
Cell Layout Routing

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Vorgelegt von

Benjamin Klotz

aus

Bonn

Bonn, April 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Herr Professor Dr. Stefan Hougardy
Zweitgutachter: Herr Professor Dr. Stephan Held

Tag der Promotion: 07.07.2023
Erscheinungsjahr: 2023

Acknowledgments

I want to thank a number of people who enabled me to write this thesis.
First and foremost, I want to thank Prof. Dr. Stefan Hougardy for his excel-
lent guidance, great support as a supervisor, and helpful feedback on early
versions of this thesis. I also thank the other professors at the institute for
their insights and ideas.

My thanks go out to my colleagues at IBM, who provided the essential
integration of BonnCell into the IBM flow and steered the development of
BonnCell through continued feedback, new ideas, and expert insights. I am
especially grateful for the heartwarming and kind working conditions that
Tobias Werner, Dr. Iris Leefken, and Gerhard Hellner provided.

The BonnCell project is a team effort, and I want to thank the many
students that participated in its development, including Silas Rathke, Lars
Friederichs, Andreas Gwilt, Marena Richter, Iris Hebbeker, Jakob Gier-
schmann, and Armin Settels. My special thanks go out to Malte Schürks,
who, while still a student, already took incredibly good care of countless as-
pects of the development process and advanced BonnCell in many areas. I
am grateful to him for seamlessly taking over this project, which allowed me
to finish my thesis, and for proofreading parts of it.

Last but not least, I want to thank my colleagues at the institute for
the productive and friendly working environment they provided. I especially
want to thank Benjamin Rockel and Dr. Jannik Silvanus for helping out in
the development of BonnCell when it was most needed.

Contents

1 Introduction 1
1.1 The cell layout problem . 1
1.2 Strategies for solving the cell layout problem 3

2 Previous Work 5
2.1 Placement . 5
2.2 Routing . 6

3 Modeling the Cell Layout Routing Problem 9
3.1 Introduction . 9

3.1.1 Defining the routing problem 9
3.1.2 Complexity and algorithm strategy 10

3.2 Modeling constraints in the ILP 11
3.2.1 Modeling implications 11
3.2.2 Modeling constraint disjunctions 13
3.2.3 Modeling Steiner tree packing 14

3.3 Motivation: The need for reusable design rule encodings . . . 24
3.3.1 Traditional routing model 24
3.3.2 Requirements of the new implementation 27
3.3.3 More observations . 28

3.4 Partial Polygons . 29
3.5 A complete routing model . 31

3.5.1 Defining a ground set of partial polygons 31
3.5.2 Connectivity and shape integrity 45
3.5.3 Implementing design rules 45
3.5.4 Runtime comparisons 54

3.6 Conclusion . 56

4 Pin Accessibility in Cell Layouts 57
4.1 Introduction . 57
4.2 Notation . 58

vi CONTENTS

4.3 Previous work . 59
4.4 An abstract pin accessibility score 61
4.5 Pin accessibility in a modern technology node 63
4.6 Computing the pin accessibility score 66
4.7 Optimizing layouts for pin accessibility 69

4.7.1 Two pin access points per net are sufficient 71
4.8 Practical results . 74
4.9 Conclusion . 81

Bibliography 85

Chapter 1

Introduction

1.1 The cell layout problem

The design of modern computer chips is an immensely complex task that is
typically broken down into many subproblems. One of these is the cell layout
problem, which is the task of generating a layout for a given input schematic.
A schematic, as displayed in fig. 1.1.1, describes a set of transistors and
their interconnections, which are called nets. The goal now is to generate a
corresponding layout, which is an instruction of how to physically implement
the circuit on the chip. A cell layout is given by a set of rectilinear shapes,
all associated to a specific layer (see fig. 1.1.2). These shapes indicate either
the positions and properties of the transistors or describe the small metal
wires that are to be created during the lithographic manufacturing process
to physically realize the nets. During the further steps of the chip design
process, this layout will be instantiated many times throughout the chip.

Cell layouts are created for a certain manufacturing process, also called
a technology node. Due to physical limitations and the extreme complexity
of the manufacturing process, the shapes that make up a cell layout must
adhere to a wealth of restrictions referred to as design rules. For exam-
ple, design rules govern spacing requirements between shapes on the same
layer, which prevent shorts in the resulting physical circuit. Modern technol-
ogy nodes typically come with a design rule manual that defines dozens to
hundreds of design rules for each layer. Throughout the lifetime of a tech-
nology node, design rules are sometimes updated, e.g. because experiments
have shown that some design rules can be relaxed without causing problems
during manufacturing.

The cell layout problem is subject to a multitude of concurrent objec-
tive functions, which further increase its complexity. Typically, cell layouts

1

2 CHAPTER 1. INTRODUCTION

B

A

OUT

VDD

VSS

INT

Figure 1.1.1: Visualization of a schematic of a NOR2 cell. This cell com-
putes for the two input nets A and B the logical function (A NOR B), which
can be obtained at the output net OUT. Three of the four transistors (black
double lines) are connected to either the power supply (VDD) or ground
(VSS).

VDD

OUT

INT

AVSS B OUT VSS

Figure 1.1.2: A layout corresponding to the NOR2 schematic above.
Shapes are colored by layer. Some shapes are drawn with transparency for
better overall visibility. Wires on adjacent layers are interconnected by gray
vias. On the lowest layers, shape triples consisting of an orange, a purple,
and another orange shape form transistors. Here, the two orange shapes are
the source and drain contacts and the purple shape between them is the gate
contact of the transistor. For example, the transistor formed in the lower
left corner by the shapes marked with VSS, B, and OUT corresponds to the
lower left transistor in the schematic above. Note that both orange and pur-
ple shapes can belong to multiple transistors. The blue shapes connected to
the purple gates of net A and B do not interconnect anything, but serve as
access points (called pins) for connections to other cells.

1.2. STRATEGIES FOR SOLVING THE CELL LAYOUT PROBLEM 3

should be optimized for size and timing characteristics, but should also take
into account e.g. electromigration and soft design rules that increase yield if
obeyed, but do not have to be fulfilled at all costs.

1.2 Strategies for solving the cell layout

problem

The set of cells that is used in the creation of a chip is called library. For
each technology node, typically only a few different layouts are generated for
each cell in a library, which are then reused with only slight modifications
for all chips that are created using this technology node. There have been
multiple strategies to obtain the layouts for a library in a new technology
node.

One strategy commonly employed is the migration of layouts. In the evo-
lution of technology nodes, there are often many similarities from one node
to the next. Additionally, the set of cells in the library does not vary much.
In many cases, this allows the cell layouts from one technology node to be mi-
grated into layouts for the next node simply by scaling previous layouts and
manually solving any design rule violations that occur in the new layouts.
There have been many projects that aim to automate this migration process.
For example, they provide automated fix-ups for design rule violations intro-
duced in the migration step [HCN09] or introduce additional whitespace if
the migrated cells have too many pins in a too small area [SJKS17].

The layouts that arise from such a migration retain many of the properties
of the previous layouts. This is typically desirable because, if the previous
layouts were optimized for a specific objective, the new layouts typically also
perform well in that regard. However, it can sometimes be beneficial or
necessary to redesign layouts from scratch, e.g. because the migration did
not yield optimal results, objective considerations changed, or a migration
was not possible due to major changes in the design rules.

For a long time, such redesigned cell layouts have been created manually
by human experts. However, due to the ever-increasing complexity of the
design rules, there have been several projects that aim to automatically gen-
erate layouts from scratch, solely based on the technology node at hand and
the cell’s schematic.

One such automatic layout tool is BonnCell, which is being developed at
the Research Institute for Discrete Mathematics in Bonn in close cooperation
with our industry partner IBM. The goal of BonnCell is to fully automate the
cell design process. Designers at our industry partner can define a schematic

4 CHAPTER 1. INTRODUCTION

and additional parameters, such as the position of pins or adjustments to the
objective function, and BonnCell will generate optimized layouts that obey
all design rules.

Due to the enormous complexity of the cell layout problem, BonnCell
and most other automatic layout tools employ a two-stage approach. First,
during the placement phase, the sizes and positions of the transistors are
chosen. Then during the routing phase, the shapes that interconnect the
transistor contacts are generated.

In this work, we will explore BonnCell’s routing engine in detail. In the
first part of chapter 3 we discuss the Cell Layout Routing Problem and how it
can be modelled using an integer linear programming formulation (ILP). We
compare the employed multicommodity flow ILP formulation to its extension,
the multi-root multicommodity flow formulation, and prove that the latter
has, in general, a worse integrality gap. In the second half of chapter 3, we
introduce a streamlined methodology that simplifies the laborious task of
implementing and updating the large number of design rules in BonnCell.
To this end, we introduce the notion of partial polygons, which will act as
a common model for all shapes that make up a layout. Based on this, we
create a design rule framework that allows for efficient encoding of design
rules by mimicking structures found in design rule manuals.

In chapter 4, we extend BonnCell’s routing engine to incorporate another
objective function. Here, our goal is to find layouts with improved pin acces-
sibility, that is, layouts in which the pins are spaced out and enlarged to allow
for simpler and more efficient interconnections between cells. We examine
pin accessibility scoring formulations used in the literature and derive a new
scoring formulation that is optimized for incorporation into our routing ILP
formulation. We prove that computing our new scoring formulation is NP-
hard, but observe that it can be efficiently computed in practice by using a
SAT formulation. Additionally, we prove that it can be encoded concisely in
the ILP, which allows us to compute pin accessibility optimized cell layouts
within adequate runtime.

Chapter 2

Previous Work

There have been many publications about the automatic generation of cell
layouts in chip design. We try to give an overview of the different strategies
employed.

While most projects separate the cell layout generation into a placement
and routing phase, there have been a few attempts to solve them simultane-
ously. In [Tho19] the entire cell layout problem is formulated as one large
ILP. This allows to find optimum cell layouts with respect to netlength, albeit
only for smaller instances due to runtime issues on larger instances. A sim-
ilar approach is pursued in [Lee+21; Che+21; CHLL21] and related works.
Instead of a MIP formulation, they encode the entire problem using satis-
fiability modulo theory (SMT), an extension to the well known SAT-based
mathematical programming. With this, they are able to generate layouts for
entire libraries within hours that optimize several objective functions simul-
taneously.

2.1 Placement

The task of the placement phase is to find positions and sizes for all the
transistors in the schematic, such that, together with the subsequent routing
step, an optimized layout is produced. With increased transistor density
in recent technology nodes, not all combinations of transistor positions and
sizes are routable. Therefore, most approaches incorporate some form of
routability test or estimation during the placement phase.

In recent FinFET based technology nodes [23], transistors cover a rectan-
gular area whose x and y coordinates are gridded. This enables the placement
approach employed in BonnCell, namely a branch&bound strategy that can
enumerate all possible combinations of transistor positions and sizes. Par-

5

6 CHAPTER 2. PREVIOUS WORK

Figure 2.2.1: The left side depicts a routing graph. Edges and vertices are
colored by layer. Solid lines indicate active edges. The right side shows the
shapes that the active edges get translated into.

tial solutions and candidates for the final solution are tested for routability
by calling BonnCell’s routing phase as a subroutine. A detailed description
of BonnCell’s placement engine and its interaction with the routing engine
can be found in [Cre19]. A related approach is presented in [Li+19], where
dynamic programming is used to explore the entire placement search space.

There have been several other approaches to solve the placement phase.
These include ILP formulations (e.g. [Lu+15]), SAT based approaches (e.g.
[SR19]), and many heuristic approaches (e.g. [Wu+13]).

2.2 Routing

The task of the routing phase is to generate rectilinear shapes that implement
the cell’s internal wiring. The created shapes need to interconnect all nets
correctly without producing any shorts or opens, and additionally the cre-
ated shapes should adhere to all design rules. The common approach pursued
by most projects is to define a routing graph, whose vertices and edges are
embedded into the three-dimensional cell area. After solving the Steiner tree
packing problem (STPP) in this routing graph to create one Steiner tree per
net, those vertices and edges assigned to a net are transformed into shapes
(see fig. 2.2.1). The underlying routing graph is typically chosen in a way
that implicitly avoids most design rule violations. This way, most projects
avoid encoding all design rules explicitly. Some design rules that are not im-
plicitly obeyed by the model are explicitly obeyed while solving the STPP,
by forbidding certain combination of vertices and edges. Additionally, many
projects clean up some design rule violations that still occur after the trans-
lation from vertices and edges into shapes by a heuristic post-optimization
step.

For the various steps of this procedure, several strategies have been em-
ployed. The design rule aware Steiner Tree packing is done e.g. by an SMT

2.2. ROUTING 7

formulation in [Che+21], a machine learning approach in [Ho+23], or an
ILP-based approach in [Li+19].

For the post-optimization step that cleans up remaining design rule vi-
olations, special algorithms have been proposed for several types of design
rules. For example, [Xu+15] uses a mixed integer programming formulation
to solve design rule violations arising from complex double patterning rules.
Recently, there have been some publications ([RFK21; Ho+23] and related
works) that use a machine learning approach to fix up design rules. A neu-
ral network that is trained on predesigned layouts is able to fix design rule
violations in newly generated cell layouts. Such an approach is independent
of the technology node and avoids the effort to create new post-processing
routines for every new technology node.

All of these approaches have the following problem. During the solving
of the STPP, design rules are only considered in terms of relatively coarse
edges. Due to the large number of design rules, not all design rules can be
represented exactly by forbidding combinations of edges to be active at the
same time. An example of such a situation is visualized in fig. 2.2.2. For
such a design rule, there are now two options. Either, the rule is translated
into edge restrictions that are pessimistic, i.e. the solution space is artifi-
cially reduced. Or, the rule is translated into edge restrictions with some
optimism, relying on the post-processing to fix potential remaining design
rule violations. However, post-processing may fail to resolve all design rule
violations, especially in cases where multiple conflicts have to be resolved
simultaneously.

In the end, this can lead to suboptimal solutions or even to the failure
to find any routing for a placement that is, in fact, routable without these
artificially limitations. BonnCell tries to avoid these effects by encoding
shapes and design rules as exact as possible in its ILP formulation. See
[Cre19] for an example of how this has been done in the context of line end
trim shapes. This exact modelling approach has several advantages.

• The shapes generated by BonnCell’s ILP formulation contain virtually
no design rule violations and do not need to be post-processed.

• The approaches presented above typically need to manually translate
the design rules from the design rule manual into implications in terms
of forbidden vertices and edges in the routing graph. This translation
also needs to take into account the capabilities of the post-processing
step. BonnCell’s streamlined process to define design rules that we
propose in chapter 3 automates most of this manual translation effort
between the design rules and the routing model.

• Occasionally, BonnCell can produce innovative layouts that even expe-

8 CHAPTER 2. PREVIOUS WORK

λ

Figure 2.2.2: Depicts two blue shapes that are induced by the active (solid)
edges of the routing graph. If we assume that a design rule requires that the
space indicated by λ must be a bit larger than depicted, this is an example
of a design rule that cannot be exactly represented in terms of allowed or
forbidden edge combinations. One can now either forbid this combination of
active edges, which would reduce the solution space. Or, one can rely on the
post-processing step to slightly enlarge the shapes to fix the design rule vio-
lation. However, if multiple of these rule violations occur in close proximity,
it might not be possible to resolve all design rule violations simultaneously
by only a local post-processing step.

rienced layout designers did not come up with. Even human experts
typically do not know the entire design rule manual by hand, but de-
sign layouts based on patterns they saw before. When switching to new
technology nodes, new patterns can become feasible and by closely ad-
hering to the design rules, BonnCell can help to find such innovations.

Despite its many advantages, this exact modeling approach has one major
drawback, namely its large implementation effort. Encoding shapes and their
many design rules in an ILP is difficult. And since design rules change
periodically, it requires a lot of effort to keep BonnCell up-to-date. The next
chapter addresses this issue by introducing a novel modelling approach for
BonnCell’s routing engine.

Chapter 3

Modeling the Cell Layout
Routing Problem

3.1 Introduction

The goal of this chapter is to provide a complete overview of the models
and implementation techniques employed in BonnCell’s routing engine. It
is structured as follows. We first describe the Cell Layout Routing Problem
and its main challenge, namely the large amount of ever-changing design
rules. We explore practical and theoretical aspects of its implementation as
an integer linear program (ILP) in section 3.2. Our main contribution in
this chapter is the introduction of a new way to model BonnCell’s routing
phase. The motivation for this change is outlined in section 3.3. In short,
we want to reduce the large programming effort that used to be required
to keep BonnCell up-to-date with changes in the design rules. To this end,
we first introduce a common model in section 3.4 that is able to unify the
representation of all the shapes required in a cell layout. Finally, based on
this unified model, we introduce a streamlined process to encode design rules
in BonnCell in section 3.5 that significantly simplifies the implementation
process.

3.1.1 Defining the routing problem

Let us define the Cell Layout Routing Problem. For this, we start with some
definitions.

Definition 3.1. We define a metal shape to be a tuple (p, l), where p is a
rectilinear polygon in Z2 without self-intersections or holes, and l is a layer.

9

10 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

Remark. The restriction of metal shapes to discrete coordinates is present
in all technology nodes we have observed so far. Typically, the design rule
manual requires metal shape coordinates to be a multiple of a base-unit,
which is defined as 0.25 nanometers in current state-of-the-art technology
nodes.

Definition 3.2. We say two metal shapes (p1, l1), (p2, l2) are connected, if
p1 intersects p2 and l1 and l2 are the same or adjacent layers. Additionally,
we call a set of metal shapes R = { (p1, l1), . . . , (pk, lk) } connected, if the
following undirected connectivity graph G is connected, namely G = (V,E),
with V := R and E := { (v, w) ∈ V 2 | v ̸= w, v and w are connected }.
Definition 3.3. We define a pin to be a set of metal shapes and a net to
be a set of pins. Sometimes we refer to pins as terminals.

Definition 3.4. A routing RN of a net N is a connected set of metal shapes,
so that one shape of each pin of N is connected. More precisely, we require
for all P ∈ N that there exists a pair of metal shapes (p1, l) ∈ P , (p2, l) ∈ RN

such that p2 completely covers p1.

Definition 3.5. A design rule is a function f that decides if given set of
routings {RN1 , . . . , RNk

} for nets {N1, . . . , Nk } is feasible or infeasible.

Cell Layout Routing Problem (CLRP)
Instance: • Allowed layers L

• Feasible routing area A = [xmin, xmax]× [ymin, ymax] ⊂ Z2

• Nets N = {N1, . . . , Nk }
• A set of design rules

Task: For each net N ∈ N , find a routing RN on layers L. The
resulting set {RN | N ∈ N } has to be feasible according to
all design rules.
If no such solution exists, output ”Infeasible”.

For each technology node, there typically only exists a small number of
combinations of allowed layers, cell heights [ymin, ymax], and design rules, that
occur in real-world CLRP-instances. It is common to define one specialized
algorithm for each of these combinations. We will therefore from now on
assume allowed layers, cell height [ymin, ymax], and design rules to be constant,
leaving only the cell width [xmin, xmax] and nets as input for the CLRP.

3.1.2 Complexity and algorithm strategy

The CLRP is very hard to solve in practice. Its main source of complexity
comes from the large set of design rules, which are difficult to handle for both

Ben

3.2. MODELING CONSTRAINTS IN THE ILP 11

human and algorithmic solvers. These design rules serve two main purposes.

• Design rules are defined by the foundry, which will eventually produce
the chip, to ensure that the desired layouts can be manufactured and
the resulting chip works as intended. E.g. metal shapes require a min-
imum size to be manufacturable and metal shapes of different nets
require a certain minimum spacing in order to prevent shorts.

• Design rules can also be introduced to simplify and structure the entire
chip design process. E.g. cell heights are typically limited to a few dis-
crete values, so that cells can be packed easily and efficiently. Similarly,
on many layers the feasible positions of metal shapes are limited. This
ensures that multiple cells can be easily connected with each other and
also simplifies some of the foundry’s design rules.

Modern cell layouts must adhere to hundreds of design rules that are
changed and updated periodically, most notably when the manufacturing
process changes. BonnCell strives to create layouts that adhere to all de-
sign rules. The large number of ever-changing rules make it too great of an
effort to design combinatorial algorithms that solve the LCRP exactly. In-
stead, defining an integer linear program (ILP) and solving it using a general
purpose ILP solver has proven to be a more practical approach. However,
defining such an extensive ILP is still a challenging task.

3.2 Modeling constraints in the ILP

When writing complex ILPs, great care has to be taken that the resulting
ILP formulation is both correct and can be solved efficiently. Furthermore,
plain ILP constraints are often difficult to understand and can obfuscate
the logical reasoning they represent. To mitigate these problems, in this
work we typically describe ILP constraints using a more abstract syntax
than plain ILP constraints. Nevertheless, these abstract descriptions can be
translated into ILP constraints. In the following, we will describe some of
these abstractions.

Remark. For the same reasons outlined above, we also use a similar ab-
straction layer in our ILP generating code.

3.2.1 Modeling implications

Most prominently we will be using the notion of implications. In the follow-
ing, xi will denote integer variables with bounds li ≤ xi ≤ ui, z will denote a

12 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

binary “activation” variable, and λi, θ will be constants. Implications of the
form

(z = 1) =⇒
(

k∑

i=1

λixi ≥ θ

)
(3.1)

can be modeled as an ILP constraint as follows:

(
k∑

i=1

λixi ≥ θ +M(1− z)

)
(3.2)

where

M := m− θ

with

m :=


 ∑

i∈{ 1,...,k } where λi>0

λili


+


 ∑

i∈{ 1,...,k } where λi<0

λiui


 .

If z = 1, the right-hand side in eq. (3.2) equals θ, which yields exactly the
desired constraint. Conversely, if z = 0, the right-hand side in eq. (3.2)
equals (θ + M), which is the minimum value that the left-hand side can
attain for any choice of the xi, i.e. the entire constraint is trivially fulfilled.
The method is known as the big-M method (see [Rub11], not to be confused
with the simplex big-M method [22a]) and have been used in BonnCell for a
long time (see [Cre19]).

Note that we can chain the big-M method multiple times to model con-
straints that depend on multiple activation variables. In this case, it does
not matter in which order the big-M method is applied to the activation
variables, because the value of M remains unchanged after each application
of the method. To see this, let us compute the M values when applying the
big-M method twice for binary variables z1 and z2.

