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1. Introduction

B-cell neoplasms are the clonal expansion of the various stages of B lymphocytes in bone

marrow, blood, or other tissues. The term mature B-cell neoplasm is used to describe

biologically and clinically heterogeneous diseases of the B-lymphatic system. B-cell

neoplasms account for over 85%of non-Hodgkin lymphomas (Armitage andWeisenburger,

1998; Perry et al., 2015), making it the most common type of lymphoma. B-cell

neoplasms are not only the most common type but also a very heterogenous group of

lymphoproliferative malignancy with different behavior patterns and treatment responses.

The WHO classification describes 34 different entities (Swerdlow et al., 2017) based on

histology and immunophenotype.

Immunophenotyping is a process used to identify cells based on the antigens or

markers present on the cell's surface. These markers are generally cell surface proteins

involved in cell functions such as adhesion, signaling, and cell-cell communication.

The analysis process involves using antibodies directed against the surface markers to

differentiate cells of interest. Antibody array (Belov et al., 2001) or flow cytometry (Gedye

et al., 2014) can be used for immunophenotyping. Flow cytometry (FCS) is a high-

throughput technique with a well-established role in diagnosing mature B-cell neoplasms.

Flow cytometry analyzes single cells or particles as they pass single or multiple lasers

while suspended in a buffered solution (Figure 1). Each particle is analyzed for visible

light scatter and one or multiple fluorescence parameters. A detector in front of the light

beam measures forward scatter (FS), and several detectors to the side measure side

scatter (SS). Forward scatter can indicate the relative size of the cell, while side scatter

indicates the internal complexity or granularity of the cell. In addition to the light scatter,

fluorescence measurements are recorded by staining the samples with fluorescently

conjugated antibodies. Multi-parameter flow cytometers can simultaneously and rapidly

quantify numerous cell surface markers using a multi-laser system (Shapiro, 2005). Today,

it is a critical step in both research and clinical decision-making for leukemia (Henel and
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Schmitz, 2007; Craig and Foon, 2008) and other hematological diseases.

Lasers

Cells in 
suspension

Fluorescence detector

FS and SS detector

Sheath 
fluid

Figure 1: Flow cytometer. A schematic representation of flow cytometry is shown here. The stained cells
in suspension are passed through the instrument and are focused into a single file using sheath fluid. The
lasers illuminate the cell surface, causing emissions from the fluorescent dyes that are then captured by
specific wavelength detectors.

When more than one fluorochrome is used to stain cells, as in multi-parameter

flow cytometry, one fluorochrome may add brightness to the others, creating significant

background noise and affecting the accuracy of the signal. This phenomenon is called

spillover (Figure 2). Spillover occurs due to the physical overlap among the emission

spectra of fluorochromes, which can activate different detectors other than the ones

intended for the given wavelength. This background noise needs to be corrected before

the data can be analyzed.
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Figure 2: Spillover. Example of FITC spillover into the PE channel.

The process of correcting for fluorescence spillover is called compensation.

Compensation removes the signal from a given fluorochrome from all adjacent channels

where it is also detected. Compensation is usually performed as a control step once the

FCS panel has been designed. First, spectral overlap values are measured using single

fluorochrome beads or single-color controls and stored as a matrix. Next, the spectral

overlap values are used to calculate the compensation matrix that is applied to correct

each color's spectral overlaps into every detector.

Once the compensation matrix is computed and set up, the cytometer uses the

calculated compensation matrix to correct spillovers in subsequent measurements.

1.1 Role of flow cytometry in the diagnosis of B-cell neoplasms

The fundamental role of flow cytometry in diagnosing B-cell neoplasms is lineage

assignment and the distinction between neoplastic and non-neoplastic B-cells. While

specific cell-lineage markers such as CD19, CD20, CD22, and CD79 (Craig and Foon,

2008) are used to identify B-cells, the maturation state can be distinguished using surface
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immunoglobulin light chains that are expressed in most of the mature B-cells. Once the

light chain markers are evaluated along with the necessary additional markers to diagnose

mature B-cell neoplasm, FCS can further be used to sub-classify and identify the correct

subtype of the disease by evaluating additional markers such as CD5, CD10, and others.

Since FCS allows for rapid quantification of cell surface markers, it can speed up the

diagnosis, especially for aggressive subtypes such as mantle cell lymphoma (MCL) that

may benefit from immediate treatment.

1.1.1 FCS Data analysis

The recorded scatter, and fluorescence intensities in a cytometer are stored as a data

matrix using the flow cytometry standard (FCS, 1990). The analysis of the stored

intensity values to arrive at an accurate diagnosis involves identifying and quantifying cell

populations of interest. The cell populations are identified in terms of expression profiles

of specific markers that are characteristic of a given disease subtype.

Identifying cell populations of interest is mainly done manually through sequential

gating in 2D scatter plots (Figure 3). A typical sequence of steps to identify B-cell neoplasm

would include excluding debris and doublets (aggregates of cells) using the scatter values.

Next, the side scatter, along with a human leukocyte marker such as CD45, is used to

identify leukocytes that are side scatter negative and CD45 positive (SS-/CD45+). The

gated leukocytes are further classified as B-cells using a typical B-cell marker such as

CD19. Further, sub-classification is done by gating specific B-cell clones such as CD5+

cells or evaluating Kappa and Lambda light chains. Figure 3 shows a manual gating

scheme with the various gating plots.
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Figure 3: Manual gating. A series of 2-dimensional scatter plots show the gating scheme for a B-cell
neoplasm sample. Typical gate definitions manually defined with the various quantified populations can be
seen in these plots.

While manual gating is the gold standard for diagnosis, it is a time-consuming and

subjective process (Bendall and Nolan, 2012; O’Neill et al., 2013). The process of drawing

gates using the threshold values for each pair of markers is based on experience and

can vary drastically. Furthermore, as the number of markers measured increases, the

number of 2-dimensional scatter plots to be gated and analyzed also increase rapidly,

making manual gating impractical.

Several computational methods for gating have been developed that are able to reach

expert accuracies (Weber and Robinson, 2016; Aghaeepour et al., 2013). However, these

approaches still require expert supervision to adjust the automatic gate definitions between
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multiple files, and they do not scale well computationally with the number of samples.

Furthermore, while these methods can generate simple gate definitions, they cannot be

used for differentiating multiple subtypes of hematological disorders (Aghaeepour et al.,

2013). The gated cells must still be manually analyzed and quantified to arrive at the

diagnosis. Thus, there is a need for completely automated methods that can analyze

large amounts of data generated without any expert supervision and classify the data into

multiple subtypes with high accuracy.

1.2 Deep learning

Deep learning is a subclass of machine learning that can understand and manipulate large

amounts of data. Deep learning allows models composed of multiple processing layers to

learn data representations with multiple levels of abstraction (LeCun et al., 2015). These

methods are good at discovering intricate structures in high-dimensional data necessary

for classification. In recent years, deep learning architectures such as deep convolutional

neural networks (CNN) have been used successfully for different classification tasks on

medical imaging data (Greenspan et al., 2016; Shen et al., 2017). The CNN is inspired by

the organization of the animal visual cortex and is designed to learn spatial relationships

in the data. It is designed to process data containing grid patterns, such as images.

A schematic representation of a CNN is shown in Figure 4. The building block

of a CNN architecture is the convolution layer which performs the feature extraction

from input images using linear (convolution) and non-linear (activation) operations. The

convolution operation involves applying multiple “kernels,” which are small pre-defined

matrices, across the input to generate a feature map. The feature maps represent different

characteristics or patterns of the input image; different kernels can, thus, be considered

as different feature extractors. The convolution layers are followed by a pooling layer that

allows the downsampling of the feature maps. The pooling layers provide dimensionality

reduction of the feature maps and thus reduce the number of parameters the network

needs to learn. The final convolution or pooling layer's output feature maps are typically

flattened and processed by one or more fully connected layers, also known as dense

layers. The dense (fully connected) layers map the features extracted by the convolution
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layers to the final outputs of the network, such as the probabilities for each class in

classification tasks.

nxn Input image Convolution 1 Pooling Convolution 2 Pooling Flatten Dense layers Output

Cat

Dog

Bird

Figure 4: CNN schematic. A schematic representation of a convolutional neural network is shown here.
The input layer is processed by the hidden layers consisting of convolution, pooling, and fully connected or
dense layers. The output layer generates softmax probabilities for a given number of classes.

The feature extraction capabilities of the CNN make it well-suited for recognizing

patterns in images such as portrait photos of dysmorphic patients (Gurovich et al., 2019),

MRI (Abdelaziz Ismael et al., 2020; Taheri Gorji and Kaabouch, 2019), histology (Matek

et al., 2019) and others.

Identifying cell populations and classifying B-cell neoplasms from FCS data can be

defined as a pattern recognition problem for a CNN. While the FCS data is not an image,

the fluorescent intensities can be represented as an image using algorithms based on

unsupervised learning techniques such as self-organizing maps (Kohonen, 1990). By

generating an image representation of the FCS data, the pattern recognition capabilities

of the CNN can be harvested to analyze and classify FCS data with high accuracy.

1.3 Challenges

While the ever-increasing number of parameters that can be measured with modern

devices, a widely adopted flow cytometry standard for data by all manufacturers, and the

possibility of data anonymization along with the need for fully automated data analysis

make FCS ideal for deep learning, other aspects of flow cytometry and the diagnostic

process creates unique challenges that need to be addressed.
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The flow cytometry panel design across various laboratories varies depending on

the markers to be analyzed and the cytometer available. In many cases, the number

of markers needed to be analyzed exceeds the number the cytometer can measure in a

single run. Standard practice is to aliquot a sample into multiple tubes, which often includes

a set of shared or backbone markers. (Van Dongen et al., 2012) This process is standard

for modern clinical diagnosis of FCS data, especially when immunophenotyping leukemia

and lymphoma. Furthermore, the choice of markers depends on the diagnostic workflow

and is not standardized. These differences result in different antibody panels (FCS panels)

being used in different laboratories. Figure 5 shows three different FCS panels to diagnose

the same B-cell neoplasm subtypes. While all three panels have similar markers that are

measured, each panel has a different number of aliquots per sample, markers associated

with different fluorochromes, and, more significantly, markers that are only measured in

one panel and not the other.

C) Panel 3

A) Panel 1 B) Panel 2

Figure 5: FCS panels. Three different FCS panels used to evaluate B-cell neoplasms are shown here.
Panels 1 and 2, shown in A) and B), illustrate changes in panels used in the same laboratory over time. Both
panels measure the same markers; however, two different cytometers were used, resulting in a different
number of tubes per sample. Furthermore, the markers are not in the same order between the two panels
and are associated with different fluorochromes (e.g., CD79b is associated with PC5.5 in panel 1, whereas
it is associated with FITC in panel 2). C) shows a third FCS Panel from a different laboratory. Although the
same number of aliquots are used per sample, the markers are associated with different fluorochromes and
are in a different order compared to panel 1. Additionally, panel 3 has new markers (CD43 and CD200) and
is missing markers (IgM and CD45) compared to panel 1 (shown in red). Further, markers like CD10 and
CD11c (shown in yellow) are measured in different tubes compared to panel 1.

Such changes in the underlying FCS panel result in datasets with different dimensions
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(panels 1 and 2) or datasets with marker discrepancies (panels 1 and 3). In this scenario,

a model trained on data from panel 1 cannot be used on data from panel 2 or 3. A new

model would have to be trained afresh for each panel, which would require large amounts of

training data typically unavailable in routine diagnostics. Thus, any artificial intelligence (AI)

model used for diagnostic prediction with FCS data must be robust and adapt to multiple

FCS panels with fewer training data.

