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Abstract

The humble goal of cosmology is to understand the Universe as a whole. In the last decades,
the Λ cold dark matter model has proven itself as the standard model of cosmology by
explaining the majority of cosmological observations with remarkable accuracy. However,
there is growing evidence that this model will need to be revised: Aside from our inability
to explain its main components, in recent years, internal tensions between constraints of
the model parameters have emerged.

The weak gravitational lensing effect is one of the best tools to constrain the standard
model of cosmology and test potential extensions. It describes the deflection of light from
distant galaxies by the tidal gravitational fields of the large-scale structure of the Universe
and is an excellent means to study the evolution of structure growth, as it allows us to
map the dark matter distribution directly.

In this thesis, I study the use of higher-order statistics to improve the constraining
power of weak lensing surveys. I test two higher-order statistics: persistent homology
and third-order aperture mass statistics. For the former, we develop a simulation-based
inference pipeline to constrain cosmological parameters, show that they perform better
than peak count statistics, and conduct a cosmological parameter inference on the year-
1 data of the Dark Energy Survey, where we find for the matter clustering parameter
S8 = 0.747+0.025

−0.031, which is in full agreement with our analysis of second-order statistics
(S8 = 0.759+0.049

−0.042). We further measure a tension in the matter density parameter Ωm,
where persistent homology yields Ωm = 0.468+0.051

−0.036, in contrast to Ωm = 0.256+0.034
−0.058 from

the shear two-point correlation functions.
In the second part of this thesis, I present our preparations for a cosmological parameter

analysis with third-order aperture mass statistics. We develop and test strategies to model
them directly from the matter bispectrum, measure them quickly in simulations, and
estimate them from real data. The ability to model these statistics directly gives rise
to many validation tests, which we perform to ensure that a subsequent cosmological
parameter analysis remains unbiased. Using mock data, we show that a combined analysis
of second- and third-order shear statistics of a current-generation survey remains unbiased
in the absence of systematics and yields an improvement on the S8-constraints by almost
a factor of two, compared to analysis with only second-order statistics. We then develop a
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model for the covariance of third-order aperture masses and a method to test the individual
emerging terms using N-body simulations.

I conclude this thesis by comparing the simulation-based inference method to the direct
modelling approach for higher-order shear statistics. I hope our efforts will contribute
to testing the standard model of cosmology and its potential extensions with the next
generation of weak lensing surveys.
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CHAPTER 1

Introduction

“It has been said that astronomy is a humbling and character-building experience.
There is perhaps no better demonstration of the folly of human conceits than this
distant image of our tiny world. To me, it underscores our responsibility to deal
more kindly with one another, and to preserve and cherish the pale blue dot, the

only home we’ve ever known.”
– Carl Sagan, Pale Blue Dot

Probably since its birth, and certainly for millennia, humankind has wondered about the
origins of the world and the cosmos that surrounds it. The stars not only inspired count-
less myths and legends but also enabled us to predict the seasons and create calendars.
Through the lens of astrology, the movements of planets shaped the fate of entire nations.
However, until about 400 years ago, the study of the sky was shrouded by mysticism.
The arguably most revolutionary astronomical discovery, and the one that enabled the
development of modern cosmology, was Newton’s law of universal gravitation. Not only is
gravitation the primary driver of structure formation in the Universe, but the implications
of this discovery were also much grander: The physical laws on Earth are no different from
the ones governing the cosmos. The heavens are no outer-worldly magical place; instead,
the Earth is an equal (albeit tiny) part of it. Today, we live in a privileged era where the
origins of the Cosmos and the emergence of the Earth, life, and humans, are no longer the
topic of legends but a quantitative science.

While scientists and philosophers have pondered questions about the origin and nature
of the Universe for thousands of years, the field of modern cosmology is a fairly new
one. Despite millennia of observations by countless cultures around the Earth, we only
learned that the Universe is bigger than our Galaxy about a century ago (Hubble, 1929b).
Ever since then, our understanding of the Universe has advanced rapidly. We discovered
that the Universe is expanding (Hubble, 1929a) and that it thus must have originated
from a tiny, hot and dense region (Lemaître, 1931). Furthermore, we discovered a dark
matter component that does not interact with light (Zwicky, 1933; Rubin and Ford, 1970).

1



1. Introduction

Penzias and Wilson (1965) detected the cosmic microwave background (CMB), which
confirmed the big bang hypothesis (Dicke et al., 1965). We discovered that while dark
matter dominates the structure formation in our Universe (Peebles, 1982), dark energy
dominates its total energy budget today (Garnavich et al., 1998). These discoveries led
to the Λ cold dark matter model (ΛCDM) model, which is widely accepted today as
the standard model of cosmology. This model describes the origin and evolution of the
Universe with remarkable accuracy and enables us to explain a broad set of observations,
like the primordial abundances of helium (Peebles, 1966) and other elements (Wagoner
et al., 1967), the statistical properties of the CMB, the existence and scale of baryon
acoustic oscillations (BAOs) and many more.

Taking a step back, one can not help but feel a sense of awe when contemplating
our current picture of the Universe. All of humanity lives on a tiny planet orbiting a
relatively average star among the hundreds of billions of other stars in our Galaxy. This
galaxy, again, is just one of the hundreds of billions of others that make up the observable
Universe. Taking a look at the thousands of background galaxies depicted in the recently
released image from the James Webb Space Telescope (Fig. 1.1), and considering that
thirty million similar images cover the full sky, one is unable to comprehend the vastness
of the Universe that surrounds us. And then, everything in that Universe moves through
a four-dimensional spacetime manifold and simultaneously deforms that manifold through
its mass (or energy). It is truly a wonderful time to be alive.

Nowadays, as we enter the age of precision cosmology, some tensions seem to be emerg-
ing between observations of the distant CMB and the more local Universe. The most
prominent one is certainly the tension in the Hubble constant H0, which describes the
Universe’s current expansion rate. While Planck Collaboration (2020b) report a value of
H0 = (67.4 ± 0.5) km s−1 Mpc−1, Riess et al. (2022) measured the same parameter us-
ing local supernovae and found H0 = (73.04 ± 1.04) km s−1 Mpc−1 (for a review, see Di
Valentino et al., 2021a). A less prominent tension is the one in the matter clustering
parameter S8 = σ8

√
Ωm/0.3, where Ωm is the matter density parameter and σ8 describes

the normalisation of the power spectrum. Whether we measure this parameter with weak
gravitational lensing or galaxy clustering, we find that the Universe is a lot less clustered
than observations of the CMB suggest (for a review, see Di Valentino et al., 2021b). While
we can not yet rule out that these tensions are mere statistical fluctuations or the result
of unknown systematic biases (or a combination of both), this seems increasingly unlikely.
In the next decade, future experiments like the Vera Rubin Observatory Legacy Survey
of Space and Time (LSST, Ivezic et al., 2008) or Euclid (Laureijs et al., 2011) have the
potential to confirm the S8 tension and revolutionise our understanding of the Universe
(Abdalla et al., 2022).

Arguably, the nature of dark energy poses one of the biggest mysteries in modern astron-
omy. This strange component causes an accelerated expansion of our Universe. Several
groups (Albrecht et al., 2006; Peacock et al., 2006) have studied how we can test various
models of dark energy and agreed on four methods showing promise: (1) measuring the
scale of baryonic acoustic oscillations over cosmic time, (2) measuring the number density
of galaxy clusters as a function of mass and redshift and (3) using supernovae of type Ia
as standard candles to study the expansion history of the Universe. The most promising
method, (4), is called cosmic shear and focuses on measuring the distortion of background
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Figure 1.1. – An image of the galaxy cluster SMACS 0723 taken by the James Webb Space Telescope
(and presented in Pontoppidan et al., 2022), covering an area of 2.2×2.2 arcmin2 (Rieke et al., 2005).
Aside from the massive foreground galaxy cluster and galaxies strongly distorted by the gravitational
lensing effect, one can detect thousands of tiny background galaxies. Credit: NASA, ESA, CSA,
STScI.

galaxies to infer the matter distribution at various redshifts via the weak gravitational
lensing effect, .

To quantify cosmic shear, we analyse the shapes of millions to billions of galaxies. As
the tidal gravitational fields caused by the massive structures in the Universe distort the
light-rays that travel from the distant galaxy towards us, all of these shapes have been
slightly deformed. To quantify this effect, a variety of two-point statistics, such as shear
two-point correlation functions (2pcf, Kaiser, 1992) or Complete Orthogonal Sets of E-
and B-mode Integrals (COSEBIs, Schneider et al., 2010) have been established (Kilbinger
et al., 2013; Heymans et al., 2013; Joudaki et al., 2017; Troxel et al., 2018; Hikage et al.,
2019; Hildebrandt et al., 2020; Wright et al., 2020; Asgari et al., 2020; Hamana et al.,
2020).

As the initial density perturbations in our Universe are almost perfectly Gaussian
(Planck Collaboration et al., 2020b), two-point statistics capture a large amount of the
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1. Introduction

information residing in the large-scale structure (LSS) of the Universe. However, on
smaller scales, non-linear structure formation has introduced non-Gaussianities into the
LSS, which two-point statistics can not capture. To extract that additional information
content, a large variety of higher-order statistics has been suggested and employed to
various degrees (Zürcher et al., 2021): From peak count statistics (Liu et al., 2015b,a;
Kacprzak et al., 2016; Martinet et al., 2018; Harnois-Déraps et al., 2021), density split
statistics (Gruen et al., 2018; Burger et al., 2020, 2022), shear clipping (Giblin et al., 2018)
and Minkowski functionals (Petri et al., 2015; Marques et al., 2019; Parroni et al., 2020)
to Bayesian hierarchical forward modelling (Porqueres et al., 2021, 2022), likelihood-free
inference (Jeffrey et al., 2021) and the scattering transform (Cheng et al., 2020). Most of
these statistics rely on simulation-based inference, meaning that there is no way to model
them directly; instead, they are interpolated from measurements in numerical simulations.

Conversely, third-order statistics form the natural extension of the commonly used
second-order statistics and can be modelled directly from the matter bispectrum. They
promise to increase our constraints on cosmological parameters significantly (Kilbinger
and Schneider, 2005; Kayo et al., 2013; Sato and Nishimichi, 2013). More importantly,
they enable us to constrain other astrophysical or observational effects, like how galaxies
align with their surrounding tidal gravitational field, without additional observations or
simulations (Pyne and Joachimi, 2021; Pyne et al., 2022). Not only does this allow us to
test our understanding of these effects, but it also further increases our potential constrain-
ing power. So far, third-order shear statistics have been used exactly once to constrain
cosmological parameters in a weak lensing survey (Fu et al., 2014), although there appear
to be efforts currently directed towards such an analysis on more recent data (Secco et al.,
2022a). In galaxy clustering studies, third-order statistics are a bit more widespread and
have been used to detect signs of a deviation of the standard interpretation of dark energy
(Solà Peracaula et al., 2019).

In this work, we1 will introduce persistent homology as a tool for simulation-based
inference of cosmological parameters. Persistent homology is a tool from topological data
analysis, which has already seen some applications in cosmology, for example, to study the
topology of the cosmic web (Sousbie, 2011; van de Weygaert et al., 2013), magnetic fields
(Makarenko et al., 2018), the reionisation bubble network (Elbers and van de Weygaert,
2019) and the cosmic microwave background (Pranav et al., 2017, 2019). Furthermore, Xu
et al. (2019) developed an effective void finder based on persistent homology. We were the
first to quantify the constraining power of persistent homology for cosmological parameters
in Heydenreich et al. (2021). Soon after, Biagetti et al. (2020, 2022) published a similar
study utilising galaxy clustering instead of cosmic shear. Additionally, we performed the
only cosmological parameter analysis with persistent homology to date (Heydenreich et al.,
2022a).

Afterwards, we will present our efforts to prepare for a cosmological parameter analysis
with third-order shear statistics. While such an analysis has been performed before on
data of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) by Fu et al. (2014),
the current generation of cosmic shear surveys like the Kilo-Degree Survey (KiDS, de Jong
et al., 2013) or Dark Energy Survey (DES, Abbott et al., 2018) span 10 to 40 times the area

1Unless I want to explicitly highlight the contributions from individual people, I will use the scientific
wording ‘we’ throughout this thesis.
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(Jee et al., 2013), meaning that the impact of modelling uncertainties and astrophysical
systematics is significantly more severe. If unaccounted for, these effects would bias the
cosmological parameter constraints so much that the final constraints would be practically
meaningless (Semboloni et al., 2008). In this work, we will present our modelling pipeline
for third-order shear statistics, which we have validated and tested in numerous ways to
ensure that we are aware of its specific limitations (Heydenreich et al., 2022b). We will
further present our efforts to model a covariance for third-order shear statistics (Linke et
al. in prep.). Once a model for the most relevant systematic biases has been found, we can
perform a cosmological parameter analysis of current-generation surveys such as KiDS or
DES.

This thesis is organised as follows: In Chap. 2, we will present the theoretical background
necessary to understand this thesis. We will start by summarising the standard model of
cosmology and the weak gravitational lensing formalism and then give a brief overview of
some mathematical and statistical tools central to this thesis. We will briefly introduce
the data products used in this thesis in Chap. 3. In Chap. 4, we will present our efforts
to constrain cosmological parameters using persistent homology. Afterwards, in Chap. 5,
we will detail our modelling and validation efforts for third-order shear statistics. We will
present some concluding remarks in Chap. 6 and give an outlook on future work.
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CHAPTER 2

Theoretical background knowledge

“Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things
up. Then Einstein broke everything again. Now, we’ve basically got it all worked

out, except for small stuff, big stuff, hot stuff, cold stuff, fast stuff, heavy stuff,
dark stuff, turbulence, and the concept of time.”

– Zach Weinersmith

This chapter briefly summarises the background knowledge necessary to understand the
thesis. In the first section, we introduce the standard model of cosmology, the ΛCDM
model. The second section focuses on the theory behind the gravitational lensing effect.
In the third section, we review some mathematical and statistical methods required for
this thesis.

2.1. Cosmology
In its essence, the field of cosmology studies the origin and evolution of the Universe as a
whole (Ellis, 2006). By studying a large variety of observables, like the CMB or the LSS
of matter, we investigate how the Universe began, how it developed, and which laws of
nature govern its evolution on cosmological distance- and time-scales. We summarise our
present knowledge about cosmology while focusing on the aspects relevant to the work
conducted in this thesis. Our summary is based on Peebles (2020); Dodelson and Schmidt
(2020); Schneider (2006); Schneider (2009); the interested reader can find more detailed
explanations there.

2.1.1. The standard model of cosmology
In this section, we give a brief overview of the standard model of cosmology and a few
potential extensions, which we take as a basis for all analyses performed in this thesis. The
theoretical foundation of this model is the revolutionary theory of general relativity (GR)
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2. Theoretical background knowledge

discovered by Einstein (1915), where he postulated that our three spatial dimensions are
entangled with time and form a four-dimensional spacetime manifold. The geometry of
this manifold is dictated by the presence of matter and energy via the field equations

Rµν − R

2 gµν + Λ gµν = 8πG
c4 Tµν . (2.1)

Here, Rµν is the Ricci curvature tensor and R the scalar curvature, both of which can
be derived from the metric tensor gµν . These quantities describing spacetime geometry
depend on the energy-momentum tensor Tµν . The term Λ was originally introduced by
Einstein to allow for a static Universe; now, it describes the effects of dark energy. Within
the framework of GR, all free-falling particles (including photons) move through spacetime
on geodesics, which represent straight lines following the manifold’s curvature. In other
words, matter dictates how spacetime curves and that curvature, in turn, dictates how
matter moves. To describe the motion of matter in our Universe, we need to find its
metric.

2.1.1.1. The Friedmann–Lemaître–Robertson–Walker metric

Solving Einstein’s field equations is notoriously difficult and can only be done under some
simplifying assumptions. To derive the metric of our Universe, we rely on the cosmological
principle, which states that on large scales (≳ 200 Mpc), the Universe is homogeneous
and isotropic. The isotropy of the Universe can be observed to a very high degree both
in the large-scale structure of the galaxy distribution (Eisenstein et al., 2011) and in the
temperature of the CMB (Migliaccio and Planck Collaboration, 2019). In recent years,
some doubts have been cast upon this assumption of isotropy: There are claims that the
fine-structure constant (Wilczynska et al., 2020), the Hubble constant (Luongo et al., 2022)
and the temperature-luminosity relation of galaxy clusters (Migkas et al., 2020, 2021) are
not isotropic. While it is still too early to rule out observational effects, the assumption
of isotropy may have to be abandoned in the future.

Homogeneity, on the other hand, is much more challenging to observe, as we can not
observe our Universe at a uniform time due to the finite speed of light. Instead, we have
to assume that the Universe is isotropic for all observers, meaning that our place in the
Universe is not unique in any way. From this, homogeneity follows quickly.

Given a homogeneous and isotropic Universe, we can construct the Fried-
mann–Lemaître–Robertson–Walker (FLRW) metric as (Robertson, 1935; Walker, 1937)

ds2 = c2dt2 − a2(t)
[
dχ2 + f2

K(χ) (dθ2 + sin2θ dφ2)
]
. (2.2)

Here, t is the cosmic time, θ and φ are spherical angular coordinates. χ denotes the
radial comoving coordinate and a(t) is the scale factor, describing the relative size of the
Universe, normalised to a0 = a(t0) = 1 today1. At last, fK(χ) is the comoving angular
diameter distance, depending on the curvature of the Universe via

fK(χ) = 1√
K

sin
(√

Kχ
)
, (2.3)

1Here, and throughout this thesis, we denote the value of cosmological variables today by the subscript
0.
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2.1. Cosmology

where complex notation accounts for the case of negative curvature. In particular, fK(χ) =
χ holds for a flat Universe with K = 0. A universe whose spacetime is subject to the FLRW
metric is not necessarily static; it can contract or expand (in fact, ours does the latter).
Therefore, it makes sense to introduce comoving coordinates x as

r(t) = a(t)x , (2.4)

where r(t) is the proper (physical) coordinate. Two observers with no peculiar velocities
always have the same comoving distance in an expanding spacetime. If we can determine
the history of the scale factor a(t), we can infer the dynamics of the Universe on the largest
scales.

In order to do that, we insert Eq. (2.2) into the field equations (2.1) and assume that
the energy-momentum tensor describes a perfect fluid with density ρ and pressure p.
From this, the Friedmann equations (Friedmann, 1922) can be derived, which describe the
temporal behaviour of the Universe’s expansion rate:

H2(a) ≡
(
ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 + Λc2

3 , (2.5)

ä

a
= − 4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 , (2.6)

where G is the gravitational constant. The first Friedmann equation (2.5) describes the
expansion rate H(a) of the Universe, with the expansion rate today, H0 = H(t0), called
the Hubble constant. After its first measurement by Hubble (1929a), which was off by a
factor of 8, this Hubble constant has been measured to almost per cent-level precision. The
curious part is that observations of the early Universe like BAOs and the CMB suggest a
value of H0 ≈ 68 km s−1 Mpc−1 (Planck Collaboration et al., 2020b), whereas observations
of the local Universe like supernovae of type Ia (Riess et al., 2022), masers (Pesce et al.,
2020), surface brightness fluctuations (Blakeslee et al., 2021) or strong gravitational lensing
time delays (Wong et al., 2020) suggest a value of H0 ≈ 73 km s−1 Mpc−1. The exact
amount of tension varies depending on the measurements taken into account but is around
the 5σ level. Due to the residual uncertainty in the Hubble constant and the fact that
many other parameters directly depend on it, we usually parametrise it as

H0 = 100h km
s Mpc , (2.7)

where h is the dimensionless Hubble constant.
The Hubble expansion gives rise to peculiar phenomena. For photons, which describe

null-geodesics with ds2 = 0 in the spacetime metric (2.2), c2dt2 = a2(t)dχ2 holds. In
particular, when we observe a distant source, observed time-intervals ∆tobs and thus fre-
quencies νobs and wavelengths λobs differ from their values at the time they were emitted,

a(tobs)
a(tem) = 1

a(tem) = νem
νobs

= λobs
λem

. (2.8)

We define the redshift z of an observed source as the ratio of the wavelengths,

1 + z = λobs
λem

= 1
aem

. (2.9)
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2. Theoretical background knowledge

Locally, this redshift is often interpreted as a Doppler-shift introduced by the recession
velocity of the observed galaxy,

v = H0D = cz , (2.10)
but this picture is certainly not correct on cosmological distance scales, as we have observed
galaxies with redshift z ≫ 1, which would indicate a recession velocity v ≫ c (for a more
thorough discussion, see Davis and Lineweaver, 2004).

Combining both Friedmann equations, we get the adiabatic equation

d
(
a3ρc2)

dt = −pda3

dt , (2.11)

which dictates that the energy density ρc2 within a comoving volume changes with the work
done by its expansion or contraction, in a cosmological equivalent to energy conservation.
From this equation, we can infer how the density of different matter components changes
with time, given their equation of state (EoS)

w = p

ρc2 . (2.12)

In an ideal fluid, particles whose energy is dominated by their momentum have an EoS of
w = 1/3; in our present Universe, they are mainly photons and neutrinos and contribute
to the radiation density ρr. Particles whose energy is dominated by their rest-mass are
pressureless with an EoS of w = 0 and contribute to the matter density ρm in our Uni-
verse. There, we distinguish baryonic matter, which is made up of protons, neutrons, and
electrons, from dark matter, a mysterious collisionless matter component that appears
to interact only gravitationally. In the ΛCDM model, we assume the presence of dark
energy, which has an EoS of w = −1. This corresponds either to a constant term in
the field equations of GR (the Λ in Eq. 2.1) and thus a property of gravity, or to a fluid
with constant density ρΛ = Λc2

8πG and negative pressure, the vacuum energy. This would
correspond to writing the term ρΛ8πG

c2 on the right side of Eq. (2.1). Unfortunately, both
interpretations result in the same expansion behaviour of the Universe and can thus not be
distinguished using cosmological observations. For practical purposes, we use the vacuum
energy interpretation of dark energy for this thesis.

Of course, our knowledge of dark energy is extremely limited, and many interpretations
of this phenomenon exist. To constrain different dark energy models, we often extend the
standard ΛCDM model by allowing the EoS of dark energy to be different, w ̸= −1, which
we call the w cold dark matter model (wCDM) model. Sometimes, we even invoke dark
energy with an EoS that varies with time, w(a) = w0 + (1 − a)wa, the w0wa cold dark
matter model (w0waCDM) model.

Solving the adiabatic equation (2.11) for an arbitrary fluid with density ρ and EoS w(a),
we get

ρ(a) = ρ0 exp
[
3
∫ 1

a
da′ 1 + w(a′)

a′

]
. (2.13)

When we assume an EoS that evolves linearly with the scale factor, w(a) = w0 +(1−a)wa,
we solve the equation above to

ρ(a) = ρ0
[
a−3(1+w0+wa)e−3wa(1−a)

]
. (2.14)

10



2.1. Cosmology

In particular, we can insert the EoS for radiation, matter and dark energy:
matter wm = 0 ρm(a) ∝ a−3

radiation wr = 1
3 ρr(a) ∝ a−4

dark energy wΛ = −1 ρΛ(a) = const.

To describe the evolution of the Universe, we define the critical density ρcrit,0 = 3H2
0

8πG ,
which is the energy density that the Universe today has to assume such that the curvature
term K vanishes in the first Friedmann equation (2.5). We note that due to our interpre-
tation of dark energy as vacuum energy, the Λ-term in Eqs. (2.5) and (2.6) vanishes, and
the density ρ takes the form ρ = ρm +ρr +ρΛ. Using this, we can define the dimensionless
density parameters Ωx = ρx,0/ρcrit,0 and rewrite the Friedmann equation as

H2(a) =
(
ȧ

a

)2
= H2

0
[
Ωr a

−4 + Ωm a
−3 + (1 − Ω0) a−2 + ΩΛ

]
, (2.15)

where we have defined 1 − Ω0 = 1 − Ωm − Ωr − ΩΛ = Kc2/H2
0 . If we can determine

the values of these density parameters today, we can describe the Universe’s expansion
behaviour as a solution to this differential equation.2 Therefore, determining the values of
these cosmological parameters is of great interest. The Planck mission determined those
parameters with great precision: We know that our Universe is almost completely flat with
|1 − Ω0| < 0.003 and that the matter density is about Ωm ≈ 0.315 (Planck Collaboration
et al., 2020b). The radiation density parameter can be calculated easily from the CMB-
Temperature and yields Ωr = Ωγ +Ων ≈ 1.68 Ωγ ≈ 4.2h−2 ×10−5, where Ωγ is the photon
energy density parameter and Ων the neutrino energy density parameter.

We can use the definition of the Hubble parameter H(a) = ȧ/a and the FLRW metric
to derive some useful relations between time, scale factor, comoving distance, and redshift:

da = − 1
(1 + z)2 dz, dt = da

aH(a) = − dz
(1 + z)H(z) , dχ = −cdt

a
= − cda

a2H(a) = cdz
H(z) .

(2.16)
Using the relation between time t and scale factor a, we can determine how the relative

size of the Universe evolves with time. Unfortunately, there is no analytic solution for
a Universe containing matter, radiation and dark energy. However, we know that the
expansion behaviour of the Universe was governed by its different components at different
times, as depicted in Fig. 2.1. In the very early Universe, radiation was the dominating
component (as ρr ∝ a−4). After that followed a period of matter domination. Only
recently, our Universe has begun to be dominated by dark energy. The fact that we
live in a time where a transition between the dominance of two components (matter and
dark energy) is taking place seems like another unlikely coincidence. One can not help
but wonder if there are other components, whose densities are just extremely low today,
but that either dominated the energy budget of the Universe at very early times or will
dominate it in the future. Assuming the (flat) Universe contains only a single component
x with EoS w (which is a good approximation for many cosmological epochs), we can write
the Hubble function as

H2(a) = H2
0 a

−3(1+w) . (2.17)
2Of course that only holds if the ΛCDM model is accurate. For example, the future expansion of the

Universe depends massively on the EoS of dark energy, compare Fig. 2.1.
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Figure 2.1. – The left panel shows the value of the matter density parameters in a flat ΛCDM
Universe with H0 = 70 km

s Mpc and Ωm = 0.3 as a function of the scale factor. The right panel
shows the behaviour of the scale factor as a function of time for three flat wCDM cosmologies with
H0 = 70 km

s Mpc and Ωm = 0.3. One can see that the scale factor a diverges at t ≈ 10.7 Gyr for the case
of w = −2 (shown by the black dashed line). In both cases, the dotted lines indicate the value of the
scale factor a and cosmic time t today. Adapted from Jens Erler.

Inserting this into Eq. (2.16), we get

t(a) =





2
3H0(1+w)a

3
2 (1+w) w ̸= −1

1
H0

ln(a) + t0 w = −1
, (2.18)

yielding

a(t) =





[
3H0(1+w)

2 t
] 2

3 (1+w)−1

w ̸= −1
exp(H0(t− t0)) w = −1

. (2.19)

Note that for the case of w < −1, we have been a bit imprecise with our notation, as we
implicitly assumed that at t = 0, a = 0 holds. However, for w ≤ −1 the Universe never
has a scale factor of a = 0, which implies that a Universe containing only dark energy
would have no big bang. We can see that in a Universe that after some time becomes
dominated by a component with EoS w < −1, the scale factor a(t) diverges at some finite
time t, which would imply that the distances between every single elementary particle in
the Universe become infinite. This is called the ‘big rip’ scenario. As an example, we
show the expansion behaviour of the Universe for different dark energy EoS in a wCDM
cosmology in Fig. 2.1.

We can now insert the already known EoS for matter, radiation and dark energy into
Eq. (2.19), yielding a(t) ∝ t

2
3 for a matter-dominated Universe, a(t) ∝ t

1
2 for a radiation-

dominated Universe and a(t) ∝ exp(H0t) for a Universe dominated by dark energy with
an EoS of w = −1. The current age of the Universe, t0, can be measured both by
constraining the other cosmological parameters (Planck Collaboration et al., 2020b) and
by investigating the age of the oldest objects in our Universe (Valcin et al., 2020). Both
methods are roughly consistent (Di Valentino et al., 2021c) and yield t0 ≈ 13.8 Gyr.
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2.1. Cosmology

2.1.1.2. Cosmological distances

Living in an expanding Universe with a finite speed of light and a non-Euclidean met-
ric gives rise to many phenomena that seem counter-intuitive to our minds, which have
adjusted to a static, Euclidean spacetime. For example, we know that looking far away
means looking into the past and that we look towards the singularity at the big bang in
every direction. We can further show that 94% of all galaxies we can observe are no longer
in our future light cone (meaning that we can never reach them, even if we travel at the
speed of light towards them). While these phenomena are relatively easy to understand,
they contradict our intuition.

In cosmology, the probably most relevant notion is that the distance to an object can
no longer be uniquely defined. Different concepts of distance have emerged on Earth,
which are all equivalent in our minds, yet yield vastly different results when applied on
cosmological scales. For example, to get the distance to an object, we could divide its
(known) physical size R by its angular extent dθ and get the angular diameter distance
Dang = R/dθ. Alternatively, if the object radiates energy with a luminosity L, we can use
the inverse square law and calculate the distance from the measured flux S via Dlum =√
L/(4πS). We could also measure the time τ it takes a light-ray3 to travel that distance

and get the lookback distance Dγ = cτ . On Earth, all these measures will yield the same
result (barring measurement errors). In an expanding Universe, these distances are vastly
different, which gives rise to some confusing stories (especially in non-scientific media).
For example, when the Hubble Space Telescope (HST) detected the furthest star ever
recorded (Welch et al., 2022), it was reported by ctvnews to be more than 28 billion light-
years away4, which seems odd as our Universe is only about 14 billion years old. Other
sources, like the independent5, cite the distance to the same star as 13 billion light-years.
Despite these vastly different distance estimates, none of the two newspapers made a
mistake; they simply used different distance measures.

From the FLRW metric (2.2), we can set ds = R and get

Dang(z) = R

dθ = afK(χ)dθ
dθ = fK(χ)

1 + z
. (2.20)

More generally, defining Dang(z1, z2) and χ(z1, z2) as the angular diameter and comoving
distances between redshifts z1 and z2, we can calculate

Dang(z1, z2) = fK [χ(z1, z2)]
1 + z2

. (2.21)

Note that, while χ(z1, z2) = χ(z2) − χ(z1) holds, fK(z1, z2) = fK(z2) − fK(z1) only holds
in a flat universe, and Dang(z1, z2) ̸= Dang(z2) −Dang(z1) in general.

A similar relation for the luminosity distance can be obtained (Etherington, 1933):

Dlum(z) =
√

L

4πS = (1 + z)fK(χ) = (1 + z)2Dang(z) . (2.22)

3Like all physicists, we assume that we live in a perfect vacuum.
4https://www.ctvnews.ca/sci-tech/hubble-sees-most-distant-star-ever-28-billion-light-

years-away-1.5840991
5https://www.independent.co.uk/news/uk/earth-scientists-relics-johns-hopkins-university-

albert-einstein-b2047376.html
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Figure 2.2. – The different distance measures as a function of redshift z in a flat ΛCDM cosmology.
We show the angular diameter distance Dang (blue), the luminosity distance Dlum (orange), the
lookback distance Dγ (green), the comoving distance χ (red) and the linear Hubble law D = zc/H0
(purple, dashed). One can see that for small redshifts z ≲ 0.1, the distance measures agree.

We can further show with Eq. (2.16), that

Dγ(z) = cτ = c

∫ tobs

tem
dt =

∫ z

0

dz′ c

(1 + z′)H(z′) , (2.23)

holds.
As a little example, we can take the star observed by Welch et al. (2022), which has a

redshift of z = 6.2. Assuming a flat universe with H0 = 68 km s−1 Mpc−1 and Ωm = 0.3,
we get

fK(χ) = χ ≈ 28.0×109 ly, Dγ ≈ 13.0×109 ly, Dang ≈ 3.9×109 ly, Dlum ≈ 201.3×109 ly .
(2.24)

We can see that ctvnews cited the comoving distance to the star, while independent opted
for the lookback distance.

A graph of all distance measures as a function of redshift is shown in Fig. 2.2. It is
noteworthy that the angular diameter distance Dang has a maximum at z ≈ 1.7 and
decreases afterwards.

2.1.1.3. Cosmic inflation

Within the ΛCDM model, we can now compute the Universe’s expansion history. When
doing this, two observations stick out that are hard to explain.

The first one is the flatness problem (Dicke, 1970): We observe our Universe to have a
very low curvature if any. This means that the sum of all energy densities is almost equal
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Figure 2.3. – Two examples for the evolution of curvature with the scale factor a in a Universe with
Ωm = 0.3 and ΩΛ ≈ 0.7.

to the critical density of the Universe (nowadays, we know that with an accuracy of about
0.2%, see Planck Collaboration et al., 2020b). If we track the evolution of curvature via

1 − Ω0(a) = 1 − ρm(a) + ρr(a) + ρΛ(a)
ρcrit(a) , (2.25)

we see that any potential curvature today has been much smaller at early times. In par-
ticular, at t ≈ 10−34 s, the curvature parameter must have been smaller than 10−52. Such
an incredible coincidence seems extremely unlikely, meaning there has to be a mechanism
in the early Universe to drive down the curvature.6

The second problem is the horizon problem (Rindler, 1956). It stems from the ob-
servation that the CMB around us is extremely isotropic to a degree of ∆T/T ≲ 10−5.
However, we can show that large parts of the CMB have not been in causal contact with
each other, meaning that they could not have exchanged any information since the birth
of the Universe: The distance that light (and thus information) can travel in an expanding
Universe can be parametrised by the comoving horizon

rH,com =
∫ t

0

c dt
a(t) =

∫ ∞

z

cdz
H(z) . (2.26)

The CMB was released at a redshift of z ≈ 1100, giving a comoving horizon size of
rH,com ≈ 280Mpc. To compute its angular extent on the sky, we need to employ the
comoving angular diameter distance fK(χ(z)) = χ(z), where we assume a flat Universe.

6Some people rely here on the anthropological argument, which states that a too large curvature would
not allow for a Universe that has active star formation for a sufficient amount of time to form life,
meaning that we live in one of the few Universes that allow for the existence of observers. However,
that argument requires the existence of infinite universes and seems quite unsatisfactory.
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This can be calculated from Eq. (2.16) and takes χ(1100) ≈ 13.9Gpc. The angular extent
of a causally connected region of the CMB on the sky is thus

θ = dH,com
χ

≈ 1◦9′ . (2.27)

This means that, without ever having any chance of exchanging information, different
regions of the CMB have incredibly similar temperatures. Even more puzzling, the tiny
temperature fluctuations of the CMB are correlated on scales beyond the horizon size
without an opportunity to exchange information (Planck Collaboration et al., 2020b; Cea,
2022). Again, this seems like too big of a coincidence to ignore.

A proposed solution for these two problems is called inflation. The basic principle
is the following: The Grand Unified Theories (GUT) propose that at a temperature of
T ∼ 1014 GeV, the electromagnetic force and both strong and weak nuclear forces arise
from a single gauge theory due to symmetry breaking. We have no way to create these
settings in a laboratory, so we have no idea what happens at those temperatures. However,
there is a good reason to assume that something beyond our standard models occurs. These
temperatures were exceeded in the early Universe until about t ≈ 10−34 s.

We propose that before this time, the Universe was subject to an exponential expansion
(similar to present-day dark energy, just 27 orders of magnitude stronger), driven by a slow-
rolling scalar field. In this rapidly expanding Universe, particle-antiparticle pairs would
spontaneously emerge and immediately be separated by the rapid expansion. Fluctuations
in the expansion caused by the energy-time uncertainty would lead to tiny perturbations
in the extraordinarily homogeneous Universe and form the primordial seeds of structure
formation.7 This scenario would have several consequences:

As can be seen in Fig. 2.3, an accelerated expansion decreases the curvature of the
Universe. After about 60 e-foldings, any curvature of order unity is smoothed out to
the level we observe in our Universe. Inflation would thus naturally solve the flatness
problem. Furthermore, before inflation occurred, the entire observable Universe was in
causal contact and thus could come to its homogeneous state. This would solve the
horizon problem.

Additionally, this phenomenon would solve a different issue that GUT face. At extremely
high temperatures, these theories predict the emergence of heavy and exotic particles,
like magnetic monopoles, which should dominate over baryonic and dark matter. In an
inflationary scenario, the density of these exotic particles would be decreased to a negligible
amount, which would explain why we have not found them yet.8

The major success of inflation is that it predicts the slope of the primordial power
spectrum ns (which we introduce in Sect. 2.1.2.5) to be almost unity but a bit smaller. Our
best constraints on this parameter are ns = 0.965 ± 0.004, which confirm this prediction.

Whether or not inflation actually happened, and if so, how, is still actively debated.
Some people claim that the conditions required for this inflationary process require even
more fine-tuning than the flatness problem (Penrose, 2016; Steinhardt, 2011), and current-

7The question of why matter heavily dominates over antimatter in the current Universe is called baryo-
genesis and has not yet been answered satisfactorily.

8On the other hand, to explain the non-existence of theorised particles with a theorised scenario seems a
bit pointless.
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generation observations have already ruled out many models of inflation. Others argue
that current observations support the scenario of inflation (Guth et al., 2014).

Unfortunately, constraining inflation is challenging, as we can not directly observe it. In
the future, we hope to observe B-mode polarisation patterns in the CMB9, which would be
strong evidence for inflation and could place meaningful constraints on different inflation
scenarios. Furthermore, the planned Laser Interferometer Space Antenna (LISA) may be
able to measure a background of primordial gravitational waves, which would have been
caused by inflation.

2.1.2. Structure evolution in the Universe
By now, we have discussed the evolution of the Universe as a whole and found a way to
describe its expansion rate with a relatively simple equation. We now want to direct our
attention to the structures that form within this expanding Universe.

2.1.2.1. The origin of structure

As we can observe from the CMB, the early Universe was extremely homogeneous with
tiny anisotropies of ∆T

T ∼ 10−5. In this work, we assume the widely accepted theory that
the seeds of structure formation are tiny quantum fluctuations that have been blown up
to macroscopic scales by the inflation of the early Universe. These seeds give rise to tiny
fluctuations in the gravitational potential Φ, so overdensities attract more matter and
grow over time. At some point, they become dense enough to collapse into gravitationally
bound dark matter halos. These dark matter halos then begin to merge with others and
accrete into galaxies and, eventually, massive galaxy clusters. In this section, we want to
quantify the growth of these matter perturbations over time and find a model for their
eventual collapse.

It is noteworthy that before the CMB was released, the baryonic matter formed a
charged plasma, consisting primarily of protons, helium nuclei and electrons. This plasma
was strongly coupled to the radiation via Compton scattering. While the gravitational
potential attracted the baryons, the radiation pressure suppressed the infall of baryons
into overdensities. This gave rise to oscillatory modes in the baryon-photon fluid. Once
the Universe cooled down enough so that the baryons could form neutral elements, it
became transparent to photons. The CMB was released, and the baryons could fall into
the overdensities that the dark matter distribution had formed. The BAOs of the baryon-
photon fluid are imprinted both in the CMB and in the LSS of galaxies and contain a
wealth of cosmological information. However, for our work, they are not relevant, so
we focus on the structure evolution of dark matter, which poses the dominant matter
component in the Universe and has remained unaffected by the radiation pressure. The
distribution of baryonic matter largely follows the dark matter distribution; however, the
formation of stars and galaxies is subject to many hydrodynamical processes that are
more complex than the simple gravitational interaction of dark matter. Therefore, the
exact correspondence between the emergence of galaxies and the underlying dark matter
distribution is more complicated.

9BICEP2 Collaboration et al. (2014) reported a detection of B-mode polarisation, but it was later shown
that their signal might have been caused by Galactic dust
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2.1.2.2. Linear evolution of matter density perturbations

To understand the growth of structure in the Universe, we employ the pressureless hydro-
dynamical fluid equations

∂ρ

∂t
+ ∇r · (ρv) = 0 , (2.28)

∂v

∂t
+ (v · ∇r) · v = − ∇rΦ , (2.29)

∇2
rΦ = 4πGρ− Λ . (2.30)

For a fluid, the continuity equation (2.28) describes the conservation of mass, the Euler
equation (2.29) corresponds to the conversation of momentum in the presence of a grav-
itational potential Φ. The Poisson equation (2.30) describes how the presence of matter
shapes the gravitational potential Φ. This equation has been modified to allow for the
presence of a cosmological constant Λ.

We now introduce the comoving density, velocity and gravitational potential (compare
Eq. 2.4):

ϱ(x, t) = ϱ[r/a(t), t] = ρ(r, t) , (2.31)

u(x, t) = v(r, t) − ȧx = v (r, t) − ȧ

a
r , (2.32)

Φ(x, t) = Φ(ax, t) + äa

2 x2 . (2.33)

Furthermore, we define the density contrast δ(x, a) = [ϱ(x, a) − ϱ̄(a)]/ϱ̄(a) and note that
∇x = a∇r. We find that a completely homogeneous universe with ρ(x, t) ≡ ρ̄(t), v(x, t) =
H(t) a(t) x, and Φ ≡ äa

2 |x|2 solves the system of Equations (2.28)-(2.30). Inserting the
comoving quantities and subtracting the homogeneous solution, we get

∂δ

∂t
+ 1
a

∇x · [(1 + δ) u] = 0 , (2.34)
∂u

∂t
+ ȧ

a
u + 1

a
(u · ∇x) u = − 1

a
∇xΦ , (2.35)

∇2
xΦ = 3H2

0 Ωm
2a δ , (2.36)

where for the last equation we have used ϱ̄(a) = Ωmρcrita−3. This system of non-linear
differential equations has no known general solution. However, we can use the fact that
in the early Universe, the perturbations are small, meaning δ ≪ 1. Furthermore, we can
assume that the initial peculiar velocities u are also small. Disregarding all but leading-
order terms in δ and u, our set of equations transforms to

∂δ

∂t
+ 1
a

∇x · u = 0 , (2.37)
∂u

∂t
+ ȧ

a
u = − 1

a
∇xΦ , (2.38)

∇2
xΦ = 3H2

0 Ωm
2a δ . (2.39)
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We can now combine these equations by taking ∂
∂t(2.37) − ∇

a (2.38) and use Eq. (2.39) to
replace the occurring ∇2

xΦ, yielding a second-order linear ordinary differential equation
(ODE) for the density contrast:

∂2δ

∂t2
+ 2ȧ

a

∂δ

∂t
− 3H2

0 Ωm
2a3 δ = 0 . (2.40)

This ODE has two linearly independent solutions, and since no derivatives with respect
to x occur in this equation, the solutions factorise. We can thus write

δ(x, t) = D+(t)∆+(x) +D−(t)∆−(x) . (2.41)

By using the second Friedmann equation (2.6) for the matter-dominated era, one can see
that

∂

∂t

[
Ḣ(t) +H2(t)

]
= Ḧ(t) + 2H(t) Ḣ(t) = 3H2

0 Ωm
2a3 H(t) , (2.42)

meaning that the Hubble function H(t) solves Eq. (2.40). As the Hubble function decreases
with time, we call this solutionD−(t) = H(t). The term ∆−(x) is not relevant for structure
formation since the term D−(t)∆−(x) decays with time and soon becomes negligible.
Given this one solution to the ODE, the second one can be found:

D+(a) ∝ 5Ωm
2 H(a)H2

0

∫ a

0

da′

[a′H(a′)]3 , (2.43)

where we fix the proportionality constant such that D+(a = 1) = 1. This growth factor
describes the relative size of density fluctuations as a function of the scale factor. One can
show that for Ωm = 1, D+(a) = a holds.

2.1.2.3. Structure evolution in the primordial Universe

So far, we have discussed how matter perturbations grow as a function of the scale factor
in a matter-dominated Universe. Furthermore, we have worked under the assumption that
density perturbations are in causal contact, meaning that the horizon size from Eq. (2.26)
is much larger than the physical extent λ of the density fluctuations in question. If that
is not the case, we can not apply the hydrodynamical fluid equations since gravitational
interaction also propagates at the speed of light.

Right after inflation, most perturbations are much larger than the horizon size. Instead
of applying the fluid equations, we treat these density perturbations as little ‘pocket uni-
verses’ that expand with their own Hubble flow, governed by a slightly different density ρ.
Up to a scale factor of aeq = Ωr/Ωm, they are dominated by radiation. While the radiation
pressure does not directly affect the dark matter perturbations, it does influence the rate
of expansion and acts as a source of gravity via the energy-momentum tensor Tµν .

We will not perform these calculations here and instead refer the reader to Schneider
(2009). The evolution of dark matter density perturbations can be summarised to

super-horizon sub-horizon
radiation-dominated δ(a) ∝ a2 δ(a) = const.
matter-dominated δ(a) ∝ a δ(a) ∝ a
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After inflation, each density perturbation starts as a super-horizon perturbation and thus
grows proportional to a2. After some time, the perturbation ‘enters the horizon’ (more
accurately: the horizon grows larger than the density perturbation) and, provided the
Universe is still dominated by radiation, the perturbation stops growing. After some more
time, the Universe becomes matter-dominated, and all super- and sub-horizon perturba-
tions grow proportional to the scale factor. This means that the growth of small density
perturbations is heavily suppressed during the radiation-dominated phase, whereas per-
turbations larger than the horizon size at matter-radiation equality are not suppressed at
all. To describe this behaviour, we employ the transfer function Tk.

Let δ̃(k, a) be the Fourier transform of the density contrast and let ks be a wave number
small enough that a perturbation of that scale enters the horizon in the matter-dominated
era (and is thus not suppressed). Then the transfer function can be defined via

δ̃(k, 1)
δ̃(ks, 1)

= Tk
δ̃(k, ai)
δ̃(ks, ai)

, (2.44)

where ai denotes the scale factor at the end of inflation and δ̃(k, 1) is the linearly extrap-
olated density contrast today. This transfer function has a crucial length-scale, namely
λeq = dH(aeq), the comoving horizon size at matter-radiation equality. This length-scale
can be found in the location of the peak of the matter power spectrum (as seen in Fig. 2.4).

2.1.2.4. Statistics of random fields: correlation functions and polyspectra

In the limit of linear structure formation, we can now describe the evolution of density
fluctuations over time. However, investigating the density field itself is not particularly
useful if we want to gain information about our Universe. For example, an observer in
our Universe that measures the local density contrast at the same cosmic time as we do,
just at a different position in space, will see a completely different distribution of density
fluctuations. However, the statistical properties of these fluctuations remain the same.10

Throughout this thesis, we assume that we work with a zero-mean field, which holds by
definition for the density contrast δ.

The most commonly used statistical property is the two-point correlation function and
its Fourier-space analogue, the power spectrum. The two-point correlation function of a
field of density perturbations δ(x) is defined as

ξ(x,y) = ⟨δ(x)δ(y)⟩ . (2.45)

Here, the brackets ⟨. . .⟩ denote an ensemble average. Unfortunately, we only have one
Universe to utilise for our statistical analysis, which makes taking an ensemble average
difficult. We thus make use of an ergodic-type hypothesis and replace the ensemble average
with a volume average (Ellis et al., 2012, page 307). As our Universe is (presumably)
homogeneous and isotropic, the value of the correlation function ξ(x,y) only depends on
the distance between x and y, meaning ξ(x,y) = ξ(|y − x|).
10The same holds for all other observations, like the CMB.
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In our cosmological model, it is much easier to describe the Fourier modes δ̃(k) of the
density fluctuations

δ̃(k) =
∫

R3
d3x δ(x) exp(−ik · x) (2.46)

δ(x) =
∫

R3

d3k

(2π)3 δ̃(k) exp(ik · x) . (2.47)

We can then define the power spectrum as

(2π)3 δD(k + k′)P (k) =
〈
δ̃(k) δ̃(k′)

〉
, (2.48)

where δD is the Dirac delta functional and k = |k| is the modulus of the k-vector. The
power spectrum P can be expressed as the Fourier transform of the correlation function

P (|k|) =
∫

R3
d3x ξ(x) exp(−ix · k) . (2.49)

The next-order correlation function is the three-point correlation function:

ζ(x,y, z) = ζ(|z − y|, |z − x|, |y − x|) = ⟨δ(x)δ(y)δ(z)⟩ . (2.50)

Its Fourier-space counterpart is the bispectrum

(2π)3δD(k1 + k2 + k3)B(k1, k2, k3) =
〈
δ̃(k1)δ̃(k2)δ̃(k3)

〉
. (2.51)

In general, one can define the n-th order correlations and polyspectra as
〈

n∏

i=1
δ(xi)

〉
= ξn(x1, . . . ,xn)

〈
n∏

i=1
δ̃(ki)

〉
= (2π)3 δD

(
n∑

i=1
ki

)
Pn(k1, . . . ,kn) . (2.52)

In the framework of gravitational lensing, we mostly work with two-dimensional fields
instead of the three-dimensional ones we are discussing here. All the introduced concepts
still apply; one just has to replace the (2π)3 with a (2π)2 to account for the correct
normalisation of the Fourier transform.

To assess the full statistical properties of a random field, knowledge of all n-point corre-
lation functions would be required, which is obviously impossible. However, there is strong
evidence that the information content of higher-order correlation functions diminishes in
our Universe.

Gaussian and lognormal random fields A random field δ(x) with power spectrum P (k)
is called a Gaussian random field if its Fourier modes δ̃(k) are statistically independent
and the probability distribution for a single Fourier mode is characterized by a normal
distribution with zero mean and variance P (|k|).
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For a Gaussian random field, Isserlis’ theorem (also called Wick’s theorem) states that
products of more than two expectation values factorise as

⟨X1 . . . Xn⟩ = 1
2

∑

N∈P([1,...,n])

〈∏

i∈N
Xi

〉〈∏

j ̸∈N
Xj

〉
, (2.53)

where P([1, . . . , n]) denotes the power set of [1, . . . , n], meaning the set of all its possible
sub-sets. As an example, the fourth order correlation between four random variables
decomposes as

⟨X1X2X3X4⟩ = ���*
0

⟨X1⟩ ⟨X2X3X4⟩ +���*
0

⟨X2⟩ ⟨X1X3X4⟩ +���*
0

⟨X3⟩ ⟨X1X2X4⟩ +���*
0

⟨X4⟩ ⟨X1X2X3⟩
+ ⟨X1X2⟩ ⟨X3X4⟩ + ⟨X1X3⟩ ⟨X2X4⟩ + ⟨X1X4⟩ ⟨X2X3⟩ . (2.54)

For a zero-mean Gaussian random field, this implies that all odd correlations vanish,
⟨X1 . . . X2n+1⟩ = 0, and all even higher-order correlations are already fully defined by the
second-order correlations. This implies that the entire information content of a Gaussian
random field is captured by its two-point correlation function or its power spectrum.

For an arbitrary random field, we define the connected correlation ⟨. . .⟩c as the part
that remains when the permutations of sub-correlations are subtracted. For example, for
a product of four expectation values ⟨X1X2X3X4⟩, we define its connected part as

⟨X1X2X3X4⟩c = ⟨X1X2X3X4⟩ − ⟨X1X2⟩ ⟨X3X4⟩ − ⟨X1X3⟩ ⟨X2X4⟩ − ⟨X1X4⟩ ⟨X2X3⟩ .
(2.55)

In particular, for a Gaussian random field, ⟨. . .⟩c = 0 for all correlations higher than
second-order.

If we want to describe a field that also contains higher-order correlations, we can resort
to lognormal fields.11 Let δG(x) be a Gaussian random field with correlation function
ξG(x), zero mean, and unit dispersion (meaning ξG(0) = 1). Then the lognormal field
δL(x) defined via

δL(x) = Ae− α2
2

(
eα δG(x) − e

α2
2

)
, (2.56)

with
A = σ√

eα2 − 1
, (2.57)

has zero mean and dispersion σ. The parameter α describes the degree of non-Gaussianity.
Its two-point correlation function can be calculated as (P. Schneider, private comm.)

ξL(x) = A2
(
eα2 ξG(x) − 1

)
, (2.58)

and its three-point correlation function ζL can be calculated as (P. Schneider, private
comm.)

ζL(x, y, z) = ξL(x) ξL(y) ξL(z)
A3 + ξL(x) ξL(y) + ξL(x) ξL(z) + ξL(y) ξL(z)

A
. (2.59)

11Indeed, it appears that lognormal fields constitute a reasonably good approximation for the late-time
density field of the Universe (Hilbert et al., 2011).
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2.1.2.5. The power spectrum in linear theory

An overwhelming amount of evidence suggests that the CMB is at least very close to a
Gaussian random field.12 It is essential to note that, within the framework of linear struc-
ture formation, the spatial and temporal dependencies of the density field decouple (see
Eq. 2.41), meaning that the amplitudes of density perturbations grow, but the structure of
the field itself does not change. In particular, this means that if the initial conditions are
a Gaussian random field, then at all times during linear structure formation, the density
field remains Gaussian.

This implies that the density perturbations of the early Universe have a vanishing bis-
pectrum and that the knowledge of their power spectrum already provides us with all the
information we can get about our cosmological model. Models of inflation predict that
the initial post-inflation power spectrum is a power law Pi(k) ∝ kns with spectral index
ns ≲ 1. From our previous considerations, we can thus define the linear power spectrum
as

Plin(k, a) = AT 2
k D

2
+(a) kns . (2.60)

The normalisation constant A can also be defined by the parameter σ8, which measures
the variance of linear matter fluctuations within a comoving radius of 8h−1 Mpc. It can
be calculated from the quantity

σ2(R) = 1
2π2

∫ ∞

0
dk k2 Plin(k, a = 1) W̃ 2(kR) , (2.61)

where W̃ (x) = 3 (sin x−x cosx)/x2 is the Fourier transform of a top-hat filter, by setting
R = 8h−1 Mpc. The scale of 8h−1 Mpc was chosen such that σ8 is approximately unity.
We see that σ2

8 ∝ A holds, so fixing either of them uniquely defines the amplitude of the
power spectrum.

We note that this picture is a bit simplified since it neglects the effects of baryons, which
were coupled to radiation in the pre-CMB-era. For an accurate model of the linear power
spectrum, one would have to use a Boltzmann-solver like Code for Anisotropies in the
Microwave Background (CAMB, Lewis and Challinor, 2011). We show the linear matter
power spectrum in Fig. 2.4. One can see that the constraints from different observations,
spanning a broad range of cosmic scales and times, all agree relatively well with each
other, which is a testament to why the ΛCDM model has become the standard model of
cosmology.