(z2 = 1) =⇒
[
(z1 = 1) =⇒

(
k∑

i=1

λixi ≥ θ

)]

⇔ (z2 = 1) =⇒
(

k∑

i=1

λixi +M1z1 ≥ θ +M1

)

⇔
k∑

i=1

λixi +M1z1 ≥ θ +M1 +M2(1− z2)

3.2. MODELING CONSTRAINTS IN THE ILP 13

Here, by construction we have

M1 = m1 − θ

M2 =

{
m1 − θ −M1 if M1 > 0

m1 +M1 − θ −M1 = m1 − θ = M1 if M1 ≤ 0

We can assume that M1 ≤ 0 and thus M2 = M1. Otherwise, we would

have m1 > θ which means that the original constraint
(∑k

i=1 λixi ≥ θ
)
was

trivially fulfilled anyway, regardless of the values of the variables, in which
case we omit the entire construction.

Real world constraints often require chaining implications. For example,
a design rule may require that a constraint C holds, but only if conditions A
and B are met. Care has to be taken not to chain the big-M method more
times than necessary, because this can lead to ILP formulations with a large
integrality gap, which are typically difficult to solve. In the following section
we describe such an example.

3.2.2 Modeling constraint disjunctions

Another common technique for modeling real world problems, such as design
rules, as ILPs are constraint disjunctions. A constraint disjunction is a family
of sets of constraints C1, . . . , Ck with the semantic that only the constraints of
one set Ci have to be fulfilled. This construction is frequently used to model
equally valid choices (e.g. “either go left i.e. fulfill C1, or go right i.e. fulfill
C2”). Oftentimes, constraint disjunctions occur together with an additional
binary activation variable z in the form:

(z = 1) =⇒ (One of the sets of constraints C1, . . . , Ck has to hold)

Such a requirement could be modeled in the ILP by adding variables and
constraints as follows.

Algorithm 1:

1 Create binary variables a1, . . . , ak
2 Add constraint (a1 + · · ·+ ak = 1)
3 for all i ∈ { 1, . . . , k } and constraint c ∈ Ci do
4 Add constraint ((z = 1) =⇒ ((ai = 1) =⇒ c))
5 end

However, using a small reformulation, we can eliminate one of the implica-
tions.

14 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

Algorithm 2:

1 Create binary variables b1, . . . , bk
2 Add constraint (b1 + · · ·+ bk = z)
3 for all i ∈ { 1, . . . , k } and constraint c ∈ Ci do
4 Add constraint ((bi = 1) =⇒ c)
5 end

The two ILP formulations do not differ in their integer feasible solutions.
But, depending on the constraint disjunction C1, . . . , Ck, algorithm 1 may
yield a weaker ILP relaxation than algorithm 2. This can be seen in the
following example.

Assume that all C1, . . . , Ck contain the constraint (x ≥ 1) for some binary
variable x. Then the formulation in algorithm 1 would yield the constraints
(a1 + · · ·+ ak = 1) and (x ≥ aj + z − 1) for j = 1, . . . , k. Algorithm 2 would
yield the constraints (b1 + · · ·+ bk = z) and (x ≥ bj) for j = 1, . . . , k.

In the LP relaxation where the variables need not be integer, let us ex-
amine the lowest possible value for x. In the first formulation, the low-
est possible value for x is attained by setting a1 = · · · = ak = 1/k, which
yields x ≥ 1

k
+ z − 1. In the second formulation, it is attained by setting

b1 = · · · = bk =
z
k
, which induces a lower bound x ≥ z

k
. Note that for k ≥ 2,

0 < z < 1 we have
(
1

k
+ z − 1

)
− z

k
=

k(z − 1) + 1− z

k
≤ 2(z − 1) + 1− z

k
=

z − 1

k
< 0

and therefore the second formulation yields a stronger bound on x.

3.2.3 Modeling Steiner tree packing

3.2.3.1 Multicommodity flow formulation

At its core, our ILP will solve an instance of the vertex-disjoint Steiner tree
packing problem on a predefined routing graph G = (V,E), in order to solve
the CLRP. Each terminal of a net will be represented as a set of vertices in
G. For simplicity of notation, in the following we assume that each terminal
is represented by a single vertex. To model the Steiner tree packing problem
in the ILP, we will use the multicommodity flow formulation that has already
been described in [GM93; HK12; vCHSW19]. It uses O(|E|+ |V |) variables
and constraints for each terminal of a net. While its exact integrality gap
is unknown, [Vic18] has shown it lies between 6

5
and 2. Closely related

versions of this formulation have already been studied in [Won84; Cho94].
[Pol03] generalized the multicommodity flow formulation we present here to

3.2. MODELING CONSTRAINTS IN THE ILP 15

a scheme which can gradually improve the integrality gap, at the cost of
increasing the size of the ILP formulation.

The multicommodity flow ILP formulation works as follows. For each
net n, we will mark one of its terminals as root troot,n ∈ n. We denote
by n̄ := n \ { troot,n } the non-root terminals of net n. The ILP formulation
will model a net’s connectivity by sending a unit-flow from the net’s root
terminal troot to all other terminals. Let us define the set of directed edges as−→
E := { (v, w) | v, w ∈ V and { v, w } ∈ E }. The ILP formulation is chosen
as follows.

Variables:

xn
v ∈ {0, 1} ∀v ∈ V and net n Vertex usage variables

xn
e ∈ {0, 1} ∀e ∈ E and net n Edge usage variables

−→x n
e ∈ {0, 1} ∀e ∈ −→

E and net n Directed edge usage variables
−→
f n

e,t ∈ {0, 1} ∀e ∈ −→
E , net n, t ∈ n̄ Directed flow variables

Objective

min

(∑

e∈E
cost(e, n) xn

e

)
+

(∑

v∈V
cost(v, n) xn

v

)

Constraints:
∑

net n

xn
v ≤ 1 ∀v ∈ V (3.3)

−→
f n

e,t ≤ −→x n
e ∀e ∈ −→

E , net n, t ∈ n̄ (3.4)

−→x n
(v,w) +

−→x n
(w,v) ≤ xn

e ∀ { v, w } = e ∈ E, net n

(3.5)

xn
v ≥ xn

e ∀e ∈ E, v ∈ e, net n (3.6)

∑

w∈Γ(v)

−→
f n

(v,w),t −
−→
f n

(w,v),t =





1 v = troot,n

−1 v = t

0 else

∀v ∈ V, net n, t ∈ n̄ (3.7)

We refer to this ILP as the multicommodity flow formulation or
mcf formulation. In a solution to the mcf ILP, the edge and vertex usage

16 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

variables with value 1 will form Steiner trees for each net. Constraints 3.3 will
ensure that these Steiner trees are vertex and thus edge disjoint. Constraints
3.7 will ensure that the flow variables indeed form a flow and constraints
3.4 and 3.5 ensure that active flows induce edge usages. Here, constraints
3.5 utilize that due to the costs being non-negative, there exists an optimum
solution in which the active flow variables do not form a cycle, which implies
that an edge cannot be used in both directions at the same time. Finally,
constraints 3.6 enforce integrity between the vertex and edge usage variables.

3.2.3.2 Corridors

In a typical CLRP instance, for most nets the bounding box of their ter-
minals only cover a small portion of the feasible routing area. In [Cre19],
this is leveraged to significantly reduce the size of the multicommodity flow
formulation by using so-called routing corridors. For each net n and termi-
nal t ∈ n̄, only the flow variables for edges are generated, which lie in the
terminal’s routing corridor. The routing corridor is defined as a slightly en-
larged bounding box of t and troot,n. The total sizes of these bounding boxes
are reduced by choosing troot,n as a terminal that lies “in the middle”. This
choice of corridors is visualized in the left half of fig. 3.2.1.

Of course, this approach limits the solution space and can thus reduce
the solution’s quality or even fail to find any solution for feasible CLRP
instances. However, tests in [Cre19] have shown that the solution quality is
mostly unaffected by this limitation. At the same time, the limited solution
space and the much smaller ILP formulation significantly improve solving
speeds.

3.2.3.3 Multiple roots

In order to further reduce the number of variables and constraints in the mul-
ticommodity flow formulation, we introduce the idea to use multiple roots.
Instead of having a single root terminal that sends flow to all other terminals
for each net n, we precompute an arborescence Rn on the terminals of n.
Each terminal s ∈ V(Rn) will now act as the root terminal for its descen-
dants Γ+(s), i.e. each edge (s, t) ∈ E(Rn) will induce one s − t flow. As in
the previous approach, we limit each s − t flow to a routing corridor. Of
course, this approach can restrict the solution space even further. At the
same time, fig. 3.2.1 illustrates how a well-chosen arborescence Rn can again
significantly reduce the size of the ILP formulation, which in turn decreases
solving times. Using this notion, the previous formulation can be described
as choosing Rn as a star.

3.2. MODELING CONSTRAINTS IN THE ILP 17

1) 2)

Figure 3.2.1: Both images visualize a net with 7 terminals (small col-
ored squares) and their corresponding routing corridors (colored rectangles).
1) depicts the routing corridors as described in section 3.2.3.2, where the
black terminal is chosen as root. 2) shows the routing corridors when multi-
ple terminals are roots. Here, the arborescence R is defined by its edge set
E(R) = { (■,■), (■,■), (■,■), (■,■), (■,■), (■,■) }.

In the following we will first describe the necessary changes to the mcf
ILP formulation and later describe how Rn can be chosen. The most notable
difference in the ILP formulation comes from the fact that in an optimum so-
lution an edge may have active flow variables in both directions, if both flows
originate from different roots (see fig. 3.2.2). This means that constraints 3.5
cannot be used for flows from different roots.

The full ILP formulation is described as follows. For an arborescence Rn,
we define the set of terminals that act as roots as

V̄(Rn) := { s ∈ V(Rn) | Γ+(s) ̸= ∅ } .

Then, for each net n and each s ∈ V̄(Rn) we instantiate the variables and
constraints from the previous formulation, with s as the root terminal and
Γ+(s) as the non-root terminals. To distinguish the variables in the different
instantiations of the mcf formulation, we annotate each of them with s.
Then we add the following additional variables and constraints and choose
the following objective function.
Variables:

xn
v ∈ {0, 1} ∀v ∈ V and net n Vertex usage variables

xn
e ∈ {0, 1} ∀e ∈ E and net n Edge usage variables

Objective

min

(∑

e∈E
cost(e, n) xn

e

)
+

(∑

v∈V
cost(v, n) xn

v

)

18 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

s s′

t

e

s

s′

t

e1) 2)

Figure 3.2.2: Both pictures show an s − s′ flow in red and an s′ − t′ in
green. 1) shows that constraints 3.5 are no longer valid for the multi-root
mcf formulation. 2) illustration of the reasoning behind constraints 3.10.

Constraints:

xn,s
v ≤ xn

v ∀v ∈ V , net n, s ∈ V̄(Rn) (3.8)

xn,s
e ≤ xn

e ∀e ∈ E, net n, s ∈ V̄(Rn) (3.9)

−→
f n,s

e,s′ +
−→x n,s′

e ≤ xn,s
{ v,w } ∀ { v, w } = e ∈ −→

E , net n,

(s, s′) ∈ E(Rn) with Γ+
Rn(s′) ̸= ∅ (3.10)

We refer to this ILP formulation as the multi-root multicommodity
flow formulation or, in short, multi-root mcf . Constraints 3.8 and 3.9
simply identify the vertex and edge usages of the different instantiations of
the previous formulation with each other. Constraints 3.10 are not necessary
for correctness, but improve the ILP relaxation significantly, as can be seen in
fig. 3.2.3. They are a weaker version of the constraints 3.5, utilizing again that
there are optimum solutions to the underlying Steiner tree packing problem in
which the active edges do not form any cycles in G. Figure 3.2.2 illustrates
how a violation of these constraints would induce a cycle in the resulting
Steiner tree. The implementation and many details of above ILP description
have been developed by Malte Schürks.

We have seen in fig. 3.2.1 on page 17 that the multi-root mcf formulation,
together with the corridors, can reduce the size and solution space of the ILP
formulation in comparison to the mcf formulation. Typically, this leads to
faster solving times for the multi-root mcf formulation. However, this effect
is countered by the fact that that in general, the multi-root mcf formulation
yields a weaker ILP formulation than the mcf formulation. At the end of
this section, we will present experiments that show that in most cases the
first effect is more dominant, meaning that the multi-root mcf formulation
is faster than the mcf formulation. But first we will prove that the mcf
formulation, in general, yields the stronger ILP formulation. More precisely,
the following theorem shows that on any instance, the integrality gap of the

3.2. MODELING CONSTRAINTS IN THE ILP 19

2 2

2

1

2 2

2

1
1

s

t u

s

t u

s

t u

s

t u

1) 2) 3)

4) s

t u

5) v

Figure 3.2.3:
1) depicts a routing graph with three terminals s, t, u and edge costs between
1 and 2. A Steiner tree connecting all three terminals has cost at least 8. The
following four pictures all show fractional flows, where each arrow indicates
a flow of 1

2
(except for two arrows in the last picture).

For this instance, the optimum objective value for the LP relaxation of the
mcf formulation is 7.5, which is attained by setting all edge usages to 1

2
.

2) depicts the corresponding flows s − t (green) and s − u (red), assuming
that s is chosen as root terminal. This is a standard example which has
already been used, e.g. in [Pol03].
For 3) and 4), let us fix an arborescence R on the terminals by setting
E(R) := { (s, t), (t, u) }. Then, in the multi-root mcf formulation without
constraints 3.10, the optimum value of the LP relaxation is 6. This is at-
tained by choosing the flows s− t and t−u as depicted in 3), which results in
all outer edges having a usage value of 1

2
. For the multi-root mcf formulation

with constraints 3.10, the optimum value of the LP relaxation is again 7.5,
as in the mcf formulation. This is attained by choosing the flows as shown
in 4). Note that the t − u flow in 4) can be constructed from the two flows
shown in 2) by “subtracting” the s− t flow from the s− u flow, as it is also
done in the proof of theorem 3.6.
However, there are instances in which the multi-root mcf formulation with
constraints 3.10 still yield worse results than the mcf formulation. This
can be seen in 5), where we have extended our instance by a terminal v
which is connected to a single edge { s, v } with cost 0. The depicted flow
shows an LP solution of cost 6 for the multi-root mcf formulation with
E(R) := { (s, t), (s, v), (v, u) }, while the mcf formulation again yields an LP
solution of cost 7.5, analogously to 2).
We have verified computationally that all depicted LP solution are of mini-
mum costs for their respective instances and formulations.

20 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

multi-root mcf formulation is at least as large as the integrality gap of the
mcf formulation for that instance, regardless of the chosen arborescences.

Theorem 3.6. Assume we are given an instance of the Steiner tree packing
problem with routing graph G = (V,E) and a set of nets with one terminal
marked as root troot,n ∈ n for each net n. Let (x, f) be a solution of the
LP relaxation of the corresponding mcf formulation and o(x, f) its objective
value. Additionally, for each net n, let Rn be an arborescence with root
troot,n ∈ n on the net’s terminals. Then, for the LP relaxation of the corre-
sponding multi-root mcf formulation, there exists a solution (x′, f ′) that has
cost o(x, f).

Proof. The idea of the proof is to construct an s−t flow for all (s, t) ∈ E(Rn),
by “subtracting” the troot−s flow from the troot−t flow from themcf solution.
An example of this is shown in fig. 3.2.3, 4). More precisely, we construct such
a solution (x′, f ′) to the multi-root mcf formulation from the given solution

(x, f) as follows. For each net n, (v, w) ∈ −→
E , e ∈ E, and (s, t) ∈ E(Rn) we

set:

dn,s(v,w),t
:=

−→
f n

(v,w),t −
−→
f n

(w,v),t −
−→
f n

(v,w),s +
−→
f n

(w,v),s
∗

−→
f ′ n,s

(v,w),t
:= max(0, dn,s(v,w),t)

−→
x′ n,s

(v,w)
:= max

t∈Γ+(s)

−→
f ′ n,s

(v,w),t

x′n,s
e := xn

e

x′n
e := xn

e

x′n,s
v := xn

v

x′n
v := xn

v

We claim that (x′, f ′) is a valid solution to the multi-root mcf formulation
of cost o(x, f).

By construction, the objective values of (x, f) and (x′, f ′) are the same
in their respective ILP formulations. It remains to show that (x′, f ′) fulfills
all constraints and variable bounds. To see the latter, we observe that

∣∣∣dn,s(v,w),t

∣∣∣ =
∣∣∣(−→f n

(v,w),t +
−→
f n

(w,v),s)− (
−→
f n

(v,w),s +
−→
f n

(w,v),t)
∣∣∣ ≤ 1,

∗Here and in the following we simplify the notation by setting
−→
f n

(v,w),s =
−→
f n

(w,v),s = 0
if s is the root of the arboresence Rn. This avoids a case distinction, because there is no
flow defined that goes into s. Note that the following computations remain valid with this
extension of the definition.

3.2. MODELING CONSTRAINTS IN THE ILP 21

because by constraints 3.4 and 3.5 both terms in the brackets are between 0

and 1. Thus, also
−→
f ′ n,s

(v,w),t lies between 0 and 1.

We will now check the constraints one by one. Constraints 3.3, 3.6, 3.8,
and 3.9 hold for (f ′, x′) because they also hold for (f, x). Constraints 3.4
are fulfilled by definition. To see that the flow conservation constraints 3.7
hold, we first observe that for { v, w } ∈ E we have dn,s(v,w),t = −dn,s(w,v),t and

thus
−→
f ′ n,s

(v,w),t −
−→
f ′ n,s

(w,v),t = dn,s(v,w),t. Then, the following observation for v ∈ V
proofs that constraints 3.7 hold:

∑

w∈Γ(v)

(−→
f ′ n,s

(v,w),t −
−→
f ′ n,s

(w,v),t

)
=
∑

w∈Γ(v)
dn,s(v,w),t

=
∑

w∈Γ(v)

(−→
f n

(v,w),t −
−→
f n

(w,v),t

)
−
∑

w∈Γ(v)

(−→
f n

(v,w),s −
−→
f n

(w,v),s

)

=





1 v = troot,n
−1 v = t
0 else



−





1 v = troot,n
−1 v = s
0 else



 =





1 v = s
−1 v = t
0 else

Let us now check that constraints 3.5 hold for (x′, f ′). Let s ∈ V̄(Rn),

t, t′ ∈ Γ+(s) and (v, w) ∈ −→
E . Then, we make the following two preliminary

observations.

• dn,s(v,w),t − dn,s(v,w),t′ =
(−→
f n

(v,w),t −
−→
f n

(w,v),t −
−→
f n

(v,w),s +
−→
f n

(w,v),s

)
−

(−→
f n

(v,w),t′ −
−→
f n

(w,v),t′ −
−→
f n

(v,w),s +
−→
f n

(w,v),s

)

=
−→
f n

(v,w),t −
−→
f n

(w,v),t −
−→
f n

(v,w),t′ +
−→
f n

(w,v),t′

≤ −→
f n

(v,w),t +
−→
f n

(w,v),t′

≤ −→x n
(v,w) +

−→x n
(w,v)

∗∗

≤ xn
{ v,w }

• dn,s(v,w),t =
−→
f n

(v,w),t −
−→
f n

(w,v),t −
−→
f n

(v,w),s +
−→
f n

(w,v),s

≤ −→
f n

(v,w),t +
−→
f n

(w,v),s

≤ −→x n
(v,w) +

−→x n
(w,v)

∗∗

≤ xn
{ v,w }

∗∗Using constraints 3.5 which we know to be true for the original solution (f, x).

22 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

Then, if we assume that t, t′ ∈ Γ+(s) are the terminals for which the maxi-

mums in the definitions of
−→
x′ n,s

(v,w) respectively
−→
x′ n,s

(w,v) are attained, we have

−→
x′ n,s

(v,w) +
−→
x′ n,s

(w,v) =
−→
f ′ n,s

(v,w),t +
−→
f ′ n,s

(w,v),t′

= max(dn,s(v,w),t, 0) + max(dn,s(w,v),t′ , 0)
†
= max(dn,s(v,w),t + dn,s(w,v),t′ , d

n,s
(v,w),t, d

n,s
(w,v),t′ , 0)

= max(dn,s(v,w),t − dn,s(v,w),t′ , d
n,s
(v,w),t, d

n,s
(w,v),t′ , 0)

≤ xn
{ v,w } = x′n,s

{ v,w }

This proves that constraints 3.5 hold. To see that the last inequality holds,
we use the two observations we made before.

Finally, it remains to show that constraints 3.10 hold for (f ′, x′). This

can be seen as follows. Let (s, s′) ∈ E(Rn) with Γ+(s′) ̸= ∅, (v, w) ∈ −→
E , and

e := { v, w } ∈ E. We have to show that
−→
f ′ n,s

(v,w),s′ +
−→
x′ n,s′

(v,w) ≤ x′n,s
e . To this

end, let t′ ∈ Γ+(s′) such that
−→
x′ n,s′

(v,w) =
−→
f ′ n,s′

(v,w),t′ . Then, we get

−→
f ′ n,s

(v,w),s′ +
−→
x′ n,s′

(v,w) =
−→
f ′ n,s

(v,w),s′ +
−→
f ′ n,s′

(v,w),t′

≤ dn,s(v,w),s′ + dn,s
′

(v,w),t′

=
−→
f n

(v,w),s′ −
−→
f n

(w,v),s′ −
−→
f n

(v,w),s +
−→
f n

(w,v),s+
−→
f n

(v,w),t′ −
−→
f n

(w,v),t′ −
−→
f n

(v,w),s′ +
−→
f n

(w,v),s′

=
−→
f n

(w,v),s −
−→
f n

(v,w),s +
−→
f n

(v,w),t′ −
−→
f n

(w,v),t′

≤ −→
f n

(w,v),s +
−→
f n

(v,w),t′

≤ −→x n
(w,v) +

−→x n
(v,w)

≤ xn
e = x′n,s

e

Corollary 3.7. For the mcf ILP formulation, the choice of the root terminal
troot,n for each net n does not affect the value of an optimum LP solution.