1.4 Transfer learning

In order to adapt and generalize existing models to multiple datasets and tasks, transfer

learning is a sought-after method. Transfer learning (TL) is a technique to improve the

performance of a new task by transferring knowledge from a related task that has already

been learned. (Weiss et al., 2016) The new task (target task) to be learned usually has

a smaller dataset than the base data with which the original task (base task) was learned

(Figure 6).
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Figure 6: Transfer Learning. A schematic representation of the transfer learning process. Dataset 1 is
the larger base data on which task 1 (base task) is learned. The target dataset, dataset 2, is usually much
smaller than the base data and is used to learn a related task 2 (target task) by utilizing the knowledge from
task 1.

The idea behind transfer learning is to pick up the training from where it was left off

in the base model. This allows for a faster convergence for the loss function and higher

performance with much less training data. The basic steps of transferring the already

learned knowledge involve:

1. Developing a model for the chosen base task using a large dataset or selecting an

available pre-trained model. The model must have learned the features sufficiently.

2. The base model can now be used as a starting point for the second task. Depending

on the modeling technique, this may involve using all or parts of the base model.

3. Refine and tune the target model on the input data available for the target task.

The advantages of transfer learning are that the models achieve a higher start - initial

performance, a higher slope - the rate of improvement, and a higher asymptote - converge
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faster to the optimal solution (Torrey and Shavlik, 2009). In cases where the problem to

be solved does not have enough data to train a new model, transfer learning can enable

models to be trained, which would otherwise not be possible. Furthermore, if the base

model is trained on a large and general enough dataset, this model will effectively serve

as a generic model that can be adapted to multiple related datasets and tasks.

1.5 Goals of the study

The main goal of this study is to create a fully automated AI model to classify FCS data

directly into multiple diagnosis labels with expert-level accuracy. Next, we aim to extend

and adapt the AI model to multiple datasets and FCS panels with fewer training data.

Further, we make the AI's results interpretable and reliable by visualizing the AI's decision

for a given prediction. Lastly, we also identify and flag samples that may need further

manual analysis to achieve the correct diagnosis and provide valuable insights for such

samples through our saliency analysis.

This study provides a “proof of concept” that shows it is possible to create an AI that

can achieve expert-level accuracy in classifying B-cell neoplasms from FCS data without

the need for manual gating or supervision. Furthermore, we create a pipeline that allows

such models to be adapted to different datasets resulting from changes to the underlying

FCS panels. By allowing models to adapt quickly to any changes, we make it possible

for these models to move from a proof-of-concept stage to being implemented in routine

diagnostics settings. We demonstrate that transfer learning makes it possible to train the

newermodels with far fewer training samples and achieve a higher learning rate and overall

performance.

The subsequent chapters detail the methods used to train the models and our transfer

learning process. The results are critically analyzed to show the crucial role of transfer

learning and FCS data merging.
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2. Material and Methods

Themethods and results discussed in the subsequent sections are published in two papers

listed below. This section describes the materials and methods in detail.

• Zhao, M., Mallesh, N., Höllein, A., Schabath, R., Haferlach, C., Haferlach, T., Elsner,

F., Lüling, H., Krawitz, P., & Kern, W. (2020). Hematologist-Level Classification of

Mature B-Cell Neoplasm Using Deep Learning on Multiparameter Flow Cytometry

Data. Cytometry. Part A : the journal of the International Society for Analytical

Cytology, 97(10), 1073-1080. https://doi.org/10.1002/cyto.a.24159.

• Mallesh, N., Zhao, M., Meintker, L., Höllein, A., Elsner, F., Lüling, H., Haferlach,

T., Kern, W., Westermann, J., Brossart, P., Krause, S. W., & Krawitz, P. M.

(2021). Knowledge transfer to enhance the performance of deep learning models

for automated classification of B cell neoplasms. Patterns (New York, N.Y.), 2(10),

100351. https://doi.org/10.1016/j.patter.2021.100351.

2.1 Material

Five FCS datasets were acquired from four different laboratories and are described in detail

below. Peripheral blood, bone marrow, or pleura samples were collected from patients

with suspected leukemia in a routine diagnostic setting. All samples were prepared and

stained according to the flow cytometry protocol of the respective laboratory and analyzed

on different Navios cytometers (Beckman Coulter, Miami, Florida). All five datasets

include the following eight subtypes of B-cell neoplasm: chronic lymphocytic leukemia

(CLL), monoclonal B-cell lymphocytosis (MBL), marginal zone lymphoma (MZL), mantle

cell lymphoma (MCL), prolymphocytic leukemia (PL), follicular lymphoma (FL), hairy cell

leukemia (HCL), lymphoplasmacytic lymphoma (LPL), and healthy (normal) samples. The

number of samples per class in each dataset is detailed in Table 1.
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Table 1: Number of samples per class in each dataset

MLL 9-color MLL 5-color Berlin Bonn Erlangen

CLL 4438 2277 420 96 72
MBL 1614 268 - - 16
MCL 313 117 50 12 21
PL 588 200 - - -
LPL 726 130 3 6 9
MZL 1106 44 15 5 10
FL 246 142 49 20 10
HCL 225 290 54 13 2
normal 11366 5836 2182 404 107

Data distribution among the different classes for each dataset is shown here. The distribution reflects the
presumable incidence for the listed subtypes. Only data samples with precise diagnosis, obtained with
additional tests where necessary, were included. Further, only samples with the required panels (B1 and B2)
are shown here for the Erlangen dataset. CLL and MBL are merged into a single class for classification.

2.1.1 MLL 9-color panel

FCS data was obtained from 20,622 routine diagnostic samples from patients with

suspected B-cell neoplasm (B-NHL) that had been analyzed between January 01, 2016,

and December 31, 2018, at Munich Leukemia Laboratory (MLL). For the assessment of B-

NHL, a panel consisting of three 9-color combinations of monoclonal antibodies was used

in all samples to analyze the surface expression of 21 antigens. The detailed antibody-

color combination is reported in Table 2. In the following, we refer to this dataset as the

MLL9F panel.
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Table 2: Antibody-color combinations for MLL 9-color panel

APCA750 KrOr FITC PE ECD PC5.5 PC7 APC PacBlue

Tube 1 CD19 CD45 FMC7 CD10 IgM CD79b CD20 CD23 CD5
Tube 2 CD19 CD45 Kappa Lambda CD38 CD25 CD11c CD103 CD22
Tube 3 CD19 CD45 CD8 CD4 CD3 - - CD56 HLA-DR

FCS panel used to acquire the MLL 9-color dataset. Colors are shown in the header row, and antibodies are
shown for each tube. Further, forward scatter (FS) and side scatter (SS) were measured in all tubes.

2.1.2 MLL 5-color panel

A 5-color dataset consisting of 10,215 samples was acquired at MLL between January 1,

2011, andDecember 31, 2012. For the assessment of B-cell neoplasms, a panel consisting

of seven 5-color combinations of monoclonal antibodies was used in all samples to analyze

the surface expression of 20 antigens. A detailed antibody-color combination is given in

Table 3. We refer to this dataset as the MLL5F panel.

Table 3: Antibody-color combinations for MLL 5-color panel

FITC PE ECD PC5.5 PC7

Tube 1 IgG1a IgG1a IgG1a IgG1a CD45
Tube 2 CD79b CD5 CD19 CD20 CD45
Tube 3 FMC7 IgM CD19 CD10 CD45
Tube 4 CD103 CD23 CD19 CD22 CD45
Tube 5 Kappa Lambda CD19 CD38 CD45
Tube 6 CD8 CD4 CD3 CD56 CD45
Tube 7 - CD11c CD19 CD25 CD45

FCS panel used to acquire the MLL 5-color dataset. Further, forward scatter (FS) and side scatter (SS) were
measured in all tubes. Tube 1 is used for isotope control and is not considered for further processing.
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2.1.3 Bonn panel

The third dataset was obtained from the University Hospital Bonn, consisting of 556

samples measured between January 1, 2018, and December 31, 2018. A panel composed

of two 9-color combinations of monoclonal antibodies was used to analyze 16 antigens’

surface expression for B-NHL assessment. Detailed FCS panel information is given in

Table 4.

Table 4: Antibody-color combinations for Bonn panel

FITC PE ECD PC5.5 PC7 APC AA700 AA750 PB

Tube 1 FMC7 CD23 CD19 CD11c CD200 CD79b CD5 CD43 CD20
Tube 2 Kappa Lambda CD19 CD10 CD22 CD103 CD25 CD38 CD20

Antibody-fluorochrome combinations used in the Bonn panel. Additionally, forward scatter (FS), and side
scatter (SS) were measured in all tubes.

2.1.4 Berlin panel

For the fourth dataset, an 8-color panel consisting of 2,773 routine diagnostic samples

from patients with suspected B cell neoplasms analyzed between January 1, 2016,

and December 31, 2018, was obtained from the Berlin Hematology laboratory. The B-

NHL assessment panel consisted of four 8-color combinations of monoclonal antibodies.

Table 5 details the FCS panel used.
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Table 5: Antibody-color combinations for Berlin panel

FITC PE ECD PC5.5 PC7 APC PB KrOr

Tube 1 IgG IgG IgG IgG IgG IgG IgG CD45
Tube 2 Kappa Lambda CD19 CD5 CD38 CD10 CD20 CD45
Tube 3 FMC7 CD23 CD19 CD3 - CD79 CD22 CD45
Tube 4 CD43 IgM CD19 CD25 CD11C CD103 CD5 CD45

Antibody-fluorochrome combinations used in the Berlin panel. Tube 1 is used as isotope control and is not
considered in the workflow. Forward scatter (FS), and side scatter (SS) were measured in all tubes.

2.1.5 Erlangen panel

A fifth dataset was obtained from the University Hospital Erlangen. The dataset consisted

of 1,626 routine diagnostic samples from patients with suspected B-NHL analyzed between

January 1, 2014, and July 31, 2020. The assessment panel consisted of a screening panel

(B1), with one ten-color combination of monoclonal antibodies used to analyze the surface

expression of nine antigens. Next, a secondary panel (B2) was used to identify the B-NHL

subtype where necessary. Finally, for the identification of HCL (hairy cell leukemia), a third

panel (B3) was used. All three panels are described in detail in Table 6. We only consider

the 247 samples with B1 and B2 panels for this study.

Table 6: Antibody-color combinations for Erlangen panel

FITC PE ECD PC5.5 PC7 APC APC750 PB KrOr

Tube B1 Kappa Lambda CD3 CD20 CD19 CD10 CD5 CD23 CD45
Tube B2 CD38 CD79b - CD11c CD19 CD103 CD43 HLA-DR CD45
Tube B3 Kappa Lambda CD3 CD11c CD19 CD103 CD25 HLA-DR CD45

Antibody-fluorochrome combinations used in the Erlangen panel. B1 is used as the screening panel, B2 for
subtype identification, and B3 is the HCL panel.
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All the markers and their functionality, as well as the fluorochromes used, are detailed

in the supplementary information (Tables 12 and 13).

2.2 Methods

The study is divided into two phases. In the first phase, an automated AI model is trained

on a single FCS dataset and is shown to achieve expert-level accuracy in classifying B-

cell neoplasms (Zhao et al., 2020). The study's second phase extends the AI model to

various FCS panels and datasets using transfer learning (Mallesh et al., 2021). This

section describes the workflow, model architectures, and training procedure, along with

all the analyses performed in both phases of the study.

