
Visual Prototyping of Knitwear

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Elena Trunz
aus

Moskau, Russland

Bonn 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Reinhard Klein
2. Gutachter: Prof. Dr. Michael Weinmann

Tag der Promotion: 24.04.2023
Erscheinungsjahr: 2023

Acknowledgements

First of all, I would like to thank Reinhard Klein for giving me the opportunity to work in
his department, for supervising and supporting my Ph.D. studies and for giving me a lot of
valuable advice over the past years. In this context, I would also like to thank Norbert Blum
for establishing a connection to Reinhard Klein in the first place.

Furthermore, thanks to Michael Weinmann, Jonathan Klein, Sebastian Merzbach and Lukas
Bode for our many discussions and laughs, and for your co-authorship and support, especially
before the paper deadlines. I also thank my other co-authors Jan Müller, Reinhard Klein,
Ralf Sarlette, Thomas Schulze, Stefan Hartmann, Björn Krüger, Ilia Mazlov and Matthias
Hullin.

Additionally, I would like to thank all my colleagues in the Visual Computing Group. It has
been a pleasure to work with you.

Moreover, I want to thank Michael Weinmann and Reinhard Klein for proofreading this
thesis and Patrick Stotko for his awesome thesis template.

Finally, I am very thankful to all my family and friends for their support and endless patience
during my studies and especially during the last year.

iii

Abstract

In this thesis, we address the problem of prediction and editing of the virtual appearance
of knitted cloth. Among the most accurate approaches to model fabrics and other complex
materials is to represent them in terms of dense Bidirectional Texture Functions (BTFs) that
describe the spatially varying material appearance under different viewing and lighting
conditions parametrized on a proxy geometry. This requires taking an exhaustive set of
photographs under different light and view directions to accurately reproduce the appearance
of an existing material, and thus comes at a high cost regarding storage requirements,
motivating the research of convenient compression methods. The current state-of-the-art
neural approach did not fully exploit the capabilities of the proposed architecture, as the
compression ratio did not depend on the complexity of the material. Therefore, in the
first project presented in this thesis, we developed an approach to even further compress
compact BTFs, that were compressed based on state-of-the-art neural compression, and let
the compression ratio depend on the complexity of the material.

Besides high memory requirements, the usage of BTFs does not allow for easy editing
operations. Moreover, BTFs are not suitable for macro-scale geometry representation. Both
these limitations pose a problem in the context of visual prototyping of knitwear. There are
three different levels of knitted cloth design that are important for our task. First, there is
the choice of the yarn, which in turn consists of fibers of the same type or a mix of different
fiber types. Then, the selected yarn is knitted into a chosen pattern producing the actual
knitted cloth. This thesis aims to enable editing operations on all three scales: patterns,
yarns and fibers. To this end, in two projects that constitute the second part of this thesis, we
develop algorithms and models for macroscale representation of knitting patterns, mesoscale
modeling of yarns, and visualization and easy editing of knitting yarns, fibers and patterns
that we automatically induce from images of real yarns or knitted pieces, respectively.

v

Contents

I Introduction 1

1 Introduction 3
1.1 Challenges . 4
1.2 Contributions . 5
1.3 List of Publications . 6
1.4 Thesis Outline . 7

2 Background and Related Work 9
2.1 Appearance Modeling of Fabrics . 9
2.2 Data Compression Through Network Architecture Adjustment 12
2.3 Geometric Modeling of Fabrics . 13

II Publications 19

3 Efficient structuring of the latent space for controllable data reconstruction and
compression 21
3.1 Summary of the Publication . 21
3.2 Author Contributions of the Publication . 23

4 Inverse Procedural Modeling of Knitwear 25
4.1 Summary of the Publication . 25
4.2 Author Contributions of the Publication . 27

5 Neural Inverse Procedural Modeling of Knitting Yarns from Images 29
5.1 Abstract . 29
5.2 Introduction . 30
5.3 Related Work . 32
5.4 Generation of synthetic training data . 34

5.4.1 Hierarchical yarn model . 35
5.4.2 Flyaway generation . 38
5.4.3 Further Implementation Details . 40
5.4.4 Extensions to State-of-the-art Yarn Generator 40
5.4.5 Yarn dataset . 42

vii

5.5 Inference of yarn characteristics from input images 42
5.5.1 Inference of yarn parameters . 43

5.6 Experiments . 47
5.6.1 Parameter inference on real data . 48
5.6.2 Limitations . 50

5.7 Conclusions . 53

Appendices 55
5.A Inferred yarn parameters . 55
5.B Yarn sampler . 55

III Conclusion 59

6 Conclusion 61
6.1 Contributions and Impact . 61
6.2 Limitations and Future Work . 63

List of Figures 67

List of Tables 71

IV Appendix 73

Publication: “Efficient structuring of the latent space for controllable data recon-
struction and compression” 75

Publication: “Inverse Procedural Modeling of Knitwear” 91

viii

Part I

Introduction

1

Chapter 1

Introduction

Fabrics are omnipresent in our daily life. They are used not only in the domain of clothing
and fashion but also in the entertainment industry or for upholstery. Therefore, virtual
design and modeling of fabrics and garments are very important for many applications. For
example, there are many new designs of clothing created by the fashion industry every season.
Such a creation process usually requires several iterative steps, many of them depending on
the visualization of the garments or their fragments and without computer-aided design,
those visualizations can only be achieved during the actual fabrication process. Similar
examples can be observed for upholstery products, such as furniture or car seats. Visual
prototyping, which denotes the prediction and editing of the appearance of virtual objects,
following [Schröder, 2015], aims to replace some of these manufacturing steps by virtual
ones. In this work, we focus on the visual prototyping of knitted cloth as a representative of
one of the most complex and versatile types of fabrics, which is not only popular among
designers but also among a large group of society interested in producing handcrafted
clothing according to their own preferences.

One common way to approach the problem of appearance modeling of fabrics is to use
an image-driven material representation technique, such as dense Bidirectional Texture
Functions (BTFs)[Dana et al., 1999]. For each material, many photographs with cameras
positioned at different angles and directional light coming from various directions need
to be taken and stored. Using these measurements, one can reproduce the appearance of
the corresponding original material. The accurateness of the reproduction depends on the
number of measurements. The more images under different light and view directions are
captured, the more truthful the reproduction becomes. BTFs have proven to accurately
reproduce a wide range of real-world materials, including complex materials such as fabrics.
However, one of the main drawbacks of this technique is its high memory complexity, which
drastically reduces its practicability and arouses the requirement for a compression strategy.
In order to address this problem, Rainer et al. [2019] developed a new compression strategy for
BTFs, where the compact representation for BTFs is learned by an encoder-decoder network.
During the training, the high-resolution textures are transformed into low-dimensional
latent variables. After the learning procedure, only the latent variables, together with the
decoder network need to be stored. This compressed representation can be directly used for
rendering by combining the latent variables with the angles of the light and view directions

3

Chapter 1 Introduction

as an input query for the decoder and receiving the corresponding RGB values as an output.
Since compression rates and storage requirements of a material sample in this approach are
directly influenced by the dimension of the latent variables, a critical question of the BTF
compression problem is: Which number of latent dimensions is the most suitable for each
BTF? Rainer et al. [2019] heuristically chose eight as the number of dimensions, independent
of the material, leaving the detailed material-dependent analysis as an open question. We
address this question in the first part of the thesis and make neural BTF representation for
fabrics even more compact by analyzing the latent space depending on the complexity of
each fabric individually, ordering the latent variables according to their contribution to the
reconstruction and determining the most suitable latent space dimensionality.

Another drawback of image-based appearance representation approaches, such as BTFs, is
that performing editing operations is not easily possible. This is a major problem for the
visual prototyping of clothes. In addition, BTFs cannot be used to represent macro-scale
geometry, which is important when representing garments such as knitwear due to their
inherent 3D structure. Besides setting and following color trends in fashion, the design of
knitted cloth takes place at different levels of detail. On the one hand, the composition of
the fabric needs to be chosen, and for knitwear this means deciding on the yarn, which can,
in turn, contain either only one type of fiber or a mixture of different fibers. On the other
hand, there is a vast amount of possible knitting patterns into which the yarn can be knitted.
Ideally, we would like to be able to visualize and edit all these levels of detail (fibers, yarns
and patterns). In order to do this, we need to model these three scales explicitly. Therefore,
in the second part of the thesis, we focus on the macro-scale representation of knitwear in
terms of knitting patterns, mesoscale representations of yarns and the plausible editing and
visualization of knitting yarns and patterns. We also present algorithms for automatically
deriving these representations of yarns and knitting patterns from images of real yarns and
knitting patches.

1.1 Challenges

In the following, the major challenges that are tackled in this thesis are summarized.

Challenges in Determining Task-Dependent Latent Dimension Compact data representa-
tion techniques often transform the input data into a lower-dimensional latent space that
represents the most important features of the input in a compact way. The main challenge of
such compression methods is to find the best trade-off between the dimensionality of the
latent space, which is directly linked to the compression rate, and the reconstruction error
that occurs when approximating the input from the latent code. Due to runtime issues, this
trade-off should be found without multiple training processes with different numbers of
latent dimensions and the subsequent calculation of the reconstruction errors for each model.
The nonlinearity of encoder-decoder functions and the fact that the latent variables are
usually not independent present additional challenges because they make linear approaches
like principal component analysis not suitable for the analysis of latent space.

4

1.2 Contributions

Challenges in Inverse Procedural Modeling of Knitwear from a Single Image In the case of
knitwear, the corresponding procedural model is represented through knitting instructions
for patterns. In order to derive a correct knitting instruction from an image of a garment, it is
necessary to both identify and localize the stitches contained in the pattern. The localization
is required in order for the knitting instruction to be valid. In the case of knitting patterns
consisting of the two most common stitch types, purl and knit, a valid stitch pattern is a
regular grid of stitches. The main challenge of stitch identification from images is the vast
amount of variations in appearance. Even though there exists only a small number of stitch
types, the actual knitting pieces can be made of yarns of various thicknesses, fuzziness,
material and other different properties. Depending on the pattern, the neighboring stitches
often partially or sometimes even completely hide adjacent stitches or cast shadows on them.
The problem becomes more challenging for hand-made knitting clothing. Depending on the
style, skill and other characteristics of the person, who knitted the cloth, the stitches exhibit
various deformations like stretching and can range from too tight to very loose throughout
the piece. The challenge in localizing all the stitches in an image consists of recognizing the
correct number of rows and columns in the pattern, which is especially difficult because, due
to the aforementioned variations of stitches, the size of the stitches varies by a considerable
amount. Currently, to the best of our knowledge, there exists no labeled database that would
help to address these challenges with deep learning methods.

Challenges in Image-based Inverse Procedural Modeling of Yarns While for knitwear,
the corresponding knitting instructions could be described based on a well-established
procedural model, a broadly accepted model for the generation of knitting yarns is still under
development. Although some procedural yarn models have been proposed in the literature,
it remains a challenge to generate realistic yarns. After creating or selecting an appropriate
procedural model for yarn generation, the next challenge is to gain control over the output.
The most convenient way for an inexperienced user is to input an image of a desired yarn,
and the system automatically infers the corresponding parameters. This inverse procedural
modeling task is particularly challenging due to the previously mentioned huge appearance
variations of yarns. Hairiness and other irregularities of yarns constitute, at this level of detail,
an even more significant disturbance than in the case of textile pieces. Different illuminations
and other light and camera parameter variations must also be taken into account. Similar to
the case of knitwear, to the best of our knowledge, no labeled database of knitting yarns exist
at the time of completion of this thesis.

1.2 Contributions

In the scope of this thesis, we developed methods to address the previously mentioned
challenges. In particular, the main contributions of this thesis are:

• Task-dependent Specification of the Latent Space Dimensionality in Encoder-
Decoder Architectures We developed a novel approach for analyzing, structuring
and determining a suitable dimension of the latent space in compression schemes
that utilize encoder-decoder architectures. We compute the contributions of latent

5

Chapter 1 Introduction

variables towards the reconstruction result using Shapley values and order the variables
according to their contribution. The subsequent reconstruction of the data with ordered
subsets of latent variables and the computation of the cumulative contribution provides
a good measure of how many dimensions are suitable for the particular task, thus
making the latent representation of the data even more compact. We evaluate our
method on several compression applications to demonstrate its effectiveness.

• Connection Between Shapley Values and Principal Component Analysis (PCA) We
establish a link between Shapley values and singular values and prove that in the
case of a linear relation 𝐴𝑥 = 𝑦 between the input data 𝑥 and the output 𝑦 of a model
𝐴, where a singular value decomposition of 𝐴 and a PCA can be applied and the
Eckard-Young-Mirsky theorem states how optimal low-rank approximation 𝐴𝑘 can be
approached, the ordering of the eigenvectors according to their Shapley values is equal
to the ordering of the corresponding singular values. As a direct corollary, we follow
that the optimal rank-𝑘 approximation of a linear model 𝐴 can be computed from the
first 𝑘 elements according to the ordering based on Shapley values.

• Inverse Procedural Modeling of Knitwear We propose a novel approach for inferring
knitting instructions from a single image that does not rely on a labeled database. Our
method includes a template matching step to identify of the stitch types in the image
as well as an integer linear programming step to find the correct stitch positions. It
ensures that the resulting stitch grid is regular and, thus, constitutes a valid knitting
instruction. Since knitted garments are produced by repetitions of the pattern and the
actual pattern usually appears several times in the image, we developed a pattern size
detection step for our pipeline that simultaneously corrects the possible errors that
may result from the template matching step.

• Extended Best Buddies Similarity Measure for Template Matching We improved
the existing similarity measure, which was successfully used in template matching
tasks of various computer vision applications, by enhancing it with a gradient penalty.
The extended version of the similarity measure has proven to outperform many state-
of-the-art techniques when tested in the application of stitch type identification and
localization in an image of knitted cloth.

• Inverse procedural modeling of Yarns We provide a database of very detailed,
annotated synthetic yarn images of high resolution. In order to generate this database,
we enhanced an existing yarn generator with several meaningful parameters to enable
the synthesis of even more realistic yarns. Using our database of synthetic but realistic
yarns, we developed a neural method for the induction of the required procedural
parameters for the yarn generator from images of real-world yarns.

1.3 List of Publications

I have contributed towards the goal of visual prototyping of knitwear over the course of
several research projects. These projects are part of this thesis, and the corresponding

6

1.4 Thesis Outline

publications are listed in the following.

• Elena Trunz, Michael Weinmann, Sebastian Merzbach, and Reinhard Klein.
“Efficient structuring of the latent space for controllable data reconstruction and
compression.”
Graphics and Visual Computing (GVC), 7, page 200059, 2022.
doi: 10.1016/j.gvc.2022.200059

• Elena Trunz, Sebastian Merzbach, Jonathan Klein, Thomas Schulze, Michael Weinmann,
and Reinhard Klein.
“Inverse Procedural Modeling of Knitwear.”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8622–
8631, 2019.
doi: 10.1109/CVPR.2019.00883

• Elena Trunz, Jonathan Klein, Jan Müller, Lukas Bode, Ralf Sarlette, Michael Weinmann,
and Reinhard Klein.
“Neural Inverse Procedural Modeling of Knitting Yarns from Images.”
arXiv:2303.00154 (under review), submitted to Computers & Graphics (CG), 2023.
doi: 10.48550/arXiv.2303.00154

Additionally, I also contributed to the following publications, which, however, are not part of
this thesis:

• Stefan Hartmann, Elena Trunz, Björn Krüger, Reinhard Klein, and Matthias B. Hullin.
“Efficient Multi-Constrained Optimization for Example-Based Synthesis.”
The Visual Computer / Proc. Computer Graphics International (CGI 2015), pages 893–904,
2015.
doi: 10.1007/s00371-015-1114-y

• Ilia Mazlov, Sebastian Merzbach, Elena Trunz, and Reinhard Klein.
“Neural Appearance Synthesis and Transfer.”
Workshop on Material Appearance Modeling, pages 35–39, 2019.
doi: 10.2312/mam.20191311

1.4 Thesis Outline

The remainder of this thesis consists of the following chapters:

Chapter 2 contains the summary of the background information and discussion of the previ-
ous works that are related to our research. Next, Chapter 3 summarizes our peer-reviewed
publication "Efficient structuring of the latent space for controllable data reconstruction and
compression" [Trunz et al., 2022], where we introduced the idea of analyzing, ordering and
finding a suitable dimension for the task-dependent latent space, based on the importance of
the corresponding latent variables towards the reconstruction, with the help of the Shapley
values. In the following Chapter 4, we summarize our peer-reviewed publication "Inverse
Procedural Modeling of Knitwear" [Trunz et al., 2019], which presents a pipeline for a robust

7

https://doi.org/10.1016/j.gvc.2022.200059
https://doi.org/10.1109/CVPR.2019.00883
https://doi.org/10.48550/arXiv.2303.00154
https://doi.org/10.1007/s00371-015-1114-y
https://doi.org/10.2312/mam.20191311

Chapter 1 Introduction

inference of knitting instructions from a single image of a knitting patch. Chapter 5 contains
our publication "Inverse Procedural modeling of knitted yarns" [Trunz et al., 2023], which is
currently under review and available online as a preprint. It presents an approach for the
inference of geometric yarn and flyaway parameters from a photo of knitting yarn and a
corresponding procedural yarn generator, together with an annotated yarn database. Finally,
the thesis concludes with a discussion of the contribution of the introduced techniques and
remaining limitations as well as an outlook regarding potential future developments.

8

Chapter 2

Background and Related Work

In this chapter, we give an overview of previous works on the appearance and geometry
modeling of fabrics and briefly review some basic information about the elements of knitted
cloth that is relevant in the context of this thesis. We assume the reader to be familiar with
basic deep-learning concepts, which are explained in detail by Goodfellow et al. [2016].

2.1 Appearance Modeling of Fabrics

The appearance of fabrics and other materials is determined by the complex interactions of
light, optical material properties of the surface and surface geometry. These light-scattering
interactions can be categorized according to the size of the geometric features that affect
them. In the Computer Graphics community, it is common to differentiate between features
on three scales, although one can come across different terminologies for those. For example,
Westin et al. [1992] use the expressions microscale, the milliscale and the object scale, whereas
Fournier [1992] denotes the corresponding scales as microscopic, mesocsopic and macroscopic
scale. Throughout this thesis, we will follow the latter terminology:

• On the level of the microscopic scale, there are object features that correspond to
microscopic surface structures (e.g. roughness) and physical properties of the material,
such as the index of refraction and absorption coefficient. These features are not visible
to the human eye, but are responsible for the reflectance of the object (Fig. 2.1, left).

• Structures at the mesoscopic scale correspond to fine details in the surface geometry
that are barely visible and are still considered part of the material rather than the
geometric shape of the object. Examples include scratches, engravings or yarns and
fibers as mesoscopic features of knitted cloth (Fig. 2.1, center).

• The coarsest level is the macroscopic scale. Its structures define the geometric shape of
the object. However, the boundaries between the scales are not clearly distinguished
and can be chosen based on some prior information about the task, such as the expected
distance of the user. For our visual prototyping task, knitting patterns are viewed as
structures of the macroscopic scale (Fig. 2.1, right).

9

Chapter 2 Background and Related Work

Figure 2.1: Illustration of geometric features of knitwear at different scales. Left: The microimage
taken with an electron microscope depicts the features of a single wool fiber on the microscopic scale
(image taken from [Robbins, 2013]); Middle: On the photograph of the yarn, its virgin wool fibers are
clearly visible. Right: A patch of knitwear shows the geometric pattern.

One can further group these scales into two classes and separate the material of an object
(the microscopic and the mesoscopic scales) and its shape (the macroscopic scale). We expect
the designer to view the knitting cloth at a relatively close distance, therefore, in our case,
knitting yarns and fibers serve as material and knitting patterns define the shape of the object.
Whereas the usual representation of the shape is a polygon mesh, there are several commonly
used models to represent optical material properties. In the following, we briefly describe
representations that are most relevant to the content of the thesis. For extensive surveys on
reflectance modeling, we refer to [Haindl and Filip, 2013; Weinmann et al., 2016].

Surface Reflectance There are two classical ways to model material appearance. One
of them is to derive analytical reflectance models, and the other is to use real-world
measurements directly.

One of the most popular ways to represent appearance at the microscale is through Bidirectional
Reflectance Distribution Functions (BRDFs) [Nicodemus et al., 1977]. BRDFs belong to the class
of analytical appearance models and describe the transformation of incoming irradiance
to outgoing radiance at the considered surface point depending on only four parameters:
two spherical angles for the direction of incoming light and another two spherical angles
for the outgoing direction. These models achieve good results for the materials where light
scattering is a local phenomenon. However, they cannot model the effects of the mesoscopic
scale and are therefore not sufficient to describe materials with subsurface scattering, such
as fabrics.

A very powerful approach for realistic appearance modeling of complex materials, such as
fabrics, at both the microscale and the mesoscale, is the image-based technique of Bidirectional
Texture Functions (BTFs) [Dana et al., 1999]. An exhaustive set of photographs is taken
under a directional light source by densely sampling different light and viewing directions.
BTFs are six-dimensional functions that take as input two spherical angles for the incoming
light direction, two angles for the camera direction and 2D coordinates of the position on
the surface and output the corresponding reflectance value. These measurements capture
effects such as subsurface scattering, occlusion or self-shadowing, which allow accurate
reproduction of fabrics and other complex materials.

10

2.1 Appearance Modeling of Fabrics

Four-dimensional functions defined by the evaluation of the BTF at a given 2D point on
the surface are called apparent BRDFs (ABRDFs). One main difference between BRDFs and
ABRDFs is the support of several non-local phenomena, such as subsurface-scattering, as in
the case of BTFs.

The faithful material reconstruction through the BTF approach comes at the cost of high
memory requirements both for storing the data measurements as well as for loading
operations of the rendering process since the number of measurements directly influences
the accuracy of the reconstruction and suffers if the database of measured samples is not
exhaustive enough. One of the primary openly accessible BTF datasets at the moment
is the UBO2014 database [Weinmann et al., 2014] of the University of Bonn. It contains
bidirectional texture functions for 84 various materials, where each BTF consists of 22801
(= 151 light directions× 151 view directions) HDR photographs of a 5𝑐𝑚2 material patch with
the resolution of 512 × 512 texture pixels (texels). Such a large amount of data explains the
need for compression strategies in order to maintain the practicability of the BTF approach.
We describe previous work on BTF compression techniques in the following paragraph.

An interesting approach to the appearance of woven fabrics was presented by Montazeri et al.
[2020], which results in a more efficient rendering. The approach combines a new geometric
model for ply-based woven cloth representation with a new light scattering model, which
was custom tailored for this application.

During the last few years, with the increasing advances in the field of deep neural networks,
another class of material appearance methods has emerged. The neural rendering approach,
which is orthogonal to the two previously described ways of appearance modeling, took
over the focus of researchers. For extensive surveys on neural rendering, we refer to [Tewari
et al., 2020] and the most recent state-of-the-art report [Tewari et al., 2022].

BTF Compression As mentioned above, BTFs require a high amount of memory for storing
and loading the data, which has motivated research towards developing different BTF
compression strategies. A relatively simple but very effective way to compress BTFs is to
apply standard Principle Component Analysis (PCA) to the measured data. As mentioned
before, the BTF stores a four-dimensional ABRDF for every two-dimensional surface point
and is, therefore, originally a tensor. In order to perform a PCA, the data needs to be
transformed into two-dimensional matrices, therefore all 𝑛 ABRDFs are arranged as columns
of a matrix 𝐴 ∈ R𝑚×𝑛 , where 𝑚 denotes the number of BTF texels. Then, a linear matrix
factorization in the form of a Singular Value Decomposition (SVD) is performed on 𝐴:

𝐴 = 𝑈Σ𝑉𝑇

Subsequently, only the most important components are kept. In other words, the data is
compressed by computing the best 𝑘-rank approximation 𝐴𝑘 to the data matrix 𝐴:

𝐴𝑘 =

𝑘∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 ,

11

Chapter 2 Background and Related Work

where 𝑘 << 𝑛. Because of its simplicity, this PCA-based approach is a very common method
for BTF compression, which was, for example, used in [Koudelka et al., 2003; Liu et al.,
2004] and also implemented to store the data in the aforementioned UBO2014 database
with 𝑘 = 101. Another possibility is first to divide the complete database into convenient
subsets and perform the PCA on them independently [Sattler et al., 2003; Westermann et al.,
2003; Kim et al., 2018]. Assuming that the entire data matrix fits into memory, the full
matrix factorization usually achieves better compression ratios than the factorization of data
subsets.

As an alternative to the matrix representation, several works have performed the decomposi-
tion directly on the tensor representation [Furukawa et al., 2002; Wang et al., 2005; Wu et al.,
2008; Ruiters and Klein, 2009]. However, all factorization approaches assume only linear
dependencies in the data and do not exploit the fact that reflectance data is significantly
more structured.

In order to detect more complex dependencies Rainer et al. [2019] utilized a neural approach
for BTF compression. An asymmetric encoder-decoder is utilized to transform a preprocessed
𝑑-dimensional data vector into latent vectors of dimension 𝑘, where 𝑘 << 𝑑. For each BTF,
a separate model needs to be trained. After the transformation, only the decoder and the
latent vectors are stored. The decoder is then used to recover the approximated dataset by
obtaining the corresponding latent vector and the light and view direction angles 𝜔𝑖 and
𝜔𝑜 . While this method significantly outperformed PCA-based BTF compression, it did not
exploit the possibility of determining the number of latent vectors in dependence on the
BTF complexity and chose the same number for all BTFs instead. Since the number of latent
vectors is directly connected to the compression ratio, determining it based on the data leads
to better compression. In the subsequent work [Rainer et al., 2020], the authors unified
multiple BTFs into one model, but the question of a suitable number of latent dimensions
still remained. In the first part of the thesis, we explore this question by analyzing the
latent space. Therefore, in the following, we discuss previous approaches for determining a
suitable dimension of the latent space and other compression techniques based on network
architecture adaptation.

2.2 Data Compression Through Network Architecture Adjustment

To date, most methods, which rely on an autoencoder or other encoder-decoder architectures,
specified the number of latent variables in the corresponding network by heuristically setting
it to some power of two without any explanation on why this particular number was chosen.
In contrast, some previous works addressed the question of determining the most convenient
latent dimensionality for their encoder-decoder in the context of their specific task [Rainer
et al., 2019; Rainer et al., 2020]. The network was trained for each number of latent variables
anew, and after each training, the results of the output reconstructions were evaluated. Based
on the trade-off between the resulting compression ratio and the reconstruction error, the
suitable number of latent dimensions was chosen. However, this exhaustive approach leads

12

2.3 Geometric Modeling of Fabrics

to a very high runtime consumption and, in the case of high-dimensional data, might be
intractable.

A more complex approach to structure the latent space of an autoencoder [Ladjal et al., 2019;
Pham et al., 2020] is based on the basic idea of the PCA. The architecture of this autoencoder
is built iteratively, such that all latent variables are statistically independent and arranged in
decreasing order of importance regarding the input data. However, this approach also has a
very high runtime complexity, requiring almost a complete learning cycle per latent variable.
In contrast, our method directly computes the contribution of each latent variable based on
their Shapley values [Shapley, 1953], a concept introduced in game theory, in a single step,
thus avoiding many time-consuming training iterations.

In the context of neural image compression, an approach based on slimmable neural networks
[Yu et al., 2018] has been applied [Yang et al., 2021]. It adjusts the width of the hidden layers
of a compressive autoencoder, leading to even better compression rates. For the purpose of
automatic architecture adjustment, several alternatives of slimmable generalized divisive
normalization (GDN) [Ballé et al., 2016a] layers together with slimmable probability models
were evaluated. While this method has shown impressive results in the field of image
compression, our approach (Trunz et al., 2022, see Chapter 3) based on the contributions of
latent variables towards the reconstruction result provides an effective alternative that can
be used in combination with such slimmable neural networks. Furthermore, our method
can improve any compression method which utilizes an encoder–decoder.

2.3 Geometric Modeling of Fabrics

In this section, we discuss previous work on procedural and inverse procedural modeling
and give basic information on the elements of knitted cloth.

Composition of Knitted Cloth Information about the compositional elements of knitted
cloth is essential for any kind of procedural modeling of knitwear. In the following, we
introduce some basic concepts of textile yarns and knitting in general.

In essence, there are three scales of knitted cloth. The basic microscopic scale refers to the
level of fibers and their arrangement. The most exquisite are natural fibers such as cashmere
wool, mohair, virgin wool, cotton or silk. But also synthetic fibers like acrylic or nylon are
very popular choices in the knitwear industry. Many fibers are twisted to form a long strand
called a ply. A ply may consist of only one type of fiber or may contain several different types.
There are various ways of twisting fibers to plys, we refer to [Shaikh, 2002] for a detailed
explanation. For the purpose of realistic modeling, we differentiate between two classes
of fibers: raw yarn fibers and flyaways. Flyaways are fibers that have been displaced from
their original position in the yarn e.g. due to friction. Such fibers contribute significantly
to the hairiness of the yarn. According to [Zhao et al., 2016], we distinguish between loop
flyaways and hair flyaways. Fibers where one side completely left the ply are denoted as

13

Chapter 2 Background and Related Work

hairs, whereas fibers that significantly deviate from the main ply structure but where both
ends are still within the ply are denoted as loop flyaways.

When two or more plys are twisted together, they form a yarn, which constitutes the second
level of cloth. Whereas yarns for woven cloth are often made out of two or three plys, the
most common number of plys in a knitted cloth without further twisting is four, followed by
three and five. If the yarn is too thin, it is usually made thicker by twisting several thinner
yarns together (Fig. 2.2).

Figure 2.2: Left: two plys are twisted together to form a thin yarn. Middle: a four-ply yarn that is
thick enough for knitting. Right: two thin yarns are twisted together to form a thicker yarn.

Knitwear is made out of yarns by repeatedly following some knitting instructions, which
results in a pattern that represents the third level of cloth. This process is done either by
hand or with the help of knitting machines. Knitting instructions consist of a regular grid of
symbols, where each symbol corresponds to a three-dimensional loop. Such loops are called
stitches. Each pattern starts with an initial top row of stitches, and all subsequent rows are
generated below by pulling the yarn through the stitches of the previous row. There is only
a small amount of stitch types with which all of the knitting instructions are produced, but
the two fundamental and by far the most common types are a knit and a purl stitch, as shown
in Figure 2.3. A knit stitch occurs when the yarn is pulled through a loop of a stitch of the
upper row from below, while creating a purl stitch requires the yarn to be pulled from above.
If the knitted cloth is viewed from the other side, then purl stitches look like knit stitches and
vice versa. Three simple common knit-purl patterns are called Stockinette, Garter and 2-2 Rib.
However, there exists a huge amount of patterns that can be made only with these two types
of stitches.

Procedural Modeling of Fabrics As already mentioned, for visual prototyping of knitted
cloth, we ideally want to be able to perform editing operations on each of the three scales:
fibers, yarns and patterns. For this purpose, we need to model these scales explicitly and
not only by means of an image-based representation, such as the BTF described in Section
2.1. Procedural modeling is an established technique in computer graphics that helps to
efficiently create a lot of 3D content employing production rules and parameters instead of
the time-consuming manual generation of each shape individually with some modeling

14

2.3 Geometric Modeling of Fabrics

Figure 2.3: Examples of knit (top) and purl (bottom) stiches.

software. Such production rules have been developed for example for buildings [Müller
et al., 2006], cities [Vanegas et al., 2012] and trees [Longay et al., 2012; Stava et al., 2014].
Recently, Guerrero et al. [Guerrero et al., 2022] presented the first generative model for
procedural materials.

At the pattern level, for woven cloth, such rules can be represented in terms of a weave pattern
matrix, and in the case of knitwear, production rules correspond to knitting instructions. In
order to create any desired knitting pattern, one merely requires a 3D model of each type
of stitch. These stitch shapes are then assembled according to the corresponding knitting
instruction. Due to physical forces, the same stitches in a pattern behave differently when
combined with different types of neighboring stitches (see Figure 2.3). Thus, to increase
realism, several approaches for physical simulation of knitwear and woven cloth have been
proposed [Kaldor et al., 2008; Yuksel et al., 2012; Leaf et al., 2018; Sperl et al., 2020]. After the
whole pattern has been modeled, subsequent iterative physical simulation gives the stitch
loops a more realistic shape and can be combined with the approaches presented in this
thesis.

Jin et al. [2022] focused their work on woven cloth and introduced a procedural model that
approximates yarn geometry with smooth bent cylinders combined with a shading model
for reflectance. In order to edit at the level of fibers and yarns, i.e. the components the
stitches were made of, several variations of procedural models for yarns have been developed.
Sreprateep and Bohez [2006] presented a detailed model of fibers twisted into a single ply.
This model already took into account the fact that fibers do not follow a uniform distribution
within a ply. Furthermore, the idea of fiber migration (i.e. parts of fibers migrating from
their positions within the yarn) was also incorporated into the model. Schröder et al. [2015]
took this model as an inspiration and introduced a procedural yarn model that included hair
flyaways and was able to generate more than one ply. Further extensions and modifications
to this model were made by Zhao et al. [2016]. First, their new model included support
for loop flyaways. Furthermore, instead of simulating hair flyaways with Perlin Noise, the
authors introduced several parameters to control all flyaways. Both modifications result in a
more realistic appearance of yarns and fabrics.

Luan et al. [2017] introduced an approach for efficient and fast rendering of procedural
textiles that does not require the full realization of the procedural model and, thus, can be
applied to large-scale procedural textiles.

In our work, we even further extend the model of Zhao et al. [2016] by including an elliptical

15

Chapter 2 Background and Related Work

cross-section of fibers instead of a circular one, changing the orientation of the plys from the
global to the local one and, most importantly, modifying the parameters for the hair flyaways
to better reflect the actual manufacturing process. These enhancements lead to an even more
realistic yarn appearance, which enables the training of neural network models based solely
on synthetic data and still be successfully applied to real-world yarns.

Inverse Procedural Modeling of Fabrics Although forward procedural modeling has been
successfully and widely used in the computer graphics community to efficiently create a large
amount of 3D content, controlling the output remains a well-known open problem. Even for
an experienced user, it is not trivial to correctly set all the parameters of a model in order to
get the desired output. Inverse procedural modeling aims to allow the user to control the
modeling process in terms of the specification of the output. Instead of guessing how the
parameters should be set in order to produce the needed output, the user specifies how the
output should look, usually in terms of an image, a 3D volume or some other specification.
Subsequently, the system itself discovers how to set the corresponding parameters of the
procedural model so as to generate the desired output. Such inverse systems have been
successfully introduced for facades [Weissenberg et al., 2013; Wu et al., 2014; Lienhard et al.,
2017], buildings [Demir et al., 2016; Nishida et al., 2018], trees [Stava et al., 2014] and in
the domain of urban design [Vanegas et al., 2012], among others. We refer to the course of
Aliaga et al. [Aliaga et al., 2016] for an extensive survey on the topic of inverse procedural
modeling.

In the area of cloth modeling, several inverse procedural modeling approaches have been
proposed. A complete pipeline for reverse engineering of woven cloth has been developed
by Schröder et al. [2015]. Guarnera et al. [2017] introduced an alternative approach that
required less runtime for its execution. Both methods demonstrated promising results in
the reverse engineering of woven cloth but were not designed for the analysis of knitwear.
Hussain et al. [2020] cast the problem of weave pattern identification as a classification
problem for a neural network and restricted the number of possible classes to three, based
on the three most commonly used weave patterns: plain, twill, and satin. Recently, Ali et al.
[2022] proposed a neural segmentation approach to detect a weave pattern in a set of micro
CT images.

Knitted stitches have three-dimensional structures, and the overall shape of the loops,
especially in the case of hand-made garments, do not exhibit the similarity and overly regular
structures, without non-rigid deformations, as the warp and weft of woven cloth do. Parallel
to our work on inverse procedural modeling of knitwear, Kaspar et al. [2019] proposed neural
inverse knitwear modeling. However, this approach was designed to handle machine-knitted
textiles and was not able to analyze hand-made patches, which are usually more deformed
than their machine-knitted counterparts. Furthermore, to obtain good results, the number of
rows and columns of the patterns has to be specified in advance, which is a difficult task for
an inexperienced user. In contrast, our approach (Trunz et al., 2019, see Chapter 4) achieves
good results on both machine- and hand-knitted fabrics, and the number of columns and
rows of the pattern is determined automatically.