Proof. While this has been observed before, e.g. by [GM93], this can be also
seen by the proof of theorem 3.6. Let s, t ∈ n be two terminals for net n.
Then, we can use the construction from the proof to transform a solution

†Note that max(a, 0) + max(b, 0) = max(a+ b, a, b, 0).

3.2. MODELING CONSTRAINTS IN THE ILP 23

s t s t

Theorem 3.6

ts

Figure 3.2.4: The construction utilized in the proof of corollary 3.7.

for the mcf formulation with root s into a solution for the multi-root mcf
formulation with arborescence R defined by

E(R) = { (s, t) } ∪ { (t, u) | u ∈ n \ { s, t } } .

By reversing the s− t flow in this solution, we obtain a solution for the mcf
formulation with root t, which has the same objective value as the original
mcf solution for root s. See fig. 3.2.4 for a visualization of these two steps.
To see that the second transformation works, observe that constraints 3.10
in the multi-root mcf solution ensure that constraints 3.5 in the derived mcf
solution hold.

In contrast, example 5) in fig. 3.2.3 shows that the choice of the arbores-
cence for the multi-root mcf has an influence on the integrality gap. There,
the chosen arborescence yields a formulation with an LP solution value of
6. But, if the arborescence had been chosen as a star, the multi-root mcf
formulation would be equivalent to the mcf formulation, which has an LP
value of 7.5 for this instance.

Example 5) also illustrates that this problem occurs, when flows from
different roots interact. In practice, we therefore try to limit the number of
non-leaf terminals in the arborescence. This observation and conclusion has
been made by Malte Schürks, who also developed the following algorithm
for constructing the arborescence R for each net. This algorithm works as
follows. The terminals of a net are clustered, mostly based on their posi-
tion. Additionally, for each cluster, one of its terminals is marked as the
cluster-root. The arborescence is then defined on two levels. The algorithm
from section 3.2.3.2 is used to define a star on the cluster-roots. This ar-
borescence is then extended by adding the remaining terminals as children
to their respective cluster-roots. The number of non-leaf terminals in R is
further reduced by forbidding clusters of size two. Picture 2) in Figure 3.2.1
on page 17 shows a possible result of this algorithm. There, three clusters
are formed {■,■,■ } , {■,■,■ } , {■ }, with the first terminal in each set
being the cluster-root.

24 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

See fig. 3.2.5 for a runtime comparison between the two approaches pre-
sented in this and in the previous section 3.2.3.2, whose runtimes are denoted
by tclustering topology and tstar topology respectively.

In conjunction with the routing corridors, the multi-root mcf formulation
has a smaller solution space than the mcf formulation. To test if this is
relevant in practice, we ran another experiment. We use BonnCell to cre-
ate routable placements while using the mcf formulation with corridors as
routability oracle. After 24 hours, BonnCell found placements for 61 out of
96 cells in our testbed. Then, we test if these 61 placements remain routable
when switching to the multi-root mcf formulation with corridors and the
clustering-based topology generation. 57 or 93% of these 61 placements re-
mained routable. Thanks to the fallback mechanism introduced [Cre19],
BonnCell automatically reruns failed routings without the corridor restric-
tions, so we do not lose any results in practice.

3.3 Motivation: The need for reusable design

rule encodings

As described in the introduction, the CLRP is subject to a large number
of periodically changing design rules. The way these design rules used to be
implemented in the BonnCell code required a substantial programming effort
to keep BonnCell in sync with the latest design rules. Significant changes
in the design rules, e.g. when changing the technology node, often required
months of programming, which limited the availability and consequently the
usefulness of BonnCell.

In this section, we will briefly describe the traditional routing model.
We illustrate its shortcomings by examining the implementation of a typical
design rule. From this we will derive requirements that an improved model
should fulfill in order to reduce the programming effort for design rules. We
will present our improved routing model in sections 3.4 and 3.5.

3.3.1 Traditional routing model

The traditional BonnCell routing flow is created as follows. Given the design
rules, we hand-craft the routing graph G. The vertices of G are assigned to
layers and are embedded into the routing area. Edges can either lie on a layer,
i.e. connecting two vertices on the same layer, or interconnect vertices on
adjacent layers. Vertices and edges that lie on a layer induce metal shapes at
roughly the embedding positions of the respective vertices and edges. Both,

3.3. THE NEED FOR REUSABLE DESIGN RULE ENCODINGS 25

103 104 105 106 107

tstar topology [ticks]

1
16

1
8

1
4

1
2

1

2

4

S
p

ee
d

u
p

t s
ta

r
to

p
o
lo

g
y
/
t c

lu
st

e
r
in

g
to

p
o
lo

g
y

0

10

20

30

40

50

60

70

80

C
el

l
ar

ea
[g

at
e

p
it

ch
×

ro
w

h
ei

gh
t]

Figure 3.2.5: Comparison between the CPLEX routing runtimes when
choosing the topology R for each net either as a star or by the clustering
algorithm described in section 3.2.3.3. Using precomputed placements for
our testbed of 94 cells, we ran both routing settings with a runtime limit
of 24 hours. Those 65 cells for which we were able to compute optimum
solutions (within a gap of at most 2%) for at least one run are displayed as
markers in the plot. Markers are colored by the cell area. Those cells where
the clustering approach found an optimum solution but the star topology
approach ran into a timeout are marked as triangles. In this experiment,
there were no cells for which the clustering approach ran into a timeout
while the star topology approach found a solution. The majority of markers
lie above the gray line, i.e. they are solved faster with the clustering based
topology than with the star topology. While there are considerable outliers,
larger cells tend to have a larger speedup than smaller cells. The median
speeup for cells with an area greater than that of a 25 gate pitches wide
single row cell is 19%.
All runtimes are reported in deterministic CPLEX ticks (see [22b] for details).

26 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

vertices and edges, may be annotated with additional ILP variables that
control their metal shape’s exact position and size.

Given an instance of the CLRP with nets N , we translate the pins of
each net into vertices whose associated metal shapes match the pins’ shapes.
Using the Steiner tree packing formulation presented in section 3.2.3, we
generate an ILP formulation whose solution, disjoint Steiner trees in G, are
translated back into routings for N . We add additional constraints to the
ILP formulation, to ensure that the net routings obey all design rules.

Figure 2.2.1 on page 6 depicts parts of G on the left. Some edges are
marked as active. They will be translated into the metal shapes depicted on
the right.

In the following, we give a typical example of how design rules can be
translated into constraints for our ILP formulation. We consider the following
two rules that occur (with a bit more complexity) in real technologies:

Rule 1: The maximum length in x-dimension of the shapes on layer B
is θ.

Rule 2: Shapes on layer B are rectangles whose xmin and xmax positions
lie on the red coordinates (see fig. 3.3.1).

We model these constraints as follows. Let us assume that we have defined
G as depicted in fig. 3.3.1, where the positions of the vertices stem from
the intersection with vertical tracks on the layer above and below. We en-
force the second rule by adding the constraints that the edge usage variables
of edge e2i−1 and e2i are equal. Then we can implement the first rule by
adding constraints that allow at most two of three consecutive odd indexed
edges to be used. In figure fig. 3.3.1 this would mean adding the constraint
xe1 + xe3 + xe5 ≤ 2. To see that this is sufficient, note that due to the second
rule, if two consecutive odd indexed edges are used, the edge between them
must also be used. The first rule is violated exactly if 5 or more consecu-
tive edges are used. Due to rule 2, this happens if and only if 3 or more
consecutive odd indexed edges are used.

Formulating rule 1 in this way has a number of shortcomings:

• The formulation is only correct because knowledge about rule 2 has
been used. If rule 2 is dropped or the allowed positions xmin or xmax

change significantly, the implementation is no longer correct.

• The formulation is highly dependent on the exact graph structure. For
example, if edges on layer B need to be subdivided into smaller pieces
(e.g. to allow more possible positions to connect to the adjacent layers
above and below), we have to adjust the implementation of the rule.

3.3. THE NEED FOR REUSABLE DESIGN RULE ENCODINGS 27

x

e1 e2 e3 e4 e5 e6

θ

Figure 3.3.1: Displays six edges of the routing graph. Additionally, the
x-axis with some coordinates marked in red are shown. Similar to fig. 2.2.2
on page 8, each edge, if chosen for a net, will induce a rectangular metal
shape with the same x-coordinates as the edge.

Conversely, if some vertices on layer B are removed and their two ad-
jacent edges on B are joined into one larger edge, the rule formulation
has to be changed significantly as well.

• Due to the first two points, it is difficult to reuse the rule formulation
for a similar rule on a different layer, or when changing technologies.
The formulation is tailored to the specific layer and its surroundings.

• Code that implements this rule formulation might be hard to under-
stand and adapt later on. To see that the code is correct, one has to
follow the arguments laid out above.

All of these points contribute to the large programming effort required to
keep BonnCell up-to-date with the latest design rules.

3.3.2 Requirements of the new implementation

Based on these shortcomings, we derive a number of requirements that our
new approach should fulfill in order to reduce the programming effort for
design rules.

1) If similar rules on different layers or sets of metal shapes are imple-
mented, it should be possible to share most of the code between them.

2) The code shall be easily adaptable to changes in the design rules. This
means that small design rule changes should only entail small code
changes and that the resulting rule code should be descriptive and
easily understandable.

3) The new approach should produce an ILP formulation that can be
solved quickly.

28 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

It is not immediately obvious how to reconcile the above requirements
into one framework. In particular, at first glance, requirements 1) and 3)
seem to contradict each other. What metal shapes are allowed by the design
rules differs vastly from layer to layer. Since 3) asks us to generate a concise
ILP formulation, we most likely need to generate different ILP formulations
for different layers. In contrast to that, 1) seems to require that shapes on
different layers are represented by a common model.

To resolve this conflict, we propose the introduction of an intermediate
modeling layer between the ILP variables and the code that enforces the
design rules. This modeling layer hides the exact variable representation of
a shape from the code that enforces the design rules. It acts as an interface
to the ILP representation of the shapes.

ILP representation
of metal shapes Modeling layer Code enforcing

design rules

In sections 3.4 and 3.5 we propose such a modeling layer. Based on this, in
section 3.5.3 we will present a methodology for writing design rules. Together,
they form a framework that tries to fulfill the requirements formulated above.

3.3.3 More observations

We make two more observations that are essential for the model we present
in the following section.

• Design rules almost never depend on whether the participating shapes
belong to the same or different nets. In the following example, the
minimum tip-to-tip spacing rule applies, regardless of whether the two
participating shapes belong to the same net or not.

tip-to-tip
spacing

3.4. PARTIAL POLYGONS 29

• We also observe that almost all design rules depend only on the prop-
erties of the participating shapes in a small region. In other words,
if a design rule violation occurs, it is often possible to draw a small
rectangle, so that only the parts of the shapes that lie inside this small
rectangle “create” the error, regardless of how these shapes might be
extended beyond the small rectangle. For example, a violation of the
tip-to-tip spacing rule can be detected by only knowing the properties
of the two blue shapes within the orange rectangle. The rule violation
will occur, regardless of how the shapes are extended outside of this
orange rectangle.

Both observations have some exceptions, but most rules we have seen
adhere to them. In the following, this will allow us to efficiently implement
design rules in the MIP, by only defining constraints on local aspects of the
shapes.

3.4 Partial Polygons

In this section we introduce a concept we call partial polygons, that will be
the main building block of the modeling layer we want to introduce between
the ILP and the rule code. A partial polygon will represent a part of a metal
shape, encapsulating some ILP variables and assigning a geometric meaning
to them.

Definition 3.8. A partial polygon ϕ consists of:

• A layer denoted by layer(ϕ)
• A set of additional integer variables V(ϕ). Each v ∈ V(ϕ) has a feasible
range [vmin, vmax] ⊂ Z. V(ϕ) may be empty.

• A polygon p(ϕ) whose vertices’ coordinates are ILP expressions in V(ϕ),
i.e. a constant plus a linear combination of variables in V(ϕ).
We require that for any assignment of values to the variables V(ϕ), the
polygon p(ϕ) is translated into a rectilinear polygon in Z2.

• A partition of the edges of p(ϕ) into “open” and “closed” edges.

We impose the following restrictions on partial polygons. They are not
strictly necessary for our next steps, but will simplify many aspects of the
implementation.

• p(ϕ) has no holes

30 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

(0, 0) (3 + x1, 0)

(5, 2)

(2 + x1, 3)

(0, 1)

(3 + x1, 2)

(2 + x1, 1)

(5, 3)

(5, 2)

(5, 3)

(7 + x2, 2)

(7 + x2, 3)
1) 2)

Figure 3.4.1: 1) shows an example of a non-rectangular partial polygon,
annotated with its vertices’ coordinates. It has one additional variable x1

and two open edges indicated by dashed lines. Choosing different values
for x1 changes the position of the vertical piece of the wire. Notice that
some edges of the polygon “disappear” when choosing x1 ≥ 2 or x1 ≤ −2.
Typically, we prevent this from happening by choosing the feasible range of
the variable appropriately or adding further constraints to the ILP. 2) shows
a rectangular partial polygon with one open edge on the left. Both partial
polygons coincide in exactly one open edge and can thus be merged.

• All edges are non-degenerated, i.e. the edge orientation is the same
for all possible variable values and edges cannot have zero length for
certain variable values (see fig. 3.4.1).

• Open edges have constant coordinates.

We have marked the edges of partial polygons as either open or closed.
An open edge indicates, that the partial polygon will be extended here, while
closed edges mean that the partial polygon ends here and cannot be extended.
This distinction will be important later on for implementing design rules and
will be discussed in detail in remark 3.11 on page 51.

Two partial polygons that lie on the same layer and coincide in exactly one
edge that is marked as open in both polygons can be merged into one larger
partial polygon by gluing the two partial polygons together (see fig. 3.4.1).
We do not allow partial polygons to be merged if they intersect in any other
way. The merged partial polygon has two open edges less than the sum of
open edges of the two initial partial polygons. Since we require open edges to
have constant coordinates, we can compute if two partial polygons can merge
without knowing the values for their additional variables, i.e. without having
obtained a solution for the ILP. Using a quadtree [22c] for the open edges,
we can efficiently compute all pairs of partial polygons that can be merged,
which will be important for computing the routing graph in the following
section.

3.5. A COMPLETE ROUTING MODEL 31

3.5 A complete routing model

We give a short overview of the parts that make up our novel routing model
and afterwards inspect each of those parts in depth (see fig. 3.5.1).

Given an instance to the CLRP, we start by choosing a ground set of
partial polygons P based on the problem’s design rules and routing area.
How to arrive at such a ground set is not a trivial task and will be discussed
in section 3.5.1. For now, we assume that we have defined such a ground set,
with the property that any feasible routing can be represented by a subset
of P .

We then build a routing graph G as follows. P becomes our vertex set
V(G). Two vertices are connected by an edge, if either:

• they lie on the same layer and their respective partial polygons can be
merged, or

• they lie on adjacent layers and intersect‡ each other, i.e. they are elec-
trically connected (e.g. a via on top of a wire).

The pins of each net will dictate that some partial polygons, respectively
some vertices, belong to certain nets. To ensure that the components of
a net are connected with each other, we use the Steiner tree packing ILP
formulation described in section 3.2.3. We also add the variables of the
partial polygons to the ILP.

A solution to the ILP will translate into an CLRP solution as follows: If
a vertex is used by a net, we transform the corresponding partial polygon
ϕ into a polygon in Z2, using the values for V(ϕ) from the ILP solution.
The set of these metal shapes will make up the net’s routing. We will add
constraints to the ILP that ensure that the constructed metal shapes obey
all design rules, which will be discussed in detail in section 3.5.3.

Note that compared with the approach presented in section 3.3.1, the
meaning of the routing graph G has changed: While previously, active edges
and vertices of G would induce metal shapes, now only vertices of G induce
metal shapes and edges merely model their connectivity.

3.5.1 Defining a ground set of partial polygons

At the core of our approach, we have to define a ground set P of partial
polygons. The choice of P dictates what solutions to the CLRP we can
find. When defining P , we need to make sure that any routing we want to

‡If it is unclear if two shapes intersect without knowing the values of their additional
variables, we do the following. We add the edge to G. Additionally, we add constraints to
the ILP that enforce the partial polygons to intersect each other if and only if the edge’s
usage variable equals 1.

32 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

adds additional
variables of P

Routing graph G

adds constraints

(section 3.5.1)

Ground set of partial polygons P

(section 3.5.3)

Design rules

(section 3.2.3)

Multicommodity flow formulation

ILP

Figure 3.5.1: The main components of our novel routing model.

be included in our solution space, can be represented by piecing together
elements of P . At the same time, we want to ensure that the resulting ILP
formulation can be solved quickly. To this end, we need to keep the following
aspects in mind while choosing P .

• |P |+∑ϕ∈P |V(ϕ)| should be small, resulting in an ILP formulation with
few variables.

• We should avoid symmetry as much as possible. That means that,
ideally, we want to define P such that there is a one-to-one correspon-
dence between ILP solutions and CLRP solutions. While this will not
be achievable, we still strive to ensure that a single metal shape in any
CLRP solution can only be represented by exactly one subset of P .

• As described in section 3.5, the elements of P induce our routing graph.
Thus, the choice of P can dramatically influence the size and complexity
of the routing graph, which in turn influences the size and complexity
of the Steiner tree packing ILP formulation.

In the following, we explore some examples of how P can be defined.
They all trade off the above aspects differently, resulting in different ILP
formulations and solving runtimes. Note that, due to the chosen separation
of concerns (fig. 3.5.1), changing the set P requires few to none modifications
to the implementation of the design rules and the implementations of the
routing graph and flow formulation.

3.5. A COMPLETE ROUTING MODEL 33

The choice of P highly depends on the design rules present in a certain
technology node. In the following we explore options for P assuming a tech-
nology in which metal shapes are rectangular and track pattern based. That
means, we assume we are given a track pattern as part of the CLRP, which
consists of a set of tracks, each consisting of a layer and a rectangle that
spans either the entire width or height of the routing area. In any valid
CLRP solution, the metal shapes are either:

• A wire metal shape, i.e. a segment of a track, or
• A via metal shape, which is a small rectangular metal shape that con-
nects two wires on adjacent layers

The right image of fig. 2.2.1 on page 6 shows an example routing where the
green and red metal shapes adhere to a evenly spaced horizontal or vertical
track pattern respectively. Some via shapes interconnecting adjacent layers
are displayed in white.

Remark. Our approach is versatile and can also model layers that do not (or
only partially) adhere to a certain track pattern or even allow non-rectangular
metal shapes. Modelling such cases is highly dependent on the specific design
rules and there is no general way of modelling a layer that suits all possible
cases. Instead, we will describe the common case of track pattern based wire
metal shapes connected by via metal shapes in detail here. We hope that the
techniques and arguments presented will also be useful for modeling other
types of layers.

3.5.1.1 Modeling via metal shapes

Depending on the design rules, the via connection between two tracks on
adjacent layers can either have a fixed position, or some room for movement.
For each pair of tracks that can be connected with a via metal shape, we
add one partial polygon ϕ to P . If the via only has one valid position, we
choose the polygon p(ϕ) accordingly. If the via has room to move within the
intersection of the two tracks, we add two variables x, y to V(ϕ) and choose
the polygon p(ϕ) as the rectangle [x, x + w] × [y, y + h]. Here, w, h ∈ R
are appropriate constants and the ranges of x, y are chosen according to the
feasible positions of the via.

While the representation of via metal shapes in P is rather straight for-
ward, there are many ways to model the wire metal shapes. In the following,
we will present three distinct approaches.

34 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

3.5.1.2 Modeling wire metal shapes with disjoint pieces

Let us begin with the first and perhaps most straight forward way to define
wire metal shapes in P . It is based on the following two types of design rules
that are present in all technology nodes we have witnessed so far:

• Disjoint wire metal shapes on the same track are always required to
have a minimum distance dmin between them.

• Each wire has to span a certain minimum length lmin along the track.
For simplicity of notation, let us assume that both values are the same for
all tracks and layers and let λ := min(dmin, lmin)− ϵ § .

Our approach for defining the ground set P of partial polygons is as
follows. We partition each horizontal track of the given input track pattern
into segments of length at most λ. Since all segments of a horizontal track
are rectangles with the same y-coordinates, we will omit the y-coordinates in
the following notation. For each a segment [xmin, xmax] of the track, we add
three partial polygons to P :

• A “left line end” rectangle [c, xmax], where c ∈ [xmin, xmax − ϵ] is an
additional integer variable and the right boundary is marked as open.

• A “right line end” rectangle [xmin, c], where c ∈ [xmin + ϵ, xmax] is an
additional integer variable and the left boundary is marked as open.

• A “through connect” rectangle [xmin, xmax] on which the left and right
boundaries are marked as open.

See fig. 3.5.2 for a visualization of these three partial polygons. Analogously,
we define partial polygons for vertical tracks.

Proposition 3.9. Assuming the above definition of P , the wire metal shapes
of an CLRP solution can always be represented by a unique subset of P .
Additionally, for each segment of a track, at most one of the three types of
partial polygons associated to it will be active.

Proof. Letm be a wire metal shape in an CLRP solution spanning [xmin, xmax]
on a horizontal track (the case for vertical tracks follows analogously). Due
to the length (xmax−xmin) of m being larger than λ, m intersects at least two
segments of its track. For the leftmost openly intersected segment, we choose
the left line end rectangle with its variable c set to xmin. Similarly, for the
rightmost openly intersected segment, we choose the right line end rectangle
with its variable c set to xmax. And for the other intersected segments, if

§Here and in the following, ϵ denotes the technology node specific “base unit”. The
coordinates of the corners of all shapes of a layout must be integer multiples of this base
unit.

3.5. A COMPLETE ROUTING MODEL 35

≤ λ

xmin xmax

track t

Figure 3.5.2: Depicts the three partial polygons associated with track seg-
ment si. The red arrows indicate how far the partial polygons can be resized
by adjusting their integer variables. Note that we visualize the shapes with
some vertical spacing. The partial polygons they represent all have the same
y-coordinates as track t.

any, we choose their through connect rectangle. Then, the chosen subset of
P , together with the chosen variable values, will exactly represent m.

This construction yields the unique representation of m in our model.
This follows from the fact that for each x-coordinate of right or left line end,
there is only one “line end” partial polygon that can represent it.