2.1.2.6. Non-linear structure formation

In the last sections, we have discussed the linear structure formation in our Universe. We
know that this formalism can no longer describe the current density field. The existence of
stars and planets, which have a density contrast of δ ∼ 1030, proves that the assumption
δ ≪ 1 is not justified everywhere. Even on large scales, galaxy clusters have an average
density contrast that surpasses unity by about two orders of magnitude. We thus know
that our linear approximation breaks down at some point, and we need to find a formalism
to describe the non-linear regime of structure formation.
12Searches for non-Gaussianities in the CMB, which could constrain different scenarios of inflation, are

still ongoing.
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Figure 2.4. – The linear matter power spectrum at z = 0 determined by different probes. The dotted
black line shows the impact of non-linear structure formation, which we discuss in Sect. 2.1.2.6. From
Planck Collaboration et al. (2020a).

Our arguably best chance to accurately model this is by cosmological N-body simu-
lations. These simulations are conducted in a three-dimensional cube of comoving side-
length L. First, a Gaussian random field is created from a linear power spectrum at a
time where the density distribution of the Universe can still be considered Gaussian (usu-
ally a ∼ 0.01)13. Then, discrete particles are distributed in this box according to the
probability density dictated by the random field. These particles usually have a mass of
M ∼ 109M⊙, which is crucial for the mass-resolution of the simulation.

After the initial density field is constructed, the gravitational interactions between the
particles are modelled in the cubic, comoving box. Accounting for the interactions of all
particle pairs is of computational complexity O(N2), which would make the computation
prohibitively expensive. There are two potential strategies to mitigate this. The first
one is a particle-mesh method, in which the density field of the Universe is computed
on a regular grid from the individual particles. Then, the gravitational interaction can
be computed from a convolution, which can be performed in Fourier space utilising the
convolution theorem. This reduces the computational complexity to O(Npix logNpix),
where Npix is the number of pixels in the grid, but it introduces inaccuracies on length
scales approaching the pixel size. To account for these inaccuracies, one corrects for the
small-scale interactions either by pre-computed correction formulae or by computing these
interactions directly.

The second method is a tree code. For this, a hierarchical tree is computed from the
particles. Each cell of the tree contains a set of galaxies and represents their total mass
13Some simulations also use Lagrangian perturbation theory to set the initial conditions.
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and (weighted) average position. Each cell is then recursively sub-divided into two subcells
until a pre-defined maximum sub-division is achieved. To model large-scale gravitational
interactions between individual particles, one can now compute the interactions between
the respective cells containing these particles, which yields an excellent approximation.
The closer two particles are together, the smaller the cells used for this computation have
to be.

Usually, N-body simulations only contain dark matter since it is the dominant matter
component of the Universe and is relatively easy to model, as it only interacts gravita-
tionally. Simulations also containing baryons are much more complex, as they also need
to model all kinds of baryonic effects, from radiative cooling of gas to complex feedback
processes of supernovae or supermassive black holes. Neglecting these baryons comes at
a cost. Firstly, we might know the density distribution of dark matter after running an
N-body simulation, but we do not know at which points in space we would observe galaxies
or what the properties of these galaxies would be. In this work, we analyse the signal from
cosmic shear, which does not distinguish between baryonic and dark matter, so this is
not an issue for us. However, due to gravitational interaction, the baryonic matter distri-
bution also affects the dark matter distribution. The abovementioned feedback processes
modify the power spectrum of density fluctuations, especially on small scales. Usually, one
tries to mitigate these effects by correction factors that are derived from hydrodynamical
simulations.

However, even for gravitational self-interaction, the discretisation of the matter dis-
tribution into particles of mass M ∼ 109M⊙ leads to close encounters. These result in
unphysical scattering processes, which would not happen in a smooth matter distribu-
tion. To mitigate this, a force-softening is introduced, where the strength of gravitational
interactions is reduced below a specific length scale.

N-body simulations can not be generally trusted for small halos containing less than
∼ 100 particles, as the finite mass resolution skews the results. For large halos, the force-
softening length has an impact and can influence the density profile. Furthermore, scales
larger than ∼ 1/3 of the box-size L are affected by the periodic boundary conditions and
should also not be trusted.

Despite all these limitations, N-body simulations are the most accurate way to model and
understand non-linear structure formation. We have no way to verify that the predictions
made by these simulations are accurate, but we know that different N-body codes produce
very consistent results (Springel et al., 2021), which is a good indicator that we understand
the limitations of the simulations well. Of course, it is unfeasible to run N-body simulations
whenever we want to predict a statistic, which is why other approaches to non-linear
structure formation have been developed.

The most straightforward way to achieve that is to go beyond linear perturbation theory.
Lagrangian perturbation theory allows to compute the 1-loop and 2-loop corrections for
non-linear effects on the power spectrum. Employing these, it is possible to calculate the
power spectrum up to the mildly non-linear regime of δ ≈ 1. The behaviour at smaller
scales, where the density contrast is much larger than unity, can not be captured by
perturbation theory.
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Applying leading order perturbation theory yields the tree-level bispectrum

Btree(k1,k2,k3, a) = 2F (k1,k2)P (k1, a)P (k2, a)
+ 2F (k1,k3)P (k1, a)P (k3, a)
+ 2F (k2,k3)P (k2, a)P (k3, a) , (2.62)

with the perturbation kernel

F (k1,k2) = 5
7 + 2

7
(k1 · k2)2

k2
1 k

2
2

+ 1
2

k1 · k2
k1 k2

(
k1
k2

+ k2
k1

)
. (2.63)

A more phenomenologically motivated approach is the halo model formalism, which
assumes that all matter is contained in dark matter halos of an identical density profile,
which have collapsed and virialised. This assumption is certainly not true, as a large part
of the inter-galactic medium has not collapsed into any dark matter halos. However, the
halo-model formalism based on this assumption yields remarkably accurate results for the
statistical matter distribution in the non-linear regime.

Given the abovementioned assumption, we need to fix three quantities to get a well-
defined model: The density profile of the dark matter halos ρ(r), the number density of
halos of mass M at scale factor a, n(M,a), and the spatial distribution of dark matter
halos in the Universe. Navarro et al. (1996) found from N-body simulations that dark
matter halos all have a similar density profile, the Navarro-Frenk-White (NFW) profile,
which is usually used as the density profile in the halo model. The halo mass function
was analytically derived by Press and Schechter (1974) under the assumption that dark
matter haloes undergo a spherical collapse. Unfortunately, an ellipsoidal collapse of dark
matter haloes is a much more likely scenario, so nowadays, a fitting formula from N-body
simulations (such as Sheth and Tormen, 1999) is used. The spatial distribution of dark
matter halos is subject to a halo bias that describes when overdensities start collapsing
into dark matter halos. For our purposes, we require both the linear and quadratic halo
bias b1(M,a) and b2(M,a)

δH(x, a|M) ≈ b1(M,a) δ(x, a) + 1
2b2(M,a) δ2(x, a) , (2.64)

which can be approximated by equations 14 and 15 of Scoccimarro et al. (2001)
We now briefly describe how Takahashi et al. (2020) construct a bispectrum model

from the halo model. The halo model power spectrum can be constructed in the same
way. The total matter bispectrum is comprised of a sum of three terms, the 1-halo term,
the 2-halo term and the 3-halo term. The 1-halo term describes the contribution of triangle
configurations where all three particles reside in the same dark matter halo:

B1h(k1, k2, k3, a) =
∫

dM dn(M,a)
dM

(
M

ρ̄(a)

)3
ũ(k1,M, a) ũ(k2,M, a) ũ(k3,M, a) , (2.65)

where ũ(k,M, a) describes the Fourier transform of the scaled density profile ρ(r,M, a)/M .
The 2-halo term describes the contribution of triangles where two points are in one halo,
and the third point is in the second one. It can be computed as

B2h(k1, k2, k3, a) = I1
2 (k1, k2, a) I1

1 (k3, a)Plin(k3, a) + 2 Perm. , (2.66)
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with

Iα1 (k, a) =
∫

dM dn(M,a)
dM

M

ρ̄(a) bα(M,a) ũ(k,M, a)

Iα2 (k1, k2, a) =
∫

dM dn(M,a)
dM

(
M

ρ̄(a)

)2
bα(M,a) ũ(k1,M, a) ũ(k2,M, a) . (2.67)

The 3-halo term can then be computed as

B3h(k1, k2, k3, a) = I1
1 (k1, a) I1

1 (k2, a) I1
1 (k3, a)Btree(k1, k2, k3, a)

+
[
I1

1 (k1, a) I1
1 (k2, a) I2

1 (k3, a)Plin(k1, a)Plin(k2, a) + 2 Perm.
]
.

(2.68)

Naturally, the 1-halo term dominates for small scales, whereas the 3-halo term dominates
for large scales. The 2-halo term is only relevant for squeezed triangles with k1 ≈ k2 ≫ k3
and sub-dominant on all scales otherwise. While the BiHalofit algorithm (Takahashi
et al., 2020) utilises the functional form of the halo model, it replaces the ũ and the Iαβ from
Eq. (2.67) by fitting functions. Furthermore, it removes the 2-halo term and accounts for
that by replacing the linear power spectrum in the 3-halo term with an ‘enhanced’ linear
power spectrum, which is also determined by fitting parameters. This method appears
to be more accurate than finding appropriate functions for the density profile, number
density, and spatial distribution of dark matter halos separately.

Besides giving a functional form for more accurate fitting formulae, the halo model’s
advantage is that higher-order polyspectra can also be computed from this formalism with
relative ease. For example the 1-halo term of any n-th order polyspectrum (see Eq. 2.52),
can be computed as

Pn,1h(k1, . . . , kn, a) =
∫

dM dn(M,a)
dM

(
M

ρ̄(a)

)n n∏

i=1
ũ(ki,M, a) . (2.69)

2.2. Gravitational lensing
Gravitational lensing is a powerful tool that can be used in various cosmological applica-
tions. Using gravitational lensing, we can determine the masses of galaxy clusters (see e.g.
Applegate et al., 2016; Schrabback et al., 2018, 2021), the value of the Hubble constant
(e.g. Wong et al., 2020), analyse the abundance of compact ‘dark’ objects in the Universe
(e.g. Alcock et al., 2000) and determine the cosmological parameter S8 = σ8

√
Ωm/0.3,

which is defined along the main degeneracy direction for weak lensing studies. For the
latter, we have discovered a tension between the local Universe and the CMB (Hilde-
brandt et al., 2017; Planck Collaboration et al., 2020b; Joudaki et al., 2020; Heymans
et al., 2021; Abbott et al., 2022; Di Valentino et al., 2021b), which might give insights into
as-of-yet undiscovered physical processes (Abdalla et al., 2022). This tension is not (yet)
as pronounced as the Hubble constant tension: Planck Collaboration et al. (2020b) report
S8 = 0.834 ± 0.016 from CMB observations; from weak gravitational lensing we get a 3σ
tension in KiDS (S8 = 0.759+0.024

−0.021 in Asgari et al., 2021) and a 2.1 - 2.3σ tension in DES
(S8 = 0.759+0.025

−0.023 or S8 = 0.772+0.018
−0.017 in Secco et al., 2022b; Amon et al., 2022). Different
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surveys and summary statistics all yield values of S8 that are about 1.5 - 3σ lower than
the one determined from the CMB.

One of the main advantages of the gravitational lensing effect is that it is sensitive to
both baryonic and dark matter; to quantify this effect in models, we thus do not have to
understand the complicated processes of galaxy formation and evolution. In this section,
we briefly review the formalism that we use throughout the rest of this thesis. This section
is heavily based on Bartelmann and Schneider (2001); Schneider (2005); Schneider (2012).

We have already discussed in Sect. 2.1.1.1 that light-rays follow geodesics, or straight
lines, through the 4-dimensional spacetime manifold. However, the metric of that manifold
is distorted by the presence of mass, leading to a curved spacetime. Therefore, even though
light describes geodesics in the 4-dimensional spacetime, the light-rays projected to the
three spatial dimensions are curved by the presence of mass.

Assuming a small gravitational potential |Φ|/c2 ≪ 1, the deflection of a light-ray by a
point-mass M at impact paramter ξ can be calculated by linearising the field equations
(2.1) and yields

α̂ = 4GM
c2ξ

. (2.70)

Curiously, when one computes the deflection of a particle of mass m ≪ M passing by with
velocity v at the same impact parameter ξ in Newtonian gravity, one receives

α̂ = 2GM
v2ξ

. (2.71)

One can see that this deflection angle does not depend on the mass m, so naively setting
m = 0 and v = c for photons, we receive a deflection angle half as large as the one predicted
by GR. An observation of the deflection of observed stellar positions by the Sun during a
solar eclipse (Dyson et al., 1920) is widely regarded as the first significant confirmation of
the predictions of GR.

2.2.1. The gravitational lensing formalism
In principle, gravitational lensing is only correctly described in the framework of GR, but
a few simplifying assumptions ease the complexity to a manageable level. As mentioned
above, the first assumption is that the gravitational potential Φ is small, meaning |Φ|/c2 ≪
1. This assumption is highly justified; even in the central regions of galaxy clusters, the
gravitational potential is only about |Φ| ∼ 10−5 c2. The only place this assumption breaks
down is in the vicinity of neutron stars and black holes. This enables us to make two critical
simplifications. Firstly, we can describe the deflection angle by a point mass via Eq. (2.70).
Secondly, and even more importantly, we can treat deflections by different masses as
independent. This means that for an ensemble of masses, the combined deflection angle is
the sum of the individual deflection angles. Without these assumptions, the computational
complexity for even the simple case of a point-mass lens is enormous (James et al., 2015).

We further assume that the velocities of the observer, lens and source are small, v ≪ c,
and that the involved length scales L are small compared to the Hubble radius, L ≪
c/H0. Among other things, this means that we can neglect effects that arise because the
observer and source reside in different rest-frames. A gauge-invariant lensing formalism
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Figure 2.5 – A sketch of a gravitational lensing sys-
tem. Figure adapted from Bartelmann and Schneider
(2001) by S. Unruh.

has been developed (Yoo et al., 2018; Grimm and Yoo, 2018), but the standard weak
lensing approach appears to be sufficient except for very large scales (Giblin et al., 2017;
Grimm and Yoo, 2021).

We further assume that all angles involved in the calculations are small, such that
sin(α) ≈ tan(α) ≈ α holds, which it does to an accuracy of 10−3 at 5◦ and 10−4 at 1◦.
For now, we also want to make the thin lens approximation, meaning that all matter
responsible for the lensing effect is assumed to be at the same distance from the observer.

Under these assumptions, we can sketch an example lensing system in Fig. 2.5. Depicted
is a source at position η = Dsβ, which emits light that gets deflected by the angle α̂
and is thus observed to be at position ξ = Ddθ. Note that the distances Dd, Dds and
Ds are angular diameter distances and thus, contrary to what the sketch might suggest,
Dd +Dds ̸= Ds holds. We can use Thales’s theorem to derive the lens equation

β(θ) = θ − Dds
Ds

α̂(Ddθ) = θ − α(θ) , (2.72)

where we have defined the scaled deflection angle

α(θ) = Dds
Ds

α̂(Ddθ) . (2.73)

For a mass distribution ρ, we can define the surface mass density

Σ(ξ) =
∫

dr3 ρ(ξ1, ξ2, r3) , (2.74)
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as the 2-dimensional projection of the density along the line of sight. The deflection angle
α can then be computed as

α(θ) = 4G
c2
Dds
Ds

∫
d2ξ′ Σ(ξ′) ξ − ξ′

|ξ − ξ′|2

= 1
π

∫
d2θ′ κ(θ′) θ − θ′

|θ − θ′|2 , (2.75)

where we have defined the dimensionless convergence κ as

κ(θ) = 4πG
c2

DdDds
Ds

Σ(Ddθ) = Σ(Ddθ)
Σcrit

, (2.76)

with the critical surface mass density

Σcrit = c2

4πG
Ds

DdDds
. (2.77)

When we define the lensing potential

Ψ(θ) = 1
π

∫
dθ′ κ(θ′) ln

(|θ − θ′|) , (2.78)

then we can see that both deflection angle and convergence can be written as derivatives
of that potential, namely

α = ∇Ψ, κ = ∇2Ψ
2 . (2.79)

We then compute the Jacobian of the lens equation, Aij = ∂βi/∂θj , as

A(θ) =
(
δij − ∂2Ψ(θ)

∂θi ∂θj

)
=
(

1 − κ− γ1 −γ2
−γ2 1 − κ+ γ1

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

)
,

(2.80)
where we define the complex shear in cartesian coordinates γc as

γc = γ1 + iγ2 = 1
2(Ψ,11 − Ψ,22) + iΨ,12 , (2.81)

and the reduced shear g as gi = γi/(1 − κ).
Assuming that a source galaxy at observed position θ0 is small, we can set β0 = β(θ0)

and linearise the lens equation as

β(θ) − β0 = A (θ − θ0) . (2.82)

From inspection of the Jacobian A, we see that the convergence κ leads to an isotropic
scaling of a source with the factor (1 − κ). On the other hand, the terms g1 and g2 lead
to an anisotropic distortion of the image.

Furthermore, we can look at an image’s magnification µ. Since photons are not created
or destroyed in gravitational lensing, the magnification is simply the ratio of the sizes
between the lensed and un-lensed image:

µ = d2β

d2θ
= 1

|det(A)| = 1
(1 − κ)2 − |γc|2

. (2.83)
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2.2. Gravitational lensing

We see that there is a possibility that the magnification diverges because the matrix A
becomes singular. In this case, the lens equation is no longer a one-to-one mapping; the
same source can appear at multiple positions in the sky. This usually happens when κ ≳ 1
holds. The convergence thus presents an ideal measure to distinguish weak gravitational
lensing with κ ≪ 1 from strong gravitational lensing with κ ≳ 1. In weak gravitational
lensing, we assume that the Jacobian A does not become singular14. The inverse function
theorem then implies that in weak gravitational lensing, multiple images of the same source
can not occur since the lens equation is a one-to-one mapping.

Our main observable in weak gravitational lensing is the ellipticity ϵ. Assuming a source
galaxy with perfectly elliptical isophotes, we can define its ellipticity as

ϵ = a− b

a+ b
exp(2iφ) , (2.84)

where a and b are the semi-major- and minor-axes of the ellipse and φ is the angle between
a galaxy’s semi-major axis a and the x-axis.15 An observed source galaxy has some intrinsic
ellipticity ϵint in addition to the reduced shear g it experiences due to the weak lensing
effect. The observed ellipticity can then be calculated as

ϵobs = ϵint + g

1 + g∗ϵint
. (2.85)

The intrinsic ellipticity of a galaxy is usually much greater than the shear signal. How-
ever, the cosmological principle states that there is no preferred direction in the Universe,
meaning that for the average intrinsic ellipticity ⟨ϵint⟩ = 0 holds. If we further assume
that the intrinsic ellipticity is not correlated with the shear signal, the observed ellipticity
becomes an unbiased estimator of the reduced shear

⟨ϵobs⟩ = ⟨ϵint⟩ + ⟨g⟩ = ⟨g⟩ . (2.86)

In weak lensing, we usually assume that γ ≈ g holds, as κ is small.
Even though the convergence κ is not directly observable, it can, in principle, be recon-

structed from a shear field. The most straight-forward way uses the fact that the Fourier
transforms of the convergence and shear are related (Kaiser and Squires, 1993)

γ̃c(ℓ) = e2iφℓ κ̃(ℓ) , (2.87)

where φℓ is the polar angle of the ℓ-vector. In real space, we can write this equation as a
convolution:

γc(θ) = 1
π

∫

R2
d2θ′ D(θ − θ′)κ(θ′) ,

κ(θ) = κ0 + 1
π

∫

R2
d2θ′ D∗(θ − θ′) γc(θ′) ,with

D(θ) = − (θ1 − iθ2)−2 . (2.88)
14Of course, in each weak gravitational lensing survey, there are points where κ > 1 holds, for example

in the central region of a massive galaxy cluster. However, compared to the total survey area, these
points are sporadic.

15Naturally, the images of real galaxies are never perfectly elliptical and assigning an ellipticity to these
images is more difficult. There are several different estimators for the ellipticity of a source galaxy,
from moments-based methods to template fitting or machine-learning-based methods.
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Figure 2.6 – An example illustration of
tangential and cross shear for a galaxy with
γ1 = 0.3, γ2 = 0 in cartesian coordinates.
Figure adapted from work by M. Bradac
in Schneider (2012) by S. Unruh.
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Here, κ0 is an arbitrary constant. The disadvantage of this method is that replacing the
integral with a sum over an ensemble of observed galaxy ellipticities yields an estimator
with infinite noise, so some smoothing needs to be applied. Furthermore, this method
suffers from a bias in the presence of masks or gaps in the data. Better mass-reconstruction
methods have been developed (Seitz and Schneider, 2001; Hong et al., 2021) that mitigate
these issues. However, one critical flaw is the so-called mass-sheet degeneracy (Falco et al.,
1985; Gorenstein et al., 1988; Schneider and Seitz, 1995; Schneider and Sluse, 2013), which
states that no lensing observable is modified by the transformation16

κλ(θ) = λκ(θ) + (1 − λ), βλ = λβ . (2.89)

In this thesis, we work with the aperture mass statistics Map, which can be seen as a
smoothed and compensated convergence field. To introduce these statistics, we define the
tangential and cross shear γt,×(θ; θ′) with respect to an orientation θ′ −θ as (see Fig. 2.6)

γt(θ; θ′ − θ) + iγ×(θ; θ′ − θ) = −γc(θ) exp(−2iφ) = −γc(θ)(θ′ − θ)∗

θ′ − θ
, (2.90)

where φ is the polar angle of the vector θ′ − θ. It can be shown that overdensities in the
matter distribution induce a positive tangential shear around them and that the average
cross shear on a circle around any point is zero. In light of this, we can introduce the
aperture mass. Let Uθap(θ) be a compensated filter with

∫
dθ θ Uθap(θ) = 0. Here, θap is a

scaling parameter of the Uθap-filter and is called the aperture radius. The aperture mass
Map(θ; θap) at point θ is then defined as

Map(θ; θap) =
∫

d2θ′ κ(θ′)Uθap(|θ − θ′|) . (2.91)

The fact that the filter Uθap is compensated has a major advantage: a uniform con-
vergence sheet κ0 does not affect the aperture mass statistic. Furthermore, the aperture
statistics are also a zero-mean field, ⟨Map(θ; θap)⟩θ = 0. The aperture mass statistic can
also be constructed from a shear field via

Map(θ; θap)+iM⊥(θ; θap) =
∫

d2θ′Qθap(|θ−θ′|) [γt(θ; θ′ − θ) + iγ×(θ; θ′ − θ)
]
, (2.92)

16To be precise, the image positions, magnification ratios and image shapes remain unaffected, whereas
the time-delay ∆t between two images of the same source is modified by a factor of λ.
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with the filter function

Qθap(θ) = 2
θ2

∫ θ

0
dθ′ θ′Uθap(θ′) − Uθap(θ) . (2.93)

Throughout this work, we assume the following filter functions (Crittenden et al., 2002):

Qθap(θ) = θ2

4πθap
4 exp

(
− θ2

2θap
2

)
; Uθap(θ) = 1

2πθap
2

(
1 − θ2

2θap
2

)
exp

(
− θ2

2θap
2

)
.

(2.94)
Apart from an estimator with finite noise properties, aperture mass statistics have another
undeniable advantage: The fact that the average cross shear on a circle around any point in
the Universe is zero means that a significant non-zero M⊥ is a smoking gun for something
going wrong in the measurements.

2.2.2. E- and B-modes in gravitational lensing
The careful reader may have noticed something odd in the convergence reconstruction,
particularly in Eq. (2.88). The convergence κ is, by definition, a real quantity, whereas
the convergence reconstruction is achieved by convolving the complex shear with a complex
filter function. In the optimal case, meaning a valid lensing formalism and a noise-free
shear field, the imaginary part of the reconstructed convergence is indeed zero. In practice,
an imaginary part of the convergence emerges in the presence of shape noise. We thus
separate the convergence into E- and B-modes (Schneider et al., 2002)

κ = κE + iκB . (2.95)

Here, κB can, to first order, not be created by any gravitational lensing effect. A non-
negligible measurement of κB is thus a sign that either one of the used assumptions, such
as the reduced shear approximation, breaks down or that an untreated systematic effect
is modifying the shear measurements. Expanding Eq. (2.91) to

Map(θ; θap) + iM⊥(θ; θap) =
∫

d2θ′ [κE(θ′) + iκB(θ′)
]
Uθap(|θ − θ′|) , (2.96)

shows that M⊥ is an alternative way to measure the B-modes in gravitational lensing.
Looking at the definition of tangential and cross shear (Eq. 2.90) and how they relate to
the aperture mass statistic (Eq. 2.92), we can see that tangential shear patterns create
E-modes, whereas cross shear patterns create B-modes. A sketch of this is shown in
Fig. 2.7.17

These B-modes provide a powerful null-test for a gravitational lensing analysis. When
any lensing analysis is performed, and the detected B-modes are statistically significant,
this points to an error in the analysis pipeline (such as e.g. Hildebrandt et al., 2017).
One can then investigate which parts of the analysis can cause B-modes by simulating,
for example, leakage of the telescope’s point-spread function (PSF) and investigating the
B-mode pattern caused by this effect (compare Asgari et al., 2019; Asgari and Heymans,
2019). It should be noted that, while the non-detection of B-modes is an excellent sign, it
does not necessarily mean that there are no errors in the analysis pipeline.
17It should be noted that there are non-zero shear patterns that are neither E- nor B-modes, for example,

a linear shear field. These ambiguous modes are discussed in detail in Schneider et al. (2022).
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Figure 2.7. – A schematic representation of an E-mode shear pattern (left) and a B-mode shear
pattern (right) around a point in the sky.

2.2.3. Cosmic shear – Gravitational lensing by the large-scale structure
Our previous efforts have been based on the assumption that all the matter between the
source and the observer is concentrated in one single thin lens plane. This approximation
may be justified in strong lensing, as most of the lensing signal stems from, for example, a
massive galaxy cluster. In our work, we focus on cosmic shear, which describes the lensing
effect from the LSS in the Universe. There, the lensing effect stems from the entire matter
distribution between the source and observer, meaning that the thin lens approximation
is no longer valid. However, we can still apply the formalism we developed in the last
section to this problem. The exact calculations are quite involved (see Bartelmann and
Schneider, 2001; Bartelmann, 2010; Schneider, 2012), so we present a heavily condensed
version here that focuses on the central concept and highlights the used approximations.

It can be shown (see e.g. Seitz et al., 1994) that for a weakly perturbed Universe with
gravitational potential |Φ| ≪ c2, the FLRW metric becomes

ds2 =
(

1 + 2Φ
c2

)
c2 dt2 − a2(t)

(
1 − 2Φ

c2

) [
dχ2 + f2

K(χ) (dθ2 + sin2θ dφ2)
]
. (2.97)

We can then use the fact that the optical tidal matrix T governs the evolution of the
transverse physical separation ξ between two light-rays via d2ξ

dλ2 = T ξ. From these, one
can obtain the evolution equation for the comoving separation x(θ, χ) and, in analogy to
Sect. 2.2.1, define a Jacobian for the lens mapping

Aij(θ, χ) = δij − 2
c2

∫ χ

0
dχ′ fK(χ− χ′) fK(χ′)

fK(χ) Φ,ik(x(θ, χ′), χ′) Akj(θ, χ′) , (2.98)

where we have made use of the Einstein sum convention. Unfortunately, it is hard to solve
this equation as knowledge of A(θ, χ) requires knowledge of all A(θ, χ′) and x(θ, χ′) for
χ′ < χ. However, linearising this equation in terms of Φ yields

Aij(θ, χ) = δij − 2
c2

∫ χ

0
dχ′ fK(χ− χ′) fK(χ′)

fK(χ) Φ,ij(fK(χ′) θ, χ′) . (2.99)
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We see that, to linear order, the Jacobian only depends on the tidal gravitational field
along the unperturbed light-ray fK(χ) θ. This is called the Born approximation and it
leads to the fact that the Jacobian Aij is always symmetric.

We can then, again in analogy to Sect. 2.2.1, define a deflection potential Ψij that
satisfies Aij = δij − Ψ,ij :

Ψ(θ, χ) = 2
c2

∫ χ

0
dχ′ fK(χ− χ′) fK(χ′)

fK(χ) Φ(fK(χ′) θ, χ′) . (2.100)

Finally, we calculate κ = ∇2Ψ/2 by utilising the Poisson equation (2.30) to be

κ(θ, χ) = 3H2
0 Ωm

2c2

∫ χ

0
dχ′ fK(χ− χ′) fK(χ′)

fK(χ)
δ(fK(χ′) θ, χ′)

a(χ′) . (2.101)

The above equation describes the convergence κ at a fixed comoving distance χ. While this
quantity is an important output of N-body simulations, it can not be observed. Whenever
we measure the shear for a sample of galaxies, they follow a certain probability distribution
in comoving distance pχ(χ) dχ. For this galaxy sample, we can define the weighted lens
efficiency as

g(χ) =
∫ χH

χ
dχ′ pχ(χ′)fK(χ′ − χ)

fK(χ′) , (2.102)

where χH is the comoving horizon distance. We can then calculate the effective convergence
κ(θ) as

κ(θ) =
∫

dχ pχ(χ)κ(θ, χ) = 3H2
0 Ωm

2c2

∫ χH

0
dχ g(χ) fK(χ)δ(fK(χ) θ, χ)

a(χ) . (2.103)

In practice, probability distributions for galaxies are rarely given as a function of comov-
ing distance, pχ(χ) dχ, but much rather as a function of redshift pz(z) dz. To numerically
calculate the effective convergence κ(θ) and subsequent quantities that we introduce later,
it normally makes the most sense to write the integrals in Eqs. (2.103) and (2.102) as an
integral in redshift by substituting pχ(χ) dχ = pz(z) dz, a(χ) = 1/(1+z) and dχ = c

H(z)dz.
Of course, we do not know our Universe’s distribution of density fluctuations δ. What

we are interested in, however, are its statistical properties in terms of the power- and
bispectrum. For a given source redshift distribution pz(z) dz, we relate the matter power-
and bispectrum to the respective convergence power- and bispectrum in the following
sections.

2.2.4. Two-point statistics in cosmic shear
Two-point statistics have been the main choice in analyses of cosmic shear (Schneider
et al., 1998; Troxel et al., 2018; Hildebrandt et al., 2017; Hikage et al., 2019; Asgari et al.,
2020; Hildebrandt et al., 2020). As discussed in Sect. 2.1.2.4, they manage to capture the
entire information content of Gaussian random fields. As the field of primordial density
fluctuations is (very close to) Gaussian, two-point statistics manage to capture a large part
of the information contained in the LSS. This section outlines the two-point cosmic shear
statistics relevant to our work and discuss their respective advantages and disadvantages.
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2.2.4.1. Convergence power spectrum

Technically, the effective convergence is a function on the unit sphere κ : S2 → R. This
means that the basis for the convergence power spectrum Pκ are spherical harmonics
Ylm, Y

∗
lm. To ease calculations, we instead assume that the convergence is a function in

2-dimensional euclidean space κ : R2 → R, which is called the flat sky approximation.
Given two comoving distance distributions of sources, p1,2(χ) dχ, we can calculate their

respective lensing efficiencies g1,2(χ), given a cosmological model. To then compute their
convergence power spectrum P 12

κ (ℓ), we calculate
〈
κ̃1(ℓ)κ̃∗

2(ℓ′)
〉

= 9H4
0 Ω2

m
4c4

∫ χh

0
dχ
∫ χh

0
dχ′ g1(χ) g2(χ′)

a2(χ)

〈
δ̃

(
ℓ

fK(χ) , χ
)
δ̃∗
(

ℓ

fK(χ′) , χ
′
)〉

.

(2.104)
To ease calculations, we assume that the functions gi(χ)/a(χ) are constant over the

range where the correlation between density contrasts at different comoving distances〈
δ̃
(

ℓ
fK(χ) , χ

)
δ̃∗
(

ℓ
fK(χ′) , χ

′
)〉

is nonzero. Under this assumption, also called Limber ap-
proximation (Limber, 1954; Peebles, 1980), one can derive (see the Appendix of Kaiser,
1992, 1998; Schneider et al., 1998)

〈
κ̃1(ℓ)κ̃∗

2(ℓ′)
〉

= (2π)2δD(ℓ − ℓ′) 9H4
0 Ω2

m
4c4

∫ χh

0
dχg1(χ)g2(χ)

a2(χ) Pδ

(
ℓ

fK(χ) , χ
)

≡ (2π)2 δD(ℓ − ℓ′)P 12
κ (ℓ) . (2.105)

It is important to note that the mathematically rigorous derivation of this equation is a
fair bit more complicated, yet it yields the same result (see e.g. Bartelmann, 2010).

In weak gravitational lensing, we often split the source galaxies into different tomo-
graphic bins, depending on their redshift. For example, in KiDS the source galaxies are
split into five redshift bins, that all have different redshift distributions pi(z) dz. When
analysing that data, we can calculate the auto-spectra P iiκ of each redshift bin, but also all
the cross-spectra P ijκ between the individual bins. This allows us to track the evolution
of structure over cosmic time. An analysis that includes a split of the source galaxies into
different redshift bins is called a tomographic analysis.

We can now relate the statistical properties of matter fluctuations, parametrised by their
power spectrum Pδ(k, z), to the statistical properties of the convergence field. While we
have reasonably good models for the power spectrum of matter fluctuations, obtaining the
convergence spectra from observations is complicated. Even under the assumption that we
can reconstruct an unbiased estimate of the convergence field κ(θ) (which is certainly not
self-evident), the construction of its Fourier transform κ̃(ℓ) is even more challenging, as
the observed field often has a complex geometry and many gaps, for example, due to bright
foreground stars. While there have been successful attempts to mitigate these effects, for
example, in the pseudo-Cℓ framework (Hivon et al., 2002; Elsner et al., 2017; Alonso et al.,
2019), we can circumvent the problem entirely by relying on statistics that do not require
knowledge about the Fourier transform of a reconstructed convergence field.

2.2.4.2. Shear two-point correlation functions

The arguably most natural way to capture the cosmic shear statistics for an ensemble of
galaxies is via its correlation functions. Considering a pair of galaxies at positions θ and
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θ′, we can define the products of their tangential shears with respect to each other as

γtγt(|θ′ − θ|) ≡ γt(θ; θ′ − θ)γt(θ′; θ′ − θ) . (2.106)

Likewise, we define γtγ× and γ×γ×. We can then define the shear two-point correlation
functions ξ± as

ξ±(θ) = ⟨γtγt(θ)⟩ ± ⟨γ×γ×(θ)⟩ . (2.107)

Recalling Eq. (2.90), we can see that the following equations hold:

ξ+(θ) = ⟨γ(ϑ)γ∗(ϑ + θ)⟩
ξ−(θ) = ⟨γ(ϑ)γ(ϑ + θ) exp{−4iφθ}⟩ − i ⟨γtγ× + γ×γt⟩ , (2.108)

where φθ is the polar angle of θ and ⟨γtγ×⟩ = 0 holds due to parity symmetry of the
field.18 In other words, ξ+ describes the spin-0 quantity ⟨γγ∗⟩, whereas ξ− describes the
spin-4 quantity ⟨γγ⟩. From Eq. (2.87) we know

〈
γ̃(ℓ)γ̃∗(ℓ′)

〉
= (2π)2δD(ℓ − ℓ′)Pκ(|ℓ|)

〈
γ̃(ℓ)γ̃(ℓ′)

〉
= (2π)2δD(ℓ + ℓ′)Pκ(|ℓ|) exp(4iφℓ−ℓ′) . (2.109)

Calculating the Fourier transforms of Eq. (2.108) and inserting (2.109), we get

ξ±(θ) = 1
2π

∫ ∞

0
dℓ ℓ Pκ(ℓ)J0,4(ℓθ) , (2.110)

where the Ji are the i-th order Bessel functions of the first kind.
Likewise, we can also reconstruct the power spectrum from the shear two-point corre-

lation functions: By making use of the orthogonality relation for Bessel functions
∫ ∞

0
dθ θ Ji(ℓθ)Ji(ℓ′θ) = δD(ℓ− ℓ′)

ℓ
, (2.111)

we can show that

Pκ(ℓ) = 2π
∫ ∞

0
dθ θ ξ+(θ) J0(ℓθ) = 2π

∫ ∞

0
dθ θ ξ−(θ) J4(ℓθ) , (2.112)

holds.
The shear two-point correlation functions have the major advantage that they can be

measured in an unbiased way from observed galaxy ellipticities ϵ via the estimator

ξ̂±(θ) =
∑
i,j wiwj(ϵt,iϵt,j ± ϵ×,iϵ×,j)∑

i,j wiwj
, (2.113)

where the wi are potential weights, the ϵt,× are tangential and cross ellipticities defined
in analogy to Eq. (2.90), and the sum is over all pairs of galaxies that have a separation
of θ. Provided the measured ellipticities are an unbiased estimate of the shear γ, and the
18We ignore a potential parity-violation (as reported in Minami and Komatsu, 2020; Philcox, 2022) in this

work.
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detection of galaxies is random19, this estimator is unbiased, no matter how complex the
survey geometry may be.

As the two-point correlation functions can be directly calculated from the matter power
spectrum and easily measured in a survey, they are a good candidate for a cosmological
parameter analysis. However, in recent years cosmologists have moved away from this
statistic for three reasons. The first is that the shear 2pcf do not have a good E- and
B-mode decomposition (compare Schneider et al., 2002). Secondly, the filter functions
J0 and J4 are quite broad and extend to infinity, which means applying hard scale cuts
(for example, because one can not model the power spectrum accurately for ℓ > 105) is
virtually impossible. The third one is that the likelihood of the shear 2pcf is not Gaussian
(see Sellentin and Heavens, 2018), which is a central assumption in cosmological parameter
forecasts, and, when violated, can lead to significant biases (Sellentin et al., 2018).

2.2.4.3. Second-order aperture mass statistics

A different measure for cosmic shear was proposed by Schneider et al. (1998) in the form
of the aperture mass dispersion

〈
M2

ap
〉
, defined as

〈
M2

ap
〉

(θap) ≡
〈
M2

ap(θ; θap)
〉

θ
. (2.114)

Given a cosmological model for the power spectrum, we can easily calculate that statistic.
Starting from Eq. (2.91), we derive

〈
M2

ap
〉

(θap) =
∫ ∞

0
dℓ ũ2(ℓθap)Pκ(ℓ) , (2.115)

with Uθap(θ) = θap
−2u(θ/θap), and ũ its Fourier transform. For our choice of filter functions

(Eq. 2.94), we have

ũ(η) = η2

2 exp
(

−η2

2

)
. (2.116)

Unfortunately, the aperture mass dispersion is difficult to measure in a real survey. While
an estimator for the aperture mass can easily be constructed from Eq. (2.92), the filter
functions in Eq. (2.94) extend up to infinity and have significant power up to θ ∼ 4θap.
This means that around any mask or survey boundary, one would have to cut off a strip
of 4θap width, which leads to a lot of data being thrown out.

Luckily, there is a better way. By writing the correlation functions in the form of
Eq. (2.108), one can show that

〈
M2

ap
〉

(θap) = 1
2

∫
dθ θ

[
ξ+(θ)T+

(
θ

θap

)
+ ξ−(θ)T−

(
θ

θap

)]
,

〈
M2

⊥

〉
(θap) = 1

2

∫
dθ θ

[
ξ+(θ)T+

(
θ

θap

)
− ξ−(θ)T−

(
θ

θap

)]
, (2.117)

19In practice, thwe detected galaxy positions correlate with observational systematics (see e.g. Heydenreich
et al., 2020) and foreground matter distributions (Hartlap et al., 2011), which introduces small biases
into the measurements.
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with analytic filter functions T± (Schneider et al., 2002; Crittenden et al., 2002; Jarvis
et al., 2004). The term ⟨MapM⊥⟩ vanishes for any parity-invariant field, as does any
B-mode contribution of odd power

〈
Mn

apM2m+1
⊥

〉
(Schneider, 2003). In principle, the

aperture mass dispersion is a second-order statistic that provides a straight-forward E- and
B-mode decomposition and is obtained from the power spectrum with a highly localised
filter function ũ, meaning that scale-cuts are easy to apply. Furthermore, this statistic is
in principle straightforward to obtain from a survey using the shear 2pcf and Eq. (2.117).
Unfortunately, the required integration extends from zero up to infinity and thus requires
knowledge of the correlation functions ξ± on all scales, specifically down to a separation
of 0. This is not possible due to the finite extent of galaxy images (Van Waerbeke et al.,
2000), and this imperfect knowledge of the correlation function leads to a mixing of E-
and B-modes (Kilbinger et al., 2006).

In recent years, COSEBIs have shown to be an ideal real-space statistic for cosmic shear
owing to their E- and B-mode decomposition on a finite θ-inteval (Schneider et al., 2010,
2022; Asgari and Heymans, 2019; Giblin et al., 2021; van den Busch et al., 2022, and
others), however, we do not use them for this work.

2.2.5. Third-order shear statistics
We now introduce the equivalent third-order shear statistics used in this thesis. In contrast
to second-order shear statistics, they have not yet seen widespread use. A cosmological
parameter analysis in a weak lensing survey with third-order shear statistics has been
performed once by Fu et al. (2014). However, for current-generation surveys, our models
have not been validated to the required accuracy. There is a lot of ongoing effort to
optimise the measurement of third-order shear statistics (Secco et al., 2022a), to develop
models for nuisance parameters (Pyne and Joachimi, 2021; Pyne et al., 2022; Halder
and Barreira, 2022), and to develop new summary statistics (Halder et al., 2021). In
this section, we briefly introduce the third-order shear statistics that are relevant for
this thesis, namely the shear three-point correlation functions (3pcf) and the third-order
aperture mass statistics.

2.2.5.1. The convergence bispectrum

In Sect. 2.2.4.1, we have defined the convergence power spectrum P 12
κ (ℓ) for two comoving

distance distributions p1,2(χ) dχ of source galaxies. In analogy to that section, for three
comoving distance distributions p1,2,3(χ) dχ, we define the convergence bispectrum as

(2π)2 δD(ℓ1 + ℓ2 + ℓ3)B123
κ (ℓ1, ℓ2, ℓ3) = ⟨κ̃1(ℓ1)κ̃2(ℓ2)κ̃3(ℓ3)⟩ . (2.118)

If we again make use of the flat-sky and Limber approximations, an analogous calculation
to the one in Sect. 2.2.4.1 yields (see Bernardeau et al., 1997; Schneider et al., 1998)

B123
κ (ℓ1, ℓ2, ℓ3) = 27H6

0 Ω3
m

8c6

∫
dχ g1(χ) g2(χ) g3(χ)

fK(χ) a3(χ) Bδ

(
ℓ1

fK(χ) ,
ℓ2

fK(χ) ,
ℓ3

fK(χ) ; z(χ)
)
.

(2.119)
We note that we can compute the convergence bispectra for arbitrary triplets of source
distributions to perform a tomographic analysis. However, for this work, we only compute
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auto-spectra for third-order shear statistics, meaning that all comoving distance distribu-
tions of sources are the same (p1(χ) dχ = p2(χ) dχ = p3(χ) dχ). In these cases, we drop
the indices 12 and 123 of the power- and bispectrum.

Some sources (e.g. van Waerbeke et al., 1999; Schneider et al., 2005) introduce a different
definition for the convergence bispectrum; they define a bispectrum B(ℓ1, ℓ2) as

⟨κ̃(ℓ1)κ̃(ℓ2)κ̃(ℓ3)⟩ = (2π)2[B(ℓ1, ℓ2) + B(ℓ2, ℓ3) + B(ℓ3, ℓ1)]δD(ℓ1 + ℓ2 + ℓ3) . (2.120)

As the bispectrum is invariant to permutations of its arguments for auto-spectra, the only
difference from our definition in Eq. (2.51) is a factor of three.

It is often convenient to parametrise the bispectrum in terms of its sidelengths and the
angle between the ℓ-vectors:

b(ℓ1, ℓ2, φ) = Bκ(ℓ1, ℓ2, ℓ3) = 3B(ℓ1, ℓ2) , (2.121)

with ℓ3 =
√
ℓ21 + ℓ22 + 2ℓ1ℓ2 cosφ.

2.2.5.2. Shear three-point correlation functions

Like the bispectrum forms the natural extension to the power spectrum, shear two-point
correlation functions can be extended by considering correlations between triplets of galax-
ies. Given a triple of galaxies at positions X1,2,3 and the triangle centre Xc, we can again
project the shear values to their tangential- and cross-components with respect to the
triangle centre

γ(Xi) = γt(Xi; Xi − Xc) + iγ×(Xi; Xi − Xc) . (2.122)

The four natural components of the shear three-point correlation functions Γ(i) were con-
structed to be invariant under rotations of the triangle; they can then be defined as
(Schneider and Lombardi, 2003)

Γ(0) = ⟨γ(X1)γ(X2)γ(X3)⟩ , Γ(1) = ⟨γ∗(X1)γ(X2)γ(X3)⟩ ,
Γ(2) = ⟨γ(X1)γ∗(X2)γ(X3)⟩ , Γ(3) = ⟨γ(X1)γ(X2)γ∗(X3)⟩ . (2.123)

Our shear 3pcf thus have one spin-6 function, Γ(0), and three spin-2 functions Γ(1,2,3).
We note that the argument for each of these shear three-point correlation functions is
a triangle of galaxies, such as depicted in Fig. 2.8. For now, we want to parametrize a
triangle by its three side-lengths x1, x2 and x3, oriented in the counter-clockwise direction.

It is important to note that the centre of a triangle is not uniquely defined. Apart from
the orthocenter O and centroid C (compare Fig. 2.8), one could also, for example, take
the incenter (the centre of the circle that has the three triangle sides xi as a tangent), or
the outcenter (the centre of the circle passing through the three vertices of the triangle),
as can be seen in Schneider and Lombardi (2003, Fig. 2,3,4 and 5). An advantageous
property of the natural components is that they remain invariant under the selection of a
triangle centre, up to multiplication with a phase factor. In particular, the moduli |Γ(i)|
are invariant under the choice of triangle centre.
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x1

x2

C

O

x3

φ1

φ2

φ3

ϕ3

ϕ1

ϕ2

X2

X3

X1

Figure 2.8. – An example triangle with our used notations. The triangle sides xi are defined as
x1 = X3 − X2 and cyclic permutations thereof. They take the angles φi with respect to the x-axis.
The interior angles of the triangle are denoted by ϕi. We also show the orthocenter O, the intersection
of the three altitudes of the triangle, and its centroid C, the intersection of its three medians (or its
centre of mass). Unless otherwise specified, we assume that a triangle is oriented in the counter-
clockwise direction. From Heydenreich et al. (2022b).

The shear components transform under a rotation of ζ as γ′ = γ exp(−2iζ). For example,
when switching from the orthocenter to the centroid, the rotations ζi for the three shear
components γi can be determined as (compare Schneider and Lombardi, 2003)

cos(2ζ3) = (x2
2 − x2

1)2 − 4x2
1 x

2
2 sin2ϕ3

4h2
3 x

2
3

, sin(2ζ3) = (x2
2 − x2

1)x1 x2 sinϕ3
h2

3 x
2
3

, (2.124)

and cyclic permutations thereof. Here, h3 = 1
2

√
2x2

1 x
2
2 − x2

3 is the altitude of the triangle.
We can then convert

Γ(0)
(cen) = exp [−2i(ζ1 + ζ2 + ζ3)] Γ(0)

(o) Γ(1)
(cen) = exp [−2i(−ζ1 + ζ2 + ζ3)] Γ(1)

(o)

Γ(2)
(cen) = exp [−2i(ζ1 − ζ2 + ζ3)] Γ(2)

(o) Γ(3)
(cen) = exp [−2i(ζ1 + ζ2 − ζ3)] Γ(3)

(o) . (2.125)

Inspecting Eq. (2.123), we can see that the natural components transform into each
other under cyclic permutation of indices, in particular

Γ(0)(x1, x2, x3) = Γ(0)(x3, x1, x2), Γ(1)(x1, x2, x3) = Γ(2)(x3, x1, x2) = Γ(3)(x2, x3, x1) .
(2.126)

An anti-cyclic permutation of indices corresponds to a parity transformation, i.e. the new
triangle is oriented in a clockwise direction. As, under a parity transformation, γ′

t = γt and
γ′

× = −γ× holds, an anti-cyclic permutation of indices leads to a complex conjugation of
its corresponding correlation function (in addition to potential transformations according
to Eq. 2.126).
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The main advantage of the 3pcf is their easy measurement. In analogy to Eq. (2.113),
we can construct an estimator

Γ̂(0) =
∑
ijk wiwj wk ϵi ϵj ϵk∑

ijk wiwj wk
, (2.127)

where the sum extends over all triplets of galaxies whose configuration falls in the respec-
tive bin of the estimator. Analogue estimators can be built for Γ(1,2,3).

The shear 3pcf can be directly modelled from the matter bispectrum: Taking the ortho-
center of the triangle, we observe that the projection direction at point Xi is orthogonal
to the opposing triangle side xi. We can thus write the shear projected to the orthocenter
γ(o) as a rotation of the cartesian shear γc via (compare Fig. 2.8)

γ(o)(Xi) = γc(Xi)e−2iφi . (2.128)

If we now Fourier transform the shear, we can utilise Eq. (2.87) to rewrite

Γ(0)
(o)(x1, x2, x3) =

〈
γ(o)(X1)γ(o)(X2)γ(o)(X3)

〉
=
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2

× exp
[
−i(ℓ1 ·X1 + ℓ2 ·X2 + ℓ3 ·X3) + 2i

∑

i

(βi − φi)
]

⟨κ̃(ℓ1)κ̃(ℓ2)κ̃(ℓ3)⟩ ,

(2.129)

where the βi are the polar angles of the ℓi. We can now insert Eq. (2.121) and utilise
statistical homogeneity and isotropy, to transform this equation to (compare Eq. 15 of
Schneider et al., 2005)20

Γ(0)
(o)(x1, x2, x3) = 2π

3

∫ ∞

0

dℓ1 ℓ1
(2π)2

∫ ∞

0

dℓ2 ℓ2
(2π)2

∫ 2π

0
dφ b(ℓ1, ℓ2, φ) e2iβ̄

[
ei(ϕ1−ϕ2−6α3)J6(A3)

+ei(ϕ3−ϕ2−6α1)J6(A1) + ei(ϕ3−ϕ1−6α2)J6(A2)
]
. (2.130)

An analogous calculation yields:

Γ(1)
(o)(x1, x2, x3) = 2π

3

∫ ∞

0

dℓ1 ℓ1
(2π)2

∫ ∞

0

dℓ2 ℓ2
(2π)2

∫ 2π

0
dφ b(ℓ1, ℓ2, φ)

[
ei(ϕ1−ϕ2+2ϕ3)e2i(β̄−φ−α3)J2(A3)

+ei(ϕ3−ϕ2e−2i(β̄+α1)J2(A1) + ei(ϕ3−ϕ1−2ϕ2)e2i(β̄+φ−α2)J2(A2)
]
.

(2.131)

Here, the ϕi are the interior angles of the triangle and the xi are their side-lengths (compare
Fig. 2.8), and the 3pcf assume the orthocenter as the triangle cente. The quantities Ai, β̄,

20We note that the different prefactor stems from the different definitions of the convergence bispectrum
that we used.
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and αi are defined via cyclic permutations of

A3 =
√

(ℓ1x2)2 + (ℓ2x1)2 + x1x2 ℓ1ℓ2 cos(φ+ ϕ3) ,
|ℓ1 + ℓ2|2 cos 2β̄ = (ℓ21 + ℓ22) cosφ+ 2ℓ1ℓ2 ,
|ℓ1 + ℓ2|2 sin 2β̄ = (ℓ21 − ℓ22) sinφ ,

A3 cosα3 = (ℓ1x2 + ℓ2x1) cos
(
φ+ ϕ3

2

)
,

A3 sinα3 = (ℓ1x2 − ℓ2x1) sin
(
φ+ ϕ3

2

)
. (2.132)

2.2.5.3. Third-order aperture mass statistics

Like their second-order counterpart, third-order aperture mass statistics can be directly
modelled from the convergence bispectrum via (Schneider et al., 2005)21

〈
M3

ap
〉

(θ1, θ2, θ3) = 2
(2π)3

∫ ∞

0
dℓ1 ℓ1

∫ ∞

0
dℓ2 ℓ2

∫ π

0
dφ ũ(θ1ℓ1) ũ(θ2ℓ2)

× ũ

(
θ3

√
ℓ21 + ℓ22 + 2ℓ1ℓ2 cosφ

)
b(ℓ1, ℓ2, φ) . (2.133)

It is also always possible to calculate the third-order aperture mass statistics from the
shear 3pcf. The conversion is performed by first calculating the quantities

⟨MMM⟩ (θ1, θ2, θ3) = C1(θ1, θ2, θ3)
∫ ∞

0
dy1

∫ ∞

0
dy2

∫ 2π

0
dψ

× Γ(0)
(cen)(y1, y2, ψ)F1(y1, y2, ψ; θ1, θ2, θ3) ,

⟨MMM∗⟩ (θ1, θ2; θ3) = C2(θ1, θ2, θ3)
∫ ∞

0
dy1

∫ ∞

0
dy2

∫ 2π

0
dψ

× Γ(3)
(cen)(y1, y2, ψ)F2(y1, y2, ψ; θ1, θ2, θ3) , (2.134)

where Γ(i)
(cen)(y1, y2, ψ) are the 3pcf with the centroid as triangle center, parametrized via

their two side lengths y1, y2 and the interior angle between y1 and y2. Furthermore C1,2
are prefactors and F1,2 are filters that both depend on θ1,2,3. Their definitions can be
found in Schneider et al. (2005, Eqs. 63-65,69). Then, the third-order aperture statistics

21The careful reader might notice that in Schneider et al. (2005) the number in the nominator is a 3, not
a 2. In our case, we get a factor 1/3 due to the different bispectrum definition, and a factor 2 since we
utilise the symmetry of the bispectrum and only integrate φ from 0 to π.
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can be calculated as linear combinations of these quantities:
〈
M3

ap
〉

(θ1, θ2, θ3) = Re
[〈
M2M∗

〉
(θ1, θ2; θ3) +

〈
M2M∗

〉
(θ1, θ3; θ2)

+
〈
M2M∗

〉
(θ2, θ3; θ1) +

〈
M3

〉
(θ1, θ2, θ3)

]
/4 ,

〈
M2

apM⊥
〉

(θ1, θ2; θ3) = Im
[〈
M2M∗

〉
(θ1, θ3; θ2) +

〈
M2M∗

〉
(θ2, θ3; θ1)

−
〈
M2M∗

〉
(θ1, θ2; θ3) +

〈
M3

〉
(θ1, θ2, θ3)

]
/4 ,

〈
MapM2

⊥

〉
(θ1; θ2, θ3) = Re

[〈
M2M∗

〉
(θ1, θ2; θ3) +

〈
M2M∗

〉
(θ1, θ3; θ2)

−
〈
M2M∗

〉
(θ2, θ3; θ1) −

〈
M3

〉
(θ1, θ2, θ3)

]
/4 ,

〈
M3

⊥

〉
(θ1, θ2, θ3) = Im

[〈
M2M∗

〉
(θ1, θ2; θ3) +

〈
M2M∗

〉
(θ1, θ3; θ2)

+
〈
M2M∗

〉
(θ2, θ3; θ1) −

〈
M3

〉
(θ1, θ2, θ3)

]
/4 .