16

2.3 Geometric Modeling of Fabrics

Inverse Procedural Modeling of Yarns Already in 2004, Voborova et al. [2004] used an
imaging system containing a microscope, optical fiber lighting and a CCD camera as input
and estimated the hairiness along with the effective diameter and a twist of the yarn. The
work of Zhao et al. [2016] focused on inferring the parameters for their procedural model for
yarns from a given CT scan of a small piece of the yarn. However, this approach requires
expensive hardware and can only be applied for yarns, where all characteristics (such as helix
pitch, yarn radius, etc.) fit into one scan. In order to make an approach to be accessible to
more users, other works focused on determining yarn characteristics from images. Saalfeld
et al. [2018] inferred some of the parameters of the procedural yarn model of Zhao et al.
[2016] by means of gradient descent with momentum approach on artificially generated yarn
images. However, the approach did not achieve good results on the images of real yarns.
Given a single image of a small textile patch and a yarn database as a prior, Wu et al. [2019]
estimated the yarn-level geometry of the fabric. However, the authors conclude that such
input information is not sufficient to extract yarn parameters other than fiber twist and the
number of fibers. To the best of our knowledge, our neural approach (Trunz et al., 2023, see
Chapter 5) for procedural modeling of yarns is the first to infer all required geometry yarn
parameters from a single image.

17

Part II

Publications

19

Chapter 3

Efficient structuring of the latent space
for controllable data reconstruction

and compression

In this chapter, the contributions and results developed in the following peer-reviewed
publication are discussed:

Elena Trunz, Michael Weinmann, Sebastian Merzbach, and Reinhard Klein.
“Efficient structuring of the latent space for controllable data reconstruction and
compression.”
Graphics and Visual Computing (GVC), 7, page 200059, 2022.
doi: 10.1016/j.gvc.2022.200059

3.1 Summary of the Publication

In the last years, deep neural networks received vast popularity, and much attention has
been devoted to gaining an understanding of their design and behavior. In the case of
autoencoders, it is difficult to explain the contribution of individual latent variables to the
model performance, which complicates the choice of an appropriate dimensionality of the
latent space. In turn, since the most common application of autoencoders and other encoder-
decoder architectures lies in compression, the choice of the number of latent variables directly
influences the compression rates and the compactness of the data representation.

Most methods, which rely on the utilization of an encoder-decoder, specify the number of
the latent variables heuristically, usually setting it to some power of two and providing no
explanation regarding the choice or analysis on the question of whether the choice was a
suitable one. Only a few attempts have been made to determine the most suitable size of the
latent dimension. Rainer et al. [2019] trained their encoder-decoder models for compression
of bidirectional texture functions (BTFs) several times anew, choosing a different latent size

21

https://doi.org/10.1016/j.gvc.2022.200059

Chapter 3 Efficient structuring of the latent space for controllable data reconstruction and
compression

each time and calculating the resulting reconstruction error. The final size was chosen based
on the compression-reconstruction trade-off. This approach results in high computational
costs, which is why Rainer et al. did not perform the computations for each BTF but chose
the same number of latent variables for all BTFs. However, since each BTF exhibits different
complexity, choosing the same latent dimension for all BTFs is not the optimal decision, as
we demonstrated in our work.

In contrast to this time-consuming approach, the method we presented in this work is
focused on the exploration of the structure of the latent space in encoder-decoder schemes.
We analyze the contribution of the individual latent dimensions to the reconstruction results
and subsequently order them based on their Shapley values [Shapley, 1953] during only
a single training process, thereby avoiding a time-consuming stepwise training process.
The idea of the Shapley values, which has origins in the cooperative game theory domain,
has been successfully applied in the field of interpretable machine learning in applications
such as feature attribution. Given a linear network, we have a direct relation to Principal
Component Analysis (PCA), which provides a natural ordering of the components regarding
their singular values. Starting with the linear models, in our work, we derived the theorem
and gave the theoretical proof that in the linear case, the ordering which results based on the
Shapley values is the same as the order obtained from the singular value decomposition,
thus proving it to be the optimal one.

However, autoencoders and other encoder-decoder models are not linear. While the involved
non-linearity allows encoder-decoders to find more flexible and more powerful latent spaces
that exhibit compactness with respect to the original data domain, it does not allow to
gain structural information of the latent space by means of a PCA. On the other hand, the
non-linearity of a function (encoder-decoder in our case) does not pose a problem for the
computation of the Shapley values for this function. Thus, based on the properties of the
Shapley values, we derived the following algorithm for finding the most suitable number of
latent variables for each particular application: First, the encoder-decoder is trained with a
sufficiently large number of latent variables for a certain number of epochs (usually half of the
intended training). Then, approximate Shapley values for the latent variables are computed,
subsequently ranking the variables in descending order. After the computation of the
cumulative contribution of the ordered sets of latent variables and after the visualization of
to the sets corresponding reconstructions the user can decide how many of the higher-ranked
latent variables will be kept. Subsequently, the last encoder layer and the first decoder layer
are modified, discarding the remaining latent variables and the training is resumed with the
selected variables.

We exemplary demonstrated the beneficial combination of Shapley values and autoencoders
regarding the choice of the dimensionality of the latent space, the ordering of the involved
latent variables according to their importance and the respective capability for reconstruction
and compression of reflectance data (BTFs), as well as images. In the case of the BTF
compression, we demonstrated that different BTFs, due to their different complexity, require
different numbers of latent variables for a similar representation in contrast to the use of a
fixed number of 8 as chosen by Rainer et al. Rainer et al. [2019].

22

3.2 Author Contributions of the Publication

In our work, we also report, for both applications, the relationship between the running time
for computations of the Shapley values and the number of the latent variables from which
the values were computed. Furthermore, we performed the evaluation of the reconstruction
error depending on the number of latent variables that were ordered based on Shapley
analysis in the middle of the training, at the end of the training and a random ordering.

3.2 Author Contributions of the Publication

In this work, I derived the theorem and the theoretical proof that in the case of a linear model,
the ordering of the elements involved in the reconstruction according to their Shapley values
is optimal. Furthermore, I developed the algorithm for finding the required number of latent
dimensions in an encoder-decoder based on the computation of the Shapley values for the
latent variables and ranking them according to their contribution, with subsequent analysis
of cumulative contribution and visualizations. Additionally, I performed the evaluation of
the proposed approach on different applications: a compact representation of images and
high-dimensional reflectance data.

23

Chapter 4

Inverse Procedural Modeling of
Knitwear

In this chapter, the contributions and the results developed in the following peer-reviewed
publication are discussed:

Elena Trunz, Sebastian Merzbach, Jonathan Klein, Thomas Schulze, Michael Wein-
mann, and Reinhard Klein.
“Inverse Procedural Modeling of Knitwear.”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 8622–8631, 2019.
doi: 10.1109/CVPR.2019.00883

4.1 Summary of the Publication

In order to produce nice and interesting-looking knitted clothing, one requires, among other
things, nice knitting patterns. There are books and websites that describe various patterns.
But what if we see a picture of a clothing piece for which we do not have instruction on how
to knit it but want to use its pattern in order to knit this or possibly some other clothing
piece? How can we recognize the desired pattern? This problem is very challenging, even
for an expert in knitting. Even though there is quite a small amount of stitch types, each
stitch can take several possible shapes, depending on the shapes of the neighboring stitches
and the yarn it is made of. Especially stitches might be partially or completely covered by the
adjacent stitches, making them hard to recognize. To be sure of the final instruction of the
pattern, an expert would often have to stretch the clothing piece and turn it around to be able
to see all the covered stitches. With only one image available, it is not possible to perform
such operations. Additional difficulties arise when analyzing an image of hand-knitted
clothing. While the shapes of the stitches of machine-knitted clothing depend mostly on the
yarn and the adjacent stitches, the shapes of the stitches of hand-knitted clothing include

25

https://doi.org/10.1109/CVPR.2019.00883

Chapter 4 Inverse Procedural Modeling of Knitwear

various deformations (like stretching, holes, tight stitches, etc.), depending on the behavior
of the person, who knitted the piece.

Recently some approaches on reverse-engineering of weave patterns [Schröder et al., 2015;
Guarnera et al., 2017] were proposed, but, as the authors state themselves, these methods are
not suitable for analyzing knitted textiles. In contrast to the very regularly shaped woven
cloth, knitted textiles are inherently three-dimensional and exhibit occlusions and non-rigid
transformations, which need to be accounted for in order to accurately infer the correct stitch
patterns from a two-dimensional image. Although there are several approaches for inverse
procedural modeling of objects from images, these approaches are designed for a particular
application and cannot be easily applied to the inference of knitting patterns.

In this paper, we tackled this inverse procedural modeling problem of finding a correct
procedural description (knitting instruction) for a given design on an image by proposing a
four-step approach for a stitch pattern analysis of the given image. In this work, we limited
our algorithm to handle the two main and the most common types of stitches, knit and
purl, since there is a large number of knitting designs using only these. Given an input
image, the user initiates the process by manually choosing one sample for each type of
stitch occurring in the image. All other steps of the algorithm are performed automatically.
First, for each pixel of the image, we used template matching in order to determine, which
stitch type it is more likely to belong to. For the computation of the similarity between the
stitch template and the image patch, we used Best Buddies Similarity (BBS [Dekel et al.,
2015]), which we, for our purposes, extended with an additional gradient constraint (BBSg).
The result of the overall template matching procedure was then used to detect the correct
positions of the stitches, which form a regular grid but with irregular row and column
placement. Since there is a huge amount of possible grids, we formulated the search as an
integer linear programming (ILP) problem and solved for the optimum with the Gurobi
Optimizer software [Gurobi Optimization, 2016]. In the resulting optimal regular stitch
grid, possible stitch type detection errors can occur. In order to correct such errors, we
took advantage of the fact that a knitted piece always contains repetitions of the underlying
pattern. During the third step of our pipeline, possible type errors are corrected using the
maximum voting approach, resulting in the size of the desired pattern and the stitches that
it contains. Since each row and column of the pattern constitutes a possible beginning of the
actual knitting pattern, as the last step of our pipeline, we used the Law of Prägnanz and the
Law of Symmetry from Gestalt theory [Bradley, 2014] to find such beginning that results in a
nice clothing piece, when knitted by repeating the pattern. The result is then transformed
into the desired knitting instruction.

We tested our approach on 25 photos and scans of mostly hand-made knitting samples
with different patterns of various complexity. Despite the relatively high complexity of the
patterns, our approach was able to correctly infer the corresponding knitting instructions. As
there were no previous approaches for inverse modeling of knitting patterns, we compared
our approach with a greedy strategy, where instead of optimizing over all possible stitch grids,
we iteratively selected the best local match according to the similarity measure. However,
due to the iterative local instead of global optimization, this strategy did not yield acceptable
results. Furthermore, we compared our extended Best Buddy Similarity (BBSg) measure

26

4.2 Author Contributions of the Publication

against some other popular template matching measures. Our experiments have shown
how BBSg reduced the matching error. We also reported on the computational time of our
pipeline and especially the ILP solver, and observed that it was less than the running time of
the similarity computations, making the approach feasible for the intended application.

4.2 Author Contributions of the Publication

In this work, I designed a pipeline for the induction of knitting instruction from a single
image. For the first step of the pipeline, I evaluated different metrics for pattern matching,
which were required to find coarse localizations of the stitches in the image. For the second
step, I formulated the integer linear programming (optimization) problem to find an optimal
regular grid structure out of the irregular row and column placement and implemented the
solution with the help of the Gurobi software. For the third and fourth steps, I developed
the error correction and pattern induction algorithm to find the final knitting instruction
from the grid.

27

Chapter 5

Neural Inverse Procedural Modeling of
Knitting Yarns from Images

In this chapter, we discuss the contributions and results developed in the following publication
which already appeared as a preprint and is currently under review:

Elena Trunz, Jonathan Klein, Jan Müller, Lukas Bode, Ralf Sarlette, Michael Weinmann,
and Reinhard Klein.
“Neural Inverse Procedural Modeling of Knitting Yarns from Images.”
arXiv:2303.00154 (under review), submitted to Computers & Graphics (CG), 2023.
doi: 10.48550/arXiv.2303.00154

In the following, we include a verbatim copy of the content of this work subject to some
minor editorial changes.

Author Contributions of the Publication In this work, I developed the idea of utilizing
neural networks together with a database of synthetic yarns to estimate geometry parameters
of real-world yarns. Together with my co-authors, I designed a procedural yarn model that
extends the state-of-the-art model in terms of generation of more realistic synthetic yarns. I
also developed a yarn sampler that automatically generates plausible-looking yarns and used
it to generate a database of annotated images of synthetic yarns. Furthermore, I developed
and implemented the network to infer flyaway parameters and a set of parameter-specific
networks for inference of other yarn parameters from images of real yarns. I used the
generated database to train and validate these neural models.

5.1 Abstract

We investigate the capabilities of neural inverse procedural modeling to infer high-quality
procedural yarn models with fiber-level details from single images of depicted yarn samples.
While directly inferring all parameters of the underlying yarn model based on a single neural

29

https://doi.org/10.48550/arXiv.2303.00154

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

network may seem an intuitive choice, we show that the complexity of yarn structures in terms
of twisting and migration characteristics of the involved fibers can be better encountered in
terms of ensembles of networks that focus on individual characteristics. We analyze the effect
of different loss functions including a parameter loss to penalize the deviation of inferred
parameters to ground truth annotations, a reconstruction loss to enforce similar statistics
of the image generated for the estimated parameters in comparison to training images as
well as an additional regularization term to explicitly penalize deviations between latent
codes of synthetic images and the average latent code of real images in the encoder’s latent
space. We demonstrate that the combination of a carefully designed parametric, procedural
yarn model with respective network ensembles as well as loss functions even allows robust
parameter inference when solely trained on synthetic data. Since our approach relies on the
availability of a yarn database with parameter annotations and we are not aware of such a
respectively available dataset, we additionally provide, to the best of our knowledge, the first
dataset of yarn images with annotations regarding the respective yarn parameters. For this
purpose, we use a novel yarn generator that improves the realism of the produced results
over previous approaches.

5.2 Introduction

Due to their ubiquitous presence, fabrics have a great importance in domains like entertain-
ment, advertisement, fashion and design. In the era of digitization, numerous applications
rely on virtual design and modeling of fabrics and cloths. Besides the use of fabrics in
games and movies, further examples include online retail with its focus on more accurately
depicting the appearance of the respective clothes in images, videos or even virtual try-on
solutions, as well as virtual prototyping and advertisement applications to provide pre-views
on respective product designs.
The accurate digital reproduction of the appearance of fabrics and cloth relies on a fiber-level
based modeling to allow accurately representing light exchange in the fiber and yarn levels.
However, due to their structural and optical complexity imposed by the arrangement of fibers
with diverse characteristics within yarns and the interaction between yarns in the scope
of weave and knitting patterns – where small changes in the fiber and yarn arrangement
may result in significant appearance variations – as well as due to the numerous partial
occlusions of the involved fibers and yarns, capturing and modeling the appearance of yarns,
fabrics and cloth remains a challenge. In the context of reconstructing yarns, Zhao et al.
[2016] addressed the difficulty of scanning the self-occluding fiber arrangements based on
computer-tomography (CT) scans to get accurate 3D reconstructions of the individual yarns.
However, this imposes the need for special hardware. Instead, in this paper, we aim at the
capture and modeling of the appearance of yarns by inferring individual yarn parameters
from a single photograph depicting a small part of a yarn.
To address this goal, we investigate the capabilities of neural inverse procedural modeling.
Whereas directly optimizing all the parameters that determine a yarn’s geometry (including
flyaways i.e. fibers that migrate from the yarn, contributing to the fuzziness of the yarn)
with a single neural network may seem an intuitive choice, the complexity of the depictions

30

5.2 Introduction

of yarns, where twisting characteristics dominate the appearance in the yarn center and
flyaway statistics dominate the appearance in the yarns’ border regions, imposes that the
network has the capacity to understand where which parameters can be predominantly
inferred from. This observation might indicate that other strategies such as training separate
networks for inferring the structural parameters for the main yarn and the characteristics
of flyaways or even using an ensemble of networks, where each of these networks is only
responsible for estimating a single parameter of the underlying yarn model, could be rea-
sonable alternatives. Therefore, we investigate the potential of these approaches for the
task of inverse yarn modeling from a single image. Furthermore, we investigate the effect
of different loss functions including a parameter loss to penalize the deviation of inferred
parameters to ground truth annotations, a reconstruction loss to enforce similar statistics
of the image generated for the estimated parameters in comparison to training images as
well as an additional regularization term to explicitly penalize deviations between latent
codes of synthetic images and the average latent code of real images in the encoder’s latent
space. Thereby, we also analyze to what extent such models can be trained from solely using
synthetic training data.
All of these models are trained based on synthetic training data generated from a high-quality
yarn simulator that improves upon the generator by Zhao et al. [2016] in terms of a more
realistic modeling of hair flyaways, fiber cross-section characteristics and the orientation
of the fibers’ twisting axis. As our approach relies on the availability of a dataset of yarn
images with respective annotations regarding characteristic yarn parameters, such as the
number of plys, the twisting length etc., we introduce – to the best of our knowledge – the
first dataset of synthetic yarns with respective yarn parameter annotations. Both the dataset
and the yarn generator used for the automatic generation of this dataset will be released
upon acceptance of the paper. Our approach for neural inverse procedural modeling of
yarns exhibits robustness to variations in appearance induced by varying capture conditions
such as different exposure times as long as strong over-exposure and under-exposure are
avoided during capture.
In summary, the key contributions of our work are:

• We present a novel neural inverse modeling approach that allows the inference of
accurate yarn parameters including flyaways from a single image of a small part of a
yarn.

• We investigate the effect of different loss formulations on the performance based on
different configurations of a (yarn) parameter loss to penalize deviations in the inferred
parameters with respect to the ground truth, a reconstruction loss to enforce the
statistics of a rendering with the estimated parameters to match the statistics of given
images, and regularization term to explicitly penalize deviations between latent codes
of synthetic images and the average latent code of real images in the encoder’s latent
space.

• We provide, to the best of our knowledge, the first dataset of realistic synthetic yarn
images with annotations regarding the respective yarn parameters.

• We present a yarn generator that supports a large range of input parameters as well as
a yarn sampler that guides the selection of parameter configurations for the automatic

31

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

generation of realistic yarns.

5.3 Related Work

Respective surveys [Schröder et al., 2012; Castillo et al., 2017; Castillo et al., 2019; Pagán
et al., 2020; Amor et al., 2021; Mohammadi and Kalhor, 2021; Noor et al., 2021] indicate
the opportunities of computational approaches for the cloth and apparel industries as well
as challenges regarding the capture, modeling, representation and analysis of cloth. Some
approaches approximate fabrics as 2D sheets. Wang et al. [2008] and Dong et al. [2010] leverage
spatially varying BRDF (SVBRDFs) based on tabulated normal distributions to represent the
appearance of captured materials including embroidered silk satin, whereas others focused
on appearance modeling in terms of bidirectional texture functions (BTFs) [Dana et al., 1997;
Weinmann et al., 2014; Filip et al., 2018].

For scenarios with a focus on efficient simulation and editing or respective manipulation,
yarn-based models [Kaldor et al., 2008; Cirio et al., 2014; Martin-Garrido et al., 2018] have
been shown to be more amenable [Yuksel et al., 2012], however, at the cost of not offering the
capabilities to accurately capture details of fiber-level structures and the resulting lack of
realism. Drago and Chiba [2004] focused on simulating the macro- and microgeometry of
woven painting canvases based on procedural displacement for modeling the arrangement
of the woven yarns (i.e. a spline-based representation) and surface shading. The model
by Irawan and Marschner [2012] also predicts yarn geometry (in terms of curved cylinders
made of spiralling fibers) and yarnwise BRDF modeling to represent the appearance of
different yarn segments within a weaving pattern. However, this approach does not model
shadowing and masking between different threads. The latter has been addressed with
the appearance model for woven cloth by Sadeghi et al. [2013] that relies on extensive
measurements of light scattering from individual threads, thereby taking into account
for shadowing and masking between neighboring threads. However, these approaches
are suitable for scenarios where cloth is viewed from a larger distance, since reproducing
the appearance characteristics oberservable under close-up inspection would additionally
require the capability to handle thick yarns or fuzzy silhouettes as well as the generalization
capability to handle fabrics with strongly varying appearances. To increase the degree of
realism, Guarnera et al. [2017] augment the yarns extracted for woven cloth in terms of
micro-cylinders with adjustments regarding yarn width and misalignments according to
the statistics of real cloth in combination with the simulation of the effect of yarn fibers by
adding 3D Perlin Noise [Perlin, 1985] to the micro-cylinder derived normal map. Several
approaches focus on fitting an appearance model like Bidirectional Reflectance Distribution
Functions (BRDFs) [Dobashi et al., 2019; Jin et al., 2022] to inferred micro-cylinder yarn
models or Bidirectional Curve Scattering Distribution Function (BCSDF) [Schroder et al.,
2011] to simulate the appearance from the fibers within each ply curve extracted for a
pattern without explicitly modeling each individual fiber or applying a pre-computed fiber
simulation [Montazeri et al., 2021]. Extracting yarn paths from image data can be approached
by leveraging the prior of perpendicularly running yarns for woven cloth (e.g., [Schröder
et al., 2015]) as well as based on knitting primitive detection inspired by template matching

32

5.3 Related Work

with a refinement according to an underlying knitting pattern structure [Trunz et al., 2022] or
deep learning based program synthesis [Kaspar et al., 2019]. While such approaches allow
the modeling of the underlying yarn arrangements, the detailed yarn modeling with yarn
widths, yarn composition, yarn twisting, hairiness, etc. is not explicitly modeled.
Following investigations on the geometric structure of fabrics in the domain of the textile
research community [Keefe, 1994; Tao, 1996; Morris et al., 1999; Shinohara et al., 2010],
several works focused on a more detailed modeling of the underlying cloth micro-appearance
characteristics to more accurately model the underlying cloth characteristics such as thickness
and fuzziness. This includes volumetric cloth models [Xu et al., 2001; Jakob et al., 2010; Zhao
et al., 2011; Zhao et al., 2012; Zhao et al., 2013], that describe cloth in terms of 3D volumes with
spatially varying density, as well as fiber-based cloth models [Khungurn et al., 2015; Schröder
et al., 2015] that infer the detailed 3D structure of woven cloth at the yarn level with its fiber
arrangement. Zhao et al. [Zhao et al., 2011; Zhao et al., 2012; Zhao et al., 2016] leveraged
a micro-computed tomography (CT) scanner to capture 3D volumetric data. The detailed
volumetric scan allows them to trace the individual fibers and, hence, provides a an accurate
volumetric yarn model that captures high-resolution volumetric yarn structure. For instance,
Zhao et al. [2016] present an automatic yarn fitting approach that allows creating high-quality
procedural yarn models of fabrics with fiber-level details by fitting procedural models to
CT data that are additionally augmented by a measurement-based model of flyaway fibers.
Instead of involving expensive hardware setups such as based on CT scanning, others focused
on inferring yarn parameters from images, thereby representing more practical approaches
for a wide range of users. Voborova et al. [2004] focused on estimating yarn properties
like the effective diameter, hairiness and twist based on initially fitting the yarn’s main axis
based on an imaging system consisting of a CCD Camera, a microscope, and optical fiber
lighting. Furthermore, with a focus on providing accurate models at less computational
costs and memory requirements than required for volumetric models, Schröder et al. [2015]
introduced a procedural yarn model based on several intuitive parameters as well as an
image-based analysis for for the structural patterns of woven cloth. The generalization of
this approach to other types of cloth, such as knitwear, however, has not been provided but
still needs further investigation. Saalfeld et al. [2018] used gradient descent with momentum
to predict some of the procedural yarn parameters used by Zhao et al. [2016] from images
of synthetically generated yarns. Although the results were promising for some of the
parameters, the approach still could not be applied to the real yarn images. Wu et al. [2019]
estimate yarn-level geometry of cloth given a single micro-image taken by a consumer digital
camera with a macro lens, leveraging prior information in terms of a given yarn database for
yarn layout estimation. Large-scale yarn geometry is estimated based on image shading,
whereas fine-scale fiber details are obtained based on fiber tracing and generation algorithms.
However, the authors mention that the use of a single micro-image does not suffice for the
estimation of all relevant yarn parameters of complex procedural yarn models like the ones
by Zhao et al. [2016] or Schröder et al. [2015], and, hence, the authors only consider the two
parameters of fiber twisting and fiber count. Whereas our yarn generator is conceptually
similar to the one by Zhao et al. [2016], there is an important difference in how we model the
orientation of the twisting axis of the fibers. Instead of using the global 𝑧-axis, we align the
twisting axis with the relative 𝑧-axis of the next hierarchy level, resulting in a more realistic
yarn structure. This relative implementation allows adding additional hierarchy levels, i.e.

33

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

especially for the hand knitting it is common to twist different yarns if they are too thin,
thus creating the next level. Furthermore, our model’s realism is further increased by also
considering elliptic fiber cross-sections as occurring for natural hair fibers like wool and by
considering a more natural modeling of flyaways.
In the context of inferring physical yarn properties from visual information, Bouman et al.
[2013] estimated cloth density and stiffness from the video-based dynamics information
of wind-blown cloth. Others focused on a neural network based classification of cloths
according how stretching and bending stiffness influence their dynamics. Furthermore,
Rasheed et al. [2020] focused on the estimation of the friction coefficient between cloth
and other objects. Based on the combination of neural networks with physically-based
cloth simulation, Runia et al. [2020] trained a neural network to fit the parameters used for
simulation to make the simulated cloth match to the one observed in video data. Liang et al.
[2019] and Li et al. [2022] presented approaches for cloth parameter estimation based on
sheet-level differentiable cloth models. Gong et al. [2022] introduced a differentiable physics
model at a more fine-grained level, where yarns are modelled individually, thereby allowing
to model cloth with mixed yarns and different woven patterns. Their model leverages
differentiable forces on or between yarns, including contact, friction and shear.

5.4 Generation of synthetic training data

Our learning-based approach to infer yarn parameters from images relies on the availability
of a database of images of yarns with respective annotations. However, to the best of
our knowledge, no such database exists to this day. Since the exact measurements of the
parameters of a real yarn is a complex task that requires experts as well as additional
hardware such as a CT scanner, we overcome this problem by leveraging modeling and
rendering tools from the field of computer graphics to create images of synthetic yarns with
known parameters that can be directly used for learning applications.

To enable robust parameter inference from photographs of real yarns, the synthetic yarn
images used for training the underlying neural model must be highly realistic, i.e. they must
accurately model the yarn structure with its underlying arrangement of individual fibers.
Similar to Zhao et al. [2016], we chose a fiber-based model rather than a volumetric one
to gain more control over the generation and achieve higher quality. However, to increase
the realism of the synthetic yarns, we extended the yarn model of Zhao et al. by including
elliptical fiber cross-sections, local coordinate frame transformation for helix mapping and
considering more complex modeling of hair flyaways.

We mimic the actual manufacturing process by introducing a hierarchical approach. Multiple
fibers are twisted together to form a ply, and, in turn, multiple plies are twisted together to
form a yarn. If necessary, multiple thinner yarns can be twisted into a thicker yarn, which
is sometimes the case in knitwear manufacturing. We denote the yarn resulting from this
hierarchical procedure as raw yarn.

In addition to capturing the characteristics of the fiber arrangement of the yarn structure, we
must also consider that some of the fibers, referred to as flyaways, may deviate from their

34

5.4 Generation of synthetic training data

intended arrangement within yarns and run outside the thread. These deviations are caused
by friction, aging or errors in the manufacturing process and play a central role in the overall
appearance of yarns and the fabrics made from them.

Therefore, our yarn model is controlled by a number of parameters, which belong to two
types: raw yarn parameters and flyaway parameters. During generation, these parameters
are stored along with the respective resulting images, and later serve as training labels for
the network training.

The raw yarn is recursively built from multiple hierarchical levels (see Fig. 5.1 and Alg. 1).
In the next step, flyaways are added (Alg. 2) and detailed fiber parameters such as material
and cross section are defined. The yarn is then ready to be rendered. We generate and
render the synthetic yarn images using Blender, which offers advanced modeling capabilities
that can be fully controlled by Python scripts, making it suitable for procedural modeling.
Especially, the high level mesh modifiers allow for relatively compact scripts. Additionally, it
also contains a path tracer capable of rendering photo-realistic images, which allows us to
build an all-in-one pipeline.

5.4.1 Hierarchical yarn model

During the first step, yarns, plies and fibers are represented as polygonal lines, i.e. a tuple
(𝑉, 𝐸) that stores the vertex positions𝑉 =

{
𝑣𝑖 ∈ R3 |𝑖 ∈ N

}
and their edges 𝐸 = {(𝑖 , 𝑗)|𝑖 , 𝑗 ∈ N}.

Note that our generation process allows for an arbitrary number of levels. However, in the
rest of the paper, we will demonstrate the concept using three levels, fibers, plies, and yarns.
Algorithm 1 presents an overview over our recursive hierarchical generation of the raw yarn.
The input of the first level, the fiber level, is a simple straight polygonal line that must be
chosen large enough to allow for the required resolution. The vertices 𝑣𝑖 of the line are given
by

𝑣𝑖 =
(

0 0 𝑖𝛼 𝑓

)𝑇 (5.1)

Here, 𝛼 𝑓 denotes the distance between two consecutive vertices of a fiber. In each of the
higher levels, we start by creating a set of 𝑁 2D instance start positions 𝑝𝑖 . We define two
variations of this procedure, one for small amounts of instances (∼ 7), and one for larger (in
practice up to 200). Both are illustrated in Fig. 5.2. In both cases, we add some jitter 𝑗𝑥𝑦 to
the sample positions. For small numbers 𝑁 of instances, we generate a regular pattern on a
circle with radius 𝑟:

𝑝𝑖 = 𝑟

(
sin�𝑖

cos�𝑖

)
+ 𝑗𝑥𝑦𝑅

(
1
1

)
, �𝑖 = 2𝜋 𝑖

𝑁
(5.2)

Here and in the following, 𝑅 is a zero-mean, normal distributed random variable with a
standard deviation of 1 that is redrawn for each occurrence.

35

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Algorithm 1 Recursive hierarchical generation of raw yarn
Require: level of raw yarn 𝑙𝑒𝑣𝑒𝑙

1: procedure buildlevel(𝑙𝑒𝑣𝑒𝑙)
2: if 𝑙𝑒𝑣𝑒𝑙 = 0 then
3: create straight polygonal line 𝑙𝑖𝑛𝑒

4: return 𝑙𝑖𝑛𝑒

5: else
6: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← buildlevel(𝑙𝑒𝑣𝑒𝑙 − 1)
7: end if
8: 𝑃 ← create 𝑁 instance positions using Eq. 5.2 or Eq. 5.3
9: 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅

10: for all 𝑝 ∈ 𝑃 do
11: 𝐼 ← 𝑐𝑜𝑝𝑦(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
12: 𝐼 ← scale 𝑥 coordinate of 𝐼 with 𝑒 for elliptical cross-section
13: 𝐼 ← rotate 𝐼 using Eq. 5.4
14: center 𝐼 at position 𝑝

15: generate helix at position 𝑝 using Eq. 5.5-5.7 and let 𝐼 follow the helix
16: 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝐼

17: end for
18: return 𝑜𝑢𝑡𝑝𝑢𝑡

19: end procedure

a) b) c) d) e)

Figure 5.1: Hierarchical twisting process. a) Level 1 corresponds to a straight polygonal line. b)
Twisted fibers from level 1 form a ply on the second level. c) Before twisting plies into a yarn, the
𝑥-axis of each ply is downscaled to create an elliptical cross-section. d) Multiple initial positions (blue)
are sampled, and a helix curve with the specified properties is created at each. These curves, called
center lines, represent the paths of the different plies. e) Deformed copies of the initial input follow
each helix curve, resulting in the yarn on the third level and forming the input for the next step.

36

5.4 Generation of synthetic training data

Figure 5.2: Ply and fiber distribution for the process explained in Fig. 5.1. For each level, multiple
instances of the previous level are created and placed at initial positions according to a specified
distribution. We use more randomness (middle) and jitter (right) on the fiber level and more structure
on the ply level (left).

For larger numbers of instances, we sample the whole area of a disc. We distribute fewer
samples towards the center, as instances in the middle are mostly occluded by the outer
ones:

𝑝𝑖 = 𝑟𝑖

(
sin�𝑖

cos�𝑖

)
+ 𝑗𝑥𝑦𝑅

(
1
1

)
, 𝑟𝑖 = 𝑟

𝑖0.3

𝑁0.3 , �𝑖 = 2𝜋 · 0.137 · 𝑖 (5.3)

The heuristically chosen constants create a slightly pseudo-random distribution that is
enhanced by the added jitter.

Next, for each sample point, we copy the instance template from the previous level, and then
each instance is transformed as follows: Since the sampling patterns are roughly circular, we
downscale the template along the 𝑥-axis, transforming its cross-section into an ellipse (see
Fig. 5.1, c). The rotation ensures that the smaller radius of the ellipse is oriented toward the
center, which simulates the squeezing of the individual fibers for dense packing. As a last
step, the template is translated to the position of the sampling point.

To simulate the twisting that occurs during the production of real yarns, we create a helix in
the 𝑧-direction at each sample point 𝑝 = (𝑝𝑥 , 𝑝𝑦)𝑇 and transform the template to follow it
accordingly (Fig. 5.1). The helix is given by:

�𝑖 =
𝑖

𝐻
2𝜋 + arctan2

(
𝑝𝑦 , 𝑝𝑥

)
(5.4)

𝑟ℎ =

√
𝑝2
𝑥 + 𝑝2

𝑦 (5.5)

𝑠𝑖 = 1 +max(0, 𝑅ℎ) · cos
(
2𝑅ℎ +

𝑖

𝐻
2𝜋𝑅ℎ

)
(5.6)

𝑣𝑖 =
(
𝑟ℎ𝑠𝑖 sin�𝑖 𝑟ℎ𝑠𝑖 cos�𝑖

𝑖
𝐻 𝛼ℎ + 𝑗𝑧𝑅𝑖

)𝑇 (5.7)

Here, 𝛼ℎ is the height of each complete turn, called the pitch of a helix. 𝐻 is the helix
resolution, i.e. the number of vertices per turn. The number of turns for the helix depends

37

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

a) b) c) d)

Figure 5.3: Generation of flyaways. a) A random vertex strip is selected and duplicated to become the
new flyaway. b) The flyaway is scaled along its up-axis to exaggerate details. c) Hair flyaway: The
flyaway from b) is rotated along its lowest point. d) Loop flyaway: The flyaway from b), where the
vertices are moved radially according to a sine function, except for the first and last vertices, which
remain at their previous locations, while the middle vertex is offset the most to simulate a loop.

on the desired total length of the generated yarn. Since the helix is always curved around the
center line, its radius 𝑟ℎ is determined by the position of the sample point 𝑝. The angle �𝑖 has
an offset that ensures that the 0th vertex coincides with 𝑝. The random variables 𝑅𝑖 and 𝑅ℎ

are drawn once per vertex and once per helix, respectively. However, different occurrences
of 𝑅𝑖 and 𝑅ℎ are drawn independently. 𝑠𝑖 is the fiber migration value, modulation of the
helix radius that varies along the vertical axis. It is realized by scaling the radius with a
height-dependent cosine function with random amplitude, offset and phase speed.

Note that each template point is transformed to a local coordinate frame given by the helix
at the corresponding height. We do not perform an actual physical simulation for the
twisting process, as this would require a complex numerical simulation and thus increase
computation time drastically.

For our recursive hierarchical raw yarn generation, we used generic variable names, such as
𝑁 , 𝑅 and 𝛼ℎ . The parameters of each level for the three-level fiber-ply-yarn model, used in
the following, are summarised in Table 5.B.1.

5.4.2 Flyaway generation

After creating the raw yarn structure according to the previous section, we now model the
flyaways. Flyaways are fibers that got displaced from their original position within the yarn.
Following the previous work [Schröder et al., 2015; Zhao et al., 2016], we distinguish between
two different categories of flyaways. Hair flyaways are fibers where one side is completely
outside the yarn, while loop flyaways are fibers where both ends of the fiber are still inside
the yarn, but the middle part is outside the main yarn. Both types of flyaways and the key
steps of their creation are shown in Figure 5.3. The generation of flyaways is summarized in
Algorithm 2. Flyaways are created by copying and transforming parts of the yarn. First, we
determine whether the new flyaway will be a loop or a hair flyaway by drawing a uniformly
distributed random number in [0, 1] and determining whether it is greater or less than the

38

5.4 Generation of synthetic training data

loop probability 𝑝𝑙 . In both cases, the flyaway length is determined from a given mean and a

Algorithm 2 Flyaway generation
Require: flyaway parameter 𝑔, 𝑝𝑙 , 𝛽, 𝑙ℎ𝑎𝑖𝑟 , 𝑠, 𝑙𝑙𝑜𝑜𝑝 , 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑

1: procedure addflyaways(𝑔, 𝑝𝑙 , 𝛽, 𝑙ℎ𝑎𝑖𝑟 , 𝑠, 𝑙𝑙𝑜𝑜𝑝 , 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑)
2: for 𝑘 ∈ [1, 𝑔] do
3: 𝑓 𝑙𝑦 ← 𝑙𝑜𝑜𝑝 with probability 𝑝𝑙 , or 𝑓 𝑙𝑦 ← ℎ𝑎𝑖𝑟 else
4: end for
5: if 𝑓 𝑙𝑦 = 𝑙𝑜𝑜𝑝 then
6: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑙𝑙𝑜𝑜𝑝 + 0.01𝑅 (𝑅 as explained in 5.4.1)
7: else
8: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑙ℎ𝑎𝑖𝑟 + 0.05𝑅
9: end if

10: find fiber segment 𝑆 of length 𝑙𝑒𝑛𝑔𝑡ℎ via rejection sampling
11: if 𝑓 𝑙𝑦 = 𝑙𝑜𝑜𝑝 then
12: create loop flyaway using Eq. 5.8 on 𝑆

13: else
14: scale 𝑧 coordinates of 𝑆 and rotate by 𝛽 to create hair flyaways (Fig. 5.3)
15: end if
16: end procedure

fixed standard deviation. Note that typical means are of the same order of magnitude as the
standard deviations used. To find a fiber segment for the new flyaway, a random vertex is
selected and the chain of connected vertices is followed in a random direction. If this chain
ends before the desired length is reached, the process is repeated with a different starting
vertex (rejection sampling). Once a suitable segment is found, it is copied and transformed
according to its type in the next step. Copying a segment from the original yarn, rather than
creating a new vertex line, preserves the deformation from the overlapping helixes from
different levels, adding realistic detail.

