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Abstract

The main contribution of this thesis concerns two larger mathematical topics. As a first topic, we study the geodesic
and spline interpolation of images in the framework of the metamorphosis model. The second topic is learning low
bending and low distortion image manifold embeddings.

The metamorphosis model, originally introduced by Miller, Trouvé, and Younes, is a well-known approach
for image morphing: the problem of computing a visually appealing transition between two images such that
semantically corresponding regions are mapped onto each other. The Riemannian manifold of images based on the
metamorphosis model defines the shortest geodesic paths interpolating two images as minimizers of the path energy
measuring the viscous dissipation caused by the motion field and dissipation caused by the material derivative
of the image intensity change along the motion paths. Starting from the general framework for a variational
time discretization in geodesic calculus developed by Rumpf and Wirth, a variational time discretization of the
metamorphosis model for square-integrable images was proposed by Berkels, Effland, and Rumpf. They showed
the existence of discrete geodesic paths, the Mosco-convergence of the time discrete to the time continuous model,
and provided numerical results based on a finite element discretization.

The above-mentioned approach does not consider the deep features that go beyond the obvious ones based on
grayscale or color representation, leading to a blending along the geodesic paths instead of flow-induced geometric
transformations. Furthermore, strong smoothness, implied by the homogeneous and isotropic variational prior for
the deformation fields, prevents depth discontinuities of the scene, preventing the preservation of sharp interfaces,
such as object boundaries, along the geodesic paths. To overcome the problems originating from the color-based
matching, in this thesis, we advocate a metamorphosis model in a deep feature space, which amounts to replac-
ing the input images with feature vectors that combine image intensities and semantic information generated by
a feature extraction operator. The deep feature extraction operator is represented by the deep convolution neural
network introduced by Visual Geometry Group in Oxford (VGG). To explicitly allow for discontinuities in the
deformation fields, we apply an anisotropic regularization operator depending on the magnitude of image gradi-
ents. As our main contribution, following the approach by Berkels, Effland, and Rumpf, we prove the existence of
discrete geodesic paths for the deep feature metamorphosis model with an anisotropic regularization and discuss
its Mosco-convergence to the appropriate time continuous model. In particular, this implies the convergence of
time discrete geodesic paths to their time continuous counterparts and establishes the existence of time continuous
geodesics as minimizers of the time continuous model. The fully discrete model is based on the finite difference
approximation of deformation fields and cubic Hermite spline approximation of the warping operation. The nu-
merical results, obtained by optimization via the iPALM algorithm, developed by Pock and Sabach, allow efficient
and robust computation of morphing sequences that visually outperform the color-based morphing. The described
approach is based on a publication [1] as a joint project with Alexander Effland, Erich Kobler, Thomas Pock, and
Martin Rumpf.

The above approach allows for a smooth and natural interpolation between two fixed images. The task that
naturally follows is finding an as smooth as possible interpolation between multiple fixed key frame images as
data points. Both the color-based and the deep feature-based piecewise geodesic interpolation of images in the
framework of the metamorphosis model lack smoothness at the interpolation data points, leading to jerking at
the corresponding times when animating the resulting family of images. Cubic splines, extensively studied in
several different shape spaces, are a widespread and versatile solution for this problem. To this end, picking up
the general observation of cubic splines in Euclidean space as minimizers of the integral of squared acceleration
along the interpolation path, we propose a spline interpolation approach in the framework of the metamorphosis
model. Our approach is based on the minimization of a functional which combines quadratic functionals of the
Eulerian motion acceleration and the second material derivative of the image intensity as the proper notion of image
intensity acceleration. This physically intuitive separation of flow and image intensity acceleration, however, does
not lead to a fully Riemannian model. Indeed, penalization of the squared covariant derivative of the path velocity
in the Riemannian metric would lead to an interwoven model of these different types of acceleration. Building
upon the above-discussed model, we propose a variational time discretization of the spline model and study the
convergence to the time continuous model in the context of Mosco-convergence. As a byproduct, this also allows



for establishing the existence of metamorphosis splines for given key frame images as minimizers of the time
continuous spline functional. The time discretization is complemented by a spatial discretization based on finite
differences and a stable B-spline approximation of warping operation. A variety of numerical results, based on
numerical optimization via the iPALM algorithm, demonstrates the robustness and versatility of the proposed
method in applications, and highlights smoothness, stability, and different qualitative properties in comparison
with the piecewise geodesic interpolation. The described approach had been initially introduced in [2], while its
rigorous mathematical analysis was given in [3]. Both present a joint effort with Jorge Justiniano and Martin
Rumpf.

Processing of high-dimensional data in their original form, with underlying very high- or even infinite-dimensi-
onal manifold, an example of which is the metamorphosis model, is a challenging task, both in theoretical and
numerical computation senses. To this end, it represents a substantial simplification if the data lies on a low-
dimensional manifold. This leads to the task of the identification of given data sets consisting of objects embedded
in a very high-dimensional space with points in a low-dimensional manifold, as one of the central machine learning
tasks. Autoencoders, which consist of an encoder and a decoder, represent a widely used tool for solving this task.
The encoder embeds the input data manifold into a lower-dimensional latent space, while the decoder represents
the inverse map, providing a parametrization of the data manifold by the manifold in latent space. Further data
processing tasks, an example of which is data interpolation, may be substantially simplified by the good regular-
ity and structure of the embedded manifold. To this end, we propose and analyze a regularization for learning
the encoder component of an autoencoder, based on a loss functional that prefers isometric and extrinsically flat
embeddings. The input data for the training consists of pairs of nearby points on the input manifold, measured
in terms of sampling radius, together with their Riemannian distance and Riemannian average. These values can
be efficiently evaluated due to the hand-crafted construction of the datasets. The discrete sampling loss functional
is computed via Monte Carlo integration and it depends on the employed sampling strategy. We first obtain the
sampling-dependent nonlocal continuous loss functionals as the limit as the number of samples tends to infinity.
As the main contribution, the Mosco-limit of these functionals, as the sampling radius tends to zero, is identified
as a purely local geometric loss functional that again promotes isometry and flatness of the embedding. Numerical
tests, using image data that encodes different explicitly given data manifolds, show that smooth manifold embed-
dings into latent space are obtained. Furthermore, due to the promotion of extrinsic flatness, these embeddings
allow reasonable approximation of interpolation between nearby points on the manifold by the linear interpolation
in the latent space. The described approach had been initially proposed in [4], while its rigorous mathematical
analysis was presented in [5]. Both are the results of a joint project with Juliane Braunsmann, Martin Rumpf, and
Benedikt Wirth.
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material derivative ŵk (bottom). Parameter values: δ = 10−3, σ = 2, θ = 2 · 10−5. . . . . . . . . 99

5.7 Top and bottom rows: Two time discrete splines with key-frames images differing in shape and
color. Parameter values: δ = 8 · 10−3, σ = 2.5, θ = 2 · 10−4. For visualization purposes, only
even-numbered frames uk are depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Top row: Image u11 for the human face example, second order material derivative ŵk and accel-
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Encoder and decoder were trained at the same time with κ = 0.1, and training was stopped once a
reconstruction error R on a test set reached a threshold of 2 · 10−3. Pairs with distance below 1

20
of the maximal distance were rejected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Visualization of the results for dataset (E) for λ = 1 and ε = π
2 for different ways of rendering

ellipses: as the characteristic function (left) and as its smoothed version (6.28) with k = 3 (right).
In each case, two input triples and their distances (with maximal distance≈ 4.3) are shown. In both
cases, there are 4 relevant directions. PCA coordinates 1, 3, 4 and 2, 3, 4, respectively, are used
to visualize the latent manifolds. The choice is taken for consistency of visualization, where the
change of the relevant dimension is due to the symmetry of the center position parameters c in the
dataset. On the bottom, example interpolations are visualized. Their corresponding interpolation
path in latent space is shown in the PCA plot in the color of the frame. The encoder and decoder
were trained at the same time with κ = 0.1, and training was stopped after 500 epochs. . . . . . . 123

6.7 Comparison of the interpolation error, for different options for the regularization, for datasets (R)
(left) and (A) (right). The encoder was trained separately from the decoder for 500 epochs, and the
weights yielding the best value for the functional ESε [φ] evaluated on a test set were chosen. Pairs
with distance below 1

20 of the respective maximal distance were rejected. The decoder was trained
until an accuracy of 3.5 · 10−3 for (R) and 2 · 10−3 for (A) was reached. . . . . . . . . . . . . . 124

6.8 Average interpolation error for training with different sampling radii ε, computed across a test set
consisting of random pairs with arbitrary distance on the upper hemisphere. The encoder was
trained separately from the decoder, and the training was stopped after the value of the functional
ESε [φ], evaluated on a different test set, did not decrease for 10 epochs. Pairs with the distance
below 0.01π were rejected. The decoder was trained until an accuracy of 10−5 was reached on the
test set. This was repeated for three different initializations of the network weights, obtained as
outputs of training the encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



6.9 The visualization of the results of the embedding of Gaussian ellipses and geodesic interpolation
on the obtained latent manifold. We trained the encoder and the decoder jointly on around 10000
images with κ = 0.1. The bending parameter is λ = 1, while the standard deviation parameter σ is
1
10 of the maximal distance of the training points. Visualization is obtained by the projection to the
first 3 PCA dimensions (out of 4 relevant). The results clearly show the advantages of the geodesic
interpolation on the manifold in comparison with the simple linear interpolation in the latent space.
In particular, the shape of the ellipse is preserved for the geodesic interpolation, which is not the
case for the linear interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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Chapter 1

Introduction

THE contribution of this thesis consists of studying two larger mathematical topics. The first topic is the
geodesic and spline interpolation of images in the framework of the metamorphosis model. The second
topic concerns learning low bending and low distortion manifold embeddings. In this chapter, we give a

basic introduction to both of these topics. In Chapter 2, we introduce basic mathematical notions and notation
used throughout the thesis. Chapter 3 introduces the metamorphosis model and tools necessary for the study of
geodesic interpolation in deep feature space with anisotropy regularization which is given in Chapter 4 and spline
interpolation studied in Chapter 5. Finally, Chapter 6 introduces a theoretical framework and presents numerical
results for the learning of low bending and low distortion manifold embeddings.

1.1 Geodesic and Spline Interpolation in Metamorphosis Model
In mathematical and computer vision, morphing is the problem of computing a visually appealing transition of
two shapes such that semantically corresponding regions are mapped onto each other. For image morphing, one
can think of a transition that gives a smooth video-like animation with fixed initial and final frames. To define
this notion in mathematical terms, the energy cost of such transitions is defined such that the desired morphing
transition path will have the smallest possible cost. The problems of searching for the shortest path connecting two
fixed points as a minimizer of a certain path energy is the basis of geodesic interpolation as a generalization of the
notion of the straight line to suitably defined Riemannian manifolds. Finding an appropriate manifold structure
and the underlying path energy in the context of image morphing is a well-studied problem. Considering that we
are interested in a fluid-like transition which properly morphs shapes, it is not a surprise that the motivation for one
of the most well-known approaches comes from fluid dynamics and the study of diffeomorphisms. This model,
called the flow of diffeomorphism model [CRM96, DGM98], is based on Arnold’s approach [Arn66] to study flows
of ideal fluids by a geodesic formulation in the space of measure-preserving diffeomorphisms. In terms of image
morphing, each point of the reference image is optimally transported to the target image with respect to the energy
measuring the total dissipation of the underlying diffeomorphic flow. The key assumption of this model is the
brightness constancy, i.e., the image intensity is preserved along the trajectories of the pixels. The metamorphosis
model, originally introduced by Miller, Trouvé, and Younes [MY01, TY05b, TY05a], builds upon the flow of
diffeomorphism model by additionally allowing for image intensity modulations along the trajectories. This is
achieved by introducing a metric on the manifold of squared-integrable images that, in addition to the flow of
diffeomorphism metric, includes the magnitude of these modulations, reflected by the integrated squared material
derivative of image trajectories as a penalization term. Starting from the general framework for a variational
time discretization of geodesic calculus [RW15], a variational time discretization of the metamorphosis model for
square-integrable images was proposed in [BER15]. Moreover, the existence of time discrete geodesic paths as
well as the Mosco-convergence [Mos69] of the time discrete to the time continuous metamorphosis model was
proven. For numerical computations, they applied an alternating algorithm to the fully discrete model based on
(non)conforming finite element discretizations.

3



4 1 Introduction

Metamorphosis model in deep feature space with anisotropic regularization

The above-mentioned models study the morphing of images in their grayscale or color-based representation. This
representation, however, does not carry any semantic information, which reflects on the quality of the image
morphing paths. In particular, this frequently leads to an unnatural morphing along the obtained geodesic paths
typified by a blending instead of flow-induced geometric transformations. Furthermore, the standard metamor-
phosis model assumes the strong smoothness of the underlying flow fields, leading to improper behavior of shape
interfaces along the geodesic paths. This resulted in a need to use a fourth color channel representing a manual
segmentation of image regions and a color adaptation for some examples in [BER15]. To address these problems,
in Chapter 4, based on publications [EKPR19, EKP+21] where the author of this thesis contributed to theoretical
and experimental studies in the latter, we advocate a metamorphosis model in a deep feature space, which amounts
to replacing the input images by feature vectors combining image intensities and semantic information generated
by a feature extraction operator represented by a deep convolutional neural network [SZ14]. To explicitly allow
for approximate discontinuities in the deformation fields, we further incorporate an anisotropic flow regularization
based on anisotropic edge diffusion [PM90]. We follow the analogous variational time discretization as in [BER15]
and prove the existence of discrete geodesic paths and their convergence to the continuous counterpart. The spa-
tial discretization is based on a finite difference approximation of derivatives of deformations and Hermite spline
approximation of the warping operation. For numerical optimization, an inertial proximal alternating linearized
minimization approach of the iPALM algorithm [PS16] is used. Based on the algorithm implementation presented
in [EKPR19], we provide numerical experiments comparing the results of the original intensity-based approaches
with the results after the incorporation of semantic deep features, showing the superiority of the latter.

Figure 1.1: Time discrete geodesic sequences of animal photos for the simple RGB model (first row) and deep
feature model (third row), along with a zoom of the mouth region with magnification factor 4 (second/fourth row).
Note that the novel deep feature-based model has significantly fewer blending artifacts, as indicated by the arrows.
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Splines for image metamorphosis
The natural question following image morphing between two fixed images is the task of finding a smooth inter-
polation between several key frame images. The piecewise geodesic interpolation represents an attempt to solve
the task, but the resulting interpolant lacks smoothness at the interpolation data points, leading to jerking at the
corresponding times when animating the resulting family of images. This is the general observation for piecewise
geodesic interpolation of several fixed points also on other manifolds and shape spaces. A widespread and ver-
satile solution for this problem is a (cubic) spline interpolation. On Euclidean spaces, in contrast to the geodesic
interpolation as minimization of the squared velocity, cubic splines are classically defined by de Boor [dB63] as
minimizers of the integral of the squared acceleration. In a Riemannian manifold context, Noakes et al. [NHP89]
introduced Riemannian cubic splines as stationary paths of the integrated squared covariant derivative of the ve-
locity. This motivates the splines for image metamorphosis model defined in Chapter 5 (based on publications
[JRR21, JRR23] to which author of the thesis contributed), as minimizers of a functional which is a sum of
quadratic functionals of the Eulerian motion acceleration and the second material derivative representing accel-
eration in the change of intensities along motion paths. This physically intuitive separation of flow and image
intensity acceleration, however, does not lead to a fully Riemannian model, since the integral over the squared
covariant derivative of the path velocity in the Riemannian metric would lead to an interwoven model of these
different types of acceleration. For the proposed model, we define a variational time discretization and a space dis-
cretization naturally following already introduced approaches in the geodesic interpolation context. Furthermore,
we prove the convergence of time discrete splines to their continuous counterpart and provide numerical examples
showing the smoothness and stability of spline interpolation in comparison to the piecewise geodesic interpolation.

m

x y

Figure 1.2: Left: Time discrete spline (first row) and time discrete piecewise geodesic (second row) with framed
key frame images: Gaussian distributions with different center and mass. Right: Euclidean splines for the input
parameters versus splines for image metamorphosis extracted from the numerical results in postprocessing. The
plot is in (x, y,m)-coordinates, with (x, y) denoting the center of mass and m the mass of the distribution.

Related work
We present, a far from exhaustive, recapitulation of works related to the flow of diffeomorphism and metamorphosis
models. For a more detailed exposition of some of these works, we refer the reader to [You10, MTY15] and the
references therein. We also mention some works in the direction of spline interpolation.

Flow of diffeomorphism The study of image morphing through the flow of diffeomorphism model is closely
connected to diffeomorphic image registration where the goal is to find a reasonable diffeomorphic deformation of
a given template image so that it matches a given target image as closely as possible. Modeling this deformation
as a diffeomorphic flow that arises as the solution of the flow equation, with an appropriate choice for the space
of velocity fields, leads to the large deformation diffeomorphic metric mapping (LDDMM) framework [CRM96].
These models were initiated by Trouvé [Tro95, Tro98] who constructed a distance in the space of deformations by
exploiting Lie group methods, where deformations are viewed as actions of an infinitesimal transformation group
on images. Since then, they were intensively studied from many different perspectives and applied in numerous
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contexts. The variational problem associated with the LDDMM framework can be formulated as a constrained
optimization problem, leading to the study of the problem through the optimal control methods. In this context,
the flow equation represents the state equation, the velocity field the control, and the transformed image the result-
ing state [HZN09, VRRC12, VRRH12]. Efficient gradient descent algorithms were proposed for Euler–Lagrange
equations for minimizing deformation fields [BMTY05] and for the path energy of the flow of diffeomorphism
model by using Jacobi fields [You07]. Geodesic shooting in the LDDMM framework, initially studied by Miller et
al. [MTY06] from the perspective of the conservation of the initial momentum in Lagrangian coordinates, led
to some efficient numerical approaches [VRRC12, SHJF13, ZF19]. Unlike these methods, which first try to un-
derstand the optimization of the continuous problem and then build the corresponding discretization approach,
there are numerical methods taking the discretize-then-optimize perspective [Mod09, MR17, PNVM20]. More
recent approaches taking this perspective are based on (deep) neural network parametrization of the velocity fields
or diffeomorphic flows. Since suitable training data of velocity fields/flows is rarely available, the unsupervised
methods, which take pairs of template and target images as an input, are more popular. These methods include
[YKSN17] based on learning of initial momentum and geodesic shooting, [DBGS19] based on learning station-
ary velocity fields and approximate geodesic shooting in the sense of [ACPA06], and [AAS22, WJW+22] which
parametrize time-dependent velocity fields as deep neural networks with residual connections. The flow of diffeo-
morphism model and the LDDMM framework were applied in numerous science and engineering applications, but
most successfully and frequently in medicine. One of the earliest applications of the flow of diffeomorphism model
to medical data was proposed in [BMTY02], where the diffeomorphisms represent deformations of anatomic ref-
erence structures. Some more recent applications include joint image reconstruction and motion estimation in
four-dimensional computed tomography (CT) [HSW+12, CGÖ19], indirect image registration in two-dimensional
CT [CÖ18], template-based image reconstruction from sparse tomographic data [LNÖS20], molecular digital
pathology with tissue magnetic resonance imaging (MRI) [SWTM22], and emotion conversion [SHCV22].

Metamorphosis model The origins of the image metamorphosis model, as a generalization of the flow of diffeo-
morphism model in which images are allowed to vary in time, can be traced to Miller and Younes [MY01] where a
left-invariant distance was defined on the product space of a transformation group and the family of images. Trouvé
and Younes [TY05b] rigorously introduced the metamorphosis metric in the space of images and analyzed the
geodesic equation for this metric. In [TY05a], they proved the existence of geodesic curves for square-integrable
images and the (local) existence and uniqueness of solutions to the initial value problem for the geodesic equation
in the case of weakly differentiable images. Holm et al. [HTY09] studied the geodesic equation in a Lagrangian
formulation of the model and proved the existence of a solution for both the boundary value and the initial value
problem in the case of measure-valued images. This approach was used by [RY16] for a robust shooting method
for images contained in a reproducing kernel Hilbert space, and [FGG21], where a semi-Lagrangian scheme with
geodesic shooting was introduced. In [MFG+22], this geodesic equation was solved by a deep residual network
with further use of a segmentation mask as a local regularizer, with an application to the alignment of images
of brain tumors. A further application of deep learning perspective to the metamorphosis model can be found
in [BVCD20], where a variational autoencoder framework was developed for joint shape and appearance repre-
sentations. This is achieved by observing training images as metamorphic transformations of a prototype image
and imposing norm equivalence between the metamorphosis norm and the latent space norm, while the velocity
field is taken to be static and representable by a discrete reproducing kernel Hilbert space. Hong et al. [HJS+12]
proposed a metamorphosis regression model and developed a shooting method to reliably recover initial momenta.
Richardson and Younes [RY13] extended the metamorphosis framework to discrete measures and provided a rigor-
ous analysis of singularities that can be generated along the geodesic path. Charon et al. [CCT18] generalized the
metamorphosis model to functional shapes representing scalar-valued signals such as curves or finite-dimensional
submanifolds. In [HC22], a metamorphosis model in the space of geometric measures (varifolds) is introduced by
allowing dynamical change of measures weights which is penalized by the Fisher–Rao metric. [BC20] studies the
Eulerian formulation of the model in sense of a constrained minimization problem leading to a geodesic equation
corresponding to a system of advection and continuity equations that can be solved analytically. In [BAC19],
a metamorphosis setting was introduced in the space of landmarks in which non-diffeomorphic evolution is lo-
cally allowed, but penalized. Neumayer et al. [NPS18] extended the time discrete model introduced by [BER15]
to Hadamard manifold-valued images, while the proof of convergence to the time continuous model is given in
[ENR20]. Based on the time discrete metamorphosis model developed by Berkels et al. [BER15], Effland et al.
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introduced the Bézier curves interpolation in the space of images [ERS+15] and discrete extrapolation [ERS18].
Further applications of the image metamorphosis model include image geodesics for optical coherence tomogra-
phy [BBE+17], exemplar-based face colorization [PPS17], sparse and limited angle computerized tomography and
super-resolution of images [NPS19], joint (spatio-temporal) tomographic reconstruction and registration [GCÖ20],
template based image reconstruction suitable for sparse data [NT21], and brain tumor registration with restriction
of image intensity change to certain areas [FMO+22].

Spline interpolation As already mentioned, in Euclidean space cubic splines are defined as minimizers of the
integral of the squared acceleration [dB63], while in a Riemannian context cubic splines are defined as station-
ary paths of the integrated squared covariant derivative of the velocity [NHP89]. Today, there is a variety of
spline approaches in nonlinear spaces and with applications to shape spaces. Trouvé and Vialard [TV12] stud-
ied a second-order shape functional in the space of landmarks based on an optimal control approach. Singh et
al. [SVN15] introduced an optimal control method involving a functional measuring the motion acceleration in
a flow of diffeomorphisms ansatz for image regression. Tahraoui and Vialard [TV19] considered a second-order
variational model on the group of diffeomorphisms of the interval [0, 1]. They proposed a relaxed model lead-
ing to a Fisher–Rao functional, as a convex functional on the space of measures. Vialard [Via20] showed the
existence of a minimizer of the Riemannian acceleration energy on the group of diffeomorphisms endowed with
a right-invariant Sobolev metric of high order. Benamou et al. [BGV19] and Chen et al. [CCG18] discussed
spline interpolation in the space of probability measures endowed with the Wasserstein metric. Thereby, energy
splines are defined as minimizers of the action functional on Wasserstein space which involves the acceleration
of measure-valued paths, sharing similarities with the spline functional in the space of images that we present in
this thesis. The initial computational intractability of such approaches is tackled by a relaxation based on multi-
marginal optimal transport and entropic regularization. The transport problem this approach aims at solving might
not have a Monge solution, which was solved by Chewi et al. [CCG+21] by constructing measure-valued splines,
dubbed transport splines. The existence of Riemannian splines defined in the sense of [NHP89] was shown in
[HRW18]. This paper also introduces a variational time discretization. The existence of time discrete splines was
shown together with their convergence towards the continuous spline which follows from Γ−convergence of time
discrete spline energies towards their continuous counterparts. This method was applied for spline interpolation
on embedded finite-dimensional manifolds, on a high-dimensional manifold of discrete shells with applications in
surface processing (see also [HRS+16]), and the infinite-dimensional shape manifold of viscous rods. Following
this approach, a time discrete approximation of splines in Wasserstein space is studied in [JRE23]. In this case,
the time discretization is based on Wasserstein-2 distances and the generalized Wasserstein barycenter. The exis-
tence of time discrete splines is investigated and consistency to the time continuous model is shown for Gaussian
distributions.

1.2 Learning of Low Bending and Low Distortion Manifold Embeddings
Processing of high-dimensional data in their original form, with underlying very high- or even infinite-dimensio-
nal manifold, example of which are the above-mentioned models, is a challenging task, both in theoretical and
numerical computation senses. To this end, in everyday applications, it is often observed that apparently high-
dimensional data actually forms a low-dimensional manifold. This observation, called the manifold hypothesis, is
the basis for one of the central machine learning tasks: identify given data sets consisting of objects embedded
in a high-dimensional space with points in a (suitably generated) low-dimensional latent manifold. Such a repre-
sentation is frequently defined via an encoder map of an autoencoder acting on input objects and mapping into a
low-dimensional Euclidean latent space. The latent manifold is then the image of this encoder map. The associ-
ated decoder maps back points from latent space to points in the input space, i.e., to the so-called hidden manifold
(due to its a priori unknown topology and geometry). Encoder and decoder are trained as deep neural networks
(giving rise to the name deep manifold learning) via the minimization of a loss functional called reconstruction
loss that compares the input data with its image under the composition of the encoder and decoder mapping. To
make the processing of the data by processing the latent codes meaningful, the latent manifold geometry should
be as close as possible to the geometry of the hidden manifold. However, measuring only the reconstruction loss is
not enough to accurately recover the geometry present in the data. In particular, a major deficit of autoencoders is
that they frequently fail to reproduce the statistical distribution of the input data to the latent space. To resolve this
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Figure 1.3: Results for the sundial dataset. From left to right: Generating the data by casting a shadow of a vertical
rod from all possible positions of a sun on a hemisphere. Training data: image pairs with their geodesic average
and distance, induced by the geometry of the hemisphere. The latent manifold, which is a subset of R16, projected
into R3 via PCA, showing that the embedded manifold clearly reflects the geometric characteristics of the hidden
manifold: the hemisphere. Decoder outputs for the orange points in latent space.

issue, among others, approaches promoting low distortion or isometry i.e., length-preserving of encoder maps, are
proposed. Furthermore, embeddings which lead to flatness of the latent manifold are also favorable, since in that
case, the simplicity of the geometry of Euclidean spaces would lead to simplifying the downstream tasks such as
interpolation or classification.

In Chapter 6, based on publications [BRRW21, BRRW22] to which the author of the thesis contributed, we
study embeddings from high-dimensional input manifolds of images into low-dimensional latent spaces. Taking
the previous observations as a motivation, we propose a loss functional consisting of a penalty term measuring
the distortion of the distance, thus promoting approximately isometric latent space embeddings under the encoder
mapping, and a penalty term penalizing large bending, thus promoting flatness. Our input data consists of Monte
Carlo sampled point pairs, together with their Riemannian distance and Riemannian average on the input manifold,
where we assume that for each such pair, this additional information is well-defined and easily computed. This
data is used for obtaining the first and second order difference quotients which approximate directional compo-
nents of the Riemannian gradient (Jacobian) and Hessian, respectively. The discrete loss functional depends on a
parameter ε defined as the maximal distance of each point pair sampled on the input manifold. For an increasing
number of samples, we obtain a Monte Carlo limit of the initial sampling loss as a nonlocal loss functional rep-
resented by a double integral over the pairs of input manifold points with an additional density depending on the
sampling strategy. We prove the existence of a minimizer for the nonlocal loss functional in the class of functions
representable by deep neural networks, where we suppose certain bounds on the architecture of the networks as
a function of ε. The main theorem identifies the Mosco-limit of these nonlocal Monte Carlo limits for sampling
distance ε → 0 as a local geometric loss functional of embedding maps from the input manifold to the latent
space. This loss functional consists of a distortion and a bending energy part as proper limits of their discrete
counterparts. As a corollary, we prove the convergence of the minimizers of the nonlocal energies to their con-
tinuous counterpart. In the numerical experiments, we use digital image data so that the dimension of our input
space equals the number of pixels times the number of colors. These images encode different explicitly given
low-dimensional data manifolds, corresponding to the hidden manifold. We visualize the obtained latent mani-
folds (point clouds in latent space) by projecting it onto directions resulting from a principal component analysis
(PCA) [Jol02]. Our numerical experiments confirm that the bending loss significantly increases smoothness of the
resulting latent space manifold compared to a pure isometry loss, which would for instance also allow irregular
Nash–Kuiper embeddings [Kui55b, Kui55a, Nas54]. Furthermore, as one possible application of our approach,
penalization of the bending results in the fact that the decoder maps of the linear interpolations in the latent space
represent reasonable interpolations on the data manifold.
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Related work

We first recall some classical approaches to the task of identification of high-dimensional objects with low-
dimensional latent manifolds. Linear approaches to this task include principal component analysis (PCA) [Jol02]
and singular value decomposition (SVD) [MF11], where the data is projected onto spaces determined by the eigen-
vectors and singular vectors, respectively, of the corresponding matrices built from the data. Classical nonlinear
approaches are based on neighborhood graphs of high-dimensional input data points. The output consisting of
low-dimensional vectors is computed by preserving pairwise geodesic distances in case of Isomap [TDSL00] or
local linearity neighborhoods in Local Linear Embedding [RS00]. Further approaches are so-called spectral em-
beddings where the construction of neighborhood graphs is based on spectral decomposition and eigenvalues of
Laplace–Beltrami operator (Laplacian Eigenmaps [BN01]), Hessian operator (Hessian Eigenmaps [DG03]) and
heat kernels (Diffusion Maps [CL06]). All of these models give fixed latent coordinates for the input data and thus
are not suitable for application on previously unseen data samples.

As mentioned above, different strategies to favor the smoothness of the encoder and decoder mappings and thus
the regularity of the latent manifold have been investigated. Some of the well-known and widely used methods
are: promoting sparsity of latent representation [RPC+07], contractive autoencoders [RVM+11] which use loss
functionals penalizing the norm of the Jacobian of the encoder mapping, denoising autoencoders [VLBM08] which
make the learned latent representations robust to partial noise-corruption of the input pattern, and variational
autoencoders [KW13] which regularize the latent representation to match a tractable probability distribution.

There are also related approaches that use loss functionals to promote isometric and/or flat embeddings. In
[ST19], a loss functional measures the difference between distances in the pushforward manifold metric and dis-
tances in latent space to obtain an approximately isometric encoder map. The loss functional from [PTBK19]
compares Euclidean distances in latent space with geodesic distances on the input manifold. In [KZSN20], iso-
metric encoder maps are used to more accurately pushforward distributions from input to latent space using a loss
function based on Shannon-Rate-Distortion. Extending these methods, [NKS21] shows that variational autoen-
coders can be mapped to an implicit isometric embedding with a scale factor derived from the posterior parameter.
The loss functional from [AGL20] promotes isometry of the decoder map, by penalizing deviation from a non-
orthogonal Jacobian matrix, and that the encoder is a pseudo-inverse of the decoder, by enforcing the Jacobians of
decoder and encoder to be transposes of each other. This structure was used in [CRM+22] for learning injective
normalizing flows since it allows for splitting of manifold learning and density estimation. In [PLD+20], isometric
embeddings in latent space are learned to obtain standardized data coordinates from scientific measurements. To
this end, the Jacobian is approximated via normally distributed sampling around each data point (so-called bursts)
and the deviation of the local covariance of bursts from the identity is used to measure the lack of orthogonality
of the Jacobian. A loss functional which is based on measuring the cosine of the angle between feature vectors
in different media spaces is proposed in [ZYY+18] for cross-modal retrieval. This is then incorporated in a de-
noising autoencoder and combined with a distance-preserving common space. In [YYSP21], these approaches are
extended by studying autoencoders which (approximately) preserve not only distances but also angles and areas.
This is achieved by a loss functional depending on eigenvalues of the pullback metric defined in terms of Jacobians
of en- and decoder. In [KCM21], the spectral method of Laplacian Eigenmaps was combined with a loss which
penalizes, in terms of the Lipschitz constants, the deviation of the embedding map and its inverse from isometry.

One of the reasons for penalizing the bending of embeddings is to enable meaningful interpolation between data
points via an affine interpolation in the latent space. A more advanced approach to the geometry of latent manifolds
includes the observation that the initial data manifolds often come with a metric encoding the cost of local varia-
tions on the manifold. For sufficiently regular data manifolds it is shown in [SKTF18] how to transfer this metric
to the latent manifold turning it into a Riemannian manifold. This in principle allows computing shortest paths,
exponential maps, and parallel transport in latent space, which the decoder can pushforward to the data manifold.
Latent spaces of variational autoencoders were first studied as a Riemannian manifold in [CKK+18]. In [STT+18],
a convex latent distribution is promoted by training a generative adversarial network (GAN) [GPAM+20] on latent
space interpolations. In [BRRG18], a regularizer based on GANs is proposed to ensure visually realistic interpo-
lations in latent space. To this end, the adversarial regularizer tries to make the decoding of interpolations in latent
space indistinguishable from real data points. To extend this method, [QLC+19] treats linear interpolation in each
dimension of the latent representation differently, and explicitly considers the distribution of the latent representa-
tions matching it with a prior using the maximum mean discrepancy framework. In [CKF+20], the flatness of the
latent space for variational autoencoders was promoted by penalizing deviation of the decoder induced Cauchy–
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Green deformation tensor from the scaled identity. A generalized definition of interpolation via the training of a
discriminator was proposed in [OYHO20] which allows checking that the interpolated point belongs to the orig-
inal dataset. In this approach, an additional smoothness loss is used based on differentiation along interpolation
paths in latent space. While the method in [BRRG18] relies solely on an adversarial network to discriminate
between real data and interpolations, the approach in [OYHO20] also suggests including ground truth interpola-
tion data. Besides interpolation, isometric and flat embeddings were also used for other downstream processing
tasks: classification and clustering [AGL20, BRRG18], clustering for anomaly detection [ZLC+21], and novelty
detection [AKAD22].



Chapter 2

Preliminaries

IN this chapter, we introduce some basic notation and recall general definitions and properties of objects used
throughout this thesis. In Section 2.1, we recall the basic definitions of function classes on Euclidean spaces
and their properties. In Section 2.2, we collect notions and results from differential geometry, in particular,

Riemannian manifolds and some properties of functions spaces on compact Riemannian manifolds. In Section 2.3,
we introduce the notation for the study and the application of neural networks and present some results on function
spaces consisting of functions that are realizations of neural networks. Finally, Section 2.4 introduces the notions
of convergence that will be the subject of study in the central theoretical results of this thesis.

2.1 Basic Setup for Analysis on Euclidean Spaces

In this section, we recall the definitions and basic properties of classical function classes on Euclidean spaces,
including some fundamental inequalities, embeddings, and convergence results. For proofs of these results, we
refer the reader to some of the classical books on the theory of functional analysis and partial differential equations,
including [AF03, Alt06, Bre11].

2.1.1 Domain

Definition 2.1.1 (Geometric properties of domains, [AF03, Section 4.1]). Let Ω ⊂ Rn be a bounded domain, i.e.,
any non-empty, open, connected, and bounded set with boundary ∂Ω.

(i) The domain Ω has a Lipschitz boundary if for each x ∈ ∂Ω there exists a neighborhood U = U(x) of x and
a Lipschitz function f : Rn−1 → R (see the definition below) such that

Ω ∩ U(x) = { y = (y1, . . . , yn) ∈ U(x) : yn > f(y1, . . . , yn−1) } .

(ii) Let ^(x, y) denote the angle between x, y ∈ Rn. A finite cone with vertex at the origin associated with the
triple (v, ρ, κ) ∈ Rn × R+ × (0, π2 ] (axis direction, height and aperture angle of the cone) is the set

C(v, ρ, κ) := {x ∈ Rn : 0 ≤ |x| ≤ ρ ,^(x, v) ≤ κ } .

The cone with the same triple and vertex x ∈ Rn is given by x + C(v, ρ, κ). The domain Ω satisfies the
cone condition if there exists a finite cone C(v, ρ, κ) such that each x ∈ Ω is the vertex of a cone which is
contained in Ω and congruent to C(v, ρ, κ).

(iii) The domain is strongly Lipschitz if Ω is a Lipschitz domain that satisfies the cone condition.

11
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2.1.2 Function Spaces
Given a sufficiently smooth function f : Ω ⊂ Rn → R, we denote by ∂jxi the j-times partial derivative in direction
of xi, and for a multi-index β = (β1, . . . , βn) ∈ Nn we write

Dβf := ∂β1
x1
· · · ∂βnxn f, |β| :=

n∑
i=1

βi, and for k ∈ N : Dkf := {Dβf, |β| = k} with D0f = f.

For k ∈ N, we use the standard notation for the Banach space of continuous or continuously differentiable functions
Ck(Ω) on a compact set Ω ⊂ Rn, which is endowed with the norm ‖ · ‖Ck(Ω) and the seminorm | · |Ck(Ω) given
by

‖f‖C0(Ω) := sup
x∈Ω

|f(x)| , |f |Ck(Ω) :=
∑
|β|=k

‖Dβf‖C0(Ω) , ‖f‖Ck(Ω) :=

k∑
l=0

|f |Cl(Ω) .

Moreover, we set C∞(Ω) :=
⋂
k≥0 C

k(Ω). In addition, for k ∈ N and α ∈ (0, 1] we observe the space of Hölder
continuously differentiable functions Ck,α(Ω). This is a Banach space when equipped with the norm ‖ · ‖Ck,α(Ω),
and we denote by | · |Ck,α(Ω) the associated seminorm, i.e.,

|f |Ck,α(Ω) :=
∑
|β|=k

sup
{
|Dβf(x)−Dβf(y)|

|x−y|α : x, y ∈ Ω , x 6= y
}
, ‖f‖Ck,α(Ω) := ‖f‖Ck(Ω) + |f |Ck,α(Ω) .

For simplicity, we set Ck,0(Ω) = Ck(Ω) for any k ∈ N. In the case k = 0, α = 1, we say that function f
is a Lipschitz function and call | · |C0,1 the Lipschitz constant, often denoted by L. If α > 1 by Ck,α we mean
Ck+bαc,α−bαc. For an extensive study of functions with Hölder continuity, we refer the reader to [Fio16]. This
class can be observed as an instance of a wider class of functions allowing a modulus of continuity. We say that a
monotonically increasing function ω : [0,+∞)→ [0,+∞) is a modulus of continuity of a function f : Ω→ R if

|f(x)− f(y)| ≤ ω(|x− y|), ∀x, y ∈ Ω; ω(0) = lim
h→0

ω(h) = 0.

We denote the class of k-times differentiable functions on Ω whose k-th derivative has the modulus of continuity
ω by Ckω(Ω). Finally, the subscript c always indicates compactly supported continuous or differentiable functions.

We use the standard notation for Lebesgue spaces with the norm defined by

‖f‖Lp(Ω) :=

(∫
Ω

|f |p dx

) 1
p

for 1 ≤ p <∞ , ‖f‖L∞(Ω) := inf
N⊂Ω:|N |=0

sup
x∈Ω\N

|f(x)|.

For Sobolev spaces on a domain Ω (see [AF03, Alt06, Bre11] for details), we use the notationWm,p(Ω) form ∈ N
and p ∈ [1,∞]. In particular, we set Hm(Ω) := Wm,2(Ω). The associated (semi)norms read as

|f |Wm,p(Ω) :=
∑
|β|=m

‖Dβf‖Lp(Ω),

‖f‖Wm,p(Ω) :=

(
m∑
l=0

|f |p
W l,p(Ω)

) 1
p

, for 1 ≤ p <∞, ‖f‖Wm,∞(Ω) := max
0≤l≤m

∑
|β|=l

‖Dβf‖L∞(Ω).

Furthermore, Wm,p
0 (Ω) is the closure of C∞c (Ω) w.r.t. the norm ‖ · ‖Wm,p(Ω), and we set W 0,p(Ω) = Lp(Ω). For

clarity of arguments, we often write also the codomain in the notation, e.g. Lp(Ω,Rn).
The above notation is naturally extended to Bochner spaces of the form X(I, Y ), where I is some interval

(usually a subset of [0, 1]) and X,Y are some of the above-defined spaces. We will use ḟ to denote the time
derivative of function f . For more details on Bochner spaces, we refer the reader to [HvNVW16].

Given a sequence of functions {f j}j∈N, we say it converges strongly to a function f if limj→∞ ‖f − f j‖ = 0,
where ‖ · ‖ is one of the above-defined norms.
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To define the weak convergence on a function space X , we observe its dual space X ′ and say that a sequence
of functions {f j}j∈N weakly converges to f with notation f j ⇀ f if and only if φ(f j) → φ(f) in R for every
φ ∈ X ′ (see [Alt06, Chapter 8] and [Bre11, Chapter 3] for details).

A classical property of Lebesgue and Sobolev spaces that will be used numerous times in this thesis is reflex-
ivity. In short words, spaces Lp(Ω),W k,p(Ω) for 1 < p < ∞ are weakly precompact, meaning that uniformly
bounded sequence in those spaces have a weakly convergent subsequence in the same space ( cf . [Alt06, Section
8.8] and [Bre11, Section 3.5]). The main application of compact embedding results (see Theorem 2.1.8 below) is
to transfer this weak convergence to the strong convergence in the larger space.

The other concept that will rely on the definition of weak convergence is (sequential) weak lower semiconti-
nuity. We say that a functional F : X → R is (sequentially) weak lower semicontinuous if for every sequence
{f j}j∈N with f j ⇀ f it holds lim infj→∞ F (f j) ≥ F (f). In particular, strongly lower semicontinuous and
convex functionals are weakly lower semicontinuous [Bre11, Proposition 3.5 and Corollary 3.9].

In the following section, we recall some basic inequalities which hold for functions in the above-defined func-
tion spaces, convergence criteria, and embeddings between function spaces.

2.1.3 Inequalities and Embeddings
The following fundamental results are of the vital importance throughout this thesis. While we use a special
notation for some of the constants in the following results, we remark that throughout the thesis the symbol C
frequently indicates a generic finite positive constant.

We give the first two results in a more general context of measure spaces since we use them both on Euclidean
domains with the standard Lebesgue measure and on Riemannian manifolds with the Riemann–Lebesgue measure
(see Subsection 2.2.1).

Theorem 2.1.2 (Fatou’s lemma, [Alt06, Theorem A3.20]). Let (S,Σ, µ) be a measure space and {f j}j∈N be a
sequence of Σ-measurable non-negative functions from S to R. Then it holds∫

S

lim inf
j→∞

f j dµ ≤ lim inf
j→∞

∫
S

f j dµ.

Theorem 2.1.3 (Dominated convergence theorem, [Alt06, Theorem A3.21]). Let (S,Σ, µ) be a measure space
and {f j}j∈N and g be Σ-measurable functions from S to R. Furthermore,

• g is integrable, i.e.,
∫
S
|g|dµ <∞,

• |f j | ≤ g µ-almost everywhere for all j ∈ N,

• f j → f µ-almost everywhere as j →∞.

Then {f j}j∈N and f are integrable and

lim
j→∞

∫
S

f j dµ =

∫
S

f dµ.

Theorem 2.1.4 (Poincare’s inequality, [Alt06, Theorem 6.7]). Let Ω ⊂ Rn be a open and bounded set. Then there
exists a constant CP = CP (Ω, n, p) such that

‖f‖Lp(Ω) ≤ CP ‖Df‖Lp(Ω), ∀f ∈W 1,p
0 (Ω).

Theorem 2.1.5 (Gagliardo–Nirenberg interpolation inequality, [Nir66]). Let Ω ⊂ Rn be a bounded domain satisfy-
ing the cone condition. If f ∈ L2(Ω) andDmf ∈ L2(Ω), then there exist constantsCGN,1 = CGN,1(Ω,m, n) > 0
and CGN,2 = CGN,2(Ω,m, n) > 0 such that for every j ∈ {1, . . . ,m− 1}

|f |Hj(Ω) ≤ CGN,1|f |
j
m

Hm(Ω)‖f‖
1− j

m

L2(Ω) + CGN,2‖f‖L2(Ω) ≤ CGN,1|f |Hm(Ω) + (CGN,1 + CGN,2)‖f‖L2(Ω) .

Theorem 2.1.6 (Korn’s inequality, [Cia88, Section 6.3]). Let Ω ⊂ Rn be a bounded domain with a Lipschitz
boundary. Then there exists a constant CKorn = CKorn(Ω, n) > 0 such that

C−1
Korn‖f‖H1(Ω) ≤ ‖(Df)sym‖L2(Ω) ≤ CKorn‖f‖H1(Ω), ∀f ∈ H1

0 (Ω),
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where (Df)sym := 1
2 (Df + (Df)T ) is the symmetric gradient.

The following classical result allows for an approximation of Lp-functions, for 1 ≤ p < ∞, with smooth
functions, and it will be used throughout this thesis.

Theorem 2.1.7 ([Alt06, Theorem 4.15]). Let Ω ⊂ Rn be a bounded domain. Then the set C∞c (Ω) is dense in
Lp(Ω) for 1 ≤ p < ∞. In particular, given f ∈ Lp(Ω) there exists a sequence of functions {f j}j∈N ∈ C∞c (Ω)
and a function C : R+ × N→ [0,∞) such that

‖f − f j‖Lp(Ω) ≤ 2−j , ‖Df j‖L∞(Ω) ≤ C(‖f‖Lp(Ω), j), ∀j ∈ N.

The following theorem comprises the central embedding theorem for Sobolev and Hölder functions that we
will frequently refer to.

Theorem 2.1.8 (Embedding theorem for Sobolev and Hölder functions, [Alt06, Theorem 10.13]). Let Ω ⊂ Rn be
a bounded domain with a Lipschitz boundary.

(i) If m1,m2 ∈ N and p1, p2 ∈ [1,∞) satisfy

m1 −
n

p1
≥ m2 −

n

p2
, m1 ≥ m2 , (2.1)

then a continuous embedding Wm1,p1(Ω) ↪→Wm2,p2(Ω) exists and for all f ∈Wm1,p1(Ω) one obtains

‖f‖Wm2,p2 (Ω) ≤ C(Ω, n,m1,m2, p1, p2)‖f‖Wm1,p1 (Ω) .

If both inequalities in (2.1) are strict, then the embedding is compact.

(ii) If m ∈ N+ and p ∈ [1,∞) are given such that

m− n

p
≥ k + α for any α ∈ (0, 1) , k ∈ N (2.2)

holds true, then a continuous embedding Wm,p(Ω) ↪→ Ck,α(Ω) exists such that for all f ∈ Wm,p(Ω) a
representative f̃ of f exists with f̃(x) = f(x) for a.e. x ∈ Ω and

‖f̃‖Ck,α(Ω) ≤ C(Ω, n,m, p, k, α)‖f̃‖Wm,p(Ω) .

If the inequality (2.2) is strict, then the embedding Wm,p(Ω) ↪→ Ck,α(Ω) is additionally compact.

For the space of continuous functions, we have a classical criterion for convergence and compactness.

Theorem 2.1.9. (i) (Arzelá–Ascoli’s theorem for compact domains, [Alt06, Theorem 4.12]). Let K be a com-
pact subset of Rn and let a sequence of functions {f j}j∈N ∈ C0(K) satisfy

• {f j}j∈N is uniformly bounded in C0(K),
• {f j}j∈N is uniformly equicontinuous, i.e., for every ε > 0, there exists a δ > 0 such that
|f j(x)− f j(y)| < ε for every |x− y| < δ and for all j ∈ N.

Then {f j}j∈N has a subsequence which converges to some f ∈ C0(K) in C0(K)-norm.

(ii) (Arzelá–Ascoli’s theorem for Bochner spaces, [Sim87]). Let X be a Banach space and let a sequence of
functions {f j}j∈N ∈ C0([0, 1], X) satisfy

• f jt → ft in X for every t ∈ (0, 1)

• {f j}j∈N is uniformly equicontinuous in time, i.e., for every ε > 0, there exists a δ > 0 such that
‖f jt1 − f

j
t2‖X < ε, for every |t1 − t2| < δ and for all j ∈ N.

Then f j → f ∈ C0([0, 1], X).

The following result is a corollary of the above theorem and the fact that uniformly bounded Hölder continuous
families of functions (same applies for other choices of the joint modulus of continuity) satisfy the equicontinuity
conditions.

Corollary 2.1.10 ([Alt06, Theorem 10.6]). Let k1, k2 ∈ N and α1, α2 ∈ (0, 1] with k1 + α1 ≥ k2 + α2. Let
Ω ⊂ Rn be open and bounded (with Lipschitz boundary if k1 > 0). Then Ck1,α1(Ω) ↪→ Ck2,α2(Ω). If the
inequality is strict the embedding is in addition compact. The analogous results hold for the Bochner spaces
Cl,β([0, 1], Ck,α(Ω)).



2.2 Differential Geometry 15

2.2 Differential Geometry
In this section, we present a short survey of concepts from differential geometry, which will be frequently used
in the rest of this thesis. We focus on finite-dimensional Riemannian manifolds (see e.g. [dC92, Lee03]), while
in the later chapters we will revisit some of the introduced notions for Riemannian manifolds modeled on general
(possibly infinite-dimensional) Banach or Hilbert spaces, studied in [Lan95, Kli95, Sak96, War83].

Definition 2.2.1 (Topological manifold, chart [Lee03, Definition 1.1]). LetM be a Hausdorff topological space
with a countable basis. We say that M is an m-dimensional topological manifold (with boundary) if for each
point x ∈ M there exists a neighborhoodMx and a homeomorphism ϕx fromMx to an open subset of Rm or a
relatively open subset of Rm+ := {(x1, . . . , xm) : xm ≥ 0}. We call such a pairing (Mx, ϕx) a chart, or to make
the distinction a regular or a boundary chart, respectively. Points lying in regular charts are called interior points,
while points lying in a boundary chart are called boundary points.

This definition allows local identification of manifolds with Euclidean domains. Analogously, if the neighbor-
hoods onM can be identified in the above manner with a Banach space or Hilbert space then we say thatM is a
Banach or Hilbert manifold. This setting will be put into use in Section 3.1 and we do not study it further at this
point.

To do calculus on manifolds we need further properties of charts.

Definition 2.2.2 (Differentiable manifold, [dC92, Chapter 0, Definition 2.1]). LetM be an m-dimensional topo-
logical manifold.

(i) We say that (Mi, ϕi)i∈I is a family of charts if (Mi)i∈I is an open covering ofM and (Mi, ϕi) is a chart
for every i ∈ I .

(ii) A Ck-differentiable atlas (k ≥ 1) is a family of charts (Mi, ϕi)i∈I such that

ϕj ◦ ϕ−1
i : ϕi(Mi ∩Mj)→ ϕj(Mi ∩Mj)

is a Ck-diffeomorphism for each pair of indices i, j ∈ I . Two differentiable atlases are equivalent if the
union of these atlases is a differentiable atlas.

(iii) A Ck-differentiable structure is an equivalence class of Ck-differentiable atlases. A Ck-differentiable man-
ifold is a topological manifoldM endowed with a Ck-differentiable structure.

Whether a point is an interior or a boundary point does not depend on the choice of charts [Lee03, Theorem
1.46]. The set of all interior points is denoted by Int(M) and called the interior ofM and its complement is the
boundary ofM denoted by ∂M = M \ Int(M). In particular, x is a boundary point if the m-th component of
ϕ(x) equals 0 for all (boundary) charts ϕ it lies in. Here and for the rest of this thesis, if not otherwise stated, we
assumeM to be smooth in the sense that k is sufficiently large or k =∞. If for every family of charts there exists
a finite subfamily of charts we say that theM is compact.

Further properties and examples of topological and differentiable manifolds (with boundary) can be found in
[Lee03, Chapter 1] and [dC92, Chapter 0].

We now proceed to definitions and properties of some of the key concepts on differentiable manifolds. The
above-defined behavior of charts on intersections of their domains allows us to, for convenience, assume the
existence of a global chart (M, ϕ).

Definition 2.2.3 (Tangent space, canonical basis, tangent bundle, [dC92, Chapter 0, Definition 2.6]). LetM be a
smooth m-dimensional manifold.

(i) The tangent space TxM ofM at x ∈M is defined as

TxM := {γ̇(0) where γ : (−ε, ε)→M is a smooth curve with γ(0) = x, ε > 0} .

(ii) For every x ∈ M, we have that TxM is a m-dimensional vector space. Indeed, if x = ϕ−1(ξ) we have
TxM = span{∂ξiϕ−1(ξ)}mi=1. We denote this basis by {ei}mi=1 and call it the canonical basis of TxM.
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(iii) We call the set TM := {(x, v), x ∈M, v ∈ TxM} the tangent bundle ofM.

Notice that for x ∈ ∂M the tangent space also contains the outward pointing vectors
∑m
i=1 viei(ξ) with

{vi}mi=1 ∈ R and vm < 0. Having defined the notion of tangent space, we can now study functions mapping from
the manifold to a Euclidean space or a manifold.

Definition 2.2.4 (Scalar and vector fields, [dC92, Chapter 0, Definition 5.1]). LetM be a smooth m-dimensional
manifold.

(i) A scalar function or a scalar field f : M → R is said to be Ck-differentiable (or smooth for k = ∞) if
f ◦ ϕ−1 : U ⊂ Rm → R is Ck or smooth, respectively. We denote the set of all smooth scalar fields by
F(M).

(ii) A vector field X on M is a mapping X : M → TM. For I ⊂ R, a vector field X : I → TM along
a curve γ : I → M fulfills X(t) = X(γ(t)) ∈ Tγ(t)M. Thus, for ξ ∈ U we can write X(ϕ−1(ξ)) =∑m
i=1 vi(ξ)ei(ξ), with vi : U ⊂ Rm → R. We say X is smooth if and only if the functions vi are smooth.

We denote the set of all smooth vector fields by X(M).

