
Theoretical and Practical Aspects of Finite
Closure Systems for Mining and Learning

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt
von

Florian Seiffarth
aus

Kreuztal

Bonn, 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter: Prof. Dr. Stefan Wrobel
Gutachter: Prof. Dr. Christian Bauckhage

Tag der Promotion: 14.06.2023
Erscheinungsjahr: 2023

Declaration I, Florian Seiffarth, confirm that this work is my own and is expressed in
my own words. Any uses made within it of the works of other authors in any form (e.g.
ideas, equations, figures, text, tables, programs) are properly acknowledged at the point
of their use. A full list of the references employed has been included.

iii

Acknowledgments A very special thank goes to my supervisors Tamás Horváth and
StefanWrobel, without whom this work would not have been possible. I am very grateful
to have received such intensive supervision. It was always something special to be invited
by Tamás to Nemesvita, a small village near Lake Balaton, and to work there in peace on
my current research problems. These visits have always inspired and motivated me. Not
only new ideas and some of our joint papers were created here, but thanks to Tamás, I
also became an expert in the culinary offer in the surroundings of Nemesvita.

The MLAI group has grown a lot during my time at the institute. What always has
remained is the great atmosphere in our group, which has helped me in my research and
writing this thesis. I have enjoyed all the coffee breaks, darts games, adventurous hikes,
and joint conferences. Thank you, Fouad Alkhoury, Ewald Bindereif, Michael Kamp,
Sebastian Müller, Till Schulz, Patrick Seifner, Eike Stadtländer, Vanessa Toborek, Daniel
Trabold and Pascal Welke. I would like to thank Tamás Horváth, Daniel Trabold, and
Pascal Welke for their feedback on the early versions of my thesis and Victor Chepoi for
his valuable comments on an early version of a paper.

Last but not least, I would like to thank my parents, Antje and Frank Seiffarth, and my
wife, Tatjana Seiffarth, for their tremendous support. During the last period of my thesis
I was very motivated and excited about my son, who will be born soon (hopefully after I
hand in this thesis).

v

Abstract This thesis investigates the potential and limitations of different adaptations
of half-space separations in ordinary Euclidean spaces, one of the most popular paradigms
in machine learning, to abstract finite closure systems. Although closure systems and
their corresponding closure operators have different applications in machine learning and
data mining, this question has not been studied in these research fields. Furthermore,
all machine learning and data mining applications of closure systems have so far been
restricted to specific domains.

Using Jamison’s notion of half-spaces in abstract closure systems, for the adaptation
we regard a closed set as a half-space if its complement is also closed. However, this
generalization does not preserve the most important properties of ordinary half-space
separations. In particular, there is no result corresponding to Minkowski’s hyperplane
separation theorem for Euclidean spaces because disjoint closed sets are not necessarily
separable by half-spaces in abstract closure systems. We show that deciding the half-space
separation (HSS) problem, that is, the problem whether or not two disjoint closed sets
are half-space separable in an abstract closure system is NP-hard in general. Motivated
by this negative complexity result, in a first step we therefore focus on the class of
closure systems in which the HSS problem has a solution for any two disjoint closed
sets. This kind of closure systems will be referred to as the Kakutani closure systems. On
the one hand, for the case that we have access to the abstract finite closure system via
the underlying closure operator only, we show the negative worst-case result that one
needs exponentially many closure operator calls to decide whether the closure system
is Kakutani, or not. On the other hand, we give a forbidden minor characterization of
Kakutani geodesic closure systems over graphs, which, for example, implies that disjoint
closed sets in outerplanar graphs are always separable via half-spaces. As a second
direction to overcome the above negative result, we relax the HSS problem to finding
two inclusion maximal disjoint closed sets and present a simple greedy algorithm for this
problem. It turns out that this simple algorithm has several attractive properties. In
particular, it is optimal with respect to the number of closure operator calls, provides
an algorithmic characterization of Kakutani closure systems, and can be extended to
returning maximum margin separations by utilizing the notion of monotone linkage
functions.

Regarding some practical aspects of the generic theory developed in the thesis, we
demonstrate on real-world networks up to more than 100,000,000 edges that their
geodesic cores can closely be approximated. As a practical application, we empirically
show that the Tukey depth of the vertices in a graph can closely be approximated by our
greedy algorithm.

vii

Contents

Contents

1 Introduction 1
1.1 Contributions: Questions and Results . 5

1.1.1 Half-Space Separation in Finite Closure Systems 5
1.1.2 Maximal Closed Set Separation in Finite Closure Systems 7
1.1.3 Practical Aspects of Geodesic Closure Systems over Graphs . . . 10

1.2 Outline . 12
1.3 Previously Published Work . 12

2 Preliminaries 15
2.1 Basics . 15

2.1.1 Graphs . 15
2.1.2 Lattices . 17

2.2 Set and Closure Systems . 19
2.2.1 Definitions . 19
2.2.2 Domain Specific Closure Systems 21
2.2.3 Separations in Finite Closure Systems 24

2.3 Monotone Linkage Functions . 25
2.4 Geodesic Core-Periphery Decompositions 27
2.5 Tukey Depth in Finite Closure Systems . 28
2.6 Performance Measures . 29
2.7 Datasets . 30

2.7.1 Finite Point Sets . 30
2.7.2 Graphs . 31

3 Related Work 35
3.1 Abstract Closure Systems . 36

3.1.1 Convexity in Graphs . 37
3.1.2 Theoretical Work on Separations 37

3.2 Classical Machine Learning . 38
3.2.1 Maximum margin separations . 39

3.3 Mining and Learning in Finite Closure Systems 40
3.3.1 Geodesic Core-Periphery Decompositions 41
3.3.2 Tukey Depth . 42

4 Half-Space Separations in Finite Closure Systems 43
4.1 The Half-Space Separation Problem . 44

viii

Contents

4.2 Kakutani Closure Systems . 46
4.2.1 The n-Kakutani property . 48
4.2.2 Kakutani Closure Systems over Graphs 48

4.3 Summary . 53

5 Maximal Closed Set Separations in Finite Closure Systems 55
5.1 The Maximal Closed Set Separation Problem 56
5.2 Closed Set Separations in Lattices . 60

5.2.1 Maximal Closed Set Separation in Lattices 61
5.2.2 Kakutani Closure Systems over Lattices 63
5.2.3 Illustrative Examples . 64

5.3 Maximum Margin Separations . 68
5.3.1 MaximumMargin Separations inMonotone LinkageClosure Systems 69
5.3.2 The Maximum Margin Algorithm 72

5.4 Empirical Evaluations . 76
5.4.1 Binary Classification in Finite Point Sets 77
5.4.2 Vertex Classification in Random Graphs 80

5.5 Summary and Open Questions . 82

6 Practical Aspects of Mining and Learning in Finite Closure Systems 85
6.1 Approximating Geodesic Closures in Large Real-World Networks 88

6.1.1 Generating Spanning Outerplanar Subgraph 89
6.1.2 Geodesic Closure in Outerplanar Graphs 97
6.1.3 Experimental Results . 103

6.2 A Simple Heuristic for the Graph Tukey Depth 112
6.2.1 Graph Tukey Depth: Potential Applications to Mining and Learn-

ing with Graphs . 112
6.2.2 Approximating the Tukey Depth 116
6.2.3 The Heuristic . 116
6.2.4 Experimental Evaluation . 118

6.3 Summary and Open Questions . 121

7 Concluding Remarks 123
7.1 Discussion . 123
7.2 Outlook . 124

A Proof of Proposition 4.2.2 137

ix

Introduction 1
Linear separations in Euclidean spaces, that is, separating positive and negative examples
in ℝ𝑑 by some hyperplane has been at the heart of machine learning for a long time.
The class label of an unseen data point can be predicted in this way by that of the
half-space containing it. A common problem in this field of research is to work with non-
Euclidean instance spaces. Kernelmethods provide an elegant solution to this problem by
(implicitly) embedding the data into some inner product feature space, which, however,
is not necessarily known to the designer of the kernel function. Motivated by the fact that
half-spaces are convex, and hence, closed in an algebraic sense, in this thesis we investigate
an alternative way by studying the potential and limitations of adapting the successful
paradigm of linear separations in Euclidean spaces to abstract closure systems.

Closure systems and algebraic closure operators (see, e.g., Davey and Priestley, 2002)
play a central role not only in universal algebra, but also in different fields of computer
science, in particular, in machine learning and data mining (Witten et al., 2011). A closure
system over a ground set 𝐸 is a family 𝒞 of subsets of 𝐸 such that 𝐸 ∈ 𝒞 and the
intersection of every non-empty subset of 𝒞 is again an element of 𝒞. The origins of
closure systems date back to the research of the French mathematician Évariste Galois in
the early 19th century. His Galois theory is directly related to closure systems considering
the so-called Galois connections introduced by Ore (1944). Although the notion of closure
operators appeared implicitly in the works of Ernst Schröder, Richard Dedekind, or
Georg Cantor, it was formally introduced independently by Eliakim Hastings Moore and
Frigyes Riesz. In particular, while Riesz (1909) studied topological aspects of closure
systems, Moore (1910) investigated the origins of closure operators. The primary goal of
all these abstractions was to axiomatize the properties of convex hulls in ℝ𝑑. This axiomatic
characterization of convex hulls was subsequently used successfully in various fields of
mathematics, including, for example, topology (Kuratowski, 1922), logic (Tarski, 1942),
lattice theory (Birkhoff, 1940; Stone, 1938; Ward, 1942), discrete mathematics (Korte
et al., 2012), and computational geometry (van de Vel, 1993).

An essential property of closure systems is that they can be characterized in terms of
closure operators. This characterization is necessary for algorithmic applications of closure
systems; otherwise, their extensional representationsmay cause severe complexity problems
in computer science applications. In particular, even in the case of finite domains, the
number of closed sets can be exponential in the cardinality of the ground set at hand.
In contrast, their intensional representations via closure operators may allow for efficient
utilization of closure systems in computer science. The concept of closure systems has

1

1 Introduction

been used and studied in different areas of computer science. As a first example, consider
the field of relational databases. The theory of relational databases (see, e.g., Codd, 1970)
is concerned with implications and implicational bases, where each implicational basis
gives rise to a closure system. In particular, two implicational bases are called equivalent
if they define the same closure system. In this application context, it is a common question
to findminimum and optimal bases for closure systems (see, e.g., Adaricheva et al., 2013).
As a second example, first-order Horn clauses, used, e.g., in logic programming (Lloyd,
2012) provide another, at first sight not obvious representation of closure systems. Hence,
closure systems are directly connected to applications in predicate logic (Barwise, 1977).
Besides these examples, closure systems are also related, e.g., to matroids and greedoids
(Korte et al., 2012), in discrete mathematics.

We now turn to applications of closure systems in machine learning and data mining.
We first mention some standard applications of closure systems in local pattern mining a
subfield of data mining1. In particular, Galois connections are central to itemset mining
(Pasquier et al., 1999), by noting that several results obtained for closed itemset mining
apply almost directly to formal concept analysis (Ganter et al., 2005) as well. We regard
databases of transactions in itemset mining or formal contexts in formal concept analysis
as binary matrices. Then, one can naturally define a lower adjoint function mapping
subsets of the columns to subsets of the rows of such a matrix and an upper adjoint
function mapping subsets of rows to subsets of columns. It is a well-known fact (see,
e.g., Davey and Priestley, 2002) that the composition of these two maps then gives rise
to a closure operator on the set of columns. One of the related computational tasks is
to generate all fixed points (or closed sets) of the closure operator obtained in this way.
Several algorithms have been designed for this enumeration problem (see, e.g., Boros
et al., 2003; Gély, 2005; Pasquier et al., 1999) and for more general problem settings (see,
e.g., Boley et al., 2010; Ganter and Reuter, 1991).

Although a part of this work will be devoted to graph mining, the primary focus of
the thesis is on concept learning over arbitrary domains, by adapting the notion of linear
separation in ℝ𝑑 and in other inner product spaces. The theoretical motivation and the
idea behind this adaptation lie in the advantageous algorithmic and formal properties of
ordinary linear separations in ℝ𝑑.

For the reader’s convenience, we shortly sketch the supervised learning task that we
are interested in this work: Given disjoint sets of positive and negative examples that
are linearly separable2, find a hypothesis consistent with all examples, i.e., which contains
all positive examples and none of the negative ones. It is a well-known fact that such
learning tasks in ℝ𝑑 can be solved for example by the Perceptron algorithm introduced
by Rosenblatt (1958) or in inner product feature spaces by hard margin Support Vector
Machine (SVMs) invented by Vapnik and his co-authors (Boser et al., 1992). Figure 1.1
provides a comparative visual example of the difference in separation between the two

1While machine learning is mainly interested in extracting global patterns from the data at hand, data
mining has its focus on generating local patterns only (Witten et al., 2011).

2By “linearly separable” we mean the original definition in ℝ𝑑 as well as its adaptation to abstract closure
systems.

2

(a) (b)

Figure 1.1: Example of linear separations in ℝ2 induced by the Perceptron algorithm (a)
and Support Vector Machines (b). The respective hyperplane is given in bold
while in case of SVMs, the maximum margins are given by dashed lines.

algorithms. It is an elementary fact that the above algorithms are applicable if and only
if the input data is linearly separable, i.e., there exists a hyperplane such that the two sets
we want to separate lie on their opposite sides. Using an old result of Kakutani (1937),
this condition can be formulated equivalently as follows: Two subsets of ℝ𝑑 (or some
inner product space) can be separated by half-spaces if and only if their convex hulls are
disjoint (see, also, Figures 1.2(a) and 1.2(b)).

Thus, in order to adapt linear separability in ℝ𝑑 to arbitrary domains, we need to
generalize the notions of convex hulls and half-spaces in ℝ𝑑 to abstract concept classes or
hypothesis spaces, i.e., set systems over some ground set (also referred to as domain or
instance space). Closure systems provide such a generalization of convex hulls in a very
natural way. Indeed, given a subset 𝑆 of the domain, the notion of the convex hull in ℝ𝑑

naturally corresponds to the smallest set in the underlying closure system that contains 𝑆.
Since, by definition, closure systems are intersection closed set systems, such a smallest
set always exists. Regarding the generalization of half-spaces, it is natural to apply the
following definition of Jamison (1974): Given a closure system 𝒞 over some ground set
𝐸, a set 𝐻 ⊆ 𝐸 is an abstract half-space if and only if 𝐻 and its complement 𝐻𝑐 ∶= 𝐸 ⧵ 𝐻
are both closed (i.e., 𝐻, 𝐻𝑐 ∈ 𝒞).

Using these definitions of convex hulls and half-spaces, one might try to adapt, at least
at first glance, Kakutani’s above characterization of linear separability in ℝ𝑑 to that in
abstract closure systems as follows: Two subsets of the underlying domain are linearly
separable, i.e., contained by two closed sets partitioning the domain, if and only if their
closures are disjoint. The following example, however, demonstrates that we face an
entirely different situation in case of abstract closure systems: Consider the separation
problem shown in Figure 1.2(c). The domain 𝐸 consists of the eight points of ℝ2 given
in the figure. A subset 𝐶 of 𝐸 is regarded as closed if it is equal to the intersection of its
convex hull in ℝ2 with 𝐸. Although the closures of the three red and the three blue points

3

1 Introduction

(a) (b) (c)

Figure 1.2: (a)Half-Space separation inℝ𝑑 (b) non-convex input datawhich is not linearly
separable and (c) disjoint convex sets in the finite case. The convex sets in
(a) are disjoint and hence linearly separable via a hyperplane. The sets in
(b) are disjoint but not separable because the blue set is non-convex and its
convex hull contains the red set. The closures of the red and blue point sets
in (c) are disjoint (because only the traces and not the enclosed areas in ℝ2

are considered), but there is no complete partitioning of the space by closed
sets containing the two input sets. Hence, the sets of blue and red points are
not half-space separable.

connected by dashed lines are disjoint, they are not separable by abstract half-spaces
in the closure system defined in this way. Indeed, there exists no closed set containing
the red points and the uncolored point (resp. the blue points and the uncolored point)
which is disjoint with the closed set containing the blue (resp. red) points. This and
other examples raise the following research question that will be in the focus of the thesis:

To what extent is it possible to adapt linear separability in ℝ𝑑 to abstract closure systems?

We restrict this question to the case that the underlying ground set is finite and motivate
the study of this research question from different viewpoints. First of all, the adaptation
of linear separability in ℝ𝑑 to finite closure systems is a crucial theoretical question in
its own right. The answers to this question may provide new insights into the problem
and allow for distinguishing between domain-independent and domain-dependent
properties utilized by the ordinary algorithms by Boser et al. (1992); Rosenblatt (1958).
Regarding our second argument, recall that one of the attractive properties of kernel
methods, besides their applicability to data beyond the usual representation with single
tables of fixed width, is that they consist of a domain-independent algorithm parametrized
by a domain-dependent kernel function. Our approach on concept learning in finite closure
systems follows this paradigm. That is, it consists of a domain-independent algorithm
parametrized by a domain-dependent closure operator. However, compared to kernel
methods, the designers of the underlying closure operator have much more control over
its semantics than those of kernel functions. That is, it is much easier to integrate domain-
specific knowledge into the closure operator, compared to kernel methods (which are
more or less black-box models from this point of view). As a third argument, we note
that the generality of the adaptation may allow for considering linear separation on
domains that are different from ℝ𝑑 and other inner product spaces. For example, we

4

1.1 Contributions: Questions and Results

will give applications, where the underlying domain is the vertex set of a graph or a
finite lattice. As a fourth argument, our approach provides a high “expressive power” for
defining the particular notion of “convexity” over the domain at hand. In particular, the
designer of the closure operator has the freedom to consider a broader class of closure
systems containing closed sets that are not necessarily half-spaces. Last but not least,
the adaptation can naturally be extended to multi-class learning tasks in abstract closure
systems. This is because positive and negative examples are handled symmetrically in
the binary case.

Before discussing the main contributions of the thesis, we note that to answer our
question formulated above, one of the central technical challenges is to synthesize and
adapt results from entirely different fields of computer science and mathematics. In
particular, our approach relies on a careful combination of results from machine learning
and data mining, computational geometry, discrete mathematics, graph theory, and lattice theory.

1.1 Contributions: Questions and Results

In this section we provide an overview of the main results of the thesis. The contributions
can be split into a theoretical and a practical part. Accordingly, we first summarize our
theoretical results concerning half-space (Section 1.1.1) and maximal closed set sepa-
rations (Section 1.1.2) in finite closure systems. Subsequently, we discuss two practical
aspects of geodesic closure systems over graphs: One concerning the approximation of
geodesic closed sets with applications to geodesic core-periphery decompositions of large
real-world networks and one with an application of our maximal closed set separation
algorithm to the approximation of the graph Tukey depth (Section 1.1.3).

1.1.1 Half-Space Separation in Finite Closure Systems

As demonstrated with the simple example in Figure 1.2(c), there exist closure systems
for which the result of Kakutani (1937) does not hold. That is, the disjointness of the
closures of the two input sets does not imply their half-space separability. This problem
motivates our first natural question of whether it can be decided efficiently if two sets are
half-space separable in the underlying abstract closure system, or not. More precisely,
we first consider the following decision problem:

(1) Given some finite ground set 𝐸, a family of closed sets 𝒞 over 𝐸, and 𝐴, 𝐵 ⊆ 𝐸,
does there exist a closed set 𝐻 ∈ 𝒞 such that 𝐻𝑐 = 𝐸 ⧵𝐻 ∈ 𝒞, 𝐴 ⊆ 𝐻, and 𝐵 ⊆ 𝐻𝑐 ?

We call this decision problem the half-space separation (HSS) problem. Using a reduction
from the NP-complete Convex 2-Partitioning problem (Artigas et al., 2011), we prove
that the HSS problem is NP-hard for arbitrary closure systems. Furthermore, it is NP-
complete for the case that the underlying closure operator can be calculated in time
polynomial in the cardinality of the ground set.

These negative results motivate us to relax the problem setting. An obvious option is to
restrict the HSS problem to such closure systems which preserve the Kakutani property.

5

1 Introduction

That is, the closure system is required to satisfy the following condition: Two sets are
half-space separable in the closure system if and only if their closures are disjoint. Given a
finite closure system, the related natural first question is if it is possible to decide whether
it fulfills the Kakutani property, or not. More precisely, our second question is concerned
with the following decision problem:

(2) Given a finite closure system, is it possible to decide in polynomial time whether it
possesses the Kakutani property, or not?

For the case that the algorithm has access to the closure system only via the corre-
sponding closure operator, we give a negative answer to this question. More precisely, by
constructing a Kakutani and a non-Kakutani closure system we show that all algorithms
distinguishing between these two closure systems and, again, which have access to the
closure systems via the closure operator only, require exponentiallymany closure operator
calls in the worst case. The problem above can, however, be decided efficiently if we have
some a priori information about the closure system at hand. In particular, for the case of
𝑑-ary3 closure systems, the Kakutani property can be checked in 𝑂 (𝑛𝑐𝑑) time by a result
of Chepoi (1994), where 𝑛 is the size of the ground set and 𝑐 is some constant.

Motivated by the negative result concerning problem (2) above for arbitrary closure
systems, in our third research question we turn to the problem of identifying Kakutani
closure systems. More precisely, we are interested in the following question:

(3) What are examples of Kakutani closure systems and how can we characterize them
for specific domains?

We give an example of Kakutani closure systems over domains formed by the vertex
sets of (undirected) graphs. When focusing on specific domains (e.g., vertex sets), we
can further relax question (3) above by considering sufficient conditions of the Kakutani
property only, instead of complete characterizations. Of course, incomplete characteri-
zations may result in one-sided errors because they capture only particular fragments
of Kakutani closure systems over the specific domain at hand. Still, it is an important
research task to identify such fragments not only from a theoretical, but also from an
application viewpoint. As we will show in the answer to question (5), such fragments
allow for efficient computations of half-space separations. We note that several examples
and characterizations of Kakutani closure systems have so far been published in the
literature (see, e.g., Chepoi, 1994; Kubiś, 2002; van de Vel, 1984). Our example in the
thesis is concerned with a new fragment of closure systems defined by the geodesic closure
over graphs. It relies on a characterization of the Kakutani property in terms of the
Pasch Axiom by Chepoi (1994). We generalize this result to graph-structured partitioning
(GSP). That is, a graph-structured partitioning is a triple 𝔊 = (𝑆, 𝐺, 𝒫), where 𝑆 is a
finite set, 𝐺 = (𝑉 , 𝐸) is a graph, and 𝒫 is a partitioning of 𝑆 into |𝑉 | non-empty subsets.
Furthermore, we use the connection to the Pasch Axiom to characterize a class of Kaku-
tani closure systems over graphs in terms of 𝐾2,3 as forbidden minor, where 𝐾2,3 is the

3Each closed set can be represented by the union of closed sets generated by at most 𝑑 elements.

6

1.1 Contributions: Questions and Results

complete bipartite graph with 2 resp. 3 vertices. As an immediate consequence of this
result, we have that the family formed by the geodesic closed subsets of the vertex set of
an outerplanar graph is always a Kakutani closure system.

All questions and problems considered so far and also regarded in the following
sections are concerned with the binary case, which is in the focus of the thesis. That
is, our goal is to separate two sets by two closed sets partitioning the domain (i.e., by
two complementary half-spaces). Since half-space separations regard the two input
sets (i.e., the positive and negative examples) symmetrically, it is a natural demand to
generalize the story to multi-class separations, emphasizing that our focus in the thesis
is on the binary case. Accordingly, our next question is somewhat orthogonal to all other
questions and problems considered in the thesis:

(4) How can we generalize the Kakutani property from the binary case to multi-class
separation problems?

In case of graphs, multi-class partitionings have already been investigated by Artigas
et al. (2011), without considering the (generalized) Kakutani property. In contrast,
we introduce the notion of the 𝑛-Kakutani property, which generalizes the Kakutani
property from above to 𝑛 > 2 input sets, and show the somewhat surprising result that
the 𝑛1-Kakutani property does not imply the 𝑛2-Kakutani property in general, neither
for 𝑛1 < 𝑛2 nor for 𝑛1 > 𝑛2.

1.1.2 Maximal Closed Set Separation in Finite Closure Systems

The focus of question (3) in the previous section was on relaxing the HSS problem
by restricting it to special closure systems. We now turn to an approach relaxing the
computationally intractable HSS problem in an entirely different way. In particular, our
fifth question deals with the following problem:

(5) How to relax the HSS problem in a way that for any finite closure system and for any
two sets with disjoint closures, one can efficiently compute two closed sets containing
the input sets such that they always form a half-space separation if the underlying
closure system is Kakutani; otherwise an “almost” half-space separation?

To arrive at such a relaxation, recall that the first problem in the previous section was to
decide whether two sets are half-space separable, or not. In case of a negative answer, one
may relax the problem by allowing for non-perfect solutions. That is, assuming that the
closures of the input sets are disjoint, the combinatorial optimization task is to find two
disjoint closed sets which contain the input sets and cover together a maximum number of
elements of the domain. Again, it follows from our negative complexity result concerning
question (1) that this problem is NP-hard. Indeed, knowing the optimal solution would
immediately decide the HSS problem.

We therefore further relax the above optimization problem by giving up the demand
of computing a separation of maximum cardinality. Instead, we consider the problem of

7

1 Introduction

returning some inclusion maximal solution only. That is, we are interested in returning
two disjoint closed sets which contain the input sets and none of them is properly
contained by a closed set satisfying the disjointness condition. This relaxed problem is
referred to as the maximal closed set separation (MCSS) problem. As further contributions,
we propose a simple generic greedy algorithm and prove that it

(i) solves the MCSS problem correctly,

(ii) is optimal concerning the number of closure operator calls, and

(iii) returns a half-space separation in case of Kakutani closure systems.

We prove (ii) by constructing a finite closure system and showing that all algorithms
using strictly less closure operator calls than our greedy algorithm fail to return a correct
solution. We note that the optimality of the greedy algorithm is generic in the sense
that it holds for all finite closure systems. Regarding (iii) above, we prove an even
stronger result. In particular, we show that our greedy algorithm provides an algorithmic
characterization of Kakutani closure systems. That is, a finite closure system is Kakutani if
and only if our greedy algorithm returns a half-space separation for all pairs of input
sets with disjoint closures.

Note that the result above concerning the optimality of our generic greedy algorithm
with respect to all finite closure systems does not imply that it cannot be improved for
specific domains. This raises the following natural question:

(6) Is it possible to improve the number of closure operator calls needed by our generic
greedy algorithm for closure systems over some specific domain?

We answer the above question affirmatively, by presenting an example. In particular, in
case of finite lattices we show how to use domain specific knowledge so that the number of
closure operator calls can be reduced drastically. More precisely, utilizing the compact
representations of ideals and filters in lattices, we can logarithmically reduce the number
of closure operator calls. We then give two examples of set separations in lattices, one
concerning formal concept analysis (Ganter et al., 2005) and one inductive logic pro-
gramming (Plotkin, 1970). These examples may be of some independent interest as
well.

As mentioned above, our greedy algorithm provides an algorithmic characterization
of Kakutani closure systems. Applying this generic result to lattices, as a further con-
tribution we prove that our greedy algorithm provides an algorithmic characterization
of distributive lattices. This result also demonstrates the power of our generic approach;
it allows for a quite natural alternative proof of the result that distributive lattices are
precisely those which satisfy the Kakutani property (van de Vel, 1984).

Our next question focuses on the practical usefulness of the theory developed above
for machine learning. Motivated by the fact that linear separation by maximum margin
hyperplanes (Boser et al., 1992) is typically more powerful in practice than that by
arbitrary separating hyperplanes (Rosenblatt, 1958), it is natural to ask whether the

8

1.1 Contributions: Questions and Results

predictive performance obtained by such separating half-spaces or by the maximal closed
sets returned by the greedy algorithm can be improved by adapting the idea of linear
separation with maximum margin hyperplanes. More precisely, we ask the following
question:

(7) How to define the notion of margins for disjoint closed sets in case of finite closure
systems and how to find maximum margin separations in the adapted setting?

To answer the first part of this question, we note that there are different options to
define maximum margin hyperplanes in ℝ𝑑. In particular, Bennett and Campbell (2000)
show that maximum margin hyperplanes can be defined in two equivalent ways: They
are namely the hyperplanes maximizing the distance (i) to parallel supporting planes
and (ii) to the disjoint convex hulls of the training sets. While from a mathematical
programming perspective the first definition is preferred (c.f. Bennett and Campbell,
2000), the problem is that in case of finite closure systems, there is no notion of planes and
also no concept of parallelism. We therefore use the second definition for our adaptation.
It raises, however, a further problem: In general, for abstract closure systems we have
no notion of a metric. We overcome this problem by using the more general concept of
monotone linkage functions (Mullat, 1976), a generalization of metrics. More precisely,
they are functions mapping each pair formed by a subset and an element of the ground
set to some real number that are anti-monotone in their first parameter. While it holds
that all metrics naturally give rise to monotone linkage functions, the converse of this
implication is not true in general. Thus, if the underlying ground set is a metric space,
then one can of course naturally define the semantically meaningful monotone linkage
function. If it is not the case, then the monotone linkage function can be defined either by
a domain expert or by directly using the underlying closure operator (see Section 2.3).

To answer the second part of question (7) above, we use a slightly modified version of
our greedy algorithm to solve the MCSS problem. We prove that if the closures of the
input sets are disjoint, then the modified version always returns a maximum (not only
maximal) margin separation, regardless of the particular choice of the monotone linkage
function, the closure system, and the input data.

We empirically evaluate our algorithms developed by using the results summarized
above. That is, we are interested in the following question:

(8) Do maximum margin separations in finite closure systems result in an improved
predictive performance, compared to arbitrary half-space and maximal closed set
separations?

In particular, we answer the above question positively by considering two explicit
domains: Finite point sets in ℝ𝑑 for different 𝑑 ∈ ℕ and vertices in graphs. On the one
hand, we show that both algorithms, i.e., our MCSS algorithm and also the upgraded
version using maximummargins, outperform the related baseline methods. On the other
hand, we show that by using maximum margin separations, we can improve the results
of our simple greedy algorithm.

9

1 Introduction

1.1.3 Practical Aspects of Geodesic Closure Systems over Graphs

Finally, we discuss two practical aspects of finite closure systems by considering the
specific case of geodesic closure systems over graphs (see, e.g., Pelayo, 2013). That is, the
underlying ground set is the vertex set of a graph and a set of vertices is regarded to be
closed (i.e., belongs to the closure system) if and only if for all vertex pairs in the set, it
contains all vertices of all shortest paths between the pairs.

Approximating Geodesically Closed Sets in Graphs

In the theory developed above we have consistently used the closure operator as a black
box function or oracle; its computational aspects have so far been swept under the carpet.
Regarding the first practical aspect of geodesic convexity over graphs, we focus on the
question of how to calculate geodesic closures over some (very) large graphs. It is a
well-known result that for a graph 𝐺 with 𝑛 vertices and 𝑚 edges, the geodesic closure of
any subset of 𝐺’s vertices can be calculated in time 𝑂 (𝑛𝑚). Clearly, this time complexity
is infeasible in practice in case of large graphs. To make the algorithmic results developed
in the thesis applicable to large graphs as well, in our next step we turn to the following
question:

(9) Is it possible to calculate some tight approximation of the geodesic closure in large
graphs in practically feasible time?

We give an affirmative answer to this question by proposing a heuristic consisting
of three components. In particular, (i) we design an algorithm for sampling almost
inclusion maximal outerplanar spanning subgraphs in time linear in the number of edges
of the input graph and (ii) develop another algorithm for computing geodesic convex
hulls in outerplanar graphs. Our algorithm is faster in practice than the corresponding
standard algorithm because its complexity depends only on 𝑛 (the number of vertices
of the input graph) and on the face number of the outerplanar graph, which is some
small number typically. In particular, it is independent of the size of the input set. Finally,
(iii) the closure of a set of vertices in the input graph is then determined by its closures
in the outerplanar samples. More precisely, a vertex is regarded as an element of the
closure if it is contained in the closures of at most 𝑘 of the outerplanar graphs, where
𝑘 is some user-specified threshold. As two byproducts of this heuristic, the algorithm
developed for (i) generating (almost) maximal outerplanar subgraphs in linear time and
that designed for (ii) computing closure in outerplanar graphs in time in typically linear
time may be of some independent interest.

To experimentally evaluate our heuristic on large graphs, we consider the task of ap-
proximating core-periphery decomposition of large real-world networks. This kind of decom-
position, introduced recently in network mining by Marc and Šubelj (2018), is based on
the notion of geodesic closures over graphs. They have observed that several real-world
networks can be partitioned into a geodesically closed induced subgraph, the core, and
its complement, the periphery. A somewhat surprising typical property of cores is that

10

1.1 Contributions: Questions and Results

they are contained by the closure of (almost) all small sets of nodes, selected randomly.
In fact, the intersection of typically about three closed sets, each generated by around ten
nodes selected independently at random, becomes fixed, i.e., further closed sets generated
in the same way all contain this intersection with high probability. We call this stable
intersection the geodesic core of a network.

Our experiment clearly demonstrates that our heuristic is able to calculate a good
approximation in a relatively short time, compared to the exact algorithm. For example,
it was able to return close approximations in five hours or less for real-world networkswith
more than 20 million edges. In contrast, the standard algorithm was unable to terminate
within 50 days.

Approximation of the Graph Tukey Depth

Finally, we present an application of the MCSS algorithm to approximate the Tukey depth
of the vertices of a graph, a new notion introduced recently by Cerdeira and Silva (2021).
The original notion of Tukey depth, introduced by Tukey (1975), is defined for finite point
sets in ℝ𝑑 as follows: Given some finite subset 𝑆 of ℝ𝑑, the Tukey depth of an element 𝑒
of 𝑆 is the cardinality of a smallest subset 𝑆′ ⊆ 𝑆 containing 𝑒 such that 𝑆′ is contained
by some half-space of ℝ𝑑. Or equivalently, it is |𝑆| − |𝑆″|, where 𝑆″ ⊂ 𝑆 is the largest
set that is contained by a half-space and 𝑒 ∉ 𝑆″. This notion is used as an alternative
centrality measure and has different applications in machine learning (Gilad-Bachrach
et al., 2004) as well as in other fields (Dai et al., 2022; Mozharovskyi, 2015).

To adapt the above notion to finite closure systems, we make use of the facts that its
definition is based on half-spaces and does not rely on some distance function. The
adaptation is, however, more complex. The problem is that there is no guarantee that the
underlying (abstract) closure system contains non-trivial half-spaces at all (see, again,
the example in Figure 1.2(c)). In a recent work by Cerdeira and Silva (2021), the authors
propose the following adaptation of ordinary Tukey depth in ℝ𝑑 to geodesic closure
systems over graphs: Given a graph with vertex set 𝑉, the Tukey depth of a vertex 𝑣 is
|𝑉 | − 𝑐, where 𝑐 is the cardinality of a largest closed set not containing 𝑣. In other words,
for all subsets 𝑆 of 𝑉 of cardinality greater than 𝑐, the (geodesic) closure of 𝑆 contains
𝑣. It follows from the definition that the Tukey depth of 𝑣 can be regarded as another
measure of node importance in networks (see, e.g., Newman, 2018, for further centrality
measures). In particular, a higher Tukey depth of a node implies that the node is present
in the convex hull of all “small” subsets of 𝑉. Although our focus is on geodesic closure
systems over graphs, we note that the above adaptation of Tukey depth from ℝ𝑑 naturally
applies to all finite closure systems as well. Furthermore, notice that if the geodesic
closure system at hand is Kakutani then the maximum closed set not containing 𝑣 in the
definition above is at the same time a maximum half-space required by definition.

