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Introduction

Group decisions are ubiquitous in democratic societies. They range from general
elections, and referenda to voting inside various organizations such as political in-
stitutions, and corporate boards. Modern social choice theory, “the study of collec-
tive decision processes and procedures” (List (2022)), is shaped by the celebrated
Arrow (1963) as well as Gibbard (1973), and Satterthwaite (1975) impossibility
results: These seminal findings suggest that there is no universally good voting rule
as soon as there are more than two alternatives (e.g., candidates, policies). Conse-
quently, appropriate procedures to reach collective decisions are context-dependent,
and there is scope to design good voting rules. The present dissertation consists of
four self-contained essays that study the design of voting mechanisms in settings
with multiple alternatives. The essays identify reasonable voting rules for different
contexts. Therefore, they represent normative contributions. Methodologically, the
analyses are theoretical, and mathematical. They build upon tools from microeco-
nomic theory, and, in particular, game theory, and mechanism design.
The “one person, one vote” criterion is a principle that is central to democracy, but
it is arguably with justification violated in certain situations, where the voters are
asymmetric. Chapters 1 and 2 share the following overarching research question:
How to assign voting weights to heterogeneous agents?
Chapter 1, Sequential Voting and the Weights of Nations, focuses on institutions of
representative democracy such as the Council of the European Union, where repre-
sentatives vote on behalf of groups of citizens of heterogeneous size. The chapter
develops a model of representative democracy, and studies the design of welfare-
maximizing voting mechanisms for the collective decision-making process involving
representatives. There are multiple policy alternatives, and the citizens’ preferences
are assumed to be consistent with a unidimensional political spectrum, that is, they
satisfy the condition of single-peakedness. For this setting, the chapter attempts to
answer the following questions: How to optimally organize the voting process of rep-
resentatives who vote on behalf of groups of citizens that differ in population size?
How should the voting weights or the weights of nations be assigned to the repre-
sentatives as a function of the group size? Which majority quotas should be used
depending on the nature of the proposal? What is the interaction between voting
weights andmajority quotas in an optimal mechanism? The welfare-maximizing vot-
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ing rule among a large class of sequential voting procedures can be implemented via
a sequence of binary weighted majority voting decisions. The utilitarian weights of
nations feature an overweighting of smaller groups that lies between the benchmark,
where weights are proportional to group sizes, and a power law with an exponent
of 1− ln2

ln3 ≈ 0.37. The main insight of the chapter is as follows: Under the optimal
mechanism, the vote on more extreme alternatives does not only require majority
quotas that are further away from simple majority, but it also involves voting weights
that feature less overweighting of smaller groups. Finally, the chapter discusses the
implications of these theoretical results for voting in the Council of the European
Union. Until 2014, in the Council of the European Union, most collective decisions
were reached according to a weighted majority rule exhibiting voting weights that
are approximately proportional to the square root of the population sizes of the
member states, and a majority quota of about 74% (see European Union (2001),
and European Union (2012)). The model developed in the chapter can rationalize
such a majority quota. However, the quantitative analysis in the chapter suggests
that the use of it should be accompanied by voting weights that feature less over-
weighting of small member states compared to the weights that were applied in the
Council of the European Union.
Chapter 2, Public Goods Provision and Weighted Majority Voting, considers the prob-
lem of optimally providing public goods, that is, non-excludable, and non-rivalrous
goods. It analyzes the utilitarian voting mechanism for the provision of a costly pub-
lic good. The setting features multiple public good levels, and the voters are asym-
metric in the following two ways: On the one hand, the asymmetry of the voters
arises from heterogeneous distributions of the benefits of the public good. This type
of asymmetry covers, for example, situations, where the public good is an infras-
tructure project, implying that people living near the location of the infrastructure
project are concerned differently about the project in comparison with people liv-
ing in the same state, but far away from the location of the project (see Fleurbaey
(2008)). How should this heterogeneity be incorporated in the voting mechanism?
Should collective decisions about such public goods be reached according to local
or statewide referenda? How to assign voting weights to agents that are asymmet-
ric because of heterogeneous benefit distributions? On the other hand, voters are
asymmetric because of an unequal sharing of the costs of the public good. Member
countries of international organizations such as the International Monetary Fund
or the World Bank contribute to these organizations differently in financial terms,
and, therefore, collective decisions about the provision of public goods inside these
institutions are taken by voters who are asymmetric because of an unequal sharing
of the costs of the public good (see International Monetary Fund (2021), and World
Bank (2021)). How should this heterogeneity be reflected in the voting rules? Is it
optimal to assign voting weights to the member states of these international organi-
zations that are increasing in the financial contribution or the cost share? The voting
mechanism that maximizes the ex-ante utilitarian welfare among all strategy-proof,
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and surjective social choice functions involves a sequence of weighted majority de-
cisions going gradually from low to high public good levels. The utilitarian majority
requirements decrease monotonically in the public good level under consideration.
If the benefits of the public good are drawn from heterogeneous distributions, the
optimal mechanism assigns higher voting weights to voters whose benefit distribu-
tions are more variable, and the utilitarian voting weights are more equal for more
extreme public good levels. If the costs of the public good are shared unequally, the
optimal voting weights are generally not increasing in the voters’ cost shares.
Chapter 3, Committee Search Design, is joint work with Christina Luxen. Search pro-
cesses in many organizations such as hiring procedures share the following two
characteristics: The decisions are taken collectively by a committee via voting, and
the committee evaluates multiple items simultaneously. The present chapter inves-
tigates sequential search by committee, where, in each period of time, K items can
be sampled, and at least M out of N committee members have to approve an item in
order to stop search. The focus of the chapter is on the design of the sample size per
period, K. Designing the sample size per period amounts to determining certain as-
pects of the voting procedure. First, it can be viewed as delayed voting: Assume that
one item per period arrives. Then, simultaneously reviewing K items corresponds
to taking voting decisions only every K periods instead of every single period. Thus,
choosing the sample size K can be interpreted as selecting voting times.1 Second,
determining the sample size can be seen as designing the number of alternatives
that are put to a vote in each period of time, while holding the number of commit-
tee members and the required degree of approval to stop search fixed. For example,
in the hiring context, one or multiple candidates could be evaluated simultaneously.
Hiring on a rolling basis corresponds to the case in which voting is not delayed, but,
in every period of time, the committee takes a collective decision. Therefore, the
chapter attempts to provide answers under which circumstances a hiring process
should be conducted on a rolling basis. The main insight of the chapter is as follows:
The welfare assessment of the sample sizes per period differs if the search committee
operates under unanimity versus qualified majority voting. Under unanimity voting,
the welfare ranking of the sample sizes depends on how the search costs vary with
the sample size. In contrast, under qualified majority voting distinct from unanimity,
independently of the shape of the cost function, reviewing more items per period
of time improves welfare as long as the magnitude of the search costs is sufficiently
small.
Chapter 4, Optimal Voting Mechanisms on Generalized Single-Peaked Domains, exam-
ines welfare-maximizing voting mechanisms in settings with multiple alternatives,
and voters who have generalized single-peaked preferences derived from median
spaces as introduced in Nehring and Puppe (2007). These preference structures are

1. We thank Olivier Compte for suggesting this interpretation.
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considerably larger than the class of single-peaked preferences on a line considered
in chapters 1 and 2 of this dissertation. However, in contrast to these chapters, the
voters are not asymmetric here. The utilitarian voting rule among all social choice
functions satisfying strategy-proofness, anonymity, and surjectivity is composed of
binary votes on subsets of alternatives involving flexible majority requirements. The
chapter discusses an application of this general optimality result to the design of
voting mechanisms for the provision of two costly public goods subject to the con-
straint that the provided level of the former good is weakly higher than the provided
level of the latter good. For example, if the public goods represent expansions of the
rail, and the road network respectively, this constraint might reflect the fight against
climate change. The more general classes of single-peaked preferences considered
in this chapter make it possible to analyze this application featuring two instead of
one public good as in chapter 2 as well as a constraint on the set of feasible public
good levels.
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Chapter 1

Sequential Voting and the Weights of
Nations

1.1 Introduction

A defining feature of modern democracies is that citizens appoint representatives
who then engage in a collective decision-making process on behalf of groups of citi-
zens of heterogeneous size. Prominent examples are the United States Congress as
well as the Council of the European Union.
In the United States, the seats in the House of Representatives are distributed among
the states such that they are approximately proportional to the population sizes of
the states; in contrast, in the Senate, each state has two seats independently of the
population size; depending on the proposal that is up for a vote, different majority
quotas apply: Standard bills or motions pass whenever a simple majority votes in
favour of them, whereas constitutional amendments require the support of a two-
thirds majority (see United States (2022a), and United States (2022b)).
In the Council of the European Union, currently, for most policy areas, the following
voting rules are used: If the vote is on a proposal from the European Commission
or the High Representative of the Union for Foreign Affairs and Security Policy, it
is collectively approved whenever it is supported by at least 55% of the member
states, representing at least 65% of the population of the European Union; other-
wise, the support of at least 72% instead of 55% of the member states is required
for a proposal to pass (see European Union (2007)). In contrast, until 2014, collec-
tive decisions in the Council of the European Union were reached according to a
weighted majority voting rule, where the voting weights were roughly proportional
to the square root of the population sizes and the majority quota was approximately
74% (see European Union (2001), and European Union (2012)).
The variety of majority quotas and seat or voting weight distributions observed in
the described institutions of the United States and the European Union raises the
question of how to optimally organize the voting process of representatives who vote
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on behalf of groups of citizens that differ in population size. How should the voting
weights or the weights of nations be assigned to the representatives as a function
of the group size? This issue is called the apportionment problem. Which majority
quotas should be used depending on the nature of the proposal? What is the inter-
action between voting weights and majority quotas in an optimal mechanism?
To answer these questions, I develop a model of representative democracy and study
the design of welfare-maximizing voting mechanisms for the collective decision-
making process involving representatives. There are multiple policy alternatives and
the citizens’ preferences are single-peaked. To the best of my knowledge, I provide
the first analytical results for the apportionment problem in a setting featuring more
than two alternatives, single-peaked preferences and a utilitarian objective criterion.
The core economic problem that the utilitarian designer faces is one of Bayesian in-
ference: The designer has to make inferences about the citizens’ preferences based
on the vote choices of the representatives. Given these inferences, how does the op-
timal voting mechanism look like? The optimal voting rule can be implemented via
a sequence of binary weighted majority voting decisions. The main insight of this
chapter is as follows: Under the optimal mechanism, the vote on more extreme al-
ternatives does not only require majority quotas that are further away from simple
majority, but it also involves relatively higher voting weights for large groups.
In more detail, to keep the analysis tractable, I make the following key assumptions.
Regarding preferences, I assume in the benchmark model that the citizens’ prefer-
ences are distributed independently and identically across all citizens. In particular,
the citizens’ preferences are independent within groups. The analysis of the bench-
mark model concentrates on the case of finite population sizes in the sense that I
do not invoke any limit arguments. The reason for this focus is as follows: It turns
out that the model featuring independent preferences as well as finite population
sizes is similar to a model, following Barberà and Jackson (2006), in which popula-
tion sizes are large and preferences are correlated within groups. The latter model
seems to be the empirically relevant model.1 In an extension contained in section
1.8, I show that my findings for the former model extend to the latter model.
Moreover, I suppose that each group has exactly one representative whose most pre-
ferred alternative coincides with the median of all most preferred alternatives or
the Condorcet winner in the group. In other words, within groups, preferences are
aggregated according to simple majority voting. Maaser and Napel (2007), Maaser
and Napel (2012), Maaser and Napel (2014), and Kurz, Maaser, and Napel (2017)
also assume that representatives are median citizens. The rationale behind this as-
sumption is twofold. On the one hand, from a theoretical viewpoint, employing the
median rule to select the representative’s peak alternative is in a certain sense op-

1. In fact, Kurz, Maaser, and Napel (2017) argue that correlated preferences within groups seem
to be the main cause why there is no redistricting in practice such that representatives vote on behalf
of equally-sized groups of citizens.
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timal.2 On the other hand, from an applied perspective, I aim to match the within-
group preference aggregation as close as possible to reality, and simple majority
voting is the most frequent voting rule observed in practice. In this way, I make
recommendations how to improve collective decision-making at the representatives’
level.
Furthermore, the representatives play an ex-post perfect equilibrium that is induced
by a sequential voting procedure. I assume that the set of voting mechanisms over
which the utilitarian designer optimizes coincides with the class of successive vot-
ing procedures analysed in Gershkov, Moldovanu, and Shi (2017), and Kleiner and
Moldovanu (2017). The reasons for this assumption are twofold. First, from a the-
oretical perspective, there is a one-to-one relationship between, on the one hand,
direct mechanisms that are dominant-strategy incentive-compatible and surjective
on the full single-peaked domain, and, on the other hand, the equilibria of the suc-
cessive voting procedures that I consider.3 Second, from a pragmatic standpoint, the
sequential voting procedures are a common feature of many real-world institutions
(see Rasch (2000)). These dynamic voting rules are described in detail in section
1.4.
In order to outline the main results, for concreteness, consider the example of
three policy alternatives.⁴ The three alternatives are 1, 2, and 3, and the citizens’
preferences are single-peaked with respect to the ordering 1< 2< 3. The welfare-
maximizing mechanism takes the form of a weighted successive voting procedure
illustrated in Figure 1.1. Assign to each representative or group of citizens two
alternative-dependent voting weights: For any group j ∈ {1, ..., c} with c≥ 2, the
weight wj(1) is related to alternative 1, and the other weight wj(2) is linked to al-
ternative 2. Further, introduce two alternative-dependent majority quotas q(1) and
q(2). Then, a weighted successive voting procedure works as follows: First, put alter-
native 1 on the agenda, and perform a binary vote whether to implement alternative
1 or not. The weights and quotas related to alternative 1, i.e., [w1(1), ..., wc(1); q(1)],
determine when alternative 1 is collectively accepted: Alternative 1 is implemented
if the sum of weights related to alternative 1 associated with representatives vot-
ing “Yes” at alternative 1 exceeds the majority quota q(1) linked to alternative 1.

2. Under the restriction on the preference distribution that I impose in the characterization of
the optimal mechanism for the representatives’ voting process, the median mechanism is optimal in
the following sense: It maximizes the welfare of a group’s own citizens among all direct mechanisms
that are dominant-strategy incentive-compatible, and anonymous on the full single-peaked domain,
and that satisfy the additional constraint that the outcome always coincides with some citizen’s peak
alternative. Gershkov, Moldovanu, and Shi (2017) contains a related finding. The result follows by
combining the finding that is mentioned directly before Footnote 3 as well as Theorem 1.1 while
setting all population sizes equal to 1.

3. Similar results for the anonymous case are contained in Gershkov, Moldovanu, and Shi
(2017), and Kleiner and Moldovanu (2017). The stated finding follows from the characterization
of strategy-proof social choice functions in Nehring and Puppe (2007).

4. All the presented results hold for any finite number of alternatives.
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1, 2, 3

1 2, 3

32

[w1(1), ...,wc(1); q(1)]

[w1(2), ...,wc(2); q(2)]

Figure 1.1. Weighted Successive Voting Procedure

Otherwise, alternative 2 is put on the agenda, and there is a binary vote on this
alternative. Again, representatives can either vote “Yes” or “No”, and the weights
and quotas [w1(2), ..., wc(2); q(2)] linked to alternative 2 govern when alternative
2 is collectively approved in a way that is analogous to the vote on alternative 1.
Otherwise, alternative 3 is implemented. Now, define a representative’s strategy in
the game induced by such weighted successive voting procedures as sincere if this
representative plays action “Yes” if and only if the alternative on the agenda lies
weakly to the right of the representative’s most preferred alternative.
The main results are as follows: First, I show that the welfare-maximizing mecha-
nism can be implemented via the sincere equilibrium induced by a weighted succes-
sive voting procedure, and I derive closed-form expressions for the utilitarian vot-
ing weights and majority quotas (Theorem 1.1). The optimal weights and quotas
are sensitive to the alternative that is on the agenda through the cdf of the citizens’
most preferred alternatives denoted by G. Concretely, in the three-alternatives case,
this means that the welfare-maximizing weights wj(1) and quota q(1) depend on
the value of G(1), i.e., the probability that 1 is any citizen’s most preferred alterna-
tive. Similarly, the optimal wj(2) and q(2) are sensitive to the value of G(2), i.e., the
probability that any citizen does not have 3 as his or her most preferred alternative.
Second, I derive analytically several properties of the optimal weights and quotas.
To present these features, say that an alternative k0 is more moderate or less extreme
than another alternative k00 if |G(k0)− 1

2 |< |G(k00)− 1
2 |.

For the majority quotas, I find that the vote on more extreme alternatives re-
quires majority quotas that are further away from simple majority. In particular,
the welfare-maximizing quotas do not coincide with simple majority.
The utilitarian weights of nations have two key properties. First, for any alterna-
tive, the corresponding optimal weights feature a degree of overweighting of smaller
groups that lies between the benchmark, where weights are linear in group sizes,
and a power law with exponent 1− ln 2

ln 3 ≈ 0.37 (Proposition 1.2). In particular, this
finding implies that the optimal weights exhibit degressive proportionality, that is,



1.2 Literature | 9

the weights themselves are increasing, but the weights per citizen are decreasing in
the group size. Second, I investigate how the magnitude of overweighting smaller
groups varies across alternatives. I find that the overweighting of smaller groups is
larger for more moderate compared to more extreme alternatives (Theorem 1.2).
Taking together these properties, the above mentioned insight that the vote on more
extreme alternatives involves majority quotas further away from simple majority
and, at the same time, relatively higher voting weights for large groups emerges.
The features of the optimal weights and quotas differ from what the previous liter-
ature has found: Barberà and Jackson (2006) find voting weights that are propor-
tional to the square root of the group sizes as well as a simple majority quota. Maaser
and Napel (2007), Maaser and Napel (2012), Maaser and Napel (2014), and Kurz,
Maaser, and Napel (2017) assume simple majority quotas and also find square root
weights.⁵
Finally, I discuss the implications of my theoretical findings for the design of voting
mechanisms in real-world institutions while focusing on the European Union. Con-
sider the weighted majority voting rule that was in place in the Council of the Euro-
pean Union until 2014 exhibiting approximately square root weights, and a majority
quota of 74%. While the stated previous literature can rationalize the square root
weights, it cannot explain the use of a qualified majority quota of 74%. In contrast,
my model can rationalize such a majority quota. However, my quantitative analysis
suggests that the use of it should be accompanied by higher voting weights for large
member states or, in other words, less overweighting of small member states com-
pared to the weights that were applied in the Council of the European Union.
The remainder of this chapter is organized as follows. The subsequent section 1.2
discusses the related literature. The model is introduced in section 1.3. Next, in sec-
tion 1.4, I present the class of successive voting procedures. Then, in section 1.5, I
characterize the welfare-maximizing mechanism for the collective decision-making
process of the representatives. Based on this characterization, in sections 1.6 and 1.7,
I study in detail the features of the utilitarian quotas and weights of nations. The
following section 1.8 treats the extension to preferences that are correlated within
groups. Subsequently, in section 1.9, I analyse the design of voting mechanisms for
institutions of the European Union. The final section 1.10 concludes. The proofs are
contained in Appendix 1.A.

1.2 Literature

This chapter builds upon and contributes to the following two strands of the lit-
erature: The literature on the apportionment problem as well as the literature on
sequential voting and mechanism design.

5. The reasons for these differences are discussed in the literature review in section 1.2.
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The literature on the apportionment problem starts with Penrose (1946) who argues
in a two-alternatives setting, where every citizen prefers one over the other alterna-
tive with an independent probability of 1

2 , that the voting power of each group of
citizens should be proportional to the square root of the group size. The argument
relies on the observation that, in this case, the probability that a citizen is pivotal in
a within-group simple majority election is asymptotically proportional to the inverse
of the square root of the group size.⁶
More recently, Barberà and Jackson (2006) derive the utilitarian voting mechanism
for the case of two alternatives, supposing that the key assumptions of the bench-
mark model described in the introduction hold.⁷ In addition, assume that the citi-
zens’ preference intensities are symmetric across the two alternatives.⁸ Barberà and
Jackson (2006) exclusively study the case in which every citizen prefers one over
the other alternative with probability 1

2 . Then, they find a simple majority quota,
and, for large population sizes, square root weights.
I contribute to the literature on the apportionment problem with two alternatives
in the following ways: First, I generalize Barberà and Jackson (2006) by character-
izing optimal mechanisms for any probability with which any citizen prefers one
over the other alternative. Second, my analysis reveals that the assumption in Bar-
berà and Jackson (2006) that each citizen prefers one over the other alternative
with probability 1

2 is crucial for their findings. Allowing for probabilities with which
any citizen prefers one over the other alternative that are different from 1

2 , I obtain
that the optimal majority quotas do not coincide with simple majority and that the
degree of overweighting of smaller groups is lower compared to what Barberà and
Jackson (2006) find.
The apportionment problem with an interval of alternatives, single-peaked prefer-
ences, and representatives being selected according to the median mechanism has
already received some attention in the literature. While employing different objec-
tive criteria, Maaser and Napel (2007), Maaser and Napel (2012), and Maaser and
Napel (2014) provide numerical results how weights should be assigned to repre-
sentatives or groups of citizens. Maaser and Napel (2007) aim at equalizing pivot
probabilities across citizens from different groups, Maaser and Napel (2012) mini-
mize the direct democracy deficit, and Maaser and Napel (2014) rely on the utilitar-
ian principle. In addition, Kurz, Maaser, and Napel (2017) confirm the numerical

6. Chamberlain and Rothschild (1981) show that this pivot probability is asymptotically pro-
portional to the inverse of the group size if there is uncertainty about the probability with which any
citizen prefers one over the other alternative. Gelman, Katz, and Bafumi (2004) is a related empirical
analysis.

7. Other contributions on the apportionment problem with two alternatives that also rely on the
utilitarian principle include Beisbart and Bovens (2007), Fleurbaey (2008), and Macé and Treibich
(2021). Also, Koriyama, Laslier, Macé, and Treibich (2013) study the apportionment problem in a
setting featuring repeated binary decisions.

8. I impose a generalization of this restriction when characterizing optimal mechanisms.
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findings in Maaser and Napel (2007) by providing analytical results when, again,
the objective is to equalize pivot probabilities.⁹ Apart from the aspect that these
contributions assume that the set of alternatives constitutes an interval, whereas in
my model there is a finite number of alternatives, the set of feasible mechanisms
for the collective decision-making process of the representatives that these papers
allow for is a strict subset of the set of sequential voting procedures I allow for. In the
stated contributions, the mechanisms are not described in terms of successive voting
procedures, but the mechanisms they consider can nevertheless be implemented by
successive voting procedures. Then, starting from the set of successive voting pro-
cedures, these authors impose three additional constraints. First, they restrict atten-
tion to weighted successive voting procedures as defined in the introduction. Second,
they assume that the weights and majority quotas are not sensitive to the alternative
that is on the agenda. Third, they suppose that the majority requirements amount
to simple majority. Taking this class of mechanisms, under the assumption that the
preferences are distributed independently and identically across all citizens, Maaser
and Napel (2007), Maaser and Napel (2012), Maaser and Napel (2014), and Kurz,
Maaser, and Napel (2017) find that the resulting alternative-independent weights
should be proportional to the square root of the population sizes.
I contribute to literature on the apportionment problem with more than two alter-
natives, and single-peaked preferences as follows: To the best of my knowledge, I
provide the first analytical results for the apportionment problem in a setting featur-
ing more than two alternatives, single-peaked preferences, and a utilitarian objec-
tive criterion. Moreover, in contrast to Maaser and Napel (2007), Maaser and Napel
(2012), Maaser and Napel (2014), and Kurz, Maaser, and Napel (2017), I find that
the optimal weights in my model do, generally, not give rise to a square root rule,
and the welfare-maximizing quotas do not amount to simple majority.
The literature on sequential voting and mechanism design studies equilibrium vot-
ing behaviour under sequential voting procedures, and the utilitarian efficiency of
voting rules. Early contributions include Farquharson (1969), and Rae (1969) re-
spectively.
More recently, Kleiner and Moldovanu (2017) analyse sequential voting procedures
when agents have single-peaked preferences while restricting attention to anony-
mous voting rules. They identify conditions on the voting procedures under which
the induced dynamic games admit an ex-post perfect equilibrium in which the
agents vote sincerely. The successive voting procedures that I consider are part of
the class of voting rules identified in Kleiner andMoldovanu (2017), but I generalize
them to allow for non-anonymous voting. While allowing for non-anonymous voting,
Nehring and Puppe (2007) characterize dominant-strategy incentive-compatible,
and surjective social choice functions on the full single-peaked domain in terms

9. Also, for this objective criterion, Kurz, Maaser, and Napel (2018) show how population sizes
relate to the Shapley value of a specific cooperative game.
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of voting by issues mechanisms. There is a one-to-one relationship between these
static voting rules and the dynamic successive voting procedures. Therefore, the suc-
cessive voting procedures represent dynamic versions of the mechanisms identified
in Nehring and Puppe (2007).
Moreover, Gershkov, Moldovanu, and Shi (2017) characterize utilitarian voting
mechanisms under direct democracy in a setting with more than two alternatives,
single-peaked preferences, and agents that are ex-ante identical while imposing
anonymity as an additional constraint. They show that, in this case, the optimal
voting rule among all anonymous, unanimous, and dominant-strategy incentive-
compatible mechanisms takes the form of an anonymous successive voting proce-
dure with majority thresholds that are decreasing along the sequence of ballots. My
characterization of welfare-maximizing mechanisms for the voting process of repre-
sentatives extends the findings from Gershkov, Moldovanu, and Shi (2017) from the
case of direct democracy, and ex-ante identical agents to the case of indirect democ-
racy, and ex-ante heterogeneous agents. The proof for my characterization result
builds upon the proof of Gershkov, Moldovanu, and Shi (2017)’s characterization of
utilitarian mechanisms, but the fact that the collective decision-making is indirect
and that voting might be non-anonymous requires different arguments as well as
distinct assumptions.
Finally, on a technical note, I employ two main analytical tools in my analysis: A
characterization of the binomial distribution in terms of truncated expectations due
to Ahmed (1991) as well as a recurrence relation for the symmetric incomplete beta
function due to Saunders (1992).

1.3 Model

There is a finite set of alternatives M := {1, ..., m} with m≥ 2, and a finite set of
countries C := {1, ..., c} with c≥ 2. In each country j ∈ C, there is an odd number of
citizens nj ≥ 1. I assume that not all countries have a population size of 1.1⁰
Let me recall the well-known definition of a single-peaked preference relation. A
strict preference ordering≻ over M is single-peaked with respect to the ordering 1<
2< ...<m− 1<m if there exists some alternative p ∈M such that, for all distinct
alternatives k, k0 ∈M with k ̸= k0,

[k0 < k ≤ p ∨ p ≤ k < k0] ⇒ k ≻ k0.

The preference domain restriction of single-peakedness relies on the assumption that
there is a unidimensional political spectrum that might range from left-wing to right-
wing policies. Then, single-peakedness amounts to the following constraint: If an
alternative k0 is further away to the left or the right from the most preferred or peak

10. For simplicity, from now on, the framing is in terms of countries.
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policy p than alternative k, policy kmust be preferred to alternative k0. Let PSP denote
the set of all single-peaked preference relations. Citizens’ preferences are assumed
to be single-peaked with respect to the stated ordering 1< 2< ...<m− 1<m, and
they are supposed to be cardinal as utilitarianism is the objective criterion.
More specifically, citizens’ have types that are governed by the random variable T.
The distribution of T has full support on some non-empty set S ̸= ;. All subsequent
expectations are taken with respect to this distribution. Types are distributed inde-
pendently and identically across all citizens. If alternative k ∈M is implemented,
the utility that a citizen with type realization t ∈ S derives from this alternative is
denoted by uk(t).
I collect three restrictions on the utility function and the type distribution. First,
utilities are assumed to be bounded, meaning, there exists some bound B ∈ R such
that, for almost all type realizations t ∈ S and for every alternative k ∈M, |uk(t)|< B.
Second, I exclude indifferences, that is, for almost all type realizations t ∈ S and for
every pair of distinct alternatives k, k0 ∈M with k ̸= k0, uk(t) ̸= uk0

(t). Third, utilities
have to be, of course, consistent with single-peakedness. Formally, this condition
requires that, for almost all type realizations t ∈ S, there exists a single-peaked pref-
erence relation≻∈ PSP such that, for every pair of distinct alternatives k, k0 ∈M with
k ̸= k0,

k ≻ k0 ⇔ uk(t) > uk0

(t).

Further, I impose a weak richness assumption on the preference domain requiring
that every alternative is the most preferred alternative for some type. Formally, I
assume that, for every alternative k ∈M, there exists a set of types Z ⊂ S arising
with positive probability such that, for every element in this set t ∈ Z, it holds, for
all alternatives k0 ∈M with k ̸= k0,

uk(t) > uk0

(t).

Finally, let G describe the cdf of the citizens’ most preferred or peak alternatives,
meaning, for all k ∈M, define

G(k) := Pr(argmax
k0∈M

uk0

(t) ≤ k).

Note that the domain richness assumption implies that G(k) is strictly increasing in
k. In order to characterize the optimal mechanism, I impose further constraints on
the preference distribution that I present along with the characterization result.
Now, let me describe the collective decision-making process. Again, every country
has exactly one representative. I assume that the representative of country j ∈ C is
a median citizen in this country, that is, his or her most preferred alternative coin-
cides with the median of all most preferred alternatives in country j. In other words,
I impose that the representatives’ most preferred alternatives are consistent with the
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Condorcet winners in the countries. The representatives play an equilibrium that is
induced by a sequential voting procedure. Each representative’s equilibrium strat-
egy conditions only on his or her peak alternative, but it does not depend on further
preference information. Therefore, it is sufficient to specify how the most preferred
alternatives of the representatives are determined. I introduce the set of feasible se-
quential voting procedures, and the equilibrium in the following section. Finally, the
mechanism designer maximizes the citizens’ ex-ante utilitarian welfare over these
sequential voting procedures, taking into account that representatives are median
citizens.

1.4 Sequential Voting

In this section, I present the sequential voting procedures over which the utilitarian
designer optimizes. I focus on the class of successive voting procedures that has
been studied previously by Gershkov, Moldovanu, and Shi (2017), and Kleiner and
Moldovanu (2017) who restrict attention to anonymous procedures. Again, static
versions of these voting procedures are contained in Nehring and Puppe (2007)
who allow for non-anonymous voting.
For simplicity, identify the representative of country j ∈ C directly with the label of
this country. To describe the class of successive voting procedures, I rely on simple
games studied in Taylor and Zwicker (1999). Specifically, following Nehring and
Puppe (2007), define a family of winning coalitionsW to be a non-empty collection
of non-empty subsets of the set of countries or representatives C that is closed under
taking supersets, meaning,

[W ∈ W ∧W ⊆ W0] ⇒ W0 ∈ W .

Every successive voting procedure is characterized bym− 1 families of winning coali-
tions, and each of these families of winning coalition is associated with a unique al-
ternative from the set M \ {m}. More formally, for each 1≤ k<m, there is a family
of winning coalitionsWk. Moreover, assume that these families of winning coalitions
are ordered by set inclusion, that is, suppose that, for all 1≤ k<m− 1,

Wk ⊆ Wk+1.

This set inclusion restriction has the interpretation that it is more difficult to collec-
tively approve alternatives that are put earlier on the agenda.
The basic idea behind the successive voting procedure is to perform a sequence of
binary votes and to go gradually from left-wing to right-wing alternatives. At each
stage of the dynamic procedure, representatives vote simultaneously, and they can
either approve or reject the alternative that is currently on the agenda. In other
words, the available actions are “Yes” and “No”. The successive voting procedure
with families of winning coalitions {Wk}m−1

k=1 works as follows:
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(1) To begin with, the leftmost alternative 1 is put on the agenda, and representa-
tives can either approve or reject alternative 1. If the set of representatives who
play “Yes” coincides with some element of the family of winning coalitions W1,
alternative 1 is implemented. Otherwise, alternative 2 is considered.

(2) Representatives either vote in favor or against alternative 2. If the set of repre-
sentatives voting in favor of alternative 2 coincides with some element of the
family of winning coalitions W2, alternative 2 is selected. Otherwise, continue
the voting process.

(3) Consider alternative 3 and possibly more alternatives to the right of 3, and treat
them in the same way as alternatives 1 and 2. Eventually, either some alternative
1≤ k<m is selected or if the set of agents approving alternative m− 1 does not
coincide with some element of Wm−1, implement alternative m.

For the case of three alternatives, i.e., m= 3, Figure 1.2 illustrates the successive
voting procedure with families of winning coalitionsW1 andW2 satisfyingW1 ⊆W2

by means of a tree. The three alternatives might be interpreted as follows: Alterna-

1, 2, 3

1 2, 3

32

W1

W2

Figure 1.2. Successive Voting Procedure

tive 3 constitutes the status quo policy. In the context of the United States Congress,
alternatives 1 and 2 might be a constitutional amendment and a standard bill re-
spectively. With regard to the Council of the European Union, alternative 2 might
represent a policy proposal from the European Commission or the High Representa-
tive of the Union for Foreign Affairs and Security Policy, whereas alternative 1 relates
to the same political matter, but it is proposed by someone else.
Having described the class of successive voting procedures, I study equilibrium be-
havior. Following Gershkov, Moldovanu, and Shi (2017), call a strategy sincere if
some representative plays action “Yes” if and only if the alternative on the agenda
lies weakly to the right of this representative’s most preferred alternative. The solu-
tion concept is ex-post perfect equilibrium. Following, again, Gershkov, Moldovanu,
and Shi (2017), this equilibrium concept can be defined in words as follows: For ev-
ery profile of type realizations and at each stage of the dynamic procedure, the con-
tinuation strategies constitute a Nash equilibrium of the subgame where the profile
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of type realizations is common knowledge.11 Similar to the anonymous case stud-
ied in Gershkov, Moldovanu, and Shi (2017), and Kleiner and Moldovanu (2017), it
turns out that sincere voting constitutes an ex-post perfect equilibrium.

Proposition 1.1. Sincere voting constitutes an ex-post perfect equilibrium in the
game induced by any successive voting procedure.

From now on, I suppose that the representatives play the sincere voting equilib-
rium, and I assume that the utilitarian designer optimizes over the class of successive
voting procedures that I just presented.
Before turning to welfare maximization, I introduce a subset of the class of succes-
sive voting procedures that I call weighted successive voting procedures. I emphasize
that I optimize over all successive voting procedures, but it turns out that the welfare-
maximizing mechanism can be implemented via a weighted successive voting proce-
dure. A successive voting procedure with collections of winning coalitions {Wk}m−1

k=1
constitutes a weighted successive voting procedure if there exist weightswj(k) ∈ R>0

and quotas q(k) ∈ R>0 with 1≤ k<m and j ∈ C such that, for all 1≤ k<m and ev-
ery set of representatives D ⊆ C, it holds

D ∈ Wk ⇔
∑

j∈D

wj(k) ≥ q(k).

In words, for each alternative 1≤ k<m, there is a majority quota q(k) as well as a
vector of voting weights [w1(k), ...,wc(k)]. In particular, weights and quotas might
be sensitive to the alternative that is on the agenda. Then, when it comes to the
binary vote on alternative 1≤ k<m, this alternative is approved if and only if the
sum of weights wj(k) with j ∈ C associated with representatives who vote “Yes” at
alternative k exceeds the majority requirement q(k).

1.5 Welfare Maximization

In this section, I optimize over the successive voting procedures, and characterize
the welfare-maximizing mechanism for the collective decision-making process in-
volving the representatives, taking into account that each representative is a median
citizen in the respective country. The optimization problem amounts to finding the
families of winning coalitions {Wk}m−1

k=1 with Wk ⊆Wk+1 for all 1≤ k<m− 1 that
maximize the citizens’ utilitarian welfare. Since utilities are bounded by assumption,
a bounded function is maximized over a finite set of elements. Thus, the existence
of a solution is guaranteed.
Recall that the utilitarian designer has to make inferences about the citizens’ prefer-
ences based on the vote choices of the representatives. I introduce two objects that

11. For a formal definition, I refer to Kleiner and Moldovanu (2017).
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reflect this inference, and that determine the basic trade-off the designer is facing.
On the one hand, for any alternative 1≤ k<m, define

µN
nj

(k) := E[uk+1(T) − uk(T)|j votes “No” at k].

Intuitively, µN
nj

(k) describes howmuch an arbitrary citizen from country j cares about
continuing the voting process of the representatives one more step and implement-
ing alternative k+ 1 versus stopping the voting process right now and implementing
the current alternative k, conditional on the event that the representative of country
j votes “No” at alternative k. Now, observe that j votes “No” at k if and only if there
are at least nj+1

2 citizens from country j having peaks weakly to the right of k+ 1.
The object µN

nj
(k) can be expressed as

µN
nj

(k) =E[uk+1(T) − uk(T)|j votes “No” at k]

=wN
nj

(k)E[uk+1 − uk|uk+1 > uk] + [1 − wN
nj

(k)][−1]E[uk − uk+1|uk > uk+1].

The term wN
nj

(k) appearing in the expression is defined as

wN
nj

(k) :=
nj
∑

s=
nj+1

2

r(nj, k, s)

1 − R(nj, k,
nj−1

2 )

s
nj

,

where r(nj, k, ·) and R(nj, k, ·) denote the pmf and the cdf of the binomial distribution
with parameters nj and 1−G(k).12 In words, the term wN

nj
(k) describes the expected

share of citizens from country j who would want their representative to vote “No”
at alternative k, i.e., who have peaks weakly to the right of k+ 1, conditional on
the representative of country j voting “No” at alternative k. The derivation of the
expression for µN

nj
(k) is contained in Appendix 1.B.

On the other hand, for any 1≤ k<m, define

µY
nj

(k) := E[uk(T) − uk+1(T)|j votes “Yes” at k].

In intuitive terms, µY
nj

(k) captures how much an arbitrary citizen from country j
cares about stopping the voting process of the representatives right now and imple-
menting alternative k versus continuing the voting process for one more step and
implementing alternative k+ 1, conditional on the event that the representative of
country j votes “Yes” at k. Note that j votes “Yes” at k if and only if there are at least
nj+1

2 citizens from country j having peaks weakly to the left of k. Now, define the
expected share

wY
nj

(k) :=
nj
∑

s=
nj+1

2

l(nj, k, s)

1 − L(nj, k,
nj−1

2 )

s
nj

,

12. Recall that G denotes the cdf of the citizens’ peaks.
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where l(nj, k, ·) and L(nj, k, ·) denote the pmf and the cdf of the binomial distribu-
tion with parameters nj and G(k). The term wY

nj
(k) represents the expected share of

citizens from country j who would want their representative to vote “Yes” at alter-
native k, i.e., who have peaks weakly to the left of alternative k, conditional on the
representative of country j voting “Yes” at this alternative. Then, the object µY

nj
(k)

can be written as

µY
nj

(k)

= wY
nj

(k)E[uk − uk+1|uk > uk+1] + [1 − wY
nj

(k)][−1]E[uk+1 − uk|uk+1 > uk].13

It turns out that the optimal mechanism is determined through a comparison of the
two objects µN

nj
(k) and µY

nj
(k). These objects might be interpreted as the citizens’

inferred preference intensities that are induced by indirect democracy.
Theorem 1.1 characterizes the welfare-maximizing mechanism. It reveals that the
optimal mechanism can be implemented via a weighted successive voting procedure.
Without loss of generality, I normalize the weights such that, for all 1≤ k<m, it
holds
∑

j∈C wj(k)= c. The proof of Theorem 1.1 makes use of several lemmata that
are contained in the appendix.

Theorem 1.1. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

The weighted successive voting procedure with weights

wj(k) =
nj · [µY

nj
(k) + µN

nj
(k)]

1
c

∑

j∈C nj · [µY
nj

(k) + µN
nj

(k)]
=

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]

and quotas

q(k) =
c

1 +
1
c

∑

j∈C nj·µY
nj

(k)

1
c

∑

j∈C nj·µN
nj

(k)

=
c

1 +
1
c

∑

j∈C nj·[2wY
nj

(k)−1]
1
c

∑

j∈C nj·[2wN
nj

(k)−1]

with j ∈ C and 1≤ k<m implements the optimal mechanism among all successive
voting procedures.

Let me discuss the assumption on the preference distribution. To begin with, the
restriction on the preference distribution, meaning, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

]

13. The derivation of this expression is omitted because it is analogous to the derivation of the
term for µN

nj
(k).
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imposed in Theorem 1.1 represents a symmetry condition on the citizens’ preference
intensities within all pairs of alternatives that are neighbors according to the order-
ing 1< 2< ...<m− 1<m from which single-peakedness is derived. In that sense,
it extends the assumption in Barberà and Jackson (2006) from the two-alternatives
case to scenarios with more than two alternatives. In general, the assumption con-
stitutes a joint restriction on the utility function and the type distribution. Let me
outline a simple example of a preference distribution that satisfies the discussed as-
sumption. Suppose that each citizen’s type is governed by T := P×ΘL ×ΘR, where
P captures the citizen’s peak, and ΘL as well as ΘR determine how much the util-
ity decreases when deviating from the peak to the left and to the right respec-
tively. The support of the distribution of T is given by S := {p1, ..., pm}× [0, θ̄]2

with p1, ...,pm ∈ R, p1 < p2 < ...< pm−1 < pm and θ̄ > 0. Also, assume that the ran-
dom variable P is independent of the random variable ΘL ×ΘR, and impose that
E[ΘL]= E[ΘR]. Now, if a citizen’s type realization is t ∈ S and alternative 1≤ k≤m
is implemented, this citizen derives the following utility:

uk(t) := uk(p,θL,θR) =

�

−θR(pk − p), pk ≥ p
−θL(p − pk), pk < p

.

In words, the policy alternatives are spatially located in a one-dimensional policy
spectrum, the utility a citizen derives from an alternative is shaped by the absolute
difference between the locations of this citizen’s peak and the implemented alter-
native, and the slope with which this citizen’s utility decreases when moving away
from the peak is specific to the direction of the deviation from the peak. Finally, ob-
serve that this preference distribution satisfies the assumption of Theorem 1.1.
Further, in general, as emphasized by the notation, the optimal voting weights and
majority quotas are sensitive to the alternative on the agenda through the cdf of
the citizens’ peaks G. More specifically, the optimal weights and quotas associated
with alternative k ∈M depend on G(k), which is, again, the probability that an ar-
bitrary citizen’s most preferred alternative lies weakly to the left of k. However, the
utilitarian weights and quotas do not depend on the precise value of the preference
intensities E[uk0

− uk0+1|uk0

> uk0+1]= E[uk0+1 − uk0

|uk0+1 > uk0

] with 1≤ k0 <m.
To interpret the optimal weights and quotas, consider some alternative 1≤ k<m,
and let Xk

nj
∼ Binomial(nj, 1−G(k)) as well as Yk

nj
∼ Binomial(nj, G(k)). The random

variable Xk
nj
describes the number of citizens in country j whose most preferred alter-

natives lie weakly to the right of k+ 1. Similarly, the random variable Yk
nj
captures

the number of citizens in country j with peak alternatives weakly to the left of k.
Rewriting the expression appearing in Theorem 1.1 as done in the proof of Theo-
rem 1.2 reveals that the optimal weights wj(k) are proportional to

E[Xk
nj
|Xk

nj
≥

nj + 1

2
] − E[Xk

nj
] + E[Yk

nj
|Yk

nj
≥

nj + 1

2
] − E[Yk

nj
].
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This expression shows how the inference problem that the designer faces is resolved.
The object E[Xk

nj
|Xk

nj
≥ nj+1

2 ] captures the expected number of citizens from coun-
try j who would want their representative to vote “No” at k, i.e., who have peaks
weakly to the right of k+ 1, conditional on j actually voting “No” at k. The object
E[Yk

nj
|Yk

nj
≥ nj+1

2 ] represents the expected number of citizens of country j who want
the representative of country j to vote “Yes”, i.e, who have peaks weakly to the left
of k, conditional on j voting “Yes”. Consequently, intuitively, optimal weights reflect
how much the designer learns about the citizens’ preferences from the representa-
tives’ voting decisions relative to the prior expectations E[Xk

nj
] and E[Yk

nj
].

Moreover, using the introduced notation, the optimal quota q(k) can be expressed
as

q(k) =
c

1 +
1
c

∑

j∈C E[Yk
nj
|Yk

nj
≥

nj+1
2 ]−

1
2 ·nj

1
c

∑

j∈C E[Xk
nj
|Xk

nj
≥

nj+1
2 ]−

1
2 ·nj

.

Before analysing the features of the optimal weights and quotas for the case of fi-
nite population sizes comprehensively, to develop some intuition, it is instructive to
briefly consider the scenario of large population sizes here. Suppose that the pop-
ulation sizes nj with j ∈ C are large. I perform a case distinction depending on the
value of G(k). First, I consider the case in which G(k)< 1

2 . Here, if nj is large, by the
law of large numbers, the optimal weight wj(k) is approximately proportional to the
term

E[Xk
nj
|Xk

nj
≥

nj + 1

2
] − E[Xk

nj
] + E[Yk

nj
|Yk

nj
≥

nj + 1

2
] − E[Yk

nj
]

≈ E[Xk
nj
] − E[Xk

nj
] +

nj + 1

2
− G(k) · nj

=
1
2
+ [

1
2
− G(k)] · nj,

which means that the weights are effectively linear in population sizes. Intuitively,
the designer expects themedian peak in country j to lie to the right of alternative k or,
in other words, the designer expects that there are more than nj+1

2 citizens in country
j with peaks strictly to the right of alternative k. Therefore, he or she essentially
learns nothing about the citizens’ preferences from a representative voting “No” at k.
Further, the designer expects that there are G(k) · nj citizens in country j with peaks
weakly to the left of alternative k. Consequently, a “Yes” vote of a representative at k
reveals that there are nj+1

2 −G(k) · nj more citizens in country j with peaks weakly to
the left of k than expected. Moreover, again, by the law of large numbers, if G(k)< 1

2
and population sizes are large, the optimal quota q(k) approximately equals
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q(k) =
c

1 +
1
c

∑

j∈C E[Yk
nj
|Yk

nj
≥

nj+1
2 ]−

1
2 nj

1
c

∑

j∈C E[Xk
nj
|Xk

nj
≥

nj+1
2 ]−

1
2 nj

≈
c

1 +
1
c

∑

j∈C
nj+1

2 −
1
2 ·nj

1
c

∑

j∈C E[Xk
nj
]− 1

2 ·nj

=
c

1 +
1
c

∑

j∈C
1
2

1
c

∑

j∈C[
1
2−G(k)]·nj

≈ c,

implying that almost unanimous consent is required in order to implement alterna-
tive k.
Second, if G(k)> 1

2 , and population sizes are large, an analogous reasoning implies
that the optimal weights wj(k) are again effectively linear in population sizes, and
that the optimal quota approximately satisfies q(k)≈ 0. The latter aspect means that
almost unanimous consent is needed in order to reject alternative k.
Third, if G(k)= 1

2 , the expression for the optimal quota implies that q(k)= 1
2c for

all population sizes. In other words, the optimal quota coincides with the simple
majority threshold. Furthermore, while employing the characterization result from
Ahmed (1991), the proof of Theorem 1.2 reveals that the weight assigned to country
j is proportional to

G(k)
nj+1

2 Pr(Xk
nj
=

nj+1
2 )

Pr(Xk
nj
≤ nj−1

2 )Pr(Xk
nj
≥ nj+1

2 )
.

Now, because of G(k)= 1
2 , this expression simplifies to

nj · Pr(Xk
nj−1 =

nj − 1

2
).

Observe that the term Pr(Xk
nj−1 =

nj−1
2 ) represents the probability that a citizen is piv-

otal in a simple majority election within country j involving two alternatives, where
each of them is preferred by any citizen in country j with an independent probability
of 1

2 . For large population sizes, by the De Moivre-Laplace theorem, this probability
is approximately proportional to the inverse of the square root of the population size.
Therefore, the optimal weights are effectively proportional to the square root of the
population sizes. This is Penrose (1946)’s early insight, and his square root law is
recovered in the special case in which G(k)= 1

2 . The case of G(k)= 1
2 corresponds

also to the scenario studied in Barberà and Jackson (2006).
Overall, this discussion of the scenario in which population sizes are large can be
summarized as follows: Say that an alternative 1≤ k<m is maximally moderate
if G(k)= 1

2 . Then, unless the alternative is maximally moderate, the corresponding
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optimal weights are effectively linear in population sizes, and the optimal quotas are
approximately equal to unanimity or anti-unanimity. In contrast, if the alternative is
maximally moderate, the optimal weights are effectively proportional to the square
root of the population sizes, and the optimal quota equals simple majority.
In the following sections 1.6 and 1.7, I study in detail the properties of the opti-
mal quotas and weights while concentrating on finite population sizes. Again, the
justification for this focus is that the model incorporating correlated preferences
essentially corresponds to the model featuring independent preferences as well as
finite population sizes. If population sizes are finite, it turns out that the optimal
weights and quotas have similar features as in the case of large population sizes,
but, informally speaking, the properties are in some ways less extreme or, in other
words, the features for the case of large population sizes are in a sense smoothed
out.

1.6 Majority Quotas

In this section, I discuss the main properties of the utilitarian majority quotas. To be-
gin with, the optimal quotas are strictly decreasing in the alternative k, that is, they
are strictly decreasing along the sequence of ballots. More precisely, they strictly de-
crease in the value of G(k). Depending on the value of G(k), the welfare-maximizing
quotas represent supermajority, simple majority or submajority requirements:

G(k) <
1
2
⇒ q(k) > c ·

1
2

,

G(k) =
1
2
⇒ q(k) = c ·

1
2
, and

G(k) >
1
2
⇒ q(k) < c ·

1
2

.

These features follow from the fact that, for all j ∈ C,wY
nj

(k) is increasing in kwhereas
wN

nj
(k) is decreasing in k1⁴ together with the aspect that G(k)= 1

2 if and only if
wY

nj
(k)= wN

nj
(k) with j ∈ C.