Loop flyaways are created by overlaying the segment with a sine wave by adding an offset to
each vertex:

𝑜𝑖 = 𝑑 sin
(
𝑖𝜋
𝑗

) (
𝑣𝑥 𝑣𝑦 0

)𝑇
, 𝑑 = 𝑑𝑚𝑒𝑎𝑛 + 𝑑𝑠𝑡𝑑𝑅 (5.8)

The sine wave moves the vertex in a radial direction, keeping its vertical coordinate untouched.
𝑗 is the total number of vertices in the segment, so exactly half a period of the sine wave is
used, ensuring that the first and last vertices remain at their original positions, thus creating
the loop shape. The amplitude 𝑑 is chosen per flyaway, not per vertex.

Hair flyaways are created by rotating the segment by the angle 𝛽 (see Fig. 5.3). Prior to
rotation, they are scaled along the vertical axis by a value of 𝑠 to amplify their shape.

39

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Table 5.1: Parameters of our procedural Blender yarn model. Top: Fiber parameters, Middle:
Ply parameters, Bottom: Flyaway parameters. Although fiber distribution and migration are not
technically flyaway parameters, we consider them as such for our parameter prediction due to their
probabilistic nature.

Parameter type Parameter
name

Explained

Fiber amount 𝑚 Number of fibers in each ply
Fiber ellipse 𝑡𝑥 , 𝑡𝑦 Radii of fiber ellipse
Fiber twist 𝛼 Pitch of the ply helix
Number of plies 𝑛 Number of plies in the yarn
Ply ellipse 𝑟𝑥 , 𝑟𝑦 Radii of ply ellipse
Ply twist 𝛼𝑝𝑙𝑦 , 𝑅𝑝𝑙𝑦 Pitch and radius of the yarn

helix
Fiber migration 𝑗𝑧 ,𝑗 Jitter of the fibers in 𝑧 and in

radial direction
Fiber distribution 𝑗𝑥𝑦 Jitter of fibers in 𝑥𝑦 plane di-

rection
Flyaway amount 𝑔 Number of flyaways
Loop probability 𝑝 Probability for loop type fly-

away
Hair flyaways 𝛽, 𝑙ℎ𝑎𝑖𝑟 , 𝑠 Angle, hair length, fuzziness
Loop flyaways 𝑙𝑙𝑜𝑜𝑝 ,

𝑑𝑚𝑒𝑎𝑛 ,
𝑑𝑠𝑡𝑑

Loop length, Mean and std
of distance from ply center

Once all levels and flyaways are created, the bevel parameter is set to control the thickness
and ellipticity of each fiber, giving the object a proper volume. All learnable parameters for
the yarn and the flyaways are summarized in Table 5.B.1.

5.4.3 Further Implementation Details

To increase the realism of the resulting yarn appearance, we apply a reflectance model to
the individual fibers, which describes their view- and illumination-dependent appearance.
This allow us to obtain synthetic images of yarns by placing the yarn in a pre-built scene
that resembles our measurement environment in the lab where we took the photos of real
yarns.

We implement the yarn generation as a Python script inside the 3D modeling suite Blender,
since it not only provides many of the operations needed during the generation, but also has
powerful rendering capabilities. In particular, we leveraged Blender’s principled hair BSDF
shader, which is particularly relevant for our scenario of fiber-based yarn representation, as
well as the built-in path tracer capable of rendering photo-realistic images with full global
illumination to generate images depicting the synthesized yarns according to the conditions
we expect to occur in photographs of real yarns.

5.4.4 Extensions to State-of-the-art Yarn Generator

Whereas Zhao et al. [2016] focused on woven cloth made of cotton, silk, rayon and polyester
yarns, we observed that in addition to these fiber types, knitwear is often made of various

40

5.4 Generation of synthetic training data

a) b) c)

Figure 5.4: A ply (blue) is mapped to a helix segment (grey). The figure shows a very similar scene to
Fig. 5.1, but drastically simplified and with exaggerated dimensions. a) The ply before mapping. b)
Mapping by shifting orthogonal to the global vertical axis, as implemented in [Zhao et al., 2016]. c)
Mapping by applying a local coordinate frame transformation, as implemented in our generator.

types of natural wool (cashmere, virgin wool, etc.) and acrylic a as wool substitute, as they
offer exceptional warming properties and knitwear is mainly worn or used in the colder
months. These and most other fiber types have longer flyaways, and their fibers exhibit
elliptical cross-sections rather than circular ones, as assumed by Zhao et al. [2016]. These
observations inspired us to make the following extensions to the current state-of-the-art
models [Schröder et al., 2015; Zhao et al., 2016]:

• Hair flyaways: Instead of implementing hair flyaways in terms of adding hair arcs,
we simulate them similarly to loop flyaways in terms of being pulled out of the plies.
Hence, the twist characteristics are preserved (see Fig. 5.3, c)). Furthermore, we leverage
hair squeezing to simulate the effect that when flyaways are released from the twist,
they are less stretched and contract slightly (see Fig. 5.3, b). These two steps make even
the longer flyaways look realistic (see Fig. 5.5, d-f).

• Elliptical fiber cross-sections: We implement the ellipticity of the cross-section of many
types of fibers, which is particularly prominent in natural hair fibers such as wool.
Although the geometric changes are too small to be seen directly, the shape of the
cross-section affects the shading during the rendering, especially the prominence of
specular highlights (see Fig. 5.5, a-c).

• Local coordinate frame transformation for helix mapping: Previously, in [Zhao et al.,
2016], plies were twisted by sliding individual vertices orthogonal to the global vertical
axis. Instead, we introduce a proper coordinate system transformation, which leads
to more plausible results. In some cases, the differences are small, in others they are
much more obvious. Fig. 5.4 shows an exaggerated case to illustrate the difference.

• Hierarchical generation: Sometimes, when multiple thinner threads are twisted into a
thicker thread, yarns with more than three levels occur. Our hierarchical generator
allows for any number of levels.

Evaluation of performance Although in its current implementation, the yarn generation
process is more optimized for clarity and ease of use rather than efficiency, the time for
generating all fiber and flyaway curves (about 6-12 seconds per image) is significantly less
than the rendering time (about 1 to 4 minutes). This makes it suitable for our purpose of
generating a database of yarns, but further optimization of the generation process may be an
aspect for future developement.

41

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

a) b) c) d) e) f)

Figure 5.5: Left: Comparisson of fiber cross section. a) Photograph of a wool yarn with elliptical cross
section. b) Virtual yarn generated with elliptical fiber cross-section. c) Virtual yarn generated with
circular fiber cross-section. The changes in geometry are hard to spot when zoomed out, however the
shading and in particular the strength of the specular highlights is clearly affected by the cross-section
shape. Right: Effect of the squeeze parameter 𝑠. d) Reference, e) With squeeze, f) Without squeeze.

5.4.5 Yarn dataset

To represent the variations in color and reflective characteristics encountered in real yarns
in our synthesized yarn dataset, we sample different of these parameter configurations by
uniformly sampling the parameters within the corresponding, heuristically determined
intervals shown in Table 5.B.1 and then rendering the resulting yarns in different conditions
that we expect to occur when considering photos of real yarns. We provide details of our
guided parameter sampling procedure in the Section 5.B. All yarns in our database consist
of two to six plies. Note that our yarn generator allows the generation of yarns with more
plies, but our observations indicate that three, four and five plies are the most common
scenarios in the case of knitting yarns. Fig. 5.6 depicts some of the yarns from the database.
In total, we sampled 4000 parameter configurations for the synthetic training set and 345
parameter configurations for the synthetic validation set, resulting in 4000 images with a
resolution of 2000x600 pixels for training and 345 images with a resolution of 2000x600 pixels
for validation.

Although our yarn generator can generate many levels of hierarchy, for proof-of-concept
purposes, in this paper, we focused on yarns made up of plies and did not investigate learning
the next level, where multiple thinner yarns are twisted into a thicker yarn. Therefore, our
database does not include such yarns. Furthermore, by rendering the yarn in different scenes,
including various indoor and outdoor settings, training data for in-the-wild yarn parameter
estimation could be generated.

5.5 Inference of yarn characteristics from input images

We model the prediction of the parameters for our procedural yarn model from images as a
regression problem. Our training and validation dataset consists of annotated synthetic yarn
images that we use to train a model that allows inferring yarn parameters from novel images

42

5.5 Inference of yarn characteristics from input images

Figure 5.6: Examples of synthetic yarns in our database.

of yarns not seen during training or validation. Before providing details of our respective
approach (see Section 5.5.1), we motivate our choice of a suitable network architecture that is
capable of handling the challenging nature of the underlying problem.We considered the
saliency maps [Simonyan et al., 2014] of networks trained to predict the set of raw yarn’s
parameters and the set of the flyaway parameters with two independent models. An entry
𝑚𝑖 , 𝑗 in a saliency map for a model 𝑓 that has been trained on a subset of 𝑃 parameters is the
maximum derivative of the average value of the predicted parameters with respect to a pixel
𝑥𝑖 , 𝑗 ,𝑐 in the input image over the color channels 𝑐, i.e.

𝑚𝑖 , 𝑗 = max
𝑐

����� 𝜕

𝜕𝑥𝑖 , 𝑗 ,𝑐

(
1
𝑃

∑
𝑝

𝑓𝑝(𝑥)
)�����. (5.9)

In contrast to saliency maps that have been proposed within the context of classification
networks, we consider the derivative of the mean of the predicted parameters because we
need to investigate the effect of a pixel on the entire subset on which the network was
trained.

The saliency maps (Figure 5.7) for the network trained to predict the raw yarn parameters
illustrate a higher susceptibility to changes in the yarn center region of the image. On the
other hand, the saliency maps for the network that predicts the flyaway parameters indicate
that such a network exhibits a higher sensitivity towards the border regions within the input
images. Motivated by these saliency maps, we concluded that it is better to train separate
models for the raw yarn parameters and the flyaway parameters.

5.5.1 Inference of yarn parameters

As already mentioned before, we formulate the problem in terms of a regression problem.
Here an encoder 𝑓 maps an input image to a latent code which then becomes the input to
a regression head ℎ (Fig. 5.8) which performs the parameter regression. This regression
path within our model is trained to minimize an 𝐿1 loss between the prediction obtained
on synthetic yarn images 𝑥(𝑖) and their ground truth parameter 𝑦(𝑖) used in the generation
model.

43

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Yarn Flyaways Input

Figure 5.7: Saliency maps computed for network configurations that are trained either to predict
geometry (columns 1) or flyaway parameters (column 2) of the yarn model and either respective
inputs (column 3). The color temperature in a saliency map indicates an input pixel’s influence on the
predicated parameter. Lighter/warmer colors correspond to a stronger influence.

ℒregress = E
[ℎ(𝑓 (𝑥(𝑖))) − �̂�(𝑖)

1

]
(5.10)

We will refer to this network simply as 𝑅𝑒𝑔.

Although the synthetic training data was carefully generated to match the appearance of real
yarn photographs as accurately as possible, a domain gap between the synthetic and real
images cannot be ruled out. To address the domain gap, we investigated the impact of adding
some not annotated real images to the training and utilized a semi-supervised training
process which interleaves synthetic and real images in the training process to improve the
extrapolation from synthetic images with known yarn parameters to real photographs. For
this purpose, we extended our aforementioned regression model into an autoencoder with
an additional regression by adding a decoder model 𝑑. The autoencoder of the path is
trained to minimize a simple image reconstruction loss both on synthetic and real images:

ℒrecon = E
[
∥𝑑(𝑓 (𝑥(𝑖))) − 𝑥(𝑖)∥2𝐹

]
. (5.11)

This unsupervised training process enables our encoder to be trained to map synthetic and
real images into the same latent space from which the regression head predicts the yarn
parameters for synthetic data points. During inference, only the encoder and regression head
are required to predict inputs for the parametric yarn model. In an ideal case, the encoder
maps the synthetic and real images of similar yarn to vectors that are within a close proximity

44

5.5 Inference of yarn characteristics from input images

in its latent space. However, such a behavior is not guaranteed by the reconstruction loss.
On the contrary, the encoder might learn to distinguish between the synthetic and real
images so that their latent vectors from two distinctive clusters. We propose an additional
regularization term which explicitly penalizes the distance between latent codes of synthetic
images and the average latent code of real images in the encoder’s latent space:

ℒlatent = E
[
∥ 𝑓 (𝑥(𝑖)) − sg(�SMA)∥2𝐹

]
(5.12)

where sg denotes the stop gradient function (i.e. �SMA is considered to be a constant in the
backward step) and �SMA is a simple moving average of latent codes of real images for the
last 5 batches. With this additional regularization term the average latent code of synthetic
and real images are close to each other, and distinctive clusters become energetically less
optimal. Note that the evidence lower bound (ELBO) in the objective function of variational
autoencoder could be considered as an alternative regularization. However, it is more
restrictive by forcing the latent code to be roughly normal distributed which is not necessary
in this application.

In three different networks 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 , 𝑅𝑒𝑔𝑎𝑒 and 𝑅𝑒𝑔𝑎𝑒
𝑙𝑎𝑡𝑒𝑛𝑡

we investigated the following three
combinations of those losses:

• Network 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 : ℒreglat = ℒregress + �latent1ℒlatent.

• Network 𝑅𝑒𝑔𝑎𝑒 : ℒregrec = ℒregress + �recon1ℒrecon.

• Network 𝑅𝑒𝑔𝑎𝑒
𝑙𝑎𝑡𝑒𝑛𝑡

: The combination of both previous variants, i.e.: ℒcombined =

ℒregress + �reconℒrecon + �latentℒlatent.

where �recon ,�recon1 ,�latent ,�latent1 are hyper-parameters of the models. The combined
architecture is provided in Figure 5.8.

Figure 5.8: Overview of the interleaved training process. The depicted architecture combines all the
different networks we investigated: The networks 𝑅𝑒𝑔 and 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 consist of the encoder and the
regression head, while the networks 𝑅𝑒𝑔𝑎𝑒 and 𝑅𝑒𝑔𝑎𝑒

𝑙𝑎𝑡𝑒𝑛𝑡
additionally include the decoder.

45

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Parameter
networks

𝑅𝑒𝑔

network Input

Figure 5.9: Sailiency maps for the yarn twist pitch 𝛼𝑝𝑙𝑦 (top row) and the yarn radius 𝑅𝑝𝑙𝑦 (bottom
row).

Network Architecture The encoder architecture is a pure CNN model based on ResNet [He
et al., 2015] were the average pooling has been moved to the regression head i.e. the latent
codes are the tensors which result from the convolution stack. We explore both the ResNet18
and ResNet34 configurations with the standard ResNet block as proposed in [He et al.,
2015] as well as the more recently proposed convnext blocks which also replaces the batch
normalization with layer normalization [Liu et al., 2022]. If the encoder uses a ResNet18 or
ResNet34 architecture, the regression head ℎ is a two layer MLP with a hidden dimension
of 512 and Exponential Linear Unit activation function after the first layer. Otherwise, the
regression head is a linear projection of the 512-dimensional input onto the required output
dimension.

The decoder 𝑔 consists of four transposed convolutions with kernel sizes 𝑘1 = 2, 𝑘2 = 2,
𝑘3 = 2, 𝑘4 = 2, the stride 𝑠𝑖 = 𝑘𝑖/2 and output kernel sizes 256, 128, 64, 3. The first three layers
use ReLU activations, while the last layer uses the Tanh function to ensure that the output
values are within the range of the pixel values.

Whereas small modifications of the parameters of the basic yarn structure (i.e. without
flyaways) already have a significant visual effect on the resulting yarn (see Fig. 5.16 for
different values of the parameter 𝛼𝑝𝑙𝑦), small variations of the parameters for the flyaway
characteristics do not have such a significant impact on the generated yarn since only the
distribution of the flyaway characteristics has to be matched to obtain plausible flyaways.
For this reason, we compared the saliency maps from models trained for different raw yarn
parameters individually (e.g., Fig. 5.9 shows the maps for the yarn radius and parameter
𝛼𝑝𝑙𝑦) and found that they differ. Motivated by the results of the individual saliency maps,

46

5.6 Experiments

Figure 5.10: Our setup for capturing the test yarns.

we investigated the use of separate networks for the separate prediction of each of the raw
yarn parameters. A similar separation of models has already been observed by Nishida
et al. [2018]. We compared the previously described approach of using separate networks to
predict the raw yarn parameters and the flyaway characteristics with the approach of using
separate networks to predict each raw yarn parameter separately along with a network to
predict the flyaway characteristics.

In this context, we leveraged further priors for some of the parameters to exploit their
underlying nature. For the parameter number of plys, we changed the last layer from the
identity function as used for regression to a softmax function, thereby framing the prediction
of this discrete parameter as a classification problem. The underlying motivation is that most
knitting yarns have 2 to 6 plys and the estimation of the number of plys based a classification
might be easier that based on a regression. Furthermore, we distinguish fibers according to
their elliptic cross-section characteristics into thin fibers (𝑡𝑥 = 0.01, 𝑡𝑦 = 0.007) and thick fibers
(𝑡𝑥 = 0.018, 𝑡𝑦 = 0.01), which we also frame as a classification problem since considering
all intermediate states seems tricky and there seems to be no such significant perceptual
difference for these intermediate states.

5.6 Experiments

Training, validation and test data We use 4000 synthetic yarns for training and 345 synthetic
yarns for validation as mentioned in Section 5.4.5. To get insights on the performance of
our method for parameter inference for real yarns depicted in photographs, we tested our
approach on different knitting yarns, which were made either of one type of fiber such as
wool, acrylic, cotton, polyamide, etc. or of a mix of different types of fibers (Fig. 5.12, top
row, second yarn). We took the corresponding photos of the yarns under a simple lab setup
(see Fig. 5.10) with a Sony 𝛼7RIII camera using the makrolens Makro G OSS with FE 90 mm
F2.8. Then we cropped the photos to the size of 600 × 2000 pixels, ensuring that the yarn
roughly runs through the center of the image. These cropped photos served as an input for
the parameter inference. As our networks were trained for inputs of 1200 times 584 pixels, we
again crop the previously cropped photos randomly to the required size before performing
the forward pass and hence determining the parameters.

47

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Figure 5.11: Examples of validation loss comparisons for hyperparameter determination for parameters
𝛼 (left), 𝛼𝑝𝑙𝑦 (middle) and 𝑅𝑝𝑙𝑦 (right). Based on the loss values we chose the model of ResNet18,
learning rate = 1𝑒−4 and epoch 850 for 𝛼, ResNet34, learning rate = 1𝑒−4 and epoch 850 for 𝛼𝑝𝑙𝑦 and
ResNet18, learning rate = 1𝑒−5 and epoch 1000 for 𝑅𝑝𝑙𝑦 .

Details of the training process To improve the robustness of the trained models, we
increase the variety of the training data by randomly cropping the 4000 images of a size of
2000x600 pixels to the network input size of 1200x584 pixels during each epoch. Then we run
the training for 1000 epochs with a batch size of 32 and a learning rate of 0.0001 based on
the Adam optimizer [Kingma and Ba, 2015]. For this purpose, we used three Nvidia Titan
XP GPUs, each having 12 GB of RAM. Based on this hardware, the training for the flyaway
network and the full regression network took each approx. 11 hours. When training only for
one parameter, the training for the ResNet34 took ca. 4 hours, while for the ResNet18 it was
2.5 hours.

5.6.1 Parameter inference on real data

Validation of training process First, we need to validate whether the trained model shows
the potential to perform well on synthetic validation data. For this purpose, we compared
the inference of yarn parameters for validation data through a set of different models against
one model for all parameters. In this scope, we compared the the approaches of using
two separate networks for predicting the raw yarn parameters and flyaway characteristics
and using separate parameter specific networks for predicting each individual raw yarn
parameter separately together with a network for predicting the flyaway characteristics,
and have chosen the best hyperparameters and the best epoch based on the validation loss
computed on synthetic validation set. Figure 5.11 illustrates the validation losses for the
twisting parameters 𝛼, 𝛼𝑝𝑙𝑦 and yarn radius 𝑅𝑝𝑙𝑦 . Table 5.2 shows the comparison of the best
models of every case. We can see that the loss over each parameter is bigger when training
one model for all parameters of the raw yarn instead of training specific models with different
hyperparameters for each parameter separately. While this indicates a better capability to
infer yarn parameters on synthetic data, we did not yet analyze the generalization to images
depicting real yarns, which will follow with the experiments regarding performance analysis
on real data.

48

5.6 Experiments

Table 5.2: Validation loss of different networks. Note that especially the important yarn twist
parameters 𝛼, 𝛼𝑝𝑙𝑦 and 𝑅𝑝𝑙𝑦 are better learned with parameter specific networks.

parameter
specific
net-
works

𝑅𝑒𝑔 𝑅𝑒𝑔𝑎𝑒 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 𝑅𝑒𝑔𝑎𝑒
𝑙𝑎𝑡𝑒𝑛𝑡

𝑟𝑥 0.0080 0.0082 0.0080 0.0097 0.0087
𝑟𝑦 0.0066 0.0066 0.0074 0.0083 0.0079
𝑚 12 12 13 14 14
𝛼 0.0807 0.2493 0.2587 0.3230 0.3026
𝛼𝑝𝑙𝑦 0.0614 0.1953 0.2101 0.2400 0.2433
𝑅𝑝𝑙𝑦 0.00444 0.0082 0.0092 0.0092 0.0095

Performance evaluation We now provide an evaluation of the performance of the different
approaches of using a single network for predicting all parameters of the raw yarn and a
network for the prediction of the flyaway parameters when using different loss formulations
as discussed before in comparison to using also separate networks for the prediction of the
raw yarn parameters. This means the model for prediction of the flyaway parameters is
the same for all these approaches. In our experiments, the flyaway model with the lowest
validation loss was the ResNet18 model trained with a learning rate of 0.001 and MAE
loss, which we therefore use for the subsequent experiments. Exemplary results of our
experiments including a comparison between the investigated approaches can be observed
in Figure 5.12. The corresponding inferred parameters are presented in Table 5.A. The
renderings of the parameters inferred from parameter specific networks for each parameter
of the raw yarn look more similar to the input image, than the renderings from the other
approaches.Since we do not have the ground truth parameters for our real world yarns,
we can only compare the geometry appearance of the yarns. Based on the appearance
comparison to the input image, we conclude that the approach of the parameter specific
networks is most suitable for the given task.

Additionally, we utilize the parameter inference for renderings of knitting samples. In
Figure 5.13, we show the renderings of knitting samples, made with the three yarns of the
top row from Figure 5.12 with the parameters from the ensemble of per-parameter networks
for the raw yarn structure. We observe that yarns with different geometry lead to entirely
different appearances of the same pattern. Furthermore, we can see that if the inferred yarn
looks similar to the yarn in the image, the pattern rendered with the inferred yarn will also
look similar to the pattern knitted with the real yarn.

Once the parameters are inferred, we can use them also for editing and for the creation of
new yarns. Some examples for modification of the twist parameters 𝛼 and 𝛼𝑝𝑙𝑦 as well as
some flyaways parameters are depicted in Figure 5.15.

Ablation study regarding effect of resolution To get insights on the effect of the resolution
of the input images, we trained the networks for the different yarn parameters on images of
significantly lower resolution. We experimented with the reduction to 50 and 25 percent
of the original resolution of 1200 times 584 pixels. Figure 5.14 shows the validation loss

49

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

in 1 2 3 4 5 in 1 2 3 4 5 in 1 2 3 4 5

Figure 5.12: in = input image, 1 = reconstruction image from parameter specific models, trained for
each yarn parameter separately, 2 = Reg, 3 = 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 , 4 = 𝑅𝑒𝑔𝑎𝑒 , 5 = 𝑅𝑒𝑔𝑎𝑒

𝑙𝑎𝑡𝑒𝑛𝑡
. The rectangle region

shows the input image, which was randomly cropped from the whole image.

plots for the alphaply and yarn radius parameters for different resolutions. Figure 5.16
shows some visual comparisons of reconstructed yarns with the corresponding parameters
for alphaply. As can be observed, the achieved accuracy decreases with decreasing image
resolution. We expect this to be a result of the lower quality of the depiction of the individual
fiber arrangements that can be seen in terms of a blurring of the yarn structure. In order to
demonstrate the robustness of our approach to different exposure times we made exposure
series of the input yarns and tested images with different exposure times. The results show
that as long as the images are not too dark or over-exposed, the inferred parameters vary
only insignificantly and the reconstructions are very similar.

5.6.2 Limitations

In addition to the dependence on the quality of the depicted fiber arrangements (as shown
in the previous section), our approach depends on having the variations to be expected in
the test data included in the training data. Note that our dataset includes only yarns with a
normal (helix-like) fiber twisting. However, other fiber twisting-types could also occur as

50

5.6 Experiments

Figure 5.13: 1st and 3rd rows: images of a real knitted cloth (made with yarns from the top row of
Fig. 5.12) for the pattern consisting of knit (1st row) and purl (3rd row) stitches. 2nd and 4th rows:
rendering of the same stitch pattern with the inferred yarn with default material settings.

Figure 5.14: Validation loss comparisons for trainings with different resolution of input images. Left:
full loss curves, right: loss curves without the first element.

shown with the example in Figure 5.17. The depiction shows a reconstruction that exhibits
a high similarity to the input yarn. The thickness on both ply- and yarn-level as well as
the number of twists closely follow the original structure.Since we did not consider this
type of ply-twist in our yarn generator, there is also some deviation. We expect that such
deviations might be handled by further extending the dataset regarding further types of
yarn variations.

Furthermore, despite the fact that our yarn generator also supports the fourth hierarchical
level (i.e., where thinner yarns are twisted into thicker yarns, see Figure 5.17 d)-e)), we only

51

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Figure 5.15: Two examples of editing operations for yarns with original inferred parameters and
the edited ones together with corresponding renderings of knitted patches. Reflectance parameters
were not part of the inference but chosen arbitrarily for demonstration. 1st row: golden yarn from
Figure 5.12 in the 3rd row, left. 2nd row: the same yarn but with both pitch parameters 𝛼 and 𝛼𝑝𝑙𝑦

divided by 2. 3rd row: yellow yarn from Figure 5.12 in the 3rd row. 4th row: the same yarn but with
parameters for flyaway amount and length multiplied by 2.

52

5.7 Conclusions

in 1 2 3 in 1 2 3

Figure 5.16: in = input image, 1 = reconstruction image from different models trained for each yarn
parameter separately, where the 𝛼𝑝𝑙𝑦 parameter was trained on images with full resolution, 2 = 𝛼𝑝𝑙𝑦

parameter was trained on images with 50% of the full resolution, 3 = 𝛼𝑝𝑙𝑦 parameter was trained on
images with 25% of the full resolution.

included yarns represented based on the first three levels, which limits our approach to the
prediction of the characteristics up to the third level. However, the extension to the level of
also twisting yarns is straightforward and we leave it for future work.

5.7 Conclusions

We presented an investigation of different neural inverse procedural modeling methods
with different architectures and loss formulations to infer procedural yarn parameters from
a single yarn image. The key to our approach was the accurate hierarchical parametric
modeling of yarns, enhanced by handling elliptic fiber cross-sections, as occurring in many
types of natural hair fibers, as well as more accurately handling flyaway characteristics
and the twisting axis and the respective generation of synthetic yarns that are realistic
enough so that the trained model can extrapolate to the real yarn inputs. Our experiments
indicate that that the complexity of yarn structures in terms of twisting and migration
characteristics of the involved fibers can be better encountered in terms of ensembles of
networks that focus on individual characteristics than in terms of a single neural network that
estimates all parameters. In addition, we demonstrated that carefully designed parametric,
procedural yarn models in combination with respective neural architectures and respective
loss functions even allow robust parameter inference based on models trained on purely
synthetic data. In the scope of this paper we focused solely on the geometric fiber arrangement
including migration characteristics (i.e. flyaways) and left the prediction of the reflectance
characteristics of knitting yarns for future work. Further developments may also consider a
further hierarchical level of yarns, i.e. thinner yarns twisted to thicker yarns. Whereas we

53

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

a) b) c) d) e)

Figure 5.17: a) Input image of a yarn made by unusual (non-helical) fiber twisting procedure. b)
Rendering of a yarn with infered parameters with default material. c) Rendering with color. d) and e)
Examples of yarns of fourth level, where two thinner yarns are twisted into one to make it thicker
and better suitable for knitting: d) Two yarns of the thin grey yarn from Figure 5.12, fourth row, e)
Two yarns of the thick grey yarn from second row of Figure 5.12

did not focus on inferring parameters for this kind of yarns, our yarn generator would be able
to produce the respective characteristics and might allow enriching the dataset accordingly
in future work.

54

Appendix

5.A Inferred yarn parameters

In Section 5.6, we presented exemplary results of our experiments on yarn parameter
inference, including a comparison between all investigated approaches (Figure 5.12). The
corresponding inferred parameters are presented in the Tables 5.A.1 (raw yarn parameters)
and 5.A.2 (flyaway parameters).

5.B Yarn sampler

In the course of our experiments, we heuristically determined parameter sampling intervals
that produced natural-looking yarns. These intervals are presented below. For some of
the parameters, we defined sampling intervals directly, while for others, the sampling was
implemented through auxiliary variables.

The intervals for fiber thickness were chosen as follows:

𝑡𝑦 = [0.006, 0.01] (5.13)
𝑡𝑥 = [𝑡𝑦 , 2.5 · 𝑡𝑦] (5.14)

For the number 𝑛 of plies, we sampled integers between 2 and 6, while for the number 𝑚
of fibers, we sampled integers between 40 and 200. All other raw yarn parameters were
sampled indirectly using auxiliary variables.

Let 𝑟 𝑓 𝑟𝑎𝑐 =
𝑟𝑦
𝑟𝑥

be the parameter that reflects how much a ply has been squeezed during the
twisting and how much it deviates from its original circular cross-section (Fig. 1 in the
paper). The fewer plies there are in the yarn, the less they resemble a circle after twisting:

𝑛 = 2⇒ 𝑟 𝑓 𝑟𝑎𝑐 = [0.67, 0.9] (5.15)
𝑛 = 3⇒ 𝑟 𝑓 𝑟𝑎𝑐 = [0.72, 0.91] (5.16)
𝑛 > 3⇒ 𝑟 𝑓 𝑟𝑎𝑐 = [0.85, 0.95] (5.17)

55

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Table 5.A.1: Inferred raw yarn parameters for the yarns of the Figure 5.12 from top to bottom and from
left to right. For each yarn there are 5 rows, each corresponding to parameter detection from different
experiments: from top to bottom: parameter specific models, 𝑅𝑒𝑔, 𝑅𝑒𝑔𝑎𝑒 , 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 , 𝑅𝑒𝑔𝑎𝑒𝑙𝑎𝑡𝑒𝑛𝑡

yarn 𝑛 𝛼𝑝𝑙𝑦 𝑅𝑝𝑙𝑦 𝛼 𝑟𝑥 𝑟𝑦 𝑚 thickness

rose

4 4.515 0.555 -3.611 0.329 0.283 72 2
4 4.591 0.614 -3.217 0.305 0.285 102 0.021,0.008
5 5.186 0.603 -3.989 0.327 0.286 107 0.020,0.008
4 5.053 0.546 -3.545 0.332 0.295 100 0.018,0.008
5 5.110 0.581 -3.474 0.304 0.274 118 0.018,0.007

red

4 7.815 0.449 -2.442 0.297 0.240 131 1
5 6.636 0.518 -2.647 0.250 0.225 106 0.018,0.008
4 7.760 0.520 -3.273 0.282 0.249 132 0.017,0.008
4 7.911 0.477 -3.033 0.282 0.246 139 0.018,0.008
5 7.663 0.504 -3.786 0.280 0.238 135 0.016,0.008

golden

3 6.474 0.289 -2.392 0.241 0.195 43 2
3 5.823 0.291 -2.326 0.236 0.200 62 0.022,0.008
4 5.708 0.292 -3.175 0.228 0.192 87 0.020,0.008
3 6.714 0.261 -3.223 0.238 0.206 81 0.019,0.008
4 6.021 0.280 -3.150 0.227 0.194 72 0.017,0.007

pink 6ply

6 10.679 0.672 -3.288 0.390 0.350 64 2
5 9.884 0.758 -4.457 0.358 0.373 86 0.021,0.008
5 9.079 0.669 -5.512 0.399 0.363 92 0.021,0.008
5 11.173 0.636 -3.868 0.371 0.328 106 0.018,0.008
6 11.000 0.688 -6.077 0.377 0.332 113 0.017,0.007

mixed

3 14.961 0.639 -6.152 0.521 0.423 99 2
3 13.159 0.598 -5.445 0.472 0.415 112 0.022,0.008
3 11.965 0.572 -6.160 0.478 0.409 129 0.020,0.008
4 14.522 0.540 -4.994 0.441 0.386 135 0.019,0.008
4 15.316 0.635 -6.440 0.433 0.391 124 0.018,0.007

blue

4 11.009 0.602 -2.866 0.406 0.298 74 1
4 10.108 0.663 -6.308 0.458 0.407 151 0.017,0.008
5 7.545 0.631 -7.674 0.395 0.359 120 0.017,0.008
4 11.868 0.606 -4.054 0.383 0.335 114 0.019,0.008
6 9.505 0.638 -6.250 0.366 0.325 123 0.017,0.007

yellow

4 6.398 0.393 -2.023 0.278 0.236 65 1
4 6.176 0.425 -2.838 0.272 0.237 92 0.015,0.007
4 6.087 0.435 -3.384 0.254 0.222 110 0.014,0.007
4 5.897 0.424 -1.953 0.261 0.233 103 0.014,0.007
5 5.996 0.415 -3.054 0.247 0.217 105 0.014,0.007

grey thin

2 3.348 0.139 -1.175 0.146 0.115 82 1
2 3.230 0.179 -1.329 0.155 0.122 105 0.017,0.008
3 3.005 0.171 -1.430 0.147 0.118 97 0.017,0.007
2 3.648 0.154 -1.320 0.162 0.130 84 0.016,0.008
3 3.456 0.168 -1.306 0.134 0.108 102 0.015,0.007

pink 4ply

4 5.605 0.364 -2.419 0.249 0.230 49 2
4 4.867 0.400 -2.529 0.248 0.222 67 0.021,0.008
4 5.206 0.367 -3.360 0.264 0.222 91 0.020,0.008
4 5.381 0.359 -3.160 0.251 0.218 72 0.019,0.008
5 5.704 0.381 -3.189 0.251 0.219 83 0.018,0.007

grey thick

2 3.825 0.254 -2.525 0.334 0.232 148 1
2 4.142 0.308 -3.109 0.322 0.250 188 0.014,0.007
2 3.630 0.284 -3.015 0.342 0.274 163 0.016,0.008
2 3.770 0.291 -3.057 0.326 0.246 173 0.016,0.008
3 4.126 0.296 -3.328 0.317 0.260 176 0.014,0.007

orange

4 6.995 0.440 -3.181 0.309 0.275 52 2
5 6.275 0.447 -3.745 0.270 0.246 66 0.021,0.008
5 6.762 0.454 -5.513 0.299 0.234 70 0.020,0.008
4 6.932 0.405 -3.506 0.312 0.276 71 0.018,0.008
5 6.921 0.440 -5.403 0.290 0.256 69 0.018,0.007

light

2 10.705 0.369 -3.654 0.380 0.318 93 2
3 8.471 0.477 -5.574 0.433 0.380 101 0.017,0.008
4 7.926 0.465 -6.81 0.369 0.324 101 0.016,0.008
3 10.433 0.409 -4.501 0.410 0.357 113 0.017,0.008
4 9.913 0.472 -5.625 0.363 0.319 90 0.014,0.007

56

5.B Yarn sampler

Table 5.A.2: Inferred flyaway parameters for the Figure 5.12.

yarn 𝑚 𝑝 𝑙ℎ𝑎𝑖𝑟 𝛽 𝑠 𝑙𝑙𝑜𝑜𝑝 𝑑𝑚𝑒𝑎𝑛 𝑑𝑠𝑡𝑑 𝑗𝑥𝑦 𝑗

red 151 0.48 2.41 0.86 0.65 4.75 7.77 2.35 0.014 0.20
golden 123 0.50 2.26 0.77 0.44 4.48 4.44 2.08 0.014 0.19
light
3ply

160 0.53 4.71 0.77 0.55 12.38 11.10 2.68 0.019 0.19

orange 163 0.54 3.50 1.07 0.46 5.14 7.83 1.78 0.015 0.20
rose 147 0.51 2.61 0.83 0.49 4.40 8.30 1.53 0.014 0.21
grey-
blue

177 0.44 1.93 0.97 0.43 4.03 5.42 1.70 0.010 0.16

pink
4ply

154 0.56 3.1 0.82 0.45 4.66 4.69 2.35 0.018 0.23

blue 182 0.45 2.91 0.85 0.73 7.20 10.61 1.68 0.014 0.19
grey 200 0.42 1.72 0.85 0.36 3.22 3.38 1.52 0.015 0.17
yellow 183 0.35 1.78 0.88 0.52 4.14 7.79 1.45 0.011 0.16
pink
6ply

175 0.54 3.70 0.97 0.62 7.04 10.74 2.14 0.016 0.22

light
2ply

223 0.47 4.75 1.12 0.48 8.14 13.12 2.08 0.011 0.23

Let the parameter 𝑎𝑟𝑒𝑎𝑝𝑙𝑦
𝑓 𝑟𝑎𝑐

represent different fiber densities in a ply:

𝑎𝑟𝑒𝑎
𝑝𝑙𝑦

𝑓 𝑟𝑎𝑐
=

𝑚 · 𝑡𝑥 · 𝑡𝑦 · 𝜋
𝑟𝑥 · 𝑟𝑦 · 𝜋

=
𝑚 · 𝑡𝑥 · 𝑡𝑦
𝑟2
𝑥 · 𝑟 𝑓 𝑟𝑎𝑐

(5.18)

We sample it from the following interval:

𝑎𝑟𝑒𝑎
𝑝𝑙𝑦

𝑓 𝑟𝑎𝑐
= [0.035, 0.215] (5.19)

Then the parameters 𝑟𝑥 and 𝑟𝑦 can be computed as

𝑟𝑥 =

√√
𝑚 · 𝑡𝑥 · 𝑡𝑦

𝑎𝑟𝑒𝑎
𝑝𝑙𝑦

𝑓 𝑟𝑎𝑐
· 𝑟 𝑓 𝑟𝑎𝑐

(5.20)

𝑟𝑦 = 𝑟 𝑓 𝑟𝑎𝑐 · 𝑟𝑥 (5.21)

The auxiliary variable 𝑎𝑟𝑒𝑎
𝑦𝑎𝑟𝑛

𝑓 𝑟𝑎𝑐
depicts the ply density in the yarn:

𝑎𝑟𝑒𝑎
𝑦𝑎𝑟𝑛

𝑓 𝑟𝑎𝑐
=

𝑚 · 𝑡𝑥 · 𝑡𝑦 · 𝜋
𝑟𝑥 · 𝑟𝑦 · 𝜋

=
𝑚 · 𝑡𝑥 · 𝑡𝑦
𝑟2
𝑥 · 𝑟 𝑓 𝑟𝑎𝑐

(5.22)

We sample from the following interval:

𝑎𝑟𝑒𝑎
𝑦𝑎𝑟𝑛

𝑓 𝑟𝑎𝑐
= [0.55, 0.82] (5.23)

Furthermore, we sample both the auxiliary variable 𝛾 of the helix angle of the fiber twist in a

57

Chapter 5 Neural Inverse Procedural Modeling of Knitting Yarns from Images

Table 5.B.1: Value intervals of the learnable parameters in our synthetic yarn database.