A computational drawback of the notion of graph (and also ordinary) Tukey depth
is that computing the Tukey depth of a vertex is NP-hard (Cerdeira and Silva, 2021;
Johnson and Preparata, 1978) in general. According to our results discussed above, while
maximum closed set separation in finite closure systems is NP-hard, its relaxation, the

11

1 Introduction

maximal closed set separation problem can be solved in polynomial time (assuming for
both problems that the underlying closure operator can be calculated in polynomial time).
Thus, it is natural to ask whether graph Tukey depths can effectively be approximated
by maximal separating closed sets. More precisely, we are interested in the following
practical question:

(10) Is it possible to use the MCSS algorithm for computing close approximations of
the graph Tukey depth?

We will answer this question positively by recalling that given some input sets with
disjoint closures, the MCSS algorithm generates two maximal disjoint closed sets. Consid-
ering such a fixed separation, it is clear that the cardinality of each of the maximal closed
sets bounds the Tukey depth of all elements not contained in this set. We assume that
the repeated generation of different maximal disjoint closed sets4 will improve the lower
bound of the Tukey depth of the vertices more and more and hence the estimation error
decreases. In order to empirically evaluate the approximation quality of our heuristic,
we consider small graphs only. The reason is that for large graphs, we were unable to
calculate the exact graph Tukey depth of the vertices. Our empirical results on small
graph datasets clearly demonstrate that a very close approximation of the graph Tukey
depth can be obtained by our heuristic based on maximal closed set separation.

1.2 Outline

The rest of the thesis is organized as follows. We recall the basic notions and notations
in Chapter 2. In order to place the work into the scientific context, we collect the most
important related work in Chapter 3. In the main part of the thesis, we answer the
questions raised above. In particular, Chapter 4 is concerned with questions (1)–(4),
Chapter 5 with questions (5)–(8), and Chapter 6 with questions (9) and (10). More
precisely, in Chapter 4 we present the HSS problem and discuss Kakutani closure systems
in general and for specific domains. Chapter 5 is devoted to theMCSS problem, theMCSS
algorithm, and its algorithmic analysis. Moreover, we discuss and evaluate the usage of
maximum margin separations in finite closure systems. In Chapter 6 we consider two
practical aspects: One is concerned with analyzing geodesic closures over graphs and
the other one with approximating the graph Tukey depth using the MCSS algorithm.
Finally, in Chapter 7 we conclude the thesis by summarizing our main results, pointing
out open questions, and discussing some problems for future research.

1.3 Previously Published Work

The thesis relies on the following joint papers with Tamás Horváth and Stefan Wrobel.
4This can be achieved by choosing different input sets for the MCSS algorithm. For example in the case of

graphs we will use all pairs of neighbors in the graph as input.

12

1.3 Previously Published Work

Seiffarth, F., Horváth, T., andWrobel S. (2019) Maximal closed set and half-space sepa-
rations in finite closure systems. InMachine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2019, volume 11906 of Lecture Notes in Computer Science,
pages 21–37. Springer. https://doi.org/10.1007/978-3-030-46150-8_2 The long
version has been submitted to the Theoretical Computer Science journal.

Seiffarth, F., Horváth, T., and Wrobel S. (2020) Maximum margin separations in finite
closure systems. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2020, volume 12457 of Lecture Notes in Computer Science, pages
3–18. Springer. https://doi.org/10.1007/978-3-030-67658-2_1

Seiffarth, F., Horváth, T., and Wrobel S. (2022a) A simple heuristic for the graph Tukey
depth problem with potential applications to graph mining. In Proceedings of the LWDA
2022 Workshops: FGWM, KDML, FGWI-BIA, and FGIR, CEUR Workshop Proceedings.
https://ceur-ws.org/Vol-3341/KDML-LWDA_2022_CRC_705.pdf

Seiffarth, F., Horváth, T., and Wrobel S. (2022b) A fast heuristic for computing
geodesic closures in large networks. In Discovery Science - 25th International Confer-
ence, DS 2022, Montpellier, France, October 10-12, 2022, Proceedings, volume 13601 of Lec-
ture Notes in Computer Science, pages 476–490. Springer. https://doi.org/10.1007/
978-3-031-18840-4_34

13

https://doi.org/10.1007/978-3-030-46150-8_2
https://doi.org/10.1007/978-3-030-67658-2_1
https://ceur-ws.org/Vol-3341/KDML-LWDA_2022_CRC_705.pdf
https://doi.org/10.1007/978-3-031-18840-4_34
https://doi.org/10.1007/978-3-031-18840-4_34

Preliminaries 2
In this chapter we collect all the necessary notions and fix the notation.

Outline We start by giving the basic notions in Section 2.1 including that of graphs
(Section 2.1.1) and lattices (Section 2.1.2). In case of lattices, we mention two examples
explicitly: formal concept lattices in formal concept analysis and subsumption lattices
in inductive logic programming. Section 2.2 is devoted to the basics of abstract set
and closure systems. In particular, we recall the definitions of set and closure systems
(Section 2.2.1) and give examples of particular closure systems over finite point sets
in ℝ𝑑, graphs, and lattices (Section 2.2.2). Moreover, we provide all necessary notions
of separations in finite closure systems (Section 2.2.3). Section 2.3 is concerned with
monotone linkage functions that are used to define maximum margin separations in
finite closure systems. Regarding the practical aspects of geodesic closure systems over
graphs, we recall the notion of geodesic core-periphery decompositions in Section 2.4 and
that of graph Tukey depth in Section 2.5. The measures used in our empirical evaluation
are presented in Section 2.6. Finally, in Section 2.7 we give a detailed description of all
the datasets used in this thesis. In addition, we provide examples to motivate most of
the non-trivial definitions.

2.1 Basics

Asusual, byℝwedenote the set of all real numbers and byℕ the set of all natural numbers, (0
is not included). Uppercase letters like 𝐸, 𝑋, 𝑌 are used to denote sets, and calligraphic
letters such as 𝒞 families of sets. Lowercase letters like 𝑐, 𝑑, 𝑛, 𝑚 indicate the size of
specific quantities. The power set of some set 𝑋 is denoted by 2𝑋 ∶= {𝑌 ∶ 𝑌 ⊆ 𝑋}. The
set of numbers from 0 to 𝑛 is abbreviated by [𝑛] ∶= {0, 1, … , 𝑛}. For some fixed ground
set 𝐸 and some subset 𝑋 ⊆ 𝐸, we denote the set complement of 𝑋 in 𝐸 by 𝑋𝑐.

2.1.1 Graphs

For basic notions in graph theory, we refer to some standard textbook (see, e.g., Diestel,
2012). A graph 𝐺 = (𝑉 , 𝐸) is a tuple of sets with 𝑉 being the set of vertices and 𝐸 ⊆ 𝑉 ×𝑉
the set of edges. Referring to the underlying graph, the set of nodes, respectively the
set of edges are denoted by 𝑉 (𝐺), respectively 𝐸(𝐺) and |𝑉 (𝐺)| and |𝐸(𝐺)| by 𝑛 and 𝑚,

15

2 Preliminaries

respectively. Note that we use 𝐸 for abstract ground sets, as well as, for the edge set of a
graph. Nevertheless, it will always be clear from the context if we are considering finite
ground sets or the edge set of a graph.

Unless otherwise stated, by graphs we mean finite undirected and unweighted graphs
without loops and parallel edges. The neighbors of a vertex 𝑣 ∈ 𝑉 (𝐺) are denoted by
Γ(𝑣) ∶= {𝑢 ∶ {𝑣, 𝑢} ∈ 𝐸(𝐺)}. Furthermore, if it is clear from the context that the graph
is undirected, we sometimes write 𝑢𝑣 for an edge {𝑢, 𝑣} ∈ 𝐸(𝐺) for 𝑢, 𝑣 ∈ 𝑉 (𝐺). A path
𝑃 of length 𝑘 between two vertices 𝑣0, 𝑣𝑘 ∈ 𝑉 (𝐺) is a sequence of edges (𝑒1, 𝑒2, … , 𝑒𝑘)
with 𝑒1, … , 𝑒𝑘 ∈ 𝐸(𝐺) such that there exists a sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑘) with
𝑒𝑖 = {𝑣𝑖−1, 𝑣𝑖} and all edges and vertices are pairwise disjoint. We refer to these sequences
as 𝑉 (𝑃) and 𝐸(𝑃). A path 𝑃 is called induced if and only if there is no edge 𝑓 ∈ 𝐸(𝐺)
with 𝑓 = {𝑣𝑖, 𝑣𝑗} for |𝑖 − 𝑗| > 1. Let 𝑃 be some path with 𝑉 (𝑃) = (𝑣0, 𝑣1, … , 𝑣𝑘) then
end(𝑃) = {𝑣0, 𝑣𝑘} denotes the endpoints of the path. In case of trees the unique path
connecting two nodes 𝑢, 𝑣 of a tree is denoted by Path(𝑢, 𝑣). A shortest path 𝑃 between two
vertices 𝑢, 𝑣 is a path with end(𝑃) = {𝑢, 𝑣} that has a minimum edge sequence length.
The interval [𝑢, 𝑣] denotes the set of all vertices lying on all shortest paths between some
vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺). The set of all shortest paths in a graph is denoted by 𝒫sp.

A graph 𝐻 is a subgraph of a graph 𝐺 if 𝑉 (𝐻) ⊆ 𝑉 (𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺), and {𝑣1, 𝑣2} ∈
𝐸(𝐻) implies that 𝑣1, 𝑣2 ∈ 𝑉 (𝐻). A subgraph 𝐻 is an induced subgraph if for all 𝑣1, 𝑣2 ∈
𝑉 (𝐻) with {𝑣1, 𝑣2} ∈ 𝐸(𝐺) it follows that {𝑣1, 𝑣2} ∈ 𝐸(𝐻). A graph 𝐻 is a minor of a
graph 𝐺 if it can be obtained by 𝐺 using the following three operations on 𝐺: (i) edge
contractions, (ii) edge deletions, and (iii) deletions of isolated vertices.

A graph 𝐺 is called biconnected if the graph obtained by removing an arbitrary vertex
and all its adjacent edges from 𝐺 is connected regardless of the chosen vertex. A bicon-
nected component 𝐵 of a graph 𝐺 is an induced subgraph of 𝐺 which is biconnected and
maximal concerning this property.

The graph 𝐾2,3 which we use later on is the bipartite graph with two, respectively,
three vertices in the two partitions and each vertex in one partition is connected to all
vertices in the other partition.

Outerplanar graphs

InChapter 6wepay special attention to the class of outerplanar graphs (see, e.g., Chartrand
and Harary, 1967). A graph 𝐺 is outerplanar if it can be embedded in ℝ2 so that no two
edges cross each other (except possibly in their endpoints) and there exists a point 𝑃 ∈ ℝ2

such that each vertex of 𝐺 can be reached from 𝑃 by a simple curve that does not cross
any of the edges. Such an embedding defines a set of connected pieces of the plane,
called faces. Since 𝐺 is finite, all faces are bounded except for one, the outer face; note
that all points of the outer face fulfill the property of point 𝑃 in the definition above. The
bounded faces are called interior faces. All biconnected components, also called blocks of
an outerplanar graph consist of a unique Hamiltonian cycle and a possibly empty set of
(non-crossing) diagonals.

The face number of a biconnected outerplanar graph is defined by the number of its

16

2.1 Basics

(a)

𝑣𝐵

(b)

Figure 2.1: (a) Outerplanar graph with face number 4 and (b) its corresponding block
and bridge tree. The vertex 𝑣𝑏 (in red) is the newly created block vertex
connected by the red edges to the rest of the block and bridge tree.

interior faces; the face number of an outerplanar graph 𝐺, denoted by Φ(𝐺), is defined by
the maximum of the face number of its biconnected components.

Edges not belonging to blocks are referred to as bridges. For an outerplanar graph
𝐺, let 𝐺 denote the graph, called the block and bridge tree (BB-tree) of 𝐺, defined as
follows (Horváth et al., 2010): For each block 𝐵 of 𝐺, (i) introduce a new vertex, called
block vertex 𝑣𝐵, (ii) remove all edges belonging to 𝐵, and (iii) for every vertex 𝑣 of
𝐵, connect 𝑣 with 𝑣𝐵 by an edge if 𝑣 is adjacent to a bridge or another biconnected
component of 𝐺; otherwise remove 𝑣. It holds that 𝐺 is a (free) tree and can be computed
in 𝑂 (|𝑉 (𝐺)|) time. Figure 2.1 shows an outerplanar graph (a) with face number 4 and
its corresponding BB-tree in (b).

2.1.2 Lattices

For basic notions from lattice theory, the reader is referred to Davey and Priestley (2002)
and Grätzer (2011). Let (𝑆; ≤) be a partially ordered set (or poset) and 𝑋 ⊆ 𝑆. An
element of 𝑆 is the supremum (resp. infimum) of 𝑋, denoted sup𝑋 (resp. inf𝑋), if

(i) sup𝑋 ≥ 𝑥 (resp. inf𝑋 ≤ 𝑥) for all 𝑥 ∈ 𝑋 and

(ii) 𝑦 ≥ sup𝑋 (resp. 𝑦 ≤ inf𝑋) for all 𝑦 ∈ 𝑆 with 𝑦 ≥ 𝑥 (resp. 𝑦 ≤ 𝑥) for all 𝑥 ∈ 𝑋.

A poset (𝐿; ≤) is a lattice if sup𝑋 and inf𝑋 exist for all finite sets 𝑋 ⊆ 𝐿. Thus, if 𝐿 is
finite then it is bounded, i.e., has a bottom and top element ⊥𝐿 = inf𝐿 and ⊤𝐿 = sup𝐿,
respectively. Unless otherwise stated, throughout this work by lattices we always mean
finite lattices.

Let (𝐿; ≤) be a lattice. An element 𝑥 ∈ 𝐿 is an upper (resp. lower) cover of 𝑎 ∈ 𝐿 if
𝑥 > 𝑎 (resp. 𝑥 < 𝑎) and there is no 𝑦 ∈ 𝐿 such that 𝑥 > 𝑦 > 𝑎 (resp. 𝑥 < 𝑦 < 𝑎). The
set of upper (resp. lower) covers of 𝑎 is denoted by C↑(𝑎) (resp. C↓(𝑎)). A lattice 𝐿 is
called distributive if and only if inf{𝑎, sup{𝑏, 𝑐}} = sup{inf{𝑎, 𝑏}, inf{𝑎, 𝑐}} holds for all
𝑎, 𝑏, 𝑐 ∈ 𝐿. A sublattice of 𝐿 is a non-empty subset of 𝐿 which is a lattice. An ideal 𝐼 of
𝐿 is a non-empty subset of 𝐿 satisfying (i) sup{𝑎, 𝑏} ∈ 𝐼 for all 𝑎, 𝑏 ∈ 𝐼 and (ii) 𝑎 ∈ 𝐼
whenever 𝑎 ∈ 𝐿, 𝑏 ∈ 𝐼, and 𝑎 ≤ 𝑏. An ideal 𝐼 ⊊ 𝐿 is prime if 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 whenever
inf{𝑎, 𝑏} ∈ 𝐼. The dual notions of ideals and prime ideals are called filters and prime

17

2 Preliminaries

𝑎1 𝑎2 𝑎3 𝑎4

𝑜1 1 0 0 1
𝑜2 1 0 1 0
𝑜3 0 1 1 0
𝑜4 0 1 1 1

(a) Formal context represented by a bi-
nary matrix 𝑀 over 𝑂 × 𝐴.

(𝑂, ∅)
(𝑜1𝑜2, 𝑎1)

(𝑜1𝑜4, 𝑎4)

(𝑜2𝑜3𝑜4, 𝑎3)

(𝑜1, 𝑎1𝑎4) (𝑜2, 𝑎1𝑎3) (𝑜4, 𝑎2𝑎3𝑎4)

(𝑜3𝑜4, 𝑎2𝑎3)

(∅, 𝐴)

(b) Concept lattice defined by 𝑀.

Figure 2.2: Example of a formal context (a) and its corresponding concept lattice (b).

filters, respectively. One can easily check that all ideals and filters of 𝐿 are sublattices of
𝐿. Furthermore, as |𝐿| < ∞ by assumption, an ideal 𝐼 (resp. filter 𝐹) can be represented
by sup 𝐼 (resp. inf𝐹). The ideal (resp. filter) of 𝐿 with top (resp. bottom) element 𝑎 is
denoted by (𝑎] (resp. [𝑎)). It follows from the definitions that the complement of a prime
ideal of 𝐿 is a prime filter of 𝐿 and vice versa.

Formal Concept Lattice and Subsumption Lattice in Inductive Logic Programming

To prepare our examples on formal concept analysis and inductive logic programming in
Section 5.2.3 we present two particular types of lattices.

Formal Concept Lattice A formal context is represented by a binary matrix 𝑀 that
is determined by the set 𝑂 (objects) defining the rows of 𝑀 and the set 𝐴 (attributes)
defining the columns of 𝑀. The entries of the matrix determine whether some object has
(entry 1) some attribute, or not (entry 0). We already mentioned that the lower and upper
adjoint functions defined on the binary matrix together form a Galois connection. In this
particular case, the lower adjoint denoted by ′ maps a subset 𝐴1 ⊆ 𝐴 of the attributes to a
subset of the objects

𝐴′
1 ∶= {𝑜 ∈ 𝑂 ∶ (𝑜, 𝑎) = 1 for all 𝑎 ∈ 𝐴1} ⊆ 𝑂 .

The upper adjoint also denoted by ′ maps a subset 𝑂1 ⊆ 𝑂 of the objects to a subset of the
attributes

𝑂′
1 ∶= {𝑎 ∈ 𝐴 ∶ (𝑜, 𝑎) = 1 for all 𝑜 ∈ 𝑂1} ⊆ 𝐴 .

A pair (𝑂1, 𝐴1) with 𝑂1 ⊆ 𝑂 and 𝐴1 ⊆ 𝐴 is called a formal concept if and only if 𝐴′
1 = 𝑂1

and 𝑂′
1 = 𝐴1. It is a well-known fact (see, e.g., Ganter et al., 2005) that the set of all

concepts defined by 𝑀 together with (∅, 𝐴) and (𝑂, ∅) form a lattice (𝐿; ≤) with the
partial order “≤” defined by

(𝑂1, 𝐴1) ≤ (𝑂2, 𝐴2) ⟺ 𝑂1 ⊆ 𝑂2 .

18

2.2 Set and Closure Systems

𝑃(𝑥, 𝑦, 𝑧)

𝑃 (𝑥, 𝑥, 𝑧) 𝑃 (𝑥, 𝑦, 𝑥) 𝑃 (𝑥, 𝑦, 𝑦)

𝑃 (𝑥, 𝑥, 𝑥)

Figure 2.3: Subsumption lattice of the vocabulary consisting of a single predicate symbol
and three variables 𝑥, 𝑦, 𝑧

This lattice is called formal concept lattice. Figure 2.2 shows an example of a formal context
together with the corresponding formal concept lattice consisting of four objects and
four attributes.

Subsumption Lattice A subsumption lattice (Khardon and Arias, 2006, see, e.g.,) is
built by a partial order defined for first-order logic terms. For further details on first-order
logic and inductive logic programmingwe refer to the book of Nienhuys-Cheng and deWolf
(1997). For simplicity we restrict the vocabulary to a single predicate symbol 𝑃 of arity
𝑛 and a set 𝑉 of variables. We say an atom 𝑃(𝑡1, … , 𝑡𝑛) with 𝑡1, … , 𝑡𝑛 ∈ 𝑉 generalizes
𝑃(𝑡′

1, … , 𝑡′
𝑛) with 𝑡′

1, … , 𝑡′
𝑛 ∈ 𝑉, denoted by 𝑃(𝑡1, … , 𝑡𝑛) ≥ 𝑃(𝑡′

1, … , 𝑡′
𝑛), if there exists a

function 𝜎 ∶ 𝑉 → 𝑉 such that 𝑃(𝜎(𝑡1), … , 𝜎(𝑡𝑛)) = 𝑃(𝑡′
1, … , 𝑡′

𝑛). Two atoms 𝐴1, 𝐴2 are
equivalent if 𝐴1 ≤ 𝐴2 and 𝐴2 ≤ 𝐴1. Let 𝐿 be a maximal set of 𝑃-atoms, each of the
above form, that contains no two equivalent atoms. Clearly, each element of 𝐿 can be
represented by any atom from its equivalence class. The set 𝐿 together with the partial
order ≤ forms a lattice called subsumption lattice. Our restricted case holds that (𝐿; ≤) is
a finite lattice. Furthermore, the top (resp. bottom) element of 𝐿 is a 𝑃-atom such that
all variables are pairwise different (resp. are the same). Figure 2.3 provides an example
of a subsumption lattice of the vocabulary consisting of a single predicate symbol 𝑃 and
the three variables 𝑥, 𝑦 and 𝑧.

2.2 Set and Closure Systems

In this section, we collect the necessary notions of set systems, closure systems, and separa-
tions in closure systems. For more details, we refer to the works of Chepoi (1994), Davey
and Priestley (2002), and van de Vel (1993).

2.2.1 Definitions

A set system over a ground set 𝐸 is a pair (𝐸, 𝒞) with 𝒞 ⊆ 2𝐸. Unless otherwise stated, all
set systems considered in this paper are defined over finite ground sets. A (finite) set
system (𝐸, 𝒞) is a closure system if it fulfills the following properties:

(i) 𝐸 ∈ 𝒞 and

19

2 Preliminaries

(ii) 𝑋 ∩ 𝑌 ∈ 𝒞 for all 𝑋, 𝑌 ∈ 𝒞.

In addition to (i) and (ii), we assume without loss of generality that

(iii) ∅ ∈ 𝒞.1

It is a well-known fact (see, e.g., Davey and Priestley, 2002) that closure systems give
rise to closure operators and vice versa. More precisely, a closure operator over 𝐸 is a
function 𝜌 ∶ 2𝐸 → 2𝐸 satisfying

i) 𝑋 ⊆ 𝜌(𝑋), (extensivity)

ii) 𝜌(𝑋) ⊆ 𝜌(𝑌) whenever 𝑋 ⊆ 𝑌, (monotonicity)

iii) 𝜌(𝜌(𝑋)) = 𝜌(𝑋) (idempotency)

for all 𝑋, 𝑌 ⊆ 𝐸.
The connection between closure systems and closure operators is obtained by the

following results (cf. Davey and Priestley, 2002). Proposition 2.2.1 shows, how to define
the closure operator for a given closure system and Proposition 2.2.2, how to define the
closure system for a given closure operator.

Proposition 2.2.1. Let (𝐸, 𝒞) be a closure system. Then the map 𝜌𝒞 ∶ 2𝐸 → 2𝐸 defined by

𝜌𝒞(𝑋) ∶= ⋂{𝐶 ∈ 𝒞 ∶ 𝑋 ⊆ 𝐶}

for 𝑋 ⊆ 𝐸 is a closure operator.

Proposition 2.2.2. Let 𝜌 be a closure operator over 𝐸. Then (𝐸, 𝒞𝜌) with

𝒞𝜌 = {𝐶 ⊆ 𝐸 ∶ 𝜌(𝐶) = 𝐶}

is a closure system.

Depending on the context we sometimes omit the underlying closure operator from
the notation and denote the closure system simply by (𝐸, 𝒞). The elements of 𝒞𝜌 of a
closure system (𝐸, 𝒞𝜌) will be referred to as closed or convex sets. This latter terminology
is justified by the fact that closed sets generalize several properties of convex hulls in ℝ𝑑.

Finally, we mention some particular type of closure systems that is defined by the
following equivalence: A closure system (𝐸, 𝒞𝜌) is called 𝑑-ary (Chepoi, 1994) if

𝐶 ∈ 𝒞𝜌 ⟺ for all 𝑋 ⊂ 𝐶, |𝑋| ≤ 𝑛 it holds 𝜌(𝑋) ⊆ 𝐶 .

The definition implies that a closed set 𝐶 of such a system can be written as the union of
closed sets generated by at most 𝑑 elements, i.e.,

𝐶 = ⋃{𝜌({𝑥1, … , 𝑥𝑑}) ∶ 𝑥1, … , 𝑥𝑑 ∈ 𝐸}2 .
1If ∅ ∉ 𝒞 then (ii) implies that 𝑍 = ⋂

𝑋∈𝒞
𝑋 ≠ ∅. For the set system (𝐸 ⧵ 𝑍, {𝑋 ⧵ 𝑍 ∶ 𝑋 ∈ 𝒞}) we have

that it is a closure system satisfying (iii) that has the same properties as 𝒞.
2For example, geodesic closure systems over graphs, defined in the next section, are 2-ary closure systems

because all closed sets are exactly the unions of the shortest paths between pairs of vertices in the set.

20

2.2 Set and Closure Systems

Figure 2.4: The 𝛼-closure of the four red points in a 5 × 5 grid in ℝ2 is given by the
intersection of the convex hull of the points (dashed lines) with the grid. The
closure then consists of all the colored points (and not of the enclosed area).

2.2.2 Domain Specific Closure Systems

We use different domain-specific closure systems, e.g., over finite point sets in ℝ𝑑, graphs,
and lattices and give the particular notions for the corresponding closure operators.

Finite convex hulls in ℝ𝑑

As a first example, we present the closure system defined by finite point sets in ℝ𝑑. Let 𝐸
be a finite subset of ℝ𝑑 for some 𝑑 > 0. Then the function 𝛼 ∶ 2𝐸 → 2𝐸 defined by

𝛼(𝑋) = conv(𝑋) ∩ 𝐸 (2.1)

for all 𝑋 ⊆ 𝐸 is a closure operator over 𝐸, where conv(⋅) denotes the ordinary convex hull
operator on ℝ𝑑. The corresponding closure system will be denoted by 𝛼-closure system.
Figure 2.4 shows an example of this closure operator.

Geodesic Closures in Graphs

The second example is concerned with geodesic closures in graphs. The most familiar
closure systems over graphs are those based on path sets. Such closure systems are
usually called interval or path closure systems (Harary and Nieminen, 1981; Mulder, 1980).
A detailed overview regarding geodesic closures in graphs can be found in the book of
Pelayo (2013).

Proposition 2.2.3. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝒫sp the set of all shortest paths in 𝐺. Then
the set system (𝑉 , 𝒞𝛾) with

𝒞𝛾 ∶= {𝐶 ⊆ 𝑉 ∶ 𝑉 (𝑃) ⊆ 𝐶 for all 𝑃 ∈ 𝒫sp with end(𝑃) ⊆ 𝐶} (2.2)

is a closure system.

Proposition 2.2.3 implies that a vertex set 𝑋 ⊆ 𝑉 (𝐺) is closed if and only if it contains
all nodes from all the shortest paths for which the endpoints lie in 𝑋. The above defined

21

2 Preliminaries

𝑢 𝑣

(a)

𝑢 𝑣

(b)

Figure 2.5: (a) The interval [𝑢, 𝑣] in blue and (b) the geodesic closure 𝛾({𝑢, 𝑣}) in red.

closure system is usually called geodesic closure system. The corresponding closure
operator 𝛾 is called geodesic closure operator. In Figure 2.5 we give an example of the above
defined closure system by illustrating the interval [𝑢, 𝑣] in (a) and the geodesic closure
𝛾({𝑢, 𝑣}) in (b). The algorithmic aspects, i.e., the task to compute the geodesic closure
will be discussed in the next section.

In this thesis, our primary focus lies on the special case that the closure system in the
underlying graph is based on the set of all shortest paths. In fact, the above also holds if
the set of all shortest paths 𝒫sp is replaced by some arbitrary subset of the set of all paths
in the graph. For example, if considering the set of all induced paths (instead of shortest
paths) the corresponding closure operator is called monophonic closure operator (Pelayo,
2013, see, e.g.,). Unless otherwise stated, in the rest of this thesis we always consider the
geodesic closure system respectively operator.

Algorithmic Properties of the Geodesic Closure

For some graph 𝐺 = (𝑉 , 𝐸) the geodesic closure 𝛾(𝑋) of 𝑋 ⊆ 𝑉 (𝐺) can be computed
by iterating over all elements 𝑢 ∈ 𝛾(𝑋), starting with an arbitrary element of 𝑋, as
follows: Let 𝑋′ ⊇ 𝑋 be the set of elements in 𝛾(𝑋) that have already been generated
before we process the next element 𝑢. Then add 𝑌 = ⋃

𝑣∈𝑋′[𝑢, 𝑣] to 𝑋′, where 𝑌 can
be calculated by solving the single-source shortest path (SSSP) problem (for unweighted
graphs) from 𝑢 to all elements of 𝑋′. After all elements in 𝑋′ have been processed,
we have 𝑋′ = 𝛾(𝑋). It is a folklore result that the SSSP problem can be solved with
breadth-first search (BFS) in 𝑂 (𝑛 + 𝑚) time, where 𝑛 = |𝑉 (𝐺)| and 𝑚 = |𝐸(𝐺)|. Since
|𝛾(𝑋)| = 𝑂 (𝑛) and 𝑚 = 𝑂 (𝑛2), 𝛾(𝑋) can be computed in cubic (i.e., 𝑂 (𝑛3)) time (see,
e.g., Pelayo, 2013).

In contrast, for outerplanar graphs, it suffices to consider only the pairs over 𝑋. More
precisely, we will utilize the following result by Allgeier (2009):

Theorem 2.2.1. Let 𝐺 be an outerplanar graph. Then for all 𝑋 ⊆ 𝑉 (𝐺), 𝛾(𝑋) = ⋃
𝑢,𝑣∈𝑋[𝑢, 𝑣].

Thus, in case of outerplanar graphs, it suffices to perform a breadth-first search only
from the elements of 𝑋, resulting in the following corollary, by noting that 𝑚 = 𝑂 (𝑛) in
case of outerplanar graphs:

Corollary 2.2.1. Let 𝐺 be an outerplanar graph and 𝑋 ⊆ 𝑉 (𝐺). Then 𝛾(𝑋) can be computed
in time 𝑂 (𝑚|𝑋|) = 𝑂 (𝑛|𝑋|).

22

2.2 Set and Closure Systems

𝑢
𝑣

Figure 2.6: The colored elements in the lattice denote the 𝜆-closure of the elements 𝑢, 𝑣.

Closed Sets in Lattices

Our third example is concerned with closure systems over finite lattices. Let (𝐿; ≤) be a
finite lattice. Then the function 𝜆 ∶ 2𝐿 → 2𝐿 defined by

𝜆 ∶ 𝐿′ ↦ {𝑥 ∈ 𝐿 | inf𝐿′ ≤ 𝑥 ≤ sup𝐿′} (2.3)

for all 𝐿′ ⊆ 𝐿 is a closure operator, where inf𝐿′ (resp. sup𝐿′) denotes the greatest lower
bound or bottom (resp. least upper bound or top) element of 𝐿′. The above defined
function is usually called 𝜆-closure operator. Figure 2.6 gives an example of the 𝜆-closed
set (colored lattice elements) 𝜆({𝑢, 𝑣}).

In Lemmas 2.2.1 and 2.2.2 below we formulate some basic properties of finite lattices
and 𝜆-closure systems. Thoughmost of the claims follow from basic properties of lattices,
we provide all proofs for the reader’s convenience.

Lemma 2.2.1. Let (𝐿; ≤) be a finite lattice and 𝐴, 𝐵 ⊆ 𝐿. Then the following statements are
equivalent:

(i) inf𝐵 ≰ sup𝐴,

(ii) [inf𝐵) ∩ (sup𝐴] = ∅,

(iii) there exist an ideal 𝐼 ⊆ 𝐿 and a filter 𝐹 ⊆ 𝐿 with 𝐼 ∩ 𝐹 = ∅ such that 𝐴 ⊆ 𝐼 ∧ 𝐵 ⊆ 𝐹.

Proof. For (i) ⟹ (ii), suppose for contradiction that [inf𝐵) ∩ (sup𝐴] ≠ ∅. Then there
is an 𝑥 ∈ 𝐿 with inf𝐵 ≤ 𝑥 and 𝑥 ≤ sup𝐴, contradicting (i). The proof of (ii) ⟹
(iii) follows directly from the fact that [inf𝐵) is a filter and (sup𝐴] an ideal. Regarding
(iii) ⟹ (i), it must be the case that inf𝐵 ≰ sup𝐴, as otherwise inf𝐹 ≤ inf𝐵 ≤ sup𝐴 ≤
sup 𝐼, contradicting the disjointness of 𝐼 and 𝐹.

Lemma 2.2.2. Let (𝐿, 𝒞𝜆) be the 𝜆-closure system over a finite lattice (𝐿; ≤) and 𝐴, 𝐵 ⊆ 𝐿.
Then 𝜆(𝐴)∩𝜆(𝐵) = ∅ if and only if there exist an ideal 𝐼 ⊆ 𝐿 and a filter 𝐹 ⊆ 𝐿 with 𝐼 ∩𝐹 = ∅
such that (𝐴 ⊆ 𝐼 ∧ 𝐵 ⊆ 𝐹) or (𝐵 ⊆ 𝐼 ∧ 𝐴 ⊆ 𝐹).

Proof. The proof of the “if ” direction is immediate by 𝐼, 𝐹 ∈ 𝒞𝜆. Regarding the other di-
rection, we first claim that 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅ implies inf𝐵 ≰ sup𝐴 or inf𝐴 ≰ sup𝐵.
Suppose for contradiction that inf𝐵 ≤ sup𝐴 and inf𝐴 ≤ sup𝐵. Then it follows
inf𝐵 ≤ sup{inf𝐴, inf𝐵} ≤ sup𝐵 and inf𝐴 ≤ sup{inf𝐴, inf𝐵} ≤ sup𝐴, implying
sup{inf𝐴, inf𝐵} ∈ 𝜆(𝐴) ∩ 𝜆(𝐵), which contradicts 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅. The claim then
follows from Lemma 2.2.1 by the symmetry of 𝐴 and 𝐵.

23

2 Preliminaries

2.2.3 Separations in Finite Closure Systems

The primary focus of this thesis is on half-space separations in finite closure systems. To
formulate the separation problems in Chapters 4 and 5, we recall the general definitions
concerning separations in finite closure systems, and turn to the generalization of linear
separation in ℝ𝑑 by hyperplanes to that in abstract closure systems.3 In the context of
machine learning, one of the most relevant and natural questions concerning closure
systems (𝐸, 𝒞) is whether two subsets of 𝐸 are separable in 𝒞, or not. We follow the
generalization of half-spaces in Euclidean spaces introduced by Jamison (1974) to state
the formal problem definition. More precisely, let (𝐸, 𝒞) be a closure system. Then
𝐻 ⊆ 𝐸 is called a half-space in 𝒞 if both 𝐻 and its complement, denoted 𝐻𝑐, are closed
(i.e., 𝐻, 𝐻𝑐 ∈ 𝒞).

More precisely, let (𝐸, 𝒞) be a closure system and 𝐴, 𝐵 ⊆ 𝐸. Then 𝐴 and 𝐵 are

(i) closed set separable in (𝐸, 𝒞) if there exist 𝐶𝐴, 𝐶𝐵 ∈ 𝒞 such that 𝐶𝐴 ∩ 𝐶𝐵 = ∅ and
𝐴 ⊆ 𝐶𝐴, 𝐵 ⊆ 𝐶𝐵,

(ii) half-space separable if there exist 𝐻, 𝐻𝑐 ∈ 𝒞 such that 𝐴 ⊆ 𝐻 and 𝐵 ⊆ 𝐻𝑐.

𝐻 and 𝐻𝑐 together form a half-space separation of 𝐴 and 𝐵. The following property will
be used many times in what follows:

Proposition 2.2.4. Let (𝐸, 𝒞𝜌) be a closure system, 𝐻, 𝐻𝑐 ∈ 𝒞, and 𝐴, 𝐵 ⊆ 𝐸. Then 𝐻 and
𝐻𝑐 form a half-space separation of 𝐴 and 𝐵 if and only if they form a half-space separation of
𝜌(𝐴) and 𝜌(𝐵).

