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Abstract

Exposure to ground-level ozone harms human health as well as the entire ecosystem, so accurate pre-

diction of ozone exposure is of particular importance. Machine learning (ML), and deep learning (DL)

in particular, has emerged as a powerful method with a vast variety of applications, including meteorol-

ogy and Earth system sciences, making it a strong alternative to conventional methods such as chemical

transport models (CTMs) or regression based solutions to forecast ground-level ozone. However, to date,

classical as well as ML approaches have experienced challenges in reliably forecasting ozone pollution

at the local scale. These shortcomings can be attributed to the challenges posed by inherent uncertainties

about near-future weather conditions and the superposition of patterns on different time scales. In this

thesis, a time series filtering approach to split up long-term and short-term variations and DL are applied

to allow for accurate predictions of air pollution attributable to ground-level ozone. This is complemented

by integrating large amounts of data from air quality monitoring stations distributed across Central Eu-

rope, climatological statistics on air pollutants and meteorological data from numerical weather models.

The DL approach is framed by a well-defined workflow for training and validation called MLAir, which

ensures the reproducibility of the findings. Results substantiate that the combination of sophisticated

DL architectures and time series filtering enables accurate ozone prediction. The DL approach thereby

achieves a nearly bias-free prediction and has a good performance with regard to the seasonal variability

of ozone. This leads to a great improvement compared to simpler reference forecasts based on clima-

tology and persistence, as well as to the Copernicus Atmosphere Monitoring Service (CAMS) regional

multi-model ensemble forecast, which combines nine individual state-of-the-art CTMs deployed opera-

tionally by public weather services and research institutions. Averaged over a forecast horizon of four

days, the prediction for the daily maximum 8-hour running average (dma8) of ozone by the CAMS re-

gional ensemble has a root mean squared error (RMSE) of 7.6 ppb, whereas the newly developed method

here achieves an RMSE of 5.1 ppb. The approach presented in this thesis thus marks an important ad-

vance in DL-based air pollution prediction, benefiting the general public through more reliable forecasts.

Furthermore, this study opens up the prospect of further research opportunities towards the prediction of

a range of other air pollutants or related applications in meteorology.
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1. Introduction

1.1. Motivation

Human health is significantly shaped by the quality of the ambient air in which humans live. The World

Health Organization (WHO, 2013) points out that the negative effects of air pollution on health are very

well documented in many studies conducted worldwide. Short-term exposure to higher levels of air pol-

lutants such as particulate matter or ozone increases hospital admissions (WHO, 2013) and respiratory,

cardiovascular and all-cause mortality (Romieu et al., 2012; WHO, 2013). For long-term exposure, Co-

hen et al. (2017) report an increase in air pollution-related mortality from 1990 to 2015, with an estimated

4 million additional deaths and 103 million years of life lost attributable to particulate matter and ozone

alone. Zhang et al. (2018) also report a 13% increase in ozone-related mortality between 1990 and 2010

in the United States, despite declining ozone concentrations. If ozone concentrations had remained at

1990 levels, a 55% increase in the ozone-related mortality burden would have been attributable over the

same period (Zhang et al., 2018). This underlines the enormous impact of actions to improve air quality.

Since air quality is determined by a complex interplay of emissions, transport as well as chemical and

physical transformation processes (Solberg et al., 2016), exposure to air pollution is rarely in the hands of

the individual but needs to be controlled by public authorities on the local, regional, national or interna-

tional level. Good air quality, therefore, requires broad measures across a wide range of sectors, such as

energy production, industry, transport, but also individual housing and lifestyles (WHO, 2013). Europe’s

latest air quality status report from the European Environment Agency (2022) shows that levels of am-

bient air pollutants are above European Union (EU) and WHO standards all over Europe. In particular,

ozone pollution remains high, with 12% of the EU population exposed to ozone concentrations above

EU standards and 95% above WHO guidelines, placing ozone as a ubiquitous public health hazard.

Effective countermeasures require an in-depth understanding of air quality and atmospheric chemistry

through extensive monitoring and accurate modelling. This includes the need to describe the current state

and provide a precise air quality prediction. Numerical and statistical models are used to understand

the spatial and temporal distribution and evolution of ozone concentrations and chemistry. The most

comprehensive and widely used models are so-called chemical transport models (CTMs), which are

based on a complex combination of physical and chemical processes to simulate the distribution and

evolution of chemical compounds from global to local scales. Statistical methods, however, are applied
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1. Introduction

more in applications at the local scale, where they mainly map correlations between observed weather

and air quality, for example, through linear regression, without explicitly solving physical and chemical

equations, but rather are based primarily on data. Furthermore, statistical methods are widely applied

to correct biases, e.g. for CTM output. While CTMs are set up very broadly to describe atmospheric

chemistry comprehensively, statistical methods are always very targeted to a specific objective.

Seltzer et al. (2020) remark that estimates of air pollution exposure and effects may differ significantly

between studies based on different CTMs. According to Vautard et al. (2012), uncertainties in CTMs

derive first from chemical and aerosol physics, second from fluxes such as emissions and deposition,

and third from meteorological processes that influence transport, but also surface fluxes or chemistry.

Furthermore, the level of detail of the simulated processes always depends on the intended use case of

the model and is constrained by the available computing capacity (Young et al., 2018). Uncertainties from

meteorological processes cause inconsistencies in the sensitivity of the air quality modelling to important

variables such as temperature, relative humidity, solar irradiance, precipitation and the height of the

planetary boundary layer (Brunner et al., 2015; Otero et al., 2018). Thus CTMs tend to overestimate,

for example, the influence of maximum temperature and radiation, both of which are directly coupled to

ozone production, and, on the other hand, poorly represent the influence of moisture, which is crucial in

ozone reduction processes (Otero et al., 2018). In addition, under stable conditions, wind speed is often

exaggerated, which leads to an underestimation of primary pollutants due to exaggerated air mixing

(Vautard et al., 2012; Bessagnet et al., 2016).

In many CTMs, meteorological fields calculated in advance are used to simulate the chemistry so that the

chemical processes taking place can be studied in more detail and compared with observations (Young

et al., 2018). However, there are also modelling approaches in which the meteorological and chemical

processes are simultaneously simulated. In both approaches, a large share of the computational effort

is spent on calculating the chemical kinetics alone since coupled ordinary differential equations have to

be solved repeatedly. This high effort is a result of the chemical reaction equations that are non-linear,

strongly coupled and stiff and therefore require an expensive numerical integration scheme. Thus, the

more substances and reactions are considered, the more computational effort is inevitable (Wang et al.,

1999). To reduce the computational effort, the chemical mechanisms are necessarily simplified, espe-

cially in global models. However, this also simplifies the tropospheric gas phase oxidation, especially

for organic molecules and their oxidation pathways, leading to uncertainties in the overall modelling of

tropospheric chemistry (Young et al., 2018).

Additionally, global models are typically run at a coarser resolution due to computational resource con-

straints to allow for longer-range modelling, for example. However, Stock et al. (2014) note that this can

lead to inaccuracies for ground-level air pollutant concentrations on the local scale since atmospheric

chemistry and chemical substances become relevant on scales smaller than the model resolution, whereas
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1.1. Motivation

they cannot be simulated sufficiently. Young et al. (2018) state that an increase in spatial resolution offers

the potential for CTM results to become more representative of local measurements. However, accord-

ing to their assessment, this is not yet computationally feasible on the global scale. In fact, improving

resolution provides a better representation of local chemistry but increases computational costs without

necessarily improving the simulation of global-scale chemistry (Stock et al., 2014). Schaap et al. (2015)

argue that an improvement of the spatial resolution leads to a better simulation of the spatial distribution

during air pollution episodes, but at the same time, temporal variability is not improved. Accordingly,

simulations in urban areas can become more accurate, but an adjusted spatial resolution does not lead to

improvements for rural regions, which are more influenced by large-scale processes. In fact, according

to Schaap et al. (2015), increasing resolution can degrade the representation of spatial contrasts between

metropolitan areas. Colette et al. (2014) name the availability and resolution of auxiliary parameters for

calculating key emissions as a further limitation, especially when a CTM is used in operational fore-

casting. Schaap et al. (2015), therefore, propose to determine an optimal resolution that balances the

improved simulation on the one hand and the additional computational effort on the other. Finally, a

higher resolution also depends on the technical implementation and the degree of concurrency and thus

the scalability of the model code, since adding computing power, for example, by additional central

processing units (CPUs) also increases the amount of inter-node communication (Baklanov et al., 2014).

To link models and observations and to deal with the uncertainties and limitations of CTMs, one pos-

sibility is to use post-processing methods as applied in Fuentes and Raftery (2005). The authors use a

posterior distribution over the model bias to estimate the actual value in dependence of the model pre-

diction and the measured value at the observing air quality station (AQS). An alternative approach is to

combine different CTMs in an ensemble, as favoured by Manders et al. (2012), especially since various

studies show that there are fewer differences between individual simulations of the same model than be-

tween simulations with different models and model setups (Brunner et al., 2015; Bessagnet et al., 2016;

Seltzer et al., 2020). A further common practice to address this issue is the use of statistical methods

such as lasso, logistic or multiple linear regressions, as used, for example, in Otero et al. (2016) and Jahn

and Hertig (2021). These techniques obtain valuable information for air quality prediction from meteo-

rological parameters such as mean air temperature and geopotential heights at 850hPa, but also from the

persistence of air pollutants as well as maximum ground-level temperature and humidity.

However, despite decades of research, it is still not possible to make reliable, bias-free predictions of

ground-level pollutants. The roots of these problems are the limitations in modelling but also the pro-

nounced day-to-day and intra-day variability of pollutant concentrations resulting from the complex re-

lationship between meteorology and atmospheric chemistry (Manders et al., 2012). The daily to weekly

variations in air pollution are also amplified by covariation on the synoptic time scale (Fiore et al., 2015).

For instance, tropospheric ozone has a lifetime of one to two months in the free troposphere and a few

weeks near the surface, with shorter lifetimes during summer. Short lifetimes result in high spatial and
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1. Introduction

temporal variability (Junge, 1974). The presence of patterns on different temporal scales makes the anal-

ysis and interpretation of the time series more challenging, as the annual cycle of ozone is not regular but

varies from year to year, while local meteorological conditions strongly affect the day-to-day variability

(Eskridge et al., 1997; Wise and Comrie, 2005). This results in unique events with peak concentrations

that are very difficult to predict due to their complex origin (Wise and Comrie, 2005).

Recently, the use of emerging artificial intelligence (AI) approaches such as machine learning (ML)

and deep learning (DL) have seen increasing attention in meteorology and Earth system science (c.f.

Reichstein et al., 2019; Dueben et al., 2022). ML approaches offer the potential to improve forecasting

as they can understand and learn non-linear relationships. ML refers to methods that enable a machine

to detect and reproduce a context in a training process by feeding in input data without being explicitly

programmed. The fields of ML application can support or replace classical parametric and statistical

approaches, ranging from classification tasks and anomaly detection, such as extreme weather patterns

or land use and its change, to regression problems, such as prediction of fluxes or vegetation properties

based on atmospheric conditions, and to state prediction, such as the short-term precipitation forecast,

downscaling and bias correction of forecasts or seasonal forecasts (see Reichstein et al., 2019). Schultz

et al. (2021) also discuss whether DL can replace numerical weather prediction in the near future and

conclude that end-to-end DL weather forecast applications, in particular, harbour great potential, as they

can be tailored to a specific problem.

DL methods are a subgroup of ML methods that use many levels of representation consisting of a com-

posite of several simple but non-linear modules. These modules compute a simple input-output mapping.

By linking a sufficient number of such modules in layers, it is possible to obtain different degrees of ab-

straction levels, so that very complex functions and relationships can be learned (LeCun et al., 2015).

The term deep refers to the fact that DL methods make use of a large number of representation layers.

However, there is no clear definition of how many layers are considered deep, resulting in a lot of mis-

used terminology in the literature to sell a study as deep learning. Moreover, boundaries also seem to

be shifting more and more as both the number of layers and the total number of parameters continue

to increase. For example, in 1989 the largest models consisted of four layers and had a total of a few

thousand parameters (LeCun et al., 1989). In 2015, by contrast, modern architectures reached 10 to 20

layers with hundreds of millions of parameters (LeCun et al., 2015). Nowadays, the deepest models as

the GPT-3 model consist of more than 175 billion parameters distributed over up to 96 layers (Brown

et al., 2020). DL in particular has led to impressive advances in computer vision and speech recognition.

The problems from these fields and the DL methods to solve them may be transferred to meteorological

applications (Schultz et al., 2021). However, for example, standard computer vision applications deal

with images of three colour channels. In contrast, meteorological problems are more oriented towards

multivariate problems, where the correlation and causality between different channels or variables may
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1.1. Motivation

be different and change over time. Similarly, although the analogy between frequency patterns in speech

recognition and the variation of atmospheric time series is evident at first glance, atmospheric time series

are permeated by autocorrelation and important features overlapping at very different time scales, which

poses fundamental difficulties for DL methods according to Cui et al. (2016). Therefore, Reichstein

et al. (2019) argue that conventional ML methods may not be ideally suited to specific problems in

Earth system science because, among other things, spatial and temporal context at different scales needs

to be better accounted for in the methods. Schultz et al. (2021) accordingly conclude that novel DL

methods are needed due to the special properties of weather data. Given these fundamental problems of

applying DL in meteorology and the specific challenges posed by the complexity of the processes driving

air quality, DL approaches have so far experienced difficulties in reliably reproducing and accurately

predicting air pollution at the local scale. In the past year of 2022, impressive results were indeed

achieved in DL-based weather forecasting. In chronological order, the models FourCastNet (Pathak

et al., 2022), Pangu-Weather (Bi et al., 2022) and GraphCast (Lam et al., 2022) stand out in particular, as

they perform on par with or even better than operational weather forecasting models. However, all these

approaches focus on global weather forecasting, and there have been no attempts to use these methods

for air quality forecasting.

More than 20 years ago, Cobourn et al. (2000) described the difficulties that local air pollution control

agencies have in finding a comprehensive methodology to predict ozone, as it is not possible to quantify

the relative effectiveness of research results for a number of reasons. The multi-faceted reasons are,

inter alia, differences from study to study in terms of time and location covered, different choice of

predictive parameters, statistically unrepresentative data, or the use of inaccessible parameters at the time

a forecast is issued such as morning NO levels, which themselves require a prediction and are therefore

prone to uncertainties. Furthermore, as Cobourn et al. (2000) argue, many prediction models perform

inadequately for ozone prediction as they are too basic in design. As the following sections show, the

issues of reproducibility and applicability continue to be a central concern in the scientific discourse.

Even though methods for ozone prediction have evolved, models for reliable air quality prediction are

still lacking. In fact, it is a fallacy that it is sufficient to use more and more modern and complex models

like DL for the same research questions and to expect that this will automatically lead to an improvement.

The purpose of this research is therefore to explore several questions related to the prediction of ground-

level ozone on local scale based on DL methods to provide a reliable ozone forecast for a couple of days

into the future. In particular, this thesis addresses the shortcomings of previous DL approaches that arise

from the variability and superposition of different scales of ozone. Special attention is also dedicated to

the reproducibility of the results since the foundation of a reliable ozone forecast is that the research work

that led to the results is presented transparently and reproducible. The remainder of this chapter provides

an overview of the theoretical background of ground-level ozone in its role as an air pollutant and how

ozone is modelled conventionally (Section 1.2). Then I move on to a survey of DL methods and their
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1. Introduction

application for time series and ozone prediction (Section 1.3). As a subtopic, I address issues regarding

reproducibility in science and DL research and discuss how to ensure that results obtained using DL are

verifiable and reproducible for the scientific community (Section 1.3.4). Finally, in Section 1.4, I specify

the research questions of my thesis and give an outlook on the following chapters.

1.2. Ground-Level Ozone as Air Pollutant

Ozone near the ground is fundamentally classified as an air pollutant because exposure to ozone leads to

respiratory and cardiovascular effects for humans and also causes plant damage (WHO, 2013; US EPA,

2020). Ozone impacts the human body in a vast number of complex ways. When inhaled, ozone reacts

with lipids, proteins and antioxidants in the respiratory tract, resulting in the formation of secondary

oxidation products, which in turn cause a number of physiological reactions. Initial indications are, for

example, inflammation of the lungs. Such first physiological reactions can trigger a variety of autonomic,

endocrine, immune and inflammatory system-wide reactions at the cellular, tissue and organ levels (US

EPA, 2020). Thereby, short-term ozone exposure has an age-dependent negative impact, so older groups

of people are particularly exposed (Romieu et al., 2012; Bell et al., 2014). In addition, Bell et al. (2014)

report a higher risk potential for persons unemployed or with lower occupational status, and persons with

lower education or those living in poverty also seem more at risk of being affected by ozone.

Besides the effects on humankind, ozone also impacts plants and entire ecosystems. According to Mills

et al. (2018), there is evidence that the higher the ozone concentration, the greater the likelihood of crop

yield decline and growth inhibition. For example, ozone has been found to cause loss of stomatal control,

incomplete nighttime stomatal closure, and decoupling of photosynthesis and stomatal conductance.

These impacts, in turn, have negative consequences at community and ecosystem scales, which can be

noticed in the species composition (US EPA, 2020). Though Mills et al. (2018) show that ozone metrics

relevant to crop impact can be high in humid and dry, cooler or warmer regions, ozone-related damage

to wheat, for example, is particularly pronounced in tropical regions (Shindell et al., 2019). Overall, the

highest exposure of plants to ozone occurs in regions of the world where high emissions and climatic

conditions combine to foster the formation of ozone. Examples include the southern regions of the US,

southern Europe, northern India and northwestern and eastern parts of China (Mills et al., 2018).

1.2.1. Chemistry of Tropospheric Ozone

The particularity of ozone (O3) compared to other air pollutants, such as particulate matter or nitrogen

oxide (NOx), is that O3 is a secondary air pollutant. This means that O3 itself is not emitted to the at-

mosphere directly but is a result of chemical reactions with precursors in the atmosphere (Monks et al.,
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2015). Accordingly, the O3 concentration in the surface boundary layer is mainly driven by three key

processes; (1) photochemical reactions leading to production and destruction, (2) atmospheric transport

of O3 and its precursors, and (3) loss of O3 and interacting chemical substances from dry and wet depo-

sition (Young et al., 2018). Basically, the production of O3 is mainly related to the photolysis of nitrogen

dioxide (NO2) in the presence of sunlight with wavelengths below 424 nm (Seinfeld and Pandis, 2016,

p.179)

NO2 + hν NO + O . (R1)

The product O of this process associates with the oxygen molecule (O2) in a termolecular reaction with

a third co-reactant M to form O3 (Monks et al., 2015)

O + O2 + M O3 + M . (R2)

In the presence of sufficient NO, the O3 thus formed reacts with the NO and produces NO2 (Seinfeld and

Pandis, 2016, p.179)

O3 + NO NO2 + O2 . (R3)

The conversion between NO and NO2 is a rapid process, with a photolysis rate of about 10−2s−1, so both

substances are grouped as NOx (Monks et al., 2015). Moreover, since the concentration of O2 can be

regarded as constant, the O3 concentration is determined solely by the ratio of the concentration of NO2

to NO (Seinfeld and Pandis, 2016, p.180)

[O3] ∼ [NO2]
[NO]

. (1.1)

However, (R1)-(R3) alone cannot explain measurements of O3 concentrations. For example, in heavily

polluted regions, NO, in particular, is emitted, which leads to the destruction of O3 after (R3), but at the

same time, a high O3 load might be measured (Seinfeld and Pandis, 2016, p.180). According to Levy

(1971), the primary factor is the hydroxyl radical oxidation of carbon monoxide (CO), methane (CH4),

and non-methane volatile organic compounds (NMVOCs). The reaction of CO with OH results in CO2

and a hydroperoxyl radical (HO2)
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1. Introduction

CO + OH
O2

CO2 + HO2 . (R4)

The hydroperoxyl radical is more reactive than pure O2 and reacts in presence of NO, leading to the

formation of NO2 and OH

HO2 + NO NO2 + OH . (R5)

(R4) followed by (R5) leads to a shift in the NOx ratio so that the steady-state concentration of O3 in-

creases according to (1.1). The decisive factor here is the NOx concentration, which directly influences

(R5). At low NOx concentrations, O3 production increases linearly with NO concentration and propor-

tionally to the HOx production rate. However, in a high NOx regime, O3 production increases linearly

with the CO concentration as well as the HOx production rate, but at the same time also decreases with

increasing NOx concentration, which can eventually lead to a decrease in O3 (Seinfeld and Pandis, 2016,

pp. 182-184). In the case of the oxidation of CH4, CO is also formed as the primary product, which in

turn leads to (R4). Apart from their complexity due to the size of the molecules and thus strongly simpli-

fied, the reaction chains of NMVOCs are similar to the processes presented here regarding the initiation

by OH and the formation of O3 by the reaction of peroxy radicals and NO (Seinfeld and Pandis, 2016,

pp. 188-192). So, CH4 and NMVOCs are grouped as volatile organic compounds (VOCs).

Since the chemical conversions, as well as transport and deposition, depend on the atmospheric condi-

tions, O3 concentrations show a pronounced variability both in the course of the day and from day to

day (Manders et al., 2012). For photochemical processes as well as for the emission of VOCs, radiation

and temperature play a central role. Likewise, dry deposition is influenced by radiation and temper-

ature but also wind speed and humidity. Wet deposition of chemical compounds affecting the ozone

chemistry is mainly driven by precipitation intensity and type (Vautard et al., 2012). Furthermore, the

regional and local weather controls the transport between regions and within a region, so the variation

of O3 on scales of days to weeks is determined by the large-scale high and low-pressure systems (Fiore

et al., 2015). Finally, O3 concentration due to the chemical conversions is strongly dependent on anthro-

pogenic emissions of NOx, e.g. from power generation and transportation, and natural sources such as

wildfire, lightning or soil, with the former dominating in urban regions (Russell et al., 2012). The emis-

sion of VOCs from anthropogenic or natural sources also significantly determines the O3 level (Porter

et al., 2017). For example, the analysis by Guo et al. (2018) reveals that the highest O3 concentrations

in the U.S. were largely caused by emissions of VOCs. And lastly, the exchange of stratospheric O3
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into the troposphere has an effect on the O3 concentration, whereby this contribution is lower than the

tropospheric production by a factor of 5-7 (Zhang et al., 2016).

1.2.2. Temporal Variability of Ozone

Data in meteorology and atmospheric chemistry usually consist of a sequence of observations or model

results. If the ordering is an essential property, data are referred to as time series. If the statistical

properties of a time series remain constant over time, a time series is called stationary. A distinction is

made between strict and weak stationarity. Strict stationarity applies when the joint distribution does not

change over time. Weak stationarity, on the other hand, only requires that the mean value is constant over

each sample period and that the covariance between different samples of the time series only depends on

their relative position to each other, but not on their absolute position. Many statistical methods assume

weak stationarity of a time series as a basic requirement (Wilks, 2006). However, atmospheric time series

consist of a superposition of patterns on different time scales and exhibit pronounced cycles such as the

seasonal and diurnal cycle, so stationarity cannot be assumed. Moreover, the seasonal cycle is not regular

but varies substantially from year to year (Eskridge et al., 1997).

Wilks (2006) mentions two methods to deal with non-stationarity so that the result can be considered

stationary. One is to stratify the data, i.e. divide them into smaller homogeneous subsets sharing similar

statistical properties, for example, by season or even smaller subsets into monthly blocks, and carry

out analyses on each subset separately. However, the results of stratified sampling are not inherent to

other samples of a time series in general. The other approach is to use periodic averaging methods to

remove the seasonal variation from the data so that the resulting time series has a mean of zero. Rao and

Zurbenko (1994), for example, understand a time series X(t) as the sum of a trend component e(t), a

seasonal variation S(t), and stochastic component W (t)

X(t) =W (t)+S(t)+ e(t) . (1.2)

There are several works looking for a suitable separation method. Rao and Zurbenko (1994) use a so-

called Kolmogorov-Zurbenko filter (KZF), which is a low-pass filter realised by iterating a moving aver-

age multiple times on the time series. Yang and Zurbenko (2010) note that Zurbenko (1986) previously

compared different types of finite impulse response (FIR) filters, which are realised by a convolution of

the time series with a window function (Oppenheim and Schafer, 1975) such as the Bartlett window or

Tukey-Hamming window, where the KZF window was closest to the optimal decomposition. Eskridge

et al. (1997) show that a simple calculation of the anomaly of a time series cannot adequately separate

the synoptic and seasonal signals. The study by Hogrefe et al. (2003) finds equal performance of KZFs,

wavelet and Fourier transforms, and elliptic filters. However, they note that elliptic filters introduce a

9



1. Introduction

phase shift in the signal, making it difficult to interpret the signals in a meaningful way. Rao et al. (2020)

additionally compare a more advanced empirical mode decomposition method but find no improved de-

composition properties. Lastly, Meyer et al. (2021) use a more simplistic sinusoidal curve to extract

seasonality. However, the parameters of this curve can only be fitted retrospectively, so year-to-year vari-

ability cannot be accounted for. It can therefore be summarised that there are a large number of different

methods for decomposing time series and that there is no method that is proven to be superior to the

others. Also, the appropriate choice of method may depend on the application and cannot be answered

generally.

In meteorology and atmospheric chemistry, different physical phenomena cause a range of processes with

various frequencies, so a decomposition according to the dominant temporal scales is not only necessary

from a statistical point of view but also scientifically meaningful (Rao et al., 1997). Hence, Rao et al.

(2011) interpret the concentration of ozone as a modulation of a baseline, where the baseline is driven by

climate and long-term emissions, and the modulation is driven by weather. Rao et al. (1997), as well as

Eskridge et al. (1997), separate the temporal scales of e, S and W as in (1.2) based on two cut-off periods

of 33 days and 1.7 years

X(t) =W (t)
∣∣∣∣
33d

+S(t)
∣∣∣∣
1.7y

33d
+ e(t)

∣∣∣∣
1.7y

. (1.3)

Vertical lines indicate the upper and lower cut-off period for a particular component; empty entries denote

an open limit. Meanwhile, Hogrefe et al. (2003) identify five time scales in particular relevant to ozone

X(t) = ID(t)
∣∣∣∣
11h

+DU(t)
∣∣∣∣
2.5d

11h
+SY (t)

∣∣∣∣
21d

2.5d
+SE(t)

∣∣∣∣
2.5y

21d
+LT (t)

∣∣∣∣
2.5y

. (1.4)

The intraday (ID) component includes the most rapidly proceeding events and local-scale processes with

periods below 11 hours. The diurnal (DU) component with periods up to 2.5 days is related, in particular,

to the differences between day and night of the meteorological and chemical processes. The synoptic

(SY) component (periods up to 21 days) is determined by the changing weather events on the trans-

regional scale. Variations with a period up to 2.5 years can be attributed to the seasonal (SE) component

and are related to the seasonal changes. Finally, all effects with periods longer than 2.5 years are grouped

as long-term (LT) variations, which include, for example, interannual variability and trends due to climate

or policies.

Other studies, such as those by Galmarini et al. (2013) or Kang et al. (2013), follow the basic approach

of Hogrefe et al. (2003), but combine all patterns with a period greater than 21 days as a baseline LT

component rather than splitting them, so that (1.4) becomes
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X(t) = ID(t)
∣∣∣∣
11h

+DU(t)
∣∣∣∣
2.5d

11h
+SY (t)

∣∣∣∣
21d

2.5d
+LT (t)

∣∣∣∣
21d

. (1.5)

According to Galmarini et al. (2013), more than half of the variance of ozone can be attributed to the DU

component, making it the central driver of ozone variability. In addition, LT and SY are of secondary

relevance in explaining the variance, with the importance of SY changing, in particular, seasonally and

with wind direction. The ID component has only a minor fluctuation and is considered the least influential

in the overall variation of ozone, acting more as noise.

It is very challenging to find a suitable technique that can cleanly decompose a time series (Kang et al.,

2013). A good separation technique concentrates the energy of a relevant time scale in one component

each and does not distribute it among multiple components (Rao et al., 1997). However, the individual

components of a signal decomposition of environmental time series are not orthogonal to each other, so a

clear separation cannot be achieved, and the individual components remain correlated (Kang et al., 2013).

For example, Galmarini et al. (2013) show that only 80% of the explained variance can be attributed to

the individual shares of the four components, and the remainder arises from the interaction between the

different scales. Considerably clearer separation is possible, though, according to Kang et al. (2013),

when ID, DU, and SY from (1.5) are combined into a single short-term (ST) component

X(t) = ST (t)
∣∣∣∣
21d

+LT (t)
∣∣∣∣
21d

. (1.6)

Again, this agrees with the basic idea of Rao et al. (1997) that ozone time series can be understood as a

modulation represented by ST of a baseline given by LT. The disadvantage of this approach is that the ST

component covers a wide range of scales and no longer allows discrimination between local and synoptic

processes.

1.2.3. Modelling Ozone at Local Scales

For accurate simulation of, for example, ozone exposure on local scale, it is important that models

capture the baseline concentrations (Kang et al., 2013) but also the seasonal and diurnal variations of

ozone in particular (Seltzer et al., 2017). The study of Solazzo et al. (2017), who apply a decomposition

of the error according to the motion of scales, reveals that especially the long-term bias and the diurnal

fluctuations contribute to the error of CTMs. Otero et al. (2018) show systematic deviations in reflecting

the seasonal and diurnal cycles between different CTMs when compared to observations. According

to their findings, CTMs generally overestimate, for example, ozone globally. Guo et al. (2018) show

that CTMs have a positive bias in simulating ozone and furthermore the timing of events of highest
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ozone levels is not well represented. In contrast, Im et al. (2015) report on a tendency of CTMs to

overestimate lower ozone concentrations, whereas high values are sometimes severely underestimated,

leading to an underestimation of ground-level ozone across the year. Likewise, Manders et al. (2012)

find that CTMs are not able to reproduce peak concentrations. Even though Bessagnet et al. (2016) also

show an underestimation of ozone concentrations for some periods, they conclude that CTMs mostly

overestimate the observed ozone concentrations, which is in agreement with the research by Vautard

et al. (2012) and Young et al. (2018).

Therefore, a variety of alternative approaches are used for the prediction of ozone. Cheng et al. (2022)

provide an in-depth overview and highlight the advantages and disadvantages of air quality prediction

using physically based methods such as CTMs, simple empirical approaches such as persistence or cli-

matology, and parametric and statistical methods such as decision trees, regression approaches or neural

networks. However, the use cases are very heterogeneous, so only some methods and applications can

be directly contrasted. The prediction setups may differ, as shown subsequently. Therefore, let t0 be the

current time step, while any time step ti relative to t0 falls in the future if ti > t0, and in the (relative) past

in case of ti < t0.

- Observed or modelled weather data for past time steps (ti ≤ t0) are used to predict ozone at

subsequent time steps (ti > t0).

- The forecast relies on weather forecasts in the forecast horizon ti > t0 to derive ozone at the corre-

sponding time steps (ti > t0).

- Ozone for a current time t0 is predicted based on the current weather data (t0) while neglecting the

temporal development and context.

- Purely time series-based approaches predict future ozone (ti > t0) solely based on the history of

ozone (ti ≤ t0) or other air pollutants.

On top of the high level of variation in the application, there is also no common agreement in the scien-

tific community on which meteorological or chemical variables should be used as predictors of ozone.

An analysis of the most important predictors can be found in Otero et al. (2016) and Jahn and Hertig

(2021), for example. Most consensus is reached on the importance of meteorological variables such as

temperature, humidity, pressure, cloud cover and wind. However, some studies use data near the surface,

such as measurements or the lowest level in a weather model, while other work is based on data from

elevated layers in weather models, e.g. at 850 hPa or 500 hPa. Some studies include radiation, geopoten-

tial height, boundary layer height, and metadata such as population density, soil type, altitude, and the

hour of the day or day of the year. Finally, some research studies use chemical quantities as additional

input values. Thereby, lagged ozone is a powerful predictor (see Jahn and Hertig, 2021), especially under
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stationary conditions with consistently high or low air pollution. However, under such conditions, persis-

tence alone is actually a very good predictor, as Zhang et al. (2012) note. Accordingly, a method overly

dependent on lagged ozone can have reduced predictive performance, especially at the beginning and end

of such periods. Furthermore, particular care must be taken when using chemical species, as chemical

substances have a high degree of interconnectivity. Cheng et al. (2022) point out that, for example, NO2

is not suitable as a predictor in the forecast horizon ti > t0 because NO2 and ozone are strongly coupled.

It should be noted that there are several such studies, and for the reason given, they are not considered

further.

Applications of simple linear regression can be found, for example, in Cheng et al. (2007) and Demuzere

and van Lipzig (2010). To support the simple methods, Cheng et al. (2007) classify the large-scale

weather situation in advance using principal component analysis. Demuzere and van Lipzig (2010)

choose a similar approach based on an automated Lamb weather classification. In Jahn and Hertig

(2021), lasso regression is used in addition to multiple linear and logistic regression. Otero et al. (2016)

also use multiple linear regressions and additionally call on logistic regression to quantify the probability

of threshold exceedance. Similarly, Cobourn and Hubbard (1999) use a hybrid model consisting of

a standard non-linear regression plus a model for particularly high and low values. Munir et al. (2012)

favour a quantile regression model to better represent the deviation of the ozone distribution from normal.

Other common classical approaches are generalised linear models, such as in Camalier et al. (2007) and

Wells et al. (2021), and generalised additive models, such as those found in Schlink et al. (2006), Pearce

et al. (2011) and Gao et al. (2022). Examples of simple methods from the field of ML are tree-based

approaches such as random forest in Siwek and Osowski (2016) and Zhan et al. (2018) or classification

and regression trees as in Ryan (1995). Besides random forest models, Gao et al. (2022) also use support

vector regression methods.