Except for the knife-edge case in which G(k)= 1
2 ,1⁵ the welfare-maximizing major-

ity requirements do not coincide with simple majority. This stands in contrast to
the assumption of simple majority quotas in Maaser and Napel (2007), Maaser and
Napel (2012), Maaser and Napel (2014), and Kurz, Maaser, and Napel (2017), but
also the simple majority finding of Barberà and Jackson (2006) for the case of two
alternatives.
Again, define an alternative k0 to be more moderate or less extreme than another

14. In the proofs of Lemma 1.2, and Lemma 1.4 appearing in Appendix 1.A, I argue that these
two aspects hold.

15. Again, Barberà and Jackson (2006) analyse only this case.
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alternative k00 if |G(k0)− 1
2 |< |G(k00)− 1

2 |. The vote on more extreme alternatives re-
quires majority quotas that are further away from simple majority. In other words, a
larger value of |G(k)− 1

2 | implies a majority quota that is more distant from simple
majority. This property follows from the discussion above together with the follow-
ing observation: Take two distinct alternatives k0 and k00 such that G(k0)= 1−G(k00).
Then, it holds that q(k0)= c− q(k00).
In order to better understand the shape of the welfare-maximizing quotas, let me
begin by emphasizing that the property of strictly decreasing quotas does not arise
because population sizes are heterogeneous: It is also present if all countries have
the same population size.1⁶ In contrast, the feature is driven by the aspect that the
collective decision-making is indirect. To see this, compare the optimal mechanism
under indirect versus direct democracy. Direct democracy corresponds to the sce-
nario ruled out in the model, where all population sizes are equal to one, i.e., nj = 1
for all j ∈ C. Assume that c is odd such that, in the direct democracy case, the total
number of citizens is odd. Under the symmetry restriction on the preference inten-
sities from Theorem 1.1, if democracy is direct, the optimal mechanism assigns an
alternative-independent weight of 1 to all citizens.1⁷ More importantly, the optimal
mechanism under direct democracy features an alternative-independent and, thus,
constant, quota amounting to simple majority.1⁸ Therefore, the finding that the vote
on more extreme alternatives requires majority quotas that are further away from
simple majority is not driven by asymmetries in the citizens’ preference intensities
since I precisely assume in Theorem 1.1 that these intensities are not asymmetric,
but it arises because of indirect democracy. In particular, this feature arises here for
a different reason than in Gershkov, Moldovanu, and Shi (2017) who obtain a simi-
lar finding. In Gershkov, Moldovanu, and Shi (2017), the result is driven by the fact
that they assume that the citizens’ preference intensities are asymmetric.
For an intuition behind the result that alternatives that are put to a vote earlier
require higher majority quotas under indirect democracy, compare two arbitrary al-
ternatives k0, k00 ∈M with k0 < k00. Then, conditional on the representative of country
j ∈ C voting “Yes”, the expected number of citizens of country j who would want the
representative to vote “Yes”, i.e., who have peaks weakly to the left of the respective
alternative, is smaller at alternative k0 compared to k00. In addition, conditional on
j voting “No”, the expected number of citizens from country j who would want the
representative to vote “No”, i.e., who have peaks strictly to the right of the respective
alternative, is larger at alternative k0 than at k00. It follows that µY

nj
(k0)< µY

nj
(k00) as

well as µN
nj

(k0)> µN
nj

(k00). Therefore, the asymmetries in these induced preference

16. In this case, the utilitarian mechanism assigns an alternative-independent weight of 1 to all
countries.

17. Since citizens are ex-ante identical, there is no reason to discriminate among citizens.
18. Theorem 1.1 also applies to the direct democracy case, and the stated finding follows from it

when setting all population sizes equal to one.
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intensities imply that the designer imposes a higher majority requirement at k0 com-
pared to k00.

1.7 Weights of Nations

In this section, I study in detail how the utilitarian weights of nations vary with the
population sizes, and how the relationship between population sizes and weights
interacts with the alternative on the agenda.
To begin with, I analyse whether and how much smaller countries are overweighted
relative to the linear benchmark. Proposition 1.2 reveals that, whatever the alter-
native, the associated optimal weights feature a degree of overweighting of smaller
countries that lies between the linear benchmark and a power law with exponent
1− ln 2

ln 3 ≈ 0.37.

Proposition 1.2. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

For all 0≤ α < 1− ln 2
ln 3 as well as any 1≤ k<m and j0, j00 ∈ C such that nj0 < nj00 , the

optimal weights satisfy

wj0(k)

nαj0
<

wj00(k)

nαj00
, and

wj0(k)

nj0
>

wj00(k)

nj00
.

The first part of Proposition 1.2 can be interpreted as an upper bound on the
magnitude of overweighting of smaller countries in the following sense: Whatever
the alternative, evenwhen dividing the associated optimal weights by the population
size to the power of some 0≤ α < 1− ln 2

ln 3 ≈ 0.37, the resulting ratio is nevertheless
strictly increasing in the population size. In particular, when setting α= 0, this find-
ing shows that, for all alternatives, the corresponding optimal weights are strictly
increasing in the population size. Moreover, the proof of Proposition 1.2 reveals that
the discussed upper bound on the degree of overweighting is tight in the following
sense: Suppose that G(k)= 1

2 , nj0 = 1, nj00 = 3, and α= 1− ln 2
ln 3 . Then, it holds that

wj0 (k)
nα

j0
=

wj00 (k)
nα

j00
.

The second part of Proposition 1.2 means that, whatever the alternative, the associ-
ated optimal weights feature an overweighting of smaller countries in the sense that
the optimal weights per citizen are strictly decreasing in the population size. This
finding also represents a lower bound on the degree of overweighting of smaller
countries. Taking both aspects together, I conclude that, for all alternatives, the
corresponding optimal weights feature a magnitude of overweighting of smaller
countries that falls between the linear benchmark and a power law with exponent
1− ln 2

ln 3 ≈ 0.37.



1.7 Weights of Nations | 25

For the special case of α= 0, Proposition 1.2 implies that the optimal weights related
to any alternative exhibit degressive proportionality, that is, for any alternative, the
associated weights are strictly increasing, but the weights per citizen are strictly de-
creasing in the population size. Let me discuss this implication of Proposition 1.2
more in detail. It might be argued that the property that the weights are increasing
in the population size represents a basic requirement any reasonable model should
predict. However, there is a trade-off, implying that this result is not trivial. The proof
of Theorem 1.2 reveals that the optimal weight of some country with population size
n related to alternative 1≤ k<m is proportional to

E[Xk
n|X

k
n ≥

n + 1
2
] − E[Xk

n|X
k
n ≤

n − 1
2
],

where, again, Xk
n ∼ Binomial(n, 1−G(k)). Now, both objects E[Xk

n|X
k
n ≥

n+1
2 ] and

E[Xk
n|X

k
n ≤

n−1
2 ] are increasing in n for two reasons. First, note that the distribu-

tion of Xk
n varies with n. Increasing n yields a stochastic increase according to the

likelihood ratio order which, in turn, implies a stochastic increase according to the
hazard rate as well as reversed hazard rate order (see e.g. Shaked and Shanthiku-
mar (2007)). Therefore, both truncated expectations increase as n rises even for
fixed truncation points. Now, truncation points also become larger as n increases
which reinforces the rise of these two objects. Consequently, since both involved ob-
jects are increasing in n, there is a trade-off, and, a priori, it is ambiguous how the
difference of these objects evolves as a function of n. Proposition 1.2 is established
by applying Theorem 1.2 as well as invoking additional claims that are shown as
part of the proof of Theorem 1.2. In the proof of the latter theorem, I employ the
following two analytical tools: I make use of a relationship between the lower trun-
cated expectation and the hazard rate for binomial random variables due to Ahmed
(1991). In addition, I apply a recurrence relation for the symmetric incomplete beta
function due to Saunders (1992).
Intuitively, larger population sizes have two effects pushing in opposite directions.
On the one hand, higher population sizes imply a greater importance in the utilitar-
ian welfare function. On the other hand, the informativeness of the representatives’
vote choices declines in relative terms in the sense that the share of citizens of a
country, who would want to vote in the same way as their representative does, de-
creases as the population size increases. Formally, for every alternative 1≤ k<m
and for any two countries j0, j00 ∈ C with nj0 < nj00 , it holds wY

n0

j
(k)> wY

n00

j
(k) as well

as wN
n0

j
(k)> wN

n00

j
(k). In fact, this finding is a technical result contained in Albrecht,

Anderson, and Vroman (2010) who study committee search. Therefore, the second
part of Proposition 1.2 can also be derived from Albrecht, Anderson, and Vroman
(2010).1⁹

19. The reason that allowsme to invoke this finding from Albrecht, Anderson, and Vroman (2010)
is the observation that the inferred preference intensities µY

nj
(k) and µN

nj
(k) have a similar structure
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To illustrate the degressive proportionality result implied by Proposition 1.2 more
concretely, consider an extreme situation in which there are a several small coun-
tries, say 9 countries {1, ..., 9} with population size 1, and a single larger country 10
with population size 9. In this case, for all 1≤ k<m, up to a constant, the optimal
weights of the small countries are given by wj(k)= 1 with j ∈ {1, ..., 9} because

E[Xk
1|X

k
1 ≥ 1] − E[Xk

1] + E[Y
k
1 |Y

k
1 ≥ 1] − E[Yk

1] = 1.

Here, the only citizen in the respective country is also the representative. Therefore,
conditional on a “Yes” or “No” vote of the representative, all citizens in such a country
want to vote in the same way as the respective representative does. In contrast, for
all 1≤ k<m, up to the same constant, the optimal weights of the large country 10
satisfy 1< w10(k)< 9 because

1 = 5 + 5 − 9

<E[Xk
9|X

k
9 ≥ 5] + E[Yk

9 |Y
k
9 ≥ 5] − 9

=E[Xk
9|X

k
9 ≥ 5] − E[Xk

9] + E[Y
k
9 |Y

k
9 ≥ 5] − E[Yk

9]

=E[Xk
9|X

k
9 ≥ 5] + E[Yk

9 |Y
k
9 ≥ 5] − 9

<9 + 9 − 9 = 9.

In words, the designer learns that the sum of the expected numbers of citizens in
the large country, who would want to vote in the same way as the representative
does, conditional on a “Yes” or “No” vote of the representative, exceeds the sum
of the priors by more than 1. Therefore, the optimal mechanism assigns a higher
weight to the large country compared to the small countries. Further, conditional
on a “Yes” or “No” vote of the representative, with positive probability, there are
citizens in the large country, who would want to vote in the opposite way as the
representative does. To put this differently, the expected number of citizens in the
large country, who would want to vote in the same way as the representative does,
is strictly smaller than the population size, that is,

E[Xk
9|X

k
9 ≥ 5] < 9 and E[Yk

9 |Y
k
9 ≥ 5] < 9.

Consequently, the weights per citizen of the small countries that coincide with the
weights of these countries are larger than the respective weights per citizen of the
large country. In other words, the small countries are overweighted, and the large
country is underweighted relative to the linear benchmark.
Having established bounds on the degree of overweighting of smaller countries that
are valid for all alternatives, I study next how the degree of overweighting smaller

as the expected values conditional on stopping in the committee search model of Albrecht, Anderson,
and Vroman (2010).
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countries interacts with the alternative that is on the agenda or, in other words how
it varies along the sequence of ballots. Theorem 1.2 addresses this point. Recall that
G denotes the cdf of the citizens’ peaks.

Theorem 1.2. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any j0, j00 ∈ C such that nj0 < nj00 as well as any 1≤ k0, k00 <m with k0 ̸= k00

such that |G(k0)− 1
2 |< |G(k00)− 1

2 |. The ratio of optimal weights satisfies

wj0(k
0)

wj00(k0)
>

wj0(k
00)

wj00(k00)
.

In words, Theorem 1.2 can be expressed as follows. Take two countries j0, j00 ∈ C
such that nj0 < nj00 as well as two alternatives 1≤ k0, k00 <m with k0 ̸= k00 such that
|G(k0)− 1

2 |< |G(k00)− 1
2 |. Again, I interpret the latter property as alternative k0 being

more moderate or less extreme than alternative k00. Then, the degree of overweight-
ing smaller countries is larger at alternative k0 compared to k00. To put it differently,
the more moderate the alternative the higher the degree of overweighting smaller
countries. In particular, the degree of overweighting smaller countries relative to the
linear benchmark might vary non-monotonically along the sequence of ballots.
Consider some population size n. The proof of Theorem 1.2 relies on studying the
behavior of the ratio of optimal weights for countries with population sizes n and
n+ 2

r(G) = r(G(k)) :=
E[Xk

n|X
k
n ≥

n+1
2 ] − E[X

k
n|X

k
n ≤

n−1
2 ]

E[Xk
n+2|X

k
n+2 ≥

n+3
2 ] − E[X

k
n+2|X

k
n+2 ≤

n+1
2 ]

as a function of G.2⁰ Since the second parameter of the binomial random variables
Xk

n and Xk
n+2 is 1−G, the distributions of Xk

n and Xk
n+2 vary with G. In particular, an

increase in G yields a stochastic decrease according to likelihood ratio order, which,
in turn, implies a stochastic decrease according to the hazard rate as well as reversed
hazard rate order (see e.g. Shaked and Shanthikumar (2007)). Thus, all four trun-
cated expectations involved in the ratio r are decreasing in G. Hence, there is a
non-trivial trade-off, and, in the first place, the behavior of the ratio r as a function
of G is not clear. Again, I make use of the analytical tools from Ahmed (1991) and
Saunders (1992) in order to resolve this trade-off.
Let me provide some intuition for the result in Theorem 1.2 by comparing the polar

20. Recall that population sizes are assumed to be odd.
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cases of an arbitrarily extreme alternative, i.e. G(k)≈ 0 or G(k)≈ 1 and a maxi-
mally moderate alternative, i.e., G(k)= 1

2 . Recall that the optimal weights wj(k) are
proportional to

E[Xk
nj
|Xk

nj
≥

nj + 1

2
] − E[Xk

nj
] + E[Yk

nj
|Yk

nj
≥

nj + 1

2
] − E[Yk

nj
].

If G(k)≈ 0, the designer knows that virtually all citizens want their respective rep-
resentative to vote “No” at alternative k. Therefore, the designer essentially learns
nothing about the citizens’ preferences from a representative voting “No” at k, mean-
ing,

E[Xk
nj
|Xk

nj
≥

nj + 1

2
] − E[Xk

nj
] ≈ 0,

but only a “Yes” vote at k of a representative is informative for the designer. However,
if G(k)≈ 0, it holds that

E[Yk
nj
|Yk

nj
≥

nj + 1

2
] − E[Yk

nj
] ≈

nj + 1

2
.

Consequently, if G(k)≈ 0, the optimal weights are proportional to a term that is
affine in the population size. Note that the reasoning in section 1.5 for the case
of G(k)< 1

2 and large population sizes is similar to the argument presented here.
However, since population sizes are finite here, the conclusion from section 1.5 is
valid here only for G(k)≈ 0 instead of G(k)< 1

2 . The shape of the optimal weights
and the intuition for the case in which G(k)≈ 1 is analogous.
In contrast, if an alternative is maximally moderate, i.e., G(k)= 1

2 , the shape of the
optimal weights is different. In this case, as discussed in section 1.5, the optimal
weights are proportional to

n · Pr(Xk
n−1 =

n − 1
2

).

Again, the term Pr(Xk
n−1 =

n−1
2 ) represents the probability that a citizen is pivotal in a

within-country simple majority election involving two alternatives that are each pre-
ferred by any citizen with an independent probability of 1

2 . Therefore, the weights
initially proposed by Penrose (1946) are recovered here.
From the derived expressions, it can be inferred that the degree of overweighting of
smaller countries is larger if G(k)= 1

2 compared to G(k)≈ 0 or G(k)≈ 1. Consider
the ratio

n · Pr(Xk
n−1 =

n−1
2 )

n+1
2

= 2 · Pr(Xk
n =

n − 1
2

),

where Xk
n ∼ Binomial(n, 1

2). In this ratio, the optimal weight if G(k)= 1
2 is divided

by the optimal weight if G(k)≈ 0 or G(k)≈ 1. It can be verified that this ratio is
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decreasing in the population size n, implying that the magnitude of overweighting
smaller countries is larger for G(k)= 1

2 in comparison with the cases of G(k)≈ 0 or
G(k)≈ 1. Now, of course, Theorem 1.2 is much more general than this comparison
of the two polar cases of a maximally moderate, and an arbitrarily extreme alterna-
tive.
Let me discuss how these findings about the optimal weights relate to previous
results in the literature. On the one hand, Barberà and Jackson (2006)’s result
amounts to the following corollary implied by Theorem 1.1 as well as the large
population approximation discussed in section 1.5.21

Corollary 1.1. Barberà and Jackson (2006)
Suppose that m= 2 as well as that G(1)= 1−G(1)= 1

2 , and assume that

E[u1 − u2|u1 > u2] = E[u2 − u1|u2 > u1].

The optimal weights satisfy, for all j0, j00 ∈ C with nj0 + 2= nj00 ,

wnj0
(1)

wnj00
(1)

=
nj0 · Pr(Xk

nj0−1 =
nj0−1

2 )

nj00 · Pr(Xk
nj00−1 =

nj00−1
2 )

=
nj0 + 1

nj0 + 2

nj0 and nj00 large
≈
p

nj0
p

nj00
,

and the optimal quota coincides with simple majority, i.e., q(1)= c · 1
2 .

Apart from the knife-edge case of G(k)= 1
2 studied in Barberà and Jackson

(2006), Proposition 1.2 and Theorem 1.2 imply that there is an overweighting of
smaller countries relative to the linear benchmark, but the magnitude of overweight-
ing is smaller compared to what Barberà and Jackson (2006) find for the case of
G(k)= 1

2 . Therefore, allowing for probabilities with which any citizen prefers one
alternative over the other distinct from 1

2 leads to different results as far as the opti-
mal weights, but also the welfare-maximizing quotas are concerned as discussed in
section 1.6.
On the other hand, for the case of more than two alternatives, and single-peaked
preferences, Maaser and Napel (2007), Maaser and Napel (2012), Maaser and Napel
(2014), and Kurz, Maaser, and Napel (2017) find that the weights should be propor-
tional to the square root of the population sizes. The optimal weights that I obtain,
generally, do not give rise to a square root rule as, for instance, the discussion of
optimal weights associated with arbitrarily extreme alternatives, i.e., G(k)≈ 0 or
G(k)≈ 1, reveals.
Finally, I specialize to the case of three alternatives, i.e., m= 3, and I impose a sym-
metry assumption. Specifically, I assume that the probability that any citizen’s most
preferred alternative amounts to 1 equals the corresponding probability for alterna-
tive 3. I obtain the following corollary.

21. However, I emphasize that the simple closed form expressions r( 1
2 )= n+1

n+2 as well as r( 1
2 )=

n·Pr(Xk
n−1=

n−1
2 )

[n+2]·Pr(Xk
n+1=

n+1
2 )

do not appear in Barberà and Jackson (2006).
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Corollary 1.2. Suppose that m= 3 as well as that G(1)= 1−G(2), and assume
that, for all k0 ∈ {1,2},

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

The optimal mechanism features constant weights, i.e., wj(1)= wj(2) with j ∈ C as
well as quotas that do not coincide with simple majority, and that are decreasing
along the sequence of ballots, i.e., q(1)> c · 1

2 > q(2) while q(1)= c− q(2).

The additional symmetry assumption on the extreme alternatives 1 and 3 allows
me to rationalize weights that are constant along the sequence of ballots.22

1.8 Correlated Preferences

The benchmark model assumes that the citizens’ types or preferences are distributed
independently and identically across all citizens. In this part, I relax the assump-
tion that preferences are distributed independently within countries. However, pref-
erences remain to be independent across countries. In order to introduce within-
country correlation among the citizens’ preferences, I rely on the block model from
Barberà and Jackson (2006). Let me recall their block model. Suppose that each
country j ∈ C is composed of an odd number of equally-sized blocks bnj

≥ 1, and
that not all numbers of blocks are equal to 1. Let snj

:=
nj

bnj
describe the block size

in country j ∈ C. Moreover, I impose that, for all countries j0, j00 ∈ C having the same
population size, i.e., nj0 = nj00 , it holds that bn0

j
= bn00

j
and, hence, sn0

j
= sn00

j
. Now, cit-

izens’ preferences are assumed to be perfectly correlated within blocks, but inde-
pendent across blocks. All other aspects of the benchmark model are maintained. In
particular, in every country, the peak alternative of the median block determines the
representative’s most preferred alternative. Then, of course, the benchmark model
corresponds here to the special case, where, for each country j ∈ C, it holds bnj

= nj

and, thus, snj
= 1.

Theorem 1.3 shows how the characterization of the welfare-maximizing voting
mechanisms for the collective decision-making process of the representatives ex-
tends to preferences that are correlated within countries.

Theorem 1.3. Consider the block model. Further, suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

22. Note that the rationalization of constant weights is not possible if there are more than three
alternatives.
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The weighted successive voting procedure with weights

wj(k) =
nj · [µY

bnj
(k) + µN

bnj
(k)]

1
c

∑

j∈C nj · [µY
bnj

(k) + µN
bnj

(k)]
=

nj · [wY
bnj

(k) + wN
bnj

(k) − 1]

1
c

∑

j∈C nj · [wY
bnj

(k) + wN
bnj

(k) − 1]

and quotas

q(k) =
c

1 +
1
c

∑

j∈C nj·µY
bnj

(k)

1
c

∑

j∈C nj·µN
bnj

(k)

=
c

1 +
1
c

∑

j∈C nj·[2wY
bnj

(k)−1]

1
c

∑

j∈C nj·[2wN
bnj

(k)−1]

with j ∈ C and 1≤ k<m implements the optimal mechanism among all successive
voting procedures.

Note that the symmetry assumption on the preference intensities within pairs of
neighboring alternatives is the same as in Theorem 1.1. The presence of blocks alters
the inference of the utilitarian designer about the citizens’ preferences based on the
representatives’ vote choices. More specifically, for all countries j ∈ C, the preference
intensities µY

nj
(k), and µN

nj
(k) that are induced by indirect democracy, and that de-

termine the trade-off the designer is facing become µY
bnj

(k), and µN
bnj

(k) respectively.
This reflects the fact that, in each country j ∈ C, bnj

instead of nj independent draws
of types are conducted. The proof of Theorem 1.1 applies to Theorem 1.3 when re-
placing the objects µY

nj
(k), µN

nj
(k), wY

nj
(k), and wN

nj
(k) with µY

bnj
(k), µN

bnj
(k), wY

bnj
(k),

and wN
bnj

(k) respectively. Therefore, a separate proof is omitted here.
Since there is at least one country that has more than one block, the welfare-
maximizing majority requirements for more extreme alternatives continue to be
more distant from simple majority. Thus, the main insight regarding the optimal
quotas discussed in section 1.6 extends to the block model.23
Similar to Barberà and Jackson (2006), subsequently, I distinguish two forms of
within-country correlation of preferences or, in other words, two variants of the
block model. To begin with, I consider the case where, for all countries j0, j00 ∈ C
with nj0 < nj00 , it holds that

sn0

j
≤ sn00

j
and bn0

j
< bn00

j
.

In words, this case corresponds to a scenario, where the size of the blocks weakly
increases, and the number of blocks strictly increases in the population size.2⁴ It

23. I emphasize the assumption that not all countries have one block because the discussed find-
ing would break if bnj

= 1 for all j ∈ C, meaning, preferences are fully correlated within countries. In
this case, the optimal quotas would be constant along the sequence of ballots, and they would amount
to simple majority.

24. This variation of the block model generalizes the fixed-size-block model studied in Barberà
and Jackson (2006). The latter variant corresponds to the special case, where, for all countries j0, j00 ∈ C
with nj0 < nj00 , it holds that sn0

j
= sn00

j
and bn0

j
< bn00

j
.
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turns out that the findings concerning the utilitarian weights of nations presented
in section 1.7 for the case of independent preferences within countries carry over to
this form of correlated preferences.
First, Proposition 1.3 generalizes Proposition 1.2: Whatever the alternative, the as-
sociated optimal weights continue to feature a degree of overweighting of smaller
countries that falls between the linear benchmark and a power law with exponent
1− ln 2

ln 3 ≈ 0.37.

Proposition 1.3. Consider the block model, and assume that sn0

j
≤ sn00

j
and bn0

j
< bn00

j

for all j0, j00 ∈ C with nj0 < nj00 . Further, suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

For all 0≤ α < 1− ln 2
ln 3 as well as any 1≤ k<m and j0, j00 ∈ C such that nj0 < nj00 , the

optimal weights satisfy

wj0(k)

nαj0
<

wj00(k)

nαj00
, and

wj0(k)

nj0
>

wj00(k)

nj00
.

Second, Theorem 1.4 shows that Theorem 1.2 extends to the discussed form of
correlated preferences: Again, the magnitude of overweighting of smaller countries
is larger for more moderate compared to more extreme alternatives.

Theorem 1.4. Consider the block model, and assume that sn0

j
≤ sn00

j
and bn0

j
< bn00

j
for

all j0, j00 ∈ C with nj0 < nj00 . Further, suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any j0, j00 ∈ C such that nj0 < nj00 as well as any 1≤ k0, k00 <m with k0 ̸= k00

such that |G(k0)− 1
2 |< |G(k00)− 1

2 |. The ratio of optimal weights satisfies

wj0(k
0)

wj00(k0)
>

wj0(k
00)

wj00(k00)
.

Recall that the proof of Theorem 1.2 relies on studying the behavior of the ratio
of optimal weights for countries with population sizes n and n+ 2 denoted by r(G)
as a function of G. Here, consider instead two countries with numbers of blocks b
and b+ 2, and let s and s0 be the corresponding block sizes respectively. Since the
numbers of blocks are assumed to be odd, and because population sizes are strictly
increasing in the number of blocks, it is sufficient to determine the behavior of the
ratio of optimal weights for the two countries with numbers of blocks b and b+ 2
as a function of G in order to establish Theorem 1.4. However, this ratio is given
by s

s0 r(G) when replacing in the ratio r(G) the variable n with the variable b. Since
s
s0 > 0 is a positive constant, it does not affect the behavior of the ratio s

s0 r(G) as a
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function of G. Therefore, the proof of Theorem 1.2 can be used to establish Theorem
1.4. Hence, I omit a separate proof.
The second variant of the block model that I consider is characterized by the follow-
ing feature: For all countries j0, j00 ∈ C with nj0 < nj00 , it holds bn0

j
= bn00

j
. This means

that the number of blocks is constant across countries, and it is independent of the
population sizes.2⁵ In this case, the qualitative features of the weights of nations
change compared to the case, where preferences are independent within countries.
It follows from Theorem 1.3 that, in this case, the welfare-maximizing weights are
constant along the sequence of ballots, and they are linear in the population sizes.

1.9 European Union

The purpose of this section is twofold: On the one hand, I explicitly compute welfare-
maximizing weights and quotas for the collective decision-making process in insti-
tutions of the European Union such as the Council of the European Union. On the
other hand, I compare the optimal mechanism with the voting rules that are actually
used in the Council of the European Union.
In order to calculate optimal weights and quotas, I employ the blockmodel discussed
in section 1.8. Moreover, as in Barberà and Jackson (2006), I assume that the block
size is approximately one million in all member states of the European Union. To be
precise, the number of blocks for each member state of the European Union is given
by the odd natural number that minimizes the distance between the induced block
size and one million. Also, the population data is taken from Eurostat (2021), and
I use the numbers from January 1, 2020.2⁶
Figure 1.3 shows the optimal weights for different values of G.2⁷ For instance, sup-
pose that G= 0.4, and consider the largest as well as the smallest member states
Germany and Malta: The corresponding voting weight of Germany is about 20 times
higher than the weight of Malta, whereas Germany’s population size is about 160
times higher than Malta’s population size. Observe that the weights satisfy the the-
oretically established properties apart from a few minor exceptions. The reason for
these irregularities is that the theoretical analysis assumes that the block size is
weakly increasing in the population size, but this property does not hold here be-
cause of the discussed integer problem regarding the number of blocks.
Figure 1.4 depicts the optimal quotas for different values of G.2⁸ For example, if
G= 0.4, the corresponding welfare-maximizing quota is approximately 69% of the

25. This variation is also discussed in Barberà and Jackson (2006), and they call it fixed-number-
of-blocks model.

26. Throughout, the United Kingdom is excluded from the analysis.
27. The sum of weights assigned is normalized to 27, representing the number of member states

of the European Union.
28. Recall that the sum of weights assigned is normalized to 27.
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Figure 1.3. Optimal Voting Weights for the European Union

Figure 1.4. Optimal Majority Quotas for the European Union

total weights assigned. Note that, as shown theoretically, the optimal quotas are
strictly decreasing in G, and that, except for the knife-edge case of G= 1

2 , they do
not coincide with simple majority. In addition, the numerical investigation suggests
that the quotas are concave in G if G< 0.5, and convex in G if G> 0.5.
In the following, I compare the optimal mechanism with the voting rules that are
actually used in the Council of the European Union for most policy areas.2⁹ Until
2014, according to the Treaty of Nice, the Council of the European Union employed

29. There are some exceptions including, for example, the foreign and security policy, and the
issue of tax harmonisation, where the voting rule is unanimity (see European Union (2015)).



1.9 European Union | 35

a weighted majority rule (see European Union (2001)). Then, the Treaty of Lisbon
stipulated a change of the voting rule to a double majority system: If the proposal
is made by the European Commission or the High Representative of the Union for
Foreign Affairs and Security Policy, it passes whenever it is approved by at least 55%
of the member states, representing at least 65% of the population of the European
Union; otherwise, the support of at least 72% instead of 55% of the member states
is required (see European Union (2007)).3⁰ Since the voting rule that was in place
until 2014 involves as the welfare-maximizing mechanism a weighted majority rule,
the subsequent comparison focuses on this voting rule. Concretely, the Treaty of
Accession of Croatia specifies the voting weights for every member state that were
most recently in place, and it stipulates that the majority threshold amounts to ap-
proximately 74% of the total weights assigned (see European Union (2012)).31
Figure 1.5 presents the voting weights that were employed in the Council of the
European Union as well as the benchmarks of linear weights and weights follow-
ing a power law with exponent 1− ln2

ln3 ≈ 0.37. Fitting the population data and the
weights used in the Council of the European Union to a power law yields an expo-
nent of about 0.48. Thus, these weights approximately follow a square root rule.
Now, I consider again the block model while imposing that the block size is approxi-
mately one million in all member states of the European Union. Figure 1.5 displays
the corresponding optimal voting weights for a value of G= 0.37, inducing an op-
timal quota of about 74%, that is, the majority quota that was actually used in the
Council of the European Union.32
Several observations can be made: To begin with, the voting weights in the Council
of the European Union are qualitatively consistent with the theoretically predicted
bounds on the magnitude of overweighting of smaller countries, that is, the degree
of overweighting in the Council of the European Union lies between the linear bench-
mark and a power law with exponent 1− ln 2

ln 3 ≈ 0.37. However, the voting weights
used in the Council of the European Union are inconsistent with the employed ma-
jority quota.
If the majority quota has to be for some exogenous reason the quota that was em-
ployed in the Council of the European Union, that is, approximately 74%, the voting
weights in the Council of the European Union feature too much overweighting of
smaller member states relative to the weights that would be optimal in this case.

30. There is a qualification: The blocking minority must include at least four member states,
representing more than 35% of population of the European Union.

31. There are two qualifications: The approval of a proposal also requires the support of amajority
of the member states if the proposal was made by the European Commission, and the support of at
least two thirds of the member states otherwise. Further, the member states that support a proposal
have to represent at least 62% of the population of the European Union. I abstract from these two
additional aspects.

32. The fact that the exponent of the power law benchmark and the inferred value of G are both
roughly equal to 0.37 is just a coincidence.
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Figure 1.5. Voting in the Council of the European Union

Specifically, fitting the population data and the optimal voting weights, inducing an
optimal quota of about 74%, to a power law yields an exponent of roughly 0.57,
which is higher than the exponent of 0.48 that, again, results from fitting the popu-
lation data and the weights used in the Council of the European Union to a power
law.
If the voting weights have to take for some exogenous reason the form that they
had in the Council of the European Union, the employed majority quota of 74% is
too high compared to the quota that would be optimal in this case. More precisely,
when fitting the population data and optimal voting weights to a power law, a value
of G= 0.47 implies that the exponent is roughly 0.48 which is, again, approximately
the exponent that results from fitting the population data and the weights that were
used in the Council of the European Union to a power law. However, the optimal
quota corresponding to a value of G= 0.47 is roughly 56%, and, thus, it is lower
than the quota of about 74% that was employed in the Council of the European
Union.

1.10 Conclusion

In this chapter, I study the design of welfare-maximizing voting mechanisms for in-
stitutions of representative democracy when there are multiple alternatives, and the
citizens’ preferences are single-peaked. The welfare-maximizing mechanism takes
the form of a weighted successive voting procedure with alternative-dependent vot-
ing weights and majority quotas. The main insight of this chapter is that the vote on
more extreme alternatives involves majority quotas further away from simple ma-
jority, and, in addition, relatively higher voting weights for large groups.
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I derive several features of the optimal majority quotas, and the weights of nations.
For the majority quotas, I find that indirect democracy implies that the vote on more
extreme alternatives requires majority quotas that are further away from simple ma-
jority. The utilitarian weights of nations have the following two key properties: First,
whatever the alternative, the associated optimal weights exhibit a magnitude of over-
weighting of smaller countries that falls between the linear benchmark and a power
law with exponent 1− ln 2

ln 3 ≈ 0.37, implying that the weights feature degressive pro-
portionality. Second, the degree of this overweighting of smaller countries is larger
for more moderate compared to more extreme alternatives.
Finally, as illustrated in the previous section on the European Union, I believe that
these insights provide some guidance for the design of voting mechanisms for real-
world institutions of representative democracy.
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Appendix 1.A Proofs

Proof of Proposition 1.1.
Suppose that all agents except for agent j play the sincere strategy and assume that
agent j’s peak is 1≤ p≤m. First, consider voting stages such that some alternative
l< p is on the agenda. Let Z be the set of agents distinct from j who play “Yes” at this
stage. Agent j’s action matters if and only if he or she is pivotal, that is, if and only
if Z /∈Wl, but Z∪ {j} ∈Wl. Since the agents distinct from j play the sincere strategy,
the number of “Yes” weakly increases along the sequence of ballots. Moreover, by
assumption, Wl ⊆Wk for all l< k≤m. Therefore, if agent j votes “Yes”, alternative
l is selected and if he or she votes “No”, some alternative l0 ∈M with l< l0 ≤ p is
chosen. Hence, voting “No”, i.e., playing the action prescribed by the sincere strat-
egy, is optimal because preferences are single-peaked implying that agent j prefers
alternative l0 over alternative l. Second, consider voting stages such that some alter-
native p≤ l is on the agenda. Again, let Z be the set of agents distinct from j who
play “Yes” at this stage. Similar to the first case, agent j’s action matters if and only
if he or she is pivotal, that is, if and only if Z /∈Wl, but Z∪ {j} ∈Wl. Hence, if agent j
votes “Yes”, alternative l is selected while voting “No” results in the implementation
of some alternative l0 ∈M with p≤ l< l0. Thus, voting “Yes”, i.e., choosing the action
prescribed by the sincere strategy, is optimal because preferences are single-peaked
implying that agent j prefers alternative l over alternative l0. Taking both cases to-
gether, if all agents distinct from j adopt the sincere strategy, playing the sincere
strategy is a best response for agent j. Consequently, by symmetry, sincere voting
constitutes an ex-post perfect equilibrium.

In the following, I provide several lemmata, having the purpose to derive a char-
acterization of the utilitarian mechanism.
Consider any optimal mechanism, meaning, any families of winning coalitions
{W ∗k }

m−1
k=1 that are welfare-maximizing. For any alternative 1≤ k<m, define

W ∗k,min := {W ∈ W ∗k : ∀W0 with W0 ⊂ W : W0 /∈ W ∗k }

In words, a coalition of representatives is contained in the set W ∗k,min if and only if
it is winning at k, but any proper subset of this coalition is not winning at k. Thus,
W ∗k,min can be called the set of minimally winning coalitions at alternative k. I obtain
the following lemma.

Lemma 1.1. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any 1≤ k<m. For any W ⊆ C such that either W ∈W ∗1,min (if k= 1) or
W ∈W ∗k,min and W /∈W ∗k−1 (if k> 1),
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∑

j∈W

nj · µY
nj

(k) ≥
∑

j∈C\W

nj · µN
nj

(k)

⇔
∑

j∈W

nj · [2wY
nj

(k) − 1] ≥
∑

j∈C\W

nj · [2wN
nj

(k) − 1].

The basic idea behind Lemma 1.1 is as follows: Start with an optimal mech-
anism, and study the implications of dropping minimally winning coalitions from
the optimal families of winning coalitions. However, for k> 1, removing coalitions
W ∈W ∗k,min from the family of winning coalitions W ∗k is not feasible if W ∈W ∗k−1
because families of winning coalitions have to meet the set inclusion restriction
Wk0 ⊆Wk0+1 for all 1≤ k0 <m− 1. The subsequent lemma addresses this point. I
show that the inequalities derived in Lemma 1.1 remain to be valid even if the con-
sidered alteration of the optimal mechanism is not feasible.

Lemma 1.2. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any 1< k<m. For any W ⊆ C such that W ∈W ∗k,min, but W ∈W ∗k−1, it,
nevertheless, holds that

∑

j∈W

nj · µL
nj

(k) ≥
∑

j∈C\W

nj · µR
nj

(k)

⇔
∑

j∈W

nj · [2wY
nj

(k) − 1] ≥
∑

j∈C\W

nj · [2wN
nj

(k) − 1].

Next, for any alternative 1≤ k<m, define

W ∗¬k,max := {W /∈ W ∗k : ∀W0 with W ⊂ W0 : W0 ∈ W ∗k }.

In words, the set W ∗¬k,max contains all coalitions that are maximally loosing at al-
ternative k, meaning, a coalition is part of W ∗¬k,max if and only if this coalition is
not winning at alternative k, but any proper superset is winning at k. The following
lemma holds.

Lemma 1.3. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any 1≤ k<m. For any W0 ⊆ C such that either W0 ∈W ∗¬(m−1),max (if k=
m− 1) or W0 ∈W ∗¬k,max and W0 ∈W ∗k+1 (if k<m− 1),

∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · µN
nj

(k)

⇔
∑

j∈W0

nj · [2wY
nj

(k) − 1] ≤
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].
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Lemma 1.3 relies on the idea of studying the implications of adding maximally
loosing coalitions to the optimal families of winning coalitions. However, for k<
m− 1, adding coalitions W0 ∈W ∗¬k,max toW

∗
k is not feasible if W0 /∈W ∗k+1 because of

the set inclusion restriction on the families of winning coalitions, i.e.,Wk0 ⊆Wk0+1 for
all 1≤ k0 <m− 1. Nevertheless, the subsequent lemma reveals that the inequalities
derived in Lemma 1.3 are also valid if the considered modification of the optimal
mechanism is not feasible.

Lemma 1.4. Suppose that, for all 1≤ k0 <m,

E[uk0

− uk0+1|uk0

> uk0+1] = E[uk0+1 − uk0

|uk0+1 > uk0

].

Consider any 1≤ k<m− 1. For any W0 ⊆ C such that W0 ∈W ∗¬k,max, but W0 /∈W ∗k+1
it, nevertheless, holds that

∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · µN
nj

(k)

⇔
∑

j∈W0

nj · [2wY
nj

(k) − 1] ≤
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].

Consequently, to summarize, the inequalities derived in Lemma 1.1 and Lemma
1.2 as well as the inequalities obtained from Lemma 1.3 and Lemma 1.4 represent
necessary conditions for optimality. I make use of these lemmata in the proof of
Theorem 1.1.

Proof of Lemma 1.1.
First of all, if W = C, it must be that k= 1. In this case, the desired inequality reduces
to

∑

j∈C

nj · µY
nj

(1) ≥ 0

which is true since, for all j ∈ C, it holds wY
nj

(1)≥ nj+1
2nj
= 1

2 +
1

2nj
> 1

2 . Therefore, sub-
sequently, suppose that W ̸= C.
Take some W ⊂ C such that either W ∈W ∗1,min (if k= 1) or W ∈W ∗k,min and W /∈W ∗k−1
(if k> 1) and modify the optimal families of winning coalitions such that W /∈W ∗k .
Since by assumption either W ∈W ∗1,min (if k= 1) or W ∈W ∗k,min and W /∈W ∗k−1 (if
k> 1) and, in addition, W ̸= C, this modification of the optimal families of winning
coalitions is feasible. Moreover, since W ∈W ∗k,min, this alteration matters only if all
j ∈W vote “Yes” at k and all j ∈ C \W vote “No” at k. In this case, under the optimal
families of winning coalitions, if k= 1, alternative 1 is selected and, if k> 1, alter-
native k is chosen because W /∈W ∗k−1 implies that W /∈W ∗k0

for all 1≤ k0 < k. Further,
since W ∈W ∗k ⊆W

∗
k0
for all k< k0 <m, I have that W ∈W ∗k0

for all k< k0 <m and,
thus, under the modification, alternative k+ 1 is chosen.
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Since the modification of the optimal families of winning coalitions should weakly
decrease welfare, I obtain the following condition that is necessary for optimality
whenever the considered alteration is feasible:

E[
∑

j∈C

nj · uk(T)|(∀j ∈ W : “Yes” vote at k)

∧ (∀j ∈ C \W : “No” vote at k)]

≥E[
∑

j∈C

nj · uk+1(T)|(∀j ∈ W : “Yes” vote at k)

∧ (∀j ∈ C \W : “No” vote at k)]

⇔
∑

j∈W

nj · E[uk(T)|j votes “Yes” at k]

+
∑

j∈C\W

nj · E[uk(T)j votes “No” at k]

≥
∑

j∈W

nj · E[uk+1(T)|j votes “Yes” at k]

+
∑

j∈C\W

nj · E[uk+1(T)|j votes “No” at k]

⇔
∑

j∈W

nj · E[uk(T) − uk+1(T)|j votes “Yes” at k]

≥
∑

j∈C\W

nj · E[uk+1(T) − uk(T)|j votes “No” at k]

⇔
∑

j∈W

nj · µY
nj

(k) ≥
∑

j∈C\W

nj · µN
nj

(k)

⇔
∑

j∈W

nj · [2wY
nj

(k) − 1] ≥
∑

j∈C\W

nj · [2wN
nj

(k) − 1].

I derived the desired inequality completing the proof.

Proof of Lemma 1.2.
Consider any 1< k<m and suppose that W ∈W ∗k,min and W ∈W ∗k−1. To start, I
claim that W ∈W ∗k−1,min. Suppose not, i.e., W /∈W ∗k−1,min. Because of W ∈W ∗k−1,
there must be some W0 ⊂W such that W0 ∈W ∗k−1. Further, since W0 ∈W ∗k−1 ⊆W

∗
k , I

have that W0 ∈W ∗k . However, this contradicts W ∈W ∗k,min.
Employing the property W ∈W ∗k−1,min, in the following, I perform a case distinction:
1) W /∈W ∗k−2
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Here, I have that W ∈W ∗k−1,min as well as W /∈W ∗k−2 and, therefore, Lemma 1.1 ap-
plies to k− 1.
2) W ∈W ∗k−2
In this case, apply the argument from the previous claim to k− 2 yielding W ∈
W ∗k−2,min. When iterating the same case distinction for at most finitely many times,
two cases are possible:
(i) There exists some 1< k00 < k such that W ∈W ∗k00,min and W /∈W ∗k00−1. In this case,
Lemma 1.1 applies to k00.
(ii) There exists no such k00 implying that I must have W ∈W ∗1,min. Here, Lemma 1.1
applies to 1.
Consequently, taking the cases (i) and (ii) together and applying Lemma 1.1, there
must be some 1≤ k0 < k (either k0 = 1 or k0 = k00) such that

∑

j∈W

nj · µY
nj

(k0) ≥
∑

j∈C\W

nj · µN
nj

(k0)

⇔
∑

j∈W

nj · [2wY
nj

(k) − 1] ≥
∑

j∈C\W

nj · [2wN
nj

(k) − 1].

Since k0 < k and because of the richness assumption on the preference domain, it
holds that G(k0)< G(k). Therefore, for any j ∈ C, the binomial distributions with pa-
rameters nj and G(k0) is stochastically dominated by the binomial distribution with
parameters nj and G(k) according to the likelihood ratio order. This implies that the
latter distribution also dominates the former distribution in the hazard rate order.
For a reference for these two claims, see e.g. Shaked and Shanthikumar (2007).
However, this means that wY

nj
(k0)< wY

nj
(k). Moreover, for any j ∈ C, the binomial dis-

tributions with parameters nj and 1−G(k0) stochastically dominates the binomial
distribution with parameters nj and 1−G(k) according to the likelihood ratio or-
der. Thus, the latter distribution is also dominated by the former distribution in the
hazard rate order. Again, for a reference for these two claims, see e.g. Shaked and
Shanthikumar (2007). Hence, I have that wN

nj
(k0)> wN

nj
(k). Therefore, I obtain that

∑

j∈W

nj · [2wY
nj

(k) − 1] >
∑

j∈W

nj · [2wY
nj

(k0) − 1]

≥
∑

j∈C\W

nj · [2wN
nj

(k0) − 1] >
∑

j∈C\W

nj · [2wN
nj

(k) − 1].

Consequently, I derived the desired inequality

∑

j∈W

nj · [2wY
nj

(k) − 1] ≥
∑

j∈C\W

nj · [2wN
nj

(k) − 1].
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Proof of Lemma 1.3.
To begin with, if W0 = ;, it must hold that k=m− 1 and the desired inequality
reduces to

0 ≤
∑

j∈C

nj · µN
nj

(m − 1)

which is satisfied because wN
nj

(m− 1)≥ nj+1
2nj
= 1

2 +
1

2nj
> 1

2 . Hence, in the following,
suppose that W0 ̸= ;.
Consider some W0 ⊂ C such that either W0 ∈W ∗¬(m−1),max (if k=m− 1) or W0 ∈
W ∗¬k,max and W0 ∈W ∗k+1 (if k<m− 1) and modify the optimal families of win-
ning coalitions such that W0 ∈W ∗k . Since either W0 ∈W ∗¬(m−1),max (if k=m− 1) or
W0 ∈W ∗¬k,max and W0 ∈W ∗k+1 (if k<m− 1), this modification is feasible. Further-
more, because W0 ∈W ∗¬k,max, this alteration matters only if all j ∈W0 vote “Yes” at k
and all j ∈ C \W0 vote “No” at k. In this case, under the optimal families of winning
coalitions, if k=m− 1, alternative m is selected since W0 /∈W ∗m−1 and, if k<m− 1,
alternative k+ 1 is chosen because W0 ∈W ∗k+1. Moreover, since W0 /∈W ∗k , I have
W0 /∈W ∗k0

for all 1≤ k0 < k and, hence, under the modified families of winning coali-
tions, alternative k is selected.
The modification of the optimal families of winning coalitions weakly decreases wel-
fare and, therefore, I obtain the following condition that is necessary for optimality
whenever the considered alteration is feasible:

E[
∑

j∈C

nj · uk(T)|(∀j ∈ W0 : “Yes” vote at k)

∧ (∀j ∈ C \W0 : “No” vote at k)]

≤E[
∑

j∈C

nj · uk+1(T)|(∀j ∈ W0 : “Yes” vote at k)

∧ (∀j ∈ C \W0 : “No” vote at k)].

Rearranging this inequality while employing the same steps as in the proof of Lemma
1.1, I arrive at the expression

∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · µN
nj

(k),

which is equivalent to

∑

j∈W0

nj · [2wY
nj

(k) − 1] ≤
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].

This constitutes the desired inequality completing the proof.
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Proof of Lemma 1.4.
Take any 1≤ k<m− 1 and assume that W0 ∈W ∗¬k,max and W0 /∈W ∗k+1. First of all,
I argue that W0 ∈W ∗¬k+1,max. Towards a contradiction, suppose that W0 /∈W ∗¬k+1,max.
Since W0 /∈W ∗k+1, there must be some W0 ⊂W00 such that W00 /∈W ∗k+1. Moreover,
because of W ∗k ⊆W

∗
k+1, it follows that W00 /∈W ∗k . However, this contradicts W0 ∈

W ∗¬k,max because W0 ⊂W00.
Making use of the property that W0 ∈W ∗¬k+1,max, subsequently, I perform a case dis-
tinction:
1) W0 ∈W ∗k+2
In this case, I have that W0 ∈W ∗¬k+1,max as well as W0 ∈W ∗k+2 and, thus, Lemma 1.3
applies to k+ 1.
2) W0 /∈W ∗k+2
Here, I apply the reasoning from the previous claim to k+ 2 which implies that
W0 ∈W ∗¬k+2,max. When repeating the same case distinction for at most finitely many
times, two case can occur:
(i) There exists some k< k00 <m− 1 such that W0 ∈W ∗¬k00,max and W0 ∈W ∗k00+1. Then,
Lemma 1.3 applies to k00.
(ii) There exists no such k00 which means that it must be true that W0 ∈W ∗¬(m−1),max.
In this case, Lemma 1.3 applies to m− 1.
Taking the two cases (i) and (ii) together and employing Lemma 1.3, there must be
some k< k0 <m− 1 (either k0 =m− 1 or k0 = k00) such that

∑

j∈W0

nj · µY
nj

(k0) ≤
∑

j∈C\W0

nj · µN
nj

(k0)

⇔
∑

j∈W0

nj · [2wY
nj

(k) − 1] ≤
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].

Since k< k0 and because of the richness assumption on the preference domain, it
holds that G(k)< G(k0). Therefore, for any j ∈ C, the binomial distribution with pa-
rameters nj and G(k0) stochastically dominates the binomial distribution with pa-
rameters nj and G(k) according to the likelihood ratio order. This implies that the
latter distribution is also dominated by the former distribution in the hazard rate
order. Again, for a reference for these two claims, see e.g. Shaked and Shanthiku-
mar (2007). However, this means that wY

j (k)< wY
j (k0). Moreover, for any j ∈ C, the

binomial distribution with parameters nj and 1−G(k0) is stochastically dominated
by the binomial distribution with parameters nj and 1−G(k) according to the likeli-
hood ratio order. Thus, the latter distribution also dominates the former distribution
in the hazard rate order. Again, for a reference for these two claims, see e.g. Shaked
and Shanthikumar (2007). Hence, it holds that wN

j (k)> wN
j (k0). Therefore, I have

that
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∑

j∈W0

nj · [2wY
nj

(k) − 1] <
∑

j∈W0

nj · [2wY
nj

(k0) − 1]

≤
∑

j∈C\W0

nj · [2wN
nj

(k0) − 1] <
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].

Thus, I derived the desired inequality
∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · [2wY
nj

(k) − 1]

⇔
∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · [2wN
nj

(k) − 1].

Proof of Theorem 1.1.
First of all, there exist optimal families of winning coalitions {W∗k}

m−1
k=1 because a

bounded function is maximized over a finite set of elements. Further, all optimal
collections of winning coalitions must have the following properties. Taking together
Lemma 1.1 and Lemma 1.2, for any 1≤ k<m and for all W ∈W∗k,min, it holds that

∑

j∈W

nj · µY
nj

(k) ≥
∑

j∈C\W

nj · µN
nj

(k).

Note that this inequality is equivalent to

∑

j∈W

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Lemma 1.3 and Lemma 1.4 imply together that, for any 1≤ k<m andW0 ∈W∗¬k,max,
the inequality

∑

j∈W0

nj · µY
nj

(k) ≤
∑

j∈C\W0

nj · µN
nj

(k)

is satisfied. Rearranging this inequality yields

∑

j∈W0

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

In other words, these inequalities are necessary for optimality.
In the following, I argue that these inequalities pin down a generically unique solu-
tion, i.e., families of coalitions that are feasible and optimal. In other words, I estab-
lish that these inequalities are also sufficient for optimality. To begin with, I claim
that all families of coalitions {Sk}m−1

k=1 satisfying these inequalities constitute fami-
lies of winning coalitions respecting the constraint Sk ⊆ Sk+1 for all 1≤ k<m− 1,
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meaning, they are feasible. Suppose not, i.e., assume that there exists families of
coalitions {Sk}m−1

k=1 satisfying the previous inequalities, but they are not feasible. First,
{Sk}m−1

k=1 might not be feasible because there exists some 1≤ k<m such that ; ∈ Sk.
This means that the inequality

0 ≥
∑

j∈C

nj · [2 · wN
nj

(k) − 1]

must be met. However, this cannot be the case since, for all j ∈ C, wN
nj

(k)> 1
2 . Second,

there might be some 1≤ k<m such that Sk = ;. Hence, in particular, it holds that
C /∈ Sk. Therefore, the inequality

∑

j∈C

nj · [2 · wY
nj

(k) − 1] ≤ 0

must be satisfied. However, there is a contradiction because wY
nj

(k)> 1
2 for all j ∈ C.

