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Abstract

One of the main tasks in Engineering Geodesy is the measurement
and monitoring of geometry related phenomena on local or regional
scales. Examples are the generation of high-resolution 3D city mod-
els, as they are needed for autonomous driving, and the monitoring

of artificial or natural objects, such as bridges, glaciers or sliding slopes. In the
last decade, these tasks have been more and more realized using mobile sen-
sor platforms, such as robots, cars, or Unmanned Aerial Vehicles (UAVs). The
platforms are equipped with laser scanners and cameras and collect data while
moving through the environment. In this way, it is possible to perform the task
of mapping an area of interest with a much higher density and efficiency.

A crucial part of this mobile mapping process is the georeferencing of the lo-
cally acquired sensor data, registering those data in a globally defined coordinate
system. For this, it is necessary to know the vehicle’s trajectory during the mea-
surement process. This thesis introduces several contributions to the general field
of trajectory estimation of moving platforms, including better sensor configura-
tions, new calibration procedures and improved processing algorithms. Another
set of contributions describes the development, calibration and evaluation of some
specific mobile mapping systems. These are airborne and ground-based systems,
with applications ranging from general surveying and deformation analysis to
agriculture.

iii





Contents

Abstract iii

Contents v

Publications vii

1 Introduction 1
1.1 Mobile Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution and Structure of the Thesis . . . . . . . . . . . . . . 4

2 Inertial Navigation 9
2.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Inertial Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Global Navigation Satellite Systems . . . . . . . . . . . . . . . . . 15
2.5 State Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . 17

3 Localization in GNSS-Denied Environments 23
3.1 Dead-Reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Radio Ranging and Proximity Sensing . . . . . . . . . . . . . . . 25
3.3 Integration of Constraints . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Use of Mapping Sensors for Navigation . . . . . . . . . . . . . . . 28

4 High Precision Mobile Laser Scanning 31
4.1 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Quality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Application Example: Road Monitoring . . . . . . . . . . . . . . 35

5 Mapping With UAVs 37
5.1 Mapping on Demand . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Deformation Monitoring . . . . . . . . . . . . . . . . . . . . . . . 40

v



Contents

5.3 Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 UAV-Based Laser Scanning . . . . . . . . . . . . . . . . . . . . . 44

6 High-Throughput Phenotyping in Viticulture 47
6.1 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Yield Estimation Using Point Clouds . . . . . . . . . . . . . . . . 49
6.3 Image-Based Yield Estimation Using CNNs . . . . . . . . . . . . 50

7 Conclusion and Outlook 53

vi



Publications

Peer-Reviewed after Dissertation,
Used as Basis for this Cumulative Thesis

Book Chapters
[B1] Klingbeil, L. (2022). Georeferencing UAV measurements. UAVs for the Environmental

Sciences, 87–108. wbg Academic Darmstadt
[B2] Kuhlmann, H. & Klingbeil, L. (2015). Mobile Multisensorsysteme. Handbuch der

Geodäsie, 1–36. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-
46900-2_20-1

Journal Articles
[J1] Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Roscher, R., & Kuhlmann, H.

(2022). Image-based analysis of yield parameters in viticulture. Biosystems Engineering,
218, 94–109. https://doi.org/10.1016/j.biosystemseng.2022.04.009

[J2] Dreier, A., Janßen, J., Kuhlmann, H., & Klingbeil, L. (2021). Quality analysis of
direct georeferencing in aspects of absolute accuracy and precision for a UAV-based
laser scanning system. Remote Sensing, 13(18), 3564. https://doi.org/10.3390/
rs13183564

[J3] Lucks, L., Klingbeil, L., Plümer, L., & Dehbi, Y. (2021). Improving trajectory esti-
mation using 3D city models and kinematic point clouds. Transactions in GIS, 25(1),
238–260. https://doi.org/10.1111/tgis.12719

[J4] Honecker, A., Schumann, H., Becirevic, D., Klingbeil, L., Volland, K., Forberig, S.,
Jansen, M., Paulsen, H., Kuhlmann, H., & Léon, J. (2020). Plant, space and time -
linked together in an integrative and scalable data management system for phenomic
approaches in agronomic field trials. Plant Methods, 16(1), 55. https://doi.org/10.
1186/s13007-020-00596-3

[J5] Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Kuhlmann, H., & Roscher, R.
(2020). Counting of grapevine berries in images via semantic segmentation using con-
volutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing,
164, 73–83. https://doi.org/10.1016/j.isprsjprs.2020.04.002

[J6] Eichel, J., Draebing, D., Kattenborn, T., Senn, J. A., Klingbeil, L., Wieland, M., &
Heinz, E. (2020). Unmanned aerial vehicle-based mapping of turf-banked solifluction
lobe movement and its relation to material , geomorphometric , thermal and vegetation

vii

https://doi.org/10.1007/978-3-662-46900-2_20-1
https://doi.org/10.1007/978-3-662-46900-2_20-1
https://doi.org/10.1016/j.biosystemseng.2022.04.009
https://doi.org/10.3390/rs13183564
https://doi.org/10.3390/rs13183564
https://doi.org/10.1111/tgis.12719
https://doi.org/10.1186/s13007-020-00596-3
https://doi.org/10.1186/s13007-020-00596-3
https://doi.org/10.1016/j.isprsjprs.2020.04.002


Contents

properties. Permafrost and Periglacial Processes, 31(1), 97–109. https://doi.org/10.
1002/ppp.2036

[J7] Heinz, E., Holst, C., Kuhlmann, H., & Klingbeil, L. (2020). Design and evaluation of
a permanently installed plane-based calibration field for mobile laser scanning systems.
Remote Sensing, 12(3), 555. https://doi.org/10.3390/rs12030555

[J8] Zimmermann, F., Schmitz, B., Klingbeil, L., & Kuhlmann, H. (2019). GPS multipath
analysis using fresnel zones. Sensors, 19(1), 25. https://doi.org/10.3390/s19010025

[J9] Wilke, N., Siegmann, B., Klingbeil, L., Burkart, A., Kraska, T., Muller, O., van Doorn,
A., Heinemann, S., & Rascher, U. (2019). Quantifying lodging percentage and lodging
severity using a UAV-based canopy height model combined with an objective threshold
approach. Remote Sensing, 11(5), 515. https://doi.org/10.3390/rs11050515

[J10] Heinz, E., Eling, C., Klingbeil, L., & Kuhlmann, H. (2019). On the applicability of a
scan-based mobile mapping system for monitoring the planarity and subsidence of road
surfaces - pilot study on the A44n motorway in germany. Journal of Applied Geodesy,
14(1), 39–54. https://doi.org/10.1515/jag-2019-0016

[J11] Zimmermann, F., Holst, C., Klingbeil, L., & Kuhlmann, H. (2018). Accurate georef-
erencing of TLS point clouds with short GNSS observation durations even under chal-
lenging measurement conditions. Journal of Applied Geodesy, 12(4), 289–301. https:
//doi.org/10.1515/jag-2018-0013

[J12] Kicherer, A., Herzog, K., Bendel, N., Klück, H. C., Backhaus, A., Wieland, M., Rose,
J. C., Klingbeil, L., Läbe, T., Hohl, C., Petry, W., Kuhlmann, H., Seiffert, U., & Töpfer,
R. (2017). Phenoliner: A new field phenotyping platform for grapevine research. Sensors,
17(7), 1625. https://doi.org/10.3390/s17071625

[J13] Eichel, J., Draebing, D., Klingbeil, L., Wieland, M., Eling, C., Schmidtlein, S., Kuhlmann,
H., & Dikau, R. (2017). Solifluction meets vegetation: the role of biogeomorphic feed-
backs for turf-banked solifluction lobe development. Earth Surface Processes and Land-
forms, 42(11), 1623–1635. https://doi.org/10.1002/esp.4102

[J14] Klingbeil, L., Eling, C., Heinz, E., Wieland, M., & Kuhlmann, H. (2017). Direct
georeferencing for portable mapping systems: In the air and on the ground. Journal of
Surveying Engineering, 143(4), 04017010. https://doi.org/10.1061/(asce)su.1943-
5428.0000229

[J15] Rose, J. C., Kicherer, A., Wieland, M., Klingbeil, L., Töpfer, R., & Kuhlmann, H.
(2016). Towards automated large-scale 3D phenotyping of vineyards under field condi-
tions. Sensors, 16(12), 2136. https://doi.org/10.3390/s16122136

[J16] Heinz, E., Eling, C., Wieland, M., Klingbeil, L., & Kuhlmann, H. (2015). Development,
calibration and evaluation of a portable and direct georeferenced laser scanning system
for kinematic 3D mapping. Journal of Applied Geodesy, 9(4), 227–243. https://doi.
org/10.1515/jag-2015-0011

[J17] Eling, C., Klingbeil, L., & Kuhlmann, H. (2015a). Real-time single-frequency GPS /
MEMS - IMU attitude determination of lightweight UAVs. Sensors, 15(10), 26212–26235.
https://doi.org/10.3390/s151026212

[J18] Klingbeil, L., Eling, C., Zimmermann, F., & Kuhlmann, H. (2014a). Magnetic field
sensor calibration for attitude determination. Journal of Applied Geodesy, 8(2), 97–108.
https://doi.org/10.1515/jag-2014-0003

[J19] Schopp, P., Graf, H., Maurer, M., Romanovas, M., Klingbeil, L., & Manoli, Y. (2014).
Observing relative motion with three accelerometer triads. IEEE Transactions on In-

viii

https://doi.org/10.1002/ppp.2036
https://doi.org/10.1002/ppp.2036
https://doi.org/10.3390/rs12030555
https://doi.org/10.3390/s19010025
https://doi.org/10.3390/rs11050515
https://doi.org/10.1515/jag-2019-0016
https://doi.org/10.1515/jag-2018-0013
https://doi.org/10.1515/jag-2018-0013
https://doi.org/10.3390/s17071625
https://doi.org/10.1002/esp.4102
https://doi.org/10.1061/(asce)su.1943-5428.0000229
https://doi.org/10.1061/(asce)su.1943-5428.0000229
https://doi.org/10.3390/s16122136
https://doi.org/10.1515/jag-2015-0011
https://doi.org/10.1515/jag-2015-0011
https://doi.org/10.3390/s151026212
https://doi.org/10.1515/jag-2014-0003


Contents

strumentation and Measurement, 63(12), 3137–3151. https://doi.org/10.1109/tim.
2014.2327472

[J20] Eling, C., Klingbeil, L., Wieland, M., & Kuhlmann, H. (2014). Direct georeferencing
of micro aerial vehicles - system design, system calibration and first evaluation tests.
Photogrammetrie - Fernerkundung - Geoinformation, 2014(4), 227–237. https://doi.
org/10.1127/1432-8364/2014/0239

[J21] Schopp, P., Klingbeil, L., Peters, C., & Manoli, Y. (2010). Design, geometry evaluation,
and calibration of a ggyroscope-free inertial measurement unit. Sensors and Actuators
A: Physical, 162(2), 379–387. https://doi.org/10.1016/j.sna.2010.01.019

[J22] Wark, T., Corke, P., Sikka, P., Klingbeil, L., Ying, G., Crossman, C., Valencia, P.,
Swain, D., & Bishop-Hurley, G. (2007). Transforming agriculture through pervasive
wireless sensor networks. IEEE Pervasive Computing, 6(2), 50–57. https://doi.org/
10.1109/mprv.2007.47

Conference Papers
[C1] Klingbeil, L., Heinz, E., Wieland, M., Eichel, J., Laebe, T., & Kuhlmann, H. (2019).