This section provides a brief overview of classical approaches to local air quality prediction. A disad-

vantage of most methods is that they explicitly assume a normal distribution of the target variable or

cannot deal with the non-linear relationships in ozone chemistry, contrary to neural networks. Accord-

ingly, early work by Comrie (1997) and Cobourn et al. (2000) shows that using neural networks can

produce equivalent or even improved ozone predictions. With the growing amount of available data and

the increasing impact of advanced ML approaches, especially DL, there is great potential for local ozone

modelling. An overview of DL applications for ozone prediction is given in Section 1.3.3, as some DL

concepts require introduction first.
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1.3. Deep Learning for Atmospheric Science

Classical approaches often follow the principle of calculating an output with the help of a computer

from data and an algorithm derived from domain knowledge, for example. Conversely, ML follows the

principle of presenting the computer with data and a target value so that it can independently discover

and reproduce the relationship. Therefore, an elementary element in ML is the training process. With

regard to DL, the training follows straightforward ideas. By assembling simple parameterised modules

consisting of linear or pointwise nonlinear operations, complex functions can be efficiently expressed

in a multi-layer computational graph so-called neural network (NN). A relationship can then be learned

based on examples from data by tuning the parameters, minimising an objective function L, also called

loss function, with a gradient-based method. This gradient can be automatically and efficiently computed

using a backpropagation algorithm. Thereby, the backpropagation algorithm is simply the application of

the chain rule to calculate the partial derivatives of the objective function depending on all parameters

used in the DL model by backward propagating a signal across the NN (LeCun, 2019). The objective

function, considered over all training examples, represents a hilly landscape in the high-dimensional

optimisation space of the NN’s parameters, with the direction of steepest descent given by the negative

gradient that leads to a state where the error expressed by the objective function is smallest. Since

hundreds of millions of parameters are adjusted in a typical NN, there is always the risk that an NN does

not learn the correlations but rather learns the data itself by heart, referred to as overfitting. In order to

verify the ability of generalisation, it is therefore essential to evaluate the system adapted to the data after

the training on new data that were formerly unknown to the model, referred to as test data (LeCun et al.,

2015).

This description applies to so-called supervised learning, which is the focus of this thesis. However,

it should be mentioned that there are other DL methods where training is not supervised by a target

variable. However, so-called unsupervised or semi-supervised learning methods will not be discussed

further here. Since 2013, four key developments have contributed to the enormous popularity of DL

methods in industry and academia. First, there are improved and novel methods; second, more and larger

data sets are becoming available, allowing larger models to be trained; third, the advent of graphical

processing unit (GPU) computing has massively accelerated the training of DL methods; and fourth,

mature open-source software libraries with interpreted language frontends are available, making DL

more accessible and deployable (Raina et al., 2009; LeCun, 2019).

To train an NN, there are several learning algorithms which address different issues and shortcomings.

Moreover, in practice, it actually turns out that the best optimisation algorithm is not necessarily the best

learning algorithm (Bottou and Bousquet, 2007). An appropriate choice of learning algorithm and its

parameters must be reached by trial and error. This process is therefore called tuning the hyperparame-
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ters, the optimisation of the parameters of the learning algorithm over several training cycles. Nowadays,

hundreds of different methods are available, each with its own hyperparameters. The choice of a suit-

able optimiser is therefore seen as the most delicate and, at the same time, challenging design decision

(Schmidt et al., 2021). Schmidt et al. (2021) also note that for many optimisation algorithms, only empir-

ical evaluation from the original research paper is available. Rather, since the performance of individual

methods can differ substantially between tasks, it seems to the authors that the appropriate choice is more

of an incessantly fluctuating state-of-the-art, which is primarily driven by hype. So LeCun et al. (2015)

observe that most ML researchers fall back on the so-called stochastic gradient descent (SGD) method

at that time. Thereby, a specific number of training samples, called a batch, is processed through the NN,

the resulting error is calculated and propagated backwards, and the weights are adjusted accordingly.

Stochastic comes into place here because each batch represents a noisy representation of the average

gradient over the entire data (LeCun et al., 2015).

Before SGD gained currency, it was assumed for a long time that gradient descent methods were im-

practical for use in training NN, as these methods would always get stuck in local minima with poor

performance (LeCun et al., 2015). However, practical and theoretical investigations by Dauphin et al.

(2014) and Choromanska et al. (2015) show that it is not the poor local minima but the proliferating

number of multidimensional saddle points that causes problems. Contrary to popular understanding, pri-

marily based on lower-dimensional intuition, local minima are rare in multidimensional space (Dauphin

et al., 2014). According to Dauphin et al. (2014), these saddle points are wrongly considered to be local

minima because the saddle points are surrounded by high-error plateaus, which leads to a severe slow-

down of the training. However, for very small NNs, there is a higher probability of finding a poor local

minimum, but this chance is rapidly decreasing with the size of the NN (Choromanska et al., 2015).

Choromanska et al. (2015) also prove that it becomes increasingly difficult to discover the global mini-

mum at all for large-scale NNs, but that this does not matter because, on the one hand, the saddle points

are located in a well-defined band with no difference in performance in terms of loss, and, on the other

hand, this region of saddle points is preferable as finding the global minimum in practical applications is

more likely to lead to overfitting the training data. After all, it is not the optimisation performance but

the generalisation performance that is relevant (Bottou and Bousquet, 2007).

Besides SGD, adaptive methods like the Adam algorithm by Kingma and Ba (2014) also find a broad

user base for training an NN. Adaptive methods use past gradient information to adjust the learning

rate dynamically in order to achieve rapid convergence during training. Adam works well with sparse

gradients, is well suited for noisy problems, is computationally efficient and requires little memory,

making Adam ideal for large learning tasks in terms of the number of data or parameters (Kingma and

Ba, 2014). However, Wilson et al. (2017) observe that adaptive methods achieve worse generalisation

than SGD. Although adaptive methods initially show faster training advances, performance on the test

data quickly stagnates. Wilson et al. (2017), therefore, recommend strongly reconsidering the application
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of adaptive methods. For Sivaprasad et al. (2020), meanwhile, the choice of the optimiser is double-

layered, considering how well the optimiser performs absolutely, but also how difficult it is to find the

optimal hyperparameter configuration. Even if SGD can yield the best performance in several cases,

the configuration is very laborious to find. On the other hand, Adam often performs similarly well, and

it is easier to find such a configuration. This is in line with Schmidt et al. (2021), who observe that

the Adam algorithm performs decently despite many alternatives. Specifically, the authors show that

optimisers consistently perform better or worse for specific architectures or tasks and that the choice of

the optimiser is, therefore, dependent on exogenous factors. From a practical perspective, it is particularly

interesting to note that Schmidt et al. (2021) found that hyperparameter tuning of a chosen optimiser is as

effective as searching for the optimal optimisation algorithm. Thus, there is no free lunch when choosing

a learning algorithm, and selecting the most suitable optimiser always involves a considerable amount of

effort.

1.3.1. A Survey of Deep Learning Methods

Feedforward Neural Networks The most elementary NNs are so-called feedforward neural networks

(FNNs), also known as fully-connected networks. Since there are countless different notation schemes

and descriptions for NNs, the introduction and notation here largely follow that of Borovykh et al. (2018).

In an FNN, all nodes of a layer are connected to all nodes in the follow-up layer. FNNs consist of L ∈ N
layers with Ml ∈ N hidden nodes in each layer l = 1, . . . ,L. Given an input X = x(0), . . . ,x(J − 1) with

X ∈ RJ and J ∈ N, the FNN computes linear combinations of the inputs in the first layer with

a1 (i) =
J−1

∑
j=0

w1 (i, j) · x( j)+b1 (i) , for i = 0, . . . ,M1 −1 , (1.7)

where w1 ∈RM1×J are the so-called weights and b∈RM1 the biases. The linear combinations a1 (i)∈RM1

are then processed by a non-linear activation function σ (·) to finally yield the outputs f 1 ∈ RM1 , also

called activation, of the respective nodes in the first layer given by

f 1 (i) = σ
(
a1 (i)

)
, for i = 0, . . . ,M1 −1 . (1.8)

This function σ gives the FNN the ability to learn non-linear relationships in the data. Commonly used

activation functions are the hyperbolic tangent (tanh) given by

tanhx =
e2x −1
e2x +1

(1.9)
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with e being the exponential function base on Euler’s number, and the rectified linear unit (ReLU) func-

tion

ReLU(x) = max(0,x) , (1.10)

but there are many more functions used as activation functions. In the following layers l = 2, . . . ,L−1,

the outputs of the preceding layer f l−1 ∈RMl−1 are always used as input from which the linear combina-

tions are calculated on and passed through the non-linear function

f l (i) = σ

(
Ml−1−1

∑
j=0

wl (i, j) f l−1 ( j)+bl (i)

)
, for i = 0, . . . ,Ml −1 , (1.11)

where f l ∈ RMl , wl ∈ RMl×Ml−1 and bl ∈ RMl . The outputs in the last layer l = L represent the outputs

ŷ ∈ RML of the NN

ŷ(i) = σ

(
ML−1−1

∑
j=0

wL (i, j) f L−1 ( j)+bL (i)

)
, for i = 0, . . . ,ML −1 , (1.12)

with ML ∈ N being equal to the number of target values Y = y(0), . . . ,y(ML − 1), where Y ∈ RML . For

regression problems, a linear function is frequently chosen as the activation function in the last layer in

order to cover a wide range of values. However, the choice of activation function can vary between use

cases.

The most important driver for the success story of FNNs and DL, in general, is depth (Bengio et al.,

2021). In 2006, Bengio et al. (2006) already describe that it is not just a matter of how many parameters

an FNN has since deeper networks are inherently superior to shallower architectures with the same

number of parameters, as they can generalise better. According to Bengio et al. (2021), it is more

relevant that a deep FNN can compose features in the data in varying hierarchical ways at different

abstraction levels. For LeCun et al. (2015), this accommodates the fact that many signals also consist of

a hierarchical composition of different low-level features. However, they also note that deeper FNNs, in

return, also require more data for training. Chronologically, apart from advances in network architecture,

three developments have contributed significantly to making the training of deep FNNs feasible. Glorot

et al. (2011) were able to show that FNNs using ReLU operations learn much faster than FNNs that rely

on sigmoid functions such as the tanh, which was standard practice before. The advantage of ReLU is

that its derivative is constant and, unlike tanh, does not vanish far from the zero point. The second major

achievement was the use of a new regularisation technique called dropout, which greatly reduced the
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overfitting of deep FNNs (Hinton et al., 2012; Srivastava et al., 2014). This technique randomly freezes

nodes and the corresponding connections with a specified probability so that the FNN has to distribute

information more broadly across all nodes during training. Finally, Ioffe and Szegedy (2015) addressed

the problem of internal covariate shifting, which led to a deceleration of the training process because

the distribution of inputs of each layer always changed when the parameters of the preceding layers

changed. The so-called batch normalisation keeps these distributions more stable, which allows higher

learning rates to be used in the learning algorithm, speeding up the overall training process.

Convolutional Neural Networks An issue with fully-connected architectures is that they do not

take into account the topology of the inputs (LeCun et al., 1999). Each value of each neuron is instead

dependent on the entire input (Luo et al., 2016) and detecting the same pattern at different locations in

the inputs requires that units with very similar weight distribution be spread in different locations in the

NN (LeCun et al., 1999). LeCun et al. (1989) proposed a deep NN called convolutional neural network

(CNN), which no longer relies on complete connections between layers but on local connections, shared

weights and pooling operations, making the CNN easy to train with improved generalisation abilities.

A CNN can be trained as easily as conventional FNNs by backpropagating the gradient (LeCun et al.,

2015).

Given a one-dimensional input X = x(0), . . . ,x(J −1), the convolution in the first layer l = 1 of a CNN

is calculated by

a1 (i,m) =
∞

∑
j=−∞

w1
m ( j) · x(i− j) , for i = 0, . . . ,N1 −1 and m = 0, . . . ,M1 −1 , (1.13)

with the weights w1
m ∈ R1×k×1 referred to as kernel or filter, and the convolution output a1 ∈ R1×N1×M1 .

The size of a1 is determined by the number M1 of kernels and N1 = J− k+1, where N1 ∈ N, depending

on the size k ∈ N of these kernels and the input size J. The parameter k is an important parameter in

a CNN because it affects the so-called receptive field of a node, which describes the size of the locally

connected region. As in (1.8) for the FNN, a1 is transformed by a non-linear activation function σ to give

the activation f 1 ∈ R1×N1×M1 also referred to as feature map in the context of CNNs. In the following

layers l = 2, . . . ,L, the feature map f l−1 ∈ R1×Nl−1×Ml−1 , with Nl = Nl−1 − k+ 1, is convoluted with a

new set Ml of kernels wl
m ∈ R1×k×Ml−1 to calculate al ∈ R1×Nl×Ml with

al (i,m) =
∞

∑
j=−∞

Ml−1−1

∑
p=0

wl
m ( j, p) · f l−1 (i− j, p) , for i = 0, . . . ,Nl −1 and m = 0, . . . ,Ml −1 (1.14)

and according to (1.8) the feature map f l ∈R1×Nl×Ml . For inputs with higher dimensions, such as images,

(1.13) and (1.14) can be extended accordingly. The tail of a CNN usually consists of fully-connected
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layers, as introduced in (1.11) for FNNs, where the inputs come from the flattened feature maps of the

last convolutional layer.

Similarly, as the level of abstraction increases with each layer of the NN, so does the receptive field.

However, as Luo et al. (2016) show, the receptive field is usually distributed Gaussian. Thus its effective

size is much smaller, so the receptive field cannot be efficiently increased by stacking only convolu-

tional layers. Therefore, in common CNN architectures, convolutional layers, which are responsible for

recognising finer and similar patterns, alternate with pooling layers, which leads to spatial invariance

by reducing the resolution of the feature maps (LeCun et al., 2015). A pooling layer aggregates neigh-

bouring points in the feature map to a mean or maximum, for example, and thereby increases the size of

the receptive field multiplicatively (Luo et al., 2016). Results from Scherer et al. (2010) and Nagi et al.

(2011) show that pooling with the maximum leads to fastest training and best invariance.

Also, for CNNs, depth is a key ingredient in achieving higher degrees of abstraction and, thus, better

performance. Training such deep CNNs would not have been achievable in an acceptable time without

developments in hardware, software and parallelisation of the training algorithms (LeCun et al., 2015).

Thus, it was first the work of Krizhevsky et al. (2012), who were able to massively reduce error rates in

image recognition through the efficient use of GPUs, ReLUs and dropout, that led to the breakthrough

of CNNs. However, research by He and Sun (2015) and Srivastava et al. (2015) has revealed what is

known as the degradation problem, that as the depth of an NN increases, the error first decreases but then

saturates at a certain depth and increases steeply thereafter. Since the error increases on both the test and

the training data, the cause is not overfitting but a general problem with training very deep NNs.

Residual Blocks and U-Net To overcome issues in training very deep NNs, so-called residual blocks,

first described by He et al. (2016), are an important element in DL architectures nowadays. A residual

block consists of two consecutive layers that represent an arbitrary function H(x) to be learned. In

addition to the normal flow of information, a residual block uses shortcut connections that skip the first

layer of the block through identity mapping. This forces the regular stacked layers in the block to learn a

function H ′(x)=H(x)−x. At the end of the block, both pathways of information are added up (H ′(x)+x)

so that the original function H(x) of the entire block is restored. The clever thing with residual blocks is

that the NN can behave like a flatter NN via the shortcut connections while also building up additional

knowledge in the skipped layers. Residual blocks neither increase the number of parameters in the NN

nor the computational complexity compared to a standard CNN. He et al. (2016) show that a residual

neural network (ResNet), a CNN with residual blocks, is superior to its counterpart without residual

blocks, as it is easier to train and performs better.

Another modification of the CNN is the so-called U-Net, first published by Ronneberger et al. (2015). A

U-Net consists of a so-called contracting and symmetric expanding path so that the architecture forms
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a U-shape. Traditional CNNs encounter the problem that they are very good at fusing information and

context but thereby lose precise information about the location, which can be spatial or temporal, de-

pending on the application. To counteract this, the U-Net first learns the context in the contracting path

and localises it later in the expanding path. The contracting path follows straightforward CNN’s usual

structure of convolutional layers and pooling operations. On the other hand, the expanding path uses

convolutions together with upsampling operations, which are exactly the inverse of a pooling operation,

and very long shortcut connections. In the U-Net, however, these shortcuts do not skip single layers but

enable information to travel from the very first layers to the very last layers in the NN, so that context

and location can be linked again. There are some variants, such as the U-Net++ (Zhou et al., 2018) and

the U-Net3+ (Huang et al., 2020), which use so-called nested and dense skip connections (U-Net++)

or full-scale skip connections (U-Net3+) to reinforce the initial idea of the U-Net to localise context as

precise as possible. While in the original U-Net information can only travel at the same depth within the

network by a skip connection, the variants allow a more variable propagation of information.

Recurrent Neural Networks For applications with sequential inputs, such as natural language pro-

cessing, recurrent neural networks (RNNs) are frequently used. RNNs sequentially process individual

elements of an input sequence while storing relevant information of the past time step in a state vector

(LeCun et al., 2015).

Given a multivariable time series input Xt = xt(0), . . . ,xt(J−1) at time step t ∈N, a standard RNN with

M ∈ N hidden nodes calculates a time-dependent hidden state vector ht ∈ RM as function of the input

and the previous hidden state ht−1 as follows

ht (i) = σh

(
J−1

∑
j=0

whx (i, j) · xt ( j)+
M−1

∑
p=0

whh (i, p) ·ht−1 (p)+bh (i)

)
, for i = 0, . . . ,M−1 , (1.15)

with whx ∈ RM×J being the conventional weights between the input and hidden layer, whh ∈ RM×M

representing the weights between the hidden layer state ht at the current time step and its state ht−1 ∈RM

at the preceding time step, and bh ∈ RM being the bias of the hidden layer. The output vector Yt =

yt(0), . . . ,yt(N −1), where Yt ∈ RN and N ∈ N, is then calculated by

yt(i) = σy

(
M−1

∑
p=0

wyh (i, p) ·ht (p)+by (i)

)
, for i = 0, . . . ,N −1 , (1.16)
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with wyh ∈ RN×M being the weights between the hidden layer and outputs, and the bias of the output

by ∈ RN . The hidden state vector is always a function of all preceding time steps

ht (i) =g
(

xt ( j) ,ht−1 (i)
)

=g
(

xt ( j) ,g
(

xt−1 ( j) ,ht−2 (i)
))

=u
(

xt ( j) ,xt−1 ( j) ,xt−2 ( j) , . . .
)
, for i = 0, . . . ,M−1 and j = 0, . . . ,J−1 ,

(1.17)

indicated by arbitrary functions g and u. Therefore, when RNNs are unfolded along time, they can be

viewed as very deep FNNs that feature the same weights in each layer (Bengio et al., 1994). However,

recursion causes the gradient in backpropagation to either decrease or increase at each time step, which

can cause the gradient to dissipate or explode very quickly when backpropagated over many time steps

(Bengio et al., 1994). Pascanu et al. (2013) were able to counteract this by applying gradient clipping

when the gradient is exploding and by using a regularisation that forces the backpropagation signal not to

disappear when the gradient is vanishing. However, early theoretical and empirical studies have shown

that RNNs in their original form fail to store information over a longer period of time (Bengio et al.,

1994).

Improved architectures such as the hierarchical RNNs by Hihi and Bengio (1995), which use multiple

levels of the internal state vector that operate on different time scales, as well as RNNs with a so-

called gated mechanism, which enables the RNN to decide by situation whether to retain or replenish its

memory, such as the long short-term memory (LSTM) cells by Hochreiter and Schmidhuber (1997) or

the gated recurrent units (GRUs) by Cho et al. (2014), allow longer-term dependencies to be captured

with RNNs. Chung et al. (2014) show that, in particular, RNNs with such a gating mechanism are

superior to conventional RNNs. However, they cannot make a clear conclusion as to whether LSTM or

GRU perform better, which later studies by Greff et al. (2017) and Cahuantzi et al. (2021) also state.

Yet, Cahuantzi et al. (2021) can identify a tendency that GRUs perform better in time series with lower

complexity, while LSTMs deliver better results for more complex time series. However, the research by

Zhao et al. (2020) suggests that even GRU and LSTM do not have long-term memory from a statistical

perspective, and further development is needed to account for long-term dependencies.

1.3.2. Deep Learning Methods for Time Series Applications

When applying DL to time series, RNNs seem to be the most suitable means at first glance. However, Bai

et al. (2018) show that simple CNNs can outperform RNNs with LSTM cells in various application tasks

and show a longer memory. According to Gehring et al. (2017), the hierarchical structure of CNNs is

responsible for better long-term memory, as it allows closer elements in shallow layers and more distant
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elements in deeper layers to interact with each other. This results in a relatively shorter learning path

for the long-term dependencies than in the chained structures of an RNN. Borovykh et al. (2018) also

conclude from their research that CNNs are very well suited for time series regression problems because

they are much more time-efficient, easier to train and perform better. This is particularly due to the fact

that CNNs can be parallelised much better so that the full capabilities of GPU hardware and software can

be better exploited (Gehring et al., 2017).

However, CNNs may also have difficulties with time series, as the relevant patterns in time series are

overlaid by other patterns and noise, so a feature representation on different time scales is necessary (Cui

et al., 2016). Also, causality is an issue in time series, as an output at time t may only ever be depen-

dent on time points up to and including time ti ≤ t (Bai et al., 2018). Therefore, various approaches to

better adapt the conventional CNN architectures to time series exist. According to Bai et al. (2018), one

naïve possibility is to use causal convolutions, in which each activation at a time t is calculated only by

convolving values of the current and preceding time steps rather than being centred around t. Unfortu-

nately, causal convolutions require a very deep NN or very large filters to span a larger receptive field and

capture long-term correlations. Therefore, van den Oord et al. (2016) use dilated causal convolutions,

which allow a very large receptive field that increases exponentially (Borovykh et al., 2018). Dilated

convolutions, as proposed by Yu and Koltun (2016), consist of the kernel running over the inputs or fea-

ture maps with larger step sizes, whereby the step size increases with increasing depth of the layer in the

CNN. In the special case with a constant step size of 1, dilated convolutions result in the conventional

convolution, as shown in (1.14). The results of Bai et al. (2018) and Borovykh et al. (2018) using dilated

causal convolutions on time series show that they tend to be superior to the usual RNN approaches.

Another approach to handle the superposition of time scales better is multi-scale NNs that consist of

several branches that extract the important signals from time series on different time scales (Cui et al.,

2016). Jiang et al. (2019), for example, smooth the input signal with moving averages to different degrees

and thus generate different variants of the signal, which are fed into separate branches of the NN. Cui

et al. (2016) additionally use branches in the NN that sample the values of the time series with different

step sizes to filter out signals. In both examples, the NN first learns local features in the branches, which

are merged at deeper layers by the architecture of the NN. Finally, the use of inception blocks (Szegedy

et al., 2015), which are essentially concurrent convolutions with different kernel sizes in the same layer,

to extract features of different sizes and with respect to time series on different time scales, is becoming

an attractive method. For example, an application of inception blocks for time series can be found in

Ismail Fawaz et al. (2020) and Kleinert et al. (2021).
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1.3.3. Local Ozone Prediction with Deep Learning

When starting research for this thesis in 2019, there were few publications on the prediction of ozone

based on DL methods. A couple of pioneering papers appeared around the turn of the millennium.

All approaches are based on simple FNNs with a single hidden layer consisting of between 4 and 10

nodes. Comrie (1997), for example, predicts ozone with such a small FNN at eight different AQSs over a

period of five summer periods with higher accuracy than regression approaches, and Gardner and Dorling

(2001) also use a small FNN to make predictions for ozone at six AQSs over a period of 12 years. In

both studies, a separate FNN is trained for each AQS so that no statement can be made about general

performance. Besides the small FNNs, it is also typical for this time period that publications are only

based on very small data sets. For example, Cobourn et al. (2000) and Prybutok et al. (2000) each use

only a single AQS for their studies, whereby Cobourn et al. (2000) use about 1000 samples, and Prybutok

et al. (2000) use less than 150 samples. However, the research presented here as examples must be seen

in the context of the progress of NN and DL research at that time. The major milestones significantly

contributing to the breakthrough of DL (see Section 1.3) were not yet reached, and neither large data sets

nor the required hardware and software were available at the time.

In the following years, publications were limited to the same approaches with small FNNs and small

amounts of data, although DL evolved at the same time and larger and larger data sets became available.

From 2017 onwards, the first larger FNNs can be found in ozone forecast applications using larger data

sets. In Ghoneim et al. (2017), a deep FNN with 10 hidden layers, each consisting of 120 neurons, is

used at over 400 measurement sites. However, the data set only spans three months, and all monitoring

sites are installed in the same city, so the representativeness of the results should be treated with at least

caution. Di et al. (2017b) use an FNN with two hidden layers of 15 nodes each on over 1800 AQSs and

13 years of data. To capture geographical characteristics, the authors use a kind of convolutional layer,

where the weights are determined by the inverse distance between the AQS and geographical location

rather than being trainable as in a CNN. Another use of an FNN can be found in Seltzer et al. (2020),

who use three hidden layers with 32 nodes each and a data set of about 3500 pseudo AQSs from model

grid points covering 16 years.

In the same period, research based on RNNs and CNNs began to appear. Navares and Aznarte (2020)

follow a recurrent approach by using an RNN with 500 LSTM cells organised in a single hidden layer

followed by a fully connected layer with 100 neurons. By contrast, Ma et al. (2020) use a thinner but

deeper RNN consisting of 7 hidden layers with 128 LSTM units each. In Wang et al. (2020), the RNN

approach (LSTM cells) is combined with two FNNs as a hybrid model, where the FNNs are responsible

for processing spatial data and combining temporal and spatial information. The RNN consists of 6

layers with 256 LSTM cells each, and the two FNNs are each composed of two hidden layers with 256

neurons. Application of CNNs can be found in Eslami et al. (2020) and Sayeed et al. (2020), who each
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use a CNN with 5 layers. Thereby, the convolutions are applied along the temporal dimension. The

results of both studies show that CNNs are superior to alternative approaches such as RNN, FNN or

regression methods.

The publications listed in this section represent only a selection of the published literature on ozone pre-

diction using DL. In spite of the general progress in DL methods described above, many studies, even

after 2012, still employed methods that were in the state of research around 2000. These publications

are therefore not discussed in more detail here due to lack of quality of the results, too short time series,

a limited number of AQSs, a small size or outdated architecture of NNs, or missing statistical evalua-

tion. Moreover, even higher-quality publications such as Eslami et al. (2020) and Sayeed et al. (2020)

lack important information such as comparison with simple statistical methods such as persistence or

climatology or with advanced models for air quality prediction such as state-of-the-art CTMs, so that

a thorough evaluation of the results is not fully possible. However, incomplete presentation or lack of

adequate cross-referencing of results is not only a problem in air quality research but a very serious issue

across ML applications (see following Section 1.3.4). It should be noted, nevertheless, that awareness of

the need for a clear presentation of results obtained with DL has steadily increased in recent years. With

the pulse of time that DL is becoming more and more established and in which this thesis also belongs,

an indication can be given that DL approaches are becoming more mature, especially in recent years,

and that the number of high-quality publications is growing. An overview of the current research and

its relevance to this thesis can be found in Section 5, as it was only published during the course of this

thesis.

1.3.4. Reproducibility in Science and Deep Learning Research

In 2016, Baker (2016) reported that more than 70% of over 1500 researchers from different scientific

fields participating in a survey of the Nature journal had tried and been unable to reproduce another sci-

entist’s results. More than half had even experienced a failure to reproduce their own results, raising the

question of whether science is in a crisis of reproducibility. Moreover, Serra-Garcia and Gneezy (2021)

find a tendency in science for publications that are not reproducible to be cited more often than repro-

ducible research results. The authors suspect that reviewers, in particular, have to make a compromise

and lower the requirements if the results are interesting enough. Likewise, in AI research, experiments

and results are not sufficiently documented, as Gundersen and Kjensmo (2018) discover. They draw on

studies of 400 randomly selected research publications at two major AI conference series, the Interna-

tional Joint Conference on AI (IJCAI, 2013 and 2016) and the Association for the Advancement of AI

(AAAI, 2014 and 2016). Tatman et al. (2018) show a similar issue when analysing 679 papers presented

at the 2017 Neural Information Processing Systems (NIPS) conference, where less than 40% of the pa-

pers provided links to the code. The shortcomings do not appear to be the fault of the scientists alone but,

24



1.3. Deep Learning for Atmospheric Science

instead, arise from a counter-optimal combination of the hype about AI and a lack of effective checks and

balances (Gibney, 2022). Due to the popularity and the large number of online tutorials, it is very easy to

learn AI methods in a few hours (Gibney, 2022), but this does not mean that a basic understanding of, for

example, statistical analysis methods or technical aspects can be acquired in the same time. According to

Pineau et al. (2021), this is particularly noticeable because, in contrast to earlier years when knowledge

in computer science was usually based on mathematical and theoretical investigations, new knowledge

is generated through experimental work in modern times. Further, there is a tendency for publications to

be biased towards exclusively positive research results rather than failure stories (Pineau et al., 2021).

Wherein mathematical equations and laws can underline the validity of results, experimental work must

be reproducible to be validated in order to contribute to scientific progress (Pineau et al., 2021). However,

without a more precise standardisation of what reproducibility for ML should look like, it is difficult to

assess to what extent new research results actually represent an improvement on existing approaches and

thus contribute to scientific progress (Henderson et al., 2018). They define reproducibility as the ability

of an independent research team to consistently reproduce the same results using the same AI methods

using documentation from the original research team. Yet, reproducibility is influenced by extrinsic

factors such as hyperparameters and intrinsic factors such as the random seed of a learning algorithm,

so Henderson et al. (2018) suggest that all hyperparameters, implementation details, experimental setup,

and evaluation methods of the baselines and new methods are accurately described. For example, a

categorisation, according to Gundersen (2021), into the four reproducibility types of general description,

code, data and experiment may help. For Kapoor and Narayanan (2022), in addition, communication

of the limitations and weaknesses of a novel method, as well as a somewhat sceptical attitude towards

results, is part of improving reproducibility. Otherwise, Henderson et al. (2018) see an inevitable delay

in progress as reported results have to be laboriously reproduced. According to Gundersen (2019), the

key factors that prevent researchers from putting more effort into reproducibility are, firstly, a high time

investment with no immediate results, secondly, a lack of incentives, for example, from publishers or

grant makers, and thirdly, the risk of future research by sharing data and code when other research teams

can quickly build on published results. For Kapoor and Narayanan (2022), there is evidence that ML-

based science is in the midst of a reproducibility crisis for two major reasons. First, publications using

ML methods are riddled with the same recurring pitfalls, and these spread to any field that begins to

adopt ML. Second, there are no systematic solutions to prevent these avoidable errors. However, on a

positive note, Gundersen and Kjensmo (2018) and Gundersen (2019) see that interest in reproducibility

has increased over the years from 2012 to 2016. Thereby, adopting open science practices is an important

means to strengthen reproducibility (Munafò et al., 2017), and the use of robust experimental workflows

promotes reproducibility and may avoid accidental sources of error as a side effect (Pineau et al., 2021).

Kapoor and Narayanan (2022) also advocate a fundamental change in the way ML is published so that

sources of inconsistencies are identified before papers are submitted or, at the latest, during peer review.
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The quality of research, in particular, benefits from the publication of reproducible results, as inadequate

approaches can be quickly identified. This applies particularly to evaluating results since exaggerated

test results can mislead people into thinking that an AI method recognised and understood the problem

(Gibney, 2022). A study by Liu et al. (2019) in the field of medical imaging revealed, for example, that

only 5% of 20,000 publications compared their results with health-care professionals in real-world clini-

cal settings using the same data set. In ML, this phenomenon is referred to as data leakage. Data leakage

generally describes spurious relationships between the independent variables and the target variable due

to the methods of data collection, data selection or preprocessing strategies, which leads to an overesti-

mated quality of ML-based results that are not tenable in a real-world setting or upon a more detailed

review (Kapoor and Narayanan, 2022). Data leakage can be caused by a breach of the separation of

training and test data, an inappropriate selection of features or an unrepresentative selection of the test

environment regarding the scientific question. An overview of a total of eight different types of leakage

is available in Kapoor and Narayanan (2022). Examples of data leakage have already been touched upon

in Section 1.3.3 on DL applications for ozone prediction. An incorrect separation of training and test

data can, for example, be assumed if the data set is divided randomly since temporally close samples

of a time series often show a high degree of autocorrelation (as in Maleki et al., 2019). An illegitimate

choice of features would be the use of NOx or other chemical substances as predictors for ozone since,

due to the complex interrelationships in air chemistry, a prediction for NOx must inevitably include in-

formation on future ozone (as in Biancofiore et al., 2015). Data leakage due to an unsophisticated choice

of the test environment is, for example, when a model is built with data only in the winter period, but

then claims are made about its applicability in summer, or when the overall test period is very short, so

that it is significantly influenced by the current atmospheric conditions (as in Abdul Aziz et al., 2019).

Other examples include work that investigates at which threshold value an ML model delivers the best

performance in predicting that the limit will be exceeded instead of evaluating the performance at a fixed

threshold value (as in Gong and Ordieres-Meré, 2016). Thus, in order for a scientifically tenable claim

based on ML to be made, it is absolutely necessary that a clear separation of training and testing is

ensured, that the selection of features is justified and that the test setting is adequate for the scientific

question (Kapoor and Narayanan, 2022).

1.4. Research Questions and Thesis Outline

As described so far in this chapter, it is of great importance to predict ground-level ozone as reliably

as possible. However, conventional methods have drawbacks such as a high computational burden and

systematic deviations from observations. Meanwhile, emerging approaches, for example from the field of

DL, also have their challenges and cannot be applied straightforwardly in ozone prediction. In particular,

the use of DL is hampered by the lack of standards in the scientific community on how experiments,
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parameters and findings should be presented, so that the reproducibility of many publications suffers.

Therefore, in this thesis, I explore the application of DL methods for a four-day ozone forecast with

special attention to the issue of reproducibility. A focus of this thesis is to address the variability and

superposition of different time scales of ozone so that DL approaches can be supported. Finally, I also

draw a comparison to conventional forecast methods to assess how far DL-based ozone forecasting has

progressed. Given the purpose of this dissertation, the following research questions arise:

Q1 Can deep learning be used to provide reliable forecasts for ground-level ozone?

Q2 How is it possible to ensure reproducibility in creating a deep learning-based forecast system for

ozone?

Q3 Is there a way to address the superposition of patterns on different time scales in order to improve

the predictive performance of deep learning approaches?

Q4 What limits the attainable forecast quality of deep learning-driven ozone forecasts?

Q5 How do ozone forecasts with deep learning compare to forecasts of classical chemical transport

models?

Q6 How should an operational data-driven air pollution forecasting system be composed?