(iii) For X ∈ X(M) and f ∈ F(M) we define X(f)(x) :=
∑m
i=1 vi(ξ)

∂f◦ϕ−1

∂ξi
(ξ), where ξ = ϕ(x).

Definition 2.2.5 (Differentiable mappings between manifolds, immersions and embeddings, [dC92, Chapter 0,
Definitions 2.1 and 3.1]). Let M1 and M2 be two smooth manifolds with the corresponding smooth atlases
(M1

i , ϕ
1
i )i∈I and (M2

j , ϕ
2
j )j∈J .

(i) A mapping F :M1 →M2 is said to be Ck-differentiable if

ϕ2
j ◦ F ◦

(
ϕ1
i

∣∣∣M1
i∩F−1(M2

j )

)−1

: ϕ1
i (M1

i ∩ F−1(M2
j ))→ ϕ2

j (M2
j )

is Ck-differentiable for any (i, j) ∈ I × J . This definition is independent of the choice of families of charts.

(ii) Given a differentiable mapping F :M1 →M2, a point x ∈ M1 and v ∈ TxM1 we define the differential
of F as the linear mapping dFx : TxM1 → TF (x)M2 by dFx(v) := (F ◦ γ)′(0) where γ : (−ε, ε)→M1

is an arbitrary smooth curve with γ(0) = x and γ̇(0) = v.

(iii) A differentiable mapping is said to be an immersion if dFx is injective for all x ∈M1.

(iv) If an immersion is a homeomorphism onto F (M1), where F (M1) has the topology induced fromM2, we
say that F is an embedding.

A crucial notion in the interaction of scalar and vector fields is the notion of an affine connection. This leads
to the definition of covariant derivative which is of the central importance for developing the geodesic calculus.

Definition 2.2.6 (Affine connection, covariant derivative, [dC92, Chapter 2, Definition 2.1]).

(i) An affine connection on a smooth manifoldM is a mapping

∇ : X(M)× X(M)→ X(M) , (X,Y ) 7→ ∇XY

such that

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y ,

∇X(f1Y1 + f2Y2) = f1∇XY1 +X(f1)Y1 + f2∇XY2 +X(f2)Y2 ,

for all X,X1, X2, Y, Y1, Y2 ∈ X(M) and f1, f2 ∈ F(M).

(ii) We refer to ∇XY as the covariant derivative of Y w.r.t. X .

(iii) If X(t) = Y (γ(t)) for some Y ∈ X(M) then we define D
dtX := ∇γ̇Y . The correspondence X 7→ D

dtX is
called covariant derivative of X along γ [dC92, Chapter 2, Proposition 2.3].
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So far, we worked with (sufficiently) smooth manifolds. To study further notions of interest in this thesis, we
now define a Riemannian manifold as a manifold with a metric defined on tangent space(s).

Definition 2.2.7 (Riemannian metric, Riemannian manifold, [dC92, Chapter 1, Definition 2.1]).

(i) A Riemannian metric on M is a mapping g : x 7→ gx such that gx : TxM× TxM → R is a bilinear,
symmetric and positive-definite form, and ξ 7→ gij(ξ) := gϕ−1(ξ)(ei(ξ), ej(ξ)) is a smooth function on
ϕ(M), where {ei}mi=1 is the canonical basis.

(ii) A manifoldM equipped with a Riemannian metric g is referred to as a Riemannian manifold with notation
(M, g).

The Riemannian metric gives rise to a norm on tangent spaces: given v ∈ TxM, we will use notation ‖v‖g :=√
gx(v, v) for this norm, where point x will be clear from the context.

The following theorem introduces a distinct affine connection, called the Levi–Civita connection, with the
associated derivative called Levi–Civita derivative. This connection is unique on every Riemannian manifold once
a Riemannian metric is chosen. For the rest of this thesis,∇ will always refer to Levi–Civita connection.

Theorem 2.2.8 (Levi–Civita connection, [dC92, Chapter 2, Theorem 3.6]). On a Riemannian manifold (M, g)
there exists a unique affine connection ∇ such that

(i) ∇ is torsion-free or symmetric onM, i.e.,

∇XY −∇YX = [X,Y ] ∀X,Y ∈ X(M) ,

where Lie bracket is given by [dC92, Chapter 0, Lemma 5.2]

[ · , · ] : X(M)× X(M)→ X(M) , [X,Y ](f) = X(Y (f))− Y (X(f))

for two vector fields X,Y ∈ X(M) and all f ∈ F(M).

(ii) The covariant derivative associated with∇ is Riemannian, i.e.,

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) ∀X,Y, Z ∈ X(M) .

We now introduce some of the crucial concepts as applications of the notion of covariant derivative. The first
is the notion of parallel transport along a curve on the manifold. This is a concept of transferring tangent vectors
along the path and ensuring that they “stay parallel w.r.t. the metric”, which later enables the transfer of geometric
data along a specified path.

Proposition 2.2.9 (Parallel vector field, parallel transport, [dC92, Chapter 2, Definition 2.1 and Proposition 2.6]).

(i) A smooth vector field X ∈ X(M) is called parallel w.r.t. a smooth curve γ : I →M, if DXdt (γ(t)) = 0 for
all t in an open interval I ⊂ R.

(ii) Let I ⊂ R be an open interval, t0, t1 ∈ I , and γ : I →M be a smooth curve. Then for everyX0 ∈ Tγ(t0)M
there exists a unique parallel vector field X ∈ X(M) along γ such that X(t0) = X0 and X(t) ∈ Tγ(t)M
for t ∈ I , and the mapping

PTγt0→t1 : Tγ(t0)M→ Tγ(t1)M , X(t0) 7→ X(t1)

is a linear and isometric isomorphism, which is called parallel transport.

This definition is a starting point for one of the central notions in Riemannian geometry: a geodesic curve.

Definition 2.2.10 (Geodesic curve, [dC92, Chapter 3, Definition 2.1]). A smooth curve γ : I → M is called a
geodesic curve or simply a geodesic if it satisfies the geodesic equation

D

dt
γ̇(t) = 0, ∀t ∈ I. (2.3)
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In particular, the velocity vector of a geodesic curve is transported parallelly along the curve. Furthermore, by
[dC92, Chapter 2, Proposition 3.2] having chosen the Levi–Civita connection we have

d

dt

(
gγ(t)(γ̇, γ̇)

)
= 2gγ(t)

(
D

dt
γ̇(t), γ̇(t)

)
= 0,

which implies that gγ(t)(γ̇(t), γ̇(t)) is constant along a geodesic curve. This property is known as arc length
parametrization.

The following result concerns the existence and uniqueness of geodesics. We will restrict ourselves in fur-
ther discussion to manifolds without boundary (or simply just observe Int(M)) as properties of geodesics on the
boundary and near the boundary often ask for more careful observation (due to the presence of the outward pointing
tangent vectors).

Theorem 2.2.11 (Local existence and uniqueness of geodesics as solutions of the geodesic initial value problem).
For any point x ∈M there exists a (largest) ε > 0 such that for all v ∈ TxM with ‖v‖g < ε there exists a unique
geodesic γ : [0, 1]→M with γ(0) = x and γ̇(0) = v.

Proof. The existence and the uniqueness are first shown on an interval (−δ, δ) for some δ > 0 (cf . [dC92, Chapter
3, Proposition 2.5]). To this end, one notices that the geodesic equation D

dt γ̇(t)(γ(t)) = 0 is a second-order
ordinary differential equation (ODE). Existence and uniqueness then follow from the Picard-Lindelöf theorem for
the solutions of ODEs with prescribed initial conditions. Furthermore, we note that γ depends smoothly on both x
and v. Finally, we use homogeneity of geodesics [dC92, Chapter 3, Lemma 2.6] which states that given a geodesic
γ : (−δ, δ) →M with γ(0) = x, γ̇(0) = v the curve with the same initial point and velocity αv for some α > 0
is a geodesic on the interval (− δ

α ,
δ
α ).

We will denote this unique mapping by t 7→ γ(t, x, v), t ∈ [0, 1]. We have the following results.

Proposition 2.2.12 (Exponential and logarithm map, injectivity radius, normal neighborhood [dC92, Chapter 3,
Proposition 2.9]).

(i) For every x ∈M there exists ε > 0, called the injectivity radius at x, such that the exponential map at x

expx : U εx := {v ∈ TxM : ‖v‖g < ε} →M , expx(v) := γ(1, x, v)

is well defined and a diffeomorphism.

(ii) We call expx(U εx) ⊂M the normal neighborhood of x and define the logarithm map at x by

logx : U εx → TxM , logx(y) := (exp−1
x )(y).

Geometrically, logx(y) is the initial velocity of the unique geodesic connecting x and y.

Geodesic curves are often characterized as locally shortest curves. To specify this notion we first introduce the
notions of the length of a curve and the distance on a manifold.

Definition 2.2.13. (i) The length of a curve γ : [0, 1]→M is defined by

L[(γ(t))t∈[0,1]] :=

∫ 1

0

√
gγ(t) (γ̇(t), γ̇(t)) dt .

(ii) Given points x, y ∈M we define their (Riemannian) distance dM :M×M→ R by

dM(x, y) := inf {L[γ(t)] : γ : [0, 1]→M piecewise differentiable, γ(0) = x, γ(1) = y } .

Notice that the definition of the length is invariant under reparametrization. The following proposition illus-
trates the distance minimizing properties of geodesic curves.
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Proposition 2.2.14 ([dC92, Chapter 3, Proposition 3.6 and Corollary 3.9]). Let x ∈ M and y be in the normal
neighborhood of x. Let γ, γ̃ : [0, 1] → M be two piecewise differentiable curves connecting x and y, where γ
is geodesic. Then L[γ] ≤ L[γ̃] with equality if and only if γ([0, 1]) = γ̃([0, 1]), i.e., γ and γ̃ are equal up to
reparametrization.

Conversely, let γ : [0, 1] →M be a piecewise differentiable curve connecting x, y ∈ M that is parametrized
proportional to arc length. If L[γ] is less or equal to the length of any other piecewise differentiable curve con-
necting x and y, then γ is a smooth geodesic.

This implies that if y is in the normal neighborhood of x the shortest path is along the geodesic and we have
dM(x, y) = ‖ logx(y)‖g due to the arc length parametrization of geodesics. Another relevant notion concerning
the curves is the path energy.

Definition 2.2.15. The path energy of a curve γ : [0, 1]→M is defined by

E [(γ(t))t∈[0,1]] :=

∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) dt . (2.4)

Remark 2.2.16. A direct application of the Cauchy–Schwarz inequality shows that

L[(γ(t))t∈[0,1]] ≤
√
E [(γ(t))t∈[0,1]],

and equality holds if and only if gγ(t)(γ̇(t), γ̇(t)) = const, i.e., for curves with constant speed and arc length
parametrization, including geodesics. Path energy is, unlike path length, dependent on parametrization, but it is
a convex functional which presents an advantage in the study of the existence of minimizers. Therefore, it is
important to observe that a minimizer of E is indeed a minimizer of L. To this end, let (γ(t))t∈[0,1] be a minimizer
of E . Suppose that there exists a curve (γ̃(t))t∈[0,1] such that L[γ] > L[γ̃]. Due to the invariance of length under
the parametrization, we may assume gγ̃(t)( ˙̃γ(t), ˙̃γ(t)) ≡ L[γ̃]. Then we have

E [γ̃] := L[γ̃]2 < L[γ]2 ≤ E [γ],

which is a contradiction to the choice of γ. Thus, for every (γ̃(t))t∈[0,1] we have L[γ̃]2 ≥ L[γ]2, as we wanted
to show. Furthermore, one can show from Euler–Lagrange equation of path energy that a minimizer satisfies the
geodesic equation (2.3) [HRW18, Remark 2.12].

For definitions of all of the above notions, we used the advantage of having a finite-dimensional manifold by
using the canonical basis. To be able to define these notions for infinite-dimensional manifolds, we comment on
the coordinate-free definition of covariant derivative which allows us to define other notions of interest. Definitions
and properties of parallel transport, geodesics, and other notions obtained from covariant derivatives are analogous
to the already existing. For more details see [Lan95].

Definition 2.2.17 (Covariant derivative, [Lan95, VIII, Theorem 3.1]). Let γ : I → M be a curve and X : I →
TM a vector field along γ. We define the covariant derivative D

dtX along γ at x = γ(t) for t ∈ I implicitly by

gx

(D
dt
X(t), Y

)
= gx

(
Ẋ(t) + Γx (X(t), γ̇(t)) , Y

)
, ∀Y ∈ TxM ,

where the Christoffel operator Γx : TxM× TxM→ TxM is defined implicitly by [Lan95, VIII, Theorem 4.2]

gx(Γx(X,Y ), Z) =
1

2

(
Xgx(Y,Z) + Y gx(X,Z)− Zgx(X,Y )

)
, ∀X,Y, Z ∈ TxM.

2.2.1 Function Spaces on Riemannian Manifolds
In this section, we introduce some function spaces consisting of functions mapping from a smooth and compact
m-dimensional Riemannian manifold (M, g) to the Euclidean space. We are in particular interested in definitions
of appropriate notions of derivatives (of the first and the second order), and Lebesgue and Sobolev spaces, for
which we will need to introduce the integration on manifolds via the Riemann–Lebesgue measure.
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In Definition 2.2.4, we already defined a scalar function f : M → R to be of class Ck, k ≥ 1 if f ◦ ϕ−1 :
Rm → R is of that class. To define derivatives of such a function at a point on manifold, we observe the chart
defined by the exponential map at that point (cf . Definition 2.2.12). This leads to the definition of the Riemannian
gradient (Jacobian) grad f(x) ∈ TxM implicitly via the identity [AMS09, Section 3.6]

d

dt
(f ◦ expx)(tv)|t=0 = g(grad f(x), v), ∀v ∈ TxM. (2.5)

Analogously, the Riemannian Hessian Hess f at x is the linear operator Hess f(x) : TxM → TxM given
by [AMS09, Proposition 5.5.4]

d2

d2t
(f ◦ expx(tv))|t=0 = gx(Hess f(x)[v], v), ∀v ∈ TxM. (2.6)

It can also be defined by Hess f(x)[v] = ∇v grad f(x) [AMS09, Definition 5.5.1], where ∇ is the Levi–Civita
connection (cf . Theorem 2.2.8) and∇v the covariant derivative in direction v, showing that Hess f(x) is a symmet-
ric operator due to the symmetry property of the Levi–Civita connection. It is, thus, a symmetric endomorphism
on TxM, denoted by Hess f(x) ∈ Lsym(TxM, TxM).

For a function f :M→ Rl we have grad f(x) = (grad f1(x), . . . , grad fl(x)) ∈ (TxM)l and Hess f(x) =
(Hess f1(x), . . . ,Hess fl(x)) : TxM → (TxM)l, where the above definitions are applied componentwise. The
application of the Riemannian metric g on (TxM)l × TxM is to be understood componentwise, i.e., we will use
the notation g(A, v) = (g(Aj , v))j=1,...,l for an l-tuple A = (A1, . . . , Al) of tangent vectors. Similarly, we write
g(A,B) =

∑l
j=1 g(Aj , Bj) for A,B ∈ (TxM)l and g(H,K) =

∑m
j=1 g(H[vj ],K[vj ]) for linear operators

H,K : TxM→ TxM, where v1, . . . , vm is any orthonormal basis of TxM.
We will denote the functions with the continuous second order derivatives in the above sense by C2(M,Rl).

One could define also the higher order derivatives in an analogous way, but in this thesis, we will be interested only
into the first and second order derivatives so we omit further discussion.

The following class of functions we are interested in are Lipschitz continuous functions. A mapping f :
M→ R is said to be Lipschitz continuous with Lipschitz constant L(f) if for all x ∈ M and all y in the normal
neighbourhood (cf . Definition 2.2.12) of x it holds [Bou23, Definition 10.40]

|f(x)− f(y)| ≤ L(f)dM(x, y),

where dM is the distance of the points on the manifold defined in Definition 2.2.13. If f is differentiable its
gradient is Lipschitz continuous with Lipschitz constant Lgrad(f) if [Bou23, Definition 10.44]

gx (PTγ0←1 grad f(y)− grad f(x),PTγ0←1 grad f(y)− grad f(x)) ≤ Lgrad(f)dM(x, y), (2.7)

where γ : [0, 1] → M is the unique minimizing geodesic connecting x to y (cf . Definition 2.2.10) and PTγ0←1 :
TyM → TxM denotes the parallel transport along γ from γ(1) = y to γ(0) = x (cf . Proposition 2.2.9). If f
is twice differentiable, its Hessian is Lipschitz continuous with Lipschitz constant LHess(f) if [Bou23, Definition
10.49]

gx (PTγ0←1 Hess f(y) PTγ1←0−Hess f(x),PTγ0←1 Hess f(y) PTγ1←0−Hess f(x))≤LHess(f)dM(x, y), (2.8)

where PTγ0←1 is the inverse of PTγ1←0. In all the cases, the estimates should hold for every x ∈ M and every y
in the normal neighborhood of x. The second and the third definition are special cases of definitions of Lipschitz
continuity for general vector fields and linear mappings from TM to TM. The function space of twice differen-
tiable functions with Lipschitz continuous second derivative is denoted by C2,1(M,R). In the case of functions
mapping to Rl, the above definitions are meant in the corresponding componentwise sense (as defined above), and
we use the notation C2,1(M,Rl).

To define the Lebesgue and Sobolev spaces onM, we first need to introduce the natural measure for integration
of functions f :M→ R. To this end, let us have a family of charts (Mi, ϕi)i∈I and a partition of unity (αi)i∈I
subordinated to the covering (Mi)i∈I , i.e., for every x there exists a neighborhood such that all but finitely many
of functions are zero,

∑
i∈I αi = 1 and supp αi ⊂ Mi for every i ∈ I . Then we define the Riemann–Lebesgue

measure of continuous function f , i.e., the integration of the function f onM by [Heb96, Section 1.2]

Vg(f) :=

∫
M
fdVg :=

∑
i∈I

∫
ϕi(Mi)

(αi
√

det gif) ◦ ϕ−1
i dx, (2.9)
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where gi is the matrix representation of metric g in the canonical basis {ej = ∂ξjϕ
−1
i (ξ)}mj=1 (cf . Definition 2.2.7).

The standard Lebesgue integration is well-defined due to the continuity of f and compactness ofM and the sum
is finite due to the same reason. Finally, one extends the definition to the general integrable functions f :M→ R
by approximating the function with continuous functions (cf . [Sak96, Section II.5]).

The Lebesgue spaces Lp(M), for 1 ≤ p < ∞, can be defined as the closure of the set of smooth functions
under the norm

‖f‖L2(M) :=

(∫
M
|f |2dVg

) 1
2

.

The Sobolev spaces H1(M) and H2(M) are defined as the closure of C∞(M) under the norms

‖f‖2H1(M) :=

∫
M
|f |2 + g(grad f, grad f)dVg,

‖f‖2H2(M) :=

∫
M
|f |2 + g(grad f, grad f) + g(Hess f,Hess f)dVg,

where in the case of functions mapping to Rl we use the above-defined summation over the components. The
second and the third term in the above expression are the L2(M, TM)- and L2(M, Lsym(TM, TM))-norms,
respectively.

The higher order Sobolev spaces, with possibly different exponents, can be defined analogously (see also
definitions of Lebesgue and Sobolev spaces in Subsection 2.1.2), but we omit this discussion here and refer the
reader to [Heb96]. We discuss a few properties of the above-defined Sobolev spaces that will be of use. First,
by [Heb96, Proposition 2.3], we have that H2(M,Rl) and H1(M,Rl) are reflexive. Furthermore, the following
result allows us the estimate the Lebesgue norm of the function by the norm of the gradient.

Theorem 2.2.18 (Poincare’s inequality, [Heb96, Theorem 2.10]). Let (M, g) be a smooth compactm-dimensional
manifold. Then there exists a constant CP (M,m) such that

‖f − f̄‖L2(M) ≤ CP ‖ grad f‖L2(M,TM), ∀f ∈ H1(M),

where f̄ := 1
Vg(M)

∫
M fdVg with Vg(M) :=

∫
M 1dVg .

This result holds also on Euclidean spaces and should be compared to Theorem 2.1.4. In particular, for func-
tions with zero mean, i.e., f̄ = 0, we have the analogous result as in that case. The spaces of functions with zero
mean, as subspaces of previously defined function spaces, will be denoted by Ḣ2(M) and L̇2(M), respectively.

The following result is analogous to Theorem 2.1.8. It holds in the same generality as the mentioned result, but
we use only a part of it, as we did not introduce Sobolev spaces on a Riemannian manifold in the full generality.

Theorem 2.2.19 (Rellich embedding theorem for compact manifolds, [Heb96, Theorem 2.9]). Let (M, g) be a
smooth compactm-dimensional manifold. Then there exist compact embeddingsH2(M) ↪→ H1(M) ↪→ L2(M).

2.3 Neural Networks
Neural networks, stemming from the works from 1940s [MP43], represent an algorithmic approach to learning
with the aim of building a theory of artificial intelligence inspired by the functionality of the human brain. This
is reflected in the structure of neural networks which in a broad context consist of neurons arranged in layers
and connected by weighted edges. Today, neural networks, especially those with a large number of layers, are
state-of-the-art technology for a wide variety of applications in mathematics, sciences, and engineering: solving
PDEs [HJE18, Y+18], image classification [KSH12, SZ14], speech recognition [HDY+12], natural language pro-
cessing [YHPC18], object recognition [HZRS16], game intelligence [SHM+16] and numerous other applications.
This application directed development is recent and it is due to use of the modern software and hardware technolo-
gies which allowed faster computation together with better memory management. There is a plethora of books
and review papers on neural networks. We mention here and refer in this thesis to the books [GBC16] and [GK22]
which represent both an introduction to the field of deep learning (study of neural networks with multiple layers)
and a review of modern research in this field, both from the theoretical and application oriented perspectives.
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In this section, we introduce the basic notions and notations for the study of neural networks. For more details,
we refer the reader to the above-mentioned books and references therein. We later study properties of function
spaces consisting of functions representable by neural networks.

Definition 2.3.1 (Neural network). We call a family of tuples Φ = ((Al, bl, σl))
L
l=1 with weights Al ∈ Rnl,nl−1,cl ,

biases bl ∈ Rnl,cl , and activation functions σl : R→ R a neural network architecture or simply a neural network.
We call n0 the input dimension and nL the output dimension. We refer to L as the number of layers, nl is the
number of neurons in layer l, and N =

∑L
l=1 nl as the number of neurons of Φ, while cl is called the number of

channels in layer l. The network is called deep if L ≥ 3, and otherwise it is said to be shallow.
We define the realization of Φ as the function R(Φ) : Rn0,c0 → RnL,cL , x 7→ xL with

x0 =x,

xl :=σl(Alxl−1 + bl), l = 1, . . . , L− 1,

xL :=ALxL−1 + bL,

where elements of (xl)
L
l=1 are called neurons. Here, σl, l = 1, . . . , L act componentwise, σL is the identity

function, and

(Alxl−1)c =

cl−1∑
i=1

(Al)c(xl−1)i, c = 1, . . . , cl. (2.10)

Weights, biases, and activation functions are optimized to approximate a task dependent unknown function
based on a given set of input-output value pairs. This process is called supervised learning. This optimization is
usually accomplished through some version of the stochastic gradient descent algorithm, where the gradients are
computed via backpropagation through the network [RHW86].

This type of neural network is often called fully connected feedforward neural network. The term feedforward
refers to the structure where realization is defined in a completely forward manner and there are no feedback
connections in which outputs of the model are fed back into itself. Full connectedness means that every neuron
in one layer is connected to every neuron in the other layer. Furthermore, we observe that every element of Al
interacts with only one element per channel of xl−1. One can also have, e.g. for images, xl ∈ Rnl,ml,cl in which
case bl ∈ Rnl,ml−1,cl . If we are working with images, it is often advantageous to have a structure that is still
local but allows for the interaction of more than one pair of weights and inputs. This is achieved through the
structure of convolutional neural networks, where one replaces the matrix vector multiplication in (2.10) by the
cross-correlation operation w ? x.

Definition 2.3.2 (Convolutional neural network). A convolutional layer is defined by a kernel w ∈ Rwv,wh,cout ,
a bias b, and parameters for padding p = (pd, pu, pl, pr) and stride s = (sv, sh). Given x ∈ Rvin,hin,cin , its
realization is defined by the function x 7→ w ? x̄+ b, where

x̄ ∈ Rvin+pd+pu,hin+pl+pr,cin , x̄(i, j) =

{
x(i, j), i ∈ [pd + 1, pd + vin] and j ∈ [pl + 1, pl + hin]

0, else,

(w ? x̄)(i, j) :=

cin∑
c=1

wv∑
k=1

wh∑
l=1

w(k, l)x̄(sv(i− 1) + k, sh(j − 1) + l, c). (2.11)

The corresponding dimension for bias is b ∈ Rbv,bh,cout where bv =
⌊vin + pl + pr − wv

sv
+ 1

⌋
and bh =⌊hin + pd + pu − wh

sh
+ 1
⌋
. The parameters wv, wh are called the kernel size and cin, cout are the number of

input/output channels.
A convolutional neural network is a family of convolutional layers together with activation functions with

realization defined by the sequential applications of realizations of the layers.

Let us notice that the fully connected feedforward network architecture also includes convolutional neural net-
works. Indeed, one can write the cross-correlation operation in terms of matrix vector multiplication by writing
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rows of kernels one after another accompanied by the necessary number of zeros. Convolutional neural networks
were defined already in the 1980s [L+89], but they achieved wide recognition after the tremendous success of the
convolutional neural network introduced in [KSH12] for image classification tasks. For more details on convolu-
tional neural networks, we refer the reader to [GBC16, Chapter 9] and references therein.

Besides convolutional layers, popular choices are so-called pooling layers. Here, instead of cross-correlation,
one computes maximum/minimum/average (max-, min-, average-pooling) on parts of the input which are of the
size of the kernel. Observe that average-pooling is a convolutional layer with kernel inputs being reciprocal of
kernel size. While the pooling operation decreases the dimensionality of the input, upsampling operation increases
the dimensionality by using interpolation of the nearest already existing values. The other types of layers/neural
networks we mention here are residual networks [HZRS16] where skip connections or shortcuts are used to jump
over some layers, and recurrent networks [RHW86], [GBC16, Section 10] where output from a neuron is allowed
to affect subsequent input to the same neuron, allowing the network to exhibit temporal dynamic behavior.

After discussing the structure of the weights, let us study the activation functions. Although they can also be
learned through optimization (see e.g. [CP17]), they are usually fixed throughout the training process. A non-
exhaustive table of most commonly used functions is given in [PRV21, Table 1]. One of the most commonly used
functions, and in particular used by networks in this thesis, is (leaky) rectification linear unit

ReLU(x) := max(0, x), LeakyReLUα(x) := max(x, αx) = x+ ReLU((α− 1)x), 0 ≤ α ≤ 1. (2.12)

The reasons for its success lay in the fact that it is cheap to compute, promotes sparsity in data representa-
tion [GBB11], and partially solves the problem of vanishing-gradients [BCV13]. What one immediately notices
is that these functions are continuous, but not differentiable at x = 0. One possibility to circumvent this issue
is to use rectification power unit RePU(x) := max(0, xp), for p > 1. The other option is to approximate these
functions smoothly. To this end, we define, for β > 0

ReLUβ(x) :=
1

β
log(1 + exp(βx)),

LeakyReLUα,β(x) :=
1

β
log(exp(βx) + exp(αβx)) = x+ ReLUβ((α− 1))x). (2.13)

The function ReLUβ is also known as softplus and it represents an approximation of ReLU for large values of β,
since one has

max(0, x) ≤ 1

β
(log(1 + exp(βx)) ≤ max(0, x) +

log(2)

β
, ∀x ∈ R.

So far, we observed neural networks defined on standard Euclidean space. In the second part of this thesis,
we will make use of neural networks defined on a smooth Riemannian manifold (M, g) of dimension m which
is (smoothly) embedded in Rn (cf . Definition 2.2.5). To this end, notice that we can write every f : M → R as
f =

∑I
i=1 fi =

∑I
i=1 fαi, where {αi}Ii=1 is a smooth partition of unity with a compact support subordinated to a

finite open cover {Mi}Ii=1 ofM. We suppose that everyMi can be parametrized as the graph of a function over
a subset of Eulerian coordinates, i.e.,

Mi = {Fi(xd1 , . . . , xdm) = (γ1(xd1 , . . . , xdm), . . . , xd1 , . . . , γn(xd1 , . . . , xdm)) , (xd1 , . . . , xdm) ∈ Vi ⊂ Rm},

where γj : Rm → R, j ∈ {1, . . . , n}\{d1, . . . , dm} are smooth mappings, and Fi : Vi → Mi, i = 1, . . . , I are
smooth diffeomorphisms [Lee03, Theorem 4.5] and linear as they are inverse of orthogonal projection onto the
coordinates (xd1 , . . . , xdm) [Lee03, Corollary 4.13]. Then, a neural network Φ onM is defined in the form

Φ :=

I∑
i=1

Φαi :=

I∑
i=1

Φi :=

I∑
i=1

Φ̃i ◦ F−1
i , (2.14)

where Φ̃i is a neural network defined on Vi with mn neurons more than the network Φi (since F−1
i is linear). One

analogously defines f̃i := f ◦ Fi : Vi → Mi for every f : M → R. For more details see [BGKP19, Section 7]
and references therein.
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2.3.1 Sets of Functions as Realizations of Sets of Neural Networks
In this section, we study sets of functions that are defined as realizations of certain sets of neural networks. These
sets are usually defined in terms of networks with upper bounds on the number of neurons and layers. Furthermore,
besides the choice of activation functions, bounds on the norm of weights and biases are also seen to be of influence
to properties of the resulting sets of realizations. To this end, one introduces the notion of the norm of the network
by

‖Φ‖NN := max
l=1,...,L

max
i=1,...,nl

j=1,...,nl−1
c=1,...,cl

max (|(Al)i,j,c|, |(bl)i,c|) . (2.15)

In [PRV21, Theorem 3.1], it is shown that the set of realizations of a set of neural networks defined on a closed
cube in Rd with an upper bound on the number of neurons and layers (at least 2) is not closed with respect to the
Lp-norm for any p ∈ [1,∞) and most of the widely used activation functions including ReLU, LeakyReLU, and
softplus (see [PRV21, Table 1] for other examples). However, if in addition to this upper bound on the architecture
size, there is an upper bound on the norm ‖ · ‖NN , one can show that for any continuous activation function the
set of realizations of networks defined on any compact set is closed with respect to the Lp-, p ∈ [1,∞), and C0-
norms [PRV21, Proposition 3.5]. This is due to the compactness of the set of networks and the continuity of the
realization as a mapping from the set of neural networks with the ‖ · ‖NN -norm to the set of continuous functions
with the standard norm [PRV21, Proposition 4.1], and can be further extended to the compactness in W k,p- and
Ck-norms, if activation functions are in Ck(R). As a part of this process, one can obtain bounds on derivatives of
realizations in terms of the architecture of the underlying networks and their norms.

One of the crucial reasons for the success of neural networks is the fact that realizations of neural networks can
approximate almost any arbitrary function. This is a question of expressivity of neural networks:

Given a function f and ε > 0, is there a neural network Φ such that ‖R(Φ)− f‖ < ε?

This question needs additional details, in particular on the class of functions to which f belongs and the norm
in which we measure the approximation. Furthermore, the naturally following question is the one on the size and
the norm of the approximation network.

Some of the pioneering contributions to answer this question were given by Hornik et al. [HSW89, HSW90].
In [HSW89], they show that neural networks with two layers with squashing activation function σ (σ : R→ [0, 1],
non-decreasing, limx→∞ σ(x) = 1, limx→−∞ σ(x) = 0) can approximate any continuous function in L∞-norm
on any compact set and any measurable function arbitrarily well, in a metric based on an arbitrary probability
measure. This result is often known as the universal approximation theorem. The most widely used example of
squashing function is the sigmoid or logistic function σ(x) = 1

1+exp(−x) . In [HSW90], they further study the
approximation of derivatives of a function. To this end, for a given l ∈ N0, we say that σ is l-finite if σ ∈ Cl(R)
and 0 <

∫
R |Dlσ| < ∞. They show that if σ is l-finite, then for all 0 ≤ m ≤ l, R((Al, bl, σ)l=1,2) is dense in

C∞↓ (Rn0) with respect to Cm(K)-norm for any compact set K ⊂ Rn0 . Here, C∞↓ (Rn0) ⊃ C∞c (Rn0) is defined
as the set of all functions in C∞(Rn0) such that for all multi-indices α, β it holds xβDαf(x) → 0 as |x| → ∞.
Then, using the density of the set C∞c , the same result holds for Lp and W k,p functions with 1 ≤ p <∞, also on
an open subset U ⊂ Rn0 . Besides the logistic function, widely used example of l-finite function for any l ∈ N0 is
tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) . Furthermore, we notice that ReLUβ and LeakyReLUα,β are not 0-, nor 1-finite, but
are l-finite for any l ≥ 2.

The above results are based on the application of the Stone-Weierstrass Theorem and the Fourier transform and
its properties, respectively. These abstract methods, however, do not provide any upper bound on the number of
neurons of Φ nor a bound on the norm of the weights. There are more recent results that provide such upper bounds,
including those for neural networks using ReLU as the activation function. In particular, [GKP20, Theorem 4.1]
provides an upper bound on the number of layers, neurons, and non-zero weights and biases that are enough to
construct a neural network with ReLU as the activation function, whose realization approximates a given function
f ∈ W k,p((0, 1)d) with precision ε in W s,p((0, 1)d)-norm, with k ≥ 2, p ∈ [1,∞], s ∈ [0, 1]. The upper bound
is given as a function of ε, d, k, p, s, ‖f‖Wk,p . This was further extended in [GR21, Proposition 4.8], where an
upper bound for the number of layers, neurons, non-zero weights, and the norm of the network, depending on the
same parameter as above, is given for the approximation of functions f ∈W l,p((0, 1)d) in W k,p-norm, l ≤ k− 1,
with a neural network whose activation function is in Cl on some closed interval, with some additional conditions.
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These conditions include many widely used activation functions [GR21, Table 1], including ReLU, RePU and
ReLUβ . To obtain the above results, one starts with the approximation of polynomials by first approximating
monomials and then applying (an approximate) partition of unity. This allows for the approximation of localized
Taylor polynomials and the final step is an application of the Bramble–Hilbert lemma.

There are also results that study the approximation properties of convolutional neural networks. In [PV20],
it is shown that every fully-connected neural network can be expressed by a convolutional neural network with
a comparable number of parameters, without pooling and with padding making the input periodic, and the same
holds the other way around. [Zho20] establishes the universality of deep convolutional neural networks with ReLU
activation function, without pooling layers and with padding which preserves the shape. [Zho20, Theorem A] deals
with the approximation of continuous functions on compact K ⊂ Rd in C(K)-norm, while [Zho20, Theorem B]
shows that such neural networks can approximate a Sobolev function of order r > d

2 + 2 in the L∞-norm, with
a bound on the number of layers depending on the precision of the approximation and the Sobolev norm of the
function to be approximated.

Finally, let us notice that the above results transfer to neural networks defined on a compact Riemannian
manifold (M, g) (cf . (2.14)) if the metric g is equivalent to the metric induced by immersion, as the Lebesgue and
Sobolev spaces are staying the same under an equivalent norm [Heb96, Chapter 2, Proposition 2.2].

Further results on approximations properties of different kinds of neural networks, together with the compari-
son of deep versus shallow networks can be found in [GRK20] as a chapter in [GK22].

2.4 Γ- and Mosco-convergence
Some of the main results in both parts of the thesis will concern the convergence of functionals of discrete or
nonlocal nature to a functional which can be characterized as being of continuous or local nature. To this end, we
define the precise notions of convergence that we will use, and present some of the properties of the convergent
sequences. For further details, we refer the reader to [Mos69, DM93, Bra06].

Definition 2.4.1 (Γ- and Mosco-convergence). Let X be a Banach space. Consider functionals {EK}K∈N and E
from X to R ∪ {∞} that satisfy

(i) for every sequence {xK}K∈N ⊂ X with xK → x ∈ X , the estimate

lim inf
K→∞

EK [xK ] ≥ E [x]

holds true (“lim inf-inequality”),

(ii) for every x ∈ X there exists a recovery sequence {xK}K∈N ⊂ X satisfying xK → x in X such that the
estimate

lim sup
K→∞

EK [xK ] ≤ E [x]

is valid (“the existence of a recovery sequence and lim sup-inequality”).

Then {EK}K∈N Γ-converges to E . The strong convergence in the above conditions can be changed to the weak
convergence, yielding the Γ-convergence in the weak topology. If solely the first condition is changed to

(i’) for every sequence {xK}K∈N ⊂ X with xK ⇀ x ∈ X it holds

lim inf
K→∞

EK [xK ] ≥ E [x],

we say that {EK}K∈N converges to E in the sense of Mosco.

Our interest lies in determining some reasonable conditions under which we can obtain the equality in the
lim inf–inequality conditions, at least for the sequence of minimizers of the functionals. This is given by the
following definition and theorem.

Definition 2.4.2 (Equicoercive sequence, [Bra06, Definition 2.9]). Let X be a Banach space. A sequence of
functionals {EK}K∈N mapping from X to R ∪ {∞} is said to be equicoercive if for all r ∈ R there exists a
compact set Kr ⊂ X such that {x ∈ X : EK [x] ≤ r ∀K ∈ N} ⊂ Kr.
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Theorem 2.4.3 (Fundamental theorem of Γ-convergence, [Bra06, Theorem 2.10]). Let X be a Banach space
and {EK}K∈N : X → R ∪ {∞} an equicoercive sequence which Γ-converges to E : X → R ∪ {∞}. Then
minx∈X E [x] = limK→∞ infx∈X EK [x].

In particular, for a sequence {xK}K∈N of minimizers of {EK}K∈N with uniformly bounded energy EK [xK ] ≤
r, the equicoercivity implies convergence on a subsequence to some x ∈ X , and the Γ-convergence implies that
x is a minimizer of E . In the case of Mosco-convergence, one can replace the condition of compactness of the set
Kr to the weak compactness. This will be the main idea of the approach we will take in Theorems 4.4.4, 5.4.5 and
6.3.2.



Chapter 3

Foundations of the Metamorphosis Model

IN this chapter, we first present a foundation for the study of geodesic and spline interpolation in the metamor-
phosis model. To this end, based on [RW15, HRW18], we introduce the framework for the study of both
the time continuous and time discrete geodesic and spline calculus on possibly infinite-dimensional Rieman-

nian manifolds. Furthermore, we observe the space of images as a Riemannian manifold and introduce the image
metamorphosis model. Finally, we introduce the iPALM algorithm [PS16] that will be used for the numerical
optimization of fully discrete models which are developed in later chapters.

3.1 Riemannian Geodesics and Splines

In this section, we define the basic setup for studying geodesics and splines on possibly infinite-dimensional Rie-
mannian manifolds. We first study the time continuous setting and then define a variational time discretization.
We present results showing the existence (and uniqueness) of the defined notions, and the convergence of the time
discrete notions towards the continuous counterparts using the tool of Γ-convergence.

3.1.1 Time Continuous Setting

In Section 2.2, we introduced geodesics as one of the central concepts in the study of Riemannian manifolds in
two different, but equivalent ways: as solutions to the geodesic equation (cf . Definition 2.2.10) and as minimizers
of the path length for fixed boundary conditions (cf . Proposition 2.2.14). In this section, we introduce the basic
framework for the study of possibly infinite dimensional Riemannian manifolds which will allow us to define the
notion of a geodesic path on these objects.

To define the technical setup (cf . [RW15] for details), we observeM as the closure of an open connected subset
of a separable, reflexive Banach space V that is compactly embedded in a Banach space Y. This makesM a Ba-
nach manifold. We also assume thatM is path-connected and that ∂M (if it is non-empty) is smooth. We identify
the tangent space TxM, x ∈ M with V and introduce a Riemannian metric as a mapping g :M×V ×V → R,
such that g is uniformly bounded, V-coercive, and uniformly continuous on M. In particular, these conditions
are satisfied for smooth m-dimensional manifolds, with V = Y = Rm and gx(v, w) = vTDϕ(x)TDϕ(x)w,
where ϕ is a local chart (cf . Definition 2.2.2). Furthermore, the coordinate-free definition of covariant derivative
(Definition 2.2.17) is valid in this setting.

Given a sufficiently smooth path (y(t))t∈[0,1] on a Riemannian manifold (M, g), we define its length (cf .
Definition 2.2.13)

L[(y(t))t∈[0,1]] :=

∫ 1

0

√
gy(t)(ẏ(t), ẏ(t)) dt , (3.1)

27
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and the path energy (cf . Definition 2.2.15)

E [(y(t))t∈[0,1]] :=

∫ 1

0

gy(t)(ẏ(t), ẏ(t)) dt . (3.2)

Recall that in Remark 2.2.16 we discussed the fact that a minimizer of the path energy is also a minimizer of the
path length. As the path energy is convex, it is, therefore, more convenient to define a geodesic connecting yA and
yB as a minimizer of the path energy among all (regular) paths y : [0, 1]→Mwith y(0) = yA and y(1) = yB . For
all yA, yB ∈ M, the existence of a connecting geodesic y ∈ H1((0, 1),M) was shown in [RW15, Theorem 4.1],
where the key step is the weak lower semicontinuity of the path energy (3.2), using the compact embedding of V
into Y. The local uniqueness of a geodesic is shown under an additional assumption that g is twice continuously
differentiable [RW15, Theorem 4.2]. Given the geodesic curve (y(t))t∈[0,1], the Riemannian distance between
points yA and yB can be defined by dM(yA, yB) :=

√
E [y(t)].

Geodesics offer a natural and smooth interpolation between two fixed points on a manifold. The next task one
considers is interpolation between multiple points p1, . . . , pJ ∈ M for a sequence of specified times 0 = t1 <
t2 < . . . < tJ = 1, i.e., finding an as smooth as possible curve y : [0, 1] → M that fulfills the interpolation
constraints y(tj) = pj for j = 1, . . . , J . The first attempt would be to construct a path consisting of geodesics
between every two consecutive points. However, the velocity field of such a curve exhibits discontinuities at the
interpolation points (cf . Figure 1.2). In general, there is no curve solving the geodesic equation (2.3) which
satisfies interpolation constraints. An approach to the construction of a smooth interpolation is to use the geodesic
equation, not as a strict constraint, but to include it as a penalization term in a path energy. This leads to the
functional [NHP89]

F [(y(t))t∈[0,1]] :=

∫ 1

0

gy(t)

(
D

dt
ẏ(t),

D

dt
ẏ(t)

)
dt , (3.3)

where D
dt denotes the covariant derivative along y as defined by Definition 2.2.17. In the Euclidean context, this

functional takes the simple form FEuc[(y(t))t∈[0,1]] =
∫ 1

0
|ÿ(t)|2 dt , and it was shown in [dB63] that the unique

minimizer (with specified boundary conditions) is a third order spline, i.e., a twice continuously differentiable
curve which is a piecewise cubic polynomial. This motivates us to call the above-defined energy spline energy and
its minimizer Riemannian (cubic) spline.

For the rigorous study of Riemannian splines, one considers a Riemannian manifold (M, g) whereM = V for
a separable Hilbert space compactly embedded in a Banach space Y (cf . [HRW18, Definition 2.1]) and a uniformly
coercive Riemannian metric g which can be written as a sum of a compact and a bilinear part (cf . [HRW18,
Definition 2.2]). These assumptions still do not guarantee the existence of a Riemannian spline (cf . [HRW18,
Lemma 2.15] for an example whereM is cylinder in R3, t1 = 0, t2 = r ∈ (0, 1) \Q, t3 = 1, and p1, p2, p3 ∈M,
where p1 and p2 are opposite to each order on S1). To this end, one instead observes regularized spline energy

Fσ[(y(t))t∈[0,1]] := F [(y(t))t∈[0,1]] + σE [(y(t))t∈[0,1]], σ > 0. (3.4)

We refer to minimizers of this energy as regularized splines or splines in tension [Sch66]. The existence of
regularized splines in space H2((0, 1),M), satisfying arbitrary interpolation constraints, was shown in [HRW18,
Theorem 2.19], where one also considers one of the following boundary conditions

D

dt
ẏ(0) =

D

dt
ẏ(1) = 0 , (natural b.c.)

ẏ(0) = v0, ẏ(1) = v1 for given v0 ∈ Ty(0)M, v1 ∈ Ty(1)M , (Hermite b.c.)
y(0) = y(1), ẏ(0) = ẏ(1), ÿ(0) = ÿ(1) . (periodic b.c.) (3.5)

The natural boundary conditions correspond to the case of not posing boundary conditions at all [HRW18, Remark
2.13], while periodic boundary conditions can be observed as if we define the problem on S1 [HRW18, Remark
2.14].

3.1.2 Variational Time Discretization
The computation of geodesic and spline interpolations on infinite-dimensional Riemannian manifolds represents
a numerically involved task, as working directly with definitions (3.2) and (3.4) is possible only in rare cases.
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To this end, one discretizes these expressions both in time and space. In this section, we present a framework
for a variational time discretization. For a smooth path on the manifold y : [0, 1] → M we observe the points
(y0, . . . , yK) ∈ MK+1,K ≥ 1 obtained by sampling the path y at the times tk = k

K , k = 0, . . . ,K, i.e.,
yk = y(tk). Taking into account the triangle inequality and Jensen’s inequality, we have

L[(y(t))t∈[0,1]] ≥
K∑
k=1

dM(yk−1, yk), E [(y(t))t∈[0,1]] ≥ K
K∑
k=1

(dM(yk−1, yk))2,

where equality holds for geodesic paths due to the constant speed property. As already said, a direct computation of
the Riemannian distance is usually not possible. The main step in variational time discretization is an assumption
on the existence of a functionalW :M×M→ R that locally approximates the squared Riemannian distance up
to higher order terms

W[y, ỹ] = (dM(y, ỹ))2 +O((dM(y, ỹ))3), for y, ỹ ∈M. (3.6)

These observations motivate the definitions of the discrete path length and the discrete path energy associated with
a discrete (K + 1)-path (y0, . . . , yK) ∈MK+1 as

LK [(y0, . . . , yK)] :=

K∑
k=1

√
W[yk−1, yk] , EK [(y0, . . . , yK)] := K

K∑
k=1

W[yk−1, yk] . (3.7)

Then, a time discrete geodesic of lengthK+1 connecting yA and yB inM is defined as a discrete path (y0, . . . , yK)
that minimizes the discrete path energy (3.7) among all the paths with y0 = yA, yK = yB . For fixed yA, yB ∈ M
andK ≥ 2, the existence of discrete geodesic of lengthK+1 connecting yA and yB follows from [RW15, Theorem
4.3]. IfW is in addition twice differentiable, weakly lower semicontinuous, and coercive, and the approximation
of the squared Riemannian distance is uniform locally, this geodesic is locally unique [RW15, Theorem 4.7].

In consistency with the time continuous approach, we defined geodesic paths as minimizers of the discrete
path energy. In the time continuous setting, by Remark 2.2.16, minimization of path energy (3.2) was implying
the minimization of the curve length energy (3.1). In the discrete setting, however, this is not the case as one can
construct a counterexample on a manifoldM ⊂ V with two points yA, yB ∈ M which are close w.r.t. the norm
induced by V, but relatively far apart w.r.t. the Riemannian distance onM (cf . [RW15, Remark 4.11]). However,
one can show convergence of time discrete geodesics towards the time continuous geodesic curve as K →∞. To
this end, one defines a time extension of a discrete path (y0, . . . , yK) constructed by piecewise geodesic interpola-
tion. Furthermore, a time extension EK is defined such that EK [y] = EK [(y0, . . . , yK)] if y is the time extension
of a (K + 1)-path (y0, . . . , yK), and +∞ else. Then, one can show the Γ-convergence in L2((0, 1),Y) (cf . Defi-
nition 2.4.1) of EK to the time continuous path energy E , and the convergence in L2((0, 1),Y) of a subsequence
of extensions of discrete geodesics to the time continuous geodesic curve [RW15, Theorem 4.8 and Corollary 4.9].

To study the time discretization of Riemannian splines, let us again consider the Euclidean setting. Given a
sufficiently smooth curve (y(t))t∈[0,1] ∈ Rn, using an approximation of acceleration ÿ(t) by the second order

finite differences, we have ÿ(tk) ≈ 2K2
(
y(tk−1)+y(tk+1)

2 − y(tk)
)

. Using the piecewise constant approximation
of the time integral, we then get

F [(y(t))t∈[0,1]] =

∫ 1

0

|ÿ(t)|2 dt ≈
K−1∑
k=1

4K3

∣∣∣∣y(tk)− y(tk−1) + y(tk+1)

2

∣∣∣∣2 dt,

where for k = 0, . . . ,K we have tk = k
K . Having in mind the above approximation of a geodesic path, in order

to translate this approximation to the discretization of the Riemannian spline energy (3.3), we can replace the
Euclidean distance and geodesic average by (an approximation of) their Riemannian counterparts. This leads to
the definition of discrete spline energy for a discrete path (y0, . . . , yK) ∈MK+1 as

FK [(y0, . . . , yK)] := 4K3
K−1∑
k=1

W[yk, ỹk], (3.8)

subject to the constraint

ỹk := argmin
y∈M

E2[(yk−1, y, yk+1)], for k = 1, . . . ,K − 1.
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As in the time continuous case (cf . (3.4)), we also define the regularized discrete spline energy Fσ,K := FK+σEK

for σ > 0. Given a sequence of points p1, . . . , pJ and a sequence of indices 0 = i1 < · · · < iJ = K we say
that a discrete path (y0, . . . , yK) ∈ MK+1 is a regularized (time) discrete spline interpolation of p1, . . . , pJ
if it minimizes energy Fσ,K while satisfying interpolation constraints yij = pj , j = 1, . . . , J . The existence
of a regularized discrete spline interpolation for the arbitrary interpolation constraints was shown in [HRW18,
Theorem 3.10], under certain regularity and consistency conditions for W (see [HRW18, Definition 3.1]). Here,
one considers one of the following boundary constraints

no additional constraint , (natural b.c.)
K(y1 − y0) = v0, K(yK − yK−1) = v1 for given v0, v1 ∈ V , (Hermite b.c.)

y0 = yK , yK+1 ∼ y1, y−1 ∼ yK−1 . (periodic b.c.)

This identification of boundary points means that the summation in (3.8) is in range from k = 0 to k = K − 1.
To study the convergence properties as K → ∞, one defines time extension of a (K + 1)-path by the cubic

Hermite interpolation on intervals [(k − 1
2 )τ, (k + 1

2 )τ ], for τ = 1
K and k = 1, . . . ,K − 1, and the affine

interpolation on [0, 1
2τ ] and (K− 1

2 )τ, 1]. Then, one can define the time extension Fσ,K as being equal to Fσ,K on
these extended curves and +∞ elsewhere. [HRW18, Theorem 4.7] provides Mosco-convergence inH2((0, 1),M)
of {Fσ,K}K∈N to Fσ as K →∞. As a corollary, we have that any sequence of extensions of minimizers of Fσ,K

contains a sequence that converges weakly in H2((0, 1),M) to a minimizer of Fσ [HRW18, Theorem 4.9].

Finally, let us mention that the variational time discretization of some of the other notions introduced in Sec-
tion 2.2 (exponential and logarithm map, parallel transport) was also studied in [RW15], but is out of the scope of
this thesis.

3.2 Image Metamorphosis Model
In this section, we give a review of the image metamorphosis model, the flow of diffeomorphism model as its
basis, and finally state some fundamental results on the flow equation that will be used throughout the first part of
this thesis. Here and throughout the first part of this thesis, we assume that the domain Ω ⊂ Rn is bounded and
strongly Lipschitz (cf . Definition 2.1.1).

3.2.1 Flow of Diffeomorphism
In what follows, we present a short exposition of the flow of diffeomorphism model [DGM98, BMTY05, JM00,
MTY02] as a primary stage of the metamorphosis model. This model is based on Arnold’s approach [Arn66,
AK98] to the study of the temporal evolution of ideal fluids by defining geodesics on the group of orientation
preserving diffeomorphisms. To this end, we observe the set of Sobolev diffeomorphisms

Dm(Ω) := {ψ ∈ Hm(Ω,Ω),det(Dψ) > 0, ψ|∂Ω = 1}, m > 1 +
n

2
. (3.9)

Functions in this set are indeed C1(Ω,Ω)-orientation preserving diffeomorphisms since, by [IKT13, Lemma A.1],
we have the existence of ψ−1 ∈ Dm(Ω) and, by Sobolev embedding theorem 2.1.8, we haveDm(Ω) ⊂ C1(Ω,Ω).
By [IKT13, Lemma 2.18], the set of all Hm(Ω,Ω) functions which are orientation preserving diffeomorphisms
is an open subset of Hm(Ω,Ω) and can be seen as C∞-manifold modeled on this Hilbert space. For every ψ ∈
Dm(Ω), we have TψDm(Ω) = V := Hm(Ω,Rn)∩H1

0 (Ω,Rn), as the velocity space of smooth curves with origin
at that point (cf . Definition 2.2.3). We define the Riemannian metric by

gψt(ψ̇t, ψ̇t) :=

∫
Ω

L[vt, vt] dx ,

and the associated path energy is

Eψt [(ψt)t∈[0,1]] :=

∫ 1

0

gψt(ψ̇t, ψ̇t) dt,
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where vt = ψ̇t ◦ ψ−1
t is the Eulerian velocity and the quadratic form L is a higher order elliptic operator to

be specified below. Following [DGM98, Theorem 2.5], given that the metric gψt is H3(Ω)-coercive, paths with
finite energy which connect two diffeomorphisms ψ0 = ψA and ψ1 = ψB are actually one-parameter families
of diffeomorphisms, i.e., ψ : [0, 1] × Ω → Ω such that for all s, t ∈ [0, 1] with s + t ∈ [0, 1] the map ψs is
diffeomorphic and ψs ◦ ψt = ψs+t. Moreover, by [DGM98, Theorem 3.1], any minimizing sequence of paths has
a uniformly converging subsequence and the limiting minimizing path ψ, which is the geodesic path on Dm(Ω),
and its associated velocity field v satisfies ψ̇t(x) = v(t, ψ(t, x)) for every t ∈ [0, 1] and x ∈ Ω.

