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Abstract
The groundwater flow is an essential part of the terrestrial system encompassing the
atmosphere, land surface, and subsurface. In past research, there was usually no focus
on water in the subsurface because climate models worked with simplified free drainage
assumptions. However, recent research has shown that the groundwater table has a vital
memory function, especially in hydrometeorological extremes. Droughts are remem-
bered for long timescales, but surpluses in groundwater can also mitigate current water
deficits. Groundwater can also interact in feedback loops altering the water and energy
cycle.

Suited to investigate these research questions in a modeling environment is the Terres-
trial Systems Modeling Platform (TSMP). TSMP couples an atmospheric, land surface
and subsurface model to simulate the whole water cycle from the bedrock to the cloud
top. Three studies exploring groundwater interactions utilizing TSMP over Europe are
combined in this thesis. First, groundwater memory and predictability are investigated
by combining three states of recent droughts with past atmospheric boundary conditions
leading to a model ensemble with varying drought initial conditions. The ensemble was
simulated for one year resembling atmospheric uncertainty and natural variability. The
results show the increased probability of ongoing drought conditions and the dominant
influence of the initial condition on the timescale of one year over atmospheric forcing.

Secondly, the results of the drought ensembles are compared to the original realization
of the years not influenced by drought conditions. The comparison reveals changes in
the energy cycle with more available energy at the surface. Together with changes in
cloud properties, the results indicate a drought feedback loop where the persisting water
deficits contribute to higher and thinner clouds leading to increased incoming shortwave
radiation at the ground.

Lastly, potential feedback processes between groundwater and precipitation are further
investigated, showing that a climatology with a shallower water table due to changed
parameters also influences rainfall at the continental scale. This feedback connecting
groundwater and precipitation makes calibration impossible in a fully coupled system.
Furthermore, the feedback highlights the potential influence of altered water tables due
to climate change in the future.

The results of this thesis highlight the importance of incorporating groundwater in cli-
mate models, especially in hydrometeorological extremes. Significant interactions are ob-
served between all components of the terrestrial system, which would otherwise be over-
looked. While including a complex groundwater representation is connected to additional
computational costs, feedback processes strongly influencing atmospheric processes are
essential for climate projections. Further improvement of the physical representation of
numerical models and increased resolutions might additionally emphasize the connec-
tions in the future.
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1.1 The Terrestrial System

The terrestrial system - stemming from the Latin word for earth, terra - includes all
processes that occur over the land mass. Although the continents are only a fraction
compared to other components of planet earth, they are the site of human life and
socioeconomic well-being. Most (70%) of the earth’s surface is covered by water, mainly
oceans with salt water (Tang and Oki, 2016). The seas reach a depth of up to 11 km and
are essential for regulating the air temperature and CO2 levels (David et al., 2004). The
other central component is the atmosphere, which covers the surface by up to 100 km

with diminishing density at higher levels.

Land masses are crucial for life and thus for the terrestrial system’s development. Flora
and fauna developed in the oceans, but a new evolution began when plants and animals
first populated the land. Widespread photosynthesis changed the composition of the
atmosphere through the release of free oxygen (Lyons et al., 2014). The increasingly
many animals on earth breathed oxygen and exhaled CO2, changing the balance of the
carbon cycle.

Today, the most influential aspect of the ecosystem on land is humans. Since the evolu-
tion of modern humans, we have interfered with the ecosystem to increase the growth
of our species. With the beginning of the industrial age, this interference by humans was
greatly increased, especially through the release of greenhouse gases, which have raised
mean temperatures globally. The impact of humanity might become so extensive that the
start of a new geologic epoch, the Anthropocene, might become a reality (Waters et al.,
2016).

The influence of the land surface on the carbon cycle, which in turn a�ects radiation
in the atmosphere and the acidity of oceans, is an example of the interaction between
major components of the earth. Another example is the global water cycle, which
directly connects the land surface, the subsurface, the oceans and the atmosphere. The
crucial connecting processes are evaporation and precipitation. Over the oceans, there
is a net flux of water to the atmosphere, initiating the transport process of water to the
land because evaporation outweighs precipitation. The water flux to the land surface
is accelerated by general atmospheric circulation that is created by the temperature
di�erences between the tropics and the poles.

Overland precipitation, such as rain, snow, hail or graupel, falls in various forms. The
canopy intercepts the total rainfall by storing small amounts of water, while the though-
fall reaches the ground. Water can infiltrate the subsurface at the ground or may be
carried directly to river systems as runo�. At the surface, the water may instantly
evaporate or transpire from the stomata of plants. The term evapotranspiration refers
to overland processes that combine to transport water back to the atmosphere. Usually,
precipitation exceeds evapotranspiration at the land surface. Therefore, the water cycle
is completed by continental river systems transporting water back to the ocean.
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Each component in the water cycle has water reservoirs, the biggest being the oceans.
Small amounts of water are stored in the atmosphere as water vapor. Within the land
surface are relatively small stores such as lakes, soil moisture interception water and
large reservoirs in the form of ice, along with glaciers, snow and permafrost (Tang and
Oki, 2016). Groundwater stored in the subsurface is a large reservoir that far exceeds
smaller stores like freshwater lakes. Groundwater can influence land processes by serving
as a water source in dry periods through – for example – capillary rise for vegetation or
groundwater abstraction to provide for human needs. While deep storage in the earth’s
crust can be up to millions of years old and remains largely untouched, groundwater up
to 2 km deep is actively involved in the water cycle (Gleeson et al., 2016).

Because of the various interactions occurring on and across the land surface, analyses of
the terrestrial system must consider processes in the low levels of the atmosphere, the
subsurface (with variably saturated groundwater) and the land surface itself. The ocean
also influences the terrestrial system through the sea level and surface temperatures.

This work focuses on the terrestrial system encompassing the atmosphere, the land
surface and the subsurface. It does not consider the oceanic influences. More precisely,
it aims to understand feedbacks from the groundwater to the atmosphere, as simulated
with numerical modeling. This chapter lays out the context and background, and the
research questions are presented at the end of the chapter.

1.1.1 The Atmosphere

The atmosphere covers the earth from its surface to around 100 km into space, with an
approximately exponential decrease in density with increasing altitude. Due to this rapid
decline, the most critical processes influencing the surface happen in the troposphere,
within the first 10 km. Within this range, a distinction exists between the boundary layer,
which is heavily influenced by the roughness of the surface of earth (located within the
first few kilometers) and the free atmosphere.

In percentage of volume, the atmosphere consists of 78% N2, 21% O2, 0.93% AR and
around 0.5% H2O. Additionally, it contains a current concentration of approximately
415 ppm CO2 as well as noble gases (Marshall and Plumb, 1989). Water is thus a rather
small atmospheric component.

Water displays a high-frequency exchange between the ocean and the surface. Averaged
globally, water has a residence time between 8 and 10 days, with variations across regions
and seasons. In winter, the residence times are shorter than in summer; residence times
are also generally lower over the ocean than overland (Van Der Ent and Tuinenburg,
2017). The age of water in the atmosphere can be connected to typical timescales
in the atmosphere. Standard frontal systems exist within a timescale of several days,
whereas for meteorological timescales they are longer-lived. Only baroclinic waves or
long waves such as planetary Rossby waves have a time scale of up to a month or a
year, respectively (Orlanski, 1975). They influence the development over large spatial
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scales of several thousand kilometers. Smaller in scale than frontal systems are local
thunderstorms, tornadoes, deep convection and turbulence in the form of small eddies
close to the surface. Most of these convection processes must be parameterized in
numerical models.

The fact that processes in the atmosphere primarily operate at relatively small time scales
and are rapidly evolving makes it di�cult to predict the state of the atmosphere over
longer time scales. Furthermore, the atmosphere is a chaotic system, and small errors in
observations and the model employed may lead to substantial di�erences in predictions.
Rigorous global evaluation has shown that skillful weather predictions are only possible
up to 10 days (Krishnamurthy, 2019). For specific regions, useful information can be
obtained from forecasts of up to 14 days, and the theoretical limit is assumed to be
around 15 days (Stern and Davidson, 2015). Nevertheless, forecast quality has improved
vastly over the years and might continue to improve.

1.1.2 The Land Surface

The land surface is diverse. There exist regions covered with rocks, sand, grassland,
crops and forests, along with wetlands and urban areas. These regions di�er in how they
handle precipitation, evapotranspiration and energy partitioning. If plants cover the land
surface, the characteristics often vary greatly during the year according to the growing
season and harvesting of crops and the fall of leaves in deciduous forests. Furthermore,
within one plant category – such as crops – there can be significant di�erences in plant
characteristics, such as the leaf area index or the stomatal conductance.

Land cover changes initiated by events such as economic change, anthropogenic influence
or climate change have a considerable impact on the atmosphere. The changes can be
local, such as clearing a small forest, ranging to continental-level changes, such as the
political collapse of the Soviet Union.

Land cover changes associated with ancient societies can be studied with climate models
(Gilgen et al., 2019). Despite many uncertainties, it can be demonstrated that changes in
land cover can lead to significant warming and cooling. Land cover changes associated
with widespread change in human societies have extended timescales, ranging from a
year to decades, with large spatial extents. When vegetation is constant in smaller
timescales, evapotranspiration rates vary on the timescale of a few minutes to one day
due to the small storage capacity of interception water on the land surface.

The land surface influences the atmosphere in various ways. First, plant cover alters
the CO2 cycle; second, the available water determines evapotranspiration; and third,
the energy budget and the surface roughness alter the momentum flux. CO2 plays an
essential role in global warming and is critical for photosynthesis. To take up CO2, plants
open their stomata, which are otherwise closed to limit the water loss from transpiration.
Therefore, plant uptake of CO2 increases transpiration, which in turn increases the water
flux to the atmosphere, constituting a critical link between CO2 and the water cycle. In
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dry conditions, plants reduce their water loss and open fewer stomata, limiting their
gross primary production (Gentine et al., 2019).

The subsurface also influences the available water for root water uptake and evapotran-
spiration. Shallow water tables can replenish soil water via capillary rise, and additional
human influence occurs through irrigation in agricultural regions. Modeling has shown
that the extra water introduces a cooling e�ect and has a regionally varying impact on
the energy budget and precipitation rates (Cook et al., 2011). The energy budget and
the surface roughness of the land surface further influence local weather. Both are im-
portant for the planetary boundary layer’s extent and stability, altering regional wind
patterns (Mahmood et al., 2014).

1.1.3 The Subsurface

Water is found everywhere in the continental crust, although it can be disconnected from
processes at the surface. For example, groundwater reservoirs can be up to millions of
years old (Gleeson et al., 2016). These reservoirs are relatively insensitive to recharge
variability in the short term and present the most extended timescales for subsurface
water, at around 10,000 years (Cuthbert et al., 2019). Regions with a shallow water table
are closely connected to land surface processes; in such areas, seasonal variations of
groundwater or droughts have timescales of a few months up to a year. The soil moisture
close to the surface and the streamflow, which are standard variables to forecast, have
even shorter timescales of a few days (Brutsaert, 2005).

Overall, water in the subsurface operates at longer timescales than in the atmosphere.
Nonetheless, in hydrology, highly local processes can play an important role even at the
pore scale. For example, the number of pores of a few mm established by roots and
earthworms can determine soil moisture transport during and after heavy precipitation
events (Vereecken et al., 2022). Other typical hydrological scales are also smaller than
typical atmospheric timescales – such as the hillslope scale, which is between 1 m and
100 m, and the catchment scale, which starts at a few hundred meters and can reach up
to a few hundred kilometers. However, large continental river systems like the Danube,
the Amazon or the Nile span several thousand kilometers and have a continental impact.

Many authors propose a categorization of the subsurface into distinct zones. For exam-
ple, Robinson and Ward (2017) o�ered the following zones: the soil zone, the interme-
diate zone, the water table and the fully saturated zone above an impermeable bedrock.
The zones are di�erentiated by the most influential process, such as the interactions
with the root system for the soil zone. Other authors describe only two categories, the
unsaturated or vadose zone and the saturated zone (Stumpp and Kammerer, 2022). The
lack of consensus stems from the fact that research on the subsurface is interdisciplinary
and researchers are interested in di�erent aspects. Examining the subsurface from the
perspective of the terrestrial water cycle leads to a continuum approach, in which all
water – from surface water through the soil to the water table – is connected, without
strict borders (Kumar et al., 2009). This approach also allows for connecting subsurface
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water to vegetation and the atmosphere.

1.2 Major Feedbacks in the Coupled Terrestrial Water and En-
ergy Cycle

The connections of the terrestrial system through the energy and water cycle lead to
various feedback mechanisms. In the case of hydroclimatic extremes, such as heatwaves
and droughts, these mechanisms are most apparent. Figure 1.1 provides a schematic
overview of feedback during droughts, adapted from Miralles et al. (2019). Reduced
evaporation and transpiration by plants due to water limitation exert positive feedback
on temperature, such that temperatures rise because of reduced evaporative cooling.

In more detail, soil moisture-temperature coupling involves three main relationships.
The first is the strong connection between soil moisture and evapotranspiration in tran-
sitional zones. Second, reduced evapotranspiration leads to an increase in sensible heat,
which increases the air temperature. Lastly, high temperatures raise the demand for wa-
ter through a water pressure deficit, leading to additional evapotranspiration (Seneviratne
et al., 2010). Evidence for the connection between soil moisture and evapotranspiration
has been documented in observational studies (Teuling et al., 2006) and in modeling
(Koster et al., 2006; Barlage et al., 2021; Furusho-Percot et al., 2022). Reduced evapo-
transpiration may also negatively impact precipitation through reduced convection and
less local moisture recycling. Processes related to both temperature and rain may lead to
further continental desiccation, prolonging and strengthening the drought and initiating
a feedback loop.

An additional layer of complexity is added if groundwater interacts in the feedback
loops. With a shallow groundwater table, surface soil moisture can be recharged with
water even if precipitation is lacking. By contrast, prolonged droughts eventually a�ect
groundwater storage, leading to deeper water tables and reduced capillary rise toward
the root zone and land surface.

Figure 1.1 simplifies the feedback loop in several regards. For example, plant physio-
logical processes involve additional factors, such as interactions with atmospheric CO2

concentrations. Concerning atmospheric processes, changes in evapotranspiration do
not always impact precipitation. Local moisture recycling may be negligible if local
rainfall mainly depends on marine-influenced large-scale weather patterns. However,
changes in the energy budget can have various other influences on the atmosphere, such
as changes in the boundary layer height, which in turn a�ects clouds and incoming solar
radiation. Another aspect of importance is the teleconnection of drought events. Po-
tentially, droughts create water deficits downstream of the leading wind patterns if the
downstream region depends on evaporated water in the original drought region. This
teleconnection is challenging and needs additional research (Miralles et al., 2019). The
following subsections present a detailed discussion of examples of feedback mechanisms.
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Figure 1.1: Feedback mechanisms during drought. Red arrows indicate positive feedback
on temperature and desiccation; blue arrow depicts negative feedback on precipitation.
Adapted from Miralles et al. (2019).

1.2.1 Groundwater Memory

Two major hydrologic storage systems impact the availability of water at the surface and
streamflow generation, namely snow and groundwater. Snow melt is recognized as a
freshwater resource; roughly 1.5 billion people worldwide depend on freshwater from
mountains (Viviroli et al., 2020), and 53% of the streamflow in the western United States
stems from snow melt (Li et al., 2017). In mountainous regions, water from snow melt is
even more dominant, at 70%.

Brooks et al. (2021) showed that including groundwater storage in a model significantly
improved streamflow prediction, even for mountainous regions. The reason is that
groundwater abundance indicates that rain is routed e�ciently to streamflow. Over-
all, groundwater is essential for many ecosystems, including lakes, swamps and rivers.
The amount of regulation it provides varies seasonally and regionally. For example, a
river can gain water from groundwater if the river’s water level is below the groundwater
level. In the reversed case, water infiltrates from the river into the soil (Kløve et al.,
2011). The ability of groundwater to influence rain routing and river levels demonstrates
its importance beyond the immediate impact on water availability.

One approach to groundwater memory is not solely dependent on how much water can
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be stored in a soil column but also the system’s response time to return to an equilibrium
state (Cuthbert et al., 2019). A common formula for this approach is the groundwater
response time (GRT),

GRT =
L2s

βT

where L is the spatial scale of the system [L], s is the storativity [−], β is a dimensionless
constant and T is the transmissivity [L2T−1]. With the inclusion of L, this approach
includes the size of the groundwater system, enabling the comparison of di�erent catch-
ments. Researchers often assume that the volume of groundwater is modeled with a
cosine function to apply this equation. In the case of stooped recharge, the groundwater
decays exponentially, determined by the GRT. Under these assumptions, β is equal to π2.

The basis of the above approach dates to the early 1970s (Downing et al., 1974). Other
approaches might be useful, such as applying a transfer function (Opie et al., 2020):

H(t) =

∫ t

∞
p(τ)θ(t− τ)dτ

where H is the output state at time t, p is the input state, τ is the delay time between
input and output and θ is the transfer function. The parameters for the transfer function
are derived from convolutional modeling (Long and Mahler, 2013) or with a linear trans-
formation time series model (Von Asmuth and Knotters, 2004). A more straightforward
approach for calculating the response time of groundwater is to determine the point in
time needed to diminish a groundwater anomaly to 1/e of its value (Lo and Famiglietti,
2010).

