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Summary

In this thesis, we study modularity properties of pure motives and mixed period matrices of rank
four. The pure motives that we consider are associated with Calabi-Yau threefolds, while the
mixed period matrices are associated with limit mixed Hodge structures of hypergeometric families
of Calabi-Yau threefolds. By modularity properties, we mean two possible things. First, whether
associated Galois representations are given by Galois representations of modular forms. And,
second, whether associated period matrices are given by period matrices of modular forms. We
do not only consider elliptic modular forms, but also Hilbert modular forms and Bianchi modular
forms.

After a short introduction about modularity properties of algebraic varieties, we review how one
can associate motives with algebraic varieties in the second chapter. Here, we consider motives
as purely linear algebraic structures which contain information about Galois representations and
periods of the underlying variety. In the third chapter, we introduce elliptic modular forms and
review that some of these have associated motives of rank two. As generalizations, we also discuss
Hilbert modular forms and Bianchi modular forms. In the fourth chapter, we introduce Calabi-Yau
threefolds and review how families of these can be studied using differential equations.

We present new results in the last two chapters. This starts in the fifth chapter, where we
consider four Calabi-Yau threefolds whose associated pure motives of rank four are (conjecturally)
given by sums or products of motives associated with modular forms. While the results on the
level of the periods are numerical, we can prove the modularity of the Galois representations in
two cases. For instance, we give the first example of a Calabi-Yau threefold whose associated
Galois representations are proven to be associated with Bianchi modular forms of weight 4 and
weight 2. In the last chapter, we consider mixed period matrices associated with limit mixed
Hodge structures of hypergeometric families of Calabi-Yau threefolds. It is known that there are
fourteen such families and we study these using the method of “fibering out”, which has recently
been introduced by Vasily Golyshev. For twelve examples, we prove that the period matrices can
be expressed completely in terms of integrals of modular forms. It has been expected that this is
possible for a certain submatrix, but the result for the whole period matrix is surprising and leads
to an interesting new class of periods of meromorphic modular forms. While our computations
allow to give many examples of these modular forms and to prove their special properties, we
do not have a more general understanding which is independent of the relation with families of
Calabi-Yau threefolds. We conclude this thesis by giving experimental identities of a new type
which relate mixed periods to central values of derivatives of L-functions.
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1 Introduction

In this thesis, we study modularity properties of pure motives and mixed period matrices of rank
four. This involves the analysis of Galois representations and periods. While this might sound
rather abstract, our results can be seen as very concrete formulas for the number of solutions of
polynomial equations over finite fields and integrals of algebraic functions. To illustrate the nature
of such formulas, we consider a simple example related to the polynomial

P (x, y) = x3 − x2 − y2 − y .

We can now ask how many solutions the equation P (x, y) = 0 has. If we demand that x and y
are integers, then there are only the four solutions (x, y) given by the tuples (0, 0), (0,−1), (1, 0)
and (1,−1). It turns out that there are no additional solutions if we allow for rational values of x
and y. Also, there are clearly infinitely many solutions if we allow x and y to be real or imaginary
numbers. To get more interesting numbers of solutions, we can consider prime numbers p and
define Np as the number of solutions of P (x, y) = 0 with x and y taking values in the finite field
with p elements. In other words, Np is the number of tuples (x, y) with integers x ∈ {0, 1, ..., p−1},
y ∈ {0, 1, ..., p − 1} that satisfy P (x, y) ≡ 0 mod p. Counting the number of solutions for small
primes, we obtain the following table:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Np 4 4 4 9 10 9 19 19 24 29 24 34 49 49 39

For the primes above, it is straightforward to check that Np = p − ap, where the numbers ap are
defined by the power series

∞∑
n=1

an q
n = q

∞∏
n=1

(1− qn)2 (1− q11n)2 = q − 2 q2 − q3 + 2 q4 + q5 + 2 q6 − 2 q7 + · · · .

In fact, this is true for all primes and this is implied by a famous modularity theorem. The
term “modularity” refers to the fact that the power series above defines a function with very
special properties, a so-called modular form. More precisely, we can define a holomorphic function
f : h→ C on the complex upper half-plane h = {τ ∈ C | Im τ > 0} by setting

f(τ) =

∞∑
n=1

an q
n with q = e2πi τ .

This function has special transformation properties with respect to elements of a subgroup of
SL2(Z), which is the group of all 2 × 2 matrices with integer entries and determinant 1. In the
present example, these transformation properties are

f

(
a τ + b

c τ + d

)
= (c τ + d)2 f(τ)

for all (a bc d) ∈ SL2(Z) with c ≡ 0 mod 11. The relations given above are one manifestation of
the modularity of the polynomial P , i.e. that the number of solutions over finite fields can be
given in terms of coefficients of a modular form. We now explain the second manifestation, which
is concerned with complex numbers, so-called periods, which can be defined as certain integrals
associated with the polynomial P . To motivate the form of these integrals, we see the vanishing
set P (x, y) = 0 in C2 as a complex one-dimensional manifold. Rewriting the equation P (x, y) = 0
as (y+ 1

2 )2 = x3− x2 + 1
4 , we see that (away from the points where x3− x2 + 1

4 = 0) this manifold
is just a double cover of the complex plane C with coordinate x. One example of a period is now
given by the integral∫ ∞

x0

dx

y + 1
2

=

∫ ∞
x0

dx√
x3 − x2 + 1

4

= 6.34604652139776710844397 · · · ,
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1 Introduction

where x0 is the unique real solution of x3−x2 + 1
4 = 0. This number can be given as an integral of

the modular form f . More precisely, since f(τ) decreases exponentially for Im τ →∞ and satisfies
the additional transformation property f(−1/11 τ) = −11 τ2 f(τ), one can integrate f(i u) from
u = 0 to u =∞ and it turns out that∫ ∞

x0

dx√
x3 − x2 + 1

4

= 50π

∫ ∞
0

f(i u) du .

We now embed the findings of the previous paragraph in a more general context. The vanishing
sets of systems of polynomial equations define algebraic varieties. These have associated motives,
which are purely linear algebraic structures which contain Galois representations (that contain
information about the number of solutions over finite fields) and periods. One can also associate
motives with certain modular forms. In particular, there are Galois representations and periods
associated with these modular forms. One can now study, whether an algebraic variety and a mod-
ular form define the same motive, or at least whether they define the same Galois representations
or periods. This is what we sketched in the previous paragraph for the algebraic variety defined
by the polynomial x3 − x2 − y2 − y which is an example of an elliptic curve. For elliptic curves,
there are very general modularity theorems. However, less is known for more general algebraic
varieties. In our thesis, we study motives associated with Calabi-Yau threefolds, which can be seen
as generalizations of elliptic curves (which are one-dimensional) to three dimensions.

We begin in the next chapter by reviewing how one can associate motives with algebraic varieties.
For this, we start by discussing the Hodge theory of compact Kähler manifolds and then specialize
to smooth projective varieties defined over number fields to introduce associated periods, Galois
representations and, finally, motives. In the third chapter, we introduce elliptic modular forms
and review that some of these, the so-called newforms, have associated motives of rank two. As
generalizations, we also discuss Hilbert modular forms and Bianchi modular forms. For these, there
is again a notion of newforms, which have associated Galois representations and which are further
expected to have associated motives. In the fourth chapter, we introduce Calabi-Yau threefolds.
In particular, we explain how periods and Galois representations of members of families of Calabi-
Yau threefolds can be studied by using differential equations. In the fifth chapter, we consider four
Calabi-Yau threefolds with associated pure motives of rank four which are (conjecturally) given by
sums or products of motives of rank two associated with elliptic modular forms, Hilbert modular
forms and Bianchi modular forms. In two examples, we present numerical evidence which suggests
that the complete period matrix can be expressed in terms of periods and quasiperiods of elliptic
modular forms. On the level of the Galois representations, our results can be summarized in two
conjectures and two theorems. For instance, we give the first example of a Calabi-Yau threefold
whose associated Galois representations are given by that of Bianchi modular forms of weight 4
and weight 2. In the last chapter, we consider mixed period matrices associated with limit mixed
Hodge structures of hypergeometric families of Calabi-Yau threefolds. It is known that there are
fourteen such families and each gives a limit mixed Hodge structure associated with the so-called
conifold fiber. Using the method of “fibering out”, which has recently been introduced by Vasily
Golyshev, we prove that for twelve cases the period matrix of the limit mixed Hodge structure
can be expressed in terms of integrals of elliptic modular forms of weight 4. Previously, there
was already numerical evidence which suggests that this is true for a certain submatrix, but the
result for the complete period matrix is surprising. In particular, the computations gives rise to an
interesting new class of periods of meromorphic modular forms with non-vanishing residues. We
can give many examples of such forms and also prove their special properties, but we do not have
a more general understanding which does not rely on the geometric origin. We conclude the last
chapter with numerical evidence for identities of a new type between certain combinations of the
mixed periods and central values of derivatives of L-functions.

We have used Magma [13] and Pari [69] for several computations. The scripts are available in
the repository [17]. All numerical results have been checked to at least 100 digits and computing
with higher accuracy can be done without any problems.
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2 From Hodge structures to motives

The cohomology groups of compact Kähler manifolds together with their Hodge decompositions
are examples of Hodge structures. These are linear algebraic structures which, in the geometric
context, capture information about the complex structure. In the arithmetic algebraic context,
i.e. if one works with an algebraic variety defined over some number field, one can consider other
cohomology groups which contain finer information. These cohomology groups come with extra
structures and certain compatibilities. For example, the comparison between Betti cohomology
groups and algebraic de Rham cohomology groups gives complex numbers called periods. Also,
`-adic cohomology groups come with Galois representations and these contain information about
the number of points of the variety over finite fields. To combine these structures, it was proposed
by Grothendieck that all reasonable cohomology groups should be unified to one object, a so-called
motive, which captures the cohomological structure of the variety. In particular, it should contain
information about the periods and the Galois representations.

In the first section of this chapter, we review the Hodge theory of compact Kähler manifolds,
more general Hodge structures and their variations. We also discuss the Hodge theory of algebraic
varieties and the definition of periods. In the second section, we review the arithmetic structure
of algebraic varieties defined over number fields. In particular, we review the Weil conjectures
and their relation to `-adic cohomology groups. In the last section, we use the previously defined
cohomology groups of algebraic varieties to collect them in one structure: the associated motive.
The exposition in this chapter is based on that of [12], but with several additions.

2.1 Hodge theory and Hodge structures

In the first part of this section, we review the Hodge theory of compact Kähler manifolds and discuss
more general pure Hodge structures. In the second part, we specialize to algebraic varieties. These
have associated algebraic de Rham cohomology groups which have Hodge filtrations. In particular,
we define interesting complex numbers, so-called periods, for varieties defined over number fields.
In the third part, we consider variations of Hodge structures, which in the geometric context
arise from families of compact Kähler manifolds. In the last part, we conclude this section by
generalizing pure Hodge structures to mixed Hodge structures.

Hodge theory and pure Hodge structures

Let X be a compact Kähler manifold of dimension n. We have for each integer 0 ≤ k ≤ 2n the kth
homology group Hk(X,Q), whose elements are represented by closed k-dimensional chains modulo
boundaries of (k + 1)-dimensional chains1. The dimension of this space is the kth Betti number
bk(X). Considering the cochain complex, we also get the associated cohomology groups Hk(X,Q).
By de Rham’s theorem, we can represent elements of Hk(X,Q) by elements of the de Rham
cohomology group Hk

dR(X) whose elements are represented by closed k-forms modulo exact k-
forms. More concretely, by Stokes’s theorem, the integration of differential forms over chains gives
a well-defined pairing ∫

: Hk(X,Q)⊗Q H
k
dR(X)→ C

and, by de Rham’s theorem, this pairing is non-degenerate. This induces a canonical isomorphism

Hk
dR(X) ∼= Hk(X,Q)⊗Q C .

1Note that one could also work with the Z-module Hk(X,Z), which can have torsion.
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2 From Hodge structures to motives

The complex structure of X further allows us, by a theorem of Hodge, to decompose Hk
dR(X) into

subspaces whose elements can be represented by forms of Hodge type2 (p, q) with p+ q = k. This
gives the Hodge decomposition

Hk
dR(X) =

⊕
p+q=k

Hp,q(X)

on which complex conjugation gives an isomorphism between Hp,q(X) and Hq,p(X).

We can replace the Hodge decomposition by the decreasing Hodge filtration

Hk
dR(X) = F 0Hk

dR(X) ⊇ F 1Hk
dR(X) ⊇ · · · ⊇ F kHk

dR(X) ⊇ F k+1Hk
dR(X) = 0

with

F iHk
dR(X) =

⊕
p≥i

Hp,k−p(X) .

This is not necessary at this stage, since the Hodge decomposition gives a canonical splitting and

can be recovered from the filtration by Hp,q(X) = F pHk
dR(X)∩F qHk

dR(X) for p+q = k. However,
later it will be more convenient to talk about Hodge filtrations instead of Hodge decompositions.
There are several reasons for this. For example, if X is algebraic then the Hodge decomposition
is not defined algebraically, but one can define algebraic de Rham cohomology groups with Hodge
filtrations. Also, when we later in this section consider families of compact Kähler manifolds, then
the Hodge filtration will lead to holomorphic subbundles while the Hodge decomposition will not.

The combination of the rational structure of Hk(X,Q) and the Hodge filtration of Hk
dR(X) is

abstractly captured by a so-called pure Q-Hodge structure of weight k. This is, by definition, a
finite-dimensional Q-vector space V together with a filtration of the complexification VC = V ⊗QC

. . . ⊇ F−1VC ⊇ F 0VC ⊇ F 1VC ⊇ . . .

so that for all p, one has F pVC ∩ F k+1−pVC = 0 and F pVC ⊕ F k+1−pVC = VC. Analogously, one
defines pure R-Hodge structures and pure Z-Hodge structures. Note that an equivalent definition
can be given in terms of a Hodge decomposition VC = ⊕p+q=kV p,qC , where one requires that

V p,qC = V q,pC . Here, the complex conjugation acts trivially on V and as usual complex conjugation
on the complex numbers. The equivalence of the two definitions is obtained from the identification
V p,qC = F pVC ∩ F qVC for p+ q = k and the identification F iVC = ⊕p≥iV p,k−pC .

To give some geometric examples for pure Hodge structures, we consider the complex torus
T 2 = C/〈 1, τ 〉Z with some point τ in the complex upper half-plane. The associated singular
cohomology groups are given by

H0(T 2,Z) = 〈 p̂ 〉Z , H1(T 2,Z) = 〈 γ̂1, γ̂τ 〉Z , H2(T 2,Z) = 〈 T̂ 2 〉Z

in terms of the duals of the classes of the chains depicted below:

0

τ

1

p

γ1

γτ

2A differential form is said to have Hodge type (p, q) if it can locally be written as a linear combination of products
of p holomorphic differentials and q antiholomorphic differentials with smooth functions as coefficients.
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2.1 Hodge theory and Hodge structures

This gives the following pure Z-Hodge structures:

- In weight 0, we have V = 〈 p̂ 〉Z, F 0VC = 〈 p̂ 〉C and F 1VC = 0.

- In weight 1, we have V = 〈 γ̂1, γ̂τ 〉Z, F 0VC = 〈 γ̂1, γ̂τ 〉C, F 1VC = 〈 γ̂1 + τ γ̂τ 〉C and F 2VC = 0.
In terms of the coordinate z of C, one can identify γ̂1 + τ γ̂τ with dz and γ̂1 + τ γ̂τ with dz.

- In weight 2, we have V = 〈 T̂ 2 〉Z, F 1VC = 〈 T̂ 2 〉C and F 2VC = 0.

Algebraic de Rham cohomology groups and periods

Now assume that the Kähler manifold is algebraic, in which case we write X(C) instead of X, where
X is a smooth projective variety defined over some subfield K of C. The cohomology of X(C)
has a Hodge decomposition, but its definition is not purely algebraic since it involves complex
conjugation, which is not an algebraic operation. For instance, for an elliptic curve E with affine
equation y2 = x3 + a x + b, the space H1,0(E(C)) is generated by dx

y , which is algebraic, but the

space H0,1(E(C)) is generated by dx
y , which is not. However, one can also represent H1

dR(E(C)) by

the holomorphic form dx
y and the meromorphic form x dx

y with vanishing residues. The same works
for any curve, i.e. one can represent the first cohomology by algebraic holomorphic differentials
(differentials of the first kind) and algebraic meromorphic differentials with vanishing residues
(differentials of the second kind). There is still no algebraically defined Hodge decomposition, but
the notion of differentials of the first and second kind naturally give a filtration and this agrees
with the usual Hodge filtration. The generalization to higher dimensional varieties, where it is less
obvious how to proceed, has been given by Grothendieck [39]. He defined the algebraic de Rham
cohomology groups Hk

dR(X) as the hypercohomology groups of the algebraic de Rham complex

0 → Ω0
X → Ω1

X → . . . → ΩnX → 0 .

The cohomology groups are now K-vector spaces and Grothendieck proves that there is a canonical
isomorphism

Hk
dR(X) ⊗K C ∼= Hk

dR(X(C))

and a Hodge filtration

Hk
dR(X) = F 0Hk

dR(X) ⊇ F 1Hk
dR(X) ⊇ . . . ⊇ F kHk

dR(X) ⊇ F k+1Hk
dR(X) = 0

which is compatible with the Hodge filtration of Hk
dR(X(C)).

More generally, if X is defined over any field K, the algebraic de Rham cohomology groups
Hk

dR(X) are K-vector spaces and they still have Hodge filtrations. This is particularly useful in
the case where K is a number field, to which we restrict now. For every embedding σ : K ↪→ C,
we then obtain a compact Kähler manifold Xσ(C) and canonical isomorphisms

Hk
dR(X)⊗σ C ∼= Hk

dR(Xσ(C)) ∼= Hk(Xσ(C),Q)⊗Q C .

By choosing bases for Hk(Xσ(C),Q) and Hk
dR(X), this gives rise to a complex bk(X) × bk(X)

matrix, which we call a period matrix and whose entries we call periods. These periods are periods
in the sense of Kontsevich and Zagier [51]. This means that they are integrals of algebraic functions
over domains described by algebraic equations or inequalities, where both the integrand and the
domain are defined over Q. If one considers families of varieties over some parameter space, one
obtains period functions. These are integrals of elements of the algebraic de Rham cohomology
(varying algebraically with the parameter) over locally constant cycles. More generally, this leads
to the notion of variations of Hodge structures, to which we turn after the following example.

To give one example of a period matrix, we consider the elliptic curve E described by the
affine equation y2 = x3 − x. The algebraic de Rham cohomology can be represented by the two
differentials dx

y and x dx
y . The first singular homology of E(C) is generated by double covers of the

intervals −1 ≤ x ≤ 0 and 0 ≤ x ≤ 1. An associated period matrix is then given by(∫ 0

−1
dx√
x3−x

∫ 0

−1
x dx√

x3−x∫ 1

0
dx

i
√
x−x3

∫ 1

0
x dx
i
√
x−x3

)
=

(
Γ(1/4)2

2
√

2π
−
√

2π
3

Γ(1/4)2

−iΓ(1/4)2

2
√

2π
− i
√

2π
3

Γ(1/4)2

)
=

(
2.62205 · · · 1.19814 · · ·
−2.62205 · · · i −1.19814 · · · i

)
.
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2 From Hodge structures to motives

Variations of Hodge structures

It is often useful to consider variations of complex structures. To give an analytic description of
these, let f : X → B be a family of compact Kähler manifolds of dimension n, i.e. B is a complex
manifold, X is a connected Kähler manifold of dimension dim B+n and f is a proper holomorphic
submersion. Then each fiber Xb with the induced Kähler structure is a compact Kähler manifold
of dimension n. By Ehresmann’s lemma, f : X → B is a locally trivial fibration and this allows us
to define for any 0 ≤ k ≤ 2n a local system Hk with stalk Hkb = Hk(Xb,Q) over b. The sections
are given by constant classes of k-dimensional cochains. More precisely, any point b ∈ B has an
open neighborhood U together with a trivialization

f−1(U) → U ×Xb

x 7→ (f(x), φ(x))

and the sections over U are given by the functions

s : U →
⋃
b′∈U

Hk(Xb′ ,Q)

b′ 7→ (φ|Xb′ )
∗ h

for any h ∈ Hk(Xb,Q). From the local system, we obtain a monodromy representation

ρ : π1(B, b) → Aut(Hk(Xb,Q)) .

Tensoring with the sheaf of holomorphic functions, we get a holomorphic bundle HkOB = Hk⊗QOB
whose fiber over b is given by the complexification of Hk(Xb,Q). The Hodge filtrations on these
fibers give a decreasing filtration into subbundles

HkOB = F0HkOB ⊇ F
1HkOB ⊇ · · · ⊇ F

kHkOB ⊇ F
k+1HkOB = 0

and local computations show that these subbundles are holomorphic. On HkOB , we further have

a flat connection ∇ (called the Gauss-Manin connection) which acts trivially on Hk and as usual
derivatives on OB . Local computations show that the connection ∇ maps sections of FpHkOB to

sections of Fp−1HkOB ⊗ T
∗OB . This property is called Griffiths transversality.

The combination of the local system Hk with the Hodge filtration on HkOB is abstractly captured
by a so-called variation of pure Q-Hodge structures of weight k. This is, by definition, a local
system V of finite-dimensional Q-vector spaces over a complex manifold B together with a filtration
of VOB = V ⊗Q OB into holomorphic subbundles

. . . ⊇ F−1VOB ⊇ F0VOB ⊇ F1VOB ⊇ . . .

so that all fibers together with the induced filtration are pure Q-Hodge structures of weight k and so
that the natural flat connection∇ on VOB maps sections of FpVOB to sections of Fp−1VOB⊗T ∗OB .
Analogously, one defines variations of pure R-Hodge structures and pure Z-Hodge structures.

For us, variations of pure Hodge structures are particularly useful because, to a large extent,
they are described by differential equations. To see this, let Ω be a non-trivial holomorphic section
of VOB . Acting with sufficiently many derivatives, one finds that Ω satisfies a differential equation
(which in an algebraic geometric context is called a Picard-Fuchs equation). Assuming that the
monodromy representation associated with V is irreducible, it follows that this representation is
given by the monodromy representation associated with the differential equation.

To give a geometric example of a variation of pure Hodge structures, consider the family of com-
plex tori with the fiber over a point τ in the complex upper half-plane H given by C/〈 1, τ 〉Z. The
associated local system H1 is trivialized by γ̂1 and γ̂τ . The holomorphic subbundle F1H1

OH
is triv-

ialized by Ωτ = γ̂1 + τ γ̂τ and this section satisfies ∇2
τΩ = 0. Note also that the subbundle F1H1

OH

of Hodge type (0, 1) is not holomorphic.
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2.1 Hodge theory and Hodge structures

Mixed Hodge structures

Pure Hodge structures can be generalized to mixed Hodge structures. A mixed Q-Hodge structure
is, by definition, a finite-dimensional Q-vector space V with an increasing weight filtration

. . . ⊆ W−1V ⊆ W 0V ⊆ W 1V ⊆ . . .

and a decreasing Hodge filtration of the complexification VC = V ⊗Q C

. . . ⊇ F−1VC ⊇ F 0VC ⊇ F 1VC ⊇ . . .

so that every graded piece W kV/W k−1V with the filtration induced by F defines a pure Q-Hodge
structure of weight k. Hence, one can view a mixed Hodge structure as iterated extensions of pure
Hodge structures.

Mixed Hodge structures arose from Deligne’s discovery [27, 28] that Hodge theory can be gen-
eralized to include varieties X defined over C that are not necessarily smooth or projective, but
that in this case the cohomology groups Hk(X(C),Q) have a canonical mixed rather than pure
Hodge structure. These are important occurrences of mixed Hodge structures in algebraic geom-
etry, but there are others, for instance limit mixed Hodge structures associated with variations of
pure Hodge structures, to which we come back in Section 4.2.

To give one explicit geometric example of a mixed Hodge structure, we consider a complex
torus T 2 = C/〈 1, τ 〉Z minus a finite set of points Σ = {x1, x2, ..., xn}. The associated singular
cohomology groups are given by

H0(T 2 r Σ,Z) = 〈 p̂ 〉Z , H1(T 2 r Σ,Z) = 〈 γ̂1, γ̂τ , η̂1, η̂2, . . . , η̂n−1 〉Z , H2(T 2 r Σ,Z) = 0

in terms of the duals of the classes of the chains depicted below:

0

τ

1

p

γ1

γτ

x1 η1 x2 η2

. . .

We want to define a mixed Z-Hodge structure associated with H1(T 2 r Σ,Z). To do so, we first
note that there is an exact sequence

0 → H1(T 2,Z) → H1(T 2 r Σ,Z) → H0(Σ,Z) → H2(T 2,Z) → 0 ,

where the first (non-trivial) map is the pullback of the inclusion i : T 2rΣ→ T 2, the second map is
the residue map r, which maps a1 η̂1 + · · ·+an−1 η̂n−1 to a1 x̂1 + · · ·+an−1 x̂n−1−(a1 + · · · an−1) x̂n
and the third map is the pushforward of the inclusion Σ → T 2, which maps a1 x̂1 + · · · + an x̂n
to (a1 + · · · + an) T̂ 2. We have a non-canonical isomorphism H1(T 2 r Σ,Z) ∼= Im i∗ ⊕ Im r and
on H1(T 2,Z) and H0(Σ,Z) we have pure Hodge structures of weight 1 and weight 0. However, to
be consistent with the filtration Im i∗ ⊆ H1(T 2 r Σ,Z), we shift the weight of Im r from 0 to 2
(and the Hodge type from (0, 0) to (1, 1)). Then, a mixed Hodge structure can be defined by

W 0H1(T 2 r Σ,Z) = 0

W 1H1(T 2 r Σ,Z) = Im i∗ = 〈 γ̂1, γ̂τ 〉Z
W 2H1(T 2 r Σ,Z) = H1(T 2 r Σ,Z) = 〈 γ̂1, γ̂τ , η̂1, η̂2, . . . , η̂n−1 〉Z

and

F 0H1(T 2 r Σ,Z)C = H1(T 2 r Σ,Z)C = 〈 γ̂1, γ̂τ , η̂1, η̂2, . . . , η̂n−1 〉C
F 1H1(T 2 r Σ,Z)C = 〈 γ̂1 + τ γ̂τ , η̂1, η̂2, . . . , η̂n−1 〉C
F 2H1(T 2 r Σ,Z)C = 0 .

9



2 From Hodge structures to motives

2.2 Varieties over number fields and their zeta functions

We now specialize to algebraic varieties which are defined over number fields and discuss their
arithmetic properties. More precisely, we consider the number of points of such varieties over finite
fields. Generating functions of these numbers are called zeta functions and, according to the Weil
conjectures, these functions have remarkable properties. For the proof of the Weil conjectures, one
uses cohomology groups on which Galois groups act.

Let X be a smooth projective variety of dimension n defined over some number field K. Since X
is given as a subspace of some projective space by equations with coefficients in K, we can reduce
these defining equations (after multiplication by an element of OK to clear the denominators)
modulo any prime p, leading to a variety Xp defined over the finite field Fq = OK/p of order q. We
restrict to the case that this variety is smooth, which happens for all but finitely many p, called
the primes of good reduction. For any i ≥ 1, we consider the number |Xp(Fqi)| of solutions of the
defining equations with the variables taking their values in the field Fqi . The local zeta function
of Xp is a generating function of these numbers

Z(Xp, T ) = exp

( ∞∑
i=1

|Xp(Fqi)|
T i

i

)
.

A deep theorem says that Z(Xp, T ) is not just a power series but a rational function in T with
integral coefficients. Moreover, Weil conjectured that this rational function has the form

Z(Xp, T ) =

2n∏
k=0

Pk(Xp, T )(−1)k+1

,

where Pk(Xp, T ) is a polynomial of degree bk(X) with integral coefficients and with all roots of
absolute value q−k/2 (“local Riemann hypothesis”) and satisfies the functional equation

P2n−k(Xp, 1/q
nT ) = ±Pk(Xp, T )/(qn/2T )bk(X) .

He further conjectured that it should be possible to prove this by finding an appropriate cohomology
theory for the variety Xp defined over Fq. This was later realized through the work of Grothendieck,
Artin and others by introducing, in general for any smooth projective variety Y defined over any
field L with seperable closure Lsep, the `-adic cohomology groups Hk

ét(Y ,Q`) for primes ` 6= char L.
Here, Y stands for the variety Y regarded as a variety over Lsep. There is a right action of the
Galois group Gal(Lsep/L) on Y (corresponding to the inverse of the left action on Y (Lsep)) and this
action induces a continuous left action on Hk

ét(Y ,Q`). In the case Y = Xp and L = Fq, the Galois
group is topologically generated by the arithmetic Frobenius automorphism Frobp : x 7→ xq and we
denote the inverse, the so-called geometric Frobenius, by Fp. The fixed points of the ith power of
Frobp on Xp(Fq) are precisely the points defined over Fqi . This can be used to relate |Xp(Fqi)| to
the traces of the Frobenius automorphism, since, as proven by Grothendieck, the Lefschetz trace
formula can be applied also to the `-adic cohomology groups and one obtains

|Xp(Fqi)| =

2n∑
k=0

(−1)k Tr
(
(F ∗p )i |Hk

ét(Xp,Q`)
)
.

A direct consequence is that the local zeta function has the form

Z(Xp, T ) =

2n∏
k=0

det
(
1− T F ∗p |Hk

ét(Xp,Q`)
)(−1)k+1

.

In particular, the product on the right is independent of the chosen prime `. Due to the local
Riemann hypothesis, which was proven by Deligne, the same holds for each factor, giving the
desired polynomial Pk(Xp, T ) ∈ Z[T ].

The considerations above apply to any smooth projective variety defined over Fq and not only to
the reduction Xp of a variety X defined over a number field K. However, having a global variety X

10



2.2 Varieties over number fields and their zeta functions

defined over K allows us to define the `-adic cohomology group Hk
ét(X,Q`) for all primes `. An

important fact is that for every embedding σ : K ↪→ C there is a canonical isomorphism of vector
spaces

Hk
ét(X,Q`) ∼= Hk(Xσ(C),Q)⊗Q Q` .

Here, σ is the restriction of σ to K. In particular, this implies that Pk(Xp, T ) is a polynomial of
degree bk(X). Another important fact is that for all primes p of good reduction which are coprime
to ` and any embedding K ↪→ Kp (where Kp denotes the algebraic closure of the p-adic completion
of K) there is a canonical isomorphism of representations of Gal(Kp/Kp)

Hk
ét(X,Q`) ∼= Hk

ét(Xp,Q`) .

The Frobenius automorphism Fp ∈ Gal(Fq/Fq) thus corresponds to a well-defined conjugacy class
in the action of Gal(K/K) on Hk

ét(X,Q`), which we also denote by F ∗p , and we have

Pk(Xp, T ) = det
(
1− T F ∗p |Hk

ét(Xp,Q`)
)

= det
(
1− T F ∗p |Hk

ét(X,Q`)
)
.

The fact that all local zeta functions come from the same variety X allows us to define the
Hasse-Weil zeta function

ζ(X, s) =
∏
p

Z(Xp, q
−s) (Re s� 0)

which may also be written as an alternating product of the L-functions

Lk(X, s) =
∏
p

Pk(Xp, q
−s)−1 (Re s� 0) .

Note that both equations have to be supplemented with definitions of the local factors for primes
of bad reduction, but we will not discuss these. One of the most important conjectures in modern
arithmetic algebraic geometry is that each Lk has remarkable analytic properties. For example, it
is expected that Lk can be analytically continued to a meromorphic function on the complex plane
which has a functional equation with respect to the symmetry s 7→ k + 1− s. For a few varieties,
these properties can be proven but in almost all cases they are conjectural. For a more detailed
treatment, we refer to [45].

Apart from issues with local L-factors for ramified primes, the L-function Lk(X, ·) is determined
by any of the representations ρ` : Gal(K/K) → Aut(Hk

ét(X,Q`)). This is useful, since we can
use powerful theorems about Galois representations. In particular, by a theorem of Faltings [31],
the semisimplification of ρ` is uniquely determined from the characteristic polynomials of finitely
many Frobenius elements. For the case of two-dimensional representations with even trace, this has
been refined by Serre [63] and Livné [52]. As a result, the so-called Faltings-Serre-Livné method
(see theorem 4.3 in [52]) gives a simple method to decide whether two such representations have
isomorphic semisimplifications.

To give an example for the structures reviewed above, we consider again the elliptic curve E
with affine equation y2 = x3 − x. This has good reduction for all primes p 6= 2 and the local zeta
function is

Z(Ep, T ) =
1− ap T + p T 2

(1− T ) (1− p T )
,

where ap = 0 for p ≡ 3 mod 4 and ap = (−1)
α+β−1

2 2β for p = α2 +β2 with even α and odd β > 0.
The numerator of the local zeta function equals the polynomial det

(
1− T F ∗p |Hk

ét(E,Q`)
)

for any
prime ` 6= p. In this example (and for elliptic curves in general), there is a simple description
of Hk

ét(E,Q`) and its Galois representation, because it is isomorphic to the dual of the Tate
module (the inverse limit of the `n-torsion subgroups E[`n]) tensored by Q`. These subgroups are
isomorphic to (Z/`nZ)2 and Gal(Q/Q) naturally acts on them since E is defined over Q.
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2 From Hodge structures to motives

2.3 Motives

The idea of motives was proposed by Grothendieck to capture the cohomological structure of
varieties. We want to briefly explain this idea without going much into detail. For more details,
we refer to [3] and [45].

We start by explaining pure Chow motives. Let X be again a smooth projective variety of
dimension n defined over some number field K. In the two previous sections, we recalled that for
every integer 0 ≤ k ≤ 2n, we can associate multiple cohomology groups with X:

- For any embedding σ : K ↪→ C, we obtain the complex manifold Xσ(C) which gives rise
to the Betti cohomology group Hk(Xσ(C),Q). The complexification of this has a Hodge
filtration.

- Using the algebraic structure, we obtain the algebraic de Rham cohomology group Hk
dR(X)

and its Hodge filtration.

- For any prime `, we obtain the `-adic cohomology group Hk
ét(X,Q`). On this, the Galois

group Gal(K/K) acts continuously.

We also saw that these have several compatibilities. For example, there are canonical isomorphisms
between Hk(Xσ(C),Q)⊗QC and Hk

dR(X)⊗σC and between Hk(Xσ(C),Q)⊗QQ` and Hk
ét(X,Q`).