In the context of image morphing, the above minimizer determines the geodesic path ut = uA ◦ψ−1
t , t ∈ [0, 1]

in the space of images L2(Ω), connecting uA = u0 and uB = uA ◦ ψB .
For the rest of this chapter, the quadratic form L is the higher order elliptic operator

L[v, v] :=
λ

2
(tr ε[v])2 + µtr(ε[v]2) + γ|Dmv|2, (3.10)

where ε[v] := (Dv)sym = 1
2 (Dv +DvT ) and λ, µ, γ > 0. The H3(Ω)-coercivity of gψt is inferred by combining

Korn’s inequality 2.1.6 for the lower order terms with the Gagliardo–Nirenberg inequality 2.1.5 for the higher order
term. Physically, the metric gψt(ψ̇t, ψ̇t) describes the viscous dissipation in a multipolar fluid model as investigated
by Nečas and Šilhavý [NŠ91]. The first two terms of the integrand represent the dissipation density in a Newtonian
fluid and the third term can be regarded as a higher order measure of friction. Furthermore, the spatially integrated
terms

∫
Ω

(trε[v])2 dx and
∫

Ω
tr(ε[v]2) dx roughly quantify the average change of volume and length induced by v,

respectively (cf . [Cia88]). Let us also notice that, due to sole dependency on the symmetric part of the gradient in
the lower order terms, a rotational flow, whose associated velocity field has a skew-symmetric gradient, does not
lead to any friction, while for incompressible fluids we have trε[v] = divv = 0 so the first term in (3.10) vanishes.
For more on the physical background, we refer the reader to [RW11].

3.2.2 Metamorphosis in Image Space
In the flow of diffeomorphism model, we observed image paths determined by an initial image and a family
of diffeomorphisms. In this setting, each image particle moves along the motion paths without any change of
intensity, which is known as the brightness constancy assumption. This assumption is equivalent to a vanishing
material derivative

ẑt ◦ ψt :=
d

dt
(ut ◦ ψt) = (u̇+ v ·Du) ◦ ψt :=

D

∂t
ut ◦ ψt

along a path (ut)t∈[0,1] in the space of images. The metamorphosis approach, originally proposed by Miller,
Trouvé, Younes and coworkers in [MY01, TY05b, TY05a], generalizes the flow of diffeomorphism model by
defining a metric on the space of images that penalizes the squared material derivative and thus allows for image
intensity variations along motion paths. Under the assumption that the image path u is sufficiently smooth, the
metric and the path energy read as

gu(u̇, u̇) := min
v:Ω→Rn

∫
Ω

L[v, v] +
1

δ
|ẑ|2 dx , E [u] :=

∫ 1

0

gu(u̇t, u̇t) dt ,

for a penalization parameter δ > 0. The term L[v, v] quantifies the cost of the underlying transport, while the
penalization of the material derivative ẑ reflects the penalization of the changes in image intensity along the tra-
jectories. Hence, the flow of diffeomorphism model can be seen as the limit case of the metamorphosis model
for δ → 0.

This definition of the metric has two major drawbacks:

- In general, paths in the space of images do not exhibit any smoothness properties (neither in space nor time),
and therefore the evaluation of the material derivative is not well-defined.

- Different pairs (v, ẑ) of velocity fields and material derivatives can imply the same time derivative of the
image path u̇.

To tackle these problems, Trouvé and Younes [TY05a] proposed a nonlinear geometric structure in the space of
RGB images I := L2(Ω,R3). In detail, for a given image path u ∈ L2([0, 1], I) and an associated velocity
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field v ∈ L2((0, 1),V), where V := Hm(Ω,Rn) ∩ H1
0 (Ω,Rn) denotes the velocity space, the weak material

derivative ẑ ∈ L2((0, 1),Z := L2(Ω,R3)) is incorporated in the model and it is implicitly given by∫ 1

0

∫
Ω

ηẑ dx dt = −
∫ 1

0

∫
Ω

(∂tη + div(vη))udxdt, ∀η ∈ C∞c ([0, 1]× Ω). (3.11)

We consider (v, ẑ) as a tangent vector in the tangent space of I at the image u. Indeed, (v, ẑ) represents a variation
of the image u via transport and change of intensity. Furthermore, for an image u ∈ I we define the nonlinear
structure on V × Z by

Nu :=
{

(v, ẑ) ∈ V × Z :

∫
Ω

ẑη + udiv(ηv) dx = 0, ∀η ∈ C∞c ([0, 1]× Ω)
}
.

This allows a restriction to the equivalence classes of pairs, where two pairs are equivalent if and only if they
induce the same temporal change of the image path u̇. Then the tangent space at u is defined as

TuI := V × Z \Nu,
giving rise to the associated tangent bundle TI (cf . Definition 2.2.3). The elements in this tangent space are
denoted by γ = (v, ẑ) and the space is endowed with the norm

‖γ‖ := inf{‖v‖V + ‖ẑ‖Z : γ = (v, ẑ)}.
Finally, the image curve u is defined to be regular in the space of images, denoted by u ∈ H1([0, 1], I), if u ∈
C0([0, 1], I) and exists a measurable path γ : [0, 1] → TI with γt ∈ TutI, t ∈ [0, 1], such that

∫ 1

0
‖γt‖2 dt < ∞

and (3.11) is satisfied. The path energy can now be rigorously defined on u ∈ H1([0, 1], I) by

E [u] :=

∫ 1

0

inf
(v,ẑ)∈Tu(t)I

∫
Ω

L[v, v] +
1

δ
|ẑ|2 dxdt , (3.12)

and the geodesic curve in the space of images connecting uA, uB ∈ I is a regular curve u ∈ H1([0, 1], I) with
u0 = uA, u1 = uB such that

E [u] := inf{E [ũ] : ũ ∈ H1([0, 1], I), ũ0 = uA, ũ1 = uB}.
The existence of a geodesic curve is proven in [TY05a, Theorem 6]. Note that the infimum in (3.12) is attained
along a measurable curve, which is shown in [TY05a, Proposition 1 and Theorem 2]. For further details, we refer
the reader to [TY05a].

3.2.3 The Flow Equation
The relationship between diffeomorphic flows and their Eulerian velocity was of key importance for the definition
of both the flow of diffeomorphism and image metamorphosis models. In this subsection, we state some results
on the existence, uniqueness, and regularity of diffeomorphic flows given as a solution to the flow equation, to be
used throughout this part of the thesis.

Theorem 3.2.1. For every velocity field v ∈ L2((0, 1),V), there exists a unique flow ψ ∈ H1([0, 1], Hm(Ω,Rn))
which is a solution of

ψ̇t(x) = vt ◦ ψt(x) , (3.13)
ψ0(x) = x ,

in the sense that ψt(x) = x +
∫ t

0
vs ◦ ψs(x) ds for all x ∈ Ω and t ∈ [0, 1]. In particular, ψt ∈ Dm(Ω) for all

t ∈ [0, 1]. Furthermore, for α ∈ [0,m− 1− n
2 ) the following estimate holds

‖ψ‖C0([0,1],C1,α(Ω)) + ‖ψ−1‖C0([0,1],C1,α(Ω)) ≤ G
(∫ 1

0

‖vs‖C1,α(Ω) ds

)
, (3.14)

where G(x) := C(x + 1) exp(Cx). The solution operator L2((0, 1),V) → C0([0, 1], Hm(Ω,Ω)), v 7→ ψv ,
assigning a flow ψ to every velocity field v, is continuous w.r.t. the weak topology in L2((0, 1),V) and the
C0([0, 1]× Ω)-topology for ψ.
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Proof. The existence and regularity follow from [BV17, Theorem 4.4 and Lemma 3.5] by an additional observation
that there exists a linear and continuous extension operator from Hm(Ω,Rn) to Hm(Rn,Rn) which is implied by
Stein’s extension theorem [Ste70]. The uniqueness follows from [You10, Theorem C.3.] which is a generalization
of Picard–Lindelöf Theorem. The weak continuity follows from [TY05a, Theorem 9]. Finally, the estimate for
the first term in (3.14) is proven in [ENR20, Theorem 6] based on [TY05a, Lemma 7] and relies on Gronwall’s
inequality, while the second term is estimated analogously by observing that ψ−1

t is the flow associated with the
motion field −v1−t.

Remark 3.2.2. Analogous existence results and bounds as in Theorem 3.2.1 hold if V is replaced by C1,α(Ω,Rn)
with zero boundary condition [You10, Chapter 8]. In addition, the mapping v 7→ ψv is Lipschitz continuous in v
and it holds

‖ψvt − ψṽt ‖C0(Ω) ≤
(
1 + C exp(C)

) ∫ t

0

‖vs − ṽs‖C0(Ω) ds,

where C =
∫ t

0
‖vs‖C1(Ω) ds [You10, (8.16)].

Remark 3.2.3. By the Sobolev embedding theorem 2.1.8, we have ψ ∈ C0, 12 ([0, 1], C1,α(Ω,Ω)) and we can obtain
estimates for |ψ|

C0, 1
2 ([0,1],C1,α(Ω))

and |ψ−1|
C0, 1

2 ([0,1],C1,α(Ω))
:

‖ψt − ψs‖C1,α(Ω) =
∥∥∥ ∫ t

s

vr ◦ ψr dr
∥∥∥
C1,α(Ω)

≤
∫ t

s

‖vr ◦ ψr‖C1,α(Ω) dr

≤
∫ t

s

‖vr‖C0(Ω) + C
(
‖Dvr‖C0(Ω)‖Dψr‖C0,α(Ω) + |Dvr|C0,α(Ω)‖Dψr‖α+1

C0(Ω)

)
dr

≤
∫ t

s

‖vr‖C0(Ω) dr + C max
(
‖Dψ‖α+1

C0([0,1],C0,α(Ω))
, ‖Dψ‖C0([0,1],C0,α(Ω))

)∫ t

s

‖Dvr‖C0,α(Ω) dr

≤G1

(∫ 1

0

‖vs‖C1,α(Ω) ds

)∫ t

s

‖vr‖C1,α(Ω) dr

≤G1

(∫ 1

0

‖vs‖C1,α(Ω) ds

)
‖v‖L2((0,1),C1,α(Ω))|t− s|

1
2 ,

where we used the previous theorem to obtain a positive, monotonically increasing function G1, and in the last
step we used the Cauchy-Schwarz inequality. Furthermore, to obtain the third line, we used that, by [Fio16,
Propositions 1.2.4 and 1.2.7], for every r ∈ [0, 1] we have vr ◦ ψr ∈ C1,α(Ω,Ω) with

|D(vr ◦ ψr)|C0,α(Ω) ≤ C
(
‖Dvr‖C0(Ω)|Dψr|C0,α(Ω) + |Dvr|C0,α(Ω)‖Dψr‖α+1

C0(Ω)

)
. (3.15)

3.3 iPALM Algorithm
In this section, we introduce (a simplified version of) the Inertial Proximal Alternating Linearized Minimization
(iPALM) algorithm [PS16] as the basis of the optimization algorithm for the fully discrete models in Sections 4.6
and 5.7.

We observe the following optimization problem

min
x∈Rn

F (x) = F1(x) + F2(x), (3.16)

where

• F1, F2 : Rn → [0,∞) are proper, convex functions,

• F2 ∈ C1,1(Rn) with the Lipschitz constant of DF2 denoted by L(F2).

The first ingredient of the algorithm is Moreau’s proximal mapping [Mor65], given by the following definition.
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Definition 3.3.1 (Moreau’s proximal mapping). For a convex function f : Rn → R, we define its Moreau’s
proximal mapping by

proxfτ (y) := argmin
x∈Rn

f(x) +
τ

2
|x− y|2.

Notice that minimizer is unique as we minimize a strictly convex function.

The PALM algorithm [BST14] is based on the combination of the standard gradient descent in F2 with the
proximal mapping of F1. In addition to this, the iPALM algorithm uses the extrapolation by an inertial term which
adds part of the old direction to the new direction of the algorithm, motivated by the heavy ball approach by
Polyak [Pol64]. Altogether, we have Algorithm 1.

Algorithm 1: iPALM Algorithm.

1 Choose x[0], x[1] ∈ Rn, β ∈ [0, 1);
2 for i = 1, ... do
3 x[i,β] = x[i] + β(x[i] − x[i−1]);
4 x[i+1] = proxF1

L

(
x[i,β] − 1

LDF2

(
x[i,β]

))
;

There, L is a constant proportional to L(F2) (cf . [PS16, Lemma 4.1] for the exact relation). The convergence
of the sequence {x[i]}i∈N generated by Algorithm 1 to a critical point of F is, by [PS16, Theorem 4.1], guaranteed
if the sequence is bounded and F is a Kurdyka–Lojasiewicz (KL) function, i.e., subdifferential of F satisfies cer-
tain properties (see [PS16, Section 3] for more details and [BDLM10] for characterization of (convex) functions
satisfying these properties).

Unfortunately, the exact Lipschitz constant L(F2) is usually unknown and one must resort to approximating
it. To this end, we present a backtracking method based on an algorithm from the class of iterative shrinkage–
thresholding algorithms (ISTA) (see [BT09] and references therein). One observes the quadratic approximation of
F (x) at a given point y (based on the quadratic approximation of F2)

QL(x, y) := F1(x) + (x− y) ·DF2(y) +
L

2
|x− y|2 + F2(y).

Then, using the Cauchy–Schwarz inequality and the definition of the Lipschitz constant, we have

F (x)−QL(x, y) ≤ L(F2)− L
2

|x− y|2,

and thus, for every L ≥ L(F2) and every x, y ∈ Rn, it holds F (x) ≤ QL(x, y). There exists a unique

pL(y) := argmin
x∈Rn

QL(x, y) = proxF1

L

(
y − 1

L
DF2(y)

)
.

In particular,
F (x) = QL(x, x) ≥ Q(pL(x), x) ≥ F (pL(x)), (3.17)

leading to the update step x[i] = pL(x[i−1]), for L ≥ L(F2). Thus, to obtain a good estimate for L, we can increase
the current estimate as long as (3.17) is not satisfied. Altogether, this leads to Algorithm 2.

From (3.17), we get that the sequence F (x[i]) is non-increasing. If the minimization problem (3.16) has at least
one optimal solution, then, for every optimal solution x∗, [BT09, Theorem 3.1] shows

F (x[i])− F (x∗) ≤ ηL(F2)|x[0] − x∗|2
2i

,

which means that we have a sublinear rate of convergence. Finally, combining Algorithm 2 with Algorithm 1 we
get Algorithm 3, which will be used in Sections 4.6 and 5.7.
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Algorithm 2: ISTA Algorithm with backtracking.

1 Choose x[0] ∈ Rn, η > 1, L[0] > 0;
2 for i = 1, ... do
3 Find the smallest non-negative integer ni such that with L = ηniL[i−1]:

F (pL(x[i−1])) ≤ Q(pL(x[i−1]), x[i−1]);

4 Set L[i] = ηniL[i−1] and
x[i] = pL[i](x[i−1]);

Algorithm 3: iPALM Algorithm with the backtracking of Lipschitz constant.

1 Choose x[0], x[1] ∈ Rn, β ∈ [0, 1), η > 1, L[0] > 0;
2 for i = 1, ... do
3 x[i,β] = x[i] + β(x[i] − x[i−1]);
4 Find the smallest non-negative integer ni such that with L = ηniL[i−1]:

F (pL(x[i,β])) ≤ Q(pL(x[i,β]), x[i,β]);

5 Set L[i] = ηniL[i−1] and
x[i+1] = pL[i](x[i]);

Remark 3.3.2. We finally comment on generalizations of the above-presented algorithms.

(i) In Chapters 4 and 5 minimization problems of the form (3.16) will be observed over a set of functions instead
of Rn. In that case, one has to make an additional assumption on (lower semi)continuity of functions F1 and
F2.

(ii) In Algorithm 1, one can do the update step with different inertial coefficients and step sizes in each step,
taking the following form

x[i+1] = proxF1

L[i]

(
x[i,α[i]] − 1

L[i]
DF2

(
x[i,β[i]]

))
.

(iii) The iPALM algorithm is a widely used and versatile optimization algorithm. It allows for the study of
minimization problems of the form

min
x=(x1,x2)∈Rn1×Rn2

F (x) = F11(x1) + F12(x2) + F2(x),

where (cf . [PS16, Assumption A])

• F11, F12 : Rn1,n2 → (−∞,+∞] are proper, lower semicontinuous, infRn1,n2 F11, F12 > −∞,

• F2 : Rn1×Rn2 → R, infRn1×Rn2 F2 > −∞, is differentiable on Rn1×Rn2 , in class C1,1 on bounded
subsets of Rn1 × Rn2 , and has globally Lipschitz partial gradients.
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Chapter 4

Image Morphing in Deep Feature Space
with Anisotropic Regularization

THE image metamorphosis model presented in the previous chapter, its time discrete counterpart, and the
spatial discretization based on finite elements in [BER15] present a prominent color-based approach to
image morphing. However, as the grayscale or color channels do not carry any semantic information, this

leads to an unnatural morphing along the obtained geodesic paths. To overcome these problems, in this chapter,
we advocate a metamorphosis model in a deep feature space, which amounts to replacing the input images with
feature vectors combining image intensities and semantic information generated by a feature extraction operator.
Furthermore, the standard metamorphosis model assumes the strong smoothness of the underlying flow and defor-
mation fields, leading to improper behavior of shape interfaces along the geodesic paths. To this end, we introduce
an anisotropic regularization of the variational energy, which allows for a weaker penalty of large gradients of
the underlying velocity field in the proximity of interfacial structures, explicitly allowing for discontinuities in the
deformation fields. Based on the approach from [BER15], we develop the variational time discretization of the
model, prove the existence of discrete geodesic paths, and discuss its Mosco-convergence to the appropriate time
continuous metamorphosis model in deep feature space. This in particular implies the convergence of time discrete
to time continuous geodesic paths and establishes the existence of time continuous geodesics as minimizers of the
time continuous metamorphosis model. The fully discrete model is based on a finite difference discretization of
features and deformations and the discretization of the warping operation via cubic Hermite spline interpolation.
We use the iPALM algorithm [PS16] for the optimization, which leads to efficient and robust computation of
morphing sequences that visually outperform the results obtained by the color-based morphing. This chapter is
an extended version of the conference proceeding [EKPR19] and the journal paper [EKP+21] (joint project with
Alexander Effland, Erich Kobler, Thomas Pock, and Martin Rumpf).

This chapter is structured as follows. In Section 4.1, we introduce the time continuous metamorphosis model in
deep feature spaces with an anisotropic regularization. Then, in Section 4.2, we introduce the time discrete model
and prove the existence of discrete geodesic paths as minimizers of corresponding energy functionals. Section 4.3
is devoted to the introduction of the time extension operators, necessary for the study of convergence of the time
discrete quantities towards their continuous counterparts, presented in Section 4.4. There, we show convergence of
the extensions of the time discrete energies towards the time continuous energy, leading to the convergence of the
discrete geodesic paths to a time continuous geodesic path. The fully discrete model and the optimization scheme
using the iPALM algorithm are presented in Sections 4.5 and 4.6, respectively. In Section 4.7, several examples
demonstrate the applicability of the proposed methods to real image data. Finally, in Section 4.8, we comment
on two projects being influenced by the presented model: Bézier curves in deep feature space and variational
time discretization of the flow of diffeomorphism model, while the spline interpolation in metamorphosis model is
presented in Chapter 5.

37
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4.1 Time Continuous Model
As briefly discussed in the introduction, the classical metamorphosis model, its time discrete counterpart, and the
spatial discretization based on finite elements in [BER15] exhibit several drawbacks:

- The morphing of images in their original grayscale or color space is not invariant to natural radiometric
transformations caused by lighting or material changes, shadows, etc. and hence might lead to a blending
along the geodesic paths instead of flow-induced geometric transformations, destroying some vital parts of
information important for a natural appearance of images.

- Sharp interfaces such as object boundaries, which frequently coincide with depth discontinuities of a scene,
are in general not preserved along a geodesic path because of the strong smoothness implied by the homo-
geneous and isotropic variational prior for the deformation fields.

To this end, we advocate the following extensions of the previous approaches:

- We work in a deep feature space, which amounts to replacing the input images by feature vectors combining
image intensities and semantic information generated by a feature extraction operator.

- To explicitly allow for discontinuities in the deformation fields, we further incorporate an anisotropic flow
regularization.

In what follows, we give more details on our approach.
As we briefly mentioned in Section 2.3, deep convolutional neural networks have shown remarkable results

for different image processing tasks. A part of this success lies in their ability to extract deep semantic features
containing different properties of images that go far beyond the standard color channels. It is, therefore, natural
to use a deep neural network as a feature extraction operator. We consider the mapping F : I → L2(Ω,Rc) for
c ≥ 0, which represents the deep convolutional neural network [SZ14] pretrained for classification on the Ima-
geNet dataset [KSH12]. The structure of the network, which we will refer to as VGG network (stands for “Visual
Geometry Group in Oxford”), is shown in Table 4.1. As already mentioned, as an input to the metamorphosis
model, we consider vectors combining image intensities and deep features. To this end, we consider the deep
feature space F := L2(Ω,R3+c), and given fixed input images uA, uB ∈ I, we want to define geodesic curve
joining the deep features fA, fB ∈ F which are defined, for a fixed (small) η > 0, by

fA := (ηuA, F (uA)) , fB := (ηuB , F (uB)) . (4.1)

The parameter η is used to properly scale the RGB component mainly needed to compute the anisotropic regular-
ization and to primarily focus on the actual VGG features when estimating the transport. This is due to the fact that
the deep features are high-dimensional image patterns describing the local structure of the image as a superposition
of different levels of a multiscale image approximation (cf . Figure 4.1). Let us point out that this form of pairing
in general holds only for the initial and final feature on the feature path, and we do not restrict the space F to
such pairs. We comment on possibilities to do so in Remarks 4.2.6 and 4.2.9 (for the time discrete model), and
Remark 4.4.5 (for the time continuous model).

Figure 4.1: An example of input image and the typical look of the corresponding feature channels on different
levels (first to the fifth, from left to right, cf . Table 4.1) of multilevel semantic decomposition (plotted with the
inverted values for a better visibility).

Next, to properly account for image structures such as sharp edges or corners, we include an anisotropic
regularization in our model. We introduce an anisotropy operator a : I → L∞(Ω) as a scale factor for the elliptic
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operator acting on the flow of diffeomorphisms, which nearly vanishes in the proximity of interfacial structures.
Thus, large gradients of the velocity field are less penalized in these regions and consequently, sharp edges can be
better preserved along geodesic paths. The need for such an operator was noticed by Perona and Malik [PM90], in
the context of solving the problems of image deblurring and edge detection/enhancement by solving the diffusion
equation of the type

u̇t = div(a(|Dut|2)Dut), u(0) = u0,

where the function a is non-negative and monotonically decreasing, with a(0) ≈ 1. One of the functions they
suggest is a(s2) = exp(− s2ρ ), where ρ > 0 can be seen as an edge threshold or a contrast constant. Their idea
is based on an observation that the regions with a higher value of Du have a large probability to be the interfacial
regions. In [CLMC92], it was suggested to apply the function a to

uσ := Gσ ∗Du = D(Gσ ∗ u) = DGσ ∗ u,

where Gσ is the Gaussian kernel with standard deviation σ > 0 and ∗ is the convolution operation. This approach,
besides the theoretical advantage typified in the existence of weak solutions for the diffusion equation, shows better
results in the task of edge detection on blurred images, since it is insensitive to noises at scales smaller than σ.
Thus, it avoids the shortcoming of the Perona–Malik approach, which misinterprets strong oscillations due to noise
as edges that should be preserved or even enhanced. For an extensive discussion of the Perona–Malik model and
its extensions, we refer the reader to [BL18, Section 5.3] and [Wei98, Section 1.3]. Taking into consideration the
above discussion, our particular choice is the operator

a[u](x) := exp

(
−|(Gσ2

∗DGσ1
∗ u)(x)|2

ρ

)
+ ξ, (4.2)

for fixed (small) ξ > 0 which presents a strictly positive lower bound, necessary for the theoretical study. The
study of the time continuous and the time discrete geodesic paths in our model is possible for all operators which
fulfill the following technical assumptions

(A1) boundedness and coercivity: ca < a[u](x) < Ca for 0 < ca < Ca and all u ∈ I and a.e. x ∈ Ω,

(A2) compactness: uk ⇀ u in I implies a[uk]→ a[u] in L∞(Ω),

(A3) Lipschitz continuity: for all neighborhoods U ⊂ I, there exists La > 0 such that ‖a[u] − a[ũ]‖L∞(Ω) ≤
La‖u− ũ‖I for all u, ũ ∈ U .

Note that (4.2), due to the smoothness of Gaussian kernels, indeed fulfills these conditions.

Figure 4.2: The visual representation of the anisotropy weight for the same input image as in Figure 4.1 and values
of the parameters ρ = 1000, σ1 = 0.5, σ2 = 2, ξ = 10−6. We observe that the lowest values (corresponding to the
almost black grayscale intensity) are indeed obtained in the proximity of edges/discontinuities.

Before finally defining the path energy in our model, we introduce another novelty in comparison to [BER15].
Namely, with the diffeomorphic flow ψ ∈ H1((0, 1), Hm(Ω,Ω)) given as the solution to the flow equation (3.13)
for some velocity field v ∈ L2((0, 1),V), we could directly generalize the definition of regular paths and the
notion of a weak material derivative presented in Subsection 3.2.2. As it was noticed in [ENR20], this approach
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becomes technically involved for manifold-valued images/features since the proper tangent space and the norm
for the penalization of the material derivative depend on the tangent spaces and Riemannian metrics on the space
of values, which are in general different for every point of the domain. As a cure for these obstacles, that paper
proposes the relaxed material derivative approach. We choose to follow this approach in the rest of this chapter as
it also provides some technical simplifications in our framework. To details, the definition of the weak material
derivative ẑ ∈ L2((0, 1)×Ω,R3+c) which is equivalent to (3.11) (cf . [TY05a, Theorem 2]) for f ∈ L2((0, 1),F)
is given by

ft ◦ ψt(x)− fs ◦ ψs(x) =

∫ t

s

ẑr ◦ ψr(x) dr, for a.e. x ∈ Ω, s, t ∈ [0, 1]. (4.3)

We replace it with the variational inequality

|ft ◦ ψt(x)− fs ◦ ψs(x)| ≤
∫ t

s

zr ◦ ψr(x) dr, for a.e. x ∈ Ω, for all 1 ≥ t > s ≥ 0, (4.4)

where the scalar material derivative z ∈ L2((0, 1)×Ω) replaces the actual vector-valued material derivative. This
relaxed approach will turn out to be very natural when it comes to lower semicontinuity of the path energy in the
context of the existence proof for geodesic paths in Section 4.4. The following proposition (see also [ENR20,
Section 3]) shows the equivalence of these definitions.

Proposition 4.1.1. For every ẑ fulfilling (4.3), there exists a z fulfilling (4.4) with z = |ẑ|. Conversely, for every z
fulfilling (4.4), there exists a ẑ fulfilling (4.3) with z ≥ |ẑ|.
Proof. Let ẑ satisfy (4.3). Then, for z = |ẑ|, by the triangle inequality, we have

|ft ◦ ψt(x)− fs ◦ ψs(x)| ≤
∫ t

s

zr ◦ ψr(x) dr.

To prove the converse, for z satisfying (4.4), we take the norm on both sides, to get

‖ft ◦ ψt − fs ◦ ψs‖L2(Ω) ≤
∫ t

s

‖zr ◦ ψr‖L2(Ω) dr,

from where we have, by [AGS08, Remark 1.1.3], that the function t 7→ ft ◦ψt is differentiable almost everywhere
on (0, 1) and there exists a derivative z′ ∈ L2((0, 1), L2(Ω,R3+c)) such that, for every s, t ∈ [0, 1],

ft ◦ ψt(x)− fs ◦ ψs(x) =

∫ t

s

z′r(x) dr =

∫ t

s

ẑr ◦ ψr(x) dr,

where ẑr(x) := z′r ◦ ψ−1
r (x). Finally, by [AGS08, Theorem 1.1.2], for a.e. t ∈ (0, 1), we have zt ◦ ψt ≥ |ẑt ◦ ψt|

which together with diffeomorphism property of ψt implies z ≥ |ẑ|.

In fact, (4.4) defines a set C(f) of admissible pairs (v, z) given a path f in L2((0, 1),F) and one can define the
path energy analogous to (3.12), with the infimum taken over the pairs in C(f). This is reasonable also from the
fact that the infimum in (3.12) is attained along a measurable curve (cf . [TY05a, Proposition 1 and Theorem 2]).

We are now ready to define the path energy and the geodesic path between the input features given by (4.1).

Definition 4.1.2 (Continuous path energy). We consider the anisotropic elliptic operator

L[ã, v, v] := ã

(
λ

2
(trε[v])2 + µtr(ε[v]2)

)
+ γ|Dmv|2

for an anisotropy weight ã ∈ L∞(Ω), a velocity field v ∈ V and γ, µ, λ > 0. Then, we define the path energy

E [f ] := inf
(v,z)∈C(f)

∫ 1

0

∫
Ω

L[a[P[f ]], v, v] +
1

δ
z2 dx dt (4.5)

for a path f ∈ L2([0, 1],F), where P is the projection onto the image component of a feature, i.e., P[(u, f̃)] = u,
and

C(f) ⊂ L2((0, 1),V)× L2((0, 1)× Ω)
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denotes the set of admissible pairs of the velocity v and a scalar quantity z fulfilling

ψ̇t(x) = vt ◦ ψt(x), ψ0(x) = x, for all x ∈ Ω, t ∈ [0, 1], (4.6)

|ft ◦ ψt(x)− fs ◦ ψs(x)| ≤
∫ t

s

zr ◦ ψr(x) dr, for a.e. x ∈ Ω, for all t > s ∈ [0, 1]. (4.7)

Let us stress that the anisotropy ã = a[P[f ]] solely takes into account local RGB values and not the actual
VGG features with their discriminative multiscale characteristics.

Definition 4.1.3 (Continuous geodesic curve). Geodesic curves f ∈ L2([0, 1],F) in the deep feature space join-
ing fA, fB ∈ F are defined as minimizers of the path energy (4.5) among all curves with the fixed boundary
conditions f0 = fA and f1 = fB .

The existence of a continuous geodesic curve will be proven in Theorem 4.4.4. However, the geodesic curve
might not be unique and the reverse path is in general not a geodesic curve if the initial and the final point switch
places.

Remark 4.1.4. One observes that a path f ∈ L2([0, 1],F) with finite energy E [f ] <∞ exhibits additional smooth-
ness properties in time. Indeed, from (4.4), by using the Cauchy–Schwarz inequality, we have

‖ft ◦ ψt − fs ◦ ψs‖F ≤
(∫

Ω

(∫ t

s

zr ◦ ψr dr

)2

dx

) 1
2

≤|t− s| 12 ‖zr ◦ ψr‖L2((0,1)×Ω)

≤|t− s| 12 ‖z‖L2((0,1)×Ω)‖ detDψ−1‖
1
2

C0([0,1]×Ω)
≤ Cv|t− s|

1
2 ‖z‖L2((0,1)×Ω),

where we further used (3.14), so that the constantCv depends on ‖v‖L2((0,1),V). Thus, ft◦ψt ∈ C0, 12 ([0, 1],F), or
in a slightly different notation, ft◦ψt ∈ C0

ω([0, 1],F), for the modulus of continuity ω(t) = Cv‖z‖L2((0,1)×Ω)|t|
1
2 .

Furthermore, for every t ∈ [0, 1], we have

‖ft‖F ≤ Cv‖ft ◦ ψt‖F ≤ Cv,z
(
1 + ‖ft ◦ ψt‖L2([0,1],F)

)
, (4.8)

so that f ∈ L∞([0, 1],F). Here, Cv,z depends on ‖v‖L2((0,1),V) and ‖z‖L2((0,1)×Ω). Then, to show the im-
proved regularity for the feature curve t 7→ ft, we can take functions f̃ i ∈ L∞([0, 1], C∞(Ω,R3+c)) such that
‖f−f̃ i‖L∞([0,1],F) ≤ 2−i and ‖Df̃ i‖L∞([0,1],C0(Ω)) ≤ Cf,i, whereCf,i depends on ‖f‖L∞([0,1],F) and i (cf . The-
orem 2.1.7). We have

‖ft − fs‖F
≤‖ft ◦ ψt ◦ ψ−1

t − fs ◦ ψs ◦ ψ−1
t ‖F + ‖fs ◦ ψs ◦ ψ−1

t − fs ◦ ψs ◦ ψ−1
s ‖F

≤‖ft ◦ ψt ◦ ψ−1
t − fs ◦ ψs ◦ ψ−1

t ‖F + ‖fs ◦ ψs ◦ ψ−1
t − f̃ is ◦ ψs ◦ ψ−1

t ‖F
+ ‖f̃ is ◦ ψs ◦ ψ−1

t − f̃ is ◦ ψs ◦ ψ−1
s ‖F + ‖f̃ is ◦ ψs ◦ ψ−1

s − fs ◦ ψs ◦ ψ−1
s ‖F

≤‖ft ◦ ψt − fs ◦ ψs‖F‖ detDψt‖
1
2

C0(Ω)
+ ‖fs − f̃ is‖F‖ detD(ψs ◦ ψ−1

t )−1‖
1
2

C0(Ω)

+ ‖Df̃ is‖C0(Ω)‖Dψs‖C0(Ω)|ψ−1|
C0, 1

2 ([0,1],C0(Ω))
|t− s| 12 + ‖fs − f̃ is‖F

≤Cv‖ft ◦ ψt − fs ◦ ψs‖F + Cv‖fs − f̃ is‖F + Cv‖Df̃ is‖C0(Ω)|t− s|
1
2 + ‖fs − f̃ is‖F

≤Cv,z
(
|t− s| 12 + 2−i

)
+ Cv,f,i|t− s|

1
2 ,

where the corresponding constants depend, in a monotonically increasing manner, on ‖v‖L2((0,1),V), ‖z‖L2((0,1)×Ω),
‖f‖L∞([0,1],F), and i. Altogether, choosing a suitable i, we see that t 7→ ft ∈ C0([0, 1],F) is uniformly continu-
ous, and we have f ∈ C0

ω([0, 1],F), where ω depends on Cv,z,f . Notice that this implies, by (A3), that a[P[ft]]
is well-defined, in C0([0, 1], L∞(Ω)), and uniformly continuous in time with the analogous modulus of continuity
estimates.
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4.2 Variational Time Discretization
In this section, we develop a variational time discretization of the above model. To this end, we are taking into
account the approach presented in [BER15, Section 2] which is based on the discrete geodesic calculus framework
presented in Subsection 3.1.2.

The first goal is to find a suitable time discretization of the quantities appearing in (4.5). First, we observe that,
for s < t ∈ [0, 1] close to each other, we have ψt−ψs

t−s ≈ vs ◦ ψs, i.e., vs ≈ ψt◦ψ−1
s −1

t−s , by applying the forward

finite difference to (4.6) Similarly, from (4.7), we get zs ≈ |ft◦ψt◦ψ−1
s −fs|

t−s . Motivated by these observations
and the aforementioned approaches (cf . (3.6)), we define the time discrete pairwise energy for two feature maps
f, f̃ ∈ F by

W[f, f̃ ] := min
φ∈D
WD[a[P[f̃ ]], f, f̃ , φ] ,

withWD : L∞(Ω)×F ×F ×D → R given by

WD[ã, f, f̃ , φ] :=

∫
Ω

ãW(Dφ) + γ|Dmφ|2 +
1

δ
|f̃ ◦ φ− f |2 dx . (4.9)

The deformation φ can be seen as the relative flow ψt̃ ◦ ψ−1
t , where f̃ , f are seen as points on the feature curve at

times t̃, t, respectively. The set of admissible deformations is

D := {φ ∈ Hm(Ω,Ω) : det(Dφ) > 0 a.e. in Ω, φ|∂Ω = 1}. (4.10)

We have already introduced this set as the set of Sobolev diffeomorphisms Dm(Ω) (cf . (3.9)), and here, for con-
venience, we simplified the notation to D := Dm(Ω). We recall that this set is closed under the inverse [IKT13,
Lemma A.1] and the composition operations [IKT13, Proposition 2.19]. Furthermore, by the Sobolev embedding
theorem 2.1.8, we have that D ⊂ C1,α(Ω,Ω) for α ∈ (0,m − n

2 − 1], so that φ ∈ D are indeed C1(Ω,Ω)-
diffeomorphisms.

With GL+(n) being the set of n-dimensional matrices with the positive determinant, and 1 denoting both the
identity mapping and the identity matrix, we make the following assumptions on the energy density function W:

(W1) W : Rn,n → R+
0 , W ∈ C4(GL+(n)), W(1) = 0, and DW(1) = 0.

(W2) There exist constants CW,1, CW,2, rW > 0 such that for all A ∈ GL+(n)

W(A) ≥ CW,1|Asym − 1|2 , if |A− 1| < rW ,

W(A) ≥ CW,2 , if |A− 1| ≥ rW.

(W3) For all A ∈ Rn,n, it holds

1

2
D2W(1)(A,A) =

λ

2
(trA)2 + µtr((Asym)2).

The first assumption ensures that we indeed penalize the velocity term which vanishes when φ = 1. We use
(W1) and (W2) to prove existence of a minimizing deformation in (4.9), while the third condition is a consistency
assumption with respect to the differential operator L (see (3.10)), required to guarantee that the below-defined
discrete path energy is consistent with the time continuous path energy (4.5) (see proof of Theorem 4.4.1).

The particular energy density function

W(Dφ) =
λ

2

(
e(log det(Dφ))2 − 1

)
+ µ|ε[φ]− 1|2 (4.11)

used for all numerical experiments, with n = 2, satisfies (W1)–(W3). On one hand, both terms penalize large
deformations by penalizing the change of volume and change of length under the deformation, controlled by
det(Dφ) and |Dφ|, respectively. On the other hand, the first term penalizes small deformations as it goes to
infinity as det(Dφ) tends to 0. Thus, it favors a balance of shrinkage and growth as advocated in [DR04, BMR13].
Furthermore, it enforces the positivity of det(Dφ) which is a crucial condition for invertibility of deformation,
i.e., prohibition of the interpenetration of matter [Bal81]. This function is not convex and, in general, there is
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no a convex function such that W (A) → ∞ as det(A) → 0 [Cia88, Theorem 4.8-1]. However, the function
W̃ : R2,2 × R→ R with W̃ (A,det(A)) := W (A) is convex. Then, we say that W is polyconvex and it gives rise
to a lower semicontinuous functional

∫
Ω
W (Dφ) dx [Dac08, Theorems 5.3 and 8.11].

We proceed with the definition of the discrete path energy and the discrete geodesic path between two features
fA = (ηuA, F (uA)), fB = (ηuB , F (uB)) ∈ F .

Definition 4.2.1 (Discrete path energy and discrete geodesic path). Let K ≥ 1 and f0 = fA, fK = fB ∈ F . The
discrete path energy EK , for a discrete (K + 1)-path f = (f0, . . . , fK) ∈ FK+1, is defined by

EK [f ] := K

K∑
k=1

W[fk−1, fk] . (4.12)

A discrete geodesic path morphing fA ∈ F into fB ∈ F is a discrete (K + 1)-path that minimizes EK over all
discrete paths f = (fA, f̂ , fB) ∈ FK+1 with f̂ = (f1, . . . , fK−1) ∈ FK−1.

For arbitrary vectors f = (f0, . . . , fK) ∈ FK+1 and Φ = (φ1, . . . , φK) ∈ DK we set

EK,D[f ,Φ] := K

K∑
k=1

WD[a[P[fk]], fk−1, fk, φk] .

These definitions come naturally if one observes f as the time sampling of a feature curve at times k
K , k =

0, . . . ,K, and the entries of Φ as the relative flows between the consecutive time points. Then, as already moti-
vated, for k = 1, . . . ,K we have vk = K(φk − 1) and zk = K|fk ◦ φk − fk−1| as the discrete versions of the
velocity and the scalar material derivative, respectively. Finally, the coefficient K in front of the sum comes from
the quadratic growth assumption (W2) and the Riemannian approximation of the time integral. This discretization
is consistent with the discrete path geodesic energy from Subsection 3.1.2 (cf . (3.7)).

In what follows, we will investigate the existence of discrete geodesic curves in this model. To this end, we
combine the proofs of the local well-posedness of the pairwise energy W with the existence result of a feature
vector minimizing EK,D for a fixed vector of deformations. The main differences of the following proofs in
comparison to [BER15] are due to incorporating the anisotropy regularization.

We start with the following lemma, which provides an estimate for theHm-norm of the displacement, is crucial
for the well-posedness of the energy.

Lemma 4.2.2. Let (W1)–(W2) and (A1) be satisfied. Then, there exists a continuous and monotonically increasing
function θ : R+

0 → R+
0 with θ(0) = 0, which only depends on Ω, m, n, γ, ca, CW,1, CW,2, such that

‖φ− 1‖Hm(Ω) ≤ θ
(
WD[a[P[f̃ ]], f, f̃ , φ]

)
for all f, f̃ ∈ F and all φ ∈ D. Furthermore, θ(x) ≤ C(x+ x2)

1
2 for a constant C > 0.

Proof. Set W = WD[a[P[f̃ ]], f, f̃ , φ]. An application of the Gagliardo–Nirenberg inequality for bounded do-
mains (see Theorem 2.1.5) yields

‖φ− 1‖Hm(Ω) ≤ C(‖φ− 1‖L2(Ω) + |φ− 1|Hm(Ω)) . (4.13)

The last term in (4.13) is bounded by

|φ− 1|Hm(Ω) = |φ|Hm(Ω) ≤
√
W
γ . (4.14)

By using the embedding of Hm(Ω,Ω) into C1,α(Ω,Ω) (cf . Theorem 2.1.8) and the uniform boundedness of the
minimizing sequence inL2(Ω,Ω), we get ‖φ−1‖C1,α(Ω) ≤ C+C

√
W . To control the lower order term appearing

on the right-hand side of (4.13), we define S = {x ∈ Ω : |Dφ(x)− 1| < rW} and use (A1) and (W2), to obtain

|Ω\S|caCW,2 ≤
∫

Ω

a[P[f̃ ]]W(Dφ) dx ≤ W ,
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which implies |Ω\S| ≤ W
caCW,2

. Then, using once again (A1), (W2), and the above observations, we infer∫
Ω

|ε[φ]− 1|2 dx ≤
∫
S

W(Dφ)

CW,1
dx+ |Ω\S|

(
C + C

√
W
)2

≤ W
caCW,1

+
W

caCW,2

(
C + CW

)
. (4.15)

Finally, we observe that the inequality

‖φ− 1‖L2(Ω) ≤ C‖ε[φ]− 1‖L2(Ω) (4.16)

holds true, which follows from Korn’s inequality (Theorem 2.1.6) and the Poincaré’s inequality 2.1.4. Thus, the
lemma follows by combining (4.13), (4.14), (4.15), and (4.16).

Proposition 4.2.3 (Well-posedness ofW). Let f ∈ F be a fixed feature vector. Under the assumptions (W1)–(W2)
and (A1), there exists a constant CW (depending on Ω,m, n, γ, δ, ca, CW,1, CW,2) such that, for every

f̃ ∈ {g ∈ F : ‖f − g‖F < CW} , (4.17)

there exists a φ ∈ D which minimizesWD[a[P[f̃ ]], f, f̃ , ·].
Proof. For a fixed f ∈ F , let f̃ be a feature vector satisfying (4.17) for a constant CW specified below. Let
{φj}j∈N ∈ D be any sequence such thatWD[a[P[f̃ ]], f, f̃ , φj ] converges to W := infφ∈DWD[a[P[f̃ ]], f, f̃ , φ] ≥
0. Since 1 ∈ D, we can deduce, using (W1), that

W ≤ WD[a[P[f̃ ]], f, f̃ , φj ] ≤W :=WD[a[P[f̃ ]], f, f̃ ,1] = 1
δ ‖f̃ − f‖2F <

C2
W
δ
,

for all j ∈ N. Using again the Gagliardo–Nirenberg inequality (see Theorem 2.1.5) in form of (4.13), we infer
that {φj}j∈N is uniformly bounded in Hm(Ω,Ω) because of the estimate |φj |2Hm(Ω) ≤ W

γ . Due to the reflexivity
of Hm(Ω,Ω), there exists a weakly convergent subsequence (not relabeled) such that φj ⇀ φ in Hm(Ω,Ω). By
using the Sobolev Embedding Theorem 2.1.8, as well as the Arzelà–Ascoli Theorem 2.1.9(i), we can additionally
infer that, on a subsequence (again not relabeled), φj → φ in C1,α(Ω,Ω) for α ∈ (0,m− 1− n

2 ] holds true. Then,
Lemma 4.2.2 implies

‖φj − 1‖C1(Ω) ≤ Cθ(W) < Cθ(δ−1C2
W) . (4.18)

Thus, by choosing CW sufficiently small and taking into account the Lipschitz continuity of the determinant, we
obtain ‖ det(Dφj)−1‖L∞(Ω) ≤ Cdet for a constant Cdet ∈ (0, 1) and all j ∈ N, which implies det(Dφj) ≥ C >
0 for a constant C. Note that all the estimates remain valid for the limit deformation, so that {φj}j∈N and φ are in
D and thus C1(Ω,Ω)-diffeomorphisms. Finally, (W1) and the lower semicontinuity of the seminorm imply

lim inf
j→∞

∫
Ω

a[P[f̃ ]]W(Dφj) + γ|Dmφj |2 dx ≥
∫

Ω

a[P[f̃ ]]W(Dφ) + γ|Dmφ|2 dx .

Let us verify that
lim
j→∞

‖f̃ ◦ φj − f‖F = ‖f̃ ◦ φ− f‖F . (4.19)

To this end, we approximate f̃ by smooth functions f̃ i ∈ C∞(Ω,R3+c) with ‖f̃− f̃ i‖F → 0 (cf . Theorem 2.1.7).
Then, using the transformation formula, we obtain

‖f̃ ◦ φj − f̃ ◦ φ‖F
≤‖f̃ ◦ φj − f̃ i ◦ φj‖F + ‖f̃ i ◦ φj − f̃ i ◦ φ‖F + ‖f̃ i ◦ φ− f̃ ◦ φ‖F
≤‖f̃ − f̃ i‖F

(
‖ det(D(φj)−1)‖

1
2

L∞(Ω) + ‖ det(Dφ−1)‖
1
2

L∞(Ω)

)
+ ‖Df̃ i‖L∞(Ω)‖φj − φ‖L2(Ω) , (4.20)

where det(D(φj))−1 and det(D(φ))−1 are pointwise estimated by (1 − Cdet)
1
2 . Finally, by first choosing i and

then j, we obtain (4.19). Altogether,

inf
φ∈D
WD[a[P[f̃ ]], f, f̃ , φ] = lim inf

j→∞
WD[a[P[f̃ ]], f, f̃ , φj ] ≥ WD[a[P[f̃ ]], f, f̃ , φ],

which finishes the proof.



4.2 Variational Time Discretization 45

This proposition guarantees the existence of an admissible vector of deformations Φ ∈ DK for which it holds
EK,D[f ,Φ] = EK [f ], provided that each pair of features (fk, fk+1) contained in f = (f0, . . . , fK) ∈ FK+1

satisfies (4.17). The property (4.19) holds more generally, as stated in the following remark and used throughout
this and the following chapter.
Remark 4.2.4. The estimate (4.20) shows that, for a sequence of diffeomorphisms {φj}j∈N with detDφj ≥ cdet >
0, for every (large enough) j ∈ N, which converges to a diffeomorphism φ in C1,α(Ω,Ω) and every f ∈ F , it
holds f ◦ φj → f ◦ φ in F . Analogously, f ◦ (φj)−1 → f ◦ φ−1 in F . This straightforwardly extends to the
Bochner spaces L2((0, 1),F) and C0,β([0, 1], C1,α(Ω,Ω)), β ≥ 0, for f and φ, respectively.

In what follows, we prove the existence of an energy minimizing vector of features for a fixed vector of
deformations.

Proposition 4.2.5. Let K ≥ 2, fA, fB ∈ F and Φ = (φ1, . . . , φK) ∈ DK be fixed. Assume that the deformations
satisfy

min
k=1,...,K

min
x∈Ω

det(Dφk(x)) ≥ cdet, (4.21)

for a constant cdet > 0. Then, under the assumptions (W1) and (A1)–(A2), there exists a feature vector f with
f0 = fA and fK = fB such that

EK,D[f ,Φ] = inf
{
EK,D[(fA, ĝ, fB),Φ] : ĝ ∈ FK−1

}
.

Proof. We consider a minimizing sequence of features {f̂ j = (f j1 , . . . , f
j
K−1)}j∈N ∈ FK−1 for the energy ĝ 7→

EK,D[(fA, ĝ, fB),Φ]. Then,

0 ≤ EK,D[(fA, f̂
j , fB),Φ] ≤ EK,D[(fA, (fA, . . . , fA), fB),Φ] =: EK,D.

A straightforward computation reveals

EK,D ≤K
K∑
k=1

Ca‖W(Dφk)‖L1(Ω) + γ‖φk‖2Hm(Ω) +
CK2

δ

(
(1 + c−1

det)‖fA‖2F + c−1
det‖fB‖2F

)
,

where we used (A1), (4.21), and the transformation formula. Furthermore, again by (4.21), one obtains

‖f jk‖F ≤ ‖f
j
k+1 ◦ φk+1 − f jk‖F + ‖f jk+1 ◦ φk+1‖F ≤

√
δEK,D

K + c
− 1

2

det‖f
j
k+1‖F . (4.22)

Thus, an induction argument (starting from k = K − 1) shows that {f̂ j = (f j1 , . . . , f
j
K−1)}j∈N is uniformly

bounded in FK−1, which implies, for a subsequence (not relabeled), f̂ j ⇀ f̂ in FK−1.
In what follows, we prove the weak lower semicontinuity of the discrete path energy along the minimizing

sequence. We observe that (A2) implies a[P[f jk ]]→ a[P[fk]] in L∞(Ω), which yields

lim
j→∞

∫
Ω

a[P[f jk ]]W(Dφk) dx =

∫
Ω

a[P[fk]]W(Dφk) dx,

for every k = 1, . . . ,K. It remains to verify the weak lower semicontinuity of the matching functional, i.e.,

‖fk ◦ φk − fk−1‖2F ≤ lim inf
j→∞

‖f jk ◦ φk − f
j
k−1‖2F , (4.23)

for every k = 1, . . . ,K. To this end, we show f jk ◦φk ⇀ fk ◦φk in F . Indeed, for every g ∈ F , the transformation
formula yields ∫

Ω

(f jk ◦ φk − fk ◦ φk) · g dx =

∫
Ω

(f jk − fk) · (g(det(Dφk))−1) ◦ φ−1
k dx ,

which converges to 0 since (g(det(Dφk))−1) ◦ φ−1
k ∈ F due to (4.21). Hence, f jk ◦ φk − f

j
k−1 ⇀ fk ◦ φk − fk−1

in F , which readily implies (4.23). Therefore,

inf
ĝ∈FK−1

EK,D[(fA, ĝ, fB),Φ] = lim inf
j→∞

EK,D[(fA, f̂
j , fB),Φ] ≥ EK,D[(fA, f̂ , fB),Φ] ,

which proves the proposition.
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Remark 4.2.6. If mapping F : I → L2(Ω,Rc) is compact in the sense that uj ⇀ u in I implies F (uj) → F (u)
in L2(Ω,Rc), the previous results also hold in the case where the space F is restricted to the points of the type
(ηu, F (u)) for u ∈ I (cf . (4.1)). This, in particular, holds under the assumption on spatial smoothness of the
convolutional weights and if the maximum pooling is replaced by the average pooling in the architecture of the
network (cf . Table 4.1).

We can now combine both previous propositions to prove the existence of discrete geodesics.

Theorem 4.2.7 (Existence of discrete geodesic paths). Let the assumptions (W1)–(W2) and (A1)–(A2) be satisfied,
K ≥ 2, and fA ∈ F . Then, there exists a constant CE > 0 which is independent of K, such that, for every

fB ∈
{
g ∈ F : ‖g − fA‖F < CE

√
K
}
, (4.24)

there exists f̂ ∈ FK−1 such that

EK [(fA, f̂ , fB)] = inf
ĝ∈FK−1

EK [(fA, ĝ, fB)].

Proof. For a fixed fA ∈ F , let fB satisfy (4.24) for a constant CE specified below. For k = 0, . . . ,K, let
fk := k

K fB + (1− k
K )fA ∈ F be a convex combination of the input features. Then, we have that

EK :=EK,D[(f0, f1, . . . , fK), (1, . . . ,1)]

=
K

δ

K∑
k=1

‖fk − fk−1‖2F =
1

δ
‖fB − fA‖2F <

C2
EK

δ
(4.25)

is a finite upper bound for the energy. Consider a sequence

(f j ,Φj) = ((f j0 , . . . , f
j
K), (φj1, . . . , φ

j
K)) ∈ FK+1 ×DK , j ∈ N,

with f j0 = fA and f jK = fB , limj→∞EK [f j ] = limj→∞EK,D[f j ,Φj ] = inf ĝ∈FK−1 EK [(fA, ĝ, fB)], and with
the finite upper bound EK for the energy EK . Following the same line of arguments as in Proposition 4.2.3,
we obtain the boundedness of {Φj}j∈N in Hm(Ω,Ω), which results in a weakly convergent subsequence (not
relabeled) Φj ⇀ Φ inHm(Ω,Ω), and due toHm(Ω,Ω) ↪→ C1,α(Ω,Ω), one obtains Φj → Φ inC1,α(Ω,Ω), α ∈
(0,m− 1− n

2 ], for a further subsequence (not relabeled). By taking into account Lemma 4.2.2, we get

‖φjk − 1‖C1,α(Ω) ≤ C‖φ
j
k − 1‖Hm(Ω) ≤ Cθ(K−1EK) ≤ Cθ(δ−1C2

E),

for every j ∈ N and every k = 1, . . . ,K. By adapting CE if necessary, we can assume

inf
j∈N

min
k=1,...,K

min
x∈Ω

det(Dφjk(x)) > cdet

for a constant cdet > 0. Thus, we can conclude that {Φj}j∈N and Φ are in DK and hence consist of C1(Ω,Ω)-
diffeomorphisms. Using Proposition 4.2.5, we can replace f j by the energy minimizing feature vector associated
with Φj , which possibly reduces the path energy. The features {f j}j∈N are uniformly bounded in FK+1, which
follows from an analogous reasoning as (4.22). Thus, f j ⇀ f holds true for a subsequence (not relabeled) inFK+1,
which implies a[P[f jk ]] → a[P[fk]] in L∞(Ω), due to (A2). Combining this with (W1), for every k = 1, . . . ,K,
we obtain

lim inf
j→∞

∫
Ω

a[P[f jk ]]W(Dφjk) dx ≥
∫

Ω

a[P[fk]]W(Dφk) dx .