(2.135)

Due to parity symmetry,
〈M3

⊥
〉

and
〈
M2

apM⊥
〉

are expected to vanish. Luckily, for third-
order aperture statistics, the problem of E- and B-mode leakage discussed in Kilbinger
et al. (2006) does not appear to be a major problem, at least for equal-scale aperture
mass statistics with θ1 = θ2 = θ3 (Shi et al., 2014). Unfortunately, the functions C1,2 and
F1,2 are difficult to calculate. Jarvis et al. (2004) managed to derive their expressions for
equal-scale aperture mass statistics and the filters from Eq. (2.94). Later, Schneider et al.
(2005) managed to derive their expressions for general combinations of aperture radii. For
other filters, no solutions for C1,2 and F1,2 have been published.

This procedure has already been used to measure third-order aperture statistics in real
data (Fu et al., 2014; Secco et al., 2022a, App. B in this work).

2.2.6. Challenges for gravitational lensing observations
In the previous sections, we have described the gravitational lensing formalism and how one
can use it to constrain our cosmological model by comparing observations to theoretical
predictions (we describe in Sect. 2.3.3 how we achieve that). This endeavour is a bit more
complicated in practice, as our theoretical predictions and observations are subject to
uncertainties and systematic biases. In this section, we want to review the accuracy of our
theoretical predictions and briefly introduce the primary observational and astrophysical
sources of uncertainty in the gravitational lensing measurements.

2.2.6.1. Accuracy of the power- and bispectrum models

The weak lensing two- and three-point statistics can be directly modelled from the matter
power- and bispectrum. This means that our predictions of weak lensing statistics can
only be as good as our knowledge of the power- and bispectrum. Unfortunately, since the
weak gravitational lensing effect is measured in a light cone originating from the observer,
it is always sensitive to small scales at low redshift, which are highly non-linear. The linear
power spectrum is quite well-understood, with different modelling algorithms agreeing to
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the sub-per cent level. Using perturbation theory, one can also construct models for the
power- and bispectrum that are valid in the quasi-linear regime of k ≲ 0.2hMpc−1, but
weak lensing is sensitive to even smaller scales. This means that all models for the power-
and bispectrum we can use have to be calibrated using N-body simulations. At these scales,
different non-linear power spectrum models disagree by up to a few per cent, while for the
bispectrum, even the best model disagrees by up to 20% with its calibration simulations.
In addition to these inherent uncertainties, this also means that our models for the matter
power- and bispectrum can only be as accurate as our N-body simulations. While they are
currently the best method to understand non-linear gravitational dynamics, they are far
from perfect and are subject to their own intrinsic inaccuracies (compare Sect. 2.1.2.6).
While Hilbert et al. (2020); Springel et al. (2021) show that, for a set of weak lensing
observables, current N-body simulations and corresponding ray-tracing techniques have
converged for a large range of scales under the chosen simulation parameters, their accuracy
can not be proven definitively.

Additionally, modelling a weak lensing statistic alone is insufficient to constrain our
cosmological model. We also need to assess the uncertainty of the measurement; the co-
variance of our chosen statistic (compare Sect. 2.3.3). For second-order lensing statistics,
theoretical models for the covariance have been established and tested (see e.g. Schnei-
der et al., 1998; Joachimi et al., 2008, 2021). For third-order lensing statistics, such
covariance models are being developed (Linke et al. in prep.). In principle, it is possible
to estimate the covariance from the measured data via the jackknifing method, but the
estimated covariance is often noisy. Furthermore, this method disregards the effects of
super-sample covariance: Modes in the field of density fluctuations that are larger than
the survey area can bias the measurements in a way that is not being accounted for in
the jackknifing method (see e.g. Takada and Hu, 2013; Joachimi et al., 2021). The easiest
but computationally most expensive way to estimate a covariance matrix is from a set of
N-body simulations. When the simulations are constructed to mimic the properties of a
weak lensing survey (particularly regarding the number density and redshift distribution
of galaxies), one can just measure the desired statistic in hundreds of different realisations
of that simulation. The disadvantage to that method is mostly its computational expense.
When a covariance matrix C is constructed from a finite set of n simulations, then its
inverse, the precision matrix C−1, is biased depending on the number of entries d in the
data vector (Hartlap et al., 2007). In particular, for d ≥ n, the covariance becomes sin-
gular, and its inverse can not be constructed. There exist methods to remedy that effect
(Sellentin and Heavens, 2016; Percival et al., 2022); however, the fact remains that the
number of simulations required to estimate a reliable covariance matrix is much larger
than the length of the data vector. As an example, let us consider the KiDS, which splits
the galaxy population into five tomographic redshift bins.22 For two-point statistics, we
can measure ξ± in ∼ 10 angular bins, meaning for each of the 15 possible redshift bin
combinations, we get a data vector of length 20, yielding d = 300 dimensions for a data
vector. Indeed, this is likely an upper estimate; a cosmological parameter estimation with
COSEBIs would require at most half as much. For three-point statistics, however, we can
take the aperture mass statistics for five different filter radii, yielding 35 possible combi-
nations of aperture radii and 35 possible combinations of tomographic bins. The resulting
22The KiDS-Legacy data release will include a sixth tomographic bin, which we ignore for this example.

45



2. Theoretical background knowledge

data vector would have d = 1225 dimensions, even for this relatively conservative choice.
For comparison, the three-point correlation functions in 10 bins would have 8000 entries
per tomographic bin. The number of simulations to calibrate the covariance matrix for a
tomographic three-point analysis is thus prohibitively high.

2.2.6.2. Validity of the used approximations

Once we have fixed our models for the matter power- and bispectrum, we apply a set of
approximations within the weak lensing formalism, which we want to review here. Overall,
the approximations are valid to a high degree, but one has to be cautious when utilising
either very large or very small scales in the analysis. In general, the approximations seem
to break down faster for higher-order statistics.

Weak-field limit To linearise the field equations of GR, we assume that the gravitational
potential is small, meaning |Φ|/c2 ≪ 1. For all methods discussed in this work, this as-
sumption is valid. Even close to the centres of galaxy clusters, the gravitational potential
is of the order 10−5, and the majority of the weak lensing effect is generated in areas where
the gravitational potential is much smaller. Cuesta-Lazaro et al. (2018) investigated this
effect perturbatively and concluded that it is negligible even for next-generation experi-
ments when utilising second-order statistics. Giblin et al. (2017) showed that the effect
could become relevant to a few per cent on extremely large angular scales of ℓ ≲ 30.
However, these are usually not utilised in a weak lensing analysis.

Reduced shear approximation While all theoretical predictions are calculated for the
power- and bispectrum of the shear γ, the true observable on the sky is the reduced
shear g = γ/(1 − κ). Since κ ≪ 1 holds almost everywhere in the sky, we usually assume
g ≈ γ. This approximation is violated especially at small angular scales, but with relatively
moderate scale cuts (e.g. measuring the 2pcf only at scales larger than 0.′5, Asgari et al.,
2021), this effect is negligible even for next-generation surveys (Deshpande et al., 2020b).
The same holds for the weak lensing bispectrum (Deshpande and Kitching, 2020).

Born-approximation and Lens-Lens coupling In order to treat the gravitational lensing
signal by the LSS with our developed weak lensing formalism, we assume that light-rays
propagate through the Universe along unperturbed paths x = fK(χ)θ. Furthermore, we
neglect that the distribution of lenses along the line of sight is correlated. Among other
things, this leads to the conclusion that the Jacobian of the lens equation Aij is symmetric
and that the shear field is without B-modes. With increasing redshift, this approximation
starts to get violated. For second-order effects, this is especially relevant when considering
lensing of the CMB at redshift z ∼ 1100 (Beck et al., 2018); in cosmic shear, this effect
is negligible (Cuesta-Lazaro et al., 2018; Petri et al., 2017; Shapiro and Cooray, 2006;
Cooray and Hu, 2002). However, this effect will become relevant when using third-order
statistics in next-generation experiments like Euclid or LSST (Dodelson and Zhang, 2005;
Petri et al., 2017).
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Limber-approximation To construct the convergence power- and bispectrum from the
corresponding matter spectra, we have assumed that the matter spectra are not correlated
between different redshifts. Especially for small ℓ-modes, this is incorrect. This effect
is relatively small for the power spectrum, introducing an error of about 2% on scales
of ℓ < 10 compared to the exact calculations. Beyond limber corrections reduce this
discrepancy to the sub per cent level on all scales (Kilbinger et al., 2017) without the need
to integrate over spherical Bessel functions. This effect is more relevant for the bispectrum
and can introduce order-of-magnitude errors for ℓ ≪ 60 (Deshpande and Kitching, 2020).
When using third-order weak lensing statistics, we thus need to exclude angular scales
larger than 6◦.

2.2.6.3. Astrophysical systematics

Baryonic effects To assess the non-linear clustering of matter, we usually utilise N-body
simulations to calibrate our power- and bispectrum models. However, these simulations
are conducted with collisionless particles, corresponding to a Universe filled with only dark
matter. They trace the large-scale distribution of matter in the Universe reasonably well
(at least as far as we can tell), but baryonic effects become relevant on small scales. These
effects consist primarily of feedback processes from active galactic nuclei and supernovae,
which blow baryons out of the potential wells of their host galaxies, smoothing the mat-
ter distribution in return. Furthermore, on galaxy scales, baryons cluster much easier
than dark matter since they can shed kinetic energy via collisions and electromagnetic
interactions. We utilise N-body simulations that include baryons and their interaction
processes to model baryonic effects. These processes are significantly more complicated
than gravitational self-interaction, so one has to employ a variety of simplifications. Fur-
thermore, accessible simulation volumes are usually very limited due to the complicated
nature of baryonic processes. Several different simulation suites, such as the BAHAMAS,
(McCarthy et al., 2017), the IllustrisTNG (Pillepich et al., 2018) or the Horizon-AGN
(Dubois et al., 2014) include baryonic feedback processes and achieve comparable results
(Huang et al., 2019). In general, baryonic effects manifest in a suppression of the power
spectrum at intermediate scales and an increase at small scales (compare Fig. 3 of Chisari
et al., 2019).

Baryonic effects constitute one of the most considerable systematic uncertainties for
current weak lensing analyses. Current mitigation strategies are to either forward-model
baryonic effects (as done by KiDS) or to exclude scales at which baryonic effects are be-
lieved to significantly contaminate the signal (as done by DES). For third-order statistics,
the response approach has been developed by Halder and Barreira (2022).

Intrinsic alignments One of the major assumptions in weak lensing analyses is that
the intrinsic ellipticity of a galaxy is randomly oriented. However, we know that the
orientation of galaxy ellipticity depends on the tidal gravitational field at their position,
which is correlated with the shear signal (for a comprehensive review, see Troxel and Ishak,
2015). In the framework of linear structure formation, the intrinsic alignment effect can be
modelled from the linear power spectrum (Mackey et al., 2002). This is called the linear
alignment model. Replacing the linear power spectrum with its non-linear counterpart
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yields the non-linear alignment model (NLA), which is often utilised today (Bridle and
King, 2007).

For next-generation experiments, we will require more sophisticated intrinsic alignment
models. For this purpose, the Tidal Alignment + Tidal Torque (TATT)-model introduced
by Blazek et al. (2019) is a promising candidate.

Next to baryonic feedback processes, intrinsic alignments are one of the major uncertain-
ties in current weak lensing studies. One of the major advantages of a combined second-
and third-order analysis is that they can both be modelled by the NLA model (Pyne et al.,
2022). A combined analysis of second- and third-order statistics can constrain the ampli-
tude of the intrinsic alignment effect internally, resulting in a significant improvement in
cosmological parameter constraints (Pyne and Joachimi, 2021).

Distribution of source galaxies In all modelling approaches, we assume that the dis-
tribution of source galaxies in the sky is random and not correlated with the foreground
matter distribution. However, some effects lead to an inhomogeneous source distribution.
For example, weak lensing sources exhibit a clustering in redshift, which can introduce
B-modes and bias the inferred two-point statistics (Schneider et al., 2002). However, that
effect is not relevant for second-order statistics yet. Additionally, foreground matter over-
densities (which lead to strong shear of background galaxies) inhibit a larger density of
foreground galaxies, which in turn obscure background galaxies and reduce their detection
probability (Hartlap et al., 2011). The severity of this effect is being investigated (Genc et
al., in prep.). Additionally, the selection function of a survey is usually position-dependent
due to varying observational conditions. At the second-order level, this effect will become
relevant for next-generation surveys (Heydenreich et al., 2020).

Additionally, the presence of foreground matter distorts its background. This leads
to a decrease (increase) of the effective observed area d2β, but to a magnification (de-
magnification) of the galaxies in this area, allowing for easier detection. This effect has
been studied in detail and is believed to become relevant for next-generation experiments
(Deshpande et al., 2020a) for second-order statistics. For third-order statistics, Deshpande
and Kitching (2020) show that the effects are sub-dominant.

2.2.6.4. Observational systematics

Telescope systematics The angular resolution of telescopes is limited. Even for a per-
fectly built telescope in a total vacuum, the Rayleigh criterion leads to the fact that the
resolution limit θres scales as θres ≈ 1.22λD−1, where λ is the wavelength of the incoming
light and D the diameter of the primary mirror. The light of distant sources addition-
ally gets distorted by the atmosphere and any telescope imperfections. The image of a
point-source on the telescope is called its PSF. When we observe a galaxy, its intensity
distribution is convolved with the PSF of the telescope. If the PSF is known, it is rela-
tively straightforward to account for its effects in the shear measurement. Luckily, it can
easily be measured by observing stars, which intrinsically constitute point sources, mean-
ing their images equal the PSF. Unfortunately, the PSF depends on the position on the
charge-coupled device (CCD), on the declination of the telescope pointing (due to small
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deformations of the mirror) and, in the case of the HST, on time, since varying exposure
to sunlight deforms the telescope.

Additional effects include non-linear responses of the CCD to incoming light (Guyonnet
et al., 2015; Plazas et al., 2016) and imperfect charge transfer during the read-out of the
CCD (Kannawadi et al., 2016). For next-generation experiments, additional systematics
become relevant, such as electrons that remain in the CCD from a previous exposure (Geis
et al., 2015) or the wavelength-dependence of the PSF.

All these effects need to be carefully considered, but since we can directly measure and
test them, they are unlikely to present major obstacles to a weak lensing analysis.

Shear measurement Even assuming we can perfectly image a galaxy, one still has to
infer its ellipticity. Several approaches have been developed for this problem. One can
either measure the second-order brightness moments of the image (Kaiser et al., 1995;
Luppino and Kaiser, 1997; Hoekstra et al., 1998), fit a template galaxy profile to the
image (Miller and CFHTLenS Collaboration, 2012) or use machine learning processes to
infer shear values (Gruen et al., 2010, and others). In recent years, the metacalibration
and metadetection frameworks (Huff and Mandelbaum, 2017; Sheldon et al., 2020) have
proven to be effective tools that can estimate the response of the shear estimator on the
actual survey data (without the need for any image simulations) and thus be used to assign
weights to the individual shear measurements.

An accurate shear measurement is crucial for subsequent weak lensing analyses. We
parametrise the shear measurement bias m on the measured ellipticities via ϵmeas =
ϵtrue(1+m). Since all shear measurement algorithms can be rigorously tested using image
simulations, we have a high level of control over this nuisance parameter.

Photometric redshift estimation To perform any cosmic shear analysis, we need to
measure the redshifts of tens of millions of extremely faint galaxies. Measuring spectral
energy distributions for each galaxy would take a prohibitive amount of observation time.
Instead, one opts to measure the galaxy’s flux in different colour bands and then infer
the ‘true’ redshift of the galaxy from these colour measurements. This is an imperfect
method, but it has been continuously improved over the years.

The main issue in the photometric redshift estimation is that the spectroscopic calibra-
tion sample only imperfectly covers the high-dimensional colour space of the photometric
images. This has recently been addressed by utilising self-organised maps (Wright et al.,
2020), which can be used to discard the part of the data that can not be calibrated with
sufficient accuracy.

2.3. Mathematical and statistical methods
2.3.1. Homology
A part of this work concerns cosmological parameter estimation using persistent homology.
In this section, we want to briefly establish this concept, focusing on how to relate the
performed computations to an intuitive understanding.23 For an interested reader, we
23Unfortunately, a formal introduction to the topic would go beyond the scope of this thesis.
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v0
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Figure 2.9. – An example of a simplicial complex with one 2-simplex, six 1-simplices and five 0-
simplices.

recommend Hatcher (2002) for an introduction into homology (Sect. 2.3.1.1 and 2.3.1.2).
A good introduction to the theory of persistent homology can be found in Oudot (2015),
whereas Chazal and Michel (2021) provide a summary geared towards its application in
data science.

Homology is a concept in the field of algebraic topology, which tries to analyse the
topology of objects. In the field of topology, two objects are considered equivalent if they
can be ‘smoothly’ transformed into one another without creating or destroying holes. For
example, a mug and a doughnut are the same for all topological purposes. One of the
most popular tools to describe the topology of an object X is its homology groups Hn(X).
In its essence, for n ≥ 1 the dimension of the n-th homology group Hn(X) of a topological
space X is equal to the number of n-dimensional holes, whereas for n = 0 the dimension
of H0(X) is the amount of connected components of X.

Before diving into the topic, we want to establish some notations. Let A and B be two
vector spaces. For a map f : A → B that maps an a ∈ A to f(a) ∈ B, we define the image
Imf as the set of all elements b ∈ B for which there exists an a ∈ A such that f(a) = b.
The kernel Kernf is defined as the set of all elements a for which f(a) = 0 holds.

We also want to introduce the field F2. It consists of the numbers 0 and 1 and the usual
addition and multiplication operators. The rules for addition and multiplication are the
same as for integers, apart from the fact that in F2, 2 = 0 holds, meaning 1 + 1 = 0 (or
1 = −1).

2.3.1.1. Simplicial complexes

Simplicial complexes are arguably the easiest way to define and calculate homology. They
present a nice way to relate an intuitive understanding to abstract mathematical concepts.
A simplicial complex is built from a set of simplices ∆. Formally, an n-simplex ∆n is
defined as the smallest convex set that contains n + 1 points v0, . . . , vn whose difference
vectors vi − v0 are linearly independent. For example, a 0-simplex is a dot, a 1-simplex
is a line, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. We want to denote
such a simplex by ∆n = [v0, . . . , vn]. The points vi are called vertices of the simplex.

If ∆n = [v0, . . . , vn] is an n-simplex, we denote by [v0, . . . , v̂i, . . . , vn] the (n− 1) simplex
that arises when the vertex vi gets removed. This (n − 1)-simplex is called a face of ∆n.
As an example, a triangle [v0, v1, v2] has three faces, namely its sides [v0, v1], [v0, v2] and
[v1, v2]. It is important to note that if a simplex is part of a simplicial complex, all its
faces also are part of it.
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As an example, Fig. 2.9 depicts a simplicial complex with the 0-simplices (or vertices)
v0, v1, v2, v3, v4, the 1-simplices [v0, v1], [v0, v2], [v1, v2], [v1, v3], [v1, v4], [v2, v3] and the 2-
simplex [v0, v1, v2] (depicted by the gray-shaded region). Note that the triangle spanned
by v1, v2 and v3 is empty, meaning that the simplicial complex does not include the sim-
plex [v1, v2, v3].24 Instead, in this position, the complex has a hole. This will become quite
important later.

2.3.1.2. Simplicial homology

We now want to summarise the topological properties of a simplicial complex with alge-
braic properties. For a simplicial complex X, we define Cn as the vector space over F2 that
is generated by all n-simplices ∆n of the complex. In other words, let X be a complex with
d n-simplices. The vector corresponding to the first simplex is (1, 0, 0, . . . , 0)T ; the vector
corresponding to the second simplex is (0, 1, 0, . . . , 0)T , and so on. The set of all simplices
(or, more precisely, their corresponding vectors) forms a basis of the d-dimensional vector
space Cn. In other words, the dimension of Cn already tells us how many n-simplices the
complex contains. To describe how a complex is assembled, we construct a boundary map
(or boundary matrix) ∂n : Cn → Cn−1. The boundary matrix maps an element from Cn
to Cn−1 via matrix multiplication and is defined as

∂n,ij =
{

1 ∆n−1
i is a face of ∆n

j

0 else
. (2.136)

The collection of the vector spaces Cn and respective boundary maps ∂n,

. . . Cn+1 Cn Cn−1 . . . C1 C0 0 ,∂n+1 ∂n ∂1 ∂0

is called a chain complex. One can show that for each n, the combined map ∂n∂n+1 :
Cn+1 → Cn−1 maps everything to the zero-vector, meaning that the image of ∂n+1 is a
subset of the kernel of ∂n, Im∂n+1 ⊆ Kern∂n. Given a chain complex with respective
boundary maps, we can now always reconstruct the simplicial complex, as we know how
many simplices it contains and how they attach to each other. We note that our choice
to set Cn = Fd2 is not necessary; in principle, it is possible to construct chain complexes
over many other groups and fields. However, this choice significantly eases the subsequent
calculations.

We can now define the n-th homology group Hn(X) as the quotient group Hn(X) =
Kern∂n/Im∂n+1. Since we chose Cn = Fd2, we can transform this equation to

dim(Hn(X)) = dim(Kern∂n) − dim(Im∂n+1) . (2.137)

From linear algebra, we remember

dim(Kern∂n) + dim(Im∂n) = dim(Cn) , (2.138)
dim(Im∂n) = rank(∂n) , (2.139)

24There is no rule preventing [v1, v2, v3] from being a simplex, it was simply a choice made when con-
structing this example.
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where rank(∂n) is the rank of the matrix ∂n (i.e. the number of linearly independent rows
or columns of ∂n). To compute the dimension of Hn(X), we only need to determine the
ranks of all the boundary matrices ∂n. This problem is purely algorithmic and can easily
be solved by a computer.

After all these definitions, let us perform an example calculation for the simplicial com-
plex from Fig. 2.9. As the complex has five 0-simplices, six 1-simplices and one 2-simplex,
the corresponding chain complex takes the following form:

0 F2 F6
2 F5

2 0 .∂2 ∂1 ∂0

Our only challenge is constructing the boundary maps ∂2 and ∂1 (as ∂0 maps everything
to zero). If we order the simplices as described at the end of Sect. 2.3.1.1, meaning
∆1

1 = [v0, v1],∆1
2 = [v0, v2], . . . , the boundary maps then take the following form (compare

Eq. 2.136):

∂2 =




1
1
1
0
0
0



, ∂1 =




1 1 0 0 0 0
1 0 1 1 1 0
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0



. (2.140)

Obviously, the rank of ∂2 is 1. The rank of ∂1 has to be calculated and is 4 (we can see
that the sum of the first four rows equals the last row). Using Eq. (2.137), we can calculate
the dimension of homology groups. Since dim(Kern∂2) = 0, dim[H2(X)] = 0. We have
dim(Im∂2) = 1 and, according to Eqs. (2.138) and (2.139)

dim(Kern∂1) = dim(F6
2) − dim(Im∂1) = 2 . (2.141)

Following Eq. (2.137), this implies

dim[H1(X)] = dim(Kern∂1)−dim(Im∂2) = dim(Kern∂1)−rank(∂2) = 2−1 = 1 . (2.142)

At last, we have

dim[H0(X)] = dim(Kern∂0)−dim(Im∂1) = dim(Kern∂0)−rank(∂1) = 5−4 = 1 . (2.143)

We can thus conclude that the simplicial complex has one hole (the one spanned by
the vertices v1, v2 and v3) and one connected component. One could now repeat the
calculations and, for example, omit the simplex [v0, v1, v2] (which would yield an additional
hole) or add a second 2-simplex [v1, v2, v3] (which would remove the existing hole) and see
how the dimensions of the homology groups change.

The fact that the dimension of homology groups corresponds to the number of holes in
a simplicial complex is difficult to prove rigorously but can become quite evident when
playing around with the example simplicial complex. For example, if we add the second
2-simplex [v1, v2, v3] (and thus close the existing hole), we increase dim(Im∂2) by one,
meaning that we decrease dim[H1(X)] by one to dim[H1(X)] = 0 (compare Eq. 2.142).
As another example, we can add an additional vertex v5 without any connections (meaning
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Figure 2.10. – A sketch of how to construct a simplicial complex from a pixel grid. When the thin
solid lines are added, we can construct a simplicial complex: Each intersection of lines is a vertex, and
each line that connects two intersections is a 1-simplex. Lastly, each triangle is a 2-simplex, meaning
that we get two 2-simplices for each pixel.

we add a connected component to the simplex). In that case, dim(Kern∂0) would increase
by 1, and thus dim[H0(X)] = 2 would hold (compare Eq. 2.143). If we then add a
simplex [vi, v5], connecting the additional vertex to the existing simplex, we would increase
dim(Im∂1) by one, so that dim[H0(X)] = 1 holds again.

This means that we have managed to reduce the relatively complex topological question
‘How many holes does the space X have?’ to a simple algebraic problem (which is the
primary goal of all algebraic topology). Of course, for any simplicial complex in less than
four dimensions, it would probably be faster and easier to tell how many holes it has by
simply looking at it. However, this is nothing that a computer can do. Especially for
large simplicial complexes with thousands of simplices, the boundary maps ∂n are sparse
matrices (meaning most of their entries are zero), and computing the rank of a sparse
matrix is a well-suited problem for a computer.

2.3.1.3. Persistent homology

Now that we have established the concept of homology, we can introduce persistent ho-
mology, a method in topological data analysis that quantifies the topological structure of
a space on different scales.

Often, this method is applied to point-cloud data, where one constructs a simplicial
complex from a set of points. The simplest way of construction is to say that a collection
of points v0, . . . , vn form a simplex [v0, . . . , vn] if all pairwise distances |vj − vi| are smaller
than a scaling parameter r. In this thesis, however, we work with field-level data, for
which the concept is applied differently. Everything we discuss below, however, can also
be applied to point-cloud data.

As we later apply this method to fields of aperture masses Map(θ; θap), we explain the
concept of persistent homology using this as an example. Given a field of aperture masses,
we can easily construct a simplicial complex XMap from that field (compare Fig. 2.10).
We then assign the value of each pixel to its corresponding 2-simplices. Afterwards, each
n-simplex gets assigned the minimum value of its neighbouring (n + 1)-simplices. For
an arbitrary value t, we can then define a simplicial complex XMap(t) by including all
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simplices whose assigned values are smaller than or equal to t. Intuitively, this corresponds
to ‘cutting off’ all values larger than t from the aperture mass field. One can see that for
t < t′, XMap(t) ⊆ XMap(t′) holds.

When we set t = min(Map(θ; θap)), then the resulting simplicial complex consists of
two 2-simplices, five 1-simplices and four 0-simplices, all together forming a square (i.e. the
pixel taking the minimum value of the aperture mass field). When we increase t, the sim-
plicial complex grows as more cells are added. Other minima emerge as isolated connected
components, which slowly merge (like the purple ellipse in Fig. 2.11). At some point, holes
start forming around regions with high aperture mass. Once the threshold surpasses the
maximum value of that region, these holes close again (like the red and orange ellipses in
Fig. 2.11).

These connected components and holes are generators of the homology group
Hn[XMap(t)]. We can track each topological feature by computing the homology group
as a function of the scaling parameter. In particular, we can calculate the value at which
it first shows up and define that as its birth b. We can also calculate the time it vanishes,
its death d. For example, when two connected components merge, one generator of the
homology group dies. In that case, we invoke the elder rule, that the generator that was
born first survives.

When we compute the homology group of this complex as a function of the cut-off value t,
we can track the birth and death of all topological features. However, persistent homology
offers one additional advantage. Instead of just counting the number of features at each
value t, we can calculate the persistence (or lifetime) d− b of each feature. This gives us
crucial information, as we can distinguish between small fluctuations in the aperture mass
and prominent features that significantly protrude from their surroundings (for example,
one can see that the red hole in Fig. 2.11 is much more pronounced than the orange
one). Other methods from topological data analysis, like Betti numbers or Minkowski
functionals, lack this feature and are thus more susceptible to noise.

The fact that each topological feature has a unique generator that can be identified
while the filtration value t varies is far from self-evident. However, a proof of that would
go beyond the scope of this introduction. For a rigorous proof, we refer the interested
reader to Chazal et al. (2016), a summary of that can be found in Chazal and Michel
(2021).

We note that the actual persistence computations are executed a bit differently. For
field-level data, one usually computes the homology via cubical complexes, where each
n-‘simplex’ is an n-dimensional unit cube [0, 1]n. One can see that the construction of a
cubical complex from a pixel grid is a bit more straightforward than that of a simplicial
complex and that the resulting computations can be performed faster.

2.3.1.4. Relative homology

One of the main advantages of persistent homology is that it can be calculated in the
framework of relative homology, which allows us to compute the homology of a space X
with respect to a subspace M , defined as Hn(X,M). Formally, this can be computed via
an exact sequence

. . . Hn(M) Hn(X) Hn(X,M) Hn−1(M) . . . ,
∂n+1 ∂n
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where the image of one map is always exactly equal to the kernel of the next map (in
contrast to the chain complex in Sect. 2.3.1.2, where it was just a subset). If we know the
dimensions of the homology groups Hn(X) and Hn(M), we can calculate the homology
group of Hn(X,M) utilising Eq. (2.138). For our purposes, the relative homology group
Hn(X,M) is equivalent to the homology group of the space X/M ,25 which is obtained by
taking the space X and collapsing the entire space M to a single point.26

For a cosmological parameter analysis, this is incredibly useful: The footprint of a
survey never covers the entire sky, and even within the footprint, the presence of bright
stars leads to masked regions. This means that the aperture mass field also contains
regions over which we have no information that must be masked. Relative homology
allows us to calculate the persistent homology of an aperture mass map in the presence of
masked regions.

25Technically, the reduced homology group of X/M .
26As an example, if we take a 2-dimensional disk and collapse its entire boundary to a single point, we get

a 2-dimensional sphere.
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Figure 2.11. – An example aperture mass map Map(θ; θap) at different values of the cut-off param-
eter t. The purple ellipses highlight the emergence and disappearance of a connected component; the
red and orange ellipses highlight the same for two holes. Figure taken from Heydenreich et al. (2021).
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Figure 2.12. – Examples of numerical integration of an arbitrary function f(x) via the rectangle
rule (left) and the trapezoidal rule (right).

2.3.2. Numerical integration
Especially for third-order statistics, numerical integration plays a vital role in our work.
Numerical integration encompasses methods to determine the integral

∫

A
dnx f(x) ≈

∑

i

wi f(xi) , (2.144)

of a function f over an arbitrary (and possibly infinite) area A and any finite dimension
n not via analytic means but rather via a finite amount of function evaluations. Different
integration algorithms are simply methods to determine the weights wi and evaluation
points xi such that the error on the approximation is small for as few function evalu-
ations as possible. Most examples we give in this section assume that the integral is
one-dimensional, but they can easily be generalised to higher dimensions. Most integra-
tion algorithms are developed to work on the unit cube [0, 1]n or [−1, 1]n; an appropriate
transformation of variables enables integration over other domains.

Unless otherwise referenced, this section is oriented on Davis et al. (2014), which presents
an extensive overview of the different numerical integration methods.

2.3.2.1. Quadrature methods

Quadrature integration methods usually work with high accuracy on various functions, as
long as the functions are sufficiently smooth and low-dimensional. The arguably easiest
methods for that purpose are the rectangle and the trapezoidal rules (see Fig. 2.12). For
the rectangle rule, the evaluation points xi are evenly spaced throughout the integration
domain, and the weights become wi ≡ x1 − x0. The function is therefore approximated
by a sum of rectangles of width xi+1 − xi and height f(xi). For the trapezoidal rule, we
approximate the function by a sum of trapezoids corresponding to the linear interpolation
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between the evaluation points. Although in Fig. 2.12 the trapezoidal rule approximates
the integrand much better, both by eye and in the value of the integral, both methods
generally perform approximately equally, especially when a larger number of points xi is
sampled.

One of the arguably most popular integration methods is Gaussian quadrature. The
general idea is as follows: One constructs the Legendre polynomials, a series of orthonormal
polynomials pi(x) with

∫
dx pi(x) pj(x) = δij such that pi(x) is of degree i. If the function

f(x) we want to integrate over is a polynomial of degree n − 1, it can be represented as
a linear combination f(x) = ∑n−1

i=0 ai pi(x), where the coefficients ai can be determined
by evaluating the function at n different points. If the integral of the pi(x) is known,
we can calculate the integral of f(x). However, by carefully selecting a specific set of n
evaluation points xi, one can calculate weights wi such that the relation in Eq. (2.144) is
exact for polynomials of degree up to 2n − 1. These evaluation points are closely linked
to the orthonormal polynomials pi(x) and are not equally spaced on the integration area.
The advantage of Gaussian quadrature is that it gives excellent estimates for relatively
few function evaluations. For example, the function in Fig. 2.12 is of degree 3, meaning
that only two evaluation points suffice to compute the exact value of its integral. Even for
functions that are not polynomials, Gaussian quadrature usually converges towards the
true result exponentially as long as the function has no singularities.

Given a function f , we want to determine the value of its integral up to a fixed accuracy
ε while using as few evaluation points as possible. This is usually obtained by adaptive
integration methods. Here, one decides between h-adaptive and p-adaptive integration
methods. In a p-adaptive integration method, we integrate the function with our chosen
method, double the number of evaluation points, and compute the integral again. Our
error estimate is now the difference between the two determined integral values. We
subsequently double the number of integration points and re-compute the integral until
our error estimate falls below the set accuracy. In a h-adaptive integration method, the
integration domain is sub-divided into smaller domains (for example, see Genz and Malik,
1980; Berntsen et al., 1991). The integral and an error estimate are computed on each of
these domains. Afterwards, each domain that exceeds the required accuracy is sub-divided
into another set of sub-domains, and the procedure is repeated.

The advantage of a h-adaptive quadrature is that convergence is achieved much faster
when the function has different properties in different parts of the integration domain
(for example, a very isolated peak). With an h-adaptive quadrature, fewer evaluation
points are wasted in the ‘boring’ regions of the integration domain. However, it might be
that by pure chance, the error estimate in an ‘interesting’ region is way smaller than the
actual error. In that case, this region would not be sub-divided anymore, and one would
potentially miss out on ‘interesting’ features, thus getting a wrong value for the integral.

The disadvantage of Gaussian quadrature in an adaptive integration algorithm is that
the evaluation points xi are not evenly spaced, meaning that for a 2n-point Gaussian
quadrature, one can not re-use the values f(xi) from the previously performed n-point
Gaussian quadrature. One thus often resorts to Gauss-Kronrod quadrature, which adds
n+ 1 evaluation points while re-using the n evaluation points of the Gaussian quadrature.

These adaptive quadrature methods have become the primary method for numerical in-
tegration in low dimensions on relatively smooth functions. However, since the integration

58



2.3. Mathematical and statistical methods

needs to be performed in each dimension independently for high-dimensional integrands,
the required number of evaluation points quickly becomes too large to handle. To perform
these high-dimensional integrations, Monte-Carlo integration methods need to be utilised.

2.3.2.2. Monte Carlo methods

Since quadrature integration methods sample the integration domain on a regular grid,
the number of evaluation points increases exponentially with the dimension of the domain.
In Monte Carlo methods, one instead samples the integration domain randomly. Given
a set of n randomly sampled evaluation points xi, we can set our weights as wi = 1/n
and again estimate the value of the integral using Eq. (2.144). Setting σ2 as the variance
of the function values f(xi) at the evaluation points, we can define an error estimate
as ε ≈ σ/

√
n. As one can see, this does not depend on the number of dimensions of

the integrand, meaning that convergence can be achieved in a reasonable time by simply
increasing the number of evaluation points, even for high-dimensional integrations.

For Monte Carlo methods, adaptive sub-sampling of the integration domain, like in the
h-adaptive cubature, is often implemented. If the general shape of the integrand is known,
one can also profit from implementing importance sampling methods that sample the
evaluation points xi from a non-uniform probability distribution to place more emphasis on
‘interesting’ regions of the integrand. As an example, one can determine a coarse histogram
of the function f using relatively few evaluation points and then use this approximate
reconstruction of f to define a probability distribution for importance sampling. One
can then iteratively repeat this procedure, which is done, for example, in the VEGAS
integration algorithm (Lepage, 1978).

2.3.2.3. Special-purpose integrators

In the previous subsections, we have introduced cubature and Monte Carlo methods to
solve the problem of numerical integration. These methods work well for smooth, well-
behaved functions, where cubature methods are usually faster for low dimensions, and
Monte Carlo methods excel for high-dimensional integrations. However, both methods
have difficulty integrating oscillating functions. Since positive and negative regions of the
function partly cancel out in the integration, achieving convergence is much more difficult.

We want to describe our integrals via the form
∫

dx f(x) g(x) ≈
∑

i

wif(xi) , (2.145)

where g is an oscillating function for which we have an analytic expression.27 If both
the function g(x) and its derivative dg/dx are known, Levin (1982, 1996) has developed
a method to estimate the integral (2.145) where, for quickly oscillating functions, the
required amount of integration points with respect to quadrature rules is reduced by a
factor of up to 105. However, their integration routine has only been established for finite
integrals. In our case, the integration over the Bessel function extends to infinity. While it
would probably be possible to truncate the integration domain at some point, a different
27For our purposes, g is always a Bessel function of the first kind.
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method developed by Ogata (2005) avoids this issue. They develop a quadrature rule that
uses the zeros of the Bessel function as nodes and show that

∫ ∞

0
dx f(x)Jν(x) ≈ π

∞∑

k=1
wνk f

[
π

h
ψ(hζνk)

]
Jν

[
π

h
ψ(hζνk)

]
ψ′(h ζνk) , (2.146)

holds, where the parameter h can be adjusted to fit the desired integration accuracy, ζνk
is the k-th zero of the Bessel function Jν(πx), and ψ is an arbitrary function. The weights
wνk are defined as28

wνk = Yν(πζνk)
Jν+1(πζνk)

= 2
π2 ζνk J2

ν+1(πζνk)
, (2.147)

where Yν is the Bessel function of the second kind. If we now choose our function ψ as

ψ(t) = t tanh
(
π

2 sinh t
)
, (2.148)

we see that ψ(t) quickly converges to t (the convergence is double exponentially). For
k → ∞, the quadrature nodes π

hψ(hζνk) thus converge to πζνk double exponentially, and
Jν(πζνk) = 0 holds by definition. Therefore, the right-hand side of Eq. (2.146) can be
truncated after a small point of function evaluations. This allows us to calculate the
infinite integral in (2.146) with a relatively small number of function evaluations; for our
purposes, we require less than 30 quadrature nodes.

2.3.3. Statistical foundations of a cosmological parameter analysis
2.3.3.1. Bayesian statistics

Much of this work is dedicated to performing or preparing cosmological parameter analy-
ses, so in this chapter, we want to detail the basic foundations of such an analysis. For any
statistic, let d be the data of an observation (for example, the shear two-point correlation
functions ξ± in 10 angular bins). We also want to fix a cosmological model with variable
model parameters π, which can give a prediction x(π) of the observable for each set of
model parameters π.29 For now, let us assume that the probability distribution of d is a
multivariate Gaussian with a covariance matrix C. Due to the multidimensional central
limit theorem (van der Vaart, 1998), that is usually a reasonable assumption. Then the
probability of observing the data d, given a set of model parameters π is

P (d|π) ∝ exp
(
−χ2(d,π)/2

)
, (2.149)

with
χ2(d,π) = [d − x(π)]TC−1[d − x(π)] . (2.150)

While that is a nice fact, it does not help us to constrain cosmological parameters. In-
stead of the probability of observing a data vector given a set of model parameters, we
28We note that the weights defined in Ogata (2005) differ from the ones denoted here due to a typo in the

original paper.
29The model parameters π can include both cosmological and nuisance parameters.
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are interested in the likelihood that the model parameters describe a given observation,
L(π|d). Luckily, we can relate these two via

L(π|d) = P (d|π) . (2.151)

However, the likelihood is not necessarily a probability distribution function (i.e. it can
not always be normalised). Furthermore, we can not evaluate the likelihood function for
all possible model parameters π, as they span an infinite area. Normally, we do not want
to do that either, as we may have some knowledge which parameter values π might be
sensible. We can then describe the posterior probability of the model describing the data
using Bayes’ theorem (see e.g. Stuart and Ord, 2009)

P (π|d) = L(π|d)P (π)
P (d) ∝ P (d|π)P (π) . (2.152)

Here, P (π) is the prior probability of the model parameters π that can for example be taken
from previous experiments. Given an observation, we can thus calculate the posterior for
our cosmological parameters via

lnP (π|d) = ln L(π|d) + lnP (π) + C = −χ2(d,π)/2 + lnP (π) + C , (2.153)

where C is a constant that is determined by P (d), but can be safely ignored. In a
cosmological parameter analysis, great care has to be taken in choosing the prior P (π).
We usually do not want to set the prior as the result of a previous experiment since we
want to verify consistency with said experiment first. The canonic choice is to set the
prior as uniform within a certain range,

P (π) =
{∏

i
1

bi−ai
πi ∈ [ai, bi]

0 else
. (2.154)

However, that seemingly ‘blind’ prior does carry some significant information. For ex-
ample, we could choose to parametrise our model as a function of a parameter A, or as
a function of the parameter ln(A). In both cases, our model would yield the same pre-
dictions, but a uniform prior in A can yield significantly different results than a uniform
prior in ln(A) (compare Joudaki et al., 2020). Thus, when conducting a parameter analysis
using Bayesian statistics, one has to be aware that it is impossible to set a truly uninfor-
mative prior. Therefore, great care is required when treating priors in any cosmological
parameter analysis.

After we have computed a posterior P (π|d), we are often interested in the marginalised
posterior of a certain subset {πi}i∈I of parameters (for example, we want to know the
one-dimensional marginalised posterior of the parameter S8). We can achieve that by
integrating the posterior over all remaining parameters

P ({πi}i∈I |d) =


∏

j ̸∈I

∫
dπj


P (π|d) . (2.155)

In principle, these methods allow us to construct a posterior probability distribution of
our parameter space. However, when performing a cosmological parameter analysis, we
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Figure 2.13. – An example of an asymmetric probability distribution. The grey shaded areas
indicate the 68.3%, 95.4% and 99.7% credible intervals. In the left panel, they represent the most
compact intervals covering the same probabilities as the respective regions within 1, 2 and 3 standard
deviations of a Gaussian distribution. In that case, the probability density at the boundaries of each
credible interval is the same and the black dotted line represents the maximum value of the posterior.
In the right panel, the intervals correspond to the regions that have equal probability in their left and
right tails, and the dotted line corresponds to the median of the probability distribution.

mostly want to report constraints on the individual marginalised parameters. There we
face the problem that the posterior might be asymmetric. If we want to cite parameter
constraints of an asymmetric distribution, we still want to cite a mean (or best fit) value
and a 68.3% credible interval (corresponding to the interval within one standard deviation
of a Gaussian distribution). There are several ways to do this, as exemplified in Fig. 2.13.
When we cite parameter constraints in Chap. 4, we employ the equal tail definition of
credible intervals, which corresponds to the right panel of Fig. 2.13; in Chap. 5 we use the
highest posterior density intervals, corresponding to the left panel of Fig. 2.13.

In practice, a covariance matrix C is often obtained using the sample covariance of a
(finite) set of observations in N-body simulations. Assuming that the data d follow a mul-
tivariate Gaussian probability distribution (as in Eq. 2.149), the sample covariance matrix
is an unbiased estimate of the true covariance and follows a Wishart distribution (Ander-
son, 2003). However, the precision matrix C−1 becomes biased, and a naive cosmological
parameter analysis would yield too optimistic parameter constraints, in particular when
the dimension of the data vector is large (Hartlap et al., 2007). One can circumvent this
by marginalising the Gaussian likelihood (2.153) over the unknown covariance matrix C,
which yields the new likelihood distribution (Sellentin and Heavens, 2016)

L(π|d) ∝
[
1 + χ2(d,π)

N − 1

]− N
2

, (2.156)

where N is the number of independent realisations used to construct the sample covariance
matrix.

An extension of this method was recently presented by Percival et al. (2022), who devel-
oped a method to match frequentist and Bayesian interpretations of posterior constraints.
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They replace the power-law index in Eq. (2.156) by −m/2 with

m = nπ + 2 + N − 1 +B(nd − nπ)
1 +B(nd − nπ)

B = N − nd − 2
(N − nd − 1)(N − nd − 4) , (2.157)

where nd is the dimension of the data vector d and nπ is the dimension of the cosmological
parameter space.

2.3.3.2. Markov-Chain Monte Carlo processes

Now that we have established how to compute the posterior probability distribution for
cosmological parameters, a cosmological parameter analysis appears feasible. However,
a major problem is the dimensionality of the cosmological parameter space. Assuming
we have 14 independent parameters in our cosmological model (when including nuisance
parameters, this is rather moderate), evaluating the likelihood function on a uniform grid
becomes virtually impossible. Even for an extremely coarse sampling of 10 grid points
per dimension, we would have to compute the function 1014 times. To circumvent this
problem, we rely on the Metropolis-Hastings algorithm.30 The principle idea is as follows:

We start by computing the likelihood L(π|d) at an arbitrary point π. We then pick a
point π + π′ in the neighbourhood of π. Usually, but not necessarily, π′ is drawn from a
multivariate normal distribution. We then compute the acceptance ratio

α = L(π + π′|d)P (π + π′)
L(π|d)P (π) . (2.158)

Afterwards, we draw a uniform random number u between 0 and 1. If u < α, the point
π + π′ gets accepted and we repeat the procedure with π + π′ as the ‘new’ initial point.
Otherwise, the point π + π′ gets rejected, and we repeat the procedure from the start.
This algorithm leads to a random walk, and the probability density of accepted points
converges to the true posterior (Rosenbluth, 2003). This approach has several advantages:
By the nature of the procedure, the interesting regions where the posterior is large are more
densely sampled than the uninteresting regions of low posterior probability. Furthermore,
marginalisation is extremely easy: Instead of computing a (potentially) high-dimensional
integral, one can project the multi-dimensional posterior along the parameter axis by
ignoring the marginalised dimensions of the sampled random walk.

Unfortunately, convergence is only ensured after an infinite number of evaluations, so
there is the danger that one mistakes a local maximum for the global one and believes
that the random walk has already converged. One usually computes multiple random
walks with different starting positions in parallel to avoid this issue. Still, convergence
can require many evaluations for the likelihood function, which can be prohibitive if it
is numerically expensive to compute. In recent years, nested sampling methods such as
polychord (Handley et al., 2015) promise to reduce the necessary amount of evaluations to
the likelihood function while still recovering the correct shape of the posterior. However,
30Alongside Fast Fourier Transforms, the Metropolis algorithm is considered to be one of the ten most

important ones of the 20th century (https://archive.siam.org/pdf/news/637.pdf).
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the success of this endeavour depends on a correct fine-tuning of the hyper-parameters for
the sampling method and needs to be adjusted to the survey settings (Lemos et al., 2022).

To transform the resulting point clouds into posterior distributions, we smooth them
with a kernel. The size of that kernel has to be chosen appropriately; it should be large
enough to smooth out bumps caused by individual points, but not so large that it arti-
ficially broadens the posteriors. This allows us to recover a posterior distribution in the
low-dimensional projections where we can visualise it. Alternative ways to recover the pos-
terior without invoking a Markov-Chain Monte Carlo (MCMC) run are variational-Bayes
solutions (Rizzato and Sellentin, 2022) or likelihood-free inference (Jeffrey et al., 2021).
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CHAPTER 3

Used data products

In this chapter we introduce the data products and N-body simulations that were used for
this thesis. When talking about weak lensing surveys, we distinguish between Stage-III and
Stage-IV surveys (Albrecht et al., 2006). Stage-III surveys are ongoing or recently com-
pleted weak lensing surveys such as KiDS, DES or Hyper Surprime-Cam Subaru Strategic
Program (HSC SSP, Aihara et al., 2018). Stage-IV represents the next generation of weak
lensing surveys, such as LSST or Euclid (Laureijs et al., 2011). They are expected to see
first light within the next years and will enable us to place meaningful constraints on the
dark energy EoS.

3.1. Kilo-Degree Survey

We use the public1 data from the fourth data release of the KiDS (Kuijken et al., 2015,
2019; de Jong et al., 2015, 2017) carried out by the European Southern Observatory. The
KiDS is uniquely optimised for weak lensing studies; the VST-OmegaCAM mounted at the
Cassegrain focus of the VST allows for a very uniform and circular PSF, and the overlap
with the infrared VISTA Kilo-degree Infrared Galaxy survey (VIKING, Edge et al., 2013)
means that galaxies are observed in nine photometric bands, allowing for tight control over
potential redshift uncertainties (Hildebrandt et al., 2021), especially at higher redshifts.
We use fourth data release of the KiDS (KiDS-1000, Kuijken et al., 2019), which covers
roughly 1000 deg2 on the sky, in Sect. 5.1 and App. B; we also work with the previous
KiDS+VIKING-450 (KV450, Wright et al., 2019) data release in Sect. 4.2.

1https://kids.strw.leidenuniv.nl/DR4
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3.2. Dark Energy Survey
In Sect. 4.3, we use the public2 year-1 data of the Dark Energy Survey (DES-Y1) data
presented in Abbott et al. (2018). The main weak lensing data product is a galaxy cat-
alogue, containing positions and ellipticities for tens of millions of galaxies observed with
the DECam at the Blanco telescope (Flaugher et al., 2015). We tailor our analysis to use
the same galaxies as Troxel et al. (2018, hereafter T+18) and Harnois-Déraps et al. (2021,
hereafter HD+21) by picking only galaxies with the flags select, Metacal, and the
redmagic filters. In total, we use 26 million galaxies spanning an effective area of about
1321 deg2.

The galaxy ellipticities ϵ1/2 are inferred using the Metacalibration technique (Shel-
don and Huff, 2017). This provides each galaxy with a response function Si that
parametrises the sensitivity of the measurement to potential galaxy shear. As in T+18, we
provide the method with a prior on the multiplicative shear bias of m±σm = 0.012±0.023.
We use the reduced shear approximation and thus assume that the measured ellipticities
provide us with an unbiased estimator of the shear γ.

The source sample was split into four tomographic redshift bins according to their photo-
metric redshifts measured with the bpz method (Benítez, 2000). In contrast to the original
DES-Y1 method (Hoyle et al., 2018), we follow HD+21 and determine the redshift distri-
bution of each tomographic bin using the ‘DIR’ calibration method (Lima et al., 2008).
This method was shown to suffer from smaller systematic uncertainties and to be more ro-
bust to potential selection effects of the spectroscopic training sample (Joudaki et al., 2020;
Gruen and Brimioulle, 2017). The uncertainty on the mean redshift of the source distribu-
tion has been determined by bootstrap resampling to be σz = 0.008, 0.014, 0.011 and 0.009
for tomographic bins 1..4, respectively (Joudaki et al., 2020). This method yields excel-
lent agreement between the cosmological parameter constraints of DES-Y1 and KV450
cosmic shear data (Hildebrandt et al., 2020). A comparison between the two methods to
determine the redshift distribution shows that the inferred S8 value of DES-Y1 changes by
less than 1σ, which is certainly noticeable but causes no tension between the two different
redshift estimation methods.

3.3. Galaxy catalogues from N-body simulations
In addition to the real cosmic shear data described above, we also use several N-body
simulations to validate our models, extract covariance matrices, and conduct simulation-
based inference. In this section, we detail the different N-body simulations that we used
for our analysis in Chapters 4 and 5.

3.3.1. SLICS
The Scinet light cone simulations (SLICS) consist of a set of 927 fully independent N-
body simulations conducted in a flat ΛCDM-Universe with Ωm = 0.2905, Ωb = 0.0473,
h = 0.6898, σ8 = 0.826 and ns = 0.969. For each simulation, initial conditions were
evolved to redshift z = 0 with 15363 particles in a box of 505h−1 Mpc, and subsequently

2DES-Y1 catalogues: des.ncsa.illinois.edu/releases/dr1
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ray-traced into 10 × 10 deg2 light-cones up to z = 3, producing between 15 and 28 mass
sheets of co-moving thickness equivalent to half the box size.

3.3.1.1. cosmo-SLICS

The cosmo-SLICS are a suite of cosmological N-body simulations in which the matter
density Ωm, the parameter S8, the Hubble constant h and the parameter for the dark
energy equation of state w0 are sampled at 26 points in a Latin hyper-cube (see Tab. 3.1 at
the end of this chapter for the exact list). At each cosmology, a pair of N-body simulations
was evolved the same way as the SLICS and subsequently ray-traced multiple times to
yield 50 pseudo-independent lines of sight. The initial conditions were chosen such as to
suppress most of the sample variance when averaging a statistic over the pair (for more
details on the cosmo-SLICS, we refer the reader to Harnois-Déraps et al., 2019).

3.3.1.2. Adjusting simulations to weak lensing surveys

KV450-like We take the KV450 data set (Wright et al., 2019) as an example of a current
Stage-III weak lensing survey and create mock data sets with similar properties. Due to
the box size of our simulations, the full KV450 survey footprint cannot be fitted onto a
single light cone. Instead, we split the survey into 17 tiles following the setup presented in
Appendix A3 of Harnois-Déraps et al. (2018) and compute the (simulated) shear signal at
the exact positions of the KV450 galaxies, repeating the process for ten light-cones (out of
the 50 available) for each cosmo-SLICS pair, and for 126 SLICS realisations. The galaxy
redshifts were randomly selected such that the cumulative redshift distribution follows the
fiducial “direct calibration” method (DIR) described in Hildebrandt et al. (2020).

DES-Y1-like Similarly, we tailor the SLICS and cosmo-SLICS to match the DES-Y1
survey specifications by splitting the survey into 19 tiles, following the setup in HD+21.
Again we compute the simulated shear signal at the positions of the DES-Y1 galaxies and
repeat this process for 5 out of the 50 available light-cones for each cosmo-SLICS pair and
for 126 SLICS realisations. We randomly select the galaxy redshift distributions so that
their cumulative distribution follows the one determined by Joudaki et al. (2020).