A motive should capture all of these structures and informally one can think of a motive as an
algebraically defined part of the cohomology (so that it makes sense in any reasonable cohomology
theory). To make this more precise, let H be any Weil cohomology theory and let X and Y be
smooth projective varieties defined over a number field K. Any morphism f : Y → X induces a
linear map f∗ : H(X)→ H(Y ). However, we can be more general by allowing correspondences of
degree zero, i.e. elements of the Chow group

Corr(X,Y ) = CHdim X(X × Y ) .

Any element of Corr(X,Y ) gives a class in H2 dim X(X × Y ) and using the Künneth isomorphism
and Poincaré duality this also gives a linear map H(X) → H(Y ). The correspondence associ-
ated with a morphism f : Y → X is just the transpose of the graph of f . The composition of
correspondences γ1 ∈ Corr(X,Y ) and γ2 ∈ Corr(Y,Z) is defined by

γ2 ◦ γ1 = prX×Z,∗(pr∗X×Y γ1 · pr∗Y×Zγ2)

in terms of the projections from X × Y × Z to products of two factors. One could now define
a motive as a pair (X, p), where X is a smooth projective variety defined over a number field K
and p is an idempotent element of Corr(X,X). One also says that p cuts out the motive (X, p).
For any Weil cohomology theory H, one then defines the cohomology of (X, p) as the image of the
linear map H(X)→ H(X) induced by p. As morphisms from (X, p) to another motive (Y, q), one
can consider elements γ ∈ Corr(X,Y ). The associated action on Weil cohomology theories is then
obtained from the composition q ◦ γ ◦ p. The motives defined in this way are called pure Chow
motives. Three simple examples are given as follows:

- The diagonal ∆ ⊂ X × X defines the motive (X,∆), which corresponds to the complete
cohomology of X.

- Any point x ∈ X(K) defines the motive (X,x ×X), which corresponds to the cohomology
of weight 0 of X.

- Any point x ∈ X(K) defines a motive (X,X × x), which corresponds to the cohomology of
weight 2 dim X of X.

While the definition of motives as pure Chow motives is very geometric, it can be difficult to
work with in practice. For example, even the existence of a weight decomposition of (X,∆) is only
conjectural in general. Thus, we continue to work with the more practical approach followed in
section 9.2 of [45]. Here, a pure motive of weight k (and with a fixed number field K) is defined
as a collection

V = (Vσ, VdR, V`; I∞,σ, I`,σ) ,
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where σ, σ run through all embeddings K,K ↪→ C and ` runs through all rational primes. Each Vσ
is a pure Hodge structure of weight k, VdR is a K-vector space with a decreasing Hodge filtration,
each V` is a Q`-vector space with a continuous action ρ` by Gal(K/K), I∞,σ is an isomorphism
between Vσ ⊗Q C and VdR ⊗σ C that is compatible with the filtrations and I`,σ is an isomorphism
between Vσ ⊗Q Q` and V`. We further require that the Galois representations ρ` are compatible
with each other and have the correct weight. By this, we mean that there is a finite set S of primes
so that each ρ` is unramified outside of the union of S and the prime factors of ` and that for
unramified primes p the characteristic polynomials det(1− T ρ`(Fp)) are in Z[T ], do not depend
on ` and have complex roots of absolute value q−k/2. We abbreviate the characteristic polynomials
by det

(
1− T F ∗p |V

)
. Note that the motives defined in this way are purely linear algebraic structures

and do not refer to any algebraic variety. However, it is expected that these motives always have a
geometric realization, i.e. that they can be realized as a subspace of the cohomology of an algebraic
variety. Even stronger, it is expected that they are cut out by correspondences.

An important motive, the so-called Tate motive, is obtained from the cohomology of weight 2
of P1. The associated period matrix is just 2πi and the associated Galois representations are just
the duals of `-adic cyclotomic characters. Given any pure motive V of weight k, we denote the
tensor product with the Tate motive by V (−1). This is also called the (−1)th Tate twist of V . We
use the same notation on the level of Galois representations.

Given a smooth projective variety X defined over a number field K, we denote the associated
pure motive of weight k by Hk(X). If there is a splitting Hk(Xσ(C),Q) = Vσ,1 ⊕ Vσ,2 with
sub-Hodge structures Vσ,1 and Vσ,2, one can ask whether these are always parts of some pure
motives V1, V2 ⊆ Hk(X). This is suggested by the Hodge conjecture. More precisely, we obtain
projectors σ1, σ2 : Hk(Xσ(C),Q) → Hk(Xσ(C),Q) and by Poincaré duality and the Künneth
isomorphism these give elements in H2n(Xσ(C)×Xσ(C),Q)∩Hn,n(Xσ(C)×Xσ(C)). The Hodge
conjecture predicts that these are the image of some algebraic cycles, which would then give
motives V1, V2 ⊆ Hk(X) (for a sufficiently large extension of K). In the same way, if there is
a splitting Hk

ét(X,Q`) = V`,1 ⊕ V`,2 with subrepresentation V`,1 and V`,2, one can ask whether
these are always parts of pure motives V1, V2 ⊆ Hk(X). This is suggested by the Tate conjecture.
More precisely, we obtain projectors σ1, σ2 : Hk

ét(X,Q`) → Hk
ét(X,Q`) and by Poincaré duality

and the Künneth isomorphism these give elements in H2n
ét (X × X,Q`)(n). The Tate conjecture

predicts that these come from algebraic cycles, which would then give motives V1, V2 ⊆ Hk(X). In
summary, we obtain the following diagram:

Hk(X) splits into submotives
cut out by correspondences

Hk(Xσ(C),Q) splits into
sub-Hodge structures

Hk
ét(X,Q`) splits into
subrepresentations

Hodge
conjecture

Tate
conjecture

There are two important generalizations of our definition of motives. First, one can consider
finite extensions of the coefficient fields Q, K and Q` of the various vector spaces. This can be
useful, for example, in the case where one has a pure motive which splits to a sum of pure motives
after some finite extension of the coefficient fields. Second, one can generalize to mixed motives.
These are collections V = (Vσ, VdR, V`; I∞,σ, I`,σ) analogous to the case of pure motives, but now
each Vσ is only a mixed Hodge structure and VdR and V` also carry an increasing weight filtration.
The action of the Galois group and the isomorphisms I∞,σ and I`,σ should be compatible with
these weight filtrations. As in the case of pure and mixed Hodge structures, one can view a mixed
motive as iterated extensions of pure motives.

13





3 Modular forms and associated motives

Modular forms are functions on the complex upper half-plane with certain analyticity properties
and certain transformation properties with respect to an action by subgroups of SL2(R). They
enjoy remarkable properties and they occur in several areas of mathematics. For us, the most
important fact is that one can associate motives with a certain class of modular forms, the so-
called newforms.

In the first section, we review the general theory of modular forms and their associated period
polynomials. This leads to the definition of Hecke operators, newforms and their associated periods.
In the second section, we define merormorphic modular forms, which leads to the definitions
of meromorphic partners and quasiperiods of newforms. In the third section, we review that
associated with any newform there is a pure motive of rank two. The corresponding traces of
Frobenius elements are given by Hecke eigenvalues and the associated period matrices are given
by the periods and quasiperiods of the newform. The expositions in these first three sections
are based on that of [12], but with several refinements. In the last two sections, we discuss two
generalizations of modular forms: Hilbert modular forms and Bianchi modular forms.

3.1 Holomorphic modular forms and periods

In this section, we define the periods associated with modular forms1 for discrete and cofinite
subgroups Γ of SL2(R). For us, the relevant examples are the level N subgroups Γ0(N) ⊆ SL2(Z).
We start the section by reviewing a few basic facts about these groups and the properties of
modular forms. In particular, we define Hecke operators and describe how one can associate
period polynomials with modular forms. We conclude by reviewing a method for the computation
of period polynomials.

Holomorphic modular forms

We review some elementary facts about holomorphic modular forms. For further details, see
e.g. [72] or [23]. For an introduction emphasizing computational aspects, we refer to [66].

The group SL2(R) of real 2 × 2 matrices of determinant 1 acts as usual on the complex upper
half-plane H = {τ ∈ C| Im τ > 0} by τ 7→ gτ = aτ+b

cτ+d for g = (a bc d) ∈ SL2(R) and this action also

extends to H ∪ P1(R). Elements in SL2(R) which have exactly one fixed point in P1(R) are called
parabolic elements and every parabolic element is conjugate to ±T , where T = (1 1

0 1). Now let Γ be
a discrete subgroup of SL2(R) that is cofinite, i.e. Γ\H has finite hyperbolic area. The fixed points
in P1(R) with respect to parabolic elements of Γ are called the cusps of Γ and we denote the union
of H and the set of cusps of Γ by H. The action of Γ can be restricted to H and two cusps are said
to be equivalent if they are in the same Γ orbit. There are only finitely many equivalence classes
of cusps.

For any function f : H→ C, any integer k and any g = (a bc d) ∈ SL2(R), one writes

(f |kg)(τ) = (cτ + d)−kf(gτ)

and calls |k the weight k slash operator. For any k ∈ Z, we define the vector space Mk(Γ) of
(holomorphic) modular forms by

Mk(Γ) = {f : H→ C | f |kγ = f ∀ γ ∈ Γ, f holomorphic on H} ,

where f is said to be holomorphic (vanish) at a cusp fixed by ±gTg−1 ∈ Γ if (f |kg)(x + iy) is
bounded (vanishes) for y → ∞. A modular form f ∈ Mk(Γ) is a cusp form if it vanishes at all

1To distinguish these from various generalizations, they are also called elliptic modular forms or classical modular
forms.
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3 Modular forms and associated motives

cusps. We denote the subspace of cusp forms by Sk(Γ). The spaces Mk(Γ) and hence Sk(Γ) are
finite-dimensional and there are standard formulas for the dimensions of Mk(Γ) and Sk(Γ).

Modular forms have Fourier expansions around each cusp, i.e. for a cusp fixed by ±gTg−1 ∈ Γ
one finds that (f |kg)(τ + 1) = (±1)k(f |kg)(τ) and hence there is an expansion

(f |kg)(τ) =
∑
m

ag,m q
m with q = e2πiτ ,

where, depending on (±1)k, the sum runs over positive integers or positive half integers. If f is a
cusp form, we further have ag,0 = 0. If T ∈ Γ, we abbreviate a1,m by am and we then have

f(τ) =

∞∑
m=0

am q
m .

Holomorphic modular forms for Γ1(N)

We are particularly interested in the subgroups

Γ0(N) = {(a bc d) ∈ SL2(Z) | c ≡ 0 mod N}

of level N ∈ N and their normal subgroups

Γ1(N) = {(a bc d) ∈ SL2(Z) | a, d ≡ 1 mod N, c ≡ 0 mod N}

which are the kernel of the homomorphism Γ0(N) → (Z/NZ)× given by (a bc d) 7→ d. The weight k
slash operator gives an action of Γ0(N)/Γ1(N) ∼= (Z/NZ)× on the space Mk(Γ1(N)) and its
subspace Sk(Γ1(N)). This gives the decompositions

Mk(Γ1(N)) =
⊕
χ

Mk(Γ0(N), χ) and Sk(Γ1(N)) =
⊕
χ

Sk(Γ0(N), χ) ,

where χ runs over all characters of (Z/NZ)×. To work with these spaces, we generalize the weight k
slash operator by

(f |χkg)(τ) = χ(d)−1 (cτ + d)−kf(gτ) .

Then, one can write

Mk(Γ0(N), χ) = {f : H→ C | f |χkγ = f ∀ γ ∈ Γ0(N), f holomorphic on H} .

There is a canonical splitting

Mk(Γ0(N), χ) = Ek(Γ0(N), χ)⊕ Sk(Γ0(N), χ) ,

where Ek(Γ0(N), χ) has a basis given by so-called Eisenstein series. To describe this basis, let
k be a positive integer and let χ1 and χ2 be two Dirichlet characters modulo N1 and N2 which
satisfy χ1(−1)χ2(−1) = (−1)k. We define

Ek,χ1,χ2
(τ) = a0 +

∞∑
m=1

∑
n|m

χ1(n)χ2(m/n)nk−1

 qm ,

where the second sum runs over all positive divisors of m. Here, a0 equals 0 if N1 > 1 and is given

in terms of generalized Bernoulli numbers by a0 = −Bk,χ1

2k otherwise. If k = 2 and χ1 = χ2 = 1,
the differences Ek,χ1,χ2

(τ)−mEk,χ1,χ2
(mτ) give elements in E2(Γ0(N)) for any multiple N of m.

Otherwise, Ek,χ1,χ2(mτ) gives an element of E2(Γ0(N), χ1χ2) for any multiple N of mN1N2. The
elements described in this way give a basis of Ek(Γ0(N), χ).
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Hecke operators and Atkin-Lehner involutions

For each n ∈ N with (n,N) = 1, we define the Hecke operator Tn, acting on Mk(Γ0(N), χ), as
follows. Let

Mn,N = {g = (a bc d) ∈ M2(Z) | det(g) = n, c ≡ 0 mod N} ,

where M2(Z) denotes the set of integral 2× 2 matrices. Note that this set is stabilized under left
and right multiplication by any γ ∈ Γ0(N). For f ∈Mk(Γ0(N), χ), we then define

f |χkTn = nk−1
∑

M∈Γ0(N)\Mn,N

f |χkM ,

where the weight k slash operator on the right is defined as before even though the matrices M
do not have determinant 1. The sum is over any set of representatives for the left action of Γ0(N)
on Mn,N , a convenient choice being

M[∞]
n = {(a b0 d) ∈ M2(Z) | ad = n, 0 ≤ b < d} .

Note that the cardinality of this set equals σ1(n), the sum of divisors of n. In particular, the sum in
the definition of the Hecke operators is finite and does not depend on the choice of representatives
since f is modular. It is easy to see that f |χkTn is again modular since the set Γ0(N)\Mn,N is
invariant under right multiplication by any γ ∈ Γ0(N). We further see that Tn maps cusp forms to
cusp forms. Since T ∈ Γ1(N), we have a Fourier expansion and if one chooses the representatives

M[∞]
n , one gets a formula for the action of Tn on the Fourier expansion of f . For cusp forms this

gives

(f |χkTn)(τ) =

∞∑
m=1

∑
r|(m,n)
r>0

χ(r) rk−1 amn/r2 q
m .

Since the Tn for different n commute with each other and with their adjoints with respect to
a certain scalar product on Sk(Γ0(N), χ), one can choose a common basis of eigenforms f of
Sk(Γ0(N), χ) such that

f |χkTn = λnf

for all n that are coprime to N . From the action of the Hecke operators on the Fourier expansion,
one then gets an = λna1 for (n,N) = 1. In particular, for N = 1 any eigenform is (up to a
multiplicative constant) uniquely determined by its Hecke eigenvalues. For N > 1, this is not true
in general and a form f ∈ Sk(Γ0(N), χ) is a so-called newform if it is uniquely determined by its
Hecke eigenvalues and the normalization a1 = 1. All elements of Sk(Γ0(N), χ) can be written as
linear combinations

∑
i ai fi(miτ) for integers mi and newforms fi of levels dividing N .

We remark that for any f ∈ Mk(Γ0(N), χ) with Fourier expansion f(τ) =
∑∞
n=0 an q

n and
any Dirichlet character ψ modulo Nψ, one can define the twist fψ ∈ Mk(Γ0(N N2

ψ), χ ψ2) by the

Fourier expansion fψ(τ) =
∑∞
n=0 ψ(n) an q

n. Further, if f is a newform, then there is a unique
newform f ⊗ ψ (which is in general not equal to fψ) so that for all n which do not divide N N2

ψ

the eigenvalue of f ⊗ ψ under Tn is ψ(n) an.

In the case of the trivial character, there is a further set of operators on Mk(Γ0(N)) that are
relevant for us. For any exact divisor Q of N , i.e. Q|N and (Q,N/Q) = 1, any element in the set

WQ =
1√
Q

(
QZ Z
NZ QZ

)
∩ SL2(R)

normalizes Γ0(N) and the product of any two elements of WQ is in Γ0(N). Hence, any WQ ∈ WQ

induces an involution on Γ0(N)\H via the action of WQ on H. These involutions do not depend
on the choice of WQ ∈ WQ and are called the Atkin-Lehner involutions. They generate a group
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3 Modular forms and associated motives

isomorphic to (Z/2Z)`, where ` is the number of prime factors of N . The subgroup of SL2(R)
obtained by adjoining all Atkin-Lehner involutions to Γ0(N) is denoted by Γ∗0(N), i.e.

Γ∗0(N) =
⋃
Q|N

(Q,N/Q)=1

WQΓ0(N) .

It normalizes Γ0(N) in SL2(R) and permutes the cusps of Γ0(N). Each Atkin-Lehner involution
on Γ0(N)\H induces an involution (also called Atkin-Lehner involution) on the space Mk(Γ0(N))
by f 7→ f |kWQ, which is again independent of the choice of WQ. These involutions commute with
each other and define a decomposition into eigenspaces Mk(Γ0(N)) =

⊕
εM

ε
k(Γ0(N)), where the

sum ranges over the characters of (Z/2Z)`. Since the Atkin-Lehner involutions also commute with
the Hecke operators, every newform automatically belongs to one of these eigenspaces.

Eichler integrals and period polynomials

We consider the normalized derivative D = 1
2πi

d
dτ , where the factor 1

2πi is introduced so that D
sends periodic functions with rational Fourier coefficients to periodic functions with rational Fourier
coefficients. The operator D does not preserve modularity. Instead, we have the following elemen-
tary but not obvious proposition.

Proposition 1 (Bol’s identity [11]). For all meromorphic functions f : H→ P1(C), integers k ≥ 2
and g ∈ SL2(R), we have

Dk−1(f |2−k g) = (Dk−1f)|k g .

If f is modular of weight k on some group Γ, then any holomorphic function f̃ : H → C with
the property that Dk−1f̃ = f is called an Eichler integral of f . The Eichler integral exists, but is
well–defined only up to a degree k − 2 polynomial p ∈ Vk−2(C), where Vk−2(K) = 〈1, . . . , τk−2〉K .

For instance, we can take f̃ to be f̃τ0 , where

f̃τ0(τ) =
(2πi)k−1

(k − 2)!

∫ τ

τ0

(τ − z)k−2 f(z) dz

for any τ0 ∈ h, or even τ0 ∈ h if f is a cusp form. In particular, if T ∈ Γ, then we have

f̃∞(τ) =

∞∑
m=1

am
mk−1

qm if f(τ) =

∞∑
m=1

am q
m ∈ Sk(Γ) .

For later purposes, we observe that f̃∞ is related to f̃τ0 for any τ0 ∈ h by

f̃∞(τ)− f̃τ0(τ) =
(2πi)k−1

(k − 1)!

∫ τ0−1

τ0

Bk−1(τ − z) f(z) dz ,

where Bn is the nth Bernoulli polynomial. Indeed, using that Bn(x + 1) = Bn(x) + nxn−1 and
that f is periodic, we find that this equation does not depend on τ0 and since it is true for τ0 =∞
it is true for all τ0.

For a fixed choice of Eichler integral f̃ , it follows from Bol’s identity that for all γ ∈ Γ

rf (γ) := f̃ |2−k(γ − 1)(τ) ∈ Vk−2(C) ,

i.e. rf (γ) is a polynomial of degree k− 2, which is called a period polynomial of f for γ ∈ Γ. Here,
we extended the action of the slash operator to the group algebra C[SL2(R)] in the obvious way (by
setting f |k

∑
gi =

∑
f |kgi, where we write

∑
gi instead of the more correct

∑
[gi]). The period

polynomials measure the failure of modularity of the Eichler integral. An immediate consequence
of the definition is that the period polynomials satisfy the cocycle condition

rf (γγ′) = rf (γ)|2−kγ′ + rf (γ′) ,

18



3.1 Holomorphic modular forms and periods

where we define an action of SL2(R) on Vk−2(C) by extending the slash operator to polynomials
in the obvious way.

Since the Eichler integral f̃ is unique only up to the addition of polynomials p ∈ Vk−2(C), it
follows that rf is unique only up to the addition of maps of the form γ 7→ p|2−k(γ − 1) with
polynomials p ∈ Vk−2(C). The dependence on p is described in terms of group cohomology. Let K
be any field so that Γ is contained in SL2(K). We define the group of cocycles

Z1(Γ, Vk−2(K)) = {r : Γ→ Vk−2(K) | r(γγ′) = r(γ)|2−kγ′ + r(γ′) ∀ γ, γ′ ∈ Γ}

and the group of coboundaries

B1(Γ, Vk−2(K)) = {Γ 3 γ 7→ p|2−k(γ − 1) | p ∈ Vk−2(K)} .

Then, the (first) group cohomology is defined as the quotient

H1(Γ, Vk−2(K)) =
Z1(Γ, Vk−2(K))

B1(Γ, Vk−2(K))
.

It follows from the definition of rf that the freedom in the choice of the Eichler integral f̃ results in
a coboundary. Therefore, we can associate to f a unique cohomology class [rf ] ∈ H1(Γ, Vk−2(C)).
Furthermore, we define the group of parabolic cocycles

Z1
par(Γ, Vk−2(K)) = {r ∈ Z1(Γ, Vk−2(K)) | r(γ) ∈ Vk−2(K)|2−k(γ − 1) ∀ parabolic γ ∈ Γ} .

Trivially, one has B1 ⊆ Z1
par ⊆ Z1. Hence, one can define the parabolic cohomology group

H1
par(Γ, Vk−2(K)) =

Z1
par(Γ, Vk−2(K))

B1(Γ, Vk−2(K))
⊆ H1(Γ, Vk−2(K)) ,

where the codimension of the embedding is in general less than or equal to the number of equivalence
classes of cusps times the dimension of Vk−2(K). We have the following proposition.

Proposition 2. For any f ∈ Sk(Γ) one has rf ∈ Z1
par(Γ, Vk−2(C)).

Proof. First note that the statement does not depend on the choice of Eichler integral f̃ of f .
Hence, we only have to show that for any parabolic γ ∈ Γ there is a choice of Eichler integral so
that rf (γ) = 0. We can write γ = ±gTg−1 ∈ Γ for some g ∈ SL2(R). Then we have a Fourier
expansion

(f |kg)(τ) =
∑
m

ag,m q
m ,

where ag,0 vanishes since f is a cusp form. The function(∑
m

ag,m
mk−1

qm
)∣∣∣

2−k
g−1

is annihilated by γ − 1 and, using Bol’s identity, we find that it is an Eichler integral of f .

The importance of the parabolic cohomology group stems from a theorem due to Eichler. To
state this, we define the space of Sk(Γ) of antiholomorphic cusp forms as the space of all functions f
for f ∈ Sk(Γ), where we define f(τ) = f(τ).

Theorem 1 (Eichler-Shimura isomorphism). The map f 7→ [rf ] and its conjugate f 7→ [rf ] := [rf ]
(obtained by complex conjugating the coefficients) induce an isomorphism

H1
par(Γ, Vk−2(C)) ∼= Sk(Γ)⊕ Sk(Γ) .

Proof. For even k, a first result of this type was given by Eichler in [30], who in particular showed
that the dimensions of both sides agree. For the complete proof for even and odd k, we refer to
Shimura [65].
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3 Modular forms and associated motives

We now assume that Γ is normalized by ε =
(−1 0

0 1

)
. We then get an involution r 7→ r|2−kε

on Z1(Γ, Vk−2(K)), where we define the action of any normalizer W ∈ GL2(K) of Γ on elements
in Z1(Γ, Vk−2(K)) by

(r|2−kW )(γ) = r(WγW−1)|2−kW .

Here, we generalize that the slash operator acts on polynomials as defined previously even when
the determinant of W is negative. The eigenvalues of the involution are ±1 and we get an induced
decomposition

H1
par(Γ, Vk−2(K)) = H1

par(Γ, Vk−2(K))+ ⊕H1
par(Γ, Vk−2(K))− .

It is straightforward to verify that, with respect to the Eichler-Shimura isomorphism, the action
of the involution ε on H1

par(Γ, Vk−2(C)) corresponds to the involution on Sk(Γ) ⊕ Sk(Γ) induced

by f 7→ (−1)k−1f∗, where f∗(τ) = f(−τ). In particular, the restriction of period polynomials to
the eigenspaces H1

par(Γ, Vk−2(K))± gives isomorphisms

Sk(Γ) ∼= H1
par(Γ, Vk−2(C))± .

We now fix Γ = Γ0(N) and a character χ of (Z/NZ)×. The Eichler-Shimura isomorphism then
gives an isomorphism

H1
par(Γ0(N), V χk−2(C)) ∼= Sk(Γ0(N), χ)⊕ Sk(Γ0(N), χ) ,

where V χk−2(C) corresponds to the representation Vk−2(C) twisted by χ. Since any Sk(Γ0(N), χ)
admits an action by Hecke operators, the isomorphism induces an action of the Hecke operators
on H1

par(Γ0(N), V χk−2(C)). This can be described as follows. For a map r : Γ0(N)→ V χk−2(K) and
for n ∈ N with (n,N) = 1, we define a map r|χ2−kTn : Γ0(N)→ V χk−2(K) by

(r|χ2−kTn)(γ) =

σ1(n)∑
i=1

r(γi)|χ2−kMπγ(i) ,

where Mi, i = 1, . . . , σ1(n) are chosen representatives of Γ0(N)\Mn,N and the γi ∈ Γ0(N) are
determined by the identity

Miγ = γiMπγ(i) .

Here, πγ(i) denotes a permutation of the indices i = 1, . . . , σ1(n). Using the cocycle property, it
is straightforward to show that this map can be restricted to Z1, Z1

par and B1. Further, the map
depends on the choice of representatives of Γ0(N)\Mn,N , but we have the following propositions.

Proposition 3. For any r ∈ Z1(Γ0(N), V χk−2(K)) the cohomology class [r|χ2−kTn] does not depend
on the chosen representatives of Γ0(N)\Mn,N .

Proof. Let r|χ2−kT ′n be defined with respect to a second choice M ′i , i = 1, ..., σ1(n) of representatives
of Γ0(N)\Mn,N . We order these so that M ′i = γ′iMi for uniquely determined γ′i ∈ Γ0(N). By
using the cocycle property, one finds that for all γ ∈ Γ0(N)

(r|χ2−kT
′
n − r|

χ
2−kTn)(γ) =

( σ1(n)∑
i=1

r(γ′i)|
χ
2−kMi

)
|χ2−k(γ − 1)

and thus [r|χ2−kT ′n] = [r|χ2−kTn].

Proposition 4. For f ∈ Sk(Γ0(N), χ) we have

rf |χkTn = rf |χ2−kTn ,

where the same set of representatives of Γ0(N)\Mn,N has been chosen on both sides and the Eichler

integral on the left side has been chosen as f̃ |χkTn = nk−1f̃ |χ2−kTn.
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3.1 Holomorphic modular forms and periods

Proof. Using Bol’s identity, we find that

Dk−1(nk−1f̃ |χ2−kTn) = (Dk−1f̃)|χkTn = f |χkTn

and thus our choice of the Eichler integral is indeed valid. We then get

rf |χkTn(γ) = f̃ |χkTn
∣∣∣χ
2−k

(γ − 1) = nk−1 f̃ |χ2−kTn
∣∣∣χ
2−k

(γ − 1)

=

σ1(n)∑
i=1

f̃ |χ2−k(Miγ −Mi) =

σ1(n)∑
i=1

f̃ |χ2−k(γiMσγ(i) −Mi)

=

σ1(n)∑
i=1

rf (γi)|χ2−kMσγ(i) .

We conclude that the action of Hecke operators defined on cocycles induces a well-defined action
on H1

par(Γ0(N), V χk−2(K)) which does not depend on the chosen representatives of Γ0(N)\Mn,N

and is compatible with the Eichler-Shimura isomorphism for K = C. Completely analogously,
we can define the action of Atkin-Lehner operators WQ on Z1(Γ0(N), Vk−2(K)) (for suitable K)
by r 7→ r|2−kWQ. This gives a well-defined action on H1

par(Γ0(N), Vk−2(K)) which does not depend
on the chosen element ofWQ and is compatible with the Eichler-Shimura isomorphism for K = C.

We conclude this introduction to period polynomials with an important proposition about the
period polynomials associated with newforms.

Proposition 5. Let f ∈ Sk(Γ0(N), χ) be a newform and let Kf be the number field generated by
the Hecke eigenvalues of f . Then the Eichler integral can be chosen such that

rf ∈ ω+
f Z

1
par(Γ0(N), V χk−2(Kf ))+ ⊕ ω−f Z

1
par(Γ0(N), V χk−2(Kf ))−

for some ω±f ∈ C. If Kf is totally real, one has ω+
f ∈ R and ω−f ∈ iR.

Proof. Let Kχ be the number field generated by the image of χ. First note that

H1
par(Γ0(N), V χk−2(C)) ∼= H1

par(Γ0(N), V χk−2(Kχ))⊗Kχ C

and that the Hecke operators and the involution ε act on H1
par(Γ0(N), V χk−2(Kχ)). Since f is

uniquely determined by its Hecke eigenvalues in Kf (which contains Kχ, see e.g. corollary 3.6
in [16]), we can define two one-dimensional eigenspaces V ± ⊆ H1

par(Γ0(N), V χk−2(Kf ))± with the

same eigenvalues as f± (−1)k−1f∗. Then, the first statement directly follows. If Kf is totally real,
we have f∗ = f and then the second statement also follows.

We call the numbers ω±f , which are unique only up to multiplication by Kf , the periods of f .
For N = 1 the proposition was first proved by Manin [54].

Computation of H1
par(Γ0(N), V χk−2(Kχ))

We conclude this section by explaining how one can compute a basis of H1
par(Γ0(N), V χk−2(Kχ)) and

the action of various operators on this space. As for the computation of the first group cohomology
of any finitely presented group, this reduces to linear algebra once we have good control over the
group Γ0(N).

We start by discussing the case N = 1 corresponding to the full modular group SL2(Z). A
presentation for SL2(Z) is given by

SL2(Z) = 〈S, T | S4 = 1 , (S T )3 = S2〉

with

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.
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3 Modular forms and associated motives

Any cocycle r ∈ Z1(SL2(Z), Vk−2(Q)) is determined by its values on S and T . Conversely, given
elements vS , vT ∈ Vk−2(Q), we can define a cocycle r on the free group generated by symbols S
and T by setting r(S) = vS , r(T ) = vT and r(g1 g2) = r(g1)|2−k g2 + r(g2). This gives a well
defined cocycle on SL2(Z) if the relations r(S4) = 0 and r((S T )3) = r(S2) are satisfied. Since the
action of S2 on Vk−2(Q) is trivial, we can identify Z1(SL2(Z), Vk−2(Q)) with the kernel of the map

Vk−2(Q)⊕ Vk−2(Q) → Vk−2(Q)⊕ Vk−2(Q)

(vS , vT ) 7→ (vS |2−k S + vS , (vS |2−k T + vT )|2−k((S T )2 + S T + 1)) .

Similarly, the space B1(SL2(Z), Vk−2(Q)) can be identified with the image of the map

Vk−2(Q) → Vk−2(Q)⊕ Vk−2(Q)

v 7→ (v|2−k(S − 1), v|2−k(T − 1)) .

To compute H1(SL2(Z), Vk−2(Q)) it only remains to take the quotient of these two subspaces
of Vk−2(Q) ⊕ Vk−2(Q). Then, since all cusps of SL2(Z) are equivalent to ∞, the parabolic
subspace H1

par(SL2(Z), Vk−2(Q)) can be obtained by restricting to elements whose restriction
to H1(〈T 〉, Vk−2(Q)) vanishes. Concretely, this just means that one restricts to classes which
can be represented by cocycles r which satisfy r(T ) ∈ Vk−2(Q)|2−k(T − 1). To evaluate the co-
cycles (corresponding to elements of Vk−2(Q)⊕ Vk−2(Q)) on arbitrary elements of SL2(Z), and to
compute the action of the involution ε and the Hecke operators, it just remains to be able to write
any matrix (a bc d) ∈ SL2(Z) as a word in S and T . This can be done inductively. If |a| ≥ |c|, one
multiplies from the left by suitable powers of T to achieve that |a| < |c|. Then, one multiplies from
the left by S and repeats these steps until c = 0. Up to a sign, the resulting matrix is a power of T
and the sign can be changed by multiplying with S2.

For the computation of H1
par(Γ0(N), V χk−2(Kχ)), one option is to use Shapiro’s lemma to relate

this space to the group cohomology of SL2(Z) and the induced representation. Another option is
to directly generalize the algorithm given above. This is straightforward, once:

- we have a finite presentation of the abstract group Γ0(N) and matrices corresponding to the
abstract generators

- we can write any matrix in Γ0(N) as a word in the generators

- we have generators of the stabilizer group of representatives of all equivalence classes of cusps

We now sketch how this can be achieved. As a first step, we compute a set R of coset representatives
for Γ0(N)\SL2(Z) by using the bijection

Γ0(N)\SL2(Z) → P1(Z/NZ)[(
a b
c d

)]
7→ (c : d)

and the Chinese remainder theorem for the computation of P1(Z/NZ). After choosing lifts from the
quotient Γ0(N)\SL2(Z) to SL2(Z), this gives a possible choice for R. Now any equivalence class of
cusps contains r ·∞ for some r ∈ R (but these are in general not all inequivalent). Writing r = (a bc d),
the stabilizer group of that cusp is then generated by −1 and r Th r−1, where h = N/(N, c2) is
the so-called width of the cusp. To obtain generators of Γ0(N), we follow a procedure outlined for
example in [66]. For any γ ∈ SL2(Z) and any r ∈ R, there is a unique αr ∈ R such that r γ α−1

r

lies in Γ0(N). This allows us to define the map fγ : R → Γ0(N) which maps r to r γ α−1
r . A set

of generators of Γ0(N) is then given by fS(R) ∪ fT (R). This fact can be proven constructively in
the sense that one gives a method to write any element of Γ0(N), given as a word in S and T , as
a word in the elements of fS(R) ∪ fT (R). Following the steps of the previous paragraph, we can
also write the elements of fS(R)∪ fT (R) as words in S and T . Now we are left with a well studied
problem in computational group theory. Namely, we have a finitely presented group G and a finite
index subgroup H ⊆ G specified by generators given by words in the generators of G and we want
a finite presentation of H with generators given as words in the generators of G and a method to
express elements of H (given as words in the generators of G) as words in the generators of the
finite presentation of H. This can be done using the Reidemeister-Schreier rewriting process. For
our computations, we use the implementation in Magma [13].
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3.2 Meromorphic modular forms and quasiperiods

In the previous subsection, we have seen that there is the Eichler-Shimura isomorphism

H1
par(Γ, Vk−2(C)) ∼= Sk(Γ)⊕ Sk(Γ) .