2.2.1 System requirements

All analyses were performed with Python (Van Rossum and Drake, 2009) version 3.6 and

Tensorflow (Abadi et al., 2016) version 1.12. All models were generated and trained using

Tensorflow and Keras (Chollet et al., 2015) in the backend. An NVIDIA GPU is preferable

for running all computations. We used a Tesla P40 GPU with 24 GB GDDR5X memory

on an Ubuntu 16.04 Linux machine. In addition, at least 500 GB of HDD storage for the

entire dataset is necessary. The computation time required for analysis depends on the

size of the dataset. For our largest dataset, approximately 32 hours were required to train

the model on the specified GPU.

2.2.2 Data

The five FCS datasets described above, along with ground truth diagnosis labels, were

used to train the models and perform all analyses. All diagnoses were verified with

additional tests from histology, cytomorphology, and in situ fluorescence hybridization.

Furthermore, only cases obtained from peripheral blood or bone marrow aspirate with

unambiguous labels were used to train the models. All FCS data were stored in the FCS

2.0 format (Dean et al., 1990), and the compensated FCS 2.0 data segment was used in

the analysis.
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Further quality control was performed by visually inspecting the channel plots to detect

issues in machine calibration and compensation in the dataset. Next, the scaling used for

each marker channel was checked to ensure all samples had identical parameters: PnG-

scaling (linear gain with a factor) was used for SS and FS, and PnE-scaling (exponential

scaling) for all color channels. No re-linearization or additional transformation was applied

to the data. The channel intensities ranged between 0 and 1000, the max range defined

by PnR. As the SOM and CNN weights are initialized with random values between 0 and

1, the channel intensity ranges were rescaled by a factor of 0.001 for an efficient start of

the training process. However, this rescaling did not impact the data distribution and was

only used to correct the intensity range to “0” and “1” for computational speed-up of the

training process.

Additionally, the number of events acquired per tube for each dataset was examined

and is described in Table 7.
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Table 7: Event counts

Tubes Mean SD Max

MLL9F
Tube 1 48308.38 4788.90 50000
Tube 2 46298.75 7544.50 50000
Tube 3 48784.08 3936.46 50000

MLL5F

Tube 1 49942.99 4885.04 500000
Tube 2 49993.30 4901.87 500000
Tube 3 49958.13 4819.49 500000
Tube 4 49978.72 4694.58 500000
Tube 5 49903.96 4916.55 500000
Tube 6 49942.94 4843.74 500000
Tube 7 49969.46 5848.06 500000

Berlin

Tube 1 28995.20 4365.79 30000
Tube 2 29261.80 3669.18 30000
Tube 3 29320.63 3551.20 30000
Tube 4 80920.36 25404.84 100000

Bonn Tube 1 87525.58 24397.48 100000
Tube 2 85555.61 27039.23 100000

Erlangen
Tube B1 86449.25 70766.70 250000
Tube B2 81817.47 43784.52 125000
Tube B3 82169.85 84764.58 226050

The mean number of events acquired per tube in each panel, the standard deviation amongst the samples,
and the maximum events recorded per tube are reported here.

Base dataset:

The MLL9F panel was used as the base dataset to train a base model on which all initial

evaluations were performed during the first phase of this study.

Target datasets:

The other four datasets: MLL5F, Bonn, Berlin, and Erlangen panels, were used later as

target datasets to extend and adapt the base model to different FCS panels using transfer

learning. These datasets were used to train the target models in the study's second phase.
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2.2.3 Workflow

The general workflow is shown in Figure 7. The FCS data was converted into a low-

resolution image using a self-organizing map (SOM). The generated SOM node weights,

which are n-dimensional vectors of the original FCS data arranged on a two-dimensional

grid, were used as input to the CNN that generates class predictions.

Class predictions

Train CNN model

CNN training

Generate a 32x32xn SOM image 
for every FCS file

SOM training

Figure 7: Workflow. A workflow diagram summarizing the steps for automated class prediction.

2.2.4 Phase 1 - AI model for classification of B-cell neoplasms

This section describes the base model generation and training. The trained model can

classify the FCS data into eight classes: chronic lymphocytic leukemia and its predecessor
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monoclonal B-cell lymphocytosis (CLL/MBL), marginal zone lymphoma (MZL), mantle

cell lymphoma (MCL), prolymphocytic leukemia (PL), follicular lymphoma (FL), hairy cell

leukemia (HCL), lymphoplasmacytic lymphoma (LPL), and normal.

Self-organizing map (SOM)

A SOM is a network of interconnected nodes, ordered in a two-dimensional topology,

which can be used for unsupervised clustering of high-dimensional data (Kohonen, 1990).

SOMs were used as a method to reduce the dimensionality of the data while preserving its

spatial structure. The SOM model was adapted from an implementation using Tensorflow

for GPU-based training (Gorman, 2019). For each sample, data from individual tubes

were independently transformed into separate SOMs. All FCS events were mapped onto

a 32x32 grid of nodes. Each node in the SOM is associated with a “weight” vector

representing the n-dimensional FCS data.

The mapping of events onto the SOM nodes was done in batches to increase the

throughput of the training algorithm by leveraging efficient vectorizations (Fort et al., 2001).

Euclidean norm was used to calculate the distance between input vectors and single SOM

nodes. A radius parameter was used to set the width of the Euclidean neighborhood

function for calculating weight updates. An initial assessment of training parameters

showed that a higher learning radius correlated with lower topographic error (TE) and

higher mean quantization error (MQE), which are favorable for good training. MQE is

the average Euclidean distance of each input to their best matching node; it measures the

quality of clusters. TE describes the proportion of input entries where the first and second

best matching nodes are non-adjacent (Kiviluoto, 1996). Thus, a lower TE conserves the

maps’ spatial relationship and neighborhood quality, while a higher MQE produces better

clusters. A larger number of epochs only played a minor role in increasing MQE after

a certain threshold. Based on these initial assessments, training parameters - learning

radius, number of epochs - were set, and SOMs were generated for each tube in a given

sample.

Furthermore, individual SOM transformation used pre-initialized weights from a

reference SOM trained on a small subset of samples. The reference SOM was generated
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using a random sample from each diagnostic class in the training dataset, with at least 20%

infiltration - the proportion of pathological events amongst the total events - reported in the

manual analysis. The selected samples were then used collectively to train the reference

SOM with random weight initialization for each tube.

The reference SOMs were trained using 10 epochs and an initial radius of 24, linearly

decreasing to 2 at the end of training. A toroidal neighborhood function was used to avoid

edge artifacts caused by a planar map (Mount and Weaver, 2011). Individual SOM for

every sample was generated using the reference SOM node weights and four training

epochs with a starting radius of 4, linearly decreasing to 1.

Additionally, the performance of various SOM grid sizes, such as 32x32 and 10x10,

was compared. The 32x32 grid achieved a higher classification score (F1 score of 0.93

compared to 0.88) with only marginal performance penalties in the SOM training and thus

was chosen as the base SOM size for further analysis. Larger SOM sizes, such as 48x48,

were not attempted because of performance considerations.

The generated SOMs serve as low-resolution images of the FCS data. Figure 8

shows an example visualization of the generated SOM images. The three markers

CD45/SS/CD19 shown here act as the three color channels of the image. The images

here are limited to three colors for ease of visualization. The SOMs can be considered an

image with “n” color channels corresponding to the number of markers measured in the

FCS panel.
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Figure 8: SOM images. Examples of SOM images with three markers/color channels - CD45 (red), SS
(green), and CD19 (blue) are shown here. Nodes with cells that are CD45+ SS- CD19+ appear as magenta
in these images.

As aQC step, the generated SOMswere compared to self-organizing maps generated

by previously published algorithms such as flowSOM (Van Gassen et al., 2015). FlowSOM

is an automated clustering algorithm that uses self-organizing maps and minimal spanning

trees to cluster and visualize events. While the minimal tree clustering allows visualizing

the clusters of different cell types, it does not yield an image-like representation required

to train the CNN.

We compared both SOMs by using a random selection of 5 samples from each of

CLL, MBL, MCL, PL, MZL, LPL, FL, HCL, and normal, a total of 45 samples. As described

before, data were scaled by subtracting the mean and dividing by the standard deviation

of the sample. A SOM was generated for each tube. Quantization error was calculated as

the mean Euclidean distance of each input data point to its closest node on the mean. For

both 10x10 and 32x32 maps, our implementation (flowCAT) achieved similar performance

as the published flowSOM algorithm on the sample data as shown in Figure 9A. In order

to further visualize the behavior of SOM nodes in approximating the input data, trained
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node weights were plotted as scatterplots and compared to the scatter plot of the original

scaled FCS data. Both flowSOM and our SOM preserve the data structure and the existing

spatial relationship to a similar extent. Figure 9B-D shows the scatterplots obtained for the

markers CD19 and CD103. As seen in the plots, the SOM nodes have a similar spatial

position and structure compared to the FCS data points.

A)

B)

C) D)

Figure 9: SOM validation. Comparison between quantization quality of the SOM generation in flowSOM
and flowCAT. A) The mean quantization error over all samples and tubes for SOMs generated by flowSOM
and the current implementation. B), C), and D) show the scatter plot comparison of the scaled data. B)
shows the original scaled FCS data. In comparison, both flowSOM shown in C) and our SOM implementation
(flowCAT) shown in D) perform a transformation that largely preserves the original distribution.
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Convolutional neural network (CNN)

The CNN architecture is shown in Figure 10. The model generates predictions using

SOM node weights for a number of classes. The weights are initially processed in three

convolutional layers with decreasing filter sizes. A filter is a collection of kernels - the

small pre-defined matrices that extract the features. The number and size of kernels for

each convolutional layer were chosen after multiple rounds of hyperparameter tuning. A

hyperparameter is a parameter that controls the learning process. Hyperparameter tuning

involves choosing a set of optimal parameters for learning the given problem.

The CNN has three convolutional layers followed by a global max pooling layer that

summarizes filters across the spatial dimension of the SOM map. A global max pool layer

was used instead of multiple pooling layers to reduce the number of untrainable parameters

and minimize computational overhead. The removal of intermediate pooling layers did

not affect the model's performance. In order to merge information from multiple tubes,

the convolutional layers and the final max pooling layer were replicated for each tube.

The result from each max pooling layer was concatenated across all tubes and processed

further in the two subsequent dense layers that combine information for class prediction.

Thus, the dense layers in this architecture merge information from all provided tubes.
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Figure 10: CNN architecture. First, the original 32x32 SOMs are toroidally wrapped by two pixels on each
edge to produce a 36x36 input matrix, fed into convolutional layers with 32 4x4 filters. The input from each
SOM is processed individually in a sequence of convolutional layers (conv), followed by a global max pooling
and concatenation layer. This vector is further processed in two fully connected hidden layers, resulting in a
softmax prediction layer.

Training

The base dataset (MLL9F) was split into training and hold-out test sets based on the sample

acquisition timeline. Unlike randomly splitting data into training and test sets, preserving



34

chronological order represents a more realistic situation in a diagnostic workflow. All

samples in the MLL9F panel acquired before July 1, 2018, were used to train the model,

while samples obtained after July 1, 2018, were set aside as a hold-out test set. The hold-

out test set was used to assess the model performance. Further, classification accuracies

were evaluated on a 10% validation split of the training set. They were used to optimize

the network architecture and tune the hyperparameters.