Finally, we verify the lower semicontinuity estimate

‖fk ◦ φk − fk−1‖2F ≤ lim inf
j→∞

‖f jk ◦ φ
j
k − f

j
k−1‖2F , (4.26)

for every k = 1, . . . ,K. To this end, we take into account the decomposition

f jk ◦ φ
j
k − fk ◦ φk = (f jk ◦ φ

j
k − fk ◦ φ

j
k) + (fk ◦ φjk − fk ◦ φk) .
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The second term is estimated in (4.20), and for the first term we take a test function g ∈ F and using the transfor-
mation formula obtain∫

Ω

(f jk ◦ φ
j
k − fk ◦ φ

j
k) · g dx =

∫
Ω

(f jk − fk) · (g(det(Dφjk))−1) ◦ (φjk)−1 dx .

The right-hand side converges to 0 due to the convergence (det(Dφjk))−1 ◦ (φjk)−1 → det(Dφk))−1 ◦ φ−1
k in

L∞(Ω) and f jk ⇀ fk in F . Thus, f jk ◦ φ
j
k ⇀ fk ◦ φk for j → ∞, which, together with the lower semicontinuity

of the L2-norm, proves (4.26). Altogether, we observe that EK [f ] ≤ EK,D[f ,Φ] ≤ lim inf
j→∞

EK,D[f j ,Φj ] , which

finishes the proof of the theorem.

The following remark, similarly to Remark 4.2.4, represents a generalization of (4.26), to be used throughout
this and the following chapter.

Remark 4.2.8. The reasoning in the previous paragraph, together with Remark 4.2.4, shows that, for f j ⇀ f in F ,
and diffeomorphisms {φj}j∈N and φ such that detDφj ≥ cdet > 0, for every (large enough) j ∈ N, and φj → φ
in C1,α(Ω,Ω), we have f j ◦ φj ⇀ f ◦ φ in F . Furthermore, we have∫

Ω

|f j ◦ φj − f ◦ φj |2 dx =

∫
Ω

|f j − f |2(det(Dφj))−1 dx ≤ C‖f j − f‖2F .

which shows, together with the previous arguments, that f j → f implies f j ◦ φj → f ◦ φ and f j ◦ (φj)−1 →
f j ◦ φ−1 in F . These results are straightforwardly extendable to the corresponding Bochner spaces.

The following remark considers other possible ways of combining the image intensity values and the deep
feature vectors.

Remark 4.2.9. (i) If, in addition to the condition of Remark 4.2.6, we assume that the mapping F is Lipschitz
continuous , in the sense that there exists a constant LF such that

‖F (u)− F (ũ)‖L2(Ω,Rc) ≤ LF ‖u− ũ‖I
for every u, ũ ∈ I (again satisfied if the convolutional weights are sufficiently smooth and we use the
average pooling in the network architecture (cf . Table 4.1)), then the discrete geodesic exists also if F is
restricted to points of the type (ηu, F (u)) (cf . (4.1)). To this end, in the proof of the theorem above, we
define fk := (uk, F (ukη )) with uk := k

KuA + (1 − k
K )uB , so that the condition (4.24) can be expressed in

terms of proximity of the image parts of the vectors of features and the constant CE additionally depends on
LF .

(ii) In [EKPR19], one considers the optimization problems

inf
f̂∈FK−1,Φ∈DK

K

K∑
k=1

WD[a[uk], fk−1, fk, φk], inf
û∈IK−1

K∑
k=1

K

δ

∫
Ω

|uk ◦ φk − uk−1|2 dx,

in parallel, by using the optimal û for the first functional and the optimal Φ for the second. Here, u0, uK =
uA, uB ∈ I and f0, fK = fA, fB = F (uA), F (uB) ∈ F = L2(Ω,Rc). This approach gave similar
experimental results to the one we obtained with the approach we advocated in this section, presented in
Section 4.7. This is not a surprise if we notice that our approach corresponds to the optimization of the
sum of the above functionals (with an additional scaling of the contribution of the image intensity channels).
Theoretical study of our approach, in the context of the study of the existence (and later convergence) of
discrete geodesic paths, is considerably more handsome from the technical and bookkeeping perspective.

Remark 4.2.10. Note that Proposition 4.2.3 and Theorem 4.2.7 remain true even without assumptions on proximity
of the features (4.17) and (4.24), respectively, if the definition of the admissible set of deformations given by (4.10)
is changed to

D = {φ ∈ Hm(Ω,Ω) : det(Dφ) ≥ ε a.e. in Ω, φ|∂Ω = 1},
for some (small) ε > 0.

Finally, let us notice that, as in the continuous time case, we do not have the uniqueness of discrete geodesics
and the discrete reverse path is not a discrete geodesic if boundary data switch places.
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4.3 Temporal Extension Operators
In this section, we provide a framework for the temporal extension of the time discrete quantities defined in the
previous section. This is a necessary step to allow the study of convergence of the time discrete model to its time
continuous counterpart.

For K ∈ N, let ΦK = (φK1 , . . . , φ
K
K) ∈ DK be a vector of deformations associated with a vector of features

fK = (fK0 , . . . , fKK ) ∈ FK+1. We define the step size τ = 1
K , and, for k = 1, . . . ,K, we take tKk := kτ . Then,

for t ∈ [tKk−1, t
K
k ] and x ∈ Ω, we define the discrete transport map

yKk (t, x) := x+
t− tKk−1

τ
(φKk (x)− x) . (4.27)

Note that yKk (tKk−1, x) = x and yKk (tKk , x) = φKk (x). To ensure that yKk (t, ·) is invertible, it is enough to have
det(DyKk (t, x)) > 0 for every x ∈ Ω (cf . [IKT13, Lemma A.1], [Cia88, Theorem 5.5.2]). This is insured if
‖DyKk (t, ·) − 1‖C0(Ω) < c for a small enough constant c > 0 (see reasoning after (4.18)). As this condition will
be satisfied in our exposition in Section 4.4 (cf . (4.37)), we assume it to hold in the rest of this section. Then, we
have yKk (t, ·) ∈ D and we define the inverse discrete transport paths xKk (t, ·) ∈ D as its spatial inverse. By the
definition (4.27), we have x−xKk (t, x) = K(t− tKk−1)(φKk −1)(xKk (t, x)) which after some simple manipulation
gives

‖DxKk (t, ·)− 1‖C0,α(Ω) ≤ C‖DφKk − 1‖C0,α(Ω).

Since Ω is bounded and xK,k(t, ·) is a diffeomorphism, we get

‖xkk(t, ·)‖C1,α(Ω) ≤ C + ‖DxKk (t, ·)‖C0,α(Ω) ≤ C
(

1 + max
k=1,...K

‖φKk − 1‖C1,α(Ω)

)
. (4.28)

We introduce the feature extension operator FK [fK ,ΦK ] ∈ L2([0, 1],F), given by

FK [fK ,ΦK ](t, x) :=
(
fKk−1 +K(t− tKk−1)(fKk ◦ φKk − fKk−1)

)
(xKk (t, x)) . (4.29)

This describes, for t ∈ [tKk−1, t
K
k ], k = 1, . . . ,K, a linear blending between the features

fKk−1 = FK [fK ,ΦK ](tKk−1, ·) and fKk = FK [fK ,ΦK ](tKk , ·), (4.30)

along the affine transport path {(t, yKk (t, ·)}. The discrete motion field vK ∈ L2((0, 1),V) corresponding to the
discrete transport map (4.27) is given by

vK
∣∣
(tKk−1,t

K
k ]

:= vKk := K(φKk − 1). (4.31)

Furthermore, we define the discrete velocity field along the discrete transport path by

ṽK(t, x) := vKk (xKk (t, x)), t ∈ (tkk−1, t
K
k ], x ∈ Ω. (4.32)

By [Fio16, Propositions 1.2.4 and 1.2.7], we have ṽK ∈ C1,α(Ω,Rn) and for t ∈ (tKk−1, t
K
k ] it holds (see also

(3.15))
‖ṽKt ‖C1,α(Ω) ≤ ‖vKt ‖C1,α(Ω)

(
1 + ‖xKk (t, ·)‖C1,α(Ω) + ‖xKk (t, ·)‖α+1

C1,α(Ω)

)
. (4.33)

The discrete flow ψK : [0, 1]× Ω→ Ω is defined as the concatenation of all small diffeomorphisms yKk along
the motion path. In detail, we have, for all x ∈ Ω

ψK(t, x) := yK1 (t, x), t ∈ [0, tK1 ]; ψK(t, x) := yKk
(
t, ψK(tKk−1, x)

)
, t ∈ (tKk−1, t

K
k ], k = 2, . . . ,K. (4.34)

The (scalar) material derivative zK ∈ L2((0, 1)× Ω) for t ∈ (tKk−1, t
K
k ] is defined as

zK(t, x) := K
∣∣(fKk ◦ φKk − fKk−1

)
(xKk (t, x))

∣∣ . (4.35)

The following proposition shows that the temporal extensions of the features, the velocities, the material deriva-
tives, and the discrete paths are indeed admissible for the problem, i.e., that the conditions (4.6) and (4.7) are
satisfied.
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Proposition 4.3.1. For fK ∈ FK+1 and deformations ΦK ∈ DK , the quantities FK [fK ,ΦK ], ṽK , ψK , and zK

satisfy (4.6) and (4.7).

Proof. By the definition (4.34), we have ψK(0, x) = x for all x ∈ Ω. For t ∈ (tKk−1, t
K
k ] and x ∈ Ω, we get

d

dt
ψK(t, x) =

d

dt
yKk (t, ψK(tKk−1, x)) = K(φKk − 1)(ψK(tKk−1, x)) = ṽK(t, ψK(t, x)) ,

since ψK(tKk−1, x) = xKk (t, ψK(t, x)). Therefore, ψK is a solution of (4.6) in the weak sense according to
Remark 3.2.2. By (4.35), for s ≤ t ∈ [tKk−1, t

K
k ], we have

|FK [fK ,ΦK ](t, ψK(t, x))−FK [fK ,ΦK ](s, ψK(s, x))|
=K(t− s)|fKk−1(ψK(tKk−1, x))− fKk ◦ φKk (ψK(tKk−1, x))|

≤
∫ t

s

zK(r, ψK(r, x)) dr .

If s and t are not in the same interval, we can use the triangle inequality multiple times, which concludes the
proof.

As a corollary of this proposition, we note that, by Remark 4.1.4, we have FK [fK ,ΦK ] ∈ C0([0, 1],F) and
aK(t, x) := a[P[FK [fK ,ΦK ](t, ·)]](x) is well-defined.

Finally, we define an extension EK : L2([0, 1],F)→ [0,∞] of the discrete path energy EK (cf . (4.12)) by

EK [f ] := inf
Φ
K∈DK

{
EK,D[fK ,Φ

K
] : FK [fK ,Φ

K
] = f

}
, (4.36)

if there exist fK ∈ FK+1 and ΦK ∈ DK such that f = FK [fK ,ΦK ], and else we set EK [f ] = ∞. Notice
that, for given f and K, by (4.30), we have only one candidate for fK obtained by sampling of f at points
k
K , k = 0, . . . ,K. Thus, we only need to ensure the well-posedness of the defined energy w.r.t. the vector of
deformations. To achieve this for every K ∈ N without additional assumptions on f , here and in the rest of this
chapter we restrict the admissible set of deformations as in Remark 4.2.10.

Lemma 4.3.2. If, for a given fixed feature path f ∈ L2((0, 1),F), a discrete feature path fK ∈ FK+1 and a
vector of deformations ΦK ∈ DK exists such that f = FK [fK ,ΦK ], then the infimum with respect to the vector
of deformations in (4.36) is attained for some Φ

K ∈ DK .

Proof. Let {ΦK
j }j∈N ⊂ DK be a minimizing sequence for ΦK 7→ EK,D[fK ,ΦK ], which satisfies the con-

straint FK [fK ,ΦK
j ] = f for every j ∈ N. With the arguments analogous to those from proofs of Lemma 4.2.2

and Proposition 4.2.3, we can prove that (on a subsequence) ΦK
j ⇀ Φ

K
in Hm(Ω,Ω)K and ΦK

j → Φ
K

in

C1,α(Ω,Ω)K , where Φ
K ∈ DK , by the new definition of D. The weak lower semicontinuity and the coercivity of

ΦK 7→ EK,D[fK ,ΦK ] are shown as in the proof of Proposition 4.2.3. Hence, it remains to prove the closedness
of the equality constraint f = FK [fK ,Φ

K
]. In light of (4.28), we have that xK corresponding to Φ

K
exists and

xKj (t, ·)→ xK(t, ·) in C1,α(Ω,Ω), uniformly in t. Then, using Remarks 4.2.4 and 4.2.8, we have

lim
j→∞

‖FK [fK ,ΦK
j ](t, ·)−FK [fK ,Φ

K
](t, ·)‖F = 0, ∀t ∈ [0, 1],

from where we conclude FK [fK ,Φ
K

] = f .

4.4 Convergence of Discrete Geodesic Paths
In this section, we prove the Mosco-convergence (cf . Definition 2.4.1) forK →∞ of the energy EK (as a temporal
extension of the time discrete path energy EK) to the time continuous path energy E , introduced in Definition 4.1.2.
Furthermore, the convergence of the time discrete to time continuous geodesic paths is established, which in
particular implies the existence of time continuous geodesics in the deep feature metamorphosis model with an
anisotropic regularizer.
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Theorem 4.4.1 (Mosco-convergence of the discrete path energies). Let (W1)–(W3) and (A1)–(A3) be satisfied.
Then, the sequence of time discrete path energies {EK}K∈N Mosco-converges to E in the L2([0, 1],F)-topology
for K →∞, i.e.,

(i) for every sequence {fK}K∈N ⊂ L2([0, 1],F) with fK ⇀ f ∈ L2([0, 1],F), the estimate

lim inf
K→∞

EK [fK ] ≥ E [f ]

holds true (“lim inf-inequality”),

(ii) for every f ∈ L2([0, 1],F), there exists a recovery sequence {fK}K∈N ⊂ L2([0, 1],F) satisfying fK → f
in L2([0, 1],F) such that the estimate

lim sup
K→∞

EK [fK ] ≤ E [f ]

is valid (“the existence of a recovery sequence and lim sup-inequality”).

Proof. We will prove the conditions separately.

Proof of the lim inf-inequality

To facilitate reading, we briefly outline the structure of the proof.

(i) Construction of the flow and feature intensity quantities. We observe that we can restrict our proof to the
sequences of the type {fK = FK [fK ,ΦK ]}K∈N, with the uniformly bounded energy. Having these, we
can construct the time extensions of the time discrete quantities corresponding to the vectors of features
and deformations fK and ΦK , respectively. In particular, this gives rise to the sequence of velocity fields
{vK}K∈N ⊂ L2((0, 1),V) and the discrete material derivatives {zK}K∈N ⊂ L2((0, 1)× Ω).

(ii) Identification of the limit of the sequences of the discrete velocity fields and material derivatives. We prove
the uniform boundedness of these sequences in the corresponding spaces, leading to the existence of the
weak limits v and z, respectively. We show that these quantities are indeed admissible for the feature curve
f , i.e., (v, z) ∈ C(f). This proof is based on the properties of the flow equation (cf . Subsection 3.2.3) and
the continuity of time point evaluation along the feature curves, which is due to the improved regularity
(cf . Remark 4.1.4).

(iii) Proof of the actual inequality. In this step, we prove the lim inf-inequality, by using the weak lower semi-
continuity of the energy and the Taylor expansion of the energy density W (cf . (W3)). To finish this step,
we need to handle the anisotropy terms, which is the task of the next step.

(iv) Identification of the limit of the discrete anisotropy weights. In the final step, we show the convergence in
L∞([0, 1] × Ω) of {āK}K∈N, as the piecewise constant interpolation of the vector of discrete anisotropic
weights {aKk }k=1,...,K;K∈N, to a[P[f ]]: the anisotropy regularization corresponding to the feature curve f .
To this end, we again use the continuity of time point evaluation along the feature curves, together with the
compactness and Lipschitz continuity of the anisotropy operator (cf . (A2)-(A3)).

ad (i): Construction of the flow and feature intensity quantities.

Let {fK}K∈N ⊂ L2([0, 1],F) be a sequence weakly converging to a feature path f ∈ L2([0, 1],F). If we
exclude the trivial case lim infK→∞ EK [fK ] = ∞ and eventually pass to a subsequence (without relabel-
ing), we may assume EK [fK ] ≤ E <∞, for all K ∈ N. By definition of EK , this directly implies

fK = FK [fK ,ΦK ], fK = (fK0 , . . . , fKK ) ∈ FK+1, ΦK = (φK1 , . . . , φ
K
K) ∈ DK ,

where ΦK is the minimizing deformation in (4.36), whose existence is proven in Lemma 4.3.2. Given this
vector of deformations, we define the discrete transport path yK and the discrete velocity field vK as in
(4.27) and (4.31), respectively. Using Lemma 4.2.2, for every t ∈ (0, 1), we get

max
k=1,...,K

{
‖yKk (t, ·)− 1‖C1,α(Ω), ‖φKk − 1‖C1,α(Ω)

}
≤C max

k=1,...,K
‖φKk − 1‖Hm(Ω)

≤Cθ(EK−1) ≤ CK− 1
2 . (4.37)
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Furthermore, by using the Lipschitz continuity of the determinant function on the ballBr(1) with associated
radius r = supK maxk=1,...,K ‖φKk − 1‖Hm(Ω) <∞, we have

max
k=1,...,K

‖ det(DyKk )− 1‖L∞([tKk−1,t
K
k )×Ω) ≤ CK−

1
2 , (4.38)

where the right-hand side is strictly smaller than 1 for every large enough K. This implies the positivity of
the determinant and thus the existence of the inverse transport path xK . This means that the feature extension
(4.29) is indeed well-defined and we can further define the quantities ṽK , ψK and zK , associated with ΦK

(see (4.32), (4.34) and (4.35), respectively).

ad (ii): Identification of the limit of the sequences of the discrete material derivatives and velocity fields.

For the weak material derivative given by (4.35), we have∫ 1

0

∫
Ω

(zK)2 dxdt =

K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2
∣∣fKk−1(xKk (t, x))− fKk ◦ φKk (xKk (t, x))

∣∣2 dx dt

=

K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2
∣∣fKk−1(x)− fkk ◦ φKk (x)

∣∣2 det(DyKk (t, x)) dx dt . (4.39)

From (4.37) and tKk − tKk−1 = K−1, we obtain∣∣∣∣∣
K∑
k=1

K2

∫ tKk

tKk−1

∫
Ω

∣∣fKk−1(x)− fKk ◦ φKk (x)
∣∣2(det(DyKk (t, x))− 1) dxdt

∣∣∣∣∣ ≤δECK− 1
2 .

Plugging this back to (4.39), we get

lim
K→∞

∫ 1

0

∫
Ω

(zK)2 dx dt = lim
K→∞

K

K∑
k=1

∫
Ω

∣∣fKk−1(x)− fKk ◦ φKk (x)
∣∣2 dx . (4.40)

This also shows the uniform boundedness of {zK}K∈N ⊂ L2((0, 1)× Ω), which implies the existence of a
weakly convergent subsequence with a limit z ∈ L2((0, 1) × Ω). Finally, using the weak lower semiconti-
nuity of the norm we have∫ 1

0

∫
Ω

z2 dxdt ≤ lim inf
K→∞

∫ 1

0

∫
Ω

(zK)2 dxdt = lim inf
K→∞

K

K∑
k=1

∫
Ω

∣∣fKk−1(x)− fKk ◦ φKk (x)
∣∣2 dx . (4.41)

For the sequence of discrete velocity fields {vK}K∈N, we show the uniform boundedness in L2((0, 1),V).
To this end, we first assume that K is sufficiently large such that maxk=1,...,K ‖DφKk − 1‖C0(Ω) < rW (see
(W2)), which is possible due to (4.37). Then, using the Korn’s inequality 2.1.6, the Poincaré’s inequality
2.1.4, as well as (W2) and (A1), we obtain∫ 1

0

∫
Ω

|vK |2 dxdt ≤ C
K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2|ε[φKk ]− 1|2 dxdt

≤ CK
K∑
k=1

∫
Ω

W(DφKk )

CW,1
dx ≤ CE

CW,1ca
,

∫ 1

0

∫
Ω

|DmvK |2 dxdt =

K∑
k=1

∫ tKk

tKk−1

∫
Ω

K2|Dm(φKk − 1)|2 dx dt

=

K∑
k=1

K

∫
Ω

|DmφKk |2 dx ≤ E
γ
. (4.42)
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Finally, the uniform boundedness is implied by the Gagliardo–Nirenberg inequality 2.1.5. By passing to a
subsequence (again labeled in the same way), we can deduce vK ⇀ v ∈ L2((0, 1),V) as K →∞.

The next step is to show the admissibility of the limit, i.e., (v, z) ∈ C(f). Recall (cf . (4.6), (4.7)) that this
means that

ψ̇t(x) = vt ◦ ψt(x) for (t, x) ∈ [0, 1]× Ω, ψ0(x) = x for x ∈ Ω , (4.43)

|fs ◦ ψs(x)− ft ◦ ψt(x))| ≤
∫ t

s

zr ◦ ψr(x) dr , ∀s < t ∈ [0, 1], for a.e. x ∈ Ω. (4.44)

The existence of a unique solution to (4.43), which for the moment we denote by ψv , is guaranteed by
Theorem 3.2.1. What we show here is that it can be identified as the limit as K → ∞ of the sequence of
discrete flows {ψK}K∈N which are given by (4.34) and present the flow associated to {ṽK}K∈N, by Propo-
sition 4.3.1. We start by observing that (4.28) and (4.33), together with (4.37), and the uniform boundedness
of the sequence of {vK}K∈N in L2((0, 1),V), imply that the sequence {ṽK}K∈N is uniformly bounded in
L2((0, 1), C1,α(Ω,Ω)). Then, incorporating Remark 3.2.2, we infer that {ψK}K∈N is uniformly bounded
in C0([0, 1], C1,α(Ω,Ω)), and by Remark 3.2.3, uniformly bounded in C0, 12 ([0, 1], C1,α(Ω,Ω)). Hence, by
using the compact embedding of Hölder spaces (cf . Corollary 2.1.10), a subsequence of {ψK}K∈N con-
verges strongly to some ψ in C0,β([0, 1], C1,β(Ω,Ω)), for every β ∈ (0,min( 1

2 , α)). We will verify that
ψ = ψv . To this end, we denote the solutions of (4.43) corresponding to vK by ψv

K

, where their existence
again follows by Theorem 3.2.1. Then,

‖ψ − ψv‖C0([0,1]×Ω) ≤ ‖ψ − ψK‖C0([0,1]×Ω) + ‖ψK − ψvK‖C0([0,1]×Ω) + ‖ψvK − ψv‖C0([0,1]×Ω) .

Here, the first term converges to zero as shown above and the last term converges to zero by the continuous
dependence of ψv

K

on vK , discussed in Theorem 3.2.1. We can estimate the remaining term as follows

‖ψK − ψvK‖C0([0,1]×Ω) ≤ C
K∑
k=1

∫ tKk

tKk−1

‖vKk (s, xKk (s, ·))− vKk (s, ·)‖C0(Ω) ds

≤ C
K∑
k=1

∫ tKk

tKk−1

‖vKk (s, ·)‖Hm(Ω)‖yKk (s, ·)− 1‖C0(Ω) ds

≤ C‖vK‖L2((0,1),Hm(Ω)) max
k=1,...,K

‖φKk − 1‖C0(Ω) .

Here, the first inequality is deduced from Remark 3.2.2. To derive the second inequality, we exploit the
Lipschitz property of x 7→ vKk (s, xKk (s, x))−vKk (s, x), where the Lipschitz constant, by Sobolev embedding
2.1.8, is bounded by C‖vKk (s, ·)‖Hm(Ω). Furthermore, we apply the coordinate transform yKk (s, ·) and use
the boundedness of the determinant of DyKk (s, ·), shown in (4.38). Using the uniform boundedness of
{vK}K∈N, (4.37), and plugging this back above, we get ψ = ψv .

With ψ identified as above, we want to show that (4.44) is fulfilled. We first note that, for s, t ∈ [0, 1], we
have

‖fKt ◦ ψKt − fKs ◦ ψKs ‖2F ≤
∫

Ω

(∫ t

s

zKr ◦ ψKr (x) dr

)2

dx

≤ |t− s|
∣∣∣∣∫

Ω

∫ t

s

(zKr ◦ ψKr (x))2 dr dx

∣∣∣∣ ≤ C|t− s| , (4.45)

where we used the uniform boundedness of {zK}K∈N in L2((0, 1) × Ω) (cf . (4.40)), and {(ψ−1)K}K∈N
in C0([0, 1], C1,α(Ω,Ω)), following from Theorem 3.2.1. Thus, we conclude that there exists a positive
constant L such that {fK ◦ψK}K∈N ⊂ C0

ω([0, 1],F), for ω(t) := Lt
1
2 , i.e., all the elements of the sequence

have a joint modulus of continuity. The space C0
ω([0, 1],F) as a subset of L2([0, 1],F) has some closedness

and regularity properties, as shown in the following lemma.
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Lemma 4.4.2. Let ω ∈ L2([0, 1],R+) be monotonically increasing and continuous at 0 with ω(0) = 0.
Then, the point evaluation f 7→ ft is well-defined on C0

ω([0, 1],F) and it represents a bounded linear
functional mapping from L2([0, 1],F) to F . Furthermore, the set C0

ω([0, 1],F) is closed with respect to the
weak convergence in L2([0, 1],F).

Proof. Let f ∈ C0
ω([0, 1],F). Then, for every t, s ∈ [0, 1], we have ‖ft‖F ≤ ω(|t− s|) + ‖fs‖F and thus,

for every t ∈ [0, 1], we have

sup
‖f‖L2([0,1],F)=1

‖ft‖F ≤ 2‖ω‖L2([0,1]) + 1,

showing the boundedness of point evaluation f 7→ ft.

To show the weak closedness, by [Bre11, Theorem 3.7], it is enough to show the convexity and strongly
closedness of the set. The convexity follows by the triangle inequality. To prove closedness, take a sequence
{f j}j∈N ⊂ C0

ω([0, 1],F) such that f j → f in L2([0, 1],F). Then, by [Alt06, Theorem 3.22], we have that
{f j}j∈N converges to f (on a subsequence with the same label) pointwise almost everywhere. Thus, for
every t ∈ [0, 1], we can choose an arbitrarily close point s such that ‖f js − fs‖F → 0 as j →∞. Then, for
every i, j ∈ N sufficiently large, we have

‖f it − f jt ‖F ≤ 2ω(|t− s|) + ‖f is − f js ‖F ,

confirming that the sequence actually converges for every t ∈ [0, 1]. Then, for every t, s ∈ [0, 1], we have

‖ft − fs‖F = lim
j→∞

‖f jt − f js ‖F ≤ ω(|t− s|),

showing that f ∈ C0
ω([0, 1],F).

To use these observations, we first note that, by Remark 4.2.8, fK ◦ ψK ⇀ f ◦ ψ in L2((0, 1),F), so that
f ◦ψ ∈ C0

ω([0, 1],F). From the continuity of point evaluation in time, we have that, for every s ≤ t ∈ [0, 1]
and every Ω̃ ⊂ Ω, the functional f 7→

∫
Ω̃
|ft(x) − fs(x)|dx is continuous, and since it is also convex it is

weak lower semicontinuous [Bre11, Corollary 3.9]. Altogether, we obtain∫
Ω̃

|fs ◦ ψs(x)− ft ◦ ψt(x)|dx ≤ lim inf
K→∞

∫
Ω̃

|fKt ◦ ψKt (x)− fKs ◦ ψKs (x)|dx

≤ lim inf
K→∞

∫
Ω̃

∫ t

s

zKr ◦ ψKr (x) dr dx =

∫
Ω̃

∫ t

s

zr ◦ ψr(x) dr dx , (4.46)

which proves (4.44), as it holds for every Ω̃ ⊂ Ω. Here, the last equality follows from the weak convergence
of zK , combined with the strong convergence of ψK , which, by Remark 4.2.8, implies the weak convergence
of zK ◦ ψK in L2((0, 1)× Ω).

ad (iii): Proof of the actual inequality.

Having (4.41), we are left to show∫ 1

0

∫
Ω

L[a, v, v] dxdt ≤ lim inf
K→∞

K

K∑
k=1

∫
Ω

aKk W(DφKk ) + γ|DmφKk |2 dx , (4.47)

where a := a[P[f ]] is well-defined by Remark 4.1.4, and aKk := a[P[fKk ]]. We make the second order
Taylor expansion around tKk−1 of the function t 7→ W(1 + (t − tKk−1)DvKk ) and evaluate it at t = tKk ,
yielding

W(DφKk ) =W(1) +K−1DW(1)(DvKk ) +
1

2K2
D2W(1)(DvKk , Dv

K
k ) + rKk

=K−2

(
λ

2

(
tr(ε[vKk ])

)2
+ µtr(ε[vKk ]2)

)
+ rKk , (4.48)
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where rKk denotes the remainder. Here, the lower order terms vanish due to (W1), and the last equality
follows from (W3). Then,

K

K∑
k=1

∫
Ω

aKk W(DφKk ) + γ|DmφKk |2 dx

=K−1
K∑
k=1

∫
Ω

aKk

(
λ

2
(tr(ε[vKk ]))2 + µtr(ε[vKk ]2)

)
+ γ|DmvKk |2 dx+K

K∑
k=1

∫
Ω

aKk r
K
k dx ,

where the remainder is of order K−
1
2 . To see this, we apply (4.37), Lemma 4.2.2, (A1), and the uniform

bound on the energy, to deduce

K

K∑
k=1

∫
Ω

|aKk rKk |dx ≤ CCaK
K∑
k=1

∫
Ω

K−3|DvKk |3 dx

≤ CK max
k=1,...,K

‖φKk − 1‖C1(Ω)

K∑
k=1

‖φKk − 1‖2Hm(Ω)

≤ CKθ(EK−1)

K∑
k=1

θ
(
WD(fKk−1, f

K
k , φ

K
k )
)2 ≤ CK 1

2

K∑
k=1

WD(fKk−1, f
K
k , φ

K
k ) ≤ CEK− 1

2 .

From here we see that, in the order to prove (4.47), it is enough to prove āK → a in L∞([0, 1]× Ω), where

āK(t) := a[P[f̄K ]] = aKk for t ∈ (tKk−1, t
K
k ], where f̄K(t) := fKk for t ∈ (tKk−1, t

K
k ]. (4.49)

Indeed, then
√
āKvK ⇀

√
av in L2((0, 1),V), and, as the functional is strongly continuous and convex, it

is also weakly lower semicontinuous [Bre11, Proposition 3.5 and Corollary 3.9], implying

lim inf
K→∞

K

K∑
k=1

∫
Ω

aKk W(DφKk ) + γ|DmφKk |2 dx

= lim inf
K→∞

∫ 1

0

∫
Ω

āK
(
λ

2
(trε[vK ])2 + µtr(ε[vK ]2)

)
+ γ|DmvK |2 dxdt

≥
∫ 1

0

∫
Ω

a

(
λ

2
(trε[v])2 + µtr(ε[v]2)

)
+ γ|Dmv|2 dxdt . (4.50)

ad (iv): Identification of the limit of the discrete anisotropy weights.

To this end, we will show

āK − aK → 0, aK → a in L∞([0, 1]× Ω), as K →∞, (4.51)

where aK := a[P[fK ]] is well-defined by Remark 4.1.4. To prove the second claim, we first observe
that, due to the uniform boundedness of {ṽK}K∈N and {zK}K∈N, we can show that (cf . (4.8)) {fK}K∈N
is uniformly bounded in L∞([0, 1],F). Then, by Remark 4.1.4, we have that there exists a modulus of
continuity ω such that for every K ∈ N it holds fK ∈ C0

ω([0, 1],F). In particular, by Lemma 4.4.2, on this
sequence the point evaluation f 7→ ft is well-defined, linear, and continuous as a mapping fromL2([0, 1],F)
to F . Hence, by [Bre11, Theorem 3.10], it is also weakly continuous, implying that

fKt ⇀ ft in F , ∀t ∈ [0, 1], (4.52)

which, together with (A2), gives

aKt → at in L∞(Ω), ∀t ∈ [0, 1]. (4.53)
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From the existence of joint modulus of continuity for {fK}K∈N, together with (A3), we have the equiconti-
nuity of the sequence of anisotropies, i.e.,

‖aKt+t′ − aKt ‖L∞(Ω) → 0, as t′ → 0, uniformly in K and t . (4.54)

Hence, by Arzelà-Ascoli Theorem 2.1.9 (ii), we have aK → a in C0([0, 1], L∞(Ω)).

To prove the second claim in (4.51) , by (4.49) and (A3), it is enough to prove f̄K−fK → 0 inL∞([0, 1],F).
To this end, using the definition of feature extension, for t ∈ [tKk−1, t

K
k ), we write∣∣f̄K(t, x)−fK(t, x)

∣∣ ≤ ∣∣fKk ◦ φKk (xKk (t, x))−fKk−1(xKk (t, x))
∣∣+∣∣fKk ◦ φKk (xKk (t, x))−fKk (x)

∣∣ .
For the first term, using uniform boundedness of DyKk in L∞([tKk−1, t

K
k ] × Ω) (cf . (4.37) and (4.38)), we

have∫
Ω

∣∣fKk ◦ φKk (xKk (t, x))−fKk−1(xKk (t, x))
∣∣2 dx =

∫
Ω

∣∣fKk ◦ φKk (x)−fKk−1(x)
∣∣2 det

(
DyKk (t, x)

)
dx

≤CEK−1. (4.55)

To deal with the second term, we can take a sequence fKk,j ∈ C∞(Ω,R3+c) such that ‖fKk,j − fKk ‖F ≤ 2−j

and ‖DfKk,j‖L∞(Ω) ≤ Cf,j (cf . Theorem 2.1.7). The uniformity of the estimates follows from the uniform
boundedness of {fKk }k=1,...,K;K∈N ∈ F , which is due to the uniform boundedness of fKK = fK(1) deduced
above and the induction procedure (cf . (4.22)). This gives an estimate

‖fKk ◦ φKk (xKk (t, ·))− fKk (·)‖F (4.56)

≤‖fKk ◦ φKk (xKk (t, ·))− fKk,j ◦ φKk (xKk (t, ·))‖F + ‖fKk,j ◦ φKk (xKk (t, ·))− fKk,j‖F + ‖fKk,j − fKk ‖F
≤‖fKk − fKk,j‖F‖det(D(φKk ◦ xKk ))‖−

1
2

L∞([tKk−1,t
K
k ]×Ω)

+ ‖fKk,j − fKk ‖F
+ C‖DfKk,j‖L∞(Ω)‖φKk − yKk ‖L∞([tKk−1,t

K
k )×Ω)‖ det(DyKk )‖L∞([tKk−1,t

K
k )×Ω)

≤C2−jε−
1
2 + Cf,j‖φKk − 1‖L∞([tKk−1,t

K
k )×Ω) ≤ C2−j + Cf,jK

− 1
2 ,

where we used the transformation formula, (4.37), and (4.38). Choosing first j and then K, this proves the
claim and finally finishes the proof of lim inf-estimate.

In what follows, we prove the existence of a recovery sequence and thus establish the Mosco-convergence.
As a preparation, we prove that the infimum in (4.5) is actually attained, where we exploit some results from the
previous proof.

Proposition 4.4.3. For f ∈ L2([0, 1],F) with E [f ] <∞, the infimum in (4.5) is attained, i.e., there exists a tuple
(v, z) ∈ C(f) satisfying (4.6) and (4.7) such that

E [f ] =

∫ 1

0

∫
Ω

L[a[P[f ]], v, v] +
1

δ
z2 dx dt.

Proof. By assumption (A1) and Remark 4.1.4, the functional (v, z) 7→
∫ 1

0

∫
Ω
L[a[P[f ]], v, v] + 1

δ z
2 dxdt is well

defined and, by Korn’s inequality 2.1.6 and Gagliardo–Nirenberg interpolation inequality 2.1.5, it is coercive and
weakly lower semicontinuous on C(f) (see also [BK17]). Since C(f) is a subset of a reflexive Banach space, it
suffices to prove the weak closedness of C(f), to obtain the existence of an optimal tuple (v, z) ∈ C(f).

Let {(vj , zj)}j∈N ∈ C(f) be a weakly convergent sequence with limit (v, z). Due to Theorem 3.2.1 the
corresponding flows {ψj}j∈N and ψ exist and ψj → ψ in C0([0, 1] × Ω). Furthermore, as {vj}j∈N is uniformly
bounded in L2((0, 1), C1,α(Ω,Ω)), we can apply the reasoning in the paragraph following (4.43) to conclude that
a subsequence of {ψj}j∈N converges strongly to ψ in C0,β([0, 1], C1,β(Ω,Ω)), for β ∈ (0,min( 1

2 , α)). Finally,
by Remark 4.2.4, we have ft ◦ ψjt → ft ◦ ψt in L2([0, 1],F) and, by Remark 4.2.8, it holds zjt ◦ ψjt ⇀ zt ◦ ψt in
L2((0, 1)× Ω). Thus, we reason analogously to (4.46) to conclude that (4.7) is satisfied.
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Proof of the existence of a recovery sequence and lim sup-inequality

We again provide an outline to facilitate reading.

(i) Construction of a recovery sequence. The recovery sequence is constructed by applying the feature extension
operator to the discrete vector of features obtained by sampling the given feature curve at time points k

K , k =
0, . . . ,K, and the deformation vector obtained as the relative flow between the sampling points.

(ii) Proof of the actual inequality. To bound the feature mismatch part of the energy, we use the definition of
the vectors of features and deformations, and the variational inequality (4.7). For the dissipation part of the
energy, we used the Taylor expansion ofW , the Jensen inequality for the operatorL, and, finally, the property
of the trace of matrices, and an algebraic property of the set of Sobolev diffeomorphisms. The anisotropy
terms are handled in a similar manner as in the above proof, upon having the result of the following step.

(iii) Proof of the convergence of the recovery sequence. In this step, we prove the strong convergence in
L2((0, 1),F) of the recovery sequence to the given feature curve. To this end, we use the variational in-
equality (4.7) and the strong convergence of the discrete global flows towards the optimal continuous flow.

ad (i): Construction of a recovery sequence.

Let f ∈ L2([0, 1],F) with E [f ] < ∞. Then, let (v, z) ∈ C(f) be a pair from the previous proposition with
an associated flow ψ. We define the discrete feature and the discrete deformation vectors by

fKk (x) :=f(tKk , x), k = 0, . . . ,K,

φKk (x) :=ψtKk−1,t
K
k

(x), k = 1, . . . ,K, where ψs,t(·) = ψ(t, ψ−1(s, ·)), (4.57)

and the point evaluation in time of the feature curve is possible by Remark 4.1.4. To be in a position to apply
the temporal extension construction from Section 4.3, we bound the C1(Ω)-norm of the displacements as
follows:

max
k∈{1,...,K}

‖φKk − 1‖C1(Ω) ≤ sup
s,t∈[0,1]
|t−s|≤K−1

‖ψs,t − 1‖C1(Ω)

≤ sup
s,t∈[0,1]
|t−s|≤K−1

‖ψ‖C0([0,1],C1(Ω))|t− s|
1
2 |ψ−1|

C0, 1
2 ([0,1],C1,α(Ω))

≤K− 1
2M

(
‖v‖L2((0,1),V)

)
, (4.58)

where M is some monotonically increasing function (cf . Remarks 3.2.2 and 3.2.3). Thus, choosing K
sufficiently large ensures (cf . (4.37) and (4.38)) that ΦK ∈ DK and we can indeed repeat the procedure
from Section 4.3. Finally, the recovery sequence is defined by fK := FK

[
fK ,ΦK

]
.

ad (ii): Proof of the actual inequality.

We start bounding the parts of EK [fK ], given by (4.36), separately. For any k = 1, . . . ,K, we infer, using
(4.7), Jensen’s inequality, and (4.58), that∫

Ω

∣∣fKk−1 − fKk ◦ φKk
∣∣2 dx =

∫
Ω

∣∣fKk−1 ◦ ψtKk−1
− fKk ◦ ψtKk

∣∣2 det(DψtKk−1
) dx

≤
∫

Ω

(∫ tKk

tKk−1

zs ◦ ψs ds

)2

det(DψtKk−1
) dx

≤ 1

K

∫ tKk

tKk−1

∫
Ω

z2
s det(Dψs,tKk−1

) dxds

≤ 1

K

(
1 + CK−

1
2

)∫ tKk

tKk−1

∫
Ω

z2
s dxds . (4.59)
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To control the deformation regularization terms, we recall that vKk = K(φKk −1) and apply the same Taylor
expansion argument as in (4.48), to get∫

Ω

aKk W(DφKk ) + γ|DmφKk |2 dx ≤ K−2

∫
Ω

L[aKk , v
K
k , v

K
k ] dx+ CK−3

∫
Ω

aKk |DvKk |3 dx . (4.60)

Here, as usual, aKk = a[P[fKk ]], for k = 1, . . . ,K. Summing over the second term on the right-hand side
and taking into account (4.58) and (A1), we obtain

K∑
k=1

∫
Ω

aKk |DvKk |3 dx ≤ CaCK3
K∑
k=1

‖φKk − 1‖3C1(Ω)
≤ CK 3

2 . (4.61)

A direct application of Jensen’s inequality shows that the lower order term satisfies∫
Ω

L[aKk , v
K
k , v

K
k ] dx =

∫
Ω

L

[
aKk ,K

∫ tKk

tKk−1

vt ◦ ψtKk−1,t
dt,K

∫ tKk

tKk−1

vt ◦ ψtKk−1,t
dt

]
dx

≤
∫

Ω

K

∫ tKk

tKk−1

L[aKk , vt ◦ ψtKk−1,t
, vt ◦ ψtKk−1,t

] dtdx . (4.62)

We will bound the terms appearing in L (cf . (3.10)) separately. By using (4.58), the transformation formula,
and |tr(AB)| ≤ |tr(A)| + |tr(A(B − 1))|, for A,B ∈ Rn×n, multiple times, we can estimate the part
corresponding to the first summand of L as follows:∫

Ω

∫ tKk

tKk−1

aKk tr
(
D
(
vt ◦ ψtKk−1,t

))2

dtdx

=

∫
Ω

∫ tKk

tKk−1

aKk tr
(
Dvt ◦ ψtKk−1,t

DψtKk−1,t

)2

dtdx

≤
∫

Ω

∫ tKk

tKk−1

aKk

[
tr
(
Dvt ◦ ψtKk−1,t

)2

+ tr
(
Dvt ◦ ψtKk−1,t

(
1−DψtKk−1,t

))2

+ 2
∣∣∣tr(Dvt ◦ ψtKk−1,t

)
tr
(
Dvt ◦ ψtKk−1,t

(
1−DψtKk−1,t

))∣∣∣ ] dtdx

≤
∫

Ω

∫ tKk

tKk−1

aKk tr (ε[v])
2

+ Ctr (ε[v])
2
K−

1
2 dtdx . (4.63)

The second term in L is estimated analogously:∫
Ω

∫ tKk

tKk−1

aKk tr

(
ε
[
vt ◦ ψtKk−1,t

]2)
dtdx ≤

∫
Ω

∫ tKk

tKk−1

aKk tr
(
ε[v]2

)
+ Ctr

(
ε[v]2

)
K−

1
2 dtdx . (4.64)

It remains to bound the higher order term appearing in the definition of L. To this end, we use

‖vt ◦ ψt‖Hm(Ω) ≤ C‖vt‖Hm(Ω) ,

which follows from [BV17, Lemma 3.5], and the estimate ‖fg‖Hm̃ ≤ C‖f‖Hm‖g‖Hm̃ for f ∈ Hm(Ω),
g ∈ Hm̃(Ω) and any 0 ≤ m̃ ≤ m [IKT13, Lemma 2.3], resulting in the estimates

|vt ◦ ψtKk−1,t
|Hm(Ω)

≤|Dvt ◦ ψtKk−1,t
|Hm−1(Ω) +

∥∥Dvt ◦ ψtKk−1,t
D(ψtKk−1,t

− 1)
∥∥
Hm−1(Ω)

≤|Dvt ◦ ψtKk−1,t
|Hm−1(Ω) + C‖vt‖Hm(Ω)‖ψtKk−1,t

− 1‖Hm(Ω)

≤|Dvt ◦ ψtKk−1,t
|Hm−1(Ω) + C

∥∥vt‖Hm(Ω)K
− 1

2 .
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By iterating this argument and applying a change of variables, we obtain∫ tKk

tKk−1

∣∣vt ◦ ψtKk−1,t

∣∣2
Hm(Ω)

dt ≤
∫ tKk

tKk−1

|vt|2Hm(Ω) + C
∥∥vt‖2Hm(Ω)K

− 1
2 dt . (4.65)

By combining the estimate (4.59) with (4.60)–(4.65), we get

EK [fK ] ≤ EK,D[fK ,ΦK ] = K

K∑
k=1

∫
Ω

aKk W(DφKk ) + γ|DmφKk |2 +
1

δ

∣∣fKk−1 − fKk ◦ φKk
∣∣2 dx (4.66)

≤
K∑
k=1

(∫ tKk

tKk−1

∫
Ω

L[aKk , v, v] + CK−
1
2 + CK−1|DvKk |3 +

1

δ

(
1 + CK−

1
2

)
z2
t dxdt

)

≤
∫ 1

0

∫
Ω

L[āK , v, v] +
1

δ
z2
t dxdt+ CK−

1
2 ,

where āK is defined by (4.49). Thus, to prove the desired estimate, it is again enough to prove āK → a in
L∞([0, 1] × Ω). Having the estimates (4.58) and (4.59), we can repeat the same arguments as in the proof
of lim inf-inequality (cf . (4.55), (4.56)) to prove that āK − aK → 0 in L∞([0, 1] × Ω), while aK → a in
C0([0, 1], L∞(Ω)) will follow from the identification of the recovery sequence limit and continuity of point
evaluation (cf . (4.52)), which is the last step of the proof.

ad (iii): Proof of the convergence of the recovery sequence.

As announced, we show fK → f in L2([0, 1],F). To this end, with the discrete flow ψK given by (4.34),
we estimate∫ 1

0

∫
Ω

∣∣fs ◦ ψs − fKs ◦ ψKs ∣∣2 dxds

=

K∑
k=1

∫
Ω

∫ tKk

tKk−1

∣∣fs ◦ ψs − fKs ◦ ψKs ∣∣2 dsdx

≤2

K∑
k=1

∫
Ω

∫ tKk

tKk−1

∣∣fs ◦ ψs − ftKk−1
◦ ψtKk−1

∣∣2 +
∣∣ftKk−1

◦ ψtKk−1
− fKs ◦ ψKs

∣∣2 dsdx

≤C
K∑
k=1

∫
Ω

∫ tKk

tKk−1

K−2(zs◦ψs)2+
∣∣ftKk−1

◦ψtKk−1
−ftKk−1

◦ψKtKk−1

∣∣2+|fKk ◦φKk −fKk−1|2(detDψKtKk−1
)−1 dsdx

≤CK−2
(
‖zt ◦ ψt‖2L2((0,1)×Ω) + ‖z‖2L2((0,1)×Ω)

)
.

Here, to go from the third to the fourth line, we combined (4.7) with the Cauchy–Schwarz inequality for the
first term on right-hand side, while for the second term we used the definition of feature extension (4.29),
(4.59), the uniform boundedness of {(ψK)−1}K∈N following from (4.33), (4.58), Theorem 3.2.1, and finally

ψKtKk
= φKk ◦ ψKtKk−1

= φKk ◦ · · · ◦ φK1 = ψtKk , for all k = 1, . . . ,K, (4.67)

which follows from (4.34) and (4.57). From here, by Remark 4.2.8, it follows that it is enough to prove
that ψK → ψ in C0,β([0, 1], C1,β(Ω,Ω)), for some β ≥ 0. This follows, for β ∈ (0,min( 1

2 , α)), from the
uniform boundedness of {ψK}K∈N in that space (cf . Theorem 3.2.1 and Remark 3.2.3), Corollary 2.1.10,
and (4.67).

Finally, we can now repeat the arguments (4.53) and (4.54) to prove aK → a in C0([0, 1], L∞(Ω)) which,
plugged in (4.66), gives lim supK→∞ EK [fK ] ≤ E [f ], as we wanted to show.

This finally finishes the proof of Mosco-convergence.

This theorem implies the existence of a geodesic path in the time continuous model as a limit of extensions of
time discrete geodesic paths. This is studied in the following theorem.
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Theorem 4.4.4 (Convergence of discrete geodesic paths). Suppose that the assumptions (W1)–(W3) and (A1)–
(A3) hold true. Let fA, fB ∈ F be fixed. For K ∈ N sufficiently large, let fK be a minimizer of EK subject to
fK0 = fA and fK1 = fB . Then, a subsequence of {fK}K∈N weakly converges in L2([0, 1],F) to a minimizer of
the continuous path energy E as K →∞. Finally, the associated sequence of discrete path energies converges to
the minimal continuous path energy.

Proof. For everyK ≥ 2, let us observe the vector of features given by f
K

k := (1− k
K )fA+ k

K fB , for k = 0, . . . ,K.
Then, as in (4.25), we obtain that the path energies are, for every K ∈ N, bounded by

E ≤ EK [FK [f
K
,1K ]] ≤ 1

δ
‖fA − fB‖2F .

For the optimal vectors of images fK and deformations ΦK in the definition of EK , which exist, for K large
enough, by Theorem 4.2.7, we can apply the temporal extension construction from Section 4.3 (cf . (4.37) and
(4.38)). In particular, {fK = FK [fK ,ΦK ]}K∈N are minimizers of {EK}K∈N, and EK [fK ] = EK,D[fK ,ΦK ] ≤
E for all (large enough) K ∈ N. Then, by Remark 3.2.2, together with (4.33), and (4.37), we have the uniform
boundedness of {ψK}K∈N, {(ψ−1)K}K∈N in C0([0, 1], C1,α(Ω,Ω)). Furthermore, as in (4.40), we conclude that
{zK}K∈N is uniformly bounded in L2((0, 1) × Ω). Plugging this into Proposition 4.3.1, we obtain, for every
t ∈ [0, 1],

‖fKt ‖F ≤ C
(
‖fKt ◦ ψKt − fA‖F + ‖fA‖F

)
≤ C

(
‖zK‖L2((0,1)×Ω) + ‖fA‖F

)
.

Therefore, {fK}K∈N is uniformly bounded in L∞([0, 1],F) and a subsequence converges weakly in L2([0, 1],F)
to some f ∈ L2([0, 1],F). Assume that there exists an image path f̃ ∈ L2([0, 1],F) with corresponding optimal
tuple (ṽ, ψ̃, z̃), which exists due to Proposition 4.4.3, satisfying (4.6) and (4.7), such that

E [f̃ ] < E [f ] . (4.68)

Using the lim sup-part of the previous theorem, there exists a sequence {f̃K}K∈N ⊂ L2([0, 1],F) satisfying
lim supK→∞ EK [f̃K ] ≤ E [f̃ ]. However, applying the lim inf-inequality from the previous theorem, we obtain

E [f ] ≤ lim inf
K→∞

EK [fK ] ≤ lim sup
K→∞

EK [f̃K ] ≤ E [f̃ ] , (4.69)

which contradicts (4.68). Hence, f minimizes the continuous path energy over all admissible image paths. Finally,
the discrete path energies converge to the limiting path energy along a subsequence, i.e., limK→∞ EK [fK ] = E [f ],
which again follows from (4.69) by using f̃ = f .

Let us conclude this section with a couple of properties of a geodesic curve f ∈ L2([0, 1],F).
Remark 4.4.5. (i) In the context of Proposition 4.1.1, for a geodesic curve f ∈ L2([0, 1],F) it holds z = |ẑ|,

where ẑ is the vector material derivative.

(ii) Let F : I → L2(Ω,Rc) be compact and Lipschitz continuous, i.e., the assumptions of the Remarks 4.2.6 and
4.2.9 are satisfied. Then, the discrete geodesic paths can be assumed to be of the type fK = (uKk , F (

uKk
η ))

for k = 1, . . . ,K and every (large enough) K ∈ N (cf . (4.1)). This allows us to show that, with f being a
geodesic curve, it holds

ft = (ut, F (
ut
η

)), for every t ∈ [0, 1].

Indeed, f is obtained as a weak limit in F of the extensions fK = FK [fK ,ΦK ], where {fK}K∈N are
the discrete geodesic paths. From the definition of feature extension, for every tKk = k

K , k = 0, . . . ,K, it
holds fK

tKk
= fKk (cf . (4.30)). Thus, for every t ∈ [0, 1] ∩ Q, there exists infinitely many K ∈ N such that

fKt = (uKk(K), F (
uKk(K)

η )). As we showed in (4.52), as K →∞, for every t ∈ [0, 1] it holds fKt ⇀ ft in F .
Thus, by the compactness of the mapping F , we get ft = (ut, F (utη )) for every t ∈ [0, 1] ∩Q. To show the
same for all the points t ∈ [0, 1], we take t′ ∈ [0, 1] ∩Q and estimate

‖ft − (ut, F (
ut
η

))‖F ≤ ‖ft − ft′‖F + ‖(ut′ , F (
ut′

η
))− (ut, F (

ut
η

))‖F ≤
(

2 +
LF
η

)
ω(|t− t′|),

where ω is the modulus of continuity of f (cf . Remark 4.1.4) and LF the Lipschitz constant of F . As t′ can
be chosen arbitrarily close to t, our claim is proven.
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4.5 Fully Discrete Model
In this section, we present the fully discrete model on the image domain Ω = [0, 1]2. We use boldface letters
to differentiate discrete points, feature maps, images, and deformations from their continuous counterparts. For
M,N ≥ 3, we define the computational domain (grid) and its boundary as follows

ΩMN := ΩM × ΩN :=
{

0
M−1 , . . . ,

M−1
M−1

}
×
{

0
N−1 , . . . ,

N−1
N−1

}
, ∂ΩMN := ΩMN ∩ ∂([0, 1]2).

