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Abstract

Large language models empowering recent conversational systems such as Alexa and Siri require
external knowledge to generate informative and accurate dialogues. The knowledge may be provided
in structured or unstructured forms, such as knowledge graphs, documents, and databases. Typically,
language models face several issues when attempting to incorporate knowledge for conversational
question answering: 1) they are unable to capture the relationship between facts in a structured
knowledge, 2) they lack the capability of handling the dynamic knowledge in a multi-domain
conversational setting, 3) because of the scarcity of unsupervised approaches for question answer over
knowledge graphs (KGQA), systems often require a large amount of training data, and 4) because of
the complexities and dependencies involved in the KGQA process it is difficult to generate a formal
query for question answering. All of these issues result in uninformative and incorrect answers.
Furthermore, an evaluation metric that can capture various aspects of the system response, such
as semantic, syntactic, and grammatical acceptability, is necessary to ensure the quality of such
conversational question answering systems.

Addressing the shortcomings in this thesis, we propose techniques for incorporating structured
and unstructured knowledge into pre-trained language models to improve conversational question
answering systems. First, we propose a novel task-oriented dialogue system that introduces a structure-
aware knowledge embedding and knowledge graph-weighted attention masking strategies to facilitate a
language model in selecting relevant facts from a KG for informative dialogue generation. Experiment
results on the benchmark datasets demonstrate significant improvement over previous baselines. Next,
we introduce an unsupervised KGQA system, leveraging several pre-trained language models to
improve the essential components (i.e., entity and relation linking) of KGQA. The system further
introduces a novel tree-based algorithm for extracting the answer entities from a KG. The proposed
techniques relax the need for training data to improve KGQA performance. Then, we introduce a
generative system that combines the benefits of end-to-end and modular systems and leverages a
GPT-2 language model to learn graph-specific information (i.e., entities and relations) in its parameters
to generate SPARQL query for extracting answer entities from a KG. The proposed system encodes
linguistic features of a question to understand complex question patterns for generating accurate
SPARQL queries. Afterward, we developed a system demonstrator for question answering over
unstructured documents about climate change. Pre-trained language models are leveraged to index
unstructured text documents into a dense space for document retrieval and question answering. Finally,
we propose an automatic evaluation metric, incorporating several core aspects of natural language
understanding (language competence, syntactic and semantic variation). A comprehensive evaluation
exhibits the effectiveness of our proposed metric over the state-of-the-art approaches. Overall, our
contributions exhibit that the effective incorporation of external knowledge into a language model
significantly improves the performance of conversational question answering. We made all the
resources and code used in the proposed systems publicly available.
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CHAPTER 1

Introduction

Conversational systems have recently gained increased attention due to the unforeseen advancements
of deep learning techniques. A conversational system typically engages in interaction with other
human or computer participant(s) in the form of speech, text, or sign 1. Depending on the application,
the interactions usually span across multiple turns (i.e., dialogue systems) or single turn question
answering (i.e., machine reading comprehension). Almost all the smart devices that we use in our daily
life (i.e., laptops and smartphones) are generally equipped with a conversational system, also known
as voice assistant service (i.e., Cortana 2, Siri 3, and Alexa 4). Furthermore, recent conversational
systems are widely adopted in a wide range of real-life applications for performing various tasks, such
as booking a hotel and providing navigation information for cars. They are also capable of performing
chitchat in an engaging and natural way.

In the early history of conversational artificial intelligence, ELIZA [1] and PARRY [2] were the
most influential dialogue systems. Both of them were rule-based conversational systems. ELIZA was
introduced in 1966 with an objective of simulating a Rogerian psychologist, which attempts to reach
a conclusion or goal based on the patients’ statement. It contains a fixed set of patterns by which
it tries to reach a conversational goal. Five years later, a similar type of system called PARRY [2]
was introduced. PARRY was the first conversational system that passed the Turing test [3]. It was
introduced for performing a study on schizophrenia. Unlike ELIZA, it contains variables that affect
the mental state of the system and may generate aggressive output based on variables’ defined value.

With the advancement of machine learning and deep learning techniques, modern conversational
systems have significantly improved. In contrast to the rule-based approaches, modern conversational
systems are heavily driven by a large amount of data. Specifically, large-scale data is leveraged by
deep learning models to develop the feature representation, which is capable of capturing diverse
dialogue patterns. Natural language understanding and generation are the two major aspects one
should consider for developing an effective conversational system. Recently, large language models
have revolutionized the field of natural language processing. GPT-3 [4], DialoGPT [5], PaLM [6],
OPT [7], and ChatGPT 5 are examples of recent large language models.

1http://www.gregoryaist.com/jods/index.html
2 https://www.microsoft.com/en-us/cortana
3 https://www.apple.com/de/siri/
4 https://developer.amazon.com/en-US/alexa
5https://openai.com/blog/chatgpt/
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Chapter 1 Introduction

Modern conversational systems typically employ several natural language understanding (NLU)
modules (i.e., intent detection and dialogue state tracking) in their pipeline. Pre-trained language
models are typically employed for developing these modules. Recent conversational systems utilize
pre-trained models primarily in two ways: 1) adopting an off-the-shelf pre-trained model and fine-
tuning it for the downstream task [8, 9], and 2) pre-training the language model on large conversation
corpora [5, 10]. Both strategies were shown to be successful for generating conversations in their
respective use cases. A different line of research emphasizes developing end-to-end dialogue systems
where a single model tackles all the sub-tasks (i.e., knowledge grounding and dialogue generation [11,
12, 13]) involved in the dialogue generation process.

Pre-trained language models are often provided with external data or knowledge to solve downstream
tasks such as question answering, machine reading comprehension, and dialogue generation [14,
15, 11]. External knowledge (i.e., Wikidata [16], DBpedia [17]) empowers these conversational
systems to generate informative and accurate dialogues. Depending on the data source, external
knowledge can be structured and unstructured. For instance, knowledge graphs and databases are
sources of structured knowledge [18, 17, 16], whereas text documents are unstructured data [19].
Incorporating structured and unstructured knowledge effectively into the conversational system is
challenging. The primary challenges are as follows: 1) capturing the underlying semantics of the
structured data (connections and relations between facts) is difficult since they are different than
natural sentences [8], 2) knowledge-based dialogue generation requires understanding the question
and structured knowledge for reasoning over structured information and dialogue generation at the
same time [13, 20], 3) searching over a large-scale data source containing millions of facts to find
relevant information for answering a question is challenging [14, 21], and 4) acquiring train data is
one of the bottlenecks in the development of conversational question answering systems [22].

To grasp a better understanding of the research objectives of this thesis, it is necessary to understand
how various knowledge-based conversational question-answering systems function. On a high-level,
dialogue systems are divided into task-oriented and non-task oriented dialogue (also known as chitchat)
systems. Task-oriented knowledge-based dialogue systems are often provided with a set of facts,
usually in the form of a knowledge graph or relational database, to perform certain tasks. Typically,
the knowledge is linearized into a sequence and fed to the learning system as input, along with the
user utterance and dialogue history. Based on the feature representation of the input sequence, the
system then generates the output (in generative dialogue systems [23, 24, 25]) or retrieves the correct
response from a set of candidate responses (in retrieval-based dialogue systems [26, 27, 28]). Various
techniques such as Memory network [29, 13, 20] and Copy network [30, 31] are often employed to
embed the knowledge and prepare the feature representation for the learning paradigm. However,
external knowledge integration into a training process is challenging. Considering external knowledge,
developing fluent and factually correct dialogue systems remains one of the primary challenges
researchers are attempting to address.

As large knowledge bases have gained increased popularity in recent years, question-answering
over knowledge graphs (KGQA) has become a prominent type of conversational system. A KGQA
pipeline includes three major components: 1) entity linker, 2) relation linker, and 3) answer extractor
or SPARQL endpoint that extracts the answer from the KG. The entity and relation linker first identifies
the entity and relation that appear in the question and then maps it to the corresponding facts in the
knowledge graph. Finally, a SPARQL 6 query is typically constructed from the mapped facts and

6W3C Specification for SPARQL https:www.w3.org/TR/sparql11-overview/
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Figure 1.1: Conversational and question answering systems explored in this thesis.

executed to retrieve the answer from the target knowledge graph. SPARQL is a formal query language
used to describe queries across various data sources, regardless of whether the data is stored natively
or accessed via middleware as a Resource Description Framework (RDF). Knowledge graphs are the
source of structured data, whereas text documents are unstructured. Machine reading comprehension
(MRC) systems can perform question answering over unstructured text data. MRC systems have two
essential components: 1) Retriever model and 2) Reader model. Given a question, the Retriever
model retrieves a set of documents that are relevant for answering. Then, the answer to the question is
extracted from the top-most retrieved document using a Reader model. Within the scope of this work,
we explore KG-based task-oriented dialogue systems, question answering over knowledge graphs, and
machine reading comprehension systems.

High-quality datasets and robust evaluation metrics are crucial for the development of a conversational
system. Datasets are manually annotated in domain-specific conversational applications. Manual
annotation is typically required to maintain the highest quality of the dataset. However, human
annotation is time-consuming and resource intensive. On the other hand, an appropriate performance
assessment is required to ensure the quality of a conversational system. Evaluation of conversational
systems is difficult as it requires an understanding of the dialogue context and provided external
knowledge. Word-overlap [32, 33] and contextualized embedding-based [34] matching are widely
adopted techniques for evaluating conversational systems. Recent evaluation metrics employ pre-
trained language models to obtain contextualized word embedding for dialogue evaluation [35, 36, 34].
Contextualized word embedding provides a rich representation of the word within a given context
or sentence, thus effectively capturing a word’s semantic meaning. However, evaluating a system
generated sentence against a reference sentence is difficult because of various surface forms and
ordering of words within a sentence.

The remainder of this chapter describes the research objective of this thesis, as well as the challenges
and research questions addressed in this thesis.
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Chapter 1 Introduction

Research Objectives: Within the scope of this thesis, we investigate question answering, machine
reading comprehension, and dialogue systems. The primary objective of this work is to incorporate
external knowledge into pre-trained language models to advance the performance of conversational
systems. Specifically, this thesis aims to investigate techniques to employ structured and unstructured
external knowledge into various learning paradigm and leverages pre-trained language models for
developing improved and factually correct conversational systems. Knowledge graphs (as structured
knowledge) and text documents (as unstructured knowledge) are utilized as the source of external
knowledge. Finally, to aid in the development of conversational systems, this thesis aims to develop a
robust evaluation metric for measuring the performance of generative dialogue systems.

1.1 Motivation and Challenges

Definition: Primary Research Problem (RP)

Can incorporating structured and unstructured knowledge into pre-trained language models improve
conversational question-answering systems?

RP1 - Integration of Structured Knowledge into a Conversational System

Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic
and effectively incorporating knowledge into the learning process is hard. This is due to the two
different learning objectives that the existing systems follow. Typically, one part of existing systems
focuses on capturing structured knowledge, whereas the other has a language modeling objective. It is
particularly challenging to generate both human-like and informative responses in this setting.

RP2 - Lack of Unsupervised KGQA Techniques

Most knowledge graph-based question answering systems rely on training data to reach their optimal
performance. However, acquiring training data for supervised systems is both time-consuming and
resource-intensive. Furthermore, training data is mostly tailored for specific knowledge graphs and
often requires human annotation. The human annotation process involves identifying knowledge graph
facts (i.e., entity and relation) appearing in the question and SPARQL query construction. Furthermore,
KGQA is a multi-step process involving entity linking, relation linking, and answer extraction from a
large knowledge graph. Overall, the complexities and inter-dependencies of components involved in
the KGQA process make it difficult to develop an unsupervised KGQA system.

RP3 - Extendability of a SPARQL Constructor:

SPARQL is a formal query language that is typically constructed and executed in KGQA to extract
answer entities from a knowledge graph. SPARQL query generation from natural language questions
is complex because it requires an understanding of the question and underlying knowledge graph
(KG) patterns. Most SPARQL query generation approaches are template-based, tailored to a specific
knowledge graph, hence, require pipelines with multiple steps, including entity and relation linking.
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1.2 Research Questions

RQ: Can incorporating structured and 
unstructured knowledge into pre-trained 
language models improve conversational 
question-answering systems?

RQ2: How effective are pre-trained language 
models for developing an unsupervised 
knowledge-graph-based question-answering 
system without training data?

RQ1: Does incorporating structural information into 
a language model improve knowledge graph-based 
dialogue generation?

RQ3: Can a generative language model embed a 
knowledge graph in its parameters and learn to 
construct SPARQL queries?

RQ4: How to effectively employ a pre-trained 
language model to improve the evaluation of 
single-reference based generative systems?

Figure 1.2: A breakdown of research questions.

Template-based approaches are also difficult to adapt and scale for new and large KGs. Generally, it
requires manual efforts from domain experts to construct query templates for training template-based
classifiers.

RP4 - Evaluation of Conversational Systems

Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric
should ensure that the generated hypothesis reflects the reference’s semantics. Secondly, it should
consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to
handle various surface forms of the generated sentence. Thus, an effective evaluation metric has to be
multifaceted.

1.2 Research Questions

Addressing the research problems discussed above, we formulate a set of research questions depicted
in Figure 1.2. We further elaborate on the research questions below.

Research Question RQ1

Does incorporating structural information into a language model improve knowledge graph-based
dialogue generation?

Task-oriented dialogue systems are typically equipped with an external knowledge base (i.e., relational
database or knowledge graph) as a source of structured information. The system must understand
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the underlying connections between facts in structural knowledge to generate natural and informative
dialogues. Therefore, it is essential to effectively incorporate structured knowledge into the learning
mechanism. Recently, pre-trained language models have been increasingly used in conversational
systems to generate conversations. Efficient and effective techniques are required to integrate structural
knowledge into a language model for developing an improved conversational system.

Research Question RQ2

How effective are pre-trained language models for developing an unsupervised knowledge-graph-based
question-answering system without training data?

Knowledge graph is a source of an enormous amount of structured data that typically include millions
of real-world facts. Because of the scale of KGs, question answering over the knowledge graph
requires a large amount of training data. Entity and relation linking are the first two critical steps of
KGQA. In the final step, a formal query (i.e., SPARQL) is typically executed to extract answers from
the knowledge graph. Recently, pre-trained LMs have become popular as they are trained on large
corpora and contain rich information in their parameters. Carefully designed mechanisms are required
to employ and take advantage of the pre-trained language models in each step of the KGQA process.

Research Question RQ3

Can a generative language model embed a knowledge graph in its parameters and learn to construct
SPARQL queries?

Nowadays, Transformer-based [37] language models are widely adopted to capture text patterns and
visual information. These models can embed a large amount of information in their parameters.
Therefore, efficient and effective techniques are required to embed a knowledge graph into the language
model. Furthermore, training such a model for generating structured sequences such as SPARQL
queries requires careful designing of the system. This involves understanding the question and
generating facts from the embedded knowledge of the language model.

Research Question RQ4

How to effectively employ a pre-trained language model to improve the evaluation of single-reference
based generative systems?

Evaluating natural sentences produced by generative systems such as dialogue and machine translation
systems is challenging. Moreover, developing a uniform evaluation strategy for measuring the
performance of such systems is difficult since it requires an understanding of the application, such as
dialogue generation and data-to-text generation. In recent years, pre-trained language models have
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1.3 Thesis Overview

been found effective in providing a rich and contextual embedding representation of textual data.
However, effective techniques are required to adapt pre-trained embedding for the evaluation task.
This involves capturing the generated sentences’ semantic and syntactic meaning and grammatical
acceptability.

1.3 Thesis Overview

This section provides a high-level overview of the thesis. First, addressing the research questions,
we list down and briefly describe the contributions of this thesis. Then, we outline the accepted
publications corresponding to the thesis’s research contributions. Furthermore, the contributions of
each author to the accepted papers are briefly discussed. Finally, we provide a structural overview of
the thesis’s remaining sections.

1.3.1 Contributions

Contributions for RQ1

A novel task-oriented dialogue system that incorporates external knowledge into a language model for
task-orientd dialogue generation.

Addressing the Research Question RQ1, we propose a novel task-oriented dialogue system, dubbed
DialoKG that employs structural information into a language model (LM) for generating informative
dialogues. For this purpose, we exploit GPT-2 [38] - a language model developed based on a stack of
Transformer decoders [37]. Specifically, we introduce a novel structure-aware multiple embedding
layer-based knowledge embedding technique that constructively embeds the underlying relationship
between the knowledge triples. DialoKG interprets the knowledge as a knowledge graph ; therefore,
separate embedding layers for word token, entity, triple and token type enable the system to capture
the graph features (e.g., subject, relation and object). This enables the system to generate correct and
human-like dialogues and prevents generating erroneous responses such as "4 miles is located at 792
Bedoin Street Starbucks away". Furthermore, the ability to correctly capture the relationship in the
knowledge graph eliminates the need for template-based or sketch-based response generation.

Contributions for RQ2

An unsupervised knowledge graph-based question-answering system that does not require any training
data and leverages only pre-trained language models for performing KGQA sub-tasks.

We present Tree-KGQA, a simple yet effective unsupervised KGQA method, leveraging pre-trained
language models. The primary motivation of Tree-KGQA is to addresses the Research Question RQ2
and develop a dataset-independent KGQA system, which can answer natural questions from various
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datasets without additional training or fine-tuning. Tree-KGQA adopts several powerful off-the-shelf
language models, pre-trained on named entity recognition (NER) and natural language inference tasks
for the KGQA sub-tasks [39, 40].

Specifically, we split the KGQA task into three sub-tasks: entity linking, relation linking, and
answer entity extraction. Firstly, given a question, we employ a BERT-based [39] pre-trained NER
model to detect the surface forms of the entities in the question. Additionally, we pre-process and
index the contextualized representation of the entities into a dense space for effective and fast candidate
entity generation during the inference. The index is utilized to generate a set of candidate entities,
which are then disambiguated to obtain the final predicted entity. Secondly, by combining the 1-hop
connected relations of the entities linked in the previous step, a set of candidate relations for relation
linking is created. A pre-trained BART model [40] is then applied to the candidate relations to obtain
the most probable relation in a zero-shot manner. Finally, we construct a set of 𝑘-level trees from the
𝑘-hop sub-graphs of the linked entities. Then, tree-walking and tree-disambiguation techniques are
employed to extract answer entities from the constructed trees.

Contributions for RQ3

A modular and expandable generative system for constructing SPARQL query from a natural question.

Addressing the Research Question RQ3, we propose a new system, dubbed SGPT, for SPARQL
query generation. SGPT encodes the linguistic features of a natural language question (NLQ) and
corresponding sub-graph information (i.e, entities, if provided), and leverages a generative language
model (LM) to generate SPARQL queries. We hypothesize that a deeper understanding of the NLQ is
crucial for generating a correct query, since a slight deviation in the syntactic structure of the question
may result in a different SPARQL query.

Specifically, besides the standard word and positional embedding layers, we design special embedding
layers that embed an arbitrary number of linguistic features of an NLQ, such as parts-of-speech
(POS) tags and dependency tree features (i.e., dependency relations and information about tree node’s
children). A stack of Transformer [37]-encoders is employed to encode the linguistic features. The
proposed embedding techniques facilitate SGPT to inject additional knowledge (i.e., entities) as well
as allow the integration of SGPT into pipeline-based systems in a modular fashion. Furthermore, we
employ the Transformer [37]-decoder based language model GPT-2 [38], to generate SPARQL queries.
Our training methodology enables SGPT to embed an arbitrary KG directly into the model parameters.
Moreover, the system does not require any query template or KG as input at inference time.

Contributions for RQ4

A metric for measuring the performance of generative systems that takes advantage of the pre-trained
weights of language models.

We propose RoMe, an automatic and robust metric for evaluating NLG systems, addressing the Research
Question RQ4. RoMe employs a neural classifier that considers the generated sentence’s grammatical,
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syntactic, and semantic qualities as features to estimate the quality of the sentence against a reference
sentence. Firstly, it calculates the earth mover’s distance (EMD) [41] to determine how much the
hypothesis differs from the reference. During the computation of EMD, RoMe incorporates hard word
alignment and soft-penalization constants to handle various surface forms of words in a sentence, such
as repeated words and the passive form of a sentence. Using a semantically enhanced tree edit distance,
the difference in syntactic structures between the reference and hypothesis sentences is quantified.
Thirdly, the metric incorporates a binary classifier to evaluate the grammatical acceptability of the
generated hypotheses. Finally, the scores obtained from the preceding steps are combined to form a
representation vector, which is subsequently fed into a self-supervised network. The network produces
a final score, referred to as RoMe’s output, representing the overall quality of the generated sentence.

1.3.2 Publications

The research papers accepted for publication in conferences and journals contributing to this thesis are
listed below:

Conference Papers (peer reviewed):

• Md Rashad Al Hasan Rony, Ricardo Usbeck, and Jens Lehmann. 2022. DialoKG: Knowledge-
Structure Aware Task-Oriented Dialogue Generation. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 2557–2571, Seattle, United States. Association
for Computational Linguistics.

• Md Rashad Al Hasan Rony, Liubov Kovriguina, Debanjan Chaudhuri, Ricardo Usbeck, and
Jens Lehmann. 2022. RoMe: A Robust Metric for Evaluating Natural Language Generation.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5645–5657, Dublin, Ireland. Association for Computational
Linguistics.

System Demo Papers (peer reviewed):

• Md Rashad Al Hasan Rony, Ying Zuo, Liubov Kovriguina, Roman Teucher and Jens Lehmann,
Climate Bot: A Machine Reading Comprehension System for Climate Change Question
Answering. In Proceedings of ĲCAI 2022, in AI for good track.

Journal Papers (peer reviewed):

• Md Rashad Al Hasan Rony, Debanjan Chaudhuri, Ricardo Usbeck, and Jens Lehmann,
Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs, in
IEEE Access, vol. 10, pp. 50467-50478, 2022, doi: 10.1109/ACCESS.2022.3173355.

• Md Rashad Al Hasan Rony, Uttam Kumar, Roman Teucher, Liubov Kovriguina and Jens
Lehmann, SGPT: A Generative Approach for SPARQL Query Generation from Natural Lan-
guage Questions, in IEEE Access, vol. 10, pp. 70712-70723, 2022, doi: 10.1109/AC-
CESS.2022.3188714.

9



Chapter 1 Introduction

1.3.3 Author Contributions

In DialoKG, Md Rashad Al Hasan Rony developed the core concepts, implemented, conducted
experiments, and wrote the paper. Prof. Dr. Jens Lehmann and Prof. Dr. Ricardo Usbeck reviewed the
work and provided thoughtful feedback and comments on the writing. In RoMe, Md Rashad Al Hasan
Rony contributed in developing the core concepts, implemented, conducted experiments, and wrote the
paper. Liubov Kovriguina and Debanjan Chaudhuri partially contributed to the concept, specifically
in the implementation and writing about the grammatical acceptability feature of the metric. In the
system demo paper, Climate Bot, Md Rashad Al Hasan Rony and Liubov Kovriguina developed the
core concepts for constructing the proposed dataset and have written the paper. Additionally, Md
Rashad Al Hasan Rony implemented the system code, which includes a data parser, system pipeline,
and user interface. Ying Zuo primarily contributed in the training and evaluation of the system.
Roman Teucher was involved in the data annotation and evaluation. Prof. Dr. Jens Lehman provided
valuable reviews and comments on the writing.

In Tree-KGQA, Md Rashad Al Hasan Rony developed the core concepts, implemented them,
conducted all experiments and evaluations, and wrote the paper. Debanjan Chaudhuri took part in the
conceptual discussions and partially contributed to the implementation. Prof. Dr. Ricardo Usbeck
and Prof. Dr. Jens Lehmann reviewed the work and provided feedback and comments on the writing.
In SGPT, Md Rashad Al Hasan Rony developed the complete concept, implemented and evaluated the
proposed system, and wrote the paper. Uttam Kumar and Roman Teucher each evaluated a baseline
system. Liubov Kovriguina reviewed the work and partially wrote the paper. Prof. Dr. Jens Lehmann
reviewed the work and provided insightful comments on the writing.

1.3.4 Thesis Structure

This thesis is organized into ten chapters. The primary motivations and research problems addressed
within the scope of this thesis are described in Chapter 1. Following that, we further discuss the
challenges and research questions required to be addressed to tackle the primary research problem.
Chapter 2 provides detailed background knowledge for understanding the core concepts used throughout
this thesis. Language models, conversational systems such as question answering over knowledge
graphs, dialogue systems, machine reading comprehension, and evaluation of generative systems are
the core concepts of this thesis. Chapter 3 summarizes the state-of-the-art research that falls within
the scope of this thesis. The following five chapters discuss the core contributions of this thesis that
address the primary research problem. Chapter 4 discusses the techniques for knowledge integration
into the language model for task-oriented dialogue generation. The chapter also demonstrates how
structure-aware knowledge integration improves task understanding, resulting in high-quality and
human-like dialogues. Chapter 5 summarizes techniques for performing question answering over
knowledge graphs without training data. Chapter 6 introduces a generative approach for SPARQL
query generation. It also discusses techniques to embed knowledge graph facts into language models’
parameters. Chapter 7 discusses a machine reading comprehension system that can perform question
answering over unstructured data from the climate change domain. In Chapter 8, we propose an
evaluation metric to assess the performance of generative systems such as data-to-text, dialogue, and
natural language generation. Chapter 9 includes the concluding remarks and future directions of this
thesis. Finally, Chapter 10 outlines a list of accepted papers contributing to this thesis. All the Figures
without any source mentioned in this thesis report are drawn by Md Rashad Al Hasan Rony.
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CHAPTER 2

Background Knowledge

Conversational artificial intelligence is one of the challenging and widely studied fields of natural
language processing. This chapter provides a theoretical understanding of the concepts used within
the scope of this thesis. Specifically, this chapter provides a comprehensive overview of language
models, knowledge graphs, conversational question answering systems, and evaluation metrics.

2.1 Language Models

Text representation models, also known as language models, can learn the representations for sub-
words, words, sentences, or documents, in general, for any unit of text. Therefore they are widely
adopted for tackling downstream NLP tasks such as sentiment analysis, question answering, natural
language generation, machine translation, and text summarization. Earlier models mainly focused on
words as input; however, several models emphasize learning characters as input (i.e., CharCNN [42],
FastText [43], ELMo [44]). Most of the recent large language models (i.e., BERT [45], GPT-2 [38]
and XLNet [46]) are developed based on concept of mulit-head self-attention mechanism proposed
in the Transformer model [37]. In this work, we employ and exploit several Transformer-based
language models (i.e., GPT-2 [38], BERT [39], BART [40], SBERT [47], and ALBERT [48]) to
tackle downstream tasks, such as task-oriented dialogue (Chapter 4), unsupervised question answering
(Chapter 5), machine reading comprehension (Chapter 7), and evaluation metric (Chapter 8). Below
we provide a brief description of various language models.

2.1.1 Static Word Embedding Models

Static word embedding models are simple neural networks typically containing one or a few
hidden layers. The objective of most static word embedding models focuses on learning the vector
representation of the text at the word level or n-gram word level. Typically, these models are trained
to predict a vector representation of the word based on the input text. Word2Vec [49], GloVe [50],
Doc2Vec [51], and FastText [43] are the most widely used static word embedding models. Below we
provide a brief description of the models.

Word2Vec. A research team at Google proposed one of the prominent techniques to represent the
word as a vector, called Word2Vec [49]. Word2Vec offers two separate unsupervised autoencoding
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Chapter 2 Background Knowledge

models to learn word representation: Continuous Bag of Words (CBOW) and Skip-gram.

GloVe. A matrix factorization-based learning technique, GloVe, was proposed by Pennington et
al. [50]. In contrast to CBOW and skip-gram, a global co-occurrence of words is computed in GloVe.
However, in GloVe, the word representations are learned in an unsupervised way.

Doc2Vec. The Doc2Vec [51] algorithm is an extension of Word2Vec, which can learn a fixed-length
representation of a sentence, paragraph, or document. The proposed algorithm overcomes the two
drawbacks that the CBOW algorithm poses: the order of words is not captured, and the semantics of
the words are ignored.

FastText. The FastText algorithm [52] exploits the skip-gram architecture and takes the n-grams
of a word as the input, allowing the algorithm to add sub-words into the vocabulary. For instance,
in FastText the n-gram (𝑛=3) of the word "hello" is as follows: <he, hel, ell , llo, lo>,
<hello>. It is noteworthy that the original word is also considered along with the n-grams, where
"<" and ">" are the special tokens. Unlike the previous algorithms, where a vector representation is
learned for each word, FastText learns to generate a vector representation for each sub-word or n-gram
of a word. Learning the sub-word information enables the algorithm to predict a vector representation
for a previously unseen word.

Although static word embedding models are useful in handling simple tasks such as word similarity.
They often fail in complex tasks where the overall contextual understanding of the task is required
(i.e., question answering and dialogue generation).

2.1.2 Recurrent Models

Recurrent Neural Network (RNN). RNN can be considered as a folded neural network, which is
constructed by appending a copy of the same neural network together. This property enables RNNs to
learn sequences better. RNNs can take an arbitrary number of inputs, where the computation takes
previous inputs into consideration, and the weights are shared across all the time steps. However, they
are computationally slow and do not consider future input for the computation of the current state.
Furthermore, RNNs often suffer from vanishing and exploding gradient problems. During the training,
the model parameters get updated using the gradient values. If there are many layers in the network,
the gradient becomes very small, which makes the network unstable during the training. Because of
the chain rule, the gradient values are propagated through each layer down to the initial layer. If the
gradient is very small because of the chain multiplications, it becomes zero before reaching the initial
layer. This kind of gradient prevents the system from converging to the optimum, making the system
unstable. Similarly, if the gradients are too large, they result in large weights. This causes the gradient
to explode and leads the system toward divergence.

Long Short-Term Memory (LSTM). Addressing the shortcomings of RNNs, a long short-term
memory network (LSTM) was designed by Hochreiter and Schmidhuber [53]. Similar to the RNN
architecture, LSTM also contains folded neural networks. However, through gating mechanisms,
LSTM controls the flow of the data. LSTM includes three gates: 1) Input gate (decides which
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2.1 Language Models

information to store in the cell state from the input), 2) Forget gate (decides which information to
forget), and 3) Output gate (decides what to output).

Gated Recurrent Units (GRU). Gated recurrent unit (GRU) is another variation of RNN that is
similar to LSTM and deals with the vanishing gradient problem. GRU combines the input and forget
gates used in the LSTM and creates an update gate. Furthermore, a reset gate resets the information
that is not required for the current state of the unit. GRU does not maintain any candidate cell state,
unlike LSTM, and computes a candidate hidden state to generate the final hidden state. GRU consumes
less memory and easy to modify as it contains less number of gates than LSTM and does not require
any memory units.

Besides static word embedding and recurrent models, convolution-based [54] models are also used
to solve downstream tasks such as text classification [55, 56]. However, in recent years attention-based
models have revolutionized the language modeling task and the field of natural language processing.
Below we discuss about attention-based models in detail.

2.1.3 Attention-based Models

The attention model was first developed for solving machine translation tasks [57]. Ever since it has
grown in popularity for a plethora of artificial intelligence (AI) applications. Nowadays, Attention-
based models are widely used in natural language processing [39, 58, 7], computer vision [59],
multi-modal tasks [60], recommendation [61, 62], and graph-based systems [63, 64]. Human
biological processes are better suited to explaining the intuition behind the attention mechanism. For
instance, our visual processing system has a tendency to selectively focus on some elements of an
image while disregarding other extraneous information in order to aid perception [65]. In image
captioning, some areas of the input image may be more useful for creating the following word in the
caption. Therefore, attention-based models are intuitively a better option for solving these kinds of
tasks. Figure 2.1 depicts diverse applications of attention-based pre-trained models.

