell 

transcriptomics and proteomics to infectious diseases. Using this workflow, we studied changes in the 

systemic composition and activation of immune cells across COVID-19 disease severities and reported 

profound dysregulation of the myeloid cell compartment in severe disease with dysfunctional 

monocytes and neutrophils and signs of emergency myelopoiesis. In addition, we examined the 

potential consequences of the derailment of the innate immune system for the induction of the 

adaptive immune response against SARS-CoV-2 and identified critical alterations in the signal 

integration processes by antigen-presenting cells and their interaction with T cells in severe diseases.  

Finally, I discuss our findings in the context of long-term sequelae of COVID-19 and persistent 

adaptations of the innate immune system after infection and present my perspective on the future of 

the clinical application of high-dimensional omics techniques with single-cell resolution. 
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Zusammenfassung 

Die Einschleppung von SARS-CoV-2 (Schweres Akutes Respiratorisches Syndrom Coronavirus 2) in die 

menschliche Bevölkerung stellte eine enorme medizinische und wirtschaftliche Krise dar, die eine 

sofortige Reaktion der wissenschaftlichen Gemeinschaft erforderte. Bei dieser beispiellosen 

Anstrengung erwiesen sich die jüngsten Entwicklungen auf dem Gebiet der Einzelzellgenomik zur 

Entschlüsselung der komplexen Immunantwort auf diesen neuen Erreger als besonders hilfreich und 

trugen wesentlich zu einem detaillierten Verständnis der Immunpathologie von COVID-19 bei. 

In dieser kumulativen Dissertation gebe ich einen Überblick über die wichtigsten Entwicklungen auf 

dem Gebiet der Einzelzellgenomik für die Systemimmunologie, beschreibe bestehende 

Herausforderungen und notwendige Verbesserungen für ihre klinische Anwendung und stelle meine 

Beiträge zum Verständnis der systemischen Immunantwort bei COVID-19 vor, welche ich mithilfe der 

Einzelzellgenomik gewonnen habe. 

Zunächst haben wir einen optimierten und sicheren Arbeitsablauf für die Anwendung der Einzelzell-

Transkriptomik und Proteomik auf Infektionskrankheiten entwickelt. Mithilfe dieses Arbeitsablaufs 

haben wir Veränderungen in der systemischen Zusammensetzung und Aktivierung von Immunzellen 

über diverse Verläufe von COVID-19 untersucht und eine tiefgreifende Dysregulation des myeloiden 

Zellkompartiments bei schweren Erkrankungen mit dysfunktionalen Monozyten und Neutrophilen, 

sowie Anzeichen von Notfall-Myelopoese beschrieben. Darüber hinaus haben wir die Relevanz dieser 

Störungen des angeborenen Immunsystems für die Induktion der adaptiven Immunantwort gegen 

SARS-CoV-2 untersucht und kritische Veränderungen in der Signalintegration antigenpräsentierender 

Zellen und deren Interaktion mit T-Zellen bei schweren Erkrankungen identifiziert. 

Abschließend diskutiere ich unsere Erkenntnisse im Kontext von Langzeitfolgen von COVID-19 und der 

Adaption des angeborenen Immunsystems nach einer Infektion und präsentiere meine 

Zukunftsperspektiven der klinischen Anwendung hochdimensionaler Omik-Techniken mit 

Einzelzellauflösung.  
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1. Preface 

The blue tit, a small passerine bird in the tit family, has for a long time been classified as sexually 

monochromatic based on human color perception. Unlike humans, however, most birds are visually 

sensitive to wavelengths in the near-ultraviolet (300-400 nm) and, for the female bird’s eye, the male 

blue tit shines in a special guise invisible to us. Only using UV photography, we discovered its 

unexpected beauty (Hunt et al., 1998; Tedore and Nilsson, 2019).  

Human perception is naturally limited in many ways. We are unable to fully appreciate the beauty and 

complexity of nature on our own. Only through the development and use of technological aids we can 

uncover what was previously hidden. In addition to the discoveries, methodological advances spark 

new questions and therefore have a determining influence on the path of discovery. 

While modern technologies allow us to investigate biological phenomena at molecular resolution in 

reductionist systems for decades, linking the individual observations to a larger context presents a 

remaining challenge. Recent technological developments in modern biology tackle this challenge to 

capture the underlying mechanisms at system-wide scale. 

The present work aims to summarize the recent developments in the field of single-cell omics for 

systems immunology, map out persisting challenges and solutions for their clinical application and 

demonstrate their power at the example of COVID-19. 
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2. Introduction 

2.1. Systems approaches for modern medicine 

A cell is the smallest structural and functional unit of an organism. Therefore, every attempt at a 

holistic understanding of a biological phenomenon in health and disease ultimately requires the study 

of its underlying phenotypic features and molecular mechanisms at single-cell resolution. Assessing 

cellular identity, heterogeneity and function is crucial to map the complex networks of biological 

processes.  

Since the genetic material, i.e. the genome, of every cell in an organism is largely identical, cellular 

identity is defined – at least in parts – by the precise and dynamic use of its functional elements, the 

genes. Technological advances over the last decades, particularly in the field of DNA sequencing, 

enable researchers today to measure gene expression and regulation at unprecedented resolution 

and scale. So-called ‘omics’ technologies are characterized by the aim of universal detection of their 

target molecules and molecular structures. ‘Genomics’ focuses on the structure, function, evolution, 

and editing of an organism's complete set of DNA, its genome. ‘Epigenomics’ comprises a broad range 

of technologies measuring various epigenetic features reflecting the wide variety of regulatory 

mechanisms controlling gene expression. ‘Transcriptomics’ describes a group of technologies 

targeting the products of transcription, that is the whole of the RNA present in a cell at a given time. 

Recent technological advances go beyond sequencing-based assessment of the genome, its output, 

and its regulation. Proteomics, metabolomics, microbiomics, and lipidomics have been introduced and 

will contribute to a condensed understanding of complex biological relationships.  

Unlike reductionist experimental approaches to elucidate individual parts of the puzzle, systems 

approaches aim at putting the pieces together, which requires specialized methodologies (Aderem, 

2005). DNA microarray analysis was first described in 1995 (Schena et al., 1995). This technology for 

the first time allowed to probe the expression of thousands of genes simultaneously – a new capability 

with revolutionary potential at the time (Figure 1). The highly parallelized technique presented the 

starting point for the use of high-dimensional transcriptomics in medicine and allowed for 

fundamental observations, such as the identification of specific genes for tumor classification 

(Quackenbush, 2006) and those involved in cancer progression (DeRisi et al., 1996), the development 

of asthma (Erle and Yang, 2003) or the role of immature granulocytes in Systemic Lupus 

Erythematosus (Bennett et al., 2003). While microarrays use pre-defined probes to quantify the 

expression of selected genes, the development of massive scale RNA sequencing (RNA-seq) based on 

next generation sequencing (NGS) allowed for unbiased, near-complete transcriptome analysis 

(Cloonan et al., 2008; Shendure et al., 2005; Wang et al., 2009) and thus expanded the means to 

identify new disease biology and to profile biomarkers and therapeutic targets for clinical indications 

(Figure 1). This facilitated the examination of diverse RNA species, including non-coding RNAs, as well 

as alternative splicing in medical contexts and has generated novel concepts regarding their 

diagnostic, prognostic and therapeutic applicability (Byron et al., 2016). For example, genome-wide 

profiling of the cardiac transcriptome has revealed heart-specific long non-coding RNA expression 

relevant to cardiac function and regeneration after myocardial infarction (Ounzain et al., 2015). 

Large consortia, such as GTEx (GTEx Consortium, 2013), FANTOM (Kawai et al., 2001) or ImmGen 

(Heng et al., 2008), formed to establish extensive resources of standardized omics data across 

organisms, tissues and cell types with the aim to increase our understanding of how changes in our 

genes contribute to human health and disease. 
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Figure 1: Schematic depiction of the development of omics technologies 
Since the introduction of microarray analysis in 1995, omics technologies have continued to evolve. In particular, 

thanks to the development of highly parallelized next generation sequencing (NGS) in 2005, throughput and 

resolution of genome-wide measurements were continuously improved and now enable the measurement of 

multiple layers of information in thousands of cells. 

 

In this early phase of the omics era, technological limitations restricted genome-wide measurements 

to collections of cells yielding averaged signals. While these bulk readouts have proven to be highly 

informative, they mask signals from rare cellular sub-populations or transcriptionally distinct cellular 

states. 

Consequently, it did not take more than 4 years from the introduction of RNA-seq to the first whole-

transcriptome analysis of a single cell (Figure 1) (Islam et al., 2011; Tang et al., 2009). Critical advances 

in cell isolation and library production for DNA sequencing have helped overcome these limitations 

and now allow for high-throughput and high-resolution transcriptomic profiling at single-cell level 

(Svensson et al., 2018). While the physical isolation of cells by fluorescence-activated cell sorting 

(FACS) enables the analysis of rare and selected cells (Jaitin et al., 2014), it limits the investigation to 

pre-defined populations and restricts the throughput. In contrast, non-selective isolation of single cells 

using, for example, microfluidics or micro-liter well arrays allows for nearly unbiased profiling of the 

cellular composition of a given sample (Gierahn et al., 2017; Macosko et al., 2015). In addition, split-

pool approaches use combinatorial indexing to identify single cells without physical isolation of 

individual cells (Cao et al., 2017; Rosenberg et al., 2018). 

In the last decade, omics studies with single-cell resolution have become widespread. While 

pioneering academic protocols for single-cell RNA-seq (scRNA-seq) were applied by highly specialized 

labs, commercial products helped to spread the technology across the globe (Figure 2A). In addition 

to the escalating spread and frequency of studies applying single-cell methods, technological advances 

are also enabling a continuous increase in sensitivity and throughput now reaching millions of cells in 

a single experiment (Figure 2B).  

This new resolution and throughput naturally come with novel opportunities and challenges in data 

analysis. Apart from the computing resources needed to process and handle the ever-growing 

amounts of data, analysis and biological interpretation require new computational solutions and 

algorithms (Lähnemann et al., 2020). Appropriate statistical approaches to model the sparsity of the 

information derived from a single cell, either due to limited sensitivity of the method or the stochastic 

nature of gene expression, and to tackle the uncertainty of the measurements in thousands of cells 

need to be developed, tested, and continuously optimized. Accordingly, new methods for data 

analysis are published at very high pace. This wave of new developments has spawned creative 

solutions that incorporate state-of-the-art statistical and machine learning approaches to open 

unprecedented possibilities to analyze cellular composition, probe the dynamics and regulation of 

gene expression at the single-cell level, infer cellular plasticity and developmental hierarchies and 

integrate data sets of different studies (Zappia and Theis, 2021). 
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Figure 2: Development of single-cell studies over space and time 
A) Geo-spatial distribution of original research publications including single-cell methods in 2022 

(https://github.com/jsschrepping/Geospatial_PubMed_Visualization). B) Visualization of single-cell 

transcriptomics studies over time and their respective number of profiled cells reported (data source: 

https://www.nxn.se/single-cell-studies/ date: 220926). 

 

Transcriptomics is the most advanced field for the application of single-cell methods. However, 

methods for genomics and epigenomics at single-cell level are following up rapidly (Evrony et al., 2021; 

Schulte-Schrepping et al., 2020a). In contrast to transcriptomics, which quantifies the frequency of 

copies of the transcribed genes, genomics and epigenomics directly target the DNA molecules of a 

cell. Hence, the respective data suffers from even higher sparsity and noise as the genomic material 

assessed in a single cell of diploid organisms is limited to two copies. Despite these challenges, 

sophisticated approaches have been developed that enable analysis of mutational processes and 

genetic mosaicism in health and disease (Dong et al., 2017; Guo et al., 2022), lineage tracing in humans 

(Ludwig et al., 2019), and inference of genetic and epigenetic mechanisms of transcriptional regulation 

(Morabito et al., 2021; Perez et al., 2022). Measuring individual modalities in isolation is informative, 

but to understand how the different levels of regulation interact to control the state and behavior of 

a cell through transcription multiple measurements need to be combined in one experiment. 

Obtaining information about the state of the genome and its output from the same cell using multi-

omics approaches is therefore a major goal of current developments (Figure 1) (Chappell et al., 2018; 

Meers et al., 2022; Wang et al., 2021). 

 

2.2. Challenges in clinical application of single-cell transcriptomics 

Omics technologies with single-cell resolution open entirely new possibilities to explore multiple 

disease-relevant parameters, including cell-type distributions in diseased tissues, cell type-specific 

changes in gene expression as well as identification of potential biomarkers and therapeutic targets 

in an unbiased fashion in one experiment. A pioneering study by Tirosh et al. used the technology to 

dissect the multicellular ecosystem of metastatic melanoma and identified distinct transcriptional 

states of malignant cells (Tirosh et al., 2016) – a work that preceded a whole series of research 

exploring the role of rare cells in tumor invasion, metastasis and progression (Jia et al., 2022). Beyond 

cancer, also complex chronic inflammatory diseases, such as inflammatory bowel disease (IBD) or 

multiple sclerosis (MS), have quickly become the subject of investigations using the new analytical 

possibilities of single-cell resolution (Martin et al., 2019; Schafflick et al., 2020; Smillie et al., 2019). In 

addition, understanding the dynamics and heterogeneity of cellular immune responses to infection, 

such as HIV, presented another utilization of single-cell transcriptomics (Kazer et al., 2020), that should 

be repeated frequently in subsequent years.  
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As a concerted effort to organize this new wave of research and join forces, many institutions and 

researchers formed the Human Cell Atlas (HCA) consortium with the overarching aim to create 

comprehensive reference maps of all cells in the human body as a basis for understanding health and 

disease (Rozenblatt-Rosen et al., 2017).  

While falling sequencing prices and the competitive market for single-cell kits and instruments are 

gradually removing the financial barriers to taking omics-based solutions from the bench to the 

bedside, there are still numerous technical hurdles to overcome. 

Single-cell protocols are highly complex and involve many steps to go from a tissue sample to the high-

dimensional readings. The workflows allow for high technical mutability at each step to optimize the 

whole protocol for a specific sample (Figure 3). While this modularity is beneficial for obtaining the 

best possible data, it creates the risk of missing standards and lack of comparability. Furthermore, the 

multitude of necessary decisions requires extensive knowledge and experience in diverse fields 

ranging from clinical practice to molecular biology and biochemistry to bioinformatics data analysis, 

resulting in an imperative need for transdisciplinary teams with a broad expertise, which consequently 

hampers its use. Pursuing the goal to transform single-cell omics technologies from research to routine 

application in the clinical setting thus demands both the informed optimization, but also 

standardization of many aspects of the experimental and analytical workflows.  

 

 

Figure 3: Complexity of single-cell transcriptomics workflows 
Single-cell transcriptomics methods require a complex sequence of experimental and analytical steps to get from 

the tissue sample of interest to the high-dimensional readout. After sample procurement and optional 

preservation, the tissue needs to be dissociated to get to a cell suspension. After cell purification, individual cells 

need to be isolated for lysis, RNA extraction and cDNA synthesis. Barcoded cDNA products are then pooled for 

library production and sequencing. 
 

Due to its sensitivity and resolution, scRNA-seq techniques are highly susceptible to technical factors 

affecting data quality and content. The resulting technical artefacts, also known as batch effects, can 

significantly impair the compatibility and comparability of data sets and, in the worst case, distort the 

information in such a way that misinterpretation occurs. Among the most relevant confounding 

factors are methods of sample procurement, processing, and storage, the technology for cell isolation 

and chemistry for library preparation, as well as other variables, such as daytime or season of 

sampling. Hence, rigorous optimization and highest standardization are essential for the reliable use 

of omics technologies in the clinic and, ultimately, for diagnostic purposes – a scenario that is 

unfortunately still far from the current practice.  

The peripheral blood presents the primary source of information to investigate the systemic immune 

state of a patient. Beyond the advantage of simple sampling by venous or capillary blood draw, the 

blood contains many of the major immune cell types and can provide insights into a large variety of  
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Figure 4: Reporting statistics for blood-based scRNA-seq studies 
Reporting summary of the used anti-coagulant, the cell purification procedure, and the sample preservation 

protocol of 50 scRNA-seq studies on human circulating immune cells published between May 2019 and January 

2022. 

 
Table 1: Reporting overview for blood-based scRNA-seq studies 
Table listing the anti-coagulant, the cell purification procedure, and the sample preservation protocol of 50 

scRNA-seq studies on human circulating immune cells using the 10x chromium platform published between May 

2019 and January 2022. 
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relevant immune processes, which explains why most clinical single-cell transcriptomics studies to 

date investigate this tissue. A meta-analysis of 50 scRNA-seq studies on human circulating immune 

cells using the 10x genomics Chromium platform published between May 2019 and January 2022 

(Table 1) reveals striking variation in sample isolation and processing procedures. Most importantly, 

however, this analysis demonstrates a dramatic lack in reporting of relevant methodological 

information (Figure 4). While the method of cell purification and the protocol for cell preservation are 

missing from roughly 20 % of the studies, the choice of anti-coagulant to prevent blood clotting is only 

stated in half of the publications. 

Since the experimental workflows of published data are too multifaceted to pinpoint the effect of 

single technical variables and there are no rigorous systematic evaluations of these technical factors 

published to date, we can only speculate on the influence of certain factors. Nevertheless, this 

observation illustrates the high variability in the protocols of published studies and further 

demonstrates the variability in the quality of reporting of methodological details. 

To improve the compatibility and comparability of the vast amounts of data being produced using 

advanced single-cell methods, the research community must agree on standard procedures and 

reporting criteria. Within the HCA, benchmarking studies are performed to identify and distribute 

best-possible experimental protocols for cell atlas projects (Mereu et al., 2020). Furthermore, 

extensive efforts are made to compare computational tools and evaluate their advantages and 

suitable applications for the analysis of single-cell data (Luecken et al., 2022; Saelens et al., 2019). 

Nevertheless, it is important to note that there is still a lack of community-supported guidelines for 

the application of single-cell omics technologies to medical questions in clinical trials. In (Bonaguro et 

al., 2022), we present a guide to the application of systems-level approaches in immunology with a 

particular focus on the application of single-cell omics technologies to clinical samples. The purpose 

of the publication is to introduce immunologists with no particular experience in the field of omics to 

system-level approaches, providing a solid basis for improved data production and documentation to 

counteract the progressive lack of standards.  

In addition to such review articles summarizing best practices and introducing standards, online 

platforms, such as protocols.io, and journals, e.g. STAR Protocols and Nature Protocols, dedicated to 

publishing high-quality, peer-reviewed protocols are highly valuable to optimize and harmonize 

experiments and facilitate the dissemination of validated protocols. In (De Domenico et al., 2020), we 

have developed and published a comprehensive workflow for flow cytometry and scRNA-seq on 

potentially infectious samples to ensure reproducible and safe data acquisition for combating COVID-

19. 

2.3. The immune system – a prime target for single-cell omics 

The human immune system is a complex organ system distributed throughout the organism with 

many cell types and states that monitor developmental and homeostatic processes and dynamically 

react to endogenous and exogenous stimuli. The concerted action of the innate and adaptive branch 

of the immune system protects the organism against pathogens and establishes long-lasting immune 

memory to respond rapidly and effectively to pathogens that have been encountered before. 

Understanding the cellular heterogeneity and plasticity of the immune system and the complex 

interplay of its parts is critical for the progress of medicine. Therefore, the immune system presents a 

prime target for the application of high-resolution single-cell methods.  

In 2014, Jaitin et al. have introduced an approach that allows a bottom-up characterization of in vivo 

cell type compositions (Jaitin et al., 2014). With just over 1000 single-cell transcriptome profiles, this 
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study presented a breakthrough in mapping of uncharted immune cell landscapes and served as a 

blueprint for many subsequent studies to understand cellular heterogeneity in health and disease 

(Papalexi and Satija, 2018). The application of this approach in an Alzheimer’s model has identified a 

disease-associated microglia type conserved in mice and human underlining its clinical relevance 

(Keren-Shaul et al., 2017). Extending the analysis to multimodal single-cell data by combining 

transcriptome and proteome readouts presents a remarkable refinement of this approach and 

improves our ability to resolve cell states, allowing us to identify previously unreported lymphoid 

subpopulations even in the most deeply studied organ of the human body, the peripheral blood (Hao 

et al., 2021). Shalek, Satija and Shuga et al. took single-cell transcriptomics beyond cell type 

classification in steady-state by challenging murine dendritic cells (DC) with different stimuli in vitro 

and profiling their transcriptional response over time. Using this approach, they created a window into 

the cellular dynamics of immune responses and found substantial variation between identically 

stimulated cells, indicating carefully orchestrated paracrine control of immune responses by a few 

precocious cells (Shalek et al., 2014). Antigen-specific immune responses and immune memory 

mediated by antigen-specific lymphocytes are critical features of adaptive immunity against invading 

pathogens. Understanding the diversity of recombined B cell receptors (BCRs) and T cell receptors 

(TCRs) using specialized sequencing approaches and combining this information with single-cell 

transcriptomic and epigenomic measurements allows the study of the composition, functional state, 

and specificity of the adaptive immune repertoire (Pai and Satpathy, 2021; Satpathy et al., 2018). 

Mathew et al. highlighted the medical relevance of such approaches by using scRNA-seq in 

combination with BCR-seq to profile B cell subpopulations and their clonality in lymph nodes, spleen 

and lungs after influenza infection in mice and described spatiotemporal dynamics of antigen-specific 

B cells (Mathew et al., 2021). In addition, the immune receptor specificity has great therapeutic 

potential. Treatment of hematopoietic malignancies using chimeric antigen receptor T cells (CAR-T) 

has shown remarkable success but suffers from high relapse rates and poor in vivo persistence. 

Epigenomic profiling of CAR-T cells using the Assay for Transposase-Accessible Chromatin with high-

throughput sequencing at single-cell resolution (scATAC-seq) has revealed mechanisms of CAR-T 

exhaustion and provided new insights into CAR-T engineering to improve treatment benefits (Jiang et 

al., 2022). These selected examples demonstrate the power of omics technologies with single-cell 

resolution to advance our understanding of the immune system and emphasize the clinical relevance 

of such research. 

2.3.1. The myeloid cell compartment in health and disease 

The myeloid cell compartment encompasses monocytes, dendritic cells (DCs), macrophages, and 

granulocytes, including neutrophils, eosinophils, and basophils, and presents a major part of the 

innate immune system performing a wide variety of functions. In addition to tissue surveillance 

ensuring immediate response to invading pathogens, diverse defense functions, and mediation of 

leukocyte recruitment, cells of the myeloid cell compartment have critical functions in immune 

regulation, tissue homeostasis and development as well as wound healing. Furthermore, as 

professional antigen-presenting cells (APCs), they serve as the orchestrators of adaptive immune 

responses (Roche and Furuta, 2015).  

Neutrophils are the most abundant population of circulating white blood cells and mediate the earliest 

phase of the immune response (Nauseef and Borregaard, 2014). In response to invading 

microorganisms, they are recruited to the site of infection and perform their effector functions, 

including phagocytosis of pathogens, degranulation of antimicrobials and reactive oxygen species 

(Winterbourn et al., 2016) and the release of neutrophil extracellular traps (NETs), web-like structures 
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composed of cytosolic and granule proteins assembled on a scaffold of decondensed chromatin 

(Papayannopoulos, 2018).  

According to the classical view of the neutrophil life cycle, mature neutrophils that have developed 

from granulocyte-macrophage precursors are released from the bone marrow under homeostatic 

conditions and patrol the blood vessels for signs of microbial infection or inflammation; when found, 

they respond rapidly and extravasate to exert their defense mechanisms followed by resolution of 

inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. 

Otherwise, if there is no immunological threat to the organism, they home to the bone marrow, liver, 

or spleen to be eliminated from the circulation. The advent of single-cell genomics has challenged this 

model and, despite technical difficulties due to cell fragility and high RNase content, has contributed 

significantly to our understanding of neutrophil biology (Evrard et al., 2018; Kwok et al., 2020; 

Montaldo et al., 2022). While traditionally thought of as poorly plastic and uniquely short lived cells, 

neutrophils are now recognized as a heterogeneous, functionally diverse cell type with important 

implications in homeostatic and disease conditions (Ng et al., 2019). Furthermore, the long-term 

believe that neutrophils are eliminated in the bone marrow, liver, and spleen after less than a day in 

the bloodstream has been challenged by recent evidence that they redistribute and are found in most 

healthy tissues at varying numbers (Hidalgo et al., 2019). In accordance with their newly discovered 

heterogeneity, neutrophils play crucial roles not only in extracellular bacterial and fungal infections 

but also in the pathogenesis of a broad range of diseases, including autoimmunity, chronic 

inflammation, cancer and viral infections (Hedrick and Malanchi, 2022; Herrero-Cervera et al., 2022; 

Johansson and Kirsebom, 2021). As their defense mechanisms are rather brute and unspecific, 

neutrophils need to be tightly regulated to avoid bystander damage to host tissues. A drastic example 

is the excessive neutrophil activation in pneumonia, which can cause severe tissue damage and, in 

extreme cases, become the primary source of morbidity and mortality (Narasaraju et al., 2011; 

Pechous, 2017). In addition to the damage directly caused by their effector mechanisms, neutrophils 

can also suppress the adaptive immune response. So-called granulocytic myeloid-derived suppressor 

cells (MDSC) (Bronte et al., 2016) have been observed in cancer (Rodriguez et al., 2009), chronic non-

communicable diseases (Tay et al., 2020) and viral infections (Goh et al., 2016; Vollbrecht et al., 2012) 

where they inhibit lymphocyte proliferation and function via depletion of arginine or engagement of 

inhibitory receptors, such as PD-1 (Cloke et al., 2012). Interestingly, the suppressive phenotype of 

these neutrophils coincides with a shift in their density profile that causes them to co-segregate with 

mononuclear cells after density gradient centrifugation of blood, which has coined the term low-

density neutrophils (LDN) (Hassani et al., 2020). Acute pathological insults, such as severe infections, 

trauma or sepsis, cause a dramatic increase in demand of neutrophils and trigger a hematopoietic 

response program referred to as emergency granulopoiesis to enhance the de novo production of 

neutrophils and replenish the circulating pool (Manz and Boettcher, 2014; Schultze et al., 2019). This 

mechanism results in the egress of immature and mature neutrophils from the bone marrow, which 

are often linked to hyperinflammation and immunosuppression and are increasingly correlated with 

disease severity and treatment response in many pathologies (Kotliar et al., 2020; Mare et al., 2015; 

De Santo et al., 2008). 

Circulating monocytes and tissue resident macrophages belong to the mononuclear phagocyte system 

(Hume, 2006; Hume et al., 2019). While most long-lived, tissue-resident macrophages are derived 

from embryonic precursors in the yolk sac and fetal liver (Ginhoux and Jung, 2014), monocytes, like 

granulocytes, are short-lived and originate from hematopoietic stem cells (HSC) in the bone marrow 

(Laurenti and Göttgens, 2018). Macrophages are a heterogeneous family of innate immune cells 

residing in almost all tissues, including brain microglia, liver Kupffer cells and lung alveolar and 

interstitial macrophages, and serve functions of tissue homeostasis and immune defense (Lavin et al., 
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2014). In the case of an infection, macrophages sense microbial signals as pathogen-associated 

molecular patterns (PAMPs) or tissue damage in the form of danger-associated molecular patterns 

(DAMPs) via a set of pattern recognition receptors (PRRs), phagocytose pathogens and cellular debris 

and release a plethora of molecules that kill pathogens, initiate inflammation, recruit additional 

effector cells and promote tissue repair (Lavin et al., 2015). Macrophages are plastic cells capable to 

adjust to the tissue microenvironment and contextual signals, such as cytokines or metabolic cues 

(Mass et al., 2016; Thion et al., 2018; Xue et al., 2014). In contrast, monocytes are blood-circulating 

innate immune cells classically divided into three subsets based on their respective expression of CD14 

and CD16: classical CD14+CD16−, non-classical CD14-CD16+, and intermediate CD14+CD16+. Under 

pathological conditions, such as viral infections or chronic inflammation, monocytes are activated and 

recruited by inflammatory cytokines and, like neutrophils, infiltrate affected tissues. Once in the 

tissue, they acquire inflammatory macrophage and DC-like phenotypes to fulfil pro- and anti-

inflammatory effector functions to help resolve inflammation (Kapellos et al., 2019) and induce 

adaptive immune responses as professional antigen-presenting cells (Jakubzick et al., 2017). 

It has long been debated whether monocyte-derived cells persist in tissues and take over DC and 

macrophage functions once inflammation has subsided. In recent years, the concept of niche 

competition was developed by Martin Guilliams and colleagues proposing that tissue infiltrating 

monocytes can indeed differentiate into self-maintaining macrophages, but only if a niche is available, 

e.g. after macrophage death during infection (Guilliams and Scott, 2017; Guilliams et al., 2020). Using 

diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability, Scott 

et al. showed that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile 

of their depleted counterparts and become long-lived self-renewing cells (Scott et al., 2016). However, 

the lack of distinct marker genes for embryonically seeded macrophages or monocyte-derived 

macrophage-like cells and the apparent difficulties in cell depletion and fate mapping hamper the 

investigation of such mechanisms in humans (Guilliams and Scott, 2022). 

In (Bassler et al., 2019), we have extensively reviewed recent advances in the understanding of the 

cellular ontogeny, activation, differentiation, and tissue-specific functions of circulating monocytes 

and tissue resident macrophages and dendritic cells with a focus on discoveries made thanks to the 

new developments in the field of single-cell omics.  

2.4. The COVID-19 pandemic and pathology of SARS-CoV-2 

In December 2019, a cluster of pneumonia cases with unknown cause in Wuhan, China, was reported 

by the Chinese Center for Disease Control and Prevention. Soon after, in January of 2020, a novel 

betacoronavirus was identified as the causative infectious agent (Tan et al., 2020) and quickly gained 

worldwide attention due to its rapid national and international spread. The newly discovered 

enveloped, single-stranded RNA betacoronavirus belongs to a large family of coronaviruses that 

includes seven human pathogens. It was named Severe Acute Respiratory Syndrome Covonavirus 2 

(SARS-CoV-2) and the disease it causes has been termed Coronavirus Disease 2019 (COVID-19). The 

World Health Organization (WHO) declared the outbreak a public health emergency of international 

concern on 30 January 2020 with 7,818 confirmed cases globally, affecting 19 countries on the date 

of the declaration (Novel Coronavirus (2019-nCoV) Situation Report-10) and recognized the spread of 

COVID-19 as a pandemic on 11 March 2020. As of October 2022, COVID-19 has claimed more than 6.5 

million lives, sickened more than 600 million people, and caused devastating socioeconomic 

consequences worldwide.  

SARS-CoV-2 primarily enters host cells via the angiotensin-converting enzyme 2 (ACE2) receptor and 

uses the human protease TMPRSS2 as an entry activator (Hoffmann et al., 2020). These genes are co-
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expressed on a range of cells including nasal and bronchial epithelial cells, supporting the initially 

localized infection by SARS-CoV-2, but also on enterocytes, cardiomyocytes, vascular and testicular 

cells, placental trophoblasts, bile duct cells as well as macrophages (Hikmet et al., 2020; Song et al., 

2020b; Sungnak et al., 2020; Ziegler et al., 2020). The use of single-cell transcriptomics data across 

tissues and demographics has been instrumental to investigate SARS-CoV-2 tropism (Muus et al., 

2021; Sungnak et al., 2020). 

COVID-19 is characterized primarily by respiratory clinical manifestations ranging from mild common 

cold symptoms, including cough, shortness of breath and fever, in most cases to the development of 

pneumonia, hypoxemia, acute respiratory distress syndrome (ARDS) and multi-organ failure in a 

subset of patients (Lamers and Haagmans, 2022). Although acute respiratory manifestations are the 

most common feature of severe COVID-19, many non-respiratory effects have been reported in the 

acute phase of the disease including fatigue, myalgias, nausea, vomiting, diarrhea, headache and 

olfactory dysfunction (Osuchowski et al., 2021). In addition to respiratory disease, cardiovascular 

complications, including coagulopathy and endotheliitis with diffuse microcirculatory injury, are key 

occurrences in severe COVID-19 (Osuchowski et al., 2021; Varga et al., 2020). Furthermore, a 

significant proportion of patients develops protracted complications, including fatigue and 

neurological sequelae, after SARS-CoV-2 infection often referred to as ‘post-COVID-19 syndrome’ or 

‘long-COVID’ (Kedor et al., 2022; Mehandru and Merad, 2022). The risk factors for severe disease 

include age and various comorbidities, such as diabetes, hypertension, obesity and chronic kidney 

disease, as well as genetic polymorphisms (Beck and Aksentijevich, 2020; Merad et al., 2022; Zhang et 

al., 2020b).  

The immediate response and continued efforts of the medical and scientific community to this health 

crisis were unprecedented and produced remarkable insights into the immunopathology of COVID-19 

as well as preventive and therapeutic management strategies at an extraordinary pace, most notably 

the exceptional success of the vaccine development (Tregoning et al., 2021). However, while these 

impressive advances have unraveled mechanism of protective immunity in mild forms and the 

derailment of the immune response in severe COVID-19, questions remain about the clinical 

complexities of diverse disease phenotypes and the underlying molecular mechanisms, particularly 

with regard to the emergence of new variants of concern as the virus evolves. 

The complex clinical manifestations of COVID-19 suggest that SARS-CoV-2 can cause a dysregulated 

host response with far-reaching immune-inflammatory derangements in severe disease. This notion 

is supported by stark changes in peripheral immune activity (Chen et al., 2020a; Qin et al., 2020), 

increased levels of acute phase reactants and pro-inflammatory cytokines (Lucas et al., 2020; Mehta 

et al., 2020), neutrophilia and emergence of immature and suppressive neutrophils (Falck-Jones et al., 

2021; Schulte-Schrepping et al., 2020b; Silvin et al., 2020), lymphopenia (Cao, 2020) as well as myeloid 

inflammation (Mann et al., 2020; Schulte-Schrepping et al., 2020b). After an initial phase of viral 

replication leading to direct virus-mediated tissue damage, recruitment of effector immune cells by 

infected cells and specialized immune sentinels that recognize viral genomic RNA via pattern 

recognition receptors or cytosolic RNA sensors causes a local and systemic immune response that 

determines disease progression and severity (Osuchowski et al., 2021). While early and efficient 

activation of the immune system is crucial for controlling the virus, a prolonged immune response may 

lead to progressive tissue damage ultimately resulting in a deleterious hyperinflammation 

characterized by the dysregulation of tissue repair mechanisms and fibrosis (Gustine and Jones, 2021).  

High-throughput transcriptional profiling on single-cell level has been applied by many laboratories 

and consortia at large scale to decipher the immune response in COVID-19 and shed light upon many 

features of the systemic as well as tissue-specific pathomechanisms of SARS-CoV-2 infection 
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(Arunachalam et al., 2020; Bernardes et al., 2020; Chua et al., 2020; Combes et al., 2021; Delorey et 

al., 2021; Georg et al., 2022; Grant et al., 2021; Lee et al., 2020; Liao et al., 2020; Melms et al., 2021; 

Notarbartolo et al., 2021; Ren et al., 2021; Schulte-Schrepping et al., 2020b; Silvin et al., 2020; Sinha 

et al., 2022; Stephenson et al., 2021; Su et al., 2020; Szabo et al., 2021; van der Wijst et al., 2021; 

Wauters et al., 2021; Wilk et al., 2020, 2021; Zhang et al., 2020a). Indeed, the large number of single-

cell omics studies in patients with COVID-19 may have provided the most detailed cellular atlas of any 

human disease to date.  

Given the clear relevance of the cellular and humoral adaptive immune response for acute control, 

long-term immunity and vaccination strategies, a lot of effort was put into the investigation of the 

dynamics and derangements of T and B cell responses in COVID-19. As the work presented in this 

thesis primarily focusses on the myeloid immune compartment and its role in SARS-CoV-2 infection 

and COVID-19, we refer the reader to relevant review articles for further reading (Moss, 2022; Sette 

and Crotty, 2021).  

2.4.1. Understanding the myeloid cell response in COVID-19 pathogenesis 

The lungs and airways are a major portal of entry for viral infections and represent a prime site for 

immunological recognition and activation. Hence, efficient but balanced immune mechanisms in the 

respiratory tract are critical. The innate immune system functions as the first line of host defense 

against SARS-CoV-2 by limiting its proliferation, identifying, and removing infected cells, and 

coordinating the development of adaptive immunity (Schultze and Aschenbrenner, 2021). 

Macrophages are the most abundant innate immune cell type in the lung under homeostatic 

conditions and, in addition to mucus and the epithelial barrier, they are the first defenders against the 

pathogen entering the respiratory system. Upon viral recognition, lung macrophages, together with 

epithelial cells, produce high levels of cellular mediators, including IL-1b, IL-6, IL-8, IL-17, CCL2, CCL3 

and CCL7, which rapidly recruits monocytes and neutrophils into the lung (Chua et al., 2020; Kox et 

al., 2020; Monneret et al., 2020). Furthermore, alveolar macrophages are major producers of antiviral 

type I interferons (IFN) in viral respiratory infections (Kumagai et al., 2007). The role of type I IFNs in 

COVID-19 has been a topic of debate due to limited detection and transient peaks of gene expression 

and plasma protein levels (Arunachalam et al., 2020; Hadjadj et al., 2020; Lucas et al., 2020), but the 

observation of enriched inborn errors of type I IFN immunity (Zhang et al., 2020b) and the presence 

of neutralizing autoantibodies against type I IFN (Bastard et al., 2020, 2021) in patients with life-

threatening COVID-19 has underpinned their importance in effectively combatting SARS-CoV-2. 

From the very start of the COVID-19 pandemic, clinical reports indicated neutrophilia and quantitative 

alterations of the monocyte compartment in the peripheral blood of COVID-19 patients suggesting 

the critical involvement of neutrophils and monocytes in the pathology of this new disease (Chen et 

al., 2020b; Qin et al., 2020; Song et al., 2020a; Zhao et al., 2020). This early evidence immediately 

raised the question of whether the quantitative observations were associated with phenotypic shifts 

in the neutrophil and monocyte compartment potentially opening routes of therapeutic intervention. 

Therefore, we set out to perform an in-depth study to longitudinally profile the systemic immune cell 

status in patients with varying disease severity of COVID-19. In (Schulte-Schrepping et al., 2020b), we 

reported profound alterations of the myeloid compartment with inflammatory monocytes 

characterized by an interferon-stimulated gene signature in mild COVID-19 opposed to dysfunctional 

HLA-DRlo monocytes in severe disease. The loss of major histocompatibility complex (MHC) class II 

expression on monocytes is an established sign of immunosuppression and has been confirmed in 

multiple independent studies and functionally validated (Falck-Jones et al., 2021; Giamarellos-
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Bourboulis et al., 2020; Payen et al., 2020; Silvin et al., 2020; Spinetti et al., 2020). As the primary site 

of infection and inflammation in COVID-19, understanding the role of monocytes in the lung is critical. 

Again, single-cell transcriptomics has been instrumental in understanding the infiltration and 

adaptation of monocytes in the inflammatory milieu of COVID-19 and consistently demonstrated the 

accumulation of proinflammatory monocyte-derived macrophage-like cells in the lungs of patients 

with severe disease (Liao et al., 2020; Wauters et al., 2021). Wendisch et al. have extended the 

description of these cells to include a profibrotic transcriptional phenotype in COVID-19 ARDS 

(Wendisch et al., 2021). 

In addition to the changes in the monocyte compartment, we observed signs of emergency 

myelopoiesis with the appearance of immature and dysfunctional neutrophils in severe COVID-19 

(Schulte-Schrepping et al., 2020b). To understand these observations in the context of other 

respiratory diseases, we compared COVID-19 blood bulk transcriptomes with those of a large 

collection of over 3.100 samples derived from 12 different viral infections, inflammatory diseases, and 

independent control samples, which revealed highly specific neutrophil activation-associated 

transcriptome signatures for COVID-19 (Aschenbrenner et al., 2021). Considering the high risk of tissue 

damage posed by excessively activated and dysregulated neutrophils, our reports stimulated follow-

up studies confirming our observations on transcriptional level (Combes et al., 2021; Wilk et al., 2021) 

and performing functional assays supporting the adverse effects of neutrophils in COVID-19 (Arcanjo 

et al., 2020; Leppkes et al., 2020; Siemińska et al., 2021; Veras et al., 2020). Consequently, evaluation 

of precise and timely therapeutic intervention in the neutrophil response presents a promising 

strategy that is being pursued in numerous studies (Earhart et al., 2020; Sinha et al., 2022; Thierry, 

2020). 

Another important deviation observed in COVID-19 is the intersection between the innate and 

adaptive immune system. Effective control of viral infections depends on both the innate and adaptive 

arm of the immune system and their seamless cooperation. APCs, such as DCs, macrophages and 

monocytes, bridge the two arms of the immune system by presenting antigens to antigen-specific 

lymphocyte and relaying environmental cues to activate and modulate their response. In this process, 

APCs are essential to rate and modulate the intensity of the required immune response by processing 

and integrating the situation-dependent information encoded by soluble mediators and cell-to-cell 

interactions (Bedoui et al., 2016). Together with colleagues at the Department of Microbiology and 

Immunology in Melbourne, Australia, we have set out to elucidate the intricacies of this process of 

signal integration in APCs and assess its relevance for COVID-19. Using transcriptional signatures 

derived from mouse in vitro studies delineating the influence of cellular and soluble signals in APCs, 

we showed significant differences in APCs of mild versus severe COVID-19 and linked these effects to 

phenotypic alterations in the CD8+ T cell response (unpublished work, currently in revision at Nature 

Immunology). 
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3. Aim of the thesis 

In this thesis, I present my research to decipher the systemic immune response in COVID-19 using 

single-cell transcriptomics and place it in the context of recent developments and persisting challenges 

in the field of single-cell omics and their application to COVID-19. My work is presented as a cumulative 

thesis consisting of three publications: 

In the first publication, I present an optimized workflow for the clinical application of single-cell 

transcriptomics and proteomics on potentially infectious samples derived from patients suffering from 

infectious diseases that enabled safe and reproducible research on COVID-19 (De Domenico et al., 

2020). In the second publication, I describe our findings on alterations in the myeloid cell compartment 

in COVID-19. In a longitudinal, two-cohort study combining single-cell transcriptomics and proteomics 

of blood samples from patients with different COVID-19 disease severities, we examined changes in 

the systemic immune cell composition and activation and reported features of a dysregulated myeloid 

cell compartment in severe disease (Schulte-Schrepping et al., 2020b). In the third publication, we 

extended these investigations on the myeloid cell compartment in COVID-19 and investigated the 

potential consequences of its derailment on the priming of the adaptive immune response against 

SARS-CoV-2. In doing so, we found that antigen-presenting cells from patients with severe COVID-19 

exhibit molecular alterations in the consolidation process of type 1 IFN signals and CD4+ T cell help, 

which in turn impair the CD8+ T cell immunity against SARS-CoV-2 (Gressier et al., in revision). 

In summary, the research presented in this thesis provided insights into the role of the innate immune 

system in COVID-19, in particular in monocytes and neutrophils, which were followed up in numerous 

studies that expanded the knowledge of the involvement of the myeloid immune compartment in the 

pathogenesis of COVID-19. 
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4. Publications 

4.1. Optimized workflow for single-cell transcriptomics on infectious 

diseases including COVID-19 

De Domenico E*, Bonaguro L*, Schulte-Schrepping J*, Becker M, Händler K, Schultze JL., „Optimized 

workflow for single-cell transcriptomics on infectious diseases including COVID-19.”, STAR Protoc. 

2020 Dec 16;1(3):100233. doi: 10.1016/j.xpro.2020.100233. eCollection 2020 Dec 18. 

Clinical studies on human samples require careful design to produce valuable scientific insights with 

medical benefits while preserving the rights and privacy of the patients and ensuring the well-being 

of the researchers during the study – the latter being particularly important when working on human 

pathogens. Hence, in the face of a newly emerging pathogen such as SARS-CoV-2, special precautions 

needed to be taken with regard to the experimental procedures when examining potentially infectious 

materials due to the lack of knowledge on disease transmissibility, infectivity, and molecular 

pathogenicity of the infectious agent. In addition, optimized SOPs are essential to ensure robust data 

acquisition with limited technical variability and high reproducibility, particularly when applying high-

resolution omics technologies in clinical studies, while their open exchange and mutual validation in 

the scientific community is a prerequisite for rapid and reliable gain of knowledge.  

In (De Domenico et al., 2020) we present a complete and safe workflow for performing flow cytometry  

and scRNA-seq experiments using the micro-well based BD Rhapsody platform on blood samples of 

patients infected with SARS-CoV-2 from cell isolation to data analysis. The protocol is not specific to 

SARS-CoV-2, but applicable to blood samples derived from patients infected with a range of similar 

human RNA viruses, including other coronavirus or influenza virus genera, and thus will be of 

relevance beyond the COVID-19 pandemic.  

