
Utilization of Reconstructive Representation
Learning for Robust Classification

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Max Lübbering

aus
Borken

Bonn, 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Christian Bauckhage
2. Gutachter: Prof. Dr. Stefan Wrobel

Tag der Promotion: 27. Juni 2023
Erscheinungsjahr: 2023

Acknowledgements

As with any thesis, the success of this PhD thesis heavily depended on the support, feedback,
encouragement, and understanding of my advisors, supervisors, colleagues, family, and friends.
Throughout the course of my PhD program, I was fortunate enough to have been supported in every
way unsolicitedly.

Firstly, I would like to thank my advisor Dr. Rafet Sifa. From the first paper experiments to
polishing this thesis, Rafet has guided me in the right directions, challenged my perspectives, and
taught me how to ask the right research questions. His technical expertise, motivation and critical
thinking have greatly benefitted this thesis and my personal development.

Secondly, I would like to thank my supervisors Prof. Dr. Christian Bauckhage and Prof. Dr. Stefan
Wrobel, for accepting me as their PhD student, trusting me to conduct my own research, and finally,
grading my PhD work.
Thirdly, my colleagues Rajkumar Ramamurthy and Michael Gebauer deserve credit for their

extensive contributions to my PhD research papers. The countless hours of research discussions
and experiment analysis in the evenings and weekends have turned into exciting research results and
long-lasting friendships. Additionally, special thanks go out to my current or former colleagues at
Fraunhofer IAIS, Rhys Agombar, Maren Pielka, Helen Schneider, Priya Priya, Thiago Bell, Lars
Hillebrand, Robin Stenzel, Bilge Ulusay, Daniel Uedelhoven, David Biesner, Ulrich Nütten, Cengiz
Henk, Lorenz Wickert, Ben Wulff, Osama Soliman and many others who always kept me motivated,
introduced me to their field of work and made working at Fraunhofer IAIS such an amazing experience.
In particular, I thank Rhys and Lorenz for their critical feedback on this thesis.

Finally, I would like to thank my family and friends. Throughout the PhD, my girlfriend Sofia never
stopped providing me with the emotional support I needed in times of struggle. Her non-judgmental,
caring and loving personality gave me the backing and self-confidence I needed, preventing me from
losing myself in this thesis. I thank my mom for her love, understanding, and always being there for
me, and my dad for his love and vision. I thank my brother and friends for being in my life and making
it so exciting beyond my profession.

Thanks.

iii

Contents

1 Introduction 9
1.1 Optimization of Deep Neural Networks . 12
1.2 Introduction to Outlier Detection . 16

1.2.1 Evaluating Outlier Detection and Open-set Recognition Systems 17
1.2.2 Traditional Outlier Detection Methods . 18
1.2.3 Deep (Supervised) Outlier Detection . 19
1.2.4 Relationship Between Outlier Detection, Imbalanced Classification, Open Set

Recognition, One-class Classification, Novelty Detection, and One-vs-rest
Classification . 20

1.3 Autoencoders From a Manifold Learning Perspective 20
1.4 Robust multi-class classification . 22
1.5 Outline of This Work . 22

2 Design of the Experiment Environment 25
2.1 Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces 26

2.1.1 Design Choices . 28
2.1.2 Implementation . 28
2.1.3 Use case: Dataset Processing Pipeline for Outlier Detection 30
2.1.4 Conclusion and Outlook . 30

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research 31
2.2.1 Related Work . 33
2.2.2 Architectural Overview . 33
2.2.3 System Design . 37
2.2.4 Representative Research Use Case . 38
2.2.5 Quo vadis? . 40
2.2.6 Conclusion and Outlook . 41

2.3 Conclusion . 41

3 Supervised Outlier Detection with Deep Neural Networks 43
3.1 Introduction . 44
3.2 Autoencoders for Outlier and Novelty Detection . 45
3.3 Related Work . 46
3.4 Evaluation . 46
3.5 From Imbalanced Classification to Supervised Outlier Detection Problems 48

3.5.1 Adversarially Trained Autoencoders . 48
3.5.2 Experiments and Results . 52

v

3.5.3 Conclusion . 54
3.6 Supervised Autoencoder Variants for End-to-end Anomaly Detection 54

3.6.1 Supervised Autoencoders . 55
3.6.2 Adversarial Supervised Autoencoders . 55
3.6.3 Experiments and Results . 57
3.6.4 Conclusion . 59

3.7 Summary and Outlook . 60

4 Open Set Recognition 63
4.1 Introduction . 64
4.2 Related Work . 67
4.3 Decoupling Autoencoders . 68
4.4 Classification Concern Conflicting with Robustness 71
4.5 Achieving Bounded Open Set Recognition with Autoencoders 72
4.6 Towards Adversarial Robustness and Local Stability 74
4.7 Experiments and Results . 75

4.7.1 Selected Baselines . 75
4.7.2 Evaluation Approach . 76
4.7.3 Datasets . 77
4.7.4 Results . 78

4.8 Conclusion . 86

5 From Open Set Recognition Towards Robust Multi-class Classification 89
5.1 Introduction . 90
5.2 Related Work . 92
5.3 Informer . 92
5.4 Evaluation Approach . 95
5.5 Results . 97
5.6 Conclusion . 100

6 Applications 101
6.1 Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis 102

6.1.1 Toxicity Detection Dataset . 103
6.1.2 Experiments . 104
6.1.3 Results . 104
6.1.4 Challenges of Encoding Toxicities . 106
6.1.5 Conclusion . 106

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information
Extraction . 107
6.2.1 Extraction Service . 109
6.2.2 Experiments and Results . 112
6.2.3 Conclusion and Outlook . 115

7 Conclusion 117
7.1 A General Summary . 117

vi

7.2 Outlook . 119

A Appendix 121
A.1 From Open Set Recognition Towards Robust Multi-class Classification 121

A.1.1 Derivation of Informer Component Interdependence Induced by Softmax . . 121
A.1.2 Derivation of Uncertainty Computation Within Uncertainty Estimation Module122

A.2 MLgym exemplary pipeline configuration . 123

Bibliography 129

List of Figures 149

List of Tables 155

Publications 159

vii

Abstract

Deep neural networks (DNNs) are generally trained via empirical risk minimization (ERM) on
classification tasks. While this has lead to impressive results in scientific benchmarks, as well as,
industrial applications, it has been also shown that DNNs tend to give wrong predictions with elevated
confidence on out-of-distribution data. In the past, various AI accidents have been associated with
these robustness deficiencies of DNNs, making the development of safer DNN architectures inevitable.

To this end, we examine this issue from a theoretical, optimizational point of view and empirically
verify the deficiency across various benchmarks. As a potential, multistep solution, we turn towards
outlier detection methods in the first step, as such methods aim to capture out-of-distribution data, i.e.,
data that cannot be explained by the data generating process of normal data. In particular, we utilize
reconstructive representation learning, i.e., autoencoders, to learn a representation of normality and
leverage the reconstruction error as an outlierness signal to filter outliers. We find that the integration
of outlier data into the training process, as opposed to previous works (e.g., one-class autoencoders),
benefits the model robustness significantly, and propose the novel architecture adversarially trained
autoencoder (ATA), which includes this insight by actively maximizing/minimizing the reconstruction
error of outliers/inliers, respectively.

In the second step, we consider the related problem of open-set recognition (OSR), which aims to
filter a fixed set of inlier classes from all the possibly existing rest classes including out-of-distribution
data. We show that our supervised outlier detection method ATA can solve this generalized one-vs-rest
classification task, without expressing the robustness deficiencies of DNNs optimized via ERM. To
actively reduce the open-space risk, a principal robustness criterion in OSR, we extend ATA towards
our decoupled autoencoder (DAE) architecture, which learns a tighter hull around the inlier data and
provides probability scores on the inlierness of a sample, in contrast to ATA. To support our empirical
evidence, we prove the existence of an upper bound on the open-space risk for ATA and DAE.
In the final step, we perform multi-class classification on the inlier classes in the OSR setting,

which resembles the multi-class classification of real-world deployments due to the out-of-distribution
exposure. To this end, we compose an ensemble of DAEs, each learning a different one-vs-rest
relationship on the inlier classes, and demonstrate the robustness benefits and its capability to separate
between aleatoric and epistemic uncertainty. All three properties together are unmatched by any other
DNN architecture.
Finally, the applicability to real-world settings is displayed on the use case of toxicity detection in

online communication and the deployment case study of a large-scale information extraction system
for financial data.

1

Preface

With the rise in GPU and CPU performance and data abundance in the past decades, deep neural
networks (DNNs) and other machine learning (ML) methods underwent a quantum leap in innovation
and still continuously advance into our daily lives when we think of, e.g., medical diagnosis systems,
autonomous driving or stock trading. Despite their success in natural language processing (NLP),
computer vision, and speech recognition, traditional DNNs are not the panacea to all ML problems.
When exposed to unseen data, DNNs tend to give wrong predictions with elevated confidence,
potentially resulting in devastating consequences when carelessly deployed in safety-critical systems.
This raises the central question of this thesis:
How can we teach neural networks awareness for the unknown?
Alternatively, putting it in the colloquial words of this famous quotation, which ironically has often
been accredited to Mark Twain without any substantial evidence of its true origins:

It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that just ain’t so.
–Anonymous

Humans have a rich uncertainty model of the perceived environment that enables us to reason based
on different uncertainty concepts. We can be epistemically uncertain about a prediction due to lack of
important information, or we can be aleatorically uncertain due to environment-inherent stochastic
processes (e.g., uncertain about the result of a coin flip). Distinguishing these types of uncertainties is
crucial in many aspects of our lives. For instance, physicians always apply these concepts intuitively
when they examine a patient.

During training, neural network classifiers learn to perform classification between a set of classes
within a problem domain by minimizing the empirical risk within the data. These models generally
provide high accuracy and reasonable aleatoric uncertainty estimates within the problem domain.
However, they fail to capture epistemic uncertainty, as it is not reflected within the training process.
Consequently, when we zoom out of the problem domain, DNNs do not realize when they do not
know something.
We try to solve these deficits of (multi-class) classification in three steps. In the first step, we

turn towards outlier detection methods which aim to detect points that deviate so significantly from
the normal data that they cannot be explained by the inlier generating process. Thus, learning a
representation for the known implicitly allows for taming the unknown. We follow this idea by
developing supervised outlier detection methods based on reconstructive representation learning, i.e.,
autoencoders, that accurately predict outliers by learning a meaningful representation for inliers and
utilizing the reconstruction error as an outlierness signal. As indicated by our results, incorporating
outliers into the training process significantly improves the robustness of outlier detectors.

3

Contents

In the second step, we reframe the supervised outlier detection problem as a one-vs-rest (OVR)
classification problem, which aims to distinguish a set of inlier classes from all rest classes within the
problem domain. Extending the set of rest classes to all possibly existing rest classes and outliers, the
OVR setting can be seen as an open-set recognition (OSR) problem that cannot be addressed with plain
empirical risk minimization. We find that our supervised outlier detection methods can effectively
separate between inlier classes and rest classes, and thus, are capable of rejecting the unknown.

In the final step, we regard amulti-class classification problemwithC classes asC OVR classification
problems. For each of the C inlier classes, we learn a robust OVR model based on our previously
developed method. Thus, the robustness benefits extend to the multi-class classification problem.
Furthermore, we show that our models capture both aleatoric and epistemic uncertainty and can
distinguish the two, making them highly attractive for deployment in safety-critical environments.
This thesis is structured in six parts. After this introductory chapter, we present two open-source

frameworks in Ch. 2 which provide the infrastructure for our experimental setup. The frameworks
jointly streamline the training of DNNs and reduce the complexity of robustness / uncertainty
estimation evaluation. Furthermore, they are problem-agnostic and can be applied to perform
fast-paced, reproducible, and scalable deep learning (DL) research.
In Ch. 3, we show that unsupervised and semi-supervised outlier detection methods insufficiently

separate inliers from outliers when the outliers are overly correlated with the inliers. As a solution,
we propose the adversarially trained autoencoder (ATA) architecture, which actively maximizes the
reconstruction error of outliers. Our results conclusively show that ATA outperforms each outlier
detection and classification method on the imbalanced classification, outlier detection, and novelty
detection tasks. We further investigate if ATA combined with the multi-task learning algorithm
supervised autoencoder (SAE) [1] yields better latent representation for robust classification. While
SAE generally outperforms the baselines, we find indications that adversarially learned representations
are especially beneficial on novelty detection.
In Ch. 4, we formalize the concept of awareness of the unknown within the OSR framework. To

this end, we propose the novel architecture decoupling autoencoder (DAE), which has a proven upper
bound on the open space risk, a principal robustness criterion, and minimizes open space risk via a
dedicated training routine. Our method is benchmarked with three different scenarios, each isolating
different aspects of OSR, namely, plain classification, outlier detection, and dataset shift. The results
conclusively show that DAE achieves robust performance across all three tasks. This level of cross-task
robustness was not observed in any of the baseline methods.

Ch. 5 deals with robust multi-class classification. We utilize the robustness insights of the previous
two chapters and integrate reconstructive representation learning for multi-class classification into our
proposed Informer architecture. Our results show that Informers can separate epistemic and aleatoric
uncertainty, a crucial advantage in safety-critical systems.
Finally, Ch. 6 presents a larger-scale application of our methods on toxicity detection in online

comments and showcases a deployment case study of information extraction from financial documents.
The thesis closes with a conclusion in Ch. 7.

This thesis is based on the following chronologically ordered publications published between 2020
and 2022:

[1] M. Lübbering, R. Ramamurthy, M. Gebauer, T. Bell, R. Sifa and C. Bauckhage,
“From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially

4

Contents

Trained Auto Encoders”, International Conference on Artificial Neural Networks,
Springer, 2020.

[2] M. Lübbering, M. Gebauer, R. Ramamurthy, R. Sifa and C. Bauckhage,
“Supervised Autoencoder Variants for End to End Anomaly Detection”,
Pattern Recognition. ICPR International Workshops and Challenges, 2021.

[3] M. Lübbering, M. Gebauer, R. Ramamurthy, M. Pielka, C. Bauckhage and R. Sifa,
“Utilizing Representation Learning for Robust Text Classification Under Datasetshift”,
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen", 2021.

[4] M. Lübbering, M. Pielka, K. Das, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis.”,
ESANN, 2021.

[5] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Decoupling Autoencoders for Robust One-vs-Rest Classification”,
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2021 1.

[6] R. Rajkumar, M. Lübbering, T. Bell, M. Gebauer, B. Ulusay, D. Uedelhoven, T. Dilmaghani,
R. Loitz, M. Pielka, C. Bauckhage and R. Sifa,
“Automatic Indexing of Financial Documents via Information Extraction”,
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021.

[7] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
Bounding open space risk with decoupling autoencoders in open set recognition,
International Journal of Data Science and Analytics (2022) 1.

[8] M. Lübbering, M. Pielka, I. Henk and R. Sifa,
“Datastack: unification of heterogeneous machine learning dataset interfaces”,
2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW),
IEEE, 2022 66.

[9] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“From Open Set Recognition Towards Robust Multi-class Classification”,
Artificial Neural Networks and Machine Learning – ICANN 2022, 2022.

5

Nomenclature

Datasets

χ Dataset comprising samples {x(1), x(2), . . . x(n)}

p̂data Empirical data distribution, i.e., p̂data ∼ pdata

X Sample space

Y Target space

x Sample out of p̂data

C Set of classes present in pdata, i.e., C = {c1, c2, . . . , cm}

pdata Data generating process

Y Targets {y(1), y(2), . . . y(n)} corresponding to the samples within dataset χ

y Target corresponding to sample x

Neural networks

αk
j Activation, i.e., input of activation function in neuron j of layer k

ŷ Prediction of a sample, i.e., ŷ = f (x;Θ)

x̂ Reconstruction of sample x, e.g., by an autoencoder

Θ Neural network weights

Θ
(k) Neural network weights in layer k

ϕ(k) Layer k

ϕ
(k)
j Neuron j in layer k

ϑ
(k)
i, j Neural network weight between neuron i in layer k − 1 and neuron j in layer k. i = 0 refers to

the bias.

a(x) Activation function a : R→ R

d(x) Decoder part of an autoencoder

e(x) Encoder part of an autoencoder

7

Nomenclature

f (x;Θ) Neural network paramterized with weight matrix Θ

o Logit output o comprises the activations of the output layer, i.e., raw network outputs without
postprocessing such as softmax.

Optimization

H Hypothesis space

R True risk

Remp Empirial risk as an approximation to R

eMSE Mean squared error

f ∗(x) Target function that we want to fit

LMSE Mean squared error loss

8

CHAPTER 1

Introduction

Machine learning methods, especially their subfield of deep learning, have become more and more
prominent in our daily lives in recent years. Deep learning has a long-lasting history, with the
initial perceptron formalization in the 50s [2] and the first principled training algorithm, namely
backpropagation [3], dating back to the 80s. While the theoretical foundations of deep learning have
been established early on, their further development and application to real-world problems were
impeded for two reasons: lack of data availability and computing power. More specifically, training
a deep neural network (DNN) for a simple classification task such as letter recognition requires
thousands of examples and a significant amount of parallel computing power. Both requirements were
still unmet in the early 90s, leading to unfulfilled expectations and major funding cuts (the artificial
intelligence (AI) winter).

Today, the situation is entirely different. Powerful GPUs have entered the market, and the abundance
of data due to the progression in digitalization has given rise to a resurgence in deep learning research
and its various applications. Deep learning is now spearheading the advancements in machine learning
research in many domains such as natural language processing (NLP) and computer vision. The
architectures are becoming increasingly complex, demanding tremendous amounts of computational
resources and training data. While the image classification architecture LeNet [4] had less than
3,246 trainable parameters 25 years ago, one of today’s most complex language models, Palm, has a
striking number of 540 billion parameters [5]. This transition from shallow neural networks to deep
architectures has advanced state-of-the-art results in almost any machine learning domain, such as
object detection [6], text-to-image synthesis [7], language modelling [8–10], named entity recognition
[10, 11] and many others.
These impressive results have paved the way for ground-breaking achievements in which neural

networks greatly surpassed the performance of human experts on challenging, non-repetitive tasks. In
2016, Google Deepmind released its sophisticated DNN system AlphaGo [12] that was trained to play
Go, a game which favors intuition over pattern recognition and strategic way of playing due to a highly
branching search space. In a series of three games, AlphaGo defeated the Go world champion of the
time, in 2017. In 2020, Google Deepmind presented AlphaFold [13], a deep learning algorithm, which
provided a solution to the 50 year-old, unsolved protein folding problem, showcasing the applicability
of the field to computational biology and drug discovery [14]. Especially in the medical domain,
where human failures are generally less tolerable, physicians have been outperformed on, e.g., breast
cancer detection [15] by deep learning systems, transforming the mode of operation in medicine in the

9

Chapter 1 Introduction

foreseeable future [16].
Besides these breakthroughs, deep learning emerged into our daily lives in various, often hidden

ways. For instance, the voice recognition in our phones or smart home devices uses deep learning to
decipher our spoken words. Explicit and toxic content on social media is filtered by neural network-
based computer vision and NLP models. Most larger-scale webshops track the click-level behaviour
of every user accessing their website and use this information to recommend user-specific products to
maximize the conversion rate. Financial institutions use neural networks to detect fraudulent behaviour
or to predict their assets’ price movements. In 2019, Google announced that it applies the bidirectional
encoder representations from transformers (BERT [10]), a deep learning architecture, to understand
the meaning within the English search queries submitted to their search engine1. There is a general
trend that, whenever there is an abundance of data and a repetitive task that can be solved using the
information within said data, then this task has already, or soon will be solved by a machine learning
algorithm [17].

While deep learning research has provided the algorithms and tools to establish machine learning in
our everyday lives with outstanding success, there are also rising concerns regarding AI safety [18–20].
These concerns are backed by countless entries in the AI Incident database with multiple cases
of human casualties [21], illustrating the necessity to scrutinize algorithm robustness, deployment
scenarios and monitoring approaches. For example, when Microsoft released its Twitter Chat Bot
Tay in 2016, Tay was maliciously tricked by Twitter users into making racist comments via its online
learning approach. Another example of an AI failure was the adoption of a ball tracking algorithm in
a game between the Scottish soccer teams Inverness Caledonian Thistle F.C and Ayr United FC in
2020, which mistakenly took a linesman’s bald head as the ball2. More severely, (semi-) autonomous
driving has caused fatal crashes in the past due to failing machine learning models. For example, a
pedestrian was fatally hit by one of Uber’s self-driving test vehicles in 2018, as the system failed to
detect jaywalking, according to the US National Transportation Safety Board (NTSB)3. In another case
in 2016, a Tesla autopilot misidentified a truck’s white trailer as the sky, leading to the car crashing
into the truck, lethally injuring the driver, as reported by Tesla4. These examples suggest that only
the deployment scenario’s specific fault tolerance should ultimately determine the required level of
algorithm robustness, human supervision and real-time monitoring.
All four of these examples also pinpoint a severe issue with machine learning and especially deep

learning. Despite all models generalizing well within the concepts they were trained on, they did not
anticipate the conceptual shift and the fat tail of unseen conditions when deployed in the real world.
Technically, the optimization problem formulation of DNNs only involves the separation of observed
classes and disregards possible exposure to outliers and dataset shift at inference time [22]. Thus, no
principled mechanism in the training procedure controls the model’s behaviour in these scenarios,
leading to severe robustness deficiencies, and opening the door for disastrous outcomes. Throughout
this thesis, we define dataset shift as a significant difference in the joint distributions (i.e., input and
target) at training and test time. We leverage samples of classes unseen during training as a proxy to
estimate dataset shift robustness.
In this work, we target the robustness problem for DNNs and aim to increase their robustness

1https://blog.google/products/search/search-language-understanding-bert/
2https://www.thescottishsun.co.uk/sport/football/6216560/inverness-fans-camera-linesman-bald-head-ball-ayr/
3https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
4https://www.tesla.com/blog/tragic-loss

10

1.1 Optimization of Deep Neural Networks

to unseen events by teaching the network awareness of the unknown by reformulating the training
objective. Whenever the model is exposed to out-of-distribution (OOD) samples, i.e., samples that
cannot be explained by the inlier distribution of the training data, we want the model to be unsure
about their class affiliation.

To achieve this challenging goal, we turn towards the semi-supervised, autoencoder-based outlier
detection method, one-class autoencoder (OCA), since this method is designed to filter out-of-
distribution data. Essentially, OCA minimizes the reconstruction error of the inlier data and uses the
reconstruction error as a signal for the outlierness of a sample at inference time.

Following the intuition behind the manifold hypothesis, natural data generally occupies a low
dimensional manifold within a higher dimensional space. For instance, the image of a face can be
represented by distinguishing features such as shape of eyes, nose, mouth, etc. rather than a high
dimensional 3-channel image. An autoencoder, with its architectural bottleneck and reconstruction
objective, aims to learn this latent manifold within its embedding space, which is the natural
representation of the data generating process under the manifold hypothesis. Any deviation from the
latent manifold can be treated as an outlier.

Interestingly, we find that the semi-supervised training approach leads to poor classification
performance, especially when the outliers correlate with the inliers in feature space. Therefore, we
propose a more aggressive approach, namely an adversarially trained autoencoder (ATA) [23, 24],
which additionally considers the outliers at training time by maximizing their reconstruction errors to
make the reconstruction error an even better signal of outlierness. This supervised outlier detection
approach is the foundational basis of this work. We find that leveraging outliers at training time allows
the network to learn the distinctive, application-specific properties of outliers, demonstrating ATA’s
superiority over semi-supervised outlier detection methods. Finally, ATA resembles our first milestone
towards robust classification in deep learning by providing a principled formulation of the unknown.

We follow up on ATA by proposing an adaptation of ATA, resulting in the open set recognition
(OSR) [25] method decoupled autoencoder (DAE) [22]. In contrast to outlier detection, the objective
of OSR is to distinguish the observed inliers from partially observed rest classes which can comprise
samples from the inlier problem domain and OOD data. The adversarial training approach introduced
with ATA excels in this setting as it jointly optimizes for classification performance and outlier
detection. Our results demonstrate that DAE outperforms current state-of-the-art OSR baselines.

Finally, building upon DAE, we composed multiple DAEs as ensemble components within our
proposed Informer architecture for robust multi-class classification [26]. Each of the k ensemble
components learns a one-vs-rest (OVR) relationship for one of the k inlier classes and is thereby
capable of rejecting unknown samples. By design, the Informer differentiates between aleatoric and
epistemic uncertainty, a crucial robustness and interpretability criterion [27].

In the remainder of this chapter, we introduce the general training process of deep neural networks.
We then derive why these networks are only well-equipped for closed-set classification tasks and do not
generalize to unseen outliers. Afterwards, we introduce supervised outlier detection and disambiguate
the difference from classification and unsupervised outlier detection. We then bridge the gap to open
set recognition by shedding light on the connection to outlier detection, followed by an introduction to
manifold learning with autoencoders. Finally, we provide a detailed, chapter-wise outline of this work.

11

Chapter 1 Introduction

Input layer

Figure 1.1: Exemplary architecture of a feedforward neural network: Each neuron ϕ(k)i in layer k calculates
the weighted sum of the output in the preceding layer and the weighted b = 1 and subsequently maps it onto
a scalar value via a non-linear activation function a : R → R. The final output layer o predicts a sample as
one of the classes according to the maximum output value. These outputs are also referred to as logits and are
usually mapped to probability scores via the sigmoid function in the case of binary classification or the softmax
function in case of multi-class classification. The objective during DNN training is to adapt the weights such
that the true target function f ∗ : X→ Y is approximated accurately.

1.1 Optimization of Deep Neural Networks

A feedforward neural network, also referred to as a multi-layer perceptron (MLP), is an acyclic, directed
graph with a non-linear function within each node mapping the weighted sum of the input to a scalar
output value. The resulting nested chain of non-linear functions is a universal function approximator
of the true target function y = f ∗(x) [28]. Since the target function / data generating process pdata
is generally unknown, a dataset χ = {x(1), x(2), . . . , x(N)} with sample x(i) ∈ Rn is sampled from the
empirical data distribution p̂data instead to approximate f ∗(x). Fig. 1.1 illustrates an MLP with two
hidden layers each comprising three neurons. As we pass an input sample x to the first layer (k = 1),
the activation α(1)j of neuron ϕ(1)j , i.e., the j th neuron within layer 1, computes to

α
(1)
j (x) =

n∑
i=1

ϑ
(1)
i, j xi + ϑ

(1)
0, j, (1.1)

where ϑ(1)i, j refers to the weight on the connection from input xi to neuron j in layer 1. The weight ϑ(k)0, j
is referred to as the bias which translates the riff of the non-linear activation function a. The activation
function is a non-linear mapping a : R→ R which prevents the neural network from collapsing into
a linear model. Commonly used activation functions are the sigmoid function as(x) =

ex

ex+1 or the
rectified linear unit (ReLU) ar (x) = max(0, x) [29]. The forward pass within the hidden layers ϕ(k)

with k > 1 can be formulated recursively for a given neuron ϕ(k)j by

ϕ
(k)
j = a

(|ϕ(k−1)
|∑

i=1
ϑ
(k)
i, j ϕ

(k−1)
i + ϑ

(k)
0, j

)
, (1.2)

12

1.1 Optimization of Deep Neural Networks

|ϕ(k) | denotes the number of neurons in layer k The raw output vector o of the network, also referred
to as logits, is calculated as the weighted sum of the activations of the last hidden layer, as shown
in Fig. 1.1. If there is only a binary output, i.e., o ∈ R, then the logit can be scaled to [0, 1] via
the sigmoid function to obtain class probabilities. In case of multi-class classification with classes
C = {c1, c2, . . . }, the output vector o ∈ R |C | is usually transformed to a probability distribution via
the softmax function

softmax(o)i =
eoi∑ |C |
j=1 eo j

, (1.3)

with
∑ |C |

i=1 softmax(o)i = 1.
Given this definition of a feedforward neural network for binary and multi-class classification, the

network is a chain of nested, differentiable functions. When training such a network, our objective is
to accurately approximate the target function f ∗ : X→ Y, mapping the sample space X to the target
space Y. Partially following the generally accepted notation and derivation of DNN optimization in
[17], the target function can also be regarded as a data generating process pdata(x, y) that we aim to
approximate. An optimal approximation would minimize the risk R

R(Θ) = E(x,y)∼pdata L(f (x;Θ)), y), (1.4)

where (x, y) denotes a sample/target pair sampled i.i.d. from pdataand L denotes the per-sample loss
function.
In machine learning, the target function must be approximated by the empirical data distribution

p̂data(x, y), i.e., a set of observed samples, since the data generating process pdata is generally unknown
[17]. Thus, the overall optimization problem must instead be formulated as

Remp(Θ) = E(x,y)∼p̂data L01(f (x;Θ)), y) (1.5)

Θ
∗
= arg min

Θ

Remp(Θ), (1.6)

which corresponds to the minimization of the empirical risk Remp concerning the 0-1 loss L01 w.r.t.
the network weights Θ of neural network f . The 0-1 loss is defined as L01(ŷ, y) = 1(y , ŷ) and by
specification, is non-differentiable, making L01 inapplicable for gradient-based optimization of DNNs.
In practice, we optimize the model weights in an iterative fashion by calculating the loss gradient

w.r.t. the weights, a process referred to as (stochastic) gradient descent:

Θ← Θ − γ
∂L(f (x;Θ)), y))

∂Θ
(1.7)

The partial derivatives guide the optimization of the weights Θ at a learning rate γ into minimizing
the overall loss. In the past years, improved optimizer methods have been proposed that adapt
the learning rate for each model weight internally. These optimizers show better generalization
performance, as they are less prone to local minima/saddle point convergence and support sparse data
[30]. Throughout this thesis, we prefer these superior optimizers (e.g., Adadelta [31] and Adam [32])
over stochastic gradient descent (SGD).

As a solution to the non-differentiable L01 loss, a differentiable surrogate loss such as cross-entropy
is employed. The minimization of this loss not only minimizes Remp implicitly but also enforces better
separation between the classes resulting in better generalization performance by further reducing risk

13

Chapter 1 Introduction

R [17].
The foundations of cross-entropy loss base in the maximum likelihood framework. Partially

following the derivation steps and generally accepted notation of [17], the maximum likelihood
estimator is given by

Θ
∗
= arg max

Θ

pmodel(χ |Θ), (1.8)

whose objective is to select the hypothesis Θ ∈ H from the hypothesis space that maximizes the
likelihood of the data χ. This means that the hypothesis Θ∗ explains the data best. We can reformulate
the maximum likelihood estimator in a supervised setting as the product of the likelihoods of i.i.d.
samples given model parameters Θ

Θ
∗
= arg max

Θ

|χ |∏
i=1

pmodel(y |x
(i);Θ), (1.9)

where |χ | denotes the dataset size and x(i) the ith sample within χ. Due to numerical instability of the
product, the maximum likelihood is reformulated as a minimization of the negative log likelihood

Θ
∗
= arg min

Θ

−E(y,x)∼p̂data log pmodel(y |x;Θ). (1.10)

The negative log likelihood is equivalent to the cross-entropy H between the data and the model
predictions:

H(p̂data, pmodel) = −

|χ |∑
i=1

p̂data(y |x
(i)
) log pmodel(y |x

(i);Θ) (1.11)

= −
1
|χ |

|χ |∑
i=1

log pmodel(y |x
(i);Θ) (1.12)

= −E(x,y)∼p̂data log pmodel(y |x;Θ) (1.13)

Thus, maximizing the likelihood within the data w.r.t. the model parameters Θ corresponds to
minmizing the cross-entropy. Naturally, as lim |X |→∞ p(x|Θ) = pdata(x), the empirical risk Remp and
true risk R become equivalent and the minimization of cross-entropy results in the minimization of R.
Technically, the minimization of cross-entropy is performed via gradient descent, as there exists no
closed-form solution due to the non-convexity of the DNN optimization problem.
However, maximum likelihood estimation and empirical risk minimization only generalize under

the very strong assumption that p̂data resembles the true data generating process pdata. In the case of an
unobserved fat tail of pdata, e.g., outliers, noise, or dataset shift at inference time, the model’s behavior
is unpredictable as these samples were not reflected in the maximum likelihood estimation. It has
been shown by [18, 33–37], that a DNN provides overly confident estimates on OOD samples, even
though we expect a well-calibrated model to provide predictions of high uncertainty.
The issue of unforeseeable behavior under OOD exposure is illustrated in Fig. 1.2. An MLP is

trained to differentiate the red and blue classes for each of the four toy datasets, resulting in the green
decision boundaries. The optimization process maximizes the likelihood of the data and enables the
model to generalize within the concepts of the training data. When the model is exposed to noise at

14

1.1 Optimization of Deep Neural Networks

Figure 1.2: Demonstrating the intrinsic issues of empirical risk minimization in DNNs: We trained an MLP on
each binary toy dataset (red and blue samples) and highlighted the decision boundary surface. While the model
generalizes well within the classes it was exposed to at training time, each noise sample (orange) is attributed to
one of the two classes with high confidence, jeopardizing model robustness. We would expect a robust model to
learn a hull around the inlier data (i.e., red and blue samples), efficiently rejecting any outlier data at test time.
We will propose such methods based on reconstructive representation learning in this thesis.

test time, as indicated by the orange samples, these samples are falsely predicted as one of the two
classes with maximum confidence.

Even though the empirical risk minimization is a well-founded approach when the training data
reflects the true data generating process, the reported issue of overly confident predictions on OOD
data and the decision boundary surfaces in Fig. 1.2 pinpoint a fundamental issue concerning model
robustness. In our work, we turn towards outlier detection methods whose objective is to identify
samples that cannot be attributed to p̂data, i.e., outliers. One of the central ideas in this work is the
combination of outlier detection methods with classification methods to jointly optimize robustness
and empirical risk. In safety-critical environments, such robust methods are of utmost importance for
preventing AI accidents.

15

Chapter 1 Introduction

(a) Training split D1 (b) Training split D2 (c) Training split D3

Outlier?

(d) Test split DE

Figure 1.3: Different perspectives on the outlierness of a sample: Training set D1 contains only a single inlier
class, training set D2 contains three disjoint classes and training split D3 contains noise additional to D2 samples.
Given the three different training sets Di , which of the samples highlighted in orange within test set DE qualify
as outliers? The underspecification of the problem allows for different conclusions. Example inspired by [43].

1.2 Introduction to Outlier Detection

Outlier detection has a long-lasting history of research dating back to the 60s [38]. It is still a largely
unsolved research domain with various open subproblems touching various related fields in machine
learning, such as open set recognition [39], one-class classification [40] and novelty detection [41].

In his book on outlier detection [42], Hawkins defines an outlier as "an observation which deviates so
much from other observations as to arouse suspicions that it was generated by a different mechanism".
This abstract outlier definition is inherently ambiguous, as outliers have a strong contextual dependency.

The contextual dependency can be understood from the inliers in Fig. 1.3, providing a data-centric
description of the normality. Given split D1, it is reasonable for an outlier detection model to learn a
normality representation from the inlier distribution highlighted in blue. Any significant deviations
from this distribution can be understood as outliers, resulting in the three isolated samples, highlighted
in orange, being predicted as outliers in DE . For D2, the orange sample within the red distribution is
no longer an outlier, as its origin can be directly associated with the red class. Given the noise in D3,
the outlier attribution of the remaining two samples becomes ambiguous. Depending on the context,
the green noise and the infrquent purple class might not raise enough suspicions to qualify as outliers.

16

1.2 Introduction to Outlier Detection

The example5 made by Prof. Bauckhage in his pattern recognition lecture at the University of Bonn
illustrates the general underdetermination of outlierness. Given a set of composers {Stockhausen,
Bach, Grieg, Beethoven, Brahms, Wagner}, the questionWhich composer qualifies as an outlier? is
completely underdetermined. For instance, if clustered by genre, Stockhausen would stand out as
the only non-classical composer, whereas if clustered by nationality, Grieg, as a Norwegian, would
be the only non-German composer. This example highlights the different objectives of supervised
and unsupervised outlier detection. Unsupervised outlier detection aims to detect generic saliencies,
independent of the concrete problem domain. These saliencies are often forwarded to experts for final
review [43]. In contrast, supervised outlier detection leverages the annotated outliers as guidance to
learn, not only the concept of normality, but also the concept of problem specific outliers [43], often
rendering expert review redundant. The related imbalanced classification task is often considered a
subproblem of supervised outlier detection.

The problem of outlierness underdetermination is further amplified by the data sparsity induced by
high-dimensional data, in combination with noisy/irrelevant features [44–46]. These settings make
outlier detection a challenging task, as the outlier scores of such detectors become uninformative
and sample pairs become equidistant, irrespective of their true classes [47, 48]. Therefore, it is
always advised to utilize labeled outliers during model training, as they uncover the non-linear outlier
properties hidden within the high-dimensional data [43].
The aforementioned complexities associated with outlier detection are present in many practical

classification tasks, such as fraud detection [49], intrusion detection [50], surveillance, monitoring,
predictive maintenance [46], and medicine [51, 52]. This is why outlier detection has significantly
contributed to these fields [43, 45, 46].

1.2.1 Evaluating Outlier Detection and Open-set Recognition Systems

The evaluation procedure of outlier detection systems largely depends on the availability of annotated
data. In the case of unsupervised (trained and evaluated on unlabeled data, containing normal and
anomalous instances) and semi-supervised outlier detection (trained and evaluated solely based on
inlier classes), ”goodness of fit” metrics based on cluster/sample similarity can be applied to measure
the coherence of the clusters and inlier samples [43].

With the availability of ground truth data on normal and anomalous classes, traditional classification
performance metrics can be calculated in the supervised setting, though, special attention needs to be
paid to inherent class imbalances. In particular, the low base rate of outliers allows for reaching close
to perfect scores on accuracy metrics [44]. Thus, outlier detectors are often manually evaluated based
on their receiver operating characteristic (ROC) curve or precision-recall (PR) curve. The models
can be compared irrespective of any discrete decision boundary by calculating the area under such
curves, i.e., AUROC and AUPR, respectively. This is an important evaluation criterion as the decision
boundary is usually determined based on the deployment domain, accounting for the cost of false
positives and false negatives.
More specifically, the AUROC metric calculates the area under the ROC curve, which maps the

false positive rate (FPR) onto the true positive rate (TPR) for each threshold. The two rates are defined
by FPR = FP

FP+TN and TPR = TP
TP+FN , where TP, FP, TN and FN depict the number of true positives,

false positives, true negatives and false negatives at a certain threshold, respectively. Note that TPR

5https://youtu.be/-vsCj0ijP4U?t=547

17

Chapter 1 Introduction

is also often referred to as recall in the literature. From an interpretation point of view, AUROC
yields the probability of a random rest sample being ranked higher than a random inlier [33, 53], and
therefore is invariant to class imbalance. This invariance to class imbalance allows for interpretable
results across datasets, since a random classifier achieves an expected AUROC score of 50%, and a
perfect classifier, a score of 100%.
Since AUROC in isolation can be insufficient for outlier detection and open-set recognition with

their prevalent class imbalance, we can additionally consider AUPR. This metric is generally employed
when faced with the ”needle in the haystack problem”, as AUPR takes the different class base rates
into account [33]. Similar to AUROC, the PR curve maps the recall onto the precision = TP

TP+FP

for each threshold. Since the AUPR metric is base rate dependent, there is no fixed baseline AUPR
score for a random classifier like there is for AUROC. In fact, given a random classifier, the AUPR
score is roughly equal to the random classifier’s precision, which is equal to the rate of the positive
class [33, 54]. As a result, it is essential to always communicate the AUPR scores w.r.t. the random
classifier performance and the pre-defined positive class; otherwise, the metric is difficult to interpret
meaningfully.

1.2.2 Traditional Outlier Detection Methods

From a methodological point of view, traditional outlier detectors are based on probabilistic models,
linear regression models / PCA and proximity-based models [43], and are implemented in an
unsupervised fashion. Traditional outlier detection mostly disregards supervised methods due to the
frequent lack of outlier labels in practice.
The foundational objective of each method is to learn a representation of normality, allowing the

modeling of abnormality as a deviation from said representation. The main distinction between these
outlier detection methods lies within the implementation of learning the outlierness score.

Probabilistic models such as Gaussian mixture models maximize the likelihood of the training data
by variation of the model parameters, e.g., by applying the expectation maximization (EM) algorithm.
Samples are predicted as outliers when they cannot be explained by any of the learned Gaussian
distributions [43, 55, 56]. Such models have strong prior assumptions, as the number of mixture
components and type of distribution need to be determined without access to actual outliers.

Linear models such as principal component analysis (PCA) and linear regression aim to fit the data
to a set of linear parameters by minimizing, e.g., the mean square error (MSE)[43]. These models
are interpretable and provide simple means for noise reduction, however, due to their linearity, the
detection of more complex, non-linear outliers is limited. This has led to the development of kernel
PCA and kernel SVM, which by design are capable of detecting suspicious, non-linear patterns [43].
Proximity-based models such as k-nearest neighbors (KNN) or k-Means clustering measure the

distance to reference points used as heuristics for the outlierness of a sample [43, 57]. While these
heuristics work reasonably well on simple outlier detection tasks, the outlierness scores get disturbed
significantly with the advent of noise [43]. Building on the idea of distance-based outlier scores, the
tail of the outlierness score distribution can be fit to extreme value distributions [43], such as the
Weibull distribution [58].

While all of these traditional outlier detection methods have proven successful within various
practical applications, they also share various shortcomings. Most significantly, none of these methods
incorporates annotated outliers in the training procedure, hence, often failing to convey the outlier
properties of interest. This is often further impaired by noisy, high-dimensional settings, preventing

18

1.2 Introduction to Outlier Detection

the model from detecting the non-linear outlier relationship [46]. Therefore, in the following section,
we discuss supervised outlier detection with its different challenges and advancements in the context
of deep learning.

1.2.3 Deep (Supervised) Outlier Detection

Supervised outlier detection, with its intrinsic class imbalance, induced by the low base rate of outliers,
can be regarded as a challenging subtype of supervised classification. Further, complicating matters,
only a subset of the outlier classes may be available at training time, transferring the aforementioned
challenges of semi-supervised outlier detection to supervised outlier detection.
In practice, the class imbalance often leads to classifiers, trivial or sophisticated, reaching almost

perfect accuracy scores by always predicting the majority class. This issue can be counteracted by cost-
sensitive training objectives and over-/undersampling of the outlier/inlier classes [43, 59]. Technically,
due to the iterative training in deep learning, cost-sensitive learning and over-/undersampling can be
implemented in the loss function and data loader, respectively. Another approach is sampling linear
combinations of outlier pairs to simulate more diverse outlier samples, as proposed by the SMOTE
algorithm [60]. Despite its long history, imbalanced classification is still subject to research, and
remains an unsolved problem to this day [61].

To learn the non-linear characteristics of outliers, scholars have conducted research on a plethora of,
mainly unsupervised, deep learning architectures [45, 46]. At their core, these architectures adopt the
idea from traditional outlier detectors of learning a representation of normality to classify substantial
deviations from the normal representation as outliers. Outlier detection based on deep learning can
be categorized into two research directions [45]. Firstly, transfer learning can be utilized to reduce
the high dimensional input space by, e.g., using the latent activations of a pre-trained model [62]
or the latent state of an autoencoder [62, 63]. In this case, outlier detection methods are applied to
the lower-dimensional representations as a downstream task, decoupling the representation learning
from the outlier detection. Thus, these approaches can only work under the assumption that the
representations learned during pre-training capture the outlierness of a sample, despite both being
possibly disjoint objectives.
In the second direction, end-to-end outlier detectors learn a representation of normality using

representation learning. In the case of autoencoders [64, 65], which minimize the reconstruction error
on the inlier data (semi-supervised), or the entire dataset with underrepresented outliers (unsupervised),
the reconstruction error becomes predictive of the inlierness of a sample due to the bottleneck limiting
information flow. This approach assumes that the input space is mostly free of noise and ambiguous
features, which would dilute the reconstruction error-based outlierness signal otherwise. Generative
adversarial networks (GANs), with their generator and discriminator being trained in a min-max
fashion, can also be utilized for outlier detection [66]. In AnoGAN, a GAN-based outlier detector, the
outlierness of a sample is defined as a linear combination of the residual loss (difference between
input sample and generated sample) and the discrimination loss (i.e., classification loss within the
discriminator).

Surprisingly, although the incorporation of outliers is strongly suggested if available [43], the two
research directions within deep outlier detection generally do not incorporate outliers into the training
process and mainly focus on unsupervised [62, 63, 66] or semi-supervised [67, 68] methods. Our
results on supervised outlier detection in Ch. 3 and Ch. 4 clearly show that incorporating outlierness
information during training, enhances the model’s capabilities for detecting application-specific

19

Chapter 1 Introduction

outliers significantly.

1.2.4 Relationship Between Outlier Detection, Imbalanced Classification, Open Set
Recognition, One-class Classification, Novelty Detection, and One-vs-rest
Classification

Outlier detection, i.e., the task of detecting samples which cannot be attributed to an inlier data
generating process, plays a crucial role within robust classification, as a robust classifier should be
able to reject such anomalies. This section briefly introduces the related concepts and elaborates on
the connection to outlier detection.
Due to the generally low base rate of outliers, supervised outlier detection faces severe class-

imbalance. Therefore, imbalanced classification can be regarded as a subproblem of supervised outlier
detection. Novelty detection is often treated as a semi-supervised setting, in which the model is not
exposed to the novel outlier types (novelties) at training time.
One-vs-rest (OVR) classification [69], as a supervised classification setting, aims to distinguish a

single class of interest (COI) from a set of observed rest classes (RCs). This closed-set classification
scenario neglects the existence of outliers and is often subject to severe class imbalance.
One-class classification (OCC) can be regarded as a semi-supervised setting which exposes the

model only to COI samples at training time. At inference time, the model is supposed to reject samples
deviating from the COI representation [68, 70], i.e., outliers and noise, but also any classes that are
similar to the COI. The lack of outlier exposure limits the model to unsupervised or semi-supervised
outlier detection methods.

Finally, open set recognition (OSR) [25] exposes the model to a set of COIs (i.e., closed set) and a
set of observed rest classes (i.e., the observed subset of the open set) at training time. The objective is
to leverage this information to learn a decision boundary separating the closed set from the open set.
Note that the open set comprises observed RCs and unobserved samples belonging to unseen RCs,
noise, or outliers. Open set recognition formulates an objective that jointly minimizes the open space
risk and binary classification error between COIs and RCs. The open space risk can be interpreted as
the slack between the learned decision boundary and the tightest hull wrapping the COIs. Minimizing
the open space risk implicitly also minimizes the risk of false positives, resulting in superior model
robustness.

1.3 Autoencoders From a Manifold Learning Perspective

The bottleneck in the center of an autoencoder is often considered to be a lossy compression, limiting
information flow. Accordingly, the network is forced to find a non-linear function mapping the input
data to a compressed representation in the hidden space, from which the input can be reconstructed.

Another, more in-depth perspective can be derived from the manifold hypothesis. An n-dimensional
manifold is defined as a topological space that is locally Euclidean, i.e., homeomorphic to the Euclidean
space Rn [71]. For instance, a sphere in R3 is a two-dimensional manifold, since the two-dimensional
neighborhood of a given point on the manifold is Euclidean. The manifold hypothesis argues that
the high dimensional data we obtain from our natural environment can be represented on a manifold
within a lower dimensional space [69]. For instance, a 28×28 MNIST image x ∈ R784 contains vast
amounts of redundant pixel information, which could be compressed into features such as strike

20

1.3 Autoencoders From a Manifold Learning Perspective

(a) Autoencoder exposed to in-distribution data

(b) Autoencoder exposed to out-of-distribution data6

Figure 1.4: Illustration of autoencoder-based manifold learning by the example of monkey face detection: In
Fig. 1.4(a), the image is obtained from the natural manifold M and projected into the high dimensional image
space. The autoencoder trained to reconstruct monkey face images encodes the image x(1) by mapping it onto
the learned manifold M̂ , to subsequently reconstruct x(1) as x̂(1) from the low dimensional embedding h(1). Note
that the sampled image lies in Rn with n � 2 and the manifold is one-dimensional embedded within R2. In
Fig. 1.4(b), the input image does not originate from M and is therefore not placed onto M̂ by the encoder e and
cannot be reconstructed.

width and strike length on a low dimensional manifold. It follow that an i.i.d. sample x ∼ R784 is
highly unlikely of being mapped onto the MNIST manifold, as it would have to follow the distinctive
MNIST patterns. Conversely, there is data that cannot be generated from a low dimensional manifold.
Consequently, manifold learning poses an effective angle for outlier detectors.

Autoencoders rely heavily on the manifold hypothesis. They aim to learn two non-linear mapping
functions. The encoder maps the high dimensional data onto a learned manifold within the lower
dimensional embedding space that is similar to the natural manifold, and the decoder reconstructs
the original, high dimensional input from the low-dimensional embedding in the manifold. In this
framework, the central idea of autoencoder-based outlier detection is that the decoder maps the
data generating process from the input space onto the natural manifold and the decoder accurately
reconstructs the embeddings. When the model is exposed to outliers, i.e., samples not associated with
the data generating process, the outlier is expected to not be placed onto the manifold, and consequently,

6The author would like to thank Eddi for being such a good boy.

21

Chapter 1 Introduction

not be reconstructed accurately. This concept is outlined in Fig. 1.4 by the example of reconstructing
monkey portraits. Under the condition that monkey portraits occupy a low dimensional manifold
M, we sampled the high dimensional portrait in Fig. 1.4(a) from M. During training, the encoder
learned a similar manifold M̂ ' M to represent monkey portraits, allowing the decoder to accurately
reconstruct the images. When the image does not occupy the natural manifold, as shown in Fig. 1.4(b),
the encoder maps the sample far from M̂ in embedding space, leading to poor reconstruction.
As we will show empirically, semi-supervised autoencoders tend to learn a manifold that in the

limit mimics the identify function f (x) = x. As a solution, supervision can guide autoencoders to
learn a manifold solely for the inlier data generating process and force any deviations to be placed far
from the manifold in the embedding space.