Proof. The “if” direction is immediate by the extensivity of 𝜌. The “only-if” direction
follows from the fact that for any 𝑆 ⊆ 𝐸 and 𝐶 ∈ 𝒞𝜌 with 𝑆 ⊆ 𝐶 wehave 𝜌(𝑆) ⊆ 𝜌(𝐶) = 𝐶
by the monotonicity and idempotency of 𝜌.

In line with the topological separation axioms, there also exist separation axioms for
closure systems. We state the following four axioms introduced by Jamison (1974):

(S1) All singletons are closed (i.e., {𝑒} ∈ 𝒞 for all 𝑒 ∈ 𝐸).

(S2) Two distinct elements can be separated by half-spaces (i.e., for 𝑒, 𝑓 ∈ 𝐸 with 𝑒 ≠ 𝑓
there is some 𝐻 ∈ 𝒞 with 𝐻𝑐 ∈ 𝒞 and 𝑒 ∈ 𝐻, 𝑓 ∈ 𝐻𝑐).

(S3) Every closed set can be separated from a singleton not contained in the closed set
by half-spaces (i.e., for some 𝑒 ∈ 𝐸, 𝐶 ∈ 𝒞 with 𝑒 ∉ 𝐶 there is some 𝐻 ∈ 𝒞 with
𝐻𝑐 ∈ 𝒞, 𝑒 ∈ 𝐻, and 𝐶 ⊆ 𝐻𝑐).4

3For a detailed introduction into this topic see, e.g., the book of van de Vel (1993).
4Axiom (S3) is equivalent to the following axiom (cf. van de Vel, 1984): Every closed set can be obtained

by the intersection of a family of half-spaces, i.e., for each 𝐶 ∈ 𝒞 there is a family ℋ of half-spaces such
that 𝐶 = ⋂

𝐻∈ℋ
𝐻.

24

2.3 Monotone Linkage Functions

(S4) Two disjoint closed sets can be separated by half-spaces (i.e., for 𝐶1 ∈ 𝒞, 𝐶2 ∈ 𝒞
and 𝐶1 ∩ 𝐶2 = ∅ there is some 𝐻 ∈ 𝒞 with 𝐻𝑐 ∈ 𝒞 such that 𝑒 ∈ 𝐻, 𝐶 ⊆ 𝐻𝑐).5

Note that the implications (S4) ⟹ (S3) ⟹ (S2) hold whenever (S1) holds. In
general, we do not assume that singletons are closed, but in case of geodesic closures
in graphs and closures in lattices the property (S1) holds true. An example where (S1)
does not hold is the closure system induced by the Galois connection in case of formal
concept analysis (see Section 2.1.2).

Our focus in this work is on closure systems satisfying the most restrictive axiom (S4).
It is inspired by the Euclidean space counterpart result of Kakutani (1937) that disjoint
convex sets can be separated by hyperplanes. This is motivated by the fact that basic
machine learning algorithms, such as, for example, the Perceptron algorithm (Rosenblatt,
1958) or Support VectorMachines Boser et al. (1992) heavily rely onKakutani’s separation
property in ℝ𝑑. Accordingly, one of our main goals is to study Kakutani closure systems,
i.e., which can be characterized by (S4).

Notice that half-space separability in abstract closure systems does not preserve all
natural properties of that in ℝ𝑑. For example, for any two finite subsets of ℝ𝑑 it always
holds that they are half-space separable if and only if their convex hulls are disjoint.
In contrast, Figure 1.2(c) shows that this equivalence does not hold for finite closure
systems in general.

Wewill need the following weaker form of separation: Two closed sets 𝐶1, 𝐶2 ∈ 𝒞 form
a maximal closed set separation of 𝐴 and 𝐵 if and only if they form a closed set separation
of 𝐴 and 𝐵 and there are no disjoint closed sets 𝐶′

1, 𝐶′
2 ∈ 𝒞 with 𝐶1 ⊆ 𝐶′

1 and 𝐶2 ⊆ 𝐶′
2,

where at least one of the containments is proper.

2.3 Monotone Linkage Functions

To adapt Vapnik’s idea ofmaximummargin separation to (abstract) finite closure systems,
we need some additional formal tools to quantify the closeness between subsets of the
ground set. Such an abstract measure for the proximity between elements and subsets
of a ground set is provided by monotone linkage functions introduced by Mullat (1976).
These kind of functions preserve an important elementary property of distances from
points to sets in metric spaces and can therefore be regarded as a very general “distance”
concept. More precisely, a monotone linkage function over a set 𝐸 is a map 𝑙 ∶ 2𝐸 × 𝐸 → ℝ
such that

𝑋 ⊆ 𝑌 ⟹ 𝑙(𝑋, 𝑒) ≥ 𝑙(𝑌 , 𝑒)

holds for all 𝑋, 𝑌 ⊆ 𝐸 and 𝑒 ∈ 𝐸. That is, 𝑙 is anti-monotone with respect to set contain-
ment, which is an essential property satisfied by distances as well. Thus, all distances
give rise to monotone linkage functions; the converse is, however, not true. Note that
by applying monotone linkage functions to singletons in the first argument, we obtain

5This property which guarantees half-space separability for all disjoint closed sets will be referred to as
Kakutani property in the following.

25

2 Preliminaries

a pairwise proximity between the elements of the ground set. However, in contrast to
metric spaces, the definition does not imply symmetry, i.e., 𝑙({𝑥}, 𝑦) is not necessarily
equal to 𝑙({𝑦}, 𝑥). Furthermore, 𝑙(𝑋, 𝑒) is not required to be zero for 𝑒 ∈ 𝑋.

Several examples of monotone linkage functions exist for finite and also infinite ground
sets. Below we recall some of the most popular ones to illustrate the concept (see, e.g.,
Kempner et al., 1997, for further examples). The proof that the functions below are
indeed monotone linkage functions is left to the reader.

(i) (monotone linkage in ℝ𝑑) For any distance 𝐷 on ℝ𝑑, define

𝑙 ∶ 2ℝ𝑑 × ℝ𝑑 → ℝ by 𝑙 ∶ (𝑋, 𝑒) ↦ inf
𝑥∈𝑋

{𝐷(𝑥, 𝑒)}

for all 𝑋 ⊆ ℝ𝑑 and 𝑒 ∈ ℝ𝑑.

(ii) (monotone linkage in (weighted) graphs) For a (weighted) graph 𝐺 = (𝑉 , 𝐸) define

𝑙 ∶ 2𝑉 × 𝑉 → 𝑅 by 𝑙 ∶ (𝑋, 𝑒) ↦ min
𝑥∈𝑋

{𝑑(𝑥, 𝑒)}

for all 𝑋 ⊆ 𝑉, where 𝑑 denotes the (weighted) length of a (weighted) shortest path
between vertices.

(iii) (monotone linkage in graphs by maximum degree on induced subgraphs) For a graph
𝐺 = (𝑉 , 𝐸), define

𝑙 ∶ 2𝑉 × 𝑉 → ℝ by 𝑙 ∶ (𝑋, 𝑣) ↦ min
𝑥∈𝑋

(𝛿(𝑣) − 𝛿𝐺[𝑋](𝑥))

for all 𝑋 ⊆ 𝑉 and 𝑣 ∈ 𝑉, where 𝐺[𝑋] is the subgraph of 𝐺 induced by 𝑋, 𝛿(𝑣) the
degree of 𝑣 in 𝐺, and 𝛿𝐺[𝑋](𝑥) the degree of 𝑥 in 𝐺[𝑋].

(iv) (monotone linkage between feature vectors) Let 𝐹 ⊆ ℝ𝑑 be a finite set consisting of 𝑑
dimensional feature vectors. Then for every subset of feature vectors 𝑋 ⊆ 𝐹 and a
fixed feature vector 𝑓 ∈ 𝐹 the linkage between 𝑓 and 𝑋 can be defined by

𝑙(𝑋, 𝑓) ∶=
𝑑

∑
𝑘=1

min{|𝑓𝑘 − 𝑥𝑘| ∶ 𝑥 ∈ 𝑋}

where 𝑘 denotes the 𝑘-th index of the 𝑑-dimensional vectors 𝑓 respectively 𝑥.

Monotone linkage functions have been studied intensively in the context of clustering
over set systems and convex geometries (Kempner and Levit, 2010; Kempner et al., 1997;
Kempner and Muchnik, 2003). As mentioned above, we will use them for defining
margins and maximum margin separations in arbitrary finite closure systems. For this
purpose, we will use the following notion many times in what follows. Amonotone linkage
closure system (MLCS) is a triple (𝐸, 𝒞𝜌, 𝑙) where (𝐸, 𝒞𝜌) is a closure system and 𝑙 is a
monotone linkage function on 𝐸. Regarding the complexity results in Section 5.3.2 we
assume that the linkage functions are given implicitly via an oracle. That is, for all 𝑋 ⊆ 𝐸
and 𝑒 ∈ 𝐸 the value of 𝑙(𝑋, 𝑒) is returned in unit time by an oracle.

26

2.4 Geodesic Core-Periphery Decompositions

So far, we have assumed that the monotone linkage function in the MLCS is given
explicitly. It raises the legitimate question of why not use a metric instead of monotone
linkage functions. Thus, we shortly discuss the case that the closure system does not
give rise to a metric. We show that a monotone linkage function which is not necessarily
a metric can always be defined directly from the structure of the closure system. We will
call this special function the natural monotone linkage function.

(v) (natural monotone linkage in finite closure systems) Let (𝐸, 𝒞𝜌) be some closure system.
We denote by 𝒢(𝑋, 𝑒) = {𝑌 ⊆ 𝐸, 𝑒 ∉ 𝑌 , 𝑒 ∈ 𝜌(𝑋 ∪ 𝑌)} the set of all 𝑌 ⊆ 𝐸 such
that 𝑒 does not lie in 𝑌 but in the closure of 𝑋 ∪ 𝑌. Then the function 𝑙 ∶ 2𝐸 × 𝐸 → ℝ
defined by

(𝑋, 𝑒) ↦
⎧{
⎨{⎩

0, if 𝑒 ∈ 𝑋
|𝐸 ⧵ 𝜌(𝑋)|, if 𝒢(𝑋, 𝑒) is empty,
𝑚𝑖𝑛{|𝑌 | ∈ 𝒢(𝑋, 𝑒)} o.w.

is a monotone linkage function.
In particular, the linkage between 𝑋 and 𝑒 is the minimum number of elements dis-
tinct from 𝑒 we need to add to 𝑋 to generate 𝑒 using the closure operator. Monotone
linkage functions defined this way only depend on the closure system itself. This
definition of monotone linkage functions is more of theoretical interest because
in practice it is hard to determine the minimum generator sets and hence also the
value of the monotone linkage function.

2.4 Geodesic Core-Periphery Decompositions

For an explicit application of mining in finite closure systems we look at geodesic closed
sets in real-world graphs. More precisely, we are interested in approximating geodesic
cores in large networks. Up to now, geodesic cores (Marc and Šubelj, 2018) are only
probabilistic defined. Informally, the geodesic core of a graph consists of those nodes
contained in every geodesic closed set for a small family of generator sets, each containing
a few random nodes. Of course, the geodesic core defined in this way may be empty, but
this is not the case for most social networks. Incorporating the results of Marc and Šubelj
(2018), we define the geodesic core of a graph 𝐺 by

𝒞 ∶=
𝑖

⋂
𝑗=1

𝐶𝑗,

where 𝑖 is the smallest integer satisfying⋂𝑖
𝑗=1 𝐶𝑗 = ⋂𝑖+1

𝑗=1 𝐶𝑗 and𝐶𝑗 = 𝛾(𝑋𝑗) is the geodesic
closure of 𝑋𝑗 ⊆ 𝑉 (𝐺) containing 𝑘 > 0 nodes selected independently and uniformly at
random from 𝑉 (𝐺). The experiments in Section 6.1.3 with large real-world networks
show that for 𝑘 ≈ 10, the core (if it exists) does not depend on the particular choice of
the generator elements. The core-periphery decomposition of a graph is composed of the

27

2 Preliminaries

(a) Entire Network (b) (Geodesic) Core (c) Periphery

Figure 2.7: (a) CA-GrQc network Leskovec and Krevl (2014), (b) its (geodesic) core, (c)
its periphery

subgraph induced by the core nodes and that by the remaining nodes, called periphery. In
Figure 2.7 we give a visual example of the core-periphery decomposition of the CA-GrQc
network (Leskovec and Krevl, 2014)6.

2.5 Tukey Depth in Finite Closure Systems

Given the notion of half-spaces in finite closure systems it is possible to generalize the
definition of Tukey Depth in ℝ𝑑 (Tukey, 1975) to finite closure systems. Each hyperplane
in ℝ𝑑 separates the space into two disjoint half-spaces. For some finite point set 𝐸 ⊂ ℝ𝑑

the Tukey depth of some element 𝑒 ∈ 𝐸 is given by the minimum number of elements
lying in the same half-space as 𝑒 looking at all possible separating hyperplanes not
containing some element from 𝐸. Johnson and Preparata (1978) have shown that it is
NP-hard to compute the Tukey Depth in general. Since we show in Section 4.1 that it
is not possible to find separating half-spaces in arbitrary closure systems we adapt the
slightly weaker definition by Cerdeira and Silva (2021) proposed in case of geodesic
closure systems to arbitrary finite closure systems (𝐸, 𝒞).

Definition 2.5.1. Let (𝐸, 𝒞) be an arbitrary closure system. Then for an element 𝑒 ∈ 𝐸 the
Tukey depth is defined by

td(𝑒) ∶= |𝐸| − max
𝐶∈𝒞

{|𝐶| ∶ 𝜌({𝑒}) ∩ 𝐶 = ∅} .

The corresponding Graph Tukey depths problem is defined as follows: Given a graph
𝐺 compute td(𝑣) for all vertices 𝑣 ∈ 𝑉 (𝐺). In case of Kakutani closure systems we can
derive the following result.

6This network is built by the co-authorships in the general relativity and quantum cosmology community.

28

2.6 Performance Measures

Tukey depths from 1 to 6

(a) (b) (c)

Figure 2.8: Vertex Tukey depths (from 1 to 6 denoted by the colors from above) for
different types of graphs: (a) a tree, (b) a circle and (c) some planar graph

Proposition 2.5.1. Let (𝐸, 𝒞) be a Kakutani closure system. Then for all 𝑒 ∈ 𝐸 it holds

td(𝑒) = min{|𝐻| ∶ 𝐻, 𝐻𝑐 ∈ 𝒞, 𝑒 ∈ 𝐻} .

Proof. By definition of Tukey depth in finite closure systems it holds that td(𝑒) = |𝐸|−|𝐶∗|
where𝐶∗ is a largest closed set that is disjoint to 𝜌({𝑒}), i.e., 𝐶∗ ∈ argmax

𝐶∈𝒞
{|𝐶| ∶ 𝜌({𝑒})∩

𝐶 = ∅} . Since by assumption the closure system is Kakutani we can separate the two
disjoint closed sets 𝜌({𝑒}) and 𝐶∗ by half-spaces. Let 𝐻, 𝐻𝑐 such a half-space separation
with 𝐶∗ ⊆ 𝐻. It follows that 𝐻 = 𝐶∗ as otherwise 𝐶∗ is not a closed set of maximal
cardinality that is disjoint to 𝜌({𝑒}). Since 𝐶∗ is a largest half-space that is disjoint to
𝜌({𝑒}) the claim follows by noting that td(𝑒) = |(𝐶∗)𝑐| is the size of a smallest half-space
including 𝜌({𝑒}).

Proposition 2.5.1 shows that for Kakutani closure systems the Tukey depth definition
matches the original definition in ℝ𝑑 using half-spaces. In Figure 2.8 we give an example
of the graph Tukey depths of vertices for different graphs for the geodesic closure.

2.6 Performance Measures

In Section 5.4 we analyze and compare the performance of different algorithms con-
cerning their accuracy and coverage. To define the accuracy and coverage we first state
the underlying task. Let (𝐸, 𝒞) be a finite closure system and 𝐿1, 𝐿2 ⊆ 𝐸 a complete
labeling of the ground set, i.e., 𝐿1 ∩ 𝐿2 = ∅ and 𝐿1 ∪ 𝐿2 = 𝐸. The input to the algorithms
are training sets 𝑇1 ⊆ 𝐿1, 𝑇2 ⊆ 𝐿2. The output sets of the algorithms are denoted by
𝐶1 ⊇ 𝑇1, 𝐶2 ⊇ 𝑇2. Moreover, we assume that 𝜌(𝑇1) ∩ 𝜌(𝑇2) = ∅ and by definition of the
algorithms it holds that 𝐶1 ∩ 𝐶2 = ∅. By 𝑇 ∶= 𝑇1 ∪ 𝑇2 we denote the set of all training
samples. The sets of labels without training samples are denoted by 𝐿1 ∶= 𝐿1 ⧵ 𝑇1
respectively 𝐿2 ∶= 𝐿2 ⧵ 𝑇2. The output sets without training samples are denoted by
𝐶1 ∶= 𝐶1 ⧵ 𝑇1 respectively 𝐶2 ∶= 𝐶2 ⧵ 𝑇2 and the ground set 𝐸 without all the training
samples is denoted by 𝐸 ∶= 𝐸 ⧵ 𝑇. Given some finite closure system (𝐸, 𝒞), a complete

29

2 Preliminaries

labeling 𝐿1, 𝐿2 of the ground set and training samples 𝑇1, 𝑇2, we define the accuracy and
coverage of the output 𝐶1, 𝐶2 as follows:

Acc(𝐶1, 𝐶2) ∶=
|(𝐶1 ∩ 𝐿1) ∪ (𝐶2 ∩ 𝐿2)|

|𝐶1 ∪ 𝐶2|
=

1
|𝐶1 ∪ 𝐶2|

2
∑
𝑖=1

|𝐶𝑖 ∩ 𝐿𝑖|,

and

Cov(𝐶1, 𝐶2) ∶=
|𝐶1 ∪ 𝐶2|

|𝐸|
.

We note that for the coverage it holds Cov(𝐶1, 𝐶2) = 1 if and only if our algorithm is
able to find separating half-spaces.

In Section 6.1 we approximate the geodesic core of a graph and measure the overlap
between the exact core and our approximation using the Jaccard similarity. This quality
measure is defined as follows: Let 𝑋, 𝑌 ⊆ 𝐸 be some finite subsets of a ground set 𝐸
(for example the set of the core nodes and its approximation). Then

Jacc(𝑋, 𝑌) ∶=
|𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 |

.

denotes the Jaccard similarity between the sets 𝑋 and 𝑌. We note that Jacc(X,Y) = 1 if
and only if 𝑋 = 𝑌 and Jacc(X,Y) = 0 if and only if 𝑋 ∩ 𝑌 = ∅.

2.7 Datasets

In this section, we give the information about the datasets used in this thesis. We use
different datasets concerning finite point sets (see Table 2.1) and graphs to evaluate
the maximal closed set separation (MCSS) algorithm in Section 5.4.1. Regarding the
evaluation of our heuristic in Section 6.1 we use different synthetic and large real-world
graphs (see Table 2.3). For the evaluation of our algorithm that approximates the graph
Tukey depths in Section 6.2 we use different small graph datasets (see Table 2.2).

2.7.1 Finite Point Sets

The data presented in Table 2.1 and used in Section 5.4.1 consists of three self-created
synthetic datasets Synthetic2D, Synthetic3D and Synthetic4D and the binary labeled
datasets Banana, Banknote and DeltaAilerons from the UCI repository (Dua and
Graff, 2017) and OpenML (Vanschoren et al., 2013). Banana is a synthetic dataset that
consists of two banana shape classes, i.e., in particular, the classes are not separable
by disjoint convex sets. Banknote consists of four-dimensional feature vectors; the
features correspond to particular values of a wavelet transform representing real and
fake banknotes images. DeltaAilerons is a binarized version of the Ailerons dataset; the
attributes describe the status of an aircraft and the goal is to predict some control action.

The self-created synthetic datasets consist of two blobs, each with 500 points, sampled
from two Gaussian distributions with different means but the same variance. We use

30

2.7 Datasets

Name Size Dimen-
sion

Majority
Class

Training Set Size per
Class

Synthetic2D 1000 2 0.5 1–50
Synthetic3D 1000 3 0.5 1–50
Synthetic4D 1000 4 0.5 1–50

Banana 5300 2 0.55 1–5
Banknote 1372 4 0.56 1–60
DeltaAilerons 7129 5 0.53 1–13

Table 2.1: Binary labeled synthetic and real-world datasets (Dua and Graff, 2017;
Leskovec and Krevl, 2014) consisting of numerical feature vectors. The column
Size denotes the size of the data,Dimension the dimension of the feature vectors,
Majority Class the relative size of the larger class, and Training Set Size per Class
denotes the range of the number of training samples used in our experiments
in Section 5.4.1.

only such sampled data in which the two classes are separable by a hyperplane. As the
name suggests the difference between the datasets is that the elements come from ℝ2, ℝ3

or ℝ4. For the experiments we used 1000 variants of Synthetic2D, Synthetic3D, and
Synthetic4D using the same Gaussian distributions but with differently drawn samples.

2.7.2 Graphs

This section is devoted to different synthetic and real-world graph datasets.

Small Graphs Datasets The small graphs dataset (Table 2.2) contains 19 real-world
graph datasets (Morris et al., 2020) consisting of small graphs with less than 100 nodes
on average. Disconnected graphs are removed from the original datasets. It is used to
evaluate the graph Tukey depth approximation algorithm introduced in Section 6.2.

The following three datasets are used for the experiments in Section 6.1. The first two
datasets are generated by sampling from the Erdős-Rényi model (Erdos et al., 1960).
The third one contains several medium to large real-world graphs (Leskovec and Krevl,
2014).

Erdős-Rényi I This dataset contains small Erdős-Rényi random graphs used to evaluate
Algorithm 4 generating outerplanar spanning subgraphs.7 The size of the graphs varies,
ranging from 𝑛 = 100 to 𝑛 = 500 with a step size of 100 and for ten different edge
probabilities, ranging from 𝑝 = 0.05 to 𝑝 = 0.14 with a step size of 0.01. For each of the

7We use only small graphs because testing how many edges can be added to the graph without destroying
outerplanarity is in 𝑂 (𝑛𝑚).

31

2 Preliminaries

Data Number of Graphs Average Number
of Nodes

Average Number
of Edges

BZR 405 35.75 38.36
PTC_MM 336 13.97 14.32
COX2 467 41.22 43.45
Cuneiform 267 21.27 44.80
DHFR 756 42.43 44.54
PTC_FR 351 14.56 15.00
PTC_FM 349 14.11 14.48
MUTAG 188 17.93 19.79
PTC_MR 344 14.29 14.69
KKI 83 26.96 48.42
IMDB-BINARY 1000 19.77 96.53
NCI1 3530 29.27 31.88
Peking_1 85 39.31 77.35
MSRC_21C 209 40.28 96.60
MSRC_9 221 40.58 97.94
OHSU 79 82.01 199.66
ENZYMES 569 31.68 61.44
MSRC_21 563 77.52 198.32
COIL-DEL 3900 21.54 54.24

Table 2.2: Graph data of different sizes selected from Morris et al. (2020). Disconnected
graphs are removed from the original datasets.

50 different configurations of (𝑛, 𝑝), 100 connected Erdős-Rényi random graphs have been
generated.

Erdős-Rényi II This dataset also contains Erdős-Rényi connected random graphs with
10 different sizes from 𝑛 = 1 000 to 𝑛 = 10 000 with a step size of 1 000 and with edge
probabilities ranging from 𝑝 = 0.006 to 𝑝 = 0.02, with step size 0.002. Below 𝑝 = 0.006,
the graphs were too sparse for our purpose. For 𝑛 = 10 000 and 𝑝 = 0.02, the graphs
contain around 1,000,000 edges. For all of the 80 configurations of (𝑛, 𝑝), 100 connected
Erdős-Rényi random graphs have been generated.

Real-World Large Graphs This dataset, see Table 2.3, contains 15 real-world graphs
(Leskovec and Krevl, 2014). In case of disconnected graphs, only their largest connected
components were considered8. The dataset is used for the evaluation of the approxima-
tion of geodesic cores in Section 6.1.

8The numbers in Table 2.3 already denote the largest connected component.

32

2.7 Datasets

Graph #Vertices #Edges Density

com-Orkut 3,072,441 117,185,083 2.5e-05
soc-LiveJournal1 4,843,953 43,362,750 3.7e-06
soc-pokec-relationships 1,632,803 22,301,964 1.7e-05
com-youtube.ungraph 1,134,890 2,987,624 4.6e-06
com-dblp.ungraph 317,080 1,049,866 2.1e-05
com-amazon.ungraph 334,863 925,872 1.7e-05
Slashdot0902 82,168 582,533 1.7e-04
Cit-HepPh 34,401 420,828 7.1e-04
Cit-HepTh 27,400 352,059 9.4e-04
CA-AstroPh 17,903 197,031 1.2e-03
CA-CondMat 21,363 91,342 4.0e-04
CA-HepPh 11,204 117,649 1.9e-03
Wiki-Vote 7,066 100,736 4.0e-03
CA-HepTh 8,638 24,827 6.7e-04
CA-GrQc 4,158 13,428 1.6e-03

Table 2.3: Large real-world networks from Leskovec and Krevl (2014) with number of
vertices (𝑛), number of edges (𝑚) and density. The networks are sorted by
𝑛𝑚.

33

Related Work 3
This chapter overviews the most important results from the research fields related to
the topic of this thesis. In particular, we discuss papers that have influenced our work,
for example, by using and extending their results and definitions. In addition, we
also mention the origins of the different research areas used throughout this thesis.
More precisely, we discuss theoretical results concerning separations in closure systems
from the field of computational geometry and papers adapting classical machine learning
algorithms and paradigms, especially linear and maximum margin separations. We start
by recalling the roots and the development of abstract closure systems. Like in many other
fields that have developed over time, many different notions of similar or equivalent
objects exist. We will shortly mention the various notions of closure systems used by
different authors. Since we are especially interested in mining and learning over graphs,
we also recall some specific results concerning graph geodesic convexity.

Our primary motivation to consider the adaptation of linear separation from ℝ𝑑 to
finite closure systems is because of its simplicity and basic nature and, at the same time,
its success in solving various real-world machine learning tasks in entirely different fields.
Similarly to the evolution in ℝ𝑑 from arbitrary linear to maximum margin separations,
we first look at arbitrary separations and then define maximum margin separations in
finite closure systems. Accordingly, we overview the related techniques that generalize
maximum margins and compare them with our method.

Finally, we recall the most important related work about mining and learning in finite
closure systems and put them into the context of this thesis. Onemain difference between
this thesis and the related papers is that they are all restricted to some fixed domain
and do not regard linear separations in finite closure systems on a generic level. Since
the origins of closure systems date back more than 100 years and the ones of classical
machine learning more than 60 years, it is impossible to give a complete list of all related
papers. In this chapter we therefore restrict the discussion to the most important results
relevant to this thesis.

Outline The rest of this chapter is structured as follows. In Section 3.1 we discuss the
most relevant work on closure systems. That includes the particular case of geodesic
closure systems (Section 3.1.1) and results concentrating on separations in finite closure
systems (Section 3.1.2). In Section 3.2 we recall the origins and basic concepts of linear
separations in machine learning. In particular, we mention several approaches that
introduce maximum margin separations for different domains (Section 3.2.1). Finally,

35

3 Related Work

in Section 3.3, we list the most relevant practical applications concerning mining and
learning in finite closure systems.

3.1 Abstract Closure Systems

As mentioned in Chapter 1, the origins of abstract convexity theory go back to the early
19th century to thework of some famousmathematicians including Ernst Schröder, Georg
Cantor, and Richard Dedekind. The first formal approaches go back to the works of Riesz
(1909) and Moore (1910). While Riesz concentrates more on the topological aspects of
convexity, Moore already defines some kind of closure operator. The consideration of
abstract closure systems was mainly motivated by problems in different theoretical areas,
including topology, algebra, logic, and computational geometry.

It is challenging to keep track of the literature because there are various definitions
for closure systems, all describing the same or at least similar concepts. For example,
Levi (1951) and also Kay and Womble (1971) speak of convexity structures or convexity
spaces, while Jamison (1974) uses the notion of alignments. Alignments are somehow
specially designed for infinite closure systems, including the additional assumption that
unions of a nested family of totally ordered closed sets are also axiomatically defined
as closed. Assuming the axiom of choice and using Zorn’s Lemma, this extra condition
implies that for each element from the ground set, there exists a maximal closed set that
does not contain this element (Duchet, 1987). For our purposes, as we are considering
finite closure systems only, this assumption is not necessary. Furthermore, there exist
various concepts which consider special cases of closure systems or definitions that
slightly differ from the version used in this thesis. Without the sake of completeness, we
only mention the work by Bryant and Webster (1972, 1973, 1977). They study so-called
convexity systems, which are based on closed intervals. In particular, according to their
definition, “closed sets” are always unions of closed intervals (examples are convex hulls
in ℝ𝑑 and geodesic convexity in graphs). The reason we mention their work is that they
are among the first who regarded hyperplane separations in convexity systems (Bryant
and Webster, 1973).

Abstract half-spaces, as used in this thesis, i.e., closed sets with closed complements,
were introduced as hemispaces in the thesis of Jamison (1974). He also introduced four
basic separation properties for closure systems (S1)-(S4) that we discuss in Section 3.1.2
in more detail. Finally, we mention two works that serve as good surveys. While the
paper by Duchet (1987) provides an excellent summary of the development of different
branches of convexity theory, the book of van de Vel (1993) is a detailed survey on closure
systems.

Closure systems are widely used in different areas of computer science, in particular,
in data mining and machine learning. Examples include the application of Galois con-
nections to itemset mining (Pasquier et al., 1999) and formal concept analysis (Ganter et al.,
2005) mentioned already in Chapter 1.

36

3.1 Abstract Closure Systems

3.1.1 Convexity in Graphs

Since we have a special focus on the domain of graphs in this thesis, we briefly discuss
the most important work on convexity in graphs. Geodesic convexity in graphs was first
studied by Mulder (1980) and Harary and Nieminen (1981). We note that most of the
literature is about geodesic convexity, which relies on the set of all shortest paths, with
the remark that there are other graph convexities which rely on different sets of paths. For
example, instead of considering the set of all shortest paths, Farber and Jamison (1987)
consider only shortest paths up to a certain length. Another well-studied graph convexity
is the monophonic convexity (Duchet, 1988), which relies on the set of all chordless, also
known as induced paths. For an excellent overview of the most important results, the
reader is referred to the book of Pelayo (2013).

Several interesting graph theoretic parameters can be expressed by using (geodesic)
convexity in graphs. One main research direction is the adaptation of Caratheodory,
Helly, and Radon theorems from ℝ𝑑 to graph convexity (Duchet and Meyniel, 1983).
Another well-studied problem is to determine the geodetic number (Harary et al., 1993) or
hull number of a graph (Everett and Seidman, 1985) and its characterization for different
types of graph classes (see, e.g., Araujo et al., 2013; Dourado et al., 2010). The geodetic
respectively hull number is the minimum size of a vertex set such that the closure of the
set generates the whole graph. As a closely related work, we also mention the papers by
Artigas et al. (2011, 2007) on geodesic convexity. Similarly to our approach, they look at
covers and partitionings of graphs with convex sets. Their work allows us to prove the
hardness of half-space separations in general closure systems. Regarding the practical
applications of geodesic convexity to mining and learning in graphs, we discuss some
recent results later in Section 3.3.

3.1.2 Theoretical Work on Separations

This section is devoted to the most important results about closed set separations in finite
closure systems. Most of this results are purely theoretical, without any experiments or
explicit applications. Nonetheless, they form the basis for all our applications in finite
closure systems.

Like in many other fields, the research started with separations in ℝ𝑑. In particular,
the origins of set and especially, convex set separations arose in the fields of geometry,
and topology. One of the first and central results in this context is Farkas’ Lemma (Farkas,
1902), which is motivated by separating disjoint convex sets via hyperplanes. Extensions
are the well-known hyperplane separation theorem by Minkowski (1911), which states
that disjoint convex sets are always separable by hyperplanes and the Hahn-Banach
theorem (Banach, 1929; Hahn, 1927) in topology. Since we are considering finite closure
systems, we are interested in the geometric version of this separation result attributed
to Kakutani (1937) and used in the related literature (see, e.g., Chepoi, 1994; Kubiś,
2002; van de Vel, 1993). It states that disjoint convex sets in ℝ𝑑 can be separated by
complementary convex sets, i.e., half-spaces. Similarly to Euclidean spaces, different
kinds of separations can be considered for (finite) closure systems using the definition

37

3 Related Work

of closed sets. Jamison (1974) formulated four separation axioms, (S1) to (S4), that are
similar to the topological separation axioms (see Section 2.2.3).

Since we are looking for partitionings of the space by disjoint closed sets, in this work,
we concentrate on the most restrictive axiom (S4) of Jamison. This axiom is inspired
by the Euclidean space counterpart result of Kakutani (1937) that convex sets can be
separated by half-spaces. In other words, our goal is to analyze different closure systems
and formulate characterization results that guarantee the Kakutani property (S4), which,
in turn, allows for complete separation. The Kakutani property is essential in the case of
complete binary classification via disjoint closed sets. Such half-space separations have
been considered in different domains extending the separation results of ℝ𝑑 to other
structures. The first results towards this direction are due to Stone (1938) and Tukey
(1942). In particular, while Stone (1938) considers the connection between distributive
lattices and lattice partitionings into prime filters and ideals, Tukey (1942) considers
half-space separations of real linear spaces. These characterization results of the (S4)
property are then generalized by the work of Ellis (1952). while the results of Bair (1975)
are restricted to straight line spaces, the convexity spaces defined by Bryant and Webster
(1973) to the case of ordinary closure systems generated by the union of closed intervals.
One of the most detailed works concerning the (S4) property is due to Chepoi (1994). He
gives several characterizations of (S4) closure systems for 𝑛-ary convexities, including
interval convexities (e.g., graph convexities and lattices). One of his main results we use
throughout the thesis is the characterization of Kakutani closure systems via the Pasch
Axiom. Further results about separations in closure systems are provided by (Kubiś,
2002; van de Vel, 1982, 1984).

3.2 Classical Machine Learning

The development ofmachine learning algorithms has proceeded in several stages. In 1958,
Rosenblatt (1958) published his seminal paper about the Perceptron algorithm. This first
stage ended with the publication of Minsky and Papert (1987)1 in 1969, showing that the
XOR-problem is not solvable by the Perceptron algorithm. The topic did not receive much
attention until the work of Hopfield (1982) about Hopfield networks and the usage of
back-propagation by Rumelhart et al. (1986). These developments have made it possible
to “learn” more complex networks. Thus, the increasing computing power enabled the
solution of more complex and attractive learning problems. Examples are multi-layer
neural networks with non-linear activation functions that can solve the XOR problem
and are universal approximators (Hornik et al., 1989). Although this is a fascinating
field of research, we are more interested in the fundamental properties of learning, more
precisely, those of linear separations in ℝ𝑑. Moreover, we are also interested in the main
idea of support vector machines that extend the Perceptron algorithm by integrating
margins. Ultimately, we are looking at this extension because its concept, as we show in
this thesis, can be transferred to finite abstract closure systems.

1This references a newer version of the original book from 1969.

38

3.2 Classical Machine Learning

While the origins of the theory of support vector machines (SVMs) go back to the work
of Vapnik and Chervonenkis (1974), the support vector machine algorithm is presented
for the first time in the paper by Boser et al. (1992), including the usage of kernel functions.
Cortes and Vapnik (1995) improved the algorithm by considering non-separable data
and Freund and Schapire (1999) proposed a simpler version that uses less computation
time. Bennett and Campbell (2000) analyzed the backgrounds of the SVM method
and mentioned three main aspects, namely, “margins”, “duality” and “kernels”. While
duality and kernels rely on the fact that the underlying space is an inner product space,
the definition of margin only needs some similarity measure. Moreover, they compare
two different methods of finding the maximum margin separating hyperplane. One of
them computes the hyperplane by “maximizing the margin between parallel supporting
planes”(Bennett and Campbell, 2000), the other one by “bisecting the closest points
in the convex hull”(Bennett and Campbell, 2000). The solutions of the two different
methods are identical and both of the separating hyperplanes can be expressed as a
solution of a quadratic program. While the first method explicitly uses the notion of
supporting planes, the second one mainly relies on distances between convex hulls. This
second method will be used in the thesis to transfer the definition of maximum margin
separation to finite closure systems (see, Section 5.3).