Third, {Sk}m−1
k=1 might not be closed under taking supersets, i.e., there exist 1≤

k<m and S ⊆ S0 such that S ∈ Sk, but S0 /∈ Sk. If S= S0, there is a contradiction.
Thus, focus on the case in which S ⊂ S0. Since S ∈ Sk, there exists S00 ⊆ S such that
S00 ∈ Sk,min. Thus, S00 must meet the inequality

∑

j∈S00

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Further, since S00 ⊆ S ⊂ S0 and wY
nj

(k)+wN
nj

(k)− 1> 0 for all j ∈ C, it holds that

∑

j∈S0

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
>

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Moreover, because S0 /∈ Sk, there exists S0 ⊆ S000 such that S000 ∈ S¬k,max. Thus, S000

meets the inequality

∑

j∈S000

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Then, since S0 ⊆ S000 and, again, wY
nj

(k)+wN
nj

(k)− 1> 0 for all j ∈ C, it holds that

∑

j∈S0

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.
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This is the desired contradiction. Fourth, the set inclusion restriction Sk ⊆ Sk+1 for
all 1≤ k<m− 1 might be violated, meaning, there exists some 1≤ k<m− 1 and S
such that S ∈ Sk, but S /∈ Sk+1. Since S ∈ Sk, there exists S0 ⊆ S such that S0 ∈ Sk,min.
Thus, S0 must meet the inequality

∑

j∈S0

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Further, since S0 ⊆ S and wY
nj

(k)+wN
nj

(k)− 1> 0 for all j ∈ C, it holds that

∑

j∈S

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

or, equivalently,
∑

j∈S

nj · [2 · wY
nj

(k) − 1] ≥
∑

j∈C\S

nj · [2 · wN
nj

(k) − 1].

As argued in the proofs of the Lemma 1.2 and Lemma 1.4, it holds that wY
nj

(k)<

wY
nj

(k+ 1) as well as wN
nj

(k+ 1)< wN
nj

(k). Hence, I obtain that
∑

j∈S

nj · [2 · wY
nj

(k + 1) − 1] >
∑

j∈S

nj · [2 · wY
nj

(k) − 1]

≥
∑

j∈C\S

nj · [2 · wN
nj

(k) − 1] >
∑

j∈C\S

nj · [2 · wN
nj

(k + 1) − 1],

yielding

∑

j∈S

nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
1
c

∑

j∈C nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
>

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k+1)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k+1)−1]

.

Further, since S /∈ Sk+1, there exists S ⊆ S00 such that S00 ∈ S¬k+1,max. Thus, S00 meets
the inequality

∑

j∈S00

nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
1
c

∑

j∈C nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k+1)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k+1)−1]

.

Then, since S ⊆ S00 and wY
nj

(k+ 1)+wN
nj

(k+ 1)− 1> 0 for all j ∈ C, it follows that

∑

j∈S

nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
1
c

∑

j∈C nj · [wY
nj

(k + 1) + wN
nj

(k + 1) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k+1)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k+1)−1]

.
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However, this contradicts the previous inequality. Consequently, I conclude that all
families of coalitions satisfying the discussed set of inequalities are feasible. Finally,
I establish that, among the feasible collections of coalitions, there are generically
unique families of winning coalitions {W∗k}

m−1
k=1 that meet the discussed inequalities.

Hence, {W∗k}
m−1
k=1 must be optimal because, again, there exists a solution and the

necessary conditions for optimality determine essentially unique families of winning
coalitions.
Towards a contradiction, suppose that there are two distinct families of winning
coalitions {W∗k}

m−1
k=1 and {V∗k}

m−1
k=1 that satisfy both the discussed inequalities. This

means that there must be some 1≤ k<m and some S such that S ∈W∗k , but S /∈ V∗k .
Since S ∈W∗k , there exists S0 ⊆ S such that S0 ∈W∗k,min. Hence, S0 must meet the
inequality

∑

j∈S0

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Further, since wY
nj

(k)+wN
nj

(k)− 1> 0 for all j ∈ C and because of S0 ⊆ S, I have that

∑

j∈S

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≥

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Next, because S /∈ V∗k , there exists S ⊆ S00 such that S00 ∈ V∗¬k,max. Thus, S00 satisfies
the inequality

∑

j∈S00

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Moreover, since S ⊆ S00 and wY
nj

(k)+wN
nj

(k)− 1> 0 for all j ∈ C, it also holds that

∑

j∈S

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
≤

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.

Hence, there is a contradiction, unless

∑

j∈S

nj · [wY
nj

(k) + wN
nj

(k) − 1]
1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]
=

c

1 +
1
c

∑

j∈C nj·[2·wY
nj

(k)−1]
1
c

∑

j∈C nj·[2·wN
nj

(k)−1]

.
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Rearranging this equality yields
∑

j∈S

nj · [2 · wY
nj

(k) − 1] =
∑

j∈C\S

nj · [2 · wN
nj

(k) − 1].

However, this equality fails generically because any perturbation of G(k) would im-
ply that this equality cannot hold. Therefore, I conclude that the discussed inequal-
ities are not only necessary, but also sufficient for optimality.
Now, for all j ∈ C and 1≤ k<m, set

wj(k) :=
nj · [wY

nj
(k) + wN

nj
(k) − 1]

1
c

∑

j∈C nj · [wY
nj

(k) + wN
nj

(k) − 1]

as well as

q(k) :=
c

1 +
1
c

∑

j∈C nj·[2wY
nj

(k)−1]
1
c

∑

j∈C nj·[2wN
nj

(k)−1]

,

and consider the weighted successive voting procedure associated with these
weights and quotas. By construction, the families of winning coalitions induced by
this weighted successive voting procedure meet all inequalities that are necessary
and sufficient for optimality. Hence, this weighted successive voting procedure im-
plements the optimal mechanism.

Proof of Proposition 1.2.
Consider any 0≤ α < 1− ln 2

ln 3 as well as any 1≤ k<m. I argue that an increase in
the population size by 2, say from n to n+ 2, implies an increase in the ratio, where
the corresponding optimal weights are divided by the population size to the power
of α. Since population sizes are assumed to be odd, this implies that

wj0 (k)
nα

j0
<

wj00 (k)
nα

j00

for any two countries j0, j00 ∈ C with nj0 < nj00 . Towards a contradiction, assume that
an increase in the population size from n to n+ 2 does not yield an increase in the
discussed ratio, that is,

wn+2(k)
[n + 2]α

≤
wn(k)

nα
,

where wn(k) and wn+2(k) are the optimal weights linked to alternative k for coun-
tries with population sizes n and n+ 2 respectively. Using the notation from themain
text, this inequality is equivalent to

nα

[n + 2]α
≤

wn(k)
wn+2(k)

= r(G(k)).

The proof of Theorem 1.2 reveals that

r(G(k)) ≤ r(
1
2

) =
n + 1
n + 2

.
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Hence, I obtain that

nα

[n + 2]α
≤

n + 1
n + 2

,

which is equivalent to

α ≥
ln (n+1

n+2)

ln ( n
n+2)

=: f(n).

Taking the derivative of the function f yields

f 0(n) =
n ln ( n

n+2) − 2[n + 1] ln (n+1
n+2)

n[n + 1][n + 2][ln ( n
n+2)]2

.

I claim that f 0(n)≥ 0 for all n≥ 1. Towards a contradiction, assume that there exists
n≥ 1 such that f 0(n)< 0. This means that

h(n) := n ln (
n

n + 2
) − 2[n + 1] ln (

n + 1
n + 2

) < 0.

When taking the derivative of the function h, I obtain that

h0(n) = ln (
n

n + 2
) − ln ((

n + 1
n + 2

)2).

I have that h0(n)≥ 0 for all n≥ 1 because n
n+2 < (n+1

n+2)2 for all n≥ 1. This means
that the function h is weakly decreasing and, thus, the previous inequality implies
that

lim
l→∞

h(l) ≤ h(n) = n ln (
n

n + 2
) − 2[n + 1] ln (

n + 1
n + 2

) < 0.

Applying L’Hôpital’s rule yields liml→∞ h(l)= 0, which is the desired contradiction.
Therefore, I obtain that f 0(n)≥ 0 for all n≥ 1. Further, the inequality α≥ f(n) above
implies that

α ≥
ln (n+1

n+2)

ln ( n
n+2)

= f(n) ≥ f(1) =
ln (2

3)

ln (1
3)
= 1 −

ln 2
ln 3

.

However, this contradicts the assumption that α < 1− ln 2
ln 3 . Consequently, I infer that

the ratio involving the optimal weights and the population size to the power of α
with 0≤ α < 1− ln 2

ln 3 is increasing in the population size, establishing the first part
of the proposition.
In order to show the second part of the proposition, I argue that an increase in
the population size by 2, say from n to n+ 2, implies a decline in the corresponding
optimal weights per citizen. Since population sizes are assumed to be odd, this yields
the desired conclusion that

wj0 (k)
nj0
>

wj00 (k)
nj00

for any two countries j0, j00 ∈ C with nj0 <
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nj00 . To the contrary, suppose that an increase in the population size from n to n+ 2
does not yield a decline in the associated weights per citizen, meaning,

wn+2(k)
n + 2

≥
wn(k)

n
,

where wn(k) and wn+2(k) describe, again, the optimal weights related to alterna-
tive k for countries with population sizes n and n+ 2 respectively. Rearranging this
inequality while employing the notation from the main text, I obtain that

n
n + 2

≥
wn(k)

wn+2(k)
= r(G(k)).

Now, the proof of Theorem 1.2 shows that

r(G(k)) ≥ lim
G(k)→0

r(G(k)) = lim
G(k)→1

r(G(k)) =
n + 1
n + 3

.

Therefore, it follows that

n
n + 2

≥
n + 1
n + 3

,

which is equivalent to 0≥ 2. This is the desired contradiction.

Proof of Theorem 1.2.
To begin with, I derive an alternative expression for the optimal weights. Consider
any 1≤ k<m and any country j ∈ C and focus on the weight wj(k). Since the con-
stant 1

c

∑

j∈C nj · [wY
nj

(k)+wN
nj

(k)− 1] cancels out, I ignore it and, hence, with abuse
of notation, the expression for wj(k) reduces to

wj(k) = nj · [wY
nj

(k) + wN
nj

(k) − 1] = nj · wN
nj

(k) − nj · [1 − wY
nj

(k)].

Recall that

wN
nj

(k) =
nj
∑

s=
nj+1

2

r(nj, k, s)

1 − R(nj, k,
nj−1

2 )

s
nj

and, therefore, I obtain that

nj · wN
nj

(k) =
nj
∑

s=
nj+1

2

r(nj, k, t)

1 − R(nj, k,
nj−1

2 )
· s = E[Xk

nj
|Xk

nj
≥

nj + 1

2
]
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where the random variable Xk
nj
is distributed according to the cdf R(nj, k, ·), that is,

Xk
nj

follows a binomial distribution with parameters nj and 1−G(k). Additionally,
note that

wY
nj

(k) =
nj
∑

s=
nj+1

2

l(nj, k, t)

1 − L(nj, k,
nj−1

2 )

s
nj

and, hence, I get that

nj(1 − wY
nj

(k)) = nj −
nj
∑

s=
nj+1

2

l(nj, k, s)

1 − L(nj, k,
nj−1

2 )
· s = E[nj − Yk

nj
|Yk

nj
≥

nj + 1

2
]

where the random variable Yk
nj
is distributed according to the cdf L(nj, k, ·), that is,

Yk
nj
follows a binomial distribution with parameters nj and G(k). In order to simplify

the notation, subsequently, I write G instead of G(k). Since L(nj, k, ·) and R(nj, k, ·)
are binomial distributions, the random variable nj − Yk

nj
has the same distribution as

the random variable Xk
nj
and, thus, it follows that

E[nj − Yk
nj
|Yk

nj
≥

nj + 1

2
] = E[nj − Yk

nj
|
nj − 1

2
≥ nj − Yk

nj
] = E[Xk

nj
|Xk

nj
≤

nj − 1

2
].

By the law of total expectation, I have that

nj(1 − G) = E[Xk
nj
]

=Pr(Xk
nj
≥

nj + 1

2
)E[Xk

nj
|Xk

nj
≥

nj + 1

2
] + Pr(Xk

nj
≤

nj − 1

2
)E[Xk

nj
|Xk

nj
≤

nj − 1

2
],

which is equivalent to

E[Xk
nj
|Xk

nj
≤

nj − 1

2
] =

nj(1 − G) − Pr(Xk
nj
≥ nj+1

2 )E[Xk
nj
|Xk

nj
≥ nj+1

2 ]

Pr(Xk
nj
≤ nj−1

2 )
.

Hence, wj(k) can be expressed as

wj(k) =E[Xk
nj
|Xk

nj
≥

nj + 1

2
] − E[Xk

nj
|Xk

nj
≤

nj − 1

2
]

=
E[Xk

nj
|Xk

nj
≥ nj+1

2 ] − nj(1 − G)

Pr(Xk
nj
≤ nj−1

2 )
.
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Ahmed (1991) characterizes the binomial distribution in terms of truncated expecta-
tions, and, in particular, it is shown in Ahmed (1991) that the subsequent equation
holds for random variables following a binomial distribution:

E[Xk
nj
|Xk

nj
≥

nj + 1

2
] = nj(1 − G) + G

nj + 1

2

Pr(Xk
nj
=

nj+1
2 )

Pr(Xk
nj
≥ nj+1

2 )
.

Therefore, the weight wj(k) satisfies

wj(k) =
G

nj+1
2 Pr(Xk

nj
=

nj+1
2 )

Pr(Xk
nj
≤ nj−1

2 )Pr(Xk
nj
≥ nj+1

2 )
.

Now, observe that, for any j ∈ C and 1≤ k<m, the optimal weight wj(k) depends on
k only through G. In the following, write wnj

(G) instead of wj(k) as well as wN
nj

(G)

and wY
nj

(G) instead of wN
nj

(k) and wY
nj

(k) respectively. Also, recall that population
sizes are odd. I consider an arbitrary population size n and study the behaviour
of the ratio of optimal weights involving two countries with population sizes n and
n+ 2. In other words, using the notation from the main text, I analyse the behaviour
of

r(G) =
wn(G)

wn+2(G)

as a function of G. I establish that the function r(G) satisfies the subsequent four
properties:

(i) r0(G) > 0 ∀G ∈ (0,
1
2

),

(ii) r0(
1
2

) = 0,

(iii) r0(G) < 0 ∀G ∈ (
1
2

, 1),

(iv) r(G) = r(1 − G) ∀G ∈ (0, 1).

The theorem follows directly from these four properties.
Employing the alternative expression for the optimal weights derived above, I have
that

wn(G) =
Gn+1

2 Pr(Xk
n =

n+1
2 )

Pr(Xk
n ≤

n−1
2 )Pr(Xk

n ≥
n+1

2 )

as well as

wn+2(G) =
Gn+3

2 Pr(Xk
n+2 =

n+3
2 )

Pr(Xk
n+2 ≤

n+1
2 )Pr(Xk

n+2 ≥
n+3

2 )
.
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Therefore, I obtain that

r(G) =
wn(G)

wn+2(G)
=
[Gn+1

2 Pr(Xk
n =

n+1
2 )][Pr(Xk

n+2 ≤
n+1

2 )Pr(Xk
n+2 ≥

n+3
2 )]

[Pr(Xk
n ≤

n−1
2 )Pr(Xk

n ≥
n+1

2 )][Gn+3
2 Pr(Xk

n+2 =
n+3

2 )]

=
n+1

2 Pr(Xk
n =

n+1
2 )

n+3
2 Pr(Xk

n+2 =
n+3

2 )

Pr(Xk
n+2 ≤

n+1
2 )

Pr(Xk
n ≤

n−1
2 )

Pr(Xk
n+2 ≥

n+3
2 )

Pr(Xk
n ≥

n+1
2 )

.

Furthermore, the ratio Pr(Xk
n=

n+1
2 )

Pr(Xk
n+2=

n+3
2 )

satisfies

Pr(Xk
n =

n+1
2 )

Pr(Xk
n+2 =

n+3
2 )

=

n!
( n+1

2 )!( n−1
2 )!

(1 − G)
n+1

2 G
n−1

2

(n+2)!
( n+1

2 +1)!( n+1
2 )!

(1 − G)
n+1

2 +1G
n+1

2

=
1

(1 − G)G (n+2)(n+1)
( n+1

2 +1) n+1
2

.

Hence, the first factor of the expression for r(G) simplifies to

n+1
2

n+3
2

Pr(Xk
n =

n+1
2 )

Pr(Xk
n+2 =

n+3
2 )

=
n+1

2
n+3

2

1

(1 − G)G (n+2)(n+1)
( n+1

2 +1) n+1
2

=
1

4(1 − G)G
n + 1
n + 2

.

Moreover, I employ the relationship between the binomial distribution and the beta
distribution in order to rewrite the other two factors of the expression for r(G). For
a reference treating this relationship, see e.g. Abramowitz and Stegun (1965). First,
consider the ratio Pr(Xk

n+2≤
n+1

2 )

Pr(Xk
n≤

n−1
2 )

which can be expressed as

Pr(Xk
n+2 ≤

n+1
2 )

Pr(Xk
n ≤

n−1
2 )

=

(n+2)!
( n+1

2 )!( n+1
2 )!

∫ G
0 [t(1 − t)]

n+1
2 dt

n!
( n−1

2 )!( n−1
2 )!

∫ G
0 [t(1 − t)]

n−1
2 dt

= 4
n + 2
n + 1

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ G
0 [t(1 − t)]

n−1
2 dt

.

Second, take the ratio Pr(Xk
n+2≥

n+3
2 )

Pr(Xk
n≥

n+1
2 )

which can be written as

Pr(Xk
n+2 ≥

n+3
2 )

Pr(Xk
n ≥

n+1
2 )

= 4
n + 2
n + 1

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

.

Consequently, r(G) can be expressed as

r(G) = 4
n + 2
n + 1

1
(1 − G)G

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ G
0 [t(1 − t)]

n−1
2 dt

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

= 4
n + 2
n + 1

∫ G
0 [t(1 − t)]

n+1
2 dt

G
∫ G

0 [t(1 − t)]
n−1

2 dt

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

[1 − G]
∫ 1−G

0 [t(1 − t)]
n−1

2 dt
.



Appendix 1.A Proofs | 55

Hence, it is immediate that property (iv), i.e., r(G)= r(1−G) for all G ∈ (0,1),
holds.
Define the term

a(G) :=

∫ G
0 [t(1 − t)]

n+1
2 dt

G
∫ G

0 [t(1 − t)]
n−1

2 dt
.

Clearly, it holds that

r(G) = 4
n + 2
n + 1

a(G)a(1 − G)

as well as

r0(G) = 4
n + 2
n + 1

[a0(G)a(1 − G) − a(G)a0(1 − G)].

Thus, it is immediate that property (ii), i.e., r0(1
2)= 0, holds. In the following, I show

that the equation r0(G)= 0 has no other solution. Compute the derivative

a0(G) =
G[
∫ G

0 [t(1 − t)]
n−1

2 dt][G(1 − G)]
n+1

2

G2[
∫ G

0 [t(1 − t)]
n−1

2 dt]2

−
[
∫ G

0 [t(1 − t)]
n+1

2 dt]{G[G(1 − G)]
n−1

2 + [
∫ G

0 [t(1 − t)]
n−1

2 dt]}

G2[
∫ G

0 [t(1 − t)]
n−1

2 dt]2
.

Further, I have that a(1−G) ̸= 0 and a0(1−G) ̸= 0; To see the latter claim, towards
a contradiction, assume that a0(1−G)= 0 which is equivalent to

0 = [G(1 − G)]
n+1

2 −
[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt][G(1 − G)]
n−1

2

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
−

1
1 − G

.

Rearranging yields

[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt][G(1 − G)]
n−1

2

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
= [G(1 − G)]

n+1
2 −

1
1 − G

.

However, the left hand side of this equation is positive, whereas the right hand side
is negative. This is the desired contradiction.
Consequently, r0(G)= 0 is equivalent to

a0(G)
a0(1 − G)

=
a(G)

a(1 − G)
.

To the contrary, suppose that there exists some G ∈ (0, 1) with G ̸= 1
2 such that

a0(G)
a0(1 − G)

=
a(G)

a(1 − G)
.
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Plugging in the relevant expressions and simplifying yields

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

=

[G(1 − G)]
n+1

2 −
[
∫ G

0 [t(1−t)]
n+1

2 dt][G(1−G)]
n−1

2

[
∫ G

0 [t(1−t)]
n−1

2 dt]
− 1

G

[G(1 − G)]
n+1

2 −
[
∫ 1−G

0 [t(1−t)]
n+1

2 dt][G(1−G)]
n−1

2

[
∫ 1−G

0 [t(1−t)]
n−1

2 dt]
− 1

1−G

Now, by property (iv), without loss of generality, suppose that G> 1
2 . In this case,

the left hand side of the equation is strictly larger than 1. Subsequently, I establish
that the right hand side is weakly smaller than 1, implying the desired contradiction.
First of all, it holds that

[G(1 − G)]
n+1

2 −
[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt][G(1 − G)]
n−1

2

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
−

1
1 − G

< 0.

To the contrary, suppose that this claim is not true. Then, the reversed inequality
can be written as

[G(1 − G)]
n+1

2 −
1

1 − G
≥
[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt][G(1 − G)]
n−1

2

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
.

However, the left hand side of this inequality is negative, whereas the right hand
side is positive. This is the desired contradiction.
Now, towards a contradiction, assume that the right hand side of the equality above
is strictly larger than 1. Then, I obtain that

[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt]

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
[G(1 − G)]

n−1
2 +

1
1 − G

<
[
∫ G

0 [t(1 − t)]
n+1

2 dt]

[
∫ G

0 [t(1 − t)]
n−1

2 dt]
[G(1 − G)]

n−1
2 +

1
G

or, equivalently,

2[G −
1
2
]

< {
[
∫ G

0 [t(1 − t)]
n+1

2 dt]

[
∫ G

0 [t(1 − t)]
n−1

2 dt]
−
[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt]

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
}[G(1 − G)]

n+1
2 .



Appendix 1.A Proofs | 57

Saunders (1992) provides a recurrence relation for the symmetric incomplete beta
function that reads
∫ G

0

[t(1 − t)]
n+1

2 dt = [G(1 − G)]
n+1

2
G − 1

2

n + 2
+

n + 1
4n + 8

[

∫ G

0

[t(1 − t)]
n−1

2 dt]

as well as
∫ 1−G

0

[t(1 − t)]
n+1

2 dt = [G(1 − G)]
n+1

2

1
2 − G

n + 2
+

n + 1
4n + 8

[

∫ 1−G

0

[t(1 − t)]
n−1

2 dt].

Thus, the recurrence relation for the symmetric incomplete beta function implies
∫ G

0 [t(1 − t)]
n+1

2 dt
∫ G

0 [t(1 − t)]
n−1

2 dt
= [G(1 − G)]

n+1
2

G − 1
2

n + 2
1

∫ G
0 [t(1 − t)]

n−1
2 dt

+
1
4

n + 1
n + 2

as well as
∫ 1−G

0 [t(1 − t)]
n+1

2 dt
∫ 1−G

0 [t(1 − t)]
n−1

2 dt
= [G(1 − G)]

n+1
2

1
2 − G

n + 2
1

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

+
1
4

n + 1
n + 2

.

Hence, I have that

[
∫ G

0 [t(1 − t)]
n+1

2 dt]

[
∫ G

0 [t(1 − t)]
n−1

2 dt]
−
[
∫ 1−G

0 [t(1 − t)]
n+1

2 dt]

[
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]

=[G(1 − G)]
n+1

2
G − 1

2

n + 2
1

∫ G
0 [t(1 − t)]

n−1
2 dt

+ [G(1 − G)]
n+1

2
G − 1

2

n + 2
1

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

=[G(1 − G)]
n+1

2
G − 1

2

n + 2
[

1
∫ G

0 [t(1 − t)]
n−1

2 dt
+

1
∫ 1−G

0 [t(1 − t)]
n−1

2 dt
].

Therefore, the inequality above reduces to

2[G −
1
2
]

< [G(1 − G)]n+1 G − 1
2

n + 2
[

1
∫ G

0 [t(1 − t)]
n−1

2 dt
+

1
∫ 1−G

0 [t(1 − t)]
n−1

2 dt
].

Since G> 1
2 , this inequality is equivalent to

2 <
[G(1 − G)]n+1

n + 2
[

1
∫ G

0 [t(1 − t)]
n−1

2 dt
+

1
∫ 1−G

0 [t(1 − t)]
n−1

2 dt
].
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Rearranging yields

2[

∫ G

0

[t(1 − t)]
n−1

2 dt][

∫ 1−G

0

[t(1 − t)]
n−1

2 dt]

<
[G(1 − G)]n+1

n + 2
{[

∫ G

0

[t(1 − t)]
n−1

2 dt] + [

∫ 1−G

0

[t(1 − t)]
n−1

2 dt]}.

Note that the incomplete beta function satisfies

[

∫ G

0

[t(1 − t)]
n−1

2 dt] + [

∫ 1−G

0

[t(1 − t)]
n−1

2 dt]

=

∫ 1

0

[t(1 − t)]
n−1

2 dt = 2[

∫
1
2

0

[t(1 − t)]
n−1

2 dt].

For a reference for this claim, see e.g. Abramowitz and Stegun (1965). Therefore,
the inequality above simplifies to

b(G) :=[

∫ G

0

[t(1 − t)]
n−1

2 dt][

∫ 1−G

0

[t(1 − t)]
n−1

2 dt]

− [G(1 − G)]n+1
[
∫

1
2

0 [t(1 − t)]
n−1

2 dt]

n + 2
< 0.

Now, observe that

b0(G) = − [G(1 − G)]
n−1

2 [

∫ G

1−G
[t(1 − t)]

n−1
2 dt]

+ [

∫
1
2

0

[t(1 − t)]
n−1

2 dt]
n + 1
n + 2

[G(1 − G)]n[2G − 1].

I claim that b0(G)≤ 0 for all G ∈ (1
2 , 1]. Suppose not, i.e., there exists G ∈ (1

2 , 1] such
that

−[G(1 − G)]
n−1

2 [

∫ G

1−G
[t(1 − t)]

n−1
2 dt]

+[

∫
1
2

0

[t(1 − t)]
n−1

2 dt]
n + 1
n + 2

[G(1 − G)]n[2G − 1] > 0.

This inequality is equivalent to

[

∫
1
2

0

[t(1 − t)]
n−1

2 dt]
n + 1
n + 2

[G(1 − G)]n[2G − 1]

>[G(1 − G)]
n−1

2 [

∫ G

1−G
[t(1 − t)]

n−1
2 dt].
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Since the minimizers of the function [t(1− t)]
n−1

2 on the interval [1−G, G] amount
to G as well as 1−G, I have that

[

∫
1
2

0

[t(1 − t)]
n−1

2 dt]
n + 1
n + 2

[G(1 − G)]n[2G − 1]

>[G(1 − G)]
n−1

2 [

∫ G

1−G
[t(1 − t)]

n−1
2 dt]

≥[G(1 − G)]
n−1

2 [

∫ G

1−G
[G(1 − G)]

n−1
2 dt] = [G(1 − G)]n−1[2G − 1].

Hence, because G> 1
2 , this inequality reduces to

[

∫
1
2

0

[t(1 − t)]
n−1

2 dt]
n + 1
n + 2

[G(1 − G)] > 1.

However, the left hand side of this inequality is smaller than 1. Thus, there is a
contradiction and I conclude that b0(G)≤ 0 for all G ∈ (1

2 , 1].
Consequently, I obtain that

0 >[

∫ G

0

[t(1 − t)]
n−1

2 dt][

∫ 1−G

0

[t(1 − t)]
n−1

2 dt]

− [G(1 − G)]n+1
[
∫

1
2

0 [t(1 − t)]
n−1

2 dt]

n + 2
=b(G) ≥ b(1) = 0

This constitutes the desired contradiction and I infer that the right hand side of
the inequality discussed above is weakly smaller than 1. Hence, it follows that the
equation r0(G)= 0 has no solution distinct from G= 1

2 .
Next, observe that

lim
G→0

r(G) = lim
G→0

n[wY
n(G) + wN

n (G) − 1]

[n + 2][wY
n+2(G) + wN

n+2(G) − 1]
=

n + 1
n + 3

as well as

lim
G→1

r(G) = lim
G→1

n[wY
n(G) + wN

n (G) − 1]

[n + 2][wY
n+2(G) + wN

n+2(G) − 1]
=

n + 1
n + 3

.

Now, consider again the function r, that is,

r(G) = 4
n + 2
n + 1

1
(1 − G)G

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ G
0 [t(1 − t)]

n−1
2 dt

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

= 4
1

(1 − G)G
n + 1
n + 2

n + 2
n + 1

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ G
0 [t(1 − t)]

n−1
2 dt

n + 2
n + 1

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

.
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Employing, again, the recurrence relation for the symmetric incomplete beta func-
tion due to Saunders (1992) yields

n + 2
n + 1

∫ 1−G
0 [t(1 − t)]

n+1
2 dt

∫ 1−G
0 [t(1 − t)]

n−1
2 dt

=
[1

2 − G][G(1 − G)]
n+1

2

[n + 1][
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
+

1
4

as well as

n + 2
n + 1

∫ G
0 [t(1 − t)]

n+1
2 dt

∫ G
0 [t(1 − t)]

n−1
2 dt

=
[G − 1

2][G(1 − G)]
n+1

2

[n + 1][
∫ G

0 [t(1 − t)]
n−1

2 dt]
+

1
4

.

Therefore, I obtain that

r(G) =4
1

(1 − G)G
n + 1
n + 2

[
[G − 1

2][G(1 − G)]
n+1

2

[n + 1][
∫ G

0 [t(1 − t)]
n−1

2 dt]
+

1
4
]

· [
[1

2 − G][G(1 − G)]
n+1

2

[n + 1][
∫ 1−G

0 [t(1 − t)]
n−1

2 dt]
+

1
4
]

Hence, it is immediate that r(1
2)= n+1

n+2 .
Now, note that

r(
1
2

) =
n + 1
n + 2

>
n + 1
n + 3

= lim
G→0

r(G) = lim
G→1

r(G).

Therefore, this inequality together with the claim that r0(G)= 0 has no solution
distinct from G= 1

2 shown above, implies property (i), i.e., r0(G)> 0∀G ∈ (0, 1
2) as

well as property (iii), i.e., r0(G)< 0∀G ∈ (1
2 , 1), of the function r. Consequently, I

established all four desired properties of the function r, completing the proof of the
theorem.

Proof of Proposition 1.3.
Take any 0≤ α < 1− ln 2

ln 3 as well as any 1≤ k<m. I show that an increase in the
number of blocks from b to b+ 2 yields a rise in the ratio, where the corresponding
optimal weights are divided by the population size to the power of α. Since the
numbers of blocks are assumed to be odd, and because population sizes are strictly
increasing in the number of blocks, I directly obtain the desired conclusion that
wj0 (k)

nα
j0
<

wj00 (k)
nα

j00
for any two countries j0, j00 ∈ C with nj0 < nj00 . To the contrary, suppose
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that a rise in the number of blocks from b to b+ 2 does not imply an increase in the
discussed ratio, that is,

wb+2(k)
[n0]α

≤
wb(k)

nα
,

where wb(k) and wb+2(k) are the optimal weights linked to alternative k for two
countries with numbers of blocks b and b+ 2 respectively, and the variables n and
n0 denote the population sizes of two such countries respectively. Let s and s0 be
the corresponding block sizes, and note that s≤ s0 by assumption. This inequality is
equivalent to

[b · s]α

[(b + 2) · s0]α
≤

wb(k)
wb+2(k)

.

Applying the proof of Theorem 1.2 implies that

wb(k)
wb+2(k)

≤
s
s0

b + 1
b + 2

.

Consequently, I obtain that

bα

[b + 2]α
≤ [

s
s0
]1−α

b + 1
b + 2

≤
b + 1
b + 2

,

where the latter inequality follows from s
s0 ≤ 1 and 1−α≥ 0. Now, observe that this

inequality is the same as the inequality

nα

[n + 2]α
≤

n + 1
n + 2

,

which appears in the proof of Proposition 1.2. Therefore, the arguments presented
in the latter proof imply the desired contradiction.
In order to establish the second part of the proposition, I show that a rise in the num-
ber of blocks from b to b+ 2 yields a decline in the corresponding optimal weights
per citizen. Since the numbers of blocks are assumed to be odd, and because pop-
ulation sizes are strictly increasing in the number of blocks, I obtain the desired
conclusion that

wj0 (k)
nj0
>

wj00 (k)
nj00

for any two countries j0, j00 ∈ C with nj0 < nj00 . Towards
a contradiction, assume that a rise in the number of blocks from b to b+ 2 does not
imply a decline in the associated weights per citizen, meaning,

wb+2(k)
n0

≥
wb(k)

n
,

where the notation is the same as in the first part of this proof. Rearranging this
inequality, I have that

n
n0
≥

wb(k)
wb+2(k)

.



62 | 1 Sequential Voting and the Weights of Nations

Now, again, applying the proof of Theorem 1.2 reveals that

wb(k)
wb+2(k)

≥
s
s0

b + 1
b + 3

Therefore, it follows that

b + 1
b + 3

≤
n
s

s0

n0
=

b
b + 2

,

which is equivalent to 0≥ 2. This is the desired contradiction.

Appendix 1.B Derivation

I provide the derivation of the expression for the object µN
nj

(k) appearing in the main
text. The stated term is obtained as follows:

µN
nj

(k)

=E[uk+1(T) − uk(T)|j votes “No” at k]

=
nj
∑

s=
nj+1

2

Pr(“#peaks ≥ k + 1” = s|“#peaks ≥ k + 1” ≥
nj + 1

2
)

· E[uk+1(T) − uk(T)|“#peaks ≥ k + 1” = s]

=
nj
∑

s=
nj+1

2

r(nj, k, s)

1 − R(nj, k,
nj−1

2 )

{Pr(peak ≥ k + 1|“#peaks ≥ k + 1” = s)

· E[uk+1(T) − uk(T)|peak ≥ k + 1]

+ Pr(peak ≤ k|“#peaks ≥ k + 1” = s)E[uk+1(T) − uk(T)|peak ≤ k]}

=
nj
∑

s=
nj+1

2

r(nj, k, s)

1 − R(nj, k,
nj−1

2 )

{
s
nj
E[uk+1(T) − uk(T)|peak ≥ k + 1]

+
nj − s

nj
[−1]E[uk(T) − uk+1(T)|peak ≤ k]}

=wN
nj

(k)E[uk+1 − uk|uk+1 > uk] + [1 − wN
nj

(k)][−1]E[uk − uk+1|uk > uk+1].
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Chapter 2

Public Goods Provision and Weighted
Majority Voting

2.1 Introduction

Frequently, collective decisions about the provision of costly public goods are taken
according to weighted majority rules. Two examples are the geographic decentral-
ization of collective decisions as discussed in Fleurbaey (2008) as well as voting in
international organizations such as the International Monetary Fund or the World
Bank (see International Monetary Fund (2021) and World Bank (2021)).
First, consider the geographic decentralization of collective decisions. Suppose that
the public good under consideration is an infrastructure project such as the exten-
sion of an airport or the construction of a new train station. Typically, these projects
are predominantly financed by the national or the state government. However, as
Fleurbaey (2008) explains, people, who live near the location where the infrastruc-
ture project might be implemented, are concerned differently about the project com-
pared to people who live far away. Fleurbaey (2008) argues that these systematic
differences in the benefits of the public good are the reason why sometimes, instead
of nationwide or statewide referenda, collective decisions about these projects are
taken according to local referenda. Local referenda are nothing else than an extreme
form of a weighted majority rule. In the described situations, there is approximately
an equal sharing of the costs of the public good across the voters, but the distribu-
tions of the benefits of the public good are heterogeneous across voters. This raises
the question of how to assign voting weights to voters that are asymmetric because
of non-identical benefit distributions.
Second, consider voting in international organizations such as the International
Monetary Fund or the World Bank. In these institutions, collective decisions about
the provision of costly public goods, say financial stability in the case of the Inter-
national Monetary Fund, and poverty reduction in the case of the World Bank, are
taken according to weighted majority rules, where the voting weights of the mem-
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ber countries are affine in the capital or payment shares of the member countries
(again, see International Monetary Fund (2021) and World Bank (2021)). There-
fore, here, it seems to be plausible to assume that the benefits of the public good
are roughly distributed identically across member states, but the agents voting on
behalf of the member countries are asymmetric because of an unequal sharing of
the costs of the public good. This raises the question whether voting weights that
are affine in cost shares are optimal, and even more basic whether it is optimal that
the voting weights are increasing in the cost shares.
In this chapter, I study the design of welfare-maximizing voting mechanisms for the
provision of a costly public good. The setting features multiple public good levels,
and the voters are ex-ante asymmetric. In line with the two discussed applications,
the asymmetry arises from heterogeneous distributions of the benefits of the public
good or from an unequal sharing of the costs of the public good. The heterogeneity of
the voters justifies the violation of the important democratic principle of anonymity
or “one person, one vote”.1 Therefore, the question of how the asymmetry of the vot-
ers should be optimally reflected in the voting weights arises. Gershkov, Moldovanu,
and Shi (2017) study the same mechanism design problem, but they assume voters
to be ex-ante identical, and restrict attention to anonymous mechanisms.
The main economic problem that is at work here is a Bayesian inference problem:
The utilitarian designer has to make inferences about the voters’ preference intensi-
ties based on their vote choices. These inferred preference intensities depend on the
vote choice under consideration as well as on the identity of the voter as they are
asymmetric. The designer has to trade-off the different inferred preference intensi-
ties in order to determine the welfare-maximizing mechanism.
The main results are as follows: First, I characterize the welfare-maximizing mecha-
nism among all strategy-proof, and surjective social choice functions. It is composed
of a sequence of binary weighted majority decisions going gradually from low to
high public good levels, and I derive closed-form expressions for the optimal voting
weights and majority quotas (Theorem 2.1).2 In general, these weights and quotas
depend on the public good level under consideration.
Second, I study the properties of the welfare-maximizing voting weights. If the ben-
efits of the public good are drawn from heterogeneous distributions, the optimal
mechanism assigns higher voting weights to voters whose benefit distributions are
more variable (Proposition 2.3), and the utilitarian voting weights are more equal
for more extreme public good levels (Proposition 2.4).3 If the costs of the public
good are shared unequally, the optimal voting weights are generally not increasing

1. Note that, in practice, the anonymity criterion is violated in the two applications presented
above.

2. The characterization is shown for benefit distributions that admit log-concave densities.
3. The latter result is shown for a large class of benefit distributions derived in Deimen and

Szalay (2019) that includes the uniform and the symmetric triangular distribution.
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in the voters’ cost shares (Proposition 2.5).
The remainder of this chapter is organized as follows: The following section 2.2 dis-
cusses the related literature. In section 2.3, I introduce the model. Then, in section
2.4, I present a description of the class of incentive-compatible mechanisms that
is convenient for the ensuing optimization task. In section 2.5, I characterize the
welfare-maximizing mechanism. In the subsequent section 2.6, I analyse how the
asymmetry of the voters is reflected in the welfare-maximizing voting weights. The
final section 2.7 concludes. Appendix 2.A contains the proofs.

2.2 Literature

This chapter contributes to the vast literature on the design of mechanisms for the
provision of public goods. Green and Laffont (1979) provide an early overview of
this literature. For a recent textbook treatment, I refer to Börgers (2015).
More specifically, the present work relates to the literature on the analysis of the util-
itarian efficiency of voting mechanisms going back to Rae (1969). Several papers
including Barberà and Jackson (2006), Fleurbaey (2008), Azrieli and Kim (2014),
and Azrieli (2018) evaluate voting mechanisms according to the utilitarian princi-
ple in settings with two alternatives and asymmetric voters. Shao and Zhou (2016)
argue in a two-alternatives setting that, under some conditions, voting mechanisms
are welfare-maximizing even when monetary transfers are allowed.⁴ Similar to the
present work, in Shao and Zhou (2016), voters are also asymmetric because of non-
identical benefit distributions or unequal cost sharing. The utilitarian voting rule
they identify coincides with the optimal voting mechanism derived in Theorem 2.1
for the special case in which there are only two public good levels, but they do not
investigate the properties of the optimal mechanism.
I contribute to the literature studying utilitarian voting rules in settings with two
alternatives and asymmetric voters as follows: While focusing on public goods pro-
vision, I provide comparative statics results how the optimal voting weights vary
with the benefit distributions, and the cost shares.
Kleiner and Moldovanu (2017) investigate sequential voting procedures for settings
with more than two alternatives and single-peaked preferences. They derive condi-
tions on the dynamic voting procedures under which the induced games admit an
ex-post perfect equilibrium in which agents vote sincerely. The successive voting pro-
cedures that I consider in the present chapter satisfy these conditions except that the
voting rules might be non-anonymous. Also, the successive voting procedures con-
stitute dynamic representations of the static voting by issues mechanisms studied in
Nehring and Puppe (2007), who allow for non-anonymous voting.

4. While also considering the case of two alternatives, Drexl and Kleiner (2018) obtain a con-
ceptually similar finding, but they focus on symmetric voters, and anonymous mechanisms.
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Gershkov, Moldovanu, and Shi (2017) derive the utilitarian voting rules among all
anonymous, unanimous, and strategy-proof mechanisms for settings with more than
two alternatives, single-peaked preferences, and ex-ante identical voters. They show
that the optimal mechanisms take the form of anonymous successive voting proce-
dures involving majority quotas that are decreasing along the sequence of ballots.⁵
In independent work, Jennings, Laraki, Puppe, and Varloot (2022) consider a
model featuring an interval of alternatives, single-peaked preferences, and sym-
metric voters. For this setting, they characterize non-anonymous strategy-proof so-
cial choice functions that maximize utilitarian welfare functions involving agent-
specific weights. Since these welfare weights translate one-to-one into alternative-
independent voting weights, their maximization effectively amounts to finding the
optimal majority quotas, making it similar to Gershkov, Moldovanu, and Shi (2017).
I contribute to the literature on utilitarian voting rules in settings with more than
two alternatives, and single-peaked preferences as follows: While concentrating on
public goods provision, I characterize the optimal voting mechanisms among all
strategy-proof, and surjective social choice functions for settings in which the agents
are asymmetric, and the mechanisms are non-anonymous. The presence of hetero-
geneous voters, and the relaxation of anonymity imply that the voting weights arise
as a new design tool in addition to the majority quotas. Moreover, again, I analyze
how the resulting alternative-dependent voting weights are shaped by the voters’
benefit distributions and cost shares.
In chapter 1 of this dissertation, I study the apportionment problem, meaning, the
question of how to assign voting weights to representatives of differently-sized
groups of citizens. In contrast, in the present chapter, voters are asymmetric because
of preference heterogeneity. Both chapters share that the setting features multiple
alternatives, and single-peaked preferences, and that the objective criterion is util-
itarian. In terms of results, Proposition 2.1 appears in both chapters. The proof of
Theorem 2.1 is, to a large extent, identical to the proof of the characterization of
welfare-maximizing mechanisms in chapter 1. However, the two results are not log-
ically related because the assumptions are different. There is no overlap as far as all
other findings in the two chapters are concerned.
Finally, regarding dominant-strategy incentive-compatibility, the analysis in the
present chapter takes as a starting point a characterization of strategy-proof so-
cial choice functions due to Achuthankutty and Roy (2018).⁶ In terms of analytical
tools, I employ a technical result about stochastic orders from Belzunce, Martínez-
Riquelme, and Ruiz (2013). This technical finding involves a stochastic variability
ordering, which appeared previously in Szalay (2012) in the context of strategic
information transmission. Also, again, in some parts of the analysis, I focus on a

5. Gersbach (2017) surveys related contributions. Again, these contributions focus on ex-ante
identical agents as well as anonymous voting rules.

6. They generalize previous results from Moulin (1980), and Saporiti (2009).
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class of benefit distributions derived in Deimen and Szalay (2019), who also study
strategic information transmission, and compare its performance to delegation.

2.3 Model

The model extends the linear utility model in Gershkov, Moldovanu, and Shi (2017)
to allow for voters that are ex-ante asymmetric, and mechanisms that are not anony-
mous.
There is a finite set of public good levels K := {1, ..., K} with K ≥ 2, and a finite
set of voters N := {1, ..., n} with n≥ 2. The voters’ preferences feature independent
private values. Each voter i ∈ N has a type governed by the random variable Xi that
is distributed according to the cdf Fi. The distribution Fi admits a density fi, and it
has full support on some bounded interval [xi, xi] with 0≤ xi < xi <∞. The types
are distributed independently across voters. Each voter i ∈ N is privately informed
about his or her type realization.
The voters’ utility functions are affine in types, that is, voter i ∈ N having type real-
ization xi ∈ [xi, xi] derives the following utility from public good level k ∈K :

uk
i (xi) := Gk · xi − ck

i .

The involved parameters ck
i and Gk with k ∈K are common knowledge, and they

satisfy the restrictions

c1
i < c2

i < ... < cK−1
i < cK

i , and

GK > GK−1 > ... > G2 > G1 ≥ 0.

The function Gk maps public good level indices into utilities and, therefore, the con-
straint on Gk imposes that higher public good level indices are associated with higher
benefits of the public good. The function ck

i represents the costs of the public good
that voter i ∈ N has to bear and, hence, the assumption on ck

i means that the costs
are increasing in the public good level.
For all voters i ∈ N and any two public good levels m, l ∈K with m< l, define the
cutoff

xm,l
i :=

cl
i − cm

i

Gl − Gm
.

This cutoff describes the type realization at which voter i is indifferent between
public good levels m and l. Suppose that, for all voters i ∈ N, there are no two distinct
cutoffs xm,l

i and xm0,l0

i with m, m0, l, l0 ∈K as well as m< l and m0 < l0 that coincide. In
addition, assume that the cutoffs involving adjacent public good levels are ordered,
meaning, for all voters i ∈ N and any public good level 1≤ k< K − 1, it holds that

xk,k+1
i < xk+1,k+2

i .
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Also, the smallest of these cutoffs is larger than the lower bound of the support of
the type distribution and the largest of these cutoffs is smaller than the upper bound
of the support of the type distribution, that is, xi < x1,2

i , and xK−1,K
i < xi.

The constraints on the cutoffs involving adjacent public good levels imply that the
ordinal preferences induced by the utility representation are single-peaked with re-
spect to the order of the public good levels 1< ...< K.⁷ The restrictions constitute
a mild assumption on the underlying functions Gk and ck

i . Together with sufficiently
large supports, the following conditions are sufficient for the discussed constraints:
The function Gk is concave, meaning, Gk+1 −Gk is weakly decreasing in k, and, for
all voters i, the function ck

i is convex, that is, ck+1
i − ck

i is weakly increasing in k, and
at least one of these two aspects holds strictly.⁸
Finally, let me describe the designer’s optimization problem. Monetary transfers are
not feasible, the solution concept is dominant-strategy equilibrium, andmechanisms
are deterministic. The set of feasible mechanisms is equal to the set of all possibly
indirect, surjective, and deterministic mechanisms Γ = (M1, ..., Mn, h), inducing a
game that possesses an equilibrium in dominant strategies, where Mi is the mes-
sage set of voter i ∈ N and h : ×i∈NMi→K is the outcome function.⁹
The designermaximizes the voters’ utilitarian welfare over the described set of mech-
anisms. Within the class of deterministic mechanisms considered here, it is without
loss to restrict attention to direct mechanisms: Deterministic direct mechanisms do
not allow the implementation of stochastic outcomes, whereas it is possible to im-
plement such outcomes via mixed strategies of deterministic indirect mechanisms.
However, since the solution concept is dominant-strategy equilibrium, all pure mes-
sage profiles in the support of the mixed strategies are also equilibria. Hence, when
choosing the pure action profile yielding the highest welfare among those that are
in the support of the mixed strategies, the resulting welfare is not lower compared
to the welfare of the equilibrium in mixed strategies. This point has been made by
Jarman and Meisner (2017). In other words, they provide a revelation principle in
terms of payoffs implying the following result: For any possibly indirect, and sur-
jective mechanism Γ that admits a dominant-strategy equilibrium, there exists a
direct mechanism Γ 0 = ([x1, x1], ..., [xn, xn], h0) that is dominant-strategy incentive-
compatible, and surjective, and the utilitarian welfare under Γ 0 is weakly higher
than under Γ . Therefore, from now on, I restrict attention to direct mechanisms
that are dominant-strategy incentive-compatible, and surjective.

7. Gershkov, Moldovanu, and Shi (2017) contains an argument for the stated claim.
8. For example, together with sufficiently large supports, the sufficient conditions are satisfied

if Gk is linear in the public good level, i.e., Gk = k, the costs take a quadratic form and each voter i
bears a positive share si of the costs, that is, ck

i = si
1
2 k2 with si > 0 and

∑

i∈N si = 1.
9. Surjectivity requires that every public good level is in the image of the outcome function. It

represents a mild condition ensuring that no public good level is ex-ante excluded from the collective
decision-making process.
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2.4 Incentive Compatibility

In this section, I establish a one-to-one relationship between, on the one hand,
dominant-strategy incentive-compatible, and surjective direct mechanisms, and, on
the other hand, sincere equilibria of successive voting procedures. The successive vot-
ing procedure is a sequential voting rule that is frequently used in real-world institu-
tions (see Rasch (2000)). This dynamic implementation generalizes previous results
from Gershkov, Moldovanu, and Shi (2017), and Kleiner and Moldovanu (2017),
who restrict attention to anonymous mechanisms. Nehring and Puppe (2007) con-
tains static variants of these voting procedures, while allowing for non-anonymous
voting. The description of these mechanisms in terms of sequential voting proce-
dures is convenient for the optimization over these voting rules.
The following presentation of the class of successive voting procedures as well as
Proposition 2.1 below are also contained in chapter 1 of this dissertation. The mate-
rial is included here for completeness because the subsequent analysis relies on it.
The definition of successive voting procedures makes use of simple games as dis-
cussed in Taylor and Zwicker (1999). More precisely, following Nehring and Puppe
(2007), define a family of winning coalitionsW to be a non-empty collection of non-
empty subsets of the set of voters N that is closed under taking supersets, meaning,
[W ∈W ∧W ⊆W0]⇒W0 ∈W .
Every successive voting procedure is characterized by K − 1 families of winning coali-
tions. For each public good level 1≤ k< K, there is a family of winning coalitions
Wk. Suppose that these families of winning coalitions are ordered by set inclusion,
meaning, for all 1≤ k< K − 1, it holds thatWk ⊆Wk+1. This set inclusion restriction
means that it is more difficult to collectively accept lower public good levels.
Now, a successive voting procedure is composed of a sequence of binary votes while
going gradually from lower to higher public good levels. At each stage of the dynamic
procedure, agents vote simultaneously, and they can either approve (action “Yes”)
or reject (action “No”) the public good level that is currently on the agenda. Con-
cretely, a successive voting procedure with families of winning coalitions {Wk}K−1

k=1
can be described as follows:

(1) To begin with, the lowest public good level 1 is put to a vote, and voters can
either approve or reject this public good level. If the set of voters who play “Yes”
coincides with some element of the family of winning coalitionsW1, public good
level 1 is implemented. Otherwise, public good level 2 is considered.

(2) Agents either vote in favour or against public good level 2. If the set of agents
voting in favour of this public good level coincides with some element of the
family of winning coalitions W2, public good level 2 is collectively approved.
Otherwise, continue the voting process.

(3) Consider public good level 3, and possibly higher public good levels, and treat
them in the same way as public good levels 1 and 2. Eventually, either some
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alternative 1≤ k< K is collectively selected or if the set of agents approving
public good level K − 1 does not coincide with some element ofWK−1, implement
alternative K.