The discrete image space and the discrete feature space are given by IMN := {u : ΩMN → R3} and FMN := {f :
ΩMN → R3+c}, respectively. The set of admissible deformations is given by

DMN :=
{
φ : ΩMN → [0, 1]2 : φ = 1 on ∂ΩMN , det(∇MNφ) > 0

}
,

where the discrete Jacobian operator ∇MN of φ is defined as the forward finite difference operator with Neumann
boundary conditions. We define the discrete Lp-norm of a discrete object g ∈ FMN by

‖g‖pLp(ΩMN )
:=

1

MN

∑
(x,y)∈ΩMN

3+c∑
j=1

|gj(x,y)|p.

In the fully discrete model, we have to define the spatial warping operator T as a numerical approximation of the
pullback of a feature channel f j ◦ φ at a point (x,y) ∈ ΩMN . The starting point of this approximation is the fact
that ifφ(x,y) = (x̃, ỹ) ∈ ΩMN then we want to have T[f j ,φ](x,y) = f j(x̃, ỹ). Between the grid points, we need
to use a sufficiently smooth interpolation. One could simply make a linear interpolation of values at grid points,
but this approach does not offer enough smoothness. We, therefore, turn to a higher order approach that uses
piecewise cubic polynomial interpolation. To this end, in addition to values at the grid points, one needs to specify
additional constraints. Here, we specify values of derivatives at grid points and use (cellwise) cubic Hermite splines
interpolation (see [dB78, Chapter IV] for details). Our approach can be seen as a composition of one-dimensional
interpolations on each interval. Thus, we first present details for the one-dimensional interpolations and then
explore this for our two-dimensional case. To this end, for g : ΩM → R we define, for every x ∈ [0, 1],

IM [g](x) := sg(x), (4.70)

where sg ∈ C1([0, 1],R) is the (intervalwise) cubic Hermite spline, such that, for xi := i
M−1 , i = 0, . . . ,M − 1,

sg(xi) = pi := g(xi), s
′
g(xi) = mi :=

M − 1

2
(pi+1 − pi−1) ,

with pi := 0 for i < 0 or i > M−1. The specific choice for the approximation of derivatives is called the Catmull–
Rom spline [CR74]. On each subinterval [xi,xi+1], for i = 0, . . . ,M − 2, cubic Hermite splines can be written
in terms of cubic Hermite basis {h00, h01, h10, h11}, which allows for an efficient numerical implementation. We
have

sg(x) = h00(t)pix +
h10(t)

M − 1
mix + h01(t)pix+1 +

h11(t)

M − 1
mix+1, (4.71)

where ix := b(M − 1)xc, t := (M − 1)(x− xix), and

h00(t) := 2t3 − 3t2 + 1, h10(t) := t3 − 2t2 + t, h01(t) := −2t3 + 3t2, h11(t) := t3 − t2.

In particular, we can also write this as

sg(x) =HM [(g(xix+k))k=−1,...,2, x]

:=h00(t)g(xix) +
h10(t)

2
(g(xix+1) + g(xix−1)) + h01(t)g(xix+1) +

h11(t)

2
(g(xix+2) + g(xix)),

where g(xi) := 0 for i < 0 or i > M − 1. For g : ΩN → R we can analogously define, by taking care of the size
of the intervals, for every y ∈ [0, 1],

IN [g](y) := HN [(g(xiy+l))l=−1,...,2, y].
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As already announced, the two dimensional interpolation is the composition of one dimensional interpolations. In
details, for g : ΩMN → R and every (x, y) ∈ [0, 1]2, we define

IMN [g](x, y) := HN [(HM [(g(xix+k,yiy+l))k=−1,...,2, x])l=−1,...,2, y].

Finally, to define the warping operator T we need to evaluate this interpolation at the deformed positions. To this
end, for every (x,y) ∈ ΩMN and every j = 1, . . . , 3 + c, we define

T[f j ,φ](x,y) := IMN [f j ](φ(x,y)) .

Interpolation with cubic Hermite splines of prescribed function values on a discrete computational domain
(derivatives can also be estimated from the function values as in our case) results in a C1-regular interpolant. In
our application, this regularity reflects in the regularization of the deformations via discretization and thus allows
us to neglect the Hm-seminorm term in the fully discretized energy.

The fully discrete mismatch functional DMN that approximates
∫

Ω
|f̃ ◦ φ− f |2 dx reads as

DMN [f , f̃ ,φ] :=
1

2(3 + c)

3+c∑
j=1

∥∥∥T[f̃ j ,φ]− f j
∥∥∥2

L2(ΩMN )
.

Likewise, the discretization of the lower order anisotropic regularization functional
∫

Ω
aW(Dφ) dx is given by

RMN [φ,a] := ‖aW(∇MNφ)‖L1(ΩMN ) .

The energy density is given by (4.11) i.e.,

W(A) :=
λ

2

(
e(log det(A))2 − 1

)
+ µ|Asym − 1|2, for A ∈ GL+(2),

and the fully discrete anisotropic operator a : IMN → L∞(ΩMN) is the straightforward discretization of (4.2), i.e.,
for every u ∈ IMN and (x,y) ∈ ΩMN ,

a[u](x,y) := exp

(
−
∑3
j=1

∣∣(Gσ2?∇MN(Gσ2 ? uj))(x,y)
∣∣2

ρ

)
+ ξ,

where Gσ1,σ2 are the discrete (truncated) two-dimensional Gaussian kernels with standard deviations σ1 and σ2,
respectively, and ? is the discrete cross correlation operation with stride equal to 1 and padding which ensures
preservation of the dimensions (cf . (2.11)).

In summary, the fully discrete path energy in the deep feature metamorphosis model, for a (K + 1)-tuple
(fk)Kk=0 of discrete feature maps, a K-tuple (φk)Kk=1 of discrete deformations, and a K-tuple (ak)Kk=1 of discrete
anisotropies, reads as

EK,D
MN [(fk)Kk=0, (φk)Kk=1, (ak)Kk=1] := K

K∑
k=1

RMN [φk,ak] +
1

δ
DMN [fk−1, fk,φk] .

Finally, a discrete geodesic path (fk)Kk=0 in feature space is a minimizer of EK
MN , subject to given discrete boundary

data f0 = fA and fK = fB , where

EK
MN [(fk)Kk=0] := inf

(φk)Kk=1∈D
K
MN

EK,D
MN [(fk)Kk=0, (φk)Kk=1, (ak)Kk=1].

As announced in the introduction of this section, we consider two substantially different options for fA and fB .

Simple RGB model. As a first model, we consider the simple image intensity-based feature space, i.e., the
feature space FMN coincides with the space of RGB images IMN and fA = uA and fB = uB . Since a direct com-
putation of the deformations on the full grid is numerically unstable, we incorporate a multilevel scheme. Initially,
we start on the coarsest computational domain of size ML×NL with ML = 2−(L−1)M and NL = 2−(L−1)N for
a given L > 0 and compute a time discrete geodesic path for bilinearly downsampled input images uA and uB .
Then, in subsequent prolongation steps, the width and the height of the computational domain are successively
doubled and the initial deformations and images are obtained via a bilinear interpolation of the preceding coarse
scale solutions.



62 4 Image Morphing in Deep Feature Space with Anisotropic Regularization

type parameters output size

2× (Conv2d + ReLU) 3/1/1/64 512× 512× 64
MaxPool2d 2/2 256× 256× 64

2× (Conv2d + ReLU) 3/1/1/128 256× 256× 128
MaxPool2d 2/2 128× 128× 128

4× (Conv2d + ReLU) 3/1/1/256 128× 128× 256
MaxPool2d 2/2 64× 64× 256

4× (Conv2d + ReLU) 3/1/1/512 64× 64× 512
MaxPool2d 2/2 32× 32× 512

4× (Conv2d + ReLU) 3/1/1/512 32× 32× 512

Table 4.1: The architecture of VGG neural network (cf . Section 2.3 for the basic definitions and notation).
The network consists of 16 convolutional layers followed by ReLU activation function. Max-pooling opera-
tion canonically yields a multilevel semantic decomposition of features into 5 levels. Parameters refer to con-
volutional kernel size/padding/stride/number of output channels for weight layers and padding/stride for pooling
layers (all of the values are equal in all 4 directions). The names of the operations are as in the TensorFlow li-
brary [AAB+15]. The third column represents the output size of the features on different levels, for an initial input
of size M × N × c = 512 × 512 × 3. This network is often referred to as VGG19, as there are 3 additional
fully connected layers at the end, which are used for purposes of image classification and are not relevant to our
application.

Deep feature space model. In the second model, fA = (ηuA,FMN(uA)) and fB = (ηuB ,FMN(uB)), for
(small) η > 0, where FMN : IMN → {f : ΩMN → Rc} denotes the fully discrete feature extraction operator.
The fully discrete images are again downsampled to match the corresponding grid size via bilinear interpolation.
The feature extraction operator is represented by the VGG network as presented in [SZ14] to incorporate semantic
information in image morphing. The VGG network is particularly designed for the localization and classification of
objects in natural images and thus the feature decomposition of images is well-suited for semantic matching. Each
feature map can be seen as a continuous map into some higher-dimensional feature space consisting of vectors
in Rc, where c ranges from 64 to 512 depending on the considered level associated with a certain network layer.
Some of the features, together with the original image channels, are visualized in Figure 4.1. The architecture of
the network is given in Table 4.1. In contrast to the simple RGB model, only the deformations are prolongated to
the next level via a bilinear interpolation in the multilevel approach, since successive features on different levels
are not necessarily related. To stabilize the optimization, the features on each level are first optimized using the
upscaled deformations.

4.6 Numerical Optimization

In what follows, we present the numerical optimization scheme to compute geodesics for the fully discrete deep
feature metamorphosis model. We use a variant of the iPALM algorithm [PS16] which we introduced in Sec-
tion 3.3. While the regularization functional RMN is sufficiently well behaved w.r.t. the deformation variable, the
data mismatch term DMN is non-convex and several numerical experiments indicated that a direct minimization of
this term with respect to deformations is challenging due to the sensitivity of the warping operator to small per-
turbations of the deformations. Thus, to enhance the stability of the algorithm the warping operator is linearized
around the extrapolated deformationφ[β] ∈ DMN , which is defined in terms of the value from the previous iteration
step in the algorithm. The linearization is based on the gradient (cf . [WPZ+09])

Λj(f , f̃ ,φ
[β]) := 1

2 (∇MNT[f̃ j ,φ[β]] +∇MNf j),
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where the Jacobian operator applied to the features is approximated using a Sobel filter [Sob90]. Here, 〈·, ·〉
represent the pointwise product of the involved matrices. This yields the modified mismatch energy

D̃MN [f , f̃ ,φ,φ[β]] :=
1

2(3 + c)

3+c∑
j=1

∥∥∥∥T[f̃ j ,φ[β]] +
〈

Λj(f , f̃ ,φ
[β]),φ− φ[β]

〉
− f j

∥∥∥∥2

L2(ΩMN )

.

The Moreau’s proximal operator (cf . Definition 3.3.1) with respect to the deformation φ for a fixed τ > 0 reads as

prox
K
δ D̃MN
τ [φ] :=

1+ K
τδ(3+c)

3+c∑
j=1

Λj(f , f̃ ,φ
[β])Λj(f , f̃ ,φ

[β])>

−1

φ− K
τδ(3+c)

3+c∑
j=1

(
Λj(f , f̃ ,φ

[β])T[f̃ j ,φ[β]]−Λj(f , f̃ ,φ
[β])Λj(f , f̃ ,φ

[β])>φ[β]−Λj(f , f̃ ,φ
[β])f j

),
where we leave the function values on ∂ΩMN unchanged. We are now ready to apply the iPALM algorithm with
backtracking of Lipschitz constants (cf . Algorithm 3) to minimization of EK

MN . We initialize the vector of features
by the linear interpolation of the fixed features, the vector of deformations by the identity vector, and choose some
initial values for the step sizes (Lipschitz constants w.r.t. the features and deformations). Then, the alternating
optimization is summarized in Algorithm 4, where the backtracking of the Lipschitz constants is achieved as in
Algorithm 3.

Algorithm 4: Algorithm for minimizing EK
MN on one level.

1 for i = 1 to I do
2 for k = 1 to K do

/* update anisotropy */

3 a
[i+1]
k = a[P[f

[i]
k ]];

/* update deformation */

4 φ
[i+1]
k = prox

K
δ D̃MN

L
[i]
φk

[
φ

[i,β]
k − K

L
[i]
φk

DφkRMN [φ
[i,β]
k ,a

[i+1]
k ]

]
;

5 if k < K then
/* update features */

6 f
[i+1]
k = φ

[i,β]
k − 1

L
[i]
fk

DfkE
K,D
MN

[
f [i,k,β],φ[i,k+1],a[i,k+1]

]
;

Here, for β > 0 we used the notation

h
[i,β]
k := h

[i]
k + β(h

[i]
k − h

[i−1]
k ), h[i,k] := (h

[i+1]
0,...,k−1,h

[i]
k,...,K), h[i,k,β] := (h

[i+1]
0,...,k−1,h

[i,β]
k ,h

[i]
k+1,...,K) .

The differentials of the corresponding fully discrete energies with respect to fully discrete deformations and fea-
tures, in line 4 and 6 of the algorithm, respectively, are computed by the automatic differentiation package of
TensorFlow library [AAB+15].

4.7 Numerical Results
In this section, we show numerical results for both the RGB and the deep feature model. Implementation was
done in the Python programming language using the TensorFlow library [AAB+15], together with some C++ and
Cuda extensions [NVF20] for additional acceleration. Let us note that the majority of the implementation tasks
(including the warping operator and the optimization algorithm) were done by E. Kobler and A. Effland, while the
final experimental results were obtained by the author of this thesis. All parameters used in the computation are
specified in Table 4.2.
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parameter K L I β η σ1 σ2 ρ ξ δ µ λ

RGB
15 5 250 1√

2
0.5 2

1000
10−6 1

0.025 0.1
deep 10−6 10−9 0.002 0.002

Table 4.2: The parameter values for all examples. The choice of extrapolation parameter β is motivated by ob-
servations in [WCP17, MOPS20]. Notice that the different values of ρ result in the same contrasting due to the
additional scaling of images by η in the deep feature model.

Figure 4.3 depicts the geodesic sequences for two self-portraits by van Gogh1 (M × N = 496 × 496) for
k ∈ {0, 3, 6, 9, 12, 15} obtained with the RGB model (first row) and the deep feature model (fifth row). The superi-
ority of the deep model, compared to the simple RGB model, is exemplarily visualized by the zoom (magnification
factor 4) of the ear region depicted in the second and the sixth row. The remaining rows contain the correspond-
ing sequences of anisotropy weights (third/seventh row) and color-coded displacement fields (fourth/eighth row),
where the hue refers to the direction of the displacements and the intensity is proportional to its norm as indicated by
the leftmost color wheel. Figure 4.4 presents analogous results for two photos of animals2 forM×N = 512×512
with a zoom on the mouth region. Note that the deep model is capable of accurately deforming the carnassial teeth.

Figure 4.5 shows results of the deep feature model for two paintings of US presidents3 and two portraits of
Catherine the Great4. In both cases, the input images have a resolution of M ×N = 512× 512.

Finally, we examine the effects of parameter changes of ρ and δ. Figure 4.6 visualizes the anisotropy weight
and the deformation field in the RGB model for a value of the contrast parameter ρ fostering a significantly stronger
anisotropy implying much more pronounced jumps in the deformation field (compare with Figure 4.3). Figure 4.7
illustrates the dependency of the resulting morphing sequences on δ for the RGB model (first to the third row) and
the deep model (fourth to the sixth row). We notice that the larger values of δ lead to more blending. Furthermore,
the generated geodesic paths using deep features are more robust to changes of δ than the RGB model, which can,
for instance, be seen in the cheek or the eye regions.

In all numerical experiments, the displacement fields apparently evolve over time and the involved anisotropy
promotes large deformation gradients in the proximity of image interfaces. These are indicated by the sharp
interfaces in the color coding of the deformations. Both models fail to match image regions with no obvious
correspondence of the input images, which can be seen in the cloth regions of the self-portraits, the presidents, and
the empress examples, as well as on parts of the body region and the background in the animal example, where
blending artifacts occur. The deep feature model clearly outperforms the simple RGB model in regions where
the semantic similarity is not reflected by the RGB color features such as the cheek and the ear in the van Gogh
example as well as the teeth of the animals. Moreover, to compute a visually appealing time discrete geodesic
sequence, a fourth color channel representing a manual segmentation of image regions and a color adaptation of
the van Gogh self-portraits was required in [BER15]. This is obsolete in the proposed deep feature based model
due to the incorporation of semantic information.

1public domain, https://commons.wikimedia.org/wiki/File:Vincent_Willem_van_Gogh_102.jpg; https://
commons.wikimedia.org/wiki/File:SelbstPortrait_VG2.jpg

2first photo detail by Domenico Salvagnin (CC BY 2.0), https://commons.wikimedia.org/wiki/File:Yawn!!!
_(331702223).jpg; second photo detail by Eric Kilby (CC BY-SA 2.0), https://commons.wikimedia.org/wiki/File:
Panthera_tigris_-Franklin_Park_Zoo,_Massachusetts,_USA-8a_(2).jpg

3first painting by Gilbert Stuart (public domain), https://commons.wikimedia.org/wiki/File:Gilbert_Stuart_
Williamstown_Portrait_of_George_Washington.jpg; second painting by Rembrandt Peale (public domain), https://
commons.wikimedia.org/wiki/File:Thomas_Jefferson_by_Rembrandt_Peale,_1800.jpg

4public domain, both portraits by J. B. Lampi https://commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.
Lampi_(Deutsches_Historisches_Museum).jpg; https://commons.wikimedia.org/wiki/File:Catherine_II_
by_J.B.Lampi_(1780s,_Kunsthistorisches_Museum).jpg

https://commons.wikimedia.org/wiki/File:Vincent_Willem_van_Gogh_102.jpg
https://commons.wikimedia.org/wiki/File:SelbstPortrait_VG2.jpg
https://commons.wikimedia.org/wiki/File:SelbstPortrait_VG2.jpg
https://commons.wikimedia.org/wiki/File:Yawn!!!_(331702223).jpg
https://commons.wikimedia.org/wiki/File:Yawn!!!_(331702223).jpg
https://commons.wikimedia.org/wiki/File:Panthera_tigris_-Franklin_Park_Zoo,_Massachusetts,_USA-8a_(2).jpg
https://commons.wikimedia.org/wiki/File:Panthera_tigris_-Franklin_Park_Zoo,_Massachusetts,_USA-8a_(2).jpg
https://commons.wikimedia.org/wiki/File:Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg
https://commons.wikimedia.org/wiki/File:Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg
https://commons.wikimedia.org/wiki/File:Thomas_Jefferson_by_Rembrandt_Peale,_1800.jpg
https://commons.wikimedia.org/wiki/File:Thomas_Jefferson_by_Rembrandt_Peale,_1800.jpg
https://commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.Lampi_(Deutsches_Historisches_Museum).jpg
https://commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.Lampi_(Deutsches_Historisches_Museum).jpg
https://commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.Lampi_(1780s,_Kunsthistorisches_Museum).jpg
https://commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.Lampi_(1780s,_Kunsthistorisches_Museum).jpg
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Figure 4.3: Time discrete geodesic sequences of self-portraits by van Gogh for the RGB model (first row) and
deep feature model (fifth row), along with a zoom of the ear region with magnification factor 4 (second/sixth row),
the associated sequences of anisotropy weights (third/seventh row), and color-coded displacement fields φk − 1

(fourth/eighth row). Note that the intensity-based approach leads to blending artifacts indicated by the arrows,
which are resolved in the deep feature-based model.
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Figure 4.4: Time discrete geodesic sequences of animal photos for the RGB model (first row) and deep fea-
ture model (fifth row), along with a zoom of the mouth region with magnification factor 4 (second/sixth row),
the associated sequences of anisotropy weights (third/seventh row), and color-coded displacement fields φk − 1

(fourth/eighth row). Note that the novel deep feature-based model has significantly fewer blending artifacts as
indicated by the arrows.
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Figure 4.5: Pairs of time discrete geodesic paths using the deep feature model and corresponding color-coded
displacement fields for paintings of US presidents (first/second row) as well as for paintings of Catherine the Great
(third/forth row).

Figure 4.6: Visualization of the anisotropy in RGB model for a significant smaller value ρ = 200 compared to
Figure 4.3: anisotropy weight (left) and color-coded displacement field (right) for k = 12.
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Figure 4.7: The part of the face region for the example with the van Gogh self-portraits and variation of the
parameter δ for RGB model (first to third row) and deep feature model (fourth to sixth row).
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4.8 Extensions, Conclusion and Outlook
Besides the spline interpolation for the image metamorphosis model which will be presented in detail in Chapter 5,
there are two more projects where the author of the thesis was involved that can be considered as an extension of
or being influenced by the model presented in this chapter.

– Bézier curves in deep feature space with anisotropic regularization were introduced in the Master’s thesis of
Franziska Henrich [Hen19]. This work is based on the model for Bézier curves in the space of images introduced
in [ERS+15]. Computation is done using a Riemannian version of de Casteljau’s algorithm where both time con-
tinuous and time discrete Riemannian distances are defined via the metamorphosis model presented in this chapter
(cf . Sections 4.1 and 4.2, respectively). Numerical results, based on spatial discretization and numerical optimiza-
tion analogous to the exposition in this chapter (cf . Sections 4.5 and 4.6) show advantages of the deep feature
model in comparison with the simple RGB model, as already noticed in numerical experiments in Section 4.7.
Rigorous theoretical study of the model with proofs of the existence of time continuous and time discrete Bézier
curves in the space of images, together with the Mosco-convergence of the discrete towards the continuous model
can be found in [ERS+15].

– Variational time discretization of the flow of diffeomorphism model (cf . Section 3.2.1) was introduced in the
Master’s thesis of Mara Guastini [Gua22]. Together with a study of the weak form of geodesic equation, this study
was published in the conference proceeding [GRRW23]. There, given a diffeomorphism ψB ∈ D = Dm(Ω) (cf .
(4.10)), a discrete geodesic path ΨK = (ψ0 = 1, ψ1, . . . , ψK = ψB) in the space of Sobolev diffeomorphisms D
is defined as a minimizer of the discrete path energy

EK [(ψ0, ψ1, . . . , ψK)] :=K

K∑
k=1

∫
Ω

W(D(ψk ◦ ψ−1
k−1)) + γ|Dm(ψk ◦ ψ−1

k−1)|2 dx

=K

K∑
k=1

∫
Ω

W(Dφk) + γ|Dmφk|2 dx,

where the energy density W satisfies conditions (W1)–(W3). Here, φk ◦ ψk−1 = ψk, for every k = 1, . . . ,K
giving ψB = φK ◦ · · · ◦ φ1. Following along the lines of the proof of Theorem 4.2.7, the existence of a discrete
geodesic path is shown given the proximity of ψB to 1 in L2(Ω) (cf . [Gua22, Theorem 2.18]). Furthermore, upon
constructing time extensions of the time discrete path and time discrete energy, based on an approach analogous
to the one presented in Section 4.3, one can follow along the lines of proof of Theorem 4.4.1 to show the Γ-
convergence (cf . Definition 2.4.1) as K → ∞ in C0,β([0, 1], C1,β(Ω,Ω)) , 0 < β < min( 1

2 , α) of the time
extension of the energy EK towards the flow of diffeomorphism path energy

E [(ψt)t∈[0,1]] =

∫ 1

0

∫
Ω

L[vt, vt] dxdt,

where vt = ψ̇t ◦ ψ−1
t is the Eulerian velocity and the elliptic operator is given by (3.10) (cf . [Gua22, Theorem

2.20]). The time discrete geodesic path in the flow of diffeomorphism is then obtained by

ψk = φk ◦ ψk−1 = φk ◦ · · · ◦ φ1, k = 1, . . . ,K. (4.72)

However, as one does not directly include the constraint φk ◦ ψk−1 = ψk, k = 1, . . . ,K, it can not be expected
to have ψK = ψB , and thus the obtained results are not of a practical use. To this end, a relaxed approach is taken
into account by introducing the discrete path energy

EK
δ [ZK = (ζ0, . . . , ζK)] := inf

Φ∈DK
K

K∑
k=1

∫
Ω

W(Dφk) + γ|Dmφk|2 +
1

δ
|ζk ◦ φk − ζk−1|2 dx,

where, formally, one thinks of ζk as being the inverses of ψk and thus penalizes ψ−1
k ◦φk−ψ−1

k−1. Then, for ζ0 = 1

and ζK = ζB ∈ D, we define a time discrete geodesic path connecting these diffeomorphisms as a minimizer of
the above energy. The discrete “forward flow” ΨK = (ψ0 = 1, . . . , ψK) is retrieved by (4.72), and can be thought
of as a discrete geodesic connecting 1 and ψK ≈ ζ−1

B for δ → 0 (cf . Figure 4.10). One immediately observes
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that the above energy is analogous to the time discrete metamorphosis energy introduced in Section 4.2, so we can
apply the existence result (Theorem 4.2.7), the time extension operators (Section 4.3), and the Mosco-convergence
result (Theorem 4.4.1), where the time continuous energy (whose minimizer exists by repeating the arguments of
Theorem 4.4.4) is given by

Eδ[(ζt)t∈[0,1]] =

∫ 1

0

∫
Ω

L[vt, vt] +
1

δ
z2 dxdt,

for z being the (scalar) material derivative of ζ, i.e.,

|ζt ◦ ψt − ζs ◦ ψs| ≤
∫ t

s

zr ◦ ψr dr, ∀s ≤ t ∈ [0, 1].

For more details see [Gua22, Theorems 3.10 and 3.13]. We point out that, in this model, δ is meant as a penalization
parameter, such that for δ → 0 one obtains the “original” flow of diffeomorphism model (cf . Figure 4.10). This
should be countered to the role of δ in the metamorphosis model as a parameter determining a proper scaling
between the flow velocity and the image intensity change energies.

The fully discrete model and the numerical optimization are obtained by an approach analogous to Sections 4.5
and 4.6. To obtain an input for numerical experiments, one first creates a time-independent spatially smooth
velocity field ṽ(x,y) = v(x,y)r(

√
x2 + y2), where multiplication with r is necessary to guarantee that the field

vanishes on the boundary. Then one defines

ζB = ζ(1) for ζ̇(t,x) = ṽ(ζ(t,x)),

where the solution is obtained using an ODE solver in Python (cf . [Gua22, Section 4.3]). Figure 4.8 shows an
example for v constructed as a composition of counterclockwise rotation in the left part of ΩMN and clockwise
rotation in the right part, together with the corresponding ζB , represented by the deformation of the grid ΩMN . In
Figure 4.9, we see the discrete geodesic path together with the intermediate deformations and the forward path
together. Finally, Figure 4.10 shows that deviation of ψK from inverse of ζB indeed decreases as δ → 0.

Figure 4.8: Representation of the velocity field ṽ and the corresponding deformation ζB of ΩMN [Gua22, Figure
2, Example 4].
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Figure 4.9: Numerical results for input from Figure 4.8 with K = 8 and δ = 10−3: geodesic path ζk (first row),
its zoom version on the central right part of ΩMN (second row), deformations φk (third row), and forward flow ψk
(fourth row) [Gua22, Figure 9].
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Figure 4.10: Left: Values of ‖1− ζk ◦ψk‖2L2(ΩMN ) for k = 1, . . . , 8 and δ = 1, 10−1, 10−2, 10−3 [Gua22, Figure
12 (d)]. Right: Deformation of ΩMN under ζB ◦ ψ8 for δ = 1, 10−1, 10−2, 10−3, from left to right [Gua22, Figure
12, column 4].
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Conclusion and Outlook In this chapter, we have studied the metamorphosis model in a deep feature space
obtained as a result of the application of a deep convolutional neural network to the original color channels.
Furthermore, in order to allow for discontinuities in the flow/deformation fields, we introduced a regularization
based on anisotropic diffusion operator proposed by Perona and Malik. This can be seen as an extension of the
time continuous model proposed by Trouvé, Younes, and coworkers, while the variational time discretization was
based on the work of Berkels, Effland, and Rumpf. We were able to show the existence of time discrete geodesic
curves and the Mosco-convergence of a suitable extension of the time discrete path energy to the time continuous
metamorphosis functional. As a corollary, we obtained the existence of time continuous geodesic curves as the
limit of time discrete counterparts. Space discretization was based on finite differences and approximation of
the warping operator via cubic Hermite splines. Experimental results, based on the iPALM algorithm developed
by Pock and Sabach, show the superiority of the deep feature approach in comparison with the standard color-
based model which is reflected in presence of significantly fewer blending artifacts. A possible improvement
could be achieved by using a feature extraction operator which is trained on images that are used as input for the
metamorphosis model. Furthermore, it would be interesting to compare the existing results with those obtained by
restricting the optimization to the feature paths obtained as pairings of (scaled) images and their deep features.



Chapter 5

Spline Interpolation in Image
Metamorphosis Model

THIS chapter investigates a variational model for spline interpolation in the image metamorphosis model, with
the goal to obtain a smooth interpolation between several key frames in the space of images. The metamor-
phosis model, in more detail discussed in Section 3.2 and Chapter 4, is based on a simultaneous transport

of image intensities and a modulation of intensities along motion trajectories. The underlying energy functional
thus measures the motion velocity and the material derivative of the image intensity. In this chapter, motivated by
the definition of cubic splines in Euclidean space as minimizers of the integral of the squared acceleration [dB63],
and as stationary paths of the integrated squared covariant derivative of the velocity [NHP89] in a Riemannian
context (see also Subsection 3.1.1 for a short introduction), we discuss a spline energy functional as a second order
extension of the first order metamorphosis path energy. This functional combines quadratic functionals of the Eu-
lerian motion acceleration and the second material derivative representing acceleration in the change of intensities
along motion paths. In fact, our model separates in a physically intuitive way the Eulerian flow acceleration and the
second material derivative of the image intensity. This implies that the model is not fully Riemannian in the above
context, since the integral over the squared covariant derivative of the path velocity in the Riemannian metric would
lead to an interwoven model of these different types of acceleration. Given a set of key frames at disjoint times,
a spline interpolation path is then given as a minimizer of the spline energy additionally regularized by weighted
geodesic energy, subject to the key frame interpolation constraint. Furthermore, a variational time discretization of
this spline model is proposed as an extension of approaches from [BER15, EKP+21] (see also Sections 3.1.2 and
4.2), and the convergence to the time continuous model is discussed via Mosco-convergence methodology. As a
byproduct, this also allows us to establish the existence of metamorphosis spline interpolation in the time contin-
uous model as a limit of the corresponding time discrete spline interpolations. Spatial discretization is based on a
finite difference discretization in space, combined with a stable B-spline approximation of the warping operator. A
variety of numerical examples demonstrates the robustness and versatility of the proposed method in applications,
where we use a variant of the iPALM algorithm [PS16] for the minimization of the fully discrete energy func-
tional. Note that this chapter is an extended version of the previous conference proceeding [JRR21] and its journal
version [JRR23] (joint project with Jorge Justiniano and Martin Rumpf).

This chapter is organized as follows. In Section 5.1, we introduce the appropriate (weak) versions of the flow
and image intensity acceleration terms which leads to the derivation of the time continuous spline energy. Then,
in Section 5.2, a variational time discretization of the continuous spline energy is introduced and the existence of
discrete splines is studied. Section 5.3 represents the time extension of the time discrete quantities, which allows
the study of convergence to the time continuous model, presented in Section 5.4. Before defining the fully discrete
model in Section 5.6, we make a suitable relaxation of the previously defined energies in Section 5.5. This model
allows an efficient numerical optimization, based on a version of the iPALM algorithm, in Section 5.7. Section 5.8
experimentally demonstrates properties of the spline interpolation of a set of key frames based on this model and
shows applications of the proposed method. Finally, Section 5.9 provides a conclusion and outlooks of the chapter.

73
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5.1 Time Continuous Model
In this section, we study the spline interpolation of key frames in the time continuous setting of the metamorphosis
model. In mathematical notation, given a set of J key frames uIj ∈ I := L2(Ω,Rc), we ask for spline interpolation
(ut)t∈[0,1] which satisfies the constraints

utj = uIj , tj ∈ [0, 1], j = 1, . . . J. (5.1)

To this end, we recall that cubic splines in Euclidean space minimize the integral over the squared motion accel-
eration subject to position constraints [dB63], whereas linear interpolation is associated with the minimization of
the integral over the squared motion velocity (see Subsection 3.1.1 for more on geodesic and spline interpolation
in time continuous setting). In the case of the metamorphosis model (cf . Section 3.2 for more background), for a
sufficiently smooth image curve the linear interpolation would correspond to the minimization of the path energy

E [u] =

∫ 1

0

min
v:Ω→Rn

∫
Ω

L[v, v] +
1

δ

∣∣∣∣D∂tu
∣∣∣∣2 dxdt,

where (vt = ψ̇t ◦ ψ−1
t )t∈[0,1] is the Eulerian velocity of the underlying diffeomorphic flow (ψt)t∈[0,1]. In this

chapter, we use the elliptic operator (cf . (3.10))

L[v, v] = tr(ε[v]2) + γ|Dmv|2, m > 1 +
n

2
, γ > 0. (5.2)

This motivates the introduction of the following acceleration quantities that will be the ingredients of the spline
energy. The Eulerian flow acceleration is defined by

at ◦ ψt := ψ̈t =
d

dt
(vt ◦ ψt) = (v̇t +Dvt · vt) ◦ ψt, (5.3)

and for image paths with enough smoothness, the second order material derivative is given by

D2

∂t2
ut ◦ψt :=

d

dt
((u̇t + vt ·Dut) ◦ψt)=

(
üt+vt ·Du̇t+Dut · (v̇t+Dvtvt)+vt ·

(
Du̇t+D

2utvt
))
◦ψt. (5.4)

This splitting of acceleration term into flow acceleration and second order change of image intensity does not
fully correspond to a Riemannian manifold approach (in the context of penalization of covariant derivative of
velocity (cf . (3.3)) since the stronger interference of the two entities must be observed in the covariant derivative
of the vector field (v, Ddtu) (cf . Definition 2.2.17). Our model comes with the advantage that the splitting of the
acceleration terms is a physically more intuitive way.

Since the derivation of a spline model requires minimizing integrals over quadratic acceleration quantities, one
is naturally led to the following (still formal) spline energy:

F [u] := min
a

∫ 1

0

∫
Ω

L[a, a] +
1

δ

∣∣∣∣D2

dt2
u

∣∣∣∣2 dx dt ,

where, for simplicity, we use the same elliptic operator (5.2). As in the case of geodesic path energy, we give
rigorous formulations for general paths u ∈ L2((0, 1), I).

Let us first discuss the velocity and acceleration of the diffeomorphic flow (ψt)t∈[0,1]. We observe pairs (v, a) ∈
L2((0, 1),V := H1

0 (Ω,Rn) ∩Hm(Ω,Rn))× L2((0, 1),V) that determine the system

vt ◦ ψt(x) = ψ̇t(x), ψ0(x) = x

at ◦ ψt(x) = ψ̈t(x).

The first equation of the system was studied in more detail in Subsection 3.2.3, with results on the existence and
regularity. In particular, for every v ∈ L2((0, 1),V) there exists a unique solution to the first equation of the system
ψ ∈ H1((0, 1), Hm(Ω,Ω)) ⊂ C0, 12 ([0, 1], C1,α(Ω,Ω)), where α ∈ (0,m− n

2 −1], and ψt is a diffeomorphism for
every t ∈ [0, 1]. Taking into consideration the second equation of the system, we have that any solution will satisfy
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ψ ∈ H2((0, 1), Hm(Ω,Ω)) ⊂ C1, 12 ([0, 1], C1,α(Ω,Ω)). Notice that from (5.3), one expects that the acceleration
has one space derivative less in comparison to the velocity. However, the approach we later take allows us to have
the same number of derivatives.

We can now turn to the study of the image intensity quantities. Let us recall that we can observe the vector
material derivative ẑ ∈ L2((0, 1), L2(Ω,Rc)) given by

ut ◦ ψt − us ◦ ψs =

∫ t

s

ẑr ◦ ψr dr, ∀s, t ∈ [0, 1] , (5.5)

or the scalar material derivative z ∈ L2((0, 1)× Ω) given in terms of

|ut ◦ ψt − us ◦ ψs| ≤
∫ t

s

zr ◦ ψr dr, ∀1 ≥ t > s ≥ 0. (5.6)

In analogy to (5.5), we can observe the material acceleration ŵ ∈ L2((0, 1), L2(Ω,Rc)) that satisfies

ẑt ◦ ψt − ẑs ◦ ψs =

∫ t

s

ŵr ◦ ψr dr , ∀s, t ∈ [0, 1].

By further using (5.5), we have∫ τ

0

∫ t

s

ŵr+l ◦ ψr+l dr dl =

∫ τ

0

ẑt+τ ◦ ψt+τ − ẑs+τ ◦ ψt+τ dl

=(ut+τ ◦ ψt+τ−ut ◦ ψt)−(us+τ ◦ ψs+τ−us ◦ ψs) , (5.7)

for all s, t ∈ (0, 1) and every τ , such that t+τ, s+τ ∈ [0, 1]. Observe that for s = t−τ the right-hand side of (5.7)
is an integral version of the second order central difference. Because there is no differentiation involved in these
definitions, they work for general image paths. Analogous to (5.6), we introduce the scalar material acceleration
w ∈ L2((0, 1)× Ω) as a relaxation of the weak second order material derivative given by∫ τ

0

∫ t

s

wr+l ◦ ψr+l dr dl ≥ |ut+τ ◦ ψt+τ − ut ◦ ψt − us+τ ◦ ψs+τ + us ◦ ψs| , (5.8)

for every s ≤ t ∈ [0, 1] and τ ≥ 0, such that t+ τ ∈ [0, 1]. This relaxed Lagrangian approach is substantially more
handsome in comparison to the Eulerian approach (5.4), which will be exploited in the proof of the consistency of
continuous and time discrete approaches. The following proposition shows the equivalence of the two approaches
corresponding to (5.7) and (5.8).

Proposition 5.1.1. For every vector valued (ẑ, ŵ) satisfying (5.5) and (5.7), there exist scalar quantities (z, w)
satisfying (5.6) and (5.8) with z = |ẑ| and w = |ŵ|. Conversely, for every (z, w) satisfying (5.6) and (5.8), there
exists (ẑ, ŵ) satisfying (5.5) and (5.7) with z ≥ |ẑ| and w ≥ |ŵ|.
Proof. The first claim follows from the triangle inequality. To prove the converse, recall that in Proposition 4.1.1,
we showed that for z satisfying (5.6), there exists ẑ satisfying (5.5) with z ≥ |ẑ|. This implies∣∣∣ ∫ τ

0

ẑt+l ◦ ψt+l − ẑs+l ◦ ψs+l dl
∣∣∣ ≤ ∣∣∣ ∫ τ

0

∫ t

s

wr+l ◦ ψr+l dr dl
∣∣∣

for every s ≤ t ∈ [0, 1], and τ > 0 such that t+τ ∈ [0, 1], and the same holds for integration on [−τ, 0] for s−τ ≥
0. Taking the limit as τ tends to zero and using the Lebesgue differentiation theorem [Fol99, Theorem 3.21], we
conclude that, for every s ≤ t ∈ [0, 1], we have∣∣∣ẑt ◦ ψt − ẑs ◦ ψs∣∣∣ ≤ ∫ t

s

wr ◦ ψr dr.

From here, the function t 7→ ẑt ◦ψt is a.e. differentiable, with the derivative w′ ∈ L2((0, 1), L2(Ω,Rc)) [AGS08,
Remark 1.1.3] satisfying

ẑt ◦ ψt − ẑs ◦ ψs =

∫ t

s

w′r dr =

∫ t

s

ŵr ◦ ψr dr, ∀s, t ∈ [0, 1]. (5.9)

Finally, [AGS08, Theorem 1.1.2] implies w ≥ |ŵ|, which finishes the proof.
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In [HRW18], a regularization of the spline path energy by the addition of the weighted geodesic path energy
was necessary for the existence and further analysis of the splines (cf . (3.4)). We follow the analogous approach
which seems to be unavoidable also in our model. This finally leads to the following definitions.

Definition 5.1.2 (Time continuous regularized spline energy). Let σ > 0, m > 1 + n
2 be an integer, and u ∈

L2((0, 1), I) be an image curve. Then, the regularized spline energy is defined by

Fσ[u] := inf
(v,a,z,w)∈C[u]

∫ 1

0

∫
Ω

L[a, a] +
1

δ
w2 + σ

(
L[v, v] +

1

δ
z2

)
dxdt, (5.10)

where C[u] ⊂ L2((0, 1),V) × L2((0, 1),V) × L2((0, 1) × Ω) × L2((0, 1) × Ω) consists of tuples (v, a, z, w)
satisfying

vt ◦ ψt(x) = ψ̇t(x), ψ0(x) = x, (5.11)

at ◦ ψt(x) = ψ̈t(x), ∀x ∈ Ω, t ∈ [0, 1], (5.12)

|ut ◦ ψt − us ◦ ψs| ≤
∫ t

s

zr ◦ ψr dr, ∀s ≤ t ∈ [0, 1], (5.13)

|ut+τ ◦ ψt+τ−ut ◦ ψt−us+τ ◦ ψs+τ+us ◦ ψs| ≤
∫ τ

0

∫ t

s

wr+l ◦ ψr+l dr dl, ∀τ, s+ τ ≤ t+ τ ∈ [0, 1]. (5.14)

The point evaluation in time of image path u is possible if the set C[u] is non-empty by Remark 4.1.4. Motivated
by [dB63], we now define the continuous time spline interpolation for given key frames.

Definition 5.1.3 (Time continuous regularized spline interpolation). Let {uIj}j=1,...,J ∈ IJ . We call a minimizer
u ∈ L2((0, 1), I) of Fσ that satisfies (5.1) a time continuous regularized spline interpolation of {uIj}j=1,...,J with
a regularization parameter σ.

Remark 5.1.4 (Improved regularity of image curves). As a corollary of Proposition 5.1.1, we have stronger
regularity in the time variable of image curves with nonempty C[u]. Namely, from (5.9), we have ẑt ◦ ψt ∈
H1([0, 1], L2(Ω,Rc)). Plugging this back in (5.5), we have ut ◦ ψt ∈ H2([0, 1], I) ⊂ C1, 12 ([0, 1], I), and by us-
ing the same technique as in Remark 4.1.4 together with ψ ∈ C1, 12 ([0, 1], C1,α(Ω,Ω)), we have u ∈ C1

ω([0, 1], I),
where the modulus of continuity depends on the corresponding norms of (v, a, z, w) ∈ C[u].

Remark 5.1.5 (Boundary constraints, cf . (3.5)). If we do not impose any additional constraints, we say the con-
tinuous time (regularized) spline interpolation has natural boundary constraints. Imposing periodic boundary con-
ditions is equivalent to defining the image curve ut on the sphere S1 instead of the interval [0, 1]. In the case of
Hermite boundary conditions, we ask for v0 = vA, v1 = vB and, in light of Proposition 5.1.1 and differentiation
of the left-hand side of (5.5), that ẑ0 = ẑA, and ẑ1 = ẑB . Note that in the case of Hermite boundary conditions
(also called clamped boundary conditions), we implicitly require t1 = 0 and tJ = 1, so that u0 and u1 are also
prescribed.

5.2 Variational Time Discretization
In this section, we study the variational time discretization of the time continuous (regularized) spline energy.
To this end, we pick up the approach of [BER15, EKP+21] for the variational time discretization of the geodesic
energy, and thus build upon the exposition from Section 4.2. We consider a discrete image curve u = (u0, . . . , uK)
with uk ∈ I, and define a set of admissible deformations

D := {φ ∈ Hm(Ω,Ω), det(Dφ) ≥ ε, φ=1 on ∂Ω}, (5.15)

for a fixed (small) ε > 0 (we comment on the case ε = 0 in Remark 5.2.8). We recall that, considering u ∈ IK+1

as time sampling of a sufficiently regular image curve at points k
K , k = 0, . . . ,K, and Φ = (φ1, . . . , φK) ∈ DK as

the relative flow φk = ψ k
K
◦ψ−1

k−1
K

, and using the forward finite difference approximations, we obtained the discrete

version of the Eulerian velocity vk := K(φk−1) and ẑk := K(uk ◦φk−uk−1) for the discrete material derivative,



5.2 Variational Time Discretization 77

with k = 1, . . . ,K. By further taking this perspective and using the central finite difference approximation for the
second derivative, we define the discrete acceleration by

ak := K2((φk+1 − 1) ◦ φk − (φk − 1)), k = 1, . . . ,K − 1, (5.16)

and the discrete version of the second order material derivative by

ŵk :=K(ẑk+1 ◦ φk − ẑk) = K2 (uk+1 ◦ φk+1 ◦ φk − 2uk ◦ φk + uk−1) , k = 1, . . . ,K − 1. (5.17)

Analogous to Section 4.2, we consider the discrete path energy

EK,D[u,Φ] := K

K∑
k=1

∫
Ω

WD(Dφk) + γ|Dmφk|2 +
1

δ
|uk ◦ φk − uk−1|2 dx,

where WD(B) := |Bsym − 1|2 is an elastic energy density corresponding to the simplified elliptic operator given
by (5.2). Then, in analogy with (5.10), the discrete counterpart of the spline energy is defined by

FK,D[u,Φ] :=
1

K

K−1∑
k=1

∫
Ω

WA(Dak) + γ|Dmak|2 +
1

δ
|ŵk|2 dx, (5.18)

with the energy density WA(B) := |Bsym|2. We notice that the discrete acceleration is indeed in Hm(Ω,Ω), by
the closedness of D under the composition [IKT13, Proposition 2.19]. Finally, the regularized time discrete spline
energy is, for σ > 0, given by

Fσ,K,D[u,Φ] := FK,D[u,Φ] + σEK,D[u,Φ] .

In order to talk about spline interpolation, we must define the discrete version of the interpolation constraints (5.1).
Let IK := (i1, . . . , iJK ) be an index tuple with 2 ≤ JK ≤ K, ij ∈ {0, . . . ,K} for j = 1, . . . , JK . We consider a
JK-tuple IKf := (uI1, . . . , u

I
JK ) and define the set of admissible image vectors

IKadm := {u ∈ IK+1, uij = uIj , j = 1, . . . , JK}. (5.19)

We are now in a position to define the time discrete spline interpolation.

Definition 5.2.1 (Time discrete regularized spline interpolation). Let σ > 0 and u = (u0, . . . , uK) ∈ IKadm. We
set

Fσ,K [u] := inf
Φ∈DK

Fσ,K,D[u,Φ]. (5.20)

A time discrete regularized spline interpolation of {uIj}j=1,...,JK with a regularization parameter σ is a (K + 1)-
tuple that minimizes Fσ,K over all discrete paths in IKadm.

Remark 5.2.2 (Time discrete boundary constraints, cf . Remark 5.1.5). The presented discretization is valid in the
case of natural boundary conditions, to which we restrict in further discussions. We remark that, in the case of
periodic boundary conditions, we make an identification K ∧

= 0,K + 1
∧
= 1, and the sum in (5.18) goes up to K.

For the discrete version of the Hermite boundary conditions, we prescribe φ1 = φ1, φK = φK , u0 = u0, uK =
uK , and ẑ1 = ẑ1, ẑK = ẑK , for given φ1, φK ∈ D, u0, uK ∈ I, and ẑ1, ẑK ∈ L2(Ω,Rc).

Next, we follow ideas from Section 4.2 to prove the existence of a time discrete spline interpolation. Here,
and throughout the chapter, we often omit the attribute “regularized” as we always consider that setting and no
confusion can occur. We start with a lemma which is the analogous result to Lemma 4.2.2.

Lemma 5.2.3. There exists a constant C which only depends on Ω,m, n, γ such that

‖φ− 1‖Hm(Ω) ≤ C
√
Cφ

for all φ ∈ D satisfying
∫

Ω
WD(Dφ)+γ|Dmφ|2 dx ≤ Cφ.
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Proof. An application of the Gagliardo–Nirenberg inequality 2.1.5 yields

‖φ− 1‖Hm(Ω) ≤ C(‖φ− 1‖L2(Ω) + |φ− 1|Hm(Ω)) . (5.21)

The last term in (5.21) is bounded by

|φ− 1|Hm(Ω) = |φ|Hm(Ω) ≤
√

Cφ
γ . (5.22)

To estimate the lower order term on the right-hand side, we use Korn’s inequality 2.1.6 and Poincare’s inequality
2.1.4 to obtain

‖φ− 1‖L2(Ω) ≤ C‖ε[φ]− 1‖L2(Ω) ≤ C
√
Cφ. (5.23)

Thus, the lemma follows by combining (5.21), (5.22) and (5.23).

Remark 5.2.4. The analogous result holds for the boundedness of acceleration:
∫

Ω
WA(Da) + γ|Dma|2 dx ≤ Ca

implies ‖a‖Hm(Ω) ≤ C
√
Ca.

We now show the well-posedness of (5.20).

Proposition 5.2.5. For every K ∈ N and every vector of images u = (u0, . . . , uK) ∈ IK+1, there exists a vector
of deformations Φ = (φ1, . . . , φK) ∈ DK such that

Fσ,K,D[u,Φ] = inf
Φ̃∈DK

Fσ,K,D[u, Φ̃].

Proof. Let {Φj}j∈N ∈ DK be a sequence for which it holds

lim
j→∞

Fσ,K,D[u,Φj ]= inf
Φ̃∈DK

Fσ,K,D[u, Φ̃], Fσ,K,D[u,Φj ] ≤ Fσ,K := Fσ,K,D[u,1K ].

By Lemma 5.2.3, we have

‖φjk − 1‖Hm(Ω) ≤ C
√

Fσ,K

K , ∀j ∈ N, k = 1, . . . ,K.

Thus, {Φj}j∈N is uniformly bounded inHm(Ω,Ω)K . By reflexivity of this space, there exists a subsequence (with
the same label) such that Φj ⇀ Φ in Hm(Ω,Ω)K . By the compact Sobolev embedding (cf . Theorem 2.1.8), we
have Φj → Φ in C1,α(Ω,Ω)K , α ∈ (0,m− n

2 − 1], which gives us that Φ ∈ DK . Analogously, by Remark 5.2.4,
we have the boundedness of {aj}j∈N in Hm(Ω,Ω)K−1, and thus a convergent subsequence satisfying aj ⇀ a

in Hm(Ω,Ω)K−1, and aj → a in C1,α(Ω,Ω)K−1. Here, for every j ∈ N we have aj = (aj1, . . . , a
j
K−1) given

by (5.16). From the strong convergence of deformations, we have that ak = K2(φk+1 ◦ φk − 2φk + 1) for all
k = 1, . . . ,K − 1. Using weak lower semicontinuity of Hm-seminorm and continuity of energy densities, we
have for all k, as j →∞:

lim inf |φjk|Hm(Ω) ≥ |φk|Hm(Ω), ‖WD(Dφjk)‖L1(Ω) → ‖WD(Dφk)‖L1(Ω),

lim inf |ajk|Hm(Ω) ≥ |ak|Hm(Ω), ‖WA(Dajk)‖L1(Ω) → ‖WA(Dak)‖L1(Ω). (5.24)

Finally, using Remark 4.2.4, we have u ◦ φjk → u ◦ φk in I for all k = 1, . . . ,K, which finally gives

‖uk ◦ φjk − uk−1‖I → ‖uk ◦ φk − uk−1‖I , k = 1, . . . ,K,

‖uk+1 ◦ φjk+1 ◦ φ
j
k − 2uk ◦ φjk + uk−1‖I → ‖uk+1 ◦ φk+1 ◦ φk − 2uk ◦ φk + uk−1‖I , k = 1, . . . ,K − 1,

which, together with (5.24), gives limj→∞Fσ,K,D[u,Φj ] ≥ Fσ,K,D[u,Φ], finally finishing the proof.

In the next step, under suitable conditions, we prove that there exists a minimizing vector in IKadm (see (5.19))
for a fixed vector of deformations Φ ∈ DK .
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Proposition 5.2.6. Let K ≥ 2, IKf and Φ ∈ DK be fixed. Assume that the deformations satisfy, for every x ∈ Ω,

Cdet ≥ det(Dφk(x)) ≥ cdet > 0, k = 1, . . . ,K. (5.25)

Then, there exists a vector of images u ∈ IKadm such that

Fσ,K,D[u,Φ] = inf
v∈IKadm

Fσ,K,D[v,Φ].

Proof. Let {uj}j∈N ∈ IKadm be a sequence such that

lim
j→∞

Fσ,K,D[uj ,Φ] = inf
v∈IKadm

Fσ,K,D[v,Φ] ≤ Fσ,K,D.