Parameter Value interval
𝑚 [20,200]
𝑡𝑥 [0.006,0.01]
𝑡𝑦 [0.006,0.02]
𝛼 [-25.778, -

0.476]
𝑛 [2,6]
𝑟𝑥 [0.029,0.789]
𝑟𝑦 [0.042,0.830]
𝛼𝑝𝑙𝑦 [0.639,31.655]
𝑅𝑝𝑙𝑦 [0.053,1.486]
𝑗 [0,0.3]
𝑗𝑥𝑦 [0,0.03]
𝑔 [30,300]
𝑝 [0.35,0.65]
𝛽 [0.050,1.571]
𝑙ℎ𝑎𝑖𝑟 [0.222,14.5]
𝑠 [0,1]
𝑙𝑙𝑜𝑜𝑝 [0.407,34.627]
𝑑𝑚𝑒𝑎𝑛 [0.394,30.469]
𝑑𝑠𝑡𝑑 [0.007,5]

ply and the auxiliary variable 𝛾𝑝𝑙𝑦 of the helix angle of the ply twist in the yarn as follows
(both angles are represented in radians):

𝛾𝑝𝑙𝑦 = [50, 80] · 𝜋
180 (5.24)

𝛾 = [50, 80] · 𝜋
180 (5.25)

Then, following the helix formula, we compute the parameters for the pitch 𝛼 of the ply helix
and the pitch 𝛼𝑝𝑙𝑦 and radius 𝑅𝑝𝑙𝑦 of the yarn helix:

𝑅𝑝𝑙𝑦 =

√√√
𝑛 · 𝑟 𝑓 𝑟𝑎𝑐(𝑟𝑥

𝑠𝑖𝑛(𝛾𝑝𝑙𝑦))
2

𝑎𝑟𝑒𝑎
𝑦𝑎𝑟𝑛

𝑓 𝑟𝑎𝑐

− 𝑟 𝑓 𝑟𝑎𝑐
𝑟𝑥

𝑠𝑖𝑛(𝛾𝑝𝑙𝑦)
(5.26)

𝛼𝑝𝑙𝑦 = 2𝜋𝑅𝑝𝑙𝑦 · 𝑡𝑎𝑛(𝛾𝑝𝑙𝑦) (5.27)
𝛼 = −1 · 2𝜋𝑟𝑥 · 𝑡𝑎𝑛(𝛾) (5.28)

Note the opposite signs for the clockwise and counterclockwise directions of the twist
of the ply and yarn. This is not true for all existing yarns, but it is true for all knitting
yarns that we have observed. If necessary, yarns with other combinations of clockwise and
counterclockwise twist can be added to the database.

The overall intervals of all learnable yarn parameters are shown in Table 5.B.1.

58

Part III

Conclusion

59

Chapter 6

Conclusion

In this chapter, we summarize the contributions of the publications included in this thesis,
discuss the limitations and give an overview of potential future developments.

6.1 Contributions and Impact

In the scope of this thesis, we presented three research projects that were directed towards
the goal of visual prototyping of knitted cloth. The first project (Chapter 3) aimed to improve
compression rates of a state-of-the-art encoder-decoder-based compression method for
bidirectional texture functions (BTFs). BTFs are known to accurately model the appearance of
fabrics, but the accuracy comes at the cost of high storage consumption. Our key contributions
to this project are the determination of task-dependent latent space dimensionality in encoder-
decoder architectures and the establishment of a connection between Shapley values [Shapley,
1953] and principal component analysis. The second and the third project (Chapters 4 and
5 respectively) focused on the editability and controlled image-based reconstruction of all
three scales of knitwear: fibers, yarns and patterns. We contributed to these projects with
the pipelines for inverse procedural modeling of yarns and knitwear and the extension of
the Best Buddies similarity measure [Dekel et al., 2015] for template matching.

Task-dependent Latent Space Dimensionality in Encoder-Decoder Even though BTFs
present a well-established technique for appearance modeling of complex materials, such
as fabrics, their high memory requirements pose a problem for the practicability of this
approach, thus motivating the research on compression methods. While the current state-of-
the-art encoder-decoder-based approach significantly outperformed the previously widely
used PCA-based compression technique, it did not exploit the full potential of encoder-
decoder schemes. Since the dimensionality of the latent variables is directly connected to
the compression rate of the method, it is essential to determine which number of latent
variables is most convenient for each particular application. For this purpose, we developed
an algorithm [Trunz et al., 2022] for efficient task-dependent analysis of the latent space

61

Chapter 6 Conclusion

using Shapley values. It enables the user to decide on the suitable latent dimensionality, thus
contributing to a more compact representation of data.

Connection Between Shapley Values and Principal Component Analysis (PCA) In order
to motivate the usage of Shapley values for the latent space analysis, we found a direct
connection between Shapley values and singular values involved in the principal component
analysis [Trunz et al., 2022]. During the PCA, the principal components are ordered according
to their singular values. We proved that if for model 𝐴, the input data 𝑥 and the output 𝑦
of 𝐴 the following linear relation 𝐴𝑥 = 𝑦 holds and a singular value decomposition, and
therefore a PCA can be applied on 𝐴, the ordering of the singular values is the same as the
ordering of the corresponding eigenvectors according to their Shapley values. As a direct
conclusion of our theorem in combination with the Eckard-Young-Mirsky theorem [Eckart
and Young, 1936] that states how to calculate the optimal low-rank approximation of 𝐴, we
follow that using the first 𝑘 elements in consistency with the ordering based on Shapley
values the optimal rank-𝑘 approximation of a linear model 𝐴 can be determined.

Inverse procedural modeling of Yarns BTFs belong to image-based appearance repre-
sentation techniques and do not allow for easy editing operations on different scales of
geometric features. A very convenient way to support such editing is to use procedural
models for data generation. The challenge of data generation based on procedural models is
determining which parameters yield the desired output. A user-friendly solution to control
the output is to allow the user to specify the appearance of the output by means of an image
while the algorithm automatically finds all parameter values required to generate a similar
output. This technique is known as inverse procedural modeling. In the context of inverse
procedural modeling of yarns and fibers [Trunz et al., 2023], we first extended an existing
procedural yarn generator [Zhao et al., 2016] resulting in the synthesis of very realistic yarns.
Using this enhanced generator, we created, to the best of our knowledge, the first annotated
database of synthetic but natural-looking yarns. This database was the foundation of our
newly developed neural approach for the automatic inference of parameters from images
of real yarns. We demonstrated how the yarns generated from images with this approach
could be easily edited and used to synthesize larger knitwear patches.

Inverse Procedural Modeling of Knitwear Given the yarn parameters, we can generate and
visualize knitted cloth. However, to match the appearance of a particular knitted garment,
apart from the yarn parameters, one requires the same knitting instruction used to produce
the garment. In our project for inverse procedural modeling of knitwear [Trunz et al., 2019],
we developed a novel approach for the induction of knitting instructions from an image of a
knitwear piece, focusing on two fundamental stitch types: knit and purl. Our method is
independent of any labeled database and can be easily utilized even by an inexperienced
user. The algorithm includes a four-step pipeline, each step solving a sub-problem of the
overall challenge. The first step utilizes a template-matching technique targeting per-pixel
identification of the stitch types present in the image. After the coarse stitch identification,

62

6.2 Limitations and Future Work

the next step is directed toward the refinement of the correct positions of all included stitches
and establishing their adjacent relations. Since a valid knitting pattern made of knits and
purls is always a regular grid of stitches, we need to ensure that established adjacencies
also result in a regular grid. To approach this sub-problem of finding the correct regular
grid of stitches, we first determined the correct numbers of rows and columns in the grid
and then formulated the task as an integer linear programming (ILP) problem that could
be solved with an existing ILP software. Utilizing the key insight that knitted garments
are produced by repeating the instructions many times, and therefore the actual pattern
commonly appears in the image several times, we subsequently implemented a pattern size
detection step, which at the same time corrects the possible template matching errors.

Extended Best Buddies Similarity Measure for Template Matching In the course of the
project on inverse procedural modeling of knitwear [Trunz et al., 2019], we tackled the
problem of coarse identification of stitch types in an image of knitted cloth. Neither of
the existing template-matching approaches we tried produced satisfactory results for our
particular task. We introduced a gradient penalty to a state-of-the-art similarity measure
called Best Buddies Similarity [Dekel et al., 2015]. Applying template matching with our
improved version of this similarity measure led to very good results on our application of
identifying and localizing stitches in images of knitted textiles and has outperformed many
other state-of-the-art approaches.

6.2 Limitations and Future Work

While many challenges of visual prototyping of knitted cloth have been tackled by the
approaches developed in the course of this thesis, there are still some problems that require
future research. In the following, we outline some potential directions for future work and
discuss further open questions.

BTF Editing Through Latent Space Modification During our first project (Chapter 3) in this
thesis, we addressed one of the main problems of the BTFs, their high storage requirement.
We enhanced a neural model approach to make BTF representation even more compact.
However, the editability of the BTFs still remains an open question. In this neural model,
materials are represented through the latent space of an encoder-decoder model, and at
this point, there is no direct mapping between latent variables and quantities that have
an intuitive visual explanation, like albedo, roughness or glossiness. Recent advances in
the field of deep neural networks suggest further development in this area, while the open
problem of explainable AI is being extensively researched. Therefore, a potential direction of
research would be to link the latent space, possibly in an iterative manner, to some intuitive
parameters for material representation, thus enabling easy editing support and taking a
further step towards explainable encoder-decoder models.

63

Chapter 6 Conclusion

Inverse Procedural Modeling of Knitwear There are several different aspects that can be
improved in our pipeline for inverse procedural modeling of knitwear (Chapter 4). During
our research, we focused on two fundamental stitch types: the knit stitch and the purl stitch.
Even though there is a vast amount of possible knitting patterns that can be produced with
only these two stitch types, it would be interesting to be able to infer knitting instructions that
contain other stitch types, such as holes. These knitting instructions still have a regular grid-
like structure, but the corresponding knitted garment is usually deformed in a way that such
a grid is not visually recognizable. Therefore, additional constraints or rules could be added
to our optimization approach. Another research direction could be making the approach
completely automatic, without any user interaction. Both of these open problems could be
addressed with a deep neural approach. For example, one could create a labeled database of
synthetically generated and real-world stitches or stitch pairs made of different yarns under
different environmental conditions and pose the problem as classification, segmentation or
localization. Subsequently, an optimization could be performed to infer the actual grid of
instructions. A further possibility could be to directly target the grid localization utilizing an
image database of knitted patches depicting various patterns. Parallel to our work, a neural
inverse knitting approach [Kaspar et al., 2019] was presented. This approach was unsuitable
for hand-made knitted textiles and the input patches had to have the same pattern size as the
patches in the images on which the network was trained. However, it presented a possibility
for fast rendering of a database of synthetic knitted patches. Utilizing this idea and extending
it to produce more detailed and physically correctly simulated knitted patches could lead to
a database that would be sufficient for fully automatic pattern extraction from images.

Inverse Procedural Modeling of Yarns In the course of our project on inverse procedural
modeling of yarns (Chapter 5), we inferred geometrical parameters of real-world yarns
for our procedural yarn model. A potential future work direction would be to extend the
parameter prediction to estimate the reflectance parameters of yarns and fibers from the
yarn input images. In our experiments, this task has proven to be particularly challenging
and could not be solved in the same manner as inferring the geometry parameters, namely
by parameter regression with an L1 loss formulation. One could introduce some additional
rendering loss that would express visual similarity since an L1 loss over parameters is not a
suitable choice for visual image comparison. Another possibility would be to create a large
BTF database of knitted materials. Then, one can either apply a differentiable rendering
approach for material appearance estimation or utilize this database to train a network model
in the unified neural BTF approach of Rainer et al. [2020] and try reconstructing unseen
materials.

Similar to previous works, the generation of our database for natural-looking synthetic
yarns [Trunz et al., 2023] did not include physically-based simulation. While at the scale
of knitwear patterns, physically-based simulation has been successfully applied [Kaldor
et al., 2008; Yuksel et al., 2012; Leaf et al., 2018; Sperl et al., 2020], there are currently no
yarn generators that support this feature. The reason could be that such simulations often
require numerical integration procedures that can be costly in terms of runtime requirements.
However, since physically-based simulation considerably increased the level of realism for

64

6.2 Limitations and Future Work

knitting patterns, it might be worth including the simulation in the scale of yarns and plys or
even fibers as well.

Moreover, since our current yarn database does not contain yarns of the fourth level, i.e.,
when thinner yarns are regarded as plys and twisted into thicker yarns, we did not include
this yarn type in our yarn parameter inference approach. However, our yarn generator
supports this level of the hierarchy, so the straightforward extension would be generating
additional yarns for the database and training new models to support the detection of the
parameters of this new level of hierarchy.

65

Bibliography

Aas, Kjersti, Martin Jullum, and Anders Løland (2019). “Explaining individual predictions
when features are dependent: More accurate approximations to Shapley values.” arXiv
preprint arXiv:1903.10464.

Adebayo, Julius, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim (2018). “Sanity Checks for Saliency Maps.” Advances in Neural Information Processing
Systems.

Agustsson, Eirikur, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte,
Luca Benini, and Luc Van Gool (2017). “Soft-to-hard vector quantization for end-to-end
learning compressible representations.” arXiv preprint arXiv:1704.00648.

Agustsson, Eirikur, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc Van
Gool (2019). “Generative adversarial networks for extreme learned image compression.”
Proceedings of the IEEE/CVF International Conference on Computer Vision.

Ali, Muhammad A., Qiangshun Guan, Rehan Umer, Wesley J. Cantwell, and Tiejun Zhang
(2022). “Efficient processing of CT images using deep learning tools for generating digital
material twins of woven fabrics.” Composites Science and Technology. issn: 0266-3538. url:
https://www.sciencedirect.com/science/article/pii/S0266353821004474.

Aliaga, Carlos, Carlos Castillo, Diego Gutierrez, Miguel A Otaduy, Jorge Lopez-Moreno, and
Adrian Jarabo (2017). “An appearance model for textile fibers.” Computer Graphics Forum.

Aliaga, D. G., İ. Demir, B. Benes, and M. Wand (2016). “Inverse Procedural Modeling of 3D
Models for Virtual Worlds.” ACM SIGGRAPH 2016 Courses.

Alkhayrat, Maha, Mohamad Aljnidi, and Kadan Aljoumaa (2020). “A comparative dimen-
sionality reduction study in telecom customer segmentation using deep learning and
PCA.” Journal of Big Data.

Amor, Nesrine, Muhammad Tayyab Noman, and Michal Petru (2021). “Classification of
Textile Polymer Composites: Recent Trends and Challenges.” Polymers.

67

https://www.sciencedirect.com/science/article/pii/S0266353821004474

Bibliography

Ancona, Marco, Cengiz Oztireli, and Markus Gross (2019). “Explaining deep neural networks
with a polynomial time algorithm for shapley value approximation.” International Conference
on Machine Learning.

Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek (2015). “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation.” PloS one.

Ballé, Johannes, Valero Laparra, and Eero P Simoncelli (2016a). “Density modeling of images
using a generalized normalization transformation.” 4th International Conference on Learning
Representations, ICLR 2016.

Ballé, Johannes, Valero Laparra, and Eero P Simoncelli (2016b). “End-to-end optimized image
compression.” arXiv preprint arXiv:1611.01704.

Ballé, Johannes, Valero Laparra, and Eero P. Simoncelli (2017). “End-to-end Optimized Image
Compression.” 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.

Ballé, Johannes, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston (2018).
“Variational image compression with a scale hyperprior.” arXiv preprint arXiv:1802.01436.

Barnes, C., E. Shechtman, A. Finkelstein, and D. B. Goldman (2009). “PatchMatch: A
Randomized Correspondence Algorithm for Structural Image Editing.” ACM Transactions
on Graphics (Proc. SIGGRAPH).

Barnes, C., E. Shechtman, D. B. Goldman, and A. Finkelstein (2010). “The Generalized
PatchMatch Correspondence Algorithm.” Proceedings of the 11th European Conference on
Computer Vision Conference on Computer Vision: Part III. url: http://dl.acm.org/citatio
n.cfm?id=1927006.1927010.

Barnes, C., F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu (2015). “PatchTable: Efficient Patch
Queries for Large Datasets and Applications.” ACM Trans. Graph. issn: 0730-0301. url:
http://doi.acm.org/10.1145/2766934.

Bartholomew, David J, Martin Knott, and Irini Moustaki (2011). Latent variable models and
factor analysis: A unified approach.

Biecek, Przemysław (2018). “DALEX: explainers for complex predictive models in R.” The
Journal of Machine Learning Research.

Bokeloh, M., M. Wand, and H.-P. Seidel (2010). “A Connection Between Partial Symmetry
and Inverse Procedural Modeling.” ACM Trans. Graph. issn: 0730-0301. url: http://doi.a
cm.org/10.1145/1778765.1778841.

68

http://dl.acm.org/citation.cfm?id=1927006.1927010
http://dl.acm.org/citation.cfm?id=1927006.1927010
http://doi.acm.org/10.1145/2766934
http://doi.acm.org/10.1145/1778765.1778841
http://doi.acm.org/10.1145/1778765.1778841

Bouman, Katherine L, Bei Xiao, Peter Battaglia, and William T Freeman (2013). “Estimating
the material properties of fabric from video.” Proceedings of the IEEE international conference
on computer vision.

Bowen, Dillon and Lyle Ungar (2020). “Generalized SHAP: Generating multiple types of
explanations in machine learning.” arXiv preprint arXiv:2006.07155.

Bradley, S. (2014). Design Principles: Visual Perception And The Principles Of Gestalt. url:
https://www.smashingmagazine.com/2014/03/design-principles-visual-percept
ion-and-the-principles-of-gestalt/.

Cai, Chunlei, Li Chen, Xiaoyun Zhang, and Zhiyong Gao (2018). “Efficient variable rate
image compression with multi-scale decomposition network.” IEEE Transactions on Circuits
and Systems for Video Technology.

Cai, Chunlei, Li Chen, Xiaoyun Zhang, Guo Lu, and Zhiyong Gao (2019). “A novel deep
progressive image compression framework.” 2019 Picture Coding Symposium (PCS).

Caputo, Barbara, Eric Hayman, and P Mallikarjuna (2005). “Class-specific material cat-
egorisation.” Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume
1.

Carroll, J Douglas and Jih-Jie Chang (1970). “Analysis of individual differences in mul-
tidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.”
Psychometrika.

Castillo, Carlos, Carlos Aliaga, and Jorge López-Moreno (2017). “Challenges in appearance
capture and predictive modeling of textile materials.” Proceedings of the Workshop on Material
Appearance Modeling.

Castillo, Carlos, Jorge López-Moreno, and Carlos Aliaga (2019). “Recent advances in fabric
appearance reproduction.” Computers & Graphics.

Castro, Javier, Daniel Gómez, and Juan Tejada (2009). “Polynomial calculation of the Shapley
value based on sampling.” Computers & Operations Research.

Chen, Hugh, Scott Lundberg, and Su-In Lee (2021). “Explaining models by propagating
Shapley values of local components.” Explainable AI in Healthcare and Medicine.

Chen, J.-H., C.-S. Chen, and Y.-S. Chen (2003). “Fast algorithm for robust template matching
with M-estimators.” IEEE Transactions on Signal Processing. issn: 1053-587X.

Chen, Jianbo, Le Song, Martin J. Wainwright, and Michael I. Jordan (2019). “L-Shapley and
C-Shapley: Efficient Model Interpretation for Structured Data.” International Conference on
Learning Representations.

69

https://www.smashingmagazine.com/2014/03/design-principles-visual-perception-and-the-principles-of-gestalt/
https://www.smashingmagazine.com/2014/03/design-principles-visual-perception-and-the-principles-of-gestalt/

Bibliography

Choi, Yoojin, Mostafa El-Khamy, and Jungwon Lee (2019). “Variable rate deep image
compression with a conditional autoencoder.” Proceedings of the IEEE/CVF International
Conference on Computer Vision.

Cirio, Gabriel, Jorge Lopez-Moreno, David Miraut, and Miguel A Otaduy (2014). “Yarn-level
simulation of woven cloth.” ACM Transactions on Graphics (TOG).

Covert, Ian, Scott Lundberg, and Su-In Lee (2020a). “Explaining by Removing: A Unified
Framework for Model Explanation.” arXiv preprint arXiv:2011.14878.

Covert, Ian, Scott Lundberg, and Su-In Lee (2020b). “Understanding global feature contri-
butions with additive importance measures.” Advances in Neural Information Processing
Systems.

Dai, Bin, Yu Wang, John Aston, Gang Hua, and David Wipf (2018). “Connections with robust
PCA and the role of emergent sparsity in variational autoencoder models.” The Journal of
Machine Learning Research.

Dai, Bin, Yu Wang, John Aston, Gang Hua, and David Wipf (2019). “Hidden talents of the
variational autoencoder.” arXiv preprint arXiv:1706.05148v5.

Dana, Kristin J, Shree K Nayar, Bram Van Ginneken, and Jan J Koenderink (1997). “Reflectance
and texture of real-world surfaces authors.” Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

Dana, Kristin J., Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink (1999). “Re-
flectance and Texture of Real-World Surfaces.” ACM Trans. Graph. issn: 0730-0301. url:
https://doi.org/10.1145/300776.300778.

Datta, Anupam, Shayak Sen, and Yair Zick (2016). “Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems.” 2016 IEEE symposium on
security and privacy (SP).

De Lathauwer, Lieven, Bart De Moor, and Joos Vandewalle (2000a). “A multilinear singular
value decomposition.” SIAM journal on Matrix Analysis and Applications.

De Lathauwer, Lieven, Bart De Moor, and Joos Vandewalle (2000b). “On the best rank-1
and rank-(r 1, r 2,..., rn) approximation of higher-order tensors.” SIAM journal on Matrix
Analysis and Applications.

Dekel, T., S. Oron, M. Rubinstein, S. Avidan, and W. T. Freeman (2015). “Best-Buddies
Similarity for robust template matching.” 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

70

https://doi.org/10.1145/300776.300778

Demir, I., D. G. Aliaga, and B. Benes (2015). “Procedural editing of 3D building point clouds.”
Proceedings of the IEEE International Conference on Computer Vision.

Demir, I., D. G. Aliaga, and B. Benes (2016). “Proceduralization for Editing 3D Architectural
Models.” 2016 Fourth International Conference on 3D Vision (3DV).

Ding, Zheng, Yifan Xu, Weĳian Xu, Gaurav Parmar, Yang Yang, Max Welling, and Zhuowen
Tu (2020). “Guided variational autoencoder for disentanglement learning.” Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Dobashi, Yoshinori, Kei Iwasaki, Makoto Okabe, Takashi Ijiri, and Hideki Todo (2019).
“Inverse appearance modeling of interwoven cloth.” The Visual Computer.

Dong, Yue, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe Ben-Ezra, and
Baining Guo (2010). “Manifold bootstrapping for SVBRDF capture.” ACM Transactions on
Graphics (TOG).

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable
machine learning.” arXiv preprint arXiv:1702.08608.

Drago, Frédéric and Norishige Chiba (2004). “Painting canvas synthesis.” The Visual Computer.

Dubuisson, M. P. and A. K. Jain (1994). “A modified Hausdorff distance for object matching.”
Proceedings of 12th International Conference on Pattern Recognition.

Eckart, Carl and Gale Young (1936). “The approximation of one matrix by another of lower
rank.” Psychometrika.

Elboher, E. and M. Werman (2013). “Asymmetric Correlation: A Noise Robust Similarity
Measure for Template Matching.” IEEE Transactions on Image Processing. issn: 1057-7149.

F.R.S., Karl Pearson (1901). “LIII. On lines and planes of closest fit to systems of points in
space.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.
eprint: https://doi.org/10.1080/14786440109462720. url: https://doi.org/10.108
0/14786440109462720.

Fatima, Shaheen S, Michael Wooldridge, and Nicholas R Jennings (2008). “A linear approxi-
mation method for the Shapley value.” Artificial Intelligence.

Fedkiw, R., J. Stam, and H. W. Jensen (2001). “Visual Simulation of Smoke.” Proceedings of
SIGGRAPH 2001. Edited by Eugene Fiume.

Filip, J., M. Kolafová, M. Havlıček, R. Vávra, M. Haindl, and Rushmeier H. (2018). “Evaluating
Physical and Rendered Material Appearance.” The Visual Computer (Computer Graphics
International 2018).

71

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720

Bibliography

Fong, Ruth C. and Andrea Vedaldi (2017). “Interpretable Explanations of Black Boxes by
Meaningful Perturbation.” IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. url: https://doi.org/10.1109/ICCV.2017.371.

Fournier, Alain (1992). “Normal distribution functions and multiple surfaces.” Graphics
Interface ’92 Workshop on Local Illumination.

Fryer, Daniel, Inga Strümke, and Hien Nguyen (2021). “Shapley values for feature selection:
The good, the bad, and the axioms.” arXiv preprint arXiv:2102.10936.

Furukawa, R., H. Kawasaki, K. Ikeuchi, and M. Sakauchi (2002). “Appearance based object
modeling using texture database: Acquisition, compression and rendering.” Eurographics
Workshop on Rendering. Edited by P. Debevec and S. Gibson.

Gast, Jochen and Stefan Roth (2018). “Lightweight probabilistic deep networks.” Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

Ghorbani, Amirata, Abubakar Abid, and James Zou (2019). “Interpretation of neural networks
is fragile.” Proceedings of the AAAI Conference on Artificial Intelligence.

Ghorbani, Amirata and James Zou (2019). “Data shapley: Equitable valuation of data for
machine learning.” International Conference on Machine Learning.

Ghorbani, Amirata and James Zou (2020). “Neuron shapley: Discovering the responsible
neurons.” arXiv preprint arXiv:2002.09815.

Giraud, R., V.-T. Ta, N. Papadakis, J. V. Manjn, D. L. Collins, and P. Coup (2016). “An Optimized
PatchMatch for multi-scale and multi-feature label fusion.” NeuroImage. issn: 1053-8119.
url: http://www.sciencedirect.com/science/article/pii/S1053811915006965.

Giudici, Paolo and Emanuela Raffinetti (2020). “Shapley-Lorenz eXplainable artificial intelli-
gence.” Expert Systems with Applications.

Gong, Deshan, Zhanxing Zhu, Andrew J Bulpitt, and He Wang (2022). “Fine-grained
differentiable physics: a yarn-level model for fabrics.” arXiv preprint arXiv:2202.00504.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http://www.de
eplearningbook.org.

Guan, Yue and Jennifer Dy (2009). “Sparse probabilistic principal component analysis.”
Artificial Intelligence and Statistics.

Guarnera, Giuseppe Claudio, Peter Hall, Alain Chesnais, and Mashhuda Glencross (2017).
“Woven fabric model creation from a single image.” ACM Transactions on Graphics (TOG).

72

https://doi.org/10.1109/ICCV.2017.371
http://www.sciencedirect.com/science/article/pii/S1053811915006965
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Guerrero, Paul, Miloš Hašan, Kalyan Sunkavalli, Radomır Měch, Tamy Boubekeur, and
Niloy J. Mitra (2022). “MatFormer: A Generative Model for Procedural Materials.” issn:
0730-0301. url: https://doi.org/10.1145/3528223.3530173.

Gurobi Optimization, Inc. (2016). Gurobi Optimizer Reference Manual. url: http://www.gurob
i.com.

Haindl, Michal and Jiří Filip (2013). Visual Texture: Accurate Material Appearance Measurement,
Representation and Modeling.

Harshman, Richard A and Margaret E Lundy (1994). “PARAFAC: Parallel factor analysis.”
Computational Statistics & Data Analysis.

Hartmann, Stefan, Elena Trunz, Björn Krüger, Reinhard Klein, and Matthias B. Hullin
(2015). “Efficient Multi-Constrained Optimization for Example-Based Synthesis.” The
Visual Computer / Proc. Computer Graphics International (CGI 2015). url: %7Bhttp://dx.doi
.org/10.1007/s00371-015-1114-y%7D.

Hayman, Eric, Barbara Caputo, Mario Fritz, and Jan-Olof Eklundh (2004). “On the significance
of real-world conditions for material classification.” European conference on computer vision.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Deep Residual Learning for
Image Recognition.” CoRR. arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385.

Hel-Or, Y., H. Hel-Or, and E. David (2014). “Matching by Tone Mapping: Photometric
Invariant Template Matching.” IEEE Transactions on Pattern Analysis and Machine Intelligence.
issn: 0162-8828.

Hotelling, Harold (1936). “Relations Between Two Sets of Variates.” Biometrika. issn: 00063444.
url: http://www.jstor.org/stable/2333955.

Howard, Andrew G, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weĳun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam (2017). “Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861.

Huang, Q., L. J. Guibas, and N. J. Mitra (2014). “Near-Regular Structure Discovery Using
Linear Programming.” ACM Trans. Graph. issn: 0730-0301. url: http://doi.acm.org/10
.1145/2535596.

Hussain Iqbal, Muhammad Ather, Babar Khan, Zhĳie Wang, and Shenyi Ding (2020).
“Woven Fabric Pattern Recognition and Classification Based on Deep Convolutional Neural
Networks.” Electronics. issn: 2079-9292. url: https://www.mdpi.com/2079-9292/9/6/104
8.

73

https://doi.org/10.1145/3528223.3530173
http://www.gurobi.com
http://www.gurobi.com
%7Bhttp://dx.doi.org/10.1007/s00371-015-1114-y%7D
%7Bhttp://dx.doi.org/10.1007/s00371-015-1114-y%7D
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://www.jstor.org/stable/2333955
http://doi.acm.org/10.1145/2535596
http://doi.acm.org/10.1145/2535596
https://www.mdpi.com/2079-9292/9/6/1048
https://www.mdpi.com/2079-9292/9/6/1048

Bibliography

Huttenlocher, D. P., G. A. Klanderman, and W. J. Rucklidge (1993). “Comparing images using
the Hausdorff distance.” IEEE Transactions on Pattern Analysis and Machine Intelligence. issn:
0162-8828.

Irawan, Piti and Steve Marschner (2012). “Specular reflection from woven cloth.” ACM
Transactions on Graphics (TOG).

Izzo, Cosimo, Aldo Lipani, Ramin Okhrati, and Francesca Medda (2020). “A Baseline for
Shapely Values in MLPs: from Missingness to Neutrality.” arXiv preprint arXiv:2006.04896.

Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko (2018). “Quantization and training of neural
networks for efficient integer-arithmetic-only inference.” Proceedings of the IEEE conference
on computer vision and pattern recognition.

Jakob, W., A. Arbree, J. T. Moon, K. Bala, and S. Marschner (2010). “A radiative transfer
framework for rendering materials with anisotropic structure.” ACM Transactions on
Graphics (TOG).

Jia, Ruoxi, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos (2019). “Towards efficient data valuation
based on the shapley value.” The 22nd International Conference on Artificial Intelligence and
Statistics.

Jin, Wenhua, Beibei Wang, Milos Hasan, Yu Guo, Steve Marschner, and Ling-Qi Yan (2022).
“Woven Fabric Capture from a Single Photo.” SIGGRAPH Asia 2022 Conference Papers.

Jing, Li, Jure Zbontar, and Yann LeCun (2020). “Implicit Rank-Minimizing Autoencoder.”
arXiv preprint arXiv:2010.00679.

Jobson, D. J., Z. Rahman, and G. A. Woodell (1995). “Retinex image processing: Improved
fidelity to direct visual observation.” Proceedings of the IS&T Fourth Color Imaging Conference:
Color Science, Systems, and Applications.

Johnston, Nick, Elad Eban, Ariel Gordon, and Johannes Ballé (2019). “Computationally
efficient neural image compression.” arXiv preprint arXiv:1912.08771.

Jolliffe, Ian T and Jorge Cadima (2016). “Principal component analysis: a review and recent
developments.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences.

Kaldor, Jonathan M., Doug L. James, and Steve Marschner (2008). “Simulating Knitted Cloth
at the Yarn Level.” ACM SIGGRAPH 2008 Papers. url: https://doi.org/10.1145/139950
4.1360664.

74

https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1399504.1360664

Kartch, D. (2000). “Efficient Rendering and Compression for Full-Parallax Computer-
Generated Holographic Stereograms.” Ph.D. thesis. Cornell University.

Kaspar, Alexandre, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, and Wojciech Matusik
(2019). “Neural Inverse Knitting: From Images to Manufacturing Instructions.” Proceedings
of the 36th International Conference on Machine Learning. Edited by Kamalika Chaudhuri and
Ruslan Salakhutdinov. url: http://proceedings.mlr.press/v97/kaspar19a.html.

Keefe, M (1994). “Solid modeling applied to fibrous assemblies. Part I: Twisted yarns.” The
Journal of the Textile Institute.

Khan, AH and EL Hines (1994). “Integer-weight neural nets.” Electronics Letters.

Khungurn, Pramook, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner
(2015). “Matching Real Fabrics with Micro-Appearance Models.” ACM Trans. Graph.

Kim, H. Y. and S. A. de Araújo (2007). “Grayscale Template-Matching Invariant to Rotation,
Scale, Translation, Brightness and Contrast.” Advances in Image and Video Technology: Second
Pacific Rim Symposium, PSIVT 2007 Santiago, Chile, December 17-19, 2007 Proceedings. Edited
by Domingo Mery and Luis Rueda. url: https://doi.org/10.1007/978-3-540-77129-
6_13.