The model was implemented using the Keras framework (Chollet et al., 2015). The

model was trained for 15 epochs using the Adam optimizer (Kingma and Ba, 2015) with

a learning rate of 0.001. Adam is an optimization algorithm that is used instead of the

classical stochastic gradient descent to update the network weights iteratively. Further,

a global weight decay of 5e-6 was applied to all layers. Figure 11 below shows the

training graph with the chosen parameters, the training and validation loss and accuracies

converge well, and there is no over-fitting with the chosen parameters.

Figure 11: Model evaluation curves. The training and validation loss and accuracy over the number of
epochs are monitored to find the optimal number of training epochs to avoid overfitting.



35

Performance metrics

Prediction performance was evaluated using F1 scores. The F1 score is the harmonic

mean between recall and precision and places equal importance on both measures. We

use the F1 score as a performance metric to reflect the real-world diagnostic scenario

where precision and recall are equally important. Precision and recall per class were

defined on the true label of each case. The overall average F1 score is calculated as

the average of the per-class F1 scores given by the formula defined below.

avg f1 =
1

|C|
∑
c∈C

fc, with fc =
Precisionc.Recallc
Precisionc +Recallc

where C is the set of all classes

(2.1)

However, the average or macro F1 score does not account for class imbalance. Thus,

we compute the overall weighted F1 score for the classifier. The weighted F1 score

calculates the average, considering the proportion of samples for each class in the dataset.

The weighted F1 score was calculated as the class-size-weighted average of the per-class

F1 scores.

weighted f1 =
1∑

c∈C sc

∑
c∈C

scfc, with sc as the number of samples in class c (2.2)

We calculate the top 1 accuracy rate of the classifier for the eight classes: chronic

lymphocytic leukemia and its predecessor monoclonal B-cell lymphocytosis (CLL/MBL),

marginal zone lymphoma (MZL), mantle cell lymphoma (MCL), prolymphocytic leukemia

(PL), follicular lymphoma (FL), hairy cell leukemia (HCL), and lymphoplasmacytic

lymphoma (LPL) and healthy controls.

Although the model is trained on samples from the nine classes defined in the

“Materials” section, we consider CLL and MBL as a single class to evaluate the model

performance. MBL is a diagnostic finding that is regarded as a potential preneoplasia and

precursor of CLL in most cases (Swerdlow et al., 2016). Both MBL and CLL, therefore,
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share a similar immunophenotype (CD5+/CD19+/CD20 low/CD23+/Ig low). Accordingly,

we combine MBL and CLL into a single class for classification.

2.2.5 Phase 2 - Extending and adapting the AI model to multiple datasets and

laboratories

As described in chapter 1, the FCS panel can change over time based on the cytometer

used and the diagnostic workflow and goals. Thus, workflows to adapt existing AI models

to multiple FCS panels are essential. This section describes our workflow to extend and

adapt our AI described above. In order to handle the differences in the panels, we merge

multiple tubes per sample into a single large FCS data matrix using the nearest neighbor

(NN) approach. This method assumes that an event (cell) in one tube is identical to its NN

in another tube in terms of the shared markers and can thus be used to impute missing

marker values (Pedreira et al., 2008; Abdelaal et al., 2019). The expression vectors of

all the NNs across tubes are merged, creating a single, high-dimension matrix of cellular

expression across all tubes. NN merging has proven effective as part of classification

pipelines (Van Dongen et al., 2012; Costa et al., 2010), while other merging methods

are better suited for deep profiling (O’Neill et al., 2015). Deep profiling analyzes the

relationship between phenotype and function of the various cell types and thus requires

a more accurate measure of the cell properties. On the other hand, classification tasks

aim to identify the patterns and different cell types present and thus only require a close

estimate of all the cell properties. We use NN merge with TL to extend and adapt our AI

model and achieve a higher learning rate with fewer training samples.

Modified Workflow

An overview of the TL process is shown in Figure 12. The workflow from the previous

phase was adapted to facilitate transfer learning by adding an initial merge step. The

SOM training was further adapted to account for marker discrepancies.
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Figure 12: TL workflow. For each dataset, FCS files from different tubes for each sample are merged
using the NN merge. Next, individual SOMs are generated for each of the merged FCS samples. The SOM
nodes are arranged in a 32x32 grid where each node is associated with an n-dimensional weight vector,
where n equals the number of channels in the original FCS events. The SOM node weights are then used
as input to the CNN. The weights from the base model trained on the base dataset are transferred to each
target network. The target networks are then retrained on the respective target dataset to generate class
predictions.

Before knowledge transfer, we merged multiple aliquots (tubes) per sample into a

single FCS data file using the NN merge. As described in the previous section, we

processed individual tubes of each sample separately in our AI model, resulting in a

CNN architecture that depends on the number of tubes per sample. Such a network's

transferability between datasets with a different number of tubes per sample is very low -

we can only transfer knowledge from the dense layers (see Figure 13). Merging multiple

aliquots before the CNN training leads to an architecture independent of the number of

tubes in the dataset and allows maximum transfer between the networks - weights from all

layers can now be transferred.
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Figure 13: Need for merge. For each sample, the tubes are processed separately in the convolution layers.
There are as many convolution stacks as the number of tubes. When the new dataset has a different number
of tubes per sample, the convolution stacks change accordingly. Consider two datasets with the same CD
markers measured over a different number of tubes: Fig A) shows the CNN for a dataset with three tubes
per sample; we have three convolution stacks, one per tube. B) CNN for a dataset with four tubes is shown.
Here, only the weights from dense layers can be transferred between networks. The convolution layers have
different data dimensions corresponding to the number of markers per tube and are thus not transferable.

Next, a self-organizing map was generated as in the previous case. However, a single

SOMwas generated for eachmerged sample instead of one for each tube per sample. The

SOMswere then used as input to the CNN that generates class predictions. While the base

model was trained with random weight initialization, for each target dataset, target models

were trained by initializing the weights with the final weights from the base model. The

following sections describe each step of the modified workflow in detail.

Merge

As the first step of the modified workflow, FCS data from multiple tubes were merged. The

merge process is depicted in Figure 14. The steps for matching events between different

data files are as follows.
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Step 1: determine the shared markers for the dataset (Table 8). The shared markers are

used as the vector to calculate the distance between events in different data files.

Step 2: take tube i (start with the first tube; i = 1), and iterate over all the remaining tubes

j.

Step 3: for each event in tube i, calculate the NN in tubes j.

Step 4: copy the tube-specific marker (non-shared marker) values from the computed

NNs in tube j to the events in tube i.

Step 5: increment i, repeat the above steps. Events in each tube will now have imputed

values for markers measured in a different tube.

Step 6: merge all the events across all tubes into a single large matrix.

The resulting data file obtained after merging the original data files and calculating

each event's values is a file containing information about all parameters measured in all

multicolor staining for each of the events recorded. For the MLL5F panel, we merged

tubes 2, 3, 4, 5, and 7. Thus, each merged/calculated data file contained all 18 parameters

measured for each of the 2.5 x 105 events analyzed per sample (5 aliquots/sample x 5 x 104

events/aliquot). The tubes merged for the different datasets, and the merge parameters

are described in Table 8. We implemented the merge using scikit-learn API (Pedregosa

et al., 2011).



40

Merged_tube events

Tube 1 events

Tube 1 events

Tube 2 events

Tube 2 events

nearest neighbor (FS, SS, CD19)

Tube 1

FSC

SSC

CD19

CD5

FMC7

CD10

Kappa

Lambda

CD103

Tube 2

CD5
Lambda

FS

Merged FCS

Kappa

Lambda

CD103

Lambda
CD5

FS

j

Lambda

FS

j

CD5
Lambda

FS

i

Kappa

Lambda

CD103

CD10

FMC7

CD5

Lambda
CD5

FS

x

CD5
Lambda

FS

y

CD5

FS

i

Figure 14: Overview of NN merge. NN merge is shown here for two tubes with three shared markers.
Each tube has three tube-specific markers: CD10, FMC7, and CD5 are tube 1-specific markers, while tube
2-specific markers are Kappa, Lambda, and CD103. Events are shown in a two-dimensional space with one
shared marker (FS) and one tube-specific marker (CD5 for tube 1 and Lambda for tube 2). For each event “i”
in tube 1, the NN in tube 2, “j,” is computed in terms of the shared markers (FS, SS, and CD19). Next, tube
2-specific markers from “j” are copied over to “i.” The process is repeated for all events in tube 1 so that all
the tube 1 events will have imputed values for tube 2-specific markers (Kappa, Lambda, and CD103). Next,
for each event, “x,” in tube 2, the nearest neighbors in tube 1, say “y,” are computed, and tube-1 specific
markers are copied over to tube 2. After this step, all tube 2 events will have imputed tube 1-specific markers
(CD5, CD10, and FMC7). The events can now be analyzed for the imputed markers that were previously
missing. Finally, the expression vectors of all events across tubes are merged, resulting in a combined FCS
file consisting of events from both tubes with all the measured parameters.
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Table 8: Merge parameters

Panel Merged tubes Shared markers

MLL 9F (base data) 1, 2 FS INT LIN, SS INT LIN, CD19, CD45
MLL 5F 2, 3, 4, 5, 7 FS INT LIN, SS INT LIN, CD19, CD45
Bonn 1, 2 FS INT LIN, SS INT LIN, CD19, CD20
Berlin 2, 3, 4 FS INT LIN, SS INT LIN, CD19, CD45

Erlangen B1, B2 FS INT LIN, SS INT LIN, CD19, CD45

The tubes merged, and the shared markers for each dataset are reported here. The tubes to be merged for
each dataset are chosen so that all five datasets have the same CD marker set. The merge resulted in a
combined FCS file with 18 parameters for each event.

Merged datasets

Multiple tubes per sample were merged into a single FCS file for all the five datasets

described in the “Material” section. The tubes merged were chosen such that the datasets

had maximum overlap in terms of the number of markers. The merged MLL9F panel was

used to train the new merged base model, while the merged target datasets were used

to train the respective target models. The compensated data was used with no additional

re-linearization or transformation. The channel intensities were rescaled to “0” and “1” for

all the datasets.

Extended SOM training

The SOM training was updated to account for marker variances between the datasets. As

before, individual SOM transformation used pre-initialized node weights from a reference

SOM. The reference SOM from the merged base dataset was used as the pre-initialized

weights for the target datasets to ensure the same initial tree structure. By disregarding the

associated fluorochromes, markers were aligned to the base dataset by matching FS, SS,

and as many CD markers as possible. In case of missing markers in the target dataset,

they were set to “n/a”; any new CD markers in the target set that were not found in the



42

base dataset were ignored. The SOM implementation was adapted to account for missing

data values by modifying the training process (Samad and Harp, 1992). We introduce a

masking matrix with values 0 and 1 for each value in the original data: “1” indicates that

the data value is valid, and “0” indicates that the data value is invalid, and hence the data

point should be ignored for any calculations. The SOM training was then adjusted to use

the mask values to ignore invalid data points for the best-matching unit calculation and

weight updates.

All training parameters for the SOM generation were kept the same as described in

the previous SOM section in phase 1.