The presented mathematical expressions need su�cient data to measure groundwater
memory. That is hard to accomplish on a continental scale or even a regional scale, such
as for Central Europe. However, groundwater memory can be determined in hydrolog-
ical modeling by initializing one model with multiple initial conditions and one forcing,
according to Wood and Lettenmaier (2008). Under the same forcing, the multiple initial
conditions converge to one state; the timespan to reach this state can then be used to
estimate groundwater memory. The estimation depends on the hydraulic parameters of
the hydrologic model (MacLeod et al., 2016).

Groundwater memory has various impacts on hydrologic response and prognostic mod-
eling. For example, comparison of di�erent catchments shows that varying hydrologic
memory significantly influences predictability and the success rate of early warning sys-
tems for droughts (Sutanto and Van Lanen, 2022). In specific catchments, abundant
groundwater can increase evapotranspiration rates in summer by up to 30% for several
years. However, groundwater memory is often assumed to be most influential in arid
regions (Opie et al., 2020). In humid regions, water resources are strongly correlated
to recent precipitation. Nonetheless, the occurrence of droughts with marked anomalies
highlight the importance of groundwater memory. Even oceanic regions like Scotland
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experienced groundwater deficits in the summer of 2017, with continuing e�ects until
late 2018 (Soulsby et al., 2021). Due to short response times in relatively humid regions
in Europe, the impact of groundwater memory can quickly diminish.

1.2.2 Energy Balance Feedbacks

The following equation describes the basic land surface energy balance:

RNET=LH+SH+GH

where RNET is the net downward radiation, partitioned into latent heat (LH), sensible
heat (SH) and ground heat (GH) flux. Hence, RNET is the sum of net values of shortwave
and longwave radiation at the surface. Clouds determine the incoming parts of these net
values in the atmosphere. Dense cloud cover reduces incoming shortwave radiation but
reflects emitted longwave radiation from the ground

Cloud properties can be altered by the surface energy fluxes, connecting the incoming
energy from the atmosphere and the land energy balance. An increase in sensible heat
increases cloud height, which leads to less dense clouds, whereas an increase in latent
heat has the opposite e�ect (Betts, 2004). The available water strongly influences the
energy balance at the surface. When water resources are sparse, evapotranspiration
is soil moisture limited. The opposite case is energy limitation. Here, the incoming
energy determines the latent heat flux, which provides evaporative cooling or could
influence precipitation (Koster et al., 2004). In both regimes, energy balance feedback
mechanisms often play a minor role. Under conditions of energy limitation, large-scale
weather systems are highly influential and relatively resistant to an altered latent heat
flux from the surface

In dry regions, the soil moisture controls evapotranspiration; however, compared to wet
regions, the overall flux is too small to a�ect the local climate. Therefore, strong soil
moisture–evapotranspiration coupling often occurs in transitional regions between soil
moisture and energy limitation (Seneviratne et al., 2010). The Mediterranean region and
California are typical transitional regions. In addition, the categorization of a region can
vary over time; for example, California may experience a dry, transitional or wet regime
within a single year (Ryu et al., 2008).

1.2.3 Moisture Recycling

Moisture recycling describes the principle that water evaporating from the land surface
contributes to regional precipitation, thereby establishing a regional water cycle. The
cloud-building process relies not only on surface water vapor but also on atmospheric
stability and the large-scale weather situation. The latter dynamics influence air parcel
lifting, which is key in cloud- and precipitation-forming processes.

Global modeling studies (Koster et al., 2006) and regional climate modeling have doc-
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umented the positive feedback between evapotranspiration and precipitation (Pal and
Eltahir, 2001; Su and Dickinson, 2017). Various studies have shown that mesoscale cir-
culations favor the development of clouds over relatively dry soils because of increased
moisture convergence (Taylor et al., 2007; Lee et al., 2019). A recent study illustrated
this process on a global scale using model and reanalysis data (Zhou et al., 2021). The
results indicated that the water availability in drylands was reduced by negative feedback
between the soil moisture and precipitation. However, large discrepancies occurred
between the di�erent models used in that study, and the correlations obtained were
significant only in a few areas. Overall, the complexities are ubiquitous: the hetero-
geneity of spatial moisture availability, the parametrization of convective processes in
modeling and the influence of atmospheric conditions all interfere with local moisture
recycling. At the moment, a general answer cannot be given whether feedbacks between
evapotranspiration and precipitation are negative or positive.

Like soil moisture–temperature feedback, precipitation feedback can be categorized into
three processes. Close to the soil moisture-temperature coupling, the first process is
the connection between soil moisture and evapotranspiration. This link is most impor-
tant in transitional regions between water and energy limitation. The second process
is the influence of evapotranspiration on precipitation, which is an ambiguous rela-
tionship. Negative feedback has often been found in local simulations, where the lack
of evapotranspiration leads to moisture advection and initiates rainfall. In regional to
global simulations, the feedback is positive, with evapotranspiration enhancing precipi-
tation. Regions with substantial positive feedback are also likely to show a strong soil
moisture–temperature coupling. The third process is straightforward under many cir-
cumstances: precipitation increases the soil moisture. Excessive rainfall is converted to
runo� rather than soil moisture only in the case of utterly dried-out soils (Seneviratne
et al., 2010).

1.3 Models and Data for Hydrometeorological Extremes

The di�erent time and spatial scales in the terrestrial system pose a challenge for nu-
merical modeling. The rapidly evolving atmosphere cannot be predicted for lengthy
time scales, but it provides the essential forcing for slower processes in the land and
subsurface. Observations are also not equally available. For example, atmospheric data
is available worldwide in nearly real-time and is relatively easy to process from var-
ious remote sensing measurements, whereas it is more complex to obtain subsurface
parameters, and groundwater measurements are spatially not always representative.

It is advantageous to combine atmospheric, land-surface and hydrologic models. New
computer architectures and better scalability of models allow for increasing numbers of
applications for fully coupled terrestrial climate simulations to demonstrate the feedback
processes. Including the subsurface enables comprehensive assessments because of the
slowly changing conditions in the subsurface. The droughts in Europe in 2018 and 2022



1.3. Models and Data for Hydrometeorological Extremes 17

and other hydrometeorological extremes have highlighted this demand.

1.3.1 Hydrometeorological Extremes

The primary hydrometeorological extremes are droughts and floods, which are respec-
tively associated with precipitation deficits and extreme precipitation events. Extremes
can be particularly complex during compound events, where catastrophic conditions oc-
curring in atmospheric processes interact with anomalies in the land and subsurface.
During floods, this can mean increased runo� because the subsurface is already satu-
rated or there is dried-out soil that cannot absorb the water quickly enough. In the case
of hot conditions, there may be ongoing drought due to absent precipitation and water
deficits in the subsurface (Zhang et al., 2021). The combination of heatwaves with wet
conditions in the subsurface can lead to increased heat stress, especially near big cities
with high temperatures and relative humidity (Yuan et al., 2020).

The interest in hydrometeorological extremes as compound events provides a compelling
argument for investigating terrestrial feedbacks. Droughts and floods are responsible for
vast economic loss; for example, in the United States, floods cost an average of 4 billion
dollars per year. Droughts accounted for an average loss of 1.6 billion dollars annually
between 1996 and 2016. The di�erences in costs can be explained by the fact that more
floods are recorded and losses are more measurable compared to droughts (Zhou et al.,
2018). Some droughts last decades, such as the one in south-western United States, with
long-term impacts on society and the ecology (Kogan and Guo, 2015).

Central Europe recently experienced a drought originating from the 2018 heatwave, in
which 38 Mha of agricultural land was severely a�ected by drought conditions (Peters
et al., 2020). Dry conditions continued in the following years, with damaging impacts on
forests. After a wet year in 2021, the situation worsened again in 2022, with the lack of
streamflows reducing the energy generation and stopping river transport routes (Toreti
A. et al., 2022). The most recent impactful flood occurred in 2021 over the western
part of Germany, Belgium, France, Luxembourg and the Netherlands. In Germany, 180
people died and insurance loss estimates reached 7 billion euros. The flood was caused
by heavy precipitation with the compound event of an already saturated subsurface. The
event was detected in weather prediction models beforehand, but the o�cial warnings
did not reach the public in time or with enough influence (Fekete and Sandholz, 2021).

These events have strengthened the need for predictions of the terrestrial water cycle.
Furthermore, climate change is likely to increase the challenge, and rising temperatures
are expected to increase droughts such as the 2018 event (Hari et al., 2020). Moreover,
air has higher water storage capacity at higher temperatures, which enables heavier
precipitation (Fischer and Knutti, 2016).
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1.3.2 Numerical Modeling of the Terrestrial System

Models of the terrestrial system are usually run independently to provide assessments
of hydrometeorological extremes. Atmospheric models are either run as a hindcast to
dynamically downscale reanalysis fields (Bowden et al., 2016) or as seasonal forecasts
that give an ensemble of possibilities for weather development. After the downscaling,
hydrologic and impact models can predict variables concerning water resources at a
much higher resolution, taking into account known subsurface parameters (Yuan et al.,
2015b). The obtained forecast can be combined with locally measured soil moisture to
reach stakeholders in agriculture (Andersson et al., 2020).

The above procedure does not utilize the potential information from terrestrial hydrol-
ogy for atmospheric reanalysis and seasonal forecasts. Atmospheric reanalysis can be
performed through data assimilation of soil moisture, which o�ers improved land en-
ergy fluxes at monthly to seasonal timescales (Draper and Reichle, 2019), or the use of
coupled models. Koster et al. (2010) demonstrated that across the United States, the
realistic states of the terrestrial system derived from land surface models improved the
temperature and precipitation forecasts for up to two months in summer. Nonetheless,
the question arises whether these moderate improvements justify the incorporation of
coupled terrestrial modeling into already costly seasonal forecasts.

Given the above question, fully coupled modeling systems are a novel approach that
could result in better understanding of terrestrial feedback. Coupled models are of-
ten limited to regional simulations. Several recent studies have demonstrated that in
the case of extreme events, the di�erent regulation of evapotranspiration due to the
groundwater component led to a simulation of heatwaves that di�ered from that of other
regional climate models (Keune et al., 2016; Furusho-Percot et al., 2022; Mu et al., 2022).
The di�erences exist because other regional climate models contain land components,
where groundwater is usually only considered close to the surface, with a few vertical
layers (Gedney and Cox, 2003). Furthermore, typical standalone land models work in
1D columns with no lateral interactions. Practically, that means for groundwater that
incoming precipitation on a grid cell is divided into runo� and a portion that is held
in the shallow soil. A part of the latter is lost to free drainage, while the stored part
contributes to evaporation and transpiration (Fan, 2015). In such a description, many
aspects of groundwater are neglected, such as lateral connections, capillary rise and
groundwater memory.

One solution to the shortcomings of land models is to replace the groundwater compo-
nent with a sophisticated groundwater model. These models can be categorized into 1)
lumped models with volume-based approaches and 2) distributed models (Collins, 2017).
The conceptual approach of lumped models does not enable a lateral flow between grid
cells and breaks with the continuum approach of a continuous water cycle. Therefore,
distributed models are better suited to simulate the e�ect of groundwater on evapotran-
spiration. An example is ParFlow (Ku�our et al., 2019), which solves the 3D Richard’s
equation in a variably saturated flow and can be integrated into fully coupled terrestrial
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systems.

Overall, technologies exist for coupled subsurface, land surface and atmosphere models.
Progress is being made in the Coupled Model Intercomparison Project Phase 6 (CMIP6),
where participating models have significantly improved their groundwater parametriza-
tion, such as ISBA-CTRIP (Decharme et al., 2019). However, computational cost and
storage capacity pose a challenge for long coupled simulations on climate time scales.
To provide su�cient processing power, graphical processors are used that allow for mas-
sive parallelization of calculations and enhance the energy e�ciency and computation
time. Furthermore, institutions like the European Union are investing in establishing a
digital twin of the earth, which includes all parts of the terrestrial and oceanic systems
coupled together (Bauer et al., 2021).

1.3.3 Available Observations for Evaluation

Numerical modeling o�ers excellent opportunities to obtain consistent time series of
variables at locations that lack observations. However, modeling results have little value
unless they are evaluated against observations. Observations must be made in the atmo-
sphere, land and subsurface to measure the water cycle adequately. This section gives
an overview of river discharge, soil moisture and groundwater, all depicting the water
content of the terrestrial system and precipitation and evapotranspiration as water trans-
port processes. Many additional variables of the terrestrial system can be evaluated,
but the selection presented here is crucial for determining how well the water cycle is
represented in a model.

Precipitation is highly variable in space and time but can be measured with rain gauges
on the ground and by radars and satellites. Rain gauges o�er the longest data record and
continuous measurements; however, they are not feasible on open water and in undevel-
oped regions (Rast et al., 2014). E�ort is needed to collect individual measurements and
then apply bias correction and quality control.

An example of a global data set is the product from the Global Precipitation Climatol-
ogy Centre, where data from over 7200 rain gauges is collected (Schamm et al., 2014).
Groundbreaking for precipitation rates from satellites was the Tropical Rainfall Mea-
suring Mission (TRMM), which o�ered a time resolution of 3 h and maximum spatial
coverage of about 4 km, with data covering more than 15 years. Its successor, the GPM-
CO mission, provides resolution up to 0.5 h (Kidd et al., 2020). Radar measurements
provide information at a similar temporal scale but even finer resolution, resulting in
highly detailed information on precipitation, close to orography (Ramsauer et al., 2018).
However, dense radar networks are only available in a few regions, and precipitation
signals must be isolated from ground reflections and reflections from other objects such
as birds, insects and planes (Germann et al., 2022).

At the land surface, soil moisture can be measured by various techniques. Direct mea-
surement is possible with the gravimetric method. First, soil samples are collected and
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weighed; then, the samples are dried until no change in weight can be measured. The
execution is simple and resistant to errors, but the sampling is destructive and confined
to a small area. A less direct measurement involves determining the soil moisture con-
tent related to soil resistivity. With increasing water content, the electric resistance is
reduced. Therefore, it is possible to determine the water content with two connected
electrodes and a resistance meter, and the method is cheap and transportable. A major
constraint is the significant influence of soil temperature and salinity on the results.

Promising noninvasive methods employ ground-penetrating radar; however, this ap-
proach faces similar problems to precipitation radars and cosmic-ray neutron sensing
(Rasheed et al., 2022). The last method involves the surface continuously being hit by
fast neutrons created from galactic radiation interacting with particles of the atmosphere
and the soil. There is, again, a relation between the fast neutrons and the amount of wa-
ter in the soil; therefore, measuring fast neutrons enables a conversion to soil moisture
values. The method can measure fields up to 180.000 m2 at an hourly resolution. The
maximum depth depends on the total water content, as wet soils reduce the number of
fast neutrons, but can be as much as 83 cm (Nguyen et al., 2019).

Such scales are impressive for ground-based observations but insu�cient to evaluate
model results at the continental scale. Continental-scale evaluation can be performed
with infrared or microwave observations from satellites, which have been available since
the late 1970s. An example of a dataset derived from satellites is the European Space
Agency’s Climate Change Initiative for Soil Moisture. It merges satellite data from
di�erent missions through the years, beginning with Nimbus 7 (started in 1979) until
data from ASCAT-C, an ongoing satellite mission. The remote sensing data from such
a long period must be harmonized and quality controlled to create a consistent dataset
(Gruber et al., 2019).

Remote sensing observations of deep water storages are more challenging to obtain than
measurements of soil moisture. The only possibility is measuring gravitational anoma-
lies with the Gravity Recovery and Climate Experiment (GRACE) and its successor
GRACE-FollowOn (GRACE-FO). Gravitational anomalies are studied because they can
be attributed to significant shifts in total water, such as melting glaciers. However, the
measured gravity fields must be heavily post-processed by smoothing and filtering be-
cause of noisy shortwaves, which are visible as stripes (Swenson and Wahr, 2006). Over
the years, various processing chains have been developed. For example, Watkins et al.
(2015) applied spherical harmonic solutions, including the use of background geophysical
models and parametrizations. Ultimately, post-processing provided a total water storage
anomaly at 0.5° resolution with monthly timesteps, which helped to determine the total
water loss during droughts (Boergens et al., 2020). However, it remains a challenge to
separate the changes in groundwater from changes in soil moisture, surface water or
snow cover.

Furthermore, groundwater is hard to measure. Compared to temperature measurements,
the continuous operation of wells requires more e�ort, and the results are harder to in-
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terpolate to a larger region because of the spatial heterogeneity of soil (Adams et al.,
2022). Deep learning methods might be suitable to utilize existing measurement methods,
as they can learn from observations without knowledge of the soil properties (Wunsch
et al., 2022; Ma et al., 2021). If the soil properties are known with high certainty, ground-
water can be calculated from classic hydrological models. An example of a dataset for
subsurface parameters that is publicly available and covers large parts of the earth is the
GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0) (Huscroft et al., 2018). GLHYMPS 2.0
consolidates data from the Global Unconsolidated Map (GUM) (Börker et al., 2018), Soil-
Grids (Shangguan et al., 2017) and its predecessor. GUM provides the sediment types of
the soil gathered by many national geological services and post-processed images. Infor-
mation about the properties of deeper soil is obtained from SoilGrids, where soil profiles
and borehole data combined with expert estimations are harmonized. GLHYMPS 2.0
combines these sources into a global map of permeability values for the near surfaces
and the bedrock. The chain of steps necessary to assemble GLHYMPS 2.0 and the
various origins of the data lead to good coverage associated with high uncertainty.