1.4 Robust multi-class classification

Model robustness is a crucial concern that can be considered orthogonal to accuracy. An accurate
model generalizes well on the concepts it was trained on, meaning the accuracies achieved on a training
split extend to a hold-out test split that is representative of pdata. However, when pdata is subject to
corruptions such as noise, a robust model is supposed to reject such anomalies as unseen conditions.
In this work, we consider three different robustness aspects. Firstly, when deployed in the open

world, a model can be exposed to natural corruptions (e.g., outliers or noise) that were unobserved
during training [35, 72, 73]. It has been shown by [33], that traditional DNNs falsely predict such
corruptions as one of the inlier classes with high confidence, jeopardizing model robustness. Secondly,
with adversarial examples (engineered samples to fool a DNN), there is another type of corruptions a
model is supposed to reject [37, 74]. There is a plethora of adversarial attacks based on gradient ascent
and black box testing, aiming to find samples with minimal deviations from true samples that flip the
class prediction [75, 76]. A robust model is capable of rejecting these corruptions by associating the
sample with none of the COIs, e.g., by predicting the sample as a uniform class distribution.

Finally, calibration accuracy can be placed under the wing of robustness [35, 77–79]. The confidence
predicted by a model should resemble the model’s true error rate. For instance, a model predicting
a sample with 90% confidence should be correct in 90% of the cases. It is important to note that
calibration performance is orthogonal to accuracy [35]. A random model can be perfectly calibrated
while being inaccurate.

In this work, we develop algorithms that are robust w.r.t. to these three robustness concerns.

1.5 Outline of This Work

On a high level, this work aims to map out the means to teach DNNs sensitivity to the unknown in a
supervised (multi-class) classification setting. As mentioned previously, awareness of the unknown,
and more technically, model robustness, are critical requirements for improved AI safety, with
countless applications. To reach this goal, our work can be divided into the following three algorithmic
milestones:

1. Extension of semi-supervised outlier detection towards supervised, deep learning-based outlier
detection of application-specific anomalies

22

1.5 Outline of This Work

2. Utilization of supervised outlier detectors for robust one-vs-rest classification in an open-world
setting, i.e., open set recognition (OSR)

3. Extension of our proposed OSR methods to robust multi-class classification

Algorithmically, our idea is founded on traditional, semi-supervised, autoencoder-based outlier de-
tectors. Firstly, we extend this approach towards the supervised outlier detection method, adversarially
trained autoencoder (ATA), by enriching the objective with concrete outlier information. Afterwards,
we adapt ATA towards open set recognition by teaching it the decision boundary in reconstruction
error space in an end-to-end fashion, as well as, enabling the resulting decoupled autoencoder (DAE)
method to estimate the (subjective) prediction uncertainty. The DAE training objective forces the
model to learn a compact decision boundary around the inlier samples in reconstruction error space,
resulting in a decreased false positive rate. Finally, we arrange DAE in an ensemble, where each
component learns a one-vs-rest relationship for a different class. This results in a robust multi-class
classification algorithm that captures different types of uncertainties, improving the interpretability of
model uncertainty, a key concern of AI safety.
To the best of our knowledge, no one has previously worked on this road map. While multiple

papers have stated the general possibility of leveraging outliers to increase corruption robustness [34,
80], our contribution is based on successfully connecting outlier detection and robust multi-class
classification in a principled manner. Specifically, we propose three novel algorithms which outperform
state-of-the-art methods in (supervised) outlier detection, open set recognition and robust classification.
The chapter-wise outline of this work is structured in six parts. In Ch. 1, we introduced the reader

to DNN optimization, outlier detection, robust classification and provided the theoretical foundation
to comprehend our theoretical contributions. In Ch. 2, we present the two open-source frameworks
Datastack and MLgym, which build the infrastructure for our experimental setup.
With these two frameworks, we implement an end-to-end machine learning research pipeline

supporting efficient prototyping, reproducibility of results and insightful evaluation:

• Datastack7: The heterogeneous data format landscape of raw machine learning datasets
complicates well-designed end-to-end machine learning pipelines. With datastack, we propose
a framework that handles any data format as a byte stream on an interface level, and casts
these byte streams to the desired data format within the dataset-specific components, such
as the preprocessor or iterator. As a result, the framework itself is data format agnostic.
Further, we implemented several higher-level iterator functions such as the stacking, joining,
and splitting of iterators that can be arranged within a dependency graph, allowing complex
iteration functionality. The sophisticated nature of outlier detector evaluation requires various
datasets with different outlier types (e.g., observed, unobserved and noise) arranged in a complex
evaluation pipeline. Datastack breaks this complexity down into higher level iterators.

• MLgym8: Machine learning research demands reproducible experiments, including tracking
the implementation of the underlying experiment setup, the algorithm parameterization, and the
performance scores. Most deep learning frameworks such as Tensorflow and Pytorch provide
great flexibility in implementing, training and evaluating deep learning models, however they

7https://github.com/le1nux/datastack
8https://github.com/mlgym/mlgym

23

Chapter 1 Introduction

lack rudimentary support for reproducibility. Consequently, many machine learning researchers
implement their code within a single jupyter notebook, resulting in a lack of test coverage,
limited scalability, poor architectural design, and impaired readability. All of these shortcomings
are partial causes for the insufficient reproducibility of machine learning research. Especially in
outlier detection and open set recognition with their involved training and evaluation routines,
there is a need for a well-designed framework handling the reproducibility of ML experiments.
Therefore, we propose MLgym, a framework that tackles the aforementioned shortcomings
by specifying the entire machine learning pipeline for training and evaluation within a single
configuration file. Given the latest commit hash prior to an experiment, all experimental results
can be reproduced using the respective config and commit hash. Furthermore, MLgym is a
feature-rich framework that supports distributed model training/evaluation, grid search, (nested)
cross-validation and common loss/metric functions.

Readers solely interested in the theoretical aspects of our work, can skip this chapter.
In Ch. 3, we turn towards supervised outlier detection, tackling the aforementioned challenges

of supervised outlier detection. We propose two algorithms for supervised outlier detection based
on semi-supervised outlier detectors and supervised autoencoders (SAEs) [1]. We explore how an
adversarial loss function that incorporates outlier samples into the training objective significantly
improves detection performance. Furthermore, we find that the reconstruction error score becomes
highly predictive of the outlierness of a sample. Lastly, we find that the multi-task learning setup
within SAE, combined with an adversarial loss function, leads to richer representations within the
latent space that can be leveraged for downstream outlier classification.
In Ch. 4, we bridge the gap between supervised outlier detection and the related task of open set

recognition. With DAE, we provide an extension to our proposed ATA method, which filters inliers
and is capable of effectively rejecting outliers. As we will proof in Ch. 4, DAE bounds and minimizes
the open space risk, thus limiting the false positive rate and learning a compact decision boundary
around the inlier data. Over a range of experiments, we verify DAE’s robustness superiority compared
to multiple state-of-the-art OSR methods.

Having demonstrated the robustness benefits of DAE in Ch. 4, we apply these insights to multi-class
classification in Ch. 5. By arranging DAE in a one-vs-rest ensemble, an architecture we refer to as
Informer, we empirically show the tremendous robustness gains compared to traditional DNNs and
other ensemble methods. Finally, we show that Informer splits aleatoric and epistemic uncertainty in a
principled manner. The source of the two uncertainty types is fundamentally different and often calls
for different actions, necessitating this property.

After proposing the three novel methods ATA, DAE, and Informer, we demonstrate, in Ch. 6, how
these supervised autoencoder methods can be applied to practical use cases and lay out potential
challenges. Firstly, we conduct a study on toxicity detection in online communication such as social
networks. We find this task to be especially difficult for autoencoders, as learning a representation
of normality is impractical due to the cheer size of the non-toxic class. However, our results show
that learning a toxicity representation is feasible and generalizes better to unseen toxicity types in
comparison to traditional deep learning methods. Secondly, we propose a document information
extraction system for processing financial documents. We showcase how our methods seamlessly
integrate with existing extraction algorithms at scale.

The thesis concludes with a summary and outlook in Ch. 7.

24

CHAPTER 2

Design of the Experiment Environment

In this chapter, we outline the technical design of the experiment environment, we implemented to
collect the empirical results for the following research chapters. The content of this chapter is not
required to understand the theoretical underpinnings of our proposed methods and therefore can
be skipped by readers only interested in the algorithmic aspects of this work. Nevertheless, this
chapter is an important technical contribution to outlier detection and open-set recognition research.
It exposes and solves various limitations of current deep learning research such as reproducibility
and standardization of existing open-source frameworks. These limitations are enforced in outlier
detection and open-set recognition which often require more sophisticated training and evaluation
routines. For instance, in this setting, models are often evaluated w.r.t. different types and sets of
outliers. Furthermore, outlier detection-specific training routines facilitating, e.g., over-/undersampling
of a subset of classes and cost-sensitive learning, need to be implemented. These use cases and
requirements are not met by current deep learning frameworks and force researchers to implement
their own research environments from scratch. Moreover, test coverage and accurately designed
architectures are mostly out of the scope of researchers, often resulting in low reproducibility or even
faulty results in peer-reviewed articles.
To this end, in this chapter, we present the two open-source frameworks Datastack, a framework

for end-to-end dataset preprocessing, and MLgym, a framework that dynamically specifies the entire
training and evaluation workflows. Jointly, these frameworks provide the flexibility to create complex,
reproducible workflows, meeting the special requirements of outlier detection and open-set recognition
tasks.

More specifically, Datastack’s key feature is dataset format agnosticism, which allows the framework
to support any dataset format that can be represented as a byte stream. This is achieved by handling
the datasets as byte streams on an interface level, irrespective of the underlying file format. Within
the custom dataset implementation, these byte streams are decoded to the respective data formats for
processing. Besides this feature, Datastack provides high-level iterator functionality and also allows
implementing custom iterators that can be combined dynamically into complex dataset processing
pipelines.
Complementing the dataset processing, MLgym allows researchers to perform reproducible deep

learning research. Here, we leverage the inversion of control paradigm to propose a framework that, in
contrast to most other deep learning frameworks, maintains full control over the training and evaluation
cycle, while allowing its extension with custom components in a plug-and-play fashion. This design

25

Chapter 2 Design of the Experiment Environment

approach significantly reduces the implementational overhead for researchers, as the framework already
provides crucial functionality such as early stopping and checkpointing. Furthermore, the design
allows the separation of the experiment setup (including Datastack’s dataset processing specification)
from the code, thereby increasing the reproducibility of research results.
In the following sections of this chapter, we introduce the reader to Datastack and MLgym, and

demonstrate how these frameworks benefit research in outlier detection and open-set recognition.
Originally, this chapter is based on our publication [81] and open-source frameworks Datastack and
MLgym. The development of the Datastack framework was lead by Max Lübbering, who contributed
the central idea of achieving data format agnosticism via stream-level interfaces, designed the entire
architecture, and contributed 99.5% of the lines of code1. The Datastack publication [81] was
first-authored by Max Lübbering, receiving feedback by the co-authors who had applied the framework
to related research projects or participated in the frequent discussions.
Similarly, the MLgym framework development was lead by Max Lübbering, who contributed

the principal ideas, resulting software architecture and the computation environment (including
parallelization, GPU support, experiment parameterization, training, evaluation and logging). Max
Lübbering also implemented the initial frontend for real-time experiment analysis, which students at
Fraunhofer IAIS extended under his supervision.

2.1 Datastack: Unification of Heterogeneous Machine Learning
Dataset Interfaces

In this section, we present our open-source Datastack framework which builds the foundation for the
dataset processing pipelines in this work. While ML methods underwent a quantum leap in innovation
in recent years, the ML DevOps tools have not matured at the same pace. Since experimental
results heavily depend on data (pre-) processing, technical stagnation and lack of standardization
have contributed to the frequently reported challenges of replicability and reproducibility [82–85] of
ML research. From a data engineering perspective, datasets come in various formats such as Pandas
DataFrames [86], Numpy Arrays [87], or CSV, shaping a heterogeneous format landscape. Many
repositories, e.g., UCI Archive2, Kaggle datasets3 and Microsoft Opendata 4 host these raw datasets.
Integrating these datasets into ML pipelines usually comprises three recurring implementation

steps:

1. Dataset retrieval from the hosting repository

2. Dataset preprocessing / data cleaning

3. Custom iterator implementation

As a result, data scientists and ML practitioners often reimplement these steps for every new dataset,
leading to code duplication and poor architectural designs from the beginning that are susceptible to
bugs. Dataset preprocessing / cleaning is especially unsatisfactory, as the implementation is often

1https://github.com/le1nux/datastack/graphs/contributors
2https://archive.ics.uci.edu/ml/index.php
3https://www.kaggle.com/datasets
4https://msropendata.com/

26

2.1 Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces

Storage
Connector

Dataset
Factory Iterator

Cloud
Repository

Pre-processor

Retriever
download raw dataset

disc I/O

store raw dataset

load and store

data stream

call

execute

build

Figure 2.1: Datastack architecture: Dataset Factory commands Retriever and Pre-processor to download and
prepare the dataset, respectively. Note that the preprocessor and iterator deal with arbitrary data formats internally.
The interfaces and remaining components work on a byte stream level, thus decoupling the dataset-specific
peculiarities from the framework.

spread over multiple scripts or Jupyter notebooks. In combination with possibly hardcoded, absolute
paths, undocumented code, and various preprocessed dataset versions, productive collaboration within
such projects becomes challenging.
There are multiple open-source projects such as HuggingFace Datasets5, TorchVision Datasets6,

and TensorFlow Datasets7 that aim to alleviate the technical overhead of dataset integration. Usually,
these libraries provide all the three steps of dataset integration mentioned above for an extensive
number of datasets. While this is very convenient for quick prototyping and testing, extending these
libraries to include new datasets is often nontrivial. This is because most libraries combine all
three integration steps within a single class or file by importing a plethora of auxiliary functions.
From a design perspective, this contradicts multiple programming principles [88], such as separation
of concerns, single responsibility principle, and interface segregation principle, which limits the
extensibility of these frameworks. Furthermore, these dataset repositories present the samples with
framework-specific data structures, such as torch tensors within TorchVision. Therefore, custom
datatype casting routines need to be implemented for cross-framework support. Nevertheless, these
libraries are beneficial for quick prototyping when using the implemented datasets, because the design
issues can be hidden behind a front-facing interface such as a facade [89].
For exploratory ML research, apart from overused benchmark datasets, we argue that there is

a need for an architecturally well-designed integration framework for new datasets. To this end,
we propose the Datastack8 framework, a simple yet effective open-source contribution that heads
in this direction. Datastack decouples dataset retrieval, preprocessing, storage, and iteration, by
introducing stream-based interfaces between the components mentioned above. Due to its interface
design, Datastack becomes data format agnostic, since a byte stream can represent any data format, as
shown in Fig. 2.1. Only the user-facing components such as the iterator or the preprocessor require
ML framework / data format specific implementation.
The concept of (byte) streams is omnipresent in many data-driven computer science subfields. In

machine learning, researchers have proposed various algorithms for stream data analysis [90, 91].

5https://huggingface.co/docs/datasets/
6https://pytorch.org/vision/stable/datasets.html
7https://www.tensorflow.org/datasets
8https://github.com/le1nux/datastack

27

Chapter 2 Design of the Experiment Environment

In high-performance computing, stream processing pipelines are an ongoing field of research with
Flink [92], Storm [93], and Spark [94] being highly-scalable representative frameworks for stream
processing. These frameworks provide the infrastructure to process data regardless of the initial input
format, making these frameworks data-format agnostic.

Interestingly, to the best of our knowledge, these concepts have never been applied to dataset (pre-)
processing within ML pipelines. With Datastack, we demonstrate that the aforementioned deficiencies
in ML dataset processing/integration can be solved by introducing streams on an interface level.

2.1.1 Design Choices

The vast number of different file formats for datasets requires dataset integration frameworks to support
arbitrary file and data formats. We achieve this goal by treating dataset objects as byte streams9, which
can be thought of as a seekable data block stored either on disk or in memory. Since every major data
container object provides a file-like object10 interface, they automatically support byte streams. This
setup gives us great flexibility and consistency within the framework design since we only need to
pass byte streams between modules irrespective of the internal data format.

Every dataset implementation has an iterator, which seamlessly builds a generic interface for training
routines of the most prominent ML frameworks such as scikit-learn [95], TensorFlow [96], or PyTorch
[97]. We provide higher-level functionality such as dataset splitting, target filtering, target encoding,
shuffling, and in-memory loading, all of which are achieved by stacking, splitting, or joining iterators,
as shown in Fig. 2.2. A higher-level iterator has a read-only view of the underlying iterator, which
allows for a minimal memory footprint and negligible runtime complexity, due to direct indexing. In
practice, ML engineers often reimplement (or worse, copy and paste) these data processing routines
with every new dataset, resulting in duplicated code that is susceptible to common ML bugs like
information leakage [98]. Datastack’s dataset processing routines are thoroughly tested and new
routines can be derived from the lower-level stacking, joining, and splitting routines. Additionally,
domain-specific operations such as augmentation in computer vision or text embedding in natural
language processing can be implemented.

For our outlier detection experiments, we heavily rely on the joining, stacking and splitting operations
to create different iterators, e.g., with distinct types of outliers for training and evaluation. Considering
the outlier types in different iterators, allows the investigation of their influence in isolation. Further,
the file-format agnosticism is leveraged throughout the experiments, as the raw datasets come in
various formats.

2.1.2 Implementation

At Datastack’s core, there is the Storage Connector which provides a generic data streaming I/O
interface for storing raw and preprocessed data, as shown in Fig. 2.1. We thereby support various
storage solutions ranging from in-memory databases and local file storage to distributed storage
solutions. In its minimal deployment version, Datastack comes with a persistent key-value storage.
This on-disc storage provides the saving and retrieving functionality for any byte stream that is

9https://docs.python.org/3/library/io.html#module-io
10https://docs.python.org/3/glossary.html#term-file-object

28

2.1 Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces

Custom Iterator

InMemory Iterator

IteratorView

Iterator

Datasource, e.g. HDD
or network stream

Get Item

Get Item

Get Item

I/O Bytestream

(a) Stacking

Dependency

Iterator

Split Iterator A Split Iterator B

Get Item

Get Item Get Item

(b) Splitting

Combined Iterator

Iterator A Iterator B

Dependencies A Dependencies B

Get Item Get Item

Get Item Get Item

(c) Joining

Figure 2.2: Combination of dataset iterators via stacking, splitting, and joining operations: Similar to table views
in databases, each higher-level iterator represents a view on its underlying iterator. The stacking, splitting, and
joining operations build the foundation for more sophisticated iterators with functionality such as in-memory
loading or label mapping.

identified by a unique key. For enterprise-level solutions, the same interface already integrates with
Amazon S311 and Minio12.

The components within Datastack interact as follows: The Dataset Factory commands the Retriever
to download the raw dataset from a given cloud repository or local file path. After retrieval, the
Preprocessor receives the raw dataset as a byte stream from the Storage Connector. It then performs
data cleaning, shapes the raw data into a usable format for the machine learning algorithm, and saves
the preprocessed/cleaned data stream via the Storage Connector. Here, the dataset retrieval and
preprocessing steps only need to performed once, as the preprocessed data stream can be reused.
Finally, the Iterator retrieves the preprocessed data as a byte stream from the Storage Connector and
provides the iteration functionality. Note that the Preprocessor and Iterator internally use custom data
representation formats (e.g., Pandas DataFrames, or CSV) for the datasets, however, on an interface
level between modules (e.g., between the Preprocessor and the Storage Connector), the representation
is always handled as a byte stream. Thus, the framework itself is agnostic of any specific file /
data formats, while supporting arbitrary data formats within the custom preprocessor and iterator
implementations.
Furthermore, the iterator design improves the flexibility by allowing the, e.g., stacking, splitting,

and joining of iterators, as illustrated in Fig. 2.2. Implementation-wise this is similar to the table view
concept within databases, as an iterator view holds a list of indices that index the underlying iterator
elements. This has a time complexity of O(1). The splitting/shuffling functionality is implemented by
shuffling the indices list or considering only a subset of indices within the iterator view, respectively.
Here, a combined dataset iterator represents a conjunction of views on the respective underlying
iterators. This view concept allows for the derivation of further high-level postprocessing routines
like, e.g., target label mapping or label filtering.

Given enough system resources, the final iterator can be loaded into memory, since this iterator can
be considered to be immutable. Thus, the runtime complexity of indexing is improved from O(n) to

11https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
12https://github.com/minio/minio

29

Chapter 2 Design of the Experiment Environment

ATIS
Iterator

Newsgroups
Iterator

Reuters
Iterator

Base Iterators Label Filtering

Inlier Iterator

Test 3 Iterator

Test 2 Iterator

 Iterator Splitting

Train Iterator

Outlier Iterator 2

Outlier Iterator 1

Val Iterator

Test 1 Iterator

 Iterator Joining In-memory (IM) Iterators

Test 3 IM Iterator

Test 2 IM Iterator

Train IM Iterator

Val IM Iterator

Test 1 IM Iterator

Source

Figure 2.3: Use case example on textual outlier detection [22, 99]: Splitting, stacking, joining, label filtering,
and in-memory loading is used to represent the full data processing pipeline. The final in-memory iterators are
used for training, validation, and evaluation of ML models.

O(1) where n is the stack size. Additionally, the postprocessing routines such as label mapping are
only invoked once. The generic iterator interface can be easily integrated into state-of-the-art ML
frameworks such as TensorFlow and PyTorch with their dataloader implementation, as we will show
in Sec. 2.2 for MLgym.

2.1.3 Use case: Dataset Processing Pipeline for Outlier Detection

As described in Sec. 1.2, the goal of outlier detection is to distinguish observed inlier samples from
outlier samples that are derived from an outlier generating process. Often, models are trained solely
on the inlier data, and at testing time, are evaluated against outliers. In practice, the outliers are often
sampled from contextually unrelated datasets [99, 100]. In Fig. 2.3, we showcase how Datastack
can support deriving the different iterators for training and evaluation based on our outlier detection
research [22, 99]. In this experiment setup, we train an algorithm on the ATIS dataset, and at testing
time, investigate the algorithm’s robustness to outliers originating from the Reuters and Newsgroups
datasets. All datasets come in different file formats (i.e., CSV, txt, and XML), which Datastack handles
on a byte stream level. Once the datasets are preprocessed/cleaned by the dataset-specific preprocessor,
the factories build the respective base iterators.
The base iterators are used to create the final iterators by applying routines such as stacking or

joining. First, the ATIS iterator is split into train, val, and test iterators. These iterators can be directly
used for training, validation, and evaluation, which is why they are loaded into memory at the end,
without further processing. From the Reuters and Newsgroups iterators, we filter a subset of the labels
to create the outlier iterators. For model evaluation, we need to combine the outlier iterators with
the inliers from the test 1 iterator, which results in the test 2 and test 3 iterators. Finally, these two
iterators are loaded into memory. In conclusion, this use case highlights the advantages of Datastack:
Multiple datasets with different raw data formats can be easily processed and combined into a complex,
bug-tolerant pipeline using simple stacking, joining, and splitting functionality.

2.1.4 Conclusion and Outlook

With Datastack, we provide a generic, open-source framework for ML datasets that can be seamlessly
integrated into existingML frameworks. While datasets are prevalent in various formats, the framework

30

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research

internally treats them as binary streams, making the framework data-format agnostic. Furthermore, it
is designed to have well-defined interfaces and reusable components, allowing the implementation of
new datasets with minimal effort. Datastack has extensive high-level iterator functions such as dataset
splitting and shuffling inspired by the table view concept from the databases domain. We showcased
how this functionality can be utilized in the experiment setup for outlier detection.

For future work, we are aiming to showcase Datastack within a large-scale dataset repository [101]
for outlier detection datasets. From an industrial point of view, showcasing Datastack’s support for
enterprise-level storage solutions would be another essential direction. Since Datastack is entirely
open-source, we invite other researchers to use its dataset processing functionality and finally would
like to establish a community-driven development. In the following section, we introduce the MLgym
framework and explain how Datastack has been integrated.

2.2 MLgym: Architectural Proposal for Reproducible, Standardized
Deep Learning Research

While the results of SOTA models are generally collected in benchmark rankings in various
places13,14,15, their reproducibility often poses a challenge with reasons ranging from selective
reporting (cherry picking) and lack of code availability, to poor experimental design. A 2016 study
[102] states that among 1,576 surveyed researchers, 52% agreed that there is an ongoing reproducibility
crisis, and even 70% failed to reproduce experiments.
Looking specifically at the field of machine learning, reproducibility is an even more significant

challenge, considering that, among the papers published at top machine learning conferences, only
about 6% include code, and 30% provide test data [84, 85]. Furthermore, the authors of [84]
demonstrated, as part of an extensive reproducibility study of 400 papers published at premier ML
conferences, that on average, only 24% of the variables were documented to achieve full replicability
of the paper results.

With the advent of reproducibility challenges [103, 104] hosted by premier ML conferences, which
encourage researchers to replicate the claims of research papers, there is an even greater need for
standardized tooling that enables fast-paced experimental reproduction. While ML conferences (e.g.,
NeurIPS, ICML, ICLR) and researchers have defined checklists16 for improved reproducibility [105,
106], they only define the criteria, not how to fulfill them in a standardized fashion. As a result,
researchers often have to invest significant amounts of time in digging through hundreds of lines of
possibly poorly documented code within publicly hosted repositories to understand the underlying
infrastructure before rerunning the experiments and reproducing a paper’s claims. We argue that with
standardized infrastructure tools, researchers can focus solely on verifying the implementation of the
concrete methodology regarding the proposed model and its evaluation.
While socioeconomic and political factors among others are impeding reproducibility [107–109],

we focus on the technical challenges in this work [82, 83]. In particular, we follow the argumentation
of [82, 110], who argue that replicability/repeatability is the first step towards reproducibility. To this

13https://nlpprogress.com/
14https://paperswithcode.com/sota
15https://sotabench.com/
16https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

31

https://nlpprogress.com/
https://paperswithcode.com/sota
https://sotabench.com/
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

Chapter 2 Design of the Experiment Environment

end, we propose MLgym17, an open-source deep learning framework based on PyTorch [97], which
provides a vital cornerstone for low-effort replicability, and the tools to reproduce insights gained over
a proposed method.

Already in 2013, [111] determined ten rules to achieve reproducible computational research in their
highly cited paper, of which six rules directly apply to machine learning frameworks:

• Rule 1: “For every result, keep track of how it was produced”

• Rule 2: “Avoid manual data manipulation steps”

• Rule 4: “Version control all custom scripts”

• Rule 5: “Record all intermediate results, when possible in standardized formats”

• Rule 6: “For analyses that include randomness, note underlying random seeds”

• Rule 10: “Provide public access to scripts, runs, and results”

Now, the pressing question is why all existing deep learning frameworks fail to implement most of
these rules. We argue that the reasons lie within the architectural design of these frameworks (e.g.,
PyTorch [97] and TensorFlow [96]), which merely provide a set of functions and force the researcher
to implement the training and evaluation pipeline from scratch. On one hand, this architectural design
provides maximum flexibility and allows for fast prototyping, which is beneficial for conducting ML
research. On the other, the pipelines are out of scope of the respective ML framework, limiting the
possibilities for internally implementing the reproducibility features to comply with any of the rules
outlined above. Consequently, almost any implementation regarding reproducibility is left for the
researcher to implement, a cumbersome and error-prone task, easily leading to wrong results and
conclusions in research papers.

To this end we propose the open-source framework MLgym, which is tailor-made for reproducible
deep learning research, and alleviates the trade-off between the implementation’s flexibility and the
result’s reproducibility. Following the inversion of control (IoC) paradigm [112], MLgym implements
the aforementioned pipelines internally and allows the researcher to extend the functionality by
registering custom component classes (e.g., models, evaluators, trainers). Therefore, the framework
maintains complete control over the training and evaluation process, allowing for arbitrary experiment
tracking. The design yields two additional advantages: Firstly, it allows the user to specify the entire
training and evaluation pipeline as a dependency graph within a configuration file. This configuration
file can be instantiated dynamically via dependency injection during the initialization of MLgym,
already matching the requirements in rules 1, 2, 4, and 6. Secondly, MLgym comes with distributed
logging functionality based on event sourcing [113], using websocket streams to address rules 5 and
10. In the minimal deployment, we use a centralized websocket server to save the incoming messages
regarding training progress and evaluation stats within a persistent event store. All the collected
experiment data is accessible via the websocket API and a RESTful API, and can be inspected by the
included visualization frontend MLboard.
The following sections are organized as follows: In the next section, we discuss related deep

learning frameworks and explain how and to what extent they support reproducibility. In Sec. 2.2.2,
we introduce the architectural design and discuss how it benefits reproducibility. We then introduce

17https://github.com/mlgym/mlgym/

32

https://github.com/mlgym/mlgym/

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research

the entire system in Sec. 2.2.3, followed by an exemplary use case showcasing the practical benefits of
MLgym in Sec. 2.2.4. We outline the possible future directions beyond reproducibility, such as Green
AI [114] in Sec. 2.2.5 and finally, formulate the conclusion in Sec. 2.2.6.

2.2.1 Related Work

As outlined in the previous section, increasing the overall amount of reproducible research results is
a crucial yet underexplored and underdeveloped endeavour in the field of ML research [84]. This
section demonstrates the current state-of-the-art reproducibility research from a technical point of
view, by showcasing the tools currently used in deep learning research.

Today, TensorFlow [96] and PyTorch [97] are the two most prominent deep learning framework
representatives with which researchers implement their approaches. These frameworks provide the
functionality to develop arbitrary deep learning architectures, the algorithms to perform backpropaga-
tion [3], multiple state-of-the-art optimizers, and various utility functions. However, both frameworks
compromise implementational efforts for flexibility, by leaving the model’s training and evaluation
routines to the researchers.
As the two frameworks can be regarded as a minimal backbone, researchers either implement

the infrastructure routines for model training, evaluation and selection, or resort to higher-level
frameworks. Various web-based tools have been developed for logging ML experiments, such as
Tensorboard18, Weights&Biases [115], and Sacred [116]. Tensorboard provides simplistic experiment
tracking functionality w.r.t. metrics and loss developments. Weights&Biases and Sacred additionally
track hyperparameter configurations, allowing us to inspect the influence of certain hyperparameter
configurations on the model performance. All three logging tools reduce the boilerplate code w.r.t.
logging and the susceptibility to bugs to some extent, however, their impact on reproducibility is
limited as the user still has to implement the entire training workflow and collect the information (e.g.,
metric/loss values, hyperparameter combination, GPU utilization) to be passed to the frameworks’
logging routines.

2.2.2 Architectural Overview

As anticipated, middleware solutions have gained traction in the research community in recent years.
Most prominently, PyTorch Lightning [117] maps out the entire training workflow, including high-level
functionality such as early stopping and warm starts. Architecturally, Lightning expects the model
to implement a fixed set of Lightning-specific method hooks to instantiate optimizers and perform
data preprocessing, training, and evaluation steps. Lightning’s trainer class implements the training
loop and automatically calls the respective pre-defined hooks, reducing the amount of boilerplate
code, however, this design also expresses some pitfalls. Firstly, it mixes the various concerns of
model definition, training, and evaluation that, as we argue, should be decoupled instead. Secondly, it
generally facilitates inheritance to override the hooks and abstract implementations, not adhering to
the composition over inheritance paradigm. Both design issues lead to bloated interfaces and a static
training pipeline. Since custom functionality is injected via inheritance, the concrete implementation
comprises procedural code that is not interpretable by the framework, despite following the inversion
of control paradigm to some extent. Furthermore, for model selection, cross-validation or grid

18https://www.tensorflow.org/tensorboard

33

https://www.tensorflow.org/tensorboard

Chapter 2 Design of the Experiment Environment

Checkpointing Early Stopping

Eval
Component

Train
Component

Model
Prediction

Postprocessor

Loss Function Data Loader
Inference

Component

Model

Loss Functions Data Loader
Inference

ComponentMetricsOptimizer

Loss Function
Registry

Optimizer
Registry

Prediction
Postprocessor

Prediction
Postprocessor

Registry

Prediction
Postprocessor

Registry
Model

Registry

Metrics
Registry

Loss Function
Registry

Trainer Evaulator

Checkpointing
Registry

Early Stopping
Registry

Model
Registry

Dataset
Repository

Splitted
Dataset
Iterators

Data Collator

Dataset
Repository

Splitted
Dataset
Iterators

Data Collator

Figure 2.4: The YAML configuration file specifies the pipeline components, their dependencies, parameterization
and the hyperparameter search. Here, the dependency graph of an exemplary deep learning configuration is
showcased. To run the training and evaluation pipeline, we instantiate the root components trainer, checkpointing,
early stopping and evaluator by passing the dependent components to the constructors via dependency injection.
In most cases, a component-specific registry on the lowest dependency level instantiates the respective component.
Even though the train and eval components are partially instantiated with the same components, we keep two
separate instances to prevent side effects during training/evaluation.

pass
configuration

Component
Factory

calls

Component A
Registry

Constructable

calls

Component A
Registry

Component A.2

instantiates
Component A

Factory
Component A.1

callsComponent B
Constructable

pass component

 configurationBlueprint
derive blueprints

YAML Config
Component B

Factory Component Binstantiates

Figure 2.5: Pipeline component instantiation in blueprint via the component factory: A single experiment
config from the YAML config is passed to the blueprint, a data class describing the entire pipeline setup. The
blueprint commands the component factory, with its internal (custom) component registry, to instantiate the
components defined in the dependency graph within the configuration. We distinguish two types of components
here. Firstly, some components can be grouped (e.g., F1 score and accuracy) and do not require individual
registration. These components are subsumed within a registry (see Component A Registry which registers
Component A.1 and Component A.2). Secondly, standalone pipeline components (e.g., train component) have a
dedicated constructable that only instantiates this particular component (see Component B).

searches, researchers either have to implement the functionality from scratch or combine Lightning
with hyperparameter optimization [118, 119], and visualization frameworks [115].

MLflow [120], on the other hand, with its tracking component, directly interfaces with PyTorch
Lightning and other ML libraries by monkey patching the logging within the training routine, or
expecting a custom training routine that explicitly calls the logging routine, similar to the logging
frameworks mentioned previously.

In conclusion, various high-levelML frameworks provide auxiliary functionality to reduce boilerplate
code. Nevertheless, it is mainly the researcher’s obligation to implement the middleware code that

34

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research

wires up all the components, such that the research environment adheres to rules 1, 2, 4, 5, 6 and 10.
With MLgym, we aim to alleviate the patchwork of various ML tools/frameworks by providing

a single, standalone solution that dynamically maps out the entire training and evaluation pipeline
internally. We define four principal requirements towards MLgym that distinguish the framework
from any existing solution concerning features, architecture, and reproducibility:

• The training and evaluation pipeline should be defined in an end-to-end fashion comprising
dataset preprocessing, model definition, model training, and model evaluation.

• For full reproducibility, the experimental design setup in its entirety should be defined separately
from the code and be subject to version control.

• Every pipeline component should be extensible or replaceable without modification of the
existing code.

• The framework should implement tested, high-level functionality such as grid search, (nested)
cross validation [121], early stopping, warm starts, results visualization, multiprocessing, data
preprocessing, and distributed logging.

As outlined previously, these requirements cannot be matched by any of the introduced frameworks
without significant architectural changes, making our architectural design a novelty in the DL domain.
In MLgym, we employ the inversion of control principle by implementing all components within the
code and defining the pipeline (i.e., the assembly of the components) by including the component
parameterization within an external config. Decoupling the pipeline configuration from the framework
implementation has multiple practical advantages: 1) Different experiments can be run without having
to change any code due to the dynamic pipeline assembly, leading to a well-maintainable code base
and history of experiments. 2) Upon publication, a research repository only needs to provide the
pipeline configuration and the custom components, allowing reproduction of the experimental results
in a fast and standardized manner. 3) Each experiment defined in the config is self-contained and
serialized, simplifying deployment in multiprocessing and multi-node environments.

Technically, the YAML configuration file provides the pipeline as a dependency graph and optionally
different parameterizations for hyperparameter optimization/grid search, as illustrated in Fig. 2.4
and Listing 1. At runtime, the configuration is split into individual experiment configs based on the
different hyperparameter combinations. Each experiment config is stored within a blueprint data
class, comprising all the information to build the pipeline. As indicated in Fig. 2.5, the component
factory traverses the dependency graph to instantiate the root components’ respective dependencies
and parameterizations (dependency injection). The blueprint class is implemented by the researcher
and can register new custom components, which would otherwise be out of the scope of MLgym.
Furthermore, the blueprint is serializable, allowing the job to be run in distributed, multi-node clusters
out of the box.
There are two options to implement a new component, as shown in Fig. 2.5. In the first option,

grouped components such as loss functions or metric functions are subsumed within a component
registry to prevent having to register every group item with the component factory individually. The
component registry instantiates the correct component based on the provided config, following the
strategy pattern. In the second option, the remaining components are directly registered with the
component factory.

35

Chapter 2 Design of the Experiment Environment

1 splitted_dataset_iterators:
2 component_type_key: SPLITTED_DATASET_ITERATORS
3 variant_key: RANDOM
4 requirements:
5 - name: iterators
6 component_name: dataset_iterators
7 subscription:
8 - train
9 - test
10 config:
11 split_configs:
12 train:
13 train: 0.7
14 val: 0.3
15 seed: 2
16

17 data_collator:
18 component_type_key: DATA_COLLATOR
19 variant_key: DEFAULT
20 config: [...]
21

22 data_loaders:
23 component_type_key: DATA_LOADER
24 variant_key: DEFAULT
25 requirements:
26 - name: iterators
27 component_name: splitted_dataset_iterators
28 subscription: [train, val, test]
29 - name: data_collator
30 component_name: data_collator
31 config:
32 batch_size:
33 sweep: absolute
34 values: [10, 20, 50]
35 seeds: [0, 1, 2]

Listing 1: A configuration excerpt showcasing the hyperparameter optimization (see batch_size key) and the
data loader’s dependency on data collator and splitted dataset iterators (see requirements key). While the excerpt
illustrates only the data processing pipeline, the entire ML pipeline follows the same principles, as shown in
Listing 2 in the Appendix. Note that, this level of standardization already provides a solution to rule 1, 2, and 6,
as well as partially to rules 4, 5, and 10.

Internally, the component factory acts as a registry [122] that maintains a mapping from the
(component key, variant key) tuple to the component constructable. The variant key allows specifying
different implementations for the same component type. This is a crucial feature as it allows us
to build pipelines with custom components dynamically without any code changes, following the
open-closed principle [123]. Furthermore, the variant key can provide the means for the components’
deprecation management. The component constructable can be regarded as a meta-factory that adds
the respective component to the component factory, and thereby, to the framework’s scope. It is
noteworthy that the framework itself is always programmed against component-specific interfaces.
These are formulated as contracts that need to be implemented by the respective (custom) components,

36

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research

GymJobGymJob

Checkpointing EarlyStopping

Evaluation Batch Loop

Eval
ComponentEvaluator

Train
ComponentTrainer

Model return prediction

Post
Processor

Loss Function

Data
Loaders

Inference
Component

Loss Functions

return evaluation result

Metrics

Training Batch Loop return model with updated weights

Optimizer

RESTful
API

Logging /API
Client

Websocket
Server

calls subscribes

MLboard
(frontend)

Training / Evaluation Loop

forward batch

postprocess prediction

passes
YAML config

passes Blueprints

Starter Validator /
Grid Search

logging

GymJob

queries run stateWarm
Starter

logging
callbacks

Event
Storage

Checkpoint
Storage

creates and runs

Gym

instantiates
Blueprints

subscribes
Weights&Biases

Client

forwards
messages

TensorBoard
Client

TensorBoard
Server

Weights&Biases
Server

Figure 2.6: Illustration of MLgym system design: The two entry points, starter and warm starter, forward
the blueprints (specification of the experiments) to the multiprocessing gym for execution. As specified in
Fig. 2.4, the root and dependency components, highlighted in green and blue, respectively, jointly resemble the
dynamically assembled training/evaluation pipeline. The logging environment based on event sourcing and
streaming is highlighted in red and supports custom clients, e.g., TensorBoard or Weights&Biases. With the
entry points and logging environment, MLgym fulfills rules 5 and 10.

encouraging modularity.
To further increase the reproducibility of model training and evaluation, we adopt event sourcing

[113] to track various types of state changes during model training and evaluation, as atomic and
timestamped event messages. The message history allows the user to replay and analyse the entire
experiment run a posteriori, which we leverage in the implementation of our frontend MLboard.
The architectural design outlined in this section provided the foundation for the overall system,

discussed in the following section.

2.2.3 System Design

The system design of MLgym can be separated into the five modules shown in Fig. 2.6, namely the
two entry points starter and warm starter, the validators (orange), the multiprocessing environment
(grey), the logging (red), and the dynamic pipeline (green and blue) that can be divided into the two
training and evaluation sub-pipelines.
The two entry points collect the blueprints with the experiment configs and pass them to the gym.

In case of a new experiment run, the starter passes the YAML config to the validator, which breaks it
down into individual experiment configs. MLgym supports (nested) cross-validation and grid search
out of the box. For any other validation method, a researcher can provide a custom validation method
by implementing the validator interface. In case of continuing a stopped experiment run, the warm
starter queries the RESTful API to retrieve the experiment configurations and latest checkpoints, and
forwards the respective blueprints to the gym.

The gym can be regarded as the central computation unit that provides amultiprocessing environment

37

Chapter 2 Design of the Experiment Environment

to run the experiments encapsulated in gym jobs in parallel. Technically, the gym constructs a
computation job from the serializable blueprint within the respective process, without the need for
intra-process communication and complex data exchange. A gym job directly calls the root components
trainer, evaluator, checkpointing, and early stopping within its training/evaluation loop. For each
batch within the training batch loop, the inference component comprising the model and postprocessor
predicts the batch and forwards the prediction to the loss function. After backpropagating through the
model, the optimizer updates the weights. Similarly, the evaluation batch loop calculates the losses
and metrics for each batch and returns an evaluation batch result object.
Note how this design decouples training and evaluation functionality from the model. The model

merely acts as a data class, storing the model weights/architecture and provides a rudimentary
forward function. Due to the decoupling and application of IoC, we support dynamically assemblable
training and evaluation strategies without having to change the model code, as would be the case
for DL frameworks such as PyTorch Lightning. Furthermore, every pipeline component in MLgym
implements a respective interface which allows the user to add and replace components with custom
implementations in a plug-and-play fashion.

MLgym utilizes Datastack (see Sec. 2.1) to provide extensive functionality for data (pre-) processing,
including splitting, merging, shuffling, lazy loading and in-memory loading of datasets. With its
possibility to build complex dataset pipelines and its dataset format agnosticism, Datastack’s design
nicely matches the component-based pipeline structure within MLgym. As a result, arbitrary data
preprocessing pipelines can be realized within MLgym by combining generic and custom dataset
iterator components.
The trainer and evaluator provide callback functions to the dependent components to update

progress and performance results. The gym job logs these messages and checkpoints via the websocket
streaming API. The backend utilizes event sourcing and an event storage to persistently track the
messages, allowing the reconstruction of the entire training and evaluation procedure within the
MLboard frontend. Note that the serializable blueprints and websocket logging infrastructure allows
for a distributed system with, e.g., model training/evaluation performed on a high-performance
computation (HPC) cluster, and results being logged on a dedicated storage server. The MLboard
frontend and other remote clients can subscribe to the event-sourced messages for visualization or
forwarding purposes. MLboard is showcased in Fig. 2.7.

2.2.4 Representative Research Use Case

In research, the effectiveness of any novel deep learning architecture is generally verified on multiple
benchmark datasets and benchmarked against baselines to put the proposal’s performance into
perspective. MLgym is tailor-made for this representative research use case, and we outline the typical
steps in this section:

1. Implementation of the data preprocessing components for each benchmark dataset based on
Datastack (see rule 2 in Sec. 2.2)

2. Implementation of the proposed DL architecture and the corresponding baselines

3. Implementation of a custom blueprint that registers the new components (i.e., dataset repository
with the benchmark datasets, model registry with architecture proposal and baselines)

38

2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research

(a) The flow tab renders a data table, aggregating crucial information for each experiment in a single table row.
The tab provides information about the job status, hyperparameterization, training progress and evaluation
progress including metric/loss scores.

(b) The analysis tab renders the metrics and losses concerning the different dataset splits for each experiment as
a line chart.

Figure 2.7: MLboard frontend: a React application that visualizes the training and evaluation progress by
subscribing to the websocket API and REST API.

39

Chapter 2 Design of the Experiment Environment

4. For each dataset and model, we define a YAML config outlining the training/evaluation pipeline
including hyperparameter sweeps, checkpointing, and the early stopping strategy.

5. We execute the pipelines and capture the results in a centralized event storage. If the pipeline
crashes at any point (e.g., due to GPU memory overflow or unrelated server issues), we can
analyse the issue as we track the entire message history via event sourcing and resume the
training from the most recent checkpoint via the warm start entry point.

6. During the training, we can start to analyze the performance of the trained and currently training
models, and can save/share the analysis with our peers.

7. After publication of the results / research paper, the code, experiment configs and analysis
configs (MLboard) are made publicly available within a version controlled repository.

8. Other researchers can clone the repository, install the package dependencies, rerun the experi-
ments, and verify the correctness of the communicated results. Furthermore, researchers can
also integrate new benchmarks and baselines to the repository or, vice versa, integrate the
datasets and models into their own repositories.

As outlined in the eight steps above, MLgym yields reproducibility gains unmatched by any other
(meta) deep learning framework, which usually require significant implementational efforts from the
researchers that are plainly impractical. With MLgym, these efforts are minimized to such an extent
that reproducibility becomes feasible.

2.2.5 Quo vadis?

Despite the striking reproducible benefits of MLgym, various directions are still worth exploring and
implementing. Firstly, the gym component utilizes multiprocessing to distribute the jobs on different
GPUs within a single node. With the continuously increasing number of weights in deep learning
architectures, the size of models (e.g., large language models [5]) sometimes already exceed the GPU
memory on a single node. Therefore, future work needs to be invested in distributing model training
across nodes, e.g., via deepspeed [124].
Another technical direction is to add further frontend functionality, as the current version of

MLboard is rather rudimentary. The current version provides a live feed on the training progress
and metric/loss developments for each experiment with the respective parameterization, as shown
in Fig. 2.7. Consequently, there are still various directions for automated higher-level analysis and
comparison. For instance, cross validation, nested cross validation, and grid searches have different
purposes [121] and require different evaluation routines. Adding this analysis functionality to MLboard
would assist the researcher in the analysis of the results.

An often overlooked advantage of reproducibility is its applicability to Green AI [125], since
already-run experiments can be identified by the experiment config and skipped in the future. Further,
MLgym can lower the carbon footprint of model training due to its distributed design. The energy-
intensive training and evaluation can be performed on an HPC cluster running with green energy or
scheduled for times and locations with an electricity surplus. The gym instance on the HPC cluster
sends the checkpoints and results to a remote logging environment for inspection by the researcher.
Another direction is estimating the carbon footprint of the training, evaluation and inference of the
model, e.g., in terms of the number of floating point operations as a surrogate metric [114]. Including

40

2.3 Conclusion

efficiency metrics puts performance gains into perspective, rendering some models’ improvements
debatable [105, 126].

2.2.6 Conclusion and Outlook

Lack of results reproducibility is a critical pain point for machine learning research that has been
called out as a reproducibility crisis by many researchers. In this section, we focused on the technical
aspects impeding reproducibility. We identified the architectural, procedural design of deep learning
frameworks as a core obstacle that forces researchers to implement boilerplate code to achieve high
reproducibility.
To this end, we showcased MLgym, a feature-rich, PyTorch-based deep learning framework that

focuses on reproducibility. MLgym applies the inversion of control paradigm, providing a generic
framework for model training and evaluation by allowing researchers to implement and register their
custom components. As a result, we can specify the pipeline in a single config file, separating the
experimental setup completely from the code and dynamically assemble the training and evaluation
pipeline at runtime. Furthermore, MLgym comes with crucial high-level features such as early
stopping, warm starts, checkpointing strategies, and standardized, event-sourcing-based logging that
tremendously cut down boilerplate code.
Since we are confident that MLgym’s architectural design and various features can significantly

benefit the reproducibility and accessibility of research results, we decided to open-source MLgym19

and strive for a community bringing in novel ideas and directions.

2.3 Conclusion

The complexity of outlier detection and open-set recognition experiment setups, and the lack
of infrastructure tools in deep learning, has encouraged us to implement our two open-source
contributions Datastack and MLgym. We engineered both frameworks to maximize reproducibility
without compromising flexibility of deep learning experiments. In Datastack, we specify the entire
data pipeline, comprising dataset preprocessing, splitting, merging and various other operations as
stacked iterators. As the interfaces exchange data on the most generic data format, i.e., binary streams,
we can define the entire data pipeline in an end-to-end fashion, irrespective of the underlying data
format. Similarly, MLgym specifies the entire training and evaluation pipeline of deep learning
experiments separated from the infrastructure andmodel implementation, increasing the reproducibility
significantly. The generic interfaces within MLgym allow the replacement of any machine learning
component within the framework with custom implementations at runtime. The two frameworks
complement each other, jointly increasing the reproducibility of experiments without any compromises
in flexibility. Datastack and MLgym provide the infrastructure for all our experiments.

19https://github.com/mlgym/mlgym/

41

https://github.com/mlgym/mlgym/

CHAPTER 3

Supervised Outlier Detection with Deep Neural
Networks

In this chapter, we explore the applicability of autoencoders for supervised outlier detection. As
explained in Sec. 1.2, unsupervised outlier detection methods are applied with the intention of filtering
data that is out of the ordinary and passed to experts for review. Therefore, unsupervised methods can
be an effective approach when outliers cannot be further specified. However, in most settings, we are
aware of what type of outliers we are interested in. In this case, it is generally advised to leverage
context dependent outliers at training time to integrate a contextual outlierness signal into the model,
improving the effectiveness of the model at deployment time and rendering expert review redundant.
For instance, to train a camera-based home alarm system, it can be beneficial to include video footage
of actual intruders, so the system is not set off by your neighbor’s straying dog in the middle of the
night.