Following the work of Boser et al. (1992) and Cortes and Vapnik (1995), many authors
haveworked on different aspects of maximummargin separation in Euclidean spaces and
developed different support vector machines for more general spaces. Since this strongly
relates to our adaptation of maximum margin separations to finite closure systems, we
also summarize different ideas of generalizing the notion of maximum margins and put
them into the context of this thesis.

3.2.1 Maximum margin separations

Hein and Bousquet (2003) generalize SVMs to arbitrary metric spaces by defining maxi-
mum margin separations by means of appropriate embeddings (ideally isometric em-
beddings) of metric spaces into Banach and Hilbert spaces. They show that the SVM
algorithm works for all metric spaces that can be embedded into a Hilbert space. Der
and Lee (2007) generalize the results on the Euclidean spaces to Banach spaces and
Fukumizu et al. (2011) compare learning in Hilbert and in Banach spaces. With the
same goal as (Hein and Bousquet, 2003) but with a completely different approach using
so-called “Lipschitz Classifiers” instead of linear separators is proposed by von Luxburg
and Bousquet (2004) to generalize support vector machines to metric spaces. Other
works consider maximal margin separations in fuzzy number spaces (He and Li, 2011)
and general metric spaces (Gottlieb et al., 2014).

In contrast to the above methods, we assume a somewhat weaker adaptation. More
precisely, we are interested in preserving only some of the properties from Euclidean
spaces. Moreover, we are not interested in the embedding process itself and work directly
with the abstract finite closure systems using a very general proximity definition. This
results, for example, in a slightly different definition of maximum margins (Section 5.3).

39

3 Related Work

We assume that elements with high proximity are more likely to be in the same class.
However, the structure of the closure system may additionally influence the elements’
classes.

Thus, our approach is more related to learning in distance spaces (Jain and Obermayer,
2009). As the name suggests, distance spaces are spaces equipped with a distance func-
tion, without any further structural assumptions. Maximummargin classifiers in distance
spaces are usually called “large-width” or “large-margin” classifiers. They are often
based on purely pairwise similarities, such as maximum margins in “pseudo-Euclidean
spaces” (Graepel et al., 1999). “Large-width” classifiers are intensively studied by An-
thony and Ratsaby (2016, 2018, 2020). Similar to our approach, Anthony and Ratsaby
(2018) use an adaption of the definition of half-spaces and define maximum margins by
the “width” of half-spaces in distance spaces. Nevertheless, this definition differs from
ours because it is directly based on the given pairwise similarities between points. In
contrast, we are interested in half-spaces defined by the underlying closure systems. In
particular, our definition of half-spaces is independent of the pairwise similarities.

Instead of a metric space or pairwise distances, we use monotone linkage functions intro-
duced by Mullat (1976) for defining separation margins. Monotone linkage functions
provide a more general measure, by noting that finite closure systems always give rise
to monotone linkage functions (see Section 2.3). However, pairwise proximities and
metrics need to be defined additionally. This means monotone linkage functions provide
a natural and straightforward definition of measuring proximities between sets and
elements. They are used in clustering (Kempner and Levit, 2010; Kempner et al., 1997)
over set systems and convex geometries. Vashist et al. (2007) apply monotone linkage
functions to clustering on graphs and show their practical potential for margin definitions
and maximum margin separations of disjoint closed sets.

3.3 Mining and Learning in Finite Closure Systems

This section is devoted to different applications of mining and learning in finite closure
systems. Most of the related results are concerned with some vertex classification or
clustering task in graphs. Nevertheless, graph convexity has recently been used for other
tasks as well, such as, for example, genome rearrangement problems (Cunha and Protti,
2018, 2019), social network analysis (Marc and Šubelj, 2018; Šubelj, 2018; Šubelj et al.,
2019), and a new measure of graph centrality (Cerdeira and Silva, 2021). Since Chapter 6
builds up on the work of Marc and Šubelj (2018) and Cerdeira and Silva (2021), we will
provide more details about these works in Section 3.3.1 and Section 3.3.2.

Regarding the literature on vertex classification in geodesic closure systems over graphs,
we note that there are approaches that deal with the different learning (supervised, online,
and active learning) tasks. Regarding supervised learning on graphs, de Araújo et al.
(2019) introduce the geodesic classification (GC) problem. It is somehow orthogonal to the
half-space separation (HSS) andmaximummargin separation (MCSS) problems defined
and considered in this thesis. In our supervised setting, we start with a set of training
samples partitioned into two sets according to their labels that have disjoint closures.

40

3.3 Mining and Learning in Finite Closure Systems

We then try to find a consistent hypothesis by extending the two sets into two maximal
disjoint closed sets. In contrast, for the geodesic classification problem, the closures of
the two training sets may intersect and the task is to remove the outliers, i.e., to find
maximum subsets of the initial sets such that their closures do not intersect. Using a
less restrictive notion of convexity in metric spaces Stadtländer et al. (2021) introduce
learning of weakly convex sets. Weak convexity denotes some local convexity in the sense
that it consists of the union of ordinary convex hulls of nearby points, where “nearby” is
defined by some threshold 𝜃. For example, the 𝑔𝑘-convexity on graphs (Pelayo, 2013)
that is based on shortest paths of length at most 𝑘 (instead of all shortest paths for the
geodesic convexity), is a weak convexity on graphs for 𝜃 = 𝑘.

Thiessen and Gärtner (2021) study active learning of half-spaces in geodesic convexity.
Again, the starting point is some unknown hypothesis consisting of binary labeled half-
spaces. By querying chosen vertices in some “intelligent” way, they try to classify all
the graph labels, subject to minimizing the overall number of such queries. Moreover,
they provide upper and lower bounds for the number of queries. In a follow-up paper,
Thiessen and Gärtner (2022) also study the task of online learning of half-spaces in graphs
(Thiessen and Gärtner, 2022). The hypothesis space stays the same, but the learner’s
task is to find a strategy that minimizes the prediction error for the vertices provided by
some adversary. The work of Bressan et al. (2021) strongly relates to this two approaches
in the sense that it uses oracle queries to recover exact clusters.

Finally, below we briefly discuss two further approaches. We start with the work of
Marc and Šubelj (2018) on geodesic core-periphery decompositions, and continue with
a new graph centrality measure called graph Tukey depth (Cerdeira and Silva, 2021).

3.3.1 Geodesic Core-Periphery Decompositions

Core-periphery models provide a new tool for analyzing real-world graphs, such as, for
example, like social networks. The core-periphery structure has been defined formally
by Borgatti and Everett (1999). Regarding geodesic convexity in graphs, a new type of
core-periphery network decomposition has been proposed by Marc and Šubelj (2018).
Their result, as well as the ones in the subsequent papers (Šubelj, 2018; Šubelj et al.,
2019) clearly demonstrate that geodesic convexity-based core-periphery decomposition
provides further valuable insights into the network’s structure, which have not been
captured before. More precisely, utilizing geodesic convexity, a broad class of real-
world networks can be decomposed into a dense core surrounded by a sparse periphery
(see Figure 2.7 for a relatively small example). In contrast to the core, the shortest
paths between most node pairs in the periphery are unique. As mentioned above,
such a decomposition enables the acquirement of new knowledge about the network at
hand (Marc and Šubelj, 2018). For example, the nodes in the core govern the degree
distribution of the entire network or they have higher clustering coefficients and a smaller
geodesic distance to each other than the periphery nodes. A further interesting property
of convexity-based core-periphery decomposition is that it is not characteristic for all
network types. In particular, while for example social networks typically possess this

41

3 Related Work

kind of decomposition, this is not the case for standard random graph and network
models, such as the Erdős-Rényi, Watts-Strogatz, or Barabási-Albert models (see Marc
and Šubelj, 2018).

3.3.2 Tukey Depth

Tukey depth was originally defined over finite subsets of ℝ𝑑 (Donoho and Gasko, 1992;
Tukey, 1975). It depends only on separating hyperplanes, without taking into account
the geometric position of the elements. This property allows for adapting it to other,
abstract domains associated with some abstract closure system by using (abstract) half-
spaces (Chepoi, 1994; Jamison, 1974). Forℝ𝑑 and in othermore generalmetric spaces (Dai
et al., 2022), Tukey depth has been studied in the context ofmachine learning, in particular,
for object classification (Mozharovskyi, 2015). In case of learning linear classifiers, the
Tukey median, i.e., the points with the highest Tukey depth are related to the Bayes
point (Gilad-Bachrach et al., 2004). A crucial advantage of Tukey depth over other
centrality measures is that the exact geometric position of the points in ℝ𝑑 is not relevant
for their depth. Thus, Tukey depth is relatively stable with respect to outliers and is
therefore used also for outlier detection Becker and Gather (1999); Bremner et al. (2008).

Regarding graphs, the Tukey depth of a node 𝑣 of a graph is defined by the size (i.e.,
number of nodes) of the underlying graph subtracted by the maximum size of a geodesi-
cally closed set that does not contain 𝑣 itself (Cerdeira and Silva, 2021) (see Figures 2.8
and 6.9 for an example of the graph Tukey depth for different graphs). This definition is
closely related to the original definition (Donoho and Gasko, 1992; Tukey, 1975), however,
with the difference that in ℝ𝑑, a half-space with the maximum trace on the ground set
is used, instead of maximum size geodesic closed sets. Similarly to ℝ𝑑, it is NP-hard
to compute the graph Tukey depth of a node (Cerdeira and Silva, 2021; Johnson and
Preparata, 1978).

42

Half-Space Separations in Finite Closure
Systems 4
Linear separations in ℝ𝑑 by hyperplanes are an integral part of classical machine learning
algorithms. Since we are interested in mining and learning in finite closure systems, one
of our primary goals is to transfer linear separation methods from ℝ𝑑 to finite closure
systems by adapting the idea of hyperplane separation. Accordingly, this chapter is
devoted to half-space separations in finite closure systems.

Although the adaptation may seem simple at first, several interesting questions arise at
a closer look at the problem. More precisely, we have already seen in Chapter 1 that the
following fundamental property in ℝ𝑑 that two disjoint closed sets are always separable
by a hyperplane does not hold in general. Thatmeans that there exist abstract finite closure
systems and disjoint closed sets 𝐴 and 𝐵 that are not separable by half-spaces. To this end,
we formulate the Half-Space Separation (HSS) problem for finite closure systems. More
precisely, given a finite closure system (𝐸, 𝒞) and subsets 𝐴 and 𝐵 of 𝐸, our goal is to
decide if there exist separating half-spaces. We state the formal definition of the concrete
problem and show that if the closure operator is computable in time polynomial in the
size of 𝐸, then the decision problem isNP-complete. Consequently, as we are interested in
computationally feasible solutions we need to relax the hardness of the original problem.
In particular, we study such closure systems that always allow half-space separations
of disjoint closed sets. These systems are called Kakutani closure systems. In Section 5.1
we provide an algorithm finding separating half-spaces efficiently for Kakutani closure
systems. It is natural to ask whether or not a given closure system has the Kakutani
property. We call this problem the Kakutani Problem and show that in the worst case, it
requires exponentially many closure operator calls to decide the Kakutani property for a
given closure system. However, this result is mainly of theoretical interest, as we consider
specific domains for the practical aspects discussed in this thesis. Our particular focus
is on characterizations of the Kakutani property for geodesic closure systems in graphs.
Studying Kakutani closure systems over graphs, we use a characterization result that
connects the Kakutani property in graphs with the Pasch Axiom (Chepoi, 1994). We can
use this characterization result to show that 𝐾2,3-minor free graphs have the Kakutani
property. As a direct consequence, all outerplanar graphs are Kakutani. That is, two
disjoint closed vertex sets in outerplanar graphs can always be separated by half-spaces.

Although we mainly focus on binary separations, we consider the more general case
of partitioning a closure system into multiple closed sets. That is, for a closure system we
define the 𝑛-Kakutani property and show that in general for some 𝑘, 𝑙 ∈ ℕ with 𝑘 > 𝑙,
neither 𝑘-Kakutani implies 𝑙-Kakutani nor 𝑙-Kakutani implies 𝑘-Kakutani.

43

4 Half-Space Separations in Finite Closure Systems

𝑢
𝑣

𝑦

𝑥
𝑧

Figure 4.1: Example of a point configuration in ℝ2, where adding 𝑧 to either of the closed
sets {𝑥, 𝑦} and {𝑢, 𝑣} would violate the disjointness condition.

Outline The rest of the chapter is structured as follows. In Section 4.1 we first present the
Half-Space Separation (HSS) problem. Subsequently, in Section 4.2 we study different
aspects of the Kakutani property. These include the generalization of the (binary)
Kakutani property to multiple classes (Section 4.2.1). Finally, considering the domain of
graphs, we give some new characterizations of Kakutani closure systems (Section 4.2.2)
and conclude in Section 4.3.

4.1 The Half-Space Separation Problem

This section is devoted to half-space separations in finite closure systems. Similarly to
the (infinite) closure system over ℝ𝑑 defined by the family of all convex hulls in ℝ𝑑, we
assume that all finite closure systems (𝐸, 𝒞𝜌) in this section are given intensionally by the
underlying closure operator 𝜌. This assumption is natural, as |𝒞𝜌| can be exponential
in |𝐸|. We first formulate some results concerning the computational complexity of the
following problem:

Problem 4.1.1 (The Half-Space Separation (HSS) Problem). Let (𝐸, 𝒞𝜌) be a finite closure
system given by the corresponding closure operator 𝜌. Given non-empty subsets 𝐴, 𝐵 ⊆ 𝐸,
decide whether 𝐴 and 𝐵 are half-space separable in 𝒞𝜌, or not.

For algebraic reasonswe disregard the degenerate case of 𝐴 = ∅ or 𝐵 = ∅. Furthermore,
similarly to the infinite closure system over ℝ𝑑 defined by the family of all convex hulls
in ℝ𝑑, we suppose that the abstract closure system is given implicitly. More precisely, we
assume that (𝐸, 𝒞𝜌) is given by the corresponding closure operator 𝜌, which returns 𝜌(𝑋)
for any 𝑋 ⊆ 𝐸 in unit time. The assumption that 𝒞𝜌 is given implicitly (or intensionally) is
natural, as |𝒞𝜌| can be exponential in |𝐸|.

Clearly, the solution of an instance of the HSS problem is always “No” whenever
𝜌(𝐴)∩𝜌(𝐵) ≠ ∅. However, as shown in the example below, the converse of the implication
is not true, i.e., the disjointness of the closures of 𝐴 and 𝐵 does not imply their half-space
separability in 𝒞.

Example 4.1.1. Consider the set 𝐸 ⊂ ℝ2 consisting of the six points in Figure 4.1 and the
𝛼-closure system (𝐸, 𝒞𝛼) defined in Section 2.2.2. Though {𝑢, 𝑣} and {𝑥, 𝑦, 𝑤} are both closed

44

4.1 The Half-Space Separation Problem

(i.e., belong to 𝒞𝛼) and disjoint, they are not half-space separable in 𝒞𝛼, as 𝑧 can be added to
neither of the sets without violating the disjointness property of half-space separation.

This difference to ℝ𝑑 makes, among others, the more general problem setting consid-
ered in this work computationally difficult, as shown in Theorem 4.1.1 below. The fact
that the disjointness of 𝜌(𝐴) and 𝜌(𝐵) does not imply half-space separability of 𝐴 and 𝐵
makes the HSS problem computationally intractable. To prove this negative complex-
ity result, we adopt the definition of convex vertex sets of a graph defined by shortest
paths (Harary and Nieminen, 1981; Mulder, 1980), also referred to as the geodesic closure.
The geodesic closure operator is denoted by 𝛾 and the corresponding closure system is
referred to as geodesic closure system throughout this thesis (see (2.2) on page 21 for
the definition of the geodesic closure system for graphs). Using the definition of graph
convexity, we consider the following problem:

Convex 2-Partitioning Problem: Given an undirected graph 𝐺 = (𝑉 , 𝐸), decide whether
there is a proper partitioning of 𝑉 into two convex sets.

This problem is known to be NP-complete (Artigas et al., 2011). Notice that the condition
on properness is necessary, as otherwise ∅ and 𝑉 would always form a (trivial) solution.
Note also the difference between the HSS and the Convex 2-Partitioning problems. The
latter one is concerned with a property of 𝐺 (i.e., it has no additional input 𝐴, 𝐵). We
have the following negative result.

Theorem 4.1.1. The HSS problem is NP-hard.

Proof. Let 𝐺 = (𝑉 , 𝐸) be an instance of the Convex 2-Partitioning problem and 𝛾 the
closure operator corresponding to the closure system as defined in (2.2) on page 21. It
holds that 𝐺 has a proper convex 2-partitioning if and only if there are 𝑢, 𝑣 ∈ 𝑉 with
𝑢 ≠ 𝑣 such that 𝛾({𝑢}) and 𝛾({𝑣}) are half-space separable in (𝑉 , 𝒞𝛾). Indeed, if 𝐺 has
a proper convex 2-partitioning then there exist 𝑢, 𝑣 ∈ 𝑉 belonging to different convex
partitions. Since the two convex partitions are (complementary) half-spaces in (𝑉 , 𝒞𝛾),
{𝑢} and {𝑣} are half-space separable in (𝑉 , 𝒞𝛾). Conversely, if there are 𝑢, 𝑣 ∈ 𝑉 such that
{𝑢} and {𝑣} are half-space separable in (𝑉 , 𝒞𝛾), then the corresponding half-spaces form
a proper convex 2-partitioning of 𝐺. Putting together, the Convex 2-Partition problem
can be decided by solving the HSS problem for the input (𝑉 , 𝒞𝛾), 𝐴 = {𝑢}, and 𝐵 = {𝑣}
for all 𝑢, 𝑣 ∈ 𝑉. This completes the proof, as the number of vertex pairs is quadratic in
the size of 𝐺.

Note that the negative result above is independent of the time complexity of the closure
operator. Below we consider the HSSPoly-problem, which is defined in the same way as
the HSS problem, but with the difference that the closure operator 𝜌 corresponding to
the closure system (𝐸, 𝒞𝜌) can be computed in 𝑂 (𝑝(|𝐸|))-time for some polynomial 𝑝.
Theorem 4.1.1 immediately implies the following negative results:

Corollary 4.1.1. The HSSPoly-problem is NP-complete.

45

4 Half-Space Separations in Finite Closure Systems

Proof. The geodesic closure operator 𝛾 on graphs can be computed in polynomial time.
Hence it follows that HSSPoly can be reduced to the Convex 2-Partitioning problem
like HSS as shown above. Moreover, the problem HSSPoly is in NP because for any
𝐴, 𝐵, 𝐻 ⊆ 𝐸, one can verify by definition in 𝑂 (𝑝(|𝐸|))-time, whether 𝐻 and 𝐻𝑐 form a
half-space separation of 𝐴 and 𝐵 in 𝒞, or not.

The next corollary is concerned with the complexity of computing a closed set sep-
aration of maximum size. Clearly, it is also a hard problem to decide if a closed set
separation of a certain size 𝑘 exist, see Corollary 4.1.2 below. Note that the case of 𝑘 = |𝐸|
corresponds to the HSS problem.

Corollary 4.1.2. Let (𝐸, 𝒞𝜌) be a finite closure system given by the corresponding closure
operator 𝜌. Given non-empty subsets 𝐴, 𝐵 ⊆ 𝐸 and an integer 𝑘 > 0, it is NP-hard to decide
whether there is a closed set separation 𝐶1, 𝐶2 ∈ 𝒞𝜌 of 𝐴, 𝐵 such that |𝐶1| + |𝐶2| ≥ 𝑘.

4.2 Kakutani Closure Systems

A natural way to overcome the negative results stated in Theorem 4.1.1 and Corollaries
4.1.1 and 4.1.2 is to consider closure systems in which any two disjoint closed sets are
half-space separable. We will recall the definition of these specific closure systems. More
precisely, for a closure operator 𝜌 over a ground set 𝐸, the corresponding closure system
(𝐸, 𝒞𝜌) is Kakutani1 if it fulfills the (S4) separation axiom defined as follows: For all
𝐴, 𝐵 ⊆ 𝐸,

𝐴 and 𝐵 are half-space separable in (𝐸, 𝒞𝜌) ⟺ 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅

(see Chepoi (1994) for a good reference on closure systems satisfying the (S4) separation
property). By Proposition 2.2.4, any half-space separation of 𝐴, 𝐵 in 𝒞𝜌 is a half-space
separation of 𝜌(𝐴) and 𝜌(𝐵) in 𝒞𝜌. Clearly, the HSSPoly problem can be decided in
polynomial time for Kakutani closure systems: For any 𝐴, 𝐵 ⊆ 𝐸 just calculate 𝜌(𝐴) and
𝜌(𝐵) and check whether they are disjoint, or not. Furthermore, if 𝐴 and 𝐵 are half-space
separable, (𝐸, 𝒞𝜌) is Kakutani, and 𝜌 can be computed in time polynomial in 𝑛, then
Algorithm 1 (see Section 5.1) returns a half-space separation of 𝐴, 𝐵 in polynomial time.

Example 4.2.1. The closure system used in Example 4.1.1 is not Kakutani. For an example
of Kakutani closure systems, consider an arbitrary non-empty finite subset 𝐸 ⊂ ℝ2 of a circle
and define the set system 𝒞 ⊆ 2𝐸 as follows: For all 𝐸′ ⊆ 𝐸, 𝐸′ ∈ 𝒞 if and only if there exits a
closed half-plane 𝐻 ⊆ ℝ2 satisfying 𝐸′ = 𝐻 ∩ 𝐸. One can easily check that (𝐸, 𝒞) is a Kakutani
closure system.

We show in Section 5.1 that Kakutani closure systems guarantee an efficient computa-
tion of half-space separations. Hence, it is natural to ask for characterizations of such

1A similar property was considered by the Japanese mathematician Shizou Kakutani for Euclidean spaces
(cf. Kakutani, 1937)

46

4.2 Kakutani Closure Systems

systems. The first question that arises is whether the Kakutani property for a given clo-
sure system can be decided efficiently. More precisely, we are interested in the following
problem:

Kakutani Problem: Given a closure system (𝐸, 𝒞𝜌), where 𝒞𝜌 is given by the correspond-
ing closure operator 𝜌, decide whether (𝐸, 𝒞𝜌) is Kakutani, or not.

Theorem 4.2.1 below answers the question about the efficient detection of Kakutani
closure systems negatively by showing that in the worst case we need exponentially
many closure operator calls to decide the problem.

Theorem 4.2.1. Any algorithm solving the Kakutani problem above requires Ω (2|𝐸|/2) closure
operator calls in the worst case.

Proof. We can assume without loss of generality that ∅ ∈ 𝒞𝜌, as otherwise there are no
two separable subsets of 𝐸. For any even number2 𝑛 ∈ ℕ with 𝑛 ≥ 4, consider a set 𝐸
with |𝐸| = 𝑛 and the set system

𝒞𝜌 = {𝑋 ⊆ 𝐸 ∶ |𝑋| ≤ 𝑛/2} ∪ {𝐸} .

We claim that (𝐸, 𝒞𝜌) is a Kakutani closure system. Since ∅, 𝐸 ∈ 𝒞𝜌 and |𝐶1 ∩ 𝐶2| ≤ 𝑛/2
for any 𝐶1, 𝐶2 ∈ 𝒞𝜌, (𝐸, 𝒞𝜌) is closed under intersection and hence, it is a closure system.
To see that it is Kakutani, notice that all 𝑋 ∈ 𝒞𝜌 with |𝑋| = 𝑛/2 are half-spaces; all other
closed sets 𝑌 ∈ 𝒞𝜌 with 0 < |𝑌 | < 𝑛/2 are not half-spaces. Thus, for any non-empty
𝐴, 𝐵 ⊆ 𝐸 with 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅, 𝜌(𝐴) can be extended to a half-space 𝐻1 ∈ 𝒞𝜌 such that
𝐻1 ∩ 𝜌(𝐵) = ∅. By construction, 𝐻1 and its complement 𝐻𝑐

1 form a half-space separation
of 𝐴 and 𝐵. Hence, (𝐸, 𝒞𝜌) is Kakutani. Note also that for any 𝐶 ∈ 𝒞𝜌 with |𝐶| = 𝑛/2,
(𝐸, 𝒞𝜌 ⧵{𝐶}) remains a closure system, but becomes non-Kakutani because for any 𝑥 ∈ 𝐶,
the disjoint closed sets {𝑥} and 𝐶𝑐 are not half-space separable.

We are ready to prove the lower bound claimed. Suppose for contradiction that
there exists an algorithm 𝔄 that decides the Kakutani problem with strictly less than
(𝑛

𝑛/2) = Ω (2𝑛/2) closure operator calls. Then, for (𝐸, 𝒞𝜌) above, there exists a half-space
𝐶 ∈ 𝒞𝜌 with |𝐶| = 𝑛/2 such that 𝔄 has not called 𝜌 for 𝐶. But then 𝔄 returns the same
answer for the Kakutani and non-Kakutani closure systems (𝐸, 𝒞𝜌) and (𝐸, 𝒞𝜌 ⧵ {𝐶}),
contradicting its correctness.

The exponential bound in Theorem 4.2.1 is a worst-case bound. Fortunately, there is a
broad class of closure systems that are known to be Kakutani. In particular, as a generic
application field of Kakutani closure systems we focus on Kakutani closure systems over
graphs (Section 4.2.2) and on those over finite lattices (Section 5.2.2).

Moreover, for the particular class of 𝑑-ary closure systems (see Section 2.2.1 for the
definition) with efficiently computable closure operators 𝜌, the above result can be
improved by using a result of Chepoi (1994). We note that the result below does not
contradict Theorem 4.2.1 above because 𝑑 can depend on 𝑛.

2A similar proof applies to odd numbers. For simplicity, we omit the discussion of that case.

47

4 Half-Space Separations in Finite Closure Systems

Proposition 4.2.1. 3 Let (𝐸, 𝒞𝜌) be a 𝑑-ary closure system with corresponding closure operator
𝜌 and 𝑛 = |𝐸|. The Kakutani Problem can be decided using 𝑛𝑂(𝑑) closure operator calls.

Proof. Following (Chepoi, 1994), the closed set 𝑃𝑑 ∶= 𝜌({𝑥1, … , 𝑥𝑑}) with 𝑥1, … , 𝑥𝑑 ∈ 𝐸
is referred to as a 𝑑-polytope. A 𝑑-ary closure system (𝐸, 𝒞𝜌) is Kakutani if and only if
𝑃𝑑−1|𝑃𝑑 ∶= {𝑥 ∈ 𝐸 ∶ 𝜌(𝑃𝑑−1 ∪ 𝑥) ∩ 𝑃𝑑 ≠ ∅} is closed for all possible combinations of 𝑑
and 𝑑 − 1 polytopes (Chepoi, 1994, Thm 2.). Obviously, we can compute all possible 𝑑
(resp. 𝑑 − 1) polytopes using 𝑛𝑂(𝑑) closure operator calls by considering the closure of
all combinations of 𝑑 (resp. 𝑑 − 1) tuples from 𝐸. In total there are 𝑂 (𝑛2𝑑−1) different
combinations of 𝑑 and (𝑑 − 1)-polytopes. Hence, all sets, 𝑃𝑑−1|𝑃𝑑 can be computed
using 𝑛𝑂(𝑑) closure operator calls. Finally, to check the Kakutani property, we only need
check if 𝑃𝑑−1|𝑃𝑑 is closed for all possible combinations of 𝑑 and (𝑑 − 1)-polytopes. Thus,
summarizing all the runtime results, the Kakutani property can be checked using 𝑛𝑂(𝑑)

closure operator calls.

Our primary focus in this work is on binary separation. Nevertheless, one can also look
at the problem of partitioning the space into multiple disjoint closed sets. The following
section provides a brief perspective on this generalized problem.

4.2.1 The n-Kakutani property

The Kakutani property of finite closure systems can be considered not only for the binary
case, but also for the more general case of 𝑛-disjoint closed sets. Accordingly, we call a
finite closure system (𝐸, 𝒞𝜌) an 𝑛-Kakutani closure system if and only if for all 𝑛 pairwise
disjoint closed sets 𝐶1, … , 𝐶𝑛 ∈ 𝒞𝜌 there exist 𝑛 pairwise disjoint closed sets 𝐻1, … , 𝐻𝑛
with 𝐸 = ⋃𝑛

𝑖=1 𝐻𝑖 ∈ 𝒞𝜌 and 𝐶𝑖 ⊆ 𝐻𝑖 for all 𝑖 ∈ [𝑛]. Proposition 4.2.2 shows that in
general, there is no connection between 𝑘 and 𝑙-Kakutani closure systems for 𝑙 ≠ 𝑘
neither for 𝑘 < 𝑙 nor for 𝑙 < 𝑘.

Proposition 4.2.2. Let 𝑘, 𝑙 ∈ ℕ with 𝑘 > 𝑙 ≥ 2. For all possible choices of 𝑘 and 𝑙 there exists a
closure system that is 𝑘-Kakutani but not 𝑙-Kakutani. Moreover, for 𝑙 = 2 and 𝑘 = 3 there exist a
𝑙-Kakutani closure systems that is not 𝑘-Kakutani.

We give the rather technical proof of the above Proposition 4.2.2 in the Appendix A.

4.2.2 Kakutani Closure Systems over Graphs

Since we are especially interested in the domain of graphs we investigate some further
results dealing with the special cases of Kakutani closure systems over graphs. The
following result provides a characterization of the Kakutani property in geodesic closure
systems over graphs in terms of the Pasch axiom (Chepoi, 1994).

3Personal communication with Victor Chepoi.

48

4.2 Kakutani Closure Systems

Theorem 4.2.2. (Chepoi, 1994) For any finite graph 𝐺 = (𝑉 , 𝐸), the geodesic closure system
(𝑉 , 𝒞𝛾) is Kakutani if and only if 𝛾 fulfills the Pasch axiom, i.e.,

𝑥 ∈ 𝛾({𝑢, 𝑣}) ∧ 𝑦 ∈ 𝛾({𝑢, 𝑤}) ⟹ 𝛾({𝑥, 𝑤}) ∩ 𝛾({𝑦, 𝑣}) ≠ ∅ (4.1)

for all 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 ∈ 𝑉.

We will use Theorem 4.2.2 to derive two different characterization results of Kakutani
closure systems. First we extend the statement of Theorem 4.2.2 to graph structured par-
titionings (see Proposition 4.2.3) and second we give a characterization of the Kakutani
property in terms of forbidden graph minors (see Theorem 4.2.3). As an example we
can derive that outerplanar graphs have the Kakutani property. In fact, the characteriza-
tion result above holds not only for geodesic closure systems, but also for any interval
convexity structure (Chepoi, 1994).4 We note that our result in Theorem 4.2.3 below
holds for geodesic closure systems only.

Besides these results which are stated below, note that Theorem 4.2.2 can be turned
into a naïve algorithm that decides the Kakutani problem for geodesic closure systems
over graphs in 𝑂 (𝑛8) time using 𝑂 (𝑛2) space by checking the condition in (4.1) for all
quintuples of vertices; the complexity of computing 𝛾 for any set of vertices is 𝑂 (𝑛3)
(Dourado et al., 2009). The following more sophisticated algorithm5 reduces this time
complexity to 𝑂 (𝑛5) time, using, however, 𝑂 (𝑛4) space. Compute first 𝛾({𝑢, 𝑣}) for
all 𝑢, 𝑣 ∈ 𝑉 and store them in a matrix 𝑀. The time and space complexity of this step
is 𝑂 (𝑛5) and 𝑂 (𝑛3), respectively. Using 𝑀, for each pair of closed sets we can decide
in 𝑂 (𝑛) time whether or not they are disjoint and store this information in a binary
matrix 𝐵. This can be done in 𝑂 (𝑛5) time and 𝑂 (𝑛4) space. Iterating over all quintuples
𝑄 = (𝑢, 𝑣, 𝑤, 𝑥, 𝑦) ∈ 𝑉 5, we can check in constant time from 𝑀 and 𝐵 whether 𝑄 fulfills
(4.1), implying the time and space complexity claimed above.

Graph Structured Partitionings

In Proposition 4.2.3 below we generalize Theorem 4.2.2 to graph structured set systems.
More precisely, a graph structured partitioning (GSP) is a triple 𝔊 = (𝑆, 𝐺, 𝒫), where 𝑆 is
a finite set, 𝐺 = (𝑉 , 𝐸) is a graph, and 𝒫 = {bag(𝑣) ⊆ 𝑆 ∶ 𝑣 ∈ 𝑉 } is a partitioning of 𝑆
into |𝑉 | non-empty subsets (i.e., bag(𝑣) ≠ ∅, ⋃

𝑣∈𝑉 bag(𝑣) = 𝑆, and bag(𝑢) ∩ bag(𝑣) = ∅
for all 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣). The set bag(𝑣) associated with 𝑣 ∈ 𝑉 is referred to as the bag
of 𝑣. For a GSP 𝔊 = (𝑆, 𝐺, 𝒫) with 𝐺 = (𝑉 , 𝐸), let 𝜎 ∶ 2𝑆 → 2𝑆 be defined by

𝜎 ∶ 𝑆′ ↦ ⋃
𝑣∈𝑉 ′

bag(𝑣) (4.2)

4An interval over a ground set 𝐸 is a function 𝐼 ∶ 𝐸 × 𝐸 → 2𝐸 such that for all 𝑢, 𝑣 ∈ 𝐸, 𝑢, 𝑣 ∈ 𝐼(𝑢, 𝑣),
𝐼(𝑢, 𝑣) = 𝐼(𝑣, 𝑢), and 𝐼(𝑢, 𝑤) ⊆ 𝐼(𝑢, 𝑣) for all 𝑤 ∈ 𝐼(𝑢, 𝑣). A set 𝐶 ⊆ 𝐸 is 𝐼-closed if 𝐼(𝑢, 𝑣) ⊆ 𝐶 for
all 𝑢, 𝑣 ∈ 𝐶. It holds that the set system over 𝐸 formed by the family of all 𝐼-closed subsets of 𝐸, also
referred to as interval convexity structure, is a closure system (see, e.g., Calder, 1971; Chepoi, 1994). Thus,
for any graph 𝐺 = (𝑉 , 𝐸), (𝑉 , 𝒞𝛾) is a closure system defined by the interval function 𝐼 ∶ 𝑉 × 𝑉 → 2𝑉

mapping (𝑢, 𝑣) to the set of vertices on all shortest paths between 𝑢 and 𝑣.
5Personal communication with Victor Chepoi.

49

4 Half-Space Separations in Finite Closure Systems

with
𝑉 ′ = 𝛾({𝑣 ∈ 𝑉 ∶ bag(𝑣) ∩ 𝑆′ ≠ ∅})

for all 𝑆′ ⊆ 𝑆, where 𝛾 is the closure operator defined in (2.2) on page 21.
GSPs arise for example in graph clustering (see, e.g. Schaeffer, 2007) and graph par-

titioning (see, e.g. Buluç et al., 2016), which play an important role in many practical
applications, such as, for example, community network mining.

Proposition 4.2.3. Let 𝔊 = (𝑆, 𝐺, 𝒫) be a GSP with 𝐺 = (𝑉 , 𝐸). Then 𝜎 defined in (4.2) is a
closure operator on 𝑆. Furthermore, the corresponding closure system (𝑆, 𝒞𝜎) is Kakutani if and
only if 𝛾 corresponding to the closure system (𝑉 , 𝒞𝛾) fulfills the Pasch axiom on 𝐺.