Transfer learning

Figure 15 shows the modified CNN architecture for merged samples. Three convolution

layers process the merged SOM with decreasing filter sizes. The convolution layers are

followed by a global max pooling layer that summarizes filters across the SOM map's

spatial dimension. Two fully connected dense layers then combine the information to

generate class predictions. All the network parameters, such as the number of kernels,

filter sizes, and the number of nodes in each layer, were kept the same as the unmerged

model. The only change to the architecture is that there was no need to replicate the

convolutional layers for each tube; thus, the concatenation layer was redundant and thus

removed.
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Modified CNN architecture
Figure 15: Modified CNN architecture. SOM generated for the merged FCS sample is processed by three
convolution layers with varying filter sizes. A single global max pool layer is used after the convolution layers,
followed by two fully connected layers that combine the features and generate class predictions. The CNN
architecture remains the same for both standalone and transfer learning protocols. Each layer is initialized
with weights from the base model for transfer learning. The two fully connected layers are frozen and not
retrained to avoid overfitting.

The merged base dataset was then used to train a base model with the new CNN
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architecture for 20 epochs using the Adam optimizer with a learning rate of 0.001 and a

global weight decay of 5e-6. The weights were initialized randomly for the base model.

We refer to this model as MLL9F_base.

Two models were trained for each target dataset: a standalone model without

knowledge transfer and a second model with knowledge from the base model

(MLL9F_base). The weights for each layer in the target model with TL were initialized

with trained weights from the base model's corresponding layer, while for the standalone

models, these were randomly initialized. The standalone models’ hyperparameters were

kept identical to the base model - 20 epochs, a learning rate of 0.001, and a global decay

of 5e-6. For the second set of models with TL, we used the same learning rate and global

decay while the number of epochs was reduced to 15.

Furthermore, the two dense layers were frozen by setting the “trainable” hyperparam-

eter as false. When using TL, the norm is to freeze the convolution layers and retrain only

the dense layers to avoid overfitting. However, in our case, the FCS panel composition

differs from the base data. Therefore, to account for changes in the panel, we keep the

convolution layers unfrozen and retrain them to learn the filters for the target FCS panel.

Instead, we freeze the two dense layers that combine information for generating class

prediction since the classes to be predicted are the same as in the base task.

The training curves show that the TL models converge with the standalone models

with the chosen parameters (Figure 16). The TL models have a lower initial validation loss

and reach the asymptote faster than the standalone models showing that the knowledge

transfer from a pre-trained base model adds to the training of the CNN. While the TL loss

for the Erlangen panel does not converge with the standalone model, the classification

performance is still improved with TL. The lack of convergence in model loss could result

from Erlangen’s different diagnostic setup, resulting in a small, highly imbalanced dataset

that significantly diverges from the base data.
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A)

E)D)

C)B)

Figure 16: Model convergence plots. A) shows the training and validation loss for the base model. The
dotted line represents the cutoff for the number of epochs, after which the model starts overfitting. B), C),
D), and E) show the convergence of the transfer learning model to the standalone model for MLL5F, Berlin,
Bonn, and Erlangen panels. The dotted lines represent the cutoff for the number of epochs for standalone
(black) and transfer learning (red). For all target panels other than Erlangen, the TL model's validation loss
starts lower than the standalone models’ loss and converges to the standalone model's. While the TL loss for
the Erlangen panel does not converge with the standalone, 15 epochs are still used as the cutoff, as the loss
flattens out after this threshold, and the models overfit and do not benefit from additional training epochs.
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We perform 10-fold validation for all the target datasets to avoid any bias resulting

from a single random train-validation split, especially for the smaller datasets. Each target

model was trained on the training split, and performance metrics were calculated for the

validation split of the respective target dataset. The average scores across the 10-fold

validation are reported as the final performance measure.
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3. Results

Various performance metrics were analyzed for both unmerged and merged models.

Transfer learning results were thoroughly evaluated and compared to standalone models

to assess the effect of knowledge transfer. Further, the quality of the merged datasets was

critically evaluated to ensure no unwarranted artifact was introduced by the data merging.

For all the models generated, we make the decision processes of the AI available for

better interpretation of the results through saliency analysis. Saliency analysis makes the

AI explainable by tracing the model's decision for a given prediction. All results and the

evaluation criteria used are detailed in this chapter.

3.1 Phase 1 - Model performance

The result of the classification process for a given sample is a score for every class learned

by CNN. The subtype with the highest score is the likeliest diagnosis and is used for

performance readout (top-1 accuracy). The performance metrics were computed on a

hold-out test set of 2,378 samples, resulting in an average F1 score of 0.78 and a weighted

F1 score of 0.94 for the eight-class classification (CLL/MBL, MCL, PL, LPL, MZL, FL, HCL

and normal). When distinguishing only between B-cell neoplasms and healthy control,

the average and weighted F1 score of the two classes of comparable size increases to

0.98. The confusion matrix for the CNN indicates that misclassifications are non-uniformly

distributed (Figure 17A). Especially the subtypes PL/MCL and MZL/LPL are more likely to

be mistaken, which is representative of their high flow cytometric profile similarity.

The percentage of lymphoma cells was estimated by human experts for each sample,

with the lowest being 0.1% lymphoma cells. As MBL is defined by fewer than 5,000

cells with the typical CLL profile in flow cytometry, we list MBL as a separate class in

the confusion matrix to allow for a more fine-grained analysis of classification sensitivity.

While there are no false negatives for CLL, some cases labeled as MBL were misclassified.

Most of the MBL cases misclassified as CLL had the number of lymphoma cells close to
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the distinguishing threshold of 5,000/50,000 = 10% in the MLL9F panel.

Furthermore, the high number of MBL cases classified as CLL and vice versa is a

technical artifact that will only decrease the F1 scores of the nine-class problem but does

not affect the F1 scores of classification problems where these subtypes are merged.

In comparison, the error rates between the other B-cell neoplasm classes reflect a

meaningful phenotypic similarity of these disorders. This similarity can be seen in the

hierarchical clustering of the confusion matrix and the t-SNE visualization of SOM and

intermediate model embeddings in Figure 17B. The t-SNE plot also shows cases with

unseen diagnoses, such as multiple myeloma(MM), acute myeloid leukemia (AML), and

hairy cell leukemia (HCLv), clustering with the normal class as expected.

Confusion matrixA) B) tSNE CNN embeddings

Figure 17: Base model performance. A) The confusion matrix shows the classification of each of the
classes. CLL and MBL are shown as separate classes for fine-grained analysis. The confusion matrix also
shows higher error rates between clinically similar subtypes. B) This similarity can also be observed for
single cases in t-SNE embeddings of the intermediary output from the concatenation layer, showing clusters
of MCL/PL and MZL/LPL.

Additionally, ROC curves were generated for the CNNmodel's prediction. ROC curves

show the separability of the classes at all possible thresholds; that is, how well the classifier

can separate the classes. The curves were generated for each class in a one-vs-rest
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approach (Figure 18). The ROC curves show high separability for each class compared

to the others, indicating that the trained model is able to classify samples of each class

with high confidence. The ROC curves and AUC scores provide an evaluation metric for

the usability of the classifier. The usability metric can increase confidence in the model's

prediction in a diagnostic setting.
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Figure 18: ROC curve. The receiver operator characteristic (ROC) curve is calculated for each class in a
one-vs-rest fashion and shows a high response for all classes.

3.1.1 Comparison with ML models

The CNN model was compared to classical machine learning methods such as random

forest, kNN, naive Bayes classifier, and a simpler dense neural network implementation

with a similar number of trainable parameters compared to our CNN. Table 9 below reports

the results on the 10% validation dataset for the CNN model (F1 0.70) in comparison to

dense neural nets (F1 0.61), random forest (F1 0.45), and other alternative models. All
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models were evaluated on randomly upsampled data for each class with 6000 CLL/MBL

(CM), 6000 normal, and 1000 each for LPL, HCL, MCL, MZL, PL, and FL. The upsampling

process creates additional data samples by duplicating random samples that can be used

for evaluation. Further, a grid search was used to find the number of neighbors and the

number of estimators for kNN and random forest. The CNN (109,336 parameters) model

was trained with the architecture shown in Figure 10, whereas the dense neural net was

trained with two hidden layers on the concatenated SOM data for all three tubes for 15

epochs.

Table 9: Comparison of different classification models

Classification model average F1 weighted F1

kNN 0.43 0.76
naive Bayes classifier 0.41 0.76

Random Forest 0.45 0.84
Dense Neural Net 0.61 0.84
CNN (10x10) 0.70 0.88
CNN (32x32) 0.76 0.93

Comparison of different classification models. All models were trained with a 10x10 SOM. Additionally, the
CNN was evaluated for both 10x10 and 32x32 SOMs.The neural networks were trained for 15 epochs.

The comparison shows that CNN outperforms the other classical models. Further-

more, learning curves were analyzed for the top 3 models - CNN, dense neural net, and

the random forest classifiers to evaluate the learning in these models. The CNN classifier

again shows a superior overall accuracy and average F1 scores compared to alternative

classifiers. Particularly noteworthy is the remarkable gain in performance for a growing

number of training samples that has not reached a plateau (Figure 19), indicating that an

even more extensive training set may further increase the performance of the CNN model.
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Figure 19: MLmodel comparison. Comparison of average F1 score against the number of training samples
for different models. All three models were trained with 32x32 SOMs as inputs, and the overall average F1
score for the given 8-class classification problem is computed on a randomized 10% validation split of the
training data. The models are trained with an increasing number of samples, starting with 913 samples
and increasing every iteration to 16500 samples. The F1 score was computed for each training iteration to
generate the learning curves.

3.1.2 Saliency analysis

A saliency map is a visualization technique that allows us to gain insights into the decision-

making process of a neural network. These maps help understand what each layer of a

CNN focuses on, thereby making it possible to explain and interpret the prediction of the

network. There are several ways to generate saliency maps. We used the gradient-based

approach introduced by Simonyan et al. (Simonyan et al., 2014). The gradient-based

method involves computing the spatial support of a particular class in an input image using

a single back-propagation pass through the CNN.

Given an image, a class “c,” and a trained CNN classifier with the class score function,
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the pixels in the image can be ranked based on their influence on the class score. The

ranks can then be used to generate maps indicating the spatial region of the image that was

the most influential for the given class prediction. We adapted the software implementation

of the Keras visualization toolkit (Kotikalapudi and contributors, 2017) to compute saliency

plots of a given FCS sample. All FCS events are assigned to the SOM nodes, which

are used as the input to our CNN classifier. Therefore, we first compute the saliency of

SOM nodes of a given SOM image by defining the saliency of each node as the maximum

gradient over all input channels. SOM node saliency values were then mapped back to

single FCS events by assigning the saliency value of the nearest SOM node to each event.

Selected scatter plots are shown for a representative CLL sample, which has correctly

been classified (Figure 20). The results of the standard manual gating strategy are

compared to the populations highlighted by saliency analysis. A likely pathological

population has been identified by positivity for CD5, CD19, and CD20 after gating on

lymphocytes using CD45 and SS. The corresponding saliency map shows a similar cell

cluster that yields the strongest signal for the CLL subtype without prior gating. These

maps allow the user to validate whether, for the predicted class, the AI is identifying the

appropriate cell clusters.
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Figure 20: Saliencymaps. Human experts identify pathogenic cell populations by a complex gating strategy
over multiple 2D scatter plots. The result of the manual gating is shown for a CLL sample in the first column.
Cells are colored according to their gate properties in different scatter plots. The saliency plots computed for
the CNN in the second column show higher importance assigned to cells in the same region as the gated
population. Darker colors represent higher gradients and, thus, higher importance in saliency analysis.
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3.2 Phase 2 - Transfer learning results

Before evaluating transfer learning, data merging, a preprocessing step for transfer

learning, is evaluated to ensure the NN merging process does not introduce significant

artifacts that could impact the classification.