To this end, we explore two supervised outlier detection methods. Firstly, building upon the idea of
semi-supervised, one-class autoencoders (OCA), we propose a new supervised version, namely, an
adversarially trained autoencoder (ATA), which maximizes/minimizes the reconstruction error of
outliers/inliers, respectively. This end-to-end outlier detection algorithm enriches the reconstruction
error as an outlier score with outlier information, effectively separating inlier and application-specific
outliers.

Secondly, we explore the direction of supervised outlier detection w.r.t. multi-task learning (MTL)
by jointly training an autoencoder on the reconstruction objective, and an outlier classification
objective based on the autoencoder’s latent state. Our proposed methods are based on the supervised
autoencoder (SAE) method [1].

We benchmark ATA and our SAE variants against MLPs (imbalanced classification baseline) and
OCAs (outlier detection baseline) on various datasets, isolating aspects of imbalanced classification,
outlier detection, and novelty detection. We find that the integration of contextual outliers in
ATA significantly improves the outlier detection performance in comparison to its semi-supervised
counterpart OCA. Furthermore, in contrast to the baselines, we show that ATA consistently achieves
competitive performance on imbalanced classification, contextual outlier detection and novelty
detection. SAE’s performance is comparable to ATA’s results.
This chapter is based on our publications [23, 24] and provides a solution to the first milestone,

introduced in Sec. 1.5. The initial idea in [23] of extending OCA towards ATA by enriching the

43

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

outlierness signal of the reconstruction error via reconstruction error maximization of outlier samples
was contributed and implemented by Max Lübbering during a customer project at Fraunhofer IAIS.
The design of the experimental setup was discussed among all co-authors and implemented by Max
Lübbering. The publication was written by Max Lübbering in most parts, who was supported by the
co-authors discussing the paper idea, revising the paper, and researching the related work.

Similarly, in our publication [24], the initial idea of introducing MTL as a supervised classification
task for improving the learned hidden representation has been contributed and implemented by Max
Lübbering. The training, evaluation, and benchmarking of the approach were thoroughly discussed
among all peers. Max Lübbering conducted all experiments. The resulting paper was written by Max
Lübbering, who was supported in its revising by the co-authors, who also contributed to the related
work and introduction.

In both publications all the authors of both publications participated in the frequent discussion of
the results, and critically challenged the modeling, training, and evaluation approach.

3.1 Introduction

Standard DNN methods mostly assume that the number of training examples pertaining to different
categories are roughly equal. However, in real-world scenarios, the distribution of categories is often
rather skewed, with some group of data (majority class samples) occurring more frequently than
others (minority class samples), leading to the imbalanced dataset problem [127]. These problems are
common in medical diagnosis [128], fraud detection [129, 130], image classification [131, 132], etc.
The imbalanced data problem poses several challenges. Firstly, it has significant effects on the

performance of classifiers [128, 133]. Secondly, the skewed distribution in data induces a bias in
learning algorithms, pushing them towards predicting only the majority group, which is a known
problem of fairness and bias [134]. From a data mining perspective, the minority class is more crucial
in many applications, e.g., detection of seizures, arrhythmia. Due to the limited availability of training
samples for these events, classifiers may fail to detect these rare patterns.
A plethora of approaches for handling imbalanced datasets have been proposed, which fall under

two main categories. Firstly, data-level methods focus on balancing the skewed data distribution either
by under-sampling of the majority samples [135] or, more commonly, by over-sampling of minority
samples [60, 135]. Secondly, algorithm-level methods focus on modifying the learning algorithm
directly to facilitate the learning of minority samples. These methods adjust the decision threshold
[136], and assign different costs [137] to the minority samples. Additionally, anomaly detection
methods [138–140], e.g., based on autoencoders or support vector machines, can learn a representation
of the majority class. Deviations from the majority representation, e.g., in terms of reconstruction
error, can be leveraged to distinguish the minority and majority samples.
Methods for handling imbalance are closely related to outlier detection problems when looking

at the one-class solution or thresholding [141–143]. The relatedness stems from the similarity in
characteristics for both machine learning problems. Firstly, outliers are generally a minority in a
dataset. Secondly, they are generated by a different underlying mechanism than the majority class,
which also applies for a minority class in a supervised setting [42, 144, 145]. Furthermore, outlier
detection is generally seen as an unsupervised problem, which distinguishes it from the imbalanced
data problem the most. It becomes a supervised problem if data is labeled as “normal” and “abnormal”
in the training set, to detect outliers in the test data. This is referred to as supervised outlier detection

44

3.2 Autoencoders for Outlier and Novelty Detection

or classification based anomaly detection, which one of its subproblems is dataset imbalance [43, 146].

3.2 Autoencoders for Outlier and Novelty Detection

Generally, a DNN-based classifier with weights Θ can be represented by the function f : x 7→ ŷ,
mapping sample x ∈ Rm to prediction ŷ, where y, ŷ ∈ [0, 1] in case of binary classification and
y, ŷ ∈ [0, 1] |C | with

∑ |C |
i=1 yi = 1 and

∑ |C |
i=1 ŷi = 1 in case of multi-class classification with |C| classes.

An autoencoder (AE) is a special type of neural network that aims to accurately reconstruct a given
input vector, despite its bottleneck (i.e., hidden middle layer with reduced number of neurons) limiting
information flow. Because of the bottleneck, the AE can only focus on the most informative features to
achieve accurate reconstructions, and needs to disregard uninformative/correlated features. This setup
forces the AE to map the data onto a low-dimensional manifold within its latent space, as explained in
Sec. 1.3. Architecturally, the encoder part e : Rm 7→ Rk maps a given input x to a lower dimensional
representation h in latent space (i.e., m � k). A decoder d reconstructs sample x from h by mapping
h back to the original space g : Rk 7→ Rm. Thus, the entire AE architecture is defined as

h = e(x;Θe) (3.1)
x̂ = d(h;Θd), (3.2)

where Θe and Θd denote the network weights of the encoder and decoder, respectively.
An AE is optimized for accurate reconstruction using a reconstruction error criterion such as the

mean squared error

LMSE(x, f (x;Θ)) =
1
m

m∑
i=1
(xi − f (x;Θ)i)

2. (3.3)

The AE-based outlier detector leverages the mean squared error as an outlierness signal. Intuitively,
the reconstruction error of the majority class m+ is optimized more heavily than the minority class
m−, which is underrepresented in the unsupervised case, and unconsidered in the semi-supervised
case of the one-class autoencoder (OCA) [64, 147, 148]. As a result, the reconstruction error tends
to be higher for minority samples compared to majority samples, making the reconstruction error a
highly predictive signal of the outlierness of a sample. In practice, a threshold t on the reconstruction
error is determined through a brute force line search, e.g., w.r.t. F1 score, to detect minorities with a
satisfactory performance [144, 149].

y(x, x̂) =

{
m−, LR(x, x̂) ≥ t
m+, otherwise.

(3.4)

As we will show in the following sections, the reconstruction error LR is an insufficient outlierness
signal when majorities and minorities correlate in the feature space. As a solution, we will introduce a
supervised outlier detection algorithm based on AEs that actively maximizes the reconstruction error
of minorities at training time, thereby guiding the network to learn an application-specific outlierness
signal based on the reconstruction error.

45

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

3.3 Related Work

Over the years, various deep learning methods have been proposed for outlier detection, and recent
surveys of such methods can be found in [45, 46]. Early autoencoder-like networks for outlier detection
have been introduced by Hawkins et. al. as replicator networks [64]. These networks have been used
further in a one-class fashion [147, 148]. Autoencoders have been shown to generalize better than
principal component analysis (PCA), reconstruct non-linear relations easily, and perform better in
higher dimensions than support vector machines. In the past years multiple approaches for outlier
detection involving autoencoders have been introduced [44, 141, 150]. The most prominent ones are
robust deep autoencoders, which isolate outliers during training by using a modified loss function [65].

For the subproblem of imbalanced classification within deep learning-based outlier detection, two
approaches are commonly used to address it, namely, data-level methods and algorithmic methods
[59]. Data-level methods usually comprise class-specific over- and undersampling [60, 151], while
algorithmic-level methods typically focus on cost-sensitive learning [152, 153] or novel loss functions
[154]. Additionally, autoencoders have been recently used to modify input features to improve
classification performance and combat class imbalance [155].

3.4 Evaluation

For imbalanced classification, we selected three prominent benchmark datasets, namely the Reuters
dataset1, the Arrhythmia dataset2 and the ATIS dataset3. Similarly, for outlier detection and novelty
detection, the KDD dataset4 is a commonly adopted dataset. Following other researchers’ work,
we derived four sub-datasets from KDD, resulting in a total of 7 benchmark datasets. Since our
algorithms deal with binary classification tasks, each dataset is binarized into the classes minority
and majority as shown in Table 3.1. As part of the preprocessing, the textual samples are vectorized
using the well-established Glove word embeddings [156]. The Glove language model maps tokens
into a 100-dimensional space based on word co-occurences. The low dimensional representation
space allows for the training of shallow neural networks on less data, without overfitting. In this and
the following chapters, we often deal with small-scale textual datasets, and therefore prefer Glove
embeddings over large language models with their high-dimensional representation spaces. For our
work, the Glove word embeddings are pooled to obtain document representation, thus providing a
100-dimensional dense vector. Additionally, categorical features are converted to one-hot encoded
vectors, and real-valued features are z-transformed.

Next, we detail the various datasets used in this chapter.

Reuters dataset This NLP dataset contains financial documents published by the Reuters newswire
in 1987. A single document is assigned to at least one of the pre-defined 90 classes. Combined with the
high class imbalance in this dataset, this is a standard benchmarking dataset for multi-label document
classification as well as outlier detection [157–159]. However, since multi-label classification is out of

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://archive.ics.uci.edu/ml/datasets/Arrhythmia
3http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html
4https://www.unb.ca/cic/datasets/nsl.html

46

3.4 Evaluation

Train Val Test

Dataset Type Majority Minority Subclass share #m+ #m− #m+ #m− #m+ #m−

KDD Outlier imbal. NORMAL U2R, R2L all 47122 745 20221 302 9711 2236
Outlier bal. NORMAL U2R, R2L,

DOS, PROBE
all 47122 41059 20221 17571 9711 9083

Novelty imbal. NORMAL U2R, R2L none 47122 745 20221 302 9711 716
Novelty bal. NORMAL U2R, R2L,

DOS, PROBE
none 47122 41059 20221 17571 9711 3750

Reuters Imbal EARN, ACQ,
TRADE,
INTEREST

RESERVES all 3613 25 1609 12 2051 12

MONEY-FX,
MONEY-SUPPLY

ATIS Imbal FLIGHT QUANT,
AIRFARE,
ABBR

all 3173 1101 423 149 424 162

GSERVICE,
REST, APORT
ALINE, CITY,
F_NO, F_TIME
G_FARE,
F_AIRFARE
DIST,
AIRCRAFT,
CAPA

ARR Imbal NORMAL OTHERS (15
classes)

all 122 31 62 15 61 15

Table 3.1: Datasets and their subdatasets: Majority and minority frequencies for train, validation and test split.
A subclass share of all means that all subclasses are shared between the dataset splits, whereas a subclass share
of none, indicates that none are shared between train/val and test split. This is an important requirement for
novelty detection. Note that m+ and m− refer to the majorities and minorities, respectively.

scope of this thesis, all documents having multiple labels were filtered out. Therefore, this dataset is
representative for imbalanced classification.

ATIS dataset This dataset contains transcribed queries that passengers requested to the air travel
information system (ATIS) to receive flight related information. The resulting ATIS Spoken Language
Systems Pilot Corpus was labeled with a total of 17 classes. The prevalent class frequency imbalance
makes this dataset a suitable candidate for imbalanced classification problems.

ARR dataset This dataset contains samples on heart arrhythmia data categorized into 18 classes.
Due to its imbalanced nature and small size, this dataset is generally considered a difficult dataset for
imbalanced classification.

KDD dataset This dataset consists of benign network communication samples, as well as four types
of network intrusions. Due to the low prevalence of those intrusions and their diversity, this is a
common dataset to benchmark outlier and novelty detection problems [141, 160–162]. Notably,
the original KDD dataset had various inherent issues, including redundant features and information
leakage. For this reason, we consider an improved version [163] that is devoid of these issues. The

47

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

intrusion types contain several subtypes and these subtypes are either shared by all splits or are only
present in either the train/validation sets or the test set. Therefore, four datasets are derived with a
combination of outlier/novelty and balance/imbalance, as shown in Table 3.1.

UMAP Visualization To further support the different nature of these datasets, we projected the
samples’ features onto a two dimensional plane using UMAP, an unsupervised manifold learning based
algorithm for nonlinear dimensionality reduction [164]. Fig. 3.2 shows the results for the datasets
Reuters, ATIS, and ARR for the imbalanced classification problem. The Reuters dataset expresses
well separated clusters, whereas the minority and majority of the clusters majorly overlap on the ATIS
dataset. For the ARR dataset, a single coherent cluster is formed with no separation between minority
and majority samples, making this dataset the most difficult among the three imbalanced datasets.
Similarly, the clusters of the four KDD based outlier and novelty datasets are displayed in Fig. 3.1.
Since, as per definition, novelties only appear in the test set, the UMAP model was trained on the
training split first and subsequently applied to the train and test split separately. Here, for the balanced
case, two insights can be deducted: a) the outliers and inliers form proper clusters on both splits, and
b) novelties do not cluster. Both insights support the definitions of outliers and novelties, thus making
these datasets valid representatives for the respective classification problem.

3.5 From Imbalanced Classification to Supervised Outlier Detection
Problems

After the previous introductory sections in this chapter, we are concerned with supervised outlier
detection and its subproblem of imbalanced classification in this section. In particular, we devise
solutions that can be applied to both supervised outlier detection and imbalanced dataset problems.
In particular, we focus on the autoencoder approach, using reconstruction error as an informative
feature for classification. Typically, only majority samples are used for fitting the autoencoder, which
is referred as one-class autoencoders (OCA). However, this approach becomes ineffective when the
majority and minority samples overlap in the feature space of the AE, or minority samples are learned
in later epochs by the AE, due to minority contamination in the training set [165]. In this case, the
corresponding loss distributions also overlap, and therefore prevent us from accurate discrimination.
To address this limitation, we propose an adversarial style of training autoencoders. The main idea is,
instead of training the autoencoders to minimize only the reconstruction loss for majority samples,
they can also be trained to maximize the loss for minorities, thereby enriching the reconstruction error
signal for classification.

Our main contributions are as follows: (i) We introduce adversarially trained autoencoders (ATA)
for imbalanced classification, as well as supervised outlier and novelty detection problems. (ii) We
empirically show that ATA outperforms two baselines, namely OCA and a multilayer perceptron
(MLP), in terms of AUROC and F1 score. (iii) While the baselines show task dependent performances,
ATA provides high robustness across all three tasks.

3.5.1 Adversarially Trained Autoencoders

We introduce adversarially trained autoencoders (ATA), a novel approach that builds upon OCA’s idea
of leveraging the reconstruction loss as an expressive feature for classification. While architecturally

48

3.5 From Imbalanced Classification to Supervised Outlier Detection Problems

(a) Imbal. train (b) Imbal. test

(c) Bal. train (d) Bal. test

Figure 3.1: KDD outlier and novelty datasets: Visualization of the train and test splits after reducing the
dimensionality to 2D using UMAP [164]. Outlier samples are highlighted in red, inliers in blue and novelties in
green. Fig. 3.1(a) and Fig. 3.1(b) show the clustering of the imbalanced variant of datasets, while Fig. 3.1(c) and
Fig. 3.1(d) show the clustering for the balanced datasets. Note that, as per definition, novelties only appear in
the test set, whereas outliers appear in both.

49

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

(a) Reuters (b) ATIS (c) ARR

Figure 3.2: Imbalanced datasets: Visualization of the Reuters, ATIS, and arrhythmia datasets after projecting
the samples onto a two-dimensional plane, using UMAP [164] for dimensionality reduction. Minorities samples
are highlighted in red, majorities in blue.

similar, we propose a new training style that additionally incorporates minority samples, making this a
supervised classifier. ATA intents to resolve OCA’s aforementioned deficiency of working poorly in
imbalanced classification scenarios, and MLP’s deficiency concerning novelty and outlier detection
tasks, by introducing an adversarial loss function specifically engineered to deliver robust results in
each of these domains.
This loss function not only minimizes the reconstruction loss for majority samples, but also

maximizes the loss for minority samples as defined by

Ladv(x, x̂, y) =

LR(x, x̂) · 0, LR ∈[l, u] ∧ y ∈ minority
LR(x, x̂), LR(x, x̂) > u ∨ y ∈ majority
−αLR(x, x̂), otherwise.

(3.5)

While the loss for majority samples, i.e., target y ∈ majority, is calculated as the plain reconstruction
loss, the reconstruction loss for minority samples is adapted depending on its magnitude. Our objective
is to maximize the minority reconstruction loss until it falls within the pre-defined range [l ∈ R, u ∈ R],
thus effectively clipping the maximum loss of minority samples. If a minority sample’s loss already
falls within this range, then we clear out its gradient by multiplying the loss with 0 (first case). If
the loss value is above the range, we minimize it, as we do for the majority samples (second case).
Minimization of losses� u prevents exploding gradients. If the loss is below range [l, u], the loss is
multiplied by the negation of the minority weighting factor α ∈ R+. While not immediately apparent,
negation of the loss function corresponds to flipping the gradient as stated by Theorem1. With this
adversarial approach, it becomes easy to find a threshold afterwards that discriminates the samples
efficiently. We refer to the autoencoder trained in this fashion as an adversarially trained autoencoder
(ATA).

Theorem 1. The gradient ∇ΘLadv for minority samples acts in opposing directions to keep the loss of
minority samples in the defined bin [l, u].

Proof. Let χ = {x(1), . . . , x(n)} be a set of n samples, where each sample x(i) ∈ Rd. The corresponding

50

3.5 From Imbalanced Classification to Supervised Outlier Detection Problems

targets are denoted by the set Y = {y(1), . . . , y(n)}, where each target y(i) ∈ {m+,m−} with minorities
being denoted by m− and majorities by m+. The autoencoder network f : x 7→ f (x;Θ) parameterized
by weights Θ reconstructs a sample x.

Then, the gradient of the overall loss Ltotal computes to

∇ΘLtotal(f , χ,Y) = ∇Θ
n∑
i=1

Ladv(fΘ(x
(i)
), y(i)) (3.6)

= ∇Θ

(∑
{i |y(i)∈m+ }

LR(f (x
(i);Θ), y(i))

︸ ︷︷ ︸
majority rec. loss

+
∑

{i |y(i)∈m− }

Ladv(f (x
(i);Θ), y(i))

)
︸ ︷︷ ︸

minority rec. loss Lm−

. (3.7)

The gradient for the minority reconstruction loss, which is the second addend, can thus be expressed
by

s1 ={i |y
(i)
∈ m− ∧ LR(f (x

(i);Θ), y(i)) ∈ [l, u]} (3.8)

s2 ={i |y
(i)
∈ m− ∧ LR(f (x

(i);Θ), y(i)) < l} (3.9)

s3 ={i |y
(i)
∈ m− ∧ LR(f (x

(i);Θ), y(i)) > u} (3.10)

∇ΘLadv(Θ, x, y) =∇Θ
(∑

s3

LR(f (x
(i);Θ), y(i))

)
(3.11)

+ 0 · ∇Θ

(∑
s1

LR(f (x
(i);Θ), y(i))

)
− α∇Θ

(∑
s2

LR(f (x
(i);Θ), y(i))

)

The complete training algorithm for ATA is presented in Alg. 1, and the procedure Ladv is a direct
implementation of Eq. 3.5. The training routine for a single epoch is implemented in the procedure
TRAIN_EPOCH, and the dataset for training is split into batches. While iterating over the batches, a
batch’s samples X are reconstructed by the autoencoder fΘ as denoted by reconstructions X̃ . Then, the
respective losses Ladv are computed from the samples and reconstructions. Finally, the gradient of
Ladv is calculated w.r.t. the network parameters Θ by backpropagation and parameters Θ are updated
in the gradient step. Once the network is trained, the classification threshold β is found through a
brute-force line search by trying out different threshold values and selecting the one which has the
highest F1 score on the validation set.

In summary, the intuition behind our adversarial loss function is to minimize the loss LR of majority
samples, as done by OCA for outlier and novelty detection. However, this approach immediately
fails when the loss of minority samples is mistakenly minimized as well. This is a common issue,
for instance, when minority and majority samples are highly correlated in feature space, but the loss
maximization of Ladv successfully addresses this issue by enforcing loss maximization of minority
samples. Of course, there is a limit to it, when samples are virtually indistinguishable, causing any
machine learning approach inherently to fail.

51

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

Algorithm 1 Adversarial Training of ATA
Input: sample x, reconstruction x̂, target y, minority weighting factor α, minority loss range [l, u]

procedure Ladv(x, x̂, y, α, l, u)
LR ←

1
n

∑n
i=1(xi − x ′i)

2

if y is minority then

L ←

LR · 0, LR ∈ [l, u]
LR, LR > u
−αLR, otherwise

end if
return L

end procedure

Input: Sample set χ, Target set Y , Batch size b, Autoencoder f with parameters Θ, lr λ
procedure train_epoch(χ,Y, b, f , λ)

Generate batches from χ each of size b
for each X ′, Y ′ ∈ batches do . for each batch

X̂ ′← { f (x(i);Θ) | ∀x(i) ∈ X ′} . forward pass
L ← {} . initialize batch loss
for i ← 1, . . . , b do

L ← L ∪ {Ladv(x
(i), x̂′(i), y′(i))} . sample loss

end for
Calc. gradient g← ∇Θ(

∑b
i=0 Li) . backprop

Θ← Θ − λg . gradient update step
end for

end procedure

3.5.2 Experiments and Results

In this section, we discuss the experiments and performance of our approaches on the different datasets
introduced in Sec. 3.4, which have been selected to individually represent one of the previously
described aspects of imbalanced classification, supervised outlier and novelty detection. Here, the
models are evaluated with respect to AUROC and F1 score. As explained in Sec. 1.2.1 the AUROC
metric corresponds to evaluating a model at all possible thresholds, resulting in a score that is
independent of thresholds. Thus, this metric is highly compelling for outlier and novelty detection, as a
concrete threshold is generally chosen based on the use case. To evaluate the models w.r.t. imbalanced
classification problems, macro F1 score is used for evaluation.

To benchmark our ATA approach, we consider the baselines of MLP (including oversampling) and
OCA as they are standard approaches in tackling imbalanced and outlier detection tasks, respectively.
For a fair comparison, we keep the model complexity roughly similar. The MLP has a single hidden
layer of size 50 also with sigmoid activations and an output layer with one neuron. The autoencoder
of OCA and ATA models has a single hidden layer of size 50, also with sigmoid activations. Note, the
weights of AE are not tied as we did not witness any significant performance differences. Furthermore,
we applied a weight decay of 1e−4 to all models to prevent overfitting and the exploding of gradients.

52

3.5 From Imbalanced Classification to Supervised Outlier Detection Problems

0 8 16
Reconstruction loss

100

101

102

103

104

#s
am

pl
es

majorities
minorities

(a) OCA on KDD OI

0 10 20
Reconstruction loss

100

101

102

103

104

#s
am

pl
es

majorities
minorities

(b) ATA on KDD OI

0.00 0.02 0.04
Reconstruction loss

100

101

102

#s
am

pl
es

majorities
minorities

(c) OCA on REU

0 15 30
Reconstruction loss

100

101

102

103

#s
am

pl
es

majorities
minorities

(d) ATA on REU

Figure 3.3: Loss histograms of the best OCA models and ATA models on the Reuters and KDD OI dataset.
The explicit reconstruction error maximization of minority samples leads to better separation of majorities and
minorities in reconstruction error space. Interestingly, OCA leads to better reconstruction of majorities, but
implicitly also minimizes minorities, resulting in poor outlier detection performance.

Imbalanced Outlier Novelty

ATIS REU ARR KDD OI KDD OB KDD NI KDD NB

Models AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

ATA 99.07% 95.77% 99.80% 97.76% 92.26% 88.17% 97.36% 86.73% 97.10% 89.26% 82.34% 57.18% 92.11% 70.86%

MLP 99.00% 94.64% 99.82% 97.34% 89.46% 89.38% 93.93% 78.22% 93.96% 89.06% 61.54% 55.68% 89.31% 73.45%

OCA 86.17% 74.51% 85.42% 71.26% 80.65% 75.30% 92.75% 83.88% 95.68% 90.60% 80.48% 70.83% 93.15% 84.93%

Table 3.2: AUROC and macro F1 scores of the best ATA, MLP, and OCA models on the seven datasets. It is
observed that ATA outperforms baseline methods in most of the tasks, depicting its robustness.

For the MLP and ATA, we allowed for balanced sampling of each class as a counter measure to class
imbalance (see Sec. 1.2.3), which by design is not applicable to OCA. The models are trained using
the Adadelta optimizer [31] which is less prone to saddle points than SGD [30] (see Sec. 1.1). We
performed a formal grid search of hyperparameters concerning learning rate, balanced sampling, and
outlier weighting factor α and bin range [l, u]. Once finished, we selected the best model for MLP,
OCA, and ATA based on the AUROC score on the validation set.

Table 3.2 summarizes the performance of selected best models on each dataset, and by comparing
the AUROC scores, we observe that ATA outperforms each baseline in 5 out of 7 tasks. Another
important observation is that MLP and OCA excel in different types of tasks. While MLP is strong
on imbalanced classification tasks, its performance degrades on outlier and novelty detection tasks.
Au contraire, OCA excels on outlier/novelty detection but performs much worse on imbalanced
classification tasks. This task dependent performance degradation is not prevalent for ATA, and, in
fact, not only does ATA outperform MLP on imbalanced classification and perform equally with OCA
on novelty tasks, it also clearly outperforms both baselines on the intermediate outlier detection task.

Our results clearly indicate that the ATA approach is robust in all settings of imbalanced classification
and supervised outlier detection, even in semi-supervised novelty detection tasks. This is due to
the adversarial autoencoder training for minimizing and maximizing the reconstruction losses. As
captured in Fig. 3.3, ATA provides a clear separation of majority and minority loss distributions

53

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

irrespective of the task at hand. This property of ATA makes it overall a highly compelling tool for
supervised classification and outlier detection tasks.

3.5.3 Conclusion

With the adversarially trained autoencoder (ATA), we proposed a new architecture for outlier and
novelty detection. Jointly maximizing/ minimizing the reconstruction loss for majorities/minorities,
respectively, resulted in highly robust models excelling on imbalanced classification, supervised outlier
detection, and semi-supervised novelty detection. This level of robustness is unparalleled by any of
the baselines, all of which fail on at least one of the tasks. This opens up several promising directions
for future work. Firstly, we could replace the brute-force routine of thresholding by a classification
layer that takes reconstruction loss as input. In this way, we could train the whole network in an
end-to-end fashion, with multiple objectives by extending ATA with supervised autoencoders [1]. We
follow the direction of supervised autoencoders in the following section. Secondly, to extend our ATA
approach to unsupervised outlier detection problems, we could split our training into two phases. In
the first phase, autoencoders could be trained classically, to minimize reconstruction loss. The second
phase would be a fine-tuning phase, in which we also maximize the reconstruction loss for potential
anomalies, which are samples with higher reconstruction errors.

3.6 Supervised Autoencoder Variants for End-to-end Anomaly
Detection

Learning from limited and imbalanced training data and generalizing to unseen data and corruptions,
is an actively studied research area in deep learning [166, 167]. In addition to common strategies
to avoid overfitting, such as weight decay, drop out, and early stopping, an alternative direction has
emerged in the form of multitask learning (MTL) [168]. The idea is to incorporate additional tasks
into the learning process to improve the generalization of the model and to learn from a reduced
number of samples. These additional tasks mostly focus on including unsupervised objectives [169,
170] to learn better representations within the intermediate layers of a deep network.

Especially in supervised outlier detection, the low base rate of outliers and minority samples easily
lead to overfitting and poor quality representations in embedding space. If these representations were
used for downstream outlier classification, the performance of the outlier detectors would be severely
impaired. To this end, we explore MTL to learn richer representations by forcing the model to solve a
related, self-supervised problem of high complexity that retains the problem complexity in embedding
space. Analogously to ATA, we force the network via MTL to map the high dimensional inlier data
generating process onto a low dimensional manifold that approximates the true latent data manifold
of the inlier data generating process. In this section, we explore this direction using supervised
autoencoders (SAEs) [1].
We pursue the direction of MTL by training a SAE to jointly classify and reconstruct a sample.

Typically, in this setting, while minimizing the auxiliary reconstruction loss, either all the samples
(vanilla AEs) or just the majority samples (one-class AEs) are used during training. Both approaches
become ineffective when majority and minority samples overlap in the feature space and prevents
the classifier from accurate discrimination. To address this limitation, we propose an auxiliary task
based on the adversarial style of training autoencoders introduced in Sec. 3.5. The main idea is instead

54

3.6 Supervised Autoencoder Variants for End-to-end Anomaly Detection

of training the autoencoders to minimize only the reconstruction loss for majority samples, they can
also be trained to maximize the loss for minorities, thereby enriching the embedded features for
classification.

Therefore, our main contributions are:

1. We introduce three novel, autoencoder-based end-to-end approaches by adaption of the vanilla
SAE architecture. Namely, a) adversarially trained supervised autoencoders (ASAE), which
incorporates an adversarial loss function instead of the mean squared error loss, b) supervised
autoencoders with reconstruction loss (SAER) which forwards the reconstruction loss to the
classification layers as a predictive feature and c) adversarial supervised autoencoders with
reconstruction (ASAER) which is a combination of ASAE and SAER.

2. The proper functioning of all SAE variants is thoroughly verified by empirically analyzing the
reconstruction loss distribution and clustering of the autoencoders’ encoding.

3. Additionally, we show the superiority of our methods compared to potent autoencoder methods
and a vanilla MLP on the seven datasets for the imbalanced classification, novelty and anomaly
detection problems introduced in Sec. 3.4.

3.6.1 Supervised Autoencoders

Supervised autoencoders (SAEs) introduced by Le et al. [1] improve the generalization performance
of neural networks by adding an unsupervised auxiliary task to the supervised learning task. From
an architectural point of view, the neural network model is a combination of an AE performing the
auxiliary task by reconstructing the inputs, and a neural network performing the classification task,
as shown in Fig. 3.4. Notably, both networks share the encoding layers. The overall architecture is
trained in an end-to-end fashion by minimizing a combined loss function Ltotal, that is composed of
both the reconstruction loss LR taking sample x and reconstruction x̂ as its inputs and the classification
loss Lc taking target y and prediction ŷ as its inputs:

Ltotal(x, x̂, y, ŷ) = λLc(y, ŷ) + LR(x, x̂). (3.12)

Notably, this loss function does not introduce any scaling of Lc and LR, thus making the effect of
the weighting hyperparameter λ dependent on the scale of the inputs. While the authors state that
λ = 0.01 provided the best results, it is not interpretable whether this factor equalizes both losses or
favors one of them.

3.6.2 Adversarial Supervised Autoencoders

Building upon SAEs, we introduce three novel variants specifically targeted at tackling imbalanced
dataset, outlier detection and novelty detection problems. While the authors of SAE show that
their architecture is less prone to overfitting and yields better generalization performance on the
classification tasks, we investigate whether SAEs and our proposed variants can achieve robust results
on imbalanced classification, outlier detection and novelty detection.

Our work builds upon the idea of exploiting the reconstruction loss as a highly predictive feature for
anomaly detection, which we already investigated in Sec. 3.5 and [23] as part of our adversarially

55

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

x1
x2
...

xm

x̂1
x̂2
...

x̂m

1
m

∑m
i (xi − x̂i)

2

MLP

y

Figure 3.4: Conceptual design of a supervised autoencoder (SAE) and a supervised autoencoder with readout
loss (SAER). In both variants the autoencoder maps the input sample x to the reconstruction x̂. In the SAE case,
the MLP performs inference solely on the encoding of x, whereas in the case of SAER, the reconstruction loss
is also passed to the MLP, as indicated by the dashed line.

Model LR LR to MLP

SAE LMSE no
SAER LMSE yes
ASAE LR_adv no

ASAER LR_adv yes

Table 3.3: Summarization of the different model variations. The models are distinguished on an architectural
level based on whether the reconstruction loss is passed to the MLP or not, as defined in the third column.
Additionally, there are two different training styles by adaptation of the reconstruction loss function LR in
Eq. (3.14): Mean squared error LMSE and adversarial reconstruction loss LR_adv .

trained autoencoder (ATA) architecture. As a recall, this architecture is trained in an adversarial
supervised fashion, minimizing/maximizing the reconstruction loss for majorities and minorities,
respectively, as formalized by:

LR_adv(x, x̂, y) =
0, LMSE > t ∧ y ∈ m−

LMSE(x, x̂), y ∈ m+

−αLMSE(x, x̂), otherwise.

(3.13)

Given the loss function LR_adv , ATA learns to reconstruct majority samples having class label m+, and
the loss of minority samples is maximized up to a chosen threshold t. The maximization intensity is
controlled by an outlier weighting factor α ∈ R+. When the reconstruction loss exceeds this threshold
t, the loss is zeroed out, thus zeroing out the gradients as well, resulting in no further learning w.r.t. the
given sample. It has been shown in Sec. 3.5, that loss negation is equivalent to flipping the gradient.
By pushing the loss distribution of minority samples towards threshold t and the majority loss

distribution towards 0, this adversarial training style enforces the predictive power of the reconstruction
loss for anomalies. For estimating the decision boundary, we performed a brute force line search over

56

3.6 Supervised Autoencoder Variants for End-to-end Anomaly Detection

the reconstruction loss space to find a suitable decision threshold.
In this section, we combine the merits of reconstructive representation learning for outlier detection

and MTL for expressive representation learning, by proposing two different extensions to SAE, whose
combinations result in three novel methods, as shown in Table 3.3.
In contrast to the loss function of the original SAE, as defined in Eq. (3.12), we improve the loss

functions in two ways. Firstly, we equalize the importance of each loss term Lc and LR at the beginning
of the training by unit scaling them with the scaling factors sc and sR, respectively. Secondly, we sum
up a linear combination of both loss terms instead of penalizing a single term individually. With these
two changes, as defined in Eq. (3.14), the influence of each loss term can be investigated empirically.

Ltotal(x, x̂, y, ŷ) =
λ

sc
Lc(y, ŷ) +

1 − λ
sR

LR(x, x̂) (3.14)

The first SAE extension replaces the reconstruction loss LR within Eq. (3.14) with the adversarial
reconstruction loss function LR_adv , previously defined in Eq. (3.13). As shown in Table 3.3, models
making use of the adversarial reconstruction loss function have a leading A in their name.
For our second SAE extension, the reconstruction loss LR is passed to the MLP along with the

encoding, as indicated by the dashed arrow in Fig. 3.4. As already shown for ATA and OCA, the
reconstruction loss is a highly predictive outlierness feature, and therefore, is reasonable to be included
in the input of the MLP. In Table 3.3, the presence of this property is indicated by a trailing R in the
respective model names.

3.6.3 Experiments and Results

In this section, the experiment setup and the model performances on seven different datasets are
discussed. We chose the same datasets and preparation from Sec. 3.5, representing all three tasks of
imbalanced classification, supervised outlier, and novelty detection.

We consider the AUPR score as a threshold independent metric that, in contrast to AUROC, takes
different base rates into account [171]. The metric can be interpreted as the proportion of samples to
be predicted as minorities, over the set of all predictions exceeding a randomly selected threshold
[172]. It is generally applied to problems dealing with "finding a needle in a haystack", and therefore,
it is more relevant for outlier and imbalanced dataset problems.
To achieve a fair comparison, we keep the model complexity of each method roughly the same.

Furthermore, the three baselines, such as ATA, MLP and OCA are chosen based on our previous
work of ATA [23]. It is noteworthy that, due to the decoder in the ATA, OCA and SAE methods,
these methods have more parameters when compared to an MLP. However, as shown in [23], tied
weights between the encoder and decoder did not have any significant effect on the performance of
these models. We use Adadelta [31] as an optimizer for our models, and additionally, to account
for overfitting and exploding gradients, we regularize with a weight decay of 1e−4. With respect to
the training objective, the MLP minimizes the samples’ binary cross entropy, while OCA and ATA
optimize the samples w.r.t. the mean squared error. SAE methods, on the other hand, optimize the
multitask loss function as a linear combination of binary cross entropy for classification loss and mean
squared error for the reconstruction loss. We perform a formal grid search for each model on each
dataset w.r.t. learning rate and balanced sampling. Note that balanced sampling is not applicable to
OCA since it is semi-supervised. Particularly for ATA, the grid search comprised different outlier

57

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

Imbalanced Outlier Novelty

ATIS REU ARR KDD OI KDD OB KDD NI KDD NB

MLP 97.34% 99.10% 78.02% 77.27% 93.26% 14.48% 75.95%
OCA 75.09% 49.16% 50.91% 65.63% 92.51% 20.35% 76.37%

ATA 96.09% 99.32% 82.39% 74.86% 95.35% 20.66% 69.06%

SAE 98.51% 99.31% 80.97% 83.24% 94.73% 21.00% 61.44%
ASAE 98.10% 99.37% 79.53% 80.11% 93.50% 15.67% 56.23%
SAER 98.02% 99.29% 73.52% 80.53% 93.21% 19.78% 75.31%

ASAER 97.81% 99.43% 83.04% 77.87% 90.42% 21.34% 66.46%

BASE 27.65% 0.58% 19.74% 18.72% 48.33% 6.87% 27.86%
Table 3.4: Performance comparison of vanilla SAE, ASAE, SAER, and ASAER to the baselines MLP, OCA and
ATA based on AUPR scores throughout the seven datasets (ATIS, REU, ARR, KDD OI, KDD OB, KDD NI
and KDD NB). For each dataset, the score of the best model has been highlighted in bold face. It is observed
that SAE approaches generally outperform the baselines. BASE denotes the expected AUPR scores of a random
classifier for reference.

(a) ASAER train (b) ATA train (c) OCA train (d) SAE train

(e) ASAER test (f) ATA test (g) OCA test (h) SAE test

Figure 3.5: Scatter plots of the minority encodings (red points) and majority encoding (blue points) generated
by the best ASAER, ATA, OCA and SAE models on the ARR dataset split by train and test. To visualize the
encodings within R2, we employed UMAP, an unsupervised manifold learning based algorithm for nonlinear
dimensionality reduction [164]. In contrast to the non-adversarial methods, the results suggest that the adversarial
methods successfully separate the minorities from the majority manifold. This becomes especially apparent
when comparing the level of separation to the original clustering result on the raw samples in Fig. 3.2(c).

weighting factors α, loss term weighting factors λ, and minority reconstruction loss thresholds t. For
every dataset and every method, we select the best model based on the highest AUPR validation score.

Table 3.4 summarizes the test performance of the selected best models on each dataset. Overall, it
can be seen that the SAE method and its variants are superior to the baselines of MLP and OCA, as
the SAE variants beat the MLP approaches in 21 out of 28 cases, and the OCA in 22 out of 28 cases in
terms of AUPR score. Comparing the performance to ATA, the SAE variants beat ATA in 14 out of

58

3.6 Supervised Autoencoder Variants for End-to-end Anomaly Detection

0 10 20 30 40
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(a) ASAER train

0 10 20 30 40 50
Mean squared error

100

101

102

Fr
eq

ue
nc

y
(b) ATA train

0 1 2 3 4 5
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(c) OCA train

0 1 2 3
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(d) SAE train

0 5 10 15 20 25 30
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(e) ASAER test

0 10 20 30 40
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(f) ATA test

0 1 2 3 4
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(g) OCA test

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mean squared error

100

101

102

Fr
eq

ue
nc

y

(h) SAE test

Figure 3.6: Histograms of reconstruction loss distributions of minority (red bars) and majority samples (blue
bars) for the best ASAER, ATA, OCA and SAE models on the ARR dataset split by train and test. Note y-axis
is log scaled.

28 cases, putting ATA at no architectural advantage. Furthermore, at least one of the SAE approaches
exceeds all baseline approaches in 5 out of 7 datasets, with SAE’s and ASAER’s performance standing
out. In conclusion, by direct AUPR score comparison, SAE and its variants are superior to MLP and
OCA, and competitive to ATA throughout the imbalanced classification, outlier, and novelty detection
problems.

Next, we explore the representations learned by these best models and visualize them using UMAP
clusters, as seen in Fig. 3.5. We can observe that for the adversarial approaches, i.e., ASAER and
ATA, the resulting clusters are well separated, with each cluster almost exclusively containing either
inlier or outlier data points. However, for the non-adversarial approaches such as OCA and SAE,
there is only a single cluster without any clear separation. This is a valuable insight, clearly showing
that adversarial approaches force the autoencoder to learn better representations. Furthermore, we
visualize the reconstruction loss distributions of outlier and inlier data points using a histogram as
shown in Fig. 3.6. It can be seen that the loss distributions corresponding to inlier and outlier data
points are strongly separated for adversarial methods. In contrast to this, the loss distribution overlaps
for non-adversarial methods. This strong separation is due to the classification and reconstruction term
within the adversarial loss functions of ASAER, as defined in Eq. (3.14); both objectives are aligned
with the core objective of separating majorities from minorities, yielding the minorities being remote
from the latent inlier manifold. In contrast, the SAE objective aims to minimize the reconstruction
losses regardless of the sample’s class. In other words, this auxiliary task of unsupervised learning is
not aligned to the classification task. Our work, therefore, suggests choosing an auxiliary task (e.g.,
adversarial loss minimization) that is similar to the primary task.

3.6.4 Conclusion

We developed three novel end-to-end variants of supervised autoencoders [1] which can be used for
imbalanced classification, outlier detection, and novelty detection. Having evaluated our approaches
on a broad spectrum of datasets against competitive baselines such as MLP, OCA, and ATA methods,
we show that SAE and its variants are superior to MLP and OCA, and competitive to ATA, in

59

Chapter 3 Supervised Outlier Detection with Deep Neural Networks

terms of AUPR scores. Additionally, the representations obtained from adversarial approaches show
well-separated clusters suggesting the need for further investigation.

Our work indicates that auxiliary tasks relevant for classification task, help to obtain encodings
useful for accurate classification. Furthermore, one could explore whether the reconstruction loss
alone can be passed as a feature to the MLP without the encodings. This setup would automatically
force the MLP to separate majority and minority samples based on reconstruction loss which may also
render the adversarial objective redundant. This could happen because the classification loss might be
sufficient. We would like to pursue this approach as future work; thereby, we can reduce the multi-task
learning problem into a simple classification problem with this informed architecture. While this
might seem straight forward, there are some limitations to this kind of optimization that lead to poor
robustness when solely optimizing the classification loss in this setting, as we will demonstrate by the
ablation study concerning the proposed loss function in Sec. 4.7.4.

3.7 Summary and Outlook

In this chapter, we explored deep learning-based supervised outlier detection from three angles.
Firstly, we have demonstrated through various experiments that traditional DNNs are incapable
of detecting outliers, novelties, and generally unobserved corruptions. If outlier data is available
at training time, the DNN can leverage this information to treat the outlier detection problem as
an imbalanced classification problem. However, this only works under the strong empirical risk
minimization assumption, that demands the outliers observed at training to be representative of the
ones observed at test time. We have shown that this is not always given, leading to severe performance
degradation of traditional classification methods.
Secondly, we explored one-class autoencoders for semi-supervised outlier detection which yield

strong outlier detection performance on those outliers that deviate significantly from inliers but fail to
capture outliers that are similar to inlier classes.
Thirdly, we examined the multi-task learning architecture, supervised autoencoder (SAE), for

outlier detection. We found that combining the outlier detection objective as a classification objective
with a self-supervised training objective yields better generalizing embeddings for the downstream
outlier detection task.
Based on the partial deficiencies and advantages of each algorithm, we proposed the two new

methods, an adversarially trained autoencoder (ATA), and an adversarial SAE (ASAE). With MLP
leveraging outlier information within the classification objective and OCA explicitly learning an inlier
representation, MLP and OCA are architecturally, fundamentally different, and succeed on opposing
tasks. ATA leverages the outlier information to guide the inlier representation learning, which links
the merits of MLP and OCA. Technically, ATA not only minimizes the inlier reconstruction error like
OCA but also maximizes the reconstruction error for outliers, thereby allowing it to detect outliers
that are conceptually related to inliers. Our results conclusively demonstrate the effectiveness of this
method throughout various outlier detection and imbalanced classification experiments.

Following up on the idea of outlier reconstruction error maximization, we apply the same concept
to SAE. Although the outlier detection performance does not significantly improve, we found that
ASAE learns low dimensional embeddings in the latent space that are well-separated w.r.t. their class
association. The separation demonstrates the effectiveness of the adversarial loss function, and allows
for neural networks of reduced complexity for downstream classification tasks, such as the outlier

60

3.7 Summary and Outlook

detection task.
In the next chapter, we reframe the outlier detection task as a one-vs-rest classification task, where

the rest class includes observed and unobserved rest classes, and out-of-distribution data such as
outliers and dataset shift. This setting is often referred to as open set recognition, and can be regarded
as a generalized classification task that not only spans observed classes that can be learned via empirical
risk minimization, but also unobserved classes and corruptions. Therefore, classifiers need to be able
to not only correctly classify the known rest classes (closed set), but also to reject the unrestricted
unknown (open set), to succeed on this complex task. Such classifiers are highly robust to unexpected
conditions when deployed in the open world, a principal criterion for AI-safety.
We tackle open set recognition from the angle of supervised outlier detection, as it is capable of

rejecting unknown conditions, i.e., the samples that deviate significantly from the inlier data generating
process. In the next chapter, we extend ATA to learn a tight hull around the inlier data by utilizing
the observed rest classes to guide the learning process, providing an effective solution to the second
milestone. As we will prove, ATA and its extension have a bounded open space risk by design, which
is not the case for the SAE variants.

61

CHAPTER 4

Open Set Recognition

In this chapter, we tackle open set recognition (OSR), a highly complex and generalized version of
one-vs-rest classification, via the supervised outlier detection method, ATA, developed in Ch. 3. OSR
methods separate a fixed set of inlier classes from all the possibly existing rest classes, outliers and
other corruptions, and therefore, match the complexity of real world deployments. In practice, models
succeeding on this task provide tremendous robustness gains over traditional deep learning methods
optimized via empirical risk minimization. After all, most of the AI accidents reported in Ch. 1 can
be associated with out-of-distribution exposure at deployment time, and could have possibly been
prevented by OSR methods. We argue that supervised outlier detection already provides the necessary
means to detect unknown occurrences, making it a compelling direction for OSR. We explore the
direction of applying ATA to OSR by modifying the architecture and reformulating the training
objective to learn a hull around the inlier data that is as tight as possible, without compromising
classification performance.
Firstly, we introduce the concept of OSR in this chapter and explain the intuition behind the

robustness benefits of OSR methods in the open world. Secondly, we introduce the decoupled
autoencoder (DAE) architecture, an advancement of ATA towards robust OSR. ATA separates the
reconstruction error distribution of inliers and outliers and subsequently finds a threshold splitting
inliers and outliers in reconstruction error space in a brute force fashion. In contrast, DAE actively
minimizes the threshold without compromising the recall of inliers. Due to this training objective, the
model learns a tighter hull around the inlier data, allowing the robust rejection of out-of-distribution
data.

Thirdly, we elaborate on the differences between closed set classification and OSR, related to training
objectives and robustness requirements. We then provide an upper bound on the open space risk of
DAE, a crucial criterion for OSR models in open world deployments that is not met by the vast majority
of OSR methods due to their architectural design. Next, we evaluate the method’s effectiveness over
an extensive range of experiments, covering classification, outlier detection, and dataset shift. These
benchmarks demonstrate DAE’s superiority over various state-of-the-art OSR methods. In particular,
we show DAE’s robustness gains w.r.t. adversarial and improved calibration, unmatched by any of
the baselines. Finally, we perform an ablation study on the multi-task optimization objective, and
demonstrate that only the combination of each task leads to the desired tight hull around the inlier data.
This chapter is based on our publications [22, 99, 173], and provides a solution to the second

milestone, specified in Sec. 1.5. The works are based on the idea to connect outlier detection and

63

Chapter 4 Open Set Recognition

Figure 4.1: Conceptual illustration of OSR: The closed set SV̂ is visualized by the green area comprising all
inliers. There are two different rest samples types: red points resemble a known rest class, whereas blue and
pink samples reflect unobserved outliers. The objective is to learn an indicator function f (decision boundary
shown as blue line), that filters inliers and rejects all rest samples. The open space risk RO(f) can be interpreted
as the ratio of the blue area over the green area that is bounded by the decision boundary of f .

classification to OSR and resulted in the DAE architecture, both of which were contributed by Max
Lübbering. Furthermore, the theoretical proofs of the existence of a bound on the open space risk
and its estimation were carried out by Max Lübbering. Besides the theoretical work, Max Lübbering
implemented the DAE architecture and the experimental setup, providing all the insights in the papers.
Apart from the MiMo baseline [174], which was jointly implemented by Max Lübbering and his
co-authors, Max Lübbering implemented all baselines. All authors provided extensive feedback during
the implementation and evaluation of the DAE method, and helped in revising the final paper, which
was written by Max Lübbering for most parts.