In the past, encoder-decoder-based model was a popular choice for training a model for sequence-
to-sequence tasks. However, the traditional encoder-decoder-based system suffers from two flaws:

1. The encoder encodes all input information into a single vector, resulting in information loss, and

2. The decoder has no connection to the input sequence, resulting in a lack of context for the
generation process.

Addressing the issue, an attention-based encoder-decoder architecture was proposed [57], facilitating
the decoder to input sequence for better text generation. The key idea of this approach is projecting
attention weights over the input sequence to focus on the most relevant part of the input sequence for
decoding the next word of the output sequence. The attention weights are obtained by training an
additional feed-forward network. The attention-based sequence-to-sequence model can be formally

13



Chapter 2 Background Knowledge

ELMoULMFiT

BERT

Transformer
GPT

Bidirectional LM

GPT-2

Larger model 
More data

GroverDefense

ERNIE  
(Tsinghua) ERNIE (Baidu) 

BERT-wwm

+Knowledge Graph

KnowBert

Neural entity linker

VideoBERT 
CBT 

ViLBERT 
VisualBERT 

B2T2 
Unicoder-VL 

LXMERT 
VL-BERT 
UNITER

Cross-modal

XLNet

MASS 
UniLM

XLM 
UDify

RoBERTa

Permutation LM 
Transformer-XL 
More data

+ Generation

Longer time 
Remove NSP 
More data

Cross-lingual

MT-DNN

Multi-task

MT-DN𝐍𝐊𝐃

Knowledge distillation

SpanBERT

Span prediction 
Remove NSP

Whole Word Masking

 By Xiaozhi Wang & Zhengyan Zhang @THUNLP

MultiFiT

Multi-lingual

Pre-trained Seq2Seq Models

GPT-3

Figure 2.1: An illustration of pre-trained language model family. Model names are in bold text. Figure adapted
from THUNLP.

defined as:

𝑦 𝑗 = 𝑓𝑛 (𝑦 𝑗−1, 𝑑𝑒𝑐 𝑗 , 𝑐 𝑗),
𝑑𝑒𝑐 𝑗 = 𝑓 (𝑑𝑒𝑐 𝑗−1, 𝑦 𝑗−1, 𝑐 𝑗),
𝑐 𝑗 = Σ

𝑁
𝑖=1𝛼𝑖 𝑗ℎ𝑖 ,

𝛼 𝑗 = 𝑓𝑑 ( 𝑓𝑎 (𝑑𝑒𝑐 𝑗−1, ℎ𝑖),
ℎ𝑖 = 𝑓 (𝑥𝑖 , ℎ𝑖−1),

(2.1)

where, 𝑥: the input sequence, 𝑦: output sequence, ℎ: encoder hidden states, 𝑐: context vector, 𝛼:
attention weights over the input sequence, 𝑑𝑒𝑐: decoder hidden states, 𝑓 , 𝑓𝑛: non-linear functions, 𝑓𝑎:
alignment function, and 𝑓𝑑: distribution function.

A self-attention-based Transformer architecture was first introduced by Vaswani et al. [37]. The
proposed model eradicates the need for sequential processing and proposes a multi-headed self-
attention mechanism to capture the global dependencies between input and output sequences. In
contrast to the recurrent neural network (RNN), where the order of the words is learned sequentially,
Transformer introduces a positional encoding technique that handles the word order efficiently,
leveraging sinusoidal functions. The author demonstrated that sinusoidal functions could capture
sequences larger than the ones encountered during the learning. Within the scope of this thesis,
we leveraged various Transformer-based pre-trained language models. We fine-tune GPT-2 [38] in
Chapter 4 for task-oriented dialogue generation, leverage pre-trained BERT [45] and BART [40] models
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for entity and relation linking respectively in Chapter 5, fine-tune GPT-2 [38] for SPARQL query
generation in Chapter 6, leverage SBERT [47] for document indexing and fine-tune ALBERT [48]
for answer span extraction in Chapter 7, and utilize BERT [45] and ALBERT [48] for developing
evaluation metric in Chapter 8. Figure 2.2 illustrates a high-level architecture of the Transformer
network. The architecture follows an encoder-decoder design pattern.

( a)  The Tr ansf or mer  Model ( b)  Scal ed Dot - Pr oduct  
At t ent i on

( c)  Mul t i - Head At t ent i on

Encoder Decoder

Figure 2.2: Transformer model architecture (Figure taken and adapted from Vaswani et al. [37]).

Transformer Encoder: The encoder block includes a stack of 𝑁 number of identical layers.
Each layer in the stack consists of two sub-layers: a multi-head self-attention layer, followed by
a position-wise fully connected feed-forward layer. Furthermore, each layer includes a residual
connection followed by layer normalization to eliminate the vanishing gradient problem.

Transformer Decoder: The decoder works autoregressively, meaning that the decoder predicts
the next token based on the previous tokens in the sequence. Specifically, it predicts the next token
based on the encoder output and self-attending to the previous output tokens. Similar to the encoder,
the decoder also includes 𝑁 identical layers. However, each layer employs an additional sub-layer to
perform multi-head attention over the output of the encoder. Furthermore, the multi-head self-attention
sub-layer in the decoder is modified into masked multi-head self-attention to prevent the decoder from
attending to future tokens. Notably, the subsequent tokens of the output positions are masked, which
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enables the learning of next-word prediction. Moreover, the output embedding is shifted one position
to the right to facilitate the next token prediction.
It is worth noting that, each layer of encoder and decoder contains a position-wise feed forward
layer, which is applied to the each position separately. We briefly discuss the core concepts of the
Transformer model below:

• Input and Output Embedding: Trained embeddings are used to transform an input token into a
continuous vector of dimension 𝑑𝑚𝑜𝑑𝑒𝑙. An additional positional embedding is added to the
input and output embedding before feeding it to the encoder or decoder, which captures the
word orders in a sequence. Furthermore, the trained embeddings are also used to compute
next-token probabilities.

• Positional Encoding: Since Transformer does not include recurrence or convolution, it employs
a positional embedding to handle word orders in a sequence. The authors employ sinusoidal
functions of different frequencies as follows:

𝑃𝐸 (𝑖𝑑𝑥,2𝑖) = 𝑠𝑖𝑛(𝑖𝑑𝑥/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 )
𝑃𝐸 (𝑖𝑑𝑥,2𝑖+1) = 𝑐𝑜𝑠(𝑖𝑑𝑥/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 )

(2.2)

where 𝑃𝐸 , 𝑖𝑑𝑥, and 𝑖 are positional embedding, position, and dimension, respectively. The
sinusoidal functions allow the model to tackle sequences larger than the ones encountered
during the learning.

• Scaled Dot-Product Attention: The attention mechanism learns the mapping of a query and a set
of key-value pairs to an output (Figure 2.2). A weighted sum of values is considered the output
in this process. The queries and their corresponding keys are used to compute the weighted
values. A multiplicative attention (Dot-product) in the Transformer model is computed as
follows:

𝐴𝑡𝑡𝑛(𝑄, 𝐾,𝑉) = softmax(𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉, (2.3)

where 𝐴𝑡𝑡𝑛(·) is an attention function. Because of the multiplication operations, the value may
grow large in magnitude, which may result in a gradient close to zero (vanishing gradient). A
scaling factor of 1√

𝑑𝑘
is employed to get rid of the vanishing gradient issue.

• Multi-Head Attention: A multi-head attention mechanism is employed in Transformer to attend
tokens from different layers at different positions, which allows learning global dependencies
(Figure 2.2). Let ℎ be the number of attention layers or heads and 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ.
Formally, the multi-head attention is computed as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑄, 𝐾,𝑉) = [head𝑖; ...; headℎ]𝑊
𝑂 where,

head𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊
𝑄

𝑖
, 𝐾𝑊

𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖 ).

(2.4)

In Equation 2.4,𝑊𝑄

𝑖
,𝑊𝐾

𝑖 , and𝑊𝑉
𝑖 are weight trainable weights with a dimension of R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,

where𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 .
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Figure 2.3: An illustration of a sub-graph of the Wikidata knowledge graph. The entity and relation IDs are
shown in the text with black and yellow background, respectively.

Transformer-based pre-trained language models (PLMs) are extensively used in natural language
processing applications such as machine translation [66, 67, 68], summarization [69], question
answering [70, 71], sentiment analysis [72], and text classification [73, 74]. Transformer-based PLMs
improved the performance of these downstream tasks over RNN and convolution-based methods.
Within the scope of this thesis, we heavily utilized pre-trained language models for advancing
conversational question answering systems.

2.2 Knowledge Graph

Knowledge Graphs are considered one of the largest sources of structured data [75]. A knowledge
graph can be viewed as an abstraction of the real world as it stores real-world entities and their
interrelations. Furthermore, knowledge graphs provide an easy way to store and access large-scale
structured data. Because of their scale and flexibility, knowledge graphs are widely used in web
searches, question answering systems, dialogue systems, and link prediction tasks. Nowadays, big
technology companies such as Google, Microsoft, and Facebook use their own knowledge graph as a
part of their infrastructures [76]. Freebase [18], DBpedia [17], Wikidata [16], and YAGO [77] are
some of the widely used knowledge graphs in academia and industries. Figure 2.3 depicts a sub-graph
of the Wikidata knowledge graph.

Although the term "Knowledge Graph" was introduced by Google in 2012 [78], the notion of a
"Knowledge Graph" remains contentious [79, 80]. Färber et al [81] defined knowledge graph as
an RDF 1 graph. An RDF graph includes a set of ordered RDF triples (𝑠, 𝑝, 𝑜), where 𝑠 ∈ 𝑈 ∪ 𝐵
is a subject, 𝑝 ∈ 𝑈 is a predicate or relation, and 𝑈 ∪ 𝐵 ∪ 𝐿 is an object. These RDF terms are
either an URI 𝑢 ∈ 𝑈, a blank node 𝑏 ∈ 𝐵, or a literal 𝑙 ∈ 𝐿 [81]. Paulheim [82] defined knowledge

1https://www.w3.org/RDF/
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Chapter 2 Background Knowledge

Figure 2.4: An example of hyper-relational model (Figure from Galkin et al. [83]).

graph as follows: "A knowledge graph (i) mainly describes real world entities and their interrelations,
organized in a graph, (ii) defines possible classes and relations of entities in a schema, (iii) allows for
potentially interrelating arbitrary entities with each other and (iv) covers various topical domains.".
Although knowledge graphs contain a large number of structured facts, because of their scale, it is
typically challenging to utilize them effectively in real-life applications. Within the scope of this
thesis, we explored Wikidata [16] for developing an unsupervised KGQA system in Chapter 5 and
modeled relational data as a knowledge graph for dialogue generation in Chapter 4.

Wikidata is a hyper-relational knowledge graph constructed collaboratively and operated by
Wikimedia foundation 2 [82]. Lets define a fine set of entities E, a finite set of relations R, and
the power set P = 2(R×E) . Then, a hyper-relational knowledge graph can be formally defined as
G = (E,R,S), where S ⊂ (E × R × E × P) is a set of qualified statements [83, 84]. Figure 2.4
illustrates an example of a hyper-relational model. Wikidata is also available in multiple languages,
which the Wikimedia foundation maintains. The January 2023 version of Wikipedia contains
101,486,080 data items.

2.3 Conversational Systems

2.3.1 Dialogue Systems

Dialogue systems can be primarily divided into two categories: Task-oriented and non-task-oriented
dialogue systems. A brief description of these dialogue systems is provided below.

Task-oriented Dialogue Systems

Task-oriented dialogue (ToD) systems are designed to assist users in completing their tasks or achieving
a certain objective. The functionalities of this kind of system include understanding the user utterance,
tracking the current state of the conversation, and generating action or natural response. ToD has
drawn a lot of interest from both academic and industry fields because of its wide range of use cases.
Hotel and restaurant reservations, flight booking, and car navigation are the most popular applications
of task-oriented dialogue systems. Below we summarize the core concepts involved in a task-oriented
dialogue system:

2http://wikimediafoundation.org/
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2.3 Conversational Systems

• Natural Language Understanding (NLU): For a given user utterance, NLU aims to capture a
semantic abstraction of the user utterance. The semantic abstraction includes the intent and
slot-value pairs. Consider the user utterance in the hotel reservation task, "I am looking for
a cheap place to stay including free parking", the intent is "Query" and slot-value pairs are
<Price-range, Cheap> and <Parking-cost, Free>. Hence, NLU can be decomposed into two
primary sub-tasks: 1) intent detection as a classification task and 2) slot-value pair recognition
as a sequence labeling task. A dialogue manager, which contains a dialogue state tracker and
action generator, takes the NLU result as input and processes the final action for the natural
language generation task.

• Dialogue State Tracking (DST): Dialogue state tracker takes the dialogue context (i.e., dialogue
history, current user utterance) as input and learns to estimate the user goal at each time step 𝑡.
Early research focused on a finite set of dialogue states and modeled the interaction as a Markov
Decision Process [85, 86]. Having a finite set of states make the system less robust to unseen
situations. Addressing this issue, recent dialogue state trackers utilize the slot-value pairs to
determine the user goal, given the current dialogue utterance [87, 88]. In this scenario, DST is
modeled as a multi-task classification task.

Dat abase or  
Knowl edge 
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Di al ogue St at e 
Tr acki ng

Di al ogue Act i on 
Gener at or

Di al ogue Manager
Natural Language 

Understanding
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Figure 2.5: A high-level illustration of task-oriented dialogue system pipeline.

• Dialogue Policy or Action generation: Traditional dialogue systems are often equipped with
dialogue policy learners that aim to capture the action based on the current dialogue state. In a
typical dialogue policy learning setting, a supervised model learns to predict a dialogue action
for each user utterance based on a fixed corpus. Then using a reinforcement learning model, the
system is fine-tuned on the real users [89, 90]. Recent ToD systems learn the dialogue policy in
their large-scale models’ parameters [8] to get rid of complex training mechanisms.

• Natural Language Generation (NLG): A language model is typically trained to generate a
response in the form of natural language, taking the dialogue policy into consideration. However,
recent end-to-end generative systems take the dialogue historyH , user utteranceU and language
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models parameters 𝜃 as input, learn to generate a response as follows:

𝑝(𝑆𝑡 |H ,U, 𝜃) =
𝑛∏
𝑖=1

𝑝(𝑠𝑖 |𝑠1, ., 𝑠𝑖−1,H ,U, 𝜃), (2.5)

where 𝑆𝑡 is the response at time step 𝑡 and 𝑛 is the response length. Figure 2.5 depicts a
high-level overview of a task-oriented dialogue system pipeline.

Task-oriented dialogue systems are generally empowered by external knowledge to assist in
completing the task. Typically the external knowledge comes in the form of database or knowledge
graph triples. Integrating external knowledge into the dialogue generation mechanism is a complex
process that requires an understanding of the knowledge and user utterance besides the language
modeling objective. Taking the additional knowledgeK into account, the response generation objective
of an end-to-end system can be redefined as follows:

𝑝(𝑆𝑡 |H ,U,K, 𝜃) =
𝑛∏
𝑖=1

𝑝(𝑠𝑖 |𝑠1, ., 𝑠𝑖−1,H ,U,K, 𝜃) (2.6)

Various modular approaches such as Memory network [29] and Copy mechanism [30] are often
employed in the learning paradigm to implicitly filter relevant knowledge for dialogue generation.
Using a memory network, the system learns to predict a set of pointers that select relevant knowledge
from the memory to respond to the current user utterance [91, 20]. In a different approach, task-oriented
dialogue systems integrate copy mechanisms to copy facts from the provided knowledge for dialogue
generation [11, 31].

Non-task-Oriented Dialogue Systems

Open-domain dialogue systems are also known as non-task-oriented or chit-chat dialogue systems.
Non-task-oriented dialogue (Non-ToD) systems are typically data-centric and not restricted to any task
or domain. Existing non-ToD systems can be divided into three main categories: 1) Retrieval systems,
2) Generative systems, and 3) Ensemble systems. This type of system is capable of generating diverse
and creative responses. Retrieval systems learn to retrieve the correct dialogue response from a set
of pre-defined responses [26, 27, 28]. The output of these kinds of systems is limited by a finite set
of responses. Generative systems, on the other hand, take the user utterance and dialogue history as
input and learn to generate a response in a natural language [23, 24, 25]. In contrast to the former
approaches, ensemble systems propose a hybrid method where both generative and retrieval systems
are combined to form a flexible and extendable system [92, 93]. Very recently, OpenAI introduced
ChatGPT 3, which claims that the system is capable of answering follow-up questions, admitting its
mistakes, and handling a diverse range of questions.

2.3.2 Question Answering Over Knowledge Graphs

Typically, question answering over knowledge graphs requires three key steps: 1) Entity linking, 2)
Relation linking, and 3) Answer extraction. These steps are briefly discussed below.

3https://openai.com/blog/chatgpt/
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Entity Linking. Knowledge graphs such as Wikidata [16] and DBpedia [17] are a source of
large-scale structured data. In KG-based applications such as question answering, relation extraction,
and semantic search, entity linking is a widely used technique, primarily utilized to identify and
connect the surface form of a text chunk to a knowledge graph entity. The linking facilitates the
applications with additional facts (entities and relations) connected to the linked entity that might
work as an additional signal to the main application. Lets consider the Wikidata KG and a question Q,
Which company’s CEO is Tim Cook?. The surface form of the entity is Tim Cook that connects
to the KG entity https://www.wikidata.org/wiki/Q265852. There are three steps in
entity linking:

1. Entity Mention Detection: Given a question Q, the first task of an entity linker is to identify
the surface form of entity mentions 𝑚={𝑚1,...,𝑚𝑛}, in the question. Here, 𝑛 is the number of
entity appear in Q. A question may include multiple entities, depending on the complexity of
the question. In the running example, Tim Cook is the surface form of the entity.

2. Candidate Generation: A knowledge graph includes millions of facts. It is a very common
scenario that a knowledge graph contains entities with identical surface forms, representing two
different identities in the real world. Therefore, it is crucial to find candidate entities that share
the same surface form 𝑚𝑖 to narrow the search space. For the running example, the candidate
entity list includes Tim Cook (Q7803347) an Australian rules footballer, Tim Cook (Q1404825)
an American ice hockey player, Tim Cook (Q265852) an American business executive.

3. Entity Disambiguation: Entity disambiguation is required only in the cases where multiple
entities with the same surface form exist. The context of the question, additional entity
description, and relation information are typically exploited to perform entity disambiguation.
In the running example, the relation CEO could be utilized to perform entity disambiguation
because a footballer or ice hockey player does not have the relation CEO directly connected to
them. Thus, the correct entity is predicted and linked to the surface form of the text.

Relation Linking. Large KGs, such as Wikidata [16], contains over 100 million entities and 10
thousand relations. Despite the number of relations being less compared to entities, relation linking is
the most challenging tasks in KGQA. Since knowledge graph relations appear in the question in a
variety of surface forms, detecting their mention is a non-trivial task. The relation mention detection
is not as straightforward as entity-mention detection. For instance, in the question What kind of
disease does Montel Williams have?, the linked relation is https://www.wikidata.
org/wiki/Property:P1050 which is Medical Condition (P1050). However, from the surface
form of the question, it is not possible to explicitly extract the relation mention. Relation linking
requires more context from the question, including entity information. Because of the complexity
of relation linking as an individual task, recent approaches attempt to tackle the problem by jointly
training with an entity linker [94, 14].

Answer Extraction. Existing answer extraction methods are primarily divided into 1) an informa-
tion retrieval (IR) based approach and 2) a direct graph search-based approach. In the first approach,
inverted indexes are built over the entire knowledge graph depending on the search mechanism
(horizontal or vertical indexing). Then given a question, a candidate list is generated and later
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re-ranked to get the top-k results using a graph structure. Typically, an in-memory representation of
the graph is employed for faster traversal [95, 96]. The latter approach aims at executing SPARQL
query over a knowledge graph to extract answer entities. This is done in two steps, constructing a
SPARQL query from a natural question and then executing it over a target KG to obtain the answer
entity or entities [97, 98]. Below we provide a brief description of the SPARQL query.

SPARQL Query: The term "SPARQL" stands for SPARQL Protocol and RDF Query Lan-
guage 4. According to the official definition, a SPARQL query can be formally considered as a
tuple ⟨𝐺𝑃, 𝐷𝑆, 𝑆𝑀, 𝑅⟩, where 𝐺𝑃 is a graph pattern (query pattern), 𝐷𝑆 is an RDF dataset, 𝑆𝑀 is
a set of solution modifiers (ORDER, PROJECTION, DISTINCT, OFFSET, LIMIT), 𝑅 is a result
form (SELECT, CONSTRUCT, DESCRIBE and ASK) 5. Figure 2.6 illustrates the terms used in the
formalization. Similar to the previous works, SGPT aims at generating the query body, which includes
the result form, graph pattern, and solution modifiers.

Figure 2.6: An illustration of SPARQL query components.

In this thesis, we investigated two answer extraction methods. In Chapter 5 we introduce a tree
disambiguation-based new answer extraction method. In Chapter 6, we propose a generative approach
to generate SPARQL query from natural questions.

2.3.3 Machine Reading Comprehension

The most standard method for determining whether or not a person completely understands a piece is
to have them answer questions about it. Machine reading comprehension, like the human language
examination, is a natural way of measuring a machine’s or system’s ability to comprehend a language.
A typical MRC assignment necessitates a computing system reading a set of text paragraphs and then
answering questions about the text, which is a complex task. Recent research on machine reading
comprehension can be divided into four primary categories [99]: 1) Span prediction, 3) Cloze style, 3)

4https://www.w3.org/TR/sparql11-query/
5https://www.w3.org/2001/sw/DataAccess/rq23/defns
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Multiple-choice, and 4) Free-form answer. Below a brief description of each type of MRC system is
provided:

• Span prediction: The system learns to predict the answer span (𝑖𝑠𝑡𝑎𝑟𝑡 , 𝑗𝑒𝑛𝑑), where 0 ≤ 𝑖𝑠𝑡𝑎𝑟𝑡 ≤
𝑗𝑒𝑛𝑑 ≤ |𝑝 |, given a question Q and a context paragraph 𝑝. Here, |𝑝 | is the length of the
paragraph p. This technique is also called Extractive Question Answering.

• Cloze style: In this category, the task is to predict a word from the context or vocabulary to
complete or fill in the placeholder or blank position of a question. For instance, what is the
"____" of Germany?

• Multiple-choice answer: In this setting, the system predicts the correct answer 𝑎𝑖 from a set of
hypothesis answers, A = {𝑎1, ...., 𝑎𝑘}, given a question Q.

• Free-form answer: Unlike the previous categories, the predicted free-form answer is not
restricted to the context or the span within the context. The generated answer can be a word or
sequence of words from the vocabularyV.

Within the scope of this thesis, we explored the first type of MRC that predicts the answer span
within the text paragraph. Figure 2.7 depicts such an MRC system. This kind of MRC system consists
of two main components: 1) Document Retriever and 2) Document Reader. Within the scope of this
thesis, in Chapter 7, we develop an MRC system that predicts answer span.

Document Retriever

Given a question Q, the task of the document retriever is to fetch 𝑛 number of relevant text paragraphs
from the document store that can potentially answer the question. The relevance of the documents
is typically measured by checking how contextually similar the retrieved documents are to the input
question. Here, the document store can be a data structure, database, or file that contains the complete
set of texts on which the system should operate. A contextual document ranker retrieves the paragraphs
from the document store and ranks them based on their relevance score. A neural document retriever is
typically used as the contextual document ranker for this task. The top-ranked paragraph or document
is then sent to a Reader module of the MRC system. We use the terms "document" and "paragraph"
interchangeably to indicate retrieved text throughout the MRC-related discussions. Document retrieval
research can be divided into the following three categories:

• Sparse Retriever: Sparse retrievers [100, 101] employ sparse representation of the text to
reduce the search space and retrieve related documents based on the search query. Specifically,
sparse retrievers utilize an exact term-matching heuristic to narrow down the initial set of
retrieved documents, then re-rank them to get the final set of retrieved documents. Classical IR
approaches such as TF-IDF [100] and BM25 [101] are sparse retrievers.

• Dense Retriever: Dense retrievers [102] take advantage of the contextualized embedding
representation of the text to understand the usage or context of words in a passage better. Dense
retrievers typically index the embedding of a passage or jointly the question and passage into
a dense space. Then an embedding-based similarity matching is performed to retrieve the
relevant passages close to the query in the dense embedding space. Similar to a sparse retriever,
a re-ranker is often employed to find the final retrieved passage.
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Figure 2.7: Architecture of a span prediction-based machine reading comprehension system.

• Multi-step Retriever: Multi-step retriever [103], also known as an iterative retriever, completes
the retrieval task in multiple steps. The retrieval is primarily done in three steps. Firstly, a set
of documents are retrieved based on the original question. Secondly, the original question is
reformulated into a new query, usually in the form of dense embedding or natural language.
Finally, the training or retrieval process is stopped based on a specified heuristic (i.e., number of
iterations, fixed number retrieved documents). Multi-step types of approaches are effective for
tasks where multi-hop reasoning is required.

Although dense retrievers obtain better performance, they are more resource intensive and have
high latency compared to sparse retrievers [104]. The set of retrieved documents is then set to a
Document Reader for the answer extraction task.

Document Reader

The task of a document reader is to predict the span within the document that answers the given
question. The reader module takes the question and top-ranked documents as input and predicts the
start and end index of the answer span. Document readers can be divided into two primary categories:

• Extractive Reader: Extractive readers aim to predict the exact span of the answer. Typically, for
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a given question, these systems learn to predict the start and end indices of the answer from the
retrieved documents [15, 105, 106].

• Generative Reader: Generative readers learn to generate the answer in a sequence-to-sequence
manner [107, 108]. However, generative readers suffer from syntax error and incoherence
issues, unlike the extractive reader [109].

Within the scope of this thesis as conversational systems, we explored knowledge-based task-oriented
dialogue systems [9], unsupervised question answering over knowledge graphs [110], and machine
reading comprehension [111] systems.

2.4 Evaluation Metrics

Human evaluation is considered to be the most effective way of obtaining accurate quality measurements.
However, obtaining a human judgment is both time-consuming and cost-intensive. Thus, automatic
evaluation metrics have become a significant area of research for assessing system performance.
Recent automatic evaluation metrics can be categorized into two primary types: word-overlap-based
and embedding-based metrics. BLEU [32], METEOR [33], and ROUGE [112] are word-overlap-based
metrics, whereas BERTScore [34] and MoverScore [113] are embedding-based metrics. We briefly
discuss the widely used metrics below.

BLEU. BLEU [32] was originally designed for evaluating machine translation (MT) systems.
It computes 𝑛-gram similarity score between words from reference 𝑥 and translated 𝑦 sentences.
Specifically, it calculates the geometric mean of the n-gram precisions 𝑝𝑖 and multiplies the result by
a brevity penalty constant 𝛾 to obtain the final BLEU score. BLEU is computed as follows:

𝐵𝐿𝐸𝑈 = 𝛾 exp(Σ𝑛𝑖=1𝑤𝑖log𝑝𝑖),

𝛾 =

{
1 if |𝑦 | > |𝑥 |
𝑒𝑥𝑝(1 − |𝑥 ||𝑦 | ) otherwise,

(2.7)

where |𝑥 | and |𝑦 | denotes the number of words in 𝑥 and 𝑦, respectively. A positive weight 𝑤𝑖 , summing
up to 1.0, is used as a multiplication factor for computing the BLUE score. Four-gram is widely
adopted in BLUE to measure the similarity between sentences. However, as BLEU works at the
word-level, it is not effective for capturing semantic similarity between sentences.

ROUGE. Recall-Oriented Understudy for Gisting Evaluation ROUGE [112] was developed for
automatic evaluation of the summarization task. ROUGE is available in four variants: ROUGE-N,
ROUGE-L, ROUGE-W, and ROUGE-S. ROUGE-N computes the n-gram recall between a set of
reference summaries and a candidate summary. A Longest Common Sub-sequence (LCS) based
F1 measurement is used in ROUGE-L to compute the similarity between two summaries, whereas
ROUGE-W utilizes weighted LCSes for the measurement. A skip-bigram-based pair matching is
used in ROUGE-S to handle arbitrary gaps within a sentence. Overall, ROUGE demonstrates a
higher correlation to human evaluation compared to BLEU and METEOR when it comes to assessing
summary quality.
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METEOR. Addressing the shortcomings of BLEU, the metric METEOR [33] was proposed that can
capture the order of words when computing the similarity score. Besides, it performs word-to-word
matches, considering the stem or synonyms as the same word. For handling word orders, METEOR
introduces a penalty term 𝛽 in the final computation. METEOR is computed as follows:

METEOR = 𝐹𝑚𝑒𝑎𝑛 ∗ (1 − 𝛽),

𝐹𝑚𝑒𝑎𝑛 =
10𝑃𝑅
9𝑃 + 𝑅 ,

𝛽 = 0.5 ∗ ( number of chunks
number of matched uni-grams

)3,

(2.8)

where, 𝑃 and 𝑅 refer to uni-gram precision and uni-gram recall, respectively. For multiple reference
sentences, the score is computed across all the reference sentences with respect to the predicted
sentence. Finally, the maximum score is set as the final evaluation score. Although METEOR
improves the evaluation scores over BLUE, it is still unable to capture the semantic variations between
sentences.

Language Models as Evaluators. Based on the hypothesis that the next utterance generation
relates to the utterances in the dialogue history in open-domain dialogue systems, an evaluation metric
is proposed [114] where language models are employed as evaluators. It considers two consecutive
utterances and compute a coherence score between them as follows:

𝑃(𝑈) =
𝑚+𝑛∏
𝑖=𝑚+1

𝑝(𝑈𝑚+𝑛 |𝑈𝑖 ,𝑈𝑛+1, .....,𝑈𝑚+𝑛−1), (2.9)

where 𝑚 and 𝑛 denote the history and target utterance length, respectively. Here, 𝑈 is the target
utterance. Finally, a two level nested aggregation is performed to compute the final score. The first
level aggregates word-level scores where the second level aggregates utterance-level scores. The final
score is formally computed as follows:

𝐿𝑀𝑈 = Σ
|𝑈 |
𝑢=1(

Σ
|𝑊 |
𝑤=1𝑝(𝑤 = 𝑤)
|𝑊 | ), where𝑊 ∈ 𝑈, (2.10)

where |𝑈 | and |𝑊 | denote number of utterances in the dialogue and number of words in an utterance,
respectively. This approach demonstrates higher correlation to human judgement in evaluating
open-domain dialogue systems over other open-domain dialogue evaluators.