We present an extensive depiction of the recommended safety measures along the complete 

workflow, including the preparation of the working area and the required devices and materials, as 

well as the necessary cleaning steps, to prevent any risk for infection and guarantee the physical 

integrity of the experimenter. In addition to these general precautions, the publication provides a 

comprehensive, stepwise description of the scRNA-seq protocol using the BD Rhapsody platform 

including cell purification and processing, sample multiplexing and quantification of surface protein 

expression using oligo-coupled antibodies (BD AbSeq), as well as library production, quality 

assessment and sequencing. In addition to the predominant investigation of mononuclear cells in the 

peripheral blood, the presented workflow also includes a detailed description of the application of 

scRNA-seq to whole blood samples after red blood cell (RBC) lysis, allowing the analyses to be 

extended beyond peripheral blood mononuclear cells (PBMC) to all immune cells present in the 

peripheral blood, including polymorphonuclear granulocytes. 

To facilitate troubleshooting for users of the protocol, we describe the limitations of the scRNA-seq 

approach and list potential experimental issues along with their respective solutions.  

Furthermore, since bioinformatics remains a major gatekeeper to broader application of omics 

protocols, we also provide basic recommendations and ready-to-use code to help the interested 

reader and user of the protocol to easily enter the field of single-cell transcriptomics analysis. The 

section for processing and downstream analysis of multiplexed scRNA-seq data includes information 

on read alignment and quantification, sample de-multiplexing, quality control and filtering, 

normalization, dimensionality reduction, clustering, and differential gene expression analysis 
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comparing different cell types and states as well as cells derived from samples of different disease 

severities or disease phases.  

In addition to the scRNA-seq workflow, we provide guidelines for multi-color flow cytometry analyses 

of potentially infectious blood samples, including safety measures, marker panels, and gating 

strategies, for quantitative analysis of cellular sample composition and validation of phenotypic and 

functional observations derived from the sequencing-based single-cell transcriptomics and 

proteomics analyses. 

The workflow described in (De Domenico et al., 2020) was applied to study differences in immune cell 

composition and phenotypes in mild and severe COVID-19 over the course of the disease in a cohort 

of 17 COVID-19 patients and 13 control individuals sampled in Bonn, Germany, from April to July 2020. 

The resulting data have been extensively analyzed in multiple studies focusing on different aspects of 

the immunology and immunopathology of COVID-19, yielding insights into the dysregulation of 

monocyte and neutrophil subsets in progressive severe disease (Schulte-Schrepping et al., 2020b), 

interferon-induced alterations of megakaryocytes and erythroid cells (Bernardes et al., 2020), 

impaired NK cell function (Krämer et al., 2021), as well as the presence of CD16+ highly cytotoxic T 

cells in severe COVID-19 (Georg et al., 2022).  

For this publication, I was responsible for designing the experimental scRNA-seq approach and 

developing the safety precautions to work with potentially infected human samples. In addition, I 

compiled the recommendations for the bioinformatics processing and downstream analyses, as well 

as the corresponding code, and contributed to the writing and editing of the manuscript. 
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4.2. Severe COVID-19 is marked by a dysregulated myeloid cell 

compartment 

Schulte-Schrepping J*, Reusch N*, Paclik D*, Baßler K*, Schlickeiser S*, Zhang B*, Krämer B*, 

Krammer T*, Brumhard S*, Bonaguro L*, De Domenico E*, Wendisch D*, Grasshoff M, Kapellos TS, 

Beckstette M, Pecht T, Saglam A, Dietrich O, Mei HE, Schulz AR, Conrad C, Kunkel D, Vafadarnejad E, 

Xu C-J, Horne A, Herbert M, Drews A, Thibeault C, Pfeiffer M, Hippenstiel S, Hocke A, Müller-Redetzky 

H, Heim K-M, Machleidt F, Uhrig A, Bosquillon de Jarcy L, Jürgens L, Stegemann  M, Glösenkamp CR, 

Volk H-D, Goffinet C, Landthaler M, Wyler E, Georg P, Schneider M, Dang-Heine C, Neuwinger N, 

Kappert K, Tauber R, Corman V, Raabe R, Kaiser KM, To Vinh M, Rieke G, Meisel C, Ulas T, Becker M, 

Geffers R, Witzenrath M, Drosten C, Suttorp N, von Kalle C, Kurth F, Händler K, Schultze JL, 

Aschenbrenner AC, Li Y, Nattermann J, Sawitzki B, Saliba A-E, Sander LE, Deutsche COVID-19 OMICS 

Initiative (DeCOI), "Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment“, Cell. 

2020 Aug 5; S0092-8674(20)30992-2. doi: 10.1016/j.cell.2020.08.001.  

The COVID-19 pandemic has confronted humanity with an enormous medical crisis and has demanded 

unprecedented efforts from the scientific community to elucidate the underlying molecular 

pathomechanisms in order to win the race for a stable health care situation and economy against the 

new pathogen. The use of high-resolution, state-of-the-art omics methods has proven highly useful in 

identifying disease-relevant features of the immune response to SARS-CoV-2 in an unbiased fashion 

and thus narrowing down potential targets for therapeutic intervention and prevention of severe 

disease progression in record time. 

In (Schulte-Schrepping et al., 2020b), we have reported a dual-center, two-cohort study combining 

single-cell transcriptomics and proteomics of whole blood and peripheral blood mononuclear cells 

with the aim to determine changes in the immune cell composition and activation states in mild 

compared to severe COVID-19 over time. In total, we have profiled 242 samples from 109 individuals, 

including 161 COVID-19 samples from 53 patients, using a range of high-resolution and high-

throughput methods for unbiased immune profiling, including two different platforms for scRNA-seq, 

mass cytometry, and multi-color flow cytometry. We analyzed a total of 24 million cells by their 

expression of protein markers as well as more than 328.000 single-cell transcriptomes. The 

comparative analysis of two clinical cohorts collected at a similar time during the first wave of the 

pandemic from April to July 2020 at two German university medical centers in Berlin and Bonn, 

respectively, and their analysis using two different technological platforms for single-cell 

transcriptomics allowed for instantaneous cross-validation of the findings and avoidance of technical 

artefacts distorting the interpretations. This approach of validation cohorts in single-cell omics studies 

contrasted with the prevailing strategy of computational data integration and batch removal but 

proved highly effective for the in-depth interrogation of predominant disease-relevant immunological 

alterations and increased the robustness of the observations. 

Although this large dataset contains information on all immune cell types present in peripheral blood, 

in this initial study we focused our analyses on the most profound alterations induced by SARS-CoV-2 

infection in the peripheral blood observed in the myeloid cell compartment. In addition to the 

previously reported lymphopenia and neutrophilia resulting in a left shift in the neutrophil to 

lymphocyte ratio (NLR) and the loss of non-classical CD16+ monocytes in COVID-19 (Hadjadj et al., 

2020; Merad and Martin, 2020), we described severity-specific phenotypic alterations in classical 

CD14+ monocytes as well as quantitative and qualitative changes in neutrophils.  
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HLA-DRhiCD11chiCD14+ inflammatory monocytes with an anti-viral interferon-stimulated gene 

signature, similar to the phenotype seen in patients with flu-like illness, were elevated at early time 

points in mild COVID-19 and receded during the natural course of the disease. In contrast, severe 

COVID-19 was marked by the presence of dysfunctional HLA-DRlo monocytes expressing S100 alarmins 

and genes of anti-inflammatory function, such as CD162 and PLAC8. 

Furthermore, the neutrophil compartment was profoundly affected in severe COVID-19 with the 

occurrence of immature neutrophil precursors indicative of emergency myelopoiesis as well as 

suppressive-like mature neutrophil subsets. The identification and transcriptional interrogation of LDN 

in the PBMC fraction after density gradient centrifugation in samples derived from severe COVID-19 

patients, particularly at later stages of the disease, revealed stark phenotypic alterations in the 

neutrophil compartment similar to what has been previously described in the contexts of other severe 

infections and sepsis (Manz and Boettcher, 2014; Schultze et al., 2019). Applying scRNA-seq to whole 

blood samples allowed for a comprehensive examination of the neutrophil compartment and 

delineation of its heterogeneity in relation to COVID-19 disease severity at unparalleled resolution at 

the time of this study and revealed dysfunctional mature neutrophils expressing PD-L1 and exhibiting 

impaired oxidative burst responses in severe disease. Our work on the role of neutrophils in COVID-

19 has been followed up and consolidated in several subsequent clinical scRNA-seq studies that 

confirmed the disease-specific shifts in this cellular compartment and further assessed their predictive 

and therapeutic potential for COVID-19 mortality (Combes et al., 2021; Sinha et al., 2022; Wilk et al., 

2021).  

The reduced HLA-DR expression, an antigen-presenting MHC class II molecule, on monocytes is a well-

established marker of immune suppression, and has been consistently reported in severe COVID-19 

across a multitude of studies (Giamarellos-Bourboulis et al., 2020; Payen et al., 2020; Silvin et al., 2020; 

Spinetti et al., 2020). Furthermore, this observation was strongly associated with COVID-19 severity, 

highlighted by the markedly lower expression in patients admitted to the ICU versus non-ICU patients 

as well as in non-survivors versus survivors (Wang et al., 2020). Moreover, the presence of HLA-DRlo 

monocytes in severe COVID-19 was found to be positively correlated with levels of 

immunosuppressive soluble factors, including IL-10, TGF- β, VEGFA, and AREG, indicating their 

suppressive phenotype (Kvedaraite et al., 2021), which was corroborated by functional assessment of 

their capacity to suppress T cell proliferation (Falck-Jones et al., 2021).  

For this publication, I was responsible for designing and implementing the experimental approach for 

scRNA-seq in the Bonn cohort. In addition, I led the analysis of the scRNA-seq data created for the 

second cohort collected in Bonn, Germany, and oversaw the concerted analysis of all scRNA-seq data 

including both cohorts. In particular, I was responsible for data acquisition and quality control, 

clustering and cell type annotation as well as the delineation of disease severity-specific alterations of 

gene expression in the monocyte compartment. Furthermore, I took the lead in writing and revising 

the manuscript, which was then published by Cell in September 2020. 
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4.3.  Effective CD8+ T cell immunity against SARS-CoV-2 depends on 

the integration of type 1 IFN signals and CD4+ T cell help by antigen-

presenting cells 

Gressier E*, Schulte-Schrepping  J*, Petrov L, Brumhard S, Stubbemann P, Hiller A, Obermayer B, 

Spitzer J, Kostevc T, Whitney PG, Bachem PG, Odainic A, van de Sandt C, Nguyen THO, Ashhurst T, 

Wilson K, Oates CVL, Gearing LJ, Meischel T, Hochheiser K, Greyer M, Clarke M, Kreutzenbeck M, 

Gabriel SS, Kastenmüller W, Kurts C, Londrigan SL, Kallies A, Kedzierska K, Hertzog PJ, Latz E, Chen YCE, 

Radford KJ, Chopin M, Schroeder J, Kurth F, Gebhardt R, Sander LE, Sawitzki B, Schultze JL, Schmidt SV, 

Bedoui S, „CD4+ T cell calibration of antigen-presenting cells optimizes antiviral CD8+ T cell 

immunity”, Nat Immunol (2023). doi: 10.1038/s41590-023-01517-x 

CD4+ T cells, also known as helper T cells (TH cells), play important roles in the development of CD8+ 

cytotoxic T lymphocyte (CTL) responses critical for the control of bacterial and viral pathogens and 

memory formation. Among other functions, they catalyze the activation of APCs via CD40L-CD40 

interactions to enable their autonomous priming of CD8+ T cell responses – a process termed APC 

licensing (Schoenberger et al., 1998). In addition to the activation signal from CD4+ T cells, APCs 

integrate additional signals, such as inflammatory cytokines, into the information they relay to CD8+ T 

cells (Greyer et al., 2016). Although it is well established that the combination and integration of these 

signals by APCs adapts the CD8+ T cell response to the circumstances of a particular infection, little is 

known about the underlying molecular mechanisms that control signal integration in APCs (Borst et 

al., 2018; Wu and Murphy, 2022).  

As APCs present antigenic peptides to antigen-specific CD4+ T cells via MHC class II molecules (Roche 

and Furuta, 2015) and the expression of MHC class II molecules in human APCs is known to be 

positively regulated by IFN (Keskinen et al., 1997), an interesting question arises with regard to COVID-

19 immunopathology: Does the reduction in expression of MHC class II molecules on APCs together 

with the impaired IFN response in severe COVID-19 (Bastard et al., 2021; Hadjadj et al., 2020; Zhang 

et al., 2020b) affect the interaction with CD4+ T cells during APC licensing and what might be the 

consequences for the CD8+ T cell response to SARS-CoV-2?  

To investigate the potentially impaired signal transmission of CD4+ T cell help to CD8+ CTL via APCs in 

COVID-19, we collaborated with a team of researchers at the Department of Microbiology and 

Immunology in Melbourne, Australia, led by Elise Gressier and Sammy Bedoui – designated experts in 

the field of T cell help and CTL priming (Bedoui et al., 2016). In a previous study, they had shown that 

CD8+ T cell priming in a model of HSV-1 skin infection depended on APCs receiving both CD4+ T cell 

help and additional innate stimulation in form of type I IFN signals (Greyer et al., 2016). Moreover, 

they reported that the dependency on the help signal in this process was modulated by the intensity 

of the innate signal, extending previous reports that type I IFN can effectively replace the requirement 

of T cell help in specific infections (Wiesel et al., 2011). In a follow-up experiment, they extended this 

model using time-resolved transcriptomic profiling of murine APCs in presence or absence of type 1 

interferon and CD40 stimulation mimicking T cell help. This approach allowed for the dissection of 

transcriptional response patterns and regulatory networks underlying the signal integration and 

consolidation process in APCs for effective and balanced CD8+ T cell activation in mice. While type 1 

IFN stimulation caused a substantial transcriptional response in APCs, CD40 stimulation alone induced 

only minor transcriptional changes. Most of the interferon-responsive genes were unchanged by the 

additional CD40 stimulation, however, a subset of genes increased in expression upon the 

combinatorial stimulation. Furthermore, a distinct set of genes with known roles in the interplay 
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between APCs and T cells, such as Ccl5, Cd83 and Cxcl16, was dependent on the combinatorial 

stimulation of type I IFNs and CD40 stimulation and not induced by neither stimulus alone. To better 

elucidate the interdependencies and dynamics of the two stimuli, our collaborators performed further 

experiments to determine whether type I IFNs and CD40 stimulation acted simultaneously or whether 

their molecular integration required a specific order. By performing sequential transcriptome 

measurements with differing order of the two signals they found that the type I IFN signal needed to 

precede the triggering of CD40 to condition APCs for an efficient response to CD4+ T cell help. 

Loss of MHC class II antigen presentation (Schulte-Schrepping et al., 2020b), imbalances in provision 

of type 1 IFN (Hadjadj et al., 2020) and low avidity CD4+ T cell responses (Bacher et al., 2020) in severe 

COVID-19 raise the possibility that this signal integration process in APCs may be of relevance for an 

effective CD8+ T cell response during SARS-CoV-2 infections. Therefore, we applied the transcriptional 

signatures observed in the murine APC model to scRNA-seq data of PBMC samples derived from 

COVID-19 patients with varying disease severities (Figure 5). As the primary site of T-cell activation, 

human lymph nodes would need to be examined at early time points post-infection during acute 

COVID-19 to assess the precise mechanisms of T-cell priming. Since this is difficult to realize, we are 

providing a compromise, which is a limitation of human immunology at the moment, and examined 

signs of these processes in peripheral blood as a surrogate tissue, fully aware of the fact that this organ 

is not the prime tissue for early interactions between APCs and T cells. Yet both cell compartments 

(APCs and T cells) are accessible in peripheral blood and can interact in vitro (Tavukcuoglu et al., 2021; 

Winheim et al., 2021). 

 

 

Figure 5: Combinatorial transcriptome responses to type 1 IFN and CD40 stimulation by monocytes 

and DCs correlate with milder outcomes of COVID-19 
Re-analysis of scRNA-seq data of CD14+ monocytes and DCs subsetted from PBMCs derived from patients with 

mild (WHO 3, 16 samples), moderate (WHO 4-5, 11 samples) or severe (WHO 7, 23 samples) COVID-19 and 

healthy controls . A. Single-sample GSVA of the “CD40 unresponsive”, “CD40 amplified” and “CD40 dependent” 

gene signatures derived from in vitro stimulation experiments of murine APCs in monocytes from COVID-19 and 

control samples stratified by disease severity plotted as box plots of the enrichment scores. Wilcoxon rank-sum 
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test p-value is shown. B. Volcano plot (bottom) showing the differentially expressed genes in monocytes from 

mild COVID-19 compared to severe cases. Genes are colored according to their presence in the “CD40 

unresponsive”, “CD40” amplified” or “CD40 combinatorial” signatures. GSEA enrichment plots (top) showing the 

enrichment curves of the “CD40 amplified” and “CD40 dependent” signature in the differentially expressed 

genes in monocytes from mild COVID-19 compared to severe cases. D. Dot plot visualizing the expression of 

genes differentially expressed in DCs comparing disease severities present in the “CD40 unresponsive”, “CD40 

amplified” and “CD40 dependent” signatures. 

 

CD14+ classical monocytes from patients with mild COVID-19 cases were significantly enriched for the 

transcriptional response signatures amplified by or dependent on CD40 stimulation in combination 

with type I IFN signal, whereas this enrichment was significantly lower in monocytes from patients 

with severe COVID-19 (Figure 5A). Differential gene expression analysis comparing monocytes from 

mild and severe cases of COVID-19 further revealed the distinct induction of CD40 amplified and 

dependent genes in mild COVID-19 (Figure 5B). The unbiased scRNA-seq PBMC dataset enabled us to 

confirm these findings in DCs, albeit in a more limited fashion due to low cell numbers in the blood. 

We found that transcription of genes depending on consecutive type I IFN and CD40 stimulation 

increased in DCs from COVID-19 patients with mild disease, while DCs from patients with severe 

COVID-19 showed increased expression of IFN-induced genes that were unresponsive to CD40 

triggering (Figure 5C). 

 

 

Figure 6: Open chromatin profiles in monocytes and DCs support the combinatorial transcriptome 

responses to type 1 IFN and CD40 stimulation in milder cases of COVID-19 
Re-analysis of scATAC-seq data of CD14+ classical monocytes subsetted from PBMC derived from patients with 

mild (WHO 1-3), moderate (WHO 4-5) or severe (WHO 6-7) COVID-19 and healthy controls (Wilk et al., 2021). A. 

Heatmap showing GeneScores for disease-specific, significantly differentially accessible genes (FDR≤0.01 & 

Log2FC≥0.58) across the indicated disease severities. B. Volcano Plot visualizing -log10(FDR) and log2 fold 

changes of significantly differentially accessible genes in CD14+ monocytes from mild COVID-19 patients 

compared to controls and respective significantly enriched HALLMARK terms for 789 genes with increased 

accessibility. C. Violin plots of imputed GeneScores of IL15, CD83, CXCL16 and TNF in CD14+ monocytes grouped 

according to COVID-19 severity.  

 

This type I IFN and T cell help-dependent gene expression pattern was also reflected in the chromatin 

conformation of APCs from patients with mild COVID-19. The analysis of published scATAC-seq data 

from PBMCs of COVID-19 patients (Wilk et al., 2021) showed that CD14+ classical monocytes from 

patients with mild disease had significantly increased accessibility across more than 300 genes (Figure 

6A). HALLMARK enrichment analysis of significantly more accessible genes in APCs from mild COVID-
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19 patients compared to healthy control cells revealed ‘Interferon response’ as the major pathway of 

differentially regulated genes in mild COVID-19 (Figure 6B), but the set of genes also included key 

genes regulated by the combinatorial signal, such as IL15, CD83, TNFA and CXCL16 (Figure 6C).  

Subsequently, we investigated whether the observed alterations in APCs ultimately affect CD8+ T cell 

phenotypes in COVID-19 of different disease severities. We first assessed all CD8+ T cells of each 

disease severity for gene signatures reflecting priming of CD8+ T cells in the presence or absence of T 

cell help (Ahrends et al., 2017). Comparing the resulting enrichment scores across disease severities 

showed that ‘unhelped’ transcriptional profiles were significantly more pronounced in CD8+ T cells 

from patients with moderate and severe COVID-19 compared to mild cases (Figure 7A). Next, to 

resolve the relative composition of the CD8+ T cell phenotypes across the different disease severities, 

we performed clustering analysis and observed that mild and moderate COVID-19 cases were enriched 

in CD8+ T cell subsets with transcriptional profiles indicative of early effector cells and established 

memory T cells, including genes such as IL7R, CD69, JUNB and JUND (cluster 1 & 3 in Figure 7B-C). By 

contrast, CD8+ T cells with characteristics of terminal differentiation, such as expression of CX3CR1 

and ISG15 (see cluster 5) dominated in patients with severe COVID-19. To further link the relative 

compositional changes in CD8+ T cell subsets across COVID-19 disease severities to the provision of 

CD4+ T cell help to APCs, we performed signature enrichments of the aforementioned ‘helped’ and 

‘unhelped’ transcriptional signatures using AUcell across all cells of the respective subsets, which 

showed significant loss of the ‘helped’ signature and a corresponding gain in the ‘unhelped’ signature 

in CD8+ T cells of cluster 5 predominantly present in patients with severe COVID-19. 

 

 

Figure 7: Severe outcomes of COVID-19 are associated with ‘unhelped’ CD8+ T cells  
A. Single-sample GSVA of the “helped” and “unhelped” T cell signature derived from RNA-seq analysis of CD8+ T 

cells primed in the presence or absence of CD4+ T cell responses (Ahrends et al., 2017) in CD8+ T cells from 

COVID-19 and control samples stratified by disease severity plotted as box plots of the enrichment scores. 

Wilcoxon rank-sum test p-value is shown. B. UMAP visualization (left) of 6 clusters of the CD8+ T cell data and 

heatmap (right) visualizing the respective proportionate cluster occupancy per disease severity. C. Dot plot 

visualizing the expression of key genes associated with the respective clusters. E. AUCell enrichment of gene 

signatures for helped and unhelped T cells derived from RNA-seq analysis of CD8+ T cells primed in the presence 

or absence of CD4+ T cell responses in CD8+ T cells grouped according to the clustering, plotted as violin plots of 
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AUC scores. Benjamini-Hochberg corrected Dunn’s Multiple Comparison Test has been used to infer statistical 

significance. 

 

The study was designed to dissect how APCs molecularly integrate stimulation via type I IFN and CD40 

from CD4+ T cells and identified that APCs require IFN-dependent rewiring of the signaling cascade 

downstream of CD40 for efficient provision of costimulatory molecules and soluble mediators upon 

receipt of T cell help. The activity of this carefully sequenced integration process in APCs from patients 

infected with SARS-CoV-2 correlated with milder forms of COVID-19 and consequent alterations of the 

CD8+ T cell responses in COVID-19.   

For this publication, I performed all single-cell transcriptomics and epigenomics analyses and 

contributed to the writing and reviewing of the manuscript.  

Methods 

ScRNA-seq data production and analysis 

ScRNA-seq data of PBMC from COVID-19 patients and controls collected from April to July 2020 in 

Bonn, Germany, was used as previously reported in (Schulte-Schrepping et al., 2020b). Samples were 

classified by disease severity according to WHO ordinal scale (WHO 3 mild; WHO 4–5, moderate; WHO 

7 severe) and by the time after onset of first symptoms (early: day 0–10, late: > day 11) at the date of 

sampling. Details about sample procurement and processing, sequencing and data analysis have been 

described in  (Schulte-Schrepping et al., 2020b) and an extensive description of the protocol has also 

been published in (De Domenico et al., 2020). Processed and annotated scRNA-seq data was 

downloaded from https://beta.fastgenomics.org/p/schulte-schrepping_covid19. The data was 

imported into R version 4.0.3 and analyzed using Seurat v3.9.9. 

Subset analysis of CD14+ monocytes and mDCs 

For the analysis of the myeloid DCs (mDCs) and classical CD14+ monocyte compartments, cells 

classified as mDCs, pDCs, classical monocytes, non-classical monocytes according to the original 

annotation provided were selected from the PBMC data set. These cells were subjected to Seurat v4 

reference mapping following the developers vignette using the multimodal PBMC reference dataset 

(Hao et al., 2021). Only those cells classified as DC or monocyte subsets were selected to remove any 

possible cellular contaminations in the data set. Subsequently, the remaining 37.100 cells were re-

clustered after scaling regressing for UMI count per cell, identification of variable genes and PCA in 

this cellular subspace using the Louvain algorithm with a resolution of 0.2 based on the first 10 

principal components. Clusters representing mDCs or classical CD14+ monocytes were then subsetted, 

respectively, and the resulting 31.736 monocytes and 722 DCs were analysed in detail, including re-

scaling, identification of variable genes, PCA and subsequent UMAP based on the first 10 principal 

components. Single sample gene set variation analysis (GSVA) using the “CD40 unresponsive”, “CD40 

amplified” and “CD40 dependent” signatures derived from the described murine bulk RNA-seq 

analysis was performed using GSVA v1.38.244. For this, aggregated expression values of all cells of 

each sample were calculated using the AggregateExpression function in Seurat and used as input for 

the sample specific analysis. Of note, the CD40 unresponsive type I IFN response signature was 

intersected with the top 100 IFN response genes derived from an integrated analysis of 8 microarray 

data sets on IFN response of myeloid cells listed in the Interferome data base 

(http://www.interferome.org/) ranked by their combined log2 fold changes in order to reduce the 

signature to a length comparable to the “CD40 amplified” and “CD40 dependent” signatures. Disease 

severity-specific marker gene analysis was performed using the Wilcoxon rank sum test with the 
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following cutoffs: genes had to be expressed in more than 10 % of the cells of the respective condition 

and exceed a logarithmic fold change cutoff of at least 0.2. Gene set enrichment analyses of “CD40 

unresponsive”, “CD40 amplified” and “CD40 dependent” gene signatures in the differentially 

expressed genes in monocytes from mild COVID-19 compared to severe cases were performed using 

the fgsea packages v1.16.0. 

Subset analysis of CD8+ T cells 

For the analysis of the CD8+ T cell compartment, cells classified as T cells according to the original 

annotation (Schulte-Schrepping et al., 2020b) provided were selected from the PBMC data set. These 

cells were subjected to Seurat v4 reference mapping following the developers vignette using the 

multimodal PBMC reference dataset (Hao et al., 2021). Only those cells classified as T cells were 

selected to remove any possible cellular contaminations in the T cell data set. Subsequently, the 

remaining 45.516 cells were re-clustered after scaling regressing for UMI count per cell, identification 

of variable genes and PCA in this cellular subspace using the Louvain algorithm with a resolution of 0.2 

based on the first 10 principal components. The cluster representing the CD8+ T cells was then 

subsetted and the resulting 12.386 cells were analyzed in detail, including re-scaling, identification of 

variable genes, PCA and subsequent UMAP based on the first 10 principal components. Ribosomal 

protein coding genes (RPL/RPS), mitochondrial genes (MT-) and haemoglobin genes (HBA1, HBA2, 

HBB) were excluded from the set of variable features to remove potential sources of technical 

differences. Single sample GSVA using the “helped” and “unhelped” T cell signature derived from RNA-

seq analysis of CD8+ T cells primed in the presence or absence of CD4+ T cell help (Ahrends et al., 2017) 

was performed using GSVA v1.38.244. For this, aggregated expression values of all CD8+ T cells of each 

sample were calculated using the AggreateExpression function in Seurat and used as input for the 

sample specific analysis. Clustering of the CD8+ T cells was performed using the Louvain algorithm with 

a resolution of 0.4 based on the first 10 principal components and cells identified as γδ T cells were 

removed. To investigate proportional cluster occupancy per disease severity, cell counts per condition 

were normalized before calculation of per-cluster percentages. Single-cell gene set enrichment 

analysis across cells of each CD8+ T cell subcluster using the “helped” and “unhelped” T cell signature 

derived from RNA-seq analysis of CD8+ T cells primed in the presence or absence of CD4+ T cell 

responses (Ahrends et al., 2017) was performed using AUCell v1.12.045.  

Analysis of scATAC-seq data from Wilk et al., JEM 2021 

Single-cell ATAC sequencing data of PBMC from COVID-19 patients and controls produced using the 

Chromium Next GEM Single Cell ATAC Reagent Kits version 1.1 (10x Genomics; PN-1000175) was used 

as previously published (Wilk et al., 2021). Processed and annotated scATAC-seq data from Wilk et al. 

was downloaded from GEO under GSE174072 and https://github.com/ajwilk/COVID_scMultiome and 

imported to R version 4.1.0. After creation of Arrow files and a respective ArchRproject using the R 

package ArchR version 1.0.1, the resulting single-cell data was filtered based on the published cell 

annotation and subsetted to CD14+ monocytes. Imputation weights on GeneScores were calculated 

using MAGIC implemented in ArchR’s addImputeWeights function. Severity-specific accessible genes 

were identified using the Wilcoxon Rank Sum test comparing gene scores of monocytes from mild 

cases of COVID-19 with cells from control donors with the following cutoffs: FDR <= 0.05 & Log2FC >= 

0.58. HALLMARK enrichment analyses were performed using clusterProfiler version 4.0.5 (Wu et al., 

2021) and the HALLMARK gene set v6.2.  
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5.  Conclusion 

In this thesis, I summarized recent developments in the field of omics for systems immunology, 

depicted challenges and considerations for their application to clinical questions and demonstrated 

their enormous potential at the example of COVID-19.  

5.1. Dissecting the innate immune system in COVID-19 – cell by cell 

The massive body of research produced over the course of the COVID-19 pandemic has left no doubt 

about the central role of the innate immune system in the pathology of this disease. While certainly 

indispensable for protection against the infection, its hyperactivation and dysregulation presents a 

dangerous threat in COVID-19. As outlined in this work, single-cell transcriptomics has contributed 

significantly to this understanding and accelerated the gain of knowledge through unbiased and 

comprehensive immunoprofiling (Tian et al., 2022).  

To contribute to the robust, reproducible and safe research on COVID-19, we have developed and 

published an optimized workflow for handling potentially infectious samples derived from COVID-19 

patients for single-cell transcriptomics and proteomics (De Domenico et al., 2020). Application of this 

protocol has yielded a valuable data set contributing to our understanding of the role of monocyte 

and neutrophil subsets in severe COVID-19 (Schulte-Schrepping et al., 2020b) as well as alterations of 

megakaryocytes and erythroid cells (Bernardes et al., 2020), functionally impaired NK cells (Krämer et 

al., 2021), and highly cytotoxic T cells (Georg et al., 2022). Furthermore, the data set has been used in 

external studies on COVID-19 (Schimke et al., 2022) and for other research purposes (Montaldo et al., 

2022). 

Because the innate and adaptive immune responses are inextricably linked through the processes of 

antigen presentation and lymphocyte priming and recruitment, it is crucial to understand how the 

respective alterations of the two domains affect each other in COVID-19. In Gressier et al., we reveal 

a carefully orchestrated consolidation process, whereby APCs integrate innate signals, such as type I 

IFNs, and CD4+ T cell help to produce a discrete set of costimulatory molecules and soluble mediators 

that are relevant to adapt the CD8+ T cell responses to the challenge of SARS-CoV-2.  

To put our findings on of the role of monocytes and macrophages in COVID-19 in the context of 

subsequent studies, we reviewed the respective literature with a particular focus on observations 

gained by using high-resolution single-cell omics technologies (Knoll et al., 2021). In addition, we 

summarized the involvement of neutrophils in the pathogenesis of COVID-19 and highlighted several 

promising therapeutic attempts to target neutrophils and their reactivity in patients with COVID-19 in 

(Reusch et al., 2021). 

In an exceptionally short time, we have gained great insight into the immunopathology of SARS-Cov-

2 infection, but much remains to be done to paint a comprehensive picture of COVID-19 and to place 

the disease within the spectrum of human infectious diseases. Furthermore, despite great successes 

in the design of effective vaccines, including revolutionary progress in mRNA vaccine platforms (Hogan 

and Pardi, 2021), and treatment strategies using antiviral drugs, monoclonal antibodies or steroids 

(van de Veerdonk et al., 2022), COVID-19 continues to present a major health challenge with 

thousands of daily deaths demanding alternative treatment strategies. Intranasal vaccines (Madhavan 

et al., 2022) and other preventive therapeutics for immunocompromised individuals or those who or 

are not able to be fully vaccinated due to a history of severe adverse reactions are currently under 

development (Robinson et al., 2022). In addition, the long-term effects of COVID-19 are an increasing 

challenge and require therapeutic strategies. Approaches currently under investigation target 
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different proposed pathomechanisms, including antifibrotic medication due to the observation of 

fibrotic lung changes, anticoagulants as well as statins for their anti-inflammatory properties 

(Chaudhary et al., 2020; Mullard, 2021).  

The derailment of the myeloid cell compartment in COVID-19 has brought the hematopoietic system 

to the spotlight. Acute infections, such as COVID-19, present a challenge for the hematopoietic stem 

and progenitor cell (HSPC) pool, and we and others have found that such immunological challenges to 

the HSPC pool can have both beneficial (Kalafati et al., 2020; Kaufmann et al., 2018) and maladaptive 

(Li et al., 2022; Ochando et al., 2022) long-term effects on myelopoiesis and the response to 

subsequent triggers (Mitroulis et al., 2018). The concept of ‘trained immunity’ primarily describes a 

beneficial enhanced responsiveness of the innate immune system as a consequence of previous 

immune activation based on epigenetic reprogramming (Cirovic et al., 2020), but conditioning of the 

innate immune system may also have deleterious effects (Netea et al., 2020). As in the acute response 

to viral infection, innate immune responses require balance and control.  

From the beginning of the pandemic, it has been discussed that the mechanisms of trained immunity 

might potentially protect against severe COVID-19. Bacillus Calmette–Guérin (BCG) is a live attenuated 

vaccine that was developed against tuberculosis and has been the most widely used vaccine in the 

world (O’Neill and Netea, 2020). Beyond its primary purpose of protecting against tuberculosis, it has 

been shown to reduce the incidence of respiratory infections (Stensballe et al., 2005; Wardhana et al., 

2011) and has since been identified as a potent inducer of trained immunity (Cirovic et al., 2020; 

Kleinnijenhuis et al., 2014). Therefore, the potential effect of BCG vaccination as a driver of protective 

trained immunity against COVID-19 has been investigated since the beginning of the pandemic with 

ambiguous results that require further studies (Brueggeman et al., 2022; Escobar et al., 2020; O’Neill 

and Netea, 2020; Tsilika et al., 2022).  

However, what if we reverse these roles and consider SARS-CoV-2 to be the training agent itself? 

Several observations suggest this possibility. Influenza, for example, has been shown to induce 

prolonged antibacterial protection against Streptococcus pneumoniae due to a population of 

monocyte-derived alveolar macrophages in mice (Aegerter et al., 2020). On the other hand, long-

lasting defects of monocytes and macrophages have been described after the resolution of bacterial 

infection and sepsis due to metabolic and epigenetic alterations (Cheng et al., 2016; Roquilly et al., 

2020). For mild and asymptomatic COVID-19, features of long-term immunosuppression associated 

with regulatory neutrophil phenotypes have been described in convalescent individuals (Siemińska et 

al., 2021). Furthermore, it has been shown that after COVID-19 HSPCs retain epigenomic alterations 

that vary with disease severity, persist for months to a year, and are associated with increased myeloid 

cell differentiation and inflammatory or antiviral programs (Cheong et al., 2022). In this light, 

understanding the long-term effects of COVID-19 on the HSPC pool in the bone marrow in more detail 

certainly presents a pressing issue, particularly in the context of long-COVID. 

Notably, not only severe acute threats are of concern in this context. Chronic inflammatory diseases 

as well as unhealthy lifestyles and malnutrition have also been described to impact myelopoiesis 

(Cabezas-Wallscheid et al., 2017; Christ et al., 2018; Kaastrup and Grønbæk, 2021; Sanchez-Pino et al., 

2022; Zhao and Baltimore, 2015). As long-lived humans in the changing environments of our fast-

paced world, we are exposed to numerous such challenges throughout our lives and, consequently, 

our HSPCs are repeatedly challenged to ensure the supply of functional innate immune cells. How 

does the human hematopoietic system cope with these constant, life-long challenges given its finite 

number of stem cells, what are the dynamics and secondary effects of its memory and what are the 

mechanisms keeping the system from failing during aging? Given the complex biographies of humans 

and the difficulties of collecting and analyzing human bone marrow, these questions seem 
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unanswerable, but controlled experiments in animal models combined with high-resolution single-cell 

omics screens of human samples in conjunction with detailed clinical records will be vital to 

understand immune-mediated pathologies during aging – and the extensive and well-documented 

challenge of the human population with a newly emerging pathogen during the COVID-19 pandemic 

may present a unique scientific chance in this regard. 

 

5.2. Future perspectives of single-cell omics in medicine 

Our continuous work on the clinical application of single-cell omics since its introduction (Baßler et al., 

2022) has allowed us to readily apply the technology in response to the challenge of COVID-19. The 

pandemic has forced us to accelerate the technology dramatically and implement its application to 

large clinical cohorts at unforeseen speed. Clearly, research on COVID-19 must continue to improve 

our understanding of its immunopathology and treatment, particularly with respect to vaccine efficacy 

and emerging variants of concern. But the impact of the pandemic on single-cell omics goes well 

beyond COVID-19 research. 

High-resolution omics technologies will inevitably become widely used in clinical research and 

practice. Their diagnostic potential is unquestioned and with falling prices for reagents and 

sequencing, the hurdles for their translation become smaller and smaller. Studies applying single-cell 

omics to diseases other than COVID-19 are continuously increasing in numbers and growing in terms 

of patient cohorts and information content. Their potential for virtually all fields of medicine have 

recently been underpinned by large efforts in cancer (Barkley et al., 2022; Luo et al., 2022), 

cardiomyopathies (Reichart et al., 2022), infections (Oelen et al., 2022), chronic inflammatory and 

autoimmune diseases (Jaeger et al., 2021; Perez et al., 2022) as well as neurodegenerative diseases 

(Kamath et al., 2022; Yang et al., 2022). In addition, multi-omics approaches are being increasingly 

used. For example, the combined application of transcriptomics and immune repertoire profiling to 

clinical cohorts of patients with various cancer types has been effective to map a pan-cancer single-

cell landscape of tumor-infiltrating T cells (Zheng et al., 2021). Moreover, recent developments in the 

fields of spatial transcriptomics (Moses and Pachter, 2022) and epigenomics (Lu et al., 2022), CRISPR 

screens (Ferrari et al., 2022) and temporal sequencing of living cells (Chen et al., 2022) make 

undeniably clear how technological improvements will continue to enhance data quality and content, 

paving the way for discoveries. 

Despite all the great progress, we still have much to learn about how to optimally utilize these 

techniques in the clinical setting. The highly modular workflows demand more efforts to benchmark, 

standardize and disseminate protocols in order to improve robustness and reproducibility. With highly 

optimized experimental and computational SOPs and transparent and detailed reporting of 

standardized medical meta information of the patient cohorts, the use of such techniques will 

substantially enhance medical practice and contribute to the patients’ benefits. Particularly in 

combination with artificial intelligence and machine learning approaches making use of the vast 

amount of data, these approaches hold great potential for disease risk prediction and differential 

diagnosis improving the experiences of both clinicians and patients (Rajpurkar et al., 2022; Warnat-

Herresthal et al., 2020). 

Furthermore, automation of sample processing and data generation will be key to further advance the 

use of omics in clinical practice and establish easy-to-use, reliable, and trusted applications. A single 

benchtop device performing sample collection by capillary blood draw from the fingertip, single cell 

purification and isolation, and transcriptome and epigenome library preparation all in one run 
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presents a futuristic, but not impossible, avenue towards fast and comprehensive assessment of a 

patients’ immune status and might one day become a standard procedure in diagnostics. Of course, 

such an automation approach could also be further developed to include stimulation assays to assess 

the response capacities of the immune system or for processing different types of tissue samples to 

expand the potential applications beyond the systemic immune cell status.  

But even the largest amounts of data are worthless if they cannot be analyzed, condensed, and 

understood. Therefore, in addition to all the necessary technical improvements, the medical 

community must invest in the education and training of personnel to be equipped to work with such 

new kinds of data and ultimately evaluate and make medical use of the information. Clearly, all these 

developments can only be initiated and supported by the research community but must be adapted 

by industry to create evaluated products generating useful and understandable readouts. The 

potential of these approaches is too valuable to be wasted by faulty or inaccurate attempts and 

therefore requires very careful implementation in order not to risk people's trust. 

Beyond the experimental challenges, data protection and privacy regulations complicate the use of 

omics data in clinical trials across different institutions and countries, making it difficult to realize their 

full potential. To facilitate the integration of any medical data from any data owner worldwide without 

violating privacy laws, we introduced Swarm Learning for decentralized and confidential clinical 

machine learning as a means of disease classification and diagnosis. The approach unites edge 

computing with blockchain-based peer-to-peer networking and coordination to maintain 

confidentiality and circumvent the need for data sharing and central data storage (Warnat-Herresthal 

et al., 2021). This approach has been shown to outperform classifiers developed at individual sites 

across a range of diseases, including COVID-19, tuberculosis, leukemia and lung pathologies and holds 

great promise to accelerate the introduction of precision medicine. 

In view of future pandemics, the scientific community must be prepared to react quickly and efficiently 

(Schultze et al., 2022), and advancing such powerful experimental methods and analytical approaches 

for robust clinical routine application could make a significant contribution to this preparation. 
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SUMMARY

In December 2019, a new coronavirus, SARS-CoV-2, which causes the respiratory
illness that led to the COVID-19 pandemic, was reported. In the face of such a new
pathogen, special precautions must be taken to examine potentially infectious
materials due to the lack of knowledge on disease transmissibility, infectivity,
and molecular pathogenicity. Here, we present a complete and safe workflow
for performing scRNA-seq experiments on blood samples of infected patients
from cell isolation to data analysis using the micro-well based BD Rhapsody plat-
form.
For complete information on the use and execution of this protocol, please refer
to Schulte-Schrepping et al. (2020).

BEFORE YOU BEGIN

Study subject details and written informed consent

The original study following this protocol, Schulte-Schrepping et al. (2020), was approved by the

Institutional Review board of the University Hospital Bonn (073/19 and 134/20). After providing

written informed consent, control donors and COVID-19 patients were included in the study. In

patients who were not able to consent at the time of study enrollment, consent was obtained after

recovery.

Prepare working area

This protocol must be performed in a Biosafety level 2 laboratory. The initial part of the protocol

must be done in a laminar flow hood and special precautions must be taken to avoid any potential

risk working with samples from COVID-19 patients. It is important to realize that as soon as sam-

ples from COVID-19 patients are handled under the hood everything is considered potentially

contaminated and should be treated as such. In order to minimize handling of potentially contam-

inated materials outside of the hood it is critical to organize the working area (Figure 1) and disin-

fect both hands and materials with Sterillium and Terralin respectively before taking them out of

the hood.

Prepare cell culture hood and materials

Refer to ‘‘Materials and equipment’’ for the list of materials to be prepared before the

experiment.
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Prepare solutions

Refer to ‘‘Materials and equipment’’ for the list of buffers and solutions to be prepared before the

experiment. Prepare all necessary buffers and working dilutions in advance to avoid possible con-

taminations of the stock solutions.

General precautions

Up to the cell lyses the samples are considered infected and potentially infectious. Therefore,

special precautions need to be taken when steps must be performed outside of the laminar

flow hood. In this section we present how to safely perform cell counting and centrifugation

steps.

1. Spinning samples

a. Have a centrifuge bucket and lid ready in the hood

Note: Everything inside the bucket is possibly contaminated. Do not open it outside of the

hood. Leave the balance bucket outside the hood to avoid contaminations.

b. Close your tube and place it in the centrifuge bucket, close the lid

c. Disinfect your hands with Sterillium and wipe the outside of the bucket with Terralin PAA

d. You can now spin outside the hood

e. Bring closed bucket back under the hood for subsequent sample processing

2. Counting cells

a. Prepare Eppendorf tubes with ready to use Trypan blue solution (0.4%) according to the

desired ratio (1:10) outside of the hood beforehand and place them in the hood

b. Mix the cell sample with the Trypan blue solution (0.4%) according to the chosen ratio (1:10)

under the cell culture hood

c. Load cell suspension on a single-use counting chamber

d. Place the counting chambers in the 4-well dish

e. Close the 4-well dish with its lid and seal the dish with tape (Figure 2)

f. Disinfect your hands with Sterillium and wipe the plate with Terralin PAA

g. You can now count your cells outside hood

Note: Do not take the counting chamber out of the plate at any time outside of the hood. The

cell counting procedure at the microscope can be performed leaving the counting chamber

inside the plate (Figure 3).