Following Gershkov, Moldovanu, and Shi (2017), an ex-post perfect equilibrium can
be defined inwords as follows: For every profile of type realizations and at each stage
of the dynamic procedure, the continuation strategies constitute a Nash equilibrium
of the subgame, where the profile of type realizations is common knowledge.1⁰ Also,
a strategy is called sincere if a voter plays action “Yes” if and only if the public good
level on the agenda lies weakly to the right of this voter’s most preferred public good
level. Proposition 2.1 states that any successive voting procedure admits an ex-post
perfect equilibrium in sincere strategies. The same result for the anonymous case
is contained in Gershkov, Moldovanu, and Shi (2017), and Kleiner and Moldovanu
(2017).

Proposition 2.1. Sincere voting constitutes an ex-post perfect equilibrium in the
game induced by any successive voting procedure.

The proof of Proposition 2.1 contained in chapter 1 of this dissertation applies
to the present setting: It only requires that the ordinal preferences induced by the
utility representation are single-peaked, but the precise utility representation is ir-
relevant. Therefore, I omit the proof here and refer to chapter 1.
In order to establish the connection between, on the one hand, the sincere equilib-
ria of the successive voting procedures, and, on the other hand, dominant-strategy
incentive-compatible, and surjective direct mechanisms, I introduce several well-
known definitions. A direct mechanism or social choice function h : ×i∈N[xi, xi]→K
maps type profiles into public good levels. A social choice function h is dominant-
strategy incentive-compatible or strategy-proof if the following condition is met: For
all voters i ∈ N and for all type realizations xi, x0

i ∈ [xi, xi] and x−i ∈ ×j∈N:j̸=i[xj, xj], it
holds that

uh(xi,x−i)(xi) ≥ uh(x0

i ,x−i)(xi).11

A social choice function h is surjective if, for all public good levels k ∈K , there ex-
ists a set of type profiles (Z1, ..., Zn) ⊂ ×i∈N[xi, xi] arising with positive probability
such that, for all (x1, ...,xn) ∈ (Z1, ...,Zn), it holds that h(x1, ..., xn)= k.
It turns out that there is a one-to-one relationship between the sincere equilibria of
the dynamic successive voting procedures, and the dominant-strategy equilibria of
strategy-proof and surjective direct mechanisms. This result is captured in Proposi-
tion 2.2. Gershkov, Moldovanu, and Shi (2017), and Kleiner and Moldovanu (2017)

10. For a formal definition, I refer to Kleiner and Moldovanu (2017).
11. Note that strategy-proofness implies that two distinct type realizations of a voter inducing

the same ordinal preference relation are not treated differently.
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obtained the same finding while assuming anonymity.
I give a direct proof for Proposition 2.2 based on a characterization of strategy-proof
social choice functions due to Achuthankutty and Roy (2018) while explicitly link-
ing the parameters in their characterization and the families of winning coalitions
of the successive voting procedures. In independent work, Jennings et al. (2022) es-
tablish a similar connection. Achuthankutty and Roy (2018)’s result is contained in
Appendix 2.A. However, it should be noted that Proposition 2.2 can, essentially, be
also derived by combining existing results from Moulin (1980), Nehring and Puppe
(2007), and Achuthankutty and Roy (2018).

Proposition 2.2. (i) Given any successive voting procedure with collections of win-
ning coalitions {Wk}K−1

k=1 , there is a strategy-proof and surjective social choice func-
tion such that the outcomes coincide for any realization of type profiles.
(ii) Conversely, given any strategy-proof and surjective social choice function, there
is a successive voting procedure with collections of winning coalitions {Wk}K−1

k=1 such
that the outcomes coincide for any realization of type profiles.

Therefore, when focusing on implementation in dominant strategies while insist-
ing on surjectivity, there is no loss in considering successive voting procedures. In
other words, when varying the families of winning coalitions {Wk}K−1

k=1 while main-
taining the set inclusion restriction Wk ⊆Wk+1 for all 1≤ k< K − 1, all strategy-
proof and surjective social choice functions can be replicated by the sincere equi-
libria of the successive voting procedures. Consequently, in the following, I restrict
attention to successive voting procedures when it comes to the set of feasible mech-
anisms.

2.5 Optimal Mechanism

In this section, I provide a characterization of themechanism that maximizes utilitar-
ian welfare among all dominant-strategy incentive-compatible, and surjective social
choice functions.
First of all, Proposition 2.2 implies that the optimization problem reduces to find-
ing the optimal collections of winning coalitions {Wk}K−1

k=1 . Also, because a bounded
function is maximized over a finite set of elements, the existence of a solution is
guaranteed.
It turns out that the optimal mechanism can be implemented by a weighted suc-
cessive voting procedure. A successive voting procedure with collections of winning
coalitions {Wk}K−1

k=1 constitutes a weighted successive voting procedure if there exist
weights wi(k) ∈ R>0 and quotas q(k) ∈ R>0 with 1≤ k< K and i ∈ N such that, for
all 1≤ k< K and every set of voters C ⊆ N, it holds

C ∈ Wk ⇔
∑

i∈C

wi(k) ≥ q(k).
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In words, for each public good level 1≤ k< K, there is a majority requirement q(k)
as well as a vector of voting weights [w1(k), ..., wn(k)]. In particular, weights and
quotas might be sensitive to the public good level that is on the agenda. Then, when
it comes to the binary vote on public good level 1≤ k< K, this public good level is
collectively approved if and only if the sum of weights wi(k) with i ∈ N associated
with agents voting “Yes” at public good level k exceeds the majority requirement
q(k). Based on this definition, Theorem 2.1 characterizes the welfare-maximizing
mechanism.

Theorem 2.1. Suppose that the density fi is log-concave for all i ∈ N. The weighted
successive voting procedure with weights

wi(k) =
E[Xi − xk,k+1

i |Xi ≥ xk,k+1
i ] + E[xk,k+1

i − Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}

and quotas

q(k) =
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

with i ∈ N and 1≤ k< K implements the optimal mechanism among all strategy-proof
and surjective social choice functions.

Theorem 2.1 reveals that the optimal mechanism among all dominant-strategy
incentive-compatible, and surjective social choice functions can be implemented via
a weighted successive voting procedure, and it provides closed-form expressions for
the welfare-maximizing voting weights and majority quotas. In general, the optimal
weights and quotas are sensitive to the public good level that is on the agenda, and
they reveal how the designer’s Bayesian inference problem is resolved. The optimal
weights and quotas related to public good level 1≤ k< K are determined by com-
paring the welfare of the two adjacent public good levels k and k+ 1, but they do
not depend on the utility the voters derive from other public good levels. Essentially,
the regularity condition that the densities fi with i ∈ N are log-concave ensures that
the comparison of these two public good levels only is valid.
The optimal weights wi(k) with i ∈ N and 1≤ k< K are proportional to the sum

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ] + E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ].12

The expressionE[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ] reflects the designer’s inference about voter
i’s preference intensity given a “No” vote at public good level k ∈K . The term
E[xk,k+1

i − Xi|Xi ≤ xk,k+1
i ] captures the inference from a “Yes” vote of voter i at k.

12. Recall that xk,k+1
i denotes the cutoff type at which voter i is different between public good

levels k and k+ 1.
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The welfare-maximizing quotas q(k) with 1≤ k< K are decreasing in the public
good level. To see this, note that the log-concavity of the densities fi with i ∈ N im-
plies that the random variables Xi have the decreasing mean residual life as well
as the increasing mean inactivity time property (see e.g. Bagnoli and Bergstrom
(2005)). Gershkov, Moldovanu, and Shi (2017) also obtain in the symmetric case
that the majority quotas are decreasing along the sequence of ballots. Therefore,
this feature of the optimal mechanism extends to the asymmetric case.
Before studying, in the next section, the features of the welfare-maximizing voting
weights in detail, in order to provide some intuition, let me briefly discuss the spe-
cial case of uniformly distributed types. Specifically, suppose that Xi ∼U [xi, xi].13 In
this case, the expressions for the optimal weights wi(k) simplify, and the weights are
proportional to xi − xi. This means that the optimal weights are proportional to the
length of the support interval. In particular, a larger support interval implies a higher
voting weight. The weights depend only on the type distribution via the length of
the support interval, and they are independent of the cost sharing structure. Also,
the weights are not sensitive to the public good level on the agenda. Of course, these
properties are special to the uniform distribution. However, the aspect that a larger
support interval implies weights that are uniformly higher for all public good levels
generalizes to all distributions admitting a log-concave density in the following way:
A larger support interval means that the distribution is more variable, and it turns
out that more variable distributions imply uniformly higher weights. The following
section makes this claim precise.

2.6 Weights of Asymmetric Voters

In this section, I study properties of the welfare-maximizing voting weights. First,
I analyse how the optimal weights vary with the type distribution capturing the
benefits of the public good. Second, I investigate how the cost sharing structure
shapes the optimal weights.

2.6.1 Heterogeneous Benefit Distributions

The first part of this section focuses on the case of heterogeneous benefit or type
distributions, that is, for this part, suppose that the costs of the public good are
shared equally. Formally, for all k ∈K , there exists ck ∈ R such that ck = ck

i for all
i ∈ N. This implies that the cutoffs xk,k+1

i that enter the expressions of the optimal
weights do not depend on i, and, hence, for simplicity, I write xk,k+1 instead of xk,k+1

i .
It turns out that a more variable benefit distribution implies voting weights that are

13. Clearly, the densities of the uniform distributions are log-concave, and, therefore, Theorem
2.1 applies.
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uniformly higher for all public good levels. For any two voters i, j ∈ N, define the
following stochastic order:

Xi ≥v Xj : ⇔

E[Xi] = E[Xj], and

∃y ∈ (min{xi, xj},max{xi, xj}) :
fj(x)

fi(x)

non-decreasing for min{xi, xj} < x < y and

non-increasing for y < x < max{xi, xj}.

In words, Xi ≥v Xj if and only if the expected values of both distributions coincide
and the likelihood ratio fj(x)

fi(x) is single-peaked over the union of the supports. This
stochastic order is not new to the economics literature: In the context of strate-
gic information transmission, Szalay (2012) considers this order while focusing on
symmetric distributions. He calls the resulting order mean reverting monotone like-
lihood ratio property, and, for the case of symmetric distributions, he establishes,
for example, the following relation: If Xi ≥v Xj, Fi is a mean preserving spread of Fj.
Therefore, intuitively, Xi ≥v Xj means that Fi is in a strong sense more variable than
Fj. For instance, Xi and Xj are ranked in this way if Xi is drawn from the uniform
distribution and Xj follows a symmetric triangular distribution both supported on
the unit interval [0,1].
Proposition 2.3 relates the stochastic order ≥v to the optimal voting weights. The
proof of it relies on a technical result about stochastic orders due to Belzunce,
Martínez-Riquelme, and Ruiz (2013).

Proposition 2.3. Suppose that Xi ≥v Xj for some i, j ∈ N. For all 1≤ k< K, the opti-
mal voting weights satisfy

wi(k) ≥ wj(k).

In words, if a benefit distribution Fi is more variable than a type distribution
Fj in the sense of Xi ≥v Xj, the voting weights related to all public good levels are
higher for voter i compared to voter j. To put it differently, a stochastic ranking
of the type distributions in the sense of ≥v constitutes a sufficient condition for a
uniform ranking of the optimal voting weights. Intuitively, if Xi ≥v Xj, the designer
infers from both a “Yes” and a “No” vote at any public good level higher preference
intensities for voter i than for voter j and, therefore, the optimal mechanism assigns
higher voting weights to voter i compared to voter j.
Next, I address how much the voting weights are larger for voter i than for voter j as
a function of the public good level on the agenda given Xi ≥v Xj. Concretely, while
assuming that Xi ≥v Xj, I analyse how the ratio

wj(k)

wi(k)
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varies with the public good level 1≤ k< K, which enters this ratio via the cutoff
xk,k+1.
As a first step, I specialize to the case, where the corresponding benefit distributions
Fi and Fj share a common support in addition to having the same expected value. Let
the common support of the two distributions be [x, x]. Under these assumptions, it
can be inferred from the expressions of the optimal weights that the ratio discussed
above satisfies

lim
xk,k+1→x

wj(k)

wi(k)
= lim

xk,k+1→x

wj(k)

wi(k)
= 1.

This means that the optimal mechanism stipulates approximately anonymous vot-
ing on public good levels 1≤ k< K that are arbitrarily extreme in the sense that the
corresponding cutoff xk,k+1 converges to the boundaries of the support.
Subsequently, for tractability reasons, I focus on a class of distributions derived in
Deimen and Szalay (2019). These authors characterize all symmetric distributions
supported on a bounded interval1⁴ that satisfy the following property: The expec-
tation truncated from below is affine in the truncation point for all truncations
points that are larger than the expected value. Specifically, take a voter i ∈ N, let
the expected value of his or her type distribution be µ := E[Xi]> 0, and denote by
[µ− d,µ+ d] := [xi, xi] with d> 0 and µ− d≥ 0 the support of Fi. Deimen and Sza-
lay (2019) show that Fi meets the described condition on the truncated expectations
if and only if its cdf satisfies

Fi(x) = Fαi(x) :=

(

1
2[1 −

µ−x
d ]

αi
1−αi , x ≤ µ

1 − 1
2[1 −

x−µ
d ]

αi
1−αi , x > µ

for some 0< αi < 1. Let fαi be the density corresponding to the cdf Fαi . Given this
parametrization, for all µ≤ t≤ µ+ d, the stated truncated expectations are given
by

E[Xi|Xi ≥ t] = αi · t + [1 − αi][µ + d] = µ + d − αi · [µ + d − t].

The characterization of welfare-maximizingmechanisms from Theorem 2.1 requires
that the density fi is log-concave. It can be verified that the density fαi is log-concave
if and only if αi ≥

1
2 . Therefore, in the following, I suppose that, for all voters

i ∈ N, the associated benefit distribution coincides with a distribution Fαi derived
in Deimen and Szalay (2019) for some parameter 1

2 ≤ αi < 1. In particular, I as-
sume that all type distributions have the common mean µ, and the common support
is given by [µ− d,µ+ d]. Observe that the class of distributions from Deimen and
Szalay (2019) encompasses, for example, the uniform distribution corresponding to

14. They also allow for the case in which the support is an unbounded interval. This case is ruled
out by assumption here.



78 | 2 Public Goods Provision and Weighted Majority Voting

the parameter αi =
1
2 . Also, setting αi =

2
3 yields the symmetric triangular distribu-

tion.
It can be verified that the class of distributions considered here can be ranked accord-
ing to the stochastic order ≥v: Take any parameters 1

2 ≤ αi,αj < 1 such that αj > αi.
Then, it holds that Fαi ≥v Fαj , meaning, a smaller parameter induces a more vari-
able distribution in the sense of the presented ordering ≥v. Therefore, Proposition
2.3 yields wj(k)

wi(k) ≤ 1 for all public good levels 1≤ k< K.
Go back to the example, where Xi is drawn from the uniform distribution and Xj

follows a symmetric triangular distribution with i, j ∈ N, and both distributions are
supported on the unit interval [0,1]. For this case, Figure 2.1 pictures the shape of
the ratio wj(k)

wi(k) as a function of the cutoff xk,k+1.1⁵ This means that the ratio wj(k)
wi(k) is

Figure 2.1. Ratio wj(k)
wi(k) as a function of xk,k+1 if Xi uniform and Xj symmetric triangular on [0, 1]

U-shaped when interpreted as a function of the cutoff xk,k+1. Proposition 2.4 gen-
eralizes this observation to any two distributions from Deimen and Szalay (2019)
Fi = Fαi and Fj = Fαj such that 1

2 ≤ αi < αj < 1.

Proposition 2.4. Suppose that Fi = Fαi and Fj = Fαj with 1
2 ≤ αi < αj < 1 for some

i, j ∈ N, and consider any public good levels 1≤ k0, k00 < K with k0 ̸= k00 such that

|xk0,k0+1 − µ| < |xk00,k00+1 − µ|.

The ratio of optimal weights satisfies

wj(k
0)

wi(k0)
<

wj(k
00)

wi(k00)
.

Proposition 2.4 reveals that the welfare-maximizing voting weights are more
equal for more extreme public good levels k in the sense that the associated cutoff
xk,k+1 is more far away from the common mean of the benefit distributions µ.

15. Straightforward calculations yield this plot.
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2.6.2 Unequal Cost Sharing

The second part of this section concentrates on unequal cost sharing, meaning, in
this part, I assume that the types are distributed identically across voters. Formally,
there is a distribution F such that F = Fi for all voters i ∈ N. As in the previous part,
for tractability reasons, I focus on the class of distributions derived in Deimen and
Szalay (2019), that is, the common distribution satisfies F = Fα for some parameter
1
2 < α < 1. I exclude the case of α= 1

2 yielding the uniform distribution because,
as discussed in section 2.5, the optimal weights do not depend on the cost sharing
structure if types are distributed uniformly.
For concreteness, suppose that voter i ∈ N bears a strictly positive share si > 0 of the
total costs regardless of the provided level of the public good. To put it differently,
assume that, for all public good levels k ∈K , there exists some ck ∈ R such that

ck
i = si · ck,

where si > 0 for all i ∈ N as well as
∑

i∈N si = 1. For all public good levels 1≤ k< K,
define

yk,k+1 :=
1
si

xk,k+1
i =

ck+1 − ck

Gk+1 − Gk
,

and note that yk,k+1 is independent of i.
The following result describes how the optimal weights are shaped by the cost shar-
ing structure.

Proposition 2.5. Suppose that F = Fα with 1
2 < α < 1. Fix some 1≤ k< K, and con-

sider any i, j ∈ N such that

|sj · yk,k+1 − µ| < |si · yk,k+1 − µ|.

The optimal weights satisfy

wj(k) < wi(k).

Proposition 2.5 is shown by invoking Proposition 2.4. It reveals that the welfare-
maximizing voting weights are, generally, not increasing in the cost share a voter
has to bear. Instead, for low public good levels, i.e., small cutoffs yk,k+1, the optimal
weights might even be decreasing in the cost share. The precise shape of the voting
weights depends on all parameters of the model. Intuitively, for small public good
levels, voters bearing small cost shares are protected from an underprovision of the
public good, and, for large public good levels, voters paying large cost shares are
secured against an overprovision of the public good.
Finally, let me mention that Proposition 2.5 can be extended to distributions that go
beyond those from Deimen and Szalay (2019) by using sufficient conditions for the
convexity and concavity of different truncated expectations due to Gardner (2020).
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2.7 Conclusion

In this chapter, I characterize the voting mechanisms for the provision of a costly
public good that maximize the utilitarian welfare among all strategy-proof and sur-
jective social choice functions. The setting involves multiple public good levels, and
the voters are ex-ante asymmetric because of heterogeneous benefit distributions
or unequal cost sharing. The optimal mechanism consists of a sequence of binary
weighted majority decisions going gradually from small to large public good levels.
Let me outline the implications of my theoretical results for the two applications
discussed in the introduction. First, consider the geographic decentralization of col-
lective decisions as discussed in Fleurbaey (2008), and suppose that the costly public
good under consideration is an infrastructure project. Here, it seems plausible to as-
sume that the benefit distributions of people who live closer to the location, where
the project might be implemented, is more variable. People who live in the city,
where a new train station is supposed to be constructed or the airport is supposed
to be extended, might benefit much more from a new train station or a larger airport
because of the increased number of nearby mobility opportunities. However, at the
same time, they might also be harmed much more because of the intervention in
the urban environment or because of more noise. Under this assumption, my theo-
retical findings suggest to assign weakly higher voting weights to people who live
in the city, where the infrastructure project is possibly done, compared to people
from the same state or country who live far away. For extreme public good levels,
i.e., either high or low public good levels, anonymous voting or voting that respects
the democratic principle of “one person, one vote” seems to be approximately op-
timal. In contrast, the local population should have some discretion when it comes
to intermediate public good levels: In these cases, the results suggest to give strictly
higher weights to people who live near the location of the public good, but they do
not suggest to go all the way to local referenda.
Second, consider voting in international organizations like the International Mone-
tary Fund or the World Bank. Again, here, the costs of the public good are shared un-
equally across themember states. In general, the welfare-maximizing voting weights
are not increasing in the cost shares. This theoretical finding stands in contrast to
the voting rules that are used in practice in the International Monetary Fund, and
the World Bank (see International Monetary Fund (2021), and World Bank (2021)).
The optimal weights depend on all the parameters of the model, but the general ten-
dencies implied by my theoretical results are as follows: If the public good level is
low, the optimal weights tend to be decreasing in the cost shares. Instead, for high
public good levels, the welfare-maximizing weights tend to be increasing in the cost
shares.
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Appendix 2.A Proofs

The proof of Proposition 2.2 relies on a characterization of strategy-proof social
choice functions due to Achuthankutty and Roy (2018). In order to present this
characterization, I collect some definitions and observations contained in Gershkov,
Moldovanu, and Shi (2017) and Achuthankutty and Roy (2018).
To begin with, the ordinal preferences induced by the utility representation sat-
isfy by construction single-crossing, that is, for any voter i ∈ N and any two dis-
tinct public good levels m, l ∈K with m< l, there is a unique cutoff xm,l

i such that
um

i (xm,l
i )= ul

i(x
m,l
i ), um

i (xi)> ul
i(xi) for any xi ∈ [xi, xm,l

i ), and um
i (xi)< ul

i(xi) for any
xi ∈ (xm,l

i , xi].
Now, for all voters i ∈ N, define

τi(xi) :=







1, xi ≤ xi < x1,2
i

k, xi ∈ [x
k−1,k
i , xk,k+1

i ) with 1 < k < K
K, xK−1,K

i ≤ xi ≤ xi

.

Observe that τi(xi) describes voter i’s most-preferred public good level if his or her
type realization is xi ∈ [xi, xi].
Due to the restrictions on the cutoffs involving adjacent public good levels stated
in section 2.3, for any voter, every public good level is the most preferred one for
some non-degenerate interval of types. Hence, the induced preference domain is
said to be regular. Because, for any voter, no two cutoffs coincide, the set of ordinal
preferences generated by the utility representation forms a maximal single-crossing
domain, that is, the inclusion of any additional preference relation would violate
single-crossing. Overall, the utility specification induces a set of ordinal preferences
that constitutes a maximal and regular single-crossing domain.
Achuthankutty and Roy (2018) provide a characterization of strategy-proof social
choice functions for maximal and regular single-crossing domains. Their result is
stated as Theorem 2.2.1⁶

Theorem 2.2. Achuthankutty and Roy (2018)
A social choice function h is strategy-proof and surjective if and only if it is a min-max
rule, that is, there is a family of parameters (αS)S⊆N with

(i) αS ∈ K for all S ⊆ N,

(ii) α; = K,

(iii) αN = 1 and

(iv) αT ≤ αS for all S, T ⊆ N with S ⊆ T

16. In fact, Achuthankutty and Roy (2018)’s finding applies not only to maximal and regular
single-crossing domains, but it covers more general classes of domains. Also, these authors impose
the condition of unanimity instead of surjectivity. However, it can be verified that, in the presence of
strategy-proofness, both properties are equivalent on maximal and regular single-crossing domains.
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such that

h(x1, ..., xn) = min
S⊆N
{max

i∈S
{τi(xi),αS}}.

Proof of Proposition 2.2.
(i)
Take any successive voting procedure with collections of winning coalitions {Wk}K−1

k=1 .
For any S ⊆ N, set

αS :=







1, S ∈ W1

k, S /∈ Wk−1 ∧ S ∈ Wk with 1 < k < K
K, S /∈ WK−1

.

First of all, observe that αS is well-defined. If S ∈W1, by assumption, S ∈Wl for all
1≤ l< K and, hence, the second and third case do not apply. If S /∈W1, either there
is someminimal 1< k< K such that S ∈Wk or S /∈Wl for all 1≤ l< K. In the former
scenario, the second case applies, but the first and third case do not apply because
S /∈W1 as well as S ∈WK−1. In the latter scenario, only the third case applies. Hence,
I conclude that αS is well-defined.
Next, I argue that the four conditions that are required for (αS)S⊆N to be a family
of parameters of some min-max rule are satisfied. The restriction αS ∈K for all
S ⊆ N, i.e., condition (i), is met by construction. Condition (ii) requires α; = K. Since
families of winning coalitions are by definition collections of non-empty subsets of N,
I have that ; /∈Wl for all 1≤ l< K. Hence, in particular, ; /∈WK−1 and the third case
applies. Thus, as desired, I obtain α; = K. Because families of winning coalitions
are by definition non-empty collections of subsets of N and closed under taking
supersets, I infer that N ∈Wl for all 1≤ l< K. Therefore, in particular, N ∈W1 and
the first case applies. Consequently, I obtain αN = 1 as required by condition (iii).
Finally, concerning condition (iv), take any S, T ⊆ N such that S ⊆ T. If S ∈W1, by
assumption, T ∈W1 and, thus, I have 1= αT ≤ αS = 1. If S /∈W1, either there is
some minimal 1< k< K such that S ∈Wk or S /∈Wl for all 1≤ l< K. In the former
case, I obtainαS = k. Moreover, since S ⊆ T, T ∈Wk as well as T ∈Wl for all k≤ l< K.
This implies that αT > k is impossible and, thus, I infer that αT ≤ k= αS. In the
latter case, in particular, it holds that S /∈WK−1 and, thus, I have αS = K. Hence, the
restriction αT ≤ αS = K is met because, by construction, αT ≤ K. Overall, I conclude
that (αS)S⊆N constitutes a family of parameters of some min-max rule.
It remains to verify that the outcomes of both procedures coincide. Let h denote
the constructed min-max rule. Take any profile of type realizations x = (x1, ..., xn) ∈
×i∈N[xi, xi].
First, suppose that the outcome of the successive voting procedure is k ∈K . This
means that there must be some set of agents Z ⊆ N such that Z ∈Wk and τi(xi)≤ k
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for all i ∈ Z. Moreover, since Z ∈Wk, Z ∈Wl for all k≤ l< K and, hence, αZ ≤ k.
Therefore, I obtain

h(x) = min
S⊆N
{max

i∈S
{τi(xi),αS}} ≤ max

i∈Z
{τi(xi),αZ} = max{k, k} = k.

Further, I claim that h(x)≥ k or, equivalently, for all S ⊆ N,

max
i∈S
{τi(xi),αS} ≥ k.

Subsequently, I perform a case distinction. If τi(xi)≥ k for some i ∈ S, I obtain

max
i∈S
{τi(xi),αS} ≥ max{k,αS} ≥ k.

If τi(xi)< k or, equivalently, τi(xi)≤ k− 1 for all i ∈ S, it must be that S /∈Wk−1

because, otherwise, the outcome of the successive voting procedure cannot be k.
However, since S /∈Wk−1, it holds that S /∈Wl for all 1≤ l≤ k− 1 and, thus, I infer
that αS > k− 1 or, equivalently, αS ≥ k. Therefore, I obtain

max
i∈S
{τi(xi),αS} ≥ max

i∈S
{τi(xi), k} ≥ k.

Taking both aspects together, I have h(x)≤ k as well as h(x)≥ k and, consequently,
I conclude h(x)= k.
Second, assume that h(x)= k ∈K which is equivalent to the two inequalities

min
S⊆N
{max

i∈S
{τi(xi),αS}} ≤ k and min

S⊆N
{max

i∈S
{τi(xi),αS}} ≥ k.

The first inequality implies that there must be some Z ⊆ N such that

max
i∈Z
{τi(xi),αZ} ≤ k.

This inequality is equivalent to the two inequalities

max
i∈Z
τi(xi) ≤ k and αZ ≤ k.

Now, αZ ≤ k yields Z ∈Wk. However, maxi∈Z τi(xi)≤ k and Z ∈Wk imply together
that the outcome of the successive voting procedure must lie weakly to the left of k.
Next, I argue that this outcome must also lie weakly to the right of k. The inequality

min
S⊆N
{max

i∈S
{τi(xi),αS}} ≥ k

is equivalent to maxi∈S{τi(xi),αS}≥ k for all S ⊆ N. Towards a contradiction, sup-
pose that the outcome of the successive voting procedure lies weakly to the left of
k− 1. Define the set of agents R := {i ∈ N : τi(xi)≤ k− 1}. This means that R ∈Wk−1

which implies that αR ≤ k− 1. Therefore,

max
i∈R
{τi(xi),αR} ≤ max{k − 1, k − 1} = k − 1
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which contradicts the inequality maxi∈R{τi(xi),αR}≥ k. Thus, I infer that the out-
come of the successive procedure must lie weakly to the right of k. Taking both
aspects together, I conclude that this outcome must coincide with k.
(ii)
Take any min-max rule h with family of parameters (αS)S⊆N. For any 1≤ k< K, set

Wk := {S ⊆ N : αS ≤ k}.

First of all, I argue that Wk is a family of winning coalitions. By construction, all
elements in the setWk are subsets of N. In addition, all these subsets are non-empty
because ; ∈ Wk would require that α; ≤ k contradicting condition (ii) satisfied by
(αS)S⊆N, that is, α; = K. Further, by condition (iii) imposed on the family of pa-
rameters (αS)S⊆N, αN = 1 and, hence, N ∈Wk implying thatWk ̸= ;. Finally, I claim
that Wk is closed under taking supersets completing the argument that Wk consti-
tutes a family of winning coalitions. Towards a contradiction, suppose that there are
S, T ⊆ N with S ⊆ T such that S ∈Wk, but T /∈Wk. Since S ∈Wk, αS ≤ k. By condition
(iv) a family of parameters (αS)S⊆N has to satisfy, it holds that αT ≤ αS and, thus,
αT ≤ k. However, this means that T ∈Wk which constitutes the desired contradic-
tion.
Next, I show that Wk ⊆Wk+1 for all 1≤ k< K. Suppose not, meaning, there exist
some 1≤ k< K and S ⊆ N such that S ∈Wk, but S /∈Wk+1. By definition, S ∈Wk im-
plies that αS ≤ k and, at the same time, S /∈Wk+1 yields αS > k. This is the desired
contradiction. Consequently, I conclude that the constructed collections of winning
coalitions are valid in the sense that they gives rise to some successive voting proce-
dure.
It remains to verify that the outcomes of both procedures coincide. Take any profile
of type realizations x = (x1, ..., xn) ∈ ×i∈N[xi, xi].
First, suppose that the outcome of the successive voting procedure is k ∈K . This
means that there must be some set of agents Z ⊆ N such that Z ∈Wk and τi(xi)≤ k
for all i ∈ Z. Moreover, by definition, since Z ∈Wk, αZ ≤ k. Therefore, I obtain

h(x) = min
S⊆N
{max

i∈S
{τi(xi),αS}} ≤ max

i∈Z
{τi(xi),αZ} = max{k, k} = k.

Further, I claim that h(x)≥ k or, equivalently, for all S ⊆ N,

max
i∈S
{τi(xi),αS} ≥ k.

Subsequently, I perform a case distinction. If τi(xi)≥ k for some i ∈ S, I obtain

max
i∈S
{τi(xi),αS} ≥ max{k,αS} ≥ k.

If τi(xi)< k or, equivalently, τi(xi)≤ k− 1 for all i ∈ S, it must be that S /∈Wk−1

because, otherwise, the outcome of the successive voting procedure cannot be k.
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However, by definition, since S /∈Wk−1, it holds that αS > k− 1 or, equivalently, αS ≥
k. Therefore, I obtain

max
i∈S
{τi(xi),αS} ≥ max

i∈S
{τi(xi), k} ≥ k.

Taking both aspects together, I have h(x)≤ k as well as h(x)≥ k and, consequently,
I conclude h(x)= k.
Second, assume that h(x)= k ∈K which is equivalent to the two inequalities

min
S⊆N
{max

i∈S
{τi(xi),αS}} ≤ k and min

S⊆N
{max

i∈S
{τi(xi),αS}} ≥ k.

The first inequality implies that there must be some Z ⊆ N such that

max
i∈Z
{τi(xi),αZ} ≤ k.

This inequality is equivalent to the two inequalities

max
i∈Z
τi(xi) ≤ k and αZ ≤ k.

Now, by definition, αZ ≤ k yields Z ∈Wk. However, maxi∈Z τi(xi)≤ k and Z ∈Wk

imply together that the outcome of the successive voting procedure must lie weakly
to the left of k. Next, I argue that this outcome must also lie weakly to the right of
k. The inequality

min
S⊆N
{max

i∈S
{τi(xi),αS}} ≥ k

is equivalent to maxi∈S{τi(xi),αS}≥ k for all S ⊆ N. Towards a contradiction, sup-
pose that the outcome of the successive voting procedure lies weakly to the left of
k− 1. Define the set of agents R := {i ∈ N : τi(xi)≤ k− 1}. This means that R ∈Wk−1

which, by definition, implies that αR ≤ k− 1. Therefore,

max
i∈R
{τi(xi),αR} ≤ max{k − 1, k − 1} = k − 1

which contradicts the inequality maxi∈R{τi(xi),αR}≥ k. Thus, I infer that the out-
come of the successive procedure must lie weakly to the right of k. Taking both
aspects together, I conclude that this outcome must coincide with k.

Towards characterizing the utilitarian mechanism, subsequently, I derive several
lemmata. Take any optimal family of winning coalitions related to alternative 1≤
k< K and let this set be W ∗k . For any 1≤ k< K, define

W ∗k,min := {W ∈ W ∗k : ∀W0 with W0 ⊂ W : W0 /∈ W ∗k }.
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Lemma 2.1. Fix any 1≤ k< K. For any W ⊆ N such that either W ∈W ∗1,min (if k= 1)
or W ∈W ∗k,min and W /∈W ∗k−1 (if k> 1),
∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Lemma 2.2. Fix any 1< k< K and assume that the density fi is log-concave for all
i ∈ N. For any W ⊆ N such that W ∈W ∗k,min, but W ∈W ∗k−1, it, nevertheless, holds
that
∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Further, for all 1≤ k< K, introduce the set

W ∗¬k,max := {W /∈ W ∗k : ∀W0 with W ⊂ W0 : W0 ∈ W ∗k }.

Lemma 2.3. Fix any 1≤ k< K. For any W0 ⊆ N such that either W0 ∈W ∗¬(K−1),max
(if k= K − 1) or W0 ∈W ∗¬k,max and W0 ∈W ∗k+1 (if k< K − 1),
∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Lemma 2.4. Fix any 1≤ k< K − 1 and assume that the density fi is log-concave
for all i ∈ N. For any W0 ⊆ N such that W0 ∈W ∗¬k,max, but W0 /∈W ∗k+1 it, nevertheless,
holds that
∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Proof of Lemma 2.1.
To start, if W = N, it must be that k= 1. Hence, here, the desired inequality simpli-
fies to

∑

i∈N

E[x1,2
i − Xi|Xi ≤ x1,2

i ]. ≥ 0

This inequality is true since E[x1,2
i − Xi|Xi ≤ x1,2

i ]≥ 0 for all i ∈ N. Thus, in the fol-
lowing, assume that W ̸= N.
Consider any W ⊂ N such that either W ∈W ∗1,min (if k= 1) or W ∈W ∗k,min and
W /∈W ∗k−1 (if k> 1) and modify the optimal collections of winning coalitions such
that W /∈W ∗k . Because by assumption it holds that either W ∈W ∗1,min (if k= 1) or
W ∈W ∗k,min andW /∈W ∗k−1 (if k> 1) and, in addition,W ̸= N, this modification of the
optimal collections of winning coalitions is feasible. Further, since W ∈W ∗k,min, this
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alteration matters only if τ(xi)≤ k for all i ∈W and τ(xi)≥ k+ 1 for all i ∈ N \W.
In this case, under the optimal collections of winning coalitions, if k= 1, alterna-
tive 1 is selected and, if k> 1, alternative k is chosen because W /∈W ∗k−1 implies
that W /∈W ∗k0

for all 1≤ k0 < k. Moreover, because W ∈W ∗k ⊆W
∗
k0
for all k< k0 < K,

I have that W ∈W ∗k0
for all k< k0 < K and, thus, under the modification, alternative

k+ 1 is chosen.
Because the alteration of the optimal collections of winning coalitions should weakly
decrease welfare, I get the subsequent condition that is necessary for optimality
whenever the considered alteration is feasible:

E[
∑

i∈N

uk
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

≥E[
∑

i∈N

uk+1
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

⇔

E[
∑

i∈W

uk
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

+E[
∑

i∈N\W

uk
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

≥E[
∑

i∈W

uk+1
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

+E[
∑

i∈N\W

uk+1
i (Xi)|(∀i ∈ W : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

⇔
∑

i∈W

E[uk
i (Xi)|Xi ≤ xk,k+1

i ]

+
∑

i∈N\W

E[uk
i (Xi)|Xi ≥ xk,k+1

i ]

≥
∑

i∈W

E[uk+1
i (Xi)|Xi ≤ xk,k+1

i ]

+
∑

i∈N\W

E[uk+1
i (Xi)|Xi ≥ xk,k+1

i ]

⇔
∑

i∈W

E[uk
i (Xi) − uk+1

i (Xi)|Xi ≤ xk,k+1
i ]

≥
∑

i∈N\W

E[uk+1
i (Xi) − uk

i (Xi)|Xi ≥ xk,k+1
i ]

⇔
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⇔
∑

i∈W

E[(Gk · Xi − ck
i ) − (Gk+1 · Xi − ck+1

i )|Xi ≤ xk,k+1
i ]

≥
∑

i∈N\W

E[(Gk+1 · Xi − ck+1
i ) − (Gk · Xi − ck

i )|Xi ≥ xk,k+1
i ]

⇔
∑

i∈W

{(ck+1
i − ck

i ) − (Gk+1 − Gk) · E[Xi|Xi ≤ xk,k+1
i ]}

≥
∑

i∈N\W

{−(ck+1
i − ck

i ) + (Gk+1 − Gk) · E[Xi|Xi ≥ xk,k+1
i ]}

⇔
∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ]

This constitutes the desired inequality, completing the proof.

Proof of Lemma 2.2.
Fix any 1< k< K and assume that W ∈W ∗k,min and W ∈W ∗k−1. To begin with, I claim
that W ∈W ∗k−1,min. Suppose not, that is, W /∈W ∗k−1,min. Since W ∈W ∗k−1, there must
be some W0 ⊂W such that W0 ∈W ∗k−1. Moreover, because W0 ∈W ∗k−1 ⊆W

∗
k , I obtain

that W0 ∈W ∗k . This contradicts W ∈W ∗k,min.
Making use of the feature W ∈W ∗k−1,min, subsequently, I distinguish different cases:
1) W /∈W ∗k−2
In this case, it holds that W ∈W ∗k−1,min and W /∈W ∗k−2. Consequently, Lemma 2.1
applies to k− 1.
2) W ∈W ∗k−2
Take the argument from the previous claim and apply it to k− 2, implying that
W ∈W ∗k−2,min. When iterating the same case distinction for at most finitely many
times, two scenarios are possible:
(i) There exists some 1< k00 < k such that W ∈W ∗k00,min and W /∈W ∗k00−1. In this case,
Lemma 2.1 applies to k00.
(ii) There is no such k00 which implies that W ∈W ∗1,min. However, then, Lemma 2.1
applies to 1.
Consequently, when merging the two cases (i) and (ii) and applying Lemma 2.1,
there must be some 1≤ k0 < k (either k0 = 1 or k0 = k00) such that

∑

i∈W

E[xk0,k0+1
i − Xi|Xi ≤ xk0,k0+1

i ] ≥
∑

i∈N\W

E[Xi − xk0,k0+1
i |Xi ≥ xk0,k0+1

i ].

Since k0 < k, it holds that xk0,k0+1
i < xk,k+1

i for all i ∈ N. Moreover, for any i ∈ N, the
log-concavity of the density fi implies that the associated random variable Xi has the
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decreasing mean residual life as well as the increasing mean inactivity time property
(see e.g. Bagnoli and Bergstrom (2005)). Therefore, I obtain that

∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ]

≥
∑

i∈W

E[xk0,k0+1
i − Xi|Xi ≤ xk0,k0+1

i ]

≥
∑

i∈N\W

E[Xi − xk0,k0+1
i |Xi ≥ xk0,k0+1

i ]

≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Consequently, I derived the desired inequality
∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Proof of Lemma 2.3.
First of all, if W0 = ;, it must hold that k= K − 1 and the desired inequality reduces
to

0 ≤
∑

i∈N

E[Xi − xK−1,K
i |Xi ≥ xK−1,K

i ]

which is true because by assumption E[Xi − xK−1,K
i |Xi ≥ xK−1,K

i ]≥ 0 for all i ∈ N. Con-
sequently, in the following, suppose that W0 ̸= ;.
Take some W0 ⊂ N such that either W0 ∈W ∗¬(K−1),max (if k= K − 1) or W0 ∈W ∗¬k,max
and W0 ∈W ∗k+1 (if k< K − 1) and modify the optimal collections of winning coali-
tions such that W0 ∈W ∗k . Since either W0 ∈W ∗¬(K−1),max (if k= K − 1) or W0 ∈
W ∗¬k,max and W0 ∈W ∗k+1 (if k< K − 1), this modification is feasible. Moreover, since
W0 ∈W ∗¬k,max, this alteration matters only if τ(xi)≤ k for all i ∈W0 and τ(xi)≥ k+ 1
for all i ∈ N \W0. In this case, under the optimal collections of winning coalitions,
if k= K − 1, alternative K is selected since W0 /∈W ∗K−1 and, if k< K − 1, alternative
k+ 1 is chosen because W0 ∈W ∗k+1. Furthermore, because W0 /∈W ∗k , it holds that
W0 /∈W ∗k0

for all 1≤ k0 < k and, therefore, under the modified collections of win-
ning coalitions, alternative k is selected.
The modification of the optimal collections of winning coalitions weakly decreases
welfare and, hence, the following condition is necessary for optimality whenever the
considered alteration is feasible:

E[
∑

i∈N

uk+1
i (Xi)|(∀i ∈ W0 : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )]

≥E[
∑

i∈N

uk
i (Xi)|(∀i ∈ W0 : Xi ≤ xk,k+1

i ) ∧ (∀i ∈ N \W : Xi ≥ xk,k+1
i )].
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Rearranging this inequality while making use of the same steps as in the proof of
Lemma 2.1, I arrive at the expression
∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

This represents the desired inequality and the proof is completed.

Proof of Lemma 2.4.
Fix any 1≤ k< K − 1 and suppose that W0 ∈W ∗¬k,max and W0 /∈W ∗k+1. To start, I
argue that W0 ∈W ∗¬k+1,max. To the contrary, assume that W0 /∈W ∗¬k+1,max. Because
W0 /∈W ∗k+1, there must be some W0 ⊂W00 such that W00 /∈W ∗k+1. Further, it follows
from W ∗k ⊆W

∗
k+1 that W00 /∈W ∗k . However, this contradicts W0 ∈W ∗¬k,max because

W0 ⊂W00.
Employing the feature that W0 ∈W ∗¬k+1,max, I perform a case distinction:
1) W0 ∈W ∗k+2
Here, it holds that W0 ∈W ∗¬k+1,max as well as W0 ∈W ∗k+2. Therefore, Lemma 2.3 ap-
plies to k+ 1.
2) W0 /∈W ∗k+2
I apply the reasoning from the previous claim to k+ 2 yielding that W0 ∈W ∗¬k+2,max.
When repeating the same case distinction for at most finitely many times, the fol-
lowing two scenarios can happen:
(i) There exists some k< k00 < K − 1 such that W0 ∈W ∗¬k00,max and W0 ∈W ∗k00+1. How-
ever, this means that Lemma 2.3 applies to k00.
(ii) There exists no such k00 implying that W0 ∈W ∗¬(K−1),max. In this case, Lemma 2.3
applies to K − 1.
Merging case (i) and (ii) and making use of Lemma 2.3, there must be some
k< k0 < K − 1 (either k0 = K − 1 or k0 = k00) such that
∑

i∈W0

E[xk0,k0+1
i − Xi|Xi ≤ xk0,k0+1

i ] ≤
∑

i∈N\W0

E[Xi − xk0,k0+1
i |Xi ≥ xk0,k0+1

i ].

Now, again, k< k0 yields xk,k+1
i < xk0,k0+1

i for all i ∈ N. Moreover, again, for all i ∈
N, since the density fi is log-concave, the associated random variable Xi has the
decreasing mean residual life as well as the increasing mean inactivity time property
(see e.g. Bagnoli and Bergstrom (2005)). Consequently, I obtain that

∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ]

≤
∑

i∈W0

E[xk0,k0+1
i − Xi|Xi ≤ xk0,k0+1

i ]

≤
∑

i∈N\W0

E[Xi − xk0,k0+1
i |Xi ≥ xk0,k0+1

i ]

≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].
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Therefore, I derived the desired inequality
∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Proof of Theorem 2.1.
To start, the existence of optimal families of winning coalitions {W∗k}

K−1
k=1 is guaran-

teed since a bounded function is maximized over a finite set of elements. Moreover,
all optimal families of winning coalitions have the subsequent features. Merging
Lemma 2.1 and Lemma 2.2, for any 1≤ k< K and for all W ∈W∗k,min, it holds that
∑

i∈W

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\W

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

Rearranging this inequality yields

∑

i∈W

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

Lemma 2.3 and Lemma 2.4 imply together that, for any 1≤ k< K and W0 ∈W∗¬k,max,
the inequality
∑

i∈W0

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤
∑

i∈N\W0

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

is satisfied. This inequality is equivalent to

∑

i∈W0

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

This means that these inequalities are necessary for optimality.
Subsequently, I establish that these inequalities determine a generically unique so-
lution, that is, families of winning coalitions that are feasible and optimal. To put
it differently, I argue that the inequalities above are also sufficient for optimality.
To start, I claim that all families of coalitions {Sk}K−1

k=1 satisfying these inequalities
constitute families of winning coalitions respecting the constraint Sk ⊆ Sk+1 for all
1≤ k< K − 1, meaning, they are feasible. Towards a contradiction, suppose that
there exists families of coalitions {Sk}K−1

k=1 satisfying the previous inequalities, but
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they are not feasible. First, {Sk}K−1
k=1 might not be feasible because there exists some

1≤ k< K such that ; ∈ Sk. This means that the inequality

0 ≥
∑

i∈N

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

must be met. However, this inequaly cannot be true because, for all i ∈ N, it holds
that E[Xi − xk,k+1

i |Xi ≥ xk,k+1
i ]> 0. Second, there might be some 1≤ k< K such that

Sk = ;. Hence, in particular, it holds that N /∈ Sk. Therefore, the inequality

∑

i∈N

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤ 0.

must be satisfied. However, there is a contradiction because E[xk,k+1
i − Xi|Xi ≤

xk,k+1
i ]> 0 for all i ∈ N. Third, {Sk}K−1

k=1 might not be closed under taking supersets,
i.e., there exist 1≤ k< K and S ⊆ S0 such that S ∈ Sk, but S0 /∈ Sk. If S= S0, there
is a contradiction. Thus, focus on the case in which S ⊂ S0. Because S ∈ Sk, there
exists S00 ⊆ S such that S00 ∈ Sk,min. Therefore, S00 must meet the inequality

∑

i∈S00

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Because S00 ⊆ S ⊂ S0 and E[Xi|Xi ≥ xk,k+1
i ]−E[Xi|Xi ≤ xk,k+1

i ]> 0 for all i ∈ N, it
holds that

∑

i∈S0

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

>
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Further, since S0 /∈ Sk, there exists S0 ⊆ S000 such that S000 ∈ S¬k,max. Thus, S000 meets
the inequality

∑

i∈S000

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.
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Then, since S0 ⊆ S000 and, again, E[Xi|Xi ≥ xk,k+1
i ]−E[Xi|Xi ≤ xk,k+1

i ]> 0 for all i ∈ N,
it holds that

∑

i∈S0

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

This is the desired contradiction. Fourth, the set inclusion restriction Sk ⊆ Sk+1 for
all 1≤ k< K − 1 might be violated, that is, there exists some 1≤ k< K − 1 and S
such that S ∈ Sk, but S /∈ Sk+1. Since S ∈ Sk, there exists S0 ⊆ S such that S0 ∈ Sk,min.
Thus, S0 must meet the inequality

∑

i∈S0

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Because of S0 ⊆ S and E[Xi|Xi ≥ xk,k+1
i ]−E[Xi|Xi ≤ xk,k+1

i ]> 0 for all i ∈ N, it holds
that

∑

i∈S

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

which is equivalent to

∑

i∈S

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≥
∑

i∈N\S

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

As argued in the proofs of the Lemma 2.2 and Lemma 2.4, for all i ∈ N, it holds that

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] ≤ E[xk+1,k+2
i − Xi|Xi ≤ xk+1,k+2

i ]

as well as

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ] ≥ E[Xi − xk+1,k+2
i |Xi ≥ xk+1,k+2

i ].
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Consequently, I have that
∑

i∈S

E[xk+1,k+2
i − Xi|Xi ≤ xk+1,k+2

i ]

≥
∑

i∈S

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ]

≥
∑

i∈N\S

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ]

≥
∑

i∈N\S

E[Xi − xk+1,k+2
i |Xi ≥ xk+1,k+2

i ],

implying that
∑

i∈S

E[xk+1,k+2
i − Xi|Xi ≤ xk+1,k+2

i ] ≥
∑

i∈N\S

E[Xi − xk+1,k+2
i |Xi ≥ xk+1,k+2

i ].

Moreover, since S /∈ Sk+1, there exists S ⊆ S00 such that S00 ∈ S¬k+1,max. Thus, S00 sat-
isfies the inequality

∑

i∈S00

{
E[Xi|Xi ≥ xk+1,k+2

i ] − E[Xi|Xi ≤ xk+1,k+2
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk+1,k+2
i ] − E[Xi|Xi ≤ xk+1,k+2

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k+1,k+2
i −Xi|Xi≤xk+1,k+2

i ]
1
n

∑

i∈N E[Xi−xk+1,k+2
i |Xi≥xk+1,k+2

i ]

.

Then, since S ⊆ S00 and E[Xi|Xi ≥ xk+1,k+2
i ]−E[Xi|Xi ≤ xk+1,k+2

i ]> 0 for all i ∈ N, it
follows that

∑

i∈S

{
E[Xi|Xi ≥ xk+1,k+2

i ] − E[Xi|Xi ≤ xk+1,k+2
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk+1,k+2
i ] − E[Xi|Xi ≤ xk+1,k+2

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k+1,k+2
i −Xi|Xi≤xk+1,k+2

i ]
1
n

∑

i∈N E[Xi−xk+1,k+2
i |Xi≥xk+1,k+2

i ]

or, equivalently,
∑

i∈S

E[xk+1,k+2
i − Xi|Xi ≤ xk+1,k+2

i ] ≤
∑

i∈N\S

E[Xi − xk+1,k+2
i |Xi ≥ xk+1,k+2

i ].

Combining this inequality with the reversed inequality above, I get the equality
∑

i∈S

E[xk+1,k+2
i − Xi|Xi ≤ xk+1,k+2

i ] =
∑

i∈N\S

E[Xi − xk+1,k+2
i |Xi ≥ xk+1,k+2

i ].