For the case k = 2, this corresponds to the usual Hodge decomposition H1 = H1,0 ⊕ H0,1 for
complex curves and the complex conjugation makes this decomposition non-algebraic. In this
case, the algebraic version of H1 can be realized by holomorphic differentials (differentials of the
first kind) and meromorphic differentials with vanishing residues (differentials of the second kind).
The integration of these forms gives a well-defined pairing with the homology. Taking the quotient
by derivatives of meromorphic forms one obtains a space that is isomorphic to H1 and defined
algebraically. Instead of the Hodge decomposition, we then have a filtration into classes that
can be represented by differentials of the first and second kind, respectively. In this section, we
discuss the algebraic analogue of the Eichler-Shimura isomorphism by considering meromorphic
modular forms. This will allow us to define quasiperiods as the periods of certain meromorphic
modular forms. The theory of meromorphic cusp forms and their associated period polynomials
was first introduced by Eichler [30] and later independently rediscovered by Brown [15] and Zagier
in the context of [37]. We conclude this section by explaining concrete computations of spaces of
meromorphic modular forms.

Meromorphic cusp forms and their period polynomials

We want to extend the period map r : Sk(Γ) → H1
par(Γ, Vk−2(C)) to the space of meromorphic

modular forms

Mmero
k (Γ) = {F : H→ P1(C) | F meromorphic and F |kγ = F ∀γ ∈ Γ} .

However, to have an Eichler integral, we need to restrict to forms that are (k − 1)th derivatives.
By simple connectivity, it is enough to require that they are locally (k − 1)th derivatives and we
thus define

Smero
k (Γ) = {F ∈Mmero

k (Γ) | F is locally a (k − 1)th derivative} .

Concretely, this means that for each τ0 ∈ H, the coefficients of (τ − τ0)n in the Laurent expansion
around τ0 vanish for n = −1, ...,−(k − 1) and that for each cusp the constant coefficient in the
Fourier expansion around that cusp vanishes. For any F ∈ Smero

k (Γ), one can then choose an

Eichler integral F̃ , i.e. a meromorphic function such that Dk−1F̃ = F , and compute the period
polynomials rF (γ) = F̃ |2−k(γ− 1)(τ) for γ ∈ Γ. These are polynomials by Bol’s identity and as in
the case of holomorphic cusp forms one finds that they define parabolic cocycles and induce a well-
defined class [rF ] ∈ H1

par(Γ, Vk−2(C)) which does not depend on the choice of Eichler integral. Bol’s

identity also implies that Dk−1Mmero
2−k (Γ) ⊆ Smero

k (Γ) and of course the classes in H1(Γ, Vk−2(C))

associated with elements in Dk−1Mmero
2−k (Γ) are trivial. This motivates introducing the quotient

Sk(Γ) = Smero
k (Γ)/Dk−1Mmero

2−k (Γ) .

Note that the Riemann-Roch theorem implies that one can choose the representatives to have poles
only in an arbitrary non-zero subset of H closed under the action of Γ, for instance the set of all
cusps (if there are cusps) or the set of cusps equivalent to ∞ (if ∞ is a cusp). For suitable Γ, we
therefore have canonical isomorphisms

S[∞]
k (Γ) ∼= S!

k(Γ) ∼= Sk(Γ) ,

where the first two spaces are defined similar to Sk(Γ) but restricting to forms with possible poles
only at [∞] or only at the cusps, respectively.

In the following, we explain that the period map gives an isomorphism between the spaces Sk(Γ)
and H1

par(Γ, Vk−2(C)). We start by defining a useful pairing.
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3 Modular forms and associated motives

Proposition 6. There is a pairing { , } : Smero
k (Γ)× Smero

k (Γ)→ C defined by

{F,G} = (2πi)k
∑
τ∈Γ\H

Resτ (F̃Gdτ) .

This pairing is (−1)k+1–symmetric and descends to Sk(Γ)× Sk(Γ).

Proof. First note that the definition of {F,G} makes sense because the sum is finite (only finitely
many orbits have poles) and the individual residues do not depend on the choice of τ in the Γ-orbit
(the difference of the residues at τ and γτ is rF (γ)Gdτ which cannot have any residues since G is
a (k−1)th derivative and rF (γ) is a polynomial of degree at most k−2). Similarly, the pairing does

not depend on the choice of Eichler integral since F̃ is unique up to a polynomial p of degree k− 2
and pGdτ again has no residues. The (−1)k+1–symmetry follows since F̃G − (−1)k+1FG̃ is
a derivative. Using this symmetry, it just remains to prove that {F,G} vanishes when F is

in Dk−1Mmero
2−k (Γ). This is clear since one can choose F̃ to be in Mmero

2−k (Γ) and then F̃Gdτ

is a well-defined meromorphic differential on the compact curve Γ\H and hence the sum of its
residues vanishes.

Theorem 2. The map Sk(Γ)→ Sk(Γ) induced by inclusion and the map F 7→ {F, } give a short
exact sequence

0 −→ Sk(Γ) −→ Sk(Γ)
{ , }−−−→ Sk(Γ)∨ −→ 0 ,

where Sk(Γ)∨ denotes the dual space of Sk(Γ).

Proof. The first (non-trivial) map is injective since the period polynomial of a holomorphic cusp
form determines the form uniquely. The composite of the first two maps is trivial since holomorphic
functions have no poles. Eichler [30] shows that the kernel of the second map is exactly the image
of the first map and that the second map is surjective.

This theorem implies that Sk(Γ) is (non-canonically) isomorphic to Sk(Γ) ⊕ Sk(Γ)∨. Hence,
the domain and the codomain of the period map r : Sk(Γ) → H1

par(Γ, Vk−2(C)) have the same
dimension and since the map is injective it gives an isomorphism

Sk(Γ) ∼= H1
par(Γ, Vk−2(C)) .

From now on we restrict to Γ = Γ1(N). As in the case of holomorphic modular forms, we have
a decomposition

Mmero
k (Γ1(N)) =

⊕
χ

Mmero
k (Γ0(N), χ) ,

where χ runs over all characters of (Z/NZ)×. Analogously, we obtain decompositions of the two
spaces Smero

k (Γ1(N)) and Sk(Γ1(N)). In particular, the period map gives an isomorphism

Sk(Γ0(N), χ) ∼= H1
par(Γ0(N), V χk−2(C)) .

We define the action of Hecke operators on Mmero
k (Γ0(N), χ) in the same way as we did for holo-

morphic modular forms. By Bol’s identity, it follows that the action descends to Sk(Γ0(N), χ)
and it is easy to see that this action is compatible with the isomorphism between Sk(Γ0(N), χ)
and H1

par(Γ0(N), V χk−2(C)). Using the Eichler-Shimura isomorphism, we can conclude from this
that the eigenvalues of a Hecke operator Tn on Sk(Γ0(N), χ) are just given by two copies of
the eigenvalues of Tn on Sk(Γ0(N), χ). Associated with any newform f ∈ Sk(Γ0(N), χ), we
thus have a two-dimensional subspace of Sk(Γ0(N), χ) with the same Hecke eigenvalues. Now
let F ∈ Smero

k (Γ0(N), χ) be such that [f ] and [F ] generate this subspace. We can choose F to
have poles only at cusps equivalent to∞ and Fourier coefficients in Kf and we then call F or (any
representative of) the class [F ] a meromorphic partner of f . Previously, we showed that

[rf ] = ω+
f [r+] + ω−f [r−]
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3.2 Meromorphic modular forms and quasiperiods

for r± ∈ Z1
par(Γ0(N), V χk−2(Kf ))± and used this to define the periods ω±f , which are unique up to

multiplication by Kf . Completely analogously, we have

[rF ] = η+
f [r+] + η−f [r−]

for the same r±, which defines the quasiperiods η±f . Note that these only depend on the class of
the meromorphic partner F . We thus obtain a period matrix(

ω+
f η+

f

ω−f η−f

)
associated with any newform f ∈ Sk(Γ0(N), χ). This is unique up to rescalings of the rows and
columns by Kf and shifts of the second column by the first column. The determinant of this matrix
is an algebraic multiple2 of (2πi)k−1. This generalizes the Legendre relations for the periods of
elliptic curves. In general, the determinant being an algebraic multiple of (2πi)k−1 follows from
the motivic considerations in the next section, but for each given case one can prove this by a
concrete computation. Below we exemplify this for the case of level 1.

Proposition 7. Let f ∈ Sk(SL2(Z)) be a newform with meromorphic partner F . Then the asso-
ciated periods and quasiperiods satisfy

det

(
ω+
f η+

f

ω−f η−f

)
∈ (2πi)k−1Kf .

Proof. First note that clearly {f, F} ∈ (2πi)k−1Kf . The idea now is to relate the pairing {·, ·} to a
pairing on H1

par(SL2(Z), Vk−2(C)). This goes along the lines of similar calculations in [40] and [50].
Recall that SL2(Z) is generated by S and T . A standard (non-strict) fundamental domain for the
action of SL2(Z) on H is given by F = {τ ∈ H | |Re τ | ≤ 1

2}r {τ ∈ H | |τ | < 1
2}. In the following,

we assume that F has no poles on the boundary of F . We then have

{f, F} = (2πi)k−1

∫
∂F

f̃F dτ

= (2πi)k−1

∫ ∞
i
√

3−1
2

(f̃ |2−k(T − 1))F dτ

+ (2πi)k−1

∫ i
√

3−1
2

i

(f̃ |2−k(S − 1))F dτ .

For τ0 = i
√

3+1
2 we have T−1τ0 = S−1τ0 and with the choice f̃ = f̃τ0 this gives rf,τ0(S) = rf,τ0(T )

and thus

{f, F} = (2πi)k−1

∫ ∞
i

rf,τ0(T )F dτ .

From S2 = −1 we further get rf,τ0(S)|2−kS = −rf,τ0(S) and so

{f, F} =
1

2
(2πi)k−1

∫ ∞
0

rf,τ0(T )F dτ

= − (k − 2)!

2

k−2∑
i=0

(−1)i
(
k − 2

i

)−1

rf,τ0(T )irF,∞(S)k−2−i

=: − (k − 2)!

2
〈rf,τ0(T ), rF,∞(S)〉 .

Here, pi denotes the coefficient of τ i for p ∈ Vk−2(C) and it is straightforward to show that the
pairing 〈·, ·〉 : Vk−2(C) × Vk−2(C) → C that we implicitly defined above is SL2(Z)-invariant. We

2For all computations that we performed, the multiplicative factor was in fact in the compositum of Kf and the field
fixed under the kernel of χ. Here, we identify χ with a representation of the Galois group of the Nth cyclotomic
field.
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3 Modular forms and associated motives

now want to replace rf,τ0 by rf,∞. Using the T -invariance of f̃∞, the SL2(Z)-invariance of the
pairing 〈·, ·〉 and the cocycle relations associated with the identities S2 = (ST )3 = −1 gives

〈rf,τ0(T ), rF,∞(S)〉 = 〈(f̃τ0 − f̃∞)|2−k(T − 1), rF,∞(S)〉

= 〈f̃τ0 − f̃∞, rF,∞(S)|2−k(T−1 − 1)〉

= − 〈f̃τ0 − f̃∞, rF,∞(S)|2−k(ST−1 + 1)〉

= − 〈f̃τ0 − f̃∞, rF,∞(S)|2−k((TS)2 + 1)〉

= − 1

3
〈f̃τ0 − f̃∞, rF,∞(S)|2−k((TS)2 + 1− 2TS)〉

= − 1

3
〈f̃τ0 − f̃∞, rF,∞(S)|2−k(TST − T )(S − T−1)〉

=
1

3
〈(f̃τ0 − f̃∞)|2−k(T − S), rF,∞(S)|2−k(TST − T )〉

=
1

3
〈rf,∞(S), rF,∞(S)|2−k(ST−1S − T )〉

=
1

3
〈rf,∞(S)|2−k(T − T−1), rF,∞(S)〉 .

We note that any coboundary which vanishes on T comes from a constant polynomial and hence this
expression is invariant under shifting the parabolic cocycles by such coboundaries. In particular,
we can define a pairing 〈·, ·〉 on H1

par(SL2(Z), Vk−2(K)) by

〈[r1], [r2]〉 = − (k − 2)!

6
〈r1(S)|2−k(T − T−1), r2(S)〉 ,

where r1, r2 must be chosen such that r1(T ) = r2(T ) = 0. We see that this pairing is ε-invariant
and we conclude that

{f, F} = (ω+
f η
−
f − ω

−
f η

+
f ) 〈r+, r−〉︸ ︷︷ ︸

∈Kf

∈ (2πi)k−1Kf .

Computation of SkSkSk(Γ0(N), χ)

We conclude this section by explaining how one can compute representatives for Sk(Γ0(N), χ) and
the action of the Hecke operators on these. We will work with representatives F which only have
poles at cusps equivalent to ∞. To do so, we first compute a modular form h ∈ Ml(Γ0(N)) with
the maximal vanishing order l

12 · [SL2(Z) : Γ0(N)] = l
12 ·N

∏
p|N (1 + 1

p ) at ∞, which exists for l
large enough. Here, the vanishing order at∞ is the leading exponent of q in the Fourier expansion.
As explained in [59], the form h necessarily can be realized as an eta quotient

h(τ) =
∏
m|N

η(mτ)rm

with the Dedekind eta function η and exponents rm ∈ Z. For n large enough, we can then represent
any element of Sk(Γ0(N), χ) by elements

F =
G

hn

with G ∈ Sk+n l(Γ0(N), χ). The only restriction for an element G/hn to lie in Smero
k (Γ0(N), χ) is

that there is no constant term in the Fourier expansion. Further, two elements G1/h
n and G2/h

n

only define the same class in Sk(Γ0(N), χ) if they differ by the (k − 1)th derivative of b/hn

with some b ∈ Mmero
2−k+n l(Γ0(N), χ). The spaces that are relevant for the construction are finite-

dimensional and, working with Fourier expansions of bases of these spaces (which we compute
using PARI [69]), finding representatives for Sk(Γ0(N), χ) reduces to linear algebra. Computing
the action of Hecke operators on these spaces is also straightforward, but we remark that acting
with Tm multiplies the pole order at infinity by m and hence one has to work with numerators of
higher weight.
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3.3 Associated motives and L-functions

3.3 Associated motives and L-functions

In this section, we review that associated with any newform f ∈ Sk(Γ0(N), χ), there is a pure
motive of weight k − 1 and rank two. We discuss possible geometric realizations of such motives
and properties of the associated L-functions.

The simplest situation arises for modular forms of weight 2 and some level N . In this case,
one can consider the modular curve X1(N) which is obtained by giving the quotient Γ1(N)\H the
structure of a Riemann surface. Then there is an isomorphism

S2(Γ1(N)) → H1
dR(X1(N)(C))

[F ] 7→ [2πi F dτ ] .

In fact, X1(N) can be given the structure of a smooth projective variety defined over Q and if

one restricts to classes that can be represented by forms in S
[∞]
2 (Γ1(N)) with rational Fourier

coefficients, this gives an isomorphism with the algebraic de Rham cohomology H1
dR(X1(N)).

Hence, as a natural motive, one can consider the motive V = H1(X1(N)). For any divisor N ′

of N , there are [Γ1(N ′) : Γ1(N)] correspondences on X1(N)×X1(N) and acting on V one obtains a
splitting V = V new⊕V old corresponding to the splitting into old forms and new forms. We further
have the action of Γ0(N)/Γ1(N) and correspondences associated with the Hecke operators, which
further split V new so that attached to any newform f ∈ S2(Γ0(N), χ) we obtain a two-dimensional
motive Vf (with coefficients in some extension). From the work of Eichler and Shimura, it follows
that for all primes p - N

det
(
1− T F ∗p |Vf

)
= 1− ap T + χ(p) p T 2 ,

where ap is the eigenvalue of f under Tp. We conclude that attached to f there is a motive Vf
so that the periods of Vf are the periods and quasiperiods of f and the traces of the Frobenius
elements are just the eigenvalues of the Hecke operators.

For newforms f ∈ Sk(Γ0(N), χ) of weight k > 2, Deligne [26] showed that the Hecke eigenvalues
coincide with the traces of Frobenius elements acting on the (k− 1)th cohomology group of an ap-
propriate Kuga-Sato variety, defined as a suitable compactification of a fiber bundle over Γ1(N)\H
whose fiber over a point τ is the (k − 2)th Cartesian product of an elliptic curve Eτ with a point
of order N . This results in the following theorem.

Theorem 3. Let f ∈ Sk(Γ0(N), χ) be a newform of weight k ≥ 2 and let Kf be the number field
generated by the Hecke eigenvalues an. For any rational prime ` and any prime λ over `, there is
a continuous representation

ρf,λ : Gal(Q/Q) → GL2(Kf,λ)

satisfying

det(1− T ρf,λ(Fp)) = 1− ap T + χ(p) pk−1 T 2 ,

where Kf,λ denotes the λ-adic completion of Kf . This representation is unramified at all primes
which do not divide `N .

Scholl [62] further used the construction by Deligne to associate not only Galois representations
but a complete motive Vf with f . This motive is again two-dimensional and the periods of Vf are
given by the periods and quasiperiods of f .

We remark that newforms of weight 1 are also motivic. Geometrically, the associated motives
are not very interesting since the relevant varieties are zero-dimensional. In particular, the Galois
representations ρf,` associated with a newform f ∈ S1(Γ0(N), χ) factor through the Galois group
of some finite extension of Q. As an example, consider the unique newform f ∈ S1(Γ0(23), (−23

· )).
In terms of the Dedekind eta function, this can be given by f(τ) = η(τ)η(23τ). The newform f
is associated with the variety defined by x3 − x − 1 and this manifests in the number of roots of
this polynomial over the finite field Fp for primes p 6= 23 being ap + 1, where ap is the eigenvalue
of the Hecke operator Tp. This example was given by van der Blij in [70].
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3 Modular forms and associated motives

While the constructions above give an explicit geometric realization of the motive Vf associated
with a newform f , these motives can also arise in other varieties. A famous example for this is the
modularity theorem for elliptic curves defined over Q. This has been proved in a somewhat less
general form by Wiles. The proof of the more general theorem has been completed in [14] and the
theorem reads as follows.

Theorem 4. Let E be an elliptic curve defined over Q. Then the Galois representations

ρE,` : Gal(Q/Q) → Aut(H1
ét(E,Q`))

are isomorphic to the representations ρf,` associated with a newform f ∈ S2(Γ0(N)). The level N
equals the conductor of E.

Geometrically, the statement of the modularity theorem is that any elliptic curve E defined over Q
has a modular parametrization X0(N) → E, where X0(N) is the modular curve corresponding
to Γ0(N). In particular, the motives H1(E) and Vf are isomorphic. Another general modularity
theorem has been given for Calabi-Yau threefolds (to be defined in the next chapter) that are rigid
and defined over Q. Here, rigidity means that the Hodge number h2,1 (which equals the dimension
of the complex structure deformation space) vanishes. The Galois representations associated with
the third cohomology are then two-dimensional and the following theorem was proven in [38].

Theorem 5. Let X be a rigid Calabi-Yau threefold defined over Q. Up to semisimplification, the
Galois representations

ρ` : Gal(Q/Q) → Aut(H3
ét(E,Q`))

are isomorphic to the representations ρf,` associated with a newform f ∈ S4(Γ0(N)).

We remark that for rigid Calabi-Yau threefolds, the nature of the associated level N is not com-
pletely understood. There are numerous examples of Galois representations of newforms which arise
in other varieties. We will study two cases with non-rigid Calabi-Yau threefolds in Section 5.1 and
Section 5.2.

Associated with a motive Vf of a newform f ∈ Sk(Γ0(N), χ), we have the L-function defined by

L(f, s) =

∞∑
n=1

an
ns

for Re s > k+1
2 . As the Hecke operators satisfy a certain multiplicativity and f is an eigenfunction

under all Hecke operators, the L-function has the Euler product

L(f, s) =
∏
p

1

1− ap p−s + χ(p) pk−1−2 s
,

where we replaced χ : (Z/NZ)× → C× by the associated Dirichlet character χ : Z→ C. The fact
that f is a cusp form implies that the associated L-functions can be analytically continued to a
holomorphic function on the whole complex plane. More precisely, we can write

L(f, s) =
(2π)s

Γ(s)

∫ ∞
0

f(ix)xs
dx

x

and the right hand side defines a holomorphic function on the complex plane since f(τ) is sufficiently
small for τ → 0 and τ →∞. The action by the Atkin-Lehner involution WN (which for a general
character χ relate f with the form f∗ ∈ Sk(Γ0(N), χ) defined by f∗(τ) = f(−τ)) further gives a
functional equation between L(f, s) and L(f∗, k − s). From the integral expression above, it also
follows that the values 1

(2πi)s L(f, s) for s = 1, 2, ..., k−1 are periods of f . This is easy to see in the

case N = 1, because then 0 and ∞ are equivalent cusps. For general N , one can use the action of
Hecke operators to show that also any integral between non-equivalent cusps evaluates to a linear
combination of periods.
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3.4 Hilbert modular forms

In the previous section, we saw that associated with elliptic newforms there are continuous repre-
sentations of Gal(Q/Q). In this section, we consider Hilbert modular forms. These can be seen as
a generalization of elliptic modular forms. Hilbert modular forms can be defined for any totally
real number field K, but for simplicity we will restrict to real quadratic fields with narrow class
number one. For us, the relevance of Hilbert modular forms comes from the expectation that
one can associate motives with a certain class of them, the so-called newforms. In this case, the
associated Galois representations are representations of Gal(K/K).

In the first part of this section, we review the definition of Hilbert modular forms for real quadratic
fields with narrow class number one. We also comment on definitions of Hecke operators and
newforms. In the second part, we review motivic aspects of Hilbert newforms.

General definitions

We review some elementary facts about Hilbert modular forms for real quadratic fields. For
simplicity, we restrict to fields with narrow class number one. For further details, see e.g. [34].

Let K be a real quadratic field with narrow class number one and embeddings σ1, σ2 : K ↪→ C.
Using these embeddings, we can embed SL2(K) into SL2(R)× SL2(R). The latter acts by Möbius
transformations on the product H2 = H × H of two complex upper half-planes. Thus, we obtain
an action of SL2(K) on H2 defined by(

a b
c d

)
τ =

(
σ1(a) τ1 + σ1(b)

σ1(c) τ1 + σ1(d)
,
σ2(a) τ2 + σ2(b)

σ2(c) τ2 + σ2(d)

)
,

where we write τ = (τ1, τ2). This action extends to H2 ∪ P1(R) × P1(R) and the elements in the
image of the embedding P1(K) ↪→ P1(R)× P1(R) are called cusps. In our situation, all cusps are
in the same SL2(OK)-orbit, while for general real fields the number of orbits is given by the class
number. In the following, we will be particularly interested in the level N subgroups

Γ0(N) = {(a bc d) ∈ SL2(OK) | c ≡ 0 mod N } ,

where N is an ideal of OK .

For any function f : H2 → C, any tuple k = (k1, k2) ∈ Z2 and any g = (a bc d) ∈ SL2(K) one writes

(f |kg)(τ) = (σ1(c)τ1 + σ1(d))−k1 (σ2(c)τ2 + σ2(d))−k2 f(gτ)

and calls |k the weight k slash operator. The vector space Mk(Γ0(N)) of Hilbert modular forms of
level N and weight k is then defined by

Mk(Γ0(N)) = {f : H2 → C | f |kγ = f ∀ γ ∈ Γ0(N), f holomorphic on H2} .

The elements of Mk(Γ0(N)) have Fourier expansions around all cusps. To make this precise, first
note that for any cusp we can choose a g ∈ SL2(K) and a Z-module M ⊆ K of rank two such that

g

(
1 µ
0 1

)
g−1

is in Γ0(N) and fixes the cusp for any µ ∈ M . For any f ∈ Mk(Γ0(N)), it then follows
that (f |kg)(τ + µ) = (f |kg)(τ), where we write τ + µ = (τ1 + σ1(µ), τ2 + σ2(µ)). This shows
that there is a Fourier expansion

(f |kg)(τ) =
∑

m∈M∨
ag,m q

m ,

where qm = exp(2πi (σ1(m) τ1 + σ2(m) τ2)) and

M∨ = {m ∈ K | σ1(mµ) + σ2(mµ) ∈ Z for all µ ∈M} .

29



3 Modular forms and associated motives

The spaces Mk(Γ0(N)) are finite-dimensional, even though, in contrast to the case of elliptic
modular forms, the definition of Mk(Γ0(N)) does not involve any holomorphicity at the cusps.
It turns out that for Hilbert modular forms this is not required since, by the so-called Götzky-
Koecher principle, the Fourier coefficients ag,m automatically vanish if σ1(m) < 0 or σ2(m) < 0.
A Hilbert modular form is a cusp form if it vanishes at all cusps and we denote the subspace of
cusp forms by Sk(Γ0(N)) ⊆Mk(Γ0(N)). The conjugate f ∈M(k2,k1)(Γ0(N)) of a Hilbert modular

form f ∈M(k1,k2)(Γ0(N)) is defined by f(τ1, τ2) = f(τ2, τ1).

Because we restricted to fields of narrow class number one, one can define Hecke operators Tn
in the same way as we did for elliptic modular forms. These are now labeled by ideals n of OK
which are coprime to N. They can again be diagonalized simultaneously and there is a notion of
newforms, which are normalized Hecke eigenforms f ∈ Sk(Γ0(N)) which are uniquely determined
by their Hecke eigenvalues. Given a newform f ∈ Sk(Γ0(N)), we denote the eigenvalues under
the Hecke operator Tn by an. For the conjugate f of a newform f , the eigenvalue of Tn is the
eigenvalue of f under Tn.

Motivic aspects

In the case of elliptic modular forms, there is a pure motive of rank two associated with each
newform. The same is expected for Hilbert modular forms and there are several theorems in this
direction. For example, the work of several people (see for example [67]) resulted in the following.

Theorem 6. Let f ∈ Sk(Γ0(N)) be a Hilbert newform and let Kf be the number field generated by
the Hecke eigenvalues an. For any rational prime ` and any prime λ over `, there is a continuous
representation

ρf,λ : Gal(K/K) → GL2(Kf,λ)

satisfying

det(1− T ρf,λ(Fp)) = 1− ap T +N (p)max(k1,k2)−1 T 2 ,

where Kf,λ denotes the λ-adic completion of Kf and N denotes the norm. This representation is
unramified at primes p 6 | `N.

As for elliptic modular forms, there is a definition of an L-function associated with any Hilbert
newform f ∈ Sk(Γ0(N)). This is analytic on the whole complex plane and satisfies a functional
equation. Also, the local L-factors for primes p which do not divide N agree with the ones that
one obtains from the representations ρf,λ, i.e. the local L-factor at a prime p 6 | N is given by

1

1− apN (p)−s +N (p)max(k1,k2)−1−2 s
.

Motives associated with Hilbert newforms have been studied in [8], but we are not aware of a
concrete description of the associated period matrices (as we have it for elliptic newforms). For
the case of weight k = (2, 2), some results in this direction have been given in [57].

In the simplest case, Galois representations of Hilbert newforms are associated with elliptic
curves. This is explained by the following modularity theorem from [32].

Theorem 7. Let E be an elliptic curve defined over a real quadratic field K. Then the Galois
representations

ρE,` : Gal(K/K) → Aut(H1
ét(E,Q`))

are isomorphic to the representations ρf,` associated with a Hilbert newform f ∈ S(2,2)(Γ0(N)) of
some level N.

There are also examples for Galois representations of Hilbert newforms which arise in more
complicated varieties. For example, the appearance of Galois representations of a newform of
weight (4, 2) and its conjugate of weight (2, 4) in a motive of a Calabi-Yau threefold have been
studied in [25]. In Section 5.3, we discuss another case where this also seems to be true.
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3.5 Bianchi modular forms

In this section, we consider another generalization of elliptic modular forms, namely Bianchi modu-
lar forms. These are associated with imaginary quadratic fields K and for simplicity we will restrict
to the case that the class number is one. We are interested in Bianchi modular forms because one
expects that one can again associate motives with a certain class of them, the so-called newforms.
The associated Galois representations are then representations of Gal(K/K).

In the first part of this section, we sketch the definition of Bianchi modular forms. There is again a
notion of Hecke operators and newforms, but we will not give a direct definition of these. Instead,
we will introduce an action of Hecke operators on group cohomologies which, by a generalized
Eichler-Shimura isomorphism, are isomorphic to spaces of Bianchi modular forms. In the second
part, we explain how one can compute these cohomology groups. In the last part, we review
motivic aspects of Bianchi newforms.

General definitions

We give a short sketch of the definition of Bianchi modular forms. For more details, we refer to
the review [24] by Şengün, who we would also like to thank for several clarifications.

The group GL2(C) acts on the hyperbolic three-dimensional space

H = {(x, y) ∈ C× R | y > 0}

by (
a b
c d

)
(x, y) =

(
(a x+ b)(c x+ d) + a c y2

|c x+ d|2 + |c|2 y2
,

|a d− b c| y
|c x+ d|2 + |c|2 y2

)
.

Now let K be an imaginary quadratic field, which, for simplicity of this exposition, we will assume
to have class number one. Thinking of K as a subfield of C, we obtain an action of GL2(OK) on H.
In the following, we will be particularly interested in the level N subgroups

Γ0(N) = {(a bc d) ∈ GL2(OK) | c ≡ 0 mod N } ,

where N is an ideal of OK . Bianchi modular forms of weight k and level N are real analytic
functions f : H→ Ck+1 that satisfy certain transformation properties under Γ0(N), are annihilated
by certain second order differential operators and satisfy certain growth conditions. A precise
definition of these conditions can be found in [33]. The space Mk(Γ0(N)) of Bianchi modular
forms of weight k and level N is finite-dimensional and the elements have an expansion similar to
the Fourier expansion of elliptic modular forms and Hilbert modular forms, the so-called Fourier-
Bessel expansion. There is also a subspace Sk(Γ0(N)) of cusp forms, a definition of Hecke operators
and a notion of newforms. We will not discuss these on the level of functions, but instead we will
now introduce a group cohomology that is isomorphic to the space of cusp forms. This will later
allow us to do concrete computations.

For k ≥ 2 there is a generalized Eichler-Shimura isomorphism

Sk(Γ0(N)) ∼= H1
par(Γ0(N), Vk−2,k−2(C))

studied by Harder [42, 43]. Here, Vk−2,k−2(C) denotes the tensor product Vk−2(C) ⊗ Vk−2(C),
where the space Vk−2(C) = 〈1, τ, ..., τk−2〉C is equipped with the right-action of GL2(C) given by

p(τ)|2−k (a bc d) = (c τ + d)k−2p

(
a τ + b

c τ + d

)
and Vk−2(C) is the complex conjugate representation. As in the case of elliptic modular forms, the
parabolic cohomology group H1

par(Γ, Vk−2,k−2(C)) is the kernel of the restriction

H1(Γ, Vk−2,k−2(C)) →
⊕

[c]∈Γ\P1(K)

H1(Γc, Vk−2,k−2(C)) ,
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3 Modular forms and associated motives

where the sum runs over representatives of equivalence classes of cusps, i.e. over representatives c
of elements of the quotient Γ\P1(K), and Γc ⊂ Γ0(N) denotes the stabilizer group of c.

The action of Hecke operators on the parabolic cohomology groups is defined analogously as for
elliptic modular form, i.e. we first define for any ideal n ⊆ OK coprime to N

Mn,N = {g = (a bc d) ∈ M2(OK) | (det(g)) = n, c ≡ 0 mod N} ,

where M2(OK) denotes the set of 2×2 matrices with entries in OK . Note that this set is stabilized
under left and right multiplication by any γ ∈ Γ0(N). After choosing representatives Mi for the
quotient Γ0(N)\Mn,N, we then define an action on Z1(Γ0(N), Vk−2,k−2(C)) by

(r|2−kTn)(γ) =
∑
i

r(γi)|2−kMπγ(i) ,

where the γi ∈ Γ0(N) are determined by the identity

Miγ = γiMπγ(i)

with a unique permutation πγ of the indices. Using the cocycle property, it is straightforward to
show that this map can be restricted to Z1

par, Z
1 and B1. Further, it is straightforward to show

that we get a well-defined action of Tn on H1
par(Γ0(N), Vk−2,k−2(C)) that does not depend on the

chosen representatives of Γ0(N)\Mn,N. The Hecke operators commute with each other and can be
diagonalized simultaneously. An element f ∈ Sk(Γ0(N)) is called a newform if the associated class
in H1

par(Γ0(N), Vk−2,k−2(C)) is an eigenvector of all Hecke operators and uniquely determined (up
to normalization) by its eigenvalues. For a given newform f , we denote the associated eigenvalue
of Tn by an.

Computation of H1
par(Γ0(N), Vk−2,k−2(K))

A basis of the space H1
par(Γ0(N), Vk−2,k−2(K)), as well as the action of Hecke operators, can be

computed exactly as for elliptic modular forms, once:

- we have a finite presentation of the abstract group GL2(OK) and matrices corresponding to
the abstract generators

- we can write any matrix in GL2(OK) as a word in the generators

- we have generators of the stabilizer group of representatives of all GL2(OK)-equivalence
classes of cusps

- we have representatives for Γ0(N)\GL2(OK)

We show how this can be achieved for the case K = Q(
√
−1) (which is the only case that we will

need later). In this case, there is the presentation

PSL2(OK) =

〈
S, T1, T2

∣∣∣∣ S2=T−1
2 T−1

1 T2 T1=(S T1)3=(T−1
2 S T 2

2 S)2

=(T−1
2 S T2 S)3=(S T−1

2 T1 S T2 T1)2=1

〉
with

S =

(
0 −1
1 0

)
, T1 =

(
1 1
0 1

)
, T2 =

(
1
√
−1

0 1

)
.

In terms of the transpose of the generators, this is given in [55]. From this, we can easily obtain a
presentation for GL2(OK). To write any matrix in GL2(OK) as a word in the generators, we then
follow the same procedure as for SL2(Z) (replacing powers of T by powers of T1 and T2 and using

that
(
−
√
−1 0

0
√
−1

)
= T2 S T

−1
2 S T2 S). There is just one orbit of cusps and this can be represented

by ∞. It is again straightforward to write down generators of the stabilizer group of ∞. It only
remains to be able to find representatives for the quotient Γ0(N)\GL2(OK) and this can be done
using the isomorphism

Γ0(N)\GL2(OK) → P1(OK/N)[(
a b
c d

)]
7→ (c : d) .
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3.5 Bianchi modular forms

Motivic aspects

As for elliptic modular forms and Hilbert modular forms, it is expected that there are pure motives
of rank two associated with Bianchi newforms. There are several theorems in this direction. For
instance, the work of several people (e.g. [5]) resulted in the following.