Figure 1. Working area
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h. After cell counting, bring back the plate under the hood

3. Clean up

a. Disinfect all materials that must be moved out of the hood with Terralin PAA before discarding

them

b. Prepare a decontamination bath with Terralin PAA for decontaminating the centrifuge buckets

and lids for at least 10 min

CRITICAL: Open bucket under water in the decontamination bath so that the Terralin PAA

covers all surfaces.

c. Discard the liquid waste flask in a labeled autoclave bag and close the bag properly for auto-

claving

d. Leave the 2 liter Terralin PAA cylinder flask with the used serological pipettes under the hood

for 24 h. After decontamination, the pipettes can be discarded in a bag for autoclaving and the

Terralin PAA can be discarded safely into a sink

Figure 2. Counting chamber in the 4-well dish

Figure 3. Microscope setup for cell counting
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HLA-DR BV421 (L243) BioLegend Cat# 307635; RRID:AB_10897449

CD4 BV510 (OKT4) BioLegend Cat# 317444; RRID:AB_2561866

CD16 BV605 (3G8) BioLegend Cat# 302039; RRID:AB_2561354

CD45 BV711 (HI30) BioLegend Cat# 304050; RRID:AB_2563466

CD8 BV785 (SK1) BioLegend Cat# 344740; RRID:AB_2566202

CD66b FITC (G10F5) BioLegend Cat# 305104; RRID:AB_314496

CD14 PerCp-Cy5.5 (MfP9) Becton Dickinson Cat# 562692; RRID:AB_2737726

CD56 PE (MY31) Becton Dickinson Cat# 345810; RRID:AB_396511

CD3 PE/Dazzle (UCHT1) BioLegend Cat# 300450; RRID:AB_2563618

CD11c PE/Cy5 (B-ly6) Becton Dickinson Cat# 551077; RRID:AB_394034

Siglec8 PE/Cy7 (7C9) BioLegend Cat# 347112; RRID:AB_2629720

CD203c APC (NP4D6) BioLegend Cat# 324609; RRID:AB_2099774

CD1c AlexaFluor700 (L161) BioLegend Cat# 331530; RRID:AB_2563657

CD19 APC/Fire 750 (HIB19) BioLegend Cat# 302258; RRID:AB_2629691

Chemicals, peptides, and recombinant proteins

BD Horizon brilliant stain buffer Becton Dickinson Cat# 563794

RBC lysis buffer 103 BioLegend Cat# 420301

Trypan blue Invitrogen Cat# T10282

Pierce 16% formaldehyde (w/v), methanol-free Thermo Fisher Cat# 28908

RPMI 1640 medium Gibco Cat# 11875093

Fetal bovine serum PAN Biotec Cat# 3302

Pancoll human, density: 1.077 g/mL Pan Biotech Cat# P04-601000

Dulbecco’s phosphate buffered saline, MO Sigma-Aldrich Cat# D8537

FcR blocking reagent, human Miltenyi Cat# 130-059-901

Nuclease-free water Invitrogen Cat# AM9937

Sterrilium PAUL HARTMANN Cat# 9800081

Terralin PAA 160 mL (2 3 80 mL) Schülke Cat# 126203

Critical commercial assays

Human single-cell multiplexing kit Becton Dickinson Cat# 633781

SPRIselect reagent Beckman Coulter Cat# B23318

LIVE/DEAD fixable yellow dead cell stain kit, for
405 nm excitation

Invitrogen Cat# L34959

BD Rhapsody WTA amplification kit Becton Dickinson Cat# 633801

BD Rhapsody cartridge kit Becton Dickinson Cat# 633733

BD cartridge reagent kit Becton Dickinson Cat# 633731

BD Rhapsody cDNA kit Becton Dickinson Cat# 633773

High sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA HS assay kit Thermo Fisher Cat# Q32854

NovaSeq 6000 S1 reagent kit (100 cycle) Illumina Cat# 200012865

NovaSeq 6000 S2 reagent kit (100 cycle) Illumina Cat# 20012862

NovaSeq 6000 S2 reagent kit (200 cycles) Illumina Cat# 20040326

(Continued on next page)
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MATERIALS AND EQUIPMENT

Preparation of buffers and solutions

� Complete RPMI: Supplement RPMI1640 medium with 10% FCS (store at 4�C, up to 4 weeks).

� PFA: 16%Methanol-free PFA is diluted to a final concentration of 4% in sterile PBS (prepare freshly

if possible or store small aliquots at �20�C).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

scRNA-seq raw data Schulte Schrepping et al., 2020 EGAS00001004571

Processed scRNA-seq count data and code Schulte Schrepping et al., 2020 https://beta.fastgenomics.org/p/schulte-
schrepping_covid19

Software and algorithms

Bcl2fastq2 Illumina v2.20

STAR Dobin et al., 2013 v2.6.1b

Cutadapt Martin, 2011 v1.16

Dropseq-tools https://github.com/broadinstitute/Drop-seq/ v2.0.0

Picard https://github.com/broadinstitute/picard v2.23.7

R www.cran.r-project.org v3.6.2

Seurat (R package) Butler et al., 2018; Stuart et al., 2019 v3.1.2 (CRAN)

Biological samples

Blood samples from COVID-19 patients University Hospital Bonn (for details
see Schulte Schrepping et al., 2020)

N/A

Other

Falcon tube (50 mL) Corning Cat# CLS430290-500EA

Falcon tube (15 mL) Corning Cat# CLS430053-500EA

Improved Neubauer hemocytometer INCYTO Cat# DHC-N01-5

Cryovials Sarstedt Cat# 72.379.002

4-well dish Thermo Fisher Scientific Cat# 267061

Serological pipettes (5, 10, 25 mL) Santa Cruz Cat# sc-200283 sc-200281, sc-200283

Thermo Scientific Megafuge 40R with TX-1000 rotor Thermo Fisher Scientific N/A

Slide coat TX-1000 buckets with TX-1000
ClickSeal biocontainment lids

Thermo Fisher Scientific N/A

Adapter BIOFlex HC (15 mL/50 mL) Thermo Fisher Scientific N/A

BD Rhapsody Express Single-Cell Analysis
System Package

Becton Dickinson Cat# 633707

TapeStation 4200 system Agilent Cat# G2991AA

Invitrogen Qubit fluorometer Thermo Fisher Scientific Cat# Q33240

Eppendorf ThermoMixer C Eppendorf Cat# 5382000015

Magnetic separation stand (0.2 mL; 5 mL) V&P Scientific Cat# VP 772F4-1, VP 772FB-1A, VP 772FB-1

DynaMag-2 magnet Thermo Fisher Scientific Cat# 12321D

BD LSRII/Symphony Becton Dickinson Special order research product

Light-transmission microscope Major supplier N/A

Thermocycler Major supplier N/A

Minifuge for PCR TubeStrips Major supplier N/A

Illumina NovaSeq 6000 Illumina Cat# 20012850

Illumina NextSeq 500 Illumina Cat# SY-415-1001
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� RBC lysis Buffer: 103 RBC lysis buffer stock solution (BioLegend) is diluted to a final concentration

of 13 in sterile nuclease-free ddH2O (prepare freshly).

Preparation of materials and equipment

Here, a list of required materials and equipment is described:

� Reservoirs filled with Terralin PAA solution to rinse tips before discarding into waste bins

� 2 liter Terralin PAA cylinder flask to discard serological pipettes

� Empty waste flask for liquid waste

� Waste bucket with double bag

� Sterillium bottle for disinfection of gloves/hands

� Terralin PAA squeeze bottle to disinfect surfaces and materials

� Stack of dust-free paper towels

� 1,000 mL, 200 mL and 10 mL filter tips and pipettes

� 50 mL Falcons

� Single-use counting chambers

� Cryovials

� 4-well dish

� Pre-cut stripes of tape to seal 4-well dish for counting

� Electric pipette

� 25 mL, 10 mL, and 5 mL serological pipettes

� Aliquots of the media and buffers needed

� cell culture medium (RPMI1640+10%FBS)

� PBS

� BD stain buffer (on ice)

� BD sample tags (on ice)

� Trypan blue

Note: Prepare aliquots before starting to work with the samples to avoid contamination of the

stock solutions. Volumes of aliquots should be scaled according to number of samples.

� Thermo Scientific Megafuge 40R with TX-1000 rotor

� Slide coat TX-1000 buckets with TX-1000 ClickSeal biocontainment lids and 50 mL and 15 mL

Adapter BIOFlex HC

Alternatives: Any refrigerated centrifuge with swinging bucket rotor and buckets with biocon-

tainment lids can be used.

� BD Rhapsody Express instrument

� BD Rhapsody P1200M and P5000M pipettes

� TapeStation 4200 system

Alternatives: The 2100 Bioanalyzer (Agilent technologies) can alternatively be used for frag-

ment distribution analyses.

� Invitrogen Qubit Fluorometer

� Eppendorf ThermoMixer C

Alternatives: Any programmable thermomixer can be used.

� Magnetic separation stands for 5 mL, 1.5 mL and 0.2 mL

� 3-laser flow cytometer (e.g., BD LSRII/Symphony)

� Light-transmission microscope
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� Thermocycler

� Minifuge for PCR TubeStrips

� Illumina NovaSeq 6000/NextSeq500

STEP-BY-STEP METHOD DETAILS

Note: If both peripheral blood mononuclear cells (PBMC) isolation and red blood cell lysis are

performed from the same sample in parallel, it is necessary to split the samples in 2 aliquots.

The respective volumes depend on the starting material and should be adjusted to the

required material for downstream applications.

Red blood cell (RBC) lysis

Timing: 30 min

In this section, the RBC lysis procedure to prepare whole blood samples for scRNA-seq and FACS

from blood of COVID-19 patients is described.

1. Preparation of the RBC lysis solution

a. Dilute 1:9 the 103 RBC lysis buffer (BioLegend) in sterile ddH2O freshly before use

2. Red blood cell lysis

a. Transfer the blood tube in the biological hood and gently transfer 1 mL of blood to a 50 mL

Falcon

b. Using a serological pipette carefully add 10 mL of 13 RBC lysis buffer

c. Shortly vortex the Falcon and incubate for 10 min between 20�C–22�C
d. Dilute the cell solution in RBC lysis buffer by adding 40 mL of PBS

e. Centrifuge the cell suspension at 300 3 g for 10 min, 4�C, following the above-mentioned

safety instructions

f. Remove the supernatant and resuspend the cell pellet in the desired volume of PBS

g. Count the cells following the above-mentioned safety instructions

PBMC purification using density-gradient centrifugation

Timing: 1 h

In this section the procedure to purify PBMC from blood of COVID-19 patients is described. Special

emphasis will be paid on the necessary steps to avoid contamination of the working area and infec-

tion of the experimenter.

3. Preparation of the necessary materials

a. For each sample prepare and label two 50 mL Falcons, fill one of the tubes with 10 mL of Pan-

coll pre-warmed to between 20�C–22�C and one with 20 mL PBS

b. Label the tubes with all necessary information (PBS, Pancoll, sample ID, etc.)

4. Pancoll density-gradient centrifugation

a. Move the blood tube under the laminar flow hood

b. Transfer the content (maximum 20 mL) to a new 50 mL Falcon and add an equal volume of PBS

c. Gently overlay the diluted blood onto 10 mL Pancoll (pre-filled tubes) following the manufac-

turer’s protocol

d. Centrifuge at 7003 g 25 min, 20�C, without breaks, following the above-mentioned safety in-

structions

ll
OPEN ACCESS

STAR Protocols 1, 100233, December 18, 2020 7

Protocol



e. After centrifugation, take the Falcon out of the centrifugation bucket under the hood and care-

fully collect the PBMC fraction into a 50 mL Falcon pre-filled with PBS using a serological

pipette

Note: PBS volume should be two volumes of the expected PBMC fraction; final volume should

be adjusted accordingly.

CRITICAL: Prevent mixing of the density phases to avoid contamination of the PBMC frac-

tion with erythrocytes and granulocytes.

f. Centrifuge cells at 3003 g for 10 min, 4�C, following the above-mentioned safety instructions

g. Remove supernatant and resuspend the PBMC in the desired volume of complete RPMI

h. Count the cells following the above-mentioned safety instructions

Cryopreservation of PBMC samples (optional)

In this section we describe how to store PBMC samples for long-term sample acquisition and pro-

cessing for scRNA-seq. Cells are stored in DMSO-supplemented freezing media in liquid nitrogen.

5. Preparation of required media and equipment

a. 23 freezing medium: RPMI1640 supplemented with 40% FBS and 20% DMSO

b. Resuspension medium: RPMI1640 supplemented with 40% FBS

c. Chill a cell freezing container in a 4�C refrigerator

d. Cryovials

6. Cryopreservation Protocol

a. Prepare and label cryovials, open them, and place them on ice in the hood

b. Centrifuge the purified PBMC at 3003 g for 5 min, 4�C, following the above-mentioned safety

instructions

c. Resuspend the cell pellet in an appropriate volume of chilled resuspensionmedium to achieve

a cell concentration of �2–10 3 106 cells/mL (maintain the cells on ice)

d. Gently add an equivalent volume of chilled 23 freezing medium to achieve a cell concentra-

tion of �1–5 3 106 cells/mL

e. Gently mix the cells

f. Dispense 1 mL aliquots of the cell suspension into the cryovials on ice

g. Close the cryovials with the corresponding lid

h. Remove the chilled cell freezing container from the 4�C refrigerator and place it in the hood

i. Wipe each cryovial with Terralin PAA and place inside the cell freezing container

j. Wipe the outside of the cell freezing container with Terralin PAA

k. Move the container out of the hood and place it in a �80�C freezer for minimum 12 h, ensure

that the bottom and top vents of the container are not obstructed to allow adequate air flow

l. Transfer the cryovials to liquid nitrogen for long-term storage

7. Thawing procedure:

a. Remove cryovial(s) from liquid nitrogen storage and transport immediately on ice in the hood

b. Thaw the samples in a reservoir containing water at 37�C for 2–3 min

c. Gently transfer thawed cell suspension into an empty 50 mL Falcon using a 1 mL pipette tip (If

possible, use wide-bore tips for the complete thawing procedure)

d. Rinse the cryovial with 1 mL warm complete RPMI and add the medium dropwise to the 50 mL

Falcon containing the cell suspension while gently shaking the Falcon

Note: Dropwise addition of medium allows the cells sufficient time for a gradual loss of

DMSO and therefore prevents osmotic lysis.

e. Serially dilute the cells with complete RPMI a total of 4 times by 1:1 volume addition with

approximately 1 min wait between additions (final volume: 32 mL)

f. Put all 50 mL Falcons in a centrifuge bucket inside the hood and close the lid
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g. Centrifuge cells at 300 3 g for 5 min between 20 and 22�C, following the above-mentioned

safety instructions

h. Remove most of the supernatant, leaving�1 mL and resuspend cell pellet in this volume using

a 1 mL pipette tip

i. Add an additional 4 mL complete growth medium to achieve a total volume of �5 mL

j. Proceed to count viable cells as described above and adjust the cell concentration according

to the downstream protocol

Oligo-coupled antibody-based sample multiplexing (and optionally AbSeq)

Timing: from 1 h to 3 h

In this section the staining with universal antibodies conjugated to unique polyadenylated DNA

barcodes (sample tags) is described. The use of sample tags allows multiplexing of up to 12 sam-

ples reducing potential technical batch effects. Furthermore, multiplexing of samples significantly

reduces the time and costs of the library preparation and sequencing processes. After the sample

tag labeling, an optional step can be introduced to detect surface protein expression. This proto-

col is termed AbSeq by BD and is based on a second staining using currently up to 100

selected antibodies conjugated to oligonucleotides (Ab-Oligos) (Figure 4). Cells can be either

co-labeled with sample tag and Ab-Oligos concurrently in the same tube or labeled sequentially.

The latter allows reducing the cost per sample considerably, but increases both time and the risk

to lose cells during the additional washing steps. It is, therefore, critical to take these consider-

ations into account for the experimental design. Here we describe the sequential labeling

approach. Considering the potential loss of cells during the extra wash steps, starting with 1 million

cells is recommended, but the following protocol also works with low-abundance samples

(< 100,000 cells).

8. Labeling samples with sample tag-coupled antibodies

a. Transfer 20,000–2 3 106 cells into 200–500 mL of BD Stain Buffer in a 5 mL Eppendorf tube

b. Proceed to spin samples at 300 3 g for 5 min, 4�C following the above-mentioned safety

instructions

c. Resuspend the cell pellet in 190 mL of BD Stain Buffer

d. For each sample, transfer the cell suspension to the respective sample tag tube previously ali-

quoted (see Note) and mix by pipetting only

Note: The original BD Rhapsody protocol uses the whole volume of 20 mL of each sample

tag-coupled antibody mix for labeling the samples. However, using 10 mL yielded compara-

ble results.

e. Incubate the cell suspension between 20�C and 22�C for 20 min

f. Add 200 mL of BD Stain Buffer to the cell suspension and mix by pipetting

g. Proceed to spin samples at 300 3 g for 5 min, 4�C following the above-mentioned safety in-

structions

h. Carefully remove the supernatant with a pipette leaving a small amount of medium to ensure

the cell pellet is not disturbed

i. Resuspend the pellet in 500 mL of BD Stain Buffer

j. Repeat step 8g and centrifuge the cell suspension at 300 3 g for 5 min, 4�C following the

above-mentioned safety instructions

k. Remove the supernatant leaving a small amount of medium and resuspend the pellet in 300 mL

of BD Sample Buffer

Note: For low-abundance samples leave �50 mL of supernatant and resuspend the cells in a

total volume of 100 mL.
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Note: For low-abundance samples, a co-labeling approach as mentioned above could be

used to decrease the potential risk of cell loss. It is important, however, to consider that

this approach substantially increases the cost for the AB-labeling per sample. For more de-

tails, please, refer to the BD protocol. (http://static.bdbiosciences.com/documents/

BD-AbSeq-Ab-Oligos-Single-Cell-Multiplexing-Kit-User-Guide.pdf)

CRITICAL: If the Ab-oligo labeling step follows, samples need to be resuspended in BD

Stain Buffer, otherwise resuspend in BD Sample Buffer.

9. Pooling samples

Figure 4. Schematic overview for the combination of WTA, sample tag, and AbSeq
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a. Count the cell number of each sample after labeling as described above

b. Pool the cells of all samples at equal numbers and adjust the volume with BD Sample Buffer to

a final volume of 610 mL

Note: If Ab-Oligo staining is not performed, proceed immediately with the single-cell capture

step.

CRITICAL: Accurate cell counting is critical for obtaining an equal distribution of cells be-

tween the different samples in the final cell mixture.

10. Optional: Ab-Oligo Labeling

a. After Oligo-coupled antibody-based sample multiplexing, centrifuge the cell mixture at

300 3 g for 5 min, 4�C following the above-mentioned safety instructions

b. To block non-specific AB binding sites, remove the supernatant, add 100 mL blocking buffer

(95 mL BD Stain Buffer + 5 mL human FcR blocking reagent) and incubate the cell suspension

for 10 min between 20�C and 22�C
c. Add 100 mL of the antibody mix to the cell suspension and incubate the cell suspension for

40 min on ice

Note: BD AbSeq oligo-coupled antibodies are optimized for use at a final concentration of

1:100. Thus, 2 mL of each antibody are mixed and depending on the numbers of antibodies

used stain buffer is added to reach a volume of 100 mL of the antibody mix. At this point

the mix is added to the cell suspension in blocking buffer reaching a final volume of 200 mL.

d. Add 1mL of Stain Buffer and proceed to spin the samples at 3003 g for 5 min, 4�C, following
the above-mentioned safety instructions

e. Repeat the wash step two more times

f. Resuspend the cell pellet in 300 mL of BD Sample Buffer

g. Count the cells as described above

h. Considering the number of cells to load on the BD Rhapsody cartridge, adjust the volume

with Sample Buffer to obtain a final volume of 610 mL

BD Rhapsody single-cell capture and cDNA synthesis

Timing: �2 h

This section describes cell loading and capturing of single cells onto the BD Rhapsody Cartridge (RC)

and subsequently cDNA synthesis and exonuclease treatment. The critical step here is to define the

desired number of cells to load on the RC. BD estimates a multiplet rate of 4.7% when loading

20,000 cells. Using the oligo-coupled antibody-based sample multiplexing strategy enables to effi-

ciently identify doublets in the data in silico thus allowing to super-load a higher number of cells

thereby substantially increasing the number of singlets (Stoeckius et al., 2018). On average, we

observe a doublet rate ranging roughly from 20 to 40 % when super-loading the cartridges with

60,000 cells and end up with approximately 15–20k cells. The inevitable increase in doublets of

course also leads to higher sequencing cost for the informative cells as the doublets take up a sub-

stantial part of the reads. But as clinical samples are precious and sequencing costs decrease contin-

uously, this is the preferred approach to get as much information per sample with as little batch ef-

fects as possible.

11. Prepare the following items before starting the experiment:

a. Set two thermomixers at 37�C and 80�C, respectively
b. Thaw all the reagents from the BD Rhapsody cDNA kit and place them on ice. Remove the

enzymes from �20�C only right before use
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c. Place Sample Buffer, 1 M DTT, Lysis Buffer, and Cell capture beads from the BD Rhapsody

Cartridge Reagent kit on ice

d. Prepare Cell Capture Beads by placing the Cell Capture Bead tube on the magnet for 1 min

and remove the storage buffer. Afterward, remove the tube from the magnet and resuspend

the beads in 750 mL of cold BD Sample Buffer

e. Prepare Lysis Buffer by adding 75 mL 1 M DTT to one 15 mL Lysis Buffer bottle

f. Ensure that the waste collector and a labeled 5mL LoBind tube are inserted in the designated

slots of the BD Rhapsody Express instrument (Figure 5). The waste collector located inside

the instrument must be pre-filled with 1,400 mL absolute ethanol

g. Move the left slider on top of the instrument in the middle in position 0 and the slider on the

front to WASTE

h. Prepare a Terralin PAA bottle and a respiratory protectionmask (FFP2 or FFP3) next to the BD

Rhapsody express instrument for the case of contamination

CRITICAL: In order to assure no potential contamination, the cell loading step has to be

carried out under the laminar flow hood. Once the cells are loaded on the RC, it can be

brought outside the hood to proceed with the protocol.

Note: For operations on the BD Rhapsody Express instrument only electronic BD Rhapsody

P1200M and P5000M pipettes can be used. The flow rate in these pipettes is optimized for

each different step. For more details on how to use the BD Rhapsody express instrument

please consult the BD user guide (http://static.bdbiosciences.com/documents/BD-Rhapsody-

Single-Cell-Analysis-System-Instrument.pdf).

12. Priming of the RC

Note: All buffers used in this step need to be equilibrated between 20�C and 22�C.
a. Place the RC into the BD Rhapsody Express instrument assuring that the RC barcodes faces

out

b. Set the P1200M pipette to ‘‘Prime/Treat’’ mode

c. Load 700 mL of absolute ethanol onto the RC

d. Remove the ethanol from the RC loading 700 mL of air

e. Load 700 mL of Cartridge Wash Buffer 1 (CWB1) and leave it for 1 min at between 20�C and

22�C
f. Remove the CWB1 from the RC loading 700 mL of air and subsequently load 700 mL of CWB1

once more leaving it for 10 min between 20�C and 22�C

Figure 5. BD Rhapsody Express instrument
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g. Load the RCwith 700 mL of air to empty it and immediately load 700 mL CartridgeWash Buffer

2

Note: The RC can be primed up to 4 h and stored at a temperature between 20�C and 22�C
before cell loading.

13. Cell Loading onto the RC and bead retrieval

a. With the RC placed on the BD Rhapsody Express instrument empty the RC by loading air into

it with the P1200M set in ‘‘Prime/Treat’’ mode

b. Bring the RC and P1200M pipette set in ‘‘Cell Load’’ mode under the laminar flow hood

Note: Please consider that in ‘‘Cell Load’’ mode, it is required to press the button of the

P1200M a first time to aspirate 40 mL of air, and then after immersing the tip in cold cell sus-

pension to press once more in order to fill the tip and aspirate 575 mL of solution.

c. Mix the cell suspension by pipetting with a normal 1,000 mL pipette and then immediately

load 575 mL cell suspension on the RC using the P1200M pipette

d. Incubate the RC at 20�C–22�C for 15 min

Note:At this step, if working with two cartridges in parallel, proceed with cell loading into the

second one. We recommend waiting until almost the end of the incubation of step 13d. This

allows processing the first cartridge until step (14g) during the incubation time of the second

one.

e. In the meantime:

i. Disinfect your hands and wipe the outside of RC and the P1200M carefully with Terralin

PAA assuring that the entire surface has been decontaminated

ii. Transfer both the P1200AM and the RC outside of the hood and place the latter into the

Rhapsody Express instrument

f. Set the P1200M pipette in ‘‘Prime/Treat’’ mode and load the RC with air to remove cells in

excess

Note: The diluted cell solution will be discarded directly into the waste collector pre-filled

with absolute ethanol. The final concentration of ethanol inside the container is sufficient

to neutralize the virus and the waste can be considered virus free.

g. Set the P1200M pipette in ‘‘Bead Load’’ mode

h. Resuspend the BD beads by pipetting with a normal 1,000 mL pipette and then immediately

aspirate 630 mL bead suspension and load on the RC using the P1200M pipette in ‘‘Bead

Load’’ mode

i. Incubate the RC at 20�C–22�C for 3 min

j. Shake the RC at 20�C–22�C for 15 s using a plate mixer or Thermo mixer at 1,000 rpm to re-

suspend the beads in excess before to remove them

k. Return the RC on the BD Rhapsody Express instrument and wait 30 s

l. Set the P1200M pipette in ‘‘Wash’’ mode and load the RC with air and cold Sample Buffer in

the following order

i. Air

ii. Cold Sample Buffer

iii. Air

iv. Cold Sample Buffer

m. Move the left slider on the BD Express instrument to LYSIS and set the P1200M in ‘‘Lysis’’

mode

n. Load 550 mL Lysis Buffer + DTT on the RC and incubate at 20�C–22�C for 2 min

o. Set the P5000M pipette in ‘‘Retrieval’’ mode

p. Move the front slider on the BD Express instrument to BEADS and the left slider on

RETRIEVAL
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q. Move the retrieval magnet in down position and leave it for 30 s

r. Aspirate 5,000 mL Lysis Buffer + DTT with the P5000M pipette

s. Place the P5000M pipette in position to seal against the gasket of the RC

t. Move the left slider to the middle position (0) and immediately load 4,950 mL Lysis Buffer

with DTT

u. Move the front slider on the BD Express instrument toOPEN and collect the 5 mL LoBind Tube

14. Washing of the cell capture beads

a. Place the 5 mL LoBind tube on a large magnetic stand for 5 mL Eppendorf tubes

b. After 1 min remove all but �1 mL of supernatant without disturbing the beads

c. Removing the tube from the magnet, gently pipet the beads and transfer them to a new

1.5 mL LoBind Tube

d. Place the tube on the magnetic stand holding 1.5 mL tubes for about 2 min and remove su-

pernatant

CRITICAL: Avoid leaving Lysis Buffer in the tube. Lysis Buffer might inhibit the reverse

transcription reaction.

e. Remove the tube from the magnet and gently resuspend the beads with 1 mL of cold Bead

Wash Buffer (BWB)

f. Place the tube on the magnet for �2 min and remove the supernatant

g. Repeat the washing step once more and proceed with the reverse transcriptase reaction

Note: Beads can sit in BWB on ice for up to 30 min before proceeding with the next steps. If

working with two cartridges, at this time the second cell incubation in RC of step 13d should be

finished and can be further processed. In this way. It is possible to proceed with the Reverse

transcription and Exonuclease I treatment with both samples together

15. Reverse transcription and treatment with Exonuclease I on the cell capture beads

a. Prepare the cDNA mix (Table 1) and assure that a Thermomixer is set to 37�C and 1,200 rpm

b. Place the tube containing the Cell Capture Beads on the magnetic stand for �2 min and re-

move the supernatant

c. Pipet 200 mL cDNA mix into the tube containing the Cell Capture Beads

d. On a thermomixer incubate the samples at 1,200 rpm and 37�C for 20 min

e. In themeantime, prepare the Exonuclease I mix (Table 2) and assure that a thermomixer is set

at 80�C without shaking

f. Place the tube with the Cell Capture Beads incubated with the cDNA mix on the magnet for

�2 min and remove the supernatant

Table 1. cDNA mix

Components 13 library (mL)

RT buffer 40

dNTP 20

RT 0.1 DTT 10

Bead RT/PCR enhancer 12

RNase inhibitor 10

Reverse transcriptase 10

Nuclease-free water 98

Total 200
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g. Remove tube from the magnet and pipet 200 mL of Exonuclease I Mix onto the beads and

gently pipet the mix

h. Incubate the bead suspension first in a thermomixer at 1,200 rpm and 37�C for 30 min and

then at 80�C for 20 min (no shaking)

i. Place tube with the Cell Capture Beads on the magnet for �1 min and remove the supernatant

j. Resuspend the beads in 200 mL of cold Resuspension Buffer

Pause Point: At this point, the cDNA sample can be stored at 2�C to 8�C for %3 months.

BD Rhapsody 30 whole transcriptome analysis (WTA)

Timing: �8 h

This section describes the workflow to prepare single-cell whole transcriptome mRNA, sample tag,

and optionally AbSeq libraries. After a first denaturation step in which sample tag sequences (and

AbSeq sequences) are denatured off the beads, it is possible to generate the different sequencing

libraries (WTA, sample tag, and AbSeq) by several PCR steps. BD provides the protocol for perform-

ing WTA analysis either with sample tag or AbSeq. Here, we further describe an optional extension

that allows to process the 3 different products together (Figure 6).

16. Prepare the following items before starting the experiment:

a. Thaw all the reagents from the BD Rhapsody WTA amplification kit and place them on ice.

Remove the enzymes from �20�C only right before use

b. Set three thermomixers at 95�C, 37�C and 25�C, respectively
c. Save the program shown in Table 3 on the thermomixer

CRITICAL: The ramp rates of the thermomixer must be set to maximum to assure that the

device reaches the desired temperature in the shortest time possible.

Note: We recommend saving the program (Table 3) in the same thermomixer that is set at

25�C from step 17f.iii. This allows to prevent that the sample handling time is unnecessarily

extended.

17. Random Priming Extension (RPE) on the cell capture beads

Table 2. Exonuclease I mix

Components 13 library (mL)

103 exonuclease I buffer 20

Exonuclease 10

Nuclease-free water 170

Total 200

Table 3. Extension reaction program

Temperature Rpm Time

25�C 1,200 10 min

37�C 1,200 15 min

45�C 1,200 10 min

55�C 1,200 10 min
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a. Prepare the Random Primer Mix (Table 4) and keep at 20�C–22�C
b. Place the Exonuclease I-treated beads on the magnet for �2 min, remove the supernatant

and resuspend the beads in 75 mL Elution Buffer

c. Heat the beads in a thermomixer at 95�C for 5 min without shaking (Figure 6A)

Figure 6. Library preparation workflow
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d. Put the tube on the magnet for�2 min, remove the supernatant and transfer it (AbSeq/sam-

ple tag solution) to a new labeled tube. Keep the supernatant at 4�C for later processing

e. Resuspend the beads in 174 mL of Random Primers Mix (Figure 6B)

f. Incubate the tube in the following order

i. 95�C for 5 min (no shaking)

ii. 37�C, 1,200 rpm for 5 min

iii. 25�C, 1,200 rpm for 15 min

g. In the meantime, proceed to prepare the Extension Enzyme Mix (Table 5)

h. After the incubations, add 26 mL of Extension EnzymeMix into the tube containing the beads

and place it in the thermomixer with the pre-saved Extension Reaction Program (see ‘‘Before

you begin’’ section at the start of this step)

Note: While the program is running it is possible to proceed with the sample tag (optional

AbSeq) PCR 1 step (Figure 6C).

i. Place the tube containing the Random Primer Extension product on the magnet (from step

17h), remove the supernatant and resuspend the beads in 205 mL of Elution Buffer

j. Denature the products off the beads by incubating the sample at 95�C for 5 min (no shaking)

k. Briefly centrifuge the sample and then resuspend the beads by placing the tube in a thermo-

mixer at any temperature for 30 s at 1,200 rpm

l. Place the tube on a magnet and transfer the supernatant containing the Random Primer

Extension products in a new tube and proceed with step 18

m. Pipette 200 mL of cold bead resuspension buffer in the tube with the beads

Note: At this step, the beads can be stored at 4�C for up to 3 months.

18. Random Primer Extension Product purification (Figure 6B)

a. Before to start freshly prepare 80% ethanol, vortex the SPRIselect beads until they are

fully resuspended and label a new 1.5 mL tube as Random Primer Extension Purified

Product

b. Pipet 360 mL of the beads into the tube containing 200 mL of Random Primer Extension prod-

uct (from step 17l) and gently mix

c. Incubate at 20�C–22�C for 10 min

d. Place the suspension on themagnet for 5min until the sample becomes clear and remove the

supernatant

e. Add 1 mL of 80% ethanol into the tube sitting on the magnet

f. Wait 30 s and then remove the supernatant

g. Repeat steps 18e and 18f once more

Table 4. Random primer mix

Component 13 library (mL)

WTA extension buffer 20

WTA extension primers 20

Nuclease-free water 134

Table 5. Extension enzyme mix

Component 13library (mL)

10 mM dNTP 8

Bead RT/PCR enhancer 12

WTA extension enzyme 6
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h. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air dry

the sample at 20�C–22�C for 5 min

i. Resuspend the beads in 40 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

j. Place the tube on the magnet until the solution is clear and transfer the supernatant in the

new labeled tube

19. RPE PCR (Figure 6D)

a. Prepare the RPE PCR Mix (Table 6)

b. Add 80 mL of the RPE PCRmix to 40 mL of the Random Primer Extension Purified Product from

step 18j

c. Pipette around 60 mL of the reaction in two 0.2 mL PCR tubes and run the following PCR pro-

gram (Table 7)

Note: Splitting the reaction in two tubes assures that the entire volume in each tube is reach-

ing the same temperature increasing the efficiency of the PCR reaction.

Note: Suggested PCR cycles need to be optimized for different cell types and cell number.

d. After the PCR, briefly centrifuge the tubes, combine the two reactions in one 1.5 mL tube and

proceed to purify the product with SPRIselect beads

20. RPE PCR product purification (Figure 6E)

a. Before to start freshly prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended and label a new 1.5 mL tube as Random Primer Extension Purified Product

b. Pipet 120 mL of the beads into the tube containing 120 mL of RPE PCR product and gently mix

c. Incubate at 20�C–22�C for 5 min

d. Place the suspension on themagnet for 3min until the sample becomes clear and remove the

supernatant

e. Add 300 mL of 80% ethanol into the tube sitting on the magnet

f. Wait 30 s and then remove the supernatant

g. Repeat steps 20e and 20f once more

h. Assure to remove all the supernatant and drops that could be on the wall of the tube and air

dry the sample at 20�C–22�C for 5 min

i. Resuspend the beads in 40 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

j. Place on the magnet until the solution is clear and transfer the supernatant in the new labeled

tube

Table 6. RPE PCR mix

Component 13 library (mL)

PCR master mix 60

Universal oligo 10

WTA amplification primer 10

Total 80

Table 7. RPE PCR program

Step Temperature Time Cycles

Hot start 95�C 3 min 1

Denaturation 95�C 30 s 12–13 (for more than 10K cells use 12 cycles)

Annealing 60�C 1 min

Extension 72�C 1 min

Final extension 72�C 2 min 1

Hold 4�C N 1
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k. Quantify the concentration and check the fragment distribution using the TapeStation

System

CRITICAL: The TapeStation profile should be a broad peak from�200 bp to 2,000 bp (Fig-

ure 7A). For proceeding with the WTA index PCR step set a region between 150 bp and

600 bp and consider this concentration to calculate how much template to add.

21. Sample tag PCR 1 (Figure 6C)

a. Prepare the sample tag PCR 1 Mix (Table 8)

b. In a 1.5 mL tube mix 133 mL of sample tag PCR 1 mix with 67 mL of the sample tag product

from step 17d.

Figure 7. TapeStation profiles

Table 8. Sample tag PCR 1 mix

Component 13 library (mL)

PCR master mix 100

Universal oligo 20

Bead RT/PCR enhancer 12

Sample Tag PCR 1 primer 1

Total 133
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c. Split the PCR 1 mix in four 0.2 mL PCR tubes and run the following program (Table 9)

Note: Suggested PCR cycles need to be optimized for different cell types and cell number.

d. After the PCR, combine the 4 reactions in one 1.5 mL tube and proceed to purify the product

with SPRIselect beads

22. Sample tag PCR 1 purification (Figure 6F)

a. Before to start freshly prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended and label a new 1.5 mL tube as sample tag PCR1 purified product

b. Pipet 360 mL of the SPRIselect beads into the tube containing 200 mL of sample tag PCR1 and

gently mix

c. Incubate at 20�C–22�C for 5 min

d. Place the suspension on themagnet for 5min until the sample becomes clear and remove the

supernatant

e. Add 600 mL of 80% ethanol into the tube sitting on the magnet

f. Wait 30 s and then remove the supernatant

g. Repeat steps 22e and 22f once more

h. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air dry

the sample at 20�C–22�C for 5 min

i. Resuspend the beads in 30 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

j. Place the tube on the magnet until the solution is clear and transfer the supernatant in the

new labeled tube

Pause Point: After the purification steps both the RPE PCR and sample tag PCR 1 products

can be stored at 4�C if the protocol is continued within 24 h or can be stored at�20�C for up to

6 months.

23. WTA Index PCR (Figure 6G)

a. Considering the concentration of the 150–600 bp region, dilute the RPE PCR product to a

concentration of 2 nM using Elution Buffer.

b. Prepare the WTA Index PCR mix as described below (Table 10)

Table 9. Sample tag PCR 1 program

Step Temperature Time Cycles

Hot start 95�C 3 min 1

Denaturation 95�C 30 s 11–15 (for more than 10K cells use 11cycles)

Annealing 60�C 3 min

Extension 72�C 1 min

Final extension 72�C 5 min 1

Hold 4�C N 1

Table 10. WTA index PCR mix

Component 13 library (mL)

PCR master mix 25

Library forward primer 5

Library reverse primer (1–4) 5

Nuclease-free water 5

Total 40
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CRITICAL: In the BD Rhapsody WTA Amplification four different Library Reverse primers

are present. When preparing multiple libraries, for each of them different reverse primers

should be used to allow combined sequencing.

c. Combine 10 mL of 2 nM template with 40 mL of the WTA Index PCR mix

d. Run the following program (Table 11)

e. After PCR, briefly centrifuge the tube for collecting all the sample at the bottom of the tube

f. Add 60 mL of nuclease-free water to the WTA index PCR product, pipet and then transfer

100 mL into a new 0.2 mL PCR tube

24. WTA index PCR product purification (dual-sided cleanup) (Figure 6H)

a. Before to start freshly prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended, prepare a new 0.2mL PCR tube for the second clean up and label a new 1.5mL

tube as WTA index PCR Purified Product.

b. Pipet 60 mL of the beads into the tube containing 100 mL of theWTA Index PCR product (from

step 23f) and gently mix

c. Incubate at 20�C–22�C for 5 min

d. Place the suspension on the magnet for 2 min

e. In the meantime, pipet 15 mL of SPRIselect beads in a new 0.2 mL PCR tube

f. Transfer 160 mL of the supernatant from step 24d in the tube containing 15 mL of beads and

gently pipet

g. Incubate at 20�C–22�C for 5 min

h. Place the tube on the magnet for 2 min until the suspension becomes clear and remove the

supernatant

i. Add 300 mL of 80% ethanol into the tube sitting on the magnet

j. Wait 30 s and then remove the supernatant

k. Repeat steps 24i and 24j once more

l. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air dry

the sample at 20�C–22�C for 2 min

m. Resuspend the beads in 30 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

n. Place the tube on the magnet until the solution is clear and transfer the supernatant in the

new labeled tube

o. Quantify the concentration with a Qubit Fluorometer and check the fragment distribution

with the TapeStation System (Figure 7B)

Note: The fragment distribution should show a peak between 250 and 1,000 bp (Figure 7B). If

lower peaks are shown or the concentration is too low refer to the troubleshooting section (see

below).

CRITICAL: If a peak at�165 bp is shown in the TapeStation, profile a second purification is

recommended using a beads ratio of 0.75 (following the steps from 24f to 24o).

Table 11. WTA index PCR program

Step Temperature Time Cycles

Hot start 95�C 3 min 1

Denaturation 95�C 30 s 8–9 (for less than 2 nM use 9 cycles)

Annealing 60�C 30 s

Extension 72�C 30 s

Final extension 72�C 1 min 1

Hold 4�C N 1
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25. Sample tag PCR 2 (Figure 6I)

a. Prepare the sample tag PCR 2 Mix (Table 12)

b. In a 1.5 mL tube mix 45 mL of sample tag PCR 2 mix with 5 mL of the sample tag PCR 1 product

from step 22j

c. Run the following program (Table 13)

d. After the PCR, proceed to purify the product with SPRIselect beads

26. Sample tag PCR 2 purification (Figure 6J)

a. Before to start freshly, prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended and label a new 1.5 mL tube as sample tag PCR2 purified product

b. Pipet 60 mL of the beads into the tube containing 50 mL of sample tag PCR 2 product and

gently mix

c. Incubate at 20�C–22�C for 5 min

d. Place the suspension on themagnet for 3min until the sample becomes clear and remove the

supernatant

e. Add 200 mL of 80% ethanol into the tube sitting on the magnet

f. Wait 30 s and then remove the supernatant

g. Repeat steps 26e and 26f once more

h. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air dry

the sample at 20�C–22�C for 3 min

i. Resuspend the beads in 30 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

j. Place on the magnet until the solution is clear and transfer the supernatant in a new labeled

tube

k. Measure the concentration with a Qubit fluorometer

Pause Point:After the purification steps both theWTA Index and sample tag PCR 2 products

can be store at 4�C if the protocol is continued within 24 h or can be stored at �20�C for up to

6 months.

27. Sample tag index PCR (Figure 6K)

Table 12. Sample tag PCR 2 mix

Component 13 library (mL)

PCR master mix 25

Universal oligo 2

Sample tag PCR 2 primer 3

Nuclease-free water 15

Total 45

Table 13. Sample tag PCR 2 program

Step Temperature Time Cycles

Hot start 95�C 3 min 1

Denaturation 95�C 30 s 10

Annealing 60�C 3 min

Extension 72�C 1 min

Final extension 72�C 5 min 1

Hold 4�C N 1
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a. Prepare the sample tag index PCR mix as described below (Table 14):

CRITICAL: When preparing libraries from multiple RC, for each of them different reverse

primers must be used. However, for one RC the same index for both the WTA and sample

tag can be used.

b. Combine 3 mL of 1 ng/mL of template with 47 mL of the sample tag index PCR mix

c. Run the following program (Table 15)

Note: Suggested PCR cycles need to be optimized for different cell types and cell number

d. After PCR, briefly centrifuge the tube for collecting the entire sample at the bottom of the

tube and proceed with the purification.

28. Sample tag index PCR product purification (Figure 6L)

a. Before to start, freshly prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended and label a new 1.5 mL tube as sample tag index purified product

b. Pipet 40 mL of the beads into the tube containing 50 mL of sample tag index PCR product and

gently mix

c. Incubate at 20�C–22�C for 5 min

d. Place the suspension on themagnet for 3min until the sample becomes clear and remove the

supernatant

e. Add 200 mL of 80% ethanol into the tube sitting on the magnet

f. Wait 30 s and then remove the supernatant

g. Repeat steps 28e and 28f once more

h. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air dry

the sample at 20�C–22�C for 3 min

i. Resuspend the beads in 30 mL of Elution Buffer and incubate at 20�C–22�C for 2 min

j. Place the tube on the magnet until the solution is clear and transfer the supernatant in a new

labeled tube

k. Quantify the concentration with a Qubit Fluorometer and check the fragment distribution

with TapeStation System (Figure 7C)

Table 14. Sample tag index PCR mix

Component 13 library (mL)

PCR master mix 25

Library forward primer 2

Library reverse primer (1–4) 2

Nuclease-free water 18

Total 47

Table 15. Sample tag index PCR program

Step Temperature Time Cycles

Hot start 95�C 5 min 1

Denaturation 95�C 30 s 6–8 (for concentrations between 0.5 and 1.1 ng/mL use 6 cycles)

Annealing 60�C 30 s

Extension 72�C 30 s

Final extension 72�C 1 min 1

Hold 4�C N 1
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Note: The sample tag should show a unique peak at �290 bp. If other peaks are shown or the

concentration is too low refer to the troubleshooting section (see below).