On the UAV-based analysis of slow geomorphological processes: A case study at a solifluc-
tion lobe in the turtmann valley. 2019 Joint International Symposium on Deformation
Monitoring (JISDM), Athens, Greece

[C2] Becirevic, D., Klingbeil, L., Honecker, A., Schumann, H., Rascher, U., Léon, J., &
Kuhlmann, H. (2019). On the derivation of crop heights from multitemporal UAV-based
imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, IV-2/W5(2/W5), 95–102. https://doi.org/10.5194/isprs-annals-iv-2-
w5-95-2019

[C3] Zabawa, L., Kicherer, A., Klingbeil, L., Milioto, A., Töpfer, R., Kuhlmann, H., &
Roscher, R. (2019). Detection of single grapevine berries in images using fully convo-
lutional neural networks. 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2571–2579. https://doi.org/10.1109/cvprw.
2019.00313

[C4] Heinz, E., Eling, C., Wieland, M., Klingbeil, L., & Kuhlmann, H. (2017). Analysis
of different reference plane setups for the calibration of a mobile laser scanning system.
Ingenieurvermessung 17, Beiträge zum 18. Internationalen Ingenieurvermessungskurs,
Graz, Austria, 1–14

[C5] Holst, C., Klingbeil, L., Esser, F., & Kuhlmann, H. (2017). Using point cloud com-
parisons for revealing deformations of natural and artificial objects. 2017 Interna-
tional Conference on Engineering Surveying (INGEO), 265–274. http://www.fig.net/
resources/proceedings/2017/2017{_}10{_}INGEO/72PR{_}TS7-2{_}Holst.pdf

[C6] Zimmermann, F., Eling, C., Klingbeil, L., & Kuhlmann, H. (2017). Precise positioning
of UAVs - dealing with challenging RTK-GPS measurement conditions during automated
UAV flights. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 4, 95–102. https://doi.org/10.5194/isprs-annals-iv-2-w3-95-2017

[C7] Schneider, J., Eling, C., Klingbeil, L., Kuhlmann, H., Förstner, W., & Stachniss, C.
(2016). Fast and effective online pose estimation and mapping for UAVs. 2016 IEEE
International Conference on Robotics and Automation (ICRA). https://doi.org/10.
1109/icra.2016.7487682

ix

https://doi.org/10.1109/tim.2014.2327472
https://doi.org/10.1109/tim.2014.2327472
https://doi.org/10.1127/1432-8364/2014/0239
https://doi.org/10.1127/1432-8364/2014/0239
https://doi.org/10.1016/j.sna.2010.01.019
https://doi.org/10.1109/mprv.2007.47
https://doi.org/10.1109/mprv.2007.47
https://doi.org/10.5194/isprs-annals-iv-2-w5-95-2019
https://doi.org/10.5194/isprs-annals-iv-2-w5-95-2019
https://doi.org/10.1109/cvprw.2019.00313
https://doi.org/10.1109/cvprw.2019.00313
http://www.fig.net/resources/proceedings/2017/2017{_}10{_}INGEO/72PR{_}TS7-2{_}Holst.pdf
http://www.fig.net/resources/proceedings/2017/2017{_}10{_}INGEO/72PR{_}TS7-2{_}Holst.pdf
https://doi.org/10.5194/isprs-annals-iv-2-w3-95-2017
https://doi.org/10.1109/icra.2016.7487682
https://doi.org/10.1109/icra.2016.7487682


Contents

[C8] Eling, C., Klingbeil, L., Wieland, M., & Kuhlmann, H. (2016). Towards deforma-
tion monitoring with UAV- based mobile mapping systems. 2016 Joint International
Symposium on Deformation Monitoring (JISDM), TU Wien, Vienna

[C9] Eling, C., Wieland, M., Hess, C., Klingbeil, L., & Kuhlmann, H. (2015b). Develop-
ment and evaluation of a UAV-based mapping system for remote sensing and surveying
applications. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XL-1/W4(1W4), 233–239. https://doi.org/10.5194/
isprsarchives-xl-1-w4-233-2015

[C10] Klingbeil, L., Nieuwenhuisen, M., Schneider, J., Eling, C., Droeschel, D., Holz, D.,
Läbe, T., Förstner, W., Behnke, S., & Kuhlmann, H. (2014b). Towards autonomous
navigation of a UAV-based mobile mapping system. 2014 International Conference
on Machine Control and Guidance (MCG), 136–147. http://www.digibib.tu-bs.
de/?docid=00056119

[C11] Romanovas, M., Goridko, V., Klingbeil, L., Bourouah, M., Al-Jawad, A., Traechtler,
M., & Manoli, Y. (2013). Pedestrian indoor localization using foot mounted inertial
sensors in combination with a magnetometer, a barometer and RFID. Lecture Notes in
Geoinformation and Cartography, 151–172. Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-642-34203-5_9

[C12] Klingbeil, L., Romanovas, M., Schneider, P., Traechtler, M., & Manoli, Y. (2010). A
modular and mobile system for indoor localization. 2010 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). https://doi.org/10.1109/ipin.
2010.5646700

[C13] Schopp, P., Klingbeil, L., Peters, C., Buhmann, A., & Manoli, Y. (2009). Sensor
fusion algorithm and calibration for a gyroscope-free IMU. Procedia Chemistry, 1(1),
1323–1326. https://doi.org/10.1016/j.proche.2009.07.330

[C14] Romanovas, M., Klingbeil, L., Trächtler, M., & Manoli, Y. (2009). Efficient orientation
estimation algorithm for low cost inertial and magnetic sensor systems. 2009 IEEE/SP
15th Workshop on Statistical Signal Processing. https://doi.org/10.1109/ssp.2009.
5278507

[C15] Klingbeil, L. & Wark, T. (2008). A wireless sensor network for real-time indoor locali-
sation and motion monitoring. 2008 International Conference on Information Processing
in Sensor Networks (IPSN). https://doi.org/10.1109/ipsn.2008.15

[C16] Klingbeil, L., Wark, T., & Bidargaddi, N. (2007). Efficient transfer of human motion
data over a wireless delay tolerant network. 2007 3rd International Conference on In-
telligent Sensors, Sensor Networks and Information (ISSNIP). https://doi.org/10.
1109/issnip.2007.4496908

x

https://doi.org/10.5194/isprsarchives-xl-1-w4-233-2015
https://doi.org/10.5194/isprsarchives-xl-1-w4-233-2015
http://www.digibib.tu-bs.de/?docid=00056119
http://www.digibib.tu-bs.de/?docid=00056119
https://doi.org/10.1007/978-3-642-34203-5_9
https://doi.org/10.1007/978-3-642-34203-5_9
https://doi.org/10.1109/ipin.2010.5646700
https://doi.org/10.1109/ipin.2010.5646700
https://doi.org/10.1016/j.proche.2009.07.330
https://doi.org/10.1109/ssp.2009.5278507
https://doi.org/10.1109/ssp.2009.5278507
https://doi.org/10.1109/ipsn.2008.15
https://doi.org/10.1109/issnip.2007.4496908
https://doi.org/10.1109/issnip.2007.4496908


Chapter 1

Introduction

[B2] Kuhlmann, H. & Klingbeil, L. (2015). Mobile Multisensorsysteme. Handbuch der Geodäsie, 1–36.
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_20-1

[J14] Klingbeil, L., Eling, C., Heinz, E., Wieland, M., & Kuhlmann, H. (2017). Direct georeferencing for
portable mapping systems: In the air and on the ground. Journal of Surveying Engineering, 143(4),
04017010. https://doi.org/10.1061/(asce)su.1943-5428.0000229

[B1] Klingbeil, L. (2022). Georeferencing UAV measurements. UAVs for the Environmental Sciences, 87–108.
wbg Academic Darmstadt

1.1 Mobile Mapping
With mobile mapping systems, it is possible to create maps of the environment
with high efficiency. We consider a map a two- or three-dimensional geometric
representation of the area of interest, sometimes augmented with additional in-
formation, such as colour, temperature, or spectral reflectance. Mobile mapping
systems are aerial or ground-based vehicles usually equipped with laser scanners
or cameras to map the surrounding space. Although the early aerial surveying
planes and remote sensing satellites were not called mobile mapping systems,
they can be seen as the predecessors of this modern measurement technology.
Nowadays, the platforms move closer to the objects of interest. The sensors have
a higher resolution and a higher measurement rate to create maps with higher
resolution and accuracy.

The list of applications for mobile mapping systems is long. High-resolution
3D models of whole cities can be used for autonomous driving, planning con-
struction projects, or monitoring the quality of the transportation infrastructure.
The systems are also used in many areas of environmental monitoring, such as
geomorphology, agriculture and forestry. Depending on the applications and the
used mapping platforms, the derived products differ significantly in their expan-
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1.2. Georeferencing

sion, resolution, accuracy or type of information. In all cases, the georeferencing
of the sensor data is the key step in the map-generation process.

1.2 Georeferencing

Figure 1.1: Principle of Mobile Mapping and georeferencing.

Fig. 1.1 illustrates the concept of georeferencing of mobile mapping data.
The platform with the attached mapping sensor moves through the environment
of interest. It collects data about the environment in the form of sensor data,
given in the sensor coordinate frame. In order to register these local data in
a global coordinate frame, the transformation Tg

s(tk) between the sensor frame
and the global frame needs to be known for all measurement times tk. This
transformation strongly depends on the platform’s trajectory, which is needed in
the georeferencing process. We now further explain this process for the examples
of mobile laser scanning and image-based mapping.

Mobile Laser Scanning A laser scanner, which is attached to the platform
observes an object point (o) in the environment at the time tk in the local laser
scanner coordinate system (s) as xs

o(tk). The process of georeferencing determines
the transformation Tg

s, which is necessary to provide the object coordinate xg
o in

the global coordinate system (g):

xg
o = Tg

s(tk)xs
o(tk). (1.1)

2



1. Introduction

T here describes a rotation and a translation. The coordinate system (b) of the
mobile platform can be integrated as well, leading to

xg
o = Tg

b(tk)Tb
s(tk)xs

o(tk). (1.2)

This equation is called georeferencing equation, and the derivation of the series
of transformations Tg

b(tk) corresponds to the already mentioned trajectory of the
platform. The derivation of Tb

s(tk) is called system calibration. In most cases,
the transformation Tb

s(tk) can be considered constant over time. However, in
the general case, it can also change over time. An overview of the principles of
mobile laser scanning is given in [B2]. In Ch. 4 we provide more details on the
calibration and application of mobile laser scanning.

Image-Based Mapping The formulation of the georeferencing equation is not
as straightforward for the case of systems, where the map is generated from im-
ages. The reason is that an image is not a direct 3D measurement of an ob-
ject point, which only needs to be transformed to the target coordinate system.
Instead, it is a measurement of the direction of the point without distance in-
formation. Therefore the object point must be reconstructed from multiple ob-
servations, usually in an adjustment procedure. We can write that the sensor
observation (pixel coordinate) xs

o(tk) of an object or feature xg
o in the global co-

ordinate system is a projection Ps
g(tk) from the global system (g) to the sensor

system (s):

xs
o(tk) = Ps

g(tk)xg
o. (1.3)

The projection Ps
g is a function of the internal camera calibration parameters

C(tk) and the exterior orientation Tg
s(tk), which describes the position and ori-

entation of the camera system (s) with respect to the global system (g).

xs
o(tk) = Ps

g (Tg
s(tk),C(tk)) xg

o (1.4)

The goal of the mapping procedure is to reconstruct a set of multiple object or
feature points {xg

oi
} (often called structure) from multiple observations xs

o(tk),
which have been taken from multiple orientations of the sensor Tg

s(tk) (often
called motion). In the case of given camera orientations, this estimation is called
structure-from-motion. Also, if the camera orientations are unknown, the struc-
ture, the motion and the internal camera calibration parameters can be estimated
from multiple observations using a so-called bundle adjustment. However, to pro-
vide the structure in a global coordinate system, some control information, such
as camera positions or object point positions, needs to be known in the global
coordinate system. Within this thesis, we will not describe the details of the
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underlying photogrammetric algorithms, such as bundle adjustment. However,
it should be obvious now that the trajectory Tg

s(tk) of the sensor, which again
can be separated into the platform trajectory Tg

b(tk) and the system calibration
Tb

s(tk), also plays a significant role in image-based mapping, mainly as an input
to the bundle adjustment for georeferencing. An overview of the georeferencing
options for UAV data is given in [B1]. In Ch. 5 we provide some examples of
image-based mapping.

If the procedure only uses trajectory information Tg
b(tk), it is called direct

georeferencing. In cases, where known objects points {xg
oi

} are used, it is called
indirect georeferencing. Combinations are called integrated approaches. Mostly,
mobile laser scanning uses direct referencing, while image-based mapping systems
use integrated or indirect approaches.