It remains to show, that for multiple wire metal shapes in an CLRP
solution, the above construction does neither use a partial polygon twice nor
use more than one partial polygon associated with the same track segment.
This follows directly from the definition of λ, because two wire metal shapes
on the same track need to have a distance of at least λ. In particular, this
means that in any CLRP solution, no track segment can intersect more than
one metal shape.

3.5.1.3 Modeling wire metal shapes with interleaved pieces

We will now present another possibility to define wire routing shapes in P .
Compared to our previous approach, we will use fewer partial polygons in
total. In turn, we will lose the uniqueness property from the previous proof.

36 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

Using the previous definition of λ, we construct the partial polygons of
a horizontal track as follows. As before, we will only describe the construc-
tion for horizontal tracks. To further simplify the notation, we assume that
the cell width is divisible by 2λ. We start by partitioning the track into
consecutive segments s1, . . . , sk of length exactly 2λ. For each such segment
si = [xmin, xmax], we add the following four partial polygons to our ground
set P . The first three are similar to the previous approach.

• A “left line end” rectangle [c, xmax], where c ∈ [xmin − λ+ 1, xmax] is an
additional integer variable and the right boundary is marked as open.

• A “right line end” rectangle [xmin, c], where c ∈ [xmin, xmax + λ− 1] is
an additional integer variable and the left boundary is marked as open.

• A “through connect” rectangle [xmin, xmax] on which the left and right
boundaries are marked as open.

• A “standalone” rectangle [a, b], where a ∈ [xmin − λ+ 1, xmax] and
b ∈ [xmin, xmax + λ+ 1] are additional integer variables and all bound-
aries are marked as closed.

See fig. 3.5.3 for a visualization of the four partial polygons. Compared to
the previous approach, the total number of partial polygons reduces from
three per segment of length λ to four per segment of length 2λ.

It is relatively easy to see, that any individual wire metal shape can be
represented by some combination of these partial polygons. However, it is
much harder to proof that this also holds for multiple wire metal shapes on
the same track. In some sense, we have to show that even if there are many
small wire metal shapes close together, we have defined “enough” partial
polygons to be able to represent all of them.

Proposition 3.10. Assuming the above definition of P , the wire metal
shapes M of an CLRP solution can always be represented by a subset of
P , so that for every segment of a track, at most one of the four types of
partial polygons associated to it will be active.

Proof. We will define a function f that maps a wire metal shape m =
[xmin, xmax] ∈ M and a track segment si to either none or one of the partial
polygons associated with si. We set f(m, si) := none if si and m do not
intersect. Otherwise, we define f(m, si) as follows. For si = [xi

0, x
i
0 + 2λ] we

define nine equally-spaced fix x-coordinates xi
−2, x

i
−1, . . . , x

i
6 as depicted in

fig. 3.5.3 and we call the set of those nine variables Ti. We define the interval
Xi := [α, β] where α := min { t ∈ Ti ∩m } and β := max { t ∈ Ti ∩m }. Note
that, since xmax − xmin > λ and the distance between neighboring elements

3.5. A COMPLETE ROUTING MODEL 37

si si+1si−1

2λ

xi
−2 xi

−1 xi
0 xi

1 xi
2 xi

3 xi
4 xi

5 xi
6

Figure 3.5.3: Shows the four partial polygons associated to track segment
si. Each partial polygon is depicted with its maximum size.

in T is exactly λ/2, we have that either α = β ∈ {xi
−2, x

i
6 }, or α < β. We

perform a case distinction on α and β to define the value of f(m, si).

f(m, si) :=





left line end if α ∈ {xi
−1, . . . , x

i
2 }, β = xi

6 (a)

right line end if α = xi
−2 , β ∈ {xi

2, . . . , x
i
5 } (b)

standalone if α = xi
−1 , β ∈ {xi

2, . . . , x
i
5 } (c)

or if α ∈ {xi
0, . . . , x

i
3 } , β ∈ {xi

1, . . . , x
i
5 } (d)

through connect if α = xi
−2 , β = xi

6 (e)

none if α ∈ {xi
−2, x

i
−1 } , β ∈ {xi

−2, . . . , x
i
1 } (f)

or if α ∈ {xi
3, . . . , x

i
6 } , β = xi

6 (g)

or if α = xi
4 , β = xi

5 (h)
(3.11)

We observe that this case distinction is well-defined and covers all possible
values of α and β. We also observe that in the first three cases, the additional
variables of the partial polygon can be chosen so that the left, the right, or
both line ends of m align with that of the partial polygon. An example of
how f maps metal shapes to partial polygons can be seen in fig. 3.5.4.

38 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

s2 s3s1

s2 s5

s4 s5

s3 s4

x2
−1

x1
3

x2
0

x1
4

x2
1

x1
5

x2
2

x1
6

x3
0

x2
4

x4
2

x3
6

x4
−2

x2
6

Figure 3.5.4: Example of how f maps the red wire metal shapes to partial
polygons. The picture also indicates some named x-coordinates that play a
role in the corresponding case distinctions of f . The left and right wire metal
shapes are mapped to standalone partial polygons of s2 and s5 respectively.
The middle wire metal shape is mapped to both a left and right line end of
s3 and s4 respectively.

Let

R :=
⋃

m∈M

(⋃

track segment s

f(m, s)

)
.

We claim that R ⊂ P represents exactly the metal shapes in M . To proof
this, we make the following three claims:

1. For each metal shape m ∈ M , there is one track segment s for which
f(m, s) ̸= none.

2. For each track segment s, there exists at most one m ∈ M such that
f(m, s) ̸= none. If such an m ∈ M exists, we call it ms and define
f(s) := f(ms, s). Otherwise, we set f(s) := none.

3. For two neighboring segments si, si+1 the partial polygons f(si) and
f(si+1) fit together, i.e. f(si) has an open right boundary if and only if
f(si+1) has an open left boundary. In that case, we have msi = msi+1

.

Using these three claims, we see that every m ∈ M will be represented by
a non-empty set of partial polygons in R that can be merged to a single closed
partial polygon. By construction of the left-, right line end and standalone
partial polygons, it follows that the closed partial polygon’s line ends have to
align with that of m, meaning it represents m exactly. Together with claim
2 that proofs our proposition.

We now show that our three claims indeed hold.

• Proof 1. Let m ∈ M be a metal shape. If there exists a segment si
such that si ⊂ m, for Xi = [α, β] we have that α ∈ { xi

−2, x
i
−1, x

i
0 }

and β ∈ {xi
4, x

i
5, x

i
6 }. We observe that for these values of α and β,

3.5. A COMPLETE ROUTING MODEL 39

f(m, si) ̸= none.
Otherwise, m does not span any segment completely. This means that
either there exists a segment si such that m ⊂ si, or that m intersects
two neighboring segments si and si+1. In the first case, observe that for
Xi = [α, β] we have that α ∈ {xi

0, x
i
1, x

i
2, x

i
3 } and β ∈ {xi

1, x
i
2, x

i
3, x

i
4 },

which means that by definition f(m, si) = standalone. In the sec-
ond case, namely when m ⊂ si ∪ si+1, for Xi = [αi, βi] and Xi+1 =
[αi+1, βi+1] we observe the following. If f(m, si) ̸= none, our claim
is proven. Otherwise, if f(m, si) = none, one of the cases (3.11.f),
(3.11.g), or (3.11.h) has to hold for αi and βi. It cannot be (3.11.f),
because αi > xi

0, because by our case distinction, m does not span si.
If it is (3.11.h), we have αi+1 = xi+1

0 and βi+1 = xi+1
1 , which means

that by definition, f(m, si+1) = standalone. If it is case (3.11.g), we
have βi = xi

6. Thus, we have βi+1 ≥ xi+1
2 and since βi+1 < xi+1

4 by
the assumption that si+1 ̸⊂ m, we get that f(m, si+1) ̸= none by the
definition of f .

• Proof 2. Assume there are two metal shapes m,m′ ∈ M and a segment
si such that f(m, si) ̸= none ̸= f(m′, si). Let Xi := [α, β] and X ′

i :=
[α′, β′] be defined form andm′ as before. Without loss of generality, we
assume β < α′. Due to the minimum distance of m and m′ being δ, we
get β ≤ α′ − δ. By assumption and definition of f , for both, α, β and
α′, β′, one of the cases (3.11.a), . . . , (3.11.e) has to apply. If we assume
that β ≥ xi

2 and thus α′ ≥ xi
4 then, none of the five cases can apply

to α′, β′, which leads to a contradiction. Thus, we can infer that cases
(3.11.a), (3.11.b), (3.11.c), (3.11.e) do not apply to α, β. If instead for
α, β case (3.11.d) applies we get that α = xi

0 and β = xi
1. Note that

since xi
−1 ̸∈ m, by the minimum length of m we have xi

1 + ϵ ∈ m for
some small ϵ > 0. This means that xi

3 ̸∈ m′ and thus β′ ≥ xi
4, which in

turn means, that none of the five cases (3.11.a), . . . , (3.11.e) apply to
α′, β′. Thus, f(m′, si) = none, which is a contradiction.

• Proof 3. Letm ∈ M , si, si+1 be some neighboring segments intersecting
m and Xi = [αi, βi], Xi+1 = [αi+1, βi+1] as before. We need to show
that f(m, si) produce and open right boundary, i.e. either a left line
end or a through connect partial polygon, if and only if f(m, si+1)
produce an open left boundary, i.e. either a right line end or a through
connect partial polygon. If f(m, si) yields an open right boundary,
then αi ≤ xi

2 and βi = xi
6. Thus, αi+1 = xi+1

−2 and βi+1 ≥ xi+1
2 . By

the case distinction of f , f(m, si+1) either yields a right line end or a
through connect partial polygon.

40 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

Conversely, if f(m, si+1) yields an open left boundary, we have that
αi+1 = xi+1

−2 and βi+1 ≥ xi+1
2 . Consequently, we get αi ≤ xi

2 and
βi = xi

6. Hence, by definition, f(m, si) yields either a left line end or a
through connect partial polygon.

It remains to show, that on the leftmost and rightmost segments sl and
sr, f does not produce any open right or left boundaries respectively
for some metal shape m. This can again be seen by examining the case
distinction of f . f(m, sl) produces an open left boundary, if and only
if m continues to the left of sl. Similarly, f(m, sr) produces an open
right boundary, if and only if m continues to the right of sr. But, since
m cannot extend past the feasible routing area, this cannot happen.

3.5.1.4 Modeling wire metal shapes with a few large pieces

We now present one final way of how wire metal shapes can be represented in
P . For every horizontal track t (vertical tracks are dealt with analogously),
we add kt ∈ N closed partial polygons ϕ1, , . . . , ϕkt to P . Each ϕi shall be
freely movable within track t and kt is chosen so that in any CLRP solution,
at most kt metal shapes shall lie on t. For example, a valid value for kt can be
computed by dividing the cell’s width by 2λ (= minimum length + minimum
spacing of metal shapes). In practice however, kt can usually be chosen much
smaller than this, based on additional knowledge about the CLRP.

Using this definition of P , it is obvious that any CLRP solution can
be represented by a subset of P , by one-to-one mapping wire metal shapes
in the CLRP solution to partial polygons. Typically, this mapping is not
unique, because a wire metal shape on track t can be mapped to any of
the ϕ1, , . . . , ϕkt . To remove this redundancy in the model, we can add the
following constraints to the ILP:

• Force ϕi to lie to the left of ϕi+1.
• Force ϕi to be active if ϕi+1 is active.

Under these constraints the aforementioned mapping of metal shapes to par-
tial polygons in P is unique.

3.5.1.5 Experimental results

To determine which of the previously presented methods of defining wire
metal shapes yields the best runtimes in practice, we run some experiments.
In the following we will describe our test setup and refer to the method from
section 3.5.1.2 as “disjoint”, from section 3.5.1.3 as “interleaved”, and

3.5. A COMPLETE ROUTING MODEL 41

from section 3.5.1.4 as “standalone”. We test all of these methods on a
state-of-the-art technology node. It features three metal layers M1, M2, M3,
of which M1 and M3 are oriented horizontally (i.e. orthogonally to the gates)
and M2 is oriented vertically (i.e. parallel to the gates). See fig. 4.5.1 on
page 64 for a visualization of the layers. The different methods are applied
to these three M-layers. For the methods disjoint and interleaved, for each
of the three layers λ is chosen according to the layer’s design rules. For the
standalone method, we have to choose how many wire shapes to define for
each track on each layer. For this, one could utilize a heuristic based e.g. on
cell width, number of nets, and design rules. However, such a heuristic would
need to be fine-tuned. Therefore, we use the following heuristic instead. For
each cell, we create ml shapes for every track on layer l, where ml is the
maximum number of shapes on one track on layer l in the routing solution
obtained by the disjoint method for this cell. For layers M1 and M2 we
always create at least one standalone shape per track for technical reasons.
Of course, this heuristic can only be used when a routing solution is already
known, which limits its usefulness in practice. However, we believe that it
is close to what an optimum heuristic for determining the number of wire
shapes per track for the standalone method can achieve, which makes it well
suited to determine the overall performance of the standalone method.

BonnCell solves the routing ILP in two very different contexts. Firstly,
it is used during BonnCell’s routing phase to find an optimal CLRP solution
for a previously chosen placement of the transistors. This is done by solv-
ing the ILP to optimality using the commercial general-purpose ILP solver
CPLEX. Secondly, BonnCell uses the ILP during the placement phase, to
determine which placement positions for the transistors are routable. Here,
mostly feasibility of the ILP is of interest. To this end, BonnCell automati-
cally transforms the ILP formulation into a SAT formulation, which is then
checked for feasibility by a state-of-the-art SAT solver CaDiCaL [BFFH20].
Compared to checking the ILP’s feasibility using CPLEX, the SAT based ap-
proach is several orders of magnitudes faster. This technique of transforming
an ILP into a SAT formulation in the context of cell routing has first been
described by [Par+20]. Its refinement and implementation in BonnCell has
been described in [Sch23]. Since we use completely different solvers dur-
ing the placement and routing phases of BonnCell, we report their runtime
results individually.

The results for the routing phase are presented as a hat graph [Wit19]
in fig. 3.5.5. Out of our testbed of 94 cells, only those 44 cells for which
all three runs found an optimium routing solution (within a 2% gap) within
24 hours are displayed. Most green bars lie on the right side of the black
bar, meaning that the disjoint runs are solved faster than the interleaved

42 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

runs, despite the latter creating fewer partial polygons in total. This might
be due to the effect that the interleaved partial polygons actually lead to a
routing graph with more edges in total. The reason for this can be seen when
we imagine that in fig. 3.5.3 on page 37, a via lies at position xi

5. This via
now intersects two partial polygons belonging to segment si and additionally
all four partial polygons belonging to segment si+1, inducing a total of six
edges between the vias and the partial polygons on the examined layer. In
contrast to this, in the disjoint method, a via typically only intersects three
partial polygons (fig. 3.5.2 on page 35). This effect on the size of the routing
graph and the size of the ILP formulation required to model design rules is
quantified in fig. 3.5.6.

When comparing the disjoint run with the standalone run, we observe
that the standalone run is typically faster, if few standalone partial polygons
are created (indicated by the color-coding). For the more complex cells,
for which the routing requires more standalone partial polygons per track,
the standalone method is typically slower than the disjoint technique. The
runtime effect on these more complex and more difficult to solve instances
has a greater impact on the usefulnes of BonnCell. Therefore, we come to
the conclusion that the disjoint method is suited best for general usage in
BonnCell’s routing stage.

To get a fair comparison between the SAT solver runtimes during Bonn-
Cell’s placement phase, we face the following problem. Some placements that
are considered unroutable using the standalone method might be considered
routable using the other two methods. This is because the number of shapes
for the standalone method have benn chosen based on the disjoint routing
for the optimium placement of a cell. For other placements of that cell which
BonnCell considers in its search for the optimium placement, more shapes
may be needed during routing, resulting in slight differences in the routability
assessment of the different methods. This can have large impacts on the
placement runtime, because it changes in which order BonnCell’s placement
engine considers placement candidates. To avoid this, in all runs we sort
the nodes in the placement search tree strictly by their objective value (see
the “Dijkstra strategy” described in [Klo18]). This way, the first routable
placement that is found is automatically the optimium placement, and on
this placement the routability assessments of all three methods are identical.

Again, of our testbed of 94 cells, we only show those 57 runs for which
all three methods yielded a solution within 24 hours. Note that we do not
display the total runtime, but only the time spent in the SAT solver.

For the SAT solver runtime during placement, the overall picture is similar
to that of the routing runtimes. Again, in most cases, the interleaved method
performs worse than the disjoint method. For the standalone method, those

3.5. A COMPLETE ROUTING MODEL 43

103 105 107

Routing runtime [ticks]

INV X0P8M
INV X1P6M

NAND2 X1M
NAND2 X0P5M

NOR2 X0P5M
LCBDLY X0P5M

NAND3 X0P8M
NOR3 X1M
OAI21 X1M
AOI21 X1M

NOR2 X1P6S
LCBDLY X1M

OAI21 X1T
INV X5S

AOI21 X0P8T
NAND4 X1M
NAND2 X2T

NOR2 X2T
NOR4 X1M
AOI21 X2M
AOI22 X1M
INV X6P4H

XNOR2 X1M
ELATN X1M

OAI21 X2T
AOI22 X2M
XOR2 X1M
OAI22 X2M

INV X10S
ELAT X3M

T2 X1N
TG MUX

OAI22 X3P2M
LCBDLY3 X1M

L1LATF X1M
MX2 X4N

IT2 X1N
LCBDLY5 X1M

IT2 X2N
AOI21 X8T

INV X32S
NOR2 X8S

AOI22 X10M
ELAT X1M

Disjoint Interleaved Standalone

2.0

2.5

3.0

3.5

4.0

4.5

5.0

∑
3 x

=
1
(n

u
m

b
er

of
sh

ap
es

p
er

tr
ac

k
on

la
ye

r
M
x

)

Figure 3.5.5: Hat graph comparison of the routing runtime for the disjoint,
interleaved, and standalone runs. The runtimes of each cell for the disjoint
run are displayed as black vertical lines. Green and brown bars visualize
the difference between the runtimes of the disjoint run and the interleaved
respectively standalone runs. The later ones are color-coded by the number
of standalone partial polygons created per track, summed up over all layers.

44 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

0

5000
V

er
ti

ce
s

0

10000

E
d

ge
s

10 20 30 40

Cell width [gate pitches]

0

200000

C
on

st
ra

in
ts

Disjoint Interleaved Standalone

Figure 3.5.6: Visualizes the number of vertices and edges in the routing
graph and the number of constraints in the ILP formulation responsible for
enforcing design rules. These sizes are shown for different cell widths and for
the disjoint, interleaved, and standalone runs. Here, unlike in our previous
experiment, the number of shapes in the standalone run is based linearly on
the cell width. We create cell width

3 gate pitches
standalone shapes for each track. Since

the standalone shapes on horizontal tracks always span the entire cell width,
they intersect a number of vias that is also linear in the cell width. Therefore,
the total number of edges increases quadratically with the cell width.
The size of the ILP formulation responsible for enforcing design rules mainly
depends on how many partial polygons are close together and could poten-
tially create a design rule violation. While there are a bit less partial polygons
in the interleaved method than in the disjoint method, the individual par-
tial polygons are larger and interact with more neighboring partial polygons.
Effectively, this almost doubles the number of ILP constraints required to
enforce design rules. The same effect is occuring when comparing the num-
ber of constraints required for modeling design rules in the standalone and
in the disjoint runs. However, this effect is thwarted by the much smaller
number of partial polygons in the standalone run, which leads this run to
require the smallest number of ILP constraints to enforce design rules.

3.5. A COMPLETE ROUTING MODEL 45

runs with few partial polygons in total are solved faster than the disjoint
runs, while those with many partial polygons are typically solved slower.
For the same reasons as before, we come to the conclusion that the disjoint
method is suited best for general use in BonnCell.

3.5.2 Connectivity and shape integrity

In section 3.5 we have defined the routing graph G based on a chosen ground
set of partial polygons P . Each pin of the CLRP will be mapped to a subset
of P and thus to a set of vertices in G. Based on this, we will utilize the
vertex disjoint Steiner tree packing formulation described in section 3.2.3 to
model the pin’s connectivity requirements in the ILP. Recall that a partial
polygon ϕ ∈ P may have open edges, that indicate that ϕ does not end at
this edge but will be extended by merging with another partial polygon. We
will add constraints to the ILP that ensure that if such a partial polygon with
an open edge is active in the ILP solution, a suitable merging partner will
also be active in the ILP solution, and they will both be assigned to the same
net. The guearantee that the partial polygons active in an ILP solution will
merge together leaving no open edge behind is important for the following
method of implementing design rules (also see remark 3.11 on page 51).

3.5.3 Implementing design rules

Recall that our overall goal is to reduce the coding effort required to imple-
ment design rules. To this end, we have introduced the concept of main-
taining a set of partial polygons that act as our routing model, assigning
a geometric meaning to the variables in the ILP. We have explored several
ideas on how to define such a set in detail. In the following, we will discuss
how design rules can be implemented on the basis of this model. First, in
section 3.5.3.1 we give the basic idea of how design rules can be formulated
within our model. To further simplify the process of implementing design
rules, we introduce another abstraction layer in section 3.5.3.3. It will mimic
the structure of design rule manuals, which we will examine in section 3.5.3.2,
in order to simplify the translation of design rules from the manual into our
framework.