Earth Mover’s Distance. The Earth Mover’s Distance (EMD) estimates the amount of work
required to transform a probability distribution into another [41]. Inspired by the EMD, in NLP,
the transportation problem is adopted to measure the amount of work required to match the system-
generated hypothesis sentence with the reference sentence [115, 113]. Let us define the reference as R
= {𝑟1, 𝑟2, ..., 𝑟𝑝} and the hypothesis as H = {ℎ1, ℎ2, ..., ℎ𝑞}, where 𝑟𝑖 and ℎ 𝑗 indicates the 𝑖-th and
𝑗-th word of the reference and hypothesis, respectively. The weight of the word 𝑟𝑖 and ℎ 𝑗 are denoted
as 𝑚𝑖 and 𝑛 𝑗 respectively. Then, the total weight distribution of R andH is 𝑚∑ =

∑𝑝

𝑖=1 𝑚𝑖 and 𝑛∑ =∑𝑞

𝑗=1 𝑛 𝑗 , respectively. Here, the sentence-level and normalized TF-IDF score of a word are considered
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Figure 2.8: Figure (a) depicts a high level overview of the Earth Mover’s Distance, where the weight-flow
constraints are demonstrated in Figure (b).

as the word’s weight. Formally, EMD can be defined as:

𝐸𝑀𝐷 (H ,R) =
min 𝑓𝑖 𝑗 ∈F(H,R)

∑𝑝

𝑖=1
∑𝑞

𝑗=1 𝑑𝑖 𝑗 𝑓𝑖 𝑗

min(𝑚∑, 𝑛∑) (2.11)

where 𝑑𝑖 𝑗 is the distance between the words 𝑟𝑖 and ℎ 𝑗 in the space and F (H ,R) is a set of possible
flows between the two distributions that the system tries to optimize. In Equation 2.11, 𝐸𝑀𝐷 (H ,R)
denotes the amount of work required to match the hypothesis with the reference. The optimization is
done following four constraints:

𝑓𝑖 𝑗 ≥ 0 𝑖 = 1, 2, ..., 𝑝 and 𝑗 = 1, 2, .., 𝑞,
𝑞∑︁
𝑗=1

𝑓𝑖 𝑗 ≤ 𝑚𝑖 𝑖 = 1, 2, ..., 𝑝,

𝑝∑︁
𝑖=1

𝑓𝑖 𝑗 ≤ 𝑛 𝑗 𝑗 = 1, 2, ..., 𝑞,

𝑝∑︁
𝑖=1

𝑞∑︁
𝑗=1

𝑓𝑖 𝑗 = min(𝑚∑, 𝑛∑)

(2.12)

The first constraint indicates that each flow must be non-negative. The second constraint limits the
total weights flowing from 𝑟𝑖 to less than or equal to 𝑚𝑖. Similarly, the third constraint restricts the
total weights flowing from ℎ 𝑗 to less than or equal to 𝑛 𝑗 . The final constraint indicates that the total
flow of weights must be equal to the minimum weight distribution. Figure 2.8 depicts the EMD
for a given hypothesis-reference pair. Word mover distance (WMD) [115] and MoverScore [113]
incorporate concepts from EMD to assess the semantic similarity between reference and hypothesis
sentences. In this thesis (Chapter 8), we exploit RoMe and make changes to the EMD algorithm to
adapt the concept for computing the semantic similarity between a hypothesis-reference pair.

Tree Edit Distance. Trees are among the most studied data structures in computer science. The
tree comparison method is used in a wide range of areas, including image analysis, compiler design,
and computational biology. In 1989, Zhang and Shasha [116] proposed Tree edit distance (TED),
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Figure 2.9: Tree transformation.
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Figure 2.10: TED operations required for transforming tree T1 into T2.

which computes the minimum number of operations required to transform one tree into another.
During the transformation, the performed operations are: Change, Delete, and Insert. Figure 2.9
illustrates a tree before and after the transformation. The tree edit distance is formally described below
in detail.

Let T be a rooted and labeled tree, where 𝑚 ∈ T is a node of the tree T . We denote T (𝑚) as a
sub-tree of the Tree T with a root 𝑚. Let 𝑛 is a descendent of T (𝑚), where 𝑞 is a node to the left of 𝑛.
Now, we define X as the set of finite alphabets used as the labels of the tree nodes. Let 𝜁 be a cost
function such that 𝜁 : (X × X) − (𝜃, 𝜃), which represents the cost of edit operation. Formally, for any
𝑎, 𝑏, 𝑐 ∈ X the following constraints are met:

𝜁 (𝑎, 𝑏) ≥ 0, 𝜁 (𝑎, 𝑎) = 0,
𝜁 (𝑎, 𝑏) = 𝜁 (𝑏, 𝑎),
𝜁 (𝑎, 𝑐) ≤ 𝜁 (𝑎, 𝑏) + 𝜁 (𝑏, 𝑐).

(2.13)

Let F be a forest, where F − 𝑚 means the deletion of node 𝑣 from the forest F and F − T (𝑚)
means deletion of all the descendants of the sub-tree T (𝑚) including the node 𝑚, from the forest F .
Let Ω be an empty tree and 𝜃 ∉ X be a special blank label where T𝜃 = X ∪ 𝜃. Let T2 and T2 be labeled
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trees. The tree edit distance can be formally defined as:

𝜙(T1,T2) = 𝑚𝑖𝑛 𝜁 (Q) {Q is a set of operations for transformingT1 intoT2}. (2.14)

A recursion-based tree edit distance was proposed by Klein et al.[117]. Let F1 and F2 be forests. The
TED computation can be formally defined as:

𝜙(Ω,Ω) = 0,
𝜙(F1,Ω) = 𝜙(F1 − 𝑚,Ω) + 𝜁 (𝑚 −→ 𝜃),
𝜙(Ω, F2) = 𝜙(Ω, F2 − 𝑛) + 𝜁 (𝜃 −→ 𝑛),

𝜙(F1, F2) = min


𝜙(F1 − 𝑚, F2) + 𝜁 (𝑚 −→ 𝜃),
𝜙(F1, F2 − 𝑛) + 𝜁 (𝜃 −→ 𝑛),
𝜙(F1(𝑚), F2(𝑛)) + 𝜙(F1 − T1(𝑚), F2 − T2(𝑛)) + 𝜁 (𝑚 −→ 𝑛).

(2.15)

The time complexity of the algorithm is 𝑂 ( |T1 |
2 |T1 |log|T2 |). There have been other researches that

focus on improving the optimization of the tree edit distance algorithm [118, 119].

In this thesis, we exploit the TED algorithm in Chapter 8 to capture the syntactic difference
between two sentences. Specifically, we calculate the syntactic dissimilarities between two natural
language sentences by computing the tree edit distance of their corresponding dependency trees.
In computational linguistics, dependency and constituency trees are used to represent syntactic
dependencies between words in a sentence. However, unlike the constituency tree, a dependency tree
can represent non-adjacent and non-projective dependencies in a sentence, which frequently appear in
spoken language and noisy text. That leads us to prefer dependency trees over constituency trees for
evaluating NLG output.

Figure 2.11: BERT-Score (image from Zhang et al. [34]).

BERTScore. BERTScore [34] is an embedding-based evaluation metric that performs contextu-
alized embedding-based greedy matching to obtain a maximum similarity score. For a reference
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sentence 𝑥 and predicted sentence 𝑦 the BERTScore, 𝐵𝐸𝑅𝑇𝐹 is computed as follows:

𝐵𝐸𝑅𝑇𝐹 = 2
𝐵𝐸𝑅𝑇𝑃 · 𝐵𝐸𝑅𝑇𝑅
𝐵𝐸𝑅𝑇𝑃 + 𝐵𝐸𝑅𝑇𝑅

,

𝐵𝐸𝑅𝑇𝑃 =
1
|𝑦 |Σ𝑦 𝑗 ∈𝑦𝑚𝑎𝑥𝑥𝑖∈𝑥𝑥

⊤
𝑖 𝑦 𝑗 ,

𝐵𝐸𝑅𝑇𝑅 =
1
|𝑥 |Σ𝑥𝑖∈𝑥𝑚𝑎𝑥𝑦 𝑗 ∈𝑦𝑥

⊤
𝑖 𝑦 𝑗 ,

(2.16)

where, 𝑥𝑖 and 𝑦 𝑗 denote the 𝑖-th and 𝑗-th token of the reference and predicted sentence, respectively.
Figure 2.11 demonstrates a high-level overview of BERTScore, where 𝐵𝐸𝑅𝑇𝑅 is denoted as 𝑅𝐵𝐸𝑅𝑇 .
An all-pair cosine similarity score is computed to obtain BERT𝑃 and BERT𝑅 scores. Since the value
of cosine similarity ranges between a scale of [-1,1], normalization is applied as follows to obtain the
final evaluation score:

𝐵𝐸𝑅𝑇𝐹 =
𝐵𝐸𝑅𝑇𝐹 − 𝑙𝑏

1 − 𝑙𝑏
(2.17)

where 𝑙𝑏 is an empirical lower bound computed from the Common Crawl monolingual datasets 6. For
consistency, the same normalization technique is applied to obtain both BERT𝑃 and BERT𝑅. Similar
to BERTScore, popular metrics such as BLEURT [36] and WE_WPI [35] also employ contextualized
word embedding for computing the evaluation score.

Within the scope of this thesis, following previous works, we employ BLEU, METEOR, BERTScore,
and MoverScore to evaluate dialogue systems. In this thesis, we investigate task-oriented dialogues;
therefore, we do not use Language Models as Evaluators as the metric is suited for open-domain
dialogue evaluation. Furthermore, we exploit Tree edit distance in our proposed metric when
addressing research question RQ4.

6https://commoncrawl.org/
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Related Work

3.1 Dialogue Systems

Most dialogue systems can be divided into task-oriented and non-task-oriented systems. The
development of contemporary dialogue systems is briefly summarized below.

3.1.1 Task-oriented Dialogue Systems

The majority of task-oriented conversation systems are pipeline-based or end-to-end systems. Pipeline-
based systems are modular and aim to improve a specific module or component. Recent research
focuses on enhancing task-oriented dialogue performance by providing a better dialogue state
tracker [87, 120], user intent recognition module [121], system action generator [122], and improved
dialogue generation [123, 11, 12]. However, due to the inter-dependencies between components, each
component’s error propagates across the whole system. The propagation of errors eventually affects
the overall performance of the system.

End-to-end task-oriented-dialogue systems alleviate the human effort in designing components.
These kinds of systems typically train several components jointly in a sequence-to-sequence manner.
Recent research proposed techniques to jointly train dialogue state tracker and generation models [124].
A separate direction of research focuses on jointly training dialogue action and generation [125]. In a
different work, Zhang et al. [126] proposed techniques for jointly training dialogue management and
generation. In a separate direction of research, latent knowledge reasoning [127] and projecting the
action into a latent space was introduced to optimize the dialogue generation [128]. Incorporating
knowledge graph and dialogue history as a sequence and training a generative system for dialogue
generation were also explored by [20, 12]. These approaches propose knowledge encoding techniques
for effectively incorporating external knowledge into the generation process. Besides, API calls
are also utilized to get rid of components such as dialogue state tracking [129]. In a multi-task
setting, Hosseini et al. [10] proposed a sequence-to-sequence model that jointly trains by optimizing a
multi-task loss for the dialogue generation process. This approach considers all the tasks as a single
sequence prediction problem.

More recently, pre-trained language models were widely adopted for dialogue generation. Pre-trained
language models contain rich embedding representations of the text, which are good at capturing the
context. Causal language models such as GPT-2 [38] and CTRL [130] are typically employed for
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learning the next-word distribution in the dialogue generation process. These models are pre-trained
on large dialogue corpora such as Reddit dump [58], Twitter posts [131], and later utilized in different
parts of the dialogue generation process. However, existing systems face two issues when they try
to generate dialogues in a multi-domain setting. Firstly, they are unable to capture the underlying
semantics of a knowledge graph, such as the relationship between entity and relation. This leads
frequently to incorrect and inappropriate dialogue generation [31]. Secondly, they lack the ability to
encode dynamic knowledge in a multi-domain setting, resulting in noisy dialogues [8]. Generally,
integrating a knowledge base into the learning process and generating correct and coherent dialogues
at the same time is a challenging task.

3.1.2 Non-task-oriented Dialogue Systems

Existing non-task-oriented (open domain) dialogue systems can be divided into three primary
categories: retrieval-based systems, generative systems, and ensemble systems. Non-task-oriented
dialogues are also known as chit-chat systems.

Retrieval-based open domain dialogue systems aim to retrieve the correct dialogue from a set of
pre-defined responses. Depending on single-turn and multi-turn settings, the complexity of these
systems vary [132, 26]. Early researches focus on non-neural network-based approaches (i.e., support
vector machine) [133]. Later, feed-forward network, CNN, and RNN are employed to match candidate
response and dialogue history [134, 27, 26]. User interaction matching-based networks were also
proposed for retrieving the most relevant dialogue [135, 136]. In a different approach, ranking loss
based retrieval optimization method was proposed to improve the models’ performance [137]. More
recently, pre-trained language-based models are employed for the retrieval task [45, 58]. This approach
significantly improved the state-of-the-art performance over the former methods. The conversations in
retrieval-based dialogue systems are often coherent and fluent since they are constructed from manual
efforts. However, they lack the capabilities of performing conversations on out-of-domain topics.

The early dialogue systems in the history of conversational AI were mostly rule-based generative
dialogue systems [1, 2]. In recent years, with the development of deep learning algorithms, generative
dialogue system have gained a lot of attention in the NLP community. Majority of the recent
open-domain dialogue systems are developed and trained to work in a sequence-to-sequence manner.
Early approaches utilized LSTM models to generate dialogues [138, 139], typically provided with
external knowledge [140, 141]. LSTM-based sequence-to-sequence models are further utilized in
several research works to learn semantic dependency [23] and generate persona-based dialogues [135].
Later, GRU-based dialogue systems become popular that performs utterance aggregation to understand
the context for dialogue generation [142]. In a different work [143], a knowledge injection method is
proposed to learn facts for the dialogue generation. More recently, Transformer-based approaches
achieved state-of-the art performance on non-task-oriented dialogue generation [8, 12]. Transformer-
based language models are typically trained on a large corpora to capture a wide range of dialogue
patterns [5, 24]. These pre-trained models are additionally utilized to identify emotion [144] or factual
correctness [25] in the dialogue.

A combination of both retrieval-based and generative dialogue systems is proposed for developing an
improved conversational system [145, 146]. In a different line of research, multi-modal dialogue systems
have become popular, facilitating speech and image data for an accurate dialogue generation [147].
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Within the scope of this thesis, in Chapter 4, we introduce a new task-oriented dialogue system. In
contrast to the existing approaches, our proposed system employs knowledge embedding and attention
masking techniques to embed structural knowledge into a language model for generating informative
and engaging dialogues.

3.2 Question Answering Over Knowledge Graphs

Question answering over knowledge graphs involves three key steps: 1) Entity linking, 2) Relation
linking, and 3) Answer extraction. We discuss recent works related to these three steps below.

3.2.1 Entity Linking

The entity linking task entails identifying the entity mentions in the question and linking them to the
corresponding knowledge graph entities. Recent works on entity linking primarily focused on first
detecting entity mentions in the question based on text similarity. Then, they link these mentions
to the correct entity in the knowledge using entity labels as well as other features such as entity
type information [148, 149]. Several other studies focused on training entity mention detection and
entity disambiguation together to perform entity linking [150, 151]. However, in order to train these
systems, it is necessary to have datasets with annotated entity mention boundaries. Recently, natural
language processing has reached a new height of success with the emergence of Transformer-based [37]
pre-trained language models [39, 40]. In the context of question answering, pre-trained language
models have been widely studied for the entity linking task [152, 153].

A BERT-based [39] entity mention technique was proposed by Boros et al. [154] to identify entity
mention and classify the entity type. The authors utilized link probability scores between anchors and
Wikipedia pages to sort candidate entity mentions and followed [155] to perform entity disambiguation.
In a similar work [156], BERT is also used to recognize entity mentions where person, location, and
organization entities from German Wikipedia are transformed into English entities. Here, entities are
indexed into a dense space to generate candidate entities. A Random Forest model is later employed
to rank the final set of entities. However, this process obtains decreased performance due to entity loss
caused by the translation process. Multiple research [157, 158] index Wikidata labels and perform
ElasticSearch 1 to generate candidate entities for the entity linking task.

In another approach, an encoder-decoder attention model is leveraged in an end-to-end manner
to handle long entity labels and implicit entities of Wikidata knowledge graph [159]. A separate
work [160] proposed a joint entity mention and linking algorithm that leverages multiple context
embeddings to compute candidate entity score. A deep convolutional neural network later utilizes the
score to find the final entity. A pointer network-based [161] end-to-end model was to perform entity
mention detection and linking [162].

Entity linking is a widely studied topic. More recent works on English entity linking approaches are
explained in detail by [163]. Unlike the recent work, this thesis utilizes a BERT [45] model pre-trained
for name entity recognition (NER) task to detect entity mentions. This thesis takes Wikidata as the
target knowledge graph and indexes Wikidata entity labels into a dense space for candidate entity
generation. Finally, a relation-linking guided entity disambiguation technique is proposed to predict

1 https://www.elastic.co/elasticsearch/

33

https://www.elastic.co/elasticsearch/


Chapter 3 Related Work

the final linked entity (discussed in Chapter 5). Another research [164] proposes local compatibility
and semantic similarity-based statistical entity linking mechanism.

3.2.2 Relation Linking

Relation linking is another challenging task in KGQA since it requires complex language inference
capabilities. The relation linking task entails linking the surface form of a relation phrase to a predicate
of a knowledge graph. Both supervised and distantly supervised approaches have been explored for the
relation linking task [149, 165]. Several works focus on candidate generation techniques for relation
linking [166, 167, 168]. They perform text-similarity over a dictionary such as PPDB [169] and
PATTY [170], built from patterns mined from large text corpora. Connection density of a knowledge
graph for relation linking was introduced by Dubey et al. [14]. A different research leverages English
morphology and alignment model for relation linking [171]. Abstract meaning representation and
Transformer-based models are also utilized to rank [172] and disambiguate [173] relations.

In a different research, systems use already linked entities from the preceding step to perform
relation linking, utilizing the structural information of the knowledge graph [174]. Unseen relation
linking has also been studied recently, where the model needs to predict relations which are not
seen during the training step [175]. Similarly [176, 177] modeled joint learned knowledge graph
embedding for entity linking, where the linked relation information is used additionally to perform
disambiguation among the candidate entities. In a disparate research, a zero-shot methodology has
also been used to investigate relation linking [178].

Relation linking is particularly challenging since relation mentions in a natural question are
frequently implicit [171, 172]. A relation path ranking method is proposed to link the surface form of
relation to relation path in knowledge graph [179]. The authors leverages gated mechanism to align
word embedding and structural information space.

In contrast to previous works, in this thesis, we propose a zero-shot relation linking technique that
does not require training data. We leverage a pre-trained natural language inference model to develop
the zero-shot relation linker (discussed in Chapter 5).

3.2.3 Answer Extraction

The two most prevalent methodologies for the answer entity extraction sub-task are semantic parsing-
based and retrieval-based methods. Semantic parsing-based methods transform the natural question
into a logical form which is then utilized to fetch the answer entities from the target KG [180, 181]. On
the contrary, retrieval-based methods use the entity and relation extracted from the natural question to
obtain the answer entities from the KG [182, 183]. In another direction of reserach, a graph neural
network-based method for KGQA has been proposed by Sorokin et al. [22], while other approaches
fetch candidate SPARQL queries using the entities and predicted relations and re-rank them using
neural network-based methods [97, 184]. More recently, a message-passing based system for the
KGQA task has been developed, where a confidence score is propagated throughout the knowledge
graph, computed by input question parsing and matching [185].

Unlike the previous research, this thesis proposes two techniques for extracting answer entities.
An unsupervised method where the entity and relations are already linked (discussed in Chapter 5)
and a generative system to construct SPARQL query directly from a natural question (discussed in
Chapter 6). Existing SPARQL query generation methods can be divided into three primary categories:
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1) Manual and semi-automatic, 2) Template-based, and 3) Generative approaches. Recent works
related to these methods are summarized below.

Manual and Sem-automatic Approaches: The early research on SPARQL query generation primarily
focused on hand-crafted query construction [186, 187, 188, 189, 190, 191]. In these approaches,
SPARQL queries were manually designed to test the coverage and inference capabilities of ontology
systems. A different research direction emphasised on query generation from datasets [192, 193].
Görlitz et al. [192] carefully explored an RDF dataset and defined a set of query characteristics for
the query selection purpose. The authors employed a query generation heuristic to predict the final
SPARQL representation, which checks all possible combinations of query patterns based on the
defined query characteristics. In another paper, Qiao et al. [193] proposed a technique to construct a
synthetic graph from a given RDF graph employing three separate algorithms to generate various
types of SPARQL queries. However, the algorithm-generated queries are limited by six triples and can
have at most two attributes. An ontology-based semi-automatic method was proposed by Dibowski et
al. [194], where a user interface is provided to modify or select relevant concepts from the ontology for
generating the SPARQL query. Nevertheless, manual efforts make it difficult to adapt these systems
for large scale knowledge bases such as Wikidata [16] and DBpedia [195].

Template-based Approaches: Recently, to alleviate the manual efforts, a schema-based SPARQL
query generation has received significant research attention [196, 197, 198]. These approaches aim
to generate an intermediary schema representation (template) of the SPARQL query. The slots in
the SPARQL schema are then filled up based on the defined heuristics to rank and obtain the final
SPARQL query. In another schema-driven approach, Zenz et al. [199] proposed a method to bind
domain-specific keywords to generate query template. The authors followed an incremental refinement
strategy to obtain the final SPARQL query from a query template. In a different work, Unger et al.
[196] introduced a method to generate SPARQL query templates, utilizing the semantic structure of
the question. More recently, a classification based approach was proposed by Vollmers et al. [98],
where semantically similar types of questions are classified to obtain a query template. Nevertheless,
the query generation task remains limited due to the fixed number of schema. To extend the coverage
of these systems for additional types of questions and queries, manual schema creation is required.

Generative Approaches: In a different direction of solutions, Soru et al. [200] developed a sequence-
to-sequence system that utilizes bi-directional LSTM [201] for generating SPARQL templates. An
interpreter reconstructs the final SPARQL query from the query template using rule-based heuristics.
However, the method cannot handle out-of-vocabulary words in the test set and lacks understanding of
the question, thus frequently generating incorrect graph patterns in the query. Recently, Zafar et al. [97]
exploited syntactic features to train a SPARQL query ranking model leveraging Tree-LSTM [202].
The similarity score between syntactic features of a question and a query is used for ranking candidate
queries. Since the syntactic features are not learned and are only used to compute tree-similarity, the
system does not generalize well when encountering an unseen question. Furthermore, the system
needs to find all query patterns from the extracted sub-graph to predict the final SPARQL query,
otherwise it fails to generate the query.

Despite substantial research efforts, adapting these systems to arbitrary KGs and handling low-
frequency question types is difficult. The main challenges can be summarized as follows: (1) SPARQL
templates are usually created manually or semi-automatically by domain experts, which is both time
consuming and cost intensive, (2) The query templates are tailored to a particular KG, which results in
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potentially changing of the whole template set when the underlying graph is changed, (3) The extension
of template sets to handle new question types is performed manually or semi-automatically, and (4) In
pipeline-based approaches, the SPARQL generation module is dependent on the performance of the
preceding modules (i.e., entity and relation linkers as well as ranking algorithms) and, thus, suffer
from error propagation. In contrast to the approaches mentioned above, this thesis aims to encode
the linguistic features of an NLQ and leverages a pre-trained language model to both learn the graph
patterns and generate SPARQL queries.

3.3 Machine Reading Comprehension

Most machine reading comprehension systems have two major components: 1) Document retriever
and 2) Document reader. Few works additionally utilize question reformulation techniques for
generating search queries prior to the core MRC task [203, 204]. MRC datasets play a vital role in the
development of these components. We briefly discuss the major research works on MRC below.

3.3.1 Document Retriever

A document retriever can be considered as an information retrieval (IR) system that retrieves relevant
documents with respect to the question. Recent document retrievers can be categorized into three
major approaches: 1) Sparse Retriever, 2) Dense Retriever, and 3) Multi-step Retriever.

Sparse Retriever

TF-IDF [100] and BM25 [101] are the most widely used sparse retriever adopted by various IR
systems. Sparse representations are used to measure term frequency in these classical IR approaches.
DrQA [15] utilized bi-gram matching and TF-IDF score to retrieve a set of Wikipedia articles relevant
for answering given a natural language question. BERTserini [106] utilized various modalities of a
document (i.e., sentence-level, paragraph-level, and document-level) matching to index information
during the pre-processing step. The best-performing retrieval approach was paragraph-level indexing.
However, the words in the question may not appear in the relevant paragraphs for answering the
question. Addressing this issue, dense retrievers are later proposed that consider contextualized word
embedding for retrieval.

Dense Retriever

With the increasing attention on Transformer-based language models, dense representation of the
text has boosted the performance of natural understating. In a widely used dense retrieval approach,
duel-encoders are employed to retrieve relevant paragraphs. Both the question and paragraphs are
encoded independently in these approaches [205, 206, 102, 207]. The encoding is primarily done
using BERT [45]. Another approach jointly encodes the question with a document with a focus on
inter-token interaction [208, 209, 210]. Interaction-based retrieval approach enables the system to
capture rich interaction and understand the relevant documents better. However, such approaches are
resource intensive and difficult to adapt for large-scale data.

A hybrid approach, where the duel-encoder and interaction based techniques are combined for
improved performance and efficiency [211, 212, 213]. In general, dense retrievers are computationally
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expensive, despite the effectiveness and performance gain in the retrieval task. To alleviate this issues,
questions and documents are encoded separately and stored in the memory to perform offline retrieval.
In this case, the retrieval trade-offs the performance to get rid of computational overheads.

Multi-step Retriever

Multi-step retrievers, firstly, retrieve relevant documents based on the original query utilizing sparse [70,
214] or dense retrievers [215, 216]. Next, the original question is reformulated into natural language
query [70] or dense embedding [217]. The reformulated queries are then finally utilized to find a
refined set of documents and stop the iterative process of retrieval [215, 216, 218, 219]. In multi-step
retrieval approaches, systems are generally trained till a fixed number of iterations or a defined number
of documents are retrieved [71, 70, 219, 214].

3.3.2 Document Reader

Document readers can be primarily divided into two categories: Extractive and Generative readers.
Given a question, extractive readers focus on predicting the answer span from the retrieved paragraphs.
Utilizing a paragraph selector component DS-QA [220] first predicts an answer span from the retrieved
paragraph. The paragraph selector selects the paragraphs based on the probability of being the answer
in those paragraphs. DPR [102] employs a BERT-based reader to compute the probability of being
a token at the start or end position of the answer. In a different approach, the reader system forms
an intermediary graph and then learns to extract the answer from the intermediary graph [221]. A
different focus of work optimize the reader component to extract the answer span by a joint training
mechanism [222].

The generative reader learns to generate the answer span from the provided question and retrieved
paragraph. S-Net [223] first identifies the span where the answer might exist and then incorporate a
sequence-to-sequence model to generate the final answer. In a different approach, RAG [224] employs
a BART model to generate the final answer, taking the question and retrieved paragraph as input.
However, generative readers usually suffer from spelling mistakes, change of meaning by adding
additional text before and after the answer span [109, 225].

3.3.3 MRC Dataset

Dataset is one of the crucial factors for developing intelligent systems. Machine reading comprehension
datasets are broadly classified into two types: open-domain and domain-based. Open domain datasets
are typically constructed from Wikipedia [226, 19], books from various domains [227], news
portals [228], social-media posts [229]. On the other hand, domain-specific datasets are constructed
from reliable sources such as official reports [230], articles [111], official web-portals [111], and
domain-specific books [231]. Besides, numerous MRC datasets are constructed, focusing on developing
conversational [231, 232] and multi-modal systems [233] across multiple domains.

Following the previous works, this thesis adopts a dense retriever and utilizes a BERT-based reader to
train a machine reading comprehension system on a climate domain dataset (discussed in Chapter 7).
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3.4 Evaluation of Generative Systems

A potentially good evaluation metric is one that correlates highly with human judgment. Among
the unsupervised approaches, BLEU [32], METEOR [33] and ROUGE [112] are the most popular
evaluation metrics traditionally used for evaluating NLG systems. ROUGE [112] is used mostly for
evaluating document summarization. There are four variants of ROUGE, amongst which in this paper,
we use ROUGE-L as a baseline. Unlike BLEU, ROUGE-L does not need a predefined value for 𝑛-gram
matching as it calculates word-overlap based on the longest common sequence (LCS). Although
these metrics perform well in evaluating machine translation (MT) and summarization tasks, [234]
shows that none of the word overlap based metrics is close to human level performance in dialogue
system evaluation scenarios. In a differnt method, word embedding-based metrics are introduced
for evaluating NLG systems [235, 236]. Several unsupervised automated metrics were proposed
that leverage EMD; one of them is word mover’s distance (WMD) [115]. Later, [236] proposed
an evaluation metric, incorporating WMD and word-embedding, where they used word alignment
between the reference and hypothesis to handle the word-order problem. Recently, [35] introduced an
EMD-based metric WE_WPI that utilizes the word-position information to tackle the differences in
surface syntax in reference and hypothesis. In a disparate approach, Transformer-based [37] language
models are modeled as evaluators. Two consecutive utterances are considered to compute a coherence
score between them. Another work [237], treats the dialogue quality assessment task as an anomaly
detection problem. The authors investigated four dialogue modeling approaches and found negative
correlation with human judgement.

Several supervised metrics were also proposed for evaluating NLG. ADEM [238] uses a RNN-based
network to predict the human evaluation scores. With the recent development of language model-based
pre-trained models [239] proposed BERTScore, which uses a pre-trained BERT model for evaluating
various NLG tasks such as machine translation and image captions. Recently, [113] proposed
MoverScore, which utilizes contextualized embedding to compute the mover’s score on word and
sentence level. A notable difference between MoverScore and BERTScore is that the latter relies on
hard alignment compared to soft alignments in the former.

In contrast to the previous methods, this thesis proposes a robust evaluation metric which focuses
on handling the sentence’s word repetition and passive form when computing the EMD score.
Furthermore, the proposed metric trains a classifier by considering the sentence’s semantic, syntactic,
and grammatical acceptability features to generate the final evaluation score (discussed in Chapter 8).
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CHAPTER 4

Generative Dialogue Systems With
Structured Knowledge

This chapter addresses the first research question RQ1, "Does incorporating structural information
into a language model improve knowledge graph-based dialogue generation?". In this chapter, we
discuss about techniques to incorporate structured knowledge into a language model for the dialogue
generation task. We study how the effective inclusion of structural knowledge influences the overall
performance of a task-oriented conversation system through qualitative and quantitative evaluations.
The content of this chapter is based on the following publication:

• Md Rashad Al Hasan Rony, Ricardo Usbeck, and Jens Lehmann. 2022. DialoKG: Knowledge-
Structure Aware Task-Oriented Dialogue Generation. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 2557–2571, Seattle, United States. Association
for Computational Linguistics.

This chapter consists of seven sections. The experiments and results are described in Section 4.5.
A comprehensive analysis including case study is provided in Section 4.6. Finally, Section 4.7
summarizes the contributions of this chapter.

4.1 Introduction

In this chapter, we propose a novel task-oriented dialogue system, named DialoKG that employs
structural information of the knowledge graph into a language model (LM) for generating informative
dialogues (see Figure 4.1 and 4.2(a)). For this purpose, we exploit GPT-2 [38] - a language model
developed based on a stack of Transformer decoders [37]. Specifically, we introduce a novel structure-
aware multiple embedding layer-based knowledge embedding technique that constructively embeds
the underlying relationship between the knowledge triples . DialoKG interprets the knowledge as a
knowledge graph; therefore, separate embedding layers for word token, entity, triple and token type
enable the system to capture the graph features (e.g., subject, relation and object). This enables the
system to generate correct and human-like dialogues and prevents generating erroneous responses
such as "4 miles is located at 792 Bedoin Street Starbucks away". Furthermore, the ability to correctly
capture the relationship in the knowledge graph eliminates the need for template-based or sketch-based
response generation.
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Figure 4.1: An illustration of knowledge-based multi-turn dialogue where DialoKG models the knowledge base
as a Knowledge Graph. The user utterance is denoted by Q, the ground-truth response by Gold, and the words
in orange are knowledge graph entries.

