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Abstract 

Macrophages are cells of the innate immune system, which contribute to the maintenance of tissue 
homeostasis and form the first line of defense against pathogens. Tissue-resident macrophages that 
originate from erythro-myeloid-progenitors in the yolk sac colonize the organs early during development 
and self-maintain in most organs throughout adulthood. Under homeostatic and pathological conditions, 
circulating monocytes infiltrate the tissue, where they differentiate into macrophages. However, particularly 
upon inflammation, phenotyping of these distinct macrophage populations using surface markers or 
antibody stainings is insufficient as their phenotypes converge, at least transiently. A well-established 
method for the developmental origin of different cell types is the use of in vivo fate-mapping models, 
where a fluorescent reporter will be expressed under the control of a cell type-specific promoter. Here, we 
describe the Cxcr4CreERT2 ; Rosa26LSL-tdTomato mouse fate-mapping model, which labels hematopoietic stem 
cells and, thus, also monocytes and monocyte-derived macrophages while most tissue-resident macro-
phages are not targeted. 
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1 Introduction 

Macrophages are innate immune cells that monitor pathogens, 
engulf and digest microbes, and cell debris; thus, they are vital for 
tissue homeostasis [1]. Most immune cells are derived from hema-
topoietic stem cells (HSC), as is the case for monocyte-derived 
macrophages. A decade ago, the prevalent understanding of mac-
rophage biology was revised through the discovery of tissue-
resident macrophages (TRM) that arise from erythro-myeloid-pro-
genitors (EMP) in the yolk sac, before the onset of definitive 
hematopoiesis [2]. These HSC-independent macrophages colonize 
the organs and self-maintain in the adult tissue through local 
proliferation mainly independent of circulating HSC-derived cells 
[3, 4]. 
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To better understand the function of TRM in homeostasis and 
immunity in adult individuals, it is crucial to consider the ontogeny 
of these unique cells. With the help of fate-mapping experiments 
and parabiosis studies [5], it was described that some TRMs exclu-
sively originate from yolk sac-derived precursors; that includes 
especially microglia in the brain and epidermal Langerhans cells in 
the skin [6]. Other organs are engrafted by a small portion of 
HSC-derived circulating monocytes in an age-related manner; 
that includes, e.g., red pulp macrophages in the spleen [7, 8] and 
peritoneal macrophages [9]. During adulthood, the primary func-
tion of TRMs is to surveil the microenvironment and induce 
inflammation in case of homeostatic disbalances [10], as well as to 
later induce tissue repair and healing. Under pathological condi-
tions, the niche of TRMs in the respective organ can be severely 
altered and TRM numbers diminished, giving space for 
HSC-derived monocytes to infiltrate the empty niche. Due to 
their different developmental origin, these cells are—at least during 
the first few days—phenotypically and functionally different and are 
often characterized by a more inflammatory phenotype [11]. How-
ever, the phenotypes of TRMs and monocyte-derived macrophages 
may converge with time, especially when the latter become long-
lived as well. Therefore, it is important to address the ontogeny of 
tissue macrophages in health and disease, which play a crucial role 
in the maintenance and re-establishment of tissue homeostasis. 

A standard technique to study the developmental origin of 
different macrophage populations is the use of fate-mapping mod-
els. Upon the modification of two genetic loci, a fluorescent 
reporter will be expressed by the cell type of interest. First, a genetic 
locus needs to be identified that is specifically active in either HSC-
or EMP-derived macrophages. Here we focus on the Cxcr4 gene, 
which is expressed by long-term HSC [12]. On one allele, the 
recombinase enzyme Cre is inserted under the control of the 
Cxcr4 promoter, which induces the specificity of the model toward 
the HSC-lineage. Into the ubiquitously expressed Rosa26 genetic 
locus a fluorescent reporter gene is inserted [13]. Common repor-
ters are the green fluorescent protein (GFP) or red fluorescent 
proteins (tdTomato); the latter is applied in this chapter. The 
genetic locus is further modified by the insertion of a Stop-codon 
in front of the fluorescent reporter. This Stop-codon is flanked by a 
loxP-sequence, which is the genetic sequence that is specifically 
recognized by the Cre-recombinase enzyme [14]. Taken together, 
in our example the Cre-recombinase is specifically expressed under 
to control of the Cxcr4 promoter, which is active in HSC. There-
fore, only in cell originating from that lineage, the Stop-codon is 
excised and the sequence encoding the fluorescent reporter tdTo-
mato is accessible for the polymerase and can be synthesized. Here, 
we will describe the Cxcr4CreERT2 ; Rosa26LSL-tdTomato mouse model 
and the spleen as an exemplary tissue to show how to label HSCs 
efficiently, providing an inducible fate-mapping model to perma-
nently label all HSC-derived macrophages.
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2 Materials 