These questions are addressed in a series of three publications that constitute the main body of this thesis.

These three manuscripts are:

M1 Leufen, L. H., Kleinert, F., and Schultz, M. G., 2021: MLAir (v1.0) – a tool to enable fast and

flexible machine learning on air data time series, Geoscientific Model Development, Copernicus

Publications, 14, 1553–1574, doi: 10.5194/gmd-14-1553-2021 .

M2 Leufen, L. H., Kleinert, F. and Schultz, M. G., 2022: Exploring decomposition of temporal pat-

terns to facilitate learning of neural networks for ground-level daily maximum 8-hour average

ozone prediction, Environmental Data Science, Cambridge University Press, 1, p. e10. doi:

10.1017/eds.2022.9 .

M3 Leufen, L. H., Kleinert, F. and Schultz, M. G., 2023 (under review): O3ResNet: A deep learning

based forecast system to predict local ground-level daily maximum 8-hour average ozone in rural

and suburban environment, Artificial Intelligence for the Earth Systems, American Meteorological

Society, 1, revised version under review .

The remainder of this thesis is structured as follows. This introduction is complemented by three chap-

ters, each of which can be assigned to one of the manuscripts M1 (Chapter 2), M2 (Chapter 3), and M3
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(Chapter 4). Each chapter provides an introduction to the research paper at hand, as well as the main

contents in terms of methodology and results. In addition, the authors’ contributions are stated accord-

ing to the Contributor Roles Taxonomy (CRediT) guidelines (NISO CRediT Working Group, 2022) and

each role is assigned by initials in descending order of contribution level. The publications themselves

are included at the end of this thesis in Appendix D.

Broadly speaking, all three manuscripts jointly lead to the answer of Q1. In M1 (Chapter 2), the focus

is on answering Q2 by describing in detail a software environment for deploying DL prediction systems.

M1 tackles the crisis of reproducibility by transparently storing all conceivable information from the raw

data to the ML model and its trainable parameters to ready-to-use graphics. M1 thus lays the foundation

for all other research questions to be investigated. M2 (Chapter 3) is then devoted to Q3 in particular,

showing how DL methods can be aided in better understanding and predicting time series characterised

by the superposition of different time scales. M2 is motivated by the fact that many existing DL-based

forecasting systems at the beginning of my research period tend to collapse against a mean and can hardly

produce better forecasts than simple climatological estimates. I show in M2 that decomposing the input

time series into components on different time scales can improve the predictions of DL approaches.

The findings from M2 lead directly to Q4 and Q5, as the models from M2 continue to trend towards

a mean value with increasing lead time. In M3 (Chapter 4), I, therefore, investigate how a weather

forecast can contribute to a successful ozone prediction based on DL. I show that the combination of time

series decomposition with a forecast for meteorological variables and a sophisticated DL method lead

to outperforming the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble forecast,

which is state-of-the-art for air quality prediction in Europe. M3 is also a sophisticated blueprint for

question Q6. Finally, in Chapter 5 I provide summary remarks of my research findings, positioning of

these findings in the current academic context, further steps to bring the forecast methods developed into

operation and suggestions for future research directions.
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published as

Leufen, L. H., Kleinert, F., and Schultz, M. G., 2021: MLAir (v1.0) – a tool to enable fast and

flexible machine learning on air data time series, Geoscientific Model Development, Copernicus

Publications, 14, 1553–1574, doi: 10.5194/gmd-14-1553-2021 .

Author Contribution: Conceptualisation (LHL), Data curation (LHL), Formal analysis (LHL, FK),

Funding acquisition (MGS), Investigation (LHL, FK), Methodology (LHL, FK), Project administration

(MGS), Resources (MGS), Software (LHL), Supervision (MGS), Validation (LHL), Visualization (LHL),

Writing – original draft (LHL), Writing – review & editing (LHL, MGS, FK)

2.1. Motivation

As the introduction chapter shows, when I started the work for this thesis, there were few high-quality DL

applications for ozone forecasting and the reproducibility crisis extended across all scientific disciplines

that make use of ML. Publications on DL for ozone prediction, lack, for example, a comprehensive

reporting of all relevant parameters in order to understand or reproduce the results, or do not compare

the findings with reference predictions such as persistence, climatology or state-of-the-art approaches,

so that a general interpretation of the results is difficult. One reason for this can be seen in a lack

of awareness of the necessity of reproducibility at that time. Another reason might result from the

limited interdisciplinary exchange between the fields of meteorology and computer and ML sciences.

This creates the risk that publications show deficits from the perspective of the other field of research.

Moreover, due to a lack of standardisation, it is difficult to follow the way to research results. For

example, the so-called Jupyter Notebooks are very popular for ML applications because they are very

easy to use. Jupyter Notebook is a tool for interactive programming and computation in which a program

code is divided into individual unstructured blocks. Since these blocks can be executed in any order

and frequency, and all blocks share a common namespace, hidden dependencies quickly arise that are

not immediately obvious and may eventually even prevent results from being reproduced at all. The

development of a standardised workflow described in Leufen et al. (2021) therefore creates the basis for
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reliable DL research on ozone prediction to be reproducible and follows evaluation practises according

to standards accepted in meteorology.

2.2. On a Deep Learning Life Cycle

Generally, the development of a DL model follows similar pathways. First of all, the objective is de-

fined. Then the preparation of the data begins. This process, called the preprocessing step, includes tasks

such as cleaning the raw data, handling missing values, for example by selecting a suitable interpolation

method, transforming the data, for example by normalisation, and formatting the data into a suitable

format for further use. Preprocessing also includes the separation into training and test data, so particular

care must be taken to ensure no data leakage is introduced between either subset. This is followed by

selecting an architecture for the NN and creating the initial model. Next, the learning algorithm and its

hyperparameters have to be set. Subsequently, the training of this NN can begin, in which the prepro-

cessed data are presented to the NN and the trainable parameters are adjusted through backpropagation

of the error. During the training process, part of the data are used for the actual learning (training data)

and an independent part of the data are used to monitor the learning progress (validation data). For ex-

ample, the training can be terminated as soon as the error on the validation data does not improve for

a specified period of time. Otherwise, the training process ends after a set number of iterations of the

training data run through the NN. Since the development of a DL model constitutes searching for an

optimal configuration of the hyperparameters and architecture, the training process must be repeated,

with single or multiple parameters being varied in each training run. After a sufficiently large number

of experiments with different configurations, an optimal configuration is selected based on the validation

data. In addition to varying the parameters, this may also involve adjusting the data preparation process

or the model architecture. As a final step, the test or evaluation phase takes place, in which the trained

model is applied to the so far unused and therefore for the trained model unknown test data and statistical

error analyses can be carried out. In order to avoid data leakage here as well, it is absolutely necessary

that no optimisation has taken place on the test data, which also means that the selection of the best

model cannot be based on the test data. However, it is common, for example, to train different network

architectures separately and then let them compete with each other in the test phase. For time series

problems in atmospheric science, it is a good practice to draw a comparison with reference predictions

such as persistence in this step. If all the work steps and parameters required in the process are clearly

documented, it is possible for third parties to follow the results and reproduce them.
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Figure 2.1.: Illustration of a typical ML workflow as it could look like when using MLAir. Starting clockwise
from the top, first, the experiment is defined in a start script that contains information about hyperparameters,
data preprocessing steps and the DL model architecture. Second, the experiment is started on a local machine
or high performance computing (HPC) system. Third, MLAir executes a defined workflow that includes data
preprocessing, model training and evaluation. Fourth, outputs such as graphics and error tables are evaluated
to see the model performance. Fifth, the model can be entered into the workflow as a competitor, and then the
workflow can be restarted with different parameters. Steps marked with a hand are carried out manually by the
user, while those marked with a cogwheel are taken over by the MLAir software. Steps containing both icons
were partially automated for the work in this thesis so that several experiment cycles for hyperparameter tuning
could run automatically.

2.3. Summary of Advances

The programme Machine Learning on Air data (MLAir) described in Leufen et al. (2021) reflects exactly

the DL life cycle described above. MLAir maps a single cycle from preprocessing and training up to

evaluation. The search for an optimal configuration can be approached very differently, for example

with a grid, random or evolutionary search strategy, and is therefore left to be done outside MLAir. In

order to search for the most suitable architectures and parameters, several runs are then started according

to the chosen strategy. This iterative process is illustrated in Figure 2.1. All parameters and a large

amount of background information, such as the progress of the training, the number of training examples
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2. Developing a Standardised Deep Learning Workflow

but also computed errors of the model are stored locally and are available for detailed analysis after an

experiment run. The complete software code is written in the programming language Python 3, which is

very flexible and has high portability on different operating systems. This makes it possible, for example,

to run a large experiment on a high performance computing system but also smaller experiments on a

local machine. It is also possible to repeat an experiment on another computing machine if the settings

of the run are known.

By using MLAir, it is possible to strengthen reproducibility in research work. Hyperparameters, imple-

mentation details, experiment design and evaluation methods are described transparently, as required by

Henderson et al. (2018), without the need for the researcher to expend much effort, as this is intrinsically

built into the software. Furthermore, a meteorologically motivated evaluation strategy ensures that the

evaluation of the results meets the standards of the community. Moreover, data leakage is prevented

by providing a defined workflow. Finally, the work published in Leufen et al. (2021) has resulted in a

number of publications. These include with Kleinert et al. (2021, 2022) and Leufen et al. (2021, 2022,

under review 2023) five publications in peer-review journals as well as the two master’s theses from

Gramlich (2021) and Weichselbaum (2022). In addition, MLAir is being used on a pilot basis as part of

the AQ Watch project (see Li et al., 2023), but related publications are still pending, and is intended to

be employed in a Destination Earth use case on air quality prediction (see ECMWF, 2022).
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published as

Leufen, L. H., Kleinert, F. and Schultz, M. G., 2022: Exploring decomposition of temporal pat-

terns to facilitate learning of neural networks for ground-level daily maximum 8-hour average

ozone prediction, Environmental Data Science, Cambridge University Press, 1, p. e10. doi:

10.1017/eds.2022.9 .

Author Contribution: Conceptualisation (LHL, MGS, FK), Data curation (LHL, FK), Formal analy-

sis (LHL), Funding acquisition (MGS), Investigation (LHL), Methodology (LHL), Project administration

(MGS), Resources (MGS), Software (LHL, FK), Supervision (MGS), Validation (LHL, FK, MGS), Visu-

alization (LHL, FK), Writing – original draft (LHL), Writing – review & editing (LHL, MGS, FK)

3.1. Motivation

For the assessment of short-term ozone pollution, daily metrics such as the daily maximum 1-hour mean

or the daily maximum 8-hour running average (dma8) are used (Fleming et al., 2018). The EU Ambient

Air Quality Directive specifies a dma8 target value of 60 ppb for short-term ozone pollution, which

must not be exceeded on more than 25 days in a year (Maas and Grennfelt, 2016). Nevertheless, the

European Environment Agency (2022) estimates that 95% of the urban population in the EU is exposed

to ozone concentrations above the WHO recommendations of 50 ppb (WHO, 2021). Furthermore, there

are indications that exposure to ozone concentrations below the guideline values also leads to an increase

in mortality, especially among vulnerable population groups (Di et al., 2017a). Therefore, a reliable

prediction of dma8 ozone is essential to protect these vulnerable populations in particular, as it allows

timely warnings to be issued and countermeasures to be taken.

Since ozone prediction with CTMs has shortcomings due to the high computational load and the bias

against observations (see Chapter 1.1 and 1.2.3), studies such as Di et al. (2017b) and Kleinert et al.

(2021) experimented with the prediction of dma8 ozone based on DL. Kleinert et al. (2021) were able

to show in a study of over 300 AQSs in Germany that it is fundamentally possible to produce an ozone

forecast with DL. However, the results also reveal that the DL model used has only a marginal skill
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compared to a linear regression approach and also cannot offer any added value for forecasts on and

after the third day compared to a climatological, seasonally varying forecast, even though a deep NN

with more than 300,000 weights is used with intense training. Moreover, with increasing lead time, the

distribution of the forecast tends to collapse towards a monthly mean. Possible causes for this finding

are the superposition of patterns on different time scales and the resulting non-stationarity, which, as

shown in the introduction, is not only a general problem in the analysis of time series but can also pose

challenges for DL methods in particular. Most of the training effort is spent by the DL model to learn

the well-known seasonal cycle and autocorrelation, which could easily be achieved by simpler statistical

approaches.

In the article Leufen et al. (2022), on which this chapter is based, I have therefore investigated how do-

main knowledge can help DL methods to better cope with overlapping temporal patterns so that during

the learning process the focus is not on learning the obvious cycles, but on the variations from them. To

showcase the improvements this approach can lead to for dma8 ozone prediction, 50 AQSs in the rural

regions of the North German Plain (north of 52.5◦N) are selected. This area is chosen to ensure that the

AQSs are more homogeneous and that effects of local differences, e.g. due to orography, are of minor

relevance. The chemical parameters of the study are taken from the Tropospheric Ozone Assessment Re-

port database (TOAR DB, Schultz et al., 2017), with measurements originally provided by the German

Environment Agency, and the meteorological variables come from the high-resolution reanalysis system

COSMO-REA6 data set (REA6, Bollmeyer et al., 2015). All inputs are used in hourly resolution, the

target variable dma8 ozone is in daily resolution, and the objective is to predict the dma8 ozone con-

centration for the following four days, hereafter referred to as D1 to D4. The forecast horizon is chosen

to move beyond the persistence regime. Moreover, current air quality models as the CAMS regional

ensemble (see Chapter 4) issue air quality forecasts for this horizon.

3.2. A Time-Filtered and Multi-Branch Approach

To support DL in learning different temporal scales, a decomposition of the input time series as described

in Chapter 1.2.2 is utilised. This allows the NN to directly connect seasonality to the LT component with-

out tedious training. Hence, it frees up resources for learning other relationships in the data, especially

deviations from the seasonal norm. For the decomposition, an FIR filter with a Kaiser window (Kaiser,

1966) is used. When using filter methods, a distinction must be made between their application in analy-

ses and predictions. For analyses, it is particularly important to separate the individual parts as clearly as

possible. For this purpose, filters are usually centred around a point in time of interest ti. For instance, to

extract the LT component with a cutoff period of 21 days, a filter spanning 42 days and centred around

ti is needed. This, on the other hand, is not feasible when used in forecasting, since values in the future
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(ti > t0) may not yet be known for causality reasons. A causal application of filter methods in forecasting,

applying the filter only to past values (ti ≤ t0), causes phase shifts in the filtered signal and thus a delay.

To guarantee causality while at the same time achieving maximum separability, a climatological forecast

is used to replace unknown future data. This climatological estimate consists of a seasonal and a diurnal

variation, whereby the diurnal variation may vary according to the season. The filters are then applied to

this composite time series consisting of past observations and future statistical estimates. Decomposition

into four components (LT, SY, DU, ID) as in equation (1.5) and into two components (LT, ST) as in

equation (1.6) are tested. The separation of the LT component is additionally tested with a cutoff period

of 75 days, which, according to Rao et al. (1997), results in good separation characteristics as the corre-

lation between the resulting components is low. In addition, I investigate whether the prediction quality

improves if the DL methods also have access to the original raw data in addition to the decomposed

signals. In all experiments, the input data span 65 hours from t0−64h to t0, where t0 is set to 5 p.m. local

time due to the computational definition of the target variable dma8 ozone (see directive of the European

Parliament and Council of the European Union, 2008). For each individual sample, the decomposition

is recalculated according to a given time t0 in order to always include the most up-to-date data without

causing data leakage.

In this study, so-called multi-branch NNs are implemented. These NNs consist of several branches for

the inputs, whereby each branch is fed with a decomposed component of all variables. Thus, for exam-

ple, the branch with the LT components can focus on seasonality, whereas the branch using ST signals

can learn short-term variability. The individual branches are combined in the NN in a deeper layer and

the NN learns to weight the individual branches during the training process. In this study, multi-branch

NNs based on FNN, CNN and RNN are used. First, FNNs are selected to test which decomposition can

produce the best accuracy. For this purpose, for each variant of the input data decomposition, an FNN

is trained by hyperparameter tuning and then compared. Second, the identified decomposition method is

evaluated with the other architectures. As baselines for the analysis to see how the decomposition im-

proves the prediction, FNN, CNN and RNN are trained on the unfiltered raw data without decomposition.

Note when reading that FNNs are referred to as fully connected networks (FCNs) in this study.

3.3. Summary of Results

The evaluation of the different decomposition strategies using the multi-branch FNN shows that the best

results are achieved with a decomposition of the inputs into LT and ST. The reported mean squared

error (MSE) of a bootstrap analysis lies at 66 ppb2 on average, the root mean squared error (RMSE) is

therefore about 8.1 ppb. Adding raw data does not improve the result any further. By contrast, a more

detailed separation of the inputs into LT, SY, DU and ID components does not provide equal benefits for
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3. Teaching Deep Learning Models to Grasp Temporal Scales

the FNN at all. A possible explanation is that especially the short-term scales are difficult to separate

clearly (cf. Kang et al., 2013, and Chapter 1.2.2). Furthermore, no difference in FNN performance is

observed when either a cutoff of 21 or 75 days is used, while the computational effort increases in the

latter case. Therefore, the subsequent analysis of the different network architectures is continued with

the decomposition into LT and ST with a cutoff period of 21 days. The side-by-side comparison between

the NNs trained with unfiltered data and temporally decomposed data demonstrates that an improvement

in prediction quality is achieved for all three tested architectures (FNN, RNN and CNN). The largest

improvement can be seen for the FNN. In absolute terms, the multi-branch NNs based on FNN and RNN

provide the smallest MSE of the bootstrap analysis. Furthermore, by comparing with the DL model from

Kleinert et al. (2021), a persistence forecast, and a forecast based on multiple linear regression, the multi-

branch NNs of this study offer more predictive power for ozone. However, a closer look at the forecast

skill as a function of the forecast horizon indicates that starting from D3, there is still a tendency for the

forecasts issued to converge towards a monthly mean value, albeit less pronounced. It can therefore be

concluded that the temporal decomposition of the input data contributes to an improved ozone forecast,

but there are still uncertainties in the forecast and a collapse of the distribution occurs.
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revised version under review as

Leufen, L. H., Kleinert, F. and Schultz, M. G., 2023 (under review): O3ResNet: A deep learning

based forecast system to predict local ground-level daily maximum 8-hour average ozone in rural

and suburban environment, Artificial Intelligence for the Earth Systems, American Meteorological

Society, 1, revised version under review .

Author Contribution: Conceptualisation (LHL, MGS, FK), Data curation (LHL), Formal analysis

(LHL), Funding acquisition (MGS), Investigation (LHL), Methodology (LHL), Project administration

(MGS), Resources (MGS), Software (LHL), Supervision (MGS), Validation (LHL), Visualization (LHL),

Writing – original draft (LHL), Writing – review & editing (LHL, MGS, FK)

4.1. Motivation

As the research results in Leufen et al. (2022) show, it is possible to improve DL-based prediction by

temporal decomposition of the input data. DL models are also able to learn the relationship between

meteorology and air quality. However, DL only performs well for very short lead times of up to two days

and suffers for longer lead times. The NNs trained in Kleinert et al. (2021) and Leufen et al. (2022) only

use past values as inputs, so the NNs have no information about future weather during the forecast period.

Although the NN can support the climatological estimation about the future, such an estimation is at the

same time rather insufficient, when the actual weather deviates significantly from the climatologically

expected state.

In the study Leufen et al. (under review 2023) presented in this chapter, the DL approach is therefore

complemented by a weather forecast, so that the uncertainty of future weather conditions in the forecast

period is reduced. For this research work, the study area is extended to Central Europe, so a total of

328 AQSs are included in a period from 2000 to 2021. In total, more than 800,000 training samples,

about 200,000 validation samples and 170,000 test samples are available. This big data set allows the

training of advanced and deeper DL models with more layers and weights. The best DL models are then
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compared with forecasts of the CAMS regional ensemble (CAMS, 2020), which combines nine state-

of-the-art CTMs (see Marécal et al., 2015). Chemical parameters are again taken from the TOAR DB,

whereas meteorological parameters are based on the fifth generation of reanalysis data ERA5 (Hersbach

et al., 2020) of the European Centre for Medium-Range Weather Forecasts (ECMWF), as REA6 or

real forecast data are not available for the test period. The objective is still, as in Leufen et al. (2022)

respective Chapter 3, to predict dma8 ozone for D1 to D4.

4.2. Incorporating Weather Forecasts to Reduce Uncertainty

By adding a weather forecast to the input data stream, the initial ozone forecast problem is transformed

into a regression task to determine which ozone concentration can be expected under a given weather

condition. Thus, uncertainty effects can be reduced. The ERA5 reanalysis data set emulates an optimal

forecast since observations have already been used to adjust the reanalysis. I have used the filter approach

from Leufen et al. (2022, Chapter 3) and replaced the climatological estimation with ERA5 data for

all meteorological variables. In this study, the meteorological inputs are furthermore extended by the

forecast horizon of the DL models to the interval [t0 − 3d, t0 + 4d]. For the chemical input variables,

climatology is still used to avoid data leakage and also the input length remains unchanged on the interval

[t0 −3d, t0]. Another change is that the ST and LT components of both the meteorological and chemical

variables are separately input to an independent branch, partly due to the different shapes of the inputs,

but also leading to a further breakdown of information so that the multi-branch NNs in this study consist

of four input branches. This enables the DL model to analyse different patterns in meteorological and

chemical inputs separately at first and combine them later.

In this study, different DL approaches based on FNN, CNN and RNN as well as ResNet and U-Net

architectures (see Chapter 1.3.1) are tested. In addition to investigating which DL type can produce the

best forecasts, I compare the best-performing DL model to the CAMS regional ensemble. Moreover, I

study the influence of the forecast horizon of the weather forecast on the DL forecast. For this purpose,

the lead time of the weather forecast is gradually reduced and time behind this limit is filled with the

climatological estimate. The unmodified DL model then produces a forecast based on this new input

data, which is compared with the original unmodified forecast of the same model. How much the forecast

quality deteriorates in the process can provide information about the influence of the weather forecast

and its maximum available lead time.
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4.3. Summary of Results

The analysis is partitioned into multiple steps. First, the results of the different DL architectures are

compared among each other and the best-performing DL model is selected for further analysis. It can

be seen that deeper and more advanced CNN architectures such as ResNet or U-Net have a smaller root

mean squared error (RMSE) of 5.2 ppb on average over all forecast days compared to the FNN, CNN and

RNN approaches (between 5.6 and 5.8 ppb). The predictive performance of the ResNet and the U-net

are so close to each other, that the distributions of the errors over all AQSs do not differ significantly in a

Mann-Whitney U test (Mann and Whitney, 1947). The best DL model is therefore selected by a bootstrap

analysis in which, with a number of 1000 iterations, the errors from 36 randomly drawn monthly excerpts

of all AQSs from the test data are examined. Here, the ResNet achieves the lowest error on average over

all iterations, which can also be confirmed with a further Mann-Whitney U test. The DL model found in

this way is referred to hereinafter as O3ResNet.

Secondly, a comparison is made between O3ResNet and the CAMS regional ensemble. This analysis

shows that O3ResNet has a smaller RMSE across all AQSs and forecast days, ranging from 4.3 ppb

on D1 to 5.5 ppb on D4 (5.1 ppb on average over all days). The CAMS forecast, on the other hand,

has an RMSE of 7.3 ppb on D1 and 7.9 ppb on D4 (7.6 ppb on average). Looking at the mean error

(ME) reveals that O3ResNet issues almost bias-free predictions, whereas CAMS forecasts suffer from

a positive bias. In order to clarify how much the total RMSE is influenced by the variance or whether

differences result solely from the better representation of the background concentrations, the forecasts

of CAMS and O3ResNet are postprocessed. For this purpose, the overall mean value is first removed

from the data for each AQS in order to examine how pronounced the effect of the bias appears overall.

Through the postprocessing, the RMSE of CAMS forecasts for the D1 forecast is reduced to 6.9 ppb

(∆ ∼ 0.4 ppb), the improvement on D4 is similar so the RMSE lays at 7.6 ppb. Nevertheless, the bias-

corrected prediction of CAMS is still outperformed by O3ResNet and it can be concluded that O3ResNet

is not only better at predicting the background concentration of ozone, but also its variability. As a second

test, a 30-day running mean is subtracted at each AQS as postprocessing to address seasonal effects. The

prediction of CAMS in terms of RMSE can thereby be further improved and lies between 5.8 and 6.4 ppb

for D1 and D4, respectively. Even when using such a kind of postprocessing, O3ResNet is still preferable

to a prediction by CAMS. On top, applying the postprocessing to O3ResNet further reduces O3ResNet’s

RMSE to 4.1 ppb on D1 and 5.0 ppb on D4.

Thirdly, the investigation of the importance of the individual input branches shows why O3ResNet does

a good job in correctly predicting the background concentration but also the variability. O3ResNet ob-

tains most of the information from the LT components of the chemical inputs and the ST components

of the meteorological parameters. The ST components of the chemicals also have an influence on the
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D1 forecast as well. Hereby, the LT part of the chemical observations serves O3ResNet as a kind of

bias correction, as the model can directly recognise a correct ozone level for a given AQS on the ba-

sis of past observations. Fine-tuning can also be made on D1 through the ST component, which can

possibly capture the autocorrelation of ozone. This relevance naturally decreases with increasing lead

time, as the autocorrelation also diminishes. The ST fraction of meteorology represents the deviation

from a long-term normal state, meaning in other words, the current weather. O3ResNet is thus able to

learn background concentration, the weather pattern and an autocorrelation factor and incorporate the

information into the forecast.

Lastly, the dependency of O3ResNet on the lead time of the weather forecast is investigated. Since ERA5

data are, as already mentioned, a reanalysis and not an operational forecast, the investigation of the lead

time can give first hints about how O3ResNet could perform in a real-time forecast environment. The first

finding is that O3ResNet only needs a weather forecast of four days and that there are no spurious links

to weather events in the more distant future. The second implication from the lead time investigation is

that O3ResNet can understand the temporal context in the input data, as for example a 24-hour weather

forecast is already sufficient for the forecast on D1 to reach original performance. Indeed, the comparison

with the CAMS forecasts shows that with the help of such a 24-hour weather forecast, O3ResNet has an

equal skill for D2, while the CAMS forecast itself requires a 48-hour weather forecast. This phenomenon

can be observed for all forecast days.
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Accurate prediction of ground-level ozone is not only scientifically valuable but also relevant in light of

the short-term and long-term burden on humankind and nature caused by direct exposure to the pollutant

ozone. However, conventional prediction methods have several shortcomings. CTMs, for example,

have systematic biases against observations and demand a large computational workload. Regression

approaches, on the other hand, struggle with the highly non-linear relationships between weather and air

quality. The availability of large data sets of in-situ observations at AQS makes it possible to use DL

methods to predict ground-level ozone. This work is dedicated to predicting ozone with deep NNs based

on big data. When I started this work, the ML and DL methods used for ozone forecasting either were

limited to simpler methods or were only developed and evaluated on a size-limited dataset. In addition,

many scientific papers exhibited deficits in clearly presenting the approach and the evaluation, making it

impossible for independent research teams to reproduce the findings.

In this thesis, I have therefore focused on two important aspects. First, I investigated how creating a re-

liable ozone forecast using DL is possible. Second, I paid special attention to the requirements to ensure

this research work remains reproducible and thus can be verified by independent scientists. Repro-

ducibility leads to more trust in the DL methods that have been developed. To achieve these objectives,

in this thesis, I first designed a standardised workflow for training DL, which formed the basis for the

subsequent research to be reproducible. I then explored how a DL model can be better skilled in the

training process to deal with the superposition of different temporal patterns, which is generally a major

challenge for statistical methods when applied to atmospheric time series. Furthermore, I investigated to

what extent DL models fail to learn the relationship between weather and air quality or whether uncer-

tainties in the forecast result more from the inherent uncertainty about future weather events. Finally, in

this thesis, I examined the advantage of deeper and more sophisticated DL architectures over simpler DL

methods. The findings of this work are assessed in the context of the current scientific state-of-the-art by

benchmarking against an ensemble of nine cutting-edge CTMs.

Temporal Decomposition Preceding studies by Kleinert et al. (2021) and non-meteorological ML

studies such as Cui et al. (2016) show that NNs have limitations when applied to time series, as overlap-

ping patterns are present. As a result, DL methods tend to collapse against an average. This is naturally

caused since DL models are usually trained using the MSE as a loss function, and predicting the mean is
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a smart, albeit simplistic, strategy for optimisation. However, comparable accuracy can also be achieved

with simpler statistical methods that require no expensive training, so the use of DL has no real advantage

over the simpler methods. The answer to this challenge lies in a meteorologically motivated decomposi-

tion of the input data into LT and ST components separating the seasonal cycle and short-term patterns.

This allows the DL model to focus immediately on the short-term patterns during training. Separating

temporal patterns in a time series is particularly challenging in a forecasting setting, as data leakage must

be prevented to ensure causality. In the absence of a forecast on future values, only past information may

be used for the decomposition. As I show in Chapter 3, using a climatological estimate of the future is

a powerful solution. Combining actual observations and climatology allows a time series to be split into

different components without violating any causality constraints. Since atmospheric fluctuations are not

limited to single frequencies but occur and superimpose variably, I tested different degrees of decompo-

sition. A finer separation, where the ST components are split down further, tends to have a detrimental

effect on the prediction. Similar findings were also obtained by Kang et al. (2013), who were only able to

achieve a clear partitioning of the signals for the separation into LT and ST. Thanks to the application of

this special preprocessing, I was able to achieve a significant improvement in the prediction of ground-

level ozone, even with comparatively simple DL model architectures. The trained DL models outperform

reference forecasts based on climatology, persistence, and the DL model from Kleinert et al. (2021). Re-

gardless of the chosen architecture of the NNs, an improvement is evident for all tested models, namely

FNN, RNN and CNN. Finally, however, the results also suggest that a DL approach based purely on the

decomposition of the input time series also yields drawbacks as the forecast horizon increases since the

climatology is not fully suited to situations of large deviations from climatological norm states.

Weather Forecast Limitations in the predictive capabilities of DL methods are not only due to the

overlapping of different temporal patterns but must also be located in the complex relationship between

weather and air quality. Thereby, the challenge is not in learning the general link between weather and

atmospheric chemistry, but it results from the lack of insight into the future weather situation. Thus,

more than knowing about past weather patterns is required to make a reliable prediction. Any infor-

mation about the future contributes added value. My investigations summarised in Chapter 4 confirm

this statement, as using a weather forecast leads to a substantial increase in the prediction quality of the

DL-based ozone forecast. This can be observed independent of the actual architecture, as the predic-

tions of all tested DL approaches, in this case, FNN, RNN as well as different advanced types of CNN,

are significantly improved relative to the DL methods that have only access to past observations and a

climatological estimate. Indeed, by fine-tuning the network architecture and hyperparameters and using

large-scale data, deeper and more advanced DL approaches can be trained with even better performance.

My analysis shows that DL models based on CNN with residual blocks as well as U-Nets are superior

to other approaches, whereby both perform with comparable accuracy. A survey of the current literature
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shows that the use of U-Nets, in particular, is widespread. Sayeed et al. (2022) use a U-net for data

imputation to transform in-situ observations into a spatially uniform grid, and He et al. (2022) use a

U-net with additional built-in LSTM cells and over 62 million trainable parameters for a grid prediction

of ozone.

Benchmarking against CTM The unique element of this work is that the results are compared with

an ensemble of state-of-the-art CTMs. Few studies in ozone prediction can be found that take this step.

One example is Cheng et al. (2022), who compare their DL model with the Nested Air Quality Prediction

Modeling System (NAQPMS, Kong et al., 2021). However, the air quality model is superior to the DL

approach at grid prediction, and the DL method only slightly improves prediction at AQS. However, as

the evaluation of this study is limited to only two months, it is not yet known how representative these

results are. By contrast, in the work for this dissertation, I use a significantly longer evaluation period

of three years. Key findings from the comparison with the CAMS regional ensemble are that the DL

approach has a considerably higher prediction performance, even when a bias correction is applied to the

CTM forecasts afterwards, which corrects the major drawback of CTM-based predictions. Therefore,

the DL approach can not only achieve a small bias compared to observations at AQS but also better

represents the variability of local ozone.

Reproducible Workflow The basis of all results presented in this thesis is the development of a stan-

dardised workflow for training DL models on atmospheric time series, as described in Chapter 2. This

workflow allows independent parties to run and reproduce experiments on an arbitrary computing system.

An important feature of the workflow is that it was developed according to accepted standards from me-

teorology, statistics and ML, as well as best practices from software development, for example, through

versioning and comprehensive testing so that functionality and reproducibility are always guaranteed.

Designing a reproducible workflow is in the zeitgeist of the growing awareness of the need for repro-

ducibility in science. This increase can be seen as relevant literature on reproducibility in ML has been

published since 2018 and thus coincides with this thesis project. The proliferation of FAIR data, which

requires that data be findable, accessible, interoperable and reusable (see Wilkinson et al., 2016), and the

publication and use of benchmark datasets, as advocated by Kapoor and Narayanan (2022), are also in-

dicative of this trend. In the atmospheric sciences, for example, the benchmark data sets WeatherBench

(Rasp et al., 2020), AQ-Bench (Betancourt et al., 2021) or ClimateBench (Watson-Parris et al., 2022)

have been published. Another positive development is the increasing requirements regarding data and

code for authors when publishing research results. Though the Nature journal has been asking for code

to be made publicly available whenever possible since 2014 (Nature, 2014), Liu and Salganik (2019)

still found fault that peer-review practices often do not require authors to provide or publish their code

and data in the review process. A certain paradigm shift is emerging here, as Nature, for example, now
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clearly stipulates in its policy that code and data must be made available (see Research, 2022), and also

the Geoscientific Model Development (GMD) journal requires the provision of code and data during the

review process in its guidelines (see Geoscientific Model Development, 2022). For the GMD journal,

in particular, this explicitly excludes any kind of embargo, for example, in dependence on a successful

publication or after a certain amount of time.