1.3 Contribution and Structure of the Thesis
The contributions of this thesis are all along the processing chain, which derives
useful georeferenced information from laser scanners or cameras mounted on a
moving platform. We organized the contributions into five chapters. Chapters 2
and 3 deal with the general task of calculating the platform’s trajectory, which
is a crucial part of the chain. Chapters 4, 5, and 6 describe the development,
calibration, and evaluation of some specific systems, which we used for various
applications.

Chapter 2: Inertial Navigation Inertial navigation is a method to derive
the trajectory of a platform from inertial sensors and GNSS. It is commonly
used to georeference sensor data from mobile mapping systems. This chapter
briefly describes the sensors and algorithms behind inertial navigation. Our key
contributions in this context are:

1. The development of an inertial measurement unit without a gyroscope,
which consists only of multiple distributed accelerometers. With this con-
cept, it is possible to determine all parameters usually derived from an
IMU while avoiding the error characteristics that are common for low-cost
gyroscopes.

2. A calibration procedure for magnetic field sensors. This procedure does not
need reference information and can be easily applied to a specific measure-
ment environment. It calibrates hard and soft-iron effects if the sensor is
in a metallic environment and can also be used to calibrate accelerometers.

3. A procedure to characterize the influence of multi-path and non-line of
sight effects on the resulting GNSS position measurement. With this, it is
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possible to mask certain satellites based on the 3D information about the
antenna environment.

4. An efficient Kalman Filter for orientation estimation based on inertial and
magnetic sensors, optimized for low-cost sensors and high-dynamic motions.

5. An estimation algorithm to derive the full pose of a UAV in real-time using
inertial sensors and two GNSS receivers.

Chapter 3: Localization in GNSS-denied Environments Most mobile
mapping systems rely on GNSS as an absolute sensor to provide the link to a
global reference system and compensate for the drift of the inertial sensors. How-
ever, in some environments, such as indoor areas, GNSS is unreliable or unavail-
able. This chapter briefly describes alternative sensing modalities and trajectory
estimation concepts, which may replace or augment GNSS observations. Our key
contributions in this context are:

1. The development of a sensor network, which can estimate the position of a
person within an indoor environment based on (a) the network connectivity,
(b) a human step detection algorithm using inertial sensors and (c) a floor
plan of the environment. This information has been combined using a
Particle Filter. The accuracy has been demonstrated to be in the order of
a meter.

2. The development of an indoor localization system that uses estimates from
a Chirp Spread Spectrum-based ranging system, a step detection procedure,
and a floor plan.

3. The development of a foot-mounted sensor system that uses inertial sensors
to update the pose estimation. The drift is compensated using zero-velocity
and zero-angular rate updates and RFID and barometer readings. The
system only uses low-cost sensors.

4. A procedure to use the laser scans from a mobile mapping system and
city models to correct the trajectory of the mapping vehicle in an urban
environment. Buildings were automatically detected from the scan data
and matched to the information obtained from a city model database. This
procedure can be used in cases where GNSS is unavailable or disturbed.

Chapter 4: High Precision Mobile Laser Scanning This chapter describes
the development, calibration, and evaluation of mobile mapping systems, which
use a high-grade IMU and a precise high-speed laser scanner to create dense and
accurate point clouds from a moving platform. Our key contributions are:
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1. A plane-based calibration environment and procedure to determine the
transformation parameters between the laser scanner and the IMU with
high accuracy.

2. An evaluation study on the accuracy of the resulting point clouds.

3. A study which evaluates the possibility of using the system to derive defor-
mations of a road surface and to extract road-specific parameters.

Chapter 5: Mapping with UAVs When areas are not easily accessible by
vehicles, UAVs can be used to map the environment. This chapter describes
different systems and applications in the context of UAV based mapping. Our
key contributions are:

1. The development of a sensor system that can calculate a UAV’s pose accu-
rately in real-time. This system allows a direct georeferencing of airborne
images and can be used as an input to a structure-from-motion processing
pipeline.

2. A method to integrate gyroscope data, fish-eye stereo camera images, and
raw GNSS carrier phase observations to estimate the pose of a UAV.

3. A study on the usability of UAV image-based directly georeferenced point
clouds for deformation analysis.

4. An investigation where UAV imagery and derived products have been used
to characterize a solifluction lobe and its movement in an alpine glacier
foreland.

5. A procedure to derive crop height data from UAV images. The procedures
have been used in winter wheat breeding experiments to analyze the crop
performance of different genotypes.

6. A study on the accuracy analysis of a UAV based laser scanning system.

Chapter 6: High-Throughput Phenotyping in Viticulture In viticul-
ture, many monitoring actions, such as detecting diseases or counting berries to
predict the yield, require manual work, take time, and are error-prone due to the
subjectivity of the methods. This chapter describes a series of works that aim to
automate parts of this process using an image-based mobile mapping system and
the corresponding analysis pipelines.

1. The development of a senso system and a data processing pipeline to au-
tomatically create georeferenced overlapping images of the vine canopy.
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The images are taken with a multicamera system mounted on a grapevine
harvester while the vehicle drives through the vine rows.

2. A pipeline to count berries in the vine rows. The pipeline (a) creates 3D
point clouds from the images, (b) segments berry points from the rest, (c)
finds grape clusters and berries, and (d) counts berries and measures their
diameter.

3. A method to automatically detect berries in single images using Convolu-
tional Neural Networks.

4. A method to estimate the yield using multiple images from the sensor sys-
tem and a study on its performance. The study uses data from 3 years,
three varieties, and two different pruning systems.
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Chapter 2

Inertial Navigation

The estimation of the trajectory of a moving platform is one of the crucial steps
in mobile mapping. Since the goal of mobile mapping is usually a georeferenced
map, the trajectory is needed with respect to a global coordinate system. In-
ertial sensors can be used to recursively determine the trajectory of a platform
starting from a known initial pose without the need for any external reference
information. This procedure is called inertial navigation, and it has been known
for many decades. Because of the inherent drift of the inertial sensors and the
necessary starting pose, inertial navigation usually integrates external corrective
measurements such as GNSS or compass readings. This chapter briefly explains
the sensors and algorithms behind inertial navigation. We also present sensor
configurations, calibration procedures and algorithms, which we developed to
minimize drift effects and systematic errors in trajectory estimation.

2.1 Coordinate Systems
In the context of inertial navigation are many coordinate systems involved. We,
therefore, briefly define the different coordinate systems and the notation of kine-
matic quantities between the systems. Please note that we do not differentiate
between coordinate frames and coordinate systems here and use both words equi-
valently.

Earth Centred Earth Fixed Global system attached to the Earth. The origin
is in the mass centre of the Earth, the z-axis is parallel to the Earth’s rotation
axis, and the x-axis is going through the intersection of the Greenwich meridian
(0° longitude) and the equatorial plane, the y-axis is completing a right-handed
coordinate system. Coordinates in this system, as the position of a UAV, are
usually written as pe.
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Body Frame Local system attached to the moving platform. The origin is a
point on the vehicle, e.g. the centre of mass, the x-axis is pointing forward, the
z-axis is pointing down, and the y-axis is completing the right-handed system
(pointing to the right). Please note that ground vehicles often have a different
definition with z pointing up and y pointing to the left and that this is also often
applied to UAVs. Coordinates in this system, as the position of a sensor on the
platform, are usually written as lb.

Sensor Frame Local system attached to the sensor. Raw sensor readings are
given in this system. Its definition strongly depends on the type of sensor. Co-
ordinates in this system, as the position of an object detected by a scanner, are
usually written as xs.

Navigation Frame Local topocentric system. The origin is the same as for the
body frame, the x-axis is pointing towards North, the z-axis is pointing down (par-
allel to gravity), and the y-axis is completing the right-handed system, pointing
East. This system is also called NED (North-East-Down). The rotation informa-
tion about the UAV is usually given as a rotation Rn

b between the body frame
and the navigation frame. If the UAV is levelled and the x-axis points north, the
three rotation angles (roll, pitch, yaw) are (0,0,0). Please note that if the body
frame is defined in a (Forward-Left-Up) mode, as it is usually for ground vehicles,
the navigation frame is usually defined as (East-North-Up).

Figure 2.1: The connections between the global (e) coordinate system, the navigation (n) system
and the platform (b) coordinate system.
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Inertial Frame Global system attached to the universe. The origin and the
z-axis are the same as for the ECEF-frame. The x and y-axis are tight to far-
away celestial objects, considered fixed in the universe. The inertial frame is the
reference for inertial sensors used for trajectory estimation. Coordinates in this
frame are written as xi.

Notation To avoid ambiguities, kinematic quantities are accompanied by in-
dices. Relative quantities, such as a velocity, are given as vc

ba, which means the
”velocity of the system a relative to the system b, expressed in coordinates of the
system c”. A concrete example would be vn

eb, which is the velocity of the body
system with respect to the Earth fixed system, expressed in the coordinates of
the navigation frame. The rotation rate of the sensor with respect to the inertial
frame, like a gyroscope measures it, would be ωs

is which is equal to the Earth ro-
tation rate expressed in the sensor coordinate system ωs

ie if there is no additional
rotation between the sensor and the Earth. A change of the resolving frame from
system b to system c would be a transformation Tc

b. An example is the rotation
matrix Rn

b from the body frame to the navigation frame. Some indices are omit-
ted if the context is evident or the reference system b and the resolving system c

are the same.

2.2 Inertial Sensors

[C13] Schopp, P., Klingbeil, L., Peters, C., Buhmann, A., & Manoli, Y. (2009). Sensor fusion algorithm and
calibration for a gyroscope-free IMU. Procedia Chemistry, 1(1), 1323–1326. https://doi.org/10.1016/
j.proche.2009.07.330

[J21] Schopp, P., Klingbeil, L., Peters, C., & Manoli, Y. (2010). Design, geometry evaluation, and calibration
of a ggyroscope-free inertial measurement unit. Sensors and Actuators A: Physical, 162(2), 379–387.
https://doi.org/10.1016/j.sna.2010.01.019

[J19] Schopp, P., Graf, H., Maurer, M., Romanovas, M., Klingbeil, L., & Manoli, Y. (2014). Observing relative
motion with three accelerometer triads. IEEE Transactions on Instrumentation and Measurement,
63(12), 3137–3151. https://doi.org/10.1109/tim.2014.2327472

Inertial sensors build the core of most navigation systems because they pro-
vide information about the sensor’s motion without the need for any external
reference. Two types of sensors are considered inertial: accelerometers and gy-
roscopes (angular rate sensors). They measure the sensor’s angular rates and
non-gravitational accelerations with respect to the inertial frame. They are used
to determine both translational and rotational components of the trajectory.

Accelerometers measure the specific force f s
is acting on the sensor along its

sensitive axis with respect to the inertial frame. The specific force is the non-
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gravitational force per unit mass, which is an acceleration. A three-axis ac-
celerometer free-falling from the sky would measure 0 m s−2 in any direction. An
accelerometer, standing motionless on the ground, measures 9.81 m s−2 antipar-
allel to gravity, as this is the specific force of the ground acting on the sensor
to prevent it from falling further down along the gravitational field of the Earth.
The readings of a three-axis accelerometer can be used in two ways. In the case
of a non-accelerating platform, it is possible to calculate two angles between the
platform’s z-axis and the gravity vector ggrav (rotations around the gravity vector
are not observable). In the case of an accelerating platform, the gravitational and
the translational acceleration components can be separated if the rotation of the
platform is known, and the translational component can be integrated twice to
derive the platform’s position.

Gyroscopes or angular rate sensors measure the angular rate ωs
is of the sensor

around its sensitive axis with respect to the inertial frame. The inertial frame is
the coordinate system assumed to be fixed in the universe. As a consequence, a
gyroscope lying motionless on the ground would still measure the Earth’s rotation
rate�ωs

ie. However, only high-grade gyroscopes are sensitive enough to measure
the Earth’s rotation. Starting from a known orientation and assuming that the
gyroscope sensor coordinate frame is identical to the body frame, the three-axis
angular rate sensor data can be integrated over time to derive the orientation Rn

b

of the platform with respect to the navigation frame.

Inertial Measurement Units An Inertial Measurement Unit (IMU) is the
combination of three accelerometers and three gyroscopes perpendicular aligned
to cover all spatial axis. The readings from an IMU can be used to fully recon-
struct the trajectory of a platform from a given starting position and orientation.
This concept is called strapdown integration and is described below. Because the
measurement errors add up during integration, the error of the resulting trajec-
tory grows over time and needs to be corrected using sensor fusion methods.