3.5.3.1 Implementing design rules based on partial polygons

In order to ensure that our model only produces solutions that obey all design
rules, we need to add further constraints on the ILP. Here, the observations
from section 3.3.3 come in handy. Since most design rules are net independent

46 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

10−1 101 103

SAT solver runtime during placement [s]

INV X0P8M
INV X1P6M

NOR2 X0P5M
NOR3 X1M
OAI21 X1M

NAND3 X0P8M
NAND2 X1M

NAND2 X0P5M
AOI21 X1M

AOI21 X0P8T
LCBDLY X0P5M

NOR4 X1M
NOR2 X1P6S

AOI22 X1M
LCBDLY X1M

OAI21 X1T
NOR2 X2T

XNOR2 X1M
NAND4 X1M

INV X6P4H
XOR2 X1M
AOI22 X2M

NAND2 X2T
INV X5S

OAI22 X2M
AOI21 X2M

ELATS X1M
TG MUX

OAI21 X2T
INV X10S

T2 X1N
ELAT X1M
ELAT X3M

ELATN X1M
IT2 X1N

OAI22 X3P2M
LCBDLYAND X1M

NOR4 X3P2M
IT2 X2N

IELATN X1M
SDFFQS X1M
XOR2 X3P2M
IELATS X1M

DFFQ X1M
IELAT X1M

XNOR2 X3P2M
CSA32 X1M

L1LATF X1M
INV X32S

SDFFQ X1M
SDFFQN X1M
ESLATS X1M

ESLAT X1M
IELATNOR X3M

IELAT X3M
ESLATN X1M

MX2 X4N

Disjoint Interleaved Standalone

2

3

4

5

6

7

8

9

10

∑
3 x

=
1
(n

u
m

b
er

of
sh

ap
es

p
er

tr
ac

k
on

la
ye

r
M
x

)

Figure 3.5.7: Comparison between the total SAT solver runtimes dur-
ing BonnCell’s placement phase for the disjoint, interleaved, and standalone
methods.

3.5. A COMPLETE ROUTING MODEL 47

and detectable locally, we can express most of them using constraints of the
following form. For partial polygons ϕ1, . . . , ϕk ∈ P :

ϕ1, . . . , ϕk are all active =⇒ Some ILP constraints have to hold. (3.12)

For example, assuming we have chosen P as described in section 3.5.1.2, the
tip-to-tip spacing rule described in section 3.3.3 could be implemented as
follows. For every pair of right and left line end partial polygons ϕ1, ϕ2 ∈ P
on the same track that face each other, we add the constraint

ϕ1 and ϕ2 active =⇒ c2 − c1 ≥ λ ,

where c1, c2 are the partial polygons’ additional variables as depicted in
fig. 3.5.8 and λ is the minimum required tip-to-tip distance.

ϕ1

track t

ϕ2

... ...

c1 c2

Figure 3.5.8: Example of a subset {ϕ1, ϕ2 } of P , on which a tip-to-tip
spacing rule can be implemented.

Some design rule violations cannot be detected by examining only indi-
vidual partial polygons. Instead, larger parts of the metal shapes need to be
known to detect them. For such design rules, we enumerate merged partial
polygons that are comprised of two or more pieces.

3.5.3.2 Examining the design rule syntax

The above method of encoding design rules in the ILP is suitable for most
design rules. However, since there are so many design rules and they change

48 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

periodically, it still requires significant coding effort to implement all design
rules in this fashion. We can reduce this by leveraging that many design rule
definitions share a similar structure and syntax. By providing a framework
that replicates this structure in our code, we can significantly reduce the
required coding effort for implementing design rules.

Therefore, let us examine how design rules are defined in detail. Unfor-
tunately, due to confidentiality requirements, we cannot present examples of
real world design rules here. Nevertheless, we can still discuss their common
structure. We have observed this structure in a number of technology nodes
from different companies. Thus, we believe that basing our framework on this
structure will not limit our framework’s applicability to future technologies.

Typically, design rules are made available in a textual format. For each
rule, a short text that adheres to a certain syntax defines restrictions on the
metal shapes. The definition of most rules is in the following form:

Operator(Selector1, Selector2, ...)

Each selector describes a set of 2d shapes or edges. This is typically
done by starting with all shapes on one layer, and then filtering or modifying
them iteratively. For example, a selector might be described as ”take the
horizontal edges of all shapes on layer L, but not those, that touch shapes on
layer M, and then extend those by 5 nanometers”. An operator has a fixed
arity, meaning it takes a fixed number of selectors, and defines a requirement
on them. Examples for operator are:

• Require a minimum L2 spacing, pairwise between all matched elements
of Selector1 and Selector2.

• Require that all matched shapes in Selector1 to have a minimum area.
• Forbid that Selector1 matches anything.

Operators and selectors are often used with only slight modifications in sev-
eral design rules.

3.5.3.3 A design rule framework

Let us now present our design rule framework. In this framework, for each
rule R, two components have to be defined.

• A query function qR, that maps a ground set P of partial polygons to
a set of query results qR(P) = { res1, res2, . . . }. Each query result resi
is a set of partial polygons. These partial polygons are not necessarily
a subset of P , but can also arise from merging several elements of P
together. We denote by usage(resi) the set of usage variables of the
subset of P that gave rise to the set of partial polygons in res1.

3.5. A COMPLETE ROUTING MODEL 49

• An assessment function fR, that maps a query result resi to a
constraint disjunction fR(resi) = {C1, C2 . . . }. As described in sec-
tion 3.2.2, a constraint disjunction consists of one or more sets of con-
straints C1, C2 . . . , with the semantic that only the constraints of one Ci

have to be fulfilled. Note that if one of the Ci is empty, the constraint
disjunction is trivially fulfilled.

Given a rule R, we will generate the ILP formulation as follows. For each
resi ∈ qR(P), add constraints

(all of usage(resi) equal 1) =⇒ (constraint disjunction fR(resi))

by using the formulation presented in section 3.2.2. Figure 3.5.9 shows an
example of how a design rule can be implemented using this setup of query
and assessment functions.

We have chosen this separation of rules into query and assessment func-
tions for the following reasons.

• First and foremost, it resembles the structure of design rule definitions
described in section 3.5.3.2, where query functions represent selectors
and assessment functions represent operators. This allows us to struc-
ture our code similarly to the design manual, which reduces overhead
when translating rules from the design manual into code. Also, like the
design manual reuses operators and selectors, we will be able to reuse
code for query and assessment functions.

• Secondly, this step allows us to separate the code that defines ILP
constraints from our ground set of partial polygons P . The assessment
functions fR do not interact with P directly. This allows us to change P
without having to modify large parts of the rules implementations. In
particularly, since query functions may merge partial polygons from P
into larger ones, the sizes of the partial polygons in P are not relevant
to the implementations of assessment functions. When implementing
an assessment function fR, one can always choose the corresponding
query function such that the partial polygons processed by fR are large
enough so that all potential design rule violations can be found.
The query functions too can largely be implemented to be independent
of P . For example, finding all partial polygons that may intersect some
other partial polygon can be implemented in a way that is independent
of the choice of P . However, for more complex query functions, this
is not true, leaving some dependence between the choice of P and the
implementation of the query functions.

50 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

{{x1 < x2}, {x1 ≥ x3 + δ}}

≥ δ ≥ δ

qR(P) = { , , ...}
x2x3

{∅}

Design rule R:

fR fR

x1 x1

{x1 ≤ x2 − δ}

fR

x1

,

x21) 2) 3)

Figure 3.5.9: Visualization of how the design rule R can be implemented
using query and assessment functions. Our example design rule R requires
a minimum horizontal via overlap of δ between orange vias and blue wires,
as depicted in the top row. Of course, this rule only applies for pairs of
vias and wires that touch each other. The query function qR enumerates all
possible pairs of via and wire shapes that could violate the rule. Three of
these pairs are shown in lilac boxes. For all, we assume that only the depiced
x1 coordinate is non-constant and can be chosen in the range depicted by
the arrows. The assessment function fR is applied to all results of the query
function individually. For the pair 1) of partial polygons (left lilac box), the
two shapes do not intersect, regardless of the value of x1. Thus, here the fR
does not impose any constraints on the situation. For situation 2), qR has
merged together two blue partial polygons into one larger on that intersects
the orange via. For this situation, fR adds a single constraint that requires
x1 and x2 to keep the required distances. Note that no constraint for the
right side of the blue partial polygon is introduced, because there the partial
polygon has an open edge and fR does not know how it will be extended
there. In situation 3), the blue and orange shapes may or may not intersect,
based on the value of x1. Note that adding the rule R only applies, if they
do intersect. To model this, fR returns a constraint disjunction to model the
two cases: Either, the first constraint is fulfilled, which means that the two
shapes do not intersect. Or the second constraint is fulfilled, requireing x1

to lie sufficiently far to the right to obey the via overlap rule.

3.5. A COMPLETE ROUTING MODEL 51

• Thirdly, with this highly structured definition of design rules, we will be
able to easily implement a number of utility features. In section 3.5.3.4,
we explain how we can utilize our framework to check existing CLRP
solutions for design rule violations to verify the correctness of our im-
plementation. Furthermore, the structured design rule definitions allow
us to automatically generate a visualization of the results of all calls
to assessment functions, which can be a great help when implementing
new design rules.

Remark 3.11. Having presented our novel routing model and its accompa-
nying design rule framework, let us revisit the question of why we introduced
the partition of the edges of partial polygons in open and closed in defini-
tion 3.8 on page 29. On the one hand, this distinction allows us to easily
control which partial polygons can merge. For example, via shapes typically
have fixed sizes and the merging of two via shapes should never occur. On
the other hand, the distinction into open and closed edges is useful to limit
the complexity of the assessment functions. To demonstrate this, we will use
the situation displayed in the middle lilac box 2) in fig. 3.5.9. In this situa-
tion, we do not need to add constraints to enforce the via overlap to the right
of the orange via, because the right boundary of the blue wire partial poly-
gon is open. We know that at this boundary, the blue partial polygon will
be extended by some other partial polygon. qR will enumerate all possible
ways to extend the blue partial polygon. If, in one of these extensions, the
blue partial polygon has a closed right boundary, fR will add the appropriate
constraints to enforce the via overhang rule, if necessary.

If we had not made this distinction between open and closed edges, the
assessment function fR would have to deal with the uncertainty, if a partial
polygon it is presented with is extended at a certain boundary or not. For
example, this could be done by requiring fR to assemble for each generated
constraint a list of edges of the participating partial polygons that must not
be extended in order for this constraint to be valid. While doing so, ideally
the assessment function would not enumerate situations that cannot occur
anyway. E.g., in the given example, it would not make sense to consider
the case where the orange via shape is extended, because we know from our
definition of the set of partial polygons P , that this could not happen.

The definitive distinction of partial polygon edges into closed and open
edges avoids this complexity within the assessment function. The necessary
case distinctions for whether a shape is extended somewhere or not is done
implicitly by the query function, which enumerates exactly those cases that
can occur.

52 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

3.5.3.4 Implementing design rules is similar to implementing de-
sign rule checking

The framework we have defined, in many cases, reduces the task of imple-
menting a design rule to the task of implementing a corresponding assessment
function. An assessment function is, in essence, a “geometric” algorithm that
operates solely on partial polygons. In fact, it is very similar to a design rule
checker, a program that checks fixed metal shapes for design rule violations.
While implementing a design rule checker is a challenging task in its own (the
complexity depends very much on the design rule in question), one can ar-
gue that anybody able to implement such a design rule checker, is, with very
little additional knowledge, able to implement a corresponding assessment
function. This circumstance demonstrates the significant simplification our
framework provides for the task of implementing design rules, in comparison
to our initial example in section 3.3.1. The main complexity that still arises
now stems from the design rules themselves, rather than from the translation
of the design rule into the ILP model.

We will now discuss some differences between implementing an assessment
function and implementing a design rule checker. We hope that this can serve
as a guideline for anybody who needs to implement an assessment function
in the future.

While a design rule checker detects violations on fixed rectilinear poly-
gons, an assessment function has to create constraints for a set of partial
polygons. This leads to three main differences between these two types of
algorithms.

• Unlike a design rule checker which only has to report if a violation oc-
curs, an assessment function has to produce constraints that prevent
the violation from happening. However, in many cases an implemen-
tation of a design rule checker naturally leads to a corresponding ILP
formulation. For example, if the program code of a design rule checker
for the tip-to-tip spacing rule contains the line of code

if c2 − c1 < δ then report violation();

for some coordinates c1, c2 and distance δ, then a corresponding con-
straint c2 − c1 >= λ could be easily derived.

• Partial polygons may have non-constant ILP-expressions as coordi-
nates, whose values are only known to lie in a certain range. This can
create difficulties when implementing an assessment function, because
the relative position of two partial polygons might not be determinable
by only examining the coordinate expressions. For example, this situa-
tion occurs in fig. 3.5.9 in situation 3) (right lilac box). In such a case,

3.5. A COMPLETE ROUTING MODEL 53

the assessment function can branch over the different possibilities and
utilize the fact that its return type is a constraint disjunction.
Remark. The flexibility of the partial polygons defined in P has an
impact on the complexity of the rule constraints. This needs to be
taken into account when choosing P . With increasing flexibility of the
partial polygons, the rule generating code has to cover more cases, and
the resulting ILP formulation becomes more complex.

• Partial polygons may be incomplete (i.e. have open edges). As dis-
cussed previously, most design rule violations can be detected locally.
Care has to be taken to ensure that the partial polygons presented to
the assessment function by the query function are large enough so that
all potential design rule violations are detectable. An example of this
can be seen in the first two situations examined in fig. 3.5.9. Note that,
it is enough to enumerate merged partial polygons that are just large
enough to detect the potential design rule violation. In the example of
fig. 3.5.9, the number of blue partial polygons that have to be merged
together to be able to detect all potential design rule violations depends
on the size of the partial polygons and the value δ.

Remark. Many, but not all rules will fit into our framework. For exam-
ple, some rules are too complex to be representable by a single constraint
disjunction, but rather need additional binary variables to be representable
concisely. In such a case, adding constraints to the ILP has to be performed
“manually” by situation-specific code, outside of the framework. Addition-
ally, design rules might not be representable by linear constraints at all. For
example, this can happen when the design rule description utilizes euclidean
distances, whose quadratic terms are not representable in linear constraints.
In such a case, one can typically either discretize the solution space or ap-
proximate the design rule. See [Bib22] for examples of such techniques.

3.5.3.5 Using the framework for design rule checking

We have seen in the previous section, that assessment functions are similar to
design rule checking algorithms. In fact, we can use our framework to detect if
a given set of metal shapes contains design rule violations. For this, we simply
define our ground set P to be the given set of metal shapes we want to check
for violations. Then, using our design rule framework, we can generate an ILP
formulation that is feasible, if and only if the initial set of metal shapes did not
contain any design rule violations. The resulting ILP can be solved quickly
without using a fully featured ILP solver. To do this, we simply examine if all
the constraint disjunctions created by the assessment functions are feasible.

54 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

This is trivial, because all constraints within the constraint disjunctions do
not contain any variables, since the ground set P only contains absolute
partial polygons. By utilizing the structured definition of design rules, we
can even provide detailed feedback on which shapes violate which design
rules.

The possibility to check for design rule violations comes in handy for
assuring correctness of our code.

• On the one hand, we can verify our code against layouts which are
known to be free of design rule violations. This allows us to verify that
our formulation is not too strict.

• On the other hand, we can verify that the CLRP solutions we produce
are correct and all aspects of our code work together correctly. If, for
example, a query function fails to enumerate all necessary situations,
this error will be noticed since our framework will occasionally produce
solutions that do not pass its own design rule checking.

3.5.4 Runtime comparisons

We have discussed how our novel routing model can significantly reduce
the effort required to implement design rules in BonnCell. The resulting
new ILP formulation differs significantly from the old formulation that was
previously used in BonnCell. Of course, it is important to ensure that the
new formulation does not significantly slow down the ILP solving times,
because this could negatively affect the usefulness of BonnCell, especially
when trying to design large cells. To this end, we compare the runtimes of
two versions of BonnCell that were created for the same technology node,
one using the old and one using the new routing model. The version using
the new routing model was built based on the old version of BonnCell some
1.5 years after the old version had been completed. During the development
of the new version, a few more rules were added and some minor errors of the
old version of BonnCell were fixed. As a result, the two versions of BonnCell
that we are about to compare to each other do not implement the exact same
set of design rules. Creating two versions that are perfectly in sync with each
other, in terms of design rules, would require a large programming effort, that
is unreasonable compared to the insights we would gain from exact runtime
comparisons.

Instead, we will compare the runtimes of these two versions of BonnCell
that have slight differences in the design rules they implement, to obtain a
broad overview of the impact the new routing model has on the runtimes. To
minimize the effect that the differences between these two BonnCell versions

3.5. A COMPLETE ROUTING MODEL 55

103 105 107

Old routing runtime [ticks]

1
32

1
16

1
8

1
4

1
2

1

2

4

8

16

S
lo

w
d

ow
n

:
N

ew
ro

u
ti

n
g

ru
n
ti

m
e

O
ld

ro
u

ti
n

g
ru

n
ti

m
e

5

10

15

20

25

C
el

l
ar

ea
[g

at
e

p
it

ch
×

ro
w

h
ei

gh
t]

Figure 3.5.10: Comparison of the routing runtimes of two versions of Bonn-
Cell. In the new version, the novel routing model presented in this chapter
is employed, while in the old version, the previous routing model approach
presented in section 3.3.1 is used. For each cell, the runtimes of both versions
are displayed as a single dot. For both runs of a cell, the transistor placement
is fixed. Its width is indicated by the color-coding of the dots.

have on runtime, we limit the comparison to cells for which both versions
generate the same transistor placements. Additionaly, we only test Bonn-
Cell’s routing phase, because small differences in the routability of cells can
have large impacts on the runtime of the placement phase.

The runtime results are presented in fig. 3.5.10. Small cells are solved
consistently slower in the new approach, around a factor of two to four in
most cases. However, the runtimes of the larger, more difficult to solve cells
actually decreases with our new routing model in most cases. The runtimes
of these larger cells are generally more important for the overall usefulness
of BonnCell. Therefore, we regard the overall changes in runtime in the new
version of BonnCell as beneficial. Although we cannot determine whether
changes in runtimes are caused by the differences in the design rules of the
two tested versions or by the different ILP formulations, it seems unlikely
that the new routing model has a significant negative impact on the ILP
solving speed, at least for larger cells.

56 CHAPTER 3. THE CELL LAYOUT ROUTING PROBLEM

3.6 Conclusion

In this chapter, we have discussed theoretical and practical aspects of model-
ing the CLRP as an ILP. We have inspected the multi-root mcf formulation
that was implemented in BonnCell by Malte Schürks, and we compared its
integrality gap to that of the mcf formulation.

Our main contribution was the tackling of the large programming effort
that stems from maintaining the large set of ever-changing design rules in
BonnCell. To this end, we introduced and implemented a novel routing model
in BonnCell. This routing model allows the representation of almost arbitrary
rectilinear polygon shapes in the ILP through a common building block called
partial polygon. We have examined and compared several ways of how a
set of partial polygons that covers the entire CLRP solution space can be
composed. By unifying the representation of all routing shapes, we were
able to introduce a design rule framework that significantly simplifies and
structures the task of implementing design rules. In most cases, it reduces
this task to the definition of an assessment function, which is only slightly
more complex than the definition of a design rule checking function. In the
framework, the translation of rules from the design rule manual into code is
further streamlined by mimicking the structure of the manual. This ensures
high readability and reusability of the resulting code.

The resulting framework has been used to implement a state-of-the-art
technology node in BonnCell, which had previously been implemented using
the traditional routing model of BonnCell. While difficult to quantify, this
practical experience has shown us that, thanks to the new routing model, the
programming effort required for modeling shapes and implementing design
rules has indeed been greatly reduced. We presented a runtime comparison
to the former routing model used in BonnCell, which indicated that on large
cells, the new model can be solved even faster than the old one. We conclude
that the introduction of the new routing model in BonnCell has been very
successful, and we are confident that it will reduce the coding effort to adapt
to new technology nodes in the future.

Chapter 4

Pin Accessibility in Cell
Layouts

4.1 Introduction

Throughout recent technology developments, the accessibility of pins in cell
layouts has become a major challenge. While cell layouts shrink with each
new technology node, especially in height, the design rules regarding the
metal shapes used for accessing a cell’s pins become more and more restrictive
and complex. This effectively leads to fewer routing resources being available
per pin of a cell layout. The resulting problems in accessing pins and potential
mitigation techniques have been studied in the literature mainly with regard
to three steps during the chip design process, namely detailed placement
(e.g. [Tag+10; DCM17; Tse+19]), detailed routing (e.g. [Ahr+15; KWX20]),
and cell layout generation (see section 4.3). We would like to focus on the
latter aspect and enable BonnCell to produce cell layouts optimized for pin
accessibility. BonnCell’s flexible algorithms will enable us to formulate pin
accessibility as an objective function, allowing us to generate layouts with
the best possible pin accessibility among all layouts. Such optimized layouts
can allow for shorter and more efficient wiring between pins. Additionally,
it can allow cells to be placed denser together, leading to smaller and more
efficient chips.

Optimizing pin accessibility in cell layouts has been the focus of several
recent publications. A major problem that all these approaches face is to
decide what constitutes “good pin accessibility”. Here, one can differenti-
ate between two types of approaches, namely experimental approaches and
analytical scoring approaches (see [Tse+19]).

Experimental approaches try to evaluate pin accessibility through a series

57

58 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

of routing experiments. In order to compare two layouts for the same cell,
they run parts of the routing flow on small artificial chip instances, which
utilize many instances of one of the cell layout versions. The cell layout
version that leads to the best routing result, e.g. in terms of the number
of design rule violations, is chosen as the preferred layout. Examples of
this approach are [Tse+19] and [Che+22]. These approaches are able to
take into account many effects of the routing flow, some of which might
not even be known to the person running the experiments. Thus, running
parts of the routing design flow is a very good instrument to assess pin
accessibility. The downsides of these experimental approaches are their high
complexity, resource intensive computations, and reliance on the availability
of other advanced tools, most importantly a router. Especially during early
exploration of a new technology, cell layouts often have to be designed before
a high quality router for the new technology is available. With regard to
BonnCell, it would be almost impossible to embed such an experimental
evaluation of pin accessibility into the ILP formulation BonnCell uses to
optimize cell layouts.

Consequently, in order to incorporate pin accessibility into BonnCell, we
need to consider an alternative approach of measuring pin accessibility. In the
literature, a common alternative to experimental approaches are analytical
scoring approaches. Here, cell layouts are compared by computing a pin
accessibility score for each layout. These scores can quickly be calculated
based solely on features detected in the layout and the computation does not
rely on external tools.

The remainder of this chapter is structured as follows. In section 4.2,
we will introduce some basic notation regarding pin accessibility and review
previous work in section 4.3. Based on this, in section 4.4 we develop our
own pin accessibility scoring framework, optimized for integration into Bonn-
Cell. In section 4.5 we give an in-depth description of our framework in the
context of a state-of-the-art technology node and discuss its implementation
in BonnCell in sections 4.6 and 4.7. Finally, we present experimental results
in section 4.8.