Kim, Yong Hwi, Junho Choi, and Kwan H. Lee (2018). “An Efficient Method for Specular-
Enhanced BTF Compression.” Comput. Graph. issn: 0097-8493. url: https://doi.org/10
.1016/j.cag.2018.06.001.

Kindermans, Pieter-Jan, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schütt,
Sven Dähne, Dumitru Erhan, and Been Kim (2019). “The (Un)reliability of Saliency
Methods.” Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes.” arXiv
preprint arXiv:1312.6114.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization.”
Proceedings of 3rd International Conference on Learning Representations (ICLR). Edited by
Yoshua Bengio and Yann LeCun.

Kolda, Tamara G and Brett W Bader (2009). “Tensor decompositions and applications.” SIAM
review.

Korman, S., D. Reichman, G. Tsur, and S. Avidan (2013). “FasT-Match: Fast Affine Template
Matching.” 2013 IEEE Conference on Computer Vision and Pattern Recognition.

Koudelka, Melissa, Peter Belhumeur, and David Kriegman (2003). “Acquisition, Compression,
and Synthesis of Bidirectional Texture Functions.” Texture 2003.

75

http://proceedings.mlr.press/v97/kaspar19a.html
https://doi.org/10.1007/978-3-540-77129-6_13
https://doi.org/10.1007/978-3-540-77129-6_13
https://doi.org/10.1016/j.cag.2018.06.001
https://doi.org/10.1016/j.cag.2018.06.001

Bibliography

Kumar, I Elizabeth, Carlos Scheidegger, Suresh Venkatasubramanian, and S Friedler (2020a).
“Shapley Residuals: Quantifying the limits of the Shapley value for explanations.” ICML
Workshop on Workshop on Human Interpretability in Machine Learning (WHI).

Kumar, I Elizabeth, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler
(2020b). “Problems with Shapley-value-based explanations as feature importance mea-
sures.” International Conference on Machine Learning.

Ladjal, Saıd, Alasdair Newson, and Chi-Hieu Pham (2019). “A PCA-like autoencoder.” arXiv
preprint arXiv:1904.01277.

Landis, H. (2002). Production-Ready Global Illumination. ACM SIGGRAPH 2002 Course #16
Notes.

Leaf, Jonathan, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner
(2018). “Interactive Design of Yarn-Level Cloth Patterns.” ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia 2018).

Lee, Jooyoung, Seunghyun Cho, and Seung-Kwon Beack (2018). “Context-adaptive entropy
model for end-to-end optimized image compression.” arXiv preprint arXiv:1809.10452.

Levoy, M., K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk (2000). “The Digital Michelangelo Project.”
Proceedings of SIGGRAPH 2000. Edited by Kurt Akeley.

Li, C. and M. Wand (2015). “Approximate Translational Building Blocks for Image Decompo-
sition and Synthesis.” ACM Trans. Graph. issn: 0730-0301. url: http://doi.acm.org/10.1
145/2757287.

Li, Mu, Kede Ma, Jane You, David Zhang, and Wangmeng Zuo (2020). “Efficient and effective
context-based convolutional entropy modeling for image compression.” IEEE Transactions
on Image Processing.

Li, Y., Y. Hu, R. Song, P. Rao, and Y. Wang (2017). “Coarse-to-fine PatchMatch for Dense
Correspondence.” IEEE Transactions on Circuits and Systems for Video Technology. issn:
1051-8215.

Li, Yifei, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik (2022). “DiffCloth: Differentiable
cloth simulation with dry frictional contact.” ACM Transactions on Graphics (TOG).

Liang, Junbang, Ming Lin, and Vladlen Koltun (2019). “Differentiable cloth simulation for
inverse problems.” Advances in Neural Information Processing Systems.

76

http://doi.acm.org/10.1145/2757287
http://doi.acm.org/10.1145/2757287

Lienhard, S., C. Lau, P. Müller, P. Wonka, and M. Pauly (2017). “Design Transformations for
Rule-based Procedural Modeling.” Comput. Graph. Forum. issn: 0167-7055. url: https://d
oi.org/10.1111/cgf.13105.

Lipton, Zachary C (2016). “The Mythos of Model Interpretability.” ICML Workshop on Human
Interpretability in MachineLearning (WHI).

Liu, C., L. Sharan, E. H. Adelson, and R. Rosenholtz (2010). “Exploring features in a Bayesian
framework for material recognition.” 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

Liu, J. and Y. Liu (2014). “Local Regularity-Driven City-Scale Facade Detection from Aerial
Images.” 2014 IEEE Conference on Computer Vision and Pattern Recognition.

Liu, S., T. T. Ng, K. Sunkavalli, M. N. Do, E. Shechtman, and N. Carr (2015). “PatchMatch-
Based Automatic Lattice Detection for Near-Regular Textures.” 2015 IEEE International
Conference on Computer Vision (ICCV).

Liu, Xinguo, Yaohua Hu, Jingdan Zhang, Xin Tong, Baining Guo, and Heung-Yeung Shum
(2004). “Synthesis and Rendering of Bidirectional Texture Functions on Arbitrary Surfaces.”
IEEE Transactions on Visualization and Computer Graphics. issn: 1077-2626. url: https://doi
.org/10.1109/TVCG.2004.1272727.

Liu, Zhuang, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie (2022). “A ConvNet for the 2020s.” CoRR. arXiv: 2201.03545. url: https://ar
xiv.org/abs/2201.03545.

Longay, Steven, Adam Runions, Frédéric Boudon, and and Prusinkiewicz (2012). “TreeSketch:
Interactive Procedural Modeling of Trees on a Tablet.”

Lou, Yin, Rich Caruana, and Johannes Gehrke (2012). “Intelligible models for classification
and regression.” Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining.

Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker (2013). “Accurate intelligible
models with pairwise interactions.” Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining.

Lu, J., Y. Li, H. Yang, D. Min, W. Eng, and M. N. Do (2017). “PatchMatch Filter: Edge-Aware
Filtering Meets Randomized Search for Visual Correspondence.” IEEE Transactions on
Pattern Analysis and Machine Intelligence. issn: 0162-8828.

Luan, Fujun, Shuang Zhao, and Kavita Bala (2017). “Fiber-Level On-the-Fly Procedural
Textiles.” Computer Graphics Forum. issn: 1467-8659.

77

https://doi.org/10.1111/cgf.13105
https://doi.org/10.1111/cgf.13105
https://doi.org/10.1109/TVCG.2004.1272727
https://doi.org/10.1109/TVCG.2004.1272727
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545

Bibliography

Lukáč, M., D. Sýkora, K. Sunkavalli, E. Shechtman, O. Jamriška, N. Carr, and T. Pajdla (2017).
“Nautilus: Recovering Regional Symmetry Transformations for Image Editing.” ACM Trans.
Graph. issn: 0730-0301. url: http://doi.acm.org/10.1145/3072959.3073661.

Lundberg, Scott M, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee (2019). “Explainable AI for
trees: From local explanations to global understanding.” arXiv preprint arXiv:1905.04610.

Lundberg, Scott M and Su-In Lee (2017). “A Unified Approach to Interpreting Model
Predictions.” Advances in Neural Information Processing Systems.

Ma, Sisi and Roshan Tourani (2020). “Predictive and causal implications of using shapley
value for model interpretation.” Proceedings of the 2020 KDD Workshop on Causal Discovery.

Maleki, Sasan, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers (2013).
“Bounding the estimation error of sampling-based Shapley value approximation.” arXiv
preprint arXiv:1306.4265.

Mangalathu, Sujith, Seong-Hoon Hwang, and Jong-Su Jeon (2020). “Failure mode and effects
analysis of RC members based on machine-learning-based SHapley Additive exPlanations
(SHAP) approach.” Engineering Structures.

Martin-Garrido, Alberto, Eder Miguel, and Miguel Angel Otaduy (2018). “Toward Estimation
of Yarn-Level Cloth Simulation Models.” CEIG.

Martinovic, A. and L. Van Gool (2013). “Bayesian Grammar Learning for Inverse Procedural
Modeling.” Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition.
url: http://dx.doi.org/10.1109/CVPR.2013.33.

Matsui, Yasuko and Tomomi Matsui (2001). “NP-completeness for calculating power indices
of weighted majority games.” Theoretical Computer Science. Combinatorics and Computer
Science. issn: 0304-3975. url: https://www.sciencedirect.com/science/article/pii
/S0304397500002516.

Mattei, Pierre-Alexandre and Jes Frellsen (2018). “Leveraging the exact likelihood of deep
latent variable models.” arXiv preprint arXiv:1802.04826.

Mazlov, Ilia, Sebastian Merzbach, Elena Trunz, and Reinhard Klein (2019). “Neural Appear-
ance Synthesis and Transfer.” Workshop on Material Appearance Modeling.

Mentzer, Fabian, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool
(2018). “Conditional probability models for deep image compression.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

78

http://doi.acm.org/10.1145/3072959.3073661
http://dx.doi.org/10.1109/CVPR.2013.33
https://www.sciencedirect.com/science/article/pii/S0304397500002516
https://www.sciencedirect.com/science/article/pii/S0304397500002516

Michalak, Tomasz P, Karthik V Aadithya, Piotr L Szczepanski, Balaraman Ravindran, and
Nicholas R Jennings (2013). “Efficient computation of the Shapley value for game-theoretic
network centrality.” Journal of Artificial Intelligence Research.

Minnen, David, Johannes Ballé, and George Toderici (2018). “Joint autoregressive and
hierarchical priors for learned image compression.” arXiv preprint arXiv:1809.02736.

Minnen, David and Saurabh Singh (2020). “Channel-wise autoregressive entropy models for
learned image compression.” 2020 IEEE International Conference on Image Processing (ICIP).

Mohammadi, Seyed Omid and Ahmad Kalhor (2021). “Smart Fashion: A Review of AI
Applications in the Fashion & Apparel Industry.” arXiv preprint arXiv:2111.00905.

Montavon, Grégoire, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-
Robert Müller (2017). “Explaining nonlinear classification decisions with deep taylor
decomposition.” Pattern Recognition.

Montazeri, Zahra, Søren Gammelmark, Shuang Zhao, and Henrik Wann Jensen (2021).
Systems and methods to compute the appearance of woven and knitted textiles at the ply-level. US
Patent 11,049,291.

Montazeri, Zahra, Søren B. Gammelmark, Shuang Zhao, and Henrik Wann Jensen (2020).
“A Practical Ply-Based Appearance Model of Woven Fabrics.” ACM Trans. Graph. issn:
0730-0301. url: https://doi.org/10.1145/3414685.3417777.

Montazeri, Zahra, Chang Xiao, Yun Fei, Changxi Zheng, and Shuang Zhao (2019). “Mechanics-
aware modeling of cloth appearance.” IEEE transactions on visualization and computer
graphics.

Morris, PJ, JH Merkin, and RW Rennell (1999). “Modelling of yarn properties from fibre
properties.” Journal of the Textile Institute. Part 1, Fibre science and textile technology.

Müller, Pascal, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool (2006).
“Procedural Modeling of Buildings.” ACM Trans. Graph. issn: 0730-0301. url: https://doi
.org/10.1145/1141911.1141931.

Nakanishi, Ken M, Shin-ichi Maeda, Takeru Miyato, and Daisuke Okanohara (2018). “Neural
multi-scale image compression.” Asian Conference on Computer Vision.

Nicodemus, F E, J C Richmond, J J Hsia, I W Ginsberg, and T Limperis (1977). Geometrical
considerations and nomenclature for reflectance. Technical report.

Nie, Weili, Yang Zhang, and Ankit Patel (2018). “A theoretical explanation for perplexing
behaviors of backpropagation-based visualizations.” International Conference on Machine
Learning.

79

https://doi.org/10.1145/3414685.3417777
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1141911.1141931

Bibliography

Nishida, Gen, Adrien Bousseau, and Daniel Aliaga (2018). “Procedural Modeling of a
Building from a Single Image.” Computer Graphics Forum.

Nohara, Yasunobu, Koutarou Matsumoto, Hidehisa Soejima, and Naoki Nakashima (2019).
“Explanation of machine learning models using improved Shapley Additive Explanation.”
Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics.

Noor, Abid, Muhammad Asad Saeed, Tehseen Ullah, Zia Uddin, and Raja Muhammad
Waseem Ullah Khan (2021). “A review of artificial intelligence applications in apparel
industry.” The Journal of The Textile Institute.

Olson, C. F. (2002). “Maximum-likelihood image matching.” IEEE Transactions on Pattern
Analysis and Machine Intelligence. issn: 0162-8828.

Oron, S., A. Bar-Hillel, D. Levi, and S. Avidan (2012). “Locally Orderless Tracking.” 2012
IEEE Conference on Computer Vision and Pattern Recognition.

Pagán, Ester Alba, Marıa del Mar Gaitán Salvatella, Marıa Dolores Pitarch, Arabella León
Muñoz, Marıa del Mar Moya Toledo, José Marin Ruiz, Maurizio Vitella, Georgia Lo Cicero,
Franz Rottensteiner, Dominic Clermont, et al. (2020). “From silk to digital technologies: a
gateway to new opportunities for creative industries, traditional crafts and designers. The
SILKNOW case.” Sustainability.

Pajarola, Renato, Susanne K. Suter, and Roland Ruiters (2013). “Tensor Approximation in
Visualization and Computer Graphics.” Eurographics 2013 - Tutorials. url: http://diglib
.eg.org/EG/DL/conf/EG2013/tutorials/t6.pdf.

Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove
(2019). “Deepsdf: Learning continuous signed distance functions for shape representation.”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Park, M., K. Brocklehurst, R. T. Collins, and Y. Liu (2011). “Translation-Symmetry-Based
Perceptual Grouping with Applications to Urban Scenes.” Computer Vision – ACCV 2010.
Edited by Ron Kimmel, Reinhard Klette, and Akihiro Sugimoto.

Parke, F. I. and K. Waters (1996). Computer Facial Animation.

Patumchat, Puttipong and Keartisak Sriprateep (2019). “New computer geometric modeling
approach with filament assembly model for woven fabric structures.” The Journal of The
Textile Institute.

Pele, O. and M. Werman (2008). “Robust Real-Time Pattern Matching Using Bayesian
Sequential Hypothesis Testing.” IEEE Transactions on Pattern Analysis and Machine Intelligence.
issn: 0162-8828.

80

http://diglib.eg.org/EG/DL/conf/EG2013/tutorials/t6.pdf
http://diglib.eg.org/EG/DL/conf/EG2013/tutorials/t6.pdf

Pellacini, F., K. Vidimče, A. Lefohn, A. Mohr, M. Leone, and J. Warren (2005). “Lpics: a
Hybrid Hardware-Accelerated Relighting Engine for Computer Cinematography.” ACM
Transactions on Graphics.

Perlin, Ken (1985). “An image synthesizer.” ACM Siggraph Computer Graphics.

Pham, Chi-Hieu, Saıd Ladjal, and Alasdair Newson (2020). “PCAAE: Principal Component
Analysis Autoencoder for organising the latent space of generative networks.” arXiv
preprint arXiv:2006.07827.

Pritts, J., O. Chum, and J. Matas (2014). “Rectification, and Segmentation of Coplanar
Repeated Patterns.” 2014 IEEE Conference on Computer Vision and Pattern Recognition.

Rainer, Gilles, Abhĳeet Ghosh, Wenzel Jakob, and Tim Weyrich (2020). “Unified neural
encoding of btfs.” Computer Graphics Forum.

Rainer, Gilles, Wenzel Jakob, Abhĳeet Ghosh, and Tim Weyrich (2019). “Neural btf compres-
sion and interpolation.” Computer Graphics Forum.

Rasheed, Abdullah Haroon, Victor Romero, Florence Bertails-Descoubes, Stefanie Wuhrer,
Jean-Sébastien Franco, and Arnaud Lazarus (2020). “Learning to measure the static friction
coefficient in cloth contact.” Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi (2016). “Xnor-net:
Imagenet classification using binary convolutional neural networks.” European conference
on computer vision.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backprop-
agation and approximate inference in deep generative models.” International conference on
machine learning.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). “"Why should i trust
you?" Explaining the predictions of any classifier.” Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining.

Rippel, Oren and Lubomir Bourdev (2017). “Real-time adaptive image compression.”
International Conference on Machine Learning.

Robbins, C.R. (2013). Chemical and Physical Behavior of Human Hair. url: https://books.goo
gle.de/books?id=eabTBwAAQBAJ.

Ruiters, Roland and Reinhard Klein (2009). “BTF Compression via Sparse Tensor Decomposi-
tion.” Proceedings of the Twentieth Eurographics Conference on Rendering. url: https://doi.o
rg/10.1111/j.1467-8659.2009.01495.x.

81

https://books.google.de/books?id=eabTBwAAQBAJ
https://books.google.de/books?id=eabTBwAAQBAJ
https://doi.org/10.1111/j.1467-8659.2009.01495.x
https://doi.org/10.1111/j.1467-8659.2009.01495.x

Bibliography

Runia, Tom FH, Kirill Gavrilyuk, Cees GM Snoek, and Arnold WM Smeulders (2020). “Cloth
in the wind: A case study of physical measurement through simulation.” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Saalfeld, Alina, Florian Reibold, and Carsten Dachsbacher (2018). “Image-based Fitting of
Procedural Yarn Models.” Workshop on Material Appearance Modeling. Edited by Reinhard
Klein and Holly Rushmeier.

Sadeghi, Iman, Oleg Bisker, Joachim De Deken, and Henrik Wann Jensen (2013). “A practical
microcylinder appearance model for cloth rendering.” ACM Transactions on Graphics (TOG).

Sako, Y. and K. Fujimura (2000). “Shape Similarity by Homotropic Deformation.” The Visual
Computer.

Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen
(2018). “Mobilenetv2: Inverted residuals and linear bottlenecks.” Proceedings of the IEEE
conference on computer vision and pattern recognition.

Sattler, Mirko, Ralf Sarlette, and Reinhard Klein (2003). “Efficient and Realistic Visualization
of Cloth.” Proceedings of the 14th Eurographics Workshop on Rendering.

Schroder, K, Reinhard Klein, and Arno Zinke (2011). “A volumetric approach to predictive
rendering of fabrics.” Computer Graphics Forum.

Schröder, K., A. Zinke, and R. Klein (2015). “Image-Based Reverse Engineering and Visual
Prototyping of Woven Cloth.” IEEE Transactions on Visualization and Computer Graphics.

Schröder, Kai, Shuang Zhao, and Arno Zinke (2012). “Recent Advances in Physically-Based
Appearance Modeling of Cloth.” SIGGRAPH Asia 2012 Courses. url: https://doi.org/10
.1145/2407783.2407795.

Schröder, Kai Michael Nikolai (2015). “Visual Prototyping of Cloth.” Ph.D. thesis. Rheinische
Friedrich-Wilhelms-Universität Bonn. url: https://hdl.handle.net/20.500.11811/6459.

Sellereite, Nikolai and Martin Jullum (2019). “shapr: An R-package for explaining machine
learning models with dependence-aware Shapley values.” Journal of Open Source Software.
url: https://doi.org/10.21105/joss.02027.

Shaikh, I.A. (2002). Pocket Textile Expert: Mini textile encyclopedia. url: https://books.google
.de/books?id=HFIRmgEACAAJ.

Shapley, Lloyd S (1953). “A value for n-person games.” Contributions to the Theory of Games.

Sharan, L., C. Liu, R. Rosenholtz, and E. H. Adelson (2013). “Recognizing Materials Using
Perceptually Inspired Features.” International Journal of Computer Vision.

82

https://doi.org/10.1145/2407783.2407795
https://doi.org/10.1145/2407783.2407795
https://hdl.handle.net/20.500.11811/6459
https://doi.org/10.21105/joss.02027
https://books.google.de/books?id=HFIRmgEACAAJ
https://books.google.de/books?id=HFIRmgEACAAJ

Shin, B. G., S.-Y. Park, and J. J. Lee (2007). “Fast and robust template matching algorithm in
noisy image.” 2007 International Conference on Control, Automation and Systems.

Shinohara, Toshihiro, Jun-ya Takayama, Shinji Ohyama, and Akira Kobayashi (2010). “Ex-
traction of yarn positional information from a three-dimensional CT image of textile fabric
using yarn tracing with a filament model for structure analysis.” Textile Research Journal.

Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje (2017). “Learning Important
Features Through Propagating Activation Differences.” Proceedings of the 34th International
Conference on Machine Learning. Edited by Doina Precup and Yee Whye Teh.

Sibiryakov, A. (2011). “Fast and high-performance template matching method.” CVPR 2011.

Simakov, D., Y. Caspi, E. Shechtman, and M. Irani (2008). “Summarizing visual data using
bidirectional similarity.” 2008 IEEE Conference on Computer Vision and Pattern Recognition.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman (2014). “Deep Inside Convo-
lutional Networks: Visualising Image Classification Models and Saliency Maps.” 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Workshop Track Proceedings. Edited by Yoshua Bengio and Yann LeCun. url:
http://arxiv.org/abs/1312.6034.

Sperl, Georg, Rahul Narain, and Chris Wojtan (2020). “Homogenized Yarn-Level Cloth.”
ACM Transactions on Graphics (TOG).

Springenberg, J, Alexey Dosovitskiy, Thomas Brox, and M Riedmiller (2015). “Striving for
Simplicity: The All Convolutional Net.” ICLR (workshop track).

Sreprateep, Keartisak and Erik L. J. Bohez (2006). “Computer Aided Modeling of Fiber
Assemblies.” Computer-Aided Design and Applications.

Stava, O., B. Benes, R. Mech, D. G. Aliaga, and P. Kristof (2010). “Inverse Procedural Modeling
by Automatic Generation of L-systems.” Comput. Graph. Forum. url: http://dblp.uni-tr
ier.de/db/journals/cgf/cgf29.html#StavaBMAK10.

Stava, O., S. Pirk, J. Kratt, B. Chen, R. Mech, O. Deussen, and B. Benes (2014). “Inverse
Procedural Modelling of Trees.” Computer Graphics Forum. issn: 1467-8659. url: http://dx
.doi.org/10.1111/cgf.12282.

Strumbelj, Erik and Igor Kononenko (2010). “An efficient explanation of individual classifica-
tions using game theory.” The Journal of Machine Learning Research.

Sun, Yi and Mukund Sundararajan (2011). “Axiomatic attribution for multilinear functions.”
Proceedings of the 12th ACM conference on Electronic commerce.

83

http://arxiv.org/abs/1312.6034
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#StavaBMAK10
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#StavaBMAK10
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1111/cgf.12282

Bibliography

Sundararajan, Mukund, Kedar Dhamdhere, and Ashish Agarwal (2020). “The Shapley Taylor
Interaction Index.” International Conference on Machine Learning.

Sundararajan, Mukund and Amir Najmi (2020). “The many Shapley values for model
explanation.” International Conference on Machine Learning.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan (2017). “Axiomatic attribution for deep
networks.” International Conference on Machine Learning.

Ta, V.-T., R. Giraud, D. L. Collins, and P. Coupé (2014). “Optimized PatchMatch for Near
Real Time and Accurate Label Fusion.” Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2014.

Talmi, I., R. Mechrez, and L. Zelnik-Manor (2017). “Template Matching with Deformable
Diversity Similarity.” 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Talton, J., L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch (2012). “Learning Design
Patterns with Bayesian Grammar Induction.” Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology. url: http://doi.acm.org/10.1145/2380116.23
80127.

Talton, J. O., Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun (2011). “Metropolis Procedural
Modeling.” ACM Trans. Graph. issn: 0730-0301. url: http://doi.acm.org/10.1145/19448
46.1944851.

Tan, Mingxing, Bo Chen, Ruoming Pang, Vĳay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V Le (2019). “Mnasnet: Platform-aware neural architecture search for mobile.”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Tan, Sarah, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo (2018). “Learning
global additive explanations for neural nets using model distillation.” arXiv preprint
arXiv:1801.08640.

Tang, Yehui, Shan You, Chang Xu, Jin Han, Chen Qian, Boxin Shi, Chao Xu, and Changshui
Zhang (2020). “Reborn filters: Pruning convolutional neural networks with limited data.”
Proceedings of the AAAI Conference on Artificial Intelligence.

Tao, Xiaoming (1996). “Mechanical properties of a migrating fiber.” Textile research journal.

Tewari, A., Ohad Fried, J. Thies, V. Sitzmann, S. Lombardi, Kalyan Sunkavalli, Ricardo
Martin Brualla, T. Simon, J. Saragih, M. Nießner, R. Pandey, Sean Fanello, G. Wetzstein,
Jun-Yan Zhu, C. Theobalt, Maneesh Agrawala, E. Shechtman, Dan Goldman, and M.
Zollhöfer (2020). “State of the Art on Neural Rendering.” Computer Graphics Forum.

84

http://doi.acm.org/10.1145/2380116.2380127
http://doi.acm.org/10.1145/2380116.2380127
http://doi.acm.org/10.1145/1944846.1944851
http://doi.acm.org/10.1145/1944846.1944851

Tewari, A., J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, W. Yifan, C. Lassner, V. Sitzmann,
R. Martin-Brualla, S. Lombardi, T. Simon, C. Theobalt, M. Nießner, J. T. Barron, G. Wetzstein,
M. Zollhöfer, and V. Golyanik (2022). “Advances in Neural Rendering.” Computer Graphics
Forum (EG STAR 2022).

Theis, Lucas, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár (2017). “Lossy image
compression with compressive autoencoders.” arXiv preprint arXiv:1703.00395.

Tian, Y. and Srinivasa G. Narasimhan (2012). “Globally Optimal Estimation of Nonrigid
Image Distortion.” International Journal of Computer Vision. issn: 1573-1405. url: https://d
oi.org/10.1007/s11263-011-0509-0.

Tipping, Michael E and Christopher M Bishop (1999). “Probabilistic principal component
analysis.” Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Toderici, George, Sean M O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen,
Shumeet Baluja, Michele Covell, and Rahul Sukthankar (2015). “Variable rate image
compression with recurrent neural networks.” arXiv preprint arXiv:1511.06085.

Tripathi, Sandhya, N Hemachandra, and Prashant Trivedi (2020). “Interpretable feature
subset selection: A Shapley value based approach,”” Proceedings of 2020 IEEE International
Conference on Big Data, Special Session on Explainable Artificial Intelligence in Safety Critical
Systems.

Trunz, Elena, Jonathan Klein, Jan Müller, Lukas Bode, Ralf Sarlette, Michael Weinmann,
and Reinhard Klein (2023). “Neural Inverse Procedural Modeling of Knitting Yarns from
Images.” arXiv:2303.00154 (under review), submitted to Computers & Graphics (CG).

Trunz, Elena, Sebastian Merzbach, Jonathan Klein, Thomas Schulze, Michael Weinmann,
and Reinhard Klein (2019). “Inverse Procedural Modeling of Knitwear.” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Trunz, Elena, Michael Weinmann, Sebastian Merzbach, and Reinhard Klein (2022). “Efficient
structuring of the latent space for controllable data reconstruction and compression.”
Graphics and Visual Computing (GVC).

Tsai, D.-M. and C.-H. Chiang (2002). “Rotation-invariant pattern matching using wavelet
decomposition.” Pattern Recognition Letters. issn: 0167-8655. url: http://www.sciencedir
ect.com/science/article/pii/S016786550100099X.

Tschannen, Michael, Eirikur Agustsson, and Mario Lucic (2018). “Deep generative models
for distribution-preserving lossy compression.” arXiv preprint arXiv:1805.11057.

Tucker, Ledyard R (1966). “Some mathematical notes on three-mode factor analysis.”
Psychometrika.

85

https://doi.org/10.1007/s11263-011-0509-0
https://doi.org/10.1007/s11263-011-0509-0
http://www.sciencedirect.com/science/article/pii/S016786550100099X
http://www.sciencedirect.com/science/article/pii/S016786550100099X

Bibliography

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (2018). “Deep image prior.”
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.

Vanegas, Carlos A., Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul
Waddell (2012). “Inverse design of urban procedural models.” ACM Trans. Graph. issn:
0730-0301. url: http://doi.acm.org/10.1145/2366145.2366187.

Voborova, Jana, A Garg, Bohuslav Neckar, and Sayed Ibrahim (2004). “Yarn properties
measurement: an optical approach.” 2nd International textile, clothing and design conference.

Wang, Hongcheng, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja (2005). “Out-of-Core
Tensor Approximation of Multi-Dimensional Matrices of Visual Data.” ACM Trans. Graph.
issn: 0730-0301. url: https://doi.org/10.1145/1073204.1073224.

Wang, J., C. Liu, T. Shen, and L. Quan (2015). “Structure-driven facade parsing with irregular
patterns.” 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR).

Wang, Jiaping, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo (2008). “Modeling
anisotropic surface reflectance with example-based microfacet synthesis.” ACM SIGGRAPH
2008 papers.

Wang, Jiaxuan, Jenna Wiens, and Scott Lundberg (2020). “Shapley Flow: A Graph-based
Approach to Interpreting Model Predictions.” arXiv preprint arXiv:2010.14592.

Wang, Rui, Xiaoqian Wang, and David I. Inouye (2021). “Shapley Explanation Networks.”
International Conference on Learning Representations. url: https://openreview.net/forum
?id=vsU0efpivw.

Wang, Xiaoqian, Hong Chen, Jingwen Yan, Kwangsik Nho, Shannon L Risacher, Andrew J
Saykin, Li Shen, Heng Huang, and ADNI (2018). “Quantitative trait loci identification for
brain endophenotypes via new additive model with random networks.” Bioinformatics.

Weinmann, M. and R. Klein (2015). “Material Recognition for Efficient Acquisition of
Geometry and Reflectance.” Computer Vision - ECCV 2014 Workshops.

Weinmann, Michael, Juergen Gall, and Reinhard Klein (2014). “Material classification based
on training data synthesized using a BTF database.” European Conference on Computer
Vision.

Weinmann, Michael, Fabian Langguth, Michael Goesele, and Reinhard Klein (2016). “Ad-
vances in Geometry and Reflectance Acquisition.” EG 2016 - Tutorials. Edited by Augusto
Sousa and Kadi Bouatouch.

86

http://doi.acm.org/10.1145/2366145.2366187
https://doi.org/10.1145/1073204.1073224
https://openreview.net/forum?id=vsU0efpivw
https://openreview.net/forum?id=vsU0efpivw

Weissenberg, J., H. Riemenschneider, M. Prasad, and L. Van Gool (2013). “Is there a procedural
logic to architecture?” Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on.

Wenzel, S. and W. Förstner (2016). “FACADE INTERPRETATION USING A MARKED POINT
PROCESS.” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences.
url: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-
3/363/2016/.

Westermann, R., Steinbach E., Seidel H.-P., Niemann H., Greiner G., Klein Reinhard, Meseth
Jan, Girod B., Müller Gero, and Ertl T. (2003). “Compression and Real-Time Rendering of
Measured BTFs Using Local PCA.” Vision, Modeling and Visualisation 2003.

Westin, Stephen H., James R. Arvo, and Kenneth E. Torrance (1992). “Predicting Reflectance
Functions from Complex Surfaces.” SIGGRAPH Comput. Graph. issn: 0097-8930. url:
https://doi.org/10.1145/142920.134075.

Wonka, P., D. Aliaga, P. Müller, and C. Vanegas (2011). “Modeling 3D Urban Spaces
Using Procedural and Simulation-based Techniques.” ACM SIGGRAPH 2011 Courses. url:
http://doi.acm.org/10.1145/2037636.2037645.

Wu, F., D.-M. Yan, W. Dong, X. Zhang, and P. Wonka (2014). “Inverse Procedural Modeling
of Facade Layouts.” ACM Trans. Graph. issn: 0730-0301. url: http://doi.acm.org/10.114
5/2601097.2601162.

Wu, Hong-yu, Xiao-wu Chen, Chen-xu Zhang, Bin Zhou, and Qin-ping Zhao (2019). “Mod-
eling yarn-level geometry from a single micro-image.” Frontiers of Information Technology &
Electronic Engineering.

Wu, Kui and Cem Yuksel (2017). “Real-Time Fiber-Level Cloth Rendering.” url: https://do
i.org/10.1145/3023368.3023372.

Wu, Qing, Tian Xia, Chun Chen, Hsueh-Yi Sean Lin, Hongcheng Wang, and Yizhou Yu (2008).
“Hierarchical Tensor Approximation of Multi-Dimensional Visual Data.” IEEE Transactions
on Visualization and Computer Graphics.

Xu, Ying-Qing, Yanyun Chen, Stephen Lin, Hua Zhong, Enhua Wu, Baining Guo, and
Heung-Yeung Shum (2001). “Photorealistic rendering of knitwear using the lumislice.”
Proceedings of the 28th annual conference on Computer graphics and interactive techniques.

Yang, Fei, Luis Herranz, Yongmei Cheng, and Mikhail G Mozerov (2021). “Slimmable
compressive autoencoders for practical neural image compression.” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

87

https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/363/2016/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/363/2016/
https://doi.org/10.1145/142920.134075
http://doi.acm.org/10.1145/2037636.2037645
http://doi.acm.org/10.1145/2601097.2601162
http://doi.acm.org/10.1145/2601097.2601162
https://doi.org/10.1145/3023368.3023372
https://doi.org/10.1145/3023368.3023372

Bibliography

Yang, Fei, Luis Herranz, Joost Van De Weĳer, José A Iglesias Guitián, Antonio M López,
and Mikhail G Mozerov (2020). “Variable rate deep image compression with modulated
autoencoder.” IEEE Signal Processing Letters.

Yee, Y. L. H. (2000). “Spatiotemporal sensitivity and visual attention for efficient rendering of
dynamic environments.” Master’s thesis. Cornell University.

Yu, Jiahui, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang (2018). “Slimmable
neural networks.” arXiv preprint arXiv:1812.08928.

Yu, Shipeng, Kai Yu, Volker Tresp, Hans-Peter Kriegel, and Mingrui Wu (2006). “Super-
vised probabilistic principal component analysis.” Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.

Yuksel, Cem, Jonathan M Kaldor, Doug L James, and Steve Marschner (2012). “Stitch meshes
for modeling knitted clothing with yarn-level detail.” ACM Transactions on Graphics (TOG).

Zhang, Z., A. Ganesh, X. Liang, and Y. Ma (2012). “TILT: Transform Invariant Low-Rank
Textures.” International Journal of Computer Vision. issn: 1573-1405. url: https://doi.org
/10.1007/s11263-012-0515-x.

Zhao, S., F. Luan, and K. Bala (2016). “Fitting procedural yarn models for realistic cloth
rendering.” ACM Transactions on Graphics (TOG).

Zhao, Shuang, Miloš Hašan, Ravi Ramamoorthi, and Kavita Bala (2013). “Modular flux
transfer: efficient rendering of high-resolution volumes with repeated structures.” ACM
Transactions on Graphics (TOG).

Zhao, Shuang, Wenzel Jakob, Steve Marschner, and Kavita Bala (2011). “Building volumetric
appearance models of fabric using micro CT imaging.” ACM Transactions on Graphics
(TOG).

Zhao, Shuang, Wenzel Jakob, Steve Marschner, and Kavita Bala (2012). “Structure-aware
synthesis for predictive woven fabric appearance.” ACM Transactions on Graphics (TOG).

Zintgraf, Luisa M., Taco S. Cohen, Tameem Adel, and Max Welling (2017). “Visualizing Deep
Neural Network Decisions: Prediction Difference Analysis.” CoRR. arXiv: 1702.04595. url:
http://arxiv.org/abs/1702.04595.