Strapdown Integration Starpdown integration is the process of recursively
calculating the a platforms position pe

b, velocity vn
eb, and orientation Cn

b based on
a stream of inertial sensor data ωib and fib and starting values p0,v0,C0:

[pe
b,ve

nb,Cn
b ]k = f

(
[pe

b,ve
nb,Cn

b ]k−1 , [ωib, fib]k
)
. (2.1)

One challenge in the method arises because inertial sensors measure with respect
to the inertial system. At the same time, we are usually interested in positions
and rotations with respect to the Earth system, which itself rotates with respect
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2. Inertial Navigation

Figure 2.2: Schematic view of strapdown integration. Gyroscope and accelerometer outputs
are integrated to update position, velocity and attitude.

to the inertial system. Therefore, strapdown integration involves transformations
between rotating reference frames and dealing with fictitious forces, such as Euler,
Coriolis, and Centrifugal forces. Another complication is that accelerometers only
measure non-gravitational accelerations, while gravitational forces also drive the
velocity changes of an object and the resulting position changes. Therefore, a
gravitation model and the object’s orientation with respect to gravitation are
needed.

Strapdown integration suffers from the accumulation of errors over time, re-
sulting from the integration of noisy and biased inertial sensor readings. Addi-
tionally, the need for knowledge of the sensors orientation with respect to the
gravity vector puts a special focus on the gyroscope sensor quality, as zero-rate
offsets lead to a position error, which grows cubic with time.

Gyroscope-Free IMUs To address the drift problem, inherent to low-cost gy-
roscopes, we developed an IMU without a gyroscope ([C13], [J21], [J19]). These
accelerometers are attached to distinct locations on the platform and build an
accelerometer array. This concept is called gyroscope-free IMU. By knowing the
relative position and orientation of the different accelerometers, the angular and
translational acceleration and the angular velocity of the platform can be deter-
mined. The accuracy depends on the geometric configuration of the sensors. We
describe algorithms to derive the motion from the sensor readings and present a
method to calibrate the system by determining the relative positions and orien-
tation of the sensors indirectly using a high precision 3D rotation table. We also
used this table to evaluate the system performance.
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2.3 Magnetometer

[J22] Wark, T., Corke, P., Sikka, P., Klingbeil, L., Ying, G., Crossman, C., Valencia, P., Swain, D., & Bishop-
Hurley, G. (2007). Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive
Computing, 6(2), 50–57. https://doi.org/10.1109/mprv.2007.47

[J18] Klingbeil, L., Eling, C., Zimmermann, F., & Kuhlmann, H. (2014a). Magnetic field sensor calibration
for attitude determination. Journal of Applied Geodesy, 8(2), 97–108. https://doi.org/10.1515/jag-
2014-0003

Another option to reduce drift effects in inertial navigation is the integration of
magnetic field sensors. A three-axis magnetometer, measuring the vector ms

mag of
the Earth magnetic field mmag in the local sensor frame, serves as a compass and
provides information about the rotation of the platform around the gravity axis,
which accelerometers cannot observe. This is why magnetometers are integrated
into most inertial measurement units. A combination of gyroscope, accelerometer,
and magnetometer theoretically allows deriving all three rotation angles between
the body and navigation frames. However, the Earth’s magnetic field in the close
vicinity to vehicles is heavily disturbed by metallic components of the platform or
superimposed by other mostly stronger field sources such as high currents driving
the engines, in the case of UAVs. Therefore, the usage of magnetic field sensors
has to be considered carefully, as they may cause more problems than they solve.

Figure 2.3: Magnetometer calibration. The left side shows the orientation error distribution
after different calibration versions. The right side shows the magnetometer vector readings
during the calibration procedure [J18].

Magnetometer Calibration As mentioned above, magnetic field sensors are
susceptible to local disturbances of the Earth’s magnetic field, which may be in-
duced by ferromagnetic material in the vicinity of the sensor. In [J22] and [J18],
we developed a method to calibrate magnetic disturbances, which are caused by
metallic or magnetic objects on the platform. The procedure also compensates
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constant internal sensor errors, such as scale factors, biases, and axis misalign-
ment. No particular measurement setup is needed. The only necessary assump-
tion is a temporally and spatially constant Earth magnetic field vector in the
calibration environment. In this case, the disturbances and calibration errors
force the sensor readings to lie on an ellipsoid, and the calibration parameters
can derived from the ellipsoid parameters. In [J18], we also evaluated the quality
of the calibration result. We showed that some simplifications, which make the
calibration procedure easier to use, have no significant impact on the results.

2.4 Global Navigation Satellite Systems

[C6] Zimmermann, F., Eling, C., Klingbeil, L., & Kuhlmann, H. (2017). Precise positioning of UAVs -
dealing with challenging RTK-GPS measurement conditions during automated UAV flights. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 95–102. https:
//doi.org/10.5194/isprs-annals-iv-2-w3-95-2017

[J11] Zimmermann, F., Holst, C., Klingbeil, L., & Kuhlmann, H. (2018). Accurate georeferencing of TLS
point clouds with short GNSS observation durations even under challenging measurement conditions.
Journal of Applied Geodesy, 12(4), 289–301. https://doi.org/10.1515/jag-2018-0013

[J8] Zimmermann, F., Schmitz, B., Klingbeil, L., & Kuhlmann, H. (2019). GPS multipath analysis using
fresnel zones. Sensors, 19(1), 25. https://doi.org/10.3390/s19010025

Inertial sensor and strapdown integration need an initial pose in a global co-
ordinate system to provide a suitable trajectory for georeferencing. They also
suffer from drift effects. Inertial navigation systems and algorithms usually in-
tegrate Global Navigation Satellite System (GNSS) observations to address both
problems. With a GNSS, it is possible to determine the position xe

s of a GNSS
antenna with respect to a global coordinate system by measuring the time of
flight of the signals between satellites at known positions and the antenna. Addi-
tionally, the receivers can measure Doppler shifts of the signals and the velocity
ve

es of the antenna. The whole concept comes with many errors and uncertainties,
such as satellite position and clock errors, receiver clock errors, signal refraction
in the atmosphere and signal disturbances in the receiver environment. Several
possible GNSS processing options differ mainly in the used observations and the
methods to reduce or eliminate the abovementioned errors. The most commonly
used processing mode, especially in mobile mapping applications, is the Real-
Time Kinematic (RTK) mode. RTK uses the phase shift of the carrier waves of
the GNSS signal between the transmitter and the receiver as observations. Due
to the periodic nature of the electromagnetic wave, this observation comes with
ambiguities, which need to be solved during the position estimation process. It
also uses differential measurements, which means that the used observations are
differences between the carrier phase observations at two receivers, one placed at
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Figure 2.4: Commonly used GNSS processing options. The data from a master station or a
reference service are used to correct the rover observations, either online or offline after the
measurements have been obtained.

a known position (master) and one at the vehicle (rover). Building differences
reduces or eliminates most of the errors mentioned above and enables a position
accuracy of the rover relative to the master in the order of centimetres, given
that the ambiguities have been successfully solved. A drawback of RTK GNSS is
that the observations of the master need to be available at rover, which usually
involves an internet connection or radio link if the position is needed in real-time.

Satellite Selection Strategies One of the largest sources of systematic errors
in GNSS is the geometric structure of the antenna environment (Fig. 2.5 (left)).
Apart from the direct observation of signals coming from the satellite and a total
blocking of signals by buildings, also mixed effects can appear, such as overlapping
of direct and reflected signals (multipath effects) and the sole reception of reflected
or diffracted signals (none-line-of-sight effects). Both types of effects can lead to
errors of several meters and can not be reduced by differential processing modes,
such as RTK. They are very prominent in urban areas, where reliable position
information is often required. In [C6], [J11], and [J8], we developed procedures to
investigate the influence of multipath and non-line-of-sight effects on the position
estimate using the knowledge about the environment, the own position, and the
position of the satellites. By doing so, we can better plan the trajectory or select
unaffected satellites. Both significantly improve the quality of the localization
results.
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Figure 2.5: Left: Multipath and non line of sight effects in urban environments. Right: Unaf-
fected satellites can be selected to improve the results.

2.5 State Estimation Algorithms

[C14] Romanovas, M., Klingbeil, L., Trächtler, M., & Manoli, Y. (2009). Efficient orientation estimation
algorithm for low cost inertial and magnetic sensor systems. 2009 IEEE/SP 15th Workshop on Statistical
Signal Processing. https://doi.org/10.1109/ssp.2009.5278507

[J17] Eling, C., Klingbeil, L., & Kuhlmann, H. (2015a). Real-time single-frequency GPS / MEMS - IMU
attitude determination of lightweight UAVs. Sensors, 15(10), 26212–26235. https://doi.org/10.3390/
s151026212

So far, we showed that the observations from the inertial sensors can be used
to calculate the trajectory and that their relative nature leads to a growing drift
over time. We also explained, that GNSS receivers or magnetometers can pro-
vide absolute position or orientation observations, which, however, may contain
stochastic or systematic errors. It is important to combine all the different sensors
in the best possible way, leveraging the specific advantages of the different sen-
sors to minimize the overall estimation error. This procedure can be formalized
as a state estimation problem, where the state at each time step consists of the
position and orientation of the vehicle and potentially other parameters, which
may be necessary to model the behaviour of the state over time. One option
to solve the state estimation problem is to use Recursive Bayesian Estimation
(RBE).

Recursive Bayesian Estimation A Recursive Bayesian Estimation (RBE)
algorithm is used to estimate the state xk of a system at the time tk based on
all measurements Zk = {z0, . . . , zk} up to that time. The state estimation is
represented as a probability density function p(xk | z0, . . . , zk), which can be
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calculated using Bayes’ Rule:

p(xk | Zk) = p(Zk | xk)p(xk)
p(Zk)

, (2.2)

which can be transformed into a recursive equation:

p(xk | Zk) = p(zk | xk)p(xk | Zk−1)
p(zk | Zk−1)

= η · p(zk | xk)p(x̃k).

The term η = p(zk | Zk−1) is a normalization factor. The term p(xk | Zk) is
called the a posteriori probability and describes the current state estimate using
all measurements up to now. The term

p(x̃k) = p(xk | Zk−1) =
∫
p(xk | xk−1)p(xk−1 | Zk−1)dxk−1

is called a priori probability and describes the current estimate using all but the
current measurement. It contains the a posteriori estimation p(xk−1 | Zk−1) of
the last time step and the term p(xk | xk−1), which represents the process model
describing the knowledge about the dynamics of the system and the corresponding
uncertainties. The term p(zk | xk) represents the measurement model and relates
the measurements to the state, considering also the sensor uncertainties. Having
all these terms in mind, any recursive Bayesian estimation cycle is performed in
two steps. In the prediction step the a priori probability is calculated from the
last a posteriori probability using the process model (Eq. 2.3). In the correction
step the a posteriori probability is calculated from the a priori probability using
the measurement model (Eq. 2.3) and the current observation.

Kalman Filters When using a Kalman Filter, it is assumed, that the proba-
bility distribution p(xk) of the state vector at a time tk is Gaussian and can be
represented by the mean xk and the covariance Pk. It is also assumed, that the
temporal evolution of the state can be modelled as

xk = fk(xk−1,uk,wk), wk ∼ N (0,Qk), (2.3)

with uk being a deterministic control input to the system and wk being normally
distributed noise, representing the uncertainty of the model. An observation zk

of the state can be described by

zk = hk(xk,vk), vk ∼ N (0,Rk), (2.4)

with vk being normally distributed measurement noise.
Using the Jacobi matrices

Φk = ∂fk(x,u,w)
∂x Bk = ∂fk(x,u,w)

∂u Hk = ∂hk(x)
∂x (2.5)
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the Kalman Filter equations can be derived from the RBE equations as follows.

x−
k = fk(xk−1,uk)

P−
k = ΦkPk−1ΦT + Qk

Kk = P−
k HT

k (HkP−
k HT

k + Rk)−1

xk = x−
k + Kk(zk − hk(x−

k ))
Pk = (I − KkHk)P−

k

This is possible because Gaussian distributions stay Gaussian after linear trans-
formations. In cases where the models hk and fk are linear with respect to the
state vector and the control inputs, the derivation of the matrices Φk,Bk and
Hk is exact and not an approximation at a particular linearization point. Then
the Kalman Filter is an optimal solution, minimizing the estimation error in the
least square sense. If the models are non-linear and need to be linearized, as
shown above, the algorithm is called Extended Kalman Filter (EKF). The es-
timate, in this case, is an approximative solution. An alternative approach to
deal with non-linear models is to represent the mean and the covariance by some
deterministically chosen points, transform them using the non-linear functions fk

and hk and recover the mean and covariance back from the transformed points.
This approach is used in the Unscented Kalman Filter (UKF), with very similar
equations to the ones shown above.