In order to guide the decoder on relevant parts of the knowledge graph, we propose a new knowledge
attention masking method. For constructing the knowledge attention mask, in each dialogue turn, a
weighted graph is computed in two steps: 1) Entity weights are computed using a pre-trained language
model that estimates the importance of an entity for the given utterance, and 2) relation weights are
computed based on the concept of graph convolution networks (GCN) [240]. Both steps take the user
utterance into consideration, i.e., the obtained weighted graph is question specific. A set of triples is
then selected based on the most relevant entities and relations of the weighted graph to construct a
knowledge attention mask for the language model. This allows the masked language model to focus
on relevant graph triples. We hypothesise that this leads to the generation of more accurate responses
and enhance the model’s capabilities of understanding the domain and task.

To assess the performance of DialoKG, we conduct experiments on three public benchmarks:
SMD [241], CamRest [242] and Multi-WOZ 2.1 [243]. We evaluate the system generated responses
using both human and automatic metrics. Furthermore, we analyse impact of the individual components
on the overall performance to verify the effectiveness. Our experimental results show that DialoKG
outperforms state-of-the-art models in knowledge-grounded dialogue generation and can generate
human-like responses. We made our code publicly available 1.

1https://github.com/rashad101/DialoKG
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4.1 Introduction

(a) System architecture.

(b) Weighted-graph computation.

Figure 4.2: A high-level overview of DialoKG is shown in Figure (a). Figure (b) depicts the input and output of
the Graph Weight Computer module of DialoKG.

Contributions

• A knowledge embedding technique, that embeds the structural information of a knowledge
graph effectively.

• A knowledge graph-weighted attention masking method that guides the masked language model
to attend to the relevant knowledge entries for generating correct and informative responses.

• A novel task-oriented dialogue system, effectively employing knowledge into a language model.
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4.2 Problem Definition

DialoKG aims to generate informative responses given a dialogue history, a question and a knowledge
graph. We define the dialogue history H as a set of turns between two speakers, such that
H = {𝑈1, 𝑆1, ..,𝑈𝑡 , 𝑆𝑡 }, where 𝑈𝑖 and 𝑆𝑖 are the sequences of words in turn 𝑖. We assume that the
knowledge is stored in a multi-relational knowledge graph G. Here, G is a set of triples T such that
T ⊆ E × R × E, where E is the set of entities and R the set of relations. A triple T ∈ G is denoted
as (𝑠, 𝑟, 𝑜) in which 𝑠 ∈ E and 𝑜 ∈ E denote the subject and object entities, respectively, and 𝑟 ∈ R
is the relation between them. We use the terms "Knowledge Graph" and "Graph" interchangeably
throughout this chapter. Furthermore, we denote the user utterance of the current dialogue turn as Q.
A GPT-2 [38] language model is used in this chapter to generate responses. However, any Transformer
decoder-based LM can be used. Formally, the probability distribution of generating a response by the
language model is defined as:

𝑝(𝑆𝑡 |H ,Q,G) =
𝑛∏
𝑖=1

𝑝(𝑠𝑖 |𝑠1, ., 𝑠𝑖−1,H ,Q,G) (4.1)

Here, 𝑆𝑡 is the generated response in turn 𝑡 and 𝑛 is the maximum length of the generated response.

4.3 Approach: DialoKG

4.3.1 Knowledge and Dialogue Embedding

DialoKG takes a knowledge graph G, dialogue historyH , and the current user utterance Q together as
input and constructs a single input sequence as depicted in Figure 4.3. The first part of the sequence
contains graph related information (i.e., subject, relation, and object) and the latter part dialogue
specific information such as dialogue history (H ) and the current user utterance (Q).

Figure 4.3: An illustration of knowledge and dialogue embedding techniques.

Knowledge Specific Embedding. To infuse structural information, DialoKG employs entity
embedding, triple embedding and type embedding, besides the usual word token and positional
embedding. Such an embedding technique allows the system to encode the knowledge graph structure.
To do this, knowledge graph triples are linearized into a sequence as input, as depicted in Figure 4.3.
To facilitate order invariance of the knowledge embedding, we shuffle the order of the graph triples
in the input sequence during training. In the token embedding layer [S], [R] and [O] are special
tokens to separate subject, relation and object of a triple from each other in the sequence. Entity and
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triple embedding layers embed entity and triple-level information of the word token. For instance,
ENT1 in the entity embedding layer indicates that the corresponding words in the token embedding
layer are related to the first subject, which is starbucks in this case. Likewise, T1 and T2 in the triple
embedding layer indicate that the corresponding words in the token embedding layer are related to
the first and second triple, respectively. Finally, the type embedding indicates that the corresponding
tokens are from the knowledge graph as opposed to the dialogue history.

Dialogue Specific Embedding. The dialogue specific part of the input sequence is separated
from the knowledge specific part by a [SEP] token in the token embedding layer. Furthermore, the
user utterance/question (Q) of the current turn is separated by a [Q] token from the dialogue history.
The type embedding layer stores information about whether the corresponding utterance is from the
user or system. This way, the decoder can use information about typical dialogue turn patterns.

The positional embedding in both knowledge and dialogue embeddings encodes the position of
each word token in the sequence. Finally, embeddings from all five layers are summed up as depicted
in Figure 4.3. Layer Normalization [244] is then applied to obtain the final embedding representation
of the complete input sequence. It normalizes the embedding representation of layers, which restricts
the weights of the learning network from exploding.

We argue that the proposed design pattern of forming a single sequence and specifying each item in
the input sequence further with additional embedding layers can improve the system’s understanding
of the task and domain.

4.3.2 Knowledge Attention Mask Construction

To notify the decoder about the relevant KG triples for answering the current user question, a knowledge
graph weighted-attention mask is constructed. Prior to the construction of the knowledge attention
mask, a weighted-knowledge graph, G𝑤 is first computed by a Graph Weight Computer module, where
the entity and relation weights are computed independently. Figure 4.2(b) illustrates the weighted
graph computation. We discuss the components of the Graph Weight Computer module below.

Entity Weight Estimator: A pre-trained language model RoBERTa [245], is used to compute the
entity weights, similar to [246]. Each entity 𝐸𝑖 ∈ E of graph G is concatenated with the user utterance
Q to obtain the probability score from the language model.

𝐸𝑖𝑤 = 𝐿𝑀ℎ𝑒𝑎𝑑 (𝐿𝑀𝑒𝑛𝑐 ( [Q; 𝐸𝑖])) (4.2)

In Equation 4.2, 𝐿𝑀ℎ𝑒𝑎𝑑 ◦ 𝐿𝑀𝑒𝑛𝑐 represents the probability of the entity 𝐸𝑖 computed by the language
model. We consider 𝐸𝑖𝑤 as the weight of the entity 𝐸𝑖 , which represents the relevance of the entity for
the given user utterance Q.

Relation Weight Estimator: We follow [240, 247] and leverage the concept of GCN to obtain the
relation weight. In contrast to the previous works, our proposed relation weight estimator transforms
the input graph into an undirected graph, where the relations are considered as nodes of a graph. This
transformation technique allows the relation estimator to obtain a score for each relation. The graph
transformation is demonstrated in Figure 4.4(a). The relation weight is computed as follows:

43



Chapter 4 Generative Dialogue Systems With Structured Knowledge

(a) Graph transforma-
tion. (b) Relation weight computation.

Figure 4.4: For the graph in Figure (a) and the question "Find me the quickest route to the restaurant?" the
computation of the relation weight is shown in Figure (b), where �̂� = 𝐴 + 𝐼.

𝑅𝑤 = �̃�𝑀
𝑟
,

�̃� = 𝐷
−1(𝐴 + 𝐼)𝑋

(4.3)

Here, 𝐷−1(𝐴 + 𝐼) computes the row-normalized adjacency matrix, where 𝐷 and 𝐴 are respectively
the degree matrix and adjacency matrix of the graph G as depicted in Figure 4.4(b) and 𝐼 is the
identity matrix. Let 𝑑𝑔 = |E | + |R | be the total number of entities and relations in the graph G, then
𝐷, 𝐴, 𝐼 ∈ R𝑑𝑔×𝑑𝑔 . A feature vector 𝑋 ∈ R𝑑𝑔×1 is obtained by computing the cosine similarity between
the embedding of knowledge graph entries (entities and relations) and the embedding of question.
Furthermore, a relation mask 𝑀𝑟 ∈ R𝑑𝑔×1 is constructed by setting a value of 1 and 0 to the positions
that correspond to relations and entities, respectively, to attend to the values that correspond to the
relations only. Finally, values that correspond to the entities in �̂� are masked out by multiplying with
𝑀
𝑟 to obtain final relation weights 𝑅𝑤 ∈ R

𝑑𝑔×𝑑𝑔 .

Mask Construction: We construct the mask in two steps. First, we construct a mask for the
dialogue-specific sequence (dialogue history and question specific sequence) following the causal
language model masking strategy. In a causal language model mask, already predicted tokens are only
shown, where masking the future tokens in the output sequence. Then, we construct the knowledge
attention mask based on the Knowledge Specific Sequence. Finally, we combine these two masks to
construct the final mask.

We use the normalized score of 𝑅𝑤 and 𝐸𝑤 for constructing the knowledge attention mask. Based
on the normalized entity and relation scores, first, we sort a variable number of knowledge triples
that fits into the models’ input size (depicted by Knowledge Specific Sequence in Figure 4.3), keeping
the dialogue-specific sequence fixed. Furthermore, we filter out irrelevant knowledge triples and
select triples based on top-k entities and relations from the Knowledge Specific Sequence. Here, 𝑘 is
a hyper-parameter which we chose from a range of [0, max(|E|, |R|)], based on the validation score.
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Finally, based on the selected Ê and R̂, the knowledge attention mask is constructed as follows:

𝑀
𝑘𝑔

𝑖, 𝑗
=

{
0, if ((𝑠𝑖 ∨ 𝑜𝑖) ∈ Ê) ∧ (𝑟𝑖 ∈ R̂)
−∞, otherwise

Here 𝑟𝑖, 𝑠𝑖, and 𝑜𝑖 correspond to the relation, subject, and object entity of triple T𝑖. Any position
that corresponds to the value of −∞ results in 0 after computing the softmax during the attention
computation (discussed in the next sub-section). The final mask 𝑀 ∈ R𝑛×𝑛 is obtained by appending
the dialogue-specific mask with the knowledge attention mask, where 𝑛 is the sequence length. This
type of masking strategy ensures that the provided knowledge during each token prediction for a
particular output sequence always remains the same. Padding is added to adjust the dimension of the
metrics.

4.3.3 Decoder

A Transformer [37] based GPT-2 [38] model is used for generating the response. The attention,
computed in each of GPT-2’s heads is formalized as follows:

𝐴𝑡𝑡𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( 1√︁
𝑑𝑘

(𝑄𝐾𝑇 ) + 𝑀)𝑉,

𝐻𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊
𝑄

𝑖
, 𝐾𝑊

𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖 )

(4.4)

where, 𝐴𝑡𝑡𝑛(·) computes the masked attention, 𝐻𝑖 is the 𝑖-th head, 𝑑𝑘=𝑑𝑚/ℎ. Here, 𝑑𝑚 is the
dimension of the model where ℎ the number of heads. 𝑄, 𝐾 and 𝑉 are query, key and value where
𝑊
𝑄

𝑖
,𝑊

𝐾
𝑖 ,𝑊

𝑉
𝑖 are trainable parameters. The objective of the model is to minimize the negative

log-likelihood L for next-token prediction. For a dialogue dataset 𝐷 = {𝐷1, 𝐷2, ..., 𝐷 𝑗}, we formally
define L as follows:

L(𝐷) = −
|𝐷 |∑︁
𝑗

𝑛∑︁
𝑖

log 𝑝(𝑠 𝑗
𝑖
|𝑠 𝑗1 , ., 𝑠

𝑗

𝑖−1,H
𝑗
,Q 𝑗 ,G 𝑗 ), (4.5)

where 𝑛 is the maximum response length andH 𝑗
,Q 𝑗 ,G 𝑗 ∈ 𝐷 𝑗 . Top-k sampling [248] decoding is

used to generate the next word token at each time step, during the inference.

4.4 Experimental Setup

4.4.1 Data

We evaluate DialoKG on three publicly available knowledge-grounded and task-oriented dia-
logue datasets: Stanford Multi-Domain dataset (SMD) [241], CamRest [242] and Multi-WOZ
2.1 (MWOZ) [243]. SMD consists of three domains: weather, navigation, and calendar. MWOZ
contains five domains: train, hotel, restaurant, taxi and attraction. We use the splits provided with the
datasets for train, validation, and test. Each dialogue is provided with a knowledge graph. Table 4.1
shows the statistics of the benchmark datasets.
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Dataset #Dialogues #Utterances Avg. Length of Utt. #Utt. with Entities Avg. #Entities per Utt.

SMD [241] 3,031 15,928 9.22 4430 2.96
CamRest [242] 676 2,744 11.72 2366 2.43
MWOZ [243] 2,877 19,870 16.68 6241 2.06

Table 4.1: Dataset statistics.

4.4.2 Hyper-parameter Settings

Throughout this chapter, we use the GPT-2 [38] model with 117M parameters. AdamW [249] with
𝜖 = 1𝑒-8 and learning rate of 6.25𝑒-5 is employed as optimizer. GELU [250] is used as activation
function. The best hyper-parameters for each dataset were found using grid search and based on the
results on the validation set. We run all experiments on a distributed training setting with 10 GPUs,
each with 12 GB of memory.

We report the hyper-parameters used to train DialoKG in Table 4.2 for SMD, CamRest, and MWOZ.
GPT-2 specific hyper-parameters are also reported in Table 4.2. All the hyper-parameters are found
after a grid search and evaluation on the validation set. We sample learning rate from {6.25e-01,
6.25e-04, 6.25e-05} and maximum history token and knowledge token from {128, 256, 384, 512}.

SMD CamRest MWOZ

Learning rate 6.25e-05 6.25e-04 6.25e-05
Adam epsilon 1e-08 1e-08 1e-08
Batch size 4 4 4
Gradient accumulation steps 4 4 4
Max history turn 4 4 1
Maximum history token 128 256 128
Maximum knowledge token 384 256 384
Top relations 7 7 6
Top entities 7 5 7
Epochs 40 25 30

Table 4.2: Training parameters.

For both training and evaluation, we use a batch size of 4. Hyper-parameters used during the
inference are reported in Table 4.3. We used 12 NVIDIA TitanX GPUs, each with 12GB of memory
to train models. It took 30, 18 and 45 minutes to train on SMD, CamRest and MWOZ data.

SMD CamRest MWOZ

Temperature 0.68 0.85 0.18
Top-k 6 8 10
Top-p 0.9 0.9 0.9
Maximum response length 100 80 120
Top entities 7 7 6
Top relations 7 5 7

Table 4.3: Decoding parameters.
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SMD CamRest MWOZ
Model BLEU MoverScore Ent. F1 BLEU MoverScore Ent. F1 BLEU MoverScore Ent. F1

GLMP [20] 13.9 54.2 59.6 15.1 57.2 58.9 6.9 51.2 32.4
MLM [251] 17.0 64.0 54.6 15.5 57.0 62.1 - - -
Ent. Const. [252] 13.9 53.8 53.7 18.5 65.9 58.6 - - -
GPT2+KE [8] 17.4 66.4 59.8 18.0 65.8 54.9 15.0 60.9 39.6
TTOS [253] 17.4 59.8 55.4 20.5 67.0 61.5 - - -
DF-Net [254] 14.4 56.3 62.7 - - - 9.4 54.2 35.1
EER [255] 17.2 60.9 59.0 19.2 66.1 65.7 13.6 57.2 35.6
FG2Seq [256] 16.8 60.2 61.1 20.2 66.6 66.4 14.6 58.4 36.5
CDNet [257] 17.8 61.1 62.9 21.8 67.8 68.6 11.9 55.8 38.7

DialoKG 20.0 70.6 65.9 23.4 70.4 75.6 12.6 62.6 43.5

Table 4.4: Performance of DialoKG and baseline models on three benchmark datasets. Best scores in bold and
second-best underlined.

4.4.3 Evaluation Metrics

Automatic Metrics. Following the baseline models, we use BLEU [32] and Entity F1 score [241]
as automatic evaluation metrics. The Entity F1 score represents the model’s capability of generating
knowledge grounded responses. It computes the F1 score between the set of entities present in
the ground truth and system-generated responses. Several studies [258, 234] on evaluation metrics
suggest that word-overlap based metrics such as BLEU are insufficient for evaluating natural language
generation (NLG) systems. Hence, we use MoverScore [113] as addition metric to evaluate the
semantic similarity between the system generated response and the ground truth. We compute both
MoverScore and BLEU scores on the sentence level.

Human Evaluation. To assess the quality of the system-generated responses, we conduct a human
evaluation based on the following criteria: 1) Naturalness: how human-like and fluent the generated
responses are, and 2) Correctness: how correct the knowledge-grounded responses are. We asked
three annotators (two from Computer Science (CS) and one from a non-CS background) who are not
part of this research work to evaluate the quality of the system-generated responses. We randomly
sampled 90 dialogues in total from the benchmark datasets and asked annotators to evaluate the
system-generated responses given the ground truth response and the knowledge graph triples on a
scale of [1,5] (higher the score, the better it is). The inter-annotator agreement score (Cohen’s kappa
𝜅) of the annotated data is 0.82. The human evaluation process is explained in detail in § 4.5.1.

4.4.4 Baselines

We compare DialoKG with the following state-of-the-art methods: GLMP [20], MLM [251], Ent.
Const. [252], DF-Net [254], CDNet [257], GPT2+KE [8], TTOS [253] and EER [255]. Most
of these approaches adopt memory networks to generate knowledge grounded dialogues, whereas
GPT2+KE [8] directly embeds the knowledge graph into the model’s parameters and TTOS [253]
proposed a reinforcement learning-based framework.
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Model Naturalness Correctness

EER [255] 3.27 3.61
FG2Seq [256] 3.33 3.87
CDNet [257] 3.53 3.94

DialoKG 4.33 4.01

Table 4.5: Human evaluation results.

4.5 Results

4.5.1 Quantitative Results

We conduct both quantitative and qualitative analyses to assess system-generated responses. Table 4.4
summarizes the performance of DialoKG with respect to the baseline models. It is evident that
DialoKG outperforms the baseline models significantly in Entity F1 score on CamRest, which contains
mostly knowledge-grounded dialogues about restaurant reservations. A high Entity F1 score of
75.6 on CamRest shows DialoKG’s ability to generate knowledge-grounded with high accuracy.
Although DialoKG achieves an improved Entity F1 score on the MWOZ dataset, it has a lower BLEU
score since MWOZ often contains lengthy responses. However, the high MoverScore across all
datasets demonstrates that DialoKG can generate highly semantically similar responses. We report
the domain-wise results for SMD and MWOZ in Table 4.6 and Table 4.7 respectively. Baseline
model’s results are reported from [257] and [8]. The MWOZ dialogue dataset contains conversations
on the following domains as reported in the baseline works: attraction, restaurant, and hotel. The
domain-wise results demonstrate that DialoKG achieves improved performance in almost all domains
in a multi-domain setup. This demonstrates DialoKG’s capacity to handle a dynamic knowledge graph.

Figure 4.5: Distribution of human evaluation scores.

4.5.2 Qualitative Results

We obtain human evaluation scores (naturalness and correctness) for the closest three models. Results
in Table 4.5 show that our proposed dialogue system can generate more human-like responses. An
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Models BLEU MoverScore Entity F1 Schedule Navigate Weather

GLMP [20] 13.9 54.2 59.6 72.5 54.6 56.5
MLM [251] 17.0 64.0 54.6 66.7 46.9 56.0
Ent. Const. [252] 13.9 53.8 53.7 55.6 54.5 52.2
GPT2+KE [8] 17.4 66.4 59.8 72.6 53.5 57.7
TTOS [253] 17.4 59.8 55.4 63.5 45.9 64.1
DF-Net [254] 14.4 56.3 62.7 73.1 57.9 57.6
EER [255] 17.2 60.9 59.0 71.8 52.5 57.8
FG2Seq [256] 16.8 60.2 61.1 73.3 56.1 57.4
CDNet [257] 17.8 61.1 62.9 75.4 56.7 61.3
DialoKG (Ours) 20.0 70.6 65.9 77.9 58.4 72.7

Table 4.6: Domain-wise results on SMD dataset.

Models BLEU MoverScore Entity F1 Attraction Restaurant Hotel

GLMP [20] 6.9 51.2 32.4 24.4 38.4 28.1
MLM [251] - - - - - -
Ent. Const. [252] - - - - - -
GPT2+KE [8] 15.0 60.9 39.6 43.3 37.1 33.4
TTOS [253] - - - - - -
DF-Net [254] 9.4 54.2 35.1 28.1 40.9 30.6
EER [255] 13.6 57.2 35.6 43.0 34.3 35.7
FG2Seq [256] 14.6 58.4 36.5 37.2 38.9 34.4
CDNet [257] 11.9 55.8 38.7 38.9 41.7 36.3
DialoKG (Ours) 12.6 62.6 43.5 39.8 46.7 37.9

Table 4.7: Domain-wise results on MWOZ dataset.

improved score is also achieved in terms of correctness, reflecting DialoKG’s ability to generate highly
accurate dialogues. Furthermore, Figure 4.5 shows the distribution of human evaluation scores. The
figure allows a better direct comparison of the individual score levels.

Figure 4.6 shows the interface of the annotation tool used to obtain human annotation scores.
The interface displays a set of knowledge triples, a user utterance, the ground truth response, and a
system-generated response for each point. Given the information displayed on the annotation tool, we
asked the annotators to rate the system-generated responses against the ground-truth on a scale of
[1,5] (higher is better). We explained the participants about the purpose of this research. The first two
participants are male (over 30 years old), and the third participant is female (more than 35 years old),
both with several years of experience in the domain.

4.6 Analysis

This section investigates the contribution of each component to the overall performance of DialoKG.
Furthermore, the effectiveness and impact of knowledge embedding and knowledge attention mask are
also discussed. Moreover, through a case study, we explore the advantages and limitations of DialoKG.
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Figure 4.6: The interface of the annotation tool to obtained the human annotation scores.

4.6.1 Ablation Study

We conducted an ablation study to investigate the contribution of major components of DialoKG.
The results on CamRest in Table 4.8 demonstrates that the ses2seq approach achieves the lowest
scores, which represents the DialoKG model without the embedding layers: entity embedding, triple
embedding, and type embedding. Inclusion of the entity and triple embedding layers significantly
improved model’s performance in both BLEU and Entity F1 scores. The type embedding further
improved DialoKG’s performance. The significant difference in results shows the effectiveness of
the proposed embedding technique. Finally, we observed a remarkable improvement in DialoKG’s
overall performance after the inclusion of knowledge attention mask. Question-aware weighted-graph
computation used to construct knowledge attention mask, helped the model focus on the task at the
inference time.

4.6.2 Effectiveness of Knowledge Embedding

The proposed graph embedding technique works best in combination with the knowledge attention
mask. The graph embedding design allows DialoKG to handle disconnected graphs and triples. This
makes DialoKG suitable for large-scale graphs, where a cosine-similarity based triple selection may
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Approach BLEU Δ Ent. F1 Δ

DialoKG (seq2seq) 14.5 - 59.4 -
+ Entity embedding 17.7 3.2↑ 63.0 3.6↑
+ Triple embedding 19.2 1.5↑ 67.8 4.8↑
+ Type embedding 20.1 0.9↑ 68.4 0.6↑
+ Knowledge attention mask 23.4 3.3↑ 75.6 7.2↑

Table 4.8: Ablation study.

Top-𝒌 (entity) Top-𝒌 (relation) BLEU MoverScore Entity F1
3 5 10.8 65.3 48.2
3 7 11.0 65.4 48.9
5 5 16.9 68.0 62.1
5 7 17.4 68.1 62.5
7 5 19.3 70.4 64.4
7 7 20.0 70.6 65.9

All All 15.9 67.2 59.0

Table 4.9: Effect of triple selection on the performance.

be used to fit the graph triples inside the model’s input capacity. The entity and triple embedding
layers allow the model to preserve the structural information of a particular triple even though triples
from different parts of the input sequence are selected based on the top-𝑘 entities and relations to
construct the knowledge attention mask. Overall, the graph embedding technique improves the Entity
F1 score by 5.4, 9.0, and 3.7 points on SMD, CamRest, and MWOZ, respectively. This indicates the
effectiveness of the proposed embedding techniques for capturing graph triples.

4.6.3 Impact of Knowledge Attention Mask

To understand the effect of the knowledge-graph weighted attention mask, we experiment with the
triple selection process described in DialoKG’s approach. Table 4.9 shows the performance of
DialoKG with selected top-𝑘 entities and relations on the SMD dataset. We observe that DialoKG
achieves the best performance on SMD when the top 7 entities and relations are chosen to construct
the knowledge mask. Consider the question "Do you have any local coffee shops?" the ground truth
is "There is Coupa, it s just 6 miles away but there is heavy traffic on our way". The ground truth
contains traffic information in addition to the distance and name of the coffee shop. Selecting a high
number of entities and relations increases the chance of generating such additional information related
to the subject of the question. However, choosing too many entities harms the model since it is more
likely to add irrelevant noise (see Table 4.9). For MWOZ, six entities and seven relations, and for
CamRest, seven entities and five relations result in the best performance.

4.6.4 Case Study

Figure 4.7 shows two cases from the MWOZ dataset given a subset of the knowledge graph. In Case
1, we observe that in answering the user question, DialoKG correctly picked Rice House that serves
cheap and Chinese food. However, in this case, multiple correct answers exist, e.g. Charlie Chan also
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Figure 4.7: Case study: comparison between ground truth and system-generated responses.

falls into the same category of restaurant. Despite generating the correct answer based on the given
knowledge and the user question, DialoKG receives a low Entity F1 score since the generated response
entity does not match the ground truth. In Case 2, where the baseline systems focus on imitating the
ground truth, DialoKG generates a fluent and engaging response. Despite generating a meaningful
and semantically similar sentence, it obtained a BLEU score of 0.0 because of the low overlap with
the ground truth response. However, a high MoverScore in both cases indicates DialoKG’s ability to
generate a semantically similar response. Overall, we observe that DialoKG can generate human-like,
engaging, and informative responses in a multi-turn dialogue setting.

4.6.5 Influence of Dialogue History

Dialogue history is particularly crucial since it gives the model the context for generating the response.
In some cases where the entity information is missing in the current user utterance, the dialogue
context provides the model with enough information to perform the inference and generate the correct
response. For instance, for the question, What is the food type they serve?, the name of the restaurant
is not given in the question, but the system can infer it from the dialogue history. However, from the
experiments, we found that too much dialogue context may inject noisy and irrelevant information to
answer the current question, in particular for knowledge-grounded responses in MWOZ. To quantify
this, we selected different numbers of dialogue turns as history for the model’s input depending on the
characteristics of the dataset and visualised the result in Figure 4.8.

4.7 Summary

We have presented DialoKG, a novel knowledge-grounded task-oriented dialogue system improving
the state-of-the-art across multiple benchmark datasets. DialoKG focuses on capturing the underlying
semantics of the knowledge graph and pays attention to the relevant graph triples to understand the
task and generate correct and human-like responses. The key contributions of DialoKG include 1)
Knowledge embedding technique, that embeds the structural information of a knowledge graph
effectively, and 2) Knowledge graph-weighted attention masking, which guides the masked language
model to attend to the relevant knowledge entries for generating correct and informative responses.
Finally, we demonstrated DialoKG’s ability to generate accurate, diverse, and human-like dialogues
through quantitative and qualitative analysis. We performed an ablation study and studied the effect of
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Figure 4.8: DialoKG’s performance on benchmark datasets for different number of dialogue contexts.

dialogue history, knowledge embedding, and knowledge attention masking. DialoKG answers the first
research question, RQ1 (Does incorporating structural information into a language model improve
knowledge graph-based dialogue generation?), affirmatively and demonstrates that the effective
incorporation of structured knowledge into a language model significantly improves the performance
of a task-oriented dialogue system.

53





CHAPTER 5

Unsupervised Question Answering Over
Knowledge Graphs

In contrast to Chapter 4, where a small set of knowledge triples is provided in the form of a knowledge
graph to a dialogue system, this chapter handles a large knowledge graph containing millions of
facts for question answering. This chapter addresses the research question RQ2, "How effective are
pre-trained language models for developing an unsupervised knowledge graph-based question-
answering system without training data?". Specifically, this chapter leverages pre-trained language
models in an unsupervised manner to develop a question answering over knowledge graphs without
training data. A large knowledge graph Wikidata [16] containing millions of facts is utilized as a
source of structured knowledge to conduct experiments to show the effectiveness of the proposed
techniques. The content of this chapter is based on the following publication:

• Md Rashad Al Hasan Rony, Debanjan Chaudhuri, Ricardo Usbeck, and Jens Lehmann,
Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs, in
IEEE Access, vol. 10, pp. 50467-50478, 2022, doi: 10.1109/ACCESS.2022.3173355.

This chapter is organized into six sections. Section 5.1 discusses the challenges and issues of the
existing systems. Furthermore, addressing the issues, a high-level overview of the proposed system
is also provided. Section 5.2 formally defines the problem statement. A detailed description of the
proposed system is provided in Section 5.3. All the experiments, results, and their analysis are reported
in Section 5.4. Finally, Section 5.6 concludes the chapter by summarizing the contributions.

5.1 Introduction

Since the advent of large-scale knowledge graphs (KG) such as DBpedia [195], Freebase [18], and
Wikidata [16], KG-based systems have evolved significantly. Given a natural language question, the
task of a KG-based question answering (KGQA) system is to retrieve the correct answer from the
knowledge graph. Entity and relation linking are the primary sub-tasks of KGQA. These sub-tasks
include determining the surface form (mentions in the question) of the entity and relation in the
question and subsequently mapping them to the respective entity and relation in the knowledge graph.
The linked entity and relation are then utilized to obtain the answer entity in the final step [184].
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KGQA on both simple and complex questions is a well-researched topic [185, 259, 260]. For
training, supervised systems depend heavily on knowledge graph-based question answering datasets.
Reaching peak performance often requires a significant amount of training data [150, 151]. Since both
data collection and training processes are time consuming and cost-intensive, this is a bottleneck in
developing dataset-independent KGQA systems. Furthermore, supervised systems are often vulnerable
to brittleness [261]. Since they aim to capture the underlying dynamics in the training data, they
frequently fail to generalize well when tested on previously unseen data. The KGQA task is depicted
in Figure 5.1, where the circular nodes indicate entities and the connecting directed lines represent the
relationship between two KG entities.

To alleviate the time and effort necessary to develop a question answering (QA) system, researchers
recently explored unsupervised and few-shot question answering techniques [262, 263]. Effective
unsupervised KGQA is still a challenging research problem. Unsupervised KGQA is particularly hard
because, firstly, large-scale knowledge graphs such as Wikidata [16] contain more than 80 million
entities and a few thousand relations. Linking the entity and relation mentioned in the question to the
corresponding large-scale KG entity and relation is thus a challenging task. Secondly, it is a standard
practice to execute a query (e.g., using SPARQL) over the KG to extract answer entities [264, 184].
Query construction for this purpose adds an additional layer of difficulty.

Figure 5.1: An illustration of question answering over a knowledge graph. Figure a) depicts a sub-graph of the
Wikidata KG, where Figure b) demonstrates sample question-answer pairs based on the example sub-graph. In
the sample question-answer pairs, the surface form of the entities and relations are in red and green, respectively.