3.2.1 Merge Evaluation

To evaluate the quality of the merged dataset, we use Jensen-Shannon distance (JSD)

to quantify the similarity between the distributions of markers in the original and merged

datasets, resulting in values between 0 (identical distributions) and 1 (totally disjoint

distributions). If p and q are the probability distributions of a marker in the original and

merged data, then the JSD is calculated as the square root of Jensen-Shannon divergence

(Naghshvar et al., 2015):

√
D(p||m) +D(q||m)

2
, (3.1)

where m is the pointwise mean of p and q, and D is the Kullback-Leibler divergence

(Kullback and Leibler, 1951).

We computed the JSD for each non-shared marker between the original and merged

sample for all datasets. For each non-shared marker in the merged tubes, the JSD metric

was computed using equation 3.1, defined above. We obtained a mean JSD score of less

than 0.1 for all the datasets, indicating good agreement between the merged and original

datasets in terms of marker distribution. The individual JSD score for each non-shared

marker and the average JSD for each dataset are reported in Figures 21 and 22.
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Figure 21: JSD scores. Jensen-Shannon divergence (JSD) scores for each of the imputed, non-shared
markers in all five datasets are shown here.
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Figure 22: Average JSD scores. The average JSD score across all non-shared markers for each target
dataset is computed. All datasets have a mean JSD score of less than 0.1, indicating good agreement
between the merged and original data for all four datasets. The outliers were further examined by
computing the correlation between JSD scores and classification accuracy using Pearson correlation (PC).
PC coefficients were calculated for each dataset's true label score in a k-fold transfer learning experiment.
PC for each dataset was found to be slightly negative, indicating that the lower the agreement between
merged and original data (high JSD), the lower the classification score.

In manual FCS analysis, cell populations are defined based on the co-expression

of markers measured in the same tube. During our merge process, all the non-shared

markers between the different tubes are imputed using the nearest neighbor approach,

making it possible to define cell populations that were not otherwise possible in the

unmerged dataset.

For instance, in the merged MLL9F dataset, a CD5+/CD22+ cluster can be defined.

During the NN merge, CD5 expression values are imputed for tube two events and CD22

values for tube one events. Due to the inherent characteristic of the NN computation,

some CD22+ events in tube 2 can have neighbors, which are CD5+, and some CD5+

events in tube 1 can have neighbors, which are CD22+, making these events both CD22+

and CD5+. However, these events might not have been positive for both markers if the
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two markers were originally measured in a single tube. Thus a CD5+/CD22+ cluster in the

unmerged dataset would have fewer cells and might not have been a significant cluster.

The imputation, in this case, would result in a large “pseudo” CD5+/CD22+ cluster leading

to a false pathology.

Although JSD scores do not directly evaluate the extent to which cell populations

(based on the co-expression of markers) are preserved in the merged data, the scores

provide a way of assessing how the imputation affected individual marker distributions.

Given that the density distributions for the markers in both merged and unmerged datasets

are very close, the relative number of positive cells for any given marker remains the same.

Thus, a population defined by the positive co-expression of two markers is unlikely to have

a significantly large pseudo-population in the merged data.

To this end, we manually evaluated the merge process to check for significant artifacts

by creating an artificial panel from the unmerged MLL9F dataset. Random samples from

tube 1 of the MLL9F panel were artificially split into two tubes (tube a: CD19, CD45, FMC7,

CD10, IgM and tube b: CD19, CD45, CD20, CD23, CD5) and then merged using the

NN merge algorithm. Cell populations such as CD19+/CD5+, CD19+/CD20+, and many

more were manually defined and quantified before and after the merge. No large “pseudo”

populations were found in the merged data, confirming the quality agreement shown in

the JSD analysis. Moreover, the unmerged and merged models’ performance for the base

data was compared to evaluate the effect of NN merge on the CNN classification. The

merged base model achieved an overall weighted F1 score of 0.94 and an average F1

score of 0.74. In comparison, the model trained with the unmerged FCS data from tubes

1 and 2 achieved an overall weighted F1 score of 0.94 and an average F1 score of 0.75,

indicating that the NN merge did not introduce significant artifacts that negatively impacted

the CNN classification.

Further, we evaluated the effect of the number of shared markers on the quality of

the merged dataset. The nearest neighbor is calculated based on the expression vector

of the shared markers. If the number of shared markers between the tubes is sparse,

the probability of introducing “pseudo” clusters are high, thus, making the imputation more

error-prone.
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To evaluate if there is a minimum number of shared markers necessary for imputing

the values of non-shared markers using the nearest neighbor (NN) merge approach, we

set up an analysis with various numbers of shared markers. We explored five possible

cases for the number of shared markers used to compute the nearest neighbor:

Case 1: All shared markers - FS/SS/CD19/CD45

Case 2: leukocyte markers - FS/SS/CD45

Case 3: B-cells markers - FS/SS/CD19

Case 4: only the scatter measures - FS/SS

Case 5: only CD19

For each case, the merge algorithm described in the “Methods” section was used

to merge multiple aliquots and thus impute values for each non-shared marker between

these tubes. The imputation quality was again evaluated by computing Jensen-Shannon

distance (JSD) scores for each non-shared marker. The distribution of the non-shared

marker in the original, unmerged dataset is compared to the distribution after merging and

imputation. If the imputations were bad, the two distributions would be distinct and result

in a higher JSD score. We used a random subset of 30 samples per class to evaluate the

cases for two of our datasets: MLL9F and MLL5F panels. JSD scores were calculated for

all the non-shared markers for each case. The average score across all markers for each

dataset was used to evaluate the effect of the number of shared markers on imputation

quality.

The analysis indicates that the number of shared markers only marginally affects

the nearest neighbor calculation in the context of flow cytometry events. Only when a

single population marker was used (case 5) did we see a more noticeable reduction in the

quality of imputed values. The JSD values for each case are summarized in Table 10 and

visualized in the box plots below (Figure 23).
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Table 10: JSD scores

MLL5F MLL9F

Case 1: all shared markers 0.075 0.079
Case 2: FS/SS/CD45 0.072 0.080
Case 3: FS/SS/CD19 0.079 0.075

Case 4: FS/SS 0.075 0.076
Case 5: CD19 0.168 0.119

Average JSD scores across all non-shared markers for MLL5F and MLL9F datasets are reported here.
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Case1 : all shared markers

Case 3: FS/SS/CD19

Case 5: CD19

Case 2: FS/SS/CD45

Case 4: FS/SS

Figure 23: JSD scores comparison. Boxplots for each case show the average JSD score for MLL5F and
MLL9F panels across all non-shared markers.

As seen in the plots, in the context of FCS events, standard markers such as FS/SS
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could be used as a minimal set of shared markers to impute non-shared markers between

events in different tubes without significantly affecting the imputed data quality.

3.2.2 TL model performance

We compared the performance of the target models with and without TL. A 10-fold

validation was performed on both the standalone and TL models for each target dataset.

For each model, weighted and average F1 scores were calculated. The models with TL

showed a significant improvement in F1 scores, especially the average F1 scores for all

the datasets (Figure 24). Even for the Erlangen panel, where the TL model loss did not

converge with the standalone loss (Figure 16E), we still see the added benefit of transfer

learning for classification.
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Figure 24: Performance for standalone versus transfer learning. The boxplots show F1 scores obtained:
on the left, weighted F1 scores are plotted for each dataset, and on the right, the average F1 scores are
shown.The blue dotted line across the plots represents the previously reported base model’s performance,
considered expert-level accuracy here. The transfer learning models perform better in all four datasets.
These models achieve a higher F1 score, especially the average F1 score. A significant increase in average
F1 score is seen for MLL5F (p = 1.805 x 10-3) and Erlangen (p = 3.194 x 10-2) panels. For Bonn and Berlin
panels, we achieved a p-value of 6.838 x 10-1 and 1.659 x 10-1, respectively. All p-values were computed
using an independent t-test with Bonferroni correction.

Two of the four target models were able to reach expert-level accuracy with TL. The
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delta in the performance between the datasets may be attributed to the size of the dataset,

the quality of the original data, and the quality of the merged data with imputed marker

values. The overall scores obtained by averaging the F1 scores over the 10-fold validation

and the 95% CI values for the four datasets are reported in Table 11.

Table 11: Performance metrics

Protocol Scores MLL 5F Berlin Bonn Erlangen

With_ TL

f1_ weighted (95% CI) 0.93 (0.92, 0.93) 0.93 (0.91, 0.95) 0.85 (0.81, 0.88) 0.80 (0.73, 0.87)
f1_ avg (95% CI) 0.64 (0.61, 0.66) 0.62 (0.54, 0.71) 0.50 (0.41, 0.59) 0.52 (0.40, 0.64)

Precision 0.91 0.93 0.82 0.71
Recall 0.92 0.93 0.83 0.76

Standalone

f1_ weighted (95% CI) 0.92 (0.91, 0.93) 0.92 (0.90, 0.93) 0.76 (0.69, 0.83) 0.69 (0.63, 0.74)
f1_ avg (95% CI) 0.57 (0.54, 0.59) 0.52 (0.45, 0.59) 0.40 (0.26, 0.53) 0.35 (0.31, 0.40)

Precision 0.90 0.92 0.75 0.58
Recall 0.91 0.92 0.82 0.73

Weighted and Average F1 score along with 95% confidence interval (CI) values for the four target datasets
for models with knowledge transfer and standalone models without transfer learning. The F-scores were
calculated as an average of the 10-fold scores for each dataset. Precision and recall are calculated as the
weighted average per class scores for each fold and then averaged over the 10-folds.

In addition, ROC curves were compared for both the standalone and TL models. The

ROC curves are generated for the validation predictions from the CNN's softmax layer for

each fold with a one-vs-rest approach and averaged to get the mean ROC curve. The

comparison of these plots clearly shows that transfer learning not only benefits the larger

classes but also increases the classification performance for many of the smaller classes

(Figure 25).
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Figure 25: ROC curves for standalone versus transfer learning. The mean ROC curves and AUC
for each class across the ten folds are generated in a one-vs-rest manner. Since the datasets are highly
imbalanced, there were no validation samples for some of the classes in some folds for the Bonn and Berlin
panels. Such folds were not used to compute the mean ROC. The first column shows the ROC curves for
standalone models; ROC curves with transfer learning are shown in the second column. ROC curves for the
MLL5F panel are in the first row, followed by the Berlin panel in the second row. The third row above is for
the Bonn panel. As seen in all the rows, the models with transfer learning achieve a higher AUC.
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3.2.3 Learning curve analysis

As described in the previous section, TL increases the overall performance of the models

by allowing the already learned knowledge to be utilized. In this case, the target datasets

were entirely available for training the new model. However, in an already established

diagnostic workflow, any changes to the FCS panels happen in real-time. During this

transition from the old to the new FCS panels, very little data from the new panels are

available, and it may take a while for a laboratory to switch entirely to the new protocol.

Here, we describe two use cases that result in significant changes to the FCS

diagnostic panel and require an AI model to be adapted quickly. We use our current

workflow to adapt the base model for both cases and analyze the model's learning curves

for each case. A learning curve shows the model's score for varying numbers of training

samples and can be used to compare different settings or algorithms and determine the

amount of data used for training (Meek et al., 2002). We demonstrate that TL with merge

increases the models’ overall performance, and the models have a higher start on the

learning curve for smaller sample sizes.