Particle Filters A Particle Filter (PF) is an alternative approach to deal with
the heavy integrals of the RBE equations. It is a Monte Carlo Simulation-based
approach, where many random sample points represent the probability distri-
bution. All transformations of the probabilities are then calculated using those
samples. In this case, no assumption about the nature of the distribution and
no linearization of the models is necessary. Particle Filters have the advantage
that non-linear processes and observation models can be implemented without
linearization. Also, arbitrary non-Gaussian and multi-modal distributions can de-
scribe the uncertainties. A disadvantage of the PF is that for higher dimensional
state spaces, as the full 6D pose of an object, the number of needed particles is
very high, leading to a high computational burden. However, in lower-dimensional
cases, as shown in Ch. 3, it is often applied.

Efficient Kalman Filtering For Orientation Estimation Using a 3-axis
gyroscope, it is possible to derive the 3D orientation of a platform by integrating
the angular rates from known start values. Especially for low-cost devices, sen-
sor errors accumulate very fast over time. An accelerometer can compensate for
roll and pitch drifts by observing the Earth’s gravitational field, but this is only
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possible in stationary phases. The yaw drift can be compensated by using a mag-
netometer. In [C14] we developed a Kalman filter, which is capable of estimating
the orientation of an object even for high dynamic movements.

The state vector xk consists of the orientation of the object, represented by
a quaternion q, the gyroscope bias b and the translational acceleration a. We
treat the angular rate ω a control input u and write the process model as

xk =


qk

bk

ak

 = f (xk−1,uk) =


qk−1q∆(ωk)

bk−1

γak−1

 , (2.6)

where q∆ corresponds to the differential rotation calculated from the angular
rate. The parameter γ ≤ 1 parameterize the acceleration dynamics, assuming
that it converges to zero on the long run.

We include the specific force f measured by the accelerometer and the mag-
netic field measurement m via the measurement model.

zf
k = qk (Ge − ak) q−1

k , (2.7)
zm

k = qkMeq−1
k . (2.8)

Here, Ge and Me are the Earth’s gravitational acceleration vector and the Earth’s
magnetic field vector in the target coordinate system. We realized the filter in
the form of an Unscented Kalman Filter.

Kalman Filter for Full Pose Estimation For full pose estimation, additional
measurements, such as GNSS, are necessary to compensate for the velocity and
position drift. In [J17] we developed algorithms for full pose estimation of a
UAV. We use a classical inertial navigation approach as a basis for the estimation.
The state vector contains the position p, the orientation C and the velocity v.
Because the biases bω and bf of the gyroscopes and the accelerometers usually
change slowly and non-deterministically, we estimated them as part of the state
vector:

x = [p,v,C,bω,bf ] . (2.9)

We implement the process model by applying the strapdown integration algo-
rithm as described above using inertial sensor readings ω and f , which have been
corrected using the current estimates of the inertial sensor biases.

To reduce inertial sensor drift, we realized a short GNSS baseline on the UAV
by mounting two antennas at a distance of about 1 m. In the observation model,
we create the observation zB of the GNSS baseline vector Bn in the navigation
frame by transforming the known vector Bb in the body frame using the current
estimate of the orientation Cn

b :

zB = Cn
b Bb.
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We implemented our own baseline processing algorithm, which was optimized
for the particular sensor setup measurement conditions and also included the
ambiguity resolution. By this, we were able to increase the success rate and the
time to fix the ambiguities significantly and avoided the need for magnetometer
observations to stabilize the heading angle. Magnetometer measurements are
heavily disturbed on UAVs due to the magnetic fields induced by the strong
currents driving the engines. Fig. 2.6 shows the estimation improvement when
the rotational drift is compensated using the second GNSS antenna. The setup
on the left of the figure was used to investigate the estimation accuracy.

Figure 2.6: Left: Evaluation of an attitude estimation method using a short single-frequency
GPS baseline. Right: Yaw measurements from a short GPS baseline and their benefit in attitude
estimation [J17].
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In Ch. 2 we presented the more classical approach of fusing inertial sensor
data with GNSS observations to derive the platform trajectory. GNSS integration
limits the drift of the IMU, and a position accuracy in the order of centimetres
can be achieved, depending on the GNSS processing mode and measurement
conditions. A challenge remains in areas where GNSS is strongly disturbed or
unavailable, such as indoor environments. There are several possible options to
deal with the lack of reliable GNSS measurements:

1. Use other less-drifting methods of motion prediction than strapdown inte-
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3.1. Dead-Reckoning

gration.

2. Use other sensor modalities to derive position or distance information.

3. Use additional information about the environment or the motion to con-
strain possible trajectories and limit drift.

4. Use the sensors observing the environment, such as camera or laser scanners,
as additional sensors for trajectory estimation.

This chapter presents some concepts and examples of these options to enable
localization in indoor or outdoor environments where GNSS was not or barely
available.

3.1 Dead-Reckoning
The strapdown approach to predict the trajectory using inertial sensors shows
drift effects, especially for lower quality sensors. Depending on the type of the
platform and the available sensors, an alternative method would be the dead
reckoning approach, especially if only the 2D position is needed. Here, the 2D
position pk of an object at a time tk can be calculated from the previous position
pk−1, a travelled distance sk since the last time step and a moving direction ϕk:

pk = pk−1sk

 cosϕk

sinϕk

 . (3.1)

Depending on the available sensor, the traveled distance can also be calculated
from a speed measurement and the time difference:

sk = vk∆t. (3.2)

Similarly, the moving direction can be calculated by updating an initial direction
ϕ0 with measurements ω of angular rates:

ϕk = ϕk−1 + ωk∆t. (3.3)

As for strapdown integration, the problem with dead reckoning is that measure-
ment errors of the relative sensor observations add up, and the uncertainty of the
position estimate becomes more significant over time. Nevertheless, dead reckon-
ing is often used as part of the position estimation procedure for robotic vehicles
and pedestrians.
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3. Localization in GNSS-Denied Environments

Pedestrian Step Detection In [C15] and [C16] we developed a pedestrian
dead reckoning system. We used a sensor unit containing an IMU and a magne-
tometer which a person is carrying on their waist (Fig. 3.1 left). The step detector
used the readings of the three-axis accelerometer as an input to a threshold-based
detection algorithm (Fig. 3.1 right). We then assumed the person to have a cer-
tain step length, which allows the calculation of the travelled distance. Together
with a direction measurement coming from the gyroscopes and the magnetome-
ter, the trajectory of a walking person can be calculated. Due to wrong detected

Figure 3.1: Waist worn sensor system (left), which is used to detect steps of person. Accelerom-
eter values are fed to a threshold based detection algorithm (right).

steps, the constant step length assumption, and magnetic field disturbances, the
resulting trajectory will still show drift effects. Other sensor modalities may help
to correct those in GNSS-denied environments.

3.2 Radio Ranging and Proximity Sensing
GNSS provide a valuable option to derive the platform position in a global coor-
dinate system using radio-based ranging to known satellite positions in outdoor
environments. Other radio-based methods aim for similar functionality in ar-
eas where GNSS is unavailable, such as indoor areas. Pseudolites are similar
to GNSS satellites, following the same measurement concept using ground-based
transmitters. Ultra-wideband systems are deployed in indoor environments, such
as industrial facilities, and they also use signal transmission times to estimate
the distance between transmitters and receivers. While the latter methods need
a dedicated installation for the localization purpose, other methods exploit exist-
ing WiFi infrastructure. Some estimate the distance to access points using the
received signal strength, or they learn signal strength patterns in the environment
and deduce the most probable location using machine learning methods. Another
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method to generate an absolute position measurement is to detect the proximity
to a Bluetooth or RFID tag, which is placed at a known location.

Network Transmission Rate as Distance Sensors In [C15] and [C16], we
used the packet transmission rate with two sensor nodes in a sensor network as an
indicator for the maximum distance between the nodes. As shown on the left side

Figure 3.2: Distance measurement using network transmission rate [C15][C16]. Room setup
with several access points (left). Network delivery rate for different distances and gain settings
(right).

in Fig. 3.2, a node attached to a person moving through an indoor environment
constantly exchanges data packets with static nodes via a radio channel. Based
on the percentage of successfully transmitted packages, we derive an estimate of
the proximity between the nodes (Fig. 3.2 right). Although the information is not
very accurate and has systemtic errors due to the radio propagation properties
in indoor spaces, it can still be used to improve the localization quality. This is
shown later.

Radio Ranging in Indoor Environments In [C12], we used a radio-based
ranging concept to locate a person in an indoor environment. Similar to the
example above, a mobile sensor network node is communicating with static nodes
in an indoor environment (Fig. 3.3 left). In this example, the radio channel uses

Figure 3.3: Indoor environment with multiple anchor nodes (left). Distribution of range mea-
surements for 5 m distance [C12].
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a chirp spread spectrum technology for communication, which also allows to
measure the signal flight time and, therefore, the distance between the nodes.
According to the manufacturer, the distance accuracy is several centimetres. It
can be seen that the measurement usually overestimates the actual distance due
to signal reflections on the walls. The error distribution has a tail towards higher
distances. However, as shown in the paper, this distribution can be considered in
the position estimation algorithm.

3.3 Integration of Constraints
Another option to reduce drift from dead reckoning or strapdown integration is
leveraging knowledge about the environment into the estimation process. One
example is the usage of maps to limit the possible motion of the object and
therefore create boundaries for the estimation. Another option is to integrate
knowledge about the motion itself. If the object is detected to be static by some
detection algorithm, the velocity is known to be zero in this situation. This
knowledge can constrain the motion model in the estimation process using a
so-called zero-velocity update.

Map Constraints In [C12] and [C15], we implemented Particle Filters to esti-
mate the 2D position of a person in an indoor environment. We combined a step
detector as described above with radio ranging and proximity sensing and a map
of the environment. The map is utilized to limit the drift of the motion estimate.
The state vector consists of the 2D position of the person in a topocentric coordi-
nate system. The process model is realized as a dead-reckoning approach. Each
step, which is detected by a waist-worn sensor unit, triggers a particle’s motion in
the direction of a corresponding magnetometer based heading measurement. This
motion is applied to all particles, each with slightly different values for the step
length and the heading direction. This distribution represents the uncertainty of
the model. At this point, we also integrated the map of the environment, which

Figure 3.4: Indoor trajectory without (left) and with (right) integration of map informa-
tion[C12].

we represented as an occupancy grid. We checked if a particle moves through a
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walkable area for each detected step. If not, we set the weight of this particular
particle to zero, representing a lower probability of people walking through walls.
Additionally, we updated the probability of each particle according to the range
observations and their uncertainty in the correction step. Fig. 3.4 illustrates, how
the map limits the drift of the trajectory within an office environment. Here, the
trajectory has been recovered from the particle distribution by building the mean
for each time step.

In [C12], we used the transmission rate from the sensor unit to a fixed anchor
node to update the probabilities. In [C15], we used a radio-based distance mea-
surement. The above examples describe situations where a PF is a good choice
of estimation algorithm because of the low dimensionality of the state space, the
non-linearity of the process model, the non-Gaussian observation models and the
simple possibility of integrating the map of the environment.