Limitations In spite of the significant advances made through this work, some limitations remain,

which I would like to discuss in the following. The improvements in forecasting presented in Chapter 4

are associated mainly with the use of weather forecasts. However, the ERA5 data used are rather an

idealised forecast, as they already include information about the future. Therefore, the DL model may

be overconfident in the meteorological inputs. However, the studies by Bauer et al. (2015) and Haiden

et al. (2022), for example, show that numerical weather prediction models can nowadays offer a very

reliable forecast for up to one week in advance, so it can be assumed that the performance of the DL

approach will not deteriorate to a large extent. However, a corresponding test to verify this assumption

is still pending. A second limitation in applicability is that the model has only been trained in rural

and suburban environments, so no claim can be made about its ability to make a reliable prediction

in urban areas. Thirdly, in the development of the DL-based prediction system, a special focus was

put on the tuning of the DL model, whereas the decomposition of the inputs was not investigated in

the deepest detail. I have tested what difference the choice of decomposition can make, but I have not

tested what influence the chosen decomposition method has. Neither other filters, such as the KZF or

through Fourier analysis or based on wavelets, were tested. Thus, it cannot be answered whether a

potentially more precise decomposition leads to an improvement in the prediction. Next, the work in

this study is limited to a single objective variable, dma8 ozone, and a forecast horizon of four days for

the prediction of ground-level ozone on AQS level. As a result, it is not possible to issue a grid ozone

forecast. Instead, the DL model depends on the data availability at AQSs. Furthermore, the DL model

does not only produce point forecasts, but it also has a very limited spatial view of the vicinity and

does not use any metadata like land use, population density or topography. Hence, the model is not

able to account for regional or global context information. Since transport is particularly relevant for

air quality, neglecting the neighbourhood imposes limitations on the DL model. Also, given that the

temporal context represented by the decomposition into LT and ST provides valuable information for

the DL model, it can be concluded that the spatial context, or even the combination in the form of a

spatiotemporal context, can also lead to further improvements in the prediction. Finally, it is evident

in ML sciences and meteorology that applying probabilistic approaches and ensemble methods offers

added value over deterministic predictions. This was also not explored in the context of this thesis. For

use by decision-makers, for example, it would be very beneficial to gain further confidence in the DL

method by indicating the model’s confidence for each forecast issued.
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Outlook Looking ahead, the limitations identified offer potential for future experimental and analytical

research. In the future, it makes sense to set up the DL model on an even broader base by deepening the

understanding of urban environmental conditions and subsequently using and testing the model in a larger

area, such as Europe as a whole or on another continent. Extending the objective either to other ozone

statistics, such as the daily maximum of one-hour values, or the prediction of hourly values to cover the

whole diurnal cycle, as well as opening up to other air pollutants such as NO, NO2 or particulate matter

are also ideas to be pursued further.

Methodologically, I see two developments in science that I consider most relevant for this work. These

are, firstly, the further evolution in reproducible science and, secondly, the emergence of more sophis-

ticated DL architectures. Regarding reproducibility, I have already discussed throughout this thesis the

deficits that I personally, but also the scientific community, see in many ML publications. I, therefore,

consider the proposal of implementing so-called model cards or model info sheets as a standard, which

Mitchell et al. (2019) and Kapoor and Narayanan (2022) put forward, to be a very fascinating concept.

The model cards proposed by Mitchell et al. (2019) focus very strongly on ML models and require, inter

alia, a very precise description of the basic information about the model and what the intended use cases

are, but also ethical considerations can be included in these cards. The model info sheets introduced by

Kapoor and Narayanan (2022) are essentially an extended checklist in which authors of a study answer

questions regarding a strict training-test separation, the justification behind chosen features and model

structure, and the confirmation that the test data was drawn from a distribution of scientific interest. As

Kapoor and Narayanan (2022) themselves note, of course, even a model info sheet is not the ultimate

and above all foolproof solution, since claims, for example, cannot be verified without computational

reproducibility, and disingenuous statements in a sheet can lead to false confidence about the results.

Nevertheless, model info sheets help both reviewers and third-party researchers to better understand and

verify the results of scientific research without going through all the tedious and time-consuming steps

of the computational exact verification. Model info sheets promote reproducibility awareness and inspire

practitioners to pay more attention to reproducibility.

The second important and prominent perspective is the progress of science in the development of new

and more sophisticated DL architectures. Even if the publication of these methods dates back some years,

their popularity is increasing year by year, as it still takes some time for these new technologies to become

suitable for a broader user basis. Of particular relevance are variational autoencoders (VAEs, Kingma

and Welling, 2014), generative adversarial networks (GANs, Goodfellow et al., 2014) and transformers

(Vaswani et al., 2017). VAEs consist of an encoder and a decoder network, whereby from a statistical

perspective, the functioning of a VAE is similar to inference in a latent Gaussian model in which neural

networks parameterise posterior and model likelihood. A GAN consists of two models competing during

the training process, where the generator tries to create authentic data, and the discriminator identifies

it as generated and differing from real data. Through this zero-sum game, the data generated by the
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generator becomes more and more realistic. In particular, the combination of VAE and GAN in a so-

called VAE-GAN (Larsen et al., 2016) offers enormous advantages, as GANs tend to generate blurred

data, and the use of a VAE can prevent this. Transformers are based on the principle of self-attention

modules that can weight the importance of elements in the input data through a combination of query and

key vectors. These modules can be multi-headed so that each module can focus on particular information.

Transformers have led to significant improvements over RNN approaches, especially in natural language

processing (c.f. Conneau and Lample, 2019; Devlin et al., 2019). Also, the chatbot ChatGPT, which is

currently being discussed all over, is based on a transformer architecture called GPT-3 (Brown et al.,

2020).

Applications of these very sophisticated model types have also found their way into ozone forecasting,

especially in the last year. In their study, Cheng et al. (2022) use a VAE-GAN to predict hourly and

daily ozone across China. The results are promising, but their method still is underperforming an air

quality model. Another relevant study by Hickman et al. (2022) is based on the use of temporal fusion

transformers (TFTs, Lim et al., 2021), a derivative of transformers explicitly designed for use with multi-

variate time series in combination with time-invariant features. In their study on nearly a thousand AQSs

in the United Kingdom, France and Italy, Hickman et al. (2022) used two million samples consisting of

dynamic variables from meteorology and static features such as population density, altitude and station

type for a four-day forecast of ozone. Their performance is comparable to the results presented in my

research. The highlight of the TFT architecture is that it is designed to accommodate the heterogeneity

in the different time series by splitting the data processing into local processing of specific patterns and

global processing to fuse this information. In the context of the framework of this thesis, this represents

a striking similarity in how the superposition of signals is approached. Applying the DL model from

this thesis to different locations, like in Hickman et al. (2022), could reveal how the different approaches

compare and to what extent a combination of the approaches can lead to an even more reliable ozone

prediction.

Complementary to the further development and applicability of the DL model, an important step to be

taken in the near future is migrating the DL model to an operationalised forecasting system, which will

produce and publish real-time forecasts. This requires a great effort on the technical side, as up-to-

date weather forecasts and AQS observations have to be collected and processed, and the infrastructure

for publishing the forecasts has to be built. Despite the obstacles of a more technical nature, this goal

represents a major milestone in DL-based air quality forecasting, as it would be the first time a forecast

is available in live operation. Turning this theoretically motivated thesis into an actual application will

be the foundation for future users, such as decision-makers and stakeholders, to access the forecasts and

get their impression of potential use cases.
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Research Questions and Conclusion As a last point, I would like to review the research questions

raised in the introduction chapter (Section 1.4), which have guided me through the entire work of this

thesis. Concerning question Q1, whether the use of DL in ozone forecasting is sensibly possible, I

can give a clear yes as an answer. The second question Q2 about reproducibility can be answered to

the extent that I have developed a standardised and reproducible workflow that has contributed to a

number of scientific papers and findings. Measures to ensure reproducibility that I have taken in this

work are (i) a clear separation of training and test data, for example, when computing transformation

properties, estimating climatological statistics and during training, along the temporal axis to prevent

data leakage, (ii) an appropriate choice of predictors that excludes invalid variables from the future,

(iii) an estimation of how the lead time of the weather forecast will affect the DL performance, (iv)

an evaluation against baseline methods as well as state-of-the-art CTMs, (v) following open science

practices by publishing code and data, using a standardised workflow and precisely describing parameters

and model architectures, and (vi) the clear communication of limitations of the chosen approaches. I

addressed the superposition of temporal patterns (Q3) by decomposing the input time series so that

the DL models exhibited increased training progress. At the same time, not only the superposition

of temporal patterns but also the uncertainty about future weather limits the prediction quality of DL-

based ozone forecasts. These limitations called for in Q4 can be countered by using a weather forecast,

large data sets and deep and advanced DL architectures. This enabled to train a DL model that, when

compared to an ensemble of cutting-edge CTMs as requested in Q5, can produce a more reliable forecast

for ground-level ozone capable of representing both background levels and variability more accurately.

For the final question Q6, I would like to refer to the previous outlook discussion, where I pointed out

which milestones still need to be added for the findings of this thesis to be used in an operational air

quality forecast. After all, the research for the use of DL in air quality prediction is not yet completed

with this thesis, but opens up new and exciting research opportunities to be explored.
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AAAI Association for the Advancement of

AI.

AI artificial intelligence.

AQS air quality station.
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CNN convolutional neural network.
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CRediT Contributor Roles Taxonomy.

CTM chemical transport model.
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dma8 daily maximum 8-hour running aver-

age.

DU diurnal.

ECMWF European Centre for Medium-Range

Weather Forecasts.

ERA5 ECMMF Reanalysis of the fifth Gener-

ation.

EU European Union.

FIR finite impulse response.

FNN feedforward neural network.

GAN generative adversarial network.

GMD Geoscientific Model Development.

GPU graphical processing unit.

GRU gated recurrent unit.

HPC high performance computing.

ID intraday.

IJCAI International Joint Conference on AI.

KZF Kolmogorov-Zurbenko filter.

LSTM long short-term memory.

LT long-term.

ME mean error.

ML machine learning.

MLAir Machine Learning on Air data.

MSE mean squared error.

NAQPMS Nested Air Quality Prediction Model-

ing System.

NIPS Neural Information Processing Sys-

tems.

NMVOC non-methane volatile organic com-

pound.

NN neural network.

REA6 high-resolution reanalysis system

COSMO-REA6.

ReLU rectified linear unit.

ResNet residual neural network.

RMSE root mean squared error.

RNN recurrent neural network.

SE seasonal.

SGD stochastic gradient descent.

ST short-term.

SY synoptic.

tanh hyperbolic tangent.

TFT temporal fusion transformer.

TOAR DB Tropospheric Ozone Assessment Re-

port database.

VAE variational autoencoder.

VOC volatile organic compound.

WHO World Health Organization.
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Abstract. With MLAir (Machine Learning on Air data) we
created a software environment that simplifies and acceler-
ates the exploration of new machine learning (ML) models,
specifically shallow and deep neural networks, for the anal-
ysis and forecasting of meteorological and air quality time
series. Thereby MLAir is not developed as an abstract work-
flow, but hand in hand with actual scientific questions. It thus
addresses scientists with either a meteorological or an ML
background. Due to their relative ease of use and spectacular
results in other application areas, neural networks and other
ML methods are also gaining enormous momentum in the
weather and air quality research communities. Even though
there are already many books and tutorials describing how to
conduct an ML experiment, there are many stumbling blocks
for a newcomer. In contrast, people familiar with ML con-
cepts and technology often have difficulties understanding
the nature of atmospheric data. With MLAir we have ad-
dressed a number of these pitfalls so that it becomes easier
for scientists of both domains to rapidly start off their ML
application. MLAir has been developed in such a way that it
is easy to use and is designed from the very beginning as a
stand-alone, fully functional experiment. Due to its flexible,
modular code base, code modifications are easy and personal
experiment schedules can be quickly derived. The package
also includes a set of validation tools to facilitate the evalu-
ation of ML results using standard meteorological statistics.
MLAir can easily be ported onto different computing envi-
ronments from desktop workstations to high-end supercom-
puters with or without graphics processing units (GPUs).

1 Introduction

In times of rising awareness of air quality and climate is-
sues, the investigation of air quality and weather phenomena
is moving into focus. Trace substances such as ozone, nitro-
gen oxides, or particulate matter pose a serious health haz-
ard to humans, animals, and nature (Cohen et al., 2005; Ben-
tayeb et al., 2015; World Health Organization, 2013; Lefohn
et al., 2018; Mills et al., 2018; US Environmental Protec-
tion Agency, 2020). Accordingly, the analysis and prediction
of air quality are of great importance in order to be able to
initiate appropriate countermeasures or issue warnings. The
prediction of weather and air quality has been established op-
erationally in many countries and has become a multi-million
dollar industry, creating and selling specialized data products
for many different target groups.

These days, forecasts of weather and air quality are gener-
ally made with the help of so-called Eulerian grid point mod-
els. This type of model, which solves physical and chemical
equations, operates on grid structures. In fact, however, lo-
cal observations of weather and air quality are strongly in-
fluenced by the immediate environment. Such local influ-
ences are quite difficult for atmospheric chemistry models
to accurately simulate due to the limited grid resolution of
these models and because of uncertainties in model parame-
terizations. Consequently, both global models and so-called
small-scale models, whose grid resolution is still in the mag-
nitude of about a kilometre and thus rather coarse in compar-
ison to local-scale phenomena in the vicinity of a measure-
ment site, show a high uncertainty of the results (see Vautard,
2012; Brunner et al., 2015). To enhance the model output,
approaches focusing on the individual point measurements
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at weather and air quality monitoring stations through down-
scaling methods are applied allowing local effects to be taken
into account. Unfortunately, these methods, being optimized
for specific locations, cannot be generalized for other regions
and need to be re-trained for each measurement site.

Recently, a variety of machine learning (ML) methods
have been developed to complement the traditional down-
scaling techniques. Such methods (e.g. neural networks, ran-
dom forest) are able to recognize and reproduce underly-
ing and complex relationships in data sets. Driven in par-
ticular by computer vision and speech recognition, tech-
nologies like convolutional neural networks (CNNs; Lecun
et al., 1998), or recurrent networks variations such as long
short-term memory (LSTM; Hochreiter and Schmidhuber,
1997) or gated recurrent units (GRUs; Cho et al., 2014) but
also more advanced concepts like variational autoencoders
(VAEs; Kingma and Welling, 2014; Rezende et al., 2014), or
generative adversarial networks (GANs; Goodfellow et al.,
2014), are powerful and widely and successfully used. The
application of such methods to weather and air quality data
is rapidly gaining momentum.

Although the scientific areas of ML and atmospheric sci-
ence have existed for many years, combining both disciplines
is still a formidable challenge, because scientists from these
areas do not speak the same language. Atmospheric scientists
are used to building models on the basis of physical equations
and empirical relationships from field experiments, and they
evaluate their models with data. In contrast, data scientists
use data to build their models on and evaluate them either
with additional independent data or physical constraints. This
elementary difference can lead to misinterpretation of study
results so that, for example, the ability of the network to gen-
eralize is misjudged. Another problem of several published
studies on ML approaches to weather forecasting is an in-
complete reporting of ML parameters, hyperparameters, and
data preparation steps that are key to comprehending and re-
producing the work that was done. As shown by Musgrave
et al. (2020) these issues are not limited to meteorological
applications of ML only.

To further advance the application of ML in atmospheric
science, easily accessible solutions to run and document ML
experiments together with readily available and fully docu-
mented benchmark data sets are urgently needed (see Schultz
et al., 2021). Such solutions need to be understandable by
both communities and help both sides to prevent unconscious
blunders. A well-designed workflow embedded in a meteo-
rological and ML-related environment while accomplishing
subject-specific requirements will bring forward the usage of
ML in this specific research area.

In this paper, we present a new framework to enable
fast and flexible Machine Learning on Air data time series
(MLAir). Fast means that MLAir is distributed as full end-
to-end framework and thereby simple to deploy. It also al-
lows typical optimization techniques to be deployed in ML
workflows and offers further technical features like the use

of graphics processing units (GPUs) due to the underlying
ML library. MLAir is suitable for ML beginners due to its
simple usage but also offers high customization potential for
advanced ML users. It can therefore be employed in real-
world applications. For example, more complex model archi-
tectures can be easily integrated. ML experts who want to ex-
plore weather or air quality data will find MLAir helpful as it
enforces certain standards of the meteorological community.
For example, its data preparation step acknowledges the au-
tocorrelation which is typically seen in meteorological time
series, and its validation package reports well-established
skill scores, i.e. improvement of the forecast compared to ref-
erence models such as persistence and climatology. From a
software design perspective, MLAir has been developed ac-
cording to state-of-the-art software development practices.

This article is structured as follows. Section 2 introduces
MLAir by expounding the general design behind the MLAir
workflow. We also share a few more general points about
ML and what a typical workflow looks like. This is followed
by Sect. 3 showing three application examples to allow the
reader to get a general understanding of the tool. Further-
more, we show how the results of an experiment conducted
by MLAir are structured and which statistical analysis is ap-
plied. Section 4 extends further into the configuration options
of an experiment and details on customization. Section 5 de-
lineates the limitations of MLAir and discusses for which
applications the tool might not be suitable. Finally, Sect. 6
concludes with an overview and outlook on planned devel-
opments for the future.

At this point we would like to point out that in order to
simplify the readability of the paper, highlighting is used.
Frameworks are highlighted in italics and typewriter font is
used for code elements such as class names or variables.
Other expressions that, for example, describe a class but do
not explicitly name it, are not highlighted at all in the text.
Last but not least, we would like to mention that MLAir is an
open-source project and contributions from all communities
are welcome.

2 MLAir workflow and design

ML in general is the application of a learning algorithm to
a data set whereby a statistical model describing relations
within the data is generated. During the so-called training
process, the model learns patterns in the data set with the
aid of the learning algorithm. Afterwards, this model can be
applied to new data. Since there is a large number of learning
algorithms and also an arbitrarily large number of different
ML architectures, it is generally not possible to determine in
advance which approach will deliver the best results under
which configuration. Therefore, the optimal setting must be
found by trial and error.

ML experiments usually follow similar patterns. First, data
must be obtained, cleaned if necessary, and finally put into a
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suitable format (preprocessing). Next, an ML model is se-
lected and configured (model setup). Then the learning algo-
rithm can optimize the model under the selected settings on
the data. This optimization is an iterative procedure and each
iteration is called an epoch (training). The accuracy of the
model is then evaluated (validation). If the results are not sat-
isfactory, the experiment is continued with modified settings
(i.e. hyperparameters) or started again with a new model. For
further details on ML, we refer to Bishop (2006) and Good-
fellow et al. (2016) but would also like to point out that there
is a large amount of further introductory literature and freely
available blog entries and videos, and that the books men-
tioned here are only two of many options out there.

The overall goal of designing MLAir was to create a ready-
to-run ML application for the task of forecasting weather
and air quality time series. The tool should allow many cus-
tomization options to enable users to easily create a custom
ML workflow, while at the same time it should support users
in executing ML experiments properly and evaluate their re-
sults according to accepted standards of the meteorological
community. At this point, it is pertinent to recall that MLAir’s
current focus is on neural networks.

In this section we present the general concepts on which
MLAir is based. We first comment on the choice of the un-
derlying programming language and the packages and frame-
works used (Sect. 2.1). We then focus on the design consid-
erations and choices and introduce the general workflow of
MLAir (Sect. 2.2). Thereafter we explain how the concepts
of run modules (Sect. 2.3), model class (Sect. 2.4), and data
handler (Sect. 2.5) were conceived and how these modules
interact with each other. More detailed information on, for
example, how to adapt these modules can be found in the
corresponding subsection of the later Sect. 4.

2.1 Coding language

Python (Python Software Foundation, 2018, release 3.6.8)
was used as the underlying coding language for several rea-
sons. Python is pretty much independent of the operating sys-
tem and code does not need to be compiled before a run.
Python is flexible to handle different tasks like data load-
ing from the web, training of the ML model or plotting.
Numerical operations can be executed quite efficiently due
to the fact that they are usually performed by highly op-
timized and compiled mathematical libraries. Furthermore,
because of its popularity in science and economics, Python
has a huge variety of freely available packages to use. Fur-
thermore, Python is currently the language of choice in the
ML community (Elliott, 2019) and has well-developed easy-
to-use frameworks like TensorFlow (Abadi et al., 2015) or
PyTorch (Paszke et al., 2019) which are state-of-the-art tools
to work on ML problems. Due to the presence of such com-
piled frameworks, there is for instance no performance loss
during the training, which is the biggest part of the ML work-
flow, by using Python.

Concerning the ML framework, Keras (Chollet et al.,
2015, release 2.2.4) was chosen for the ML parts using Ten-
sorFlow (release 1.13.1) as back-end. Keras is a framework
that abstracts functionality out of its back-end by providing a
simpler syntax and implementation. For advanced model ar-
chitectures and features it is still possible to implement parts
or even the entire model in native TensorFlow and use the
Keras front-end for training. Furthermore, TensorFlow has
GPU support for training acceleration if a GPU device is
available on the running system.

For data handling, we chose a combination of xar-
ray (Hoyer and Hamman, 2017; Hoyer et al., 2020, re-
lease 0.15.0) and pandas (Wes McKinney, 2010; Reback
et al., 2020, release 1.0.1). pandas is an open-source tool
to analyse and manipulate data primarily designed for tab-
ular data. xarray was inspired by pandas and has been devel-
oped to work with multi-dimensional arrays as simply and
efficiently as possible. xarray is based on the off-the-shelf
Python package for scientific computing NumPy (van der
Walt et al., 2011, release 1.18.1) and introduces labels in the
form of dimensions, coordinates, and attributes on top of raw
NumPy-like arrays.

2.2 Design of the MLAir workflow

According to the goals outlined above, MLAir was designed
as an end-to-end workflow comprising all required steps of
the time series forecasting task. The workflow of MLAir is
controlled by a run environment, which provides a central
data store, performs logging, and ensures the orderly exe-
cution of a sequence of individual stages. Different work-
flows can be defined and executed under the umbrella of this
environment. The standard MLAir workflow (described in
Sect. 2.3) contains a sequence of typical steps for ML exper-
iments (Fig. 1), i.e. experiment setup, preprocessing, model
setup, training, and postprocessing.

Besides the run environment, the experiment setup plays
a very important role. During experiment setup, all cus-
tomization and configuration modules, like the model class
(Sect. 2.4), data handler (Sect. 2.5), or hyperparameters, are
collected and made available to MLAir. Later, during execu-
tion of the workflow, these modules are then queried. For ex-
ample, the hyperparameters are used in training whereas the
data handler is already used in the preprocessing. We want to
mention that apart from this default workflow, it is also pos-
sible to define completely new stages and integrate them into
a custom MLAir workflow (see Sect. 4.8).

2.3 Run modules

MLAir models the ML workflow as a sequence of self-
contained stages called run modules. Each module handles
distinct tasks whose calculations or results are usually re-
quired for all subsequent stages. At run time, all run modules
can interchange information through a temporary data store.
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Figure 1. Visualization of the MLAir standard setup DefaultWorkflow including the stages ExperimentSetup, PreProcessing,
ModelSetup, Training, and PostProcessing (all highlighted in orange) embedded in the RunEnvironment (sky blue). Each
experiment customization (bluish green) like the data handler, model class, and hyperparameter shown as examples, is set during the initial
ExperimentSetup and affects various stages of the workflow.

The run modules are executed sequentially in predefined or-
der. A run module is only executed if the previous step was
completed without error. More advanced workflow concepts
such as conditional execution of run modules are not imple-
mented in this version of MLAir. Also, run modules cannot
be run in parallel, although a single run module can very well
execute parallel code. In the default setup (Fig. 1), the MLAir
workflow constitutes the following run modules:

– Run environment. The run module RunEnvironment
is the base class for all other run modules. By wrap-
ping the RunEnvironment class around all run mod-
ules, parameters are tracked, the workflow logging is
centralized, and the temporary data store is initialized.
After each run module and at the end of the experi-
ment, RunEnvironment guarantees a smooth (exper-
iment) closure by providing supplementary information
on stage execution and parameter access from the data
store.

– Experiment setup. The initial stage of MLAir
to set up the experiment workflow is called
ExperimentSetup. Parameters which are not
customized are filled with default settings and stored
for the experiment workflow. Furthermore, all local
paths for the experiment and data are created during
experiment setup.

– Preprocessing. During the run module
PreProcessing, MLAir loads all required
data and carries out typical ML preparation steps
to have the data ready to use for training. If the
DefaultDataHandler is used, this step includes
downloading or loading of (locally stored) data, data
transformation and interpolation. Finally, data are split
into the subsets for training, validation, and testing.

– Model setup. The ModelSetup run module builds
the raw ML model implemented as a model class (see
Sect. 2.4), sets Keras and TensorFlow callbacks and

checkpoints for the training, and finally compiles the
model. Additionally, if using a pre-trained model, the
weights of this model are loaded during this stage.

– Training. During the course of the Training run mod-
ule, training and validation data are distributed accord-
ing to the parameter batch_size to properly feed the
ML model. The actual training starts subsequently. Af-
ter each epoch of training, the model performance is
evaluated on validation data. If performance improves
as compared to previous cycles, the model is stored as
best_model. This best_model is then used in the
final analysis and evaluation.

– Postprocessing. In the final stage, PostProcessing,
the trained model is statistically evaluated on the test
data set. For comparison, MLAir provides two ad-
ditional forecasts, first an ordinary multi-linear least
squared fit trained on the same data as the ML model
and second a persistence forecast, where observations of
the past represent the forecast for the next steps within
the prediction horizon. For daily data, the persistence
forecast refers to the last observation of each sample
to hold for all forecast steps. Skill scores based on the
model training and evaluation metric are calculated for
all forecasts and compared with climatological statis-
tics. The evaluation results are saved as publication-
ready graphics. Furthermore, a bootstrapping technique
can be used to evaluate the importance of each input fea-
ture. More details on the statistical analysis that is car-
ried out can be found in Sect. 3.3. Finally, a geograph-
ical overview map containing all stations is created for
convenience.

Ideally this predefined default workflow should meet the re-
quirements for an entire end-to-end ML workflow on station-
wise observational data. Nevertheless, MLAir provides op-
tions to customize the workflow according to the application
needs (see Sect. 4.8).
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2.4 Model class

In order to ensure a proper functioning of ML models,
MLAir uses a model class, so that all models are cre-
ated according to the same scheme. Inheriting from the
AbstractModelClass guarantees correct handling dur-
ing the workflow. The model class is designed to follow
an easy plug-and-play behaviour so that within this security
mechanism, it is possible to create highly customized mod-
els with the frameworks Keras and TensorFlow. We know
that wrapping such a class around each ML model is slightly
more complicated compared to building models directly in
Keras, but by requiring the user to build their models in
the style of a model class, the model structure can be doc-
umented more easily. Thus, there is less potential for errors
when running through an ML workflow, in particular when
this is done many times to find out the best model setup, for
example. More details on the model class can be found in
Sect. 4.5.

2.5 Data handler

In analogy to the model class, the data handler organizes all
operations related to data retrieval, preparation and provision
of data samples. If a set of observation stations is being ex-
amined in the MLAir workflow, a new instance of the data
handler is created for each station automatically and MLAir
will take care of the iteration across all stations. As with the
creation of a model, it is not necessary to modify MLAir’s
source code. Instead, every data handler inherits from the
AbstractDataHandler class which provides guidance
on which methods need to be adapted to the actual workflow.

By default, MLAir uses the DefaultDataHandler. It
accesses data from Jülich Open Web Interface (JOIN, Schultz
et al., 2017a, b) as demonstrated in Sect. 3.1. A detailed de-
scription of how to use this data handler can be found in
Sect. 4.4. However, if a different data source or structure
is used for an experiment, the DefaultDataHandler
must be replaced by a custom data handler based on the
AbstractDataHandler. Simply put, such a custom han-
dler requires methods for creating itself at runtime and meth-
ods that return the inputs and outputs. Partitioning according
to the batch size or suchlike is then handled by MLAir at the
appropriate moment and does not need to be integrated into
the custom data handler. Further information about custom
data handlers follows in Sect. 4.3, and we refer to the source
code documentation for additional details.

3 Conducting an experiment with MLAir

Before we dive deeper into available features and the ac-
tual implementation, we show three basic examples of the
MLAir usage to demonstrate the underlying ideas and con-
cepts and how first modifications can be made (Sect. 3.1). In
Sect. 3.2, we then explain how the output of an MLAir exper-

iment is structured and which graphics are created. Finally,
we briefly touch on the statistical part of the model evaluation
(Sect. 3.3).

3.1 Running first experiments with MLAir

To install MLAir, the program can be downloaded as de-
scribed in the Code availability section, and the Python li-
brary dependencies should be installed from the require-
ments file. To test the installation, MLAir can be run in a
default configuration with no extra arguments (see Fig. 2).
These two commands will execute the workflow depicted
in Fig. 1. This will perform an ML forecasting experiment
of daily maximum ground-level ozone concentrations using
a simple feed-forward neural network based on seven input
variables consisting of preceding trace gas concentrations of
ozone and nitrogen dioxide, and the values of temperature,
humidity, wind speed, cloud cover, and the planetary bound-
ary layer height.

MLAir uses the DefaultDataHandler class (see
Sect. 4.4) if not explicitly stated and automatically starts
downloading all required air quality and meteorological data
from JOIN the first time it is executed after a fresh instal-
lation. This web interface provides access to a database of
measurements of over 10 000 air quality monitoring stations
worldwide, assembled in the context of the Tropospheric
Ozone Assessment Report (TOAR, 2014–2021). In the de-
fault configuration, 21-year time series of nine variables from
five stations are retrieved with a daily aggregated resolution
(see Table 3 for details on aggregation). The retrieved data
are stored locally to save time on the next execution (the
data extraction can of course be configured as described in
Sect. 4.4).

After preprocessing of the data, splitting them into train-
ing, validation, and test data, and converting them to a xar-
ray and NumPy format (details in Sect. 2.1), MLAir creates
a new vanilla feed-forward neural network and starts to train
it. The training is finished after a fixed number of epochs.
In the default settings, the epochs parameter is preset to
20. Finally, the results are evaluated according to meteoro-
logical standards and a default set of plots is created. The
trained model, all results and forecasts, the experiment pa-
rameters and log files, and the default plots are pooled in a
folder in the current working directory. Thus, in its default
configuration, MLAir performs a meaningful meteorological
ML experiment, which can serve as a benchmark for further
developments and baseline for more sophisticated ML archi-
tectures.

In the second example (Fig. 3), we enlarged the
window_history_size (number of previous time steps)
of the input data to provide more contextual informa-
tion to the vanilla model. Furthermore, we use a differ-
ent set of observational stations as indicated in the pa-
rameter stations. From a first glance, the output of
the experiment run is quite similar to the earlier exam-
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Figure 2. A very simple Python script (e.g. written in a Jupyter Notebook (Kluyver et al., 2016) or Python file) calling the MLAir package
without any modification. Selected parts of the corresponding logging of the running code are shown underneath. Results of this and following
code snippets have to be seen as a pure demonstration, because the default neural network is very simple.

Figure 3. The MLAir experiment has now minor adjustments for the parameters stations and window_history_size.

ple. However, there are a couple of aspects in this sec-
ond experiment which we would like to point out. Firstly,
the DefaultDataHandler keeps track of data avail-
able locally and thus reduces the overhead of reloading
data from the web if this is not necessary. Therefore, no
new data were downloaded for station DEBW107, which

is part of the default configuration, as its data have al-
ready been stored locally in our first experiment. Of course
the DefaultDataHandler can be forced to reload all
data from their source if needed (see Sect. 4.1). The sec-
ond key aspect to highlight here is that the parameter
window_history_size could be changed, and the net-

Geosci. Model Dev., 14, 1553–1574, 2021 https://doi.org/10.5194/gmd-14-1553-2021

81



L. H. Leufen et al.: MLAir (v1.0) 1559

work was trained anew without any problem even though this
change affects the shape of the input data and thus the neu-
ral network architecture. This is possible because the model
class in MLAir queries the shape of the input variables and
adapts the architecture of the input layer accordingly. Natu-
rally, this procedure does not make perfect sense for every
model, as it only affects the first layer of the model. In case
the shape of the input data changes drastically, it is advisable
to adapt the entire model as well. Concerning the network
output, the second experiment overwrites all results from
the first run, because without an explicit setting of the file
path, MLAir always uses the same sandbox directory called
testrun_network. In a real-world sequence of experi-
ments, we recommend always specifying a new experiment
path with a reasonably descriptive name (details on the ex-
periment path in Sect. 4.1).

The third example in this section demonstrates the activa-
tion of a partial workflow, namely a re-evaluation of a pre-
viously trained neural network. We want to rerun the evalu-
ation part with a different set of stations to perform an inde-
pendent validation. This partial workflow is also employed
if the model is run in production. As we replace the sta-
tions for the new evaluation, we need to create a new test-
ing set, but we want to skip the model creation and train-
ing steps. Hence, the parameters create_new_model and
train_model are set to False (see Fig. 4). With this
setup, the model is loaded from the local file path and the
evaluation is performed on the newly provided stations. By
combining the stations from the second and third experiment
in the stations parameter the model could be evaluated at
all selected stations together. In this setting, MLAir will abort
to execute the evaluation if parameters pertinent for prepro-
cessing or model compilation changed compared to the train-
ing run.

It is also possible to continue training of an already trained
model. If the train_model parameter is set to True,
training will be resumed at the last epoch reached previously,
if this epoch number is lower than the epochs parame-
ter. Specific uses for this are either an experiment interrup-
tion (for example due to wall clock time limit exceedance on
batch systems) or the desire to extend the training if the opti-
mal network weights have not been found yet. Further details
on training resumption can be found in Sect. 4.9.

3.2 Results of an experiment

All results of an experiment are stored in the directory, which
is defined during the experiment setup stage (see Sect. 4.1).
The sub-directory structure is created at the beginning of the
experiment. There is no automatic deletion of temporary files
in case of aborted runs so that the information that is gener-
ated up to the program termination can be inspected to find
potential errors or to check on a successful initialization of
the model, etc. Figure 5 shows the output file structure. The
content of each directory is as follows:

– All samples used for training and validation are stored
in the batch_data folder.

– forecasts contains the actual predictions of the
trained model and the persistence and linear refer-
ences. All forecasts (model and references) are pro-
vided in normalized and original value ranges. Addi-
tionally, the optional bootstrap forecasts are stored here
(see Sect. 3.3).

– In latex_report, there are publication-ready tables
in Markdown (Gruber, 2004) or LaTeX (LaTeX Project,
2005) format, which give a summary about the stations
used, the number of samples, and the hyperparameters
and experiment settings.