Euclid-like We use Euclid-like SLICS and cosmo-SLICS in both of the projects described
in Chapters 4 and 5. In both cases, we take the full 100 deg2 maps and randomly distribute
source galaxies to achieve a number density of 30 arcmin−2. We sample the source galaxy
redshifts between z = 0 and z = 3 with a probability distribution of

n(z) ∝ z2 exp
[
−
(
z

z0

)β]
, (3.1)

with z0 = 0.637 and β = 1.5. These choices represent our expectations of the performance
of the Euclid-mission; exact values can not be given as the mission has not been launched
yet.
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Obtaining realistic galaxy catalogues While we can measure the uncontaminated shear
of a source galaxy in simulations, real galaxies suffer from shape noise. Especially for the
project in Chap. 4, we are highly sensitive to the survey’s exact shape noise properties, so
it is crucial to reproduce these in the simulation as accurately as possible. We obtain our
mock ellipticities by rotating the ellipticities that are observed in the respective survey
(KV450 or DES-Y1) by a random angle and combine the resulting signal ϵn with the
simulated reduced shear g via Eq. (2.85). The random rotation ensures that the resulting
ellipticity ϵn carries no cosmic shear signal but traces almost the exact shape noise of
the respective survey. This is important as the shape noise of galaxies can depend on
position, magnitude, and redshift; local variations of these properties could otherwise bias
our statistics.

In total, we compute ten shape-noise realisations for every simulated survey realisation,
each using a different random seed in the rotation. This procedure allows us to average
out a large part of the fluctuations introduced by the shape noise, improving both our
predictions and our estimate of the sample covariance while preserving the data noise
levels. For the Euclid-like simulations, we draw the shape-noise from a random distribution
with zero mean and dispersion σ2

ϵ ≡ 〈|ϵ2n|〉 ≈ 0.3.

3.3.2. Magneticum simulations

We use the Magneticum simulations3 (more precisely the Magneticum Run-2 and Run-
2b of Castro et al., 2021) to estimate the impact of baryons on our desired summary
statistics. Apart from gravitational interactions, these hydrodynamical simulations include
models for radiative cooling, star formation, supernovae and feedback by active galactic
nuclei. The simulations were run in volumes of 352 and 640 h−1 Mpc, respectively, with
the cosmological parameters Ωm = 0.272, h = 0.704, Ωb = 0.0451, ns = 0.963, and
σ8 = 0.809. Conveniently, this is quite close to the cosmology of the SLICS, which allows
us to use our models for baryonic feedback on the work conducted with these simulations.
The feedback determined by the Magneticum simulations is consistent with the one of
the BAHAMAS simulations (McCarthy et al., 2017), a completely independent set of
hydrodynamical simulations. Both reproduce a number of observations of the LSS, as
detailed in Hirschmann et al. (2014); Teklu et al. (2015); Castro et al. (2018).

3.3.3. Millennium simulations

The Millennium simulation (MS) are a set of simulations with a flat ΛCDM cosmology
with h = 0.73, σ8 = 0.9, Ωm = 0.25, Ωb = 0.045 and ns = 1. They were run with
21603 particles in a 500h−1 Mpc box and subsequently ray-traced (Hilbert et al., 2009) to
yield shear- and convergence-maps of 64 semi-independent lines of sight with an area of
4 × 4 deg2. The shear and convergence maps are provided for each line of sight on a grid
of 4096 × 4096 pixel at 36 different source redshifts.

3www.magneticum.org
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Figure 3.1. – The fiducial redshift distribution of the KiDS-1000 survey (blue) and the respective
weights we used for the convergence shells in the T17 simulations (orange). From Heydenreich et al.
(2022b).

3.3.4. Full-sky weak lensing convergence maps
We use the public4 full-sky weak lensing convergence maps (T17, Takahashi et al., 2017)
to perform a realistic, curved-sky analysis, mimicking the properties of the KiDS-1000
survey (Giblin et al., 2021). The simulations were constructed from a series of nested
cubic boxes with sidelengths L, 2L, 3L, . . . with L = 450 Mpc/h. The cubes are placed
around a fixed point representing the observer’s position. Each box contains 20483 dark
matter particles that are evolved with the gadget2 code (Springel et al., 2001) in a flat
ΛCDM cosmology with Ωm = 0.279, Ωb = 0.046, h = 0.7, σ8 = 0.82, and ns = 0.97. Then,
spherical lens shells with a width of 150 Mpc/h are constructed and ray-traced using the
code GRayTrix5.

For each realisation, we build realistic convergence maps by computing a weighted av-
erage over all 38 convergence shells, where the weight of each shell is determined by the
value of the fiducial KiDS-1000 n(z) at the respective redshift (see Fig. 3.1). To include
the effect of shape noise, we add a Gaussian random variable with variance

σ2
pix = σ2

ϵ

ngalApix
, (3.2)

where Apix is the pixel area of the convergence grid. For the galaxy number density and
shape noise, we take ngal = 6.17 and σϵ = 0.265, which are the values measured in the
KiDS-1000 analysis.

4http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/
5http://th.nao.ac.jp/MEMBER/hamanatk/GRayTrix/
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Table 3.1. – Cosmological parameters of the cosmo-SLICS wCDM simulations. Other fixed param-
eters are Ωb = 0.0447 and ns = 0.969.

Ωm S8 h w0 σ8 Ωcdm

00 0.3282 0.6984 0.6766 −1.2376 0.6677 0.2809
01 0.1019 0.7826 0.7104 −1.6154 1.3428 0.0546
02 0.2536 0.6133 0.6238 −1.7698 0.667 0.2063
03 0.1734 0.7284 0.6584 −0.5223 0.9581 0.1261
04 0.3759 0.8986 0.6034 −0.9741 0.8028 0.3286
05 0.4758 0.7618 0.7459 −1.3046 0.6049 0.4285
06 0.1458 0.768 0.8031 −1.4498 1.1017 0.0985
07 0.3099 0.7861 0.694 −1.8784 0.7734 0.2626
08 0.4815 0.6804 0.6374 −0.7737 0.5371 0.4342
09 0.3425 0.7054 0.8006 −1.501 0.6602 0.2952
10 0.5482 0.6375 0.7645 −1.9127 0.4716 0.5009
11 0.2898 0.7218 0.6505 −0.6649 0.7344 0.2425
12 0.4247 0.7511 0.6819 −1.1986 0.6313 0.3774
13 0.3979 0.8476 0.7833 −1.1088 0.736 0.3506
14 0.1691 0.8618 0.789 −1.6903 1.1479 0.1218
15 0.1255 0.6131 0.7567 −0.9878 0.9479 0.0782
16 0.5148 0.8178 0.6691 −1.3812 0.6243 0.4675
17 0.1928 0.8862 0.6285 −0.8564 1.1055 0.1455
18 0.2784 0.65 0.7151 −1.0673 0.6747 0.2311
19 0.2106 0.8759 0.7388 −0.5667 1.0454 0.1633
20 0.443 0.8356 0.6161 −1.7037 0.6876 0.3957
21 0.4062 0.662 0.8129 −1.9866 0.5689 0.3589
22 0.2294 0.8226 0.7706 −0.8602 0.9407 0.1821
23 0.5095 0.7366 0.6988 −0.7164 0.5652 0.4622
24 0.3652 0.6574 0.7271 −1.5414 0.5958 0.3179
fid 0.2905 0.8231 0.6898 −1.0 0.8364 0.2432
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CHAPTER 4

Persistent homology in cosmic shear

Persistent homology is a powerful tool from topological data analysis that can be applied
to a wide range of data products. It has already seen successful applications in identifying
subgroups of cancer (Nicolau et al., 2011), analysing the spread of contagious diseases
(Lo and Park, 2018), and many other fields (for a review, see Wasserman, 2018). In
cosmology, it has already been used to analyse the structure of the CMB (Pranav et al.,
2017, 2019; Pranav, 2021) and the cosmic web (van de Weygaert et al., 2013; Pranav et al.,
2017; Biagetti et al., 2020). Furthermore, an effective void finder has been built from the
framework of persistent homology (Xu et al., 2019).

In this chapter, we want to establish persistent homology as an analysis tool that can
be used to constrain cosmological parameters. In Sect. 4.2, we introduce the concept of
persistent homology and describe how it can be used to constrain cosmological parameters.
In particular, we focus on relating an intuitive understanding between the main output
of persistent homology, the persistence diagram, to the underlying data. Afterwards, we
compare it to other higher-order statistics that analyse cosmic shear data in a similar way,
in particular peak count statistics and Minkowski functionals. That section is based on
Heydenreich et al. (2021), which can be found in App. C.1.

In Sect. 4.3, we present our optimisation of the analysis setup, which includes different
persistence statistics and various data compression methods. We then introduce a method
to marginalise over systematic effects and conclude with a tomographic analysis of DES-
Y1. That section is based on Heydenreich et al. (2022a), which can be found in App. C.2.

Throughout this chapter, we present a condensed summary of the published works
Heydenreich et al. (2021) and Heydenreich et al. (2022a), glossing over some of the details
and encountered problems. For a more complete picture, the interested reader is referred
to the articles in App. C.1 and C.2.

For both sections, we work on signal-to-noise (S/N) maps of aperture mass that are
computed from galaxy catalogues tracing the properties of a realistic survey. Before diving
into the analysis using persistent homology, we want to briefly highlight how these maps
were computed.
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4. Persistent homology in cosmic shear

4.1. Calculating maps of aperture mass
Since both analyses in Sect. 4.2 and 4.3 utilise maps of aperture masses, we briefly explain
how we compute aperture mass maps from a galaxy catalogue. Some analysis choices
(such as the number of pixels of the aperture mass map) differ between Sect. 4.2 and 4.3,
but the overall procedure is the same.

From a galaxy catalogue, we want to use Eq. (2.92) to calculate the aperture mass maps
of a survey. To ease computation time, we distribute the galaxies on a pixel-grid1. In each
pixel, we calculate the sum of all galaxy ellipticities ϵi and their squared moduli |ϵi|2. We
then want to calculate the S/N maps of aperture masses as

S

N
(θ) =

√
2∑iQθap(|θi − θ|)ϵt(θi; θ − θi)√∑
i |ϵt(θi; θ − θi)|2Q2

θap
(|θi − θ|)

, (4.1)

where the tangential ellipticity ϵt is defined in analogue to γt in Eq. (2.90). We can now
calculate the numerator and denominator of this equation via a fast Fourier Transform
(FFT), saving a significant amount of computation time. We want to focus on detecting
peaks in the matter distribution, so we take a filter function that maximises the S/N of
NFW-profiles (Schirmer et al., 2007):

Qθap(θ) =
[
1 + exp

(
6 − 150 θ

θap

)
+ exp

(
−47 + 50 θ

θap

)]−1(
θ

xcθap

)−1

tanh
(

θ

xcθap

)
.

(4.2)

Here, we choose an aperture radius of θap = 12.′5, which seemed to work well for Martinet
et al. (2018). For each tile of the SLICS2, there are empty regions where no galaxies
are present, either due to the shape of the survey window or masked regions. We mask
each pixel of the S/N map where the effective area within the aperture radius is less than
50% (meaning less than 50% of pixels within the aperture radius contain any galaxies)
and assign it a value of −∞. We ensure that each tile of the SLICS is surrounded by
masked pixels so that neighbouring regions are treated as independent in the persistence
calculations.

4.2. A feasibility study

This section is based on Heydenreich et al. (2021), which has been published in
the journal Astronomy & Astrophysics, Volume 648, ID. A74. This work has been
achieved in collaboration with Benjamin Brück and Joachim Harnois-Déraps. For
this work, I led the data analysis; Benjamin Brück was in charge of the theoretical
framework of persistent homology, and Joachim Harnois-Déraps assisted in the us-
age of the SLICS and cosmo-SLICS simulations. The published paper can be found
in App. C.1.

1In Sect. 4.2, we use 10242 pixel, giving an area of 0.′62 per pixel, in Sect. 4.3, we use 6002 pixels with an
area of 1′2.

2In Sect. 4.2, the SLICS mimic the KV450 survey; in Sect. 4.3, they mimic the DES-Y1 survey.
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4.2. A feasibility study

Before we use persistent homology to perform a cosmological parameter analysis, we
need to establish that it is indeed sensitive to the underlying cosmology and that we can
construct a suitable framework for the analysis. Within this section, we want to focus on
three main topics of interest. The first is how to get a suitable data vector from persistent
homology. The main output from persistent homology is a persistence diagram (compare
Fig. 4.1). For a cosmological parameter analysis, however, we need a data vector of fixed
dimension and a covariance for that data vector (as described in Sect. 2.3.3). The next
problem is that we need a model of the data vector. Even for Gaussian random fields,
such a model is virtually impossible to construct due to the highly non-linear nature of
the persistence statistics (compare Pranav, 2021). Once these two problems are solved,
weinvestigate how persistent homology compares to other higher-order statistics, both by
intuitive understanding and quantitative analysis.

Throughout this section, we work on the SLICS and cosmo-SLICS that have been tai-
lored to match the KV450 survey.

4.2.1. From the persistence diagram to a data vector

At first, we construct a persistence diagram for one realisation of the KV450-like SLICS.
To do that, we take the S/N maps of all 17 tiles and concatenate these into one large
map. Since each of the maps is surrounded by a mask, they are treated as independent in
the persistence calculation, and the way we concatenate them does not matter. We then
extract a persistence diagram from this aperture mass field, as described in Sect. 2.3.13.
To construct a data vector, we measure the persistent Betti numbers βn(t, t′) of that
persistence diagram. For a dimension n, the persistent Betti number βn(t, t′) measures
how many n-dimensional topological features4 were born before the threshold t and are
still alive at t′. In other words, the value of βn(t, t′) is equal to the number of points in
the persistence diagram which lie to the top-left of the point (t, t′) (compare Fig. 4.1).

We now want to select a set of points (t, t′) so that the data vector consisting of all
βn(t, t′) contains as much cosmological information as possible. In order to do that, we
measure the persistent Betti numbers on a dense grid in all 26 cosmo-SLICS simulations.5
As these simulations have been run with the same random seed for initial conditions,
the difference between the cosmo-SLICS is mainly caused by their different cosmological
parameters. We then measure the persistent Betti numbers on the same grid in all SLICS
simulations. As these are run with the same cosmological parameters but different initial
conditions, the difference between their Betti numbers is caused mainly by sample variance.
The ratio of the difference between the cosmo-SLICS divided by the standard deviation of
the SLICS is thus a good measure of the cosmological information content of the persistent
Betti numbers at different points (t, t′). We inductively select the points with the highest
cosmological information content in the following way: The first element of our data vector
is the point with the highest cosmological information content. Afterwards, assuming we
already have d evaluation points selected, let xi be the corresponding d-dimensional data

3In practice, we use the python-library Gudhi.
4Each generator of a homology group is called a topological feature (compare Sect. 2.3.1.3).
5To ensure that we do not focus on numerical artifacts, we only sample points (t, t′) where the mean of

βn(t, t′) over all SLICS is larger than 40.

73



4. Persistent homology in cosmic shear

Figure 4.1. – An example persistence diagram of a S/N field of aperture masses. The blue dots signify
the zero-dimensional features Dgm0, corresponding to the connected components of the filtration. The
orange dots correspond to the one-dimensional features Dgm1, which are generated by the holes in
the filtration of the S/N map. To evaluate the Betti function β1(1, 2), one counts the number of
1-dimensional features to the top-left of the black point in the diagram.

vector in the cosmo-SLICS simulations, let xSLICS be the mean data vector of all SLICS-
simulations, and let C be the covariance of xSLICS. We then order the remaining evaluation
points by their cosmological information content. Afterwards, for each point we construct
new data vectors x′

i, x′
SLICS and a new covariance matrix C ′ that include the point with

the next-highest cosmological information content. We then check if the inclusion of that
point increases the quantity

χ̂2 = 1
26
∑

i

[
(x′

SLICS − x′
i)TC ′−1(x′

SLICS − x′
i)
]
, (4.3)

by at least 0.2.6 If it does, the point gets accepted, and the procedure repeats with the
new data vector that includes the new point. That way, we iteratively build our data
vector until all remaining points are rejected.

Now we can generate a data vector of our summary statistic from an input galaxy
catalogue. As a next step, we must construct a way to model this data vector for a set of
cosmological parameters.

4.2.2. Constructing and validating a model for the data vector
As already stated, constructing a theoretical model for a statistic within the framework of
persistent homology is not feasible. Instead, we rely on numerical simulations to achieve
a model. For each set of cosmological parameters πi in the cosmo-SLICS, we extract
a data vector xi and an error on the measurement σ(xi). We then build an emulator
for our model via Gaussian process regression (GPR). Briefly put, this GPR emulator

6The value of 0.2 was chosen more or less arbitrarily to ensure an appropriate length of the data vector.
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provides a probabilistic way to interpolate the measured data vectors. For an arbitrary
set of cosmological parameters π†, the emulator provides both a model prediction x† and
an uncertainty on that prediction, σ(x†).

We then validate this emulator by a leave-one-out cross-validation: We remove the first
of the 26 cosmologies of the cosmo-SLICS and train the emulator on the remaining 25
ones. Afterwards, we let the emulator predict the data vector x†

1 for the first cosmology,
which we had previously removed. We then calculate the error element-wise

σ2 = |x†
1 − x1|2 , (4.4)

where x1 is the measured data vector of the first cosmology. We verify that this error is
smaller than the standard deviation we measure in the SLICS, and that it is consistent
with the internal error estimate of the GPR emulator (compare App. C of Heydenreich
et al., 2021).

This method has the advantage that it can predict our summary statistics with mini-
mal computational effort and even provides us with an error estimate on the prediction.
However, that error estimate can only capture the uncertainty of the prediction between
different cosmologies of the cosmo-SLICS; if the simulations themselves are inaccurate, we
have no way to quantify this.

It is important to note that the emulator only works in a highly specific setting: The
persistent Betti numbers are not only sensitive to cosmological parameters and the redshift
distribution of source galaxies but also to the exact shape of the survey footprint and both
number density and shape noise of the source galaxies (compare App. D of Heydenreich
et al., 2021). This means that the emulator and the N-body simulations used for training
must be specifically adjusted to the survey properties.

4.2.3. Comparison to other higher-order statistics
We have established a way to perform a cosmological parameter analysis with persistent
Betti numbers. However, the persistent Betti numbers are a relatively complicated statis-
tic, and whether a cosmological parameter analysis using them is worth the effort is an
important question. In this section, we thus want to compare persistent Betti numbers
with peak count statistics (as used in Martinet et al., 2018); a relatively simple summary
statistic.

We implement the peak count statistics on the same S/N maps of aperture masses by
finding all local maxima in a map and binning them by their maximum value. To ensure
compatibility with Martinet et al. (2018), we adapt their approach and use 12 bins between
S/N values of 0 and 4.

4.2.3.1. Relation to peak count statistics

To compare persistent homology to peak count statistics, we first want to understand the
physical interpretation of the topological features in the persistence diagram. To aid that
understanding, we recommend the reader to re-visit Fig. 2.11 on page 56.

We start with the first homology group, which describes (1-dimensional) holes in the
filtration. As seen in Fig. 4.2, a hole arises when the cut-off threshold is lower than the
maximum value of an overdensity but higher than the value of its local environment. This
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4. Persistent homology in cosmic shear

Figure 4.2. – A simplified example of a local overdensity in the S/N map (left), and the same
overdensity when a cut-off threshold is applied (right). Adapted from Heydenreich et al. (2021).
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Figure 4.3. – Two simplified S/N maps of aperture mass. Both maps contain four local maxima
with the values 1, 2, 3, and 4. The maxima in the left map are completely isolated, whereas in the
right map three of the maxima lie in a region with increased S/N. Adapted from Heydenreich et al.
(2021).

hole disappears once the cut-off threshold exceeds the maximum value of said overden-
sity. This means that a hole corresponds to a local overdensity, where its birth relates to
the S/N value of its local environment, and its death is equal to its maximum value. A
similar line of reasoning shows that the 0th homology group, which describes connected
components in the filtration, quantifies the behaviour of local minima: The birth of a
connected component is equal to its minimum value, and its death (when it merges with
other connected components) roughly corresponds to the S/N value of its environment.
This already means that persistent homology contains at least as much cosmological in-
formation as peak statistics, as we can perfectly recover the latter by taking the death
values of all features in the first homology group.

We argue that, aside from information about local minima, the information about the
persistence of features gives an advantage to persistent homology over peak statistics.
Inspecting Fig. 4.3, we can see that peak count statistics would detect four peaks of
height 1, 2, 3, and 4 in both S/N maps. However, persistent homology would detect
the following 1-dimensional features (denoted by their birth and death) in the left image:
{(0, 1), (0, 2), (0, 3), (0, 4)}. In the right image, however, the detected features would be:
{(0, 1), (0, 4), (1, 2), (2, 3)}. While these two maps would look indistinguishable under peak
count statistics, persistent homology can detect a difference between them. Indeed, this
information gain comes from the environment around the peaks: Peak count statistics
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Figure 4.4. – Constraints on the cosmological parameters Ωm and S8 for a KV450-like setup (left)
and a Euclid-like setup (right). In both cases, we compare the constraints from persistent Betti
numbers (blue) and peak statistics (red). We also show the constraints that can be achieved when
neglecting the emulator uncertainty (which could be achieved by significantly increasing the number
of training nodes). We note that the effective area for the Euclid-like setup is only 100 deg2, so the
absolute size of the contours should not be compared. Figure adapted from Heydenreich et al. (2021).

only utilise a peak’s maximum value and thus cannot quantify how much a peak protrudes
from its surroundings. In persistent homology, the birth of a feature yields exactly this
information.

4.2.3.2. Comparison of cosmological parameter constraints

We conduct a cosmological parameter analysis on mock data to quantify the information
gain from persistent homology. Our first analysis is performed for a realistic KV450-like
setup that mimics the exact distribution of source galaxies and shape noise in the KV450
survey. To do that, we interpret the mean data vector measured in all SLICS, xSLICS, as a
measurement. Furthermore, we extract the sample covariance matrix Cb for xSLICS from
the SLICS. At each step of the MCMC run, we take the diagonal matrix Ce whose entries
correspond to the error estimates of the GPR emulator and define our covariance matrix
C as C = Cb + Ce. We choose uniform priors for the cosmological parameters Ωm, S8, h
and w0, and adapt the multivariate t-distribution from Sellentin and Heavens (2016), as
discussed in Sect. 2.3.3.1.

We find that persistent homology yields a marginal increase of 3% in constraining power
compared to peak statistics. However, the ‘figure of merit’ (i.e. one over the area covered
by the 2σ contours, compare Albrecht et al., 2006), in the Ωm −σ8 plane increases by 48%.
We also find that the emulator uncertainty plays a role and that its impact on persistent
Betti numbers is worse than for peak count statistics.

We then repeat the analysis for a setup that mimics the properties of a Stage-IV survey.
Our mock galaxy catalogues are constructed with a number density and source redshift
distribution that are expected for the Euclid survey. In that setup we find an increase in
constraining power of about 19% for S8.

We do not compare the performance of persistent homology to other topological statis-
tics like Minkowski functionals or the Euler characteristic. However, Zürcher et al. (2021)
showed that these are already less constraining than peak count statistics. Since persistent
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Betti numbers are more constraining than regular Betti numbers, we can conclude that
persistent homology provides the most potent topological summary statistic for cosmic
shear surveys to date.

4.3. Application to the Dark Energy Survey

This section is based on Heydenreich et al. (2022a), which was accepteda by the
journal Astronomy & Astrophysics. This work has been achieved in collabora-
tion with Benjamin Brück, Pierre Burger, Joachim Harnois-Déraps, Sandra Unruh,
Tiago Castro, Klaus Dolag and Nicolas Martinet. I lead the data analysis, Ben-
jamin Brück developed the necessary mathematical background, Pierre Burger was
in charge of the measurement and validation of the shear 2pcf, Joachim Harnois-
Déraps provided the suites of SLICS and cosmo-SLICS simulations, and Sandra
Unruh developed the integration into cosmoSIS (Zuntz et al., 2015), which is a
modular code to perform cosmological parameter analyses via MCMC. Tiago Cas-
tro, Klaus Dolag and Nicolas Martinet provided the post-processed Magneticum
simulations, which were used to marginalise over baryonic effects. Of course, many
ideas and analysis choices resulted from discussions with the collaborators, so it is
impossible to disentangle the contributions perfectly. The accepted paper can be
found in App. C.2.

ahttps://doi.org/10.1051/0004-6361/202243868

After showing in the feasibility study that persistent homology is a competitive tool
for cosmological parameter analysis in cosmic shear surveys, we apply this method to
the DES-Y1 survey. We improve upon the previous study in several ways. Our first im-
provement is to perform a tomographic analysis. Furthermore, we abandon the previously
used persistent Betti numbers in favour of a more stable summary statistic: persistent
heatmaps. Afterwards, we test different data compression methods on the heatmaps and
improve upon the previously developed method to choose evaluation points. Lastly, we
implement marginalisation strategies for astrophysical and observational systematics (see
Sect. 2.2.6.2). These improvements allow us to perform a cosmological parameter analysis
of the DES-Y1 survey, yielding the first parameter constraints ever achieved within the
framework of persistent homology.

4.3.1. A tomographic analysis
The galaxies in the DES-Y1 survey are split into four tomographic redshift bins based on
their photometric redshifts. A tomographic analysis thus allows us to trace the growth
of structure over cosmic time. The ‘naive’ approach to such a parameter analysis would
be calculating the aperture mass maps for all four tomographic bins and performing the
persistent homology calculations on those four maps. However, important information is
missed when utilising this approach. For example, assuming we have a nearby massive
galaxy cluster, this would show up as a local maximum in all four aperture mass maps.
However, the information that this local maximum is at the same position in all four maps
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would get lost as soon as one calculates the persistence diagram of these maps. Instead of
just taking all four tomographic bins, we thus also calculate the aperture mass maps of all
combinations of tomographic bins (1, 2, 3, 4, 1∪2, . . . , 3∪4, . . . , 1∪2∪3∪4). Martinet et al.
(2021) showed that this method has the potential to almost double the constraining power
on the structure growth parameter S8, which has been confirmed by Harnois-Déraps et al.
(2021, hereafter HD+21). However, taking all combinations of the four tomographic bins
yields 24 − 1 = 15 potential combinations, which restricts the possible length of a data
vector for one tomographic bin combination.

4.3.2. Optimising the persistence statistics

As the next step, we investigate different persistence statistics. In the previous study,
we used persistent Betti numbers, some of the most straightforward statistics in persis-
tent homology. However, they come with some disadvantages. In particular, the value of
Betti functions is always an integer, which means that usually, the average of several Betti
functions is not a Betti function anymore. Instead, we opt to use persistent heatmaps.
To construct these, we start with the set of all features {(bi, di)}i in the persistence di-
agram. We then represent each feature by a Dirac delta distribution δD

[
x − (bi, di)T

]

and define the persistence heatmap as the convolution of these Dirac delta distributions
with an isotropic Gaussian with standard deviation t. To ensure that the heatmap is
zero on the diagonal, for each feature (bi, di) we add a negative Dirac delta distribution
−δD

[
x − (di, bi)T

]
at the point (di, bi) that is mirrored along the diagonal. This is moti-

vated by the fact that features close to the diagonal are likely to be caused by tiny noise
fluctuations.

These persistence heatmaps can be understood as a smoothed persistence diagram that
is obtained by just replacing every feature with a Gaussian. The smoothing parameter t
is an important hyperparameter that needs to be chosen carefully; a too small value of t
might lead to unstable results, whereas a too large value likely results in loss of constraining
power. For our purposes, we find that t = 0.2 yields a good compromise.

We note that each persistence diagram Dgm results in two heatmaps, one for the 0-
dimensional features Dgm0, and one for the 1-dimensional features Dgm1.

We also try to use persistence landscapes (Bubenik, 2015), a more elaborate statistic in
persistent homology. However, we are unable to set them up in a way that leads to stable
and competitive results.

4.3.3. Optimising the data compression method

With the persistent heatmaps as our chosen summary statistic, we still needed to choose
a data compression method. We opt for an optimisation of the method introduced in
Sect. 4.2.1. For each combination of tomographic bins, we sample each heatmap at 100 ×
100 points and take the upper diagonal matrix of this regular grid (see Fig. 4.5). We then
calculate the cosmological information content of each point, as described above. Again,
we inductively build our data vector and start by selecting the point with the highest
cosmological information content. Given a data vector x, for each point in the heatmap, we
build a data vector x′ by adding that point to the existing one. We then extract that data
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Figure 4.5. – An example of a heatmap for the combination of all four tomographic bins in one
line of sight of the DES-Y1-like SLICS. On the left side, we show the heatmap for Dgm0; the right
panel shows the heatmap for Dgm1. The red dots represent the evaluation points chosen by our data
compression method. From Heydenreich et al. (2022a).

vector from all cosmo-SLICS simulations and define those as x′
cosmoSLICS,i. Furthermore,

we extract the mean of the cosmo-SLICS,
〈
x′

cosmoSLICS,i

〉
i
and define ∆x′

i = x′
cosmoSLICS,i−〈

x′
cosmoSLICS,i

〉
i
. We then also extract the covariance of the data vector x′, C ′, from the

SLICS. Afterwards, we choose the point for which the new data vector maximises

χ̂2 =
25∑

i=0
∆x′

i
TC ′−1∆x′

i . (4.5)

Instead of setting an arbitrary threshold by which χ̂2 needs to increase (as in Sect. 4.2.1),
this method ensures that it takes the best available point to maximise the cosmological
information content of a data vector. We decide to take 12 points of the heatmap per to-
mographic redshift bin, resulting in a data vector of length 180 and ensuring compatibility
with HD+21.

We compare this data compression method with two others: a principal component
analysis (PCA) and a method developed by Asgari and Schneider (2015). The former has
the advantage that it can be used on data vectors of any length and identifies linear com-
binations of elements that cause the majority of variation between data vectors. However,
it has the significant disadvantage that it can not take into account the sample covari-
ance of the data vector. In other words, it maximises the variation of a data vector, not
its cosmological information content. Conversely, the method from Asgari and Schneider
(2015) tries to maximise the cosmological information content in a framework extending
the Fisher formalism; however, this requires knowledge of the inverse covariance matrix,
which can not be obtained for arbitrarily long data vectors (Hartlap et al., 2007). Both
data compression methods do not manage to out-perform the method we developed but
instead yield results that are very consistent with our fiducial ones.
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4.3.4. Marginalising over systematic effects
While we have already constructed a modelling pipeline for persistent homology statistics
with a GPR emulator, which can be easily adapted to the specifications of the DES-Y1
survey, we have not yet taken into account the systematic biases that are inherent to
every cosmic shear survey. We use specifically tailored N-body simulations to model the
effects of intrinsic alignments, baryon feedback, multiplicative shear measurement bias and
photometric redshift errors.

For the intrinsic alignments, we use SLICS simulations where galaxies are placed at
the centres of dark matter halos and then infused with the non-linear intrinsic alignment
model with the intrinsic alignment amplitudes A ∈ {−5,−2,−1,−0.5, 0.5, 1, 2, 5}. For the
baryonic feedback, we utilise the magneticum hydrodynamical simulations, which have
been run on the same initial conditions both with and without baryonic feedback pro-
cesses, allowing us to determine the impact of this effect on the persistent heatmaps.
To estimate the impact of multiplicative shear measurement biases, we multiply the
simulated shear in the cosmoSLICS fiducial cosmology by a factor of (1 + m), where
m ∈ {−0.025,−0.0125, 0.0125, 0.025} parametrises the measurement bias. Lastly, to ac-
count for photometric redshift uncertainties, we create ten ‘biased’ source redshift dis-
tributions for each tomographic bin, where we shift the fiducial redshift distribution by
a random number drawn from a normal distribution whose variance corresponds to the
estimated photometric redshift uncertainty.

For every systematic bias, we assume that the effect is linear and does not depend on the
underlying cosmology. This is certainly a simplified assumption, but one that we believe
to be reasonably accurate. For every point in the data vector x and every systematic bias,
we can now perform a linear fit

xsys(λ) = mxλ+ xnosys , (4.6)

where xnosys is the fiducial data vector, xsys is the one that is contaminated by systematic
effects, and λ parametrises the strength of the respective systematic effect. We now further
assume that the effects of each systematic bias are independent of each other and model
our full systematics-infested data vector as

xsys = xnosys + mIAAIA + mbarbbar + mdz∆z + mm∆m , (4.7)

where AIA, bbar,∆z and ∆m parametrise the effects of intrinsic alignments, baryons, red-
shift errors and shear measurement biases, respectively.

We test the impact of the individual systematic effects in two ways: First, we run a cos-
mological parameter analysis on a systematics-infused data vector without marginalising
over any systematics to assess the bias this effect would cause when left untreated. After-
wards, we run a parameter analysis where we marginalise over this systematic effect and
compare it to the un-marginalised case to quantify the loss in constraining power we suffer
by including this systematic effect. For intrinsic alignments and baryonic feedback, these
impacts can be seen in Fig. 4.6; for shear measurement errors and photometric redshift
uncertainties, the impact is not significant. We can see that both baryonic feedback and
intrinsic alignments significantly impact our parameter constraints and must be treated
carefully. We also note that marginalisation over both systematic effects significantly
increases the uncertainty in the cosmological parameter constraints.
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Figure 4.6. – The left figure depicts the impact of systematic biases on cosmological parameters if
they are present in the target data vector and not properly accounted for. The right figure shows the
loss in constraining power when one marginalises over one of the systematic effects. Adapted from
Heydenreich et al. (2022a)

4.3.5. Results
Aside from an analysis with persistent homology, we also include an analysis with the
shear 2pcf ξ±, replicating the analysis settings chosen in Troxel et al. (2018). We measure
the 2pcf in the SLICS to extract a joint covariance matrix between persistent homology
and shear 2pcf and integrate our GPR emulator into the public cosmoSIS pipeline. This
allows us to jointly model both shear 2pcf and persistent homology, where the former
are modelled from a theoretical power spectrum (Takahashi et al., 2012) and the latter
from the GPR emulator. For the 2pcf, the scale-cuts were chosen to ensure minimal
containment from baryonic feedback; all other nuisance parameters can be accounted
for within the cosmoSIS pipeline. To ensure both a reasonable runtime and reliable
parameter constraints, we choose the nested sampling method polychord (Handley et al.,
2015) with the settings outlined by Lemos et al. (2022).

Before conducting a cosmological parameter analysis, we validate our analysis pipeline
on mock data to verify that we recover the input cosmology. We take the mean data
vector measured in the SLICS as a target data vector and perform a complete parameter
analysis, including all systematic effects.

The results of the validation tests can be seen in Fig. 4.7. We see that we recover the
input cosmology well within our 1σ uncertainties. We can further see that the constraints
from persistent homology appear to be tighter than the ones from shear 2pcf and that a
joint analysis further increases the constraining power. We conclude that our validation
test has been successful and that our analysis pipeline is ready to be applied to real data.

We show the parameter constraints achieved from the DES-Y1 survey in Fig. 4.8. We
see that persistent homology and shear 2pcf yield perfectly consistent constraints for the
matter clustering parameter S8 and the intrinsic alignment amplitude A, although the
constraints achieved by persistent homology are significantly tighter. Neither of the two
methods appears to place any significant constraints on the dark energy EoS w0. We
notice a large tension between shear 2pcf and persistent homology in the constraints of
the matter density parameter Ωm, which unfortunately prevents us from performing a
joint analysis. We see that the constraints from HD+21, achieved with an independent
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analysis pipeline using peak count statistics, are remarkably similar to ours.7 This leads
us to believe that this tension is not caused by a bug in our analysis setup. We tested
different potential causes of this bias: We try excluding specific nodes of our cosmoSLICS
training set, applying different scale cuts to the persistence heatmaps, or omitting certain
tomographic bins. To check whether the underlying cosmoSLICS training set of the GPR
emulator might be responsible for this shift, we also try modelling the shear 2pcf using the
same GPR emulator. None of these tests reduce the Ωm tension by a significant amount.

7We note that, in contrast to the peak count statistics analysis of HD+21, we marginalise over baryonic
effects and intrinsic alignments, which increases our posterior contours (compare Fig. 4.6). This explains
why we do not achieve tighter constraints despite using a more powerful summary statistic.
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Figure 4.7. – Parameter constraints of an analysis of a DES-Y1-like mock data vector with known
cosmological parameters. We show the constraints from shear 2pcf (red) and the ones from persistent
homology (blue). We further show the constraints of a joint analysis (grey). The black crosses depict
the cosmological parameters of the cosmoSLICS training nodes; the solid lines show the cosmological
parameters of the mock data vector. The dashed lines represent the boundaries imposed by the priors.
From Heydenreich et al. (2022a).
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Figure 4.8. – Parameter constraints of an analysis of the DES-Y1 survey. We show the constraints
from shear 2pcf (red) and the ones from persistent homology (blue). The black crosses depict the
cosmological parameters of the cosmoSLICS training nodes; the dashed lines represent the boundaries
imposed by the priors. For comparison, we also show the constraints from peak statistics that HD+21
achieved with an independent analysis setup (black). From Heydenreich et al. (2022a).
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4.4. Concluding remarks
In this chapter, we have introduced a way to perform a cosmological parameter analysis
with persistent homology. We show that this analysis can be performed on real survey data
and that it out-performs other commonly used higher-order statistics, such as peak count
statistics, both by an intuitive understanding and a quantitative analysis. The analysis
setup includes many choices (such as the filter radius for the aperture mass maps θap, the
smoothing scale of the heatmap, the number of evaluation points, . . . ), and with careful
fine-tuning, one could probably achieve even better results.

Our constraints for the matter clustering parameter S8 and the intrinsic alignment am-
plitude A are consistent with the ones from second-order statistics, albeit significantly
tighter. In particular, we can report a detection of the intrinsic alignment effect at almost
3σ. In the matter density parameter Ωm, however, we measure a significant tension be-
tween 2pcf and persistent homology, which is unlikely to be caused by the analysis setup
itself. The origin of this tension is not yet understood. It might just be an unlikely sta-
tistical fluctuation in the DES-Y1 data or the manifestation of some untreated systematic
effect. Curiously, something similar has happened in other analyses: When investigating
HSC SSP data with both real- and Fourier-space statistics, Hamana et al. (2020) find a
remarkable consistency in the parameter S8 and a tension in Ωm (albeit not as large as
ours by far). However, a more exciting explanation might be that persistent homology (or
any other field-level higher-order statistic) is sensitive to some non-Gaussian properties
of the LSS that two-point statistics can not capture. For example Biagetti et al. (2022)
found that persistent homology is very sensitive to non-Gaussianities in the primordial
seeds of structure formation.

Curiously, the results from the DES-Y1 highlight both the advantages and disadvan-
tages of an analysis performed with persistent homology. In raw constraining power, the
method can out-perform the commonly used two-point statistics while appearing to re-
main unbiased. However, once we obtain results we do not expect, it is hard to test the
summary statistics rigorously. Since the summary statistics explicitly depend on the sur-
vey footprint and galaxy number density, comparing them between different simulation
setups is difficult. Furthermore, the GPR emulator resembles a ‘black box’ that outputs
the desired summary statistics without allowing us to gain a meaningful physical under-
standing. If artefacts in the simulations contaminate the statistics, we cannot find out. In
other words, parameter constraints achieved by persistent homology (or any simulation-
based inference) are only as good as our confidence in these constraints, and our options
to gain that confidence are limited.

For future work, we plan to perform a similar analysis of the KiDS-1000 survey. If we do
not find a tension in Ωm there, we can likely attribute this tension to a statistical fluctuation
in the DES-Y1 data. If we measure similar results for the matter density parameter, we
will have to investigate the reason behind this discrepancy thoroughly. One test that
should be performed in that case is to build an emulator based on a different simulation
suite, like the BACCO simulation project (Angulo et al., 2021) and see if it is consistent
with the one based on the cosmoSLICS.
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CHAPTER 5

Third-order statistics

This chapter discusses our efforts to prepare a cosmological parameter analysis with third-
order shear statistics. The potential information gain of a joint analysis has already
been forecasted (Kilbinger and Schneider, 2005; Kayo et al., 2013; Sato and Nishimichi,
2013) and a first cosmological parameter analysis has been performed (Fu et al., 2014).
However, as established in the previous chapter, achieving tight constraints on cosmological
parameters is only useful if one can be confident in those constraints and the methods used
to achieve them. Especially in light of the emerging S8 tension, high confidence in cosmic
shear analyses is more important than ever. In this work, we thus want to focus on
rigorously testing and validating third-order cosmic shear statistics.

The first section of this chapter describes our efforts to model the shear 3pcf Γ(i) and
third-order aperture statistics

〈
M3

ap
〉
. We outline the modelling pipeline we built and

the tests we performed to ensure reliability. This section is based on the as of yet not
peer-reviewed article Heydenreich et al. (2022b).

The second section of this chapter focuses on developing a model for the covariance of
third-order aperture statistics. Laila Linke led this effort, however, it built upon my work,
and I made significant contributions to the project. We plan to publish the content of the
second section soon (Linke et al. in prep.).

We also include a measurement of the shear 3pcf and third-order aperture masses for
KiDS-1000 in App. B, which we have not included in the paper since we are so far unable
to account for the astrophysical systematics that bias this measurement.
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Figure 5.1. – A schematic diagram of the modelling and validation pipeline introduced in this
section. The numbers on the arrows correspond to the respective section where this part of the
pipeline is discussed. Adapted from Heydenreich et al. (2022b).

5.1. Modelling and validation

This section is based on the not-yet reviewed article Heydenreich et al. (2022b),
which has been submitted to the journal Astronomy & Astrophysics. This work
has been conducted in collaboration with Laila Linke, Pierre Burger and Peter
Schneider. Here, I implemented the modelling algorithms for BiHalofit and the
shear 3pcf as well as the interface to treecorr. Furthermore, I developed the al-
gorithms to measure the bispectrum and the third-order aperture statistics, as well
as most of the performed tests, including the generation of Gaussian and lognormal
random fields. Laila Linke implemented the modelling algorithm for third-order
aperture statistics and made countless other significant contributions to the mod-
elling pipeline, including but not limited to creating the interface to the cosmoSIS
pipeline. Pierre Burger was responsible for the mock-MCMC runs, including the
training of the CosmoPower emulator and everything that relates to the T17
simulations we used in this work. Peter Schneider provided invaluable insight into
many aspects of a cosmological analysis with third-order statistics. Of course, most
of the statements in this section arise from countless discussions with all collab-
orators, making it impossible to disentangle the contributions made to this work
perfectly.
In addition to the efforts outlined in this section, I found and fixed a bug in the
BiHalofit routine, which would yield incorrect results if the three k-input values
were not in ascending order. Furthermore, our tests revealed a bug in the treecorr
algorithm, which would yield wrong results for the conversion from shear 3pcf to
third-order aperture mass statistics of non-equal scale, which Laila Linke managed
to identify and fixa. Lastly, we performed additional validation tests, in particular
for the treecorr algorithm, which we outline in App. A, where we further identi-
fied a bug in treecorr that would cause it to run incorrectly if the input galaxy
catalogue was taken from a regular grid.

aFixed in version 4.2.3, see the changelog for treecorr.
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5.1. Modelling and validation

The main effort of this work was to develop and test the modelling pipeline for third-
order shear statistics, which is visualised in Fig. 5.1. This pipeline is publicly available at
https://github.com/sheydenreich/threepoint/releases/.

5.1.1. Convergence bispectrum
5.1.1.1. Modelling

To model the matter bispectrum (Eq. 2.51), we use the BiHalofit algorithm (Takahashi
et al., 2020). In particular, for squeezed triangle configurations with ℓ1 ≈ ℓ2 ≫ ℓ3,
this algorithm substantially improves over previous formulae such as in Scoccimarro and
Couchman (2001); Gil-Marín et al. (2012). Where the latter two are subject to errors of
over 200%, BiHalofit retains an accuracy of 10-20% or better. As can be seen in Halder
et al. (2021), the effect on higher-order shear statistics can be substantial, especially on
small scales ≲ 30′. We then use the Limber-integration (Eq. 2.119) to calculate a model
for the convergence bispectrum Bκ. The advantage of using BiHalofit is not only that
we get a bispectrum model which is accurate to 10-20% down to small scales but also
that the non-linear scales that we are required to compute for this bispectrum model are
the same as the ones of the revised halofit model (Takahashi et al., 2012). This fact
can save computation time in a joint modelling of second- and third-order shear statistics.
Furthermore, the bispectrum is calculated from the linear power spectrum, which is known
to have a very high degree of accuracy; Scoccimarro and Couchman (2001); Gil-Marín et al.
(2012) use the non-linear power spectrum as an input, which can vary up to a few per cent
between different models. To model the linear power spectrum, we mostly use the fitting
formula from Eisenstein and Hu (1999); we compare the resulting statistics by using a
power spectrum from CAMB as input and see that the difference is negligible.

5.1.1.2. Measuring

Although not strictly necessary, we want to validate the Limber-integrated BiHalofit
bispectrum before integrating it to yield the other third-order statistics. To measure the
bispectrum in N-body simulations, we adapt an estimator developed for three-dimensional
matter fields by Watkinson et al. (2017) to two-dimensional convergence fields.

Given a convergence field κ(θ) and its Fourier transform κ̃(ℓ), for an ℓ-bin ℓ̄i =
[ℓmin, ℓmax] we define κ̃(ℓ; ℓ̄i) as

κ̃(ℓ; ℓ̄i) =
{
κ̃(ℓ) ℓmin ≤ |ℓ| < ℓmax

0 otherwise
, (5.1)

and κ(θ; ℓ̄i) as its inverse Fourier transform. We also define I(θ; ℓ̄i) as the inverse Fourier
transform of Ĩ(ℓ; ℓ̄i) with Ĩ defined as

Ĩ(ℓ; ℓ̄i) =
{

1 ℓmin ≤ |ℓ| < ℓmax

0 otherwise
. (5.2)

The estimator for the convergence bispectrum is then defined as

B̂κ(ℓ̄1, ℓ̄2, ℓ̄3) = Ω2

N3
pix

∑Npix
i=1 κ(ϑi; ℓ̄1)κ(ϑi; ℓ̄2)κ(ϑi; ℓ̄3)

∑Npix
i=1 I(ϑi; ℓ̄1)I(ϑi; ℓ̄2)I(ϑi; ℓ̄3)

, (5.3)
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Figure 5.2. – In the top panels, we compare the model predictions of the convergence bispectrum
(blue) to its measurements in the MS (orange) at redshift z = 1. In the bottom panels, we show
the ratio of measurement and model prediction. The error bars signify the error on the mean of
the measurements. We measure the bispectrum in a bin size of ∆ℓ = 0.13ℓ and average our model
predictions over the same bin. In the latter case, we use equation (8) of Joachimi et al. (2009) to
weigh the different triangle combinations within one bin.

where Ω is the solid angle of the respective field and Npix is the number of pixels. Since
the I(θ; ℓ̄i) can be pre-computed, and the κ(θ; ℓ̄i) only need to be computed once per bin
ℓ̄i, a measurement of the full bispectrum of a convergence field can be performed with only
a few Fourier transformations. The limits of this estimator are that it assumes periodic
boundary conditions, which are usually not fulfilled in ray-tracing simulations. Thus,
when approaching either field-size or pixel-size scales, one should not trust the results of
this estimator. In our approach, we discard scales smaller than 5 pixels or larger than a
third of the field size.

5.1.1.3. Validation

We test the modelled convergence bispectrum with the MS. For each of the 64 lines of sight,
we measure the convergence bispectrum for sources at z ≈ 1 with the abovementioned
estimator. We then compare those measurements to our model predictions in Fig. 5.2 and
see that the convergence bispectrum is accurate within the sample variance over all tested
triangle configurations for scales down to ℓ ≲ 104. For larger wavenumbers ℓ, we notice up
to 40% discrepancy. While this might point to an inaccuracy in the BiHalofit model, it
may very well be caused by the limited sample size of the MS1 or the smoothing induced
by the ray-tracing method (Hilbert et al., 2009).

1Since the 64 lines of sight were taken from a single simulation box, the sample variance between the
lines of sight probably underestimates the true sample variance.
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5.1.2. Shear three-point correlation functionss
5.1.2.1. Modelling

To model the shear 3pcf from the convergence bispectrum, we utilise Eqs. (2.130) and
(2.131). In both cases, the integrals are complicated to solve numerically since they filter
the bispectrum with the strongly oscillating 6-th or 2-nd order Bessel functions J6/2. To
mitigate this issue, we introduce polar coordinates R =

√
ℓ21 + ℓ22, ψ = arctan(ℓ2/ℓ1) and

isolate the integration over the Bessel functions. The quantities in Eq. (2.132) transform
to

A′
3 = A3

R
=
√

(x2 cosψ)2 + (x1 sinψ)2 + x1x2 sin 2ψ cos(φ+ ϕ3) ,

cos 2β̄ = (cosφ+ 2 cosψ sinψ) ,
sin 2β̄ = (cos2 ψ − sin2 ψ) sinφ , (5.4)

A′
3 cosα3 = (x2 cosψ + x1 sinψ) cos

(
φ+ ϕ3

2

)
,

A′
3 sinα3 = (x2 cosψ − x1 sinψ) sin

(
φ+ ϕ3

2

)
.

and the integrals can be written as

Γ(0)(x1, x2, x3) = 1
3(2π)3

∫ 2π

0
dφ
∫ π

2

0
dψ
∫ ∞

0
dR R3 sin(ψ) cos(ψ) b(R cos(ψ), R sin(ψ), φ) e2iβ̄

×
[
ei(ϕ1−ϕ2−6α3)J6(RA′

3) + ei(ϕ3−ϕ2−6α1)J6(RA′
1) + ei(ϕ3−ϕ1−6α2)J6(RA′

2)
]
,

(5.5)

Γ(1)(x1, x2, x3) = 1
3(2π)3

∫ 2π

0
dφ
∫ π

2

0
dψ
∫ ∞

0
dR R3 sin(ψ) cos(ψ) b(R cos(ψ), R sin(ψ), φ)

×
[
ei(ϕ1−ϕ2+2ϕ3)e2i(β̄−φ−α3)J2(RA′

3) + ei(ϕ3−ϕ2e−2i(β̄+α1)J2(RA′
1)

+ei(ϕ3−ϕ1−2ϕ2)e2i(β̄+φ−α2)J2(RA′
2)
]
. (5.6)

The R-integrations can now be performed with a special-purpose integrator suited to deal
with integrals over oscillating functions. The most canonic choice would be Fast Hankel
Transforms, which constitute an analogue to the FFT algorithm where one filters the
target function over a Bessel function Jn(ℓθ) instead of the exponential e−iℓθ. This has
been beautifully implemented in the FFTLog algorithm (Talman, 1978; Hamilton, 2000).
Unfortunately, this requires the integral to be of the form

f(θ) =
∫

dℓ g(ℓ)Jn(ℓθ) ; (5.7)

since the function we need to integrate depends on both φ and ψ, and these dependen-
cies do not decouple, we can not use this method. We thus opt for the special-purpose
integration method derived by Ogata (2005), which is described in Sect. 2.3.2.3. This
allows us to solve the R-integration with high numerical accuracy. The subsequent φ
and ψ integrations contain only the slowly oscillating complex exponentials and can thus
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be solved with any common numerical integration method. For our purposes, we chose
an h-adaptive Gauss-Kronod quadrature method (see Sect. 2.3.2.1) implemented in the
software cubature2.

To model the other natural components of the 3pcf, Γ(2) and Γ(3), we utilise the trans-
formation laws in Eq. (2.126). A careful reader might notice that the natural components
we model from the bispectrum assume the orthocenter as the triangle centre, whereas the
transformation to aperture mass statistics (Eq. 2.134) defines the centroid as the centre
of a triangle. To ensure compatibility with these transformations, we use Eq. (2.125) to
transform the modelled 3pcf to the centroid-based ones.

We implement the integration routine on graphics processing units (GPUs) to ensure
fast modelling times. With the high level of parallelisation, modelling one bin takes about
5-10 seconds (depending on the triangle configuration). This means that modelling a shear
3pcf in 103 bins takes about 2-3 hours. Thus, performing a MCMC-based cosmological
parameter analysis, even if nested sampling methods are utilised, is not feasible. Further-
more, estimating a covariance matrix for a data vector of about 8 × 103 is impossible with
N-body simulations.

5.1.2.2. Measuring

We use the public code treecorr (Jarvis et al., 2004) to measure the shear 3pcf.
treecorr is a highly optimised tree-code (as described in Sect. 2.1.2.6) that is writ-
ten in the fast programming language C++ and allows for a high level of parallelisation,
meaning that the 3pcf of a galaxy catalogue can be calculated on several hundreds of
central processing units (CPUs) simultaneously. A calculation of the 3pcf on GPUs is
not yet possible. Although brute-force calculations of third-order statistics on GPUs out-
perform CPU-based tree-codes for different applications (Linke et al., 2020), this approach
is not feasible in cosmic shear. The abovementioned case calculates the correlation func-
tion for galaxy-galaxy-galaxy lensing, which usually has significantly lower galaxy number
densities. At higher number densities, the O(N logN)-scaling of CPU-based tree-codes
out-performs the O(N3)-scaling of a GPU-based brute-force algorithm, even if the latter
one is faster for lower source counts.

Unfortunately, the runtime of the tree code heavily depends on the number of bins
chosen and scales roughly with b−4, where b is a measure for the bin width. Measuring
the shear 3pcf for about 107 source galaxies distributed over a 10 × 10 deg2 field (like in
the Euclid-like SLICS described in 3.3.1) in 103 bins takes about 1 500 CPUh. Measuring
the shear 3pcf for a Stage-III survey is thus very time-consuming but definitely feasible
(see App. B). However, getting an accurate covariance model by measuring the 3pcf in
multiple simulations can not be done at the current stage.

For the 3pcf we adapt the binning scheme of treecorr: If we assume x1 > x2 > x3
for the side-lengths of a triangle, they define the same triangle via the values r ∈ [0,∞],
u ∈ [0, 1] and v ∈ [−1, 1] by

r = x2, u = x3
x2
, v = ±x1 − x2

x3
. (5.8)

2https://github.com/stevengj/cubature
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Here, the sign of v is positive if the sides of the triangle are oriented counter-clockwise and
negative otherwise. We note that this implies Γ(i)(r, u, v) = Γ(i)∗(r, u,−v). This binning
scheme has the advantage that it avoids empty bins that would arise when binning in
x1, x2 and x3, for example when x1 + x2 < x3. Especially if the size of the triangle
is binned logarithmically, this would be a major concern. Considering Eq. (2.126) it is
straightforward to see that knowledge of all natural components Γ(i)(x1, x2, x3) for all
x1 > x2 > x3 is already enough to recover the full information content of the shear 3pcf;
for all other orders of x1, x2, and x3, we can simply convert the natural components into
each other.