Addressing the issues mentioned above, we propose a simple yet effective unsupervised KGQA
method leveraging pre-trained language models. The primary motivation of this research is to develop a
dataset-independent KGQA system, which can answer natural questions from various datasets without
additional training or fine-tuning. We adopt powerful off-the-shelf language models pre-trained on
named entity recognition (NER) and natural language inference tasks for the KGQA sub-tasks [39,
40]. Specifically, we split the KGQA task into three sub-tasks: entity linking, relation linking, and
answer entity extraction. Firstly, we employ a BERT-based [39] pre-trained NER model to detect the
surface form of the entity. Additionally, we pre-process and index the contextualized representation of
the entities into a dense space for effective and fast candidate entity generation during the inference.
The index is utilized to generate a set of candidate entities, which are then disambiguated to obtain
the final predicted entity (details in Section 5.3.1). Secondly, by combining the 1-hop connected
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relations of the entities linked in the previous step, a set of candidate relations for relation linking is
created. A pre-trained BART model [40] is then applied to the candidate relations to obtain the most
probable relation in a zero-shot manner (details in Section 5.3.2). Finally, we construct a set of 𝑘-level
trees from the 𝑘-hop sub-graphs of the linked entities. Then, tree-walking and tree-disambiguation
techniques are employed to extract answer entities from the constructed trees (details in Section 5.3.3).

To assess the performance of our proposed approaches, we conduct experiments on four publicly
available benchmarks: LC-QuAD 2.0 [265], LC-QuAD 2.0 (KBpearl) [266], QALD-7-Wiki [267],
and WebQSP-WD [22]. The empirical study confirms that our proposed system achieves a significant
improvement in entity and relation linking sub-tasks. In the entity linking task, we notice an absolute
increase of 4.5% on the LC-QuAD 2.0, 7.1% on the LC-QuAD 2.0 (KBpearl), and 0.1% on the
QALD-7-Wiki in F1 score. The improvement in relation linking is 5.4% on the LC-QuAD 2.0
(KBpearl) in F1 score. Despite the simplicity, our proposed Tree-KGQA achieves an absolute increase
of 1.4% in the F1 score over the state-of-the-art methods without training on WebQSP-WD test set.
We have made our code open source 1.

Contributions

• An unsupervised entity linking method that achieves state-of-the-art (SOTA) results on LC-
QuAD 2.0, LC-QuAD 2.0 (KBpearl), and QALD-7-Wiki datasets.

• A zero-shot relation linking mechanism that achieves SOTA results on the LC-QuAD 2.0
(KBpearl).

• A novel tree-walking and tree-disambiguation techniques for extracting answer entities. In
particular, we propose a modular and unsupervised KGQA system that does not require any
training and can be applied to any Wikidata-based KGQA dataset. Finally, we establish a new
baseline for KGQA on the LC-QuAD 2.0 KBpearl dataset.

5.2 Problem Definition

In this section, first, we define the knowledge graph and knowledge tree. Following that, we discuss
each component of our proposed Tree-KGQA system in depth.

[ Knowledge Tree] A knowledge tree with 𝑘-levels T 𝑘𝑖 , associated to an entity 𝐸𝑖 , is a labelled and
directed tree; consisting of nodes Ω and branches Ψ, where {Ω,Ψ} ∈ G𝑘𝑖 . A Forest F , is denoted as
the set of knowledge trees; F={T 𝑘1 ,T 𝑘2 ,..,T 𝑘𝑝 } where p is the number of trees in the forest.

Given a natural language question Q, our proposed system aims to predict a set of answer entities
E𝑎 ⊆ E that answers the question. Table 5.1 provides an overview of the notations of the concepts
covered in this research.

1https://github.com/rashad101/Tree-KGQA
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Notation Concept

𝑒 Label of the entity 𝐸
®𝑒 Embedding representation of the entity label 𝑒
𝑚𝑖 𝑖-th entity mention in the question
𝐸
𝑚
𝑖 Linked entity for the entity mention 𝑚𝑖
𝐸
𝑐
𝑖 A set of candidate entities with labels similar 𝑚𝑖
E𝐿 A set of linked entities corresponding to the entity mentions in Q
R𝐿 Linked relation for a given question
ℎ𝑖 A set of relations connected to 1-hop of entity 𝐸𝑖

Table 5.1: Notation of the concepts used in Tree-KGQA.

5.3 Approach: Tree-KGQA

Tree-KGQA performs question answering over a knowledge graph in three steps: 1) it links the entities
that appear in the question with corresponding knowledge graph entities, 2) it performs relation linking
in a zero-shot manner, and 3) finally, leveraging Tree-walking and Tree-disambiguation techniques it
extracts the answer from a forest. Below we provide a detailed overview of these three steps.

5.3.1 Entity Linking

The entity linking task entails a) mention detection – spotting the surface form of the entity that
appears in the question and b) mapping the detected mention to the corresponding knowledge graph
entity. The steps involved in entity linking are described below.

Mention Detection. To detect the entity mentions in the question, we employ a BERT-large [39]
model pre-trained for the named entity recognition task.

𝑊𝑚 = 𝑓 (Q) (5.1)

The function 𝑓 (·) in Equation 5.1, is a pre-trained BERT-large model that takes a question Q as
input and predicts a set of named entity word tokens, 𝑊𝑚 as the output. For instance, consider the
question, Which football club does lionel play for?. The system detects lionel as the
entity mention in this step using Equation 5.1. In the following steps, the detected entity mention is
mapped or in other words linked to the corresponding knowledge graph entity.

Entity Mapping. We first index all the entity labels from a target KG into a dense space as a
pre-processing step of entity mapping. During inference, the system generates candidate entities from
the dense space for each detected entity mention from the previous step. To obtain the final linked
entity from the set of candidate entities, an additional entity disambiguation step is performed in the
cases where the same entity label appears more than once. The entity mapping technique is explained
in detail below.

Entity Indexing. In this step, firstly, we extract all the entities from the target KG, in our case
Wikidata, and store it in an Entity store (see Figure 5.2a). The Entity store contains all the Wikidata
entity labels (e.g., Lionel Messi) and their Wikidata ID (e.g., Q615). Secondly, we encode all the

58



5.3 Approach: Tree-KGQA

knowledge graph entity labels using Sentence-BERT [47]. Sentence-BERT captures the overall
meaning of the entity label better since entity labels frequently contain multiple words in them. We
obtain a vector of dimension 1×768 for each entity label from Sentence-BERT. Finally, the encoded
vector representations of the KG entities are indexed into a dense space using FAISS [268]. During
the inference, the system utilises a hierarchical indexing algorithm IndexHNSWFlat from FAISS,
which enables the system to generate candidate entities (see Figure 5.2b) in an optimized way [150,
151]. Given an entity span, the hierarchical indexing algorithm generates N candidate entities from
the dense space based on k-nearest neighbors (KNN) approximate search.

For each detected entity span 𝑚𝑖 ∈ 𝑊𝑚, the system performs entity linking separately. The system
generates a set of N = 10 candidate entities 𝐸𝑐𝑖 = {𝐸1, 𝐸2, ..., 𝐸𝑁 } for each entity mention 𝑚𝑖 ∈ 𝑊𝑚,
using FAISS (Figure 5.2b). Each generated candidate entity has an indexing score (from the FAISS
approximate search) indicating how similar they are to the entity mention in the dense space. The
candidate entity with the highest indexing score is then considered as the linked entity. Henceforth, a
disambiguation step between the generated entity candidates is not required if all the candidate entity
labels appeared once in the set.

Figure 5.2: Figure (a) illustrates how the entity labels are encoded with Sentence-BERT and then indexed into
a dense space using FAISS. The Indexing algorithm IndexFlatIP of FAISS, clusters similar entities together
into the dense space. Figure b) demonstrates the candidate entity generation procedure given a detected entity
mention. Sentence-BERT is used to obtain the vector representation of the entity mention lionel. The encoded
vector is then passed to the FAISS module that performs a lookup into the dense space and generates N candidate
entities that are similar to the provided entity span, lionel. The red circle represents the given entity mention in
the dense space, where the other circles inside the larger orange circle indicate similar entities around it.

Entity Disambiguation. The system performs entity disambiguation if an entity label appears
multiple times in the candidate entity set. In that case, it firstly predicts a temporary relation 𝑅𝑡 using
Algorithm 1. Although we develop Algorithm 1 to perform relation linking (details in Section 5.3.2),
in this section we utilize Algorithm 1 to obtain R𝑡 . The question Q, and a set of all the 1-hop connected
relations of the candidate entities are used as input to the Algorithm 1. As the output, Algorithm 1
predicts a relation which we denote as R𝑡 in this section. The system selects an entity with the highest
similarity score from 𝐸

𝑐
𝑖 as linked entity 𝐸𝑚𝑖 , which is connected to the predicted relation R𝑡 at a

distance of 1-hop in the KG.
For instance, for the question Which company’s CEO is Tim Cook?, the predicted entity men-

tion is Tim Cook. The entity label Tim Cook appears multiple times in the set of generated candidate
entities; hence, entity disambiguation is required. By utilizing Algorithm 1, CEO is obtained as R𝑡 .
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Figure 5.3: An illustration of the entity disambiguation process. A small portion of the Wikidata graph is shown
for demonstration purposes.

In the generate candidate entity set, Tim Cook (Q265852) has the relation CEO in its 1-hop connected
relations. Where the other candidate entities with the same entity label (e.g., Tim Cook (Q7803347)
an Australian rules footballer, Tim Cook (Q1404825) an American ice hockey player) do not have the
relation CEO in their 1-hop connections. Consequently, Tim Cook (Q265852), an American business
executive, gets predicted as the final linked entity. In the cases where there exist multiple candidate
entities with the same label, and R𝑡 in their 1-hop, the entity with the highest indexing score that
contains R𝑡 in its 1-hop is selected as the linked entity. Figure 5.3 depicts a high-level overview of the
entity disambiguation process.

Finally, after repeating the whole entity mapping process for each entity mention, the system
produces the final set of linked entities, E𝐿 as follows:

E𝐿 =
⋃

𝑚𝑖∈𝑊𝑚

𝐸
𝑚
𝑖 (5.2)

For the running example question, the entity mention lionel gets linked to the Wikidata entity, Lionel
Messi (Q615).

5.3.2 Zero-shot Relation Linking

We model the relation linking problem as a classification task, where the system aims to link the given
natural language question to one of the KG relations based on label information. In our proposed
approach, we firstly generate a set of candidate relations R𝑐 from all the 1-hop connected relations of
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Figure 5.4: Figure a) depicts a 𝑘-level tree (with 𝑘=2). Since a tree has many nodes and branches (edges), we
present a toy example. Figure b) shows a forest consists of a set of trees constructed from the sub-graph of the
linked entities. For the demonstration purpose, we show a forest consists of two trees. The red branches show
the position of predicted relation in different trees. The green nodes represent the leaf nodes at level-𝑘 , where
the blue nodes refer to the intermediary nodes between the root and leaf nodes. Furthermore, the yellow nodes
represent the predicted answer entity nodes connected by the red branches.

the already linked entities E𝐿 as follows:

R𝑐 =
⋃
𝐸𝑖∈E

𝐿

ℎ𝑖 (5.3)

where ℎ𝑖 denotes the set of 1-hop connected relations of the entity 𝐸𝑖. For the running example
question and linked entity Lionel Messi, the set of candidate relations R𝑐 is {citizen of, lives in, plays
for}(see Figure 5.4a). Furthermore, we mask all the detected entity mentions in the question with a
generic token <ENT>, to obtain a masked question representation denoted by �̂�, Which football
club does <ENT> play for?. We mask the entity mentions in the question to reduce noises in
the relation classification task. In Algorithm 1, the function 𝑚𝑎𝑠𝑘𝐸𝑛𝑡 (.) masks the entities in the
question. The system then performs zero-shot relation label classification, leveraging a pre-trained
language model called BART [40], which was pre-trained for the natural language inference (NLI)
task. In Equation 5.4, function Z(·) is a BART-large model [40] that computes the probability of
being the correct relation label given the modified question (�̂�) and a set of candidate relation labels
(labels of relations in R𝑐).

p(𝑟𝑖 |Q̂,R
𝑐) ←− Z(Q̂,R𝑐) (5.4)

Here, 𝑟𝑖 ∈ R
𝑐 is a candidate relation. Finally, we obtain the predicted relation R𝐿 as follows:

R𝐿 = argmax
𝑟𝑖∈R

𝑐

p(𝑟𝑖) (5.5)

From Equation 5.5, the system obtains plays for as the predicted and linked relation R𝐿 . Algorithm 1
summarizes the relation linking task described in this section.

5.3.3 Answer Entity Extraction

To extract the answer entities from the knowledge graph, firstly, we build a forest utilizing the
sub-graph information associated to the linked entities (obtained from Section 5.3.1). Then, we
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Algorithmus 1 : Relation Linking
Input : A question Q, a set of candidate relations R𝑐𝑎𝑛𝑑
Output : A relation R 𝑝

1 R 𝑝 ←− ∅
2 Q̂ ←− 𝑚𝑎𝑠𝑘𝐸𝑛𝑡 (Q)
3 p(𝑟𝑖 |Q̂,R

𝑐𝑎𝑛𝑑) ←− Z(Q̂,R𝑐𝑎𝑛𝑑)
4 R 𝑝 ←− argmax p(𝑟𝑖), where 𝑟𝑖 ∈ R

𝑐𝑎𝑛𝑑

5 return R 𝑝

perform tree-walking over all the trees within the constructed forest, using the relation predicted in
Section 5.3.2. Finally, we obtain the answer entities from the tree, based on the tree-disambiguation
technique following Algorithm 2.

Building a forest. In order to build a forest, first we construct a set of knowledge-trees. For each
linked entity 𝐸𝑖 ∈ E

𝐿 , we generate a 𝑘-level tree T 𝑘𝑖 constructed from the 𝑘-hop sub-graph associated
to 𝐸𝑖 as follows:

T 𝑘𝑖 ←− 𝑏𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(𝐸𝑖 ,G
𝑘
𝑖 ) (5.6)

The linked entity is designated as the tree’s root node (in orange color) at level 0 (Figure 5.4a). In
this case, Lionel Messi is the root node of a tree. The other nodes and edges in the 𝑘-hop sub-graph of
the linked entity are connected to the tree’s root node at the same stage as they are in the sub-graph
G𝑘𝑖 . The function 𝑏𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒(·) in Algorithm 2, performs the tree-construction operation. A set of
generated 𝑘-level trees are denoted as a forest F (as specified by the definition ). In cases where
no entities are linked, as predicted answer entities the system returns an empty set. For the running
example question, the system constructs a forest with one tree for the linked entity Lionel Messi
(Q615).

Each branch of the tree represents a relation between the parent and the child entity node. For
instance in Figure 5.4a, a branch "capital city" connects a parent entity node, "Spain" and a child
entity node, "Madrid" (Spain

𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑖𝑡 𝑦
−−−−−−−−−−→ Madrid). Each node in a tree preserves a state variable

V, which holds a set of values {S𝑟 , K, and R𝑚𝑎𝑥}. Where K denotes the tree level, R𝑚𝑎𝑥 the
relation for which the node obtained the maximum score, and 𝑆𝑟 the maximum similarity score for the
relation R𝑚𝑎𝑥 . During the answer entity extraction process, the values of the state variable aid in the
tree-disambiguation process. At this stage, all state variables are initialized with null value.

Tree-walking. In this step, the predicted relation R𝐿 performs tree-walking across all the trees in
the forest, starting from the root node till the nodes at level-𝑘 of each tree. During the walk, for each
tree T 𝑘𝑖 ∈ F the system computes embedding-based cosine similarity between the predicted relation
R𝐿 and all the 1-hop connected branches ℎ𝑖 of each node 𝐸𝑖 ∈ T

𝑘
𝑖 . At each step of the walk, the

system updates the node state (value of S𝑟 and R𝑚𝑎𝑥) with the similarity scores of the connected 1-hop
relations. The values of a node state only get updated when a higher value than the existing S𝑟 of that
node is obtained for any connected relation (or branch). The function 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒(·) in Algorithm 2,
updates the node state values with the values passed in as parameters. We employ QuatE [269], a
knowledge graph embedding model trained on Wikidata, to compute the similarities between two
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Algorithmus 2 : Answer Entity Extraction
Input : A forest F , predicted relation R 𝑝𝑟𝑒𝑑 and hops 𝑘
Output : A set of entities E𝑎

1 E𝑎, S𝑚𝑎𝑥𝑟 , R𝑚𝑎𝑥 ←− ∅
2 for T 𝑘𝑖 ∈ F do
3 for 𝐸𝑖 ∈ T

𝑘
𝑖 do

4 for 𝑟𝑖 ∈ ℎ𝑖 do
5 𝑆𝑐 ← 𝑐𝑜𝑠𝑖𝑛𝑒(𝑒𝑚𝑏(R 𝑝𝑟𝑒𝑑), 𝑒𝑚𝑏(𝑟𝑖))
6 if 𝑆𝑐 > S

𝑚𝑎𝑥
𝑟 then

7 S𝑚𝑎𝑥𝑟 ←− 𝑆𝑐 ; R𝑚𝑎𝑥 ←− 𝑟𝑖
8 if 𝑆𝑐 > 𝐸𝑖 [S𝑟 ] then
9 𝐸𝑖 [V] ←− 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒(𝑆𝑐, 𝑟𝑖)

10 ℎ𝑙𝑜𝑤 ←− 𝑘
11 for T 𝑘𝑖 ∈ F do
12 for 𝐸𝑖 ∈ T

𝑘
𝑖 do

13 if 𝐸𝑖 [S𝑟 ] = S
𝑚𝑎𝑥
𝑟 then

14 if 𝐸𝑖 [K] < ℎ𝑙𝑜𝑤 then
15 ℎ𝑙𝑜𝑤 ←− 𝐸𝑖 [K]
16 E𝑎 ← 𝑐𝑜𝑛𝑛𝐸 (𝐸𝑖 [R𝑚𝑎𝑥])
17 else if 𝐸𝑖 [K] = ℎ𝑙𝑜𝑤 then
18 𝐸

𝑎 ← 𝑐𝑜𝑛𝑛𝐸 (𝐸𝑖 [R𝑚𝑎𝑥])
19 E𝑎 ← E𝑎 ∪ 𝐸𝑎

20 return E𝑎

relations in order to consider KG structural information during the process. In Algorithm 2, the
function 𝑒𝑚𝑏(·) takes a relation as input and returns the knowledge graph embedding of the relation
from QuatE. Finally, the system selects all entities connected to the node with the highest S𝑟 value, by
R𝑚𝑎𝑥 , as answer entities E𝑎.

Tree-disambiguation. We introduce a tree disambiguation technique for extracting the answer
entities from the forest. In this technique, the system chooses the tree in which the node with the
highest score (S𝑟 ) resides. If multiple trees have a node with the same maximum score in their node
state, the tree with the highest scoring node at the lowest level (lower value of 𝑘) is chosen (Figure 5.4).
Moreover, in rare cases (less than 1% in the WebQSP-WD dataset), when several trees have nodes
with the highest scores at the same level (𝑘), the system selects all the trees with such cases and
extracts all the answer entities connected to the R𝑚𝑎𝑥 . In Algorithm 2, line no. 10-19 demonstrate
the tree-disambiguation process. Finally, Barcelona F.C. is chosen as the answer entity from the tree
since the predicted relation plays for connects Barcelona F.C. to the linked entity Lionel Messi. The
function connE(·) in Algorithm 2 selects all the answer entities connected to the entity 𝐸𝑖 by the
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relation R𝑚𝑎𝑥 .

5.4 Experiments and Results

5.4.1 Data

We chose Wikidata [16] (based on May 2019 English Wikipedia release) as the knowledge graph
to gauge our proposed method since Wikidata is frequently used as a knowledge base for KGQA
datasets. We evaluate our proposed method on four publicly available knowledge graph based question
answering datasets:

• LC-QuAD 2.0 [265]: A large-scale dataset on Wikidata Knowledge Graph which was generated
semi-automatically and consists of complex questions and their paraphrases.

• LC-QuAD 2.0 (KBpearl) [266]: A subset of the LC-Quad 2.0 dataset, selected by [266]. The
KBpearl split of the LC-QuAD 2.0 data comprises of 1,942 test questions.

• QALD-7-Wiki [267]: A manually constructed small, complex question answering dataset, devel-
oped for Task 4 ("English question answering over Wikidata") of the QALD-7 challenge [267].

• WebQSP-WD [22]: A Wikidata-based question answering dataset constructed from the original
Freebase-based WebQSP dataset [270].

LC-QuAD 2.0 LC-QuAD 2.0
(KBpearl)

WebQSP-WD QALD-7-Wiki

Split (train/test) 24,180 / 6,064 24,180 / 1,942 2,880 / 1,033 100 / 50

Number of entities
per question

1.47 1.48 1.47 1.08

% of question with
no entity

0.02% 0.41% 0.0% 8.0%

Number of words
per question

10.61 14.10 6.72 7.62

Table 5.2: Dataset statistics.

It is noteworthy that the system can be extended to different knowledge graphs with low effort
(discussed in Section 5.5.4). Table 5.2 lists the statistics of the datasets used in this research.

5.4.2 Experimental Setup

We run our experiments on a system with 28 CPU cores, 12GB of GPU memory, and 256GB of RAM.
A pre-trained BERT-large [39] model with 340M parameters and BART-large model [40] with 406M
parameters are used in this paper. We use macro-F1 score to evaluate the components of our system
similar to other baseline models [162, 266].
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5.4.3 Baselines

We select a wide range of baseline models related to KGQA sub-tasks. The baseline models used in
this paper are summarised below:
DBpedia Spotlight: An open-source tool and a popular baseline for the entity linking task in
TAC-KBP [271, 272].
TagMe: An entity linking tool that index Wikipedia pages and performs annotation on a given
text [273].
QKBfly: An information extraction (IE) tool based on ClausIE [274], which predicts a triple from the
KG, on-the-fly [264].
EARL: Jointly performs entity and relation linking from the knowledge graph, by solving a Traveling
Salesman Problem on the candidate nodes [14].
ReMatch: A part-of-speech and dependency parsing based relation linking tool for question
answering [166].
Falcon: A tool that jointly performs entity and relation linking leveraging the concept of morphology
and knowledge graph information [149].
VCG: A jointly optimized model for entity mention detection and disambiguation using contextual
information [160].
KBPearl-NN: A neural network based end-to-end system that performs joint entity and relation
linking [266].
PNEL: A pointer network based entity linking system [162].
Falcon 2.0: A morphology based entity and relation linking system [275].
STAGG: A semantic parsing approach for question answering over knowledge graph [276]. A
re-implementation of STAGG from Sorokin et al. [22] to facilitate the KGQA task, is used as a baseline
in this work.
GGNN: Uses a complex semantic parser for performing question answering over knowledge bases [22].
The baseline scores in this paper are all reported from [162, 266, 22].

5.4.4 Results

Entity Linking. Table 5.3 shows the entity linking performance of the baseline models and our
approach on LC-QuAD 2.0. All the results reported in this section are on the [0,1] scale and test split
of the datasets. From the results in Table 5.3, it is evident that our system achieves higher precision,
recall and F1 scores as compared to the other baseline models.

Systems Precision Recall F1
OpenTapioca [164] 0.237 0.411 0.301
Falcon 2.0 [275] 0.395 0.268 0.320
VCG [160] 0.403 0.498 0.445
PNEL [162] 0.688 0.516 0.589

Tree-KGQA 0.720 0.566 0.634

Table 5.3: Performance of the entity linking component on LC-QuAD 2.0.
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Systems Precision Recall F1
EARL [14] 0.403 0.498 0.445
QKBfly [264] 0.518 0.479 0.498
TagMe [273] 0.352 0.864 0.500
Falcon [149] 0.533 0.598 0.564
KBPearl-NN [266] 0.561 0.647 0.601
Spotlight [272] 0.585 0.657 0.619
PNEL [162] 0.803 0.517 0.629

Tree-KGQA 0.737 0.666 0.700

Table 5.4: Performance of the entity linking component on the LC-QuAD 2.0 (KBpearl).

Systems Precision Recall F1
TagMe 0.349 0.661 0.457
EARL 0.516 0.460 0.486
QKBfly 0.592 0.510 0.548
Spotlight 0.619 0.634 0.626
Falcon 0.708 0.651 0.678
KBPearl-NN 0.647 0.715 0.679

Tree-KGQA 0.714 0.648 0.680

Table 5.5: Performance of the entity linking component on the QALD-7-Wiki.

System Precision Recall F1
EARL [14] 0.259 0.251 0.255
ReMatch [166] 0.201 0.214 0.207
Falcon [149] 0.302 0.325 0.313
KBPearl-NN [266] 0.358 0.479 0.410

Tree-KGQA 0.554 0.400 0.464

Table 5.6: Performance of the relation linking component on the LC-QuAD 2.0 (KBpearl).

We notice a substantial improvement (increment of 7.1%) on LC-QuAD 2.0 KBpearl in entity
linking, see Table 5.4. The entity linking result on the small yet challenging dataset (QALD-7-Wiki)
is reported in Table 5.5. Improved results across several datasets verify the effectiveness of our
unsupervised entity linking approach.

Relation Linking. The relation linking performance of the baseline models and our proposed
approach on LC-QuAD 2.0 (KBpearl) is reported in Table 5.6. The baseline scores are reported as in
Lin et al. [266]. Our proposed zero-shot relation label classification approach achieves an increased
score of 5.4% over the previous state-of-the-art models.
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System Precision Recall F1
STAGG∗ [276, 277] 0.191 0.227 0.183
Single Edge∗ 0.224 0.271 0.215
Pooled Edges∗ 0.209 0.255 0.203
GNN∗ 0.242 0.289 0.233
GGNN [22] 0.269 0.318 0.259

Tree-KGQA 0.327 0.233 0.273

Table 5.7: Performance of KGQA on WebQSP-WD test set. Models marked with (∗) are the re-implementation
from Sorokin et al. [22] to meet the KGQA task.

Approach Precision Recall F1

Entity Linking (EL) 0.854 0.810 0.831
Relation Linking (RL) 0.396 0.288 0.334
KGQA𝐸𝑅 0.739 0.709 0.724

KGQA𝑘=1 (with EL and RL) 0.319 0.219 0.260
KGQA𝑘=2 (with EL and RL) 0.327 0.233 0.273

Table 5.8: Component-wise results of Tree-KGQA.

KGQA. We report the KGQA score on WebQSP-WD dataset in Table 5.7. Our introduced Tree-
KGQA system achieves an improved result (1.4% rise in F1 score) compared to the previous KGQA
baselines. The KGQA scores reported in this paper are computed with 𝑘 = 2. Furthermore, we provide
a new baseline for the KGQA task on the LC-QuAD 2.0 KBpearl test set in Table 5.9. Moreover, we
report the component-wise results of our proposed techniques on WebQSP-WD dataset in Table 5.8.
The entries with the approach KGQA𝐸𝑅 reflect the KGQA score given the ground truth values of EL
and RL. We observe an improved KGQA score with 𝑘 = 2 than 𝑘 = 1. Although our system performs
remarkably on the EL and answer entity extraction tasks, it has a relatively poor KGQA score due to
the low RL score. Nevertheless, relation linking (RL) is a challenging task that is still far from being
solved.

System Precision Recall F1
Tree-KGQA 0.526 0.520 0.523

Table 5.9: Our introduced new baseline for the KGQA task on LC-QuAD 2.0 (KBpearl).

5.5 Analysis

5.5.1 Ablation Study

We conduct an ablation study to investigate the effectiveness of major components of our proposed
system. Table 5.10 demonstrates the improvement that each of the components brings to the overall
performance of the system. A TF-IDF based entity linking approach exhibits a low F1 score of
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0.599, where our proposed indexing mechanism based approach achieves significant gain in the
performance (+6.2% using Fasttext and +2.1% using Sentence-BERT embedding). A relation-based
entity disambiguation method further improved the result by 1.8%. Our proposed BART-based relation
linking approach demonstrates a remarkable improvement (+9.1%) over the cosine similarity based
relation linking method.

Furthermore, we assess the performance of the answer extraction component without our proposed
tree disambiguation technique. We extract the entities directly connected to the linked entities by the
predicted relation as answer entities which achieves a low KGQA F1 score of 0.243. Then, we employ
the tree-walking and tree-disambiguation technique which improves the F1 score by 2.1%. Moreover,
we utilized knowledge graph-based embedding during the answer entity extraction procedure to
compute the similarity between the predicted relation and the branches of every node in a tree. This
method allows the system to surpass Fasttext embedding based similarity calculation by 0.8%.

Task Approach F1 𝚫

EL

EL (TF-IDF) 0.599 -
EL (FAISS𝐾𝑁𝑁 + Fasttext) 0.661 + 6.2%
EL (FAISS𝐾𝑁𝑁 + Sentence-BERT) 0.682 + 2.1%
EL (FAISS𝐾𝑁𝑁 + disambiguation) 0.700 + 1.8 %

RL RL (Cosine similarity) 0.373 -
RL (BART) 0.464 + 9.1%

KGQA
KGQA (without tree-disambiguation) 0.244 -
KGQA (with tree-disambiguation + Fasttext) 0.265 + 2.1%
KGQA (with tree-disambiguation + KGE) 0.273 + 0.8%

Table 5.10: Ablation study.

5.5.2 Case Study

Table 5.11 shows two cases from the entity linking, relation linking and KGQA tasks. The entity and
relation linking cases are from LC-QuAD 2.0, where the KGQA cases are from WebQSP-WD.

Entity Linking (EL): Our proposed approach correctly detected and linked the entity in the first
case, where Falcon 2.0 and PNEL failed to link the correct entity. This is a challenging case since
it contains a long entity span. The underlined texts indicate the entity span in the question. In the
second case, all the systems failed to detect country as the entity. Although mahomoud abbas is
correctly detected as entity mention by Falcon 2.0 and PNEL, they linked the entity mention to the
wrong KG entity Mahmoud Abbas (Q10515624), who is a footballer. On the contrary, with the help of
entity disambiguation where relation information is used, our method correctly linked the mention
mahomoud abbas to the correct KG entity Mahmoud Abbas (127998), who is the head of a state.

Relation Linking (RL): The first case comprises administrative territorial entity (P150) and
instance of (P31) as the ground truth relation. Since instance of (P31) does not appear explicitly in
the question, it is difficult for the systems to predict it as a relation. In the second case, our proposed
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Task Question Ground Truth Falcon 2.0 PNEL Our approach

EL What is in work of actor of
Looney Tunes Super Stars’
Pepe Le Pew: Zee Best of
Zee Best ?

Looney Tunes
Super Stars’ Pepe
Le Pew: Zee
Best of Zee Best
(Q6675710)

Looney Tunes
Super Stars’
Pepe Le Pew:
(Q6675705),
Best
(Q4896530)

Looney Tunes Su-
per Stars’ Pepe Le
Pew: (Q6675705)

Looney Tunes
Super Stars’ Pepe
Le Pew: Zee
Best of Zee Best
(Q6675710)

What is the country for head
of state of mahmoud abbas?

country (Q6256),
Mahmoud Abbas
(Q127998)

Mahmoud
Abbas
(Q10515624)

Mahmoud Abbas
(Q10515624)

Mahmoud Abbas
(Q127998)

Task Question Ground Truth Falcon 2.0 Our approach

RL What is the socialist state for
contains administrative terri-
torial entity of Beĳing?

contains administra-
tive territorial entity
(P150), instance of
(P31)

contains administra-
tive territorial entity
(P131)

contains administra-
tive territorial entity
(P150)

What kind of disease does
montel williams have?

medical condition
(P1050)

- medical condition
(P1050)

Task Question Ground Truth GGNN Our approach

KGQA Where is jamarcus
russell from?