2.1 Mouse Model Here we use heterozygous Cxcr4CreERT [12] and homozygous 
Rosa26LSL-tdTomato (Ai14; JAX Strain #: 007914) mice to generate 
Cxcr4CreERT2 ; Rosa26LSL-tdTomato mice where Cre activation is 
induced at 4 weeks of age with tamoxifen. Tamoxifen injections 
can occur also at a later time point; make sure to include a four-
week wash-out period before the start of your experiment. Please 
refer to Chapters 2 and 8 in this book for further fate-mapping 
models of distinct hematopoietic waves. 

2.2 Consumables 1. Scissors (standard, blunt-end). 

2. Forceps (standard). 

3. 15 mL tubes. 

4. 50 mL tubes. 

5. 1.5 mL and 2 mL microcentrifuge tubes. 

6. 96-well plate, U-shaped. 

7. 3.5 cm dish (alternatively 6-well plate). 

8. FACS tubes. 

9. Cell strainer (70 and 100 μm). 

10. 1 mL syringe with 26G needle. 

11. 10 mL syringe with 26G needle. 

12. Metal plunger. 

13. Heparin-coated tube. 

14. Blood lancet. 

15. Aluminum foil. 

2.3 Buffers and 

Solutions 

1. Tamoxifen stock solution: 10 mg/mL tamoxifen (Roth, 
T5648) in 10% (v/v) molecular grade Ethanol and 90% (v/v) 
corn oil (Sigma, C8267). Prepare by weighing 100 mg of 
tamoxifen under sterile conditions (see Note 1) in a 15 mL 
centrifuge tube and add 1 mL of pure Ethanol (100%). Vortex 
and put the suspension in a 42 °C water bath. Vortex regularly, 
until the tamoxifen is properly dissolved. Then add 9 mL of 
corn oil under sterile conditions and mix to obtain a homoge-
neous solution. Store at 4 °C not more than 4–6 weeks (pro-
tected from light). Each mouse will be injected with 100 μL for 
5 days (see Note 2). 

2. Antibody solution to validate reporter expression in mono-
cytes: Visualization of tdTomato expression in HSC-derived 
monocytes via CD11b-APC (clone: M1/70, 1 μg/mL) and 
Ly6C-PE/Cy7 (clone: HK1.4, 1 μg/mL) staining.
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3. Anesthesia: 100 mg/mL ketamin, 20 mg/mL xylazine in ster-
ile 0.9% NaCl (see Note 3) 

4. 1x Phosphate-buffered saline (PBS) 

5. FACS buffer: 0.5% bovine serum albumin (BSA) and 2 mM 
Ethylenediaminetetraacetic acid (EDTA) in 1x PBS. Filter 
buffer through a 0.2 μm filter, e.g. using a bottle top vacuum 
filter. Store at 4 °C. 

6. Digestion mix: 0.2 mg/mL DNase, 0.5 mg/mL Collage-
nase D, 2.4 mg/mL Dispase and 3% fetal calve serum (FCS, 
see Note 4) in 1x PBS. Calculate the desired volume of diges-
tion mix (500 μL/sample; see Note 5). Keep on ice until used 
for tissue digestion. 

7. Red-blood-cell (RBC) lysis buffer: 155 mM NH4Cl, 12 mM 
NaHCO3, 0.1 mM EDTA in dH20. pH 7.1–7.4. 

8. Blocking solution: 1% (v/v) anti-mouse CD16/32 (e.g. clone 
93 from Biolegend), 2% (v/v) of rat serum in FACS buffer. 
Calculate the desired volume of blocking solution (50 μL/ 
sample; see Note 6). 

9. Antibody mix: Calculate antibody mixes based on the number 
of your samples (see Note 7). Fill a 1.5 mL tube with the 
calculated amount of FACS buffer. Add antibodies (see 
Table 1 for staining of the spleen) into a microcentrifuge tube 
and mix by pipetting. 