4.1 Introduction

Despite having achieved state-of-the-art classification results in diverse domains [175–177], DNNs
are generally not well-equipped for real-world applications [18] and tend to fail when exposed to data
from unseen distributions, as we shave shown in Sec. 1.1.
This issue often goes unnoticed, as state-of-the-art classification results are primarily obtained in

extremely controlled benchmark environments, with an inherent closed world assumption, raising
the question of applicability to real-world scenarios [33–35, 178]. Specifically, DNNs tend to only
generalize well within the concepts they were trained on, and tend to provide incorrect predictions with
exaggerated confidence when exposed to samples from unseen distributions [18, 33–37], jeopardizing
model robustness. As visualized in Fig. 4.2(b), the multi-layer perceptron (MLP) learns to separate the
two half-moons and XOR circles, but fails to generalize to the uniform noise. Note that the MLP and
the ensemble method MiMo [174] were trained via empirical risk minimization (ERM) to separate
the two classes, so there is no preference to which class the outliers should be attributed. We would,
however, expect a well-generalizing model to be uncertain about these samples and not assign them to
one of the classes with high confidence.
In this work, we consider open set recognition (OSR) as the generalized version of one-vs-rest

(OVR) classification [69], in which the rest samples not only stem from known classes, but also from
different unknown sources of outlier generating processes [25, 179]. Therefore, the aforementioned
deficiencies of DNNs also pose a severe threat to OSR. As suggested by [25], these deficiencies can
be alleviated by framing the optimization problem in OSR as a combination of ERM and open space

64

4.1 Introduction

risk minimization [25]. The open space is defined as the set of points that have at least distance d to
any of the inlier samples, i.e., the closed space. The open space risk is then defined as the relative
measure of the open space volume of false inliers, over the closed space volume classified as inliers
(i.e., true inliers), as illustrated in Fig. 4.1. Consequently, minimizing the open space risk forces the
model to learn a hull around the inliers, leading to increased model robustness.
The difference between ERM, and ERM in conjunction with open space risk minimization, is

illustrated in Fig. 4.2. Due to its bounded open space risk, our proposed decoupled autoencoder
(DAE) method learns a hull around the inlier data, whereas the MLP assigns an infinite space to
the inlier class, resulting in infinite open space risk. In practice, this problem is often mitigated by
the long-established background class setup [180], in which all rest classes are subsumed within a
single background class [181, 182]. This approach can be an effective measure to learn a working
OSR model, as illustrated in Fig. 4.2(h). The downside though, is that this approach is also highly
data-intensive, often rendering it infeasible and error-prone, while still having an unbounded open
space risk.
Similar as to supervised outlier detection, OSR generally deals with significant class imbalances.

When the focus lies on filtering a single, narrow class of interest (COI), similar to the needle in the
haystack problem, then this inlier class tends to be underrepresented. When the focus shifts towards
outlier detection, for instance, in the case of computer virus detection, inlier samples outnumber
instances of the rest class. Furthermore, only some classes of the problem domain are usually known
for the set of rest classes (RCs), and outliers or dataset shifts are only witnessed at test time, making
OSR a highly imbalanced, semi-supervised setting. Throughout the paper, we refer to COI samples as
inliers, RC samples as rest samples, and samples of unseen rest classes as outliers.

To measure model robustness in isolation, we subdivide the OSR task into three disjunct sub-tasks
by gradually increasing the scope of RC:

1. OVR classification task Tc: The model is evaluated on the COI and the RCs it was trained on.

2. Contextual outlier detection task To: Comprises the evaluation on COI and conceptually related
RCs of Tc. In practice, the rest samples stem from the same dataset, but from RCs the model
was not trained on. Consistent with the literature, we define samples originating from RCs in
this case as contextual outliers, since they are possibly generated from a completely different
underlying mechanism [42, 43, 183], yet contextually related.

3. Dataset shift task Td: In this case, rest samples stem from a new dataset, equivalent to the
evaluation approach in [34]. By extending the scope of RC in tasks To and Td to rest classes
unseen during training, aspects of semi-supervised outlier detection and robustness to dataset
shift become predominant. In fact, tasks To and Td can be seen as semi-supervised, one-class
classification (OCC): In this semi-supervised setting, the model is only exposed to COI samples
during training time, and is supposed to learn to reject samples that deviate from the COI
representation, i.e., outliers [68, 70].

With our three-task experiment design, we are therefore able to bridge the gap between OVR and
OCC within OSR, and precisely pinpoint the classification and robustness performance for each
algorithm.

Due to the widespread application of OSR in safety-critical environments such as medical diagnosis
[66, 184, 185], fraud detection [145, 186, 187], and intrusion detection [188, 189], the extension of

65

Chapter 4 Open Set Recognition

(a) DAE on Half-Moon (b) MLP on Half-Moon (c) MiMo on Half-Moon

(d) DAE on XOR Circles (e) MLP on XOR Circles (f) MiMo on XOR Circles

(g) DAE on Bounding Gaussians (h) MLP on Bounding Gaussians (i) MiMo on Bounding Gaussians

Figure 4.2: Class probabilities of DAE, MLP and MiMo [174] visualized as contours: In contrast to MiMo and
MLP, DAE learns a hull around the red class of interest (COI) for the three datasets, enabling the method to not
only separate the two inlier classes, but also to reject the unseen uniform noise. MLP and MiMo only wrap the
inliers if the rest samples encourage such a decision boundary, as shown for the Bounding Gaussians dataset.

deep learning methods towards generalization and robustness with open space risk regularization is of
supreme importance.
To this end, we propose the decoupling autoencoder (DAE) method, a novel, autoencoder-based

architecture that learns a radial basis function (RBF) kernel, mapping the reconstruction error to class
probabilities. The reconstruction error as a measure of outlierness is learned by a novel adversarial

66

4.2 Related Work

loss function that separates inliers from rest samples in reconstruction error space, and is based on
gradient ascent as suggested by us in [23] and Theorem1. The inlier and outlier distributions are
separated by a decision boundary that is optimized end-to-end to be as close as possible to the inlier
distribution. Thus, observed and unobserved rest samples can be effectively rejected, resulting in
an increased robustness. While the related ATA method employs gradient ascent to rest samples
irrespective of their reconstruction error, and estimates the decision boundary offline in a brute-force
fashion, the DAE loss function scales down the reconstruction error with increasing distance from the
decision boundary. Therefore, samples close to the decision boundary are heavily optimized for better
separation; hence the term "decoupling" in DAE. Furthermore, ATA only provides binary predictions
therefore lacking rudimentary means of interpretation. In contrast, DAE yields subjective probability
scores on the inlierness of a sample, substantially improving the model’s interpretability, especially
when deployed in safety-critical environments. The DAE architecture is sketched in Fig. 4.3.

Generally, our method combines the merits of MLPs succeeding on classification tasks, and
autoencoder methods with their strong robustness. Additionally, we prove the existence of an upper
bound on the open space risk for DAE and leverage this insight to actively minimize open space risk
within DAE’s loss function. Throughout a variety of experiments, we empirically show its benefits
by outperforming the two most prominent OSR methods, C2AE [190] and OpenMax [58], outlier
detection methods ATA [23] and one-class autoencoder (OCA), ensemble method MiMo [174], and
one-vs-rest MLP.
With its added theoretical foundation and empirical verification, DAE is shown to be a promising

candidate for deployment in safety-critical systems.

4.2 Related Work

The OVR classification strategy is often applied to binary models in order to extend them to multi-class
classification [69]. Naturally, there is no necessity for OVR classification for DNNs, since they already
support multi-class classification by design. However, there are common situations where OVR
becomes relevant. Typically, in filtering tasks, in which we intend to filter a single positive class, we
often only have access to the positive class, and a single negative class that subsumes all negative
samples [191–193], rendering the problem to a binary OVR classification. As another example, if the
goal is to filter normal samples from abnormal ones [179], there is also no class-wise distinction for
the rest class. As motivated previously, vanilla MLPs are unsuitable in this case due to their infinite
open space risk and consequential robustness deficiencies towards outliers [179]. While in modern
architectures, researchers often try to circumvent this problem by subsuming all rest classes within a
single background class [181, 182], this only reduces, but does not solve, the unbounded open space
risk [179].
Due to the safety implications of an unbounded open space risk, there have been few attempts to

bound it in DNNs. For instance, [58] and [194] leverage extreme value theory (EVT) to determine a
compact abating probability model based on the deep features of the full network outputs. Noteworthily,
both approaches are offline and are therefore not involved in training the network. The autoencoder-
based approach C2AE, proposed by [190], also uses EVT to determine the decision boundary in
reconstruction error space and requires at least two inlier classes. Other approaches try to bound
open space risk by using tent activation functions [195]. They show that it increases robustness to
adversarial attacks, while potentially compromising classification performance. In conclusion, as

67

Chapter 4 Open Set Recognition

stated in a recent survey, OSR is still largely unsolved within the deep learning domain [179].
In the related OCC setting, with its focus on outlier detection, DNN-based approaches have been

researched from three angles: 1) Combining kernel methods [196] with DNN methods [63, 68, 197],
2) generative models (e.g., generative adversarial networks [198] or variational autoencoders [199])
based outlier detectors [66, 200, 201], and 3) based on (semi-) supervised autoencoders [23, 24,
64, 147, 148, 202]. Here, the key idea is to learn a representation of the inlier distribution, and
subsequently, to estimate the outlierness of a sample via its reconstruction error. For a comprehensive
study of outlier detection methods with different levels of supervision, we refer the reader to Ch. 1.
Other contributions focus on the calibration, as DNNs tend to provide wrong predictions with

overly high confidence estimates for out-of-distribution samples [35, 77]. Since OVR classification
incorporates outliers when extended to OCC, this issue is also prominent in OSR classification.
Several methods to solve this have been proposed: Either by adding a calibration task to the model,
which aligns it with the target probability distribution [203], or by incorporating diverse predictions
from ensemble methods such as deep ensembles [35] and MiMo [174]. These methods combine
multiple neural networks as weak classifiers, whose diverse outputs are aggregated to well-calibrated
predictions; thus, compensating for overly confident predictions. Conversely, as pointed out by [204]
and also supported by our findings, the diversity of the weak classifiers within the ensemble methods
is not strong enough to generalize well to out-of-distribution samples. Instead, van Amersfoort et
al. propose the kernel-based method DUQ, which learns centroids of classes in a lower-dimensional
space [204]. Here, uncertainty is measured as a distance from the class centroids to out-of-distribution
points.

In contrast to [204], our DAE method incorporates radial basis functions to estimate the outlierness
of a sample via the distance to its reconstruction, and therefore does not require any centroid updating
routines. Furthermore, ATA [23] optimizes the decision boundary w.r.t. F1 score in an offline,
brute-force line search in reconstruction error space, which does not actively minimize the open space
risk. For DAE, we designed a customized loss function that allows learning the decision boundary
end-to-end and minimizes open space risk. Furthermore, it forces the classes to be more separated in
reconstruction error space than ATA’s adversarial loss function.

4.3 Decoupling Autoencoders

Similar to existing autoencoder-based approaches for outlier detection [23, 64, 148], the decoupling
autoencoder (DAE) method learns the outlierness of a sample via its reconstruction error. Existing
approaches estimate the decision boundary via brute-force algorithms [23, 43] or learn the decision
boundary via a subsequent downstream layer [24]. In contrast to this, DAE learns the decision
boundary end-to-end, while optimizing for a pessimistic decision boundary that is most close to the
inlier samples without compromising generalization performance. Thus, the decision boundary’s open
space risk is actively minimized, a favorable setting in safety-critical systems.
From an architectural point of view, as displayed in Fig. 4.3, the network reconstructs a sample

x ∈ Rn using the autoencoder ϕ(x) = d(e(x)), consisting of an encoder e(·) and a decoder d(·).
The reconstruction error eMSE between the original and reconstructed sample x̂ ∈ Rn computes to
eMSE(x, x̂) = 1

n

∑n
i (xi − x̂i)

2. The reconstruction error is mapped to the inlier probability via Gaussian

g : z → e
− z2

2σ2
1 with a mean of zero. Thus, the higher the reconstruction error, the smaller the inlier

68

4.3 Decoupling Autoencoders

x1
x2
...

xn

x̂1
x̂2
...

x̂n

eMSE(x, x̂) g(eMSE, σ1) ŷd(e(x))

Figure 4.3: Decoupling Autoencoder (DAE) architecture: A joint architecture composed of an autoencoder
ϕ(x) = d(e(x)) for sample reconstruction, a reconstruction error module eMSE for outlierness estimation,
and an RBF kernel g with standard deviation σ1 for classification. Thus, the entire network is given by
f (x) = g(eMSE(x, d(e(x))), σ1).

probability. More formally, the full network f is given by

f (x) = g(eMSE(x, d(e(x))), σ1). (4.1)

Note that the standard deviationσ1 is directly coupled with the decision boundary t via t =
√
−2σ2

1 ln 1
2 ,

as the threshold is fixed at the 0.5 level of function g, also shown in Fig 4.4.
During training, the network has three objectives:

a) To minimize inlier reconstruction errors and maximize rest sample reconstruction errors, such
that the inlier samples are easily distinguishable from rest samples within the one-dimensional
reconstruction error space.

b) To classify samples correctly based on the decision boundary t.

c) To reduce the open space risk by minimizing the decision boundary t, such that the model is
sensitive to unseen outliers.

The overall loss function L̂ incorporates these three training objectives by combining the adversarial
loss function LR, binary cross-entropy (BCE) classification loss LBCE(ŷ, y) = −[y ln ŷ+(1−y) ln(1− ŷ)],
and a regularizer term |t |, as follows:

L̂(x, x̂, y) = LR(x, x̂, y) + λ2LBCE(f (x), y) + λ3 |t | (4.2)

where y and ŷ denote the target label and the model’s predicted COI probability of sample x,
respectively. Factors λ2 and λ3 scale the classification loss term and |t | regularization.
The adversarial reconstruction loss LR comprises the minimization and maximization of recon-

struction errors w.r.t. inliers and rest samples, as defined by:

LR1(x, x̂, y) = LMSE(x, x̂)wi(LMSE(x, x̂)) (4.3)

LR2(x, x̂, y) = LMSE(x, x̂)wo(LMSE(x, x̂)) (4.4)

LR(x, x̂, y) =

{
λ0LR1(x, x̂, y), y ∈ inliers
λ1LR2(x, x̂, y), otherwise,

(4.5)

69

Chapter 4 Open Set Recognition

−0.5

0.5

1

minimization of t
eMSE

t
g(eMSE, σ1)

Figure 4.4: Combination of classification objective LBCE and | |t | |1 regularization to optimize for a decision
boundary t, which is minimal, but does not compromise classification of inliers (red points) and rest samples
(blue points)

−1

1

2
max LMSE(x, f (x)) ∀ x ∈ RC

min LMSE(x, f (x)) ∀ x ∈ COI

LMSE

wi(LMSE)

wo(LMSE)
t

Figure 4.5: Intuition behind the reconstruction error objective LR: Minimization/maximization of reconstruction
losses for inliers (red) and rest samples (blue), respectively. Separation is achieved byweighting the reconstruction
losses with wi for inliers and wo for rest samples. Therefore, samples on the wrong side of the decision boundary
t are heavily optimized. With increasing distance from the decision boundary, optimization decelerates for
correctly classified samples, as indicated by the length of the arrows.

where scaling factors λ0 ∈ R
+ and λ1 ∈ R

+ determine the minimization/maximization magnitude,
respectively. Within LR, the mean squared error LMSE(x, x̂) = 1

n

∑n
i (xi − x̂i)

2 is weighted by
wi : R→ R for inliers and by wo : R→ R for rest samples. These two functions, given by Eq. (4.6)
and Eq. (4.7), push the reconstruction errors of inliers and rest samples away from the decision
boundary t, towards the origin and∞, respectively, thereby providing a clear class separation:

wi(l) =

1 l > t

e
−
(l−t)2

2σ2
2 otherwise

(4.6)

wo(l) =

−1 l < t

−e
−
(l−t)2

2σ2
2 otherwise.

(4.7)

Note that in both cases, the standard deviationσ2 of the Gaussian is a hyperparameter and determines
how far the two classes are being separated. σ2 is not to be confused with σ1, which is coupled with
the decision boundary t. The reconstruction error maximization of rest samples is achieved in Eq. (4.7)
by the negation which is equal to flipping the loss gradients [23] and thus corresponds to gradient
ascent. The reconstruction error objective LR is conceptually visualized in Fig. 4.5.
Due to the spacious separation of the inlier set and rest sample set in reconstruction error space,

there is a wide range of possible decision boundaries t. We argue that the best t is as close as possible

70

4.4 Classification Concern Conflicting with Robustness

to the inlier set without compromising the classification performance, thus offering a reasonable
trade-off between classification (Tc) and outlier detection (To) / dataset shift (Td), while reducing the
open space risk. The trade-off is modeled via the second and third addend of L̂ in Eq. (4.2). The
| |t | |1 regularizer minimizes the decision boundary t towards 0, eventually leading to an impractical
classifier, always predicting RC independently of x. This impractical solution is prevented by the
classification loss term LBCE acting as a stopping criterion, as visualized in Fig. 4.4. Note that the four
scaling factors λ0, . . . , λ3 trade off these three objectives of reconstruction minimization/maximization,
classification performance, and out-of-distribution robustness.

The combination of LR and LBCE also solves the vanishing gradient problem, which would occur for
large eMSE, due to the Gaussian output activation function. When solely minimizing the classification
loss LBCE jointly with the regularizer term, i.e., L̂∗ = LBCE + | |t | |1, we can show that

lim
eMSE(x, f (x))→∞

∂ L̂∗

∂Θ
= 0, (4.8)

where Θ are the network weights of autoencoder ϕ. The total derivative of L̂∗ computes to

∂ L̂∗

∂Θ
=
∂ L̂∗

∂ f
∂ f
∂g

∂g

∂eMSE

∂eMSE
∂ϕ

∂ϕ

∂Θ
. (4.9)

As eMSE tends to infinity, Gaussian g becomes a horizontal line, resulting in gradients equal to 0:

lim
eMSE(x, f (x))→∞

∂g

∂eMSE
= 0. (4.10)

Thus, the expression in Eq. (4.8) zeros out, which is why the gradient updates become ineffective for
inliers with large eMSE. As LR is independent of Gaussian g, it is not affected by this problem and
enforces convergence by minimizing these inliers.

4.4 Classification Concern Conflicting with Robustness

During the training of DNNs, we minimize a surrogate loss function L, such as negative log-likelihood
(NLL) instead of the non-differentiable 0-1 loss, over a given empirical data distribution p̂data(x, y),
as the true pdata(x, y) is unknown [17]. As shown in Sec. 1.1, this corresponds to minimizing the
empirical risk, which is given by Ex,y∼p̂data(x,y)[L(f (x; Θ), y)] = 1

N

∑N
i=1 L(f (x(i); Θ), y(i)), where N is

the training set size, and f the model with parameters Θ. This procedure optimizes for a discriminating
function which correctly separates the classes in the training set, i.e., optimization for classification
performance. Under the assumption that the empirical data generating distribution p̂data(x, y) is similar
to the true data generating distribution pdata(x, y), the discriminatory function will generalize to unseen
data x, y ∼ pdata(x, y) within the problem domain.
A problem arises when the model is exposed to samples that are highly unlikely, according to

p̂data(x, y), i.e., outliers because the model was not optimized w.r.t. such samples. This issue is
visualized in Fig. 4.2 for MLP and MiMo on the Half-Moon and XOR Circles datasets. Both methods
learn to separate the observed data (i.e., p̂data(x, y), and when we consider only the training data (red and
blue samples), the learned model indeed minimizes the empirical risk. However, for out-of-distribution
data (orange points), we would like to observe high uncertainty. Since this is not reflected in the

71

Chapter 4 Open Set Recognition

training objective, the model often predicts one of the two classes with high confidence, even though
the out-of-distribution data cannot be attributed to either of the two classes [33].
A simple solution would be to facilitate reconstructive representation learning with, e.g., autoen-

coders, by forcing the reconstruction error to capture the outlierness of a sample. As shown in Fig. 4.2
for DAE and in Fig. 4.6 for ATA, each model has learned a representation of COI, and rejects any
major deviation from it as RC. While this indeed increases the robustness [23, 24], it can also harm
the classification performance since a representation for all input features needs to be learned [204].
In fact, autoencoders aim to learn the natural manifold of the inlier data, which only exists under the
manifold assumption introduced in Sec.1.3. When the data lives on a highly complex manifold (see
our related discussion on the challenges of encoding toxicities in online communication in Sec. 6.1.4),
or the data is corrupted by uninformative, non-causal features, there can be a diminishing effect on the
autoencoder’s classification performance. Models trained within the ERM framework do not suffer
from this problem, as the feature extractor would neglect these features [204].
In conclusion, there is a trade-off between classification performance and robustness to out-

liers/dataset shift, which DAE aims to alleviate within the OSR framework.

4.5 Achieving Bounded Open Set Recognition with Autoencoders

In recent years, novel deep learning algorithms have advanced the state-of-the-art in many classification
tasks. However, as noted in Sec. 4.1 and Sec. 1.1, it has also been shown that these algorithms, when
solely optimized for empirical risk, often give wrong predictions with high confidence when exposed
to dataset shift and outliers. In this section, we formalize this issue in line with [25], and prove that
our approach has an upper bound on the open space risk, a primary criterion for robust OSR.
OSR was first defined by [25], was recently surveyed by [39, 179], and is still a largely unsolved

topic within the deep learning domain [25, 58, 190]. OSR formalizes the problem of distinguishing
a class of interest (i.e., samples originating from an observed set of classes) from samples derived
from, e.g., outlier generating processes, dataset shifts, or other possibly unobserved but related classes.
As deep learning classifiers are generally trained based on ERM by leveraging a surrogate loss such
as cross-entropy, they only learn to differentiate the observed classes. This can be viewed as closed
set classification, which is illustrated in Fig. 4.2: the MLP successfully learns to distinguish the two
half-moons resembling the closed set. A problem arises when we zoom out of the problem domain
and consider samples from the open set (i.e., outside of the closed set), then these samples that are far
away from the closed set are still assigned to one of the two half-moons.
As a solution, OSR proposes an indicator function f over input space X, that maps inliers to 1

and rest samples to 0. Partially following the notation of [25], let V̂ be the COI and SV̂ = {x ∈
X | mins∈V̂ |x − s|< d} be the corresponding closed set, i.e., the set of all points within X that are in d
proximity to at least one of the inlier samples s ∈ V̂ . Let O = X − SV̂ be the open space, then the open
space risk is defined as

RO(f) =

∫
O

f (x)dx∫
SV̂

f (x)dx
, (4.11)

which yields the ratio of the false inlier area over the true inlier area. Thus, RO can be minimized by
reducing the volume of the indicator function f . In Fig. 4.1, RO can be interpreted as the ratio of the
blue area (positive region of f outside SV̂ , i.e., false positives) over the area of correctly predicted

72

4.5 Achieving Bounded Open Set Recognition with Autoencoders

inliers in SV̂ (i.e., true positives).
Note that a trivial solution for RO minimization could be achieved by predicting all samples (except

for one true inlier to prevent division by zero) as RC independently of their true class, i.e., resulting in
a volume of 0 of the indicator function f over the open space. That is why it is crucial to counteract
this solution by framing OSR as a two-fold problem with the two objectives: a) Minimization of
RO(f), and b) ERM as regularization.
As shown by the decision boundary of the MLP in Fig. 4.2 and denoted in prior research, vanilla

MLPs do not provide an upper bound on the open space risk, and in practice, are generally unbounded
[25, 58, 195]. Therefore, we have to turn towards deep learning architectures, such as autoencoders,
that are capable of learning manifolds on the input space, and by design, learn a hull around the inliers:

Lemma 2. Any autoencoder with saturating activation functions (e.g., sigmoid) within at least one of
its layers and a reconstruction error output module acting as a manifold learner, has a bounded open
space risk RO .

Proof. Let f (x) = 1(|ϕ(x) − x| < d) be the recognition function. f (x) is an indicator function, which
maps the reconstruction error function of autoencoder ϕ : Rn → Rn to {0, 1} based on threshold
d ∈ R.
Let ϕ comprise at least one layer with an activation function that is saturating towards both tails

(here, sigmoid). Assuming layer ϕ(s) to be the last layer with sigmoid activation and ϕ(s) to have m
neurons, then the image this layer maps to is fixed within hypercube (0, 1)m. Therefore, the image of
all subsequent layers ϕ(i), ∀i > s, is also fixed. It follows that limx∈Rn→∞ |ϕ(x) − x| = ∞, as the image
of ϕ(x) is bounded. In conclusion, when starting from a sample classified as an inlier and moving in
any fixed direction in feature space, then the reconstruction error will approach infinity. This forces us
to cross the decision boundary of the recognition function f , proving the existence of a bound on the
open space risk.

Lemma 3. The open space risk can be approximated solely based on the weights of the layers
succeeding the last layer with saturating activations.

Proof. As previously defined, let f (x) be the recognition function based on the autoencoder ϕ with
ϕ(s) being the last layer with a saturating activation function a(s), and α(s) be the corresponding
activations. Neurons in the subsequent layers can have a monotonic, non-saturating activation function
a(s+i), ∀i > 0 (such as ReLu). For simplicity, we assume every layer ϕ(i) is comprised of m neurons.
Let ϕ(s) ∈ (infx∗∈R a(s)(x∗), supx∗∈R a(s)(x∗))m, then the supremum of activation α(s+1)

j and neuron
ϕ
(s+1)
j can be bounded by the following inequalities, respectively:

sup
x∗∈R

α
(s+1)
j (x∗) ≤

m∑
i=0
|ϑ
(s+1)
i, j sup

x∗∈R

a(s)(x∗)| + |b(s+1)
j | (4.12)

sup
x∈X

ϕ
(s+1)
j (x) ≤ a(s+1)

(sup
x∗∈R

α
(s+1)
j (x∗)), (4.13)

where ϑ(k)i, j denotes the weight between neuron i of layer k − 1 to neuron j of layer k, and ϑ(k)0, j denotes
the bias of neuron j in layer k. It follows for the subsequent layers s + 1 + l,

sup
x∈X

ϕ
(s+1+l)
j (x) ≤ a(s+1+l)

(sup
x∗∈R

α
(s+1+l)
j (x∗)) (4.14)

73

Chapter 4 Open Set Recognition

Therefore, the image of ϕ can be bounded by a hypercube with its center at the origin. It follows that
the recognition function’s open space

∫
O

f (x)dx can be approximated as the union of the set of points
that are within the hypercube, and those that are in less than d proximity to the hypercube.

Lemma 2 and Lemma 3 have multiple practical implications. Firstly, our autoencoder methods
are capable of bounding the open space risk and are therefore by design superior to MLP-based
architectures in the OSR setting. Secondly, approximating the open space risk enables us to filter
models with higher robustness during the model selection process. Thirdly, given that the approximated
bound is a hypercube with its center in the origin of the feature space, it is recommendable to perform
feature transformation such that the inlier class is located close to the origin, thus allowing for a smaller
hypercube. Furthermore, Lemma 2 depicts the dependency of the open space risk on the weights after
the last layer with saturating activation functions. By regularizing the weights in conjunction with the
centering of the inlier samples, it is possible to actively minimize the bound on the open space risk.
While this idea is out-of-scope for this contribution, it is a promising future research direction. For
instance, it would be possible to handcraft the connections in the first layer of ϕ such that the weights
perform translation and scaling of the feature space.

4.6 Towards Adversarial Robustness and Local Stability

Adversarial perturbations offer an effective way of measuring a model’s robustness locally, as well as
globally. As initially described by [37], the idea of gradient-based adversarial attacks is to confuse a
neural network f with parameters Θ by adding an imperceptible perturbation to the original sample
x with target y. The perturbation itself is not arbitrary, but maximizes the loss L of the network.
A common methodology of calculating these adversarial examples is the fast gradient sign method
(FGSM) [37], which determines the perturbation by taking the sign of the gradients w.r.t. the sample:

η = ε sign(∇xL(f (x;Θ), y)), (4.15)

where scaling factor ε determines the volume of change. Note that since ε is fixed, the perturbation’s
volume is also fixed for all steps across models.

While in practice, adversarial examples are often used to improve model robustness via adversarial
training [37], in this work, we use the FGSM framework for robustness estimation of trained models.
By perturbing a sample in a step-wise adversarial fashion, the model confidence development can be
tracked, which provides deep insights into local stability, and with an increasing number of steps, also
into global robustness of the model. Technically, at a given step i, a sample x(i) is perturbed according
to

x(i) = x(i−1)
+ ε sign(∇x(i−1)L(f (x(i−1);Θ), y)) (4.16)

and the difference in confidence ∆ci at step i w.r.t. the original sample is defined as

∆ci(x
(0)
) = f (x(i)) − f (x(0)), (4.17)

where x(0) denotes the original sample. By varying the step-size ε and the number of steps, the
aforementioned local stability and global robustness can be easily estimated. Furthermore, there also

74

4.7 Experiments and Results

exists another adversarial robustness metric [74], which is defined as:

Ψ(x(0)) = min
x̂∈{x(i) |∀i }

1
DKL(f (x

(0)
), f (x̂))

(4.18)

and computes the Kullback-Leibler divergence DKL in the denominator as the relative entropy between
the two confidence estimates. We did not consider this measure, however, as DKL rapidly changes
around (0, 0) and (1, 1), and small changes in this area therefore lead to overly pessimistic robustness
scores.
Generally, we hypothesize that DAE, as a representative for an OSR architecture, is more robust

than the MLP, as the latter one slices the spaces in discriminative hyperplanes w.r.t. the two classes.
Therefore, we can expect a given dataset shift sample to be closer to a hyperplane than DAE’s hull
which is learned directly around the inlier class. We would assume similar adversarial robustness
between MLP and DAE for an inlier sample.

4.7 Experiments and Results

In this section, we discuss the experiment setup and compare the performance of DAE to the
aforementioned baselines. The approaches are compared on an algorithmic level by applying nested
cross-validation (CV) [121, 205]. The best models are selected by the highest area under the
precision-recall curve (AUPR) score, and are reported along with area under the receiver operating
characteristics (AUROC) and F1 score with respective confidence measurements.

4.7.1 Selected Baselines

Since OSR touches upon multiple machine learning areas such as binary classification and outlier
detection, we decided to consider the twomost-prominentmethods published under theOSR framework,
and seven potent baselines from the outlier detection, OVR classification, and ensembling domains.

OpenMax: This is an offline OSR method that replaces the softmax layer within a fully trained
multi-class DNN [58]. It applies extreme value theory to the network activations, which yields a
final layer that outputs a probability score for the outlierness of a sample, and closed-set probability
scores. While the method’s theoretical foundations are sound, it assumes that outlier activations differ
significantly from inlier activations. In practice, this requirement is not always fulfilled [204], leading
to robustness scores similar to those of the SoftMax baseline. By design, this method is limited to
OSR problems with multiple COIs.

C2AE: This OSR approach [190] is derived from OCA which is used in outlier detection. The
C2AE autoencoder is trained in a two-step fashion: 1) During closed set training, the encoder is trained
jointly with a downstream classifier to perform closed set classification. 2) For decoder training, the
latent vector is conditioned on an inlier-class-specific vector. During inference, it is assumed that
an inlier has a lower reconstruction error compared to rest samples when the inlier’s latent vector is
conditioned on the respective inlier-class-specific vector. Similar to OCA, this requires rest samples to
be uncorrelated with inlier samples. By design, this method is limited to OSR problems with multiple
COIs, and requires #closed-set classes many inference steps for each sample.

OCA: Classic semi-supervised, autoencoder-based method from the outlier and novelty detection
domain that is trained to reconstruct inliers. The reconstruction error is assumed to be lower for inliers

75

Chapter 4 Open Set Recognition

than for outliers, thus rendering the reconstruction error predictive of the inlierness of a sample. As
shown by [99], this method requires rest samples to be true outliers, as rest samples correlated with
inliers tend to get reconstructed accurately.

ATA: This is a recent autoencoder-based method from supervised outlier detection, which, in
contrast to OCA, actively maximizes the reconstruction error of rest samples [23]. Therefore, rest
samples that are correlated with the COI also get maximized, thus alleviating OCA’s aforementioned
deficiencies.

MLP: OVR classification DNN, which subsumes the set of rest classes within a single background
class [180–182]. This binary neural network requires the rest samples to wrap the COI in feature
space, such that the model learns a decision boundary hull around the COI, making this approach
highly data-intensive.

SoftMax: This DNN has a softmax layer for inlier probabilities as its final layer. The outlierness of
a sample is estimated offline by the entropy of the sample’s predicted inlier class probabilities (softmax
output). Since the softmax predictions are generally overly confident for outlier data [33], the utility of
this method is limited. By design, this method is restricted to problems with multiple COIs.

MiMo: This ensemble method [174] combines several weak classifiers into a single DNN by weight
sharing, making this method more efficient compared to traditional ensemble DNNs. Similar to the
OVR setup in MLP, this baseline subsumes non-COI classes into a single rest class. As shown by
[35], ensemble methods can yield accurate predictive uncertainty estimates, which could ultimately
improve OSR performance.

4.7.2 Evaluation Approach

Evaluating OSR models w.r.t. classification performance and robustness towards outliers and dataset
shifts, is not straightforward. Firstly, the OSR setting is often highly imbalanced with observed rest
samples significantly outnumbering the COI samples, whereas outliers/corruptions generally have a
low prevalence in practice. Secondly, depending on the application’s deployment domain, the focus
between precision and recall can shift: For instance, in medical diagnosis systems, recall is often of
the uttermost importance, whereas precision is generally favorable in equity trading precision. Due to
this, threshold-dependent metrics such as F1 score or accuracy can be misleading and fail to capture
the big picture.
As outlined in Sec. 1.2.1, we utilize the threshold-independent metrics AUPR and AUROC, as a

viable solution to this issue since they evaluate the model at all possible thresholds [171].
Additionally, the F1 score is also reported, showing if each algorithm can learn reasonable decision

boundaries, especially w.r.t. the classification task Tc . In contrast to the formerly mentioned AUROC
and AUPR metrics, this metric evaluates the model at a fixed 0.5 threshold level, which is reasonable
for task Tc, but is less conclusive for tasks To and Td. Similar to AUPR, the F1 score metric is also
affected by the base rate of the positive class.

Furthermore, the algorithms are evaluated based on the correctness of their subjective uncertainty
estimation (calibration), in terms of the class-wise expected calibration error (CECE) [77–79] and
Brier score [206]. While calibration is a crucial criterion for the trustworthiness of machine learning
models, it is noteworthy that it is an orthogonal concern to model accuracy, e.g., in the trivial case, it
is possible for a uniformly random classifier to be perfectly calibrated on a balanced dataset but still
be inaccurate [35].

76

4.7 Experiments and Results

The CECE metric is defined as

bin-CEi, j = |yj(Bi, j) − p̂j(Bi, j)| (4.19)

CECE =
1
K

K∑
j=1

m∑
i=1

|Bi, j |

N
bin-CEi, j (4.20)

where parameters K,m, N denote the number of classes, number of bins and dataset size, respectively.
The set Bi, j contains the samples whose confidence prediction w.r.t. class j falls into the ith bin. The
actual ratio of class j samples and average predicted confidence of samples in the bin is denoted by
y(Bi, j) and p̂j(Bi, j), respectively. Therefore, bin-CEi, j denotes the calibration error for class j within
bin i, and CECE is computed as the weighted average over all bin-CEi, j .

The Brier score for binary classification is defined as

BS =
1
N

N∑
i=1
(yi − f (xi; Θ))2, (4.21)

where N is the number of samples, yi is the target of sample xi and f (xi; Θ) is the respective prediction
(probability) of the model.

For a comprehensive robustness study, we also evaluated the algorithms w.r.t. their robustness to
adversarial attacks and the related concern of local stability via the difference in confidence ∆ci (see
Eq. (4.17)). As part of this, we empirically determined that a perturbation scaling factor ε = 0.001
and #steps = 300 captures both adversarial robustness and local stability. While, for MLP, it is
straightforward to calculate the sample’s perturbation w.r.t. the binary cross-entropy loss, DAE’s
training loss yields gradients that are almost 0 for small and large reconstruction errors, due to the
Gaussian’s flatness at its mean and limits. Similar to Eq. (4.8), this results in dead updates within
FGSM. As a solution, we calculate the gradients directly on the reconstruction error eMSE.

4.7.3 Datasets

To evaluate the models on OSR with its classification subtask Tc and the more challenging subtasks of
contextual outlier detection To and dataset shift Td, we extended four textual datasets and three image
datasets, some of which we already leveraged for supervised outlier detection in Ch. 3:

Reuters dataset: This multi-label dataset is a standard benchmark for document classification and
outlier detection, which contains 10788 news documents from 90 different categories published by the
news outlet Reuters. Since multi-label classification is out of the scope of this work, we only consider
documents that are assigned to a single class.

ATIS dataset: This dataset comprises 5871 transcribed queries that passengers requested to the air
travel information system (ATIS) for flight related information. These queries were grouped into 17
categories.

Newsgroups dataset: This dataset contains 18,000 newsgroup posts from 20 different topics and
is a standard dataset for text classification and text clustering.

TREC dataset: A question classification dataset containing 5500 questions not limited to any
particular topic domain [207]. This makes the dataset compelling for dataset shift evaluation.

MNIST dataset: An image classification dataset containing 70,000 images of handwritten digits

77

Chapter 4 Open Set Recognition

ATIS Reuters Newsgroups MNIST7 MNIST2,7 FMNIST7 FMNIST3,7 FMNIST0,1,2,3,7

Inlier Rest Inlier Rest Inlier Rest Inlier Rest Inlier Rest Inlier Rest Inlier Rest Inlier Rest

St / Sc flight ac acq, earn rc sci.space nc 7 m7
c 2, 7 m2,7

c sneaker f 7
c dress, sneaker f 3,7

c t-shirt, pants, pullover, dress, sneaker f 0,1,2,3,7
c

So flight ao acq, earn ro sci.space no 7 mo 2, 7 mo sneaker f0 dress, sneaker fo t-shirt, pants, pullover, dress, sneaker fo
Sd1 flight td acq, earn td sci.space td 7 fd 2, 7 fo sneaker md dress, sneaker md t-shirt, pants, pullover, dress, sneaker md

Sd2 flight rd acq, earn ad sci.space ad 7 ed 2, 7 ed sneaker ed dress, sneaker ed t-shirt, pants, pullover, dress, sneaker ed
Sd3 flight nd acq, earn nd sci.space rd – – – – – – – – – –

Table 4.1: Class assignment within training split St and evaluation splits Sc, So, Sd1, Sd2 and Sd3 for the text and
image classification datasets, in accordance with [99]: Splits Sc and So are representative of tasks Tc and To,
respectively; splits Sd1, Sd2, and Sd3 of Td . Mapping of rest classes specified in Table 4.2.

[208]. Each of the 28x28 gray-scale images shows a single digit (0-9).
FMNIST dataset: An image classification dataset comprising 70,000 fashion items [209]. Each of

the 28x28 gray-scale images shows one of the ten fashion items: t-shirt, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, or ankle boot.

EMNIST-letter dataset: A dataset for image classification providing 145,600 grayscale images of
alphabetic characters. Similar to TREC, we use this dataset solely for evaluation.

Due to the high number of different categories and their large size, each dataset is a viable benchmark
dataset for OSR model evaluation. As shown in Table 4.1, we evaluated DAE and the baselines in
seven different experiment setups. For each experiment setup, there is a single train split St and up
to five test splits. All splits share the same set of inlier classes, which, depending on the derived
dataset, vary from a narrow to a broader range of topics. The rest class covers a wide range of topics
with an increasing scope from Tc, To to Td. Specifically, classification split Sc shares all training
classes, and therefore, resembles classic OVR classification Tc. Split So increases the scope by
incorporating contextual outliers from the same dataset, as defined by the outlier detection task To.
Finally, Sd1, Sd2, and Sd3 have a maximum RC scope, by providing rest samples from a completely
new dataset, representative of dataset shift task Td. Concerning the preprocessing of the datasets, we
vectorized the samples of the textual datasets as pooled 100-dimensional dense Glove embeddings
[156], and z-transformed the image samples.

4.7.4 Results

To benchmark DAE against the aforementioned baselines, we train all models with approximately
analogical complexity in terms of the number of trainable parameters. For text classification, the
models MiMo, OpenMax, SoftMax, and MLP have three hidden layers of sizes 50, 25, and 12. The
autoencoder-based approaches have three hidden layers of size 50, 25, and 12 for the encoder and
the decoder in reverse order. For image classification, OpenMax, SoftMax and MLP have hidden
layers of sizes 410, 256, 128, 64, and 43, while MiMo has hidden layer sizes of 120, 32 and 16.
The autoencoder-based image classifiers have hidden layers of size 256, 128 for the encoder and the
decoder in reverse order. C2AE has additional classification downstream layers of sizes 128, 32, 5.
MiMo has five ensemble components and, therefore, an input size five times the input size of the other
approaches. All neurons have sigmoid activation functions.
Within the nested CV, we performed a hyperparameter search concerning lr, balanced sampling,

and weight decay, for all approaches. Specifically for DAE, we optimized for the initial decision
boundary t and σ2 and the loss scaling factors λi as defined in Eq. 4.2 and Eq. 4.7. ATA was optimized

78

4.7 Experiments and Results

Dataset Abbr. Rest labels

Reuters rc carcass, cotton, cpi, crude, gnp, heat, housing, interest, ipi, jobs, livestock,
lumber, money-fx, money-supply, nat-gas, oilseed, orange, pet-chem,
reserves, retail, rubber, ship, tin, wpi, wpi

ro alum, bop, cocoa, coconut, coffee, copper, fuel, gas, gold, grain, ground-
nut, income, iron-steel, lei, meal-feed, nickel, potato, rice, sugar, tea,
veg-oil, zinc

rd alum, cocoa, coffee, coppper, cotton, cpi, gold, grain, interest, ipi, jobs,
money-fx, money-supply, nat-gas, reserves, rubber, ship, sugar, tin, trade,
yen

ATIS ac airfare, airline, ground_service
ao abbreviation, restriction, airport, quantity, meal, city, flight_no,

ground_fare, flight_time, distance, aircraft, capacity
ad abbreviation, aircraft, airport, capacity, city, distance, flight_no,

flight_time, ground_fare, meal, quantity, restriction

News groups nc comp.os.ms-windows.misc, misc.forsale, rec.sport.baseball, sci.crypt,
sci.med, soc.religion.christian, talk.politics.guns, talk.politics.misc

no rec.sport.hockey, comp.sys.ibm.pc.hardware, talk.religion.misc,
talk.politics.mideast, comp.sys.mac.hardware, sci.electronics, alt.atheism,
rec.motorcycles, rec.autos, comp.windows.x, comp.graphics

nd alt.atheism, comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, comp.windows.x,
misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,
soc.religion.christian, talk.politics.guns, talk.politics.mideast,
talk.politics.misc, talk.religion.misc

TREC td HUM, NUM, LOC, ABBR

MNIST m7
c 0, 1, 2, 3, 4, 9

m2,7
c 0, 1, 3, 4, 9

mo 5, 6, 8
md 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

FMNIST f 7
c t-shirt, trouser, pullover, dress, coat, ankle boot

f 3,7
c t-shirt, trouser, pullover, coat, ankle boot

f 0,1,2,3,7
c coat, ankle boot

fo sandal, shirt, bag
fd t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle

boot

EMNIST-
letter

ed a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Table 4.2: Specification of the rest classes for the different dataset splits in Table 4.1, derived from seven different
textual and image-based classification datasets.

79

Chapter 4 Open Set Recognition

AUROC Agg. ATIS NEWSGROUPS MNIST7 FMNIST7

#best #weak AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑

Sc

DAE 0 0 98.6 ± 0.8 99.6 ± 0.2 97.9 ± 1.1 96.6 ± 0.6 86.0 ± 2.0 60.4 ± 26.4 99.3 ± 0.1 98.3 ± 0.2 96.8 ± 1.0 99.2 ± 0.3 96.8 ± 0.7 95.6 ± 1.1
ATA 0 0 95.4 ± 1.0 98.9 ± 0.2 92.7 ± 1.4 94.8 ± 1.6 86.7 ± 2.1 74.7 ± 1.6 99.1 ± 0.2 98.7 ± 0.2 97.9 ± 0.1 98.9 ± 0.4 97.9 ± 0.4 96.6 ± 0.6
OCA 0 2 72.0 ± 2.1 91.4 ± 1.1 64.1 ± 1.7 67.4 ± 1.8 28.4 ± 1.3 30.8 ± 3.2 94.9 ± 0.2 82.2 ± 0.5 70.1 ± 1.3 98.9 ± 0.1 93.3 ± 0.3 85.8 ± 0.6
MLP 4 0 99.3 ± 0.1 99.8 ± 0.0 98.0 ± 0.4 97.5 ± 0.4 91.1 ± 0.9 79.6 ± 4.8 99.8 ± 0.1 99.3 ± 0.3 97.8 ± 0.1 99.9 ± 0.0 99.5 ± 0.1 96.5 ± 0.3
MiMo 0 0 98.9 ± 0.1 99.8 ± 0.0 97.6 ± 0.4 97.1 ± 0.7 89.4 ± 1.3 81.9 ± 1.6 99.7 ± 0.0 98.7 ± 0.1 95.4 ± 0.5 99.8 ± 0.0 99.0 ± 0.1 95.9 ± 0.1
BASE 50.0 81.9 31.0 50.0 11.4 9.3 50.0 14.6 11.3 50.0 14.3 11.1

So

DAE 1 0 89.3 ± 0.5 91.4 ± 0.2 84.1 ± 1.4 94.6 ± 1.2 50.3 ± 4.0 16.3 ± 9.6 99.3 ± 0.1 98.7 ± 0.1 96.7 ± 0.9 97.6 ± 0.2 89.6 ± 0.3 55.9 ± 0.9
ATA 0 0 87.4 ± 0.5 89.9 ± 0.5 85.6 ± 0.8 91.8 ± 1.8 59.8 ± 2.4 18.5 ± 0.9 99.1 ± 0.2 98.8 ± 0.2 96.7 ± 0.4 96.9 ± 0.3 88.4 ± 0.7 52.1 ± 3.7
OCA 1 2 80.4 ± 0.5 81.9 ± 0.6 62.1 ± 1.5 63.5 ± 1.9 6.6 ± 0.8 8.9 ± 0.9 99.7 ± 0.0 98.9 ± 0.1 73.9 ± 1.8 98.1 ± 0.1 90.3 ± 0.4 79.0 ± 0.5
MLP 2 1 85.3 ± 1.7 86.2 ± 1.7 85.3 ± 0.8 95.6 ± 0.6 59.6 ± 3.3 25.0 ± 5.1 99.8 ± 0.0 98.7 ± 0.3 96.8 ± 0.1 90.8 ± 1.6 45.0 ± 6.5 53.5 ± 1.4
MiMo 0 0 87.6 ± 1.9 90.0 ± 1.9 85.1 ± 0.8 95.1 ± 1.0 58.7 ± 4.6 48.0 ± 2.9 99.7 ± 0.0 98.9 ± 0.0 95.4 ± 0.4 95.9 ± 0.3 78.1 ± 2.1 55.8 ± 0.7
BASE 50.0 61.8 27.6 50.0 1.9 1.8 50.0 12.7 10.1 50.0 11.8 9.5

Sd1

DAE 1 0 99.0 ± 0.1 98.4 ± 0.3 42.3 ± 2.2 97.7 ± 1.8 95.5 ± 2.7 46.5 ± 24.7 99.3 ± 0.1 99.0 ± 0.2 99.0 ± 0.2 99.3 ± 0.4 99.1 ± 0.5 90.1 ± 1.6
ATA 0 0 97.9 ± 1.8 95.3 ± 3.1 85.2 ± 11.0 97.2 ± 0.6 55.3 ± 1.8 70.3 ± 1.7 98.6 ± 0.1 98.5 ± 0.2 60.8 ± 11.2 98.4 ± 0.1 98.0 ± 0.2 53.3 ± 5.2
OCA 3 0 97.9 ± 0.2 96.5 ± 0.2 65.8 ± 1.6 99.3 ± 0.6 98.9 ± 0.7 45.1 ± 7.2 99.9 ± 0.0 99.9 ± 0.0 73.9 ± 1.8 99.9 ± 0.0 99.9 ± 0.0 92.7 ± 0.8
MLP 0 3 73.1 ± 8.2 37.4 ± 7.7 46.3 ± 3.3 91.5 ± 3.0 31.1 ± 5.5 41.9 ± 9.6 99.8 ± 0.0 99.5 ± 0.1 98.5 ± 0.2 86.8 ± 2.7 51.1 ± 5.8 62.2 ± 6.9
MiMo 0 3 80.5 ± 1.1 39.1 ± 1.5 44.3 ± 0.9 84.6 ± 1.7 26.7 ± 4.9 28.1 ± 2.3 99.8 ± 0.1 99.5 ± 0.1 97.1 ± 0.5 94.0 ± 2.7 78.1 ± 11.5 66.1 ± 4.7
BASE 50.0 20.9 14.7 50.0 6.1 5.4 50.0 22.6 15.6 50.0 21.9 15.2

Sd2

DAE 0 0 98.3 ± 0.2 98.1 ± 0.2 59.7 ± 3.6 97.1 ± 2.5 95.3 ± 3.1 35.9 ± 25.7 99.3 ± 0.1 98.7 ± 0.2 97.1 ± 0.4 99.4 ± 0.3 98.9 ± 0.6 83.4 ± 1.9
ATA 1 1 99.0 ± 0.3 98.7 ± 0.5 92.7 ± 0.6 90.2 ± 2.0 38.8 ± 4.0 26.9 ± 3.2 98.6 ± 0.1 98.3 ± 0.2 77.1 ± 12.6 98.6 ± 0.1 97.6 ± 0.2 42.6 ± 7.2
OCA 3 0 94.3 ± 0.4 94.4 ± 0.4 65.8 ± 1.6 99.4 ± 0.5 99.1 ± 0.6 45.1 ± 7.2 99.6 ± 0.1 97.5 ± 0.3 73.7 ± 1.9 99.9 ± 0.0 99.8 ± 0.1 92.7 ± 0.8
MLP 0 3 82.0 ± 10.0 68.1 ± 16.3 64.5 ± 5.5 81.4 ± 11.1 20.3 ± 18.8 19.0 ± 5.9 99.4 ± 0.1 94.2 ± 1.9 93.2 ± 1.4 90.6 ± 1.7 44.3 ± 5.8 49.4 ± 7.4
MiMo 0 1 95.7 ± 0.8 92.1 ± 1.6 74.0 ± 1.6 60.2 ± 3.9 9.3 ± 5.0 8.1 ± 0.1 99.4 ± 0.1 96.6 ± 0.5 90.5 ± 0.9 95.8 ± 1.6 74.1 ± 11.0 55.6 ± 4.1
BASE 50.0 34.6 20.5 50.0 4.2 3.9 50.0 12.3 9.9 50.0 11.9 9.6

Sd3

DAE 1 0 96.1 ± 0.5 87.8 ± 1.8 8.0 ± 0.1 96.8 ± 1.4 93.4 ± 2.6 42.7 ± 16.9
ATA 0 0 93.6 ± 2.0 81.7 ± 5.1 45.3 ± 20.7 96.2 ± 1.0 78.7 ± 2.8 71.8 ± 2.1
OCA 1 0 92.3 ± 0.5 83.3 ± 0.9 65.8 ± 1.6 98.9 ± 0.7 98.2 ± 0.9 45.1 ± 7.2
MLP 0 1 69.9 ± 8.1 12.7 ± 12.9 9.2 ± 1.3 95.9 ± 2.2 75.0 ± 10.0 70.2 ± 10.1
MiMo 0 1 92.2 ± 1.7 54.4 ± 4.3 11.1 ± 0.9 88.0 ± 2.3 57.4 ± 11.5 54.1 ± 3.9
BASE 50.0 4.1 3.8 50.0 11.5 9.3

Table 4.3: Performance of DAE and the baselines ATA, OCA, MLP, and MiMo, on splits Sc, So, Sd1, Sd2 and
Sd3 of the textual and image datasets with a single COI. The AUROC results are aggregated in the first column
for each split, counting best and weak performances. Specifically, when a model’s AUROC score drops at least 5
percentage points below the best AUROC score, the model is counted as weak performing. For reference, BASE
denotes the performance of a random classifier that predicts COI with probability p ∼ U[0, 1]. Metrics and
confidence are measured in %. Baseline results on textual datasets adopted from [99]. Across all three subtasks
of OSR, DAE and ATA yield the most robust results, while MLP and MiMo show a significant performance
degradation on the dataset shift task, similar to OCA on the classification task.

w.r.t. outlier weighting factor and bin range. We found that across various experiments, all baselines
showed the best performances when optimized with Adam [32].