Mobile (Q79875) Mobile (Q79875) Mobile (Q79875)

Who did tim tebow
play college football
for?

Florida Gators foot-
ball (Q5461394)

Florida Gators foot-
ball (Q5461394)

Florida Gators football (Q5461394),
Denver Broncos (Q223507), New
York Jets (Q219602), Philadelphia
Eagles (Q219714)

Table 5.11: Case study.

Algorithm 1 correctly predicted the relation medical condition (P1050). We adopt a BART-large
model [40] in Algorithm 1, pre-trained on natural language inference task, which gives better inference
capabilities in identifying the correct relation from a set of candidate relations.

KGQA: Our proposed unsupervised KGQA approach correctly extracted the answer entity in the
first case. In the second case, Florida Gators football (Q5461394) is given as the ground truth which
can be inferred by the relation member of sports team (P54) connected to the entity Tim Tebow
(Q517467). However, our system extracted all the entities as the answer entities that are connected to
Tim Tebow (Q517467) by the relation member of sports team (P54).

5.5.3 Error Analysis and Limitations

We conducted an error analysis to understand the cases where our system is not performing as expected.
We observed that our proposed entity linker is unable to detect entities that are not named entities
such as president (Q30461) and governor (Q132050), since it is using NER for detecting the entity
mention(s). Here, Q30461 and Q132050 are Wikidata ID of the respective entities.

The most challenging aspect of KGQA is relation identification. Relations with similar labels exist
in the Wikidata KG, which are difficult for systems to differentiate. For instance, the relations head
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of government (P6) and head of state (P35). This issue becomes more visible when we found that,
F1 score on top-3 predicted relation is 49.39 and in top-10 it is 57.66. The relation accuracy results
reported in Table 5.6 are based on the top-1 predicted results from the proposed zero-shot relation
linker. Our system fails to predict relations requiring more complex reasoning capabilities, such as
hierarchical relationships. For instance, for the question "Give me cinematic technique that
contains the word tilt in their name" , the correct relation that can be used to answer the
question is Instance of (P31), which our system failed to capture. Furthermore, our proposed zero-shot
relation linker can only predict one relation. Although this is a limitation of the system, questions
generally contain one relation in the context of question answering.

Although our proposed answer extraction method is fairly straightforward, we observe that the
KGQA model mainly suffers in the cases where no entities are predicted and the cases where a wrong
relation is predicted. Similar to the relation linking, our system also fails to extract the correct answer
entities for cases where comparative or logical reasoning is required to answer the questions (E.g., Is
Lake Baikal bigger than the Great Bear Lake?).
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Figure 5.5: Inference time efficiency of the entity linking systems.

5.5.4 Discussion

The improved entity linking performance of our proposed model across all the benchmark datasets
provides a solid foundation for the KGQA task. Despite the fact that our proposed relation linking
approach outperforming previous methods in complex QA, it could benefit further from better logical
inference capabilities. Furthermore, we designed our system in a modular way so that it can be easily
extended and used across different KGQA sub-tasks. Within the scope of this work, we explored
Wikidata-based datasets. However, from the description of our approaches, we can intuitively say that
our system can be adapted for other knowledge graph based datasets. For that, first, the pre-processing
step where entity indexing is performed needs to be executed. Then, we need to obtain the relation
embedding from a knowledge graph embedding model to perform tree-walking (Section 5.3.3).

Our proposed KGQA system is runtime efficient. Several factors contributed to the fast runtime of
our system. In entity linking, the FAISS indexing technique provides fast candidate generation (takes
∼0.04 seconds to generate 10 candidates per question). The performance of the entity linking baselines
is shown in Figure 5.5 (baseline runtimes are reported from Banerjee et al. [162]). Furthermore, the
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relation linking component requires ∼0.09 seconds per question. Moreover, our proposed tree-based
answer extraction process takes ∼0.39 seconds per question. Overall, the system takes ∼0.76 seconds
per question to perform the entire KGQA task.

5.6 Summary

We presented Tree-KGQA, an unsupervised technique to perform KGQA without any explicit
training. Despite the simplicity, our proposed pre-trained language model-based, unsupervised method
outperforms existing supervised systems by a fair margin in all the sub-tasks involved in KGQA.
The superior performance of Tree-KGQA answers RQ2 (How effective are pre-trained language
models for developing an unsupervised knowledge-graph-based question-answering system without
training data?) by only leveraging pre-trained language and knowledge graph embedding models. To
substantiate our claim, we evaluate our proposed system across several benchmark datasets. Although
our system proves to be useful for the majority of the types of questions found in the datasets studied,
further work is required to tackle more challenging questions requiring counting, comparisons, and
logical reasoning capabilities.
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CHAPTER 6

SPARQL Query Generation: A Generative
Approach

Traditional pipeline based question answering systems employ formal queries such as SPARQL to
extract answer entities from structured knowledge sources (i.e., knowledge graph). SPARQL is a
query language used to express queries across diverse data sources, whether the data is stored natively
as RDF or viewed as RDF via middleware. In recent years, the conversion of natural language
questions (NLQs) to SPARQL queries gained further popularity to the growing number of graph-based
applications [278, 279, 280]. Automatic query generation from NLQ is a long-standing research

Figure 6.1: An illustration of a SPARQL query used to answer a natural question over Wikidata [16] and
DBpedia [195]. Here, Q339, P398, P31, Q184246 are the Wikidata ID of Pluto, child astronomical body,
instance of, and moon of Pluto, respectively.

challenge with several factors contributing to its difficulty, including but not limited to understanding
the complex aspects of syntax and semantics of the natural language question (i.e., ellipsis, ambiguity,
lexical gap), error propagation in NLP pipelines, and skewed distribution of question types in training
datasets. Additionally, changing the underlying KG requires rewriting the SPARQL query for a given
NLQ as illustrated in Figure 6.1.
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Chapter 5 discussed about an unsupervised way to extract answer from a knowledge graph, given
that the entity and relations are already linked. This chapter describes a generative approach to
directly generate SPARQL queries from natural question without entity or relation being already
linked. However, the proposed approach also functions if entity information is provided. Specifically,
this chapter proposes techniques to embed knowledge graph into language models parameters to
generate SPARQL queries from natural questions. This chapter answers the research question RQ3,
"Can a generative language model embed a knowledge graph in its parameters and learn to
construct SPARQL queries?". The discussions of this chapter is based on the following paper:

• Md Rashad Al Hasan Rony, Uttam Kumar, Roman Teucher, Liubov Kovriguina and Jens
Lehmann, SGPT: A Generative Approach for SPARQL Query Generation from Natural Lan-
guage Questions, in IEEE Access, vol. 10, pp. 70712-70723, 2022, doi: 10.1109/AC-
CESS.2022.3188714.

This chapter is organized into five sections. Section 6.1 discusses the motivation and drawbacks
of existing template-based SPARQL query generation methods. A brief overview of the proposed
system and its contributions are additionally discussed. The problem statement and the proposed
approach is explained in detail in Section 6.2. The proposed metric and experiments are explained
in Section 6.3. An in-depth analysis of the proposed system is provided in Section 6.4. Finally,
Section 6.5 summarizes the chapter with concluding remarks.

6.1 Introduction

Several approaches for SPARQL query generation have been presented recently [197, 198, 200, 97,
98]. The widely adopted approaches involve query schema or template classification and filling in the
slots in the templates using available sub-graph information such as linked entities and relations [281,
97, 282, 98]. A different line of research is centered around transforming natural language questions
to their corresponding SPARQL queries in a sequence-to-sequence manner [200, 107].

In this chapter, we propose a new approach, dubbed SGPT, for SPARQL query generation. SGPT
encodes the linguistic features of an NLQ and corresponding sub-graph information (i.e, entities,
if provided), and leverages a generative language model (LM) to generate SPARQL queries. We
hypothesize that a deeper understanding of the NLQ is crucial for generating a correct query, since a
slight deviation in the syntactic structure of the question may result in a different SPARQL query.

Question 1: What is the name of the actress married to the prince of England?
SPARQL 1: SELECT ?s_label WHERE {

?s wdt:P106 wd:Q33999 . ?s wdt:P26 ?spouse .
?spouse wdt:P97 wd:Q4971429 . ?s rdfs:label ?s_label

FILTER ( lang ( ?s_label ) = "en" ) }

Question 2: What is the name of the prince of England married to an actress?
SPARQL 2: SELECT ?s_label WHERE {

?spouse wdt:P106 wd:Q33999 . ?s wdt:P97 wd:Q4971429 .
?s wdt:P26 ?spouse . ?s rdfs:label ?s_label

FILTER ( lang ( ?s_label ) = "en" ) }

Table 6.1: Comparison of SPARQL queries for two different questions with same wording.
Table 6.1 demonstrates such an example, where the queries are Wikidata knowledge graph-based [16],

and Q33999, and Q4971429 are Wikidata entity IDs of the entity Actor and British Prince, respectively.
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The Wikidata relation IDs P106, P26 and P97 refer to the relations Occupation, Spouse, and Noble
title, respectively.

Besides the standard word and positional embedding layers, we design special embedding layers
that embed an arbitrary number of linguistic features of an NLQ, such as parts-of-speech (POS) tags
and dependency tree features (i.e., dependency relations and information about tree node’s children).
The layers proposed in this chapter are different from the ones in Chapter 4. The layers designed in
Chapter 4 focuses on distinguishing different word token in the input sequence by defining the type and
triple embeddings, whereas this chapter focuses on understanding the content of the question better.
A stack of Transformer [37]-encoders is employed to encode the linguistic features. The proposed
embedding techniques facilitate SGPT to inject additional knowledge (i.e., entities) as well as allow
the integration of SGPT into pipeline-based systems in a modular fashion. Furthermore, we employ
the Transformer [37]-decoder based language model GPT-2 [38], to generate SPARQL queries. Our
training methodology enables SGPT to embed an arbitrary KG directly into the model parameters.
Moreover, the system does not require any query template or KG as input at inference time.

The evaluation of SPARQL query generation is a crucial step for developing NLQ to SPARQL
systems. A widely used metric BLEU [32], was primarily designed to evaluate machine translation
(MT) and later adopted for evaluating natural language generation (NLG). However, in contrast to
natural language sequences, SPARQL is a formal language and includes query-specific terms, patterns
and variables which the standard automatic metrics such as BLEU do not consider when computing
𝑛-gram overlaps. To overcome this shortcoming, we propose a variable normalization algorithm to
adopt BLEU and F1 score for measuring the performance of SPARQL query generation. We call the
adopted metrics SP-BLEU and SP-F1.

To assess the performance of SGPT, we conduct experiments on three publicly available datasets:
LC-QuAD 2.0 [283], VQuAnDA [284] and QALD-9 [285]. We evaluate the system-generated
SPARQL queries using both human and automatic metrics. Furthermore, by an ablation study
we examine the impact of individual components on SGPT’s overall performance to verify their
effectiveness. Moreover, we conduct extensive analysis to demonstrate SGPT’s capacity to comprehend
diverse, complex questions and generate correct SPARQL queries. The empirical evaluation confirms
that SGPT significantly outperforms state-of-the-art methods in generating SPARQL queries from
natural language questions across several benchmark datasets.

Contributions

• A novel embedding technique, that embed the linguistic features of a question and graph
information for the SPARQL query generation task.

• A generative system, SGPT, that utilizes the linguistic features of a natural language question
and learns to embed the KG into language model’s parameters. SGPT can be used as either as a
standalone system or can be integrated into modular pipelines.

• An algorithm to adapt standard evaluation metrics for measuring the performance of SPARQL
query generation.
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6.2 Approach: SGPT

6.2.1 Problem Definition

This chapter proposes separate training techniques for two use cases, 1) only a natural question is
available, 2) both the question and entities mentioned in the question are provided. In the second case,
we consider the provided set of entities as additional knowledge K . Given a natural language question
Q (for the first case) or an additional knowledge K and a natural question Q (for the second case), the
goal of SGPT is to generate a SPARQL query S. We define SGPTQ as the system for the first use case
and SGPTQ,K for the second use case. Formally, in SGPTQ , the probability distribution of generating
a SPARQL query by the language model is defined as:

𝑝𝜃 (S|Q) =
𝑛∏
𝑖=1

𝑝𝜃 (𝑠𝑖 |𝑠1, ..., 𝑠𝑖−1,Q), (6.1)

and in SGPTQ,K the probability distribution is as follows:

𝑝𝜃 (S|Q,K) =
𝑛∏
𝑖=1

𝑝𝜃 (𝑠𝑖 |𝑠1, ..., 𝑠𝑖−1,Q,K), (6.2)

where 𝜃 is model’s parameters, 𝑛 is the query length and s𝑖 is the token generated at 𝑖-th time step.
We use the terms "SPARQL query" and "query" interchangeably throughout this chapter. The term
"SGPT" refers to both SGPTQ and SGPTQ,K , if there is no design or implementation difference
between them for the describe concept or operation. SGPT follows the encoder-decoder design
paradigm. The approach is described in depth in the following subsections.

6.2.2 Encoding

We design special embedding layers to embed the linguistic features of the question. The idea of
special embedding was initially suggested by Devlin et al. [45]. The idea has been recently adopted for
encoding structural information such as in table parsing [286] and graph-based dialogue generation
task [287]. Unlike these prior works, in this work special embedding layers are designed to capture
the linguistic characteristics of an NLQ. A stack of Transformer [37]-encoders then encodes these
embeddings. Below we describe the process in detail.

Input Sequence Construction.

A Pre-processor component in SGPT takes Q and K as input and constructs the input sequence. The
input sequence in SGPTQ starts with a [BOS] token, then the question Q and an [EOS] token that
marks the end of the sequence as depicted in Figure 6.2.

Similarly, in SGPTQ,K the input sequence starts and ends with [BOS] and [EOS] tokens, respectively.
The question is separated by a [Q] token from the additional knowledge K, in the input sequence.
Furthermore, each entity in the additional knowledge is preceded by an [E] token in the input sequence
(see Figure 6.3).

To allow generalisation, the entity positions in the question and query are masked in SGPTQ,K . A
Pre-processor masks both the entities in the question and the entities (including their prefix) in the
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Figure 6.2: An illustration of special embedding layers used in SGPTQ .

Figure 6.3: The question and knowledge embedding techniques used in SGPTQ,K . The dotted red box indicates
the separation of additional knowledge from the question.

query by a generic ENT token for training. The entities in the query that do not appear in the question
are not masked and learned in the model’s parameters. For multiple entities in the question the generic
masks are as follows: ENT1, ENT2,..,ENTn, where n is the number of entities present in the question.
For instance, if the question contains two entities, the first is masked by the ENT1 token and the second
by the ENT2 token. Figure 6.3 depicts a masked input sequence.

Generally, relation linking is challenging because, the surface form of the relation in the question
often differs from the label of the relation in the KG [14]. This leads to relation linking-based error
propagation in the pipeline-based systems [288, 289]. To alleviate the error propagation, we delegated
the relation learning task to the GPT-2 model, which learns the KG (i.e., entity and relation) in its
parameters.

Embedding the Input Sequence.

The constructed input sequence is passed through five different embedding layers to capture different
properties of the input. The embedding layers are described below:

(i) Word embedding layer encodes the token level information of the input sequence. A pre-trained
GPT-2 [38] tokenizer is used to tokenize the input sequence.

(ii) POS-tag embedding layer embeds the part-of-speech tag of the corresponding token in the
word embedding layer. POS-tags are used to understand the use of word in the question better, since a
particular word may have different meaning based on the usage in a sentence.

(iii) Dependency relation embedding layer encodes the dependency relations between pairs of
words in the question.

(iv) Dependency level embedding layer embeds the information about the children of the tokens in
the word embedding layer, extracted from the dependency tree.

(v) Positional embedding layer embeds the absolute position information of the input sequence.
SGPT computes the sum of POS-tag, dependency relation and dependency level embeddings and

apply Layer Normalization [244] to obtain the linguistic context of the NLQ. Layer Normalization
normalizes the embedding and prevents the model’s weights from exploding. The encoding of
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linguistic context is discussed in the next section. The word and positional embeddings are utilized by
a GPT-2 decoder, discussed in §6.2.3.

Linguistic Context Encoding

To generate a correct SPARQL query, it is crucial for the system to understand the linguistic features
of a question that captures various question types and patterns. In contrast to [21], where the context
vector is used to learn the mapping between NLQ and its corresponding SPARQL, SGPT learns
various linguistic features (i.e., POS-tag and word dependencies) separately leveraging the layers
introduced. A stack of Transformer-encoders [37] is employed in this chapter to encode the linguistic
context. The output of the 𝑙-th encoder layer is formalized as follows:

ℎ
𝑙
𝑖 =

𝑁∑︁
𝑗=1
𝛼
𝑙
𝑖 𝑗 (ℎ

𝑙−1
𝑗 𝑊

𝑉 )

𝛼
𝑙
𝑖 𝑗 =

𝑒𝑥𝑝(𝑡𝑙𝑖 𝑗)∑𝑁
𝑝=1 𝑒𝑥𝑝(𝑡

𝑙
𝑖 𝑝)

𝑡
𝑙
𝑖 𝑗 =
(ℎ𝑙−1
𝑖 𝑊

𝑄) (ℎ𝑙−1
𝑗 𝑊

𝐾 )
√
𝑑

𝑖 = 1, 2, ...., 𝑁

(6.3)

where𝑊𝑄,𝑊𝐾 , and𝑊𝑉 are trainable weights, 𝑁 is the sequence length, and 𝑑 is the dimension of
query, key and value vectors. The output is then passed to a Feed-Forward Neural Network (FFNN),
preceded and followed by residual connections and normalization layers as follows:

ℎ
′𝑙
𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ

𝑙
𝑖 + ℎ

𝑙−1
𝑖 )

ℎ
′′𝑙
𝑖 = 𝑊

𝑙
2𝑅𝑒𝐿𝑈 (𝑊

𝑙+1
1 ℎ

′𝑙
𝑖 + 𝑏1) + 𝑏2

ℎ̂
𝑙
𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ

′𝑙
𝑖 + ℎ

′′𝑙
𝑖),

(6.4)

where 𝑊 𝑙
2 and 𝑊 𝑙+1

1 are trainable weights and 𝑏1 and 𝑏2 are bias terms. A rectified linear unit
(ReLU) [290] is employed as the activation function in the FFNN network. The output of the last
encoder layer ℎ̂𝑙𝑖 is then passed to a GPT-2 model for decoding. Figure 6.4 illustrates a high-level
architecture of SGPT.

6.2.3 Decoding

A GPT-2 [38] language model is used in this chapter to model SPARQL query generation. However,
any Transformer [37] decoder-based LM can be used. GTP-2 is a multi-headed attention-based
language model. The attention, computed in each of GPT-2’s heads is formalized as follows:

F (𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( 1√︁
𝑑𝑘

(𝑄𝐾𝑇 ) + 𝑀)𝑉,

𝐻𝑖 = F (𝑄𝑊
𝑄

𝑖
, 𝐾𝑊

𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖 ),

(6.5)
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Figure 6.4: System Architecture.

where F (·) computes the masked attention. The attention mask is denoted as 𝑀 , where 𝐻𝑖 is the 𝑖-th
head and 𝑑𝑘=𝑑𝑚/ℎ. Here, 𝑑𝑚 is the model’s dimension and ℎ denotes the number of heads. 𝑄, 𝐾
and 𝑉 are query, key and value where 𝑊𝑄

𝑖
,𝑊

𝐾
𝑖 ,𝑊

𝑉
𝑖 are trainable weights. Model parameters in 𝜃

are trained to minimize the negative log-likelihood LQ (for SGPTQ) and LQ,K (for SGPTQ,K) for
next-token prediction. Formally, the loss LQ and LQ,K are defined as follows:

LQ = −
𝑛∑︁
𝑖

log 𝑝(𝑠𝑖 |𝑠1, ..., 𝑠𝑖−1,Q),

LQ,K = −
𝑛∑︁
𝑖

log 𝑝(𝑠𝑖 |𝑠1, ..., 𝑠𝑖−1,Q,K),
(6.6)

where 𝑛 is the maximum query length. During inference, Top-k sampling decoding [248] is utilized
to generate a word token at each time step since Beam Search [291, 292]. is computationally expensive
for generating larger sequence It is noteworthy that the entities that were masked by the pre-processor
of SGPTQ,K in the question also appear masked in the decoded query. Once the sequence decoding is
completed, the Post-processor component replaces the entity masks with their corresponding entity
identifier.
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6.3 Experiments and Results

6.3.1 Data

We evaluate SGPT on three publicly available datasets.
1) LC-QuAD 2.0 [283]: A large-scale question answering dataset, which includes for each complex
natural language question its corresponding query template, SPARQL query and annotations. We
chose LC-QuAD 2.0 to evaluate Wikidata-based questions.
2) VQuAnDa [284]: A verbalization dataset which contains natural language questions and their
corresponding SPARQL queries for extracting answers. VQuAnDa contains DBpedia-based questions.
3) QALD-9 [285]: QALD-9 is a small yet challenging multilingual question answering dataset based
on DBpedia. The dataset contains questions in 3 to 8 different languages. Within the scope of this
chapter, we select the English data.

LC-QuAD 2.0 VQuAnDA QALD-9

# train 21,497 3,500 350
# validation 2,389 500 58
# test 5,969 1,000 150
Avg. # tokens in the question 10.55 11.09 7.48
Avg. # tokens in the query 13.68 12.42 13.20
Avg. # keywords in the query 2.08 1.96 2.21

Table 6.2: Dataset statistics.

The dataset statistics are summarized in Table 6.2. The original train and test splits of LC-QuAD 2.0,
VQuAnDa and QALD-9 are 24,180/6,046, 4,000/1,000 and 408/150, respectively. For the validation
during the training, we split the training set and use 10%-15% data as the validation set, based on the
dataset size. In LC-QuAD, 2.0 we removed the data from train set with empty question and query
field. Natural language questions are treated as complex when answering them requires multiple graph
patterns. Depending on the complexity, the following question types are distinguished [283]:

• Boolean: Question where the answer is either True or False.

• Count: That computes the number of occurrence of a particular thing.

• Rank: Questions seek answer which is in a particular order.

• Simple: Questions correspond to semantics of natural language question that is obtained by
matching just one hop relations of the entity.

• String: Questions, for which answers contain a particular word or letter.

• Two Hop: Questions, in which semantic interpretation corresponds to two hop of the entity’s
connection in the knowledge graph i.e. two set of triples in the where clause of the SPARQL
query.

• Two Intent: Questions seek for minimum two answer for the same question for example, mother
of a person and also the child of same person.

The question types statistics of the benchmark datasets are reported in Table 6.3.
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LC-QuAD 2.0 VQuAnDa QALD-9

Question Type Train Test Train Test Train Test

Boolean 2,111 1,433 328 82 40 5
Count 1,134 281 676 181 58 32
Rank 905 204 134 29 59 13
Simple 3,216 824 617 172 158 52
String 5,920 1,433 1 - 32 17
Two hops 20,283 5,049 3,052 744 203 88
Two intents 5,062 1,223 - - 17 11

Table 6.3: Statistics of question types.

with K LC-QuAD 2.0 VQuAnDa QALD-9
Models BLEU F1 SP-BLEU SP-F1 BLEU F1 SP-BLEU SP-F1 BLEU F1 SP-BLEU SP-F1

NSpM [200] % 34.74 66.47 38.39 70.78 37.75 59.96 37.75 59.96 18.23 45.34 24.18 50.53
SGPTQ (ours) % 60.50 83.45 63.59 86.22 63.82 87.08 63.82 87.08 29.95 60.22 32.12 64.57

SQG [97] ! - - - - 5.09 37.70 33.86 44.67 4.44 27.85 22.14 39.39
TeBaQA [98] ! - - - - 13.30 22.41 13.30 22.41 12.82 28.81 17.48 32.24
∗BART [21] ! - 64.00 - - - - - - - - - -
∗T5 (small) [21] ! - 92.00 - - - - - - - - - -
∗PGNs [21] ! - 86.00 - - - - - - - - - -

SGPTQ,K (ours) ! 73.78 89.04 77.85 92.27 72.58 88.87 72.58 88.87 35.68 67.82 41.88 72.98

Table 6.4: Performance of SGPT and baseline models on three benchmark datasets. Best scores are in bold. F1
scores computed for the models with ∗ are against the entity and relation set and do not consider all the tokens
in the SPARQL query.

VQuAnDa QALD-9
SP-BLEU SP-F1 SP-BLEU SP-F1

SQG 31.11 46.40 24.30 55.60
SGPTQ,K 55.98 80.45 22.21 57.47

TeBaQA 30.55 44.81 25.57 55.14
SGPTQ,K 62.92 83.65 33.10 71.89

Table 6.5: Results on data where baseline models could generate queries.

6.3.2 Training Settings

We use a stack of Transformer-encoders with 8 heads and 6 layers to encode linguistic features. For
decoding we employ the GPT-2 [38] model with 117M parameters throughout this chapter. As an
optimizer, AdamW [249] with 𝜖 = 1𝑒-8 and a value of 6.25𝑒-5 is used as learning rate. GELU [250]
is used as the activation function. The optimum hyper-parameters for each dataset were determined
using grid search based on the performance on the validation set. We used spaCy1 to annotate the
NLQ with the POS-tags and dependency relations, based on the work of [293]. All experiments were
run in a distributed training environment with 2 GPUs, each with 12 GBs of RAM. The training takes
215, 125 and 35 minutes on LC-QuAD 2.0, VQuAnDa, and QALD-9, respectively.

1https://spacy.io/
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Figure 6.5: Question type-wise performance of SGPTQ,K and baseline models on the test set of VQuAnDa and
QALD-9.

Figure 6.6: Question type-wise performance of SGPTQ on LC-QuAD 2.0 test set.

Algorithmus 3 : Query Normalization
Input : A SPARQL query S
Output : A normalized SPARQL query S𝑛

1 𝑉𝑜 ←− ∅, 𝑉𝑛 ←− ∅ initializing empty sets
2 𝑖 ←− 0, 𝑖𝑜 ←− 0, S𝑛 ←− ∅
3 for 𝑤 ∈ S do
4 if w startswith ‘?’ then
5 𝑡𝑐 ←− ∅
6 if w ∈V𝑜 then
7 𝑖𝑜 ←− 𝑖𝑛𝑑𝑒𝑥𝑂 𝑓 (𝑤,𝑉𝑜)position of 𝑤 in V𝑜
8 𝑡𝑐 ←− 𝑉𝑜 [𝑖𝑜]
9 else

10 𝑉𝑜 ←− 𝑎𝑑𝑑 (𝑤,𝑉𝑜)adds a value 𝑤 to the set 𝑉𝑜
11 𝑖 ←− 𝑖 + 1
12 𝑡𝑐 ←− 𝑠𝑡𝑟𝑖𝑛𝑔(?𝑣𝑎𝑟 𝑖)converts to string

13 S𝑛 ←− 𝑐𝑜𝑛𝑐𝑎𝑡 (S𝑛, 𝑡𝑐) string concatenation

14 else
15 S𝑛 ←− 𝑐𝑜𝑛𝑐𝑎𝑡 (S𝑛, 𝑡𝑐) string concatenation

16 return S𝑛
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6.3.3 Evaluation Metrics

Automatic Metrics. Following the baseline models, we use BLEU [32] and F1 score as automatic
metrics for the evaluation. Generally, SPARQL queries in the used data sets were created manually
or semi-automatically by domain experts. This means that the choice of variable names depends
on the domain experts and can vary. Hence, we argue that these metrics are incapable of capturing
the variations in the variables used in a the query, since BLEU computes 𝑛-gram overlaps and F1
is computed by token-level precision and recall. We propose an adaption, where variables in both
reference and predicted queries are normalized before the standard evaluation performed by BLEU
and F1 and named them SP-BLEU and SP-F1, respectively. The proposed normalization technique is
shown in Algorithm 3. Our proposed variable name normalization technique allows the automatic
metric to evaluate a predicted query regardless of the annotated variable names. An example of query
normalization is demonstrated in Table 6.6. The normalisation results in the metrics more closely
reflecting actual performance. We compare all systems on both the standard automated metrics and
the proposed metrics (discussed in §6.3.5).

Human Evaluation. We further conducted a human evaluation to manually assess the quality of
generated queries. We randomly chose 75 examples (25 from each dataset) and asked two domain
experts to evaluate the system generated queries based on the following criteria: 1) Syntax validity -
how structurally correct the generate queries are, and 2) Content validity - how correct the entities and
relations are. We asked the reviewers to rate the system generated queries on a scale of 1 to 5 (higher
is better). The inter-annotator agreement score (Cohen’s kappa 𝜅) of the annotated data is 0.86.

Question How many grand-children did Jacques Cousteau have ?

Reference SELECT COUNT ( DISTINCT ?y as ?y ) WHERE
{ dbr:Jacques_Cousteau dbo:child ?x . ?x dbo:child ?y . }

Normalized Reference SELECT COUNT ( DISTINCT ?var1 as ?var1 ) WHERE
{ dbr:Jacques_Cousteau dbo:child ?var2 . ?var2 dbo:child ?var1 . }

Prediction SELECT COUNT ( DISTINCT ?string as ?string ) WHERE
{ dbr:Jacques_Cousteau dbo:child ?uri . ?uri dbo:child ?string . }

Normalized Prediction SELECT COUNT ( DISTINCT ?var1 as ?var1 ) WHERE
{ dbr:Jacques_Cousteau dbo:child ?var2 . ?var2 dbo:child ?var1 . }

Table 6.6: An illustration of query normalization.

6.3.4 Baselines

We compare SGPT with both sequence-to-sequence and template-based methods. We train and
evaluate the baseline models with their recommended settings. Below we provide a brief description
of baseline models:

• SQG [97]: A set of candidate queries are created in SQG based on the sub-graph patterns,
which are then ranked and arranged based on structural similarity, utilizing Tree-LSTM [202].

• NSpM [200]: A sequence-to-sequence strategy in which a Bidirectional Long Short-Term
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System with K Syntax validity Content validity

NSpM [200] % 4.17 3.00

SGPTQ (ours) % 4.96 4.10

SQG [97] ! 3.42 2.73
TeBaQA [98] ! 3.85 2.99

SGPTK ,Q (ours) ! 5.00 4.26

Table 6.7: Human evaluation results.

Memory Network (Bi-LSTM) learns to generate a template SPARQL from a natural language
question.

• TeBaQA [98]: The TeBaQA model depends on template classes which it generates from the
training dataset, to predict the SPARQL query. To generate the SPARQL query, the model first
classifies the input question and predicts a template class. The slots in the template class are
filled in by indexed entities and relations guided by a rule-based lookup. The generated queries
are then ranked to obtain the final SPARQL query representation.

• PLMs [21]: A sequence-to-sequence approach that investigates the performance of various
pre-trained language models (T5 [108], BART [40] and pointer networks [161]) for generating
SPARQL queries from NLQ provided that the entity and relations are already linked.

6.3.5 Quantitative Results

Table 6.4 summarises the performance of SGPT and baseline systems. In the first set of results where
additional knowledge K is not provided, SGPTQ outperformed the other generative system, NSpM,
significantly across all metrics. In many cases NSpM failed to recognize the correct question types,
thus frequently generated wrong queries. In the second set of results, using additional knowledge,
the baseline models obtained very low scores because of their limited template coverage. We further
investigated the performance of baseline models and observed that SQG managed to generate queries
for 46% and 45.33% of the test NLQs of VQuAnDa and QALD-9, respectively. TeBaQA could
generate queries for 30.55% and 40.67% of the same test NLQs. These template-based systems fail
to generate queries primarily for two reasons: 1) They could not classify or find a suitable template
for a give question 2) They failed to fill in all the slots in the selected template, resulting in no query
predicted. We report the comparison of performance on the data where baseline models could generate
queries in Table 6.5. The results suggest that SGPT outperformed the baseline models significantly in
most cases. Despite given the correct subjects detected from the question, template-based systems
failed to generate queries frequently. The main reason is that SPARQL queries oftentimes include
intermediary entities which leads to correct answer but do not appear in the question. Our proposed
training technique allows SGPT to learn those entities in the model’s parameters and thus can effectively
generate correct SPARQL queries.