– The logging folder contains information about the
execution of the experiment. In addition to the console
output, MLAir also stores messages on the debugging
level, which give a better understanding of the internal
program sequence. MLAir has a tracking functionality,
which can be used to trace which data have been stored
and pulled from the central data store. In combination
with the corresponding tracking plot that is created at
the very end of each experiment automatically, it allows
visual tracking of which parameters have an effect on
which stage. This functionality is most interesting for
developers who make modifications to the source code
and want to ensure that their changes do not break the
data flow.

– The folder model contains everything that is related to
the trained model. Besides the file, which contains the
model itself (stored in the binary hierarchical data for-
mat HDF5; Koranne, 2011), there is also an overview
graphic of the model architecture and all Keras call-
backs, for example from the learning rate. If a training
is not started from the beginning but is either continued
or applied to a pre-trained model, all necessary informa-
tion like the model or required callbacks must be stored
in this subfolder.

– The plots directory contains all graphics that are cre-
ated during an experiment. Which graphics are to be
created in postprocessing can be determined using the
plot_list parameter in the experiment setup. In ad-
dition, MLAir automatically generates monitoring plots,
for instance of the evolution of the loss during training.

As described in the last bullet point, all plots which are cre-
ated during an MLAir experiment can be found in the sub-
folder plots. By default, all available plot types are created.
By explicitly naming individual graphics in the plot_list
parameter, it is possible to override this behaviour and spec-
ify which graphics are created during postprocessing. Ad-
ditional plots are created to monitor the training behaviour.
These graphics are always created when a training session is
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Figure 4. Experiment run without training. For this, it is required to have an already trained model in the experiment path.

carried out. Most of the plots which are created in the course
of postprocessing are publication-ready graphics with com-
plete legend and resolution of 500 dpi. Custom graphics can
be added to MLAir by attaching an additional run module
(see Sect. 4.8) which contains the graphic creation methods.

A general overview of the underlying data can be
obtained with the graphics PlotStationMap and
PlotAvailability. PlotStationMap (Fig. 6)
marks the geographical position of the stations used on a
plain map with a land–sea mask, country boundaries, and
major water bodies. The data availability chart created by
PlotAvailability (Fig. 7) indicates the time periods
for which preprocessed data for each measuring station
are available. The lowest bar shows whether a station with
measurements is available at all for a certain point in time.
The three subsets of training, validation, and testing data are
highlighted in different colours.

The monitoring graphics show the course of the loss func-
tion as well as the error depending on the epoch for the train-
ing and validation data (see Fig. 8). In addition, the error of
the best model state with respect to the validation data is
shown in the plot title. If the learning rate is modified dur-
ing the course of the experiment, another plot is created to
show its development. These monitoring graphics are kept
as simple as possible and are meant to provide insight into
the training process. The underlying data are always stored
in the JavaScript Object Notation format (.json, ISO Central
Secretary, 2017) in the subfolder model and can therefore
be used for case-specific analyses and plots.

Through the graphs PlotMonthlySummary and
PlotTimeSeries it is possible to quickly as-
sess the forecast quality of the ML model. The
PlotMonthlySummary (see Fig. 9) summarizes all

predictions of the model covering all stations but consider-
ing each month separately as a box-and-whisker diagram.
With this graph it is possible to get a general overview
of the distribution of the predicted values compared to
the distribution of the observed values for each month.
Besides, the exact course of the time series compared to the
observation can be viewed in the PlotTimeSeries (not
included as a figure in this article). However, since this plot
has to scale according to the length of the time series, it
should be noted that this last-mentioned graph is kept very
simple and is generally not suitable for publication.

3.3 Statistical analysis of results

A central element of MLAir is the statistical evaluation of
the results according to state-of-the-art methods used in me-
teorology. To obtain specific information on the forecasting
model, we treat forecasts and observations as random vari-
ables. Therefore, the joint distribution p(m,o) of a model
m and an observation o contains information on p(m), p(o)

(marginal distribution), and the relations p(o|m) and p(m|o)

(conditional distribution) between both of them (Murphy and
Winkler, 1987). Following Murphy et al. (1989), marginal
distribution is shown as a histogram (light grey), while the
conditional distribution is shown as percentiles in differ-
ent line styles. By using PlotConditionalQuantiles,
MLAir automatically creates plots for the entire test period
(Fig. 10) that are, as is common in meteorology, separated
by seasons.

In order to access the genuine added value of a new fore-
casting model, it is essential to take other existing forecasting
models into account instead of reporting only metrics related
to the observation. In MLAir we implemented three types of
basic reference forecasts: (i) a persistence forecast, (ii) an or-
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Figure 5. Default structure of each MLAir experiment with the sub-
folders forecasts, latex_report, logging, model, and
plots. <exp_dir> is a placeholder for the actual name of the
experiment.

Figure 6. Map of central Europe showing the locations of
some sample measurement stations as blue squares created by
PlotStationMap.

dinary multi-linear least square model, and (iii) four climato-
logical forecasts.

The persistence forecast is based on the last observed time
step, which is then used as a prediction for all lead times.
The ordinary multi-linear least square model serves as a lin-
ear competitor and is derived from the same data the model
was trained with. For the climatological references, we fol-
low Murphy (1988) who defined single and multiple valued
climatological references based on different timescales. We
refer the reader to Murphy (1988) for an in-depth discussion
of the climatological reference. Note that this kind of persis-
tence and also the climatological forecast might not be appli-
cable for all temporal resolutions and may therefore need ad-
justment in different experiment settings. We think here, for
example, of a clear diurnal pattern in temperature, for which
a persistence of successive observations would not provide a
good forecast. In this context, a reference forecast based on
the observation of the previous day at the same time might
be more suitable.

For the comparison, we use a skill score S, which is natu-
rally defined as the performance of a new forecast compared
to a competitive reference with respect to a statistical metric
(Murphy and Daan, 1985). Applying the mean squared error
as the statistical metric, such a skill score S reduces to unity
minus the ratio of the error of the forecast to the reference.
A positive skill score can be interpreted as the percentage of
improvement of the new model forecast in comparison to the
reference. On the other hand, a negative skill score denotes
that the forecast of interest is less accurate than the referenc-
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Figure 7. PlotAvailability diagram showing the available data for five measurement stations. The different colours denote which
period of the time series is used for the training (orange), validation (green), and test (blue) data set. “Data availability” denotes if any of the
above-mentioned stations has a data record for a given time.

Figure 8. Monitoring plots showing the evolution of train and vali-
dation loss as a function of the number of epochs. This plot type is
kept very simplistic by choice. The underlying data are saved during
the experiment so that it would be easy to create a more advanced
plot using the same data.

ing forecast. Consequently, a value of zero denotes that both
forecasts perform equally (Murphy, 1988).

The PlotCompetitiveSkillScore (Fig. 11) in-
cludes the comparison between the trained model, the persis-
tence, and the ordinary multi-linear least squared regression.
The climatological skill scores are calculated separately for
each forecast step (lead time) and summarized as a box-and-
whiskers plot over all stations and forecasts (Fig. 12), and as
a simplified version showing the skill score only (not shown)
using PlotClimatologicalSkillScore.

In addition to the statistical model evaluation, MLAir also
allows the importance of individual input variables to be as-
sessed through bootstrapping of individual input variables.
For this, the time series of each individual input variable is
resampled n times (with replacement) and then fed to the
trained network. By resampling a single input variable, its
temporal information is disturbed, but the general frequency
distribution is preserved. The latter is important because it

Figure 9. Graph of PlotMonthlySummary showing the obser-
vations (green) and the predictions for all forecast steps (dark to
light blue) separated for each month.

ensures that the model is provided only with values from
a known range and does not extrapolate out-of-sample. Af-
terwards, the skill scores of the bootstrapped predictions are
calculated using the original forecast as reference. Input vari-
ables that show an overly negative skill score during boot-
strapping have a stronger influence on the prediction than in-
put variables with a small negative skill score. In case the
bootstrapped skill score even reaches the positive value do-
main, this could be an indication that the examined vari-
able has no influence on the prediction at all. The result
of this approach applied to all input variables is presented
in PlotBootstrapSkillScore (Fig. 13). A more de-
tailed description of this approach is given in Kleinert et al.
(2021).
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Figure 10. Conditional quantiles in terms of calibration-refinement
factorization for the first lead time and the full test period. The
marginal forecasting distribution is shown as a log histogram in
light grey (counting on right axis). The conditional distribution (cal-
ibration) is shown as percentiles in different line styles. Calcula-
tions are done with a bin size of 1 ppb. Moreover, the percentiles
are smoothed by a rolling mean of window size three. This kind of
plot was originally proposed by Murphy et al. (1989) and can be
created using PlotConditionalQuantiles.

Figure 11. Skill scores of different reference models like
persistence (persi) and ordinary multi-linear least square
(ols). Skill scores are shown separately for all forecast steps
(dark to light blue). This graph is generated by invoking
PlotCompetitiveSkillScore.

4 Configuration of experiment, data handler, and
model class in the MLAir workflow

As well as the already described workflow adjustments,
MLAir offers a large number of configuration options. In-
stead of defining parameters at different locations inside the
code, all parameters are centrally set in the experiment setup.
In this section, we describe all parameters that can be modi-

fied and the authors’ choices for default settings when using
the default workflow of MLAir.

4.1 Host system and processing units

The MLAir workflow can be adjusted to the hosting sys-
tem. For that, the local paths for experiment and data are
adjustable (see Table 1 for all options). Both paths are sep-
arated by choice. This has the advantage that the same data
can be used multiple times for different experiment setups
if stored outside the experiment path. Contrary to the data
path placement, all created plots and forecasts are saved in
the experiment_path by default, but this can be adjusted
through the plot_path and forecast_path parameter.

Concerning the processing units, MLAir supports both
central processing units (CPUs) and GPUs. Due to their
bandwidth optimization and efficiency on matrix opera-
tions, GPUs have become popular for ML applications (see
Krizhevsky et al., 2012). Currently, the sample models im-
plemented in MLAir are based on TensorFlow v1.13.1, which
has distinct branches: the tensorflow-1.13.1 package for CPU
computation and the tensorflow-gpu-1.13.1 package for GPU
devices. Depending on the operating system, the user needs
to install the appropriate library if using TensorFlow releases
1.15 and older (TensorFlow, 2020). Apart from this installa-
tion issue, MLAir is able to detect and handle both Tensor-
Flow versions during run time. An MLAir version to support
TensorFlow v2 is planned for the future (see Sect. 5).

4.2 Preprocessing

In the course of preprocessing, the data are prepared to al-
low immediate use in training and evaluation without further
preparation. In addition to the general data acquisition and
formatting, which will be discussed in Sect. 4.3 and 4.4, pre-
processing also handles the split into training, validation, and
test data. All parameters discussed in this section are listed in
Table 2.

Data are split into subsets along the temporal axis
and station between a hold-out data set (called test
data) and the data that are used for training (train-
ing data) and model tuning (validation data). For
each subset, a {train,val,test}_start and
{train,val,test}_end date not exceeding the overall
time span (see Sect. 4.4) can be set. Additionally, for
each subset it is possible to define a minimal number of
samples per station {train,val,test}_min_length
to remove very short time series that potentially cause
misleading results especially in the validation and test phase.
A spatial split of the data is achieved by assigning each
station to one of the three subsets of data. The parameter
fraction_of_training determines the ratio between
hold-out data and data for training and validation, where
the latter two are always split with a ratio of 80% to 20%,
which is a typical choice for these subsets.
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Figure 12. Climatological skill scores (cases I to IV) and related terms of the decomposition as proposed in Murphy (1988) created by
PlotClimatologicalSkillScore. Skill scores and terms are shown separately for all forecast steps (dark to light blue). In brief,
cases I to IV describe a comparison with climatological reference values evaluated on the test data. Case I is the comparison of the forecast
with a single mean value formed on the training and validation data and case II with the (multi-value) monthly mean. The climatological
references for cases III and IV are, analogous to cases I and II, the single and the multi-value mean, but on the test data. Cases I to IV are
calculated from the terms AI to CIV. For more detailed explanations of the cases, we refer to Murphy (1988).

Table 1. Summary of all parameters related to the host system that are required, recommended, or optional to adjust for a custom experiment
workflow.

Host system

Parameter Default Adjustment

experiment_date testrun recommended
experiment_name {experiment_date}_network –a

experiment_path 〈cwdb
〉/{experiment_name} optional

data_path 〈cwdb
〉/data optional

bootstrap_path 〈data_path〉/bootstraps optional
forecast_path 〈experiment_path〉/forecasts optional
plot_path 〈experiment_path〉/plots optional

a Only adjustable via the experiment_date parameter.
b Refers to the Linux command to get the path name of the current working directory.

To achieve absolute statistical data subset independence,
data should ideally be split along both temporal and spatial
dimensions. Since the spatial dependency of two distinct sta-
tions may vary due to weather regimes, season, and time of
day (Wilks, 2011), a spatial and temporal division of the data
might be useful, as otherwise a trained model can presum-
ably lead to over-confident results. On the other hand, by
applying a spatial split in combination with a temporal di-

vision, the amount of utilizable data can drop massively. In
MLAir, it is therefore up to the user to split data either in the
temporal dimension or along both dimensions by using the
use_all_stations_on_all_data_sets parameter.
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Figure 13. Skill score of bootstrapped model input predictions separated for each input variable (x axis) and forecast steps (dark to light
blue) with the original (non-bootstrapped) predictions as reference. PlotBootstrapSkillScore is only executed if bootstrap analysis
is enabled.

Table 2. Summary of all parameters related to the preprocessing that are required, recommended, or optional to adjust for a custom experiment
workflow.

Preprocessing

Parameter Default Adjustment

stations default stationsa recommended
data_handler DefaultDataHandler optional
fraction_of_training 0.8 optionalb

use_all_stations_on_all_data_sets True optional

a Default stations: DEBW107, DEBY081, DEBW013, DEBW076, DEBW087.
b Not used in the default setup because use_all_stations_on_all_data_sets is True.

4.3 Custom data handler

The integration of a custom data handler into the
MLAir workflow is done by inheritance from the
AbstractDataHandler class and implementation
of at least the constructor __init__(), and the accessors
get_X(), and get_Y(). The custom data handler is
added to the MLAir workflow as a parameter without ini-
tialization. At runtime, MLAir then queries all the required
parameters of this custom data handler from its arguments
and keyword arguments, loads them from the data store and
finally calls the constructor. If data need to be downloaded or
preprocessed, this should be executed inside the constructor.
It is sufficient to load the data in the accessor methods if
the data can be used without conversion. Note that a data
handler is only responsible for preparing data from a single

origin, while the iteration and distribution into batches is
taken care of while MLAir is running.

The accessor methods for input and target data form a
clearly defined interface between MLAir’s run modules and
the custom data handler. During training the data are needed
as a NumPy array; for preprocessing and evaluation the data
are partly used as xarray. Therefore the accessor methods
have the parameter as_numpy and should be able to return
both formats. Furthermore it is possible to use a custom up-
sampling technique for training. To activate this feature the
parameter upsampling can be enabled. If such a technique
is not used and therefore not implemented, the parameter has
no further effect.

The abstract data handler provides two additional place-
holder methods that can support data preparation, training,
and validation. Depending on the case, it may be helpful to
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Table 3. Summary of all parameters related to the default data han-
dler that are required, recommended, or optional to adjust for a cus-
tom experiment workflow.

Default data handler

Parameter Default Adjustment

data_path see Table 1 optional
stations default stationsa recommended
network – optional
station_type – optional
variables default variablesb recommended
statistics_per_var default statisticsb recommended
target_var o3 recommended
start 1997-01-01 recommended
end 2017-12-31 recommended
sampling daily optional
window_history_size 13 recommended
interpolation_method linear optional
limit_nan_fill 1 optional
min_lengthc 0 optional
window_lead_time 3 recommended
overwrite_local_data False optional

a Default stations: DEBW107, DEBY081, DEBW013, DEBW076, DEBW087.
b Default variables (statistics): o3 (dma8eu), relhum (average_values), temp (maximum), u

(average_values), v (average_values), no (dma8eu), no2 (dma8eu), cloudcover
(average_values), pblheight (maximum).
c Indicates the required minimum number of samples per station.

define these methods within a custom data handler. With the
method transformation it is possible to either define or
calculate the transformation properties of the data handler be-
fore initialization. The returned properties are then applied to
all subdata sets, namely training, validation, and testing. An-
other supporting class method is get_coordinates. This
method is currently used only for the map plot for geograph-
ical overview (see Sect. 3.2). To feed the overview map, this
method must return a dictionary with the geographical coor-
dinates indicated by the keys lat and lon.

4.4 Default data handler

In this section we describe a concrete implementation of a
data handler, namely the DefaultDataHandler, using
data from the JOIN interface.

Regarding the data handling and preprocessing, several pa-
rameters can be set to control the choice of inputs, size of
data, etc. in the data handler (see Table 3). First, the under-
lying raw data must be downloaded from the web. The cur-
rent version of the DefaultDataHandler is configured
for use with the REST API of the JOIN interface (Schultz
and Schröder, 2017). Alternatively, data could be already
available on the local machine in the directory data_path,
e.g. from a previous experiment run. Additionally, a user
can force MLAir to load fresh data from the web by en-
abling the overwrite_local_data parameter. Accord-
ing to the design structure of a data handler, data are han-
dled separately for each observational station indicated by its

ID. By default, the DefaultDataHandler uses all Ger-
man air quality stations provided by the German Environ-
ment Agency (Umweltbundesamt, UBA) that are indicated
as “background” stations according to the European Envi-
ronmental Agency (EEA) AirBase classification (European
Parliament and Council of the European Union, 2008). Using
the stations parameter, a user-defined data collection can
be created. To filter the stations, the parameters network
and station_type can be used as described in Schultz
et al. (2017a) and the documentation of JOIN (Schultz and
Schröder, 2017).

For the DefaultDataHandler, it is recommended to
specify at least

– the number of preceding time steps to use for a single
input sample (window_history_size),

– if and which interpolation should be used
(interpolation_method),

– if and how many missing values are allowed to be filled
by interpolation (limit_nan_fill),

– and how many time steps the forecast model should pre-
dict (window_lead_time).

Regarding the data content itself, each requested variable
must be added to the variables list and be part of the
statistics_per_var dictionary together with a proper
statistic abbreviation (see documentation of Schultz and
Schröder, 2017). If not provided, both parameters are cho-
sen from a standard set of variables and statistics. Similar
actions are required for the target variable. Firstly, target vari-
ables are defined in target_var, and secondly, the target
variable must also be part of the statistics_per_var
parameter. Note that the JOIN REST API calculates these
statistics online from hourly values, thereby taking into ac-
count a minimum data coverage criterion. Finally, the over-
all time span the data shall cover can be defined via start
and end, and the temporal resolution of the data is set by
a string like "daily" passed to the sampling parameter.
At this point, we want to refer to Sect. 5, where we discuss
the temporal resolution currently available.

4.5 Defining a model class

The motivation behind using model classes was already ex-
plained in Sect. 2.4. Here, we show more details on the im-
plementation and customization.

To achieve the goal of an easy plug-and-play behaviour,
each ML model implemented in MLAir must inherit from the
AbstractModelClass, and the methods set_model
and set_compile_options are required to be over-
written for the custom model. Inside set_model, the
entire model from inputs to outputs is created. Thereby
it has to be ensured that the model is compatible with
Keras to be compiled. MLAir supports both the functional
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and sequential Keras application programming interfaces.
For details on how to create a model with Keras, we
refer to the official Keras documentation (Chollet et al.,
2015). All options for the model compilation should be
set in the set_compile_options method. This method
should at least include information on the training al-
gorithm (optimizer), and the loss to measure perfor-
mance during training and optimize the model for (loss).
Users can add other compile options like the learning rate
(learning_rate), metrics to report additional in-
formative performance metrics, or options regarding the
weighting as loss_weights, sample_weight_mode,
or weighted_metrics. Finally, methods that are not part
of Keras or TensorFlow like customized loss functions or
self-made model extensions are required to be added as so-
called custom_objects to the model so that Keras can
properly use these custom objects. For that, it is necessary to
call the set_custom_objects method with all custom
objects as key value pairs. See also the official Keras docu-
mentation for further information on custom objects.

An example implementation of a small model using a sin-
gle convolution and three fully connected layers is shown in
Fig. 14. By inheriting from the AbstractModelClass
(l. 9), invoking its constructor (l. 15), defining the methods
set_model (l. 25–35) and set_compile_options
(l. 37–41), and calling these two methods (l. 21–22), the cus-
tom model is immediately usable for MLAir. Additionally,
the loss is added to the custom objects (l. 23). This last step
would not be necessary in this case, because an error func-
tion incorporated in Keras is used (l. 2/40). For the purpose
of demonstrating how to use a customized loss, it is added
nevertheless.

A more elaborate example is described in Kleinert et al.
(2021), who used extensions to the standard Keras library in
their workflow. So-called inception blocks (Szegedy et al.,
2015) and a modification of the two-dimensional padding
layers were implemented as Keras layers and could be used
in the model afterwards.

4.6 Training

The parameter create_new_model instructs MLAir to
create a new model and use it in the training. This is nec-
essary, for example, for the very first training run in a new
experiment. However, it must be noted that already existing
training progress within the experiment will be overwritten
by activating create_new_model. Independent of using
a new or already existing model, train_model can be
used to set whether the model is to be trained or not. Fur-
ther notes on the continuation of an already started training
or the use of a pre-trained model can be found in Sect. 4.9.

Most parameters to set for the training stage are re-
lated to hyperparameter tuning (see Table 4). Firstly, the
batch_size can be set. Furthermore, the number of
epochs to train needs to be adjusted. Last but not least,

the model used itself must be provided to MLAir including
additional hyperparameters like the learning_rate, the
algorithm to train the model (optimizer), and the loss
function to measure model performance. For more details
on how to implement an ML model properly we refer to
Sect. 4.5.

Due to its application focus on meteorological time series
and therefore on solving a regression problem, MLAir offers
a particular handling of training data. A popular technique
in ML, especially in the image recognition field, is to aug-
ment and randomly shuffle data to produce a larger number
of input samples with a broader variety. This method requires
independent and identically distributed data. For meteoro-
logical applications, these techniques cannot be applied out
of the box, because of the lack of statistical independence
of most data and autocorrelation (see also Schultz et al.,
2021). To avoid generating over-confident forecasts, training
and test data are split into blocks so that little or no over-
lap remains between the data sets. Another common problem
in ML, not only in the meteorological context, is the natu-
ral under-representation of extreme values, i.e. an imbalance
problem. To address this issue, MLAir allows more empha-
sis to be placed on such data points. The weighting of data
samples is conducted by an over-representation of values that
can be considered as extreme regarding the deviation from a
mean state in the output space. This can be applied during
training by using the extreme_values parameter, which
defines a threshold value at which a value is considered ex-
treme. Training samples with target values that exceed this
limit are then used a second time in each epoch. It is also pos-
sible to enter more than one value for the parameter. In this
case, samples with values that exceed several limits are du-
plicated according to the number of limits exceeded. For pos-
itively skewed distributions, it could be helpful to apply this
over-representation only on the right tail of the distribution
(extremes_on_right_tail_only). Furthermore, it is
possible to shuffle data within, and only within, the training
subset randomly by enabling permute_data.

4.7 Validation

The configuration of the ML model validation is related to
the postprocessing stage. As mentioned in Sect. 2.3, in the
default configuration there are three major validation steps
undertaken after each run besides the creation of graph-
ics: first, the trained model is opposed to the two reference
models, a simple linear regression and a persistence predic-
tion. Second, these models are compared with climatological
statistics. Lastly, the influence of each input variable is esti-
mated by a bootstrap procedure.

Due to the computational burden the calculation of the in-
put variable sensitivity can be skipped and the graphics cre-
ation part can be shortened. To perform the sensitivity study,
the parameter evaluate_bootstraps must be enabled
and the number_of_bootstraps defines how many
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Figure 14. Example how to create a custom ML model implemented as a model class. MyCustomisedModel has a single 1×1 convolution
layer followed by two fully connected layers with a neuron size of 16, and the number of forecast steps. The model itself is defined in the
set_model method, whereas compile options such as the optimizer, loss, and error metrics are defined in set_compile_options.
Additionally, for demonstration, the loss is added as custom object which is not required because a Keras built-in function is used as loss.

samples shall be drawn for the evaluation (see Table 5). If
such a sensitivity study was already performed and the train-
ing stage was skipped, the create_new_bootstraps
parameter should be set to False to reuse already prepro-
cessed samples if possible. To control the creation of graph-
ics, the parameter plot_list can be adjusted. If not speci-
fied, a default selection of graphics is generated. When using

plot_list, each graphic to be drawn must be specified
individually. More details about all possible graphics have
already been provided in Sect. 3.2 and 3.3. In the current
version, extending the validation as part of MLAir’s default
postprocessing stage is somewhat complicated, but it is pos-
sible to append another run module to the workflow to per-
form additional validations.
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Table 4. Summary of all parameters related to the training that are required, recommended, or optional to adjust for a custom experiment
workflow.

Training

Parameter Default Adjustment

train_model False recommendeda

create_new_model False recommendeda

batch_size 512 optional
epochs 20 optional
lossb – required
metricsb – optional
model vanilla modelc required
learning_rateb – required
optimizerb – required
extreme_values – optional
extremes_on_right_tail_only False optional
permute_data False optional

a Note: both parameters are disabled per default to prevent unintended overwriting of a model. If, upon
reversion, these parameters are not enabled on the first execution of a new experiment without
providing a suitable and trained ML model, the MLAir workflow is going to fail.
b These parameters are set in the model class.
c As default, a vanilla feed-forward neural network architecture will be loaded for workflow testing.
The usage of such a simple network for a real application is at least questionable.

Table 5. Summary of all parameters related to the evaluation that
are required, recommended, or optional to adjust for a custom ex-
periment workflow.

Evaluation

Parameter Default Adjustment

plot_list default plotsa optional
evaluate_bootstraps True optional
number_of_bootstraps 20 optional
create_new_bootstraps Falseb optional

a Default plots are PlotMonthlySummary, PlotStationMap,
PlotClimatologicalSkillScore, PlotTimeSeries,
PlotCompetitiveSkillScore, PlotBootstrapSkillScore,
PlotConditionalQuantiles, and PlotAvailability.
b Is automatically enabled if parameter train_model (see Table 4) is enabled.

4.8 Custom run modules and workflow adaptions

MLAir offers the possibility to define and execute a custom
workflow for situations in which special calculations or data
evaluation procedures not available in the standard version
are needed. For this purpose it is not necessary to modify the
program code of MLAir, but instead user-defined run mod-
ules can be included in a new workflow. This is done in
analogy to the procedure of defining new model classes by
inheritance from the base class RunEnvironment. Com-
pared to the very simple examples from Sect. 3, such a use
of MLAir requires a slightly increased effort. The implemen-
tation of the run module is done straightforwardly by a con-
structor method, which initializes the module and executes
all desired calculation steps when called. To execute the cus-

tom workflow, the MLAir Workflow class must be loaded
and then each run module must be registered. The order in
which the individual stages are added determines the execu-
tion sequence.

As custom workflows will generally be necessary if a cus-
tom run module is to be defined, we briefly describe how the
central data store mentioned in Sect. 2.3 interacts with the
workflow module. With the data store it is possible to share
any kind of information from previous or subsequent stages.
By invoking the constructor of the super class during the ini-
tialization of a custom run module, the data store is automat-
ically connected with this module. Information can then be
set or queried using the accessor methods get and set. For
each saved information object a separate namespace called
scope can be assigned. If not specified, the object is always
stored in the general scope. If the scope is specified, a sep-
arate sub-scope is created. Information stored in this scope
memory cannot be accessed from the general scope mem-
ory, but conversely all sub-scopes have access to the gen-
eral scope. For example, more general objects can be set in
the general scope and objects specific to a sub-data set, such
as test data, can be stored under the scope test. If some
objects for the keyword test are retrieved from the data
store, then for non-existent objects in the test namespace
attributes from the general scope are used if available.

An example for the implementation of a custom run mod-
ule embedded in a custom workflow can be found in Fig. 15.
The custom run module named CustomStage inherits
from the base class RunEnvironment (l. 4) and calls
its constructor (l. 8) on initialization. The CustomStage
expects a single parameter (test_string, l. 7), which
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Figure 15. Embedding of a custom run module in a modified MLAir workflow. In comparison to Figs. 2, 3, and 4, this code example works on
a single step deeper regarding the level of abstraction. Instead of calling the run method of MLAir, the user needs to add all stages individually
and is responsible for all dependencies between the stages. By using the Workflow class as context manager, all stages are automatically
connected with the result that all stages can easily be plugged in.

is used during the run method (l. 11–15). The run
method first logs two information messages by using the
test_string parameter (l. 12–13). Then it extracts the
value of the parameter epochs (l. 14) that has been set in the
ExperimentSetup (l. 21) from the data store and logs the
value of this parameter too. To run this custom run module
is has to be included in a workflow. First an empty work-
flow is created (l. 19) and then individual run modules are
attached (l. 21–23). As last step, this new defined workflow
is executed by calling the run method (l. 25).

4.9 How to continue an experiment?

There can be different reasons for the continuation of an ex-
periment. First of all, by looking at the monitoring graphs,
it could be discovered that training has not yet converged

and the number of epochs should be increased. Instead of
training a new network from scratch, the training can be
resumed from the latest epoch to save time. To do so,
the parameter epochs must be increased accordingly and
create_new_modelmust be set to False. If the model
output folder has not been touched, the intermediate results
and the history of the previous training are usually avail-
able in full, so that MLAir can continue the training as if it
had never been interrupted. Another reason for a continua-
tion would be the interruption of the training for unexpected
reasons such as runtime exceedance on batch systems. By
keeping the same number of epochs and switching off the
creation of a new model, the training continues at the last
checkpoint (see model setup in Sect. 2.3). Finally, MLAir can
also be used in the context of transfer learning. By providing
a pre-trained model and having train_model enabled and
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create_new_model disabled, a transfer learning task can
be performed.

5 Limitations

Even though MLAir addresses a wide range of ML-related
problems and allows many different ML architectures and
customized workflows to be embedded, it is still no universal
Swiss Army knife but rather focuses on the application of
neural networks for the task of station time series forecasting.
In this section we will explain the limitations of MLAir and
why MLAir ends at these points.

Due to the scientifically oriented development of MLAir
starting from a specific research question (Kleinert et al.,
2021), MLAir could initially only use data from the REST
API of JOIN. This binding has already been revoked in the
current version, however, the DefaultDataHandler still
uses this data source. Furthermore, MLAir always expects a
particular structure in the data and especially considers the
data as a collection of time series data from various stations.
We are currently investigating the possibility of integrating
grid data, which could be taken from a weather model, and
time-constant data such as topography into the MLAir work-
flow, but we cannot yet present any results on how easy such
an integration would be.

While MLAir can technically handle data in different time
resolutions, it has been tested primarily on daily aggregated
data due to the specific science case which served as the seed
for its development. The use of different temporal resolutions
was spot-checked and could be successfully confirmed with-
out obvious errors, but we cannot guarantee that the results
will be meaningful if data in other temporal resolutions are
used as inputs. In particular, most of the evaluation routines
may not make sense for data in less than hourly or greater
than daily resolution. Note also that MLAir does not per-
form explicit error checking or missing value handling. Such
functionality must be implemented within the data handler.
MLAir expects a ready-to-use data set without missing val-
ues provided by the data handler during training.

Another limitation is the choice of the underlying libraries
and their versions. Due to the selection of TensorFlow as
back-end, it is not possible to use PyTorch or other frame-
works in combination with MLAir. Specifically, MLAir was
developed and tested with TensorFlow version 1.13.1, as the
HPC systems on which our experiments are performed sup-
ported this version at the time of writing. We have already
tested MLAir occasionally with the TensorFlow version 1.15
and could not find any errors. Please check the code reposi-
tory for updates concerning the support of newer TensorFlow
versions, which we hope to make available in the coming
months.

6 Summary

MLAir is an innovative software package intended to facili-
tate high-quality meteorological studies using ML. By pro-
viding an end-to-end solution based on a specific scientific
workflow of time series prediction, MLAir enables a transpar-
ent and reproducible conduction of ML experiments in this
domain. Due to the plug-and-play behaviour it is straightfor-
ward to explore different model architectures and change var-
ious aspects of the workflow or model evaluation. Although
MLAir is focusing on neural networks, it should be possi-
ble to include other ML techniques. Since MLAir is based
on a pure Python environment, and it is highly portable. It
has been tested on various computing systems from desktop
workstations to high-end supercomputers.

MLAir is under continuous development. Further enhance-
ments of the program are already planned and can be found
in the issue tracker (see Code availability). Ongoing devel-
opments concern the extension of the statistical evaluation
methods, the graphical presentation of the results, and the
flawless support of temporal resolutions other than daily ag-
gregated data. Through further code refactoring, MLAir will
become even more versatile as the decoupling of individ-
ual components is being pushed forward. In particular, it is
planned to structure the data handling in a more modular way
so that varying structured data sources can be connected and
used without much effort. We invite the community of mete-
orological ML scientists to participate in the further develop-
ment of MLAir through comments and contributions to code
and documentation. A good starting point for contributions
is the issue tracker of MLAir.

We hope that MLAir can serve as a blueprint for the devel-
opment of reusable ML applications in the fields of meteorol-
ogy and air quality, as it seeks to combine the best practices
from ML with the best practices of meteorological model
evaluation and data preprocessing. MLAir is thus a contri-
bution to strengthen cooperation between the communities
of ML and meteorology or air quality researchers.

Code availability. The current version of MLAir is available from
the project website https://gitlab.version.fz-juelich.de/toar/mlair
(last access: 10 March 2021) under the MIT licence. The exact ver-
sion v1.0.0 of MLAir described in this paper and used to produce the
code examples shown is archived on B2SHARE (Leufen et al., 2020,
https://doi.org/10.34730/5a6c3533512541a79c5c41061743f5e3).
Detailed installation instructions are provided in the project page
readme file. There is also a Jupyter notebook with all code snippets
to reproduce the examples highlighted in this paper.