From here, unless otherwise stated, we always bin the shear 3pcf in r, u, and v. We
always choose the same number of bins for each of the variables; u and v are binned
linearly between 0 and 1 (with complex conjugations of the Γ(i) accounting for the case of
negative v), and r is binned logarithmically between a minimum and a maximum scale. If
we state that we bin the 3pcf in 103 bins from 0.′1 to 120′, for example, we mean that we
take 10 bins for each r, u, and v, and that the bins in r are logarithmic between 0.′1 and
120′.

5.1.2.3. Validation

Validating the integration routine As the integration detailed in Eqs. (5.5) and (5.6)
is numerically quite difficult, we want to independently test this part of the modelling
pipeline. Inspired by the calculations in Shi et al. (2011), we define the three-point corre-
lation function of the deflection potential as

⟨Ψ(X)Ψ(Y )Ψ(Z)⟩ = 1
8α3 e−α[(X−Y )2+(Y −Z)2+(X−Y )2] . (5.9)

We then define
∂X = ∂X1 + i∂X2 , ∇2

X = ∂X∂
∗
X , (5.10)

and, using the relations

⟨κ(X)κ(Y )κ(Z)⟩ =
(1

2∇2
X

)(1
2∇2

Y

)(1
2∇2

Z

)
⟨Ψ(X)Ψ(Y )Ψ(Z)⟩ , (5.11)

⟨γc(X)γc(Y )γc(Z)⟩ =
(1

2∂
2
X

)(1
2∂

2
Y

)(1
2∂

2
Z

)
⟨Ψ(X)Ψ(Y )Ψ(Z)⟩ , (5.12)

⟨γc(X)γc(Y )γ∗
c (Z)⟩ =

(1
2∂

2
X

)(1
2∂

2
Y

)(1
2∂

∗2
Z

)
⟨Ψ(X)Ψ(Y )Ψ(Z)⟩ , (5.13)

we can analytically calculate both the shear 3pcf and the convergence bispectrum. When
we define x = X − Z and y = Y − Z, we can calculate:

⟨κ̃κ̃κ̃⟩(ℓ1, ℓ2, ℓ3) = − π4

6α5 ℓ
2
1ℓ

2
2ℓ

2
3 δD(ℓ1 + ℓ2 + ℓ3)e−(ℓ21+ℓ22+ℓ23)/12α

= − π4

6α5 ℓ
2
1ℓ

2
2(ℓ21 + ℓ22 + 2ℓ1 · ℓ2) δD(ℓ1 + ℓ2 + ℓ3)e−(ℓ21+ℓ22+ℓ1·ℓ2)/6α

(5.14)
= (2π)2Bκ(ℓ1, ℓ2, ℓ3)δD(ℓ1 + ℓ2 + ℓ3) , (5.15)

⟨γcγcγc⟩(x,y) (∗)= α3 [(x − 2y)(x + y)(y − 2x)]2 e−2α(x2+y2−x·y) . (5.16)
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5. Third-order statistics

Figure 5.3. – The real (red) and imaginary (blue) parts of the first natural component of the shear
three-point correlation functions Γ(0). Each plot panel corresponds to one fixed triangle shape shown
in the bottom-right corner; the x-axis represents the length of the red triangle shape. We compare the
integration of the analytic bispectrum model (Eq. 5.17, dark solid) and the analytic solution (Eq. 5.16,
light dashed). From Heydenreich et al. (2022b).
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Figure 5.4. – The first natural component Γ(0) of the shear three-point correlation functions modelled
from BiHalofit compared to measurements from the MS that were extracted using treecorr. Each
panel corresponds to one fixed triangle combination; the u and v values are listed at the top, and
the corresponding shape of the triangle is shown on the bottom right. The x-axis corresponds to the
length of the red side of the triangle. We show both the real part (red) and the imaginary part (blue)
for the model (dashed line) and the simulations (solid line). The error bars denote the error on the
mean of the 64 lines-of-sight of the MS. From Heydenreich et al. (2022b).

In the last equation, marked by (∗), the variables x,y are interpreted as complex numbers
x = x1 +ix2; for their scalar product, x ·y = x1y1 +x2y2 holds. The equation for ⟨γcγcγ∗

c ⟩
can be computed via Mathematica and is too long to denote here. We can now set

b(ℓ1, ℓ2, φ) = −π2ℓ21ℓ
2
2(ℓ21 + ℓ22 + 2ℓ1ℓ2 cosφ)

24α5 e−(ℓ21+ℓ22+ℓ1ℓ2 cosφ)/6α . (5.17)

We then transform the Cartesian shears in Eq. (5.16) to the orthocenters using Eq. (2.128).
Using the definitions Γ(0) = ⟨γγγ⟩ and Γ(3) = ⟨γγγ∗⟩ (see Eq. 2.123), we can validate our
integration routine. We show the results in Fig. 5.3 and verify that the integration routine
is accurate to the sub-per cent level, which is more than enough given that we have a 10%
uncertainty on our bispectrum model.
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5. Third-order statistics

Figure 5.5. – Same as Fig. 5.4, but for the second natural component Γ(1). From Heydenreich et al.
(2022b).

Validating the 3pcf model We again use the MS to validate our model by measuring
the shear 3pcf in 103 bins between 0.′1 and 120′ at redshift z = 1. We then model the 3pcf
at the bin centers and show the results in Fig. 5.4. We can see a good agreement over
a large range of scales. We were especially surprised by the level of agreement down to
sub-arcminute scales, which roughly correspond to wavenumbers of ℓ ≳ 104. In practice,
these scales can probably not be used in a real data analysis due to contamination by
baryonic effects, but it is still encouraging to see this level of agreement. Only for highly
degenerate triangles (see the right column of Fig. 5.4) do we notice that the results do not
agree; whether this is due to a breakdown of the bispectrum model or the tree-code used
to measure the 3pcf remains to be seen. We see a similar level of agreement for the other
three natural components Γ(1),Γ(2) and Γ(3) (for an example, see Fig. 5.5).
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5.1.3. Third-order aperture statistics
5.1.3.1. Modelling

We model the third-order aperture statistics using Eq. (2.133). In this case, the filter func-
tions ũ are smooth and do not oscillate, which means that the integral is relatively simple
to solve numerically, and we do not need to implement any special-purpose integration
routines. We thus again utilise a GPU-based implementation of the h-adaptive cubature,
which allows us to model the third-order aperture statistics within a few seconds. As
the number of bins required for these statistics is much lower (about 20-100 in contrast
to the 1000-10 000 for the 3pcf), the modelling times become feasible for a cosmological
parameter analysis.

We also model the second-order aperture statistics from Eq. (2.115) to compare their
constraining powers, where we perform a Limber integration (Eq. 2.105) of the revised
halofit model for the matter power spectrum (Takahashi et al., 2012).

5.1.3.2. Measuring

We have already discussed that one of the advantages of aperture mass statistics is that
there is a way to measure them quickly in simulations and another one to measure them
in surveys with complex geometries. Here, we discuss our implementations of the different
measuring strategies.

Direct measurement While direct measurement of the aperture statistics is not feasible
in real data, it can be efficiently performed in simulations. To calculate the aperture mass
map, we utilise the estimator:

M̂ap(ϑ; θ) + iM̂⊥(ϑ; θ) = 1
ngal

∑

i

Qθ(|ϑ − ϑi|) (εt,i + iε×,i) . (5.18)

Here, εt/× are the tangential and cross component of the galaxy ellipticities, defined in
analogue to Eq. (2.90), and ϑi are their respective positions; ngal can be defined as the
global number density of galaxies (Bartelmann and Schneider, 2001) or as the number
density of galaxies within the aperture radius (Martinet et al., 2018). For this work, we
define ngal as the number of galaxies weighted by the Q-filter function:

ngal =
∑

i

Qθ(|ϑ − ϑi|) . (5.19)

We test all three definitions of ngal and find that setting ngal as the number density within
the aperture radius or the one weighted by the Q-filter function induces sub-per cent
differences on the third-order aperture masses

〈
M3

ap
〉

of a single map. However, setting
ngal as the global galaxy density can induce differences of about 5% in

〈
M3

ap
〉
. In both

cases, these differences diminish when we average over several realisations of aperture mass
maps. A similar estimator of the aperture mass map can be constructed for a convergence
field by transforming the integral in Eq. (2.91) into a sum.

When observing the estimator in Eq. (5.18), we see that it can be written as a convo-
lution. We thus place the observed galaxy ellipticities on a grid and, similar to Sect. 4.1,
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5. Third-order statistics

calculate the aperture mass map by utilising the convolution theorem. The same approach
can be applied to calculate the aperture mass maps from a convergence field. To avoid
boundary effects, we always cut off a slice of width 4θap around the border of an aperture
mass map. In the full-sky T17, we utilise the healpy function smoothing to calculate
the convolution on a sphere. The smoothing kernel can be calculated from the correspond-
ing U - and Q-filters using the function beam2bl. In this case, boundary effects are not
present.

This method allows us to quickly and efficiently calculate the aperture mass maps, and
thus the third-order aperture statistics, in simulations. In particular, we can estimate the
covariance of third-order aperture statistics from numerical simulations3.

Conversion from shear 3pcf To measure third-order aperture statistics in a real survey
with boundaries and masked regions, we want to first measure the shear 3pcf and then
convert them into aperture statistics. This avoids any potential issues that the survey
geometry might cause. This procedure has already been implemented into treecorr.
The conversion is achieved by performing the integral in Eq. (2.134). As we have already
discussed at the end of Sect. 5.1.2.2, we can fully reconstruct both Γ(0) and Γ(3) from
the measurements performed by treecorr. Performing the appropriate permutations4,
we can thus transform Γ(1) and Γ(2) into Γ(3) and calculate the determinant of the trans-
formation matrix

∣∣∣det d{y1,y2,ψ}
d{r,u,v}

∣∣∣. The integration is then performed by taking the sum
of all values of the 3pcf multiplied by the determinant of the transformation matrix and
the value of the filter functions F1,2 at the bin centres. This is certainly not an optimal
procedure, and we discuss potential improvements in Sect. 5.3.

5.1.3.3. Validation

Binning choices of the 3pcf First, we validate the conversion from shear 3pcf to third-
order aperture masses. We want to determine the minimum and maximum scale and
the number of bins in which we need to measure the 3pcf to get an unbiased estimate
of the third-order aperture statistics. Furthermore, we want to verify that the E- and
B-mode leakage for third-order aperture statistics is not too severe. In order to do this,
we model the shear 3pcf between θmin = 0.′1 and θmax = 120′ with various binning choices
and use the method outlined above to convert them to third-order aperture statistics.
We then compare these to third-order aperture statistics that we model directly from the
convergence bispectrum. Since both methods model the third-order aperture statistics
from the same bispectrum, their results should agree. We show the results of this test
in Fig. 5.6. We notice that the conversion tends to fail particularly for configurations of
aperture radii where one radius is much larger than the other two. For roughly equal-scale
aperture radii, a measurement of the 3pcf in 103 bins appears sufficient, but when the
aperture radii differ by a factor of four or more, one has to resort to measuring the 3pcf
in 153 bins. The increase to 203 bins appears to yield only a marginal improvement; we

3There is an issue when one calculates the covariance of aperture statistics from simulations that follow
a different geometry than the actual survey. We elaborate on this in Sect. 5.2

4The previously mentioned bug in treecorr did not correctly perform these permutations before calcu-
lating the transformation matrix.
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Figure 5.6. – We compare the directly modelled third-order aperture statistics
〈
M3

ap
〉

(θ1, θ2, θ3)
(blue line) to the ones that we convert from the modelled shear 3pcf (coloured crosses). In each panel,
the x-axis describes the value of θ3; θ1 is constant in each row and θ2 is constant in each column. The
yellow, green, red and purple crosses arise from the shear 3pcf that have been binned in 73, 103, 153

and 203 bins in r, u and v, respectively. The dotted lines denote the corresponding B-modes.

decide that measurement in 153 bis is a good compromise between speed and accuracy. We
further note that (unsurprisingly) the B-mode leakage is highest at the points where the
conversion tends to fail but well below 10% in almost all cases. As our bispectrum model
is only accurate to 10-20%, we deem this level of leakage acceptable at the current stage.
Our results extend upon the findings of Shi et al. (2014), who performed a similar test
for a simplified bispectrum model and equal-scale aperture radii and found per cent-level
leakage for all scales larger than 10 θmin. From a future analysis, we plan to exclude all
combinations of aperture radii where the B-mode leakage exceeds 10%.

We further investigate how the shear 3pcf depends on r, u and v and show an interesting
case in Fig. 5.7. We can see there that the dependence of the 3pcf on the parameter r is
relatively well-behaved, whereas it strongly varies as a function of u and v, especially for
u ≈ 0 and |v| ≈ 1, meaning that a fine binning in the latter two parameters is essential.
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5. Third-order statistics

Figure 5.7. – The second natural component Γ(1) of the 3pcf as a function of its three parameters
r (left), u (middle) and v (right). We note that since Γ(i)(r, u, v) = Γ∗(i)(r, u, −v) holds, the jump in
Im Γ(1) at v = 0 is expected.

This contrasts the binning choices made in Secco et al. (2022a), who opted to measure the
3pcf in 55 fine r-bins and only 10 bins in each u and v.

Comparison to N-body simulations We validate our modelling pipeline with the MS in
Fig. 5.8, where we compare aperture masses obtained from both direct measurement and
conversion from shear 3pcf to our model predictions and find a good overall agreement
between all three. As expected, the conversion from the 3pcf to aperture mass statistics
fails in the top-right corner, where two aperture radii are small and the third one is large.
In that region, we also observe a significant amount of B-modes. We also note that the
error bars on the direct measurement are larger for most points since we have to cut off a
significant amount of the aperture mass maps to avoid boundary effects.

100



5.1. Modelling and validation

Figure 5.8. – The third-order aperture masses from our modelling pipeline (blue) compared to
the ones measured in the MS. The direct measurements are shown in green, and the measurements
converted from shear 3pcf are shown in orange. Both statistics were computed from 32 lines of sight;
the error bars represent the error on the mean. We note that for the largest angle of 32′, a direct
measurement could not be obtained due to the limited size of the light cone. From Heydenreich et al.
(2022b).

101



5. Third-order statistics

5.1.4. Cosmological parameter estimation

Having validated all aspects of our modelling pipeline, we aim to assess the constrain-
ing power of third-order aperture statistics. For this study, we focus on three questions.
Firstly, how much information do we lose when we convert shear 3pcf to third-order aper-
ture statistics? Secondly, how much information do we gain when we combine second- and
third-order aperture statistics compared to a pure second-order analysis? And thirdly,
what is the information content of equal-scale aperture mass statistics compared to util-
ising all combinations of aperture radii?

We perform a series of cosmological parameter inferences on mock data to answer these
questions using a MCMC framework. To speed up the modelling pipeline, we create
7500 nodes in a four-dimensional Latin hypercube describing the cosmological parameters
Ωm, S8, w0 and h in a flat wCDM cosmology; all other cosmological parameters are fixed
to the fiducial values of the SLICS. We then calculate the third-order aperture statistics
for all combinations of aperture radii of 4′, 8′, 16′ and 32′ at these nodes. Afterwards, we
train the CosmoPower emulator (Spurio Mancini et al., 2022) on 6500 of the training
nodes and use the remaining 1000 to validate its performance. As can be seen in Fig. 5.9,
the uncertainty of the emulator is far below the uncertainty of our bispectrum model and
thus completely negligible for us.

As our covariance model is not completely developed yet, we extract the covariances for
our analysis from N-body simulations. To account for that fact, we adapt the likelihood
function of Percival et al. (2022), which we introduce in Sect. 2.3.3.1.

5.1.4.1. Shear three-point correlation functions compared to third-order aperture
statistics

As established before, we can not perform a cosmological parameter inference with shear
3pcf. We thus model the shear 3pcf in 103 bins between 0.′1 and 100′ at 500 of the 7500
training nodes and perform a PCA to compress the 8 000 entries of the data vector to
its 40 most relevant principal components (similar to the data compression method we
tested in Sect. 4.3.3). We then perform the same PCA on data vectors that we measure
from 200 tiles of the Euclid-like SLICS to estimate a covariance matrix. We train the
CosmoPower emulator on the 40 principal components at all 500 training nodes5.

We compare the parameter constraints of the principal components of the 3pcf to the
ones from third-order aperture statistics, where we use all 927 available tiles of the SLICS
to estimate the covariance. In both cases, we model a data vector at the fiducial SLICS
cosmology with the same pipeline for the MCMC, as we do not expect to recover the input
cosmology in a Euclid-like setting. As we can see in Fig. 5.10, there is only a marginal
difference in constraining power. Of course, this is not a rigorous comparison: The shear
3pcf and third-order aperture statistics use different scales, and there is certainly some
information loss that arises from the PCA. Furthermore, as we cut off the boundaries of
the aperture masses, we discard a part of the data. All things considered, we now have

5An independent validation test, where we only train the emulator on 400 nodes and validate on the
remaining 100 ones, shows that the performance of the emulator is worse than for third-order aperture
statistics but still satisfactory.
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5.1. Modelling and validation

Figure 5.9. – The top panel shows the data vector for a combination of second- and third-order
aperture statistics

〈
M2,3

ap
〉
. The dashed black line shows our model at the T17 cosmology, the orange

band shows the measurement in the simulations and its standard deviation for a KiDS-1000-like
setup. The bottom panel shows the fractional error of the emulated second- and third-order aperture
statistics in the same setup.

some confidence that we do not face a severe information loss when converting shear 3pcf
to third-order aperture statistics.

5.1.4.2. Constraining power of a joint analysis

We forecast the constraining power of a joint analysis between second- and third-order
shear statistics in a Stage-III survey6. We extract a covariance matrix for the second- and
third-order aperture statistics from the T17 simulations with a resolution of nside = 4096,
corresponding to a pixel size of 0.′742, where we employ a KiDS-1000-like source redshift
distribution and cut out 18 independent tiles of ≈ 860 deg2 from each full-sky realisation.
This yields a total of 1944 independent realisations from which we extract our covariance
matrix. We then estimate our target data vector from one full-sky realisation of the T17
with nside = 8192, as the lower-resolution maps are inconsistent with our model at small
scales. The data vector, its uncertainty, and our model can be seen in Fig. 5.9.

In Fig. 5.11 we find that a joint analysis significantly improves the constraining power on
all cosmological parameters with respect to an analysis with only second-order statistics.

6For a Stage-IV survey, our bispectrum model is by far not accurate enough, so we refrain from making
any quantitative predictions for that.
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Figure 5.10. – A comparison of the parameter constraints achieved by the principal components of
the shear 3pcf (red) and third-order aperture statistics (blue) for a covariance from the Euclid-like
SLICS. The dashed line indicates the cosmology of the data vector that was used in the MCMC.

In particular, the uncertainty on S8 is reduced by 43%, and the figure-of-merit (Albrecht
et al., 2006) in the Ωm-σ8 plane is increased by a factor of almost 6. We can further see that
the second- and third-order shear statistics exhibit different degeneracy directions between
Ωm and σ8 (or Ωm and S8). This degeneracy breaking also yields substantial improvements
on the constraints of Ωm and σ8 (more than 68% and 54%, respectively). Lastly, we note
that the input cosmology is well within the 1σ region of the parameter constraints for
all three statistics, which gives reason to believe that our model for third-order aperture
statistics is accurate enough for an analysis of a Stage-III survey.

We then compare the constraining power of a joint analysis with only equal-scale third-
order aperture statistics to one where we use all combinations of filter radii in Fig. 5.12
and find that the equal-scale aperture mass statistics

〈
M3

ap
〉

(θ, θ, θ) already possess the
majority of the information content of the third-order shear signal. Considering the results
from Kilbinger and Schneider (2005), this is a bit surprising, although it is in line with
the findings of Fu et al. (2014). In particular, this means that one can significantly speed
up a cosmological parameter analysis by measuring the shear 3pcf in 103 bins (which
yields an accurate conversion for equal-scale aperture radii) and only modelling equal-
scale aperture radii while only suffering a minor loss of information content. We note that
these findings might change when additional parameters (either cosmological or nuisance)
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Table 5.1. – Marginalised one-dimensional parameter constraints of Fig. 5.11. For
〈
M2

ap
〉

and〈
M3

ap
〉

we do not cite upper limits on Ωm or lower limits on σ8 as they are dominated by the prior.

parameter
〈
M2

ap
〉 〈

M3
ap
〉 〈

M2,3
ap
〉

Ωm 0.294−0.059 0.229−0.048 0.26+0.041
−0.04

σ8 0.671+0.155 0.603+0.287 0.842+0.075
−0.074

S8 0.813+0.023
−0.024 0.786+0.022

−0.041 0.792+0.017
−0.019

are introduced in the MCMC. In that case, the equal-scale aperture masses will suffer
from some degeneracies that the aperture mass statistics containing all combinations of
filter radii might be able to break.
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Figure 5.11. – The posterior distributions of second- (blue) and third-order (yellow) aperture
statistics with a joint analysis (red) within a KiDS-1000-like setup. We estimate the data vector
and covariance matrix with the T17 simulations, and we use filter scales of (4, 8, 16, 32) arcmin. The
Hubble parameter h and the dark energy EoS are fixed to the T17 values. The marginalised posteriors
can be found in Tab. 5.1. The dashed line indicates the cosmology of the data vector that was used
in the MCMC. Adapted from Heydenreich et al. (2022b).
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Figure 5.12. – We compare the parameter constraints of a joint analysis with equal-scale third-
order aperture statistics (blue) to an analysis where all combinations of filter radii are used (red). We
estimate the data vector and covariance matrix with the T17 simulations, and we use filter scales of
(4, 8, 16, 32) arcmin. The Hubble parameter h and the dark energy EoS are fixed to the T17 values.
The dashed line indicates the cosmology of the data vector that was used in the MCMC. Adapted
from Heydenreich et al. (2022b).
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5.2. Covariance of third-order aperture statistics

In this ongoing project led by Laila Linke, we model the covariance of the third-order
aperture statistics to prepare for a tomographic analysis. The findings of this work will
be published soon (Linke et al. in prep.).

In this Section, Laila Linke developed and implemented the covariance model for
third-order aperture statistics. Peter Schneider developed the strategy to measure
the individual terms of the covariance model from simulations. I was responsible
for measuring the full covariance and the single terms of the covariance model in N-
body simulations and Gaussian and lognormal random fields. Again, many results
from this section originated after discussions among the collaborators, so perfectly
disentangling the contributions is impossible.

Throughout this section, we assume that the third-order statistics
〈
M3

ap
〉

are estimated
from a convergence field κ, which has Npix pixels of size Apix, and spans an area A =
Npix Apix, via the estimator

M̂3
ap(θ1, θ2, θ3) ≡ 1

Npix

Npix∑

i=1

Npix∑

jkl

A3
pix Uθ1(|ϕi − ϑj |)κ(ϑj)Uθ2(|ϕi − ϑk|)κ(ϑk)

× Uθ3(|ϕi − ϑl|)κ(ϑl) . (5.20)

Here, we distinguish by notation the sums over the positions ϑjkl that are performed to
calculate the aperture mass statistics at point ϕi from the sum over all ϕi that is performed
to calculate the average of the aperture mass statistics.

5.2.1. The Gaussian aperture statistics covariance from the bispectrum
covariance

As Eq. (2.133) describes how to model the third-order aperture statistics from the pro-
jected bispectrum Bκ, the straight-forward approach to derive the covariance of M̂3

ap is
from the covariance of Bκ.

The bispectrum covariance has been derived Joachimi et al. (2009). In this section, we
want to focus on the Gaussian part of the covariance, which is given by

CBκ(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6) = (2π)6Λ−1(ℓ1, ℓ2, ℓ3)
AAR(ℓ1)AR(ℓ2)AR(ℓ3) [δ14 δ25 δ36 + 5 permutations]

× P (ℓ1)P (ℓ2)P (ℓ3) , (5.21)

where AR(ℓ) is the size of the bin of ℓ, defined as

AR(ℓ) = 2π ℓ∆ℓ , (5.22)
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and Λ is defined as (see Joachimi et al., 2009)

∫
d2ℓ1

∫
d2ℓ2

∫
d2ℓ3 δD(ℓ1 + ℓ2 + ℓ3) =

∫
dℓ1

∫
dℓ2

∫
dℓ3 ℓ1 ℓ2 ℓ3

×
∫

dϕ1

∫
dϕ2

∫
dϕ3 δD(ℓ1 + ℓ2 + ℓ3)

≡
∫

dℓ1
∫

dℓ2
∫

dℓ3 ℓ1 ℓ2 ℓ3 2πΛ(ℓ1, ℓ2, ℓ3) .
(5.23)

We note that Eq. (5.21) was derived under the assumption that the Fourier transform
of the survey window function is a Dirac-delta distribution, which is equivalent to the
assumption that the survey area is infinite (or at least much larger than any relevant
scales). We can now derive the covariance of M̂3

ap from CB. Using Eq. (5.23), the third-
order aperture statistics are

〈
M3

ap
〉

(θ1, θ2, θ3) =
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2 ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

×Bκ(ℓ1, ℓ2, ℓ3) (2π)3δD(ℓ1 + ℓ2 + ℓ3) .

= 1
(2π)6

∫
dℓ1

∫
dℓ2

∫
dℓ3 ℓ1 ℓ2 ℓ3 ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

×Bκ(ℓ1, ℓ2, ℓ3) (2π)3Λ(ℓ1, ℓ2, ℓ3) . (5.24)

Replacing the ℓ-integrals by a discrete sum over the ℓi, we get

〈
M3

ap
〉

(θ1, θ2, θ3) = 1
(2π)6

∑

ijk

∆ℓi ∆ℓj ∆ℓk ℓi ℓj ℓk ũ(ℓi θ1) ũ(ℓj θ2) ũ(ℓk θ3)

×Bκ(ℓi, ℓj , ℓk) (2π)3Λ(ℓi, ℓj , ℓk) . (5.25)

Here, the ∆ℓi are the bin sizes of the ℓi bins. Using Eq. (5.25), we derive CM̂3
ap

from CBκ

with

CM̂3
ap

(θ1, θ2, θ3, θ4, θ5, θ6) = 1
(2π)6

∑

ijk

∑

lmn

∆ℓi ∆ℓj ∆ℓk ∆ℓl ∆ℓm ∆ℓn ℓi ℓj ℓk ℓl ℓm ℓn

× ũ(ℓi θ1) ũ(ℓj θ2) ũ(ℓk θ3) ũ(ℓl θ4) ũ(ℓm θ5) ũ(ℓn θ6) (5.26)
× CBκ(ℓi, ℓj , ℓk, ℓl, ℓm, ℓn) Λ(ℓi, ℓj , ℓk) Λ(ℓl, ℓm, ℓn) .

109



5. Third-order statistics

So the Gaussian covariance of the aperture statistics is

CM̂3
ap

(θ1, θ2, θ3, θ4, θ5, θ6)

= 1
(2π)6

∑

ijk

∑

lmn

∆ℓi ∆ℓj ∆ℓk ∆ℓl ∆ℓm ∆ℓn ℓi ℓj ℓk ℓl ℓm ℓn ũ(ℓi θ1) ũ(ℓj θ2) ũ(ℓk θ3)

× ũ(ℓl θ4) ũ(ℓm θ5) ũ(ℓn θ6) (2π)3Λ−1(ℓi, ℓj , ℓk)
A∆ℓi ∆ℓj ∆ℓk ℓi ℓj ℓk

[δil δjm δkn + 5 Perm.]

× P (ℓi)P (ℓj)P (ℓk) Λ(ℓi, ℓj , ℓk) Λ(ℓl, ℓm, ℓn)

= 1
(2π)3A

∑

ijk

∑

lmn

∆ℓl ∆ℓm ∆ℓn ℓl ℓm ℓn ũ(ℓi θ1) ũ(ℓj θ2) ũ(ℓk θ3)

× ũ(ℓl θ4) ũ(ℓm θ5) ũ(ℓn θ6) [δil δjm δkn + 5 Perm.]
× P (ℓi)P (ℓj)P (ℓk) Λ(ℓl, ℓm, ℓn)

= 1
(2π)3A

∑

ijk

∆ℓi ∆ℓj ∆ℓk ℓi ℓj ℓk ũ(ℓi θ1) ũ(ℓj θ2) ũ(ℓk θ3)

× [ũ(ℓl θ4) ũ(ℓm θ5) ũ(ℓn θ6) + 5 Perm.] P (ℓi)P (ℓj)P (ℓk) Λ(ℓi, ℓj , ℓk) . (5.27)

Assuming ∆ℓi → 0, we can transform the sums back into integrals, yielding

CM̂3
ap

(θ1, θ2, θ3, θ4, θ5, θ6) = 1
(2π)3A

∫
dℓ1

∫
dℓ2

∫
dℓ3 ℓ1 ℓ2 ℓ3 ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

× [ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6) + 5 Perm.]
× P (ℓ1)P (ℓ2)P (ℓ3) Λ(ℓ1, ℓ2, ℓ3) .

Transforming the Λ term from Eq. (5.23) back, we get

CM̂3
ap

(θ1, θ2, θ3, θ4, θ5, θ6) = 1
(2π)2A

∫
d2ℓ1

∫
d2ℓ2

∫
d2ℓ3 ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

× [ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6) + 5 Perm.]
× P (ℓ1)P (ℓ2)P (ℓ3) δD(ℓ1 + ℓ2 + ℓ3)

= 1
(2π)3A

∫
dℓ1

∫
dℓ2

∫
dϕ ℓ1 ℓ2 ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

× [ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6) + 5 Perm.] (5.28)
× P (ℓ1)P (ℓ2)P (ℓ3) ,

with ℓ23 = ℓ21 + ℓ22 + 2ℓ1 ℓ2 cos(ϕ). This calculation can now easily be tested using Gaussian
random fields: If we insert a known power spectrum, we know that the expectation value
of M̂3

ap is zero, and the covariance CM̂3
ap

is purely Gaussian and should thus be given
by Eq. (5.28). Inspecting Fig. 5.13, we see that this method can estimate the variance
(i.e. the diagonal part of the covariance matrix) of third-order aperture statistics for most
combinations of aperture radii with reasonable accuracy, but completely fails to predict
the off-diagonal parts of the covariance matrix correctly. In the next section, we derive the
covariance CM̂3

ap
directly from the estimator M̂3

ap and show that the method introduced
here misses an important term due to the assumption that the Fourier transform of the
survey window function is a Dirac-delta distribution.
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5.2. Covariance of third-order aperture statistics

Figure 5.13. – We compare the model covariance from Eq. (5.28) with the one measured in Gaussian
random fields (GRF). The left panel shows the Gaussian part variance of

〈
M3

ap
〉

for a 10 × 10 deg2

field with a constant power spectrum representing the case of a pure shape-noise signal. The x-axis
iterates over all possible combinations of (θ1, θ2, θ3) with θ1 ≤ θ2 ≤ θ3, where θi ∈ {1′, 2′, 4′, 8′, 16′}.
The right panel shows the covariance of the same

〈
M3

ap
〉

statistics, where θ1, θ2 and θ3 are fixed to
the values 1′, 1′ and 16′, respectively.

5.2.2. The aperture statistics covariance from the direct estimator

Instead of deriving the aperture statistics covariance from the bispectrum covariance, we
now directly derive the covariance for the estimator M̂3

ap of the aperture statistics
〈
M3

ap
〉

from Eq. (5.20). The covariance of this estimator is defined as

CM̂3
ap

(θ1, θ2, θ3, θ4, θ5, θ6)

=
〈
M̂3

ap M̂3
ap
〉
(θ1, θ2, θ3, θ4, θ5, θ6) −

〈
M̂3

ap(θ1, θ2, θ3)
〉〈

M̂3
ap(θ4, θ5, θ6)

〉
, (5.29)

with

〈
M̂3

ap M̂3
ap
〉
(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|) (5.30)
× ⟨κ(ϑk)κ(ϑl)κ(ϑm)κ(ϑn)κ(ϑp)κ(ϑq)⟩ .
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5. Third-order statistics

We want to write the six-point correlation function in terms of its connected correlation
functions, denoted by ⟨. . .⟩c (compare Sect. 2.1.2.4):

〈
M̂3

ap M̂3
ap
〉
(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
×
[
⟨κ(ϑk)κ(ϑl)⟩c ⟨κ(ϑm)κ(ϑn)⟩c ⟨κ(ϑp)κ(ϑq)⟩c + 14 Perm.

+ ⟨κ(ϑk)κ(ϑl)κ(ϑm)⟩c ⟨κ(ϑn)κ(ϑp)κ(ϑq)⟩c + 9 Perm.
+ ⟨κ(ϑk)κ(ϑl)⟩c ⟨κ(ϑm)κ(ϑn)κ(ϑp)κ(ϑq)⟩c + 14 Perm.

+ ⟨κ(ϑk)κ(ϑl)κ(ϑm)κ(ϑn)κ(ϑp)κ(ϑq)⟩c
]

=
〈
M̂3

ap M̂3
ap
〉

G
(θ1, . . . , θ6) +

〈
M̂3

ap M̂3
ap
〉

NG, 1
(θ1, . . . , θ6)

+
〈
M̂3

ap M̂3
ap
〉

NG, 2
(θ1, . . . , θ6) +

〈
M̂3

ap M̂3
ap
〉

NG, 3
(θ1, . . . , θ6) (5.31)

At first, we want to focus on the Gaussian part of the covariance to see if we can recover
the covariance we measure in the GRF. Assuming that all connected correlations higher
than second order vanish, what remains is the first term

〈
M̂3

ap M̂3
ap
〉

G
, which depends

only on the κ-2pcf. The other terms make up the non-Gaussian part of the covariance
and will be assessed later.

5.2.2.1. The Gaussian part

The Gaussian part of the aperture mass covariance
〈
M̂3

apM̂3
ap
〉

G
is given by

〈
M̂3

apM̂3
ap
〉

G
(θ1, θ2, θ3, θ4, θ5, θ6) =

A6
pix

N2
pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|) (5.32)
× ⟨κ(ϑk)κ(ϑl)⟩c ⟨κ(ϑm)κ(ϑn)⟩c ⟨κ(ϑp)κ(ϑq)⟩c + 14 Perm.
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5.2. Covariance of third-order aperture statistics

Inspecting Eq. (5.32), we can see that it is comprised of two groups, namely
〈
M̂3

apM̂3
ap
〉

G
(θ1, θ2, θ3, θ4, θ5, θ6) =

A6
pix

N2
pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× ⟨κ(ϑk)κ(ϑn)⟩c ⟨κ(ϑl)κ(ϑp)⟩c ⟨κ(ϑm)κ(ϑq)⟩c + 5 Perm.

+
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× ⟨κ(ϑk)κ(ϑl)⟩c ⟨κ(ϑm)κ(ϑn)⟩c ⟨κ(ϑp)κ(ϑq)⟩c + 8 Perm.

= T1(θ1, θ2, θ3, θ4, θ5, θ6) + T2(θ1, θ2, θ3, θ4, θ5, θ6) . (5.33)

The first group consists of six terms, in which for all three ⟨κ(ϑl)κ(ϑm)⟩c the positions
ϑl,ϑm are subtracted from different positions ϕi,ϕj in the U -filters. The second group
consists of the nine other permutations, where in each case, one of the ⟨κ(ϑl)κ(ϑm)⟩c has
the same form as the first case, and for the other two both positions ϑl,ϑm are subtracted
from the same ϕi,j . To evaluate T1 and T2, we use Eq. (2.49) to replace the correlation
functions by convergence power spectra and find

T1(θ1, θ2, θ3, θ4, θ5, θ6) =
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|) (5.34)

×
∫ d2ℓ1

(2π)2 P (ℓ1) e−iℓ1·(ϑk−ϑn)
∫ d2ℓ2

(2π)2 P (ℓ2) e−iℓ2·(ϑl−ϑp)

×
∫ d2ℓ3

(2π)2 P (ℓ3) e−iℓ3·(ϑm−ϑq) + 5 Perm. ,

T2(θ1, θ2, θ3, θ4, θ5, θ6) =
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|) (5.35)

×
∫ d2ℓ1

(2π)2 P (ℓ1) e−iℓ1·(ϑk−ϑl)
∫ d2ℓ2

(2π)2 P (ℓ2) e−iℓ2·(ϑm−ϑn)

×
∫ d2ℓ3

(2π)2 P (ℓ3) e−iℓ3·(ϑp−ϑq) + 8 Perm. .

We now replace the sums over (k, l,m, n, p, q) by integrals, assuming that the pixel size
Apix is small with respect to all relevant scales, and all relevant scales are small with
respect to the survey area A = Npix Apix:

A3
pix
∑

klm

→
∫

d2ϑ1

∫
d2ϑ2

∫
d2ϑ3 . (5.36)
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5. Third-order statistics

Under this assumption, we get

T1(θ1, θ2, θ3, θ4, θ5, θ6) = 1
N2

pix

Npix∑

i=1

Npix∑

j=1

∫ d2ℓ1
(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2 P (ℓ1)P (ℓ2)P (ℓ3)

× ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3) ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6) (5.37)
× e−i(ϕi−ϕj)·(ℓ1+ℓ2+ℓ3) + 5 Perm. ,

T2(θ1, θ2, θ3, θ4, θ5, θ6) = 1
N2

pix

Npix∑

i=1

Npix∑

j=1

∫ d2ℓ1
(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2 P (ℓ1)P (ℓ2)P (ℓ3)

× ũ(ℓ1 θ1) ũ(ℓ1 θ2) ũ(ℓ2 θ3) ũ(ℓ2 θ4) ũ(ℓ3 θ5) ũ(ℓ3 θ6) (5.38)
× e−i(ϕi−ϕj)·ℓ2 + 8 Perm. .

Next, we replace the remaining sums with integrals. Here, we need to take into account
the finite survey area A, and use

1
Npix

Npix∑

i=1
→ 1

A

∫

A
d2ϕ . (5.39)

We further define the geometry factor GA(ℓ) as

GA(ℓ) = 1
A2

∫

A
d2ϕ1

∫

A
d2ϕ2 e−i(ϕ1−ϕ2)·ℓ . (5.40)

We get

T1(θ1, θ2, θ3, θ4, θ5, θ6)

=
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2 P (ℓ1)P (ℓ2)P (ℓ3) ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3)

× ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6)GA(ℓ1 + ℓ2 + ℓ3) + 5 Perm. , (5.41)
T2(θ1, θ2, θ3, θ4, θ5, θ6)

=
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2 P (ℓ1)P (ℓ2)P (ℓ3) ũ(ℓ1 θ1) ũ(ℓ1 θ2) ũ(ℓ2 θ3)

× ũ(ℓ2 θ4) ũ(ℓ3 θ5) ũ(ℓ3 θ6)GA(ℓ2) + 8 Perm. (5.42)

For a square survey with side length L,

GA,square(ℓ) = 2 sin2(ℓx L/2)
ℓ2x L

2
2 sin2(ℓy L/2)

ℓ2y L
2 , (5.43)

where ℓ = (ℓx, ℓy). For an (almost) infinite survey, however, we get (Joachimi et al., 2008)

G∞
A (ℓ) → (2π)2

A
δD(ℓ) , (5.44)

In this case, we get T∞
2 = 0, as ũ(0) = 0 holds for any compensated filter. Therefore, the

large field approximation C∞
M̂3

ap
of the Gaussian covariance is given solely by T∞

1 , which
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5.2. Covariance of third-order aperture statistics

Figure 5.14. – Same as Fig. 5.13, but including the finite-field term T2 in the model. The term T1
corresponds to the model in Fig. 5.13.

becomes

T∞
1 (θ1, θ2, θ3, θ4, θ5, θ6)

= 1
(2π)3A

∫ ∞

0
dℓ1

∫ ∞

0
dℓ2

∫ 2π

0
dϕ P (ℓ1)P (ℓ2)P (ℓ3) ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(ℓ3 θ3) (5.45)

× ũ(ℓ1 θ4) ũ(ℓ2 θ5) ũ(ℓ3 θ6) + 5 Perm. ,

where ℓ23 = ℓ21 + ℓ22 + 2ℓ1ℓ2 cos(ϕ) . We can see that, in this case, we recover the Gaussian
covariance from Eq. (5.28).

Inspecting Fig. 5.14, we can see that the finite field size indeed plays a significant role in
the determination of the covariance for

〈
M3

ap
〉
, at least when small fields of 100 deg2 are

considered. Conversely, this means that the covariance of third-order aperture statistics
for a large survey can not be obtained by measuring it in a smaller simulation and then
re-scaling it to fit the correct area. The difference is mainly driven by the term T2, whereas
the differences between T1 and T∞

1 (which corresponds to Eq. 5.28) are subdominant.

5.2.2.2. The non-Gaussian part

We now want to derive the non-Gaussian part of the covariance using essentially the same
steps as for the Gaussian part. As one can see in Eq. (5.31), these non-Gaussian parts
depend on the three-, four- and six-point correlations of the convergence field. We thus
introduce the bispectrum B, the trispectrum T and the pentaspectrum P6 as their Fourier
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5. Third-order statistics

counterparts (compare Eq. 2.52)

B(ℓ1, ℓ2, ℓ3) = P3(ℓ1, ℓ2,−ℓ1 − ℓ2) ,
T (ℓ1, ℓ2, ℓ3) = P4(ℓ1, ℓ2, ℓ3,−ℓ1 − ℓ2 − ℓ3) , (5.46)

P6(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = P6(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5,−ℓ1 − ℓ2 − ℓ3 − ℓ4 − ℓ5) .

The term
〈
M̂3

apM̂3
ap
〉

NG, 1
can again be divided into two parts.

〈
M̂3

apM̂3
ap
〉

NG, 1
(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× [⟨κ(ϑk)κ(ϑl)κ(ϑm)⟩c ⟨κ(ϑn)κ(ϑp)κ(ϑq)⟩c

+⟨κ(ϑn)κ(ϑl)κ(ϑm)⟩c ⟨κ(ϑk)κ(ϑp)κ(ϑq)⟩c + 8 Perm.
]

= T3(θ1, θ2, θ3, θ4, θ5, θ6) + T4(θ1, θ2, θ3, θ4, θ5, θ6) . (5.47)

In the first part, T3, the ϑk,ϑl,ϑm in the connected correlations ⟨κ(ϑk)κ(ϑl)κ(ϑm)⟩c are
all substracted from the same ϕi. In the second part, one of the ϑk,ϑl,ϑm is substracted
from the other ϕj . For T3 we get

T3(θ1, θ2, θ3, θ4, θ5, θ6) =
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× ⟨κ(ϑk)κ(ϑl)κ(ϑm)⟩c ⟨κ(ϑn)κ(ϑp)κ(ϑq)⟩c

=
〈
M̂3

ap(θ1, θ2, θ3)
〉〈

M̂3
ap(θ4, θ5, θ6)

〉
, (5.48)

which cancels the averages of
〈
M3

ap
〉

that are substracted in the definition of the covariance
of the estimator in Eq. (5.29). The term T4 can be calculated as

T4(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)Uθ4(|ϕj − ϑn|)

× Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|) ⟨κ(ϑn)κ(ϑl)κ(ϑm)⟩c ⟨κ(ϑk)κ(ϑp)κ(ϑq)⟩c + 8 Perm.

=
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ4
(2π)2

∫ d2ℓ5
(2π)2 Bκ(ℓ1, ℓ2, |ℓ1 + ℓ2|)Bκ(ℓ4, ℓ5, |ℓ4 + ℓ5|) (5.49)

× ũ(ℓ1 θ4) ũ(ℓ2 θ2) ũ(|ℓ1 + ℓ2| θ3) ũ(ℓ4 θ1) ũ(ℓ5 θ5) ũ(|ℓ4 + ℓ5| θ6)GA(ℓ1 − ℓ4) + 8 Perm. ,

where we again replaced the sums with integrals and inserted the bispectrum.
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5.2. Covariance of third-order aperture statistics

Second, we calculate the covariance part
〈
M̂3

apM̂3
ap
〉

NG, 2
. We divide this term into

two parts as
〈
M̂3

apM̂3
ap
〉

NG, 2
(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× [⟨κ(ϑk)κ(ϑn)⟩c ⟨κ(ϑl)κ(ϑm)κ(ϑp)κ(ϑq)⟩c + 8 Perm.

+⟨κ(ϑk)κ(ϑl)⟩c ⟨κ(ϑm)κ(ϑn)κ(ϑp)κ(ϑq)⟩c + 5 Perm.
]

= T5(θ1, θ2, θ3, θ4, θ5, θ6) + T6(θ1, θ2, θ3, θ4, θ5, θ6) . (5.50)

The first 9 permutations contain all terms, for which the ϑl,ϑm in the two-point correlation
⟨κ(ϑl)κ(ϑm)⟩ are subtracted from different ϕi,ϕj . The remaining six terms contain all
other permutations. We again replace the sums with integrals and the correlation functions
with polyspectra and find

T5(θ1, θ2, θ3, θ4, θ5, θ6)

=
∫ d2ℓ1

(2π)2

∫ d2ℓ3
(2π)2

∫ d2ℓ4
(2π)2

∫ d2ℓ5
(2π)2 P (ℓ1)T (ℓ3, ℓ4, ℓ5) ũ(ℓ1 θ1) ũ(ℓ3 θ2) ũ(ℓ4 θ3)

× ũ(ℓ1 θ4) ũ(ℓ5 θ5) ũ(|ℓ3 + ℓ4 + ℓ5| θ6)GA(ℓ1 + ℓ3 + ℓ4) + 8 Perm. , (5.51)
T6(θ1, θ2, θ3, θ4, θ5, θ6)

=
∫ d2ℓ1

(2π)2

∫ d2ℓ3
(2π)2

∫ d2ℓ4
(2π)2

∫ d2ℓ5
(2π)2 P (ℓ1)T (ℓ3, ℓ4, ℓ5) ũ(ℓ1 θ1) ũ(ℓ1 θ2) ũ(ℓ3 θ3)

× ũ(ℓ4 θ4) ũ(ℓ5 θ5) ũ(|ℓ3 + ℓ4 + ℓ5| θ6)GA(ℓ3) + 5 Perm. . (5.52)

At last, we consider
〈
M̂3

apM̂3
ap
〉

NG, 3
, which is

〈
M̂3

apM̂3
ap
〉

NG, 3
(θ1, θ2, θ3, θ4, θ5, θ6)

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
× ⟨κ(ϑk)κ(ϑl)κ(ϑm)κ(ϑn)κ(ϑp)κ(ϑq)⟩c

= T7(θ1, θ2, θ3, θ4, θ5, θ6) . (5.53)

Again, by replacing the sums with integrals, we get

T7(θ1, θ2, θ3, θ4, θ5, θ6)

=
∫ d2ℓ1

(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ3
(2π)2

∫ d2ℓ4
(2π)2

∫ d2ℓ5
(2π)2 P6(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) ũ(ℓ1 θ1) ũ(ℓ2 θ2)

× ũ(ℓ3 θ3) ũ(ℓ4 θ4) ũ(ℓ5 θ5) ũ(|ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5| θ6)GA(ℓ1 + ℓ2 + ℓ3) . (5.54)
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5. Third-order statistics

To test the behaviour for large survey areas, we can again replace the GA(ℓ) in the
terms T4 to T7 by Eq. (5.44) and find

T∞
4 (θ1, θ2, θ3, θ4, θ5, θ6)

= 1
A

∫ d2ℓ1
(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ5
(2π)2 Bκ(ℓ1, ℓ2, |ℓ1 + ℓ2|)Bκ(ℓ1, ℓ5, |ℓ1 + ℓ5|) (5.55)

× ũ(ℓ1 θ4) ũ(ℓ2 θ2) ũ(|ℓ1 + ℓ2| θ3) ũ(ℓ1 θ1) ũ(ℓ5 θ5) ũ(|ℓ1 + ℓ5| θ6) + 8 Perm. ,
T∞

5 (θ1, θ2, θ3, θ4, θ5, θ6)

= 1
A,

∫ d2ℓ1
(2π)2

∫ d2ℓ3
(2π)2

∫ d2ℓ5
(2π)2 P (ℓ1)T (ℓ3,−ℓ1 − ℓ3, ℓ5) (5.56)

× ũ(ℓ1 θ1) ũ(ℓ3 θ2) ũ(|ℓ1 + ℓ3| θ3) ũ(ℓ1 θ4) ũ(ℓ5 θ5) ũ(|ℓ5 − ℓ1| θ6) + 8 Perm. ,
T∞

7 (θ1, θ2, θ3, θ4, θ5, θ6)

= 1
A,

∫ d2ℓ1
(2π)2

∫ d2ℓ2
(2π)2

∫ d2ℓ4
(2π)2

∫ d2ℓ5
(2π)2 P6(ℓ1, ℓ2,−ℓ1 − ℓ2, ℓ4, ℓ5) (5.57)

× ũ(ℓ1 θ1) ũ(ℓ2 θ2) ũ(|ℓ1 + ℓ2| θ3) ũ(ℓ4 θ4) ũ(ℓ5 θ5) ũ(|ℓ4 + ℓ5| θ6) .

Like T∞
2 , the term T∞

6 vanishes, as ũ(0) = 0.

Unfortunately, we now face a problem: While we have well-tested and validated models
for the power- and bispectrum, those are still lacking for the tri- and pentaspectrum. At
this stage, we are satisfied with a relatively basic model of these spectra and thus choose to
model them from their 1-halo terms within the halo model framework (see Sect. 2.1.2.6).

5.2.3. Measuring the covariance terms in simulations

Instead of validating the entire covariance, we have developed a method to validate the
individual Ti-terms from the simulations. This is particularly interesting as it allows us
to isolate the single contributions from different polyspectra to the final covariance. For
example, one can extract the Gaussian covariance T1 + T2 from a non-Gaussian field and
see which covariance contributions dominate.
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5.2. Covariance of third-order aperture statistics

To explain our method, we want to focus on an arbitrary term of the full covariance in
Eq. (5.31), for example, the term

A6
pix

N2
pix

Npix∑

i=1

Npix∑

j=1

∑

klm

∑

npq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ3(|ϕi − ϑm|)

× Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ6(|ϕj − ϑq|)
+ ⟨κ(ϑk)κ(ϑl)κ(ϑq)⟩c ⟨κ(ϑn)κ(ϑp)κ(ϑm)⟩c

=
A6

pix
N2

pix

Npix∑

i=1

Npix∑

j=1

∑

klq

Uθ1(|ϕi − ϑk|)Uθ2(|ϕi − ϑl|)Uθ6(|ϕj − ϑq|)

× ⟨κ(ϑk)κ(ϑl)κ(ϑq)⟩c
×
∑

npm

Uθ4(|ϕj − ϑn|)Uθ5(|ϕj − ϑp|)Uθ3(|ϕi − ϑm|)

× ⟨κ(ϑn)κ(ϑp)κ(ϑm)⟩c

= 1
N2

pix

Npix∑

i=1

Npix∑

j=1

〈
M̂ap(ϕi; θ1)M̂ap(ϕi; θ2)M̂ap(ϕj ; θ6)

〉
c

×
〈
M̂ap(ϕj ; θ4)M̂ap(ϕj ; θ5)M̂ap(ϕi; θ3)

〉
c

≡ 1
N2

pix

Npix∑

i=1

Npix∑

j=1
ξ3

Map(θ1, θ2; θ6; |ϕj − ϕi|) ξ3
Map(θ4, θ5; θ3; |ϕi − ϕj |) . (5.58)

Here, we have defined the quantity ξ3
Map(θ1, θ2; θ3; η), which is a two-point correlation

function between the field M̂ap(ϕ; θ1)M̂ap(ϕ; θ2) and the field M̂ap(ϕ; θ3).
We can now again replace the sums over i and j by integrals, and replace the ϕ2

integration by one over η = ϕ2 − ϕ1. Since the resulting integrand is independent of ϕ1,
we can perform the integration, which yields AE(η), where the function E(η) denotes the
probability that for a random point ϕ1 in A, the point ϕ1 = ϕ1 +η also lies in A (compare
Heydenreich et al., 2020). We find for that term:

1
A2

∫

A
d2ϕ1

∫

A
d2ϕ2 ξ

3
Map(θ1, θ2; θ6; |ϕj − ϕi|) ξ3

Map(θ4, θ5; θ3; |ϕi − ϕj |)

= 1
A

∫
d2η E(η) ξ3

Map(θ1, θ2; θ6; |η|) ξ3
Map(θ4, θ5; θ3; |η|)

= 2π
A

∫ ∞

0
dη η E(η) ξ3

Map(θ1, θ2; θ6; η) ξ3
Map(θ4, θ5; θ3; η) , (5.59)

where in the last step we have defined E(η) as the azimuthal average of E(η). For a square
survey of side-length L, Heydenreich et al. (2020) found

E(η) =





1
L2π

[
L2π − (4L− η)η

]
η ≤ L

2
π

[
4
√

η2

L2 − 1 − 1 − η2

2L2 − acos
(
L
η

)
+ asin

(
L
η

)]
L ≤ η ≤

√
2L

0 else

. (5.60)
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5. Third-order statistics

Inspecting Eq. (5.31) again, we can see that we can apply this method to every single
one of the terms in this equation. In analogy to the definition of ξ3

Map(θ1, θ2; θ3; η), we
define

ξ2
Map(θ1; θ2; |ϕ2 − ϕ1|) =

〈
M̂ap(ϕ1; θ1)M̂ap(ϕ2); θ2

〉

ξ3
Map(θ1, θ2; θ3; |ϕ2 − ϕ1|) =

〈
M̂ap(ϕ1; θ1)M̂ap(ϕ1; θ2)M̂ap(ϕ2; θ3)

〉

ξ4,1
Map

(θ1, θ2, θ3; θ4; |ϕ2 − ϕ1|) =
〈
M̂ap(ϕ1; θ1)M̂ap(ϕ1; θ2)M̂ap(ϕ1; θ3)M̂ap(ϕ2; θ4)

〉

ξ4,2
Map

(θ1, θ2; θ3, θ4; |ϕ2 − ϕ1|) =
〈
M̂ap(ϕ1; θ1)M̂ap(ϕ1; θ2)M̂ap(ϕ2; θ3)M̂ap(ϕ2; θ4)

〉

ξ6
Map(θ1, θ2, θ3; θ4, θ5, θ6; |ϕ2 − ϕ1|) =

〈
M̂ap(ϕ1; θ1)M̂ap(ϕ1; θ2)M̂ap(ϕ1; θ3)

×M̂ap(ϕ2; θ4)M̂ap(ϕ2; θ5)M̂ap(ϕ2; θ6)
〉
. (5.61)

Applying the same calculations that lead to Eq. (5.59) to the terms T1 and T2 in
Eq. (5.33), we see that every term of T1 becomes a product of three correlation func-
tions ξ2

Map(θ1; θ2; η), whereas in T2 we always get a product of two second-order aperture
masses

〈
M̂2

ap(θ1, θ2)
〉

and one correlation function ξ2
Map(θ1; θ2; η). Similar observations

can be made for all Ti terms defined in the previous section.
We note that in Eq. (5.61) we have switched from connected correlations ⟨. . .⟩c to general

correlations ⟨. . .⟩. This makes no difference for second- and third-order correlations of a
zero-mean field, but it does for the fourth- and sixth-order correlations we see in the
other terms of Eq. (5.31). When dealing with these terms, we thus have to transform the
non-connected T̂ nc

i into the connected T̂i.
We can now calculate the Ti terms that can be estimated from simulations and get

T̂1(θ1, . . . , θ6) = 2π
A

∫ ∞

0
dη ηE(η)

[
ξ2

Map(θ1; θ4; η) ξ2
Map(θ2; θ5; η) ξ2

Map(θ3; θ6; η) + 5 Perm.
]

T̂2(θ1, . . . , θ6) = 2π
A

∫ ∞

0
dη ηE(η)

[
ξ2

Map(θ1; θ4; η)
〈
M̂2

ap
〉
(θ2, θ3)

〈
M̂2

ap
〉
(θ5, θ6) + 8 Perm.