Here, Fσ,K,D := Fσ,K,D[u,Φ] represents a finite upper bound for the energy, with the vector of images u satisfy-
ing uk = uI1 for 0 ≤ k ≤ i1, uk = uIj for ij < k ≤ ij+1 with j = 1, . . . ,K−1, and uk = uIJK for iJK ≤ k ≤ K.
Indeed, we have

Fσ,K,D ≤
K−1∑
k=1

1

K

(
‖WA(Dak)‖L1(Ω) + γ|ak|2Hm(Ω)

)

+ σ

K∑
k=1

K
(
‖WD(Dφk)‖L1(Ω) + γ|φk|2Hm(Ω)

)
+K3(1 + c−1

det)
2
JK∑
j=1

‖uIj‖2I ,

where we used the transformation formula and (5.25). By a further use of (5.25), we have

‖ujk‖I ≤ ‖u
j
k+1 ◦ φk+1 − ujk‖I + ‖ujk+1 ◦ φk+1‖I ≤

√
δFσ,K,D

K + c
− 1

2

det‖u
j
k+1‖I , (5.26)

‖ujk+1‖I ≤ C
− 1

2

det ‖u
j
k+1 ◦ φk+1‖I ≤ C−

1
2

det

(
‖ujk+1 ◦ φk+1 − ujk‖I + ‖ujk‖I

)
≤ C−

1
2

det

(√
δFσ,K,D

K + ‖ujk‖I
)
,

from where we have, by induction, that {ujk}j∈N is uniformly bounded in I, for every k = 0, . . . ,K. By reflex-
ivity, there exists a subsequence (labeled in the same way) such that ujk ⇀ uk for some u ∈ IKadm. Then, by
Remark 4.2.8, we have uj ◦Φ ⇀ u◦Φ in IK , which, together with weak lower semicontinuity of the norm, gives

‖uk ◦ φk − uk−1‖2I ≤ lim inf
j→∞

‖ujk ◦ φk − u
j
k−1‖2I ,

‖uk+1 ◦ φk+1 ◦ φk − 2uk ◦ φk + uk−1‖2I ≤ lim inf
j→∞

‖ujk+1 ◦ φk+1 ◦ φk − 2ujk ◦ φk + ujk−1‖2I ,

for every k = 1, . . . ,K and k = 1, . . . ,K − 1, respectively. Altogether, we have

lim inf
j→∞

Fσ,K,D[uj ,Φ] ≥ Fσ,K,D[u,Φ],

from where the optimality follows.

We are now in a position to show the existence of a time discrete spline interpolation.

Theorem 5.2.7 (Existence of time discrete spline interpolations). Let K ≥ 2. Then, for every IKf , there exists
u ∈ IKadm such that

Fσ,K [u] = inf
v∈IKadm

Fσ,K [v].

Proof. Consider a sequence {uj}j∈N ∈ IKadm for which it holds limj→∞Fσ,K [uj ] = infv∈IKadm Fσ,K [v] ≤
Fσ,K , where Fσ,K := Fσ,K,D[u,1K ]. Here, uk = u k

K
for k = 0, . . . ,K, where (ut)t∈[0,1] is a curve smooth in
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time such that ū ij
K

= uIj for every j = 1, . . . , JK . Then, we have

Fσ,K,D[uK ,1K ]

=σK

K∑
k=0

∫
Ω

|uKk+1 − uKk |2 dx+K3
K−1∑
k=1

∫
Ω

|uKk+1 − 2uKk + uKk−1|2 dx

≤C
(∫

Ω

|u|2H1((0,1)) + |u|2H2((0,1)) dx+ 1

)
, (5.27)

where the constant is independent of K. Furthermore, for every j ∈ N, let Fσ,K [uj ] = Fσ,K,D[uj ,Φj ], where the
existence of an optimal vector of deformations is shown in Proposition 5.2.5. By Lemma 5.2.3, we have the uniform
boundedness of {Φj}j∈N in Hm(Ω,Ω)K , and thus the weak convergence in this space and the strong convergence
in C1,α(Ω,Ω)K to some Φ ∈ DK . Furthermore, by Remark 5.2.4, we have aj ⇀ a in Hm(Ω,Ω)K−1, and
strongly in C1,α(Ω,Ω)K−1, where ak = K2(φk+1 ◦ φk − 2φk + 1), and estimates from (5.24) are satisfied. By
Proposition 5.2.6, we may replace uj by an energy optimal image vector. Keeping the same label and following
the same arguments as in (5.26), we conclude that {uj}j∈N is uniformly bounded in I and it weakly converges to
u. Finally, the estimates

‖uk ◦ φk − uk−1‖2I ≤ lim inf
j→∞

‖ujk ◦ φ
j
k − u

j
k−1‖2I ,

‖uk+1 ◦ φk+1 ◦ φk − 2uk ◦ φk + uk−1‖2I ≤ lim inf
j→∞

‖ujk+1 ◦ φ
j
k+1 ◦ φ

j
k − 2ujk ◦ φ

j
k + ujk−1‖2I ,

for every k = 1, . . . ,K and k = 1, . . . ,K − 1, respectively, follow from Remark 4.2.8 and the weak lower
semicontinuity of the norm. Altogether, infv∈IKadm Fσ,K [v] = lim infj→∞Fσ,K [uj ] ≥ Fσ,K [u], from where the
optimality follows.

Remark 5.2.8. (i) The results of this section remain valid for any WD satisfying conditions (W1)−(W2) from
Section 4.2.

(ii) Let us observe the case when ij = K · tj and uij = uIj for every j = 1, . . . , J (cf . (5.1) and (5.19)). Then,
for every large enough K (depending on {uIj}j=1,...,J and {tj}j=1,...,J ), one can show the existence of a
discrete time spline interpolation even if ε = 0 in the definition of the admissible set (5.15). Namely, by
(5.27), we have that Fσ,K is a fixed finite upper bound for the discrete spline energy, independent of K.
Then, using Lemma 5.2.3 and the Sobolev embedding theorem 2.1.8, we have

max
k=1,...,K

‖φk − 1‖C1,α(Ω) ≤ C max
k=1,...,K

‖φk − 1‖Hm(Ω) ≤ C
√

Fσ,K

K .

By the Lipschitz continuity of the determinant, we have, for large enough K

max
k=1,...,K

‖ det(Dφk)− 1‖L∞(Ω) ≤ C
√

Fσ,K

K < 1,

which proves mink=1,...,K det(Dφk) ≥ cdet > 0 and we can proceed as before.

Remark 5.2.9. Variational time discretization of Riemannian splines was studied in [HRW18]. Following this
work, a candidate for the time discretization of the spline energy is (cf . Subsection 3.1.2, (3.8))

FK [u] = 4K3
K−1∑
k=1

inf
φk∈D

∫
Ω

WD(Dφk) + |Dmφk|+
1

δ
|ũk ◦ φk − uk|2 dx

where ũk is the geodesic midpoint of uk−1 and uk+1, i.e., ũk ∈ argminu E2[uk−1, u, uk+1]. This approach is not
suitable for our study, since, even after regularization with σ > 0, the geodesic midpoint is not continuous with
respect to the weak convergence in I, i.e., if we have uj0, u

j
1 ⇀ u0, u1 and for the sequence of geodesic midpoints

uj1
2

⇀ u 1
2

, we do not necessarily have that u 1
2

is a geodesic midpoint of u0 and u1.
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5.3 Temporal Extension Operators
In this section, we define the suitable time extensions of the time discrete quantities from the previous section. We
extend the approach presented in Section 4.3 in order to allow the study of spline interpolations.

Let K ≥ 2, τ = 1
K , tKk = kτ for k = 0, 1, . . . ,K and tK

k± 1
2

= (k ± 1
2 )τ , for k = 1, . . . ,K and

k = 0, 1, . . . ,K − 1, respectively. Consider a vector of images uK = (uK0 , . . . , u
K
K) ∈ IK+1 and a vector

of deformations ΦK = (φK1 , . . . , φ
K
K) ∈ DK . We first define the (incremental) discrete transport path yK by

yKt = yK0 (t, ·) for t ∈ [0, tK1
2

], yKt = yKk (t, ·) for t ∈ (tK
k− 1

2

, tK
k+ 1

2

] with k = 1, . . . ,K − 1, and yKt = yKK (t, ·) for

t ∈ (tK
K− 1

2

, 1], where

yK0 (t, ·) := 1+
t

τ
(φK1 − 1), yKK (t, ·) := 1+

t− tKK−1

τ
(φKK − 1),

and, for k = 1, . . . ,K − 1

yKk (t, ·) :=
1

2
(1+ φKk ) +

t− tK
k− 1

2

τ
(φKk − 1) +

(t− tK
k− 1

2

)2

2τ2

(
φKk+1 ◦ φKk − 2φKk + 1

)
. (5.28)

This can be seen as a cubic Hermite interpolation (see [dB78, Chapter IV] for details, cf . (4.71)) on intervals
(tK
k− 1

2

, tK
k+ 1

2

], and an affine interpolation on [0, tK1
2

] and (tK
K− 1

2

, 1]. In particular, observe that yKk (tK
k− 1

2

, ·) =
1+φKk

2

and yKk (tK
k+ 1

2

, ·) =
(1+φKk+1)◦φKk

2 , with the corresponding slopes φKk −1
τ and (φKk+1−1)◦φKk

τ , respectively. This is
sketched on Figure 5.1 left.

Next, we define the image extension operator UK [uK ,ΦK ] ∈ L2([0, 1], I) as UK [uK ,ΦK ](t, x) = uK(t, x),
where

uKt ◦ yKt :=uK0 +
t

τ
(uK1 ◦ φK1 − uK0 ), t ∈ [0, tK1

2
],

uKt ◦ yKt :=uKK−1 +
t− tKK−1

τ
(uKK ◦ φKK − uKK−1), t ∈ (tKK−1

2
, 1],

and, for k = 1, . . . ,K − 1 and t ∈ (tK
k− 1

2

, tK
k+ 1

2

]

uKt ◦ yKt (5.29)

:=
uKk−1 + uKk ◦ φKk

2
+
t− tK

k− 1
2

τ
(uKk ◦ φKk − uKk−1) +

(t− tK
k− 1

2

)2

2τ2

(
uKk+1 ◦ φKk+1 ◦ φKk − 2uKk ◦ φKk + uKk−1

)
.

This can be seen as a blending between the “half-way images” uKk−1+uKk ◦φ
K
k

2 and (uKk +uKk+1◦φ
K
k+1)◦φKk

2 along the
incremental transport path (yKt )t∈[0,1], which is depicted on Figure 5.1 right. It is well defined if the spatial
inverse of yKt exists. The existence of this object, which we denote by xKt , follows from [Cia88, Chapter 5] if
det(DyKt ) > 0, which is guaranteed if ‖DyKt − 1‖C0(Ω) < c for a small enough constant c > 0, the latter being
satisfied in Section 5.4 (see (5.39)).

The discrete velocity field vK ∈ L2((0, 1),V) corresponding to the discrete transport path (yKt )t∈[0,1] is given
by

vKt :=
1

τ
(φK1 − 1), vKt :=

1

τ
(φKK − 1),

for t ∈ [0, tK1
2

] and t ∈ (tK
K− 1

2

, 1], respectively, and

vKt :=
1

τ
(φKk − 1) +

t− tK
k− 1

2

τ2

(
φKk+1 ◦ φKk − 2φKk + 1

)
,

for t ∈ (tK
k− 1

2

, tK
k+ 1

2

] with k = 1, . . . ,K − 1. The corresponding discrete acceleration field aK ∈ L2((0, 1),V)

is given by aKt = aKt := 0 for t ∈ [0, tK1
2

] and t ∈ (tK
K− 1

2

, 1], respectively, and, for t ∈ (tK
k− 1

2

, tK
k+ 1

2

] with
k = 1, . . . ,K − 1, by

aKt :=
1

τ2

(
φKk+1 ◦ φKk − 2φKk + 1

)
.
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aKk (x)

x

φKk (x)
(
φKk+1 ◦ φ

K
k

)
(x)

0 1
K

2
K

3
K

K−3
K

K−2
K

K−1
K 1

Figure 5.1: Left: Schematic drawing of the Hermite interpolation yKk (x) (blue) on the time interval [(k −
1
2 )/K, (k+ 1

2 )/K] together with the discrete acceleration aKk (x) (red). Right: Image extension UK [uK ,ΦK ](·, x)
along a path (yKt (x))t∈[0,1], plotted against time. Dots represent the values uKk , k = 0, . . . ,K, and crosses the
“half-way” values 1

2 (uKk + uKk−1), k = 1, . . . ,K, along the discrete transport path.

We define the velocity and the acceleration along the incremental transport path by

ṽKt := vKt ◦ xKt , ãKt := aKt ◦ xKt . (5.30)

Now, the discrete flow given as the map (t, x) 7→ ψKt (x) is defined recursively by

ψKt :=yKt , t ∈ [0, tK1
2

], ψKt :=yKt ◦ ψKtK
k− 1

2

, t ∈ (tKk− 1
2
, tKk+ 1

2
], ψKt :=yKt ◦ ψKtK

K− 1
2

, t ∈ (tKK− 1
2
, tKK ]. (5.31)

Following the same arguments as in Proposition 4.3.1, one shows that (5.31) is well-defined in the sense of equa-
tions (5.11)− (5.12), i.e., for every x ∈ Ω and t ∈ [0, 1] we have

ψ̇Kt = ṽKt ◦ ψKt , ψK0 (x) = x (5.32)

ψ̈Kt = ãKt ◦ ψKt . (5.33)

Based on this, the first order scalar weak material derivative of (uKt )t∈[0,1] can be defined as the absolute value of
the material derivative along the paths t 7→ ψKt (x) with

zKt ◦ yKt :=
1

τ
|uK1 ◦ φK1 − uK0 |, t ∈ [0, tK1

2
], zKt ◦ yKt :=

1

τ
|uKK ◦ φKK − uKK−1|, t ∈ (tKK− 1

2
, 1],

and, for t ∈ (tK
k− 1

2

, tK
k+ 1

2

], k = 1, . . . ,K − 1,

zKt ◦ yKt :=
∣∣∣1
τ

(uKk ◦ φKk − uKk−1) +
t− tK

k− 1
2

τ2

(
uKk+1 ◦ φKk+1 ◦ φKk − 2uKk ◦ φKk + uKk−1

) ∣∣∣. (5.34)

For the second order scalar weak material derivative, we have, for t ∈ [tK
k− 1

2

, tK
k+ 1

2

], k = 1, . . . ,K − 1,

wKt ◦ yKt :=
1

τ2

∣∣uKk+1 ◦ φKk+1 ◦ φKk − 2uKk ◦ φKk + uKk−1

∣∣ , (5.35)

and wKt := 0 elsewhere, which is the absolute value of the second time derivative of uK = UK [uK ,ΦK ] along
the path t 7→ ψKt (x). Indeed, as in Proposition 4.3.1, one verifies that (zKt )t∈[0,1] and (wKt )t∈[0,1] are admissible
in the sense of equations (5.13) and (5.14), i.e.,

∣∣uKt ◦ ψKt − uKs ◦ ψKs ∣∣ ≤ ∫ t

s

zKr ◦ ψKr dr, ∀s ≤ t ∈ [0, 1],∣∣∣uKt+τ ◦ ψKt+τ − uKt ◦ ψKt − uKs+τ ◦ ψKs+τ + uKs ◦ ψKs
∣∣∣ ≤ ∫ τ

0

∫ t

s

wKr+l ◦ ψKr+l dl dr, ∀τ, s+ τ ≤ t+ τ ∈ [0, 1].

Let us finally notice that these quantities, together with the image extension operator (5.29), can be defined in an
explicit manner by using the inverse transport path (xKt )t∈[0,1], as done in Section 4.3.
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Remark 5.3.1. For the periodic boundary conditions (cf . Remark 5.2.2), we use the cubic interpolation definition
on t ∈ (tK

k− 1
2

, tK
k+ 1

2

] for k = 1, . . . ,K, with the convention K ∧
= 0,K + 1

∧
= 1 and (tK

K− 1
2

, tK
K+ 1

2

] = (tK
K− 1

2

, 1] ∪
[0, tK1

2

].

Finally, we define the extension of the energy Fσ,K to a functional Fσ,K by

Fσ,K [u] := inf
uK∈IK+1

inf
ΦK∈DK

{Fσ,K,D[uK ,ΦK ] : UK [uK ,ΦK ] = u}, (5.36)

if there exists such uK ,ΦK and +∞, else. Note that, unlike for the extended energy in Section 4.3 (cf . (4.36)),
we have more candidates for uK , so we have to prove the existence of the optimal one.

Lemma 5.3.2. If for a fixed image path u ∈ L2([0, 1], I) there exist a vector of images uK ∈ IK+1 and a
vector of deformations ΦK ∈ DK such that UK [uK ,ΦK ] = u, the infimum in (5.36) is attained for some
(uK ,ΦK) ∈ IK+1 ×DK .

Proof. The existence of an optimal vector of deformations for a fixed vector of images can be proved analogously
to Lemma 4.3.2. Thus, let us have a sequence {uKj ,ΦK

j }j∈N ⊂ IK+1 × DK such that for every j ∈ N we
have ΦK

j ∈ argmin{Fσ,K,D[uKj ,Φ
K ] : UK [uKj ,Φ

K ] = u}. We have that {Fσ,K,D[uKj ,Φ
K
j ]}j∈N is bounded

by the energy of the pair from the assumption of the lemma. Then, by Lemma 5.2.3, we can prove the uniform
boundedness of {ΦK

j }j∈N in Hm(Ω,Ω)K , and as in (5.26), we have the uniform boundedness of {uKj }j∈N in
IK+1. This implies the existence of a (not relabeled) subsequence such that ΦK

j ⇀ ΦK in Hm(Ω,Ω)K and
strongly in C1,α(Ω,Ω), and uKj ⇀ uK in I. The optimality of the energy for the pair uK ,ΦK is shown as
in the proof of Theorem 5.2.7. Finally, the closedness of the image extension condition follows from the fact
that ΦK

j → Φ in C1,α(Ω,Ω) implies xKj (t, ·) → xK(t, ·) in the same space, uniformly in t (see the proof of
Lemma 4.3.2 for more details). Then, by Remarks 4.2.4 and 4.2.8, we have

lim
j→∞

UK [uKj ,Φ
K
j ](t, ·) ⇀ UK [uK ,ΦK ](t, ·) in I, ∀t ∈ [0, 1],

from where we conclude UK [uK ,ΦK ] = u.

5.4 Convergence of Discrete Splines
In this section, we study the Mosco-convergence (see Definition 2.4.1), asK →∞, of {Fσ,K}K∈N, the extensions
of the time discrete regularized spline energies, to the time continuous regularized spline energyFσ . As a corollary,
we also obtain the convergence of the corresponding minimizers: the time discrete regularized spline interpolations
converge to a time continuous regularized spline interpolation.

Theorem 5.4.1 (Mosco-convergence of the discrete spline energies). Let σ > 0. Then, the time discrete spline
energies {Fσ,K}K∈N converge to Fσ in the sense of Mosco in the topology L2((0, 1), I) for K →∞. In explicit

(i) for every sequence {uK}K∈N ⊂ L2((0, 1), I) which converges weakly to u ∈ L2((0, 1), I) as K → ∞, it
holds lim infK→∞ Fσ,K [uK ] ≥ Fσ[u] (“lim inf-inequality”),

(ii) for every u ∈ L2((0, 1), I), there exists a sequence {uK}K∈N such that uK → u in L2((0, 1), I) asK→∞
and lim supK→∞ Fσ,K [uK ] ≤ Fσ[u] (“the existence of a recovery sequence and lim sup-inequality”).

Remark 5.4.2. The above result holds for any choice of WD satisfying assumption (W1)−(W3) from Section
4.2, though we restrict ourselves to the special case WD= |Asym − 1|2.

Remark 5.4.3. In the case of periodic boundary conditions the same applies in the topology L2(S1, I). The
proof requires minor alterations implied by the already indicated changes in the energy and interpolation (see
Remarks 5.2.2 and 5.3.1).

Proof. We will prove the conditions separately. The parts of the proofs dealing with the first order terms (the
velocity of the flow and material derivative) will follow along the lines of the proof of Theorem 4.4.1. We will split
the proofs into steps analogous to the steps of the mentioned proof.
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Proof of the lim inf-inequality

(i): Construction of the flow and image intensity quantities.

Suppose we have a sequence {uK}K∈N ⊂ L2((0, 1), I) such that uK ⇀ u in that space, as K → ∞. To
avoid the trivial case of an infinite limit, we suppose that Fσ,K [uK ] < F < ∞. Then, by definition (5.36)
and Lemma 5.3.2, for every K large enough, an optimal vector of images uK ∈ IK+1 and a corresponding
optimal vector of deformations ΦK ∈ DK exist, such that

uK = UK [uK ,ΦK ], Fσ,K [uK ] = Fσ,K,D[uK ,ΦK ].

For the vectors of images uK and the vectors of deformations ΦK we define the discrete velocity and
acceleration, vKk and aKk , respectively, and the discrete material derivative of the first and the second order,
ẑKk and ŵKk , respectively, as in Section 5.2. Using Lemma 5.2.3 and Remark 5.2.4, we obtain

max
k=1,...,K

‖φKk − 1‖C1,α(Ω)≤CK−
1
2 , (5.37)

max
k=1,...,K−1

‖aKk ‖C1,α(Ω) ≤ CK
1
2 , (5.38)

and hence, by the definition of the discrete incremental transport path (5.28), we have

max
t∈[0,1]

‖yKt − 1‖C1,α(Ω) ≤
3

2
max

k=1,...,K
‖φKk − 1‖C1,α(Ω) +

1

2K2
max

k=1,...,K−1
‖aKk ‖C1,α(Ω)

≤C(K−
1
2 +K−

3
2 ). (5.39)

This implies that yKt converges to the identity in C1,α(Ω,Ω), uniformly in t, and that yKk , defined in the
previous section, is invertible for any k = 0, . . . ,K and every large enough K. Thus, we are able to define
all the temporal extended quantities introduced in Section 5.3.

(ii): Proof of the actual inequality.

Using the definition of the discrete acceleration ŵKk (cf . (5.17)) and its time extension wKt (cf . (5.35)),
together with (5.39) and the locally Lipschitz property of the determinant function, we get

lim
K→∞

∫ 1

0

∫
Ω

(wKt )2 dx dt = lim
K→∞

K−1∑
k=1

∫
Ω

∫ tK
k+1

2

tK
k− 1

2

|ŵKk ◦ xKk,t|2 dtdx

= lim
K→∞

K−1∑
k=1

∫
Ω

∫ tK
k+1

2

tK
k− 1

2

|ŵKk |2 det(DyKk,t) dtdx

= lim
K→∞

1

K

K−1∑
k=1

∫
Ω

|ŵKk |2 dx.

Using the same ideas, together with |zKt − |ẑKk ◦xKk,t|| ≤ 1
K |ŵKk ◦xKk,t| (cf . (5.34)) on every subinterval, we

have

lim
K→∞

∫ 1

0

∫
Ω

(zKt )2 dx dt = lim
K→∞

1

K

K∑
k=1

∫
Ω

|ẑKk |2 dx+
1

K2

K−1∑
k=1

∫
Ω

|ŵKk |2 dx

= lim
K→∞

1

K

K∑
k=1

∫
Ω

|ẑKk |2 dx.

This implies the uniform boundedness of {zK}K∈N and {wK}K∈N in L2((0, 1)×Ω), and, by reflexivity of
the space, the existence of weakly convergent subsequences (with the same labeling) to z andw, respectively.
Then, by the weak lower semicontinuity, we have

‖z‖2L2((0,1)×Ω) ≤ lim inf
K→∞

‖zK‖2L2((0,1)×Ω), ‖w‖2L2((0,1)×Ω) ≤ lim inf
K→∞

‖wK‖2L2((0,1)×Ω). (5.40)
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Using Korn’s inequality 2.1.6 and Poincare’s 2.1.4 inequality, we get

∫ 1

0

∫
Ω

|aKt |2 dxdt =

K−1∑
k=1

∫ tK
k+1

2

tK
k− 1

2

∫
Ω

|aKk |2 dxdt ≤ C

K

K−1∑
k=1

∫
Ω

WA(DaKk ) dx ≤ CF ,

∫ 1

0

∫
Ω

|DmaKt |2 dxdt=

K−1∑
k=1

∫ tK
k+1

2

tK
k− 1

2

∫
Ω

|DmaKk |2 dx dt ≤
K−1∑
k=1

1

K

∫
Ω

|DmaKk |2 dx ≤ CF .

The analogous estimates are obtained for vK and DmvK , with the additional use of
∣∣vKt − |vKk |∣∣ ≤ 1

K |aKk |
on every subinterval (see also (4.42)). Hence, we have that {vK}K∈N and {aK}K∈N are uniformly bounded
in L2((0, 1),V), and they have the corresponding weak limits v and a in that space.

We compute the Taylor expansion of WA((t − tK
k− 1

2

)2DaKk (t, ·)) around tK
k− 1

2

, evaluated at t = tK
k+ 1

2

, to
get

1

K4
WA(DaKk ) =

1

2K4
D2WA(0)(DaKk , Da

K
k ) + rKa,k =

1

K4
tr(ε[aKk ]2) + rKa,k. (5.41)

For the remainder term, we have rKa,k = O(K−6|DaKk |3), and by using Lemma 5.2.3 and (5.38), we obtain

K−1∑
k=1

K3

∫
Ω

rKa,k dx ≤ C

K2
max

k=1,...,K−1
‖aKk ‖C1(Ω)

1

K

K−1∑
k=1

‖aKk ‖2Hm(Ω)≤CK−
3
2F . (5.42)

Then, we use weak lower semicontinuity of the energy to write

lim inf
K→∞

1

K

K−1∑
k=1

∫
Ω

WA(DaKk ) + γ|DmaKk |2 dx = lim inf
K→∞

1

K

K−1∑
k=1

∫
Ω

tr(ε[aKk ]2) + γ|DmaKk |2 dx

= lim inf
K→∞

∫ 1

0

∫
Ω

tr(ε[aKt ]2) + γ|DmaKt |2 dxdt

≥
∫ 1

0

∫
Ω

tr(ε[a]2) + γ|Dma|2 dxdt. (5.43)

Analogously, the Taylor expansions of W(1 + (t − tk− 1
2
)DvKk (t, ·)) around tk− 1

2
, evaluated at tk+ 1

2
, for

k = 1, . . . ,K − 1, and correspondingly for the intervals of size 1
2K , give (see also (4.48)–(4.50))

lim inf
K→∞

K

K∑
k=1

∫
Ω

WD(DφKk ) + γ|DmφKk |2 dx

= lim inf
K→∞

∫
Ω

1

2K

(
tr(ε[vK1 ]2) + γ|DmvK1 |2

)
+

1

K

K−1∑
k=1

tr(ε[vKk ]2) + γ|DmvKk |2

+
1

2K

(
tr(ε[vK1 ]2) + γ|DmvK1 |2

)
dx

= lim inf
K→∞

∫ 1

0

∫
Ω

tr(ε[vKt ]2) + γ|DmvKt |2 +
1

K

(
tr(ε[vKt ]2) + γ|DmvKt |2

)
dx dt

≥
∫ 1

0

∫
Ω

tr(ε[v]2) + γ|Dmv|2 dxdt, (5.44)

where we once again used that
∣∣vKt − |vKk |∣∣ ≤ 1

K |aKk | on every subinterval.

Altogether, (5.40), (5.43), and (5.44) give

lim inf
K→∞

Fσ,K [uK ] = lim inf
K→∞

Fσ,K,D[uK ,ΦK ] ≥ Fσ[u].
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(iii): Proving the admissibility of the limit of the discrete velocities and acceleration fields, and the discrete mate-
rial derivatives and accelerations, respectively.

In this step, we show that the limit objects v, a, z, w are indeed corresponding quantities for the image curve
u, i.e., (v, a, z, w) ∈ C[u] and they satisfy relations (5.11)–(5.14). This was already shown in Section 4.4 for
the first order terms v and z, and we repeat just the most relevant of those arguments here.

First, let us observe that, from (5.39) and smoothness of the inversion, we have (cf . (4.28))

‖xKt ‖C1,α(Ω) ≤ C(1 + max
k=1,...,K

‖φKk − 1‖C1,α(Ω) + max
k=1,...,K−1

1

K2
‖aKk ‖C1,α(Ω)),

while, by [Fio16, Propositions 1.2.4 and 1.2.7], we have (cf . (4.33))

‖ṽKt ‖C1,α(Ω) ≤ C‖vKt ‖C1,α(Ω)(1 + ‖xKt ‖C1,α(Ω) + ‖xKt ‖α+1

C1,α(Ω)
),

‖ãKt ‖C1,α(Ω) ≤ C‖aKt ‖C1,α(Ω)(1 + ‖xKt ‖C1,α(Ω) + ‖xKt ‖α+1

C1,α(Ω)
), (5.45)

where ṽKt and ãKt are defined by (5.30). In particular, this implies the uniform boundedness of {ṽK}K∈N
in L2((0, 1), C1,α(Ω,Rn)). Then, applying Remarks 3.2.2 and 3.2.3 to (5.32), we have that {ψK}K∈N is
uniformly bounded in H1 ⊂ C0, 12 ([0, 1], C1,α(Ω,Ω)). Furthermore, by the compact embedding of Hölder
spaces (cf . Corollary 2.1.10), we have, for all min( 1

2 , α) > β > 0, thatψK → ψ inC0,β([0, 1], C1,β(Ω,Ω)).
To show that ψ is indeed the solution corresponding to v, we consider ψv

K

, the solution corresponding to vK .
By the weak continuity of the solution operator mapping velocities to the flows (Theorem 3.2.1), we have
ψv

K → ψv inC0([0, 1]×Ω). Furthermore, by Remark 3.2.2, we have the Lipschitz continuity of the solution
operator, and using the spatial Lipschitz property of vKk together with (5.37), we have ψK − ψvK → 0 in
C0([0, 1]× Ω), finally confirming that ψ = ψv . For more details, see the discussion after (4.43).

To show that the equation ψ̈t = at ◦ ψt is satisfied, first observe that (5.33), i.e., ψ̈Kt = ãKt ◦ ψKt , en-
sures the uniform boundedness of {ψ̈K}K∈N in L2((0, 1), C1,α(Ω,Ω)). To this end, we used the uniform
boundedness of {ãK}K∈N in L2((0, 1), C1,α(Ω,Ω)), following from (5.45), and the uniform boundedness
of {ψK}K∈N in C0([0, 1], C1,α(Ω,Ω)), together with the estimate on composition of Hölder functions
[Fio16, Propositions 1.2.4 and 1.2.7]. Together with the previous paragraph, we conclude that {ψK}K∈N
is uniformly bounded in H2((0, 1), C1,α(Ω,Ω)), and converges weakly to ψ in H2((0, 1), C1,β(Ω,Ω)),
and strongly in C1,β([0, 1], C1,β(Ω,Ω)), for min( 1

2 , α) > β > 0. In particular, we have that ψ ∈
H2((0, 1), C1,β(Ω,Ω)) and ãK ◦ψK = ψ̈K → ψ̈ in L2((0, 1)×Ω). Hence, it suffices to verify ãK ◦ψK ⇀
a ◦ ψ in L2((0, 1)×Ω). Since, by Remark 4.2.8, we already have aK ◦ ψK ⇀ a ◦ ψ in L2((0, 1)×Ω), we
conclude the proof by checking that ãK ◦ ψK − aK ◦ ψK → 0 in L2((0, 1), C0(Ω,Ω)). Indeed,

‖ãK ◦ ψK − aK ◦ ψK‖2
L2((0,1),C0(Ω))

=

K−1∑
k=1

∫ tK
k+1

2

tK
k− 1

2

‖ãKt ◦ ψKt − aKt ◦ ψKt ‖2C0(Ω)
dt

≤C
K−1∑
k=1

∫ tKk

tKk−1

‖aKk (t, ·)‖2
C1(Ω)

‖yKk (t, ·)− 1‖2
C0(Ω)

dt

≤C‖aK‖2
L2((0,1),C1(Ω))

(
max

k=1,...,K
‖φKk − 1‖2C0(Ω)

+ max
k=1,...,K−1

K−2‖aKk ‖2C0(Ω)

)
≤CK−1‖aK‖2

L2((0,1),C1(Ω))
,

where we used the Lipschitz property of aKt , the transformation formula, and finally, (5.37) and (5.38).

In order to show that z and w are indeed scalar weak material derivatives of u, first observe that, from
uK ⇀ u and ψK → ψ, by Remark 4.2.8, we obtain uK ◦ ψK ⇀ u ◦ ψ in L2((0, 1)× Ω), and analogously
zK ◦ ψK ⇀ z ◦ ψ and wK ◦ ψK ⇀ w ◦ ψ. Next, note that, for s, t ∈ [0, 1], we have

‖uKt ◦ ψKt − uKs ◦ ψKs ‖2I ≤|t− s|
∣∣∣∣∫ t

s

∫
Ω

(zKr ◦ ψKr )2 dxdr

∣∣∣∣ ≤ C|t− s|‖zK‖2L2((0,1)×Ω) ≤ C|t− s|,
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where we used the Cauchy–Schwarz inequality, the transformation formula, and, finally, the uniform bound-
edness of {(ψK)−1}K∈N. Thus, {uK ◦ ψK}K∈N is in C0

ω([0, 1], I), where ω(t) = Ct
1
2 for some constant

C depending on the corresponding norms of v and z (cf . Remark 5.1.4). Then, by the the weak closedness
of this set following from Lemma 4.4.2, we obtain u ◦ ψ ∈ C0

ω([0, 1], I). Further using the properties of
this set, we have that, for every Ω̃ ⊂ Ω, the functional b 7→

∫
Ω̃
|bt+τ (x) − bt(x) − bs+τ (x) + bs(x)|dx is

continuous on C0
ω([0, 1], I), and convex, which implies weak lower semicontinuity. This finally gives∫

Ω̃

|ut+τ ◦ ψt+τ − ut ◦ ψt − us+τ ◦ ψs+τ + us ◦ ψs|dx

≤ lim inf
K→∞

∫
Ω̃

|uKt+τ ◦ ψKt+τ − uKt ◦ ψKt − uKs+τ ◦ ψKs+τ + uKs ◦ ψKs |dx

≤ lim inf
K→∞

∫
Ω̃

∫ τ

0

∫ t

s

wKr+l ◦ ψKr+l dr dl dx

=

∫
Ω̃

∫ τ

0

∫ t

s

wr+l ◦ ψr+l dr dl dx.

Since this holds for any Ω̃ ⊂ Ω, we have that w is the second (scalar) weak material derivative for u. The
proof of z being the first weak material derivative is analogous (cf . (4.46)).

This finally finishes the proof of the lim inf-inequality.
The following proposition is a corollary of the preceding proof and it represents an analogue of Proposi-

tion 4.4.3, i.e., it shows that the infimum in (5.10) is actually attained.

Proposition 5.4.4. For u ∈ L2([0, 1], I) with Fσ[u] < ∞ there exists an optimal tuple (v, a, z, w) ∈ C[u] such
that

Fσ[u] =

∫ 1

0

L[a, a] +
1

δ
w2 + σ

(
L[v, v] +

1

δ
z2

)
dxdt.

Proof. The functional Fσ is coercive by Korn’s inequality 2.1.6 and Gagliardo-Nirenberg interpolation estimate
2.1.5, and it is clearly weakly lower semicontinuous. Since C[u] is a subset of a reflexive Banach space, then we
just have to show the weak closedness of the set. This is verified as above. For more details, see the proof of
Proposition 4.4.3.

Proof of the existence of a recovery sequence and the lim sup-inequality

(i) Construction of a recovery sequence.

Consider an image curve u ∈ L2([0, 1], I) with Fσ[u] <∞. Then, the previous proposition guarantees the
existence of an associated optimal velocity field, an acceleration field, and the first and second order weak
(scalar) material derivatives, denoted by (v, a, z, w) ∈ C[u], respectively, such that

Fσ[u]=

∫ 1

0

∫
Ω

L[a, a]+
1

δ
w2 + σ

(
L[v, v]+

1

δ
z2

)
dxdt.

We define
φKk := ψtKk−1,t

K
k

= ψtKk ◦ ψ
−1
tKk−1

, k = 1, . . . ,K, (5.46)

where ψ is the flow associated with velocity v and ψ0 = 1 (cf . (5.11)). We have

max
k=1,...,K

‖φKk − 1‖C1(Ω) ≤ sup
|t−s|≤K−1

‖ψs,t − 1‖C1(Ω)

≤ sup
|t−s|≤K−1

C

∣∣∣∣∫ t

s

‖vr ◦ ψr‖Hm(Ω) dr

∣∣∣∣
≤ sup
|t−s|≤K−1

C

∣∣∣∣∫ t

s

‖vr‖Hm(Ω) dr

∣∣∣∣
≤CK− 1

2 sup
|t−s|≤K−1

∣∣∣∣∫ t

s

‖vr‖2Hm(Ω) dr

∣∣∣∣
1
2

≤CK− 1
2

√
Fσ[u], (5.47)
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by Lemma 5.2.3 and Cauchy’s inequality. For the second inequality, we used [BV17, Lemma 3.5] which
states that

‖vr ◦ ψr‖Hm(Ω) ≤ C‖vr‖Hm(Ω). (5.48)

Thereby, for K large enough, we have ΦK ∈ DK , and we are in a position to define

uK := UK [uK ,ΦK ], uK := (utK0 , . . . , utKK ),

where the point evaluation in time is possible since u ∈ C1([0, 1], I) (cf . Remarks 4.1.4 and 5.1.4).

(ii) Proof of the actual inequality.

The arguments for the estimates and the convergence of the first order terms are already represented in
Section 4.4. In what follows, we state those for the reference and present more detailed arguments for the
second order terms.

First, we are able to relate the discrete second order material derivative ŵKk , k = 1, . . . ,K − 1 given by
(5.17) and its continuous counterpart w, via∫

Ω

|ŵKk |2 dx =K4

∫
Ω

|uKk+1 ◦ φKk+1 ◦ φKk − 2uKk ◦ φKk + uKk−1|2 dx

=K4

∫
Ω

|utKk+1
◦ ψtKk−1,t

K
k+1
− 2utKk ◦ ψtKk−1,t

K
k

+ utKk−1
|2 dx

=K4

∫
Ω

|utKk+1
◦ψtKk+1

−2utKk ◦ψtKk +utKk−1
◦ψtKk−1

|2 det(DψtKk−1
) dx

≤K4

∫
Ω

(∫ tKk

tKk−1

∫ 1
K

0

wr+s ◦ ψr+s dr ds

)2

det(DψtKk−1
) dx

≤K2

∫ 1
K

0

∫ tKk

tKk−1

∫
Ω

w2
r+s det(Dψr+s,tKk−1

) dx dsdr

≤K2(1 + CK−
1
2 )

∫ 1
K

0

∫ tKk

tKk−1

∫
Ω

w2
r+s dxdsdr.

Here, we first used (5.46) and the transformation formula for the first and the second equality, respectively,
then the definition of the second order material derivative (5.8) for the fourth inequality, and, finally, the
Cauchy-Schwarz inequality and (5.47) in the last two estimates. Summing the above expressions over k =
1, . . . ,K − 1, we obtain

1

K

K−1∑
k=1

∫
Ω

|ŵKk |2 dx ≤K(1 + CK−
1
2 )

∫ 1
K

0

∫ 1− 1
K

0

∫
Ω

w2
r+s dxdsdr

≤K(1 + CK−
1
2 )

∫ 1
K

0

∫ 1

0

∫
Ω

w2
t dxdtdr

≤(1 + CK−
1
2 )

∫ 1

0

∫
Ω

w2
t dx dt. (5.49)

We analogously showed (cf . (4.59))

1

K

K∑
k=1

∫
Ω

|ẑKk |2 dx = K

K∑
k=1

∫
Ω

|uKk ◦ φKk − uKk−1|2 dx ≤
(

1 + CK−
1
2

)∫ 1

0

∫
Ω

z2
t dx dt . (5.50)
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Next, we express the discrete acceleration aKk , k = 1, . . . ,K − 1 in terms of its continuous counterpart a:

aKk = K2(φKk+1 ◦ φKk − 2φKk + 1)

= K2(ψtKk−1,t
K
k+1
− 2ψtKk−1,t

K
k

+ ψtKk−1,t
K
k−1

)

= K2

(∫ tKk+1

tKk

ψ̇t ◦ ψ−1
tKk−1

dt−
∫ tKk

tKk−1

ψ̇t ◦ ψ−1
tKk−1

dt

)

= K2

(∫ tKk

tKk−1

∫ 1
K

0

ψ̈t+τ ◦ ψ−1
tKk−1

dτ dt

)

= K2

(∫ tKk

tKk−1

∫ 1
K

0

at+τ ◦ ψtKk−1,t+τ
dτ dt

)
, (5.51)

where in the second equality we used (5.46), and in the last equality (5.12). Then, using the Cauchy-Schwarz
inequality and (5.48), we obtain the following estimate

max
k=1,...,K−1

‖aKk ‖C1(Ω) ≤ CK
1
2 sup
t∈[0,1], 0<τ≤K−1

∣∣∣∣∫ t+2τ

t

‖as‖2Hm(Ω) ds

∣∣∣∣
1
2

. (5.52)

The same Taylor expansion arguments as in (5.41) and (5.42) now imply, together with (5.52)∫
Ω

WA(DaKk ) + γ|DmaKk |2 dx ≤
∫

Ω

L[aKk , a
K
k ] + CK−2|DaKk |3 dx

≤
∫

Ω

L[aKk , a
K
k ] dx+ CK−

3
2

√
Fσ[u]. (5.53)

Applying Jensen’s inequality twice on L, and taking into account (5.51), we get∫
Ω

L[aKk , a
K
k ] dx =

∫
Ω

K4L

[∫ tKk

tKk−1

∫ 1
K

0

at+τ ◦ ψtKk−1,t+τ
dτ dt,

∫ tKk

tKk−1

∫ 1
K

0

at+τ ◦ ψtKk−1,t+τ
dτ dt

]
dx

≤
∫

Ω

K2

∫ tKk

tKk−1

∫ 1
K

0

L
[
at+τ ◦ ψtKk−1,t+τ

, at+τ ◦ ψtKk−1,t+τ

]
dτ dtdx.

We now estimate the summands of L individually. For the first term, we use |tr(AB)|≤|tr(A)|+|trA(B −
1)|, (5.47), and the transformation formula, to get∫

Ω

∫ tKk

tKk−1

∫ 1
K

0

tr
(
ε[at+τ ◦ ψtKk−1,t+τ

]2
)

dτ dtdx

≤
∫

Ω

∫ tKk

tKk−1

∫ 1
K

0

tr
(

(ε[at+τ ] ◦ ψtKk−1,t+τ
)2
)

+ tr
(

(ε[at+τ ] ◦ ψtKk−1,t+τ
)2(ε[ψtKk−1,t+τ

]2−1)
)

dτ dtdx

≤
∫

Ω

∫ tKk

tKk−1

∫ 1
K

0

tr
(
ε[at+τ ]2

)
+CK−

1
2 ‖at+τ‖2Hm(Ω) dτ dtdx.

For the second term, we use (5.48) and the fact that for any 0 ≤ m̃ ≤ m and f ∈ Hm(Ω,Rn), g ∈
Hm̃(Ω,Rn) we have ‖fg‖Hm̃(Ω) ≤ C‖f‖Hm(Ω)‖g‖Hm̃(Ω) [IKT13, Lemma 2.3], implying∫

Ω

|Dm(at+τ ◦ ψtKk−1,t+τ
)|dx ≤

∫
Ω

|Dm−1at+τ ◦ ψtKk−1,t+τ
|dx+ CK−

1
2 ‖at+τ‖Hm(Ω).

Iterating this argument and using the transformation formula, we obtain∫
Ω

∫ tKk

tKk−1

∫ 1
K

0

|Dm(at+τ ◦ ψtKk−1,t+τ
)|2 dτ dtdx ≤

∫ tKk

tKk−1

∫ 1
K

0

|at+τ |2Hm(Ω) + CK−
1
2 ‖at+τ‖2Hm(Ω) dτ dt.
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In a combination with (5.52) and (5.53), we have

1

K

K−1∑
k=1

∫
Ω

WA(DaKk ) + γ|DmaKk |2 dx ≤K
∫ 1

K

0

∫ 1− 1
K

0

∫
Ω

L[at+τ , at+τ ] +O(K−
1
2 ) dxdtdτ

≤
∫ 1

0

∫
Ω

L[at, at] +O(K−
1
2 ) dxdt.

Altogether, taking into account (5.49), we obtain

FK [uK ] ≤ F [u] +O(K−
1
2 ).

This readily implies the lim sup-inequality for the pure spline part of the functional Fσ,K . Analogously to
the above, we have (cf . (4.60)–(4.65))

K

K∑
k=1

∫
Ω

WD(DφKk ) + γ|DmφKk |2 dx ≤
∫ 1

0

∫
Ω

L[vt, vt] +O(K−
1
2 ) dx dt,

which, together with (5.50), gives
EK [uK ] ≤ E [u] +O(K−

1
2 ),

finally proving the lim sup-inequality.

(iii) Proof of the convergence of the recovery sequence.

As the final step, we are left to show that uK → u in L2((0, 1), I) as K → ∞. To this end, we introduce
the piecewise constant interpolation

ūKt :=


uK0 , t ∈ [0, tK1

2

],

uKk , t ∈ (tK
k− 1

2

, tK
k+ 1

2

], k = 1, . . . ,K − 1,

uKK , t ∈ [tK
K− 1

2

, 1].

We will show
uK − ūK → 0 in L∞((0, 1), I). (5.54)

To this end, for t ∈ (tK
k− 1

2

, tK
k+ 1

2

] with k = 1, . . . ,K − 1, we estimate

‖uKt − ūKt ‖2I
≤C

(
‖(uKk−1−uKk ◦φKk )◦xKt ‖2I+‖(uKk+1◦φKk+1◦φKk −2uKk ◦φKk +uKk−1)◦xKt ‖2I+‖uKk ◦φKk ◦xKt −uKk ‖2I

)
≤C
(
K−2‖ẑKk ‖2L2(Ω)‖ detDyK‖L∞((0,1)×Ω)+K−4‖ŵKk ‖2L2(Ω)‖ detDyK‖L∞((0,1)×Ω)

+ ‖uKk ◦φKk ◦xKt −uKk ‖2I
)

≤C
(
K−1‖z‖2L2((0,1)×Ω) + CK−3‖w‖2L2((0,1)×Ω) + ‖uKk ◦ φKk ◦ xKk,t − uKk ‖2I

)
(5.55)

For every t ∈ (0, 1), we can find a sequence {k(K)}K∈N such that t ∈ (tK
k(K)− 1

2

, tK
k(K)+ 1

2

], for any K large

enough. Following the same procedure as in (4.56), we uniformly approximate the sequence {uKk(K)}K∈N
by smooth functions, and use (5.47) and (5.52), to prove

‖uKk(K) ◦ φKk(K) ◦ xKt − uKk(K)‖2I → 0, uniformly in t.

Plugging this back into (5.55), we get (5.54). Furthermore, as {ūK}K∈N is a sequence of piecewise constant
approximations of u ∈ C1([0, 1], I), we have that ūK → u in L2([0, 1], I) asK →∞. Thus, we can finally
conclude uK → u in L2((0, 1), I), as we wanted to show. This finally finishes the proof of Theorem 5.4.1.
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As a corollary of the previous theorem, we are able to show the existence of the time continuous regularized
spline interpolation (cf . Definition 5.1.3) as the corresponding limit of the time discrete spline interpolations. To
this end, let J ≥ 2 and (t1, . . . , tJ) ⊂ [0, 1] ∩ Q be a sequence of fixed times. Then, for infinitely many K ∈ N,
one can choose iKj := K · tj ∈ N for all j = 1, . . . , J . Let (uIj )j=1,...,J ⊆ I be the set of constraint images at the
corresponding constraint times (cf . (5.1) and (5.19)).

Theorem 5.4.5 (Convergence of discrete spline interpolations). For every K that satisfies the above condition,
let uK ∈ L2([0, 1], I) be a minimizer of Fσ,K among the image curves satisfying uK = UK [uK ,ΦK ] with
uK
iKj

= uIj for all j = 1, . . . , J . Then, a subsequence of {uK}K∈N converges weakly in L2([0, 1], I) as K → ∞
to a minimizer of the continuous spline energy Fσ . This minimizer satisfies utj = uIj for all j = 1, . . . , J , and the
associated sequence of discrete energies converges to the minimal continuous spline energy.

Proof. For j = 1, . . . , J , let ηj : [0, 1]→ R be smooth functions with ηjti = δij . We define a smooth interpolating
curve of the fixed images ũt :=

∑J
j=1 η

j
tu
I
j . Let ũK := (ũtK1 , . . . , ũtKK ) and define ũK := UK [ũK ,1K ]. This

image curve gives an admissible candidate for a minimizer of the functional Fσ,K . Indeed,

Fσ,K [ũK ] ≤Fσ,K,D[ũK ,1K ]

=σK

K∑
k=1

∫
Ω

|ũKk − ũKk−1|2 dx+K3
K−1∑
k=1

∫
Ω

|ũKk+1 − 2ũKk + ũKk−1|2 dx

≤C
(∫

Ω

|ũ|2H1((0,1)) + |ũ|2H2((0,1)) dx+ 1

)
:= F ,

where the upper bound F is independent of K. As defined above, let {uK := UK [uK ,ΦK ]}K∈N, where
{(uK ,ΦK)}K∈N are the optimal pairs for the discrete spline (see Theorem 5.2.7). In particular, for K large
enough, we have Fσ,K [uK ] = Fσ,K [uK ,ΦK ] < F . Then, from Lemma 5.2.3, we have the uniform boundedness
of {φKk }K∈N in C1,α(Ω,Ω), and, as in (5.26), we can show the uniform boundedness of {uKk }K∈N in I, for every
k = 0, . . . ,K. Furthermore, using the boundedness of the discrete incremental transport paths, following from
(5.39), we can show that {uKt }K∈N is uniformly bounded in I, uniformly in t ∈ [0, 1]. Therefore, {uK}K∈N is
uniformly bounded in L∞([0, 1], I), and a subsequence converges weakly to some u ∈ L2([0, 1], I).

Let us show that utj = uIj for all j = 1, . . . , J . To this end, we can analogously to (5.54) show uKt − ūKt → 0

in I, uniformly in t ∈ [0, 1]. Together with uKt ⇀ ut in I for every t ∈ [0, 1], which can be shown as in (4.52),
we have the needed result since ūKtj = uIj .

Now, we follow the usual argument and assume that there exists an image path û ∈ L2([0, 1], I) with a finite
energy, and ûtj = uIj for all j = 1, . . . , J , such that Fσ[û] < Fσ[u]. By the lim sup-part of Theorem 5.4.1,
there exists a sequence {ûK}K∈N ⊂ L2((0, 1), I) of time extensions of admissible vectors of images such that
lim supK→∞ Fσ,K [ûK ] ≤ Fσ[û]. Now, we apply the lim inf-part of Theorem 5.4.1 to obtain

Fσ[u] ≤ lim inf
K→∞

Fσ,K [uK ] ≤ lim infK→∞Fσ,K [ûK ] ≤ Fσ[û], (5.56)

which is a contradiction to the above assumption. Hence, u minimizes the continuous spline energy over all ad-
missible image curves and the discrete spline energies converge to the limiting spline energy along a subsequence,
i.e., limK→∞ Fσ,K [uK ] = Fσ[u], which follows from (5.56) by using û = u.

The analogous result for arbitrary (t1, . . . , tJ) ⊂ [0, 1] follows from the density of Q in [0, 1]. Let us remark
that, in light of Proposition 5.1.1, we have that for the optimal scalar quantities z, w it holds z = |ẑ| and w = |ŵ|
(cf . Remark 4.4.5).

5.5 Relaxation of the Warping Constraint
As the next step, we should proceed to the fully discrete model. In order to make comparisons of the piecewise
geodesic interpolation with the spline interpolation, we want to follow the analogous discretization and optimiza-
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tion techniques as in Sections 4.5 and 4.6. In particular, for k = 2, . . . ,K − 1 we would have to determine

φk ∈ argmin
φ

∫
Ω

K3 (WA(D(φk+1 ◦ φ− 2φ+ 1)) +WA(D(φ ◦ φk−1 − 2φk−1 + 1)))

+
K3

δ

(
|uk+1 ◦ φk+1 ◦ φ− 2uk ◦ φ+ uk−1|2 + |uk ◦ φ ◦ φk−1 − 2uk−1 ◦ φk−1 + uk−2|2

)
+Kσ

(
WD(Dφ) +

1

δ
|uk ◦ φ− uk−1|2

)
dx.

Then, in order to use the linearization and the iPALM algorithm as proposed in Section 4.6, we would have to
rewrite the second term in the second line as∫

Ω

|uk ◦ φ− 2uk−1 + uk−2 ◦ φ−1
k−1|2 det(Dφk−1)−1 ◦ φ−1

k−1 dx.

However, we do not have a stable and precise way for computation of the inverse of a given deformation. To solve
this problem, we propose a relaxation of the model presented in Section 5.1 and its variational time discretization
given in Section 5.2.

First, we explicitly introduce a vector valued material derivative z̄ ∈ L2((0, 1),Z := L2(Ω,Rc)) and obtain a
relaxation of (5.10):

Fσr [u] := inf
(v,a,ẑ,z̄,w)

∫ 1

0

∫
Ω

L[a, a] +
1

δ
|w|2 + σ(L[v, v] +

1

δ
|z̄|2) +

1

θ
|z̄ − ẑ|2 dxdt,

with a penalty on the misfit of the new variable z̄ and the actual material derivative ẑ (cf . (5.5)), while w is the first
material derivative of z̄, i.e.,

ut ◦ ψt − us ◦ ψs =

∫ t

s

ẑr ◦ ψr dr, z̄t ◦ ψt − z̄s ◦ ψs =

∫ t

s

wr ◦ ψr dr, ∀s, t ∈ [0, 1].

To adapt the time discrete counterpart, with z̄ = (z̄1, . . . , z̄K), we define

Fσ,K,Dr [u, z̄,Φ]

:=

∫
Ω

K−1∑
k=1

1
K

(
WA(Dak)+γ|Dmak|2

)
+K

δ |z̄k+1 ◦ φk − z̄k|2+σ

(
K∑
k=1

KWD(Dφk) +Kγ|Dmφk|2 + 1
δK |z̄k|2

)

+

K∑
k=1

1
θK |K(uk ◦ φk − uk−1)− z̄k|2 dx, (5.57)

where w̄k := K(z̄k+1 ◦ φk − z̄k) is the discrete material derivative of z̄k, while ẑk := K(uk ◦ φk − uk−1) is
the actual material derivative of uk, with the corresponding second order derivative (ŵk)K−1

k=1 given by ŵk :=
K(ẑk+1 ◦ φk − ẑk) (cf . (5.17)). We now define

Fσ,Kr [u] := inf
(Φ,z̄)∈DK×ZK

Fσ,K,Dr [u, z̄,Φ].