However, this equality fails generically because any perturbation of the distributions
Fi or the cutoffs xk+1,k+2

i with i ∈ N would imply that this equality cannot hold. Con-
sequently, I conclude that all families of coalitions satisfying the discussed set of
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inequalities are feasible.
In the following, I argue that, among the feasible collections of coalitions, there are
generically unique families of winning coalitions {W∗k}

K−1
k=1 that satisfy the discussed

inequalities. Hence, {W∗k}
K−1
k=1 must be optimal because, again, there exists a solution

and the necessary conditions for optimality determine generically unique families
of winning coalitions. To the contrary, assume that there are two distinct families
of winning coalitions {W∗k}

K−1
k=1 and {V∗k}

K−1
k=1 that meet both the discussed inequali-

ties. Without loss of generality, there must be some 1≤ k< K and some S such that
S ∈W∗k , but S /∈ V∗k .
Because S ∈W∗k , there exists S0 ⊆ S such that S0 ∈W∗k,min. Thus, S0 must satisfy the
inequality

∑

i∈S0

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Since E[Xi|Xi ≥ xk,k+1
i ]−E[Xi|Xi ≤ xk,k+1

i ]> 0 for all i ∈ N and because of S0 ⊆ S, I
have that

∑

i∈S

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≥
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Next, because S /∈ V∗k , there exists S ⊆ S00 such that S00 ∈ V∗¬k,max. Hence, S00 meets
the inequality

∑

i∈S00

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Moreover, since S ⊆ S00 and E[Xi|Xi ≥ xk,k+1
i ]−E[Xi|Xi ≤ xk,k+1

i ]> 0 for all i ∈ N, it
also holds that

∑

i∈S

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

≤
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.
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Consequently, there is a contradiction, unless

∑

i∈S

{
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}
}

=
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

.

Rearranging this equality yields
∑

i∈S

E[xk,k+1
i − Xi|Xi ≤ xk,k+1

i ] =
∑

i∈N\S

E[Xi − xk,k+1
i |Xi ≥ xk,k+1

i ].

However, this equality fails generically because any perturbation of the distributions
Fi or the cutoffs xk,k+1

i with i ∈ N would imply that this equality is violated. Therfore,
I conclude that the discussed inequalities are not only necessary, but also sufficient
for optimality.
Now, for all i ∈ N and 1≤ k< K, set

wi(k) :=
E[Xi|Xi ≥ xk,k+1

i ] − E[Xi|Xi ≤ xk,k+1
i ]

1
n

∑

i∈N{E[Xi|Xi ≥ xk,k+1
i ] − E[Xi|Xi ≤ xk,k+1

i ]}

as well as

q(k) :=
n

1 +
1
n

∑

i∈N E[x
k,k+1
i −Xi|Xi≤xk,k+1

i ]
1
n

∑

i∈N E[Xi−xk,k+1
i |Xi≥xk,k+1

i ]

and consider the weighted successive voting procedure associated with these
weights and quotas. By construction, the families of winning coalitions induced by
this weighted successive voting procedure satisfy all inequalities that are necessary
and sufficient for optimality. Therefore, this weighted successive voting procedure
implements the optimal mechanism.

The proof of Proposition 2.3 is based on a technical result due to Belzunce,
Martínez-Riquelme, and Ruiz (2013). To present this technical finding, introduce
the notions of the mean residual life order ≥MRL and the mean inactivity time or-
der ≥MIT. The definitions are contained in Belzunce, Martínez-Riquelme, and Ruiz
(2013). Two random variables Xi, Xj satisfy Xi ≥MRL Xj if, for all min{xi, xj}≤ t≤
min{xi, xj}, it holds that

E[Xi − t|Xi ≥ t] ≥ E[Xj − t|Xj ≥ t].

Two random variables Xi, Xj meet the condition of Xi ≥MIT Xj if, for all max{xi, xj}≤
t≤max{xi, xj}, it holds that

E[t − Xi|Xi ≤ t] ≤ E[t − Xj|Xj ≤ t]

Then, Belzunce, Martínez-Riquelme, and Ruiz (2013) obtain the following result.
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Lemma 2.5. Belzunce, Martínez-Riquelme, and Ruiz (2013)
For any i, j ∈ N, the following implications hold:

Xi ≥v Xj ⇒ Xi ≥MRL Xj, and

Xi ≥v Xj ⇒ Xi ≤MIT Xj.

Proof of Proposition 2.3.
Theorem 2.1 yields that the optimal weights wi(k) with i ∈ N related to public good
level 1≤ k< K are proportional to the sum

E[Xi − xk,k+1|Xi ≥ xk,k+1] + E[xk,k+1 − Xi|Xi ≤ xk,k+1].

Take two voters i, j ∈ N such that Xi ≥v Xj. On the one hand, by Lemma 2.5, Xi ≥v Xj

implies Xi ≥MRL Xj, and, hence, it follows that

E[Xi − xk,k+1|Xi ≥ xk,k+1] ≥ E[Xj − xk,k+1|Xj ≥ xk,k+1].

On the other hand, again by Lemma 2.5, Xi ≥v Xj yields Xi ≤MIT Xj, and, thus, it holds
that

E[xk,k+1 − Xi|Xi ≤ xk,k+1] ≥ E[xk,k+1 − Xj|Xj ≤ xk,k+1].

Taking both aspects together, I obtain wi(k)≥ wj(k) which is the desired conclusion.

Proof of Proposition 2.4.
Take any two voters i, j ∈ N, and suppose that Fi = Fαi and Fj = Fαj with 1

2 ≤ αi <

αj < 1. By Theorem 2.1, the ratio

wj(k)

wi(k)

depends on the public good level 1≤ k< K only through the cutoff xk,k+1. Therefore,
I study the behaviour of this ratio as a function of the cutoff. For simplicity, let r(t)
denote this ratio if the cutoff is t. Subsequently, I show that r is increasing in t for
all µ < t≤ µ+ d. The aspect that r is decreasing in t for all µ− d≤ t< µ follows
from r(t0)= r(t00) if and only if |t0 −µ|= |t00 −µ| implied by the symmetry of the
involved distributions Fαi and Fαj . Hence, I omit the proof of this aspect. The claim
of the proposition, then, follows from these two features together with the aspect
that r(t0)= r(t00) if and only if |t0 −µ|= |t00 −µ|.
Consider any µ≤ t≤ µ+ d. The law of total expectation yields

− E[Xj|Xj ≤ t] =
(1 − Fαj)E[Xj|Xj ≥ t] − µ

Fαj
, and

− E[Xi|Xi ≤ t] =
(1 − Fαi)E[Xi|Xi ≥ t] − µ

Fαi
.
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Hence, I have that

E[Xj|Xj ≥ t] − E[Xj|Xj ≤ t] =
E[Xj|Xj ≥ t] − µ

Fαj

E[Xi|Xi ≥ t] − E[Xi|Xi ≤ t] =
E[Xi|Xi ≥ t] − µ

Fαi

Consequently, while invoking Theorem 2.1 as well as the formula for the involved
truncated expectations fromDeimen and Szalay (2019), the stated ratio r(t) satisfies

r(t) =
E[Xj|Xj ≥ t] − µ
E[Xi|Xi ≥ t] − µ

Fαi

Fαj

=
d − αj(µ + d − t)

d − αi(µ + d − t)

1 − 1
2[1 −

t−µ
d ]

αi
1−αi

1 − 1
2[1 −

t−µ
d ]

αj
1−αj

=
d − αj(µ + d − t)

d − αi(µ + d − t)

2 − [1 − t−µ
d ]

αi
1−αi

2 − [1 − t−µ
d ]

αj
1−αj

.

Define k := αi
1−αi

and m :=
αj

1−αj
, and observe that k, m ∈ [1,∞) as well as k<m.

Then, up to a constant that is independent of t, it holds that

r(t) =
d +m(t − µ)
d + k(t − µ)

2 − [1 − t−µ
d ]

k

2 − [1 − t−µ
d ]m

.

Define y := t−µ
d , and note that r is increasing in t if and only if it is increasing in y.

Also, it holds that y ∈ [0,1). Again, up to a constant that is independent of y, the
ratio r(y) satisfies

r(y) =
1 +my
1 + ky

2 − [1 − y]k

2 − [1 − y]m
.

Compute the derivative of the ratio r:

r0(y) =
[(1 + ky)(2 − [1 − y]m)][(1 +my)(k)(1 − y)k−1 + (2 − [1 − y]k)m]

(1 + ky)2(2 − [1 − y]m)2

−
[(1 +my)(2 − [1 − y]k)][(1 + ky)(m)(1 − y)m−1 + (2 − [1 − y]m)k]

(1 + ky)2(2 − [1 − y]m)2
.

Clearly, it holds that r0(0)= 0 which is equivalent to r0(t)= 0 if t= µ.
Now, towards a contradiction, suppose that there exists some y ∈ (0,1) such that
r0(y)= 0. This implies that

[(1 + ky)(2 − [1 − y]m)][(1 +my)(k)(1 − y)k−1 + (2 − [1 − y]k)m]

=[(1 +my)(2 − [1 − y]k)][(1 + ky)(m)(1 − y)m−1 + (2 − [1 − y]m)k].
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Rearranging yields

g(m) :=
m

1 +my
−

m(1 − y)m−1

2 − [1 − y]m
=

k
1 + ky

−
k(1 − y)k−1

2 − [1 − y]k

Subsequently, I establish that g0(m)> 0, which yields the desired contradiction.
To the contrary, assume that there exists some m ∈ [1,∞) such that g0(m)≤ 0. Com-
puting the derivative yields

g0(m) = −
(1 − y)m−1

2 − (1 − y)m
+

1
(1 +my)2

+
2m(1 − y)m−1[− ln(1 − y)]

(2 − (1 − y)m)2
.

Since − ln(1− y)> y as well as 1+my > 2− (1− y)m, it follows that

0 ≥ g0(m) > −
(1 − y)m−1

2 − (1 − y)m
+

1
(1 +my)2

+
2m(1 − y)m−1y

(1 +my)2

=
[1 + 2m(1 − y)m−1y][2 − (1 − y)m] − [(1 − y)m−1][(1 +my)2]

[2 − (1 − y)m][(1 +my)2]

While simplifying and rearranging this inequality, I obtain that

0 >[1 + 2m(1 − y)m−1y][2 − (1 − y)m] − [(1 − y)m−1][(1 +my)2]

=2 − (1 − y)m−1 − (1 − y)m + 2m(1 − y)m−1y

− 2m(1 − y)m+m−1y −m2(1 − y)m−1y2

≥2 − (1 − y)m−1 − (1 − y)m −m2(1 − y)m−1y2 =: h(m).

The latter inequality follows from (1− y)m−1 ≥ (1− y)m+m−1.Now, observe that
h(1)= y− y2 > 0. Hence, showing h0(m)> 0 is sufficient to show that the inequality
cannot hold. Towards a contradiction, suppose that there exists some m ∈ [0,∞)
such that h0(m)≤ 0. Compute the derivative of the function h:

h0(m) = − 2m(1 − y)m−1y2 + (1 − y)m−1[− ln(1 − y)] + (1 − y)m[− ln(1 − y)]

+m2(1 − y)m−1y2[− ln(1 − y)].

While using − ln(1− y)> y, I have that

0 ≥ h0(m) > −2m(1 − y)m−1y2 + (1 − y)m−1y + (1 − y)my +m2(1 − y)m−1y3,

which is equivalent to

0 > −2my + 1 + (1 − y) +m2y2 = m2y2 − 2my + 2 − y.

When interpreted as a function of m, the right-hand side of this inequality is a
parabola that is opening to the top. Therefore, the minimizer over R solves m∗ := 1

y .



100 | 2 Public Goods Provision and Weighted Majority Voting

Since y ∈ (0, 1), it holds that m∗ ∈ [1,∞), and, thus, m∗ must also be the minimizer
of the discussed function over the interval [1,∞). Hence, it follows that

0 > (m∗)2y2 − 2m∗y + 2 − y = (
1
y

)2y2 − 2
1
y

y + 2 − y = 1 − y > 0,

which is the desired contradiction.
Consequently, overall, I conclude that there exists no y ∈ (0,1) such that r0(y)= 0,
which is equivalent to r0(t) ̸= 0 for allµ < t≤ µ+ d. Also, recall that r0(t)= 0 if t= µ.
Now, observe that

r(µ) =
1 − αj

1 − αi
< 1

as well as

lim
t→µ+d

r(t) = 1.

From these two observations and the established property r0(t) ̸= 0 for all µ < t≤
µ+ d, it follows that r0(t)> 0 for all µ < t≤ µ+ d. This is the desired claim.

Proof of Proposition 2.5.
Take two voters i0, j0 ∈ N and suppose that Fi0 = F

1
2 and Fj0 = Fα with 1

2 < α < 1. In
particular, this means that Xi0 ∼U [xi0 , xi0]. As discussed in section 2.5, in this case,
the optimal weights wi0(k) do not depend on the public good level 1≤ k< K, but
they are are proportional to xi0 − xi0 = 2d. Therefore, the ratio of optimal weights
satisfies

wj0(k)

wi0(k)
=

wj0(k)

2d
,

and, hence, it is sensitive to the public good level k only through wj0(k). By Theorem
2.1, the optimal weight wj0(k) depends on k only through the cutoff xk,k+1. Therefore,
Proposition 2.4 yields

|xk0,k0+1 − µ| < |xk00,k00+1 − µ| ⇒ wj0(k
0) < wj0(k

00).

This means that cutoffs that are further away from the expected value µ imply opti-
mal voting weights that are larger. However, this is precisely the claim that needs to
be established. To see this, consider some public good level 1≤ k< K, and take two
voters i, j ∈ N. Replace xk0,k0+1 by sj · yk,k+1 and xk00,k00+1 by si · yk,k+1. Then, it follows
that

wj(k) = wj0(k
0) < wj0(k00) = wi(k).
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Chapter 3

Committee Search Design⋆

Joint with Christina Luxen

3.1 Introduction

The decision-making processes in various organizations share the following two
characteristics: The decisions are taken collectively by a committee via voting, and
the committee evaluates multiple items simultaneously instead of one item at a time.
Examples include hiring decisions for high-skill positions and long-term contracts
such as academic hiring, project selection in firms, elections of board members or
politicians by assemblies as well as legislative decision-making.
In contrast to these examples, the literature on committee or collective searchmainly
focused on the search process, where items are reviewed “one at a time”.1 The
present chapter studies sequential search by committee, where, in each period of
time, K items instead of one item can be sampled, and at least M out of N committee
members have to approve an item in order to stop search. The focus of the chapter
is on the design of the sample size per period, K. We compare different sample sizes
in terms of acceptance standards and welfare for the search committee. Moreover,
we derive the welfare-maximizing sample size per period for small magnitudes of
search costs.
If there are multiple items in each period of time, committee members can directly
compare these items. This has two implications: On the one hand, the expected
value of an item conditional on accepting increases with the sample size. On the
other hand, the probability of approving a particular item decreases with the sample
size, and, thus, the expected search costs are altered. Generally, there is a trade-off
between these two objects that determine the committee’s welfare. The resolution

⋆ Earlier versions of this chapter have been published as Collaborative Research Center Transregio
224 Discussion Paper 203/2020, and as part of Christina Luxen’s dissertation.

1. We only know of one exception: Cao and Zhu (2022). We discuss the relationship to this
chapter in section 3.2.
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of this trade-off depends on the voting rule and the specification of search costs as-
sociated with the simultaneous evaluation of multiple items.
We find that under unanimity voting, the welfare ranking of the discussed search
procedures depends on how the search costs vary with the sample size. In contrast,
under qualified majority voting distinct from unanimity, this sensitivity to the shape
of the cost function partly disappears. In this case, we show that, independently of
the shape of the cost function, reviewing more items per period of time improves
welfare as long as the magnitude of the search costs is sufficiently small.
Sequential search conducted by a single decision-maker is a special case of com-
mittee search with unanimity voting. Our results imply that the classic finding for
the single decision-maker case where evaluating multiple items at a time instead of
only one does not improve welfare if there are no related economies of scale (see
e.g. Manning and Morgan (1985)) does not extend to committee search with quali-
fied majority voting other than unanimity voting. In other words, unless the search
committee operates under unanimity voting, the economic trade-offs determining a
good search rule for committees are significantly different from those in the single
decision-maker case. Thus, treating the committee as a single agent would lead to
systematically wrong predictions.
The sample size per period is a relevant design parameter that can be interpreted
in different ways. First, it can be viewed as delayed voting: Suppose that one item
per period arrives. Then, simultaneously evaluating K items corresponds to taking
voting decisions only every K periods instead of every single period. In other words,
choosing the sample size K can be interpreted as selecting voting times.2 Second,
choosing the sample size can be seen as designing the number of alternatives that
are put to a vote in each period of time, while holding the number of committee
members and the required degree of approval to stop search fixed.
The chapter speaks to several relevant questions or issues. Consider the examples
mentioned above. In the hiring context, one or multiple candidates could be evalu-
ated simultaneously. Reviewing candidates “one at a time” or, in other words, hiring
on a rolling basis corresponds to the case in which the sample size per period equals
one. Therefore, the chapter provides some answers to the question under which cir-
cumstances a hiring process should be conducted on a rolling basis. When it comes
to the election of board members or politicians by assemblies, there are often sev-
eral candidates running in the election and the following issue arises: Should the
number of candidates that are still allowed to participate in the election be reduced
after a few election rounds if no candidate receives the required support in these
rounds? In legislative decision-making, when there are multiple bills relating to the
same policy issue, the following question occurs: Should there be a separate vote
on each bill or should the vote on the bills be bundled? The chapter might provide

2. We thank Olivier Compte for suggesting this interpretation.
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some guidance for these issues.
In our model, a committee consisting of N ≥ 1 members searches for one item. The
committee reviews in each time period a fixed number of items K ≥ 1 simultaneously.
The time horizon is infinite, and rejected items cannot be recalled. The committee
members’ preferences feature independent private values. For every member, the
value of an item is a random variable, which is distributed independently and iden-
tically across time, members, and items. Each committee member observes his or
her own value realization for every item and has distributional knowledge about
the other members’ values. Since the collective decisions in the above mentioned ex-
amples are taken rather infrequently, there might be a lot of uncertainty about the
members’ preferences, making the incomplete information assumption plausible.
We consider a class of voting rules where each member may either vote for one of
the available items or may opt to continue search. An item is then approved if and
only if at least M out of N members vote in favor of it, where the qualified majority
threshold M ranges from simple majority to unanimity. This class of voting rules is
frequently used in practice, making it a natural choice when adopting an approach
that is positive with regard to the voting rule, but normative with respect to the
search technology.3 For example, when abstracting from abstention, the default vot-
ing rule for collective decisions by the general assembly of registered associations
in Germany prescribes that any resolution requires the support of a simple major-
ity, independently of the number of alternatives (cf. Bundesrepublik Deutschland
(2019)).
If an item is accepted, search stops; otherwise, search continues, and each commit-
tee member bears an additive search cost c · h(K)> 0. We restrict the committee
members’ voting strategies to symmetric and neutral⁴ stationary Markov strategies.
Then, a member votes in favor of an item if and only if the item’s value is the highest
among all observed K values and it exceeds some cutoff representing the member’s
acceptance standard. Acceptance standards coincide with welfare because values
are private.⁵
To begin with, we prove the existence and uniqueness of a symmetric and neutral sta-
tionary Markov equilibrium for all K ≥ 1 and for all qualified majority voting rules
including unanimity voting. The uniqueness of equilibrium is shown for value dis-
tributions that admit a log-concave density. In the subsequent comparison of search
procedures, we maintain this distributional assumption.
Consider two search procedures with K0 ≥ 1 and K ≥ 1 items per period, and sup-
pose that K0 > K. First, we study the case of unanimity voting in detail. We find that
if the cost function h satisfies h(K0)

K0 ≥ h(K)
K , i.e., the search costs per item are weakly

3. As soon as there is more than one item per period, other voting rules are also conceivable.
We discuss this point in section 3.7.

4. A strategy is neutral if it does not condition on the identity of the item.
5. To be precise, this holds if and only if the equilibrium cutoff is interior.
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higher if there are K0 versus K items at a time, evaluating K items per period yields
higher acceptance standards and welfare than reviewing K0 items at a time.⁶ Intu-
itively, given some acceptance standard, the expected value of an item conditional
on stopping is higher if there are K0 than if there are K items per period. However, at
the same time, expected search costs are also higher because the probability of hir-
ing a particular item is lower and the function h satisfies h(K0)

K0 ≥ h(K)
K . We show that

the increase in the expected value conditional on stopping is limited and that the
overall trade-off is resolved in favor of the search procedure with K items per period.
This result implies in particular that sequential search with one item per period is
welfare-maximizing if the function h meets the condition h(K0)

K0 ≥ h(1) for all K0 > 1.
In contrast, if h(K0)

K0 <
h(K)

K , reviewing K0 items at a time yields higher welfare than
evaluating K items in every period if the magnitude of search costs quantified by the
parameter c is sufficiently small. Here, if c is small, acceptance standards are close
to the upper bound of the support of the value distribution. Hence, while the prob-
ability of hiring a particular item is higher under the search technology featuring K
items per period, it is low for both search procedure. Therefore, if c is sufficiently
small, expected search costs are actually lower if there are K0 items at a time be-
cause h is assumed to satisfy h(K0)

K0 <
h(K)

K . In addition, as before, the expected value
conditional on stopping for a sample size K0 is not lower than the respective value
for a sample size K. Moreover, if the search costs per item are minimal for some sam-
ple size per period K ≥ 2 and for exogenous reasons at most K̄ <∞ items can be
reviewed simultaneously, the two discussed results imply together that sequential
search with a sample size that coincides with the smallest minimizer of the search
costs per item is welfare-maximizing as long as the magnitude of the search costs c
is sufficiently small. Extensions to interdependent values and correlated values con-
tained in section 3.7 show the robustness of these findings.
Second, we investigate qualified majority voting rules that do not require full una-
nimity. Again, consider two search procedures with K0 ≥ 1 and K ≥ 1 items per pe-
riod, and assume that K0 > K. We find that reviewing K0 items at a time yields a
higher welfare than evaluating K items per period for all cost functions h as long
as c is sufficiently small. Thus, the sensitivity to the shape of the cost function h
that we find for the unanimity rule partly disappears. To prove this result, we first
establish that the ranking of the expected values conditional on stopping from the
unanimity voting case carries over to qualified majority, meaning, the respective ex-
pected value is higher if there are K0 compared to K items per period. Then, we show
that if c is sufficiently small, this increase in the expected value conditional on stop-
ping outweighs the potential rise in expected costs.⁷ Furthermore, this result has the
following implication for the welfare-maximizing sample size per period. Suppose

6. This result does not require the density of the value distribution to be log-concave.
7. Depending on the shape of the cost function h, expected search costs might also decrease. Of

course, this only reinforces our reasoning.
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that for exogenous reasons at most K̄ <∞ items can be evaluated simultaneously
in each period of time. Then, whatever the shape of the cost function h, sequential
search with K̄ items at a time is welfare-maximizing as long as the magnitude of the
search costs c is sufficiently small.
Consequently, the comparison of sequential search featuring different sample sizes
per period differs considerably if the search committee operates under qualified ma-
jority voting instead of unanimity voting. This is the main insight of this chapter.
Moreover, as alluded to above, our results imply in particular that the conclusions
for search conducted by a single decision-maker which is a special form of committee
search with unanimity voting do not carry over to committee search with qualified
majority voting.
The chapter is organized as follows: Section 3.2 reviews the related literature, sec-
tion 3.3 introduces the model, and section 3.4 proves the existence and uniqueness
of the equilibrium. Section 3.5 treats the unanimity voting case, and section 3.6 con-
tains the results for qualified majority voting rules. The next section 3.7 contains
the extensions to interdependent and correlated values, and we discuss other vot-
ing rules. The final section 3.8 concludes. Appendix 3.B contains the proofs, and
Appendix 3.C derives expressions for the probability of approving a particular item
and the expected value conditional on stopping.

3.2 Related Literature

The present chapter contributes to the growing literature on committee search
where a committee conducts search dynamically over time.⁸ Albrecht, Anderson,
and Vroman (2010), Compte and Jehiel (2010), and Moldovanu and Shi (2013)
study different aspects of committee search while focusing exclusively on sequen-
tial search with one item per period. For example, Albrecht, Anderson, and Vroman
(2010) study the implications of different voting rules or committee sizes while hold-
ing the search technology, i.e., one item per period, fixed. In contrast, this chapter
focuses on the effect of different search procedures on acceptance standards and
welfare given the voting rule. Therefore, we contribute to the literature on commit-
tee search by introducing sequential search by committee featuring multiple items
per period and by comparing search protocols with different sample sizes per period
in terms of acceptance standards and welfare.
We know of only one other contribution that is concerned with the comparison of dif-
ferent search technologies in the committee search environment.⁹ In independent
work, Cao and Zhu (2022) compare sequential search with one item per period to a

8. The static case of committee decision-making has also been analyzed in depth, cf. the survey
by Li and Suen (2009).

9. In the literature on auctions, the comparison between different selling technologies has been
studied before. Wang (1993) compares auctions to posted-price selling in terms of revenue and prices
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fixed-sample-size search technology that can be described as follows: First, the com-
mittee determines collectively the total sample size. Then, the items are drawn until
the predetermined sample size is reached. Finally, the committee selects collectively
one out of these items. There are two main differences between Cao and Zhu (2022)
and our chapter: First, our model is much more general. Second, more importantly,
fixed-sample-size search is conceptually different from the search technologies we
study, and, therefore, their results are also different.
In the literature on search conducted by a single decision-maker, not only sequential
search with one item at a time due to McCall (1970), but also other search technolo-
gies have been treated.1⁰ In Morgan (1983) as well as Manning and Morgan (1985),
search is conducted by a single decision-maker, and they consider general classes of
search procedures, where, in each period, the single agent decides how many items
to draw in the following period if search continues and whether to stop search in
the current period. Thus, sequential search with a fixed number of items per period
conducted by a single decision-maker is part of the search protocols studied in Mor-
gan (1983) as well as Manning and Morgan (1985).
Morgan (1983) derives properties of the optimal sample size in each time period de-
pending on the searcher’s recall, time horizon, and outside option, but he does not
analytically identify conditions on the primitives of the model under which sequen-
tial search with one item per period is optimal. However, he mentions numerical
simulations indicating that sequential search with one item at a time might not be
optimal if there is no recall and there are intraperiodic economies of scale in the si-
multaneous evaluation of multiple items. Our analytical result for committee search
with unanimity voting and cost functions h satisfying h(K0)

K0 <
h(K)

K with K0 > K ≥ 1
specialized to the single-agent case addresses this point.
Manning and Morgan (1985) show analytically that sequential search with one item
per period conducted by a single agent is optimal if the time horizon is infinite, there
is full recall, and the single searcher bears additive search costs that are increasing
and convex in the number of items per period. This result resembles our finding for
committee search with unanimity voting and cost functions h satisfying h(K0)

K0 ≥ h(1)
for all K0 > 1 when specializing it to the single-searcher case. Note that Manning
and Morgan (1985) assume full recall, whereas we assume that rejected alterna-
tives cannot be recalled. Yet, as long as the sample size per period does not depend
on calendar time as it is the case in our model, in the single-agent case, the no re-
call assumption is without loss.11 Therefore, our finding for committee search with

and finds that the ranking of the two technologies depends on the seller’s auctioning costs and on the
steepness of the marginal revenue curve.

10. See for instance Stigler (1961), Rothschild (1974), and Burdett and Judd (1983).
11. For sequential search with one item at a time and a single decision-maker, this point has been

made previously by Albrecht, Anderson, and Vroman (2010).
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unanimity voting and functions h satisfying h(K0)
K0 ≥ h(1) for all K0 > 1 specialized to

the single-agent case can be derived from Manning and Morgan (1985)’s result.12

3.3 Model

From now on, for simplicity, the framing is in terms of the hiring problem. A com-
mittee consisting of members N := {1, ..., N} with N ≥ 1, who are indexed by i,
seeks to hire one candidate. In each discrete period of time t, a set of candidates
K := {1, ..., K} with 1≤ K <∞ arrives. K is denoted as sample size per period.
Preferences feature independent private values. For each committee member i ∈ N ,
the value of hiring candidate k ∈K is governed by the random variable Xk

i , where
Xk

i is distributed independently and identically across time periods, candidates, and
members according to the cumulative distribution function F with density f . We as-
sume that the distribution of Xk

i has full support on the bounded interval [0, x̄] with
x̄ > 0. Let µ denote the mean of the random variable Xk

i . For all candidates k ∈K ,
committee member i ∈ N observes the realization of Xk

i perfectly and has only dis-
tributional knowledge about the value Xk

j that any committee member j other than
i assigns to candidate k.
The timing is as follows: In every time period, member i observes a realization of
the vector of random variables (X1

i , . . . , XK
i ), that is, K values. Then, members simul-

taneously cast a vote, voting either for one candidate k (action k) or for the option
to continue search (action 0). Candidate k is hired and search is stopped if and only
if the number of votes in favor of k is larger than or equal to the (qualified) majority
threshold M ∈ {1, . . . , N}, with M > N

2 .13 This class of voting rules encompasses, for
instance, unanimity voting corresponding to the case where M = N or simple major-
ity voting with an odd number of members, that is, M = N+1

2 . If search is continued,
each committee member incurs a per period cost of c · h(K)> 0, where h(K) is the
value of some function h : N+→ R>0 evaluated at K, and c> 0 represents a scaling
parameter. Finally, we assume that the search horizon is infinite, and that rejected
candidates cannot be recalled.

3.4 Equilibrium Analysis

Committee member i’s strategy is a sequence of functions σi = {σi(Ht)}t, mapping
from any history Ht until period t to ∆({0}∪K ), i.e., all probability distributions
over the set of actions {0}∪K that are available in each period. As is common in the
literature on committee search, we restrict strategies to be (1) Markovian, meaning,

12. However, note that our assumption on the shape of the cost function is more general.
13. The assumption M > N

2 ensures that no two distinct candidates meet the (qualified) majority
requirement at the same time.
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the action that member i’s strategy prescribes in period t does not depend on the en-
tire history up to period t, but only on the evaluation of the most recent K candidates,
and we focus on (2) stationary and (3) symmetric equilibria, that is, the equilibrium
strategies are neither sensitive to calendar time nor to the identity of the committee
member. In addition, we assume strategies to be (4) neutral, that is, they have to be
invariant with respect to permutations of the candidates’ labels.1⁴ Essentially, neu-
trality rules out stationary and symmetric equilibria in Markov strategies in which
voters coordinate on ignoring one or more candidates. Apart from conditions (1) -
(4), we also impose that search terminates in finite time, excluding dominated equi-
libria in which all members always vote to continue search, independently of the
value realizations. Subsequently, we simply write equilibrium when referring to a
stationary and symmetric Markov equilibrium in neutral strategies.
Strategies that satisfy these refinements are characterized by cutoffs z ∈ [0, x̄). More
specifically, in any time period, upon observing the value realizations
(x1

i , ..., xK
i ) ∈ [0, x̄]K, member i ∈ N votes in favor of candidate k ∈K if and only if

xk
i ≥ max

l̸=k
xl

i and xk
i ≥ z.

We call these strategies maximum-strategies with cutoff. In words, every member
chooses the best among the K available candidates and approves this candidate
whenever the associated value exceeds the cutoff, or acceptance standard, z. Intu-
itively, since candidates are identical ex ante and because members treat candidates
in a neutral way, all candidates have the same chance to be elected from the perspec-
tive of an individual member. Consequently, no member has an incentive to vote in
favor of any candidate but the best.1⁵
Interior equilibrium cutoffs z ∈ (0, x̄) solve z= v, where v is the continuation value
implied by this strategy profile.1⁶ The continuation value which coincides with the
ex ante utilitarian welfare per committee member is given by

v = −
c · h(K)

K · Pr(candidate k hired)
+ E[Xk

i |candidate k hired].

The continuation value amounts to the difference between the expected value
conditional on stopping E[Xk

i |candidate k hired] and the expected search costs
c·h(K)

K·Pr(candidate k hired) . Let QK(z, N, M) be the cumulative distribution function of the

14. Any stationary Markov strategy can be described by a mapping s : [0, x]K →∆({0}∪K ).
A strategy s satisfies neutrality if, for all (x1, . . . , xK) ∈ [0, x]K, it holds that s(xρ(1), . . . , xρ(K))=
(s0(x1, . . . , xK), sρ(1)(x1, . . . , xK), . . . , sρ(K)(x1, . . . , xK)) for any permutation ρ of the set K .

15. Note that mixed strategies do not arise in equilibrium.
16. Boundary solutions, i.e., equilibria involving some maximum strategy with cutoff z= 0, may

arise if the search costs c · h(K) are large. Subsequently, we take care of this issue.
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Binomial distribution with parameters N and Pr(Xk
i ≥ z and Xk

i ≥maxl̸=k X l
i) evalu-

ated at M− 1. Also, for any b ∈ N0 with b≤ N, qK(z, N, b) denotes the corresponding
probability mass function evaluated at b. Further, we argue in Appendix 3.C.2 that

Pr(Xk
i ≥ z and Xk

i ≥ max
l̸=k

X l
i) =

1
K
[1 − F(z)K].

Then, the equilibrium equation can be written as

z = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]. (3.1)

Intuitively, acceptance standards z arising in equilibrium are calibrated in a way such
that a member is indifferent between stopping and continuing search whenever the
value of some candidate coincides with the cutoff z. A derivation of the equilibrium
strategies and the equation characterizing the equilibrium cutoffs can be found in
Appendix 3.A.

3.4.1 Equilibrium Existence

We claim that there exists an equilibrium. The reasoning in the previous part implies
that there exists an equilibrium if and only if there either exists 0≤ z< x that solves
equation (3.1), or there is a boundary equilibrium, in which the maximum-strategy
with cutoff z= 0 forms an equilibrium.

Proposition 3.1. There exists an equilibrium.

We prove the existence of an equilibrium while making use of the intermedi-
ate value theorem. Similar existence arguments appear in Albrecht, Anderson, and
Vroman (2010), Compte and Jehiel (2010), and Moldovanu and Shi (2013).

3.4.2 Equilibrium Uniqueness

We turn to the problem of equilibrium uniqueness. Apart from being of interest
in itself, the uniqueness of equilibrium is important for a transparent comparison
between search procedures featuring different sample sizes per period. It turns out
that the equilibrium is unique if we impose the assumption that the density f is
log-concave.

Proposition 3.2. If the density f is log-concave, the equilibrium is unique.

Many well-known distributions including, for instance, the uniform distribution
or the truncated normal distribution meet this requirement.1⁷
Conceptually, the proof strategy follows Albrecht, Anderson, and Vroman (2010),

17. For a comprehensive list of distributions that admit a log-concave density, we refer to Bagnoli
and Bergstrom (2005).
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but, as discussed below, the presence of more than one candidate per period requires
a substantial amount of supplementary steps that are not needed if K = 1. The ar-
guments from the previous parts imply that there is a unique equilibrium if and
only if either equation (3.1) admits exactly one solution and there is no supplemen-
tary boundary equilibrium or there is a boundary equilibrium and the equilibrium
equation has no solution. Rearrange equation (3.1):

c · h(K)
K · [1 − QK(z, N, M)]

= E[Xk
i |candidate k hired] − z.

The essential part of the proof is to establish that the left-hand side of this equation
is increasing in z, whereas the right-hand side is decreasing in z. Then, the unique-
ness result follows from the opposite monotonicities of the discussed functions.
First, it is straightforward to derive that the left-hand side is increasing in z. Intu-
itively, if the acceptance standard z increases, the probability of voting in favor of
some candidate k decreases, and, hence, the probability of hiring this candidate k
and the overall probability of stopping decrease as well. Thus, the expected search
costs increase. Consequently, it remains to show that E[Xk

i |candidate k hired]− z
is decreasing in z. This claim is stated as Lemma 3.1.1⁸ Define SK(z, N, M) :=
E[Xk

i |candidate k hired] to emphasize that the expected value conditional on hir-
ing depends on K and M.

Lemma 3.1. Consider any K ≥ 1. If the density f is log-concave, the function

SK(z, N, M) − z

is decreasing in z.

Subsequently, we discuss the proof of Lemma 3.1. Introduce the following two
objects:

µK
a (z) := E[Xk

i |X
k
i ≥ z and Xk

i ≥ max
l̸=k

X l
i], and

µK
r (z) := E[Xk

i |X
k
i < z or Xk

i < max
l ̸=k

X l
i].

These conditional expectations capture the expected value of an arbitrary candidate
k ∈K for an arbitrary member i ∈ N conditional on approving or rejecting this
candidate, respectively. We argue in Appendix 3.C.1 that

E[Xk
i |candidate k hired] = wK(z)µK

a (z) + [1 − wK(z)]µK
r (z), (3.2)

18. For sequential search with one candidate at a time, i.e., K = 1, this property has been shown
in Albrecht, Anderson, and Vroman (2010).
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with wK(z) being defined as

wK(z) :=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.1⁹

Intuitively, conditional on stopping, the accepted candidate k might be supported
or rejected by an arbitrary member. Therefore, the expected value of k conditional
on stopping amounts to an average of the expected values conditional on support-
ing as well as rejecting candidate k. The weight wK(z) represents the expected
share of members supporting k conditional on k meeting the majority requirement.
Note that under unanimity voting, hired candidates must be accepted by every
member. Thus, in this case, the expected value conditional on hiring simplifies to
E[Xk

i |candidate k hired]= µK
a (z).

After some intermediate steps that are similar to those in the proof of Albrecht, An-
derson, and Vroman (2010) we obtain that, for z ∈ (0, x̄),

dE[Xk
i |candidate k hired]

dz
< wK(z)

dµK
a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz
.

Hence, the key proof step is to show that dµK
a (z)
dz ≤ 1 and dµK

r (z)
dz ≤ 1. Notice that if

K = 1, these conditional expected values are truncated means:

µ1
a(z) = E[Xk

i |X
k
i ≥ z], and µ1

r (z) = E[Xk
i |X

k
i < z].

It is well-known that log-concavity of f implies the desired Lipschitz conditions on
the truncated means, i.e., dµ1

a(z)
dz ≤ 1 and dµ1

r (z)
dz ≤ 1 (see e.g. Bagnoli and Bergstrom

(2005)). However, for K > 1, the discussed implications are not standard because
the involved expected values conditional on rejecting or supporting a candidate do
no longer constitute truncated means. To obtain that dµK

a (z)
dz ≤ 1, we establish that

the conditional density Pr(Xk
i = x|Xk

i ≥maxl̸=k X l
i) is log-concave by employing the

fact that log-concavity is preserved under integration, which has been shown in
Prékopa (1973). Then, like in the case of K = 1, log-concavity implies the desired
Lipschitz condition on µK

a (z). Next, we show that dµK
r (z)
dz ≤ 1 by directly invoking the

log-concavity of f as well as its implications. Again, the preservation of log-concavity
under integration due to Prékopa (1973) is important. Taking both aspects together,
Lemma 3.1 follows, and we obtain that the right-hand side of the equation above
is decreasing in z. When comparing the welfare induced by different sample sizes
per period, we repeatedly make use of Lemma 3.1. We believe that the technical
property established in Lemma 3.1 might be useful beyond its application in this
chapter.

19. This kind of representation of the expected value conditional on stopping is due to Albrecht,
Anderson, and Vroman (2010).
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3.5 Unanimity Voting

Having established equilibrium existence and uniqueness, in this section we assume
that the committee employs unanimity voting, i.e., we set M = N. We compare
search procedures induced by different sample sizes in terms of acceptance stan-
dards and welfare and show how the superiority of different search technologies
depends on the search cost structure. Moreover, for sufficiently small magnitudes
of search costs, we derive the welfare-maximizing sample size, depending on the
shape of the search cost function. In particular, we identify conditions on the search
cost function under which sequential search with one candidate per period is opti-
mal and suboptimal respectively.
Consider search with K0 ≥ 1 and K ≥ 1 candidates per period, and assume that
K0 > K.
To begin with, as a first cost regime, we study cost functions h that satisfy h(K0)

K0 ≥ h(K)
K .

This restriction on the function h means that the search costs per candidate when
there are K0 candidates per period are at least as high as under the search technology
featuring K candidates per period. For instance, this condition is met if h(K0)= (K0)α

and h(K)= (K)α for some α≥ 1.
Denote the ex ante utilitarian welfare per committee member in the game with K0

and K candidates per period by vK0 and vK respectively. Proposition 3.3 establishes
that the welfare under search with K0 candidates per period is strictly lower than
the welfare when there are K candidates per period.

Proposition 3.3. Suppose that the voting rule is unanimity, i.e., M = N, and con-
sider any K0, K ≥ 1 with K0 > K.
If the function h satisfies

h(K0)
K0
≥

h(K)
K

,

the committee’s ex ante utilitarian welfare is higher under sequential search with
K candidates per period relative to sequential search with K0 candidates per period,
i.e., vK > vK0 .

In words, under unanimity voting, weakly higher search costs per candidate
when the sample size is larger imply that the welfare of the search procedure featur-
ing a larger sample size is strictly lower. This conclusion holds for all magnitudes of
search costs as quantified by the parameter c. Moreover, the result does not require
the density of the value distribution f to be log-concave2⁰ and it applies to all equi-
libria of the discussed search procedures in case a search technology admits more
than one equilibrium.
The basic trade-off when moving from K to K0 candidates per period is that, on the

20. We thank an anonymous referee for pointing this out.
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one hand, the expected value conditional on stopping rises, but on the other hand,
expected search costs rise, too. The former effect arises because unanimity voting
means that, conditional on stopping, all members vote in favor of the hired candi-
date, and, when there K0 instead of K candidates per period, members only approve
some candidate if the associated value is the maximum out of the K0 instead of the
K values they observe. The latter effect is due to two aspects: First, the probability
of hiring an arbitrary candidate k is smaller if K0 versus K candidates are reviewed
simultaneously, and, second, the search costs per candidate are weakly higher if
there are K0 compared to K candidates per period. Thus, a priori, the ranking of
the two search procedures in terms of welfare is ambiguous. The key proof step is
to show that the increase in the expected value conditional on stopping is limited
when moving from sequential search with K to K0 candidates per period. This aspect
is captured in Lemma 3.2.

Lemma 3.2. Consider any K0, K ≥ 1 with K0 > K. For all zK, zK0 ∈ [0, x) such that
zK ≤ zK0 , it holds

µK0

a (zK0) − zK0

µK
a (zK) − zK

<

1
K [1 − F(zK)K]
1
K0 [1 − F(zK0)K0]

.

Take any possibly non-equilibrium cutoffs zK, zK0 ∈ [0, x) such that zK ≤ zK0 , and
consider the ratio of the expected values conditional on stopping net of a cutoff
when there are K0 candidates and the cutoff is zK0 versus having K candidates and
the cutoff being zK. Lemma 3.2 reveals that an upper bound of this ratio is given by
the ratio of the probability that an individual member votes in favor of a candidate k
if there K candidates and the cutoff is zK to this probability if there are K0 candidates
and the cutoff is zK0 . We believe that this technical property might be useful beyond
its application in this chapter.
Now, let us sketch the proof of Proposition 3.3 for interior cutoffs. In this case, ac-
ceptance standards coincide with welfare.21 Consider the ratio of the expected value
conditional on stopping net of the cutoff when there are K0 candidates compared to
the net value when there are K candidates, that is,

E[Xk
i |X

k
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0] − zK0

E[Xk
i |X

k
i ≥ maxl∈{1,...,K}:l ̸=k X l

i , Xk
i ≥ zK] − zK

,

where zK0 and zK denote equilibrium cutoffs when there are K0 and K candidates,
respectively. Towards a contradiction, assume that zK ≤ zK0 . By the equilibrium
equation, i.e., equation (3.1), the considered ratio is equal to the ratio of the ex-
pected search costs when there are K0 versus K candidates. Then, the assumption

21. We emphasize that the result also holds if some equilibria constitute boundary solutions.
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h(K0)
K0 ≥ h(K)

K on the search cost function yields a lower bound on this ratio of expected
search costs. Moreover, while invoking zK ≤ zK0 and applying Lemma 3.2, we obtain
an upper bound on the discussed ratio of expected values conditional on stopping.
It turns out that the derived lower bound is larger than the upper bound, which
constitutes the desired contradiction.
Recall that K0 > K. Let us turn now to the second cost regime and focus on cost
functions h that satisfy h(K0)

K0 <
h(K)

K . This assumption is reasonable if there are fixed
costs associated with the hiring process or if there are cost savings when multi-
ple candidates can be considered. For example, it is satisfied if h(K0)= (K0)β and
h(K)= (K)β for some β < 1. Proposition 3.4 reveals that under this assumption on
the search costs, the conclusion of the previous part of this section is partly reversed:
If the magnitude of the search costs as quantified by the parameter c is sufficiently
small, evaluating K0 candidates at a time improves welfare relative to reviewing K
candidates at a time.

Proposition 3.4. Suppose that the voting rule is unanimity, i.e., M = N, assume that
the density f is log-concave, and consider any K0, K ≥ 1 with K0 > K.
If the function h satisfies

h(K0)
K0

<
h(K)

K

there exists c̄K0,K > 0 such that for all c< c̄K0,K, the committee’s ex ante utilitarian
welfare is higher under sequential search with K0 candidates per period relative to
sequential search with K candidates per period, i.e., vK0 > vK.

To verbalize Proposition 3.4, under unanimity voting, strictly lower search costs
per candidate if the sample size is larger imply that the welfare of the search tech-
nology with a larger sample size is strictly higher as long as the magnitude of search
costs is sufficiently low.
Intuitively, again, the expected value conditional on stopping is not lower when there
are K0 relative to K candidates at a time. However, in contrast to the previous cost
regime, here, for sufficiently small magnitudes of search costs c, the expected search
costs are actually lower if there K0 compared to K candidates per period, yielding a
higher welfare for the committee if K0 instead of K candidates are evaluated simul-
taneously in every period of time.
Let us sketch the proof of Proposition 3.4 in more detail. Assume, by contradiction,
that for all c̄K0,K > 0, there exists c< c̄K0,K such that vK ≥ vK0 . Without loss of general-
ity, suppose that both cutoffs are interior. Then, they coincide with welfare and, thus,
we have that zK ≥ zK0 . First, we show that given zK ≥ zK0 , the expected value condi-
tional on stopping is increasing when moving from K to K0 candidates per period.
This is a consequence of the log-concavity of f and, more precisely, the Lipschitz con-

dition dµK0

a (z)
dz ≤ 1 we derived in Lemma 3.1. The equilibrium condition (3.1) then
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implies that the expected search costs have to be higher if K0 compared to K candi-
dates are evaluated simultaneously. However, if c becomes small, under both search
procedures, the equilibrium acceptance standards are close to the upper bound of
the support of the value distribution, x̄. This conclusion crucially relies on the fact
that the voting rule is unanimity and fails in the case of qualified majority rules
distinct from unanimity. Then, even though the probability of hiring an arbitrary
candidate k is higher for K than for K0, this probability is small for K and for K0. In
fact, if c is small enough, the difference is low enough such that, given h(K0)

K0 <
h(K)

K ,
the expected search costs are overall actually smaller for K0 than for K candidates
at a time. This is the desired contradiction.
Finally, Propositions 3.3 and 3.4 allow us to characterize the welfare-maximizing
sample size if the magnitude of search costs is sufficiently small. First, if h(K0)

K0 ≥ h(1)
for all K0 > 1, meaning, the search costs per candidate are minimal if one candidate
is evaluated at a time, it is immediate from Proposition 3.3 that single-option se-
quential search is optimal for all magnitudes of costs as measured by the parameter
c. This finding is stated as Corollary 3.1.

Corollary 3.1. Suppose that the voting rule is unanimity, i.e., M = N. If the function
h satisfies h(K0)

K0 ≥ h(1) for all K0 > 1, the committee’s ex ante utilitarian welfare is
maximized for sequential search with one candidate per period, i.e., v1 > vK0 for all
K0 > 1.

In contrast, if the search costs per candidate are minimal for some sample
size larger than one and for exogenous reasons at most K̄ <∞ candidates can be
reviewed simultaneously, Propositions 3.3 and 3.4 together imply that sequential
search with a sample size that coincides with the smallest minimizer of the search
costs per candidate is welfare-maximizing as long as the magnitude of the search
costs c is sufficiently small. Corollary 3.2 captures this result.

Corollary 3.2. Suppose that the voting rule is unanimity, i.e., M = N, assume that
the density f is log-concave, and impose that h(1)>min1≤K≤K̄

h(K)
K for some 1<

K̄ <∞. Consider the smallest 1< K0 ≤ K̄ such that

h(K0)
K0

= min
1≤K≤K̄

h(K)
K

.

There exists c̄> 0 such that for all c< c̄, the committee’s ex ante utilitarian welfare
is higher under sequential search with K0 candidates per period relative to any other
form of sequential search featuring at most K̄ candidates at a time, i.e., vK0 > vK for
all 1≤ K ≤ K̄ such that K ̸= K0.

Overall, we conclude that the ranking of different sample sizes in terms of wel-
fare as well as the welfare-maximizing number of candidates per period is mainly
determined by the shape of the search cost function.
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3.6 Qualified Majority Voting

Having studied the case of unanimity voting, in this section, we turn to qualified ma-
jority voting, considering a majority requirement M such that M < N. We compare
the unique equilibria of different forms of sequential search in terms of acceptance
standards and welfare, and, again, we derive the welfare-maximizing number of
candidates per period for small magnitudes of search costs.
As before, consider search with K0 ≥ 1 and K ≥ 1 candidates per period, and suppose
that K0 > K. Again, let vK0 and vK be the ex ante utilitarian welfare per committee
member if there are K0 and K candidates per period respectively. As already stated,
the welfare induced by a search procedure is determined by two ingredients: The
expected value conditional on hiring and the expected search costs. To start, we
compare in Lemma 3.3 the expected values conditional on stopping when there are
K0 versus K candidates per period. Recall that SK0

(z, N, M) and SK(z, N, M) denote
the expected value conditional on hiring if there are K0 and K candidates at a time
respectively.

Lemma 3.3. Consider any K0, K ≥ 1 with K0 > K. For all z ∈ [0, x̄), it holds

SK(z, N, M) < SK0

(z, N, M).

Lemma 3.3 reveals that, when fixing a cutoff value z, the expected value con-
ditional on stopping when the sample size is K0 is higher than the corresponding
object when the sample size is K. If the voting rule is unanimity, this conclusion is
immediate because, in this case, K0 > K directly yields

SK(z, N, N) =E[Xk
i |X

k
i ≥ z and Xk

i ≥ max
l∈{1,...,K}:l̸=k

X l
i]

<E[Xk
i |X

k
i ≥ z and Xk

i ≥ max
l∈{1,...,K0}:l̸=k

X l
i] = SK0

(z, N, N).

Yet, if the voting rule is qualified majority, the conclusion is not obvious because
there are two forces pulling in opposite directions. Consider the average represen-
tations of the expected values conditional on hiring for both discussed search tech-
nologies as introduced in equation (3.2):

SK0

(z, N, N) = wK0

(z)µK0

a (z) + [1 − wK0

(z)]µK0

r (z) and

SK(z, N, N) = wK(z)µK
a (z) + [1 − wK(z)]µK

r (z).

Note that for M < N, in contrast to unanimity, it does neither hold that wK0

(z)= 1
nor wK(z)= 1, but these objects depend non-trivially on the number of candi-
dates per period. Fix a potentially non-equilibrium cutoff value z. Observe that
µK0

a (z)> µK
a (z) as well as µK0

r (z)> µK
r (z), that is, both the expected value conditional

on approving as well as conditional on rejecting an arbitrary candidate k are higher
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if there are K0 versus K candidates at a time. Similar to the case of unanimity voting,
µK0

a (z)> µK
a (z) holds since a member approves a candidate only if the candidate’s

value is the highest among the K0 versus K values that this member observes. Further,
the intuition behind µK0

r (z)> µK
r (z) is as follows: If the value of some candidate is

above the cutoff z, but some member does not vote in favor of this candidate, this
means that this candidate’s value is not the maximum out of the K0 versus K values
this member observes, implying that the considered expected value is lower in the
latter case. However, at the same time, we have that wK0

(z)< wK(z): Conditional on
stopping, the expected share of members who approve some candidate k decreases
when increasing the sample size from K to K0. This holds because the probability that
a single member approves a candidate k decreases when moving from K to K0, since
the candidate’s value has to be the maximum out of K0 instead of K values in addition
to being above the cutoff z. Finally, since µK0

a (z)> µK0

r (z) as well as µK
a (z)> µK

r (z),
the overall effect on the expected value conditional on stopping is a priori ambigu-
ous. We prove Lemma 3.3 by employing a technical result from Albrecht, Anderson,
and Vroman (2010) related to the expected share of members who approve some
candidate k conditional on stopping. In Proposition 3.5, we claim that sequential
search with more candidates at a time increases welfare independently of the shape
of the cost function as long as the magnitude of the search costs is sufficiently small.