4.2 Notation

We denote the external nets of a cell by N . A net is called external if it is
part of either the input or the output of a cell. Because cell-internal nets do
not need to be accessed from outside the cell itself, they are of little relevance
to a cell’s pin accessibility and will be ignored in the rest of the chapter. For
a given cell layout and a net n ∈ N , a pin access point describes one

4.3. PREVIOUS WORK 59

BA

C D

Figure 4.2.1: Two wires belonging to different nets, marked in red with two
possible pin access points each. In this example, a pin access point is a valid
position to place a via on top of the wire. Assuming certain via distance
rules, it may be that pin access points B and C are in conflict with each
other and at most one of them can be used. In this case the valid pin access
combinations would be { (A,C), (A,D), (B,D) }.

possible way of how the existing metal shapes of n can be extended so that
n can be accessed either from the ceiling or one of the sides of the cell area.
Let PAPn denote the set of pin access points of net n. For k ≥ 2 different
nets n1, . . . , nk and p1 ∈ PAPn1 , . . . , pk ∈ PAPnk

, we say p1, . . . , pk are in
conflict with each other, if adding the shapes of p1, . . . , pk to the layout
simultaneously would create a design rule violation. For N = {n1, . . . , n|N | }
we call a tuple (p1, . . . , p|N |) ∈ (PAPn1 × · · · × PAPn|N|) a valid pin access
combination, if the pins p1, . . . , p|N | are not in conflict with each other.
See fig. 4.2.1 for an example. We denote the set of all valid pin access
combinations of a layout by PAC. Similar definitions have been used by
[Xu+15] and [DCM17].

4.3 Previous work

Xu et al. have examined pin accessibility in a number of publications. Most of
their work is focused on improving not the cell layout itself, but the cell place-
ment and the detailed router to avoid inaccessible pins. In [XLLP17] they
improve the traditional track assignment, a step between global and detailed
routing that assigns global wires to a set of local routing tracks, to reduce
the number of pins that become inaccessible during the following sequential
detailed routing. In [Xu+16] they examine the difficulties of accessing pins
that are introduced by restrictive line end rules of self-aligned double pat-
terning techniques. They propose several techniques to avoid blocked pins
during sequential detailed routing.

In [Xu+15], Xu et al. propose to maximize the number of valid pin access
combinations (which they call hit point combinations) when designing a cell
layout in order to optimize pin accessibility. This method rewards spreading
the available pin access points among the nets (see fig. 4.3.1 for some exam-

60 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

BA C D
α)

β)

γ)

Figure 4.3.1: Comparison of three layouts, each containing one blue
metal shape for nets 1 (left) and 2 (right) with some pin access points
marked in red. In layout α, two pins from nets 1 and 2 each have two
pin access points. The four valid pin access combinations for layout α are:
{ (A,C),(A,D),(B,C),(B,D) }. If we only count the total number of pin ac-
cess combinations when comparing the pin accessibility of two layouts, it
can happen that excessively large pins “mask” bottlenecks. For example,
by increasing the size of the shape of net 2 as depicted in layout β, we can
increase the number of pin access combinations to five. However, this fails to
capture the fact that accessing pin 1 becomes more restrictive in comparison
to layout α. Nevertheless, measuring |PAC| does somewhat account for this
situation, as moving one of the pin access points from net 2 to net 1, as it
is done in layout γ, significantly improves the number of valid pin access
combinations to a value of eight.

ples). If there are no conflicts between pin access points, maximizing |PAC| is
identical to maximizing the product or the geometric mean over the number
of pin access points per net. The number of valid pin access combinations
can be seen as a variant of the geometric mean over the number of pin access
points per net, adjusted for conflicts.

In [SJKS17], Seo et al. measure the remaining pin access (RPA) for each
pin p as the expected number of free pin access points for p, once all other
pins in the neighborhood of p are connected. They try to ensure that all pins
have an RPA value greater or equal than 1, by injecting whitespace into the
examined cell layout near the most problematic pins.

In [Tag+10], Taghavi et al. follow a similar approach, penalizing pairs of
pins that are close together and are likely to interfere with each other. They
add another term to their scoring function that penalizes small pins, because
they will be the most difficult to contact. This work is done in the context

4.4. AN ABSTRACT PIN ACCESSIBILITY SCORE 61

of a technology node that does not use track patterns for cell layout routing.
Therefore, the score they compute is continuous in the pin positions.

4.4 An abstract pin accessibility score

Our goal is to enable BonnCell to generate layouts that optimize some pin
accessibility score. To this end, we need to be able to model this score in
BonnCell’s routing ILP. Unfortunately, the pin accessibility scores introduced
in previous works seem to be unsuitable here. The approach by Taghavi et
al. does not fit well for the technology node we are considering, because it
does not account for discrete track patterns. Both the approaches in [Xu+15]
and [SJKS17] base their score on all possible pin access points. This most
likely leads to an inefficient ILP formulation, because one needs to add some
variables and constraints to the ILP for every possible pin access point of a
net, which can be very many on larger cells. Therefore, we will introduce a
new scoring function, which is similar to the existing ones, but can be im-
plemented efficiently in the routing ILP. In fact, for our new pin accessibility
score it will be sufficient to model only two pin access points per net in the
ILP (see section 4.7.1).

Whenever we add a feature to BonnCell, we try to keep it as indepen-
dent of the technology node as possible to reduce the amount of work re-
quired when transitioning to new technology nodes. However, pin accessibil-
ity is inherently highly dependent on the technology because it incorporates
technology-specific details such as the available layer stack, track patterns,
and design rules. Therefore, in addition to defining a particular pin acces-
sibility scoring function for a current technology node, we will provide a
simple and generic framework that we hope will act as a guide in the def-
inition of sensible scoring functions for future technology nodes. We will
establish this framework and its motivation now and discuss its concrete,
technology-dependent implementation in section 4.5.

A cell layout will be instantiated many times on the final chip. Each
of these instantiations will have a local environment of other cells, routes,
and blockages that will, most likely, cause some pin access combinations of
the layout to become undesirable or even infeasible. E.g. blockages or other
routes may not leave enough space for the shapes required by a pin access
point. To quantify this, we assign to each instantiation i of the cell layout a
rating function fi : PAC → { 0, 1 }, which equals 1 for exactly those pin access
combinations that are suitable for the given instantiation i of the layout. Let
us group the instantiations of the layout by this rating function. We call such
a group context and denote the set of all contexts by C. For each context

62 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

c ∈ C, its corresponding rating function is denoted by fc.
Ideally, we would like to design a cell layout such that for all contexts

c ∈ C, there exists at least one p ∈ PAC such that fc(p) = 1. This would
mean, that, in every context, the pins of our cell are all accessible. In practice
however, most cells will not reach this ideal, mainly due to the following two
reasons. Firstly, while designing a cell, a number of different objectives have
to be balanced simultaneously, e.g. size of the layout, timing properties, the
amount of occupied routing resources, and pin accessibility. Optimality can
usually not be achieved simultaneously for all objectives, leading in practice
to suboptimal pin accessibility for many cells. Secondly, different contexts
will most likely make requirements that cannot be fulfilled at the same time.
For example, one context could require net A to be accessed on track t, while
another context requires net B to be accessed on track t, but due to spacing
constraints, track t cannot harbor pin access points for both net A and B.
Such problems can be mitigated by creating different layouts for different
contexts, as is done in [KJK21]. While this can improve pin accessibility,
working with multiple layouts for the same cell introduces a significant com-
plexity for the whole chip design flow. Notably, timing estimations early on
in the flow become less reliable because it is uncertain which cell layouts will
eventually be used. As such a feature would require adding support through-
out the chip design flow, it is beyond the scope of the BonnCell project, and
we will not pursue this idea further in this work.

We are thus striving to generate a single layout for a cell that balances pin
accessibility in all contexts. To determine which layout performs best in this
regard, we propose the following metric. Let s : C →R≥0 denote for every
context how important it is to have good pin accessibility in this context.
We then define the pin accessibility score of a layout as

PinAccessibilityScore :=
∑

c∈C
s(c)

(
max
p∈PAC

fc(p)

)

The definitions in this section have been kept highly abstract. Before
the pin accessibility score can actually be calculated for the layout of a cell
in a certain technology, choices and simplifications have to be made for the
different parts of the formula. These include the following:

• What constitutes a pin access point?
• As cell layouts are usually designed early on in the development of a
chip, their exact instantiations are unknown and the set of contexts C
must be estimated or guessed.

• How to choose the context rating function s?

4.5. PIN ACCESSIBILITY IN A MODERN TECHNOLOGY NODE 63

These choices are highly technology-dependent, and we cannot provide ex-
act formulas that work for all environments. However, we hope that the
above definition of a pin accessibility score can be used as a guideline when
optimizing pin accessibility in future technologies.

Recall that our goal was to define a pin accessibility score that can easily
be incorporated into BonnCell’s routing ILP. Let us assume that for each
context c ∈ C we can define an ILP that sets a binary variable mc to 1 if
and only if a valid pin access combination under the restrictions of context
c exists. Then, the defined pin access score can be expressed as a linear
combination in these mc variables, meaning it can be chosen as an objective
function for the ILP. Through the choice and especially the size of C, we
can control the complexity and size of this ILP modelling approach. In the
following section, we discuss the ILP realization of our scoring function in
detail, demonstrating that our pin accessibility score can indeed be modelled
and optimized using the outlined approach.

4.5 Pin accessibility in a modern

technology node

In this section, we give an in-depth example of how our abstract pin accessi-
bility score can be implemented for a state-of-the-art technology node. Cell
layouts in this node consist of a front end of line (FEOL) and, on top of
that, a back end of line (BEOL). Both of these consist of a number of layers.
The transistors are created in the FEOL and are then interconnected in the
BEOL. For a cell layout, three metal layers M1, M2, M3 and their intercon-
necting vias called V1 and V2 are available in the BEOL. All metal layers
are based on track patterns and have a fixed orientation, i.e. wires on M1
and M3 can only be placed horizontally, while M2 wires must be oriented
vertically (see fig. 4.5.1 for a visualization). Typically, cell layouts use up
most of their M1 routing resources but leave some resources free on M2 and
M3. These free routing resources on M2 and M3 can then be used to create
space and timing efficient connections between close-by cells.

We will denote a pin access point by a tuple (r, t), where r is one of the
circuit rows of the layout and t is one of the M2 tracks. We say such a
tuple (r, t) is a pin access point of net n, if one of the following two options
holds:

• Either the routing of net n already contains a piece of M2 wire on the
track t in the circuit row r,

• or the track t is not occupied by any other net in the circuit row r,

64 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

Source Gate Drain

M1

M1 M1

V1V1

M2M2

V2

M3

Figure 4.5.1: Visualization of the available layers in the technology node
we are considering. All M-layers are track-pattern based. M1 and M3 are
oriented horizontally, while M2 is oriented vertically.

and the routing of net n can be extended by one V1 shape and one
M2 metal shape within that track and bit, so that no design rules are
violated.

To simplify our definition, we require that in a valid pin access combination,
no two nets share the same pin access point (r, t).

The rationale behind our pin access point definition is as follows. We
expect the detailed router∗, which will eventually create the metal shape
connections to our cells, to not be able to connect to the FEOL layers directly,
nor to modify or extend M1 shapes, due to complicated design rules on these
layers. Therefore, the router is left with the possibility to access pins with
metal shapes above layer M1. Since most cell layouts in this technology use
none or few M3 routing resources, we expect M2 pins to be always accessible
from above with M3. Therefore, our focus lies on ensuring that every cell
routing leaves enough space for one M2 metal shape per pin.

Choosing a pin access point for each net means to perform a matching
between nets and pairs of circuit rows and M2 tracks. To simplify the no-
tation in the rest of the chapter, we typically leave out the circuit rows and
pretend that this matching is only between nets and M2 tracks.

Remark. Our above definition of pin access points does not account for
the possibility to connect to nets by extending metal shapes on layer M3 or
accessing those shapes from the layer above M3. In fact, we believe that all
external nets in our cell that utilize layer M3 for its routing are relatively

∗At the time of writing, a detailed router for the examined technology node is not yet
available at our industry partner.

4.5. PIN ACCESSIBILITY IN A MODERN TECHNOLOGY NODE 65

easy to access. We chose to not explicitly model potential pin access points
on M3 for the following two reasons.

• Firstly, we want to avoid that layouts optimized for pin accessibility
utilize M3 solely to increase the pin accessibility score. Instead, we aim
to keep the amount of occupied M3 routing resources small to allow
flexibility in accessing pins located on layer M2.

• Secondly, a net that utilizes metal shapes on M3 for its in-cell rou-
ting already occupies two M2 tracks, which are typically some distance
apart. In many cases, for the pin accessibility score we are about to
define, this is enough to ensure that the pin access of this net is not
the bottleneck, meaning that a consideration of potential further pin
access points on M3 is superfluous.

We can therefore ignore pin access points on M3, which also helps to keep
our pin access score formulation simple.

Having chosen what constitutes a pin access point, the next step proposed
by our framework is to define the set of contexts C that we want to differen-
tiate. For the examined technology, we propose the following definition:

C := { “no restrictions” } ∪
⋃

M2 track t∗∗

{ “t is blocked” }

With this, we want to capture the following aspects of detailed routing. If a
cell layout is only used in uncongested areas of the chips, the “no restrictions”
context would suffice to ensure that all pins can be accessed. However, if the
layout is used in a congested area where many nets need to be routed, the
detailed router might be forced to occupy one or more of the free M2 tracks of
the cell layout to efficiently route some nets unrelated to our cell. We account
for this scenario by including the cases where a single M2 track is occupied
in our set of contexts. Of course, here one could also include more complex
blockage patterns, where two or more M2 tracks are already occupied. We
decided to limit the complexity of C to simplify the implementation.

We choose the feasibility of a pin access combination p in the context c
as:

fc(p) :=




0 if c =“t is blocked”, and a pin access point on M2

track t is utilized by p
1 otherwise, i.e. p is compatible with c

∗∗Here and in the following, the set of M2 tracks are always those M2 tracks intersecting
the cell area.

66 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

Finally, we define the importance of the contexts as:

s(“no restrictions”) := 1

s(“t is blocked”) :=
1

Number of M2 tracks

Recall our definition from page 62:

PinAccessibilityScore :=
∑

c∈C
s(c)

(
max
p∈PAC

fc(p)

)

Using this, we see that, for any cell layout, our chosen definitions lead to a
pin accessibility score between 0 and 2. It is 0 if connecting all pins of a
cell simultaneously is not possible. If the score is 1, all pins of the cell are
accessible, but blocking any one of the M2 tracks will make accessing all pins
simultaneously impossible. A score of 2 means that the pins of the cell layout
remain accessible, even if an arbitrary M2 track is blocked.

Note that with the proposed scoring function, the score for a cell layout
can be improved by simply increasing the cell width. Therefore, scores should
only be compared between layouts for the same cell that have the same size.
In practice, this poses no problem because typically optimizing cell width is
more important than optimizing pin accessibility.

Having chosen our scoring function, we can now compare layouts with
regard to their pin accessibility. In the next section, we briefly explain how
we perform the actual computation. We will discuss how we can optimize a
layout to achieve the best possible pin accessibility score in section 4.7.

4.6 Computing the pin accessibility score

As part of the BonnCell tools suite, we provide a program to compute the
pin accessibility score defined in the previous section for a given cell lay-
out. The computation is done by solving a variant of the bipartite matching
problem for each of the contexts in C, in which we match nets to pin access
points. More precisely, we solve the Bipartite Matching With Edge Conflicts
Problem, which is defined as follows.

Bipartite Matching With Edge Conflicts Problem (BMWECP)
Instance: A bipartite graph G = (V,E), V = A ∪̇ B,

and a subset of edge conflicts C ⊂ P(E)

Task: Find a bipartite matching M ⊂ E of maximum cardinality,
such that for all conflicts c ∈ C we have c ̸⊂ M .

4.6. COMPUTING THE PIN ACCESSIBILITY SCORE 67

To compute if, with the restrictions imposed by a context c ∈ C, we
can still connect all pins, we define the following BMWECP instance. We
choose A as the set of nets and B as the set of pin access points valid under
the restriction c. We create edges in E between a net and its pin access
points. If two or more pin access points are in conflict with each other,
either because they lie on the same M2 track or due to design rules, such as
minimum via spacing rules (recall the example from fig. 4.2.1 on page 59),
we add those conflicting pin access points as a set to C. We then check
the BMWECP instance for feasibility by a straightforward SAT formulation
which we solve with a state-of-the-art SAT solver, e.g. CaDiCaL [BFFH20].
While we will prove that the BMWECP is difficult to solve in general, its
SAT formulation can be solved within microseconds for all practical instances
we have observed. Since there are no guarantees that all instances can be
solved this quickly, in practice, a runtime limit of ten seconds for the SAT
solver guards against outliers.

Theorem 4.1. Solving the BMWECP is NP-hard, even when restricted to
instances where all conflicts c ∈ C are of size two and each edge e ∈ E only
participates in at most one conflict.

Proof. We will use a reduction from the SAT problem. Given a SAT instance
with variables X and clauses C ⊂ P(X ∪{ x̄ | x ∈ X }), we will construct an
instance of the BMWECP with the described restrictions, which will have a
solution of size |A| if and only if the original SAT instance is feasible. We
can assume that no clause is empty, and for any variable x ∈ X, not both
x and its negation x̄ appear in the same clause. The construction works as
follows.

1. For each clause c ∈ C, we add one vertex ac to the set A.
2. For each clause c ∈ C, for each of its literals l ∈ c, we add one vertex

bc,l to the set B, and add the edge ec,l := { ac, bc,l } to E.
3. For a variable x ∈ X, let

N(x) := { c ∈ C | x ∈ c or x̄ ∈ c } = { cx,1, . . . , cx,|N(x)| }

denote the clauses in which either x or x̄ occur, for which we fix an
arbitrarily chosen order. Then, we add a circle of length 2 |N(x)| to the
matching instance by adding

• vertices ax,1, . . . , ax,|N(x)| to A,
• vertices bx,1, . . . , bx,|N(x)| to B, and
• edges { ax,1, bx,1 } , { bx,1, ax,2 } , . . . , { bx,|N(x)|, ax,1 } to E which we
name ex,1, . . . , ex,2|N(x)| as depicted in fig. 4.6.1.

68 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

4. Finally, for each clause c ∈ C and literal l ∈ c, let x ∈ X be the
variable corresponding to l and let i ∈ { 1, . . . , |N(x)| } such that
c = cx,i ∈ N(x): Then, we add the following conflict to C.

• { ec,l, ex,2i } if l = x̄, or
• { ec,l, ex,(2i−1) } if l = x.

Figure 4.6.1 on page 68 visualizes the above construction.

ac1 ac2

bc1,x

bc1,y

bc1,ȳ

bc1,z̄

ax,1 bx,1

by,1

by,2

bz,1ay,2 ay,1 az,1

ex,2 ey,2 ey,1

ey,3 ey,4

ez,2

ez,1ex,1

Figure 4.6.1: Visualization of the BMWECP instance construction in the
proof of theorem 4.1 for a SAT instance with variables X = {x, y, z } and
two clauses c1 = (x ∨ y) and c2 = (ȳ ∨ z̄). Red vertices belong to set A and
blue vertices to set B. Dashed arrows indicate pairs of conflicting edges. The
green edges correspond to the feasible truth assignment x = true, y = false,
and z = true.

We observe that the size of the constructed BMWECP instance is poly-
nomial in the size of the initial SAT instance. Furthermore, all additional
restrictions imposed in the theorem statement are also fulfilled. It remains
to show that a solution to the SAT instance exists, if and only if an optimum
solution for the BMWECP instance of size |A| exists.

First, let us prove that a solution S ⊂ E of size |A| for the BMWECP
instance yields a solution for the SAT instance. We observe that in such a
solution of maximum size, for each circle constructed for variable x ∈ X in
step 3 of the construction, S contains the edges ex,i for either all even or all

4.7. OPTIMIZING LAYOUTS FOR PIN ACCESSIBILITY 69

odd i ∈ { 1, 2, . . . , |N(x)| }. We construct a truth assignment for the variables
of the SAT instance by setting x ∈ X to true, if S contains all even indexed
ex,i, and false otherwise.

We claim that this truth assignment is a solution to the SAT instance. To
see this, we first observe that, due to the size of S, for each clause c ∈ C, there
exists exactly one l ∈ c, such that ec,l ∈ S. If l = x̄ for some x ∈ X, notice
that ec,l is in conflict with ex,i for some even index i. Thus, in this case we have
assigned x = false in our truth assignment construction above. Therefore,
our truth assignment fulfills clause c. Using the analogous argument for the
case of l = x ∈ X, we see that our truth assignment indeed fulfills all clauses
in C, thus constituting a solution to the SAT instance.

Now, it remains to show that, given a truth assignment forX that satisfies
all clauses C, we can construct a solution for the BMWECP instance of size
|A|. We will now construct such a solution S by reversing the construction
above. For each variable x ∈ X we add the edges ex,i to S for all even
i ∈ { 1, . . . , 2 |N(x)| } if x = true, or for all odd i if x = false. Then, for each
clause c ∈ C, we choose one of its literals l ∈ c with value true and add the
edge ec,l to S. By construction, S covers all vertices in A and thus has size
|A|. By the same arguments as before, none of the edges in S are in conflict
with each other, meaning that we have constructed a feasible solution to the
BMWECP instance.

4.7 Optimizing layouts for pin accessibility

Having developed a tool to calculate our pin accessibility score for a given
layout, we now would like to generate layouts optimized for this score. First,
we will discuss how we can modify the ILP we use to solve the CLRP ac-
cordingly. At its core, we will use the following ILP formulation to model
the pin accessibility score.

Variables:

mc ∈ { 0, 1 } Equals 1, if a matching between all nets and some M2
tracks exists in the context c ∈ C†

pcn,t ∈ { 0, 1 } Indicates if the matching edge between net n and M2
track t is active, for the matching in the context c ∈ C

pn,t ∈ { 0, 1 } Equals 1, if M2 track t is a feasible pin access point for
net n

†We use the set of contexts C as defined on page 65.