88

https://doi.org/10.1007/s11263-012-0515-x
https://doi.org/10.1007/s11263-012-0515-x
https://arxiv.org/abs/1702.04595
http://arxiv.org/abs/1702.04595

List of Figures

2.1 Illustration of geometric features of knitwear at different scales. Left: The
microimage taken with an electron microscope depicts the features of a single
wool fiber on the microscopic scale (image taken from [Robbins, 2013]);
Middle: On the photograph of the yarn, its virgin wool fibers are clearly
visible. Right: A patch of knitwear shows the geometric pattern. 10

2.2 Left: two plys are twisted together to form a thin yarn. Middle: a four-ply yarn
that is thick enough for knitting. Right: two thin yarns are twisted together to
form a thicker yarn. 14

2.3 Examples of knit (top) and purl (bottom) stiches. 14

5.1 Hierarchical twisting process. a) Level 1 corresponds to a straight polygonal
line. b) Twisted fibers from level 1 form a ply on the second level. c) Before
twisting plies into a yarn, the 𝑥-axis of each ply is downscaled to create an
elliptical cross-section. d) Multiple initial positions (blue) are sampled, and
a helix curve with the specified properties is created at each. These curves,
called center lines, represent the paths of the different plies. e) Deformed
copies of the initial input follow each helix curve, resulting in the yarn on the
third level and forming the input for the next step. 36

5.2 Ply and fiber distribution for the process explained in Fig. 5.1. For each
level, multiple instances of the previous level are created and placed at initial
positions according to a specified distribution. We use more randomness
(middle) and jitter (right) on the fiber level and more structure on the ply level
(left). 37

5.3 Generation of flyaways. a) A random vertex strip is selected and duplicated
to become the new flyaway. b) The flyaway is scaled along its up-axis to
exaggerate details. c) Hair flyaway: The flyaway from b) is rotated along
its lowest point. d) Loop flyaway: The flyaway from b), where the vertices
are moved radially according to a sine function, except for the first and last
vertices, which remain at their previous locations, while the middle vertex is
offset the most to simulate a loop. 38

89

List of Figures

5.4 A ply (blue) is mapped to a helix segment (grey). The figure shows a very
similar scene to Fig. 5.1, but drastically simplified and with exaggerated
dimensions. a) The ply before mapping. b) Mapping by shifting orthogonal
to the global vertical axis, as implemented in [Zhao et al., 2016]. c) Mapping
by applying a local coordinate frame transformation, as implemented in our
generator. 41

5.5 Left: Comparisson of fiber cross section. a) Photograph of a wool yarn
with elliptical cross section. b) Virtual yarn generated with elliptical fiber
cross-section. c) Virtual yarn generated with circular fiber cross-section. The
changes in geometry are hard to spot when zoomed out, however the shading
and in particular the strength of the specular highlights is clearly affected by
the cross-section shape. Right: Effect of the squeeze parameter 𝑠. d) Reference,
e) With squeeze, f) Without squeeze. 42

5.6 Examples of synthetic yarns in our database. 43

5.7 Saliency maps computed for network configurations that are trained either to
predict geometry (columns 1) or flyaway parameters (column 2) of the yarn
model and either respective inputs (column 3). The color temperature in a
saliency map indicates an input pixel’s influence on the predicated parameter.
Lighter/warmer colors correspond to a stronger influence. 44

5.8 Overview of the interleaved training process. The depicted architecture
combines all the different networks we investigated: The networks 𝑅𝑒𝑔 and
𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 consist of the encoder and the regression head, while the networks
𝑅𝑒𝑔𝑎𝑒 and 𝑅𝑒𝑔𝑎𝑒

𝑙𝑎𝑡𝑒𝑛𝑡
additionally include the decoder. 45

5.9 Sailiency maps for the yarn twist pitch 𝛼𝑝𝑙𝑦 (top row) and the yarn radius 𝑅𝑝𝑙𝑦

(bottom row). 46

5.10 Our setup for capturing the test yarns. 47

5.11 Examples of validation loss comparisons for hyperparameter determination
for parameters 𝛼 (left), 𝛼𝑝𝑙𝑦 (middle) and 𝑅𝑝𝑙𝑦 (right). Based on the loss values
we chose the model of ResNet18, learning rate = 1𝑒−4 and epoch 850 for 𝛼,
ResNet34, learning rate = 1𝑒−4 and epoch 850 for 𝛼𝑝𝑙𝑦 and ResNet18, learning
rate = 1𝑒−5 and epoch 1000 for 𝑅𝑝𝑙𝑦 . 48

5.12 in = input image, 1 = reconstruction image from parameter specific models,
trained for each yarn parameter separately, 2 = Reg, 3 = 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 , 4 = 𝑅𝑒𝑔𝑎𝑒 , 5
= 𝑅𝑒𝑔𝑎𝑒

𝑙𝑎𝑡𝑒𝑛𝑡
. The rectangle region shows the input image, which was randomly

cropped from the whole image. 50

5.13 1st and 3rd rows: images of a real knitted cloth (made with yarns from the
top row of Fig. 5.12) for the pattern consisting of knit (1st row) and purl (3rd
row) stitches. 2nd and 4th rows: rendering of the same stitch pattern with the
inferred yarn with default material settings. 51

5.14 Validation loss comparisons for trainings with different resolution of input
images. Left: full loss curves, right: loss curves without the first element. . . 51

90

List of Figures

5.15 Two examples of editing operations for yarns with original inferred parameters
and the edited ones together with corresponding renderings of knitted patches.
Reflectance parameters were not part of the inference but chosen arbitrarily
for demonstration. 1st row: golden yarn from Figure 5.12 in the 3rd row, left.
2nd row: the same yarn but with both pitch parameters 𝛼 and 𝛼𝑝𝑙𝑦 divided
by 2. 3rd row: yellow yarn from Figure 5.12 in the 3rd row. 4th row: the same
yarn but with parameters for flyaway amount and length multiplied by 2. . . 52

5.16 in = input image, 1 = reconstruction image from different models trained for
each yarn parameter separately, where the 𝛼𝑝𝑙𝑦 parameter was trained on
images with full resolution, 2 = 𝛼𝑝𝑙𝑦 parameter was trained on images with
50% of the full resolution, 3 = 𝛼𝑝𝑙𝑦 parameter was trained on images with 25%
of the full resolution. 53

5.17 a) Input image of a yarn made by unusual (non-helical) fiber twisting proce-
dure. b) Rendering of a yarn with infered parameters with default material.
c) Rendering with color. d) and e) Examples of yarns of fourth level, where
two thinner yarns are twisted into one to make it thicker and better suitable
for knitting: d) Two yarns of the thin grey yarn from Figure 5.12, fourth row,
e) Two yarns of the thick grey yarn from second row of Figure 5.12 54

91

List of Tables

5.1 Parameters of our procedural Blender yarn model. Top: Fiber parameters,
Middle: Ply parameters, Bottom: Flyaway parameters. Although fiber
distribution and migration are not technically flyaway parameters, we consider
them as such for our parameter prediction due to their probabilistic nature. . 40

5.2 Validation loss of different networks. Note that especially the important yarn
twist parameters 𝛼, 𝛼𝑝𝑙𝑦 and 𝑅𝑝𝑙𝑦 are better learned with parameter specific
networks. 49

5.A.1Inferred raw yarn parameters for the yarns of the Figure 5.12 from top to bottom
and from left to right. For each yarn there are 5 rows, each corresponding
to parameter detection from different experiments: from top to bottom:
parameter specific models, 𝑅𝑒𝑔, 𝑅𝑒𝑔𝑎𝑒 , 𝑅𝑒𝑔𝑙𝑎𝑡𝑒𝑛𝑡 , 𝑅𝑒𝑔𝑎𝑒𝑙𝑎𝑡𝑒𝑛𝑡 56

5.A.2Inferred flyaway parameters for the Figure 5.12. 57
5.B.1 Value intervals of the learnable parameters in our synthetic yarn database. . . 58

93

Part IV

Appendix

95

Publication:
“Efficient structuring of the latent space for

controllable data reconstruction and
compression”

Elena Trunz, Michael Weinmann, Sebastian Merzbach, and
Reinhard Klein

Graphics and Visual Computing (GVC)

2022

doi: 10.1016/j.gvc.2022.200059

©2022 Elsevier.

97

https://doi.org/10.1016/j.gvc.2022.200059

Graphics and Visual Computing 7 (2022) 200059

Contents lists available at ScienceDirect

Graphics and Visual Computing

journal homepage: www.elsevier.com/locate/gvc

Technical section

Efficient structuring of the latent space for controllable data
reconstruction and compression✩

Elena Trunz a,∗, Michael Weinmann b, Sebastian Merzbach a,c, Reinhard Klein a

a University of Bonn, Germany
b Delft University of Technology, Netherlands
c X-Rite Europe GmbH, Switzerland

a r t i c l e i n f o

Article history:
Received 4 March 2022
Received in revised form 25 June 2022
Accepted 1 November 2022
Available online 5 November 2022

Keywords:
Autoencoder
Encoder–decoder architectures
Data compression
Data representation
Deep learning
Shapley values

a b s t r a c t

Explainable neural models have gained a lot of attention in recent years. However, conventional
encoder–decoder models do not capture information regarding the importance of the involved latent
variables and rely on a heuristic a-priori specification of the dimensionality of the latent space or
its selection based on multiple trainings. In this paper, we focus on the efficient structuring of the
latent space of encoder–decoder approaches for explainable data reconstruction and compression. For
this purpose, we leverage the concept of Shapley values to determine the contribution of the latent
variables on the model’s output and rank them according to decreasing importance. As a result, a trun-
cation of the latent dimensions to those that contribute the most to the overall reconstruction allows
a trade-off between model compactness (i.e. dimensionality of the latent space) and representational
power (i.e. reconstruction quality). In contrast to other recent autoencoder variants that incorporate
a PCA-based ordering of the latent variables, our approach does not require time-consuming training
processes and does not introduce additional weights. This makes our approach particularly valuable for
compact representation and compression. We validate our approach at the examples of representing
and compressing images as well as high-dimensional reflectance data.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The rapid progress in deep learning has led to huge improve-
ments in numerous application areas including data reconstruc-
tion, compression and streaming, where explainability of the
model’s behavior and decisions is of particular importance. Re-
spective approaches including autoencoders rely on the core idea
of encoding the information extracted from the input data in
another latent space, from where it can be decoded back to
the original domain. Powerful and compact representations can
then be obtained based on the combination of an information
bottleneck, i.e. choosing the dimensionality of the latent space
to be lower than the input dimensionality so that only the most
salient features are preserved, and appropriate loss functions.

In this paper, we put our attention to the challenging problem
of the efficient specification of a convenient dimensionality of
the latent space that preserves model accuracy for respectively
considered tasks.

✩ This article was recommended for publication by D. Bommes.
∗ Correspondence to: Visual Computing Department, FriedrichHirzebruch-

Allee 5, 53115 Bonn, Germany.
E-mail addresses: trunz@cs.uni-bonn.de (E. Trunz),

M.Weinmann@tudelft.nl (M. Weinmann), merzbach@cs.uni-bonn.de
(S. Merzbach), rk@cs.uni-bonn.de (R. Klein).

So far, most approaches for designing encoder–decoder sche-
mes have been based on a heuristic specification of the number
of latent dimensions, i.e. without an actual explanation why
the respective dimensionality has been chosen and without an
analysis regarding the dimensionality that best suits the par-
ticular application. In contrast, determining a suitable number
of latent variables has also been addressed for some encoder–
decoder approaches (e.g. [1,2]) that are trained with different
numbers of latent variables, where finally the dimensionality
leading to the best trade-off between small dimensionality of the
latent space and reconstruction quality is chosen. However, this
procedure is very time-consuming, since the encoder–decoder
needs to be trained anew for each number of latent variables,
and, for high-dimensional latent spaces, such a repeated training
may even be infeasible. Instead, we propose a novel approach for
the specification of a suitable dimensionality of the latent space
by analyzing the contribution of the individual latent dimensions
and their respective ranking in encoder–decoder schemes based
on their Shapley values [3]. The concept of Shapley values has
originally been introduced in cooperative game theory for feature
attribution, and we leverage this concept similar to the compu-
tation of a natural ordering of the components regarding their
contribution based on principal component analysis (PCA) [4,5],
but instead for the more general non-linear relationship that

https://doi.org/10.1016/j.gvc.2022.200059
2666-6294/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

typically allows autoencoders to find more flexible and more
powerful latent spaces. While the latent space of an autoencoder
exhibits compactness with respect to the original data domain,
it does not allow gaining structural information of the latent
space as in the case of a PCA. More sophisticated autoencoder
variants [6,7] allow the ordering of the dimensions of the la-
tent codes according a decreasing importance with respect to
the input data while preserving statistically independent com-
ponents. However, these approaches are based on progressively
increasing the dimensionality of the latent space, i.e. learning one
new dimension per step. Instead, our approach avoids such a
progressive adaption of the required dimensionality by the direct
use of the contribution of individual latent dimensions according
to their Shapley values. The computation of the contributions
of individual latent dimensionalities and their ordering in terms
of the Shapley value based analysis can be applied at different
times during training as long as the training loss does not sig-
nificantly change over the epochs anymore. In the scope of our
experiments, we will compare the results of applying the Shapley
value based analysis in the middle of the training and at the
end of the training. We investigate the beneficial combination of
Shapley values and encoder–decoders regarding the choice of the
dimensionality of the latent space, the ordering of the involved
latent variables according their importance and the respective
capability for reconstruction and compression. This is motivated
by the fact proven in the paper that in case of a linear model the
ordering based on Shapley values is the same as the one after the
singular value decomposition and, hence, optimal. In summary,
the key contributions of this paper are:

• We present novel method for ranking the latent variables
in an encoder–decoder, based on their contribution to the
result, and the subsequent specification of a suitable dimen-
sionality of the latent space.

• We demonstrate the benefits of our approach by evaluations
on various different application scenarios.

• We provide the theorem and the proof of the optimality of
the Shapley ordering in the linear case.

2. Related work

The complexity of the concept of interpretability [8,9] makes
a general interpretation regarding a model’s behavior/decisions
intractable. The key objective of feature attribution methods that
focus on local interpretability is the identification of relevant
features based on a scalar attribution score, relevance score [10]
or contribution [11] that defines how much each input feature
contributes to a model’s behavior. However, a limited theoret-
ical understanding as well as the lack of reliable quantitative
metrics for evaluating explanations in case on ground truth is
available [12] may lead to unreliable or even misleading results
that may still appear visually appealing [12–15]. This problem
has been addressed based on incorporating desirable axioms into
the attribution method [13,16–19]. These axioms have to be
fulfilled by any explanation obtained from the respective attri-
bution methods and allow the design of attribution methods
with theoretical guarantees [17]. In the context of deep learning,
backpropagation-based attribution methods rely on the idea of
computing the attribution based on backward passes through
the network. Examples include the computation of attributions
by exploiting gradients that carry the information regarding the
local perturbations of features that mostly influence the output.
Here, attributions can be obtained in terms of saliency maps [20],
that refer to the gradient of the class score with respect to the
input image, or by elementwise multiplications of input data

and signed gradients (Gradient×Input) [21]. However, this ap-
proach only provides local information in case of highly non-
linear functions and, hence, not suitable to compute marginal
contributions of features. Therefore, other approaches such as
Layer-wise Relevance Propagation (LRP) [10,18], DeepLIFT vari-
ants [11,21] and Integrated Gradients [17] make use of different
propagation rules in comparison to the use of the instant gradient
in the Gradient×Input approach. However, perceptually similar
inputs with the same predicted labels may be interpreted dif-
ferently as even small random perturbations affect the feature
importance and systematic perturbations may change the inter-
pretation while keeping the label [14]. In contrast, perturbation-
based approaches rely on the computation of the relevance of
input features by analyzing the behavior of a neural network in
case of feature removal or perturbation [22–24].

A related classical concept developed in the domain of co-
operative game theory in order to distribute the contribution
of individual players in a cooperative game while fulfilling de-
sirable axioms is given by the Shapley values [3] and resulting
feature attributions even seem to agree to human intuition [19].
As discussed in literature, computing exact Shapley values re-
mains an NP-hard problem [25] and, in practice, can only be
performed for less than 20 to 25 players (i.e. input features in
our case respectively). For this reason, much effort was spent
on finding adequate approximations of Shapley values such as
in terms of sampling-based methods [26–29] as well as on in-
vestigating new classes of additive feature importance measures
for particular predictions as denoted by SHapley Additive ex-
Planations (SHAP) [19]. To avoid the rapidly increasing number
model evaluations for increasing numbers of input features, ad-
ditional lasso regression has been used in KernelSHAP [19] and
its respective extensions towards global interpretability [30], dif-
ferent importance metrics and feature packing [31], handling
dependent features [32,33] and producing additional types of
explanations [34] such as explaining whether samples are likely
to a certain class, why prediction differ depending on the obser-
vations and when the model has a bad performance. Furthermore,
approximations based on the assumption of model linearity have
been proposed (such as DeepSHAP) [19] and extended to mixed
model types [35] in terms of a layerwise propagation of Shapley
values built upon DeepLIFT [11,21]. This also enables computa-
tional tractability for obtaining exact Shapley values for certain
model types like tree-based models [36], such as random forests
or gradient boosted trees, and allows attributing stacks of mixed
models such as the feature extraction of neural networks into
a tree model and also attributing loss functions. Polynomial ap-
proximations for specific games such as voting games [37] allow
a polynomial-time approximation of Shapley values as shown
with Deep Approximate Shapley Propagation (DASP) [38]. Fur-
ther work includes extensions towards global explainability (by
combining the Shapley value concept with Lorenz zonoids [39]
to combine the advantages of the local Shapley value based
approach with the properties of the Lorenz Zonoids), the general-
ization of Shapley values to the Shapley–Taylor index that reflects
attributions of subsets of features [40] and the exploitation of
assumptions regarding the underlying data structures [41]. As
a counterpart, Shapely Residuals [42] have been introduced to
capture the information not preserved by Shapley values.

However, most of the approaches for calculating Shapley val-
ues rely on post-hoc explanations. Therefore, the explanation
approach cannot be used for designing and training models. Gen-
eralized Additive Models (GAM) based on tree boosting [43,44] or
neural networks [45] allow the simultaneous prediction and com-
putation of the corresponding exact SHAP explanation, but their
representational is power inherently limited. Instead, Shapley
Explanation Networks [46] rely on directly incorporating Shap-
ley values as the learned latent representations in deep neural

2

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

networks. SHapley Additive exPlanations connect local expla-
nations with optimal credit allocation and has been used to
rank input variables for identification and prediction of failure
modes [47]. Furthermore, Shapley value based error apportion-
ing (SVEA) [48] has been introduced where the key idea is the
apportioning of the total training error among the features and
Ghorbani and Zou [49] focus on equitable data valuation in the
context of supervised learning, where data Shapley values are
used to rate the contribution of each training sample to the pre-
diction performance. Covert et al. [50] focused on explainability
in terms of simulating the effect of feature removal to determine
the influence of individual features. Their framework analyzes
how features are removed for different methods, the respectively
explained model behavior, and how methods summarize the fea-
tures’ contributions. In addition, by assigning contribution scores
to edges instead of nodes within a causal graph structure, Shap-
ley Flow [51] generalizes the Shapley value axioms to directed
acyclic graphs. Ghorbani and Zou [52] used Shapley values for
quantifying the importance of individual neurons for network
predictions and performance. This allows a more efficient identi-
fication of important filters in comparison to the use of activation
patterns. Furthermore, Ma et al. [53] considered Shapley values in
the scope of Bayesian networks and showed a relation between
Shapley values and conditional independence.

We exploit feature attribution based on Shapley values in
encoder–decoder frameworks to efficiently structure the latent
space by ordering the latent variables according to their impor-
tance and exploit this strategy for explainable data reconstruction
and compression.

Aside from feature attribution, several works specifically focus
on data compression to allow efficient storage and transmission
of contents through constrained channels, where in particular
neural image compression has gained a lot of attention in recent
years. The targeted tradeoff of determining an as-compact-as-
possible binary representation (i.e. lowest rate bitstream) while
preserving a certain level of fidelity (i.e. minimum distortion) of
the data has been investigated in terms of autoencoder architec-
tures with quantization and entropy coding. Such compressive
autoencoders [54–56] rely on also minimizing the combination
of rate and distortion during training and have been improved
by multi-scale extensions of the encoder and/or decoder [57–59]
or adding generalized divisive normalization (GDN) layers [56,
60]. Furthermore, end-to-end training can be achieved based on
replacing the non-differentiable quantization by differentiable
proxies [55,61,62]. In addition, hyperpriors [63] and contextual
models [64–68] have been used to improve entropy coding. Sev-
eral works also focus on adversarial training schemes to achieve
very low rates [58,69,70].

Targeting variable rate image compression, traditional com-
pression methods were based on quantizing Discrete Cosine
Transform (DCT) coefficients according to the target rate. Further
techniques include the learning of rate-specific bottleneck scaling
(i.e. scaling the bottleneck features before quantization) [55], the
modulation of intermediate features based on modulated autoen-
coders (MAEs) [71] and conditional autoencoders (cAEs) [72],
the use of recurrent neural networks [54] and the use of a
multi-scale decomposition network where each scale targets a
different rate. Furthermore, increasing the efficiency of deep
learning for resource-limited scenarios as occurring for tablets or
smartphones has been generally addressed in terms of search-
ing lightweight architectures [73–75], integer and binary net-
works [76–78], automatic architecture search [79], or adjusting
the width of layers to achieve a trade-off between computational
efficiency and accuracy based on slimmable neural networks [80].
In the scope of neural image compression, network architecture
search [81] or progressive ecoding [82] have been used to address

runtime and latency respectively. However, memory require-
ments and the computational burden do not change significantly
and only a single rate–distortion tradeoff is considered which
prohibits flexibility regarding rate, memory or the computational
burden. To increase the practicality of neural image compression,
slimmable compressive autoencoders [83] also allow controlling
computation, memory and rate. While these approaches have
shown great potential in the context of image compression, our
approach represents a powerful alternative that can be combined
with these approaches and can be applied to any compression
method, which utilizes an encoder–decoder.

3. Structuring and pruning of latent space representations

Data reconstruction and compression techniques often rely on
the transformation of the input data into a lower-dimensional
latent space that describes the most salient features. Here, the
dimensionality of the latent space has to be chosen to adequately
represent the distribution of the input data while allowing an as-
compact-as possible latent representation. This trade-off between
reconstruction accuracy and compression rate has to be carefully
considered depending on the underlying task and its implications.
For this purpose, we have to focus on the following central que-
stions:

1. What is a suitable choice for the dimensionality of the
latent space, i.e. how many latent variables are required?

2. Can we relate the lossy compression induced by discarding
dimensions to individual features’ importance?

3. Does the structure of the latent space exhibit insights on
how much we gain by taking less or more latent variables,
thereby allowing the efficient control for the specification
of a suitable dimensionality of the latent space without
the need of having to train different autoencoders for each
dimensionality like in the approach by Rainer et al. [1]?

Gaining control over latent variables and the ability to detect
the contribution of each dimension to the overall performance
of the model is an important step towards explainable models.
In fact, we would even wish to determine the contribution of
sets of important dimensions, i.e. we would like to get insights
regarding which subsets of k dimensions exhibit the largest im-
portance instead of taking the k individually most contributing
features. That way, we can order the dimensions according their
contribution and, hence, structure the latent space, which, in turn,
allows taking the first most important k dimensions to get a
rank-k approximation of the data for lossy compression.

In the following, we first provide an overview on how these
questions have been handled in the scope of linear approaches.
In this regard, we will demonstrate that, in the linear case, where
the Eckart–Young–Mirsky theorem states how low-rank approx-
imation can be approached, the ordering of the eigenvectors
according to their Shapley values is equal to the ordering of
the corresponding singular values. Then, we motivate why these
questions become much more challenging in the case of non-
linear models such as autoencoders and finally devise a strategy
towards an efficient model that helps answering the aforemen-
tioned questions. Due to the properties of Shapley values that
directly measure contributions of individual components, we aim
at analyzing whether these could also serve in these non-linear
scenarios (where the Eckart–Young–Mirsky theorem would not
be applicable) and experimentally address these questions.

3.1. Latent space representations in linear models

Before analyzing whether the properties of Shapely values
regarding their capability to directly measure contributions of

3

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

individual components make them suitable for non-linear scenar-
ios as given for encoder–decoder architectures, we first demon-
strate that in the linear case, where the Eckart–Young–Mirsky
theorem states how low-rank approximation can be approached,
the ordering of the eigenvectors according to their Shapley values
is equal to the ordering of the corresponding singular values.

In case of a linear relationship Ax = y between inputs x and
model outputs y, we can compute the best rank-k approximation
Ak to A in the L2-norm in terms of an analytical solution, i.e. by
performing a singular value decomposition of A = UΣV ∗, as pos-
tulated by the Eckart–Young–Mirsky theorem [84]. This low-rank
approximation Ak is given by

Ak =

k∑
i=1

(σiuiv
∗

i), (1)

where σi are the singular values, ui are the columns of U and
vi are the columns of V . Classical low-rank approximations such
as SVD-based approaches and respective robust variants [4,5,
85] have been proven to work for matrix-based data. However,
the extension of these methods to higher-dimensional data is
not straight-forward and comes at the loss of some of their
underlying unique properties. For this reason, higher-order ten-
sor decomposition models such as multilinear SVD [86], higher-
order orthogonal iteration (HOOI) and the higher order power-
method (HOPM) [87] as well as the CANDECOMP/PARAFAC (CP)
model [88,89] and the Tucker tensor model [90] have been widely
applied. Tensor decomposition can be interpreted as a general-
ization of the SVD approach to higher-order tensor data and the
original data can be approximated based on a rank-reduced ten-
sor decomposition [91,92]. Furthermore, latent variable models
such as factor analysis [93] and probabilistic principal compo-
nent analysis [94–96] exploit low-dimensional features to define
powerful generative models.

3.2. Latent space representations in non-linear models

In contrast to linear models, deep neural networks enable
non-linear mappings [97,98] and have demonstrated their power
in modeling high-dimensional data. Autoencoders focus on the
reconstruction of the inputs by first using an encoder e to project
the input data to a latent space, which is followed by a decoder
d that transfers the latent code back into the original domain to
get a reconstruction of the input.

Therefore, their objective consists of minimizing reconstruc-
tion errors given by the reconstruction loss, where specific per-
formance metrics v such as the L2-norm are widely used. To
prevent autoencoders from directly copying the inputs and in-
stead force the encoder to learn useful properties of the data,
autoencoders typically constrain the latent representation to be
lower-dimensional than the input, thereby enforcing them to
instead capture the most salient features of the input. In addi-
tion, if the latent space has lower dimensionality than the input
space X , the latent vector e(x) can be regarded as a compressed
representation of the input x ∈ X . Ideally, the dimension of the
latent space should be chosen according to the complexity of the
considered problem.

Unfortunately, the latent space is not represented in terms
of independent components that can be ordered according to a
decreasing relevance for the data as in the case of the PCA. Hence,
there is no analytical solution for rank-k approximation problems
equivalent to the case of PCA that provides insights regarding
the top-k latent components that together most contribute to
the reconstruction quality. This induces the initial prerequisite
to design a neural network architecture that suits the require-
ments of a particular task by manually selecting the number

of latent variables which, a-priori, is non-trivial. A reasonable
and widely followed approach is choosing a sufficiently high
number of dimensions of the latent space and adding a respective
regularization term.

In fact, we would instead wish to rate the contributions of
latent dimensions based on a function φ that fulfills the following
three axioms:

1. Zero-player: Latent variables that do not contribute to the
resulting output should be assigned the weight 0 (or a
baseline value).

2. Symmetry: The loss should not depend on the ordering of
the latent variables but instead only on their presence.

3. Efficiency: Contributions of individual latent variables sum
up to the contribution of all latent variables.

For the sake of explainability in terms of getting insights on
the structure of the latent space, it would be useful to have a
respective ordering of components according to an importance
score and the respectively resulting error induced by rank-k ap-
proximation similar to the ordering in terms of singular values
in the linear case. A naive way to approach this goal is the
training of several autoencoders with different numbers of latent
variables [2]. As a result, the corresponding error for each number
of dimensions is obtained and, hence, the dimensionality that
results in the best trade-off between dimensionality of the latent
space and reconstruction quality can be selected. However, the
multitude of involved training procedures make this procedure
time- and resource-demanding.

In contrast, the PCA-like autoencoder [6] and the principal
Component Analysis Autoencoder (PCAAE) [7] organize the di-
mensions of the latent space in decreasing importance with re-
spect to the input data while preserving statistically independent
components. For this purpose, these approaches rely on pro-
gressively increasing the dimensionality of the latent space and
learning one new dimension per step as well as extending the
standard autoencoder reconstruction loss by an additional co-
variance loss applied to the latent codes to enforce statistically
independent latent space components. However, this procedure
is very time-consuming, as the decoder needs to be re-trained
with every additional dimension. Instead, we propose to leverage
the ordering of the latent variables according to their contribution
defined in terms of Shapley values [3], a concept of game theory
for computing the contribution of players in a cooperative game.

3.3. Shapley value guided latent representation

In the scope of a cooperative game, Shapley values [3] as-
sign the participating players, in our case latent variables, their
respective contribution to the overall task, in our case the recon-
struction of the latent code through the decoder. More formally,
the Shapely value φi(v,N) of a latent dimension i is calculated as

φi(v,N) =

∑
S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S)), (2)

where v is a coalition function that maps each subset S ⊆ N
of the players to real numbers, which represent the outcome of
the game when players in S participate in it. In our scenario, N
is the set of n = |N| latent dimensions and the function v can
be adapted for a decoder function d by defining the baseline as
discussed by Ancona et al. [38]. This way we replaced v(S) in
(2) by d(zS) and zS denotes the original latent vector z where
all entries not included in S are replaced with the baseline value,
which is zero in our case. Since we have to process more than one
latent vector in order to calculate the contribution of one latent
dimension, we randomly choose a set of m example latent vectors

4

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

from the space of all possible ones and average the resulting
contributions.

Shapely values fulfill several desirable axioms and in particular
the three axioms described in Section 3.2, which are of great
relevance for our envisioned objective of ranking individual latent
variables according to their contributions and specifying which
set of them to keep for an as-compact-as-possible but still pow-
erful latent representation. Since we are interested in the correct
ordering of the latent dimensions according their descending
contribution, we need to validate that the ordering according
to the Shapley values exhibits this property. Therefore, we first
prove that in the case of a linear model the ordering according to
the Shapley values is optimal:

Theorem 1. Let A ∈ Rm×n be a real matrix with m ≥ n and A =

UΣV T be the singular value decomposition of A, where Σ is an m×n
diagonal matrix with entries σ1, . . . , σn, such that σ1 ≥ · · · ≥ σn.
Furthermore, let N = {u1, . . . , un} be the set of left-singular vectors,
i.e. the columns of U. Let v be a function, which assigns a set S ⊆ N
the corresponding reconstruction error, i.e. v(S) = ∥A−AS∥2, where
AS =

∑
i∈S σiuiv

T
i denotes the approximation of the matrix A with

the vectors from the set S. Then for all pairs i, j with i ̸= j the
following holds: σi ≥ σj ⇔ φi(v,N) ≤ φj(v,N), where φi(v,N)
is defined according to (2).

We provide the proof of this theorem in the supplemental.
Note that in our case v is not a function of the reconstruction
error but a function of the actual reconstruction, i.e. the decoder.
We can still apply the theorem, if we change (v(S ∪{i})− v(S)) in
(2) to the absolute value, as used in the remainder of our paper.
As a direct corollary to this theorem we conclude that the first
k elements according to the Shapley values constitute the best
rank-k approximation of a linear model A.

In other words, the aforementioned Theorem 1 demonstrates
that, in the linear case, where the Eckart–Young–Mirsky theorem
states how low-rank approximation problem can be approached,
the ordering of the eigenvectors according to their Shapley values
is equal to the ordering of the corresponding singular values. In
our work, we additionally (experimentally) investigate whether
the properties of Shapley values in terms of being a measure for
the contribution of individual components also brings benefits for
non-linear scenarios, where the Eckart–Young–Mirsky theorem
would not be applicable.

Unfortunately, the computation of exact Shapley values re-
mains an NP-hard problem [25] and is feasible only for a very
limited number of less than 20 to 25 players or, in our case, latent
dimensions respectively. Recently, Deep Approximate Shapley
Propagation (DASP) [38] has been introduced as an approach
that allows incorporating desirable axioms in the scope of a
polynomial-time approximation of Shapley values which makes
them suitable for being used in deep neural networks. We use this
approach to approximate the Shapley values of the latent dimen-
sion for our purposes. The Shapley values are then approximated
by the average of the expected contribution to a random coalition
according to

E[φi] =
1
n

n−1∑
j=0

Ej[φi,j]. (3)

Here the expectations Ej are calculated over the distribution
of sets of size j and Ej[φi,j] denotes the contribution of the latent
entry zi to any random coalition of size j. Ej[φi,j] is then calculated
as follows:

Ej[φi,j] = | E
S⊆N\{i},|S|=j

[d(zS∪{i})] − E
S⊆N\{i},|S|=j

[d(zS)]| (4)

As already described, we use the absolute value instead of the
difference. If our decoder function outputs values with more than

one dimension, as it does for example in the case of RGB values,
then the difference in (4) is computed componentwise and then
we sum over all dimensions of the output.

3.4. Choice of the latent space dimensionality

In order to choose an appropriate dimensionality for the latent
space that allows capturing the most salient features in an as-
compact-as-possible latent representation, we start the training
of the network with a sufficiently (i.e. typically too) large number
of dimensions of the latent space, thereby following the intuition
that a too large size of the latent space can be determined quite
easily. To be sure that the initial ‘‘big drop-off’’ of the loss is
passed and we reach a plateau-like behavior, we let the training
progress for half the number of the epochs of a full training.
We then compute the contribution of each latent dimension
in terms of their Shapley values and order the dimensions in
a descending order according to these contributions. Note that
in earlier epochs of the training the adaptions to the network
weights, and hence also the adaptions of the distribution of data
in the latent space, are strongly changing. Therefore, Shapley
value based contribution assignments to individual dimensions of
the latent space would provide less insights there while requiring
a computational overhead, and, hence, we apply the Shapley
value based analysis only when approaching a plateau-like be-
havior of the loss. Subsequently, we compute the loss for each set
of the h first dimensions. Based on the cumulative contribution
and cumulative loss we choose the dimensionality k of the latent
space and also specify which of the latent variables to take for the
continuation of the training by taking a reference of the coverage
percentage of the contributions, i.e. according to the percentage
of contribution that should be covered. As a result, we prune
the latent space custom-tailored according to the complexity of
the considered application scenario. The training continues with
the same autoencoder as before but without the discarded latent
dimensions and the corresponding neurons in the input layer of
the decoder. The overall training is finished in the same total
amount of epochs as the full training with the only overhead of
the computation of Shapley values. Hence, this strategy does not
require a time-consuming training process based on successively
adding one more dimensions for iteratively conducted trainings.
Instead, it only requires a single training to identify less relevant
latent variables, and several of these latent variables with low
importance can be discarded in a single step. The individual steps
of our approach are presented in Algorithm 1.

Algorithm 1 Shapley value based pruning of latent dimensions
1: Train model for a certain number of epochs with initially

specified number of latent dimensions
2: Select a subset of m samples of the latent codes (obtained for

training examples)
3: Compute approximate Shapley values for the latent variables

based on the selected m samples and the decoder function
(i.e., coalition function), e.g. based on DASP

4: Order the latent variables in descending order w.r.t. the
Shapley values and compute the cumulative contribution and
visualizations

5: Decide from the orderings, cumulative contribution and
visualizations how many dimensions k will be kept

6: Modify the last layer encoder layer and the first decoder layer
by only keeping the connections/neurons belonging to the
first k latent variables

7: Resume the training

Note that the Shapley value based analysis to compute the
contributions of individual latent dimensionalities and their or-
dering can be applied at different times during training. The

5

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

only requirement is that the training loss does not significantly
change over the epochs, but instead is (almost) approaching a
flat decreasing behavior. In the scope of our experiments, we
will compare the effects of conducting the Shapley value based
analysis in the middle of the training as well as at the end of the
training. We observed that the importance of latent dimensions
still changes until the end of the training and performing the
Shapley analysis early might overestimate the number of dimen-
sions that are needed. Instead, to get the best results we should
perform the analysis in the end. However, in the scope of our
experiments we show that for a good estimation it is sufficient to
perform the analysis in the middle of the training to save time,
since the changes of the importance of latent dimensions are only
small afterwards.

4. Experiments

In the following, we validate our approach for determining
a suitable dimensionality of the latent space and the compres-
sion of models. To demonstrate the versatile applicability of our
approach, we focus on a set of different exemplary application
scenarios that differ in the type of data and their respective
complexity. We validate the benefits of incorporating Shapley
values within autoencoder frameworks regarding the choice of
the latent code size and the respective ordering of the dimensions
according their importance at the examples of representing and
compressing images as well as high-dimensional reflectance data.
All experiments were performed on a desktop computer with an
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz and an Nvidia Titan
XP GPU with 12 GB of RAM.

4.1. Reflectance representation and compression

First, we demonstrate the potential of our approach for the
task of representing and compressing reflectance data. Bidirec-
tional texture functions (BTFs) f (x, λ, ωi, ωo) have been proven to
accurately capture local material appearance at surface positions
x of a material sample under varying viewing conditions ωo and
lighting conditions ωi and possibly also depending on the wave-
length λ [99], however, at the cost of massive memory consump-
tion. In the scope of our experiments, we used publicly available
BTF datasets provided by Weinmann et al. [100] and particularly
focused on leather, carpet and fabric materials due to their com-
plex reflectance behavior. These measurements come at a high
angular resolution (i.e. 151 × 151 = 22801 light/view configu-
rations with approximately identical samplings of the light and
view configurations) and a spatial resolution of 400 × 400 texels.