Zero-Velocity Updates In [C11] we present a pedestrian indoor localization
system, which is based on a foot mounted-sensor, containing a low-cost IMU, a
magnetometer and an RFID reader. The position and orientation of the foot
are calculated using a classical strapdown integration approach, as presented in
Sec. 2.2. Whenever we detect the no-motion stance phase of the foot on the
ground, we create pseudo-observation for the angular rates zω and the velocities
zv:

zω = [0, 0, 0]T , (3.4)
zv = [0, 0, 0]T . (3.5)

These observations enable direct observation of the gyroscope bias and set a
potential velocity drift to zero. We also integrated acceleration measurements
as in Eq. 2.7, knowing that the translational acceleration is zero during that
time. Additionally, we integrated several RFID tags, which we deployed at known
positions pi

RF ID into the localization process by triggering and observation of the
corresponding position whenever the tag reader detected the tag i:

zp = pi
RF ID. (3.6)

Fig. 3.5 (left) shows, how different pseudo observations, resulting from the stance
phase detection reduce the drift of the trajectory estimation. The right part of
the figure shows the estimation result in an indoor environment. Note, that in
all graphs only inertial sensors are used.

3.4 Use of Mapping Sensors for Navigation
Most sensors explained above are navigation sensors, meaning that their actual
purpose is to measure information about the motion state of the platform in
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Figure 3.5: Effect of different pseudo-observations on the estimated trajectory (left). Multi-
storey indoor trajectory estimation (right). [C11].

order to derive the needed trajectory parameters, such as position and orientation
with respect to the target coordinate frame. However, it is also possible to use
the mapping sensors to derive information about the platform trajectory. Some
of these methods are described in the following, focusing on cameras and laser
scanners as mapping sensors.

Cameras When a sufficient number of features is visible in two images, the
relative transformation between the two camera poses can be calculated. When
a camera is attached to a platform, these transformations, calculated for con-
secutive images, can be considered measurements of the relative motion of the
vehicle. Using these measurements to recursively update the vehicle’s pose from
a known starting position is called visual odometry. The quality of the results
depends on the type of motion, the camera’s viewing direction, and the visual ap-
pearance of the environment. Visual odometry suffers from drift similar to dead
reckoning and inertial integration. In [C7] we presented a procedure where two
stereo fisheye camera pairs were used to calculate the trajectory of a UAV using
an incremental bundle adjustment approach. Although our main contribution to
this work was integrating GNSS carrier phase observation into the procedure, the
paper may still serve as an example of using cameras for trajectory estimation.

Laser Scans A very similar measurement can be generated by observing con-
secutive laser scans when the scanner is attached to a vehicle that moves through
an otherwise static environment. The relative transformation can be estimated
if two scans have sufficient spatial overlap. This procedure is often called scan
matching and is mainly realized using an iterative closing points (ICP) algorithm.
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Figure 3.6: Using City Models to improve accuracy. The left side shows the recorded point
cloud of a city street and the corresponding city model. The right side shows, how the city
models from different sources can improve the result. See [J3] for more details.

The resulting information can be used in the same way as in the case of visual
odometry.

Another option to use the laser scans to derive information about the trajec-
tory is to match the sensor readings with some previously known or simultane-
ously estimated environment map. The paper [J3] shows how we used the result
of a kinematic laser scanning process to improve the underlying trajectory. We
created an initial point cloud using an approximate solution of the trajectory.
Within this point cloud, we automatically detect planes of building facades and
match them to the polygons of an existing LOD2 city model. We used the match-
ing transformations as constraints or additional measurements to a new iteration
of the trajectory estimation process. This improves the results, assuming that the
city model has better accuracy than the initial approximate solution. Especially
in regions with significant systematic errors, as they can quickly occur in urban
environments due to GNSS multipath and non-line-of-sight effects.
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In the previous chapters, we presented some general concepts of trajectory
estimation and our contributions within this context. This chapter presents the
development of a high-resolution mobile laser scanning system, which can create
3D maps with a high density and high accuracy. We realized an accurate sys-
tem calibration procedure and evaluated the system thoroughly, demonstrating a
point to point accuracy of the resulting point cloud in the order of one centimetre.
We also present an application example.

4.1 Measurement System

In mobile laser scanning, an object point xs
o = [xs

o, y
s
o, z

s
o]T in the local sensor frame

of the 2D laser scanner can be written as [0, ds sin(bs), ds cos(bs)]T , where ds is the
measured distance and bs the scanning angle. In order to obtain a georeferenced
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4.2. System Calibration

Figure 4.1: Mobile Mapping System mounted on a vehicle (left). Scanner and INS with system
calibration parameters (right).

point cloud, the object points of the 2D laser scanner have to be transformed
into the body-frame of the platform, which coincides with the coordinate system
of the IMU. For this transformation, the extrinsic calibration parameters are
needed, i. e., the lever arm [∆x,∆y,∆z]T as well as the boresight angles α,
β, and γ (Fig. 4.1, left). Subsequently, the orientation angles of the platform,
i. e., roll ϕ, pitch θ, and yaw ψ, and the translation vector tg

b = [te, tn, th]T are
used to transform the object points into the global coordinate system. All these
transformations can be combined to the georeferencing equation, which provides
georeferenced scan points xg

o = [xg
o, y

g
o , z

g
o ]T :

xg
o

yg
o

zg
o

 =


te
tn
th

 + Rg
b(ϕ, θ, ψ)

Rb
s(α, β, γ)


xs

ys

zs

 +


∆x
∆y
∆z


 . (4.1)

Here we assume that the global coordinate system is a local level system aligned
with the North and the gravity directions. This simplifies the georeferencing
equation because the reference frame for the position and the rotation is the
same, and we avoid an extra rotation between the navigation (n) and the Earth
(e) frame (see Sec. 2.1). Please note that the trajectory parameters Rg

b(ϕ, θ, ψ)
and tg

b are needed for the exact moments, where the laser measurements xs
o have

been taken. This requires proper synchronization between the different sensor
systems and potentially an interpolation of the poses between measurements.
The determination of [∆x,∆y,∆z]T and Rb

s(α, β, γ) is called system calibration
and will be explained in the following.

4.2 System Calibration
In [J16], [C4] and [J7] we developed and evaluated a calibration procedure, which
allows the determination of the lever arm [∆x,∆y,∆z]T and boresight angles
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(α, β, γ) between a profile laser scanner and the IMU coordinate system of the
platform. The latter represents the body frame in most sensor setups. The
calibration procedure is based on a carefully designed plane setup, in which we
move the system while it is recording laser scans and pose information. Using
the pose, which is in this case estimated from GNSS and IMU readings, and
initial values for the calibration parameters, we can georeference each scan profile
as described in Eq. 4.1 (Fig. 4.2, right column). We estimate the calibration
parameters in a least-square adjustment procedure by minimizing the distance
between those profiles and the previously known plane parameters. We created
the plane parameters from a TLS scan of the environment, which we georeferenced
in the same coordinate system as the estimated poses (Fig. 4.2, left column). We

Figure 4.2: a) Plane setup consisting of concrete blocks. b) point cloud resulting from the
system. c) planes extracted from TLS scan. d) planes extracted from mobile scan. [J7]

designed the arrangement of the planes so that the sensitivity of the measured
profiles to the calibration parameters is high and that the influence of the pose
estimation on the estimated parameters is low. For example, by driving through
the symmetric setup in two directions, some systematic errors in the trajectory
estimation are cancelled out or minimized. Repeating the procedure at different
times also reduces the influence of systematic errors coming from the satellite
constellation.

Experiment and analysis of the calibration results show that the empirical
accuracy of parameters is in the order of millimetres for the lever arm and mil-
lidegrees for the boresight angles (Fig. 4.3). This leads to point errors of the
resulting point clouds, which are below 1 mm up to distances of 50 m [J7]. We
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Figure 4.3: a) Distribution of calibration parameters for 100 calibration runs. b) Point error
of the resulting point clouds for distances up to 50 m. Here 15 calibration runs have been
performed and combined. [J7]

can conclude that the proposed procedure has an accuracy, which does not lead
to higher errors than other expected errors coming from the laser scanner mea-
surement itself or the trajectory estimation.

4.3 Quality Analysis
To determine the quality of the resulting point cloud, we set up an environment
with several pillars and laser scanner targets. We determined their coordinates
with an accuracy below one millimetre (Fig. 4.4). After driving through this en-
vironment, we extract the target coordinates from the resulting point cloud and
compare them with their nominal coordinates [J7]. The results are visualized in
Fig. 4.5. The distribution of the errors for the different coordinate axis shows

Figure 4.4: Test environment and trajectory (blue) of the mapping system. The pillars (red)
and target (yellow) positions were used for evaluation.[J7]

no significant systematic effects as they may arise from calibration errors. The
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standard deviation is below one centimetre for all axis, which is in the order of
the expected accuracy of the position determination using a GNSS/IMU combi-
nation in an ideal environment. The quality assessment of point clouds resulting
from a mobile laser scanning system is a challenging task. The reason is that the
determination of all components of the transformation chain (Eq. 1.2) includes
many uncertainties, for which the true distributions are often unknown. An em-
pirical approach seems to be a suitable option to address this problem. However,
the actual quality parameters of interest are unclear in advance and will depend
strongly on the application. Addressing these issues is the subject of current re-
search activities. Therefore, we only show here the empirical point error using
scanner targets.
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Figure 4.5: Point errors of detected targets, separated in North, East and Height directions
[J7].

4.4 Application Example: Road Monitoring
One application where we used the system described above is the monitoring of a
road surface [J10]. The main goal of the investigation was to see if it is possible
to detect critical settlements of the road surfaces. Due to the lack of a second
epoch with a known settlement, we compared the height values resulting from
the mobile scan with reference height determined using a high precision levelling
procedure. One of the challenges of this comparison was that the reference heights
were determined with respect to the Geoid, while the heights from the mobile
mapping system are relative to the ellipsoid. Therefore, the difference between
both (geoundulation) and its change along the test track (Fig. 4.6b) has to be
known and considered. Initially, we determined the geoundulation along the
test track using levelling and GNSS measurements at different stations for the
investigation. As described above, we then created a mobile scan of the test
track, using the laser scanner targets on the road to mark the points of interest
(Fig. 4.6c). We extracted the coordinates of the targets and corrected the height
using the geoundulation and the target height and then compared it with the
reference heights from the levelling. The results are shown in Fig. 4.6d. The
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Figure 4.6: a) Mobile scan of a piece of the Highway. b) Geoundulation in the area of the test
track. c) Targets, which have been used to evaluate the results. d) Resulting errors of height
values along the test track. e) Cross fall extracted from the scan profiles.

standard deviation of the errors is below a centimetre, and therefore, potential
settlements might be detected when they are bigger than several centimetres.
Fig. 4.6e shows the measured cross fall of the road for the different parts of the
test track. We calculated this parameter from the scan profiles and other road-
related parameters, such as the rut depth or the fictive water depth.
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Chapter 5

Mapping With UAVs

Unmanned Aerial Vehicles (UAVs) allow for mapping areas that are not easily ac-
cessible by ground-based vehicles. Depending on the sensor setup and the drone,
it is also possible to map large areas within a short amount of time. A challenge
of UAV-based mapping usually comes with the limited payload of the platform.
High-resolution laser scanners and high-grade IMUs, as presented in the previ-
ous chapter, are too heavy, too large, and often to power-hungy to be carried
by a UAV. This chapter presents systems which mostly use cameras as mapping
sensors. We present various applications, such as deformation monitoring or agri-
culture, and describe how we created and georeferenced the maps and evaluated
the results.