Data availability. MLAir is not directly linked to any specific data.
Data used in the examples are extracted from the corresponding
databases at runtime, as described and cited in the text.
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Abstract

Exposure to ground-level ozone is a concern for both humans and vegetation, so accurate prediction of ozone time
series is of great importance. However, conventional aswell as emergingmethods have deficiencies in predicting time
series when a superposition of differently pronounced oscillations on various time scales is present. In this paper, we
propose a meteorologically motivated filtering method of time series data, which can separate oscillation patterns, in
combination with different multibranch neural networks. To avoid phase shifts introduced by using a causal filter, we
combine past observation data with a climatological estimate about the future to be able to apply a noncausal filter in a
forecast setting. In addition, the forecast in the form of the expected climatology provides some a priori information
that can support the neural network to focus not merely on learning a climatological statistic. We apply this method to
hourly data obtained from over 50 different monitoring stations in northern Germany situated in rural or suburban
surroundings to generate a prediction for the daily maximum 8-hr average values of ground-level ozone 4 days into
the future. The data preprocessing with time filters enables simpler neural networks such as fully connected networks
as well as more sophisticated approaches such as convolutional and recurrent neural networks to better recognize
long-term and short-term oscillation patterns like the seasonal cycle and thus leads to an improvement in the forecast
skill, especially for a lead time of more than 48 hr, compared to persistence, climatological reference, and other
reference models.

Impact Statement

Exposure to ground-level ozone harms humans and vegetation, but the prediction of ozone time series, especially
by machine learning, encounters problems due to the superposition of different oscillation patterns from long-
term to short-term scales. Decomposing the input time series into long-term and short-term signals with the help
of climatology and statistical filtering techniques can improve the prediction of various neural network
architectures due to an improved recognition of different temporal patterns. More reliable and accurate forecasts
support decision-makers and individuals in taking timely and necessary countermeasures to air pollution
episodes.

©TheAuthor(s), 2022. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.
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1. Introduction

Human health and vegetation growth are impaired by ground-level ozone (REVIHAAP, 2013; US EPA,
2013; Monks et al., 2015; Maas and Grennfelt, 2016; Fleming et al., 2018). High short-term ozone
exposures cause worsening of symptoms, a need for stronger medication, and an increase in emergency
hospital admissions, for people with asthma or chronic obstructive pulmonary diseases in particular
(US EPA, 2020). More broadly, ozone exposure also increases susceptibility to respiratory diseases such
as pneumonia in general, which in turn leads to an increased likelihood of hospitalization (USEPA, 2020).
Findings of Di et al. (2017) further support earlier research that short-term exposure to ozone, even below
regulatory limits, is highly likely to increase the risk of premature death, particularly for the elderly. Since
the 1990s, there have been major changes in the global distribution of anthropogenic emissions (Richter
et al., 2005; Granier et al., 2011; Russell et al., 2012; Hilboll et al., 2013; Zhang et al., 2016), which in turn
has an influence on the ozone concentrations. Although reductions in peak concentrations have been
achieved (Simon et al., 2015; Lefohn et al., 2017; Fleming et al., 2018), the negative effects of ground-
level ozone remain (Cohen et al., 2017; Seltzer et al., 2017; Zhang et al., 2018; Shindell et al., 2019).
Recent studies show that within the EuropeanUnion, for example, ozone has the greatest impact on highly
industrialized countries such as Germany, France, or Spain (Ortiz and Guerreiro, 2020). For all these
reasons, it is therefore of utmost importance to be able to predict ozone as accurately as possible in the
short term.

In light of these impacts, it is desirable to accurately forecast ozone concentrations for a couple of days
so that protection measures can be initiated in time. Chemical transport models (CTMs), which explicitly
solve the underlying chemical and physical equations, are commonly used to predict ozone (e.g., Collins
et al., 1997; Wang et al., 1998a, 1998b; Horowitz et al., 2003; von Kuhlmann et al., 2003; Grell et al.,
2005; Donner et al., 2011). Even though CTMs are equipped with the most up-to-date knowledge of
research, the resulting estimates for exposure to and impacts of ozone may vary enormously between
different CTM studies (Seltzer et al., 2020). Since CTMs operate on a computational grid and are thus
always dependent on simplification of processes, parameterizations, and further assumptions, CTMs are
themselves affected by large uncertainties (Manders et al., 2012). The deviations in the output of CTMs
result accordingly from chemical and physical processes, fluxes such as emissions or deposition, as well
as meteorological phenomena (Vautard et al., 2012; Bessagnet et al., 2016; Young et al., 2018). Finally, in
order to use the predictions of the CTMs at the level of measuring stations, either model output statistics
have to be applied (Fuentes and Raftery, 2005) or statistical methods are required (Lou Thompson et al.,
2001).

In addition to simpler methods such as multilinear regressions, statistical methods that can map the
relationship between time and observations in the time series are also suitable for this purpose. In
general, time series can be characterized by the fact that values that are close in time tend to be similar
or correlated (Wilks, 2006) and that the temporal ordering of these values forms an essential property
of the time series (Bagnall et al., 2017). Autoregressive models (ARs) use this relationship and
calculate the next value of a series xiþ1 as a function ϕ of past values xi,xi�1,…,xi�n where ϕ is simply a
linear regression. Autoregressive moving average models extend this approach by additionally
considering the error of past values, which is not described by the AR model. In the case of
nonstationary time series, autoregressive integrated moving average models are used. However, these
approaches are mostly limited to univariate problems and can only represent linear relationships (Shih
et al., 2019). Alternative developments of nonlinear statistical models, such as Monte Carlo simula-
tions or bootstrapping methods, have therefore been used for nonlinear predictions (De Gooijer and
Hyndman, 2006).

In times of high availability of large data and increasingly efficient computing systems, machine
learning (ML) has become an excellent alternative to classical statistical methods (Reichstein et al., 2019).
ML is a generic term for data-driven algorithms like decision trees, random forests, or neural networks
(NNs), which usually determine their parameters in a data-hungry and time-consuming learning process
and can then be applied to new data at relatively low cost in terms of time and computational effort.
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Fully connected networks (FCNs) are the pioneers of NNs and were already successfully applied
around the turn of the millennium, for example, for the prediction of meteorological and air quality
problems (Comrie, 1997; Gardner and Dorling, 1999; Elkamel et al., 2001; Kolehmainen et al., 2001).
Simply put, FCNs extend the classical method of multilinear regression by adding the properties of
nonlinearity as well as learning of knowledge. From a theoretical point of view, a sufficiently large
network can be assumed to be a universal approximator of any function (Hornik et al., 1989). Neverthe-
less, it also shows that the application of FCNs is limited because they ignore the topology of the inputs
(LeCun et al., 1999). In terms of time series, this means that FCNs will not be able to understand the
abstract concept of unidirectional time.

These shortcomings have been overcome to some extent by deep learning (DL). In general, any NN
that has a more sophisticated architecture or is based on more than three layers is classified as a deep
NN. As Schultz et al. (2021) describe, the history of DL has been marked by highs and lows, as both
computational cost and the size of datasets have always been tough adversaries. Since the 2010s, DL’s
more recent advances can be attributed to three main points: First, the acquisition of new knowledge
has been drastically accelerated by massive parallel computation using graphics processing units.
Second, so-called convolutional neural networks (CNNs; LeCun et al., 1999) became popular, whose
strength lies in their ability to contextualize individual data points better than previous neural
networks by sharing weights within the network and thus learning more information while maintain-
ing the same network size. Finally, due to ever-increasing digitization, more and more data are
available in ever-improving quality. Since DL methods are purely data-based compared to classical
statistics, greater knowledge can be built up within a neural network simply through the greater
availability of data.

Various newer NN architectures have been developed and also applied to time series forecasting in
recent years. In this study, we focus on CNNs and recurrent neural networks (RNNs) as competitors to an
FCN. For the prediction of time series, CNNs offer an advantage over FCNs due to their ability to better
map relationships between neighboring data points. In Earth sciences, time series are typically multi-
variate, since a single time series is rarely considered in isolation, but always in interaction with other
variables. However, multivariate time series should not be treated straightforwardly as two-dimensional
images, since a causal relationship between different time series does not necessarily exist at all times and
a different order of these time series would influence the result.Multivariate time series are therefore better
to be understood as a composite of different one-dimensional data series (Zheng et al., 2014). Following
this fact, multivariate time series can best be considered as a one-dimensional picture with different color
channels. To extract temporal information with a CNN, so-called inception blocks (Szegedy et al., 2015)
are frequently used, as, for example, in Fawaz et al. (2020) andKleinert et al. (2021). These blocks consist
of individual convolutional elements with different filter sizes that are applied in parallel and are intended
to learn features with different temporal localities.

RNNs offer the possibility to model nonlinear behavior in temporal sequences in a nonparametric
way. Frequently used RNNs are long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) and gated recurrent unit networks (Chung et al., 2014) or hybrids of RNNs
and CNNs such as in Liang and Hu (2015) and Keren and Schuller (2016). RNNs find intensive
application in natural language processing, speech recognition, and signal processing, although they
appear to have been largely replaced by transformer architectures more recently. However, these
applications are mostly analysis problems and not predictive tasks. For time series prediction,
especially for the prediction of multiple time steps into the future, there is little research evaluating
the predictive performance of RNNs (Chandra et al., 2021). Moreover, Zhao et al. (2020) question the
term long in LSTMs, as their research shows that LTSMs do not have long-term memory from a purely
statistical point of view because their behavior hardly differs from that of a first-order
AR. Furthermore, Cho et al. (2014) were able to show that these network types, for example, have
difficulties in reflecting an annual pattern in daily-resolved data. Thus, the superposition of different
periodic patterns remains a critical issue in time series prediction, as RNNs have fundamental
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difficulties with extrapolating and predicting periodic signals (Ziyin et al., 2020) and therefore tend to
focus on short-term signals only (Shih et al., 2019).

In order to deal with the superposition of different periodic signals and thus help the learning process
of the NN, digital filters can be used. So-called finite impulse response (FIR) filters are realized by
convolution of the time series with a window function (Oppenheim and Schafer, 1975). In fact, FIR filters
are widely used in meteorology without being labeled as such, since a moving average is nothing more
than a convolution with a rectangular window function. With the help of such FIR filters, it is possible to
extract or remove a long-term signal from a time series or to directly divide the time series into several
components with different frequency ranges, as applied, for example, in Rao and Zurbenko (1994), Wise
and Comrie (2005), andKang et al. (2013). In these studies, so-called Kolmogorov–Zurbenko (KZ) filters
(Žurbenko, 1986) are used, which were specially developed for use in meteorology and promise a good
separation between long-term and short-term variations of meteorological and air quality time series (Rao
and Zurbenko, 1994).

There are examples of the use of filters in combination with NNs, for example, in Cui et al. (2016)
and Jiang et al. (2019), but these are limited purely to analysis problems. The application of filters in a
predictive setting is more complicated, because, for a prediction, filters may only be applied causally to
past values, which inevitably produces a phase shift and thus a delay in the filtered signal (Oppenheim
and Schafer, 1975). The lower the chosen cutoff frequency of the low-pass filter, for example, to extract
the seasonal cycle, the more the resulting signal becomes delayed. This in turn leads to the fact that
values in the recent past cannot be separated, as no information is yet available on the long-term
components.

In this work, we propose an alternative way to filter the input time series using a composite of
observations and climatological statistics to be able to separate long-term and short-term signals with the
smallest possible delay. By dividing the input variables into different frequency ranges, different NN
architectures are able to improve their understanding of both short-term and long-term patterns.

This paper is structured as follows: First, in Section 2, we explain and formalize the decomposition of
the input time series and give details about the NN architecture used. Then, in Section 3, we describe our
conducted experiments in detail, describing the data used, their preparation, the training setup, and the
evaluation procedures. This is followed by the results in Section 4. Finally, we discuss our results in
Section 5 and draw our conclusions in Section 6.

2. Methodology

In this paper, we combine actual observation data and a meteorologically and statistically motivated
estimate of the future to overcome the issue of delay and causality (see Section 1). The estimate about
the future is composed of climatological information about the seasonal as well as diurnal cycle, whereby
the latter is also allowed to vary over the year. For each observation point t0, these two time series, the
observation for time steps with ti ≤ t0 and the statistical estimation for ti > t0, are concatenated. By doing
this, noncausal filters can be applied to the composite time series in order to separate the oscillation
components of the time series such as the dominant seasonal and diurnal cycle.

The decomposition of the time series is obtained by the iterative application of several low-pass filters
with different cutoff frequencies. The signal resulting from a first filter run, which only has frequencies
below a given cutoff frequency, is then subtracted from the original composite signal. The next filter
iteration with a higher cutoff frequency then starts on this residual, the result of which is again subtracted.
By applying this cycle several times, a time series with the long-term components, multiple series
covering certain frequency ranges, and a last residual time series containing all remaining short-term
components are generated. Here, we test filter combinationswith four and two frequency bands. The exact
cycle of filtering is described in Section 2.1.

Each filtered component is finally used as an input branch of a so-called multibranch NN (MB-NN),
which first processes the information of each input branch separately and then combines it in a subsequent
layer. In Section 2.2, we go into more detail about the architecture of the MB-NN.

e10-4 Environmental Data Science

https://doi.org/10.1017/eds.2022.9 Published online by Cambridge University Press

101



2.1. Time series filter

For each time step t0, a composite time series �x 0ð Þ
i ,

�x 0ð Þ
i t0ð Þ¼ x 0ð Þ

i , ti ≤ t0,

a 0ð Þ
i , ti > t0,

(
(1)

can be created that is composed of the true observation x 0ð Þ
i for past time steps and a climatological

estimate

a 0ð Þ
i ¼ x 0ð Þ

month tið ÞþΔ 0ð Þ
hour tið Þ (2)

for future values. The composite time series �x 0ð Þ
i is always a function of the current observation time t0.

The climatological estimate is derived from a monthly mean value x 0ð Þ
month tið Þ with

x 0ð Þ
month tið Þ¼ f 0ð Þ x 0ð Þ

i

� �
(3)

and a daily anomaly Δ 0ð Þ
hour tið Þ of it with

Δ 0ð Þ
hour tið Þ¼ g 0ð Þ x 0ð Þ

i � x 0ð Þ
month tið Þ

� �
(4)

that may vary over the year. f 0ð Þ and g 0ð Þ are arbitrary functions used to calculate these estimates.
The composite time series �x 0ð Þ

i t0ð Þ can then be convolved with an FIR filter with given properties b 0ð Þ
i . The

result of this convolution is a low-pass filtered time series:

~x 0ð Þ
n t0ð Þ ¼ ∑

t0þN=2

i¼t0�N=2
b 0ð Þ
i � �x 0ð Þ

n�i t0ð Þ: (5)

It should be noted again that ~x 0ð Þ
i is still a function of the current observation time t0. From the composite

time series and its filtered result, a residual

x 1ð Þ
i t0ð Þ ¼ x 0ð Þ

i � ~x 0ð Þ
i t0ð Þ (6)

can be calculated, which represents the equivalent high-pass signal.
Anew filtering step can now be applied to the residual x 1ð Þ

i t0ð Þ. For this, the a priori information, which
is used to estimate the future, is first newly calculated. Ideally, if the first filter application in equation (5)

has already completely removed the seasonal cycle, the climatological mean x 1ð Þ
month tið Þ is zero, and based

on our assumption in equation (2), only an estimate of the hourly daily anomaly Δ 1ð Þ
hour tið Þ remains.

With this information, a composite time series �x 1ð Þ
i t0ð Þ can now be formed, which can separate higher

frequency oscillation components using another low-pass filter with a higher cutoff frequency. A time series

~x 1ð Þ
n t0ð Þ created in this way corresponds to the application of a band-pass filter. On the residual x 2ð Þ

i t0ð Þ, the
next filter iteration with corresponding a priori information can be carried out. Generalized, equations (1)–
(6) result in

x jð Þ
month tið Þ¼ f jð Þ x jð Þ

i

� �
, (7)

Δ jð Þ
hour tið Þ¼ g jð Þ x jð Þ

i � x jð Þ
month tið Þ

� �
, (8)

a jð Þ
i ¼ x jð Þ

month tið ÞþΔ jð Þ
hour tið Þ, (9)

�x jð Þ
i t0ð Þ¼ x jð Þ

i , ti ≤ t0,

a jð Þ
i , ti > t0,

(
(10)
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~xn jð Þ t0ð Þ ¼ ∑
t0þN=2

i¼ t0�N=2
b jð Þ
i � �x jð Þ

n�i t0ð Þ, (11)

x jþ1ð Þ
i t0ð Þ ¼ x jð Þ

i � ~x jð Þ
i t0ð Þ: (12)

If a time series was decomposed according to this procedure using equations (7)–(12) with J filters, it
now consists of a component ~x 0ð Þ, that contains all low-frequency components, J�1 components ~x jð Þ with
oscillations on different frequency intervals, and a residual term x Jð Þ that only covers the high-frequency
components. The original signal can be completely reconstructed at any time ti by summing up the
individual components.

In this study, oscillation patterns that have a periodicity of months or years are separated from the series
in the first filter iteration by using a cutoff period of 21 days, which is motivated by the work of Kang et al.
(2013). We also consider a cutoff period of around 75 days, as used, for example, in Rao et al. (1997) and
Wise and Comrie (2005), and evaluate the impact of this low-frequency cutoff. For the further decom-
position of the time series, we first follow the cutoff frequencies proposed in Kang et al. (2013) and divide
the time series into the four components baseline (BL, period >21 days), synoptic (SY, period >2.7 days),
diurnal (DU, period >11 hr), and intraday (ID, residuum). Since Kang et al. (2013) found that a clear
separation of the individual components is not possible for the short-term components, but can be
achieved between the long-term and short-term components, we conduct a second series of experiments
in which the input data are only divided into long term (LT, period >21 days) and short term (ST,
residuum).

Figure 1 shows the result of such a decomposition into four components. It can be seen that the BL
component decreases with time. The SY component fluctuates around zero with a moderate oscillation
between August 16 and 20. In the DU component, the day-to-day variability and diurnal oscillation
patterns are visible, and in the ID series, several positive and negative peaks are apparent. Overall, it can be
seen that the climatological statistical estimation of the future provides a reliable prediction. However,
since a slightly higher ozone episode from August 25 onward cannot be covered by the climatology, the
long-term component BL is slightly underestimated, but for time points up to t0, this has hardly any effect.
This small difference of a few parts per billion (ppb) is covered by the SYand DU components, so that the
residual component ID no longer contains any deviations.

2.2. Multibranch NN

The time series divided into individual components according to Section 2.1 serves as the input of an
MB-NN. In this work, we investigate three different types of MB-NNs based on fully connected,
convolutional, or recurrent layers. We therefore refer to the corresponding NNs in the following as
MB-FCN,MB-CNN, andMB-RNN. The respective filter components of all input variables are presented
together to one branch each. Thereby, each filter component leads to a distinct input branch in the NN. A
branch first learns the local characteristics of the oscillation patterns and can therefore also be understood
as its own subnetwork. Afterward, the MB-NN can learn global links, that is, the interaction of the
different scales, by a learned (nonlinear) combination of the individual branches in a subsequent network.
However, the individual branches are not trained separately, but the error signal propagates from the very
last layer backward through the entire network and then splits up between the individual branches.

The sample MB-NN shown on the left in Figure 2 consists of four input branches, each receiving a
component from the long-term ~x 0ð Þ (BL) to the residual x 3ð Þ (ID) of the filter decomposition. Here, the data
presented as example input are the same as in Figure 1, but each component has already been scaled to a
mean of zero and a standard deviation of 1, taking into account several years of data. In addition to the
characteristics of the example already discussed in Section 2.1, it can be seen from the scaling that the BL
component is above the mean, indicating a slightly increased long-term ozone concentration. The SY
component, on the other hand, shows only a weak fluctuation. The data are fed into four different
branches, each of which consists of an arbitrary architecture based on fully connected, convolutional, or
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recurrent layers. Subsequently, the information of these four subnetworks is concatenated and parsed in
the tail to a concluding neural block, which finally results in the output layer.

On the right side in Figure 2, only the decomposition into the two components LTand ST is applied. Since
the cutoff frequency is the same for LT and BL, the LT input is equal to the BL input. All short-term
components are combined and fed to the NN in the form of the ST component. This arbitrary MB-NN again
uses a specified type of neural layers in eachbranch before the information is interconnected in the concatenate
layer and then processed in the subsequent neural block, which finally leads to the output again. Figure 2
shows a generic view of the four-branch and two-branch NNs. The specific architectures employed in this
study are depicted in Section 3.3, Tables B2 and B3 in Appendix B, and Figures D1–D5 in Appendix D.

3. Experiment Setup

For data preprocessing and model training and evaluation, we employ the software MLAir (version 2.0.0;
Leufen et al., 2022).MLAir is a tool written in Python that was developed especially for the application ofML
to meteorological time series. The program executes a complete life cycle of an ML training, from
preprocessing to training and evaluation.Adetailed description ofMLAir can be found inLeufen et al. (2021).

Figure 1. Decomposition of an ozone time series into baseline (BL), synoptic (SY), diurnal (DU), and
intraday (ID) components at t0 ¼ August 19, 1999 (dark gray background) at an arbitrary sample site
(here DEMV004). Shown are the true observations x jð Þ

i (dashed light gray), the a priori estimation a jð Þ
i

about the future (solid light gray), the filtering of the time series composed of observation and a priori
information x

~

i
jð Þ t0ð Þ (solid black), and the response of a noncausal filter with access to future values

(dashed black) as a reference for a perfect filtering. Because of boundary effects, only values inside the
marked area (light gray background) are valid.
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3.1. Data

In this study, data from the Tropospheric Ozone Assessment Report database (TOAR DB; Schultz et al.,
2017) are used. This database collects global in situ observation datawith a special focus on air quality and
in particular on ozone. As part of the Tropospheric OzoneAssessment Report (TOAR, 2021), over 10,000
air quality measuring stations worldwide were inserted into the database. For the area over Central
Europe, these observations are supplemented by model reanalysis data interpolated to the measuring
stations, which originate from the consortium for small-scale modeling (COSMO) reanalysis with 6-km
horizontal resolution (COSMO-REA6; Bollmeyer et al., 2015). The measured data provided by the
German Environment Agency (Umweltbundesamt) are available in hourly resolution.

By following Kleinert et al. (2021), we choose a set of nine input variables. As regards chemistry, we
use the observation of O3 as well as the measured values of NO and NO2, which are important precursors
for ozone formation. In this context, it would be desirable to include other chemical variables and
especially volatile organic compounds (VOCs), such as isoprene and acetaldehyde, which have a crucial
influence on the ozone production regime (Kumar and Sinha, 2021). However, themeasurement coverage
of VOCs is very low, so that only very sporadic recordings are available, which would result in a rather
small dataset. Concerning meteorology, in addition to the wind in its individual components as well as the
height of the planetary boundary layer as an indicator for advection and mixing, we use temperature and
the cloud cover as a proxy for solar irradiance, and the relative humidity. All meteorological variables are

Figure 2. Sketching of two arbitrary MB-NNs with inputs divided into four components (BL, SY, DU, and
ID) on the left and two components (LTand ST) on the right. The input example shown here corresponds to
the data shown in Figure 1, whereby the components SY, DU, and ID on the right-hand side have not been
decomposed, but rather grouped together as the short-term component ST. Moreover, the data have
already been scaled. Each input component of a branch consists of several variables, indicated
schematically by the boxes in different shades of gray. The boxes identified by the branch name, also in
gray, each represent an independent neuronal block with user-defined layer types such as fully connected,
convolutional, or recurrent layers and any number of layers. Subsequently, the branches are then
combined via a concatenation layer marked as “C.” This is followed by a final neural block labeled as
“Tail,” which can also have any configuration and finally ends in the output layer of the NN indicated by
the tag “O3.” The sketches are based on a visualization with the Net2Vis tool (Bauerle et al., 2021).
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extracted from COSMO-REA6, but are treated in the following as if they were observations at the
measuring stations. Table 1 provides an overview of the observation and model variables used. The target
variable ozone is also obtained directly from the TOARDB.Rather than using the hourly values, however,
the daily aggregation to the daily maximum 8-hr average value according to the European Union
definition (dma8eu) is performed by the TOAR DB and extracted directly in daily resolution. It is
important to note that the calculation of dma8eu includes observations from 5 p.m. of the previous day
(cf. European Parliament and Council of the European Union, 2008). Care must therefore be taken that
ozone values from 5 p.m. on the day of t0 may no longer be used as inputs to ensure a clear separation, as
they are already included in the calculation of the target value.

This study is based on a relatively homogeneous dataset, so that the NNs can learn better and thus the
effect due to time series filtering becomes clearer. In order to obtain such a dataset of observations, we
restrict our investigations to the area of theNorthGerman Plain, which includes all areas inGermany north
of 52.5°N. We choose this area because of the rather flat terrain; no station is located higher than 150 m
above sea level. In addition, we restrict ourselves to measurement stations that are classified as
background according to the European Environmental Agency AirBase classification (European Parlia-
ment and Council of the European Union, 2008), which means that no industry or major road is located in
the direct proximity of the stations and consequently the pollution level of this station is not dominated by
a single source. All stations are located in a rural or suburban environment. These restrictions result in a
total number of 55 stations distributed over the entire area of the North German Plain. A geographical
overview can be found in Figure A2 in Appendix A. It should be noted that nomeasuring station provides
complete time series, so that gaps within the data occur. However, since the filter approach requires
continuous data, gaps of up to 24 consecutive hours on the input side and gaps of 2 days on the target side
are filled by linear interpolation along time.

3.2. Preparing of input and target data

The entire dataset is split along the temporal axis into training, validation, and test data. For this purpose,
all data in the period from January 1, 1997 to December 31, 2007 are used for training. The a priori
information of the time series filter about seasonal and diurnal cycles is calculated based on this set. The
following 2 years, January 1, 2008 to December 31, 2009, are used for the validation of the training, and

Table 1. Input and target variables with respective temporal resolution and origin. Data labeled with UBA originate from
measurement sites provided by the German Environment Agency, and data with flag COSMO-REA6 have been taken from
reanalysis.

Variable Origin Temporal resolution

Input NO UBA 1 hr

NO2 UBA 1 hr

O3 UBA 1 hr

Cloud cover COSMO-REA6 1 hr

Planetary boundary layer height COSMO-REA6 1 hr

Relative humidity COSMO-REA6 1 hr

Temperature COSMO-REA6 1 hr

Wind’s u-component COSMO-REA6 1 hr

Wind’s v-component COSMO-REA6 1 hr

Target dma8eu O3 UBA 1 day

Abbreviations: COSMO-REA6, consortium for small-scale modeling reanalysis with 6-km horizontal resolution; UBA, Umweltbundesamt.
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all data from January 1, 2010 onward are used for the final evaluation and testing of the trained model.
For the meteorological data, there are no updates in the TOAR DB since January 1, 2015, so more recent
air quality measurements cannot be used in this study.

For each time step t0, the time series is decomposed using the filter approach as defined in Section 2.1.
The a priori information is obtained from the training dataset alone so that validation and test datasets
remain truly independent. Afterward, the input variables are standardized so that each filter component of
each variable has a mean of zero and a standard deviation of 1 (Z-score normalization). For the target
variable dma8eu ozone, we choose the Z-score normalization as well. All transformation properties for
both inputs and targets are calculated exclusively on the training data and applied to the remaining subsets.
Moreover, these properties are not determined individually per station, but jointly across all measuring
stations.

In this work, we choose the number of past time steps for the input data as 65 hr. This corresponds to
the three preceding days minus the measurements starting at 5 p.m. on the current day of t0 due to the
calculation procedure of dma8eu as already mentioned. The number of time steps to be predicted is set to
the next 4 days for the target. All in all, we use almost 100,000 training samples and 20,000 and 30,000
samples for validation and testing, respectively (see Table 2 for exact numbers). The data availability at
individual stations, as well as the total number of different stations at each point in time, is shown in
Figures A1 and A3 in Appendix A, respectively. The visible larger data gaps are caused by a series of
missing values that exceed the maximum interpolation length.

3.3. Training setup and hyperparameter search

First, we search for an optimal decomposition of the input time series for the NNs by optimizing the
hyperparameters for the MB-FCN. Second, we use the most suitable decomposition and train different
MB-CNNs and MB-RNNs on these data. Finally, we train equivalent network architectures without
decomposition of the input time series to obtain a direct comparison of the decomposition approach as
outlined in Section 3.4. All experiments are assessed based on the mean square error (MSE), as presented
in Section 3.5. Since we are testing a variety of different models, we have summarized the most relevant
abbreviations in Table 3.

The experiments to find an optimal decomposition of the inputs and best hyperparameters for the MB-
FCN start with the same cutoff frequencies for decomposition as used in Kang et al. (2013), who divide
their data into the four components BL, SY, DU, and ID, as explained in Section 2.1. Since there is
generally no optimal a priori choice for a filter (Oppenheim and Schafer, 1975) and furthermore this is

Table 2. Number of measurement stations and resulting number of samples used in this study. All stations are classified as
background and situated either in a rural or suburban surrounding in the area of the North German Plain. Data are split along the
temporal axes into three subsequent blocks for training, validation, and testing.

Training Validation Testing

Stations

Rural 31 17 17

Suburban 24 15 13

Total 55 32 30

Samples

Rural 54,544 10,927 16,858

Suburban 40,968 10,405 13,622

Total 95,512 21,332 30,480
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likely to vary from one application to another, we choose a Kaiser filter (Kaiser, 1966) with a beta
parameter of β¼ 5 for the decomposition of the time series. We prefer this filter for practical consider-
ations, as a filter with a Kaiser window features a sharper gain reduction in the transition area at the cutoff
frequency in comparison to the KZ filter. Based on this, we test a large number of combinations of the
hyperparameters (see Table B1 in Appendix B for details). The trainedMB-FCNwith the lowest MSE on
the validation in this experiment is referred to as MB-FCN-BL/SY/DU/ID in the following. Since, as
already mentioned in Section 2.1, a clear decomposition in individual components is not always possible,
we start a second series of experiments in which the input data are only divided into long term (LT) and
short term (ST). We tested cutoff periods of 75 (Rao et al., 1997; Wise and Comrie, 2005) and 21 days
(Kang et al., 2013), and found no difference with respect to the MSE of the trained networks. Hence, we
selected the cutoff period of 21 days and refer to the trained network asMB-FCN-LT/ST in the following.
After finding an optimal set of hyperparameters for both experiments, we vary the input data and study the
resulting effect on the prediction skill. In two extra experiments, we add an additional branch with the
unfiltered raw data to the inputs. According to the previous labels, these experiments result in the NNs
labeled MB-FCN-BL/SY/DU/IDþraw and MB-FCN-LT/STþraw. We have summarized the optimal
hyperparameters for each of the MB-FCN architectures in Table B2 in Appendix B.

Based on the findings with the MB-FCNs, we choose the best MB-FCN and the corresponding
preprocessing and temporal decomposition of the input time series for the second part of the experiments,
in which we test more sophisticated network architectures. With the data remaining the same, we
investigate to what extent using MB-CNN or MB-RNN leads to an improvement compared to MB-
FCN and also in relation to their counterparts without temporal decomposition (CNN and RNN). For this
purpose, we test different architectures for CNN and RNN with and without temporal decomposition
separately and compare the best representative found by the experiment, respectively. The optimal
hyperparameters given by this experiments are outlined in Table B3 in Appendix B, and a visualization
of the best NNs can be found in Figures D1–D5 in Appendix D. Regarding the CNN architecture, we
varied the total number of layers and filters in each layer, the filter size, the use of pooling layers, as well as
the application of convolutional blocks after the concatenate layer and the layout of the final dense layers.
For the RNNs, during hyperparameter search, we used different numbers of LSTMcells per layer and tried
stacked LSTM layers. Furthermore, we added recurrent layers after the concatenate layer in some
experiments. In general, we tested different dropout rates, learning rates, a decay of the learning rate,
and several activation functions.

Table 3. Summary of model acronyms used in this study depending on their architecture and the number of input branches. The
abbreviations for the branch types refer to the unfiltered original raw data and either to the temporal decomposition into the four
components baseline (BL, period >21 days), synoptic (SY, period >2.7 days), diurnal (DU, period >11 hr), and intraday (ID,
residuum), or to the decomposition into two components long term (LT, period >21 days) and short term (ST, residuum). When
multiple input components are used, as indicated in the column labeled Count, the NNs are constructed with multiple input branches,
each receiving a single component, and are therefore referred to as multibranch (MB). For technical reasons, this MB approach is not
applicable to the OLS model, which instead uses a flattened version of the decomposed inputs and is therefore not specified as MB.

Input branches Model name

Branch type(s) Count FCN CNN RNN OLS

Raw 1 FCN CNN RNN OLS

LT and ST 2 MB-FCN-LT/ST MB-CNN-LT/ST MB-RNN-LT/ST OLS-LT/ST

LT, ST, and raw 3 MB-FCN-LT/STþraw – – –

BL, SY, DU, and ID 4 MB-FCN-BL/SY/DU/ID – – –

BL, SY, DU, ID, and raw 5 MB-FCN-BL/SY/DU/IDþraw – – –

Abbreviations: CNN, convolutional neural network; FCN; fully connected network; OLS, least squares regression.
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3.4. Reference forecasts

We compare the results of the trained NNs with a persistence forecast, which generally performs well on
short-term predictions (Murphy, 1992; Wilks, 2006). The persistence consists of the last observation, in
this case the value of dma8eu ozone on the day of t0, which serves as a prediction for all future days. We
also compare the results with climatological reference forecasts following Murphy (1988). Details are
given in Section 3.5. Furthermore, we compare the MB-NNs to an ordinary least squares regression
(OLS), an FCN, a CNN, and an RNN. The basis for these competitors is hourly data without special
preparation, that is, without prior decomposition into the individual components. The parameters of the
OLS are created analogously to the NNs on the training data only. For the FCN, CNN, and RNN, sets of
optimal parameters were determined experimentally in preliminary experiments also on training data.
Only the NNswith the lowestMSE on the validation data are shown here. Furthermore, as withMB-NNs,
we apply an OLS method to the temporally decomposed input data. For technical reasons, the OLS
approach is not able to work with branched data and therefore uses flattened inputs instead. Finally, we
draw a comparison with the IntelliO3-ts model fromKleinert et al. (2021). IntelliO3-ts is a CNN based on
inception blocks (see Section 1). In contrast to the study here, IntelliO3-ts was trained for the entire area of
Germany. It should be noted that IntelliO3-ts is based on daily aggregated input data, whereas all NNs
trained in this study use an hourly resolution of input data. For all models, the temporal resolution of the
targets is daily, so that the NNs of this study have to deal with different temporal resolutions, which does
not apply for IntelliO3-ts.