Theorem 8. Let f ∈ Sk(Γ0(N)) be a Bianchi newform of some even weight k ≥ 2 and let Kf be
the number field generated by the Hecke eigenvalues an. There is a finite extension Ef of Kf of
degree at most four so that for any rational prime ` and any prime λ over `, there is a continuous
representation

ρf,λ : Gal(K/K) → GL2(Ef,λ)

satisfying

det(1− T ρf,λ(Fp)) = 1− ap T +N (p)k−1 T 2 ,

where Ef,λ denotes the λ-adic completion of Ef and N denotes the norm. This representation is
unramified at all primes which do not divide `N (N) and which are unramified in K.

We remark that possible choices for the field Ef are explained in corollary 1 in [68]. For example,
let p1, p2 be distinct primes of Kf which do not divide `N and which are unramified in Kf . If for
both primes api does not vanish and 1 − api T +N (pi)

k−1 T 2 has two distinct complex roots αpi

and βpi , then one can choose Ef = Kf (αp1 , αp2).

As in the case of elliptic modular forms and Hilbert modular forms, there are L-functions as-
sociated with Bianchi newforms f ∈ Sk(Γ0(N)). These are analytic on the whole complex plane
and satisfy a functional equation. Also, the local L-factors for primes p which do not divide N
agree with the ones that one obtains from the representations ρf,λ, i.e. the local L-factor at a
prime p 6 | N is given by

1

1− apN (p)−s +N (p)k−1−2 s
.

In the simplest case, Galois representations of Bianchi newforms are associated with elliptic
curves. For example, there is the following modularity theorem which is proven in more generality
in [22].

Theorem 9. Let E be an elliptic curve defined over K = Q(
√
−1) which does not have complex

multiplication. Then the Galois representations

ρE,` : Gal(K/K) → Aut(H1
ét(E,Q`))

are isomorphic (after embedding into GL2(Ef,λ)) to the representations ρf,λ associated with a
Bianchi newform f ∈ S2(Γ0(N)).

There are also examples for Galois representations of Bianchi newforms which arise in more compli-
cated varieties. For example, we will study one instance of this with Bianchi newforms of weight 4
and weight 2 in Section 5.4.

33





4 Calabi-Yau threefolds and Calabi-Yau operators

Calabi-Yau varieties can be seen as generalizations of elliptic curves to higher dimensions. They
are well studied because of their relevance in mathematical physics. In this work, we use families
of three-dimensional Calabi-Yau varieties for all geometric realizations of rank four motives. This
is convenient for two reasons. First, the cohomology of Calabi-Yau threefolds is simpler than that
of generic varieties. Second, to a great extend, motives associated with families of Calabi-Yau
threefolds can be described by differential operators and there is a large list of such operators.

In the first section of this chapter, we introduce Calabi-Yau varieties and review some of their
properties. In particular, we discuss some general properties of motives associated with Calabi-Yau
threefolds. Such motives are often easier to study by considering families of Calabi-Yau threefolds,
which we discuss in the second chapter. The associated variations of Hodge structures give rise to
Picard-Fuchs operators and limit mixed Hodge structures. The Picard-Fuchs operators associated
with families of Calabi-Yau threefolds are expected to have very special properties and differential
operators with these properties, so-called Calabi-Yau operators, have been studied extensively. We
review their definition and a conjectural method which only uses Calabi-Yau operators for the
computation of characteristic polynomials of the action of Frobenius elements on the cohomology
of associated varieties. In the last section, we discuss Calabi-Yau operators which are built out
of simpler Picard-Fuchs operators. These are called Hadamard products and we also review a
geometric construction of the corresponding families of Calabi-Yau threefolds.

4.1 Calabi-Yau varieties and their associated motives

Calabi-Yau varieties are important objects in mathematics and mathematical physics. In the
physical context, this originates from their application in the description of spacetime in string
theories. We call an n-dimensional smooth projective variety defined over C a Calabi-Yau variety1

if ΩnX
∼= OX and H0(X,ΩpX) = 0 for all 0 < p < n. Calabi-Yau varieties are named after a

conjecture by Calabi and its proof by Yau. In our context, the conjecture states that the complex
manifold X(C) associated with a Calabi-Yau variety X has a unique Ricci-flat metric in each
Kähler class. In particular, the holonomy group is contained in SU(n). Calabi-Yau varieties exist
in every dimension. For example, using the adjunction formula and some information about Hodge
numbers, one can show that a smooth hypersurface of degree n+ 2 in Pn+1 is a Calabi-Yau n-fold.

In Figure 4.1, we give the structure of the Hodge diamonds for Calabi-Yau varieties of dimension
one, two and three. In dimension one, Calabi-Yau varieties are just elliptic curves. In dimension
two, Calabi-Yau varieties are K3 surfaces. Only starting in dimension three, there are Calabi-
Yau varieties whose associated complex manifolds are not diffeomorphic. In fact, it is not known
whether there are only finitely many Calabi-Yau threefolds whose associated complex manifolds
are not diffeomorphic.

1
1 1

1

1
0 0

1 20 1
0 0

1

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

Figure 4.1: Structure of the Hodge diamonds of Calabi-Yau varieties of dimensions n = 1, 2, 3.

1In the literature, other definitions of Calabi-Yau varieties can be found. For example, some authors do not require
any vanishing of Hodge numbers.
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4 Calabi-Yau threefolds and Calabi-Yau operators

If X is a Calabi-Yau variety of dimension n defined over some number field K (so that for every
embedding σ : K ↪→ C the base change Xσ is a Calabi-Yau variety defined over C), then we get
associated motives Hk(X) for every 0 ≤ k ≤ 2n. These are simpler than the ones of generic
varieties and in the following we discuss some of their properties for n = 3. From the structure of
the Hodge diamond, it is clear that the only interesting motives are the ones of weights 2, 3 and 4.
For any embedding σ : K ↪→ C, the short exact sequence of sheaves

0 → Z 2πi−−→ OXσ(C)
exp−−→ O×Xσ(C) → 0

gives a long exact sequence of sheaf cohomology groups. If we now use that both H0(X,Ω1
X)

and H0(X,Ω2
X) vanish, we obtain a canonical isomorphism between H2(Xσ(C),Z) and the Picard

group H1(Xσ(C),O×Xσ(C)). It follows that the motive H2(X) is generated by the image of divisors

under the cycle class map. As a consequence, H4(X) is also generated by the image of algebraic
cycles under the cycle class map and H3(X) remains as the only motive that can have a more
interesting structure. The intersection pairing H3(X)×H3(X)→ H6(X) gives H3(X) a symplectic
structure. On the level of the periods, this implies that the period matrices Wσ (for suitably chosen
bases of H3(Xσ(C),Q) and H3

dR(X)) satisfy

WT
σ

(
0 1

−1 0

)
Wσ = (2πi)3

(
0 1

−1 0

)
.

On the level of the characteristic polynomials of Frobenius elements for primes p with norm q, the
symplectic pairing gives the identity

det

(
1− 1

q3 T
F ∗p | H3(X)

)
=

1

(q3)b3(X)/2 T b3(X)
det
(
1− T F ∗p | H3(X)

)
with the third Betti number b3(X). For example, in the case b3(X) = 2, this gives

det
(
1− T F ∗p | H3(X)

)
= 1− Tr

(
F ∗p | H3(X)

)
T + q3 T 2 .

In the case b3(X) = 4, one finds that the characteristic polynomials of Frobenius elements have
the form

det
(
1− T F ∗p | H3(X)

)
= 1 +Ap T +Bp q T

2 +Ap q
3 T 3 + q6 T 4

with integers Ap and Bp defined by

Ap = −Tr
(
F ∗p | H3(X)

)
and Bp =

Tr
(
F ∗p | H3(X)

)2 − Tr
(
(F 2

p )∗ | H3(X)
)

2 q
.

4.2 Families of Calabi-Yau threefolds and Calabi-Yau operators

In many contexts, both in algebraic geometry and mathematical physics, it is useful to consider
families of Calabi-Yau threefolds. For simplicity, we will restrict to projective families X → B
defined over Q, where B = P1 r ∆ with a finite set of points ∆. Concretely, this means that X
is defined by some homogeneous ideal in Q[s, t][x0, ..., xn] which defines a Calabi-Yau threefold,
given as a subset of Pn, for any (s : t) ∈ B. Usually, we choose the coordinates (s : t) of P1

so that ∆ contains the point (0 : 1) and then we work with the affine coordinate z = t/s and
homogeneous ideals in Q(z)[x0, ..., xn]. As our running example, we will consider the famous
Dwork family M → P1 r {0, 1/55,∞} defined by the vanishing of the polynomial

P = z x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − x0 x1 x2 x3 x4 .

In the literature, the Dwork family is usually understood to be the family of hypersurfaces

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψ x0 x1 x2 x3 x4 = 0 ,

which is also smooth for ψ = 0. The relation with our family is obtained by replacing z by 1/(5ψ)5

and x0 by 5ψ x0. For us, it will be more convenient to work with the variable z.
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4.2 Families of Calabi-Yau threefolds and Calabi-Yau operators

Associated variations of Hodge structures

For every family X as above, we obtain the variation of Hodge structures H3 associated with the
middle cohomology. The line bundle F3H3

OB(C)
can be trivialized by a holomorphic section Ω, since

any holomorphic vector bundle over a non-compact Riemann surface is trivial. Taking derivatives
of Ω, we generate a subspace of sections of H3

OB(C)
, which is also called the horizontal subspace.

This subspace necessarily has a finite dimension h and hence Ω satisfies a differential equation of
order h. From now on, we will assume that Ω is algebraic, by which we mean that it corresponds
to an element of Ω3

X , where we regard X as defined over Q(z). Then the associated differential
equation is called a Picard-Fuchs equation and it can be written as

h∑
i=0

pi(z) (z∇z)i Ω = 0

with polynomials pi. We say that

L =

h∑
i=0

pi(z) Θi with Θ = z
d

dz

is the Picard-Fuchs operator associated with Ω.

As an example, consider the Dwork family M defined by P = 0. Taking residues, we obtain a
map H4

dR(P4 rM)→ H3
dR(M), where the varieties are regarded as varieties over Q(z). This turns

out to be an isomorphism. The space H4
dR(P4 rM) is generated by classes of differential forms

ω(f) =
f

Pn+1

4∑
i=0

(−1)i xi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx4

with homogeneous f ∈ Q(z)[x0, ..., x4] of some degree 5n. Here, d̂xi stands for the omission of dxi.
The space of these differentials has a filtration coming from the degree of the numerator f and the
differences

ω(f ∂xi P )− 1

n
ω(∂xi f)

(where f has degree 5n− 4) are exact. The upshot is that there are isomorphisms

F pH3
dR(M) ∼= Q(z)[x0, ..., x4]degrees 0,5,...,5 (3−p)/ ∼ ,

where the equivalence is generated by the relations f ∂xi P ∼ 1
n ∂xi f for homogeneous polynomi-

als f of degree 5n − 4. Using this isomorphism, the computation of all F pH3
dR(M) reduces to

simple algebra and one finds 204 representatives which generate H3
dR(M). In particular, we can

choose the trivialization Ω of H3
OB(C)

that corresponds to ω(1). The action of the derivative ∇z
on a differential ω(f) corresponds to the action of the usual derivative ∂z on the quotient f/Pn+1

and one finds that the Picard-Fuchs operator associated with Ω is given by the hypergeometric
operator

L = Θ4 − 55 z (Θ + 1/5) (Θ + 2/5) (Θ + 3/5) (Θ + 4/5) .

We continue with a general family X. Over any contractible open subset U ⊂ B(C) we can
choose a basis γ̂1, ..., γ̂b3 of H3(U) so that

Ω|U =

b3∑
i=1

Πi γ̂i

for holomorphic functions Πi ∈ OB(C)(U). These are called period functions and they are anni-
hilated by the Picard-Fuchs operator L. Due to the fact that the differential operator L comes
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4 Calabi-Yau threefolds and Calabi-Yau operators

from geometry, it has several special properties. For example, it is a Fuchsian operator, which
means that all singularities are regular singularities. Other properties follow from the intersection
pairing H3 × H3 → H6 ∼= Z. For example, the action of the monodromy on the vector of period
functions Π is given by a representation of SPb3(X)(Q). For the remainder of this section, we
restrict to the case that H3 has rank four and is irreducible2. Then the associated Hodge structure
is 1 1 1 1 and the Picard-Fuchs operator L necessarily has rank four.

Associated limit mixed Hodge structures

For any point z ∈ B(C), the variation of Hodge structures H3 gives a pure Q-Hodge structure of
weight 3 and rank four. In the following, we explain that associated with any point s ∈ ∆ one
obtains a mixed Hodge structure of rank four, a so-called limit mixed Hodge structure. For this,
we follow the review [41]. Let D be a small disk centered at s and let D∗ = D r {s}. We can fix
a basis γ̂ = (γ̂1, γ̂2, γ̂3, γ̂4) of H3

s+ε at some s+ ε and consider the local monodromy if we encircle
s counterclockwise:

D∗

s
s+ ε

The basis transforms as

γ̂ 7→ γ̂ M−1
s

for some matrix Ms with rational entries. The matrix Ms is necessarily quasi unipotent, which
means that there are positive integers a and b such that (Ma

s − 1)b = 0. For simplicity, we will
assume that Ms is unipotent, i.e. a = 1 (more generally, this can be accomplished by going to
an a-fold cover). The basis γ̂ can be continued to a basis of sections over some neighborhood of
the point s+ ε and in terms of

Ns = log(Ms) =

b−1∑
k=1

(−1)k+1 (Ms − 1)k

k

one finds that

γ̂(z) exp

(
Ns

log(z − s)
2πi

)
defines sections of H3(D∗)⊗QOD∗ . We use these sections to define a new local system H̃3 over D.
The holomorphic bundle H̃3 ⊗Q OD has a filtration into holomorphic subbundles induced by the
filtration of H3

OB(C)
. Using the multiplication by Ns, one can further define a filtration

W 0H̃3
s ⊆ ... ⊆ W 6H̃3

s = H̃3
s

which is uniquely determined by the following requirements:

- Ns maps W kH̃3
s to W k−2H̃3

s.

- Nk
s is an isomorphism between graded pieces of weight 3 + k and 3− k.

2More generally, one can consider the case that H3 contains an irreducible local system of rank four. This is what
happens for the example of the Dwork family.
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4.2 Families of Calabi-Yau threefolds and Calabi-Yau operators

This turns H̃3
s into a mixed Q-Hodge structure, the so-called limit mixed Hodge structure. Since

the section Ω and its derivatives lift (after possible rescalings by powers of z− s) to sections of the
bundle H̃3 ⊗Q OD, one can also associate a period matrix with the limit mixed Hodge structure.
The entries corresponding to the graded pieces are called pure periods and the other entries are
called mixed periods. We remark that these periods depend on the choice of the coordinate z
(more precisely, they depend on the tangent vector ∂z at s).

As an example, we consider the limit mixed Hodge structure of a so-called MUM point. Here,
MUM stands for maximal unipotent monodromy, which corresponds to the local monodromy ma-
trix being unipotent and having a Jordan block of maximal size. Up to conjugation, we then
have

Ms =


1 0 0 0
1 1 0 0

1/2 1 1 0
1/6 1/2 1 1

 and Ns =


0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0

 .

It follows that the graded pieces with weights 0, 2, 4 and 6 are respectively generated by the four
vectors (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and (0, 0, 0, 1)T . On the level of the Hodge diamond,
going from the pure Hodge structure of weight 3 associated with a regular point z to the limit
mixed Hodge structure associated with the MUM point s thus has the following effect:

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

→

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

The period matrix of the limit mixed Hodge structure depends on the variation that one consid-
ers. As an example, we consider the Dwork family M with the Picard-Fuchs operator L. The
variation H3 has rank 204, but it contains a subvariation of rank four corresponding to Ω and its
first three derivatives. All local exponents (roots of the indicial equation) of L at z = 0 vanish and
hence z = 0 is a MUM point. Around this point, a basis of solutions of the Picard-Fuchs equation
is given by

$(z) =


f1(z)

log(z) f1(z) + f2(z)
1
2 log(z)

2
f1(z) + log(z) f2(z) + f3(z)

1
6 log(z)

3
f1(z) + 1

2 log(z)
2
f2(z) + log(z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. It turns out
that these solutions combine to a basis of period functions (corresponding to the rational structure
of H3) by

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0

0 0 2πi 0

−40 ζ(3) 0 0 1

 $ .

The period matrix of the limit mixed Hodge structure is just the matrix above. One can see that
the pure periods are powers of 2πi and that the only additional mixed period is ζ(3). Note that this
depends on the choice of the coordinate z. If we would rescale the coordinate z by some rational
number, the period matrix of the associated limit mixed Hodge would also contain logarithms of
rational numbers.
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4 Calabi-Yau threefolds and Calabi-Yau operators

Calabi-Yau operators

One attempt to understand families of Calabi-Yau threefolds is to first understand the associated
Picard-Fuchs operators. This has been followed in [2], where a class of differential operators, the
so-called Calabi-Yau operators, is introduced. As reviewed in [71], the idea is to give properties of
differential operators which are so constraining that the operators that have these properties always
come from families of Calabi-Yau threefolds. For example, from the existence of the intersection
pairing H3 × H3 → H6 ∼= Z it follows that L is self-dual. This means that there is a rational
function α such that

L∨ = α(z)−1 Lα(z) ,

where the dual L∨ of

L =

4∑
i=0

ai(z)

(
d

dz

)i
is defined as

L∨ =

4∑
i=0

(
− d

dz

)i
ai(z) .

From this consideration, one sees that Calabi-Yau operators should be Fuchsian operators of rank
four that are self-dual. However, these two properties are true also for Picard-Fuchs operators
which do not come from families of Calabi-Yau threefolds and to have a smaller class of operators
one wants to impose more conditions. These come from the field of mirror symmetry, which is
concerned with certain pairs of families of Calabi-Yau threefolds and gives precise conjectures
for Picard-Fuchs operators of families of Calabi-Yau threefolds. To give an explicit example, we
consider again the Dwork family M with the associated Picard-Fuchs operator L. This example
was studied in the famous paper [20] by Candelas, de la Ossa, Green and Parkes and this can be
seen as the beginning of mirror symmetry. The so-called family of mirror quintics is obtained as a
resolution of the quotient of M by the symmetries

(x0 : ... : x4) 7→ (α0 x0 : ... : α4 x4)

for fifth roots of unity α0, α1, α2, α3, α4 satisfying α0 α1 α2 α3 α4 = 1. The fibers of this family
have the Hodge numbers h2,1 = 1 and h1,1 = 101, i.e. the two Hodge numbers of the Dwork
family get exchanged. The form Ω is invariant under the symmetries and hence Ω and its first
three derivatives generate the middle cohomology of the fibers of the family of mirror quintics. In
particular, the Picard-Fuchs operator L describes the complete variation of Hodge structures of
rank four. One of the predictions of mirror symmetry is that certain enumerative invariants of
generic quintic hypersurfaces in P4 can be computed from the solutions $ of L. To make this more
precise, we review some computations from [20]. One observes that the holomorphic solution

$1(z) =

∞∑
n=0

(5n)!

n!5
zn = 1 + 120 z + 113400 z2 + 168168000 z3 + 305540235000 z4 + · · ·

has integral coefficients. Also, the so-called q-coordinate

q = exp

(
$2(z)

$1(z)

)
= z + 770 z2 + 1014275 z3 + 1703916750 z4 + 3286569025625 z5 + · · ·

is believed to have integral coefficients. As a consequence of the self-duality, one can find a unique
power series normalized by K(q) = 5 +O(q) such that(

q
d

dq

)2
1

K(q)

(
q

d

dq

)2
$(z)

$1(z)
= 0.
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4.2 Families of Calabi-Yau threefolds and Calabi-Yau operators

The so-called instanton numbers nd are now defined by the expansion

K(q) = 5 +

∞∑
d=1

nd d
3 qd

1− qd

and one obtains

n1 = 2875 , n2 = 609250 , n3 = 317206375 , n4 = 242467530000 , ... .

For d ≤ 9, the number nd equals the number of rational curves of degree d on a generic quintic
threefold. This is not true in general (in particular, it is wrong for d = 10), but Givental [35]
proved a precise relation between the instanton numbers defined above and certain Gromov-Witten
invariants.

Computations similar to the ones above have been carried out for more general Picard-Fuchs
operators of families of Calabi-Yau threefolds. Motivated by these computations, one says that a
rank four differential operator L ∈ Q[z,Θ] is a Calabi-Yau operator if the following properties are
fulfilled:

- The operator is Fuchsian.

- The operator is self-dual.

- The operator has a MUM point at z = 0.

- The holomorphic solution $1 has integral coefficients, the q-coordinate has integral coeffi-
cients and the instanton numbers nd are integers. Here, the instanton numbers are defined
as above but, in general, one has a different normalization K(q) = c+O(q) for some integer
c.

Note that these properties depend on the choice of the coordinate z. A list of Calabi-Yau operators
has been given in [1]. This list is also called the AESZ list, named after the authors Almkvist,
van Enckevort, van Straten and Zudilin. Strictly speaking, most of the operators in this list are
not proven to be Calabi-Yau operators, since the integrality properties have been checked only
numerically. We will nevertheless refer to operators from this list as Calabi-Yau operators. We
remark that it is known that not all Picard-Fuchs operators of families of Calabi-Yau threefolds
have a MUM point, hence the conditions above are strictly speaking to strong. However, as the
structure of the associated limit mixed Hodge structure is so simple, the existence of a MUM point
is very convenient from the practical point of view. For example, it is expected that the period
matrix of the limit mixed Hodge structure of z = 0 always has the same form as that for the Dwork
family, except that in general the number −40 that multiplies ζ(3) is some other rational number.
In practice, it is easy to determine this number numerically by requiring rational monodromy
matrices.

The deformation method

In the previous parts, we saw that the limit mixed Hodge structure at MUM points is particularly
simple. Conjecturally, the associated period matrix is determined by one rational number. If
this number is known, one can numerically compute period matrices at all points by analytically
continuing. We now review conjectures which suggest that from similar computations one can
obtain characteristic polynomials of Frobenius elements on all regular fibers. We follow [21] to
sketch the ideas that lead to these conjectures. For a more general review of related ideas, we refer
to [47].

Let L be a Calabi-Yau operator coming from some variation H3. There are similar variations
which correspond to so-called p-adic cohomology groups. To give an heuristic description of these,
we fix some prime p and define (purely symbolically) the vector space

V = 〈Ω,∇ΘΩ,∇2
ΘΩ, ...〉Qp((z))/LΩ ,

where Qp((z)) denotes the ring of formal Laurent series with coefficients in the p-adic numbers
Qp. On Qp((z)), we define the usual logarithmic derivative Θ : f(z) 7→ z f ′(z) and the Frobenius
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4 Calabi-Yau threefolds and Calabi-Yau operators

action F ∗p : f(z) 7→ f(zp). On V , we define in the natural way the action of ∇Θ. Additionally,
we want to equip V with a symmetric pairing Σ : V × V → Qp((z)) and a F ∗p -linear Frobenius
(denoted by the same symbol) F ∗p : V → V satisfying the following compatibilities:

- ΘΣ(v, w) = Σ(∇Θv, w) + Σ(v,∇Θw)

- Σ(Ω,∇kΘΩ) = 0 for k < 3

- Σ(F ∗p v, F
∗
pw) = p3 F ∗p (Σ(v, w))

- ∇Θ F
∗
p = pF ∗p ∇Θ

The first two properties are identical to the ones for the symplectic pairing from the variation
of Hodge structures and they allow us to compute Σ up to a multiplicative constant. The last
property can be seen as a differential equation for F ∗p , which allows us to compute F ∗p up to some
undetermined constants (some of which can be fixed from the third property). In [21], it is argued
that, for a suitable choice of the constants determining F ∗p , one expects the following properties to
hold:

- The entries of the matrix corresponding to F ∗p are rational functions of z up to any finite
p-adic order.

- The entries of the matrix corresponding to F ∗p do not have poles at z = 0.

- For any smooth fiber Xz0 over z0 ∈ Fp and any prime ` 6= p, the characteristic polynomial

det
(
1− T F ∗p |H3

ét(Xz0 ,Q`)
)

is given by the characteristic polynomial of F ∗p evaluated at the Teichmüller lift z̃0 of z0.
Here, the Teichmüller lift of z0 is the unique z̃0 ∈ Zp satisfying z̃p0 = z̃0 and z̃0 ≡ z0 mod p.

The complex roots of the characteristic polynomials of the action of F ∗p on H3
ét(Xz0 ,Q`) have

absolute value p−3/2 and, hence, if the properties above hold, it is sufficient to work up to finite
p-adic order. Simple local computations show that, in terms of the fundamental matrix W (z)
defined by W (z) = ($(z),Θ$(z),Θ2$(z),Θ3$(z)), one can write

F ∗p = W (z)−1 εp


p3 0 0 0
p2 αp p2 0 0
p βp pαp p 0
γp βp αp 1

 W (zp)

with εp = ±1 and some αp, βp and γp satisfying α2
p = 2βp. Note that in this expression all

logarithms cancel, so that one gets a matrix in Qp[[z]]. Based on numerical computations, it is
conjectured in [21] that one can choose αp = βp = 0 and that γp is a rational multiple of p3 ζp(3).
Here, the p-adic zeta function is defined by

ζp(3) = − 1
2 (Γ′′′p (0)− Γ′p(0)3)

in terms of the p-adic gamma function. It is further conjectured that the rational constant is the
same constant that multiplies ζ(3) in the period matrix of the limit mixed Hodge structure at the
MUM point z = 0. In particular, it does not depend on p. This gives a second way to numerically
compute this constant, i.e. by requiring that F ∗p is a rational function of z up to any finite p-adic
order.

We conclude this section with three remarks. First, the constant εp is not determined from the
Calabi-Yau operator alone, but depends on the underlying family. For our practical computa-
tions, this will not be relevant and we always set εp = 1. Second, one runs into problems if the
Calabi-Yau operator has apparent singularities. These are singularities of the differential operator
which do not correspond to singularities of the underlying family. The local monodromy at these
points is trivial and a typical example for the local exponents is 0, 1, 3, 4. Then F ∗p might have
poles at these apparent singularities, which does not allow a direct evaluation. In practice, we
observe that this can be fixed by modifying the fundamental matrix W , e.g. by replacing W (z)
by W ($(z),Θ$(z),Θ3$(z),Θ4$(z)). This is suggested from the fact that Ω, ∇zΩ and ∇2

zΩ
are linearly dependent at apparent singularities with local exponents 0, 1, 3, 4. As a last remark,
we note that the computations can be made more efficient by computing the inverse of F ∗p , since
inverting W (zp) up to a finite order in z is more efficient than inverting W (z).
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4.3 Hadamard products and their geometric realization

Many Calabi-Yau operators can be obtained as so-called Hadamard products of Picard-Fuchs
operators of rank two. This is explained in [2] and we review this construction in the first part of
this section. In the second part, we review the construction of (families of) Calabi-Yau threefolds
from fiber products of elliptic surfaces. This allows to give a geometric construction corresponding
to Hadamard products.

Hadamard products of differential operators

Let

f(z) =

∞∑
n=0

an z
n and g(z) =

∞∑
n=0

bn z
n

be two power series which are solutions of linear differential equations of finite order and with
polynomial coefficients. Then the Hadamard product defined by

(f ∗ g)(z) =

∞∑
n=0

an bn z
n

again satisfies a linear differential equation of finite order and with polynomial coefficients. In
this way, one can obtain higher order differential equations from ones of lower order. Many of the
Calabi-Yau operators in [1] arise in this way, where f and g are period functions of families of
elliptic curves. However, note that not all Hadamard products of differential operators of rank two
give differential operators of rank four.

For |z| sufficiently small, one can express the Hadamard product as

(f ∗ g)(z) =
1

2πi

∮
f(t) g(z/t)

dt

t
,

where the contour is chosen so that |t| and |z/t| are sufficiently small. This gives a hint towards
geometric realizations of Hadamard products. For this, assume that f and g are period functions
of some families of varieties, so that we can locally write

f(z) =

∫
γ1(z)

ωz and g(z) =

∫
γ2(z)

ηz .

Then we can write the Hadamard product as

(f ∗ g)(z) =
1

2πi

∮ ∫
γ1(z)

∫
γ2(z/t)

ωt ∧ ηz/t ∧
dt

t

and this suggests that geometrically the Hadamard product corresponds to a family of twisted
fiber products of the two families. In the next part of this section, we study such fiber products
for the case that f and g are period functions of elliptic surfaces.

Fiber products of rational elliptic surfaces with section

Let S → P1 be a rational elliptic surface. By this, we mean that S is a smooth projective
variety which is birational to P2, that all fibers are connected and that all but finitely many
fibers are elliptic curves. We further assume that the surface is relatively minimal, i.e. that the
fibers do not contain smooth rational curves of self intersection −1. The fibers that are not
elliptic curves are called singular fibers and these have been classified (also for more general elliptic
surfaces) by Kodaira in [48,49]. As an example, consider the family of cubics which consists of all
points ((s : t), (X : Y : Z)) ∈ P1 × P2 satisfying

sX Y Z − t (X3 + Y 3 + Z3) = 0 .
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4 Calabi-Yau threefolds and Calabi-Yau operators

This has singular fibers at (1 : 0) and at the three points (s : t) where s3 = (3 t)3. The singular
fibers are all unions of three rational curves with three distinct intersection points, i.e. they are
given by an equation of the form X Y Z = 0. In the notation of Kodaira, such fibers are called I3
fibers. More generally, a union of n rational curves with n distinct intersection points is called
an In fiber.

Given two rational elliptic surfaces S1 → P1 and S2 → P1, one can consider the threefold given
by their fiber product S1 ×P1 S2. This is only singular at the points where singular fibers of S1

and S2 meet. For the case where both elliptic surfaces are relatively minimal and have sections,
such fiber products have been studied in [61]. We review some of the results, but for simplicity
we restrict to the case that all singular fibers of S1 and S2 are of the type In. Then their fiber
product S1×P1 S2 has n ·m double points in fibers of the form In× Im. In local affine coordinates,
each of these can be described by the equation

x1 x2 = x3 x4 .

Such singularities can be resolved by a so-called small resolution. For this, one introduces homo-
geneous coordinates (y1 : y2) of P1 and replaces the singular variety in A4 by the variety

x1 x2 = x3 x4

x1 y1 = x3 y2

x2 y2 = x4 y1

in A4 × P1. Note that there is also a second resolution, which can be obtained by exchanging x1

and x2. Outside of the double point, the resolution and the singular variety are isomorphic, but
the double point gets replaced by a P1. In [61], it is shown that for any choice of small resolutions
one obtains a smooth variety X which is again projective and a Calabi-Yau threefold. As for any
Calabi-Yau threefold, H2(X) and H4(X) are generated by algebraic cycles. The fourth homology
does not change under small resolutions and the structure of the fibration allows to write down an
explicit basis of divisors of S1 ×P1 S2. This is given by:

- one fiber of the fibration

- all but one components of each fiber

- S1 × {0}
- {0} × S2

- if there is an isogeny between S1 and S2, then the corresponding graph

This gives a basis of the fourth homology of X and in particular the Hodge number h1,1(X). On
the other hand, the Euler number χ(X) is twice the number of nodes that one resolves and then
one can compute the remaining Hodge number by

h2,1(X) = h1,1(X)− χ(X)

2
.

Further, for all fibers of X that have the form In × E with an elliptic curves E, one obtains n
inclusions of the form

P1 × E → X .

It is shown in section 5 of [44] that the pushforward with respect to n− 1 of these gives a 2(n− 1)-
dimensional image in the middle homology of X.
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5 Modularity of some pure motives of rank four

In Chapter 3, we reviewed that there is a pure motive of rank two and weight k − 1 associated
with any elliptic newform in Sk(Γ0(N), χ). The Hodge structure of these motives is

1 0 · · · 0︸ ︷︷ ︸
(k−2)-times

1 .

By taking sums and tensor products, we can construct modular motives of higher rank. We
are particularly interested in modular motives with the Hodge structure 1 1 1 1. These can be
constructed as sums of a motive of a newform of weight 4 and the (−1)th Tate twist of a motive
of a newform of weight 2. On the level of the Hodge structure, this reads

1 1 1 1 = 1 0 0 1 ⊕ 0 1 1 0 .

Another possibility is to take the product of a motive of a newform of weight 3 and a motive of a
newform of weight 2. On the level of the Hodge structure, this reads

1 1 1 1 = 1 0 1 ⊗ 1 1 .

In this chapter, we study occurrences of such motives (and generalizations with Hilbert modular
forms and Bianchi modular forms) in the middle cohomology of Calabi-Yau threefolds. To do so,
we consider families X of Calabi-Yau threefolds and then search for fibers Xz whose associated
motives H3(Xz) we conjecture to be modular. If the additive splitting above happens over Q, the
intersection H3(Xz(C),Q) ∩ (H2,1(Xz(C))⊕H1,2(Xz(C))) is two-dimensional and in the physical
context one calls z a rank two attractor point. The physical relevance of these is discussed in [56]
and an efficient method to find such points has been given in [19]. This method starts with a
Calabi-Yau operator L associated with X and proceeds as follows:

- Using the deformation method from Section 4.2, one computes the polynomials which are
expected to be characteristic polynomials of Frobenius elements Fp acting on the cohomology
of Xz for all regular z ∈ Fp and many primes p.

- One looks for persistent factorizations, i.e. one tries to reconstruct points z defined over some
number field so that the characteristic polynomials for the reductions of z to Fp always factor
over Z.

Note that for this method one only needs the Calabi-Yau operator L and not an associated family
of Calabi-Yau threefolds. However, to make more precise and more rigorous statements, one should
eventually work with an associated family.

Our approach is the same in each section. First, we start with a Calabi-Yau operator and use the
method from above to identify points where associated Galois representations seem to split. To
make this more rigorous, we continue by giving a geometric realization of the corresponding motives
and then study the modularity of the associated Galois representations and period matrices.

In the first section, we consider a motive which seems to be the sum of motives of elliptic
newforms of weight 4 and weight 2. In the second section, we consider a motive which seems to be
the product of motives of elliptic newforms of weight 3 and weight 2. In this case, we can prove
the modularity of the associated Galois representations. In the third section, we consider a motive
which seems to be the sum of motives associated with a Hilbert newform of weight (4, 2) and its
conjugate of weight (2, 4). In the last section, we consider a motive which seems to be the sum
of motives associated with Bianchi newforms of weight 4 and weight 2. In this case, we can again
prove the modularity of the associated Galois representations.