29. Optional: AbSeq Library

Note: If the samples have been stained with oligo-coupled AbSeq antibodies as well, an Ab-

Seq library needs to be prepared together with the WTA and sample tag library. In this case,

the protocol mainly deviates in one step, the sample tag PCR 1 step (step 21), as primers spe-

cifically targeting the AbSeq oligo peptides are added to the PCR 1 mix.

a. AbSeq/sample tag PCR 1 (Figure 6C)

i. Prepare the AbSeq/sample tag PCR 1 Mix (Table 16)

ii. In a 1.5 mL tubemix 168 mL of AbSeq/sample tag PCR 1mix with 67 mL of the AbSeq/sam-

ple tag product from step 17d.

iii. Split the PCR 1 mix in four 0.2 mL PCR tubes and run the following program (Table 17)

Note: Suggested PCR cycles need to be optimized for different cell types and cell number.

iv. After the PCR, combine the 4 reactions in one 1.5mL tube and proceed to purify the prod-

uct with SPRIselect beads

b. AbSeq/sample tag PCR 1 Purification (Figure 6F)

i. Before to start, freshly prepare 80% ethanol, vortex the SPRIselect beads until they are fully

resuspended and label a new 1.5 mL tube as AbSeq/sample tag PCR1 purified product

ii. Pipet 423 mL of beads in 235 mL of AbSeq/sample tag product and incubate 5 min at

20�C–22�C
iii. Place the tube on the magnets, wait 5 min, and remove supernatant

iv. Wash twice with 600 mL of 80% ethanol

v. Assure to remove all the supernatant and drops of ethanol on the wall of the tube and air

dry the sample at 20�C–22�C for 5 min.

vi. Resuspend in 30 mL Elution Buffer and incubate 2 min at 20�C–22�C
vii. Place the tube on the magnet and pipette the eluate in a new tube

Table 16. AbSeq/sample tag PCR 1 mix

Component 13 library (mL)

PCR master mix 117.5

Universal oligo 23.5

Bead RT/PCR enhancer 14.1

Sample tag PCR 1 primer 1.1

AbSeq PCR 1 primer 11.8

Total 168

Table 17. AbSeq/sample tag PCR 1 program

Step Temperature Time Cycles

Hot start 95�C 3 min 1

Denaturation 95�C 30 s 11–15 (for more than 10K cells use 11cycles)

Annealing 60�C 3 min

Extension 72�C 1 min

Final extension 72�C 5 min 1

Hold 4�C N 1
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viii. Quantify on the Qubit fluorometer

ix. Dilute an aliquot of AbSeq/sample tag product to 1 ng/mL and proceed to index PCR of

the AbSeq product (Figure 6M). For the sample tag use undiluted PCR 1 product and

proceed with the sample tag PCR 2 step (step 25) as described above

Note: The diluted AbSeq sample can be stored at 4�C for 24 h to run the indexing PCR later

together with the sample tag PCR 2 product. The conditions for indexing both the AbSeq

and the sample tag libraries are the same (see step 27).

x. Once the AbSeq index PCR has been run, purify the product as described for sample tag

(see step 28) and check fragment size (Figure 6N). The product should show only a peak

around 260 bp (Figure 7D). Refer to the troubleshooting sections (see below) if the con-

centration is too low or other peaks are detectable.

Multi-color flow cytometry

Timing: �2 h depending on sample number

This section describes all important steps and details for sample preparation and recording of

flow cytometric data from COVID-19 blood samples. Representative data and a gating

strategy are shown in Figure 8. For more elaborate analyses we refer the reader to Schulte-

Schrepping et al. (2020). Emphasis will be put on the procedure applied to avoid possible

contamination of the scientist during both the preparation of the samples and the final recording

of the data.

30. Prepare the staining solution adding the necessary microliters for the respective components

(Antibodies-human FcR Blocking reagent-BD Horizon Brilliant Stain Buffer-PBS) to reach

the desired concentration in a final volume of 100 mL per sample as indicated in the Table 18

Table 18. Pipetting scheme for flow cytometry antibody staining

Antibody (clone) Dilution (23 master mix) mL to add for each sample

HLA-DR BV421 (L243) 1:50 2

CD4 BV510 (OKT4) 1:50 2

CD16 BV605 (3G8) 1:50 2

CD45 BV711 (HI30) 1:50 2

CD8 BV785 (SK1) 1:50 2

CD66b FITC (G10F5) 1:50 2

CD14 PerCp-Cy5.5 (MfP9) 1:50 2

CD56 PE (MY31) 1:12.5 8

CD3 PE/Dazzle (UCHT1) 1:50 2

CD11c PE/Cy5 (B-ly6) 1:25 4

Siglec8 PE/Cy7 (7C9) 1:50 2

CD203c APC (NP4D6) 1:50 2

CD1c AlexaFluor700 (L161) 1:50 2

CD19 APC/Fire 750 (HIB19) 1:25 4

LIVE/DEAD fixable yellow dead cell stain 1:50 (1:10 pre-dilution in PBS) 2

BD Horizon brilliant stain buffer 1:5 20

FcR blocking reagent, human 1:50 2

PBS 38

Total 100
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Note: For LIVE/DEAD Fixable Yellow Dead Cell Stain a pre-dilution 1:10 in PBS is required.

31. Labeling with fluorescently labeled antibodies

a. Count the cell suspension and aliquot at least 2million cells of each sample (see Cell counting

section for details); if the number of available cells is lower see Troubleshooting section

Figure 8. Visualization of representative flow cytometry data and gating strategy
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Note: Flow cytometric analysis can be performed with a lower number of cells; however, this

results in reduced statistical power for low represented cell types.

Optional: Add 10 mL counting beads to the cell suspension before counting; this will allow

you to retrieve the absolute number of cells for each milliliter of blood.

b. Centrifuge samples for 5 min at 300 3 g, 4�C in 15 mL Falcon tubes following the above-

mentioned safety instructions

c. After centrifugation, remove the supernatant entirely and resuspend the cells in 100 mL of

PBS

d. Add 100 mL of staining solution and incubate at 4�C for 30 min

e. After antibody incubation, wash the cell suspension with 1 mL of PBS and centrifuge for 5 min

at 300 3 g, 4�C following the above-mentioned safety instructions

f. Remove the supernatant and resuspend the cells carefully in 500 mL of methanol-free PFA (4%

in PBS)

g. Incubate for 5 min at 20�C–22�C
h. Wash samples in 1 mL of PBS following centrifugation for 5 min at 300 3 g, 4�C. Repeat this

step twice

i. Remove the supernatant and resuspend PFA fixed cell pellet in 500 mL PBS

j. Store samples protected from light until flow cytometric analysis

Note: PFA-treated samples can be considered virus free.

32. Flow cytometric analysis

a. Before starting the measurement exchange the waste tank of the instrument and use an auto-

clave-grade waste canister

Note: According to the technology in use, assess daily the performance of the instrument to

ensure the highest quality possible form the analysis. For example, for BD instruments CS&T

beads or Rainbow (8-peak) beads can be used for routine performance check.

b. Acquire a minimum of 100,000 events in the living/CD45+ cells gate for each sample

Note: According to the stability of the used instrument and the consistency in the experi-

mental procedure, the voltage setting of the instrument for the measured parameters can

be kept the same over different experiments. The daily performance check will give important

information in this regard.

Note: We provide one possible workflow for flow cytometric analysis, variations are possible

according to the procedure established in each facility. For detailed information, we refer to

Cossarizza et al. (2019).

33. Cleaning of the instrument after measurement

a. For washing the instrument, set the flow cytometer to the highest acquisition speed for sam-

ple acquisition

b. 10 min flow with FACS Rinse

c. 10 min flow with FACS Clean

d. 10 min flow with ddH2O (autoclaved water can be cleaned from debris with a 0.2 um filter just

before use)

e. Waste canister is removed and autoclaved

Note: Data analysis will not be part of this protocol since the focus here is on the preparation

of potentially harmful samples. For guideline on data analysis, we refer to Cossarizza et al.

(2019).
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Sequencing and sequencing depth estimation

Timing: 18 h

This step elutes on multiplexing for sequencing, settings of the sequencer, as well as estimated read

numbers per pool.

34. Pooling of BD Rhapsody libraries for sequencing

a. Pool WTA, AbSeq and sample tag libraries of the same cartridge (with the same index) at a

molar ratio of 1:1:0.1 (Library Pool)

Note:Molarity is calculated by average fragment size of each library determined by the D5000

assay on a TapeStation4200 system and concentration by Qubit HS dsDNA assay.

b. Pool an equal number of moles per each library pool normalizing them for the expected num-

ber of beads retrieved from each cartridge (theoretically this number should correspond to

the actual number of capture single cells)

35. Perform Sequencing on a NovaSeq6000 System (Illumina) using v1 S2 200 cycle kits

a. Pool Rhapsody Cartridge libraries to aim for 50,000 reads for WTA, 50,000 reads for AbSeq,

and 5,000 reads for sample tag per cell, allowing for a total of �38,000 cells on a S2 flow cell

b. PE R1 75 cycles, i7 8 cycles, R2 75 cycles mode

c. Final clustering concentration of 220 pM

Data pre-processing

Timing: 24 h, depends on sequencing depth and sample size

This section describes the computational steps required for pre-processing and alignment of multi-

plexed BD Rhapsody WTA scRNA-seq data, optionally with AbSeq data. The protocol is based on

the Drop-seq tools initially developed for processing of drop-seq data (Macosko et al., 2015) and

has been developed into a Snakemake workflow for simple and reproducible use (https://github.

com/Hoohm/dropSeqPipe). In brief, the two reads of the paired-end sequencing stored in fastq

format after demultiplexing of bcl files are transformed into BAM format and the cell barcode and

UMI sequence of read 1 are stored as tags in the BAM file containing the read 2 information. After-

wards, the read 2 sequences, treated as single-end reads, are transformed back to fastq format,

cleaned and trimmed of 50 adapter and 30 polyA sequences and aligned against the reference se-

quences. After alignment, the BAM tags from the unaligned BAM file are merged with the aligned

reads to recover cell barcode and UMI information. Next, additional annotation is added to the

reads depending on their genomic location, e.g., their overlap with genes or exons, to enable sub-

sequent gene expression quantification (Figure 9).

36. Mapping

a. Demultiplex bcl files using Bcl2fastq2 from Illumina

b. For mapping of cDNA, sample tag and optionally AbSeq reads, prepare a suitable reference

genome by adding sample tag sequences and antibody-coupled oligo sequences as addi-

tional chromosomes to the reference genome of choice in fasta format. Additionally, a cor-

responding annotation file in gtf format must be prepared by adding the necessary informa-

tion to the gene annotation file of choice

c. Build a STAR index from the custom reference genome and annotation file.

d. Filter the input reads for valid Rhapsody barcodes

Note:As cell barcodes in the BD Rhapsody system are produced as random combinations of 3

from a pool of 96 possible sequences with standardized spacer sequences in between, a
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whitelist of the 884.736 possible cell barcodes is available and can be used to eliminate reads

with wrong cell barcodes upfront. This allows to skip time-consuming error repair and barcode

correction steps.

e. Next, using the above-mentioned pipeline, cDNA, sample tag and AbSeq reads are pro-

cessed, trimmed using Cutadapt (Martin, 2011) and mapped to the custom reference

genome using STAR (Dobin et al., 2013)

37. Quantification

a. To estimate gene expression abundances, BAM records are annotated depending on their

genomic location and overlap with genic regions

b. Expression values are extracted from the BAM files using the picard DigitalExpression mod-

ule and stored as gene expressionmatrix including gene expression, sample tag, and option-

ally AbSeq counts

Downstream data analysis

This section describes the essential downstream analysis steps for the resulting gene expression

count data using the R software package Seurat (Butler et al., 2018), including de-multiplexing, qual-

ity control, normalization, dimension reduction, clustering and differential gene testing (Figure 9).

The following section is based on tutorials and vignettes published by the developer team of Seurat

Figure 9. Schematic overview of the scRNA-seq analysis
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available at https://satijalab.org/seurat/. In addition, the following R packages are required for the

analysis: dplyr,Matrix, and ggplot2. For the analysis of AbSeq data, we would like to refer the reader

to the respective tutorial by the developer team of Seurat: https://satijalab.org/seurat/v3.2/

multimodal_vignette.html.

38. Downstream analysis

a. Import scRNA-seq UMI count matrices data to R and divide gene expression, sample tag and,

if available, AbSeq counts into separate matrices.

i. Data import

‘‘‘{r}

dir <- "path/to/directory/" # set the path to the directory containing the gene expression quantifi-

cation output

mtx <- readMM(paste(dir, "umi/matrix.mtx",sep="/"))

genes <- read.delim(paste(dir,"umi/genes.tsv",sep="/"), header = F, stringsAsFactors = F)

bc <- read.delim(paste(dir,"umi/barcodes.tsv",sep="/"), header = F, stringsAsFactors = F)

mtx@Dimnames[[1]] <- as.character(genes$V1)

mtx@Dimnames[[2]] <- as.character(bc$V1)

‘‘‘

Note: To speed up downstream processing, we can filter cell barcodes with less than a set

number of UMIs.

‘‘‘{r}

mtx <- mtx[,colSums(mtx)>250]

‘‘‘

ii. Separate sample tag quantifications and gene expression to new matrices

‘‘‘{r}

sampletags <- c("SampleTag1", "SampleTag2", "SampleTag3", "SampleTag4", "SampleTag5",

"SampleTag6", "SampleTag7", "SampleTag8", "SampleTag9", "SampleTag10", "SampleTag11",

"SampleTag12")

# Separate the sample tag counts

mtx_sampletag<-mtx[mtx@Dimnames[[1]] %in% sampletags,]

# Separate AbSeq counts (optional)

mtx_AbSeq <- mtx[mtx@Dimnames[[1]] %in%

mtx@Dimnames[[1]][grepl("^AB_",mtx@Dimnames[[1]])]),]

# Separate the gene expression counts

mtx_counts <- mtx[!mtx@Dimnames[[1]] %in% c(sampletags,

mtx@Dimnames[[1]][grepl("^AB_",mtx@Dimnames[[1]])]),]

‘‘‘

b. Create a Seurat object using the gene expression count matrix and add the sample tag quan-

tifications as a separate assay to the object.

i. Create Seurat object

‘‘‘{r}

seurat <- CreateSeuratObject(counts = mtx_counts,
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assay = "RNA",

min.cells = 5,

min.features = 250,

project = "Multiplexed BD Rhapsody WTA")

‘‘‘

ii. Add sample tag data as a separate assay to the Seurat object

‘‘‘{r}

seurat[["HTO"]] <- CreateAssayObject(counts = mtx_sampletag[,mtx_sampletag@Dimnames[[2]] %

in% Cells(seurat)])

# Optional: Filter cells with less than 1 tag reads

seurat <- subset(seurat, subset = nCount_HTO > 0)

‘‘‘

c. Perform standard quality control and filtering of cells.

i. Quality Control

‘‘‘{r}

seurat[[’percent.mito’]] <- PercentageFeatureSet(seurat, pattern = "^MT-")

VlnPlot(object = seurat,

features = "nFeature_RNA",

pt.size = 0,

group.by = "orig.ident") +

theme(legend.position="none")

VlnPlot(object = seurat,

features = "nCount_RNA",

log =TRUE,

pt.size = 0,

group.by = "orig.ident")+

theme(legend.position="none")

VlnPlot(object = seurat,

features = "nCount_HTO",

log =TRUE,

pt.size = 0,

group.by = "orig.ident")+

theme(legend.position="none")

VlnPlot(object = seurat,

features = "percent.mito",

pt.size = 0,

group.by = "orig.ident")+

theme(legend.position="none")

‘‘‘

ii. Filter cells

Filter cells according to selected quality criteria, including the information content per cell, i.e., the

number of detected features and the percentage of reads from mitochondrial genes.
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‘‘‘{r}

seurat <- subset(x = seurat, subset = nFeature_RNA > 250 &

nFeature_RNA < 5000 &

nCount_RNA > 500 &

percent.mito < 25)

‘‘‘

d. Demultiplex cells from different samples based on the sample tag counts.

i. Sample tag-based demultiplexing

‘‘‘{r}

# Normalize HTO data, here we use centered log-ratio (CLR) transformation

seurat <- NormalizeData(seurat, assay = "HTO", normalization.method = "CLR")

# Demultiplex

seurat <- HTODemux(seurat, assay = "HTO", positive.quantile = 0.99)

# Visualize demultiplexing results

ggplot(seurat@meta.data, aes(x =hash.ID ,fill=hash.ID))+

geom_text(stat=’count’, aes(label=..count..), vjust=0)+

geom_bar()

# Filter singlets

seurat_singlet <- subset(seurat, subset= HTO_classification.global == "Singlet")

‘‘‘

e. Perform normalization, scaling, variable gene selection, and dimension reduction on the data

to get a global representation of the data structure.

i. Data normalization and dimension reduction

‘‘‘{r}

# Normalization

seurat_singlet <- NormalizeData(object = seurat_singlet,

normalization.method = "LogNormalize",

scale.factor = 1e4)

# Define variable genes

seurat_singlet <- FindVariableFeatures(object = seurat_singlet,

assay="RNA",

selection.method = ’vst’)

# Scaling

seurat_singlet <- ScaleData(object = seurat_singlet,

vars.to.regress = c("nCount_RNA"))

# PCA

seurat_singlet <- RunPCA(object = seurat_singlet,

features = VariableFeatures(object = seurat_singlet))

# UMAP

seurat_singlet <- RunUMAP(seurat_singlet, reduction.use = "pca", dims = 1:20, seed.use = 42)

DimPlot(object = seurat_singlet,
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reduction = ’umap’,

label = FALSE,

group.by = "hash.ID")

‘‘‘

f. Cluster the cells and determine cluster marker genes to understand the cluster identity and cell

type composition.

i. Clustering

‘‘‘{r}

seurat_singlet <- FindNeighbors(object = seurat_singlet, dims = 1:20, reduction="pca", force.re-

calc = TRUE)

seurat_singlet <- FindClusters(object = seurat_singlet, resolution = 0.5, algorithm = 1)

DimPlot(object = seurat_singlet,

reduction = ’umap’,

label = TRUE,

group.by = "RNA_snn_res.0.5")

‘‘‘

ii. Cluster marker gene identification

‘‘‘{r}

Idents(seurat_singlet) <- "RNA_snn_res.0.5"

cluster.markers.wilcox <- FindAllMarkers(object = seurat_singlet,

only.pos = TRUE,

min.pct = 0.2,

logfc.threshold = 0.25,

min.diff.pct = 0.1,

test.use = "wilcox")

top <- cluster.markers.wilcox %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)

DotPlot(seurat_singlet,

group.by = "RNA_snn_res.0.5",

features = unique(top$gene))

‘‘‘

EXPECTED OUTCOMES

After demultiplexing, stringent quality control and filtering of low-quality cells, we expect to retrieve

approximately 15,000 to 20,000 high quality single-cell transcriptomes per BD Rhapsody cartridge

super-loaded with 60,000 cells. In case of successful oligo-coupled antibody-based sample multi-

plexing, we expect the cells to be equally originating from the 12 originally multiplexed samples

and representing all major cell types present in the human peripheral blood at physiological or path-

ological proportions. For more detailed information on the quality of the data, the possible down-

stream analyses and in silico applications and their biological meaningfulness, we would like to refer

the reader to Schulte-Schrepping et al., (2020).

LIMITATIONS

One of the limitations is the lack of BD imaging. The imaging functionality of the BD Rhapsody sys-

tem cannot be used following the strict safety instructions described above.
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Moreover, due to the size of the microwells in the BD cartridge, this system is not suitable for large

cell types. A substantial decline in the number of recovered cells has been already recorded for cells

with a diameter bigger than 20 mm. In this case additional cells can be loaded into the cartridge to

offset the losses observed.

In addition, no multi-omic solution (e.g., scRNA-seq and scATAC-seq) from BD is available at this

point in time. Further developments, however, are expected for this platform as well.

TROUBLESHOOTING

Problem 1

Product concentration lower than required in one of the quality control steps (steps 24, 26, 28, 29;

Figure 10A)

Potential solution

If the library concentration in one of the QC steps is too low, it is possible to repeat the step opti-

mizing the number of PCR cycles. Note that increasing the number of PCR cycles will reduce the

complexity of the final library impacting the sequencing performance. Therefore, it is recommended

Figure 10. TapeStation profile with low DNA concentration or unexpected peak

ll
OPEN ACCESS

34 STAR Protocols 1, 100233, December 18, 2020

Protocol



to start with one or just few cycles. It is also possible to re- start the entire procedure using the exonu-

clease-treated beads.

Problem 2

Unexpected peak in the TapeStation profile after SPRIbead cleaning steps (steps 24, 28, 29;

Figure 10B)

Potential solution

Poor bead cleaning procedure can result in peaks with smaller size (<165 bp). In this case, it is

possible to repeat the bead cleaning step using the same ratio. However, it is important to consider

that repeating a cleaning step will entail the loss of a certain amount of sample product. Therefore,

sample concentration should also be taken into account before repeating this step.

Problem 3

Low number of cells for flow cytometry after RCB lysis (step 31).

Potential solution

If the number of cells is > 0.5million, continue with the procedure as described, pay special attention

in all washing steps to avoid excessive loss of cells. If the number is lower, check temperature and

concentration of the RBC lysis buffer, wrong concentration or too high temperature of the buffer

can be a common cause of loss of cells during the purification procedure.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Joachim L. Schultze (j.schultze@uni-bonn.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

ScRNA-seq data generated using this protocol and published in Schulte-Schrepping et al. (2020)

are deposited at the European Genome-phenome Archive (EGA) under access number

EGAS00001004571, which is hosted by the EBI and the CRG. Furthermore, respective count data

has been uploaded to the online analysis platform FASTGenomics for easy access and direct use un-

der https://beta.fastgenomics.org/p/schulte-schrepping_covid19.
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SUMMARY

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of
patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild
forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregu-
lated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-
sequencing and single-cell proteomics of whole-blood and peripheral-bloodmononuclear cells to determine
changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109
individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signa-
ture were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors,
as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our
study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals
profound alterations in the myeloid cell compartment associated with severe COVID-19.

INTRODUCTION

Clinical presentations of COVID-19 are highly variable, and while

the majority of patients experiences mild to moderate symptoms,

10%–20% of patients develop pneumonia and severe disease

(Huang et al., 2020a;Wang et al., 2020; Zhou et al., 2020a). Clinical

deterioration with respiratory failure and acute respiratory distress

syndrome (ARDS) typicallydevelops in thesecondweekofdisease.

This kineticmay suggest a role for secondary immune responses in

the development of severe COVID-19 (Ong et al., 2020). However,

the exact mechanisms that govern the pathophysiology of the

different disease courses of COVID-19 remain ill-defined.
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Single-cell studies of bronchoalveolar lavage samples have

suggested a complex dysregulation of the pulmonary immune

response in severe COVID-19 (Chua et al., 2020; Liao et al.,

2020). Overall, systemic inflammation is linked to an unfavorable

clinical course of disease and the development of severe

COVID-19 (Giamarellos-Bourboulis et al., 2020; Lucas et al.,

2020; Ong et al., 2020). SARS-CoV-2 infection induces specific

T cell and B cell responses, which is reflected by elevation of

SARS-CoV-2 peptide-specific T cells (Braun et al., 2020; Grifoni

et al., 2020) and the production of SARS-CoV-2-specific anti-

bodies (Long et al., 2020; Ni et al., 2020; Robbiani et al., 2020). Pa-

tients with severe COVID-19 have high systemic levels of inflam-

matory cytokines, particularly interleukin (IL)-6 and IL-1b (Chen

et al., 2020; Giamarellos-Bourboulis et al., 2020; Lucas et al.,

2020;Onget al., 2020),whereas interferon (IFN) responses appear

blunted, as shown by whole blood transcriptomics (Hadjadj et al.,

2020) andplasmaprofiling (Trouillet-Assant et al., 2020). A number

of studies and regular clinical observations indicate an increase of

neutrophils and a decrease of non-classical (CD14loCD16hi)

monocytes in severe COVID-19 (Hadjadj et al., 2020; Merad and

Martin, 2020; Sanchez-Cerrillo et al., 2020). Profound immune

dysregulation is commonly observed in severe infections and

sepsis, characterized by a progression from hyperinflammatory

states to immunosuppression (Remy et al., 2020; Ritchie and Sin-

ganayagam, 2020), and similar mechanisms have been proposed

for severe COVID-19 (Giamarellos-Bourboulis et al., 2020). Yet,

comprehensive insights into the immunopathology of severe

COVID-19 are still missing. Exacerbated immune responses

played amajor role in the pathophysiology of SARS, leading to se-

vere lung injury and respiratory failure (Perlman and Dandekar,

2005). Mitigation of immunodysregulation is therefore viewed as

amajor therapeutic avenue for the treatment andprevention of se-

vere COVID-19 (Dimopoulos et al., 2020; Jamilloux et al., 2020). In

support of this view, a recentmulticenter study reported that dexa-

methasone treatment significantly reduced mortality in hospital-

izedpatientswithCOVID-19,particularly inpatientsonmechanical

ventilation (Horbyetal., 2020).Previousstudiesofperipheralblood

mononuclear cell (PBMC) transcriptomes in a small number of pa-

tients with COVID-19 revealed changes in several cellular com-

partments, includingmonocytes, natural killer (NK) cells, dendritic

cells (DCs), and T cells (Lee et al., 2020; Wilk et al., 2020).

The heterogeneity of clinicalmanifestations and the complexity

of immune responses to COVID-19 highlight the need for

detailed analyses using high-resolution techniques and well-

characterized clinical cohorts. We hypothesized that distinct re-

sponses, particularly within the innate immune system, underlie

the different clinical trajectories of COVID-19 patients (Chua

et al., 2020; Kuri-Cervantes et al., 2020; Mathew et al., 2020;

McKechnie and Blish, 2020). Here, we used single-cell transcrip-

tomics and single-cell proteomics to analyze immune responses

in blood samples in two independent cohorts of COVID-19

patients.

Activated HLA-DRhiCD11chiCD14+ monocytes were increased

in patients with mild COVID-19, similar to patients with SARS-

CoV-2 negative flu-like illness (‘‘FLI’’). In contrast, monocytes

characterized by low expression of HLA-DR, and marker genes

indicative of anti-inflammatory functions (e.g., CD163 and

PLAC8) appeared in patients with severe COVID-19. The granulo-

cyte compartment was profoundly altered in severe COVID-19,

marked by the appearance of neutrophil precursors due to emer-

gencymyelopoiesis, dysfunctional neutrophils expressing PD-L1,

and exhibiting an impaired oxidative burst response. Collectively,

our study links highly dysregulated myeloid cell responses to se-

vere COVID-19.

RESULTS

Dual Center Cohort Study to Assess Immunological
Alterations in COVID-19 Patients
In order to probe the divergent immune responses in mild versus

severe COVID-19, we analyzed blood samples collected from in-

dependent patient cohorts at two university medical centers in

Germany. Samples from the Berlin cohort (cohort 1) (Kurth

et al., 2020), were analyzed by mass cytometry (CyTOF) and sin-

gle-cell RNA-sequencing (scRNA-seq) using a droplet-based

single-cell platform (10x Chromium), while samples from the

Bonn cohort (cohort 2) were analyzed by multi-color flow cytom-

etry (MCFC) and on a microwell-based scRNA-seq system (BD

Rhapsody). We analyzed a total of 24million cells by their protein

markers and >328,000 cells by scRNA-seq in 242 samples from

53 COVID-19 patients and 56 controls, including 8 patients with

FLI (Figures 1A, 1B, and S1A; Table S1).
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A

C D

B

Figure 1. Cohort Definition and Single-Cell Multi-omics Analysis Strategy

(A) Pipeline for control and COVID-19 blood samples of the two cohorts (see also Table S1). Whole blood samples were subjected to red blood cell (RBC) lysis and

processed for CyTOFmass cytometry (two antibody panels), multi-color flow cytometry (MCFC), or scRNA-seq (BD Rhapsody). PBMCs were isolated by density

centrifugation and processed directly or after frozen storage, labeled with cell hashing antibodies and loaded on droplet-based (10x) or microwell-based (BD

Rhapsody) scRNA-seq platforms. Box (bottom left): number of subjects in each cohort. Boxes (on the right): number of samples analyzed with each technique.

(B) Number of samples per technique summarized across cohorts, divided by disease severity according to WHO ordinal scale and by the time after onset of first

symptoms (early: days 0–10, late: >day 11).

(C) UMAP of CD45+ leukocytes, down-sampled to 70,000 cells, from mass cytometry using antibody panel 2 (30 markers, Table S2). Cells are colored according

to donor origin (blue, age-matched controls; gray, FLI; yellow, mild COVID-19; red, severe COVID-19) and major lineage subtypes.

(D) Box andwhisker (10–90 percentile) plots ofmajor cell lineage composition in whole blood from FLI (n = 8), COVID-19 patients withmild (n = 8) or severe disease

(n = 9), age-matched controls measured bymass cytometry (ctrl CyTOF, n = 9) or by flow cytometry (ctrl flow, n = 19) (Kverneland et al., 2016). Kruskal-Wallis and

Dunn’s multiple comparison test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n.a., not available.

See also Figure S1 and Table S3.
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We first characterized alterations of the major leukocyte line-

ages by mass cytometry on whole blood samples from 20

COVID-19 patients collected between day 4 and day 29 after

symptom onset and compared them to 10 age- and gender-

matched controls and 8 FLI patients. We designed two antibody

panels to specifically capture alterations in mononuclear leuko-

cytes (lymphocytes, monocytes, and DCs, panel 1), and in gran-

ulocytes (Table S2, panel 2). High-resolution SPADE analysis

was performed with 400 target nodes and individual nodes

were aggregated into cell subsets based on lineage-specific

markers, such as CD14 for monocytes and CD15 for neutrophils

(Figure S1B). Uniform manifold approximation and projection

(UMAP) analysis revealed distinct clustering of samples from

COVID-19 patients, FLI, and healthy controls, with marked

changes of the monocyte and granulocyte compartment (Fig-

ure 1C). Leukocyte lineages were compared in the earliest avail-

able samples in COVID-19 patients (days 4–13), FLI, and controls

(Figure 1D; Table S1). Because leukocyte counts were not avail-

able for all control samples, we compared the control samples

for CyTOF (‘‘ctrl CyTOF’’) to data from our recently published

healthy control cohorts (‘‘ctrl flow’’) (Kverneland et al., 2016; Sa-

witzki et al., 2020). The proportions of all major lineages were

highly similar, irrespective of the methodology (Figure 1D). Cell

counts of the published cohort could therefore be used as a

reference to report absolute cell counts for leukocyte lineages

in COVID-19 samples. In line with recent reports (Barnes et al.,

2020; Xia et al., 2020), we observed elevated leukocytes and

increased proportions of neutrophils in patients with severe

COVID-19 (Figure 1D), whereas only proportional increases in

neutrophils were evident in FLI and mild COVID-19 patients (Fig-

ure 1D). Total lymphocytes and T cells were strongly reduced in

all COVID-19 and FLI patients, whereas non-classical mono-

cytes were specifically depleted in COVID-19 (Figure 1D).

Increased neutrophils in severe COVID-19 and loss of non-clas-

sical monocytes in both mild and severe disease were validated

in cohort 2 by MCFC (Figure S1C; Tables S1 and S3).

Thus, SARS-CoV-2 infection is associated with lymphopenia

and profound alterations of the myeloid compartment.

Severity-Dependent Alterations of the Myeloid Cell
Compartment in COVID-19
Given the dramatic changes in various immune cell populations

(Figures 1C and 1D),we next assessed their composition and acti-

vation state by droplet-based scRNA-seq in 27 samples from 18

COVID-19 patients (8 mild and 10 severe, cohort 1, Table S1)

collected between day 3 and day 20 after symptom onset. A total

of 48,266 single-cell transcriptomes of PBMCs were analyzed

together with 50,783 PBMCs from publicly available control data-

sets (21 control donors, Table S1). UMAP and high-resolution cell

type classification identified all cell types expected in themononu-

clear compartment of blood with a high granularity in the mono-

cytes, identifying five distinct clusters (clusters 0–4) (Figures 2A

and S2A; Table S4). Monocytes in clusters 0–3 expressed

CD14, and cluster 4 comprised the non-classical monocytes

marked by FCGR3A (encoding CD16a) and low expression of

CD14. Separate visualization of cells in mild and severe cases re-

vealed highly disease severity-specific clusters (Figure 2B). A

distinct subset ofCD14+monocytes (cluster 1) (Figure 2A)marked

by high expression of HLA-DRA, HLA-DRB1, and co-stimulatory

molecule CD83 (Figure S2D), the engagement of which has

been linked to prolonged expansion of antigen-specific T cells

(Hirano et al., 2006), was selectively detected in mild COVID-19

(Figure 2C). In addition, we identified another closely related

CD14+HLA-DRhi monocyte population (cluster 2), which was

characterized by high expression of IFN-stimulated genes

(ISGs). However, upon closer analysis, this cluster was found to

originate from a single donor with mild COVID-19 (Figures 2A–

2C and S2D). Both cluster 1 and cluster 2 expressed high levels

of ISGs IFI6 and ISG15 (Figure S2D). In patients with severe

COVID-19, monocytes showed low expression of HLA-DR and

high expression of alarmins S100A8/9/12 (cluster 3, Figures 2A–

2C and S2D). The most prominent change in severe COVID-19

was the appearance of two distinct cell populations (cluster

5+6), absent in PBMCs of patients with mild COVID-19 and con-

trol donors (Figure 2A). Published markers (Kwok et al., 2020;

Ng et al., 2019) identified clusters 5 and 6 as neutrophils and

immature neutrophils, respectively (Figures 2A and 2B). Immature

neutrophils (cluster 6) expressed CD24, PGLYRP1, DEFA3, and

DEFA4, whereas neutrophil cluster 5 expressed FCGR3B

(CD16b), CXCL8, and LCN2 (lipocalin 2) (Figures 2C and S2A).

Their migration within the PBMC fraction on a density gradient

marked these cells as low-density neutrophils (LDNs).

In the second cohort, PBMCs from 17 COVID-19 patients (8

mild, 9 severe, Table S1), sampled between 2 and 25 days after

symptom onset, and 13 controls, were collected for scRNA-seq

on a microwell-based platform (BD Rhapsody). High-quality sin-

gle-cell transcriptomes for 139,848 PBMCs were assessed and

their population structure was visualized using UMAP (Figure 2D;

Table S4). Data-driven cell-type classification (Aran et al., 2019)

and cluster-specific marker gene expression identified all cell

Figure 2. scRNA-Seq of PBMC from Patients of the Two Independent Cohorts

(A) UMAP visualization of scRNA-seq profiles (10x, cohort 1) of 99,049 PBMC from 49 samples (8 mild, 10 severe patients, different time points) and 22 control

samples colored according to cell type classification (Louvain clustering), reference-based cell-type annotation, and marker gene expression (Table S4).

(B) UMAP shown in (A) colored according to disease severity (yellow, mild COVID-19; red, severe COVID-19).

(C) Dot plots of the intersection of the top 20 marker genes sorted by average log fold change determined for the indicated myeloid cell subsets in the PBMC

datasets of both cohorts.

(D) UMAP visualization of scRNA-seq profiles (BD Rhapsody, cohort 2) of 139,848 PBMCs (50 samples of 8 mild, 9 severe COVID-19; 14 samples of 13 controls;

different time points), coloring as in (A) (see also Figure S2A and Table S4).

(E) Box and whisker plots (25–75 percentile) of percentages of cell subsets of total PBMC (per patient). Boxes are colored according to disease group and dots

according to the respective cohort of the sample. Dirichlet-multinomial regression adjusted with the Benjamini-Hochberg method, *p < 0.05, **p < 0.01,

***p < 0.001.

See also Table S1.
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Figure 3. CD11clo and HLA-DRlo but CD226+CD69+ Monocytes in Severe COVID-19

(A) Heatmap of CyTOF data (antibody panel 1, cohort 1) coveringmonocytes andDCs.Main cell, as defined by the numbers 1 to 12, and individual cell clusters are

displayed in columns and marker identity is indicated in rows. MSI, marker staining intensity respective expression level, significance level for the following

comparisons: (1) controls (ctrl, n = 9) versus COVID-19 (mild and severe, n = 17, first row), (2) mild (n = 8) versus severe (n = 9, second row), (3) FLI (n = 8) versus

(legend continued on next page)
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types expected in the PBMC compartment and revealed addi-

tional clusters and substructures (Figures 2D and S2B). Similar

to cohort 1, monocytes exhibited significant plasticity and were

subclassified into 5 clusters (Figure 2D, clusters 0–4). Disease-

severity-associated changes seen in cohort 1 were validated in

cohort 2 (Figure 2E). Immature and mature neutrophil clusters

were detected in both cohorts (clusters 5–6) and showed near

identical marker gene expression (Figure 2C). Similar to cohort

1, a prominent shift in subpopulation occupancy was observed

in the monocyte clusters (Figures 2D and 2E).

Based on the union of the top 50 genes for monocyte and

neutrophil clusters, we found a high correlation between the

independently defined functional states within the monocyte

compartment, and mature and immature neutrophils in cohort

1 and cohort 2 (Figure S2C). Violin plot representation of impor-

tant marker genes illustrated distinct phenotypic states and un-

derscored the high similarity of the two cohorts (Figure S2D).

Disease-severity-dependent alterations of the monocyte

compartment and the appearance of two LDN populations

were detected in two cohorts of COVID-19 patients.

Predominance of HLA-DRhiCD11chi Inflammatory
Monocytes in Mild and HLA-DRloCD11cloCD226+CD69+

Monocytes in Severe COVID-19
The monocyte compartment is particularly affected by COVID-

19, indicated by a loss of CD14loCD16hi non-classical mono-

cytes (Figures 1C and 1D). Disease-severity-dependent shifts

in monocyte activation were identified by scRNA-seq (Figure 2).

We further explored the phenotypic alterations of the monocyte

compartment using mass cytometry (Table S2, panel 1) on

whole blood samples from COVID-19 patients with a mild or

severe disease (n = 8+9), patients with FLI (n = 8), and age-

and gender-matched controls (n = 9, all collected within cohort

1, Table S1). Unsupervised cluster analysis using 15 surface

antigens and the proliferation marker Ki67 separated the mono-

cyte and DC compartment into 12 main cell clusters (Figures 3A

and 3B). Classical CD14hiCD16� monocytes displayed high

heterogeneity and separated into seven main subclusters.

Most classical monocytes showed high expression of activa-

tion markers CD38, CD95, and CXCR3. The four most prevalent

clusters (1, 2, 5, and 6) varied according to CD62L, HLA-DR,

CD11c, and Ki67 expression, with CD62L and HLA-DR

showing a reverse expression pattern (Figure 3A). Cluster 1 dis-

played an activated inflammatory phenotype with high co-

expression of CD11c and HLA-DR (Bernardo et al., 2018; Ja-

nols et al., 2014). In addition, we observed classical monocyte

cell clusters (7, 9, and 10) with high CD226 and CD69 but low

HLA-DR expression and thus signs of altered or alternative

activation (Davison et al., 2017; Reymond et al., 2004; Vo

et al., 2016). Among the HLA-DRlo clusters, particularly cluster

7 showed high expression of CD34 indicative of a more imma-

ture phenotype. In contrast, the majority of CD14hiCD16+ inter-

mediate monocyte cell clusters showed high CD11c and HLA-

DR expression.

Monocytes from COVID-19 patients separated from those of

FLI patients and controls (Figure 3B), mainly based on elevated

CD226 and CD69 expression in COVID-19. Monocytes in mild

and severe COVID-19 clustered separately, and monocytes

from mild COVID-19 clustered closer to monocytes in FLI. FLI

patients and mild COVID-19 contained higher proportions of

HLA-DRhiCD11chi cells (clusters 3 and 11), and total HLA-

DRhiCD11chi monocytes were higher compared to controls and

severe COVID-19, reflecting blunted monocyte activation in se-

vere COVID-19, reminiscent of observations in sepsis (Janols

et al., 2014) (Figures 3A, 3C, and 3D). Increased levels of acti-

vated HLA-DRhiCD11chi monocytes in mild COVID-19 patients

were confirmed by MCFC in cohort 2 (Figure 3E). In severe

COVID-19, we detected increased expression of CD226 and

CD69 (cluster 10) and/or decreased expression of HLA-DR,

and total CD226+CD69+ monocytes were elevated compared

to controls. Cluster 10 expressed high levels of CD10, which is

induced during macrophage differentiation (Huang et al.,

2020b). Thus, an alternative activation pattern of classical mono-

cytes appeared to be COVID-19-specific and was associated

with severe disease. Besides activated lymphocytes, monocytes

also upregulate CD69 expression (Davison et al., 2017), which

promotes tissue infiltration and retention (Cibrián and Sánchez-

Madrid, 2017). Similarly, CD226 expression on alternatively acti-

vatedmonocytes might also promote diapedesis and tissue infil-

tration (Reymond et al., 2004). Together, this activation pattern

may contribute to the reduction of circulating monocytes in

COVID-19.

mild COVID-19 (n = 8, third row), as well as (4) controls (ctrl, n = 9) versus FLI (n = 8) are indicated using a gray scale on top of the heatmap (p value scale next to

heatmap). COVID-19 samples collected between days 4 and 13 post-symptom onset ( = first day of sample collection per patient). Abundance testing via

generalized mixed effects models and multiple comparison adjustment using the Benjamini-Hochberg procedure and a false discovery rate (FDR) cutoff of 5%

across all clusters/subsets and between-group comparisons.

(B) UMAP of monocytes and DCs, down-sampled to 70,000 cells, (39 markers, Table S2). Cells are colored according to main cell clusters (1 to 12, colors as in A)

as defined in the table, donor origin (blue, controls; gray, FLI; yellow, mild COVID-19; red, severe COVID-19) and expression intensity of HLA-DR, CD11c, CD226,

and CD69.

(C) Box and whisker (10–90 percentile) plots of main monocyte clusters 1, 10 (CD14hiCD16� classical monocytes), 11, and 3 (CD14hiCD16+ intermediate

monocytes) determined bymass cytometry (whole blood, cohort 1): controls (n = 9), FLI patients (n = 8), COVID-19 patients (mild, n = 8; severe, n = 9). Abundance

testing via R multcomp and lsmeans packages adjusted using the Benjamini-Hochberg procedure and an FDR-cutoff of 5% across all clusters/subsets and

between-group comparisons.

(D) Box andwhisker (10–90 percentile) plots of CXCR3+, HLA-DRhiCD11chi, and CD226+CD69+monocytesmeasured bymass cytometry (whole blood, cohort 1):

controls (n = 9), FLI patients (n = 8), and COVID-19 patients (mild, n = 8; severe, n = 9). Kruskal-Wallis and Dunn’s multiple comparison tests.

(E) Boxplot of HLA-DRhiCD11chi monocytes (cohort 2) measured by flow cytometry: COVID-19 (mild, n = 3; severe, n = 7) and age-matched controls (n = 11).

Unpaired t test.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Tables S1 and S3.
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HLA-DRlo Monocytes Persist in Severe COVID-19
Next, we dissected COVID-19-associated phenotypic alter-

ations of monocytes by scRNA-seq. Marker genes of themono-

cyte clusters derived from Figure 2A showed that mild COVID-

19 associated clusters 1 and 2 were characterized by an ISG-

driven transcriptional program (Figure S3A), and gene ontology

enrichment analysis (GOEA) assigned these clusters to ‘‘type I

interferon signaling pathway’’ (Figure S3B). A monocyte cluster

marked by low expression of HLA-DR and high expression of

S100A12 and CXCL8 (cluster 3, HLA-DRloS100Ahi) was

strongly associated with severe COVID-19 (Figures 2B, S2D,

and S3A). For further in-depth analysis, we subclustered the

monocyte compartment of the PBMC dataset of cohort 2 (Fig-

ures 2D and S3C; Table S1) resulting in 7 subclusters (Fig-

ure 4A). Cluster 1 was marked by high expression of HLA-

DRA and HLA-DRB1 and co-stimulatory molecule CD83 and

was therefore designated HLA-DRhiCD83hi-activated inflam-

matory monocytes (Figures 4A, 4B, S3D, and S3E). We identi-

fied two major clusters (0 and 2) and a smaller cluster (6) with

low HLA-DR expression, which were associated with severe

COVID-19 (Figures 4B, S3D, and S3E). Low HLA-DR expres-

sion is an established surrogate marker of monocyte dysfunc-

tion (Venet et al., 2020) which results in reduced responsive-

ness to microbial stimuli (Veglia et al., 2018), suggesting that

clusters 0 and 6 are composed of dysfunctional monocytes.