Proposition 3.5. Suppose that the voting rule is qualified majority distinct from
unanimity, i.e., M < N, assume that the density f is log-concave, and consider any
K0, K ≥ 1 with K0 > K.
There exists c̄K0,K > 0 such that for all c< c̄K0,K, the committee’s ex ante utilitarian
welfare is higher under sequential search with K0 candidates per period relative to
sequential search with K candidates per period, i.e., vK0 > vK.

Intuitively, the increase in the expected value conditional on hiring when increas-
ing the sample size from K to K0 as revealed by Lemma 3.3 outweighs the potential
rise of expected search costs22 if the magnitude of the search costs c is sufficiently
small. We emphasize once again that this result does not depend on the form of the
cost function. For any function h, there are cost levels c such that evaluating K can-
didates at a time is dominated by reviewing K0 candidates in each period of time.23
Let us discuss the proof of Proposition 3.5. To the contrary, suppose that for all
c̄K0,K > 0, there exists c< c̄K0,K such that vK ≥ vK0 . Again, without loss of generality,
focus on interior cutoffs. Thus, we have that zK ≥ zK0 where, again, zK and zK0 denote
the equilibrium cutoffs if there are K and K0 candidates per period respectively. Recall

22. We write potential rise of expected search costs because depending on the shape of the func-
tion h the expected search costs might also be lower if there K0 versus K candidates in each period of
time. Of course, if that is the case, this only reinforces our reasoning.

23. However, as indicated in Proposition 3.5, the threshold c̄K0 ,K depends on the precise values of
K0 and K as well as on the shape of the function h.
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Lemma 3.1: The log-concavity of f is sufficient for dSK(z,N,M)
dz ≤ 1. When employing

this Lipschitz condition, we obtain that the difference SK0

(zK, N, M)− SK(zK, N, M)
is bounded above by the difference in expected search costs between the search
procedures involving K0 and K candidates at a time. Now, in contrast to unanimity
voting, if M < N, the equilibrium cutoffs arising under both discussed search tech-
nologies do not converge to the upper bound of the support of the value distribution
as the magnitude of the search costs c becomes small, but they remain bounded
away from x̄. For the case of sequential search with one candidate per period, this
observation has been made previously in Albrecht, Anderson, and Vroman (2010)
as well as Compte and Jehiel (2010). The intuition for this result is as follows: Un-
der qualified majority voting, conditional on stopping, a candidate might be hired
even though some member did not vote in favor of this candidate. Taking that sce-
nario, which does not arise under unanimity voting, into account, members do not
become arbitrarily picky if search costs become small. Consequently, if c goes to 0,
the difference in expected search costs discussed above vanishes. However, due to
Lemma 3.3, the difference SK0

(zK, N, M)− SK(zK, N, M) remains strictly positive.2⁴
This is the desired contradiction.
Moreover, Proposition 3.5 allows us to characterize the welfare-maximizing sample
size per period for small magnitudes of search costs. Suppose that for exogenous
reasons at most K̄ <∞ candidates can be reviewed simultaneously in each period
of time. Then, Proposition 3.5 implies the following: Whatever the shape of the cost
function h, sequential search with K̄ candidates per period is welfare-maximizing
as long as the magnitude of the search costs c is sufficiently small. Corollary 3.3
records this implication.

Corollary 3.3. Suppose that the voting rule is qualified majority distinct from una-
nimity, i.e., M < N, assume that the density f is log-concave, and consider any
1< K̄ <∞.
There exists c̄> 0 such that for all c< c̄, the committee’s ex ante utilitarian welfare
is higher under sequential search with K̄ candidates per period relative to any other
form of sequential search featuring at most K̄ candidates at a time, i.e., vK̄ > vK for
all 1≤ K < K̄.

Our analysis reveals that the ranking of different sample sizes as well as the
welfare-maximizing number of candidates per period for the single-searcher case
do not generally extend to the committee search case. Again, note that the single
decision-maker case is equivalent to the case of a committee with size N = 1 operat-
ing under the unanimity voting rule. Thus, our results from section 3.5 apply to the
single-agent case. To emphasize the drastically different findings, again, suppose

24. This step fails if the voting rule is unanimity because, in this case, if c goes to 0, zK converges
to x̄ and, thus, the difference SK0

(zK, N, N)− SK(zK, N, N) would vanish as well.
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that for exogenous reasons at most K̄ <∞ candidates can be evaluated simulta-
neously in every period. If the function h satisfies h(K0)

K0 ≥ h(1) for all K0 > 1 and
the magnitude of search costs c is small, sequential search with one candidate per
period is welfare-maximizing under unanimity voting, whereas search featuring K̄
candidates at a time is optimal under qualified majority voting. What drives these
considerably different conclusions? Again, consider sequential search with K0 ≥ 1
and K ≥ 1 candidates per period, and assume that K0 > K. If the voting rule is una-
nimity, there is a race between the difference in the expected values conditional on
stopping and the difference in the expected search costs between the search tech-
nologies involving K0 and K candidates at a time: If c becomes small, the difference in
expected search costs between K0 and K vanishes, and, in addition, the difference in
the expected values conditional on hiring also goes to 0. In contrast, under qualified
majority voting, if c becomes small, as in the unanimity voting case, the difference
in the expected search costs goes to 0. However, in contrast to the unanimity voting
case, the difference in the expected values conditional on stopping does not van-
ish because equilibrium cutoffs do not converge to the upper bound of the support
of the value distribution, but they stay bounded away from x̄. This discrepancy ex-
plains why the ranking of the two types of search procedures is different when the
voting rule is qualified majority instead of unanimity. Therefore, when comparing
the single-searcher case with the committee search case, the choice of the voting
rule crucially matters.

3.7 Extensions and Discussion

In the main model, the committee members’ preferences feature independent pri-
vate values. For the case of unanimity voting, we provide extensions to interdepen-
dent as well as correlated values. Moreover, we briefly discuss other voting rules.

3.7.1 Interdependent and Correlated Values

For the unanimity voting rule, we explore the robustness of our results via two ex-
tensions: Allowing for interdependent values instead of private values, and allowing
for correlated values instead of independent values.2⁵
First, regarding interdependent values, we follow the approach in Moldovanu and
Shi (2013), assuming that the value a member derives from hiring some candidate
is a weighted average of his or her own observed signal and the signals of all other
members. We establish that the ranking of the acceptance standards implied by dif-
ferent search technologies carries over from the analysis under private values. As
far as welfare is concerned, note that under the assumption of interdependent val-
ues, acceptance standards and welfare no longer coincide even if the equilibrium

25. The arguments for these extensions are available on request from the authors.
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cutoff is interior (cf. Moldovanu and Shi (2013)). We find that Proposition 3.4 ex-
tends from the private-values case to interdependent values. Overall, this suggests
that our results concerning unanimity voting are not driven by the private-values
assumption on preferences.
Second, to relax the assumption that candidates’ values are distributed indepen-
dently across committee members, we introduce an unknown state of the world sk

for each candidate k ∈K , which we assume to be independently and identically dis-
tributed across time and candidates. Conditional on the state realization sk, the val-
ues associated with candidate k are then independently and identically distributed
across committee members. The state-dependent value distributions are assumed to
be stochastically ranked according to the likelihood-ratio ordering. While relaxing
the independence of values across members, we maintain the assumption that com-
mittee members’ preferences feature private values. Thus, acceptance standards and
welfare again coincide whenever the equilibrium is interior. We find that all results
for the unanimity voting rule carry over from the private-values case to correlated
values. Therefore, we conclude that, while the assumption of independently dis-
tributed values is admittedly strong, it does not drive our results for the unanimity
voting rule.

3.7.2 Other Voting Rules

Let us discuss the class of simple voting rules on which we focus. Recall that each
member may either vote for one of the available candidates or may opt to continue
search, and a candidate is hired if and only if the number of votes he or she receives
exceeds some threshold. Again, as argued in the introduction, considering these vot-
ing rules is a natural choice when adopting an approach that is positive with regard
to the voting rule, but normative with respect to the search technology. That being
said, since members have to decide about more than two alternatives as soon as the
sample size per period is larger than one, other voting rules are also conceivable.
Inspired by approval voting,2⁶ one might allow the members to approve any num-
ber of candidates instead of only one candidate, and assume that, subject to some
tie-breaking rule, a candidate is hired if and only if he or she is approved by more
members than any other candidate and the number of supporters of this candidate
exceeds some threshold. However, the analysis of the equilibrium voting behavior
under these approval-based voting rules is much more complicated. Suppose that
there are two candidates per period, i.e., K = 2, and assume that the mentioned
threshold coincides with unanimity, meaning, it equals the committee size N. Even
in this simple case, for instance, the strategy “approve all candidates above some
cutoff” does not constitute an equilibrium: Whether approving the second-best can-

26. For an overview about several aspects related to approval voting, we refer to Laslier and
Sanver (2010).
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didate is beneficial for a member does not only depend on the aspect whether the
value of this candidate is above or below the cutoff, but it also matters how much
the value of this candidate falls below the value of the best candidate and how much
it exceeds the cutoff or continuation value. If the values of the two candidates are
both above the cutoff and they are very close to each other, members might want
to approve both candidates. In contrast, if the two values are above the cutoff, the
value of the best candidate is close to the upper bound of the support of the value
distribution, but the value of the second-best candidate is only slightly above the
continuation value, members might want to approve only their best candidate. This
discussion reveals that already the analysis of the equilibrium voting behavior under
these alternative voting rules is rather involved. Consequently, studying the ranking
of the search procedures in terms of welfare, which is the focus of this chapter, under
these alternative voting rules does not seem to be tractable.

3.8 Conclusion

In this chapter, we contrast the well-known sequential search procedure, in which
candidates are evaluated “one at a time”, and other forms of sequential search,
where, in each period, committees simultaneously evaluate a set of candidates of
fixed size. We study the equilibrium behavior under these search procedures and
show equilibrium existence as well as equilibrium uniqueness within a reasonably
restricted class of equilibria. Based on the equilibrium analysis, we compare sequen-
tial search featuring different sample sizes in terms of acceptance standards and wel-
fare. We identify circumstances under which the “one at a time” policy commonly
studied in the committee search literature is not optimal. Generally, the superiority
of one or the other search technology depends on two important ingredients of the
search problem: The voting rule and the specification of the search costs associated
with the simultaneous evaluation of multiple candidates.
If the committee operates under the unanimity rule, the comparison of different
search protocols is sensitive to the shape of the cost function. This dependence on
the form of the cost function partly vanishes when committees employ a qualified
majority rule different from unanimity. In this case, evaluating more candidates at
a time improves welfare for any type of cost function as long as the magnitude of
the search costs is sufficiently small. Consequently, the assessment of the studied
search procedures as well as the underlying trade-offs considerably change when
moving from the unanimity rule to qualified majority rules. This is the main insight
of this chapter. Again, note that search conducted by a single agent is a special case
of committee search with unanimity voting. Consequently, our analysis reveals that
the results for the single decision-maker case (see e.g. Manning andMorgan (1985))
do not carry over to the committee setting, but the presence of a committee alters
the search design problem and implies different rankings of search procedures.
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Appendix 3.A Equilibrium Characterization

To begin with, we claim that the best response of any member i ∈ N against an
arbitrary neutral stationary Markov strategy that is symmetric across all other mem-
bers amounts to a maximum-strategy with cutoff, that is, member i votes in favor of
candidate k ∈K if and only if

xk
i ≥ max

l̸=k
xl

i and xk
i ≥ z

with z ∈ [0, x̄) being some cutoff.
Assume that all members except for member i ∈ N in some period t behave accord-
ing to a common Markovian strategy that is stationary and neutral. First of all, let
v be the continuation value member i obtains when search continues. Note that v
does not depend on past or current actions or value realizations since the contin-
uation strategy adopted by all members in periods following t is Markovian. Also,
it is neither sensitive to the identity i of the member nor to calendar time because
continuation strategies are symmetric across members and stationary. Now, suppose
that member i observes the value realizations (x1

i , . . . , xK
i ) in period t. Member i is

pivotal for candidate k if and only if exactly M− 1 out of the other N − 1 members
choose action k in the given period, that is, approve candidate k.
Let pk(a, b)> 0 with a ∈ N, b ∈ N0 and b≤ a denote the probability that exactly b
out of a members choose action k in the given period. Similarly, Pk(a, b)> 0 with
a, b ∈ N and b≤ a describes the probability that at most b− 1 out of a members se-
lect action k. Then, the probability that member i is pivotal in favor of candidate k
is given by pk(N − 1, M− 1).
The expected utility that member i obtains when approving candidate k can be ex-
pressed as follows:

[(1 − Pk(N − 1, M)) + pk(N − 1, M − 1)][xk
i ] +
∑

l∈{1,...,K}:l̸=k

[1 − Pl(N − 1, m)][xl
i]

+[Pk(N − 1, M) − pk(N − 1, M − 1) −
∑

l∈{1,...,K}:l̸=k

(1 − Pl(N − 1, M))][v].

The expected payoff of member i when voting in favor of continuing search, i.e.,
selecting action 0, amounts to

∑

l∈{1,...,K}

[1 − Pl(N − 1, M)][xl
i] + [1 −
∑

l∈{1,...,K}

(1 − Pl(N − 1, M))][v].

Since the stationary Markov strategy that is commonly adopted by members distinct
from i is neutral, it holds that Pd(a, b)= Pe(a, b) as well as pd(a, b)= pe(a, b) for
all d, e ∈K . For simplicity, write P(a, b) and p(a, b) to denote these probabilities.
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Consequently, the expected utility of choosing action k can be reformulated in the
following way:

p(N − 1, M − 1)[xk
i ] + [1 − P(N − 1, M)][

∑

l∈{1,...,K}

xl
i]

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)][v].

Similarly, the expected payoff of action 0 simplifies to the expression

[1 − P(N − 1, M)][
∑

l∈{1,...,K}

xl
i] + [1 − K(1 − P(N − 1, M))][v].

Thus, voting in favor of candidate k is optimal for member i if and only if, for all
m ∈K with m ̸= k,

p(N − 1, M − 1)[xk
i ] + [1 − P(N − 1, M)][

∑

l∈{1,...,K}

xl
i]

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)][v]

≥ p(N − 1, M − 1)[xm
i ] + [1 − P(N − 1, M)][

∑

l∈{1,...,K}

xl
i]

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)][v],

and, at the same time,

p(N − 1, M − 1)[xk
i ] + [1 − P(N − 1, M)][

∑

l∈{1,...,K}

xl
i]

+ [1 − K(1 − P(N − 1, M)) − p(N − 1, M − 1)][v]

≥[1 − P(N − 1, M)][
∑

l∈{1,...,K}

xl
i] + [1 − K(1 − P(N − 1, M))][v].

The former condition is equivalent to requiring that xk
i ≥maxl̸=j x

l
i. The latter condi-

tion reduces to xk
i ≥ v. This means that there exists a cutoff value zi(t) ∈ [0, x) such

that this condition is met if and only if xj
i ≥ zi(t). Moreover, the cutoff value solves

zi(t)= v whenever it is interior. Hence, given an arbitrary neutral stationary Markov
strategy commonly adopted by all members except for member i in period t, it is op-
timal for member i to employ a maximum-strategy with cutoff zi(t) in this period.
In the following, we make use of this claim, and we establish the sufficiency and the
necessity part separately.
With regard to necessity, it is immediate from the previous claim that any symmet-
ric stationary Markov equilibrium in neutral strategies must involve a maximum-
strategy with cutoff z ∈ [0, x̄) solving z= v whenever being interior, and that this
strategy is commonly adopted by all members since, otherwise, at least one mem-
ber has a profitable deviation. In particular, the cutoffs are neither sensitive to the
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members’ identities nor to calendar time because, by assumption, equilibria are sym-
metric and stationary. Moreover, the consistency of continuation values and equilib-
rium strategies implies that v must satisfy

v = −c · h(K) + [1 − K(1 − P(N, M))]v

+ K · [1 − P(N, M)]E[Xk
i |candidate k hired].

Rearranging this equation yields

v = −
c · h(K)

K · [1 − P(N, M)]
+ E[Xk

i |candidate k hired].

Therefore, equilibrium cutoffs solve the equation

z = −
c · h(K)

K · [1 − P(N, M)]
+ E[Xk

i |candidate k hired]

whenever they are interior. Finally, recall that P(N, M) denotes the probability that
at most M− 1 out of N members approve some candidate k. Thus, when using the
notation introduced in the main text, we have that P(N, M)= QK(z, N, M). This con-
cludes the proof of the necessity part.
Next, we turn to sufficiency. First of all, observe that strategy profiles in which all
members adopt the same maximum-strategy with cutoff z ∈ [0, x) are symmetric,
neutral, and stationary Markov. Furthermore, as argued in the necessity part of this
proof, these strategy profiles give rise to continuation values satisfying

v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired].

Consequently, it remains to verify that these strategy profiles constitute equilibria.
To this end, consider any strategy with cutoff z ∈ [0, x) solving

z = v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]

whenever the cutoff z is interior. First, by construction, the consistency of continu-
ation values and strategies is fulfilled. Second, if all members apart from member
i ∈ N in period t adopt the discussed strategy, the claim above implies that it is
optimal for member i to follow the same strategy in period t, that is, the maximum-
strategy with cutoff zi(t) solving zi(t)= v= z whenever it is interior. Now, the one-
shot deviation principle implies that no member has a profitable deviation. Thus,
the maximum-strategy with cutoff z solving

z = v = −
c · h(K)

K · [1 − QK(z, N, M)]
+ E[Xk

i |candidate k hired]

whenever being interior constitutes an equilibrium. This completes the sufficiency
part.
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Appendix 3.B Proofs

Proof of Proposition 3.1.
Recall that SK(z, N, M)= E[Xk

i |candidate k accepted]. Rewriting equation (3.1)
which characterizes equilibrium cutoff values yields

c · h(K)
K · [1 − QK(z, N, M)]

= SK(z, N, M) − z.

Suppose that z= 0. In this case, the left-hand side amounts to c·h(K)
K·[1−QK(0,N,M)] =

c h(K)
K

1−QK(0,N,M) and the right-hand side reduces to SK(0, N, M). In contrast, if z→ x̄, the
left-hand side goes to∞ whereas the right-hand side amounts to SK(x̄, N, M)− x̄ ≤
0.
Depending on the magnitude of the search costs c, we perform a case distinction:
1) c h(K)

K
1−QK(0,N,M) < SK(0, N, M)

In this case, we observe that the left-hand side is strictly smaller than the right-hand
side of the equilibrium equation when evaluating both sides at z= 0. In contrast, if z
is sufficiently close to x, the left-hand side is strictly larger than the right-hand side.
Moreover, note that both sides of the equation involve functions that are continuous
in z. Hence, the intermediate value theorem yields the existence of a cutoff z that
solves equation (3.1).
2) c h(K)

K
1−QKk(0,N,M) = SK(0, N, M)

Here, the cutoff z= 0 solves the equilibrium equation which means that the
maximum-strategy with cutoff z= 0 constitutes an equilibrium.
3) c h(K)

K
1−QK(0,N,M) > SK(0, N, M)

In this case, suppose that all members apart from member i ∈ N in period t adopt
the maximum-strategy with cutoff z= 0. In this case, the arguments in Appendix 3.A
still apply, and, thus, it is optimal for member i to follow some maximum-strategy
with cutoff. However, since v= − c h(K)

K
1−QK(0,N,M) + SK(0, N, M)< 0 by assumption, the

optimal cutoff for member i in the given period is z= 0. The reason is that member
i wants to stop search as quickly as possible, and the probability of voting in favor
of some candidate k is maximized at z= 0. Alluding to the one-deviation-principle,
this shows that there exists a boundary equilibrium such that the maximum-strategy
with cutoff amounting to z= 0 forms an equilibrium.

Proof of Lemma 3.1.
We establish that SK

z (z, N, M)≤ 1 which implies that the function SK(z, N, M)− z is
non-increasing in z. Subsequently, again, we make use of the notation

µK
a (z) = E[Xk

i |X
k
i ≥ z and Xk

i ≥ max
l̸=k

X l
i] and

µK
r (z) = E[Xk

i |X
k
i < z or Xk

i < max
l̸=k

X l
i].
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Then, as shown in Appendix 3.C.1, SK(z, N, M) can be expressed as

SK(z, N, M) = wK(z)µK
a (z) + (1 − wK(z))µK

r (z),

where wK(z) is given by

wK(z) =
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.

Further, to simplify the notation, define

1 − RK(z) := Pr(Xk
i ≥ max

l̸=k
X l

i , Xk
i ≥ z).

First, we obtain that dwK(z)
dz ≤ 0.2⁷ Observe that wK(z) constitutes the average of

terms of form l
N with weights

wK
l (z) :=

qK(z, N, l)
1 − QK(z, N, M)

.

We claim that, for all l< l0, wK
l (z)

wK
l0

(z)
is non-decreasing in z. This means that increasing

z yields a stochastic decrease according to the likelihood-ratio ordering which, as
is well-known, implies a stochastic decrease in terms of first-order stochastic dom-
inance. Hence, exploiting the average structure of wK(z), when increasing z, the
average wK(z) decreases. In other words, we have dwK(z)

dz ≤ 0. In order to see that
wK

l (z)

wK
l0

(z)
is increasing in z, note that

wK
l (z)

wK
l0 (z)

=

�N
l

�

�N
l0
�RK(z)l0−l(1 − RK(z))l−l0 ,

and, therefore, straightforward differentiation yields

d
wK

l (z)

wK
l0

(z)

dz
=

�N
l

�

�N
l0
�

dRK(z)
dz

(l0 − l)RK(z)l0−l−1(1 − RK(z))l−l0−1.

The derivation in Appendix 3.C.2 reveals that

1 − RK(z) =
1
K
[1 − F(z)K].

Thus, dRK(z)
dz = F(z)K−1f(z)≥ 0 and we obtain that

d
wK

l (z)

wK
l0

(z)

dz ≥ 0 which is the desired
claim. Therefore, we conclude that dwK(z)

dz ≤ 0.

27. The argument yielding dwK(z)
dz ≤ 0 is analogous to step 2 in the proof of Lemma 1 in Albrecht,

Anderson, and Vroman (2010).
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Second, we show that µK
a (z)− z is non-increasing or, in other words, dµK

a (z)
dz ≤ 1. Con-

sider the density

gK(x) : = Pr(Xk
i = x|Xk ≥ max

l̸=k
X l

i)

=
Pr(Xk

i = x, Xk
i ≥ maxl̸=k X l

i)

Pr(Xk
i ≥ maxl̸=k X l

i)

=
Pr(Xk

i = x, x ≥ maxl̸=k X l
i)

Pr(Xk
i ≥ maxl̸=k X l

i)

=
Pr(Xk

i = x)Pr(x ≥ maxl̸=k X l
i)

Pr(Xk
i ≥ maxl ̸=k X l

i)

= Kf(x)[F(x)]K−1.

We know from Prékopa (1973) that the log-concavity of the density f implies that
the cdf F is also log-concave. Moreover, since the product of log-concave functions
must be again log-concave, we obtain that the density gK is log-concave as well.
Therefore, as is well-known, the log-concavity of gK implies that the random variable
Xk

i |X
k
i ≥maxl̸=k X l

i has the decreasing mean residual life property which means that

µK
a (z)− z is non-increasing.2⁸ Thus, we conclude that dµK

a (z)
dz ≤ 1.

Third, we establish that dµK
r (z)
dz ≤ 1. By the law of total expectation, we obtain

µ = E[Xk
i ] = µ

K
a (z)[1 − R(z)] + µK

r (z)R(z).

Again, in Appendix 3.C.2, we derive that

1 − RK(z) =
1
K
[1 − F(z)K].

Thus,

µ = µK
a (z)[

1
K

(1 − F(z)K)] + µK
r (z)[1 −

1
K

(1 − F(z)K)].

Let GK be the cdf of the random variable Xk
i |X

k
i ≥maxl̸=k X l

i . Hence, rearranging
yields

µK
r (z) =

µ − µK
a (z)[ 1

K (1 − F(z)K)]

1 − 1
K (1 − F(z)K)

=

∫ x̄
0 sf(s)ds − [ 1

K (1 − F(z)K)]
∫ x̄

z s gK(s)
1−GK(z)ds

1 − 1
K (1 − F(z)K)

=

∫ x̄
0 sf(s)ds −
∫ x̄

z sf(s)F(s)K−1ds

1 − 1
K (1 − F(z)K)

.

28. Bagnoli and Bergstrom (2005) discuss the relationship between log-concave densities and
concepts from reliability theory.
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Taking the derivative of µK
r (z) with respect to z yields

dµK
r (z)

dz

=
(zf(z)F(z)K−1)) · (1 − 1

K (1 − F(z)K))

[1 − 1
K (1 − F(z)K)]2

−
(
∫ x̄

0 sf(s)ds −
∫ x̄

z sf(s)F(s)K−1ds) · f(z)F(z)K−1

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1

[1 − 1
K (1 − F(z)K)]2

· [z(1 −
1
K

) + z
1
K

F(z)K − sF(s)
�

�

�

x̄

0
+

∫ x̄

0

F(s)ds + s
1
K

F(s)K
�

�

�

x̄

z
−
∫ x̄

z

1
K

F(s)Kds]

=
f(z)F(z)K−1

[1 − 1
K (1 − F(z)K)]2

· [z(1 −
1
K

) + z
1
K

F(z)K − x̄(1 −
1
K

) − z
1
K

F(z)K +

∫ x̄

0

F(s)ds −
∫ x̄

z

1
K

F(s)Kds]

=
f(z)F(z)K−1[(z − x̄)(1 − 1

K ) +
∫ x̄

0 F(s)ds −
∫ x̄

z
1
K F(s)Kds]

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1[
∫ x̄

0 F(s)ds −
∫ x̄

z [1 −
1
K (1 − F(s)K)]ds]

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1[
∫ z

0 F(s)ds +
∫ x̄

z F(s)ds −
∫ x̄

z [1 −
1
K (1 − F(s)K)]ds]

[1 − 1
K (1 − F(z)K)]2

=
f(z)F(z)K−1[
∫ z

0 F(s)ds +
∫ x̄

z F(s) − [1 − 1
K (1 − F(s)K)]ds]

[1 − 1
K (1 − F(z)K)]2

.

Since we have dµK
r (z)
dz

�

�

�

z=0
= 0≤ 1, for the remainder of the proof of dµK

r (z)
dz ≤ 1, sup-

pose that z ̸= 0.
Again, due to Prékopa (1973), log-concavity is preserved under integration. Hence,
since the density f is log-concave, the cdf F(z)=

∫ z
0 f(s)ds is also log-concave and,

consequently, the left-hand integral
∫ z

0 F(s)ds must be log-concave as well. By defi-
nition of log-concavity, this means that

∫ z
0 F(s)ds≤ F(z)2

f(z) .2⁹
Moreover, note that, for all s ∈ [0, x̄],

1
K

(1 − F(s)K) = 1 − RK(s) = Pr(Xk ≥ max
l̸=k

X l and Xk ≥ s)

≤ Pr(Xk ≥ s) = 1 − F(s).

29. Again, for a discussion of these kinds of implications, we refer to Bagnoli and Bergstrom
(2005).
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Thus, we obtain, for all s ∈ [0, x̄], that

F(s) − [1 −
1
K

(1 − F(s)K)] ≤ 0,

and, in particular, it holds that

∫ x̄

z
F(s) − [1 −

1
K

(1 − F(s)K)]ds ≤ 0.

Also, observe that F(z)− [1− 1
K (1− F(z)K)]≤ 0 is equivalent to

1

1 − 1
K (1 − F(z)K)

≤
1

F(z)
.

Employing the derived inequalities yields

dµK
r (z)

dz
=

f(z)F(z)K−1[
∫ z

0 F(s)ds +
∫ x̄

z F(s) − [1 − 1
K (1 − F(s)K)]ds]

[1 − 1
K (1 − F(z)K)]2

≤
f(z)F(z)K−1
∫ z

0 F(s)ds

[1 − 1
K (1 − F(z)K)]2

≤
f(z)F(z)K−1 F(z)2

f(z)

[1 − 1
K (1 − F(z)K)]2

=
F(z)K+1

[1 − 1
K (1 − F(z)K)]2

≤
F(z)K+1

F(z)2

= F(z)K−1

≤ 1.

Therefore, we conclude that dµK
r (z)
dz ≤ 1.

Further, note that µK
a (z)> µK

r (z) or, equivalently, µK
a (z)−µK

r (z)> 0. Taking together

the three ingredients dwK(z)
dz ≤ 0, dµK

a (z)
dz ≤ 1 and dµK

r (z)
dz ≤ 1, we have
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SK
z (z, N, M) =

d[wK(z)µK
a (z) + (1 − wK(z))µK

r (z)]

dz

=
d[wK(z)[µK

a (z) − µK
r (z)] + µK

r (z)]

dz

=
dwK(z)

dz
[µK

a (z) − µK
r (z)] + wK(z)[

dµK
a (z)

dz
−

dµK
r (z)

dz
] +

dµK
r (z)

dz

=
dwK(z)

dz
(µK

a (z) − µK
r (z)) + wK(z)

dµK
a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz

≤ wK(z)
dµK

a (z)

dz
+ [1 − wK(z)]

dµK
r (z)

dz
≤ wK(z) + [1 − wK(z)]

= 1.

In conclusion, as desired, we infer that SK
z (z, N, M)≤ 1 which, implies that the func-

tion SK(z, N, M)− z is non-increasing in z. Additionally, the argument reveals that
SK

z (z, N, M)< 1 whenever z ̸= 0 and, thus, SK(z, N, M)− z is strictly decreasing in
z.

Proof of Proposition 3.2.
To begin with, by Proposition 3.1, there exists an equilibrium. Moreover, we know
from Lemma 3.1 that the function SK(z, N, M)− z is decreasing in z. Next, we show
that the function

c · h(K)
K · [1 − QK(z, N, M)]

is increasing in z.
Again, to simplify the notation, define

1 − RK(z) := Pr(Xk
i ≥ max

l̸=k
X l

i , Xk
i ≥ z).

Taking the derivative of the discussed function with respect to z yields

d
dz
[

c · h(K)
K · [1 − QK(z, N, M)]

] =
c · h(K) · QK

z (z, N, M)

K · [1 − QK(z, N, M)]2
.

Further, using the relationship between the Binomial and the Beta distribution,3⁰
we have

QK(z, N, M) =
M−1
∑

l=0

�

N
l

�

(1 − RK(z))l · RK(z)N−l

=
N!

(N −M)! · (M − 1)!

∫ RK(z)

0

sN−M(1 − s)M−1ds.

30. cf. Casella and Berger (2002)
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Taking the derivative of QK(z, N, M) with respect to z yields

QK
z (z, N, M) =

N!
(N −M)! · (M − 1)!

dRK(z)
dz

RK(z)N−M(1 − RK(z))M−1.

Again, the derivation in Appendix 3.C.2 reveals that

1 − RK(z) =
1
K
[1 − F(z)K].

Thus, we have that dRK(z)
dz = F(z)K−1f(z)≥ 0. Hence, we obtain that

QK
z (z, N, M)≥ 0, yielding the desired inference that

d
dz
[

c · h(K)
K · [1 − QK(z, N, M)]

] =
c · h(K) · QK

z (z, N, M)

K · [1 − QK(z, N, M)]2
≥ 0.

Additionally, the argument shows that this derivative is strictly larger than 0 when-
ever z ̸= 0 and, hence, c·h(K)

K·[1−QK(z,N,M)] is strictly increasing in z.
Consider the equation characterizing equilibrium cutoff values

SK(z, N, M) − z =
c · h(K)

K · [1 − QK(z, N, M)]
=

ch(K)
K

1 − QK(z, N, M)
.

Depending on the magnitude of the search costs, we perform a case distinction:
1) c h(K)

K
1−QK(0,N,M) < SK(0, N, M)

In this case, all cutoffs associated with equilibrium strategies are interior, satisfying
z ̸= 0. In particular, these cutoffs must solve the equilibrium equation. However, due
to Lemma 3.1, the left-hand side of the discussed equation is strictly decreasing and
the right-hand side is strictly increasing. Therefore, both sides of the equation have
at most one intersection which establishes uniqueness of equilibrium.
2) c h(K)

K
1−QK(0,N,M) ≥ SK(0, N, M)

Here, the cutoff z= 0 is part of an equilibrium. Either z= 0 solves the equilibrium
equation or there is a boundary equilibrium involving the cutoff z= 0. To the con-
trary, suppose that there is another equilibrium with some cutoff z0 > 0. This cutoff
must solve the equilibrium equation because it is interior. However, employing the
monotonicity properties of the functions involved in the equilibrium equation that
are partly derived in Lemma 3.1, we have

ch(K)
K

1 − QK(z0, N, M)
>

ch(K)
K

1 − QK(0, N, M)
≥ SK(0, N, M) > SK(z0, N, M) − z0.

Hence, the cutoff z0 > 0 cannot be part of an equilibrium which constitutes the de-
sired contradiction.
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Proof of Lemma 3.2.
Consider any K0, K ≥ 1 with K0 > K. Suppose, by contradiction, that there exist some
zK, zK0 ∈ [0, x) with zK ≤ zK0 such that

µK0

a (zK0) − zK0

µK
a (zK) − zK

=
E[Xk

i |X
k
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0] − zK0

E[Xk
i |X

k
i ≥ maxl∈{1,...,K}:l̸=k X l

i , Xk
i ≥ zK] − zK

≥
1
K [1 − F(zK)K]
1
K0 [1 − F(zK0)K0]

=
K0

K
[1 − F(zK)K]
[1 − F(zK0)K0]

.

Rewriting the left-hand side of the inequality yields

E[Xk
i |X

k
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0] − zK0

E[Xk
i |X

k
i ≥ maxl∈{1,...,K}:l̸=k X l

i , Xk
i ≥ zK] − zK

=

∫ x
zK0

f(s)F(s)K0−1sds

1
K0
[1−F(zK0 )K0 ]

− zK0

∫ x
zK

f(s)F(s)K−1sds
1
K [1−F(zK)K]

− zK

=
K0

K
[1 − F(zK)K]
[1 − F(zK0)K0]

∫ x
zK0

f(s)F(s)K0−1sds − zK0[ 1
K0 (1 − F(zK0)K0

)]
∫ x

zK
f(s)F(s)K−1sds − zK[

1
K (1 − F(zK)K)]

,

where the first step uses the fact that

Pr(Xk
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0) =

1
K0
[1 − F(zK0)K0

] and

Pr(Xk
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK) =

1
K
[1 − F(zK)K],

which is derived in Appendix 3.C.2.
Thus, we obtain that

∫ x
zK0

f(s)F(s)K0−1sds − zK0[ 1
K0 (1 − F(zK0)K0

)]
∫ x

zK
f(s)F(s)K−1sds − zK[

1
K (1 − F(zK)K)]

≥ 1. (3.B.1)

Observe that
∫ x

zK
f(s)F(s)K−1sds− zK[

1
K (1− F(zK)K)]> 0 because this inequality is

equivalent to µK
a (zK)> zK. Therefore, inequality (3.B.1) is equivalent to
∫ x

zK0

f(s)F(s)K0−1sds − zK0[
1
K0

(1 − F(zK0)K0

)]

≥
∫ x

zK

f(s)F(s)K−1sds − zK[
1
K

(1 − F(zK)K)] =: g(zK).

The right-hand side of this inequality is non-increasing in zK. To see this, compute
the derivative

g0(zK) = −f(zK)F(zK)K−1zK −
1
K
[1 − F(zK)K] + zKF(zk)K−1f(zk)

= −
1
K
[1 − F(zK)K] ≤ 0.
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Therefore, because of zK ≤ zK0 , it follows that

∫ x

zK0

f(s)F(s)K0−1sds − zK0[
1
K0

(1 − F(zK0)K0

)]

≥
∫ x

zK0

f(s)F(s)K−1sds − zK0[
1
K

(1 − F(zK0)K)].

Rearranging yields

∫ x

zK0

f(s)s[F(s)K0−1 − F(s)K−1]ds ≥ zK0[
1
K0

(1 − F(zK0)K0

) −
1
K

(1 − F(zK0)K)].

Since zK0 < x̄ and K0 > K,

∫ x

zK0

f(s)s[F(s)K0−1 − F(s)K−1]ds < zK0

∫ x

zK0

f(s)[F(s)K0−1 − F(s)K−1]ds

= zK0[
1
K0

(1 − F(zK0)K0

) −
1
K

(1 − F(zK0)K)].

Hence, we have that

zK0[
1
K0

(1 − F(zK0)K0

) −
1
K

(1 − F(zK0)K)]

>

∫ x

zK0

f(s)s[F(s)K0−1 − F(s)K−1]ds

≥zK0[
1
K0

(1 − F(zK0)K0

) −
1
K

(1 − F(zK0)K)],

which is the desired contradiction.

Proof of Proposition 3.3.
We begin by deriving conditions for when boundary solutions of either of the search
procedures arise.
First of all, note that the proof of Proposition 3.1 reveals that under sequential search
with K candidates per period, there is a boundary equilibrium if and only if

c ≥
SK(0, N, N)[1 − QK(0, N, N)]

h(K)
K

=
µK

a (0)[ 1
K ]

N

h(K)
K

=: cK.

Similarly, if there are K0 candidates per period, a corner solution arises if and only
if

c ≥
SK0

(0, N, N)[1 − QK0

(0, N, N)]
h(K0)

K0

=
µK0

a (0)[ 1
K0 ]N

h(K0)
K0

=: cK0

.
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We claim that cK0

< cK.
Suppose not, i.e., assume that cK0

≥ cK. By definition, this means that

µK0

a (0)[ 1
K0 ]N

h(K0)
K0

≥
µK

a (0)[ 1
K ]

N

h(K)
K

.

Applying Lemma 3.2 while setting zK = zK0 = 0 yields

µK0

a (0)

µK
a (0)

<
K0

K
.

Combining the two inequalities, we obtain

µK0

a (0)[ 1
K0 ]N

h(K0)
K0

≥
µK

a (0)[ 1
K ]

N

h(K)
K

>
µK0

a (0)[ 1
K ]

N

h(K)
K

K
K0

.

Hence, since, by assumption, h(K0)
K0 ≥ h(K)

K , we have that

µK0

a (0)[ 1
K0 ]N

h(K0)
K0

>
µK0

a (0)[ 1
K ]

N

h(K)
K

K
K0
≥
µK0

a (0)[ 1
K ]

N

h(K0)
K0

K
K0

.

Simplifying yields

[
1
K0
]N−1 > [

1
K
]N−1.

If N = 1, the inequality reduces to 1> 1 and, in the case where N ≥ 2, we must have
that K > K0. Thus, in both cases, we derived the desired contradiction.
We are now ready to perform a case distinction depending on the magnitude of the
scaling parameter c:
1) c≥ cK > cK0

In this case, both search procedures give rise to a unique boundary equilibrium
with equilibrium cutoffs zK = zK0 = 0. In order to see that there are no additional
interior equilibria, consider the search procedure with K0 candidates per period. The
argument for the search protocol withK candidates at a time is analogous. Towards a
contradiction, suppose that there exists an equilibrium with cutoff z0

K0
∈ (0, x). Since

this cutoff is interior, it solves the equilibrium equation

c
h(K0)

K0
= [

1
K0

(1 − F(z0

K0)K0

)]N[µK0

a (z0

K0) − z0

K0].

Making use of z0

K0
> 0 and rewriting yield the inequality

c
h(K0)

K0

<[
1
K0

(1 − F(z0

K0)K0

)]NµK0

a (z0

K0) = [
1
K0

(1 − F(z0

K0)K0

)]N−1

∫ x

z0

K0

f(s)F(s)K0−1sds.
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Now, observe that the right-hand side of this inequality is decreasing in the cutoff.
Therefore, it follows that

c
h(K0)

K0
< [

1
K0
]NµK0

a (0),

which is equivalent to c< cK0

. This is the desired contradiction.
The respective welfare levels induced by the unique boundary equilibria of the two
search procedures amount to

vK = µ
K
a (0) −

c · h(K)

K[ 1
K ]N

= µK
a (0) − (K)Nc

h(K)
K

and

vK0 = µK0

a (0) −
c · h(K0)

K0[ 1
K0 ]N

= µK0

a (0) − (K0)Nc
h(K0)

K0
.

Towards a contradiction, suppose vK0 ≥ vK. Applying Lemma 3.2 while setting zK =
zK0 = 0 and using h(K0)

K0 ≥ h(K)
K , we obtain that

µK
a (0) − (K)Nc

h(K)
K

= vK ≤ vK0 = µK0

a (0) − (K0)Nc
h(K0)

K0

< µK
a (0)

K0

K
− (K0)Nc

h(K)
K

.

Thus, we conclude that

µK
a (0)[

K0

K
− 1] > c

h(K)
K
[(K0)N − (K)N].

Since K0 > K and c≥ cK =
µK

a (0)[ 1
K ]

N

h(K)
K

, we have that

µK
a (0)[

K0

K
− 1] > c

h(K)
K
[(K0)N − (K)N] ≥

µK
a (0)[ 1

K ]
N

h(K)
K

h(K)
K
[(K0)N − (K)N].

Simplifying yields

K0

K
> (

K0

K
)N.

In the case of N = 1, there is a contradiction. If N ≥ 2, we must have that K0 < K
which constitutes a contradiction as well.
2) cK > c≥ cK0

Here, if there are K candidates per period, the corresponding search procedure ad-
mits only interior equilibria described by cutoff values zK > 0. In contrast, if there are
K0 candidates per period, as argued above, there is a unique boundary equilibrium
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with cutoff zK0 = 0. Therefore, the resulting welfare levels of both search procedures
are given by

vK = zK and

vK0 = µK0

a (0) −
c · h(K0)

K0[ 1
K0 ]N

= µK0

a (0) − (K0)Nc
h(K0)

K0
.

By definition of cK0

and because of c≥ cK0

, we directly obtain that vK0 ≤ 0. In contrast,
it holds that vK = zK > 0, directly implying vK0 < vK.
3) cK > cK0

> c
In this case, both search technologies give rise to interior equilibria. Denote the
equilibrium cutoff values in the game with K0 candidates per period by zK0 and the
cutoff values in the search game with K candidate per period by zK. Given private
value preferences, cutoff values, or acceptance standards, coincide with welfare, i.e.,
vK0 = zK0 and vK = zK.
Assume, by contradiction, that there are equilibria such that vK = zK ≤ zK0 = vK0 . The
equilibrium cutoff values satisfy the following equations:

SK(zK, N, N) − zK =
c · h(K)

K · [1 − QK(zK, N, N)]
and

SK0

(zK0 , N, N) − zK0 =
c · h(K0)

K0 · [1 − QK0(zK0 , N, N)]
.

In the following, we derive bounds on the ratio

SK0

(zK0 , N, N) − zK0

SK(zK, N, N) − zK
=
E[Xk

i |X
k
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0] − zK0

E[Xk
i |X

k
i ≥ maxl∈{1,...,K}:l̸=k X l

i , Xk
i ≥ zK] − zK

.

First, since zK ≤ zK0 , Lemma 3.2 yields

SK0

(zK0 , N, N) − zK0

SK(zK, N, N) − zK
<

K0

K
[1 − F(zK)K]
[1 − F(zK0)K0]

.

Second, by the equilibrium conditions, we have that

SK0

(zK0 , N, N) − zK0

SK(zK, N, N) − zK
=

c h(K0)
K0

1−QK0 (zK0 ,N,N)

c h(K)
K

1−QK(zK ,N,N)

=
h(K0)

K0

K
h(K)

[Pr(Xk
i ≥ maxl∈{1,...,K}:l ̸=k X l

i , Xk
i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K0}:l ̸=k X l

i , Xk
i ≥ zK0)]N

.
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Since h(K0)
K0 ≥ h(K)

K , we obtain

h(K0)
K0

K
h(K)

[Pr(Xk
i ≥ maxl∈{1,...,K}:l̸=k X l

i , Xk
i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0)]N

≥
[Pr(Xk

i ≥ maxl∈{1,...,K}:l ̸=k X l
i , Xk

i ≥ zK)]N

[Pr(Xk
i ≥ maxl∈{1,...,K0}:l̸=k X l

i , Xk
i ≥ zK0)]N

=[
K0(1 − F(zK)K)
K(1 − F(zK0)K0)

]N,

where the last step uses expressions for the involved probabilities that are derived
in Appendix 3.C.2. Therefore, we get that

SK0

(zK0 , N, N) − zK0

SK(zK, N, N) − zK
≥ [

K0(1 − F(zK)K)
K(1 − F(zK0)K0)

]N.

Putting both bounds on SK0

(zK0 ,N,N)−zK0

SK(zK ,N,N)−zK
together, we conclude that

K0(1 − F(zK)K)
K(1 − F(zK0)K0)

> [
K0(1 − F(zK)K)
K(1 − F(zK0)K0)

]N.

If N = 1, there is a contradiction. If N ≥ 2, this inequality is equivalent to

1 >
1
K [1 − F(zK)K]
1
K0 [1 − F(zK0)K0]

.

Because of zK ≤ zK0 , it follows that

1 >
1
K [1 − F(zK)K]
1
K0 [1 − F(zK)K0]

.

Now, observe that the term on the right-hand side of this inequality is the ratio of
the probabilities of voting in favor of a candidate k when there K compared to K0

candidates per period for a fixed cutoff zK. Since this probability is smaller for K
than for K0 candidates per period, this ratio must be strictly larger than 1. This is
the desired contradiction. Consequently, it must be true that vK = zK > zK0 = vK0 .

Proof of Proposition 3.4.
To begin with, denote the unique equilibrium cutoff values in the games with K0

and K candidates per period by zK0 and zK respectively. To the contrary, suppose that
for all c̄K0,K > 0 there exists c< c̄K0,K such that vK ≥ vK0 . Without loss of generality,
restrict attention to sufficiently small values of c such that the equilibria under both
procedures are interior. Then, cutoff values coincide with welfare, i.e., vK = zK and
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vK0 = zK0 .
The respective equilibrium thresholds satisfy the following equations:

SK(zK, N, N) − zK =
c · h(K)

K · [1 − QK(zK, N, N)]
and

SK0

(zK0 , N, N) − zK0 =
c · h(K0)

K0 · [1 − QK0(zK0 , N, N)]
.

Lemma 3.1 implies that

SK0

(zK, N, N) − zK0 = E[Xk
i |X

k
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0] − zK0

is non-increasing in zK0 .
Therefore, the assumption zK ≥ zK0 yields the inequality

E[Xk
i |X

k
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK] − zK

≤E[Xk
i |X

k
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0] − zK0 .

Moreover, since K0 > K, it holds that

E[Xk
i |X

k
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK]

≤E[Xk
i |X

k
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK].

Therefore, it follows that

E[Xk
i |X

k
i ≥ max

l∈{1,...,K}:l ̸=k
X l

i , Xk
i ≥ zK] − zK

≤E[Xk
i |X

k
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0] − zK0 .

This inequality is the same as

SK(zK, N, N) − zK ≤ SK0

(zK0 , N, N) − zK0 .

Exploiting the equilibrium equations, we get that

ch(K)
K

1 − QK(zK, N, N)
≤

ch(K0)
K0

1 − QK0(zK0 , N, N)
.

Rewriting this inequality yields

[Pr(Xk
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0)]N

≤
h(K0)

K0

K
h(K)

[Pr(Xk
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK)]N.
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Furthermore, because of zK ≥ zK0 , we have that

Pr(Xk
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK)

≤Pr(Xk
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK0).

Thus, we obtain that

[Pr(Xk
i ≥ max

l∈{1,...,K0}:l̸=k
X l

i , Xk
i ≥ zK0)]N

≤
h(K0)

K0

K
h(K)

[Pr(Xk
i ≥ max

l∈{1,...,K}:l̸=k
X l

i , Xk
i ≥ zK0)]N.

Rearranging this inequality while employing expressions for the involved probabili-
ties derived in Appendix 3.C.2 implies that

[
1
K0 (1 − F(zK0)K0

)
1
K (1 − F(zK0)K)

]N ≤
h(K0)

K0

K
h(K)

.

Since, by assumption, h(K0)
K0 <

h(K)
K , we have that the right-hand side of this in-

equality is strictly smaller than 1. We claim that, no matter the fixed value of
0< h(K0)

K0

K
h(K) < 1, as long as the cost parameter c is sufficiently small, the left-hand

side of the inequality is below 1, but arbitrarily close to it. The first part of this state-
ment is true because the discussed term is the ratio of the probabilities of accepting
a candidate k when there K0 compared to K candidates per period for a fixed cutoff
zK0 . To see the second part, note that as c→ 0, zK0 → x̄, implying that F(zK0)→ 1.
Then, l’Hôpital’s rule yields

lim
c→0
[

1
K0 (1 − F(zK0)K0

)
1
K (1 − F(zK0)K)

]N = [lim
c→0

−F(zK0)K0−1f(zK0)
−F(zK0)K−1f(zK0)

]N = [lim
c→0

F(zK0)K0−K]N = 1.

Thus, as c→ 0, the left-hand side of the inequality converges to 1. Consequently,
eventually, for small c, the left-hand side of the inequality exceeds the right-hand
side because h(K0)

K0

K
h(K) < 1. This is the desired contradiction.

Proof of Lemma 3.3.
To begin with, take any K0, K ≥ 1 with K0 > K, and fix any value z ∈ [0, x̄). In order
to improve readability, we often drop the dependence of the involved functions on z.
The subsequent argument does not apply to the case in which K = 1 and z= 0. We
tackle this case separately at the end of this proof.
First, we derive an expression for SK(z, N, M) in terms of wK(z), µK

a (z), F(z) and µ.
By the law of total expectation, we have

µK
r =

µ − 1
K (1 − FK)µK

a

1 − 1
K (1 − FK)
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and, consequently, we obtain

µK
a − µ

K
r = µ

K
a −
µ − 1

K (1 − FK)µK
a

1 − 1
K (1 − FK)

=
µK

a − µ

1 − 1
K (1 − FK)

.

Therefore, SK(z, N, M) can be written as

SK(z, N, M) = wKµK
a + [1 − wK]µK

r

= µK
r + wK[µK

a − µ
K
r ]

=
µ − 1

K (1 − FK)µK
a

1 − 1
K (1 − FK)

+ wK µK
a − µ

1 − 1
K (1 − FK)

= µ[
1 − wK

1 − 1
K (1 − FK)

] + µK
a [

wK − 1
K (1 − FK)

1 − 1
K (1 − FK)

]

= µ + [
wK − 1

K (1 − FK)

1 − 1
K (1 − FK)

][µK
a − µ].

Further, the law of total expectation yields

SK(z, N, M) =
wK − 1

K (1 − FK)

1 − 1
K (1 − FK)

[µK
a − µ] +

1
K0

(1 − FK0

)µK0

a + [1 −
1
K0

(1 − FK0

)]µK0

r .

Second, we develop an expression for µK0

a −µ
K0

r as well as a lower bound on this
term. The law of total expectation implies

µK0

r =
µ − 1

K0 (1 − FK0

)µK0

a

1 − 1
K0 (1 − FK0)

.