River discharge is an essential flux for closing the terrestrial water cycle. River discharge
is widely measured, because the streamflow of rivers has a major impact on ship tra�c,
energy generation and water supply. However, measurements are primarily managed
locally and considered partly confidential. Additionally, water flow can be complex in
large rivers or inaccessible areas (Durand et al., 2019). The challenge of collecting and
quality-controlling discharge data was recognized as early as the 1980s. Currently, the
Global Runo� Data Center (GRDC) collects data from 10,000 stations in 159 countries
and compiles it into a single database for scientific, non-commercial applications (www.
bafg.de/GRDC/EN/Home/homepage_node.). Europe is particularly well monitored by GRDC,
with daily and up-to-date data. By contrast, other large river systems, especially on
the Indian subcontinent, lack data (Durand et al., 2019). There is the possibility of
using remote sensing. For example, Papa et al. (2012) utilized the radar instrument of
the satellite Jason-2 to infer river discharge. However, the derivation requires in-situ
measurements for calibration, and the results have an error margin up to 20%.

Evapotranspiration is measured in-situ with various methods, which are categorized into
groups. The first group is oriented to soil moisture measurement and a soil water balance
formulation. To apply the formulation, incoming precipitation and soil moisture content
must be measured. Then evapotranspiration can be calculated assuming the conservation
of mass. However, if there is strong drainage or a lateral flow of groundwater, the
system is open and the mass of water is not conserved. Another group of measurements
uses the micrometeorological approach. Wind speed, humidity and temperature are
measured at di�erent heights to calculate the evapotranspiration rate. These methods
produce high-frequency outputs but are executable only for terrains without disrupting
wind measurements. Lastly, evapotranspiration can be measured using methods from
plant physiology, such as the measurement of heat fluxes inside plants.

For assessments at large scales, remote-sensing data must be utilized along with statis-

www.bafg.de/GRDC/EN/Home/homepage_node.
www.bafg.de/GRDC/EN/Home/homepage_node.
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tical models, energy balance models, data assimilation or the Penman-Monteith model
(Chao et al., 2021). The latter is recommended by the Food and Agricultural Organi-
zation of the United Nations and requires observations of the ground heat, irradiance
and surface pressure. Because evapotranspiration estimation depends on so many ob-
servations, land models are an alternative as they can estimate evapotranspiration from
reanalysis products.

Overall, the rapid development of remote sensing and data assimilation technologies
makes it possible to capture the earth system accurately. However, limitations remain in
terms of temporal and spatial resolution, and an exact representation of the whole ter-
restrial system with a limited number of observations is impossible. Even high-resolution
observational data might not be su�cient for the needs of local stakeholders. Special at-
tention must be given to water resources in the subsurface, as these may be hidden from
public observation and can undergo critical changes unnoticed (Famiglietti and Ferguson,
2021).

1.4 Research Questions

The memory e�ect of groundwater, which is connected to water and energy fluxes at
the surface – which in turn influence clouds and precipitation – indicates the importance
of feedbacks in the terrestrial system. Recent hydrometeorological extreme events, in
which feedbacks are pronounced, highlight the need to include these events in numerical
simulations.

This thesis contributes to the understanding of feedback mechanisms through a fully
coupled terrestrial model that simulates the entire water cycle, from groundwater to
cloud top and beyond. The first two chapters present an overview of land–atmosphere
feedbacks and the simulation framework, which provides the basis for chapters 3 to 5,
covering the following research questions:

• How does the groundwater memory a�ect three exceptional droughts under un-
certain weather conditions on the interannual time scale? Is knowledge about the
correct initial condition more important than accurate atmospheric forcing?

• Can persistent drought conditions influence the energy cycle and cloud character-
istics at the interannual time scale, through feedback processes?

• How sensitive is precipitation over continental Europe to groundwater table alter-
ations that result from changes in subsurface parameters in terrestrial simulations?

Concerning the first question, chapter 3 presents the results of an interannual proba-
bilistic assessment of water resources after droughts, highlighting groundwater memory.
Chapter 4 investigates the results of the assessment in terms of the energy cycle and
cloud properties, revealing a drought feedback loop. Chapter 5 focuses on groundwa-
ter precipitation interactions, demonstrating the influence of the water table on rainfall.
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Lastly, the results are summarized and discussed in chapter 6, together with limitations
and an outlook for future work.

1.5 List of Publications

Parts of this thesis have been published in peer-reviewed journals:

• Hartick, C., Furusho-Percot, C., Goergen, K., & Kollet, S. (2021). An Interannual
Probabilistic Assessment of Subsurface Water Storage Over Europe Using a Fully
Coupled Terrestrial Model. Water Resources Research, 57(1).
https://doi.org/10.1029/2020WR027828
An extended abstract of the published version is included in Chapter 3.2 of the
thesis.

• Hartick, C., Furusho-Percot, C., Clark, M. P., & Kollet, S. (2022). An Interannual
Drought Feedback Loop A�ects the Surface Energy Balance and Cloud Properties
Geophysical Research Letters. Geophysical Research Letters, 49(22).
https://doi.org/10.1029/2022GL100924
Chapter 4 includes a combined version of the main article and its supplement.
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2.1 Terrestrial Systems Modeling Platform

Atmospheric, land surface and groundwater models have di�erent development histories
due to their various tasks and timescales. Therefore, connecting them in a framework
to enable a physically consistent simulation is di�cult. Creating a new model that ex-
plicitly focuses on the water cycle would be possible. Still, such a model would need
an enormous development time to reach adequate results for the separate parts of the
terrestrial system. By connecting models with proven capabilities in their compartment,
the development can focus on exchanging variables and rely on proven technology.

The Terrestrial Systems Modeling Platform (TSMP) is a platform that achieves a phys-
ically consistent simulation by connecting the atmospheric model COSMO, the land
surface model CLM and the subsurface model ParFlow with the Ocean Sea Ice Soil
(OASIS3) coupler. The initial version was described in Shrestha et al. (2014) and Gasper
et al. (2014) and is continuously in development to include newer versions of model
components. This thesis concentrates on version v1.1 with COSMO v5.01, CLM v3.5 and
ParFlow v3.2, which is used in various studies. TSMP is also used with the Parallel
Data Assimilation Framework (PDAF) (Kurtz et al., 2016) and is operated for continuous
forecasts of the terrestrial system (Kollet et al., 2018).

Figure 2.1 gives an overview of the involved models and the variables that are exchanged.
Starting in the atmosphere, COSMO provides shortwave (SW) and longwave radiation
(LW) directed to the ground, the temperature at the lowest level close to the surface
(TAS), pressure (PS), horizontal wind (U), precipitation (PR) and humidity (Q) to each
gridcell in CLM. CLM calculates the land energy budget with sensible (SH) and latent
heat (LH), momentum flux (τ ), outgoing LW and shortwave energy (α). The rain simulated
by COSMO is intercepted by vegetation (Qrain) in CLM and is sent to the soil layers of
ParFlow. CLM also handles the removal of water from ParFlow by evaporation and
transpiration through plants (ET). To calculate these fluxes, water pressure (PRESS) and
saturation (SAT) of the soil layers are sent to CLM. The Following chapters provide
additional details about the individual models and the coupling process.

2.1.1 The COSMO Model

At the beginning of the new millennium, numerical atmospheric models made significant
progress towards higher resolutions and longer forecasting periods. At the German
weather service, the model chain consisted of the global model GME running at 30 km

resolution (Majewski et al., 2002), and the regional models COSMO-EU at 7 km and
COSMO-DE at 2.8 km (Baldauf et al., 2011). Very recently, the whole model chain has
been replaced by di�erent configurations of the ICON model, which already has a non-
hydrostatic dynamical core on the global scale (Zängl et al., 2015). Nevertheless, the
COSMO model in its di�erent versions has been applied for nearly 20 years for local
weather forecasts over Europe and Germany and for climate modeling activities in a
European-wide consortium, the CLM-Community (COSMO-model in CLimate Mode),



26 2.1. Terrestrial Systems Modeling Platform

Figure 2.1: Schematic of TSMP with the component models COSMO, CLM and ParFlow
and the exchanged variables.

which helped with its development (Rockel et al., 2008). COSMO is variable in its
resolution allowing for explicit convective processes around 3 km and coarser resolutions
which are more feasible in coupled modeling with TSMP. In this thesis, the COSMO
version v5.01 released in 2015, is used.

At the core, the COSMO model solves the primitive equations in their compressible form
to obtain solutions for the three wind directions, temperature, humidity and pressure. In
detail, this includes a lot of processes, including filtering of sound waves not important
for meteorological processes. Additional details can be found in (Doms and Baldauf,
2021). Some details about physical parametrizations, including clouds and radiation, are
essential for this thesis and are briefly explained here according to (Doms et al., 2021).

The modeling studies in this thesis are performed with a two-category ice scheme,
including the following categories of water in the atmosphere:

• Water vapor

• Cloud water and cloud ice

• Precipitable water in form of snow and ice

Between most of the categories, there are transformation processes described by equa-
tions. The starting process is the condensation or deposition of water vapor into cloud
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water and cloud ice with the condition that relative water saturation reaches values be-
yond 100%. The saturation pressure is lower over ice. Therefore, cloud ice can form
earlier than cloud water, given temperatures below the freezing point. In case of enough
water supply by, for example, rising air masses, cloud water can also grow together with
the ice particles resembling the development of mixed-phase water and ice clouds. How-
ever, cloud ice and water are treated as monodisperse reservoirs, with their diameter
only depending on their mass. Compared to other forms of water in the model, they are
of low quantity, which changes quickly. However, they are still crucial for the calculation
of radiation through clouds. Besides the mentioned condensation and deposition form-
ing a cloud, transformation to all states of water is possible, as shown in Figure 2.2. Only
deposition and condensation are explicitly mentioned in the picture to keep readability.
An abrupt transformation happens when the local temperature crosses the threshold of
0 ◦C. Within one time step, all ice particles melt and turn into the liquid phase.

Figure 2.2: Schematic of the two-way ice scheme used to simulate precipitation in
COSMO. Adapted from Doms et al. (2021).
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Another process in the atmosphere that needs adequate parametrization is radiation. It
depends on cloud physics, greenhouse gas concentration and interactions with the sur-
face. In COSMO, radiative processes are described with a radiative transfer equation
explained in detail in Ritter and Geleyn (1992). In reality, radiation passes through the
atmosphere with di�erent angles, is scattered by components, enters interactions with
atmospheric components like ozone and finally is reflected and absorbed at the sur-
face. The radiative equation would need to be integrated over all angles to capture all
processes of radiative interactions. Such a calculation is not computationally feasible.
Therefore, the COSMO model assumes horizontal homogeneous structures in a grid box,
splits the radiation into three solar spectral and five thermal intervals, and calculates ra-
diative fluxes only in certain configurable time intervals. The split between solar spectral
and thermal intervals is called the two-stream method. It simplifies the computation as
scattering involving air molecules is only included in the shortwave radiation, while the
emission of radiation by particles is only relevant to the thermal spectrum.

The assumption of horizontal homogeneous structures allows the radiation to be cal-
culated column-wise for each grid cell. Nevertheless, grid cells can still have variable
cloudiness under the condition that there is continuous vertical cloudiness. Having two
cloud layers separated by an utterly cloud-free zone is not allowed by the model. For
resolutions coarser than 10 km, a column-wise calculation is a fair assumption; for very
high resolutions, it becomes a problem as it is not realistic that the radiation processes
of two neighboring clouds do not interact with each other.

2.1.2 The Community Land Model

The Community Land Model (CLM) v3.5 (Oleson et al., 2004, 2008) serves as an inter-
face between the atmosphere and the subsurface. In TSMP, CLM is mainly responsible
for energy partitioning and determining evapotranspiration, considering the land cover,
including plants and available soil moisture. It also can be run o�ine with atmospheric
forcing data or only coupled to an atmospheric model. Without a subsurface model,
CLM also handles river routing and groundwater processes, which are very simplified.
Di�erent groups develop CLM at the National Center of Atmospheric Research (NCAR)
with contributions and software forks from worldwide within the current version 5.

In its newest iterations, CLM can become a dynamic vegetation model with plants grow-
ing according to ecosystem conditions and competing against each other. Such more
sophisticated vegetation dynamics are much more computationally extensive and cur-
rently unfeasible in a fully coupled context. Therefore, plants are characterized in plant
functional types (PFT) in CLM v3.5, which are used in TSMP. Specifically, each gridcell
has one PFT assigned with plant characteristics and prescribed monthly variables like
the leaf area index. Plant characteristics are essential for the interception of precipi-
tation reaching the ground and turbulence in the boundary layer. Zipper et al. (2019)
have shown that a widespread change in land cover can significantly impact atmospheric
processes even with prescribed plant characteristics and a limited number of PFTs.
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CLM simulates each gridbox individually, including the energy balance. Although no
direct lateral interaction exists, they occur via the subsurface flow in ParFlow and the
atmospheric process. The fundamental equations for momentum, energy and water
vapor fluxes between the surface and the atmosphere in CLM are

τx = −ρatm
uatm − us
ram

τy = −ρatm
vatm − vs
ram

H = −ρatmCp
θatm − θs

rah

E = −ρatm
qatm − qs
raw

With τ being the momentum flux in x- (u-wind) and y- (v-wind) direction, ρatm the
density of atmospheric air, r the aerodynamic resistances to momentum ram, heat rah
and water raw transfers, θ the potential temperature, H the sensible heat, Cp the heat
capacity of air, E the water vapor flux and q specific humidity with rs denoting surface
values. The equations are solved using Monin-Obukhov similarity theory according to
(Zeng et al., 1998). This formulation depends on the stability of the atmosphere and soil
moisture availability and plant characteristics have various influences on the resistances
and surface variables. For example the resistance raw depends on the leaf stomatal
resistance rs for vegetated zones

1

rs
= m

A

cs

es
ei
Patm + b

m is a PFT specific parameter, A is the leaf photosynthesis limited by the available soil
moisture, cs is the CO2 concentration at the leaf surface, es is the vapor pressure at the
leaf surface, ei is the saturation vapor pressure inside the leaf, Patm is the atmospheric
pressure and b is the minimum stomatal conductance in CLM. More details can be found
in the technical description of CLM.

2.1.3 ParFlow

The subsurface model ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001;
Kollet and Maxwell, 2006; Maxwell, 2013) simulates variably saturated groundwater flow
solving the 3D Richards equation and overland flow at the surface with a kinematic wave
approximation. ParFlow developed from its initial release as a watershed model initiated
by the Lawrence Livermore National Laboratory and the Center for Applied Scientific
Computing into an open-source project with various contributions from US and German
institutions. Developed in C, ParFlow was ready for massive parallel computing from
the start. Recent developments enable the e�cient usage of graphical processing units,
which o�er even more parallel processing and have a speed advantage over classical
computation with CPU in many cases (Hokkanen et al., 2021). However, compared to
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lumped models, the numerical solution of the Richards equation in the mixed form is
more costly. The main equations are

SsSw(p)
∂p

∂t
+ φ

∂(Sw(p))

∂t
= ∇q + qs

q = −kskr(p)∇(p− z)

This mixed form of the Richard’s equation depends on the pressure head p with Ss being
the specific storage, Sw the relative saturation, t is time, φ is the porosity, q is the Darcy
flux and qs is a general source-sink term which comes from CLM in the case of TSMP.
ks is the saturated hydraulic conductivity tensor, kr is the relative permeability and z is
the depth below the surface. Separate equations are used for the simulation of overland
flow. They are derived from the two-dimensional shallow water equation

∂ψs

∂t
= ∇(υψs) + qs

with ψs as the surface ponding depth and υ as the mean velocity vector. Applying
the kinematic wave approximation which means that the friction terms are equal to
gravitational forcings leads to following velocities in x- and y-direction

υx =

√
Sf,x

n
ψ

2
3
s

υy =

√
Sf,y

n
ψ

2
3
s

Sf,x and Sf,y are the mentioned friction terms that are given to ParFlow by slope files.
The slopes determine the river routing by directing the flow from one cell to only the
steepest neighboring cell. n is the Manning roughness coe�cient, which is inferred from
empirical studies. Especially in flood situations, it has a high impact on the correct
simulation of a flood (Lumbroso and Gaume, 2012). In TSMP, ParFlow and CLM share
the first soil layers (ten in this study). All hydraulic processes are performed by ParFlow
while CLM calculates evaporation and transpiration.

2.1.4 Coupling with OASIS3

The main accomplishment of TSMP is coupling three independent models with the
help of OASIS3 (Valcke, 2013). OASIS was developed at CERFACS, a French scientific
center for scientific computing. Development started at the beginning of the 1990s,
intending to couple oceanic and atmospheric models. The goal was an external cou-
pler to exchange data with minimal modifications to the original models. In a so-called
multiple-executable approach, which is applied in TSMP, OASIS3 initializes and termi-
nates TSMP’s component models to manage the coupling process.

Initially, all models are set up from cold-start or restart values. After that, COSMO and
ParFlow run parallel until the first coupling step, where variables are exchanged to CLM.
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During the relatively quick simulation of CLM, COSMO and ParFlow idle. When the
computations of CLM are finished, it sends variables to COSMO and ParFlow, which
run parallel again while CLM idles. This procedure leads to idle times of all models in
one coupling step but is still more e�cient than a sequential run of all models (Gasper
et al., 2014).