The numerical results of Section 5.1 are part of the collaboration [12] with Albrecht Klemm,
Emanuel Scheidegger and Don Zagier. The motives in Section 5.2 and Section 5.4 correspond to
fixed points of symmetries of Hadamard products and the motivation to study these originates
from observations made by Mohamed Elmi.
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5 Modularity of some pure motives of rank four

5.1 A sum of motives of elliptic modular forms

In the first part of this section, we consider a hypergeometric Calabi-Yau operator L. Experimental
computations suggest that the semisimplifications of Galois representations

ρ` : Gal(Q/Q) → GL4(Q`)

associated with the point z∗ = −1/2336 split to sums of two-dimensional Galois representations.
To make this more rigorous, we construct in the second part a family X of Calabi-Yau threefolds
associated with L. The middle cohomology of each fiber Xz contains a four-dimensional part Vz
whose variation with z is described by L. In the third part, we compute characteristic polynomials
of the representations ρ` associated with Vz∗ . The results suggest that the representations ρ` are
up to semisimplification the sum of representations associated with a newform f of weight 4 and a
newform g of weight 2. In fact, we compute characteristic polynomials of the action of Frobenius
elements on the motives Hk(Xz∗) for all weights 0 ≤ k ≤ 6 and give a precise conjecture for
the Hasse-Weil zeta function of Xz∗ . In the last part, we present numerical computations which
suggest that the period matrix of Vz∗ is given by a sum of the period matrix of f and the period
matrix of g multiplied by 2πi. In particular, the period matrix is in block diagonal form, which
gives further evidence for the splitting of the motive Vz∗ .

Experimental computations

We start with an experimental study of the Calabi-Yau operator

L = Θ4 − 36 z (Θ + 1/3)2 (Θ + 2/3)2 with Θ = z
d

dz
.

The operator is hypergeometric and it is the fourth operator from the list [1]. Using the script
DeformationMethod.gp from [17], we compute the associated characteristic polynomials for all
primes 11 ≤ p ≤ 997 and all parameters z ∈ Fp of good reduction. To find Galois representations
which split, we look at factorizations of these polynomials over Z. The number of factorizations
that occur for each prime p is depicted in Figure 5.1. We observe that the polynomials always
factor at least once. Looking at the cases of exactly one factorization we see that these occur for
the reductions of z∗ = −1/2336 to Fp. All computed polynomials of this fiber factor and we thus
expect that the semisimplifications of associated Galois representations split.

0 100 200 300 400 500 600 700 800 900 1000
0

1
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Figure 5.1: Number of factorizations over Z of characteristic polynomials for small primes p.
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Geometric construction

To construct a family X → P1 r {0, 1/36,∞} of Calabi-Yau threefolds associated with L, we first
note that for |z| < 1/36 the holomorphic solution has the form

F (z) =

∞∑
n=0

(
(3n)!

n!3

)2

zn .

Comparing this with

f(t) =

∞∑
n=0

(3n)!

n!3
t3n =

1

(2πi)3

∮
dX

∮
dY

∮
dZ

1

X Y Z − t (X3 + Y 3 + Z3)

for |t| < 1/3, we see that (after replacing z by z3) F is the Hadamard product of f with itself, i.e.

F (z3) =
1

2πi

∮
f(t) f(z/t)

dt

t
.

This suggests that we can construct Xz3 from a fiber product of the two elliptic surfaces. In order
not to work with a triple cover of P1r{0, 1/36,∞}, we consider the elliptic surface Sz that consists
of all points ((s : t), (X : Y : Z)) ∈ P1 × P2 that satisfy

sX Y Z − t (X3 + Y 3 + z Z3) = 0 ,

together with the projection on the first factor. This has singular fibers at (1 : 0) and at the
three points (3 ξz : 1) where ξ3

z = z. Each of these has the Kodaira classification I3. Choosing for
example the point (1 : −1 : 0), we give Sz the structure of a rational elliptic surface with section.
The differential form

ωz = Res s
X dY ∧ dZ + Y dZ ∧ dX + Z dX ∧ dY

sX Y Z − t (X3 + Y 3 + z Z3)

defines a holomorphic 1-form on all regular fibers and for |t/s| < 1/3 one of its periods is

2πi

∞∑
n=0

(3n)!

n!3
(z (t/s)3)n .

We now define the family of Calabi-Yau threefolds X → P1 r {0, 1/36,∞} with the fibers

Xz = S1 ×P1 ε∗Sz

with ε : (s : t) 7→ (t : s). We can study its cohomology as reviewed in Section 4.3. The second
homology of Xz is generated by one fiber, S1 ×P1 {0}, {0} ×P1 ε∗Sz and all but one components
of all fibers. This gives the Hodge number

h1,1(Xz) = 1 + 2 + 8 · (3 · 1− 1) = 19 .

On the other hand, the Euler number χ(Xz) equals 0 and thus

h2,1(Xz) = h1,1(Xz)−
χ(Xz)

2
= 19 .

Further, Xz has eight fibers of the form I3 × E with different elliptic curves E. Choosing two of
the components of each I3 fiber, we get sixteen inclusions of the form

P1 × E → Xz

and the pushforward with respect to each of these gives a two-dimensional image in the middle
homology. In total this gives a 32-dimensional subspace of the middle homology of Xz. We obtain
a surjection

i∗ : H3(Xz) →
⊕
E

H2(P1)⊗H1(E)
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5 Modularity of some pure motives of rank four

and we use this to define the motive Uz = ker i∗. This has the Hodge structure 1 3 3 1. To obtain
a submotive with Hodge structure 1 1 1 1, we fix a non-trivial third root of unity ξ and define an
automorphism φ : Xz → Xz by

φ : ((s : t), (X1 : Y1 : Z1), (X2 : Y2 : Z2)) 7→ ((s : ξ t), (ξ X1 : Y1 : Z1), (ξ−1X2 : Y2 : Z2)) .

This generates an action of the cyclic group C3 on Xz. The action of φ on H0(Xz) and H6(Xz)
is clearly trivial. We can also explicitly work out the action on H2(Xz) and H4(Xz), which both
contain an eleven-dimensional trivial representation. Similarly, we can compute the action on
the quotient H3(Xz)/Uz, which contains an eight-dimensional trivial representation. From the
Lefschetz trace formula it follows that the number of fixed points of φ is given by

Λ(φ) = 1 + (11− 8/2)− (8− 24/2 + Tr(φ∗ |Uz)) + (11− 8/2) + 1 .

On the other hand, Λ(φ) is twice the number of fixed points on (S1)(0:1) × (Sz)(1:0), which is

just a product of an elliptic curve (with complex multiplication by Q(
√
−3)) and a union of three

rational curves. The Lefschetz numbers of both factors are 3 and thus Λ(φ) = 2 · 3 · 3 = 18.
Hence, we have Tr(φ∗ |Uz) = 2 = 4− 4/2 and it follows that Uz contains a four-dimensional trivial
representation, which we denote by Vz. More explicitly, we define the motive Vz as the kernel of

2− φ∗ − (φ−1)∗

3
: Uz → Uz .

The de Rham realization of Vz contains the holomorphic form

Ωz = ω1 ∧ ε∗ωz ∧
sdt− tds

s t
.

An explicit computation shows that L is the Picard-Fuchs operator of Ω. In particular, Vz has the
Hodge structure 1 1 1 1 and its de Rham realization is generated by Ω and its first three derivatives
(evaluated at z).

Modularity of the Galois representations

To study the Galois representations of the fiber Xz∗ over z∗ = −1/2336, we compute Lefschetz
numbers of Fq and φ±1 ◦ Fq for q = p and q = p2 with small primes p. We do this by counting
fixed points over Fp. For this, we use that the fixed points of Fq are defined over Fq while the ones
of φ±1 ◦ Fq are defined over Fq3 or Fq2 depending on whether −3 is a square in Fq or not (since
then (φ±1 ◦ Fq)3 = F 3

q or (φ± ◦ Fq)2 = F 2
q ). The primes of bad reduction are 2 and 3 and using

the script PointCounting.gp from [17] we obtain the following numbers:

p Λ(Fp) Λ(φ±1 ◦ Fp) Λ(F 2
p ) Λ(φ±1 ◦ F 2

p )

5 318 318 32292 19917

7 1512 693 176148 133371

11 2346 2346 2098764 1868985

13 4752 3582 5384448 5031576

17 7128 7128 25921296 24709230

19 16200 9360 49504608 47971080

23 15996 15996 153762192 149943870

The action of the Galois group on the cohomologies of even weight can be worked out explicitly by
looking at the action on the corresponding algebraic cycles. The action on the `-adic realizations of
the quotient H3(Xz∗)/Uz∗ can be worked out as well by looking at the action on the corresponding
products P1 × E. It follows that

1

3
(Λ(Fq) + Λ(φ ◦ Fq) + Λ(φ−1 ◦ Fq))

= 1 + (9 + 2 (−3
q )) q − Tr

(
F ∗q |Vz∗

)
− 4 q Tr

(
F ∗q |H1(E)

)
+ (9 + 2 (−3

q )) q2 + q3 ,
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5.1 A sum of motives of elliptic modular forms

where the Legendre symbol (−3
q ) is ±1 depending on whether −3 is a square in Fq and E is the

elliptic curve X3 + Y 3 +Z3, which has complex multiplication by Q(
√
−3). Counting points of E

over Fq, we obtain Tr
(
F ∗q |H1(E)

)
. We can then compute the traces of F ∗p and F ∗p2 on Vz∗ and

combining this with Poincaré duality, we get the characteristic polynomials listed below:

p det
(
1− T F ∗p |Vz∗

)
5 (1− 3T + 125T 2) (1− 15T + 125T 2)

7 (1− 29T + 343T 2) (1 + 7T + 343T 2)

11 (1 + 57T + 1331T 2) (1 + 33T + 1331T 2)

13 (1− 20T + 2197T 2) (1 + 52T + 2197T 2)

17 (1 + 72T + 4913T 2) (1 + 4913T 2)

19 (1 + 106T + 6859T 2) (1− 38T + 6859T 2)

23 (1− 174T + 12167T 2) (1 + 138T + 12167T 2)

We remark that these polynomials agree with the polynomials obtained from the deformation
method. In terms of the unique newform f ∈ S4(Γ0(54)) with Hecke eigenvalue a5 = 3 and the
unique newform g ∈ S2(Γ0(54)) with Hecke eigenvalue a5 = 3, whose Hecke eigenvalues can be
computed using the script HeckeEigenvalues.gp from [17], we see that for the primes considered
above

det
(
1− T F ∗p |Vz∗

)
= det(1− T ρf,`(Fp)) det(1− p T ρg,`(Fp)) .

This suggests that up to semisimplification the Galois representations on the `-adic realizations of
Vz∗ are isomorphic to ρf,` ⊕ ρg,`(−1). Using

Λ(Fq) = 1 + (13 + 6 (−3
q )) q − Tr

(
F ∗q |Uz∗

)
− 16 q Tr

(
F ∗q |H1(E)

)
+ (13 + 6 (−3

q )) q2 + q3 ,

we can also compute the characteristic polynomials of Frobenius elements on Uz∗/Vz∗ . These are
given in the following table:

p det
(
1− T F ∗p |Uz∗/Vz∗

)
5 (1− 15T + 125T 2) (1 + 15T + 125T 2)

7 (1 + 7T + 343T 2) (1 + 7T + 343T 2)

11 (1 + 33T + 1331T 2) (1− 33T + 1331T 2)

13 (1 + 52T + 2197T 2) (1 + 52T + 2197T 2)

17 (1 + 4913T 2) (1 + 4913T 2)

19 (1− 38T + 6859T 2) (1− 38T + 6859T 2)

23 (1 + 138T + 12167T 2) (1− 138T + 12167T 2)

For the primes considered above, we observe that

det
(
1− T F ∗p |Uz∗/Vz∗

)
= det(1− p T ρg,`(Fp)) det(1− p T ρg1,`(Fp)) ,

where g1 is the unique newform in S2(Γ0(54)) with Hecke eigenvalue a5 = −3 (i.e. the twist of g
by (−3

· )). Since the elliptic curve E given by X3 + Y 3 + Z3 = 0 is associated with the unique
newform g2 ∈ S2(Γ0(27)), we further know that

det
(
1− T F ∗p |H3(Xz∗)/Uz∗

)
= det(1− p T ρg2,`(Fp))

16
.

We can thus collect our observations in the conjecture that, for a suitable choice of local L-factors
for primes of bad reduction, the Hasse-Weil zeta function is given by

ζ(Xz∗ , s) =
L(f, s)L(g, s− 1)2 L(g1, s− 1)L(g2, s− 1)16

ζ(s) ζ(s− 1)13 L((−3
· ), s− 1)6 ζ(s− 2)13 L((−3

· ), s− 2)6 ζ(s− 3)
.
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Modularity of the periods

We end this section with a numerical study of the period matrix of Vz∗ . The computations were
done using the script PeriodIdentities.gp from [17].

To compute a period matrix of Vz∗ , we first note that for |z| < 1/36 one of the periods of Ωz is
given by

Π1(z) = (2πi)3
∞∑
n=0

(
(3n)!

n!3

)2

zn .

To get a basis of period functions of Ω, we can look at the monodromy of this period with respect
to z. This is particularly well understood for hypergeometric period functions (see e.g. [36]). The
upshot for our situation is that we can describe a basis of period functions of Ω as follows. First,
we define a local basis of solutions of L by1

$(z) =


f1(z)

log(−z) f1(z) + f2(z)
1
2 log(−z)2

f1(z) + log(−z) f2(z) + f3(z)
1
6 log(−z)3

f1(z) + 1
2 log(−z)2

f2(z) + log(−z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. A basis of
period functions of Ω is then given by (an analytic continuation of)

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0
0 0 2πi 0

−16 ζ(3) 0 0 1

 $ .

Taking derivatives, we obtain the matrix of period functions T = (Π,ΘΠ,Θ2Π,Θ3Π). After
evaluating at z∗ and rounding to ten digits of precision, this gives the period matrix

T (z∗) =


−246.5748210 i 1.422681792 i 1.322994856 i 1.139691091 i

341.4537969 −40.08652727 −0.3421868473 −0.07458997994
236.3008701 i −54.26089900 i 6.584390256 i 0.3184178716 i
−128.0451738 37.46236623 −8.758887010 0.9736207171

 .

We now compare the period matrix T (z∗) with the period matrices of the newforms f and g.

Choosing the Eichler integral f̃∞, we define the periods ω±f by

rf
((

23 −3
54 −7

))
=

(2πi)3

2

∫ ∞
7/54

(τ − z)2 f(z) dz

= ω+
f (−5 + 75 τ − 288 τ2) + ω−f (13− 207 τ + 756 τ2) .

Choosing the Eichler integral g̃∞, we define the periods ω±g by

rg
((

43 −4
54 −5

))
= 2πi

∫ ∞
5/54

g(z) dz = ω+
g − ω−g .

Rounded to ten digits of precision, we have

ω+
f = 6.323218461 , ω−f = 0.7610333982 i ,

ω+
g = 1.052362238 , ω−g = 0.8924581010 i .

1We choose −z as the argument of the logarithms since we eventually want to evaluate the solutions at the point z∗
on the negative real axis and this makes the structure of the solutions simpler.

50



5.1 A sum of motives of elliptic modular forms

To compute the quasiperiods of f and g, we need meromorphic partners F and G. We define
these as quotients of holomorphic modular forms by the form h ∈ M4(Γ0(54)) with the maximal
vanishing order 36 at ∞. This can be expressed as the eta quotient

h(τ) =
η(9τ)4η(54τ)24

η(18τ)8η(27τ)12
.

We choose the meromorphic partners F and G specified by their numerators hF ∈ S8(Γ0(54))
and hG ∈ S6(Γ0(54)) with the Fourier expansions

h(τ)F (τ) =
158171

9
q13 +

10648

9
q14 +

32000

3
q16 +

54872

9
q17 +

142477

9
q19 − 4096

9
q20

− 566828

9
q22 − 42592

9
q23 − 297485

9
q25 − 219488

9
q26 − 539188

9
q28 +

13640

9
q29

+
1320661

9
q31 +

106352

9
q32 +

613940

9
q34 +

548480

9
q35 +

1394015

9
q37 +

51392

3
q38

− 293248

3
q40 +

148336

9
q41 +

2404846

9
q43 +

91744

9
q44 − 121536 q46 − 5962616

9
q47

+
301006

3
q49 +

4376200

9
q50 − 8529572

9
q52 − 3064016

3
q53 − 8464213

9
q55

+
24447008

9
q56 − 12319156

9
q58 − 678016

3
q59 +O(q60)

h(τ)G(τ) = 10 q31 + 8 q32 + 4 q35 + 32 q37 − 38 q38 − 6 q40 + 66 q41 +O(q42) .

Choosing the Eichler integrals F̃∞ and G̃∞, we define the quasiperiods η±f and η±g by

rF
((

23 −3
54 −7

))
= η+

f (−5 + 75 τ − 288 τ2) + η−f (13− 207 τ + 756 τ2)

rG
((

43 −4
54 −5

))
= η+

g − η−g .

Rounded to ten digits of precision, we have

η+
f = 64915.70758 , η−f = 7773.726564 i ,

η+
g = 32.63160583 , η−g = 33.64385855 i

and the Legendre relations read

det

(
ω+
f η+

f

ω−f η−f

)
= (2πi)3 and det

(
ω+
g η+

g

ω−g η−g

)
= 2πi .

From the modularity of the Galois representations, we expect that T (z∗) can be expressed in terms
of the periods and quasiperiods of f and g. Numerically, we indeed observe that

T (z∗) = A


(
ω+
f η+

f

ω−f η−f

)
0

0 2πi

(
ω+
g η+

g

ω−g η−g

)
 B

with

A =


0 −48 −48 0

8 0 0 −24

0 46 −18 0

−3 0 0 −23

 and B =


27
4 − 9

8
1
8

21
8

0 0 0 − 1
3888

0 1
8

1
8 − 7

162

0 0 − 1
216

5
3888

 .
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5 Modularity of some pure motives of rank four

5.2 A product of motives of elliptic modular forms

In the first part of this section, we consider a hypergeometric Calabi-Yau operator L with a
symmetry z 7→ 1/216z. Experimental computations suggest that Galois representations

ρ` : Gal(Q/Q) → GL4(Q`)

associated with the regular fixed point z∗ = −1/28 of the symmetry split (after restriction to
the absolute Galois group of K = Q(

√
−1), embedding into GL4(Kλ) for primes λ over ` and

semisimplifying) to sums of Galois representations ρ±,λ : Gal(K/K) → GL2(Kλ). To make this
more rigorous, we construct in the second part a family X of Calabi-Yau threefolds associated
with L. The middle cohomology of each fiber Xz contains a four-dimensional part Vz whose
variation with z is described by L. We define isomorphisms φz : Xz → X1/216z corresponding to
the symmetry of L. The automorphism on the fixed fiber Xz∗ can be used to split Vz∗ into two
parts which give the representations ρ±,λ. In the third part, we prove that the representations ρ±,λ
are up to semisimplification the tensor product of representations associated with a newform f of
weight 3 and a Größencharakter ψ. As a consequence, the four-dimensional representations ρ`
of Gal(Q/Q) are up to semisimplification tensor products of representations associated with the
newform f and a newform g of weight 2 with complex multiplication by K. In the last part, we
present numerical computations which suggest that the period matrix of Vz∗ is given by the tensor
product of period matrices of f and g.

Experimental computations

We start with an experimental study of the Calabi-Yau operator

L = Θ4 − 28 z (Θ + 1/2)4 with Θ = z
d

dz
.

The operator is hypergeometric and it is the third operator from the list [1]. Using the script
DeformationMethod.gp from [17], we compute the associated characteristic polynomials for all
primes 11 ≤ p ≤ 997 and all parameters z ∈ Fp of good reduction. To find Galois representations
which split, we first look at factorizations of these polynomials over Z. The number of factorizations
that occur for each prime p is depicted in Figure 5.2. We observe that almost always the polynomials
factor an even number of times. The reason for this is the symmetry z 7→ 1/216z of the differential
operator L which, if we ignore the regular fixed point z∗ = −1/28, causes the factorizations to
come in pairs. With the available data we are not able to observe persistent factorizations over Z.
We continue by looking for factorizations over Z[

√
−1].

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

p

Figure 5.2: Number of factorizations over Z of characteristic polynomials for small primes p.
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5.2 A product of motives of elliptic modular forms

The number of factorizations over Z[
√
−1] is depicted in Figure 5.3. Now there are more primes

for which at least one factorization occurs and for about half of the primes there is an odd number
of factorizations. More precisely, there is an odd number of factorizations if p ≡ 1 mod 4 and,
by the symmetry, this implies that the Frobenius polynomials for the regular fixed point z∗ factor
if p ≡ 1 mod 4. These are exactly the primes which split in the ring of integers of K = Q(

√
−1)

and we thus expect that Galois representations ρ` : Gal(Q/Q) → GL4(Q`) associated with z∗ split
after restriction to Gal(K/K), embedding into GL4(Kλ) for primes λ over ` and semisimplifying.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

p

Figure 5.3: Number of factorizations over Z[
√
−1] of characteristic polynomials for small primes p.

Geometric construction

To construct a family X → P1 r {0, 1/28,∞} of Calabi-Yau threefolds associated with L, we first
note that for |z| < 1/28 the holomorphic solution has the form

F (z) =

∞∑
n=0

(
2n

n

)4

zn .

Comparing this with

f(t) =

∞∑
n=0

(
2n

n

)2

tn =
1

π

∫ −1

−∞

dx√
−x (x+ 1) (x+ 16 t)

for |t| < 1/24, we see that F is the Hadamard product of f with itself, i.e.

F (z) =
1

2πi

∮
f(t) f(z/t)

dt

t
.

This suggests that we can construct Xz from a fiber product of elliptic surfaces described by the
affine equations y2 = x (x+ 1) (x+ 16 t) and y2 = x (x+ 1) (x+ 16 z/t). We follow this approach,
but it turns out to be beneficial to replace the variable t by t2. To obtain for any z ∈ P1 r {0,∞}
an elliptic surface Sz associated with the affine equation y2 = x (x + 1) (x + 16 z t2), we consider
the fibration given by the hypersurface consisting of all ((s : t), (X : Y : Z)) ∈ P1 × P2 satisfying

sX (X2 + 2Z (8 z Z + Y )) + t Z (16 z X2 − Y 2) = 0 ,

together with the projection on the first factor. A birational relation with the affine equation is
obtained by the identification

(x, y) =

(
t

s

X

Z
,
t

s

X

Z
−
(
t

s

)2
Y

Z

)
.
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5 Modularity of some pure motives of rank four

The singular fibers of this fibration are as follows:

base point (0 : 1) (1 : 0) (−4
√
z : 1) (4

√
z : 1)

sketch of fiber

Each singular fiber contains one surface singularity and blowing these up once we obtain the elliptic
surface Sz. The singular fibers of Sz have the following Kodaira classification:

base point (0 : 1) (1 : 0) (−4
√
z : 1) (4

√
z : 1)

Kodaira classification I4 I4 I2 I2

Choosing for example the point (0 : 1 : 0), we give Sz the structure of a rational elliptic surface
with section.

We can now construct a family of Calabi-Yau threefolds X → P1 r {0, 1/28,∞} and study its
cohomology as reviewed in Section 4.3. For any z ∈ P1r{0, 1/28,∞}, we consider the fiber product

S1 ×P1 ε∗Sz

with ε : (s : t) 7→ (t : s). After a small projective resolution this gives a Calabi-Yau threefold Xz.
The second homology of S1 ×P1 ε∗Sz is generated by one fiber, S1 ×P1 {0}, {0} ×P1 ε∗Sz and all
but one components of all fibers. This gives the Hodge number

h1,1(Xz) = 1 + 2 + 2 · (4 · 4− 1) + 4 · (2 · 1− 1) = 37 .

On the other hand, the Euler number χ(Xz) equals 64 (twice the number of nodes that we resolved)
and thus

h2,1(Xz) = h1,1(Xz)−
χ(Xz)

2
= 5 .

Further, Xz has four fibers of the form I2×E with different elliptic curves E. Choosing one of the
components of each I2 fiber, we get four inclusions of the form

P1 × E → Xz

and the pushforward with respect to each of these gives a two-dimensional image in the middle
homology. In total, this gives an eight-dimensional subspace of the middle homology of Xz. We
obtain a surjection

i∗ : H3(Xz) →
⊕
E

H2(P1)⊗H1(E)

and we use this to define the motive Vz = ker i∗. This has the Hodge structure 1 1 1 1. The de
Rham realization of Vz contains the holomorphic form Ωz which, expressed in terms of the affine
coordinates t, (x1, y1) and (x2, y2), has the form

dx1

y1
∧ dx2

y2
∧ dt

t
.

An explicit computation shows that L is the Picard-Fuchs operator of Ω. In particular, Ω and its
first three derivatives (evaluated at z) generate the de Rham realization of Vz.

To finish the geometric construction, we give a geometric realization of the symmetry z 7→ 1/216z
of L and study its regular fixed point. To do so, we use isogenies Sz → Sz of degree one which
map the fiber over (s : t) to the fiber over (−16 z t : s). After choosing a square root of z, these
can be given in affine coordinates t, (x, y) by

(x, y) 7→
(

x

(4
√
z t)2

,
y

(4
√
z t)3

)
.
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Acting with these on the factors of the fiber product, identifying (Sz)(−16 z s:t) with (S1/216z)(s:−16 t)

and lifting to the resolution gives isomorphisms φz : Xz → X1/216z. Restricting to the fixed

fiber Xz∗ over z∗ = −1/28, we get an automorphism φz∗ : Xz∗ → Xz∗ defined over K = Q(
√
−1),

where we choose 1 as the square root of 1 and
√
−1/16 as the square root of z∗. Acting on Ω

and its derivatives, we see that φz∗ splits Vz∗ into two parts with eigenvalues ±
√
−1 and Hodge

structures 0 1 0 1 and 1 0 1 0. For the `-adic realizations of Vz∗ , this implies that the associated
Galois representations ρ` : Gal(Q/Q)→ GL4(Q`) split to sums of two-dimensional representations

ρ±,λ : Gal(K/K) → GL2(Kλ)

for any prime λ lying over `. Since Xz∗ has good reduction for all rational primes p 6= 2, these
representations are unramified at all primes p 6= 1 +

√
−1 which do not divide `.

Modularity of the Galois representations

We follow similar steps from [25] to prove the modularity of the representations ρ`. We start by giv-
ing two propositions which allow us to prove modularity by comparing finitely many characteristic
polynomials of Frobenius elements.

Proposition 8. Let ρ : Gal(K/K) → GL2(F2) be a continuous representation unramified outside
{1 +

√
−1}. Then Tr(ρ) = 0.

Proof. The kernel of ρ is an open normal subgroup of Gal(K/K) and this gives a finite Galois

extension L/K defined by L = K
ker ρ

. This extension is unramified outside {1 +
√
−1} and its

Galois group is isomorphic to the image of ρ and hence (since GL2(F2) is isomorphic to S3) to a
subgroup of S3. Now suppose that Tr(ρ) 6= 0. The elements in GL2(F2) with trace 1 are exactly
the elements of order three and thus Gal(L/K) is isomorphic to S3 or C3. It follows that L/K is
the Galois closure of a degree three extension M/K. The corresponding degree six extension M/Q
is unramified outside {2}. Using the database [46], we find that such extensions do not exist.

Proposition 9. Let ρ1, ρ2 : Gal(K/K) → GL2(Z2[
√
−1]) be continuous representations unrami-

fied outside S = {1 +
√
−1}. Suppose that the characteristic polynomials of ρ1(Fp) and ρ2(Fp) are

equal for all p ∈ T = {2+
√
−1, 3, 2+3

√
−1}. Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. Using Proposition 8, we find that the reductions of the representations to GL2(F2) have
vanishing traces. Hence, the claim follows from theorem 4.3 in [52] once we have shown that the
image of {Fp}p∈T in the F2-vector space Gal(KS/K) is non-cubic. Here, KS is the compositum
of all quadratic extensions of K unramified outside S and a subset U of a vector space V is called
non-cubic if every homogeneous function of degree three on V vanishes if it vanishes on U . The

extension KS/K is generated by 4
√
−1 and

√
1 +
√
−1 and thus Gal(KS/K) is isomorphic to C2

2 .
It only remains to show that the image of {Fp}p∈T in Gal(KS/K) contains all three non-trivial
elements. This can be seen from the following table, which gives the action of the elements {Fp}p∈T
on the chosen generators of KS/K:

p 4
√
−1

√
1 +
√
−1

2 +
√
−1 −1 −1

3 1 −1

2 + 3
√
−1 −1 1

To use the previous propositions, we need to compute characteristic polynomials of ρ±,λ(Fp) and
find modular Galois representations with the same characteristic polynomials. For the first part,
we compute Lefschetz numbers of Fp, Fp2 and φz∗ ◦ Fp by counting fixed points over FN (p) and
use the Lefschetz trace formula to obtain characteristic polynomials. For the counting, we use that
the fixed points of F kp are defined over FN (p)k and the ones of φz∗ ◦ Fp are defined over FN (p)4
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5 Modularity of some pure motives of rank four

since (φz∗ ◦ Fp)4 = F 4
p . Using the script PointCounting.gp from [17] we obtain the following

numbers:

p Λ(Fp) Λ(F 2
p ) Λ(φz∗ ◦ Fp)

2 +
√
−1 1280 40000 208

3 4288 774208 1000

2 + 3
√
−1 8704 5884480 2688

The action of the Galois group on the cohomologies of even weight can be worked out explicitly by
looking at the action on the corresponding algebraic cycles. The action on the `-adic realizations of
the quotient H3(Xz∗)/Vz∗ can be worked out as well by looking at the action on the corresponding
products P1 × E. It follows that

Λ(F kp ) = 1 + 37N (p)k − Tr
(
(F kp )∗|Vz∗

)
− 4N (p)k Tr

(
(F kp )∗|H1(E)

)
+ 37N (p)2 k +N (p)3 k ,

where E is the elliptic curve with affine equation y2 = x3 − x, which has complex multiplication
by K. Counting points of E over FN (p)k , we obtain Tr

(
(F kp )∗|H1(E)

)
. We can then compute the

traces of F ∗p and (F 2
p )∗ on Vz∗ and combining this with Poincaré duality, we get the characteristic

polynomials listed below:

p det
(
1− T F ∗p |Vz∗

)
2 +
√
−1 1 + 4T − 130T 2 + 500T 3 + 15625T 4

3 1 + 12T + 1494T 2 + 8748T 3 + 531441T 4

2 + 3
√
−1 1 + 84T + 4238T 2 + 184548T 3 + 4826809T 4

We remark that these agree with the polynomials obtained from the deformation method. OverOK ,
each of the polynomials factors to the product of the characteristic polynomials of ρ+,λ(Fp)
and ρ−,λ(Fp). To find out which factor corresponds to which representation, we relate the number
of fixed points of φz∗ ◦Fp to the difference of the traces of ρ+,λ(Fp) and ρ−,λ(Fp). The action of φz∗
on the cohomology groups of even weight can be worked out explicitly by looking at the action
on the corresponding algebraic cycles and we find that Tr

(
φ∗z∗ |H

0(Xz∗)
)

= Tr
(
φ∗z∗ |H

6(Xz∗)
)

= 1

and Tr
(
φ∗z∗ |H

2(Xz∗)
)

= Tr
(
φ∗z∗ |H

4(Xz∗)
)

= 3. We also see that Tr
(
F ∗p φ

∗
z∗ |H

3(Xz∗)/Vz∗
)

= 0 and
the Lefschetz trace formula then gives

Λ(φz∗ ◦ Fp) = 1 + 3N (p)− Tr
(
F ∗p φ

∗
z∗ |Vz∗

)
+ 3N (p)2 +N (p)3 .

Combining this with

Tr
(
F ∗p φ

∗
z∗ |Vz∗

)
=
√
−1 (Tr(ρ+,λ(Fp))− Tr(ρ−,λ(Fp))) ,

we end up with the following characteristic polynomials:

p det(1− T ρ±,λ(Fp))

2 +
√
−1 1 + (2± 4

√
−1)T − (75∓ 100

√
−1)T 2

3 1 + 6T + 729T 2

2 + 3
√
−1 1 + (42± 28

√
−1)T + (845± 2028

√
−1)T 2

We proceed by defining Galois representations of a modular form and a Größencharakter whose
products give the same characteristic polynomials as in the table above. The space of elliptic
modular forms S3(Γ0(32), (−4

· )) contains a newform f that is unique up to conjugation. This has
the Fourier-expansion

f(τ) = q + 4
√
−1 q3 + 2 q5 − 8

√
−1 q7 − 7 q9 − 4

√
−1 q11 − 14 q13 + · · ·

and for every prime λ of K we have an associated Galois representation

ρf,λ : Gal(Q/Q) → GL2(Kλ) .
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5.2 A product of motives of elliptic modular forms

We define a Größencharakter ψ modulo (1+
√
−1)4 associated with the elliptic curve E with affine

equation y2 = x3−x. The value on ideals coprime to 1+
√
−1 is given by ψ((a)) = χ(a) a with the

character χ : (OK/(1+
√
−1)4)× → OK determined by χ(

√
−1) = −

√
−1 and χ(1+2

√
−1) = −1.

In terms of this Größencharakter, we have Tr
(
(F kp )∗|H1(E)

)
= ψ(p)k + ψ(p)k. Associated with

the Größencharakter ψ, we have a Galois representation

ρψ,λ : Gal(K/K) → GL1(Kλ)

which satisfies

ρψ,λ(Fp) = ψ(p) .

The Hecke eigenvalues of f and the values of χ can be computed using the script HeckeEigenvalues.gp
from [17] and for the primes in the table above we observe that

det(1− T ρ+,λ(Fp)) = det
(

1− T ρψ,λ(Fp) ρf,λ(FN (p))
)

det(1− T ρ−,λ(Fp)) = det
(
1− T ρψ,λ(Fp) ρf,λ(FN (p))

)
.

As we show now, this suffices to conclude the equality for all primes p.

Theorem 10. The representations

ρ+,λ , ρψ,λ ⊗ ρf,λ : Gal(K/K) → GL2(Kλ)

have isomorphic semisimplifications. The same holds for the representations

ρ−,λ , ρψ,λ ⊗ ρf,λ : Gal(K/K) → GL2(Kλ) .

Proof. By the compatibility of the representations, we can restrict to the case λ = 1 +
√
−1. We

can further conjugate the representations so that the image is in GL2(OK,λ) (see e.g. section 1
in [64]). From the computed characteristic polynomials and Proposition 9, it then follows that the
representations have isomorphic semisimplifications.

This result can be lifted to the representations ρ` of Gal(Q/Q). To do so, we denote the unique
newform in S2(Γ0(32)) by g. The associated representations ρg,` : Gal(Q/Q)→ GL2(Q`) are then
isomorphic to ρψ,λ ⊕ ρψ,λ after restricting to Gal(K/K) and embedding into GL2(Kλ).