Proof. Since 𝒫 is a partitioning of 𝑆 and 𝛾 is a closure operator on 𝑉, the extensivity and
monotonicity of 𝜎 are immediate from those of 𝛾. Furthermore, for all 𝑆′ ⊆ 𝑆 we have

𝛾({𝑣 ∈ 𝑉 ∶ bag(𝑣) ∩ 𝜎(𝑆′) ≠ ∅}) = 𝛾({𝑣 ∈ 𝑉 ∶ bag(𝑣) ∩ 𝑆′ ≠ ∅})

by the idempotency of 𝛾. Hence, 𝜎 is also idempotent, completing the proof of the first
claim.

Regarding the second part, note that the function 𝜑 ∶ 𝒞𝛾 → 2𝑆 defined by

𝜑 ∶ 𝑉 ′ ↦ ⋃
𝑣∈𝑉 ′

bag(𝑣)

for all 𝑉 ′ ∈ 𝒞𝛾 is a bijection between 𝒞𝛾 and 𝒞𝜎, satisfying

𝑉1 ∩ 𝑉2 = ∅ ⟺ 𝜑(𝑉1) ∩ 𝜑(𝑉2) = ∅

for all 𝑉1, 𝑉2 ∈ 𝒞𝛾. This immediately implies the second claim.

Notice that any graph 𝐺 = (𝑉 , 𝐸) can be regarded as the (trivial) GSP 𝔊 = (𝑉 , 𝐺, 𝒫),
where all blocks in 𝒫 are singletonswith bag(𝑣) = {𝑣} for all 𝑣 ∈ 𝑉. Hence, Theorem 4.2.2
can be regarded as a special case of the proposition above.

Forbidden Minor Characterization

Using the characterization result above, in the theorem below we give a sufficient condi-
tion in terms of forbidden minors for the Kakutani property of geodesic closure systems.
More precisely, as the main contribution of this section, we show that a closure system of
a graph is Kakutani whenever the underlying graph does not contain 𝐾2,3 as a minor.
This result may be of some independent interest as well. To state the theorem, we recall
that 𝐾2,3 denotes the complete bipartite graph (𝑉1, 𝑉2, 𝐸) with |𝑉1| = 2 and |𝑉2| = 3.
Furthermore, a graph 𝐻 is aminor of a graph 𝐺 if 𝐻 can be obtained from 𝐺 by a sequence
of vertex and edge deletions and edge contractions (see, e.g., Diestel, 2012).

Theorem 4.2.3. For any finite graph 𝐺 = (𝑉 , 𝐸), the geodesic closure system (𝑉 , 𝒞𝛾) is
Kakutani if 𝐺 does not contain 𝐾2,3 as a minor.

50

4.2 Kakutani Closure Systems

𝑤

𝑢

𝑣

𝑥

𝑢′

𝑦

𝑃 ′
1 𝑄′

1

𝑄″
1𝑃 ″

1

𝑃2 𝑄2

(a)

𝑤′

𝑤

𝑣′

𝑣

𝑥′

𝑥

𝑢

𝑢′

𝑦
𝑦′

(b)

𝑤′𝑢′𝑣′

𝑥′ 𝑦′

(c)

Figure 4.2: Graph minor of non-Kakutani graphs.

Proof. We prove the theorem by contraposition. Let 𝐺 = (𝑉 , 𝐸) be a graph such that
(𝑉 , 𝒞𝛾) is not Kakutani. Then, by Theorem 4.2.2, 𝛾 does not fulfill the Pasch axiom, i.e.,
there are 𝑢, 𝑣, 𝑤 ∈ 𝑉, 𝑥 ∈ 𝛾({𝑢, 𝑣}), and 𝑦 ∈ 𝛾({𝑢, 𝑤}) such that

𝛾({𝑦, 𝑣}) ∩ 𝛾({𝑥, 𝑤}) = ∅. (4.3)

By definition, 𝑥 ∈ 𝛾({𝑢, 𝑣}) (resp. 𝑦 ∈ 𝛾({𝑢, 𝑤})) implies that there exists a shortest path
𝑃𝑢𝑣 = 𝑢𝑃1𝑥𝑃2𝑣 between 𝑢 and 𝑣 (resp. 𝑃𝑢𝑤 = 𝑢𝑄1𝑦𝑄2𝑤 between 𝑢 and 𝑤), where 𝑃1, 𝑃2
(resp. 𝑄1, 𝑄2) denote the (possibly empty) sequences of the interior vertices between
𝑢, 𝑥 and 𝑥, 𝑣 on 𝑃𝑢𝑣 (resp. 𝑢, 𝑦 and 𝑦, 𝑤 on 𝑃𝑢𝑤) (see, also, Figure 4.2(a)).

We claim that 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 are pairwise different. We show this only for 𝑥 and 𝑤; the
proofs for the other vertex pairs are similar. Suppose for contradiction that 𝑥 = 𝑤. Then
𝛾({𝑥, 𝑤}) = {𝑥}. Furthermore, 𝑃𝑢𝑤 = 𝑢𝑄1𝑦𝑄2𝑥 and hence, 𝑢𝑃1𝑥 and 𝑢𝑄1𝑦𝑄2𝑥 have
the same length. Thus, the definition of 𝑃𝑢𝑣 implies that 𝑢𝑄1𝑦𝑄2𝑥𝑃2𝑣 is a shortest path
between 𝑢 and 𝑣. Therefore, 𝑦𝑄2𝑥𝑃2𝑣 must be a shortest path between 𝑦 and 𝑣. But then
𝑥 ∈ 𝛾({𝑦, 𝑣}) ∩ 𝛾({𝑥, 𝑤}), contradicting (4.3).

We are ready to show that (4.3) implies that 𝐺 contains 𝐾2,3 as aminor. The definitions
of 𝑃𝑢𝑣 and 𝑃𝑢𝑤 imply that 𝑢𝑃1𝑥 and 𝑢𝑄1𝑦 are shortest paths. Thus, they have a common
vertex 𝑢′ having the maximum distance to 𝑢. It follows from (4.3) that 𝑢′ ≠ 𝑥 and 𝑢′ ≠ 𝑦,
implying that

𝑃𝑢𝑣 = 𝑢𝑃1𝑥𝑃2𝑣 = 𝑢𝑃 ′
1𝑢′𝑃 ″

1 𝑥𝑃2𝑣
𝑃𝑢𝑤 = 𝑢𝑄1𝑦𝑄2𝑤 = 𝑢𝑄′

1𝑢′𝑄″
1𝑦𝑄2𝑤

for some 𝑃 ′
1, 𝑃 ″

1 (resp. 𝑄′
1, 𝑄″

1). We claim that the shortest paths 𝑃 ″
1 𝑥𝑃2𝑣 and 𝑄″

1𝑦𝑄2𝑤
are vertex disjoint. To see this, we distinguish four cases. The case that 𝑃 ″

1 𝑥 and 𝑄″
1𝑦 are

vertex disjoint follows directly from the definition of 𝑢′. Regarding the case that 𝑃 ″
1 𝑥 and

𝑄2𝑤 are vertex disjoint, suppose for contradiction that they have a common vertex. But
then 𝑥 ∈ 𝛾(𝑦, 𝑣), contradicting (4.3). The argument for the case that 𝑃2𝑣 and 𝑄″

1𝑦 are

51

4 Half-Space Separations in Finite Closure Systems

vertex disjoint is analogous. Regarding the last case, suppose for contradiction that 𝑃2𝑣
and 𝑄2𝑤 have a common vertex, say 𝑧. Then 𝑥𝑃2𝑣 (resp. 𝑦𝑄2𝑤) is of the form 𝑥𝑃 ′

2𝑧𝑃 ″
2 𝑣

(resp. 𝑦𝑄′
2𝑧𝑄″

2𝑤). But then, there are two different shortest paths between 𝑢′ and 𝑧, one
through 𝑥 (i.e., 𝑢′𝑃 ″

1 𝑥𝑃 ′
2𝑧) and one through 𝑦 (i.e., 𝑢′𝑄″

1𝑦𝑄′
2𝑧). Accordingly, there exist

two different shortest paths between 𝑢′ and 𝑣 (i.e., 𝑢′𝑃 ″
1 𝑥𝑃 ′

2𝑧𝑃 ″
2 𝑣 and 𝑢′𝑄″

1𝑦𝑄′
2𝑧𝑃 ″

2 𝑣),
and between 𝑢′ and 𝑤 (i.e., 𝑢′𝑃 ″

1 𝑥𝑃 ′
2𝑧𝑄″

2𝑤 and 𝑢′𝑄″
1𝑦𝑄′

2𝑧𝑄″
2𝑤). Thus, the paths 𝑦𝑄′

2𝑧𝑃 ″
2 𝑣

and 𝑥𝑃 ′
2𝑧𝑄″

2𝑤 are both shortest paths and contain 𝑧, implying 𝑧 ∈ 𝛾({𝑦, 𝑣}) ∩ 𝛾({𝑥, 𝑤}),
which contradicts (4.3).

Putting together, 𝐺 contains a subgraph of pairwise vertex disjoint (except for their
endpoints) shortest paths as depicted in Figure 4.2(a). Regarding the shortest paths
between 𝑦 and 𝑣, note that all of them are vertex disjoint with all shortest paths between
𝑢′ and 𝑥, as otherwise 𝑥 ∈ 𝛾({𝑦, 𝑣}) holds by similar arguments as above, contradicting
(4.3). Furthermore, again by (4.3), they cannot contain 𝑤. In a similar way, all shortest
paths between 𝑥 and 𝑤 are vertex disjoint with all shortest paths between 𝑢′ and 𝑦, and
do not contain 𝑣.

Thus, any shortest path 𝑃𝑦𝑣 between 𝑦 and 𝑣 can only have common vertices with the
shortest paths 𝑃2 and with at most one of 𝑄″

1 and 𝑄2 (see the red path in Figure 4.2(b)
for an example). Let 𝑣′ (resp. 𝑦′) denote the common vertex in the paths 𝑃𝑦𝑣 and 𝑃2𝑣
(resp. 𝑃𝑦𝑣 and 𝑄″

1𝑦𝑄2) with the maximum distance to 𝑣 (resp. 𝑦). Analogously, any
shortest path between 𝑥 and 𝑤 can have a common vertex with the shortest path 𝑄2 and
with at most one of 𝑃 ″

1 and 𝑃2 (see the blue path in Figure 4.2(b) for an example). Define
𝑤′ (resp. 𝑥′) by the common vertex in the paths 𝑃𝑥𝑤 and 𝑄2𝑤 (resp. 𝑃𝑥𝑤 and 𝑃 ″

1 𝑥𝑃2)
with the maximum distance to 𝑤 (resp. 𝑥). Since 𝑃𝑦𝑣 and 𝑃𝑥𝑤 are vertex disjoint by (4.3),
it follows from the definitions that the shortest paths 𝑃𝑢′𝑥′, 𝑃𝑢′𝑦′, 𝑃𝑣′𝑥′, 𝑃𝑣′𝑦′, 𝑃𝑤′𝑥′, 𝑃𝑤′𝑦′

are pairwise disjoint (except for their endpoints) and that the subgraph formed by
these six paths contains 𝐾2,3 as a minor (cf. Figure 4.2(c)), completing the proof of the
theorem.

Remark 4.2.1. We note that the converse of Theorem 4.2.3 does not hold, implying that 𝐾2,3 as
a forbidden minor does not characterize the Kakutani property for closure systems over graphs.
Indeed, for all complete graphs 𝐾𝑛 = (𝑉 , 𝐸), the corresponding closure system (𝑉 , 2𝑉) is
Kakutani. The claim then follows by noting that 𝐾2,3 is a minor of 𝐾𝑛 for all 𝑛 ≥ 5.

In Corollary 4.2.1 below we formulate an immediate implication of Theorem 4.2.3. We
recall that a graph is outerplanar if it can be embedded in the plane such that there are no
two edges crossing in an interior point and all vertices lie on the outer face.

Corollary 4.2.1. For any outerplanar graph 𝐺 = (𝑉 , 𝐸), the corresponding geodesic closure
system (𝑉 , 𝒞𝛾) is Kakutani.

Proof. It follows directly from Theorem 4.2.3 and the characterization result that a graph
is outerplanar if and only if it contains neither 𝐾4 nor 𝐾2,3 as minors (Chartrand and
Harary, 1967).

52

4.3 Summary

Note that the corollary above applies also to trees, as they are (special) outerplanar
graphs. Though the result for trees is well-known, it is typically derived directly from the
Pasch axiom. In contrast, we obtain it as an immediate consequence of Theorem 4.2.3.

4.3 Summary

In this chapter we have introduced the half-space separation (HSS) problem, which is one
of the central problems for this thesis. It is an adaptation of the linear separation problem
in ℝ𝑑 to that in finite closure systems. Moreover, we derived from theConvex 2-Partitioning
problem for graphs (Artigas et al., 2011) the negative result that the HSS problem is NP-
hard for arbitrary and NP-complete for closure systems with corresponding closure
operators that can be calculated in polynomial. In particular, our result shows that in
contrast to the linear separation problem in ℝ𝑑, there exists no computationally feasible
solution for arbitrary finite closure systems. However, the related theoretical result treats
the worst-case scenario only and, notably, does not include all types of finite closure
systems. Hence, the HSS problem gives rise to studying special closure systems and
restrictions of the problem.

While suitable restrictions of the HSS problem are considered in detail in Chapter 5,
this chapter has been devoted to special closure systems. On the one hand, we considered
generic structural specializations, on the other hand, we restricted our analysis to the
domain of graphs. We note that the special case of geodesic closure systems over graphs
will be revisited throughout the entire thesis. Regarding the structural restrictions,
we have considered so-called Kakutani closure systems, i.e., closure systems in which
disjoint closed sets can be separated by half-spaces. We have shown that under common
complexity it cannot be decided in polynomial time if a given closure system is Kakutani
or not. Again, this is a worst-case result that can be improved by considering specific
closure systems. For 𝑑-ary closure systems, we have shown that the problem can be
decided using 𝑛𝑂(𝑑) closure operator calls. Regarding the particular case of geodesic
closure systems over graphs (2-ary closure systems), we have shown that the Kakutani
property can be decided in 𝑂 (𝑛5) time. The special structure of graphs together with
the characterization result of Chepoi (1994) that connects the Pasch axiom with the
Kakutani property allows even more. We could show that all graphs that do not contain
the complete bipartite graph 𝐾2,3 as a minor have the Kakutani property.

Finally, since we are interested in applications of the above theory, it is necessary to
find some suitable relaxation of the HSS problem. In other words, we are interested
in such a relaxed version of the HSS problem that can be solved by polynomial many
closure operator calls. At the same time, the problem should preserve as many properties
of the original problem as possible. In the next chapter, we present such a relaxation of
the HSS problem.

53

Maximal Closed Set Separations in Finite
Closure Systems 5
We have seen that there is neither an efficient solution to the half-space separation
(HSS) problem nor we can find separating disjoint closed sets of maximum cardinality
efficiently. To resolve these problems, in Section 4.2 we studied closure systems that
have the so-called Kakutani property. In this chapter we present efficient separation
algorithms for arbitrary closure systems. Thus, we need to weaken the HSS problem by
relaxing some conditions. More precisely, we give up the global optimality of the problem
(cf. Theorem 4.1.1 and Corollary 4.1.2) and do not longer require the two separating
disjoint sets to be of maximum cardinality.

A usual strategy to reduce the hardness of such a problem is to look at local optima,
instead of global ones. Accordingly, we relax the problem definition as follows: Given two
disjoint closed sets, find supersets that are closed, disjoint, and inclusion maximal with
respect to these properties. We refer to this problem as the maximal closed set separation
(MCSS) problem. To solve this weaker problem, we present a simple greedy algorithm.
One of the main contributions of this chapter is a theoretical and empirical analysis of
this greedy algorithm solving the MCSS algorithm. Besides its simplicity and hence, easy
implementation, the algorithm has further advantages. It is a natural question to ask
whether there exist better algorithms, when the performance is measured by the number
of closure operator calls needed to find a solution. We answer this question negatively by
showing that in general, there exists no algorithm that uses fewer closure operator calls
than our simple greedy algorithm. This, somehow, points out the theoretical optimum
which can be achieved if considering maximal separations in finite closure systems. We
stress that the result is primarily of theoretical interest by noting that we are usually
confrontedwith specific closure systems that comewith additional structural information
in practical use cases. For such specific closure systems, we upgrade our greedy algorithm
by showing that it is easily possible to include external domain-specific knowledge that
improves theoretical guarantees and practical results.

Regarding the theoretical improvements, we look at the specific case of closure systems
over lattices. In fact, there exists a compact representation for closed sets in lattices that is
given by two elements. Moreover, we show that the greedy algorithm can be improved in
such away that it only needs logarithmicallymany closure operator calls in the cardinality
of the lattice at hand. Finally, we provide two illustrative examples concerning formal
concept lattices (Ganter et al., 2005) and subsumption lattices (Nienhuys-Cheng and
de Wolf, 1997) that sketch the semantics of maximal disjoint closed sets in those lattices.

Regarding the practical aspects of our approach, we recall that in ordinary machine

55

5 Maximal Closed Set Separations in Finite Closure Systems

learning the Perceptron algorithm (Rosenblatt, 1958) was improved by support vector
machines (SVMs) (Boser et al., 1992) by introducing the notion of maximum margin sep-
arations. We will adapt this concept and provide a similar technique extending maximal
closed set separations in finite closure systems to maximum margin closed set separations
using monotone linkage functions. These functions are straightforward generalizations of
metrics, i.e., each metric defines a monotone linkage function. We are using this kind
of generalization because abstract closure systems do not naturally give rise to a metric
space. In contrast, as shown in Section 2.3, monotone linkage functions can naturally be
defined for finite closure systems without any further information.

Considering a finite closure system equipped with a monotone linkage function, we
provide an extended version of our greedy algorithm that incorporates maximummargin
separations. This “upgraded” version solves the problem of finding maximum margin
separations for disjoint closed sets.

In order to empirically evaluate ourmethods, we look at the task of binary classification
problems over different finite closure systems. In fact, we assume that the domain at
hand is binary labeled according to some unknown hypothesis. That is, we only know
that the two classes represented by the binary labeled elements are separable by a half-
space. Given a subset of these labeled examples for “training”, the goal is to predict the
remaining unknown labels. The specific closure systems we look at are finite point sets
in ℝ𝑑 together with the usual closure operator defined in (2.1) on page 21 and graphs
together with the geodesic closure defined in (2.2) on page 21. Finally, we compare the
greedy algorithm, i.e., (arbitrary) maximal separations, with the “upgraded” version
using maximum margin separations.

Outline The rest of the chapter is organized as follows. In Section 5.1 we present
the maximal closed set separation (MCSS) problem and our simple greedy algorithm,
and show that it is optimal. In Section 5.2 we concentrate lattices and give an improved
version of our original greedy algorithm. We show that, on the one hand, domain-specific
knowledge can be easily integrated into our basic algorithm, and, on the other hand, that
this knowledge improves the theoretical guarantees. Moreover, we analyze the Kakutani
property for closure systems over lattices (Section 5.2.2) and provide two illustrative
examples for maximal closed set separations (Section 5.2.3). Section 5.3 is concerned
with maximum margin separations. In particular, we introduce the notion of margins
for disjoint closed sets (Section 5.3.1) and develop an algorithm that returns a maximum
margin separation for some disjoint closed input sets (Section 5.3.2). Evaluating the
theory developed, in Section 5.4, we consider the task of binary classification in finite
point sets (Section 5.4.1) and graphs (Section 5.4.2). Finally, in Section 5.5, we summarize
the results of the chapter.

5.1 The Maximal Closed Set Separation Problem

As shown in the previous chapter, the concept of half-space separations in finite closure
systems is somehow “too restrictive” in the sense that a complete covering of the space

56

5.1 The Maximal Closed Set Separation Problem

Algorithm 1: Maximal Closed Set Separation (MCSS)
Input: finite closure system (𝐸, 𝒞𝜌) given by 𝜌 and 𝐴, 𝐵 ⊆ 𝐸 with 𝐴, 𝐵 ≠ ∅
Output: maximal disjoint closed sets 𝐻1, 𝐻2 ∈ 𝒞𝜌 with 𝐴 ⊆ 𝐻1 and 𝐵 ⊆ 𝐻2 if

𝜌(𝐴) ∩ 𝜌(𝐵) = ∅; “No” o/w
1 𝐻1 ← 𝜌(𝐴), 𝐻2 ← 𝜌(𝐵)
2 if 𝐻1 ∩ 𝐻2 ≠ ∅ then
3 return “No”
4 𝐹 ← 𝐸 ⧵ (𝐻1 ∪ 𝐻2)
5 while 𝐹 ≠ ∅ do
6 choose 𝑒 ∈ 𝐹 and remove it from 𝐹
7 if 𝜌(𝐻1 ∪ {𝑒}) ∩ 𝐻2 = ∅ then
8 𝐻1 ← 𝜌(𝐻1 ∪ {𝑒}), 𝐹 ← 𝐹 ⧵ 𝐻1
9 else if 𝜌(𝐻2 ∪ {𝑒}) ∩ 𝐻1 = ∅ then
10 𝐻2 ← 𝜌(𝐻2 ∪ {𝑒}), 𝐹 ← 𝐹 ⧵ 𝐻2
11 return 𝐻1, 𝐻2

by two disjoint closed sets is not always possible. Moving away from this restrictive
assumption, in this section we propose a relaxation of the HSS problem. In particular,
we are interested in such a relaxation that, on the one hand, permits solutions that are
efficiently computable, and, on the other hand, provides solutions similar to the original
problem. In fact, considering Kakutani closure systems, the solution to the relaxed
problem should be a half-space separation. Thus we give up the completeness of the
HSS problem by defining the following weaker problem of maximal closed set separation.

Maximal Closed Set Separation (MCSS) Problem: Let (𝐸, 𝒞𝜌) be a finite closure system
given by the corresponding closure operator 𝜌. Given non-empty sets 𝐴, 𝐵 ⊆ 𝐸,
find a maximal closed set separation of 𝐴 and 𝐵 in (𝐸, 𝒞𝜌) if it exists; o/w return
“NO”.

In this section we present Algorithm 1, a simple greedy algorithm solving the MCSS
problem and show that it is optimal with respect to the number of closure operator calls.
Algorithm 1 takes as input a closure system (𝐸, 𝒞𝜌) over some finite ground set 𝐸, where
𝒞𝜌 is given via the closure operator 𝜌, and non-empty sets 𝐴, 𝐵 ⊆ 𝐸. If the closures of 𝐴
and 𝐵 are not disjoint, then it returns “NO” (cf. Lines 1–3). Otherwise, the algorithm
tries to extend one of the closed sets 𝐶1 ⊇ 𝐴 and 𝐶2 ⊇ 𝐵 found so far consistently by an
element 𝑒 ∈ 𝐹, where 𝐹 = 𝐸 ⧵ (𝐶1 ∪ 𝐶2). By consistency we mean that the closure of the
extended set must be disjoint with the other (unextended) closed set (cf. Lines 8 and 10).
Note that each element of 𝐹 will be considered at most once for extension (cf. Line 7). If
𝐶1 or 𝐶2 could be extended, then 𝐹 will correspondingly be updated (cf. Lines 9 and 11),
by noting that 𝑒 will be removed from 𝐹 even in the case it does not result in an extension
(cf. Line 7). The algorithm repeatedly iterates the above steps until 𝐹 becomes empty; at
this stage it returns 𝐶1 and 𝐶2 as a solution.

57

5 Maximal Closed Set Separations in Finite Closure Systems

To state Theorem 5.1.1 concerning some basic properties of Algorithm 1, we introduce
the following notation. Let (𝐸, 𝒞) be a closure system, 𝑋 ⊆ 𝐸, and 𝐶 ∈ 𝒞 with 𝑋 ⊆ 𝐶.
Then gen(𝐶, 𝑋) denotes the cardinality of a smallest subset of 𝐸 needed to generate 𝐶
from 𝑋, i.e.,

gen(𝐶, 𝑋) ∶= min{|𝐺| ∶ 𝐺 ⊆ 𝐸 and 𝜌(𝑋 ∪ 𝐺) = 𝐶} .

Theorem 5.1.1. Algorithm 1 is correct. Furthermore, for the number 𝑁 of its closure operator
calls it holds that 𝑁 = 2 if 𝜌(𝐴) ∩ 𝜌(𝐵) ≠ ∅; o/w

gen(𝐸, 𝐴 ∪ 𝐵) + 2 ≤ 𝑁 ≤ 2|𝐸| − 2 . (5.1)

Proof. The correctness is straightforward by noting that the maximality of the output
closed sets 𝐶1 and 𝐶2 follows from the monotonicity of 𝜌, as all elements 𝑒 considered
by the algorithm and not added earlier to one of the closed sets (cf. Lines 9 and 11) can
be added later neither to 𝐶1 nor to 𝐶2 without violating the disjointness.

Regarding the second part of the claim, it is trivial for the case that 𝜌(𝐴) ∩ 𝜌(𝐵) ≠ ∅,
so assume 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅. For the lower bound in (5.1), note that

𝑁 ≥ 2 + gen(𝐶1, 𝐴) + gen(𝐶2, 𝐵) + 𝑚 , (5.2)

where 𝑚 = |𝐸 ⧵ (𝐶1 ∪ 𝐶2)|. We claim that

gen(𝐶1, 𝐴) + gen(𝐶2, 𝐵) ≥ gen(𝜌(𝐶1 ∪ 𝐶2), 𝐴 ∪ 𝐵) . (5.3)

Indeed, by definition there are 𝐺1, 𝐺2 ⊆ 𝐸 with |𝐺1| = gen(𝐶1, 𝐴) and |𝐺2| = gen(𝐶2, 𝐵)
such that 𝐶1 = 𝜌(𝐴 ∪ 𝐺1) and 𝐶2 = 𝜌(𝐵 ∪ 𝐺2). Moreover, it holds

𝜌(𝐶1 ∪ 𝐶2) = 𝜌(𝜌(𝐴 ∪ 𝐺1) ∪ 𝜌(𝐵 ∪ 𝐺2))
= 𝜌(𝐴 ∪ 𝐵 ∪ 𝐺1 ∪ 𝐺2) , (5.4)

where (5.4) is known as the path independence property of closure operators (Monjardet
and Raderanirina, 2001). This implies that |𝐺1 ∪ 𝐺2| ≥ gen(𝜌(𝐶1 ∪ 𝐶2), 𝐴 ∪ 𝐵), from
which (5.3) follows by |𝐺1| + |𝐺2| ≥ |𝐺1 ∪ 𝐺2|. We now show that

gen(𝜌(𝐶1 ∪ 𝐶2), 𝐴 ∪ 𝐵) + 𝑚 ≥ gen(𝐸, 𝐴 ∪ 𝐵). (5.5)

By definition, there exists 𝐺 ⊆ 𝐸 with |𝐺| = gen(𝜌(𝐶1∪𝐶2), 𝐴∪𝐵) such that 𝜌(𝐶1∪𝐶2) =
𝜌(𝐴 ∪ 𝐵 ∪ 𝐺). But then, for 𝑋 = 𝐸 ⧵ (𝐶1 ∪ 𝐶2) we have

𝐸 = 𝐶1 ∪ 𝐶2 ∪ 𝑋
⊆ 𝜌(𝐶1 ∪ 𝐶2) ∪ 𝑋
= 𝜌(𝐴 ∪ 𝐵 ∪ 𝐺) ∪ 𝑋
⊆ 𝜌(𝐴 ∪ 𝐵 ∪ 𝐺 ∪ 𝑋)

from which we have (5.5) by |𝑋| = 𝑚. The lower bound in (5.1) then follows from
(5.2)–(5.5).

58

5.1 The Maximal Closed Set Separation Problem

Regarding the upper bound in (5.1), the algorithm initially calls the closure operator
twice (cf. Line 1) and then at most twice per iteration (cf. Lines 9 and 11), giving

𝑁 ≤ 2 ⋅ |𝐸 ⧵ (𝜌(𝐴) ∪ 𝜌(𝐵))| + 2 .

The upper bound then follows from |𝜌(𝐴)|, |𝜌(𝐵)| ≥ 1.

We stress that Algorithm 1 has access to (𝐸, 𝒞𝜌) only via 𝜌, i.e., it does not utilize any
domain-specific properties. The following example shows that, under this assumption,
the number of closure operator calls depends on the order of 𝐴 and 𝐵 as well as on that
of the elements selected in Line 7.

Example 5.1.1. Let (𝐸, 𝒞𝜌) be the closure system with 𝐸 = {1, 2, … , 𝑛} for some integer 𝑛 ≥ 4
and with the corresponding closure operator defined by 𝜌 ∶ 𝑋 ↦ {𝑥 ∈ 𝐸 ∶ min𝑋 ≤ 𝑥 ≤ max𝑋}
for all 𝑋 ⊆ 𝐸. Consider first the case that 𝐴 = {2}, 𝐵 = {1}, and 𝑛 has been chosen in Line 7
for the first iteration. For this case, the algorithm terminates after the first iteration returning the
closed half-spaces 𝐶1 = {2, … , 𝑛} and 𝐶2 = {1}, and calling the closure operator together three
times.

Now consider the case that 𝐴 = {1}, 𝐵 = {2}, and the elements in Line 7 are processed in the
order 3, 4, … , 𝑛. One can easily check that the algorithm returns the same two half-spaces after
𝑛 − 2 iterations. In each iteration it calls the closure operator twice, giving together the worst-case
upper bound 2𝑛 − 2 claimed in Theorem 5.1.1.

Though the example above may suggest that Algorithm 1 is not optimal, the upper
bound stated in Theorem 5.1.1 is in fact the best possible, regardless of the order of
the elements in Line 7 for the general case stated above. Furthermore, the example
indicates that using a domain-specific structure might help to reduce the number of
closure operator calls drastically. This is shown for lattices in Section 5.2. To show the
optimality for the general case, we first prove the following lemma.

Lemma 5.1.1. All algorithms solving theMCSS problem require at least 2|𝐸|−2 closure operator
calls in the worst case.

Proof. Suppose for contradiction that there is an algorithm 𝔄 solving the MCSS problem
correctly with strictly less than 2|𝐸| − 2 closure operator calls for all problem instances.
Let 𝐸 = {𝑒1, … , 𝑒𝑛} for some 𝑛 > 2 and (𝐸, 𝒞𝜌) be the closure system with 𝒞𝜌 =
{∅, {𝑒1}, {𝑒2}, 𝐸}. We show that there is an element 𝑒 ∈ 𝐸 ⧵ {𝑒1, 𝑒2} such that 𝔄 returns
the same output for the closure systems (𝐸, 𝒞𝜌) and (𝐸, 𝒞′

𝜌) with 𝒞′
𝜌 = 𝒞𝜌 ∪ {{𝑒1, 𝑒}} on

input 𝐴 = {𝑒1} and 𝐵 = {𝑒2}, contradicting its correctness.
By assumption, 𝔄 needs at most 2|𝐸| − 3 closure operator calls to return the unique

solution of the MCSS problem for (𝐸, 𝒞𝜌), i.e., the closed sets {𝑒1} and {𝑒2}. We claim
that 𝔄 needs to calculate the closure of both 𝐴 and 𝐵. Indeed, suppose the closure of one
of them, say 𝜌(𝐴), has not been computed. Then 𝔄 is incorrect, as it would return the
same output for the closure systems (𝐸, 𝒞𝜌) and (𝐸, 𝒞𝜌 ⧵{𝑒1}), though the correct one for
(𝐸, 𝒞𝜌) is {𝑒1} and {𝑒2}, and “No” for the other one. Thus, 𝔄 can calculate the closure for
at most 2|𝐸|−5 further subsets of 𝐸, implying that the closure has not been considered by

59

5 Maximal Closed Set Separations in Finite Closure Systems

𝔄 for at least one of the sets {𝑒1, 𝑒3}, … , {𝑒1, 𝑒𝑛}, {𝑒2, 𝑒3}, … , {𝑒2, 𝑒𝑛}. Let {𝑒1, 𝑒} denote
such a set. But then, 𝔄 returns the same output for (𝐸, 𝒞𝜌) and (𝐸, 𝒞𝜌 ∪{𝑒1, 𝑒}), although
the correct one for (𝐸, 𝒞𝜌 ∪{𝑒1, 𝑒}) (i.e., {𝑒1, 𝑒} and {𝑒2}) is different from that for (𝐸, 𝒞𝜌);
a contradiction.

Theorem 5.1.2. Algorithm 1 is optimal with respect to the number of closure operator calls.

Proof. It is immediate from the upper bound in Theorem 5.1.1 and Lemma 5.1.1.

In Theorem 5.1.3 below we show that Algorithm 1, besides solving the MCSS problem
optimally, also provides an algorithmic characterization of Kakutani closure systems.

Theorem 5.1.3. Let (𝐸, 𝒞𝜌) be a closure system with corresponding closure operator 𝜌. Then
(𝐸, 𝒞𝜌) is Kakutani if and only if for all non-empty 𝐴, 𝐵 ⊆ 𝐸 with 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅, the output
of Algorithm 1 is a partitioning of 𝐸.

Proof. The sufficiency is immediate by Theorem 5.1.1 and the definition of Kakutani
closure systems. For the necessity, let (𝐸, 𝒞𝜌) be a Kakutani closure system. It suffices to
show that for all 𝑒 ∈ 𝐹 selected in Line 7 of Algorithm 1, 𝑒 is always added to one of 𝐻1 or
𝐻2; the claim then follows by Theorem 5.1.1 for this direction. Suppose for contradiction
that there exists an 𝑒 ∈ 𝐹 selected in Line 7 that can be used to extend neither of the
closed sets 𝐻1, 𝐻2. Since 𝐻1 and 𝐻2 are disjoint closed sets and (𝐸, 𝒞𝜌) is Kakutani, there
are 𝐻′

1, 𝐻′
2 ∈ 𝒞𝜌 such that 𝐻1 ⊆ 𝐻′

1, 𝐻2 ⊆ 𝐻′
2, and 𝐻′

2 = (𝐻′
1)𝑐. Hence, exactly one of 𝐻′

1
and 𝐻′

2 contains 𝑒, say 𝐻′
1. By the choice of 𝑒, 𝜌(𝐻1 ∪ {𝑒}) ∩ 𝐻2 ≠ ∅. Since 𝜌 is monotone,

𝜌(𝐻1 ∪ {𝑒}) ⊆ 𝐻′
1 and hence 𝐻′

1 and 𝐻′
2 are not disjoint; a contradiction.

The characterization result formulated in Theorem 5.1.3 cannot, however, be used to
decide in time polynomial in |𝐸|, whether a closure system (𝐸, 𝒞𝜌) given intensionally by
𝜌 is Kakutani, or not as we need to check the assumption for all possibly exponentially
many pairs 𝐴, 𝐵 of disjoint closed sets (cf. Theorem 4.2.1). Besides considering domain
specific properties for graphs in Section 4.2.2 we will also consider domain specific
properties of lattices regarding maximal closed set separations.