Table 4.3 and Table 4.4 show the results for each task with the best performing approaches on each
dataset highlighted in boldface. To make model robustness comparable, a model is counted as weak
when its AUROC score drops at least 5 percentage points below the best performing model. These
scores are highlighted in gray within the result tables. Each results table aggregates the best and
weakly performing models in the first column. Since the class base rates fluctuate significantly across
datasets and splits, using AUPR and F1 Score as base rate dependent metrics were not considered for
the model robustness evaluation. Table 4.3 and Table 4.4 present the results on datasets with a single
COI and multiple COIs, respectively.
On the classification task Tc, represented by split Sc, MLP and MiMo yield the best results on all

datasets. DAE and ATA also provide competitive results on this task, but OCA, C2AE, OpenMax,
and SoftMax fail on almost all Sc splits in terms of AUROC.

For the contextual outlier detection task To, we see that DAE and ATA outperform MLP and MiMo
in terms of AUPR and AUROC scores on the multi-COI datasets. DAE and ATA provide similar
results to MiMo and MLP on the single-COI datasets. As expected, the semi-supervised methods
OCA, SoftMax, OpenMax, and C2AE do not achieve any performance gains.

80

4.7 Experiments and Results

AUROC Agg. REUTERS MNIST2,7 FMNIST3,7 FMNIST0,1,2,3,7

#best #weak AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑ AUROC ↑ AUPR ↑ F1 Score ↑

Sc

DAE 0 0 99.2 ± 0.3 99.7 ± 0.1 99.0 ± 0.1 99.0 ± 0.1 97.8 ± 0.1 96.8 ± 0.4 97.5 ± 0.3 93.2 ± 0.9 91.2 ± 0.7 97.1 ± 0.2 98.6 ± 0.1 95.9 ± 0.1
ATA 0 0 99.4 ± 0.2 99.8 ± 0.1 97.8 ± 0.6 99.4 ± 0.2 99.2 ± 0.2 98.4 ± 0.1 97.0 ± 0.3 95.9 ± 0.2 93.5 ± 0.4 97.2 ± 0.5 98.9 ± 0.2 96.3 ± 0.3
OCA 0 4 78.3 ± 5.3 92.7 ± 2.2 73.5 ± 3.8 73.8 ± 1.9 58.6 ± 2.5 34.9 ± 3.1 91.3 ± 0.2 82.4 ± 1.1 73.0 ± 0.5 81.2 ± 0.6 91.7 ± 0.4 76.5 ± 1.2
C2AE 0 4 83.3 ± 0.7 94.6 ± 0.3 66.2 ± 2.3 79.7 ± 1.5 65.8 ± 1.7 53.2 ± 0.3 90.7 ± 0.6 80.8 ± 1.2 64.3 ± 3.1 82.6 ± 0.4 92.7 ± 0.3 83.8 ± 0.8

OpenMax 0 4 74.5 ± 2.2 90.3 ± 2.4 87.2 ± 0.0 84.3 ± 1.0 69.4 ± 2.0 44.4 ± 0.0 53.8 ± 9.7 31.9 ± 6.6 44.4 ± 0.0 66.6 ± 12.7 82.8 ± 7.3 83.3 ± 0.0
SoftMax 0 4 74.4 ± 2.1 90.3 ± 2.4 87.2 ± 0.0 84.3 ± 1.0 69.4 ± 2.0 44.4 ± 0.0 56.2 ± 11.8 34.5 ± 7.3 44.5 ± 0.0 63.0 ± 2.0 75.6 ± 1.0 83.3 ± 0.0

MLP 4 0 99.7 ± 0.1 99.9 ± 0.1 99.0 ± 0.3 99.9 ± 0.1 99.8 ± 0.1 98.9 ± 0.2 99.4 ± 0.1 98.6 ± 0.2 93.8 ± 0.4 98.7 ± 0.1 99.4 ± 0.1 96.5 ± 0.1
MiMo 1 0 99.6 ± 0.1 99.9 ± 0.0 98.6 ± 0.1 99.7 ± 0.0 99.3 ± 0.1 96.8 ± 0.3 98.7 ± 0.2 97.1 ± 0.4 91.2 ± 1.0 98.2 ± 0.1 99.2 ± 0.1 95.8 ± 0.2
BASE 50.0 77.3 30.4 50.0 28.6 18.2 50.0 28.6 18.2 50.0 71.4 29.4

So

DAE 2 0 98.9 ± 0.2 99.2 ± 0.3 97.8 ± 0.2 98.7 ± 0.1 97.1 ± 0.2 81.2 ± 3.0 95.2 ± 0.2 87.4 ± 0.3 64.3 ± 1.2 89.2 ± 0.3 84.4 ± 0.4 67.9 ± 0.8
ATA 1 0 99.4 ± 0.0 99.7 ± 0.0 97.1 ± 0.6 99.3 ± 0.1 98.9 ± 0.2 90.0 ± 2.9 93.9 ± 0.4 87.2 ± 0.6 56.9 ± 0.9 88.0 ± 0.8 83.8 ± 0.4 64.0 ± 0.4
OCA 0 2 75.1 ± 4.1 86.1 ± 2.7 70.8 ± 3.7 95.4 ± 1.1 90.8 ± 2.2 36.4 ± 3.4 92.6 ± 0.3 78.7 ± 1.5 71.3 ± 0.7 83.4 ± 0.3 72.9 ± 0.8 69.3 ± 0.8
C2AE 0 2 76.6 ± 1.4 87.0 ± 0.8 64.8 ± 2.1 95.6 ± 0.9 91.0 ± 1.8 67.5 ± 2.7 87.6 ± 0.5 66.6 ± 1.7 57.2 ± 3.4 84.8 ± 1.2 78.5 ± 2.2 70.3 ± 3.2

OpenMax 0 4 81.0 ± 2.4 87.3 ± 3.1 77.4 ± 0.0 76.2 ± 1.6 46.1 ± 2.4 36.3 ± 0.0 72.7 ± 12.8 41.0 ± 13.9 34.8 ± 0.0 77.0 ± 7.9 65.9 ± 13.7 57.1 ± 0.0
SoftMax 0 4 81.0 ± 2.3 87.3 ± 3.1 77.4 ± 0.0 76.2 ± 1.6 46.1 ± 2.4 36.3 ± 0.0 66.1 ± 12.3 34.4 ± 14.3 34.8 ± 0.1 77.4 ± 1.1 54.4 ± 2.7 57.1 ± 0.0

MLP 0 2 99.3 ± 0.1 99.3 ± 0.2 97.5 ± 0.2 99.1 ± 0.2 97.7 ± 0.4 79.3 ± 2.4 89.3 ± 0.7 63.9 ± 1.8 62.8 ± 1.4 74.8 ± 5.2 60.0 ± 6.1 64.2 ± 0.7
MiMo 1 1 99.6 ± 0.1 99.8 ± 0.1 97.5 ± 0.3 98.5 ± 0.2 96.9 ± 0.3 83.3 ± 1.9 91.9 ± 1.1 77.9 ± 3.2 63.2 ± 1.6 84.3 ± 0.4 75.8 ± 0.7 65.9 ± 1.1
BASE 50.0 63.1 27.9 50.0 22.2 15.4 50.0 21.1 14.8 50.0 40.0 22.2

Sd1

DAE 1 0 99.5 ± 0.2 99.3 ± 0.2 63.3 ± 3.6 98.8 ± 0.5 98.8 ± 0.4 82.0 ± 6.1 98.1 ± 0.2 98.2 ± 0.2 81.3 ± 3.3 98.0 ± 0.3 99.0 ± 0.2 93.9 ± 1.2
ATA 0 0 97.0 ± 0.7 96.2 ± 0.8 64.4 ± 1.1 98.9 ± 0.3 99.0 ± 0.2 65.4 ± 2.6 96.1 ± 0.2 96.5 ± 0.2 63.2 ± 1.2 94.7 ± 1.5 97.5 ± 0.7 76.2 ± 0.9
OCA 3 0 98.6 ± 0.2 98.1 ± 0.4 75.5 ± 3.3 99.6 ± 0.3 99.2 ± 0.7 36.3 ± 3.3 99.8 ± 0.0 99.8 ± 0.0 80.1 ± 1.0 99.5 ± 0.1 99.7 ± 0.1 80.8 ± 1.6
C2AE 0 1 98.7 ± 0.1 98.4 ± 0.1 66.7 ± 2.3 98.5 ± 0.4 97.3 ± 0.8 67.5 ± 2.7 94.0 ± 1.5 92.9 ± 2.0 68.8 ± 3.0 97.6 ± 0.5 98.6 ± 0.3 89.9 ± 3.4

OpenMax 0 4 75.0 ± 4.9 70.4 ± 5.1 45.0 ± 0.0 74.3 ± 1.7 56.1 ± 3.5 53.3 ± 0.0 84.5 ± 16.9 80.0 ± 22.3 52.9 ± 0.1 83.7 ± 10.8 84.6 ± 10.6 73.7 ± 0.0
SoftMax 0 4 74.4 ± 5.1 69.4 ± 5.4 45.0 ± 0.0 74.3 ± 1.8 56.1 ± 3.5 53.3 ± 0.0 71.3 ± 15.3 63.5 ± 20.1 52.9 ± 0.1 86.4 ± 1.6 83.6 ± 3.4 73.7 ± 0.0

MLP 0 3 90.1 ± 1.8 68.0 ± 6.3 67.0 ± 1.8 84.7 ± 3.3 67.2 ± 4.2 58.3 ± 2.0 94.9 ± 1.3 90.3 ± 2.6 83.7 ± 2.3 66.6 ± 6.5 69.5 ± 6.0 75.7 ± 1.2
MiMo 0 4 92.8 ± 2.1 81.9 ± 4.6 59.6 ± 3.1 93.0 ± 1.8 91.0 ± 1.2 67.5 ± 8.6 90.6 ± 3.5 87.1 ± 5.8 73.4 ± 4.7 80.9 ± 1.9 85.5 ± 2.8 77.0 ± 0.6
BASE 50.0 29.0 18.4 50.0 36.4 21.1 50.0 35.9 20.9 50.0 58.3 26.9

Sd2

DAE 1 0 99.3 ± 0.1 98.9 ± 0.3 49.9 ± 7.3 97.1 ± 0.6 86.2 ± 3.1 76.5 ± 4.8 98.4 ± 0.2 97.5 ± 0.3 78.1 ± 3.5 97.8 ± 0.3 98.1 ± 0.2 86.8 ± 2.6
ATA 1 0 98.1 ± 0.5 96.6 ± 0.8 66.1 ± 2.7 97.8 ± 0.2 93.0 ± 1.2 55.0 ± 6.2 96.6 ± 0.3 95.4 ± 0.4 51.0 ± 2.2 94.5 ± 1.6 96.0 ± 1.1 60.9 ± 1.4
OCA 2 0 98.4 ± 0.3 97.7 ± 0.6 75.5 ± 3.3 88.7 ± 2.8 56.4 ± 9.5 32.1 ± 4.5 99.8 ± 0.0 99.6 ± 0.1 80.1 ± 1.0 99.4 ± 0.1 99.3 ± 0.2 80.7 ± 1.6
C2AE 0 0 98.5 ± 0.1 98.0 ± 0.2 66.7 ± 2.3 97.2 ± 0.2 91.2 ± 0.5 66.7 ± 2.7 97.1 ± 0.5 93.6 ± 1.3 68.8 ± 3.3 98.6 ± 0.2 98.5 ± 0.3 89.3 ± 4.1

OpenMax 0 4 83.5 ± 1.7 72.7 ± 3.0 35.5 ± 0.0 74.4 ± 1.4 35.9 ± 1.5 35.5 ± 0.0 82.1 ± 15.3 66.1 ± 24.9 35.0 ± 0.0 80.4 ± 10.0 70.2 ± 14.5 57.4 ± 0.0
SoftMax 0 4 83.3 ± 1.7 72.6 ± 2.9 35.5 ± 0.0 74.4 ± 1.4 35.9 ± 1.5 35.5 ± 0.0 71.5 ± 13.5 48.9 ± 24.4 35.1 ± 0.1 81.7 ± 2.0 61.8 ± 3.9 57.4 ± 0.0

MLP 0 3 84.2 ± 5.6 49.2 ± 16.0 47.5 ± 4.4 94.8 ± 0.7 76.5 ± 2.5 63.9 ± 1.8 93.8 ± 1.7 77.9 ± 6.3 70.9 ± 4.7 65.3 ± 3.8 51.5 ± 4.2 60.6 ± 0.6
MiMo 0 3 82.1 ± 8.0 58.4 ± 17.2 39.3 ± 1.8 96.3 ± 0.6 88.2 ± 1.4 70.8 ± 2.4 93.6 ± 2.2 84.3 ± 5.4 68.2 ± 6.3 81.3 ± 1.5 76.6 ± 3.6 62.3 ± 0.7
BASE 50.0 21.6 15.1 50.0 21.6 15.1 50.0 21.2 14.9 50.0 40.2 22.3

Sd3

DAE 0 0 96.3 ± 1.7 88.2 ± 3.4 19.6 ± 5.2
ATA 0 0 93.1 ± 1.6 85.6 ± 2.1 14.0 ± 0.3
OCA 0 1 79.7 ± 10.0 56.6 ± 23.0 47.0 ± 26.0
C2AE 0 1 89.4 ± 0.6 80.4 ± 0.9 66.6 ± 2.3

OpenMax 0 1 90.5 ± 2.0 69.5 ± 6.2 11.7 ± 0.0
SoftMax 0 1 90.6 ± 1.9 69.6 ± 6.2 11.7 ± 0.0

MLP 1 0 97.1 ± 1.1 67.6 ± 13.3 27.6 ± 4.4
MiMo 0 0 95.2 ± 4.3 86.6 ± 10.5 15.8 ± 3.9
BASE 50.0 6.2 5.5

Table 4.4: Performance of DAE and the baselines on the derived datasets with more than one COI. Across all
tasks DAE and ATA show high robustness, whereas the remaining baselines perform poorly on at least a single
task. Baseline results on the Reuters dataset partially adopted from [99].

Concerning the dataset shift task Td, the autoencoder-based methods yield, by far, the strongest
results, with DAE being the only method with a zero weak count and OCA providing the most
top scores. In contrast, the performance of MLP and MiMo diminish further from To to Td, while
the results of OpenMax, C2AE, and SoftMax improve on Td compared to To. On average, the
autoencoder-based methods have a weak performance rate of 6%, whereas the remaining baselines
have a weak performance rate of 80%, clearly depicting the superiority of the autoencoder-based
methods on the task Td.
Taking the architectural properties of each method into account, we can conclude the following:

The OVR baselines MLP and MiMo require the one-vs-rest relationship to be reflected within the data,
similar to the Bounding Gaussians dataset example in Fig. 4.2. Only in this case, the ERM objective
encourages the construction of a hull around the inlier data, which generalizes to unseen rest classes.
This fails, however, when the number of COI classes increases (see FMNIST0,1,2,3,7 results), as there
is no data-inherent rest preference for unseen classes. This leads to poor robustness scores on the
outlier detection and dataset shift task. Compliant with earlier research [33, 34], MLP and MiMo

81

Chapter 4 Open Set Recognition

(a) ATA on Half-Moon (b) ATA on XOR Circles (c) ATA on Bounding Gaussians

(d) OCA on Half-Moon (e) OCA on XOR Circles (f) OCA on Bounding Gaussians

Figure 4.6: Reconstruction error landscape of ATA and OCA, visualized on the Half-Moon, XOR Circles,
and Bounding Gaussians dataset, equivalent to Fig. 4.2. The color gradient from blue to yellow resembles an
increase in the reconstruction eror.

reveal the most severe robustness deficiencies when facing dataset shift. While, in practice, OSR is
often approached by subsuming all the rest samples within a single background class, our results
display that this is insufficient.
Conversely, semi-supervised OCA and C2AE are not able to learn the OVR relationship in the

problem domain, indicating that inliers and rest samples within Tc and To are too correlated in features
space. When the scope of OVR is extended to dataset shift, OCA outperforms all baselines, and C2AE
becomes competitive. While the results for SoftMax and OpenMax express the same behavior, the
underlying reasons are different: ERM has no intrinsic mechanism that prevents outliers from being
mapped to inlier feature representations, a problem described as feature collapse, that is prevented
via, e.g., two-sided Lipschitz constant regularization [204]. OpenMax and SoftMax both suffer from
this effect, since both of them apply offline uncertainty estimates solely based on the activations.
Anecdotally, we also replaced the sigmoid activation functions with RELU within OpenMax, since
the network becomes piece-wise linear with the possibility of more expressive activations. This did
not lead to any robustness improvements, however.

In contrast to the aforementioned baselines, DAE andATA do not express any robustness deficiencies.
In fact, they provide competitive results on all three OSR subtasks, showing that they are able to
distinguish the two OVR classes in the problem domain, while also being highly robust to dataset shift.
Nevertheless, we find that there is still a small trade-off between accuracy and robustness, which has

82

4.7 Experiments and Results

been reported in previous research for various deep learning methods [210, 211]. Both methods use
an adversarial loss function that minimizes/maximizes inlier and rest sample reconstruction errors,
respectively. Therefore, these methods resolve OCA’s issue of correlated rest and inlier samples within
Tc and To. Additionally, due to the bounded open space risk, they suffer fewer remote artifact areas,
which map outliers to inlier data, as seen for MLP and MiMo. While DAE and ATA are the most
robust models, DAE is the best performing model in 7 cases, compared to ATA, which performs best
in only 3. Since both methods mainly differ in terms of decision boundary estimation, the results
suggest that DAE’s loss function, with its BCE term and t regularization, has a positive effect.

The robustness properties of DAE and the baselines can also be seen in Fig. 4.2 and Fig. 4.6. DAE,
ATA, MiMo, and MLP are capable of separating the red inliers from the blue rest samples, however, in
a fundamentally different way. While DAE and ATA learn a representation for the inlier class, MiMo
and MLP learn a separating line, which does not generalize to the unobserved orange outliers. As
shown in Fig. 4.2(h), the background class setup enables the ERM models MLP and MiMo to learn a
proper hull around the inlier samples only if the observed rest samples bias the ERM towards such a
decision boundary. Finally, OCA learns to separate the inliers from the orange outliers but passively
minimizes the rest samples along with the inliers. This explains the poor classification performance of
OCA on Tc and To, but high robustness to dataset shift.

Similar conclusions on the autoencoder-based methods can be drawn from Fig. 4.7, which displays
samples from each split of the MNIST7 and FMNIST3,7 datasets. DAE and ATA can reconstruct inliers
and distort rest samples, resulting in a reconstruction error that is highly predictive of the inlierness of
a sample. In contrast, OCA not only learns to reconstruct inlier samples, but also implicitly learns to
reconstruct rest samples that originate from the same problem domain, explaining its low AUROC
scores on Tc and To. Similarly, C2AE consistently reconstructs a sample as one of the two inlier
classes so the overall reconstruction quality is much lower compared to the other two approaches. This
could be caused by the joint encoder/downstream layer training which aims for classification instead
of reconstruction. While the autoencoder-based methods have a bounded open space risk by design,
the adversarial training within DAE and ATA forces the rest samples to be in the open space, far away
from the decision boundary, as indicated by the rest sample distortions. Therefore, DAE and ATA are
superior in classification settings Tc, compared to the semi-supervised autoencoder methods.

With adversarial robustness and local stability, there are two additional, crucial aspects of robustness,
which can be measured by the change in model confidence after step-wise applying adversarial
perturbations, as defined in Eq. (4.17). As shown in Fig. 4.8, both DAE and MLP are similarly
stable when exposed to adversarially perturbed inliers of MNIST7. Regarding rest samples, there
is a substantial robustness gain from Sc to Sd on MNIST7, with DAE being significantly more
robust than the MLP. On FMNIST3,7, the increased diversity of inlier samples diminishes the MLP’s
adversarial robustness. This supports our presumption that the MLP’s recognition function has artifact
areas far from the inliers that erroneously map to the inlier class. Conversely, the increase in inlier
diversity enhances the inlier adversarial robustness of DAE. In theory, this forces DAE to learn a more
voluminous decision boundary hull that is less susceptible to inlier perturbations.

As shown in Table 4.5, we also investigated the well-known problem of poorly calibrated neural
networks on out-of-distribution examples after being trained via ERM [35, 174]. Specifically, we
compared DAE to MLP and MiMo, to check if the DAE architecture improves model calibration. The
results indicate that the three methods are similarly well-calibrated on task Tc in terms of Brier score
and CECE. On tasks To and Td, we found that each method provided poor calibration with such a high
variance across datasets, that we omitted these inconclusive results. Instead, we analysed the similarity

83

Chapter 4 Open Set Recognition

Inliers Rest samples

Sc So Sd1 sd2

MNIST7 m7
c mo ed fd

Orig.

DAE

ATA

OCA

FMNIST3,7 f 3,7
c fo ed md

Orig.

DAE

ATA

OCA

C2AE

Figure 4.7: Qualitative reconstruction comparison of DAE and autoencoder-based baselines on MNIST7 and
FMNIST3,7: The first row in each of the two grids, shows the original samples. We present three representative
inlier samples, followed by three rest samples of the respective splits. In contrast to OCA and C2AE, our DAE
method and ATA, with their adversarial loss functions, are able to not only accurately reconstruct inliers, but
also obfuscate the rest samples.

ATIS REUTERS Newsgroups

CECE ↓ Brier ↓ ∆CE↓ CECE ↓ Brier↓ ∆CE↓ CECE↓ Brier↓ ∆CE↓

DAE 3.1 ± 2.2 3.2 ± 1.9 24.8 1.2 ± 0.2 1.3 ± 0.2 23.7 4.6 ± 0.3 4.5 ± 0.3 11.3
MLP 2.8 ± 0.7 2.9 ± 0.7 28.6 1.3 ± 0.3 1.3 ± 0.3 28.5 4.8 ± 1.3 4.5 ± 0.9 15.3

MiMo 1.9 ± 0.6 2.9 ± 0.1 25.0 1.7 ± 0.8 1.7 ± 0.1 26.7 2.4 ± 1.3 3.4 ± 0.6 14.7

Table 4.5: Calibration of DAE, MLP and MiMo on split Sc in terms of CECE, Brier score and average per-bin
calibration error difference ∆CE between Tc and To/Td. All models are similarly well-calibrated on the
classification task. The calibration similarity across splits is higher for DAE compared to the other methods.
Metrics and confidence are measured in %.

84

4.7 Experiments and Results

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

co
nfi

de
nc

e
di

ff
er

en
ce

MNIST7 Sc
ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

MNIST7 So
ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

MNIST7 Sd1

ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

MNIST7 Sd2

ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

co
nfi

de
nc

e
di

ff
er

en
ce

FMNIST3,7 Sc
ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

FMNIST3,7 So
ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

FMNIST3,7 Sd1

ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

FMNIST3,7 Sd2

ε = 0.001

MLP inlier

MLP outlier

DAE inlier

DAE outlier

Figure 4.8: Adversarial robustness comparison between DAE and MLP: For each of the splits Sc, So, and Sd
in the MNIST7 and FMNIST3,7 datasets, the samples (true positives and true negatives with more than 95%
confidence) were perturbed via FGSM in 300 steps with a step size of 0.001, resolving the full range from
local stability to global adversarial robustness. The results clearly show that DAE is more robust to adversarial
perturbations applied to inliers and, especially, rest samples. On the two datasets, DAE is most robust w.r.t.
adversarial perturbations on dataset shift samples, demonstrating the advantage of DAE being a true OSR
method with bounded open space risk.

of calibration between Tc and To/Td, since high similarity suggests that calibration improvements on
Tc could generalize better to To and Td. Technically, we measured the calibration error within each bin
bin-CEi, j (see Eq. (4.19)), and then calculated the average per-bin calibration error difference ∆CE
between split Sc and the So/Sd splits. Across all three datasets, DAE has a significantly lower ∆CE
compared to MLP and MiMo. This is an interesting insight, as it suggests that for DAE, calibration
deficiencies on Tc are more similar to deficiencies on To/Td, compared to the other approaches and
calibration improvement on Tc could generalize to calibration improvements on To and Td. Multiple
postprocessing-based approaches for calibration such as histogram binning [212] and temperature
scaling [77] have also been proposed which could exploit the calibration similarity across tasks.
As shown in Table 4.6, we performed an ablation study w.r.t. the different loss terms in L̂ to show

that only the specific combination in L̂ leads to the desired classification and robustness properties.
The results clearly show that the loss function L̂ has the highest robustness with a minor classification
degradation. If we remove the classification loss term LBCE from L̂, then the decision boundary t
converges to 0, which classifies all samples as outliers, irrespective of their true class. If the model is
solely trained on LBCE or LBCE + |t |, then the classification performance increases slightly, however,
this still expresses severe robustness deficiencies to outliers and dataset shift.

These findings can be explained by Fig. 4.9, which plots the loss histograms for each hyperparameter
combination in Table 4.6. The strong robustness performance of L̂ can be attributed to the wide

85

Chapter 4 Open Set Recognition

Hyperparameters Sc So Sd1 Sd2

λ0 λ1 λ2 λ3 Interpretation Figures AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score

1 0.01 0.01 1 L̂ Figures 4.9(a) to 4.9(d) 98.9 97.5 98.9 96.9 99.0 98.4 99.0 97.2
1 0.01 0 1 LR + |t | Figures 4.9(e) to 4.9(h) 0.5 0 0.5 0 0.5 0 0.5 0
1 0 0 1 inlier and |t | minimization Figures 4.9(i) to 4.9(l) 0.5 0 0.5 0 0.5 0 0.5 0
0 0 1 0 LBCE Figures 4.9(m) to 4.9(p) 99.2 97.1 98.2 91.7 71.0 66.9 91.7 76.3
0 0 1 1 LBCE + |t | Figures 4.9(q) to 4.9(t) 99.7 97.9 98.3 92.5 89.1 77.9 96.9 85.0

Table 4.6: Ablation study on MNIST2,7 w.r.t. the loss terms in L̂ controlled by hyperparameters λi (see Eq. (4.2)
and Eq. (4.5)): The respective loss histograms are shown in Fig. 4.9. These results clearly indicate that the
combination of all loss terms yields the highest dataset shift robustness, with slight degradation in classification
performance. Without the adversarial loss term (i.e., λ1 = 0), the models express significant robustness
deficiencies and the two cases without LBCE lead to unusable results, as t becomes 0. Note that the F1 scores
can deviate from previous results in Table 4.4, as there the best models were selected based on AUROC scores
on Sc . If the F1 score is a concern, we suggest filtering models whose decision boundary t has converged to a
constant value, and subsequently select the best model based on AUROC.

inlier/outlier separation and small decision boundary t, which allows the model to reject outliers
effectively, as shown in Fig. 4.9(a) to Fig. 4.9(d). Interestingly, LBCE (Fig. 4.9(m) to Fig. 4.9(p)) and
LBCE + |t | (Fig. 4.9(q) to Fig. 4.9(t)) can separate inliers from rest classes on Sc , but fail to generalize
to unseen classes. In particular, without |t | regularization, the inlier reconstruction errors are less
minimized, leading to dataset shift samples becoming indistinctive from inliers (see Fig.4.9(o)). If
LBCE is jointly optimized with |t | regularization, then the minimization of inliers improves, but outliers
are maximized less due to the vanishing gradient problem, as derived in Eq. (4.8). This results in poor
OOD data robustness (see Fig. 4.9(s)). The adversarial component within LR2 does not suffer from
the vanishing gradient limitation, and enforces the maximization of outliers, which becomes apparent
when comparing Fig. 4.9(a) to Fig. 4.9(q). If the adversarial component is missing in LR, then only
inliers are minimized, which causes a significant overlap of inliers and rest classes, especially on Sc
(see Fig. 4.9(i)). In conclusion, the combination of all loss terms in L̂ yields the best separation of
inliers and outliers, due to effective minimization of inliers and maximization of outliers, as well
as solving the vanishing gradient problem. Moreover, the minimization of the decision boundary t
with LBCE acting as an antipole, enables the model to robustly reject outliers without jeopardizing
classification performance.

From this extensive analysis, we can conclude that DAE, as an OSR method with a bounded open
space risk, clearly shows its superiority compared to the potent baselines from OSR, OVR, and
outlier detection. Apart from ATA, every baseline consistently failed on more than one of the three
subtasks of OSR, questioning their applicability in safety-critical systems. The consistent classification
performance across all three tasks Tc , To and Td combined with an increased (adversarial) robustness,
shows the benefits of DAE’s reduced and bounded open space risk, and exposes the deficiencies of the
ERM and semi-supervised baselines.

4.8 Conclusion

Open set recognition (OSR) is a common task in machine learning applications. Whenever the
objective is to distinguish at least one class of interest (COI) from all remaining, possibly unknown
classes (RC), e.g., ordinary internet traffic vs novel intrusion attempts, or general discussions vs all
types of hate speech, OSR methods seem natural. Our analysis reveals that, when extending the

86

4.8 Conclusion

0.0 0.5 1.0 1.5 2.0 2.5 3.0
eMSE

0

5

10

15

20

25

30

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(a) L̂ on Sc

0.0 0.5 1.0 1.5 2.0 2.5 3.0
eMSE

0

5

10

15

20

25

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(b) L̂ on So

0.0 0.5 1.0 1.5 2.0 2.5 3.0
eMSE

0

5

10

15

20

25

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(c) L̂ on Sd1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
eMSE

0

5

10

15

20

25

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(d) L̂ on Sd2

0 1 2 3 4 5
eMSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(e) LR + |t | on Sc

0 1 2 3 4 5
eMSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(f) LR + |t | on So

0 1 2 3 4 5
eMSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(g) LR + |t | on Sd1

0 1 2 3 4 5
eMSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t 0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(h) LR + |t | on Sd2

0.000 0.005 0.010 0.015 0.020 0.025
eMSE

0

50

100

150

200

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(i) LR1 + |t | on Sc

0.000 0.005 0.010 0.015 0.020 0.025
eMSE

0

50

100

150

200

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(j) LR1 + |t | on So

0.0 0.1 0.2 0.3 0.4
eMSE

0

20

40

60

80

100

120

140

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(k) LR1 + |t | on Sd1

0.00 0.02 0.04 0.06 0.08
eMSE

0

25

50

75

100

125

150

175

200

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(l) LR1 + |t | on Sd2

0 5 10 15 20 25 30 35
eMSE

0.0

0.5

1.0

1.5

2.0

2.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(m) LBCE on Sc

0 5 10 15 20 25 30 35
eMSE

0.0

0.5

1.0

1.5

2.0

2.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(n) LBCE on So

0 5 10 15 20 25 30 35
eMSE

0.0

0.5

1.0

1.5

2.0

2.5

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0
in

lie
r p

ro
ba

bi
lit

y

(o) LBCE on Sd1

0 5 10 15 20 25 30 35
eMSE

0.0

0.5

1.0

1.5

2.0

2.5

sa
m

pl
es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(p) LBCE on Sd2

0 1 2 3 4 5
eMSE

0

2

4

6

8

10

12

14

16

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(q) LBCE + |t | on Sc

0.0 0.5 1.0 1.5 2.0 2.5
eMSE

0

5

10

15

20

25

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(r) LBCE + |t | on So

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
eMSE

0

5

10

15

20

25

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(s) LBCE + |t | on Sd1

0 1 2 3 4
eMSE

0

2

4

6

8

10

12

14

16

sa

m
pl

es

inliers
outliers
g(eMSE)
t

0.0

0.2

0.4

0.6

0.8

1.0

in
lie

r p
ro

ba
bi

lit
y

(t) LBCE + |t | on Sd2

Figure 4.9: Inlier and outlier loss histograms regarding the different cases within the ablation study in Table 4.6.
The model output g(eMSE), which maps the reconstruction errors to inlier probabilities is plotted in green, and
the decision boundary t is plotted as a dotted red line. Note that in some cases, e.g., in Fig. 4.9(a) to 4.9(d), the
maximum reconstruction errors are capped to highlight the accuracy of the decision boundary. The results show
that the combination of loss terms L̂ leads to inliers and outliers being minimized/maximized, respectively,
while the decision boundary being as close to the inliers as possible, maximizes robustness without jeopardizing
classification performance. All the other combinations lead to poor classification performance or lack of outlier
robustness. Without outlier maximization, similar to the one-class autoencoder, the inliers and outliers are not
fully separated on Sc and So (Fig. 4.9(i) to 4.9(l)).

87

Chapter 4 Open Set Recognition

scope of RC, OSR poses the difficult challenges of outlier detection and dataset shift to deep neural
networks, solely optimized via empirical risk minimization. We provide an effective solution to
these deficiencies with our proposed decoupling autoencoder (DAE) architecture. We have proven
the existence of a bounded open space risk for DAE, and shown its classification and (adversarial)
robustness benefits across three different subtasks of OSR. Specifically, we benchmarked DAE against
capable baselines from various domains (DNNs, ensemble methods, outlier detection, and OSR) w.r.t.
the OSR subtasks of classification, outlier detection, and dataset shift. In these experiments, DAE
showed superior robustness across all subtasks, compared to the baselines, which failed on at least one
of the tasks, apart from ATA. In comparison to ATA, DAE can actively minimize the open space risk,
and does not require an offline brute-force line search for decision boundary estimation.
For future work, we would like to extend DAE towards multi-class classification, with a bounded

open space risk, which would allow for robust multi-class classification under extreme dataset shift
conditions. Another promising idea is the development of feature extractors that prevent the model
from learning representations of noisy or uninformative features, thereby further alleviating the
trade-off between classification and robustness performance.
Having fulfilled the second milestone defined in Sec. 1.5, we turn towards robust multi-class

classification, seeking to provide a solution to the third and final milestone. Here, the main idea is to
combine multiple DAEs in an ensemble, where each DAE solves one of the one-vs-rest classification
problems, thereby also solving the multi-class classification problem, while maintaining the robustness
benefits developed in this chapter.

88

CHAPTER 5

From Open Set Recognition Towards Robust
Multi-class Classification

The challenges and risks of deploying deep neural networks (DNNs) in the open-world are often
overlooked and can potentially result in severe, negative outcomes, as explored in the previous chapters.
Rather than improving the robustness to out-of-distribution data on a hit-or-miss basis, in this chapter
we explore subjective uncertainty estimation of DNNs, as an important device for the interpretability of
predictions. In case of a model being uncertain about its prediction, there are different actions, such as
human supervision or increase of data coverage, that can provide the necessary information for the final
prediction/decision. However, this kind of feedback loop can be only established for well-calibrated
models. As pointed out in Sec. 1.1, traditional DNN methods are incapable of measuring uncertainty
related to unforeseen circumstances accurately, providing wrong predictions at an elevated confidence
level.
Technically, the central idea here is to leverage the DAE architecture engineered in Ch. 4 with

its high robustness gains, and propose the Informer architecture, an extension towards multi-class
classification. Architecturally, we create an ensemble from multiple DAEs, each learning a different
one-vs-rest setting, and introduce a novel uncertainty estimation module that captures different sources
of uncertainties.

Besides maintaining DAE’s robustness properties, the new architecture captures the two orthogonal
sources of uncertainty, namely epistemic and aleatoric uncertainty. While epistemic uncertainty
can be reduced by the targeted sampling of data points the model has not been exposed to, i.e.,
unknown subspaces in the input space, aleatoric uncertainty cannot be reduced as it captures the
statistical uncertainty within the data itself (e.g., uncertainty about rolling of fair dice cannot be
reduced with an increased number of experiments). Therefore, considering these two uncertainty
sources independently within the model predictions, allows for targeted retraining, enhancing a model’s
classification performance and robustness when few training samples are present. This also allows
different actions to be taken, based on the separated uncertainty information within the prediction
during deployment.
We evaluate the Informer architecture over a range of classification, outlier exposure and dataset

shift exposure tasks, benchmarking Informer against potent baselines based on DNN ensembles,
kernel-based DNNs, and traditional MLPs. Our results clearly show Informer’s superiority compared
to these baselines in terms of robustness to outliers and dataset shift while maintaining a competitive

89

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

classification performance. Finally, we also empirically demonstrate that Informer can estimate the
overall uncertainty within a prediction, and break the uncertainty estimate down into aleatoric and
epistemic uncertainty in contrast to any of the other baselines. This is an essential feature in many
use cases, as the underlying reasons for the uncertainty are fundamentally different, and can require
different actions.
With the Informer architecture, we provide an effective solution to the last milestone, specified in

Sec. 1.5.
This chapter is based on our publication [26]. The idea to combine multiple DAEs towards the

Informer ensemble architecture for robust multi-class classification was proposed and implemented by
Max Lübbering. Further, its ability to separate aleatoric and epistemic uncertainty was recognized and
derived by Max Lübbering, who also conducted all experiments that resulted in the insights mentioned
in the publication. The implementation of the MiMo [174] and DUQ [204] baseline were shared by
Max Lübbering and one co-author. The Deep Ensembles [35] baseline was implemented by Max
Lübbering. The paper was written by Max Lübbering and revised by the remaining co-authors, who
also participated in the regular discussions concerning the Informer architecture.

5.1 Introduction

As pointed out in the previous chapters, the robustness of multi-class classifiers is an increasingly
crucial, yet, underexplored criterion. The tremendous progress and outstanding performance of deep
learning methods has led to their application in many parts of our daily lives, e.g., autonomous driving
[213], and medical diagnosis [214]. These safety-critical applications have raised various concerns
about AI safety [18, 19], as discussed in Sec. 1.1. Firstly, these concerns can be attributed to controlled
benchmark environments that often do not reflect the deployment scenarios in an open-world setting,
neglecting omnipresent side effects such as noise, dataset shift, or outlier exposure. Secondly, the
empirical risk minimization (ERM) in the training process of DNNs has historically solely focused
on the separation of the observed classes, leading to wrong and overly confident predictions on
out-of-distribution (OOD) data [33, 35, 77, 215]. This is visualized in Fig. 5.1 for the two ensemble
methods Deep Ensemble (DE) [35] and MIMO [174], and a traditional MLP with Softmax output.
Many incidents that can be attributed to these shortcomings have been reported in the AI Incident
Database [21] and analyzed in Ch. 1, stressing the importance of robust DNN methods.

Different concepts have been proposed to formalize the transition from closed-set classification to
open-world classification. Most prominently, the open set recognition (OSR) framework, introduced
in Ch. 4, aims to distinguish a set of inlier classes (observed closed set) from all rest classes (partially
observed classes that are contextually related to the inlier classes and unobserved OOD classes)[25].
Here, the optimization objective is formalized as the two-fold problem of robustly rejecting OOD data
while maintaining accurate classification between inliers and observed rest samples. Technically, the
OSR framework jointly minimizes the empirical risk and open space risk [25, 179], which has led to
different DNN architectures that robustly perform this generalized one-vs-rest (OVR) classification
task [22, 58].
Another common approach towards robust DNNs, is to leverage their subjective predictive

uncertainty. Conceptually, predictive uncertainty can be divided into aleatoric and epistemic
uncertainty [27, 216]. Aleatoric uncertainty is referred to as the irreducible part of uncertainty, which
is induced by statistical uncertainty within the data. A classic example is the uncertainty of rolling

90

5.1 Introduction

(a) Informer (b) DUQ (c) Deep ensembles (d) MiMo (e) Softmax

(f) Informer (g) DUQ (h) Deep ensembles (i) MIMO (j) Softmax

Figure 5.1: Uncertainty heatmap of our Informer architecture and the baselines on the half-moon dataset.
Informer and DUQ capture aleatoric and epistemic uncertainty whereas the other three ERM baselines only
capture aleatoric uncertainty.

fair dice that is irreducible despite an arbitrary long history of observations. Epistemic uncertainty
quantifies the uncertainty induced by lack of knowledge about the best model for the given problem.
Therefore, epistemic uncertainty is generally high on OOD data and, in contrast to aleatoric uncertainty,
can be reduced with an increase in training data. Capturing and distinguishing these two types of
uncertainties is crucial in safety-critical environments such as autonomous driving. In case of high
epistemic uncertainty, the system would query more data from other sensors for uncertainty reduction
[27], or if more data is unavailable, apply emergency braking, as the model is operating blindly. In the
case of high aleatoric uncertainty, the model can make an informed decision based on risk assessment.
Traditional DNNs trained with ERM are incapable of capturing epistemic uncertainty [27, 216],
exposing humans and other entities engaging with such a system to an unforeseeable risk.
To this end, we propose Informer, a DNN architecture based on the OSR method decoupling

autoencoder (DAE), introduced in Ch. 4. DAEs are trained in an adversarial fashion, which
minimizes/maximizes the reconstruction error for inliers/outliers by applying gradient descent and
gradient ascent, respectively. Thus, the reconstruction error becomes predictive of the inlierness of a
sample. We extend this approach to multi-class classification by ensembling one DAE for each class
and training them end-to-end by introducing a custom loss function that jointly optimizes classification
and outlier robustness performance. Furthermore, we propose a practical uncertainty estimation
module (UEM) that captures the overall uncertainty within a prediction and distinguishes aleatoric
and epistemic uncertainty. Thus, this method provides interpretable uncertainty estimates; hence its
name Informer.
In this chapter, we benchmark our method against seven potent DNN baselines, including the two

ensembles MIMO [174] and DE [35], kernel method DUQ [204] and a feed forward Softmax model,
on four image and text classification datasets. The key differences between these methods can be
seen in Fig. 5.1, on the half-moon dataset. There, the ensemble methods and Softmax separate the
inlier classes, but neglect uncertainties concerning outliers. In contrast to these, Informer and DUQ

91

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

learn a hull around the inlier classes, allowing them to reject outliers. Throughout our experiments,
Informer expresses the highest robustness to corruptions, while maintaining a competitive classification
performance. Finally, we empirically show that the UEM accurately distinguishes aleatoric and
epistemic uncertainty.

5.2 Related Work

Enabling DNNs to capture and distinguish different uncertainty types is subject to an ongoing research,
with multiple methods proposed from different domains [27]. These DNN methods can be categorized
into Bayesian neural networks (BNNs), ensemble methods, and kernel methods. Most prominently,
BNNs, with their long-lasting history of uncertainty estimation [216, 217], have been extended to
quantify aleatoric and epistemic uncertainty [215, 218, 219]. Their reliance on variational inference,
however, limits these methods to small-scale solutions.

Furthermore, [35, 174] have shown that simple, deterministic ensemble methods outperform BNNs,
but their downsides are that these methods only provide an overall uncertainty score, which mostly
captures aleatoric uncertainty and lacks principled retrieval of epistemic uncertainty.

As a solution, deep learning methods based on distance-aware kernels have been proposed [204, 220,
221]. The work of [221] combines spectral normalization for bi-Lipschitz regularization of residual
blocks with a Gaussian process output layer to increase the sensitivity for epistemic uncertainty.
Similarly, DUQ [204] regularizes a two-sided Lipschitz constraint within its loss function that is more
relaxed than spectral normalization [220].

Various methods for OOD robustness have been proposed based on DNN outlier detectors [22, 23]
and OSR methods [58], but only a few attempts leverage their sensitivity to epistemic uncertainty to
improve DNN uncertainty estimation [27]. This is a gap we would like to bridge with our contribution,
in this chapter.

5.3 Informer

To achieve robust, multi-class classificationwith accurate, predictive aleatoric and epistemic uncertainty
estimates, we propose the Informer architecture based on a composition of DAEs [22], hereafter
referred to as Informer components (ICs). Given a multi-class classification problem of classes
C = {c1, c2, . . . , ck}, the architecture comprises k ICs, each learning a different one-vs-rest (OVR)
relationship for one of the classes. As shown in Fig. 5.2, the IC of inlier class ci is composed of
encoder ei and decoder di, which reconstruct sample x ∈ Rn as reconstruction x̂(i) ∈ Rn. The
non-parameterized reconstruction error module eMSE maps a sample/reconstruction pair onto a scalar
reconstruction error value, which is subsequently mapped to probability p(ci |x;Θ(i), σi) via the
Gaussian kernel g parameterized with standard deviation σi. Thus, the subnetwork ICi is given by

p(ci |x) = g(eMSE(di(ei(x;Θ(i)e);Θ
(i)
d
), x), σi), (5.1)

where Gaussian g(z) = e
− z2

2σ2
i , the error module eMSE(x, x̂) = 1

n

∑n
j (xj − x̂j)

2 and Θ(i)e , Θ(i)
d

denote
the network weights of the encoder and decoder part of IC i, respectively. Note that for readability
purposes, we omit the explicit naming of parameters Θ and σ in the subsequent formulas when it

92

5.3 Informer

x1
x2
...

xn

x̂(k)1
x̂(k)2
...

x̂(k)n

x̂(1)1
x̂(1)2
...

x̂(1)n

eMSE(x, x̂

(1)
)

p(c1 |x) = g(eMSE, σ1)

d1(e1(x))

eMSE(x, x̂
(k)
)

p(ck |x) = g(eMSE, σk)

dk(ek(x))

Uncertainty
Estimation

Module (UEM)

Ua Ue Ut

Figure 5.2: Illustration of the Informer architecture for multi-class classification with k classes: An ensemble
composed of k Informer components (autoencoder di(ei(x)) for sample reconstruction, a reconstruction error
module eMSE for outlierness estimation, and an RBF kernel g for classification), each learning an OVR
relationship for a different inlier class. The uncertainty estimation module (UEM), provides estimates on the
total, aleatoric and epistemic uncertainty, as denoted by Ut , Ua and Ue, respectively.