Genes of the S100A family were expressed in both HLA-

DRlo clusters (Figure 4B), albeit to a higher degree in cluster

0 (HLA-DRloS100Ahi, e.g., S100A12) (Figures S2D and S3E;

Table S4). Cluster 2 monocytes expressed high levels of

SELL (CD62L) and CD163 (HLA-DRloCD163hi) (Figure 4B),

associated with anti-inflammatory macrophage functions

(Fischer-Riepe et al., 2020; MacParland et al., 2018), as well

as pre-maturation markers like MPO and PLAC8 (Figure 4B),

recently linked to immature monocyte states in sepsis patients

(Reyes et al., 2020). In line with these findings, clusters 0, 2,

and 6 were significantly enriched in a gene signature derived

from sepsis-associated monocytes (Figure 4C) (Reyes et al.,

2020). Moreover, blood monocytes isolated from COVID-19

patients showed a blunted cytokine response to LPS stimula-

tion, particularly monocytes from patients with severe COVID-

19 (Figure 4D). Accordingly, HLA-DRlo monocyte clusters (0,

2, and 6) were detected almost exclusively in severe COVID-

19 (Figure 4E). We next analyzed time-dependent cluster oc-

cupancies per patient in cohort 2 (Figures 4E and 4F). Acti-

vated HLA-DRhiCD83hi monocytes (cluster 1) were found in

all cases of mild COVID-19, even at late time points (Figures

4E and 4F). In contrast, HLA-DRloCD163hi monocytes (cluster

2) were present mainly early in severe disease, while HLA-

DRloS100Ahi monocytes (cluster 0) dominated the late phase

of disease (Figures 4E and 4F). Violin plots of ISG (Figure S3D)

and visualization of marker genes (Figure S3E) indicated dif-

ferential expression patterns of IFN signature genes in individ-

ual monocyte clusters. To reveal the kinetics of ISG expres-

sion, we plotted the expression of ISG15 and IFI6 in the

complete monocyte population for all patients that had been

sampled at least twice (Figure 4G). Expression levels were

highest at early time points and consistently decreased over

time, clearly indicating that the IFN response in COVID-19 is

inversely linked to disease severity and time (Figures S3F

and S3G). In contrast, decreased expression of HLA-DRA

and HLA-DRB1 in severe COVID-19 is evident early on and

sustained over time.

Transcription factor prediction indicated a STAT signaling-

driven gene expression program in monocytes in COVID-19

(Figure 4H), with additional regulation by CEBPD and

CEBPE, which have been implicated in gene expression pro-

grams of sepsis-associated monocytes (Reyes et al., 2020).

STAT3 was predicted as a specific regulator of genes

enriched in HLA-DRloCD163hi and HLA-DRloS100Ahi mono-

cytes (clusters 2 and 0), in line with their immunosuppressive

phenotype.

Taken together, dynamic changes of monocyte phenotypes

were associated with COVID-19 disease severity and time after

onset of disease.

Figure 4. Disease-Related Longitudinal Changes in Monocyte Transcriptomes

(A) UMAP visualization of monocytes (43,772 cells; from Figure 2C, cohort 2); 46 samples from controls (n = 6) and COVID-19 (mild, n = 7; severe, n = 8). Cells are

colored according to the identified monocyte clusters (Louvain clustering, Table S4).

(B) Visualization of scaled expression of selected genes (monocyte markers, Figures 2 and S3E) using the UMAP defined in (A). Three main clusters defining

monocytes in COVID-19 (HLA-DRloCD163hi, HLA-DRloS100Ahi, and HLA-DRhiCD83hi monocytes) indicated by dashed areas.

(C) AUCell-based enrichment of a gene signature from sepsis-associatedmonocytes (MS1 cells) (Reyes et al., 2020), violin plots of the area under the curve (AUC)

scores. Horizontal lines: median of the respective AUC scores per cluster.

(D) Cytokine detection of IL-1b, tumor necrosis factor alpha (TNF)-a, and IL-12 in supernatants of purified monocytes (controls, ctrl, n = 3; COVID-19, mild, n = 3,

and severe, n = 3) after 8 h in vitro incubation with or without 1 ng/mL LPS. Mean ± standard deviation. Kruskal-Wallis test adjusted with Benjamini-Hochberg

method, *p < 0.05.

(E) Mapping of monocytes derived from COVID-19 patients (mild early, mild late, severe early, and severe late) onto UMAP from (A), coloring according to

monocyte cluster identity.

(F) Cluster occupancy over time for patients with longitudinal scRNA-seq data (mild, n = 5; severe, n = 7), coloring according to (A). Vertical dashed lines: time

points of sampling. Red bar, WHO ordinal scale; X, patient deceased. Patient IDs on the right side, grouping according to disease severity. Bold dotted line (right):

patients classified as mild at initial sampling developing severe disease over time.

(G) Time-dependent change of IFI6 and ISG15 expression (violin-plots) inmonocytes of cohort 1 (mild [yellow], n = 4; severe [red], n = 4), cohort 2 (mild [yellow], n =

5; severe [red], n = 7), and controls (cohort 1, n = 22, cohort 2, n = 6).

(H) Network representation of marker genes and their predicted upstream transcriptional regulators for monocyte clusters 0, 1, 2, and 3. Edges: predicted

transcriptional regulation. Transcription factors (TFs, inner circle) and predicted target genes (outer circle) represented as nodes sized and colored according to

the scaled expression level across all clusters. Selected TFs and genes labeled based on connectivity and literaturemining. Numbers in the center refer to clusters

defined in (A).

See also Figure S1 and Tables S1 and S4.
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Low-Density Neutrophils Emerge in Severe COVID-19
Patients Indicative of Emergency Myelopoiesis
PBMCs derived from blood samples of patients with severe

COVID-19 contained two distinct clusters of LDNs (Figures 2A,

clusters 5 and 6, and 2D, clusters 5 and 6). LDNs were slightly

more frequent in cohort 1, and we analyzed these cells in more

detail. Subsampling of all LDNs (Figure 5A; Table S1) and re-

clustering the cells revealed 8 transcriptionally distinct cell clus-

ters (Figures 5A and 5B; Table S4). Based on published markers

for pro- and pre-neutrophils, andmature neutrophils (Kwok et al.,

2020; Ng et al., 2019; Scapini et al., 2016) we identified clusters 4

and 6 as CD81+SPN(CD43)+FUT4(CD15)+CD63+CEACAM8

(CD66b)+ pro-neutrophils, clusters 3 and 5 as ITGAM(CD11b)+

CEACAM8(CD66b)+CD101+/� pre-neutrophils, and the remain-

ing clusters as mature neutrophils (Figure S4A). Accordingly,

pro- and pre-neutrophils were enriched for transcriptional signa-

tures of neutrophil progenitors derived from published single-cell

data (Figure 4C) (Pellin et al., 2019; Popescu et al., 2019), and

pro-neutrophils in clusters 4 and 6 showed the highest propor-

tion of cells with a proliferative signature (Figure S4B). Clusters

0, 1, and 2 (originally in cluster 4 in Figure 2A) expressed mature

neutrophil markers FCGR3B (CD16) and MME (CD10)

(Figure S4A).

Differential gene expression analysis for each cluster re-

vealed extensive phenotypic heterogeneity within the LDN

compartment (Figure 5B). LDNsmainly arise under pathological

conditions, such as severe infection and sepsis in the context of

emergency myelopoiesis (Schultze et al., 2019), and they have

been associated with dysfunctional immune responses,

marked by combined immunosuppression and inflammation

(Silvestre-Roig et al., 2019). While LDN in cluster 1 expressed

numerous ISGs (ISG15, IFITM1/3, and RSAD2), cluster 4 (pro-

neutrophils) expressed genes (e.g., MPO, ELANE, and

PRTN3) that are involved in neutrophil extracellular trap forma-

tion (Stiel et al., 2018; Thomas et al., 2014; You et al., 2019)

among other functions and that have been associated with

sepsis (Ahmad et al., 2019; Carbon et al., 2019; Silvestre-

Roig et al., 2019). Both pre-neutrophil clusters expressed

PADI4, another co-factor in NETosis (Leshner et al., 2012) (Fig-

ure 5D). NETs have recently been implicated in the pathogen-

esis of COVID-19 (Barnes et al., 2020; Zuo et al., 2020). Both

pre-neutrophils (clusters 3 and 5) and pro-neutrophils ex-

pressed genes including CD24, OLFM4, LCN2, and BPI, previ-

ously associated with poor outcome in sepsis (Figures 5B and

S4A) (Kangelaris et al., 2015).

All LDNs also expressed high levels of alarmins S100A8 and

S100A9 (Figure 5D), whereas other S100 genes (e.g., S100A4

and S100A12) were strongly induced in selected neutrophil clus-

ters. Finally, known inhibitors of T cell activation, namely CD274

(PD-L1) andArginase 1 (ARG1) (Bronte et al., 2003; Li et al., 2018)

were highly expressed in neutrophils in COVID-19 patients (Fig-

ure 5E). ARG1+ neutrophils in sepsis patients were shown to

deplete arginine and constrain T cell function in septic shock

(Darcy et al., 2014) and were predictive of the development of

nosocomial infections (Uhel et al., 2017). Mature CD274(PD-

L1)+ neutrophils (cluster 0) have been attributed suppressive

functions in various conditions including HIV-1 infection (Bowers

et al., 2014), cancer (Chun et al., 2015) and in lymph nodes (Cas-

tell et al., 2019), spleen (Langereis et al., 2017), and blood after

LPS exposure (de Kleijn et al., 2013). ARG1+ cells were mainly

immature neutrophils (clusters 3–6) and did not overlap with

CD274 (PD-L1) expressing cells, indicating different populations

of dysfunctional and potentially suppressive neutrophils in se-

vere COVID-19.

LDNs recovered from PBMC fractions of COVID-19 patients

revealed the presence of dysfunctional neutrophils and pointed

toward multiple potentially deleterious pathways activated in se-

vere COVID-19.

Persistent Increase of Activated Neutrophil Precursors
and PD-L1+ Neutrophils in Severe COVID-19
Alterations of the neutrophil compartment were further interro-

gated by mass cytometry of whole blood samples of COVID-19

patients (n = 8 mild + 9 severe, cohort 1), FLI patients (n = 8),

and age- and gender-matched controls (n = 9) (Table S1), using

a panel designed to detect myeloid cell maturation and activa-

tion states as well as markers of immunosuppression or

dysfunction (Table S2). Unsupervised clustering analysis of all

neutrophils in all samples revealed 10 major clusters (Figure 6A)

of immature (clusters 2, 5, 6, and 7), mature (clusters 1, 3, and

4), and remaining clusters of low abundancy (clusters 8, 9, and

10). Based on their differential expression of CD11b, CD16,

CD24, CD34, and CD38, clusters 5 and 6 were identified as

pro-neutrophils and cluster 2 as pre-neutrophils (Kwok et al.,

2020; Ng et al., 2019). The fourth immature cell cluster (7)

showed very low expression of CD11b and CD16, reminiscent

of pro-neutrophils, but lacking CD34, CD38, and CD24 (Fig-

ure 6A), suggesting a hitherto unappreciated pro-neutrophil-

like population. The mature neutrophils segregated into non-

activated (cluster 1), partially activated (cluster 3), and highly

activated cells (cluster 4), based on the loss of CD62L and up-

regulation of CD64, as well as signs of proliferative activity

(Ki67+) (Figure 6A).

Neutrophils from COVID-19 patients clearly separated from

those of controls and also FLI patients in UMAP analysis (Fig-

ure 6B), and neutrophils in patients with severe COVID-19

were distinct from those of patients withmild disease (Figure 6B).

Cells from control donors accumulated in areas enriched for

mature non-activated cells (cluster 1) and immature pre-neutro-

phil-like cells (cluster 2). In contrast, neutrophils from FLI patients

were mainly mature non-activated (cluster 1) and mature highly

activated (cluster 4) cells. Neutrophils from COVID-19, particu-

larly frompatients with severe disease, primarily occupied imma-

ture pre- and pro-neutrophil-like clusters. Plotting cell cluster-

specific surface marker expression onto the UMAPs (Figure 6C)

as well as statistical analyses of cell cluster distribution and sur-

face marker expression among different patient groups sup-

ported these observations (Figures 6D and 6E). Samples from

FLI patients contain a high proportion of highly activated mature

neutrophils, but barely any immature neutrophils. In contrast, se-

vere COVID-19 is associated with the appearance of immature

pre- and pro-neutrophils (Figures 6D and 6E). Interestingly,

immature cell clusters in severe COVID-19 showed signs of

recent activation like upregulation of CD64 (Mortaz et al.,

2018), RANK, and RANKL (Riegel et al., 2012), aswell as reduced

CD62L expression (Mortaz et al., 2018). In addition to loss of
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Figure 5. Immature and Dysfunctional Low-Density Neutrophils Emerge in PBMC
(A) UMAP representation and clustering of low-density neutrophils (LDNs, 3,154 cells) in PBMCs (cohort 1, clusters 5/6, Figure 2A) from 21 samples (6 mild,

10 severe COVID-19). Left panel: cluster affiliation in Figure 2A. Right panel: data-driven clustering and cell type nomenclature based onmarker genes (Table S4).

(B) Dot plot of the top 10 marker genes sorted by average log fold change associated with the neutrophil clusters identified in (A).

(C) Signature enrichment scores of single-cell data from neutrophil progenitors (Pellin et al., 2019; Popescu et al., 2019) in LDN clusters, plotted as violin plots. The

lines in the violin plots represent the median of the respective AUC scores per cluster and the 0.25 and 0.75 quantiles. The ribosomalhi-specific cluster 7 was

excluded from this analysis.

(D) Violin plots of expression of selected activation genes across the neutrophil clusters identified in (A). The panel of genes was chosen based on their described

role in neutrophil extracellular trap formation (PRTN3, ELANE,MPO, and PADI4) and neutrophil activation and dysregulation (CD24, OLFM4, LCN2, BPI, CD274

[PD-L1], Arginase 1 [ARG1], and ANXA1).

(E) Expression of ARG1 and CD274(PD-L1) projected on the UMAP from (A).

See also Figure S4 and Table S1.
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Figure 6. Appearance of Immature and PD-L1+ Neutrophils in Severe COVID-19

(A) Heatmap revealing differences in marker expression determined by mass cytometry (antibody panel 2, cohort 1) of main neutrophil cell cluster (1 to 10). Main

individual neutrophil cell clusters are displayed in columns and marker identity is indicated in rows. MSI, marker staining intensity respective expression level.

(legend continued on next page)
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CD62L, immature andmature neutrophils from severe COVID-19

showed elevated PD-L1 expression compared to control sam-

ples (Figure 6E). Indeed, CD62L downregulation and high PD-

L1 expression has been frequently associated with suppressive

function of neutrophils and granulocytic myeloid-derived sup-

pressor cells (gMDSCs) (Bronte et al., 2016; Cassetta et al.,

2019; Kamp et al., 2012; Pillay et al., 2012; Tak et al., 2017; Testa

et al., 2004; Younos et al., 2015). Interestingly, a recent study

described a high abundance of similar immature and dysfunc-

tional CD64+ and PD-L1+ neutrophils in sepsis patients (Megh-

raoui-Kheddar et al., 2020).

Thus, SARS-CoV-2 infection induces major alterations in the

neutrophil compartment. While neutrophils in FLI patients display

a mature activated phenotype, a release of immature neutrophils

with phenotypic signs of immunosuppression and dysfunction is a

hallmark of severe COVID-19.

We next assessed the dynamics of the changes within the

myeloid cell compartment over time. We grouped samples ac-

cording to collection time as ‘‘early’’ (within the first 10 days) or

late (during the following 20 days) after onset of symptoms. In

both cohorts, we observed a tendency toward (cohort 1) or

significantly higher (cohort 2) proportions of granulocytes in se-

vere versus mild COVID-19 patients, both at early and late time

points (Figure S5A). We observed a persistent release of imma-

ture neutrophils (e.g., cluster 6) in severe COVID-19 (Figure S5B)

showing high expression of CD64 and PD-L1, but downregula-

tion of CD62L as a sign of activation, dysfunction, and immuno-

suppression (Figure S5C). In addition, severe COVID-19 patients

show further increased frequencies of mature, partially activated

neutrophils (cluster 3) at later time periods (Figure S5B). Thus,

the neutrophil compartment of severe COVID-19 patients is

characterized by a combination of persistent signs of inflamma-

tion and immunosuppression, which is reminiscent of long-term

post-traumatic complications (Hesselink et al., 2019).

We also analyzed time-dependent phenotypic changes in the

monocyte compartment by mass cytometry. Non-classical

monocytes started to recover in COVID-19 patients during the

later stages of the disease (Figure S5A). HLA-DRhiCD11chi

monocyte cell clusters also declined at later time points in mild

COVID-19 (Figures S5D–S5F), which correlates well with the lon-

gitudinal changes of IFI6 and ISG15 as well as HLA-DRA and

HLA-DRB1 expression profiles (Figures 4G and S3F). In contrast,

overall proportions of HLA-DRhiCD11chi monocytes in severe

COVID-19 remained low throughout the course of the disease.

Proportions of CD10hi macrophage-like cluster 10 and

CD226+CD69+ monocytes were generally higher at later stages

in severe COVID-19, which resembled the kinetics of HLA-DRlo-

S100Ahimonocytes identified by scRNA-seq (Figure 4F). This in-

dicates a prolonged alternative activation of monocytes in se-

vere COVID-19 (Figure S5E).

Single-Cell Transcriptomes of Whole Blood Reveal
Suppressive-like Neutrophils in Severe COVID-19
Whole blood CyTOF analysis (cohort 1) clearly indicated very

distinct phenotypic alterations of the neutrophil compartment

in mild and severe forms of COVID-19. To further delineate the

underlying transcriptional programs, we performed scRNA-seq

analysis on fresh whole blood samples of 23 individuals (34 sam-

ples, cohort 2, Table S1). Integrated visualization of all samples

of cohort 2 (fresh/frozen PBMCs, fresh whole blood, 229,731

cells, Figure S6A) revealed the expected blood leukocyte distri-

bution, including granulocytes (Figures 7A and S6A; Table S4).

Cell-type distribution identified by scRNA-seq profiles (Fig-

ure S6B) strongly correlated with MCFC characterization of the

same samples (Figure S6C). For further analysis of the granulo-

cyte compartment, we first combined the whole blood samples

with the fresh PBMCs to guide the clustering of all major immune

cells resulting in a total of 122,954 cells (Figure 7A). From these

samples, we identified all neutrophil clusters and extracted the

cells derived from whole blood for subsampling, which revealed

a structure of 9 clusters (n = 58,383 cells) (Figures 7B and 7C).

Using marker- and data-driven approaches as applied to LDN

(Figure 5D and S4A), we identified FUT4(CD15)+CD63+CD66b+

pro-neutrophils, ITGAM(CD11b)+CD101+ pre-neutrophils, along

with 7 mature neutrophil clusters (Figures 7B–7D and S6D; Table

S4). Heterogeneous expression of various markers involved in

mature neutrophil function including CXCR2, FCGR2A (CD32),

FCGR1A (CD64), or MME (CD10), pointed toward distinct func-

tionalities within the neutrophil compartment (Figures 7E, S6D,

and S6E). Seven of the nine neutrophil clusters identified inwhole

blood in cohort 2 could also be mapped to the fresh PBMC tran-

scriptomes in cohort 1 (Figure S6F), indicating that scRNA-seq of

fresh PBMC in COVID-19 patients reveals relevant parts of the

neutrophil space. The transcriptional phenotype of pro- and

Significance level for the following comparisons: (1) controls (ctrl, n = 9) versus COVID-19 (mild and severe, n = 17, first row), (2) mild (n = 8) versus severe (n = 9,

second row), (3) FLI (n = 8) versus mild COVID-19 (n = 8, third row), as well as (4) controls (ctrl, n = 9) versus FLI (n = 8) are indicated using a gray scale on top of the

heatmap (see also p value scale next to the heatmap). Samples of COVID-19 patients collected between day 4 and 13 post-symptom onset (= first day of sample

collection per patient). Abundance testing via generalized mixed effects models and multiple comparison adjustment using the Benjamini-Hochberg procedure

and an FDR-cutoff of 5% across all clusters/subsets and between-group comparisons

(B) UMAP of neutrophils, down-sampled to 70,000 cells (30 markers, Table S2). Cells are colored according to main cell clusters (1 to 10, see table). Donor origin

(blue, controls; gray, FLI; yellow, mild COVID-19; red, severe COVID-19).

(C) UMAP (from (B) with cells colored according to expression intensity of CD38, CD34, CD16, CD11b, CD33, CD64, CD62L, and CD45.

(D) Box and whisker (10–90 percentile) plots of main neutrophil cell clusters 1 to 7, reaching proportions of over 1%, measured by mass cytometry (whole blood,

cohort 1): controls (n = 9), FLI (n = 8), and COVID-19 (mild, n = 8; severe, n = 9). Abundance testing via generalizedmixed effects models andmultiple comparison

adjustment using the Benjamini-Hochberg procedure and an FDR-cutoff of 5% across all clusters/subsets and between-group comparisons.

(E) Box and whisker (10–90 percentile) plots of proportions of CD34+, CD11blo/�CD16�, CD64+, CD62L+, CD10�CD11blo/�CD16� (reported from panel 1) and

PD-L1+ neutrophils (whole blood, cohort 1): controls (n = 9), FLI (n = 8), and COVID-19 (mild, n = 8; severe, n = 9). Kruskal-Wallis and Dunn’s multiple com-

parison tests.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S5 and Tables S1 and S3.
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pre-neutrophils (cluster 8+9) was corroborated in cohort 2 (Fig-

ures 7B–7D and S6D).

Heatmap and UMAP visualization of the cell type distribution

identified pro- and pre-neutrophils mainly at late time points in

severe COVID-19 (Figures 7F and 7G). Furthermore, mature neu-

trophils with a high IFN-signature (cluster 1) were associatedwith

severe COVID-19 (Figures 7E andS6G). This cluster was also en-

riched for markers identified by CyTOF as differentially ex-

pressed in patients with severe COVID-19 (Figure 6), such as

elevated expression ofCD274 (PD-L1) and FCGR1A (CD64) (Fig-

ure 7H). In addition to CD274, cells in cluster 1 expressed genes

indicative of a potentially suppressive or anti-inflammatory state,

including ZC3H12A (Figure 7E), which is known to suppress hep-

atitis C virus replication and virus-induced pro-inflammatory

cytokine production (Lin et al., 2014). Cluster 2was also enriched

for cells from COVID-19 patients, mainly from severe but also

mild cases (Figures 7F and 7G).

Gene signatures from granulocytic MDSC (Bayik et al., 2020)

and CD274(PD-L1)+ neutrophils after LPS exposure (de Kleijn

et al., 2013), both shown to be immunosuppressive, were en-

riched in clusters 1, 2, and 6, which mainly harbor cells from se-

vere COVID-19. This indicates a suppressive functionality of

these cells in severe COVID-19 (Figure 7I). Predictions of tran-

scription factor (TF)-based regulation of the cluster-specific

gene signatures separated mature neutrophils from patients

with severe COVID-19 (cluster 1) and control patients (cluster

0) (Figure 7J). IFN-response genes are mainly controlled by

STAT and IRF TFs, whereas the transcriptional signature of clus-

ter 0 is mainly driven by the CEBP TF family. The TF network un-

derlying the transcriptional difference in pro-neutrophils ismainly

driven by E2F family members and pre-neutrophils mainly

depend on ETS TFs (Figure S6H).

Pseudotime analysis strongly supported the differentiation tra-

jectory from pro-neutrophils (cluster 8) via pre-neutrophils (clus-

ter 6) to mature neutrophils in cluster 2 and 1 (Figures S6I and

S6J). Particularly CD274 (PD-1L) was enriched in cluster 1

compared to cluster 2, supporting the potential of neutrophils

to progress toward a suppressive phenotype in severe COVID-

19 (Figure S6J). Interestingly, CD177 is expressed in pre-neutro-

phils and persisting in cluster 1 further highlighting the newly

emerging character of this cluster (Volkmann et al., 2020).

Finally, we studied whether the persistent emergence of

immature, potentially dysfunctional neutrophils in severe

COVID-19 patients can be captured under routine diagnostic

conditions. Therefore, samples of 32 COVID-19 patients (Table

S1, cohort 1) were characterized by routine hematology analyses

using a clinical flow cytometry system (Sysmex analyzer).

Indeed, the assumption of rescue myelopoiesis in severe

COVID-19 was supported by significantly higher counts in the

population of immature granulocytes (IG, representing promye-

locytes, myelocytes, and metamyelocytes) in this patient group

(Figure 7K). We also found significant differences in the neutro-

phil compartment, when analyzing the width of dispersion with

respect to granularity, activity, and cell volume defined as NE-

WX, NE-WY, and NE-WZ, respectively. As compared to patients

with mild course, severely ill patients displayed increases in

width of dispersion of activity and cell volume as surrogates for

increased cellular heterogeneity, immaturity, and dysregulation

in severe COVID-19 (Figure 7K), resembling previously

described alterations in sepsis patients (Stiel et al., 2016).

Furthermore, neutrophils of severe COVID-19 patients were

partially dysfunctional, because their oxidative burst upon stim-

ulation with standardized stimuli (E. coli or PMA) was strongly

impaired in comparison to control and mild COVID-19

Figure 7. Immature and Dysfunctional Whole-Blood Neutrophils in Severe COVID-19

(A) UMAP of 35 fresh blood samples from cohort 2 (122,954 cells, PBMCs, and whole blood): controls (n = 17), mild COVID-19 (early, n = 3; late, n = 3) and severe

COVID-19 (early, n = 3, late = 9). Clusters defined by Louvain clustering. Cell types assigned based on reference-based cell type classification (Aran et al., 2019)

and marker gene expression (Table S4).

(B) UMAP visualization of neutrophils (58,383 cells; 34 whole blood samples, cohort 2): controls (n = 16), mild COVID-19 (early, n = 3; late, n = 3), and severe

COVID-19 (early, n = 3; late, n = 9). Clusters defined by Louvain clustering (Table S4).

(C) Nomenclature and marker genes for each neutrophil cluster from (B).

(D) Dot plot of selected marker genes for each neutrophil cluster from (B).

(E) Dot plot of genes from different functional classes (based on literature research). Clusters 8, 6, 1, and 2 are specific for severe COVID-19, cluster 0 represents

homeostatic mature neutrophils from controls.

(F) Heatmap divided by disease severity and stage (early versus late) showing the proportion of each patient group for each cluster.

(G) Density plot of cell frequency by disease severity and stage (early versus late) overlaid on the UMAP of the neutrophil space.

(H) UMAP visualization showing scaled expression of CD274 (PD-L1) and FCGR1A (CD64).

(I) Violin plots showing AUCell-based enrichment as AUC scores of gene signature from granulocyticmyeloid-derived suppressor cells (Bayik et al., 2020) and PD-

L1hi neutrophils after LPS exposure (de Kleijn et al., 2013) in neutrophil clusters from (B). Horizontal lines: median of the respective AUC scores per cluster and

0.25 and 0.75 quantiles.

(J) Network representation of marker genes and their predicted upstream transcriptional regulators for neutrophil clusters 1 (mature/COVID-19 severe-specific)

and 0 (mature/control-specific). Edges in cluster color: predicted transcriptional regulation. TFs (inner circle) and their predicted target genes (outer circle): nodes,

sized, and colored according to scaled expression level across all clusters. Selected genes and TFs labeled based on connectivity and literature mining.

(K) Box and whisker (10-90 percentile) plots representing the hematological analyses (whole blood, cohort 1): mild (n = 11), severe (n = 21) COVID-19. Analytes,

measured by flow cytometry in white blood cell differential channel, included absolute counts of immature granulocytes (IG, dotted line: upper limit of reference

range) and width of neutrophil cytometric dispersions (NE-WX, dispersion of side scatter; NE-WY, dispersion of side fluorescence light; NE-WZ, dispersion of

forward scatter). MannWhitney test applied to IG count analysis andmixed-effect-analysis and Sidak’s multiple comparison test to NE-WX, NE-WY, and NE-WZ

analyses.

(L) Box and whisker (10–90 percentile) plots of E. coli- and PMA-induced neutrophil oxidative burst (reactive oxygen species [ROS] production) and phagocytosis

of whole blood samples (cohort 1; mild, n = 10; severe [n = 8] COVID-19) in comparison to controls measured by flow cytometry. Dotted line: relative level of

controls run in the assay. Mixed-effect-analysis and Sidak’s multiple comparison test. **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S6 and Table S1.
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neutrophils, whereas phagocytic activity was preserved (Fig-

ure 7L; Table S1).

Collectively, the neutrophil compartment in peripheral blood

of severe COVID-19 patients is characterized by the appearance

of LDN, FUT4(CD15)+CD63+CD66b+ pro-neutrophils, and

ITGAM(CD11b)+CD101+ pre-neutrophils, reminiscent of emer-

gency myelopoiesis, as well as CD274(PD-L1)+ZC3H12A+

mature neutrophils reminiscent of gMDSC-like cells, whichmight

exert suppressive or anti-inflammatory functions.

DISCUSSION

SARS-CoV-2 infection generally causes mild disease in the ma-

jority of individuals, however, �10%–20% of COVID-19 patients

progress to severe disease with pneumonia and respiratory fail-

ure. The reported case-fatality rates among patients with critical

illness and respiratory failure vary, with a mean of �25% (Quah

et al., 2020). Dysregulated immune responses have been

described in patients with severe COVID-19 (Chua et al., 2020;

Giamarellos-Bourboulis et al., 2020; Lucas et al., 2020; Merad

and Martin, 2020; Messner et al., 2020; Wei et al., 2020; Zhou

et al., 2020b). Hence, detailed knowledge of the cellular and mo-

lecular processes that drive progression from mild disease to

potentially fatal courses of COVID-19 is urgently needed to iden-

tify predictive biomarkers and therapeutic targets.

Here, we employed four complementary technologies at sin-

gle-cell resolution to assess alterations in the systemic immune

response in mild or severe courses of COVID-19. We analyzed

a total of 53 patients (161 samples) from two independent co-

horts collected at two university medical centers in Germany

(Kurth et al., 2020). Combining single-cell transcriptomics with

single-cell proteomics, using different technological platforms

in two independent patient cohorts, provided a detailed view of

the systemic immune responses in COVID-19 and allowed for

cross-validation and in-depth interrogation of key findings. The

results were further supported by additional routine diagnostics

lab measurements and functional assays, linking the results of

the exploratory investigations to functional phenotypes and clin-

ically relevant diagnostics.

This multipronged approach revealed drastic changes within

the myeloid cell compartment during COVID-19, particularly in

patients with a severe course of disease. Early activation of

HLA-DRhiCD11chi/HLA-DRhiCD83hi monocytes with a strong

antiviral IFN-signature was a hallmark of mild COVID-19, which

receded during the natural course of disease. In contrast, HLA-

DRlo dysfunctional monocytes along with clear evidence of

emergency myelopoiesis with release of immature neutrophils

including pro- and pre-neutrophils into the circulation marked

severe COVID-19. Furthermore, we identified neutrophils in se-

vere COVID-19 with transcriptional programs reminiscent of

dysfunction and immunosuppression not observed in controls

or patients with mild COVID-19. Thus, defective monocyte acti-

vation and dysregulated myelopoiesis may contribute to severe

disease course and ARDS development (Middleton et al., 2020).

Previous immunophenotyping studies have reported an in-

crease of inflammatory monocytes with a strong IFN-response

in COVID-19 (Liao et al., 2020; Merad and Martin, 2020; Zhou

et al., 2020b). Mononuclear phagocytes and neutrophils appear

to dominate inflammatory infiltrates in the lungs, and resident

alveolar macrophages are replaced by inflammatory mono-

cyte-derived macrophages in patients with severe COVID-19

(Chua et al., 2020; Liao et al., 2020). Here, we report substantial

time- and disease severity-dependent alterations of the

monocyte compartment in COVID-19. Marked depletion of

CD14loCD16hi non-classical monocytes observed in all COVID-

19 patients, but not in patients with SARS-CoV-2 negative FLI

(Figure 1D), is in line with previous reports on COVID-19, and

other severe viral infections (Lüdtke et al., 2016; Naranjo-Gómez

et al., 2019). Single-cell proteomics and transcriptomics re-

vealed a transient increase in highly activated CD14+HLA-

DRhiCD11chi (HLA-DRAhiCD83hi) monocytes in mild COVID-19.

This was similar in patients presenting with common cold or

FLI, but absent in severe COVID-19 (Figures 3 and 4). In contrast,

in severe COVID-19, monocytes showed low expression of HLA-

DR, and high levels of MAFB, PLBD1, and CD163, all of which

are associated with anti-inflammatory macrophage functions

(Bronte et al., 2016; Cuevas et al., 2017; Fischer-Riepe et al.,

2020; MacParland et al., 2018). Low HLA-DR expression on

monocytes is an established surrogate marker of immunosup-

pression in sepsis (Venet et al., 2020). Elevated HLA-DRlo mono-

cytes have been associated with an increased risk of infectious

complications after trauma (Hoffmann et al., 2017) and fatal

outcome in septic shock (Monneret et al., 2006). Indeed, the

HLA-DRloCD163+ monocytes showed enrichment of genes

associated with poor prognosis in sepsis patients, including

PLAC8 (Maslove et al., 2019) and MPO (Schrijver et al., 2017)

(Figure 4B). In line with this dysfunctional phenotype, PLAC8

was recently shown to suppress production of IL-1b and IL-18

(Segawa et al., 2018). In fact, we observed that inflammatory

cytokine production, including IL-1b release, was impaired in

monocytes from patients with severe COVID-19 (Figure 4).

CD14+HLA-DRlo monocytes have also been implicated with

immunosuppression in cancer patients (Bronte et al., 2016;Men-

gos et al., 2019; Meyer et al., 2014). While exhibiting anti-inflam-

matory features, especially in the early stages of severe disease

(Figures S3C–S3F), persistently high expression of CD226 and

CD69may promote tissue infiltration and organ dysfunction (Da-

vison et al., 2017; Reymond et al., 2004; Vo et al., 2016).

Acute pathological insults, such as trauma or severe infec-

tions, trigger a process referred to as emergency myelopoiesis

to replenish functional granulocytes and other hematopoietic

cells. Emergency myelopoiesis is characterized by the mobiliza-

tion of immaturemyeloid cells, which are often linked to immuno-

suppressive functions (Loftus et al., 2018; Schultze et al., 2019).

In fact, emergence of suppressive myeloid cells including neu-

trophils, often referred to as granulocytic MDSCs, has been

observed during sepsis and severe influenza (Darcy et al.,

2014; Loftus et al., 2018; Sander et al., 2010; De Santo et al.,

2008). LDN in PBMC fractions in severe COVID-19 contained

immature neutrophils, including pro- and pre-neutrophils, which

was not observed in mild cases (Figure 5). These immature LDNs

showed a surface marker and gene expression profile reminis-

cent of granulocytic MDSCs including genes such as S100A12,

S100A9, MMP8, ARG1 (Uhel et al., 2017), and OLFM4, which

has been recently associated with immunopathogenesis in

sepsis (Alder et al., 2017). Emergence of pro-neutrophils in
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severe COVID-19 was also detected by single-cell proteomics

on whole blood samples. Strikingly, both immature and the

mature neutrophils showed increased expression of CD64 and

PD-L1 (Figures 6 and S5), similar to recently described alter-

ations in sepsis (Meghraoui-Kheddar et al., 2020). In addition

to the altered phenotype, we also observed an altered function-

ality. Neutrophils frompatients with severe COVID-19 showed an

impaired oxidative burst response, while their phagocytic capac-

ity was preserved (Figure 7).

Single-cell transcriptomics of whole blood samples revealed

mature activated neutrophils in both mild and severe COVID-

19 (Figure 7B, cluster 2), however, expression of CD274 (PD-

L1) was only found in severe COVID-19 (cluster 1), and it

increased in later stages of the disease. Expression of PD-L1

on neutrophils has been associated with T cell suppression

(Bowers et al., 2014; Castell et al., 2019; de Kleijn et al., 2013;

Langereis et al., 2017), suggesting that neutrophils in severe

COVID-19 might exert suppressive functions. Furthermore, the

expression of CD177 on mature activated neutrophils and the

identification of genes associated with anti-inflammatory func-

tions (CD274 and ZC3H12A) suggest a model in which neutro-

phils emerging prematurely from the bone marrow are pro-

grammed toward an anti-inflammatory or even suppressive

phenotype in severe COVID-19. The transcriptional programs

induced in immature neutrophils, including pro- and pre-neutro-

phils, as well as in COVID-19-associated mature neutrophil clus-

ters, align with other observations in severe COVID-19 patients,

including increased NET formation (Barnes et al., 2020; Zuo

et al., 2020), coagulation (Klok et al., 2020; Pfeiler et al., 2014),

and immunothrombosis (Stiel et al., 2018; Xu et al., 2020). In

contrast, these transcriptional programs were not observed in

patients with mild COVID-19 or in SARS-CoV-2 negative con-

trols, even though the latter exhibited a range of comorbidities

(e.g., COPD, type II diabetes).

Thus, defective or repressed monocyte activation combined

with dysregulated myelopoiesis may cause a deleterious loop

of continuous tissue inflammation and ineffective host defense.

Limitations of Study
The pathophysiological consequences of the dysfunctional

phenotype of myeloid cells in severe COVID-19 remain unclear

at this stage. It is, however, highly likely that they contribute to

immunosuppression in critically ill patients, potentially leading

to insufficient host defense, disbalanced inflammation, and

increased susceptibility to superinfections. While our dual cohort

study design provided robust and reproducible results concern-

ing the alterations within the myeloid compartment in COVID-19,

it is too early to speculate on the underlying mechanisms driving

this response, such as genetics, lifestyle, comorbidities, environ-

mental factors, or initial viral load (Ellinghaus et al., 2020). Utiliz-

ing the herein established transcriptional and functional pheno-

types of the myeloid cell compartment, it will likely be possible

to estimate the potential contribution of the causes mentioned

above in larger clinical studies in the future and to address poten-

tial upstream events of immune dysregulation in preclinical

model systems as they become available (Bao et al., 2020; Co-

hen, 2020). Indeed, in future studies it will be interesting to

dissect whether the myeloid subsets in COVID-19 are anti-in-

flammatory or even capable of suppressing other immune cells,

and which pathways might be mainly involved. Clearly, PD-L1 is

a prime candidate (Bowers et al., 2014; Castell et al., 2019; de

Kleijn et al., 2013; Langereis et al., 2017).

Collectively, our data link a striking appearance of immature

and dysfunctional cells, in both the monocyte and neutrophil

compartment, to disease severity in COVID-19. Consequently,

the development of treatments and prevention strategies for se-

vere COVID-19 may benefit from insights gained in other fields

such as oncology, which have successfully applied therapies

targeting suppressive myeloid cells.
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H., Bienvenu, J., Gueyffier, F., and Vanhems, P. (2006). Persisting low mono-

cyte human leukocyte antigen-DR expression predicts mortality in septic

shock. Intensive Care Med. 32, 1175–1183.

Mortaz, E., Alipoor, S.D., Adcock, I.M., Mumby, S., and Koenderman, L.

(2018). Update on neutrophil function in severe inflammation. Front. Immunol.