Corollary 1. The representation ρ` : Gal(Q/Q) → GL4(Q`) (embedded into GL4(Kλ)) and the
representation ρf,λ ⊗ ρg,` : Gal(Q/Q) → GL4(Kλ) have isomorphic semisimplifications.

Proof. For rational primes p which are inert in OK , F ∗p exchanges the two two-dimensional parts
of Vz∗ . It follows that

det
(
1− T F ∗p |Vz∗

)
= 1−

Tr
(
(F 2
p )∗|Vz∗

)
2

T 2 + p6 T 4 .

Combining this with Theorem 10, we find that the characteristic polynomials of ρ`(Fp) and
of ρf,λ(Fp) ⊗ ρg,`(Fp) are equal for all rational primes p 6= 2. Hence, the representations have
isomorphic semisimplifications.

In summary, we can conclude that, for suitable choices of local L-factors for p = 2, the Hasse-Weil
zeta function of Xz∗ is given by

ζ(Xz∗ , s) =
L(f ⊗ g, s)L(g, s− 1)4

ζ(s) ζ(s− 1)36 L((−4
· ), s− 1) ζ(s− 2)36 L((−4

· ), s− 2) ζ(s− 3)
.

We remark that we got the idea that the representations ρ` have the structure of tensor products
from Don Zagier.
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5 Modularity of some pure motives of rank four

Modularity of the periods

We end this section with a numerical study of the period matrix of Vz∗ . The computations were
done using the script PeriodIdentities.gp from [17].

For |z| < 1/28, one of the periods of Ωz is given by∮
dt

t

∫ −1

−∞

dx1√
x1 (x1 + 1) (x1 + 16 t2)

∫ −1

−∞

dx2√
x2 (x2 + 1) (x2 + 16 z/t2)

=
1

4
(2πi)3

∞∑
n=0

(
2n

n

)4

zn .

To get a basis of period functions of Ωz, we can look at the monodromy of this period with respect
to z. This can again be done with the analysis described in [36]. We can conclude that we can
describe a basis of period functions of Ω as follows. First, we define a local basis of solutions of L
by2

$(z) =


f1(z)

log(−z) f1(z) + f2(z)
1
2 log(−z)2

f1(z) + log(−z) f2(z) + f3(z)
1
6 log(−z)3

f1(z) + 1
2 log(−z)2

f2(z) + log(−z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. A basis of
period functions of Ω is then given by (an analytic continuation of)

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0
0 0 2πi 0

−8 ζ(3) 0 0 1

 $ .

Taking derivatives, we obtain the matrix of period functions T = (Π,ΘΠ,Θ2Π,Θ3Π). After
evaluating at z∗ and rounding to ten digits of precision, this gives the period matrix

T (z∗) =


−235.9349240 i 9.718877474 i 6.246763306 i 1.994528703 i

215.6263142 −40.43037144 0.8617089734 1.672830554
97.98253527 i −33.28643960 i 7.429239846 i 0.2851530083 i
−38.47629526 15.21567188 −5.413165819 1.285052944

 .

We now compare the period matrix T (z∗) with the period matrices of the newforms f and g.

Choosing the Eichler integral f̃∞, we define the periods ω±f by

rf
((

129 −25
160 −31

))
= (2πi)2

∫ ∞
31/160

(τ − z) f(z) dz

= ω+
f ((−28 + 20 i) τ + (5− 4 i)) + ω−f ((−88− 48 i) τ + (17 + 9 i)) .

We remark that, in order to get a real and a purely imaginary period, we have chosen the splitting
into ω±f that corresponds to the action of the involution ε on the period polynomials of f + f

instead of f . Choosing the Eichler integral g̃∞, we define the periods ω±g by

rg
((

27 −11
32 −13

))
= 2πi

∫ ∞
13/32

g(z) dz = ω+
g − ω−g .

Rounded to ten digits of precision, we have

ω+
f = 5.139721139 , ω−f = 3.975811091 i ,

ω+
g = 1.311028777 , ω−g = 1.311028777 i .

2As in the previous section, we choose −z as the argument of the logarithms since we eventually want to evaluate
the solutions at the point z∗ on the negative real axis and this makes the structure of the solutions simpler.
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5.2 A product of motives of elliptic modular forms

Due to the complex multiplication of g, we have ω−g = i ω+
g and we can further express these in

terms of values of the gamma function by

ω+
g =

1

4
√

2π
Γ
(

1
4

)2
.

To compute the quasiperiods of f and g, we need meromorphic partners F and G. We define
these as quotients of holomorphic modular forms by the form h ∈ M4(Γ0(32)) with the maximal
vanishing order 16 at ∞. This can be expressed as the eta quotient

h(τ) =
η(32τ)16

η(16τ)8
.

We choose the meromorphic partners F and G specified by their numerators hF ∈ S7(Γ0(32), (−4
· ))

and hG ∈ S6(Γ0(32)) with the Fourier expansions

h(τ)F (τ) =
25
√
−1

2
q11 − 9 q13 + 3

√
−1 q15 −

√
−1

2
q19 − q21 +O(q22)

h(τ)G(τ) = 2 q15 +O(q18) .

Choosing the Eichler integrals F̃∞ and G̃∞, we define the quasiperiods η±f and η±g by

rF
((

129 −25
160 −31

))
= η+

f ((−28 + 20 i) τ + (5− 4 i)) + η−f ((−88− 48 i) τ + (17 + 9 i))

rG
((

27 −11
32 −13

))
= η+

g − η−g .

Rounded to ten digits of precision, we have

η+
f = 7.651002004 , η−f = −1.762640177 i ,

η+
g = −2.396280469 , η−g = 2.396280469 i

and the Legendre relations read

det

(
ω+
f η+

f

ω−f η−f

)
= (2πi)2 i and det

(
ω+
g η+

g

ω−g η−g

)
= 2πi .

As a consequence of the complex multiplication of g, we have η−g = −i η+
g and thus

η+
g = −2

(2π)3/2

Γ
(

1
4

)2 .

Due to the splitting of Vz∗ , we know that the period matrix T (z∗) can be brought to a block
diagonal form after extending by i. From the modularity of the Galois representations, we further
expect that it can be expressed in terms of products of the periods and quasiperiods of f and g.
Numerically, we indeed observe that

T (z∗) = A

 ω+
g

(
ω+
f η+

f

ω−f η−f

)
0

0 η+
g

(
ω+
f η+

f

ω−f η−f

)
 B

with

A =


48 i −96 −48 i 0
24 0 −24 −48 i
14 i −4 10 i −24
5 12 i 7 2 i

 and B =


4/3 −1/3 1/16 −1/192
0 0 −1/96 1/128
0 −1/12 1/24 −5/768
0 0 0 −1/1536

 .
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5 Modularity of some pure motives of rank four

5.3 A sum of motives of Hilbert modular forms

In the first part of this section, we consider again the Calabi-Yau operator L from the previous
section. Experimental computations suggest that representations of the absolute Galois group
of K = Q(

√
2)

ρ` : Gal(K/K) → GL4(Q`)

associated with the point z∗ = 17+12
√

2
28 split (after embedding into GL4(Kλ) for primes λ over ` and

semisimplifying) to sums of two-dimensional Galois representations. To make this more rigorous,
we use in the second part the geometric realization of a family X of Calabi-Yau threefolds asso-
ciated with L from Section 5.2. We compute characteristic polynomials of the representations ρ`
associated with the four-dimensional part Vz∗ of the middle cohomology. The results suggest that
the representations ρ` are up to semisimplification the sum of representations associated with a
Hilbert newform f of weight (4, 2) and its conjugate f of weight (2, 4). In the third part, we present
numerical computations which suggest that the period matrix can be brought to a block diagonal
form. We are not aware of a general definition of periods of Hilbert newforms and hence we do not
have periods which we can compare with the periods of Vz∗ .

Experimental computations

We consider again the hypergeometric Calabi-Yau operator

L = Θ4 − 28 z (Θ + 1/2)4 with Θ = z
d

dz

from Section 5.2. Using the script DeformationMethod.gp from [17], we compute the associated
characteristic polynomials for all primes 11 ≤ p ≤ 997 and all parameters z ∈ Fp of good reduction.
Now we look for factorizations of these polynomials over Z[

√
2]. The number of factorizations that

occur for each prime p is depicted in Figure 5.3. We observe that for all primes p ≡ ±1 mod 8 there
are at least two factorizations. Restricting to primes p ≡ ±1 mod 8 with exactly two factorizations,

we see that these come from the two reductions of z∗ = 17+12
√

2
28 to Fp. Since all computed

polynomials of this fiber factor, we expect that (after embedding into GL4(Kλ) for primes λ over `
and semisimplifying) the associated Galois representations ρ` : Gal(K/K) → GL4(Q`) split. We
remark that the fibers over z∗ and its Galois conjugate are related by the symmetry z 7→ 1/216z.
In particular, the associated characteristic polynomials agree.

0 100 200 300 400 500 600 700 800 900 1000
0
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Figure 5.4: Number of factorizations over Z[
√

2] of characteristic polynomials for small primes p.
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5.3 A sum of motives of Hilbert modular forms

Modularity of the Galois representations

In Section 5.2, we constructed a family of Calabi-Yau threefolds X associated with L. Now, we

are interested in the fiber over z∗ = 17+12
√

2
28 , which is defined over K = Q(

√
2). We remark that

this is isomorphic to its Galois conjugate, since the isomorphism φz∗ : Xz∗ → X1/216z∗ is defined
over K and relates z∗ with its Galois conjugate. To study the Galois representations associated
with Xz∗ , we compute Lefschetz numbers of Fp and F 2

p for small primes p. Due to the isomorphism
between Xz∗ and its Galois conjugate, these only depend on the norm of p. The only prime of
bad reduction is

√
2 and using the script PointCounting.gp from [17] we obtain the following

numbers:

N (p) Λ(Fp) Λ(Fp2)

7 2432 211264

32 4288 774208

17 16192 27284544

23 32384 158532928

52 40256 258714176

31 66560 921999424

41 130624 4854788672

47 187136 10961041472

71 547712 129044412736

73 589760 152388652096

79 728832 244532846656

89 997824 499306354752

97 1259584 836243840064

The action of the Galois group on the cohomologies of even weight can be worked out explicitly by
looking at the action on the corresponding algebraic cycles. The action on the `-adic realizations
of the quotient H3(Xz∗)/Vz∗ can be worked out by looking at the action on the corresponding
products P1 × E, too. It follows that

Λ(F kp ) = 1 + 37N (p)k − Tr
(
(F kp )∗|Vz∗

)
− 4N (p)k Tr

(
(F kp )∗|H1(E)

)
+ 37N (p)2 k +N (p)3 k ,

where E is the elliptic curve with affine equation y2 = x3−x. Counting points of E over FN (p)k , we

obtain Tr
(
(F kp )∗|H1(E)

)
. We can then compute the traces of F ∗p and (F 2

p )∗ on Vz∗ and, combining
this with Poincaré duality, we get the characteristic polynomials listed below:

N (p) det
(
1− T F ∗p |Vz∗

)
7 (1 + (−16

√
2 + 8)T + 343T 2) (1 + (16

√
2 + 8)T + 343T 2)

32 (1 + 6T + 729T 2) (1 + 6T + 729T 2)

17 (1 + (−32
√

2 + 46)T + 4913T 2) (1 + (32
√

2 + 46)T + 4913T 2)

23 (1 + (−16
√

2− 104)T + 12167T 2) (1 + (16
√

2− 104)T + 12167T 2)

52 (1− 10T + 15625T 2) (1− 10T + 15625T 2)

31 (1 + (−128
√

2 + 32)T + 29791T 2) (1 + (128
√

2 + 32)T + 29791T 2)

41 (1 + (−64
√

2− 186)T + 68921T 2) (1 + (64
√

2− 186)T + 68921T 2)

47 (1 + (−96
√

2− 80)T + 103823T 2) (1 + (96
√

2− 80)T + 103823T 2)

71 (1 + (−304
√

2 + 328)T + 357911T 2) (1 + (304
√

2 + 328)T + 357911T 2)

73 (1 + (−64
√

2− 442)T + 389017T 2) (1 + (64
√

2− 442)T + 389017T 2)

79 (1 + (−32
√

2 + 976)T + 493039T 2) (1 + (32
√

2 + 976)T + 493039T 2)

89 (1 + (−704
√

2 + 22)T + 704969T 2) (1 + (704
√

2 + 22)T + 704969T 2)

97 (1 + (−352
√

2 + 1086)T + 912673T 2) (1 + (352
√

2 + 1086)T + 912673T 2)
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5 Modularity of some pure motives of rank four

We remark that these polynomials agree with the ones obtained from the deformation method. In
terms of the unique Hilbert newform f ∈ S(4,2)(Γ0(2

√
2)) and the conjugate f ∈ S(2,4)(Γ0(2

√
2)),

whose Hecke eigenvalues can be computed using the script HeckeEigenvalues.mgm from [17], we
see that

det
(
1− T F ∗p |Vz∗

)
= det(1− T ρf,λ(Fp)) det

(
1− T ρf,λ(Fp)

)
.

This suggests that (after embedding into GL2(Kλ) and semisimplifying) the Galois representations
on the `-adic realizations of Vz∗ are isomorphic to ρf,λ⊕ρf,λ. For a suitable choice of local L-factors
for primes of bad reduction, the Hasse-Weil zeta function of Xz∗ would then be given by

ζ(Xz∗ , s) =
L(f, s)L(f, s)LK(g, s− 1)4

ζK(s) ζK(s− 1)37 ζK(s− 2)37 ζK(s− 3)
.

Modularity of the period matrix

We end this section with a numerical study of the period matrix of Vz∗ . The computations were
done using the script PeriodIdentities.gp from [17].

To study the period matrix of Vz∗ , we first define a local basis of solutions of L by

$(z) =


f1(z)

log(z) f1(z) + f2(z)
1
2 log(z)

2
f1(z) + log(z) f2(z) + f3(z)

1
6 log(z)

3
f1(z) + 1

2 log(z)
2
f2(z) + log(z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. From the
discussion in Section 5.2, it follows that a basis of period functions of Ω (which is different to the
one defined in Section 5.2) is given by (an analytic continuation of)

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0
0 0 2πi 0

−8 ζ(3) 0 0 1

 $ .

Taking derivatives, we obtain the matrix of period functions T = (Π,ΘΠ,Θ2Π,Θ3Π). Evaluating
at σ±(z∗), where σ± : K ↪→ C corresponds to the embedding that maps

√
2 to ±

√
2, we obtain

two period matrices. Since Xz∗ is isomorphic to its Galois conjugate, we just study the period
matrix T (σ−(z∗)). After rounding to ten digits of precision, we have

T (σ−(z∗)) = A


ω+

1 η+
1 0 0

ω−1 η−1 0 0
0 0 ω+

2 η+
2

0 0 ω−2 η−2

 B

with

A =


0 −6 0 −6
6 0 6 0

0 2 + 3
√

2 0 2− 3
√

2

2− 3
√

2 0 2 + 3
√

2 0

 , B =


32 2

√
2− 8 2−

√
2 0

0 0 0 1

0 32 0 7
√

2− 10

0 0 −16 12− 7
√

2


and (

ω+
1 η+

1

ω−1 η−1

)
=

(
3.734032182 81.31701305
2.588655160 i 55.86969204 i

)
(
ω+

2 η+
2

ω−2 η−2

)
=

(
0.3907313043 0.3272298509
0.8464023516 i 0.5081025185 i

)
.

As expected, the period matrix can be brought to a block diagonal form. We further expect that
there is a suitable definition of periods of Hilbert newforms which reproduces the numbers given
above, but we have not made any analysis in this direction. As a first step, one could consider
values of the L-functions of f and f as well as twists of these L-functions.
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5.4 A sum of motives of Bianchi modular forms

5.4 A sum of motives of Bianchi modular forms

In the first part of this section, we consider a Calabi-Yau operator L with a symmetry z 7→ −1/28z.
Experimental computations suggest that semisimplifications of representations of the absolute
Galois group of K = Q(

√
−1)

ρ` : Gal(K/K) → GL4(Q`)

associated with the fixed point z∗ =
√
−1/24 of the symmetry split to sums of two Galois represen-

tations ρ±,` : Gal(K/K)→ GL2(Q`). To make this more rigorous, we construct in the second part
a family X of Calabi-Yau threefolds associated with L. The middle cohomology of each fiber Xz

contains a four-dimensional part Vz whose variation with z is described by L. We construct mor-
phisms φz : Xz → X−1/28z corresponding to the symmetry of L. The endomorphism on the fixed
fiber Xz∗ can be used to split Vz∗ into two parts which give the representations ρ±,`. In the third
part, we prove that the representations ρ±,` are up to semisimplification given by representations
associated with a Bianchi newform f of weight 4 and a a Bianchi newform g of weight 2. In the
last part, we present numerical computations which suggest that the period matrix can be brought
to a block diagonal form. We are not aware of a general definition of periods of Bianchi newforms,
but we find that half of the periods of Vz∗ agree with periods of an elliptic curve associated with g.

Experimental computations

We consider the Calabi-Yau operator L which annihilates the power series
∑∞
n=0 an z

n with

an =

n∑
k=0

(
n

k

)3

·
n∑
k=0

(
n

k

)(
2 k

k

)(
2n− 2 k

n− k

)
.

This operator is the 105th operator from the list [1]. Using the script DeformationMethod.gp

from [17], we compute the associated characteristic polynomials for all primes 19 ≤ p ≤ 997 and
all parameters z ∈ Fp of good reduction. To find Galois representations which split, we look at
factorizations of these polynomials over Z. The number of factorizations that occur for each prime p
is depicted in Figure 5.5. Due to the symmetry z 7→ −1/28z of the differential operator L, the
polynomials always factor an even number of times. We observe that for all primes p ≡ 1 mod 4
there are always at least two factorizations. Restricting to these primes and the cases with exactly
two factorizations, we see that these come from the two reductions of the fixed point z∗ =

√
−1/24

to Fp. All computed polynomials of this fiber factor and, thus, we expect that semisimplifications
of the associated Galois representations split.
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Figure 5.5: Number of factorizations over Z of characteristic polynomials for small primes p.
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5 Modularity of some pure motives of rank four

Geometric construction

The multiplicative structure of the coefficients of the power series that is annihilated by L suggests
that L is a Hadamard product and that we can construct an associated family of Calabi-Yau
threefolds from fiber products of elliptic surfaces. This turns out to be true and in the following we
start by defining the relevant surfaces. These are famous elliptic surfaces that have been studied
in [4].

To define the first elliptic surface, we consider the fibration obtained from the hypersurface given
by all ((s : t), (X : Y : Z)) ∈ P1 × P2 which satisfy

sX Y Z − t (X + Y ) (Y + Z) (Z +X) = 0 ,

together with the projection on the first factor. The singular fibers of this fibration are as follows:

base point (1 : −1) (1 : 0) (8 : 1) (0 : 1)

sketch of fiber

The only surface singularities are the three singularities in the fiber over (1 : 0). Blowing up each
of these once, we obtain a rational elliptic surface S1. The Kodaira classification of the singular
fibers is as follows:

base point (1 : −1) (1 : 0) (8 : 1) (0 : 1)
Kodaira classification I2 I6 I1 I3

Choosing the point (1 : −1 : 0), we give S1 the structure of a rational elliptic surface with section.
The differential form

ω1 = Res s
X dY ∧ dZ + Y dZ ∧ dX + Z dX ∧ dY

sX Y Z − t (X + Y ) (Y + Z) (Z +X)

defines a holomorphic 1-form on all regular fibers and for |t/s| < 1/8 one of its periods evaluates
to

2πi

∞∑
n=0

n∑
k=0

(
n

k

)3 (
t

s

)n
.

In our later analysis, we use the morphism φ1 : S1 → S1 defined by(−8 t
s

)
,

ψ1(X + Y, Z) + (X − Y )ψ2(X + Y, Z)
ψ1(X + Y, Z)− (X − Y )ψ2(X + Y, Z)

ψ3(X + Y, Z)


with

ψ1(X,Z) = X (sX Z − t (X + 2Z)2)

ψ2(X,Z) = −(sZ2 − tX (X + 2Z))

ψ3(X,Z) = −X (sZ (X − Z)− 2 tX2) .

On regular fibers this gives an isogeny of degree two.

For the second elliptic surface, we consider the fibration obtained from the hypersurface consisting
of all ((s : t), (X : Y : Z)) ∈ P1 × P2 which satisfy

(s− 4 t)X Y Z − t (X + Y ) (X Y + Z2) = 0 ,
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together with the projection on the first factor. The singular fibers of this fibration are as follows:

base point (1 : 0) (8 : 1) (4 : 1) (0 : 1)

sketch of fiber

The only surface singularities are the three singularities in the fiber over (1 : 0). Blowing up each
of these once, we obtain a rational elliptic surface S2. The Kodaira classification of the singular
fibers is as follows:

base point (1 : 0) (8 : 1) (4 : 1) (0 : 1)
Kodaira classification I8 I1 I2 I1

Choosing the point (1 : −1 : 0), we give S2 the structure of a rational elliptic surface with section.
The differential form

ω2 = Res s
X dY ∧ dZ + Y dZ ∧ dX + Z dX ∧ dY

(s− 4 t)X Y Z − t (X + Y ) (X Y + z2)

defines a holomorphic 1-form on all regular fibers and for |t/s| < 1/8 one of its periods evaluates
to

2πi

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2 k

n− k

)(
2 k

k

) (
t

s

)n
.

In our later analysis, we use the morphism φ2 : S2 → S2 defined by(32 t
s

)
,

ψ1(X + Y,Z) + (X − Y )ψ2(X + Y,Z)
ψ1(X + Y,Z)− (X − Y )ψ2(X + Y,Z)

ψ3(X + Y,Z)


with

ψ1(X,Z) = −X Z (s− 8 t) (sZ − 2 t (X + 2Z))2 (sX Z − t (X + 2Z)2)

(sZ (X + Z)− t (X + 2Z)2)2 (s (X − Z)Z − t (X2 + 4X Z − 4Z2))

ψ2(X,Z) = 2
√
−1 (sZ − 2 t (X + 2Z)) (sZ (X + Z)− t (X + 2Z)2)

(t5X8 − 4 (s− 4 t) t4X7 Z + 2 t3 (s− 4 t) (3 s− 10 t)X6 Z2

− 4 (s− 4 t)2 (s− t) t2X5 Z3 + t (s− 4 t) (s3 + s2 t− 58 s t2 + 168 t3)X4 Z4

− 2 (s− 4 t)2 t (3 s2 − 26 s t+ 72 t2)X3 Z5 + (s− 4 t)3 (s2 − 10 s t+ 44 t2)X2 Z6

− 4 (s− 4 t)4 tX Z7 + (s− 4 t)4 t Z8)

ψ3(X,Z) = sX Z (sZ (−X + Z) + t (X2 + 4X Z − 4Z2))

(t2 (X + 2Z)4 + s2 Z2 (X2 + Z2)− 2 s t Z (X3 + 4X2 Z + 4X Z2 + 4Z3))

(2 t3X4 − 4 t2(s− 4 t)X3 Z + 3 (s− 4 t)2 tX2 Z2

− (s− 4 t)3X Z3 + 2 (s− 4 t)2 t Z4) .

On regular fibers this gives an isogeny of degree eight.

We can now construct a family of Calabi-Yau threefolds X → P1 r{− 1
4 ,−

1
8 , 0,

1
64 ,

1
32} and study

its cohomology as reviewed in Section 4.3. For any z ∈ P1 r {− 1
4 ,−

1
8 , 0,

1
64 ,

1
32}, we consider the

fiber product

S1 ×P1 ε∗z S2
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with εz : (s : t) 7→ (t : z s). After a small projective resolution this gives a Calabi-Yau threefold Xz.
The second cohomology of S1×P1 ε∗z S2 is generated by one fiber, S1×P1 {0}, {0} ×P1 ε∗zSz and all
but one components of all fibers. This gives the Hodge number

h1,1(Xz) = 1 + 2 + (8 · 3− 1) + (6 · 1− 1) + 2 · (2 · 1− 1) = 33 .

On the other hand, the Euler number χ(Xz) equals 60 (twice the number of nodes that we resolved)
and thus

h2,1(Xz) = h1,1(Xz)−
χ(Xz)

2
= 3 .

Further, Xz has two fibers of the form I2×E with different elliptic curves E. Choosing one of the
components of each I2 fiber, we get two inclusions of the form

P1 × E → Xz

and the pushforward with respect to each of these gives a two-dimensional image in the middle
homology. In total, this gives a four-dimensional subspace of the middle homology of Xz. We
obtain a surjection

i∗ : H3(Xz) →
⊕
E

H2(P1)⊗H1(E)

and we use this to define the motive Vz = ker i∗. This has the Hodge structure 1 1 1 1. The de
Rham realization of Vz contains the holomorphic form

Ωz = ω1 ∧ ε∗zω2 ∧
sdt− tds

s t
.

An explicit computation shows that L is the Picard-Fuchs operator of Ω. In particular, Ω and its
first three derivatives (evaluated at z) generate the de Rham realization of Vz. For |z| < 1/64, one
of the period functions of Ω is given by the power series (2πi)3

∑∞
n=0 an z

n with the coefficients

an =

n∑
k=0

(
n

k

)3

·
n∑
k=0

(
n

k

)(
2 k

k

)(
2n− 2 k

n− k

)
.

The morphisms φ1 and φ2 induce morphisms φz : Xz → X−1/28z. If we restrict to the fiber

over z∗ =
√
−1/16, we get a Calabi-Yau threefold Xz∗ defined over K = Q(

√
−1) together with

an endomorphism φz∗ : Xz∗ → Xz∗ . Acting on Ω and its derivatives, we see that φz∗ splits Vz∗
into parts with eigenvalues ±4 and Hodge structures 0 1 1 0 and 1 0 0 1. For the `-adic realizations
of Vz∗ , this implies that the associated Galois representations ρ` : Gal(K/K) → GL4(Q`) split to
sums of two-dimensional representations ρ±,` : Gal(K/K) → GL2(Q`). These are unramified for
all primes of good reduction, i.e. for all p 6∈ {1 +

√
−1, 2 +

√
−1, 4 +

√
−1}.

Modularity of the Galois representations

We proceed as in Section 5.2 to prove the modularity of the representations ρ±,`. We start by giving
two propositions which allow us to prove modularity by comparing finitely many characteristic
polynomials of Frobenius elements.

Proposition 10. Let ρ : Gal(K/K) → GL2(F2) be a continuous representation unramified out-
side S = {1 +

√
−1, 2−

√
−1, 2 +

√
−1, 4−

√
−1, 4 +

√
−1}. Then Tr(ρ) = 0 if and only if

Tr(ρ(Fp)) = 0 for all p ∈ {3− 2
√
−1, 5 + 2

√
−1, 6 +

√
−1, 5 + 4

√
−1} .

Proof. The kernel of ρ is an open normal subgroup of Gal(K/K) and this gives a finite Galois

extension L/K defined by L = K
ker ρ

. This extension is unramified outside S and its Galois
group is isomorphic to the image of ρ and hence, since GL2(F2) is isomorphic to S3, to a subgroup
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of S3. Now, suppose that Tr(ρ) 6= 0. The elements in GL2(F2) with trace 1 are exactly the
elements of order three and thus Gal(L/K) is isomorphic to S3 or C3. It follows that L/K is the
Galois closure of a degree three extension M/K. The corresponding degree six extension M/Q is
unramified outside {2, 5, 17}. The database [46] lists 1525 such extensions represented as quotients
of Q[x] by monic polynomials in Z[x]. Using that M must contain K and that M must be
unramified outside S, we end up with 44 candidates for the extension L/K. We represent these as
splitting fields of monic polynomials f ∈ OK [x]. Below we list the polynomials f together with a
chosen prime p /∈ S of OK such that the reduction of f to OK/p does not factor:

f p

x3 + (−1−
√
−1)x2 −

√
−1x+ (1−

√
−1) 5 + 4

√
−1

x3 + (−1 +
√
−1)x2 +

√
−1x+ (1 +

√
−1) 5 + 4

√
−1

x3 − 5
√
−1x+ (−5 + 5

√
−1) 3− 2

√
−1

x3 + 5
√
−1x+ (−5− 5

√
−1) 3− 2

√
−1

x3 + (−1−
√
−1)x2 − 5

√
−1x+ (−10 + 10

√
−1) 5 + 4

√
−1

x3 + (−1 +
√
−1)x2 + 5

√
−1x+ (−10− 10

√
−1) 5 + 4

√
−1

x3 + (−1−
√
−1)x2 + (1 +

√
−1)x+ (1−

√
−1) 6 +

√
−1

x3 + (−1 +
√
−1)x2 + (1−

√
−1)x+ (1 +

√
−1) 5 + 2

√
−1

x3 + (−1−
√
−1)x2 + 5

√
−1x+ (1−

√
−1) 3− 2

√
−1

x3 + (−1 +
√
−1)x2 − 5

√
−1x+ (1 +

√
−1) 3− 2

√
−1

x3 −
√
−1x2 + 11x− 5

√
−1 5 + 2

√
−1

x3 +
√
−1x2 + 11x+ 5

√
−1 5 + 2

√
−1

x3 + (−1−
√
−1)x2 + (2 + 4

√
−1)x+ (−3−

√
−1) 5 + 2

√
−1

x3 + (−1 +
√
−1)x2 + (2− 4

√
−1)x+ (−3 +

√
−1) 5 + 2

√
−1

x3 −
√
−1x2 + (−1 + 3

√
−1)x+ (1−

√
−1) 5 + 4

√
−1

x3 +
√
−1x2 + (−1− 3

√
−1)x+ (1 +

√
−1) 3− 2

√
−1

x3 + 17x− 34
√
−1 3− 2

√
−1

x3 + 17x+ 34
√
−1 3− 2

√
−1

x3 − x2 + (−2− 2
√
−1)x+ (−4 + 2

√
−1) 3− 2

√
−1

x3 − x2 + (−2 + 2
√
−1)x+ (−4− 2

√
−1) 5 + 2

√
−1

x3 + (−1−
√
−1)x2 + 3x+ (1−

√
−1) 5 + 2

√
−1

x3 + (−1 +
√
−1)x2 + 3x+ (1 +

√
−1) 3− 2

√
−1

x3 + (1− 2
√
−1)x+ (−4− 2

√
−1) 3− 2

√
−1

x3 + (1 + 2
√
−1)x+ (−4 + 2

√
−1) 3− 2

√
−1

x3 + (−1−
√
−1)x2 + (2 + 3

√
−1)x+ (−1− 5

√
−1) 3− 2

√
−1

x3 + (−1 +
√
−1)x2 + (2− 3

√
−1)x+ (−1 + 5

√
−1) 6 +

√
−1

x3 + (−1−
√
−1)x2 + (−17− 5

√
−1)x+ (24 + 10

√
−1) 5 + 2

√
−1

x3 + (−1 +
√
−1)x2 + (−17 + 5

√
−1)x+ (24− 10

√
−1) 6 +

√
−1

x3 −
√
−1x2 + (−6 + 17

√
−1)x+ (−17− 56

√
−1) 3− 2

√
−1

x3 +
√
−1x2 + (−6− 17

√
−1)x+ (−17 + 56

√
−1) 6 +

√
−1

x3 + (−1−
√
−1)x2 + (7 +

√
−1)x+ (2− 4

√
−1) 5 + 2

√
−1

x3 + (−1 +
√
−1)x2 + (7−

√
−1)x+ (2 + 4

√
−1) 3− 2

√
−1

x3 + (−1−
√
−1)x2 + (11 + 2

√
−1)x+ (−9− 11

√
−1) 6 +

√
−1

x3 + (−1 +
√
−1)x2 + (11− 2

√
−1)x+ (−9 + 11

√
−1) 5 + 2

√
−1

x3 + (−1−
√
−1)x2 + (1− 9

√
−1)x+ (2− 4

√
−1) 3− 2

√
−1

x3 + (−1 +
√
−1)x2 + (1 + 9

√
−1)x+ (2 + 4

√
−1) 3− 2

√
−1

x3 −
√
−1x2 + (−12 + 10

√
−1)x− 22

√
−1 3− 2

√
−1

x3 +
√
−1x2 + (−12− 10

√
−1)x+ 22

√
−1 6 +

√
−1

x3 + (−1−
√
−1)x2 + (−5 + 9

√
−1)x+ (26− 16

√
−1) 3− 2

√
−1

x3 + (−1 +
√
−1)x2 + (−5− 9

√
−1)x+ (26 + 16

√
−1) 5 + 2

√
−1

x3 − x2 + (−8− 5
√
−1)x+ (−10− 9

√
−1) 5 + 2

√
−1

x3 − x2 + (−8 + 5
√
−1)x+ (−10 + 9

√
−1) 5 + 2

√
−1

x3 − x2 + (1− 3
√
−1)x+ (11 + 7

√
−1) 5 + 4

√
−1

x3 − x2 + (1 + 3
√
−1)x+ (11− 7

√
−1) 6 +

√
−1
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For any of these pairs, it follows that any element in the conjugacy class Fp in the Galois group of
the candidate for L/K has order three and hence Tr(ρ(Fp)) = 1 for one of the six primes p.

Proposition 11. Let ρ1, ρ2 : Gal(K/K) → GL2(Z2(
√
−1)) be continuous representations un-

ramified outside S = {1 +
√
−1, 2 −

√
−1, 2 +

√
−1, 4 −

√
−1, 4 +

√
−1}. Suppose that the traces

of both representations vanish modulo 1 +
√
−1 and that the characteristic polynomials of ρ1(Fp)

and ρ2(Fp) are equal for all

p ∈ T = {3− 2
√
−1, 3 + 2

√
−1, 5− 2

√
−1, 5 + 2

√
−1, 6−

√
−1, 6 +

√
−1, 5− 4

√
−1,

5 + 4
√
−1, 7, 7− 2

√
−1, 7 + 2

√
−1, 6− 5

√
−1, 6 + 5

√
−1, 8− 3

√
−1, 8 + 3

√
−1,

8− 5
√
−1, 9− 4

√
−1, 9 + 4

√
−1, 10−

√
−1, 10 +

√
−1, 10− 3

√
−1, 10 + 3

√
−1,

8− 7
√
−1, 8 + 7

√
−1, 11− 4

√
−1, 11 + 4

√
−1, 10− 7

√
−1, 10 + 7

√
−1, 11− 6

√
−1,

11 + 6
√
−1, 10− 9

√
−1, 10 + 9

√
−1, 14−

√
−1, 14 +

√
−1, 15− 4

√
−1, 15 + 4

√
−1,

14− 9
√
−1, 14 + 9

√
−1, 16− 5

√
−1, 14− 11

√
−1, 17− 8

√
−1} .