5.2 Closed Set Separations in Lattices

Our second application field is concerned with closure systems over lattices. The focus
lies, as before, on the HSS and MCSS problems for the special case that the underlying
ground set is some finite lattice and the closure operator for a subset 𝑆 of the ground
set is defined by the set of all elements lying between the infimum and supremum of
𝑆. For this kind of closure systems we give Algorithm 2, an adaptation of Algorithm 1 to
lattices. Assuming that the closures of the input sets 𝐴 and 𝐵 to be separated are disjoint,
Algorithm 2 extends them into a disjoint maximal ideal 𝐼 and a maximal filter 𝐹 such that
𝐴 ⊆ 𝐼 and 𝐵 ⊆ 𝐹 or vice versa (see Figure 5.1 for an example of different separations of a
finite lattice). This specialized version has some important advantages over Algorithm 1.
In particular, for certain problem classes it reduces the number of closure operator calls

60

5.2 Closed Set Separations in Lattices

⊤𝐿

⊥𝐿

⊤𝐿

⊥𝐿

⊤𝐿

⊥𝐿

Figure 5.1: The example shows three different separations of the lattice elements ⊤𝐿
and ⊥𝐿 the first two ones are half-space separations while the third one is a
maximal disjoint closed set separation. Note that the lattice is not distributive,
i.e., our greedy algorithm does not guarantee to find a half-space separation.

logarithmically. This is the situation e.g. in frequent closed itemset mining (Pasquier et al.,
1999) or formal concept analysis (Ganter et al., 2005). Furthermore, the disjointness of
the closures of any two sets can be decided by comparing their suprema and infima. A
further important property of the greedy algorithm specialized to lattices is that it regards
the input sets 𝐴 and 𝐵 above symmetrically. This is a crucial difference e.g. to inductive
logic programming (see, e.g., Nienhuys-Cheng and de Wolf, 1997), where one is typically
interested in finding the smallest ideal of the subsumption lattices that contains the set
of positive examples. If this smallest ideal, with supremum defined by the least general
generalization (Plotkin, 1970) of the set of positive examples, is not disjoint with the set
of negative examples, then the separation problem has no solution. This case, however,
does not exclude the situation that there is a filter containing the set of positive examples
that is disjoint with an ideal containing the set of negative examples. In addition to these
properties, we also show that our modified greedy algorithm comprises an algorithmic
characterization of Kakutani closure systems over lattices. It provides an alternative
characterization to the algebraic one that a lattice has the Kakutani property if and only
if it is distributive (see, e.g., Kubiś, 2002).

5.2.1 Maximal Closed Set Separation in Lattices

Applying Theorem 5.1.1 to 𝜆-closure systems over a lattice (𝐿; ≤), we have that Algo-
rithm 1 requires 𝑂 (|𝐿|) closure operator calls. If the cardinality of 𝐿 is exponential in
some parameter 𝑛, then the bound above becomes exponential in 𝑛. As an example, in
case of formal concept analysis (Ganter et al., 2005), the cardinality of the concept lattice
can be exponential in that of the underlying sets of objects and attributes. As another
example, the lattice formed by the family of closed (item)sets of a transaction database
over 𝑛 items can also be exponential in 𝑛 (Boros et al., 2003). These and other examples

61

5 Maximal Closed Set Separations in Finite Closure Systems

Algorithm 2: Maximal Closed Set Separation in Lattices
Input: lattice (𝐿; ≤) with |𝐿| < ∞ given by an upward and a downward

refinement operator returning C↑(𝑎) and C↓(𝑎) for any 𝑎 ∈ 𝐿, and 𝐴, 𝐵 ⊆ 𝐿
Output: supremum of a maximal ideal 𝐼 ∈ 𝒞𝜆 and infimum of a maximal filter

𝐹 ∈ 𝒞𝜆 separating 𝐴 and 𝐵 in (𝐿, 𝒞𝜆) with 𝜆 defined in (2.3) if
𝜆(𝐴) ∩ 𝜆(𝐵) = ∅; “No” o/w

1 if (sup𝐴 ≱ inf𝐵) then ⊤𝐼 ← sup𝐴, ⊥𝐹 ← inf𝐵
2 else if (sup𝐵 ≱ inf𝐴) then ⊤𝐼 ← sup𝐵, ⊥𝐹 ← inf𝐴
3 else return “No”
4 while ∃𝑢 ∈ C↑(⊤𝐼) with 𝑢 ≱ ⊥𝐹 do ⊤𝐼 ← 𝑢
5 while ∃𝑙 ∈ C↓(⊥𝐹) with 𝑙 ≰ ⊤𝐼 do ⊥𝐹 ← 𝑙
6 return ⊤𝐼, ⊥𝐹

motivate us to adapt the generic domain independent Algorithm 1 to lattices, allowing
for an upper bound on the number of closure operator calls in terms of the cardinalities
of the upper and lower covers of a lattice and the maximum chain length in 𝐿. As we show
below, in case of concept lattices or (frequent) closed itemset lattices, the exponential
bound above reduces to 𝑂 (𝑛2).

The algorithm solving the MCSS problem for finite lattices is given in Algorithm 2. In
case of lattices we assume that the input lattice (𝐿; ≤) is given by an upward C↑ and a
downward C↓ refinement operator returning the sets of upper respectively lower covers
for the elements of 𝐿. For any 𝐴, 𝐵 ⊆ 𝐿, the algorithm first checks whether their closures
are disjoint or not; this is decided by comparing the suprema and infima of 𝐴 and 𝐵 (cf.
Lines 1–3). If the two closed sets are disjoint then, by Lemma 2.2.2, 𝐿 has a smallest ideal
𝐼 and a smallest filter 𝐹 such that 𝐼 and 𝐹 are disjoint and either 𝜆(𝐴) ⊆ 𝐼 and 𝜆(𝐵) ⊆ 𝐹
or vice versa. The algorithm then iteratively tries to extend either 𝐼 into a larger ideal or 𝐹
into a larger filter in a way that the extension does not violate the disjointness condition.
In the first case, the supremum of 𝐼 is replaced by one of its upper covers; in the second
one the infimum of 𝐹 by one of its lower covers. Finally, the algorithm stops when any
further extension of the current ideal and filter makes them non-disjoint.

Algorithm 2 has some important advantageous properties over Algorithm 1. In par-
ticular, while Algorithm 1 considers all uncovered elements for the extension of the
current closed sets, Algorithm 2 restricts the choice of the next generator element to
C↑(sup 𝐼) ∪C↓(inf𝐹), i.e., to a subset of the set of elements uncovered so far. Although in
the worst case this change does not improve the number of closure operator calls stated in
Theorem 5.1.2 for Algorithm 1, below we show that a logarithmic bound holds for certain
closure systems over lattices. Another advantageous property of Algorithm 2 is that the
disjointness of two closed sets can be decided by comparing two elements only, i.e., the
supremum of the current ideal with the infimum of the current filter. Furthermore, the
closure operator can be calculated in an easy way by taking advantage of the fact that
any closed sublattice of 𝐿 can be represented by its top and bottom elements. We have

62

5.2 Closed Set Separations in Lattices

the following result for Algorithm 2:

Theorem 5.2.1. For any 𝜆-closure system over a finite lattice (𝐿; ≤), Algorithm 2 solves the
MCSS problem correctly.

Proof. Let (𝐿, 𝒞𝜆) be the 𝜆-closure system over a lattice (𝐿; ≤) and 𝐴, 𝐵 ⊆ 𝐿. The cor-
rectness for the case that 𝜆(𝐴) ∩ 𝜆(𝐵) ≠ ∅ (or equivalently, 𝐴 and 𝐵 are not separable in
𝒞𝜆) is immediate from Lemmas 2.2.1 and 2.2.2. Applying Lemma 2.2.2 to the case that
𝜆(𝐴)∩𝜆(𝐵) = ∅, there exist disjoint ideal 𝐼 and filter 𝐹 in 𝒞𝜆 such that 𝐴 ⊆ 𝐼 and 𝐵 ⊆ 𝐹 or
vice versa. For symmetry, we can assumewithout loss of generality that 𝐴 ⊆ 𝐼 and 𝐵 ⊆ 𝐹.
Then, by Lemma 2.2.1, the condition in Line 1 holds and thus, the algorithm terminates
in Line 6 for this case. Consider the sequences 𝑢1, … , 𝑢𝑝 ∈ 𝐿 and 𝑙1, … , 𝑙𝑞 ∈ 𝐿 selected in
this order in Lines 4 and 5, respectively. By construction, 𝐴 ⊆ (𝑢0] ⊊ (𝑢1] ⊊ … ⊊ (𝑢𝑝] and
𝐵 ⊆ [𝑙0) ⊊ [𝑙1) ⊊ … ⊊ [𝑙𝑞), where 𝑢0 = sup𝐴 and 𝑙0 = inf𝐵. Furthermore, as 𝑢𝑝 ≱ 𝑙𝑞 (cf.
Line 5), the ideal (𝑢𝑝] and filter [𝑙𝑞) corresponding to the output ⊤𝐼 = 𝑢𝑝 and ⊥𝐹 = 𝑙𝑞
are disjoint by Lemma 2.2.1. Thus, they form a closed set separation of 𝐴 and 𝐵 in 𝒞𝜆.

We now show that (𝑢𝑝] and [𝑙𝑞) form a maximal closed set separation of 𝐴 and 𝐵 in
𝒞𝜆. Suppose for contradiction that there exist 𝐼′, 𝐹 ′ ∈ 𝒞𝜆 with 𝐼′ ∩ 𝐹 ′ = ∅, (𝑢𝑝] ⊆ 𝐼′,
and [𝑙𝑞) ⊆ 𝐹 ′ such that at least one of the two containments is proper. We present the
proof for (𝑢𝑝] ⊊ 𝐼 ′ only; the case of [𝑙𝑞) ⊊ 𝐹 ′ is similar. Since (𝑢𝑝] ⊊ 𝐼 ′, there exists an
𝑢 ∈ C↑(𝑢𝑝) with 𝑢𝑝 ⪇ 𝑢 ≤ sup 𝐼′. But then, by Line 4 we have 𝑢 ≥ 𝑙𝑞, which contradicts
𝐼′ ∩ 𝐹 ′ = ∅ by Lemma 2.2.2, as sup 𝐼′ ≥ 𝑢 ≥ 𝑙𝑞 ≥ inf𝐹 ′.

One can easily check that the number of evaluations of the relation “≤” in Lines 4
and 5 is 𝑂 (𝐻𝐿𝐶𝐿), where 𝐻𝐿 is the maximum chain length in 𝐿 and we denote 𝐶𝐿 ∶=
max
𝑥∈𝐿

max{|C↑(𝑥)|, |C↓(𝑥)|}. Proposition 5.2.1 below utilizes this property for the special
case that the underlying lattice is a family of subsets of some finite ground set.

Proposition 5.2.1. Let (𝐿, 𝒞𝜆) be a 𝜆-closure system over a lattice (𝐿; ⊆) with 𝐿 ⊆ 2𝐸 for
some ground set 𝐸 of cardinality 𝑛. Then Algorithm 2 solves the MCSS problem for the 𝜆-closure
system over (𝐿; ⊆) with 𝑂 (𝑛2) evaluations of the subset relation.

Proof. It follows directly from the remark above by 𝐻𝐿 = 𝑂 (𝑛) and 𝐻𝐶 = 𝑂 (𝑛).

Since 𝐿 ⊆ 2𝐸 for some ground set 𝐸 with |𝐸| = 𝑛, |𝐿| can be exponential in 𝑛. As an
application of Proposition 5.2.1 to concept lattices and closed (frequent) itemsets, we
have that maximal closed separations can be found in time polynomial in the size of the
underlying ground sets for these types of closure systems. In Section 5.2.3 we present
two illustrative examples of an application of Algorithm 2 to learning in formal concept
analysis and in first-order logic.

5.2.2 Kakutani Closure Systems over Lattices

In this section we consider Kakutani 𝜆-closure systems over finite lattices. As mentioned
above, this kind of closure systems have a well-known algebraic characterization in terms
of distributivity (see, e.g., Kubiś, 2002; van de Vel, 1984). As an orthogonal result, in

63

5 Maximal Closed Set Separations in Finite Closure Systems

𝑎1 𝑎2 𝑎3 𝑎4

𝑜1 1 0 0 1
𝑜2 1 0 1 0
𝑜3 0 1 1 0
𝑜4 0 1 1 1

(a) Binary matrix 𝑀 over 𝑂 × 𝐴.

(𝑂, ∅)
(𝑜1𝑜2, 𝑎1)

(𝑜1𝑜4, 𝑎4)

(𝑜2𝑜3𝑜4, 𝑎3)

(𝑜1, 𝑎1𝑎4) (𝑜2, 𝑎1𝑎3) (𝑜4, 𝑎2𝑎3𝑎4)

(𝑜3𝑜4, 𝑎2𝑎3)

(∅, 𝐴)

(b) Concept lattice defined by 𝑀.

Figure 5.2: Example of a formal context (LHS) and its corresponding concept lattice
(RHS).

Theorem 5.2.2 below we show that Algorithm 2 provides an algorithmic characterization
of Kakutani 𝜆-closure systems over lattices.

Theorem 5.2.2. Let (𝐿, 𝒞𝜆) be the 𝜆-closure system over a finite lattice (𝐿; ≤). Then (𝐿, 𝒞𝜆) is
Kakutani if and only if for all non-empty 𝐴, 𝐵 ⊆ 𝐿 with 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅, for the output ⊤𝐼
and ⊥𝐹 of Algorithm 2 it holds that (⊤𝐼] is a prime ideal, [⊥𝐹) is a prime filter, and (⊤𝐼] is the
complement of [⊥𝐹).

Proof. The sufficiency is immediate by Theorem 5.2.1. For the necessity, let (𝐿, 𝒞𝜆) be
a Kakutani closure system and 𝐴, 𝐵 ⊆ 𝐿 with 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅. Let 𝑢1, … , 𝑢𝑝 and
𝑙1, … , 𝑙𝑞 be the maximal sequences considered in the proof of Theorem 5.2.1 for the case
of 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅. For their last elements we have that (𝑢𝑝], [𝑙𝑞) ∈ 𝒞𝜆 and (𝑢𝑝] ∩ [𝑙𝑞) = ∅.
Since 𝒞𝜆 is Kakutani, there is a proper partitioning 𝐻, 𝐻𝑐 ∈ 𝒞𝜆 of 𝐿 such that (𝑢𝑝] ⊆ 𝐻
and [𝑙𝑞) ⊆ 𝐻𝑐. Thus, ⊥𝐿 ∈ 𝐻 and ⊤𝐿 ∈ 𝐻𝑐, implying that 𝐻 is a prime ideal and 𝐻𝑐 is
its complement prime filter. Suppose for contradiction that one of the two containments
above, say the first one, is proper (i.e., (𝑢𝑝] ⊊ 𝐻). But then, there exists an element
𝑢 ∈ C↑(𝑢𝑝) with 𝑢𝑝 ⪇ 𝑢 ≤ sup𝐻, i.e., 𝑢 will be selected after 𝑢𝑞 in Line 4. This contradicts
that 𝑢𝑞 is the last element selected in Line 4.

Corollary 5.2.1. Let (𝐿, 𝒞𝜆) be the 𝜆-closure system over a finite lattice (𝐿; ≤). Then (𝐿, 𝒞𝜆)
is distributive if and only if for all non-empty 𝐴, 𝐵 ⊆ 𝐿 with 𝜆(𝐴) ∩ 𝜆(𝐵) = ∅, the ideal (⊤𝐼]
and filter [⊥𝐹) defined by the output ⊤𝐼 and ⊥𝐹 of Algorithm 2 form a partitioning of 𝐿.

Proof. Immediate from Theorem 5.2.2 and the characterization of 𝜆-closure systems over
finite lattices in terms of distributivity (Kubiś, 2002; van de Vel, 1984).

5.2.3 Illustrative Examples

We finish this section by presenting two different illustrative examples of our algorithm
developed for lattices.

64

5.2 Closed Set Separations in Lattices

Maximal closed set separation in formal concept lattices Our first example is con-
cerned with concept lattices (Ganter et al., 2005) that arise from some formal context
(see, Section 2.1.2 for the definition). For our example we consider the concept lattice
presented in Figure 5.2(b)1 that is defined by the formal context 𝑂 × 𝐴, i.e., the binary
matrix 𝑀 (see Figure 5.2(a)), where 𝑂 = {𝑜1, … , 𝑜4} is the set of objects representing

𝑜1 = ‘equilateral triangle’,
𝑜2 = ‘right triangle’,
𝑜3 = ‘rectangle’,
𝑜4 = ‘square’,

and 𝐴 = {𝑎1, … , 𝑎4} is the set of attributes corresponding to

𝑎1 = ‘has 3 vertices’,
𝑎2 = ‘has 4 vertices’,
𝑎3 = ‘has a right angle’,
𝑎4 = ‘is equilateral’.

Suppose we would like to separate the two set of concepts 𝐶1 = {(𝑜4, 𝑎2𝑎3𝑎4)} and
𝐶2 = {(𝑜1𝑜2, 𝑎1)}, i.e., the set consisting of the concept ‘square’ from that containing
the concept of ‘triangle’ using maximal disjoint closed sets. As sup𝐶1 = (𝑜4, 𝑎2𝑎3𝑎4) ≱
(𝑜1𝑜2, 𝑎1) = inf𝐶2, Algorithm 2 first extends the smallest ideal 𝐼 = {(∅, 𝐴), (𝑜4, 𝑎2𝑎3𝑎4)}
containing 𝐶1 into amaximal ideal 𝐼′ such that sup 𝐼′ ≱ (𝑜1𝑜2, 𝑎1). Since both elements of
C↑((𝑜4, 𝑎2𝑎3𝑎4)) = {(𝑜1𝑜4, 𝑎4), (𝑜3𝑜4, 𝑎2𝑎3)} satisfy this condition, one of them is selected
arbitrarily in Line 4, say (𝑜1𝑜4, 𝑎4). For the new ideal 𝐼 with sup 𝐼 = (𝑜1𝑜4, 𝑎4) we
have that it cannot be extended, as for the only element (𝑂, ∅) in the upper covers
of (𝑜1𝑜4, 𝑎4) we have (𝑂, ∅) > (𝑜1𝑜4, 𝑎4). The algorithm therefore continues in Line 5
by extending the smallest filter 𝐹 = {(𝑜1𝑜2, 𝑎1), (𝑂, ∅)} containing 𝐶2 into a maximal
filter 𝐹 ′ such that inf𝐹 ′ ≰ sup 𝐼 = (𝑜1𝑜4, 𝑎4). The only element it can select from
C↓((𝑜1𝑜2, 𝑎1)) = {(𝑜1, 𝑎1𝑎4), (𝑜2, 𝑎1𝑎3)} is (𝑜2, 𝑎1𝑎3), as (𝑜1, 𝑎1𝑎4) < (𝑜1𝑜4, 𝑎4). For the
new filter 𝐹 with inf𝐹 = (𝑜2, 𝑎1𝑎3) we have that it cannot be extended, as for the only
element (∅, 𝐴) in the lower covers of (𝑜2, 𝑎1𝑎3) we have (∅, 𝐴) < (𝑜1𝑜4, 𝑎4). The algorithm
therefore terminateswith the supremum (𝑜1𝑜4, 𝑎4) and infimum (𝑜2, 𝑎1𝑎3) of themaximal
separating closed sets

𝐼 = {(∅, 𝐴), (𝑜1, 𝑎1𝑎4), (𝑜4, 𝑎2𝑎3𝑎4), (𝑜1𝑜4, 𝑎4)}

1See (Ignatov, 2015) for more details on this example.

65

5 Maximal Closed Set Separations in Finite Closure Systems

and

𝐹 = {(𝑜2, 𝑎1𝑎3), (𝑜1𝑜2, 𝑎1), (𝑜2𝑜3𝑜4, 𝑎3), (𝑂, ∅)} ,

respectively. That is, ‘square’ is separated from ‘triangle’ by the maximal disjoint closed
sets of concepts specializing ‘equilateral objects’ and generalizing ‘right triangles’. Note
that 𝐼 and 𝐹 do not form a half-space separation because (𝑜3𝑜4, 𝑎2𝑎3) ∉ 𝐼 ∪ 𝐹.

Maximal closed set separation in subsumption lattices Our second illustrative ex-
ample of the application of Algorithm 2 to lattices is concerned with finding consistent
hypotheses in inductive logic programming (see, e.g., Nienhuys-Cheng and de Wolf, 1997).
For simplicity, the example below is restricted to a very simple first-order vocabulary
by noting that the same idea holds for any finite sublattice of a subsumption lattice (cf.
Nienhuys-Cheng and de Wolf, 1997, for the definition and some formal properties of sub-
sumption lattices). More precisely, in the example below we assume that the vocabulary
consists only of a single predicate symbol 𝑃 of arity 𝑛 and a set 𝑉 of variables.

Now consider the subsumption lattice (𝐿; ≤) as defined in Section 2.1.2 for some
predicate 𝑃 with arity 𝑛 = 5 and a set of variables 𝑉 = {𝑣, 𝑤, 𝑥, 𝑦, 𝑧} (see, Figure 5.3). For
simplicity, we use a “canonical” atom for representing the class of equivalent atoms. We
can assume without loss of generality that ⊥𝐿 = 𝑃(𝑣, 𝑣, 𝑣, 𝑣, 𝑣) and ⊤𝐿 = 𝑃(𝑣, 𝑤, 𝑥, 𝑦, 𝑧).
Let

𝐴 = {𝑃(𝑣, 𝑤, 𝑥, 𝑥, 𝑧), 𝑃 (𝑣, 𝑤, 𝑥, 𝑦, 𝑦)}
𝐵 = {𝑃(𝑣, 𝑣, 𝑣, 𝑣, 𝑧), 𝑃 (𝑣, 𝑣, 𝑣, 𝑦, 𝑣)}

denote the sets of positive and negative examples, respectively. In the most common
problem setting in inductive logic programming (Nienhuys-Cheng and de Wolf, 1997),
one is interested in finding a 𝑃-atom 𝑔 ∈ 𝐿 such that 𝑔 generalizes all positive examples
in 𝐴 and none of the negative examples in 𝐵, if such a 𝑔 exists. Clearly, such a 𝑔 exists if
and only if sup𝐴 = 𝑃(𝑣, 𝑤, 𝑥, 𝑦, 𝑧) does not generalize any of the 𝑃-atoms in 𝐵. This is
not the case in our example, as sup𝐴 = 𝑃(𝑣, 𝑤, 𝑥, 𝑦, 𝑧) generalizes both elements in 𝐵.2
Thus, the consistent hypothesis finding problem has no solution. If, however, we only
require 𝐴 and 𝐵 to be separable in (𝐿, 𝒞𝜆), then Algorithm 2 returns a solution. Indeed,
while

sup𝐴 = 𝑃(𝑣, 𝑤, 𝑥, 𝑦, 𝑧) ≥ 𝑃(𝑣, 𝑣, 𝑣, 𝑣, 𝑣) = inf𝐵 ,

for sup𝐵 and inf𝐴 we have

sup𝐵 = 𝑃(𝑣, 𝑣, 𝑣, 𝑦, 𝑧) ≱ 𝑃(𝑣, 𝑤, 𝑥, 𝑥, 𝑥) = inf𝐴 ,

implying ⊤𝐼 = 𝑃(𝑣, 𝑣, 𝑣, 𝑦, 𝑧) and ⊥𝐹 = 𝑃(𝑣, 𝑤, 𝑥, 𝑥, 𝑥,) for Lines 1 and 2 of Algo-
rithm 2, which, in turn, are extended in Lines 4 and 5 into ⊤𝐼 = 𝑃(𝑣, 𝑣, 𝑥, 𝑦, 𝑧) and

2In inductive logic programming, sup𝐴 is referred to as the least general generalization of 𝐴. It can be
calculated by Plotkin’s algorithm in (Plotkin, 1970).

66

5.2 Closed Set Separations in Lattices

𝑃
(𝑣

,𝑤
,𝑥

,𝑦
,𝑧

)

𝑃
(𝑣

,𝑣
,𝑥

,𝑦
,𝑧

)𝑃
(𝑣

,𝑤
,𝑣

,𝑦
,𝑧

)𝑃
(𝑣

,𝑤
,𝑥

,𝑣
,𝑧

)𝑃
(𝑣

,𝑤
,𝑥

,𝑦
,𝑣

)𝑃
(𝑣

,𝑤
,𝑤

,𝑦
,𝑧

)𝑃
(𝑣

,𝑤
,𝑥

,𝑤
,𝑧

)𝑃
(𝑣

,𝑤
,𝑥

,𝑦
,𝑤

)𝑃
(𝑣

,𝑤
,𝑥

,𝑥
,𝑧

)𝑃
(𝑣

,𝑤
,𝑥

,𝑦
,𝑥

)𝑃
(𝑣

,𝑤
,𝑥

,𝑦
,𝑦

)

𝑃
(𝑣

,𝑣
,𝑣

,𝑦
,𝑧

)
𝑃

(𝑣
,𝑣

,𝑥
,𝑣

,𝑧
)

𝑃
(𝑣

,𝑣
,𝑥

,𝑣
,𝑧

)𝑃
(𝑣

,𝑤
,𝑣

,𝑣
,𝑧

)𝑃
(𝑣

,𝑤
,𝑣

,𝑦
,𝑣

)𝑃
(𝑣

,𝑤
,𝑥

,𝑣
,𝑣

)𝑃
(𝑣

,𝑤
,𝑤

,𝑤
,𝑧

)𝑃
(𝑣

,𝑤
,𝑤

,𝑦
,𝑤

)𝑃
(𝑣

,𝑤
,𝑥

,𝑤
,𝑤

)𝑃
(𝑣

,𝑤
,𝑥

,𝑥
,𝑥

)

𝑃
(𝑣

,𝑣
,𝑣

,𝑣
,𝑧

)
𝑃

(𝑣
,𝑣

,𝑣
,𝑦

,𝑣
)

𝑃
(𝑣

,𝑣
,𝑥

,𝑣
,𝑣

)
𝑃

(𝑣
,𝑤

,𝑣
,𝑣

,𝑣
)

𝑃
(𝑣

,𝑤
,𝑤

,𝑤
,𝑤

)

𝑃
(𝑣

,𝑣
,𝑣

,𝑣
,𝑣

)

Figure 5.3: Maximal closed set separation of set 𝐴 (marked by blue) and set 𝐵 (marked
by red) in a subsumption lattice. The elements with bold borders are the
supremum of 𝐵 respectively the infimum of 𝐴. The elements with a dashed
border are the output elements ⊥𝐹 respectively ⊤𝐼.

67

5 Maximal Closed Set Separations in Finite Closure Systems

⊥𝐹 = 𝑃(𝑣, 𝑤, 𝑤, 𝑤, 𝑤) (see, also, Figure 5.3). For the corresponding ideal (𝑃 (𝑣, 𝑣, 𝑥, 𝑦, 𝑧)]
and filter [𝑃 (𝑣, 𝑤, 𝑤, 𝑤, 𝑤)) returned by Algorithm 2 we have that they are disjoint, con-
tain 𝐵 and 𝐴, respectively, and are maximal in (𝐿, 𝒞𝜆) with respect to these properties.
In other words, the output of the algorithm separates 𝐴 and 𝐵 by the sets of 𝑃-atoms
that are generalizations of 𝑃(𝑣, 𝑤, 𝑤, 𝑤, 𝑤) and are generalized by 𝑃(𝑣, 𝑣, 𝑥, 𝑦, 𝑧), respec-
tively. This example also shows that our approach is able to produce an output for
such cases where traditional approaches based on Plotkin’s least general generaliza-
tion (Plotkin, 1970) have no solution. The reason is that Algorithm 2 treats the input two
sets symmetrically, in contrast to all such approaches.

5.3 Maximum Margin Separations

If the separating maximal closed sets or half-spaces for some disjoint input sets are not
unique, Algorithm 1 returns one of them selected arbitrarily. This behavior is similar
to Rosenblatt’s perceptron algorithm (Rosenblatt, 1958), which also has the only re-
quirement that the output hyperplane has to separate the input point sets. A significant
drawback of such unconstrained solutions is that they provide no control of overfitting.
This problem has been addressed by Vapnik and his co-authors’ work on support vector
machines (SVMs) (Boser et al., 1992), which have become a well-established tool within
machine learning for their well-founded theory and excellent predictive performance
on a broad range of real-world problems. In particular, support vector machines re-
solve the problem of overfitting by (implicitly) embedding the data points into an inner
product feature space and separating their images in that feature space by a hyperplane
maximizing the minimum of the distances to the sets of positive and negative examples.

Motivated by the same problem as in the SVM, in this section, we adapt the idea
of maximum margin hyperplanes to binary separation problems over finite closure
systems. This adaptation raises, however, several issues. Most notably, while in SVMs,
the inner product induces a distance, in case of finite closure systems the ground set
is typically not a metric space. To overcome this problem, we assume that the closure
systems are provided by some weak proximity measure defined by monotone linkage
functions (Mullat, 1976). A closure system equipped with a monotone linkage function is
called monotone linkage closure system (MLCS) (see Section 2.3). We motivate our choice
of proximity measure by recalling that monotone linkage functions, in contrast to metrics,
can naturally be defined for a closure system (see Section 2.3). While these kind of
functions strongly generalize distance functions (e.g., they are not required to fulfill
symmetry or the triangle inequality), they preserve the anti-monotonicity of distances.
That is, the linkage from a point to a set is anti-monotonic for set inclusion. Similarly to
SVMs, this feature is essential for the separation problems considered in this work.

A second issue is how to define margins for closed set and half-space separations in
finite closure systems. While there are different equivalent characterizations of maximum
margins for SVMs, it turns out that their equivalence does not hold when adapting them
to abstract closure systems equipped with monotone linkage functions. In particular,
in contrast to SVMs, the linkage of the set of positive examples to a half-space can be

68

5.3 Maximum Margin Separations

different from that of the negative examples to the complementary half-space for all
half-spaces. We therefore define the margin by the smallest linkage from the closures
of the input sets to the complementary half-spaces. Furthermore, we generalize this
concept to arbitrarily closed set separations as well.

Using these notions, we then formulate the computational problems of finding closed
set and half-space separations maximizing the margin in finite closure systems equipped
with monotone linkage functions. This problem adapts several key features of SVMs to
abstract closure systems. For the closed set separation problem, we then give a extended
version of Algorithm 1 and show that it is correct and requires a linear number of closure
operator calls and linkage function evaluations. We also show that for Kakutani closure
systems, the algorithm always returns a half-space separation of the input sets with
maximum margin if and only if the closures of the two training sets are disjoint.

5.3.1 Maximum Margin Separations in Monotone Linkage Closure Systems

As mentioned before, our main goal in this section is to adapt Vapnik’s idea (Boser
et al., 1992) of maximum margin separating hyperplanes to finite closure systems. That
is, given subsets 𝐴 and 𝐵 of some inner product (feature) space ℱ, in case of support
vector machines (SVM) (Boser et al., 1992) we are interested in the hyperplane 𝐻∗ having
maximum distance to the two sets, i.e., which satisfies

𝑑(𝐴 ∪ 𝐵, 𝐻) ≤ 𝑑(𝐴 ∪ 𝐵, 𝐻∗) (5.6)

for all hyperplanes 𝐻, where for all 𝑋, 𝑌 ⊆ ℱ, 𝑑(𝑋, 𝑌) = min𝑦∈𝑌 𝑑(𝑋, 𝑦) with 𝑑 being
the distance induced by the underlying inner product. It is a well-known fact that if
𝐴 and 𝐵 are separable by a hyperplane, then 𝐻∗ is unique; 𝐻∗ is also referred to as the
maximum margin separating hyperplane, where the margin of a separating hyperplane 𝐻 is
defined by

𝜇(𝐴, 𝐵) = 𝑑(𝐴, 𝐻) + 𝑑(𝐵, 𝐻) . (5.7)

A key property of the margin is that it is anti-monotone with respect to set inclusion,
i.e., 𝜇(𝐴′, 𝐵′) ≤ 𝜇(𝐴, 𝐵) for all 𝐴′ ⊇ 𝐴 and 𝐵′ ⊇ 𝐵. Note that (5.6) implies

𝑑(𝐴, 𝐻∗) = 𝑑(𝐵, 𝐻∗) .

Clearly, the above definitions are not (directly) applicable to maximum margin separa-
tion in closure systems because we do not assume 𝐸 to be an inner product or a metric
space and have therefore no measure in general for the distance from a point 𝑒 ∈ 𝐸 to a
subset 𝑋 ⊆ 𝐸. Furthermore, while the notion of half-spaces in ℝ𝑑 has been generalized
to closure systems, for hyperplanes there is no analogous definition. Hence, to be in
a position to define margins, we need some suitable functions for the abstraction of
“closeness” from a point to a subset of the ground set. They should generalize metrics,
but preserve the anti-monotonic property above at the same time.

The class of monotone linkage functions (Mullat, 1976) defined in Section 2.3 fulfill both
of these requirements. In addition to generality and anti-monotonicity, they have some

69

5 Maximal Closed Set Separations in Finite Closure Systems

further properties making this class an attractive candidate for our purpose. In particu-
lar, monotone linkage functions assume neither symmetry nor the triangle inequality.
Moreover, they can be naturally defined using the closure systems (see Section 2.3).

To adapt the ordinary definition of margins to closure systems equipped with a mono-
tone linkage function (MLCS), note that if a hyperplane 𝐻 ⊆ ℝ𝑑 separates 𝐴 and 𝐵, then
(5.7) is equivalent to

𝜇(𝐴, 𝐵) = 𝑑(𝐴, 𝐻2) + 𝑑(𝐵, 𝐻1)
= 𝑑(conv(𝐴), 𝐻2) + 𝑑(conv(𝐵), 𝐻1) , (5.8)

where 𝐻1 ⊇ 𝐴 and 𝐻2 ⊇ 𝐵 are the closed half-spaces defined by 𝐻 (i.e., 𝐻 ⊆ 𝐻1, 𝐻2).
That is, in case of SVM, themargin given by a hyperplane 𝐻 separating 𝐴 and 𝐵 is defined
by the sum of the distances from the convex hull of 𝐴 to the half-space 𝐻2 containing 𝐵
and from that of 𝐵 to 𝐻1 containing 𝐴.

Analogously to distances in metric spaces, we first extend linkage functions from sets
to elements to those from sets to sets. Formally, for a linkage function 𝑙 on 𝐸 and subsets
𝑋, 𝑌 ⊆ 𝐸, we define the linkage 𝑙 from 𝑋 to 𝑌 by 𝑙(𝑋, 𝑌) = min𝑦∈𝑌 𝑙(𝑋, 𝑦). Note that this
extended definition preserves anti-monotonicity, i.e., 𝑙(𝑋′, 𝑌) ≤ 𝑙(𝑋, 𝑌) holds whenever
𝑋′ ⊇ 𝑋. Let 𝐻, 𝐻𝑐 be half-spaces of an MLCS (𝐸, 𝒞𝜌, 𝑙) and 𝐴 ⊆ 𝐻, 𝐵 ⊆ 𝐻𝑐 for some
𝐴, 𝐵 ⊆ 𝐸. Then, by analogy with (5.8), our first definition of the margin of the half-space
separation of 𝐴, 𝐵 by 𝐻, 𝐻𝑐 is

𝜇+
𝐻,𝐻𝑐(𝐴, 𝐵) = 𝑙(𝜌(𝐴), 𝐻𝑐) + 𝑙(𝜌(𝐵), 𝐻). (5.9)

While the above adaptation of the ordinary notion of margins to MLCSs is relatively
natural, the generalization is less obvious for maximum margin half-space separations.
This is because for SVM there are two equivalent properties characterizing maximum
margin hyperplanes 𝐻∗ defining the closed half-spaces 𝐻1 ⊇ 𝐴 and 𝐻2 ⊇ 𝐵:

(i) 𝐻∗ maximizes 𝜇(𝐴, 𝐵) such that 𝑑(conv(𝐴), 𝐻2) = 𝑑(conv(𝐵), 𝐻1).

(ii) 𝐻∗ maximizes min{𝑑(conv(𝐴), 𝐻2), 𝑑(conv(𝐵), 𝐻1)}.

That is, the maximum margin hyperplane by (i) lies in the “middle” between the convex
hulls of 𝐴 and 𝐵; by (ii) it maximizes the minimum of the distances from the two convex
hulls. While (i) and (ii) are equivalent in case of SVM, the situation is different for
MLCSs as shown in the proposition below.