9, 2171.
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Uhel, F., Azzaoui, I., Grégoire, M., Pangault, C., Dulong, J., Tadié, J.M., Ga-
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HLA-DR BV421 (L243) Biolegend Cat# 307635; RRID:AB_10897449

CD4 BV510 (OKT4) Biolegend Cat# 317444; RRID:AB_2561866

CD16 BV605 (3G8) Biolegend Cat# 302039; RRID:AB_2561354

CD45 BV711 (HI30) Biolegend Cat# 304050; RRID:AB_2563466

CD8 BV785 (SK1) Biolegend Cat# 344740; RRID:AB_2566202

CD66b FITC (G10F5) Biolegend Cat# 305104; RRID:AB_314496

CD14 PerCp-Cy5.5 (M4P9) Becton Dickinson Cat# 562692; RRID:AB_2737726

CD56 PE (MY31) Becton Dickinson Cat# 345810; RRID:AB_396511

CD3 PE/Dazzle (UCHT1) Biolegend Cat# 300450; RRID:AB_2563618

CD11c PE/Cy5 (B-ly6) Becton Dickinson Cat# 551077; RRID:AB_394034

Siglec8 PE/Cy7 (7C9) Biolegend Cat# 347112; RRID:AB_2629720

CD203c APC (NP4D6) Biolegend Cat# 324609; RRID:AB_2099774

CD1c AlexaFluor700 (L161) Biolegend Cat# 331530; RRID:AB_2563657

CD19 APC/Fire 750 (HIB19) Biolegend Cat# 302258; RRID:AB_2629691

CD45 89Y (HI30) Fluidigm Cat# 3089003; RRID:AB_2661851

HLA-DR purified (L243) Biolegend Cat# 307602; RRID:AB_314680

CD3 purified (UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

CD196 141Pr (G034E3) Fluidigm Cat# 3141003A; RRID:AB_2687639

CD19 142Nd (HIB-19) Fluidigm Cat# 3142001; RRID:AB_2651155

CD123 143Nd (6H6) Fluidigm Cat# 3143014B; RRID:AB_2811081

CD15 144Nd (W6D3) Fluidigm Cat# 3144019B

CD138 145Nd (DL101) Fluidigm Cat# 3145003B

CD64 146Nd (10.1) Fluidigm Cat# 3146006; RRID:AB_2661790

CD21 purified (Bu32) Biolegend Cat# 354902; RRID:AB_11219188

CD226 purified (REA1040) Miltenyi Biotec Produced at request

IgD purified (IgD26) Biolegend Cat# 348235; RRID:AB_2563775

ICOS 148Nd (C398.4A) Fluidigm Cat# 3148019B; RRID:AB_2756435

CD206 purified (152) Biolegend Cat# 321127; RRID:AB_2563729

CD96 purified (REA195) Miltenyi Biotec Produced at request

KLRG1 purified (REA261) Miltenyi Biotec Produced at request

TCRgd purified (11F2) Miltenyi Biotec Produced at request

FceRI 150Nd (AER-37) Fluidigm Cat# 3150027B

CD155 purified (REA1081) Miltenyi Biotec Produced at request

CD95 purified (DX2) Biolegend Cat# 305631; RRID:AB_2563766

TIGIT 153Eu (MBSA43) Fluidigm Cat# 3153019B; RRID:AB_2756419

CD62L 153Eu (DREG56) Fluidigm Cat# 3153004B; RRID:AB_2810245

CD62L purified (DREG56) Biolegend Cat# 304835; RRID:AB_2563758

CD1c purified (L161) Biolegend Cat# 331502; RRID:AB_1088995

CD27 155Gd (L128) Fluidigm Cat# 3155001B; RRID:AB_2687645

CXCR3 156Gd (G025H7) Fluidigm Cat# 3156004B; RRID:AB_2687646

KLRF1 purified (REA845) Miltenyi Biotec Produced at request

CD10 158Gd (HI10a) Fluidigm Cat# 3158011B

CD33 158Gd (WM53) Fluidigm Cat# 3158001; RRID:AB_2661799
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Continued
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CD14 160Gd (RMO52) Fluidigm Cat# 3160006; RRID:AB_2661801

CD28 purified (L293) BD Bioscience Cat# 348040; RRID:AB_400367

CD69 162Dy (FN50) Fluidigm Cat# 3162001B

CD294 163Dy (BM16) Fluidigm Cat# 3163003B; RRID:AB_2810253

RANKL APC Miltenyi Biotec Cat# 130-098-511; RRID:AB_2656691

Anti-APC 163Dy Fluidigm Cat# 3163001B; RRID:AB_2687636

CXCR5 164Dy (51505) Fluidigm Cat# 3164016B; RRID:AB_2687858

Siglec 8 164Dy (7C9) Fluidigm Cat# 3164017B

CD34 166Er (581) Fluidigm Cat# 3166012B; RRID:AB_2756424

CD38 167Er (HIT2) Fluidigm Cat# 3167001B; RRID:AB_2802110

Ki67 168Er (Ki-67) Fluidigm Cat# 3168007B; RRID:AB_2800467

CD25 169Tm (2A3) Fluidigm Cat# 3169003; RRID:AB_2661806

CD24 169Tm (ML5) Fluidigm Cat# 3169004B; RRID:AB_2688021

Lag3 purified (11C3C65) Biolegend Cat# 369302; RRID:AB_2616876

RANK purified (80704) R&D Systems Cat# MAB683; RRID:AB_2205330

CD161 purified (HP-3G10) Biolegend Cat# 339919; RRID:AB_2562836

CD11b purified (ICRF44) Biolegend Cat# 301337; RRID:AB_2562811

CD45RO purified (4G11) DRFZ Berlin N/A

CD44 purified (BJ18) Biolegend Cat# 338811; RRID:AB_2562835

CD137 173Yb (4B4-1) Fluidigm Cat# 3173015B

PD-1 175Lu (EH12.2H7) Fluidigm Cat# 3175008; RRID:AB_2687629

PD-L1 175Lu (29.E2A3) Fluidigm Cat# 3175017B; RRID:AB_2687638

CD56 176Yb (NCAM16.2) Fluidigm Cat# 3176008; RRID:AB_2661813

CD8A purified (GN11) DRFZ Berlin N/A

IgM purified (MHM-88) Biolegend Cat# 314502; RRID:AB_493003

CD11c purified (Bu15) Biolegend Cat# 337221; RRID:AB_2562834

B2M purified (2M2) Biolegend Cat# 316302; RRID:AB_492835

CD16 209Bi (3G8) Fluidigm Cat# 3209002B; RRID:AB_2756431

A0251 anti-human Hashtag 1 Biolegend Cat# 394601; RRID:AB_2750015

A0252 anti-human Hashtag 2 Biolegend Cat# 394603; RRID:AB_2750016

A0253 anti-human Hashtag 3 Biolegend Cat# 394605; RRID:AB_2750017

A0254 anti-human Hashtag 4 Biolegend Cat# 394607; RRID:AB_2750018

A0255 anti-human Hashtag 5 Biolegend Cat# 394609; RRID:AB_2750019

A0256 anti-human Hashtag 6 Biolegend Cat# 394611; RRID:AB_2750020

A0257 anti-human Hashtag 7 Biolegend Cat# 394613; RRID:AB_2750021

CD235ab Biotin (HIR2) Biolegend Cat# 306618; RRID:AB_2565773

Chemicals, Peptides, and

Recombinant Proteins

BD Horizon Brilliant Stain Buffer Becton Dickinson Cat# 563794

RBC lysis buffer 10X Biolegend Cat# 420301

Pierce 16% Formaldehyde

(w/v), Methanol-free

Thermo Fisher Cat# 28908

RPMI 1640 Medium GIBCO Cat# 11875093

Fetal Bovine Serum PAN Biotec Cat# 3302

Stain Buffer (FBS) Becton Dickinson Cat# 554656

Pancoll human, Density: 1.077 g/ml Pan Biotech Cat# P04-601000

Dulbecco’S Phosphate

Buffered Saline, MO

Sigma-Aldrich Cat# D8537
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FcR Blocking Reagent, human Miltenyi Cat# 130-059-901

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Permeabilization buffer 10X eBioscience Cat# 00-8333-56

Maxpar PBS Fluidigm Cat# 201058

Maxpar Cell Staining buffer Fluidigm Cat# 201068

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Proteomic stabilizer Smart Tube Inc. Cat# PROT1

Nuclease-Free Water Invitrogen Cat# AM9937

KAPA HiFi HotStart Ready Mix Roche Cat# KK2601

Human Tru Stain FcX Biolegend Cat# 422301

TE Buffer, pH8.0, 1mM disodium EDTA Thermo Fisher Cat# 12090015

SPRIselect Beckmann Coulter Cat# B23318

10% Tween 20 BIO-RAD Cat# 1662404

Buffer EB QIAGEN Cat# 19086

Ethanol, Absolute Fisher Bioreagents Cat# BP2818-500

Glycerol, 85% Merck Cat# 1040941000

Bovine Serum Albumin

(IgG-Free, Protease-Free)

Jackson Immuno Research Cat# 001-000-161

LPS, TLRpure Innaxon Cat# IAX-100-010

Tween20 Sigma-Aldrich Cat# P1379-500M

MagniSortTM Negative Selection Beads Thermo Fisher Cat# MSNB-6002-74

Lysercell WDF Sysmex Cat# AL-337-564

FluorocellTM WDF Sysmex Cat# CV-377-552

Critical Commercial Assays

LIVE/DEAD Fixable Yellow

Dead Cell Stain Kit

Thermo Fisher Cat# L34967

LEGENDplexTM Human

Inflammation Panel 1 (Mix&Match)

Biolegend Cat# 740809

Human Single-Cell Multiplexing Kit Becton Dickinson Cat# 633781

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody Cartridge Kit Becton Dickinson Cat# 633733

BD Rhapsody cDNA Kit Becton Dickinson Cat# 633773

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32854

Chromium Next GEM Single Cell 30

GEM, Library & Gel Bead Kit v3.1

10x genomics Cat# 1000121

Chromium Next GEM Chip G Single Cell Kit 10x genomics Cat# 1000120

Single Index Kit T Set A 10x genomics Cat# 1000213

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S1 Reagent Kit (100 cycle) Illumina Cat# 200012865

NovaSeq 6000 S2 Reagent Kit (100 cycle) Illumina Cat# 20012862

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NextSeq 500/550 High

Output Kit v2.5 (150 Cycles)

Illumina Cat# 20024907

Pan Monocyte Isolation Kit, human Miltenyi Cat# 130-096-537

CE/IVD Phagoburst BD Biosciences Cat# 341058

CD/IVD PHAGOTEST BD Biosciences Cat# 341060
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Deposited Data

scRNA-seq raw data This paper EGAS00001004571

Processed scRNA-seq

count data and code

This paper http://fastgenomics.org

Supplemental Tables S1–S4 This paper https://data.mendeley.com/datasets/

hwxhw2sxys/1

Oligonucleotides

SI-PCR primer IDT AATGATACGGCGACCACCGAGATCTA

CACTCTTTCCCTACACGACGC*T*C

HTO additive primer IDT GTGACTGGAGTTCAGACGTGTGC*T*C

D701_S IDT CAAGCAGAAGACGGCATACGAGA

TCGAGTAATGTGACTGGAGTTCAGACGTGT*G*C

D702_S IDT CAAGCAGAAGACGGCATACGAGA

TTCTCCGGAGTGACTGGAGTTCAGACGTGT*G*C

D703_S IDT CAAGCAGAAGACGGCATACGAGATA

ATGAGCGGTGACTGGAGTTCAGACGTGT*G*C

D705_S IDT CAAGCAGAAGACGGCATACGAGATTTC

TGAATGTGACTGGAGTTCAGACGTGT*G*C

Software and Algorithms

CellRanger 10x genomics v3.1.0

Bcl2fastq2 Illumina v2.20

STAR Dobin et al., 2013 v2.6.1b

Cutadapt Martin, 2011 v1.16

Dropseq-tools https://github.com/

broadinstitute/Drop-seq/

v2.0.0

R https://www.cran.r-project.org v3.6.2

Seurat (R package) Butler et al., 2018;

Hafemeister and Satija, 2019;

Stuart et al., 2019

v3.1.4, v3.1.2 (CRAN)

Harmony (R package) Korsunsky et al., 2019

(https://github.com/

immunogenomics/harmony)

v1.0

Destiny (R package) Angerer et al., 2016 v 3.0.1

ClusterProfiler (R package) Yu et al., 2012 v3.10.1 (CRAN)

SingleR (R package) Aran et al., 2019 v1.0.5 (Bioconductor)

DirichletReg (R package) Maier, 2014 v0.6.3.1 (CRAN)

AUCell (R package) Aibar et al., 2017 v1.6.1 (CRAN)

Cytobank Kotecha et al., 2010

https://www.cytobank.org

https://doi.org/10.1002/

0471142956.cy1017s53

SPADE (Cytobank) Qiu et al., 2011 Cytobank is running a version of

SPADE derived from v1.10.2

flowCore (R package) https://www.bioconductor.org/

packages/release/bioc/html/flowCore.html

v1.48.1 (Bioconductor),

10.18129/B9.bioc.flowCore

CytoML (R package) https://github.com/RGLab/CytoML v1.8.1 (Bioconductor),

10.18129/B9.bioc.CytoML

CytofBatchAdjust (R package) https://github.com/

CUHIMSR/CytofBatchAdjust

https://doi.org/10.3389/fimmu.2019.02367

uwot (R package) https://cran.r-project.org/

web/packages/uwot/index.html

v0.1.8 (CRAN)

ComplexHeatmap (R package) Gu et al., 2016 v1.20.0 (Bioconductor)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joachim

L. Schultze (j.schultze@uni-bonn.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
ScRNA-seq data generated during this study are deposited at the European Genome-phenome Archive (EGA) under access number

EGAS00001004571, which is hosted by the EBI and the CRG.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples from patients with COVID-19 were collected within two cohort studies (Kurth et al., 2020) designed to allow deep molecular

and immunological transcriptomic and proteomic profiling of COVID-19 in blood. Patients for which sufficient material was available

for scRNA-seq, CyTOF or flow cytometry analysis, were included in this study. This study was designed to describe immunological

deviations in COVID-19 patients without intention of the development of new treatments or new diagnostics, and therefore sample

size estimation was not included in the original study design.

Cohort 1 / Berlin cohort
This study includes a subset of patients enrolled between March 2 and July 02 2020 in the Pa-COVID-19 study, a prospective obser-

vational cohort study assessing pathophysiology and clinical characteristics of patients with COVID-19 at Charité Universitätsmedizin

Berlin (Kurth et al., 2020). The study is approvedby the Institutional Reviewboard ofCharité (EA2/066/20).Written informedconsentwas

provided by all patients or legal representatives for participation in the study. The patient population included in all analyses of cohort 1

consists of 10 control donors (samples collected in 2019 before SARS-CoV2 outbreak), 8 patients presenting with flu-like illness but

tested SARS-CoV-2-negative, 25 mild and 29 severe COVID-19 patients (Figures 1A and 1B; Table S1). Information on age, sex, medi-

cation, and co-morbidities is listed in Table S1. All COVID-19 patients were tested positive for SARS-CoV-2 RNA in nasopharyngeal

swabs and allocated to mild (WHO 2-4) or severe (5-7) disease according to the WHO clinical ordinal scale. We also included

publicly available single-cell transcriptome data derived from 22 control samples into the analysis; 3 samples were derived from 10x

Genomics, San Francisco, CA 94111, USA (5k_pbmc_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.

0.2/5k_pbmc_v3, pbmc_10k_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3,

pbmc_1k_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3), 19 samples derived from

Reyes et al. (2020).

Cohort 2 / Bonn cohort
This study was approved by the Institutional Review board of the University Hospital Bonn (073/19 and 134/20). After providing writ-

ten informed consent, 19 control donors and 22 COVID-19 patients (Figures 1A and 1B; Table S1) were included in the study. In pa-

tients who were not able to consent at the time of study enrollment, consent was obtained after recovery. Information on age, sex,

medication, and co-morbidities are listed in Table S1. COVID-19 patients who tested positive for SARS-CoV-2 RNA in nasopharyn-

geal swabs were recruited at the Medical Clinic I of the University Hospital Bonn between March 30 and June 17, 2020 and allocated

tomild (WHO2-4) or severe (5-7) disease according to theWHOclinical ordinal scale. Controls in cohort 2 were collected from healthy

Continued
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lme4 (R package) Nowicka et al., 2017 v1.1-21 (CRAN)

multcomp (R package) Hothorn et al., 2008 v1.4-13 (CRAN)

lsmeans (R package) Lenth, 2016 v2.30-0 (CRAN)

Prism (software) https://www.graphpad.com v8

FlowJo https://www.flowjo.com v10.6.1

Cytoscape https://www.cytoscape.org v3.7.1 (https://doi.org/10.1101/gr.1239303)

iRegulon Janky et al., 2014 v1.3
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people or from otherwise hospitalized patients with a wide range of diseases and comorbidities including chronic inflammatory im-

mune responses. These individuals were either tested negative for SARS-CoV-2, serologically negative or had no indication for acute

COVID-19 disease based on clinical or laboratory parameters.

METHOD DETAILS

Isolation of blood cells for scRNA-seq
Cohort 1 / Berlin cohort

PBMC were isolated from heparinized whole blood by density centrifugation over Pancoll (density: 1.077 g/ml; PAN-Biotech). If the

pellet was still slightly red, remaining CD235ab+ cells (Erythrocytes) were depleted by Negative Selection (MagniSort Thermo Fisher).

Subsequently the PBMC were prepared for 30scRNA-seq (10xGenomics) or cryopreserved and analyzed later.

Cohort 2 / Bonn cohort
In the Bonn cohort, scRNA-seq was performed on fresh whole blood, fresh PBMC and frozen PBMC. Briefly, PBMC were isolated

from EDTA-treated or heparinized peripheral blood by density centrifugation over Pancoll or Ficoll-Paque density centrifugation (den-

sity: 1.077 g/ml). Cells were then washedwith DPBS, directly prepared for scRNA-seq (BDRhapsody) or cryopreserved in RPMI1640

with 40% FBS and 10% DMSO. Whole blood was prepared by treatment of 1ml peripheral blood with 10ml of RBC lysis buffer (Bio-

legend). After one wash in DPBS cells were directly processed for scRNA-seq (BD Rhapsody) or multi-color flow cytometry (MCFC).

Frozen PBMCwere recovered by rapidly thawing frozen cell suspensions in a 37�Cwater bath followed by immediate dilution in pre-

warmed RPMI-1640+10% FBS (GIBCO) and centrifugation at 300 g for 5min. After centrifugation, the cells were resuspended in

RPMI-1640+10% FBS and processed for scRNA-seq. Antibody cocktails were cryopreserved as described before (Schulz and

Mei, 2019).

Antibodies used for mass cytometry
All anti-human antibodies pre-conjugated to metal isotopes were obtained from Fluidigm Corporation (San Francisco, US). All re-

maining antibodies were obtained from the indicated companies as purified antibodies and in-house conjugation was done using

the MaxPar X8 labeling kit (Fluidigm). Table S2 shows a detailed list of all antibodies used for panel 1 and panel 2.

Sample processing, antigen staining and data analysis of mass cytometry-based immune cell profiling
500ml of whole blood (heparin) was fixed in 700ml of proteomic stabilizer (Smart Tube Inc., San Carlos, US) as described in the user

manual and stored at �80�C until further processing. Whole blood samples were thawed in Thaw/Lyse buffer (Smart Tube Inc.). For

barcoding antibodies recognizing human beta-2 microglobulin (B2M) were conjugated in house to 104Pd, 106Pd, 108Pd, 110Pd, 198Pt

(Mei et al., 2015, 2016; Schulz and Mei, 2019). Up to 10 individual samples were stained using a staining buffer from Fluidigm with a

combination of two different B2M antibodies for 30min at 4�C. Cells were washed and pooled for surface and intracellular staining.

For surface staining the barcoded and pooled samples were equally divided into two samples. Cells were resuspended in antibody

staining cocktails for panel 1 or panel 2 respectively (Table S2) and stained for 30min at 4�C. For secondary antibody staining of panel

2, cells were washed and stained with anti-APC 163Dy for 30min at 4�C. After surface staining cells were washed with PBS and fixed

overnight in PFA solution diluted in PBS to 2%.

For intracellular staining cells were washed twice with a permeabilization buffer (eBioscience, San Diego, US) and stained with the

respective antibodies diluted in a permeabilization buffer for 30min at room temperature. After washing, cells were stained with

iridium intercalator (Fluidigm) diluted in 2% PFA for 20min at room temperature. Cells were washed once with PBS and then twice

with ddH2O and kept at 4�C until mass cytometry measurement.

Aminimumof 100,000 cells per sample and panel were acquired on aCyTOF2/Heliosmass cytometer (Fluidigm). For normalization

of the fcs files 1:10 EQ Four Element Calibration Beads (Fluidigm) were added. Cells were analyzed using a CyTOF2 upgraded to

Helios specifications, with software version 6.7.1014, using a narrow bore injector. The instrument was tuned according to the man-

ufacturer’s instructions with tuning solution (Fluidigm) and measurement of EQ four element calibration beads (Fluidigm) containing

140/142Ce, 151/153Eu, 165Ho and 175/176Lu served as a quality control for sensitivity and recovery. Directly prior to analysis, cells

were resuspended in ddH2O, filtered through a 20-mmcell strainer (Celltrics, Sysmex), counted and adjusted to 5-8 x105 cells/ml. EQ

four element calibration beadswere added at a final concentration of 1:10 v/v of the sample volume to be able to normalize the data to

compensate for signal drift and day-to-day changes in instrument sensitivity. Samples were acquired with a flow rate of 300-400

events/s. The lower convolution threshold was set to 400, with noise reduction mode turned on and cell definition parameters set

at event duration of 10-150 pushes (push = 13ms). The resulting flow cytometry standard (FCS) files were normalized and randomized

using the CyTOF software’s internal FCS-Processing module on the non-randomized (‘original’) data. The default settings in the soft-

ware were used with time interval normalization (100 s/minimum of 50 beads) and passport version 2. Intervals with less than 50

beads per 100 s were excluded from the resulting FCS file.
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Blood processing for multi-color flow cytometry
1ml of fresh blood from control or COVID-19 donors was treated with 10ml of RBC lysis buffer (Biolegend). After RBC lysis, cells were

washed with DPBS and 1-2million cells were used for flow cytometry analysis. Cells were then stained for surfacemarkers (Table S3)

in DPBS with BD Horizon Brilliant Stain Buffer (Becton Dickinson) for 30min at 4�C. To distinguish live from dead cells, the cells were

incubated with LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (1:1000 – Thermo Scientific). Following staining and washing, the cell

suspension was fixed with 4% PFA for 5min at room temperature to prevent any possible risk of contamination during acquisition of

the samples. Flow cytometry analysis was performed on a BDSymphony instrument (Becton Dickinson) configured with 5 lasers (UV,

violet, blue, yellow-green, red).

Ex vivo functional analysis of neutrophils
Determination of neutrophil oxidative burst and phagocytosis was performed by flow cytometry using the CE/IVD PHAGOBURST

and PHAGOTEST assay (BD Biosciences, Heidelberg, Germany) according to the manufacturer’s instructions.

Briefly, heparinized whole blood was incubated with PMA, unlabeled opsonized E. coli bacteria or washing solution (negative con-

trol) at 37�C for 10min. Dihydrorhodamine (DHR 123) was then added for 10min, erythrocytes were lysed and DNA staining solution

was added. The freely cell permeable nonfluorescent Dihydrorhodamine 123 becomes fluorescent when oxidized by reactive oxygen

species. Stained samples were analyzed on a Navios flow cytometer (Beckman Coulter, Krefeld, Germany) within less than 30min.

The respiratory burst intensity in neutrophils was determined by analysis of increase in the mean fluorescence intensity (MFI) in the

FL1 Channel in the stimulated samples compared to the unstimulated control.

For analysis of neutrophil phagocytic activity, heparinized whole blood was incubated with FITC-labeled opsonized E. coli bacteria

for 10min at 37�C or 0�C (negative control). After incubation, the reaction was stopped, erythrocytes were lysed and the DNA staining

solution was added. Stained samples were analyzed on a Navios flow cytometer (Beckman Coulter, Krefeld, Germany) within less

than 30min. The phagocytic activity of neutrophils was determined by the increase in MFI in the FL1 Channel in the stimulated sample

compared to the unstimulated control. Data were analyzed using prism version 8. Mixed-effect-analysis and Sidak’s multiple com-

parison test was applied to report statistical differences of E.coli- and PMA-induced ROS production as well as phagocytosis be-

tween mild and severe COVID-19 patients.

Ex vivo functional analysis of monocytes
Monocytes were isolated from frozen PBMCs by negative selection using the Pan Monocyte Isolation Kit (Miltenyi, Bergisch Glad-

bach, Germany). The purity of isolated cells was assessed by BD Canto 2 flow cytometer, and preparations with > 85% purity were

used for experiments. Monocytes were resuspended in complete RPMI1640 medium (GIBCO) supplemented with 10% heat-inacti-

vated fetal bovine serum (Pan Biotech), 10 U/ml penicillin and 10 mg/ml streptomycin (Sigma-Aldrich, USA), and stimulated for 8hwith

LPS (1 ng/ml; TLRpure; Innaxon, UK). After stimulation, cell-free supernatants were collected and tested for IL-1b, IFNg, and TNFa,

respectively, using the cytokine bead assay Legend-Plex Mix&Match inflammation panel 1 kit (Biolegend, USA). Cytokine-bound

beads were measured with a BD Canto 2 flow cytometer and analyzed using Legend-Plex Software 8.0 (Biolegend, USA).

Hematological analyses of the granulocyte compartment
Blood samples were collected into K3EDTA evacuated plastic tubes (Greiner Bio-One GmbH, Frickenhausen, Germany) and were

subsequently analyzed using Sysmex XN-10 hematology analyzers within a XN-2000 or XN-9100 configuration (SysmexCorporation,

Kobe, Japan) as previously described (Stiel et al., 2016). Immature granulocytes (IG) were quantified by automated flow cytometry

using the SysmexWBC differential channel in XN-10 hematology analyzers within a XN-2000 or XN-9100 configuration (Sysmex Cor-

poration, Kobe, Japan). Whole blood was treated with LysercellWDF for cell permeabilization and stained with the nucleic acid poly-

methine fluorescent dye FluorocellWDF according to Sysmex-proprietary protocols without modifications. Subsequent differentia-

tion of white blood cells into lymphocytes, monocytes, neutrophils, eosinophils, and immature granulocytes was achieved by flow

cytometry using a 663 nm laser. The cell populations’ distinct forward-scattered light (FSC =NE-WZ, i.e., cell volume), side-scattered

light (SSC = NE-WX, i.e., granularity), and side-fluorescent light (SFL = NE-WY, i.e., nucleic acid content) properties allowed deter-

mining the width of neutrophil cytometric dispersions applying Sysmex-proprietary algorithms. Data were analyzed using prism

version 8. Mann Whitney test was used to report differences in IG count, whereas mixed-effect-analysis and Sidak’s multiple com-

parison test was applied to report statistical differences of NE-WX, NE-WY and NE-WZ betweenmild and severe COVID-19 patients.

10x Genomics Chromium single-cell RNA-seq
PBMC were isolated and prepared as described above. Afterward, patient samples were hashtagged with TotalSeq-A antibodies

(Biolegend) according to the manufacturer’s protocol for TotalSeqTM-A antibodies and cell hashing with 10x Single Cell 30 Reagent
Kit v3.1. 50mL cell suspension with 1x106 cells were resuspended in staining buffer (2% BSA, Jackson Immuno Research; 0.01%

Tween-20, Sigma-Aldrich; 1x DPBS, GIBCO) and 5 mL Human TruStain FcXTM FcBlocking (Biolegend) reagent were added. The

blocking was performed for 10min at 4�C. In the next step 1mg unique TotalSeq-A antibody was added to each sample and incubated

for 30min at 4�C. After the incubation time 1.5mL staining buffer were added and centrifuged for 5min at 350g and 4�C.Washing was

repeated for a total of 3 washes. Subsequently, the cells were resuspended in an appropriate volume of 1x DPBS (GIBCO), passed

through a 40mmmesh (FlowmiTM Cell Strainer, Merck) and counted, using a Neubauer Hemocytometer (Marienfeld). Cell counts were

ll

Cell 182, 1419–1440.e1–e12, September 17, 2020 e7

Article



adjusted and hashtagged cells were pooled equally. The cell suspension was super-loaded, with 50,000 cells, in the ChromiumTM

Controller for partitioning single cells into nanoliter-scale Gel Bead-In-Emulsions (GEMs). Single Cell 30 reagent kit v3.1 was used

for reverse transcription, cDNA amplification and library construction of the gene expression libraries (10x Genomics) following

the detailed protocol provided by 10x Genomics. Hashtag libraries were prepared according to the cell hashing protocol for 10x

Single Cell 30 Reagent Kit v3.1 provided by Biolegend, including primer sequences and reagent specifications. Biometra Trio Thermal

Cycler was used for amplification and incubation steps (Analytik Jena). Libraries were quantified by QubitTM 2.0 Fluorometer

(ThermoFisher) and quality was checked using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent). Sequencing was performed

in paired-end mode with a S1 and S2 flow cell (2 3 50 cycles) using NovaSeq 6000 sequencer (Illumina).

BD Rhapsody single-cell RNA-seq
Whole transcriptome analyses, using the BDRhapsody Single-Cell Analysis System (BD, Biosciences) were performed onPBMCand

whole blood samples prepared as described above. Cells from each sample were labeled with sample tags (BD Human Single-Cell

Multiplexing Kit) following the manufacturer’s protocol. Briefly, a total number of 1x106 cells were resuspended in 180ml of Stain

Buffer (FBS) (BD PharMingen). The sample tags were added to the respective samples and incubated for 20min at room temperature.

After incubation, 200ml stain buffer was added to each sample and centrifuged for 5min at 300 g and 4�C. Samples were washed one

more time. Subsequently cells were resuspended in 300ml of cold BD Sample Buffer and counted using Improved Neubauer Hemo-

cytometer (INCYTO). Labeled samples were pooled equally in 650ml cold BD Sample Buffer. For each pooled sample two BD Rhap-

sody cartridges were super-loaded with approximately 60,000 cells each. Single cells were isolated using Single-Cell Capture and

cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according to themanufacturer’s recommendations (BD

Biosciences). cDNA libraries were prepared using the BDRhapsodyWhole Transcriptome Analysis Amplification Kit following the BD

Rhapsody System mRNAWhole Transcriptome Analysis (WTA) and Sample Tag Library Preparation Protocol (BD Biosciences). The

final libraries were quantified using a Qubit Fluorometer with the Qubit dsDNA HS Kit (ThermoFisher) and the size-distribution was

measured using the Agilent high sensitivity D5000 assay on a TapeStation 4200 system (Agilent technologies). Sequencing was per-

formed in paired-end mode (2*75 cycles) on a NovaSeq 6000 and NextSeq 500 System (Illumina) with NovaSeq 6000 S2 Reagent Kit

(200 cycles) and NextSeq 500/550 High Output Kit v2.5 (150 Cycles) chemistry, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing of 10x Genomics Chromium scRNA-seq data
CellRanger v3.1.0 (10x Genomics) was used to process scRNA-seq. To generate a digital gene expression (DGE) matrix for each

sample, we mapped their reads to a combined reference of GRCh38 genome and SARS-CoV-2 genome and recorded the number

of UMIs for each gene in each cell.

Data pre-processing of BD Rhapsody scRNA-seq data
After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-end scRNA-seq reads were filtered

for valid cell barcodes using the barcode whitelist provided by BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adaptor se-

quenceswhere needed and to filter reads for a PHRED score of 20 or above (Martin, 2011). Then, STAR 2.6.1bwas used for alignment

against the Gencode v27 reference genome (Dobin et al., 2013). Dropseq-tools 2.0.0 were used to quantify gene expression and

collapse to UMI count data (https://github.com/broadinstitute/Drop-seq/). For hashtag-oligo based demultiplexing of single-cell

transcriptomes and subsequent assignment of cell barcodes to their sample of origin the respective multiplexing tag sequences

were added to the reference genome and quantified as well.

ScRNA-seq data analysis of 10x Chromium data of cohort 1
ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was performed using the R/Seurat

package 3.1.4 (Butler et al., 2018; Hafemeister and Satija, 2019). Demultiplexing of cells was performed using the HTODemux func-

tion implemented in Seurat.

Data quality control
We excluded cells based on the following quality criteria: more than 25%mitochondrial reads, more than 25%HBA/HBB gene reads,

less than 250 expressed genes or more than 5,000 expressed genes and less than 500 detected transcripts. We further excluded

genes that were expressed in less than five cells. In addition, mitochondrial genes have been excluded from further analysis.

Normalization
LogNormalization (Seurat function) was applied before downstream analysis. The original gene counts for each cell were normalized

by total UMI counts, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1).
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Data integration
After normalization, the count data was scaled regressing for total UMI counts and principal component analysis (PCA) was per-

formed based on the 2,000 most variable features identified using the vst method implemented in Seurat. Subsequently, the

scRNA-seq data from cohort 1 was integrated with publicly available 10x scRNaseq data of healthy controls using the ‘harmony’

algorithm (Korsunsky et al., 2019) based on the first 20 principal components to correct for technical differences in the gene expres-

sion counts of the different data sources (Control samples from Reyes et al. (2020), 10x v3.1 PBMC benchmarking data from healthy

controls and 10x v3.1 scRNA-seq data from cohort 1). We downloaded the count matrices for the publicly available scRNA-seq data

and filtered the cells using the above-mentioned quality criteria prior to data integration. For two-dimensional data visualization we

performed UMAP based on the first 20 dimensions of the ‘harmony’ data reduction. The cells were clustered using the Louvain al-

gorithm based on the first 20 ‘harmony’’ dimensions with a resolution of 0.4.

Differential expression tests and cluster marker genes
Differential expression (DE) tests were performed using FindMarkers/FindAllMarkers functions in Seurat with Wilcoxon Rank Sum

test. Genes with > 0.25 log-fold changes, at least 25% expressed in tested groups, and Bonferroni-corrected p values < 0.05

were regarded as significantly differentially expressed genes (DEGs). Cluster marker genes were identified by applying the DE tests

for upregulated genes between cells in one cluster to all other clusters in the dataset. Top ranked genes (by log-fold changes) from

each cluster of interest were extracted for further illustration. The exact number and definition of samples used in the analysis are

specified in the legend of Figure 2A and summarized in Table S1.

Cluster annotation
Clusters were annotated based on a double-checking strategy: 1) by comparing cluster marker genes with public sources, and 2) by

directly visualizing the expression pattern of CyTOF marker genes.

GO enrichment analysis
Significant DEGs between each monocyte cluster and the rest of monocyte subpopulations were identified by FindMarkers function

from the Seurat package using Wilcoxon Rank Sum test statistics for genes expressed in at least 25% of all monocyte clusters. P

values were corrected for multiple testing using Bonferroni correction and genes with corrected p values lower or equal 0.05 have

been taken as significant DEGs for GO enrichment test by R package/ClusterProfiler v.3.10.1 (Yu et al., 2012).

Correlation analysis of marker genes for monocyte and neutrophils between cohort 1 and 2
To systematically compare the similarity of marker gene expression in the identified monocyte/neutrophils subpopulations between

the two cohorts, the Spearman correlation coefficients were calculated based on the union of the top 50marker genes of each cluster

sorted by fold change in the two cohorts, based on their average expression of all cells in the specific subpopulation. The pairwise

comparisons were performed, and the correlation coefficients were displayed using a heatmap.

Subset analysis of the neutrophils within the PBMC dataset of cohort 1
The neutrophil space was investigated by subsetting the PBMCdataset to those clusters identified as neutrophils and immature neu-

trophils (cluster 5 and 6). Within those subsets, we selected top 2,000 variable genes and repeated the clustering using the SNN-

graph based Louvain algorithm mentioned above with a resolution of 0.6. The dimensionality of the data was then reduced to 10

PCs, which served as input for the UMAP calculation. To categorize the observed neutrophil clusters into the respective cell cycle

states, we applied the CellCycleScoring function of Seurat and visualized the results as pie charts.

A gene signature enrichment analysis using the ‘AUCell’ method (Aibar et al., 2017) was applied to link observed neutrophil clusters

to existing studies and neutrophils of cohort 2. We set the threshold for the calculation of the area under the curve (AUC) to marker

genes from collected publications and top 30 of the rankedmaker genes from each of neutrophil clusters from cohort 2. The resulting

AUC values were normalized the maximum possible AUC to 1 and subsequently visualized in violin plots or UMAP plots.

ScRNA-seq data analysis of Rhapsody data of cohort 2
General steps for Rhapsody data downstream analysis

ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was performed using the R/Seurat

package 3.1.2 (Butler et al., 2018). Demultiplexing of cells was performed using theHTODemux function implemented in Seurat. After

identification of singlets, cells withmore than 25%mitochondrial reads, less than 250 expressed genes ormore than 5,000 expressed

genes and less than 500 detected transcripts were excluded from the analysis and only those genes present in more than 5 cells were

considered for downstream analysis. The following normalization, scaling and dimensionality reduction steps were performed inde-

pendently for each of the data subsets used for the different analyses as indicated respectively. In general, gene expression values

were normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1). Subse-

quently, the data was scaled, centered and regressed against the number of detected transcripts per cell to correct for heterogeneity

associated with differences in sequencing depth. For dimensionality reduction, PCA was performed on the top 2,000 variable genes

identified using the vst method implemented in Seurat. Subsequently, UMAP was used for two-dimensional representation of the
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data structure. Cell type annotation was based on the respective clustering results combined with data-driven cell type classification

algorithms based on reference transcriptome data (Aran et al., 2019) and expression of known marker genes.

scRNA-seq analysis of the complete BDRhapsody dataset of cohort 2 including data from frozen and fresh PBMCand
whole blood
ScRNA-seq count data of 229,731 cells derived from fresh and frozen PBMC samples purified by density gradient centrifugation and

whole blood after erythrocyte lysis of cohort 2 (Bonn, BD Rhapsody) were combined, normalized and scaled as described above (see

Figure S6A). After variable gene selection and PCA, UMAP was performed based on the first 20 principal components (PCs). No

batch correction or data integration strategies were applied to the data. Visualization of the cells (Figure S6A) showed overlay of cells

of the same type (e.g., T cells clustered within the same cluster, irrespective of cell isolation procedure). In other words, cell type dis-

tribution was unaffected by the technical differences in sample handling. Data quality and information content was visualized as violin

plots showing the number of detected genes, transcripts (UMIs) and genic reads per sample handling strategy split by PBMC and

granulocyte fraction.

scRNA-seq analysis of fresh and frozen PBMC samples
ScRNA-seq count data of 139,848 cells derived from fresh and frozen PBMC samples of cohort 2 (Bonn, BD Rhapsody) purified by

density gradient centrifugation were normalized and scaled as described above. After variable gene selection and PCA, UMAP was

performed and the cells were clustered using the Louvain algorithm based on the first 20 PCs and a resolution of 0.4. Cluster identities

were determined by reference-based cell classification and inference of cluster-specific marker genes using the Wilcoxon rank sum

test using the following cutoffs: genes have to be expressed in more than 20% of the cells of the respective cluster, exceed a log-

arithmic fold change cutoff to at least 0.2, and exhibited a difference of > 10% in the detection between two clusters. The exact num-

ber and definition of samples used in the analysis are specified in the legend of Figure 2D and summarized in Table S1.

Quantification of the percentages of cell clusters in the PBMC scRNA-seq data of both cohorts separated by
disease group
To compare shifts in the monocyte and neutrophil populations in the PBMC compartment of COVID-19 patients, the percentages of

the cellular subsets - as identified by clustering and cluster annotation explained above for the two independent scRNA-seq datasets

(cohort 1 and cohort 2) - of the total number of PBMC in each dataset were quantified per sample and visualized together in boxplots.

To determine the statistical significance of differences in cell proportions between the different conditions, a Dirichlet regression

model was used, due to the fact that the proportions are not independent of one another. The R/RDirichletReg (Maier, 2014) package

was used. The p values were corrected for multiple testing using the Benjamini-Hochberg procedure.

Subset analysis of the monocytes within the PBMC dataset of cohort 2
The monocyte space was investigated by subsetting the PBMC dataset to those clusters identified as monocytes (cluster 0-4),

removing cells with strong multi-lineage marker expressions, and repeating the variable gene selection (top 2,000 variable genes),

regression for the number of UMIs and scaling as described above. The dimensionality of the data was then reduced to 8 PCs, which

served as input for the UMAP calculation. The SNN-graph based Louvain clustering of the monocytes was performed using a res-

olution of 0.2. Marker genes per cluster were calculated using the Wilcoxon rank sum test using the following cutoffs: genes have to

be expressed in > 20%of the cells, exceed a logarithmic fold change cutoff to at least 0.25, and exhibited a difference of > 10% in the

detection between two clusters. The exact number and definition of samples used in the analysis are specified in the legend of Fig-

ure 4A and summarized in Table S1.

Time kinetics analysis of identified monocyte clusters
For each patient and time point of sample collection, the proportional occupancy of the monocyte clusters was calculated, and the

relative proportions were subsequently visualized as a function of time.

Analysis of scRNA-seq data from fresh PBMC and whole blood samples of cohort 2
ScRNA-seq count data derived from fresh PBMC samples purified by density gradient centrifugation and whole blood after eryth-

rocyte lysis of cohort 2 (BD Rhapsody) were normalized, scaled, and regressed for the number of UMI per cell as described above.

After PCA based on the top 2,000 variable genes, UMAP was performed using the first 30 PCs. Cell clusters were determined using

Louvain clustering implemented in Seurat based on the first 30 principle components and a resolution of 0.8. Cluster identities were

assigned as detailed above using reference-based classification and marker gene expression. Subsequently, the dataset was sub-

setted for whole blood samples after erythrocyte lysis and clusters identified as neutrophils and immature neutrophils, and re-scaled

and regressed. After PCA on the top 2,000 variable genes, the neutrophil subset data was further processed using the data integra-

tion approach implemented in Seurat (Stuart et al., 2019) based on the first 30 PCs removing potential technical biases of separate

experimental runs. UMAP and clustering were performed as described above on the top 12 PCs using a resolution of 0.3. Differen-

tially expressed genes between clusters were defined using aWilcoxon rank sum test for differential gene expression implemented in
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Seurat. Genes had to be expressed in > 10% of the cells of a cluster, exceed a logarithmic threshold > 0.1. The exact number and

definition of samples used in the analysis are specified in the legend of Figure 7A and summarized in Table S1.

Quantification of percentages of cell subsets in whole blood scRNA-seq data of cohort 2
After cell type classification of the combined scRNA-seq dataset of fresh PBMC and whole blood samples of cohort 2 described

above, 89,883 cells derived from whole blood samples after erythrocyte lysis were subsetted. Percentages of cell subsets in those

whole blood samples of the total number of cells were quantified per sample and visualized in boxplots separated by disease stage

and group.

Confusion matrix
For each cluster of neutrophils, the relative proportion across disease severity and time point was visualized as a fraction of samples

from the respective condition contributing to the cluster.

GO enrichment
Gene set enrichment was performed on gene sets from the Kyoto Encyclopedia of Genes andGenomes (KEGG) database (Kanehisa,

2019), Hallmark gene sets (Liberzon et al., 2015) and Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 2019) using the R

package/ClusterProfiler v.3.10.1 (Yu et al., 2012).

Cell cycle state analysis of scRNA-seq data
To categorize the cells within the neutrophil clusters into the respective cell cycle states, we applied theCellCycleScoring function of

Seurat and visualized the results as pie charts.

Trajectory analysis
Trajectory analysis was performed using the destiny algorithm v3.0.1 (Angerer et al., 2016). In brief, the neutrophil space was sub-

setted to only severe patients (early and late) and only themost prominent clusters of the latter (clusters 1,2,6,8). The normalized data

were scaled and regressed for UMIs and a diffusion map was calculated based on the top 2,000 variable genes with a sum of at least

10 counts over all cells. Based on the diffusion map, a diffusion pseudo time was calculated to infer a transition probability between

the different cell states of the neutrophils. Subsequently, the density of the clusters along the pseudotime and marker gene expres-

sion for each cluster were visualized.

Enrichment of gene sets was performed using the ‘AUCell’ method (Aibar et al., 2017) implemented in the package (version 1.4.1) in

R. We set the threshold for the calculation of the AUC to the top 3% of the ranked genes and normalized the maximum possible AUC

to 1. The resulting AUC values were subsequently visualized in violin plots or UMAP plots.

Transcription factor prediction analysis
The Cytoscape (version v3.7.1, https://doi.org/10.1101/gr.1239303) plug-in iRegulon (Janky et al., 2014) (version 1.3) was used to

predict the transcription factors potentially regulating cluster-specifically expressed gene sets in the neutrophil andmonocyte subset

analysis in cohort 2. The genomic regions for TF-motif search were limited to 10kb around the respective transcriptional start sites

and filtered for predicted TFs with a normalized enrichment score > 4.0. Next, we filtered for TFs, which exceeded a cumulative

normalized expression cutoff of 50 in the respective cluster. Subsequently, we selected transcription factors of known relevance

in the context of neutrophil and monocyte biology and constructed a network linking target genes among the cluster-specifically ex-

pressed marker genes and their predicted and expressed regulators for visualization in Cytoscape.

Mass cytometry data analysis
Cytobank.org was used for de-barcoding of individual samples andmanually gating of cell events to remove doublets, normalization

beads and dead cells (Kotecha et al., 2010). Per channel intensity ranges were aligned between batches of measurements using a

reference sample acquired across all batches and the BatchAdjust function to compute scaling factors at the 95th event percentiles

(Schuyler et al., 2019). For semi-automated gating of populations of interest, high-resolution SPADE clustering was conducted on all

indicated asinh-transformed markers (Table S2) with 400 target nodes (Qiu et al., 2011). Individual SPADE nodes were then aggre-

gated and annotated to cell subsets (bubbles) according to the expression of lineage-specific differentiation markers. Clustering re-

sults and FCS files were subsequently loaded into the R CytoML/flowCore environment (10.18129/B9.bioc.CytoML, 10.18129/

B9.bioc.flowCore) for further downstream analyses. To generate UMAP representations all events of a given population of interest

were down-sampled to 70,000 cells and then embedded using the tumap function (R uwot package, https://cran.r-project.org/web/

packages/uwot/index.html) parameterized by local neighborhood 50, learning rate 0.5, and using the indicatedmarkers (Table S2) as

input dimensions. For statistical analysis of cell population abundances, we fitted a generalized linear mixed-effects model (GLMM)

for each population using the lme4 package (Nowicka et al., 2017). P values resulting from differential abundance testing (via R mult-

comp and lsmeans packages) were adjusted using the Benjamini-Hochberg procedure and an FDR-cutoff of 5% across all clusters/

subsets and between-group comparisons (Hothorn et al., 2008; Lenth, 2016). Additionally, indicated surface marker positive popu-

lations were exported from Cytobank and analyzed using prism 8. Kruskal-Wallis and Dunn’s multiple comparison test was used to

ll

Cell 182, 1419–1440.e1–e12, September 17, 2020 e11

Article

https://doi.org/10.1101/gr.1239303
https://cran.r-project.org/web/packages/uwot/index.html
https://cran.r-project.org/web/packages/uwot/index.html


compare differences in proportions between patient groups, whereas mixed-effect-analysis and Sidak’s multiple comparison test

was applied to report time-dependent differences. The exact numbers and definitions of samples used in the analyses are specified

in the respective figure legends and summarized in Table S1.

Data Analysis of Flow Cytometry Data
Flow cytometry data analysis was performed with FlowJo V10.6.1. Cell type was defined as granulocytes (CD45+, CD66b+), non-

classical monocytes (CD45+, CD66b-, CD19-, CD3-, CD56-, CD14lo, CD16+). Relative cell percentage or mean fluorescence intensity

(MFI) was used for visualization and statistical analysis was done using unpaired t test.

Data visualization
In general, the R packages Seurat and the ggplot2 package (version 3.1.0) (Wickham, 2016) were used to generate figures. For visu-

alization of mass cytometry data, cluster minimum-spanning trees were rendered using Cytobank, the ComplexHeatmap package

(Gu et al., 2016) was used to display subset phenotypes and GraphPad Prism to generate boxplots of quantitative data.

ADDITIONAL RESOURCES

Part of the patients included in this study have been recruited within the clinical trial DRKS00021688, registered at the German reg-

istry for clinical studies (Kurth et al., 2020).

In addition to the deposition of the raw sequencing data on EGA,we provide an interactive platform for data inspection and analysis

via FASTGenomics. The FASTGenomics platform (fastgenomics.org) provides processed count tables of the datasets generated in

this study as well as key analytical results, such as UMAP coordinates and cluster identities, and the code written to analyze the

respective data.
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Figure S1. Overview of Sample Analysis Pipeline, Major Leukocyte Lineages Definition, and Quantification by CyTOF and MCFC, Related to

Figure 1

A, Overview of the analysis pipeline for scRNA-seq and proteomics of COVID-19 samples.

B, High resolution SPADE analysis with 400 target nodes and individual nodes aggregated to the indicated major immune cell lineages according to the

expression of lineage specific cell marker such as CD14 for monocytes and CD15 for neutrophils of whole blood samples collected from FLI patients, COVID-19

patients and controls and stained with CyTOF panel 1 and 2, respectively.

C, Boxplots of the composition of total granulocytes and non-classical monocytes within whole blood samples from the second cohort of COVID-19 patients

showing either mild (n = 3) or severe disease (n = 7) as well as controls (n = 11) measured by flow cytometry. Statistical analysis was performed using unpaired t

test. **p < 0.01, ***p < 0.001.
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Figure S2. Cluster-Specific Marker Gene Expression Shows Inflammatory Activation Signatures of Monocyte Subsets and the Appearance

of Neutrophil Subsets in the PBMC Fraction, Related to Figure 2

(A), Dot plots of the top 5 marker genes sorted by average log fold change determined for the clusters depicted in Figure 2A.

(B), Dot plot representation of the top 5 marker genes sorted by average log fold change determined for the clusters depicted in Figure 2D.

C: Heatmap of the Spearman correlation coefficients between myeloid cell subsets in two cohorts, based on the union of top 50 marker genes per cluster.
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Figure S3. Transcriptional Differences of Monocytes from Mild and Severe COVID-19, Related to Figure 4

A, Dot plot of the top 10 marker genes sorted by average log fold change of the clusters within the monocyte space of cohort 1 (related to Figure 2, Table S4).

B, Gene ontology enrichment analysis based on the complete marker genes obtained for each monocyte cluster of cohort 1, showing the top 10 significant terms

enriched in each cluster ranked by adjusted p values.