This energy is well defined and has a minimizer in the set of admissible vectors of images (cf . (5.19)).

Theorem 5.5.1. For every u ∈ IKadm, there exists a pair (Φ, z̄) ∈ DK ×ZK such that

Fσ,Kr [u] = Fσ,K,D[u, z̄,Φ].

Furthermore, for every K ∈ N and every choice of IKf , there exists u ∈ IKadm such that

Fσ,Kr [u] = inf
v∈IKadm

Fσ,Kr [v].

Proof. The first claim follows along the same lines as Proposition 5.2.5, while for the second we follow the
arguments analogous to those from the proof of Theorem 5.2.7.
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5.6 Fully Discrete Model
In this section, we present (relaxed) fully discrete splines for the image metamorphosis model. We observe images
with c channels and the two-dimensional image domain Ω := [0, 1]2. In a large part we follow the same approach
as in Section 4.5. To this end, for M,N ≥ 3 we define the computational domain

ΩMN :=
{

0
M−1 ,

1
M−1 , . . . ,

M−1
M−1

}
×
{

0
N−1 ,

1
N−1 , . . . ,

N−1
N−1

}
, ∂ΩMN := ΩMN ∩ ∂([0, 1]2),

and the Lp-norm of the discrete objects via ‖u‖pLp(ΩMN ) = 1
MN

∑
(x,y)∈ΩMN

∑c
j=1 |uj(x,y)|p. We define the

discrete image and discrete derivative space by IMN = ZMN := {u, z : ΩMN → Rc}, and the set of admissible
deformations by

DMN :=
{
φ = (φ1,φ2) :ΩMN→ [0, 1]2,φ=1 on ∂ΩMN , det(∇MNφ)>0

}
,

where the discrete Jacobian operator∇MN of φ at (x,y) ∈ ΩMN is defined as the forward finite difference operator
with Neumann boundary conditions. Here, and in the rest of this chapter, we use boldfaced letters for the fully
discrete quantities.

A spatial warping operator T that approximates the pullback of an image channel uj◦φ at a point (x,y) ∈ ΩMN

is written in the following form

T[uj ,φ](x,y) :=
∑

(x̃,ỹ)∈ΩMN

s(φ1(x,y)− x̃)s(φ2(x,y)− ỹ)uj(x̃, ỹ) ,

where s is a sufficiently smooth function such that s(0) = 1 and it vanishes at other grid points ΩM \ {0}, where
ΩM := {−M−1

M−1 , . . . , 0, . . . ,
M−1
M−1}. (We focus our description on the first dimension, while the construction for

the other dimension is completely analogous). We define s as the interpolation of these values by the third order
B-spline (for details and proofs of all the claims below see [dB78, Chapter IX])

s(x) :=

M+1∑
i=−M

wibi(x). (5.58)

Here, wi ∈ R are weights which are determined from the interpolation constraints and the i-th basis function bj is
given by

bi(x) := βi−2(x)χIi−2(x) + βi−1(x)χIi−1(x) + βi0(x)χIi(x) + βi1(x)χIi+1(x), (5.59)

where, for i ∈ {−M, . . . ,M + 1}, we define Ii := [xi,xi+1 = xi + 1
M−1 ) with xi := i

M−1 . The basis functions
are determined as the elements with order 3 in the sequence determined by the recursion formula

bi0(x) =χIi(x),

bik+1(x) =ωik(x)bik(x) + (1− ωi+1
k (x))bi+1

k (x), ωik(x) =


x− xi

xi+k − xi
, xi+k 6= xi,

0, else.

This, in particular, ensures that at any point only a small number of basis functions does not vanish and the sum of
values of all basis functions at any point is 1. In our setting, the basis functions, depicted on Figure 5.2 right, are
given by

βi−2(x) :=
1

6
(M − 1)3(x− xi−2)3,

βi−1(x) :=
1

6
(M − 1)3

(
(x− xi−2)2(xi − x) + (x− xi−1)2(xi+2 − x) + (x− xi−2)(x− xi−1)(xi+1 − x)

)
,

βi0(x) :=
1

6
(M − 1)3

(
(xi+2 − x)2(x− xi) + (xi+1 − x)2(x− xi−2) + (x− xi−1)(xi+1 − x)(xi+2 − x)

)
,

βi1(x) :=
1

6
(M − 1)3(xi+2 − x)3.
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We notice that the basis functions are translates of each other, i.e., bi(x) = bi+k(x+ k
M−1 ), and that the segments

are scale invariant, i.e., if we observe the segments (β̃ik)k=−2,−1,0,1 on the domain with the grid size 1
M̃−1

we have

βik(x) = β̃ik(xM−1
M̃−1

).
From (5.58) and (5.59), for x ∈ Ii, we have

s(x) = wi−1βi−1
1 (x) + wiβi0(x) + wi+1βi+1

−1 (x) + wi+2βi+2
−2 (x),

which gives

s(xi) =
1

6
wi−1 +

2

3
wi +

1

6
wi+1, i = −(M − 1), . . . ,M − 1,

so that we can write a linear tridiagonal system to determine the weights. However, we still have two degrees of
freedom more then the number of equations. To this end, we impose the clamped boundary conditions s′′(−1) =
s′′(1) = 0, which in our setting correspond to the condition w−(M−1) = wM−1 = 0. Figure 5.2 left shows the
resulting function s for M = 16. We notice that, due to the small support of the B-spline basis and the fact that
only non-vanishing value to interpolate is s(0) = 1, the relevant contribution to the function s is only present on
a support of length of several (four) discrete intervals around 0. Due to the scale invariance of the segments, the
same observation holds for other relevant choices of M .

Figure 5.2: Right: B-spline basis bi with segments colored in different colors. Left: Interpolation function s for
M = 16.

From the construction, we clearly see that s ∈ C2([−1, 1]), which allows us to obtain sufficient regularization
of the deformations via discretization, and thus neglect the Hm-seminorm term in the fully discretized energy.

This form of warping is also used for the composition of deformations, i.e., we define the fully discrete accel-
eration, as an approximation of (5.16), by

ajk := K2(T[φjk+1 − 1,φk]− (φjk − 1)), j = 1, 2. (5.60)

In summary, the fully discrete spline energy in the metamorphosis model, for a (K + 1)-tuple (uk)Kk=0 of discrete
images, a K-tuple (z̄k)Kk=1 of discrete derivatives, and a K-tuple of discrete deformations (φk)Kk=1, is obtained as
a discretization of (5.57), and reads as

Fσ,Kr,MN [(uk)Kk=0]

:= inf
(zK ,Φ)∈ZKMN×DKMN

Fσ,K,Dr,MN [(uk)Kk=0, (z̄k)Kk=1, (φk)Kk=1]

:= inf
(zK ,Φ)∈ZKMN×DKMN

K−1∑
k=1

1
K ‖WA(∇MNak)‖L1(ΩMN )+K

δ Ds
MN [z̄k, z̄k+1,φk]

+

K∑
k=1

σ
(
K‖WD(∇MNφk)‖L1(ΩMN )+ 1

δK ‖z̄k‖2L2(ΩMN )

)
+ 1

θKDg
MN [uk−1,uk, z̄k,φk] ,
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where

Ds
MN [z, z̃,φ] :=

1

2c

c∑
j=1

∥∥T[z̃j ,φ]−zj
∥∥2

L2(ΩMN )
, Dg

MN [u, ũ, z,φ] :=
1

2c

c∑
j=1

∥∥K(T[ũj ,φ]−uj)−zj
∥∥2

L2(ΩMN )
.

To improve the robustness of the overall optimization, we take into account a multilevel strategy. In detail, on
the coarse computational domain of size ML × NL with ML = 2−(L−1)M and NL = 2−(L−1)N , for a given
L ≥ 1, a time discrete spline sequence (uk)Kk=0 is computed as a minimizer of Fσ,Kr,MLNL

subject to the given fixed
images uij = uIj , j = 1, . . . , JK (cf . (5.19)). In the subsequent prolongation steps, the width and the height
of the computational domain are successively doubled, and the initial deformations, images, and derivatives are
obtained via bilinear interpolation of the preceding coarse scale solutions.

5.7 Numerical Optimization
In this section, we discuss the numerical solution of the above-defined fully discrete variational problem, based
on the application of a variant of the iPALM algorithm [PS16], presented in Section 3.3. Following the approach
from Section 4.6, to enhance the stability, the warping operation is linearized with respect to the deformation at
φ[β] ∈ DMN coming from the previous iteration, leading to the modified energies

D̃s
MN [z, z̃,φ,φ[β]] := 1

2c

c∑
j=1

∥∥∥T[z̃j ,φ[β]]+
〈

Λj(z, z̃,φ
[β]),φ−φ[β]

〉
−zj

∥∥∥2

L2(ΩMN )

D̃g
MN [u, ũ, z,φ,φ[β]] := 1

2c

c∑
j=1

∥∥∥KT[ũj ,φ[β]]+
〈

Λj(Ku+z,Kũ,φ[β]),φ−φ[β]
〉
− (Kuj + zj)

∥∥∥2

L2(ΩMN )
,

based on the gradient (cf . [WPZ+09]) Λj(u, ũ,φ
[β]) = 1

2 (∇MNT[ũj ,φ[β]] + ∇MNuj), where the Jacobian op-
erator applied to the images is approximated using a Sobel filter [Sob90]. Here, 〈·, ·〉 represents the pointwise
product of the involved matrices. We use the Moreau’s proximal mapping of a functional f : DMN → (−∞,∞]

for τ > 0 given as (cf . Definition 3.3.1) proxfτ [φ] := argminφ̃∈DMN

(
τ
2

∥∥∥φ− φ̃∥∥∥2

L2(ΩMN )
+ f [φ̃]

)
. Then, with

the function values on ∂ΩMN remaining unchanged, the proximal operator we are interested in is

prox
K
δ D̃s

MN+ 1
Kθ D̃g

MN
τ [φtk]

=

1+ K
cτδ

c∑
j=1

|Λsj |2 + 1
cτθK

c∑
j=1

|Λgj |2


φtk− K
cτδ

c∑
j=1

Λsj
(
T[z̄jk+1,φ

[β]
k ]−(Λsj)

Tφ
[β]
k − z̄jk

)
− 1
cτθK

c∑
j=1

Λgj
(
T[Kujk,φ

[β]
k ]−(Λgj )

Tφ
[β]
k −Kujk−1−z̄jk

),
where Λsj := Λ(z̄jk, z̄

j
k+1,φ

[β]
k ) and Λgj := Λ(Kujk−1 + z̄jk,Kujk,φ

[β]
k ). The first terms in both brackets are

activated only for k < K.
We are now ready to apply the iPALM algorithm with the backtracking of the Lipschitz constant (cf . Algo-

rithm 3) to minimization of FKr,MN . We initialize the vector of images by the linear interpolation of the fixed
images, the vector of derivatives as the scaled differences of the consecutive images, and the vector of deforma-
tions by the identity vector. Finally, we choose some initial values for the step sizes (the Lipschitz constants w.r.t.
the images, derivatives and deformations). Then, the alternating optimization is summarized in Algorithm 5, while
the backtracking of the Lipschitz constants is achieved as in Algorithm 3. For β > 0, we use the notation

h
[i,β]
k := h

[i]
k + β(h

[i]
k − h

[i−1]
k ), h[i,k] := (h

[i+1]
0,...,k−1,h

[i]
k,...,K), h[i,k,β] := (h

[i+1]
0,...,k−1,h

[i,β]
k ,h

[i]
k+1,...,K) ,

and the acceleration a[i,β] is computed from the formula (5.60), using the correspondingly updated φ[i,β] values.
Finally, IK is the set of the indices with fixed images (cf . (5.19)), and the derivatives of the energies w.r.t. the
deformations, material derivatives and images are computed with a help of the Autograd package of PyTorch
library [PGC+17].
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Algorithm 5: Algorithm for the minimization of Fσ,Kr,MN on one level.

1 for i = 1 to I do
/* start with k = 0 for images */

2 for k = 1 to K do
/* update deformation */

3 φi,tk =

φ
[i,β]
k −

Dφk

(
σK‖WD(∇MNφ

[i,β]
k )‖L1(ΩMN )+ 1

K ‖WA(∇MNa
[i,β]
k )+WA(∇MNa

[i,β]
k−1)‖L1(ΩMN )

)
L

[i]
φk

;

4 φ
[i+1]
k = prox

K
δ D̃s

MN+ 1
Kθ D̃g

MN

L
[i]
φk

[φi,tk ];

/* update derivative */

5 z̄
[i+1]
k = z̄

[i,β]
k − Dz̄kF

σ,K,D
r,MN [u[i,k], z̄[i,k,β],φ[i,k+1]]

L
[i]
z̄k

;

/* fixed images remain unchanged */
6 if k 6∈ IK then

/* update image */

7 u
[i+1]
k = u

[i,β]
k −DukF

σ,K,D
r,MN [u[i,k,β], z̄[i,k+1],φ[i,k+1]]

L
[i]
uk

;

5.8 Numerical Results
In what follows, we investigate and discuss the qualitative properties of the spline interpolation in the space of
images, being aware that the superior temporal smoothness of this interpolation is difficult to show with a series
of still images. For all the examples we use L = 5 levels in the multilevel approach and I = 250 iterations of
iPALM algorithm on each level, with the extrapolation parameter β = 1√

2
. For the first two examples (Gaussians

and circle-square) M = N = 64, while for the others (human portraits, letters and cells) M = N = 128. Also,
for the first two and the final example K = 8, while for the others K = 16. For the plotting of the images we
crop the values to [0, 1], for the material derivatives the values are scaled to the interval [0, 1] for plotting, while
for the displacement and acceleration plots hue refers to the direction and the intensity is proportional to its norm,
as indicated by the color wheel. Let us also notice that the displacement plots can also be observed as the plots of
(scaled) discrete velocity fields, so we will use both notions.

Figure 5.3 shows a first test case. As key frames, we consider three images showing two-dimensional Gaussian
distribution with a small variance at different positions, and of different masses. For the metamorphosis spline,
the curve in the (x, y,m)-space (position, mass) corresponds almost perfectly to the cubic spline interpolation of
the parameters of the Gaussian distribution on the key frames. Furthermore, the curve in (x, y,m)-coordinates
obtained from the piecewise geodesic interpolation corresponds almost perfectly to the piecewise geodesic in-
terpolation of the corresponding parameters. This, in particular, shows the smoothness of our proposed spline
interpolation in comparison with the piecewise geodesic interpolation in the metamorphosis model.

Next, in Figure 5.4, we conceptually compare spline and piecewise geodesic interpolation in the image meta-
morphosis model. For this specific example, suggested and implemented by J. Justiniano, we considered the image
of a circle and two identical squares as key frames. The influence of the circle’s curvature on the spline segment
between the two identical squares is still visible via concave ‘edges’, while for the piecewise geodesic interpolation
any memory of the circle is lost between the squares.

We consider the spline interpolation between the three human portraits in Figure 5.5. The plots of the second
material derivative and the acceleration show a strong concentration around the key frames, where the spline is
expected to be smooth and the piecewise geodesic path at most Lipschitz continuous. The analogous observations
hold for Figure 5.6 which shows the spline interpolation between different letters of alphabet as key frames.
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Figure 5.3: Left: Time discrete spline with framed key frame images (first row), color-coded discrete displace-
ment/velocity field (second row), discrete second order material derivative (third row) and color-coded discrete
acceleration field (fourth row), for the Gaussians example and values of the parameters δ = 5 · 10−3, σ = 1,
θ = 5 · 10−5. The colors and their intensities indicate the direction and the intensity of the field, as indicated by
the color wheel on the left. Right: Euclidean spline and piecewise geodesic interpolation for the input parameters
versus spline and piecewise geodesic interpolation in metamorphosis model, extracted from the numerical results
in postprocessing. The plots are given in (x, y,m)-coordinates, with (x, y) denoting the center of mass and m the
mass of the distribution.
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Figure 5.4: Left: Time discrete spline (top row) and piecewise geodesic (middle row) interpolation with framed
key frames. The bottom row shows the difference in intensity between the different interpolations, using the color
map −0.35 0.35. Right: Width of the interpolated shape measured at the horizontal axis of symmetry
(in number of pixels) for a spline interpolation (orange) and piecewise geodesic interpolation (green), showing the
concavities in the spline interpolation (δ = 5 · 10−3, σ = 1, θ = 5 · 10−4).
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z̄ k
u
k

w̄
k
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k

Figure 5.5: Time discrete spline with framed fixed images (first and second row), first order material derivative
variable z̄ (third and fourth row), second order material derivative with energies comparison (fifth and sixth row),
and color-coded acceleration field with energies comparison (seventh and eighth row), for the values of the pa-
rameters δ = 2 · 10−2, σ = 2, θ = 8 · 10−4. The graphics on the right, in rows four and six, show the spline
(orange) time plots of the L2-norm of the actual second order material derivative ŵk and the dissipation energy
density ‖WA(∇MNak)‖L1

MN
, reflecting the motion acceleration, respectively. This is compared to the correspond-

ing piecewise geodesic interpolation (green) (not visualized here, cf . Figure 5.8).
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Figure 5.6: Left: Time discrete spline with framed fixed images (top and bottom row). Right: Energy density norm
of acceleration flow ‖WA(∇MNak)‖L1

MN
(top), and L2-norm of the actual second order material derivative ŵk

(bottom). Parameter values: δ = 10−3, σ = 2, θ = 2 · 10−5.

The impact of the coloring of the key frame images on the geometry of the spline interpolation and the interplay
between the Eulerian flow acceleration and the second order material derivative along the motion paths is depicted
in Figure 5.7. Therein, we consider block-colored letters as key frame images. In our first example, the coloring
is consistent with the interpolating flow shown in the black and white spline interpolation in Figure 5.6. Hence, in
the corresponding spline interpolation color is mainly passively transported along this flow rather than blending it
(top row). In the second example, the red patch in the middle key frame image is chosen to be located top right
instead, further away from the red patches in the extremal key frame images (bottom row). Hence, the coloring
is no longer consistent to the flow in the black and white example. In fact, the transport of the blue color is now
strongly reconfigured, as seen in the first interval between the ‘P’ and the ‘A’. Furthermore, in the second interval
between the ‘A’ and the ‘Q’, blending from blue to red and from red to blue occurs.

0 2 4 6 8 10 12 14 16

u
k

u
k

k

Figure 5.7: Top and bottom rows: Two time discrete splines with key-frames images differing in shape and color.
Parameter values: δ = 8 · 10−3, σ = 2.5, θ = 2 · 10−4. For visualization purposes, only even-numbered frames uk
are depicted.

In Figure 5.8, we compare particular images of the discrete splines and piecewise geodesic sequences. One
particularly observes that for the faces the shown spline image is thicker and for the letters the spline image shows
more round contours than for the piecewise geodesic counterpart. This is again the nonlocal impact of the key
frames beyond those bounding the current interpolation. Furthermore, we compare the flow acceleration and the
second order material derivative terms on which the jump in energies occurs (cf . Figures 5.5 and 5.6).

Finally, we ask for a reconstruction of frames given certain frames at selected time stamps extracted from a
video. Here, we compare the resulting spline interpolation and the piecewise geodesic interpolation directly with
corresponding frames of the original video as a benchmark for the both approaches. Indeed, Figure 5.9 shows
this comparison of the original frames, the spline interpolation, and the piecewise geodesic interpolation for the
images extracted from a video made by David Rogers from Vanderbilt University in the 1950s1, which shows the
interaction between white blood cells and bacteria. The spline interpolation clearly shows less blending artifacts
and it is smoother in time in comparison with the piecewise geodesic interpolation.

1https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria.
The images are courtesy of Robert A. Freitas, Institute for Molecular Manufacturing, California, USA rfreitas.com

https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria
rfreitas.com


100 5 Spline Interpolation in Image Metamorphosis Model

Figure 5.8: Top row: Image u11 for the human face example, second order material derivative ŵk and acceleration
field ak for k = 8, for the time discrete piecewise geodesic (left image of each panel pair) and spline (right image of
each panel). The pairs of material derivatives and the acceleration fields are jointly scaled to reflect the differences
in intensities. Bottom row: Same visualization with image u4 from the letter example.
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Figure 5.9: First row: The original frames extracted from the video showing white blood cell (neutrophil) chasing
a Staphylococcus aureus bacterium. Second row: Time discrete spline with framed fixed images. Third row: Time
discrete piecewise geodesic with framed fixed images. Fourth and fifth row: Fully discrete second order material
derivative for the discrete spline and the the discrete piecewise geodesic interpolation, respectively. The values of
parameters are δ = 4 · 10−2, σ = 2.5, θ = 1.6 · 10−4.
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5.9 Conclusion and Outlook
In this chapter, we have proposed a spline interpolation approach for the image metamorphosis model. The ap-
proach is based on the penalization of the acceleration term, which is split into the flow acceleration and the second
order change of image intensity. Variational time discretization is based on the approximation of the acceleration
terms by the central finite difference. Both the time continuous and the time discrete energy are regularized by
adding scaled geodesic energy. We were able to show the existence of time discrete spline interpolations as mini-
mizers of the regularized energy. Furthermore, we showed the Mosco-convergence of the extension of time discrete
energies, based on interpolation by cubic Hermite splines, towards the continuous time energy. As a corollary, we
obtained the existence of a time continuous spline interpolation as a minimizer of this energy and the convergence
of the time discrete interpolants towards their continuous counterpart. The fully discrete model is based on the
finite difference approximation of derivatives and a cubic B-spline approximation of the warping operator, respec-
tively, while the numerical optimization is done by using a version of the iPALM algorithm, proposed by Pock
and Sabach. The experimental results show better smoothness in time of the proposed spline interpolation in com-
parison to the piecewise geodesic interpolation. This is, in particular, reflected in the stability of energy of both
acceleration parts near the key frames. Furthermore, the influence of the preceding and/or succeeding key frame(s)
is visible for the spline interpolation, which naturally relates to the larger support of the spline basis functions for
Euclidean cubic splines. Although physically intuitive, this framework does not correspond to Riemannian splines
introduced by Noakes et al., as it does not represent penalization of the squared covariant derivative of the path
velocity in the Riemannian metric. An attempt in building such a (time discrete) model could be based on the
discretization of covariant derivative based on the framework by Effland, Heeren, Rumpf, and Wirth [EHRW21].
Furthermore, a challenge is the adaptation of our approach to images with textures and feature-based image repre-
sentations.
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Chapter 6

Learning Low Bending and Low
Distortion Manifold Embeddings

AUTOENCODERS (see Section 1.2 for some introduction), consisting of an encoder, which embeds the input
data manifold into a lower-dimensional latent space, and a decoder, which serves as an inverse map,
providing a parametrization of the data manifold by the manifold in the latent space, are widely used

in machine learning for dimension reduction of high-dimensional data. An appropriate regularity and structure
of the embedded manifold may substantially simplify further processing of the data. In this chapter, we propose
and analyze a novel regularization for learning the encoder component of an autoencoder by introducing a loss
functional that prefers isometric and extrinsically flat embeddings. As training data, we use pairs of nearby points
on the input manifold, together with their local Riemannian distance and Riemannian average. The loss functional
is computed via Monte Carlo integration, where we use a few different sampling strategies. We first observe
the limit as the number of samples tends to infinity, depending on the sampling strategy, leading to a nonlocal
continuous sampling loss functional. We prove the existence of minimizers for this functional in a class of functions
that can be obtained as a realization of a set of sufficiently well-behaved neural networks. We study the Mosco-
limit of these functionals as the sampling radius, i.e., the maximal distance of sampled point pairs, tends to zero.
The limit is identified as a purely local continuous loss functional, which again promotes low bending and low
distortion. Numerical experiments, using image data that encodes different explicitly given data manifolds, show
that smooth manifold embeddings into latent space are obtained. Due to the promotion of extrinsic flatness, these
embeddings are regular enough to ensure that the interpolation between not too distant points on the manifold is
well approximated by the decoder image of the linear interpolation in the latent space. Note that this chapter is an
extended version of the previous conference proceeding [BRRW21] and its journal version [BRRW22] (joint work
with Juliane Braunsmann, Martin Rumpf and Benedikt Wirth).

This chapter is structured as follows. In Section 6.1, we provide the basic assumptions on the underlying
manifold and introduce the discrete sampling loss functional. Furthermore, we obtain the continuous nonlocal
regularization loss as the Monte Carlo limit for the dense sampling of input data. We prove the existence of a
minimizer for this functional under the suitable assumptions on the class of embedding networks in Section 6.2.
The Mosco-convergence of the nonlocal functionals towards the continuous local limit functional is demonstrated
in Section 6.3. As a proof of concept, we train autoencoders on several image datasets representing a priori
known data manifolds in Section 6.5. The neural network architecture of the encoders, together with the training
procedure, is presented in Section 6.4. We discuss the numerical results, both from the perspective of smoothness,
isometry, and flatness of obtained latent manifolds, and the quality of linear interpolations in the latent space.
Finally, in Section 6.6, we provide a resume of the results of the chapter and comment on possible extensions of
this work.
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6.1 A Low Bending and Low Distortion Regularization for Encoders
We consider a smooth and compactm-dimensional Riemannian manifoldMwith metric g, with or without bound-
ary. Further assumptions on M are given in the following subsection. For the moment, we assume that M is
embedded in some very high-dimensional space RN (m � N), where in our applications (see Section 6.5), this
space is the space of grayscale or RGB images withN orN/3 pixels, respectively. Our aim is to compute the latent
manifold, defined via an embedding (cf . Definition 2.2.5) ofM into Euclidean space Rl, called the latent space.
We want the latent dimension l to be only moderately larger than m, which is reasonable in light of Whitney’s
embedding theorem [Whi92], which provides the existence of a smooth embedding for l = 2m. Formulated in
terms of autoencoder framework, this amounts to learning a pair of maps

φθ :M→ Rl, ψξ : Rl → RN with ψθ(φξ(x)) ≈ x for all x ∈M.

The encoder, φθ, and decoder, ψξ, are implemented as deep neural networks with vectors of parameters θ and ξ,
respectively (cf . Section 2.3). The parameters are typically optimized via the minimization of a loss functional
measuring the difference between the original points x and their reconstructions ψξ(φθ(x)). Minimization of the
reconstruction loss is not enough to guarantee an appropriate structure and regularity of the latent manifold φ(M).
To this end, different versions of geometrically inspired regularization losses for the encoder (and decoder) are
considered in addition to the regularization loss. The “regular” embeddings are of particular interest for down-
stream tasks such as classification [AGL20], Riemannian interpolation and extrapolation [BRRG18], clustering or
anomaly detection [ZLC+21]. In the most simple case,M is isometric to Rm and thus can be embedded isomet-
rically into an m-dimensional affine subspace of Rl. Then, the most important and basic operations of computing
distances and interpolations would become trivial in latent space, leading to simplicity in downstream tasks. Al-
though such an embedding is usually prevented by the intrinsic or the global geometry ofM, this motivates the
search for an embedding as close as possible to isometric and flat, at least locally. To this end, we suggest the
following two objectives for any two (not too distant) points x, y ∈M:

Isometric (I) The intrinsic Riemannian distance between x and y inM should differ as little as possible from
the Euclidean distance between the latent codes φ(x) andφ(y).

Flat (F) The (weighted) Riemannian average between x and y inM should deviate as little as possible from the
(weighted) Euclidean average between φ(x) and φ(y).

The first objective (I) is, at least for infinitesimally close points x, y ∈M, satisfied for isometric embeddings. This
class of embeddings was extensively pursued in the literature (cf . Section 1.2 for related work). Isometry by itself
is, however, insufficient to ensure regular embeddings, since the family of isometric embeddings is very large and
contains quite irregular elements. In particular, Nash–Kuiper embeddings are in general only Hölder differentiable
[Kui55b, Kui55a, Nas54]. Therefore we suggest (I) and (F) as stronger objectives:

- The isometry or low distortion objective (I) asks that the intrinsic distances between x and y in M are
approximated by the extrinsic distances between φ(x), φ(y) ∈ Rl in the latent space. This differs from an
actual isometric embedding which would consider the intrinsic distances in the latent manifold φ(M) with
the metric induced by Rl.

- The flatness or low bending objective (F) enforces some second order low bending regularity or flatness on
φ by requiring that the geodesic interpolation between x and y inM is well approximated by the extrinsic
linear interpolation in the latent space Rl.

In what follows, we give more details on the manifoldM and introduce the low bending and low distortion
discrete sampling loss functional in Subsection 6.1.1, and study the Monte Carlo limit as the number of samples
tends to infinity, depending of the sampling strategy, in Subsection 6.1.2.

6.1.1 A Low Bending and Low Distortion Loss Functional
In order to introduce the low bending and low distortion loss functional, we first give some more details on the
structure of the manifold we are observing. For definitions of the below-mentioned notions on the manifold, we
refer to Section 2.2 and the references therein.
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We consider a smooth and compact m-dimensional Riemannian manifold (M, g), with or without boundary,
where in the latter case the boundary shall have dimension m − 1. As mentioned before, as the input data for the
training of our encoder, we will also employ the Riemannian distance and average of point pairs on the manifold.
In particular, the Riemannian average of two points on manifold is defined as the midpoint on the unique shortest
geodesic connecting these two points. If the geodesic is not unique, the Riemannian average is not defined. One
could slightly generalize the definition of the Riemannian mean as the midpoint of shortest connecting curves
on manifold, which may include curves touching the boundary of M, but this way, for a given x ∈ M, there
might exist several y ∈ M with same Riemannian average. For this reason, we refrain from this generalization
and, furthermore, decide to sample the point pairs only in the interior of the manifold. Let us denote by M
the relative interior of M, i.e., M := Int(M). By TxM we denote the tangent space to M at x ∈ M. Let
dM(x, y) be the Riemannian distance between any two points x, y ∈ M and expx the Riemannian exponential
map defined on (a subset of) TxM. If y = expx v, for v ∈ TxM being the initial velocity of the unique shortest
geodesic connecting x with y, then the Riemannian average is, due to the scaling properties of geodesics, given by
avM(x, y) := expx

v
2 .

In order for the above notions to be well-defined, we will require some natural conditions on the existence and
behavior of the Riemannian exponential map associated withM. To state these, for every x ∈ M let Vx ⊂ TxM
denote the largest open set on which expx is defined. We will assume that there exist constants r0 > 0 and
0 < κ < π

2 such that the following holds:

(M1) (injectivity condition) For x ∈ M, let BTxMr0 (0) := {v ∈ TxM : gx(v, v) < r2
0} denote the open ball in

tangent space with radius r0. Then, the Riemannian exponential expx is injective on Vx ∩BTxMr0 (0), for all
x ∈M .

(M2) (cone condition) For every x ∈ M, there exists an isometric isomorphism ιx : Rm → TxM such that
x 7→ ιx is Riemann–Lebesgue measurable onM, and Vx contains ιx(Cr0,κ), where

Cr0,κ := {w ∈ Rm : 0 ≤ |w| ≤ r0, ^(w, e1) ≤ κ}

is the cone of height r0 and aperture angle κ with the first standard Euclidean basis vector e1 ∈ Rm.

0

M

∂M

e1r0e1
r2κ

Cr0,κ

Πx

xU εx

DM
ε (x)

Figure 6.1: A sketch of the cone condition (M2). The parametrization Πx = expx ◦ιx maps the cone Cr0,κ ⊂ Ux
⊂ Rm intoM and the neighborhoods U εx ⊂ Ux onto DMε (x).

In regard of (M1), for manifolds without boundary the largest r0 coincides with the usual notion of injectivity
radius, i.e., the infimum over all x ∈ M of injectivity radius at x, as defined in Definition 2.2.12. In this case, we
can replace the cone Cr0,κ by Bmr0(0) ⊂ Rm: the open ball with radius r0 centered at the origin. For manifolds
with boundary, the cone condition is not necessarily satisfied. For example, consider the submanifold M ={

(x, y) ∈ R2 : y ≥
√
|x|, y ≤ 1

}
of R2 with the inherited metric. Then no cone can be positioned at (0, 0). In

general, the condition (M2) can be seen as a generalization of Definition 2.1.1, which allows us to define the linear
isometric identification, for every x ∈ M, of a subset of Vx ⊂ TxM with a fixed and simple subset of Rm (see
Figure 6.1 for a sketch). The mapping ιx, in a simple case, can be obtained by applying the orthonormalization
procedure to the canonical basis of TxM, defined in Definition 2.2.3. Its isometry property is meant in the sense
that, for every x ∈M, w ∈ Rm, it holds |w|2 = gx(ιxw, ιxw).
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Taking the above assumptions, we can define a local parametrization ofM (cf . Figure 6.1)

Πx : Ux →M, Πx := expx ◦ιx, where Ux := ι−1
x (Vx) ∩Bmr0(0). (6.1)

This parametrization is known as the normal coordinates around x. For later notational convenience, we extend
Πx measurably (but arbitrarily) beyond Ux, and further introduce the notation

U εx := Ux ∩Bmε (0), DMε (x) := Πx(U εx), for 0 < ε < r0. (6.2)

In other words, the neighborhoodDMε (x) of x consists of all points in the ε-neighborhood of x that can be reached
from x via the Riemannian exponential map, and it coincides with the ε-neighborhood of x with respect to dM if
there exists a unique geodesic connecting every two points inM, or for points x with the Riemannian distance to
the boundary larger than ε. Thus, condition (M1) ensures that the Riemannian average of x and any y ∈ DMε (x)
is well-defined.

We are now ready to define the loss functional and the corresponding sampling framework. As the input data
to the training of the encoder, for a fixed sampling radius ε ∈ (0, r0), we consider a finite set of samples

Sε ⊂ Dε := {(x, y) ∈M ×M : y ∈ DM
ε (x)}. (6.3)

We assume that, for all the pairs in Sε, the Riemannian distance dM and the Riemannian average avM are well-
defined and available. Then we have the following definition.

Definition 6.1.1 (Discrete sampling loss functional). Given the finite set of samples Sε, we define the discrete
sampling loss functional by

ESε [φ] :=
1

|Sε|
∑

(x,y)∈Sε

(
γ(|∂(x,y)φ|) + λ |∂2

(x,y)φ|2
)
,

where λ > 0, and γ : [0,∞)→ [0,∞) is a function with a unique minimum γ(1) = 0. Furthermore, the first and
second order difference quotients are defined as

∂(x,y)φ :=
φ(y)− φ(x)

dM(x, y)
, ∂2

(x,y)φ := 8
avRl(φ(x), φ(y))− φ(avM(x, y))

dM(x, y)2
, (6.4)

where avRl(a, b) = (a+ b)/2 denotes the linear average in Rl.

Notice that the first term in ESε has a strict minimum for |∂(x,y)φ| = 1 and thus promotes |φ(x) − φ(y)| ≈
dM(x, y), and therefore low distortion and an approximate isometry (cf . (I)). In this chapter, we make the following
choice

γ(s) := s2 +
(1 + c2)2

s2 + c2
− 2− c2, c > 0. (6.5)

Let us emphasize that γ(s) is chosen finite in s = 0.
The second term inESε penalizes the deviation of the embedding of intrinsic averages onM from the extrinsic

averages of φ(M) in Rl. Note that this does not only penalize bending or any extrinsic curvature of φ(M) in Rl,
but in addition it also penalizes deviation of the inplane parametrization of φ(M) from a linear one (cf . (F)).

Let us finally notice that the functional is rigid motion (affine isometry) invariant by construction, i.e., compo-
sition of φ with a rigid motion does not change the energy. This possibly allows the non-uniqueness of the optimal
embedding (up to a rigid motion invariance).

6.1.2 Monte Carlo Limit for Dense Sampling
We now discuss the Monte Carlo limit as the number of samples tends to infinity of the sampling loss functional
given by Definition 6.1.1. This limit depends on the strategy used for obtaining the set Sε. To this end, we consider
the pairs (x, y) ∈ Sε as realizations of a random variable (X,Y ) taking values in Dε, with a corresponding
probability distribution depending on the sampling strategy. Then, by the strong law of large numbers [Wil91,
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Section 12.10], we have the almost sure convergence w.r.t. the same probability to a continuous sampling loss
functional, i.e.,

lim
|Sε|→∞

ESε [φ] = E
[
γ(|∂(X,Y )φ|) + λ |∂2

(X,Y )φ|2
]

=: Eε[φ].

We consider three exemplary ways of sampling (later used in numerical experiments in Section 6.5), leading to
three variants Eεi , i = 1, 2, 3 of Eε. Here and in the rest of the chapter, Vg is the Riemann–Lebesgue volume
measure onM (cf . (2.9)). For the notation and the proofs of claims in this short excursion to probability theory,
we refer the reader to the classical book [Wil91].

(S1) Sampling x ∈ M uniformly w.r.t. Vg , and then choosing y, again uniformly, in DMε (x). Thus, we have, for
any measurable A ⊂M, P[X ∈ A] =

Vg(A)
Vg(M) , and the conditional law of Y is given by P[Y ∈ A|X = x] =

Vg(A∩DMε (x))
Vg(DMε (x))

. The limit is

Eε1[φ] :=
1

Vg(M)

∫
M

1

Vg(DMε (x))

∫
DMε (x)

γ(|∂(x,y)φ|) + λ |∂2
(x,y)φ|2dVg(y)dVg(x). (6.6)

(S2) Sampling x ∈ M uniformly w.r.t. Vg , and then choosing w ∈ U εx uniformly w.r.t. L: the m-dimensional
Lebesgue measure, and defining y = Πx(w). As above, P[X ∈ A] =

Vg(A)
Vg(M) , while Y is given via the

conditional law P[Y ∈ A|X = x] =
L(Π−1

x (A)∩Uεx)
L(Uεx) . This gives

Eε2[φ] :=
1

Vg(M)

∫
M

1

L(U εx)

∫
Uεx

γ(|∂(x,Πx(w))φ|) + λ |∂2
(x,Πx(w))φ|2dwdVg(x), (6.7)

where dw represents the integration w.r.t. L.

(S3) Sampling pairs (x, y) ∈ Dε uniformly. Then, with ⊗ denoting the product of measures, P[(X,Y ) ∈ A] =
(Vg⊗Vg)(A∩Dε)

(Vg⊗Vg)(Dε) , for any measurable A ⊂M×M, so that

Eε3[φ] :=
1∫

M Vg(DMε (x))dVg(x)

∫
M

∫
DMε (x)

γ(|∂(x,y)φ|)+λ |∂2
(x,y)φ|2dVg(y)dVg(x). (6.8)

We can observe these functionals as instances of a general continuous nonlocal loss functional which depends on
the sampling probability density. This is the content of the following definition.

Definition 6.1.2 (Continuous nonlocal loss functional). Given the sampling radius ε > 0, we define the continuous
nonlocal loss functional by

Eε[φ] :=

∫
M

∫
DMε (x)

(
γ(|∂(x,y)φ|) + λ |∂2

(x,y)φ|2
)
ρεM×M(x, y)dVg(y)dVg(x), (6.9)

where the density ρεM×M ∈ L1(M×M) satisfies the following conditions:

(D1)
∫
M
∫
DMε (x)

ρεM×M(x, y)dVg(y)dVg(x) = 1 for all ε > 0,

(D2) There exist constants cρ, Cρ > 0 with Cρ ≥ εmρεM×M(x, y) ≥ cρ for a.e. x ∈M, y ∈ BMε (x), and ε > 0,

(D3) εmρεM×M(x,Πx(εw)) converges pointwise to some function ρ(x,w) as ε→ 0 for a.e. x ∈M, w ∈ Bm1 (0).

While the form (6.9) is obvious for (6.6) and (6.8), for (6.7) it can be obtained by the converse of transformation
defining the Riemann–Lebesgue volume measure (cf . (2.9)). This transformation (see below) will be also used
for checking the conditions (D1)–(D3). Functionals of the type (6.9) were used in [BBM01] in the context of
(fractional) Sobolev spaces, with applications in the study of variational problems, e.g., in [AK09, LPSS15].
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As announced, we rewrite the functional (6.9) using normal coordinates around each x (cf . (6.1)), which will
later simplify its analysis. To this end, we note that, by the definition of DMε (x) (cf . (6.2)) and the Riemann–
Lebesgue measure (2.9), for any measurable function fx :M→ R, we have∫

DMε (x)

fx(y)dVg(y) =

∫
Bm1 (0)

wε(x,w)fx(Πx(εw))
√

det gΠx(Πx(εw))εmdw, (6.10)

wherewε(x,w) := χUεx(εw) for χB the characteristic function of a setB, and gΠx is the matrix whose elements are
the components of gx with respect to the normal coordinate system around x. Now, taking fx(y) = (γ(|∂(x,y)φ|)+
λ|∂2

(x,y)φ|2)ρεM×M(x, y), we obtain

Eε[φ] =

∫
M

∫
Bm1 (0)

(
γ(|∂(x,Πx(εw))φ|) + λ|∂2

(x,Πx(εw))φ|2
)
ρε(x,w)dwdVg(x), (6.11)

for ρε(x,w) := wε(x,w)
√

det gΠx(Πx(εw))εmρεM×M(x,Πx(εw)). From the compactness ofM and (D2), we
deduce that there exist c̃ρ, C̃ρ > 0 with

C̃ρ ≥ ρε(x,w) ≥ c̃ρ, for all x ∈M, w ∈ Ux. (6.12)

Furthermore, using the Taylor expansion of gΠx(Πx(εw)) around ε = 0, together with the local Lipschitz property
of the determinant function, we have [Sak96, Chapter II, Proposition 3.1 and Lemma 3.5]

det gΠx(Πx(εw)) = 1− 1

3
Ric(ιx( w

|w| ), ιx( w
|w| ))|w|2ε2 +O(|w|3ε3), (6.13)

where Ric is the Ricci curvature, which depends on the second derivatives of gx with respect to x. Then, we
conclude that, due to the smoothness of the metric and compactness of the manifold, the second order and the
higher order terms are bounded and vanishing as ε → 0, uniformly in x. Together with assumption (D3) and the
fact that wε(x,w) converges pointwise to 1, for every x ∈M and w ∈ Bm1 (0), this implies

ρε(x,w)→ ρ(x,w) as ε→ 0, for a.e. x ∈M, w ∈ Bm1 (0). (6.14)

Let us now check the conditions (D1)–(D3) for all three functionals (6.6), (6.7), (6.8). The limit in (D3) is the
same, the constant function

ρ(x,w) =
1

Vg(M)L(Bm1 (0))
.

In particular, for (6.6) we have

ρεM×M(x, y) =
1

Vg(M)Vg(DMε (x))
,

so that (D1) trivially holds. To confirm (D2) and (D3), we plug fx(y) = 1 in (6.10) and use the same observations
as above, to get Vg(DMε (x))

εm → L(Bm1 (0)) as ε→ 0, for every x ∈ M, from where the results directly follow. The
same steps, together with the Dominated convergence theorem 2.1.3 (where the existence of a dominating function
follows from the uniformity of the estimate (6.13)), are used in the case (6.8), where

ρεM×M(x, y) =
1∫

M Vg(DMε (x))dVg(x)
.

Finally, for (6.7), by using the transformation formula analogous to (6.10), we have

ρεM×M(x, y) =
1

Vg(M)

(det gΠx(y))−
1
2∫

DMε (x)
(det gΠx(y))−

1
2 dVg(y)

,

which straightforwardly confirms (D1). The nominator is bounded and converges pointwise to 1 by (6.13), while
we handle the denominator directly, by rewriting it as in (6.10), showing that (D2) and (D3) are satisfied.
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6.2 Existence of Minimizer to Nonlocal Energy
In this section, we study the existence of a minimizer for the nonlocal loss functional given by Definition 6.1.2.
To this end, we restrict the function space in which we observe the possible minimizers of Eε, i.e., we introduce
ε-dependent function spaces {Fε}ε>0, and the extension of the energies {Eε}ε>0, given by

EεF [φ] :=

{
Eε[φ] if φ ∈ Fε,
∞ else.

(6.15)

We choose these spaces in such a way that we will be able to prove the existence of minimizers and their uniform
boundedness, independent of ε. We first note that, since the energy Eε is translation invariant, functions in Fε are
without loss of generality assumed to have zero mean. Furthermore, we will need an appropriate closedness of
these spaces and their density, as ε tends to zero. Finally, to relate difference quotients (6.4) to the first and second
order derivatives of the underlying functions, we will assume a sufficient smoothness of the functions in {Fε}ε>0,
together with a bound on growth of their derivatives as ε tends to zero. In short, with the definitions of the functions
spaces introduced in Subsection 2.2.1, we impose the following conditions on {Fε}ε>0:

(H1) closedness in L̇2: For every 0 < ε < r0, we have that Fε is closed as a subset of L̇2(M,Rl), the subset of
L2(M) consisting of functions with zero mean.

(H2) boundedness: For every 0 < ε < r0, it holds Fε ⊂ C2,1(M,Rl), and there exists a constant CL ≥ 0 such
that

lim sup
ε→0

sup
φε∈Fε

ε (Lgrad(φε) + LHess(φ
ε)) ≤ CL.

(H3) density in Ḣ2(M,Rl): For every φ ∈ Ḣ2(M,Rl), there exists a sequence {φε}ε>0 with φε ∈ Fε for every
0 < ε < r0 such that lim

ε→0
‖φε − φ‖H2(M,Rl) = 0.

Here, Lgrad(φ) and LHess(φ) are the Lipschitz constants of the Riemannian gradient and Hessian of function φ,
respectively (cf . (2.7) and (2.8)). The notation ε→ 0 is short for a sequence (εk)k∈N with εk → 0 for k →∞.

These conditions can, in particular, be satisfied if the functions in {Fε}ε>0 are realizations of deep neural net-
works with sufficiently smooth nonlinear activation functions (e.g. (2.13)) and ε-dependent bounds on the network
architecture (cf . Section 2.3) and norm ‖·‖NN (cf . (2.15)). Indeed, applying the chain rule, bounds on the growth of
derivatives of these realizations can be computed explicitly in terms of the numbers of layers and a priori bounds on
the network norm given by (2.15). For this choice, {Fε}ε>0 are not finite-dimensional. However, their closedness
was shown in [PRV21, Proposition 3.5], while, for a suitable choice of the activation function, the density property
was shown in an already classical article by Hornik et al. [HSW90]. Let us point out that, although all these results
were actually shown for neural networks defined on Euclidean spaces, they can be transferred to neural networks
defined on a smooth m-dimensional manifold (M, g) immersed in RN , such that the metric g is equivalent to the
metric induced by the embedding (cf . [BGKP19, Section 7]). In Section 6.4, we will provide more information on
the specific network architecture that we use, with regard of satisfying (H1)–(H3). For more details on properties
of functions spaces consisting of realizations of neural networks, confer to Section 2.3.1.

From an abstract numerical analysis point of view, the above approach can be seen as an instance of two-step
approximation of infinite-dimensional optimization problems (see e.g. [FP04] for finite element discretizations of
phase field approximations to sharp interface problems). First, the model or objective functional is approximated
introducing an auxiliary small parameter ε (typically a length scale), yielding an optimization problem amenable
to a numerical solution. Second, the new objective functional is restricted to a space or set of discretized functions,
parametrized by finitely many parameters. To relate the final discrete problem to the original one, both the limit
ε→ 0 as well as the limit of increasing expressivity of the discrete function space have to be tackled. The parameter
ε and the chosen discrete function space usually have to be compatible with each other. In our case, the discrete
problem, i.e., minimization for some fixed ε > 0 represents the initial problem, while the convergence as ε → 0
and the obtained limit optimization problem are studied in Section 6.3, where the assumptions (H1)–(H3) will play
the key role.

Before proceeding to the proof of the existence of minimizers, we will need two technical results. From now
on we abbreviate

w̄ := w
|w| , for any w ∈ Rm.
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The first result gives an estimate on the difference of the first and the second order difference quotients and the
application of Riemannian gradient and Hessian at corresponding vectors, respectively.

Lemma 6.2.1. Let φ ∈ C2,1(M,Rl). Then, for all x ∈M, w ∈ Ux, we have∣∣∂(x,Πx(w))φ− gx(gradφ(x), ιxw̄)
∣∣ ≤ 1

2Lgrad(φ)|w|, (6.16)∣∣∣∂2
(x,Πx(w))φ− gx(Hessφ(x)[ιxw̄], ιxw̄)

∣∣∣ ≤ 5
6LHess(φ)|w|. (6.17)

Proof. Given v ∈ ιx(Ux), the first and the second order Taylor expansion of r 7→ φ ◦ expx(rv) around r = 0,
evaluated at r = 1, yield

φ(expx(v)) =φ(x) + g(gradφ(x), v) +R1φ(x, v), (6.18)

=φ(x) + g(gradφ(x), v) +
1

2
g(Hessφ(x)[v], v) +R2φ(x, v). (6.19)

Here, R1φ and R2φ are corresponding remainder terms, such that [Bou23, Corollary 10.54 and Proposition 10.55]

|R1φ(x, v)| ≤ 1

2
Lgrad(φ)gx(v, v), |R2φ(x, v)| ≤ 1

6
LHess(φ)gx(v, v)

3
2 .

Choosing v = ιxw in (6.18), we get

∂(x,Πx(w))φ− gx(gradφ(x), ιx(w̄)) =
R1φ(x, ιxw)

|w| ,

while (6.19), in a combination with the second order expansion of r 7→ φ ◦ expx(r v2 ) around r = 0, computed at
r = 1, yields

∂2
(x,Πx(w))φ− gx(Hessφ(x)[ιxw̄], ιxw̄) =

4R2φ(x,ιxw)−8R2φ(x,ιx
w
2 )

|w|2 ,

which, together with the above estimates for the remainder terms, proves the lemma.

The following proposition provides a norm on Ḣ2(M,Rl), equivalent to the standard H2(M,Rl)-norm

‖φ‖2H2(M,Rl) :=

∫
M
|φ|2 + g(gradφ, gradφ) + g(Hessφ,Hessφ)dVg, (6.20)

where we assume the summation convention from Subsection 2.2.1. The norm is obtained by replacing, in this
expression, the standard metric based norms on TxM and Lsym(TxM, TxM) (the space of symmetric endomor-
phisms on TxM), respectively, with the norms uniformly equivalent to them.

Proposition 6.2.2. Let V = 1
r0
Cr0,κ for Cr0,κ defined in (M2). Then,

|W |av :=

(∫
V

g(W, ιxw̄)2dw

) 1
2

defines a norm on TxM, which is uniformly equivalent to the standard norm based on the metric. Analogously, a
norm on Lsym(TxM, TxM) is given by

|A|av :=

(∫
V

g(A[ιxw̄], ιxw̄)2dw

) 1
2

,

and it is uniformly equivalent to the standard norm on Lsym(TxM, TxM). As a consequence, the norm (with the
summation convention)

‖φ‖2H2
av(M,Rl) :=

∫
M
|gradφ(x)|2av + |Hessφ(x)|2avdVg(x)

on Ḣ2(M,Rl) is equivalent to the standard H2(M,Rl)-norm given by (6.20).
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Proof. It is obvious that W 7→ |W |av is 1-homogeneous and satisfies the triangle inequality, while its positive
definiteness will follow from the norm equivalence shown below. By the Cauchy–Schwarz inequality, we have
|W |2av ≤ L(V )gx(W,W ). Furthermore, using the isometry of ιx, we observe

|W |2av =

∫
V

(ι−1
x W · w̄)2dw ≥ c|ι−1

x W |2 = cgx(W,W ),

where · is the Euclidean dot product on Rm, and c > 0 is independent of x. This is due to the norm equivalence
on Rm, as the second term above is a norm on Rm, due to the fact that v · w = 0 for all w ∈ V implies v = 0
since V contains an open set. The same arguments apply for the norm on Lsym(TxM, TxM), upon noticing
that ι−1

x ◦ A ◦ ιx ∈ Lsym(Rm,Rm), and that Bw · w = 0 for every w ∈ V implies that B is skew symmetric,
which, with B ∈ Lsym(Rm,Rm), implies B = 0. From here, it immediately follows that the norm ‖·‖2H2

av(M,Rl)
is equivalent to the standard H2(M,Rl)-seminorm

∫
M g(gradφ, gradφ) + g(Hessφ,Hessφ)dVg , which is by

Poincaré’s inequality 2.2.18 on Ḣ2(M,Rl) equivalent to the standard norm (6.20).

The following theorem finally provides the existence of a minimizer for EεF , and, in addition, the uniform
boundedness of all minimizers in H2(M,Rl), independent of ε.

Theorem 6.2.3 (Existence of minimizers for nonlocal continuous energies). Let conditions (H1)–(H2) be satisfied.
Then, for every ε ∈ (0, r0), there exists a minimizer φε of energy (6.15), and ‖φε‖H2(M,Rl) ≤ CE , for a constant
CE > 0 independent of ε.

Proof. Let us observe the reformulation (6.11) of Eε. By condition (M2), for every x ∈M, we have Πx(Cr0,κ) ⊂
BMr0 (x), and thus, Πx(Cε,κ) ⊂ DMε (x), for all ε < r0. Recalling the definition of wε(x,w) = χUεx(εw), we see

wε(x,w) = 1 for all x ∈M, w ∈ V = 1
r0
Cr0,κ .

Using first (6.12) (which comes from (D2)), and then the inequality |a|2 ≥ 1
2 |b|2 − |a− b|2, for a = ∂(x,Πx(εw))φ

and b = gx(gradφ(x), ιx(w)), we get∫
M

∫
DMε (x)

|∂(x,y)φ|2ρεM×M(x, y)dVg(y)dVg(x)

=

∫
M

∫
Bm1 (0)

|∂(x,Πx(εw))φ|2ρε(x,w)dwdVg(x)

≥ c̃ρ
2

∫
M

∫
V

|gx(gradφ(x), ιxw̄)|2dwdVg(x)− c̃ρ
∫
M

∫
V

|gx(gradφ(x), ιxw̄)− ∂(x,Πx(εw))φ|2dwdVg(x)

≥ c̃ρ
2

∫
M
|gradφ|2avdVg − Cε2Lgrad(φ)2,

for a constant C > 0, where in the last step we used Lemma 6.2.1. We analogously obtain∫
M

∫
DMε (x)

|∂2
(x,y)φ|2ρεM×M(x, y)dVg(y)dVg(x) ≥ c̃ρ

2

∫
M
|Hessφ|2avdVg − Cε2LHess(φ)2.