The measurements for individual surface positions x are stored
as 4D reflectance functions fx,λ(ωi, ωo) that are denoted as appar-
ent bidirectional reflectance distribution functions (ABRDFs). In con-
trast to bidirectional reflectance distribution functions (BRDFs),
ABRDFs also capture non-local effects of light exchange at the
surface such as local subsurface scattering, self-masking or self-
shadowing. Finally, material samples are represented in terms of
a matrix A ∈ Rm×n, where the columns represent the ABRDFs of
the m considered surface texels. Recent work on BTF compression
and interpolation, which is particularly required for efficiently
storing and rendering such data, includes the neural approach by
Rainer et al. [1]. In contrast to matrix factorization techniques,
that may cause blurring or ghosting artefacts in case of coarse an-
gular resolution, and the fitting of analytic models with a reduced
representation capability regarding complex non-local lighting
effects, Rainer et al. leveraged the concept of autoencoders to
introduce a neural network-based BTF representation. Here, the
local surface appearance under different viewing and lighting
conditions is first compressed to a latent representation by an

Fig. 1. MSE errors observed for different BTFs when training with different
numbers of latent variables from scratch (points) vs. when starting training with
64 dimensions and pruning after 200 epochs to a different number of (most
important) latent variables (crosses). We observe that both methods converge
to nearly the same results. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

encoder component, and the decoder decodes the latter with
additional light and view specifications to render the color of a
particular surface point, thereby overcoming limitations based on
a linear interpolation between measurements. However, for each
BTF a new autoencoder needs to be trained. To make a reasonable
choice regarding the dimensionality of the latent space, Rainer
et al. [1] separately trained autoencoders for different numbers
of dimensions of the latent space up to n = 32 and finally
selected 8 latent variables, based on the trade-off between the
compression rate and the reconstruction error. Besides the re-
sulting high computational burden for all these trainings, the
selection of an actually optimal trade-off can only be reached for
the single, considered BTF as the network has been trained for
each BTF separately. From the observations for a single BTF or
a very limited set of BTFs, Rainer et al. concluded 8 dimensions
to be a suitable size of the latent space. However, this chosen
dimensionality may not be adequate for other materials, e.g. with
different or more complex appearance characteristics that had
not been investigated. Indeed, the resulting mean squared error
for the fully trained networks for different numbers of latent
dimensions for 3 BTFs depicted in Fig. 1 reveal that the curves
deviate, i.e. the reconstruction based on the same number of la-
tent dimensions will result in different quality levels for different
materials/BTFs. Instead, a separate analysis of a suitable trade-off
choice of dimensions even further increases the computational
effort to also address these materials. This demonstrates that
the provided trade-off value is not an optimal choice in general,
despite the high computational burden.

In the scope of our experiments, as suggested by Rainer et al.
[1], we applied a log transform as well as a whitening to the
input ABRDFs and used 400 epochs for the full training. On one
GPU, one full training took approximately 4 h. We used DASP to
approximate Shapley values after training for the first 200 epochs.
In order to calculate the Shapley values of the latent dimen-
sions according to the coalition function, which is the decoder
function d in our case, we need to generate some latent vector
examples Z = {z1, . . . , zm}. For this we randomly sampled 2000
pairs of view and light directions (out of the 151 × 151 view-
light sampling) for 100 randomly pixels (within the 100 × 100
available ones), resulting in 200000 latent vectors in total. The

6

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Fig. 2. Cumulative contributions observed when performing Shapley analysis
after half of the training vs. after the full training for leather11 BTF (top), fabric01
BTF (middle) and carpet01 (bottom).

Shapley value based analysis took about 8 min and Figs. 2 and 3
depicts the resulting contributions and MSE plots, whereas Figs. 4,
5 and Fig. 1 in supplemental provide respective visualizations. As
a reference, we also show plots and visualizations obtained for
a full training. In Table 1, we present a detailed analysis of the

Fig. 3. Cumulative errors with respect to the full net, observed when performing
Shapley analysis after half of the training vs. after the full training for leather11
BTF (top), fabric01 BTF (middle) and carpet01 (bottom).

relationship between the number of latent variables and the time
required to compute the Shapley values with the DASP method.
In Fig. 2, we observe that different BTFs need different numbers
of latent dimensions to achieve the same cumulative contribution
percentage.

7

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Fig. 4. Visualizations of the material appearance reconstructed based on differ-
ent numbers of latent variables (for h = 1, . . . , 32) for two different pairs of
light and view directions (L = 3, V = 3 (top) and L = 35, V = 100 (bottom),
see Fig. 8) for the material leather11. On the left we see the visualizations after
200 epochs, in the middle the visualizations after 400 epochs and on the right
the visualization according to a random ordering after 200 epochs.

Fig. 5. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for carpet05. Top: L = 3, V = 3 and bottom L = 35, V =

100 (see Fig. 8). On the left we see the visualizations after 200 epochs,
on the right the visualization after 400 epochs, each with the first h =

1, 4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 32 latent variables according to the Shapley
ordering.

For instance, taking 8 latent variables for the material lea-
ther11 results in capturing about 98% of the contribution of all
latent variables. In contrast, matching this reconstruction quality

Fig. 6. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for leather11 after training with 32 latent variables (left) and 5
latent variables (right) and their difference. Top: L = 3, V = 3 and bottom
L = 35, V = 100 (see Fig. 8).

Fig. 7. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for carpet05 after training with 32 latent variables (left) and 9
latent variables (right) and their difference. Top: L = 3, V = 3 and bottom
L = 35, V = 100 (see Fig. 8).

Table 1
Relation between the time (in minutes) required to compute the Shapley values
and the number of latent variables. When the number of latent variables doubles,
the time for the computation of Shapley values with DASP increases by a factor
of about four.

8 16 32 64 128

BTF 0,43 1,73 7,2 30,3 141,6
IC 2,5 10,5 41 171 695

in terms of 98% of the overall contributions requires a dimen-
sionality of 12 for the latent space for the fabric01 BTF and a
dimensionality of 17 for the latent space for the carpet05 BTF.
Besides these significant variations of the cumulative contribu-
tions over the number of latent variables, we get evidence that
the fixed choice of 8 latent dimensions independent of the con-
sidered material as used by Rainer et al. [1] can be suboptimal for
different materials.

When analyzing the accumulated contributions (see Fig. 2),
the MSE behavior depending on the number of used dimensions
(see Fig. 3) as well as the corresponding visual depictions (see
Figs. 4, 5 and Fig. 1 in supplemental), we observe that we can
take the first ordered latent variables that contribute to 95%–
96% of the overall reconstruction and continue training with

8

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Fig. 8. Angles displayed on the unit disk: view direction V (green), light direction L (red). LE eft: L = 3, V = 3 and right: L = 35, V = 100. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

the dimensions 5, 7 and 9 for leather11, fabric01 and carpet05
respectively. Figs. 6, 7 and Fig. 2 in supplemental in show the
visualizations of these pruned trainings in comparison to the
full training with the initial 32 dimensions. Hence, we achieve
a guidance of the compression that allows using different dimen-
sionalities of the latent spaces to represent different materials
depending on the complexity of their appearance characteristics
which allows a more suitable reconstruction and compression
than taking a single fixed number of dimensions for all materials
as done by Rainer et al.. To analyze whether the ordering of
latent variables according to their Shapley values is reasonable,
we provide a comparison of the ordering of the latent dimensions
according to their Shapley values to a random ordering (Figs. 3,
4). We observe that the random ordering does not allow insights
regarding the choice of a plausible dimensionality of the latent
space in contrast to our approach based on Shapley values.

4.2. Image compression

As already discussed in Section 2, there has been significant
progress in neural image compression and in particular advanced
autoencoder architectures have been demonstrated to be promis-
ing. The targeted trade-off of determining an as-compact-as-
possible binary representation (i.e. lowest rate bitstream) while
preserving a certain level of fidelity (i.e. minimum distortion) of
the data has been investigated in terms of autoencoder archi-
tectures with quantization and entropy coding. One popular ap-
proach for image compression is the lossy compression approach
based on compressive autoencoders by Theis et al. [55]. We used
the publicly available implementation of this approach [https:
//github.com/alexandru-dinu/cae], which combines the proposed
network architecture with the idea of compressing the code with
stochastic binarization [54] instead of rounding it. The benefits
of such stochastic binarization for image compression as de-
scribed by Toderici et al. [54] also include the advantage that
bit vectors are trivially serializable/deserializable which helps in
efficient data transmission. The latent code then exhibits the
form of a binary matrix, where the matrix dimensions directly
correspond to the number of bits stored per image and the MSE
loss is used for the optimization. Each image is pre-processed
in terms of an arrangement of 10 × 6 non-overlapping patches
of size 128 × 128 so that an image is represented based on 60
patches and, hence, based on 60 latent codes. For the subsequent

processing, we took one of the models provided with the imple-
mentation with dimensions of 32 × 32 × 32 (i.e. 32 channels of
size 32 × 32 resulting from the used encoder architecture) and
analyzed, whether and how much we can reduce the dimension
of channels based on the Shapley value based analysis.

Furthermore, for our respective experiments, we used the
YouTube-8M dataset that was taken from [https://research.googl
e.com/youtube8m/] for training. Due to the missing information
regarding a suitable explicit specification of the number of epochs
during training by Theis et al. [55], we analyzed the behavior
of training and validation losses and concluded 50 epochs to be
a suitable choice for a complete training process. After training
for 25 epochs, i.e. after half of the overall training, we perform
an analysis of the latent space based on Shapley values. For
this purpose, we used the code provided along the DASP ap-
proach [38] and extended their implementation of Lightweight
Probabilistic Deep Networks [101] by the remaining probability
layers required for the underlying architecture that have not been
included in the DASP framework.

Even though using DASP for the approximation of the Shapley
values is quite fast, it still depends on the number m of examples
used for the computation and the time which is used to process
a batch, i.e. forward pass of the decoder. So since the decoder of
this network is a lot more complex than the one used for the BTF
compression, we took less latent codes for Shapley computations
for this application. When using sample sizes of six randomly
selected patches from 21 randomly chosen images, i.e. 126 latent
codes in total, the DASP computation took about 43 min, while
the overall training took about 12 h, i.e. the total time is only
moderately influenced by the DASP computation.

Figs. 9 and 10 show the contributions and MSE curves obtained
by our approach, while Fig. 11 provides a depiction of qualitative
results. We can observe that the first 25 ordered latent variables
contribute to 95% of the reconstruction but after observing the
error plot and some visualizations, we conclude that for this
application taking 22 dimensions, which correspond to 92% of
contribution, is still a reasonable choice for the subsequent train-
ing. Table 2 shows the test error we get if we continue training
with different numbers of latent dimensions. Fig. 12 shows the
results after the continued training with 22 latent dimensions vs.
the full training with 32 channels. Furthermore, Figs. 9 and 10
provide the plots we obtain if we perform the Shapley analysis

9

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Fig. 9. Cumulative contributions observed when performing Shapley analysis
after half of the training vs. after the full training for image compression.

Fig. 10. Illustration of the reconstruction error depending on the number of
latent variables that are used for the reconstruction. Note, how the error
decays much quicker when variables are added in the order of their importance
compared to a random selection of the same number of variables (blue vs. green
plot). At the same time, there is no significant difference between applying the
Shapley value based analysis after the full or after half of the training (blue vs.
orange plot). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

after a full training. As demonstrated, the results do not sig-
nificantly change already after 25 epochs, which indicates that
applying the analysis regarding relevant dimensions to be used
for the subsequent training based on Shapley values after half of
the overall training epochs seems a reasonable choice.

To validate that the ordering of latent variables according to
their Shapley values is a good choice, we again compared it to
the random ordering. Fig. 10 depicts the error for the ordering
of the dimensions according to their contribution as computed
by the Shapley values in comparison to a random ordering and
respective qualitative results are provided in Fig. 11.

Since the main effect of our method is the compression of
the latent space, in order to compare to other methods, we
studied the effect of alternatively compressing the latent space
of the autoencoder based on PCA. Fig. 13 shows the error plot
which results if we perform the PCA on the latent matrix and
then reconstruct the latent matrix using different numbers p of
principal components. From this plot and some image series like

Fig. 11. Two different images reconstructed with different numbers of latent
variables and applying the Shapley value based analysis after half of the
training. Left: The latent variables are added in accordance to their estimated
importance. Right: The latent variables are selected randomly. Note how the
random selection leads to a significantly slower convergence. (The blocking
artefacts result from the implementation of tiling the original image into patches
and are not originating from our approach.)

Table 2
Correspondence between the estimated importance from the Shapley analysis to
the final image reconstruction error. While Fig. 13 suggest, that 7 latent variables
are sufficient for good quality (a-priori estimation), this analysis shows that more
variables should be used (a-posteriori analysis).
%
contribution

Dim of
net

MSE MSE increase
compared to
full net (in %)

MSE increase per pruned
dimension compared to
full net (in %)

58 7 0.00119 75 3
92 22 0.00075 10,3 1,3
95 25 0.00073 7,35 1,5
98 29 0.00070 3 1
100 32 0.00068 – –

in 14 we observed that 7 principal components already suffice
to reconstruct the image quite well. So if we link the principal
components to the idea of the latent variables and conclude that
we only need to train with 7 latent dimensions, we would see that
PCA under-estimates the required number of latent dimensions.
Fig. 12 shows the reconstructions obtained with the full network,
with a pruned network with 22 channels resulting from our
choice after the Shapley analysis and with a pruned network with
7 channels, as chosen after a PCA analysis. Moreover, Table 2
also reports the procentual increase of the error. We observe that

10

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Fig. 12. Final image reconstructions achieved after the full training for different
numbers of latent variables.

Fig. 13. Resulting error if we perform the PCA on the latent matrix and then
reconstruct the latent matrix using different numbers of principal components.
While this plot suggests that a low number of variables may be sufficient for
the final reconstruction, we find that this does not translate to the number of
latent variables required during the training.

with 7 dimensions the quality of the reconstruction is signifi-
cantly reduced as opposed to what we expected when performing
the reconstruction using the PCA. The explanation is that even
though we can use only 7 components, the PCA was performed

Fig. 14. Images corresponding to the PCA selection strategy shown in Fig. 13.

on the whole set of 32 dimensions which means that this full
dimensionality is still indirectly included and not reduced as in
the case of retraining the network with less dimensions.

Discussion. We experimented with leather11, fabric01 and car-
pet05 by training with different initial number of latent variables
(32, 64 and 128), performing Shapley analysis in the middle of the
training and observed that we get the same results if we prune
the latent space of a model with 32 and 64 dimensions. If we
prune a model with 128 dimensions, it tends to overestimate the
number of latent dimensions (12 in case of leather, 15 in the case
of fabric and 17 in the case of carpet). One way to overcome this,
when choosing a very large number of dimensions beforehand,
would be to perform the Shapley analysis again in the end of the
training, prune again and continue training (in our case, training
for another 100 epochs was sufficient) to converge to the same
result as the one when starting with 64 or 32 dimensions.

Limitations. While DASP allows a better handling of larger num-
bers of dimensions, the computation of the Shapley values
directly involves the decoder function. As a result, the compu-
tational burden increases with the complexity of the decoder
structure, which results in increasing processing times.

5. Conclusions

We presented a novel approach for efficiently structuring the
latent space for explainable data reconstruction and compression
in a single training process. In particular, we have demonstrated
that leveraging Shapley values to determine the contribution
of the latent variables on the model’s output which, in turn,
allows organizing the latent variables according to a decreasing
importance, discarding several latent variables at the same step
and, finally, specifying a reasonable size of the latent codes. The
truncation obtained when discarding latent variables after the
first k latent variables with most importance results in an effect
similar to a rank-k approximation as achieved when applying PCA
in the linear case. We have demonstrated the relevance of this
approach for compact representation and compression for images
and high-dimensional material appearance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

11

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.gvc.2022.200059.

References

[1] Rainer G, Jakob W, Ghosh A, Weyrich T. Neural btf compression and
interpolation. In: Computer graphics forum, Vol. 38. Wiley Online Library;
2019, p. 235–44.

[2] Rainer G, Ghosh A, Jakob W, Weyrich T. Unified neural encoding of
btfs. In: Computer graphics forum, Vol. 39. Wiley Online Library; 2020,
p. 167–78.

[3] Shapley LS. A value for n-person games. Contrib Theory Games
1953;2(28):307–17.

[4] Karl Pearson F. LIII. On lines and planes of closest fit to systems of
points in space. Lond Edinb Dublin Philos Mag J Sci 1901;2(11):559–
72. http://dx.doi.org/10.1080/14786440109462720, arXiv:https://doi.org/
10.1080/14786440109462720.

[5] Hotelling H. Relations between two sets of variates. Biometrika
1936;28(3/4):321–77, URL: http://www.jstor.org/stable/2333955.

[6] Ladjal S, Newson A, Pham C-H. A PCA-like autoencoder. 2019, arXiv
preprint arXiv:1904.01277.

[7] Pham C-H, Ladjal S, Newson A. PCAAE: Principal component analysis
autoencoder for organising the latent space of generative networks. 2020,
arXiv preprint arXiv:2006.07827.

[8] Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine
learning. 2017, arXiv preprint arXiv:1702.08608.

[9] Lipton ZC. The mythos of model interpretability. In: ICML workshop on
human interpretability in machine learning (WHI). 2016.

[10] Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On
pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS One 2015;10(7):e0130140.

[11] Shrikumar A, Greenside P, Kundaje A. Learning important features
through propagating activation differences. In: International conference
on machine learning. PMLR; 2017, p. 3145–53.

[12] Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity
checks for saliency maps. Adv Neural Inf Process Syst 2018;31:9505–15.

[13] Kindermans P-J, Hooker S, Adebayo J, Alber M, Schütt KT, Dähne S,
Erhan D, Kim B. The (un)reliability of saliency methods. In: Explainable
AI: Interpreting, explaining and visualizing deep learning. Cham: Springer
International Publishing; 2019, p. 267–80.

[14] Ghorbani A, Abid A, Zou J. Interpretation of neural networks is fragile.
In: Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
2019, p. 3681–8.

[15] Nie W, Zhang Y, Patel A. A theoretical explanation for perplexing behav-
iors of backpropagation-based visualizations. In: International conference
on machine learning. PMLR; 2018, p. 3809–18.

[16] Sun Y, Sundararajan M. Axiomatic attribution for multilinear functions. In:
Proceedings of the 12th ACM conference on electronic commerce. 2011,
p. 177–8.

[17] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep net-
works. In: International conference on machine learning. PMLR; 2017,
p. 3319–28.

[18] Montavon G, Lapuschkin S, Binder A, Samek W, Müller K-R. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern
Recognit 2017;65:211–22.

[19] Lundberg SM, Lee S-I. A unified approach to interpreting model
predictions. Adv Neural Inf Process Syst 2017;30:4765–74.

[20] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Bengio Y,
LeCun Y, editors. 2nd international conference on learning representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, workshop track
proceedings. 2014, URL: http://arxiv.org/abs/1312.6034.

[21] Shrikumar A, Greenside P, Kundaje A. Learning important features
through propagating activation differences. In: Precup D, Teh YW, editors.
Proceedings of the 34th international conference on machine learning.
Proceedings of machine learning research, Vol. 70, International Con-
vention Centre, Sydney, Australia: PMLR; 2017, p. 3145–53, URL: http:
//proceedings.mlr.press/v70/shrikumar17a.html.

[22] Ribeiro MT, Singh S, Guestrin C. ‘‘Why should i trust you?’’ Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 2016,
p. 1135–44.

[23] Zintgraf LM, Cohen TS, Adel T, Welling M. Visualizing deep neural
network decisions: Prediction difference analysis. 2017, CoRR, abs/1702.
04595 arXiv:1702.04595 URL: http://arxiv.org/abs/1702.04595.

[24] Fong RC, Vedaldi A. Interpretable explanations of black boxes by mean-
ingful perturbation. In: IEEE international conference on computer vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society;
2017, p. 3449–57. http://dx.doi.org/10.1109/ICCV.2017.371.

[25] Matsui Y, Matsui T. NP-completeness for calculating power indices
of weighted majority games. Theoret Comput Sci 2001;263(1):305–10.
http://dx.doi.org/10.1016/S0304-3975(00)00251-6, URL: https://www.
sciencedirect.com/science/article/pii/S0304397500002516, Combinatorics
and Computer Science.

[26] Castro J, Gómez D, Tejada J. Polynomial calculation of the Shapley value
based on sampling. Comput Oper Res 2009;36(5):1726–30.

[27] Strumbelj E, Kononenko I. An efficient explanation of individual
classifications using game theory. J Mach Learn Res 2010;11:1–18.

[28] Maleki S, Tran-Thanh L, Hines G, Rahwan T, Rogers A. Bounding the
estimation error of sampling-based Shapley value approximation. 2013,
arXiv preprint arXiv:1306.4265.

[29] Datta A, Sen S, Zick Y. Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems. In: 2016 IEEE
symposium on security and privacy (SP). IEEE; 2016, p. 598–617.

[30] Tan S, Caruana R, Hooker G, Koch P, Gordo A. Learning global additive
explanations for neural nets using model distillation. 2018, arXiv preprint
arXiv:1801.08640.

[31] Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of ma-
chine learning models using improved Shapley Additive Explanation. In:
Proceedings of the 10th ACM international conference on bioinformatics,
computational biology and health informatics. 2019, p. 546.

[32] Aas K, Jullum M, Løland A. Explaining individual predictions when
features are dependent: More accurate approximations to Shapley values.
2019, arXiv preprint arXiv:1903.10464.

[33] Sellereite N, Jullum M. Shapr: An R-package for explaining machine
learning models with dependence-aware Shapley values. J Open Source
Softw 2019;5(46):2027. http://dx.doi.org/10.21105/joss.02027.

[34] Bowen D, Ungar L. Generalized SHAP: Generating multiple types of
explanations in machine learning. 2020, arXiv preprint arXiv:2006.07155.

[35] Chen H, Lundberg S, Lee S-I. Explaining models by propagating Shapley
values of local components. In: Explainable AI in healthcare and medicine.
Springer; 2021, p. 261–70.

[36] Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R,
Himmelfarb J, Bansal N, Lee S-I. Explainable AI for trees: From local
explanations to global understanding. 2019, arXiv preprint arXiv:1905.
04610.

[37] Fatima SS, Wooldridge M, Jennings NR. A linear approximation method
for the Shapley value. Artificial Intelligence 2008;172(14):1673–99.

[38] Ancona M, Oztireli C, Gross M. Explaining deep neural networks with
a polynomial time algorithm for shapley value approximation. In:
International conference on machine learning. PMLR; 2019, p. 272–81.

[39] Giudici P, Raffinetti E. Shapley-Lorenz explainable artificial intelligence.
Expert Syst Appl 2020;114104.

[40] Sundararajan M, Dhamdhere K, Agarwal A. The Shapley taylor interaction
index. In: International conference on machine learning. PMLR; 2020,
p. 9259–68.

[41] Chen J, Song L, Wainwright MJ, Jordan MI. L-Shapley and C-Shapley:
Efficient model interpretation for structured data. In: International
conference on learning representations. 2019.

[42] Kumar IE, Scheidegger C, Venkatasubramanian S, Friedler S. Shapley
residuals: Quantifying the limits of the Shapley value for explanations.
In: ICML workshop on workshop on human interpretability in machine
learning (WHI). 2020.

[43] Lou Y, Caruana R, Gehrke J. Intelligible models for classification and
regression. In: Proceedings of the 18th ACM SIGKDD international
conference on knowledge discovery and data mining. 2012, p. 150–8.

[44] Lou Y, Caruana R, Gehrke J, Hooker G. Accurate intelligible models
with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD
international conference on knowledge discovery and data mining. 2013,
p. 623–31.

[45] Wang X, Chen H, Yan J, Nho K, Risacher SL, Saykin AJ, Shen L,
Huang H, ADNI. Quantitative trait loci identification for brain endophe-
notypes via new additive model with random networks. Bioinformatics
2018;34(17):i866–74.

[46] Wang R, Wang X, Inouye DI. Shapley explanation networks. In: In-
ternational conference on learning representations. 2021, URL: https:
//openreview.net/forum?id=vsU0efpivw.

[47] Mangalathu S, Hwang S-H, Jeon J-S. Failure mode and effects analy-
sis of RC members based on machine-learning-based Shapley Additive
explanations (SHAP) approach. Eng Struct 2020;219:110927.

[48] Tripathi S, Hemachandra N, Trivedi P. Interpretable feature subset se-
lection: A Shapley value based approach,’’. In: Proceedings of 2020
IEEE international conference on big data, special session on explainable
artificial intelligence in safety critical systems. 2020.

12

E. Trunz, M. Weinmann, S. Merzbach et al. Graphics and Visual Computing 7 (2022) 200059

[49] Ghorbani A, Zou J. Data shapley: Equitable valuation of data for machine
learning. In: International conference on machine learning. PMLR; 2019,
p. 2242–51.

[50] Covert I, Lundberg S, Lee S-I. Explaining by removing: A unified
framework for model explanation. 2020, arXiv preprint arXiv:2011.14878.

[51] Wang J, Wiens J, Lundberg S. Shapley flow: A graph-based approach to
interpreting model predictions. 2020, arXiv preprint arXiv:2010.14592.

[52] Ghorbani A, Zou J. Neuron shapley: Discovering the responsible neurons.
2020, arXiv preprint arXiv:2002.09815.

[53] Ma S, Tourani R. Predictive and causal implications of using shapley value
for model interpretation. In: Proceedings of the 2020 KDD workshop on
causal discovery. PMLR; 2020, p. 23–38.

[54] Toderici G, O’Malley SM, Hwang SJ, Vincent D, Minnen D, Baluja S,
Covell M, Sukthankar R. Variable rate image compression with recurrent
neural networks. 2015, arXiv preprint arXiv:1511.06085.

[55] Theis L, Shi W, Cunningham A, Huszár F. Lossy image compression with
compressive autoencoders. 2017, arXiv preprint arXiv:1703.00395.

[56] Ballé J, Laparra V, Simoncelli EP. End-to-end optimized image compres-
sion. In: 5th international conference on learning representations, ICLR
2017, Toulon, France, April 24-26, 2017, conference track proceedings.
2017.

[57] Cai C, Chen L, Zhang X, Gao Z. Efficient variable rate image compression
with multi-scale decomposition network. IEEE Trans Circuits Syst Video
Technol 2018;29(12):3687–700.

[58] Rippel O, Bourdev L. Real-time adaptive image compression. In:
International conference on machine learning. PMLR; 2017, p. 2922–30.

[59] Nakanishi KM, Maeda S-i, Miyato T, Okanohara D. Neural multi-scale
image compression. In: Asian conference on computer vision. Springer;
2018, p. 718–32.

[60] Ballé J, Laparra V, Simoncelli EP. Density modeling of images using a gen-
eralized normalization transformation. In: 4th international conference on
learning representations, ICLR 2016. 2016.

[61] Ballé J, Laparra V, Simoncelli EP. End-to-end optimized image
compression. 2016, arXiv preprint arXiv:1611.01704.

[62] Agustsson E, Mentzer F, Tschannen M, Cavigelli L, Timofte R, Benini L,
Van Gool L. Soft-to-hard vector quantization for end-to-end learning
compressible representations. 2017, arXiv preprint arXiv:1704.00648.

[63] Ballé J, Minnen D, Singh S, Hwang SJ, Johnston N. Variational image
compression with a scale hyperprior. 2018, arXiv preprint arXiv:1802.
01436.

[64] Mentzer F, Agustsson E, Tschannen M, Timofte R, Van Gool L. Conditional
probability models for deep image compression. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
p. 4394–402.

[65] Lee J, Cho S, Beack S-K. Context-adaptive entropy model for end-to-end
optimized image compression. 2018, arXiv preprint arXiv:1809.10452.

[66] Li M, Ma K, You J, Zhang D, Zuo W. Efficient and effective context-based
convolutional entropy modeling for image compression. IEEE Trans Image
Process 2020;29:5900–11.

[67] Minnen D, Ballé J, Toderici G. Joint autoregressive and hierarchical priors
for learned image compression. 2018, arXiv preprint arXiv:1809.02736.

[68] Minnen D, Singh S. Channel-wise autoregressive entropy models for
learned image compression. In: 2020 IEEE international conference on
image processing (ICIP). IEEE; 2020, p. 3339–43.

[69] Tschannen M, Agustsson E, Lucic M. Deep generative models for
distribution-preserving lossy compression. 2018, arXiv preprint arXiv:
1805.11057.

[70] Agustsson E, Tschannen M, Mentzer F, Timofte R, Gool LV. Generative
adversarial networks for extreme learned image compression. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision.
2019, p. 221–31.

[71] Yang F, Herranz L, Van De Weijer J, Guitián JAI, López AM, Mozerov MG.
Variable rate deep image compression with modulated autoencoder. IEEE
Signal Process Lett 2020;27:331–5.

[72] Choi Y, El-Khamy M, Lee J. Variable rate deep image compression with
a conditional autoencoder. In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, p. 3146–54.

[73] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, An-
dreetto M, Adam H. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. 2017, arXiv preprint arXiv:1704.04861.

[74] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, p. 4510–20.

[75] Tang Y, You S, Xu C, Han J, Qian C, Shi B, Xu C, Zhang C. Reborn filters:
Pruning convolutional neural networks with limited data. In: Proceedings
of the AAAI conference on artificial intelligence, Vol. 34. 2020, p. 5972–80.

[76] Khan A, Hines E. Integer-weight neural nets. Electron Lett
1994;30(15):1237–8.

[77] Rastegari M, Ordonez V, Redmon J, Farhadi A. Xnor-net: Imagenet
classification using binary convolutional neural networks. In: European
conference on computer vision. Springer; 2016, p. 525–42.

[78] Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, Adam H,
Kalenichenko D. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, p. 2704–13.

[79] Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV.
Mnasnet: Platform-aware neural architecture search for mobile. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, p. 2820–8.

[80] Yu J, Yang L, Xu N, Yang J, Huang T. Slimmable neural networks. 2018,
arXiv preprint arXiv:1812.08928.

[81] Johnston N, Eban E, Gordon A, Ballé J. Computationally efficient neural
image compression. 2019, arXiv preprint arXiv:1912.08771.

[82] Cai C, Chen L, Zhang X, Lu G, Gao Z. A novel deep progressive image
compression framework. In: 2019 picture coding symposium (PCS). IEEE;
2019, p. 1–5.

[83] Yang F, Herranz L, Cheng Y, Mozerov MG. Slimmable compressive au-
toencoders for practical neural image compression. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2021,
p. 4998–5007.

[84] Eckart C, Young G. The approximation of one matrix by another of lower
rank. Psychometrika 1936;1(3):211–8.

[85] Jolliffe IT, Cadima J. Principal component analysis: a review and recent
developments. Phil Trans R Soc A 2016;374(2065):20150202.

[86] De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value
decomposition. SIAM J Matrix Anal Appl 2000;21(4):1253–78.

[87] De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors. SIAM J Matrix Anal
Appl 2000;21(4):1324–42.

[88] Carroll JD, Chang J-J. Analysis of individual differences in multi-
dimensional scaling via an N-way generalization of ‘‘Eckart-Young’’
decomposition. Psychometrika 1970;35(3):283–319.

[89] Harshman RA, Lundy ME. PARAFAC: Parallel factor analysis. Comput
Statist Data Anal 1994;18(1):39–72.

[90] Tucker LR. Some mathematical notes on three-mode factor analysis.
Psychometrika 1966;31(3):279–311.

[91] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev
2009;51(3):455–500.

[92] Pajarola R, Suter SK, Ruiters R. Tensor approximation in visualiza-
tion and computer graphics. In: Eurographics 2013 - tutorials, Vol. t6.
Girona, Spain: Eurographics Association; 2013, http://dx.doi.org/10.2312/
conf/eg2013/tutorials/t6, URL: http://diglib.eg.org/EG/DL/conf/EG2013/
tutorials/t6.pdf.

[93] Bartholomew DJ, Knott M, Moustaki I. Latent variable models and factor
analysis: a unified approach, Vol. 904. John Wiley & Sons; 2011.

[94] Tipping ME, Bishop CM. Probabilistic principal component analysis. J R
Stat Soc Ser B Stat Methodol 1999;61(3):611–22.

[95] Yu S, Yu K, Tresp V, Kriegel H-P, Wu M. Supervised probabilistic
principal component analysis. In: Proceedings of the 12th ACM SIGKDD
international conference on knowledge discovery and data mining. 2006,
p. 464–73.

[96] Guan Y, Dy J. Sparse probabilistic principal component analysis. In:
Artificial intelligence and statistics. PMLR; 2009, p. 185–92.

[97] Rezende DJ, Mohamed S, Wierstra D. Stochastic backpropagation and
approximate inference in deep generative models. In: International
conference on machine learning. PMLR; 2014, p. 1278–86.

[98] Kingma DP, Welling M. Auto-encoding variational bayes. 2013, arXiv
preprint arXiv:1312.6114.

[99] Weinmann M, Langguth F, Goesele M, Klein R. Advances in geometry
and reflectance acquisition. In: Sousa A, Bouatouch K, editors. EG 2016 -
tutorials. The Eurographics Association; 2016, http://dx.doi.org/10.2312/
egt.20161032.

[100] Weinmann M, Gall J, Klein R. Material classification based on training data
synthesized using a BTF database. In: European conference on computer
vision. Springer; 2014, p. 156–71.

[101] Gast J, Roth S. Lightweight probabilistic deep networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
p. 3369–78.

13

Publication:
“Inverse Procedural Modeling of Knitwear”

Elena Trunz, Sebastian Merzbach, Jonathan Klein, Thomas Schulze,
Michael Weinmann, and Reinhard Klein

2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR)

2019

doi: 10.1109/CVPR.2019.00883

©2019 IEEE. Reprinted, with permission, from Elena Trunz, Sebastian Merzbach, Jonathan
Klein, Thomas Schulze, Michael Weinmann, and Reinhard Klein, “Inverse Procedural
Modeling of Knitwear.” 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

113

https://doi.org/10.1109/CVPR.2019.00883

Inverse Procedural Modeling of Knitwear

Elena Trunz, Sebastian Merzbach, Jonathan Klein, Thomas Schulze
Michael Weinmann, Reinhard Klein

Institute of Computer Science II, University of Bonn, Germany
{trunz,merzbach,kleinj,mw,rk}@cs.uni-bonn.de, s6tsschu@uni-bonn.de

Abstract

The analysis and modeling of cloth has received a lot
of attention in recent years. While recent approaches are
focused on woven cloth, we present a novel practical ap-
proach for the inference of more complex knitwear struc-
tures as well as the respective knitting instructions from only
a single image without attached annotations. Knitwear is
produced by repeating instances of the same pattern, con-
sisting of grid-like arrangements of a small set of basic
stitch types. Our framework addresses the identification
and localization of the occurring stitch types, which is chal-
lenging due to huge appearance variations. The resulting
coarsely localized stitch types are used to infer the under-
lying grid structure as well as for the extraction of the knit-
ting instruction of pattern repeats, taking into account prin-
ciples of Gestalt theory. Finally, the derived instructions
allow the reproduction of the knitting structures, either as
renderings or by actual knitting, as demonstrated in several
examples.

1. Introduction
Fabrics are an essential matter in our daily life. In con-

trast to their woven counterparts, knitted clothing visually
sticks out due to complicated underlying stitch structures
formed by various knitting operations, each inducing a char-
acteristic appearance. Furthermore, knitting clothing of var-
ious types still belongs to a handcraft mastered by a rather
large group of our society covering all ages. One reason for
this may be the interest in manufacturing one’s own clothing
with knitting patterns following the individual subjective
preferences. While there are books and websites that pro-
vide a wide range of patterns together with their respective
construction instructions, it would be desirable to be able to
reproduce patterns from images provided e.g. by standard
search engines such as Google, which lack the correspond-
ing knitting instruction.

Unfortunately, inferring the underlying knitting patterns
by only ”reading” a single image is particularly challenging,

even for experts. The visual appearance of stitches exhibits
a large variety as neighboring stitches may occlude them or
cast shadows. The variability in the appearance of the ba-
sic stitch types is further increased by the properties of the
used yarns, such as their thickness, type of yarns, etc., or
the individual knitting styles of different people leading to
various deformations, such as stretchings, holes and tight
or loose stitches. Therefore, even experts often prefer ana-
lyzing the respective physical clothing pieces by stretching
it and performing the inspection from both sides, in order
to reliably infer the knitting instructions, including other-
wise covered stitches. These manipulations are not possible
when analyzing knitted fabrics in single photos.

Inverse procedural modeling of objects from only a few
or even single examples has received a lot of attention in
the last decade. Corresponding applications encompass the
derivation of production rules for plants, woven fabrics,
buildings and facades. However, the developed approaches
are custom tailored for the corresponding applications and
cannot be easily transformed to infer knitting patterns.

In this paper, we direct our attention to the inference
of the complicated structures of knitwear and the deriva-
tion of the respective knitting instructions, to the best of our
knowledge, for the first time from only a single image with-
out annotations. This implies solving the labeling problem,
i.e. the identification of the occurring stitch types as well as
their proper localization from the visually complex appear-
ance depicted in the input photographs. For this purpose, we
introduce a novel pipeline that involves four major compo-
nents represented by (1) the search for the individual stitch
types across the image, (2) the inference of the underlying
grid structure from the coarsely localized stitches from the
previous step, (3) an error correction and pattern size detec-
tion step that determines the size of the desired pattern and
corrects the labeling errors from the first step, and, finally,
(4) the derivation of the final knitting instruction (in anal-
ogy to instructions in knitting books), based on the found
pattern size and corrected underlying grid structure, taking
into account the intuition of human perception by applying
the Law of Symmetry and the Law of Prägnanz [5]. These

Figure 1: Exemplary appearance variations of knits (top)
and purls (bottom).

derived instructions allow the reproduction of the knitting
patterns with possibly different yarn types as demonstrated
in several examples.