]

T̂3(θ1, . . . , θ6) = M̂3
ap(θ1, θ2, θ3)M̂3

ap(θ4, θ5, θ6)

T̂4(θ1, . . . , θ6) = 2π
A

∫ ∞

0
dη ηE(η)

[
ξ3

Map(θ1, θ2; θ4; η) ξ3
Map(θ5, θ6; θ3; η) + 8 Perm.

]

T̂ nc
5 (θ1, . . . , θ6) = 2π

A

∫ ∞

0
dη ηE(η)

[
ξ2

Map(θ1; θ4; η) ξ4,2
Map

(θ2, θ3; θ5, θ6; η) + 8 Perm.
]

T̂ nc
6 (θ1, . . . , θ6) = 2π

A

∫ ∞

0
dη ηE(η)

[〈
M̂2

ap
〉
(θ1, θ2) ξ4,1

Map
(θ4, θ5, θ6; θ3; η) + 5 Perm.

]

T̂ nc
7 (θ1, . . . , θ6) = 2π

A

∫ ∞

0
dη ηE(η) ξ6

Map(θ1, θ2, θ3; θ4, θ5, θ6; η) . (5.62)

To calculate the connected terms, we disentangle the fourth-order non-connected cor-
relations into their components and verify that T̂5 = T̂ nc

5 − 3T1 − T2 and T̂6 = T̂ nc
6 − 2T2

holds. We further see that T̂ nc
7 − T̂3 describes the full covariance as defined in Eq. (5.29),

meaning T̂7 = T̂ nc
7 − T̂1 − T̂2 − T̂3 − T̂4 − T̂5 − T̂6.

With this method, we can test the individual covariance terms that we calculated in
Sect. 5.2.2.1 and 5.2.2.2. The computations of the correlation functions can even be
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5.2. Covariance of third-order aperture statistics

Figure 5.15. – The function η ξ2
Map (θ1; θ2; η) for θ1 = θ2 = 4′, measured in 640 convergence maps of

the SLICS at z ≈ 0.8. For comparison, we show the function 6 × 10−9 E(η) for a survey of side-length
L = 472′, which corresponds to the SLICS when 4 × 16′ are cut off from each side to avoid boundary
effects. We also show the product of the two functions. We note that the integral over η ξ2

Map (θ1; θ2; η)
is zero and the integral over the product of the two functions makes up the term T̂2.

significantly sped up: For example, given fields M̂ap(ϕ1; θ1) and M̂ap(ϕ2; θ2) defined on
a square pixel grid, we can zero-pad these fields by adding pixel grid of the same size
containing only zeros to the bottom, right, and bottom right of the original aperture mass
field. When we then calculate the full correlation between them via a FFT, the result is
precisely the correlation function multiplied with the function E(η):

∫
d2ϕM̂ap,padded(ϕ; θ1)M̂ap,padded(ϕ + η; θ2) = E(η) ξ2

Map(θ1; θ2; |η|) . (5.63)

Here, the fields M̂ap,padded(ϕ; θ) are defined as

M̂ap,padded(ϕ; θ) =
{

M̂ap(ϕ; θ) ϕ ∈ A

0 else
. (5.64)

Inspecting Eq. (5.62), we notice that the term T̂2 is quite unstable: The integral over the
correlation function is compensated by definition, meaning

∫ ∞

0
dη η ξ2

Map(θ1; θ4; η) = 0 . (5.65)

This means the only part that makes the integral for T̂2 nonzero is multiplication with the
slowly changing function E(η). An example of this can be seen in Fig. 5.15. This is not
entirely surprising, as the term T2 vanishes for large fields. However, one can imagine that
even a slight perturbation of the measured ξ2

Map(θ1; θ2; η) can lead to significant changes
in the term T̂2. A similar argument holds for the term T̂6. This means that we have to
measure the correlation functions ξ2

Map(θ1; θ2; η), . . . as accurately as possible. To ensure
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5. Third-order statistics

Figure 5.16. – The terms Ti calculated from the model (Sect. 5.2.2, solid lines) compared to the T̂i

extracted from the 640 convergence maps of the SLICS at z = 0.879 (Sect. 5.2.3, dashed lines). The
x axis represents all unique combinations of the aperture radii 2′, 4′, 8′ and 16′.

that, we take 640 noise-free lines of sight of convergence maps from the SLICS at redshift
z = 0.879 to eliminate shape noise and minimise the sample variance as much as possible.

In Fig. 5.16, we compare the terms Ti that we modelled according to Sect. 5.2.2 with
the T̂i described in Sect. 5.2.3. Overall, we notice a good agreement between the mea-
surements and simulations. This means that we can model the individual terms of the
covariance with reasonable accuracy. This is pleasantly surprising since our models for
the tri- and pentaspectrum are relatively simple ones. We further see that the Gaussian
part of the covariance, T∞

1 + T2, is completely subdominant to the non-Gaussian terms
of the covariance; the term T7 is by far the most dominant one. To test the resulting
covariances, we compare the term T̂ nc

7 − T̂3 with the sample covariance of the SLICS and
the model covariance in Fig. 5.17. We see that, as expected, the two methods of measur-
ing the covariance are extremely consistent. Between modelled and measured covariances,
we notice a good agreement on larger scales but significant deviations on smaller scales.
These deviations are particularly strong when combining small and large aperture radii.
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5.3. Concluding remarks

Figure 5.17. – The top row shows the sample covariance Csample, the covariance estimated from the
measured T̂i,

(∑
i ̸=3 T̂i

)
= T̂ nc

7 − T̂3, and the model covariance
(∑

i ̸=3 Ti

)
, respectively. The bottom

row shows the relative differences between the covariance estimation methods.

5.3. Concluding remarks

In this section, we have laid the first stone to prepare a cosmological parameter analysis
with third-order shear statistics. We have validated the BiHalofit bispectrum and con-
cluded that the shear statistics derived from it are accurate enough for Stage-III surveys.
Particularly we found that the flat-sky and Limber approximations are valid and that the
model accuracy is mainly limited by the accuracy of the bispectrum model.

We have shown that third-order aperture statistics can be obtained in an unbiased way
from the shear 3pcf if it is measured in an appropriate number of bins. For our analysis
setup, 103 bins are sufficient for equal-scale aperture statistics, and 153 bins are a good
choice if one wants to calculate the aperture statistics for all combinations of filter radii.
We further verified and extended upon the results of Shi et al. (2014), who showed that
the E- and B-mode leakage for third-order aperture statistics is at the per cent level.

We show that the information loss that arises when converting shear 3pcf to third-order
aperture statistics is probably not severe and demonstrate that the computational load
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5. Third-order statistics

of a parameter analysis with third-order aperture statistics is manageable, in particular
when utilising emulators to predict the statistics.

In a mock analysis with both second- and third-order shear statistics and using a simu-
lated covariance, we show that a combined analysis increases the constraining power on S8
by almost a factor of two and further significantly improves the constraints on Ωm and σ8;
the figure-of-merit increases by a factor of almost 6 and the individual constraints improve
by 68% and 54%, respectively, mainly due to the different degeneracy directions between
second- and third-order aperture statistics. While second-order aperture statistics are not
used in cosmological parameter analyses, Asgari et al. (2021) showed that many second-
order shear statistics exhibit similar constraining power and degeneracy directions, and
we assume that second-order aperture statistics place no exception to that observation.

We find that equal-scale aperture statistics hold almost the same information content as
the ones including all combinations of scales, which disagrees with the findings of Kilbinger
and Schneider (2005) but is supported by Fu et al. (2014). This might suggest that a Fisher
forecast is not an ideal tool to forecast cosmological parameter constraints, but further
study is needed before this conclusion can be made. In particular, the impact of potential
degeneracy breaking by the non-equal scale aperture mass statistics in higher-dimensional
parameter spaces has not been investigated.

In future work, we plan to improve the measurement of the shear 3pcf. Philcox et al.
(2022, and references therein) developed a method to estimate the n-point correlation
function of galaxies in O(N2) calculations by performing a spherical decomposition of the
correlation function and then estimating the individual components. Although the O(N2)
scaling is worse than the O(N logN) scaling of tree-codes, the total runtime appears to
be faster in first tests7. Using a similar method, we can decompose the shear 3pcf into its
multipole moments. Not only will this yield a faster measurement of the shear 3pcf, but we
expect it to also improve the conversion to aperture mass statistics since the ψ-integration
in Eq. (2.134) can be replaced by a sum over the multipole components.

We have further constructed a covariance model and shown that the naíve approach of
simply transforming the bispectrum covariance yields wrong results. While the agreement
between the simulated covariance and our model is not perfect, we are positively surprised
by the level of agreement, considering we use a relatively simple model for the tri- and
pentaspectrum. In the following months, we will work towards understanding the indi-
vidual terms that contribute to the covariance, refine the covariance model and develop a
joint covariance for second- and third-order shear statistics.

Before a cosmological parameter analysis can be performed, the final step is to under-
stand the impacts of systematic biases on third-order shear statistics, in particular intrinsic
alignments of source galaxies (Pyne et al., 2022) and baryonic feedback (Semboloni et al.,
2008; Halder and Barreira, 2022).

7If one distributes the galaxies on a grid before the runtime can even be reduced to O(N log N) when
utilising the convolution theorem.
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CHAPTER 6

Conclusion and outlook

In this thesis, we have worked towards establishing cosmological parameter analyses with
higher-order shear statistics, both with a simulation-based inference method and with
statistics that can be modelled directly. In both projects, we have shown that a combined
analysis with second- and higher-order statistics can significantly increase the constrain-
ing power of a cosmic shear survey. On their own, summary statistics from persistent
homology are significantly more constraining than third-order shear statistics. However,
the improvement of the joint constraints in combination with second-order statistics ap-
pears to be better for third-order aperture masses. Furthermore, we have shown that
higher-order statistics can detect peculiar phenomena that shear 2pcf are not sensitive to,
as exemplified in the Ωm-tension measured in Chap. 4.

As a simulation-based inference method, we have established persistent homology as
an excellent higher-order statistic to constrain cosmological parameters. In this work, we
were the first to quantify the constraining power of and perform a cosmological parameter
analysis with persistent homology. In the first part of this project, we developed a cos-
mological infererence pipeline utilising persistent homology and showed that this method
outperforms the commonly used peak count statistics by including information about the
persistence of features, which is sensitive to the environment around overdensities in the
matter distribution. We expect this information gain to become more critical in Stage-IV
surveys. In the second part of the project, we improved our used summary statistics and
extended the inference pipeline to include tomography and marginalisation over system-
atic effects. We then performed a cosmological parameter analysis of DES-Y1 data and
compared the resulting constraints to the ones from shear 2pcf. We find S8 = 0.747+0.025

−0.031
for the matter clustering parameter, which is in full agreement with our analysis of second-
order statistics (S8 = 0.759+0.049

−0.042) and other cosmological parameter analyses on the same
data set (Troxel et al., 2018; Joudaki et al., 2020; Harnois-Déraps et al., 2021). We find
a tension in the matter density parameter Ωm, where we get Ωm = 0.468+0.051

−0.036 from per-
sistent homology and Ωm = 0.256+0.034

−0.058 from shear 2pcf. This tension has been observed
before by Harnois-Déraps et al. (2021) using peak count statistics. They used a com-
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pletely independent analysis pipeline but utilised the same simulation set to model their
data vector. If this tension is caused by a systematic bias in the inference pipeline, the
underlying simulation set appears to be the most likely cause. However, none of the tests
we performed indicated that this was the case. While we can not confidently exclude
a statistical fluctuation or some systematic bias as the cause for this tension, the most
exciting explanation would be some non-Gaussian features in the matter distribution that
can not be captured by two-point statistics. To investigate whether this tension is due to
a statistical fluctuation, we plan to perform a similar analysis on KiDS-1000 data.

In the second part of this thesis, we have focused on third-order aperture statistics as a
higher-order statistic that can be modelled directly from the matter bispectrum. We have
performed many validation tests of the convergence bispectrum, the shear 3pcf and the
third-order aperture mass statistics, utilising different simulation suites and source redshift
distributions. All these tests suggest that third-order shear statistics that are modelled
from the BiHalofit bispectrum can be used to constrain cosmological parameters in
Stage-III surveys. The biases introduced by the approximations of our shear inference
pipeline (e.g. the reduced shear approximation, the Limber approximation, . . . ) are sub-
dominant to the uncertainties in the bispectrum model. Until an improved bispectrum
model is found, an analysis of a Stage-IV survey can not be performed. To prepare for
a tomographic analysis, we have also developed and validated a model for the covariance
of third-order aperture mass statistics. We then argue that third-order aperture statistics
constitute an excellent summary statistic for a parameter analysis with third-order shear
statistics: They can be modelled quickly and measured in a survey with a complex geom-
etry without any bias by converting them from shear 3pcf, as long as the bins of the 3pcf
are chosen appropriately. Furthermore, they allow a decomposition of the shear signal
into E- and B-modes, yielding an additional null test. Lastly, their covariance can be
directly modelled or quickly extracted from N-body simulations. Although the modelling
procedure is both more complicated and numerically more demanding than a simulation-
based inference, the large number of validation tests available to us will result in greater
confidence in the achieved parameter constraints and provide immense value for further
cosmological parameter analyses in cosmic shear.

For future work, we plan to develop a method that improves the measurement of the
shear 3pcf and its conversion to third-order aperture statistics by measuring the multipole
moments of the 3pcf. Furthermore, we plan to develop a model for the joint covariance be-
tween second- and third-order shear statistics. Lastly, we want to implement and validate
models for mitigating systematic effects. These efforts will culminate in a cosmological
parameter analysis of KiDS data, utilising both second- and third-order shear statistics.

Comparing simulation-based inference with direct modelling strategies, we can certainly
say that both have their advantages and disadvantages. A simulation-based inference
pipeline is incredibly versatile. Once the N-body simulations have been tailored to match
a specific survey, one can quickly perform a parameter inference with any chosen summary
statistic with the methods outlined in Chap. 4. For example, we were able to introduce
a completely new method and use it to perform a cosmological parameter analysis on a
current-generation survey within less than two years, and we could use the same pipeline
to conduct an inference with any other summary statistic that can be quickly measured
in simulations. To contrast this, we took three years to build and validate a modelling
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pipeline for third-order shear statistics and their covariance, despite a significant amount of
previous efforts (Scoccimarro and Couchman, 2001; Schneider and Lombardi, 2003; Jarvis
et al., 2004; Schneider et al., 2005; Kilbinger and Schneider, 2005; Semboloni et al., 2008;
Joachimi et al., 2009; Gil-Marín et al., 2012; Fu et al., 2014; Takahashi et al., 2020, and
many more), and we have not even included tomography or systematic effects. However,
the great advantage of this method is that we are able to better understand our summary
statistics. While the bispectrum is calibrated using N-body simulations, its general shape
is based on a physically motivated model. All other parts of the modelling pipeline can
be tested in an isolated setting, so we can exactly tell under which conditions they are
accurate. In a simulation-based inference, where the model is simply interpolated from
N-body simulations, it is harder to exclude the possibility that some simulation artefacts
have become part of the model, meaning that one can not place as much trust in the final
parameter constraints.

Within the next decade, we hope that our efforts will contribute to achieving tighter
and more robust constraints on cosmological parameters so that we can either alleviate or
confirm the tension in the parameter S8. In the latter case, we plan to contribute to the
testing of new models that improve upon the current ΛCDM model.
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APPENDIX A

Testing the treecorr code

The integration routine to calculate the Γ(i) described in Sect. 5.1.2.1 suffered from a
bug for a long time, that unfortunately also persisted in the validation tests described in
Sect. 5.1.2.3. We assumed that the integration worked because it passed all validation
tests, so we conducted extensive tests of the treecorr algorithm to ensure that the
measurement of the 3pcf in N-body simulations works. All conducted tests verified that
treecorr measures the 3pcf with a good accuracy. This means that the tests are not very
relevant to the results of this thesis. However, we still want to document the performed
tests here to present an independent validation of the treecorr algorithm.

We test the treecorr algorithm by creating lognormal random fields on a 4096 × 4096
pixel grid describing a 10 × 10 deg2 field. We first generate a GRF using a convergence
power spectrum that corresponds to the Euclid-like SLICS. We then transform the GRF
to lognormal fields, as described in Sect. 2.1.2.4, with the degree of lognormality α = 0.7.
We set the variance σ to be the same as the variance of the corresponding GRF.

We further construct a simple brute-force algorithm to measure both the shear and
convergence 3pcf in the lognormal fields. Given a triangle configuration, the algorithm
generates this triangle on the pixel grid. It then measures the 3pcf by moving the triangle
around the field via translation and rotation and calculates the 3pcf as the average of all
the resulting pixel triplets. In contrast to the treecorr algorithm, this only measures
a tiny sub-sample of the field’s whole 3pcf. However, since lognormal fields are easy and
cheap to generate, we can offset this by creating a larger number of fields.

We then calculate the convergence 3pcf ζ from the analytic equation (2.59) and compare
it to both measurements from treecorr, where we randomly select every 100-th pixel of
the field, and the brute-force algorithm. In Fig. A.1, we can see a good agreement overall;
on small scales treecorr shows some strange behaviour, which is likely caused by the
pixelisation of the shear grid. We further note that there are empty treecorr-bins; this
is due to the bin_slop parameter, which allows balls of the tree to go over the edges of a
bin and causes some bins not to be filled when a pixelised grid is the input.
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Figure A.1. – The convergence 3pcf ζ of a lognormal field from an analytic model (green), the
treecorr algorithm (blue) and a brute-force code (orange). In each panel, the triangle shape is
fixed to the shape shown in the panel; the x axis describes the length of the red triangle side. For
treecorr, the error bars are errors on the mean of the 140 created lognormal realisations; in the
brute-force code, we take the mean over 1000 lognormal fields.

We furthermore compare treecorr to a bruteforce code on shear fields in Fig. A.2
and see an overall agreement that is similar to the one on convergence maps. There are
some significant disagreements for degenerate triangles, which we attribute to pixelisation
effects.

Lastly, we compare the results of the treecorr algorithm when called on one line of
sight of the MS with bin_slop parameters between 0.25 and 1. We find no discernible
differences between the results; Secco et al. (2022a) noted that the expectation value of
the 3pcf is relatively insensitive to the bin_slop parameter; however, the covariance is
more strongly affected. As treecorr does not play a role in our covariance calculations,
this does not matter to us.
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Figure A.2. – The absolute value of the first natural component |Γ(0)| of the shear 3pcf for a
lognormal field from the treecorr algorithm and a brute-force code. In each panel, the triangle
shape is fixed to the shape shown in the panel; the x axis describes the length of the red triangle side.
For treecorr, the error bars are errors on the mean of the 140 created lognormal realisations; in the
brute-force code, we take the mean over 1000 lognormal fields.

149





APPENDIX B

Measuring the third-order shear statistics in KiDS-1000

Although we are far from conducting a cosmological parameter analysis in a real survey,
we want to show that we can measure the shear 3pcf in the KiDS-1000 survey and detect
a third-order signal. To do this, we take the data release 4.1 of KiDS-1000 (Hildebrandt
et al., 2021; Giblin et al., 2021) and remove the galaxies that have been flagged by the
calibration method based on self-organising maps (Wright et al., 2020). For the remaining
21 million galaxies, we measure the shear 3pcf in 163 bins from θmin = 0.′1 to θmax = 150′.
We further calculate a model 3pcf at the best-fit cosmology for KiDS-1000 determined by
van den Busch et al. (2022). The results can be seen in Fig. B.1. We can see that even with
the errors disregarding any sample variance, each individual bin contains no discernible
signal and is dominated by noise. This is not entirely surprising, as the measured third-
order shear signal is divided up into 8 × 4096 bins, so the signal in each bin is extremely
small. However, these measured correlation functions are a good basis for calculating the
third-order aperture statistics.

We convert the measured 3pcf to third-order aperture masses with aperture radii
4′, 8′, 16′ and 32′. The results can be seen in Fig. B.2. We see that the model at the
best-fit cosmology of KiDS-1000 (van den Busch et al., 2022) agrees with the measure-
ment on all scales within the error bars. We also note that we measure no significant
B-modes in the survey. This exciting result shows that we can be optimistic about our
ability to analyse third-order shear statistics in Stage-III surveys soon. We detect the
cosmic shear signal with about

√〈
M3

ap
〉

meas
C−1

〈
M3

ap
〉

meas
σ ≈ 6.7σ , (B.1)

where
〈
M3

ap
〉

meas
are the third-order aperture statistics we measure in KiDS-1000 and C

is the covariance matrix determined from the analytical model (Sect. 5.2.2) for the redshift
distribution and survey area of KiDS-1000. For the deviation from the best-fit model, we
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B. Measuring the third-order shear statistics in KiDS-1000

Figure B.1. – The first natural component of the shear three-point correlation functions as measured
in KiDS-1000 using TreeCorr. For comparison, we show a model at the best-fit cosmology of KiDS-
1000 determined by van den Busch et al. (2022). Each panel corresponds to one fixed triangle shape;
the u and v values are listed at the top, and the corresponding shape of the triangle is shown on the
bottom right. The x-axis corresponds to the length of the red side of the triangle. We show both the
real part (red) and the imaginary part (blue) for the model (dashed line) and the simulations (solid
line). The error bars are estimated from the shape noise of all galaxies in a bin and disregard sample
variance.

measure

χ2/d.o.f. =

(〈
M3

ap
〉

meas
−
〈
M3

ap
〉

model

)
C−1

(〈
M3

ap
〉

meas
−
〈
M3

ap
〉

model

)

20 ≈ 0.29 ,
(B.2)

where the degrees of freedom of our data vector are d.o.f. = 20 and
〈
M3

ap
〉

model
are the

third-order aperture statistics modelled at the best-fit cosmology of van den Busch et al.
(2022). However, these numbers should not be taken at face value, as our covariance model
is imperfect, and we can not rule out that systematic effects partly cause the measured
signal.
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Figure B.2. – The third-order aperture mass statistics as measured in KiDS-1000 using treecorr.
For comparison, we show our model at the best-fit cosmology of KiDS-1000. The error bars are
calculated using the theoretical model described in Sect. 5.2.
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ABSTRACT

In recent years, cosmic shear has emerged as a powerful tool for studying the statistical distribution of matter in our Universe.
Apart from the standard two-point correlation functions, several alternative methods such as peak count statistics offer competitive
results. Here we show that persistent homology, a tool from topological data analysis, can extract more cosmological information
than previous methods from the same data set. For this, we use persistent Betti numbers to efficiently summarise the full topological
structure of weak lensing aperture mass maps. This method can be seen as an extension of the peak count statistics, in which we
additionally capture information about the environment surrounding the maxima. We first demonstrate the performance in a mock
analysis of the KiDS+VIKING-450 data: We extract the Betti functions from a suite of N-body simulations and use these to train a
Gaussian process emulator that provides rapid model predictions; we next run a Markov chain Monte Carlo analysis on independent
mock data to infer the cosmological parameters and their uncertainties. When comparing our results, we recover the input cosmology
and achieve a constraining power on S 8 ≡ σ8

√
Ωm/0.3 that is 3% tighter than that on peak count statistics. Performing the same

analysis on 100 deg2 of Euclid-like simulations, we are able to improve the constraints on S 8 and Ωm by 19% and 12%, respectively,
while breaking some of the degeneracy between S 8 and the dark energy equation of state. To our knowledge, the methods presented
here are the most powerful topological tools for constraining cosmological parameters with lensing data.

Key words. gravitational lensing: weak – cosmological parameters – methods: data analysis

1. Introduction

The Λ cold dark matter (ΛCDM) model is mostly regarded
as the standard model of cosmology and has been incredibly
successful in explaining and predicting a large variety of cos-
mological observations using only six free parameters. As of
now, the tightest constraints on these cosmological parameters
have been placed by observations of the cosmic microwave
background (CMB, Planck Collaboration VI 2020). However,
the next generation of surveys, such as the Rubin Observatory1

(Ivezic et al. 2008), Euclid2 (Laureijs et al. 2011) and the Nancy
Grace Roman Space Telescope3 (RST, Spergel et al. 2013),
promises to improve on these constraints and reduce parame-
ter uncertainties to the sub-percent level. This is particularly
interesting in light of tensions arising between observations of
the early Universe (CMB) and the late Universe at a redshift
of z . 2. These tensions are most notable in the Hubble con-
stant H0 (Riess et al. 2019) and the parameter S 8 = σ8

√
Ωm/0.3

(Joudaki et al. 2020; Abbott et al. 2020), where Ωm is the mat-
ter density parameter and σ8 characterises the normalisation of
the matter power spectrum. Future analyses will show whether
these tensions are a statistical coincidence, the manifestation of
unknown systematics or evidence for new physics.

1 https://www.lsst.org/
2 https://www.euclid-ec.org/
3 https://roman.gsfc.nasa.gov/

In the last decade, weak gravitational lensing has proven
to be an excellent tool for studying the distribution of mat-
ter and constraining the cosmological parameters that describe
our Universe. In particular, tomographic shear two-point cor-
relation functions (Kaiser 1992) and derived quantities such as
Complete Orthogonal Sets of E- and B-mode Integrals (COSE-
BIs, Schneider et al. 2010) and band powers (van Uitert et al.
2018) have been applied with great success to cosmic shear data
(see Kilbinger et al. 2013; Heymans et al. 2013; Joudaki et al.
2017 for an analysis of CFHTLenS, Hildebrandt et al. 2020;
Wright et al. 2020; Asgari et al. 2020 for the Kilo Degree
Survey, Troxel et al. 2018 for the Dark Energy Survey and
Hikage et al. 2019; Hamana et al. 2020 for the Hyper Suprime
Camera Survey). However, while two-point statistics provide an
excellent tool for capturing the information content of Gaussian
random fields, the gravitational evolution of the matter distribu-
tion becomes non-linear in high-density regions, and additional
methods are needed to extract the information residing in the
non-Gaussian features that are formed therein. The demand for
these new methods rises with the ever-increasing amount and
quality of available data.

In addition to three-point correlation functions
(Schneider & Lombardi 2003; Fu et al. 2014), which form
a natural extension to two-point correlation functions, a
variety of alternative statistics promise to improve cosmo-
logical parameter constraints (Zürcher et al. 2021), including
peak statistics (Liu et al. 2015a,b; Kacprzak et al. 2016;
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Martinet et al. 2018, hereafter M+18), density split statistics
(Gruen et al. 2018), convergence probability distribution func-
tions (Liu & Madhavacheril 2019), shear clipping (Giblin et al.
2018), the scattering transform (Cheng et al. 2020), and
Minkowski functionals (Petri et al. 2015; Marques et al. 2019;
Parroni et al. 2020).

In this article, we demonstrate how ‘persistent homology’
can be used to analyse the data provided by weak gravitational
lensing surveys. This non-linear statistic combines the informa-
tion residing in Minkowski functionals and in peak statistics
in a natural way, and supplements these by further capturing
information about the environment surrounding the topological
features. In the last two decades, persistent homology has been
successfully applied in a large variety of fields involving topo-
logical data analysis: Among others, it has been used to analyse
the spread of contagious diseases (Lo & Park 2018), to assess
self-similarity in geometry (MacPherson & Schweinhart 2012)
and to identify a new subgroup of breast cancer (Nicolau et al.
2011); for more examples, we refer to Otter et al. (2017) and
references therein.

In cosmology, persistent homology has already been used
to study the topology of the cosmic web (Sousbie 2011;
van de Weygaert et al. 2013), of the interstellar magnetic fields
(Makarenko et al. 2018) and the reionisation bubble network
(Elbers & van de Weygaert 2019). Furthermore, it was shown to
be an effective cosmic void finder (Xu et al. 2019). Additionally,
a specific summary of the information contained in persistent
homology, the ‘Betti numbers’, has emerged as a powerful tool
to analyse both the cosmic web (Pranav et al. 2017) and Gaussian
random fields (Pranav et al. 2019a, hereafter P+19). In the latter
case, Betti numbers have been shown to provide a higher informa-
tion content than both Euler characteristics and Minkowski func-
tionals (Pranav et al. 2019b). In particular, they are very effective
at detecting and quantifying non-Gaussian features in fields such
as the CMB temperature map (compare P+19).

While several of the above-mentioned papers have shown
that Betti numbers are sensitive to cosmological parameters,
their results were only qualitative so far. To our knowledge, the
current article is the first to quantify the power of Betti num-
bers for constraining cosmological parameters. Furthermore, our
work differs from the previous ones in that we use ‘persistent’
Betti numbers, which further take into account the environment
surrounding the topological features (for the definitions and fur-
ther explanations, see Sect. 2.3). We show that this leads to
a significant improvement in constraining power compared to
the ‘non-persistent’ Betti numbers that have so far been used in
cosmology.

In our analysis, we constrain cosmological parameters with
a Markov chain Monte Carlo (MCMC) sampler, and there-
fore need to efficiently compute Betti functions over a broad
range of values. Since we are not aware of a way to model
Betti functions for non-Gaussian fields, we instead rely on
Gaussian process regression (see e.g., Gelman et al. 2004), a
machine learning tool that probabilistically predicts a given
statistic when only small sets of training data are available.
This procedure is not restricted to Betti functions and has been
used in cosmology for a number of other statistical methods
(Heitmann et al. 2014; Liu & Madhavacheril 2019; Burger et al.
2020; Mootoovaloo et al. 2020). Since persistent homology is
particularly efficient in summarising and compressing the topo-
logical structure of large data sets, it is well suited for interacting
with machine learning algorithms (Bresten & Jung 2019).

In this work, we train a Gaussian process regressor on a
suite of KiDS+VIKING-450-like (Wright et al. 2019, hereafter

KV450-like) N-body simulations to predict Betti functions for
arbitrary cosmological parameters within a wide training range.
All simulations are part of the w cold dark matter (wCDM)
model of cosmology, meaning that they extend the standard
model by allowing the equation of state of dark energy to
vary. Calibrating our covariance matrix from a distinct ensemble
of fully independent simulations, we then perform an MCMC
analysis on mock data and recover the fiducial cosmological
parameters of the simulation. We further show that persistent
Betti functions are able to constrain cosmological parameters
better than peak statistics, whose performance is similar to
the one of tomographic cosmic shear (Kacprzak et al. 2016;
M+18) and slightly better than that of Minkowski functionals
(Zürcher et al. 2021).

We finally carry out a mock analysis based on Euclid-like
simulations and find an even larger increase in constraining
power in this setup. Thus, persistent Betti numbers promise to
substantially improve the constraining power of weak gravita-
tional lensing surveys, especially when they are used in combi-
nation with other probes.

This paper is organised as follows: In Sect. 2 we give a brief
overview of the N-body simulations used in the signal calibra-
tion and in the estimation of the covariance matrix (Sect. 2.1), of
the aperture mass maps reconstruction (Sect. 2.2), of the theory
underlying persistent homology statistics (Sect. 2.3) and Gaus-
sian process regression emulation (Sect. 2.4). An explanation of
the peak count statistics can be found in Sect. 2.5. We present the
results of our KV450-like and Euclid-like analyses in Sects. 3
and 4, respectively, and discuss them in Sect. 5.

2. Methods and numerical data products

Throughout this work, we assume the standard weak gravita-
tional lensing formalism, a review of which can be found in
Bartelmann & Schneider (2001).

2.1. Weak lensing simulations

So far, we cannot analytically compute the Betti functions
that describe cosmic shear data due to their highly non-linear
nature. Instead, we rely on numerical simulations4, namely the
Scinet LIghtCone Simulations (SLICS, Harnois-Déraps et al.
2018; Harnois-Déraps & van Waerbeke 2015) and the cosmo-
SLICS (Harnois-Déraps et al. 2019, hereafter H+19) for their
evaluation. All simulations were performed in a flat wCDM
framework, which we will assume throughout the scope of this
paper.

First, we extracted the cosmology dependence with the
cosmo-SLICS, a suite of cosmological N-body simulations in
which the matter density Ωm, the parameter S 8, the Hubble con-
stant h and the parameter for the dark energy equation of state w0
are sampled at 26 points in a Latin hyper-cube (see Table A.1 for
the exact list). At each cosmology, a pair of N-body simulations
were evolved to redshift z = 0 with 15363 particles in a box of
505 h−1 Mpc, and subsequently ray-traced multiple times to yield
50 pseudo-independent light-cones that cover each 10× 10 deg2.
The initial conditions were chosen in order to suppress most of
the sample variance when averaging a statistic over the pair. (For
more details on the cosmo-SLICS, we refer the reader to H+19).

Second, we used the SLICS to estimate the covariance of the
Betti functions. These consist of a set of 126 fully independent

4 All simulations products used in this paper can be made available
upon request; see http://slics.roe.ac.uk
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N-body simulations5 conducted with Ωm = 0.2905, Ωb =
0.0473, h = 0.6898, σ8 = 0.826 and ns = 0.969. These were
also ray-traced into 10 × 10 deg2 light-cones, in a format other-
wise identical to the cosmo-SLICS.

We took the KV450 data set (Wright et al. 2019) as an exam-
ple of a current Stage-III weak lensing survey and created mock
data sets with similar properties. Due to the box size of our sim-
ulations, the full KV450 survey footprint cannot be fitted onto a
single light-cone. Instead we split the survey into 17 tiles follow-
ing the setup presented in Appendix A.3 of Harnois-Déraps et al.
(2018) and computed the (simulated) shear signal at the exact
positions of the KV450 galaxies, repeating the process for ten
light-cones (out of the 50 available) for each cosmo-SLICS pair
and for the 126 SLICS realisations. We further used the observed
ellipticities to simulate the shape noise, and the galaxy redshifts
were randomly selected such that the cumulative redshift dis-
tribution follows the fiducial ‘direct calibration’ method (DIR)
described in Hildebrandt et al. (2020). This way, any effect that
the galaxy density, shape noise, and survey footprint may have
on the Betti functions is infused in the simulations as well.

In Sect. 4 we further used a separate set of simulations in
which the redshift distribution and galaxy number density has
been modified to match that of future weak lensing experiments.
These Euclid-like catalogues are also based on the SLICS and
cosmo-SLICS, and we provide more details about them in that
section. We note that in neither of the simulated surveys do
we split the galaxy catalogues with redshift selection; we leave
tomographic analysis for future work.

2.2. Maps of aperture mass

We performed our topological analysis on data obtained from
weak gravitational lensing surveys, more precisely on maps of
aperture mass (Schneider 1996), which reconstruct the lensing
convergence κ inside an aperture filter and are hence directly
related to the projected mass density contrast. There are sev-
eral alternative ways to reconstruct convergence maps (see, e.g.,
Kaiser & Squires 1993; Seitz & Schneider 2001; Jeffrey et al.
2018, and references therein), however, these suffer from the
so-called mass-sheet degeneracy: Even under ideal circum-
stances, κ can only be determined up to a constant. The introduc-
tion of a uniform mass sheet κ0 can change the extracted signal-
to-noise ratio (S/N) in a way that does not reflect any physical
meaning, hence we choose to perform our analysis on aperture
mass maps, which are invariant under this effect.

2.2.1. Theoretical background

The aperture mass is obtained from a weak lensing catalogue as

Map(θ) =

∫
d2θ′Q(|θ′|)γt(θ′; θ), (1)

where the filter function Q is computed via

Q(θ) =
2
θ2

∫ θ

0
dθ′ θ′U(θ′) − U(θ) (2)

and U is a compensated filter with
∫

dθ θU(θ) = 0 (Schneider
1996). The tangential shear at position θ′ with respect to θ,
γt(θ′; θ), is calculated as

γt(θ′; θ) = −<
[
γ(θ′)

(θ′∗ − θ∗)2

|θ′ − θ|2
]
, (3)

5 The full SLICS ensemble contains 820 realisations, however we only
use a sub-sample of 126 in this work.

where γ(θ′) is the (complex) shear at position θ′. We note that
both the shear γ and the angular position θ are interpreted as
complex quantities in the above expression. In reality, we do
not measure a shear field directly, but rather ellipticities ε of an
ensemble of galaxies ngal, which are related to the shear and a
measurement noise term εn as

ε =
εn + g

1 + εng∗
∼ εn + γ, (4)

where g = γ/(1 − κ) is the reduced shear and the
last approximation holds in the weak shear limit (see e.g.,
Bartelmann & Schneider 2001). This transforms the integral of
Eq. (1) into a sum

Map(θ) =
1

ngal

∑

i

Q(|θi − θ|)εt(θi; θ), (5)

where εt(θi; θ) is the tangential ellipticity defined in analogy to
Eq. (3).

Following M+18, we computed the noise in the aperture
mass as

σ
(
Map(θ)

)
=

1√
2ngal

√∑

i

|ε(θi)|2Q2(|θi − θ|) (6)

and calculated the S/N at a position θ as

S
N

(θ) =

√
2
∑

i Q(|θi − θ|) εt(θi; θ)√∑
i |ε(θi)|2Q2(|θi − θ|)

· (7)

Both numerator and denominator of Eq. (7) can be expressed as
a convolution and can therefore be computed via a Fast Fourier-
Transform (FFT), significantly decreasing the required compu-
tation time (Unruh et al. 2020). For our analysis, we used the
following filter function (see Schirmer et al. 2007; M+18):

Q(θ) =

[
1 + exp

(
6 − 150

θ

θap

)
+ exp

(
−47 + 50

θ

θap

)]−1

×
(

θ

xcθap

)−1

tanh
(

θ

xcθap

)
· (8)

This function was designed to efficiently follow the mass pro-
files of dark matter haloes, which we model according to
Navarro et al. (1997, hereafter NFW); since most of the matter
is located within dark matter haloes, the function is well suited
to detect peaks in the matter distribution. Here, θap is the aperture
radius and xc represents the concentration index of the NFW pro-
file. Following M+18, we set xc = 0.15, which is a good value
for detection of galaxy clusters (Hetterscheidt et al. 2005).

2.2.2. Numerical implementation

The S/N defined in Eq. (7) is highly sensitive to the noise prop-
erties of the galaxy survey, and it is therefore critical to repro-
duce exactly the galaxy number density and the intrinsic shape
noise of the data, as well as the overall survey footprint (see
e.g., M+18). This motivates our use of KV450 mosaic sim-
ulations, which reproduce all of these quantities exactly. For
each simulated galaxy in the catalogue, we randomly rotated the
observed ellipticity of the corresponding real galaxy and added
it to the simulated shear following the linear approximation
in Eq. (4).
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To calculate the aperture mass maps in a computationally
inexpensive way, we distributed the galaxies on a grid of pixel
size 0′.6. For each pixel, we computed the sum of all respective
galaxy ellipticities

∑
i εi as well as the sum of their squared abso-

lute ellipticities
∑

i |εi|2. The distribution of galaxies on a grid
slightly shifts their positions, which introduces a small error in
the computed quantity εt when the value |θi − θ| of Eq. (7) is
comparable to the size of a pixel, but it enables a significantly
faster computation6. Moreover, since the convolutions arising in
both the numerator and denominator of Eq. (7) are linear in ε and
|ε|2, respectively, computing Eq. (7) for individual galaxies or for
whole pixels does not make a difference, and the latter is more
efficient. Finally, we chose a filter radius of θap = 12′.5 in this
work, however the choice of this parameter could be revisited in
order to optimise the cosmological constraints.

In addition to exhibiting an irregular shape, our KV450-like
footprint is affected by internally masked regions, for example
by the removal of bright foreground stars, saturated galaxies or
satellite tracks. Each pixel that contains zero galaxies, which is
true in particular for masked regions, was treated as masked.
For the calculation of the aperture mass maps, these masked
shear pixels were treated as having a shear of 0, and we sub-
sequently masked pixels in the signal-to-noise maps for which
at least 50% of the aperture was made of masked shear pixels;
masked S/N pixels were assigned the value −∞. As our simu-
lated data exactly traces the KV450 footprint, our cosmological
parameter analysis is not affected by the masked regions.

2.3. Topological data analysis

This section describes the methods employed to conduct the
topological analysis of the aperture mass maps detailed in
Sect. 2.2.2, from the mathematical background to a full descrip-
tion of our numerical implementation.

Our analysis is based on the study of topological features in
the S/N maps extracted from mock weak lensing data. More par-
ticularly, we are interested in studying how these relate to their
environment in order to access non-Gaussian information con-
tained in the correlation between different scales of the shear
field. The idea of our approach is as follows: First, we take the
survey area X and we remove from it all pixels that have S/N
value above a threshold t. The result is a (topological) space that
can be seen as a part of X (see Fig. 1). Next, we count the num-
ber of connected components7 and holes in this space. These are
called the ‘Betti numbers’ β0 and β1. Lastly, we analyse how
these numbers change as we vary the threshold t.

Figure 2 presents an example of a sequence of spaces
obtained in this way. It shows the filtered aperture mass maps for
nine values of t, obtained from a square-shaped zoom-in region
of the full survey area X. Inspecting the panels from top-left to
bottom-right, we see the gradual recovery of the full aperture
mass map as the threshold t increases, starting from the lower
values. One sees that a local minimum of the S/N map corre-
sponds to a connected component appearing at some point and
vanishing later on as it gets absorbed by an ‘older’ feature; a
maximum corresponds to a hole that first appears and later gets
filled in. Analysing how these features are created and vanish
again allows us not only to count the corresponding extrema but

6 This approximation will likely need to be revisited in future analyses
with increased accuracy requirement.
7 A connected component is a cluster of pixels connected by an edge
or a corner.

to take into account their environment as well, thus obtaining
information about the large-scale structure.

2.3.1. Homology of excursion sets and local extrema

Mathematically, the ideas described above can be expressed as
follows: Let f : X → R be a map from a topological space X
to the reals. In our context, X will be the observed survey area,
which we interpret as a subspace of the celestial sphere S 2, and
f will be the S/N of the aperture mass, f (θ) = S/N(θ), defined
in Eq. (7). Taking sublevel sets of the map f (i.e. the portion of
f with values less than some maximal value t) yields a sequence
of subspaces of X: For t ∈ R, define the ‘excursion set’ Xt =
{x ∈ X | f (x) ≤ t}.

To simplify notation, assume that f is bounded. If we choose
t1 ≤ . . . ≤ tk > sup( f ), we obtain a ‘filtration’ of the space X,
which is defined as a sequence of subspaces with:

X1 ⊆ X2 ⊆ · · · ⊆ Xk = X, (9)

where we write Xi = Xti in the above expression to make the
notation more compact. Our aim is to extract cosmological infor-
mation8 from the distribution of aperture mass (represented by
the map f ) by studying topological invariants of the sequence
X = (Xi)i.

A ‘topological invariant’ of a space is a mathematical object
(e.g., a number) that does not change if we continuously perturb
it, for example by stretching or bending. The case that is relevant
for us are the Betti numbers. As mentioned above, these count
the number of connected components and holes of a space. If we
compute the Betti numbers of our excursion sets Xi, we obtain
information about the number of local extrema of the map f : The
minima correspond to connected components appearing at some
point of the filtration X and vanishing later on; the maxima cor-
respond to holes (see Fig. 2). The time it takes for the connected
components or holes to vanish again is related to the relative
height of the corresponding extremum, and therefore contains
information about the environment.

From a more formal point of view, the nth Betti number
βn(Y) of a space Y is computed from its nth homology group
Hn(Y). Both homology groups and Betti numbers are impor-
tant and well-studied invariants from algebraic topology. For
an introduction to algebraic topology that is geared towards its
applications in the sciences, see Ghrist (2014); a more rigor-
ous introduction to this area of mathematics can also be found
in Hatcher (2002). In our context, the homology group Hn(Y)
is a vector space that we can associate with Y and βn(Y) is its
dimension. The important point for us is that Betti numbers and
homology groups translate the geometric (or rather topological)
problem of counting connected components and holes into a
question about linear algebra that can be efficiently solved by
a computer (see Sect. 2.3.4).

We note that other topological invariants have been suc-
cessfully used in cosmology, including the Euler characteristic9

χ(Y). Following Adler (1981), the Euler characteristic can
be used to study real-valued random fields such as the CMB
(Hamilton et al. 1986; Parroni et al. 2020). It is given by the
alternating sum of the Betti numbers; in particular, if Y is a

8 We note that the theory described in this section works exactly the
same e.g., for analysing a grey-shade picture where X would be a rect-
angle and f the intensity at each point; a particular strength of the theory
is that it also easily generalises to higher-dimensional data.
9 If Y is a d-dimensional manifold, then χ(Y) is, up to a scalar factor,
given by the top-dimensional Minkowski functional.
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Fig. 1. Visualisation of an excursion set. The original map (in this case a single peak) is depicted on the left. The middle plot depicts the same peak
after a threshold is applied to the map, which cuts off the summit. The result seen from above is depicted on the right, which in this case has one
hole (in white) and one connected component (in colour). Varying the threshold generates the full filtration.

subset of R2, we have χ(Y) = β0(Y) − β1(Y). Hence, one can
compute the Euler characteristic from the Betti numbers, but the
latter contain strictly more information (see also the discussion
in Pranav et al. 2019b), motivating our choice for this current
data analysis. Additionally, ‘persistent’ Betti numbers, which
we describe in the next subsection, provide us with even more
information. The information content extracted from different
topological methods can be summarised as follows:

This is quantified in Sect. 3.2 (see in particular Fig. 5).

2.3.2. Persistent homology
As discussed in the last section, one approach to studying the
topological properties of the sequence of excursion sets X =
(Xi)i is to analyse the sequence of Betti numbers βn(Xi), for
n = 0, 1. Algebraically, this amounts to studying the sequence
of vector spaces Hn(Xi) and computing each of their dimensions
individually. However, one can do better: The inclusion maps
Xi → Xi+1 presented in Eq. (9) induce maps Hn(Xi)→ Hn(Xi+1),
and these provide us with additional information. The sequence
of all Hn(Xi) together with the connecting maps form what is
called a ‘persistence module’ that we will write as Hn(X), and
which describes the persistent homology of X. For an introduc-
tion to persistent homology that focuses on its applications, we
refer to Otter et al. (2017); a broader overview and further back-
ground material can be found in Oudot (2015).

The data of the persistence module Hn(X) can be sum-
marised in its persistence diagram Dgm(Hn(X)). This is a col-
lection of half-open intervals [ti, t j), where each interval10 can
be interpreted as a feature11 that is ‘born at level’ ti and ‘dies’ at
level t j. For example, an element in Dgm(H0(X)) is an interval of
the form [ti, t j) and it corresponds to a connected component that
appears at level ti and merges with another component at level

10 Such a collection of intervals is called a ‘diagram’ because it can be
visualised as an actual diagram in the plane: For every interval [ti, t j),
one can draw a point in R2 with coordinates (ti, t j). An example of this
can be found in Fig. B.1.
11 Formally, these features represent basis elements of the vector spaces
in the persistence module.

t j. Similarly, elements of Dgm(H1(X)) correspond to holes that
appear at ti and get filled at time t j. The filtration sequence pre-
sented in Fig. 2 exhibits such features, some of which we have
highlighted in the panels: The magenta ellipses present a con-
nected component corresponding to a minimum of the signal-
to-noise map; the orange and red ellipses each highlight a hole
corresponding to a maximum. As the sequence evolves, these
features appear and disappear, giving rise to intervals.

To conduct our analysis, we study the nth persistent Betti
number (or rank invariant) of X. This is defined as the number
of features that are born before t and die after t′, and can be
extracted from the persistence diagram Dgm(Hn(X)) by

βnX(t, t′) = #
{
[ti, t j) ∈ Dgm(Hn(X)) | ti ≤ t ≤ t′ < t j

}
, (10)

where, # {. . .} denotes the number of elements of the set {. . .}. We
can consider these as functions from a subset of R2 to R; if we
want to emphasise this point of view, we will also call them Betti
functions. We note that when t′ = t we recover the non-persistent
Betti numbers:

βnX(ti, ti) = βn(Xi). (11)

However, the persistent Betti numbers contain strictly more
information than the sequence of regular Betti numbers. In par-
ticular, if one knows all values of βnX, one can recover the
entire persistence diagram Dgm(Hn(X)), while this is not pos-
sible using the sequence (βn(Xi))i. Intuitively speaking, the per-
sistent Betti functions do not only provide us with information
about how many connected components or holes we have in each
excursion set Xi, but they also tell us how long each such feature
persists throughout the filtration. As explained above, the fea-
tures correspond to local minima and maxima of the S/N map.
Knowing about their lifetimes provides information about the
relative height of these extrema and about their entanglement:
Two completely separated peaks can be distinguished from two
peaks sitting together on the summit of a region of high S/N.

2.3.3. Masks and relative homology
As explained in Sect. 2.1, our S/N maps contain masked regions
where we do not have sufficient information about the aper-
ture mass (and their pixel values are set to be constant −∞).
In order to incorporate these in our analysis, we work with rel-
ative homology. The idea of using relative homology to study
masked data was also used in P+19, where the authors give fur-
ther interpretations of these groups. Other occurrences of relative
homology in the persistent setting can be found in Pokorny et al.
(2016) and Blaser & Brun (2019). Cf. also extended persis-
tence and variants of it (Sect. 4 of Edelsbrunner & Harer 2008;
de Silva et al. 2011).
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Fig. 2. Excursion sets of a sample signal-to-noise map for a 3.3 × 3.3 deg2 field of SLICS for nine values t1, . . . , t9. The solid magenta ellipse
highlights a connected component corresponding to a minimum of the signal-to-noise map; the solid orange and red ellipses each highlight a hole
corresponding to a maximum. The dashed ellipses indicate the position of the features before their birth and after their death. The magenta feature
is born at t2 and dies at t4 after being absorbed by older features that were born in t1. This lifeline is described by the interval [t2, t4) in Dgm(H0(X)).
Both the red and orange features are born at t5. The orange one dies at t7, while the red one, which corresponds to a sharper peak, persists longer
and dies at t9. Hence, they give rise to intervals [t5, t7) and [t5, t9) in Dgm(H1(X)).

Relative homology is a variant of ordinary homology, which
generally speaking can be thought of as an algorithm that takes
as an input a space X and a subspace M ⊆ X, and gives as
an output for each n a vector space Hn(X,M) that describes
the features of X that lie outside of M. In our setup, we con-
sider the masked regions as the subspace M of our field X. As
the signal-to-noise map takes the constant value −∞ on this
subspace, we have M ⊆ Xi for all i and we get a sequence
(Hn(Xi,M))i of relative homology groups that we want to
understand.

Just as before, the inclusions Xi → Xi+1 make this sequence
into a persistence module Hn(X,M). In analogy to Eq. (10), its

Betti numbers are defined via:

βM
n X(t, t′) = #

{
[ti, t j) ∈ Dgm(Hn(X,M)) | ti ≤ t ≤ t′ < t j

}
. (12)

Although the definition of these functions uses relative
homology, they can be computed using only ordinary homology:
From the long exact sequence for relative homology (Hatcher
2002, p. 117), one can deduce the following formula, which
expresses these numbers in terms of the Betti numbers of X and
of M:

βM
n X(ti, t j) = βnX(ti, t j)−βnX(−∞, t j)+βn−1(M)−βn−1X(−∞, ti).

(13)
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In our case, where X is a proper subspace of the two-sphere S 2,
the only non-zero terms of these invariants are:

βM
0 X(ti, t j) = β0X(ti, t j) − β0X(−∞, t j),

βM
1 X(ti, t j) = β1X(ti, t j) − β1X(−∞, t j) + β0(M) − β0X(−∞, ti),
βM

2 X(ti, t j) = β1(M) − β1X(−∞, ti). (14)

These are the quantities that we want to compute, and the next
section details how this is numerically done.

2.3.4. Computing persistent Homology: Grids and complexes
As explained in Sect. 2.1, we computed the signal-to-noise maps
on a grid with square-shaped pixels. From a mathematical per-
spective, subdividing X in this way gives it the structure of a
finite cubical complex, meaning a space that is obtained by glue-
ing together cubes of maximal dimension (in this case squares)
along lower-dimensional cubes (in this case edges and vertices).
We obtain a function on this complex by assigning to each square
the value of the map on the corresponding pixel and extending
this using the lower-star filtration, meaning that an edge or a ver-
tex gets assigned the minimal filtration value of a square it is
adjacent to. By construction, the map takes a finite number of
values t1 ≤ . . . ≤ tk on this complex, which define the filtration
X. We compute the persistent Betti numbers of this filtered com-
plex using the CubicalComplexesmodule of GUDHI (Dlotko
2020)12. The masked regions form a subcomplex M of X and we
compute βM

n X(t, t′) using Eq. (13). The number k of steps in the
filtration we obtain is quite large, of the order of the number
of pixels. GUDHI computes the persistent homology using all
these filtration steps, however we evaluate the persistent Betti
functions only at a few values (see Appendix B).

With X the full KV450-like footprint, the full corresponding
complex is assembled from 17 tiles (see Sect. 2.1), which we
label T 1, . . . ,T 17. In the true KV450 survey, these tiles lie adja-
cent to each other, and large-scale structures extend across the
boundaries. In the simulations however, each tile is constructed
from a semi-independent realisation, with no tile-to-tile correla-
tion. Therefore, we perform the calculation of aperture masses
and the extraction of Betti numbers for each tile individually,
making sure that the boundary of each tile is contained in the
mask. This implies that the Betti functions βM

n X(t, t′) of the entire
footprint can be computed as the sum

βM
n X(t, t′) =

17∑

i=1

βM
n T

i(t, t′). (15)

The reason for this is that in X, any two points lying in differ-
ent tiles are separated by points in the mask. Intuitively speak-
ing, this implies that any feature (e.g., a connected component
or a hole) of X that lies outside the masked regions is entirely
contained in one of the tiles T i. Hence, counting the features in
X is the same as counting them in each tile and summing them
up13.