5.1 Mapping on Demand

[C10] Klingbeil, L., Nieuwenhuisen, M., Schneider, J., Eling, C., Droeschel, D., Holz, D., Läbe, T., Förstner,
W., Behnke, S., & Kuhlmann, H. (2014b). Towards autonomous navigation of a UAV-based mobile
mapping system. 2014 International Conference on Machine Control and Guidance (MCG), 136–147.
http://www.digibib.tu-bs.de/?docid=00056119

[J20] Eling, C., Klingbeil, L., Wieland, M., & Kuhlmann, H. (2014). Direct georeferencing of micro aerial
vehicles - system design, system calibration and first evaluation tests. Photogrammetrie - Fernerkundung
- Geoinformation, 2014(4), 227–237. https://doi.org/10.1127/1432-8364/2014/0239

[J17] Eling, C., Klingbeil, L., & Kuhlmann, H. (2015a). Real-time single-frequency GPS / MEMS - IMU
attitude determination of lightweight UAVs. Sensors, 15(10), 26212–26235. https://doi.org/10.3390/
s151026212

[C9] Eling, C., Wieland, M., Hess, C., Klingbeil, L., & Kuhlmann, H. (2015b). Development and evaluation of
a UAV-based mapping system for remote sensing and surveying applications. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4(1W4), 233–239.
https://doi.org/10.5194/isprsarchives-xl-1-w4-233-2015

The goal of the DFG (Deutsche Forschungsgemeinschaft) funded research unit
Mapping on Demand was to develop a lightweight, autonomously flying UAV that
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5.1. Mapping on Demand

can identify and measure inaccessible three-dimensional objects using visual in-
formation. A major challenge comes with the term on-demand. Apart from the
classical mapping part, where 3D information is extracted from aerial images,
the UAV was intended to fly fully autonomous based on a high-level user request.
It should avoid obstacles and process mapping data in real-time, including ex-
tracting semantic information. Several project partners from different scientific
disciplines, such as computer vision, robotics, geodesy, photogrammetry, geoin-
formation, and computer graphics, developed methods to reach the goal. We
provide an overview of the research unit in [C10]. One task in reaching the

Figure 5.1: a) UAV platform, developed within the project. b) multi-sensor unit, developed for
real-time trajectory estimation. c) Block diagram of the multi-sensor unit and sensor data flow.

project goals was determining the accurate position and orientation of the flying
platform in real-time. This was necessary for several reasons. At first, precise
pose estimation is necessary for the device’s navigation. Suppose, a mission is
planned based on previously generated map data or existing low-level building
models. In that case, the vehicle’s pose needs to be available in real-time in
a global coordinate system. Also, precise pose estimation is needed to create
georeferenced maps directly during the flight.

During the project, we developed a UAV, which contained two grey-scale
stereo fish-eye camera pairs and a higher resolution RGB camera (Fig. 5.1). It
also contained a sensor unit, which we specifically developed to provide accu-
rate 3D position and orientation data in real-time. The sensor system contains a
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dual-frequency GNSS receiver, a tactical grade Inertial Measurement Unit, and a
magnetic field sensor. We used a second single-frequency GNSS receiver to create
a short 1 m baseline between two antennas on the UAV to derive additional in-
formation about the heading of the platform. As described in Ch. 2 and detailed
in [J20] and [J17], we fused these sensors using a Kalman Filter to provide a 6D
pose estimation in real-time with an accuracy in the order of centimetres for the
position and degrees for the orientation. With the development, we focused on
the real-time capability in the two senses. One is that the sensor estimates the
pose during motion, which implies the need for a radio module that constantly
receives GNSS correction data from a nearby reference station. The other one
is that the system is implemented on a real-time capable embedded computer,
guaranteeing task completion within a specific time and enabling a very high
synchronization accuracy for images and other sensors. We evaluated the accu-

Figure 5.2: left) experimental setup used in the evaluation. right) camera positions and differ-
ences between on-board calculation and reference.

racy of the georeferencing unit described above by flying a UAV mission as it is
usually performed to create an orthophoto of an area. During the mission, we
recorded a few hundred overlapping images, and the georeferencing unit logged
the current pose of the camera every time an image was captured. As a reference
solution, we calculated the camera positions in a post-processing step using a
bundle adjustment procedure, incorporating a set of ground control points with
known coordinates. The differences are shown in Fig. 5.2 right, and it can be
seen that they are mostly below 3 cm, which corresponds to the expected GNSS
accuracy. The slightly higher deviations in the outer regions of the area a very
likely caused by the bowl effect in the bundle adjustment and, therefore, inherent
to the reference data.
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5.2 Deformation Monitoring

[C8] Eling, C., Klingbeil, L., Wieland, M., & Kuhlmann, H. (2016). Towards deformation monitoring with
UAV- based mobile mapping systems. 2016 Joint International Symposium on Deformation Monitoring
(JISDM), TU Wien, Vienna

[J13] Eichel, J., Draebing, D., Klingbeil, L., Wieland, M., Eling, C., Schmidtlein, S., Kuhlmann, H., & Dikau,
R. (2017). Solifluction meets vegetation: the role of biogeomorphic feedbacks for turf-banked solifluction
lobe development. Earth Surface Processes and Landforms, 42(11), 1623–1635. https://doi.org/10.
1002/esp.4102

[C5] Holst, C., Klingbeil, L., Esser, F., & Kuhlmann, H. (2017). Using point cloud comparisons for re-
vealing deformations of natural and artificial objects. 2017 International Conference on Engineering
Surveying (INGEO), 265–274. http://www.fig.net/resources/proceedings/2017/2017{_}10{_}INGEO/
72PR{_}TS7-2{_}Holst.pdf

[C1] Klingbeil, L., Heinz, E., Wieland, M., Eichel, J., Laebe, T., & Kuhlmann, H. (2019). On the UAV-based
analysis of slow geomorphological processes: A case study at a solifluction lobe in the turtmann valley.
2019 Joint International Symposium on Deformation Monitoring (JISDM), Athens, Greece

[J6] Eichel, J., Draebing, D., Kattenborn, T., Senn, J. A., Klingbeil, L., Wieland, M., & Heinz, E. (2020).
Unmanned aerial vehicle-based mapping of turf-banked solifluction lobe movement and its relation to
material , geomorphometric , thermal and vegetation properties. Permafrost and Periglacial Processes,
31(1), 97–109. https://doi.org/10.1002/ppp.2036

Deformation monitoring is the measurement of the geometric state of an ob-
ject, e.g. the shape and the position, and the detection and analysis of the
change of this state between several epochs. The objects might be natural, such
as mountain slopes and glaciers, or artificial, like bridges and buildings. The
deformations might be rigid, such as rotation and translation, or non-rigid, such
as sheering or bending. Examples of deformation monitoring are observing slid-
ing slopes to warn in risky situations or monitoring a water dam. Classically
deformation monitoring has been realized using point measurements or geodetic
networks with GNSS receivers and total stations. More and more area-based
measurement methods, such as laser scanning, have been used recently. Those
methods bring up new challenges in data analysis, such as the measurements
being often irregular samples of the surface instead of dedicated and signalled
observation points. Another level of complexity arises when the measurement
platform is moving while it is performing the data capturing.

The accuracy of the measurements is crucial information to know in defor-
mation monitoring, especially when it is in the same order of magnitude as the
expected deformation. In kinematic measuring modes, this accuracy is signifi-
cantly influenced by the accuracy of the trajectory estimation. In the case of
image-based point clouds, the 3D processing procedure, including the structure-
from-motion and the multi-view-stereo pipeline, also has a non-trivial impact on
the resulting accuracy.

In the above papers, we investigated the usage of UAV imagery for deforma-
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Figure 5.3: a) Test environment for deformation analysis trial. b) Closer view of the objects
and c) measured point cloud from that area. d) Differences between the imaged based point
cloud and the TLS scan. e) Detected deformations without fine-registration and f) with fine-
registration.

tion monitoring. In [C8] we placed several objects in an area of about 10 x10 m2.
We captured the scene as a point cloud using UAV images and a structure-from-
motion / multi-view stereo processing pipeline (Fig. 5.3a-c). We performed the
georeferencing by measuring the camera coordinates at the image capturing time
without ground control points. We repeated this two times, and in between, we
changed the objects by several rigid and non-rigid deformations. We also captured
a reference point cloud using a terrestrial laser scanner at multiple standpoints
and georeferenced it using scanner targets. Fig. 5.3d shows that the differences
between the TLS and the image-based point clouds are within 1 −2 cm. Only the
footsteps left in the sandy area by the person carrying the laser scanner are visible
here as deviations to the reference. Fig. 5.3e and f show detected significant de-
formations for two different cases. In the first case, we registered the point clouds
of the different epochs only based on the georeferencing results from the sensor
unit. We applied an additional fine registration step using an Iterative Closest
Point (ICP) algorithm in the second case. Expectedly, we detected more minor
deformations with the second approach, such as the footsteps. Nevertheless, even
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without the ICP fine registration, we detected deformations from about 7 cm.

Figure 5.4: a) Solifluction lobe. b) Map of the environmemt including relevant objects and
sensor positions. c) Difference between the epochs using point cloud comparison. d) Detected
motion between the epochs using feature tracking and total station measurements.

In [J13], [C5], [C1], and [J6] we used a UAV equipped with a camera to study
the movement properties of a solifluction lobe. These geomorphological objects
move down a slope due to freeze-thaw processes. The expected movement is in
the order of centimetres per year, and in [C1], we investigated if this movement
can be detected using UAV images. We performed two flight campaigns in 2014
and 2015 in the Turtmann Valley in the Swiss Alps. We mapped an area with
such a lobe (Fig. 5.4 a) using a UAV with a camera and a flight height of about
10 m. We processed the images to a georeferenced point cloud using the structure-
from-motion pipeline in Agisoft Metashape and ground control points, which we
measured using RTK. Since this registration only leads to an accuracy of up to
a few centimetres, we applied a fine registration of the point clouds, using stable
rocks around the area of interest as reference areas (Fig. 5.4 b).

A point cloud comparison between the two epochs (Fig. 5.4 c) showed no
significant changes, apart from very local changes due to little rocks and stones
and vegetation. We can explain this because the expected deformation is a motion
along the surface, which might not be detectable using a direct point comparison.
We proposed and tested an alternative option based on tracking automatically
detected feature points in the orthophotos from both epochs. Fig. 5.4 d shows
promising initial results of this procedure together with a reference, which we
created with total station observations at distinct points on the lobe. We observed
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a motion of about 2 cm between the epochs at the front of the lobe with the total
station. The feature-based optical tracking showed results in the same order of
magnitude and the same direction down the slope. A thorough investigation of
this method was beyond the scope of the paper.

5.3 Agriculture

[C2] Becirevic, D., Klingbeil, L., Honecker, A., Schumann, H., Rascher, U., Léon, J., & Kuhlmann, H.
(2019). On the derivation of crop heights from multitemporal UAV-based imagery. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5(2/W5), 95–102.
https://doi.org/10.5194/isprs-annals-iv-2-w5-95-2019

[J9] Wilke, N., Siegmann, B., Klingbeil, L., Burkart, A., Kraska, T., Muller, O., van Doorn, A., Heinemann,
S., & Rascher, U. (2019). Quantifying lodging percentage and lodging severity using a UAV-based
canopy height model combined with an objective threshold approach. Remote Sensing, 11(5), 515.
https://doi.org/10.3390/rs11050515

[J4] Honecker, A., Schumann, H., Becirevic, D., Klingbeil, L., Volland, K., Forberig, S., Jansen, M., Paulsen,
H., Kuhlmann, H., & Léon, J. (2020). Plant, space and time - linked together in an integrative and
scalable data management system for phenomic approaches in agronomic field trials. Plant Methods,
16(1), 55. https://doi.org/10.1186/s13007-020-00596-3

In the last section, we showed that changes along the surface of an object
are difficult to detect using only 3D information, such as point clouds. If the
direction of change is perpendicular to the surface, as in the case of growing
vegetation, this is easier to achieve. In publications [C2], [J9], and [J4], we used
point clouds generated from aerial images to monitor crop growth and to derive
other agricultural parameters.

UAVs have become a widely used tool for monitoring vegetation, particularly
in agricultural fields. The goal is often a fast and objective derivation of pheno-
typic parameters as they are needed in plant breeding trials or the monitoring
of the general health status of the plants. The latter can control management
actions, such as spraying or fertilizing. The UAVs are often equipped with multi-
or hyperspectral sensors because the spectral reflectance can provide helpful in-
formation about the functional properties of plants. Our research focused on
geometrical properties, which we derived from point clouds generated from im-
ages using the described structure-from-motion processing pipeline. In [C2], we
generated georeferenced point clouds of winter wheat breeding trials at two loca-
tions in three seasons. From these data we generated Crop Surface Models, which
are raster images containing the crop heights relative to the ground. We investi-
gated different options for the rasterization of the point clouds and the generation
of height values for each breeding plot. From the crop surface models of differ-
ent dates, we derived crop height and growth curves for the different genotypes,
seasons, locations and management systems. In [J9], we used the crops surface

43

https://doi.org/10.5194/isprs-annals-iv-2-w5-95-2019
https://doi.org/10.3390/rs11050515
https://doi.org/10.1186/s13007-020-00596-3


5.4. UAV-Based Laser Scanning

Figure 5.5: a) Winter wheat breeding trial and images taken during one mission. b) Generated
point clouds for multiple epochs. c) Side view of point clouds from multiple epochs. d) Crop
height development of several winter wheat genotypes for two different management systems:
extensive (blue) and intensive (red).

models to detect and quantify lodging area and severity. [J4] presents, how the
derived parameters can be integrated into a data management system for field
trials and farmers.