Proposition 5.3.1. There exists an MLCS (𝐸, 𝒞𝜌, 𝑙) and subsets 𝐴, 𝐵 ⊆ 𝐸 such that

𝜇+
𝐻1,𝐻𝑐

1
(𝐴, 𝐵) ≠ 𝜇+

𝐻2,𝐻𝑐
2
(𝐴, 𝐵),

where

𝐻1 = argmax
𝐻,𝐻𝑐∈𝒞𝜌

𝜇+
𝐻,𝐻𝑐(𝐴, 𝐵) subject to 𝑙(𝜌(𝐴), 𝐻𝑐) = 𝑙(𝜌(𝐵), 𝐻)

𝐻2 = argmax
𝐻,𝐻𝑐∈𝒞𝜌

min{𝑙(𝜌(𝐴), 𝐻𝑐), 𝑙(𝜌(𝐵), 𝐻)} .

70

5.3 Maximum Margin Separations

𝜌(𝐴)
𝜌(𝐵)

𝑙(𝜌(𝐴), 𝐻𝑐)

𝑙(𝜌(𝐵), 𝐻)

ℎ′∗

ℎ∗

𝐻 𝐻𝑐

Figure 5.4: Linkages 𝑙(𝜌(𝐴), 𝐻𝑐), 𝑙(𝜌(𝐵), 𝐻) between closed sets 𝜌(𝐴), 𝜌(𝐵) and half-
spaces 𝐻, 𝐻𝑐 together with the support elements ℎ∗, ℎ′∗.

Proof. Consider the MLCS (𝐸, 𝒞, 𝑙) with 𝐸 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝒞 = {𝑋 ⊆ 𝐸 ∶ |𝑋| ≠ 3}.
The monotone linkage function is defined by

𝑙({𝑎}, 𝑏) = 𝑙({𝑏}, 𝑎) = 𝑙({𝑏}, 𝑑) = 3,
𝑙(∅, 𝑒) = 3 for all 𝑒 ∈ 𝐸,

𝑙({𝑎}, 𝑐) = 2,
𝑙({𝑎}, 𝑑) = 𝑙({𝑏}, 𝑐) = 1,

𝑙(𝑋, 𝑒) = 0 for all other 𝑋 ⊆ 𝐸 and 𝑒 ∈ 𝐸

It can be easily checked that (𝐸, 𝒞) is a closure system and 𝑙 fulfills the anti-monotonicity
property. For 𝐴 = {𝑎}, 𝐵 = {𝑏} there exist exactly two different separating half-
spaces of size 2, i.e., 𝐻1 = {𝑎, 𝑐} and 𝐻2 = {𝑎, 𝑑}. Using the definition of linkage
on sets it follows 𝑙(𝐴, 𝐻𝑐

1) = 𝑙(𝐵, 𝐻1) = 1. Moreover, 𝑙(𝐴, 𝐻𝑐
2) = 2 and 𝑙(𝐵, 𝐻2) =

3. Thus, 𝐻1 fulfills the first property and 𝐻2 the second one, by noting that 2 =
min{𝑙(𝐴, 𝐻𝑐

2), 𝑙(𝐵, 𝐻2)} > min{𝑙(𝐴, 𝐻𝑐
1), 𝑙(𝐵, 𝐻1)} = 1. The claim then follows by

2 = 𝜇+
𝐻1,𝐻𝑐

1
(𝐴, 𝐵) ≠ 𝜇+

𝐻2,𝐻𝑐
2
(𝐴, 𝐵) = 5.

Thus, for an MLCS (𝐸, 𝒞, 𝑙), maximizing the margin as defined in (5.9) subject to
𝑙(𝜌(𝐴), 𝐻𝑐) = 𝑙(𝜌(𝐵), 𝐻) is not equivalent to maximizing

𝜇𝐻,𝐻𝑐(𝐴, 𝐵) ∶= min{𝑙(𝜌(𝐴), 𝐻𝑐), 𝑙(𝜌(𝐵), 𝐻)} (5.10)

over all half-space separations of 𝐴 and 𝐵 in (𝐸, 𝒞𝜌, 𝑙) (see, also, Figure 5.4).
Since our primary interest is in classification, we prefer the definition in (ii) above,

and will accordingly focus on maximizing the margin defined by (5.10). Note that our
definition of margin differs from that in SVM, as it involves only one part of the ordinary
one.

Until now we have concentrated on half-space separations. In case of MLCSs, two
sets with disjoint closures are, however, not always half-space separable. Fortunately,
the above definition of margin can be extended naturally to arbitrary closed sets. More
precisely, for an MLCS (𝐸, 𝒞𝜌, 𝑙), let 𝐴, 𝐵 ⊆ 𝐸 and 𝐶𝐴, 𝐶𝐵 ∈ 𝒞𝜌 with 𝐴 ⊆ 𝐶𝐴 and
𝐵 ⊆ 𝐶𝐵. Then the margin for 𝐶𝐴 and 𝐶𝐵 is defined by

𝜇𝐶𝐴,𝐶𝐵
(𝐴, 𝐵) ∶= min{𝑙(𝜌(𝐴), 𝐶𝑐

𝐴), 𝑙(𝜌(𝐵), 𝐶𝑐
𝐵)} . (5.11)

71

5 Maximal Closed Set Separations in Finite Closure Systems

Similarly to half-spaces, the definition takes only one part of the effective margin into
account. Note that (5.10) is the special case of (5.11) for 𝐶𝐴 = 𝐻 and 𝐶𝐵 = 𝐻𝑐. We now
show that the anti-monotonicity of monotone linkages extends to margins in MLCS. This
property is essential for separations.

Lemma 5.3.1. Let (𝐸, 𝒞𝜌, 𝑙) be anMLCS, 𝐴 ⊆ 𝐴′ ⊆ 𝐸, 𝐵 ⊆ 𝐵′ ⊆ 𝐸, and 𝐶𝐴 ⊇ 𝐴′, 𝐶𝐵 ⊇ 𝐵′

disjoint closed sets. Then 𝜇𝐶𝐴,𝐶𝐵
(𝐴, 𝐵) ≥ 𝜇𝐶𝐴,𝐶𝐵

(𝐴′, 𝐵′).

Proof. This follows directly from the definition of the margin between two sets in (5.11)
and the anti-monotonicity of monotone linkage functions.

Moreover, maximizing the disjoint closed sets 𝐶𝐴 and 𝐶𝐵 in Lemma 5.3.1 maximizes
the margin at the same time, as we show in the following lemma.

Lemma 5.3.2. Let𝐶𝐴 ⊆ 𝐶′
𝐴 and𝐶𝐵 ⊆ 𝐶′

𝐵 be closed sets of anMLCS (𝐸, 𝒞𝜌, 𝑙)with𝐶′
𝐴∩𝐶′

𝐵 =
∅ and 𝐴 ⊆ 𝐶𝐴, 𝐵 ⊆ 𝐶𝐵. Then 𝜇𝐶𝐴,𝐶𝐵

(𝐴, 𝐵) ≤ 𝜇𝐶′
𝐴,𝐶′

𝐵
(𝐴, 𝐵).

Proof. From the definition of monotone linkages between sets it follows that 𝑙(𝑋, 𝑌) ≥
𝑙(𝑋, 𝑌 ′) whenever 𝑌 ⊆ 𝑌 ′. Hence, by 𝐶𝑐

𝐴 ⊇ 𝐶′𝑐
𝐴 and 𝐶𝑐

𝐵 ⊇ 𝐶′𝑐
𝐵 we have

𝜇𝐶𝐴,𝐶𝐵
(𝐴, 𝐵) = min{𝑙(𝜌(𝐴), 𝐶𝑐

𝐴), 𝑙(𝜌(𝐵), 𝐶𝑐
𝐵)}

≤ min{𝑙(𝜌(𝐴), 𝐶′𝑐
𝐴), 𝑙(𝜌(𝐵), 𝐶′𝑐

𝐵)}
= 𝜇𝐶′

𝐴,𝐶′
𝐵

(𝐴, 𝐵) .

Given a half-space separation of 𝐴, 𝐵 with 𝐴 ⊆ 𝐻 and 𝐵 ⊆ 𝐻𝑐, similarly to support
vectors in SVMs we can define the support elements by ℎ∗ and ℎ′∗ satisfying 𝑙(𝜌(𝐴), 𝐻𝑐) =
𝑙(𝜌(𝐴), ℎ′∗) and 𝑙(𝜌(𝐵), 𝐻) = 𝑙(𝜌(𝐵), ℎ∗), respectively. For example, in case of maximum
margin separating half-spaces in trees, there are exactly two support elements corre-
sponding to the two half-spaces. We have marked the support elements in Figure 5.4,
Figure 5.5, and Figure 5.6 by dashed circles.

5.3.2 The Maximum Margin Algorithm

Using (5.10) and (5.11) for the definition of margins for half-space and closed set separa-
tions, we are ready to formulate the separation problems in MLCS (𝐸, 𝒞𝜌, 𝑙):

Maximum Margin Half-Space Separation (MMHSS) Problem: Givennon-empty subsets
𝐴, 𝐵 of 𝐸, find a half-space 𝐻 ∈ 𝒞𝜌 with 𝐴 ⊆ 𝐻, 𝐵 ⊆ 𝐻𝑐 that maximizes the mar-
gin, i.e., 𝐻 = argmax

{𝐻1∈𝒞𝜌∶𝐻𝑐
1∈𝒞𝜌}

𝜇𝐻1,𝐻𝑐
1
(𝐴, 𝐵), if 𝐴 and 𝐵 are half-space separable; o/w

return “No”.

Maximum Margin Closed Set Separation (MMCSS) Problem: Givennon-empty subsets
𝐴, 𝐵 of 𝐸, find disjoint closed sets 𝐶𝐴, 𝐶𝐵 ∈ 𝒞𝜌 with 𝐴 ⊆ 𝐶𝐴, 𝐵 ⊆ 𝐶𝐵 that maxi-
mize the margin, i.e., for all other disjoint closed sets 𝐶′

𝐴 ⊇ 𝐴, 𝐶′
𝐵 ⊇ 𝐵 it holds that

𝜇𝐶𝐴,𝐶𝐵
(𝐴, 𝐵) ≥ 𝜇𝐶′

𝐴,𝐶′
𝐵

(𝐴, 𝐵), if 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅; o/w return “No”.

72

5.3 Maximum Margin Separations

𝑥 𝑦 𝑥 𝑦

Figure 5.5: Example of amaximummargin half-space separation and amaximummargin
closed set separation in a geodesic closure system over some graph. (left) A
maximum margin half-space separation of 𝑥 and 𝑦 of margin 1 and (right) a
maximum margin closed set separation of 𝑥 and 𝑦 of margin 2. The support
elements are marked by dashed circles.

Remark 5.3.1. The MMHSS problem is a special case of the MMCSS problem for 𝐶𝐴 =
𝐻, 𝐶𝐵 = 𝐻𝑐. Moreover, Lemma 5.3.2 implies that for any maximummargin closed set separation
there exists a maximal closed set separation of the same margin. The converse is, however, not true
in general. If fact, the maximum margin between two half-spaces solving the MMHSS problem
can be smaller than the maximum margin between to maximal disjoint closed sets solving the
MMCSS problem for the same input sets𝐴, 𝐵, see Figure 5.5. The converse, i.e., that the maximum
margin of a half-space separation is greater than that of a maximum margin closed set separation
is not possible, because every maximum margin half-space separation is also a maximum margin
closed set separation.

A direct consequence of the negative result of Theorem 4.1.1 and Corollary 4.1.1 is the
following:

Corollary 5.3.1. The decision problem version of the MMHSS Problem, i.e., the question whether
there exists a half-space separation of margin greater or equal 𝑘 is NP-complete.

Proof. The problem is in NP as we can easily check whether the output is a half-space
separation and the margin has the proposed properties. Moreover we can reduce the
problem to the Half-Space Separation problem (see Problem 4.1.1).

In contrast to this negative results we can show that the MMCSS problem is solvable
in polynomial time in the input with respect to the number of closure operator calls and
linkage function evaluations. We solve the MMCSS problem by Algorithm 3, which is
based on an adaptation of our greedy Algorithm 1. The input to the algorithm is an
MLCS (𝐸, 𝒞𝜌, 𝑙) together with two sets 𝐴, 𝐵 ⊆ 𝐸 of training examples. We assume that
𝒞𝜌 is given by the closure operator 𝜌, which returns the closure for any 𝑋 ⊆ 𝐸 in unit
time. Similarly, for any 𝑋 ⊆ 𝐸 and 𝑒 ∈ 𝐸, 𝑙(𝑋, 𝑒) is returned by another oracle in unit
time. Accordingly, we measure the complexity of Algorithm 3 in terms of the number of
closure operator calls and linkage function evaluations.

In Lines 1-3, the closures of 𝐴, 𝐵 are calculated and checked for disjointness. In
particular, if they are not disjoint, the algorithm terminates with “No”, as in this case
𝐴 and 𝐵 are not separable by closed sets. Thus, the algorithm is correct for this case.
Consider the case that 𝜌(𝐴) ∩ 𝜌(𝐵) = ∅. For this case, all elements not contained in the

73

5 Maximal Closed Set Separations in Finite Closure Systems

Algorithm 3: Maximum Margin Separation
Input: a finite MLCS (𝐸, 𝒞𝜌, 𝑙) and sets 𝐴, 𝐵 ⊆ 𝐸
Output: maximum margin closed sets 𝐶𝐴, 𝐶𝐵 ∈ 𝒞𝜌 with 𝐴 ⊆ 𝐶𝐴 and 𝐵 ⊆ 𝐶𝐵 if

𝜌(𝐴) ∩ 𝜌(𝐵) = ∅; “No” otherwise
1 𝐴, 𝐶𝐴 ← 𝜌(𝐴); 𝐵, 𝐶𝐵 ← 𝜌(𝐵);
2 if 𝐶𝐴 ∩ 𝐶𝐵 ≠ ∅ then
3 return No;
4 𝐹 ← 𝐸 ⧵ {𝐶𝐴 ∪ 𝐶𝐵};
5 compute min{𝑙(𝐴, 𝑓), 𝑙(𝐵, 𝑓)} for all 𝑓 ∈ 𝐹 and sort 𝐹 by these values;
6 while 𝐹 ≠ ∅ do
7 take the smallest element 𝑓 ∈ 𝐹;
8 if (𝑙(𝐴, 𝑓) ≤ 𝑙(𝐵, 𝑓) ∨ 𝜌(𝐶𝐵 ∪ {𝑓}) ∩ 𝐶𝐴 ≠ ∅) ∧ 𝜌(𝐶𝐴 ∪ {𝑓}) ∩ 𝐶𝐵 = ∅ then
9 𝐶𝐴 ← 𝜌(𝐶𝐴 ∪ {𝑓});

10 else if 𝜌(𝐶𝐵 ∪ {𝑓}) ∩ 𝐶𝐴 = ∅ then
11 𝐶𝐵 ← 𝜌(𝐵𝐵 ∪ {𝑓});
12 𝐹 ← 𝐹 ⧵ (𝐶𝐴 ∪ 𝐶𝐵 ∪ {𝑓});
13 return 𝐶𝐴, 𝐶𝐵

union of the closures of 𝐴 and 𝐵 are first collected in 𝐹 and sorted then by their minimum
linkage from these two closed sets (Lines 4-5). The elements 𝑓 in 𝐹 will be processed
one by one in this order and then immediately removed, potentially together with other
untreated elements (Line 12). In particular, if the linkage from the closure of 𝐴 to 𝑓 is not
greater than that of 𝐵 or the current closed set 𝐶𝐵 containing 𝐵 cannot be extended by 𝑓,
we expand the current closed set 𝐶𝐴 ⊇ 𝐴 with 𝑓 if it does not violate the disjointness
with 𝐶𝐵 (see Lines 8-9). Otherwise, we extend 𝐶𝐵 by 𝑓, if 𝜌(𝐶𝐵 ∪ {𝑓}) remains disjoint
with 𝐶𝐴 (Lines 10-11). We then remove 𝑓 and all other elements from 𝐹 (Line 12) added
to 𝐶𝐴 or to 𝐶𝐵 in Line 9 or 11.

An example of the algorithm to the case that (𝐸, 𝒞𝜌, 𝑙) is defined over graphs with
the geodesic or shortest path closure operator is given in Figure 5.6. We now show that
Algorithm3 is correct (Theorem 5.3.1) and efficient (Theorem 5.3.2). Furthermore, in case
of Kakutani closure systems, the sets 𝐶𝐴, 𝐶𝐵 returned in Line 13 form complementary
half-spaces with maximum margin whenever 𝜌(𝐴) ∩ 𝜌(𝐵) ≠ ∅ (Corollary 5.3.2).

Theorem 5.3.1. Algorithm 3 solves the MMCSS problem correctly.

Proof. Let (𝐸, 𝒞𝜌, 𝑙) be an MLCS and 𝐴, 𝐵 ⊆ 𝐸. By construction, the algorithm returns
“No” only for the case that 𝜌(𝐴) ∩ 𝜌(𝐵) ≠ ∅, i.e., when 𝐴 and 𝐵 are not separable in
𝒞𝜌, implying the correctness for this case. Otherwise, the closed sets 𝐶𝐴 ⊇ 𝐴, 𝐶𝐵 ⊇ 𝐵
returned are disjoint and hence, form a separation of 𝐴 and 𝐵. They are maximal, as
only such elements of 𝐸 are discarded that violate the disjointness condition. All such
elements can be removed ultimately from 𝐹, as they do not have to be reconsidered again
for the monotonicity of 𝜌.

74

5.3 Maximum Margin Separations

Regarding optimality, suppose for contradiction that there are other disjoint closed
sets 𝐶′

𝐴 ⊇ 𝐴, 𝐶′
𝐵 ⊇ 𝐵 such that

𝜇𝐶′
𝐴,𝐶′

𝐵
(𝐴, 𝐵) > 𝜇𝐶𝐴,𝐶𝐵

(𝐴, 𝐵) . (5.12)

For symmetry, we can assume without loss of generality that there is an 𝑒∗ ∈ 𝐶𝑐
𝐴 such

that
min{𝑙(𝜌(𝐴), 𝐶𝑐

𝐴), 𝑙(𝜌(𝐵), 𝐶𝑐
𝐵)} = 𝑙(𝜌(𝐴), 𝑒∗) ,

i.e., 𝜇𝐶𝐴,𝐶𝐵
(𝐴, 𝐵) = 𝑙(𝜌(𝐴), 𝑒∗). Then, by (5.11) and (5.12) we have

𝑙(𝜌(𝐴), 𝑒∗) < min{𝑙(𝜌(𝐴), 𝐶′𝑐
𝐴), 𝑙(𝜌(𝐵), 𝐶′𝑐

𝐵)} (5.13)

implying 𝑙(𝜌(𝐴), 𝑒∗) < 𝑙(𝜌(𝐴), 𝐶′𝑐
𝐴). Thus, 𝑒∗ ∉ 𝐶′𝑐

𝐴 and hence

𝑒∗ ∈ 𝐶′
𝐴 ⊆ 𝐶′𝑐

𝐵 . (5.14)

But then, together with (5.13) and (5.14), we have

𝑙(𝜌(𝐴), 𝑒∗) < 𝑙(𝜌(𝐵), 𝐶′𝑐
𝐵) = min

𝑥∈𝐶′𝑐
𝐵

𝑙(𝜌(𝐵), 𝑥) ≤ 𝑙(𝜌(𝐵), 𝑒∗) . (5.15)

We prove that 𝑒∗ ∈ 𝐶′
𝐴 and 𝑒∗ ∈ 𝐶𝑐

𝐴 contradicts the assumptions. Conditions 𝐶′
𝐴 ∩

𝐶′
𝐵 = ∅ and 𝑒∗ ∈ 𝐶′

𝐴 imply that 𝜌(𝜌(𝐴) ∪ {𝑒∗}) ∩ 𝜌(𝐵) = ∅. Since 𝑒∗ ∉ 𝐶𝐴, 𝑒∗ has
not been added to 𝐶𝐴, though 𝑙(𝜌(𝐴), 𝑒∗) < 𝑙(𝜌(𝐵), 𝑒∗) (5.15). But this can happen
only if there is a non-empty set 𝐺 ⊆ 𝐹 such that for all 𝑔 ∈ 𝐺, 𝑔 is before 𝑒∗ in 𝐹, i.e.,
min{𝑙(𝜌(𝐴), 𝑔), 𝑙(𝜌(𝐵), 𝑔)} ≤ 𝑙(𝜌(𝐴), 𝑒∗). Assume there is a 𝑔 ∈ 𝐺 such that 𝑔 ∈ 𝐶𝐴, but
𝑔 ∉ 𝐶′

𝐴. Then 𝑔 ∈ 𝐶′𝑐
𝐴 and thus,

𝜇𝐶′
𝐴,𝐶′

𝐵
(𝐴, 𝐵) = min{𝑙(𝜌(𝐴), 𝐶′𝑐

𝐴), 𝑙(𝜌(𝐵), 𝐶′𝑐
𝐵)}

≤ min{𝑙(𝜌(𝐴), 𝑔), 𝑙(𝜌(𝐵), 𝑔)}
≤ 𝑙(𝜌(𝐴), 𝑒∗)
= 𝜇𝐶𝐴,𝐶𝐵

(𝐴, 𝐵)

contradicting (5.12). Hence, for all 𝑔 ∈ 𝐺, 𝑔 ∈ 𝐶𝐴 implies 𝑔 ∈ 𝐶′
𝐴. In a similar way we

have that 𝑔 ∈ 𝐶𝐵 implies 𝑔 ∈ 𝐶′
𝐵 for all 𝑔 ∈ 𝐺.

Since 𝑒∗ ∈ 𝐶𝑐
𝐴, 𝑒∗ ∉ 𝐶𝐴. There are two possible cases: (i) 𝑒∗ ∈ 𝜌(𝜌(𝐵) ∪ 𝐺𝐵) ⊆ 𝐶′

𝐵,
where 𝐺𝐵 ⊆ 𝐺 is the set of elements added to 𝜌(𝐵). But this contradicts 𝑒∗ ∈ 𝐶′𝑐

𝐵 . (ii) At
the step 𝑒∗ is considered for adding to 𝐶𝐴, there are disjoint subsets 𝐺𝐴, 𝐺𝐵 ⊆ 𝐺 already
added to 𝜌(𝐴) and 𝜌(𝐵), respectively, such that

𝜌(𝜌(𝜌(𝐴) ∪ 𝐺𝐴) ∪ {𝑒∗}) ∩ 𝜌(𝜌(𝐵) ∪ 𝐺𝐵) ≠ ∅.

But then, since 𝐺𝐴 ⊆ 𝐶′
𝐴 and 𝐺𝐵 ⊆ 𝐶′

𝐵 and by the monotonicity of 𝜌, we have 𝐶′
𝐴 ∩𝐶′

𝐵 ≠
∅, as 𝑒∗ ∈ 𝐶′

𝐴; a contradiction.

75

5 Maximal Closed Set Separations in Finite Closure Systems

𝑥 𝑦

Figure 5.6: Maximum margin half-space separation of 𝑥 and 𝑦 defined by the shortest
path closure. Brighter nodes are added later to the respective class. The
maximum margin between {𝑥} and {𝑦} is 2 for the linkage defined by weight
1 for all edges (see Section 2.3). The support elements are marked by dashed
circles.

Corollary 5.3.2. For all MLCSs (𝐸, 𝒞𝜌, 𝑙), Algorithm 3 solves the MMHSS-problem correctly
if (𝐸, 𝒞𝜌) is Kakutani.

Proof. It is a direct implication of Theorem 5.3.1, as maximal disjoint closed sets are
always half-spaces in any Kakutani closure system.

Theorem 5.3.2. Algorithm 3 requires at most 2 ⋅ |𝐸 ⧵ (𝜌(𝐴) ∪ 𝜌(𝐵))| evaluations of 𝑙 and
2 ⋅ |𝐸 ⧵ (𝜌(𝐴) ∪ 𝜌(𝐵))| + 2 calls of 𝜌.

Proof. To sort 𝐹, we evaluate 𝑙 twice for all 𝑓 ∈ 𝐹 with |𝐹 | = |𝐸 ⧵ (𝜌(𝐴) ∪ 𝜌(𝐵))|. The
closure is calculated twice to determine the closures of the input sets (Line 1) and twice
for all 𝑓 ∈ 𝐹 in the worst case (Lines 8 and 10).

5.4 Empirical Evaluations

In this section, we empirically evaluate the predictive performance of our methods de-
veloped in this chapter. For the evaluation we use synthetic and real-world data sets
and consider binary classification tasks. We emphasize that our goal was to develop
a very general separation algorithm that is directly applicable to entirely different do-
mains. Hence, we do not compare its performance to domain-specific state-of-the-art
methods, as they are usually based on domain-specific implementations incorporating
domain-specific knowledge. Instead, we will compare our greedy algorithm developed
in Section 5.1 to the maximum margin algorithm introduced in Section 5.3.2 that uses
additional information in terms of proximities. Since we consider binary classification
tasks, in case of finite point sets in ℝ𝑑 we compare our methods to support vector ma-

76

5.4 Empirical Evaluations

−2 0 2 4 6

−2

0

2

(a)
−2 0 2 4 6

(b)
−2 0 2 4 6

(c)

Figure 5.7: Comparison of greedy separation (a), maximum margin separation (b) and
ordinary support vector machines (c).

chines. In case of graphs, we compare our results to the simple baseline that always
predicts the majority class.

We recall the following supervised learning task considered: Let (𝐸, 𝒞) be a finite
closure system. The ground set 𝐸 is labeled according to an unknown binary valued
function, i.e., then exist 𝐿1, 𝐿2 ⊆ 𝐸 with 𝐿1 ∩ 𝐿2 = ∅ and 𝐿1 ∪ 𝐿2 = 𝐸. For our
synthetic datasets Synthetic2D, Synthetic3D, and Synthetic4D we know even more. By
construction, the unknown target concept can be described by half-spaces, i.e., 𝐿1, 𝐿2 ∈ 𝒞.
For the real-world datasets, this latter condition does not necessarily hold, i.e., the labels
do not form a half-space separation of the ground set. Given some training samples
𝑇1 ⊆ 𝐿1 and 𝑇2 ⊆ 𝐿2 such that 𝜌(𝑇1) ∩ 𝜌(𝑇2) = ∅, the task is to predict the labels of the
remaining elements in 𝐸. In particular, we run our algorithms using 𝑇1 and 𝑇2 as input
sets. In Section 5.4.1 we first evaluate the performance of the maximal closed set and
maximum margin separations on finite point sets in ℝ𝑑. For Algorithm 3, we chose the
linkage function induced by the element-wise distances.

The second application described in Section 5.4.2 deals with the same supervised
learning task, but on the domain of graphs. That is, the task is to classify the labels
of vertices in trees and graphs of different sizes and edge densities. We compare the
predictive performance of Algorithm 1 to that of Algorithm 3 and the simple baseline
mentioned above. The only change we have to make is that the closure operator is now
the geodesic closure over graphs. The monotone linkage function is defined by the
pairwise distances of vertices in the graph (see Section 2.3). We evaluate our algorithms
according to accuracy and coverage introduced in Section 2.6.

5.4.1 Binary Classification in Finite Point Sets

In this section, we consider point set separations in MLCSs over finite subsets of ℝ𝑑. The
closure systems used in these experiments are given by the traces of convex hulls as
defined in (2.1) on page 21; the linkage function by means of the Euclidean distance.

77

5 Maximal Closed Set Separations in Finite Closure Systems

Experiments on Synthetic Data

We will now present the performance results of our algorithms on the synthetic datasets
provided in Section 2.7.1. In addition to the quantitative results below, for one of the
random datasets from ℝ2, we visualize the output obtained by the three algorithms (see
Figure 5.7). We selected three (in accordance with the VC-dimension of half-spaces in
ℝ2) random training examples for each class (denoted by dark blue resp. dark red). The
class labels are indicated in light blue and light red. The predictions are given by the
convex hulls for the two greedy algorithms and by the separating hyperplane for SVM.

We generated 1, 000 binary labeled variants of the Synthetic2D, Synthetic3D and
Synthetic4Ddatasets as indicated in Section 2.7.1. Figure 5.8 shows the averaged accuracy
(top row) and Figure 5.9 the averaged coverage (top row) for Algorithm 1, Algorithm 3,
and the support vector machines for different training set sizes (see the values of the
𝑥-axes of Figure 5.8). The results obtained clearly show that maximum margin closed set
separation outperforms the greedy separation algorithm in the predictive performance,
especially on small training set sizes. Moreover, Algorithm 3 has a smaller standard
deviation compared to Algorithm 1 as denoted by the colored areas around the mean
curve. Furthermore, at least on the random datasets we used, it is also comparable to
ordinary SVM by emphasizing that our definition is not a generalization of SVM; it is
only an adaption of the idea of maximum margin separation to finite closure systems.
The accuracy of the greedy algorithm strongly depends on the training set size and
the dimension of the space, while the accuracy of the maximum margin algorithm is
constantly above 0.9. Regarding the coverage, which measures how near the algorithm
output is to some half-space separation, a similar behavior can be observed. Note that
finite point sets in ℝ𝑑 are not half-space separable byMLCSs in general. While the average
coverage for the greedy algorithm drops below 0.85 in case of ℝ4 and 10 training samples,
the maximum margin algorithm has an average coverage above 0.95 for all training set
sizes. By definition, SVM always achieve a coverage of 1.

The empirical results reported in Figure 5.8 show that the predictive performance of
maximum margin separation in this kind of closure systems is comparable to that of
SVM and that it outperforms the greedy separation algorithm on finite synthetic point
sets in ℝ2, ℝ3 and ℝ4 that are half-space separable by construction.

Experiments on Real World Data

Regarding the binary classification experiments of the real-world datasets from Table 2.1,
Figure 5.8 shows the average accuracy (bottom row) and Figure 5.9 the average coverage
(bottom row) for the three algorithms for different training set sizes (see the values of
the 𝑥-axes of Figure 5.8)3. Again, except for the Banana dataset, the results obtained
show that maximum margin closed set separation outperforms the greedy separation
algorithm in predictive performance. Indeed, for the Banana dataset, as it is highly
not linear separable, support vector machines were also not able to find a good linear

3The average is taken over 100 different runs using different parts of the data as training samples.

78

5.4 Empirical Evaluations

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

SYNTHETIC2D

0 20 40 60 80 100

SYNTHETIC3D

0 20 40 60 80 100

SYNTHETIC4D

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

BANKNOTE

2 4 6 8 10

BANANA

greedy maxmargin svm

5 10 15 20 25

DELTAAILERONS

A
cc

ur
ac

y

Training Set Size

Figure 5.8: Accuracy of greedy separation, maximum margin separation, and SVM for
point set classifications of the datasets presented in Section 2.7.1. The colored
area denotes the standard deviation of the algorithms.

hypothesis. All the algorithms achieve an accuracy of around 0.55. It seems that also
for real-world data that is mostly linearly separable, Algorithm 3 provides a predictive
performance that is comparable or even better than ordinary support vector machines
in terms of accuracy. In case of the Banknote dataset, the greedy algorithm achieves a
maximum accuracy of 0.96, while the others achieve an accuracy of 0.98 if using more
than 40 training samples. In case of DeltaAileron, the maximum margin algorithm
achieves an accuracy of 0.92 compared to 0.89 obtained by support vector machines. This
difference between the accuracies of Algorithm 3 and the support vector machine is a
result of the comparison between two inherent problems as Algorithm 3 is not able to
classify all elements whereas support vector machines assign a label to each element.
Thus, we also measure the coverage of our algorithms in Figure 5.9.

Regarding the coverage, in Figure 5.9 it can be observed for all of the three real-world
datasets that Algorithm 1 provides quite less coverage than the maximum margin sepa-
ration Algorithm 3. This implies that not only the predictive performance of Algorithm 3
is better than Algorithm 1, but moreover, it finds solutions that are closer to some half-
space separation. In particular, except for the DeltaAileron dataset, where Algorithm 1
respectively Algorithm 3 cover only 75% respectively 90% of the data on average, the
output of Algorithm 3 is very near to a half-space separation.

79

5 Maximal Closed Set Separations in Finite Closure Systems

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

SYNTHETIC2D

0 20 40 60 80 100

SYNTHETIC3D

0 20 40 60 80 100

SYNTHETIC4D

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

BANKNOTE

2 4 6 8 10

BANANA

greedy maxmargin svm

5 10 15 20 25

DELTAAILERONS

C
ov

er
ag

e

Training Set Size

Figure 5.9: Coverage of greedy separation, maximum margin separation, and SVM for
point set classifications of the datasets presented in Section 2.7.1. The colored
area denotes the standard deviation of the algorithms.

5.4.2 Vertex Classification in Random Graphs

For tree and graph data, we always consider the geodesic closure defined in (2.2), together
with the monotone linkage function for (weighted) graphs as defined in Section 2.3.
Nevertheless, we only consider unweighted graphs, i.e., we assume that each edge has
a weight of one. In case of graphs, we are interested in binary node predictions of
random connected graphs. Of course, the distribution of the labels in the graphs plays
an important role in the prediction. Clearly, in case of randomly distributed labels, it is
impossible to make any acceptable prediction by MLCSs defined by the closure operator
in (2.2). Hence, we assume the following distributions of node labels in case of trees
and graphs and analyze the predictive performance of our algorithm for different graph
sizes and edge densities for the following two scenarios:

1. In case of trees, the nodes are labeled in a way that they form half-spaces, i.e., both
label sets are closed and their union is the whole tree.

2. In case of graphs, we select two nodes at random and assign two different labels
to them. Then the labels of the other nodes are determined by their distance to
these center nodes. We ensure the subgraphs induced by the same class labels to
be connected and randomly flip an unbiased coin to determine the label for nodes
with the same distance.

80

5.4 Empirical Evaluations

2 4 6 8 10

0.6

0.8

1

Training Set Size

A
cc
ur

ac
y

Tree Size 1 000

greedy max margin baseline

2 4 6 8 10
Training Set Size

Tree Size 20 000

(a) Comparison of greedy algorithm andmax-
imum margin algorithm for node predic-
tion task in random trees.

1 1.2 1.4

0.6

0.8

1

Edge Density

A
cc
ur

ac
y

Graph Size 100

train size 2 train size 4 baseline

1 1.2 1.4

0.4

0.6

0.8

1

Edge Density
C
ov

er
ag

e

Graph Size 100

(b) Accuracy and Coverage of maximum margin
separation in random graphs of different edge
densities with 2 and 4 training samples.

Figure 5.10: Accuracy of vertex prediction in random trees and randomgraphs of different
sizes and edge densities.

Moreover, in both cases we additionally use only graph labelings with nearly balanced
class sizes, i.e., the minimum size of a class is at least 25% of the total size. In case
of trees, we look at random trees of different sizes, ranging from 1, 000 to 20, 000 (see
Fig. 5.10(a)). For each tree size and training sample size (see the 𝑥-axis of Fig. 5.10(a)),
we generated 1, 000 binary labeled random trees in the above way. Then, for each run of
the algorithm on a tree, 𝑥/2 training examples have been drawn at random from each of
the two label sets for the input, where 𝑥 is the 𝑥-axis value in Fig. 5.10(a). For evaluation,
we run Algorithm 1 and Algorithm 3 on the training sets to predict the class labels of
the unseen examples. The average accuracy, over all 1, 000 random trees is displayed in
Fig. 5.10(a). As a baseline, we take the percentage defined by the majority class. Note
that trees induce Kakutani closure systems and hence the coverage is always 1. One can
see that with increasing training set size, the accuracy increases up to more than 0.95 in
case of maximum margin separation and 10 training samples. Moreover, the maximum

81

5 Maximal Closed Set Separations in Finite Closure Systems

margin separation leads to better accuracy compared to the greedy separation, especially
for small training sample sizes. Somewhat surprisingly, the tree size has no significant
impact on the predictive performance.