Finally, we investigated the capabilities of SGPT and the baselines models on diverse types of
questions, depicted in Figure 6.5 and 6.6. The improvements over all the baselines across benchmark
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Figure 6.7: Human evaluation score distribution.

datasets confirms SGPT’s capacity to handling diverse types of questions.

6.3.6 Qualitative Results

We conducted a human evaluation to assess the system generated SPARQL queries. We observed
that SGPT is capable of generating queries with correct syntax, reported in Table 6.7. Syntax validity
indicates that the generated queries are structure-wise correct. Meaning the parentheses are matching,
and the subject, predicate, and object are in their respective orders, although their actual ID might be
incorrect, whereas Content validity represents the correctness of the entity and relation IDs. We also
noticed that template-based approaches obtained comparatively low Syntax validity score because
they failed to generate queries in some cases. Overall, generative systems received a high Syntax
validity score as they learned the SPARQL pattern well. Figure 6.7 depicts the score distribution of
human annotation and corresponding BLEU and SP-BLEU scores from automatic metrics. Human
judgements are normalized to a scale of 0 to 100. The Spearman correlation co-efficient between
BLEU and human judgement is 0.94, where for SP-BLEU and human judgement it is 0.97. This
confirms that our proposed normalization algorithm enables the metric to correlate better with human
judgement.

6.4 Analysis

6.4.1 Ablation Study

Table 6.8 summarizes the results of the ablation study conducted to investigate how various components
of SGPT affect its overall performance. The seq2seq approach denotes the SGPT model without the
special layers: POS-tag embedding, dependency relation embedding and dependency level embedding.
The results in Table 6.8 exhibit that adding syntactic features improves SGPT’s capability to understand
the question and generate the correct query. A remarkable gain in the performance is noticeable after
adding of the POS-tag and dependency relation embedding layers, in both SGPTK and SGPTK ,Q .
Adding dependency level embedding which captures information about token’s immediate syntactic
dependents, however, only slightly improved the results further.
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Approach SP-BLEU Δ SP-F1 𝚫

SGPTQ (seq2seq) 50.40 - 71.66 -
+ POS-tag emb. 56.74 6.34↑ 76.92 5.26↑
+ Dep. relation emb. 62.91 6.17↑ 84.21 7.29↑
+ Dep. level emb. 63.28 0.37↑ 86.17 1.96↑

SGPTQ,K (seq2seq) 67.76 - 82.00 -
+ POS-tag emb. 72.84 5.08↑ 88.15 6.15↑
+ Dep. relation emb. 77.16 4.32↑ 91.39 3.24↑
+ Dep. level emb. 77.73 0.57↑ 92.27 0.88↑

Table 6.8: Ablation study.

6.4.2 Case Study

Table 6.9 shows two NLQs with corresponding reference query and SPARQL queries, generated by
the compared systems. The first NLQ is from LCQuAD 2.0 (Wikidata-based), and the second is from
the QALD-9 dataset (DBpedia-based). In the first case where no additional knowledge is provided,
SGPTQ generated a query with correct content and syntax, whereas NSpM failed to generate the
correct content. This demonstrates SGPT’s capabilities of understanding the question and generating
a query with correct content from the KG. Despite having additional knowledge provided for a
challenging question (second case), SQG and TeBaQA failed to generate a correct query. They could
not find a template that could both classify and fill in all the slots correctly. This exhibits the advantage
of SGPT over template-based and slot-filling approaches in handling complex query patterns.

Question System SPARQL query
Reference ASK WHERE { wd:Q740 wdt:P2404 ?obj FILTER(?obj = 0.1) }

Does cobalt have a time-
weighted average exposure
limit of .1?

NSpM ASK WHERE { wd:Q1049389 wdt:P3737 ?obj FILTER(?obj = 12) }

SGPTQ ASK WHERE { wd:Q740 wdt:P2404 ?obj FILTER ( ?obj = 0.1 ) }
Which countries have
places with more than two
caves?

Reference SELECT DISTINCT ?uri WHERE { ?cave rdf:type dbo:Cave ; dbo:location
?uri . ?uri rdf:type dbo:Country } GROUP BY ?uri HAVING ( COUNT(?cave)
> 2 )

SQG (no results found)
TeBaQA (no results found)
SGPTQ,K SELECT DISTINCT ?uri WHERE { ?cave rdf:type dbo:Cave ; dbo:location

?uri . ?uri rdf:type dbo:Country } GROUP BY ?uri HAVING ( COUNT (
?cave ) > 2 )

Table 6.9: Case study showing a comparison between SGPT and baseline system’s outputs.

6.4.3 Effectiveness of Entity Masking Strategy

Masking entities and relations in the question is a widely adopted strategy for generating and classifying
SPARQL query templates. In NSpM [200], all entities in a question are masked with a generic
<A> token. During inference, the final query is obtained by replacing <A> with all possible entity
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LC-QuAD 2.0 VQuAnDa QALD-9
F1 (E) F1 (R) F1 (E) F1 (R) F1 (E) F1 (R)

NSpM 41.52 51.09 29.19 34.62 33.46 30.56

SGPTQ (ours) 67.22 83.38 89.95 69.26 40.27 45.21

SQG - - 45.31 45.69 55.00 47.17
TeBaQA - - 20.71 16.93 48.25 33.21
SGPTQ,K (ours) 97.75 83.60 97.74 70.88 79.14 48.39

Table 6.10: Performance of entity and relation generation.

combinations and ranking. Similarly, in TeBaQA the slots in the predicted template are filled in by
checking all possible indexed entities and relations. In contrast, our proposed masking strategy in
SGPTQ,K eliminates the need for any slot-filling component. The entity masking strategy used in
SGPTQ,K’s training allows the system to learn the patterns of entity positions in the question and
generate corresponding correct query. SGPTQ,K achieves an absolute 3.8%, 1.9%, and 1.1% increase
of BLEU score on LC-QuAD 2.0, VQuAnDA, and QALD-9 respectively, when the entities are masked
in the input sequence instead of keeping their initial mentions.

6.4.4 Effective Entity and Relation Generation

Table 6.10 shows the study results, which we conducted to investigate how well our proposed model
learns the KG in its parameters. The performance suggest that SGPT can learn the knowledge graph
in its parameters with high accuracy. The metric F1 (E) denotes the F1 scores between the entity sets
of ground truth and system generated queries. Similarly, F1 (R) shows the performance of relation
prediction. Despite given the correct knowledge, SQG and TeBaQA failed to achieve high F1-scores
for entity and relation linking. This is due to the fact that the generated query may include entities
from the NLQ as well as intermediate entities and relations that are not explicitly present in the NLQ.
The intermediary entities and relations are required to resolve the answers, which is dependent on the
complexity of the question and hence cannot be specified in a template-based setting.

6.4.5 Error Analysis and Limitations

We performed an error analysis to inspect whether SGPT has not generated correct SPARQL queries.
Table 6.11 shows such erroneous examples where the first one shows an error of SGPTQ,K in generating
the wrong masked query. Although the system could infer that the question is about death, it predicted
the wrong, though similar relation dbo:deathPlace instead of dbp:placeOfDeath. The first two
error cases are from DBpedia-based questions where the third example is based on Wikidata.

In the second case, SGPTQ correctly detected the query type and the topic about British
Columbia. However, it generated the wrong entity dbr:British_Columbia_republic instead of
dbr:British_Columbia. Similarly, in the third example, the system could infer, that the question is
about a state, but predicted a Wikidata entity ID with the wrong type of state Q3624078 (sovereign
state) instate of Q842112 (socialist state). Despite the failed cases, the generated queries in Table 6.11
confirm SPGT’s capability of generating queries with correct syntax and query type.

Since SGPT learns the graph patterns in the model’s parameters, fine-tuning is required if the graph
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Table 6.11: Three error cases where the texts highlighted in green indicate the correct entry in the reference
query and red indicating wrong predication in the system generated query. The text in yellow shows the masked
entity.
Question System SPARQL query
Where did the designer of ENT1
die ?

Reference SELECT DISTINCT ?uri WHERE { ENT1 dbo:designer ?x . ?x
dbp:placeOfDeath ?uri . }

SGPTQ,K SELECT DISTINCT ?uri WHERE { ENT1 dbo:designer ?x . ?x
dbo:deathPlace ?uri . }

List all the faiths that British
Columbian politicians follow ?

Reference SELECT DISTINCT ?uri WHERE { ?x dbp:residence
dbr:British_Columbia . ?x dbp:religion ?uri . ?x
<http://www.w3.org/1999/02/22-rdf-syntax-nstype> dbo:Politician }

SGPTQ SELECT DISTINCT ?uri WHERE { ?x dbp:residence
dbr:British_Columbia_republic . ?x dbp:religion ?uri . ?x
<http://www.w3.org/1999/02/22-rdf-syntax-nstype> dbo:Politician }

When did socialist state for con-
tains administrative territorial en-
tity of Beĳing ?

Reference SELECT DISTINCT ?sbj WHERE { ?sbj wdt:P150 wd:Q956 . ?sbj
wdt:P31 wd:Q842112 }

SGPTQ SELECT DISTINCT ?sbj WHERE { ?sbj wdt:P150 wd:Q956 . ?sbj
wdt:P31 wd:Q3624078 }

is updated. Nevertheless, the proposed training techniques allow the system to learn intermediary
graph patterns required to generate a complete SPARQL query, that are not detectable from the input
question. The current version of this work only supports English language. To adapt SGPT for other
languages, a POS-tagger, a dependency parser and a pre-trained language model of the target language
are required. Despite the limitations, SGPT comes with the advantages of a training facility without
query templates, adaptable to arbitrary KG, and extendable for pipeline-based systems.

6.5 Summary

We have presented SGPT, a SPARQL query generation system, improving the state-of-the-art across
multiple benchmark datasets. Our proposed training technique eliminates the need for manual
annotation and is applicable to arbitrary RDF datasets. The key contributions of SGPT include 1) a
new encoding technique for the linguistic features of a question and (optionally) entities in the question,
that allows deeper question understanding during SPARQL generation, 2) training techniques that
leverage a pre-trained language model to generate a SPARQL query and can be adapted to questions
from different knowledge graphs, 3) improved evaluation metrics to measure the performance of
SPARQL query generation. An extensive empirical assessment confirms SGPT effectiveness in
handling diverse types of questions and generating correct SPARQL queries. This answers the research
question RQ3, "Can a generative language model embed a knowledge graph in its parameters and
learn to construct SPARQL queries?". The current version of the work only supports English language.
We open source the code and model 2.

2https://github.com/rashad101/SGPT-SPARQL-query-generation
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CHAPTER 7

Question Answering Over Unstructured
Knowledge

The previous chapters (i.e., Chapter 4, 5, and 6) focused on conversation and question answering
over structured knowledge such as knowledge graphs. This chapter demonstrates a machine reading
comprehension application developed by incorporating unstructured text into a learning method and
fine-tuning pre-trained language models for question answering on climate change-related unstructured
text. The system demonstrator developed in this chapter provides an easy-to-use interface for question
answering on climate change data. The content of this chapter is based on the following paper:

• Md Rashad Al Hasan Rony, Ying Zuo, Liubov Kovriguina, Roman Teucher, and Jens
Lehmann, Climate Bot: A Machine Reading Comprehension System for Climate Change
Question Answering. In Proceedings of ĲCAI 2022, in AI for good track.

The content of this chapter is organized into five sections. Section 7.1 discusses the impact of
climate change on the Earth and briefly summarizes the contribution of this chapter. Section 7.2
describes components of the proposed Climate Bot. Next, Section 7.3 provides a brief description
of the proposed machine reading comprehension dataset on the climate change domain. Section 7.4
demonstrates empirical results conducted in this chapter. Finally, Section 7.5 summarizes the chapter
by stating the chapters’ contribution and future direction.

7.1 Introduction

The impacts of climate change are global in scope and may threaten species and people communities’
survival. Among the most serious threats is the growing temperature of the Earth’s atmosphere,
causing sea levels to rise, ecosystems to collapse, and catastrophic weather events to become more
common. Leveraging machine learning (ML) and Artificial Intelligence (AI) has already helped
mitigate climate change effects. This has been done using various ML tasks involving predictive
modeling, i.e., natural hazard prediction, reducing factory emissions, modeling temperature changes,
and ice melting. Conversational AI applications in this domain are not yet numerous. Applying
machine reading comprehension (MRC) over climate change documents can expand the benefits of
question answering interfaces to this area, such as faster answer spotting in comparison to traditional

89



Chapter 7 Question Answering Over Unstructured Knowledge

search, natural human-machine interaction, and insights extraction from massive document collections.
Moreover, the educational impact of such applications is hard to overestimate.

To help people know more about climate change from trusted data sources, we have created a dataset
for training MRC and designed and implemented an MRC pipeline providing question answering
services over climate change problems and challenges. The motivation behind this work is to speed up
access to information about climate change challenges and promote awareness about it by allowing
natural questions over trusted sources. We open-source the data and code used in this demonstrator 1.
A video demonstrator of the climate bot can be found on Youtube 2.

Contributions

• Climate Bot, a novel MRC system for question answering over climate change documents with
publicly available code.

• A climate change dataset CCMRC, as a manually annotated publicly available resource for
training QA and MRC applications, having 21,081 question-answer pairs and 7,400 paragraphs,
extracted from trusted data sources.

7.2 Climate Bot System

The primary goal of the Climate Bot is to perform Machine Reading Comprehension in the climate
change domain. Given a user question Q, the climate bot first fetches documents (D𝑛) relevant to Q.
Then the system displays the documents and answers highlighted in them using a web interface. Here,
𝑛 is the number of documents. Climate bot consists of three main components: 1) a Retriever 2) a
Reader, and 3) a User Interface (UI).

7.2.1 Retriever.

The task of the Retriever component is to fetch documents relevant to the user question. An indexing
step prepares the documents for the retrieval task, whereas a lookup step retrieves relevant documents
to answer the question. The steps are described below.

Indexing: To set up the retriever, we first pre-process all the documentsD. Each document 𝑑 ∈ D is
passed through Sentence-BERT [47] to get a contextualized vector representation ( ®𝑑) of the document
which is indexed into a dense space using an hierarchical indexing algorithm from Dense Passage
Retriever (DPR) [102]. Indexing the contextualized documents into a dense space closely clusters
documents with similar types and content, allowing the climate bot to find relevant documents quickly
and efficiently. Only the data pre-processing steps need to be executed to extend the climate change
bot with more data. The data pre-processing steps are depicted in Figure 7.1.

1 https://github.com/rashad101/Climate-Bot-IJCAI22
2 https://youtu.be/DdRh6P4sgQw
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7.2 Climate Bot System

Figure 7.1: The data pre-processing pipeline, showing how documents are stored into a dense space.

Lookup: An approximate search algorithm from the Dense Passage Retriever (DPR) [102] is
employed to retrieve user-question relevant documents from the indexed dense space. Specifically,
first, the contextualized vector of the question is obtained from Sentence-BERT [47]. The DPR then
utilizes the contextualized representation to perform lookup following a K-nearest neighbor (KNN)
approximate search algorithm and fetch 𝑛 number of documents relevant to the user question. The
value of 𝑛 can be configured from the user interface of the system demonstrator.

7.2.2 Reader.

The task of the Reader component is to extract a text span from the documents that answers the user
question. We leverage the language model ALBERT [48] to extract an answer span given a question
and a document as input. The ALBERT model was previously pre-trained on the SQuAD [19] dataset,
a widely used cross-domain MRC dataset. We fine-tune the pre-trained ALBERT model on the climate
change data. The Reader component extracts one answer per document, which is then displayed in a
user interface.

Figure 7.2: System architecture.

7.2.3 User Interface (UI).

We developed a web interface that allows a user to type questions and receive the most relevant
documents along with highlights of the answer to the question inside the documents (see screenshot in
Figure 7.3).

The system architecture is illustrated in Figure 7.2. Furthermore, the system demonstrator we
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Figure 7.3: System demonstrator.

developed is shown in Figure 7.3. The main functionalities of the demonstrator are described below:

• Example questions, to give the user a starting point to try out our system. Example questions
are clickable cards, located at the bottom part of the demonstrator. Once clicked, the question
and its answer will pop up in the chat section.

• An input field, where users can type in their question and press Enter in their keyboard or click
on the Send button to get the answer in the same way as with the example questions.

• The main body of the demonstrator is designated for showing the question and answer. The
answer is shown in a card where the first line shows the answer in bold, followed by a document
fetched by the Retriever wherein the answer is highlighted in yellow.

• A drop-down button on the top-left corner to configure the value of 𝑛 (Top 𝑛), indicating how
many documents the Retriever should fetch.
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• A reset button, located at the top-right corner of the demonstrator to clear excessive chat
contents.

7.3 CCMRC: Climate Change Dataset

7.3.1 Data Sources and Acquisition

We collected data from various trusted data sources. The data from each source was pre-processed
and split into documents/paragraphs. Given these documents, we asked the Amazon Mechanical
Turk (AMT) and in-house annotators from the Smart Data Analytics group to manually write
question-answer pairs. The trusted data sources used to construct the dataset are listed below.

• Official Semantic Scholar Dump 3, where the research articles with the words Climate or
Climate change in their title, are selected.

• The official reports of the Intergovernmental Panel on Climate Change Special Reports on
Climate Change for the years 2019-2021 4.

• NASA Global Climate Change 5.

• European Commission Climate Change Data 6.

• Individual documents and news articles from CNN, The Guardian, National Geographic,
New York Times, World Health Organization.

We have implemented PDF-parser and used third-party libraries to collect the research articles and
reports listed above.

7.3.2 Data Annotation

Each article was split into paragraphs/documents for manual annotation. To keep the quality of
annotated question-answer pairs consistent, documents with a word count of less than 150 words were
excluded from manual annotation. As the train set, 7,527 paragraphs were manually annotated. We
asked Amazon’s Mechanical Turk (AMT) annotators to write three question-answer-pairs for each
document obtained from Semantic Scholar articles. The annotated question-answer-pairs were then
transformed to the widely used SQuAD [19] dataset format for training and testing of the reader model.

To obtain a realistic estimation of the test performance of the trained question-answer (QA) system,
we created an additional test set, from here on referred to as the in-house annotation test set, from the
listed data sources except for Semantic Scholar. The in-house annotation test set contains documents
from 30 articles. Figure 7.4 shows the annotation tool used for generating the in-house test set. The
annotation tool allows the annotators to download the annotated data in SQuAD format. Five QA-pairs
from each of the 30 articles annotated by the in-house annotators were randomly sampled to assess the

3https://api.semanticscholar.org/corpus/download/
4https://www.ipcc.ch/reports/
5https://climate.nasa.gov/ask-nasa-climate/
6https://ec.europa.eu/clima/climate-change_en
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Figure 7.4: The in-house annotation tool used to collect question answer pairs for training the Reader module.

quality of annotated QA-pairs. Each QA-pair was evaluated by three different cross-validators who
were not previously involved in the annotation process.

We asked each cross-validator to rate the question and answer individually. Based on the grammar,
the relevance and the contextual meaning of the QA-pair, each question and answer were scored from
1 to 4, where 1 corresponds to ‘poor’ and 4 corresponds to ‘excellent’. The inter-annotator agreement
score (Cohen’s Kappa 𝜅) of the evaluated data is 0.86. The evaluation guidelines are provided in our
Github repository 7.

7.3.3 Dataset Statistics

The dataset statistic is reported in Table 7.1. There are 7,400 paragraphs and 21,081 QA-pairs used
for training and testing the reader model of the Climate bot system. The AMT annotated data were
split at the paragraph level into train, validation, and test sets with the ratio of 70/20/10. We created a
set of 960 QA-pairs from 495 documents as the in-house annotation test set.

7.4 Evaluation

We used automatic metrics (F1 score, BLEU [32] and METEOR [33]) to evaluate the performance of
the Reader component. It is noteworthy that the Retriever component in Climate Bot works in an
unsupervised manner. The evaluation result is reported in Table 7.2. We report the performance of
the Reader module with and without fine-tuning. The evaluation results demonstrate that the climate
bot can answer climate-related user questions with high accuracy. It also reveals that fine-tuning

7 https://github.com/SmartDataAnalytics/Climate-Bot
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Train Validation Test

Number of paragraphs 5,180 1,480 740
Number of QA-pairs 14,756 4,229 2,096
Avg. word count (question) 9.59 9.49 9.57
Avg. word count (document) 212.80 210.92 208.01
Avg. word count (answer) 26.06 25.80 25.81

Table 7.1: Dataset statistics.

F1 score BLEU METEOR

Test without fine-tuning 0.672 0.551 0.606
Test 0.816 0.678 0.808
In-house annotation test without fine-tuning 0.438 0.332 0.419
In-house annotation test 0.661 0.416 0.694

Table 7.2: Performance of the Reader component.

significantly improves the question answering performance. Because of the fine-tuning, the Reader
can now capture climate change-related terminologies better. The proposed climate bot is developed
in a modular way, allowing the system to be extendable with minimal effort. We evaluated the quality
of the in-house test set by calculating an average over the cross-validators ratings for the questions and
answers separately. Given the scale, we received an average score of 3.69 for the questions’ quality
and 3.79 for the answers’ quality.

7.5 Summary

We presented Climate Bot, an MRC system for question answering about climate change. The key
contributions of this work include 1) A question answering system on climate change and 2) A
machine reading comprehension dataset on climate change. The experiment results demonstrate the
performance improvement in question answering over unstructured text after fine-tuning a pre-trained
language model over a pre-trained only model. Additionally, we made the annotated dataset CCMRC
and code open source to encourage further research on the climate change domain.
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CHAPTER 8

Dialogue System Evaluation

We developed and discussed conversational and question answering systems in the previous chapters
(i.e., Chapter 4, 5, 6, and 7). On the contrary, this chapter aims to develop an evaluation metric
to measure the performance of generative systems such as dialogue systems. Evaluation metrics
are one of the key elements for developing any intelligent system. This chapter addresses the
research question RQ4, "How to effectively employ a pre-trained language model to improve the
evaluation of single-reference based generative systems?". Pre-trained language (PLM) models
have revolutionized the field of NLP in recent years. PLMs have become popular because of their
capability to understand numerous text patterns. The contextual understanding of these PLMs is
embedded in their pre-trained weights. This chapter discusses techniques to evaluate generative
systems leveraging pre-trained language models effectively. The content of this chapter is based on
the following publication:

• Md Rashad Al Hasan Rony, Liubov Kovriguina, Debanjan Chaudhuri, Ricardo Usbeck, and
Jens Lehmann. 2022. RoMe: A Robust Metric for Evaluating Natural Language Generation.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5645–5657, Dublin, Ireland. Association for Computational
Linguistics.

This chapter is organized into five sections. Section 8.1 describes the limitation of existing metrics
and importance of metrics that can tackle various surface forms of the text. Section 8.2 discusses
the proposed metric and its components in detail. Section 8.3 describes experiments on various
benchmark dataset and their results. A comprehensive robustness analysis is provided in Section 8.4,
demonstrating the robustness of the proposed metric in handling various surface forms of system
generated sentences. Finally, Section 8.5 summarizes the contribution of this chapter with concluding
remarks.

8.1 Introduction

Automatic generation of fluent and coherent natural language is a key step for human-computer
interaction. Evaluating generative systems such as text summarization, dialogue systems, and machine
translation is challenging since the assessment involves several criteria such as content determination,
lexicalization, and surface realization [234, 294]. For assessing system-generated outputs, human
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judgment is considered to be the best approach. Obtaining human evaluation ratings, on the other
hand, is both expensive and time-consuming. As a result, developing automated metrics for assessing
the quality of machine-generated text has become an active area of research in NLP.

The quality estimation task primarily entails determining the similarity between the reference and
hypothesis as well as assessing the hypothesis for grammatical correctness and naturalness. Word
overlap-based metrics (i.e., BLEU [32], METEOR [33], and ROUGE [112]) cannot capture the
hypotheses’ semantic similarity to reference, naturalness, and fluency. On the other hand, despite
the fact that embedding-based metrics (i.e., WMD [115], BERTScore [239] and MoverScore [113])
employ the contextualized representation of words, they do not consider the grammatical acceptability
and syntactical similarity of the hypothesis to the reference.

To address these shortcomings, we propose RoMe, an automatic and robust metric for evaluating
NLG systems. RoMe employs a neural classifier that uses the generated sentence’s grammatical,
syntactic, and semantic qualities as features to estimate the quality of the sentence. Firstly, it calculates
the earth mover’s distance (EMD) [41] to determine how much the hypothesis differs from the reference.
During the computation of EMD, we incorporate hard word alignment and soft-penalization constants
to handle various surface forms of words in a sentence, such as repeated words and the passive
form of a sentence. Secondly, using a semantically enhanced tree edit distance, the difference in
syntactic structures between the reference and hypothesis sentences is quantified. Thirdly, the metric
incorporates a binary classifier to evaluate the grammatical acceptability of the generated hypotheses.
Finally, the scores obtained from the preceding steps are combined to form a representation vector,
which is subsequently fed into a self-supervised network. The network produces a final score, referred
to as RoMe’s output which represents the overall quality of the hypothesis statement.

We investigate the effectiveness of our proposed metric by conducting experiments on datasets from
various domains of NLG such as knowledge graph based language generation dataset (KELM [295]),
dialogue datasets [296, 12], the WebNLG 2017 challenge dataset [297], structured data to language
generation dataset (BAGEL [298] and SFHOTEL [123]). The capability of existing metrics to handle
various forms of text has lately become a matter of debate in the NLP community [299, 258, 234].
Hence, we conduct an extensive robustness analysis to assess RoMe’s performance in handling diverse
forms of system-generated sentences. To verify our claim, we design the analysis based on the text
perturbation methods used in CHECKLIST [299] and adversarial text transformation techniques from
TextFooler [300] and TextAttack [301]. The contributions of this paper can be summarized as follows:

Contributions

• A robust evaluation metric to assess the performance of generative systems, considering the
semantic, syntactic, and grammatical acceptability of the generated sentences.

• A comprehensive robustness analysis that demonstrates the superior performance of RoMe in
handling various surface forms of the generated sentences.
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8.2 Approach: RoMe

In RoMe, a neural network determines the final evaluation score given a reference-hypothesis pair.
The network is trained to predict the evaluation score based on three features: semantic similarity
computed by EMD, enhanced TED, and the grammatical acceptability score. We explain these features
in the following subsections.

8.2.1 Earth Mover’s Distance Based Semantic Similarity

The Earth Mover’s Distance (EMD) estimates the amount of work required to transform a probability
distribution into another [41]. Let us define the reference as R = {𝑟1, 𝑟2, ..., 𝑟𝑝} and the hypothesis as
H = {ℎ1, ℎ2, ..., ℎ𝑞}, where 𝑟𝑖 and ℎ 𝑗 indicates the 𝑖-th and 𝑗-th word of the reference and hypothesis,
respectively. The weight of the word 𝑟𝑖 and ℎ 𝑗 are denoted as 𝑚𝑖 and 𝑛 𝑗 respectively. Then, the
total weight distribution of R and H is 𝑚∑ =

∑𝑝

𝑖=1 𝑚𝑖 and 𝑛∑ =
∑𝑞

𝑗=1 𝑛 𝑗 , respectively. Here, the
sentence-level and normalized TF-IDF score of a word is considered as the word’s weight. Formally,
EMD can be defined as:

𝐸𝑀𝐷 (H ,R) =
min 𝑓𝑖 𝑗 ∈F(H,R)

∑𝑝

𝑖=1
∑𝑞

𝑗=1 𝑑𝑖 𝑗 𝑓𝑖 𝑗

min(𝑚∑, 𝑛∑) (8.1)

where 𝑑𝑖 𝑗 is the distance between the words 𝑟𝑖 and ℎ 𝑗 in the space and F (H ,R) is a set of possible
flows between the two distributions that the system tries to optimize. In Equation 8.1, 𝐸𝑀𝐷 (H ,R)
denotes the amount of work required to match the hypothesis with the reference. The optimization is
done following four constraints:

𝑓𝑖 𝑗 ≥ 0 𝑖 = 1, 2, ..., 𝑝 and 𝑗 = 1, 2, .., 𝑞,
𝑞∑︁
𝑗=1

𝑓𝑖 𝑗 ≤ 𝑚𝑖 𝑖 = 1, 2, ..., 𝑝,

𝑝∑︁
𝑖=1

𝑓𝑖 𝑗 ≤ 𝑛 𝑗 𝑗 = 1, 2, ..., 𝑞,

𝑝∑︁
𝑖=1

𝑞∑︁
𝑗=1

𝑓𝑖 𝑗 = min(𝑚∑, 𝑛∑)

(8.2)

The first constraint indicates that each flow must be non-negative. The second constraint limits the
total weights flowing from 𝑟𝑖 to less than or equal to 𝑚𝑖. Similarly, the third constraint restricts the
total weights flowing from ℎ 𝑗 to less than or equal to 𝑛 𝑗 . The final constraint indicates that the total
flow of weights must be equal to the minimum weight distribution.

During the computation of EMD, we employ hard word alignment and soft-penalization techniques
to tackle repetitive words and passive forms of a sentence. We compute a distance matrix and a flow
matrix as described below and finally obtain EMD utilizing Equation 8.1.

Hard Word Alignment

We first align the word pairs between reference and hypothesis based on their semantic similarities.
The alignment is performed by computing all paired cosine similarities while taking word position
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information into account, as in [35]. In contrast to [35], we use contextualized pre-trained word
embedding from the language model ALBERT [48]. ALBERT uses sentence-order prediction loss,
focusing on modeling inter-sentence coherence, which improves multi-sentence encoding tasks. The
word alignment score is computed as follows:

A(𝑟𝑖 , ℎ 𝑗 ) =
®𝑟𝑖 · ®ℎ 𝑗
∥ ®𝑟𝑖 ∥∥ ®ℎ 𝑗 ∥

· |𝑞 (𝑖 + 1) − 𝑝 ( 𝑗 + 1) |
𝑝𝑞

(8.3)

where ®𝑟𝑖 and ®ℎ 𝑗 denote the contextualized word embedding of 𝑟𝑖 and ℎ 𝑗 , respectively. The first part of
the right side of the equation computes the cosine similarity between ®𝑟𝑖 and ®ℎ 𝑗 , and the second part
calculates the relative position information as proposed in [35].

Figure 8.1: An example word alignment matrix for the reference sentence: "tesla motors is founded by elon
musk" and its passive form: "elon musk founded tesla motors" is illustrated here.

Figure 8.1 depicts a matrix of word alignment scores generated on an example pair of sentences.
This alignment strategy fails to handle repetitive words where a word from the hypothesis may get
aligned to several words in the reference (see Figure 8.2). To tackle such cases, we restrict the word
alignment by imposing a hard constraint. In the hard constraint, we prevent the words in the hypothesis
from getting aligned to multiple words in the reference as illustrated by the dotted arrows in Figure 8.2.
We denote the resulting set of hard-aligned word pairs as Aℎ𝑐.