5.4 UAV-Based Laser Scanning

[J2] Dreier, A., Janßen, J., Kuhlmann, H., & Klingbeil, L. (2021). Quality analysis of direct georeferencing
in aspects of absolute accuracy and precision for a UAV-based laser scanning system. Remote Sensing,
13(18), 3564. https://doi.org/10.3390/rs13183564

The above publications in the context of UAV mapping used cameras as sen-
sors to create the 3D information. More and more laser scanners have been
mounted on UAVs as mapping sensors in recent years. A shown in Fig. 5.6, the
measurement principle is very similar to the one for mobile laser scanning pre-
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sented in Ch. 4. A GNSS/IMU unit is used to determine the vehicle’s trajectory,
and with this, each scan profile is registered to the global reference frame. An
additional processing step is often applied to optimize the trajectory between the
different flight strips.

Figure 5.6: a) DJI Matrice 600 UAV with Riegl miniVUX-2UAV profile scanner. b) UAV scan
profile. c) UAV laser scanning processing chain and main error sources.

In [J2], we empirically investigated the quality of a UAV laser scanning system
with and without the additional optimization. We performed several test flights in
two test environments to derive different quality parameters, such as the accuracy,
the range precision and the impact of the GNSS base station. We showed that
the point accuracy is in the order of a few centimetres for flight heights up to
25 m. The range precision for the same heights is below one centimetre. We
also could not detect any influence of the source of the GNSS reference data
(own master station versus RTK service) on the results. The applicability of
UAV laser scanning to deformation analysis and crop monitoring are subjects of
current investigations.
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Chapter 6

High-Throughput Phenotyping in
Viticulture

[J15] Rose, J. C., Kicherer, A., Wieland, M., Klingbeil, L., Töpfer, R., & Kuhlmann, H. (2016). Towards
automated large-scale 3D phenotyping of vineyards under field conditions. Sensors, 16(12), 2136. https:
//doi.org/10.3390/s16122136

[J12] Kicherer, A., Herzog, K., Bendel, N., Klück, H. C., Backhaus, A., Wieland, M., Rose, J. C., Klingbeil, L.,
Läbe, T., Hohl, C., Petry, W., Kuhlmann, H., Seiffert, U., & Töpfer, R. (2017). Phenoliner: A new field
phenotyping platform for grapevine research. Sensors, 17(7), 1625. https://doi.org/10.3390/s17071625

[C3] Zabawa, L., Kicherer, A., Klingbeil, L., Milioto, A., Töpfer, R., Kuhlmann, H., & Roscher, R. (2019).
Detection of single grapevine berries in images using fully convolutional neural networks. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2571–
2579. https://doi.org/10.1109/cvprw.2019.00313

[J5] Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Kuhlmann, H., & Roscher, R. (2020). Counting
of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS
Journal of Photogrammetry and Remote Sensing, 164, 73–83. https://doi.org/10.1016/j.isprsjprs.
2020.04.002

[J1] Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Roscher, R., & Kuhlmann, H. (2022). Image-based
analysis of yield parameters in viticulture. Biosystems Engineering, 218, 94–109. https://doi.org/10.
1016/j.biosystemseng.2022.04.009

Yield estimation is of great interest in viticulture, since an early estimation
could influence management decisions of winegrowers. The current practice in-
volves destructive sampling of small sets in the field and a subsequent detailed
analysis in the laboratory. The results are extrapolated to the field and only
approximate the actual conditions. Within a series of publications, we developed
methods to automatically count the number of berries and grapes in a vineyard
using a mobile platform with multiple cameras.
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6.1 Measurement System
We developed a mobile mapping platform based on a grapevine harvester with
our project partners. The harvester can drive over the vine rows, building a
movable tunnel equipped with sensors. Within the tunnel, a multi-camera system
consisting of four RGB and one infrared camera is mounted pointing from the
side onto the canopy at about 70 cm. The tunnel allows controlling the lighting
conditions, making the imaging procedure more reliable. The system also contains
a GNSS receiver in RTK mode and a two-axis inclinometer. By combining the
GNSS positions, the two angles, a motion model of the vehicle, and the relative
transformations between all sensors, it was possible to georeference every picture
taken with the cameras with an accuracy of a few centimetres. The system is
presented in [J12] and shown in Fig. 6.1.

Figure 6.1: a) Modified grapevine harvester with additional sensors. b) Harvester driving over
a vine row. c) Mult-camera system. d) Image taken in a vine row with one of the cameras. e)
Deviation of detected camera coordinates from nominal positions.
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6.2 Yield Estimation Using Point Clouds
To count the number of visible berries, we implemented a processing pipeline,
which is based on point clouds [J15]. In a first step, we created the clouds
from overlapping images taken with the multi-camera system while it was mov-
ing along the vine row. By integrating the accurate positions of the images, the
reconstruction process was stable and led to an adequately scaled and georef-
erenced reconstruction. After some preprocessing steps removing outliers, and
subsampling the points, we separated berry and background points using a seg-
mentation algorithm. The algorithm is based on an Import Vector Machine and
several features exploiting the colour and the 3D structure of the neighbourhood
of the points. We modelled each berry by fitting spheres into the segmented point
clouds in the last step. We calculated the number and the size of the berries,
the number of grape bunches, and the number of berries per bunch. We showed
that the pipeline could detect between 70 and 90% of the visible berries. How-
ever, we also noticed that the performance depended on the quality of the 3D
reconstruction from the images.

Figure 6.2: Pipeline from consecutive images taken with the mobile system to the 3D models
of single berries, which are used to quantify the number and size of visible berries.
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6.3 Image-Based Yield Estimation Using CNNs
The high computational burden of the 3D reconstruction, its influence on the
segmentation, and at the same time, the increasing availability and demonstrated
performance of Convolutional Neuronal Networks (CNN) for image understanding
motivated the development of an alternative pipeline for yield estimation.

In [C3] and [J5], we presented a method to segment single berry instances in
images to count them. While other instance segmentation algorithms had trouble
with a high number of instances in one image, we proposed an approach which
transforms the problem into a simpler segmentation problem by classifying pix-
els into the three classes berry, edge, and background. The existence of an edge
class spatially separates individual berries and makes them localizable and count-
able. The correlation between the number of detected berries and the number of
manually counted berries in a set of 60 images was nearly 100%.

Figure 6.3: Left) Prediction of berries in an image. Right) Correlation between the true and
the detected number of visible berries in 60 test images.

Although we showed that we could detect nearly all berries visible in the
images, one critical question remains in the context of yield estimation: how
many berries are not visible in the images? In [J1], we investigated how we can
use the procedure above to estimate the yield in a vineyard. We analyzed data
that we took with the mobile system in three different years from three different
varieties. The vine has also been grown in two different training systems; one is
the classical Vertical Shoot Positioned (VSP) system, and one is the Semi Minimal
Pruned Hedge (SMPH) system. The latter has many branches and many leaves,
leading to more occlusions. To analyze the effect of occlusion, we additionally
performed an experiment where we captured data before and after removing the
leaves. The reference yield for the different years and varieties in this experiment
was provided in kg per row.
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We first captured images as described above and counted the berries in each
image. After that, we compensated for horizontal and vertical image overlap and
double counting by utilizing the images’ georeference and detecting counted grape
bunches. To predict the yield, it was necessary to establish a relationship between
the number of visible berries and the yield in kg. This relationship depends on
the number of invisible berries and the berry weight. While the latter can be
determined relatively quickly, the amount of invisible berries depends on the
variety, the year, and the training system. The defoliation experiments showed
that in the SMPH system, the variability is so high that it is impossible to
provide a helpful correction factor. In the VSP, we achieved a mean absolute
yield prediction error of 26%, influenced mainly by the occlusion variability.
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Chapter 7

Conclusion and Outlook

In this thesis, we presented methods for trajectory estimation of moving plat-
forms and various examples of sensing systems and applications which use these
methods to georeference data and generate maps. One part of our contributions
was the field of sensors and methods for trajectory estimation in general. We
developed system configurations, calibration procedures and algorithms, which
mainly focussed on the integration of inertial sensors with other observations,
e.g. from GNSS or magnetometers. The other part of our contribution focussed
on particular application examples of mobile mapping for surveying, agriculture
and deformation analysis.

Figure 7.1: a) multispectral orthomosaic. b) UAV LIDAR point cloud, c) RGB orthomosaic.
d) high-resolution mobile laser scanning point cloud.

Fig. 7.1 shows a segment of an agricultural field with an overlay of mapping
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results from four different mobile mapping systems: an orthomosaic generated
from multispectral images (a), a point cloud from a UAV-based laser scanner (b),
an orthomosaic from RGB images (c), and a point cloud from a ground-based
high-resolution mobile laser scanning system. We recorded, processed, and geo-
referenced the data as described in the examples in Chapters 4 and 5. We only
created the overlay using the georeferencing information without any additional
registration procedure. This image provides a qualitative insight into the accu-
racy of the presented mobile mapping systems and georeferencing methods. It
also indicates the benefit, that the now possible intersection of these maps has in
the agricultural context. Spatial data from different sources, can be combined to
analyize, understand and predict crop health and growth, even on a single plant
level.

Based on the publications that have been the basis for this thesis and all
the experience gained throughout the years, we conclude with several remaining
challenges and questions. We also present some ideas to answer the questions
and to tackle those challenges.

GNSS Uncertainties GNSS receivers are very often the only sources of ab-
solute position information, which enables registration to a global coordinate
system. On the other hand, GNSS receivers are prone to systematic measure-
ment errors, especially in urban environments or other areas with a disturbed line
of sight to the satellites. The questions are whether these GNSS errors can be
detected and corrected and if other sensors can sufficiently bridge and stabilize
the trajectory estimation in those disturbed areas.

Low-Cost Sensors In order to derive centimetre or even better accuracy of the
mapping products, the involved sensors are very costly. The interesting question
is if we can achieve results with similar quality with low-cost sensors. This would
enable the deployment of more platforms and increase the mapping process’s
efficiency even more.

Quality Analysis Depending on the application, reliable information about
the quality of the resulting map products is essential. An open question is how
to derive this information, given the complex chain of sensors and algorithms
involved in generating the map.

A possible solution to adress GNSS uncertainties and enable low-cost sys-
tems is the integration of many sensing modalities and prior knowledge into the
trajectory estimation procedure. The usage of images and laser scans can pro-
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vide information about the relative motion of the platform and potentially avoid
the need for expensive high-grade IMUs. While these methods have been widely
used in the robotics community, they often generate local maps without a geo-
reference. A combination of LIDAR, images, RTK GNSS and Inertial sensors,
considering uncertainties of the sensors and algorithms involved, might provide
georeferenced maps of high accuracy, even with low-cost sensors. Regarding the
quality of results, relevant parameters need to be defined, and methods to derive
those parameters need to be developed.

55


	Abstract
	Contents
	Publications
	Introduction
	Mobile Mapping
	Georeferencing
	Contribution and Structure of the Thesis

	Inertial Navigation
	Coordinate Systems
	Inertial Sensors
	Magnetometer
	Global Navigation Satellite Systems
	State Estimation Algorithms

	Localization in GNSS-Denied Environments
	Dead-Reckoning
	Radio Ranging and Proximity Sensing
	Integration of Constraints
	Use of Mapping Sensors for Navigation

	High Precision Mobile Laser Scanning
	Measurement System
	System Calibration
	Quality Analysis
	Application Example: Road Monitoring

	Mapping With UAVs
	Mapping on Demand
	Deformation Monitoring
	Agriculture
	UAV-Based Laser Scanning

	High-Throughput Phenotyping in Viticulture
	Measurement System
	Yield Estimation Using Point Clouds
	Image-Based Yield Estimation Using CNNs

	Conclusion and Outlook