C, Back-mapping of monocyte clusters of cohort 2 (Figure 4C) onto the PBMCUMAP of cohort 2 (Figure 2D). The legend shows the association of the colors to the

clusters together with the labeling of the clusters based on expressed marker genes (according to Figures 2 and S3D–S3F).

D, Violin plots of marker gene expression in the monocyte clusters identified in the complete PBMC space of cohort 2 (Figures 2C and 2D)

E, Dot plot of the top 10 marker genes sorted by average log fold change calculated for the monocyte clusters (Figure 4C).

F, Violin plots of the IFI6 and ISG15 expression in cells ofmild and severe patients, additionally divided into early (1-10 days after disease onset) and late (> 10 days

after disease onset). Statistical analysis was performed using Wilcoxon Rank Sum test adjusted with the Bonferroni method, ****p < 0.0001.

G, Violin plots showing the time-dependent change ofHLA-DRA andHLA-DRB1 expression in themonocyte population of cohort 1 (mild: n = 4; severe: n = 4) and

cohort 2 (mild: n = 5; severe: n = 7). Mild samples are colored in yellow, severe samples in red and controls in blue, with the latter shown as reference violin plots

representing the expression of all control monocytes in the respective cohort (cohort 1: n = 22, cohort 2: n = 6).
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Figure S4. Additional Analysis of Dysfunctional Neutrophils in PBMC Fraction, Related to Figure 5

A, Dot plot of marker genes associated with immature neutrophils (pro- and pre-neutrophils), and mature neutrophils.

B, Pie charts showing the proportion of cells predicted to be in a given cell cycle stage. The numbers refer to the cell clusters presented in panel A.
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Figure S5. Longitudinal Analysis of Neutrophil and Monocyte Cell Populations, Related to Figure 6

A, Box andwhisker (10-90 percentile) plots of time-dependent differences in total granulocytes andmonocytes, non-classical monocytes and correlation analysis

between days post-symptom onset and proportion of non-classical monocytes.

B, Box and whisker (10-90 percentile) plots of time-dependent differences in main neutrophil cell cluster 3, 5, 6 and 7 in cohort 1.

(legend continued on next page)
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C, Box and whisker (10-90 percentile) plots of time-dependent differences in proportions of CD34+, CD11blo/-CD16-, CD64+, CD62L+, CD10-CD11blo/-CD16-

(reported from panel 1) and PD-L1+ neutrophils in cohort 1.

D, Box and whisker (10-90 percentile) plots of time-dependent differences in main monocyte cluster 1, 10 (belonging to CD14hiCD16- classical monocytes),

cluster 11 and 3 (belonging to CD14hiCD16+ intermediate monocytes) in cohort 1.

E, Box and whisker (10-90 percentile) plots of time-dependent differences in CXCR3+, HLA-DRhiCD11chi and CD226+CD69+ monocytes.

(F), Box and whisker (10-90 percentile) plot showing time-dependent differences in HLA-DRhiCD11chi monocytes in cohort 2.

Measurements in cohort 1 were done applying mass cytometry on whole blood samples distinguishing between COVID-19 patients with mild (days 0-10: n = 6,

days 11-30: n = 12) or severe disease (days 0-10: n = 9, days 11-30: n = 13) course. Mixed-effect-analysis and Sidak’s multiple comparison test was used to

calculate significant differences

Measurements in cohort 2 were done with flow cytometry on 26 whole blood samples from COVID-19 patients showing either mild (n = 8) or severe disease (n =

18) course as well as 11 samples from age-matched controls (n = 10).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Figure S6. Overview of scRNA-Seq Dataset from Cohort 2 and Additional Characterization of Neutrophils, Related to Figure 7

(A), UMAP (on the left) of the complete scRNA-seq dataset from cohort 2 (frozen PBMC, fresh PBMC, fresh whole blood), encompassing 98 samples from 16

controls, 8 mild, and 10 severe COVID-19 patients. Right panel: violin plots of the number of genic reads, transcripts and genes expressed in the PBMC (right)

versus the granulocyte fraction (left) across the different datasets of cohort 2. The UMAP is split by experimental condition and the classified granulocyte and

PBMC fractions are marked separately. The table below indicates the number of cells per experimental condition separated by control, COVID-19 mild and

COVID-19 severe. The numbers of samples are indicated in brackets.

(B), Box and whisker plots (25–75 percentile) of cell type frequencies identified by scRNA-seq in fresh whole blood samples after erythrocyte lysis comparing 16

samples from 15 controls, 6 from 5 mild COVID-19 and 12 from 4 severe COVID-19 patients.

(C), Comparison between cell frequencies identified by scRNA-seq and MCFC. Pearson’s correlation between the mean of each cell population measured in

MCFC (y axis) and by scRNA-seq of R2 = 0.96with p = 0.0098 (left). The stacked bar chart sorted by disease severity shows the cell type frequency for controls (n =

16), mild (n = 5) and severe COVID-19 samples (n = 18) split by scRNA-seq and MCFC.

(D), Dot plot of literature-based marker genes classifying different neutrophil subsets.

(E), UMAP of neutrophils showing the scaled expression of MME(CD10) and CXCR4 with enrichment in the control-specific clusters 0.

(F), UMAP of AUCell-based enrichment of gene signatures derived from the neutrophil clusters from cohort 2 on the UMAP visualization of cohort 1. The UMAP is

colored by the ‘Area Under the Curve’ (AUC) scores of each cell.

(G), Dot plot visualization of selected significantly enriched Gene Ontology terms and KEGG pathways for each cluster from the neutrophil space. The dots are

colored by their adjusted p value and the size of the dots is defined by the number of genes found in the Gene Ontology term.

(H), Network representation of marker genes and their predicted upstream transcriptional regulators for neutrophil clusters 6 (pre-Neutrophils) and 8 (pro-

Neutrophils). Edges represent predicted transcriptional regulation. Transcription factors in the inner circle and their predicted target genes in the outer circle are

represented as nodes sized and colored according to the scaled expression level across all clusters. Selected genes and transcription factors were labeled based

on connectivity and literature mining.

(I), Diffusion map dimensionality reduction of the main neutrophil clusters 8, 6, 2, and 1 from the severe COVID-19 patients (top) and diffusion pseudotime

visualized on the diffusion map indicating the transition probability of the different clusters in the following order: 8 - 6 - 2 - 1 (bottom).

(J), Genes specific for each cluster (HSP90AA1, CD274(PD-L1), CD177, MME(CD10), ARG1) visualized along the diffusion pseudotime (top) with the density of

each cluster along the pseudotime (bottom) highlighting the proposed order of differentiation of the different neutrophil subsets.
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CD4+ T cell calibration of antigen-presenting 
cells optimizes antiviral CD8+ T cell immunity

Elise Gressier    1,16 , Jonas Schulte-Schrepping    2,3,16, Lev Petrov4, 
Sophia Brumhard5, Paula Stubbemann5, Anna Hiller5, Benedikt Obermayer    6, 
Jasper Spitzer    7, Tomislav Kostevc4, Paul G. Whitney1, Annabell Bachem1, 
Alexandru Odainic    1,7, Carolien van de Sandt    1, Thi H. O. Nguyen    1, 
Thomas Ashhurst    8, Kayla Wilson    1, Clare V. L. Oates1, Linden. J. Gearing    9,10, 
Tina Meischel    1, Katharina Hochheiser1, Marie Greyer1, Michele Clarke1, 
Maike Kreutzenbeck7, Sarah S. Gabriel    1, Wolfgang Kastenmüller    11, 
Christian Kurts12, Sarah L. Londrigan    1, Axel Kallies    1, 
Katherine Kedzierska    1, Paul J. Hertzog9,10, Eicke Latz    7, Yu-Chen E. Chen13, 
Kristen J. Radford    13, Michael Chopin14, Jan Schroeder1, Florian Kurth    5, 
Thomas Gebhardt    1, Leif E. Sander    5, Birgit Sawitzki4, Joachim L. Schultze2,3,15, 
Susanne V. Schmidt7,17 & Sammy Bedoui    1,12,17 

Antiviral CD8+ T cell immunity depends on the integration of various 
contextual cues, but how antigen-presenting cells (APCs) consolidate these 
signals for decoding by T cells remains unclear. Here, we describe gradual 
interferon-α/interferon-β (IFNα/β)-induced transcriptional adaptations 
that endow APCs with the capacity to rapidly activate the transcriptional 
regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. 
While these responses operate through broadly used signaling components, 
they induce a unique set of co-stimulatory molecules and soluble mediators 
that cannot be elicited by IFNα/β or CD40 alone. These responses are critical 
for the acquisition of antiviral CD8+ T cell effector function, and their activity 
in APCs from individuals infected with severe acute respiratory syndrome 
coronavirus 2 correlates with milder disease. These observations uncover a 
sequential integration process whereby APCs rely on CD4+ T cells to select 
the innate circuits that guide antiviral CD8+ T cell responses.

Antigen-presenting cells (APCs) depend on capturing and present-
ing viral antigens through major histocompatibility complex (MHC) 
molecules to prime naive T cells and restimulate antigen-experienced 
T cells during virus infections1–3. Effective T cell responses also hinge on 
a variety of non-antigenic signals that are relayed from APCs to T cells by 
co-stimulatory molecules and soluble mediators. It is well established that 
such contextual cues broadly reflect the exposure of APCs to inflamma-
tory cytokines, such as interferon-α/interferon-β (IFNα/β) and danger sig-
nals that stimulate the NF-κB pathway3,4. Yet, the number of co-stimulatory 
molecules and soluble mediators that APCs use to convey these cues to 
T cells is discrete, and the expression of many of these factors continues 

to change as the APCs interact with T cells. For example, CD4+ T cells 
responding to antigen rapidly increase the expression of CD40L and 
provide stimulation back to the APC via CD40 and the NF-κB pathway5. 
Such ‘T cell help’ involves cooperation with innate stimuli6,7, but how 
APCs integrate these different signals at the cellular level and whether 
such cooperation requires prolonged interactions with CD4+ T cells or 
follows more dynamic patterns is currently unclear. Resolving how APCs 
integrate and relay these different signals to CD8+ T cells is important for 
our general understanding of how the innate–adaptive cross-talk regu-
lates T cell responses and will provide key insights required to improve 
CD8+ T cell responses during infection and vaccination.
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30, 60, 120 or 180 min of the stimulation. Il15 expression increased 
after 1–2 h of IFNαA stimulation, and this expression increased more 
than twofold in the presence of CD40 antibody (Fig. 2a). Tnf, Cxcl16 and 
Cd83 were also induced in BMDC1s after 2–3 h of IFNαA stimulation  
(Fig. 2a), indicating that BMDC1s required ~2 h of IFNα/β exposure 
before they responded to CD40 triggering. We then determined 
whether IFNα/β conditioned the BMDC1s for CD40 responses by expos-
ing BMDC1s to IFNα/β over 4 h and adding CD40 antibody for the last 15, 
30, 60, 120 or 180 min. Tnf, Cxcl16 and Cd83 increased after 30–60 min  
(Fig. 2a), which showed that BMDC1s responded rapidly to CD40 stimu-
lation if exposed to IFNα/β for ~2 h and suggested that BMDC1 need 
to be exposed to IFNα/β prior to CD40 stimulation IFNα/β conditions 
the dendritic cells (DCs) to become receptive to T cell help. We also 
tested this requirement in vivo using HSV-1 skin infection6. CD8+ cDC1s 
residing in the brachial lymph nodes of wild-type mice increased MHC 
class II expression 2 days after infection, but this increase was absent 
in Ifnar2–/– mice (Extended Data Fig. 1d). Because lack of CD4+ T cells 
does not impact MHC class II expression by CD8+ cDC1s in the brachial 
lymph nodes of wild-type mice infected 2 days earlier with HSV-1 on the 
skin6, these findings indicate that IFNα/β signals also need to precede 
CD40-mediated T cell help in vivo.

Next, we tested whether IFNα/β prepared DCs for T cell help 
by increasing CD40 expression7. IFNαA-stimulated and unstimu-
lated BMDC1s increased the expression of CD40 over time similarly 
(Extended Data Fig. 1e), indicating that surface CD40 expression 
was not rate limiting in these responses. To investigate whether the 
‘amplified’ and ‘combinatorial’ responses resulted from the effect 
of IFNα/β on the pathways downstream of CD40, we performed 
RNA-seq of BMDC1s stimulated with IFNαA for 4 h (BMDC1-IFN-αA) 
and compared gene expression to BMDC1s additionally stimulated 
with CD40 antibody for the last 15 min (BMDC1-IFNαA + CD40-15min) 
or 30 min (BMDC1-IFNαA + CD40-30min) or over the entire 4-h period 
(BMDC1-IFNαA + CD40-4h). Overall, BMDC1s changed expression of 
341 genes over the 15-min, 30-min and 4-h time points compared to 
BMDC1-IFNαA, BMDC1-CD40 or unstimulated BMDC1s (Fig. 2b). Unsu-
pervised self-organizing maps (SOMs) of these 341 genes identified 
smaller groups of genes appearing transiently at 15 min and 30 min (that 
is, Ifi44, Ifit3 and Fos), while different and larger sets of genes clustered 
at 4 h (that is, Cd83, Il15, Cxcl16, Il27 and Cd80) (Fig. 2c and Supplemen-
tary Table 2). General cellular processes, such as ‘enhanced survival’ and 
‘increased mRNA stability’, were enriched in BMDC1-IFNαA + CD40-
30min, while more specific responses, including ‘regulation of cytokine 
production’, characterized BMDC1-IFNαA + CD40-4h (Fig. 2d). We 
also performed coexpression analysis11 to identify similarly expressed 
groups of genes (‘modules’) independently of fold change cutoffs used 
to define differentially expressed genes across all time points (Fig. 2e 
and Supplementary Table 3). Genes in modules 1 and 3, such as Cxcl16 
and Tnf, responded to the combination of IFNαA and CD40 antibody at 
30 min and 4 h (Extended Data Fig. 2a). Modules 2 and 4 grouped genes 
that were induced by IFNαA (that is, Oasl1, Isg20 and Il2rg) or CD40 
antibody (that is, Cxcr4, Apol7c and Il12b), respectively, while modules 
5 and 6 contained genes with little responsiveness to either stimulation 
(that is, Itga3, Sox4 and Irak1) (Fig. 2e). These modules also differed in 
GO term enrichments (Fig. 2d). Together, these analyses indicate that 
IFNα/β changed how BMDC1s responded at the transcriptional level 
to CD40 stimulation.

IFNαA enable CD40 to activate p65, FOS and IRF1
Next, transcription factor binding motif prediction analysis of 
the‘amplified’ genes suggested the involvement of overlapping 
transcriptional regulators, including members of the IRF and STAT 
families (Fig. 3a). More specifically, BMDC1-IFNαA + CD40-30min and 
BMDC1-IFNαA + CD40-4h were enriched for binding sites for NF-κB, 
including NFKB1, REL, RELA (p65 subunit) and RELB (Fig. 3a). To test 
these predictions, we examined canonical and non-canonical NF-κB 

Here, we systematically dissected how APCs integrate stimulation 
through IFNα/β and CD40 from CD4+ T cells. We identified an iterative 
process whereby APCs require IFNα/β-dependent rewiring of the sign-
aling cascade downstream of CD40 that enables the subsequent parti-
tion of NF-κB-, IRF1- and FOS-dependent genes into distinct patterns 
of co-stimulatory molecule expression and mediator provision. This 
carefully sequenced integration process is critical for antiviral CD8+ 
T cell responses in a mouse virus infection model, and its activity in 
APCs from individuals infected with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) correlates with CD8+ T cell responses and 
milder forms of coronavirus disease 2019 (COVID-19).

Results
IFNα/β and CD40 induce distinct responses by dendritic cells
To dissect how APCs integrate signals from IFNα/β and CD40 stimula-
tion, we initially focused on type 1 conventional dendritic cells (cDC1s), 
known platforms for T cell help8,9. We exposed bone marrow-derived 
CD24hiCD11blo cDC1s (hereafter, BMDC1s) to IFNαA and an antibody 
that mimics T cell help by cross-linking CD406. RNA sequencing 
(RNA-seq) revealed that CD40 induced some changes in BMDC1s, but 
this response was limited compared to >1,000 differentially expressed 
(false discovery rate (FDR) > 0.05, 1.5-fold change) genes induced by 
IFNαA (Fig. 1a and Supplementary Table 1). Most IFN-stimulated genes 
(ISGs)10 remained unaffected by additional CD40 stimulation (Fig. 1a, 
‘CD40-unresponsive genes’). However, a subgroup of genes, which 
included Ccl4 and Il15, was further increased when IFNαA and CD40 
antibody were applied together (Fig. 1a, ‘amplified genes’). We also 
observed genes that could not be induced by either stimulus alone but 
were strongly increased in BMDC1s exposed to both IFNαA and CD40 
antibody (Fig. 1a, ‘combinatorial genes’). This response included Ccl5 
and Tnf and other genes with known roles in the interplay between APCs 
and T cells, such as Cd83 and Cxcl16 (Fig. 1a). We validated these distinct 
response patterns in separate experiments, focusing on interleukin-15 
(IL-15) and CCL4 as examples for the amplified response and tumor 
necrosis factor-alpha (TNF-α) and CCL5 for the combinatorial synergy 
between IFNαA and CD40 stimulation (Fig. 1b,c and Extended Data  
Fig. 1a). Comparable responses could also be elicited when CD40 syner-
gized with IFNβ (Extended Data Fig. 1b) or other innate stimuli, such as 
polyinosinic–polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS) or 
cytosine–phosphate–guanine (CpG), which triggered Toll-like receptor 
3 (TLR3), TLR4 and TLR9, respectively (Extended Data Fig. 1c). These 
findings indicate that CD40 synergizes with various innate stimuli in 
inducing ‘amplified’ and ‘combinatorial’ responses in BMDC1s.

cDC1s require in vivo stimulation from both IFNα/β and CD4+ 
T cells through CD40 to ‘amplify’ their capacity to provide IL-15 to her-
pes simplex virus (HSV)-specific CD8+ T cells6. To investigate whether 
priming of HSV-specific CD8+ T cells requires mediators that can only be 
induced by the synergy between IFNα/β and CD40 (such as CXCL16 and 
CCL5), we transferred Cxcr6+/+ and Cxcr6–/– bone marrow cells into irra-
diated hosts and infected them 6–8 weeks later with HSV-1 on the skin. 
Seven days later, splenic HSV-specific Cxcr6–/– CD8+ T cells produced 
less IFNγ in response to ex vivo antigen restimulation than their Cxcr6+/+ 
counterparts (Fig. 1d). CCL5-competent transgenic HSV-specific CD8+ 
T cells transferred into Ccl5–/– mice also had a significant, albeit more 
subtle, defect in IFNγ production in response to ex vivo antigen res-
timulation compared to wild-type recipients of HSV-specific transgenic 
CD8+ T cells (Fig. 1e), indicating that multiple genes required stimula-
tion through both IFNα/β and CD40 for optimal helper-dependent 
DC–CD8+ T cell interactions in vivo.

IFNα/β change transcription downstream of CD40
Next, we tested whether IFNα/β and CD40 antibody acted concurrently 
or in sequence. To first investigate whether CD40 stimulation condi-
tioned a more efficient response of BMDC1s to IFNα/β, we stimulated 
BMDC1s with CD40 antibody for 4 h and added IFNαA for the last 15, 
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signaling cascades in the interplay between IFNαA and CD40 antibody. 
The induction of amplified genes (Il15 and Ccl4) and combinatorial 
genes (Tnf and Cxcl16) in BMDC1-IFNαA + CD40-4h was similar between 
Nfkb2−/− and wild-type BMDC1s (data not shown), indicating that the 
non-canonical NF-κB pathway was not required. BMDC1-IFNαA + CD40-
15min resulted in IκBα degradation and p65 phosphorylation (Fig. 3b 
and Extended Data Fig. 2c), and the NF-κB inhibitor ammonium pyr-
rolidinedithiocarbamate (PDTC)12 impaired the increased expression 
of Tnf and Ccl4 in BMDC1-IFNαA + CD40-4h (Fig. 3c). These findings 
highlight that IFNα/β conditioning enabled CD40 to trigger the canoni-
cal NF-κB pathway in BMDC1s.

The transcriptional regulator FOS was induced in 
BMDC1-IFNαA + CD40-15min compared to in BMDC1-IFNαA, 
BMDC1-CD40 and BMDC1-IFNαA + CD40-4h (Fig. 3d and Supple-
mentary Table 2). We therefore deleted FOS from FLT3L-propagated 
BMDCs using CRISPR–Cas9 and stimulated these cells for 4 h with 
IFNαA and CD40 antibody. Compared to non-targeting guide con-
trol (NTC) BMDCs, Il15ra and Il27, but not Cxcl16 or Nfkb2, were 
reduced in the absence of FOS (Fig. 3e). ERK13 and CD40 signaling14 
can activate FOS, and we found phosphorylated p38 and ERK in 
BMDC1-IFNαA + CD40-15min (Fig. 3f ). Inhibition of ERK by nim-
bolide prevented the increase in Ccl4 expression and partially 
reduced Tnf expression in BMDC1-IFNαA + CD40-4h compared to 
in BMDC1-IFNαA (Fig. 3c). Together, these findings indicate that 

IFNα/β conditioning enables CD40 to activate FOS, likely through 
activation of ERK and p38.

The ‘combinatorial’ genes induced by IFNα/β and CD40 antibody 
were enriched in IRF1 binding sites (Fig. 3g), and expression of Irf1 was 
increased in BMDC1-IFNαA + CD40-30min and BMDC1-IFNαA + CD40-
4h compared to in BMDC1-IFNαA (Fig. 3h). IRF1 binding signals were 
enriched in combinatorial genes in BMDC1-IFNαA + CD40-4h com-
pared to in BMDC1-NS, BMDC1-IFNαA and BMDC1-CD40, as revealed by 
cleavage under targets and tagmentation (CUT&TAG) analysis (Fig. 3i).  
Endogenous IRF1 was bound to the promoter region of Cxcl16 in 
BMDC1-IFNαA + CD40-4h but not in BMDC1-IFNαA, BMDC1-CD40 
or BMDC1-NS (Fig. 3j). Moreover, Irf1–/– BMDC1s did not induce the 
expression of Cxcl16 in response to 4 h of combined IFNα/β and CD40 
antibody stimulation (Fig. 3k), and transcription factor binding motifs 
in the vicinity of IRF1 binding sites were enriched for motifs recognized 
by p65 (Fig. 3l). Together, these findings show that IFNα/β conditioning 
enhances the capacity of cDC1s to degrade IκBα and phosphorylate 
p65, p38 and ERK downstream of CD40, thus enabling CD4+ T cells 
to induce p65-, IRF1- and FOS-dependent transcriptional programs.

Mild COVID-19 is associated with IFNα/β and CD40 synergy
Imbalances in IFNα/β provision15 and low-avidity CD4+ T cell responses16 
are associated with severe COVID-19 (refs. 17,18), while milder outcomes 
correlate with virus-specific CD8+ T cells18 and the ability of individuals 
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to respond to CCL5 (ref. 19) and CXCL16 (ref. 20). To investigate the 
synergy between IFNα/β and CD40 during SARS-CoV-2 infection, we 
isolated CD14−HLA-DR+ DCs from the blood of individuals with COVID-
19 4 to 35 days after symptom onset21. This included mild to moderate 

disease (WHO (World Health Organization) score of 2–5) and severe dis-
ease (WHO score of 6–8) (Supplementary Table 7). CD14−HLA-DR+ DCs 
from individuals with severe disease had significantly reduced expres-
sion of MHC class II (HLA-DR) compared to CD14−HLA-DR+ DCs from 
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individuals with mild disease (Fig. 4a). A similar pattern was observed 
in CD14+CD11c+ monocytes, with a significant reduction in MHC class II 
expression compared to that observed in mild COVID-19 cases (Fig. 4a). 

To test whether IFNα/β signals contribute to MHC class II expression, 
we collected blood samples 4 to 35 days after symptom onset from 
individuals with COVID-19 who had developed neutralizing antibodies 
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against type I IFN (IFN-AAB)22. CD14−HLA-DR+ DCs and CD14+CD11c+ 
monocytes from IFN-AAB+ individuals had an even stronger reduction of 
MHC class II than observed in those from individuals with mild disease 
(Fig. 4a). The expression of CD40 on CD14−HLA-DR+ DCs in individuals 
with severe disease increased irrespective of IFN-AAB but was reduced 
in CD14+CD11c+ monocytes in individuals with IFN-AAB (Fig. 4a), sug-
gesting that IFNα/β regulate the ability of DCs and monocytes to receive 
T cell help through the expression of MHC class II5,23,24.

Next, we used published single-cell RNA-seq (scRNA-seq) data 
from individuals with COVID-19 (ref. 25) to examine the expression of 
the ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ gene signa-
tures identified above. This included peripheral blood mononuclear 
cells (PBMCs) from individuals with COVID-19 (mild, WHO score of 
3, n = 16; moderate, WHO score of 4–5, n = 11; severe, WHO score of 7, 
n = 23) collected within the first 25 days after symptom onset before 
availability of vaccination. These were compared to samples from 
healthy or otherwise hospitalized individuals who tested negative for 
SARS-CoV-2, were serologically negative or had no indication of acute 
COVID-19 disease based on clinical or laboratory parameters (HC; 
n = 13)25. We analyzed 31,736 classical monocytes and 722 myeloid DCs 
using reference-based cell-type annotation and clustering (Methods), 
referred to here as CD14+ monocytes and CD1C+ DCs, respectively. 
CD14+ monocytes from individuals with mild disease25 were signifi-
cantly enriched for the ‘amplified’ and ‘combinatorial’ responses (that 
is, CD83, CXCL16, NFKB2 and JUND) compared to CD14+ monocytes from 
individuals with moderate or severe disease or from healthy control 
individuals (Fig. 4b,c and Supplementary Table 5). Also, CD1C+ DCs from 
individuals with mild COVID-19 had increased transcription of genes of 
the ‘amplified’ and ‘combinatorial’ responses, such as CD83, EGR1 and 
REL, compared to CD1C+ DCs from individuals with severe COVID-19, 
which in turn had increased expression of CD40-unresponsive genes, 
such as IFIT3, MX1 and IRF7 (Fig. 4d and Supplementary Table 6). Similar 
patterns were observed in scRNA-seq data of a second cohort26, which 
included three individuals with moderate disease (respiratory symp-
toms and pneumonia), four individuals with severe disease (supple-
mental oxygen requirement) collected 2–16 days after symptom onset 
and five asymptomatic healthy control individuals from whom sam-
ples were collected before the widespread circulation of SARS-CoV-2 
(Extended Data Fig. 3a).

We also performed scRNA-seq on PBMC samples from the 
COVID-19 cohort above, which included IFN-AAB+ individuals22 

(Supplementary Table 7). CD14+ monocytes from IFN-AAB+ indi-
viduals had lower induction of prototypical ISGs, such as ISG15 and 
IFIT2, than CD14+ monocytes from healthy individuals and individuals 
with disease without IFN-AAB (Extended Data Fig. 3b). Furthermore, 
the expression of HLA-DRA, HLA-DRB1, TNF, CD83 and CCL4 was 
reduced in CD14+ monocytes from individuals with severe COVID-19  
and in IFN-AAB+ individuals compared to in healthy individuals 
and in individuals with COVID-19 without IFN-AAB (Extended Data 
Fig. 3b). To gain more robust insights into data distribution, we 
integrated our data with comparable published scRNA-seq data 
sets21,27,28, including a study examining four IFN-AAB+ individuals28. 
This yielded 179,012 single-cell CD14+ monocyte transcriptomes 
across 263 samples (HC, n = 39; WHO score of 1–3, mild, n = 79; WHO 
score of 4–5, moderate, n = 82; WHO score of 6–8, severe, n = 52; WHO 
score of 7–8, severe + IFN-AAB, n = 11). HLA-DRB1, CD83 and TNF were 
significantly reduced in individuals with COVID-19 with increasing 
disease severity, reaching a minimum in individuals with IFN-AAB 
(Extended Data Fig. 3b). Furthermore, the ‘amplified’ and ‘combina-
torial’ signatures were reduced in CD14+ monocytes from individuals 
with severe COVID-19, with and without IFN-AAB, compared to in 
CD14+ monocytes from individuals with mild disease (Extended Data 
Fig. 3c). Together, these findings indicate that IFNα/β signals are 
critical drivers of ‘amplified’ and ‘combinatorial’ responses during 
SARS-CoV-2 infection.

R e a n a l y s i s  o f  p u b l i s h e d  s i n g l e - c e l l  a s s a y  f o r 
transposase-accessible chromatin with sequencing (scATAC-seq) 
data sets29 from PBMCs of individuals with COVID-19 indicated that 
CD14+ monocytes from individuals with mild disease had signifi-
cantly increased accessibility of more than 300 genes, including 
IL15, CD83, TNF and CXCL16, compared to CD14+ monocytes from 
individuals with moderate and severe COVID-19 (Fig. 4e,f). Further-
more, Hallmark enrichment analysis of more accessible genes in 
CD14+ monocytes from individuals with mild COVID-19 compared 
to CD14+ monocytes from healthy control individuals identified 
‘IFNγ response’ and ‘TNF signaling via NF-κB’ as major pathways 
differentially regulated in mild COVID-19 (Fig. 4g). To investigate 
whether these responses can be elicited in vitro in human cDC1s, we 
differentiated human CD141+CADM1+CLEC9A+ cDC1s (hDC1s) from 
blood-derived CD34+ stem cells using FLT3L, stem cell factor and 
IL-4 (ref. 30) and stimulated them with human recombinant IFNα 
and human CD40 Ab separately or in combination for 18 h. hDC1s 

Fig. 4 | Combinatorial responses to IFNα/β and CD40 antibody by DCs 
and monocytes correlate with milder outcomes of COVID-19. a, HLA-DR 
expression of CD14+CD11c+ monocytes and CD14−HLA-DR+ DCs from individuals 
with COVID-19 with mild or moderate symptoms (WHO score of 2–5; n = 11) or 
severe disease with (WHO score of 6–8; n = 3–6) and without (n = 10) IFN-AAB. 
Data are displayed as box and whisker plots showing the median and the 25th  
and 75th percentiles and two whiskers at 1.5× the interquartile range (IQR) of  
the mean fluorescence intensity (MFI) and percentage of CD40+ cells.  
b, Single-sample gene set variation analysis (GSVA) of the ‘CD40-unresponsive’, 
‘amplified’ and ‘combinatorial’ gene signatures in scRNA-seq data from CD14+ 
monocytes and CD1C+ DCs from PBMCs of individuals with mild (WHO score of 
3; n = 16), moderate (WHO score of 4–5; n = 11) or severe (WHO score of 7; n = 23) 
COVID-19 and healthy control (HC) individuals (n = 13; reanalyzed from ref. 25). 
Box plots as in panel a. Data points are colored and shaped according to disease 
severity and stage based on days after onset of symptoms, respectively. Wilcoxon 
rank-sum test P values are shown. c, Gene set enrichment analysis plots (top) 
showing enrichment curves of the ‘amplified’ and ‘combinatorial’ signatures in 
the differentially expressed genes (two-sided Wilcoxon rank-sum test, minimum 
percentage = 0.1, log2(fold change) > 0.2) in CD14+ monocytes from mild 
compared to severe COVID-19 cases as in b. The log10(FDR P values)  
and the log2(fold change) values of the differentially expressed genes are 
shown as a volcano plot (bottom). Genes are colored according to the ‘CD40-
unresponsive’, ‘amplified’ or ‘combinatorial’ signature; Padj, adjusted P value.  

d, Differential expression of ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ 
signature genes in CD1C+ DCs from healthy control individuals and individuals 
with mild, moderate and severe cases of COVID-19, as in a, determined using a 
two-sided Wilcoxon rank-sum test. e, Heat map showing GeneScores for disease-
specific, significantly differentially accessible genes in scATAC-seq data of CD14+ 
monocytes from PBMC samples derived from individuals with mild (WHO score 
of 1–3; n = 7 samples), moderate (WHO score of 4–5; n = 4) or severe (WHO score 
of 6–7; n = 6) COVID-19 and healthy control individuals (n = 6; reanalyzed from 
ref. 29) determined using a two-sided Wilcoxon rank-sum test (FDR ≤ 0.01 and 
log2 (fold change) ≥ 0.58). f, Imputed GeneScores of IL15, CD83, CXCL16 and 
TNF in CD14+ monocytes grouped according to COVID-19 severity as in e. Data 
are displayed as violin plots with overlaying box and whisker plots showing the 
median and 25th and 75th percentiles and two whiskers at 1.5× IQR.  
g, Differentially accessible genes (FDR ≤ 0.01 and log2(fold change) ≥ 0.58) in 
CD14+ monocytes from individuals with mild COVID-19 compared to healthy 
control individuals, as in e, visualized as a volcano plot showing –log10(FDR) and 
log2(fold change) values (left) and the corresponding enriched Hallmark terms 
for the 789 genes with increased accessibility in mild COVID-19 CD14+ monocytes 
compared to healthy control monocytes displayed as dot plots showing gene 
counts and adjusted P values per term (right). h, Secretion of TNF in hDC1s 
stimulated with IFNα and/or CD40 antibody for 18 h. Data are mean ± s.e.m. 
from six donors. Statistical significance for differences between conditions was 
assessed by one-way ANOVA, and adjusted P values are indicated.
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secreted TNF in response to IFNα when aided by CD40 triggering, 
but not after treatment with IFNα alone (Fig. 4h). These observa-
tions indicated that APCs from individuals with mild, but not severe, 

COVID-19 had increased chromatin accessibility and transcription 
of genes requiring the synergy between IFNα/β and CD40 described 
in the mouse experiments.
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CD40 triggers NF-κB and FOS-dependent transcription in mild 
COVID-19
To explore whether IFNα/β also affected the signaling cascade down-
stream of CD40 in human APCs, we subjected the differentially 
expressed genes that were significantly higher in CD14+ monocytes 
from individuals with mild COVID-19 than in CD14+ monocytes from 
individuals with severe COVID-19 to enrichment analyses using the 
Hallmark database31 and transcription factor binding motifs32. There 
was a significant enrichment of genes associated with the NF-κB path-
way, including CD83, CD86, TNFAIP3, IL1B, DUSP2, NFKB2 and REL  
(Fig. 5a and Supplementary Table 5). We also observed preferential 
involvement of the NF-κB family (NFKB1, RELA and RELB) and the FOS 
and JUN families (AP-1; Fig. 5b). Visualization of the links between pre-
dicted transcription factors and their target genes within the differen-
tially expressed genes between mild and severe COVID-19 indicated a 
dense regulatory network controlled by NF-κB, FOS and JUN transcrip-
tion factors (Fig. 5b).

Similarly, transcription factor binding motif enrichment analyses 
in differentially accessible chromatin regions of CD14+ monocytes 
from individuals with mild or severe COVID-19 compared to those from 
healthy control individuals29 predicted members of the FOS family as 
key regulators (Fig. 5c). The enrichment score and number of acces-
sible target regions of the predicted transcription factors, including 
FRA1/FRA2, FOSL2 and JUN, were higher in CD14+ monocytes from 
individuals with mild COVID-19 than in CD14+ monocytes from individu-
als with severe COVID-19 (Fig. 5c,d). Furthermore, the top 10 predicted 
transcription factor binding motifs and motifs corresponding to IRF1 
and p65 (RELA) revealed large and distinct sets of target regions for the 
identified key regulator families among more accessible chromatin 
regions in CD14+ monocytes from mild COVID-19 cases than those from 
healthy control individuals. There were also substantially lower num-
bers of target regions with increased accessibility in CD14+ monocytes 
from individuals with severe COVID-19 than in CD14+ monocytes from 
healthy control individuals (Fig. 5d). These findings suggest that the 

amplified and combinatorial responses enriched in CD14+ monocytes 
in individuals with mild COVID-19 are regulated by signal integration 
through transcription factors of the NF-κB, FOS and JUN families.

Mild COVID-19 is associated with ‘helped’ CD8+ T cells
To test whether IFNα/β-dependent provision of T cell help to DCs 
and monocytes affects the CD8+ T cell response, we used the PBMC 
scRNA-seq data set from the cohort of individuals with COVID-19 
and healthy control individuals defined above (Fig. 4b). We analyzed 
11,734 CD8+ T cells using reference-based cell-type annotation and 
clustering (Methods) and compared their transcriptional profiles to 
published gene signatures that reflected CD8+ T cell priming in the 
presence (‘helped’) or absence (‘unhelped’) of CD4+ T cell help for 
DCs33. CD8+ T cells from individuals with moderate and severe COVID-
19 were enriched for ‘unhelped’ profiles (including CD200, CD200R1, 
BTLA, ID3 and PDCD1) compared to CD8+ T cells from individuals with 
mild COVID-19 (Fig. 6a,b). Clustering analysis further indicated that 
individuals with mild and moderate COVID-19 were enriched in CD8+ 
T cell subsets with transcriptional profiles (IL7R, TCF7, JUNB and JUND) 
indicative of early effector or activated memory T cells34,35 (Fig. 6c,d and 
Supplementary Table 8, cluster 3). CD8+ T cells with characteristics of 
terminal differentiation (CX3CR1 and ISG15, cluster 5) also dominated 
in individuals with severe COVID-19 (Fig. 6c,d) and had a reduction in 
‘helped’ signatures (that is, CD69, IL2RA and TNF) and a corresponding 
gain in the ‘unhelped’ signature (that is, IL6R, CD9, ISG15 and PDCD1) 
(Fig. 6e). We found comparable patterns in published scRNA-seq data 
from two other cohorts of individuals with COVID-19 (Extended Data 
Fig. 4a–c)36,37. We used cytometry by time of flight (CyTOF) to examine 
protein expression in CD8+ T cells from blood samples of 9 healthy 
control individuals and individuals with COVID-19 with mild (WHO 
score of 2–3; n = 25) or severe (WHO score of 7–8; n = 18) disease and 
IFN-AAB+ individuals with severe disease (WHO score of 7–8; n = 9)21 
collected 4 to 30 days after symptom onset (Supplementary Table 7). 
Dimensionality reduction using uniform manifold approximation and 

Fig. 5 | Enrichment of NF-κB- and FOS-dependent transcriptional responses 
in APCs from individuals with mild, but not severe, COVID-19. a, Differentially 
expressed genes between disease severities and stages in CD14+ monocytes 
representing the significantly enriched Hallmark terms ‘IFNγ response’, ‘IFNα 
response’ and ‘TNF signaling via NF-κB’, displayed as dot plots. b, RcisTarget 
transcription factor binding motif enrichment based on differentially expressed 
genes (two-tailed Wilcoxon rank-sum test, minimum percentage = 0.1, log2(fold 
change) > 0.2) in CD14+ monocytes from individuals with mild compared to severe 
COVID-19, as in Fig. 4a. Data are visualized as a dot plot (left) showing the number 
of enriched genes and the normalized enrichment score per motif. The inner circle 
(right) shows the enriched transcription factors for all differentially expressed 
(DE) genes, and the outer circle shows the respective target genes responsible 

for their enrichments. Transcription factors enriched for the genes overlapping 
with the ‘amplified’ and ‘combinatorial’ gene signatures and the target genes are 
colored in red. NES, normalized enrichment score. c, Transcription factor binding 
motif enrichment based on significantly differentially accessible peaks in CD14+ 
monocytes from individuals with mild or severe COVID-19 compared to CD14+ 
monocytes from healthy control individuals. Data are based on scATAC-seq data29 
and are displayed as dot plots showing FDR-adjusted P values of the enrichments 
and the number of target regions per transcription factor binding motif. d, Target 
regions of the top 10 highest enriched transcription factor binding motifs and 
motifs corresponding to IRF1 and p65 (RELA), shown as UpSet plots comparing 
the number of target regions.

Fig. 6 | Severe outcomes of COVID-19 are associated with ‘unhelped’ CD8+ 
T cells. a, UMAP visualization of scRNA-seq profiles of 11,734 CD8+ T cells 
from individuals with mild (WHO score of 3; n = 16), moderate (WHO score of 
4–5; n = 11) or severe (WHO score of 7; n = 23) COVID-19 and healthy control 
individuals (n = 13; reanalyzed from ref. 25). Cells are split and colored according 
to disease severity. b, GSVA of ‘helped’ and ‘unhelped’ T cell signatures derived 
from published gene expression33 profiles of mouse CD8+ T cells primed in the 
presence or absence of CD4+ T cells. Data are displayed as box and whisker plots 
showing the median and 25th and 75th percentiles and two whiskers at 1.5× IQR. 
Two-sided Wilcoxon rank-sum test P values are shown. c, UMAP of CD8+ T cells 
segregated into clusters 0–5 (left) and heat map of the respective proportionate 
cluster occupancy per disease severity (right) as in a. d, Expression of key genes 
associated with clusters 0–5 as in c. e, AUCell enrichment of genes derived 
from published gene expression33 profiles of mouse CD8+ T cells primed in the 
presence or absence of CD4+ T cells as in b, grouped according to the clustering 
as in c and displayed as violin plots of area under the curve (AUC) scores. FDR-

corrected Dunn’s multiple comparison test P values are indicated. f, UMAP 
visualization of CD8+ T cells from whole-blood samples from healthy control 
individuals (n = 10) and individuals with COVID-19 (mild, n = 22; severe, n = 21; 
severe with IFN-AAB, n = 9) analyzed by CyTOF. The rightmost plot shows the 
UMAP colored according to FlowSOM clustering, while the four plots on the left 
show the distribution of events across the groups. g, PCA analysis plot showing 
average PC1 and PC2 values for all the events per individual as in f, colored 
according to the sample group. Ellipses show an estimated region of group 
accumulation, arrows represent correlation of the respective marker with either 
of the PC axes, and arrow length represents correlation strength. h, Mean scaled 
signal intensities for KLRG1, CXCR3 and CD69 (left) and LAG3 (right) displayed as 
box and whisker plots showing the median and 25th and 75th percentiles and two 
whiskers at 1.5× IQR. i, Relative abundance of CD27−KLRG1+ cells in the total CD8+ 
T cell fraction displayed as box and whisker plots showing the median and the 
25th and 75th percentiles and two whiskers at 1.5× IQR. Statistics in h and i show 
two-sided Benjamini–Hochberg-corrected pairwise Wilcoxon P values.
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projection (UMAP) and clustering with the FlowSOM algorithm indi-
cated differences in the composition of CD8+ T cells between individuals 
with COVID-19 with different disease severity (Fig. 6f). Individuals with 

mild COVID-19 had increased proportions of CD27+CD8+ T cells with 
memory potential6 (Fig. 6f and Extended Data Fig. 4d,e, clusters 17, 19 
and 21), while individuals with severe COVID-19 had greater proportions 

a

e

H
el

pe
d 

si
gn

ifi
ca

nt
 A

U
C

 s
co

re
 

0.02

0.04

0.06

C0 C1 C2 C3 C4 C5

7.48 × 10–13

d

Percent expressed
25
50
75

SE
LL

IL
7R

C
D

69
FO

SL
2

KL
RG

1

G
ZM

K
G

ZM
B

ZE
B2

JU
N

B
JU

N
D

C
XC

R4
D

U
SP

1
D

U
SP

2
C

X3
C

R1
IS

G
15

IF
IT

3

C1

C2

C3

C4

C5

KL
RB

1

C0

UMAP 1

U
M

AP
 2

c

2,233 cells 5,619 cells 910 cells 2,972 cells

UMAP 1

U
M

AP
 2

10 20 30 40 50 60
%

C0

C1

C2

C3

C4

C5

U
M

AP
 2

f

UMAP 1

g

Average expression

–1.0
–0.5
0
0.5
1.0

b
18.96

55.28

23.07

27.45

30.96

2.93

24.35

10.30

23.92

30.42

27.02

16.37

25.68

29.85

31.36

27.31

23.06

18.27

31.00

4.57

21.65

14.82

18.96

62.43

C
on

tr
ol

M
ild

M
od

er
at

e

Se
ve

re

Moderate

HC
Mild

Severe

C0
C1
C2
C3
C4
C5

C0 C1 C2 C3 C4 C5

0.02

0.04

0.06

U
nh

el
pe

d 
si

gn
ifi

ca
nt

 A
U

C
 s

co
re

 

0

0.0015
0.0004

0.00014
0.32

0.68
0.54

–0.25

0

0.25

0.50

H
el

pe
d 

si
gn

ifi
ca

nt
 e

nr
ic

hm
en

t
sc

or
e

0.17
0.03

0.034
0.00049

0.00011
0.61

0

0.5

U
nh

el
pe

d 
si

gn
ifi

ca
nt

 e
nr

ic
hm

en
t

sc
or

e

Moderate

Stage
Control
Early (<day 10)
Late (>day 10)

HC
Mild

Severe

HC
Mild/moderate
Severe
Severe w/ IFN-AAB

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22

Clustering

HC
Mild/moderate
Severe
Severe w/ IFN-AAB

Mild/moderateMild/moderate
Severe
Severe w/ IFN-AAB

0

1

2

3

Ag
gr

eg
at

ed
 m

ea
n 

si
gn

al
in

te
ns

ity
 o

f
KL

RG
1, 

C
XC

R3
 a

nd
 C

D
69

0

0.5

1.0

1.5

2.0

2.5

Si
gn

al
 in

te
ns

ity
 o

f L
AG

3

i

0

25

50

75

100

Re
la

tiv
e 

ab
un

da
nc

e
C

D
27

– KL
RG

1+

ce
lls

 in
 to

ta
l C

D
8+  T

 c
el

ls
 (%

)

h Mild/moderate
Severe
Severe w/ IFN-AAB

0.045
0.0016

0.24

0.16
0.00069

0.23

0.066
0.011

0.92

KLRG1

CD27

CD95

CD28

CD62L

CD34

CD56

TIGIT
Lag3

CD226

ICOS
CD45RO

Ki67
HLADR CXCR3

PD1
CD137

–0.1

0

0.1

0.2

–0.1 0 0.1

PC1 (12.45%)

PC
2 

(1
1.6

2%
)

1.09 × 10–6

0.0007

7.22 × 10–27

4.21 × 10–41

3.14 × 10–108

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-023-01517-x

of CD27−KLRG1+CD8+ T cells (clusters 3 and 8) than healthy individuals 
or individuals with mild disease (Fig. 6f and Extended Data Fig. 4d,e). 
Principal component analysis (PCA) of CD8+ T cells from individuals 
with mild and severe COVID-19 identified the expression of CD27 and 
KLRG1 as distinct features of CD8+ T cells from individuals with mild and 
severe disease, respectively (Fig. 6g,i), and CD8+ T cells from individu-
als with severe disease were enriched for LAG3 (Fig. 6h), a molecule 
induced by priming with unhelped DCs33. These findings indicate that 
severe outcomes of COVID-19 are associated with unhelped phenotypes 
of CD8+ T cells.