In summary, the key contributions of this paper are:

• A novel method for inverse procedural modeling of
knitwear from a single image.

• The derivation of the underlying optimal regular grid
structure from initially determined hypotheses regard-
ing the coarse localization of stitch types.

• An error correction technique that determines the cor-
rect size of the knitting pattern and corrects possible
recognition errors.

• A final induction of the knitting instruction from the
derived grid structure following human intuition.

2. Background
Knitting relies only on a relatively small set of basic ac-

tions, and their combinations allow to generate the under-
lying knit structures for various patterns [34]. Therefore,
even children can learn to produce caps, scarfs or pothold-
ers. These basic actions and their combinations result in a
number of stitch types, which are used to generate a wide
range of various knitting designs by repetitions and different
orderings. In this paper, we focus on the two fundamental
stitch types: knit and purl (see Figure 1).

The usual shape of a knit resembles the structure of a
”v”. If there is a purl stitch above or below (or both), a knit
stitch becomes partially covered by the purl stitch(es). Ad-
ditionally, the width of the stitch gets smaller than it would
be if it had other knits as an upper and/or lower neighbor.
The purl stitch usually resembles a wave structure. This
wave becomes wider if there are knit stitches underneath
and above the purl. However, in case there is a knit stitch
on the right or the left side (or both) of a purl, then the purl
stitch gets partially covered. Figure 1 illustrates some of the
appearance/shape variations of purls and knits. Note that
the shown stitch variations are solely induced by arranging
the basic stitch types in different orderings. Additionally,
these appearance variations heavily depend on the proper-
ties of the used yarn, as well as stitch deformations resulting
from subjective knitting styles, making almost every stitch
of a hand-made piece of knitted fabric individual.

3. Related Work
The major components of our framework for inverse

modeling of knitwear include the search for occurrences of
basic stitch types as marked by the user within the image,
the inference of a grid structure based on the stitch candi-
dates and underlying repeating patterns. As a consequence,
we briefly review the developments in the areas of template
matching and inverse procedural modeling. We refrain from
a detailed discussion regarding the visualization of knitted
fabrics, but only refer to the work by Yuksel et al. [34].

Template matching: Traditional techniques for effi-
ciently searching a query patch within an image are usually
based on using the Sum-of-Squared-Distances (SSD), the
Sum-of-Absolute-Distances (SAD) or Normalized Cross-
Correlation (NCC). Subsequent works addressed their lack-
ing robustness towards handling noise [10] and illumina-
tion changes [13]. Further improvements came with the
use of robust error functions [6, 22, 21, 18]. Later, Barnes
et al. [2, 3] introduced the PatchMatch algorithm for nearest
neighbor matching across translations, rotations and scales.
However, all of these techniques only allow a one-to-one
mapping between a template and the query region and rely
on a strict rigid geometric deformation between the tem-
plate patch and the target patch. As a consequence, they
are not capable of dealing with the geometric deformations
we expect for patches containing knitting primitives (knits
and purls). Towards handling appearance variations for ma-
terial recognition, other approaches rely on the matching
of histograms extracted for different images by considering
various descriptors (e.g. [20]) within classification frame-
works. Furthermore, set-based matching has been explored
to allow a more robust matching of textures based on the
consideration of the appearance space of textures [14, 31].

Other approaches have been designed to explicitly han-
dle parametric deformations such as 2D affine transfor-
mations [16] or more general non-rigid distortions [29].
However, despite the requirement of a parametric distortion
model for the underlying geometry, these techniques also
rely on the assumption of a one-to-one mapping between
the query and target patch, which is susceptible to errors in
the presence of occlusions or background clutter.

Further work explores the bi-directional similarity be-
tween target and query patch. Simakov et al. [23] rep-
resent images in terms of a set of patches and the con-
sidered bi-directional similarity (BDS) measure considers
the sum of distances between a patch in the first image
and its nearest neighbor in the second image and vice
versa. To also distinguish between inliers and outliers aris-
ing from foreground/background parts of the considered
patches, the Best Buddies Similarity (BBS) has been pro-
posed [7], based on counting the Best Buddy Pairs and,
hence, using the actual distances only implicitly. Therefore,
an increased robustness in comparison to BDS has been

achieved. Talmi et al. [26] extended this work by enforcing
diversity in the mutual nearest-neighbor matching and ex-
plicitly considering the deformation of the nearest-neighbor
field. To achieve a speed up of the matching process, they
use an approximate nearest neighbor search.

While any of the template matching techniques could be
applied to derive probability maps for the localization of
certain basic primitives required in our approach, we use
template matching based on BBS due to its proven robust-
ness to deformations that are expected to occur for the prim-
itives of knitting. We improved the BBS technique by the
use of additional gradient information. In the evaluation,
we compare several template matching techniques and show
that the extended BBS approach outperforms the other tech-
niques in the context of our particular problem.

Image-based detection of weave patterns: Cloth mod-
eling has received a lot of attention so far. Especially
approaches for detecting weave patterns from images are
closely related to our work. In particular, the complete
reverse-engineering of woven cloth at the yarn level as
approached by Schröder et al. [19] and Guarnera et al.
[11] has been demonstrated to be the current state-of-the-
art technique. While these approaches are powerful for the
analysis of woven cloth, they are not designed to handle
knitted textiles. Knitted clothing is inherently 3D and the
final shapes of stitches, especially hand-made stitches, do
not possess the similarity and regularity of warp and weft
of woven cloth, where occlusions and non-rigid deforma-
tions of the yarn have to be taken into account in order to be
able to find the actual position and the type of the stitches
in the image. To the best of our knowledge, we are the first
to tackle the problem of detecting knitting patterns and the
respective knitting instructions from a single image.

Inverse procedural modeling: Inverse procedural mod-
eling (IPM) is the problem of inferring a set of parameters
[28, 30] or even a whole procedural description for a given
model. Early investigations on applying inverse procedural
modeling for graphics applications include the works on 3D
meshes [4] and 2D vector designs [24], but there has been a
lot of progress in this area of research. Meanwhile, inverse
procedural modeling is widely used and has been applied
for varying purposes ranging from the inference of 3D de-
sign patterns [27] over the modeling of plants [25, 17] to
editing of building point clouds [8] as well as inferring pro-
cedural descriptions of building facades [32, 33, 9, 17] and
reverse engineering of woven cloth [19]. For a detailed and
extensive survey on inverse procedural modeling, we refer
to the report by Aliaga et al. [1].

4. Stitch Pattern Inference Approach
In this section, we introduce our approach to infer knit-

ting patterns and the respective instructions for their gener-
ation from single input images. An initial pre-processing

step compensates for non-axis-alignment of the depicted
knit patterns and, hence, makes our framework capable of
handling tilted images of knitwear. In the next step, the user
provides exemplars of particular basic stitch types, such
as knits or purls within the image via an intuitive inter-
face. Subsequently, image patches containing these stitch
types are searched within the whole image and the result-
ing coarse localization of the individual stitch types is used
to infer the underlying grid structure. Furthermore, an er-
ror correction procedure allows to compensate for possible
misclassifications of the stitch types in the grid and detects
the size of the repeating pattern. The found size and the
optimized grid structure are then used to find the starting
position of the pattern, thus finalizing the process of stitch
pattern inference. Finally, we derive the underlying produc-
tion rules and convert them into corresponding knitting in-
structions that allow the reproduction of the knitting pattern
depicted in the input image. Details regarding the involved
components are described in the following sections.

4.1. Pre-Processing

Before allowing the user to specify templates for the rel-
evant stitch types in the image, we perform a pre-processing
step to facilitate the annotation process. To compensate for
deviations from axis-alignment, we use Histograms of Ori-
ented Gradients (HOG) to determine the most dominant di-
rections in the photo, which is justified due to the inherent
grid structure resulting from the production process. This
allows the reversal of rotations to align the grid structure
with the axes and, hence, makes our algorithm capable of
also handling non-axis-aligned input patterns. Respective
examples are shown in the supplemental material.

4.2. Interactive Selection of Relevant Stitch Types

The detection of stitch types could possibly be ap-
proached with a completely automatic pipeline. However,
this would require huge annotated databases depicting the
possibly occurring stitch types with various stitch neigh-
borhoods and distortions with yarns of different properties
(yarn thickness, reflectance behavior, etc.) under different
illumination conditions. As such databases, to the best of
our knowledge, are not yet publicly available, we refrain
from relying on a completely automatic approach to de-
tect stitch types across the image based on machine learn-
ing techniques. Instead we let the user guide the search for
stitch types by providing a single template for the individ-
ual stitch types occurring in the input image, in order to
keep user interaction as minimal as possible. For this pur-
pose, we implemented an easy-to-use interface that allows
the user to choose a sample for each stitch type by simply
drawing a rectangle over a stitch. In turn, considering the
possibly strong variations of the occurring stitches requires
a subsequently applied robust template matching technique.

4.3. Derivation of Stitch Localization Hypotheses

Finding certain stitch types in an image is complicated
because their appearance may significantly vary due to par-
tial occlusions by neighboring stitches, variances in the used
yarn types including their reflectance behavior, thickness
and hairiness, as well as variations induced by the individ-
ual knitting style during manufacturing, manifested in de-
formations like tight or loose stitches. To be able to find
stitch types across the image based on a given template,
handling distortions and partial matches becomes an essen-
tial prerequisite for the derivation of hypotheses of where
the respective stitch types are found.

Best Buddies Similarity (BBS) based template match-
ing [7] has been designed towards these goals of matching
distorted and partially occluded patterns and proven to out-
perform most previous techniques in this regard. We there-
fore apply this technique for the detection of hypotheses
for the individual stitch types such as knits or purls. Fol-
lowing Dekel et al. [7], the BBS between two point sets
P = {pi}Ni=1 and Q = {qi}Mi=1 extracted from a local im-
age region and a template is defined according to

BBS(P,Q) =
1

min(M,N)

N∑

i=1

M∑

j=1

bb(pi, qj , P,Q). (1)

Here,

bb(pi, qj , P,Q) =

1, if NN(pi, Q) = qj

and NN(qj , P) = pi

0, otherwise
(2)

acts as an indicator function influenced by the nearest neigh-
bor definition

NN(pi, Q) = argminq∈Qd(pi, q) (3)

and the distance measure

d(p, q) = ||p(A)
i − q(A)

j ||22 + λG||p(G)
i − q(G)

j ||22
+λL ||p(L)

i − q(L)
j ||22. (4)

In comparison to the original implementation [7], we ex-
tend the RGB-based appearance (A) and spatial distance (L)
within the patch with an additional gradient constraint (G),
that enforces similar gradients within the patches. Based on
several examples, we determined λG = 100 to be suitable
for our purpose, and otherwise follow the original imple-
mentation in using λL = 2 and a decomposition of image
and template into k × k patches with k = 3.

As a result, we obtain BBS likelihood maps that indicate
where the respective stitch types are (coarsely) localized.
Finally, we merge the likelihood maps obtained for the dif-
ferent stitch types to a resulting likelihood map that con-
tains the maximum likelihood of the individual stitch types
obtained per pixel as well as the corresponding most likely
stitch type. An example of these maps is shown in Figure 2.

Figure 2: User-specified stitch templates (left) and corre-
sponding likelihood maps (middle). The likelihood value is
indicated with the colorization, i.e. the lighter the spot the
higher the probability. The image on the right depicts the
maximum likelihood map including the assignments to the
stitch types (knit = orange, purl = blue).

4.4. Inference of Grid Structure of Stitches

The maximum likelihood map retrieved in the last step
contains the coarse per-pixel likelihood regarding the local
presence of respective stitch types. From this coarse local-
ization we need to determine the fine-grained arrangement
and the corresponding classes of the individual stitches. For
this purpose, we exploit the presence of an underlying grid-
like structure induced by the knitting process to account for
the fact that the spatial extension of the individual stitches
constrains their locations. In general, the latter will not be
equidistant and the grid may exhibit significant distortions
due to the non-ideal man-made manufacturing process or
the respective treatment of the fabric. To model this be-
havior, we associate the centers of the stitches with a set of
labeled points arranged in a 2D grid-like structure. These
points have to fulfill the following properties:

• Each point is assigned a high likelihood of represent-
ing a certain stitch type such as knits or purls (P1).

• Neighboring points must preserve a minimal distance
(on the order of magnitude of a stitch prototype) to
each other (P2).

• Adjacent points cannot be further apart than the maxi-
mal extension of a stitch type (P3).

• The set of points has the structure of a regular approx-
imately rectangular grid (P4).

Finding the optimal set of points fulfilling the above
stated properties can then be formulated in terms of a point
selection problem.

4.4.1 Stitch Localization as Point Selection Problem

To infer the positions of the centers of the individual
stitches, we solve a point selection problem that can be for-
mulated in terms of an integer linear program (ILP). Let P
denote the set of all possible points (pixels) of the input im-
age. Furthermore, let Popt be the point set corresponding
to the solution of our optimization problem. Denoting the

likelihood value of a pixel pi ∈ P to be assigned to a cer-
tain stitch type according to the likelihood map from the
previous step with score(i) and using the binary variables

oi =

{
0 if pi /∈ Popt

1 if pi ∈ Popt

(5)

that determine whether a point pi is assigned to the optimal
solution, we maximize the functional

∑

pi∈P
score(i) oi (6)

subject to the constraints following from the aforemen-
tioned properties P2, P3 and P4. To ensure the properties
P2 and P3, we determine for each pixel pj ∈ P two corre-
sponding rectangular regions Pmin

j ⊂ P and Pmax
j ⊂ P

that represent the uncertainty in the location of neighboring
points in the grid structure . Pmin

j has the width wmin and
the height hmin of the estimated minimal extension of the
stitch and Pmax

j has the widthwmax and the height hmax of
the estimated maximal extension. The computation of the
corresponding extension size values and the uncertainties is
discussed in Section 4.4.3. To account for the property P2,
we constrain each region Pmin

j to contain at most one op-
timal point p ∈ Popt and, to account for the property P3,
each region Pmax

j is constrained to have at least one point
p ∈ Popt, i.e.:

∑

∀i:pi∈Pmin
j

oi ≤ 1 and
∑

∀i:pi∈Pmax
j

oi ≥ 1 ∀pj ∈ P.

(7)
In order to force the points of the optimal solution to have

a grid-like structure (P4), we subdivide the input image into
r · c grid cells Gk ⊂ P with the width wi

c (1 − uw) and
the height hi

r (1 − uh), where wi and hi denote the width
and the height of the image respectively and c and r de-
note the number of rows and columns of the grid. These
are precomputed, as described in Section 4.4.2. With uw
and uh, we denote the uncertainties in the spatial extension
of the stitches in x and y direction respectively, which are
used here to allow the overlap of the cells. The values of
uw and uh are computed as described in Section 4.4.3. We
constrain the optimal solution to contain at least one point
in each grid cell. Furthermore, the number of points in the
solution is constrained to be equal to r · c. Both constraints
ensure (P4) while allowing for overlapping cells:

∑

∀i:pi∈Gj

oi ≥ 1 ∀Gj ∈ G, (8)

∑

∀i:pi∈P
oi = r · c. (9)

G denotes the set of all grid cells. To solve this ILP, we
use the Gurobi solver [12]. From the points contained in

the resulting optimal solution we construct the grid in the
following manner: We sort all points according to the x
coordinates of the pixels and assign to each row of the grid
c points. The stitch types assigned to the individual points
are stored in a matrix Mr×c.

4.4.2 Computing the Number of Rows and Columns

To determine the number of columns in the grid, we use the
position of one of the stitch samples selected by the user
during the initial step of the inference approach and select
the region around the stitch position within the likelihood
map. The height of the selected region corresponds to the
height of the selected template with some additional toler-
ance and the respective width is given by the image width.
To account for possible distortions, the height is allowed to
deviate up to uy in each direction from the center of the cho-
sen stitch sample (in our experiments, we use uy = 25%).
Using the data of this truncated map, we apply a similar ILP
formulation as before with slight changes. In contrast to the
optimization described before, the point variables consist of
the pixels from the chosen strip. The objective functional
and all constraints except for the row and the column num-
ber constraints remain unmodified. The number r of rows
is set to 1. Now we compute the possible minimal value of
the number of columns c as cmin = wi

Wmax
, where Wmax

denotes the maximal width of both templates, since we do
not yet know the correct stitch labelings of this strip. To ac-
count for possible stitch occlusions, we compute the maxi-
mal value of c as cmax = 2 wi

Wmin
, where Wmin denotes the

minimal width of both templates. We iterate through the
possible numbers of columns from cmin to cmax and divide
the resulting objective function of each optimal solution by
the current number of columns. Finally, we obtain the num-
ber c of columns corresponding to the largest value of the
normalized objective function as the optimal solution. The
number of rows is determined accordingly.

4.4.3 Uncertainty in the Locations of Adjacent Stitches

Because of occlusions and different deformations the
stitches vary from each other in size. Additional variations
are induced by the use of different yarn types and incon-
sistencies of the knitter. We implicitly take these aspects
into account by analyzing the strips extracted from the pre-
vious step to estimate uncertainties in the spatial extensions
of the stitches. First, we compute the average width wa and
height ha of the stitches taken from the four strips (two for
each sample). By computing the maximum absolute devi-
ation for the width (dw) and height (dh) separately, we get
the uncertainties uw = dw

wa
and uh = dh

ha
, yielding the val-

ues wmin = wa − uw and wmax = wa + uw for the width
and analogous values hmin and hmax for the height, which
are then used for the optimization.

For the computation of the number of rows and columns
we use the average of the actual sizes of the templates se-
lected by the user and set the values of uncertainties ux and
uy to be equal to 25% of the average template size each.
Note that large uncertainty values result in an increasing
number of variables during the optimization, hence signifi-
cantly increasing computational time.

4.5. Error Correction and Repeat Size Detection

After the inference of the underlying grid structure M
from the previous step, we aim at finding an intuitive re-
peating pattern of minimal size. For this purpose, we as-
sume that the knitting pattern of interest is at least twice
contained completely within the image, but unfinished re-
peats may occur as well. In order to find the pattern, we first
find the correct size and subsequently determine the starting
position of the pattern. As the extracted matrix M of stitch
types resulting from the grid optimization step might still
contain some wrongly recognized stitch types, the identifi-
cation of the pattern size in the matrix M as well as the po-
tentially required error correction have to be conducted si-
multaneously. While the size of the repeating structure may
be derived from the matrix M without labeling errors of the
stitch types using region growing procedures as proposed by
Wu et al. [33], the occurrence of errors in M instead forces
us to perform an exhaustive search over all possible repeat
sizes and to compute an error score for each possible repeat
size. Finally, the size with the least error score is assumed
to be the correct one.

Let r and c denote the number of the rows and columns
of a possible repeat. Assuming the presence of at least two
occurrences of the pattern in the image, we only consider
repeat sizes s = (r, c) that satisfy at least one of conditions
r ≤ R

2 and c ≤ C
2 . In more detail, we fully partitionM into

a set of non-overlapping submatrices Ms for each possible
repeat size s = (r, c), where each Ms

i ∈ Ms has the size s
(or smaller if depicting an unfinished repeat on a boundary).
The partitions are evaluated at different positions (m,n) of
M with m = r k and n = c h with k = 1, . . . , bRr c and
h = 1, . . . , bCc c, respectively. Subsequently, we align all
Ms

i ∈ Ms according to their indices and compute the ma-
trix Ms

max, which contains the stitch type with the maximal
occurrence for each equal index of the submatrices. Then,
we compute the Hamming distance Di between each Ms

i

and Ms
max. The sum of all Hamming distances yields the

overall distance Ds of the current repeat size s.
We consider the size and the underlying stitch type ma-

trixMs
max with the minimal distance as the resulting pattern

size. If there are several sizes with the same edit distance,
we take the one with the smallest value r + c, since other-
wise there is evidence for having another repeat withing the
repeat. In the case that we cannot determine the type with
maximal occurrence for an index position due to an equal

number of the stitch types at this position, we compare the
corresponding likelihood values of the pixels from which
these types were derived to determine the final type.

If the distance of the resulting optimal repeat deviates
from zero, errors have been detected in the matrix M . In
this case, the corresponding Ms

max is determined to have
the correct labelings of the stitches and all the submatrices
are corrected according to Ms

max.

4.6. Repeat Position Determination

Finally, the localization of an as intuitive as possible re-
peating pattern from the underlying grid structure and the
size of the repeating pattern has to be computed. In or-
der to select an intuitive pattern repeat, we take inspiration
from human perception and make use of two of the basic
laws in Gestalt theory [5]. The Law of Symmetry states
that symmetrical elements tend to be perceived as a unified
group. Taking this into consideration, we search for sym-
metry along the x-direction of the pattern. If there is a sym-
metry, we take it into account when selecting the starting
position of the repeat. If there is no symmetry in the struc-
ture of the repeat, we apply the Law of Prägnanz. Accord-
ing to this law, humans prefer simpler and ordered states
that require less cognitive effort and, hence, can be faster
processed than complex structures that, in turn, might have
to be reorganized or even further decomposed. In our case,
this corresponds to selecting the starting position of the pat-
tern from all the possible positions that leads to the least
amount of changes from one type of stitch to another when
computing the sum of the type changes from each two ad-
jacent rows and columns of the pattern in question. This
ensures that individual structures such as squares or circles
appearing in the pattern will not be broken.

5. Results and Discussion
Sample selection: In order to test our approach, we have

chosen 25 photos and scans that depict knitting samples
with different patterns and were produced with yarns of var-
ious types and colors. Eight of the photos were taken from
the internet, one photo depicts a machine knitted piece and
sixteen photos depict hand-made knitting fabrics. The fo-
cus on hand-made samples results from the fact that these
exhibit a higher degree of variation and, hence, are more
challenging than machine-knitted samples.

Performance analysis: Table 1 provides an overview
over the computation times as well as the problem sizes for
the four examples selected for this paper. More examples
with corresponding running times are shown in the supple-
mental material. Since the most time-consuming operations
were computations of the similarity maps with BBS and
solving for the optimum with the Gurobi solver [12], we
report the computation times only for these steps. The other
steps required only a negligible amount of time. All com-

putations were performed with an unoptimized implemen-
tation on an Intel(R) Core(TM) i7-5820K CPU with 3.30
GHz.

Table 1: The columns contain the image size (IS), the run-
times (in seconds) of BBS and ILP, as well as the size of
both the grid (GS) and the pattern (PS). eG and eP denote
the fraction of misclassified stitch types for the overall grid
and the pattern after error correction.

ID IS BBS ILP GS PS eG eP
1 673× 257 102.53 11.02 9×5 4×2 1/45 0
2 690×370 31.93 8.13 15×11 7×6 1/165 0
3 803×844 219.79 62.02 11×17 8×8 4/187 0
4 516×347 137.74 4.78 7×6 3×4 0 0

Visual quality: Figure 3 demonstrates the results of the
individual steps of the pipeline for four of the example tex-
tiles. For the example in the second row one stitch in the
input image (the sixth stitch from the left in the bottom row)
has actually been wrongly knitted (knit instead of purl).
This error was recognized and corrected by our method. To
obtain the shown realistic renderings (last column), we syn-
thesize yarns using the procedural model of Zhao et al. [35].
We then deform the yarn according to the discovered knit-
ting instructions and discretize the resulting fiber geometry
into a voxel grid, storing averaged densities and fiber ori-
entations per voxel [15]. This voxel-based representation is
then rendered using a volumetric path tracer [15]. Further-
more, Figure 4 shows results for the inferred grid structure
obtained when applying our method on worn clothing.

Susceptibility to template selection: To evaluate the ro-
bustness regarding the selection of templates for the individ-
ual stitch types, we performed a study where 10 people aged
from 10 to 67 years were asked to provide respective anno-
tations. The results do not exhibit significant differences, as
long as the testers follow the simple instruction of selecting
two templates, which look similar to other stitches of the
same type (Figure 1) (see supplemental material).

Table 2: Performance comparison of several template
matching techniques: The rows contain the fractions of mis-
classified pixels ePx, stitch types for the overall grid eG and
the pattern after error correction eP . For the computation of
the first measure we excluded pixels within a small band at
the transitions between different stitch types. In 32% of the
tests, the optimization based on the SAD likelihood maps
did not succeed in detecting the correct number of rows
and/or columns of the grid. These cases are excluded from
the reported values eG and eP for SAD.

SAD NCC DDIS BBS BBSg
ePx 0.422 0.453 0.216 0.342 0.194
eG 0.633 0.087 0.062 0.071 0.040
eP 0.268 0.056 0.051 0.046 0.029

Suitability of different template matching schemes:
We evaluated the suitability of different template matching
schemes for the generation of likelihood maps for the indi-
vidual stitch types. For this purpose, we compare our ex-
tended version of the BBS technique with additional gradi-
ent information (BBSg) to the normalized cross-correlation
(NCC), the sum of absolute differences (SAD), the original
BBS approach [7] without the proposed extension and the
deformable diverse similarity (DDIS) approach [26]. Ta-
ble 2 summarizes the respective results. In order to achieve
meaningful results, the resolution of the input image is re-
quired to be sufficient so that the minimal template size is
not smaller that 30× 30 pixels.

Computational efficiency: In order to find the final cen-
ter positions of stitches, we apply a global optimization
that is formulated as an ILP problem. As ILP problems
are known to be NP-hard, the computational times may be
impractical. In order to speed-up the inference of optimal
grids, which is particularly required for larger images, we
downsize the corresponding likelihood maps by the factor
of 0.5. The downsizing significantly decreases the compu-
tational time of the optimization, while still yielding similar
results as without downsizing (for the evaluation of scaling
we refer to the supplemental material).

Another possibility to decrease the computational time
is to choose some iterative locally optimal approach instead
of global optimization. For comparison, we use the like-
lihood and the stitch type assignments from the template
matching step as the starting point for a greedy strategy to
select neighboring stitch centers, where we also exploit un-
certainty of the template sizes. In a first step, we take the
maximum of the likelihood to find the the most likely loca-
tion of a stitch and define a minimum distance within which
no other stitch is allowed to occur depending on the tem-
plate uncertainty. After discarding the respective area in the
likelihood, we continue to search for the next highest like-
lihood, place a stitch center and again remove the region
from the likelihood. This process is iterated until no fur-
ther stitch center can be placed or the remaining likelihoods
are lower than a certain threshold t (we used t = 0.2). As
shown in Figure 3, this approach does not result in accept-
able stitch center hypotheses, due to the iterative local op-
timization. Furthermore, this method does not compute the
uncertainties automatically but requires their manual speci-
fication for each fabric sample individually. In contrast, our
global optimization technique yields stitch center hypothe-
ses at a higher quality.

Pattern search: In principle, once the size and cor-
rect labeling of the repeated pattern is found, one could
reproduce the initial knitted example, since the knitting is
done periodically. However, when knitting whole clothing
pieces, the borders of the piece should be appealing. Hence,
we need to identify the starting position of the correct or at

input knit map purl map greedy ours pattern rendering

Figure 3: From left to right: input image, likelihoods for both stitch types, stitch center hypotheses derived via a greedy
approach and grid structure inferred via our approach, corresponding knitting instruction (counting the rows from bottom to
top, empty cells correspond to knits in odd rows and purls in even rows while cells containing bars correspond to purls in odd
rows and knits in even rows) and rendering.

Figure 4: General, unrestricted setup of knitwear worn by a
person (left) with detected grid structures for some regions
of interest (right).

least of a nice pattern. In the supplementary material, we
illustrate the problem of choosing an intuitive pattern. With
our pattern search procedure we try to avoid breaking ex-
isting structures of the pattern, such as triangles or checker-
boards, thereby following the Gestalt principles.

Limitations: In this paper, we limit our approach to
the two fundamental stitch types: knit and purl. However,
the number of stitch types is not strictly limited to two.
In the supplemental material we also provide an example
with three stitch types. However, including stitch types (e.g.
holes) that deform the grid-like structure of the patten, re-
quires including additional constraints, which we want to
pursue in future work. Furthermore, if the input image
is of low quality or contains almost completely occluded

stitches, so that already the coarse localization does not
yield meaningful results, the optimization technique will
not produce the correct labeling.

6. Conclusion and Future Work
We have presented a novel practical framework for the

inference of the complicated structures of knitwear as well
as the corresponding knitting instructions from a single im-
age. Templates for individual stitch types, as provided by
the user, are roughly localized across the complete image
and the resulting stitch positions are subsequently refined
by optimizing the underlying grid structure within an in-
teger linear program. The size of the repeating pattern is
computed from the derived stitch labeling at the vertices
of the resulting grid. Subsequently, we apply the Law of
Symmetry and the Law of Prägnanz from Gestalt theory to
find an intuitive pattern repeat and derive the corresponding
knitting instruction. While our approach was demonstrated
to allow the derivation of the knitting instructions for sev-
eral different knitwears, there are still some open challenges
to be addressed by future research. Including further stitch
types into the framework as well as further reducing the de-
gree of user interaction based on the combination of a large
database of stitch types with their respective appearance
variations and machine learning techniques is a promising
avenue of research that we plan to pursue in future work.

References
[1] D. G. Aliaga, İ. Demir, B. Benes, and M. Wand. Inverse pro-

cedural modeling of 3D models for virtual worlds. In ACM

SIGGRAPH 2016 Courses, SIGGRAPH ’16, pages 16:1–
16:316, New York, NY, USA, 2016. ACM.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. ACM Transactions on Graphics
(Proc. SIGGRAPH), 28(3), Aug. 2009.

[3] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized PatchMatch correspondence algo-
rithm. In Proceedings of the 11th European Conference on
Computer Vision Conference on Computer Vision: Part III,
ECCV’10, pages 29–43, Berlin, Heidelberg, 2010. Springer-
Verlag.

[4] M. Bokeloh, M. Wand, and H.-P. Seidel. A connection be-
tween partial symmetry and inverse procedural modeling.
ACM Trans. Graph., 29(4):104:1–104:10, July 2010.

[5] S. Bradley. Design principles: Visual
perception and the principles of Gestalt.
https://www.smashingmagazine.com/2014/03/design-
principles-visual-perception-and-the-principles-of-gestalt/,
2014.

[6] J.-H. Chen, C.-S. Chen, and Y.-S. Chen. Fast algorithm for
robust template matching with M-estimators. IEEE Transac-
tions on Signal Processing, 51(1):230–243, Jan 2003.

[7] T. Dekel, S. Oron, M. Rubinstein, S. Avidan, and W. T. Free-
man. Best-buddies similarity for robust template matching.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2021–2029, June 2015.

[8] I. Demir, D. G. Aliaga, and B. Benes. Procedural editing
of 3D building point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2147–
2155, 2015.

[9] I. Demir, D. G. Aliaga, and B. Benes. Proceduralization for
editing 3D architectural models. In 2016 Fourth Interna-
tional Conference on 3D Vision (3DV), pages 194–202, Oct
2016.

[10] E. Elboher and M. Werman. Asymmetric correlation: A
noise robust similarity measure for template matching. IEEE
Transactions on Image Processing, 22(8):3062–3073, Aug
2013.

[11] G. C. Guarnera, P. Hall, A. Chesnais, and M. Glencross. Wo-
ven fabric model creation from a single image. ACM Trans.
Graph., 36(5):165:1–165:13, Oct. 2017.

[12] Inc. Gurobi Optimization. Gurobi optimizer reference man-
ual, 2016.

[13] Y. Hel-Or, H. Hel-Or, and E. David. Matching by tone
mapping: Photometric invariant template matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
36(2):317–330, Feb 2014.

[14] D. P. Huttenlocher, G. A. Klanderman, and W. J. Ruck-
lidge. Comparing images using the Hausdorff distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15(9):850–863, Sep 1993.

[15] W. Jakob, A. Arbree, J. T. Moon, K. Bala, and S. Marschner.
A radiative transfer framework for rendering materials with
anisotropic structure. In ACM Transactions on Graphics
(TOG), volume 29, page 53. ACM, 2010.

[16] S. Korman, D. Reichman, G. Tsur, and S. Avidan. FasT-
Match: Fast affine template matching. In 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2331–2338, June 2013.

[17] S. Lienhard, C. Lau, P. Müller, P. Wonka, and M. Pauly.
Design transformations for rule-based procedural modeling.
Comput. Graph. Forum, 36(2):39–48, May 2017.

[18] O. Pele and M. Werman. Robust real-time pattern match-
ing using bayesian sequential hypothesis testing. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(8):1427–1443, Aug 2008.

[19] K. Schröder, A. Zinke, and R. Klein. Image-based re-
verse engineering and visual prototyping of woven cloth.
IEEE Transactions on Visualization and Computer Graph-
ics, 21:188–200, 2015.

[20] L. Sharan, C. Liu, R. Rosenholtz, and E. H. Adelson. Rec-
ognizing materials using perceptually inspired features. In-
ternational Journal of Computer Vision, 103(3):348–371, Jul
2013.

[21] B. G. Shin, S.-Y. Park, and J. J. Lee. Fast and robust template
matching algorithm in noisy image. In 2007 International
Conference on Control, Automation and Systems, pages 6–9,
Oct 2007.

[22] A. Sibiryakov. Fast and high-performance template matching
method. In CVPR 2011, pages 1417–1424, June 2011.

[23] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-
marizing visual data using bidirectional similarity. In 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, June 2008.

[24] O. Stava, B. Benes, R. Mech, D. G. Aliaga, and P. Kristof.
Inverse procedural modeling by automatic generation of L-
systems. Comput. Graph. Forum, 29(2):665–674, 2010.

[25] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mźch, O. Deussen,
and B. Benes. Inverse procedural modelling of trees. Com-
put. Graph. Forum, 33(6):118–131, Sept. 2014.

[26] I. Talmi, R. Mechrez, and L. Zelnik-Manor. Template match-
ing with deformable diversity similarity. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1311–1319, 2017.

[27] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R.
Měch. Learning design patterns with bayesian grammar in-
duction. In Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology, UIST ’12, pages
63–74, New York, NY, USA, 2012. ACM.

[28] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and
V. Koltun. Metropolis procedural modeling. ACM Trans.
Graph., 30(2):11:1–11:14, Apr. 2011.

[29] Y. Tian and Srinivasa G. Narasimhan. Globally optimal es-
timation of nonrigid image distortion. International Journal
of Computer Vision, 98(3):279–302, Jul 2012.

[30] C. A. Vanegas, I. Garcia-Dorado, D. G. Aliaga, B. Benes,
and P. Waddell. Inverse design of urban procedural models.
ACM Trans. Graph., 31(6):168:1–168:11, Nov. 2012.

[31] M. Weinmann and R. Klein. Material recognition for effi-
cient acquisition of geometry and reflectance. In Computer
Vision - ECCV 2014 Workshops, pages 321–333. Springer
International Publishing, 2015.

[32] J. Weissenberg, H. Riemenschneider, M. Prasad, and L.
Van Gool. Is there a procedural logic to architecture? In
Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 185–192. IEEE, 2013.

[33] F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka. In-
verse procedural modeling of facade layouts. ACM Trans.
Graph., 33(4):121:1–121:10, July 2014.

[34] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner.
Stitch meshes for modeling knitted clothing with yarn-level
detail. ACM Trans. Graph., 31(4):37:1–37:12, July 2012.

[35] S. Zhao, F. Luan, and K. Bala. Fitting procedural yarn
models for realistic cloth rendering. ACM Transactions on
Graphics (TOG), 35(4):51, 2016.

	I Introduction
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 List of Publications
	1.4 Thesis Outline

	2 Background and Related Work
	2.1 Appearance Modeling of Fabrics
	2.2 Data Compression Through Network Architecture Adjustment
	2.3 Geometric Modeling of Fabrics

	II Publications
	3 Efficient structuring of the latent space for controllable data reconstruction and compression
	3.1 Summary of the Publication
	3.2 Author Contributions of the Publication

	4 Inverse Procedural Modeling of Knitwear
	4.1 Summary of the Publication
	4.2 Author Contributions of the Publication

	5 Neural Inverse Procedural Modeling of Knitting Yarns from Images
	5.1 Abstract
	5.2 Introduction
	5.3 Related Work
	5.4 Generation of synthetic training data
	5.4.1 Hierarchical yarn model
	5.4.2 Flyaway generation
	5.4.3 Further Implementation Details
	5.4.4 Extensions to State-of-the-art Yarn Generator
	5.4.5 Yarn dataset

	5.5 Inference of yarn characteristics from input images
	5.5.1 Inference of yarn parameters

	5.6 Experiments
	5.6.1 Parameter inference on real data
	5.6.2 Limitations

	5.7 Conclusions

	Appendices
	5.A Inferred yarn parameters
	5.B Yarn sampler

	III Conclusion
	6 Conclusion
	6.1 Contributions and Impact
	6.2 Limitations and Future Work

	Bibliography
	List of Figures
	List of Tables

	IV Appendix
	Publication: "Efficient structuring of the latent space for controllable data reconstruction and compression"
	Publication: "Inverse Procedural Modeling of Knitwear"