The first data exchange sends shortwave and longwave radiation, precipitation, pressure,
humidity, and temperature at the lowest level from COSMO to CLM. No modifications
have to be made because this is the same way CLM would receive atmospheric data
in an o�ine simulation. In the next step, ParFlow sends CLM relative saturation and
pressure of the soil layers both models share. Based on the two inputs, CLM simulates
energy and momentum fluxes which are sent back to COSMO. The transfer is performed
by calculation of exchange coe�cients. The formulation is similar to the main equations
of CLM in chapter 2.1.2 with some modifications

Cah = − H

ρatmcpU(Ts − Tatm
Π )

Π =
p

p0

Rd
cp

Caw = − E

ρatmHvap(qs − qatm)

Cam = − τ

ρatmUu

The resistances - here called transfer coe�cients - for heat Cah, moisture Caw and
momentum Cam are all influenced by the mean wind speed in zonal and meridional
direction U . Between the land surface in CLM and the lowest level of the atmosphere
in COSMO exists a height di�erence that has to be corrected with the Exner function
Π. Here p is the pressure of the lowest level, p0 is the pressure at the surface and Rd

is the specific gas constant for dry air. Because the transport of moisture from CLM to
COSMO includes a phase change, the enthalpy of vaporization Hvap is included. For the
momentum coe�cient, the focus lies on the zonal wind component u.

After sending the transfer coe�cients to COSMO, CLM sends ParFlow the rain flux to
the top soil layer and evaporation fluxes for the shared layers.

2.2 Configuration, Domain and Workflow

2.2.1 Model Configuration

Many factors determine the outcome of a complex model system. Following aspects are
important:

• Model versions
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• Namelist settings

• Initial and boundary data

• Static parameter fields

This study uses TSMP in version v1.1, which includes COSMO v5.01, CLM 3.5 and ParFlow
3.2. Each of the three models has its namelist, and defines its grid and timestep. Most
crucial is the timestep with COSMO using 60 s and CLM-ParFlow 900 s, which is also the
coupling timestep. The full namelists of TSMP used in this study are publicly available
on GitHub: https://github.com/HPSCTerrSys/TSMP/tree/master/bldsva/setups/cordex.

Initial data is vital for the land component of TSMP. The use of reanalysis datasets can
initialize the atmosphere, but the subsurface in ParFlow needs at least several years
to reach an equilibrium state. A spin-up period is usually performed by forcing CLM-
ParFlow with averaged atmospheric data in o�ine simulations. In the study of Furusho-
Percot et al. (2019), a spin-up was conducted over 20 years. Once an equilibrium is
reached, the states of the surface and subsurface can be used in a fully coupled simula-
tion with COSMO. Additional simulation time in the fully coupled setup is necessary for
the subsurface to reflect the atmosphere’s forcing correctly. A change of subsurface pa-
rameters can break the equilibrium, again initiating an adaption period. The initial state
obtained by the spin-up is also essential for the lower boundary condition of ParFlow.
On the bottom at 57 m depth, an assumed impermeable bedrock prevents water loss.
Therefore, some water is always present at the bottom of the column. The initial spin-up
determines the extent of this water column or aquifer. Water can be lost at the coast of
the domain. Here, the water tables are always right below the surface, allowing lateral
flow into the ocean. This assumption prevents realistic simulation of groundwater near
the coasts, as many processes are involved in a sea-groundwater exchange, for example,
the sea level (Ketabchi et al., 2016).

In fully coupled TSMP, atmospheric boundary data is only necessary at the lateral bor-
ders of the simulation domain. Still, it dominates the development of large-scale weather
systems in the domain and ensures that the outflow matches the boundary conditions.
Static fields include the orographic height for COSMO, the plant functional types in CLM
and subsurface parameters in ParFlow. More details of the used datsets are found in
chapter 2.2.3

2.2.2 Model Domain

Inherited from previous studies (Keune et al., 2016; Furusho-Percot et al., 2019) the
modeling domain follows the European Coordinated Regional Downscaling Experiment
(CORDEX) domain (Giorgi et al., 2009) for simulations with 0.11° (≈ 12.5 km) resolution
and 424x412 gridcells ranging from 27° N to 72° N and 22° W to 45° E. In the simulation,
the domain is slightly larger for COSMO with 444x432 gridcells and CLM and ParFlow
with 436x424 gridcells compared to CORDEX. The additional ten pixels at each side of
the domain should allow a transition zone between the CORDEX domain and the direct

https://github.com/HPSCTerrSys/TSMP/tree/master/bldsva/setups/cordex
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influence of the atmospheric boundary data of ERA-Interim. Four of the ten pixels are
run with constant fluxes from the surface, replacing CLM-ParFlow. The inner 436x424
are dynamically fully coupled. A longitude-latitude grid with a rotated pole at 162° W
and 39.25 N ensures a nearly homogeneous gridcell area. Figure 2.3 shows the modeling
domain, including the sponge zone. Inside the CORDEX domain are subdomains called

Figure 2.3: Simulation domain of TSMP over Europe with orographic height. The shaded
red area depicts the sponge zone, which is cut for the analysis.

PRUDENCE regions used for regional analysis (Christensen and Christensen, 2007).
Most of the studies shown in this thesis focus on the region Mid-Europe ME. ME
consists of Germany and parts of the neighboring countries. The vertical resolution is
variable and terrain following. The atmosphere ranging up to 22 km is equally segmented
into 50 layers. The subsurface ranging down to 57 m consists of 15 layers. The first ten
subsurface layers up to 2 m depth are shared by CLM and ParFlow.

2.2.3 External Datasets

To define the elevation in ParFlow, slopes in x- and y-direction are derived from the
USGS GTOPO30 (DAAC, 2004) digital elevation data set. Soil parameters are vertically
homogeneous and are derived from the Food and Agricultural Organization of the United
Nations database (Carballas et al., 1990) and categorized into 15 types. To account for
spatial aggregation at a resolution of 12.5 km the horizontal permeability values are scaled
by the factor 1000. The upscaling has proven to improve the results of the simulation of
runo� and soil moisture content (Fang et al., 2016). The distribution of 16 plant functional
types for CLM was derived from the MODIS database (Friedl et al., 2002).

To initialize COSMO and to create boundary data, pre-processing has to be done with
the program int2lm, which comes with COSMO. The basic requirements are an external
parameter file containing surface characteristics. Many surface parameters are redun-
dant when using COSMO coupled to CLM but are required to get the model running.
Parameter files for COSMO are provided by the CLM-Community (not to be confused
with the CLM model) or the Deutsche Wetterdienst. More critical are the atmospheric
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conditions of a global circulation model that are interpolated as initial and boundary con-
ditions. This thesis uses the reanalysis product ERA-Interim (Dee et al., 2011). Necessary
variables are

• Temperature

• Wind

• Humidity

• Pressure

• Cloud water content

• Temperature of the snow surface

• Snow water content

• Specific humidity at the surface

For a first initialization more variables describing soil temperatures and water content
are needed. Boundary conditions of ERA-Interim were applied every 3 h at the borders
of the sponge zone in Figure 2.3. At the time of the publication of this thesis, ERA-
Interim was already outdated and ended production in August 2019. The predecessor
ERA5 (Hersbach et al., 2020) improved in resolution, model physics, time-span and
corrects precipitation by incorporating remote sensing products. However, ERA5 was
not available when the simulations of Furusho-Percot et al. (2019) started, which is the
basis of the thesis.

2.2.4 The Supercomputer JUWELS

All simulations in this thesis were carried out on the supercomputer JUWELS located at
the Forschungszentrum Jülich. JUWELS consists of a cluster module of more than 2300
compute nodes assembled of 48 compute cores each and the JUWELS booster, which
has 3744 GPUs especially suited for artificial intelligence research (Kesselheim et al.,
2021). Both are embedded in a network and file system connecting all supercomputers in
Jülich. Each job at the supercomputer needs to request a certain amount of nodes and
wallclock time. The fully coupled version of TSMP was run at the cluster module with 8
nodes spread between COSMO (4), ParFlow (3) and CLM (1). Initially, the runs were set
up in monthly steps, meaning that the model stops at the end of each month, reproducing
restart files. These files enable to continue the simulation at this point in time. Simulating
one month usually takes around 5 h of wallclock time on the supercomputer.

On the one hand, restarting the simulation every month creates a safety net. On the
other hand, a relatively small amount of nodes with a short wallclock time compared
to the limit (24 h) is ine�ective. In the case of heavy system usage, each new request
job leads to queuing times, while requesting one longer job only leads to one queuing
time. Therefore, later runs covered four months of simulation, reducing the number of
job requests from twelve per year of simulation to three.
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The amount of data produced by TSMP also proposes a challenge with 2.6 TB year−1 for
COSMO, 73 GB year−1 for CLM and 130 GB year−1 for ParFlow. These are the storage
requirements for the output variables for the raw output with the variables used in
Furusho-Percot et al. (2019). Not saving temperature or humidity data on atmospheric
model levels in COSMO can massively reduce the storage requirements.
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3.2 Summary

Central Europe experienced a massive heatwave in 2018, significantly impacting public
health and agriculture. Yet, the previous year of 2017 was comparably wet and water
deficits only developed later in the year. The following year 2019, was dry again and
Central Europe was under ongoing drought conditions with deficits up to −145 Gt (Boer-
gens et al., 2020). The prolonged water deficits raised awareness for drought assessment
and prediction. It is essential to know the probability of a continued drought for adapta-
tion strategies to adjust to the fact that the deficits might not be replenished over winter.
In Germany, droughts are assessed through the German drought monitor (Zink et al.,
2016), but predicting droughts on longer timescales is di�cult. The main obstacle is
the uncertainty of the atmospheric forcing (Miralles et al., 2019). However, additional
information might be drawn from groundwater memory and the slow-moving processes
in the subsurface and land surface to extend the prediction period (Dirmeyer, 2000).

Water flow must not be simplified to utilize groundwater memory in modeling. For
example, using a free drainage approach in which water can leave the soil column at the
bottom prevents an explicit water table. On a continental wide-scale, common climate
models as well as most hydrological models use simple groundwater dynamics. This
study uses the fully coupled Terrestrial Systems Modeling Platform (TSMP) (Shrestha
et al., 2014; Gasper et al., 2014) to prevent this. It combines the atmospheric model
COSMO (Baldauf et al., 2011), the landmodel CLM (Oleson et al., 2004, 2008) and the
subsurface model ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet
and Maxwell, 2008; Maxwell, 2013) coupled together with OASIS3-MCT (Valcke, 2013).
For TSMP already exists a terrestrial climatology (Furusho-Percot et al., 2019) including
the evolution of water storage in the subsurface over continental Europe with matching
boundary conditions from ERA-Interim. This data will be utilized for the interannual
probabilistic assessment of subsurface water storage.

The assessment is proposed in the following way: The conditions of the land and subsur-
face are extracted from a long-running climate simulation to initialize a forward ensemble
with boundary conditions from all available previous years. The ensemble is run for a
full water year. In the end, the probability for a continuing water deficit is calculated
with the Weibull plotting position formula (Hao et al., 2016)

P (x < 0) =
n0

n+ 1

P (x < 0) is the probability P for a subsurface water deficit smaller than 0, n0 is the
number of ensemble members that fulfill that condition and n is the total number of
ensemble members. The assessment was executed with the initial conditions of August
31st 2011, 2018 and 2019, which all showed high water deficits over Central Europe.

The main assumption of the probabilistic assessment is that the information stored in
groundwater memory outweighs the lack of information on the atmospheric evolution
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on the interannual timescale. A so-called reverse assessment can help to prove this
thesis: The basic idea of the probabilistic assessment is already known in classical
hydrologic modeling (Day, 1985; Wood et al., 2002; Wood and Lettenmaier, 2008) to
predict streamflow. In a reverse assessment (Wood and Lettenmaier, 2008), all available
initial conditions are paired with one perfect atmospheric forcing. For both assessments,
an error is calculated compared to the actual evolution in the continuous climatology.
Naturally, the error of the assessment increases over time. In the reverse assessment,
the error gets smaller because the perfect meteorological forcing brings the variety of
initial conditions more and more together.

Results show that in the case of the 2018 drought, the initial condition is more influential
than the atmospheric forcing for nearly the whole time span of one water year. This
proves that the probabilistic assessment helps to determine the probability of a contin-
uous water deficit. The percentages for the three initial conditions were 70% for 2011,
70% for 2018 and 65% for 2019, all well above the value of no predictability (P ∼ 50%).

All in all, the interannual probabilistic method has proven valuable in the case of dry and
wet anomalies. No useful results can be obtained if subsurface water resources are close
to the long-term average. Comparing assessment and reverse assessment shows that the
initial condition in the case of droughts leads to long predictability on the interannual
time scale. Previous studies (Shukla et al., 2013; Staudinger and Seibert, 2014; Arnal
et al., 2018) determined that the initial condition is relevant on a much shorter timescale.
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Abstract

Long-term groundwater droughts are known to persist over timescales from multiple
years up to decades. The mechanisms leading to drought persistence are, however, only
partly understood. Applying a unique terrestrial system modeling platform in a proba-
bilistic simulation framework over Europe, we discovered an important positive feedback
mechanism from groundwater into the atmosphere that may increase drought persistence
at interannual time scales over large continental regions. In the feedback loop, ground-
water drought systematically increases net solar radiation via a cloud feedback, which,
in turn, increases the drying of the land. In commonly applied climate and Earth system
models, this feedback cannot be simulated due to a lack of groundwater memory e�ects
in the representation of terrestrial hydrology. Thus, drought persistence and compound
events may be underestimated in current climate projections.

Plain Language Summary

Depending on the climate zone, droughts can persist for a very long time. In generally
dry regions, interactions between the drought and the atmosphere become quickly ap-
parent with a missing moisture supply from the surface. In more humid areas like the
mid-latitudes, the e�ects are more hidden because there is more guarantee for moisture
supply from the ocean. Still, some feedbacks prolong droughts that are often overlooked
in climate modeling. We show with a model that includes the whole water cycle from
the groundwater to the cloud top that drought conditions can change the properties of
the clouds with changes in the energy cycle. The clouds become higher and transmit
more solar energy to the surface. The surplus of energy at the surface leads to more
evaporation and prolonged droughts.

Key Points

• Previously neglected drought feedbacks initiated by water deficits in the subsurface
are prolonging water deficits

• The shortfall of subsurface water leads to higher clouds via changes in the sensible
heat flux

• Higher clouds let more solar radiation reach the ground contributing to drought
persistence

4.2 Introduction

Droughts are part of the observed natural variability of the water cycle acting over large
spatial scales and on time scales from weeks to decades (Peterson et al., 2021). Factors
that influence hydrologic drought are precipitation deficits, hydrologic memory e�ects,
land use modifications (Staal et al., 2020), human water use (Wada et al., 2013), and
climate change (Samaniego et al., 2018). In addition, non-linear feedback loops, for
example, the triggering of mesoscale circulations or changed advection patterns may be
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critical in connecting hydrologic drought with atmospheric processes in the terrestrial
system (Seneviratne et al., 2010).

The feedback of soil moisture with land surface temperature and precipitation via
evapotranspiration has been studied previously (Humphrey et al., 2018; Miralles et al.,
2019; Zhou et al., 2021), showing connections at the weather and climatological time
scales (Guo et al., 2006; Koster et al., 2006). Simulating relevant feedbacks can both
rely on complex groundwater formulations (Keune et al., 2016) or high-resolution atmo-
spheric models that enable explicit convective processes (Hohenegger et al., 2009). Both
come with additional computational costs.

Central Europe is usually not water-limited (Stegehuis et al., 2013) and local feedback pro-
cesses are superposed by large-scale atmospheric processes. However, during summer
and under drought conditions, the influence of local feedbacks may increase (Phillips
and Klein, 2014), because the whole energy balance at the surface is shifted towards
dominance of the sensible over the latent heat flux (Rajan et al., 2015). Possible conse-
quences are changes in surface albedo with changed soil color due to decreasing soil
moisture and vegetation (Meng et al., 2014). Shifts in the energy balance also increase
the sensible heat flux, which can influence the cloud base and cover via interactions with
the boundary layer (Betts, 2004; Ardilouze et al., 2019). The upper part of the boundary
layer is heated, leading to an extension, which moves the cloud base upwards. Dirmeyer
et al. (2014) found a strengthened connection between sensible heat and the cloud base
in climate projections of coupled models. Feedback processes like this might not only be
critical in future climates but be relevant during current droughts. In this study, with fully
coupled groundwater-to-atmosphere simulations, positive feedback mechanisms between
groundwater drought and atmospheric processes were discovered at the interannual time
scale.

4.3 Data and Methods

The discovery of the positive drought feedback is based on the analyses of numerical
ensemble prediction experiments. In the experiment, the integrated modeling system
was applied with varying drought initial and uncertain atmospheric boundary conditions
over the European continent, which is outlined in sections 4.3.1 and 4.3.2. The statistical
analyses of the experiments scrutinize the increments in the hydrologic and atmospheric
response to the drought initial conditions at the interannual time scale, which is detailed
in sections 4.3.3 4.3.4 and 4.3.5.