Discussion
Our findings uncovered an iterative consolidation process, in which 
innate stimuli, such as IFNα/β or TLR agonists, determined broad 
response options in APCs, and CD4+ T cells subsequently partitioned 
these into distinct sets of co-stimulatory molecules, cytokines and 
chemokines through CD40L. Together, these consecutive signals 
endowed APCs with optimal capacities to orchestrate effective anti-
viral CD8+ T cell responses in mouse HSV-1 infections and during 
community-acquired SARS-CoV-2 infections, where effective con-
solidation of IFNα/β and CD40 signals in APCs correlated with milder 
outcomes of COVID-19.

The conditioning of APCs by IFNα/β to become receptive to 
T cell help involved increased expression of MHC class II and distinct 
changes in how the APCs responded to CD40 stimulation. The changes 
in CD40 responsiveness were not just a function of increased expres-
sion of CD40 alone8, as spontaneously matured CD40hi DCs in mice 
and CD40hi APCs in individuals with severe COVID-19 were unable to 
engage ‘helper’-dependent programs. Instead, the capacity to receive 
help depended on additional changes in the signaling cascade down-
stream of CD40. These endowed APCs with the capacity to rapidly 
engage a network of transcription factors, including p65, IRF1 and FOS, 
and likely others, such as JUN, to select a distinct group of genes that 
provide the DCs with optimal capacities to prime CD8+ T cells respond-
ing to antigen. Some of the transcription factors were directly regu-
lated by IFNα/β and CD40 stimulation, suggesting that conditioning 
also enhanced the availability of relevant transcription factors. These 
responses were not exclusive to the cooperation between IFNα/β and 
CD40, as similar patterns of CD40-dependent calibration also occurred 
in DCs stimulated through different TLRs. Together with increased 
chromatin accessibility at binding sites for the above-mentioned tran-
scription factors in promoter regions of key genes regulated through 
IFNα/β and CD40, our study revealed a multitude of transcriptional 
and post-translational changes as a functional basis for how innate 
cues condition APCs to become receptive to T cell help, thus ena-
bling CD4+ T cells to calibrate APCs for optimal stimulation of CD8+  
T cell responses.

We have investigated the relevance of these findings for antiviral 
CD8+ T cell immunity in a mouse model of HSV-1 skin infection and 
showed that optimal HSV-specific CD8+ T cell responses depended on 
contextual cues that require IFNα/β and NF-κB signal integration by 
DCs. Notably, we translated these experimental insights to individu-
als with SARS-CoV-2 infection and demonstrated that the consecutive 
activation of APCs by IFNα/β and CD4+ T cells played an important 
role in regulating how APCs orchestrate CD8+ T cell responses during 
COVID-19. This interpretation not only helps align a number of cur-
rently unlinked findings in COVID-19, such as an association of milder 
disease with effective provision of CXCL16 (ref. 20) and CCL5 (ref. 19), 
high-avidity CD4+ T cells16 and effective CD8+ T cell responses18, but 
also raises the prospect of ‘unhelped’ APCs launching too many termi-
nally differentiated CD8+ T cells that contribute to immunopathology 
in individuals with severe COVID-19. It is important to acknowledge 
limitations around our findings in individuals with COVID-19. Our 
study cannot discern if the observed failures in signal integration by 
APCs and preponderance of terminally differentiated CD8+ T cells are 

a ‘cause’ or ‘effect’ of severe COVID-19 or are more likely a complex 
combination of both. Moreover, it is possible that interindividual dif-
ferences in T cell antigen receptor epitopes, precursor frequencies of 
antigen-specific CD8+ T cells and a great number of many other covari-
ates (that is, age, gender and comorbidities) influence the interaction 
between APCs and CD8+ T cells in individuals with COVID-19. However, 
having validated our findings across multiple unrelated clinical data 
sets, it is unlikely that our findings simply represent the confounding 
effects of any one of these covariates. We likely also missed some of 
the more nuanced aspects of the interaction between APCs and naive 
CD8+ T cells that take place in lymph nodes before symptom onset, 
which are difficult to capture as the precise time point of infection is 
unknown in community-acquired infections, and lymph nodes are not 
as amenable as blood for routine sampling, especially in individuals 
with mild disease.

Collectively, our findings demonstrate the reliance of antiviral 
immunity on a step-wise, carefully orchestrated consolidation process, 
whereby APCs combine and integrate innate signals and, after selection 
by CD4+ T cells, produce a discrete set of co-stimulatory molecules and 
soluble mediators that adapt responding CD8+ T cells to the specific 
challenge. In showing how innate and adaptive signals cooperate to par-
tition tailored responses from multiple broad and overlapping innate 
pathways and demonstrating functional relevance of these processes 
in mouse and human virus infections, our study provides critical new 
insights into how the host mounts effective antiviral immunity.
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(Mm00469712_m1), Gapdh (Mm99999915_g1), Hprt (Mm00446968_
m1), Il15 (Mm00434210_m1), Il15ra (Mm04336046_m1), Il27 
(Mm00461162_m1), Irf1 (Mm01288580_m1), Nfkb2 (Mm00479807_m1), 
Rela (Mm00501346_m1), Relb (Mm00485664_m1), Tnf (Mm00443258_
m1) and Traf6 (Mm00493836_m1).

RNA-seq and data analysis
Gene expression changes were investigated using RNA-seq. Up to 
100 ng of total RNA was used for library preparation, according to the 
manufacturer’s protocol, and was either sequenced in a 125-base pair 
(bp) paired-end run on a HiSeq HT sequencer (Illumina) or in a 50-bp 
single-read QuantSeq 3′-mRNA (Lexogen) run. Reads were aligned 
against the mouse genome mm10 by STAR v2.5.3a. Gene quantifica-
tion was performed via the E/M algorithm in PartekFlow (v8.0.19.0707) 
and normalized as CPM. Genes with a mean expression of ≤1 CPM 
under all conditions were excluded from further analysis, resulting in 
10,222 present genes for ANOVA in the Partek Genomics Suite (PGS, 
v7.18.0402). Genes with a fold change of 1.5 and an FDR-adjusted  
P value of ≤0.05 were defined as differentially expressed between two 
tested conditions. GO enrichment for the modules was performed 
using DAVID39 with the GOTERM_BP_DIRECT annotation. GO terms 
were filtered by unadjusted P ≤ 0.05 and visualized using ggplot2. 
Biological interpretation of differentially expressed genes was per-
formed with the following tools. Gene set enrichment analysis was 
performed using the GSEA application (v4.0.3) and the Hallmark gene 
set published by the Broad Institute. Enrichments were plotted using 
ggplot2 (v3.3.3)40. Cytoscape was used to visualize enriched GO terms 
as a network with the two plugins BiNGO (v3.0.3) and EnrichmentMap 
(v3.2.1). WordCloud plugin (v3.1.3) was used to visualize the most fre-
quent annotation associated within a cluster of GO terms. All present 
genes were used as input for a WGCNA, performed using the WGCNA 
R package (v1.70-3), to identify correlations of gene expression within 
the data set in an unbiased approach. The β-value was set at 23. For the 
module dissimilarity, a threshold of 0.42 was chosen, and the minimal 
cluster size was set to 30 genes. The prediction of transcription factor 
binding motifs was performed using the Cytoscape plugin iRegulon 
(v1.3) with a minimum normalized enrichment score of 3 and a maxi-
mum FDR on motif similarity of 0.001. All potential transcription fac-
tors annotated to the enriched binding motifs were used in the Venn 
diagram to illustrate their overlaps.

CUT&Tag and analysis
The CUT&Tag experiments were performed as previously described41 
with a hyperactive in situ ChIP library prep kit purchased from Epicy-
pher (CUTANA CUT&Tag Assays) following the manufacturer’s recom-
mendations. A minimum of 1 × 105 stimulated BMDC1s were bound to 
activated concanavalin A-coated magnetic beads and were subjected 
to immunoprecipitation with 0.5 µg of primary antibody (anti-IRF1, 
D5E4, Cell Signaling Technology; rabbit anti-mouse IgG control). Immu-
noprecipitated DNA was amplified with high-fidelity 2× PCR mix (Epi-
cypher) using universal barcodes i5 and uniquely barcoded i7 primers 
and 21 cycles. PCR products were purified with AMPure XP beads and 
eluted in water. Libraries were sequenced on an Illumina NextSeq 
platform, and 150-bp paired-end reads were generated. Fastq reads 
for each sample were aligned to the mm39 reference genome using 
bwa (v0.7.17). PCR duplicates were removed using picard tools’ Mark-
Duplicates (v2.25.0), and peaks were called using macs2 (v2.2.7.1) with 
the ‘—nomodel’ parameter. To establish consensus peaks between all 
conditions, peak sets were merged using homer’s mergePeaks (v4.11.1), 
and reads in consensus peaks were counted for each replicate using 
subread’s featureCounts (v2.0.0). PCA plots were generated using  
R (v4.1) and the prcomp function. Differentially occupied peaks were 
established using the limma package (v3.46.0) and its voom, lmFit 
and eBayes functions. Motif occupancy at peaks was established with 
homer and the findMotifsGenome function (v4.11.1).

Methods
Mice
C57BL/6, Ccl5–/–, Cxcr6–/–, Ifnar2–/–, Irf1–/– and CD45.1+ gBT-I mice were 
bred and maintained at the animal facility of the Department of Micro-
biology and Immunology, The University of Melbourne. All animal 
experiments were approved by The University of Melbourne Animal 
Ethics Committee.

Human samples
This study includes a subset of individuals enrolled between March 
2020 and April 2021 in the Pa-COVID-19 study, a prospective obser-
vational cohort study assessing pathophysiology and clinical charac-
teristics of individuals with COVID-19 at Charité Universitätsmedizin, 
Berlin38. The study was approved by the Institutional Review board of 
Charité (EA2/066/20). Written informed consent was provided by all 
individuals or legal representatives for participation in the study. Spe-
cifics about the participants per application (flow cytometry, CyTOF 
and scRNA-seq), including COVID-19 status, time point of sampling 
after onset of symptoms, sex, age and outcome, are listed in Supple-
mentary Table 7 and are described elsewhere21,22. Human umbilical 
cord blood was obtained with written informed consent from the 
Queensland Cord Blood Bank and approval from the Mater Human 
Research Ethics Committee (HREC13/MHS/86).

In vitro generation of BMDC1s
Single-cell suspensions from mouse bone marrow were cultured 
with FLT3L to generate BMDCs6. Red blood cells were removed using 
1 ml of red blood cell lysis buffer (Sigma-Aldrich) per mouse for 90 s. 
Cells were cultured at 1.5 × 106 cells per ml in complete medium sup-
plemented with 1.32 mM l-glutamine, 10% fetal calf serum, 90 µM 
β-mercaptoethanol, 100 U ml–1 penicillin, 0.2 g liter–1 streptomycin 
and 150 ng ml–1 FLT3L (BioXCell). Following 8 days of culture at 37 °C, 
cells were stained for 30 min on ice with CD45R/B220 (RA3-6B2), 
SIRPα (P84), CD11c (N418), CD11b (M1/70), I-A/E (M5114) and CD24 
(M1/69) antibodies. cDC1 or CD8+ DC equivalents were identified by 
CD24highSIRPαlowCD11blowCD45R/B220− and were sorted using a FACS 
Aria III (BD Biosciences). Following sorting, BMDC1s were washed and 
resuspended before stimulation. Stimulation was performed on bulk 
BMDCs or sorted BMDC1s with IFNαA (PBL; 1,000 U ml–1), IFNβ (R&D 
Systems; 1 µg ml–1), LPS (Sigma-Aldrich; 10 µg ml–1), CpG (1668, Gene-
Works; 1.6 nmol ml–1) or poly(I:C) (InvivoGen; 10 µg ml–1) in the pres-
ence or absence of monoclonal antibody to CD40 (CD40 Ab; FGK45.5, 
Miltenyi Biotec; 10 µg ml–1). Cells and supernatants were collected at 
different time points thereafter. Pharmacological inhibition of NF-κB 
and ERK pathways was achieved with 1 h pretreatment using PDTC 
(ab141406, 10 µM) and nimbolide (ab142138, 10 µM), respectively.

Cytokine and chemokine determination
Supernatants were subjected to BD Cytometric Bead Array measure-
ment of CCL4 (limit of detection of 4.88 pg ml–1), CCL5 (limit of detec-
tion of 1.22 or 4.88 pg ml–1) and TNF-α (limit of detection of 39.07 or 
9.7 pg ml–1), according to the manufacturer’s instructions. Samples 
were assessed using an LSRFortessa and FACS Diva software 6.1.3, and 
all concentrations were determined relative to a standard curve.

Real-time PCR
Cells were resuspended in TRIzol (Life Technologies), and mRNA was 
extracted using a Direct-zol RNA MicroPrep kit (Zymo Research) fol-
lowing the manufacturer’s instructions. cDNA was synthesized with an 
Omniscript RT kit for reverse transcription (Qiagen) using oligo(dT) 
primers (Promega) and RNaseOUT recombinant ribonuclease inhibitor 
(Thermo Fisher Scientific). Real-time PCR was performed with Taqman 
Universal PCR master mix (Life Technologies) with primers/probes for 
18S (Mm03928990_g1), B2m (Mm00437762_m1), Ccl4 (Mm00443111_
m1), Ccl5 (Mm01302427_m1), Cd83 (Mm00486868_m1), Cxcl16 
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Immunoblotting
BMDC1s were lysed in resuspension with RIPA buffer containing 50 mM 
Tris-HCl (pH 8), 150 mM sodium chloride, 1% NP-40, 0.5% sodium deoxy-
cholate and 0.1% SDS (Sigma-Aldrich) supplemented with PhosSTOP 
phosphatase inhibitor cocktail tablets (Roche) and cOmplete protease 
inhibitor cocktail tablets (Roche). Cell lysates were rotated at 4 °C 
for 30 min and clarified at 4 °C at 13,000g for 10 min. Proteins were 
denatured for 5 min at 90 °C with sample buffer containing 350 mM 
Tris-HCl (pH 6.8–5), 5% β-mercaptoethanol, 10% SDS, 36% glycerol 
and 0.0012% bromophenol blue. Proteins were then separated using 
NuPAGE 4–12% Bis-Tris gels (Thermo Fisher Scientific). Proteins were 
transferred onto nitrocellulose membranes (Bio-Rad) and blocked 
for 30 min with either 5% milk or 5% bovine serum albumin (BSA; for 
phosphorylated proteins) in PBS or TBS (for phosphorylated proteins) 
with 0.1% Tween 20. The following primary antibodies were used: 
rabbit anti-NF-κB p65 (D14E12), mouse anti-phospho S536 NF-κB p65 
(7F1), rabbit anti-IκBα (44D4) and rabbit anti-β-actin (13E5), all pur-
chased from Cell Signaling Technology. Membranes were incubated 
with horseradish peroxidase-conjugated secondary antibodies goat 
anti-rabbit IgG and horse anti-mouse IgG (Cell Signaling Technology) 
and subsequently with a Novex ECL chemiluminescent substrate rea-
gent kit before imaging. Quantitative analysis of the signal intensity 
was performed using ImageJ software.

PhosFlow cytometry
Following in vitro stimulation of BMDCs, 100 µl of warm PhosFlow 
Lyse/Fix Buffer (BD Biosciences) was directly added to the samples 
and incubated for 10 min at 37 °C. Samples were then resuspended in 
PhosFlow Perm Buffer III (BD Biosciences) and incubated for 30 min on 
ice. After being washed twice, samples were stained for 1 h at room tem-
perature with the antibodies described above supplemented with anti-
body to phospho-P44/42 MAPK (ERK1/ERK2; Thr 202/Tyr 204; 197G2; 
Cell Signaling Technology) and phospho-p38 MAPK (Thr 180/Tyr 182; 
4NIT4KK; Thermo Fisher Scientific). A Biosciences Cytek Aurora was 
used for the measurement of samples, and FlowJo software (TreeStar) 
was used for analysis.

CRISPR–Cas9 gene editing
Freshly isolated bone marrow precursors were edited via electropo-
ration before culture with FLT3L, as described previously42. In brief, 
per 10 × 106 mouse bone marrow precursors to be electroporated, 
61 pmol of Cas9 nuclease (IDT) and 300 pmol of sgRNA (Synthego) were 
combined and incubated for 10 min at room temperature, generating 
Cas9–sgRNA ribonucleoprotein complex. Bone marrow precursors 
(10 × 106) were then washed with 1× PBS twice and resuspended in 20 µl 
of P3 buffer (Lonza) combined with the Cas9–sgRNA complex and elec-
troporated using 4D-Nucleofector (Lonza) using the pulse code CM-137. 
Prewarmed medium was immediately added in electroporation wells 
to allow cells to recover for 10 min at 37 °C. Cells were subsequently 
cultured for 8 days in complete medium supplemented with FLT3L, 
as described above. sgRNA sequences used were Fos (UAGUGCCAAC-
UUUAUCCCCA) and NTC (GCACUACCAGAGCUAACUCA).

Virus infection and viral titers
HSV-1 KOS was grown using Vero cells (CSL). Mice were epicutane-
ously infected with 106 plaque-forming units of HSV-1, as previously 
described6.

Flow cytometry analysis of in vivo HSV-1 responses
Endogenous HSV-specific CD8+ T cells were analyzed using 
H-2Kb-restricted gB498–505-specific tetramers, as previously described6. 
In some experiments, Ccl5−/− and wild-type mice were transferred 
with 50,000 naive HSV-specific CD8+ T cells (gBT-I cells) before infec-
tion, and their expansion was measured 10 days later in the spleen, 
as described previously6. IFNγ production in gB498–505-specific CD8+ 

T cells was measured after restimulation for 5 h ex vivo in the presence 
of brefeldin A. Single-cell suspensions were stained with antibodies 
to CD16/CD32 (2.4G2, Fc block), CD8 (53-6.7), CD44 (IM7), CD45.2 
(104) and CD3 (145-2C11) and, when necessary, with either CD45.1 
monoclonal antibody (A20) or tetramer staining. After fixation and 
permeabilization with BD Cytofix/Cytoperm (BD Biosciences), cells 
were stained for 20 min at room temperature with antibodies to IFNγ 
(XMG1.2) in BD Perm/Wash buffer (BD Biosciences) before analysis on a 
flow cytometer. Dead cells were excluded by using a LIVE/DEAD fixable 
dead cell stain kit (Thermo Fisher Scientific). A BD LSRFortessa and a 
FACS Diva or Biosciences Cytek Aurora and SpectroFlo were used for 
measurement of samples, and FlowJo software (TreeStar) was used for 
analysis. In some experiments, CD8+ DCs from wild-type versus Ifnar2−/− 
mice were analyzed in the brachial lymph node 2 days after HSV-1 skin 
infection, as previously described6. Cells were stained with antibodies 
to CD11c (N418), CD8 (53-6.7), CD3 (145-2C11, BD Biosciences), CD19 
(1D3), NK1.1 (PK136) and IA/E (2G9), and CD8+ DCs were then processed 
on an analytic flow cytometer (LSRFortessa BD Biosciences).

BM chimeras
Mixed chimeras were generated as previously described6. C57BL/6 mice 
were lethally irradiated with 2 × 550 cGy and were reconstituted with a 
total of 5 × 106 bone marrow cells, previously depleted for T cells, from 
Cxcr6−/− and wild-type mice in a 1:1 ratio.

scRNA-seq data generation and analysis
scRNA-seq data of PBMCs from individuals with COVID-19 and healthy 
control individuals collected from April to July 2020 in Bonn, Germany, 
were used, as previously reported26. Samples were classified by disease 
severity according to the WHO ordinal scale (WHO score of 3, mild; 
WHO score of 4–5, moderate; WHO score of 7, severe) and by the time 
after onset of first symptoms (early: days 0–10, late: >day 11) at the 
date of sampling. Details about sample procurement and processing, 
sequencing and data analysis have been previously described25, and 
an extensive description of the protocol has also been published43. 
Processed and annotated scRNA-seq data25 were used as published 
previously and are available at https://beta.fastgenomics.org/p/
schulte-schrepping_covid19. The data were imported into R version 
4.0.3 and were mainly analyzed using Seurat v3.9.9.

Subset analysis of DCs and monocytes
PBMCs were subjected to Seurat v4 reference mapping following the 
developer vignette (satijalab.org/seurat/articles/multimodal_refer-
ence_mapping.html) using the multimodal PBMC reference data set44. 
Only those cells classified as DC or monocyte subsets were selected 
to remove any possible cellular contaminations in the data set. Sub-
sequently, the remaining 37,100 cells were reclustered after scaling 
and regressing for unique molecular identifier (UMI) count per cell, 
identification of variable genes and PCA in this cellular subspace using 
the Louvain algorithm with a resolution of 0.2 based on the first 10 
PCs. Clusters representing DCs or classical CD14+ monocytes were 
then subsetted, respectively, and the resulting 31,736 monocytes and 
722 DCs were analyzed in detail, including rescaling, identification 
of variable genes, PCA and subsequent UMAP based on the first 10 
PCs. Disease severity-specific marker gene analysis was performed 
using the Wilcoxon rank-sum test with the following cutoffs: genes 
had to be expressed in more than 10% of the cells of the respective 
condition and exceed a logarithmic fold change cutoff of at least 0.2. 
Before dot plot visualization and functional enrichment analyses, 
sets of differentially expressed genes were filtered for ribosomal 
protein-coding genes (RPL/RPS), mitochondrial genes (MT-) and hemo-
globin genes (HBA1, HBA2 and HBB). Hallmark enrichment analysis of 
differentially expressed gene sets was performed using the Hallmark 
v7.3 database and the enricher function implemented in the R pack-
age clusterProfiler v3.18.0 (ref. 45). Gene set enrichment analyses of 
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‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ gene signatures 
in the differentially expressed genes in monocytes from individuals 
with mild COVID-19 compared to those from individuals with severe 
disease were performed using the fgsea package v1.16.0. Single-sample 
GSVA using the ‘CD40-unresponsive’, ‘amplified’ and ‘combinato-
rial’ signatures derived from the mouse bulk RNA-seq analysis of this 
study was performed using GSVA v1.38.2 (ref. 46). For this, aggregated 
expression values of all cells of each sample were calculated using the 
AggregateExpression function in Seurat and were used as input for the 
sample-specific analysis. Of note, the IFNαA response signature was 
intersected with the top 100 IFN-response genes derived from an inte-
grated analysis of eight microarray data sets on IFN response of myeloid 
cells listed in the Interferome database (http://www.interferome.org/)10 
ranked by their combined log2(fold change) values to reduce the signa-
ture to a length comparable to the amplified and combinatorial signa-
tures. Transcription factor binding motif enrichment analysis based on 
the significantly differentially expressed genes in monocytes derived 
from individuals with mild COVID-19 compared to cells from individu-
als with severe disease and those differentially expressed genes that 
intersected with the ‘amplified’ and ‘combinatorial’ gene signatures 
was performed using RcisTarget32, the hg38__refseq-r80__10kb_up_
and_down_tss.mc9nr.feather database and a normalized enrichment 
score threshold of 4. Enriched transcription factor binding motifs were 
filtered for the transfac_pro, cisbp and swissregulon databases and 
those motifs with high-confidence transcription factor annotation 
(TF_highConf). A network linking enriched target genes and predicted 
transcriptional regulators based on the Rcistarget transcription factor 
binding motif enrichment results was constructed and visualized in a 
circular layout using Cytoscape v3.7.1.

scRNA-seq analysis of CD14+ monocytes from individuals with 
IFN-AAB and corresponding healthy individuals
PBMC scRNA-seq data were produced from five control samples, five 
samples from individuals with moderate COVID-19, five samples from 
individuals with severe COVID-19 and seven samples from individuals 
with severe COVID-19 with IFN-AAB, which were tested for each indi-
vidual in virus neutralization assays described in Akbil et al.22. On the 
day of the experiment, frozen live PBMCs were thawed in prewarmed 
medium (RPMI 1640 (Gibco), 2% fetal calf serum (Sigma) and 0.01% 
Pierce Universal Nuclease (Thermo Fisher)). The PBMCs were then 
labeled with 0.5 µg of TotalSeq-C hashtag antibodies (Biolegend) in 
DPBS supplemented with 0.5% BSA and 2 mM EDTA for 30 min at 4 °C 
and washed at least three times with DPBS + 1% BSA. Subsequently, the 
PBMCs were counted, and up to seven different samples were pooled 
in equal proportions. The resulting cell pool was filtered through a 
40-µm mesh (Flowmi Cell Strainer, Merck) and super loaded with 
50,000 cells per lane in the Chromium Controller for partitioning 
single cells into nanoliter-scale Gel Bead-In-Emulsions (GEMs). For 
reverse transcription, cDNA amplification and library construction 
of the gene expression libraries, the Chromium Next GEM Single Cell 
kit 5′ v2 (10x Genomics) was used. The Chromium Single Cell 5′ Feature 
Barcode Library kit (10x Genomics) was used for preparing additional 
hashtag libraries. All libraries were prepared according to the proto-
cols provided by 10x Genomics, quantified by Qubit Flex fluorometer 
(Thermo Fisher) and quality checked using the 4150 TapeStation sys-
tem. Sequencing was performed in paired-end mode (R1 26 cycles, 
R2 90 cycles) on a NovaSeq 6000 (Illumina) with a NovaSeq 6000 S2 
reagent kit (100 cycles). After demultiplexing, raw sequencing data 
were processed with CellRanger v5 and aligned against the GRCh38 
reference, including TotalSeq-C hashtag barcodes. scRNA-seq UMI 
count matrices were imported into R 4.0.3, and gene expression data 
analysis was performed using the R/Seurat package 3.9.9. Cells from 
pooled samples were demultiplexed using a combination of HTODe-
mux implemented in Seurat and vireo (v0.5.6)47 after scoring common 
variants from the 1000Genomes project with cellsnp-lite (v1.2.0)48. 

Events classified as ‘negative’ and ‘doublet’ by the HTODemux algo-
rithm were assigned an ID via vireo classification. Subsequently, cells 
were filtered by number of features (over 200 and less than 5,000), 
percentage of mitochondrial genes (<10% mitochondrial UMIs) and 
number of counts per cell (<20,000) to exclude debris and doublets. 
Gene expression values were normalized by total UMI counts per cell, 
multiplied by 10,000 (TP10K) and log transformed by log10 (TP10k + 1). 
For cell-type annotation, cells were subjected to Seurat v4 reference 
mapping following the developer vignette using the multimodal PBMC 
reference data set44. Cells classified as CD14+ classical monocytes were 
selected and reclustered after scaling and identification of variable 
genes using vst and PCA using the Louvain algorithm with a resolu-
tion of 0.2 based on the first 10 PCs. A cluster characterized by the 
expression of T cell marker genes was removed to exclude potential 
T cell contamination in the CD14+ monocyte subset. Averaged gene 
expression values per sample of selected key genes were visualized as 
box plots across disease severity groups.

To increase the number of samples per severity group, scRNA-seq 
data of PBMCs from other COVID-19 cohorts produced using the same 
scRNA-seq protocol (10x Genomics, 5′) by us21 and others27,28 were 
included in the analysis and processed as described above. The total 
number of samples combined in this analysis was 263. All samples were 
grouped according to their WHO ordinal scale classification into mild 
(WHO score of 1–3), moderate (WHO score of 4–5) and severe (WHO 
score of 6–8) COVID-19 disease. In addition, samples known to be 
derived from individuals with IFN-AAB were subgrouped accordingly. 
PBMC scRNA-seq data from Van der Wijst et al.28 were downloaded 
and filtered for the earliest sample available per donor, resulting in 
11 control samples and 35 samples from individuals with moderate 
COVID-19, 26 samples from individuals with severe COVID-19 and 4 
samples from individuals with severe COVID-19 with IFN-AAB. PBMC 
scRNA-seq data from Su et al.27 were downloaded and filtered for the 
earliest sample available per donor, resulting in 17 control samples 
and 69 samples from individuals with mild COVID-19, 45 samples from 
individuals with moderate COVID-19 and 15 samples from individu-
als with severe COVID-19. PBMC scRNA-seq data from Georg et al.21 
included six control samples, five samples from individuals with mild 
COVID-19, two samples from individuals with moderate COVID-19 and 
six samples from individuals with severe COVID-19. Single-sample 
GSVA using the ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ 
signatures derived from the mouse bulk RNA-seq analysis of this study 
was performed using GSVA v1.38.2.

For validation, we additionally analyzed scRNA-seq data from DCs 
from PBMC data enriched for DCs as previously published26. After down-
loading the respective data from the public domain, we selected those 
cells originally classified as monocytes and DCs and followed the same 
procedure of filtering the cells using the Seurat v4 reference mapping 
approach, as outlined above. Differential gene expression analyses and 
signature enrichment analyses of the ‘CD40-unresponsive’, ‘amplified’ 
and ‘combinatorial’ signatures were performed as described above.

Subset analysis of CD8+ T cells
For detailed analysis of the CD8+ T cell compartment, cells classified 
as T cells according to the original annotation provided were selected 
from the PBMC data set. These cells were subjected to Seurat v4 refer-
ence mapping following the developer vignette (satijalab.org/seurat/
articles/multimodal_reference_mapping.html) using the multimodal 
PBMC reference data set44. Only those cells classified as T cells were 
selected to remove any possible cellular contaminations in the T cell 
data set. Subsequently, the remaining 45,516 cells were reclustered after 
scaling, regressing for UMI count per cell, identification of variable 
genes and PCA in this cellular subspace using the Louvain algorithm 
with a resolution of 0.2 based on the first 10 PCs. Cluster 1, represent-
ing CD8+ T cells, was then subsetted, and the resulting 12,386 cells 
were analyzed in detail, including rescaling, identification of variable 
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genes, PCA and subsequent UMAP49 based on the first 10 PCs. Riboso-
mal protein-coding genes (RPL/RPS), mitochondrial genes (MT-) and 
hemoglobin genes (HBA1, HBA2 and HBB) were excluded from the set of 
variable features to remove potential sources of technical differences. 
Single-sample GSVA using the ‘helped’ and ‘unhelped’ T cell signatures 
derived from RNA-seq analysis of CD8+ T cells primed in the presence 
or absence of CD4+ T cell responses was performed using GSVA v1.38.2. 
For this, aggregated expression values of all CD8+ T cells of each sample 
were calculated using the AggregateExpression function in Seurat and 
were used as input for the sample-specific analysis. Clustering of the 
CD8+ T cells was performed using the Louvain algorithm with a reso-
lution of 0.4 based on the first 10 PCs, and cells identified as γδT cells 
were removed. To investigate proportional cluster occupancy per 
disease severity, cell counts per condition were normalized before 
calculation of per-cluster percentages. Single-cell gene set enrichment 
analysis across cells of each CD8+ T cell subcluster using the ‘helped’ 
and ‘unhelped’ T cell signatures derived from RNA-seq analysis of CD8+ 
T cells primed in the presence or absence of CD4+ T cell responses was 
performed using AUCell v1.12.0 (ref. 32). For validation, we analyzed 
CD8+ T cells from two other data sets36,37. After downloading the respec-
tive data from the public domain, we followed the same procedure of 
filtering the cells using the Seurat v4 reference mapping approach and 
performed signature enrichment analysis using the above-mentioned 
T cell signatures.

Analysis of scATAC-seq data
scATAC-seq data of PBMCs from individuals with COVID-19 and healthy 
individuals produced using a Chromium Next GEM Single Cell ATAC 
reagent kit version 1.1 (10x Genomics, PN-1000175) was used, as pre-
viously published29. Processed and annotated scATAC-seq data from 
Wilk et al.29 were downloaded from Gene Expression Omnibus (GEO) 
under accession number GSE174072 and https://github.com/ajwilk/
COVID_scMultiome and were imported to R version 4.1.0. After creation 
of Arrow files and a respective ArchRproject using the R package ArchR 
version 1.0.1 (ref. 50), the resulting single-cell data were filtered based 
on the published cell annotation and subsetted to CD14+ monocytes. 
Imputation weights on GeneScores were calculated using MAGIC51 
implemented in ArchR’s addImputeWeights function. Severity-specific 
accessible genes were identified using the Wilcoxon rank-sum test com-
paring gene scores of monocytes from individuals with mild COVID-19 
to cells from control donors with the following cutoffs: FDR ≤ 0.05 
and log2(fold change) ≥ 0.58. Hallmark enrichment analyses were per-
formed using clusterProfiler version 4.0.5 and the Hallmark gene set 
v6.2. After generation of pseudo-bulk replicates across cells of each 
COVID-19 severity group, peaks were called using MACS3 (ref. 52) and 
annotated using ChIPseeker version 1.28.3 (ref. 53). Subsequently, 
transcription factor binding motifs were identified in the peak regions 
using the homer motif set. After calculation of severity-specific differ-
entially accessible peak regions (FDR ≤ 0.01 and log2(fold change) ≥ 2) 
comparing chromatin profiles of monocytes from individuals with mild 
and severe COVID-19 to cells from control donors, motif enrichment 
analysis was performed using ArchR’s peakAnnoEnrichment function.

CyTOF data and analysis
For mass cytometry data from a publicly available publication21, please 
refer to the Methods part of the work for detailed descriptions of the 
cohort, data collection and analysis workflows. Here, CD8+ T cells were 
separately reanalyzed and pregated using OMIQ cloud-based cytom-
etry analysis software, also in relation to the presence of IFN-AAB22. In 
addition to the steps described21, we performed a PCA using R (4.0.2), 
where principal components were first calculated for all the events, 
and averages of principal component values per individual were used 
in plotting. Figures were rendered with the help of the R package ggfor-
tify and function autoplot, which allows plotting of eigenvectors of 
input variables when used on precalculated principal components. 

An ellipse was calculated with ggplot2 to visually estimate the locali-
zation of different groups. Marker intensity box plots show average 
z-score-normalized intensity signals for all the CD8+ T cells per indi-
vidual. Z-score normalization was performed beforehand over all the 
immune cells acquired in CyTOF.

Flow cytometry analysis of monocytes and DCs in individuals 
with COVID-19
Fixed whole-blood samples from individuals with COVID-19 were col-
lected, processed and stored, as previously described25. The samples 
were subsequently thawed to room temperature, and erythrocytes 
were lysed with Thaw-Lysis buffer (Smart Buffer). After 5 min of treat-
ment with 50 U ml–1 Pierce Universal Nuclease for Cell Lysis (Thermo 
Scientific) and 20 min of blocking with 1 mg ml–1 beriglobin (CSL 
Behring), the samples were stained for 30 min at 4 °C with antibod-
ies to CD45 (HI30), CD11c (Bu15), CD14 (MφP9), CD3 (UCHT1), CD19 
(SJ25C1), CD40 (5C3), CD83 (HB15e), CD86 (IT2.2), HLA-DR (G46-6), 
CD16 (3G8), CD141 (1A4) and CD163 (GHI/61). A BD LSRFortessa was 
used for the measurement of samples, and FlowJo software (TreeStar) 
was used for analysis. Expression of CD45, CD3, CD19 and HLA-DR 
was used for granulocyte, T cell, B cell and natural killer cell exclu-
sion, respectively. Monocytes were gated as CD14+CD11c+ and DCs as 
CD14−HLA-DR+ events.

In vitro generation of human CD34+ stem cell-derived cDC1s
Human umbilical cord blood was obtained with written informed 
consent from the Queensland Cord Blood Bank and approval from 
the Mater Human Research Ethics Committee (HREC13/MHS/86). 
cDC1s were differentiated in a 9- to 10-d culture of in vitro expanded 
cord blood CD34+ progenitors in 100 ng ml–1 FLT3L (Peprotech), 
100 ng ml–1 stem cell factor (Peprotech), 2.5 ng ml–1 IL-4 (Invitrogen) 
and 2.5 ng ml–1 granulocyte–macrophage colony-stimulating factor 
(Invitrogen), as previously described30, but with the addition of an 
irradiated OP9-DL1 stromal cell feeder layer to maximize cDC1 yields54. 
CD141+CADM1+CLEC9A+ cDC1s were enriched to >80% purity by labe-
ling with biotinylated antibodies to human CADM1 (CM004-6) or CD141 
(M80) and anti-biotin microbeads, followed by positive selection on an 
LS column according to manufacturer’s instructions (Miltenyi). Puri-
fied cDC1s were cultured at a density of 1 × 106 per ml in the presence of 
1,000 U ml–1 human IFNα2a (PBL), 5 µg ml–1 CD40 agonistic antibody11 
(34G12-h2, a gift from M. Cragg at University of Southhampton) or a 
combination. TNF-α was detected in the supernatant after 18 h using 
a LegendPlex kit (Biolegend) on a CytoFLEX-S (Beckman Coulter)  
flow cytometer.

Quantification and statistical analysis
Prism v8.4.3 (GraphPad Software) was used to assess statistical sig-
nificance of non-RNA-seq data; z score = (x – mean)/s.d. The sample 
size (n), statistical significance and statistical tests are indicated in the 
legends. Data distribution was assumed to be normal, but this was not 
formally tested. Data collection and analysis were not performed blind 
to the conditions of the experiments and no formal randomization was 
used. No data points were excluded.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The RNA-seq data set generated in this study can be accessed via the 
GEO accession number GSE171690.

Code availability
Code used for the analysis of scRNA-seq and scATAC-seq data is avail-
able at https://github.com/schultzelab/Gressier_2022. We also provide 
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the scRNA-seq data sets used in this study and the code to analyze the 
respective data sets via FASTGenomics (https://beta.fastgenomics.
org/p/gressier_2022).
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Extended Data Fig. 1 | CD40 synergizes with varying inflammatory stimuli 
BMDC1. a, ‘BMDC1-IFN-αA+CD40’ increase secretion of CCL4, TNF-α and 
CCL5 (from left to right) over time compared to ‘BMDC1-IFN-αA’, ‘BMDC1-
CD40’ and ‘BMDC1-unstimulated’. Data are presented as mean ± s.e.m pooled 
from 3 independent experiments. Adjusted p-value of statistically significant 
differences between conditions as assessed by one-way ANOVA indicated.  
b, Changes in Il15 and Cxcl16 expression in ‘BMDC1-IFN-αA+CD40’ and ‘BMDC1-
IFN-β+CD40’ compared to ‘BMDC1-IFN-αA’ or ‘BMDC1-IFN-β’ respectively and 
to ‘BMDC1-CD40’ and ‘BMDC1-unstimulated’. c. Tnf and Ccl4 in expression in 
BMDC1s stimulated with LPS, CpG or poly(I:C) for 6 h with or without CD40 
Ab for the last 30 min. b-c, Data are presented as mean ± s.e.m pooled from 

3 independent experiments. Adjusted p-value of statistically significant 
differences between conditions as assessed by one-way ANOVA indicated; 
ns = non-significant. d, Percent of MHC-IIhi CD8+ DCs from IFNαR-deficient 
(Ifnar2−/−) and WT mice naïve or 2 days after epicutaneous HSV-1 infection. Data 
are presented as mean ± s.e.m pooled from 7 independent experiments (n≥5 per 
experiment). Statistically significant differences between conditions as assessed 
by Mann-Whitney test; two-tailed p-value indicated; ns = non-significant. 
e. ‘BMDC1-IFN-αA’ and ‘BMDC1-unstimulated’ increase CD40 expression 
to comparable levels over time. Data are presented as mean ± s.e.m pooled 
from 3 independent experiments. Two-way ANOVA performed between the 
corresponding conditions ns = non-significant.
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Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-023-01517-x

Extended Data Fig. 2 | CD40 stimulation induces successive waves of 
transcriptional regulation in IFN-αA-conditioned BMDC1. a, Genes included 
in modules 1, 2 and 3 from the co-expression analysis (Fig. 2e) displayed as 
heatmap. b, Top GO-terms associated with the genes included in modules  
1, 2 and 3 (Fig. 2e). c, Representative immunoblotting of IκBα degradation and 

P65 phosphorylation in 'BMDC1-IFNαA+CD40-15min', 'BMDC1-IFNαA-30min' 
and ‘BMDC1-IFN-αA+CD40-4h’ compared to ‘BMDC1-IFN-αA’, ‘BMDC1-CD40’ 
and ‘BMDC1-unstimulated’. Full gels of the two independent experiments are 
displayed below. Probing of β-actin and/or total P65 served as loading control.
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Extended Data Fig. 3 | Enrichment of APC with ‘help’-dependent 
transcriptional profiles in patients with moderate COVID-19. a, Differentially 
expressed genes in DCs comparing disease severity and disease stage that 
correspond to the ‘CD40 unresponsive’, ‘amplified’ and ‘combinatorial’. Data 
from published DC-enriched scRNAseq data26. b, Average gene expression in 
CD14+ monocytes per sample across selected key genes in a cohort of control 
(n=5), mild (n=5) and severe (n=5) COVID-19 patients and 7 samples derived 
from patients with IFN-AAB. c. Combined data set across 263 samples including 
controls (n=39), mild COVID-19 (WHO 1-3, n=79), moderate COVID-19 (WHO 

4-5, n=82), severe COVID-19 (WHO 6-8, n=52), severe COVID-19 with IFN-AAB 
(WHO 7-8, n=11). Samples are stratified by disease severity according to the WHO 
ordinal scale as indicated and segregated by time point of sample collection 
relative to the onset of symptoms where available. c, Single-sample GSVA of 
the ‘CD40 unresponsive’, ‘amplified’ and ‘combinatorial’ gene signatures in 
monocytes from COVID-19 and control samples of the combined data set in b. 
stratified by disease severity and plotted as box plots of the enrichment scores. 
Wilcoxon rank-sum test p-value is shown.
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Extended Data Fig. 4 | Enrichment of CD8+ T cells with ‘help’-dependent 
transcriptional profiles in patients with moderate COVID-19. a, Differential 
expression of selected key genes in CD8+ T cells derived from PBMCs scRNA-seq 
data of moderate and severe cases of COVID-19 and healthy HC originally as 
published36. b, AUCell enrichment of CD8+ T cells for ‘helped’ and ‘unhelped’  
T cell gene signatures derived from RNA-seq analysis of CD8+ T cells primed in 
the presence or absence of CD4+ T cell help. Data are stratified by disease severity 
and plotted as violin plots of the ‘Area Under the Curve’ (AUC) scores. c. AUCell 
enrichment of CD8+ T cells for ‘helped’ and ‘unhelped’ T cell gene signatures 

derived from RNA-seq analysis of CD8+ T cells primed in the presence or absence 
of CD4+ T cell help. Data are derived from scRNA-seq of nasopharyngeal and 
bronchial samples stratified by disease severity and plotted as violin plots of the 
‘Area Under the Curve’ (AUC) scores37. d, Heatmap showing z-scaled expression 
values of indicated proteins across the clusters identified in the CyTOF data 
of individuals with COVID-19 and HCs. e. Box plots showing relative cluster 
abundances of selected clusters across COVID-19 and control samples stratified 
according to disease severity and presence of IFN-AAB. Benjamini-Hochberg 
corrected pairwise Wilcoxon p-values are shown.
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