10. Live/dead staining: 5 μg/mL Hoechst33258 in FACS buffer. 

2.4 Equipment 1. Water bath. 

2. Flow cytometer. 

3. Procedure platform with needles (to fix mouse). 

4. Centrifuge for FACS tubes and plates. 

5. Thermomixer. 

Table 1 
Antibody panel for spleen tissue 

First antibody mix Antigen Conjugate Concentration [μg/mL] Clone 
Ly6G biotin 5 1A8 
TCRbeta biotin 5 H57–597 
CD19 biotin 5 6D5 
Nkp46 biotin 5 29A1.4 

Second antibody mix Streptavidin BV785 1 
F4/80 APC/Cy7 0.5 BM8 
CD45 BUV805 0.25 30-F11 
CD11b BUV661 1 M1/70 
CD64 PerCP/Cy5.5 4 X54–5/7.1
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3 Methods 

3.1 Tamoxifen 

Administration and 

Labeling Efficiency 

Control 

1. Let the tamoxifen solution adhere to room temperature. Take 
up required volume with a 1 mL syringe that has the needle 
attached (see Note 8). 

2. Inject each mouse intraperitoneally (i.p.) with 100 μL o  
tamoxifen for five consecutive days. To prevent infections, 
inject into alternating positions every day (left, middle, and 
right side of the abdomen) (see Note 9). 

3. Control successful induction of the reporter expression by 
collecting a small blood sample from the mouse in a heparin-
coated tube (for example via tail vein puncture—depending on 
your animal permit). 

4. Add collected blood (10–50 μL) to a microcentrifuge tube, 
which contains 500 μL of RBC-lysis buffer. 

5. Mix and incubate for 5 min on ice. 

6. Add 500 μL FACS buffer. 
7. Centrifuge at 400 g for 5 min at 4 °C. 

8. Discard supernatant and dissolve in 50 μL blocking solution. 
9. Incubate 10 min on ice and spin samples at 400 g, 5 min, 4 °C 

10. Discard supernatant and resuspend pellet in 25 μL blood stain-
ing solution (see Subheading 2.3. Antibody solution to validate 
reporter expression in monocytes). 

11. Incubate 30 min on ice, add 200 μL FACS-buffer and spin 
samples at 400 g, 5 min, 4 °C. 

12. Discard supernatant and resuspend pellet in 100 μL FACS-
buffer. 

13. Transfer cells through a 70 μm strainer into a FACS tube and 
add an equal volume of 5 μg/mL Hoechst. 

14. Measure tdTomato signal in monocytes (CD11b+ Ly6C+ ) with 
a flow cytometer. 

15. In case of successful expression of the fluorescent reporter, the 
mice can now be treated (depending on your experimental 
setup, for example with an infectious agent) or analyzed at 
the time-point of interest after labeling-induction with 
tamoxifen. 

3.2 Preparation of 

Cell Suspension from 

Adult Mouse Spleen 

for Flow Cytometry 

Analysis 

Depending on the scientific question, different organs might be of 
interest for flow cytometry analysis. Here, we show an example of 
how to prepare a cell suspension from adult mouse spleens suitable 
for flow cytometry analysis. Other organs may require a slight 
adaptation of the protocol to produce a single-cell suspension.
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3.2.1 Isolation of Mouse 

Spleen for Flow-Cytometry 

Analysis 

1. On the day of the experiment, inject the mouse i.p. with 
anesthesia. When the mouse is deeply asleep (see Note 10) fix  
it on a procedure platform with needles, with its back toward 
the platform. 

2. Open the peritoneal cavity and the diaphragm. Grab the ster-
num with forceps and open the rib cage using scissors to expose 
the heart (try not to cut any large blood vessels). 

3. From the heart, blood can be collected with a 1 mL syringe and 
26 G needle that was flushed with EDTA solution and collected 
in a heparin tube. It is possible to collect 500 μL or more from 
an adult mouse. 

4. To perfuse the mouse, gently fix the heart with forceps. Then 
make a small cut on top of the right ventricle (blood will come 
out). Have a 10 mL syringe prepared with PBS and a 26 G 
needle and immediately insert the needle into the left ventricle. 
Gently press the plunger to perfuse the mouse (see Note 11). 
An indicator of a successful perfusion is the liver, which will 
become light flesh colored when the blood is flushed out. 

5. Collect the spleen by holding the pancreas with forceps and 
carefully cut off the spleen from the white pancreatic tissue. 
Place the spleen into a 3.5 cm dish with PBS on ice. 

6. Dissect a piece of the tissue (30–40 mg), which is used to 
prepare a single-cell suspension for flow cytometry. 

3.2.2 Cell Suspension 

Preparation 

1. Transfer 30–40 mg of the spleen tissue into a 2 mL microcen-
trifuge tube and add 500 μL of digestion mix. 

2. Cut the spleen within the tube with blunt scissors to obtain 
small pieces. 

3. Incubate the spleen in digestion mix at 37 °C for 30 min while 
shaking at 1000 rpm. 

4. Place the tubes on ice and have 50 mL centrifuge tubes 
prepared with 100 μm strainers. Wet the strainer with approxi-
mately 3 mL FACS buffer, which is collected in the 50 mL 
centrifuge tubes underneath. 