4.3.1 Modeling System

The feedbacks between continental-scale groundwater and atmospheric processes are
examined using coupled land-atmosphere models (Barlage et al., 2015). In this study,
we applied the Terrestrial Systems Modeling Platform (TSMP) consisting of coupled
groundwater, land, and atmosphere models (Gasper et al., 2014; Shrestha et al., 2014).
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TSMP closes the energy and water cycle from the bedrock to the top of the atmosphere,
thus, providing physically consistent simulation results.

The atmospheric part of TSMP is covered by COSMO v5.01, a regional atmospheric
model developed by multiple weather services under the leadership of the German
Weather Service (Baldauf et al., 2011). It has been used as an operational weather fore-
cast system and in research applications up to the climatic timescale solving prognostic
equations for a compressible non-hydrostatic moist atmosphere. In TSMP, COSMO
provides precipitation, temperature, humidity, horizontal winds, air pressure, shortwave
energy and longwave energy fluxes to the land scheme based on the Community Land
Model (CLM version 3.5).

In return, in the coupled framework, CLM (Oleson et al., 2004, 2008) provides COSMO
with upwelling longwave and reflected shortwave energy, turbulent momentum, moisture
and energy fluxes, which are calculated for individual grid cells. Relevant processes
in CLM are evaporation, root water uptake and transpiration, and sensible heat, which
are parameterized based on thermodynamic, plant physiologic and similarity theory. In
this study, the connection of these processes to shallow soil moisture and groundwater
redistribution, which is calculated by the variably saturated groundwater and surface
water flow model ParFlow, is key explaining the feedback.

ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell,
2006; Maxwell, 2013; Ku�our et al., 2019) solves the 3D Richards-equation for a physical
representation of variably saturated groundwater flow, which enables the calculation of
e.g. total water storage (saturated/unsaturated) and groundwater table depth. Overland
flow is represented with a kinematic wave equation in a free surface boundary condition.
The equations are discretized via finite di�erences in space and implicitly in time, and
solved by a Newton–Krylov solver. ParFlow covers the shallow soil layers in CLM and
is extended with five additional soil layers to include deeper groundwater flow. At the
upper boundary, ParFlow receives precipitation after interception and evapotranspiration
from CLM. ParFlow provides subsurface water pressure potential and saturation values
to CLM. The coupling of the di�erent model components is implemented with OASIS3-
MCT (Valcke, 2013). All models are initialized by the coupler and run independently
until the user defined coupling timestep. Then coupling variables are exchanged in 2D
and 3D arrays in memory, and updated in all models.

4.3.2 Domain and Model Setup and Reference Climatology

The global simulation domain encompasses the o�cial EURO-CORDEX region (Giorgi
et al., 2009; Gutowski et al., 2016), including large parts of continental Europe. The
horizontal grid spacing is 0.11° on a rotated longitude-latitude grid, roughly equal to a
distance of 12.5 km. The vertical grid spacing is variable, with the atmosphere reaching
up to 22 km with 50 levels and the subsurface up to 57 m with ten levels shared with
CLM and ParFlow and five additional ParFlow layers. The subsurface grid is terrain
following with increasing layer thickness with depth. Not resolving convection explicitly,
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we operate with the two-category ice scheme of COSMO that includes the categories
of water vapor, cloud water (CLW), cloud ice, rain and snow but ignores graupel. The
convective parametrization from Tiedtke (1989) is utilized with the addition that mixed-
phase clouds of ice and water are accounted for. Calculation of radiative fluxes is done
according to Ritter and Geleyn (1992), which enables the calculation of incoming solar
radiation to the surface, taking into account partial cloudiness of individual layers and
the water content in di�erent forms through all layers. It is assumed that clouds in
adjacent levels overlap completely, and the radiative fluxes are calculated only for the
timestep used for the coupling process to reduce computational demand. Generally, the
timestep of COSMO is 60 s, while the CLM and ParFlow run with a timestep of 900 s,
which is also the coupling frequency.

The lateral boundary information for the atmospheric model was obtained from the
reanalysis dataset ERA-Interim (Dee et al., 2011), updated every 3 h at the domain’s bor-
ders. Parameters for PFTs of CLM were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) database (Friedl et al., 2002). The individual plant proper-
ties were calculated from the CLM surface dataset. The topographic representation in
ParFlow is represented by slopes in 2D derived from USGS GTOPO30 (DAAC, 2004),
soil properties stem from the Food and Agricultural Organization (FAO) database (Car-
ballas et al., 1990) categorized in 15 soil types with assumed vertical homogeneity. Due to
the resolution of 12.5 km, there was the need to scale horizontal permeability by a factor
of 1000 (Fang et al., 2016; Niedda, 2004). Along the coastlines, we apply a Dirichlet
boundary condition for ParFlow with constant hydraulic pressure and the water table
located close to the surface.

Applying ERA-Interim boundary forcing, a continuous climatological time series was
simulated from 1996 to 2018 with TSMP, which serves as the reference (REF) in this
study. REF constitutes a consistent, transient climatology of all relevant states and fluxes
of the terrestrial water and energy cycle from groundwater across the land surface into
the atmosphere (Furusho-Percot et al., 2019). We focused on the region of Mid-Europe
(ME) defined in Christensen and Christensen (2007), which roughly consists of Germany
and the Benelux states (Figure 4.1).
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Figure 4.1: Simulation domain over continental Europe including topographic height
with PRUDENCE subdomains. The European CORDEX model domain, including the
topographic height. Abbreviations are: BI: British Isles; IB: Iberian Peninsula; FR: France;
ME: Mid-Europe; SC: Scandinavia; AL: Alps; MD: Mediterranean; and EA: Eastern
Europe. Reproduced from Hartick et al. (2021).
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4.3.3 Ensemble Construction and Increment Analyses

In the ME focus region, there were three major groundwater drought events in the years
2011, 2018, and 2019 that were identified from anomalies of total subsurface water storage,
S. These events were part of previous evaluation studies where water states and fluxes
simulated with TSMP underwent a century-long spin up period and were shown to agree
well with observations from remote sensing (Furusho-Percot et al., 2019; Hartick et al.,
2021).

We applied an established probabilistic ensemble prediction approach (Day, 1985; Wood
and Lettenmaier, 2008), which can be summarized as follows: In order to assess the
impact of drought conditions at the end of a given water year on the hydrologic and
atmospheric system in the ensuing water year (1. September to 31. August), the at-
mospheric uncertainty must be taken into account at the interannual time scale. Since
there is arguably no predictive skill in e.g. precipitation at the interannual time scale, an
ensemble of atmospheric conditions must be constructed that covers the full range of at-
mospheric uncertainty, which encompassed, in the best case, realizations of all possible
atmospheres for the ensuing water year. In this study, an estimate of atmospheric un-
certainty was obtained by forcing the ensuing water year with atmospheric ERA-Interim
boundary conditions of the 22 water years, y∈Y = {1996, 1997, ..., 2018} covering the sim-
ulated time series of the reference simulation, REF. Thus, for a single initial drought
condition at the end of a water year, this resulted in an ensemble of 22 realizations of
the hydrologic and atmospheric system in the ensuing water year over the simulation do-
main. Because three drought years (2011, 2018 and 2019) were considered for initializing
the ensemble simulations, the total ensemble size was 66. Note, the initial disequilibrium
between the atmospheric and hydrologic system right at the beginning of each simulation
after initialization can be neglected because of the strong dynamics and short memory
of the atmosphere on the order of hours to days. For more details on the experimental
design, the reader is referred to Hartick et al. (2021).

The ensemble results were analyzed based on increments ∆Y,V , where the subscript V
is a set of subsurface, land surface, and atmospheric variables

v∈V = {RNET,LH, SH,GH,SSR,LF,CEILING,CLT,LCL,CLW}

defined in Section 4.3.4; and Y is the set of REF forcing years defined above. Individual
increments were calculated as the di�erences between the ensemble members initialized
with the drought conditions of the years i∈I = {2011, 2018, 2019} and REF simulation
results for the years Y (see also Figure 4.2)

∆y,v = vy,i − vy,REF

In the analyses, all ∆Y,V were seasonally and spatially averaged over the focus region and
normalized with the seasonal standard deviation (background atmospheric variability) of
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REF over the study region resulting in the averaged increment ∆v for a given variable
v∈V . Thus, ∆v reflect the impact of initial drought conditions on land surface and
atmospheric variables at the interannual time scale. If the increments, ∆v, follow a
normal distribution with a mean of zero (essentially white noise), this would suggest that
the drought initial conditions do not have a systematic impact on V. Thus, essentially the
null hypothesis is tested, which, in case of rejection, suggests that indeed a systematic
influence of drought initial conditions on V may exist.

Figure 4.2: Schematic describing the experiment setup. The continuous climatology
serves as a reference with a transient evolution of subsurface water and all other vari-
ables. The drought experiments consist of parallel initializations of all years of the
climatology with drought states for the land- and subsurface. The altered evolutions are
simulated for one year then increments are calculated for all years between the reference
and the drought-influenced years.
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4.3.4 Key Climate Variables

We inspected increments, ∆v, defined in Section 4.3.3 of the land surface energy budget
for the analyses, including net radiation at the surface (RNET), which is distributed
between the sensible heat flux (SH), the latent heat flux (LH), and the ground heat flux
(GH). Further, we inspected the net values of incoming shortwave (SSR) and longwave
radiation (LF). SSR is determined by the solar radiation coming from COSMO and the
ground albedo calculated in CLM. LF is estimated from ground temperature and cloud
cover.

It is important to note that other factors than clouds like greenhouse gases and the
solar cycle were constant in our configuration. Thus, under clear sky conditions, the
same amount of radiation reaches the surface in the di�erent simulations. Overall, SSR
simulated by TSMP agreed well with the reanalysis product ERA5-Land (Muñoz-Sabater
et al., 2021) (Figure 4.3). To calculate the water deficit in the subsurface, all soil layers are
added to the total subsurface water storage (S). For cloud related variables, we analyzed
the cloud ceiling height (CEILING), total cloud cover (CLT), lifting condensation level
(LCL) and cloud water content (CLW).

Providing a brief explanation of the di�erent cloud related variables, CEILING is the
height at which most of the sky is covered with clouds, which can also be observed
by ceilometers. COSMO has been evaluated against such observations reaching high
values of reproducibility (Bucchignani and Mercogliano, 2021). CEILING is a measure
for general cloud height both in convective and high-pressure synoptic situations, where
cirrus clouds are formed. Under clear sky conditions, CEILING reaches an arbitrary
maximum value which we removed from the analyses. LCL is a useful variable in con-
vective situations describing the level to which an air parcel near the surface needs to
be lifted to reach supersaturation and start forming a cloud. LCL does not exist as a
direct model output, but Yin et al. (2015) and Romps (2017) made progress toward de-
riving exact solutions for LCL from pressure, humidity and temperature at the surface.
We calculate the LCL with the help of the Python script provided by Romps (2017). In
COSMO, CLW is the amount of water stored in clouds with a negligible fall velocity
serving as a reservoir for precipitable water. By autoconversion or the interaction with
existing rain or snowdrops, CLW is transformed and replenished by condensation of wa-
ter vapor. Comparisons to observations are di�cult because the amount of cloud water
is small and di�cult to separate from the total amount of water in the atmosphere. Thus,
while CLW is observable, the variable is more useful in the modeling realm especially in
parametrizations of subgrid scale cloudiness. CLW is also part of widely applied reanal-
ysis products like ERA5 (Hersbach et al., 2020), to which TSMP agrees well (Figure 4.4).
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Figure 4.3: Seasonal anomalies in summer of net solar radiation SSR in the reference
climatology REF and the reanalysis dataset ERA5-Land. Abbreviations are: BI: British
Isles; IB: Iberian Peninsula; FR: France; ME: Mid-Europe; SC: Scandinavia; AL: Alps;
MD: Mediterranean; and EA: Eastern Europe.
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Figure 4.4: Seasonal anomalies in summer of total cloud water CLW in the reference
climatology REF and the reanalysis dataset ERA5. Abbreviations are: BI: British Isles;
IB: Iberian Peninsula; FR: France; ME: Mid-Europe; SC: Scandinavia; AL: Alps; MD:
Mediterranean; and EA: Eastern Europe.
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4.3.5 Hypothesis Testing

We applied multiple empirical and statistical techniques in the hypothesis testing, such
as a two-sided t-test, Bayesian networks (Salvatier et al., 2016), and bootstrapping. Be-
cause applying significant tests on small sample sizes is questionable, all three drought
ensembles with the total sample size of 66 were combined in the analyses. We present
the p-values in the context of mean and standard deviation of the climatology REF. In
the analyses we also consider statistically non-significant but systematic non-zero in-
crements across all experiments (i.e. all initialization years, Y ) in the rejection of the
null-hypothesis in the scientific sense. To quantify the increased probability for a positive
increment in SSR, we apply Bayesian inference. First, we categorize all the results of
our drought experiments into two outcomes: a positive increment of SSR in summer (1)
and no positive increment (0). We assign them a Bernoulli probability distribution. As
prior, we assume a probability percentage of 50% for a positive increment distributed
in a beta distribution. Finally, we apply a Markov Chain Monte Carlo simulation with
12,000 drawn samples from our outcomes. Each iteration proposes a modified distribu-
tion of the probability that is accepted or rejected depending on if a higher probability
is reached and distribution from previous iterations. We perform the Bayesian inference
with the python package pymc3. Additionally, to performing t-tests, we used bootstrap-
ping to show the robustness of our results for SSR. Bootstrapping is random sampling
with replacement from a given population. We tested our increments with a sample size
of 10000 and calculated the 95% confidence interval for the mean.

Zhou et al. (2021) recently investigated coupling strength between soil moisture and
precipitation with partial least square regression (PLS) (Geladi and Kowalski, 1986). The
method is adapted to investigate the connection between normalized values of S and SSR

∆SSR = n0 + n1∆S

n1 is determined by PLS corresponding to the partial derivative of ∆SSR in summer to
∆S in summer. We use spatially averaged values over the PRUDENCE regions to account
for the impact on a larger spatial scale. Naturally, water deficits are often paired with
high values of incoming solar radiation in the same season. The dry conditions originate
from an accumulation of clear sky days and a lack of precipitation. By focusing on the
increments between simulations forced by the same large-scale weather conditions of
each year, we exclude this e�ect and only investigate the influence of the altered water
resources.

4.4 Results

4.4.1 Increments in the Energy Fluxes

Figure 4.5 shows the first essential result of the probabilistic numerical experiment. In
Figure 4.5A-D, all energy increments, which were normalized by their naturally vari-
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ability of one standard deviation, are positive or close to zero. For example, the mean
∆RNET is about 25% of the natural variability with the range reaching 100%. Thus, in the
simulations with the dry initial conditions, more energy is absorbed by the land surface
than in REF. This energy is mainly partitioned into SH with the mean ∆SH being close
to 50% of the natural variability reaching with an even larger range. Analyses of in-situ
energy flux observations during the extreme European summer of 2018 also identified
sensible heat as the most a�ected flux of the energy cycle (Graf et al., 2020). Decom-
posing the net energy balance at the surface into its components ∆SSR and ∆LF (Figure
4.5E-F), the results show an increase in incoming shortwave radiation in the mean sense
and a decrease in longwave radiation, in case of drought initial conditions. There is a
mean increase of around 2.5 W m−2 for ∆SSR in absolute numbers. Compared to the
natural variance, this is of considerable magnitude, especially considering the impact
can be much higher in individual years.
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Figure 4.5: Boxplots of the normalized increments of the energy budget in spring and
summer of the drought experiments. The net surface energy flux RNET (A) is shown
with its components the latent heat flux LH (B), the sensible heat flux SH (C) and the
ground heat flux GH (D). E and F show net energy fluxes of shortwave radiation SSR
and longwave radiation LF. Light blue and red denote ensembles that did not pass a
single mean two-sided t-test (p-value > 0.05). Negative values indicate a deficit in the
experiments, positive values a surplus. The dotted line inside the boxes shows the
average of the increments.
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The darker shaded boxplots in Figure 4.5 denote in which seasons and experiments the
results significantly di�er in a statistical sense according to a single mean two-sided
t-test. The results support the finding that significant, systematic changes are detectable
only for SH, RNET and SSR; other components of the energy balance, ∆LH and ∆GH,
did not show a systematic change for the di�erent drought initial conditions, Y.

The determined probability of a positive increment in SSR using Bayesian inference
increases to about 70% shown in Figure 4.6. The posterior distribution obtained by per-
forming Markov Chain Monte Carlo simulation is well separated from the prior distri-
bution with a mean of 0.5. Even the high-density interval where 94% of the experiments
are distributed spans from 0.6 to 0.8. The result for the bootstrapping test are shown in
Figure 4.7. Through all three experiments, the confidence intervals of the mean of ∆SSR
are located above 0, showing a surplus. These results provide additional robustness for
the increase of the probability for a surplus in solar radiation.

Figure 4.6: The posterior distribution obtained by Bayesian inference for a positive
increment in SSR.
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Figure 4.7: Lower bound (blue) and upper bound (red) of the 95% confidence interval of
the mean of ∆SSR obtained by a bootstrapping test.
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Table 4.1 summarizes the results for the sensitivity coe�cient n1 obtained by PLS for the
experiment with the initial conditions of the three droughts. ME and also EA experienced
in all three experiments a spatially widespread drought in the leading fall. The negative
values in these regions indicate that with a more robust deficit in the subsurface water
storage in summer than the original climatology, a higher surplus in net solar radiation
can be expected. Therefore, there is an indication that an intense drought can a�ect
solar radiation in the following summer regardless of the generally chaotic evolution of
the weather at that time scale. The most significant sensitivity values are found in the
strongest initial drought condition of 2018, while the smallest initial drought condition
has the weakest coe�cients. We see in other regions, which have no distinct initial
condition in all three cases, that the sensitivity values fluctuate quite strongly. An aspect
not included is the interplay between the regions. Widespread drought in one region
could also influence other areas.