70 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

Objective:

max

(∑

c∈C
s(c)mc

)

Constraints:

pn,t ≥ pcn,t for all nets n, M2 tracks t, contexts c ∈ C (4.1)(∑

M2 track t

pcn,t

)
≥ mc for all nets n and contexts c ∈ C (4.2)

pcn,t = 0 for all nets n and c = “t is blocked” ∈ C (4.3)
∑

n

pcn,t ≤ mc for all M2 tracks t and contexts c ∈ C (4.4)

Constraints 4.2 and 4.4 ensure that the variables pcn,t form a matching
for each context c ∈ C, associating all nets to an M2 track if mc equals 1.
Constraints 4.3 require these matchings to obey the restrictions imposed
by the contexts C. Finally, constraints 4.1 ensure that each net has the pin
access points available, which are required to realize the matchings. Since the
objective function matches equation 4.4 on page 62, the above ILP computes
a solution whose objective value equals the pin accessibility score.

For a given net n and M2 track t, we will ensure that the variable pn,t
equals 1 if and only if M2 track t is a valid pin access point for net n. This
is achieved using the following two techniques:

• Based on the via metal shapes described in section 3.5.1.1, we intro-
duce “shadow V1 metal shapes”. Each active variable pn,t induces one
active shadow V1 metal shape connecting to the M2 track t. Each
active shadow V1 metal shape either coincides with their non-shadow
counterparts, or it has to obey design rules with regard to other active
metal shapes, just like regular V1 metal shapes. However, two shadow
V1 metal shapes do not have to obey regular V1 design rules (most im-
portantly spacing rules) between them. This allows us to model that
two pin access points might mutually exclude each other, but might still
both participate in the net-to-M2-track matchings for different contexts
in C. See fig. 4.7.1 for an example.

• To ensure that, if a shadow V1 metal shape is active it is actually also
connected to the rest of the net, we add additional “optional termi-
nals” to our Steiner tree packing problem ILP formulation described in
section 3.2.3. They ensure connectivity by modelling a flow from the
net’s root terminal to the shadow V1 metal shapes. Using the big-M

4.7. OPTIMIZING LAYOUTS FOR PIN ACCESSIBILITY 71

method, the constraints forming the flow are only activated based on
the pn,t variables. Adding one flow for every M2 track t would add
unacceptably many variables and constraints to the ILP. Thus, instead
of creating one optional terminal for each pn,t variable, we generate two
optional terminals for each net, each of them comprised of all shadow
V1 metal shapes. We then use additional constraints to ensure that
each of these optional terminals actually connect to the one shadow
V1 that induced its activation. Consequently, this limited number of
optional terminals also limits the number of active pn,t variables per
net to two. This number has been chosen based on theorem 4.3, which
shows that, at least in a simplified setting, there always exists a solu-
tion with optimium pin accessibility score, in which each net only has
two pin access points.

Remark. In section 4.8, we will see that adding this formulation to the
routing ILP significantly increases the time needed to find an optimum solu-
tion, albeit within a range that is still feasible for most of our applications.
If, in a future technology, this changes so that optimizing above formulation
becomes prohibitively slow, one could instead try to use a heuristic formula-
tion. Such a heuristic formulation could trade off solution quality for solving
speed. For example, instead of the above formulation, we could try to maxi-
mize the total number of pin access points. This might be faster to optimize
but should still somewhat correlate with the pin accessibility score which we
are trying to optimize.

4.7.1 Two pin access points per net are sufficient

In the following, we show that in a simplified setting without design rules or
limited routing resources, the optimum pin accessibility score can always be
achieved with only two pin access points per net. As in section 4.6, we will
formalize this by modeling the pin accessibility score as a set of matchings
in a bipartite graph G = (V,E), V = A ∪̇ B, where A and B represent the
nets and M2 tracks respectively. In this graph, for a net a ∈ A, its incident
vertices in B represent the pin access points of net a.

Definition 4.2. We say that an undirected bipartite graph G = (V,E),
V = A ∪̇ B is A-factor-critical, if for each b ∈ B there exists an A-
covering matching Mb ⊂ E, such that Mb exposes b, meaning that the edges
Mb do not cover b.

A layout has a perfect pin acessibility score of 2, if its corresponding bipartite
graph described above is A-factor-critcal. In this case, we can prove the
following.

72 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

BA

DC E

M
2
tr
ac
k
t 1

M
2
tr
ac
k
t 2

M
2
tr
ac
k
t 3

1

2

Figure 4.7.1: Example situation to illustrate the concept of shadow V1
vias. The dashed shapes indicate the horizontal positions of the M2 tracks
t1, t2, t3. Let us assume the four regular shapes (two blue M1 belonging to
nets 1 and 2, one green M2 and one orange V1 marked with A) are active.
Let us also assume that the via-to-via spacing rules forbid two vertically
aligned active V1 metal shapes on the depicted M1 tracks. Then, activating
a shadow V1 metal shape at position D would not be feasible, because it
would conflict with the regular V1 shape A. However, activating both shadow
V1 metal shapes at positions B and D would be feasible, because by our
construction, they do not need to obey via spacing rules to each other. This
is important, because both pin access points B and D could participate in
one of the net-to-M2-track matchings for different contexts in C. E.g. for
c1 = “t1 is blocked” ∈ C, the matching could be (net 1, pin access point B),
(net 2, pin access point E), and for c2 = “t3 is blocked” ∈ C it could be (net
1, pin access point A), (net 2, pin access point D).
Remark. While the approach of disabling all design rules between shadow
V1 metal shapes is suitable for the technology node we are working on, it
would not be able to model arbitrary other V1 design rules. E.g. if a V1 metal
shape at position B would be in conflict with a V1 shape at position E, we
would have to modify our approach to prevent the two pin access points B
and E to be simultaneously used for the matching in the same context c ∈ C.
This could be achieved by enabling or disabling the design rule evaluation
between the V1 metal shapes based on the pcn,t variables.

4.7. OPTIMIZING LAYOUTS FOR PIN ACCESSIBILITY 73

Theorem 4.3. Let G = (V,E), V = A ∪̇ B be a bipartite A-factor-critical
graph. Then, there exists a subgraph G′ = (V,E ′) with E ′ ⊆ E that is also
A-factor-critical and whose vertices in A all have a degree of at most two.

Proof. Let G = (V,E), V = A ∪̇ B be such a bipartite A-factor-critical
graph, where for at least one a ∈ A we have |Γ(a)| > 2. We will show that
we can remove one of the incident edges of a without destroying the A-factor-
criticality. This step can then be used inductively to create a graph with the
desired degree constraints for the vertices in a.

Let us number the neighbors of a by denoting Γ(a) = { b1, . . . , bk }. Ad-
ditionally, we name the edge e1 := { a, b1 } ∈ E. Let M1 be an A-covering
matching exposing b1. Then e1 ̸∈ M1. Let β1 ∈ B be the matching partner
of a in M1.

Similarly, let Mβ1 be an A-covering matching exposing β1, and let β2 ∈ B
be the neighbor of a in Mβ1 .

Let f ∈ δ(a) \ { { a, β1 } , { a, β2 } }. If we can now show that for any
x ∈ B there exists a matching Rx that exposes x and does not contain f ,
the smaller graph G′ := (V,E \ { f }) is still A-factor-critical and our proof
is concluded.

Therefore, let x ∈ B. If x = β1, Mβ1 is a matching with the desired
properties. Otherwise, if x ̸= β1, we construct Rx as follows. Let Mx be an
A-covering matching exposing x. If f ̸∈ Mx, we can use it as Rx and are
done. Otherwise, let us examine the symmetric difference between Mx and
M1 denoted by Mx △ M1 ⊂ E. Note that f ̸∈ M1 and thus f ∈ Mx △ M1.

It is easy to see that the symmetric difference between two matchings
consists of disjoint circles and/or paths. In any such circle or path the edges
from Mx and M1 appear alternatingly.

If f ∈ C for some circle C ⊂ Mx △ M1, we define Rx as Mx augmented
along C, i.e. we set Rx := Mx △ C ‡. Mx and Rx cover the same elements in
V , but Rx does not contain f . Thus, Rx fulfills all desired criteria, and we
are done.

Otherwise, f ∈ P for some path P ⊂ Mx △ M1. Both Mx and M1 cover
all of A, i.e. that both endpoints of P lie in B and thus P has even length.
If x is not covered by P , we can again simply augment Mx along P . The
resulting matching Rx does no longer contain f , still exposes x and covers
all elements in A. Thus, Rx fulfills all desired criteria, and we are done.

‡Augmenting a matching M along a circle or path is a common notation, employed
e.g. in [KV18]. It works, whenever in that circle or path every second edge belongs to M .
In this proof, augmentation will always happen along circles or paths with an even length,
meaning that the resulting matching has the same cardinality as the original one.

74 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

Let us now consider the case that P covers x. Our goal is to modify P
so that it still contains f but no longer covers x. Then, we can augment Mx

along the modified path to obtain Rx with the desired properties. x must
be one of the endpoints of P , because it is exposed in Mx. Note that the
orientation of f in P is as depicted in fig. 4.7.2.1, because P contains edges
from Mx and M1 alternatingly and the edge in P incident to x is an element
of M1. If Mx exposes b1, then we can simply define Rx := Mx \ { f } ∪ { e1 }
and are done. Thus, we assume that Mx covers b1. As b1 is exposed in M1,
there exists a path Q in Mx △ M1 for which b1 is an endpoint.

If P and Q are the same path, we can augment Mx along the circle
formed by by the sub-path P[b1,a] and e1 (see fig. 4.7.2.2). Note that this
circle contains f , due to the orientation of f in P discussed above. Finally, if
P andQ are disjoint paths, let y denote the endpoint of P that is not x. Then,
we augment Mx along the joint path P[y,a], e1, Q, as depicted in fig. 4.7.2.3.
This is possible because exactly every second edge on this combined path is
contained in Mx.

4.8 Practical results

To demonstrate that our implementation is suitable for optimizing our pin
accessibility score, we run a number of experiments. We compare to the
technique which was previously used in BonnCell to ensure pin accessibility,
which we will refer to as the “forced M2” technique. In this, for each
external net we would create an artificial pin spanning the entire M2 layer,
forcing every net to connect to this layer. By definition of our pin accessibility
score, this technique ensures that any layout has a score of at least 1.

Compared to the newly defined ILP formulation, which we refer to as
“MIP opt” technique, the forced M2 technique is at a disadvantage because
it needs to place an actual M2 shape for every net, whereas in the MIP opt
technique it suffices to ensure that such a connection is possible. See fig. 4.8.1
for an example where this leads to a worse score for the forced M2 technique,
even though both techniques yielded the same result except for the M2 metal
shapes. Therefore, in order to level the playing field, as post-processing step,
for all layouts generated in our experiments we remove all M2 shapes and
their incident vias, if the M2 shape is only connected to a single via.

Our experiment now works as follows. We run BonnCell with four differ-
ent settings. In all runs, we choose the cell width as the main order objective
function.

4.8. PRACTICAL RESULTS 75

f
A

B
x

a1)

f

x

a2)

b1

e1

x

a

3)

b1 e1

f

y

P

P

P

Q

Figure 4.7.2: Depicted are three versions of the path P . The green edges
belong to Mx, while the orange edges belong to M1. Vertices in A and B
are color-coded blue and red respectively. 1) shows the path P , its contained
edge f and vertices x and a. Because f ∈ Mx, f is not contained in the
sub-path P[x,a]. 2) depicts the circle that can be constructed from P using
e1, if P has b1 as one of its endpoints. 3) demonstrates the constructions of
a path using parts of P , e1, and Q.

76 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

BA

DC E

1

2

M
2
tr
ac
k
t 1

M
2
tr
ac
k
t 2

M
2
tr
ac
k
t 3

Figure 4.8.1: Shows the routing of the nets 1 and 2, both consisting of
one M1, V1, and M2 shape each. With the given layout, the used pin ac-
cess point A blocks the pin access point C and the M2 shape over D blocks
pin access point B. Thus, we are left with the valid pin access combinations
{ (A,D), (A,E) }, which would yield a pin accessibility score of 1.67. How-
ever, in the same layout, if we remove the V1 and M2, we get the pin access
combinations { (A,D), (A,E), (B,C), (B,E) }, yielding a perfect pin acces-
sibility score of 2.

• As a baseline, we run BonnCell with its default settings. We use the
forced M2 technique described above to ensure that all nets have ac-
cessible pins. First, we find a routable placement for the transistors
that minimizes the cell width, followed by an approximation of the
netlength, namely the bounding box netlength. The bounding box
netlength effectively measures the horizontal distance between the left-
most and rightmost pin or transistor contact of a net and its use
in BonnCell is described in detail in [Cre19]. Then, for the chosen
placement, we solve the CLRP once by optimizing the routing ILP for
netlength.

• In the routing-opt run, we utilize the transistor placements from the
baseline run. We rerun the CLRP ILP formulation, optimizing lexico-
graphically the pin accessibility score formulated in section 4.5, followed
by the netlength.

• In the placement-opt run, we solve the CLRP to optimality with the
netlength objective function, once for every possible placement of the
transistors with the same cell width as in the baseline run. Again, for

4.8. PRACTICAL RESULTS 77

each CLRP instance we utilize the forced M2 technique. Amongst the
generated layouts, we choose the one that lexicographically maximizes
the pin accessibility score and minimizes the horizontal netlength.

• In the all-opt run, we combine both previous techniques. We again
solve the CLRP ILP to optimality for each possible placement of the
transistors with the same cell width as the baseline run. Here, as in the
routing-opt run, the ILP is solved by optimizing lexicographically the
pin accessibility score formulated followed by the netlength. Then, as
in the placement-opt run, amongst the generated layouts we choose the
one maximizing the pin accessibility score and the horizontal netlength
lexicographically.§

In the interest of runtime, in all cases we stop the ILP optimization once a
solution is found and the CPLEX solver can prove that it lies within 2% of
the optimum. Since the lexicographical objective function in the routing-opt
and all-opt runs is realized by multiplying the first order objective with a
large constant and then adding the second order objective, the 2% optimality
threshold can have the effect that the second order objective is not optimized
at all. We execute all runs with a single thread and a runtime limit of 24
hours.

The results are depicted as a hat graph [Wit19] in fig. 4.8.2. For each
cell, a black vertical line indicates the pin accessibility score achieved in the
baseline run. If the routing-opt, placement-opt, or all-opt runs produced
layouts with a score better than that of the baseline run, the improvement is
displayed as an orange, blue, or green bar respectively. Out of our testbed of
94 cells, we were able to compute solutions for all four runs for 51 cells within
the time limit. For 17 cells, the pin accessibility score did not improve in
the all-opt run compared to the baseline run, meaning that either a timeout
occurred, or the baseline run already generated a layout with the best pin
accessibility score amongst all possible layouts with the same cell width. In
the table, we display the other 34 cells, for which we managed to find a
layout with an improved pin accessibility score. If a placement-opt, routing-
opt, or all-opt run did not manage to explore the whole search place within
the given time frame of 24 hours, its bar is marked with a red square at the
end, indicating that the optimum solution could yield an even better result
with respect to the respective objective functions.

The all-opt run improved the pin accessibility score of 31 cells to its
maximum value of 2. Only for 2 cells the all-opt run yielded a better pin
accessibility score better than the routing-opt run. This indicates that in
most cases, changing the transistor placement is not necessary to yield the

§This is similar to the approach used in [Cre19] to find globally optimum routings.

78 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

optimum pin accessibility score. For 19 cells, the all-opt run gave a better pin
accessibility score than the placement-opt run. This illustrates that simply
enumerating some layouts and taking the one with the best pin accessibility
score is an insufficient method for optimizing the score. Instead, in many
cases, the formulation as an ILP objective function is necessary to obtain a
layout with the optimum pin accessibility score.

A manual comparison between some layouts from the baseline and rou-
ting-opt runs revealed that the CLRP solutions often only differ in the size
of the pin shapes. However, there are also some cases where differences are
more substantial. See fig. 4.8.3 for an example.

In terms of runtime, the placement-opt and all-opt runs are several orders
of magnitude slower than the baseline run. This is because they optimize an
CLRP instance for many placements, while the baseline run only optimizes a
single CLRP instance. We do not give in-depth runtime comparisons between
the baseline and the placement- and all-opt runs, because the exact runtime
difference largely depends on the number of different transistor placements,
which is not very informative. The smallest cell for which we could not
compute a solution for the all-opt run had a cell width of ten gate pitches
in the baseline run. Luckily, our test revealed that in almost all cases, one
can obtain the best possible pin accessibility score by using the routing-opt
setup, which is much faster than the placement- and all-opt runs.

To test if optimizing the pin accessibility score ILP formulation is suitable
even for larger cells where the baseline run did not find a solution within 24
hours, we run another experiment. We fix routable transistor placements
for all cells in our testbed, which have been obtained by employing multi-
threading and various partitioning techniques described in [Cre19]. Unlike
before, due to the used heuristics some of these transistor placements are
not width-optimal. Then, for each cell we solve the CLRP twice by opti-
mizing the routing ILP once with the normal netlength objective function
(netlength-routing) and once with the pin accessibility score objective for-
mulation (PA-routing). Both runs again have a runtime limit of 24 hours.
For the PA-routing run, we provide the ILP solver with the solution of the
netlength-routing run (if one exists) as an initial starting solution. This way,
the PA-routing run is guaranteed to produce some solution, even if it en-
counters a timeout, in which case we can assess how much improvement in
the pin accessibility score was attained after 24 hours of computation.

The results of this experiment are presented in fig. 4.8.4. Out of our
testbed of 94 cells, BonnCell was able to produce a solution for the netlength-
routing run for 82 cells. While the runtime increase for the PA-routing run is
significant for most cells, BonnCell was still able to compute layouts with an
improved pin accessibility score for 47 cells. Notably, even for those 23 cells

4.8. PRACTICAL RESULTS 79

1.0 1.2 1.4 1.6 1.8 2.0
Pin accessibility score

MX2 X4N

XNOR2 X3P2M

IELAT X3M

XOR2 X3P2M

IELAT X1M

ELAT X3M

OAI22 X2M

IELATNOR X3M

NOR2 X2T

NAND2 X2T

DFFQ X1M

SDFFQS X1M

TG MUX

SDFFQ X1M

SDFFQN X1M

LCBDLYAND X1M

IELATN X1M

OAI21 X2T

L1LATF X1M

T2 X1N

IT2 X1N

AOI22 X2M

LCBDLY X1M

AOI21 X2M

ELATN X1M

ELATS X1M

LCBDLY X0P5M

NOR2 X1P6S

NAND2 X0P5M

NAND2 X1M

NOR2 X0P5M

NOR4 X1M

AOI22 X1M

NAND4 X1M

baseline

all-opt

routing-opt

placement-opt

Figure 4.8.2: Comparison between the pin accessibility scores obtained
from four different runs, which are described in detail on pages 74 ff.

80 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

M
2

1

M
2

2

M
2

3

M
2

4

M
2

5

M
2

6

(a) A cell layout opti-
mized for netlength, yield-
ing a pin accessibility
score of 1.167.

M
2

1

M
2

2

M
2

3

M
2

4

M
2

5

M
2

6

(b) A cell layout op-
timized lexicographically
for pin accessibility and
netlength, yielding a pin
accessibility score of 2.

Figure 4.8.3: Two cell layouts realizing the instance AOI22 X1M, both
using the same transistor positions. Depicted are M1 in blue, V1 in purple,
and M2 in green. Connections fromM1 to the transistors blowM1 are marked
in dark gray. Pin access points are the M2 shape and the red squares. The
M2 track positions are marked at the bottom. To improve the pin access
score of layout (a), one could try to increase the size of the M1 pin shapes.
However, this is not possible for the M1 pin in the lower left corner, because
it is boxed in by the occupied M2 track and the lower right M1 metal shape
and cannot easily be extended. BonnCell solves this situation by moving the
M2 metal shape to the right and switching the tracks of several M1 shapes.

4.9. CONCLUSION 81

for which the PA-routing run encountered a timeout, BonnCell still managed
to improve the pin accessibility score for 18 of those cells. This illustrates
that our chosen approach is suitable for optimizing the pin accessibility score
for almost all cells, for which BonnCell is normally able to find a solution.

103 104 105 106 107

Runtime for optimizing netlength [ticks]

1

10

100

1000

R
u

n
ti

m
e

fo
r

op
ti

m
iz

in
g

n
et

le
n

gt
h

R
u

n
ti

m
e

fo
r

op
ti

m
iz

in
g

p
in

ac
ce

ss
ib

il
it

y

0.0

0.2

0.4

0.6

0.8

1.0

Im
p

ro
ve

m
en

t
in

p
in

ac
ce

ss
ib

il
it

y
sc

or
e

Figure 4.8.4: Comparison between the netlength-routing and PA-routing
runs. Each dot represents both runs for one cell. The absolute improvements
in pin accessibility score of the PA-routing over the netlength-routing runs
are color-coded. The dots that touch the blue diagonal correspond to runs
where the PA-routing run reached the runtime limit of 24 hours. For the
other dots, the PA-routing run was solved to optimality, yielding the best
possible pin accessibility score for the chosen transistor placement.

4.9 Conclusion

In this chapter, we have developed a pin accessibility score for a state-of-
the-art technology node. We have embedded this in an abstract, technology
independent setting that provides a guideline on how to define similar pin
accessibility metrics in future technologies. Using a SAT formulation, we
have shown how the score can be efficiently calculated for a given cell layout.

82 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

Furthermore, we have seen one possible way of modelling the pin accessibil-
ity score in BonnCell’s CLRP ILP formulation. With this, we are able to
compute layouts with the optimum pin accessibility score amongst all layouts
with a certain cell width. To the best of our knowledge, BonnCell provides
the first suite of algorithms to achieve this.

While finding optimum solutions is time-consuming, it is still a feasible
technique for most smaller cells. These cells are typically the ones that have
the highest pins per cell area ratio, which makes them an important use-case
for pin accessibility optimization. For larger cells, we have seen that pin
accessibility can still be optimized. By starting from a netlength optimized
CLRP solution created by BonnCell, in most cases we can obtain a solution
with improved pin-accessibility within reasonable runtime.

Summing up, BonnCell now provides a fully automated way of measuring
pin accessibility and generating pin accessibility optimized layouts.