Case 1: Transition to a new cytometer within the same laboratory

In FCS diagnostics, switching to a device that supports more fluorochromes per

measurement is a common transition in a diagnostic laboratory that optimizes its workflows

by updating its equipment. Usually, this process involves a few weeks, during which

samples are measured with both protocols, the old one validating the new one. However,

this means that only a few samples from the new protocol are available to train a new

classifier. Using knowledge transfer, we show that transition can be handled quickly by

adapting an existing AI model.

We set up a transition scenario from a five-color cytometer to a nine-color one using

our MLL5F and MLL9F merged datasets. We trained a model with the MLL5F panel and

used this as the base network to train a new model for the MLL9F panel. We used an

increasing number of samples in the training set for each iteration of the learning curve

while the validation set for each iteration was kept the same. We started with five random
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samples per class and iteratively increased the number of training samples by five in each

class until fifty random samples per class. F1 scores were recorded for each iteration.

The learning curve (Figure 26A) with TL shows a higher start and asymptote for the target

network; the confusion matrix obtained with five training samples per class (Figure 27A)

shows a significant improvement in classification, especially for the smaller classes.

Case 2a: Model adaptability across laboratories

FCS diagnostic workflows are relatively similar across laboratories. However, the FCS

panel used for diagnosis varies depending on the cytometer and antibodies measured.

For an AI model, the reported performance is valid for the given FCS panel. When the

model is used to interpret different FCS data, the performance drops significantly without

changes to the underlying architecture and parameters. Training a new model requires a

longer training time and large datasets.

Here, we demonstrate that our workflow can extend a model trained on a specific FCS

panel with an extensive training dataset to different FCS panels with lesser data (Table 1).

We used our merged base model (MLL9F_base) to train new models for Bonn and Berlin

panels. Both target models showed a significant increase in overall performance with

TL. As with the previous experiment, the learning curves were obtained for an increasing

number of training samples in each class. The target models were trained with five

random samples per class, which were gradually increased to fifty samples per class. The

F1 scores showed a significantly higher start and overall performance in inter-laboratory

adaptation with our workflow (Figures 26B and 26C).

Case 2b: Cross-laboratory adaptation with different diagnostic setting

A screening panel was used for the Erlangen dataset to diagnose B-cell neoplasms with

a separate classification panel for further subtype determination. In this scenario, most

samples would only have a single screening panel which is different from the previous

setting. In order to show that the existing model could still be beneficial, we trained a

new model with the same architecture and parameters as our MLL9F_base model for
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the screening panel to obtain a “normal” versus “pathological” binary classification. The

model was trained as a standalone model without transfer learning to verify the usability

of the model for the primary classification of the screening panel. The resulting model

could correctly classify 86% of pathological and 96% of normal samples with only a single

screening panel. This primary model could be used to flag pathological samples that would

require further examination.

Furthermore, we used our extended transfer learning with data merging workflow for

the 247 samples (see Table 1) with both screening and the classification panel (B1 and

B2). We show transfer learning benefits in this setting similar to the previous case, even

though the second panel was measured much later, resulting in variations in the data

acquired between the screening and classification panels because of sample freezing and

preparation. We employed knowledge transfer as described and saw an overall gain in

the average F1 score from 0.33 to 0.52. The learning curve (Figure 26D) showed a higher

start and asymptote, similar to the other three datasets. This demonstrates that transfer

learning can benefit very small datasets with more significant variations.
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A) transition_learning_curve

B) berlin_learning_curve
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C) bonn_learning_curve

D) erlangen_learning_curve

Figure 26: Learning Curves. The learning curve for average F1 scores with various training sizes for all
four target datasets is shown here. The curves were obtained with randomly sampled training examples. We
start with five training samples in each class and iteratively increase them to 50 samples per class. In cases
where 50 samples are unavailable for a given class, existing samples are randomly resampled to create up
to 50 samples for the learning curve analysis. The curve for the transition experiment is shown in A), while
the curves for cross-laboratory experiments with Berlin, Bonn, and Erlangen panels are shown in B), C), and
D), respectively. The learning curves for all panels show a higher start and asymptote with transfer learning
and an overall performance enhancement.
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C) bonn_learning_curve analysis

D) erlangen_learning_curve analysis

Standalone With_TL

Standalone With_TL

Figure 27: Confusion matrices for standalone versus transfer learning. The confusion matrices shown
here are a snapshot of the classification performance with the least number of training samples on the
learning curve. A) shows the difference between standalone models and models with transfer learning for
the transition experiment with five training samples per class. The confusion matrices for the cross-laboratory
adaption with Berlin, Bonn, and Erlangen panels are shown in B), C), and D), respectively.
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3.3 Additional analysis

In addition to evaluating the model performance and class sensitivity, occlusion analysis

and threshold estimation were performed to provide relevant insight that could help the

diagnostic process. All additional analyses discussed here were done using the unmerged

AI model described in phase 1 of the previous chapter. The unmerged MLL9F panel

with the training and 10% validation split described in “Methods” was used. This section

describes the additional analyses and the results.

3.3.1 Marker importance

Occlusion analysis systematically determines the important features for classification by

eliminating one feature at a time from the input. The approach has been previously

described in the model analysis of image classifiers (Zeiler and Fergus, 2013). While

occlusion analysis is another method to understand and visualize the classification

process, it could also be used to gain vital insights relevant to the data domain. We

implemented occlusion analysis for our unmerged AI model described in phase 1 of the

previous chapter to determine the essential markers that can be used to inform panel

design.

The importance of individual FCS markers for prediction accuracy in the trained model

was measured by zeroing all values in the respective marker channel in the input SOM.

More important information in the original input data will decrease prediction accuracy

more strongly and thus increase the measured loss. Important markers for each class

were calculated using average per class cross-entropies for all markers. Predictions were

generated for samples in the validation set after setting all values for one marker channel

or an entire tube to zero. For each occluded marker or tube, categorical cross entropy

(loss) was calculated between the obtained prediction after occlusion and the ground truth.

Losses were calculated for all samples in the validation split and grouped by diagnosis.

Figure 28 shows the occlusion plots for the unmerged MLL9F dataset.
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Tube 1 Tube 2

Tube 3

Figure 28: Occlusion analysis. A) shows averaged loss values over each tube for each diagnosis and the
averaged losses for each marker channel. Occluding tube 1 shows a higher loss for CLL, MBL, MCL, PL,
and FL, which can be explained by a high loss for CD5 in tube 1 for the CD5+ subtypes such as in CLL,
MBL, MCL, and PL. FL shows higher loss values for CD10 and CD20 and no loss for CD5. HCL has high
losses in CD103, CD11c and CD22 contained in tube 2. B) The t-SNE plots were generated for single tubes
while occluding the other two. Here, the embeddings show a loss of distinguishable clusters for CD5+ and
other populations in tubes 2 and 3.

The occlusion analysis shows the importance of tube 1 followed by tube 2 for the
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MLL9F dataset. Further, critical markers such as CD5 and CD103 are highlighted in the

analysis. Such an occlusion analysis from a large trained model can be used to determine

the important markers for any given set of B-cell neoplasm subtypes. This information

could play a vital role in choosing and designing the FCS panel at a new diagnostic center

intending to use AI models for automated classification.

3.3.2 Misclassification analysis and threshold estimation

The misclassified samples - healthy samples wrongly classified as B-cell neoplasm

(pathological) and vice versa - from the CNN's predictions were identified and further

analyzed. The predicted labels were compared with the ground truth label for each sample

in the validation set to identify the wrongly classified samples. Most misclassified samples

were shown to have a lower probability score making it possible to eliminate these wrong

predictions by using a threshold for the predicted probability score. However, a few

samples were misclassified with a high probability score. These samples were further

analyzed and found to have a very low infiltration rate - the percentage of pathological cells

- of less than 1%. The low number of pathological cells in a given sample is insufficient for

the CNN to learn the respective representation, thereby making it likely for the sample to

be misclassified.

In order to flag samples likely to be misclassified, the trustworthiness of the classifier

was estimated by using confidence threshold scores that were computed using the

classification score. The confidence threshold scores are not just a cutoff defined on the

predicted probabilities; Rather, the thresholds are computed using the predicted probability

score to ensure a given accuracy for the model. Figure 29 shows the various threshold

scores for a minimum accuracy of 85%. At each threshold, the ratio of cases with at least

an 85% predicted probability score that will be included in the prediction result is shown.

From the range of computed threshold scores, an appropriate score can be chosen to

group samples with lower accuracy than the one indicated for the chosen threshold into

an “uncertain” class.
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>80% cases included

95% accuracy

Figure 29: Confidence Threshold. The plot shows the various score thresholds used for inclusion against
the given accuracy on a subset of predictions. The threshold scores were computed to obtain a minimum
of 85% classification accuracy to separate high-certainty from low-certainty predictions. In addition, the plot
also shows the percentage of cases that will be included for each threshold. For instance, a score threshold
of 0.8 yields a 95% prediction accuracy for over 80% of cases.

Misclassification analysis and the confidence score threshold can be used in a routine

diagnostic setting to avoid prediction errors and identify samples that may have untypical

behavior. Any sample marked as “uncertain” can be flagged for manual analysis. Experts

can further investigate such samples with additional tests and analysis as required to

confirm the diagnosis. The predicted class and saliency maps of these “uncertain” samples

may provide valuable insights that can guide the manual analysis.
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4. Discussion

Hematological malignancies are increasingly being diagnosed using artificial intelligence

models (Radakovich et al., 2020; Shouval et al., 2021). Several artificial intelligence

models have been developed to diagnose various hematological diseases using high-

throughput data such as FCS. Our SOM-CNN-based classification model can distinguish

eight subtypes of B-cell neoplasms and normal controls with high precision. Our AI

operates directly on compensated FCS data without the need for prior gating or manual

data cleansing. The AI might therefore contribute to a speedier diagnosis process for

certain samples that are thought to be easy to classify. Saliency maps may also provide

a second opinion for complex cases. The AI may alert the clinician of lymphoma by

identifying cell clusters and suggesting which type of lymphoma this pattern might fit. This

might be an additional alert that could improve the sensitivity in detecting lymphoma before

the clinician's final decision.

The hierarchical clustering of the confusion matrix and the t-SNE plots for the

multiclass problem suggest that the AI learned a representation of the FCS data that

reflects our knowledge about the subtypes’ relatedness. We can think of the t-SNE

embedding as a lower-dimensional cluster representation of the FCS data that preserves

the properties we are interested in. As a result, clinically similar cases should be located

close together. Indeed, samples with LPL/MZL and PL/MCL are part of the same cluster in

the t-SNE plots, which concurs with the literature (Bassarova et al., 2015; Van der Velden

et al., 2014).

Using the trained CNN embedding to represent subtypes works well if all the relevant

markers from all the tubes are available. For instance, the trained embedding produces

the best clustering of all the eight subtypes when all the relevant markers from all the tubes

are used for training. If we limit the training and thus clustering to SOMs of single tubes

in the unmerged data, the clear separation between CD5 positive and negative subtypes

is lost, as can be seen in tSNE plots of tubes 2 and 3, where the CD5 marker is missing
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(Figure 28B).

This brings us to the question of how machine learning can optimize marker selection

in a diagnostic setting where the number of channels is limited. Our classifier's occlusion

analysis (Figure 28) shows that marker CD5 plays a crucial role in identifying CLL, MBL,

MCL, and PL. It is also possible to identify more subtype-specific markers, such as CD103

for HCL and CD10 and CD20 for FL (Figure 28A). Therefore, we may envision a set

of hematologic ailments being screened with a broad panel of markers, then selecting

the most appropriate markers for detecting it in a large-scale setting through occlusion

analysis.