Table 4.1: Sensitivity coe�cients n1 of each Prudence region (British Isles (BI); Iberian
Peninsula (IP); France (FR); Mid-Europe (ME); Scandinavia (SC); Alps (AL); Mediter-
ranean (MD); and Eastern Europe (EA)) in each drought experiment for the feedback of
the summer increment of total water storage to the increment of net solar radiation in
the summer.

region n1 2011/12 n1 2018/19 n1 2019/20

BI -0.31 -0.24 -0.31
IP 0.04 0.1 -0.03
FR -0.26 -0.36 -0.23
ME -0.16 -0.58 -0.38
AL -0.37 -0.49 -0.19
SC -0.22 -0.33 0.04
MD 0.22 -0.25 0.11
EA -0.36 -0.77 -0.43

4.4.2 Increments in Cloud Variables

The identified changes in the energy budget have to be connected to altered cloud
properties which are shown in Figure 4.8. Most notably, the cloud height is consistently
higher with an average absolute CEILING increment of some 110 m, which is on the order
of the natural variability (Figure 4.8A). Total cloud cover is also consistently reduced
by about 25% of the natural variability (Figure 4.8B). These two variables include all
types of clouds, such as high cirrus clouds, low stratocumulus and convective clouds.
The changes in cloud height seem to be the most consistent change in the ensembles
with all assembled increments being significant, thus, supporting suggested feedback
loop. Inspection of convective processes, Figure 4.8C shows the increments in the
lifting condensation level, ∆LCL. Absolute LCL values were calculated for every grid
cell individually from relative humidity RELHUM, pressure and temperature TAS and
then spatially aggregated and seasonally averaged. However, the initial variables are
already daily averages, including nighttime values. Since both LCL values for REF and
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the drought experiments are calculated the same way, we assume this to be negligible.
The values of ∆LCL indicate that changes in convective cloud generation appear to
be especially important in summer with the mean close to 50% natural variability and
passing the p-value threshold. We also identified a systematic reduction in total cloud
water CLW (Figure 4.8D) showing that the reservoir of water in clouds is reduced.

Figure 4.8: Boxplots of the normalized increments of cloud variables including the cloud
ceiling height CEILING (A), the total cloud cover CLT (B), the lifting condensation level
LCL (C) and total cloud water content CLW (D) of the drought experiments. Light blue
and red denote ensembles that did not pass a single mean two-sided t-test (p-value >
0.05). Negative values indicate a deficit in the experiments, positive values a surplus.
The dotted line inside the boxes shows the average of the increments.
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Previous evaluation of the results of the ensemble in Hartick et al. (2021) has already
shown that important meteorological variables like TAS and precipitation (PR) show no
visible e�ect on the timescale of one water year while the memory e�ect of groundwater
is evident. Figure 4.9 shows the results for ∆S, ∆TAS, the relative humidity at 2 m ∆RH
and ∆PR as normalized values to strengthen that conclusion. ∆S shows significant
increments throughout, while ∆TAS and ∆PR are not significant. The result for PR is
exciting, showing that most precipitation processes happen in both REF and the drought
ensembles while CLW values are significantly decreased. ∆RH is significant in summer.
This significant reduction in RH shows that not ∆TAS is most important for the changes
in LCL but the reduction in humidity at the surface.

Figure 4.9: Boxplots of the normalized increments of water storage S (A), 2-m temper-
ature TAS (B), relative humidity RH (C) and total precipitation PR (D) of the drought
experiments. Light blue and red denote ensembles that did not pass a single mean
two-sided t-test (p-value > 0.05). Negative values indicate a deficit in the experiments,
positive values a surplus. The dotted line inside the plots marks the average.
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4.4.3 The Drought Feedback Loop

These results lead us to the formulation of a positive feedback loop induced by significant
groundwater storage deficits at the interannual time scale (Figure 4.10). Strong memory
e�ects of groundwater storage deficits increase the probability of drought persistence in
the ensuing year. Drought conditions change the land surface energy balance, increasing
mainly the sensible heat due to an initially reduced latent heat flux because of lower
water availability. A large-scale increase in sensible heat increases the energy input of the
atmosphere, shifting the boundary layer and cloud height upwards to lower temperatures,
where clouds have reduced water content. The drought conditions increase the lifting
condensation level through lower humidity near the surface. Higher thin clouds with
reduced cloud cover transmit more solar radiation to the surface, increasing net solar
radiation and lowering downward longwave radiation. Thus, in the positive feedback
loop, modification of cloud cover characteristics is key in increasing incoming radiation
at the land surface.

Figure 4.10: Schematic of the feedback mechanism. ∆SH, ∆CEILING, ∆CLW, ∆SSR,
and ∆LCL indicate the significant increments of sensible heat flux, cloud height and
cloud water content, identified as the long-term e�ects of drought initial conditions
(represented by the water storage deficit ∆S).
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The temporal onset of the feedback loop in the water year via an initial change in en-
ergy partitioning is not easily detectable at the seasonal timescale. However, there is
an indication for the onset of the feedback loop at the daily timescale with opposite
development of ∆LH and ∆SH at the beginning of the summer season in June shown
in Figure 4.11. ∆SH shows a persistent surplus, while ∆LH increments are mainly nega-
tive. Later both fluxes develop similarly under the influence of the feedback loop. The
cumulative sum of the mean increments reveals the period of a portioning shift (Figure
4.11B). For 2018/19 and 2019/20, the sum of both fluxes fluctuates until June, then the
sum of LH and SH spread in opposite directions. The sum of SH continuously increases
while LH stays negative until late summer. Followed by the steady growth of SH, the
sum of increments of total cloud water CLW steadily decreases. Anticorrelated to this
development is the continued growth of the sum of solar radiation SSR showing the
acceleration of the energy cycle. Despite some already positive increments of SSR in
spring, the steady decrease in CLW begins after the spread between LH and SH, which
is an indication of the feedback loop. The experiment of 2011/12 develops di�erently;
the spread is much less pronounced while there is still a steady increase in all fluxes.
Still, there is a significant e�ect over all ensemble members concerning SSR. The sum
of increments in LH is probably too low to impact water transport to the atmosphere.

Figure 4.11: Daily mean increments of latent (LH) and sensible heat flux (SH) for each
ensemble (A) and the cumulative sums of the increments of LH, SH, net solar radiation
(SSR) and cloud water (CLW) over the region ME (B).
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To better understand to development for the experiment of 2011, it might be helpful to
look at neighboring regions. Figure 4.12 and 4.13 show the development in the regions of
France (FR) and Eastern Europe (EA), respectively. Both are partly a�ected by drought
for the three initial conditions. 2011 has an exceptionally dry initial state in FR. For
2011/12 over FR, the partitioning shift and the order of reduction in CLW are much more
pronounced than in ME, suggesting that the main feedback loop happens in FR and
could have influenced ME. In contrast, no apparent portioning shift is visible in FR for
2018/19, which could mean that the main drought e�ects shifted to ME. The region EA
shows clear e�ects for 2011/12 and 2018/19 on a smaller level. 2019/20 shows a portioning
shift to more LH, which is accompanied by higher values of CLW and less SSR.

Figure 4.12: Daily mean increments of latent (LH) and sensible heat flux (SH) for each
ensemble(A) and the cumulative sums of the increments of LH, SH, net solar radiation
(SSR) and cloud water (CLW) over the region FR (B).
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Figure 4.13: Daily mean increments of latent (LH) and sensible heat flux (SH) for each
ensemble(A) and the cumulative sums of the increments of LH, SH, net solar radiation
(SSR) and cloud water (CLW) over the region EA (B).
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To provide context for the increments of all variables, Table 4.2 shows the p-value, the
summer mean and standard deviation in REF and the mean increment of all discussed
variables. The values are sorted from the lowest to the highest p-value. Inspecting
the order of magnitude, CEILING and S have the lowest p-value. The low value for S is
intuitive, because it is a direct consequence of the applied drought initial conditions. The
other variables in the feedback process (SH, CLW, LCL, CLT, RNET, SSR and RELHUM)
are roughly in the same order of magnitude. The low p-value of CEILING could be
connected to other unknown atmospheric processes. The p-value of the remaining
variables (LF, PR, LH, GH and TAS) are not significant, thus not directly influenced by
the drought initial condition at the interannual time scale.

Table 4.2: p-values, summer mean and std of REF and mean increments for every
variable. P-values are obtained by sampling all summer increments with a single mean
two-sided t-test. The null hypothesis is a mean of 0.

variable p-value summer mean std Mean∆

CEILING 6.94e-13 8488.25 m 119.97 m 112.95 m
S 7.57e-09 23687 mm 20.13 mm -12.54 mm
SH 2.29e-05 29.82 W m−2 3.19 W m−2 1.03 W m−2

CLW 4.43e-05 0.07 mm 0.02 mm -0.004 mm
LCL 1.30e-03 352.08 m 10.43 m 3.99 m
CLT 1.56e-03 77.0 % 4.0 % -0.01 %
RNET 2.09e-03 97.67 W m−2 6.74 W m−2 1.35 W m−2

SSR 4.00e-03 146.19 W m−2 14.0 W m−2 2.51 W m−2

RELHUM 2.31e-02 76.93 % 1.57 % -0.33 %
LF 1.45e-01 50.02 W m−2 5.34 W m−2 -0.99 W m−2

PR 2.00e-01 77.8 mm 12.23 mm -1.48 mm
LH 3.55e-01 62.97 W m−2 3.29 W m−2 0.22 W m−2

GH 7.36e-01 4.86 W m−2 1.57 W m−2 0.03 W m−2

TAS 9.92e-01 288.11 K 0.97 K -0.01 K

4.4.4 Spatial Inspection of the Results

In Figure 4.14A, the exemplary spatial inspection of the increments for the drought con-
ditions of 2018 shows that the impact and memory e�ect of the applied initial drought
conditions on ∆S in the following summer are widespread but spatially heterogeneous.
Mean ∆SSR (Figure 4.14B) in summer is spatially more homogeneous suggesting modifi-
cations of characteristics in atmospheric conditions that cannot be attributed to spatially
continuous changes of land surface albedo. The grid cell-wise correlation between ∆S
and ∆SSR is negative for most of the domain (Figure 4.14C), corroborating previous con-
clusions that more negative deficits lead to higher surpluses in net shortwave radiation.
Exceptions are positive values near northern coastal regions, which can be explained by
shallow groundwater (Figure 4.14D) along the modeled coastlines, which are more likely
to experience less deficits and recover faster due to groundwater convergence.
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Figure 4.14: Spatial pattern of the mean increment of the 2018 experiment for the subsur-
face water storage deficits in summer in logarithmic scale (A), incoming solar radiation
increment in the summer (B), and Pearson Correlation between the increments (C) and
the average water table depth in the domain from the year 1996 to 2018 illustrated on
logarithmic scale (D). ME (Mid-Europe) indicates the focus region of the study.

4.5 Conclusion

For the first time, the presented ensemble simulations demonstrate a positive hydrologic
drought feedback of groundwater storage deficits on atmospheric processes related to
cloud processes and radiation at the interannual timescale in the mid-latitudes. The
net solar radiation is systematically larger in the summer months following groundwater
drought conditions in the previous fall. Thus, groundwater drought potentially enters
a positive feedback loop with cloud forming processes and incoming solar radiation in
successive years, increasing the probability of drought persistence. There exists evidence
for the proposed feedback loop in observational and reanalysis data for the Canadian
great plains (Greene et al., 2011) and China (Zeng et al., 2019), emphasizing the global
relevance. Over Europe, similar feedbacks involving reduced soil moisture have been
identified in climate projections, however primarily attributed to changes in the latent
heat flux (Vogel et al., 2018). In this study, the identified feedback loop is based on
simulation results and, thus, impacted by uncertainties related to input parameters, and
simplifying model assumptions and parametrizations at the respective spatial resolution
on the order of 10 km. While TSMP has been evaluated in previous studies with obser-
vations showing good agreement and a high degree of physical realism (Furusho-Percot
et al., 2019; Hartick et al., 2021) the proposed feedback loop has not been evaluated
directly. Corroboration of the identified feedback loop under widespread drought condi-
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tions with observations would require future studies to connect field measurements with
remote sensing data. In Earth system modeling, global and most regional climate models
do not capture groundwater memory e�ects. Thus, current climate modeling studies
might underestimate the temporal persistence of droughts and compound events.
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Abstract

Groundwater can be a significant source for replenishing soil moisture, indirectly con-
tributing to increased evapotranspiration rates. The contribution’s importance depends
on the water table’s location, which is not well measured on larger scales. Besides
missing data, groundwater interactions with the atmosphere are not well represented in
climate models. Although the e�ect is assumed to be insignificant in relatively humid
regions in Europe, there could be impactful feedback processes under extreme condi-
tions or due to the e�ects of climate change. Fully coupled terrestrial models are able to
capture these feedbacks, still encountering the problem of sparse groundwater data and
obstacles hindering calibrating subsurface parameters. Unlike o�ine groundwater mod-
els, changing subsurface parameters can start a feedback on the incoming precipitation,
influencing subsurface conditions. We show that such an interplay between groundwater
and atmosphere exists over Continental Europe with the Terrestrial Systems Modeling
Platform. Perturbations in subsurface parameters lead to changed groundwater depths
of more than one meter compared to a reference climatology. Precipitation is signifi-
cantly increased in most cases influencing the whole water balance. The altered water
cycle can be observed by a di�erent seasonality in water tables and changes in the at-
mospheric pressure regime over Europe. In extreme precipitation events, this can even
alter the circulation so that these events lose strength. The results highlight the sen-
sitivity of long-term atmospheric developments to groundwater levels and stress that
standard calibration methods are unsuitable for fully coupled models.

5.2 Introduction

The primary transport process of the water cycle transports water from the oceans to
the land in the form of precipitation (PR) (Levizzani and Cattani, 2019). Especially in
the mid-latitudes, low-pressure systems are responsible for most of the rainfall during
the year. During most of these events, the system is energy limited, where additional
water supply is not significant for the PR amount. In summer with more available en-
ergy, soil moisture recycling becomes more critical and evapotranspiration significantly
contributes to precipitation (Bisselink and Dolman, 2008). In fact, increasing the latent
heat release in an air column is the main tool in convective permitting models to correct
PR rates according to radar data (Stephan et al., 2008). However, soil moisture - pre-
cipitation coupling (SM-PR) is often assessed to be less significant over Central Europe
(Koster et al., 2006; Zhou et al., 2021). However, the land-atmosphere coupling (LA)
cannot be discarded over Europe in general. For example, the influence of soil moisture
on temperature is well proved on climate time scales, especially in the case of heatwaves
(Seneviratne et al., 2010; Miralles et al., 2019; Keune et al., 2019). However, the formation
of PR is a more complex process and is under the influence of inherent chaos in atmo-
spheric models. Altered pressure and wind fields are essential for changes in PR. Studies
are able to identify circulation changes initiated by soil moisture, especially in situations
with a lot of convective precipitation (Frye and Mote, 2010; Durkee et al., 2014). There
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is also an influence visible on the seasonal timescale. For example, Diro et al. (2021)
showed with a principal component analysis that soil moisture alters temperature modes
over North America and influences pressure fields. Typically, sea Surface temperatures
greatly influence the pressure distribution of the North Atlantic Oscillation, which greatly
impacts the continental pressure fields from Northern to South Europe (Wanner et al.,
2001; Börgel et al., 2020). But especially during extreme events, local factors can also
play a vital role (Boé, 2013). The complexity of PR development is also visible in climate
projections over Europe. Extreme precipitation is going to increase and there is a wet-
ting/drying trend in Northern/Southern Europe but especially many uncertainties over
Central Europe (Matte et al., 2019; Christensen et al., 2019).

Surface soil moisture is mainly determined by past rates of PR and enables evapotran-
spiration (ET). Additionally, there is water supply by the groundwater table, which can
mitigate heatwaves (Keune et al., 2019) but also remembers recent droughts via ground-
water memory (Hartick et al., 2021). Although datasets retrieved from remote measuring
enable new insights about the total water stored in the surface, shallow groundwater
estimations remain uncertain. For gridded data on the continental scale, modeling tech-
niques are still needed that use many assumptions (Stampoulis et al., 2019). To adequately
model the feedbacks from the groundwater table via the land surface to the atmosphere,
there are fully coupled terrestrial models (Barlage et al., 2015). For analysis of groundwa-
ter feedbacks, terrestrial models with a 3D groundwater component are of importance.
All the individual models representing the terrestrial system have their parameters. In
typical applications of land models with prescribed atmospheric conditions, calibration
is often a must to match observations and to be integrated into forecasting architectures
(Pappenberger and Beven, 2006). Although there are new developments in simplifying
and automatizing this process with machine learning (Tsai et al., 2021; Maxwell et al.,
2021), a fully coupled framework increases the complexity to a level that prevents cali-
bration. In general, machine learning gains knowledge from training datasets, which are
limited to a particular region and time period. The transfer of the gained knowledge to
another domain under a compactly di�erent influence might be a naive extrapolation.
In contrast, physically based models have a higher potential for successful knowledge
transfer (Reichstein et al., 2019).