ŷ

p(c1 |x)

p
(c

2|
x)

p
(c

2|
x)

U e
(ŷ)

U a
(ŷ)

U
t (ŷ)

Figure 5.3: Uncertainty Estimation Module (UEM): Given a prediction ŷ, the two class probabilities p(c1 |x)
and p(c2 |x), conditioned on the input x, determine the amount of aleatoric and epistemic uncertainty within the
prediction. UEM splits the uncertainty Ut (Manhattan distance of prediction to bottom right corner) into a
convex combination of aleatoric uncertainty Ua and epistemic uncertainty Ue. For simplicity, we only show the
case p(ŷ1 |x) > p(ŷ2 |x).

does not compromise clarity. Based on the OVR probability p(ci |x) of each class ci, UEM provides
estimates on the total prediction uncertainty and the aleatoric/epistemic uncertainty ratio. The Informer
network is defined as ϕ(x) = (p(c1 |x), . . . , p(ck |x))

T where
∑k

i p(ci |x) = 1 is not enforced.
To train the Informer architecture, we adapted the original DAE loss function, which is optimized

for the open set recognition task, such that it learns the multi-class classification problem while
maintaining its robustness benefits. The derived loss function L̂ is given by

L̂(x, ϕ(x;Θ), y) =
k∑
i

LR(x, di(ei(x;Θ(i)e);Θ
(i)
d
),1(y = i)) + λ1LCE(ϕ(x;Θ), y) + λ2 |σ |, (5.2)

93

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

where λ1 ∈ R and λ2 ∈ R scale the cross-entropy loss LCE and the regularization of σ = (σ1, . . . , σk)
T ,

respectively. The loss term LR denotes the adversarial reconstruction error, as defined by us in
[22] and introduced in Eq. (5.2) in Sec. 4.3, which minimizes/maximizes the reconstruction error
for inliers/rest samples, respectively. The target y ∈ C is mapped to {0, 1} using indicator function
1(y = ci), reflecting the OVR relationship within a single IC. Technically, the reconstruction of rest
samples is maximized by the negation of the mean squared error loss LMSE, which corresponds to
gradient ascent [23]. The classification cross-entropy loss LCE, with its primary purpose to optimize
σ ∈ Rk across the different ICs, is defined as

LCE(ϕ(x;Θ), y) = − log(softmaxi(ϕ(x;Θ))), (5.3)

where target y = ci and softmaxi(ϕ(x;Θ)) = eϕ(x;Θ)i∑k
j e

ϕ(x;Θ) j
. Since

∑k
i ϕ(x;Θ)i = 1 is not enforced,

we apply softmax to the model output ϕ(x), which is appropriate to the multi-class classification
setting. While theoretically each IC could be trained independently, the learned decision boundaries
imposed by σ can be incompatible due to calibration inaccuracies, e.g., if one IC is overly confident,
classification performance is harmed. Naturally, traditional ensembles do not suffer from this issue, as
each component is trained on all classes. Within Informers, we alleviate this problem by LCE, due
to the IC interdependence within softmax. Given an Informer network ϕ(x,Θ,σ) with autoencoder
weights Θ, decision boundary parameter σ, and sample x with target y = ci , the gradient w.r.t. σi and
σj with j , i computes to

∂LCE(ϕ(x,Θ,σ), y)
∂σi

= −

∑{0,...,k }\{i }
l

eϕl (x,Θ,σ)∑{0,...,k }
l

eϕl (x,Θ,σ)
∂ϕ(x,Θ,σ)

∂σi

(5.4)

= −(1 − p(ci |x))
∂ϕ(x,Θ,σ)

∂σi

(5.5)

and

∂LCE(ϕ(x,Θ,σ), y)
∂σj

=
eϕ j (x,Θ,σ)∑{0,...,k }

l
eϕl (x,Θ,σ)

∂ϕ(x,Θ,σ)
∂σj

(5.6)

= p(cj |x)
∂ϕ(x,Θ,σ)

∂σj

, (5.7)

respectively. A full derivation can be found in AppendixA.1.1. Eq. (5.4) and Eq. (5.6) display two
important gradient properties of LCE: 1) The gradients point in opposite directions, resulting in
minimization / maximization of σi and σj within gradient descent, respectively. 2) The gradient
scaling factors can be interpreted as probabilities 1 − p(ci |x) and p(cj |x), as per the definition of the
softmax function. Thus, LCE models the interdependence of σ within the multi-class classification
setting.

The loss terms LCE and |σ | optimize σ, whereas LR and LCE optimize autoencoder weights Θ.
Importantly, even though we apply LCE to all network weights, there is no information flow between
ICs at inference time, since p(ci |x) is independent of the weights of the other ICs p(cj |x) ∀i , j.
Hence, the two ICs can predict their inlier class with maximum confidence, interpreted as maximum

94

5.4 Evaluation Approach

aleatoric uncertainty within the overall prediction.
Following up on this, we formalize the uncertainty estimation as a two-step approach. Firstly, given

a sample x with predictions ŷ = ϕ(x), we filter the two class predictions with the highest certainty.
Secondly, as shown in Fig. 5.3, we derive the aleatoric and epistemic uncertainty ratios from their
location on the probability plane. The model is aleatorically uncertain if both probabilities are high
(top right triangle corner), epistemically uncertain if both probabilities are low (bottom left triangle
corner), and certain if only one of the probabilities is high (bottom right triangle corner). A prediction
has the highest total uncertainty Ut if it lies on the diagonal between maximum epistemic uncertainty
and maximum aleatoric uncertainty. Hence, Ut is a convex combination of aleatoric and epistemic
uncertainty. Similarly, all points located on a parallel to this diagonal have equal Ut , as induced by the
Manhattan distance from the point of maximum certainty. Thus, omitting simple linear algebra, the
uncertainty scores can be calculated from the two maximum scores ŷ1 and ŷ2 within prediction ϕ(x)
with ŷ1 > ŷ2 as follows

Ut (ŷ) =

√
(1+ŷ2−ŷ1)

2

2√
1
2

, Ua(ŷ) =
ŷ2
√

2√
2(1 + ŷ2 − ŷ1)

, Ue(ŷ) = 1 −Ua(ŷ). (5.8)

A full derivation of the uncertainty estimators can be found in AppendixA.1.2.
The Informer architecture has multiple advantages. While traditional DNNs generally only capture

aleatoric uncertainty due to the adoption of ERM [27], the proposed Informer method can capture
and distinguish aleatoric and epistemic uncertainty due to Θ independence between ICs and global σ
optimization. This property is a crucial requirement when deploying models within the open world
that is not met by the vast majority of DNN methods.

5.4 Evaluation Approach

The models are evaluated in three different scenarios (i.e., classification, contextual outlier exposure,
and dataset shift exposure), as proposed by [22, 99] and applied in Ch. 4 for model evaluation within
the OSR domain. These scenarios are represented by the test splits Sc, So, and Sd, respectively, as
depicted in Table 5.1. We leverage the three image classification datasets FMNIST, MNIST, and
EMNIST, and the three text classification datasets Reuters, Newsgroups and ATIS. The models
are trained on FMNIST, MNIST, Reuters, and Newsgroups with the respective inlier classes fc =
{t-shirt, pants, pullover, dress, sneaker}, mc = {0, 2, 4, 6, 8}, rc ={acq, earn, crude, interest, money-
fx} and nc ={sci.med, rec.autos, sci.space, misc.forsale, rec.sport.hockey}. The remaining unobserved
classes from the respective dataset are added as rest samples to split So for contextual outlier exposure,
thereby increasing aleatoric and epistemic uncertainty. Finally, we leverage rest classes from unrelated
datasets within splits Sd1 and Sd2 , which primarily increases epistemic uncertainty in the data. As
part of the preprocessing, the image samples have been z-transformed, and the text samples were
embedded as pooled 100-dimensional Glove embeddings [156].

We evaluate the closed set classification performance in terms of the macro F1 score on split Sc , and
outlier robustness on So and Sd in terms of AUROC. Since we expect models to be uncertain about
rest samples, this characteristic is captured by AUROC, which can be interpreted as the probability of

95

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

FMNIST MNIST Reuters Newsgroups

Split Inlier Rest Inlier Rest Inlier Rest Inlier Rest

St fc – mc – rc – nc –
Sc fc – mc – rc – nc –
So fc f \ fc mc m\mc rc r\rc nc n\nc

Sd1 fc m mc f rc n nc r
Sd2 fc e mc e rc a nc a

Table 5.1: Three step experiment setup concerning classification (Sc), contextual outlier exposure (So) and
dataset shift exposure (Sd1 and Sd2): The two sets of inlier/rest classes within a split are denoted the first letter
of the original dataset. The training split St and test splits (Sc, So, Sd) share the same inlier classes for a given
dataset. The contextual outlier split So and dataset shift splits Sd provide the rest classes from the same dataset
and an unrelated dataset, respectively. Note that the sets e and a refer to the classes of EMNIST and ATIS.

a random rest sample being ranked higher than a random inlier sample [22, 33] (see Sec. 1.2.1 for a
discussion).

We selected an MLP as a strong classification baseline, and the two ensemble methods MIMO
[174] and deep ensembles (DE) [35], with an improved uncertainty estimation in comparison to the
MLP [35]. These are compared using two different offline uncertainty estimation methods based on
the softmax outputs, as proposed by [33], namely entropy(softmax(ϕ(x))) and max(softmax(ϕ(x))).
The different variants are denoted by a leading E and M, e.g., E-MLP for entropy-based uncertainty
estimation within MLP. Finally, Informer is benchmarked against the kernel-based DNN method DUQ
[204], which was proposed for robust uncertainty quantization.

For an algorithm-level comparison, we applied nested CV. Each IC has a hidden layer sizes
of [50, 25, 12, 25, 50] for text classification and [256, 128, 256] for image classification. For a fair
comparison, all baselines can have a maximum model complexity comparable to the Informer
complexity. The ensemble size of MIMO and DE are fixed to 5, matching the number of ICs. All
models are optimized with Adam [32], while the Informer decision boundary σ is optimized via
stochastic gradient descent (SGD) at a higher learning rate, due to the low optimization complexity.
All methods are optimized w.r.t. learning rate and weight decay. Additionally, DUQ is optimized
w.r.t. gradient penalty and length scale. Regarding Informer, we perform a sweep over scaling factors
λi and the inlier/outlier weighting factor within loss term LR.

The best Informer model is selected in two steps: 1) The model configurations whose decision
boundary has converged to a static value are selected. 2) The final model is chosen by the highest
macro F1 score. While there are many possible decision boundaries in reconstruction error space
that accurately split the classes, we argue that the smallest decision boundary leads to the tightest
hull around the inlier classes, and the best generalization towards outlier robustness. For DUQ, we
select the best model by the involved, multi-step approach proposed by its authors [204] and for the
remaining baselines, we select the best one via macro F1 score.

96

5.5 Results

FMNIST MNIST

F1 score AUROC F1 score AUROC

Method Sc So Sd1 Sd2 Sc So Sd1 Sd2

Informer 96.9 ± 0.3 78.4 ± 0.6 95.8 ± 1.0 95.7 ± 1.1 99.0 ± 0.1 87.9 ± 2.4 99.5 ± 0.2 93.9 ± 0.8
DUQ 96.8 ± 0.3 72.4 ± 3.2 91.3 ± 2.3 90.9 ± 1.6 99.0 ± 0.1 91.4 ± 0.2 92.6 ± 1.1 91.2 ± 0.1

E-MLP 96.7 ± 0.2 52.1 ± 1.7 77.9 ± 1.8 76.7 ± 2.2 98.8 ± 0.1 85.1 ± 3.3 83.6 ± 4.9 82.2 ± 2.8
M-MLP 96.7 ± 0.2 52.6 ± 1.8 77.6 ± 1.8 76.4 ± 2.2 98.8 ± 0.1 85.1 ± 3.3 83.7 ± 4.9 82.2 ± 2.8
E-MIMO 95.6 ± 0.2 73.5 ± 1.4 95.7 ± 1.2 93.7 ± 1.1 96.7 ± 0.3 85.5 ± 1.4 92.1 ± 1.7 86.1 ± 2.3
M-MIMO 95.6 ± 0.2 73.2 ± 1.2 95.2 ± 1.1 93.4 ± 1.0 96.7 ± 0.3 85.6 ± 1.5 92.2 ± 1.6 86.1 ± 2.3

E-DE 96.9 ± 0.2 55.8 ± 1.4 91.2 ± 1.3 88.0 ± 2.1 99.1 ± 0.1 89.7 ± 1.6 86.9 ± 2.9 88.7 ± 1.1
M-DE 96.9 ± 0.2 55.9 ± 1.6 91.0 ± 1.2 87.8 ± 2.0 99.1 ± 0.1 89.7 ± 1.6 86.9 ± 2.8 88.6 ± 1.1

Table 5.2: Image classification results on the different test splits: The best performing score is highlighted in
boldface for each split. Weak performances are highlighted in gray within each split when the score deviates
more than 10 percentage points from the best score. The Informer architecture provides competitive classification
results while being most robust to outliers/dataset shift.

Reuters Newsgroups

F1 Score AUROC F1 Score AUROC

Method Sc So Sd1 Sd2 Sc So Sd1 Sd2

Informer 90.0 ± 1.6 83.7 ± 2.2 93.7 ± 0.9 91.0 ± 2.0 91.9 ± 0.7 78.8 ± 1.2 88.1 ± 4.7 87.0 ± 5.9
DUQ 89.2 ± 2.5 80.8 ± 5.3 88.2 ± 3.2 95.1 ± 1.0 86.7 ± 5.6 73.6 ± 4.5 70.6 ± 8.0 68.8 ± 8.0

E-MLP 89.5 ± 1.6 63.0 ± 8.3 62.6 ± 8.5 83.2 ± 4.5 91.6 ± 0.8 82.1 ± 1.2 53.7 ± 8.2 68.2 ± 3.1
M-MLP 89.5 ± 1.6 62.4 ± 8.3 62.2 ± 8.4 82.4 ± 4.6 91.6 ± 0.8 81.9 ± 1.2 54.4 ± 8.2 68.9 ± 3.4
E-MIMO 89.0 ± 1.3 87.7 ± 2.8 92.5 ± 1.6 97.3 ± 1.1 89.3 ± 0.9 80.1 ± 1.2 76.4 ± 4.0 77.9 ± 3.7
M-MIMO 89.0 ± 1.3 87.0 ± 2.9 91.8 ± 1.7 96.2 ± 1.4 89.3 ± 0.9 80.2 ± 1.2 78.0 ± 3.8 79.2 ± 3.9

E-DE 90.1 ± 2.0 80.1 ± 6.1 86.6 ± 3.4 96.2 ± 0.3 91.7 ± 1.0 82.6 ± 0.7 74.7 ± 1.9 75.4 ± 2.5
M-DE 90.1 ± 2.0 79.3 ± 5.9 86.0 ± 3.4 95.1 ± 0.4 91.7 ± 1.0 82.2 ± 0.7 75.6 ± 1.9 76.1 ± 2.6

Table 5.3: Results on text datasets with the same score highlighting as in Table 5.2: Similar to the results on
image datasets, Informer provides competitive classification without the robustness deficiencies of the other
baselines.

5.5 Results

Having applied the aforementioned experiment setup, the results in Table 5.2 and Table 5.3 show that
each method expresses similar performance on the classification split Sc . When exposed to contextual
outliers and dataset shift, the MLP baseline expresses significant robustness deficiencies with a weak
performance in 20/24 cases on So, Sd1 and Sd2. MIMO, DE, and DUQ significantly improve the
model robustness, but nevertheless, the Informer robustness scores exceed the performance of all
baselines. Not only does Informer achieve the most top robustness scores, it also never yields any
weak robustness scores. In conclusion, while all methods yield a similar classification performance,
the subjective uncertainty scores of the Informer architecture are more sensitive to outliers, making

97

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

0.0 0.5 1.0
0

10

20

30

40

50
ICt shirt

0.0 0.5 1.0
0

10

20

30

40

50
ICpants

0.0 0.5 1.0
0

10

20

30

40

50
ICpullover

0.0 0.5 1.0
0

10

20

30

40

50
ICdress

0.0 0.5 1.0
0

10

20

30

40

50
ICsneaker

t-shirt pants pullover dress sneaker

(a) Prediction histogram of each inlier class

0.0 0.5 1.0
0

10

20

30

40
ICt shirt

0.0 0.5 1.0
0

10

20

30

40

50
ICpants

0.0 0.5 1.0
0

10

20

30

40

ICpullover

0.0 0.5 1.0
0

10

20

30

40

ICdress

0.0 0.5 1.0
0

10

20

30

40

ICsneaker

inlier class So outliers Sd1 outliers Sd2 outliers

(b) Histogram of inlier predictions and outliers predictions of split So, Sd1 and Sd2.

Figure 5.4: Histogram of IC predictions ϕi(x) = p(ci |x): While the inlier class is generally well-separated from
rest classes, there are few outlier samples primarily from split So that are falsely predicted as inliers with high
confidence.

Informer the most robust method.
We further explored the robustness of each IC by comparing the histograms for the inlier classes

and rest classes from the different splits. As shown in Fig. 5.4(a), each IC learns the OVR relationship,
explaining the competitive classification results. As shown in Fig. 5.4(b), the inlier class is less
separated from the So rest classes than the Sd rest classes. This suggests that contextual outliers are
reconstructed more accurately than dataset shift samples, possibly allowing the method to capture
aleatoric and epistemic uncertainty separately.
This finding is supported by Fig. 5.5(a), which visualizes samples of high aleatoric uncertainty in

the top right corner and samples of high epistemic uncertainty in the bottom left corner, per Eq. (5.8).
Some of the Sc and So samples express high aleatoric uncertainty, whereas Sd samples are predicted
with high epistemic uncertainty and never yield high aleatoric uncertainty. The predicted epistemic
and aleatoric uncertainty is well-aligned with human perception, as shown in Table 5.4. The two
Sc samples with max Ua have middle-sized sleeves adding significant classification ambiguity even
for the human eye. Interestingly, the Sc samples with max Ue cannot be assigned to any of the two
classes, as they are mislabeled dresses, and thus correctly rejected by the model. Similar conclusions
can be drawn from the selected So samples. Sd1 samples with max Ua have comparably low aleatoric
uncertainty and high Ut , further showcasing the method’s effectiveness of rejecting OOD samples.
In contrast to Informer, DUQ can only capture Ut and is unable to differentiate between different

uncertainty types, as shown in Fig. 5.5(b), with samples of all splits indistinctly spread over the bottom
left triangle. We presume that DUQ does not separate aleatoric and epistemic uncertainty, since the
transformation from input to embedding space can produce artifacts that map OOD data to areas of
higher aleatoric uncertainty in embeddings space. This deficiency is prevented within Informer by
learning a tight hull around the inlier class within each IC, as shown by [22] for DAE. If these hulls

98

5.5 Results

(a) Informer (b) DUQ

Figure 5.5: Comparing the prediction scatter of Informer (ICpullover and ICt-shirt) to DUQ’s centroids (Cpullover and
Ct-shirt) w.r.t. inlier classes pullover/t-shirt and So/Sdi rest classes. Due to the majority of samples overlapping
in the dense corners, we added histogram bars on the top and right edge for visual support.

Sc samples So rest samples Sd1 rest samples

min Ut max Ue max Ua min Ut max Ue max Ua min Ut max Ue max Ua

Label t-shirt pull. t-shirt pull. t-shirt pull. shirt shirt aboot sandal shirt shirt 1 0 6 3 7 0

Orig.

IC 0

IC 1
p(t-shirt|x) 100.0 0.0 0.0 0.0 95.8 96.1 99.9 0.7 0.0 0.0 99.4 98.3 92.8 0.0 0.0 0.0 65.7 67.6

p(pullover|x) 0.0 99.9 0.0 0.0 96.4 95.5 0.0 99.9 0.0 0.0 98.9 99.0 0.0 71.9 0.0 0.0 51.8 49.1
Ut 0.0 0.0 1.0 1.0 0.99 0.99 0.0 0.01 1.0 1.0 1.0 0.99 0.07 0.28 1.0 1.0 0.86 0.82
Ua nan 0.0 0.0 0.0 0.96 0.96 0.0 0.08 0.0 0.0 0.99 0.99 0.0 0.0 0.0 0.0 0.56 0.54
Ue nan 1.0 1.0 1.0 0.04 0.04 1.0 0.92 1.0 1.0 0.01 0.01 1.0 1.0 1.0 1.0 0.44 0.46

Table 5.4: Representative samples and their reconstructions from each split, expressing either min Ut , max Ue or
max Ua. The samples clearly show that different uncertainty types can be captured by the Informer architecture.

overlap, this is a strong indicator of true aleatoric uncertainty within the data, as seen in the examples
in Table 5.4.

In conclusion, the Informer architecture yields competitive classification results over the full range
of experiments, while being highly robust to outliers and dataset shift. This level of robustness is
not observed for any of the other strong baselines. Furthermore, Informer can distinguish between
aleatoric and epistemic uncertainty, which is impossible for the baselines. The subjective uncertainty
predictions also match humans’ perceptions of ambiguity and unknownness. All of these insights

99

Chapter 5 From Open Set Recognition Towards Robust Multi-class Classification

make this method compelling for use in open-world deployment scenarios.

5.6 Conclusion

Deploying models in the open world poses various challenges to traditional DNN methods. Generally,
the empirical risk minimization is solely focused on inlier separation and does not consider dataset
shift and outlier exposure prevalent in open-world scenarios, potentially leading to uncontrollable and
harmful behavior in the open-world setting. To this end, we proposed the Informer architecture as an
ensemble of autoencoder-based OVR classifiers that is highly robust to such corruptions. Furthermore,
Informer can estimate the overall uncertainty within a prediction and subdivide the uncertainty into
epistemic and aleatoric uncertainty in a principled way. Moreover, we demonstrated Informer’s
robustness superiority over two deep ensemble methods [35, 174], the kernel-based uncertainty
quantization method DUQ [204], and traditional MLPs, on multiple text datasets and image datasets,
in various experiment settings. Finally, we empirically verified Informer’s capability of differentiating
between aleatoric and epistemic uncertainty that is well-aligned with human perception. The Informer
architecture provides an effective solution to the problem, defined as the last milestone in Sec. 1.5,
concerning robust multi-class classification.
For future work, we consider adding a feature extractor to the front of the Informer architecture,

that drops noisy/uninformative features, which would otherwise poise the inlierness signal of the
autoencoders’ reconstruction error. Additionally, we would like to apply this approach to critical areas
such as medical diagnosis, in which robustness and accurate uncertainty estimation are crucial.

100

CHAPTER 6

Applications

In this chapter, we demonstrate the real-world applicability of our methods from an application and
deployment point of view. Firstly, we develop a toxicity detection system for online communication,
based on our proposed adversarially trained autoencoder (ATA) method, showcasing the benefits
and limitations of our approach on real-world data. Secondly, we implement a document information
extraction system illustrating how our algorithms can be leveraged for large-scale information extraction
and integrated in real-world deployment scenarios.

More specifically, in the first part, we present a comparative study on toxicity detection, focusing on
the problem of identifying toxicity types of low prevalence, some of which are unobserved at training
time. This is an extremely difficult task for autoencoders, unmatched by the previous datasets, as
toxicity is not restricted to a single topic and usually depends on the context. Given the manifold
hypothesis introduced in Sec. 1.3, this requires the model to encode all the context information on a
gigantic, latent manifold, to then accurately decode the latent representation. To further increase the
complexity, we train ATA and the baselines only on a weak type of toxicity and non-toxic samples,
and test whether ATA is able to generalize to more severe toxicity types. Our results suggest that
ATA and the ensemble baseline exceed the classification performance of simple classifiers on toxicity
detection, while also providing significantly better generalization and robustness. All models benefit
from a larger training set size, which even extends to the toxicity types unseen during training.

The second part deals with a deployment case study regarding the use case of information extraction
from financial documents. Generally, the problem of extracting information from large volumes
of unstructured documents is pervasive in the financial domain. Enterprises and investors rely on
automatic methods that can extract information from financial documents, particularly for indexing
and efficiently retrieving information. To achieve this level of automation, we present a scalable and
extensible end-to-end document processing system for financial documents. From a technical point of
view, extracting tiny bits of information from large-volume, financial documents is a highly imbalanced
task, with an unrestricted set of rest classes. Given the nature of this needle in a haystack problem and
the associated robustness requirements, we show that our method Informer, derived from supervised
outlier detection, seamlessly integrates with the other extractor models in this system. Noteworthily,
the use case of financial document processing is representative for any document processing pipeline,
and thus, the insights translate to any other system involving domain-specific extractors (e.g., based on
ATA, DAE, and Informer). In this chapter, we outline the entire system including the concrete design
choices, the architecture specification, and the algorithmic realization of the extractors. Finally, we

101

Chapter 6 Applications

provide in-depth analysis on the scalability and extensibility of the system.
This chapter is based on our publications [202, 222]. The idea in [202], to apply outlier detection

methods to toxicity detection, was proposed by Max Lübbering and extensively discussed with all
co-auhors, who worked on similar research questions at that time. The experiments of this paper were
mostly conducted by Max Lübbering. The writing and revising of the paper was shared between all
authors, while Max Lübbering contributed the most significant part.
The publication [222] was the result of a customer project at Fraunhofer IAIS, which was lead by

Max Lübbering. The models were implemented by the first six co-authors in the author list. The
architectural design of the document processing pipeline was mainly proposed by Max Lübbering
with the support from his co-authors. The idea to subsequently integrate robust classification methods
such as Informer was proposed, implemented, and evaluated by Max Lübbering.

6.1 Toxicity Detection in Online Comments with Limited Data: A
Comparative Analysis

The steadily increasing amount of online communication has been rendering manual moderation
almost infeasible. This affirms the importance of automatic detection of toxic content (related to,
e.g., cyber bullying and harassment [223]) in online conversations. There are different types of toxic
comments that are commonly observed, such as threats, insults or attacks based on people’s race and
sexual orientation. An effective system for toxicity detection should be able to detect all of them with
a high accuracy, and even generalize to unseen toxicity types, while not wrongly classifying normal
comments as toxic.
Toxicity classification poses a supervised classification problem whose existing solutions can be

broadly categorized into two categories [224]: manual feature engineering, and deep learning methods.
While in the first case, features are manually selected and fed to the classifier as input vectors, deep
learning approaches aim to learn seemingly abstract features present in the text on their own.

A key problem in solving this issue with deep learning, is that there are often no sufficient amounts
of data available for all toxicity types. While conventional machine learning systems are very accurate
in correctly identifying common types of toxicity, such as curse words or obscene language [224],
they might lack generalization by failing at detecting other, less obvious attacks.
In order to address this issue of diverse and previously unknown toxicity types, we present a

comparative analysis of classification and outlier detection methods. We specifically investigate each
system in challenging, but very common, settings by a) downsizing the training sets and b) constraining
the training set to a single type of toxicity, utilizing the remaining classes solely for evaluation. This
setup therefore enables us to directly measure the generalization and robustness performance of the
algorithms.
In this work, we consider three different types of methods for toxicity detection, namely a)

representation learning based outlier detectors via ATA (see Sec. 3.5), b) ensemble methods and c)
traditional deep neural networks. In the first case, a representation of the class of interest (COI) / inliers,
i.e., the toxic class, is learned and any sample that is very dissimilar from this representation is being
rejected as an outlier [23, 24, 64, 67]. Note that, due to the large and unrestricted manifold of normal
communication, which is infeasible to learn apart from large-scale language models, we decided
to learn the manifold of toxic communication. Specifically, ATA is composed of an autoencoder
that predicts the reconstruction error for a given sample. Due to a custom training approach that

102

6.1 Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis

maximizes / minimizes the reconstruction loss for outliers and COI, respectively, the reconstruction
error becomes highly predictive of the outlierness of a sample, as shown in the previous chapters. As
a second baseline based on representation learning, we consider one class autoencoders (OCA), a
semi-supervised method, which in contrast to ATA only minimizes the reconstruction error of COI
samples.
Similar to aforementioned outlier detectors, deep learning based ensemble methods have been

proven to be more robust than plain MLPs [35, 174]. In this work, we specifically consider the MIMO
[174] architecture as an ensemble representative, which incorporates the ensembling in a single neural
network. Due to this, MIMO makes more efficient usage of parameters, and is less overparameterized
compared to MLPs [174]. Finally, to put the baseline performances into perspective, we also consider
an MLP, one of the most classic methods for binary classification.

Our contributions can be summarized as follows:

• We present a custom experiment setup by limiting the training set size and constraining the
observed toxicity types. This setup enables us to evaluate the models as close to real-world
scenarios as possible.

• We compare methods from three different areas, namely representation learning, ensemble
methods, and deep learning methods solely optimized for classification.

• Our evaluation on the toxicity detection task comprises three different aspects: Classification
performance, generalization capabilities, and robustness.

6.1.1 Toxicity Detection Dataset

In this work, we use the toxicity detection dataset published by Google Jigsaw for the Toxic Comment
Classification Challenge [225] on Kaggle. This multi-label dataset originally contains 159,751 training
samples and 153,164 independent test samples. The samples have been annotated by 5000 human
annotators according to their toxicity level. These annotated comments were categorized into six
toxicity classes: toxic, severe toxic, insult, threat, obscene and identity hate. Note that toxic comments
can belong to more than one toxic class. In fact, only 39.2% of them have been categorized with just
one label.
For better interpretability of the results and prevention of information leakage, we define an

additional label, toxic-only, which is assigned to those samples that have only the toxic category
annotated (and no other toxicity label).

For our experiments, we consider a strongly reduced version of the original data set. This is done to
simulate the common situation, where only limited data is available, and to make it harder for the
algorithms to learn general properties of the data. Firstly, we remove all samples from the training
split that have any label other than non-toxic and toxic-only. Secondly, we apply downsampling to
further reduce the overall dataset size. To make the dataset suitable for binary classification, we treat
all comments with any toxic label as toxic, and all others as non-toxic.
The evaluation is done on four separate test sets. They all contain the same, randomly sampled

10000 non-toxic samples from the original test split, and a number of toxic samples with distinct types.
They are defined as specified in Table 6.1. Note that we allow for overlap with different toxic labels,
except for the toxic-only test split, which consists of samples with only the toxic category (see above).
As part of the preprocessing, all samples were represented as pooled Glove word embeddings.

103

Chapter 6 Applications

Test split #toxic samples #non-toxic samples

toxic-only 1710 10000
threat 654 10000
insult 10686 10000
identity-hate 1995 10000

Table 6.1: Number of toxic samples for each of the four test splits. Note, that each test split shares the same
10000 non-toxic samples.

6.1.2 Experiments

For each method, we apply an extensive grid search (GS) over multiple parameter settings. We perform
hyperparameter-tuning w.r.t. learning rate, and weight decay for each method, and specifically w.r.t.
outlier weighting factor and outlier bin start for ATA.

To achieve a fair comparison, each model is parameterized with comparable complexity. The MLP
has four hidden layers of sizes 100, 50, 25 and 12 and a binary output. MIMO has an ensemble size of
3 and hidden layers of size 50, 25 and 12. Finally, ATA comprises three hidden layers of sizes 60, 30,
and 15 for the encoder, as well as for the decoder, albeit in reverse order. All methods have sigmoid
activations. In conclusion MIMO, MLP and ATA have 16650, 16765, and 16750 trainable parameters,
respectively.
As mentioned in the beginning of Sec. 6.1, we chose to minimize the reconstruction error of toxic

samples for the representation learning methods (ATA and OCA) because we find that the models are
able to generalize better using this setup. Intuitively, toxic comments tend to share a rather limited
vocabulary and range of topics, which is why they are more homogeneous among each other in
comparison to non-toxic comments with their gigantic manifold.

6.1.3 Results

For the evaluation, we consider the AUPR [171] and F1 score, both w.r.t. the toxic class. AUPR is
a threshold-independent metric, which takes the base rate of the positive class into account. Since
the toxicity dataset is highly imbalanced, this metric yields estimations that reflect the expected
performance at deployment time. We also report the F1 score to measure the model performance w.r.t.
classification and reasonable threshold learning.
As shown in Table 6.2, the MLP, which is solely optimized for classification, does not generalize

well to unseen toxicity types. While the overall classification performance on toxic-only is close to
MIMO, which is the best classifier on the toxic-only split, MLP shows significantly higher performance
degradation on the unseen toxicity classes such as threat. MIMO is the most stable method among the
four baselines. It provides strong classification performance on the known, toxic-only class, but also
generalizes well to the three unseen toxicity classes. Nevertheless, similar to MLP, we also find that
MIMO tends to fail at times, as seen in the threat class on the smallest training set. ATA shows the
strongest performance on unseen toxicities, while also providing competitive results on the toxic-only
split. Interestingly, ATA never yields any complete failures compared to the other baselines, indicating
that the representation learning setup achieves the highest robustness. Finally, we also see that the
training approach is crucial. While ATA incorporates not only toxic, but also non-toxic samples in

104

6.1 Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis

toxic: 250 toxic: 1000 toxic: 5000
non-toxic: 1250 non-toxic: 5000 non-toxic: 60000

test split method AUPR F1 Score AUPR F1 Score AUPR F1 Score

toxic-only

BASE 14.6 11.3 14.6 11.3 14.6 11.3
MLP 49.1 46.9 48.5 48.5 51.0 48.6

MIMO 49.8 50.7 51.0 51.2 53.2 49.7
ATA 47.7 50.4 44.6 48.0 51.8 52.6
OCA 14.4 8.5 15.3 9.3 14.4 10.3

threat

BASE 6.1 5.5 6.1 5.5 6.1 5.5
MLP 50.9 29.5 49.3 48.5 62.9 31.3

MIMO 47.3 36.3 65.7 36.6 67.9 32.9
ATA 65.0 38.8 65.2 38.8 67.9 40.4
OCA 5.7 7.2 7.3 9.8 5.7 7.2

insult

BASE 51.7 25.4 51.7 25.4 51.7 25.4
MLP 91.9 85.0 91.8 85.6 93.5 86.0

MIMO 91.9 85.8 92.7 86.7 94.0 86.5
ATA 92.5 85.6 91.4 83.9 93.4 87.0
OCA 53.3 14.4 56.7 17.6 53.3 17.6

identity-hate

BASE 16.6 13.5 16.6 13.5 16.6 13.5
MLP 76.4 55.4 74.6 56.1 81.5 57.3

MIMO 75.6 62.3 74.5 62.2 82.5 59.1
ATA 78.4 63.1 76.4 62.0 81.7 64.7
OCA 16.1 10.4 18.3 12.6 15.9 11.1

Table 6.2: Performance of MLP, MIMO, ATA and OCA on test splits toxic-only, threat, insult and identity-hate.
We consider the AUPR and the F1-Score (both with respect to the "toxic" class). As a reference for the base rate
dependent metrics, we also report the expected scores for a random classifier (BASE) with uniform probabilities
p ∼ U[0, 1].

the training procedure, OCA’s training routine exposes the model only to toxic samples, leading to
underperformance, even compared to the random BASE baseline. This is a well-known problem
which especially arises when the inliers correlate with outliers in feature space [23, 24]. Interestingly,
all methods have superior performance on the insult test set, compared to the others. This could be
explained by the fact that insults are relatively easy to spot based on certain keywords, while threats
and identity-related hate are usually context-dependent.

Relevant for the training and deployment of toxicity detection systems, we find that training set size
has a significant impact on the generalization performance of such systems. ATA, MIMO, and MLP
all improve their AUPR scores with bigger training set sizes. Interestingly, but not unexpectedly, this
even transfers to toxicity classes not seen during training.

105

Chapter 6 Applications

6.1.4 Challenges of Encoding Toxicities

Despite the competitive classification performance and robustness of ATA in comparison to MLP,
MIMO, and OCA, the ATA method has an architectural disadvantage to MLP and MIMO in case of
data abundance. As specified by us, reconstructive representation learning for classification forces the
model to encode all the information present in the data, including noisy features and the diverse set of
topics present in the corpus, irrespective of the relatedness to toxicity. In contrast to ATA, the MLP
and MIMO are able to reject such features and topics as uninformative, leading to better performance
when the ML problem is sufficiently covered by the data.

The issue of unfiltered information encoding is especially comprehensible when considering
applying ATA to the TREC dataset [207]. The task here is to classify topic-wise unrestricted questions
regarding the type of question, e.g., if the questions asks for an entity or a location. Here, the
interrogative word (e.g., what, which, who, etc.) in the questions provides a highly predictive feature
that can be directly leveraged via the MLP. On the contrary, ATA has to encode the entire set of
features and corpus topics, which, in the limit, essentially translates to having to incorporate the entire
world knowledge into its encoding. This limitation can be explained via the manifold hypothesis,
outlined in Sec. 1.3. The class of interest samples (here, sentences with a particular interrogative
word) lie on such a large manifold that they cannot be embedded by ATA.

These settings can therefore render the reconstruction error less predictive of the inlierness of a
sample, when the model’s capacity is exceeded. We partially prevented this by treating the toxic
samples as the class of interest, and the normal instances as the rest samples. This measure narrowed
down the topics within the class of interest, allowing ATA to successfully encode the toxicities and to
outperform the MLP. Nevertheless, the results are not as impressive as the open set recognition results
provided in Sec. 4.7 for ATA and DAE, and the reasons for this can be attributed to the nature of the
toxicity classification task.
Another limitation is caused by the word embedding algorithm GloVe that we used to derive the

document-level embeddings. GloVe provides word embeddings based on word co-occurences and
document-level embeddings are obtained via pooling of word embeddings. The resulting embeddings
do not reflect the semantic structure of the sentences and therefore lose predictive power on toxicity
detection with its predominant contextual dependency.

6.1.5 Conclusion

Toxicity detection is a challenging task. There are various types of toxicity, and naturally, not all types
of toxicity can be observed during training. This is why it is inevitable to have algorithms, which
are able to learn the abstract toxicity concept and thereby generalize well to unseen toxicity types.
Our results show that deep learning methods, which are solely optimized for classification, such as
MLPs, lack generalization performance and even tend to fail completely. With ATA and MIMO, we
showed that representation learning and ensembling can significantly improve generalization and
classification performance. However, the task of encoding toxicities on a low dimensional manifold
poses severe difficulties to ATA and OCA, demanding further research. Therefore, as part of future
work, we consider applying these approaches to other datasets, to further test their generalization to
toxic comments from other social media sources. The insights of this case study suggest an extension
of ATA that is capable of filtering and rejecting unimportant features that reduce the complexity of the
manifold, matching the complexity of the machine learning problem at hand.

106

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction

6.2 Deployment Case Study: Automatic Indexing of Financial
Documents via Information Extraction

In regulated financial markets, companies are required to disclose relevant information to the public.
This information is essential for current and potential investors to make informed decisions regarding
their investments. Depending on the use case, there are different types of formal reports, including
financial statements, also known as IFRS reports, that inform on the company’s finances, and
prospectuses that inform potential investors about the opportunities and risks of buying securities
issued by the company. Besides these document types, we also consider non-financial reports and
adhoc messages. Overall, the information disclosed in these documents comprises crucial details
about strategies, fund management, risks of the investment, key performance indicators, etc., in order
to inform potential and current shareholders, but also help to protect investors from insider trading.

The vast number of financial documents that are released on a daily basis renders manual filtering
and sorting of information impossible. With the advancements in natural language processing, however,
automatic document processing becomes feasible and poses a practical solution to get a grip on this
flood of information.
Technically, extracting tiny bits of information from large volumes of documents resembles the

nature of a needle in a haystack problem. For instance, a model, filtering a single document type,
needs to look out for hidden, token-level features characterizing the document type. Moreover, the
model is expected to be highly robust to all the possibly existing document types, it might be exposed
to at deployment time. Consequently, a document processing system can be associated with open set
recognition (OSR) and robust (multi-class) classification, which we introduced in Ch. 4 and Ch. 5,
respectively.
To this end, we present an end-to-end document processing system that automatically extracts

the essential meta-information of prospectuses and financial statements using techniques of natural
language processing and machine learning. Our proposed system consists of several information
extractors that extract information such as prospectus type, financial-report type, the issuer name, filing
data, etc., which are accessible to clients via a RESTful web interface. In particular, we implement
the Informer architecture for the document type classifier. Since the robustness benefits have been
sufficiently verified in Ch. 5, and due to lack of sufficiently many annotated prospectuses in the dataset,
model robustness is out of the scope of this chapter. Instead, we show via the document type Informer,
how our proposed methods can be seamlessly integrated with various extractors into a large-scale,
high-volume application, as demonstrated by the proposed document processing pipeline.

We are faced with several challenges in developing such a system, mainly attributed to reasons that
are specific to the aforementioned financial documents, which are listed below:

• The documents generally comprise hundreds of pages, and the relevant information is generally
found only in few places in the document. This increases the difficulty of information extraction
tasks, similar to the problem of finding a needle in a haystack. The limited annotation data,
e.g., one entity in an entire document, makes learning within a large hypothesis space extremely
difficult. Here, aspects of supervised outlier detection and open-set recognition come into play,
due to the severe class imbalance translating into a needle in a haystack problem.

• Due to the large number of documents and their size, the architecture of the system must
consider the need for increased computational requirements. Therefore, we opt for a scalable

107

Chapter 6 Applications

Client Side Extraction Service

Callback Server

RESTful Webservice

\extraction_job
\status

Job Queue

Document
Storage

(Mongo DB)

Extraction Manager
Document

Parser

Response Dispatcher

1) Submit Job
2.1) Store Job

2.2) Store Doc

3.1) Retrieve Job

3.2) Retrieve Doc

Worker 1

4) Parse Doc

5) Run Extractors6) Build Doc Rep.

7) Send Document Representation
Extractor

Client 1

Figure 6.1: Overview of the Extraction Service showing the execution flow of an extraction job through the
components in the system. First, a client schedules a document for extraction (1), a job is created and its
corresponding PDF is stored (2). A worker then retrieves the job and document (3), parses the document (4),
extracts information (5), and builds a JSON representation of the document (6), before sending the document
back with its extracted information (7).

solution which allows for horizontal scalability through the use of independent workers.

• These documents are usually issued in PDF-format, which is an unstructured binary format and
does not reflect any information w.r.t. ordering and semantics [226]. As one of the effective
solutions, we resort to a computer-vision based technique for analyzing layouts as it provides
coherent passages for parsing. Therefore, in our setup, due to the non-standardized layout and
document structure, we apply a custom training method for the object detection network (ODN)
based on the works of [226].

In summary, we present a scalable information extraction system (hereafter referred to as Extraction
Service) for extracting key meta-information from raw financial documents in PDF format. We show
that our solution can support different machine learning models and document types, making the
architecture easily extensible and adaptable to new settings (not just limited to the financial domain).
This deployment scenario represents a typical use case of supervised outlier detection, open set

recognition, and robust classification, as the goal is to robustly extract a single bit of information
within documents comprising hundreds of pages. In this particular use case, we opted for a diverse set
of models, including Informer, to stress the architecture’s generalizability.

Related Work

In this section, we provide a short survey of related work concerning financial document processing
and analysis.
Traditional offerings such as Yahoo Finance, Google Finance, and Bloomberg Terminal, provide

up-to-date information on companies and markets. These systems focus on data such as price history,
press releases, and analysis. While these systems are often openly accessible and provide financial
(meta-) information on a large scale, the underlying system architecture is not disclosed. In [227],
Sifa et al. propose a context-aware recommender system that assists auditors in matching the text
in financial statements to legal requirements, using supervised and unsupervised machine learning
methods. In [228], Brito et al. present a system that parses published reports on the web and extracts
key performance indicators (KPIs) from the parsed text. Additionally, these are made available via a

108

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction

graphical interface to the users for querying on demand. In a similar work [229], the authors analyze
sustainability reports published by companies and extract sentences containing ESG (environmental,
social, and governance) indicators. Focusing on extracting named entities from loan agreements, the
authors of [230] propose the use of domain adaptation techniques to learn from out-of-domain data.
Furthermore, there are multiple application papers concerning financial document processing within
the legal / accounting domain [227, 231, 232].
It is noteworthy, that most of the related work concerning natural language processing (NLP)

is centered around algorithmic contributions targeted at solving a concrete application task, or to
improve state-of-the-art results for prominent NLP tasks [233–235]. These research directions are not
within the scope of this chapter. Instead, with the Extraction Service, we focus on an architectural
contribution; a generic system that is scalable and extensible to any information extraction task from
documents, and most importantly, supports dependencies between extractors as part of a dependency
graph. We showcase its effectiveness in the use case of metadata extraction from financial documents
with its connection to supervised outlier detection, open set recognition, and robust classification.

6.2.1 Extraction Service

The Extraction Service is designed to provide a scalable and extensible solution for metadata extraction
from financial documents. In the following sections, we describe in detail how we developed this
system that caters to these requirements.

Design Choices

To achieve horizontal scalability, we developed our system based on the producer-consumer pattern
(PCP) [236, 237] with a centralized job queue and distributed consumers. In our setup, producers
correspond to clients which use our web service and submit extraction jobs; consumers correspond
to workers, which execute the given job. A processing job always contains a single document and
comprises two steps: the parsing, and the meta-information extraction (IE) steps. We model each
processing job to be atomic, meaning that they cannot be split across workers. This type of modeling
simplifies the processing of a job, as no post-processing step (e.g. aggregation) or synchronization of
workers is necessary. Since extractors are dependent on other extractors, treating jobs as non-atomic
would add more complexity to the system, which is avoided in our setup. Although it restricts the
possible intra-job parallelism (a job is processed in chunks in parallel), we find that a single worker
can process a document in a reasonable time.
Since the execution of a job can take several minutes depending on the worker’s hardware

specification and length of the given document, we apply the callback pattern for asynchronous
network communication with the client. This is achieved by allowing the client to provide a callback
URL, to which the worker returns the result response with the extracted meta-information.

All of our extractors implement the same interface for extensibility such that new extractors can be
easily added or extended in a plug-and-play fashion. It is to be noted that one extractor can depend on
other extractors for its processing. For instance, the fiscal year extractor depends on the document
type extractor, since fiscal year is to be found only in financial reports; therefore, the document type
extractor must be executed before the fiscal year extractor. To tackle this, our extractors are organized
in a dependency graph, ensuring that appropriate order of processing the extractors.

109

Chapter 6 Applications

System Overview

The Extraction Service, as shown in Fig. 6.1, can be divided into four modules: RESTful Webservice,
Job Queue1, Document Storage andWorker. The RESTful Webservice provides an interface for the
clients to submit a processing job (i.e., document along with a callback URL) or to retrieve the status
of a submitted job. Upon receiving a job request, the web service adds the job to the Job Queue and
the respective document to the Document Storage. On receiving a job from the Job Queue, a Worker
processes the given document and sends the result back to the client via the provided callback URL.

Within a Worker, a given job is processed in two steps: parsing and extraction. First, the given raw
PDF document is parsed by the Document Parser, which converts it into a structured textual format.
Next, the Extraction Manager runs the information extractors using the parsed document according
to the dependency graph. Finally, the response, which consists of parsed text document along with
the extracted key meta-information in JSON format, is sent by the Response Dispatcher to the client.
This decoupled setup, provides a maximum of flexibility on the client’s side for how to proceed with
the received data. A typical set up would be to store the data within a document or transactional
database, depending on the use case, and then provide a webservice interface which renders the data
in a human-readable format, thereby simplifying navigation through the data.

Document Parser

Despite the success of recent neural network architectures such as Faster RCNN [182] in object
detection, they provide noisy results when applied to PDF images [226]. Therefore, subsequent
post-processing steps are necessary [240–242]. Considering these findings, we base the Document
Parser on a hybrid-parsing approach that comprises the Faster RCNN architecture for bounding box
prediction and DBSCAN [243] / rule-based approach for subsequent fine-tuning, as proposed by [226].
To this end, we trained the Faster RCNN network with 2169 pages of financial documents annotated
with bounding boxes having labels table, headline, image, paragraph and header/footer. Given this
network, the raw PDF is split into pages and their corresponding images are fed into the network to
obtain bounding boxes. These bounding boxes are then subject to post-processing according to [226].
With the obtained bounding boxes, the text in the document is finally extracted using pdftotext2 or
Tesseract OCR[244].

Extractors

Next, we turn our attention to the core component of our system, namely the information extractors,
that extract key meta-information from prospectuses and financial reports based on the parsed text.
Currently, we support the extraction of general attributes of documents such as document language,
document type (i.e., prospectus, financial report, non-financial report), and issuer name (company
name). Besides these, there are extractors specific to certain types of documents. For prospectuses,
extraction of prospectus type (debt, debt supplement), rule 144a (whether Rule 144a3 applies) and
filing date are supported. Similarly, from financial reports, information such as financial report type
and fiscal year can be extracted.

1https://redis.io/
2https://poppler.freedesktop.org
3https://www.sec.gov/reportspubs/investor-publications/investorpubsrule144htm.html

110

https://www.sec.gov/reportspubs/investor-publications/investorpubsrule144htm.html

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction

Extractor ML model Depends on Prereq. Description

Language Naïve Bayes – – Extracts a document’s language.
Model is based on [238]

Document Type Informer Language Lang: en Extracts the document type
(prospectus, financial report,
non-financial report, and adhoc
message) based on keyword
appearances and other
high-level features such as
number of pages. We
performed a grid search
concerning learning rate and
outlier weighting factor.

Prospectus Type Latent Semantic Analysis
(LSA), Logistic Regression

Language,
Document Type

Lang: en, Doc.
Type:
prospectus

Extracts prospectus sub types
(debt, debt supplement, equity
IPO, equity Non-IPO). The
LSA featurizer is parameterized
with a dimensionality of 10 and
set to 50 iterations

IFRS Report
Type

Logistic Regression on
keywords

Language,
Document Type

Lang: en, Doc.
Type: IFRS

Extracts the subtype of an IFRS
report(Q1, Half-year, Q3 or
Year End)

Rule 144a Logistic Regression on
hand-crafted features

Document Type,
Language

Lang: en, Doc.
Type:
prospectus

Extracts whether Rule 144a
applies

Company Name bi-LSTM for NER, Lookup
Table, Fuzzy Sequence
Matcher

Language Lang: en Extracts the name of the
issuing company and maps it to
the Legal Entity Identifer (LEI),
a 20-character alphanumeric
code that uniquely identifies a
legal entity participating in
financial transactions. The
model comprises an NER
sequence tagger based on [239],
which filters organizational
entities that are subsequently
filtered by fuzzy matching them
against a company lookup
table.

Filing Date Decision Tree with custom
feature engineering

Document Type,
Language

Lang: en, Doc.
Type:
prospectus

Extracts the filing date of a
prospectus report. The decision
tree facilitates gini as the
splitting criterion and has a
minimal sample split of size 2,
which were determined via grid
search.

Fiscal Year Random Forest Regressor Language,
DocumentType

Lang: en, Doc.
Type: IFRS

Extracts the fiscal year of ab
IFRS report. The random forest
regressor comprises 300 trees
and uses the mean squared
error as a splitting criterion.

Table 6.3: The available extractors with their dependencies and machine learning (ML) approaches. The features
for each extractor were manually engineered by accounting domain experts.

111

Chapter 6 Applications

Extractor F1 score Precision Recall

Language Extractor 0.93 0.87 0.99
Document Type Extractor 0.75 0.68 0.88
Prospectus Type Extractor 0.93 0.96 0.92
Report Type Extractor 0.98 0.98 0.98
Rule 144a Extractor 0.88 0.88 0.88

Table 6.4: The performance of document-level classifiers measured in terms of F1 score, precision, and recall.
The multi-class classifiers are evaluated in terms of the respective macro scores. Note that the imbalance of the
document types within the dataset causes a significant drop in F1 score for the document type extractor, due to
the macro averaging.

Extractor Accuracy

LEI Extractor 0.91
Filing Date Extractor 0.92
Fiscal year Extractor 0.94

Table 6.5: The performance of entity extractors in terms of accuracy as a "hit-or-miss" metric.