2.4. Predicting Betti numbers
As mentioned before, Betti numbers are a highly non-linear
statistic, and we were unable to theoretically predict them for

12 GUDHI is a well-established, open-source program (available in
C++ with a python-interface) for topological data analysis. Among
many other applications, it can calculate persistent Betti numbers of
multi-dimensional fields. The program is publicly available at https:
//github.com/GUDHI/
13 More formally, we have Hn(X,M) � H̃n(X/M) and this quotient
space is given by the wedge sum X/M �

∨17
i=1 T i/Mi.

a given set of cosmological parameters. Due to the high compu-
tational cost of N-body simulations, it would also be completely
impossible to perform a set of simulations for every point in our
given parameter space. Therefore, we chose to emulate the Betti
functions for a chosen set of filtration values by computing them
in each simulation of cosmo-SLICS, and interpolating the results
using the Gaussian Process Regression (GP regression) of
scikit-learn (Pedregosa et al. 2011)14.

Simply put, a GP regressor is a machine learning algorithm
that takes a training data set D, which consists of n observa-
tions of a d-dimensional data vector yi, along with errors in the
training data set σ2(y) and a list of the respective training nodes
π. After training, the emulator provides predictions y∗ and their
uncertainties σ2(y∗) for arbitrary coordinates π∗. In our case, the
data vectors yi are the Betti functions extracted from the n = 26
different cosmo-SLICS cosmologies. We set the errors in the
training data set σ2(y) as the variance measured between the
different realisations of the light-cone, which varies with cos-
mology. Our training nodes π are the sets of cosmologi-
cal parameters {Ωm, σ8, h,w0} in each cosmo-SLICS, listed in
Table A.1. This method offers a model-independent, probabilis-
tic interpolation of multi-dimensional data sets.

As our kernel, we chose the anisotropic Radial-basis
function

k(πi,π j) = A exp
(
−1

2
d(πi/l,π j/l)2

)
, (16)

where l is a vector with the same number of dimensions as the
input values πi (in this case, division is defined element-wise)
and A is a scalar. This kernel determines how similar two points
πi,π j are to each other in order to then determine the weights for
the individual data points in the interpolation. For each filtration
value, we then determined the best hyper-parameters (A, l) by
minimising the log-marginal-likelihood using a gradient descent
from 400 different, randomly chosen initial values. For a detailed
description of GP regression we refer the interested reader to
Appendix A of H+19 and references therein.

2.5. Peak count statistics

As mentioned in the introduction, we assessed the performance
of our topological data analysis by comparing its constrain-
ing power to that of the peak count statistics, which is another
powerful method to capture information of the non-Gaussian
part of the matter distribution. This statistic has been increas-
ingly studied in the literature (e.g., M+18; Kacprzak et al. 2016;
Shan et al. 2018; Liu et al. 2015a,b) and is relatively straight-
forward: It identifies and counts the maxima in the S/N maps,
and bins the results as a function of the S/N value at the peak.
Peaks of large S/N values convey the majority of the cosmo-
logical information (M+18) and correspond to the holes that
appear at the latest stages in the filtration sequence presented
before. They are typically associated with large galaxy clusters
and are less affected by shape noise than peaks of lower S/N
values, which however capture additional information from the
large-scale structures. In addition to being easy to implement,
their constraining power surpasses that of Minkowski function-
als (Zürcher et al. 2021) and is competitive with two-point statis-
tics (M+18), making them ideally suited for a performance
comparison.

For consistency with the Betti function analysis, we ran our
peak finder on the exact same S/N maps. For every simulated
14 Our algorithm was inspired by the GPR Emulator tool
by Benjamin Giblin (https://github.com/benjamingiblin/GPR_
Emulator).
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Fig. 3. Difference of average Betti numbers b0 (left) and b1 (centre) and peak counts (right) between cosmo-SLICS and SLICS. Left and central
panels: x-axis represents the respective filtration level t, which runs from the minimum to the maximum value of the S/N aperture map. The lines
are colour-coded by the value of S 8 in the respective cosmo-SLICS (see Table A.1). The lines shown here are averages over all mock realisations
of the full survey footprint (10 for each cosmo-SLICS node, 126 for SLICS).

realisation of the KV450 survey, we counted the peaks on the
17 individual tiles and added the results afterwards. Following
M+18, we binned the results in 12 S/N bins ranging from 0.0
to 4.0 and ignored the peaks outside this range. In the right-
most panel of Fig. 3, we present the peak distribution relative to
the mean measurement from the SLICS, colour-coded with the
S 8 value from the input cosmo-SLICS cosmology. The strong
colour gradient illustrates the significant dependence of the sig-
nal on S 8.

As explained above, Betti functions are related to the num-
bers of peaks as well. However, the two methods do not yield
completely equivalent information. First, Betti functions do not
only take into account the local maxima, but also the minima.
However, this has only a small effect on cosmological parame-
ter constraints since most of the information resides in the peaks
(M+18, see also Appendix B). Second, and more importantly,
peak count statistics are very local in the sense that they decide
about whether a pixel is counted as a peak by simply comparing
it to the eight adjacent pixels.

Figure 4 illustrates this with a toy example, presenting three
simple cases of reconstructed maps. The first two maps cannot
be distinguished by peak counts as they both have four peaks
with height 1, 2, 3, and 4. In contrast, Betti functions are able to
identify structures at larger scales such as regions with high S/N
values, and are able to differentiate between the first two panels
in Fig. 4: In the first map, the excursion set X0 has four holes and
these get filled one by one as the threshold t increases. We have

β1(Xt) =



4, 0 ≤ t < 1,
3, 1 ≤ t < 2,
2, 2 ≤ t < 3,
1, 3 ≤ t < 4,
0, 4 ≤ t.

(17)

This is different from the second map, where for all 0 ≤ t < 3,
the excursion set Xt has only two holes (although the positions
of the holes change),

β1(Xt) =



2, 0 ≤ t < 3,
1, 3 ≤ t < 4,
0, 4 ≤ t.

(18)

However, while the peaks can differentiate between the second
and the third map, the sequence of Betti numbers are the same.

In the third map as well, we have two holes for all t between 0
and 3 and these get filled at t = 3 and t = 4. This illustrates
that non-persistent Betti functions cannot distinguish very well
between a small number of sharp peaks and a high number of
peaks that only slightly protrude from their surroundings. (We
ignore β0 here as for all t ≥ 0, all excursion sets have exactly
one connected component). Persistent Betti functions can differ-
entiate all three cases. They are able to detect that in the second
map, the positions of the two holes at 0 ≤ t < 3 vary, while in
the third map, the same two holes just get filled while t increases.
The persistence diagrams Dgm(H1(X)) associated with the three
panels are:

{[0, 4), [0, 3), [0, 2), [0, 1)}, {[0, 4), [0, 1), [1, 2), [2, 3)}, (19)
and {[0, 4), [0, 3)}.

As all these are different, so are the associated persistent Betti
functions β1X. This simple example illustrates how persistent
Betti numbers combine the local information from peak count
statistics with the non-local, large-scale information from non-
persistent Betti functions.

3. Results

In this section, we present the results from our topological anal-
ysis based on the persistent Betti numbers. We gauge the perfor-
mance of the technique from a comparison with an analysis based
on their non-persistent alternatives, and additionally with a peak
statistics analysis. We first present our measurements from the
simulations, which serve to train the emulator and estimate the
covariance matrices, then proceed with the parameter inference.

3.1. Calibrating the emulator and determining the
covariances

For each light-cone of the cosmo-SLICS simulation suite, we
measured the persistent Betti functions bper

n (t, t′) = βM
n X(t, t′),

and computed a non-persistent version bn by setting bn(t) =
bper

n (t, t) = βM
n X(t, t). We extracted the average values of b0,1

and bper
0,1 at a chosen set of values for each of the 26 different

cosmologies from the mean over the ten light-cones.
To demonstrate that Betti functions are indeed sensi-

tive to the underlying cosmological parameters, we show the
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Fig. 4. Three idealised S/N maps. Both peak count statistics and non-persistent Betti functions can distinguish the first from the third map. However,
the peak counts of the first and the second map are identical, as are the non-persistent Betti functions of the second and the third. Persistent Betti
functions can distinguish all three maps. For further explanations, see Sect. 2.5.

non-persistent Betti functions15 bn for different input cosmolo-
gies in Fig. 3, again colour-coded as a function of S 8. As for
the peak statistics, there is a strong colour gradient at every ele-
ment of the data vector, both for b0 and b1, which indicates the
sensitivity to that parameter.

In both the non-persistent and persistent settings, we obtained
a data vector consisting of the function values at the chosen
evaluation points (introduced in Sect. 2.3.4 and discussed in
Appendix B), and further concatenated these values for b0 and b1
or bper

0 and bper
1 , respectively. We did not consider b2 and bper

2 for
our analysis as they only consist of a very small number of fea-
tures, which mainly depend on the shape of the mask and contain
very little cosmological information. We used these data vectors
to train the hyperparameters of our GPR emulator, and were here-
after able to predict the Betti functions (at the chosen evaluation
points) for arbitrary cosmological parameters enclosed within the
training range. As a next step, we extracted the same Betti func-
tions for each realisation of the SLICS and used these to determine
a covariance matrix Cb for the data vector.

To assess the accuracy of the emulator, we performed a ‘leave-
one-out cross-validation test’: We excluded one cosmology node
and trained our emulator on the 25 remaining ones. We then let
the emulator predict Betti functions for the previously excluded
cosmology and compared it to the measured values; this pro-
cess was repeated for each of the 26 cosmologies. The results
are presented in Appendix C. As further discussed therein, this
test demonstrates that we achieve an accuracy of a few percent
on our predicted signal at most evaluation points. While a single
outlier contains inaccuracies that are larger than the 1σ limit of
the sample variance extracted from SLICS, the vast majority of
cross-validation tests is contained within this limit.

For each set of cosmological parameters, the emulator not
only provides a prediction for the Betti functions, but also an
error estimate. We define the ‘covariance matrix’ of the emula-
tor Ce as a diagonal matrix where the entries correspond to the
uncertainty that is predicted by the GPR emulator. Combining
with the sample variance Cb estimated from the SLICS, we sub-
sequently set

C = Cb + Ce (20)

as the covariance matrix for our cosmological parameter estima-
tion. The emulator covariance Ce depends on the chosen cosmo-
logical parameters, therefore our covariance matrix C varies with
cosmology. We note that it would also be possible to obtain an
error estimate Ce from the cross-validation: For each evaluation
point of the Betti functions, one can estimate the variance by

15 We focus on the non-persistent case here, since the persistent Betti
numbers depend on tuples of evaluation points, which cannot be visu-
alised easily.

σ2
bn

=
1

25

25∑

i=0

(
xi,measured − xi,predicted

)2
, (21)

where xi,measured is the measured value of the Betti function at the
ith training cosmology, whereas xi,predicted is the one predicted by
the emulator when it is trained on all other cosmologies, leav-
ing the ith one out. We verified that both the error estimates
themselves and the posteriors on the cosmological parameters
are consistent between the two methods.

We finally repeated this full machinery (GPR training and
covariance estimation), this time on the peak count statistics
measurements extracted from the same data sets and described
in Sect. 2.5. We compare the respective performances in the next
section.

3.2. Inference of cosmological parameters

Putting to use the covariance matrix and the prediction tools
described in the last section, we performed a trial cosmologi-
cal parameter inference using the mean of the SLICS measure-
ments as our ‘observed data’ to test how well we can recover
the fiducial values, and how the constraining power on the cos-
mological parameters compares with the peak count statistics
described in Sect. 2.5. We sampled our cosmological parameter
space using the MCMC sampler emcee (Foreman-Mackey et al.
2013), specifying a flat prior range that reflects the parameter
space sampled by the cosmo-SLICS, namely: Ωm ∈ [0.1, 0.6],
S 8 ∈ [0.6, 1.0], h ∈ [0.5, 0.9], w0 ∈ [−1.8,−0.2]. Since our
covariance matrix is extracted from a finite number of simu-
lations, it is inherently noisy, which leads to a biased inverse
covariance matrix (Hartlap et al. 2007). To mitigate this, we
adopted a multivariate t-distribution (Sellentin & Heavens 2016)
as our likelihood model. At each sampled point, we computed
the log-likelihood as

log(L) = −1
2

Ns log
(
1 +

χ2

Ns − 1

)
, (22)

where Ns is the number of simulations used to calibrate the
covariance matrix (in our case 126), and χ2 was computed in
the usual way via

χ2 = (xmeasured − xpredicted)T C−1 (xmeasured − xpredicted). (23)

Here, xmeasured are the respective Betti functions b0,1 or bper
0,1

extracted from SLICS, while xpredicted are predicted by the emu-
lator at the respective point in parameter space16.
16 We note that this model assumes a Gaussian likelihood for the per-
sistent Betti numbers; we have verified that our data vectors extracted
from SLICS follow an approximately Gaussian distribution and leave a
rigorous quantification of Gaussianity for future work.
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Fig. 5. Results of an MCMC on the Betti numbers measured in the KV450-like SLICS. The contours represent the 1- and 2-σ posterior contours for
an analysis with non-persistent (grey) and persistent (blue) Betti functions. For comparison, the red contours represent the posterior of an analysis
with peak statistics, as done in M+18. The values on top of the diagonals represent the marginalised posterior for the persistent Betti functions
bper. The fiducial parameters of SLICS are represented by the black lines. We conducted our analysis with Ωm, σ8, h and w0 as free parameters and
employed flat priors with Ωm ∈ [0.1, 0.6], S 8 ∈ [0.6, 1.0], h ∈ [0.5, 0.9], w0 ∈ [−1.8,−0.2]. The green lines correspond to the 1- and 2-σ posterior
contours of a cosmological parameter analysis of the KiDS450-survey using tomographic two-point correlation functions, where the covariance
matrix was extracted from SLICS and systematics were disregarded (see the ‘N-body’ setup in Table 4 of Hildebrandt et al. 2017). Since the setup
of that analysis is very similar to ours, they can be used to compare the relative sizes (but not locations) of contours. We note that this parameter
analysis was done in a ΛCDM-framework on KiDS data, whereas our analysis is done in a wCDM framework on mock data.

Following these steps, we performed an MCMC analysis
both for the persistent and the non-persistent Betti functions,
bper

0,1 and b0,1 and for the peak count statistics. The results are
displayed in Fig. 5. As can be seen, all methods recover the fidu-
cial simulation parameter within the 1σ limit. Furthermore, the
persistent Betti functions bper offer slightly improved constrain-
ing power when compared to the non-persistent version b and
to peak counts, and is notably the best at rejecting the low-Ωm
and the high-σ8 regions of the parameter space. The 1σ con-
tours are all smaller, yielding marginalised constraints on S 8

of 0.790+0.047
−0.042, compared to 0.788+0.051

−0.041 for non-persistent Betti
numbers and 0.794+0.053

−0.039 for peaks. Persistent homology there-
fore increases the constraining power on S 8 by 3% compared to
peak statistics, while the ‘figure of merit’ (i.e. one over the area
of the 1σ contour) in the Ωm−σ8 plane is increased by 48%. This
is not entirely surprising as b and peaks just counts features at
each filtration step, whereas bper contains the entire information
content of the persistence module, as discussed in Sect. 2.3.2.

For comparison, we also report in Fig. 5 the constraints from
a two-point correlation function analysis (see the green curves).
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These were obtained from the actual measurements from the
KiDS-450 data, which had a slightly different redshift distribu-
tion and number density than the KV450-like data used in this
paper, but were derived with a covariance matrix extracted from
the SLICS and ignored systematic uncertainty (see the N-body
setup in Table 4 of Hildebrandt et al. 2017), in a setup other-
wise very similar to ours. The contours are offset to lower S 8
values as preferred by the KiDS-450 data, in contrast with the
higher input SLICS cosmology. Due to the very similar analy-
sis setup, the contours can be used to compare their size with
the ones derived from our analysis. The increased constraining
power with respect to peaks and homology is largely due to the
tomographic analysis, which we reserve for future work.

It is worth noting that a part of the reported uncertainties
for persistent Betti functions arise due to the inaccuracy of the
emulator that is larger than for peaks; when these uncertain-
ties are ignored, persistent Betti numbers achieve constraints
of S 8 = 0.787+0.045

−0.040, an improvement of 8% with respect to
peak statistics. This can potentially be realised in a future anal-
ysis involving a larger training set (we further discuss this in
Appendix C). Although a gain of 3−8% in accuracy on S 8 is
small in comparison with the infrastructure work required, we
show in the next section that the improvement is significantly
increased once the weak lensing data better resolves the large-
scale structure around the peaks.

Before steering away from the KV450-like setup however,
we finally investigate the systematic impact of two other sur-
vey parameters. Similarly to the shear peak count statistics, the
Betti functions are extracted from the S/N of the aperture mass
map. Therefore, their expectation value directly depends not
only on the survey footprint but also on various terms influenc-
ing the noise, for example the effective number density of galax-
ies and their average internal ellipticity (see e.g., M+18). For
the two-point correlation functions, these terms only influence
the covariance matrix, at least to first order (Heydenreich et al.
2020), while here a 10% offset on the galaxy density or on
the shape noise can bias the inferred parameters by 1−3σ. Full
details of these tests are provided in Appendix D.

4. Outlook for Stage IV experiments

As discussed in Sect. 2.5, the gain of information from persistent
Betti functions with respect to peak counting comes from the
ability to extract information about the environment, for exam-
ple by distinguishing whether peaks are isolated or clustered on
a larger over-density. Consequently, we expect that resolving the
large-scale structure with higher resolution, as will be made pos-
sible with upcoming Stage IV lensing experiments, should fur-
ther increase this relative gain.

In this section, we explore this scenario by repeating the
analysis presented previously on a set of simulations with
Euclid-like source number densities. These are also constructed
from the SLICS and cosmo-SLICS light-cones, but differ in
a few key aspects: In contrast to the KV450-like mock data,
the position of the galaxies are here placed at random on the
10 × 10 deg2 fields, and no masks are imposed on them. Our
total survey area is therefore 100 deg2. The redshift distribution
follows:

n(z) ∝ z2exp
[
−

(
z
z0

)β]
, (24)

with z0 = 0.637, β = 1.5, and the overall proportionality constant
is given by normalising the distribution to 30 gal arcmin−2.

In this analysis, we opted for an aggressive strategy in which
we include peaks and features with S/N up to ten, which might
end up being rejected in the future due to difficulties at modelling
all systematic effects (e.g., baryons feedback) at the required
level. We carried out a second analysis which cap the features
at S/N of seven instead, and noticed only minor differences. In
both cases, the peak statistics were binned such that a signal-to-
noise range of one is covered by three bins.

One important aspect to note is that due to the much lower
level of shape-noise in this Stage IV setup, the accuracy of the
GPR emulator degrades in comparison to the KV450-like sce-
nario, reaching ∼5% only for a few evaluation points. More
details about the relative importance of the emulator accuracy
are provided in Appendix C. Meanwhile, we have included the
error associated with the emulator following Eqs. (20) and (21)
in our analysis, hence our results should remain unbiased.

The results of our MCMC analysis are shown in Fig. 6,
where we compare the performance of the persistent Betti
numbers to peak counting. We find here again an increase in
statistical power and the gain is amplified compared with the
KV450-like analysis: Looking at the S 8 constraints, we measure
S 8 = 0.796+0.032

−0.032 for peak statistics and S 8 = 0.795+0.028
−0.024 for

persistent Betti numbers, an improvement of ∼19%. Contraints
on Ωm are also improved, with a gain of ∼12% on the one-
dimensional marginal error. Persistent Betti numbers are even
able to set some constraints on the dark energy equation of state,
measuring w0 = −0.90+0.33

−0.22. This is an exciting new avenue that
will be further investigated in future work involving tomographic
decomposition of the source catalogues.

We emphasise that for the persistent Betti numbers, the emu-
lator inaccuracy constitutes a part of the error budget. This
uncertainty could be reduced by increasing the number of train-
ing nodes (see Appendix C). When disregarding the emulator
uncertainty, we achieve constraints of S 8 = 0.795+0.027

−0.023 and
w0 = −0.91+0.27

−0.20.

5. Discussion

Based on the topological analysis of an ensemble of realis-
tic numerical simulations, we have demonstrated that persis-
tent Betti functions are a highly competitive method to con-
strain cosmological parameters from weak lensing data. We car-
ried out an MCMC sampling and found that persistent Betti
functions improve the constraining power on S 8 by ∼3−8%
compared to peak count statistics, which themselves have a
constraining power that is similar to the mainstream two-point
statistics (M+18). Furthermore, this advantage over peak statis-
tics is expected to exceed 20% in the upcoming Stage IV sur-
veys. We included the effect of shape noise and of masking as
they occur within the KV450 weak lensing survey, however, our
methods can be directly adapted to other surveys. We believe that
this gain in information over peak statistics is primarily caused
by the sensitivity of Betti numbers to the large-scale structure.
It would be interesting to see whether this sensitivity can be
replicated using peak statistics when a set of different filter
radii θap is used. However, we believe that persistent Betti num-
bers offer a simpler and numerically less expensive alternative
to that.

Our results are obtained by estimating a covariance matrix
from an ensemble of independent light cones, and by training a
Gaussian Process Regression emulator on a suite of wCDM sim-
ulations. A non-negligible part of our error budget arises from
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Fig. 6. Results of an MCMC as described in Fig. 5, but here for 100 deg2 of Euclid-like lensing data.

inaccuracies in the emulator. These occur since we can only cal-
ibrate our model for 26 different cosmologies, which can cer-
tainly be improved in the future.

We investigated the influence of shape noise and number
density on our analysis (see Appendix D). However, various
other systematic effects inherent to weak lensing data analyses
were not explored in this paper, including the uncertainty arising
from photometric redshift errors, shape calibration, baryon feed-
back on the matter distribution or intrinsic alignments of galax-
ies. Before a full cosmological parameter analysis can be carried
out from data, it is crucial to investigate and understand how to
include these. Additionally, there are many internal parameters
in our analysis pipeline that were chosen by hand, for exam-
ple the aperture radius θap of the filter function or the points at
which we evaluate the Betti functions. With careful optimisation,
one would probably be able to extract an even higher amount of
information from the persistent Betti numbers. In future work,

it would be interesting to see if forward modelling techniques
such as DELFI (Taylor et al. 2019) or BORG (Jasche & Lavaux
2019) can also be used in combination with Betti functions.

We also want to point out that persistent Betti numbers are
just one way to compress the information of persistent homol-
ogy. While they are certainly easy to understand and apply,
they also suffer from some disadvantages, the most notable of
which being that the difference between two Betti functions is
always integer-valued, whereas we would prefer a real-valued
distance function for a χ2-analysis. This problem can be mit-
igated by utilising different statistics of persistent homology
(e.g., Reininghaus et al. 2015; Bubenik 2015); for an overview
of further options, see also Oudot (2015, Chap. 8) and Pun et al.
(2018).

Lastly, we note that topological data analysis is a promis-
ing avenue in cosmology that can find multiple applications well
outside those presented in this paper. Other methods similar
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or complementary to persistent Betti functions can be used to
detect and quantify structure in both continuous fields and point-
clouds in arbitrary dimensions (see e.g., Otter et al. 2017, and
references therein), which makes topological data analysis an
incredibly versatile tool to study the distribution of matter in our
Universe. While it has been used in cosmology before, for exam-
ple to detect non-Gaussianities in the CMB (see P+19) or to find
voids in the large-scale structure (Xu et al. 2019), its utilisation
in modern astronomy is bound to grow in the near future.
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Appendix A: Additional information about the
cosmo-SLICS simulations

For completeness, we list in Table A.1 the full suite of cosmo-
logical parameters that makes up the cosmo-SLICS series. Full
details about this simulation suite can be found in H+19.

Table A.1. Cosmological parameters of the cosmo-SLICS wCDM
simulations.

Ωm S 8 h w0 σ8 Ωcdm

00 0.3282 0.6984 0.6766 −1.2376 0.6677 0.2809
01 0.1019 0.7826 0.7104 −1.6154 1.3428 0.0546
02 0.2536 0.6133 0.6238 −1.7698 0.667 0.2063
03 0.1734 0.7284 0.6584 −0.5223 0.9581 0.1261
04 0.3759 0.8986 0.6034 −0.9741 0.8028 0.3286
05 0.4758 0.7618 0.7459 −1.3046 0.6049 0.4285
06 0.1458 0.768 0.8031 −1.4498 1.1017 0.0985
07 0.3099 0.7861 0.694 −1.8784 0.7734 0.2626
08 0.4815 0.6804 0.6374 −0.7737 0.5371 0.4342
09 0.3425 0.7054 0.8006 −1.501 0.6602 0.2952
10 0.5482 0.6375 0.7645 −1.9127 0.4716 0.5009
11 0.2898 0.7218 0.6505 −0.6649 0.7344 0.2425
12 0.4247 0.7511 0.6819 −1.1986 0.6313 0.3774
13 0.3979 0.8476 0.7833 −1.1088 0.736 0.3506
14 0.1691 0.8618 0.789 −1.6903 1.1479 0.1218
15 0.1255 0.6131 0.7567 −0.9878 0.9479 0.0782
16 0.5148 0.8178 0.6691 −1.3812 0.6243 0.4675
17 0.1928 0.8862 0.6285 −0.8564 1.1055 0.1455
18 0.2784 0.65 0.7151 −1.0673 0.6747 0.2311
19 0.2106 0.8759 0.7388 −0.5667 1.0454 0.1633
20 0.443 0.8356 0.6161 −1.7037 0.6876 0.3957
21 0.4062 0.662 0.8129 −1.9866 0.5689 0.3589
22 0.2294 0.8226 0.7706 −0.8602 0.9407 0.1821
23 0.5095 0.7366 0.6988 −0.7164 0.5652 0.4622
24 0.3652 0.6574 0.7271 −1.5414 0.5958 0.3179
Fid 0.2905 0.8231 0.6898 −1.0 0.8364 0.2432

Notes. Other fixed parameters are Ωb = 0.0447 and ns = 0.969.

Appendix B: Choosing evaluation points for the
Betti functions

While the domain of both persistent and non-persistent Betti
functions is technically limited by the pixel-values of the signal-
to-noise map, the raw data vector provided by GUDHI contains
about 106 entries. As this level of refinement is neither practical
nor necessary, we need to choose points at which to evaluate and
compare the Betti functions. To help in this decision, we com-
puted the persistent Betti numbers for SLICS and cosmo-SLICS
on a dense grid. We then compared the mean squared differences
between SLICS and cosmo-SLICS, weighted by the inverse vari-
ance of the respective Betti numbers within SLICS. This basi-
cally measures how well an evaluation point can distinguish dif-
ferent cosmologies. We rank the evaluation points according to
this discrimination potential, starting with the ‘best evaluation
point. We then recursively built our set of evaluation points in
the following way.

Given a set of evaluation points, we extracted the mean of
the persistent Betti numbers measured from SLICS, xSLICS, and
the same data vector for each cosmology i of the cosmo-SLICS,
xi. Furthermore, we extracted a covariance matrix C for this data

Table B.1. Chosen evaluation points for the Betti functions.

Betti function Evaluation points

b0 −2.0,−1.8,−1.6,−1.4,−0.7,−0.4,−0.2

b1 0.1, 0.2, 0.4, 0.6, 0.8, 1.4, 1.6, 1.8, 2.3, 2.6,
3.0, 3.4, 4.0

bper
0 (−2.0,−1.2), (−2.0,−0.6), (−1.9,−1.8),

(−1.7,−1.7), (−1.3,−1.3), (−0.5, 0.0)

bper
1 (−0.1, 1.1), (0.1, 2.8), (0.1, 3.0), (0.1, 3.1),

(0.1, 3.8), (0.1, 3.9), (0.2, 0.2), (0.2, 0.5),
(0.7, 2.5), (0.7, 2.6), (0.7, 2.7), (0.7, 4.0),
(0.8, 3.9), (0.9, 2.4), (1.0, 2.2), (1.1, 2.1),
(1.2, 1.6), (1.4, 1.8), (1.5, 1.7), (1.5, 1.9),
(1.5, 2.0), (1.7, 2.6), (2.5, 3.0), (2.6, 4.0),
(2.7, 2.8), (3.5, 4.0), (3.8, 4.0)

Fig. B.1. Persistence diagram extracted from one tile T i of the SLICS,
in the KV450-like setup. The scattered points represent the features
in Dgm(H0(X)) (red) and Dgm(H1(X)) (blue). For each feature, the x-
value corresponds to the S/N-level at which that feature is born, whereas
the y-value corresponds to the S/N-level at which it disappears again.
The orange and green dots mark our evaluation points of the respec-
tive persistent Betti functions bper

0,1. The two dashed rectangles visualise
regions in the diagram inside of which all features are counted, when
computing the Betti functions at the evaluation points (−2,−0.6) and
(0.2, 0.2).

vector from SLICS. Using these, we computed the quantity χ̃2

via:

χ̃2 =
1
26

∑

i

[
(xSLICS − xi)TC−1(xSLICS − xi)

]
. (B.1)

We then added the next evaluation point to our data vector and
checked whether the new χ̃2 surpassed the old one by a certain
threshold (in our case 0.2), while additionally demanding a mini-
mum of 40 features per line-of-sight17. If those two criteria were
fulfilled, we added this evaluation point to the data vector and
repeated the process. If not, we checked the next-best evaluation
point. This yields a total of 33 evaluation points for the KV450-
like survey, and 46 evaluation points for the Euclid-like survey.
We note that this method favours b1 over b0, consistent with the

17 This ensures that we avoid tuning our analysis on artefacts that are
dominated by shot-noise.
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findings of M+18 that peaks have higher information content
than troughs.

To visualise this, we plot all features of the persistence dia-
gram as a scatter plot, where the x-coordinate of a point rep-
resents the filtration value at which the respective feature is
born and the y-coordinate represents the filtration value of its
death. In general, a persistent Betti function evaluated at (x, y)
counts all features that lie towards the upper-left of the evalu-
ation point (see Fig. B.1). Here, features that lie close to the
diagonal arise more likely due to noise fluctuations, whereas
features far away from the diagonal are statistically more signif-
icant. The final chosen evaluation points for the persistent Betti
functions can be seen in Table B.1. Over the course of the anal-
ysis, we tested several methods of choosing evaluation points,
including just setting them by hand. While different sets of eval-
uation points sometimes slightly change the size of the contours,
they are all internally consistent and yield very similar results. In
particular, completely disregarding b0 and bper

0 does not change
the marginalised error on S 8, but helps in constraining the most
remote regions of the [Ωm−σ8] contours.

Appendix C: Evaluating the emulator accuracy

In this section, we further discuss the accuracy of the GPR emu-
lator introduced in Sect. 2.4. As described therein, we evaluate
the performance via a leave-one-out cross-validation test, and
present our results in Fig. C.1 for the persistent Betti functions.
As can be seen for the KV450-like case (upper panel), the emula-
tor manages to predict most function values with a 5% accuracy.
While some points are less precise, with inaccuracies ranging
up to 15%, the mean inaccuracy (represented by the black line)
stays well below 1%, meaning that the emulator neither system-
atically under- nor over-predicts any point of the Betti functions.
We next assess the impact of the emulator uncertainty on the
inferred cosmological parameters with an MCMC analysis in
which we set the emulator covariance Ce to zero. As reported
in Fig. C.2, this test confirms that the emulator covariance plays
a non-negligible role at the moment since in that case the con-
straining power is increased for all parameters, and notably the
constraints on S 8 become tighter by ∼5%.

We applied the same procedure to the Euclid-like simula-
tions presented in Sect. 4 and show the cross-validation test in
the bottom panel of Fig. C.1. Here, the emulator inaccuracies
are significantly higher: While the mean fractional error in the
cross-validation test still stays within a few percent, individual
deviations often surpass 15%, some points even exceeding 50%
fractional error. When compared with the fractional statistical
error (the grey band in the figure), we observe that it is also larger
compared to the KV450-like analysis. The resulting effect on the
cosmological parameter analysis can be seen in Fig. C.3. While
the peak statistics are only slightly affected in that case, the dif-
ference is significant for persistent Betti functions. In particular,
the constraints on S 8, Ωm, and w0 improve by 4, 9, and 15%,
respectively.

The fact that a less noisy measurement yields a larger frac-
tional statistical error might be counter-intuitive, but it can be
understood in the following way: In contrast to other measure-
ments, including two-point correlation functions, the presence
of shape noise does not only lead to larger measurement errors,
but it also changes the expectation value of the measurement
itself. Due to the presence of noise, an additional number of fea-
tures (or peaks) is added to each measurement. This number of
pure noise peaks is, to leading order, independent of cosmol-
ogy, and since adding a constant number to a series of measure-
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Fig. C.1. Relative accuracy of the emulator for predicting the persis-
tent Betti functions of a KV450-like (top) and a Euclid-like (bottom)
survey. The thin-coloured lines represent the ratio between predicted
and measured values for the 26 different cosmologies, estimated from a
cross-validation test. The x-axis lists the points at which the functions
are evaluated (see Table B.1 for their numerical values). The thick black
line corresponds to the mean over all lines. The grey shaded area corre-
sponds to the 1σ standard deviation of the covariance matrix extracted
from SLICS.

ments does not affect its variance, the total sampling variance σ
is independent of the amount of noise features. When the shape
noise is lowered in our Stage IV survey simulations, the variance
stays approximately constant, but the amplitude of the data vec-
tor decreases, causing the fractional statistical error to increase,
as seen by comparing the size of the grey bands in both panels of
Fig. C.1. We carried out an extra test in which the intrinsic shape
noise of every galaxy in the KV450-like setup was reduced by
90%, and saw the same trend: With lower noise levels, the frac-
tional statistical error increased almost by a factor of two in that
case.

This also explains why the emulator has more difficulties in
maintaining a high level of accuracy: The constant noise con-
tribution dilutes the relative variations due to cosmology, which
makes the interpolation easier for the GPR. In the Euclid-like
mocks, the emulator therefore accounts for a large fraction of the
error budget. These emulator inaccuracies, and how to improve
upon them, will be subject to further investigation.

While we are not yet able to reduce modelling uncertain-
ties with the cosmo-SLICS, this will certainly be possible in the
future. Figure A.2 of H+19 shows that for two-point correlation
functions, the uncertainty of the emulator falls to the order of
a percent when training it on a set of functions that has been
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Fig. C.2. Parameter constraints from the persistent Betti functions and the peak statistics as presented in Fig. 5 (blue and red, respectively), here
compared to the case where the covariance of the emulator Ce is set to zero in the MCMC analyses (green and orange). We note that for the peaks,
the emulator covariance plays a negligible role.

modelled for 250 separate cosmologies. With larger projects like
BACCO (Angulo et al. 2020), where simulations are conducted
for 800 different cosmologies, this accuracy is definitely achiev-
able if a ray-tracing is performed. In that case, it is interesting

to investigate the impact of a better emulator on our analysis.
This can be achieved simply by performing again a cosmological
parameter analysis where we set Ce = 0, as shown in Figs. C.2
and C.3.
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Fig. C.3. Same as Fig. C.2, here in the Euclid-like setup. We note that for the peaks, the emulator covariance plays a sub-dominant role. The results
also indicate that, given a better emulator, persistent Betti numbers will be able to constrain the equation of state of dark energy without the need
for tomographic analyses.
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Appendix D: Treatment of biases by noise terms

To test the sensitivity to number density and shape noise, we
created different galaxy catalogues of SLICS, where we both
increased and reduced the shape noise of galaxies by 10%, and
one where we reduced the number density by 10% by remov-
ing galaxies at random. We used these modified catalogues to
extract the mean of the persistent Betti functions bper as well
as their covariance matrix. We then performed a cosmological
parameter inference as in Sect. 3, where in each case the xpredicted
were provided by the emulator that has been trained on the unal-
tered cosmo-SLICS. As can be seen in Fig. D.1, a 10% change in

these parameters roughly corresponds to a ∼1σ shift in the pos-
terior distribution of S 8. Additionally, the posterior distributions
for both Ωm and σ8 are shifted by ∼3σ for the case of the low-
ered number density. It is therefore critical to reproduce these
properties in the simulations in order to avoid very significant
biases in the cosmological inference. In an actual cosmological
data analysis, one should use mock data with a similar design
to those used in this analysis, namely where galaxies have been
distributed on the footprint exactly according to their positions
in the data such as to reproduce number density, and additionally
keeping their associate ellipticity.
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Fig. D.1. Effect on the inferred cosmological parameter in a KV450-like survey from varying shape noise by ±10% (left) and lowering the number
density by 10% (right). The solid lines correspond to the fiducial values of SLICS.
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ABSTRACT

We demonstrate how to use persistent homology for cosmological parameter inference in a tomographic cosmic shear
survey. We obtain the first cosmological parameter constraints from persistent homology by applying our method to
the first-year data of the Dark Energy Survey.
To obtain these constraints, we analyse the topological structure of the matter distribution by extracting persistence
diagrams from signal-to-noise maps of aperture masses. This presents a natural extension to the widely used peak count
statistics. Extracting the persistence diagrams from the cosmo-SLICS, a suite of N -body simulations with variable
cosmological parameters, we interpolate the signal using Gaussian processes and marginalise over the most relevant
systematic effects, including intrinsic alignments and baryonic effects.
For the structure growth parameter, we find S8 = 0.747+0.025

−0.031, which is in full agreement with other late-time probes.
We also constrain the intrinsic alignment parameter to A = 1.54 ± 0.52, which constitutes a detection of the intrinsic
alignment effect at almost 3σ.

Key words. gravitational lensing – weak, cosmology – cosmological parameters, methods – topological data analysis

1. Introduction

In the past decades, weak gravitational lensing has emerged
as an indispensable tool for studying the large-scale struc-
ture (LSS) of the Universe. Weak lensing primarily relies
on accurate shape and distance measurements of galaxies.
Ongoing and recently completed surveys have provided the
community with a sizeable amount of high-quality data;
for example, the Kilo Degree Survey (KiDS, de Jong et al.
2013), the Dark Energy Survey (DES, Flaugher 2005), and
the Hyper Suprime-Cam Subaru Strategic Program (HSC,
Aihara et al. 2018). Further surveys are scheduled to start
observing in the next years; they will probe deeper and
larger areas enabling measurements of cosmological param-
eters with sub-per cent accuracy; for example, the Vera Ru-
bin Observatory’s Legacy Survey of Space and Time (LSST,
Ivezic et al. 2008), the Euclid survey (Laureijs et al. 2011),
and the Nancy Grace Roman Space Telescope (RST) sur-
vey (Spergel et al. 2013). These upcoming surveys are of

special relevance for solving tensions related to measure-
ments of the structure growth parameter S8 = σ8

√
Ωm/0.3

(Hildebrandt et al. 2017; Planck Collaboration et al. 2020;
Joudaki et al. 2020; Heymans et al. 2021; Abbott et al.
2022), which is defined along the main degeneracy direction
in conventional weak lensing studies. Here, Ωm is the dimen-
sionless matter density parameter and σ8 parametrises the
amplitude of the matter power spectrum. Improved data
and independent analysis choices are crucial to determine
whether this tension is due to new physics, a statistical fluc-
tuation, or the manifestation of unknown systematics. For
example, Joudaki et al. (2017) showed that the current ten-
sion in S8 between the CMB and the local Universe could
be lifted when allowing for a dynamical dark energy model,
meaning that measuring the equation of state of dark en-
ergy is of the utmost importance in the next decades.

Shear two-point statistics have emerged as the prime
analysis choice for cosmic shear as they present a num-
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ber of key advantages (e.g. Secco et al. 2022; Hikage et al.
2019; Asgari et al. 2021). Such statistics are physically mo-
tivated by the fact that they describe the early Universe
almost perfectly. The late Universe, however, contains a
considerable amount of non-Gaussian information that is
not captured by two-point statistics, such that jointly in-
vestigating second- and higher-order statistics increases the
constraining power on cosmological parameters (see, e.g.
Bergé et al. 2010; Pyne & Joachimi 2021). This additional
information is currently explored with a variety of analysis
tools, which either use analytical models (e.g. Halder et al.
2021; Gatti et al. 2021; Burger et al. 2022) or rely on large
suites of numerical simulations. For this work, the most
relevant examples for a simulation-based analysis are peak
statistics (Martinet et al. 2021b, and references therein,
hereafter M+21) and Minkowski functionals (e.g. Shirasaki
& Yoshida 2014; Petri et al. 2015; Parroni et al. 2020),
which are both based on aperture mass maps constructed
from shear fields. M+21 also showed that a joint analysis of
peaks and two-point correlation functions (2PCF) improves
cosmological constraints on S8, Ωm, and the dark energy
equation-of-state parameter w0 by 46%, 57%, and 68%, re-
spectively. Zürcher et al. (2021) showed that a joint analysis
using 2PCF with Minkowski functionals, a topological sum-
mary statistic, on aperture mass maps increases the figure
of merit in the Ωm–σ8 plane by a factor of 2. We note that
there exist many other promising simulation-based methods
such as bayesian hierarchical forward modelling (Porqueres
et al. 2021, 2022), likelihood-free inference (Jeffrey et al.
2021), or the scattering transform (Cheng et al. 2020).

In this paper, we focus on persistent homology, a topo-
logical method that combines the advantages of peak statis-
tics and Minkowski functionals but also captures informa-
tion about the environment of topological features. Persis-
tent homology specialises in recognising persistent topolog-
ical structures in data and we refer the interested reader to
a recent review written by Wasserman (2018), who high-
lights its diverse applications in various fields. Following
early concepts about persistent homology and Betti num-
bers in cosmology (van de Weygaert et al. 2013), several
groups have formalised the approach (Sousbie 2011; Pranav
et al. 2017; Feldbrugge et al. 2019; Pranav 2021). In par-
ticular, Kimura & Imai (2017) were the first to show that
the hierarchical topological structure of the galaxy distribu-
tion decreases with increasing redshift using small patches
of Sloan Digital Sky Survey (SDSS). More recently, Xu
et al. (2019) developed an effective cosmic void finder based
on persistent homology, while Kono et al. (2020) detected
baryonic acoustic oscillations in the quasar sample from the
extended Baryon Oscillation Spectroscopic Survey in SDSS.
Moreover, Biagetti et al. (2020, 2022) showed with simula-
tions that persistent homology is able to identify primordial
non-Gaussian features. Heydenreich et al. (2021, hereafter
H+21) performed a mock analysis using persistent homol-
ogy on cosmic shear simulations, highlighting its potential
to break the degeneracy between S8 and w0.

Persistent homology summarises the topological struc-
ture of data in so-called persistence diagrams. There are dif-
ferent methods for performing statistical analyses on such
diagrams (see Sect. 3.2). In H+21, we worked with persis-
tent Betti numbers. In this work, we opted for ‘heatmaps’,
which constitute a more robust statistic for persistence di-
agrams. We extract heatmaps from a series of mock data
that match the DES-Y1 survey properties (Flaugher 2005;

Harnois-Déraps et al. 2021, hereafter HD+21), including a
Cosmology Training Set, a Covariance Training Set, and
a suite of Systematics Training Set, constructed from the
SLICS (Harnois-Déraps & van Waerbeke 2015), the cosmo-
SLICS simulations (Harnois-Déraps et al. 2019) and the
Magneticum hydrodynamical simulations (Biffi et al. 2013;
Saro et al. 2014; Steinborn et al. 2015, 2016; Dolag 2015;
Teklu et al. 2015; Bocquet et al. 2016; Remus et al. 2017;
Castro et al. 2018, 2021). Following HD+21, we then train
a Gaussian process regression (GPR) emulator, which is
fed to a Markov Chain Monte Carlo (MCMC) sampler to
obtain cosmological parameter estimates. We significantly
expand on the results from H+21 by including the main
systematic effects related to cosmic shear analyses, namely
photometric redshift uncertainty, shear calibration, intrin-
sic alignment of galaxies, baryon feedback and masking.
These systematics, particularly baryon feedback and in-
trinsic alignments, account for 25% of our reported final
error budget. Furthermore, as introduced in M+21, our re-
sults are obtained for a tomographic topological data anal-
ysis where we include the cross-redshift bins analyses. This
leads to the first cosmological parameter constraints ob-
tained from persistent homology based on analysing cos-
mic shear data, here provided by the DES year-1 survey
(Abbott et al. 2018).

The paper is organised as follows: In Sect. 2 we describe
the data and simulations; the theoretical background on
persistent homology, a description of our data compression
methods, the formalism for the two-point statistics and the
cosmological parameter estimation are presented in Sect. 3.
In Sect 4 we discuss our mitigation strategies for systematic
effects and show the validation of our pipeline in Sect. 5.
We finalise our work with the results shown in Sect. 6 and
our discussion in Sect. 7.

2. Data and simulations
2.1. DES-Y1 data
We use in this work the public1 Year-1 data released by DES
presented in Abbott et al. (2018, DES-Y1 hereafter). The
primary weak lensing data consist of a galaxy catalogue
in which positions and ellipticities are recorded for tens
of millions of objects, based on observations from DECam
mounted at the Blanco telescope at the Cerro Tololo Inter-
American Observatory (Flaugher et al. 2015). The galaxies
selected in this work match those of Troxel et al. (2018,
hereafter T+18) and HD+21, applying the flags select,
Metacal, and the redmagic filters to the public cata-
logues, yielding a total unmasked area of 1321 deg2 and 26
million galaxies.

The shear signal γ1/2 is inferred from the Metacali-
bration technique (Sheldon & Huff 2017), which further
provides each galaxy with a Metacal response function Si
that must be included in the measurement. As explained in
T+18, this method requires a prior on an overall multi-
plicative shear correction of m±σm = 0.012±0.023, which
we then use to calibrate the measured galaxy ellipticities as
ε1/2 → ε1/2(1 +m). We then assume that these ellipticities
are an unbiased estimator for the shear γ.

Following T+18, the galaxy sample is further split into
four tomographic bins based on their individual estimated
1 DES-Y1 catalogues: des.ncsa.illinois.edu/releases/dr1
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photometric redshift ZB , which is measured with the bpz
method (Benítez 2000). At this point, the redshift distri-
bution of the four tomographic populations are estimated
with the ‘DIR’2 method, following Joudaki et al. (2020)
and HD+21. As argued in these two references, the DIR
approach is more robust to potential residual selection ef-
fects in their training sample than the DES-Y1 bpz stacking
method presented in Hoyle et al. (2018). Although it could
also be affected by incomplete spectroscopy and colour pre-
selection (Gruen & Brimioulle 2017), bootstrap resampling
of the spectroscopic samples points towards a significantly
smaller uncertainty in the mean redshift of the popula-
tions, achieving σz = 0.008, 0.014, 0.011 and 0.009 for tomo-
graphic bins 1..4, respectively (Joudaki et al. 2020). Despite
these important differences, the DIR n(z) is consistent with
the fiducial estimate presented by the DES collaboration.
It brings in excellent agreement the DES-Y1 and the KV-
450 cosmic shear data (Hildebrandt et al. 2020, also based
on the DIR method). Asgari et al. (2020) showed that the
inferred S8 value is affected by less than 1σ, which is cer-
tainly a considerable effect but causes no internal tension
between the two methods of redshift estimation.

2.2. Mock galaxy catalogues
The analysis presented in this work largely follows the
simulation-based inference methods of HD+21, which com-
pletely relies on numerical weak lensing simulations for the
cosmology inference, the estimation of the uncertainty and
the mitigation of systematics and secondary effects. Most
of the mock data used in this work has been presented in
HD+21, which we review in this section.

2.2.1. Cosmology Training Set
This set of simulations is used to model the dependence
of the signal on cosmology. Based on the cosmo-SLICS
(Harnois-Déraps et al. 2019), it consists of weak lensing
light cones sampling 26 points in a wCDM cosmologi-
cal model (i.e. cold dark matter with dark energy be-
yond the cosmological constant Λ), where 25 points are
distributed on a Latin Hypercube, covering the ranges
Ωm ∈ [0.10, 0.55], S8 ∈ [0.60, 0.90], h ∈ [0.6, 0.82] and
w0 ∈ [−2.0,−0.5], where h is the reduced Hubble param-
eter. The last point is set manually to a fiducial, ΛCDM
cosmology. Each node consists of two independent N -body
simulations produced by cubep3m (Harnois-Déraps et al.
2013), with initial conditions designed such as to suppress
the sampling variance. The code follows the non-linear evo-
lution of 15363 particles in a 505 h−1 Mpc box, produc-
ing between 15 and 28 mass sheets of co-moving thickness
equivalent to half the box size, filling up a 10 × 10 deg2

light cone to z = 3.0. Random orientations and shifting are
introduced in this process such that a total of 25 pseudo-
independent light cones are generated perN -body run. Five
of these are used in the current paper, out of 25, which is
sufficient to model the statistics within the DES-Y1 pre-
cision (as in HD+21). Validation tests revealed that the
third line of sight from the first N -body seed is a statistical
outlier: for example, the standard deviation of the conver-
2 This method relies on the direct calibration of the n(z) from a
sub-sample of DES-Y1 galaxies for which external spectroscopic
data are available. See Lima et al. (2008) for more details.

gence σκ differs from the mean of the full cosmo-SLICS
light cones by more than 4σ. Due to the limited size of
our training sample, this particular line of sight could bias
our cosmological model. We thus skipped over it and ver-
ified afterwards that the results are not strongly affected
by this choice, although it slightly improves the accuracy
on S8 during the validation test. In total, the Cosmology
Training Set consists of 26× 9 = 234 survey realisations.

2.2.2. Covariance Training Set
This suite is mainly used to estimate the sampling covari-
ance in the data vector. Based on the SLICS (Harnois-
Déraps & van Waerbeke 2015), it is produced from 124
fully independent N -body realisations, with the same mass
resolution and simulation volume as the cosmo-SLICS. All
carried out at the same cosmology, these light cones started
from different noise realisations of the initial conditions,
thereby sampling the statistical variance in the data. The
mean over all measurements from the Covariance Training
Set is also independent of the Cosmology Training Set and
well converged towards the ensemble average, making this
an ideal data set with which we validate our cosmology
inference pipeline later on.

2.2.3. Systematics Training Set - Mass resolution
The force resolution of N -body simulations is limited by
the number of particles, the choice of softening length and
the force accuracy setting. This inevitably translates into a
decrease in the clustering of dark matter in the highly non-
linear scales, which in turn affects the statistics under study.
The SLICS-HR are a suite of high-resolution simulations
introduced in Harnois-Déraps & van Waerbeke (2015), in
which the force accuracy of cubep3m has been significantly
increased, yielding 5 light cones with more accurate mass
densities. As detailed in Sect. 4, we verify that our training
data are not strongly affected by this known limitation.

2.2.4. Systematics Training Set - Baryons
Baryonic feedback processes from sustained stellar winds,
supernovae and active galactic nuclei are known to redis-
tribute the matter around over-dense regions of the Uni-
verse in a manner that directly affects the weak lensing
measurements (Semboloni et al. 2011). If left unmodelled,
these processes will significantly bias the inferred cosmology
in analyses based on 2PCF or non-Gaussian statistics (e.g.
Coulton et al. 2020; Zürcher et al. 2021; Martinet et al.
2021a). In this work, our approach consists of measuring
our statistics in hydrodynamical simulations in which the
baryon feedback can be turned on and off. The relative
impact on the data vector is then used to model the ef-
fect of baryons on our statistics. As in HD+21, we use the
Magneticum simulations3 to achieve this, more precisely
the Magneticum Run-2 and Run-2b (Castro et al. 2021), in
which stellar formation, radiative cooling, supernovae and
AGN feedback are implemented in cosmological volumes
of 352 and 640 h−1 Mpc, respectively, with a spatial reso-
lution that is high enough to capture the baryonic effects
at scales relevant to our study. The adopted cosmology is
consistent with the SLICS cosmology, with Ωm = 0.272, h
3 www.magneticum.org
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= 0.704, Ωb = 0.0451, ns = 0.963, and σ8 = 0.809. These
simulations reproduce a number of key observations, in-
cluding many statistical properties of the large-scale, inter-
galactic, and intercluster medium (see Hirschmann et al.
2014; Teklu et al. 2015; Castro et al. 2018, for more de-
tails). Moreover, the resulting overall feedback is consis-
tent with that of the BAHAMAS simulations (McCarthy
et al. 2017), which are based on a completely independent
sub-grid calibration method. The Baryons Training Set and
their dark-matter-only counterpart are used to inspect the
impact of baryonic physics on the data vector, from which
we extract a correction factor used to forward-model the
effect on dark-matter-only simulations. Full details on the
treatment of the systematics are presented in Section 4.

2.2.5. Systematics Training Set - Photometric redshifts

The redshift distribution of the data is known to a high
precision within the DIR method however, the residual un-
certainty must be accounted for in the analysis. For this,
we use the mocks described in HD+21 in which the n(z)
has been shifted by a small amount in order to study the
impact on the signal. These sample at ten points the poste-
rior of the expected shifts in the mean redshifts of the DIR
method itself (Joudaki et al. 2020), and in each case, we
construct 10 full survey realisations at the cosmo-SLICS
fiducial cosmology, from which we extract our statistics.
This approach allows us to measure the derivative of the
persistent homology statistics with respect to shifts in dz.
The priors on dz are listed in Table 1.

2.2.6. Systematics Training Set - Intrinsic Alignments

The assumption that the observed shapes of galaxies are
randomly aligned in absence of foreground lensing matter
fails to account for their intrinsic alignment (IA), an im-
portant contribution that arises from a coupling between
their shapes and the large-scale structure they are part of
(for a review see Joachimi et al. 2015). This important sec-
ondary signal tends to counteract the cosmic shear signal,
which can therefore interfere with the cosmological infer-
ence. Although there exist analytical models to describe
this effect for two-point functions, higher-order statistics
must rely on IA-infused simulations to account for this im-
portant effect. In this work, we use the infusion method
presented in Harnois-Déraps et al. (2022), where intrin-
sic galaxy shapes are linearly coupled with the projected
tidal field, consistent with the non-linear alignment model
of Bridle & King (2007). Although the redshift distribu-
tion of these mocks exactly follows that of the data, their
construction requires that the galaxy ellipticities linearly
trace the simulation density fields, whose positions there-
fore no longer replicate that of the DES-Y1 data. These
mocks have no masking, nor Metacalibration responses
included and are therefore used to estimate the relative im-
pact of IA on our persistent homology measurements. They
have an IA amplitude that is allowed to vary, as controlled
by the AIA parameter. We measure the persistent homology
statistics from 50 cosmo-SLICS light cones at the fiducial
cosmology, for values of AIA ∈ [−5.0, 5.0], and use these
to construct a derivative, similar to the way we handle the
photometric redshift uncertainty.