Summing both terms and applying the norm equivalence from Proposition 6.2.2, we get that there exists a constant
C > 0 such that

‖φ‖H2(M,Rl) ≤ C
(
Eε[φ] + ε2 (Lgrad(φ) + LHess(φ))

2
)
≤ C

(
Eε[φ] + C2

L

)
,

for every φ ∈ Fε, where we also applied assumption (H2). Obviously, Eε[0] is a finite upper bound for the energy
of the minimizer. Thus, there exists a constant CE > 0, such that, for any fixed ε > 0, there exists a sequence
{φεj}j∈N with ‖φεj‖H2(M,Rl) ≤ CE and limj→∞ Eε[φεj ] = infφ∈Fε Eε[φ]. Hence, there exists a weakly convergent
subsequence (after relabeling) φεj ⇀ φε in Ḣ2(M,Rl). By the weak lower semicontinuity of the norm, we have
‖φε‖H2(M,Rl) ≤ CE . Furthermore, by Rellich’s compact embedding 2.2.19, we have φεj → φε in L̇2(M,Rl),
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so that (H1) implies φε ∈ Fε. Extracting a further subsequence, we even obtain pointwise almost everywhere
convergence [Alt06, Theorem 3.22], so that, by Fatou’s lemma 2.1.2, we have

lim inf
j→∞

Eε[φεj ] ≥ Eε[φε] = EεF [φε],

which finishes the proof.

The uniqueness of the minimizer of (6.15) cannot be expected. Indeed, the energy Eε is invariant under com-
position from the left with respect to a rigid motion or a reflection, but even apart from this invariance, the noncon-
vexity of the first integrand in (6.9), which is unavoidable when promoting isometries, may prevent uniqueness.
However, wheneverM is intrinsically flat and homeomorphic to Dm: the m-dimensional closed disc (as a rep-
resentative of compact and (locally) convex subsets of Rm), there is a unique minimizer of the original nonlocal
energy Eε (cf . (6.11)), up to a rigid transformation, i.e., an affine isomorphism.

Proposition 6.2.4 (The unique optimal embedding of intrinsically flat discs). IfM is the flat m-dimensional open
disc Dm, the unique minimizer (up to a rigid motion) of Eε is φ :M3 x 7→ (x, 0, . . . , 0) ∈ Rl.

Proof. Since Eε[φ] = 0 and Eε ≥ 0, we have that φ is a global minimizer. Let φ̃ be any other minimizer. We
claim that one can find a rigid motion R : Rl 7→ Rl such that φ̃(x) = Rφ(x) for all x ∈ M. To determine R,
fix points x1, . . . , xm ⊂ Bε(x) such that φ(x1), . . . , φ(xm) are linearly independent. Then, since the image of φ
has dimension m, R is uniquely determined by Rφ(xi) = φ̃(xi) for all i = 1, . . . ,m and Rφ(0) = R(0) = φ̃(0).
Next, we show that φ̃ = Rφ on the convex hull of {x1, . . . , xm}. To this end, observe that each z in the convex hull
of {x1, . . . , xm} can be written as the limit of iterated averages of x1, . . . , xm, i.e., there exists a sequence {zn}n∈N
converging to z such that zn =

zn1+zn2

2 , where n1, n2 < n and z1, z2 are among points x1, . . . , xm. Indeed, this
follows from the fact that the convex hull is the closure of the union of sets {Sn}n∈N where S0 = {x1, . . . , xm}
and Sn+1 = {a+b

2 |a, b ∈ Sn} for n ≥ 0 [BV04, Chapter 2]. Since ∂2
x̃,ỹφ̃ = 0 for all x̃, ỹ ∈ Bε(x), we know that

φ̃(zn) = φ̃

(
zn1

+ zn2

2

)
=
φ̃(zn1

) + φ̃(zn2
)

2
.

Then,

φ̃(z3) =
φ̃(z1,2) + φ̃(z1,2)

2
=
Rφ(z1,2) +Rφ(z1,2)

2
= Rφ

(
z1,2 + z1,2

2

)
= Rφ(z3),

and, by induction, we have φ̃(zn) = Rφ(zn), for all n ≥ 1. Since ∂x̃,ỹφ̃ = 0 for all x̃, ỹ ∈ Bε(x), we have that φ̃
is continuous on Bε(x), and thus, we have

φ̃(z) = φ̃( lim
n→∞

zn) = lim
n→∞

φ̃(zn) = lim
n→∞

Rφ(zn) = Rφ(z).

Proceeding in this fashion, we can cover Dm with convex sets contained in balls of size ε, obtaining a rigid motion
on each of these sets. Choosing the sets in a way that their intersections are m-dimensional, we conclude that all
the rigid motions have to be identical, which finally shows that φ̃ = Rφ on Dm.

Being able to find flat embeddings may actually be quite relevant in applications as it was noticed in [SKTF18]
that generative image manifolds have almost no curvature.

We conclude this section with the following remark on the choice of the function spaces for studying the
nonlocal energy Eε.
Remark 6.2.5. One way to approach to the problem of minimization of the energy Eε, in the form (6.11), would be
to study it on the function space naturally associated with this energy: the completion of C2,1(M,Rl) under the
Hilbert space norm ‖φ‖2ε := ‖φ‖2L2(M,Rl) + |φ|2ε , with

|φ|2ε :=

∫
M

∫
DMε (x)

(|∂(x,y)φ|2 + |∂2
(x,y)φ|2)ρεM×M(x, y)dVg(y)dVg(x).

On this space, the energy would be coercive and likely admit a minimizer. Indeed, for our choice of γ (see (6.5)),
there exists C > 0, independent of ε, such that −C + 1

C |φ|2ε ≤ Eε[φ] ≤ C +C|φ|2ε . This function space is closely
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related to H2(M,Rl). In [BBM01, Bor07], it is shown, in the caseM = Rm, that for φ ∈ L2(M,Rl) satisfying
lim infε→0 |φ|ε < ∞ it holds φ ∈ H2(M,Rl). Furthermore, there are also equicoercivity or compactness results
for sequences of {φε}ε>0 with uniformly bounded {|φε|ε}ε>0 (cf . [BBM01, Corollary 6]), which would ultimately
allow us to prove that minimizers of Eε converge to a minimizer of a local limit functional.

However, for two reasons we did not follow this approach and instead only look for minimizers on a more
restricted ε-dependent set Fε of functions which will be realized later via neural networks. Namely, first we
would need to translate the theory of [BBM01, Bor07] to functions on manifolds, and second, the compactness
results are sensitive to the particular choice of the sampling weight ρεM×M. In particular, while equicoercivity
will probably hold for our examples (6.6)–(6.8), one might also think of sampling weights ρεM×M(x, ·) that are
supported on an annulus DMε (x)\BMε̃ (x) (in our numerical experiments we will make use of this idea to improve
numerical stability), in which case equicoercivity might potentially be lost (cf . [BBM01, Counterexample 1]),
while assumptions (H1)–(H3) still hold. In contrast, all our other results readily extend to that setting.

6.3 Convergence for Vanishing Sampling Radius
In this section, we study convergence of the functional (6.15) as the sampling radius ε tends to 0. We will prove
Mosco-convergence (cf . Definition 2.4.1) towards the local loss functional given by

E [φ] :=

∫
M

Γ(gradφ(x)) + λ‖Hessφ(x)‖2dVg(x), where (6.21)

Γ(W ) :=

∫
Bm1 (0)

γ(|gx(W, ιxw̄)|)ρ(x,w)dw , and (6.22)

‖A‖2 :=

∫
Bm1 (0)

|gx(A[ιxw̄], ιxw̄)|2ρ(x,w)dw , (6.23)

for all W ∈ (TxM)l, A ∈ Lsym(TxM, (TxM)l), and ρ from (D3).
This loss functional promotes low distortion and low bending embeddings. Indeed,

- The isometry or low distortion objective (I) is being promoted since, by the definition of Riemannian gradi-
ent (2.5), an isometric embedding φ :M→ Rl is characterized by gradφ(x) being orthogonal in any point
x ∈ M or equivalently |gx(gradφ(x), ιxw)| = 1, for all w ∈ Sm−1 := ∂Bm1 (0). Therefore, by the choice
of γ (cf . (6.5)), the first term of (6.21) penalizes deviation from an isometric embedding, as it is zero if φ is
locally isometric and strictly positive otherwise.

- The extrinsic bending of the embedding φ :M→ Rl is manifested by a non-vanishing Riemannian Hessian
(cf . (2.6)). Since the term (6.23) defines a squared norm on the space Lsym(TxM, (TxM)l) by Proposi-
tion 6.2.2, the second term in (6.21) penalizes extrinsic bending and thus promotes flatness and low bending
objective (F).

Theorem 6.3.1 (Mosco-convergence of the nonlocal energy functionals). Let (H2)–(H3) be satisfied with CL = 0.
Then, the nonlocal energy functionals {EεF}ε>0, given by (6.15), converge as ε→ 0 to the continuous local energy
E given by (6.21), in the sense of Mosco in the Ḣ2(M,Rl)-topology, i.e.,

(i) for every sequence {φε}ε>0 ⊂ H2(M,Rl) converging weakly to φ in Ḣ2(M,Rl) as ε → 0, it holds
lim inf
ε→0

EεF [φε] ≥ E [φ] (“lim inf-inequality”),

(ii) for every φ ∈ Ḣ2(M,Rl), there exists a sequence {φε}ε>0 converging strongly to φ in Ḣ2(M,Rl) as ε→ 0
with lim sup

ε→0
EεF [φε] ≤ E [φ] (“existence of a recovery sequence and lim sup-inequality”).

Proof. As in Theorems 4.4.1 and 5.4.1, we will check the conditions separately. Unlike for those proofs, the only
bigger task is proving the inequalities, so we are not splitting the proofs into further steps. For ease of notation,
below we will sometimes use an expression of the form f(x,w) to actually indicate the map M × Bm1 (0) 3
(x,w) 7→ f(x,w). It will always be clear from the context when this meaning is intended.
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Proof of the lim inf-inequality

Let φε ⇀ φ in Ḣ2(M,Rl). Putting aside the trivial case of lim inf
ε→0

EεF [φε] = +∞, we may assume that φε ∈ Fε,
for every ε > 0 along a subsequence. We first estimate

lim sup
ε→0

∥∥∂(x,Πx(εw))φ
ε − gx(gradφ(x), ιxw̄)

∥∥
L2(M×Bm1 (0))

≤ lim sup
ε→0

∥∥∂(x,Πx(εw))φ
ε − gx(gradφε(x), ιxw̄)

∥∥
L2(M×Bm1 (0))

+ lim sup
ε→0

‖gx(gradφε(x), ιxw̄)− gx(gradφ(x), ιxw̄)‖L2(M×Bm1 (0)) .

By (6.16), the first summand can be estimated by∥∥∂(x,Πx(εw))φ
ε − gx(gradφε(x), ιxw̄)

∥∥
L2(M×Bm1 (0))

≤ CεLgrad(φε),

which, by (H2), converges to 0. To show the same for the second summand, we first observe that gradφε → gradφ
in L2(M, (TM)l), by the compact embedding of H2(M,Rl) into H1(M,Rl), which is due to Theorem 2.2.19.
Then, we can conclude that

gx(gradφε(x), ιxw̄)→ gx(gradφ(x), ιxw̄) in L2(M×Bm1 (0),Rl),

as this represents a bounded linear function from L2(M, (TM)l) to L2(M × Bm1 (0),Rl). Indeed, for every
φ ∈ H1(M,Rl), by Cauchy–Schwarz inequality, we have

‖gx(gradφ(x), ιxw̄)‖L2(M×Bm1 (0),Rl) ≤
√
L(Bm1 (0)) ‖gradφ‖L2(M,(TM)l) .

Altogether, we have
∂(x,Πx(εw))φ

ε → gx(gradφ(x), ιxw̄) in L2(M×Bm1 (0),Rl). (6.24)

We can now pass to a pointwise convergent subsequence (without relabeling) [Alt06, Theorem 3.22], use (6.14),
and continuity of the distortion function γ given by (6.5), to conclude that, for a.e. x ∈M, w ∈ Bm1 (0), we have

γ(|∂(x,Πx(εw))φ
ε|)ρε(x,w)→ γ(|gx(gradφ(x), ιxw̄)|)ρ(x,w).

Applying Fatou’s lemma 2.1.2, we obtain

lim inf
ε→0

∫
M

∫
Bm1 (0)

γ(|∂(x,Πx(εw))φ
ε|)ρε(x,w)dwdVg(x)

≥
∫
M

∫
Bm1 (0)

γ(|gx(gradφ(x), ιxw̄)|)ρ(x,w)dwdVg(x). (6.25)

To handle the second order term in (6.11), we estimate

lim inf
ε→0

∥∥∥∂2
(x,Πx(εw))φ

ε
√
ρε(x,w)

∥∥∥
L2(M×Bm1 (0),Rl)

≥ lim inf
ε→0

∥∥∥gx(Hessφε(x)[ιxw̄], ιxw̄)
√
ρε(x,w)

∥∥∥
L2(M×Bm1 (0),Rl)

− lim sup
ε→0

∥∥∥(∂2
(x,Πx(εw))φ

ε − gx(Hessφε(x)[ιxw̄], ιxw̄)
)√

ρε(x,w)
∥∥∥
L2(M×Bm1 (0),Rl)

.

By (6.17), the last term can be estimated as∥∥∥(∂2
(x,Πx(εw))φ

ε−gx(Hessφε(x)[ιxw̄], ιxw̄)
)√

ρε(x,w)
∥∥∥
L2(M×Bm1 (0),Rl)

≤ CεLHess(φ
ε), (6.26)

which vanishes in the limit by (H2). To bound the first term, we first observe that, analogously to the above,

gx(Hessφε(x)[ιxw̄], ιxw̄) ⇀ gx(Hessφ(x)[ιxw̄], ιxw̄) in L2(M×Bm1 (0),Rl),
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since this represents a bounded linear function on L2(M, Lsym(TM, (TM)l)). Furthermore, using the uniform
boundedness (6.12) and pointwise convergence (6.14) of ρε, and the Dominated convergence theorem 2.1.3

gx(Hessφε(x)[ιxw̄], ιxw̄)
√
ρε(x,w) ⇀ gx(Hessφ(x)[ιxw̄], ιxw̄)

√
ρ(x,w) in L2(M×Bm1 (0),Rl). (6.27)

Using the weak lower semicontinuity of the L2(M×Bm1 (0),Rl)-norm, this implies

lim inf
ε→0

‖∂2
(x,Πx(εw))φ

ε
√
ρε(x,w)‖L2(M×Bm1 (0),Rl)≥‖gx(Hessφ(x)[ιxw̄], ιxw̄)

√
ρ(x,w)‖L2(M×Bm1 (0),Rl).

We thus proved

lim inf
ε→0

∫
M

∫
Bm1 (0)

λ|∂2
(x,Πx(εw))φ

ε|2ρε(x,w)dwdVg(x)≥
∫
M

∫
Bm1 (0)

λ|gx(Hessφ[ιxw̄], ιxw̄)|2ρ(x,w)dwdVg(x),

that, together with (6.25), proves the desired inequality.

Proof of the existence of a recovery sequence and lim sup-inequality

By the density assumption (H3), for every φ ∈ Ḣ2(M,Rl), there exists a sequence {φε}ε>0 such that φε ∈ Fε
and φε → φ in Ḣ2(M,Rl) as ε→ 0. We can now repeat the same arguments as for (6.24), to show

∂(x,Πx(εw))φ
ε → gx(gradφ(x), ιxw̄) in L2(M×Bm1 (0),Rl).

Then, using the uniform boundedness (6.12) and pointwise convergence (6.14) of ρε, together with the Dominated
convergence theorem 2.1.3, we get

∂(x,Πx(εw))φ
ε
√
ρε(x,w)→ gx(gradφ(x), ιxw̄)

√
ρ(x,w) in L2(M×Bm1 (0),Rl),

and thus pointwise a.e. on a (not relabeled) subsequence. Taking into account the splitting of γ(s) (cf . (6.5)) into
|s|2 and the uniformly bounded and continuous part γ(s)− |s|2, we use the convergence in norm for the first term,
and the Dominated convergence theorem 2.1.3 for the second term, to get

lim sup
ε→0

∫
M

∫
Bm1 (0)

γ(|∂(x,Πx(εw))φ
ε|)ρε(x,w)dwdVg(x)=

∫
M

∫
Bm1 (0)

γ(|gx(gradφ(x), ιxw̄)|)ρ(x,w)dwdVg(x).

For the second order term, we write

lim sup
ε→0

∥∥∥∂2
(x,Πx(εw))φ

ε
√
ρε(x,w)

∥∥∥
L2(M×Bm1 (0),Rl)

≤ lim sup
ε→0

∥∥∥gx(Hessφε(x)[ιxw̄], ιxw̄)
√
ρε(x,w)

∥∥∥
L2(M×Bm1 (0),Rl)

+ lim sup
ε→0

∥∥∥(∂2
(x,Πx(εw))φ

ε − gx(Hessφε(x)[ιxw̄], ιxw̄)
)√

ρε(x,w)
∥∥∥
L2(M×Bm1 (0),Rl)

,

where the last term vanishes analogously to (6.26), while for the first term, analogously to (6.27), we have

gx(Hessφε(x)[ιxw̄], ιxw̄)
√
ρε(x,w)→ gx(Hessφ(x)[ιxw̄], ιxw̄)

√
ρ(x,w) in L2(M×Bm1 (0),Rl).

Thus, we finally have

lim sup
ε→0

∫
M

∫
Bm1 (0)

λ|∂2
(x,Πx(εw))φ

ε|2ρε(x,w)dwdVg(x)≤
∫
M

∫
Bm1 (0)

λ|gx(Hessφ(x)[ιxw̄], ιxw̄)|2ρ(x,w)dwdVg(x),

which, together with the above estimate for the isometry promoting term, proves the lim sup-inequality, and fin-
ishes the proof of the theorem.

The existence of a minimizer for (6.21) can be established using the direct method of the calculus of variations.
Indeed, the zero function provides an upper bound for the value of the energy and Proposition 6.2.2 implies the
uniform boundedness of an approximation sequence in Ḣ2(M,Rl). Finally, reflexivity and weak lower semicon-
tinuity of the energy provides the desired result. Notice that, as for EεF , the minimizer (modulo a rigid motion
or reflection) is in general not unique due to the isometry promoting term. The following result establishes this
minimizer as the limit of minimizers of nonlocal energies {EεF}ε>0 as ε → 0, based on the uniform boundedness
of the minimizers in H2(M,Rl), shown in Theorem 6.2.3.
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Theorem 6.3.2 (Convergence of minimizers of nonlocal energies). Let (H1)–(H3) hold with CL = 0. Then, for
every sequence {φε}ε>0 of minimizers of {EεF}ε>0, there exists a subsequence converging weakly in Ḣ2(M,Rl)
to a minimizer φ of the energy E . Furthermore, the corresponding function values EεF [φε] converge to E [φ].

Proof. Let {φε}ε>0 be a sequence of minimizers of the energies EεF . By Theorem 6.2.3, we have that {φε}ε>0 is
uniformly bounded in Ḣ2(M,Rl). By reflexivity, there exists a weakly convergent subsequence (with the same
label) such that φε ⇀ φ in H2(M,Rl) as ε → 0. By the lim inf-inequality part of Theorem 6.3.1, we have
lim infε→0 EεF [φε] ≥ E [φ]. Let us suppose that there exists φ̃ ∈ H2(M,Rl) such that E [φ] > E [φ̃]. Without
loss of generality we can suppose that φ̃ ∈ Ḣ2(M,Rl). Then, by the lim sup-part of Theorem 6.3.1, there exists
a sequence {φ̃ε}ε>0 such that φ̃ε ∈ Fε for every ε > 0 and lim supε→∞ EεF [φ̃ε] ≤ E [φ̃]. However, E [φ] ≤
lim infε→0 EεF [φε] ≤ lim supε→0 EεF [φ̃ε] ≤ E [φ̃], which proves contradiction of the assumption. Thus, φ is a
minimizer of E and, taking φ̃ = φ in the above inequality chain, we have limε→0 EεF [φε] = E [φ].

6.4 Autoencoder Architecture and Training Procedure
In this section, we describe the architecture of deep neural networks (cf . Section 2.3 for the basic definitions
and notation), used for the representation of encoder and decoder functions. Furthermore, we will comment on
the training procedure, used for the optimization of weights of encoders and decoders, in order to obtain the
corresponding identification of high-dimensional data with low-dimensional latent manifolds.

The architecture of deep convolutional neural networks representing autoencoders is motivated by the approach
in [BRRG18]. The changes are made to allow using larger input images and smaller latent space dimension. Both
encoder and decoder consist of blocks of two convolutions, each followed by a nonlinear activation function, and a
subsequent average pooling (encoder) or upsampling (decoder). We determine the number of blocks such that the
final output image of the encoder consists of 4×4 pixels, resulting in a latent code of size 16. The full architectures
are shown in Table 6.1.

As the activation function, we used LeakyReLU (cf . (2.12)). Although this activation function prevents us
from satisfying the assumption (H2), we noticed that replacing LeakyReLU by a smooth approximation (2.13)
did not have much effect in practice. Networks with (leaky) ReLU nonlinearity also provide nice approximation
properties with a provable growth rate of the network architecture, though only in Sobolev spaces of order 0 ≤ s ≤
1 [GKP20]. Furthermore, in view of (H3), the architecture (number of layers and weights, bound on weight growth
or penalty on weights) should depend on the sampling radius ε. However, since our experiments are performed
with ε in a fixed range, we always keep the same architecture.

The training data will consist of triplets of images (two images and their Riemannian average), together with
the Riemannian distance of the extremal images: (x, y, avM(x, y), dM(x, y)) with x, y ∈ Sε ⊂ M ×M (cf .
(6.3)). This input allows us to compute the ingredients ∂(x,y)φ and ∂2

(x,y)φ of the discrete sampling loss functional
ESε [φ], defined by Definition 6.1.1. Our method allows us to train the encoder map separately by minimizing

ESε [φθ] :=
1

|Sε|
∑

(x,y)∈Sε

(
γ(|∂(x,y)φθ|) + λ‖∂2

(x,y)φθ‖2L2

)
,

where θ are the weights of the encoder, and to train the decoder map ψξ subsequently, by minimizing, for fixed φθ,
the reconstruction loss

R[φθ, ψξ] :=
1

2|Sε|
∑

(x,y)∈Sε

‖ψξ(φθ(x))− x‖2L2 + ‖ψξ(φθ(y))− y‖2L2

where ξ are the weights of the encoder. Here, ‖ · ‖L2 is the discrete L2-norm on pixel images. Alternatively,
encoder and decoder can be trained simultaneously by minimizing the loss functional, for some κ > 0,

ESε [φθ] + κR[φθ, ψξ].

For training, we use the Adam optimization algorithm [KB15], with the learning rate lr = 0.0001 and (default)
values of momenta weights β1 = 0.9, β2 = 0.999, and ε = 10−8. We further employ a so-called weight decay:
penalty on the squares of the weights, with a scale δ = 10−5. The pseudocode is given in Algorithm 6.
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type parameters output size

Conv2d 1/1/1/16 66×66×16

2×(Conv2d+LeakyReLU0.01) 3/1/1/16 66×66×16
AvgPool2d 2/2 33×33×16

2×(Conv2d+LeakyReLU0.01) 3/1/1/32 33×33×32
AvgPool2d 2/2 16×16×32

2×(Conv2d+LeakyReLU0.01) 3/1/1/64 16×16×64
AvgPool2d 2/2 8×8×64

2×(Conv2d+LeakyReLU0.01) 3/1/1/128 8×8×128
AvgPool2d 2/2 4×4×128

Conv2d+LeakyReLU0.01 3/1/1/256 4×4×256
Conv2d 3/1/1/1 4×4×1

type parameters output size

2×(Conv2d+LeakyReLU0.01) 3/1/1/128 4×4×128
Upsample 2 / nearest 8×8×128

2×(Conv2d+LeakyReLU0.01) 3/1/1/64 8×8×64
Upsample 2 / nearest 16×16×64

2×(Conv2d+LeakyReLU0.01) 3/1/1/32 16×16×32
Upsample 2 / nearest 32×32×32

2×(Conv2d+LeakyReLU0.01) 3/1/1/16 32×32×16
Upsample 2 / nearest 64×64×16

Conv2d+LeakyReLU0.01 3/1/1/16 64×64×16
Conv2d 3/1/1/1 64×64×1

Table 6.1: Encoder (left) and decoder (right) architectures for 64× 64 grayscale images. Parameters for convolu-
tional layers (Conv2d) are filter size / stride / padding / output channels, and for average pooling layers (AvgPool2d)
filter size / stride, equal in each direction. Parameters for upsampling layers (Upsample) are scale and mode. The
names of the operations are as in the PyTorch library [PGM+19]. Output sizes are given with channels in the last
dimension. The architecture for color images wit the input size 128 × 128 × 3 is similar, except that there is one
more block, thus the maximum number of output channels of the encoder is 512.

Algorithm 6: Adam Algorithm for minimization of energy E with respect to the weights θ.

1 Choose lr, β1, β2, δ, ε > 0;
2 Initialize θ0, m0, v0;
3 for i = 1, ... do
4 gi = DθE(θi−1) + δθi−1;
5 mi = β1mi−1 + (1− β2)gi;
6 vi = β2vi−1 + (1− β2)g2

i ;
7 m̂i = mi

1−β1
;

8 v̂i = vi
1−β2

;
9 θi = θi−1 − lrm̂i√

v̂i+ε
;

We use Kaiming initialization [HZRS15], i.e., all convolutional weights are initialized as zero-mean Gaussian
random variables with standard deviation

√
2/
√
fan_in(1 + 0.012) for fan_in the number of input channels

of the layer times the number of entries in the filter, and all biases are initialized with zeros.
The computation of the derivative in line 4 is not performed on the entire input dataset, but only on stochasti-

cally chosen batches. Once the entire dataset is processed, we say we trained for one epoch. Even though in our
applications we generate random samples on the fly, we simulate epochs of size around 10000, split into batches
of size 128, to make the training graphs look more familiar and less noisy. The training is finished once a chosen
(small) threshold for the value of the energy we optimize on the training or the test set is achieved.

6.5 Numerical Results

In this section, we present the numerical results which support our theoretical investigations from the earlier chap-
ters. To this end, we first create image manifolds where the hidden manifold is explicitly known and avM and
dM can be explicitly computed. We then apply the training procedures discussed above to obtain a low bending
and low distortion embedding into a latent space. We visualize these embeddings and study their regularity and
smoothness. Furthermore, we observe the quality of image interpolation obtained by an application of the decoder
mapping to the linear interpolation in the latent space. We point out that all of the experiments were performed
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by J. Braunsmann, in whose thesis (yet to appear) one can find more numerical results with the corresponding
discussions.

6.5.1 Input Manifolds
As already announced, we create image manifolds where the underlying low-dimensional manifold is explicitly
known. This approach, already taken in [DG05], allows a fast on the fly generation of random samples. Further-
more, it allows us to study the obtained results by visually comparing them with the expected result: the given
input manifold. Contrary to this approach, on the given (high-dimensional) image manifold, we could use ap-
proximations of Riemannian distance and average with means of the flow of diffeomorphism or metamorphosis
model (cf . Subsections 3.2.1 and 3.2.2), optimal transport [PC+19] or other general shape manifolds with applica-
tion in imaging. However, this would take significantly more time for the computations of input data. In addition,
these approaches mostly correspond to an infinite-dimensional manifold structure, and thus, it is an open question
whether to expect a perfect recovery of the underlying low-dimensional structure.

We consider image data that implicitly represent four different manifolds:
Sundial Shadows (S). To create this dataset, inspired by [OYHO20], we consider the shadows of a vertical rod

on a plane from a lightsource positioned on the upper hemisphere S2 ∩ {x3 ≥ 0}. Contrary to [OYHO20], we
do not render these images with a 3D engine, but approximate the shadows by Gaussians (cf . Figure 6.2): a point
x ∈ S2 is first mapped onto the plane by drawing the line through x and the rod tip, intersecting the plane at some
xp ∈ R2. We then use a Gaussian function with variance |xp|2 in direction xp and a fixed small variance in the
orthogonal direction, centered at xp/2. These images form our input manifoldM with the upper hemisphere as
its underlying hidden manifold. The metric is induced from S2, so that the distance onM is the geodesic distance
on S2: dM(x, y) := arccos(xT y). We use a resolution of 64× 64 pixels and sampling strategy (S3).

Rotating Object (R). We generate images forming the manifoldM by projecting an arbitrarily rotated three-
dimensional object (here a toy cow model1) to the viewing plane and use Pytorch3D [RRN+20] to render the
images for the training (cf . Figure 6.4a). As distance onM, which has the group of rotations SO(3) as the hidden
manifold and thus has no boundary, we use the induced distance from SO(3), computed from the quaternions
representation x 7→ qx, determined by the angle and the axis of rotation, i.e., given points x, y ∈ M we define
dM(x, y) := arccos(|qx · qy|) [Huy09]. We consider RGB color images with resolution 128 × 128 pixels and
sampling strategy (S1).

Arc rotating around two specified axes (A). To generate this image manifold, we use Blender 2 to render bent
and capped tubes, colored using a transition from purple inside to yellow outside, representing rotations of the great
circle [0, 1] 3 t 7→ (cos(tπ), sin(tπ), 0). Rotations are determined by the two angles α = πx1 and β = π(2x2+ 1

2 )
(cf . Figure 6.5a), where (x1, x2) is a point in the Klein bottle [0, 1]2/ ∼, where ∼ represents the glueing operation
on the boundary of [0, 1]2 defining the Klein bottle (the hidden closed manifold for this dataset), i.e., we identify
(x1, 0) and (x1, 1) as well as (0, x2) and (1, 1 − x2) (cf . [GHL90]). To determine the geodesic distance between
two images, we use the Euclidean distance between points generating these images. Taking into consideration the
relation ∼, we have dM(x, y) := min{|x̄− y| : x̄ ∈ {(x1, x2), (x1, x2 − 1), (x1, x2 + 1), (x1 + 1, 1− x2), (x1 +
1, 2− x2), (x1 + 1,−x2), (x1 − 1, 1− x2), (x1 − 1, 2− x2), (x1 − 1,−x2)}}. We use sampling strategy (S3) on
[0, 1]2/ ∼ and color images with the resolution 128× 128.

Ellipses (E). This image manifold is created by considering rotations and translations of an ellipse with a fixed
aspect ratio E(α, c) := {z ∈ R2 : (z − c)TA(α)−1(z − c) ≤ 1} (cf . [Gha14, Section 2.5.3]), with

A(α) :=
1

10

(
1 + 2 cos(α)2 2 cos(α) sin(α)

2 cos(α) sin(α) 1 + 2 sin(α)2

)
with parameters (α, c) in [0, π) × [−1, 1]2 and periodic identification of 0 and π. The hidden manifold is then
S1 × [−1, 1]2, with the corresponding distance dM((α1, c1), (α2, c2))2 := min(|α1 − α2|, |α1 + π − α2|, |α1 −
π−α2|)2 +|c1−c2|2. We used the sampling strategy (S1) for obtaining the corresponding parameters. The ellipses
are discretized as 64× 64 images by evaluating, on a grid [−1, 1]2, either the characteristic function of E(α, c) or
the smoothed variant (cf . Figure 6.6)

fα,c,k(z) := (1 + exp(−k(1− (z − c)TA−1(α)(z − c))))−1, k > 0. (6.28)
1https://www.cs.cmu.edu/ kmcrane/Projects/ModelRepository/
2https://www.blender.org/

https://www.blender.org/
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6.5.2 Visualization of the Embeddings
In this section, we present the results of the numerical experiments. The obstacle to the visualization of the results
is the fact that the latent space dimension is l = 16, so we need to find a way to represent the obtained latent vectors
in three dimensions in a reasonable way. To this end, we use the principal component analysis (PCA) [Jol02]. This
approach is based on solving the problem of finding the best d-dimensional representation of l-dimensional data
{x1, . . . , xn} ∈ Rl, by observing the minimization problem

min
µ∈Rl,λi∈Rd,Vd∈Rl,d

n∑
i=1

‖xi − (µ+ Vdλi)‖2, subject to V Td Vd = 1d.

A solution to this problem is given in terms of µ = x̄ = 1
n

∑n
i=1 xi, λi = V Td (xi − x̄), i = 1, . . . , n, and

Vd consisting of d orthogonalized eigenvectors of XTX corresponding to d largest eigenvalues σ2
i , i = 1, . . . , d,

where X ∈ Rn,l is the matrix with rows (xi − x̄)T , i = 1, . . . , n. Besides giving us the best d-dimensional repre-
sentation, PCA is also used to determine how large is d supposed to be in order to have a proper low-dimensional
representation of the given data. This is determined by measuring the percentage of the explained variance (name
coming from statistical perspective of PCA): ∑d

i=1 σ
2
i∑l

i=1 σ
2
i

,

where σ2
i , i = 1, . . . , l are all eigenvalues ofXTX , ordered in non-increasing order. We will refer to the number of

dimensions necessary for reaching a threshold of 99% of explained variance as the number of relevant dimensions.
The columns of Vd are called the principal directions for the data {x1, . . . , xn}. The vectors λi, i = 1, . . . , n

are called principal components of the data and represent the projection of the data to the space spanned by
the principal directions. In what follows, we visualize the projections of the point clouds representing φ(M)
onto three-dimensional subspaces spanned by three selected principal directions. Let us mention that, for better
numerical stability in the computation of the finite differences ∂(x,y)φ and ∂2

(x,y)φ, we rejected pairs with distance
below a certain threshold for the datasets (S), (R), and (A). We will express this distance in terms of the maximal
possible distance between data points on the manifold.
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Figure 6.2: Results for dataset (S), for λ = 0 and ε = π/8 (with maximal distance being π). From left to right: a
sketch of the sundial configuration, training data (image pairs with their geodesic average and distance), the latent
manifold φ(M) projected into R3 via PCA, decoder outputs for the orange points in latent space. The encoder was
trained separately from the decoder and the training was stopped after the value of the functional ESε [φ] evaluated
on a test set did not decrease for 10 epochs. Pairs with distance below 0.01π were rejected. The decoder was
trained until an accuracy of 10−5 was reached on the same test set.

For dataset (S), our approach and its result at one glance are summarized in Figure 6.2 for λ = 0. We observe
that the embedding is smooth and the geometry of the hemisphere is reproduced. In comparison, Figure 6.3 shows
the result for a higher bending penalty λ = 5, resulting in a much flatter embedding of the hemisphere. This
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can also be observed from the significantly smaller variance contribution of the third component. The number of
relevant dimensions in both cases is three.
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Figure 6.3: Latent manifold φ(M) for dataset (S) for λ = 5 (colored points as in Figure 6.2). The other parameters
and the training procedure are the same as for Figure 6.2.

In Figure 6.4a, we show results for dataset (R). The embedding is smooth, revealing the topology and geometry
of the manifold SO(3). For this dataset, in Figure 6.4b, we show that the isometry, flatness, and reconstruction
parts of the loss function decrease continuously and monotonically (up to the usual stochastic variations) during
the training. The same observations hold for other datasets.

In all our experiments, the latent space dimensionality l is chosen substantially larger than the minimum value
required for a smooth embedding – in real applications the intrinsic dimensionality m is unknown beforehand any-
way, so one needs to pick l rather larger than smaller. Furthermore, the encoder might achieve flatter embeddings
when more dimensions are available. For instance, S1×S1 ⊂ R4 provides an embedding of the flat torus, possibly
better than the standard embedding in R3. The encoder makes use of that freedom for dataset (R), which can be
read from the graph of the total amount of explained variance as a function of increasing subspace dimension, in
the bottom right part of Figure 6.4a. The embedding uses six Euclidean dimensions even though l = 5 would be
enough. Indeed, SO(3) ∼= RP 3, where RP 3 is the 3-dimensional real projective space, which embeds into R5,
but not in R4 [Hop40, Han38].

In Figure 6.5b, we can read off the used number of dimensions for dataset (A). To the best of our knowledge,
it is not known whether there exists a smooth isometric embedding into less than five dimensions. On the other
hand, isometric immersions (with self-intersections) exist in four dimensions [Tom41]. Since our encoder loss
functional cannot distinguish between immersions and embeddings (there is no term preventing self-intersections),
the minimum dimensionality would thus be no larger than four, but our latent manifold uses five Euclidean di-
mensions in the case λ > 0, while without bending regularization, i.e., for λ = 0, the embedding uses eleven
dimensions. As discussed above, the isometry term does not make this necessary, but rather a manifestation of
the strong degeneracy of the set of isometric embeddings, which are possible using arbitrarily many Euclidean
dimensions.

It is well-known that no three-dimensional embedding without self-intersections exists [Gra71], explaining the
self-intersections in each of the visualized projections in Figure 6.5a. Denoting the composition of φ with the
projection onto a 3-dimensional subspace V by φV , a self-intersection is characterized by φV (x) = φV (y) for
x 6= y. Thus, a suitable indicator of a self-intersection at x is

min
y∈M,y 6=x

|φV (x)− φV (y)|
dM(x, y)

. (6.29)

If this quantity is small, we expect a self-intersection at x. Recall that when training the encoder separately, our
method in principle does not prevent self-intersections. In Figure 6.5b, we plot the true distances on the Klein
bottle against Euclidean distances of the corresponding embedded points in latent space, clearly indicating the
absence of any self-intersections. While this might be due to the joint training with the decoder which promotes
the injectivity of the embedding, we observed similar results when training the encoder separately. This plot further
shows that for λ = 0, the distances are more or less preserved up to the value of ε used in the training, whereas for
λ = 1, the isometry property is sacrificed for an embedding with less bending.
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(a) Visualization of the results for dataset (R), for λ = 10 (if not stated otherwise). Top left: Three input triples and their
distances. Top right: Visualizations of the latent manifold φ(M), where the number on the axis corresponds to the order
of the principal component. For the top row visualizations, we regularly sample rotation axes from different latitudes of
S2, and then show points corresponding to rotations around each axis in the same color (color corresponds to z-coordinate
of the rotation axis). For the bottom row visualization, we fixed a rotation angle and randomly sampled the rotation axis
from S2. In components 2, 3, 4, a sphere-like structure can be observed, suggesting that these three components encode the
rotation axis. The graph on the bottom right shows the total amount of explained variance as a function of increasing subspace
dimension, with a threshold of 99% reached for 6 dimensions. Below the dashed line: Examples of interpolations generated by
interpolating linearly in latent space and subsequent decoding. For vanishing bending regularization, λ = 0, those interpolations
are unreliable, while they look very reasonable for λ = 10, even though the decoder was neither trained on linear interpolations
in latent space nor was it regularized.
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(b) Bottom figure: Comparison of the temporal evolution of the three loss components, for λ = 10 and λ = 0 (logarithmic
y-axis). In one epoch (optimization step), around 10000 images are processed in batches of 128.

Figure 6.4: Visualization of the results for dataset (R). We used ε = π
8 (with maximal distance being π

2 ). Encoder
and decoder were trained at the same time with κ = 0.1, and training was stopped once a reconstruction error R
on a test set reached a threshold of 3.5 · 10−3. Pairs with distance below 1

20 of the maximal distance were rejected.
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(a) Visualization of the results for dataset (A) and λ = 1 (unless indicated otherwise). First row: Illustration of the data
generation. The first image shows how an arc is rotated by angles α and β. The second image shows the variation of α in
horizontal and variation of β in vertical direction, making visible the mirroring leading to the topology of the Klein bottle. On
the right, three input triples and their distances are shown. Second row: Projection of the latent manifold φ(M) onto the first
three PCA components. The points are colored according to the original α coordinate, using a cyclic color map. The first image
visualizes, in the black frame, the quantity (6.29) evaluated on a regular grid on [0, 1]2. The image is extended in all directions
according to the identification of the sides. The white lines were computed using the watershed algorithm [Beu79]. Each one
of the lines (circles) is folded together, with the diamond markers showing the folding points. The folding region is visible in
the second “summand” of the visualization. Third row: the embedding of a geodesic curve (computed by the interpolation of
the input parameters) between A and C, where B is their geodesic midpoint, as well as the images obtained through linear
interpolation in latent space for λ = 0 and λ = 1 using different starting points symmetric around B.
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(b) Comparison of the results for λ = 0 and λ = 1. Left: The total amount of explained variance as a function of increasing
subspace dimension. The threshold of 99% explained variance was reached for 5 and 11 dimensions for λ = 1 and λ = 0,
respectively. Right: The extrinsic latent space distance |φ(x) − φ(y)| versus the intrinsic manifold distance dM(x, y) for
random point pairs (x, y) ∈M.

Figure 6.5: Visualization of results for dataset (A). We used ε = 1
4
√

2
(with maximal distance being 1√

2
). Encoder

and decoder were trained at the same time with κ = 0.1, and training was stopped once a reconstruction error R
on a test set reached a threshold of 2 · 10−3. Pairs with distance below 1

20 of the maximal distance were rejected.
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To illustrate the regularization properties of our loss functional we tried to keep the amount of noise in our
experiments as low as possible (i.e., the only noise is due to discretization as pixel images), as noisy images
would require additional tailored regularization. However, the process of generating images from low dimensional
manifolds may introduce noise. We illustrate this effect on the dataset (E) by comparing smooth and binary
images. Indeed, while the set of smooth ellipse images is infinite, the set of binary ellipse images is finite due
to quantization. Thus, while the underlying manifold is still the same, the corresponding set in image space is
different. For instance, the same pair of binary ellipse images may be sampled with different distances, leading to
a type of noise Figure 6.6 shows that the cylindrical structure of the resulting latent manifold φ(M) is only barely
observable in this case. Increasing the resolution of the images would reduce the disparity between the underlying
manifold and the image manifold, leading to a reduction of the observed effect.
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Figure 6.6: Visualization of the results for dataset (E) for λ = 1 and ε = π
2 for different ways of rendering ellipses:

as the characteristic function (left) and as its smoothed version (6.28) with k = 3 (right). In each case, two input
triples and their distances (with maximal distance ≈ 4.3) are shown. In both cases, there are 4 relevant directions.
PCA coordinates 1, 3, 4 and 2, 3, 4, respectively, are used to visualize the latent manifolds. The choice is taken
for consistency of visualization, where the change of the relevant dimension is due to the symmetry of the center
position parameters c in the dataset. On the bottom, example interpolations are visualized. Their corresponding
interpolation path in latent space is shown in the PCA plot in the color of the frame. The encoder and decoder were
trained at the same time with κ = 0.1, and training was stopped after 500 epochs.

6.5.3 Linear Interpolation in Latent Space
As already several times mentioned in this chapter, the flatness of the latent manifold is expected to improve the
usefulness of time discrete linear interpolation across moderate distances. Recall that this linear interpolation is,
for given points xA, xB ∈M and some K ≥ 2, defined by

ψ(x̃k), for x̃k = (1− k

K
)φ(xA) +

k

K
φ(xB), k = 0, . . . ,K. (6.30)

In this section, we study this perspective of our approach, based on the results of the numerical experiments.
The obvious question to ask is the one about the influence of the bending energy parameter λ on the quality of

linear interpolations. This is qualitatively illustrated in Figure 6.4a for dataset (R). For λ = 0, the decoder output
of linear interpolations in latent space does not at all reproduce continuously rotating objects and the interpolation
objects have a large amount of blending artifacts. The results are considerably better for λ = 10 and one can follow
the rotation of the object. We point out that, since our focus is on the regularizing properties of our encoder loss
functional ESε , the decoder was intentionally not trained on linear interpolation, and not additionally regularized.
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An additional training of the decoder on linear interpolants in the latent space would improve the interpolation
quality even more, and perhaps even for λ = 0 allow the decoder to compensate the deficiencies visible in Fig-
ure 6.4a. As illustrated in Figure 6.6 by the line representing the linear interpolation path in the latent space, due
to the extrinsic curvature of the latent manifold, the linear interpolation only makes sense for sufficiently close
endpoints.

To quantify the error of the linear interpolation in latent space, we measured the L2-error to the ground truth
geodesic interpolation using the following error measure on a test sample set S ′ε ⊂ {(x, y) ∈ M ×M : y ∈
DMε (x)} as a function of interpolation distance

err(δ)2 =
1

|S ′ε|
∑

(x,y)∈S′ε,
dM(x,y)≤δ

erri(x, y)2 − errb(x, y)2, where (6.31)

erri(x, y) = ‖ avM(x, y)− ψ(avRl(φ(x), φ(y)))‖L2 ,

errb(x, y) = ‖ avM(x, y)− ψ(φ(avM(x, y)))‖L2 .

Here, erri is the error due to linear interpolation, and errb is the base reconstruction error that occurs independently
of interpolation.
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Figure 6.7: Comparison of the interpolation error, for different options for the regularization, for datasets (R) (left)
and (A) (right). The encoder was trained separately from the decoder for 500 epochs, and the weights yielding
the best value for the functional ESε [φ] evaluated on a test set were chosen. Pairs with distance below 1

20 of the
respective maximal distance were rejected. The decoder was trained until an accuracy of 3.5 · 10−3 for (R) and
2 · 10−3 for (A) was reached.

For datasets (R) and (A), Figure 6.7 compares err(δ) for different options for the regularization. Without
encoder regularization, i.e., for minimization of solely the reconstruction loss, the error is the highest and increases
quickly already for small interpolation distances. Our low distortion regularization reduces the error, particularly
for small interpolation distances. However, the effect of the low bending regularization, i.e., the bending weight
λ is ambiguous: Higher λ improves the interpolation quality for dataset (R), but not for dataset (A), which is also
reflected in the interpolation examples from Figures 6.4a and 6.5a, respectively.

The other point in our study of the linear interpolation is the interplay of the sampling radius ε and the bending
parameter λ. For dataset (S), we evaluated, in Figure 6.8, the interpolation error err(π) from (6.31) on a test
set of arbitrarily chosen point pairs, using sampling strategy (S3). For ε = π, i.e., using triples with arbitrarily
large distances in the training process, we observe a low interpolation error independent of the choice of the
bending weight. This indicates that a very large sampling radius ε also has some regularizing effect. For smaller
ε, however, increasing the bending parameter λ strongly decreases the interpolation error. This speaks in favor of
our hypothesis that the bending penalty produces latent manifolds with a flatter and smoother structure which is
expected to reduce the generalization error in postprocessing tasks. The name “generalization” comes from the
fact that, even though the encoder was only trained on point pairs with distance below ε, the interpolation error is
small for arbitrary point pairs.
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Figure 6.8: Average interpolation error for training with different sampling radii ε, computed across a test set
consisting of random pairs with arbitrary distance on the upper hemisphere. The encoder was trained separately
from the decoder, and the training was stopped after the value of the functionalESε [φ], evaluated on a different test
set, did not decrease for 10 epochs. Pairs with the distance below 0.01π were rejected. The decoder was trained
until an accuracy of 10−5 was reached on the test set. This was repeated for three different initializations of the
network weights, obtained as outputs of training the encoder.

6.6 Extensions, Conclusion and Outlook
In the previous subsection, we saw that the decoded images of the linear interpolation in the latent space (cf . (6.30)),
obtained as the result of low distortion and low bending manifold embeddings, could produce both visually and
quantitatively decent results in certain examples, while in other examples this was not the case. Therefore, this
method is not so reliable. To this end, in this section, we present and idea for a more reliable way for obtaining the
geodesic interpolation on the manifold based on the geodesic interpolation on the latent manifold. In addition to
the already mentioned collaborators, this project also included Florine Hartwig, who, in particular, implemented
the discrete geodesic calculus.

The idea of our approach is based on an implicit description of the latent manifold, i.e., we would like to have a
function which is regular and zero on the latent manifold and nonzero everywhere else. To this end, let us suppose
that we learned the latent manifold φ(M) ⊂ Rl. Inspired by [AB14], we first learn a projection onto the manifold
of the points in Rl obtained by adding the normally distributed noise to the latent manifold points. Subsequently,
we use the difference between the projection and the identity as the function which gives the implicit representation
of the latent manifold. To this end, we observe the minimization problem

min
θ

1

|Sφ(M)|
∑

x∈Sφ(M)

1

|Sn|
∑
δ∈Sn

|x− pθ(x+ δ)|2,

where θ is the vector of parameters of the neural network whose realization is the projection function pθ : Rl → Rl,
Sφ(M) is a finite sample of points from φ(M), and Sn a finite sample of points with the normal distribution
N (0, σ1l). One can observe the limit as the number of samples tends to infinity and study the properties of the
obtained optimal function p, along the same lines as in [AB14]. More on this and the architecture of the underlying
network will be presented in the thesis of J. Braunsmann. For our discussion, it is important to observe that the
(optimal) function p tends to project (thus the name) points in the neighborhood of the manifold to their nearest
points on the manifold.

Having the projection function p, we can observe the latent manifold φ(M) as the zero set of the function
p̃ : Rl → Rl, x 7→ p(x)−x. For determining a discrete geodesic path between two points on the manifold, we use
the framework developed in Subsection 3.1.2. In particular, in the context of (3.6), we use the standard Euclidean
distance between the points as the approximation functional, i.e.,W[x, x̃] := |x − x̃|2. This is reasonable choice
in the context of penalizing bending of the embedding, which, in particular, penalizes deviation of geometry of
φ(M) from the standard linear one. Then, in the context of (3.7), the path energy of a discrete path (x0, . . . , xK)
is given by

EK [(x0, . . . , xK)] := K

K∑
k=1

|xk − xk−1|2 .

However, it is straightforward to check that the minimizer of this energy, for fixed x0 and xK , is nothing else but
the linear interpolation. What we miss are the terms that constrain the discrete interpolation path to stay on the
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manifold. To this end, let us have the fixed initial and the final points x0 = xA and xK = xB , respectively. Then,
in order to find the discrete geodesic path between these points on the latent manifold, among the several possible
approaches, we used the so called augmented Lagrangian approach [NW06], which combines the Lagrangian
approach and quadratic penalty method. Altogether, we have the following optimization problem

min
X∈(Rl)K−1

max
Λ∈Rl,K−1

EK [(x0, X, xK)]− Λ : p̃(X) +
µ

2
‖p̃(X)‖2 ,

where λ : p̃(X) :=
∑l
i=1

∑K−1
k=1 Λikp̃i(Xk) and ‖p̃(X)‖2 =

∑K−1
k=1 |p̃(Xk)|2. The elements of Λ are called

Lagrangian multipliers. Solving the problem is based on an alternating algorithm, which includes a Newton
scheme for optimization ofX , and the gradient descent for optimization of Λ. The penalty parameter µ is increased
at each step, until we reach a sufficient attainment of the equality constraints p̃(X) = 0 [NW06, Chapter 17].

For numerical experiments, we used the dataset consisting of ellipses obtained as anisotropic Gaussians with
fixed aspect ratio, similar to the DSprites dataset in [MHHL17]. The Riemannian distance was computed analogous
to the one for the dataset (E), we use sampling strategy (S1), and the images are of resolution 64× 64.

(a) Left: Visualization of the learned manifold by projection onto the first three PCA components. Green dots represent the
geodesic interpolation obtained from the augmented Lagrangian approach, with red points being the given initial and final
points. Blue points represent linear interpolation. Right: Visualization of the values of the norm of the function p̃ on a two-
dimensional slice through the learned “cylinder”.

(b) Decoder outputs of the above geodesic interpolation with K = 10. The fixed images (embedded points on the manifold)
are framed in red.

(c) Decoder outputs of the above linear interpolation.

Figure 6.9: The visualization of the results of the embedding of Gaussian ellipses and geodesic interpolation on the
obtained latent manifold. We trained the encoder and the decoder jointly on around 10000 images with κ = 0.1.
The bending parameter is λ = 1, while the standard deviation parameter σ is 1

10 of the maximal distance of
the training points. Visualization is obtained by the projection to the first 3 PCA dimensions (out of 4 relevant).
The results clearly show the advantages of the geodesic interpolation on the manifold in comparison with the
simple linear interpolation in the latent space. In particular, the shape of the ellipse is preserved for the geodesic
interpolation, which is not the case for the linear interpolation.
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Conclusion and outlook In this chapter, we have proposed a regularization energy functional for the encoder
mapping of the autoencoder framework which promotes low bending and low distortion embeddings to the latent
spaces. The discrete sampling loss functional is computed via Monte Carlo integration, where the training data
consists of pairs of not too distant images, measured in terms of the sampling radius, together with their Rieman-
nian distance and Riemannian average. We studied the limit as the number of samples tends to infinity leading
to the continuous nonlocal loss functional. For this functional, which depends on the strategy used for obtaining
the discrete samples, we proved the existence of a minimizer in the class of functions which are representable by
classes of neural networks and satisfy certain regularity and density properties. The limit as the sampling radius
tends to zero is studied with the tool of Mosco-convergence, where the fully local limit functional again promotes
low bending and low distortion embeddings. In the presented numerical experiments, the input images were real-
izations of handcrafted low-dimensional manifolds, allowing us to efficiently compute the underlying Riemannian
distances and averages. The obtained results, visualized by projections to principal component spaces, show that
the obtained latent manifolds are smooth and low-dimensional. The role of the part of the energy promoting low
bending is studied, both qualitatively and quantitatively, by observing the decoder images of linear interpolation in
the latent space. While for some datasets the quality of the results of interpolation was considerably higher for a
larger weighting of the bending energy, in others the quality was almost the same or even lower and the measured
error was bigger. In fact, for more complicated latent manifolds, various factors might additionally impact the
interpolation error such as the sign of the intrinsic curvature, an increased tangential distortion of the encoder map
for flatter latent manifolds, or the interplay of the differently trained encoder and decoder map. Indeed, simul-
taneous training of encoder and decoder via minimization of the (weighted) sum of encoder regularization loss
and reconstruction loss may have additional regularizing effects since some embeddings may be more favorable
for the decoder than others. As a continuation of the presented work, such effects yet have to be understood as
well as whether and how the decoder itself should be regularized on top. A possible direction to this study is the
extension proposed above. Furthermore, as an extension of the theoretical results, one should consider studying
the (non)local energies in a less restricted setting. Finally, this approach should be applied to some more realistic
shape spaces arising from the classical image processing applications.
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