In general, we can broadly classify the extractors into two categories; document classifiers, which
assign a class label to a document (e.g., document type and prospectus sub-type) and entity extractors,
which extract an informational entity out of the text (e.g., name of the issuing company). We employ a
variety of machine learning methods to implement these extractors, including Informer (introduced
in Ch. 5), logistic regression, decision trees, random forests, and recurrent neural networks. We
select the respective algorithm based on different factors such as the availability of annotated training
data, the required level of robustness, the complexity of the extraction problem, and feedback from
domain experts. Table 6.3 summarizes the available extractors, their dependencies, and underlying
ML models.

From a software design perspective, each extractor implements a pre-defined interface and thereby
acts as a wrapper for any ML model. This not only allows the implementation of different extractors
with different ML models, but also provides the flexibility to change or even replace underlying models
easily without significant code changes.

6.2.2 Experiments and Results

We evaluate the proposed system w.r.t. meta-data retrieval performance of extractors and the scalability
of the overall system.

To do this, we trained our models on a partially annotated corpus of 183 prospectuses, 3468 financial
statements, 172 adhoc messages, and 73 non-financial reports, having an average number of pages
of 294, 78, 2, and 75, respectively. The effective number of documents used to train an extractor
varies greatly depending on the number of annotations available for each extraction type. For instance,
while there are thousands of document type annotations, there are only 46 for rule 144a. Nevertheless,
annotated documents corresponding to each task are split into train, val, and test document sets. For
each extraction task, we select the best model settings based on the performance on the val split.

112

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction

(a) Normalized reconstruction error histograms for each IC and for the four classes prospectus, financial
report, adhoc message and non-financial report. The blue line shows the gaussian function g, mapping the
reconstruction error onto probability scores (see Fig. 5.2 and Eq. 5.1 in Sec. 5.3 for a full derivation). Given
exceptionally low support for non-financial reports and adhoc messages, the Informer components still learn
generalizing representations for the respective inlier classes.

(b) Unnormalized histograms of probability estimates w.r.t. the different classes and each IC. As already shown
in Fig. 6.2(a), the inlier classes are well separated from the respective rest classes in each IC. The class imbalance
in the test split of 688 financial reports, compared to 38 prospectuses, 35 adhoc messages, and 17 non-financial
reports, leads to a small amount of financial reports being classified as false positives, as can be seen for IC
Prospectus and IC Non-financial report.

Figure 6.2: Class-specific prediction histograms for each Informer component (IC). Fig. 6.2(a) shows the
normalized (i.e., density) reconstruction error histograms for the four ICs, inferred from the test samples.
Likewise, Fig. 6.2(b) shows the estimated probability scores, as unnormalized (i.e., absolute frequencies)
histograms. Both diagrams show the robustness of the Informer method and explain that the low precision
scores in Table 6.4 is caused due to the class imbalance.

113

Chapter 6 Applications

4 6 8 10 12 14 16 18 20
0

2

4

6

8

thread count

pr
oc

es
si

ng
ti

m
e
(s
)

Parsing
E xtraction

Figure 6.3: The average processing time per page with different thread counts.

We present the performance results of document classifiers and entity extractors on the test split in
Table 6.4 and Table 6.5, respectively. We measured the classification performance of the document
classifiers w.r.t. F1 score, precision and recall. For the extraction task, the concept of classes does
not apply, since we are not classifying but extracting entities. This is why we opted for accuracy as a
"hit or miss" type of metric. Despite the difficulty of the task and the low availability of annotated
data, our extractors achieve impressive results due to the use of hand-crafted features with the help
of domain experts. This is a common approach in outlier detection, as outlined in Ch. 1, preventing
overfitting and improving model generalization.

Our results show that almost all methods have a decent classification and extraction performance,
being in the 90% range. While the document type classifier yielded only macro F1 score and macro
precision score of 75% and 68%, respectively, these values can be attributed to the significant class
imbalance in the dataset. Since the dataset contains 89% financial reports, due to plain statistics, a
small amount ends up being classified as, e.g., non-financial reports which are represented only by 2%
in the test data. As a result, we receive low precision scores for the IC having non-financial reports as
inliers, which can be also seen in the histograms in Fig. 6.2. In fact, accounting for the class imbalance
by weighted averaging results in a F1 score, recall, and precision of 93%, 91%, and 95%, respectively.

From a design point of view, our document processing architecture is trivially horizontally scalable,
allowing throughput to be increased linearly given that there are no bottlenecks within the job
dispatching. Nevertheless, parallelism within each task and node is also important. Therefore, we
measure parsing and extraction time using varying numbers of threads, as some extraction tasks can
benefit from multi-threading. Specifically, models for instance, which leverage the NumPy library
[87], immediately benefit from NumPy’s multi-threading support. In Fig. 6.3, we present throughput
measurements, on a single node with two 2.6GHz Intel(R) Xeon E5-2697 v3 CPUs having a total of
28 cores. This evaluation shows that our system is also capable of scaling vertically, i.e., in a single
node, complementing its horizontal scalability which allows more computationally capable workers
to be employed in parallel. Furthermore, it also shows that even modest increases in the number of
threads already provide significant speedups. In this manner, meaningful improvements are obtainable
with smaller, marginal investments in infrastructure.

114

6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction

6.2.3 Conclusion and Outlook

In this work, we addressed the challenges concerning meta-information extraction from large volumes
of financial documents available in PDF format by presenting an efficient system based on machine
learning. We found that horizontal scalability and extensibility are essential requirements that should
be considered right from the design process. Although our methods, including Informer, are capable
of robustly extracting information in a vast amounts of data, their effectiveness is largely determined
by their scalability in big data environments. Our experimental results show that our proposed
system achieves high throughput and extraction accuracy, using expert knowledge and manual feature
engineering. With more labeled data for existing and new meta-data tags, e.g., sourced via online
learning, we could implement more sophisticated extractors, e.g., based on decoupled autoencoders
(see Ch. 4) or Informer, thus establishing an insightful financial tool for investors and researchers with
unmatched robustness properties.

115

CHAPTER 7

Conclusion

The advancement of ML methods into our daily lives, in combination with an increasing number of
AI accidents in recent years, has lead to rising concerns regarding AI-safety and the reliability of ML
models. Today, ML models enhance the images taken with our phones, read the news via intelligent
speakers, perform medical diagnosis, and control our cars via autopilot. Similarly, when we engage
with the internet, models predict our consumer behavior, recommend videos, and chat with us. Broadly
speaking, if there is a business case that can be solved with data, there is already, or will soon be, a
model for it. While in many circumstances these models make our lives easier, special precautions
must be taken when ML models are deployed environments without regard for safety-critical concerns,
potentially harming people, society as a whole or the environment in diverse ways.

In recent years, many researchers have been heavily debating regulations and a codex defining the
appropriate contexts for model deployments. In this work, however, we took a purely algorithmic point
of view for tackling the prevailing issue of AI-safety. Since DNNs tend to provide overly confident
predictions in unknown conditions that are not covered by the distribution of the training data, many
AI accidents can be attributed to this unforeseeable behavior of DNNs in the past. We took up this
issue and provided a solution to achieve robust binary and multi-class classification by tackling the
problem from the perspective of supervised outlier detection. The main benefit of supervised outlier
detection lies within the capability of learning a representation of the in-distribution data, allowing
intelligent systems to reject significant deviations as unknown. We summarize these steps in the
following section and finally provide an outlook on the broader impact of our work including future
directions.

7.1 A General Summary

This thesis centers around improving the robustness of DNN-based classifiers. Despite the tremendous
achievements of DNNs related to various ML benchmarks in recent years, these methods are still
highly susceptible to out-of-distribution data by design. As motivated in the introductory chapter,
the application of ML models has lead to various AI incidents with human casualties in recent years,
stressing the importance of deploying robust DNN models. Before proposing our roadmap towards
robust DNN classifiers, we derived the well-established optimization procedure of DNNs and could
pinpoint the robustness deficiencies in empirical risk minimization (ERM). Particularly, ERM focuses
solely on the separation of the in-distribution classes and misses learning a representation of the in-

117

Chapter 7 Conclusion

distribution data that can be leveraged to reject out-of-distribution data, jeopardizing model robustness.
Thus, we introduced (supervised) outlier detection as a viable means to filter out-of-distribution data,
sketching out a possible direction towards enhanced DNN robustness.

To this end, we proposed a roadmap comprising three milestones in Sec. 1.5. Each of the milestones
listed below is addressed in a single chapter with the goal of making DNNs sensitive to the unknown
and encouraging an increase in model robustness:

• Extension of semi-supervised outlier detection towards supervised, deep learning-based outlier
detection of application-specific anomalies

• Utilization of supervised outlier detectors for robust one-vs-rest classification in an open-world
setting, i.e., open set recognition (OSR)

• Extension of our proposed OSR methods to robust multi-class classification

Before diving into the algorithmic parts in Ch. 3 - Ch. 5, we introduced the infrastructure in Ch. 2
that runs the entire experiment setup and has lead to the open-source contributions Datastack for
dataset processing and MLgym for reproducible deep learning research.
Datastack provides the data processing pipeline, comprising raw dataset retrieval, preprocessing,

and iterator functionality. On an interface level, the data is always handled as byte streams, and only
the dataset-specific classes cast the generic byte streams to the concrete data format. As a result, the
framework becomes data-format agnostic, supporting any file-format out-of-the-box. Furthermore,
DatatStack comes with low-level iterator routines such as splitting, merging, and joining that, in
combination, can lead to complex iterator functionality.
MLgym is a multipurpose deep learning research framework that emphasizes reproducible ML

research. The entire ML setup is formulated within a single config file comprising the Datastack data
processing pipeline, trainer, evaluator and model configuration, among others. Generally, there are two
alternative approaches on how to design such a system. Commonly, the logic implementation is left to
the user, including experiment tracking, training loops, etc., making ML pipelines susceptible to bugs
from the start. In our case, we opted for a different solution by providing specific components that
can be arranged as a pipeline within the configuration file. The entire pipeline, and each individual
component, is fully tested and version controlled, increasing the confidence in the correctness of the
experiment results. Besides reproducibility, MLgym supports parallel grid search and (nested) cross
validation for large-scale algorithm evaluation. Logging in MLgym is implemented as a distributed
system. The experiments can be logged to multiple (remote) servers via websockets, to which clients
can then subscribe for certain live experiment events such as metrics or training progress.
In Ch. 3, we explored unknown sensitivity of DNNs from the perspective of outlier detection,

which, by design, aims to detect out-of-distribution data. With our adversarially trained autoencoder
architecture, we extended the semi-supervised outlier detection method one-class autoencoder (OCA)
towards supervised outlier detection. Here, the supervision provided a data-inherent description of
outlierness and guided the algorithm into the detection of application-specific outliers. We empirically
demonstrated its effectiveness by benchmarking ATA against an MLP and OCA, which are potent
baselines for classification and outlier detection, respectively. Our results clearly showed ATA’s
robustness over a range of classification, outlier detection, and novelty detection datasets, while the two
other baselines failed on at least one of the tasks. We further explored this direction by utilizing ATA’s
adversarial training within the multi-task learning architecture supervised autoencoder (SAE). Our

118

7.2 Outlook

results showed similar performance to ATA with a better class separability of the latent representations.
With ATA and the SAE variants we provided a well-founded solution to the first milestone.

In Ch. 4, we built upon the insights regarding ATA and proposed the decoupled autoencoder (DAE)
architecture, an extension of ATA for open set recognition (OSR). In contrast to outlier detection,
OSR focuses on the robust detection of a set of classes of interest and disregards any deviations from
the in-distribution data. Unlike ATA, DAE learns the decision boundary in an end-to-end fashion, as
a tight hull around the inlier data. Here, we could prove that DAE has a bounded open space risk,
a key criterion for robust OSR that is not met by the vast majority of OSR methods. Furthermore,
we empirically showed that DAE’s objective minimizes the open space risk, providing the highest
robustness scores over a large-scale experiment setup, beating various state-of-the-art OSR methods.
DAE represents a viable solution to the second milestone.

In Ch. 5, we transitioned from the robust binary classification task explored in the previous chapter
towards robust multi-class classification as the final step of teaching DNNs awareness of the unknown,
as defined by the third milestone. Technically, we arranged as many DAEs within an ensemble as there
are inlier classes, each learning a different one-vs-rest relationship. Our insights clearly demonstrated
that the resulting Informer architecture not only inherits the robustness benefits of the DAE architecture,
but also allows detecting the two different uncertainty types of aleatoric and epistemic uncertainty.
The sources of the two uncertainties are fundamentally different and call for different actions, making
this a crucial model characteristic for enhanced AI-safety.

Even though the autoencoder-based methods achieve tremendous robustness gains, they also impose
certain requirements on the settings. Our proposed methods aim to reduce/maximize the reconstruction
error of the classes of interest / out-of-distribution data, respectively, to leverage the reconstruction
error as a predictor for the inlierness of a sample. From a practical point of view, this assumes that the
classes of interest already cluster in the feature space to some degree, and that the level of noise and
redundant features are nominal. From a theoretical, manifold hypothesis point of view, the input data
must lie on a natural manifold that is learnable by the autoencoder. Given that these requirements
for the classification problem are fulfilled, then our proposed methods become highly effective. Our
toxicity detection case study in Ch. 6 on online communication empirically verified these requirements
towards ATA and exposed ATA’s limitations when the natural manifold is difficult to learn.
Deploying outlier detection methods often requires processing large volumes of data to detect an

outlier or extract tiny bits of information of interest. In this case, a plain algorithmic contemplation
is not sufficient and special attention needs to be paid to the deployment environment to match the
scalability requirements. To this end, we proposed a scalable and extensible architecture in Ch. 6
as part of a deployment case study in which we automatically indexed large volumes of financial
documents via information extraction. We showed that information extraction can involve hierarchies
and dependencies, and engineered an end-to-end document processing pipeline that contains our
Informer architecture and scales horizontally on-demand.

7.2 Outlook

Model robustness and, more generally, AI-safety is a research area of high momentum, and new
approaches for enhancing model robustness and exposing DNN robustness deficits are being published
frequently. With our autoencoder-based methods, we have provided potent algorithms that are sensitive
to the unknown, and even determine the level and type of uncertainty within a prediction. Nevertheless,

119

Chapter 7 Conclusion

the overall research field is far from being grazed, and also our own autoencoder-based methods would
benefit significantly from further research.

The biggest limitation of ATA, DAE, and Informer is their necessity of encoding and decoding all
features, irrespective of their inlier predictability and level of noise. Thus, there are circumstances that
impair these methods’ performance. When the noise of a few input features exceeds the amplitude of
the remaining features (e.g., salt and pepper noise) or the inlier data is spread close to uniformly over
the feature space, these methods express difficulties minimizing the reconstruction error to a level that
is predictive of the inlierness of a sample. This limitation can be associated with the model’s inability
to learn the natural manifold of the input data, or a non-existing manifold. In this case, two directions
can be considered as a solution. Firstly, offline preprocessing routines can reduce the noise level and
compress the features into clusterable representations. Secondly, upstream feature extractors, possibly
trained in an end-to-end fashion, could filter the relevant features. Although both preprocessing steps
could improve the classification performance, they also might disregard features that are discriminatory
for unobserved outliers. A promising trade-off would be to employ distance-aware preprocessors,
preserving the feature space structure. Similar ideas have already been applied to DNN methods by,
e.g., regularization of the bi-Lipschitz constant [204, 220] and combining spectral normalization on
the network weights [245] with neural Gaussian processes for distance awareness [221].
As future work for our open-source contributions, Datastack and MLgym, we would like to lift

the two projects from a research-oriented prototype to a production-ready product, supporting larger
teams in the development of ML research pipelines, and assisting in conducting reproducible ML
experiments. To this end, we plan to support different, enterprise-level storage solutions for binary
streams in Datastack, such as MongoDB, Amazon S3, and MinIO, for large-scale, distributed dataset
management. Furthermore, we consider implementing further, higher-level iterators, allowing even
more sophisticated dataset pipelines. Regarding MLgym, since the general functionality is already
advanced and covers the majority of ML research use cases, we would like to improve the scalability
instead. One interesting direction is distributed model training, where a single model is split over
multiple server nodes, each comprising several GPUs, allowing the training of state-of-the-art large
language models, such as GPT-3. Another direction is distributed grid searches across several
computation nodes. Both use cases require intelligent bookkeeping of resource allocation, training
progress and special attention to fault tolerance.
In conclusion, the algorithmic contributions and open-sourced infrastructure tools in this thesis,

have brought novel insights and deep learning architectures to the fields of AI safety, trustworthy deep
learning, outlier detection, as well as reproducible deep learning research, pushing state-of-the-art
a step forward towards teaching deep learning methods sensitivity to the unknown. Furthermore,
we connected these fields in an intelligent manner that paves a possible way for future work on the
intersection of these areas.

120

APPENDIX A

Appendix

A.1 From Open Set Recognition Towards Robust Multi-class
Classification

A.1.1 Derivation of Informer Component Interdependence Induced by Softmax

Let y ∈ c where c = {1, . . . , k} is the set of classes and y, k denote the target and number of classes,
respectively. Let ϕ(x;Θ, σ1, . . . , σk) be the Informer network, with model parameters Θ, and decision
boundary parameters σ. We calculate the gradient w.r.t. parameter σi and σj with i , j, given
sample x of class y = i as input to the Informer network. Considering the σi and σj separately, we
can determine the influence of inlier and rest classes on σ in isolation. Firstly, we calculate the loss
gradient w.r.t. σi

∂

∂σi

LCE(y, ϕ(x;Θ, σ)) (A.1)

=
∂

∂σi

− log
(
softmaxi

(
ϕ(x;Θ, σ)

))
(A.2)

= −
∂

∂σi

log
(

eϕi (x;Θi,σi)∑k
n=1 eϕn(x;Θn,σn)

)
(A.3)

= −

∑k
n=1 eϕn(x,Θn,σn)

eϕi (x;Θi,σi)

∂

∂σi

eϕi (x;Θi,σi)∑k
n=1 eϕn(x;Θn,σn)

(A.4)

= −

∑k
n=1 eϕn(x,Θn,σn)

eϕi (x;Θi,σi)

(∑k
n=1 eϕn(x;Θn,σn)

)
∂
∂σi

eϕi (x;Θi,σi) − eϕi (x;Θi,σi) ∂
∂σi

eϕi (x;Θi,σi)(∑k
n=1 eϕn(x;Θn,σn)

)2 (A.5)

= −

∑
n∈{0,...,k }\{i } eϕn(x;Θn,σn)∑
n∈{0,...,k } eϕn(x;Θn,σn)

∂ϕ(x;Θ, σ)
∂σi

(A.6)

= −(1 − p(ci |x))
∂ϕ(x;Θ, σ)

∂σi

(A.7)

Secondly, let j , i. With this, the gradient calculates to

121

Appendix A Appendix

∂

∂σj

LCE(y, ϕ(x;Θ, σ)) (A.8)

=
∂

∂σj

− log
(
softmaxi

(
ϕ(x;Θ, σ)

))
(A.9)

= −
∂

∂σj

log
(

eϕi (x;Θi,σi)∑k
n=1 eϕn(x;Θn,σn)

)
(A.10)

= −

(∑k
n=1 eϕn(x,Θn,σn)

)
eϕi (x;Θi,σi)

eϕi (x;Θi,σi)

∂

∂σi

1∑k
n=1 eϕn(x;Θn,σn)

(A.11)

= −

(∑k
n=1 eϕn(x,Θn,σn)

)
eϕi (x;Θi,σi)

eϕi (x;Θi,σi)

∂
∂σi

eϕi (x;Θi,σi)(∑k
n=1 eϕn(x;Θn,σn)

)2 (A.12)

=
eϕ j (x,Θ,σ)∑{0,...,k }

l
eϕl (x,Θ,σ)

∂ϕ(x,Θ, σ)
∂σj

(A.13)

= p(cj |x)
∂ϕ(x,Θ, σ)

∂σj

(A.14)

A.1.2 Derivation of Uncertainty Computation Within Uncertainty Estimation Module

Given prediction ŷ = (p(ci |x), p(cj |x))
T , where i, j denote the indices of the two predictions with the

highest confidence, the aleatoric uncertainty Ua, epistemic uncertainty Ue, and total uncertainty Ut ,
are determined as follows.
Let p(ci |x) and p(cj |x) span a two-dimensional xy-coordinate system with p(cj |x) denoting the

y-axis without loss of generality. Ut is defined as the relative distance to (1, 0), resulting in any
prediction on the line through ŷ parallel to the diagonal having an equal Ut .

The x-intercept x0 and y-intercept yo of the parallel computes to

x0 = −ŷ2 + ŷ1 (A.15)
y0 = ŷ2 − ŷ1, (A.16)

respectively.
To calculate the distance st from the parallel to (1, 0) it follows

s2
t + s2

t = (1 − x0)
2 (A.17)

st =

√
(1 − x0)

2

2
(A.18)

st =

√
(1 + ŷ2 − ŷ1)

2

2
(A.19)

122

A.2 MLgym exemplary pipeline configuration

Since the distance between the diagonal and (1, 0) amounts to
√

1
2 , the total uncertainty computes to

Ut =
st
1
2

(A.20)

=

√
(1+ŷ2−ŷ1)

2

2
1
2

(A.21)

Ua is the distance sa between ŷ and xo, normalized by the length of the parallel, which amounts to√
2(1 + y0)

2.

sa = | | ŷ − (x0, 0)
T
| |2 (A.22)

= ŷ2
√

2 (A.23)

Ua =
ŷ2
√

2√
2(1 + ŷ2 − ŷ1)

2
(A.24)

Since Ut is a convex combination of Ua and Ue, it follows Ue = 1 −Ua.

A.2 MLgym exemplary pipeline configuration

Listing 2 to shows an exemplary deep learning pipeline configuration, including the processing of the
MNIST dataset, model specification, training routine, evaluation routine. The global config defines
the keys that are reused as references throughout the configuration. The dataset iterator instantiates
the MNIST dataset by subscribing to the MNIST dataset in the dataset repository. The splitted dataset
iterators component splits the dataset iterator into the train, val, and test splits. These splits and the
data collator, which shapes the raw input into the correct format for the neural network, are passed to
the data loaders component. We create a convolutional neural network, by subscribing to the model
registry in the model component and instantiate the respective model class with the specified model
parameters.

The trainer and train component subscribe to the loss function registry, prediction postprocessing
registry, loss function registry, model, and data loaders to instantiate the loss function, postprocessing
of raw predictions, and set up the training routine.
Simiarly, the evaluator and eval component subscribe to the model, data loaders, loss function

registry, metric registry, and prediction postprocessing registry to instantiate the losses, metrics, and
postprocessing functionality, and set up the evaluation routine.
Besides the dependency graph specification, the YAML configuration also allows for defining the

hyperparameter sweeps, as can be seen for the learning rate parameter in the optimizer.

1 global_config:
2 storage_connector_path: &storage_path_anchor ./file_storage/
3 seed: &seed_value 2

123

Appendix A Appendix

4 target_key: &target_key_anchor target_key
5 model_prediction_key: &model_prediction_key_anchor model_prediction_key
6 postprocessing_argmax_key: &postprocessing_argmax_key_anchor

postprocessing_argmax_key↪→

7

8 dataset_repository:
9 component_type_key: DATASET_REPOSITORY
10 variant_key: DEFAULT
11 config:
12 storage_connector_path: *storage_path_anchor
13

14 dataset_iterators:
15 component_type_key: DATASET_ITERATORS
16 variant_key: DEFAULT
17 requirements:
18 - name: repository
19 component_name: dataset_repository
20 config:
21 dataset_identifier: mnist
22 split_configs:
23 - split: train
24 - split: test
25

26 splitted_dataset_iterators:
27 component_type_key: SPLITTED_DATASET_ITERATORS
28 variant_key: RANDOM
29 requirements:
30 - name: iterators
31 component_name: dataset_iterators
32 subscription:
33 - train
34 - test
35 config:
36 split_configs:
37 train:
38 train: 0.7
39 val: 0.3
40 seed: 2
41

42 data_collator:
43 component_type_key: DATA_COLLATOR
44 variant_key: DEFAULT
45 config:
46 collator_type:
47 injectable:

124

A.2 MLgym exemplary pipeline configuration

48 id: id_conv_mnist_standard_collator
49 collator_params:
50 target_publication_key: *target_key_anchor
51

52 data_loaders:
53 component_type_key: DATA_LOADER
54 variant_key: FUTURE
55 requirements:
56 - name: iterators
57 component_name: splitted_dataset_iterators
58 subscription: [train, val, test]
59 - name: data_collator
60 component_name: data_collator
61 config:
62 batch_size: 50
63 sampling_strategies:
64 train:
65 strategy: WEIGHTED_RANDOM
66 seed: 10
67 val:
68 strategy: IN_ORDER
69 seed: 10
70 test:
71 strategy: RANDOM
72 seed: 10
73

74 model_registry:
75 component_type_key: MODEL_REGISTRY
76 variant_key: DEFAULT
77

78 model:
79 component_type_key: MODEL
80 variant_key: DEFAULT
81 requirements:
82 - name: model_registry
83 component_name: model_registry
84 subscription: conv_net
85 config:
86 model_definition:
87 layer_config:
88 - params:
89 in_channels: 1
90 kernel_size: 3
91 out_channels: 32
92 stride: 1

125

Appendix A Appendix

93 type: conv
94 - params:
95 in_channels: 32
96 kernel_size: 3
97 out_channels: 64
98 stride: 1
99 type: conv

100 - params:
101 in_features: 9216
102 out_features: 128
103 type: fc
104 - params:
105 in_features: 128
106 out_features: 10
107 type: fc
108 prediction_publication_keys:
109 prediction_publication_key: *model_prediction_key_anchor
110 seed: *seed_value
111

112 optimizer:
113 component_type_key: OPTIMIZER
114 variant_key: DEFAULT
115 config:
116 optimizer_key: ADAM
117 params:
118 lr:
119 sweep: absolute
120 values: [0.01, 0.001, 0.0001]
121

122 loss_function_registry:
123 component_type_key: LOSS_FUNCTION_REGISTRY
124 variant_key: DEFAULT
125

126 metric_registry:
127 component_type_key: METRIC_REGISTRY
128 variant_key: DEFAULT
129

130 prediction_postprocessing_registry:
131 component_type_key: PREDICTION_POSTPROCESSING_REGISTRY
132 variant_key: DEFAULT
133

134 train_component:
135 component_type_key: TRAIN_COMPONENT
136 variant_key: DEFAULT
137 requirements:

126

A.2 MLgym exemplary pipeline configuration

138 - name: loss_function_registry
139 component_name: loss_function_registry
140 - name: prediction_postprocessing_registry
141 component_name: prediction_postprocessing_registry
142 config:
143 loss_fun_config:
144 prediction_subscription_key: *model_prediction_key_anchor
145 target_subscription_key: *target_key_anchor
146 key: CrossEntropyLoss
147 tag: cross_entropy_loss
148

149 trainer:
150 component_type_key: TRAINER
151 variant_key: DEFAULT
152 requirements:
153 - name: train_component
154 component_name: train_component
155 - name: model
156 component_name: model
157 subscription: null
158 - name: data_loaders
159 component_name: data_loaders
160 subscription: train
161

162 eval_component:
163 component_type_key: EVAL_COMPONENT
164 variant_key: DEFAULT
165 requirements:
166 - name: model
167 component_name: model
168 subscription: null
169 - name: data_loaders
170 component_name: data_loaders
171 subscription: [train, val, test]
172 - name: loss_function_registry
173 component_name: loss_function_registry
174 - name: metric_registry
175 component_name: metric_registry
176 - name: prediction_postprocessing_registry
177 component_name: prediction_postprocessing_registry
178 config:
179 cpu_target_subscription_keys:
180 - *target_key_anchor
181 cpu_prediction_subscription_keys:
182 - *postprocessing_argmax_key_anchor

127

Appendix A Appendix

183 - *model_prediction_key_anchor
184 post_processors_config:
185 - key: "ARG_MAX"
186 prediction_subscription_key: *model_prediction_key_anchor
187 prediction_publication_key: *postprocessing_argmax_key_anchor
188 train_split_name: train
189 metrics_config:
190 - key: F1_SCORE
191 params:
192 average: macro
193 prediction_subscription_key: *postprocessing_argmax_key_anchor
194 target_subscription_key: *target_key_anchor
195 tag: F1_SCORE_macro
196 - key: PRECISION
197 params:
198 average: macro
199 prediction_subscription_key: *postprocessing_argmax_key_anchor
200 target_subscription_key: *target_key_anchor
201 tag: PRECISION_macro
202 - key: RECALL
203 params:
204 average: macro
205 prediction_subscription_key: *postprocessing_argmax_key_anchor
206 target_subscription_key: *target_key_anchor
207 tag: RECALL_macro
208 loss_funs_config:
209 - prediction_subscription_key: *model_prediction_key_anchor
210 target_subscription_key: *target_key_anchor
211 key: CrossEntropyLoss
212 tag: cross_entropy_loss
213

214 evaluator:
215 component_type_key: EVALUATOR
216 variant_key: DEFAULT
217 requirements:
218 - name: eval_component
219 component_name: eval_component

Listing 2: Exemplary deep learning pipeline configuration

128

Bibliography

[1] L. Le, A. Patterson and M. White, “Supervised autoencoders: Improving generalization
performance with unsupervised regularizers”,
Advances in Neural Information Processing Systems, 2018 (cit. on pp. 4, 24, 43, 54, 55, 59).

[2] F. Rosenblatt,
The perceptron: a probabilistic model for information storage and organization in the brain.,
Psychological review 65 (1958) (cit. on p. 9).

[3] D. E. Rumelhart, G. E. Hinton and R. J. Williams,
Learning representations by back-propagating errors, nature 323 (1986) (cit. on pp. 9, 33).

[4] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner,
Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (1998)
(cit. on p. 9).

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann et al., Palm: Scaling language modeling with pathways,
arXiv preprint arXiv:2204.02311 (2022) (cit. on pp. 9, 40).

[6] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao,
“Scaled-yolov4: Scaling cross stage partial network”,
Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, 2021
(cit. on p. 9).

[7] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen and I. Sutskever,
“Zero-shot text-to-image generation”, International Conference on Machine Learning,
PMLR, 2021 (cit. on p. 9).

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., Language models are few-shot learners,
Advances in neural information processing systems 33 (2020) (cit. on p. 9).

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper and B. Catanzaro,
Megatron-lm: Training multi-billion parameter language models using model parallelism,
arXiv preprint arXiv:1909.08053 (2019) (cit. on p. 9).

[10] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova,
Bert: Pre-training of deep bidirectional transformers for language understanding,
arXiv preprint arXiv:1810.04805 (2018) (cit. on pp. 9, 10).

[11] I. Yamada, A. Asai, H. Shindo, H. Takeda and Y. Matsumoto,
Luke: deep contextualized entity representations with entity-aware self-attention,
arXiv preprint arXiv:2010.01057 (2020) (cit. on p. 9).

129

Bibliography

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.,
Mastering the game of Go with deep neural networks and tree search, nature 529 (2016)
(cit. on p. 9).

[13] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žíek, A. Potapenko et al.,
Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) (cit. on p. 9).

[14] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona and T. Blaschke,
The rise of deep learning in drug discovery, Drug discovery today 23 (2018) (cit. on p. 9).

[15] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back,
M. Chesus, G. S. Corrado, A. Darzi et al.,
International evaluation of an AI system for breast cancer screening, Nature 577 (2020)
(cit. on p. 9).

[16] A. S. Ahuja,
The impact of artificial intelligence in medicine on the future role of the physician,
PeerJ 7 (2019) (cit. on p. 10).

[17] I. Goodfellow, Y. Bengio, A. Courville and Y. Bengio, Deep learning, vol. 1, 2,
MIT press Cambridge, 2016 (cit. on pp. 10, 13, 14, 71).

[18] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman and D. Mané,
Concrete Problems in AI Safety, arXiv preprint (2016) (cit. on pp. 10, 14, 64, 90).

[19] K. R. Varshney and H. Alemzadeh, On the safety of machine learning: Cyber-physical
systems, decision sciences, and data products, Big data 5 (2017) (cit. on pp. 10, 90).

[20] D. Hendrycks, N. Carlini, J. Schulman and J. Steinhardt, Unsolved problems in ml safety,
arXiv preprint arXiv:2109.13916 (2021) (cit. on p. 10).

[21] S. McGregor, Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI
Incident Database, arXiv preprint (2020) (cit. on pp. 10, 90).

[22] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Decoupling Autoencoders for Robust One-vs-Rest Classification”,
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2021 1 (cit. on pp. 10, 11, 30, 63, 90, 92, 94–96, 98).

[23] M. Lübbering, R. Ramamurthy, M. Gebauer, T. Bell, R. Sifa and C. Bauckhage,
“From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially
Trained Auto Encoders”, International Conference on Artificial Neural Networks,
Springer, 2020 (cit. on pp. 11, 43, 55, 57, 67, 68, 70, 72, 76, 92, 94, 102, 105).

[24] M. Lübbering, M. Gebauer, R. Ramamurthy, R. Sifa and C. Bauckhage,
“Supervised Autoencoder Variants for End to End Anomaly Detection”,
Pattern Recognition. ICPR International Workshops and Challenges, 2021
(cit. on pp. 11, 43, 44, 68, 72, 102, 105).

130

[25] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota and T. E. Boult,
Toward open set recognition,
IEEE transactions on pattern analysis and machine intelligence 35 (2012)
(cit. on pp. 11, 20, 64, 65, 72, 73, 90).

[26] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“From Open Set Recognition Towards Robust Multi-class Classification”,
Artificial Neural Networks and Machine Learning – ICANN 2022, 2022 (cit. on pp. 11, 90).

[27] E. Hüllermeier and W. Waegeman, Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods, Machine Learning 110 (2021)
(cit. on pp. 11, 90–92, 95).

[28] K. Hornik, M. Stinchcombe and H. White,
Multilayer feedforward networks are universal approximators, Neural networks 2 (1989)
(cit. on p. 12).

[29] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines”,
ICML’10, 2010 (cit. on p. 12).

[30] S. Ruder, An overview of gradient descent optimization algorithms,
arXiv preprint arXiv:1609.04747 (2016) (cit. on pp. 13, 53).

[31] M. D. Zeiler, Adadelta: An Adaptive Learning Rate Method,
arXiv preprint arXiv:1212.5701 (2012) (cit. on pp. 13, 53, 57).

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015 (cit. on pp. 13, 80, 96).

[33] D. Hendrycks and K. Gimpel,
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks,
Proceedings of International Conference on Learning Representations (2017)
(cit. on pp. 14, 18, 22, 64, 72, 76, 81, 90, 96).

[34] D. Hendrycks, M. Mazeika and T. Dietterich, Deep anomaly detection with outlier exposure,
arXiv preprint arXiv:1812.04606 (2018) (cit. on pp. 14, 23, 64, 65, 81).

[35] B. Lakshminarayanan, A. Pritzel and C. Blundell,
Simple and scalable predictive uncertainty estimation using deep ensembles,
Advances in neural information processing systems 30 (2017)
(cit. on pp. 14, 22, 64, 68, 76, 83, 90–92, 96, 100, 103).

[36] A. Nguyen, J. Yosinski and J. Clune, “Deep Neural Networks Are Easily Fooled: High
Confidence Predictions for Unrecognizable Images”,
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
(cit. on pp. 14, 64).

[37] I. Goodfellow, J. Shlens and C. Szegedy, “Explaining and Harnessing Adversarial Examples”,
International Conference on Learning Representations, 2015 (cit. on pp. 14, 22, 64, 74).

[38] F. E. Grubbs, Procedures for detecting outlying observations in samples,
Technometrics 11 (1969) (cit. on p. 16).

131

Bibliography

[39] C. Geng, S.-j. Huang and S. Chen, Recent advances in open set recognition: A survey,
IEEE transactions on pattern analysis and machine intelligence (2020) (cit. on pp. 16, 72).

[40] P. Perera, P. Oza and V. M. Patel, One-class classification: A survey,
arXiv preprint arXiv:2101.03064 (2021) (cit. on p. 16).

[41] M. A. Pimentel, D. A. Clifton, L. Clifton and L. Tarassenko, A review of novelty detection,
Signal processing 99 (2014) (cit. on p. 16).

[42] D. M. Hawkins, Identification of Outliers, vol. 11, Springer, 1980 (cit. on pp. 16, 44, 65).
[43] C. C. Aggarwal, Outlier analysis, Springer, 2017 (cit. on pp. 16–19, 45, 65, 68).
[44] J. Chen, S. Sathe, C. Aggarwal and D. Turaga,

“Outlier Detection with Autoencoder Ensembles”,
Proceedings of the SIAM international conference on data mining, 2017 (cit. on pp. 17, 46).

[45] G. Pang, C. Shen, L. Cao and A. V. D. Hengel,
Deep learning for anomaly detection: A review, ACM Computing Surveys (CSUR) 54 (2021)
(cit. on pp. 17, 19, 46).

[46] R. Chalapathy and S. Chawla, Deep Learning for Anomaly Detection: A Survey,
arXiv preprint arXiv:1901.03407 (2019) (cit. on pp. 17, 19, 46).

[47] C. C. Aggarwal, A. Hinneburg and D. A. Keim,
“On the surprising behavior of distance metrics in high dimensional space”,
International conference on database theory, 2001 (cit. on p. 17).

[48] A. Hinneburg, C. C. Aggarwal and D. A. Keim,
“What is the nearest neighbor in high dimensional spaces?”,
26th Internat. Conference on Very Large Databases, 2000 (cit. on p. 17).

[49] S. Wang, C. Liu, X. Gao, H. Qu and W. Xu, “Session-based fraud detection in online
e-commerce transactions using recurrent neural networks”,
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2017 (cit. on p. 17).

[50] Y. Yu, J. Long and Z. Cai,
Network intrusion detection through stacking dilated convolutional autoencoders,
Security and Communication Networks 2017 (2017) (cit. on p. 17).

[51] C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo and Z. Xie,
Deep learning and its applications in biomedicine,
Genomics, proteomics & bioinformatics 16 (2018) (cit. on p. 17).

[52] S. Min, B. Lee and S. Yoon, Deep learning in bioinformatics,
Briefings in bioinformatics 18 (2017) (cit. on p. 17).

[53] T. Fawcett, An Introduction to ROC Analysis, Pattern recognition letters (2006) (cit. on p. 18).

[54] T. Saito and M. Rehmsmeier, The precision-recall plot is more informative than the ROC plot
when evaluating binary classifiers on imbalanced datasets, PloS one 10 (2015) (cit. on p. 18).

[55] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D.-k. Cho and H. Chen,
“Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”,
International Conference on Learning Representations, 2018 (cit. on p. 18).

132

[56] L. Li, R. J. Hansman, R. Palacios and R. Welsch,
Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring,
Transportation Research Part C: Emerging Technologies 64 (2016) (cit. on p. 18).

[57] E. M. Knox and R. T. Ng, “Algorithms for mining distancebased outliers in large datasets”,
Proceedings of the international conference on very large data bases, Citeseer, 1998
(cit. on p. 18).

[58] A. Bendale and T. E. Boult, “Towards Open Set Deep Networks”,
Proceedings of the IEEE Conference on Computer Vision and Rattern Recognition, 2016
(cit. on pp. 18, 67, 72, 73, 75, 90, 92).

[59] J. M. Johnson and T. M. Khoshgoftaar, Survey on deep learning with class imbalance,
Journal of Big Data 6 (2019) (cit. on pp. 19, 46).

[60] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
SMOTE: synthetic minority over-sampling technique,
Journal of artificial intelligence research 16 (2002) (cit. on pp. 19, 44, 46).

[61] B. Krawczyk, Learning from imbalanced data: open challenges and future directions,
Progress in Artificial Intelligence 5 (2016) (cit. on p. 19).

[62] J. Andrews, T. Tanay, E. J. Morton and L. D. Griffin,
“Transfer representation-learning for anomaly detection”, JMLR, 2016 (cit. on p. 19).

[63] D. Xu, E. Ricci, Y. Yan, J. Song and N. Sebe,
Learning deep representations of appearance and motion for anomalous event detection,
arXiv preprint arXiv:1510.01553 (2015) (cit. on pp. 19, 68).

[64] S. Hawkins, H. He, G. Williams and R. Baxter,
“Outlier Detection using Replicator Neural Networks”,
Proceedings of International Conference on Data Warehousing and Knowledge Discovery,
2002 (cit. on pp. 19, 45, 46, 68, 102).

[65] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders”,
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, 2017 (cit. on pp. 19, 46).

[66] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth and G. Langs, “Unsupervised
Anomaly Detection with Generative Adversarial Networks to guide Marker Discovery”,
Proceedings International Conference on Information Processing in Medical Imaging, 2017
(cit. on pp. 19, 65, 68).

[67] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller and M. Kloft,
“Deep Semi-Supervised Anomaly Detection”,
International Conference on Learning Representations, 2020 (cit. on pp. 19, 102).

[68] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller and
M. Kloft, “Deep One-Class Classification”,
Proceedings of the 35th International Conference on Machine Learning, vol. 80, PMLR, 2018
(cit. on pp. 19, 20, 65, 68).

[69] C. M. Bishop, Pattern recognition and machine learning, Springer, 2006
(cit. on pp. 20, 64, 67).

133

Bibliography

[70] M. M. Moya, M. W. Koch and L. D. Hostetler,
One-class classifier networks for target recognition applications,
NASA STI/Recon Technical Report N 93 (1993) (cit. on pp. 20, 65).

[71] J. M. Lee, Introduction to smooth manifolds, Springer, 2013 (cit. on p. 20).

[72] S. Tong, H. Gu and K. Yu,
“A comparative study of robustness of deep learning approaches for VAD”,
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2016 (cit. on p. 22).

[73] N. Drenkow, N. Sani, I. Shpitser and M. Unberath,
Robustness in Deep Learning for Computer Vision: Mind the gap?,
arXiv preprint arXiv:2112.00639 (2021) (cit. on p. 22).

[74] F. Yu, Z. Qin, C. Liu, L. Zhao, Y. Wang and X. Chen,
Interpreting and evaluating neural network robustness,
arXiv preprint arXiv:1905.04270 (2019) (cit. on pp. 22, 75).

[75] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay and D. Mukhopadhyay,
Adversarial attacks and defences: A survey, arXiv preprint arXiv:1810.00069 (2018)
(cit. on p. 22).

[76] N. Akhtar and A. Mian,
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey,
IEEE Access 6 (2018) (cit. on p. 22).

[77] C. Guo, G. Pleiss, Y. Sun and K. Q. Weinberger,
“On Calibration of Modern Neural Networks”,
International Conference on Machine Learning, 2017 (cit. on pp. 22, 68, 76, 85, 90).

[78] M. P. Naeini, G. Cooper and M. Hauskrecht,
“Obtaining Well Calibrated Probabilities Using Bayesian Binning”,
Proceedings of the AAAI Conference on Artificial Intelligence, 2015 (cit. on pp. 22, 76).

[79] M. Kull, M. Perello Nieto, M. Kängsepp, T. Silva Filho, H. Song and P. Flach,
“Beyond Temperature Scaling: Obtaining Well-calibrated Multi-class Probabilities with
Dirichlet Calibration”, Advances in Neural Information Processing Systems, 2019
(cit. on pp. 22, 76).

[80] S. Liang, Y. Li and R. Srikant,
Enhancing the reliability of out-of-distribution image detection in neural networks,
arXiv preprint arXiv:1706.02690 (2017) (cit. on p. 23).

[81] M. Lübbering, M. Pielka, I. Henk and R. Sifa,
“Datastack: unification of heterogeneous machine learning dataset interfaces”,
2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW),
IEEE, 2022 66 (cit. on p. 26).

[82] R. Tatman, J. VanderPlas and S. Dane,
A practical taxonomy of reproducibility for machine learning research, (2018)
(cit. on pp. 26, 31).

134

[83] J. Forde, T. Head, C. Holdgraf, Y. Panda, G. Nalvarete, B. Ragan-Kelley and E. Sundell,
Reproducible research environments with repo2docker, (2018) (cit. on pp. 26, 31).

[84] O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibility in artificial intelligence”,
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 1, 2018
(cit. on pp. 26, 31, 33).

[85] M. Hutson, Artificial intelligence faces reproducibility crisis, Science 359 (2018)
(cit. on pp. 26, 31).

[86] W. McKinney et al., “Data structures for statistical computing in python”,
Proceedings of the 9th Python in Science Conference, vol. 445, 2010 (cit. on p. 26).

[87] C. R. Harris et al., Array programming with NumPy, Nature 585 (2020) (cit. on pp. 26, 114).
[88] E. Freeman, E. Robson, B. Bates and K. Sierra, Head first design patterns,

" O’Reilly Media, Inc.", 2008 (cit. on p. 27).

[89] E. Gamma, Design patterns: elements of reusable object-oriented software,
Pearson Education India, 1995 (cit. on p. 27).

[90] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal and J. Gama,
Machine learning for streaming data: state of the art, challenges, and opportunities,
ACM SIGKDD Explorations Newsletter 21 (2019) (cit. on p. 27).

[91] S. Landset, T. M. Khoshgoftaar, A. N. Richter and T. Hasanin,
A survey of open source tools for machine learning with big data in the Hadoop ecosystem,
Journal of Big Data 2 (2015) (cit. on p. 27).

[92] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi and K. Tzoumas,
Apache flink: Stream and batch processing in a single engine,
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 36 (2015)
(cit. on p. 28).

[93] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham et al., “Storm@ twitter”,
Proceedings of the 2014 ACM SIGMOD international conference on Management of data,
2014 (cit. on p. 28).

[94] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale”,
Proceedings of the twenty-fourth ACM symposium on operating systems principles, 2013
(cit. on p. 28).

[95] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011) (cit. on p. 28).

[96] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin et al.,
Tensorflow: Large-scale machine learning on heterogeneous distributed systems,
arXiv preprint arXiv:1603.04467 (2016) (cit. on pp. 28, 32, 33).

135

http://dx.doi.org/10.1126/science.359.6377.725

Bibliography

[97] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning library,
Advances in neural information processing systems 32 (2019) (cit. on pp. 28, 32, 33).

[98] S. Kaufman, S. Rosset and C. Perlich,
“Leakage in Data Mining: Formulation, Detection, and Avoidance”, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11, Association for Computing Machinery, 2011 (cit. on p. 28).

[99] M. Lübbering, M. Gebauer, R. Ramamurthy, M. Pielka, C. Bauckhage and R. Sifa,
“Utilizing representation learning for robust text classification under datasetshift”,
Proceedings of the Conference “Lernen, Wissen, Daten, Analysen”, CEUR Workshop
Proceedings, 2021 (cit. on pp. 30, 63, 76, 78, 80, 81, 95).

[100] R. Sifa and C. Bauckhage, “Novelty Discovery with Kernel Minimum Enclosing Balls”,
International Conference on Learning and Intelligent Optimization, Springer, 2020
(cit. on p. 30).

[101] M. Lübbering and I. Henk, OutlierHub, a Curated Hub for Outlier and Anomaly Datasets,
version 0.0.51, https://github.com/fraunhofer-iais/outlierhub, 2021 (cit. on p. 31).

[102] M. Baker, Reproducibility crisis, Nature 533 (2016) (cit. on p. 31).

[103] J. Pineau, K. Sinha, G. Fried, R. N. Ke and H. Larochelle,
ICLR Reproducibility Challenge 2019, ReScience C 5 (2019),
url: https://zenodo.org/record/3158244/files/article.pdf (cit. on p. 31).

[104] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Lariviere, A. Beygelzimer, F. d’Alche-Buc, E. Fox
and H. Larochelle, Improving Reproducibility in Machine Learning Research(A Report from
the NeurIPS 2019 Reproducibility Program),
Journal of Machine Learning Research 22 (2021),
url: http://jmlr.org/papers/v22/20-303.html (cit. on p. 31).

[105] J. Dodge, S. Gururangan, D. Card, R. Schwartz and N. A. Smith,
Show Your Work: Improved Reporting of Experimental Results,
arXiv preprint arXiv:1909.03004 (2019) (cit. on pp. 31, 41).

[106] B. K. Olorisade, P. Brereton and P. Andras,
Reproducibility in Machine Learning-Based Studies: An example of Text Mining, (2017)
(cit. on p. 31).

[107] A. L. Beam, A. K. Manrai and M. Ghassemi,
Challenges to the reproducibility of machine learning models in health care, Jama 323 (2020)
(cit. on p. 31).

[108] M. McDermott, S. Wang, N. Marinsek, R. Ranganath, M. Ghassemi and L. Foschini,
Reproducibility in Machine Learning for Health, arXiv preprint arXiv:1907.01463 (2019)
(cit. on p. 31).

[109] E. Raff, A step toward quantifying independently reproducible machine learning research,
Advances in Neural Information Processing Systems 32 (2019) (cit. on p. 31).

136

https://zenodo.org/record/3158244/files/article.pdf
http://jmlr.org/papers/v22/20-303.html

[110] D. G. Feitelson, From repeatability to reproducibility and corroboration,
ACM SIGOPS Operating Systems Review 49 (2015) (cit. on p. 31).

[111] G. K. Sandve, A. Nekrutenko, J. Taylor and E. Hovig,
Ten Simple Rules for Reproducible Computational Research,
PLoS Computational Biology (2013) (cit. on p. 32).

[112] M. Mattsson, Object-oriented frameworks, Licentiate thesis (1996) (cit. on p. 32).

[113] M. Fowler, Event Sourcing,
https://martinfowler.com/eaaDev/EventSourcing.html, Accessed: 2022-10-06,
2005 (cit. on pp. 32, 37).

[114] R. Schwartz, J. Dodge, N. A. Smith and O. Etzioni, Green ai,
Communications of the ACM 63 (2020) (cit. on pp. 33, 40).

[115] L. Biewald, Experiment Tracking with Weights and Biases,
Software available from wandb.com, 2020, url: https://www.wandb.com/
(cit. on pp. 33, 34).