Summary

In this work, we have provided an in-depth description of BonnCell’s routing
engine. BonnCell models all design rules explicitly in its routing ILP for-
mulation. This allows BonnCell to model the entire routing solution space
exactly, so it can decide definitively which transistor placements are routable.
It can provide optimum routing solutions in such cases, without artificially
reducing the solution space or relying on heuristics, which sets BonnCell
apart from other automatic cell layout tools.

Although this exact approach creates great layouts, it comes with the
drawback that implementing and maintaining all design rules as ILP con-
straints takes a lot of effort. In chapter 3 we have addressed this by intro-
ducing a novel approach to model the CLRP as an ILP. We deduced that
instead of implementing design rules directly as ILP constraints, it is bene-
ficial to introduce an intermediate modelling layer. Through the notion of
partial polygons, we have bundled ILP variables with their geometric mean-
ing. This allowed us to propose a design rule framework that uses geometric
algorithms to implement design rules. This, in conjunction with mimicking
the structure observed in various design manuals, allows our framework to
greatly reduce the effort needed to implement and maintain design rules in
BonnCell.

Through these changes, BonnCell can now be adapted faster to new tech-
nology nodes. This early availability of BonnCell significantly increases its
usefulness for our industry partner IBM, who is now able to utilize BonnCell
even during the early exploration stages of new technology nodes.

Our second big contribution in this work was the addition of pin accessi-
bility considerations to BonnCell. Based on pin accessibility scoring methods
proposed in other works, we have developed a new scoring function that is
both easy to compute in practice and can be concisely embedded into our
routing ILP model. Previously, at our industry partner IBM, the accessibil-
ity of pins of cell layouts was assessed by human experts. Layouts without
sufficient pin accessibility were manually adjusted. By offering an automated
way to compute and optimize the pin accessibility score within BonnCell, this

83

84 CHAPTER 4. PIN ACCESSIBILITY IN CELL LAYOUTS

process now requires much less labor.
Overall, our contributions have significantly reduced the development

times of BonnCell, automated pin accessibility considerations, and thus im-
proved the availability and usefulness of the tool. In turn, this allows for the
creation of better cell layouts with less human effort.

Bibliography

[22a] Big M Method. In:Wikipedia. 2022. url: https://en.wikipedia.
org/w/index.php?title=Big_M_method&oldid=1111237191

(visited on 11/07/2022) (cit. on p. 12).

[22b] IBM CPLEX Documentation. 2022. url: https://www.ibm.
com/docs/en/icos/22.1.0?topic=parameters-deterministic-

time-limit (visited on 04/11/2023) (cit. on p. 25).

[22c] Quadtree. In: Wikipedia. 2022. url: https://en.wikipedia.
org / w / index . php ? title = Quadtree & oldid = 1115215433

(visited on 12/07/2022) (cit. on p. 30).

[23] Fin Field-Effect Transistor. In: Wikipedia. 2023. url: https:
//en.wikipedia.org/w/index.php?title=Fin_field-

effect_transistor&oldid=1134478041 (visited on 04/06/2023)
(cit. on p. 5).

[Ahr+15] M. Ahrens, M. Gester, N. Klewinghaus, D. Müller, S. Peyer, C.
Schulte, and G. Tellez. “Detailed Routing Algorithms for Ad-
vanced Technology Nodes”. In: IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 34.4 (2015), pp. 563–576. url: http:
//ieeexplore.ieee.org/document/6998035/ (visited on
02/06/2023) (cit. on p. 57).

[BFFH20] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. “CaDi-
CaL, Kissat, Paracooba, Plingeling and Treengeling Entering
the SAT Competition 2020”. In: Proc. of SAT Competition
2020 – Solver and Benchmark Descriptions. Ed. by T. Balyo,
N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda.
Vol. B-2020-1. Department of Computer Science Report Series
B. University of Helsinki, 2020, pp. 51–53 (cit. on pp. 41, 67).

[Bib22] J. F. Biburger. “MIP-Formulierungen im Detailed Routing”.
BA thesis. University of Bonn, 2022 (cit. on p. 53).

85

https://en.wikipedia.org/w/index.php?title=Big_M_method&oldid=1111237191
https://en.wikipedia.org/w/index.php?title=Big_M_method&oldid=1111237191
https://www.ibm.com/docs/en/icos/22.1.0?topic=parameters-deterministic-time-limit
https://www.ibm.com/docs/en/icos/22.1.0?topic=parameters-deterministic-time-limit
https://www.ibm.com/docs/en/icos/22.1.0?topic=parameters-deterministic-time-limit
https://en.wikipedia.org/w/index.php?title=Quadtree&oldid=1115215433
https://en.wikipedia.org/w/index.php?title=Quadtree&oldid=1115215433
https://en.wikipedia.org/w/index.php?title=Fin_field-effect_transistor&oldid=1134478041
https://en.wikipedia.org/w/index.php?title=Fin_field-effect_transistor&oldid=1134478041
https://en.wikipedia.org/w/index.php?title=Fin_field-effect_transistor&oldid=1134478041
http://ieeexplore.ieee.org/document/6998035/
http://ieeexplore.ieee.org/document/6998035/

86 BIBLIOGRAPHY

[Che+21] C.-K. Cheng, C.-T. Ho, D. Lee, B. Lin, and D. Park. “Complementary-
FET (CFET) Standard Cell Synthesis Framework for Design
and System Technology Co-Optimization Using SMT”. In: IEEE
Trans. VLSI Syst. 29.6 (2021), pp. 1178–1191. url: https:
//ieeexplore.ieee.org/document/9390403/ (visited on
04/05/2023) (cit. on pp. 5, 7).

[Che+22] C.-K. Cheng, A. B. Kahng, H. Kim, M. Kim, D. Lee, D. Park,
and M.Woo. “PROBE2.0: A Systematic Framework for Routabil-
ity Assessment From Technology to Design in Advanced Nodes”.
In: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41.5
(2022), pp. 1495–1508. url: https://ieeexplore.ieee.org/
document/9467334/ (visited on 02/06/2023) (cit. on p. 58).

[CHLL21] C.-K. Cheng, C.-T. Ho, D. Lee, and B. Lin. “Multirow Complementary-
FET (CFET) Standard Cell Synthesis Framework Using Satis-
fiability Modulo Theories (SMTs)”. In: IEEE J. Explor. Solid-
State Comput. Devices Circuits 7.1 (2021), pp. 43–51. url:
https://ieeexplore.ieee.org/document/9466133/ (vis-
ited on 04/06/2023) (cit. on p. 5).

[Cho94] S. Chopra. “Comparison of Formulations and a Heuristic for
Packing Steiner Trees in a Graph”. In: Ann Oper Res 50.1
(1994), pp. 143–171. url: http://link.springer.com/10.
1007/BF02085638 (visited on 11/21/2022) (cit. on p. 14).

[Cre19] P. Cremer. “Algorithms for Cell Layout”. PhD thesis. Univer-
sity of Bonn, 2019 (cit. on pp. 6, 7, 12, 16, 24, 76–78).

[DCM17] Y. Ding, C. Chu, and W.-K. Mak. “Pin Accessibility-Driven
Detailed Placement Refinement”. In: Proceedings of the 2017
ACM on International Symposium on Physical Design. ISPD
’17: International Symposium on Physical Design. Portland
Oregon USA: ACM, 2017, pp. 133–140. url: https://dl.
acm.org/doi/10.1145/3036669.3036679 (visited on 03/09/2021)
(cit. on pp. 57, 59).

[GM93] M. X. Goemans and Y.-S. Myung. “A Catalog of Steiner Tree
Formulations”. In: Networks 23.1 (1993), pp. 19–28. url: https:
//onlinelibrary.wiley.com/doi/10.1002/net.3230230104

(visited on 11/21/2022) (cit. on pp. 14, 22).

[HCN09] C.-H. Hsu, Y.-W. Chang, and S. R. Nassif. “Simultaneous lay-
out migration and decomposition for double patterning tech-
nology”. In: Proceedings of the 2009 International Conference
on Computer-Aided Design. 2009, pp. 595–600 (cit. on p. 3).

https://ieeexplore.ieee.org/document/9390403/
https://ieeexplore.ieee.org/document/9390403/
https://ieeexplore.ieee.org/document/9467334/
https://ieeexplore.ieee.org/document/9467334/
https://ieeexplore.ieee.org/document/9466133/
http://link.springer.com/10.1007/BF02085638
http://link.springer.com/10.1007/BF02085638
https://dl.acm.org/doi/10.1145/3036669.3036679
https://dl.acm.org/doi/10.1145/3036669.3036679
https://onlinelibrary.wiley.com/doi/10.1002/net.3230230104
https://onlinelibrary.wiley.com/doi/10.1002/net.3230230104

BIBLIOGRAPHY 87

[HK12] N.-D. Hoàng and T. Koch. “Steiner Tree Packing Revisited”.
In:Math Meth Oper Res 76.1 (2012), pp. 95–123. url: http://
link.springer.com/10.1007/s00186-012-0391-8 (visited
on 11/21/2022) (cit. on p. 14).

[Ho+23] C.-T. Ho, A. Ho, M. Fojtik, M. Kim, S. Wei, Y. Li, B. Khailany,
and H. Ren. “NVCell 2: Routability-Driven Standard Cell Lay-
out in Advanced Nodes with Lattice Graph Routability Model”.
In: Proceedings of the 2023 International Symposium on Phys-
ical Design. ISPD ’23: International Symposium on Physical
Design. Virtual Event USA: ACM, 2023, pp. 44–52. url: https:
//dl.acm.org/doi/10.1145/3569052.3578920 (visited on
04/05/2023) (cit. on p. 7).

[KJK21] S. Kim, K. Jo, and T. Kim. “Boosting Pin Accessibility Through
Cell Layout Topology Diversification”. In: Proceedings of the
26th Asia and South Pacific Design Automation Conference.
ASPDAC ’21: 26th Asia and South Pacific Design Automa-
tion Conference. Tokyo Japan: ACM, 2021, pp. 183–188. url:
https://dl.acm.org/doi/10.1145/3394885.3431567 (vis-
ited on 01/19/2023) (cit. on p. 62).

[Klo18] B. Klotz. “Faster Leaf Cell Placement Algorithms”. MA thesis.
University of Bonn, 2018 (cit. on p. 42).

[KV18] B. Korte and J. Vygen. Combinatorial Optimization: Theory
and Algorithms. Vol. 6. Algorithms and Combinatorics. Springer,
2018. url: https://link.springer.com/10.1007/978-3-
662-56039-6 (cit. on p. 73).

[KWX20] A. B. Kahng, L. Wang, and B. Xu. “The Tao of PAO: Anatomy
of a Pin Access Oracle for Detailed Routing”. In: 2020 57th
ACM/IEEE Design Automation Conference (DAC). 2020 57th
ACM/IEEE Design Automation Conference (DAC). San Fran-
cisco, CA, USA: IEEE, 2020, pp. 1–6. url: https://ieeexplore.
ieee.org/document/9218532/ (visited on 01/19/2023) (cit.
on p. 57).

[Lee+21] D. Lee, D. Park, C.-T. Ho, I. Kang, H. Kim, S. Gao, B. Lin, and
C.-K. Cheng. “SP&R: SMT-Based Simultaneous Place-and-
Route for Standard Cell Synthesis of Advanced Nodes”. In:
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40.10
(2021), pp. 2142–2155. url: https://ieeexplore.ieee.org/
document/9259080/ (visited on 04/05/2023) (cit. on p. 5).

http://link.springer.com/10.1007/s00186-012-0391-8
http://link.springer.com/10.1007/s00186-012-0391-8
https://dl.acm.org/doi/10.1145/3569052.3578920
https://dl.acm.org/doi/10.1145/3569052.3578920
https://dl.acm.org/doi/10.1145/3394885.3431567
https://link.springer.com/10.1007/978-3-662-56039-6
https://link.springer.com/10.1007/978-3-662-56039-6
https://ieeexplore.ieee.org/document/9218532/
https://ieeexplore.ieee.org/document/9218532/
https://ieeexplore.ieee.org/document/9259080/
https://ieeexplore.ieee.org/document/9259080/

88 BIBLIOGRAPHY

[Li+19] Y.-L. Li, S.-T. Lin, S. Nishizawa, H.-Y. Su, M.-J. Fong, O.
Chen, and H. Onodera. “NCTUcell: A DDA-Aware Cell Li-
brary Generator for FinFET Structure with Implicitly Ad-
justable Grid Map”. In: Proceedings of the 56th Annual Design
Automation Conference 2019. DAC ’19: The 56th Annual De-
sign Automation Conference 2019. Las Vegas NV USA: ACM,
2019, pp. 1–6. url: https://dl.acm.org/doi/10.1145/
3316781.3317868 (visited on 04/05/2023) (cit. on pp. 6, 7).

[Lu+15] A. Lu, H.-J. Lu, E.-J. Jang, Y.-P. Lin, C.-H. Hung, C.-C.
Chuang, and R.-B. Lin. “Simultaneous Transistor Pairing and
Placement for CMOS Standard Cells”. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2015. De-
sign, Automation and Test in Europe. Grenoble, France: IEEE
Conference Publications, 2015, pp. 1647–1652. url: http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

7092657 (visited on 04/06/2023) (cit. on p. 6).

[Par+20] D. Park, D. Lee, I. Kang, C. Holtz, S. Gao, B. Lin, and C.-K.
Cheng. “Grid-Based Framework for Routability Analysis and
Diagnosis With Conditional Design Rules”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems 39.12 (2020), pp. 5097–5110 (cit. on p. 41).

[Pol03] T. Polzin. “Algorithms for the Steiner Problem in Networks”.
PhD thesis. Universität des Saarlandes, 2003 (cit. on pp. 14,
19).

[RFK21] H. Ren, M. Fojtik, and B. Khailany. NVCell: Standard Cell
Layout in Advanced Technology Nodes with Reinforcement Learn-
ing. 2021. arXiv: arXiv:2107.07044. url: http://arxiv.
org/abs/2107.07044 (visited on 04/05/2023). preprint (cit.
on p. 7).

[Rub11] P. A. Rubin. Perils of ”Big M”. OR in an OBWorld. 2011. url:
https://orinanobworld.blogspot.com/2011/07/perils-

of-big-m.html (visited on 11/07/2022) (cit. on p. 12).

[Sch23] J. M. Schürks. “SAT-based Algorithms for Leafcell Layout”.
MA thesis. University of Bonn, 2023 (cit. on p. 41).

[SJKS17] J. Seo, J. Jung, S. Kim, and Y. Shin. “Pin Accessibility-Driven
Cell Layout Redesign and Placement Optimization”. In: Pro-
ceedings of the 54th Annual Design Automation Conference
2017. DAC ’17: The 54th Annual Design Automation Confer-
ence 2017. Austin TX USA: ACM, 2017, pp. 1–6. url: https:

https://dl.acm.org/doi/10.1145/3316781.3317868
https://dl.acm.org/doi/10.1145/3316781.3317868
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7092657
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7092657
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7092657
https://arxiv.org/abs/arXiv:2107.07044
http://arxiv.org/abs/2107.07044
http://arxiv.org/abs/2107.07044
https://orinanobworld.blogspot.com/2011/07/perils-of-big-m.html
https://orinanobworld.blogspot.com/2011/07/perils-of-big-m.html
https://dl.acm.org/doi/10.1145/3061639.3062302
https://dl.acm.org/doi/10.1145/3061639.3062302

BIBLIOGRAPHY 89

//dl.acm.org/doi/10.1145/3061639.3062302 (visited on
03/09/2021) (cit. on pp. 3, 60, 61).

[SR19] A. Sorokin and N. Ryzhenko. “SAT-Based Placement Adjust-
ment of FinFETs inside Unroutable Standard Cells Targeting
Feasible DRC-Clean Routing”. In: Proceedings of the 2019 on
Great Lakes Symposium on VLSI. GLSVLSI ’19: Great Lakes
Symposium on VLSI 2019. Tysons Corner VA USA: ACM,
2019, pp. 159–164. url: https://dl.acm.org/doi/10.1145/
3299874.3317965 (visited on 04/11/2023) (cit. on p. 6).

[Tag+10] T. Taghavi, Z. Li, C. Alpert, G.-J. Nam, A. Huber, and S.
Ramji. “New Placement Prediction and Mitigation Techniques
for Local Routing Congestion”. In: 2010 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). 2010
IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). San Jose, CA, USA: IEEE, 2010, pp. 621–624.
url: http://ieeexplore.ieee.org/document/5654225/
(visited on 01/18/2023) (cit. on pp. 57, 60).

[Tho19] S. Thomä. “Purely MIP-based Cell Layout”. MA thesis. Uni-
versity of Bonn, 2019 (cit. on p. 5).

[Tse+19] I.-L. Tseng, Z. C. Lee, V. Tripathi, C. M. Tommy Yip, Z.
Chen, and J. Ong. “A System for Standard Cell Routability
Checking and Placement Routability Improvements”. In: 2019
IEEE Asia Pacific Conference on Circuits and Systems (APC-
CAS). 2019 IEEE Asia Pacific Conference on Circuits and Sys-
tems (APCCAS). Bangkok, Thailand: IEEE, 2019, pp. 125–
128. url: https://ieeexplore.ieee.org/document/8953119/
(visited on 01/18/2023) (cit. on pp. 57, 58).

[vCHSW19] P. v. Cleeff, S. Hougardy, J. Silvanus, and T. Werner. “Bonn-
Cell: Automatic Cell Layout in the 7-Nm Era”. In: IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 39.10 (2019), pp. 2872–
2885. url: https : / / ieeexplore . ieee . org / document /

8945429/ (visited on 12/05/2022) (cit. on p. 14).

[Vic18] R. Vicari. “Simplex Based Graphs Yield Large Integrality Gaps
for the Bidirected Cut Relaxation”. MA thesis. University of
Bonn, 2018 (cit. on p. 14).

[Wit19] J. K. Witt. “Introducing Hat Graphs”. In: Cogn. Research 4.1
(2019), p. 31. url: https://cognitiveresearchjournal.
springeropen.com/articles/10.1186/s41235-019-0182-3

(visited on 01/31/2023) (cit. on pp. 41, 77).

https://dl.acm.org/doi/10.1145/3061639.3062302
https://dl.acm.org/doi/10.1145/3061639.3062302
https://dl.acm.org/doi/10.1145/3061639.3062302
https://dl.acm.org/doi/10.1145/3061639.3062302
https://dl.acm.org/doi/10.1145/3299874.3317965
https://dl.acm.org/doi/10.1145/3299874.3317965
http://ieeexplore.ieee.org/document/5654225/
https://ieeexplore.ieee.org/document/8953119/
https://ieeexplore.ieee.org/document/8945429/
https://ieeexplore.ieee.org/document/8945429/
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-019-0182-3
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-019-0182-3

90 BIBLIOGRAPHY

[Won84] R. T. Wong. “A Dual Ascent Approach for Steiner Tree Prob-
lems on a Directed Graph”. In: Mathematical Programming
28.3 (1984), pp. 271–287. url: http://link.springer.com/
10.1007/BF02612335 (visited on 11/21/2022) (cit. on p. 14).

[Wu+13] P.-H. Wu, M. P.-H. Lin, T.-C. Chen, T.-Y. Ho, Y.-C. Chen,
S.-R. Siao, and S.-H. Lin. “1-D Cell Generation With Print-
ability Enhancement”. In: IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 32.3 (2013), pp. 419–432. url: http:
//ieeexplore.ieee.org/document/6461981/ (visited on
04/11/2023) (cit. on p. 6).

[XLLP17] X. Xu, Y. Lin, V. Livramento, and D. Z. Pan. “Concurrent
Pin Access Optimization for Unidirectional Routing”. In: Pro-
ceedings of the 54th Annual Design Automation Conference
2017. DAC ’17: The 54th Annual Design Automation Confer-
ence 2017. Austin TX USA: ACM, 2017, pp. 1–6. url: https:
//dl.acm.org/doi/10.1145/3061639.3062214 (visited on
03/09/2021) (cit. on p. 59).

[Xu+15] X. Xu, B. Cline, G. Yeric, B. Yu, and D. Z. Pan. “Self-Aligned
Double Patterning Aware Pin Access and Standard Cell Lay-
out Co-Optimization”. In: IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 34.5 (2015), pp. 699–712. url: http:
//ieeexplore.ieee.org/document/7031419/ (visited on
03/09/2021) (cit. on pp. 7, 59, 61).

[Xu+16] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu, and D. Z. Pan. “PARR:
Pin-Access Planning and Regular Routing for Self-Aligned Dou-
ble Patterning”. In: ACM Trans. Des. Autom. Electron. Syst.
21.3 (2016), pp. 1–21. url: https://dl.acm.org/doi/10.
1145/2842612 (visited on 03/09/2021) (cit. on p. 59).

http://link.springer.com/10.1007/BF02612335
http://link.springer.com/10.1007/BF02612335
http://ieeexplore.ieee.org/document/6461981/
http://ieeexplore.ieee.org/document/6461981/
https://dl.acm.org/doi/10.1145/3061639.3062214
https://dl.acm.org/doi/10.1145/3061639.3062214
http://ieeexplore.ieee.org/document/7031419/
http://ieeexplore.ieee.org/document/7031419/
https://dl.acm.org/doi/10.1145/2842612
https://dl.acm.org/doi/10.1145/2842612

	Introduction
	The cell layout problem
	Strategies for solving the cell layout problem

	Previous Work
	Placement
	Routing

	Modeling the Cell Layout Routing Problem
	Introduction
	Defining the routing problem
	Complexity and algorithm strategy

	Modeling constraints in the ILP
	Modeling implications
	Modeling constraint disjunctions
	Modeling Steiner tree packing

	Motivation: The need for reusable design rule encodings
	Traditional routing model
	Requirements of the new implementation
	More observations

	Partial Polygons
	A complete routing model
	Defining a ground set of partial polygons
	Connectivity and shape integrity
	Implementing design rules
	Runtime comparisons

	Conclusion

	Pin Accessibility in Cell Layouts
	Introduction
	Notation
	Previous work
	An abstract pin accessibility score
	Pin accessibility in a modern technology node
	Computing the pin accessibility score
	Optimizing layouts for pin accessibility
	Two pin access points per net are sufficient

	Practical results
	Conclusion

	Bibliography