Then ρ1 and ρ2 have isomorphic semisimplifications.

Proof. The claim follows from theorem 4.3 in [52] once we have shown that the image of {Fp}p∈T
in the F2-vector space Gal(KS/K) is non-cubic. Here, KS is the compositum of all quadratic
extensions of K unramified outside S and a subset U of a vector space V is called non-cubic
if every homogeneous function of degree three on V vanishes if it vanishes on U . The exten-

sion KS/K is generated by {
√

2,
√

1 +
√
−1,

√
2−
√
−1,

√
2 +
√
−1,

√
4−
√
−1,

√
4 +
√
−1} and

hence Gal(KS/K) is isomorphic to C6
2 . From the following table, which gives the action of the

elements {Fp}p∈T on the chosen generators of KS/K, it is straightforward to show that the image
of {Fp}p∈T in Gal(KS/K) is non-cubic:

p
√

2
√

1 +
√
−1

√
2−
√
−1

√
2 +
√
−1

√
4−
√
−1

√
4 +
√
−1

3− 2
√
−1 −1 1 −1 1 1 1

3 + 2
√
−1 −1 −1 1 −1 1 1

5− 2
√
−1 −1 −1 −1 −1 1 −1

5 + 2
√
−1 −1 1 −1 −1 −1 1

6−
√
−1 −1 1 1 −1 −1 1

6 +
√
−1 −1 −1 −1 1 1 −1

5− 4
√
−1 1 1 −1 −1 −1 1

5 + 4
√
−1 1 1 −1 −1 1 −1

7 1 1 −1 −1 −1 −1
7− 2

√
−1 −1 −1 1 −1 −1 −1

7 + 2
√
−1 −1 1 −1 1 −1 −1

6− 5
√
−1 −1 −1 1 1 1 −1

6 + 5
√
−1 −1 1 1 1 −1 1

8− 3
√
−1 1 −1 1 −1 1 −1

8 + 3
√
−1 1 −1 −1 1 −1 1

8− 5
√
−1 1 −1 1 1 −1 −1

9− 4
√
−1 1 −1 1 −1 −1 1

9 + 4
√
−1 1 −1 −1 1 1 −1

10−
√
−1 −1 −1 −1 −1 1 1

10 +
√
−1 −1 1 −1 −1 1 1

10− 3
√
−1 −1 −1 1 1 −1 1

10 + 3
√
−1 −1 1 1 1 1 −1

8− 7
√
−1 1 1 −1 1 −1 1

8 + 7
√
−1 1 1 1 −1 1 −1

11− 4
√
−1 1 1 −1 1 −1 −1

11 + 4
√
−1 1 1 1 −1 −1 −1

10− 7
√
−1 −1 1 1 1 −1 −1
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10 + 7
√
−1 −1 −1 1 1 −1 −1

11− 6
√
−1 −1 −1 −1 1 −1 −1

11 + 6
√
−1 −1 1 1 −1 −1 −1

10− 9
√
−1 −1 −1 −1 −1 −1 1

10 + 9
√
−1 −1 1 −1 −1 1 −1

14−
√
−1 −1 1 −1 1 1 −1

14 +
√
−1 −1 −1 1 −1 −1 1

15− 4
√
−1 1 −1 −1 −1 1 −1

15 + 4
√
−1 1 −1 −1 −1 −1 1

14− 9
√
−1 −1 1 1 −1 1 −1

14 + 9
√
−1 −1 −1 −1 1 −1 1

16− 5
√
−1 1 −1 −1 −1 1 1

14− 11
√
−1 −1 1 −1 1 −1 1

17− 8
√
−1 1 1 1 −1 1 1

To use the previous propositions, we need to compute characteristic polynomials of ρ±,`(Fp) and
find modular Galois representations with the same characteristic polynomials. For the first part,
we compute Lefschetz numbers of Fp, Fp2 and φz∗ ◦ Fp by counting fixed points over FN (p) and
use the Lefschetz trace formula to obtain characteristic polynomials. For the first two, we use
that the fixed points of F kp are defined over FN (p)k . Computing the fixed points of φz∗ ◦ Fp is
computationally expensive since we do not know a bound for the cardinality of the field over which
these are defined. But it will be sufficient for us to know the number of fixed points of φz∗ ◦ Fp

modulo some suitable rational prime `. Since the fixed points can be computed from the action
on the fixed fibers (which are just products of elliptic curves), we can compute φz∗ ◦ Fp modulo `
by computing the action on the torsion group E[`] for different elliptic curves E. Using the script
PointCounting.gp from [17] we obtain the following numbers:

p Λ(Fp) Λ(F 2
p ) Λ(φz∗ ◦ Fp)

3− 2
√
−1 8202 5783112 4 +O(5)

3 + 2
√
−1 8184 5788332 3 +O(5)

5− 2
√
−1 52976 618260652 6 +O(7)

5 + 2
√
−1 53552 618263820 3 +O(7)

6−
√
−1 97668 2627742348 4 +O(5)

6 +
√
−1 96864 2627907084 4 +O(5)

5− 4
√
−1 125852 4843603356 1 +O(5)

5 + 4
√
−1 126322 4843739304 —

7 198534 14032058040 2 +O(11)
7− 2

√
−1 243988 22425517740 O(7)

7 + 2
√
−1 242148 22425678060 1 +O(5)

6− 5
√
−1 353400 51977892108 3 +O(5)

6 + 5
√
−1 352794 51978146376 2 +O(5)

8− 3
√
−1 566634 152271900072 3 +O(5)

8 + 3
√
−1 566208 152272776636 4 +O(5)

8− 5
√
−1 970992 499054541244 4 +O(5)

9− 4
√
−1 1225992 835897027644 2 +O(5)

9 + 4
√
−1 1227180 835894419324 3 +O(5)

10−
√
−1 1371784 1064961203532 O(5)

10 +
√
−1 1368600 1064960493324 3 +O(5)

10− 3
√
−1 1690482 1681759340040 4 +O(5)

10 + 3
√
−1 1693800 1681764264972 3 +O(5)

8− 7
√
−1 1867716 2087339071452 2 +O(5)

8 + 7
√
−1 1872798 2087338171704 3 +O(5)

11− 4
√
−1 3196340 6623481837372 1 +O(5)
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11 + 4
√
−1 3195270 6623484870840 3 +O(5)

10− 7
√
−1 4040292 10958810189676 3 +O(5)

10 + 7
√
−1 4051404 10958801726220 2 +O(5)

11− 6
√
−1 4686132 14996141175180 1 +O(5)

11 + 6
√
−1 4686564 14996148363084 3 +O(5)

10− 9
√
−1 7014300 35197283281452 1 +O(7)

10 + 9
√
−1 7018788 35197261712748 2 +O(5)

14−
√
−1 8935636 58501484347500 3 +O(5)

14 +
√
−1 8939396 58501454790156 2 +O(5)

15− 4
√
−1 15916398 196041994383864 2 +O(5)

15 + 4
√
−1 15917508 196041949742556 1 +O(5)

14− 9
√
−1 23792328 451923974944044 1 +O(5)

14 + 9
√
−1 23797434 451923989726280 6 +O(7)

16− 5
√
−1 24815584 492515028547068 1 +O(5)

14− 11
√
−1 35181582 1015075324856760 4 +O(5)

17− 8
√
−1 48104544 1935366582948252 2 +O(5)

The action of the Galois group on the cohomologies of even weight can be worked out explicitly by
looking at the action on the corresponding algebraic cycles. The action on the `-adic realizations
of the quotient H3(Xz∗)/Vz∗ can be worked out by looking at the action on the corresponding
products P1 × E, too. It follows that

Λ(F kp ) = 1 + 33N (p)k − Tr
(
(F kp )∗|Vz∗

)
−N (p)k (Tr

(
(F kp )∗|H1(E1)

)
+ Tr

(
(F kp )∗|H1(E2)

)
)

+ 33N (p)2 k +N (p)3 k ,

where E1 and E2 are the elliptic curves (S1)(4:
√
−1) and (S2)(16:−

√
−1). Counting points of Ei

over FN (p)k , we obtain Tr
(
(F kp )∗|H1(Ei)

)
. We can then compute the traces of (Fp)∗ and (F 2

p )∗

on Vz∗ and, combining this with Poincaré duality, we get the characteristic polynomials listed
below:

p det
(
1− T F ∗p |Vz∗

)
3− 2

√
−1 1 + 24T + 4394T 2 + 52728T 3 + 4826809T 4

3 + 2
√
−1 1− 20T + 3198T 2 − 43940T 3 + 4826809T 4

5− 2
√
−1 1− 356T + 66062T 2 − 8682484T 3 + 594823321T 4

5 + 2
√
−1 1 + 220T + 28478T 2 + 5365580T 3 + 594823321T 4

6−
√
−1 1− 124T + 105006T 2 − 6280972T 3 + 2565726409T 4

6 +
√
−1 1 + 108T + 75998T 2 + 5470524T 3 + 2565726409T 4

5− 4
√
−1 1 + 268T + 109142T 2 + 18470828T 3 + 4750104241T 4

5 + 4
√
−1 1 + 656T + 245426T 2 + 45212176T 3 + 4750104241T 4

7 1− 456T + 157682T 2 − 53647944T 3 + 13841287201T 4

7− 2
√
−1 1 + 452T + 334430T 2 + 67292404T 3 + 22164361129T 4

7 + 2
√
−1 1− 540T + 368350T 2 − 80393580T 3 + 22164361129T 4

6− 5
√
−1 1 + 1612T + 1101294T 2 + 365893372T 3 + 51520374361T 4

6 + 5
√
−1 1 + 152T + 141642T 2 + 34501112T 3 + 51520374361T 4

8− 3
√
−1 1− 1088T + 684594T 2 − 423250496T 3 + 151334226289T 4

8 + 3
√
−1 1 + 676T + 855414T 2 + 262975492T 3 + 151334226289T 4

8− 5
√
−1 1− 444T + 1361878T 2 − 313006236T 3 + 496981290961T 4

9− 4
√
−1 1− 380T + 1713990T 2 − 346815740T 3 + 832972004929T 4

9 + 4
√
−1 1− 356T − 502266T 2 − 324911588T 3 + 832972004929T 4

10−
√
−1 1− 100T + 1999598T 2 − 103030100T 3 + 1061520150601T 4

10 +
√
−1 1− 1668T + 2704174T 2 − 1718542068T 3 + 1061520150601T 4

10− 3
√
−1 1 + 872T + 1069290T 2 + 1129265288T 3 + 1677100110841T 4

10 + 3
√
−1 1 + 1356T + 3049166T 2 + 1756059324T 3 + 1677100110841T 4

8− 7
√
−1 1 + 1068T + 3150214T 2 + 1541013996T 3 + 2081951752609T 4

8 + 7
√
−1 1 + 2760T + 4789618T 2 + 3982395720T 3 + 2081951752609T 4
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11− 4
√
−1 1 + 4924T + 10899446T 2 + 12661342172T 3 + 6611856250609T 4

11 + 4
√
−1 1 + 840T + 1059010T 2 + 2159936520T 3 + 6611856250609T 4

10− 7
√
−1 1− 3420T + 8874142T 2 − 11313185580T 3 + 10942526586601T 4

10 + 7
√
−1 1 + 4116T + 10461886T 2 + 13615518084T 3 + 10942526586601T 4

11− 6
√
−1 1 + 2036T + 8471406T 2 + 7879102148T 3 + 14976071831449T 4

11 + 6
√
−1 1− 44T + 7627374T 2 − 170275292T 3 + 14976071831449T 4

10− 9
√
−1 1− 1804T + 12381486T 2 − 10697252764T 3 + 35161828327081T 4

10 + 9
√
−1 1 + 4132T + 13224222T 2 + 24501689812T 3 + 35161828327081T 4

14−
√
−1 1 + 2276T + 16032254T 2 + 17400868948T 3 + 58451728309129T 4

14 +
√
−1 1 + 2884T + 13999214T 2 + 22049255732T 3 + 58451728309129T 4

15− 4
√
−1 1 + 1480T + 25639026T 2 + 20716331080T 3 + 195930594145441T 4

15 + 4
√
−1 1 + 5964T + 34528070T 2 + 83481215244T 3 + 195930594145441T 4

14− 9
√
−1 1 + 10492T + 68156958T 2 + 222996265036T 3 + 451729667968489T 4

14 + 9
√
−1 1− 6008T + 24283482T 2 − 127693629464T 3 + 451729667968489T 4

16− 5
√
−1 1 + 1316T + 44799830T 2 + 29199461956T 3 + 492309163417681T 4

14− 11
√
−1 1 + 1872T + 56360698T 2 + 59632584336T 3 + 1014741853230169T 4

17− 8
√
−1 1 + 2292T − 48446426T 2 + 100818151284T 3 + 1934854145598529T 4

We remark that these agree with the polynomials obtained from the deformation method. Each of
the characteristic polynomials factors to the product of the characteristic polynomials of ρ+,`(Fp)
and ρ−,`(Fp). To find out which factor corresponds to which representation, we relate the number
of fixed points of φz∗ ◦Fp to the difference of the traces of ρ+,`(Fp) and ρ−,`(Fp). The action of φz∗
on the fourth cohomology can be worked out explicitly and this gives Tr

(
φ∗z∗ |H

4(Xz∗)
)

= 26.

The degree of φz∗ is 2 · 8 = 16 and thus Tr
(
φ∗z∗ |H

6(Xz∗)
)

= 16. On the other hand, we see

that Tr
(
φ∗z∗ |H

3(Xz∗)
)

= 0 and since Λ(φz∗) = 54, we also get Tr
(
φ∗z∗ |H

2(Xz∗)
)

= 11. We also see

that Tr
(
F ∗p φ

∗
z∗ |H

3(Xz∗)/Vz∗
)

= 0 and the Lefschetz trace formula then gives

Λ(φz∗ ◦ Fp) = 1 + 11N (p)− Tr
(
F ∗p φ

∗
z∗ |Vz∗

)
+ 26N (p)2 + 16N (p)3 .

From Tr
(
F ∗p φ

∗
z∗ |Vz∗

)
= 4 (Tr(ρ+,λ(Fp))− Tr(ρ−,λ(Fp))), we obtain the polynomials below:

p det(1− T ρ−,`(Fp)) det(1− T ρ+,`(Fp))

3− 2
√
−1 1 + 24T + 2197T 2 1 + 2197T 2

3 + 2
√
−1 1− 46T + 2197T 2 1 + 26T + 2197T 2

5− 2
√
−1 1− 298T + 24389T 2 1− 58T + 24389T 2

5 + 2
√
−1 1− 70T + 24389T 2 1 + 290T + 24389T 2

6−
√
−1 1− 50T + 50653T 2 1− 74T + 50653T 2

6 +
√
−1 1− 114T + 50653T 2 1 + 222T + 50653T 2

5− 4
√
−1 1 + 350T + 68921T 2 1− 82T + 68921T 2

5 + 4
√
−1 1 + 328T + 68921T 2 1 + 328T + 68921T 2

7 1 + 132T + 117649T 2 1− 588T + 117649T 2

7− 2
√
−1 1 + 346T + 148877T 2 1 + 106T + 148877T 2

7 + 2
√
−1 1− 222T + 148877T 2 1− 318T + 148877T 2

6− 5
√
−1 1 + 758T + 226981T 2 1 + 854T + 226981T 2

6 + 5
√
−1 1 + 640T + 226981T 2 1− 488T + 226981T 2

8− 3
√
−1 1 + 80T + 389017T 2 1− 1168T + 389017T 2

8 + 3
√
−1 1 + 530T + 389017T 2 1 + 146T + 389017T 2

8− 5
√
−1 1 + 90T + 704969T 2 1− 534T + 704969T 2

9− 4
√
−1 1− 574T + 912673T 2 1 + 194T + 912673T 2

9 + 4
√
−1 1− 1714T + 912673T 2 1 + 1358T + 912673T 2

10−
√
−1 1− 302T + 1030301T 2 1 + 202T + 1030301T 2

10 +
√
−1 1− 1062T + 1030301T 2 1− 606T + 1030301T 2

10− 3
√
−1 1− 872T + 1295029T 2 1 + 1744T + 1295029T 2

10 + 3
√
−1 1 + 702T + 1295029T 2 1 + 654T + 1295029T 2

8− 7
√
−1 1 + 390T + 1442897T 2 1 + 678T + 1442897T 2

71



5 Modularity of some pure motives of rank four

8 + 7
√
−1 1 + 1404T + 1442897T 2 1 + 1356T + 1442897T 2

11− 4
√
−1 1 + 1910T + 2571353T 2 1 + 3014T + 2571353T 2

11 + 4
√
−1 1 + 2484T + 2571353T 2 1− 1644T + 2571353T 2

10− 7
√
−1 1− 2526T + 3307949T 2 1− 894T + 3307949T 2

10 + 7
√
−1 1 + 1434T + 3307949T 2 1 + 2682T + 3307949T 2

11− 6
√
−1 1 + 466T + 3869893T 2 1 + 1570T + 3869893T 2

11 + 6
√
−1 1− 358T + 3869893T 2 1 + 314T + 3869893T 2

10− 9
√
−1 1− 1442T + 5929741T 2 1− 362T + 5929741T 2

10 + 9
√
−1 1 + 3770T + 5929741T 2 1 + 362T + 5929741T 2

14−
√
−1 1 + 1882T + 7645373T 2 1 + 394T + 7645373T 2

14 +
√
−1 1 + 3278T + 7645373T 2 1− 394T + 7645373T 2

15− 4
√
−1 1 + 2444T + 13997521T 2 1− 964T + 13997521T 2

15 + 4
√
−1 1 + 4518T + 13997521T 2 1 + 1446T + 13997521T 2

14− 9
√
−1 1 + 6614T + 21253933T 2 1 + 3878T + 21253933T 2

14 + 9
√
−1 1− 8224T + 21253933T 2 1 + 2216T + 21253933T 2

16− 5
√
−1 1 + 754T + 22188041T 2 1 + 562T + 22188041T 2

14− 11
√
−1 1− 1932T + 31855013T 2 1 + 3804T + 31855013T 2

17− 8
√
−1 1 + 12882T + 43986977T 2 1− 10590T + 43986977T 2

We now want to find a Bianchi newform f− of weight 4 and a Bianchi newform f+ of weight 2
such that the traces of Frobenius elements with respect to the representations ρ±,` agree with
the ones for ρf−,λ and ρf+,λ(−1) for all primes that we considered above. Computing Hecke
eigenvalues using the script HeckeEigenvalues.mgm from [17], we find that this is true for the
unique newform f− ∈ S4(Γ0(26 − 2

√
−1)) with Hecke eigenvalue a2−

√
−1 = 4 and the unique

newform f+ ∈ S2(Γ0(26 − 2
√
−1)) with Hecke eigenvalue a2−

√
−1 = −4. As we show now, this

suffices to conclude the equality for all primes p.

Theorem 11. The representations

ρ−,` , ρf−,λ : Gal(K/K) → GL2(Ef−,λ)

have isomorphic semisimplifications. The same holds for the representations

ρ+,` , ρf+,λ(−1) : Gal(K/K) → GL2(Ef+,λ) .

Proof. We first determine suitable choices for the number fields Ef− and Ef+ . Since f− has Hecke
eigenvalues a3−2

√
−1 = −24, a5+2

√
−1 = 70, a3+2

√
−1 = 46 6= 0 and a5−2

√
−1 = 298 6= 0, we can

choose Ef− to be the compositum of the splitting fields of 1+24T+2197T 2 and 1− 70T + 24389T 2,
i.e. Ef− = Q(

√
−417,

√
−5791). In this field, we have the prime factorization 2 = λ2

1 λ
2
2 and the

completion of Ef− at both of the primes λ1 and λ2 is isomorphic to Q2(
√
−1). Analogously, to

obtain a possible choice for the number field Ef+ , we use the Hecke eigenvalues a5−2
√
−1 = 2 6= 0

and a5+2
√
−1 = −10 6= 0. We can thus choose Ef+ to be the compositum of the splitting fields of

the polynomials 1− 2T + 29T 2 and 1 + 10T + 29T 2, i.e. Ef+ = Q(
√
−7,
√
−1). In this field, we

have the prime factorization 2 = λ2
1 λ

2
2 and the completion of Ef+ at both of the primes λ1 and λ2

is again isomorphic to Q2(
√
−1). We can further conjugate the representations so that the image

is in GL2(Z2[
√
−1]) (see e.g. section 1 in [64]) and from the computed characteristic polynomi-

als, Proposition 10 and Proposition 11, it then follows that the representations have isomorphic
semisimplifications.

Analogously, it follows that the elliptic curves E1 and E2 are associated with the unique Bianchi
newform g1 ∈ S2(Γ0(12 − 14

√
−1)) with Hecke eigenvalue a2−

√
−1 = 0 and the unique Bianchi

newform g2 ∈ S2(Γ0(26 − 2
√
−1)) with Hecke eigenvalue a2−

√
−1 = −2. For a suitable choice of

local L-factors for primes of bad reduction, one finds that the Hasse-Weil zeta function is given by

ζ(Xz∗ , s) =
L(f−, s)L(f+, s− 1)L(g1, s− 1)L(g2, s− 1)

ζK(s) ζK(s− 1)33 ζK(s− 2)33 ζK(s− 3)
.
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Modularity of the periods

We end this section with a numerical study of the period matrix of Vz∗ . The computations were
done using the script PeriodIdentities.gp from [17].

To study the period matrices of Vz∗ , we first note that for |z| < 1/26 one of the periods of Ωz is
given by

Π1(z) = (2πi)3
∞∑
n=0

an z
n .

To get a basis of period functions of Ω, we can look at the monodromy of this period with respect
to z. To state numerical results about the monodromy, we define a local basis of solutions of L by

$(z) =


f1(z)

log(z) f1(z) + f2(z)
1
2 log(z)

2
f1(z) + log(z) f2(z) + f3(z)

1
6 log(z)

3
f1(z) + 1

2 log(z)
2
f2(z) + log(z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. Numerically,
we then find that, when we encircle the point 1/26 counterclockwise, Π1 transforms by

(2πi)3$1 7→
(

7

2
(2πi)3 − 12 ζ(3)

)
$1 − 9 (2πi)2$2 + 24 (2πi)$3 − 48$4 .

This suggests that a basis of period functions of Ω is given by (an analytic continuation of)

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0
0 0 2πi 0

1
4 ζ(3) 0 0 1

 $ .

Taking derivatives, we obtain the matrix of period functions T = (Π,ΘΠ,Θ3Π,Θ4Π). Evaluating
at σ±(z∗), where σ± : K ↪→ C corresponds to the embedding that maps

√
−1 to ±i, we obtain two

period matrices. After rounding to ten digits of precision, we have

T (σ+(z∗)) = A


ω1
− η1

− 0 0
ω2
− η2

− 0 0
0 0 ω1

+ η1
+

0 0 ω2
+ η2

+

 B

with

A =


48 0 48 0
0 48 0 48
−9 16 −1 16
−2 1 −2 9

 , B =


14 + 12

√
−1 −7− 6

√
−1 −1 0

0 0 0 1
0 1 0 1
0 0 1 −2


and (

ω1
− η1

−
ω2
− η2

−

)
=

(
−0.1011243985− 0.2021879387 i −0.1183200150 + 0.1021205156 i
0.07172909004− 0.1221585214 i −0.08873323456 + 0.03077960964 i

)
(
ω1

+ η1
+

ω2
+ η2

+

)
=

(
0.5957500779− 1.069965099 i −0.1724046435− 0.5900557656 i
0.4701143224− 0.2328055773 i 0.1169688027− 0.1569580219 i

)
.

The period matrix of the conjugate point is given by

T (σ−(z∗)) =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 T (σ+(z∗)) .

73



5 Modularity of some pure motives of rank four

As expected, the period matrix can be brought to a block diagonal form. Since we are not aware
of a fully developed theory of periods associated with Bianchi modular forms, we can just give some
partial results for a possible modularity of the periods. For this, we consider an elliptic curve E
associated with f+ and define the period matrix of f+ by the period matrix of E. We choose the
elliptic curve E with affine equation y2 = x3 +(1−

√
−1)x2 +1. This is easily seen to be associated

with f+ by counting the number of points over finite fields. We have a period matrix associated
with Eσ+ and we expect that (after mutliplication by 2πi) this gives the four periods ω1

+, ω2
+, η1

+

and η2
+. The first singular homology of Eσ+(C) is generated by double covers of the lines γ1 and γ2

depicted below:

Re x

Im x

i
1
2 (−1−

√
1− 4 i)

1
2 (−1 +

√
1− 4 i)

γ1

γ2

Numerically, we indeed find that(
ω1

+ η1
+

ω2
+ η2

+

)
= 2πi

(
4 0
1 1

)( ∫
γ1

dx
y

∫
γ1
x dx

y∫
γ2

dx
y

∫
γ2
x dx

y

)(
1
48

4111
346800 −

499
173400 i

0 − 13
14450 + 42

7225 i

)
,

where in the integrand we choose the root y =
√
x3 + (1−

√
−1)x2 + 1 with non-negative real

part.
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In this chapter, we find new classes of elliptic modular forms and their periods. More concretely,
we find these from the study of fourteen specific limit mixed Hodge structures of rank four. The
limit mixed Hodge structures are associated with families of Calabi-Yau threefolds, one of which
is the family of mirror quintics, which led to the discovery of mirror symmetry and which was
studied in the famous paper [20] by Candelas, de la Ossa, Green and Parkes. In this introduction,
we give an overview of our results for this specific case. The corresponding Picard-Fuchs operator
is given by

Θ4 − 55 z (Θ + 1/5) (Θ + 2/5) (Θ + 3/5) (Θ + 4/5) with Θ = z
d

dz

and, for 0 < z < 1/55, a basis of solutions is given by

$(z) =


f1(z)

log(z) f1(z) + f2(z)
1
2 log(z)

2
f1(z) + log(z) f2(z) + f3(z)

1
6 log(z)

3
f1(z) + 1

2 log(z)
2
f2(z) + log(z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. These
solutions combine to a basis of period functions by

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0

50 (2πi)3

24
1
2 (2πi)2 −5 (2πi) 0

−200 ζ(3) 50 (2πi)2

24 0 5

 $ .

In terms of the variable δ = 1− 55z, the period matrix of the limit mixed Hodge structure of the
so-called conifold point δ = 0 can now be obtained from the expansion

Π(z) =


−2πi

√
5 b d c

0 w+ e+ a+

0 1
2 w

+ + w− 1
2 e

+ + e− 1
2 a

+ + a−

0 0 0 (2πi)2
√

5




log(δ) ν(δ) +O(δ3)
1 +O(δ3)
δ2 +O(δ3)

ν(δ)


with the so-called vanishing period function ν(δ) = δ+O(δ2), real constants w+, e+, a+ and purely
imaginary constants w−, e−, a−, b, d, c. These constants satisfy the quadratic relations

det

(
w+ e+

w− e−

)
= −(2πi)3 5

2

det

(
w+ a+

w− a−

)
= −(2πi)2

√
5 b

det

(
e+ a+

e− a−

)
= −(2πi)3 9

4
− (2πi)2

√
5 d .

In [60], it was shown that the Galois representations of a resolution of the conifold fiber are
associated with the unique newform f ∈ S4(Γ∗0(25)) with Hecke eigenvalue a2 = 1. Because of this,
one expects that the periods of the limit mixed Hodge structure are also related with f . Evidence
for this has been given in [12], where numerical results suggest that the pure periods w± and e±

are periods and quasiperiods of f . In this chapter, we prove this and give similar identifications
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for the remaining periods. To state our results for the example of the family of mirror quintics,
we define several modular forms. First, we define f50(τ) = 5 f(τ) − 20 f(2 τ) and the modular

function t50 = (1−h) (3+h)2

5 (1−h−h2) in terms of the normalized Hauptmodul h(τ) = q−1 + O(q) of Γ∗0(50).

We further define the two meromorphic modular forms

F50 =
t50 (7 + 13 t50 + 5 t250 − 25 t350)

2 (1− 5 t50)4
f50 and g50 = −5 t50 (1− t50)

(1− 5 t50)2
f50 .

The form F50 is a meromorphic partner of f50. In particular, the residues of τn F50(τ) vanish
for n = 0, 1, 2. The residues of τn g50(τ) for n = 0, 1, 2 do not vanish, but they lie in 2

(2πi)4 Λ with

the lattice Λ =
√

5 (2πi)2

500 Z. This allows to define associated period polynomials with coefficients
in C/Λ. Our three main results are the following:

- The classes

rf50 , rF50
∈ H1

par(Γ0(50), 〈1, τ, τ2〉C)

rg50 ∈ H1
par(Γ0(50), 〈1, τ, τ2〉C/Λ)

decompose as

(rf50 , rF50
, rg50) = (r+, r−)

(
w+ e+ a+

w− e− a−

)
for some r± ∈ H1

par(Γ0(50), 〈1, τ, τ2〉Q)±.

- In terms of the CM points τ± = ± 2
5 + i

√
2

10 , we have

b = (2πi)3

∫ τ+

τ−

f50(τ) dτ

d = lim
ε↓0

(
(2πi)3

∫ τ+

τ−

F50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(
− 1

5 t′50(τ−) t′50(τ+) ( 1
ε3 + 1)− 257

480

))

c = lim
ε↓0

(
(2πi)3

∫ τ+

τ−

g50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(

1
ε + log

(
−5 t′50(τ−) t′50(τ+) ε2

)))
,

where

t′50(τ±) = ∓
Γ( 1

8 )2Γ( 3
8 )2

2
√

10π2
.

Here, the integral in the expression for c is along the straight line between τ− and τ+.

- Numerical computations suggest that

1 +
1

2πi
√

5w−
det

(
w− a−

b c

)
= −5

3
log 5− 125

6

2πi
√

5L′(f ⊗ χ, 2)

w−

in terms of the quadratic character χ associated with Q(
√

5).

The structure of this chapter is as follows. In the first section, we introduce the fourteen hy-
pergeometric variations of Hodge structures and review the modularity of two-dimensional Galois
representations associated with resolutions of the conifold fibers. In the second section, we review
the limit mixed Hodge structure of the conifold fiber. In the third section, we use the method
of “fibering out” to prove the modularity of pure periods of the limit mixed Hodge structure for
twelve cases. In the third section, we make further use of this method to express, for the same
twelve cases, all mixed periods in terms of integrals of modular forms. Some of these modular
forms have residues and these give a new class of modular forms which is yet to be understood in
more generality. In the last section, we give new numerical identities between the mixed periods
and central values of derivatives of L-functions.

The results of Section 6.3 and Section 6.4 are part of work in progress with Vasily Golyshev and
Albrecht Klemm [18]. The ideas that led us to the numerical computations in Section 6.5 originate
from discussions with Spencer Bloch, Vasily Golyshev and Matt Kerr.
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6.1 Hypergeometric families and their conifold fibers

6.1 Hypergeometric families and their conifold fibers

There are fourteen hypergeometric variations associated with one-parameter families X of Calabi-
Yau threefolds. The corresponding Picard-Fuchs operators are of the form

Θ4 − 1
µ z (Θ + a1) (Θ + a2) (Θ + a3) (Θ + a4) with Θ = z

d

dz

for the hypergeometric indices {a1, a2, a3, a4} and µ given in Table 6.1. Using that the hypergeo-
metric indices come in pairs which add up to one, one finds that the Riemann symbol associated
with the Picard-Fuchs operator is

P


0 µ ∞
0 0 a1

0 1 a2

0 1 a3

0 2 a4

 .

In Section 5.1, Section 5.2 and Section 5.3, we considered regular points of two of the hypergeo-
metric operators, but now we are particularly interested in the so-called conifold fiber Xµ of each
model. In section 5 of [53], geometric realizations of the fourteen families are summarized and it

is shown that the singular fiber Xµ can be resolved to a rigid Calabi-Yau threefold X̂µ defined

over Q. Here, rigidity means that the Hodge number h2,1(X̂µ) (which equals the dimension of the
complex structure moduli space) vanishes. It is known that the associated two-dimensional Galois
representations ρ` : Gal(Q/Q) → GL2(Q`) are modular. For the case with the hypergeometric
indices { 1

5 ,
2
5 ,

3
5 ,

4
5} (corresponding to the family of mirror quintics), this was shown in [60]. The

result for all fourteen cases follows from the modularity theorem for rigid Calabi-Yau threefolds
defined over Q [38]. In particular, in each case there is an elliptic newform f ∈ S4(Γ0(N)) of some
level N such that

det(1− T ρ`(Fp)) = 1− ap T + p3 T 2

in terms of the Hecke eigenvalues ap of f . The levels can be found in Table 6.1 and a simple way
to compute the Hecke eigenvalues for primes p not dividing 1/µ is by using the supercongruences

ap ≡
p−1∑
k=0

(a1)k (a2)k (a3)k (a4)k
k!4

mod p3

with the Pochhammer symbol (a)k = a (a+1) · · · (a+k−1) together with the bound |ap| ≤ 2 p3/2.
These congruences were discovered in [58] and later proven in [53].