[116] K. Greff, A. Klein, M. Chovanec, F. Hutter and J. Schmidhuber,
“The sacred infrastructure for computational research”,
Proceedings of the 16th python in science conference, vol. 28, 2017 (cit. on p. 33).

[117] W. Falcon et al., Pytorch lightning,
GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning 3 (2019)
(cit. on p. 33).

[118] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama,
“Optuna: A Next-generation Hyperparameter Optimization Framework”, Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2019 (cit. on p. 34).

[119] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez and I. Stoica,
Tune: A Research Platform for Distributed Model Selection and Training,
arXiv preprint arXiv:1807.05118 (2018) (cit. on p. 34).

[120] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong, A. Konwinski,
C. Mewald, S. Murching, T. Nykodym et al.,
“Developments in mlflow: A system to accelerate the machine learning lifecycle”,
Proceedings of the fourth international workshop on data management for end-to-end
machine learning, 2020 (cit. on p. 34).

[121] S. Raschka, Model evaluation, model selection, and algorithm selection in machine learning,
arXiv preprint arXiv:1811.12808 (2018) (cit. on pp. 35, 40, 75).

[122] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2002
(cit. on p. 36).

[123] C. Larman, Protected variation: The importance of being closed, IEEE Software 18 (2001)
(cit. on p. 36).

137

https://martinfowler.com/eaaDev/EventSourcing.html
https://www.wandb.com/

Bibliography

[124] J. Rasley, S. Rajbhandari, O. Ruwase and Y. He, “Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters”, Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020
(cit. on p. 40).

[125] J. Cowls, A. Tsamados, M. Taddeo and L. Floridi, The AI gambit: leveraging artificial
intelligence to combat climate change—opportunities, challenges, and recommendations,
Ai & Society (2021) (cit. on p. 40).

[126] E. Strubell, A. Ganesh and A. McCallum,
Energy and policy considerations for deep learning in NLP,
arXiv preprint arXiv:1906.02243 (2019) (cit. on p. 41).

[127] N. Japkowicz and S. Stephen, The class imbalance problem: A systematic study,
Intelligent Data Analysis 6 (2002) (cit. on p. 44).

[128] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker and G. D. Tourassi,
Training neural network classifiers for medical decision making: The effects of imbalanced
datasets on classification performance, Neural networks (2008) (cit. on p. 44).

[129] D. Olszewski, A probabilistic approach to fraud detection in telecommunications,
Knowledge-Based Systems 26 (2012) (cit. on p. 44).

[130] S. Panigrahi, A. Kundu, S. Sural and A. K. Majumdar, Credit card fraud detection: A fusion
approach using Dempster–Shafer theory and Bayesian learning,
Information Fusion 10 (2009) (cit. on p. 44).

[131] M. Kubat, R. C. Holte and S. Matwin,
Machine learning for the detection of oil spills in satellite radar images,
Machine learning 30 (1998) (cit. on p. 44).

[132] C. Huang, Y. Li, C. Change Loy and X. Tang,
“Learning deep representation for imbalanced classification”,
Proceedings of Conference on Computer Vision and Pattern Recognition, 2016 (cit. on p. 44).

[133] M. Buda, A. Maki and M. A. Mazurowski,
A Systematic Study of the Class Imbalance Problem in CNNs, Neural Networks (2018)
(cit. on p. 44).

[134] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman and A. Galstyan,
A survey on Bias and Fairness in Machine Learning, arXiv preprint arXiv:1908.09635 (2019)
(cit. on p. 44).

[135] C. Cardie and N. Howe,
“Improving Minority Class Prediction using Case-specific Feature Weights”,
Proceedings of the Fourteenth International Conference on Machine Learning, 1997
(cit. on p. 44).

[136] S. Lawrence, I. Burns, A. Back, A. C. Tsoi and C. L. Giles,
“Neural Network Classification and Prior Class Probabilities”,
Neural Networks: Tricks of the Trade, 1998 (cit. on p. 44).

[137] M. Kukar, I. Kononenko et al., “Cost-sensitive Learning with Neural Networks.”,
Proceedings of European Conference on Artificial Intelligence, 1998 (cit. on p. 44).

138

[138] N. Japkowicz, C. Myers, M. Gluck et al., “A Novelty Detection Approach to Classification”,
Proceedings of International Joint Conference on Artificial Intelligence, 1995 (cit. on p. 44).

[139] H.-j. Lee and S. Cho,
“The Novelty Detection Approach for Different degrees of Class Imbalance”,
Proceedings of International Conference on Neural Information processing, 2006
(cit. on p. 44).

[140] B. Scholkopf and A. J. Smola,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, 2001 (cit. on p. 44).

[141] Y. Ishii and M. Takanashi,
Low-cost Unsupervised Outlier Detection by Autoencoders with Robust Estimation,
Journal of Information Processing (2019) (cit. on pp. 44, 46, 47).

[142] H. Dutta, C. Giannella, K. Borne and H. Kargupta,
“Distributed top-k Outlier Detection from Astronomy Catalogs using the Demac System”,
Proceedings of the 2007 SIAM International Conference on Data Mining, 2007 (cit. on p. 44).

[143] L. J. Latecki, A. Lazarevic and D. Pokrajac,
“Outlier Detection with Kernel Density Functions”, In Proceedings of International Workshop
on Machine Learning and Data Mining in Pattern Recognition, 2007 (cit. on p. 44).

[144] Y. S. Chong and Y. H. Tay,
“Abnormal Event Detection in Videos using Spatiotemporal Autoencoder”,
Proceedings of International Symposium on Neural Nets. 2017 (cit. on pp. 44, 45).

[145] J. Zou, J. Zhang and P. Jiang,
Credit Card Fraud Detection Using Autoencoder Neural Network,
arXiv preprint arXiv:1908.11553 (2019) (cit. on pp. 44, 65).

[146] V. Chandola, A. Banerjee and V. Kumar, Anomaly Detection: A Survey,
ACM Comput. Surv. 41 (2009) (cit. on p. 45).

[147] H. A. Dau, V. Ciesielski and A. Song,
“Anomaly Detection Using Replicator Neural Networks Trained on Examples of One Class”,
Proceedings of the 10th International Conference on Simulated Evolution and Learning, 2014
(cit. on pp. 45, 46, 68).

[148] R. Chalapathy, A. K. Menon and S. Chawla,
Anomaly Detection using One-Class Neural Networks,
arXiv preprint arXiv:1802.06360 (2018) (cit. on pp. 45, 46, 68).

[149] J. An and S. Cho,
Variational Autoencoder based Anomaly Detection using Reconstruction Probability,
Special Lecture on IE (2015) (cit. on p. 45).

[150] H. Sarvari, C. Domeniconi, B. Prenkaj and G. Stilo,
Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection,
arXiv preprint arXiv:1910.09754 (2019) (cit. on p. 46).

139

Bibliography

[151] J. Van Hulse, T. M. Khoshgoftaar and A. Napolitano,
“Experimental perspectives on learning from imbalanced data”,
Proceedings of the 24th international conference on Machine learning, 2007 (cit. on p. 46).

[152] H. Wang, Z. Cui, Y. Chen, M. Avidan, A. B. Abdallah and A. Kronzer,
Predicting hospital readmission via cost-sensitive deep learning,
IEEE/ACM transactions on computational biology and bioinformatics 15 (2018)
(cit. on p. 46).

[153] C. Zhang, K. C. Tan and R. Ren,
“Training cost-sensitive deep belief networks on imbalance data problems”,
2016 international joint conference on neural networks (IJCNN), IEEE, 2016 (cit. on p. 46).

[154] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense object detection”,
Proceedings of the IEEE international conference on computer vision, 2017 (cit. on p. 46).

[155] W. Ng, G. Zeng, J. Zhang, D. Yeung and W. Pedrycz,
Dual Autoencoders Features for Imbalance Classification Problem,
Pattern Recognition (2016) (cit. on p. 46).

[156] J. Pennington, R. Socher and C. D. Manning,
“Glove: Global Vectors for Word Representation”,
Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014 (cit. on pp. 46, 78, 95).

[157] Y. Yang and X. Liu, “A re-examination of Text Categorization Methods”,
Proceedings of Int Conference on Research and Development in Information Retrieval, 1999
(cit. on p. 46).

[158] T. Joachims,
“Text Categorization with Support Vector Machines: Learning with Many Relevant Features”,
Proceedings of European Conference on Machine Learning, 1998 (cit. on p. 46).

[159] R. Kannan, H. Woo, C. C. Aggarwal and H. Park, “Outlier Detection for Text Data”,
Proceedings of International Conference on Data Mining, 2017 (cit. on p. 46).

[160] V. Hautamaki, I. Karkkainen and P. Franti,
“Outlier Detection using k-Nearest Neighbour Graph”,
Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, 2004
(cit. on p. 47).

[161] A. Divekar, M. Parekh, V. Savla, R. Mishra and M. Shirole, “Benchmarking Datasets for
Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives”, Proceedings of 3rd
International Conference on Computing, Communication and Security (ICCCS), 2018
(cit. on p. 47).

[162] P. Gogoi, B. Borah, D. Bhattacharyya and J. Kalita,
Outlier Identification using Symmetric Neighborhoods, Procedia Technology 6 (2012)
(cit. on p. 47).

[163] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani,
“A detailed Analysis of the KDD CUP 99 Data Set”, Proceedings of IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009 (cit. on p. 47).

140

[164] L. McInnes, J. Healy and J. Melville,
Umap: Uniform Manifold Approximation and Projection for Dimension Reduction,
arXiv preprint arXiv:1802.03426 (2018) (cit. on pp. 48–50, 58).

[165] L. Beggel, M. Pfeiffer and B. Bischl,
“Robust anomaly detection in images using adversarial autoencoders”, Proceedings of Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 2019
(cit. on p. 48).

[166] B. Neyshabur, S. Bhojanapalli, D. McAllester and N. Srebro,
“Exploring Generalization in Deep Learning”,
Advances in Neural Information Processing Systems, 2017 (cit. on p. 54).

[167] K. Kawaguchi, L. P. Kaelbling and Y. Bengio, Generalization in Deep Learning,
arXiv preprint arXiv:1710.05468 (2017) (cit. on p. 54).

[168] R. Caruana, Multitask learning, Machine learning (1997) (cit. on p. 54).

[169] M. Ranzato and M. Szummer,
“Semi-supervised Learning of Compact Document Representations with Deep Networks”,
Proceedings of International Conference on Machine learning, 2008 (cit. on p. 54).

[170] J. Weston, F. Ratle, H. Mobahi and R. Collobert,
“Deep Learning via Semi-supervised Embedding”, Neural networks: Tricks of the trade, 2012
(cit. on p. 54).

[171] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves”,
Proceedings of the 23rd international conference on Machine learning, 2006
(cit. on pp. 57, 76, 104).

[172] K. Boyd, K. H. Eng and C. D. Page,
“Area under the precision-recall curve: point estimates and confidence intervals”,
Joint European conference on machine learning and knowledge discovery in databases,
Springer, 2013 (cit. on p. 57).

[173] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
Bounding open space risk with decoupling autoencoders in open set recognition,
International Journal of Data Science and Analytics (2022) 1 (cit. on p. 63).

[174] M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshminarayanan, A. M. Dai and
D. Tran, Training Independent Subnetworks for Robust Prediction, arXiv preprint (2020)
(cit. on pp. 64, 66–68, 76, 83, 90–92, 96, 100, 103).

[175] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov and Q. V. Le,
Xlnet: Generalized autoregressive pretraining for language understanding,
Advances in neural information processing systems 32 (2019) (cit. on p. 64).

[176] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016
(cit. on p. 64).

[177] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, nature (2015) (cit. on p. 64).

141

Bibliography

[178] A. Paullada, I. D. Raji, E. M. Bender, E. Denton and A. Hanna, Data and its (dis) contents: A
survey of dataset development and use in machine learning research, Patterns 2 (2021)
(cit. on p. 64).

[179] T. E. Boult, S. Cruz, A. R. Dhamija, M. Gunther, J. Henrydoss and W. J. Scheirer,
“Learning and the Unknown: Surveying Steps Toward Open World Recognition”,
Proceedings of the AAAI Conference on Artificial Intelligence, 2019
(cit. on pp. 64, 67, 68, 72, 90).

[180] A. Linden and J. Kindermann, “Inversion of multilayer nets”,
Proceedings International Joint Conference Neural Networks, vol. 2, 1989 (cit. on pp. 65, 76).

[181] R. Girshick, “Fast r-cnn”,
Proceedings of the IEEE international conference on computer vision, 2015
(cit. on pp. 65, 67, 76).

[182] S. Ren, K. He, R. Girshick and J. Sun,
Faster r-cnn: Towards real-time object detection with region proposal networks,
Advances in neural information processing systems 28 (2015) (cit. on pp. 65, 67, 76, 110).

[183] C. C. Aggarwal and S. Sathe, Outlier Ensembles: An Introduction, Springer, 2017
(cit. on p. 65).

[184] X. Chen and E. Konukoglu, Unsupervised Detection of Lesions in Brain MRI using
constrained Adversarial Auto-Encoders, arXiv preprint arXiv:1806.04972 (2018)
(cit. on p. 65).

[185] N. Wang, C. Chen, Y. Xie and L. Ma,
Brain tumor anomaly detection via latent regularized adversarial network,
arXiv preprint arXiv:2007.04734 (2020) (cit. on p. 65).

[186] R. Domingues,
Probabilistic Modeling for Novelty Detection with Applications to Fraud Identification,
arXiv preprint arXiv:1903.01730 (2019) (cit. on p. 65).

[187] C. Phua, V. Lee, K. Smith and R. Gayler,
A comprehensive survey of data mining-based fraud detection research,
arXiv preprint arXiv:1009.6119 (2010) (cit. on p. 65).

[188] M. Gharib, B. Mohammadi, S. H. Dastgerdi and M. Sabokrou,
AutoIDS: Auto-encoder based Method for Intrusion Detection System,
arXiv preprint arXiv:1911.03306 (2019) (cit. on p. 65).

[189] O. Kaynar, A. G. Yüksek, Y. Görmez and Y. E. Işik,
“Intrusion Detection with Autoencoder based Deep Learning Machine”,
Proceedings of 25th Signal Processing and Communications Applications Conference (SIU),
2017 (cit. on p. 65).

[190] P. Oza and V. M. Patel, “C2ae: Class conditioned auto-encoder for open-set recognition”,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019
(cit. on pp. 67, 72, 75).

142

[191] D. H. Fusilier, R. G. Cabrera, M. Montes and P. Rosso,
“Using PU-learning to detect deceptive opinion spam”, Proceedings of the 4th workshop on
computational approaches to subjectivity, sentiment and social media analysis, 2013
(cit. on p. 67).

[192] U. Tanielian and F. Vasile, “Relaxed softmax for PU learning”,
Proceedings of the 13th ACM Conference on Recommender Systems, 2019 (cit. on p. 67).

[193] C.-J. Hsieh, N. Natarajan and I. Dhillon, “PU learning for matrix completion”,
International Conference on Machine Learning, PMLR, 2015 (cit. on p. 67).

[194] E. M. Rudd, L. P. Jain, W. J. Scheirer and T. E. Boult, The extreme value machine,
IEEE transactions on pattern analysis and machine intelligence 40 (2017) (cit. on p. 67).

[195] A. Rozsa and T. E. Boult,
Improved adversarial robustness by reducing open space risk via tent activations,
arXiv preprint arXiv:1908.02435 (2019) (cit. on pp. 67, 73).

[196] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor and J. C. Platt,
“Support Vector Method for Novelty Detection”,
In Proceedings of Advances in Neural Information Processing Systems, 2000 (cit. on p. 68).

[197] S. M. Erfani, S. Rajasegarar, S. Karunasekera and C. Leckie, High-dimensional and
large-scale anomaly detection using a linear one-class SVM with deep learning,
Pattern Recognition 58 (2016) (cit. on p. 68).

[198] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville
and Y. Bengio, Generative adversarial networks, arXiv preprint arXiv:1406.2661 (2014)
(cit. on p. 68).

[199] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, 2014 (cit. on p. 68).

[200] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng et al.,
“Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web
applications”, Proceedings of the 2018 World Wide Web Conference, 2018 (cit. on p. 68).

[201] S. Nedelkoski, J. Cardoso and O. Kao,
“Anomaly detection and classification using distributed tracing and deep learning”, 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2019 (cit. on p. 68).

[202] M. Lübbering, M. Pielka, K. Das, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis.”,
ESANN, 2021 (cit. on pp. 68, 102).

[203] T. DeVries and G. W. Taylor,
Learning confidence for out-of-distribution detection in neural networks,
arXiv preprint arXiv:1802.04865 (2018) (cit. on p. 68).

[204] J. Van Amersfoort, L. Smith, Y. W. Teh and Y. Gal,
“Uncertainty Estimation Using a Single Deep Deterministic Neural Network”,
International Conference on Machine Learning, PMLR, 2020
(cit. on pp. 68, 72, 75, 82, 90–92, 96, 100, 120).

143

Bibliography

[205] S. Varma and R. Simon,
Bias in Error Estimation when Using Cross-validation for Model Selection,
BMC bioinformatics 7 (2006) (cit. on p. 75).

[206] G. W. Brier, Verification of Forecasts Expressed in Terms of Probability,
Monthly Weather Review 78 (1950) (cit. on p. 76).

[207] X. Li and D. Roth, “Learning Question Classifiers”,
COLING 2002: The 19th International Conference on Computational Linguistics, 2002
(cit. on pp. 77, 106).

[208] Y. LeCun, The MNIST database of handwritten digits,
http://yann. lecun. com/exdb/mnist/ (1998) (cit. on p. 78).

[209] H. Xiao, K. Rasul and R. Vollgraf,
Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,
arXiv preprint arXiv:1708.07747 (2017) (cit. on p. 78).

[210] R. G. Lopes, D. Yin, B. Poole, J. Gilmer and E. D. Cubuk,
Improving robustness without sacrificing accuracy with patch gaussian augmentation,
arXiv preprint arXiv:1906.02611 (2019) (cit. on p. 83).

[211] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer and B. Lakshminarayanan,
Augmix: A simple data processing method to improve robustness and uncertainty,
arXiv preprint arXiv:1912.02781 (2019) (cit. on p. 83).

[212] B. Zadrozny and C. Elkan,
“Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers”,
Proceedings of the Eighteenth International Conference on Machine Learning, vol. 1,
ICML ’01, Citeseer, 2001 (cit. on p. 85).

[213] D. Feng, L. Rosenbaum and K. Dietmayer, “Towards Safe Autonomous Driving: Capture
Uncertainty in the Deep Neural Network for Lidar 3d Vehicle Detection”,
21st International Conference on Intelligent Transportation Systems, IEEE, 2018
(cit. on p. 90).

[214] A. Lambrou, H. Papadopoulos and A. Gammerman,
Reliable Confidence Measures for Medical Diagnosis With Evolutionary Algorithms,
IEEE Transactions on Information Technology in Biomedicine 15 (2010) (cit. on p. 90).

[215] A. Kendall and Y. Gal,
What uncertainties do we need in bayesian deep learning for computer vision?,
Advances in neural information processing systems 30 (2017) (cit. on pp. 90, 92).

[216] Y. Gal, Uncertainty in Deep Learning, PhD thesis: University of Cambridge, 2016
(cit. on pp. 90–92).

[217] D. J. MacKay, A Practical Bayesian Framework for Backpropagation Networks,
Neural computation 4 (1992) (cit. on p. 92).

[218] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez and S. Udluft, “Decomposition of
Uncertainty in Bayesian Deep Learning for Efficient and Risk-Sensitive Learning”,
International Conference on Machine Learning, 2018 (cit. on p. 92).

144

[219] A. Mobiny, P. Yuan, S. K. Moulik, N. Garg, C. C. Wu and H. Van Nguyen,
Dropconnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks,
Scientific reports 11 (2021) (cit. on p. 92).

[220] J. van Amersfoort, L. Smith, A. Jesson, O. Key and Y. Gal,
On feature collapse and deep kernel learning for single forward pass uncertainty,
arXiv preprint arXiv:2102.11409 (2021) (cit. on pp. 92, 120).

[221] J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss and B. Lakshminarayanan,
Simple and Principled Uncertainty Estimation With Deterministic Deep Learning via
Distance Awareness, Advances in Neural Information Processing Systems 33 (2020)
(cit. on pp. 92, 120).

[222] R. Rajkumar, M. Lübbering, T. Bell, M. Gebauer, B. Ulusay, D. Uedelhoven, T. Dilmaghani,
R. Loitz, M. Pielka, C. Bauckhage and R. Sifa,
“Automatic Indexing of Financial Documents via Information Extraction”,
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021 (cit. on p. 102).

[223] M. Duggan, Online Harassment 2017, Pew Research Center (2017) (cit. on p. 102).
[224] R. K. Betty van Aken Julian Risch and A. Löser,

Challenges for Toxic Comment Classification: An In-Depth Error Analysis, EMNLP (2018)
(cit. on p. 102).

[225] J. AI, Toxic Comment Classification Challenge, 1999,
url: https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge/data (visited on) (cit. on p. 103).

[226] R. Agombar, M. Luebbering and R. Sifa,
“A Clustering Backed Deep Learning Approach for Document Layout Analysis”, Proceedings
of International Cross-Domain Conference for Machine Learning and Knowledge Extraction,
2020 (cit. on pp. 108, 110).

[227] R. Sifa, A. Ladi, M. Pielka, R. Ramamurthy, L. Hillebrand, B. Kirsch, D. Biesner, R. Stenzel,
T. Bell, M. Lübbering, U. Nütten, C. Bauckhage, U. Warning, B. Fürst,
T. Dilmaghani Khameneh, D. Thom, I. Huseynov, J. Kahlert R. amd Schlums, H. Ismail,
B. Kliem and R. Loitz, “Towards automated auditing with machine learning”,
Proceedings of the ACM Symposium on Document Engineering 2019, 2019
(cit. on pp. 108, 109).

[228] E. Brito, R. Sifa, C. Bauckhage, R. Loitz, U. Lohmeier and C. Pünt, “A Hybrid AI Tool to
Extract Key Performance Indicators from Financial Reports for Benchmarking”,
Proceedings of DocEng, 2019 (cit. on p. 108).

[229] T. Goel, P. Jain, I. Verma, L. Dey and S. Paliwal,
“Mining company sustainability reports to aid financial decision-making”,
Proceedings of AAAI Workshop on Know. Disc. from Unstructured Data in Fin. Services,
2020 (cit. on p. 109).

[230] J. C. Salinas Alvarado, K. Verspoor and T. Baldwin,
“Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment”,
Proceedings of Australasian Language Technology Association Workshop, 2015
(cit. on p. 109).

145

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

Bibliography

[231] D. Biesner, R. Ramamurthy, R. Stenzel, M. Lübbering, L. Hillebrand, A. Ladi, M. Pielka,
R. Loitz, C. Bauckhage and R. Sifa, Anonymization of German financial documents using
neural network-based language models with contextual word representations,
International Journal of Data Science and Analytics (2021) (cit. on p. 109).

[232] M. Bulla, L. Hillebrand, M. Lübbering and R. Sifa,
“Knowledge Graph Based Question Answering System for Financial Securities”,
German Conference on Artificial Intelligence (Künstliche Intelligenz), Springer, 2021
(cit. on p. 109).

[233] P. Gupta, S. Rajaram, H. Sch"utze and T. Runkler,
“Neural relation extraction within and across sentence boundaries”,
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 01, 2019
(cit. on p. 109).

[234] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang and K. Tu,
Automated Concatenation of Embeddings for Structured Prediction,
arXiv preprint arXiv:2010.05006 (2020) (cit. on p. 109).

[235] S. Edunov, M. Ott, M. Auli and D. Grangier, Understanding back-translation at scale,
arXiv preprint arXiv:1808.09381 (2018) (cit. on p. 109).

[236] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating systems: Three easy pieces,
Arpaci-Dusseau Books LLC, 2018 (cit. on p. 109).

[237] B. Grand, Patterns in Java, Volume 2, A Catalog of Reusable Design Patterns, 1999
(cit. on p. 109).

[238] M. Lui and T. Baldwin, “langid. py: An off-the-shelf language identification tool”,
Proceedings of the ACL 2012 system demonstrations, 2012 (cit. on p. 111).

[239] A. Akbik, D. Blythe and R. Vollgraf, “Contextual String Embeddings for Sequence Labeling”,
Proceedings of International Conference on Computational Linguistics, 2018 (cit. on p. 111).

[240] P. Singh, S. Varadarajan, A. N. Singh and M. M. Srivastava,
“Multi-domain Document Layout Understanding Using Few-Shot Object Detection”,
Proceedings of International Conference Image Analysis and Recognition, 2020
(cit. on p. 110).

[241] S. Schreiber et al., “Deepdesrt: Deep Learning for Detection and Structure Recognition of
Tables in Document Images”,
Proceedings of International Conference on Document Analysis and Recognition, 2017
(cit. on p. 110).

[242] C. Soto and S. Yoo, “Visual Detection with Context for Document Layout Analysis”,
Proceedings of Conference on EMNLP-IJCNLP, 2019 (cit. on p. 110).

[243] M. Ester, H.-P. Kriegel, J. Sander and X. Xu,
“A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”,
Proceedings of KDD, 1996 (cit. on p. 110).

[244] R. Smith, “An Overview of the Tesseract OCR Engine”,
Proceedings of International Conference on Doc. Analysis and Recognition, 2007
(cit. on p. 110).

146

[245] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida,
Spectral normalization for generative adversarial networks,
arXiv preprint arXiv:1802.05957 (2018) (cit. on p. 120).

147

List of Figures

1.1 Exemplary architecture of a feedforward neural network: Each neuron ϕ(k)i in layer
k calculates the weighted sum of the output in the preceding layer and the weighted
b = 1 and subsequently maps it onto a scalar value via a non-linear activation function
a : R→ R. The final output layer o predicts a sample as one of the classes according
to the maximum output value. These outputs are also referred to as logits and
are usually mapped to probability scores via the sigmoid function in the case of
binary classification or the softmax function in case of multi-class classification. The
objective during DNN training is to adapt the weights such that the true target function
f ∗ : X→ Y is approximated accurately. 12

1.2 Demonstrating the intrinsic issues of empirical risk minimization in DNNs: We
trained an MLP on each binary toy dataset (red and blue samples) and highlighted
the decision boundary surface. While the model generalizes well within the classes
it was exposed to at training time, each noise sample (orange) is attributed to one
of the two classes with high confidence, jeopardizing model robustness. We would
expect a robust model to learn a hull around the inlier data (i.e., red and blue samples),
efficiently rejecting any outlier data at test time. We will propose such methods based
on reconstructive representation learning in this thesis. 15

1.3 Different perspectives on the outlierness of a sample: Training set D1 contains only a
single inlier class, training set D2 contains three disjoint classes and training split D3
contains noise additional to D2 samples. Given the three different training sets Di,
which of the samples highlighted in orange within test set DE qualify as outliers? The
underspecification of the problem allows for different conclusions. Example inspired
by [43]. 16

1.4 Illustration of autoencoder-based manifold learning by the example of monkey
face detection: In Fig. 1.4(a), the image is obtained from the natural manifold M
and projected into the high dimensional image space. The autoencoder trained
to reconstruct monkey face images encodes the image x(1) by mapping it onto the
learned manifold M̂ , to subsequently reconstruct x(1) as x̂(1) from the low dimensional
embedding h(1). Note that the sampled image lies in Rn with n � 2 and the manifold
is one-dimensional embedded within R2. In Fig. 1.4(b), the input image does not
originate from M and is therefore not placed onto M̂ by the encoder e and cannot be
reconstructed. 21

149

List of Figures

2.1 Datastack architecture: Dataset Factory commands Retriever and Pre-processor to
download and prepare the dataset, respectively. Note that the preprocessor and iterator
deal with arbitrary data formats internally. The interfaces and remaining components
work on a byte stream level, thus decoupling the dataset-specific peculiarities from
the framework. 27

2.2 Combination of dataset iterators via stacking, splitting, and joining operations: Similar
to table views in databases, each higher-level iterator represents a view on its underlying
iterator. The stacking, splitting, and joining operations build the foundation for more
sophisticated iterators with functionality such as in-memory loading or label mapping. 29

2.3 Use case example on textual outlier detection [22, 99]: Splitting, stacking, joining,
label filtering, and in-memory loading is used to represent the full data processing
pipeline. The final in-memory iterators are used for training, validation, and evaluation
of ML models. 30

2.4 The YAML configuration file specifies the pipeline components, their dependencies,
parameterization and the hyperparameter search. Here, the dependency graph of
an exemplary deep learning configuration is showcased. To run the training and
evaluation pipeline, we instantiate the root components trainer, checkpointing, early
stopping and evaluator by passing the dependent components to the constructors via
dependency injection. In most cases, a component-specific registry on the lowest
dependency level instantiates the respective component. Even though the train and
eval components are partially instantiated with the same components, we keep two
separate instances to prevent side effects during training/evaluation. 34

2.5 Pipeline component instantiation in blueprint via the component factory: A single
experiment config from the YAML config is passed to the blueprint, a data class
describing the entire pipeline setup. The blueprint commands the component factory,
with its internal (custom) component registry, to instantiate the components defined
in the dependency graph within the configuration. We distinguish two types of
components here. Firstly, some components can be grouped (e.g., F1 score and
accuracy) and do not require individual registration. These components are subsumed
within a registry (see Component A Registry which registers Component A.1 and
Component A.2). Secondly, standalone pipeline components (e.g., train component)
have a dedicated constructable that only instantiates this particular component (see
Component B). 34

2.6 Illustration of MLgym system design: The two entry points, starter and warm starter,
forward the blueprints (specification of the experiments) to the multiprocessing
gym for execution. As specified in Fig. 2.4, the root and dependency components,
highlighted in green and blue, respectively, jointly resemble the dynamically assembled
training/evaluation pipeline. The logging environment based on event sourcing and
streaming is highlighted in red and supports custom clients, e.g., TensorBoard or
Weights&Biases. With the entry points and logging environment, MLgym fulfills
rules 5 and 10. 37

2.7 MLboard frontend: a React application that visualizes the training and evaluation
progress by subscribing to the websocket API and REST API. 39

150

List of Figures

3.1 KDD outlier and novelty datasets: Visualization of the train and test splits after
reducing the dimensionality to 2D using UMAP [164]. Outlier samples are highlighted
in red, inliers in blue and novelties in green. Fig. 3.1(a) and Fig. 3.1(b) show the
clustering of the imbalanced variant of datasets, while Fig. 3.1(c) and Fig. 3.1(d) show
the clustering for the balanced datasets. Note that, as per definition, novelties only
appear in the test set, whereas outliers appear in both. 49

3.2 Imbalanced datasets: Visualization of the Reuters, ATIS, and arrhythmia datasets
after projecting the samples onto a two-dimensional plane, using UMAP [164] for
dimensionality reduction. Minorities samples are highlighted in red, majorities in blue. 50

3.3 Loss histograms of the best OCA models and ATA models on the Reuters and KDD
OI dataset. The explicit reconstruction error maximization of minority samples
leads to better separation of majorities and minorities in reconstruction error space.
Interestingly, OCA leads to better reconstruction of majorities, but implicitly also
minimizes minorities, resulting in poor outlier detection performance. 53

3.4 Conceptual design of a supervised autoencoder (SAE) and a supervised autoencoder
with readout loss (SAER). In both variants the autoencoder maps the input sample x
to the reconstruction x̂. In the SAE case, the MLP performs inference solely on the
encoding of x, whereas in the case of SAER, the reconstruction loss is also passed to
the MLP, as indicated by the dashed line. 56

3.5 Scatter plots of the minority encodings (red points) and majority encoding (blue
points) generated by the best ASAER, ATA, OCA and SAEmodels on the ARR dataset
split by train and test. To visualize the encodings within R2, we employed UMAP,
an unsupervised manifold learning based algorithm for nonlinear dimensionality
reduction [164]. In contrast to the non-adversarial methods, the results suggest that the
adversarial methods successfully separate the minorities from the majority manifold.
This becomes especially apparent when comparing the level of separation to the
original clustering result on the raw samples in Fig. 3.2(c). 58

3.6 Histograms of reconstruction loss distributions of minority (red bars) and majority
samples (blue bars) for the best ASAER, ATA, OCA and SAE models on the ARR
dataset split by train and test. Note y-axis is log scaled. 59

4.1 Conceptual illustration of OSR: The closed set SV̂ is visualized by the green area
comprising all inliers. There are two different rest samples types: red points resemble
a known rest class, whereas blue and pink samples reflect unobserved outliers. The
objective is to learn an indicator function f (decision boundary shown as blue line),
that filters inliers and rejects all rest samples. The open space risk RO(f) can be
interpreted as the ratio of the blue area over the green area that is bounded by the
decision boundary of f . 64

4.2 Class probabilities of DAE, MLP and MiMo [174] visualized as contours: In contrast
to MiMo and MLP, DAE learns a hull around the red class of interest (COI) for the
three datasets, enabling the method to not only separate the two inlier classes, but also
to reject the unseen uniform noise. MLP and MiMo only wrap the inliers if the rest
samples encourage such a decision boundary, as shown for the Bounding Gaussians
dataset. 66

151

List of Figures

4.3 Decoupling Autoencoder (DAE) architecture: A joint architecture composed of an
autoencoder ϕ(x) = d(e(x)) for sample reconstruction, a reconstruction error module
eMSE for outlierness estimation, and an RBF kernel g with standard deviation σ1 for
classification. Thus, the entire network is given by f (x) = g(eMSE(x, d(e(x))), σ1). . . 69

4.4 Combination of classification objective LBCE and | |t | |1 regularization to optimize for
a decision boundary t, which is minimal, but does not compromise classification of
inliers (red points) and rest samples (blue points) 70

4.5 Intuition behind the reconstruction error objective LR: Minimization/maximization of
reconstruction losses for inliers (red) and rest samples (blue), respectively. Separation
is achieved by weighting the reconstruction losses with wi for inliers and wo for
rest samples. Therefore, samples on the wrong side of the decision boundary t are
heavily optimized. With increasing distance from the decision boundary, optimization
decelerates for correctly classified samples, as indicated by the length of the arrows. . 70

4.6 Reconstruction error landscape of ATA and OCA, visualized on the Half-Moon, XOR
Circles, and Bounding Gaussians dataset, equivalent to Fig. 4.2. The color gradient
from blue to yellow resembles an increase in the reconstruction eror. 82

4.7 Qualitative reconstruction comparison of DAE and autoencoder-based baselines on
MNIST7 and FMNIST3,7: The first row in each of the two grids, shows the original
samples. We present three representative inlier samples, followed by three rest samples
of the respective splits. In contrast to OCA and C2AE, our DAE method and ATA,
with their adversarial loss functions, are able to not only accurately reconstruct inliers,
but also obfuscate the rest samples. 84

4.8 Adversarial robustness comparison between DAE and MLP: For each of the splits
Sc, So, and Sd in the MNIST7 and FMNIST3,7 datasets, the samples (true positives
and true negatives with more than 95% confidence) were perturbed via FGSM in
300 steps with a step size of 0.001, resolving the full range from local stability to
global adversarial robustness. The results clearly show that DAE is more robust to
adversarial perturbations applied to inliers and, especially, rest samples. On the two
datasets, DAE is most robust w.r.t. adversarial perturbations on dataset shift samples,
demonstrating the advantage of DAE being a true OSR method with bounded open
space risk. 85

4.9 Inlier and outlier loss histograms regarding the different cases within the ablation
study in Table 4.6. The model output g(eMSE), which maps the reconstruction errors
to inlier probabilities is plotted in green, and the decision boundary t is plotted as a
dotted red line. Note that in some cases, e.g., in Fig. 4.9(a) to 4.9(d), the maximum
reconstruction errors are capped to highlight the accuracy of the decision boundary.
The results show that the combination of loss terms L̂ leads to inliers and outliers
being minimized/maximized, respectively, while the decision boundary being as close
to the inliers as possible, maximizes robustness without jeopardizing classification
performance. All the other combinations lead to poor classification performance or
lack of outlier robustness. Without outlier maximization, similar to the one-class
autoencoder, the inliers and outliers are not fully separated on Sc and So (Fig. 4.9(i)
to 4.9(l)). 87

152

List of Figures

5.1 Uncertainty heatmap of our Informer architecture and the baselines on the half-moon
dataset. Informer and DUQ capture aleatoric and epistemic uncertainty whereas the
other three ERM baselines only capture aleatoric uncertainty. 91

5.2 Illustration of the Informer architecture for multi-class classification with k classes:
An ensemble composed of k Informer components (autoencoder di(ei(x)) for sample
reconstruction, a reconstruction error module eMSE for outlierness estimation, and an
RBF kernel g for classification), each learning an OVR relationship for a different
inlier class. The uncertainty estimation module (UEM), provides estimates on the
total, aleatoric and epistemic uncertainty, as denoted by Ut , Ua and Ue, respectively. . 93

5.3 Uncertainty Estimation Module (UEM): Given a prediction ŷ, the two class probabilit-
ies p(c1 |x) and p(c2 |x), conditioned on the input x, determine the amount of aleatoric
and epistemic uncertainty within the prediction. UEM splits the uncertainty Ut

(Manhattan distance of prediction to bottom right corner) into a convex combination
of aleatoric uncertainty Ua and epistemic uncertainty Ue. For simplicity, we only
show the case p(ŷ1 |x) > p(ŷ2 |x). 93

5.4 Histogram of IC predictions ϕi(x) = p(ci |x): While the inlier class is generally
well-separated from rest classes, there are few outlier samples primarily from split So
that are falsely predicted as inliers with high confidence. 98

5.5 Comparing the prediction scatter of Informer (ICpullover and ICt-shirt) toDUQ’s centroids
(Cpullover and Ct-shirt) w.r.t. inlier classes pullover/t-shirt and So/Sdi rest classes. Due
to the majority of samples overlapping in the dense corners, we added histogram bars
on the top and right edge for visual support. 99

6.1 Overview of the Extraction Service showing the execution flow of an extraction
job through the components in the system. First, a client schedules a document for
extraction (1), a job is created and its corresponding PDF is stored (2). A worker then
retrieves the job and document (3), parses the document (4), extracts information (5),
and builds a JSON representation of the document (6), before sending the document
back with its extracted information (7). 108

6.2 Class-specific prediction histograms for each Informer component (IC). Fig. 6.2(a)
shows the normalized (i.e., density) reconstruction error histograms for the four ICs,
inferred from the test samples. Likewise, Fig. 6.2(b) shows the estimated probability
scores, as unnormalized (i.e., absolute frequencies) histograms. Both diagrams show
the robustness of the Informer method and explain that the low precision scores in
Table 6.4 is caused due to the class imbalance. 113

6.3 The average processing time per page with different thread counts. 114

153

List of Tables

3.1 Datasets and their subdatasets: Majority and minority frequencies for train, validation
and test split. A subclass share of all means that all subclasses are shared between
the dataset splits, whereas a subclass share of none, indicates that none are shared
between train/val and test split. This is an important requirement for novelty detection.
Note that m+ and m− refer to the majorities and minorities, respectively. 47

3.2 AUROC and macro F1 scores of the best ATA, MLP, and OCA models on the seven
datasets. It is observed that ATA outperforms baseline methods in most of the tasks,
depicting its robustness. 53

3.3 Summarization of the different model variations. The models are distinguished on an
architectural level based on whether the reconstruction loss is passed to the MLP or
not, as defined in the third column. Additionally, there are two different training styles
by adaptation of the reconstruction loss function LR in Eq. (3.14): Mean squared error
LMSE and adversarial reconstruction loss LR_adv. 56

3.4 Performance comparison of vanilla SAE, ASAE, SAER, and ASAER to the baselines
MLP, OCA and ATA based on AUPR scores throughout the seven datasets (ATIS,
REU, ARR, KDDOI, KDDOB, KDDNI and KDDNB). For each dataset, the score of
the best model has been highlighted in bold face. It is observed that SAE approaches
generally outperform the baselines. BASE denotes the expected AUPR scores of a
random classifier for reference. 58

4.1 Class assignment within training split St and evaluation splits Sc, So, Sd1, Sd2 and Sd3
for the text and image classification datasets, in accordance with [99]: Splits Sc and
So are representative of tasks Tc and To, respectively; splits Sd1, Sd2, and Sd3 of Td.
Mapping of rest classes specified in Table 4.2. 78

4.2 Specification of the rest classes for the different dataset splits in Table 4.1, derived
from seven different textual and image-based classification datasets. 79

155

List of Tables

4.3 Performance of DAE and the baselines ATA, OCA, MLP, and MiMo, on splits
Sc, So, Sd1, Sd2 and Sd3 of the textual and image datasets with a single COI. The
AUROC results are aggregated in the first column for each split, counting best and
weak performances. Specifically, when a model’s AUROC score drops at least
5 percentage points below the best AUROC score, the model is counted as weak
performing. For reference, BASE denotes the performance of a random classifier that
predicts COI with probability p ∼ U[0, 1]. Metrics and confidence are measured in
%. Baseline results on textual datasets adopted from [99]. Across all three subtasks
of OSR, DAE and ATA yield the most robust results, while MLP and MiMo show a
significant performance degradation on the dataset shift task, similar to OCA on the
classification task. 80

4.4 Performance of DAE and the baselines on the derived datasets with more than one
COI. Across all tasks DAE and ATA show high robustness, whereas the remaining
baselines perform poorly on at least a single task. Baseline results on the Reuters
dataset partially adopted from [99]. 81

4.5 Calibration of DAE, MLP and MiMo on split Sc in terms of CECE, Brier score and
average per-bin calibration error difference ∆CE between Tc and To/Td. All models
are similarly well-calibrated on the classification task. The calibration similarity
across splits is higher for DAE compared to the other methods. Metrics and confidence
are measured in %. 84

4.6 Ablation study on MNIST2,7 w.r.t. the loss terms in L̂ controlled by hyperparameters
λi (see Eq. (4.2) and Eq. (4.5)): The respective loss histograms are shown in Fig. 4.9.
These results clearly indicate that the combination of all loss terms yields the highest
dataset shift robustness, with slight degradation in classification performance. Without
the adversarial loss term (i.e., λ1 = 0), the models express significant robustness
deficiencies and the two cases without LBCE lead to unusable results, as t becomes 0.
Note that the F1 scores can deviate from previous results in Table 4.4, as there the best
models were selected based on AUROC scores on Sc . If the F1 score is a concern, we
suggest filtering models whose decision boundary t has converged to a constant value,
and subsequently select the best model based on AUROC. 86

5.1 Three step experiment setup concerning classification (Sc), contextual outlier exposure
(So) and dataset shift exposure (Sd1 and Sd2): The two sets of inlier/rest classes within
a split are denoted the first letter of the original dataset. The training split St and test
splits (Sc, So, Sd) share the same inlier classes for a given dataset. The contextual
outlier split So and dataset shift splits Sd provide the rest classes from the same dataset
and an unrelated dataset, respectively. Note that the sets e and a refer to the classes of
EMNIST and ATIS. 96

5.2 Image classification results on the different test splits: The best performing score is
highlighted in boldface for each split. Weak performances are highlighted in gray
within each split when the score deviates more than 10 percentage points from the
best score. The Informer architecture provides competitive classification results while
being most robust to outliers/dataset shift. 97

156

List of Tables

5.3 Results on text datasets with the same score highlighting as in Table 5.2: Similar to
the results on image datasets, Informer provides competitive classification without the
robustness deficiencies of the other baselines. 97

5.4 Representative samples and their reconstructions from each split, expressing either
min Ut , max Ue or max Ua. The samples clearly show that different uncertainty types
can be captured by the Informer architecture. 99

6.1 Number of toxic samples for each of the four test splits. Note, that each test split
shares the same 10000 non-toxic samples. 104

6.2 Performance of MLP, MIMO, ATA and OCA on test splits toxic-only, threat, insult
and identity-hate. We consider the AUPR and the F1-Score (both with respect to the
"toxic" class). As a reference for the base rate dependent metrics, we also report the
expected scores for a random classifier (BASE) with uniform probabilities p ∼ U[0, 1]. 105

6.3 The available extractors with their dependencies and machine learning (ML) ap-
proaches. The features for each extractor were manually engineered by accounting
domain experts. 111

6.4 The performance of document-level classifiersmeasured in terms of F1 score, precision,
and recall. The multi-class classifiers are evaluated in terms of the respective macro
scores. Note that the imbalance of the document types within the dataset causes a
significant drop in F1 score for the document type extractor, due to the macro averaging.112

6.5 The performance of entity extractors in terms of accuracy as a "hit-or-miss" metric. . 112

157

Publications

This thesis is based on the following chronologically ordered publications published between 2020
and 2022:

[1] M. Lübbering, R. Ramamurthy, M. Gebauer, T. Bell, R. Sifa and C. Bauckhage,
“From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially
Trained Auto Encoders”, International Conference on Artificial Neural Networks,
Springer, 2020.

[2] M. Lübbering, M. Gebauer, R. Ramamurthy, R. Sifa and C. Bauckhage,
“Supervised Autoencoder Variants for End to End Anomaly Detection”,
Pattern Recognition. ICPR International Workshops and Challenges, 2021.

[3] M. Lübbering, M. Gebauer, R. Ramamurthy, M. Pielka, C. Bauckhage and R. Sifa,
“Utilizing Representation Learning for Robust Text Classification Under Datasetshift”,
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen", 2021.

[4] M. Lübbering, M. Pielka, K. Das, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis.”,
ESANN, 2021.

[5] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“Decoupling Autoencoders for Robust One-vs-Rest Classification”,
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2021 1.

[6] R. Rajkumar, M. Lübbering, T. Bell, M. Gebauer, B. Ulusay, D. Uedelhoven, T. Dilmaghani,
R. Loitz, M. Pielka, C. Bauckhage and R. Sifa,
“Automatic Indexing of Financial Documents via Information Extraction”,
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021.

[7] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
Bounding open space risk with decoupling autoencoders in open set recognition,
International Journal of Data Science and Analytics (2022) 1.

[8] M. Lübbering, M. Pielka, I. Henk and R. Sifa,
“Datastack: unification of heterogeneous machine learning dataset interfaces”,
2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW),
IEEE, 2022 66.

[9] M. Lübbering, M. Gebauer, R. Ramamurthy, C. Bauckhage and R. Sifa,
“From Open Set Recognition Towards Robust Multi-class Classification”,
Artificial Neural Networks and Machine Learning – ICANN 2022, 2022.

159

	1 Introduction
	1.1 Optimization of Deep Neural Networks
	1.2 Introduction to Outlier Detection
	1.2.1 Evaluating Outlier Detection and Open-set Recognition Systems
	1.2.2 Traditional Outlier Detection Methods
	1.2.3 Deep (Supervised) Outlier Detection
	1.2.4 Relationship Between Outlier Detection, Imbalanced Classification, Open Set Recognition, One-class Classification, Novelty Detection, and One-vs-rest Classification

	1.3 Autoencoders From a Manifold Learning Perspective
	1.4 Robust multi-class classification
	1.5 Outline of This Work

	2 Design of the Experiment Environment
	2.1 Datastack: Unification of Heterogeneous Machine Learning Dataset Interfaces
	2.1.1 Design Choices
	2.1.2 Implementation
	2.1.3 Use case: Dataset Processing Pipeline for Outlier Detection
	2.1.4 Conclusion and Outlook

	2.2 MLgym: Architectural Proposal for Reproducible, Standardized Deep Learning Research
	2.2.1 Related Work
	2.2.2 Architectural Overview
	2.2.3 System Design
	2.2.4 Representative Research Use Case
	2.2.5 Quo vadis?
	2.2.6 Conclusion and Outlook

	2.3 Conclusion

	3 Supervised Outlier Detection with Deep Neural Networks
	3.1 Introduction
	3.2 Autoencoders for Outlier and Novelty Detection
	3.3 Related Work
	3.4 Evaluation
	3.5 From Imbalanced Classification to Supervised Outlier Detection Problems
	3.5.1 Adversarially Trained Autoencoders
	3.5.2 Experiments and Results
	3.5.3 Conclusion

	3.6 Supervised Autoencoder Variants for End-to-end Anomaly Detection
	3.6.1 Supervised Autoencoders
	3.6.2 Adversarial Supervised Autoencoders
	3.6.3 Experiments and Results
	3.6.4 Conclusion

	3.7 Summary and Outlook

	4 Open Set Recognition
	4.1 Introduction
	4.2 Related Work
	4.3 Decoupling Autoencoders
	4.4 Classification Concern Conflicting with Robustness
	4.5 Achieving Bounded Open Set Recognition with Autoencoders
	4.6 Towards Adversarial Robustness and Local Stability
	4.7 Experiments and Results
	4.7.1 Selected Baselines
	4.7.2 Evaluation Approach
	4.7.3 Datasets
	4.7.4 Results

	4.8 Conclusion

	5 From Open Set Recognition Towards Robust Multi-class Classification
	5.1 Introduction
	5.2 Related Work
	5.3 Informer
	5.4 Evaluation Approach
	5.5 Results
	5.6 Conclusion

	6 Applications
	6.1 Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis
	6.1.1 Toxicity Detection Dataset
	6.1.2 Experiments
	6.1.3 Results
	6.1.4 Challenges of Encoding Toxicities
	6.1.5 Conclusion

	6.2 Deployment Case Study: Automatic Indexing of Financial Documents via Information Extraction
	6.2.1 Extraction Service
	6.2.2 Experiments and Results
	6.2.3 Conclusion and Outlook

	7 Conclusion
	7.1 A General Summary
	7.2 Outlook

	A Appendix
	A.1 From Open Set Recognition Towards Robust Multi-class Classification
	A.1.1 Derivation of Informer Component Interdependence Induced by Softmax
	A.1.2 Derivation of Uncertainty Computation Within Uncertainty Estimation Module

	A.2 MLgym exemplary pipeline configuration

	Bibliography
	List of Figures
	List of Tables
	Publications