2.2.7. Creating the galaxy catalogues
The output of each simulation is a series of 100 deg2 lensing
planes that serve to assign convergence (κ) and shear (γ1/2)
to copies of the DES-Y1 data. As described in HD+21, the
survey footprint is segmented into 19 regions, or tiles, which
all fit inside our simulated maps. The summary statistics
are computed individually on each tile and combined af-
terwards to construct the data vector. In this construct,
the galaxy positions, ellipticities ε1/2 and Metacalibra-
tion weights Si in the mock data exactly match that of the
real data, avoiding possible biases arising in non-Gaussian
statistics when these differ (see e.g. Kacprzak et al. 2016,
Appendix D of H+21). Mock ellipticities are obtained by
rotating the observed ellipticities by a random angle and
combining the resulting randomised signal εn with the sim-
ulated (noise-free) reduced shear g via:

ε = εn + g
1 + εng∗

, (1)

where bold symbols denote complex numbers (for exam-
ple, g = g1 + ig2). We calculate the reduced shear as
g = γ/(1 − κ). In total, we compute 10 shape-noise re-
alisations for every simulated survey realisation, each using
a different random seed in the rotation. This procedure al-
lows us to average out a large part of the fluctuations intro-
duced by the shape noise, improving both our predictions
and our estimate of the sample covariance while preserving
the data noise levels. Redshifts are assigned to every simu-
lated galaxy by sampling from the DIR redshift distribution
corresponding to the tomographic bin they belong to.

2.3. Calculating maps of aperture masses
As in H+21, we perform our computations on signal-to-
noise maps of aperture masses (Schneider 1996; Bartelmann
& Schneider 2001), computing the signalMap(θ) and noise
σ (Map(θ)) on a grid as:

Map(θ) = 1
ngal

∑
i wiSi

∑

i

Q(|θi − θ|)wiεt(θi;θ) , (2)

σ (Map(θ)) = 1√
2ngal

∑
i wiSi

√∑

i

|wiε(θi)|2Q2(|θi − θ|) ,

(3)
where the wi are optional weights assigned to measured
galaxy ellipticities (set to 1.0 in this work), Si are the
respective responses calculated by the Metacalibration
shear estimator (T+18), and the tangential component of
the shear εt(θi;θ) is calculated via

εt(θi;θ) = −(ε1 + iε2) (θi − θ)∗
(θi − θ) . (4)

We then compute the signal-to-noise map (S/N map) of
aperture masses as the ratio between the two quantities.
As before, we use the following Q-filter function (Schirmer
et al. 2007; Martinet et al. 2018, hereafter M+18):

Q(θ) =
[
1 + exp

(
6− 150 θ

θap

)
+ exp

(
−47 + 50 θ

θap

)]−1

×
(

θ

xcθap

)−1
tanh

(
θ

xcθap

)
, (5)
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with a concentration index of xc = 0.15 (Hetterscheidt et al.
2005), which was chosen to optimally select the mass pro-
files of dark matter halos (Navarro et al. 1997). For the fil-
ter radius we choose θap = 12.5′. As in H+21, we compute
the S/N maps by distributing both galaxy ellipticities εi
and their squared moduli |εi|2 for each tile on a (600×600)
pixel grid, and perform the convolutions in Eqs. (2) and (3)
via a Fast Fourier-Transform. Contrary to previous work,
we use a cloud-in-cell algorithm to distribute the galaxy el-
lipticities on a grid, yielding more accurate results for small
scales when dealing with high-quality data.

As shown in M+21, the traditional approach of comput-
ing the aperture mass statistics for individual tomographic
bins only (hereafter auto-bins) does not yield optimal re-
sults. Instead, we perform the computation for all combi-
nations of tomographic bins by concatenating the respec-
tive galaxy catalogues (cross-bins). This approach allows
us to extract additional information about correlated struc-
tures along the line of sight. For example, a massive, nearby
galaxy cluster can be detected as a peak in the S/N maps
for tomographic bins 1 and 2. However, if we were only
to analyse persistence heatmaps of the two respective bins,
both would register the cluster as a peak, but the informa-
tion that the peak is at the same position in both maps
would be lost. To utilise this information, we also need to
analyse the S/N map of a combination of both bins. Based
on the four fiducial DES-Y1 redshift bins, this optimised
method leads to 15 bin combinations (1, 2, 3, 4, 1∪2, ...,
3∪4, ..., 1∪2∪3∪4) from which we extract heatmaps.

As the galaxies in our mock data follow the exact posi-
tions of the real galaxy catalogue, they are subject to the
overall survey footprint and internal masked regions. We
only want to consider the parts of our S/N maps where
we have sufficient information from surrounding galaxies,
therefore we construct our own mask in the following way:
We combine the galaxy catalogues of all four tomographic
bins and distribute these galaxies on a grid. Then we mask
all pixels of the tile where the effective area containing
galaxies within the aperture radius θap is less than 50%.
In particular, we mask the boundary of each tile to en-
sure that neighbouring tiles are treated as independent in
the persistence calculations (compare H+21). This mask is
then applied to every combination of tomographic bins of
the respective survey tile.

With this method, we compute the S/N maps for each
of the 19 tiles of the DES-Y1 survey footprint, for each of
the 15 tomographic bins and for each of the 10 shape noise
realisations. The next section describes how cosmological
information is extracted from these maps with statistics
based on persistent homology.

3. Methods
We use methods from persistent homology to quantify the
statistical properties of S/N maps of aperture masses and
analyse their dependence on the underlying cosmological
parameters. The main idea can be described as follows:

We take a S/N map of aperture masses and apply a
threshold to that map. We then cut off all parts where
the value of the S/N map exceeds that threshold (compare
Fig. 1). This gives rise to two types of topological features.
The first types are connected components, that is regions
of low S/N that are surrounded by a region of higher S/N,

which is above the cut-off threshold. These connected com-
ponents correspond to local minima in the S/N map, which
in turn correspond to an under-density in the matter distri-
bution. The second type of topological features are holes,
that is regions of high S/N that are above the cut-off thresh-
old, with an environment of S/N that surrounds them and
is lower than the cut-off threshold. These holes correspond
to the local maxima of the S/N map, which indicate an
overdensity in the underlying matter distribution.

When the cut-off threshold is gradually increased, these
features change. Connected components start to show up
(are born) once the threshold is higher than their minimum
S/N value. At some higher threshold, the connected compo-
nent will merge with a different connected component (or
die)4. Similarly, an overdensity starts to form a hole once
the cut-off threshold exceeds the S/N value of its environ-
ment. This hole is completely filled in once the threshold
exceeds the maximal S/N value of the overdensity.

For each such topological feature, we write b for its birth
(the threshold at which it is born) and d for its death (the
threshold at which it dies). We plot the collection of all
points (b, d) as a scatter plot, called the persistence dia-
gram Dgm; we write Dgm0 for the persistence diagram of
connected components and Dgm1 for the one of the holes
(see Fig. 2). In particular, it is straightforward to recover
the peak count statistics from this: The death of a hole
corresponds to the maximal S/N value of an overdensity,
so the set of deaths is the collection of all peaks in the
S/N map. However, persistent homology offers one crucial
advantage: The persistence of a feature, defined by d − b,
yields information about how much a peak protrudes from
its surrounding environment. In particular, features with a
very small persistence are more likely to be caused by noise
fluctuations, which can be taken into account in the follow-
ing statistical analysis. Persistent homology offers a natural
way to account for masked regions, which we describe in the
next subsection. We denote the persistence diagrams that
account for the presence of masked regions by DgmM

0 and
DgmM

1 .
From the persistence diagrams DgmM

0 and DgmM
1 we

then create so-called heatmaps by smoothing the diagrams
with a Gaussian. Every point of the heatmap can now be
used for statistical analysis of the persistent topological
structure of the S/N maps of aperture mass. In the next
two subsections, we give a slightly more formal introduc-
tion into these statistics derived from persistent homology
and describe their application.

3.1. Persistent homology
In this section, we give a short overview of the aspects of
persistent homology that we use in the present paper. More
detailed explanations can be found in Sect. 2.3 of H+21. For
a general introduction to the topic that is geared towards
its applications in data science, see Chazal & Michel (2021)
or Otter et al. (2017); further information about the math-
ematical background can be found in Oudot (2015).

Persistent homology is a technique from topological
data analysis that allows summarising the topological fea-
tures of a sequence of spaces. This is a versatile tool that can
4 When two connected components merge, the one that was
born at a lower threshold survives. This is known as the elder
rule.
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Fig. 1. Example signal-to-noise map of
aperture masses for a 5 × 5 deg2 sub-patch
of one of the Covariance Training Set cat-
alogue (left), and the same map when a
threshold of 0.5 is applied (right). The
white ‘holes’ in the right map correspond
to local maxima of the map and give rise
to the topological ‘features’ that are sum-
marised in Dgm1.

Fig. 2. Two persistence diagrams for the simulation shown in
Fig.1. The blue crosses represent features of Dgm0, the orange
crosses represent features of Dgm1. For visibility, only every 500-
th feature is shown. We note that all points in this diagram lie
above the diagonal.

be applied in many different settings. However, the applica-
tion that is relevant for the present article is that persistent
homology gives a summary of the topological features of a
map f : X → R ∪ {±∞}, where X is in principle any
(topological) space. (Here, the sequence of spaces is given
by taking subsets of X that consist of points where the
value of f lies below a certain threshold.) In our setting, X
is a (10 × 10 deg2) tile of the sky (which we interpret as a
subset of R2 and represent by a (600× 600) pixel grid) and
f is the function that assigns to every point its S/N value
as defined in Section 2.3. An example of this can be found
in Fig. 1.

The persistent homology of each such map f can be
summarised by two persistence diagrams Dgm0 = Dgm0(f)
and Dgm1 = Dgm1(f). Each of these persistence diagrams
is a collection of intervals [b, d), where b, d ∈ R∪{±∞}. As
each such interval is determined by the two values b < d,
one can equivalently see a persistence diagram as a col-
lection of points (b, d) in (R ∪ {±∞})2 that lie above the
diagonal. We call such a point (b, d) a feature of the persis-
tence diagram; b is commonly called the birth and d is its

death. Roughly speaking, the points in Dgm0 correspond to
the local minima of the function f , whereas the points in
Dgm1 correspond to the local maxima. In both cases, the
difference d − b of such a feature (b, d) is called its persis-
tence and describes how much the corresponding extremum
protrudes from its surroundings.

The actual computation of the Dgm0 or Dgm1 associ-
ated with an S/N map f is done as follows: As explained
in Section 2.3, the S/N maps we compute are defined on
a (600 × 600) pixel grid, and a subset of these pixels are
masked. We set the value of every masked pixel to be −∞
and compute the persistence diagrams Dgm0 and Dgm1 as-
sociated to this map5 (see Fig. 2). As explained in H+21
(Sect. 2.3.3), relative homology offers a natural way to work
with persistent homology in the presence of masks. The idea
here is that a feature in Dgmi that is of the form (−∞, d)
corresponds to a minimum or maximum of f that originates
from a masked area as these are the only points where f
takes the value −∞. This is why we do not actually work
with Dgm0 or Dgm1 but instead define ‘masked’ persistence
diagrams DgmM

0 and DgmM
1 as follows: The persistence di-

agram DgmM
0 is obtained from Dgm0 by simply removing

all features coming from the masks, meaning all points of
the form (−∞, d). To get DgmM

1 from Dgm1, we again start
by removing all points of the form (−∞, d′), but then for
every feature of the form (−∞, d) in Dgm0 (so those that
got removed when transforming Dgm0 into DgmM

0 ), we add
a new feature (d,∞) to DgmM

1
6.

3.2. Persistence Statistics
From the calculations described in the previous section, we
obtain for each S/N map two persistence diagrams DgmM

0
and DgmM

1 . In order to carry out a statistical analysis of
these persistence diagrams, one needs to be able to compute
expected values and covariances. A priori, a persistence dia-
gram is a particular collection of points in (R∪{±∞})2, and

5 We use the Cubical Complexes module of the public software
gudhi (Dlotko 2020).
6 DgmM

0 and DgmM
1 are the persistence diagrams associated to

the persistence modules of the homology relative to the masked
regionsM . This is why DgmM

1 is not simply obtained by remov-
ing all mask features from Dgm1. For more explanations, see
H+21, Sect. 2.3.3.
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Fig. 3. Heatmap of the persistence dia-
gram in Fig. 2 with a scaling parameter
of t = 0.2 (for the computation of the
Heatmaps, all features are taken into ac-
count, not just every 500-th as in Fig. 2).
The red points correspond to the evalua-
tion points that were chosen by the χ2-
maximiser outlined in Sect. 3.3. The ex-
tracted data vector can be seen in Fig. 4.

Fig. 4. Data vector for the individual cosmologies from our
Cosmology Training Set, colour-coded by their respective value
of S8 (dotted lines) and the measured values in the DES-Y1
survey (black). For better visibility, the bottom panel shows the
same data vector where all values are divided by the mean of
our Covariance Training Set.

there is no canonical way of computing distances, sums and
averages of such collections. There are different approaches
to overcoming these difficulties. Most of them proceed by
converting persistence diagrams into elements of a suitable
vector space and then using tools for statistics and data
analysis in this space. An overview of different options to
perform statistics on persistence diagrams can be found in
Chazal & Michel (2021), in particular Section 5.9 and in
Pun et al. (2018). For this work, we tested three different
approaches to the problem: persistent Betti numbers, per-
sistence landscapes and heatmaps. All of these convert per-
sistence diagrams into elements of certain function spaces.

Persistent Betti numbers are probably the most direct
approach and were used in H+21. They represent a persis-
tence diagram Dgmi by the function βi : (R∪{±∞})2 → R,
where βi(x, y) is the number of points (b, d) in Dgmi that lie
to the ‘upper left’ of (x, y), meaning that x ≤ b and d ≤ y.

For more explanations about persistent Betti numbers, see
H+21, Section 2.2.3 and Appendix B.

Persistent landscapes are a more elaborate alternative,
introduced in Bubenik (2015) and already successfully used
in applications, for example in Chittajallu et al. (2018) and
Kovacev-Nikolic et al. (2016). However, we were not able to
set them up in a way that led to competitive results. We
suspect that the reason for this was the great number of fea-
tures (around 500,000 per line of sight) in our persistence
diagrams. The problem we were facing was that because
of this number of features, we obtained a very large and
noisy data vector. We reduced its dimension using a prin-
cipal component analysis, similar to Kovacev-Nikolic et al.
(2016), but unfortunately, the quality of the resulting data
was not good enough to obtain sufficiently tight bounds on
the cosmological parameters. This might change when the
principal component analysis can be applied to a less noisy
data vector that is extracted from a larger training sample.

Heatmaps are the method that worked best for us in the
present setting. These are defined in the spirit of the multi-
scale kernel introduced in Reininghaus et al. (2015). The
idea is to replace each point in a persistence diagram with
a Gaussian. More precisely, one considers the diagram as
a discrete measure (i.e. a sum of Dirac delta distributions)
on D ⊂ R2, where D = {(x, y) ∈ R2|x < y} and convolves
this with a two-dimensional isotropic Gaussian distribution.
The result is for every value t > 0 a continuous function
ut(x, y) : D → R that can be seen as a smoothed version
of the persistence diagram. The value t is called the scaling
parameter and determines how much smoothing is applied
to the initial diagram. For an example of such a heatmap,
see Fig. 3.

We compute the heatmaps in the following way: we
first compute the persistence diagram DgmM for the S/N
maps of each tiled realisation of the DES-Y1 footprint and
for each tomographic bin. For each of these, we create a
two-dimensional histogram of the persistence diagram with
100 × 100 bins. For Dgm0 our bins cover the S/N range
[−3, 2]2, for Dgm1 the bins cover the S/N range [−1, 4]2.
The upper limit of 4 in the S/N maps avoids issues with
source-lens coupling as elaborated in Martinet et al. (2018).
All persistence features that lie outside of this range are
projected to the edge of the respective bin ranges. After-

Article numberpage 7 of 23



A&A proofs: manuscript no. main

wards, we convolve these histograms with a Gaussian kernel
of scaling parameter t = 0.2 using two-dimensional FFTs7.

3.3. Data Compression

To perform a Bayesian cosmological parameter infer-
ence, we compress the data provided by the persis-
tence heatmaps. We explored several compression methods,
which are discussed in App. A. In the end, we opted for an
adaptation of our method developed in H+21; we iteratively
build a data vector in the following way: As a first step, for
each pixel x of a heatmap, we compute the mean squared
difference between the single cosmologies of cosmo-SLICS
and their mean, weighted by the inverse variance within the
SLICS

∆xweighted ≡
25∑

i=0

(xcosmoSLICS,i − 〈xcosmoSLICS〉)2

σ2(xSLICS) . (6)

This ∆xweighted describes the cosmological information con-
tent of a pixel from the heatmap, as it quantifies how much
its value varies between different cosmologies with respect
to the expected standard deviation. As the first point of
our data vector, we choose the one with the highest cosmo-
logical information content. Then we proceed to add more
points in the following way: assuming we already have n
entries in our data vector, we determine the next entry
from the mean squared difference, weighted by the inverse
sub-covariance matrix estimated from the SLICS. In other
words: Let ∆xi ≡ xcosmoSLICS,i − 〈xcosmoSLICS〉 be the dif-
ference between the data vector of the i-th cosmology of
cosmo-SLICS and the mean data vector of all cosmo-SLICS.
For each pixel in the heatmap that is not already part of the
data vector x, we create a new data vector x′ that contains
this pixel, and then we compute

χ̂2 =
25∑

i=0
∆x′iC−1

SLICS∆x′i . (7)

The pixel yielding the highest χ̂2 is then added to the data
vector, and the procedure is repeated until we have reached
the desired amount of data points. Again, this serves to
maximise the cosmological information content of our data
vector with respect to the expected covariance. To ensure
that our data vector follows a Gaussian distribution, we
only consider elements of the heatmaps that count at least
100 features (compare Fig. A.2). We found that 12 data
points per tomographic bin combination yield good results,
but the dependence on the number of data points is weak.
An example of such a resulting data vector can be seen in
Fig. 4.

While this method certainly does not capture all of the
information residing in the heatmaps, this ‘χ2-maximiser’
manages to capture most information and is therefore com-
petitive with the other data compression methods. A com-
parison is given in App. A.

7 We tried different values between t = 0.05 and t = 0.4. The
results were stable with respect to these changes, and the value
of 0.2 appears to be a good compromise between stability and
precision.

3.4. Two-point statistics
The established methods to infer statistical properties of
the matter and galaxy distribution concentrate on the
second-order statistics such as the 2PCFs, their Fourier
counterparts, the power spectra, or derived measures such
as COSEBIs (Schneider et al. 2010; Asgari et al. 2020).
The key advantage of these statistics over others is that, al-
though they capture only the Gaussian information of the
large-scale structure, they can be calculated analytically
from the well-understood matter power spectrum P (k, z).
Indeed, the lensing power spectrum between galaxies of to-
mographic bin i with redshift distribution ni(z) and those
of tomographic bin j with nj(z) is modelled in the Limber
approximation as

Cij` =
∫ χH

0

W i(χ)W j(χ)
χ2 P

(
`+ 1/2
χ

, z[χ]
)

dχ , (8)

where χH is the co-moving distance to the horizon and
W (χ) is the lensing efficiency defined as

W (χ) = 3ΩmH
2
0

2c2
∫ ∞

χ

dχ′ χ(χ′ − χ)
χ′a(χ) q(χ′) . (9)

Here, q(χ) = n(z[χ])dz[χ]
dχ is the line of sight probability

density of the galaxies, H0 the Hubble parameter and c the
speed of light. From the projected lensing power spectrum,
the cosmic shear correlation functions ξij± are computed as

ξij± (ϑ) = 1
2π

∫ ∞

0
Cij` J0,4(`ϑ) `d` (10)

where J0,4 are the Bessel functions of the first kind. To com-
pute the theoretical two-point correlation functions we cal-
culate the power spectrum P (k) using the public Halofit
model (Takahashi et al. 2012).

We use the software treecorr (Jarvis et al. 2004) to es-
timate the 2PCF ξ̂ij± (ϑ) from the simulations and the DES-
Y1 lensing data, computed as

ξ̂ij± (ϑ) =

∑
a,b wawb

[
εit(θa)εjt(θb)± εi×(θa)εj×(θb)

]

∑
a,b wawbSaSb

, (11)

where the sums are over all galaxy pairs (a, b) in tomo-
graphic bins (i, j) that are inside the corresponding ϑ-bin.
As in HD+21, we used 32 logarithmically spaced ϑ-bins in
the range [0.5′, 475′.5], although not all angular scales are
used in the parameter estimation (see the following section).

3.5. Cosmological parameter estimation
As in H+21, we train a GPR emulator using data extracted
from the 26 different cosmo-SLICS models to interpolate
our data vector at arbitrary cosmological parameters within
the training range. We refer the reader to H+21 and HD+21
for more details on the emulator. We assess its accuracy by
performing a leave-one-out cross-validation: we remove one
cosmology of the cosmo-SLICS from our training sample
and let the GPR-emulator predict this cosmology, train-
ing on the other 25. We repeat this procedure for all 26
cosmologies and use the mean squared difference between
predictions and truth as an estimate for the error of the
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Fig. 5. Accuracy of the GPR emulator evaluated by a leave-one-
out cross-validation, shown here for the case where the aperture
mass maps are constructed from the concatenation of all four
tomographic redshift bins (i.e. no tomography). The x axis de-
picts the data vector entry, and the y axis the relative difference
between predicted and measured value. The 26 individual dot-
ted lines correspond to one cosmology that is left out of the
training set and then predicted, the solid black line is the mean
of all dotted lines. The black dashed lines depict the standard
deviation from the Covariance Training Set.

emulator, which is typically well below the statistical er-
ror (compare Fig. 5). We then add this to the diagonal of
our sample covariance matrix to account for uncertainties
in the modelling.

An alternative method to estimate the uncertainty of
the predictions is to use the error provided by the GPR
emulator itself. We also tested this method and found that,
while this method is a bit slower (since the inverse covari-
ance matrix needs to be re-computed in every step of the
MCMC), it provides comparable, albeit slightly tighter con-
straints than the first method. In the end, we opted for the
more conservative choice of estimating the modelling un-
certainties via cross-validation.

As in HD+21, we then integrate our GPR emulator into
the cosmoSIS analysis pipeline (Zuntz et al. 2015) and
infer the cosmological parameters by sampling the likeli-
hood using the polychord sampling method (Handley et al.
2015), which constitutes a good compromise between speed
and accuracy (Lemos et al. 2022). A few relatively minor
changes to the cosmoSIS likelihood module allow for an
easy and fast joint analysis of both persistent homology
statistics and shear two-point correlation functions.

Finally, we estimate our sample covariance matrix from
the 124 survey realisations of the Covariance Training Set.
Specifically, we compute a matrix for each of the 10 differ-
ent realisations of the shape noise and use the average over
those 10 covariance matrices as our best estimate. Here,
we randomly distribute the 124 lines of sight for the 19
regions to avoid over-estimating the sample variance (com-
pare HD+21). Further, since the inverse of a simulation-
based covariance matrix is generally biased (Hartlap et al.
2007), we mitigate this effect by adopting a multivariate
t-distribution likelihood (Sellentin & Heavens 2016). The
extracted covariance matrix can be seen in Fig. 6, the pri-

Fig. 6. Correlation matrix for a joint analysis with both persis-
tent homology and two-point correlation functions.

Table 1. Prior ranges of cosmological and nuisance parameters
in the likelihood analysis.

Parameter Prior Type Prior range
Ωm uniform [0.1, 0.55]
h uniform [0.6, 0.82]

Ωb delta 0.0447
τ delta 0.08
ns delta 0.969
σ8 uniform [0.53, 1.3]
w0 uniform [−2.0,−0.5]
wa delta 0
S8 uniform [0.6, 0.9]
AIA uniform [−5, 5]

baryon feedback uniform [0, 2]
∆m1 Gaussian µ = 0.12, σ = 0.023
∆m2 Gaussian µ = 0.12, σ = 0.023
∆m3 Gaussian µ = 0.12, σ = 0.023
∆m4 Gaussian µ = 0.12, σ = 0.023
dz1 Gaussian µ = 0, σ = 0.008
dz2 Gaussian µ = 0, σ = 0.014
dz3 Gaussian µ = 0, σ = 0.011
dz4 Gaussian µ = 0, σ = 0.009

Notes. Priors on cosmological parameters are provided by the
range of our Cosmology Training Set, prior on ∆mi and on AIA
are from T+18, while those on dzi are from Joudaki et al. (2020).

ors used for cosmological parameter estimation are listed in
Tab. 1.

4. Mitigating systematic effects
Our cosmological parameter analysis needs to account for
systematic effects that are known to affect cosmic shear
data. The most important ones for this work are intrinsic
alignments of source galaxies, baryonic physics, multiplica-
tive shear bias and uncertainties in the redshift estimation
of galaxies (Mandelbaum 2018). On top of these, limits in
the force resolution of the cosmo-SLICS might introduce a
bias into our modelling, plus source clustering can produce
systematic differences between the data and the simula-
tions, in which the latter is absent. While we investigate the
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former, the latter has been shown in HD+21 to be largely
subdominant in the aperture mass statistics measured in
the DES-Y1 data and is therefore neglected here. In this
section, we explain how these systematic effects affect our
2PCFs and persistent homology measurements and detail
the mitigation strategies we chose to account for their im-
pact.

4.1. 2PCF
We use the public modules in cosmoSIS to marginalise
over the impact of intrinsic alignments. Following T+18,
we model IA with the non-linear alignment model (Bridle &
King 2007, hereafter referred to as the NLA model), which
adds a contribution to the matter power spectrum that
propagates into the lensing signal following Eqs. (8) and
(10). More sophisticated IA models, including tidal torque
terms (notably the Tidal Alignment and Tidal Torque
model, or TATT Blazek et al. 2019) have been used re-
cently in cosmic shear analyses, but there is no clear ev-
idence that the data prefer such a model over the NLA
(T+18, Secco et al. 2022). The NLA model can have mul-
tiple parameters (amplitude, redshift dependence, luminos-
ity dependence, pivot scales, colour); however, we follow
HD+21 and vary only the amplitude (AIA) and luminosity
(α) parameters, considering no other dependencies. This is
justified by the weak constraints that exist on them in the
DES-Y1 data (compare T+18). The parameters AIA and α
are allowed to vary in the range [-5.0, 5.0].

Following the fiducial DES-Y1 choices, the impact of
baryon feedback is minimised by cutting out angular scales
in the ξ± statistics where unmodelled baryonic physics with
a strong AGN model8 could shift the data by more than 2%.
We, therefore, exclude from our analysis the same small
scales as those of T+18, which are different for ξ+ and ξ−,
and further vary with redshift.

The shear inference is obtained with the Metacali-
bration method in this work, which has a small uncer-
tainty that can be captured by a shape calibration factor
∆m, which multiplies the observed ellipticities as ε1/2 →
ε1/2(1 + ∆m). As described in T+18, ∆m is a nuisance pa-
rameter that we sample by a Gaussian distribution with a
width of 0.023, centred on 0.012 when analysing the data
and on zero when analysing simulations. cosmoSIS in-
cludes this nuisance on the two-point function model di-
rectly, namely ξij± → ξij± (1 +∆mi)(1 +∆mj). The priors on
m are listed in Tab. 1.

Photometric errors in the 2PCFs are mitigated by us-
ing the generic module within cosmoSIS, which shifts the
ni(z) by small bias parameters ∆zi and updates accordingly
the lensing predictions. These bias parameters are sampled
from Gaussian distributions with widths corresponding to
the posterior DIR estimates of the mean redshift per tomo-
graphic bin ‘i’, also tabulated in Tab. 1.

4.2. Persistent homology
As mentioned in Sec. 2.2, we assess the impact of system-
atics on the topology of aperture mass maps by using the
Systematics Training Set, which are numerical simulations
specifically tailored for this exercise. Following HD+21, we
8 The power spectrum of the OWLS AGN model (van Daalen
et al. 2014) is used for this assessment.

neglect the cosmology scaling of these systematics and only
evaluate their relative impact at the fiducial cosmology. We
find that the overall impact of systematic effects is suffi-
ciently well captured by a linear modelling strategy: for
each systematic effect with respective nuisance parameter
λ (i.e. AIA for intrinsic alignments, ∆z for redshift uncer-
tainties, ∆m for multiplicative bias and bbar for baryons),
we measure the impact xsys(λ) on the measured data vector
from the associated Systematics Training Set and fit each
point of the data vector with a straight line:

xsys(λ) = mxλ+ xnosys . (12)

In particular, x(0) ≡ xnosys is the data vector which is
not impacted by any systematic effects. For a given set of
values of the nuisance parameters, we combine these differ-
ent sources of uncertainty to model our systematics-infused
data vector as:

xsys = xnosys +mIAAIA +mbarbbar +mdz∆z+m∆m∆m .

(13)

While this certainly constitutes a simplified approach that
does not capture potential cross-correlations between dif-
ferent systematic effects nor any cosmology dependence,
we consider it sufficient at the current level of uncertainties
(compare Fig. 7). To computemIAAIA, the Intrinsic Align-
ments mocks are infused with AIA values of [-5.0, -2.0, -1.0,
0.5, 0.0, 0.5, 1.0, 2.0 and 5.0], however we set the redshift
dependence to zero, given the weakness of the constraints
on this parameter in the DES-Y1 data (see T+18). In the
upper left panel of Fig. 7 we report the fractional effect
on the signal and observe that positive IA suppresses the
elements of the data vector. This is caused by the partial
cancellation of the lensing signal by IA, which attenuates
the contrasts in the aperture mass maps, which translates
into a topological structure with fewer features. The figure
also presents the results as modelled by the linear interpo-
lation, which reproduces the nodes on which the training
was performed to sufficient accuracy, indicating that our
approach is adequate to model IA, at least for the range of
AIA values tested here.

The impact of shear calibration uncertainty is modelled
by measuring the statistics for ellipticities modified with
four values of ∆m, namely -0.025, -0.0125, 0.0125, and
0.025, and once again fitting a straight line through each
element of the homology data vector as a function of ∆m.
The results are presented in the upper right panel of Fig. 7,
showing that within this range, shear calibration affects the
statistics by less than one per cent except for two elements,
which are affected by up to 4%.

Photometric uncertainties are modelled from the dedi-
cated Systematics Training Set in which the n(z) in each
tomographic bin has been shifted by 10 values ∆zi, from
which we are once again able to fit a linear response for each
element of the data vector. In the case of cross-redshifts, the
mean of all shifts is used to compute the derivative, as in
HD+21. The lower right panel of Fig. 7 shows the impact
on the data vector, which is sub-dominant compared to the
IA. This is largely due to the tight priors on ∆zi that we are
able to achieve with the DIR method, as derived in Joudaki
et al. (2020) and reported in Tab. 1.

The Magneticum simulations are used in a similar way
to test the impact of baryonic feedback, with the main dif-
ference that we can only fit mbar on two points: the simu-
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lations with and without baryons (bbar = 1 and 0, respec-
tively). We nevertheless apply the same methodology here,
which allows us to interpolate between these two cases to
mimic milder models (e.g. bbar = 0.5) and even to extrapo-
late and explore stronger feedback models (bbar >1.0). The
lower right panel of Fig. 7 shows that baryonic feedback
with bbar = 1.0 has almost as much importance as an IA
model with AIA= 1.0 and should therefore not be neglected
in this analysis.

The last systematic effect that we include in this analy-
sis is the impact of the force accuracy in the N -body simu-
lations that are used in the modelling. We inspect the dif-
ference between the data vector measured from the high-
accuracy mocks to that of the main Cosmology Training
Sample at the fiducial cosmology and find that the overall
impact of this effect is sub-dominant to the sample vari-
ance of the SLICS. Nevertheless, we measure the ratio of
the high-resolution data vector over the fiducial one and
apply it as a correction factor to re-calibrate our model in
the analysis of observed data.

4.3. Mitigation strategy
We further estimate the impact of the different system-
atic effects on the cosmology inference by running likeli-
hood analyses for data vectors that have been infused with
one systematic effect while keeping these unmodelled. The
results of these tests can be seen in Fig. 8. We observe
that the baryons have a small impact on the inferred Ωm
and can bias S8 by 1σ, assuming bbar=1.0. Unmodelled IA
(with AIA=1.0) tend to bias both Ωm and S8 towards lower
values; both photometric redshift uncertainties and multi-
plicative shear bias have a minor impact on the posterior
constraints, given the tight priors available on ∆z and ∆m.

We finally investigate how marginalisation over the dif-
ferent systematic biases changes the posterior contours in
our likelihood analysis in Fig. 9. We find that marginalisa-
tion over baryonic effects and intrinsic alignments both de-
crease the constraining power on Ωm and S8 by about 25%,
whereas the marginalisation over multiplicative shear biases
and photometric redshift uncertainties have a negligible im-
pact. Both analyses suggest that the impact of systematic
effects on persistent homology statistics is noticeable but
not severe and that our marginalisation strategies work as
expected.

5. Validation
In this work, we want to investigate whether a likelihood
analysis of tomographic cosmic shear data with persistent
homology is feasible and whether a joint analysis with two-
point statistics yields more information than an analysis
that solely utilises two-point statistics. For this purpose, we
perform three likelihood analyses of the same mock data ex-
tracted from the Covariance Training Set: one solely with
two-point correlation functions that we model within the
cosmoSIS pipeline, one solely with our persistent homol-
ogy method, and finally the combined analysis.

As can be seen in Fig. 10 and Tab. 2, the persistent ho-
mology analysis is already able to constrain S8 better than
the two-point analysis (S8 = 0.817+0.040

−0.028 for persistent ho-
mology versus S8 = 0.772± 0.043 for two-point statistics).
However, a joint analysis offers several additional benefits.

While two-point statistics are able to constrain the pa-
rameter to AIA = −0.19+0.90

−0.40, persistent homology yields
A = 0.47+0.64

−0.56 and a joint analysis is able to reduce the er-
ror bars to AIA = 0.29±0.36. Apart from tighter constraints
on S8 (S8 = 0.815+0.030

−0.021 for a joint analysis), a joint analy-
sis also yields competitive lower limits on the equation-of-
state parameter of dark energy (w0 > −1.14 at 68% con-
fidence), while two-point statistics are unable to place any
constraints on this parameter, with our choice of sampling
method. Most importantly, all cosmological and nuisance
parameters are recovered within 1σ. We thus conclude that
our analysis pipeline has been validated and move on to-
wards a cosmological parameter analysis of real data.

6. Results
Having validated our analysis pipeline, we now use it to per-
form our cosmological parameter analyses using the DES-
Y1 data. In order to do that, we split the source galaxy cat-
alogue into the same 19 tiles as our mock data and compute
the persistence statistics as well as the two-point correlation
functions for each tile individually.

The results can be seen in Fig. 11. We observe that
neither persistent homology nor two-point correlation func-
tions are able to place meaningful constraints on the equa-
tion of state parameter for dark energy, w0. For the mat-
ter clustering parameter S8, the constraints from persistent
homology (S8 = 0.747+0.025

−0.031) are tighter than, but fully
consistent with, the constraints from two-point correlation
functions (S8 = 0.759+0.049

−0.042). The same goes for the am-
plitude of galaxy intrinsic alignments (A = 1.54 ± 0.52 for
persistent homology and A = 1.33+0.92

−0.56 for two-point corre-
lation functions). In particular, this implies that persistent
homology detects the intrinsic alignment effect roughly at
the 3σ level. Interestingly, the constraints for the matter
density parameters are not consistent (Ωm = 0.468+0.051

−0.036
for persistent homology and Ωm = 0.256+0.034

−0.058 for two-
point correlation functions). Hamana et al. (2020) observed
a similar trend when observing data from the HSC: While
a real- and Fourier-space analysis yield perfectly consistent
values for S8, a slight tension between the Ωm constraints
can be observed in their Fig. 15. We observe a much larger
tension that prevents us from performing a joint parame-
ter analysis, which would tighten the S8-constraints con-
siderably. We discuss this in more detail in App. B, where
we show that such a tension arises in about 0.5% of all
cases due to a mere statistical fluctuation. A visual inspec-
tion of the data vector suggests that this tension might be
caused by the highest signal-to-noise peaks (see App. B),
but when excluding these in a parameter analysis, we find
only a marginal improvement of the tension that is likely
just due to the loss of constraining power. We note that
the upper limit in the constraints for Ωm from persistent
homology barely passes our criterion not to be dominated
by the prior (compare Tab. 2). This means that a wider
prior for Ωm would likely lead to a higher upper limit in
the constraints. The lower limit should not be strongly af-
fected by the prior, as the likelihood of Ωm already started
falling for Ωm > 0.5.

Comparing our results with the ones from peak count
statistics, where HD+21 measured S8 = 0.737+0.027

−0.031 on
the same data set, we observe remarkably consistent re-
sults (compare Fig. 11). The trend towards high values
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Fig. 7. Impact of the main systematic
effects on the data vector. For each sys-
tematic, we show the measured (solid line)
and interpolated (dotted line) ratio of the
systematic-infused data vector over a ref-
erence data vector. For simplicity, we only
show the results for the combination of all
four tomographic redshift bins. The black
dashed lines correspond to the 1σ standard
deviation estimated from the Covariance
Training Set.
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Fig. 8. Impact of unmodelled system-
atic biases on the posterior of a likelihood
analysis with heatmaps. In all cases, we
do not marginalise over any systematic
effects. The target data vector is then in-
fused with one systematic bias, and we
run a likelihood analysis for this infused
data vector. For comparison, we show the
constraints on a data vector that is not in-
fused by systematics (grey). Note that the
values of the dz shifts are given in units
of the standard deviation of the dz prior
(compare Tab. 1).
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dz marginalisation Fig. 9. Effects of marginalising over

different systematic effects. In all cases,
we perform a likelihood analysis on mock
data, marginalising over one systematic
effect. For comparison, we show the con-
straints we achieve when we do not
marginalise over any systematics (grey).
The case where we marginalise over all
systematics corresponds to the blue con-
tours in Fig. 10

.

of Ωm can also be observed in HD+21 (see in particular
Fig. 17 and 18 in HD+21). This is particularly interesting
since their constraints have been achieved using a pipeline
that is fully independent of ours, utilising a different statis-
tic on signal-to-noise maps of aperture masses constructed
with an independent code, albeit based on the same set
of N -body simulations. Furthermore, we can see that the
constraints achieved from persistent homology outperform
the ones from peak statistics, albeit not by much. This im-
provement is still significant since, contrary to HD+21, we
include an error estimate for the emulator and a marginali-

sation over intrinsic alignments and baryonic effects, which
decrease the constraining power of our analysis pipeline.

Comparing our results to T+18, we see that our re-
sults from two-point statistics are a bit different (S8 =
0.777+0.036

−0.038 in T+18 and S8 = 0.759+0.049
−0.042 here), which

is driven mainly by the different redshift distribution es-
timates (as shown in Joudaki et al. 2020). Considering the
intrinsic alignment effect, we achieve consistent, but tighter
constraints (compare the NLA case of Fig. 16 in T+18).
Regarding the tension we measure for Ωm, T+18 report
Ωm = 0.274+0.073

−0.042, which is fully consistent with our results
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Fig. 10. Results of likelihood analyses for DES-Y1 mock data. We show the results for two-point statistics (red), persistent
homology (blue), and for the joint analysis (grey, filled). The dotted lines show the prior ranges, the solid black lines visualise the
true value of each parameter, and the black crosses denote the nodes of our Cosmology Training Set. The complete results can be
seen in Fig. C.2, the marginalised posterior constraints can be seen in Tab. 2.

Table 2. Posterior 68% confidence intervals on cosmological and nuisance parameters from the likelihood analyses in Fig. 10
and Fig. 11.

Method Ωm S8 w0 A

Validation (mock data)
persistent homology 0.323+0.059

−0.053 0.817+0.040
−0.028 − 0.47+0.64

−0.56
ξ± 0.311+0.046

−0.069 0.772± 0.043 − −0.19+0.90
−0.40

joint 0.321± 0.040 0.815+0.030
−0.021 > −1.14 0.29± 0.36

DES-Y1 data
persistent homology 0.468+0.051

−0.036 0.747+0.025
−0.031 < −1.04 1.54± 0.52

ξ± 0.256+0.034
−0.058 0.759+0.049

−0.042 > −1.47 1.33+0.92
−0.56

Notes. Constraints are only cited if the value of the marginalised posterior does not surpass 13.5% at the edge of the priors (Asgari
et al. 2021).
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Fig. 11. Results of our likelihood analyses for the DES-Y1 survey. We show the results for two-point statistics (red), persistent
homology (blue) and report as well the constraints achieved by HD+21 with peak count statistics (black). The dotted lines denote
the prior ranges, the black crosses denote the nodes of our Cosmology Training Set. The complete results including nuisance
parameters can be seen in Fig. C.3, while the marginalised posterior constraints can be seen in Tab. 2.

from two-point correlation functions and also disagrees with
our constraints from persistent homology.

7. Discussion
In this work, we carried out a likelihood analysis on to-
mographic cosmic shear data using persistent homology,
including the marginalisation over systematic effects, and
have shown from simulated data that the posterior con-
straints can be significantly improved in a joint analysis.
While this holds true especially for the intrinsic alignment
parameter AIA and the equation of state of dark energy w0,
the constraints on the matter clustering parameter S8 also
improve substantially.

For our analysis, we had to make a number of choices, in-
cluding which persistence statistic to use, which smoothing
scale to apply to the heatmaps, and which data compression
method to utilise. We have noticed that the posterior con-
straints achieved by a likelihood analysis do not strongly de-
pend on any of these choices, as can be seen for example in
Fig. C.1. While further fine-tuning could probably slightly
improve the constraining power of our analysis, we believe
that this overall stability with respect to different analysis
choices provides strong evidence that we have reached the
true sensitivity of persistence statistics to cosmology.

When applying our analysis pipeline to real data, we
find that high values of the matter density parameter Ωm
are preferred, as observed in HD+21, where a fully inde-
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Fig. 12. Comparison of the constraints on the matter clustering
parameter S8 from DES-Y1 survey data in a wCDM cosmology
with fixed neutrino mass.

pendent pipeline and a different summary statistic were
utilised. The remarkable similarity between these results
suggests that peak count statistics and persistent homology
quantify similar aspects of the large-scale structure distri-
bution. The fact that both methods favour larger values
of Ωm may point to a statistical fluctuation in the DES-
Y1 data or an unknown effect modifying the topological
structure of the matter distribution. We investigate this in
App. B and show that the chance of such a tension arising
due to a statistical fluctuation in the data is about 0.5%.
We also note that our underlying training data, the shear
catalogues of the Cosmology Training Sets, are the same as
the ones used in HD+21, so this bias might also point to-
wards a statistical fluctuation in this training set. A larger
simulation suite would be able to shine a light on this, even
though this seems unlikely given the fact that the tension
does not exist when validating on simulated data (See Fig.
10). Our analysis of the tension in App. B, a visual in-
spection of the data suggests that the tension might be at
least partly driven by the high signal-to-noise peaks in the
aperture mass maps, which carry both the most cosmolog-
ical signal and are most affected by systematics. However,
excluding those peaks did not remove the tension, which
means that it can certainly not be fully explained by these
high signal-to-noise peaks.

We performed several consistency checks to investigate
whether the tension is artificially created by our analy-
sis setup: We tried a parameter inference with two-point
correlation functions by measuring them in the Cosmology
Training Set and emulating them via the same pipeline that
we used for persistent homology. Furthermore, we tried re-
moving some nodes from the Cosmology Training Set and
applying different methods of data compression. The re-
sults were stable under all these tests, suggesting that the
simulation-based inference is not the driver of the tension
we measure for Ωm.

Another possible explanation is that the DES-Y1 data
include an effect that we have not accounted for. This
might be an unknown systematic or a sign of new physics.
For example, 2PCF are not sensitive to primordial non-
Gaussianities, whereas persistent homology is (Biagetti
et al. 2022).

Overall our constraints on S8 are consistent with pre-
vious works (see Fig. 12); the largest discrepancy is be-
tween our analysis and the one from T+18, which is mainly
driven by a different method of estimating the source red-
shift distribution. When comparing our results to similar
works with peak count statistics, the constraining power of
persistent homology appears to be slightly better. In ad-

dition, there are a few key differences between our work
and HD+21. Firstly, while HD+21 apply a boost factor to
account for baryons, we marginalise over continuous bary-
onic effects (and intrinsic alignments) with a wide prior,
which is inflating our constraints. Secondly, we account for
the emulator uncertainty as described in Sect. 3.5; this is
not done in HD+21. Comparing with H+21, we see that
this emulator uncertainty also inflates cosmological param-
eter constraints, indicating that the contours reported in
HD+21 may be slightly too small. This effect is amplified
by the fact that we were only able to train our emulator on
9 lines of sight per cosmology, compared to the 50 lines of
sight in H+21. Lastly, and most importantly, we have shown
in H+21 that persistent homology excels in a high signal-
to-noise range, which is not accessible in a tomographic
analysis of current-generation surveys. We thus expect this
method to out-perform several other higher-order statistics
in next-generation surveys.
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Appendix A: Data compression of heatmaps
As the raw heatmaps contain 10100 entries per combination
of tomographic redshift bins, a direct cosmological param-
eter analysis with these maps is currently impossible. We,
therefore, need to explore different methods of compressing
the raw data.

Our first approach to data compression is a principal
component analysis (PCA). This rather simple method is
highly efficient at reducing complex data to only a few man-
ageable dimensions (see e.g. Uzeirbegovic et al. 2020). For
each combination of tomographic redshift bins, we apply
a PCA to the heatmap extracted from all 19 regions. We
see that the PCA correctly identifies that the differences
between the S/N maps of the different cosmo-SLICS are
driven by the changes of the cosmological parameters Ωm
and S8.

A PCA is still an incredibly useful tool to not only ex-
tract cosmological information from a data vector but also
to understand the behaviour of the data itself better. For
example, Fig. A.1 shows that the first principal component
is almost exactly antiproportional to S8, whereas the sec-
ond principal component is proportional to Ωm. Comparing
these findings with Fig. A.3, we see that a high value of Ωm
leads to a large number of features in Dgm1 (peaks) being
born and dying between signal-to-noise values of 1 and 2,
whereas a low value of Ωm leads to more features in Dgm1
being born and dying between S/N values of −0.5 and 0.5.
A similar analysis for the first principal components yields
the expected conclusion that a higher value of S8 leads to
more peaks being born and dying at higher S/N values and

Fig. A.1. Cosmology dependence of the first four principal com-
ponents. Each point in the scatter plot represents one of the 26
cosmologies of the cosmo-SLICS. In the top row, the x and y
coordinates correspond to the value of the first two principal
components; in the bottom row, they correspond to the values
of the third and fourth principal components. In the left column,
the colours represent the value of Ωm of the respective cosmo-
SLICS simulation; in the right column, they denote the value of
S8.

Fig. A.2. Test results for the final data-vector’s Gaussianity. For
each of the 180 data vector entries, we take the set of 10 × 124
measurements in the Covariance Training Sample and test the
null hypothesis that this sample was drawn from a normal dis-
tribution using the measured skewness and kurtosis (D’Agostino
1971; D’Agostino & Pearson 1973). We then plot a histogram
of the corresponding p-values (blue). If each entry of the data
vector is Gaussian, then the distribution of p-values is uniform.
For comparison, we show the results of the same test with a
data vector that contains only points with about 10 features
(orange). While the blue histogram may show small deviations
from a uniform distribution (there appears to be a downward
slope towards higher p-values), we believe that the assumption
of a normal distribution is reasonable.

more voids being born and dying at lower S/N values. One
disadvantage of PCA is the fact that it is not straightfor-
ward to include the internal covariance of the data vec-
tor: While the PCA might detect huge differences between
two different cosmo-SLICS simulations, these might just be
caused by the fact that this specific part of the data vector
is particularly noisy, and not by differences in the cosmo-
logical signal.

A more sophisticated method of data compression is the
Massively Optimized Parameter Estimation and Data com-
pression (MOPED, Heavens et al. 2000, 2017; Ferreira et al.
2021). Assuming a Gaussian likelihood, Gaussian posterior
distributions and a constant covariance matrix C, this com-
pression method preserves the entirety of the Fisher infor-
mation to Nparam dimensions, where Nparam is the number
of cosmological (and nuisance) parameters present in the
inference. However, this method uses the Fisher formalism,
and thus knowledge of the inverse covariance matrix C−1 is
required. As our uncompressed data vector contains 151 500
entries and we can only estimate C with about 103 sets of
simulations, the matrix is singular and thus not invertible
(Hartlap et al. 2007). We, therefore, opted for sub-sampling
our data vector and performing a MOPED compression for
each individual combination of tomographic redshift bins,
but doing this we neglected the information contained in the
cross-correlation between different combinations of redshift
bins, yielding parameter constraints that were not compet-
itive with the ones from other data compression methods.

While MOPED is an elegant method to compress a data
vector to the absolute minimum of required dimensions, this
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Fig. A.3. First four (normalised) principal components of the heatmaps in a principal component analysis.

also means that all additional information that was not part
of this data compression gets lost. In particular, imperfect
knowledge of the covariance matrix and noisy derivatives
heavily affect the constraining power of MOPED. Asgari
& Schneider (2015) analysed this loss of information and
developed a method that is more stable with respect to
changes in the covariance matrix and derivatives and offers
more constraining power in the case of non-linear parameter
degeneracies (like the one between Ωm and σ8).

All things considered, all data compression methods
manage to extract a comparable amount of information out
of the raw data vector (see Fig. C.1). We thus opt for the
χ2-maximiser method as the data vector obtained from this
method is easiest to interpret.

Appendix B: On the observed Ωm tension in the
analysis of DES-Y1

When analysing DES-Y1 data, we observe a 3.2σ tension
between the values of Ωm estimated from 2PCF and persis-
tent homology. In principle, there are several possible sce-
narios that can cause this tension. Our validation tests show
that this is unlikely to be caused by a bug in the pipeline.
A second possibility is that this is caused by a statistical
fluctuation in the data. The third and most interesting sce-
nario would be the presence of something unknown (and
thus unaccounted for) in the DES-Y1 data. This could ei-
ther be a systematic effect that we have not properly taken
into account or a sign of deviations from the wCDM cos-
mological model that affects the topological structure of
the data, but not its two-point statistics. For example, we
know that persistent homology is very sensitive to primor-
dial non-Gaussianities in the large-scale structure (Biagetti
et al. 2022), which can not be detected by two-point statis-
tics.

Appendix B.1: Investigating the severity of the tension
The fact that we achieve extraordinarily consistent results
with HD+21 using a fully independent measurement and
inference pipeline points to the conclusion that this tension
is not caused by a bug in the pipeline. To investigate the
probability of a statistical fluctuation causing this effect,
we run our inference pipeline for both 2PCF and persis-
tent homology on 100 individual lines of sight of the Co-
variance Training Sample. For each individual line of sight,
we then estimate the tension between 2PCF and persistent
homology on each cosmological parameter. The results are
shown in Fig. B.1. We observe that persistent homology
seems to favour higher values of Ωm and lower values of σ8
than 2PCF, while S8 remains relatively unbiased. We as-
sume that these tensions follow a normal distribution and
compute its mean and variance, constructing a Gaussian fit
to the values. According to this analysis, the chance that
the observed bias in Ωm is due to a statistical fluctuation
is at 0.5% (2.6% for σ8), which is still unlikely, but not as
unlikely as the initial 3.2σ tension we observed suggests. Re-
call that no tension is observed when running our pipeline
on the mock data vector constructed from all simulations
of the Covariance Training Set, which is about 12× larger,
suggesting that the observed tension results from statistical
fluctuations that are averaged down in our validation test.

This effect certainly warrants further investigation. If
something similar shows up in an analysis of KiDS-1000
(Harnois-Déraps et al. in prep., Heydenreich et al. in prep.),
an investigation into potential causes for a bias in Ωm be-
comes highly warranted. If, however, that analysis does not
show any bias in Ωm, we can assume that this tension is
likely to be a mere statistical fluctuation in the data.

Appendix B.2: Investigating the cause of the tension
When investigating Fig. B.2, we see that an increase in Ωm
by 80% and a simultaneous decrease in S8 by 10% almost
cancels out, except for the very first point of the data vector.
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Fig. B.1. Histogram of the tensions in cosmological parame-
ters between 2PCF and persistent homology measured on 100
individual lines of sight in the Covariance Training Set (blue)
and a Gaussian fit to these values (orange). The actual tension
we measured in DES-Y1 is shown by the dashed black line. No
tension is observed when running our pipeline on the mock data
vector constructed from all simulations of the Covariance Train-
ing Set, which is about 12× larger.

This one corresponds to the point in the heatmap that mea-
sures the very high, very persistent peaks (see Fig. 3). We
observe this behaviour consistently throughout all combi-
nations of redshift bins. However, when we remove the first
entry (corresponding to the high persistent peaks) from ev-
ery tomographic bin combination, the tension between the
two-point correlation function and persistent homology is
reduced (see Fig. B.3) but does not vanish, and most likely,
the decrease in the tension is just due to the lower con-
straining power. We can conclude that potentially a part
of the reason for the Ωm-tension is that we measure sig-
nificantly fewer high signal-to-noise peaks in the DES-Y1
data than in the simulations, however, the tension is not
caused by those peaks. The most important unmodelled
systematic effect that would affect these peaks would be
source-lens coupling (Martinet et al. 2018), but that one
would increase the number of peaks in the simulations, not
decrease it.

Although the exclusion of the high signal-to-noise peaks
would reduce the Ωm-tension without significantly affecting
our constraining power on S8, we keep our fiducial analysis
choices, as switching to this analysis would constitute a
major post-unblinding change.

Fig. B.2. Same as Fig. 4, but we show the data vector for
the individual cosmologies from our Cosmology Training Set,
colour-coded by their respective value of S8 (dotted lines) and
the measured values in the DES-Y1 survey (black). For a better
visibility, all values are divided by the mean of our Covariance
Training Set. In addition, we predict with the GPR Emulator
a data vector where Ωm is increased by 80% with respect to
the cosmology of the Covariance Training Set (dashed line), one
where S8 is increased by 10% (dash-dotted line), and one where
Ωm is increased by 80% and simultaneously S8 is decreased by
10% (solid line).
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Fig. B.3. Results of our likelihood analyses for the DES-Y1 survey. We show the results for two-point statistics (red), persistent
homology (blue) and report as well the constraints achieved by removing the first data point for each tomographic bin (black).
The dotted lines denote the prior ranges, the black crosses denote the nodes of our Cosmology Training Set.
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Appendix C: Complete parameter constraints of the MCMC

Fig. C.1. Comparison of the constraining
power of different data compression meth-
ods. Our chosen method, the χ2-maximiser
is shown in grey, two alternative methods
(PCA and Asgari & Schneider 2015, in red
and blue, respectively).
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