N a1, a2, a3, a4 1/µ

8 1
2 ,

1
2 ,

1
2 ,

1
2 28

9 1
4 ,

1
3 ,

2
3 ,

3
4 2633

16 1
4 ,

1
2 ,

1
2 ,

3
4 210

25 1
5 ,

2
5 ,

3
5 ,

4
5 55

27 1
3 ,

1
3 ,

2
3 ,

2
3 36

32 1
4 ,

1
4 ,

3
4 ,

3
4 212

36 1
3 ,

1
2 ,

1
2 ,

2
3 2433

N a1, a2, a3, a4 1/µ

72 1
6 ,

1
2 ,

1
2 ,

5
6 2833

108 1
6 ,

1
3 ,

2
3 ,

5
6 2436

128 1
8 ,

3
8 ,

5
8 ,

7
8 216

144 1
6 ,

1
4 ,

3
4 ,

5
6 21033

200 1
10 ,

3
10 ,

7
10 ,

9
10 2855

216 1
6 ,

1
6 ,

5
6 ,

5
6 2836

864 1
12 ,

5
12 ,

7
12 ,

11
12 21236

Table 6.1: Hypergeometric indices and the level N of the newform associated with the conifold
fiber.
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6 Modularity of some mixed period matrices of rank four

6.2 The limit mixed Hodge structure of the conifold fibers

We begin by briefly reviewing the limit mixed Hodge structure of the conifold fiber as discussed
in detail in [12]. Consider any of the fourteen sets of hypergeometric indices. For 0 < z < µ, we
define a basis of solutions of the associated Picard-Fuchs operator by

$(z) =


f1(z)

log(z) f1(z) + f2(z)
1
2 log(z)

2
f1(z) + log(z) f2(z) + f3(z)

1
6 log(z)

3
f1(z) + 1

2 log(z)
2
f2(z) + log(z) f3(z) + f4(z)


with convergent power series normalized by f1(0) = 1 and f2(0) = f3(0) = f4(0) = 0. One actual
period function of the underlying family of Calabi-Yau threefolds is given by (2πi)3$1. To obtain
a basis of period functions, one can consider the monodromy of this period function with respect
to the path encircling the conifold point counterclockwise. This has the form

(2πi)3$1 7→ (2πi)3$1 −
(
χ ζ(3)$1 + c2 ·D

(2πi)2

24
$2 + κ$4

)
with integers χ, c2 ·D, κ. In the context of mirror symmetry, these integers arise as topological
invariants and the values are listed in table 1 in [12]. It follows that a basis of period functions is
given by

Π =


(2πi)3 0 0 0

0 (2πi)2 0 0

c2 ·D (2πi)3

24 σ (2πi)2 −κ 2πi 0

χ ζ(3) c2 ·D (2πi)2

24 0 κ

 $ ,

where σ is 0 or 1/2 depending on whether κ is even or odd. In this basis, the monodromy matrices
(acting by Π 7→MΠ) are integral and symplectic with respect to the intersection matrix

Σ =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

For loops counterclockwise around 0 and µ, the monodromy matrices are given by

M0 =


1 0 0 0

1 1 0 0

σ − κ
2 −κ 1 0

c2·D+2κ
12 σ + κ

2 −1 1

 and Mµ =


1 0 0 −1

0 1 0 0

0 0 1 0

0 0 0 1

 .

For the fundamental matrix W = (Π,ΘΠ,Θ2Π,Θ3Π), the intersection pairing gives the quadratic
relation

W (z)T ΣW (z) = κ (2πi)3


0 0 0 1

1−z/µ

0 0 − 1
1−z/µ − z/µ

(1−z/µ)2

0 1
1−z/µ 0

(1− 4
3 α) z/µ

(1−z/µ)2

− 1
1−z/µ

z/µ
(1−z/µ)2 − (1− 4

3 α) z/µ

(1−z/µ)2 0


with α = 3

8

∑
i a

2
i .

We can now describe the limit mixed Hodge structure for δ = 1 − z/µ → 0. This can be
computed as explained in Section 4.2. On the level of the Hodge diamond, going from the pure
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6.3 Modularity of the pure periods

Hodge structure of weight 3 associated with a regular point to the limit mixed Hodge structure
associated with the conifold point δ = 0 has the following effect:

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

→

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

Here, the parts of the weight filtration with weight 2, 3 and 4 consist of the image of Mµ − 1, the
kernel of Mµ − 1 and the whole space. We define an associated period matrix Tµ by

Π(z) = Tµ


log(δ) ν(δ) +O(δ3)

1 +O(δ3)
δ2 +O(δ3)

ν(δ)


with the so-called vanishing period function ν(δ) = δ+O(δ2). Using the monodromy matrices, the
quadratic relations from the intersection pairing and that f1(z) > 0 for 0 < z < µ, one finds that

Tµ =


−2πi

√
κ b d c

0 w+ e+ a+

0 σ w+ + w− σ e+ + e− σ a+ + a−

0 0 0 (2πi)2
√
κ


with real constants w+, e+, a+ and purely imaginary constants w−, e−, a−, b, d, c satisfying

det

(
w+ e+

w− e−

)
= −(2πi)3 κ

2

det

(
w+ a+

w− a−

)
= −(2πi)2

√
κ b

det

(
e+ a+

e− a−

)
= −(2πi)3 κα− (2πi)2

√
κ d .

We remark that the pure period matrices of the graded pieces are given by

2πi
√
κ ,

(
w+ e+

w− e−

)
, (2πi)2

√
κ .

In particular, the pure period matrix of weight 3 corresponds to the period matrix of H3(X̂µ). It
is expected that the limit mixed Hodge structure of the conifold fiber is motivic, i.e. that it is part
of a mixed motive, but we are not aware of a proof of this.

6.3 Modularity of the pure periods

The periods w± and e± are periods of the rigid Calabi-Yau threefold X̂µ. Due to the modularity of
the corresponding Galois representations, it is expected that these periods are given by periods and
quasiperiods of the associated newform f . Numerical results in this direction were given in [73],
where for each case the values of L(f, s) for s = 1, 2, 3 are given in terms of w+ and w−. In [12],
stronger numerical results have been given, which express w± and e± as periods and quasiperiods
of f . For the case with hypergeometric indices { 1

2 ,
1
2 ,

1
2 ,

1
2}, the numerical results further have

been proven by constructing a correspondence with a Kuga-Sato threefold. In this section, we use
another method, the so-called fibering out, to prove the modularity of w± and e± for twelve cases.

Theorem 12. Consider any of the twelve hypergeometric variations with hypergeometric indices
not equal to { 1

6 ,
1
6 ,

5
6 ,

5
6} or { 1

12 ,
5
12 ,

7
12 ,

11
12}. Then the numbers w± and e± occurring in the period

matrix Tµ are periods and quasiperiods of the associated newform f .
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6 Modularity of some mixed period matrices of rank four

Proof. The proof uses the method of fibering out from [37] and is analogous for all twelve cases. We
give it in detail for the case with hypergeometric indices { 1

5 ,
2
5 ,

3
5 ,

4
5} (i.e. for the family of mirror

quintics) and later comment on the other cases. The first important ingredient is an expression
of the period functions of X in terms of integrals of period functions of a rank three variation of
Hodge structures. To obtain this, we use the elementary identity

4F3

( 1
5

2
5

3
5

4
5

1 1 1
; 55z

)
=

∞∑
n=0

(5n)!

n!5
zn

=
1

2πi

∮
|t|=1/5

( ∞∑
n=0

∞∑
k=−n

(5n+ k)!

n!4 (n+ k)!
tk zn

)
dt

t

=
1

2πi

∮
|t|=1/5

1

1− t

( ∞∑
n=0

(4n)!

n!4

(
z

t (1− t)4

)n)
dt

t

=
1

2πi

∮
|t|=1/5

1

1− t 3F2

( 1
2

1
4

3
4

1 1
; 28 z

t (1− t)4

)
dt

t

which holds for |z| ≤ 1/55. The rank three hypergeometric function in the integral is associated
with a family of K3 surfaces and we say that we have fibered out a period function of the family
of mirror quintics. Note that the contour of integration can be deformed (without crossing sin-
gularities of the integrand) and we have just chosen the circle |t| = 1/5 so that the identity is
valid for all |z| ≤ 1/55. To derive similar identities for a basis of period functions, we consider the
monodromy with respect to z. To do so, we first write our identity in a more conceptual form. For
this, consider the operator Θ3 − 28 t (Θ + 1/2) (Θ + 1/4) (Θ + 3/4) with Θ = t d

dt . This annihilates
the rank three hypergeometric function and for |t| < 1/28, a basis of solutions is given by

%(t) =

(2πi)2 0 0
0 2πi 0
0 0 1

 f1(t)
f1(t) log(t) + f2(t)

1
2f1(t) log(t)

2
+ f2(t) log(t) + f3(t)


with power series normalized by f1(0) = 1 and f2(0) = f3(0) = 0. Now fix some t0 � 0 and define

Iz : π1(Mz, t0)×Q3 → C

(γ, v) 7→
∫
γ

1

t (1− t)
v · φ∗z%(t) dt ,

where φz(t) = z
t (1−t)4 and Mz = P1 r φ−1

z ({0, 1/28,∞}). Here, the integrand is understood to

be analytically continued along γ. Our identity can then be rewritten as Π1(z) = Iz(γ1, (1, 0, 0))
with γ1 as depicted below for 0 < z < 1/55:

γ1 :
0 1 ∞t0

Applying any monodromy M , we obtain an identity (M Π)1(z) = Iz(Mγ1, (1, 0, 0)) for some (not
necessarily unique) Mγ1 ∈ π1(Mz, t0). To determine possible choices of Mγ1 for different mon-
odromies M , we look at the variation ofMz with z. For a loop which starts at some 0 < z < 1/55

and encircles 0 (respectively 1/55) counterclockwise, the action on the holes of Mz is depicted by
the solid (respectively dashed) arrows below:
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6.3 Modularity of the pure periods

0 1 ∞

Using this action, we can look at the corresponding deformation of γ1 to obtain the following loops:

M1/55γ1 :
0 1 ∞t0

M1/55M0γ1 :
0 1 ∞t0

More generally, for any γ ∈ π1(Mz, t0) and any v ∈ Q3 that is invariant under the monodromy
associated with γ, Iz(γ, v) is locally a holomorphic function of z which does not depend on the
choice of t0 and solves the Picard-Fuchs equation associated with the family of mirror quintics.
Integrating by parts, one then finds that the first two derivatives with respect to z are given by

I ′z(γ, v) =
1

z

∫
γ

5

(1− 5 t)2
v · φ∗z%(t) dt and I ′′z (γ, v) =

1

z2

∫
γ

30 t (3− 5 t)

(1− 5 t)4
v · φ∗z%(t) dt .

Even more generally, it will turn out to be useful to consider sums of pairs (γi, vi) that are in-
variant under the monodromy in the sense that

∑
i vi (ρ(γi)− 1) = 0 in terms of the monodromy

representation ρ. In this case,
∑
i Iz(γi, vi) is again locally a holomorphic function of z which does

not depend on the choice of t0 and solves the Picard-Fuchs equation associated with the family of
mirror quintics.

To evaluate our integral identities in the limit z → 1/55, we use the second important ingredient
for the proof, which is the well-known modularity of %. More precisely, in terms of the normalized
Hauptmodul h(τ) = q−1 +O(q) of Γ∗0(2) and t2 = 1

h+104 , we have

t∗2%(τ) = (2πi)2

 1
τ

1
2τ

2

 E(τ)

with the unique Eisenstein series E ∈M2(Γ0(2)) normalized by E(τ) = 1+O(q). It is not clear that
this helps since we need to evaluate the pullback φ∗z% and not %. However, in the limit z → 1/55,
we can use that there are modular solutions to φ1/55(t(τ)) = t2(5 τ). We fix the solution that is
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6 Modularity of some mixed period matrices of rank four

given in terms of the normalized Hauptmodul h(τ) = q−1 + O(q) of Γ∗0(50) by t50 = (1−h) (3+h)2

5 (1−h−h2) .

In terms of the Dedekind eta function, one can express the Hauptmodul h as

h(τ) =
η(τ) η(50 τ)

η(2 τ) η(25 τ)
+
η(2 τ) η(25 τ)

η(τ) η(50 τ)
− 1 .

We obtain the pullback

t∗50

(
1

t (1− t)
φ∗1/55%(t) dt

)
= (2πi)3

 1
5 τ

25
2 τ2

 f50 dτ ,

where f50(τ) = 5 f(τ)− 20 f(2 τ) in terms of the newform f . We now use this pullback to express

Iz(M1/55M0γ1, (1, 0, 0)) + 4 Iz(γ1, (1, 0, 0))

= (M1/55M0 Π)1(z) + 4 Π1(z)

= (− 5
2 w

+ + w−,− 5
2 e

+ + e−,− 5
2 a

+ + a− − (2πi)2
√

5)

 1 +O(δ3)
δ2 +O(δ)

δ + 7
10 δ

2 +O(δ3)


in terms of integrals over the upper half-plane. One has to be careful with the limit z → 1/55

because in this limit the two holes of Mz that are between 0 and 1 collide at 1/5 and pinch
the loops there. To circumvent this problem, we decompose the loops into loops that do not get
pinched and loops that get pinched but where the integrand is holomorphic at the two points that
collide. The latter can then be pushed outside of the region that gets pinched. To do this, we need
the monodromy matrices which act on %. For loops which encircle 0 and 1/28 counterclockwise,
these are given by 1 0 0

1 1 0
1
2 1 1

 and

 0 0 −4
0 1 0
− 1

4 0 0

 .

Neglecting an integral around ∞ that vanishes since φ∗z%1 is holomorphic at ∞, one then obtains

Iz(M1/55M0γ1, (1, 0, 0)) + 4 Iz(γ1, (1, 0, 0))

= Iz(γ2, (1, 0, 0)) + Iz(γ3, (−18,−12,−4)) + Iz(γ1, (1, 4,−4))

with the paths γ2 and γ3 sketched below:

0 1 ∞t0

γ2

γ3

The integrand of Iz(γ1, (1, 4,−4)) is holomorphic at the two points which collide for z → 1/55.
Hence, we can push γ1 outside of the region that gets pinched. Now one can safely take the
limit z → 1/55 and pullback the contours by t50. Taking the limit t0 → ∞, we can read off the
corresponding paths on the upper half-plane from the monodromy matrices and we obtain

−5

2
w+ + w− = (2πi)3

(∫ 1/5

∞
f50(τ) dτ +

∫ −3/5

∞
(−18− 60 τ − 50 τ2) f50(τ) dτ

+

∫ 2/5

∞
(1 + 20 τ − 50 τ2) f50(τ) dτ

)
.
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6.3 Modularity of the pure periods

This proves that w± are periods of f . To obtain an equation for e±, we just need to differentiate

with 1
2

d2

dδ2 −
7
10

d
dδ before taking the limit z → 1/55. One then finds that in the equation above,

replacing on the left hand side w± by e± corresponds to replacing on the right hand side f50 by

F50 =
t50 (7 + 13 t50 + 5 t250 − 25 t350)

2 (1− 5 t50)4
f50 .

This modular form is a meromorphic partner of f50 and hence e± are quasiperiods of f . This
finishes the proof of the theorem for the mirror quintic.

For the other cases, we use that identities between our rank four hypergeometric functions and
integrals involving rank three hypergeometric functions exist for all fourteen cases. The identitites
are given in table 12 in [29] and, in Table 6.2, we reproduce a part of this table for our appli-
cations. Each row in the table contains hypergeometric indices {a1, a2, a3, a4}, hypergeometric
indices {b1, b2, b3} and parameters k, l, β and corresponds to the identity

4F3

(a1 a2 a3 a4

1 1 1
; z
)

=
1

2πi

∮
|t|= k

k+l

1

(1− t)β 3F2

(
b1 b2 b3

1 1
;

kk ll

(k + l)k+l

z

tk (1− t)l

)
dt

t

for |z| ≤ 1.

a1, a2, a3, a4 b1, b2, b3 k, l, β Ñ
1
2 ,

1
2 ,

1
2 ,

1
2

1
2 ,

1
2 ,

1
2 1, 1, 1 16

1
4 ,

1
3 ,

2
3 ,

3
4

1
3 ,

1
2 ,

2
3 2, 2, 1 48

1
3 ,

1
2 ,

2
3 1, 1, 1

2 48
1
4 ,

1
2 ,

3
4 2, 1, 1 18

1
4 ,

1
2 ,

1
2 ,

3
4

1
2 ,

1
2 ,

1
2 2, 2, 1 64

1
2 ,

1
2 ,

1
2 1, 1, 1

2 64
1
3 ,

1
2 ,

2
3 3, 1, 1 48

1
4 ,

1
2 ,

3
4 1, 1, 1 8

1
5 ,

2
5 ,

3
5 ,

4
5

1
3 ,

1
2 ,

2
3 3, 2, 1 75

1
4 ,

1
2 ,

3
4 4, 1, 1 50

1
3 ,

1
3 ,

2
3 ,

2
3

1
3 ,

1
2 ,

2
3 2, 1, 1 27

1
4 ,

1
4 ,

3
4 ,

3
4

1
4 ,

1
2 ,

3
4 2, 2, 1 32

1
4 ,

1
2 ,

3
4 1, 1, 1

2 32
1
3 ,

1
2 ,

1
2 ,

2
3

1
2 ,

1
2 ,

1
2 2, 1, 1 —

1
3 ,

1
2 ,

2
3 1, 1, 1 12

1
6 ,

1
2 ,

1
2 ,

5
6

1
2 ,

1
2 ,

1
2 2, 1, 1

2 —
1
3 ,

1
2 ,

2
3 3, 3, 1 —

a1, a2, a3, a4 b1, b2, b3 k, l, β Ñ
1
4 ,

1
2 ,

3
4 1, 2, 1

2 72
1
6 ,

1
2 ,

5
6 1, 1, 1 —

1
6 ,

1
3 ,

2
3 ,

5
6

1
3 ,

1
2 ,

2
3 2, 1, 1

2 108
1
4 ,

1
2 ,

3
4 4, 2, 1 —

1
6 ,

1
2 ,

5
6 2, 1, 1 —

1
8 ,

3
8 ,

5
8 ,

7
8

1
3 ,

1
2 ,

2
3 3, 1, 1

2 —
1
4 ,

1
2 ,

3
4 4, 4, 1 128

1
4 ,

1
2 ,

3
4 2, 2, 1

2 128
1
6 ,

1
2 ,

5
6 1, 3, 1

2 —
1
6 ,

1
4 ,

3
4 ,

5
6

1
4 ,

1
2 ,

3
4 2, 1, 1

2 72
1
6 ,

1
2 ,

5
6 2, 2, 1 —

1
6 ,

1
2 ,

5
6 1, 1, 1

2 —
1
10 ,

3
10 ,

7
10 ,

9
10

1
4 ,

1
2 ,

3
4 4, 1, 1

2 200
1
6 ,

1
2 ,

5
6 2, 3, 1

2 —
1
6 ,

1
6 ,

5
6 ,

5
6

1
6 ,

1
2 ,

5
6 2, 1, 1

2 —
1
12 ,

5
12 ,

7
12 ,

11
12

1
4 ,

1
2 ,

3
4 4, 2, 1

2 —

Table 6.2: Data for integral identities involving hypergeometric functions of rank four and rank

three. The last column gives the level Ñ in the cases where the identity directly allows
to prove the modularity of pure periods of the conifold fiber.

Using these identities, one proceeds as for the example with hypergeometric indices { 1
5 ,

2
5 ,

3
5 ,

4
5}.

However, it is not guaranteed that the pullback of the integrands to the upper half-plane gives
modular forms. If this is the case, then the last column in Table 6.2 gives the level Ñ and it is
easy to see that the periods that one obtains are periods and quasiperiods of f . For example,
the modular form fÑ ∈ S4(Γ0(Ñ)) has either rational Fourier coefficients or Fourier coefficients
in some quadratic field and either is in the same twist class as f or, in the case of N = 9,
both f and fÑ have complex multiplication by Q(

√
−3). The forms fÑ can be found in the script

ModularityFiberingOut.gp from [17].
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6 Modularity of some mixed period matrices of rank four

We remark that the identities in Table 6.2 which do not give cusp forms fÑ still give interesting
identities. In general, one obtains instead of a cusp form a modular form multiplied by an algebraic
function of a modular function. To give one simple example, we consider the identity

4F3

( 1
2

1
2

1
6

5
6

1 1 1
; z

)
=

1

2πi

∮
|t|=1

1√
1− t 3F2

( 1
2

1
6

5
6

1 1
;
z

t

)
dt

t
,

which is actually not featured in Table 6.2. For z = 1, we can substitute t1(τ) = j(τ)/1728 with
the j-invariant j(τ) = q−1 + 744 + 196884 q + · · · . The integrand then becomes

E4(τ)√
−j(τ)/1728

dτ

with the Eisenstein series E4(τ) = 1+240 q+· · · of level 1. As a consequence, integrals of this object
(which is not even a well-defined function on the upper half-plane) must evaluate to the periods w±

of the newform f associated with the conifold fiber (i.e. the unique newform in S4(Γ0(72)) with
Hecke eigenvalue a5 = −14). This can also be checked numerically and, for example, the script
PeriodIdentityLevel1.gp from [17] gives the numerical identity

(2πi)3

2

∫ ∞
0

(τ − z)2 E4(z)√
−j(z)/1728

dz = −w+ τ +
w−
8

(τ2 − 1) .

6.4 Modularity of the mixed periods

In this section, we extend the result from the previous section to the mixed periods. We start with
the following theorem.

Theorem 13. Consider any of the twelve hypergeometric variations with hypergeometric indices
not equal to { 1

6 ,
1
6 ,

5
6 ,

5
6} or { 1

12 ,
5
12 ,

7
12 ,

11
12}. Then there are modular forms

fÑ ∈ S4(Γ0(Ñ))

FÑ ∈ Smero
4 (Γ0(Ñ))

gÑ ∈ Mmero
4 (Γ0(Ñ))

and a one-dimensional Z-lattice Λ ⊂
√
κ (2πi)2 Q such that the residues of τngÑ (τ) for n = 0, 1, 2

are in 2
(2πi)4 Λ and the associated classes

rf
Ñ
, rF

Ñ
∈ H1

par(Γ0(Ñ), 〈1, τ, τ2〉C)

rg
Ñ
∈ H1

par(Γ0(Ñ), 〈1, τ, τ2〉C/Λ)

decompose as

(rf
Ñ
, rF

Ñ
, rg

Ñ
) = (r+, r−)

(
w+ e+ a+

w− e− a−

)
for some r± ∈ H1

par(Γ0(Ñ), 〈1, τ, τ2〉Q)±.

Proof. The forms fÑ and FÑ are defined in the proof of Theorem 12. In the same way, gÑ
is obtained from the pullback of the derivative of the integrand of Iz at z = µ, which, for the
example of the family of mirror quintics, gives

g50 = −5 t50 (1− t50)

(1− 5 t50)2
f50 .

The residues of τn gÑ (z) for n = 0, 1, 2 can only be non-vanishing at points in the preimage of k
k+l .

These residues contribute to the vanishing period function Π4 and thus they must lie in 2
(2πi)4 Λ for
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6.4 Modularity of the mixed periods

some one-dimensional Z-lattice Λ ⊂
√
κ (2πi)2 Q. In particular, we can choose an Eichler integral

of gÑ which is only well-defined modulo 〈1, τ, τ2〉Λ. The classes rf
Ñ

, rF
Ñ

and rg
Ñ

are uniquely
determined by the integrals

(2πi)3

2

∫ τ0

γ−1τ0

p(τ) (fÑ (τ), FÑ (τ), gÑ (τ)) dτ

with γ ∈ Γ0(Ñ) and polynomials p(τ) ∈ 〈1, τ, τ2〉Q that are invariant under |−2γ. Here, the
integrals of gÑ again have to be understood modulo 〈1, τ, τ2〉Λ. That these integrals determine the
cohomology classes follows from the fact that the map

H1
par(Γ0(Ñ), 〈1, τ, τ2〉Q) →

⊕
γ∈Γ0(Ñ)

H1
par(〈γ〉, 〈1, τ, τ2〉Q)

is injective (and that π is transcendental), which we checked for each level Ñ by using the script
CohomologyRestrictionInjectivity.mgm from [17]. What is convenient about these integrals is
that the integrand is invariant under the action of γ and thus the integral does not depend on the
choice of τ0. To prove the statement of the theorem, we want to express these integrals in terms
of the periods of the limit mixed Hodge structure. For this, we push the integrals forward by tÑ
to express them in terms of Iz. It follows that the three classes are determined by the expansion
of integrals Iz(γ, v) for z → µ, where γ is not pinched for z → µ and v is invariant under the
monodromy with respect to γ. In this case, we can write

Iz(γ, v) = c2 ·Π2(z) + c3 ·Π3(z) + c4 ·Π4(z)

and after choosing Λ sufficiently large it only remains to show that always c2, c3, c4 ∈ Q. To
prove this, one acts with sufficiently many monodromy matrices on Π1(z) = Iz(γ1, (1, 0, 0)). We
explain this in detail for the family of mirror quintics. After acting with words of length ≤ 5 in M0

and M1/55 , one obtains a sixteen-dimensional space spanned by monodromy invariant linear combi-
nations of pairs (γ, v). Restricting to linear combinations that do not get pinched for z → 1/55, one
obtains a thirteen-dimensional space. We can supplement this by pairs where the first component
is a loop around the two points that collide for z → 1/55. This loop has trivial monodromy and
hence the integrals correspond to rational multiples of the vanishing period function. One ends up
with a fifteen-dimensional space, i.e. with the complete space of all monodromy invariant linear
combinations of pairs (γ, v) that do not get pinched for z → 1/55. For the other cases, one proceeds
in the same way, except that sometimes one has to add pairs (γ, v) where γ is a loop around a single
point and the integrand corresponding to v is holomorphic at that point. The associated integral
clearly vanishes. In each case, one then obtains the complete space of all monodromy invariant
linear combinations that do not get pinched for z → µ (which has dimension 3 · (k + l)). The
computations were done using the script MonodromyActionFundamentalGroup.gp and the choices
of cycles from FundamentalGroupBases.pdf, both of which can be found in [17].

There are several remarks we would like to make about this theorem. First, the nature of fÑ
and FÑ and their associated periods is well understood. In particular, we can obtain these periods
from the newform f of level N and a meromorphic partner F . The forms f and F (modulo third
derivatives) belong to the finite-dimensional space S4(Γ0(N)) and the subspace that they span

is determined from the Galois representations associated with X̂µ. However, we do not have a
general understanding of gÑ . The theorem shows that gÑ contains the information about the
Hecke eigenvalues, but we were not able to write down a finite-dimensional space to which gÑ
belongs to and which has an action of Hecke operators. An attempt which fails is to consider the
extension of S4(Γ0(Ñ)) by gÑ . This is certainly finite-dimensional, but it is not preserved by the
usual Hecke operators. Another attempt would be to first understand the nature of

gÑ − c1 fÑ − c2 FÑ
with (

c1
c2

)
=

(
w+ e+

w− e−

)−1 (
a+

a−

)
= − 2

(2πi)3 κ

(
(2πi)3 κα+ (2πi)2

√
κ d

−(2πi)2
√
κ b

)
.
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6 Modularity of some mixed period matrices of rank four

The periods of this form are rational multiples of (2πi)2
√
κ, but the Fourier coefficients are now

in general more complicated. Only for the case of level N = 8, numerical computations suggest
that the coefficients are still rational. In terms of the unique newform f of S4(Γ0(8)) and the
Hauptmodul t of Γ0(8) given by t(τ) = η(τ)8 η(4 τ)4/η(2 τ)12, one then finds that the periods of

1− 6 t2 + t4

(1 + t2)2
f

are rational multiples of (2πi)2. Algebraically, this gives for example the identity

1

2

∫ 1

0

1− 6 t2 + t4

(1 + t2)2

(∫ ∞
1

1√
x (x− 1) (x− (1− t2))

dx

)2

dt = − (2πi)2

8
.

In the general case, one can replace gÑ−c1 fÑ−c2 FÑ by a form with simpler Fourier coefficients by
applying suitable linear combinations of Hecke operators (so that only the action on gÑ remains).
All of this suggests that it would be beneficial to have an understanding of modular forms with
simple periods (in our case rational multiples of (2πi)2

√
κ). In the case of weight 2, this would

be simple to understand, since one can consider derivatives of logarithms of modular functions. In
the case of weight 4, we have not made progress in this direction.

We continue with a discussion of the remaining mixed periods b, d, c.

Theorem 14. Consider any of the twelve hypergeometric variations with hypergeometric indices
not equal to { 1

6 ,
1
6 ,

5
6 ,

5
6} or { 1

12 ,
5
12 ,

7
12 ,

11
12}. Then the constants b, d, c can be expressed as (suitably

regularized) integrals of fÑ , FÑ , gÑ between CM points τ±. For example, for the family of mirror

quintics, one can choose τ± = ± 2
5 + i

√
2

10 and then

b = (2πi)3

∫ τ+

τ−

f50(τ) dτ

d = lim
ε↓0

(
(2πi)3

∫ τ+

τ−

F50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(
− 1

5 t′50(τ−) t′50(τ+) ( 1
ε3 + 1)− 257

480

))

c = lim
ε↓0

(
(2πi)3

∫ τ+

τ−

g50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(

1
ε + log

(
−5 t′50(τ−) t′50(τ+) ε2

)))
,

where t′50(τ±) = ∓Γ( 1
8 )2 Γ( 3

8 )2/2
√

10π2. Here, the integral in the expression for c is along the
straight line between τ− and τ+.

Proof. The proof is again analogous for all twelve cases and we only give it in detail for the family
of mirror quintics. Consider the setup of the proof of Theorem 12. In the limit δ → 0, the loop γ1

gets pinched at 1/5 and we have to be careful with divergencies. We take the limit t0 → ∞ and
decompose γ1 into the three parts γ−, γ0, γ+ depicted below:

1
5

1
5 + i ε

1
5 − i ε

γ0

γ−

γ+
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6.5 Relations with central values of derivatives of L-functions

For fixed ε, we can take the limit δ → 0 for the integrals over γ± and pull these back to the upper
half-plane. The asymptotics of the integral over γ0 in the limit where we first take δ → 0 and
then ε→ 0 can be obtained from the expansion

%(t) =


−iΓ(1/8)2 Γ(3/8)2 8iπ2

√
2 −4iΓ(5/8)2 Γ(7/8)2

1
2

√
2 Γ(1/8)2 Γ(3/8)2 0 −2

√
2 Γ(5/8)2 Γ(7/8)2

i
4 Γ(1/8)2 Γ(3/8)2 2iπ2

√
2 iΓ(5/8)2 Γ(7/8)2




1 + 3
16x+O(x2)

√
x (1 +O(x))

x+O(x2)


in terms of x = 1 − 28 t. From this expansion and the monodromy matrices, we also find that

for ε→ 0 we can pull back the sum of the paths γ± to the path from τ− = − 2
5 +i

√
2

10 to τ+ = 2
5 +i

√
2

10 .
The evaluation of b is now straightforward since γ0 does not contribute in the limit ε, δ → 0 and
thus

b = lim
z→1/55

Π1(z) = (2πi)3

∫ τ+

τ−

f50(τ) dτ .

To obtain d and c, we need to subtract divergent contributions and include the contributions of γ0.
After reparametrizing ε, this gives

d = lim
z→1/55

(
1

2

d2

dδ2
Π1(z)− 7

10

d

dδ
Π1(z) + 2πi

√
5

(
1

2 δ
+

7

20

))
= lim

ε↓0

(
(2πi)3

∫ τ+

τ−

F50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(
− 1

5 t′50(τ−) t′50(τ+) ( 1
ε3 + 1)− 257

480

))
c = lim

z→1/55

(
Π1(z) + 2πi

√
5 log(δ)

)
= lim

ε↓0

(
(2πi)3

∫ τ+

τ−

g50(τ + i
√

2
5 ε) dτ + 2πi

√
5
(

1
ε + log

(
−5 t′50(τ−) t′50(τ+) ε2

)))
and from the expansion of % we obtain

t′50(τ±) = ∓
Γ( 1

8 )2Γ( 3
8 )2

2
√

10π2
.

Note that due to the residues of g50, variations of the contour of integration can shift the integral
in the expression for c by integer multiples of (2πi)2

√
5. The equality above holds for the straight

line between τ− and τ+.

6.5 Relations with central values of derivatives of L-functions

We conclude this chapter by giving new numerical identities for the mixed periods. We start with
an heuristic explanation of the steps that led us to these identities. After division by (2πi)2

√
κ,

the period matrix Tµ has the structure of period matrices of biextensions studied in [10]. There, a
real number (called the height) associated with such period matrices is defined. It is shown that
for period matrices of suitable nodal degenerations of curves this height coincides (up to rational
multiples of logarithms of rational numbers) with a value of the Beilinson-Bloch height defined
in [7] and [9]. According to a conjecture by Beilinson [6], the latter should be a rational multiple
of the leading coefficient of the Taylor expansion of an associated L-function at its central point
divided by a specified period. In our situtation, the height associated with Tµ is given by

1 +
1

2πi
√
κw−

det

(
b c
w− a−

)
and we look for relations with

2πi
√
κ · leading coefficient of Taylor expansion of L(f ⊗ χ, s) at s = 2

w−
.
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6 Modularity of some mixed period matrices of rank four

Here, χ is the Dirichlet character associated with Q(
√
κ) (which is trivial if κ is a square). We

twist f by this character since this corresponds to a rescaling of the associated periods by
√
κ. Using

the script HeightIdentities.gp} from [17] we obtain the numerical relations given in Table 6.3.
Only for the case with hypergeometric indices { 1

12 ,
5
12 ,

7
12 ,

11
12}, where the analytic rank (the order

of vanishing of L(f⊗χ, s) at s = 2) is equal to 2, we were not able to identify the leading coefficient
of the associated L-function.

a1, a2, a3, a4 ords=2 L(f ⊗ χ, s) height
1
2 ,

1
2 ,

1
2 ,

1
2 0 −3 log 2

1
4 ,

1
3 ,

2
3 ,

3
4 1 −6 log 2− 3 log 3− 144 2πi

√
κL′(f⊗χ,2)
w−

1
4 ,

1
2 ,

1
2 ,

3
4 1 −6 log 2− 128 2πi

√
κL′(f⊗χ,2)
w−

1
5 ,

2
5 ,

3
5 ,

4
5 1 − 5

3 log 5− 125
6

2πi
√
κL′(f⊗χ,2)
w−

1
3 ,

1
3 ,

2
3 ,

2
3 1 −3 log 3− 243

2
2πi
√
κL′(f⊗χ,2)
w−

1
4 ,

1
4 ,

3
4 ,

3
4 1 −5 log 2− 64 2πi

√
κL′(f⊗χ,2)
w−

1
3 ,

1
2 ,

1
2 ,

2
3 1 −4 log 2− 3 log 3− 288 2πi

√
κL′(f⊗χ,2)
w−

1
6 ,

1
2 ,

1
2 ,

5
6 1 −3 log 2− 3 log 3− 216 2πi

√
κL′(f⊗χ,2)
w−

1
6 ,

1
3 ,

2
3 ,

5
6 1 −4 log 2− 3 log 3− 108 2πi

√
κL′(f⊗χ,2)
w−

1
8 ,

3
8 ,

5
8 ,

7
8 1 −7 log 2− 128 2πi

√
κL′(f⊗χ,2)
w−

1
6 ,

1
4 ,

3
4 ,

5
6 1 −6 log 2− 3 log 3− 144 2πi

√
κL′(f⊗χ,2)
w−

1
10 ,

3
10 ,

7
10 ,

9
10 1 −3 log 2− 5

3 log 5− 250
3

2πi
√
κL′(f⊗χ,2)
w−

1
6 ,

1
6 ,

5
6 ,

5
6 1 −3 log 2− 3 log 3− 54 2πi

√
κL′(f⊗χ,2)
w−

1
12 ,

5
12 ,

7
12 ,

11
12 2 ?

Table 6.3: Numerical identities for the height.
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[6] A. Bĕılinson, Higher regulators and values of L-functions, Current problems in mathematics, Vol. 24, 1984,
pp. 181–238.
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