5. Gently pipette the digested spleen suspension up and down and 
add it on top of the 100 μm strainer. Mesh tissue pieces with a 
metal plunger. Flush with additional 2–3 mL of FACS buffer 
and collect all flow-through in the centrifuge tube underneath. 

6. Spin the sample tubes for 7 minutes, 400 g, 4 °C. 

7. For red blood cell lysis, resuspend the pellet in 1 mL of 
RBC-lysis buffer and incubate for 5 min on ice. Then add 
FACS buffer (approximately 7 mL), invert the tube five times 
and spin (7 min, 400 g, 4 °C). 

8. Remove the supernatant
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3.3 Staining of Cell 

Suspension with 

Antibodies Conjugated 

with Fluorochromes 

1. Add 50 μL of blocking solution into each tube and resuspend 
the pellet by pipetting. 

2. Incubate for 10 min on ice. 

3. Transfer the cell suspension into the 96-well plate and top up 
with 100 μL FACS buffer. 

4. Spin down the 96-well plate for 5 min, 400 g, 4 °C. 

5. Remove the supernatant by flipping the plate over the sink and 
tapping it on a tissue. 

6. Add 50 μL of the first antibody mix and resuspend each pellet 
by pipetting. 

7. Incubate on ice for 30 min. 

8. Add 200 μL FACS buffer. 
9. Repeat steps 4–5. 

10. Add 50 μL of the second antibody mix and resuspend the pellet 
by pipetting. 

11. Incubate on ice for 30 min in dark (cover the plate with 
aluminum foil). 

12. Add 200 μL FACS buffer. 
13. Repeat steps 4–5. 

14. Resuspend the cell pellet in 100 μL of FACS buffer. 

3.4 Flow Cytometry 1. Filter the samples into FACS tubes through a 70 μm strainer. 

2. Add an equal volume (100 μL) of 5 μg/mL Hoechst to the 
sample. 

3. Vortex and measure the sample (see Note 12). 

3.5 Data Analysis 1. Export FCS files from your flow cytometer and import them in 
FlowJo for data analysis. 

2. After compensation, discriminate different splenocytes and 
examine the cell-fate specific labeling with tdTomato using 
the gating strategy in Fig. 1. 

4 Notes 

1. Weigh a closed centrifuge tube on the scale, and note the 
weight. Under the sterile workbench, fill it with tamoxifen 
powder, close the centrifuge tube, and weigh it again to obtain 
the exact weight of the tamoxifen powder. 

2. If you have larger or smaller cohorts of mice, adjust the amount 
of tamoxifen solution you need. 

3. Always check your animal permit for the concentrations and 
volumes that are allowed to be injected.
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Fig. 1 Fate-mapping of monocytes and monocyte-derived macrophages using the inducible Cxcr4CreERT2 ; 
Rosa26LSL-tdTomato model. (a) Gating strategy for red pulp macrophages (c) Quantification of cell-specific 
labeling with tdTomato 

4. Frozen FCS has to be thawed and heat-inactivated for 30 min 
at 56 °C. Then aliquots can be stored at -20 °C. 

5. To obtain 1 mL of digestion mix, 2.4 mg Dispase is measured 
with a fine scale, transferred into a 15 mL centrifuge tube and 
dissolved in 966 μL of PBS. 2 μL of a 100 mg/mL DNase stock 
solution is added as well as 2 μL of a 0.5 g/mL Collagenase D 
stock solution. Upon addition of 30 μL FCS, the solution is 
pre-warmed to 37 °C just before usage. Digestion mix has to be 
prepared fresh for every experimental day. 

6. To obtain a 50 μL blocking solution, 2 μL rat-serum and 
0.5 μL Fc-block are dissolved in 47.5 μL FACS-buffer. 

7. It is essential to keep in mind, that the indicated dilutions are 
just an approximation, based on the used lot number. It is 
important to titrate your antibodies to find the ideal dilution 
factor for your specific batch. 

8. Taking up tamoxifen through the needle ensures that no undis-
solved particles are taken up and injected. 

9. Four weeks after tamoxifen administration, all systemic resi-
dues should be eliminated in the mouse. This is important since 
tamoxifen can have an impact on cellular function.
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10. Check for reflexes by pinching the mouse with your fingers or 
forceps between the toes. 

11. Blood will come out of the cut in the upper left ventricle. If the 
needle is not injected correctly, the lung will inflate and liquid 
will come out of the mouse nose. 

12. In case the machine measures more than 10,000 events/sec-
ond, dilute the sample with FACS buffer. 
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