Thus, we obtain

µK0

a − µ
K0

r = µ
K0

a −
µ − 1

K0 (1 − FK0

)µK0

a

1 − 1
K0 (1 − FK0)

=
µK0

a − µ

1 − 1
K0 (1 − FK0)

≥
µK

a − µ

1 − 1
K0 (1 − FK0)

,

where the inequality follows from the assumption K0 > K which implies µK0

a ≥ µ
K
a .

Now, suppose to the contrary that SK(z, N, M)≥ SK0

(z, N, M). This means that

SK(z, N, M)

=
wK − 1

K (1 − FK)

1 − 1
K (1 − FK)

[µK
a − µ] +

1
K0

(1 − FK0

)µK0

a + [1 −
1
K0

(1 − FK0

)]µK0

r

≥µK0

a wK0

+ µK0

r [1 − wK0

] = SK0

(z, N, M).
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Rearranging this inequality yields

wK − 1
K (1 − FK)

1 − 1
K (1 − FK)

[µK
a − µ] + µ

K0

r [1 −
1
K0

(1 − FK0

) − 1 + wK0

]

≥µK0

a [w
K0

−
1
K0

(1 − FK0

)],

which is equivalent to

wK − 1
K (1 − FK)

1 − 1
K (1 − FK)

[µK
a − µ] ≥ [µ

K0

a − µ
K0

r ][w
K0

−
1
K0

(1 − FK0

)].

Employing the lower bound on µK0

a −µ
K0

r , we have

wK − 1
K (1 − FK)

1 − 1
K (1 − FK)

[µK
a − µ] ≥

µK
a − µ

1 − 1
K0 (1 − FK0)

[wK0

−
1
K0

(1 − FK0

)]

because wK0

− 1
K0 (1− FK0

)> 0. To see the latter point, observe that

wK0

=
N
∑

l=M

qK0

(z, N, l)
1 − QK0(z, N, M)

l
N

≥
M
N

N
∑

l=M

qK0

(z, N, l)
1 − QK0(z, N, M)

=
M
N
>

1
2

.

Moreover, since K0 > K ≥ 1, we have

1
K0

(1 − FK0

) ≤
1
2

(1 − FK0

) ≤
1
2

.

Hence, it holds that wK0

− 1
K0 (1− FK0

)> 0.
Next, we note that [µK

a −µ]> 0 because F has full support and, by assumption, z> 0.
Thus, we arrive at the following expression:

wK − 1
K (1 − FK)

1 − 1
K (1 − FK)

≥
wK0

− 1
K0 (1 − FK0

)

1 − 1
K0 (1 − FK0)

.

Rewriting this inequality yields

1 − wK ≤
1 − 1

K (1 − FK)

1 − 1
K0 (1 − FK0)

[1 − wK0

]. (3.B.2)

Now, Albrecht, Anderson, and Vroman (2010) provide an alternative expression for
the weight w1 as a function of the probability that some member votes in favor of
the available candidate. They rely on the Gaussian hypergeometric function as well
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as the Euler integral.31 We apply those expressions to the weights wK and wK0

. In
order to simplify the notation, let AK and AK0

be the probability of approving some
candidate k if there are K or K0 candidates respectively. In other words, define

AK(z) :=
1
K

(1 − FK), as well as

AK0

(z) :=
1
K0

(1 − FK0

).

Making use of this notation, the expressions in Albrecht, Anderson, and Vroman
(2010) read as follows:32

wK = AK +
M
N

(1 − AK){

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy}−1 and

wK0

= AK0

+
M
N

(1 − AK0

){

∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy}−1.

Therefore, we obtain

1 − wK = 1 − AK −
M
N

(1 − AK){

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy}−1

= [1 − AK] · [1 −
M
N
{

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy}−1]

= [1 −
1
K

(1 − FK)] · [1 −
M
N
{

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy}−1],

as well as

1 − wK0

= 1 − AK0

−
M
N

(1 − AK0

){

∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy}−1

= [1 − AK0

] · [1 −
M
N
{

∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy}−1]

= [1 −
1
K0

(1 − FK0

)] · [1 −
M
N
{

∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy}−1].

Then, inequality (3.B.2) becomes

[1 −
1
K

(1 − FK)] · [1 −
M
N
{

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy}−1]

≤
1 − 1

K (1 − FK)

1 − 1
K0 (1 − FK0)

· [1 −
1
K0

(1 − FK0

)]

· [1 −
M
N
{

∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy}−1].

31. See for example Abramowitz and Stegun (1965).
32. The derivation can be found on pages 1403 f. in Albrecht, Anderson, and Vroman (2010).
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Simplifying and rearranging this inequality yields

∫ 1

0

[1 +
AK

1 − AK
(1 − y

1
M )]N−Mdy ≤
∫ 1

0

[1 +
AK0

1 − AK0
(1 − y

1
M )]N−Mdy.

In the following, we claim that, for all y ∈ [0, 1),

[1 +
AK

1 − AK
(1 − y

1
M )]N−M > [1 +

AK0

1 − AK0
(1 − y

1
M )]N−M,

which implies that the former inequality cannot be true.
To begin with, note that AK = AK(z)> AK0

(z)= AK0

since z ̸= x and K0 > K. Now, take
any y ∈ [0,1) and observe that

AK > AK0

⇔
AK

1 − AK
>

AK0

1 − AK0

⇔ 1 +
AK

1 − AK
(1 − y

1
M ) > 1 +

AK0

1 − AK0
(1 − y

1
M )

⇔ [1 +
AK

1 − AK
(1 − y

1
M )]N−M > [1 +

AK0

1 − AK0
(1 − y

1
M )]N−M.

This establishes the claim, yielding the desired contradiction. Therefore, overall, we
conclude that SK(z, N, M)< SK0

(z, N, M) for all z ∈ (0, x̄).
Finally, it remains to tackle the case in which K = 1 and z= 0. Here, observe
that S1(0, N, M)= µ. Towards a contradiction, suppose that µ= S1(0, N, M)≥
SK0

(0, N, M). By the law of total expectation, we obtain

µ =[
1
K0

(1 − [F(0)]K
0

)]µK0

a + [1 −
1
K0

(1 − [F(0)]K
0

)]µK0

r

≥SK0

(0, N, M) = µK0

a wK0

+ µK0

r [1 − wK0

].

Rearranging this inequality yields

0 ≥ [µK0

a − µ
K0

r ][w
K0

−
1
K0
].

However, we have that

0 ≥ [µK0

a − µ
K0

r ][w
K0

−
1
K0
] > 0

because µK0

a −µ
K0

r > 0 as well as wK0

− 1
K0 (1− [F(0)]K

0

)> 0. The latter point is im-
plied by K0 > 1 and it has been established in the first part of this proof. Hence, we
arrive at the desired contradiction.
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Proof of Proposition 3.5.
Consider any K0, K ≥ 1 with K0 > K. To the contrary, suppose that for all c̄K0,K > 0
there exists c< c̄K0,K such that vK ≥ vK0 . Without loss of generality, restrict attention
to sufficiently small values of c such that the unique equilibria under both proce-
dures are interior. Let zK and zK0 denote the equilibrium cutoffs corresponding to
sequential search with K and K0 candidates per period respectively. These cutoffs
solve the respective equilibrium equations

SK(zK, N, M) − zK =
ch(K)

K

1 − QK(zK, N, M)

SK0

(zK0 , N, M) − zK0 =
ch(K0)

K0

1 − QK0(zK0 , N, M)
,

and they coincide with welfare, meaning, zK = vK as well as zK0 = vK0 . Thus, by as-
sumption, zK ≥ zK0 . Lemma 3.1 implies that the function SK(z, N, M)− z is decreasing
in z. Making use of this property and employing the equilibrium equations as well
as zK ≥ zK0 , we obtain

ch(K)
K

1 − QK(zK, N, M)
= SK(zK, N, M) − zK

≤ SK(zK0 , N, M) − zK0

= SK(zK0 , N, M) +
ch(K0)

K0

1 − QK0(zK0 , N, M)
− SK0

(zK0 , N, M).

Rearranging this inequality yields

SK0

(zK0 , N, M) − SK(zK0 , N, M) ≤
ch(K0)

K0

1 − QK0(zK0 , N, M)
−

ch(K)
K

1 − QK(zK, N, M)
. (3.B.3)

Now, we claim that there exists B< x̄ such that for all c> 0, it holds zK < B and
zK0 < B.
First, towards a contradiction, suppose that for all BK < x̄ there exist c> 0 such
that zK ≥ BK. By the equilibrium equation and the monotonicity properties of the
involved functions established in the proofs of Lemma 3.1 and Proposition 3.2, we
have that zK is weakly decreasing in c. Thus, the previous assumption requires that
zK → x̄ as c→ 0. Consider the following rearranged version of the equilibrium equa-
tion:

zK = SK(zK, N, M) −
ch(K)

K

1 − QK(zK, N, M)
.

If we take the limit on both sides of the equation as c→ 0, we obtain

x̄ = lim
c→0
[zK] = lim

c→0
[SK(zK, N, M) −

ch(K)
K

1 − QK(zK, N, M)
]

≤ lim
c→0
[SK(zK, N, M)] < x̄,
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which constitutes the desired contradiction. Recalling the average representation
of SK(zK, N, M), the final inequality holds because limc→0µ

K
r (zK)= µ < x̄ as well as

limc→0 wK(zK)= M
N < 1 which is implied by M < N. Therefore, there exists BK < x̄

such that for all c> 0, it holds that zK < BK.
Second, applying the same argument in an analogous way to sequential search with
K0 candidates per period, we infer that there exists BK0

< x̄ such that for all c> 0, it
holds that zK0 < BK0

.
Consequently, setting B :=max{BK, BK0

}, we conclude that zK < B and zK0 < B for all
c> 0.
Making use of this feature, we obtain the following upper bound on the right-hand
side of inequality (3.B.3):

ch(K0)
K0

1 − QK0(zK0 , N, M)
−

ch(K)
K

1 − QK(zK, N, M)

<
ch(K0)

K0

1 − QK0(B, N, M)
−

ch(K)
K

1 − QK(0, N, M)

=c[
h(K0)

K0

1 − QK0(B, N, M)
−

h(K)
K

1 − QK(0, N, M)
].

Note that this upper bound does not depend on the equilibrium cutoffs of the two
considered procedures zK and zK0 .
Let us perform a case distinction:

1)
h(K0)

K0

1−QK0 (B,N,M)
−

h(K)
K

1−QK(0,N,M) ≤ 0
In this case, inequality (3.B.3) and the upper bound on the right-hand side of this
inequality yield

SK0

(zK0 , N, M) − SK(zK0 , N, M) ≤ 0,

which contradicts Lemma 3.3 because of K0 > K. Let c̄K0,K be the cost value such that
for all c< c̄K0,K, the unique equilibrium under both search procedures is interior.
That is, set

c̄K0,K := min{
SK0

(0, N, M)[1 − QK0

(0, N, M)]
h(K0)

K0

,
SK(0, N, M)[1 − QK(0, N, M)]

h(K)
K

} > 0,

recalling the proofs of Propositions 3.1 and 3.2. Then, the established contradiction
implies that, for all these levels of c, we have vK < vK0 .

2)
h(K0)

K0

1−QK0 (B,N,M)
−

h(K)
K

1−QK(0,N,M) > 0
To begin with, define

r := min
s∈[0,B]

[SK0

(s, N, M) − SK(s, N, M)].
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Observe that r is well-defined because the involved minimum exists due to the ex-
treme value theorem. Further, Lemma 3.3 implies that r> 0. Also, note that r does
not depend on zK, zK0 and c. Moreover, we have that the left-hand side of inequality
(3.B.3) is bounded below by r, meaning,

SK0

(zK0 , N, M) − SK(zK0 , N, M) ≥ r.

Taking the upper bound on the right-hand side of inequality inequality (3.B.3) to-
gether with this lower bound on the left hand-side of the discussed inequality, we
arrive at the following inequality:

r < c[
h(K0)

K0

1 − QK0(B, N, M)
−

h(K)
K

1 − QK(0, N, M)
].

Now, set

c̄K0,K :=
r

h(K0)
K0

1−QK0 (B,N,M)
−

h(K)
K

1−QK(0,N,M)

.

Note that c̄K0,K > 0 since
h(K0)

K0

1−QK0 (B,N,M)
−

h(K)
K

1−QK(0,N,M) > 0 by assumption and, again, r>
0 because of Lemma 3.3. Then, for all c< c̄K0,K, we have that

r < c[
h(K0)

K0

1 − QK0(B, N, M)
−

h(K)
K

1 − QK(0, N, M)
]

<
r

h(K0)
K0

1−QK0 (B,N,M)
−

h(K)
K

1−QK(0,N,M)

· [
h(K0)

K0

1 − QK0(B, N, M)
−

h(K)
K

1 − QK(0, N, M)
]

= r.

This constitutes the desired contradiction.



Appendix 3.C Derivations | 149

Appendix 3.C Derivations

3.C.1 Expected Value Conditional on Stopping

First, we derive the expression for the value quality of some candidate k ∈K for
some member i ∈ N conditional on stopping:

SK(z, N, M) = E[Xk
i |candidate k hired]

=
N
∑

l=M

Pr(#k supporters = l|k hired)E[Xk
i |k hired and #k supporters = l]

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

E[Xk
i |#k supporters = l]

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

·

{Pr(voter i supports k|#k supporters = l)E[Xk
i |voter i supports k]

+ Pr(voter i rejects k|#k supporters = l)E[Xk
i |voter i rejects k]}

=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

[
l
N
µK

a (z) +
N − l

N
µK

r (z)]

= wK(z)µK
a (z) + [1 − wK(z)]µK

r (z),

where wK(z) is defined as

wK(z) :=
N
∑

l=M

qK(z, N, l)
1 − QK(z, N, M)

l
N

.
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3.C.2 Probability of Acceptance

Second, we derive the expression for the probability that some member i ∈ N votes
in favor of some candidate k ∈K as a function of K, F and the employed cutoff z:

Pr(Xk
i ≥ max

l̸=k
X l

i , Xk
i ≥ z)

=

∫ x

0

Pr(Xk
i ≥ s, Xk

i ≥ z)Pr(max
l̸=k

X l
i = s)ds

=

∫ x

0

Pr(Xk
i ≥ max{s, z}) Pr(max

l̸=k
X l

i = s)ds

=

∫ z

0

Pr(Xk
i ≥ z)Pr(max

l̸=k
X l

i = s)ds +

∫ x

z
Pr(Xk

i ≥ s) Pr(max
l̸=k

X l
i = s)ds

= [1 − F(z)]

∫ z

0

dF(s)K−1

ds
ds +

∫ x

z
[1 − F(s)](K − 1)F(s)K−2f(s)ds

= [1 − F(z)]F(z)K−1 +

∫ x

z
(K − 1)F(s)K−2f(s)ds

−
∫ x

z
(K − 1)F(s)K−1f(s)ds

= [1 − F(z)]F(z)K−1 +

∫ x

z

dF(s)K−1

ds
ds −
∫ x

z

d[K−1
K F(s)K]

ds
ds

= [1 − F(z)]F(z)K−1 + [1 − F(z)K−1] −
K − 1

K
+

K − 1
K

F(z)K

= F(z)K−1 − F(z)K + 1 − F(z)K−1 − 1 +
1
K
+ F(z)K −

1
K

F(z)K

=
1
K
[1 − F(z)K].
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Chapter 4

Optimal Voting Mechanisms on
Generalized Single-Peaked Domains⋆

4.1 Introduction

In this chapter, I characterize the optimal utilitarian voting mechanisms, mean-
ing, the voting rules that maximize the ex-ante utilitarian welfare, among all so-
cial choice functions satisfying strategy-proofness, anonymity, and surjectivity. The
setting features more than two alternatives, and the voters have generalized single-
peaked preferences derived frommedian spaces as introduced in Nehring and Puppe
(2007b), henceforth NP (2007b). This class of preferences is much larger than the
well-known class of preferences that are single-peaked on a line.
NP (2007b) provide a characterization of strategy-proof social choice functions for
generalized single-peaked domains giving rise to median spaces. This characteriza-
tion constitutes the starting point of my analysis of welfare-maximizing voting rules.
Gershkov, Moldovanu, and Shi (2017) study the stated mechanism design problem
for preferences which are single-peaked on a line.1 For these preferences, they derive
the utilitarian mechanism, and they show that, in this case, the optimal voting rule
takes the form of a successive procedure with weakly decreasing thresholds that
depend on the intensities of preferences. Therefore, the present chapter extends
the work of Gershkov, Moldovanu, and Shi (2017) to a considerably larger class
of preferences. This extension is important because it covers a much wider range
of economically relevant preferences. For instance, the following collective decision-
making problems are covered: Collective choice when preferences are single-peaked

⋆ An earlier version of this chapter has been published as Collaborative Research Center Transregio
224 Discussion Paper 214/2020.

1. To be more precise, they assume that preferences are single-crossing and single-peaked on a
line.
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with respect to trees as introduced in Demange (1982),2 and voting on hypercubes,
that is, voting on multiple binary decisions as studied in Barberà, Sonnenschein, and
Zhou (1991).3
The characterization of optimal mechanisms for preference domains that are gener-
alized single-peaked with respect to a median space essentially involves the follow-
ing three assumptions: First, voters have private types that are distributed indepen-
dently and identically across the voters. Second, the utility function that is common
to all voters satisfies an additive separability condition, constituting a natural con-
straint in settings, where alternatives might be multidimensional. This condition is
vacuously met in the special case of single-peaked preferences on trees. Third, I im-
pose a constraint on the preference intensities that represents a joint restriction on
type distribution and the utility function. This condition is vacuously satisfied in the
special case of hypercubes.
The utilitarian mechanism takes the form of voting by properties, that is, the social
choice is determined through a collection of binary votes on subsets of alternatives
involving flexible majority requirements that reflect the characteristics of these sub-
sets of alternatives. The characterization of optimal mechanisms for preference do-
mains that are generalized single-peaked with respect to a median space constitutes
the main contribution of this chapter. To illustrate this finding, before introducing
the general model, I discuss an application to the design of voting mechanisms for
the provision of two costly public goods α and β subject to the constraint that the
provided level of α is weakly higher than the provided level of β . For example, if
α and β represent expansions of the rail and the road network respectively, this
constraint might reflect the fight against climate change. Therefore, to get a more
concrete idea how optimal mechanisms look like, I directly refer to section 4.3. Also,
when developing the general result, I repeatedly revisit this application in order to
illustrate the concepts and assumptions I employ in the general analysis in a less
abstract setting.
The structure of this chapter is as follows: In the following section 4.2, I discuss the
related literature, and, in section 4.3, I present the public goods application. Next, in
section 4.4, I introduce the general model, and, in section 4.5, I review the character-
ization of strategy-proof social choice functions from NP (2007b). Then, in section
4.6, I present my general optimality finding. The following section 4.7 discusses
the two special cases of trees and hypercubes. The final section 4.8 concludes. The
proofs are contained in Appendix 4.A.

2. Kleiner and Moldovanu (2020) argue that in some real-world voting problems from the Ger-
man as well as the British parliament preferences were single-peaked on a tree.

3. As part of section 4.2 on the related literature, I discuss more comprehensively which kind of
collective decision-making problems are captured by my analysis.
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4.2 Literature

The present chapter relates to work on social choice and mechanism design and
it contributes, specifically, to the literature on the evaluation of the utilitarian ef-
ficiency of voting rules. This literature starts with Rae (1969), who focuses on bi-
nary decisions. More recent contributions that also consider binary decisions include
Nehring (2004), Schmitz and Tröger (2012), and Drexl and Kleiner (2018).
NP (2007b) provide a characterization of strategy-proof social choice functions
for all rich generalized single-peaked domains.⁴ Nehring and Puppe (2005), and
Nehring and Puppe (2007a) also treat strategy-proof social choice on generalized
single-peaked domains, having each a different focus. Among many other prefer-
ence structures, the unrestricted domain as well as domains that give rise to median
spaces constitute generalized single-peaked domains. The latter preference domain
admits a large class of well-behaved strategy-proof social choice functions, circum-
venting the Gibbard-Satterthwaite-Theorem (Gibbard (1973), Satterthwaite (1975)).
Again, I take NP (2007b)’s characterization of strategy-proof social choice functions
for these preference structures as the starting point for my analysis of utilitarian
mechanisms. In this way, I show how results from strategy-proof social choice can
be leveraged to solve mechanism design problems, representing a contribution of
the present chapter.
The preference domains from the literature discussed below are among many other
preference structures instances of generalized single-peaked domains derived from
median spaces (see NP (2007b)).⁵My optimality analysis covers all these preference
domains, and, therefore, I unify and generalize previous results in the mechanism
design literature. The main contribution of this chapter constitutes the optimiza-
tion over strategy-proof mechanisms on generalized single-peaked domains giving
rise to median spaces while relying on the utilitarian principle. The chapter shares
the research question with my master thesis Rachidi (2019), and it mainly extends
Rachidi (2019) in the following way: The characterization of utilitarian mechanisms
in the present chapter is more general than in the master thesis for all median spaces
except for the special case of single-peaked preferences on trees. In particular, the
optimality result in the master thesis does not cover the public goods application
presented in this chapter.⁶ As far as the formal results are concerned, Lemma 4.1,
Lemma 4.3, and Corollary 4.1 are directly taken from the master thesis. Neverthe-
less, for completeness, I include the proofs of the two stated lemmata in Appendix
4.A. All other findings presented here are more general than in the master thesis.
One strand of the literature investigates hypercubes or coupled binary decisions,

4. NP (2007b) generalize previous work by Barberà, Massó, and Neme (1997).
5. I refer to NP (2007b) for an overview and a classification of median spaces.
6. In the master thesis, I discuss a conceptually similar public goods application, but the utility

specification is different.
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meaning, voters face a collection of binary decisions. In terms of strategy-proof so-
cial choice, Barberà, Sonnenschein, and Zhou (1991) provide a characterization
of strategy-proof and surjective mechanisms when preferences are separable or ad-
ditively separable across the binary issues. When it comes to mechanism design,
Jackson and Sonnenschein (2007) offer a mechanism that is based on the idea
of budgeting. For sufficiently many decisions, their mechanism is approximately
Bayesian incentive-compatible as well as nearly ex-ante Pareto efficient. Other vot-
ing rules in the context of Bayesian mechanism design where voters report cardi-
nal utility information include qualitative voting studied in Hortala-Vallve (2012)
as well as storable votes due to Casella (2005). In contrast to Jackson and Son-
nenschein (2007), Hortala-Vallve (2010) considers finitely many decision problems
as well as strategy-proof mechanisms. Allowing for random mechanisms, he finds
that ex-ante Pareto efficiency cannot be attained and, moreover, in the presence of
strategy-proofness, there is no unanimous mechanism which is sensitive to prefer-
ence intensities.
Another branch of the literature considers preferences which are single-peaked on
a line. Moulin (1980) characterizes in his seminal contribution peaks-only and
strategy-proof social choice functions for the full domain of preferences which are
single-peaked on a line. His elegant characterization involves min-max rules or gen-
eralized median mechanisms when restricting attention to anonymous social choice
functions. Again, Gershkov, Moldovanu, and Shi (2017) characterize the utilitarian
mechanismwhen preferences are single-crossing and single-peaked on a line. In con-
trast to their work, I allow for a considerably larger class of economically relevant
preferences, going beyond single-peaked preferences on a line. As far as the proof
of my optimality result is concerned, I build upon their proof, but the much larger
class of preferences requires additional arguments as well as different assumptions.
Further, Gersbach (2017) also emphasizes the importance of flexible majority rules.
Moreover, Kleiner and Moldovanu (2017) analyze dynamic, binary, and sequential
voting procedures. They identify conditions on the voting procedures under which
the induced dynamic games possess an ex-post perfect equilibrium in which voters
behave sincerely. Moreover, they illustrate their theoretical findings by means of sev-
eral empirical case studies involving collective decisions from different parliaments.
Building on preferences which are single-peaked on a line, products of lines, the cou-
pling of unidimensional decisions or, as Barberà, Gul, and Stacchetti (1993) put
it, multidimensional single-peaked preferences have also received attention in the
literature. Removing the peaks-only assumption in Moulin (1980), Border and Jor-
dan (1983) as well as Barberà, Gul, and Stacchetti (1993) provide characteriza-
tions of strategy-proof social choice functions for the stated class of voting problems.
Despite considering each somewhat different preferences, the main conclusion fol-
lowing from these contributions is that any strategy-proof social choice function is
peaks-only and it can be decomposed into unidimensional functions such that each
dimension is treated in a separate way. In other words, any strategy-proof social



4.3 Public Goods Provision | 157

choice function is composed of a collection of the mechanisms that Moulin (1980)
identified for the unidimensional case. Finally, regarding mechanism design, Ger-
shkov, Moldovanu, and Shi (2019) consider a spatial voting environment, but they
keep the voting procedure fixed in the sense that, essentially, the collective choice in
each coordinate of the multidimensional setting is determined via simple majority
voting. They show that the redefinition of the involved issues or, in other words, the
rotation of the initial coordinate axes leads, generally, to improvements in terms of
welfare.
While extending single-peaked preferences on a line in a somewhat different di-
rection compared to products of lines, but maintaining the general idea of single-
peakedness, Demange (1982) investigates preferences which are single-peaked on
trees. She establishes that these domains ensure the existence of a Condorcet win-
ner. However, when it comes to aggregation theory instead of voting, the majority
relation need not be transitive. Moreover, Kleiner and Moldovanu (2020) study dy-
namic, binary, and sequential voting procedures in the context of single-peaked pref-
erences on trees. They derive conditions on the voting procedures such that voting
sincerely constitutes an ex-post perfect equilibrium and the Condorcet winner is im-
plemented in this equilibrium. Also, again, they apply their theoretical findings to
real-world voting problems from the German and the British parliament.

4.3 Public Goods Provision

The main purpose of this section is to illustrate the general optimality result pre-
sented in Theorem 4.2 below by means of an application to the design of voting
mechanisms for the provision of two public goods subject to a constraint, but this
application is also of interest in itself. Again, when developing the general optimality
result subsequently, I repeatedly go back to this application in order to illustrate the
concepts and assumptions I employ in the general analysis in a less abstract setting.
There is a finite set of voters N := {1, ..., n} with n≥ 2. Suppose that there are two
public goods α and β , and that, for each public good, there are three possible levels
{1,2, 3}. Further, assume that there is an exogenously given constraint imposing that
the provided level of α has to be weakly higher than the provided level of β .⁷ Again,
for instance, if α and β represent expansions of the rail and the road network re-
spectively, this constraint might reflect the fight against climate change. Therefore,
the set of alternatives A amounts to

A := {(kα, kβ) ∈ {1,2, 3} × {1, 2,3} : kα ≥ kβ}.

7. Similar applications appear in Barberà, Massó, and Neme (1997), Nehring and Puppe (2005),
Nehring and Puppe (2007a), Block (2010), and Block de Priego (2014). However, these authors are not
concerned about welfare maximization, but they focus on characterizing strategy-proof social choice
functions.
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The subsequent specification of types and utilities suitably extends the linear utility
model contained in Gershkov, Moldovanu, and Shi (2017) from one to two public
goods.
The voters’ types are governed by the two-dimensional random variable T := X × Y.
The support of the type distribution S is given by the right triangle

S := {(x, y) ∈ R2 : l ≤ x ≤ u, l ≤ y ≤ u, y ≤ x}

for some 0≤ l< u<∞. In particular, note that the set S is convex. Denote by G
and g the cdf and density of the bivariate distribution of T and let GX and gX as
well as GY and gY be the marginal cdfs and densities corresponding to the random
variables X and Y respectively. Types are distributed independently and identically
across voters, and each voter is privately informed about his or her type realization.
Now, a voter having type realization (x, y) ∈ S receives utility

u(kα,kβ )(x, y) := Okα · x − ckα + Okβ · y − ckβ

from alternative (kα, kβ) ∈ A. The involved parameters satisfy c1 < c2 < c3 and 0≤
O1 < O2 < O3, and they are common knowledge. In words, utilities are additively
separable across the two public goods, the realizations of X and Y capture the valua-
tion of public good α and β respectively, the valuation for α is always weakly higher
than the value for β , the function Ok with k ∈ {1,2, 3} translates public good level in-
dices into utilities, and the function ck with k ∈ {1, 2,3} represents the cost function.
Take any public good γ ∈ {α,β} and consider two public good levels k, m ∈ {1,2, 3}
with k>m: The cutoff

zm,k :=
ck − cm

Ok − Om

describes the valuation corresponding to the public good γ at which a voter is in-
different between providing level k and m of the good γ for any fixed level of the
other public good. Note that these cutoffs are homogenous across the two public
goods because the functions Ok and ck are assumed to be homogenous across the
two goods. Suppose that the cutoffs involving neighboring public good levels are
ordered, that is, suppose that

z0,1 := l < z1,2 < z2,3 < u =: z3,4.

This is a mild assumption on the involved parameters: For example, it is satisfied if
the function Ok is linear in k, the cost function ck is strictly convex in k, and the sup-
port of the type distribution S is sufficiently large, meaning, l and u are sufficiently
small and large respectively. It implies that any alternative is the most preferred or
peak alternative for some types. In particular, the most preferred alternative of a
voter constitutes (pα, pβ) ∈ A if and only if the type realization (x, y) ∈ S satisfies
x ∈ [zpα−1,pα , zpα,pα+1] and y ∈ [zpβ−1,pβ , zpβ ,pβ+1].
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Finally, following Nehring and Puppe (2007a) and NP (2007b), observe that any
type realization induces an ordinal preference relation that is generalized single-
peaked with respect to a median space.⁸ Specifically, the requirement of single-
peakedness amounts here to the following condition: There exists an alternative
(pα, pβ) ∈ A, which is the most preferred alternative, such that for all alternatives
(kα, kβ), (mα, mβ) ∈ A with (kα, kβ) ̸= (mα, mβ) it holds that whenever (kα, kβ) lies
on a shortest path in the graph shown in Figure 4.1 connecting (pα, pβ) and
(mα, mβ), the voter must prefer (kα, kβ) over (mα, mβ). For instance, suppose that a

(1, 1) (2, 1) (3, 1)

(2, 2) (3, 2)

(3, 3)

Figure 4.1. Public Goods Provision

voter’s most preferred alternative is (2, 2). Then, single-peakedness requires, among
other things, that this voter must prefer (2,1) and (3,2) over (3,1), but it does not
impose whether (2, 1) is preferred to (3, 2) or the other way around.
In the following, I present the direct mechanism that maximizes the utilitarian wel-
fare among all strategy-proof, anonymous, and surjective mechanisms for the out-
lined setting.⁹ In order to apply the general optimality result in Theorem 4.2 below,
I impose three regularity assumptions on the type distribution. Specifically, assume
that both marginal densities gX and gY are log-concave and that GX ≥lr GY , where
≥lr denotes the likelihood ratio order. For instance, it can be verified that the three
assumptions are met if the joint distribution G is the uniform distribution.1⁰
The structure of the optimal mechanism can be described by means of four majority

8. Note that this would not be true if the support of the type distribution were given by the
square {(x, y) ∈ R2 : l≤ x ≤ u, l≤ y ≤ u}.

9. There is an issue concerning the set of ordinal preferences generated by the utility represen-
tation introduced above: This set of ordinal preferences does not satisfy NP (2007b)’s richness condi-
tion on the preference domain. Therefore, the strategy-proof social choice functions they identify are
strategy-proof for the outlined setting, but there might be other strategy-proof direct mechanisms in
addition to those identified in their paper. However, NP (2007b)’s proof goes nevertheless through in
the present setting, that is, there are no such other strategy-proof social choice functions. The argu-
ment for this claim is available on request from the author.

10. Note that if the joint density g is log-concave, the marginal densities gX and gY must be log-
concave as well (see Prékopa (1973)).
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quotas qα(1), qα(2), qβ(1), and qβ(2), that is, four natural numbers weakly between
1 and n. Consider any public good γ ∈ {α,β} and public good level k ∈ {1,2}: If there
are at least qγ(k) voters with most preferred alternatives sharing the feature that the
public good level of γ is weakly smaller than k, the social choice features the same
property, that is, the provided level of γ is at most k. Otherwise, the provided level
of γ is strictly larger than k. In other words, for every public good γ ∈ {α,β} and
each level k ∈ {1, 2}, there is a binary vote between the following two subsets of al-
ternatives: Alternatives sharing the feature that the public good level of γ is weakly
smaller versus strictly larger than k. It follows from Nehring and Puppe (2007a) and
NP (2007b) that, in the present setting, any strategy-proof, anonymous, and surjec-
tive social choice function takes this form subject to some constraints on the majority
quotas. Now, under the regularity assumptions on the type distribution stated above,
the described collection of binary votes on subsets of alternatives involving the ma-
jority quotas

q∗α(k) := ⌈
n

1 + E[z
k,k+1−X|X≤zk,k+1]

E[X−zk,k+1|X≥zk,k+1]

⌉

and

q∗β(k) := ⌈
n

1 + E[z
k,k+1−Y|Y≤zk,k+1]

E[Y−zk,k+1|Y≥zk,k+1]

⌉,

where k ∈ {1, 2}, implements the welfare-maximizing mechanism among all social
choice functions satisfying strategy-proofness, anonymity, and surjectivity. In partic-
ular, this collection of binary votes represents a proper social choice function in the
sense that it yields a unique alternative for all profiles of type realizations. The two
main features of the optimal majority quotas are as follows: First, for both public
goods, the associated quotas are decreasing in the public good level that determines
the respective partition of the set of alternatives into two subsets, i.e., q∗α(1)≥ q∗α(2)
and q∗

β
(1)≥ q∗

β
(2). Second, the majority quotas corresponding to public good α are

higher than the quotas linked to public good β , i.e., q∗α(k)≥ q∗
β

(k) for all k ∈ {1,2}.11
The designer faces a Bayesian inference problem, that is, he or she has to make in-
ferences about the voters’ preference intensities based on their vote choices in the
described collection of binary votes. The optimal majority quotas that are shaped by
ratios of preference intensities show how this inference problem is resolved. For con-
creteness, consider for example the welfare-maximizing quota q∗α(2): Rearranging
the equation determining this quota while ignoring the integer problem yields

q∗α(2)

n
E[X|X ≤ z2,3] +

n − q∗α(2)

n
E[X|X ≥ z2,3] = z2,3.

11. Recall that the exogenously given constraint imposes that the provided level of α has to be
weakly higher than the provided level of β .
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Say that the designer is pivotal if there are exactly q∗α(2) out of the n voters having
most preferred alternatives that share the feature that the public good level of α is
weakly smaller than 2, meaning, there are exactly q∗α(2) voters with most preferred
alternatives from the set {(1,1), (2,1), (2,2)}. Then, the quota q∗α(2) is calibrated
such that, conditional on being pivotal, the designer infers that the type component
X governing the valuation for public good α equals the cutoff z2,3, that is, the value
at which a voter is indifferent between providing level 2 and 3 of α for any fixed
level of β .12 Furthermore, when rewriting the equation above once more, I obtain
that, for all kβ ∈ {1, 2}, it holds

q∗α(2)

n
E[u(2,kβ )(X, Y)|X ≤ z2,3] +

n − q∗α(2)

n
E[u(2,kβ )(X, Y)|X ≥ z2,3]

=
q∗α(2)

n
E[u(3,kβ )(X, Y)|X ≤ z2,3] +

n − q∗α(2)

n
E[u(3,kβ )(X, Y)|X ≥ z2,3].

In words, this equation means that, conditional on being pivotal, the designer is
indifferent between any two alternatives such that the provided level of α is 2 versus
3, that is, it differs by exactly one, but the provided level of β is the same in both
alternatives. In other words, the designer is indifferent between alternatives (2,1)
and (3, 1) as well as between (2,2) and (3,2). This characteristic of optimal quotas
is not special to this public goods application, but it turns out that a generalization
of it holds for all median spaces.
Having presented the public goods application, in the following section, I introduce
the general model.

4.4 Model

There is a finite set of voters N := {1, ..., n} with n≥ 2 and a finite set of alterna-
tives A with |A| ≥ 2. Following NP (2007b), the set of alternatives is endowed with
a property space structure. Elements of A are distinguished by properties which are
described byH ⊆P (A), whereH ̸= ;, andP (A) denotes the power set of A. Each
H ∈H captures the property shared by all elements in H ⊆ A, but violated by all
alternatives in Hc := A \H. In other words, properties are subsets of the set of alter-
natives A. The set of propertiesH satisfies the regularity conditions

H ∈ H ⇒ H ̸= ; (non-triviality),

H ∈ H ⇒ Hc ∈ H (closedness under negation), and

∀k, m ∈ A, k ̸= m : ∃H ∈ H : k ∈ H ∧m /∈ H (separation).

Given some alternative k ∈ A, let Hk be the set of all properties shared by alter-
native k, meaning, define Hk := {H ∈H : k ∈ H}. Due to separation, it holds that

12. This feature holds because utilities are affine in types.
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∩H∈Hk
H = {k}. Further, each pair (H, Hc) involving some property and its comple-

ment forms an issue, and the tuple (A,H ) is called property space. The property
space (A,H ) induces a ternary relation on A, denoted by BH , in the following way:
For all (a, b, c) ∈ A× A× A,

(a, b, c) ∈ BH :⇔ [∀H ∈ H : {a, c} ⊆ H ⇒ b ∈ H].

The relation BH is called betweenness relation. This means that some alternative b is
between the alternatives a and c if and only if all properties that are jointly shared
by a and c are also shared by b.
Moreover, I suppose that any property space constitutes amedian space as introduced
in NP (2007b).13 This requires that the betweenness relation BH satisfies the fol-
lowing constraint: For any a, b, c ∈ A, there exists some alternativem=m(a, b, c) ∈ A,
called the median, such that

{(a, m, b), (a, m, c), (b, m, c)} ⊆ BH .

Take any set that is composed of three alternatives. The restriction of being a me-
dian space demands that there must be some alternative having the feature that it
is between all pairs of alternatives that can be formed from the given set of three
alternatives.
Based on these concepts, I introduce preferences. Following NP (2007b), an ordinal
preference relation ≻ is said to be generalized single-peaked with respect to the un-
derlying betweenness relation BH if it satisfies the following condition: There exists
some alternative p ∈ A such that, for all k, m ∈ A with k ̸=m, it holds

(p, k, m) ∈ BH ⇒ k ≻ m.

Intuitively, a generalized single-peaked preference relation is characterized by two
main ingredients. On the one hand, the alternative p describes the peak of that
preference relation. On the other hand, the constraint formalizing the generalized
notion of single-peakedness requires that any alternative k distinct from m which
is between the peak p and alternative m according to the betweenness relation BH
must be preferred to m. Let PH denote the set of all preference relations that are
generalized single-peaked with respect to BH .

Public Goods Provision. Go back to the public goods application. Denote by
APublic Goods the set of alternatives for this application.1⁴ While following Nehring
and Puppe (2007a), consider, for all k ∈ {1,2}, the properties

Hα≤k := {(mα, mβ) ∈ APublic Goods : mα ≤ k}

Hα≥k+1 := {(mα, mβ) ∈ APublic Goods : mα ≥ k + 1}

13. Again, this assumption ensures that there is a rich class of non-degenerate incentive-
compatible social choice functions.

14. Recall that the set of alternatives is given by {(kα, kβ) ∈ {1,2, 3}× {1, 2,3} : kα ≥ kβ}.
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as well as

Hβ≤k := {(mα, mβ) ∈ APublic Goods : mβ ≤ k}

Hβ≥k+1 := {(mα, mβ) ∈ APublic Goods : mβ ≥ k + 1}.

Let HPublic Goods be the collection of these properties. The betweenness relation
BHPublic Goods

induced by the property space (APublic Goods,HPublic Goods) satisfies the fol-
lowing condition: Alternative b is between alternatives a and c, meaning, (a, b, c) ∈
BHPublic Goods

if and only if b lies on a shortest path connecting a and c in the graph
shown in Figure 4.1. Therefore, for this public goods application, the general def-
inition of a generalized single-peaked preference relation introduced here exactly
reduces to the definition based on the graphic notion of betweenness given in
section 4.3. Moreover, it can be inferred from Figure 4.1 that the property space
(APublic Goods,HPublic Goods) constitutes a median space.

Since I rely on the utilitarian principle as far as the objective criterion of the
designer is concerned, I have to introduce a utility representation of ordinal prefer-
ences. Voters have types that are governed by the random variable T. Each voter is
privately informed about his or her type realization. The distribution of T has full
support on some non-empty set S ̸= ;. All subsequent expectations are taken with
respect to this distribution. I suppose that types are distributed independently and
identically across voters.

Assumption 4.1. The types T are distributed independently and identically across
voters.

Now, uk(t) denotes the utility that a voter with type realization t ∈ S receives
if alternative k ∈ A is implemented. I impose several constraints on the utility func-
tion and the type distribution. First, utilities are bounded, meaning, there exists
some bound B ∈ R such that, for all type realizations t ∈ S and for every alterna-
tive k ∈ A, |uk(t)|< B. Second, I exclude indifferences, that is, for almost all type
realizations t ∈ S and for every pair of distinct alternatives k, m ∈ A with k ̸=m,
it holds uk(t) ̸= um(t). Third, of course, utilities must be consistent with general-
ized single-peakedness, that is, for almost all type realizations t ∈ S, there exists a
generalized single-peaked preference relation ≻∈ PH such that, for every pair of
distinct alternatives k, m ∈ A with k ̸=m, it holds k≻m⇔ uk(t)> um(t). Fourth,
I assume that the richness condition on the preference domain from NP (2007b)
is satisfied. This means that the following two restrictions are met: First, for all
k, m ∈ A such that {k, m}= {l ∈ A : (k, l, m) ∈ BH }, there exists a set of type realiza-
tions Z ⊂ S arising with positive probability such that, for every element in this set
t ∈ Z, it holds uk(t)> um(t)> ul(t) for all l ∈ A \ {k, m}. Second, for all p, k, m ∈ A
such that (p, k, m) /∈ BH , there exists a set of type realizations Z ⊂ S arising with pos-
itive probability such that, for every element in this set t ∈ Z, it holds um(t)> uk(t)
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and up(t)> ul(t) for all l ∈ A \ {p}. The important point here is that there are no
strategy-proof, anonymous, and surjective social choice functions apart from those
identified in NP (2007b)’s characterization. In this sense, the utility representation
of the public goods application is covered as well.1⁵
Finally, the designer maximizes the voters’ ex-ante utilitarian welfare over all social
choice functions that are strategy-proof, anonymous, and surjective. The timing is
as follows:

(1) The designer announces and commits to some strategy-proof, anonymous, and
surjective direct mechanism.

(2) The voters observe their type realizations and report them to the designer.

(3) The designer implements an alternative according to the announced mechanism.

4.5 Incentive Compatibility

In this section, for completeness, I review the characterization of strategy-proof,
anonymous, and surjective social choice functions for generalized single-peaked do-
mains giving rise to median spaces due to NP (2007b).
First of all, I assume that the set of feasible mechanisms coincides with the set all
possibly indirect deterministic mechanisms Γ = (M, ..., M, f) inducing a game that
admits a dominant-strategy equilibrium, where M is the voters’ message set and
f : Mn→ A is the outcome function. Also, I suppose that the mechanisms Γ are
anonymous1⁶ and surjective.1⁷ Now, invoking a revelation principle in terms of pay-
offs due to Jarman and Meisner (2017) implies the following: For each such anony-
mous and surjective mechanism Γ , there exists a direct mechanism Γ 0 = (S, ..., S, f 0)
that is dominant-strategy incentive-compatible, anonymous, and surjective, and the
utilitarian welfare under Γ 0 is weakly higher than under Γ . In this sense, within the
class of deterministic mechanisms, it is without loss to restrict attention to direct
mechanisms.
From now on, I restrict attention to deterministic direct mechanisms that are anony-
mous, surjective, and dominant-strategy incentive-compatible or, in other words,
strategy-proof. A direct mechanism or, equivalently, a social choice function f is a
mapping assigning to each type profile an alternative from the set A. In formal terms,
this mapping amounts to f : Sn→ A. In the following, I recall some well-known prop-
erties of social choice functions.

15. Recall the discussion in footnote 9.
16. A mechanism Γ is anonymous if, for all (m1, ..., mn) ∈Mn, f(m1, ..., mn)= f(mσ(1), ..., mσ(n)),

where σ is an arbitrary permutation of the set of voters N.
17. A mechanism Γ is surjective if, for all k ∈ A, there exists (m1, ...,mn) ∈Mn such that

f(m1, ..., mn)= k.
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Definition 4.1. A social choice function f is strategy-proof if, for all i ∈ N and for
all ti, t0i ∈ S and t−i ∈ Sn−1, it holds that

uf(ti,t−i)(ti) ≥ uf(t0i,t−i)(ti).

In words, strategy-proofness requires that all voters have a weakly dominant strat-
egy to truthfully reveal their types. Further, observe that strategy-proofness implies
the following: Consider any voter i ∈ N and take two type realizations ti, t0i ∈ S induc-
ing the same ordinal preference relation. Then, a strategy-proof direct mechanism f
must treat both types in the same way, that is, for any type realizations of the other
voters t−i ∈ Sn−1, it must hold that f(ti, t−i)= f(t0i, t−i).

Definition 4.2. A social choice function f is anonymous if, for all (t1, ..., tn) ∈ Sn, it
holds that f(t1, ..., tn)= f(tσ(1), ..., tσ(n)), where σ is an arbitrary permutation of the
set of voters N.

Intuitively, anonymity imposes that mechanisms treat all voters equally. To put
it differently, anonymity ensures that mechanisms respect the democratic principle
of “one person, one vote”.

Definition 4.3. A social choice function f is surjective if, for all k ∈ A, there exists
(t1, ..., tn) ∈ Sn such that f(t1, ..., tn)= k.

The requirement that social choice functions are surjective represents a mild con-
dition ensuring that no alternative is a priori excluded from the set of outcomes.
For the preference domains considered in this chapter, NP (2007b) show that
strategy-proof and surjective social choice functions must be peaks-only, meaning,
the outcome of any strategy-proof and surjective social choice function depends only
on the voters’ most preferred alternatives. Therefore, in the following, with abuse of
notation, social choice functions are simply mappings f : An→ A assigning to every
profile of most preferred or peak alternatives (p1, ...,pn) ∈ An some winning alterna-
tive from the set A.
In order to be able to state NP (2007b)’s characterization result, I need the following
supplementary definitions from their paper. To begin with, introduce the notion of
a family of quotas relative to some property space (A,H ).

Definition 4.4. NP (2007b)
Given some property space (A,H ), a family of quotas {qH : H ∈H } is a function
that assigns an integer-valued quota 1≤ qH ≤ n to each property H ∈H such that,
for all H ∈H , the associated quotas satisfy qH + qHc = n+ 1.

Take any property H ∈H . The associated absolute quota, threshold or major-
ity requirement qH describes the minimal number of votes that are needed in order
to ensure that some alternative sharing property H is winning. Furthermore, the
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condition qH + qHc = n+ 1 reflects that whenever the quota qH linked to property
H is reached, the quota associated with the complementary property Hc cannot be
attained, and vice versa. Thus, exactly one of these two quotas is always achieved.
On the basis of the definition of families of quotas, consider the following class of
functions which is termed anonymous voting by properties. These functions are cen-
tral for the ensuing characterization result.

Definition 4.5. NP (2007b)
Given some property space (A,H ) and associated family of quotas {qH : H ∈H },
voting by properties is the function f{qH:H∈H } : An→P (A) such that, for all profiles
of peak alternatives p= (p1, ..., pn) ∈ An, it holds that

k ∈ f{qH:H∈H }(p) :⇔ [∀H ∈ Hk : |{i ∈ N : pi ∈ H}| ≥ qH].

Intuitively, under voting by properties, the social choice is determined through
a collection of binary votes on subsets of alternatives involving qualified major-
ity requirements. In more detail, it works as follows: Take some family of quotas
{qH : H ∈H }. For any issue (H, Hc), it is collectively decided according to the quo-
tas qH and qHc whether the winning alternative is supposed to share property H or
its complement Hc. These binary decisions yield a collection of properties that the
winning alternative is supposed to share. However, it has to be ensured that this set
of, loosely speaking, winning properties is consistent in the sense that the intersec-
tion of these properties is not empty, but it contains exactly one alternative which,
then, constitutes the winning alternative. Thus, in general, the considered mapping
needs not represent a proper social choice function. However, as the following result
reveals, under some conditions on the family of quotas, the stated mapping forms a
social choice function.
I state NP (2007b)’s characterization of strategy-proof, anonymous, and surjective
social choice functions for generalized single-peaked domains derived from median
spaces.

Theorem 4.1. NP (2007b)
A social choice function f is strategy-proof, anonymous, and surjective if and only if it
is voting by properties f{qH:H∈H } : An→ A with a family of quotas {qH : H ∈H } such
that, for all properties H, K ∈H , it holds

H ⊆ K ⇒ qH ≥ qK.

Theorem 4.1 implies that, when searching for the optimal mechanism among
all social choice functions satisfying strategy-proofness, anonymity, and surjectivity,
it is sufficient to optimize over the set of quotas {qH : H ∈H } related to voting by
properties while respecting the collection of inequalities stated in Theorem 4.1. I
tackle this problem in the subsequent section.
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Public Goods Provision. Before that, go again back to the public goods application.
Recall that I described in section 4.3 strategy-proof, anonymous, and surjective social
choice functions in terms of a collection of binary votes that are determined by the
four majority quotas qα(1), qα(2), qβ(1), and qβ(2) subject to some constraints on
these majority quotas that I did not specify there explicitly. Now, any such collection
of binary votes coincides with a voting by properties mechanism, and the stated
constraints are the restrictions from Theorem 4.1. To see this, for all k ∈ {1,2}, set

qHα≤k
:= qα(k), and qHα≥k+1

:= n + 1 − qα(k)

as well as

qHβ≤k
:= qβ(k), and qHβ≥k+1

:= n + 1 − qβ(k).

4.6 Welfare Maximization

In this section, I characterize the mechanism that maximizes the voters’ ex-ante
utilitarian welfare among all social choice functions satisfying strategy-proofness,
anonymity, and surjectivity, constituting the main result of this chapter.
By Theorem 4.1, it is sufficient to find the optimal quotas related to voting by prop-
erties. Also, the existence of a solution is ensured since a bounded function is maxi-
mized over a finite set of elements. The structure of the proof of the main theorem
below is as follows: First, consider some optimal mechanism and derive necessary
conditions for optimality by means of studying the implications of alterations of this
optimal mechanism. Second, argue that these necessary conditions are also suffi-
cient for optimality and conclude that they determine a unique optimal mechanism.
When deriving the discussed necessary conditions for optimality, it turns out that I
have to compare the welfare induced by the following two sets of alternatives: For
every property H ∈H , define the sets of alternatives

AH := H ∩ [∩{M∈H :M⊂H}M
c],

and

AHc := Hc ∩ [∩{M∈H :M⊂Hc}M
c].

Alternatives contained in the set AH share property H, but these alternatives violate
all properties that are subsets of H. Likewise, alternatives from the set AHc satisfy
property Hc, but properties that are subsets of Hc are violated. In Lemma 4.1, I
establish that the sets AH and AHc have a particular tuple structure.
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Lemma 4.1. Rachidi (2019)
Consider any property H ∈H . The sets AH and AHc satisfy AH ̸= ; and AHc ̸= ;. More-
over, all elements in both sets can be uniquely matched into tuples having the form
(k, m) with k ∈ AHc and m ∈ AH such that k and m are separated only by property H,
meaning, {H}= {K ∈H : k /∈ K ∧m ∈ K}.