Transport Distance

A distance matrixD is required to compute the final EMD score. For each aligned pair (𝑟𝑖 , ℎ 𝑗) ∈ Aℎ𝑐
where

®𝑟𝑖 · ®ℎ 𝑗

∥ ®𝑟𝑖 ∥ ∥ ®ℎ 𝑗 ∥
> 𝛿, the distance between 𝑟𝑖 and ℎ 𝑗 is computed as follows:

𝑑𝑖 𝑗 = 1.0 −
®𝑟𝑖 · ®ℎ 𝑗
∥ ®𝑟𝑖 ∥∥ ®ℎ 𝑗 ∥

· 𝑒𝛾 ·
|𝑞 (𝑖+1)−𝑝 ( 𝑗+1) |

𝑝𝑞 (8.4)

where 𝑑𝑖 𝑗 ∈ D and 𝛿 is a confidence threshold found via hyper-parameter search, 𝛾 ∈ [−1, 0) is a
soft-penalization constant. For all the non-hard-aligned pairs and aligned pairs with value less than
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𝛿, the distance 𝑑𝑖 𝑗 receives a maximum value of 1.0. Intuitively, a lower value of 𝑑𝑖 𝑗 implies that
the word needs to travel a shorter distance in the transportation problem of EMD. In Equation 8.4,
𝑒
𝛾 · |𝑞 (𝑖+1)−𝑝 ( 𝑗+1) |

𝑝𝑞 works as a penalty where a higher position difference multiplied with the negative
constant 𝛾 will results in low 𝑑𝑖 𝑗 score. The role of 𝛾 is explained below.

Figure 8.2: An example hypothesis containing repetitive words.

Soft-penalization

Existing metrics often impose hard penalties for words with different order than the reference
sentence [113, 35]. For instance, sentences phrased in the passive form obtain a very low score in
those metrics. Addressing this issue, we introduce a soft-penalization constant 𝛾 = − | 𝑗−𝑖 |

max(𝑝,𝑞) in
Equation 8.4 to handle the passive form of a sentence better. Let us consider a reference, "Shakespeare
has written Macbeth" and the passive form of the sentence as hypothesis, "The Macbeth is written by
Shakespeare". The word Shakespeare appears at the beginning of the reference and at the end of the
hypothesis, thus the position difference is larger. In such scenario, 𝛾 imposes a lower penalty as it
divides the position difference by the length 𝑚𝑎𝑥(𝑝, 𝑞).

Finally, following the optimization constraints of Equation 8.2, we obtain the transportation flow
F (H ,R). For the optimized flow 𝑓𝑖 𝑗 ∈ F (H ,R), the final equation of EMD is as follows:

𝐸𝑀𝐷 (H ,R) =
min 𝑓𝑖 𝑗 ∈F(H,R)

∑𝑝

𝑖=1
∑𝑞

𝑗=1 𝑑𝑖 𝑗 𝑓𝑖 𝑗

min(𝑚∑, 𝑛∑) (8.5)

The semantic similarity between hypothesis and reference is denoted as F𝑠𝑒𝑚 = 1.0 − 𝐸𝑀𝐷. The
normalized value of EMD is used to calculate F𝑠𝑒𝑚.

8.2.2 Semantically Enhanced TED

To estimate the difference between the syntactic structures of reference and hypothesis, we extend the
TED algorithm [116]. The original TED algorithm performs edit operations based on an exact match
between two nodes in the dependency trees of hypothesis and reference. In this work, we modify the
TED algorithm and compute a word embedding-based cosine similarity to establish the equivalence of
two nodes. Two nodes are considered equal, if the cosine similarity of their embedding representations
exceeds the threshold 𝜃. This allows the semantically enhanced TED to process synonyms and
restricts it from unnecessary editing of similar nodes. We call the resulting algorithm TED-SE. The
normalized value of TED-SE is denoted as F𝑡𝑒𝑑 . We compute TED-SE over the lemmatized reference
and hypothesis since lemmatized text exhibits improved performance in such use cases [302]. The
lemmatizer and dependency parser from Stanza [303] are utilised to obtain the tree representation of
the text.
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Let us consider a reference statement "the aidaluna is operated by aida cruises which are located at
rostock." and a hypothesis, "aida cruises, which is in rostock, operates aidaluna.". First, a dependency
tree is parsed utilizing the Stanza dependency parser [303] and then converted to an adjacency list.
The adjacency list contains a key-value pair oriented data structure where each key corresponds to a
node’s index in the tree, and the value is a list of edges on which the head node is incident. List of
nodes and adjacency lists are then fed into the TED-SE algorithm to calculate semantically enhanced
tree edit distance. Figure 8.3 demonstrates the dependency trees and their corresponding adjacency
lists for the given reference and hypothesis.

8.2.3 Grammatical Acceptability Classification

Linguistic competence assumes that native speakers can judge the grammatical acceptability of a
sentence. However, system-generated sentences are not always grammatically correct or acceptable.
Therefore, we train a binary classifier on the Corpus of Linguistic Acceptability (CoLA) [304],
predicting the probability that the hypothesis is grammatically acceptable. CoLA is a collection
of sentences from the linguistics literature with binary expert acceptability labels containing over
10k examples [304] 1. The classifier is based on BERT-large [45] and trained to optimize binary
cross-entropy loss. A text sequence is fed as input and as output, the classifier produces the class

Figure 8.3: Dependency trees of reference and hypothesis, pre-processed for the TED-SE calculation.

1with 70.5% examples manually labeled acceptable.

102



8.3 Experiments and Results

membership probability (grammatically acceptable, grammatically unacceptable). The model achieves
an accuracy of 80.6% on the out-of-domain CoLA test set [304, p. 8]. We denote the score from the
classifier as the feature F𝑔, which is used to train a neural network (see §8.2.4).

Semant i c 
Si mi l ar i t y

Synt act i c 
Si mi l ar i t y

Gr ammat i cal  
Accept abi l i t y

Ref er ence

Hypot hesi s Fi nal  
Scor e

Figure 8.4: A high-level illustration of RoMe.

8.2.4 Final Scorer Network

A feed-forward neural network takes the previously computed features as input and learns a function
𝑓 (F𝑠𝑒𝑚;F𝑡𝑒𝑑;F𝑔) in the final step, yielding a final output score in the [0, 1] interval. The output score
is regarded as the overall quality of the hypothesis. Figure 8.4 depicts a high-level overview of RoMe.
Following a self-supervised paradigm, the network is trained on artificially generated training samples
from the KELM dataset [295]. We chose KELM because 1) it contains knowledge-grounded natural
sentences, and 2) it includes triple-to-text verbalization data where the passive form of sentences
frequently appears, which RoMe tries to tackle specifically besides other surface forms. We randomly
choose 2,500 sentence pairs from the KELM dataset and generate 2,500 more negative samples by
randomly augmenting the sentences using TextAttack [301] and TextFooler [300]. Following a similar
approach, we additionally generate 1,000 test sentence pairs from the KELM dataset. Overall, we
then have 5,000 training and 1,000 test examples. The network is a simple, two-layered feed-forward
network optimized with stochastic gradient descent using a learning rate of 1e-4.

8.3 Experiments and Results

8.3.1 Data

To assess RoMe’s overall performance, first, we benchmark on two language generation datasets,
BAGEL [298] and SFHOTEL [123], containing 404 and 796 data points, respectively. Each data point
contains a meaning representation (MR) and a system generated output. Human evaluation scores
of these datasets are obtained from [258]. Furthermore, we evaluate dialogue system’s outputs on
Stanford in-car dialogues [296] containing 2,510 data points and the soccer dialogue dataset [11] with
2,990 data points. Each data point of these datasets includes a user query, a reference response, and
a system response as a hypothesis. Three different system outputs are evaluated for each dialogue
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Figure 8.5: The annotation tool used by the annotators.

dataset. We use the human annotated data provided by [12]. Moreover, we evaluate the metrics on the
system generated outputs from the WebNLG 2017 challenge [297].

Finally, to conduct robustness analysis, we randomly sample data points from KELM [295] and
perturb them with adversarial text transformation techniques. Three annotators participated in the
data annotation process (two of them are from a Computer Science and one from a non-Computer
Science background), where they annotated the perturbed data. We provided the annotators with an
annotation tool which displays the reference sentence and the system output for each data point. The
annotators were asked to choose a value from a range of [1,3], for each of the categories: Fluency,
Semantic Correctness, and Grammatical correctness. In this case, the values stand for 1: poor, 2:
average, and 3: good. The overall inter-annotator agreement score, 𝜅 is 0.78.

For all the annotation processes, we use the annotation tool shown in Figure 8.5. The tool is
developed using Python programming language. Annotators can load their data into the tool in JSON
format by selecting the Load Raw Data button. An example annotation step is shown in Figure 8.5.
The reference and hypothesis sentences are displayed in different text windows. The annotators were
asked to annotate the data based on Fluency, Semantically correctness and Grammar. Annotators
can choose a value on a scale of [1,3] for each category, from the corresponding drop-down option.
Finally, the annotated text can be saved for evaluation using the save button, which saves the annotated
data in JSON format.

8.3.2 Hyper-parameter Settings

We use 𝛿 = 0.60 and 𝜃 = 0.65 in §8.2.1. Best values are found by a hyper-parameter search from a
range of [0,1.0] with an interval of 0.1. RoMe obtained the best result by utilizing ALBERT-large [48]
model with 18M parameters and 24 layers. Furthermore, we use the English word embedding
of dimension 300 to obtain results from Fasttext [43] throughout the paper. As the grammatical
acceptability classifier, we train a BERT-base model with 110M parameters and 12 layers. The hidden
layer size is 768 with a hidden layer dropout of 0.1. A layer norm epsilon of 1e-12 was used for layer
normalization. GELU [250] was used as the activation function. We use a single GPU with 12GBs of
memory for all the evaluations.
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8.3.3 Baselines

We select both the word-overlap and embedding-based metrics as strong baselines. For the ex-
periment and robustness analysis we choose BLEU [32], METEOR [33], BERTScore [239] and
MoverScore [113]. We evaluate the metrics on the sentence level to make a fair comparison.

Metrics BLEU METEOR BERTScore MoverScore RoMe
Systems 𝜌 r 𝜏 𝜌 r 𝜏 𝜌 r 𝜏 𝜌 r 𝜏 𝜌 r 𝜏

ADAPT 0.38 0.39 0.27 0.57 0.58 0.41 0.61 0.72 0.50 0.68 0.73 0.49 0.72 0.70 0.51
Baseline 0.35 0.42 0.26 0.49 0.49 0.33 0.49 0.50 0.35 0.59 0.61 0.43 0.53 0.53 0.37
melbourne 0.32 0.31 0.21 0.35 0.35 0.24 0.33 0.33 0.26 0.40 0.39 0.28 0.44 0.50 0.35
Pkuwriter 0.37 0.38 0.28 0.47 0.47 0.31 0.48 0.53 0.38 0.57 0.56 0.39 0.58 0.56 0.39
tilburg-nmt 0.25 0.20 0.13 0.26 0.26 0.18 0.38 0.39 0.30 0.49 0.50 0.36 0.64 0.68 0.50
tilburg-pipe 0.38 0.41 0.30 0.52 0.43 0.30 0.53 0.48 0.33 0.62 0.50 0.35 0.38 0.42 0.27
tilburg-smt 0.25 0.20 0.13 0.21 0.19 0.13 0.33 0.30 0.25 0.40 0.38 0.27 0.50 0.51 0.36
upf-forge 0.14 0.13 0.08 0.13 0.11 0.08 0.26 0.25 0.19 0.27 0.27 0.18 0.42 0.42 0.30
vietnam 0.73 0.80 0.62 0.87 0.90 0.72 0.81 0.76 0.70 0.90 0.78 0.73 0.84 0.89 0.83

Table 8.1: Metrics correlation with human judgment on system outputs from the WebNLG 2017 challenge.
Here, r: Pearson correlation co-efficient, 𝜌: Spearman’s correlation co-efficient, 𝜏: Kendall’s Tau.

8.3.4 Results

Table 8.3 shows the performance of different metrics on data to language generation datasets (BAGEL
and SFHOTEL). In both the BAGEL and SFHOTEL, a meaning representation (MR), for instance
inform(name=’hotel drisco’,price_range=’pricey’) is given as a reference sentence, where the system
output is: the hotel drisco is a pricey hotel, in this case. Although, RoMe outperformed the baseline
metrics in evaluating the informativeness, naturalness and quality score, the correlation scores remain
low with regard to human judgment. This is because the MR, which is not a natural sentence, is the
reference statement in this scenario. For all the experiments, we take the normalized human judgement
scores. We firstly evaluate our model using Fasttext [43] word embedding. We notice a significant
improvement in results when we replace the Fasttext embedding with contextualized word embedding
obtained from BERT [45]. Furthermore, we experiment with multiple language models and finally,
we reach to our best performing model with ALBERT-large [48]. In all the experiments, we report
the results of RoMe, using ALBERT-large [48]. In Table 8.3, WMD and SDM refer to word mover
distance and sentence mover distance, respectively, used in MoverScore. We report the results of
WDM and SMD from [113].

Metrics BLEU METEOR BERTScore MoverScore RoMe
Perturbation methods f s g f s g f s g f s g f s g
Entity replacement 0.06 0.04 0.06 0.09 0.09 0.08 0.11 0.07 0.09 0.16 0.13 0.11 0.16 0.19 0.14
Adjective replacement 0.07 0.06 0.07 0.09 0.13 0.11 0.11 0.11 0.13 0.13 0.17 0.16 0.18 0.23 0.18
Random word replacement 0.05 0.06 0.03 0.06 0.06 0.05 0.11 0.10 0.08 0.11 0.13 0.09 0.15 0.15 0.23
Text transformation 0.03 0.01 0.03 0.08 0.09 0.07 0.13 0.15 0.15 0.15 0.18 0.19 0.18 0.19 0.21
Passive form 0.02 0.01 0.04 0.08 0.10 0.08 0.19 0.24 0.21 0.23 0.24 0.22 0.25 0.28 0.28

Table 8.2: Metrics Spearman correlation score against human judgment on perturbed texts. Here, f : fluency, s:
semantic similarity, g: grammatical correctness.
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Settings Metrics BAGEL SFHOTEL
Info Nat Qual Info Nat Qual

BLEU-1 0.225 0.141 0.113 0.107 0.175 0.069
BLEU-2 0.211 0.152 0.115 0.097 0.174 0.071
METEOR 0.251 0.127 0.116 0.163 0.193 0.118
BERTScore 0.267 0.210 0.178 0.163 0.193 0.118
SMD+W2V 0.024 0.074 0.078 0.022 0.025 0.011

Baselines SMD+ELMO+PMEANS 0.251 0.171 0.147 0.130 0.176 0.096
SMD+BERT+MNLI+PMAENS 0.280 0.149 0.120 0.205 0.239 0.147
WMD-1+ELMO+PMEANS 0.261 0.163 0.148 0.147 0.215 0.136
WMD-1+BERT+PMEANS 0.298 0.212 0.163 0.203 0.261 0.182
WMD-1+BERT+MNLI+PMEANS 0.285 0.195 0.158 0.207 0.270 0.183

RoMe (Fasttext) 0.112 0.163 0.132 0.172 0.190 0.231
RoMe RoMe (BERT) 0.160 0.251 0.202 0.212 0.283 0.300

RoMe (ALBERT-base) 0.162 0.259 0.222 0.231 0.295 0.315
RoMe (ALBERT-large) 0.170 0.274 0.241 0.244 0.320 0.327

Table 8.3: Spearman correlation (𝜌) scores computed from the metric scores with respect to the human evaluation
scores on BAGEL and SFHOTEL. Baseline model’s results are reported form [113]. Here, Info, Nat and Qual
refer to informativeness, naturalness, and quality, respectively.

Text EMD TED-SE Grammar RoMe

R Munich is located at the southern part of Germany. 0.83 1.0 0.94 0.80H Munich is situated in the south of Germany.
R Tesla motors is founded by Elon Musk. 0.70 0.85 0.96 0.69H Elon Musk has founded Tesla Motors.
R Elon musk has founded tesla motors. 0.01 0.50 0.17 0.11H Elon elon elon elon elon founded tesla tesla tesla.

Table 8.4: Component-wise qualitative analysis.

Table 8.6 demonstrates the evaluation results on dialogue datasets. We evaluated the system-
generated dialogues from three dialogue system models: Mem2Seq [91], GLMP [20], and Di-
aloGPT [58]. In case of in-car dataset, all the non-word-overlap metric achieved a better correlation
score than the word-overlap based metrics. This is because generated responses in dialogue systems
are assessed based on the overall semantic meaning and correctness of the information. Overall, RoMe
achieves stronger correlation scores on both in-car and soccer dialogue datasets in evaluating several
dialogue system outputs. Finally, we investigate the outputs of nine distinct systems that competed
in the WebNLG 2017 competition and report the correlation scores in Table 8.1. Although RoMe
achieves the best correlation in most of the cases, we notice a comparable and in some cases better
results achieved by the MoverScore [113].

A correlation graph is plotted in Figure 8.6 to investigate the metrics’ performance correlations
further. The graph is constructed from RoMe and baseline metrics’ scores on the BAGEL dataset. As
observed from the correlation graph, we can infer that our proposed metric, RoMe correlates highly
with the MoverScore. However, since RoMe handles both the syntactic and semantic properties of the
text it achieved better results in all the datasets across different NLG tasks.
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Text BLEU BERTScore MoverScore RoMe

R James Craig Watson, who died from peritonitis, discovered 101 Helena. 0.0 0.81 0.54 0.15H The Polish Academy of Science is regionserved.
R 1001 gaussia was formerly known as 1923 oaa907 xc. 0.0 0.79 0.51 0.13H The former name for the former name for 11 gunger is 1923. One of the former name is 1923.

Table 8.5: Qualitative analysis.

Figure 8.6: Correlation between the explored metrics.

Dialogue dataset Models SentBLEU METEOR BERTScore MoverScore RoMe
Mem2Seq 0.07 0.35 0.40 0.49 0.51

In-car dialogue GLMP 0.04 0.29 0.32 0.31 0.32
DialoGPT 0.17 0.60 0.62 0.73 0.78
Mem2Seq 0.03 0.08 0.08 0.11 0.11

Soccer dialogue GLMP 0.02 0.08 0.03 0.12 0.14
DialoGPT 0.04 0.26 0.31 0.39 0.43

Table 8.6: Metrics Spearman’s correlation coefficient (𝜌) with human judgment on dialogue datasets.

8.3.5 Ablation Study

We conduct an ablation study to investigate the impact of the RoMe’s components on its overall
performance. Table 8.7 exhibits the incremental improvement in Spearman’s correlation coefficient,
that each of the components brings to the metric. We randomly choose 100 system-generated dialogue
utterances from the dialogue datasets, since they frequently contain sentences in passive form and
repetitive words. The correlation of standard EMD with the human judgement is denoted as "RoMe
with EMD𝑠𝑡𝑑". Inclusion of semantic word alignment (EMD𝑎𝑙𝑖𝑔𝑛) and soft-penalization (EMD𝑠𝑜 𝑓 𝑡 )
further improved the correlation score. The classifier was not used until this point in the ablation since
there was just one score. Moreover, the correlation score improved significantly when the semantically
enhanced TED and grammatical acceptability were introduced as features in addition to the EMD
score to a neural classifier. We hypothesize that the inclusion of language features related to grammar
and syntactic similarity helped the neural network achieve better performance.
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Approaches Correlation (𝝆)
RoMe with EMD𝑠𝑡𝑑 64.8

+ EMD𝑎𝑙𝑖𝑔𝑛 66.0
+ EMD𝑠𝑜 𝑓 𝑡 66.9
+ TED-SE 69.1
+ Grammar 70.1

Table 8.7: Ablation Study.

8.3.6 Qualitative Analysis

RoMe is developed in a modular fashion, so it may be used to generate scores for semantic similarity,
syntactic similarity, and grammatical acceptability separately. Table 8.4 shows the component-wise
score and the final score of RoMe on three example data points. In the first example, RoMe demonstrates
its ability of capturing similar sentences by obtaining high score. The scores from several components
in the second example demonstrate RoMe’s ability to handle passive form. The final example in
Table 8.4 demonstrates that RoMe penalizes sentence with repetitive word.

Table 8.5 shows the performance of the three baselines and RoMe in handling erroneous cases.
Although the first example contains a completely different hypothesis and the second case with
repetitive hypothesis both BERTScore and MoverScore exhibit high score. On the contrary, BLEU
score is unable to handle such scenarios. However, by obtaining low scores, RoMe demonstrates its
ability to understand such cases better.

8.4 Robustness Analysis

In this section, we design five test cases to stress the models’ capabilities. For the analysis purpose,
we randomly sample data points from KELM [295] (cases 1, 2, and 4) and BAGEL [298] (cases 3
and 5). The annotators annotate the sampled data points on the following criteria: fluency, semantic
correctness, grammatical correctness.

Case 1: Entity replacement. We perform invariance test (INV) from [299] to check the metrics’
NER capability in assessing the text quality. In this approach, we replace the entities present in the
text partially or fully with other entities in the dataset. For instance, "The population of Germany"
gets transformed to "The population of England".

Case 2: Adjective replacement. Similar to the entity replacement, in this case we choose 100
data points from KELM that contain adjective in them. Then we replace the adjectives with a synonym
and an antonym word to generate two sentences from a single data point. For instance, the adjective
different is replaced with unlike and same. At the end of this process, we obtain 200 data points.

Case 3: Random word replacement. The words in different positions in the text are replaced
by a generic token AAA following the adversarial text attack method from [301], in this case. For
instance, the sentence, "x is a cheap restaurant near y" is transformed into "x is a cheap restaurant
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AAA AAA". We select the greedy search method with the constraints on stop-words modification
from the TextAttack tool. This approach generates repetitive words when two consecutive words are
replaced.

Case 4: Text transformation. We leverage TextFooler [300] to replace two words in the texts by
similar words, keeping the semantic meaning and grammar preserved.

Case 5: Passive forms. In this case, we randomly choose 200 data points from the KELM [295]
dataset where the system generated responses are in passive form.

From the results of robustness analysis in Table 8.2, it is evident that almost all the metrics obtain
very low correlation scores with respect to human judgment. Word-overlap based metrics such as
BLEU and METEOR mostly suffer from it. Although RoMe achieves higher correlation scores in
most of the cases, there are still scope for improvement in handling the fluency of the text better. Text
perturbation techniques used to design the test cases often generate disfluent texts. In some cases, the
texts’ entities or subjects get replaced by words from out of the domain. From our observation, we
hypothesize that handling keywords such as entities may lead to a better correlation score.

8.5 Summary

We have presented RoMe, an automatic and robust evaluation metric for evaluating a variety of NLG
tasks. The key contributions of RoMe include 1) EMD-based semantic similarity, where hard
word alignment and soft-penalization techniques are employed into the EMD for tackling repetitive
words and passive form of the sentence, 2) semantically enhanced TED that computes the syntactic
similarity based on the node-similarity of the parsed dependency trees, 3) grammatical acceptability
classifier, which evaluates the text’s grammatical quality, and 4) robustness analysis, which assesses
the metric’s capability of handling various form of the text. Both quantitative and qualitative analyses
exhibit that RoMe highly correlates with human judgment. This answers the research question RQ4,
"How to effectively employ a pre-trained language model to improve the evaluation of single-reference
based generative systems?". An empirical assessment on benchmark datasets and the robustness
analysis results exhibit that RoMe can handle various surface forms and generate an evaluation score,
which highly correlates with human judgment. However, RoMe does not handle entity and relation of
a knowledge graph separately, which we intend to tackle in our future work. RoMe is designed to
function at the sentence level and can be used to evaluate English sentences in the current version of
the implementation. We released the code and annotation tool publicly 2.

2https://github.com/rashad101/RoMe

109

https://github.com/rashad101/RoMe




CHAPTER 9

Conclusion and Future Directions

9.1 Conclusion

Language models have revolutionized the field of NLP in recent years. The primary research objective
of this thesis is to improve knowledge-enhanced conversational systems leveraging language models.
Through comprehensive evaluations, this thesis demonstrates that pre-trained language models can
be utilized in various ways to improve conversational systems. For example, for incorporating
structured knowledge into a language model (DialoKG in Chapter 4), developing unsupervised KGQA
(Tree-KGQA in Chapter 5), learning knowledge graph facts in language models’ parameters (SGPT in
Chapter 6), developing a machine reading comprehension system (Climate Bot in Chapter 7), designing
a metric for evaluating generative systems (RoMe in Chapter 8). Based on the type of knowledge
(structured or unstructured), this thesis proposes four systems, one dataset, and one evaluation metric.
Table 9.1 demonstrates a high-level overview of this thesis’s contributions that correspond to the
research questions (see Chapter 1.2). We provide a summary of the contributions of this thesis below:

Knowledge type Models Contribution type Research question
DialoKG System RQ1: Does incorporating structural information into a language model

improve knowledge graph-based dialogue generation?

Structured
Tree-KGQA System RQ2: How effective are pre-trained language models for developing an

unsupervised knowledge-graph-based question-answering system without
training data?

SGPT System RQ3: Can a generative language model embed a knowledge graph in its
parameters and learn to construct SPARQL queries?

Unstructured RoMe Metric RQ4: How to effectively employ a pre-trained language model to improve
the evaluation of single-reference based generative systems?

Table 9.1: A high-level overview of the contributions correspond to the research questions.

Contributions for RQ1: We proposed DialoKG, a novel task-oriented dialogue system that learns
to incorporate structured knowledge into a language model for dialogue generation. Particularly,
DialoKG introduced a knowledge embedding technique and knowledge graph-weighted attention
masking method to facilitate a GPT-2 model with the understanding of external knowledge for dialogue
generation. An empirical study on three benchmark datasets demonstrates the effectiveness of DialoKG
by achieving an improved performance over the state-of-the-art models.
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Contributions for RQ2: We presented Tree-KGQA, an unsupervised question answering system
leveraging pre-trained language models. Tree-KGQA can be used to perform question answering over
knowledge graphs without labeled and training data. Specifically, several pre-trained language models
were employed to perform KGQA sub-tasks (i.e., entity and relation linking). Besides, Tree-walking
and Tree-disambiguation based traversal techniques were proposed to find the answer entity from the
knowledge graph. A comprehensive evaluation of the benchmark datasets confirmed the effectiveness
of Tree-KGQA over state-of-the-art supervised methods.

Contributions for RQ3: We introduced SGPT, a generative approach for SPARQL query
generation from natural language questions. SGPT proposed a technique to embed semantic and
syntactic features of a question and train a language model to learn knowledge graph facts in its
parameters. Experimental results on the dataset from two different KG suggest significant performance
gain of SGPT over the state-of-the-art methods.

Contributions for RQ4: The evaluation of generative systems is a difficult task because the metric
must be robust enough to handle a wide range of surface forms of generated sentences. We designed
and proposed a robust evaluation metric, RoMe, which considers the generated sentence’s semantic,
syntactic, and grammatical acceptability for the evaluation. A comprehensive robustness analysis
confirms the effectiveness of RoMe in evaluating diverse surface forms of various generative systems
such as Dialogue, data-to-text, and text generation systems.

9.2 Future Directions

Knowledge Injection into a Language Model for Dialogue Generation. Recent research
revealed that language models could be regarded as knowledge bases [305]. Large-scale pre-train
language models contain a vast amount of language patterns. The knowledge that comes with the
pre-trained weight can be exploited either by conditioning over the contextual embedding space or
leveraging the pre-trained weights to initialize models for tackling downstream tasks. Empirical
evaluation verifies that models such as BERT-large [45] exhibit high accuracy in capturing relational
knowledge comparable to entity and relation linking based knowledge extraction systems [305].

To capture the relational knowledge better, recent researches focus on pre-training language models
jointly with knowledge bases [306, 307, 308]. The intuition behind this approach is that the trained
language model may better understand the facts from relational knowledge bases. In a different line
of work, several researches aim at pre-training language models on dialogue corpus. In the future,
we would like to explore techniques that have the capability of pre-training a language model that
considers both knowledge graphs and dialogue data. Developing such a dataset would be a prerequisite
for designing such techniques.

Prompt-based Approaches for Unsupervised Question Answering. Language models are
widely adopted for various NLP downstream tasks for their capabilities of understanding a wide range
of text patterns [207, 309]. These models are trained on a large corpus of unlabelled text. Pre-trained
language models are typically fined-tuned to apply them for downstream tasks. However, fine-tuning
requires labeled data. Obtaining labeled training data for conversational question answering systems
is resource-intensive and time-consuming.
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Pre-trained language model comes with a knowledge of a large number of textual patterns. Recently,
prompt-based learning has become a popular choice for utilizing large pre-trained language models
for applying on the downstream task in a few-shot or zero-shot manner [310, 311]. Although few
approaches have recently developed prompts for tackling question answering and dialogue generation
tasks, a deep investigation into this direction is still required for the maximum utilization of pre-trained
language models. In the future, we would like to investigate prompt-based approaches to alleviate the
need for training data to develop high-performing conversational question answering agents.

Evaluation Metrics for Knowledge-based Generative Systems. With the increasing
number of knowledge graphs in recent years, a large number of knowledge-based systems have been
developed over the past few years. Performance assessment is a key factor in developing any intelligent
system. To evaluate generative conversational systems, researchers still utilize metrics such as
BLEU, METEOR, and ROUGE. However, these metrics were borrowed from the machine translation
and summarization community. Existing metrics are not sufficient for evaluating knowledge-based
generative systems. Because for a generated word 𝑤, these metrics cannot capture the relation between
facts in the knowledge graph connected to 𝑤. For evaluating knowledge-based generative systems,
besides the contextual meaning of a word 𝑤 in the generated systems, it is crucial that the metric
also considers the connection information of 𝑤. However, it is challenging to develop such a metric
because of the scale of KG and the complexities (entity and relation linking) required for the evaluation.
Developing such a metric would not only help evaluate generative conversational systems but also in
evaluating any knowledge-based generative systems.
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CHAPTER 10

List of Publications

A list of accepted conference and journal papers, contributing to this thesis:

Conference Papers (peer reviewed)

• Md Rashad Al Hasan Rony, Ricardo Usbeck, and Jens Lehmann. 2022. DialoKG: Knowledge-
Structure Aware Task-Oriented Dialogue Generation. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 2557–2571, Seattle, United States. Association
for Computational Linguistics.

• Md Rashad Al Hasan Rony, Liubov Kovriguina, Debanjan Chaudhuri, Ricardo Usbeck, and
Jens Lehmann. 2022. RoMe: A Robust Metric for Evaluating Natural Language Generation.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5645–5657, Dublin, Ireland. Association for Computational
Linguistics.

System Demo Papers (peer reviewed)

• Md Rashad Al Hasan Rony, Ying Zuo, Liubov Kovriguina, Roman Teucher and Jens Lehmann,
Climate Bot: A Machine Reading Comprehension System for Climate Change Question
Answering. In Proceedings of ĲCAI 2022, in AI for good track.

Journal Papers (peer reviewed)

• Md Rashad Al Hasan Rony, Debanjan Chaudhuri, Ricardo Usbeck, and Jens Lehmann,
Tree-KGQA: An Unsupervised Approach for Question Answering Over Knowledge Graphs, in
IEEE Access, vol. 10, pp. 50467-50478, 2022, doi: 10.1109/ACCESS.2022.3173355.

• Md Rashad Al Hasan Rony, Uttam Kumar, Roman Teucher, Liubov Kovriguina and Jens
Lehmann, SGPT: A Generative Approach for SPARQL Query Generation from Natural Lan-
guage Questions, in IEEE Access, vol. 10, pp. 70712-70723, 2022, doi: 10.1109/AC-
CESS.2022.3188714.
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