An example of a feedback process that might break calibration is illustrated in Figure
5.1. Increasing the hydraulic conductivity (K) in a subsurface column decreases the water
table depth, leading to more precipitation. The increase in PR leads to an even shallower
water table which further influences K. In models concentrating on the subsurface, this
process does not exist. In fully coupled models, it introduces an additional challenge.

Various studies have investigated SM-PR (Koster et al., 2006; Huang and Margulis, 2011;
Zhou et al., 2016; Dirmeyer et al., 2021; Zhou et al., 2021) coupling and studies that work
with prescribed soil moisture conditions (Ardilouze et al., 2019). However, these stud-
ies often lack a 3D groundwater representation. With TSMP, we are able to conduct
a simulation with homogeneous subsurface parameters (HOM) that lead to consider-
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Figure 5.1: Schematic of the two-way feedback between hydraulic conductivity (K), tater
table depth (WTD) and precipitation (PR).

ably shallower water tables over Central Europe. The result is not homogeneous soil
moisture over Europe but generally more available surface water via a higher supply by
groundwater. The decision for these homogeneous parameters may seem somewhat ran-
dom. However, climate models without a proper subsurface parametrization like a free
draining approach (Campoy et al., 2013) also have a rather arbitrary boundary condition.

In contrast, HOM enables the subsurface to interact with the whole water cycle, which
makes a new balance possible. The simulation is conducted on a climatic timescale
from 1989 to 2018. The experiment enables us to answer the research questions of this
paper: Is there a significant influence of the water table depth on precipitation over
Europe and the resulting consequences for calibration of the subsurface component? Is
the development of water table anomalies altered and are changes in wind or pressure
fields visible?

5.3 Methods

5.3.1 Model System and Domain

In this study, TSMP consists of the subsurface model ParFlow v3.2, the land scheme
CLM 3.5 and the atmospheric model COSMO v5.01 coupled via the OASIS3-MCT (Val-
cke, 2013) coupler. To this point, TSMP has been used in various studies (Keune et al.,
2019; Furusho-Percot et al., 2019; Hartick et al., 2021). A more detailed description of the
model can be found in Shrestha et al. (2014); Gasper et al. (2014). COSMO v5.01 (Baldauf
et al., 2011) is a numerical weather forecast model suited for regional modeling on cli-
mate timescales. It solves the non-hydrostatic Euler equations with variable vertical and
horizontal resolutions. At the land surface, COSMO is coupled to the Community Land
Model 3.5 (CLM) (Bonan et al., 2002; Oleson et al., 2008) exchanging wind, humidity,
precipitation and temperature. The CLM simulates vegetative, energy and hydrological
processes with 16 plant functional types. The simulated sensible and latent heat fluxes are
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sent back to the atmospheric model. The groundwater component of CLM is completely
replaced by the hydrological model ParFlow (Ashby and Falgout, 1996; Jones and Wood-
ward, 2001; Kollet and Maxwell, 2006; Maxwell, 2013; Maxwell et al., 2021), which solves
3D variably saturated groundwater-surface water flow. The used Richards equation is
solved with a Newton-Krylov solver. Overlandflow is simulated with the kinematic wave
equation in a finite volume approach. From the coupling process with CLM, ParFlow
receives water from precipitation and loses water due to evapotranspiration handled in
CLM.

This study relies on the reference climatology (REF) published in Furusho-Percot et al.
(2019), where a fully coupled TSMP setup was simulated from 1989 to 2019 with lateral
boundary forcing from ERA-Interim (Dee et al., 2011) capturing various variables from
the water table to the cloud top. The subsurface component received a spin up over 20
years and the first seven years of the simulation were not used for analysis to provide
additional spin up time. The modeling domain is the European Coordinated Regional
Downscaling Experiment (CORDEX) domain (Giorgi et al., 2009; Gutowski et al., 2016)
with eight subdomains that allow regional analysis in di�erent climatic regimes of conti-
nental Europe (Christensen and Christensen, 2007). The grid has a horizontal resolution
of 12.5 km and a vertical extent from 22 km above ground to a depth of 57 m into the
subsurface. The time step size for COSMO is 60 s, while CLM and ParFlow have a step
size of 900 s equivalent to the coupling frequency. Besides changes in the subsurface
parameters, all other settings of the atmosphere and land surface of the simulations in
this study are equivalent to REF.

The topographic slopes for ParFlow derived from the USGS GTOPO30 (DAAC, 2004),
the Manning’s coe�cient determined the overlandflow and the Dirichlet boundary condi-
tions with constant pressure at the coasts remain unchanged to REF. The soil parameters
for porosity, permeability and constants for the van Genuchten equation change to ho-
mogeneous values for the whole domain. However, horizontal permeability values are
still scaled by 1000 according to Niedda (2004) and Fang et al. (2016) to compensate for
the information loss by the gridscale. This illustrates the fact that the new parameters
are not entirely unrealistic but a rough average of all available soil types in REF.

5.3.2 The Homogeneous Run (HOM)

The homogeneous run is started at 1. February 1989, with the first atmospheric restart of
COSMO. Initial conditions for the land and subsurface are taken from the end of January
2001, which was neither exceptionally dry nor wet. In contrast to the original values of
REF, the homogeneous subsurface parameters for all of Europe lead to a decreased
subsurface water storage capacity in large parts of Europe. Mountainous areas and
the Mediterranean PRUDENCE region (MD) have a higher storage capacity. Figure 5.2
illustrates this for permeability in the z-direction (A) and the porosity (B). The values
from HOM are subtracted by the values of the REF. The new subsurface parameters
lead to an adaption process of water resources in the subsurface, which will take several
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years. For that reason, we start most of the analysis beginning in the year 1996. For most
comparisons, each year in HOM is compared to the original realization of that year in
REF. By comparing the results year-wise, the developments are analyzed under the same
large-scale atmospheric conditions.

Figure 5.2: Di�erence in permeability in z-direction (A) and porosity (B).

5.4 Results

5.4.1 Evolution of Water Tables

Figure 5.3 depicts the absolute evolution of water table depth (WTD) in all eight PRU-
DENCE regions. The adaption to the new subsurface parameters is completed for most
regions in 1996. IP still shows spin up e�ects until the beginning of the 2000s, likely be-
cause the di�erence in water tables is highest with changes around 3 m. For most other
regions, including the focus region ME the di�erence is 1.5 m. There is already some
indication that the variance of the seasonal cycle and the reaction to extreme events is
less pronounced in HOM. One reason is the lower storing capacity of the subsurface in
all regions except MD, but further reasons are changes in PR and evapotranspiration in
hot and dry periods. The following chapters will shed more light on this, especially for
the region ME.

5.4.2 Evolution of Latent Heat and Precipitation

The significantly shallower water tables provide additional water to the surface. In
the case of at least slightly water limited evapotranspiration, latent heat flux should be
increased. Going further, this should increase convective precipitation in spring and
summer, where local moisture recycling can have an impact. Figure 5.4 shows the
cumulative daily increments in all the years of the simulation for LH and PR. LH is
consistently increased in nearly all simulation years. Only the first year of simulation,
1989, shows no apparent di�erence, which is expected. Two years are less impacted with
cumulative increases of less than 20 MJ. Another cluster of years has an increase of
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Figure 5.3: WTD evolution in all PRUDENCE regions for the climatology REF and the
homogeneous run HOM.

about 40 MJ with some decreases in latent heat later in the year and lastly, there is a
cluster with nearly constant increases to around 80 MJ.

The results for precipitation show that the e�ect of more water transported to the
atmosphere is not directly converted to rainfall. Although we can identify relatively
steady increases for a cluster of years to end of the year values of around 50 mm per
year, another set of years hardly shows an impact. An explanation is the dominant type
of precipitation in ME throughout most of the year. Large-scale weather systems from
the Atlantic bring most of the PR. These fronts do not take up much local moisture
because their lifetime is short, around one or two days, and the atmosphere over ME
is too stable. Furthermore, the 2-m temperatures and generally available energy are too
low over most of ME through the year. Nevertheless, there are still enough convective
precipitation periods where the increase of latent heat can be converted to significant
increases of PR.

The long-term average of annual precipitation from 1961 to 1990 in Germany is 789 mm

(Brasseur et al., 2017), so an increase of the shown magnitudes can be around 6%. Figure
5.4 reveals that the rise is often pronounced in a few months up to a season. The
average seasonal PR in Germany is around 200 mm. Therefore, an increase of about
50 mm translates to 25% more PR. Outstanding are the two years with massive decreases
in precipitation, which still have an increase in LH. For such an enormous decrease, the
circulation in the two years has to be massively altered. Chaotic developments in the
atmosphere could explain it because the two years were comparably wet. However, it is



5.4. Results 75

possible the altered WTD also a�ected the general circulation. We will take a look at
that in later chapters.

Figure 5.4: Cumulative daily increments of all simulation years (HOM-REF) for LH (A)
and PR (B).
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Looking at the distribution of increments in each year, it is apparent that the long-time
accumulation of PR should reach values that significantly a�ect the water cycle over
Central Europe. We illustrate this in Figure 5.5, which shows the total accumulated
di�erence in the rain from 1996 to 2018. Starting the comparison in 1996 leaves enough
room for adaption to the new water balance and the values of REF have also been
compared to observations from this year on (Furusho-Percot et al., 2019). The surplus
in PR is especially apparent from Central Europe to Eastern Europe with values of more
than 1000 mm in these 23 years. Primarily, high values are found in mountainous regions
like the alps.

In contrast, the di�erences over the ocean are spotty showing chaotic patterns likely
resembling random perturbations. The influence of the sea is visible in less clear changes
in the British Isles, France and the Iberian Peninsula. The existing changes in the
subsurface in these regions do not come to light because of the strong oceanic influence
from the Atlantic.

Figure 5.5: Cumulative increments (HOM-REF) for precipitation (PR) from 1996 to 2018.
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5.4.3 Distinct Changes in Pressure and Wind Fields

Before investigating extreme deviations from REF in specific years, Figure 5.6 shows
the long-term seasonal changes in summer in pressure at sea level (PMSL) and wind
direction. The subsurface settings should not influence surface pressure over open water,
especially the Atlantic in HOM. The pressure information should be the same originating
from the boundary conditions from ERA-Interim. However, over the continental mass
we see a dipole. Scandinavia shows increased pressure of up to 0.6 hPa while there is
a nearly equivalent increase in pressure in the Mediterranean and Southeast Europe.
Matching the pressure changes, we see increased easterly wind over ME, northern wind
over West Russia and southern wind at the Norwegian coast. This pattern resembles an
increased occurrence of high-pressure systems over North Europe. Overall, the absolute
di�erences are not extremely high, but there can be quite an impact in specific weather
events.

Figure 5.6: Di�erence maps for mean seasonal sea level pressure (A) and 10-m-wind
direction (B).
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There must be changes in the height of the boundary layer resulting from additional LH
to explain the pressure di�erences. More water vapor reaching the atmosphere reduces
the height of the boundary layer by increasing the stability of the atmosphere. At the
same time, the sensible heat flux is reduced. Looking at maps showing the mean changes
in LH in Figure 5.7A, we see quite spotty widespread increases in Central and Northern
Europe and decreases in the Mediterranean. The pattern is very well anti-correlated
with a decrease and increase in boundary layer height (HPBL) in Figure 5.7B. Changes in
the boundary layer can influence larger circulation patterns over Europe, which explains
why the main di�erences in atmospheric pressure are not directly found in the regions
with the most significant changes in the energy budget.

Figure 5.7: Di�erence maps for mean di�erence in LH (A) and boundary layer height
(B).
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5.4.4 Impact on Wet and Dry Events

The massive outliers in terms of missing PR are 2002 and 2013. These years had at-
mospheric blocking situations with stationary pressure fields over Central Europe and
weak easterly winds (Blöschl et al., 2013). In such events, incoming rain fronts from
the Atlantic are redirected from their route across Central Europe to the Mediterranean
Sea. Over the warm water and influenced by warm air masses of the Sahara, they take
up additional moisture and continue to travel Northeast. Reaching the alps or Eastern
Germany or Poland, they lose all their water in massive precipitation for several days.
This large-scale weather situation is rare but can have massive e�ects. Figure 5.8 shows
that circulation changes initiated by altered water tables can prevent this rather frag-
ile weather phenomenon. The increased easterly winds in Figure 5.8A avert a stable
blocking over Central Europe and move precipitation westward. The result is increased
rainfall in France and massive deficits over Central and Eastern Europe (Figure 5.8B).
The simulation of these two events does not ultimately prove a causal connection be-
tween the changed subsurface and the missing rain in 2002 and 2013. Still, it is an
indication of the potential influence of specific circulations. More simulations of the
events would be needed to show this connection.

Figure 5.8: Changed wind direction and speed (A) in August 2002 and cumulative PR
(B).
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In the case of dry years like 2003 and 2018, the increased LH should play an important
role because, over many areas, ET is moisture limited. Looking at the di�erence in PR
of 2003 and 2018 combined in Figure 5.9, a consistent increase is visible in the eastern
part of Central Europe, where the drought was most pronounced. However, the e�ect
is only dominant in this region, highlighting the chaotic evolution of PR and the strong
oceanic influence in Western Europe.

Figure 5.9: Mean di�erence in summer precipitation during the heatwaves of 2003 and
2018.

5.4.5 The Altered Seasonal Cycle of Groundwater

Previous chapters have shown that changed groundwater properties influence extreme
events with massive changes in the incoming water. However, the water cycle seems
generally accelerated with bigger exchanges between groundwater and the atmosphere
due to less storing capacity of the subsurface. Therefore, the year-to-year groundwater
cycle could be a�ected by changes in seasonality. Figure 5.10 depicts this with the
average daily increments of PR, LH and WTD. As expected, latent heat significantly
grows in summer, with smaller increments in the other seasons. On average, PR is
especially increasing in spring and fall, while there are many fluctuations in summer.

Looking at WTD, this results in a seasonal cycle of di�erences in WTD. Beginning in
winter, water table depths move closer to the values in REF. In late spring, with the most
significant increases in PR, the di�erences increase. Then in summer, with fluctuating
changes in PR but also much higher rates of LH, the di�erences fluctuate around the
level reached in late spring. In the fall, we see the most significant di�erences, with
the second substantial increase in PR and fewer increases in LH. Overall, di�erences in
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WTD span only a range of 7 cm. However, this is 20% of the magnitude of an extreme
drought event like 2018 in REF.

Figure 5.10: Mean cumulative daily increments of latent heat (LH) and precipitation (PR)
together with the mean daily increment in water table depth (WTD).

5.5 Discussion and Conclusion

Water table depths are a challenging variable in subsurface modeling. They have high
spatial variability, are under human influence, lack widespread observational data and are
not easily measured by remote sensing. Still, they are important for mitigating drought
and potential feedbacks between water resources in the subsurface and the atmosphere.
They significantly contribute to the latent heat flux to the atmosphere, which can con-
tribute to increased precipitation. In terrestrial system models, the groundwater level is
determined by topology, in- and out-coming fluxes from the land surface and subsurface
parameters like porosity. For standalone subsurface models, these parameters demand
calibration to adjust the model to observations. In physically based fully coupled models,
the simulation of the whole water cycle can hinder this.

We demonstrated that changed groundwater levels significantly impact precipitation even
in regions like Mid-Europe, which are usually regarded to have insignificant SM-PR
coupling with a climatological run with homogeneous subsurface parameters. On average,
the cumulative di�erences in PR sum up to 15 mm, with latent heat di�erences even
reaching 60 MJ. These values even include large PR deficits, where the changed water
tables potentially alter circulation patterns preventing extreme wet events in a reference
simulation. Furthermore, the seasonal cycle of groundwater is altered to a measure of
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7 cm on average. These changes resemble a new water balance initiated by changed
subsurface properties.

The main limitation of this study is the constraint to a single variation of the subsur-
face parameters. Several derivations would be necessary to complete a full sensitivity
analysis. However, the current setup has the advantage of simulating Europe over a
climatologic timespan, enabling the study of extensive time and spatial scales. Accom-
plishing the same scope for several parameter variations is very compute time intensive.
Furthermore, there is no guarantee that the groundwater-precipitation coupling is di-
rectly transferable to the real world. The precipitation simulation is one of the most
challenging processes in atmospheric models and the influence of latent heat flux is un-
der discussion. Still, drastic changes in water table depths happen in the real world and
only a few models can investigate the direct feedback from groundwater to atmospheric
processes. The study also highlights the importance of the initial WTD for models that
include groundwater.

The results show that calibration is impossible in fully coupled terrestrial models be-
cause there is a two-way feedback cycle from subsurface parameters to water table
depths to precipitation. Comparing the run with homogeneous subsurface parameters
with a reference climatology showed that a somewhat random decision for roughly fitting
subsurface parameters can hinder matching simulation of real world events. However,
the available solutions for calibration, including newer methods utilizing machine learn-
ing, are unsuitable for the whole water cycle. Facing climate change, it is also possible
that massive changes in the water cycle occur, for example, human water use or potential
evapotranspiration changes. These could start feedbacks and move the water cycle of
the real world to a new balance which illustrated this study with changed parameters.
Further development on holistic solutions for the whole water cycle are needed in future
research.
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6.1 Summary

In the time of ongoing climate change, some of which is unstoppable, adaptation strate-
gies to face hydrometeorological extremes are increasingly important. To help authori-
ties with adequate planning, simulations of the terrestrial cycle can help determine the
magnitude of upcoming extreme events that involve the whole water cycle. Further
research is needed on the interactions between subsurface water and the atmosphere
and to detect sensitivities such as those regarding continental-scale shifts in water table
depths. However, the scientific community must first establish whether feedbacks be-
tween groundwater and the atmosphere have a non-negligible impact, at the continental
scale; if so, this would justify the considerable computational costs.