Whilst our initial AI achieves expert-level accuracy for classification, the model was

trained on a single large dataset acquired with the same FCS protocol. The FCS protocol

is not uniform between laboratories or the same laboratory over time, leading to changes in

the data. Thus, a model trained on a specific FCS protocol cannot be applied to a dataset

with a different protocol. In order to be successfully integrated into a routine diagnostic

setting, the AI needs to adapt to multiple and smaller datasets. To this end, we developed

a workflow with transfer learning to extend AI models trained on a specific FCS panel to

multiple FCS panels and data sizes. Our workflow allows an existingmodel to adapt quickly

to any changes in the data making it possible to be deployed in a routine diagnostic setting

across different laboratories.

The knowledge from the base model trained on a single FCS panel is used to train

target models for new FCS data. The extended workflow described in phase two applies

TL to improve the performance and adaptability of AI to multiple datasets. Ideally, TL is

applied in cases where the base and the target tasks are related yet different, whereas

the datasets do not change in terms of composition. Our work shows that TL can be used

successfully even when the base and target datasets change.

Our transfer learning workflow combines knowledge transfer with FCS data merging

(Figure 14). Merging multiple aliquots is a known approach for increasing computational

depth for deep phenotyping and FCS analysis (Robinson et al., 1991). In the context of a

CNN, it increases the network's feature space by combining markers measured in different

tubes. It also allows us to maximize our networks’ transferability, which is essential for a
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successful knowledge transfer.

The initial base AI model is extended to four additional datasets with a varying number

of tubes per sample and markers with no changes to the model architecture and training

parameters. Here, we show that knowledge transfer in conjunction with FCS data merging

enhances the overall performance of target models by allowing already learned features

from a large dataset to be transferred to smaller and different datasets.

With the TL workflow, the target models achieve an overall performance close to the

previously reported expert-level accuracy of the base model. For the Berlin panel, the TL

model achieved amedian weighted F1 score of 0.94, the same as expert-level performance

(Figure 24). This enhancement could only be achieved by combining FCS data merging

with TL. While TL allows for features already learned to be transferred between models to

enhance the overall performance of target models, merging multiple FCS tubes makes it

possible to apply maximum TL between different FCS datasets.

Furthermore, the learning rate of target models with TL is much higher than the

standalone models, as demonstrated by our learning curve analysis. The TL models

achieve significantly higher performance for very small training sizes. In the context of a

transition to a new cytometer, this would allow an already deployed AI model to be quickly

adapted to the new protocol without having to wait for a considerable time for enough

samples to become available for the new protocol.

Although the proposed workflow successfully allows the AI model to be adapted to

different FCS data, it does not entirely address the inherent differences between various

datasets. Each laboratory has a different diagnostic goal and expertise, leading to different

panel designs and different data distributions among the classes for each dataset. The

class imbalance within a given dataset can be accounted for in the CNN using appropriate

class weights during training. However, these class weights are not transferrable; thus,

the non-uniform imbalance between the various datasets cannot be addressed within

the CNN. Advanced data augmentation strategies to artificially create more samples for

the rare classes could allow for a uniform data distribution among the datasets. Future

works should thus focus on various data augmentation strategies that can further improve

classification performance by creating realistic samples for training.
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The choice of marker combinations used for each FCS panel depends on the

diagnostic workflow and preferences of the laboratories. While somemarkers are standard

markers for B-cell neoplasm assessment, others are specific to certain subtypes, and

different laboratories may use alternate markers for such cases. The differences in the

marker combinations between the panels are addressed using NNmerge and SOM training

in our workflow. The overlapping CDmarkers between the base and target FCS panels are

accounted for in the SOM calculation by reordering markers in the target panel to match

the order in the base dataset. However, the missing markers in the target datasets are

handled by setting these values to zero in SOM weight calculation. These markers may be

necessary for specific subtype identification in base data and could impact the classification

of these subtypes in the target models. For instance, IgM, a marker that Munich chose to

improve LPL (lymphoplasmacytic lymphoma) classification in the MLL9F panel, is missing

in the Bonn and Erlangen panels. We set the value of IgM to zero in Bonn and Erlangen

panels, causing this information to be lost during the transfer. Although these panels use

other known markers, such as CD38, for LPL identification, the information contained in

IgM cannot be transferred easily to CD38. It can thus impact the classification performance

for this class. This loss of information might also explain the decline in performance for

LPL, which can be seen in confusion matrices for the Erlangen panel (Figure 27D). Despite

these inherent biases that can confound the classification performance, we see an overall

performance enhancement for all four target sets with the proposed workflow.

Even though TL helps adapt and improve model performance, the result must be

carefully evaluated for each case. Especially, evaluation on small and highly imbalanced

datasets often encountered in the routine laboratory setting can cause misleading results

without a thorough assessment of different performance aspects.

In conclusion, our work is the first application of AI for the assessment of clinical flow

cytometry data. However, it is just one additional piece in a long series of publications

that showed how AI could increase sensitivity and specificity in health care (Topol, 2019).

Further, we provide a workflow to extend deep learning models to multiple FCS panels

and achieve high accuracy for multi-label classification across datasets. Here, we address

some of the previous challenges for automated flow cytometry classification by allowing
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models to be trained with smaller training sizes and generalizing models to work with

multiple FCS panels. Our transfer learning workflow is a step toward making deep learning

models robust so that AI for diagnostic FCS can move from the “proof of concept” stage

into routine diagnostics.

4.1 Limitations of the study

Herein, we address the limitation of this study in terms of known shortcomings of the

merging approach, technical variance between datasets, and potential improvements.

Although NN is a well-known method for data imputation, in the case of imputing markers

for FCS events, NN merging is known to sometimes introduce a spurious combination

of markers into the imputation results (Lee et al., 2011). However, this did not lead to

a reduced performance of our classification model. Both merged and unmerged models

produced nearly identical F1 scores for the base dataset. Furthermore, we also looked

at the impact of the number of shared markers on the imputation quality and did not find

any differences (Table 10). While TL accounts for some of the variability between the

datasets, the technical variation arising from sample preparation and equipment calibration

cannot be completely ruled out and could potentially affect the classification performance.

A standardized normalization approach across datasets could improve the classification

performance further. Although, this would add considerable computational overhead and

may require a reference sample to be analyzed across various locations that can be

used to remove all the technical variation. The other limitation of this study is that we

align FCS channels between multiple datasets by matching CD markers while ignoring

the fluorochromes for our knowledge transfer. While any missing markers are handled

within the updated SOM training, the current workflow will ignore new markers. The

information lost because of the marker alignment and ignoring new markers could impact

the classification of specific subtypes and, thus, the overall performance. The performance

may be improved further with partial knowledge transfer techniques, where features from

existing channels are transferred while the model is trained to learn the new channels

present in the new protocol (Hassan, 2019). Finally, all five datasets used in this study are

from Navios cytometers. Although the workflow presented here is not limited to datasets



83

acquired on a specific device, our models could have a potential vendor bias that should

be considered when data are acquired on a device from a different vendor.
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5. Abstract

B-cell neoplasms are the most prevalent type of non-Hodgkin lymphoma, including a

diverse and heterogenous group of entities. Immunophenotyping with a high-throughput

technology like flow cytometry is a standard diagnostic procedure in evaluating B-cell

neoplasms. While multi-parameter flow cytometry (FCS) has become a cornerstone in

clinical decision-making for leukemia and lymphoma, the data analysis requires manual

gating of cell populations, which is time-consuming, subjective, and often limited to a two-

dimensional space. In recent years, machine learning has become a popular approach for

automating manual gating. Many automated gating algorithms require expert supervision

and cannot classify the data into diagnosis labels. Furthermore, these algorithms still limit

the analysis to a two-dimensional space, leading to the loss of information in the high-

dimensional FCS data.

We hypothesize that the wealth of information captured in “n”-dimensional FCS data

can be analyzed by current computer vision methods when represented as image data.

We, therefore, transformed FCS raw data into a multicolor low-resolution image using self-

organizing maps. These images are then analyzed and classified using a convolutional

neural network. By this means, we built an artificial intelligence (AI) that not only can

distinguish diseased from healthy samples but also differentiate seven subtypes of mature

B-cell neoplasm. We trained our model with 18,274 cases, including chronic lymphocytic

leukemia and its precursor monoclonal B-cell lymphocytosis, marginal zone lymphoma,

mantle cell lymphoma, prolymphocytic leukemia, follicular lymphoma, hairy cell leukemia,

lymphoplasmacytic lymphoma and achieved a weighted F1 score of 0.94 on a separate

test set of 2,348 cases.

Next, we extend our AI model to multiple datasets and FCS panels using transfer

learning in conjunction with FCS data merging. We demonstrate how transfer learning

can be applied to boost the performance of models with much smaller datasets acquired

with different FCS panels. We trained a new AI for four additional datasets by transferring
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the features learned from our base model. Our workflow increased the model's overall

performance and, more prominently, improved the learning rate for small training sizes.
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6. Supplementary Information

Table 12: Markers and their function

CD marker Function

CD3 A complex of subunits that mediates T-cell signal transduction
CD4 Initiates or augments the early phase of T-cell activation
CD5 Acts as a negative regulator of T-cell receptor signaling
CD8 May play an important role in T-cell mediated killing
CD10 Neutral endopeptidase that cleaves peptides and inactivates several peptide hormones
CD11c Important for cell-cell interaction during inflammatory responses

CD19
Assembles with the antigen receptor of B lymphocytes to decrease the threshold
for antigen receptor-dependent stimulation

CD20 Development and differentiation of B-cells into plasma cells

CD22
Mediates B-cell B-cell interactions. May be involved in the localization of B cells in lymphoid tissues.
Modulates B-cell signaling

CD23
Key molecule for B-cell activation and growth. This receptor has essential roles in the regulation of
IgE production and in the differentiation of B cells

CD25 Receptor for interleukin-2
CD38 Cell adhesion and signal transduction
CD43 Cell adhesion and T-cell activation

CD45
Leukocyte common antigen; Regulator of T- and B-cell antigen receptor signaling;
regulator of cell growth and differentiation

CD56 Cell adhesion and neural plasticity
CD103 Promoting entry and retention of antigen specific CD8 effector molecules in epithelial compartments
CD200 Co-stimulates T-cell proliferation. May regulate myeloid cell activity
Kappa Plays an important role in several immune responses
Lambda Plays an important role in several immune responses
IgM Primary immune response
FMC7 pan “B-cell” antigen; associated with late B cells that have features of activation

List of all the markers used in all five FCS panels and their functionality.
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Table 13: List of fluorochromes

Full name Excitation wavelength (nm) Emission wavelength (nm)

FITC Fluorescein isothiocyanate 495 519
PE R-phycoerythrin 565 578
ECD R-phycoerythrin-Texas Red-X 565 613
PC5.5 Peridinin chlorophyll protein-Cyanine5.5 482 690
PC7 R Phycoerythrin Cyanin 7 565 770
APC Allophycocyanin 650 660
APC750 Allophycocyanin - Alexa Fluor 750 749 775
PB Pacific Blue 410 455
KrOr Krome Orange 398 528
AA700 Alexa Fluor 700 702 723

List of fluorochromes and their excitation and emission peak wavelength.
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