The proof of Lemma 4.1 employs a characterization of median spaces in terms
of the involved properties instead of relying on the induced betweenness relation
due to NP (2007b). Let ZH denote the set of tuples implied by Lemma 4.1. It is clear
that |AH|= |AHc |, but, in general, it does not hold that |AH|= |AHc |= 1.

Public Goods Provision. Revisit again the public goods application. For instance,
consider the property Hβ≤1. In this case, I have that {M ∈HPublic Goods : M ⊂ Hβ≤1}=
{Hα≤1}. Hence, the set AHβ≤1

amounts to

AHβ≤1
= {(2,1), (3,1)}.

Similarly, the set AHβ≥2
satisfies

AHβ≥2
= {(2,2), (3,2)}.

In particular, it holds that |AHβ≤1
|= |AHβ≥2

| ̸= 1. Moreover, the set of tuples ZHβ≤1
is

given by

ZHβ≤1
= {((2,2), (2,1)), ((3,2), (3,1))}.

This is precisely the tuple structure established in Lemma 4.1: Alternatives (2,2)
and (2,1) as well as (3, 2) and (3,1) are each separated only by property Hβ≤1. Fur-
ther, this tuple structure is unique for the following reason: When matching (2,2)
and (3,1) as well as (3,2) and (2,1), the matched alternatives are each separated
by more properties than just Hβ≤1, meaning, {Hβ≤1} ⊂ {K ∈H : (2, 2) /∈ K ∧ (3,1) ∈
K} and {Hβ≤1} ⊂ {K ∈H : (3, 2) /∈ K ∧ (2,1) ∈ K}, violating the condition that the
matched alternatives are each separated only by property Hβ≤1. More generally, for
the public goods application, it can be verified that two alternatives form a tuple
(k, m) with k ∈ AHc and m ∈ AH such that k and m are separated only by property H
if and only if, for one public good, the provided level is the same in k and m, and,
for the other good, the levels differ by exactly one.

The tuple structure established in Lemma 4.1 implies that the comparison of
the welfare generated by the sets AH and AHc reduces to contrasting a collection
of pairs of alternatives such that the elements within each pair are separated by
one property only. Furthermore, in order to characterize the optimal quotas in a
separable way, I have to make sure that the welfare gains and losses involved in
the welfare comparison within the discussed tuples do not depend on the tuple
under consideration, but that they are the same across all tuples. The purpose of
Assumption 4.2 on the utility function is to ensure exactly that.



4.6 Welfare Maximization | 169

Assumption 4.2. empty
Consider any property H ∈H . For any two tuples of alternatives (k, m) and (k0, m0)
with k, k0 ∈ AHc and m, m0 ∈ AH such that k and m as well as k0 and m0 are each
separated only by property H, that is, {H}= {K ∈H : k /∈ K ∧m ∈ K}= {K ∈H :
k0 /∈ K ∧m0 ∈ K}, and, for all type realizations t ∈ S, the utility function satisfies

uk(t) − um(t) = uk0

(t) − um0

(t).

Assumption 4.2 represents essentially an additive separability restriction on the
utility function, making it a natural assumption in contexts, where alternativesmight
be multidimensional.1⁸ Moreover, this assumption is vacuously met in the special
case of trees that I discuss in section 4.7.

Public Goods Provision. Go back to the public goods application. Clearly, Assump-
tion 4.2 is satisfied in the public goods application because the utility function is
additively separable across the two public goods. For example, consider again the
set of tuples ZHβ≤1

= {((2,2), (2,1)), ((3,2), (3,1))}. In this case, for all type realiza-
tions (x, y) ∈ S, it holds that

u(2,2)(x, y) − u(2,1)(x, y) = u(3,2)(x, y) − u(3,1)(x, y)

=O2 · y − c2 − O1 · y + c1.

Finally, Assumption 4.3 takes care of the fact that the alterations of some op-
timal mechanism that build the basis for the derivation of necessary conditions for
optimality need not be feasible due to the constraints on the family of quotas appear-
ing in Theorem 4.1. Essentially, it implies that the discussed necessary conditions
remain valid even if the considered alterations are not feasible.

Assumption 4.3. empty
Consider two arbitrary properties H, K ∈H satisfying H ⊆ K. For any two tuples of
alternatives (k, m) and (j, l) with k ∈ AHc and m ∈ AH as well as j ∈ AKc and l ∈ AK

such that k and m are separated only by property H as well as j and l are separated
only by property K, that is, {H}= {L ∈H : k /∈ L∧m ∈ L} and {K}= {L ∈H : j /∈
L∧ l ∈ L}, the following inequality holds:

δH :=
E[uk − um|uk > um]

E[uk − um|uk > um] + E[um − uk|um > uk]

≥
E[uj − ul|uj > ul]

E[uj − ul|uj > ul] + E[ul − uj|ul > uj]
=: δK.

18. NP (2007b) present a similar condition for a different purpose: They argue that such a re-
striction is economically natural and show that their characterization of strategy-proof social choice
functions applies when restricting the preferences in such a way.
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Note that in the presence of Assumption 4.2, for any two tuples of alternatives
(k, m) and (k0, m0) with k, k0 ∈ AHc and m, m0 ∈ AH such that k and m as well as k0

and m0 are each separated only by property H, it holds that

δH =
E[uk − um|uk > um]

E[uk − um|uk > um] + E[um − uk|um > uk]

=
E[uk0

− um0

|uk0

> um0

]
E[uk0 − um0 |uk0 > um0] + E[um0 − uk0 |um0 > uk0]

.

Therefore, the notation δH is justified because δH does not depend on the considered
tuple of alternatives that are separated only by property H.
Moreover, observe that the following requirement constitutes a sufficient condition
for Assumption 4.3: For all H, K ∈H such that H ⊆ K or, equivalently, Kc ⊆ Hc, it
holds that

E[um − uk|um > uk] ≤ E[ul − uj|ul > uj], and

E[uk − um|uk > um] ≥ E[uj − ul|uj > ul],

where k ∈ AHc and m ∈ AH as well as j ∈ AKc and l ∈ AK such that k and m are sepa-
rated only by property H as well as j and l are separated only by property K. Further,
this assumption is vacuously satisfied in the special case of hypercubes that I discuss
in section 4.7.

Public Goods Provision. Consider again the public goods application. In this case,
for all k ∈ {1,2}, it can be verified that the considered ratios simplify to the following
expressions:

δHα≤k
=

1

1 + E[z
k,k+1−X|X≤zk,k+1]

E[X−zk,k+1|X≥zk,k+1]

, and δHα≥k+1
= 1 − δHα≤k

as well as

δHβ≤k
=

1

1 + E[z
k,k+1−Y|Y≤zk,k+1]

E[Y−zk,k+1|Y≥zk,k+1]

, and δHβ≥k+1
= 1 − δHβ≤k

.

Now, the interrelations between properties in the sense that one property is a sub-
set of another property that are relevant for Assumption 4.3 are as follows: First,
for any public good γ ∈ {α,β}, Hγ≤1 ⊂ Hγ≤2. Hence, Assumption 4.3 requires that
δHγ≤1
≥ δHγ≤2

. However, this feature is implied by the regularity condition imposed
in section 4.3 that the marginal densities gX and gY are log-concave.1⁹ Second, for
any public good level k ∈ {1, 2}, Hα≤k ⊂ Hβ≤k. Thus, Assumption 4.3 demands that

19. To see this, recall that a random variable satisfies the decreasing mean residual life property
as well as the increasing mean inactivity time property if its density is log-concave (see Bagnoli and
Bergstrom (2005)).
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δHα≤k
≥ δHβ≤k

. In section 4.3, I assumed that GX ≥lr GY .2⁰ This condition is sufficient
for δHα≤k

≥ δHβ≤k
.21 The conditions associated with all other interrelations of proper-

ties are automatically satisfied if the constraints related to the discussed relevant
interrelations are met. Overall, the regularity conditions on the type distribution
from section 4.3 ensure that Assumption 4.3 is satisfied in the public goods appli-
cation. This suggests that, at least in the public goods application, Assumption 4.3
constitutes a rather mild constraint.

Having presented the required assumptions as well as some preliminary steps
for the analysis, I state the main result of this chapter, that is, I provide a characteri-
zation of the welfare-maximizing mechanism among all strategy-proof, anonymous,
and surjective social choice functions.

Theorem 4.2. empty
Suppose that Assumptions 4.1, 4.2 and 4.3 hold.
The optimal mechanism among all strategy-proof, anonymous, and surjective social
choice functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ H .

While taking into account that mechanisms have to be dominant-strategy
incentive-compatible, Theorem 4.2 characterizes the optimal utilitarian mechanism
for generalized single-peaked domains derived from median spaces. In particular,
Theorem 4.2 provides closed-form expressions for the welfare-maximizing quotas
related to voting by properties.
The intuition behind the optimal quotas q∗H = ⌈nδH⌉ is as follows: Take any tuple of
alternatives (k, m) with k ∈ AHc and m ∈ AH such that k and m are separated only
by property H. Now, first of all, observe that the quota q∗H is shaped by the ratio of
preference intensities

E[um − uk|um > uk]
E[uk − um|uk > um]

,

reflecting the utilitarian objective of the designer. Also, regarding comparative stat-
ics, the quota q∗H decreases in the discussed ratio of preference intensities. For the
purpose of a more detailed understanding, ignore that the quotas must be integer-
valued. Plugging in the term for δH and rearranging yields

q∗H
n
E[uk|um > uk] +

n − q∗H
n
E[uk|uk > um]

=
q∗H
n
E[um|um > uk] +

n − q∗H
n
E[um|uk > um].

20. Again, the order ≥lr denotes the likelihood ratio order.
21. The reason is that, if GX ≥lr GY , the same ordering holds in terms of the hazard as well as

reversed hazard rate ordering, implying the claim (see Shaked and Shanthikumar (2007)).
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This expression shows how the designer’s Bayesian inference problem is resolved:
The optimal quota q∗H is calibrated such that the designer is indifferent between
implementing alternatives k and m conditional on being pivotal, that is, conditional
on the event that exactly q∗H out of the n voters prefer alternative m over alternative
k. The latter event coincides with the event that there are exactly q∗H voters whose
most preferred alternatives share property H. This point follows from generalized
single-peakedness (see NP (2007b)). Consequently, the optimal quota q∗H is set such
that the designer is indifferent between any pair of alternatives separated only by
property H conditional on being there exactly q∗H voters with peaks from the set H.

Public Goods Provision. Revisit the public goods application, and recall the fol-
lowing: First, again, in the public goods application, two alternatives form a tuple
(k, m) with k ∈ AHc and m ∈ AH such that k and m are separated only by property H
if and only if, for one public good, the provided level is the same in k and m, and, for
the other good, the levels in k and m differ by exactly one. Second, as discussed in
section 4.3, the optimal quotas in the public goods application are calibrated in the
following way: Conditional on being pivotal, the designer is indifferent between any
two alternatives such that the provided level of one good is the same in both alter-
natives, but the levels of the other good differ by exactly one. This discussion shows
how the indifference property of the optimal quotas in the public goods application
described in section 4.3 generalizes to all median spaces.

Subsequently, I outline the proof of Theorem 4.2. Conceptually, the proof strat-
egy follows Gershkov, Moldovanu, and Shi (2017), but, again, the much larger class
of preferences requires supplementary arguments and distinct assumptions. In par-
ticular, Lemma 4.1 as well as Assumption 4.2 are completely absent in their paper.
The reason is as follows: If preferences are single-peaked on a line, essentially, the
welfare induced by two single alternatives is compared. This feature continues to
hold for preferences that are single-peaked on trees, but it fails for all other median
spaces, where the welfare generated by two sets of alternatives needs to be con-
trasted. In section 4.7, in the context of trees, I discuss how Theorem 4.2 extends
the main result in Gershkov, Moldovanu, and Shi (2017).
To begin with, by Theorem 4.1, it is sufficient to optimize over the set of quotas
related to voting by properties.22 Furthermore, again, due to Theorem 4.1, for all
H, K ∈H , the optimal quotas must satisfy

H ⊆ K ⇒ qH ≥ qK.

Consider some property H ∈H as well as the associated quota q∗H which is supposed
to be part of an optimal mechanism. To simplify the exposition, I divide the proof
of Theorem 4.2 into two lemmata.

22. Again, since a bounded function is maximized over a finite set of elements, the existence of
a solution is ensured.
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Lemma 4.2. empty
Suppose that Assumptions 4.1 and 4.2 hold. Consider any property H ∈H .
(i) If H0 ⊂ H⇒ q∗H0

> q∗H for all H0 ∈H such that ∄H00 ∈H : H0 ⊂ H00 ⊂ H, the in-
equality

q∗H ≥ n · δH

constitutes a necessary condition for optimality.
(ii) If H ⊂ H0⇒ q∗H > q∗H0

for all H0 ∈H such that ∄H00 ∈H : H ⊂ H00 ⊂ H0, any opti-
mal mechanism meets the inequality

q∗H ≤ n · δH + 1.

Suppose that increasing q∗H by 1 is feasible, meaning, this alteration does not
violate the inequalities from Theorem 4.1. This change matters only if there are q∗H
voters having some peak from the set H and n− q∗H voters with peaks from the set
Hc. In this case, since q∗L ≤ q∗H for all H ⊂ L, the properties {L : H ⊂ L} or, equiva-
lently, {Lc : L ⊂ Hc} are accepted whenever there are such properties. Additionally,
since increasing q∗H by 1 is feasible, I must have that q∗M > q∗H for all M ⊂ H. Thus,
the properties {M : M ⊂ H} are rejected or, equivalently, the properties {Mc : M ⊂ H}
are winning whenever there are such properties. Putting these features together and
using the introduced notation, if the quota is q∗H, some element of the set AH ̸= ; is
the winning alternative. However, if the quota amounts to q∗H + 1, some element of
the set AHc ̸= ; is selected. Since q∗H is part of an optimal mechanism, the modifi-
cation of this quota should weakly decrease welfare. In other words, the expected
welfare induced by alternatives from the set AH must be weakly higher compared to
the welfare generated by alternatives from the set AHc . This observation translates
into a condition which is necessary for optimality whenever the considered change
in the optimal quota q∗H is feasible. Exploiting the tuple structure derived in Lemma
4.1, the comparison of the expected welfare induced by the two sets of alternatives
reduces to contrasting a collection of tuples of alternatives such that the elements
within each tuple are separated only by property H. Now, imposing Assumption 4.2
implies, as discussed above, that these within-tuple welfare comparisons are not sen-
sitive to the tuple under consideration. This simplifies the involved expressions and
leads to the inequality appearing in part (i) of Lemma 4.2.
Studying the effect of a decrease of q∗H by 1 yields via an analogous argument the
inequality appearing in part (ii) of Lemma 4.2. This inequality is necessary for opti-
mality as long as the considered decrease in the optimal quota q∗H is feasible.
The second step of the proof of Theorem 4.2 is summarized in Lemma 4.3.

Lemma 4.3. Rachidi (2019)
Suppose that Assumptions 4.1, 4.2 and 4.3 hold. Consider any properties H0, H ∈H
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such that H0 ⊂ H and ∄H00 ∈H : H0 ⊂ H00 ⊂ H.
If q∗H0

= q∗H, any optimal mechanism nevertheless satisfies

q∗H ≥ n · δH

as well as

q∗H0 ≤ n · δH0 + 1.

The two alterations of the quota q∗H that is part of an optimal mechanism con-
sidered above might not be feasible. Lemma 4.3 addresses this issue. Making use
of Assumption 4.3, I show that the two inequalities derived in Lemma 4.2 still hold
even if these alterations are not feasible.
Finally, it turns out that these inequalities are not only necessary, but also sufficient
for optimality, and they determine the generically unique optimal mechanism fea-
turing the quotas appearing in Theorem 4.2.

4.7 Applications

In this section, I apply the general characterization of welfare-maximizing mecha-
nisms developed in Theorem 4.2 to the special cases of trees and hypercubes. In
these settings Assumption 4.2 and Assumption 4.3 are vacuously met respectively.
NP (2007b) identify trees and hypercubes as distinguished instances of median
spaces.23 The purpose of this section is to present these two instances of median
spaces as in both settings one of the three assumptions in Theorem 4.2 is vacuously
met.

4.7.1 Trees

To begin with, I consider the special case of single-peaked preferences on trees as
introduced in Demange (1982). Take any tree (A, E), that is, take any undirected
graph that is connected and acyclic. The set of alternatives A coincides with the set of
nodes and the set E captures the set of edges corresponding to the tree. In particular,
the set E satisfies E ⊆ {V ∈ P (A) : |V|= 2}. Following Nehring and Puppe (2007a),
for any edge V = {k, m} ∈ E, define the two properties

HV,k := {a ∈ A : “a lies in direction of k”} and

HV,m := {a ∈ A : “a lies in direction of m”}.2⁴

23. For any median space, NP (2007b) characterize the requirement of generalized single-
peakedness in terms of a separability and a convexity condition, and they argue that, on trees and
hypercubes, generalized single-peakedness reduces to convexity and separability respectively.
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Note that any property coincides with a set of nodes corresponding to a connected
component of the underlying tree. Also, the properties of the form (HV,k, HV,m) con-
stitute an issue. Let HTree denote the collection of all these properties. Further, ob-
serve that a preference relation is single-peaked with respect to the underlying tree
as defined in Demange (1982) if and only if it is generalized single-peaked with
respect to the betweenness relation BHTree

. The former definition reads as follows:
There exists an alternative p ∈ A, which is the most preferred or peak alternative,
such that for all alternatives k, m ∈ A with k ̸=m it holds that whenever k lies on
the shortest path in the underlying tree connecting p and m, the voter must prefer
k over m.
To illustrate this class of property spaces more concretely, take the simplest tree that
is not a line: Suppose that there are four alternatives {1,2, 3,4} and take the tree
that is shown in Figure 4.2. In this case, the collection of properties HTree amounts

1 2 3

4

Figure 4.2. Single-Peaked Preferences on a Tree

to

H{2,4},2 = {1, 2,3}, H{2,4},4 = {4},

H{1,2},1 = {1}, H{1,2},2 = {2,3, 4}, and

H{2,3},2 = {1,2, 4}, H{2,3},3 = {3}.

For instance, if some voter’s most preferred alternative is 1, generalized single-
peakedness requires here that alternative 2 is preferred over 3 and 4, but it does
not impose whether 3 is preferred to 4 or the other way around.
Moreover, if preferences are single-peaked with respect to a tree (A, E), a voting by
properties mechanism can be intuitively described as “voting by edges”: Take any
edge of the tree (A, E), cut this edge yielding two subsets of alternatives or, more
precisely, two connected components of the tree. Then, perform a binary vote deter-
mining which of the two connected components is winning. This binary vote yields
one winning connected component, that is, the social choice must be contained in

24. More formally, following Nehring and Puppe (2007a), the property HV,k is composed of all
alternatives a ∈ A such that k lies on the shortest path from a to m in the tree (A, E). Similarly, HV,m

comprises all alternatives a ∈ A such that m lies on the shortest path from a to k in the tree (A, E).
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the set of nodes associated with the connected component that is winning. These bi-
nary voting decisions are conducted for all edges yielding a collection of connected
components that are winning. Eventually, the final outcome is given by the intersec-
tion of the sets of nodes linked to the connected components that are winning.2⁵
Now, if preferences are single-peaked with respect to a tree (A, E), the following fea-
ture follows from NP (2007b): Take any edge V = {k, m} ∈ E with k, m ∈ A. Any two
alternatives form a tuple (j, l) with j ∈ AHV,k

and l ∈ AHc
V,k
= AHV,m

such that j and l are
separated only by property HV,m if and only if j= k and l=m. This implies that, for
any property H ∈HTree, the sets AH and AHc considered in section 4.6 are singletons,
i.e., |AH|= |AHc |= 1. Consequently, Assumption 4.2 is vacuously met on trees, and
I have the subsequent corollary of Theorem 4.2.

Corollary 4.1. Rachidi (2019)
Consider the median space (A,HTree), and suppose that Assumptions 4.1 and 4.3
are satisfied.
The optimal mechanism among all strategy-proof, anonymous, and surjective social
choice functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HTree.

The general indifference property of the welfare-maximizing quotas discussed
in section 4.6 reduces here to the following feature: Take any edge V = {k, m} ∈ E
with k, m ∈ A. Then, the corresponding optimal quotas q∗HV,k

and q∗HV,m
are calibrated

such that, conditional on being pivotal, the designer is indifferent between the two
graph neighbors k and m in the tree (A, E).
Now, let me discuss how Corollary 4.1 extends the main result in Gershkov,
Moldovanu, and Shi (2017). For concreteness, without loss of generality, sup-
pose that the set of alternatives amounts to A := {1, ..., l} with l≥ 2. Following NP
(2007b), assume that, for all 1≤ k< l, the properties are given by

H≤k := {m ∈ {1, ..., l} : m ≤ k} as well as

H≥k+1 := {m ∈ {1, ..., l} : m ≥ k + 1}.

LetHLine denote the set of all these properties. Note that this collection of properties
exactly coincides withHTree if the underlying tree (A, E) constitutes the line shown
in Figure 4.3. In particular, a preference relation is generalized single-peaked with
respect to the betweenness relation BHLine

if and only if it is in the classical sense
single-peaked on a line and, more precisely, it is single-peaked on a line with re-
spect to the natural ordering 1< 2< ...< l− 1< l.
Specializing Corollary 4.1 to the case of single-peaked preferences on a line, I im-
mediately obtain the following corollary.

25. Of course, the quotas involved in the described binary votes on subsets of the set of alterna-
tives have to satisfy the restrictions from Theorem 4.1.
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1 2 ... l − 1 l

Figure 4.3. Single-Peaked Preferences on a Line

Corollary 4.2. Gershkov, Moldovanu, and Shi (2017)
Consider the median space ({1, ..., l},HLine), and suppose that Assumptions 4.1 and
4.3 are satisfied.
The optimal mechanism among all strategy-proof, anonymous, and surjective social
choice functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HLine.

Observe that Corollary 4.2 coincides with the main result in Gershkov,
Moldovanu, and Shi (2017): Assumption 4.1 is assumption A in their paper, and
Assumption 4.3 reduces exactly to assumption B in their work.2⁶

4.7.2 Hypercubes

Having treated collective choice when preferences are single-peaked on trees, I con-
tinue with the discussion of voting on hypercubes, that is, voting on multiple binary
decisions as studied in Barberà, Sonnenschein, and Zhou (1991). To start, assume
that the set of alternatives A is given by A := {0, 1}l, where l≥ 1 is a natural number.
This means that there are l binary decisions, each coordinate of an alternative cor-
responds to a binary decision, and, without loss of generality, each binary decision
amounts either to 0 or 1. Following NP (2007b), suppose that, for all 1≤ k≤ l, the
properties are given by

H0,k := {(m1, ..., ml) ∈ {0,1}l : mk = 0}, and

H1,k := {(m1, ..., ml) ∈ {0,1}l : mk = 1}.

Let HHypercube denote the collection of these properties. Moreover, it follows from
NP (2007b) that the requirement of generalized single-peakedness reduces here
to the restriction of separable preferences imposed in Barberà, Sonnenschein, and

26. Unless there are at most three alternatives, i.e., unless l≤ 3, there is the following caveat:
Because Gershkov, Moldovanu, and Shi (2017) assume that preferences are single-crossing and single-
peaked, the set of ordinal preferences induced by their utility representation does not satisfy NP
(2007b)’s richness condition on the preference domain. Hence, the strategy-proof social choice func-
tions NP (2007b) identify are strategy-proof in Gershkov, Moldovanu, and Shi (2017)’s setting, but
there might be more strategy-proof direct mechanisms. However, when combining results fromMoulin
(1980), NP (2007b), and Saporiti (2009), it can be inferred that also in Gershkov, Moldovanu, and Shi
(2017)’s model there are no other strategy-proof social choice functions apart from those identified in
NP (2007b)’s characterization.
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Zhou (1991). The latter requirement reads as follows: For any 1≤ k≤ l and all se-
quences m ∈ {0,1}k−1 and m0 ∈ {0, 1}l−k, a voter prefers alternative (0k−1, 1, 0l−k)
over (0k−1, 0, 0l−k) if and only if he or she prefers alternative (m, 1, m0) over
(m, 0, m0).
Furthermore, it can be verified that, on hypercubes, there are no properties H, K ∈
H that are interrelated in the sense that H ⊆ K. Therefore, the restrictions from
Theorem 4.1 as well as Assumption 4.3 are vacuously met. Consequently, I obtain
the following corollary of Theorem 4.2.2⁷

Corollary 4.3. empty
Consider the median space ({0, 1}l,HHypercube), and suppose that Assumptions 4.1
and 4.2 are satisfied.
The optimal mechanism among all strategy-proof, anonymous, and surjective social
choice functions takes the form of voting by properties with quotas

q∗H = ⌈nδH⌉ for all H ∈ HHypercube.

Here, any voting by properties social choice function amounts to performing
qualified majority voting separately for each binary decision. Also, it follows from
NP (2007b) that Assumption 4.2 is satisfied if and only if the voters’ utilities are
additively separable across the binary decisions, making it a natural assumption on
hypercubes. Moreover, the general indifference property of the welfare-maximizing
quotas from section 4.6 simplifies here to the following feature: Take any 1≤ k≤ l.
Then, the associated optimal quotas q∗H0,k

and q∗H1,k
are set such that, conditional

on being pivotal, the designer is indifferent between any two alternatives that dif-
fer only with respect to the outcome in the k-th binary decision, that is, any two
alternatives (m, 1, m0) and (m, 0, m0) with m ∈ {0,1}k−1 and m0 ∈ {0,1}l−k.

4.8 Conclusion

In this chapter, I present a welfare analysis of voting rules. Specifically, I derive the
optimal utilitarian mechanism among all strategy-proof, anonymous, and surjective
social choice functions for generalized single-peaked domains giving rise to median
spaces. The optimal mechanism takes the form of voting by properties, meaning, the
social choice is determined through a collection of binary votes on subsets of alter-
natives involving flexible majority requirements that incorporate the characteristics
of these subsets of alternatives. Consequently, my results emphasize, for a broad
range of economically relevant preference domains, the importance of flexible and
qualified majority requirements for utilitarian welfare in voting.

27. Corollary 4.3 can also be obtained by combining, on the one hand, the results from NP
(2007b) or Barberà, Sonnenschein, and Zhou (1991) and, on the other hand, the optimality findings
for the two-alternatives case from, for example, Nehring (2004) or Drexl and Kleiner (2018).
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Appendix 4.A Proofs

The proof of Lemma 4.1 employs a result from NP (2007b) that is stated as Lemma
4.4 below. In order to present this result, I need to introduce the notion of critical
families of properties from their paper. These sets are collections of properties having
the following characteristic.

Definition 4.6. NP (2007b)
A set of properties F ⊆H is a critical family of properties if

∩F̄∈F F̄ = ; and

∀F ∈ F : ∩F̄∈F :F̄ ̸=FF̄ ̸= ;.

In words, a collection of properties constitutes a critical family of properties
if the intersection of all involved properties is empty, but these properties have a
non-empty intersection whenever an arbitrary single property of the collection is
removed. Also, note that any critical family of properties involves at least two ele-
ments. Based on this definition, NP (2007b) obtain the following result about the
size of critical families of properties in median spaces.

Lemma 4.4. NP (2007b)
If (A,H ) constitutes a median space, all critical families of properties have length
two.

Lemma 4.4 says that median spaces share the characteristic that there are no
critical families of properties involving more than two properties.

Proof of Lemma 4.1.
Take any property H ∈H and consider the related sets AH and AHc as defined in the
main text.
Concerning the non-emptiness of the sets AH and AHc , consider the set AH. The argu-
ment for the set AHc is analogous. Towards a contradiction, suppose that AH = ;.
If ∄M ∈H : M ⊂ H, I have that H ⊆ AH. Since H ̸= ;, it follows that AH ̸= ;. If
∃M ∈H : M ⊂ H, AH = ; implies H ∩ (∩{M∈M :M⊂H}M

c)= ;. In other words, the col-
lection of properties {H}∪ {Mc : M ⊂ H} is not consistent. However, this means that
there must be some subset of the set of these properties which constitutes a criti-
cal family of properties. If this critical family involves at least three elements, the
desired contradiction is derived since, due to Lemma 4.4, all critical families have
length two in a median space. In case this critical family involves only two proper-
ties, there are two possibilities. On the one hand, if H is part of this critical family,
the other element must be some single property Mc such that M ⊂ H. However, the
collection of these two properties cannot be inconsistent and, hence, not critical
since the intersection of H and Mc must be non-empty. On the other hand, if H is not
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part of the critical family, this family must be composed of two properties from the
set {Mc : M ⊂ H}, but both of them are by definition supersets of Hc which means
that they are consistent and, thus, not critical since Hc ̸= ;. Therefore, in the two
possible cases, I derived the desired contradiction.
Regarding the unique tuple structure, take any k ∈ AHc , and consider the following
intersection of properties:

Kk := (∩{K∈Hk:K ̸=Hc}K) ∩ H.

Now, because of separation, the setKk is either empty or it contains exactly one alter-
native, but it does not contain more than one alternative. I claim thatKk cannot be
empty. Towards a contradiction, assume thatKk is empty. This means that the collec-
tion of properties (Hk \ {Hc})∪ {H} is not consistent. To begin with, ifHk \ {Hc}= ;,
the set of properties (Hk \ {Hc})∪ {H} must be consistent since H ̸= ;. Thus, sub-
sequently, assume that Hk \ {Hc} contains at least one property. (Hk \ {Hc})∪ {H}
being inconsistent implies that there must be some subset of this collection of prop-
erties which constitutes a critical family of properties. Since all property spaces are
median spaces, due to Lemma 4.4, this critical family must involve exactly two prop-
erties. Again, there are two possibilities. On the one hand, if H is part of this critical
family, the other element must be some single property K ∈Hk \ {Hc} satisfying
K ⊂ Hc. In particular, it must hold that k ∈ K. However, by definition of AHc , because
of K ⊂ Hc, I have k ∈ Kc. This contradicts k ∈ K. On the other hand, if H is not part
of the critical family, this family must be composed of two properties from the set
Hk \ {Hc}, but, by construction, the alternative k shares both of them which means
that they are consistent and, thus, not critical. Hence, in both possible cases, I ob-
tain a contradiction. Therefore, I infer that Kk is not empty, but it contains exactly
one alternative. Denote this alternative by m. Now, by construction, k and m are
separated only by property H. Further, I obtain that m ∈ AH for the following rea-
son: If ∄M ∈H : M ⊂ H, by definition of AH, I have thatKk ∩ AH =Kk ∩H =Kk. If
∃M ∈H : M ⊂ H, again by definition of AH, it holds that

Kk ∩ AH = Kk ∩ H ∩ (∩{M∈H :M⊂H}M
c) = Kk ∩ (∩{M∈H :Hc⊂Mc}M

c) = Kk.

Consequently, I conclude that there exists some m ∈ AH such that k and m are sep-
arated only by property H. Moreover, there cannot be another alternative m0 ∈ AH

with m ̸=m0 such that k and m0 are also separated only by property H since this
would contradict separation. The argument for the other direction, meaning, start-
ing with some m ∈ AH and showing that there is some unique k ∈ AHc such that both
alternatives are separated only by property H works in the same way. This estab-
lishes the claimed unique tuple structure.

Proof of Lemma 4.2.
Take any property H ∈H .
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Assume that H0 ⊂ H⇒ q∗H0
> q∗H for all H0 ∈H such that ∄H00 ∈H : H0 ⊂ H00 ⊂ H.

Consider the quota q∗H being part of an optimal mechanism and suppose that it is
increased by 1, i.e. the quota linked to property H moves to q∗H + 1. In particular, as
long as q∗H ̸= n, the modified quota q∗H + 1 is still feasible because q∗H0

≥ q∗H + 1> q∗H
for all H0 ∈H such that ∄H00 ∈H : H0 ⊂ H00 ⊂ H.
This alteration matters only if there are q∗H voters having some peak from the set H
and n− q∗H voters with peaks from the set Hc. For simplicity, call this event “pivH”.
In this case, since q∗L ≤ q∗H for all H ⊂ L, the properties {L : H ⊂ L} or, equivalently,
{Lc : L ⊂ Hc} are accepted whenever there are such properties. Additionally, q∗H0

> q∗H
for all H0 ∈H such that ∄H00 ∈H : H0 ⊂ H00 ⊂ H implies that q∗M > q∗H for all M ⊂ H.
Thus, the properties {M : M ⊂ H} are rejected or, equivalently, the properties {Mc :
M ⊂ H} are winning whenever there are such properties. Putting these features to-
gether and using the notation introduced in the main text, if the quota is q∗H, some
element of the set AH ̸= ; is the winning alternative. However, if the quota amounts
to q∗H + 1, some element of the set AHc ̸= ; is selected.
Therefore, for both quotas, employing Assumption 4.1, the expected welfare con-
ditional on the event where the alteration of q∗H matters, i.e., the expected welfare
conditional on the event “pivH”, can be expressed in the following way: If the quota
is q∗H, the resulting welfare amounts to

∑

l∈AH

Pr(l wins|pivH) · {n · E[ul(T)|pivH ∧ l wins]}.

In contrast, if the quota is q∗H + 1, the induced welfare satisfies
∑

j∈AHc

Pr(j wins|pivH) · {n · E[uj(T)|pivH ∧ j wins]}.

Because q∗H is part of an optimal mechanism, it must be that the former expression is
weakly higher than the latter term. This necessary condition for optimality translates
into the inequality

∑

l∈AH

Pr(l wins|pivH)E[ul(T)|pivH ∧ l wins] ≥

∑

j∈AHc

Pr(j wins|pivH)E[uj(T)|pivH ∧ j wins].

Now, consider the tuple structure derived in Lemma 4.1 and, with abuse of notation,
suppose that (j, l) constitutes a tuple of alternatives such that j and l are separated
only by property H. This means that the events “l wins∧ pivH” and “j wins∧ pivH”
must coincide, meaning, they refer to the same set of type realizations. This is true
for the following reason: The event “j wins∧ pivH” means that the properties Hj \
Hc are winning and the number of voters having peaks from the set H amounts
to q∗H. The event “l wins∧ pivH” means that the properties Hl \H are winning and
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the number of voters having peaks from the set H is q∗H. However, since j and l
are separated only by property H, it holds that Hj \Hc =Hl \H. Therefore, the
events “j wins∧ pivH” and “l wins∧ pivH” coincide. Call this event “j/l win∧ pivH”. In
particular, I have that

Pr(j/l win|pivH) = Pr(l wins|pivH) = Pr(j wins|pivH).

Therefore, the inequality above can be rewritten as follows:
∑

(j,l)∈ZH

Pr(j/l win|pivH){E[ul(T) − uj(T)|j/l win ∧ pivH]} ≥ 0.

Now, take any pair of alternatives (k, m) with k ∈ AHc and m ∈ AH such that k and m
are separated only by property H. Due to Assumption 4.2, it holds that

uk(t) − um(t) = ul(t) − uj(t)

for all tuples of alternatives (j, l) ∈ ZH and for all type realizations t ∈ S. Thus, the
previous inequality can be written as
∑

(j,l)∈ZH

Pr(j/l win|pivH){E[um(T) − uk(T)|j/l win ∧ pivH]} ≥ 0.

Next, by the law of total expectation, I obtain that

E[um(T) − uk(T)|pivH] ≥ 0.

Moreover, applying again the law of total expectations, this inequality can be written
in the following way:

Pr(“peak ∈ H”|pivH)E[um(T) − uk(T)|“peak ∈ H” ∧ pivH]

+Pr(“peak ∈ Hc”|pivH)E[um(T) − uk(T)|“peak ∈ Hc” ∧ pivH] ≥ 0,

where “peak ∈ H” and “peak ∈ Hc” refer to the events that an arbitrary voter’s most-
preferred alternative or peak shares property H and Hc respectively. While using the
definition of the event “pivH”, Assumption 4.1 implies that the probabilities involved
in the inequality satisfy

Pr(“peak ∈ H”|pivH) =
q∗H
n

and

Pr(“peak ∈ Hc”|pivH) =
n − q∗H

n
.

Also, Assumption 4.1 yields

E[um(T) − uk(T)|“peak ∈ H” ∧ pivH] = E[um(T) − uk(T)|“peak ∈ H”] and

E[um(T) − uk(T)|“peak ∈ Hc” ∧ pivH] = E[um(T) − uk(T)|“peak ∈ Hc”].
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Further, it follows from generalized single-peakedness that the events “peak ∈ H”
and “peak ∈ Hc” are equivalent to the events “um(T)> uk(T)” and “uk(T)> um(T)”
respectively (see Fact 2.1 in NP (2007b)). Taking these three features together, the
inequality above simplifies to

q∗H
n
E[um(T) − uk(T)|um(T) > uk(T)]

+
n − q∗H

n
E[um(T) − uk(T)|uk(T) > um(T)] ≥ 0.

Hence, rearranging yields

q∗H ≥ n · δH

while I use the notation introduced in the main text. In addition, if q∗H = n, the
derived inequality still holds since δH ∈ (0,1). This establishes the first claim of the
lemma.
Turning to the second point of the lemma, suppose that H ⊂ H0⇒ q∗H > q∗H0

for all
H0 ∈H such that ∄H00 ∈H : H ⊂ H00 ⊂ H0.
Consider again the quota q∗H related to an optimal mechanism and suppose that it
is decreased by 1, i.e. the quota q∗H moves to q∗H − 1. In particular, the altered quota
is still feasible as long as q∗H ̸= 1. This change matters only if there are q∗H − 1 voters
with peak alternatives from the set H and n− q∗H + 1 voters having peaks that share
property Hc.
Following the steps employed in the reasoning above in an analogous way, it can be
verified that the inequality

q∗H ≤ n · δH + 1

constitutes a necessary condition for optimality. Additionally, observe that the de-
rived inequality also holds if q∗H = 1 since n ·δH > 0.

Proof of Lemma 4.3.
Assume that there are properties H0, H ∈H with H0 ⊂ H as well as ∄H00 ∈H : H0 ⊂
H00 ⊂ H and the quotas related to an optimal mechanism satisfy q∗H0

= q∗H.
Define

Q :={K ∈ H : [(K ⊆ H0 ∨ H ⊆ K) ∧ q∗K = n] and∄K0 ∈ H : [K ⊂ K0 ∧ (K0 ⊆ H0 ∨ H ⊆ K0) ∧ q∗K0 = n]}

and

R :={K ∈ H : [(K ⊆ H0 ∨ H ⊆ K) ∧ q∗K = 1] and∄K0 ∈ H : [K0 ⊂ K ∧ (K0 ⊆ H0 ∨ H ⊆ K0) ∧ q∗K0 = 1]}.
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In the following, I perform a case distinction:
1) Suppose that Q ≠ ; and R ≠ ;.
1a) ∃Q̄ ∈Q : H ⊆ Q̄
By definition of Q, it holds that q∗

Q̄
= n and, because H ⊆ Q̄, it follows that q∗H = n.

Thus, the inequality q∗H ≥ n ·δH is met.
Moreover, I obtain H ⊆ Q for all Q ∈Q since otherwise, Q ⊆ H0 or, equivalently, Q ⊂
H which would imply Q /∈Q because q∗H = n.
Take some Q0 ∈Q and consider the related set

S := {K ∈ H : Q0 ⊂ K and ∄K0 ∈ H : Q0 ⊂ K0 ⊂ K}

of properties.
If S = ;, this means that there are no properties Q00 ∈H such that Q0 ⊂ Q00. Conse-
quently, decreasing the quota q∗Q0

= n by 1 is feasible and, thus, Lemma 4.2 implies
that the inequality q∗Q0

≤ n ·δQ0 + 1 holds.
If S ̸= ;, it must be that q∗S < q∗Q0

for all S ∈ S . Suppose not, meaning, there exists
some S ∈ S such that q∗S ≥ q∗Q0

. Since, by construction Q0 ⊂ S, I obtain q∗S = q∗Q0
= n.

But, then, it holds that H ⊆ Q0 ⊂ S and q∗S = n and, thus, it follows that Q0 /∈Q which
is the desired contradiction.
Now, the feature q∗S < q∗Q0

for all S ∈ S implies that decreasing the quota q∗Q0
by 1 is

feasible and, therefore, by Lemma 4.2, the inequality q∗Q0
≤ n ·δQ0 + 1 is met.

Hence, in both possible cases, the inequality q∗Q0
≤ n ·δQ0 + 1 is true. Furthermore,

q∗H0 = q∗H = n = q∗Q0 ≤ n · δQ0 + 1 ≤ n · δH0 + 1

by Assumption 4.3 since H0 ⊂ H ⊆ Q0. Thus, the inequality q∗H0
≤ n ·δH0 + 1 holds.

1b) ∃R̄ ∈ R : R̄ ⊆ H0

By definition of R , it holds q∗
R̄
= 1 and, since R̄ ⊆ H0, I obtain q∗H0

= 1. Therefore,
the second inequality q∗H0

≤ n ·δH0 + 1 is true.
Furthermore, I obtain R ⊆ H0 for all R ∈ R because H0 ⊂ H ⊆ R would imply R /∈ R
since q∗H0

= 1.
Take some R0 ∈ R and consider the related set

J := {K ∈ H : K ⊂ R0 and ∄K0 ∈ H : K ⊂ K0 ⊂ R0}

of properties.
If J = ;, this means that there are no properties R00 ∈H satisfying R00 ⊂ R0. Conse-
quently, increasing the quota q∗R0

= 1 by 1 must be feasible yielding the inequality
q∗R0
≥ n ·δR0 because of Lemma 4.2.

If J ̸= ;, it must be that q∗J > q∗R0
for all J ∈ J . To see this point, suppose that the

contrary is true, meaning, there exists some J ∈ J such that q∗J ≤ q∗R0
. Thus, because

of J ⊂ R0, I obtain q∗J = q∗R0
= 1. However, since J ⊂ R0 ⊆ H0 and q∗J = 1, the property
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R0 cannot be part of the set R which contradicts R0 ∈ R .
Employing the feature q∗J > q∗R0

for all J ∈ J , I observe that increasing the quota q∗R0

by 1 is feasible and, therefore, by Lemma 4.2, the inequality q∗R0
≥ n ·δR0 holds.

Hence, in both possible scenarios, I obtain that the inequality q∗R0
≥ n ·δR0 is satisfied.

Consequently, since R0 ⊆ H0 ⊂ H, Assumption 4.3 implies

1 = q∗H = q∗H0 = q∗R0 ≥ n · δR0 ≥ n · δH.

Therefore, the inequality q∗H ≥ n ·δH is also true.

1c) ∀Q̄ ∈Q : Q̄ ⊆ H0 and ∀R̄ ∈ R : H ⊆ R̄
Define

O :={K ∈ H : [K ⊆ H0 ∧ q∗K > q∗H] and∄K0 ∈ H : [K ⊂ K0 ⊆ H0 ∧ q∗K0 > q∗H]}

and

P :={K ∈ H : [H ⊆ K ∧ q∗K < q∗H] and∄K0 ∈ H : [H ⊆ K0 ⊂ K ∧ q∗K0 < q∗H]}.

In particular, O ≠ ; as well as P ̸= ; since Q ≠ ; and R ≠ ;.
Take some O ∈ O . By construction, I have q∗L = q∗H for all L ∈H such that O ⊂ L ⊆ H0.
Also, since Q ≠ ; and Q̄ ⊆ H0 for all Q̄ ∈Q, it must be that q∗H ̸= n.
Moreover, there exists some L0 ∈H such that ∄L00 ∈H : O ⊂ L00 ⊂ L0 ⊆ H0. Consider
the set

I := {K ∈ H : K ⊂ L0 and ∄K0 ∈ H : K ⊂ K0 ⊂ L0}

of properties. In particular, I have I ̸= ; because, by construction, O ∈ I .
If q∗I > q∗L0

for all I ∈ I , increasing qL0 by 1 is feasible and, therefore, by Lemma 4.2,
the inequality q∗L0

≥ n ·δL0 holds.
If there exists I0 ∈ I such that q∗I0 ≤ q∗L0

, it follows that q∗I0 = q∗L0
= q∗H because I0 ⊂

L0 ⊆ H0. Now, employ the reasoning that I used to tackle L0 and apply it to I0. Again,
there are two possibilities: Either increasing q∗I0 is feasible or there must be some
property I00 ∈H such that I00 ⊂ I0 ⊆ H0 satisfying q∗I00 = q∗L0

= q∗H. If necessary, since
there are finitely many properties, repeat this argument for a finite number of times.
This yields that there exist either some property I000 ∈H with I000 ⊆ H0 such that
increasing q∗I000 satisfying q∗I000 = q∗L0

= q∗H is feasible or, otherwise, there must be some
property I0000 ∈H with I0000 ⊆ H0, q∗I0000 = q∗L0

= q∗H and ∄I00000 ∈H : I00000 ⊂ I0000. However,
concerning the latter case, increasing q∗I0000 by 1 is feasible.
Therefore, in any scenario, there must be some Ĩ ∈H with Ĩ ⊆ L0 ⊆ H0 ⊂ H such that
increasing qĨ by 1 is feasible and qĨ satisfies q∗

Ĩ
= q∗L0

= q∗H. Employing Lemma 4.2,
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this means that the inequality q∗
Ĩ
≥ n ·δĨ is met. But, then, since Ĩ ⊂ H, Assumption

4.3 implies

q∗H = q∗
Ĩ
≥ n · δĨ ≥ n · δH

and, thus, the inequality q∗H ≥ n ·δH is met.
Consider some arbitrary P ∈ P . By construction, I have q∗M = q∗H0

for all M ∈H such
that H ⊆M ⊂ P. Further, sinceR ≠ ; and H ⊆ R̄ for all R̄ ∈ R , it must be that q∗H0

̸= 1.
Additionally, there exists some M0 ∈H such that ∄M00 ∈H : H ⊆M0 ⊂M00 ⊂ P. Fo-
cus on the set

C := {K ∈ H : M0 ⊂ K and ∄K0 ∈ H : M0 ⊂ K0 ⊂ K}

of properties. In particular, I have C ̸= ; because, by construction, P ∈ C .
If q∗C < q∗M0

for all C ∈ C , decreasing qM0 by 1 is feasible and, therefore, due to Lemma
4.2, the inequality q∗M0

≤ n ·δM0 + 1 holds.
If there exists C0 ∈ C such that q∗C0

≥ q∗M0
, it follows that q∗C0

= q∗M0
= q∗H0

because
H ⊆M0 ⊂ C0. Now, employ the reasoning that I used to tackle M0 and apply it to C0.
Again, there are two possibilities: Either decreasing q∗C0

is feasible or there must be
some property C00 ∈H such that H ⊆ C0 ⊂ C00 satisfying q∗C00

= q∗M0
= q∗H0

. If necessary,
since there are finitely many properties, repeat this argument for a finite number of
times. This yields that there exist either some property C000 ∈H with H ⊆ C000 such
that increasing q∗C000

satisfying q∗C000
= q∗M0

= q∗H0
is feasible or, otherwise, there must be

some property C0000 ∈H with H ⊆ C0000, q∗C0000
= q∗M0

= q∗H0
and ∄C00000 ∈H : C0000 ⊂ C00000.

However, concerning the latter case, decreasing q∗C0000
by 1 is feasible.

Therefore, in any scenario, there must be some C̃ ∈H with H0 ⊂ H ⊆M0 ⊆ C̃ such
that decreasing qC̃ by 1 is feasible and qC̃ satisfies q∗

C̃
= q∗M0

= q∗H0
. Invoking Lemma

4.2, this means that the inequality q∗
C̃
≤ n ·δC̃ + 1 is met. But, then, since H0 ⊂ C̃,

Assumption 4.3 implies

q∗H0 = q∗
C̃
≤ n · δC̃ + 1 ≤ n · δH0 + 1

and, thus, the inequality q∗H0
≤ n ·δH0 + 1 is met.

In conclusion, as desired, despite q∗H0
= q∗H, both relevant inequalities are met at q∗H.

2) If Q = ; and R = ;, the argument from case 1c applies.
3) Suppose that Q ≠ ;, but R = ;.
If ∃Q̄ ∈Q : H ⊆ Q̄, the reasoning in case 1a yields the desired conclusion; in case
Q ⊂ H for all Q ∈Q, take the argument from case 1c.
4) Suppose that R ≠ ;, but Q = ;.
In case H ⊂ R for all R ∈ R , replicate the steps in case 1c; if ∃R̄ ∈Q : R̄ ⊆ H, the
argument from case 1b applies.
Taking all four cases together, this shows that the two relevant inequalities

q∗H ≥ n · δH and

q∗H0 ≤ n · δH0 + 1
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determining q∗H as well as q∗H0
hold despite q∗H0

= q∗H. Therefore, overall, the claim in
the lemma follows.

Proof of Theorem 4.2.
It is sufficient to find the quotas related to voting by issues that are part of an
optimal mechanism. The existence of a solution is ensured since a bounded function
is optimized over a finite set of elements.

Recall, by Theorem 4.1, the optimal quotas must satisfy

H ⊆ K ⇒ q∗H ≥ q∗K

for all K0, K ∈H .
Consider some arbitrary property H ∈H and the associated quota q∗H being part of
an optimal mechanism. Subsequently, I perform case distinctions.
1a) If ∀H0 ∈H with H0 ⊂ H and ∄H00 ∈H : H0 ⊂ H00 ⊂ H, it holds that q∗H0

> q∗H, part
(i) of Lemma 4.2 yields that the inequality q∗H ≥ n ·δH is met.
1b) If there is some H0 ∈H with H0 ⊂ H and ∄H00 ∈H : H0 ⊂ H00 ⊂ H such that
q∗H0
= q∗H, Lemma 4.3 implies that the inequality q∗H ≥ n ·δH holds.

Therefore, no matter the shape of the optimal mechanism, the inequality q∗H ≥ n ·δH

constitutes a necessary condition for optimality.
2a) If ∀H0 ∈H with H ⊂ H0 and ∄H00 ∈H : H ⊂ H00 ⊂ H0, it holds q∗H > q∗H0

, part (ii)
of Lemma 4.2 yields that the inequality q∗H ≤ n ·δH + 1 is true.
2b) If there is some H0 ∈H with H ⊂ H0 and ∄H00 ∈H : H ⊂ H00 ⊂ H0 such that
q∗H = q∗H0

, Lemma 4.3 implies that the inequality q∗H ≤ n ·δH + 1 is satisfied.
Thus, no matter the shape of the optimal mechanism, the inequality q∗H ≤ n ·δH + 1
is necessary for optimality.
Taking both inequalities together, since the quotas are integer-valued, the quotas q∗H
satisfying these inequalities are, generically, unique and they amount to q∗H = ⌈nδH⌉
with H ∈H . Consequently, the equalities q∗H = ⌈nδH⌉ with H ∈H are necessary for
optimality. Finally, it remains to be verified that these equalities are also sufficient for
optimality. The quotas determined by these equalities are feasible in the sense that
they constitute a family of quotas and that they meet the inequalities from Theorem
4.1. First, note that, for all H ∈H , since 0< δH < 1, I have that 1≤ q∗H = ⌈nδH⌉ ≤ n.
Second, observe that, for any H ∈H , it holds that q∗H + q∗Hc = n+ 1. Thus, the dis-
cussed quotas constitute a family of quotas. Also, it is immediate from Assumption
4.3 that these quotas satisfy the inequalities from Theorem 4.1. Moreover, the quo-
tas determined by the equalities q∗H = ⌈nδH⌉ with H ∈H must be optimal because,
again, there exists a solution and this solution has to meet these equalities. Conse-
quently, the discussed equalities are also sufficient for optimality, and the theorem
follows.
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