Fully coupled simulations over Europe can be performed by TSMP, which connects the
atmosphere, the land and the subsurface using a framework with three individual models.
Uniquely, water and energy fluxes from below the water table to above the cloud top are
consistently modeled physically. Previous work by Keune et al. (2016) and Furusho-
Percot et al. (2019) that established the domain and a reference climatology enabled the
creation of three studies, which focused on three main research questions. The questions
are discussed individually below.

6.1.1 Answer to Research Question 1

How does the groundwater memory a�ect three exceptional droughts under uncertain weather condi-
tions on the interannual time scale? Is knowledge about the correct initial condition more important
than accurate atmospheric forcing?

Central Europe experienced ongoing drought conditions, starting with a heatwave in
2018. Severe impacts were immediately experienced in drinking water shortages and
losses in the agricultural sector. On a longer timescale, the 2018 drought damaged the
tree population by reducing the water resources in the deeper soil, on which deep roots
depend.

Predicting drought conditions is di�cult for long time scales, although warning and
monitoring systems exist at the national and European levels. The crucial problem is
atmospheric uncertainty. Predictions beyond 14 days are not highly accurate, and the
maximum timespan covered is seasonal forecasts. However, groundwater memory o�ers
valuable and useful information about the state of the subsurface. During droughts, the
water deficits can be so dire that even substantial rainfall cannot replenish groundwater
resources.

The simulation of one water year initialized with an intense drought in the subsurface
and under the influence of multiple atmospheric conditions can estimate the probabilities
of an ongoing drought. Ensembles of one drought and various atmospheric conditions
over Europe were simulated with TSMP. Three drought conditions (2011, 2018 and 2019)
were used and simulated for one year. The setup was then reversed to assess the value
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of the initial condition and its influence on predictability. All three years were simulated
with the perfect atmospheric forcing of the relevant year (2011, 2018 or 2019) and an
ensemble of all possible conditions of the subsurface. Both setups were compared to the
actual development of water resources in a reference climatology. The results showed
that the ensemble with multiple atmospheric conditions lost predictability over time as
the drought condition diminished. In contrast, the ensemble of initial conditions gained
predictability over time, as all ensemble members experienced the same meteorological
forcing.

The results also indicated that the initial condition was most important for predictability
for nearly a year in the case of droughts. Previous studies assessed the time period
to be shorter, especially in regions that were typically not water-limited, such as Cen-
tral Europe. The current findings highlight the advantage of explicit inclusion of the
groundwater component in TSMP. Furthermore, the drought ensembles enabled calcu-
lating the probability of an ongoing drought – for example, 70% for 2018. In summary,
intense droughts like that of 2018 are likely to prevail for at least one year, with the initial
condition outweighing atmospheric uncertainty for almost the whole period.

6.1.2 Answer to Research Question 2

Can persistent drought conditions influence the energy cycle and cloud characteristics at the inter-
annual time scale, through feedback processes?

The first study demonstrated the interannual influence of initial drought conditions on
total water resources in the subsurface. However, closer examination of interactions
in the terrestrial system was needed. The focus lay solely on the deficits of water in
the subsurface. In this second study, increments in variables of the energy cycle and
clouds were calculated between the members of the drought ensemble and the reference
climatology. At the surface, net radiation increased in summer, indicating more solar
radiation reaching the ground. The increases in energy were linked to changed cloud
properties. The drought ensembles had consistently higher clouds, which contain rela-
tively little water, which means that substantial shortwave energy is transmitted through
them. Abundant available energy at the surface increases the evapotranspiration rate,
further prolonging the drought.

In summary, drought conditions of the previous year can influence the energy cycle and
clouds in a current year through a feedback loop. The feedback loop can be described as
follows. First, the initial drought conditions change the energy partitioning to a greater
release of sensible heat in favor of latent heat. Second, this high volume of sensible heat
pushes all clouds upwards and increases their transmissivity. Third, the relatively low
relative humidity increases the height to which air parcels need to be lifted to form a
cloud. Fourth, the changed cloud properties lead to more shortwave radiation reaching
the ground, which increases the sensible and latent heat, further prolonging the drought.
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6.1.3 Answer to Research Question 3

How sensitive is precipitation over continental Europe to groundwater table alterations that result
from changes in subsurface parameters in terrestrial simulations?

In subsurface simulations, soil parameters have high uncertainty, especially at coarse
resolutions. The reasons are high spatial heterogeneity and insu�cient observations.
Therefore, the models are calibrated to fit certain observations, such as streamflow in
a catchment, to achieve higher forecasting accuracy. In fully coupled simulations, this
approach is unfeasible. In contrast to pure hydrological applications, the atmosphere is
not a fixed boundary but dynamically evolves in connection with the subsurface. A water
table located at a di�erent depth because of altered subsurface parameters could also
influence processes in the atmosphere.

Altered precipitation is especially interesting because it directly a�ects groundwater
recharge. Research in this direction is useful in the context of parameter uncertainty
and for shifts in water tables forced by external factors in the real world, such as climate
change. In other words, feedback discovered through changed subsurface parameters
might also occur under di�erent circumstances.

A transient simulation from 1989 to 2019 across Europe, with homogeneous subsurface
parameters, was performed with TSMP. The aim was to study the influence of subsur-
face parameters and potential feedbacks on precipitation. The altered subsurface had a
smaller water storage capacity compared to a reference run, leading to water tables mov-
ing closer to the surface, providing more water to the surface. This supply was quickly
visible in the simulations, which displayed consistently increased latent heat compared to
the reference simulations. Precipitation is a complex and chaotic process; nonetheless,
it was vastly increased in most of the studied years, especially in the transition seasons
of fall and spring.

Previous studies typically classified Central Europe as a region not very sensitive to the
coupling of evapotranspiration and precipitation. By contrast, the current results show
that significant changes in water table depth led to a powerful atmospheric impact. It
is possible to transfer the results to massive changes in water tables initiated by events
such as climate change. In this case, there could also be significant interactions between
groundwater and precipitation. In addition, the interactions between groundwater and
the atmosphere are not limited to changes in energy flux.

Overall, the studies documented in this thesis have shown that fully coupled simulations
provide new insights into feedback processes occurring in the terrestrial system, espe-
cially in hydrometeorological extremes. Hence, these models are a valuable tool despite
the computational costs. However, this thesis has concentrated on interactions that occur
during droughts or are related to water table sensitivity. There are many more possible
interactions, including the case of floods, that still require investigation.
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6.2 Limitations

The major limitations of the presented simulations with TSMP can be categorized into
three areas: model resolution, uncertainties in the input data and simplifications in
the models. In the past, a resolution of 12.5 km was considered high-resolution for
atmospheric simulations, but recently there has been a shift to convection-permitting
resolutions of about 3 km. The explicit simulation of convection processes might play
an essential role in the simulation of soil moisture–atmosphere feedbacks. Furthermore,
o�ine simulations of land-surface models can reach resolutions below 1 km because the
processes are easier to resolve than atmospheric processes.

In principle, it is possible to run the di�erent components at di�erent resolutions, but
that introduces a source of errors. For example, an extra step of interpolation is needed
to exchange the variables, and the results are less physically consistent. The former chal-
lenge is particularly problematic when feedbacks spanning the whole terrestrial system
is investigated.

At resolutions around 1 km, the physics-based modeling of ParFlow has not been widely
criticized. In the 1980s, researchers assumed that a grid cell should not be larger than
1 km2 to remain representative of its content (Wood et al., 1988). Physics-based models at
that time had far coarser resolutions, but today’s state-of-the-art models can simulate the
resolutions around 1 km2 on a global scale (Condon et al., 2021). Other criticisms remain
valid: The introduced complexity and the foundation in physics might lead to overcon-
fidence regarding the predictive results and insights about actual hydrologic processes
(Grayson et al., 1992). Nonetheless, physics-based models are essential for coupled sim-
ulations, as momentum and energy fluxes must be conserved (Fatichi et al., 2016).

At 12.5 km, a problem arises in the overland flow simulation. Due to the low resolution,
rivers are widened to 12.5 km with relatively shallow water depths. In reality, rivers are
smaller and have higher velocity and they influence smaller areas through a direct water
exchange. A solution is to improve the parametrization of waterways with the scal-
ing of Manning’s coe�cient, which determines the roughness based on the actual river
width (Schalge et al., 2019). In any case, ultra–high resolution for a domain spanning
Europe poses significant challenges concerning data management. At a resolution of
3 km, the storage requirements are four times higher and the computational demand is
six times higher than for 12.5 km simulations, because of the explicit simulation of con-
vection. Nonetheless, modeling that includes convection is used in operational weather
forecasting over the continental US (James et al., 2022). This achievement indicates that
simulations over at least a medium time range, such as a few years, are feasible.

Accurate input parameter sets are essential for high resolution, but they are no less cru-
cial for coarser resolutions. In all simulations in this thesis, the subsurface parameters
were vertically homogeneous from the surface to the bedrock at 57 m. Vertical homo-
geneity significantly simplifies soil characteristics as parameters change with increasing
depths. In particular, the upper soil layers – for which data is easily available – can have
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varying soil parameters. The deeper layers, close to the bedrock, should be set to the
values of the SoilGrids (Shangguan et al., 2017) dataset. The topography in ParFlow could
also be improved with the newest topographical data to ensure that all major rivers of
the European continent have a matching equivalent and can flow through lakes currently
inactive in the simulation.

The land simulation in CLM is limited by static plant cover, where only one PFT cov-
ers a grid cell. The mixture of multiple PFTs in a grid cell is not supported in TSMP.
Furthermore, an urban land cover type should be included for many highly populated
areas in Europe. Overall, the inclusion of CLM in TSMP has yet to reach its fullest po-
tential. Coupling carbon fluxes and synchronizing the atmospheric concentration of CO2

between the atmosphere and the land surface would be possible. Many improvements
in the land component like the inclusion of harvesting depend on the inclusion of CLM
version 5 in TSMP.

The improvement of atmospheric boundary data seems simple at first. The new reanal-
ysis dataset ERA5 (Hersbach et al., 2020) improves resolution, available timesteps and
physical simulation compared to ERA-Interim. Future regional simulations with TSMP
can benefit from the new reanalysis. However, some limitations remain unchanged, as
the regional simulation must always adapt to the moisture fluxes given by the bound-
ary condition. Adaptation could lead to more ocean water evaporation and a positive
precipitation bias over land with internal redistribution (Goergen and Kollet, 2020). Gen-
erally, it would be useful if the regional simulation could provide feedback to the global
simulation, such as through establishing teleconnections at a large scale.

Despite the precipitation biases in regional climate simulations, many regional climate
models are known to overestimate the intensity of heatwaves because of the lack of
evapotranspiration data. In TSMP, heatwaves are less intense with an additional water
supply from the water table, but a general wet and cold bias is evident in TSMP (Furusho-
Percot et al., 2019, 2022). It might be helpful to apply bias correction to results obtained
from TSMP similarly to other regional simulations (Casanueva et al., 2016). However,
such a correction does not change the internal dynamics in the simulation. A solution
could be a rigorous evaluation of soil moisture with remote-sensing products.

Other limitations involve processes that are absent from TSMP, such as interactions
between the ocean and human influence. Early simulations incorporating human water
use were performed regarding the heatwave in 2003 (Keune et al., 2018, 2019), but longer
timespans are desirable.

6.3 Future Work

The mentioned limitations already hint at possible next steps for terrestrial simulations
for TSMP. Possible steps are increasing the resolution, including new high-quality input
datasets and new model versions that improve the simulation of physical processes. With
the availability of ERA5 from 1950 onwards, evaluation simulations with TSMP can be run



6.3. Future Work 89

for more than 70 years, much longer than any remote sensing products. In comparison,
the simulations in this thesis were limited to 1989 to 2019.

The independence of TSMP simulations from satellite data is a strength. However,
including data assimilation for several variables could improve the estimation of water
resources. Total water storage anomalies derived from the GRACE satellite (Tapley et al.,
2019) could be used to correct TSMP, especially when large biases in precipitation occur.
For rainfall, a large net of high-resolution radar data is available over Europe, which
could be used to correct the wet biases in TSMP.

Another option is to use machine learning tools for the subsurface component (Tah-
masebi et al., 2020). While machine learning methods for the atmosphere are still in
experimental development, there has been substantial progress in studies of porous me-
dia. The work of Ma et al. (2020, 2021) has shown that TSMP data can be used to predict
water table depths at the European scale, but additional work is needed to incorporate
this learning back into TSMP.

All three studies presented in this thesis o�er possible extensions. Chapters 3 and 4
would have benefited from a larger ensemble size to render the statistical results more
meaningful and to enable easier filtering for specific atmospheric conditions. Creat-
ing additional ensembles with di�erent initial conditions, specifically wet ones, would
provide more knowledge about the feedback processes. Finally, chapter 5 has the short-
coming of using only one sensitivity test. For more accurate statements about the inter-
actions between the water table and precipitation, subsurface parameters must be varied
to include additional values to enable a complete sensitivity study.

Regarding completely new studies with TSMP, it would be interesting to scrutinize floods,
industrial groundwater abduction and groundwater changes with ongoing sea level rise.
ParFlow has been used to study peak flows for the flood in Germany in July 2021 (Saadi
et al., 2023), but no case studies have been conducted with a fully coupled TSMP. Floods
are included in longer evaluation runs performed with TSMP, but there is no guarantee
that the atmospheric conditions are adequately reproduced. The results in chapter 5
have shown that flood conditions can be less intensive, with a changed subsurface state,
compared to the reference simulation. With a focus on a specific flood event like 2021,
the simulation should be performed multiple times with di�erent initial conditions to
separate the chaotic atmospheric influence from the subsurface influence. The results
could give insight regarding the importance of subsurface water storage for extreme
floods and potential energy balance feedback.

Public fear regarding groundwater shortages has increased markedly with the ongoing
droughts in recent years. The quantification of a robust trend in water resources is
ongoing. However, de Graaf et al. (2019) showed that in parts of Central Europe, the limit
of groundwater pumping will be reached in the middle of this century or earlier. Studies
using TSMP could contribute to this debate through incorporating human groundwater
pumping in agriculture and industry. The biggest obstacle to such studies is the lack
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of data on human water usage. A solution could be the development of an algorithm
that estimates groundwater pumping based on measurable factors such as days without
precipitation.

Lastly, the rise in sea level driven by climate change interacts with groundwater and can
lead to floods and the creation of new wetlands. Rotzoll and Fletcher (2013) found that a
sea level rise of 0.6 m led to substantial groundwater flooding. A study using TSMP could
help to examine this phenomenon on a large scale. Although TSMP does not include
an ocean model, modifying the landmask and the ParFlow configuration to imitate a sea
level rise is possible. The development of new wetlands could introduce new feedbacks
in the terrestrial system.
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List of Acronyms

AL Alps
BI British Isles
CEILING Cloud ceiling height
CLM Community Land Model
CLT Total cloud cover
CLW Total cloud water content
CMIP6 Coupled Model Intercomparison Project Phase 6
CORDEX European Coordinated Regional Downscaling Experiment
EA Eastern Europe
ECMWF European Centre for Medium-Range Weather Forecasts
ET Evapotranspiration
FAO Food and Agricultural Organization of the United Nations
FR France
GH Ground heat flux
GLHYMPS 2.0 GLobal HYdrogeology MaPS 2.0
GRACE Gravity Recovery and Climate Experiment
GRACE-FO Gravity Recovery and Climate Experiment-Follow-On
GRDC Global Runo� Data Center
GRT Groundwater response time
HPBL Height of planetary boundary layer
HOM Simulation run with homogeneous subsurface parameters
IP Iberian Peninsula
K Hydraulic conductivity
LA Land-atmosphere coupling
LCL Lifting condensation level
LF Net incoming longwave radiation
LH Latent heat flux
LW Incoming longwave radiation
MD Mediterranean
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ME Mid-Europe
MODIS Moderate Resolution Imaging Spectroradiometer
NCAR National Center of Atmospheric Research
OASIS3 Ocean Sea Ice Soil
P Probability
PLS Partial least square regression
PMSL Pressure at sea level
PS Pressure at the lowest atmospheric level
PFT Plant functional type
PR Total atmospheric precipitation
PRESS Water pressure head in the subsurface
Q Humidity at the lowest atmospheric level
REF Reference simulation
RELHUM Relative humidity at the lowest atmospheric level
RNET Net radiation at the surface
S Total subsurface water storage
SAT Water saturation in the subsurface
SC Scandinavia
SH Sensible heat flux
SM-PR Soil moisture - precipitation coupling
SSR Net incoming shortwave radiation
SW Incoming shortwave radiation
TAS Temperature at the lowest atmospheric level
TRMM Tropical Rainfall Measuring Mission
TSMP Terrestrial System Modeling Platform
U Horizontal wind at the lowest atmospheric level
WTD Water table depth
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