3.5. Evaluation methods

The evaluation of the NNs takes place exclusively on the test data that are unknown to the models.
To assess the performance of the NNs, we examine both absolute and relative measures of accuracy.
Accuracy measures generally represent the relationship between a prediction and the value to be
predicted. Typically, for an absolute measure of the predictive quality on continuous values, the MSE
is used. The MSE is a good choice as a measure because it takes into account the bias as well as the
variances and the correlation between prediction and observation. To determine the uncertainty of the
MSE, we choose a resampling test procedure (cf. Wilks, 2006). Due to the large amount of data, a
bootstrap approach is suitable. Synthetic datasets are generated from the test data by repeated blockwise
resamplingwith replacement. For each set, the error, in our case theMSE, is calculated.With a sufficiently
large number of repetitions (here n¼ 1,000), we can access an estimate of the error uncertainty. To reduce
misleading effects caused by autocorrelation, we divide the test data along the time axis into monthly
blocks and draw from these instead of the individual values.

To compare individual models directly with each other, we derive a skill score from the MSE as a
relative measure of accuracy. In this study, the skill score always consists of theMSE of the actual forecast
as well as the MSE of the reference forecast and is given by

SS¼ 1� MSE

MSEref
: (13)

Accordingly, a value around zero means that no improvement over a reference could be achieved.
If the skill score is positive, an improvement can generally be assumed, and if it is negative, the prediction
accuracy is below the reference.

For the climatological analysis of the NN, we refer to Murphy (1988), who determines the climato-
logical quality of a model by breaking down the information into four cases. In Case 1, the forecast is
compared with an annual mean calculated on data that are known to themodel. For this study, we consider
both the training and validation data to be internal data, since the NN used these data during training and
hyperparameter search. Case 2 extends a climatological consideration by differentiating into 12 individual
monthly averages. Cases 3 and 4, respectively, are the corresponding transfers of the aforementioned
analyses, but on test data that are unknown to the model.
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Another helpful method for the verification of predictions is the consideration of the joint distribution
p yi,oj
� �

of prediction yi and observation oj (Murphy and Winkler, 1987). The joint distribution can be
factorized to shed light on particular facets. With the calibration-refinement factorization

p yi,oj
� �¼ p ojjyi

� � �p yið Þ, (14)

the conditional probability p ojjyi
� �

and the marginal distribution of the prediction p yið Þ are considered.
p ojjyi
� �

provides information on the probability of each possible event oj occurring when a value yi is
predicted, and thus how well the forecast is calibrated. p yið Þ indicates the relative frequency of the
predicted value. It is desirable to have a distribution of y with a width equal to that for o.

3.6. Feature importance analysis

Due to the NN’s nonlinearity, the influence of individual inputs or variables on the model is not always
directly obvious. Therefore, we again use a bootstrap approach to gain insight into the feature importance.
In general, we remove a certain piece of information and examine the skill score in comparison to the
original prediction to see whether the prediction quality of the NN decreases or increases as a result. If the
skill score remains constant, this is an indication that the examined information does not provide any
additional benefit for the NN. The more negative the skill score becomes in the feature importance
analysis, the more likely it is that the examined variable contains important information for the NN. In the
unlikely case of a positive skill score, it can be inferred that the context of this variable was learned
incorrectly and thus disturbs the prediction.

For the feature importance analysis, we take a look at three different cases. First, we analyze the
influence of the temporal decomposition by destroying the information of an entire input branch, for
example, all low-frequent components (BL resp. LT). This yields information about the effect of the
different time scales from long term to short term and the residuum. In the second step, we adopt a different
perspective and look at complete variables with all temporal components (e.g., both LT and ST
components of temperature). In the third step, we drive down one tier and consider each input separately
to get information about whether a single input has a very strong influence on the prediction (e.g., BL
component of NO2).

To break down the information for the feature importance analysis, we randomly draw the quantity to
be examined from its observations. Statistically, a test variable obtained in this way is sampled from the
same distribution as the original variable. However, the test variable is detached from its temporal context
as well as from the context of other variables. This procedure is repeated 100 times to reduce random
effects.

The feature importance analysis considers only the influence of a single quantity and no pairwise or
further correlations. However, the isolated approach already provides relevant information about the
feature importance. It is important to note that this analysis can only show the importance of the inputs for
the trained NN and that no physical or causal relationships can be deduced from this kind of analysis in
general.

4. Results

Since a comparison of all models against each other would quickly become incomprehensible, we first
look at the results of the resampling in order to obtain a ranking of MB-FCNs (see Table 3 for a summary
of model acronyms). The results of the bootstrapping are shown in Figure 3 and listed also in Table C1 in
Appendix C.With a block length of 1 month and 1,000 repetitions of the bootstrapping, it can be seen that
the simple FCN cannot adequately represent the relationships between inputs and targets in comparison to
the other models. Moreover, it is visible that the performance of theMB-FCN-BL/SY/DU/ID falls behind
in comparison to the other MB-FCNs with an average MSE> 70ppb2. The smallest resampling errors
could be achieved with the models MB-FCN-BL/SY/DU/IDþraw, MB-FCN-LT/ST, and MB-FCN-LT/
STþraw.
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When comparing the decomposition into BL/SY/DU/ID and the decomposition into LT/ST compo-
nents, the latter decomposition tends to yield a lower error. Alternatively, it is possible to achieve
comparative performance by adding the raw data to both variants of decomposition. For the LT/ST
decomposition, however, this improvement is marginal.

Since the forecast accuracy of the top three NNs is nearly indistinguishable, especially for the two
models with the LT/STsplit, we choose theMB-FCN-LT/ST network and so the LT/ST decomposition for
further analysis, since, of the three winning candidates, this is the network with the smallest number of
trainable parameters (see Table B2 in Appendix B).

So far, we have shown the advantages of an LT/ST decomposition during preprocessing for FCNs.
Therefore, in the following, we apply our proposed decomposition to more elaborated network archi-
tectures, namely a CNN and an RNN architecture. We again consider the uncertainty estimation of the
MSE using the bootstrap approach and calculate the skill score with respect to theMSE in pairs for an NN
type that was trained once as anMB-NNwith temporally decomposed inputs and oncewith the raw hourly
data. Similarly, we consider the skill score of OLS on decomposed and raw data, respectively. The results
are shown in Figure 4. It can be seen that the skill score is always positive for all models. This in turn
means that using our proposed time decomposition of the input time series improves all the models
analyzed here.When looking at the individual models, it can be differentiated that the FCN architecture in
particular benefits from the decomposition, whereas the improvement is smaller for RNN and smallest but
still significant for OLS and CNN.

Based on the uncertainty estimation of the MSE shown in Figure 5 and also listed in Table C2 in
Appendix C, the models can be roughly divided into three groups according to their average MSE. The
last group consists solely of the persistence prediction, which delivers a significantly worse prediction
than all other methods and lies at anMSE of 107 ppb2 on average. In the intermediate group with anMSE
between 70 and 80 ppb2, only approaches that do not use temporally decomposed inputs are found,
including the IntelliO3-ts-v1 model. Overall, the FCN performs worst with a mean MSE of 78 ppb2, and
the best results in this group are achieved with the CNN. In the leading group are exclusivelymethods that
rely on the decomposition of the input time series. TheOLSwith the LT/ST decomposition has the highest
error within this group with 68 ppb2. The lowest errors can be obtained with the MB-FCN and the MB-
RNN, whereby the MSE for both NNs is around 66 ppb2.

Figure 3. Results of the uncertainty estimation of the MSE using a bootstrap approach represented as
box-and-whiskers. For each model, the median is shown as a black vertical line, the mean as a green
triangle, the upper and lower quartiles in the form of the box, the upper and lower whiskers, which
correspond to 1.5 times the interquartile range, and outliers beyond the whiskers as individual data
points. The models are ordered from top to bottom with ascending average MSE. A total of 1,000
bootstrap samples were created by resampling with the replacement of single-month blocks.
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Figure 5. The same as Figure 3, but for a different set of models. Results of the uncertainty estimation of
the MSE using a bootstrap approach represented as box-and-whiskers. For each model, the median is
shown as a black vertical line, the mean as a green triangle, the upper and lower quartiles in the form of
the box, the upper and lower whiskers, which correspond to 1.5 times the interquartile range, and outliers
beyond the whiskers as individual data points. The models are ordered from top to bottom with ascending
average MSE. A total of 1,000 bootstrap samples were created by resampling with the replacement of
single-month blocks. Note that the uncertainty estimation shown here is independent of the results shown
in Figure 3, and therefore numbers may vary for statistical reasons.

Figure 4. Pairwise comparison of different models running with temporal decomposed or raw data by
calculating the skill score on the results from the uncertainty estimation of the mean square error using a
bootstrap approach represented as box-and-whiskers. For each model, the median is shown as a black
vertical line, the mean as a green triangle, the upper and lower quartiles in the form of the box, the upper
and lower whiskers, which correspond to 1.5 times the interquartile range, and outliers beyond the
whiskers as individual data points. A total of 1,000 bootstrap samples were created by resamplingwith the
replacement of single-month blocks.
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In order to understand why the decomposition consistently brings about an improvement for all
methods considered here, we look exemplarily at the MB-FCN-LT/ST in more detail in the following.
However, it should bementioned that the discussed aspects are also basically valid for the other NN types.

First, we have a look at the calibration-refinement factorization of the joint distribution (Figure 6)
according to equation (14). It can be seen that the distribution of the forecasted concentration of ozone
becomes narrower toward the mean with increasing lead time. While the MB-FCN-LT/ST is still able to
predict values of >70 ppb for the 1-day forecast, it is limited to values below 60 ppb for the 4-day forecast
and tends to underestimate larger concentrations with increasing lead time. According to the conditional
probability of observing an issued forecast, theMB-FCN-LT/ST is best calibrated for the first forecast day
and especially in the value range from 20 to 60 ppb. However, observations of high ozone concentrations,
starting from values above 60 ppb, are generally underestimated by the NN. Coupled with the already
mentioned narrowing of the forecast’s distribution, the underestimation of high ozone concentrations
increases with lead time.

The shortcomings with the prediction of the tails of the distribution of observations are also evident
when looking at the seasonal behavior of the MB-FCN-LT/ST. Figure 7 summarizes the distribution of
observations and predictions of the NN for each month. The narrowing toward the mean with increasing
lead time is also clearly visible here in the whiskers and the interquartile range in the form of the box.
However, it can already be observed that, from a climatological perspective, the forecasts are in the range

Figure 6. Joint distribution of prediction and observation in the calibration-refinement factorization
p yi,oj
� �

for theMB-FCN-LT/ST for all four lead times. On the one hand, themarginal distribution p yið Þ of
the prediction is shown as a histogram in gray colors with the axis on the right, and on the other hand,
the conditional probability p ojjyi

� �
is expressed by quantiles in the form of differently dashed lines.

The reference line of a perfectly calibrated forecast is also shown as a solid line.
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of the observations, and the annual cycle of the ozone concentration can bemodeled. Yet themonth of July
stands out in particular, where it is clearly recognizable that the NN is not able to represent the large
variability of values from 20 ppb to values over 100 ppb that occur during summer.

The direct comparison according to Murphy (1988) between the climatological annual mean of the
observation and the forecast of the NN for the training and validation data (Case 1) as well as for the test
data (Case 3) shows a high skill score in favor of the NN compared to the single-valued climatological
reference as the NN captures the seasonal cycle (Figure 7). Furthermore, in direct comparison with the
climatological monthly means (Cases 2 and 4), the MB-FCN-LT/ST can achieve an added value in terms
of information. However, the skill score on all datasets decreases gradually with longer lead times.
Nonetheless, a nearly continuously positive skill score shows that the seasonal pattern of the observations
can be simulated by the NN.

The feature importance analysis provides insight on which variables the MB-FCN-LT/ST generally
relies upon. An examination of the importance of the individual branches, as shown in Figure 8, shows
that, for the first forecast day, both LT and ST have a significant influence on the forecast accuracy. For
longer forecast horizons, this influence decreases visibly, especially for ST. It is worth noting here that the
influence of LT decreases less for Days 2–4, remaining at an almost constant level. Consequently, the
long-term components of the decomposed time series have an important influence on all forecasts.

Looking at the importance of each variable with its components shows first of all that the NN is
strongly dependent on the input ozone concentration. This dependence decreases continuously with lead
time. Important meteorological drivers are temperature, relative humidity, and planetary boundary layer
height. All these variables diminish in importance with increasing forecast horizon, analogously to the
importance of the ozone concentration. On the chemical side, NO2 also has an influence. Here, it must be
emphasized that, in contrast to the other variables, the influence does not decrease with lead time, but
remains constant over all forecast days. From the feature importance, we can see that the trained model
does not make extensive use of information from wind, NO, or cloud cover.

Isolating the effects of the individual inputs in the LT branch shows that the NN is hardly dependent on
the long-term components of the input variables apart from ozone (see Figure 9). The importance of ozone
is higher on Day 1 than on the following days, but then remains at a constant level. For the short-term
components, the concentration of ozone is also decisive. However, its influence decreases rapidly from
the 1-day to the 2-day forecast. The individual importance of the ST components of the other input
variables behaves in the same way as the overall importance of these variables.

Figure 7. Overview of the climatological behavior of the MB-FCN-LT/ST forecast shown as a monthly
distribution of the observation and forecasts on the left and the analysis of the climatological skill score
according to Murphy (1988) differentiated into four cases on the right. The observations are highlighted
in green and the forecasts in blue. As in Figure 3, the data are presented as box-and-whiskers, with the
black triangle representing the mean.
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As previously mentioned, the points discussed before can be more or less transferred to the other NN
architectures. The feature importance analysis of the branches and the individual variables for MB-CNN
andMB-RNN is shown in Figures E1–E3 in Appendix E. In particular, the LT for all forecast days and the
ST for the first day contain important information, with the ST branch being less relevant for the MB-
RNN. Moreover, MB-CNN and MB-RNN also show a narrowing of the distribution of issued forecasts
with increasing lead time, as was also observed for MB-FCN.

5. Discussion

The experimental results described in the previous section indicate that the NNs learn oscillation patterns
on different time scales, and in particular climatological properties, better when the input time series are
explicitly decomposed into different temporal components. The MB-NNs outperform all reference

Figure 8. Importance of single branches (left) and single variables (right) for the MB-FCN-LT/ST using
bootstrapping. In blue colors, the skill score for lead times from 1 day (light blue) to 4 days (dark blue) is
shown. A negative skill score indicates a strong influence on the forecast performance. The skill score is
calculated with the original undisturbed prediction of the same NN as reference. Note that due to the
significantly stronger dependence, ozone is visualized on a separate scale.

Figure 9. Importance of single inputs for the LT branch (left) and the ST branch (right) for the MB-FCN-
LT/ST using a bootstrap approach. In blue colors, the skill score for lead times from 1 day (light blue) to
4 days (dark blue) is shown. A negative skill score indicates a dependence. The skill score is calculated
with the original undisturbed prediction of the same NN as reference.
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models, such as simple statistical regression methods as well as the naïve persistence forecasts and
climatological references. The MB-NNs are also preferable to their corresponding counterparts without
temporal decomposition, considered individually but also as a collective.

The uncertainty estimate of the MSE of the forecast shows that FCNs that either use a decomposition
into a long-term and a short-term component or access unfiltered raw data as a supplementary source of
information have the highest forecast accuracy. Separating the input signals into more than two
components without adding the unfiltered raw data cannot improve the performance of the FCNs, with
respect to the architectures chosen in this study. This recognition coincides with the findings of Kang et al.
(2013), who show that a clear separation of the short-term components is generally not possible due to the
superposition of multiple oscillation patterns.

With regard to the network architecture, several key points can be identified in this study. Without
special processing of the input data, the best results were achieved with a CNN architecture. This could be
explained by the fact that the convolutional layers of the CNN already filter the time series. However, it
must also be mentioned that with a filter size of only 5 hr, there is no chance to extract an annual cycle, so
that the explicit decomposition into LTand STcomponents also offers added value for the CNN.However,
due to the higher baseline level, the MB-CNN cannot benefit as much from the data processing compared
to the MB-FCN and MB-RNN and is moreover behind the other two MB-NNs in terms of prediction
quality in absolute terms. The RNN also achieves better results on the unfiltered data than the FCN, for
example, because it can benefit from amore specific understanding of time. The FCN is therefore inferior
to the CNN and RNN due to its comparatively simple architecture and the lack of possibility to relate
neighboring data points explicitly. However, it benefits most from the temporal decomposition of the
inputs, so that these disadvantages disappear, and overall, the smallest errors can be achieved with MB-
FCN and MB-RNN. These finding therefore highlight the importance of jointly optimizing data
preprocessing and NNmodel architecture, which is taught in many ML courses, but not always followed
in practical applications.

The difficulties of NNs to recognize annual patterns in daily resolved data noted by Cho et al. (2014)
did not apply to the MB-NNs. However, the networks still encounter difficulties in anticipating very low
and very high ozone concentrations. As the lead time increases, the NN’s forecast strategy becomes more
cautious about extremes, leading to a narrowing of the distribution of issued forecasts. Despite this
circumstance, the NNs always retain within an optimal range from a climatological point of view, so that
the forecast has higher accuracy than a climatological forecast. The analysis of the feature importance can
provide an explanation for this. For the first day of the forecast, both long-term and short-term
components have an equally strong influence on the MB-FCN forecast, but for a longer forecast horizon,
the long-term components are given more weight. Accordingly, the LT branch in particular enables the
NN to generate a climatologicallymeaningful forecast. In addition, theNN remains strongly dependent on
the ozone concentrations from the inputs. Learning a form of autocorrelation is advantageous for
climatological accuracy, but at the same time leads to a poorer representation of scarcer events such as
sudden and strong increases in the daily maximum concentration from one day to the next.

In addition, it must be mentioned that strong deviations from climatological norm states also have an
impact on the filter decomposition of the inputs, since climatology can only be an estimate of a long-term
mean state, which can deviate strongly from the actual weather in individual cases. For example, the long-
term signal of temperature in the case of a very warm summer would be weakened by the added
climatology, since such a deviation represents an exceptional case from a climatological point of view.
In this case, the second filter component, which should actually be free of an annual variation, also
contains a proportion of an annual oscillation. However, as discussed in Section 2, this combination
allows to apply noncausal filters in a forecasting situation, where generally only causal filters are
applicable, which lead to phase shifts in the data and show larger errors.

A look at the importance of the individual inputs for the MB-FCN yields two views. First, it becomes
apparent that the dependency of the LTand STcomponents are each strongly based on the corresponding
component of the ozone concentration and that the MB-FCN accordingly learns the connection between
observed hourly ozone values and the target ozone statistic. Second, all other variables seem to have an
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influence only on the short-term scale. Since the STcomponent by definition represents the deviation from
the climatological normal state, it can be seen that theMB-FCN relies on the deviation from normal states
as a forecasting strategy.

Finally, we would like to discuss the filters used for the decomposition. Since there are many different
types of filters with various advantages and disadvantages, we have limited this work to the use of a Kaiser
window and have not carried out any further experiments with different types of filters, such as the KZ
filter, which could possibly lead to an improved separation of individual components as stated in Rao and
Zurbenko (1994) in the presence of a weather forecast. Furthermore, we have not undertaken any in-depth
investigations into which separation frequencies lead to an optimal decomposition of the time series.

6. Conclusion

In this work, we explored the potential of training different NNs, namely FCN, CNN, and RNN, for
dma8eu ozone forecasting using inputs decomposed into different frequency components from long term
to short term with noncausal filters in order to improve the forecast accuracy of the NNs. The temporal
decomposition of the inputs not only improves the different NN architectures and the linear OLS model,
but also offers an overall added value for the prediction of ozone compared to all reference models using
raw hourly inputs and naïve approaches based on persistence and climatology. As exemplary shown with
theMB-FCN, theMB-NNs work better with a decomposition into two components compared to four and
they rely on both long-term and short-term components for their prediction, with a strong dependence on
past ozone observations and a decreasing importance of the short-term components with lead time. In
order to realize a valid decomposition in a forecast setupwithout time delay of the signal introduced by the
filter itself, a combination of observations and a priori information in the form of climatology was chosen.
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Appendix A: Details on Data

Figure A1.Graphical representation of the number of samples available for training (orange), validation
(green), and testing (blue) per time step. Apart from three periods in which the data cannot meet the
requirements, more than 20 stations are available at each time step, and for training in particular, more
than 30 stations for themost time. The graph does not show the available raw data, but indicates for which
time steps t0 a sample with fully processed input and target values is available.

Figure A2. Geographical location of all rural and suburban monitoring stations used in this study
divided into training (orange), validation (green), and test (blue) data represented by triangles in the
corresponding colors. The tip of the triangles points to the exact location of the station.
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Figure A3.Detailed overview of the availability of station data broken down for all individual stations as
a timeline separated by color for training (orange), validation (green), and test (blue) data. Individual
gaps are caused by missing observation data that exceed the interpolation limit of 24 hr for inputs or
2 days for targets.
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Appendix B: Details on Hyperparameter Search

Table B1. Details on tested hyperparameters for the MB-FCNs. The square brackets indicate a continuous parameter range, and the
curly brackets indicate a fixed set of parameters. Parameter spaces covering different orders of magnitude were sampled on a
logarithmic scale. For details on the activation functions, we refer to rectified linear unit (ReLU) and leaky rectified linear unit
(LeakyReLU, Maas et al., 2013), exponential linear unit (ELU, Clevert et al., 2016), scaled exponential linear unit (SELU,
Klambauer et al., 2017), and parametric rectified linear unit (PReLU, He et al., 2015).

Parameter Parameter range

Learning rate 0:1,0:0001½ �
Learning rate decay 0,0:0001½ �
Batch size 64,128,256,512f g
Activation function relu, leakyrelu,elu,selu,preluf g
Dropout 0,0:5½ �
Batch normalization true, falsef g
Branch layers 512=256=128,512=128=32,512=64,512=32,256=128=64=32,256=64,128=64,128=32,64=32f g
Tail layers 4,32=4,64=4f g

Table B2. Summary of best hyperparameters and fixed parameters for different setups with MB-FCN. The entire parameter ranges
of all hyperparameters are given in Table B1. Details on the activation functions can be found in He et al. (2015) for the parametric
rectified linear unit (PReLU) and in Clevert et al. (2016) for the exponential linear unit (ELU). A visualization of MB-FCN-LT/ST
can be found in Figure D1 in addition.

Parameter
MB-FCN-BL/
SY/DU/ID

MB-FCN-
LT/ST

MB-FCN-BL/SY/
DU/IDþraw

MB-FCN-LT/
STþraw

Hyperparameters

Learning rate 0.00033 0.1 0.00027 0.0002

Learning rate decay 0.001 0.007 0.0001 0.0002

Batch size 512 512 512 256

Activation function PReLU ELU ELU ELU

Dropout 0.3 0.56 0.28 0.43

Batch normalization True True True True

Branch layers 64/32 128/64 64/32 128/64

Tail layers 64/4 4 4 4

Layers summary 4x(585/64/32)-64/4 2x(585/128/64)-4 5x(585/64/32)-4 3x(585/128/64)-4

Trainable parameters 168,196 167,812 199,524 251,716

Fixed

Cutoff period(s) 21 days, 2.7 days, 11 hr 21 days 21 days, 2.7 days, 11 hr 21 days

Filter order(s) 42 days, 7 days, 2 days 42 days 42 days, 7 days, 2 days 42 days

filter window Kaiser (β¼ 5) Kaiser (β¼ 5) Kaiser (β¼ 5) Kaiser (β¼ 5)

Use unfiltered raw inputs False False True True

Number of epochsa 150 150 150 150

Abbreviation: FCN, fully connected network.
aWith early stopping.
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Appendix C: Tabular Results

Table B3. Summary of best hyperparameters and fixed parameters for experiments with the CNN, MB-CNN, RNN, and MB-RNN.
The entire parameter ranges of all hyperparameters are not listed. Details on the activation functions can be found in Maas et al.
(2013) for the rectified linear unit (ReLU) and the leaky rectified linear unit (LeakyReLU) and in He et al. (2015) for the parametric
rectified linear unit (PReLU).

Parameter CNN MB-CNN RNN MB-RNN

Hyperparameters

Learning rate 0.057 0.1668 0.0009 0.0123

Learning rate decay 0.006 0.009 0.0006 0.015

Activation function PReLU PReLU ReLU LeakyReLU

Dropout 0.43 0.42 0.5 & 0.17 (recurrent) 0.23 & 0 (recurrent)

Batch normalization Conv and FC Conv and FC only LSTM only LSTM

Filter size 5 � 1 5 � 1 – –

(Branch) layersa C16/MP/C32/MP/C64 C16/MP/C32/MP/C64 LSTM64 LSTM32

Tail/dense layers 256/4 256/4 128/4 128/4

Trainable parameters 281,140 560,228 27,908 19,716

Fixed

Number of epochsb 250 250 100 100

Batch size 512 512 512 512

Abbreviations: CNN, convolutional neural network; LSTM, long short-term memory.
aC<n>: Conv2D with n filters; LSTM<n>: LSTM layer with n LSTM cells; MP: MaxPooling.
bWith early stopping.

Table C1. Key numbers of the uncertainty estimation of the MSE for all MB-FCNs as an average over all prediction days using the
bootstrap approach visualized in Figure 3. All reported numbers are in the unit of square parts per billion. Numbers in percentage
point to the corresponding percentile of the error distribution.

MB-FCN-BL/
SY/DU/ID

MB-FCN-BL/SY/
DU/IDþraw MB-FCN-LT/ST MB-FCN-LT/STþraw FCN

Mean 71.83 67.88 67.12 66.72 77.51

Min 56.56 55.15 57.38 56.17 67.01

Lower whisker 59.15 56.41 57.38 56.17 68.22

25% 68.53 64.92 64.25 63.70 75.25

50% 71.67 67.72 66.99 66.54 77.42

75% 74.78 70.59 69.69 69.40 79.94

Higher whisker 84.16 79.09 77.86 77.93 86.97

Max 87.52 82.17 80.89 80.59 91.75

Abbreviations: FCN, fully connected network; MSE, mean square error.
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Appendix D: Model Architecture

Table C2. Key numbers of the uncertainty estimation of the MSE as an average over all prediction days using the bootstrap approach
visualized in Figure 5. All reported numbers are in the unit of square parts per billion. Numbers in percentage point to the
corresponding percentile of the error distribution. Note that the uncertainty estimation reported here is independent of the results
shown in Table C1, and therefore numbers may vary for statistical reasons.

CNN FCN IntelliO3
MB-CNN-
LT/ST

MB-FCN-
LT/ST

MB-RNN-
LT/ST

OLS-
LT/ST OLS Persistence RNN

Mean 71.94 78.02 74.59 67.28 66.41 66.08 67.84 72.41 107.89 72.26

Min 41.93 50.74 40.75 39.85 38.52 38.12 40.03 40.87 52.66 42.49

25% 60.52 69.90 62.47 57.43 57.20 55.55 58.85 59.99 83.80 61.88

50% 75.66 80.53 77.36 70.27 69.33 69.56 71.09 76.93 115.17 75.38

75% 82.32 86.49 85.63 76.75 75.44 75.77 76.95 83.40 130.46 82.02

Max 105.92 107.01 121.41 101.99 98.55 99.63 98.38 104.31 168.47 105.20

Abbreviations: CNN, convolutional neural network; FCN, fully connected network; MSE, mean square error; OLS, least squares regression.

Figure D1.Visualization ofMB-FCN-LT/STusing the tool Net2Vis (Bauerle et al., 2021). Shown from left
to right are the input data, followed by the flattened layer and two fully connected layers (FC) with
128 and 64 neurons. In total, the neural network has two such branches, whose weights can be trained
independently of each other. All branches are concatenated and bounded by the output layer with four
neurons. The orange FC block consists of a fully connected layer, a batch normalization layer, and an
exponential linear unit activation. The output layer contains only a fully connected layer followed by a
linear activation. The dropout layers are highlighted in purple, and all other remaining layers with
nontrainable parameters are shown in gray.
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Figure D2. Visualization of a convolutional neural network as in Figure D1. In addition, this neural
network consists of convolutional blocks highlighted in blue and MaxPooling layers shown in yellow.
Each convolutional block consists of a convolutional layer with a kernel size of 5 � 1 and the same
padding, followed by a batch normalization layer and a parametric rectified linear unit (PreLU)
activation. TheMaxPooling layers use a pooling size of 2� 1 and strides with 2� 1. The FC blocks in this
model consist of the fully connected layer, batch normalization, and a PReLU activation.

Figure D3. Visualization of a multibranch convolutional neural network as in Figure D2.

Figure D4. Visualization of RNN as in Figure D1. In addition, the neural network shown here consists of
long short-term memory layer (LSTM) blocks indicated in green. Each LSTM block includes an LSTM
layer with a given number of LSTM cells within followed by a batch normalization layer and a rectified
linear unit (ReLU) activation function. Note that the dropout shown here is not the recurrent dropout, but
the regular dropout that is applied on the activation of a layer. The FC block also uses a ReLU activation
function, but no batch normalization.
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Appendix E: Feature Importance of MB-CNN and MB-RNN

Figure D5. Visualization of MB-RNN as in Figure D4. Deviating here, the activation is LeakyReLU both
for the long short-term memory layer and the FC layer.

Figure E1. Importance of single branches for multibranch convolutional neural network (left) and
multibranch recurrent neural network (right) as in Figure 8.

Figure E2. Importance of single inputs for the LT branch (left) and the ST branch (right) for the
multibranch convolutional neural network.
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Figure E3. Importance of single inputs for the LT branch (left) and the ST branch (right) for the
multibranch recurrent neural network.
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ABSTRACT

With the impact of tropospheric ozone pollution on humankind, there is a compelling need for
robust air quality forecasts. Here, we introduce a novel deep learning (DL) forecasting system
called O3ResNet that produces a four-day forecast for ground-level ozone. O3ResNet is based on
a convolutional neural network with residual blocks. The model has been trained on 22 years of
ozone and nitrogen oxides in-situ measurements and ERA5 reanalysis data from 2000 to 2021 at
328 stations in Central Europe located in rural and suburban environment. Our model outperforms
the state-of-the-art Copernicus Atmosphere Monitoring Service regional forecast model ensemble
for ground-level ozone with respect to the mean square error and mean absolute error of the daily
maximum 8-hour running average ozone, thus marking a major milestone for DL-based ozone
prediction. O3ResNet has a very small bias without requiring additional post-processing, and it
generalizes well so that new stations can be added with no need to re-train the neural network. As the
model works on hourly data, it can be easily adapted to output other air quality metrics. We conclude
that O3ResNet is sufficiently advanced and robust to become a test application for operational air
quality forecasting with DL.

Keywords Forecasting · Neural networks · Air quality · Ozone · Deep learning · Machine learning

1 Introduction

Data-driven methods like machine learning (ML) and in particular deep learning (DL) have the potential to replace or
augment classical environmental modelling approaches, because they can learn complex, intrinsic relationships among
observed variables, and because they exhibit small bias by design [1]. Especially at small local scales, atmospheric
phenomena are often not well described by existing theories and classical model predictions are therefore imprecise. As
a complex interplay of meteorology, chemistry, emissions and landscape is involved [2], this is especially critical for
ozone air pollution.

Exposure to ozone has a damaging effect on terrestrial life forms [3, 4, 5]. In particular, exposure to high ozone
concentrations leads to adverse health effects in humans, especially in the pulmonary and cardiovascular systems
[6]. Short-term exposure to high ozone concentrations has drastic effects [7, 8, 9], such as reduced lung function or
triggering of asthma. Consequently, it is important to have reliable predictions of ozone concentrations several days in
advance, in order to initiate appropriate countermeasures where necessary. Regulatory authorities around the world
therefore define target and limit values for ozone. These are typically based on the daily maximum 8-hour running
average [dma8, 6], so the analysis and prediction of dma8 ozone is a task of high societal relevance.

D.3. Leufen et al. (under review 2023): O3ResNet: A deep learning based forecast

system to predict local ground-level daily maximum 8-hour average ozone in rural

and suburban environment
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Current forecast models are based on chemistry transport models (CTMs) built on chemical and physical relationships
and equations to calculate air quality numerically. However, in such models, uncertainties arise due to various causes,
such as parameterizations, simplification of relationships and equations or other assumptions [10, 11, 12, 13]. These,
in turn, lead to systematic deviations between the model results and the observations [14]. For example, the seasonal
cycle of ozone is not well represented by the CTMs, nor do they capture the sensitivity of the models to meteorological
drivers relevant for ozone formation and removal processes such as solar radiation and relative humidity well [14].
Also, CTMs are too coarse-scale to resolve local phenomena [15] and they impose a substantial computational burden
for solving chemical equations [16], which is critical when deployed operationally, where wall-clock time is a hard
constraint [17].

To enable DL methods to learn how to reliably predict ozone concentrations, one needs to apply domain knowledge
for constructing the input data and the DL model. Temperature has an important influence on ozone, as chemical
reactions are generally temperature-dependent [11]. In particular, extreme ozone concentrations are mainly linked to
high temperature periods [18, 19]. Besides, persistence is also a strong predictor of high ozone levels as it can indicate
the presence of prolonged events and those with a day-by-day increase in concentrations [20]. Further meteorological
factors that influence local ozone levels are solar radiation and cloud cover, as well as relative humidity and wind
speed [19]. Weng et al. [21], based on random forest and ridge regression, identify, for example, temperature, surface
solar radiation downward, and relative humidity as the key meteorological drivers of ozone. Their study also reveals,
however, that the importance of individual variables can vary between different regions. Recent studies have shown that
neural networks (NNs) are skillful methods for ozone forecasting purposes and a variety of NN architectures have been
explored in this context. For example, [22] use fully connected networks (FCNs), [23] convolutional neural networks
(CNNs), [24] CNNs with inception blocks, [25] long short-term memory networks (LSTMs) or [26] and [27] U-Nets.
However, to the best of our knowledge, there has been no study on forecasting of ozone at station locations that reports
both good performance for lead times greater than two days and provides a direct comparison with a state-of-the-art
CTM.

This paper presents the development of a generic DL-based ozone forecasting system called O3ResNet, that is based on
a CNN architecture with residual blocks [28], to forecast ground-level dma8 ozone at individual stations. To showcase
O3ResNet, we selected 328 stations in rural and suburban areas across Central Europe for study, though the system
can easily be adapted to other regions, provided that enough training data is available. Results of O3ResNet are more
accurate than the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble forecast [29], which is the
state-of-the-art air quality forecast system in Europe. Therefore, O3ResNet provides a reliable dma8 ozone forecast
for the next four days, hereafter denoted D1 to D4, which makes it a tool that is suitable for operational air quality
forecasting.

This paper begins with a description of the data and methods used, followed by the results section, in which we draw a
comparison to CAMS in addition to evaluating the overall performance of our model. Here, we also provide insights
about the dependence of O3ResNet on its inputs and the lead time of a meteorological forecast. The paper concludes
with a discussion of various aspects of O3ResNet including a consideration of the benefits and limitations of O3ResNet
as well as thoughts on a roadmap towards operational deployment and the extension to forecasting other air pollutants.

2 Data and methods

Data O3ResNet has been trained with data from 328 observation stations over central Europe (47.5◦-56◦N and
1.3◦-18◦E, see Figure 1). We make use of the tropospheric ozone assessment report database [TOAR DB, 30] and
select all stations located in a rural or suburban environment and classified by the European Environmental Agency
as background stations [31]. This means that there is no dominant air pollution source in the immediate vicinity. To
prevent temporal data leakage, data are divided block-wise along the time axis into training (2000-2015), validation
(2016-2018) and test (2019-2021) data. Further details on the data split and a robustness analysis are presented in
Appendix A. Due to missing or terminated observations, the number of stations varies for the validation (212) and test
(202) subsets. In total, there are over 800,000 training samples, almost 200,000 for validation and 170,000 samples for
testing, respectively.

Inputs For inputs, O3ResNet makes use of hourly time series of three chemical and seven meteorological variables at
or near ground-level: ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), cloud cover, planetary boundary layer
height, pressure, relative humidity, temperature and the zonal and meridional wind components. Relative humidity
is calculated from temperature, dew point temperature and pressure. The selection of these parameters is based on
previous research in Leufen et al. [32], so we do not apply any new feature selection here. Chemical parameters (O3,
NO, NO2) are provided by the TOAR DB, and meteorological variables originate from ECMWF’s ERA5 reanalysis
data set [33], with grid data mapped to station locations using nearest neighbor interpolation. All time series are
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Figure 1: Geographic overview of the ozone measurement stations in Central Europe (47.5◦-56◦N and 1.3◦-18◦E). Of
the total 328 stations available for the 2000-2021 period, all 328 stations were used for training O3ResNet (represented
by orange triangles with apex oriented to the right). There are 212 stations available for validation (green triangle with
apex oriented up) and 202 stations available for final testing (blue triangles, apex oriented left). The differences in the
station numbers result from the data availability in the TOAR DB.

filtered into long-term (LT) and short-term (ST) components with a finite impulse response (FIR) filter as in [32]. For
causality reasons, we use the observations for lagged time steps (ti ≤ t0) and climatology for time steps in the future
(ti > t0) to calculate LT and ST of the chemical variables, as proposed in [32]. For the meteorological variables we use
reanalysis data as pseudo-forecast for all time steps ti. A more detailed discussion on the time filtering can be found in
Appendix A. For the chemical inputs, we choose time steps of past three days (72 hours) from LT and ST components
([t0 − 3d, t0]), the meteorological components cover in addition the forecast period on the interval of [t0 − 3d, t0 + 4d]
with a total of 168 hourly values. All inputs are transformed by Z-score normalization to have zero mean and a standard
deviation of one.

Target The target variable of this study is dma8 ozone as defined by the [31] as the highest 8-hour moving average
of all ozone concentrations observed between 5 pm local time of the previous day and 4 pm local time of the current
day. We predict dma8 ozone for the next four days ([t0 + 1d, t0 + 4d]). The daily resolved dma8 ozone for the model
validation is obtained directly from TOAR DB. The temporal distribution of the target values in all subsets is shown in
Figure 13 in Appendix A. Like the inputs, the targets are transformed by Z-score normalization. Figure 2 provides an
overview of the entire workflow.

Hyperparameter tuning We test different architectures like FCN, recurrent NN (RNN) based on LSTM and gated
recurrent unit (GRU), CNN (with and without residual blocks) and U-Net. To find an optimal hyperparameter
configuration for each NN architecture, we train NNs with various configurations over 100 epochs and evaluate the
mean squared error (MSE) given by

MSE =
1

ni · nj

ni,nj∑

i,j

(
yi,j − ŷi,j

)2
(1)

on the training and validation data with ni being the number of samples, nj the number of forecast steps, yi,j the
observed value and ŷi,j the NN’s forecast. After testing all alternative model architectures, we chose a CNN architecture
with residual blocks as the best performing on validation data. In Appendix B, we present details on the hyperparameter
optimization and model selection strategies, and provide technical background on the operating system, software, and
the duration of preprocessing, training, and inference.
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Figure 2: Visualization of the training and inference workflow of O3ResNet as described in this paper. The chemical
variables are taken from the tropospheric ozone assessment report database [TOAR DB, 30] as in-situ observations and
filtered into LT and ST components with the help of climatological statistics. The meteorological variables are obtained
as gridded data from ERA5 and are mapped to the measurement stations by nearest neighbor and also split into LT and
ST by filter. Note that variable names are listed according to the identifiers in the official documentation of TOAR DB
[34] and ERA5 [35]. All four branches are then input to O3ResNet, which makes a four-day forecast of dma8 ozone.

CNN architecture Since we found the CNN architecture with residual blocks to be the best performing DL architecture
on validation data, we describe the exact architecture in more detail below. This is the model we refer to as O3ResNet.
The O3ResNet architecture consists of eight residual blocks, 20 hidden layers, and a total of about 800,000 trainable
parameters. A residual block consists of two convolutional layers, where the first layer is bypassed by a skip connection
to stabilize the training and thus allow training of deeper networks as gradients can propagate more directly during
backpropagation [28]. We follow [36] and apply all convolutions only along the time axis. A special feature of
the O3ResNet architecture are the four input branches, consisting of an LT and ST component of the chemical and
meteorological inputs, respectively. The motivation for these separate branches is that the NN can initially learn local
features of the different variable types, chemical and meteorological variables, and time scales, LT and ST, and later put
this knowledge into a global context to make a prediction for ozone. The global context is learned in the tail of the
network starting from a concatenation layer up to the output layer. Each branch consists of two convolutional layers
with 32 7x1 and 32 3x1 filters and a maxpooling operation (with pool size 2x1), succeeded by four residual blocks with
32 3x1 filters and four residual blocks with 64 3x1 filters. The outputs of each branch are flattened and concatenated
into a layer followed by a dense layer of 128 neurons and the output layer of four neurons, one for each day to be
predicted. Except for the output layer, which features linear activation, all layers use a Parametric Rectified Linear Unit
[PReLU, 37] activation function. The architecture of O3ResNet is shown in Figure 3. Further details on the O3ResNet’s
hyperparameters and on the alternative network architectures are given in Appendix B.

CAMS We compare O3ResNet against the state-of-the-art regional chemistry transport model ensemble with data
assimilation from the Copernicus Atmosphere Monitoring Service (CAMS). The data are downloaded from the CAMS
Atmosphere Data Store [39] and preserved on local systems as ADS hosts data on a rolling three-year archive. CAMS
provides 96-h forecasts on a 0.1◦x0.1◦ grid for Europe based on the median value approach of the nine ensemble
members [40]. Details on the ensemble members are provided in Appendix C. To produce the CAMS ensemble forecast,
the median is calculated for each pixel individually using interpolated forecasts of all ensemble members. As CAMS
provides a grid forecast, we apply nearest neighbor interpolation to extract data at the station locations. We have also
tested a bilinear interpolation as an alternative. Bilinear interpolation performed better at some stations and worse at
others, so that on average the choice of interpolation method has no discernable effect on the CAMS performance.
Finally, dma8 ozone is calculated from the hourly data at each station. [41] provide a detailed overview on CAMS.

Evaluation The final evaluation of the results is performed exclusively on the test data, which were neither used for
training nor for hyperparameter optimization. For evaluation, we use the root mean squared error (RMSE) which is
given by the square root of the MSE from Equation 1

RMSE =
√
MSE (2)
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Figure 3: Network architecture of O3ResNet consisting of convolutional layers (green), PReLU and linear activation
(red), maxpooling layers (teal), batch normalization layers (yellow), residual blocks (orange), residual blocks with
additional 1x1 filter to increase number of filters (cyan), dense layers (blue), add layer (purple), and input, dropout,
flatten, concatenate and split layers (all grey). Each branch is highlighted by a separate grey box. Numbers next to
a layer show number of filters resp. weights and the shape. Shapes of the inputs correspond to 72 hourly values for
three chemical variables on the interval [t0 − 3d, t0] and to 168 hourly values for seven meteorological variables on
[t0 − 3d, t0 + 4d]. The graphic is created with Net2Vis [38] and edited afterwards. A list of hyperparameters can be
found in Table 5.

as well as the mean error (ME) given by

ME =
1

ni · nj

ni,nj∑

i,j

(
ŷi,j − yi,j

)
= ¯̂y − ȳ (3)

which can also be expressed as the difference between the means of forecast ¯̂y and observation ȳ. To compare two
models A and B against each other directly, we resort to the skill score given by

SS (A,B) = 1− MSEA

MSEB
, (4)

with MSEA being the MSE of model A and MSEB of model B.

3 Results

Figure 4 shows the RMSE as box-and-whiskers aggregated over all stations. O3ResNet yields a smaller RMSE for
all forecast days compared to CAMS. O3ResNet achieves the smallest error for the D1 forecast with 4.3 ppb. The
RMSE increases to 5.5 ppb for the D4 forecast, with almost identical RMSE on D3 and D4. Overall, the RMSE for
O3ResNet lies between 3.9 ppb and 5.8 ppb regarding the 25th and 75th percentiles of all stations. CAMS, on the other
hand, shows a noticeably higher RMSE, with a mean RMSE ranging from 7.3 ppb on D1 to 7.9 ppb on D4. Moreover,
a wider spread of RMSE across stations can be seen for CAMS. Thus, the 25th and 75th percentiles are 6.5 ppb and
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Figure 4: Distribution of the RMSE of O3ResNet and CAMS over all test stations visualized as box-and-whisker. The
different shades of blue correspond to the error for D1 (light blue) to D4 (dark blue). The boxes indicate the 25th and
75th quantile of the distribution, the line within the box shows the median and the white triangle the mean.
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Figure 5: Similar to Figure 4, but here the ME is shown instead for O3ResNet and CAMS.

8.6 ppb, respectively. We also show the spatial distribution of the RMSE of O3ResNet and CAMS in the Appendix C
(Figures 17 and 18).

The ME shown in Figure 5 provides insight into systematic biases between prediction and observation. For O3ResNet,
we can see that the ME averaged over all stations is centered between −0.35 ppb and −0.01 ppb for all forecast days
and with an interquartile range (IQR) between 0.92 ppb and 1.48 ppb. The ME for the CAMS predictions averages
between +0.32 and +0.78 ppb, with the median for D2 to D4 being larger than +0.83 ppb. Overall, the CAMS ME
shows a wide variation with an IQR of > 2.6 ppb.

The analysis of the ME shows that CAMS suffers from a consistent high bias in relation to the observations. Therefore,
we next correct all forecasts of CAMS and O3ResNet by (1) removing the averaged background value for each station
and (2) subtracting a 30-day running mean from the forecasts for each station. This reveals what contribution to the
total error is due to an improper accounting of the variability of ozone and what contribution is due to a systematic
deviation. Figure 6 shows the results for bias corrected predictions using method (1). Here, the adjustment leads to
a reduction in the RMSE for the CAMS predictions. Accordingly, since O3ResNet exhibited already a low ME, this
post-processing method does not lead to any improvement for O3ResNet. In contrast, the bias corrected forecasts using
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Figure 6: Similar to Figure 4, but here the bias-corrected RMSE is shown instead for O3ResNet and CAMS. Correction
is applied by removing the average background concentration at each station.
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Figure 7: Similar to Figure 4, but here the seasonal bias-corrected RMSE is shown instead for O3ResNet and CAMS.
For bias correction, we remove a 30-day running mean for each station.

method (2) lead to an improvement for CAMS and O3ResNet as measured by the RMSE (see Figure 7). In all cases, it
can be concluded that O3ResNet can better represent the variability of ozone.

Since ozone concentrations exhibit pronounced seasonal variation and the variance also varies with season, we next
consider the seasonality of the error. Figure 8 shows the RMSE aggregated over all forecast steps for each month across
all stations for the entire test period. For each individual month, O3ResNet has a lower RMSE than CAMS. In addition,
the IQR indicated by the width of the band of quantiles is narrower for O3ResNet. Both findings are in line with the
results presented so far. Indeed, we can identify a season-dependent performance for both O3ResNet and CAMS in
Figure 8. Overall, both models perform best in the spring months March, April, and May (MAM), whereas the summer
months June, July, and August (JJA) show the highest error. It should be pointed out that O3ResNet can provide notably
better forecasts than CAMS for JJA 2019, but for JJA 2021 neither model can provide decent forecasts, especially in
July.

To provide further insight into the quality of the O3ResNet forecasts we use the likelihood-base rate factorization
after [42]. Figure 9 compares observation and prediction of O3ResNet. Shown in the dashed lines is the conditional
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Figure 8: Month-to-month variation of performance (RMSE) for O3ResNet (blue) and CAMS (orange) during the test
period. Mean RMSE over all stations is shown as thick line as well as crosses and 25th and 75th quantile are illustrated
as bands.

distribution of the probability that, given a particular observation, O3ResNet can issue a proper forecast in advance.
Considering the climatological distribution of the observations, represented by the gray bars (marginal distribution), this
view allows to draw conclusions about how well O3ResNet can discriminate between different observation events [43].
It can be seen that the reference line and the median of the conditional quantile are in agreement in the range between
20 ppb and 55 ppb, and thus O3ResNet can distinguish individual observations well in this interval. However, for small
ozone values, the model tends to overestimate slightly, indicated by the fold in the lines of the conditional quantiles.
Also, for ozone values exceeding 60 ppb, 03ResNet cannot fully follow the observations, tending to underestimate
the ozone concentration. However, observations of high ozone concentrations are severely underrepresented in the
training data, and regression approaches such as O3ResNet generally tend to favour values towards the mean. Regarding
the forecast horizon, increasing uncertainty with lead time is visible as the lines of the quantiles of the conditional
distribution for D4 of the forecast are more widely spaced and both ends of the lines curve more pronouncedly than for
D1. In the range from 20 ppb to 50 ppb, however, the reference lines and median continue to be close to each other
indicating a reliable forecast issued by O3ResNet. The likelihood-base rate factorization for CAMS can be found in the
Appendix C in Fig. 16. Here it can be seen that CAMS is not able to distinguish well between different observation
events, because the slope of the conditional quantile lines deviates from the ideal reference line, meaning that smaller
values are generally overestimated and high concentrations are underestimated.

3.1 Importance of input branches

To shed light on the robustness of the O3ResNet forecasts we follow the singlepass approach [44]. To understand the
impact of each individual branch on O3ResNet, we fix all inputs of a single input branch to their average values and
examine how much the resulting prediction differs from the unperturbed prediction. We measure this by the skill score
as shown in Equation 4. The stronger the skill score of the mean-fixed O3ResNet decreases with respect to the original
O3ResNet forecasts, the greater the influence of the respective branch. Results are presented in Figure 10. Considering
all forecast days, the LT chemical and ST meteorological inputs have the strongest influence on the predicted ozone
concentrations. The LT chemical inputs are particularly important for the D1 forecast, and appear to be less important
for D2 to D4. Moreover, for the D1 forecast, the ST component of the chemical inputs is important to some extent,
whereas for the other days this is not evident. LT meteorological inputs only play a minor role for O3ResNet for all
forecast days. In contrast, the ST meteorological components are relevant for all forecast days and their importance
even increases from D1 to the following days.
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Figure 9: Visualization of the likelihood-base rate factorization for the D1 (left) and D4 (right) forecast of O3ResNet.
The factorization consists of the conditional distribution of the probability that a prediction is made in advance of an
incoming observation and the frequency distribution of the observations. The conditional distribution is represented by
the 10th, 25th, 50th, 75th, and 90th quantiles using different dashed lines and the optimal reference line. The frequency
distribution of the observations is shown by a histogram (gray bars) with logarithmic scale on the right axis.

From a meteorological perspective, these sensitivities can be explained as follows. The LT chemical inputs allow
O3ResNet to perform a bias correction, as they provide information about the long-term background concentration. In
addition, these components also add information about the season, since, for example, average ozone concentrations
are higher in summer than in winter. Note that O3ResNet has no explicit information about the day or month of the
samples it is processing. The relevance of the ST chemical variables can be explained by the autocorrelation of ozone.
As it decreases with lead time, the importance of past observations also drops. By contrast, the LT components of the
meteorological variables cannot add any valuable information to O3ResNet, since all information about seasonality
is already contained in the LT chemical variables. However, the ST components of the meteorological inputs play an
important role, since the deviations from long-term conditions contained therein characterize the current and future
weather situation. For example, the ST meteorological variables provide information about the daily maximum of
temperature and humidity in the forecast horizon.

3.2 Influence of the meteorological forecast lead time

Since this study uses ERA5 data as a pseudo-forecast and over an extended time horizon to calculate the LT and
ST components (see Appendix A), questions arise on how O3ResNet would behave in an operational setting where
meteorological forecasts have a more limited lead time and the forecast error tends to grow with increasing lead time. A
sensitivity study, outlined subsequently, reveals that the forecast quality of O3ResNet is hardly affected by reducing the
lead time of the meteorological forecast down to four days. To conduct this sensitivity study, we gradually decrease
the maximum lead time for the meteorological variables. Values after this maximum lead time are replenished by the
climatological statistics, as described in [32] and as it is done for the chemical variables. We do not retrain O3ResNet
on these modified inputs, but analyze how O3ResNet responds to this new information and whether the skill of the
ozone prediction decreases in dependence of the meteorological forecast lead time. Results are shown in Figure 11.

At large lead times it can be seen that the reduction of the lead time of the meteorological variables from 168 to 93
hours has no effect on the forecast performance of O3ResNet as the skill score stays close to zero indicating neither a
gain nor loss of skill. Note, that we test with larger lead times than the four days forecast horizon of O3ResNet, as
longer time series are mandatory to calculate an exact LT and ST decomposition (see Appendix A). As this analysis
shows, a blurred decomposition does not decrease the model’s performance at all. A further decrease of the lead time up
to the extreme case of 0 hours results in a continuous decrease of the prediction skill for all days. Thereby, the forecast
of O3ResNet always deteriorates only for the forecast days from which on no meteorological forecast is available and
climatology is fallen back on as a substitute. For example, when the lead time of the meteorological variables is 48
hours, only the ozone forecasts for D3 and D4 worsen, with the D3 forecast having an equal skill to the CAMS forecast
in this particular case. Conversely, the ozone forecasts for D1 and D2 are not affected at all and remain at their original
skill level. This finding can be observed for all forecast days. Besides, results show that the D1 forecast of O3ResNet is
more skillful than CAMS even at a lead time of 0 hours.
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Figure 10: Evaluation of the importance of each input branch for the prediction of O3ResNet generated using the
singlepass approach. The skill score is calculated in reference to the unperturbed prediction. The impact on each
prediction day is shown by blue colors for D1 (light blue) to D4 (dark blue). A large negative value indicates a strong
dependence whereas a value close to 0 describes a weaker dependence.

4 Discussion and Conclusions

This manuscript outlines the development of a skillful and reliable forecasting system for a 4-day point forecast of
dma8 ozone based on DL methods. O3ResNet performs better than the state-of-the-art CAMS regional ensemble.
O3ResNet was developed with data from Central Europe, but can easily be trained for other regions and, in principle,
for other ozone metrics or even other air pollutants such as particulate matter or nitrogen oxides, provided sufficient
data are available. The transferability of O3ResNet will be the subject of another study. The results above show that
the combination of a CNN architecture with residual blocks, the temporal decomposition of inputs into long-term and
short-term, and the integration of a weather forecast for all meteorological input parameters are the key ingredients for
our new high-quality ozone forecasting system.

The outstanding advantages of O3ResNet are a nearly bias-free forecast as well as a low seasonal variation of the
forecast quality. O3ResNet provides high quality predictions especially in the range of 20 to 55 ppb and for September
to May. Only at the edges of the distribution and for forecasts during the summer season does the performance decrease
a bit, although O3ResNet still outperforms the CAMS regional model ensemble. First, from a statistical point of view,
this is related to heteroscedasticity, since the variability of ozone is very high in summer and lower in winter. Second,
ozone in summer is more determined by the local daily maximum temperature [19], which is less well reflected in the
meteorological forecasts due to limited spatial model resolution. While such processes generally pose a problem for
conventional CTMs as well [15, 45], O3ResNet can at least better accommodate them. The nearly bias-free forecast can
be attributed to O3ResNet’s understanding of the LT chemical variables, which allows O3ResNet to determine a correct
concentration level at the target station. The ST meteorological inputs have a major contribution to the O3ResNet
forecast quality, because they provide information about the current weather situation.

Analysis of the dependence on the horizon of the weather forecast shows that O3ResNet can already provide a fully
reliable forecast of future ozone concentrations with a weather forecast of similar lead time. With a 48-hour weather
forecast, O3ResNet achieves an adequate 2-day forecast. This shows, with respect to previous studies such as [24] or
[32], that ozone prediction with DL methods is limited not by understanding the relationship between weather and
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Figure 11: Skill score of the forecast quality of O3ResNet depending on the lead time of the meteorological forecast in
relation to a forecast based with quasi unlimited lead time. The forecast days are individually colored for D1 (blue), D2
(orange), D3 (green) and D4 (red). The solid lines represent the mean skill scores, the bands the range between 25th
and 75th quantile. Additionally, the skill scores for CAMS in relation to the original O3ResNet forecast are shown as
dashed reference lines. Negative skill scores mean that the forecast for the corresponding meteorological forecast lead
time is worse than the best case. At a skill score of zero, the difference disappears.

air quality but, in particular, by uncertainty about future weather, and that the inclusion of a skillful weather forecast
contributes great value to DL-based ozone predictions.

In comparison to the CAMS regional ensemble median forecast, O3ResNet shows significant improvements for all
forecast days. Moreover, CAMS requires additional post-processing to deliver forecasts on station level, whereas
O3ResNet does not. [41] mention the development of various post-processing methods, including ML, to adapt the raw
CAMS forecasts to point forecasts with higher skill that are expected to be deployed in the coming years. O3ResNet
demonstrates that high-quality ozone forecasts do not necessarily require to run a complete CTM system, but can
alternatively also be produced using DL plus weather forecasts, which is much faster. A four-day forecast at all 328
stations of this study takes about 10 seconds.

Concluding, we suggest a number of tests and improvements before applying O3ResNet operationally. First, ERA5
is no real forecast, but a reanalysis, meaning that the frequency of updates through data assimilation is much higher.
Nevertheless, it can be reasonably expected that the forecast quality of O3ResNet would not drop dramatically, as
relevant numerical weather prediction on comparable spatial and temporal resolution, such as the Integrated Forecast
System (IFS) operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), already provides a
very reliable forecast for one week ahead [see 46, 47]. Second, O3ResNet is currently trained in rural and suburban
areas on stations classified as background. To provide a full range of forecasts, the model should also be tested in
urban areas as well as in regions with dominant air pollution sources, which may require the integration of emissions
data. Third, it is recommended to further investigate the predictive power for peak ozone concentrations. Albeit
O3ResNet is capable of simulating concentrations of dma8 ozone up to 80 ppb, the most extreme observed values
are not reproduced satisfactorily. For example, O3ResNet for July 2021 does not match with observations well.
Herein, uncertainty prediction, e.g., using probabilistic DL architectures as in [48] or following [49], who predict
the parameters of a probability distribution instead of the deterministic values, could add useful information. Also,
transformers [50] or more specifically a temporal fusion transformer [51], harbors promising potential. In combination
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with suitable interpolation techniques, such DL models may even be able to generate useful forecasts at locations where
no measurements of air pollutant concentrations are performed.
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APPENDIX A

Cross-validation

We perform cross-validation of the best model architecture (O3ResNet) by rotating the subsets, keeping the length of
each subset, 3 years for validation and testing and 12 years for training, as well as the hyperparameter configuration.
Data are always split block-wise along time. Therefore, in total, we test six different arrangements. Results are shown
in Table 1 and Figure 12. It can be seen, that the RMSE is close for all orderings of subsets. Yet, there is a deviation
in performance when positioning testing phase at the very beginning. Note that the number of samples varies from
about 160,000 (train/val/test) to 225,000 (test/train/val) due to a large temporal and spatial variability of data coverage.
In Figure 13, we furthermore show the temporal distribution of the target dma8 ozone in the final subset ordering
(train/val/test). It can be seen that the temporal distribution is quite similar for all subsets.

Table 1: Tabular results of cross-validation implemented by rotating training, validation and testing subsets. The RMSE
is shown in ppb and also visualized in Figure 12.

RMSE D1 D2 D3 D4 mean
data split D1-D4
train/val/test 4.55 5.43 5.69 5.73 5.35
train/test/val 4.59 5.56 5.64 5.72 5.38
val/train/test 4.25 5.14 5.25 5.38 5.01
val/test/train 4.71 5.71 5.87 5.90 5.55
test/train/val 5.13 6.28 6.45 6.51 6.09
test/val/train 5.25 6.42 6.69 6.73 6.27

Figure 12: Visualization of cross-validation results as shown in Table 1.
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Filtering of data

All time series are split into long-term (LT) and short-term (ST) components by means of FIR filter with a Kaiser
window [52] with parameter β = 5, a cutoff-period of 21 days and order of N = 42 days. For applying the FIR filter
causally to all chemical variables, we follow the approach from [32] and use climatology for time steps in the lead time,
whereas reanalysis data are used as a pseudo-forecast for the meteorological variables.

The decomposition is formalized by the following steps. First, we calculate a climatological statistic ai which contains
the seasonal cycle of the monthly mean as well as the diurnal cycle. Heteroscedasticity is taken into account by allowing
this diurnal cycle to vary over the year.

ai = f
(
xi, ti

)
(5)

A composite time series x̆i is created from the raw time series xi and the climatological statistic ai for each time t0 at
which a forecast is initiated. The combination is done depending on the lead time tl. For the chemical variables, tl = 0
always applies, and for the meteorological variables, tl → ∞. For the analysis of the dependence of O3ResNet on the
lead time of the meteorological variables, tl is set to a lead time between 0 and 168 hours accordingly.

x̆i(t0) =

{
xi , ti ≤ t0 + tl
ai , ti > t0 + tl

(6)

The properties bi of the FIR filter are determined by the Kaiser window given for the order of N = 42 days. Applying
the filter results in the LT components x(LT )

i of the time series.

x(LT )
n (t0) =

t0+N/2∑

i=t0−N/2

bi · x̆n−i(t0) (7)

Finally, the ST components x
(ST )
i are calculated by the difference between the original time series xi and the LT

components x(LT ).

x
(ST )
i (t0) = xi − x

(LT )
i (t0) (8)

This means in reverse that the sum of LT and ST components always adds up to the original time series.
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Temporal distribution of dma8 ozone
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Figure 13: Temporal distribution of dma8 ozone aggregated over all observations and stations illustrated as box-
and-whiskers. Distribution of the training (orange), validation (green) and testing (blue) data are highlighted in
color.
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APPENDIX B

Technical details

We train all NNs for this study on the Helmholtz Data Federation Machine Learning System (HDF-ML) at the Jülich
Supercomputing Centre in Jülich, Germany. In total, HDF-ML is equipped with 15 compute nodes, each running 4
Nvidia Tesla V100 GPUs and 2 Intel Xeon Gold 6126 with 12 cores (24HT). For each training, we use a single node
with all available GPUs since the computation times of the training are moderate (between half an hour and up to four
hours). Training as well as pre- and post-processing are carried out with the research software MLAir [53]. MLAir is
based on the programming language python, provides a complete workflow for performing ML experiments with a
special focus on time series predictions [54] and thereby makes use of tensorflow [55] for the ML training.

Preprocessing of the raw data of a single station covering the entire time period takes on average 108 sec, which means
that preprocessing of a single sample is about 0.03 sec on average. Approximately 90 % of the preprocessing time is
spent calculating the decomposition into LT and ST components, as the data for each sample changes with t0. For this
study, we use 12 parallel threads, so preprocessing is 12x faster on our systems. The inference time for a single station
is approximately 2.8 sec (0.0009 sec per sample). Measured inference time includes losses due to I/O operations such
as loading the processed data from disk and storing the predictions locally. The actual NN prediction, without I/O
operations, is performed on 4 GPUs in parallel. Numbers are also shown in Table 2.

Table 2: Preprocessing and inference time.

operation data duration (in sec)
preprocessing station 108
preprocessing sample 0.03
inference station 2.8
inference sample 0.0009
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Hyperparameter tuning strategy

We apply a kind of evolutionary algorithm when searching for optimal hyperparameters. For the initial first generation,
we randomly draw 70 combinations of hyperparameters according to the range of values, the sampling mode, and the
variation properties shown in Table 3 and 4 and measure the validation error. For the second generation, we select the
top 10 performing hyperparameter combinations in terms of validation error and again draw random combinations from
this new set, allowing all parameters to further vary according to the specified variation properties. We do not test the
exact same combination a second time. For the second generation, we reduce the number of experiments by 30%. In
each subsequent generation, we apply the same scheme, but reduce the number of best performing combinations by 1
and the number of experiments by 30% each time. After running 10 generations, we consider the combination that
leads to the lowest validation error across generations as the optimal choice of hyperparameters. We apply this search
strategy separately for each NN architecture.

Table 3: Overview on all hyperparameters tuned in this study. Each parameter is selected from the given range and with
indicated sampling method. Moreover, continuous parameter are varied according to the variation ratio. Details on the
NN architectures are provided in Table 4. Parameters marked with † are not tested for ResNet and U-Net.

parameter range sampling variation
learning rate [0.0001, . . . , 0.1] power of ten 80%
learning rate decay [0, 0.001, . . . , 0.1] power of ten 50%
batch size {256, 512, 1024} discrete -
dropout [0, . . . , 0.7] linear 50%
batch normalization {true, false} discrete -
l1 regularizer [0, 0.001, . . . , 0.1] power of ten 50%
l2 regularizer [0, 0.001, . . . , 0.1] power of ten 50%

activation function
{

relu, leakyrelu, prelu, elu†, selu†, tanh†
}

discrete -
NN architecture see Table 4 discrete -
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Table 4: List of NN specific hyperparameters referring to the model architecture. The model column contains
information about the chosen architecture and number of different configurations. A slash in the values column indicates
the number of neurons respective filters per layer.

model parameter values
FCN (10x)

hidden layers and neurons {32, 64, 64/32, 128/32, 128/64, 128/64/32 . . . , 512/256/128}
dense layer (after concat) {no, 256, 256/64, 256/64/16}

CNN (12x)
layers [1, 2, . . . , 6]
max pooling {no, every 2nd layer, always}
kernel size {(3, 1), (5, 1)}
filter {16, 32, 64, 128}
dense layer (after concat) {no, 128, 256}

RNN (10x)
recurrent layer {10, 32, 32/32, 64, 64/64, 64/32, . . . , 256/128}
unit type {LSTM,GRU}
dense layer (after concat) {no, 32, 64, 128}

ResNet (16x)
residual blocks [6, 7, . . . , 12]
kernel size {(3, 1)}
filter {16/32/64, 16/32, 32/64, 32/64/128}
consecutive layers with same filter [2, 4]
dense layer (after concat) {no, 128}

U-Net (9x)
down blocks with filter {16/32, 16/32/64, 16/32/64/128}
kernel size {(3, 1)}
dense layer (before concat) {no, 128}
dense layer (after concat) {no, 128}

all
dropout {no, only final layer, every 2nd layer, always}
output activation {linear}
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Model selection

To select the best DL architecture, we look at the RMSE over all stations (Figure 14). It can be seen that the forecasts of
the CNN with residual blocks (ResNet) and U-Net are with an average RMSE of 5.1 ppb better than those of the other
DL models (between 5.6 and 5.8 ppb). However, the distributions of the RMSE for ResNet and U-Net do not differ
significantly in a Mann-Whitney U test. Therefore, we apply a bootstrap procedure with 1000 repetitions as a second
evaluation step. We split the entire test data set into monthly blocks, randomly sample 36 blocks with replacement for
each iteration, and calculate the RMSE on each sample. In the bootstrap approach as shown in Figure 15, the ResNet
architecture performs slightly better, so we use it for further analysis.

4 5 6 7 8 9 10 11
root mean squared error (in ppb)

O3ResNet

U-Net

RNN

FCN

CNN

ns

*** *** ***

n=202

Figure 14: Distribution of the RMSE aggregated over test data (n = 202 stations) visualized as box-and-whiskers.
Results from a Mann-Whitney U test are shown additionally. Three stars indicate a significance level of p < 0.001 and
"ns" (not significant) corresponds to p > 0.05.
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Figure 15: Distribution of the RMSE calculated on n = 1000 bootstrap samples (with replacement) plotted as
box-and-whiskers. Significance levels are same as in Figure 14.
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Table 5: Summary of the hyperparameters of O3ResNet.

parameter range
learning rate 0.0003
learning rate decay 0.0
batch size 1024
dropout 0.59
batch normalization false
l1 regularizer 0.095
l2 regularizer 0.12
activation function prelu
NN architecture see Figure 3
trainable parameters 807,812
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APPENDIX C

Additional information on CAMS

A good overview of the regional CAMS ensemble can be found in [41]. The regional CAMS ensemble is composed of
the nine members CHIMERE [56], DEHM [57], EMEP [58], EURAD-IM [59, 60], GEM-AQ [61], LOTOS-EUROS
[62], MATCH [63, 64], MOCAGE [65, 66] and SILAM [67]. Each model is first interpolated on a 0.1◦x0.1◦ grid
individually and then the median is calculated for each grid cell. More information about this median value approach
and in-depth details about the ensemble members involved are presented in [40].

Joint distribution of CAMS

Figure 16: Visualization of the likelihood-base rate factorization for the D1 (left) and D4 (right) forecast of CAMS as in
Fig. 9
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Error maps
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Figure 17: Spatial distribution of the RMSE of O3ResNet averaged on all forecast days at each observation station.
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Figure 18: Same as in Figure 17 but for CAMS forecast.
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