In case of graphs with different edge densities4, we generated 1, 000 random graphs
for each edge density (see the 𝑥-axis values in Figure 5.10(b)) and assigned the nodes
to one of the two classes as described above. The random graphs were generated from
random trees by adding additional random edges until the required edge density has
been reached. For each run of our algorithm, we selected 1 or 2 nodes from each label
class at random for training such that their closures do not intersect. The accuracy results
are shown in Fig. 5.10(b). We present also the coverage values, as the underlying MLCSs
are not Kakutani in general. For increasing edge density, the accuracy decreases to 0.8 in
case of 4 training samples and to 0.75 in case of 2 training samples for the edge density
of 1.2. For edge density 1.5, there are no obvious changes in the accuracy. This can be
explained by the fact that the coverage decreases to approximately 0.38 in case of an edge
density of 1.5.

5.5 Summary and Open Questions

In this chapter, we have introduced the MCSS problem, a relaxation of the HSS problem.
While the HSS problem requires an extension of two disjoint closed sets into a closed set
partitioning of the whole space, the MCSS problem only requires an extension of disjoint
closed sets into other disjoint closed sets that could not be extended further. In particular,
solutions of the MCSS problem are locally maximal, while those to the HSS problem are
globally maximal. That is, regarding the MCSS problem, there is no guarantee that all
elements of the ground set are covered by one of the two disjoint closed sets. The goal of
relaxing the original problem was to obtain a very general, but efficient algorithm that
could be applied to all closure systems equipped with an efficiently computable closure
operator. In this chapter, we achieved this goal by developing a simple greedy algorithm
that solves the MCSS problem and calls the closure operator at most 2𝑛 + 2-times, with
𝑛 being the size of the ground set.

Although our algorithm is a simple greedy algorithm, we could show that in general,
no other algorithm can perform better. As mentioned earlier, this worst case holds only
for particular types of closure systems. Indeed, we have shown in Section 5.2 that a
logarithmic improvement can be obtained for closure systems over lattices.

These results show the flexibility of our proposed greedy algorithm: One can easily
integrate domain-specific knowledge for its improvements. This flexibility raises the
question whether there are general strategies for adjusting the algorithm by using expert
or domain-specific knowledge. Without going too much into the details, we sketch two
possible options to integrate external knowledge. Recall that in Algorithm 1, we

(i) greedily choose an arbitrary unseen element (Line 5) and

4Given a graph 𝐺 = (𝑉 , 𝐸) by edge density we denote the value |𝐸(𝐺)|−1
|𝑉 (𝐺)|

. In particular, using this
definition the density of trees is exactly one.

82

5.5 Summary and Open Questions

(ii) try to extend one of the two closed sets (say set 𝐴) with the element (Line 7).

(iii) If the extension was not possible, we try to extend the other set (say set 𝐵) (Line 9).

As we have seen for lattices, the number of closure operator calls does heavily rely
on the particular choice of the next element in (i) and also on the extension order, i.e.,
the order of executing first (ii) and subsequently (iii) or vice versa. It is an interesting
research problem to develop strategies optimizing the steps in (i),(ii), and (iii) for other
domains (e.g., graphs) that improve our greedy algorithm.

In Section 5.3 we have presented another alternative approach based on integrating
external knowledge to upgrade our original greedy algorithm. It follows the main idea
of arriving at support vector machines (Boser et al., 1992) from Perceptrons (Rosenblatt,
1958). In fact, by replacing arbitrary separations with maximum margin separations,
we have equipped closure systems with some similarity measure defined by monotone
linkage functions. We again used the strength of the flexibility of our simple greedy
algorithm and developed an extended version. This version provides for each disjoint
closed input sets a maximal closed separation which is at the same time also a maximum
margin separation.

Finally, we have evaluated our algorithms by considering concept learning over finite
closure systems. That is, we have assumed that there is some unknown target concept
that respects our hypothesis class, i.e., it is a half-space. Then, given the labels of some of
the elements of the ground set, the task is to predict the labels of the remaining elements.
Our empirical results in Section 5.4 show that for point classification in Euclidean spaces
and for vertex classification in random graphs, the maximum margin algorithm clearly
outperforms the greedy separation algorithm. These results clarify that it is possible to
use the adaption of “linear” separation in finite closure system to solve classical machine
learning tasks. Moreover, by incorporating further domain-specific knowledge by using
monotone linkage functions, we can easily adjust our simply greedy algorithm to different
domains.

Further potential applications ofmaximummargin closed set and half-space separation
in finite closure systems include, among others, graphs, lattices (e.g., in inductive logic
programming (Nienhuys-Cheng and de Wolf, 1997), formal concept analysis (Ganter
et al., 2005), and itemset mining (Pasquier et al., 1999)), and finite point sets.

The next chapter is mainly devoted to the special case of geodesic closure systems over
graphs, concentrating on computational aspects of the geodesic closure in graphs and
providing another interesting application of the greedy Algorithm 1.

83

Practical Aspects of Mining and Learning in
Finite Closure Systems 6
In this chapter we present two different practical aspects of the theory designed in the
previous chapters. Our applications concentrate on the particular case of geodesic closure
systems over graphs and their corresponding geodesic closure operator.

Approximating Geodesic Closed Sets Most of the time, we have treated the closure
operator as a “black-box oracle”, i.e., we did not care about the algorithmic realization
and the runtime of the operator 𝜌. In practical applications, however, we also need to
take into account the complexity of the specific closure operator considered. Obviously,
it is impossible to analyze the complexity of every particular closure operator over all
possible domains in a unified way. We therefore restrict our analysis to the geodesic
closure operator in graphs. We motivate our particular choice by the fact that many
promising works concerning mining and learning methods rely on geodesic closure
systems over graphs (Cunha and Protti, 2019; de Araújo et al., 2019; Marc and Šubelj,
2018; Thiessen and Gärtner, 2020, 2021; Thiessen and Gärtner, 2022; Šubelj et al., 2019).
For the reader’s convenience, we recall the definition of geodesic closed sets in graphs
(see (2.2) on page 21): Given a graph 𝐺 = (𝑉 , 𝐸) and a set 𝑋 ⊆ 𝑉 (𝐺), the geodesic closure
of 𝑋 is the smallest set 𝐶 ⊆ 𝑉 (𝐺) which contains 𝑋 as well as all vertices on all shortest
paths with both endpoints in 𝐶. Such a smallest set always exists, it is unique, and can
be computed in 𝑂 (𝑛𝑚) time with a standard BFS algorithm (cf. Pelayo, 2013), where
𝑛 (resp. 𝑚) denotes the number of vertices (resp. edges) of 𝐺. Thus, the total time
complexity is 𝑂 (𝑛3), as 𝑚 = 𝑂 (𝑛2) in the worst case. Accordingly, all approaches relying
on computing geodesic convex hulls become practically infeasible for large networks.

Our first practical application is devoted to this runtime problem. One of our motiva-
tions is that in the analysis of the geodesic core-periphery decomposition of graphs proposed
by Marc and Šubelj (2018), one has to calculate geodesic closed sets in large networks.
For the cubic time complexity, Marc and Šubelj (2018) are able to study graphs only up to
a size of around 5, 000 vertices while we consider graphs up to a size of around 5, 000, 000
vertices, i.e., we look at graphs that are about 1, 000 times larger. It was observed by
Marc and Šubelj (2018) that social networks primarily consist of a dense geodesic core
surrounded by a sparse periphery (see Figure 2.7 for an example). While the geodesic
core consists of those vertices that are contained in almost all geodesic closed sets of the
closure system, the periphery can be described as the region of the graph where unique
shortest paths are typically present.

To compute geodesic closed sets in large graphs, we give up the demand for correctness

85

6 Practical Aspects of Mining and Learning in Finite Closure Systems

and propose a novel approach that calculates only an approximation of the closure of
a vertex set 𝑋 ⊆ 𝑉 (𝐺). More precisely, we develop a heuristic that is based on the
following main steps: Generate a set of spanning subgraphs of 𝐺 independently at random,
compute the closure of 𝑋 in these subgraphs separately, and regard a vertex of 𝐺 as an
element of the geodesic closure of 𝑋 if and only if it belongs to the closure of 𝑋 in at least
a user-specified percentage of the number of spanning subgraphs. The main question for
this scheme is how to choose the class for the spanning subgraphs. We have three basic
requirements regarding the spanning subgraphs. Firstly, sampling a single spanning
subgraph needs to be at least linear in the number of edges of 𝐺. Secondly, calculating
the closure in a sampled spanning subgraph needs to be faster than in 𝐺, and thirdly,
the approximation quality needs to be reasonable. Regarding forests, a closer look at the
problem and our empirical results reveal that already for graphs that are structurally
very close to forests, only a poor approximation performance can be obtained in this way.
This is because spanning forests may drastically distort the shortest paths.

Therefore, we consider the class of inclusion maximal outerplanar graphs (Chartrand
and Harary, 1967) for spanning subgraphs because they fulfill the requirements above.
Regarding the first step of the proposed heuristic, a maximal outerplanar spanning
subgraph can be generated in 𝑂 (𝑚) time (Djidjev, 2006). Since it was not possible to use
this theoretical result in practice (see the discussion in Section 3 in the work of Leipert,
1998), we propose an alternative algorithm that is linear in 𝑚 but returns only almost
inclusion maximal outerplanar spanning subgraphs. For the second step, we present
an algorithm computing the (geodesic) convex hull in an outerplanar graph 𝐺. The
computation can be done in time 𝑂 (𝑛𝑓), where 𝑓, the face number of 𝐺, is the maximum
number of interior faces over the biconnected components of 𝐺. Our algorithm is in fact
linear in 𝑛 in practice because 𝑓 is typically negligible with respect to 𝑛. For example, in
case of outerplanar spanning subgraphs of Erdős-Rényi random graphs with around one
million edges, the average face number was consistently less than 80. Although the class
of outerplanar graphs is only slightly beyond that of forests in the structural hierarchy,
our empirical results with large real-world networks show that a close approximation of
the geodesic convex hull can be obtained with outerplanar spanning subgraphs.

We empirically evaluate our heuristic on large real-world networks. The experiments
clearly show that geodesic cores can be approximated closely (with a Jaccard similarity
between 82 and 99%) with this scheme in feasible time, using only 100 spanning outer-
planar subgraphs. Since we are unaware of any other approach approximating geodesic
convex hulls in graphs, we compared the runtime results obtained by our heuristic with
those of the standard algorithm mentioned above. In particular, in case of networks with
more than 20 million (and up to 117 million) edges, the approximate decomposition
could be computed in 5 hours or less with our algorithm. In contrast, the computa-
tion of the exact core-periphery decomposition with the standard algorithm had to be
aborted after 50 days. Because of the close approximation, the approximate cores inherit
several properties of the exact ones. For example as we show empirically, their degree
distributions were consistently close to those of the exact ones.

86

Graph Tukey Depth The second practical application is concerned with the approxima-
tion of the graph Tukey depth. The graph Tukey depth is a relatively new centrality measure,
introduced by Cerdeira and Silva (2021). Formally, the Tukey depth of a vertex 𝑣 of a
graph 𝐺 = (𝑉 , 𝐸) is defined by td(𝑣) ∶= |𝑉 (𝐺)| − |𝐶| where 𝐶 is a largest geodesic closed
vertex set that does not contain 𝑣. The definition is based on the original notion of Tukey
depth using the half-space separability of points in finite subsets of ℝ𝑑 (Tukey, 1975).
Informally speaking, the semantics of Tukey depth in ℝ𝑑 is as follows: An element 𝑒 of a
finite ground set has high Tukey depth if it is “hard” to separate it from the rest of the
set using separating hyperplanes only. Conversely, 𝑒 has low Tukey depth if it is “easy”
to separate it from the rest of the set. “Hard” respectively “easy” in this context mean
that the half-space bounded by the separating hyperplane that contains 𝑒 contains many,
respectively a few other elements of the finite ground set. Thus, the elements’ importance
defined by ordinary Tukey depth in ℝ𝑑 relies on the possibility of separating them from
other elements. Hence, since Tukey depth relies on set separations, it can be adapted
to other domains using the (abstract) notion of half-space separation. In particular,
this property of the original Tukey depth is utilized in the adaptation to geodesic closure
systems over graphs (Cerdeira and Silva, 2021) and to arbitrary finite closure systems (see
Section 2.5).

We use this definition to relate the concepts of graph Tukey depth and geodesic core-
periphery decompositions (Marc and Šubelj, 2018). In particular, we experimentally show
that the geodesic core of a graph consists of those vertices that are of high Tukey depth
and that there is a gap in the depth distributions between the depths in the periphery
and those in the core (see Figure 6.10). This observation allows for a new, parameterized
deterministic definition of the cores, instead of the probabilistic definition given so far. That
is, the 𝑘-geodesic core of a graph can be defined by the set of vertices with Tukey depth
greater than a user-specified threshold 𝑘. Our empirical results clearly demonstrate that
using the suitable threshold, the probabilistic definition of cores and observations in
Marc and Šubelj (2018) can be interpreted and justified by our deterministic definition.

Similarly to the fact that the computation of the Tukey depth in ℝ𝑑 is NP-hard (John-
son and Preparata, 1978), it is also NP-hard to determine the graph Tukey depth of a
vertex (Cerdeira and Silva, 2021). Motivated by this negative result and the observa-
tions given above, our main contribution is another heuristic algorithm for approximating
the graph Tukey depth. It runs in time polynomial in the size of the input graph and
approximates the Tukey depth of a vertex with a one-sided error by overestimating it. Our
heuristic is based on Algorithm 1 that solves the more generalmaximal closed set separation
(MCSS) problem. We are giving a very rough summary of the heuristic by recalling
that Algorithm 1 is able to separate vertices from each other by constructing maximal
closed disjoint sets. Hence, instead of computing a global maximum (i.e., by constructing
a geodesic closed set of maximum size), we aggregate the information of several local
maxima (i.e., sets that are maximal disjoint). Our experimental results with small graphs
clearly demonstrate that the approximation is close to the exact Tukey depth, by noting
that for larger graphs, we were not able to evaluate the approximation performance of
our algorithm, as it was not possible to calculate the exact Tukey depth in practically

87

6 Practical Aspects of Mining and Learning in Finite Closure Systems

feasible time.

Outline The rest of the chapter is organized as follows. In Section 6.1 we present our
fast heuristic for approximating geodesic closures in graphs. Our results include the
solution to the following two subproblems. First, we provide a linear time algorithm for
sampling (almost) maximal outerplanar subgraphs (Section 6.1.1). Second, we develop
a fast algorithm computing the geodesic closure for the particular class of outerplanar
graphs. It does not depend on the input set size in contrast to the ordinary algorithm
(Section 6.1.2). Finally, we empirically evaluate our two heuristics above as well as the
application of the approximation heuristic on the task of approximating the geodesic
core of large real-world networks (Section 6.1.3). In Section 6.2 we then analyze the
connection between the graph Tukey depth and our results concerning half-space and
maximal closed set separations. We first discuss potential applications of the graph
Tukey depth to mining and learning with graphs (Section 6.2.1). Second, we present a
heuristic approximating the graph Tukey depth (Section 6.2.2) and evaluate it on small
graph datasets. We finish this chapter with some concluding remarks.

6.1 Approximating Geodesic Closures in Large Real-World
Networks

In this section, we present a fast heuristic that approximates geodesic closed sets in large
real-world graphs. We first give the details for the single steps of our heuristic and then
empirically evaluate it by approximating geodesic cores in large real-world graphs. Let
𝐺 = (𝑉 , 𝐸) be some arbitrary graph and 𝛾 the corresponding geodesic closure operator.
Our heuristic for computing the closure 𝛾(𝑋) of a set 𝑋 ⊆ 𝑉 (𝐺) consists of the following
three main steps:

(i) Generate 𝑠 (inclusion)maximal outerplanar spanning subgraphs 𝐺1, … , 𝐺𝑠 of 𝐺 in-
dependently at random, for some integer 𝑠 > 0. Each (inclusion)maximal outerpla-
nar spanning subgraph can be generated in 𝑂 (𝑚) time, where 𝑚 = |𝐸(𝐺)| (Djidjev,
2006). In Section 6.1.1, we present a fast and easy to implement algorithm computing
an almost inclusion maximal outerplanar spanning subgraph in 𝑂 (𝑚) time. The
number 𝑠 of spanning subgraphs can be regarded as a constant (e.g., it was set to
100 in our experiments, independently of the networks’ size). Thus, the total time
of this step is linear in 𝑚 in practice. We would like to add that this sampling can be
considered as a preprocessing step as it has to be done only once for each graph.

(ii) For all outerplanar graphs 𝐺𝑖 generated in step (i), calculate the closure 𝛾𝐺𝑖
(𝑋).

Corollary 2.2.1 implies that 𝛾𝐺𝑖
(𝑋) can be computed in 𝑂 (𝑛|𝑋|) time. Below

we give a more sophisticated algorithm. Its complexity is 𝑂 (𝑛𝑓), where 𝑓 is the
face number of 𝐺𝑖. Thus, its complexity is independent of the cardinality of 𝑋,
which makes our algorithm superior to the standard one in terms of runtime. Since
𝑓 = 𝑂 (𝑛), it does not improve the theoretical worst-case complexity of the standard

88

6.1 Approximating Geodesic Closures in Large Real-World Networks

algorithm. Still, it has two crucial advantages over the standard algorithm. The first
one is of practical interest: Our experiments with various graphs clearly show that
the face number of spanning outerplanar graphs is negligible, compared to their size
(i.e., number of vertices). The second one is of theoretical interest: Allowing only at
most 𝑐 faces per biconnected components in the spanning outerplanar graphs for
some constant 𝑐, our closure algorithm runs in guaranteed linear time.

(iii) Finally, we define the approximate closure 𝛾𝐺(𝑋) as follows: A vertex 𝑢 ∈ 𝑉 (𝐺)
is contained in 𝛾𝐺(𝑋) if and only if there is a set 𝑆 ⊆ {𝐺1, … , 𝐺𝑠} with |𝑆| ≥ 𝑡 for
some 0 < 𝑡 ≤ 𝑠 integer such that 𝑢 ∈ 𝛾𝐺′(𝑋) for all 𝐺′ ∈ 𝑆.

6.1.1 Generating Spanning Outerplanar Subgraph

Considering step (i) of the heuristic described above, the main contribution of this sec-
tion is Algorithm 4, which generates a random spanning outerplanar subgraph for any
undirected graph 𝐺 in time linear in the order (i.e., number of edges) of 𝐺. According
to Theorem 8 in (Djidjev, 2006), for any graph 𝐺 one can generate a spanning planar
subgraph in time linear in the order of 𝐺 that is maximal with respect to planarity. Fur-
thermore, the result of Djidjev (2006) can bemodified in a way that it generates amaximal
spanning outerplanar subgraph of 𝐺, also in linear time. However, to the best of our
knowledge, no (simple) algorithmic realization exists of this result (cf. the discussion in
Section 3.5 in the thesis of Leipert, 1998). Therefore, we propose an alternative algorithm
that is easy to implement and fast in practice. Although we have no theoretical guarantee
on the maximality of the spanning outerplanar subgraphs returned by our algorithm,
our experimental results with Erdős-Rényi random graphs clearly show that they are
almost maximal (i.e., only one or two edges are missing for maximality). Furthermore, for
most graphs in our experiments, we obtained a relatively close approximation of their
geodesic cores (Marc and Šubelj, 2018) already with almost maximal outerplanar graphs.
Our algorithm can easily be modified so that the face number of the output spanning
outerplanar graphs becomes controllable by some user-specified upper bound. In the par-
ticular case that the face number is bounded by some constant, our algorithm presented
in Section 6.1.2 calculates the closure of any set of vertices in the output outerplanar
graph in time linear in the number of vertices of the input graphs.

Similarly to (de Fraysseix and de Mendez, 2012), our sampling algorithm is based on
utilizing a fundamental property of Trémaux trees of undirected graphs. More precisely,
let 𝐺 be an undirected graph and 𝑟 some vertex of 𝐺. We assume, without loss of
generality, that 𝐺 is connected. Let 𝑇 be a depth-first search (DFS) tree of 𝐺 rooted at 𝑟.
The connectivity of 𝐺 implies 𝑉 (𝑇) = 𝑉 (𝐺). We regard 𝑇 as a sorted tree, where the DFS
traversal of 𝐺 defines the order of the children of the vertices. It is a well-known fact that
𝑇 is a Trémaux tree of 𝐺, i.e., for all back edges {𝑣, 𝑤} ∈ 𝐸(𝐺) ⧵ 𝐸(𝑇) we have 𝑣 ≼ 𝑤 or
𝑤 ≼ 𝑣, where for all 𝑥, 𝑦 ∈ 𝑉 (𝑇), 𝑥 ≼ 𝑦 if and only if Path(𝑟, 𝑦) in 𝑇 contains 𝑥. In what
follows, for all 𝑣, 𝑤 ∈ 𝑉 (𝑇), 𝑝(𝑣) denotes the parent of 𝑣 in 𝑇, 𝑑(𝑣) stands for the depth of
𝑣 (i.e., the length of Path(𝑟, 𝑣) in 𝑇), and a back edge {𝑣, 𝑤} ∈ 𝐸(𝐺) ⧵𝐸(𝑇) with 𝑤 ≼ 𝑣 is
denoted by (𝑣, 𝑤).

89

6 Practical Aspects of Mining and Learning in Finite Closure Systems

It holds that the DFS traversal of 𝐺 defines a sequence of paths denoted by 𝑃1 =
Path(𝑟1, 𝑙1), … , 𝑃𝑘 = Path(𝑟𝑘, 𝑙𝑘) in 𝑇, where 𝑟1 = 𝑟, 𝑙1 is the leftmost leaf of 𝑇, 𝑟𝑖+1 is the
deepest vertex of Path(𝑟, 𝑙𝑖) such that it has a child not belonging to ⋃

ℓ≤𝑖 𝑉 (𝑃ℓ), and 𝑙𝑖+1

is the leftmost leaf in the subtree of 𝑇 rooted at 𝑟𝑖+1 that is not an element of ⋃
ℓ≤𝑖 𝑉 (𝑃ℓ)

(1 ≤ 𝑖 < 𝑘). For all back edges (𝑣, 𝑤) with 𝑣 ∈ 𝑉 (𝑃𝑖) it holds that 𝑤 is a vertex of
Path(𝑟, 𝑙𝑖). The sequence 𝑃1, … , 𝑃𝑘 is referred to as the (ordered) sequence of DFS paths
of 𝐺 with respect to 𝑇.

Let 𝐺′ be a connected outerplanar graph, 𝑇 a DFS tree of 𝐺′ rooted at 𝑟 for some
𝑟 ∈ 𝑉 (𝐺′), and let Path(𝑟1, 𝑙1), … ,Path(𝑟𝑘, 𝑙𝑘) be the sequence of DFS paths of 𝐺′ with
respect to 𝑇. Then 𝐺′ has an embedding in the plane with the following properties: For
all leafs 𝑙 of 𝑇 and for all vertices 𝑢 on 𝑃 = Path(𝑟, 𝑙), the images of the vertices 𝑣 of
𝐺′ in ℝ2 can be rotated around that of 𝑟, all in the same direction as 𝑢, such that the
𝑥-coordinate of the point representing 𝑢 becomes equal to that of 𝑟, the new embedding
preserves the non-crossing edge property, and all back edges with both endpoints in 𝑃
are either on the left- or on the right-hand side of the vertical line containing 𝑃. Notice
that if a back edge belongs to more than one path from a leaf to the root, then it is either
to the left or right for all such paths. The set of left (resp. right) back edges of 𝐺′ is
denoted by ℒ (resp. ℛ). A vertex 𝑥 of 𝐺′ lying on Path(𝑟, 𝑙𝑖) is reachable from left (resp.
right) with respect to Path(𝑟𝑖, 𝑙𝑖) if there is no left (resp. right) back edge (𝑣, 𝑤) with
𝑤 ≺ 𝑥 ≺ 𝑣 such that 𝑥 ≺ 𝑟𝑖 or 𝑣 ≼ 𝑙𝑖.

Let 𝐺 be a connected graph, 𝑇 a DFS tree of 𝐺, and 𝐺′ be a spanning outerplanar
subgraph of 𝐺 containing 𝑇 as a subgraph. We assume that 𝐺′ is embedded into the
plane as sketched above, i.e., all back edges of 𝐺′ are either left or right back edges. A
back edge (𝑣, 𝑤) ∈ 𝐸(𝐺) ⧵𝐸(𝐺′) is valid if it can be added to 𝐺′ as a left or right back edge
such that it intersects no other edges from 𝐺′ and for all vertices, 𝑣 in the resulting graph
there exists a path 𝑃𝑖 of 𝑇 such that 𝑣 is reachable from left or right with respect to 𝑃𝑖.
One of the crucial steps in generating a spanning outerplanar graph of 𝐺 with respect
to 𝑇 is to check the validity of the back edges. We introduce some additional notions to
decide this problem in constant time. More precisely, let 𝑃𝑖 = Path(𝑟𝑖, 𝑙𝑖) be a DFS path
of 𝑇 and 𝑣 be a vertex with 𝑟𝑖 ≼ 𝑣. Then

• reach(𝑣, 𝑃𝑖) ⊆ {𝑅, 𝐿} denotes the direction(s) from which 𝑣 can be reached in 𝐺′

with respect to 𝑃𝑖,

• ↑𝐿(𝑣) (resp. ↑𝑅(𝑣)) denotes the smallest depth of the vertex 𝑤 on Path(𝑟, 𝑣) in 𝑇
such that (𝑣, 𝑤) is a valid left (resp. right) back edge, and

• 𝜎𝐿(𝑣) (resp. 𝜎𝑅(𝑣)) is True if there are 𝑃 = Path(𝑟, 𝑙𝑗) and 𝑢, 𝑤 ∈ 𝑉 (𝑃) for some
𝑗 (1 ≤ 𝑗 ≤ 𝑘) such that 𝑣 ∈ 𝑉 (𝑃), (𝑢, 𝑤) is a left (resp. right) back edge, and
𝑤 ≺ 𝑣 ≺ 𝑢; o/w it is False.

Using the above notions and notation, we are ready to present Algorithm4. In Lines 1–2
it first computes a DFS tree of the input graph 𝐺 for some arbitrary root 𝑟 ∈ 𝑉 (𝐺). In
Lines 3–5 it initializes some variables. In particular, the left (resp. right) valid back
edges that will be added to 𝑇 will be stored in the set variables ℒ𝑙 (resp. ℛ𝑙). Since no

90

6.1 Approximating Geodesic Closures in Large Real-World Networks

𝑟 = 𝑟1

𝑟2

𝑙1
𝑙2

(a) Left: Input graph 𝐺, Right: DFS-
Traversal of 𝐺 rooted at 𝑟 with DFS
edges in red and back edges in dashed
black. The paths are 𝑃1 = Path(𝑟1, 𝑙1)
and 𝑃2 = Path(𝑟2, 𝑙2).

𝑃 𝑟 = 𝑟1

𝑟2

𝑙1
𝑙2

𝑑

0

1

2

3

4

(b) Blue Edges: Already added left edges
for path Path(𝑟1, 𝑙1). Gray Edges: Still
unprocessed edges in the current path
𝑃 = Path(𝑟, 𝑙2) drawn as a vertical line.
𝑑 denotes the node depth in 𝑃. The blue
arrows denote valid back edges in ℒ.

reach

{𝐿, 𝑅}

{𝑅}

{𝐿, 𝑅}

{𝐿, 𝑅}

{𝐿, 𝑅}

→ {𝐿}

→ {𝐿}

𝜎𝐿

𝐹

𝑇

𝑇

𝐹

𝐹

𝜎𝑅

𝐹

𝐹

𝐹

𝐹

𝐹

→ 𝑇

→ 𝑇

↑𝐿

0

0

2

2

2 → 3

↑𝑅

0

0

1

1

1

𝑃 𝑟 = 𝑟1

𝑟2

𝑙2

𝑃 𝑟 = 𝑟1

𝑟2

𝑙2

(c) Running the subroutine AddEdges for 𝑙2. Left: Determine 𝐸𝐿 (valid left back edges in dashed
blue), Right: Determine 𝐸𝑅 (valid right back edges in dashed orange). The table shows the
algorithm parameters before adding the orange edges (black numbers); changes after adding
the orange edges to ℛ are marked in orange.

Figure 6.1: (6.1(a)) shows an example of a DFS-Traversal of a graph 𝐺, (6.1(b)) shows
some possible intermediate result of Algorithm 4 with unconsidered back
edges starting at 𝑙2 in dashed grey. (6.1(c)) shows the results of the AddEdges
subroutine with edges in 𝐸𝐿 marked in dashed blue and edges in 𝐸𝑅 marked
in dashed orange.

91

6 Practical Aspects of Mining and Learning in Finite Closure Systems

Algorithm 4: Spanning Outerplanar Subgraph
Input: connected graph 𝐺
Output: spanning outerplanar subgraph 𝐻 of 𝐺

1 select a vertex 𝑟 ∈ 𝑉 (𝐺) at random;
2 generate a DFS tree 𝑇 of 𝐺 rooted at 𝑟 and with DFS paths

𝑃𝑖 = [𝑣1 = 𝑟𝑖, … , 𝑣𝑛𝑖
= 𝑙𝑖] (1 ≤ 𝑖 ≤ 𝑘);

3 ℒ0, ℛ0 ← ∅, 𝑙 ← 0;
4 ↑𝐿(𝑟), ↑𝑅(𝑟) ← 0;
5 𝜎𝐿(𝑣), 𝜎𝑅(𝑣) ← False for all 𝑣 ∈ 𝑉 (𝑇);
6 for 𝑖 = 1, … , 𝑘 do
7 reach(𝑟𝑖) ← {𝑅, 𝐿};
8 for 𝛿 ∈ {𝑅, 𝐿} do
9 if 𝜎𝛿(𝑟𝑖) ∨ 𝑟𝑖 = 𝑟 then ↑(𝑟𝑖) = 𝑑(𝑟𝑖);

10 else ↑𝛿(𝑟𝑖) = ↑𝛿(𝑝(𝑟𝑖)) ;
11 for 𝑗 = 2, … , 𝑛𝑖 do
12 reach(𝑣𝑗) ← {𝑅, 𝐿};
13 ↑𝐿(𝑣𝑗) = ↑𝐿(𝑝(𝑣𝑗)), ↑𝑅(𝑣𝑗) = ↑𝑅(𝑝(𝑣𝑗));
14 𝐹 = {(𝑣𝑗, 𝑤) ∈ 𝐸 ∶ 𝑤 ≺ 𝑣𝑗};
15 (𝐸𝐿, 𝐸𝑅) = AddEdges(𝑣𝑗, 𝐹);
16 𝑙 ← 𝑙 + 1;
17 ℒ𝑙 = ℒ𝑙−1 ∪ 𝐸𝐿, ℛ𝑙 = ℛ𝑙−1 ∪ 𝐸𝑅;
18 return 𝐻 = (𝑉 , 𝐸(𝑇) ∪ ℒ𝑙 ∪ ℛ𝑙);

back edge going out from the root can be added to 𝑇, ↑𝐿(𝑟) and ↑𝑅(𝑟) are both set to 0.
Furthermore, the Boolean variables 𝜎𝐿(𝑣), 𝜎𝑅(𝑣) are set to False for all 𝑣 ∈ 𝑉, as 𝑇 has no
back edge initially.

The algorithm then processes the DFS paths 𝑃1, 𝑃2, … , 𝑃𝑘 of 𝑇 in their DFS order
defined above (cf. loop 6–17). For each 𝑃𝑖 = Path(𝑟𝑖, 𝑙𝑖), it adds greedily as many as
possible back edges to Path(𝑟, 𝑙𝑖) with at least one endpoint in 𝑃𝑖 such that the extension
does not violate outerplanarity. In particular, it considers the vertices of 𝑃𝑖 one by one,
from 𝑟𝑖 towards 𝑙𝑖. While processing the vertices of 𝑃𝑖, their reachability is set to {𝐿, 𝑅}
(cf. Lines 7 and 12). Since we have not yet added any back edge to 𝑃𝑖, all of them
are reachable from the left and right with respect to 𝑃𝑖. For simplicity, we omit the
reference path Path(𝑟, 𝑙𝑖) from the notation by noting that all vertices above 𝑟𝑖 inherit
their reachability state with respect to Path(𝑟, 𝑙𝑖−1).

For all vertices 𝑣 of 𝑃𝑖, ↑𝐿(𝑣) (resp. ↑𝑅(𝑣)) is set to the depth of 𝑟𝑖 (cf. Line 9) if (i)
𝑣 = 𝑟𝑖 and there is a 𝑗, 1 ≤ 𝑗 < 𝑖, such that 𝑟𝑖 is not reachable from left (resp. right) with
respect to Path(𝑟, 𝑙𝑗) or (ii) 𝑣 = 𝑟; o/w to ↑𝐿(𝑝(𝑣)) (resp. ↑𝑅(𝑝(𝑣))) (cf. Lines 10 and 13).
Regarding the first case, there is no valid left/right back edge going out from 𝑣 satisfying
(i) or (ii), and hence, its left/right smallest depth cannot be smaller than 𝑑(𝑣). For all
other cases, if a back edge (𝑣, 𝑤) added to left (resp. right) destroys the reachability of

92

6.1 Approximating Geodesic Closures in Large Real-World Networks

Algorithm 5: Function AddEdges
Assumed: undirected graph 𝐺 and DFS tree 𝑇 of 𝐺
Input: 𝑣 ∈ 𝑉 (𝐺) and a set 𝐹 of back edges, all with initial vertex 𝑣
Output: 𝐸𝐿, 𝐸𝑅 ⊆ 𝐹 with 𝐸𝐿 = ∅ or 𝐸𝑅 = ∅

1 𝐸𝐿, 𝐸𝑅 ← ∅;
2 for 𝛿 ∈ {𝐿, 𝑅} do
3 for (𝑣, 𝑤) ∈ 𝐹 do
4 if 𝛿 ∈ reach(𝑤) and ↑𝛿(𝑣) ≤ 𝑑(𝑤) then
5 add (𝑣, 𝑤) to 𝐸𝛿;
6 𝑋 ← 𝐿, 𝑌 ← 𝑅;
7 if |𝐸𝑅| > |𝐸𝐿| then 𝑋 ← 𝑅, 𝑌 ← 𝐿;
8 if 𝐸𝑋 ≠ ∅ then
9 ↑𝑌(𝑣) = 𝑑(𝑝(𝑣));

10 for (𝑣, 𝑤) ∈ 𝐸𝑋 do
11 for 𝑥 in the open intervall (𝑣, 𝑤) do
12 delete 𝑋 from reach(𝑥);
13 ↑𝑌(𝑥) = 𝑑(𝑥);
14 𝜎𝑋(𝑥) = True;
15 if 𝑋 = 𝐿 then return (𝐸𝐿, ∅);
16 else return (∅, 𝐸𝑅);

some vertex 𝑥 with 𝑤 ≼ 𝑥, then all other back edges (𝑣′, 𝑤′) with 𝑣 ≼ 𝑣′ and 𝑤′ ≼ 𝑤
added to left (resp. right) also destroy it. Hence, it suffices to save the vertex with the
lowest depth, which is a valid endpoint for a back edge added to the left (resp. right).
After all relevant pieces of information have been calculated for 𝑣𝑗, we take the set of
all possible back edges from 𝑣𝑗 ending in some vertex 𝑤 ≺ 𝑣𝑗 (Line 14) and compute a
maximal subset of this set of edges in function AddEdges that can be added to Path(𝑟, 𝑙𝑖)
without destroying outerplanarity (Line 15).

Function AddEdges is specified in Algorithm 5. Its input consists of a vertex 𝑣 of 𝑇
and a set 𝐹 of candidate back edges for Path(𝑟, 𝑙𝑖) processed currently by Algorithm 4,
each with starting vertex 𝑣. Algorithm 5 tries to add as many as possible edges of 𝐹
to Path(𝑟, 𝑙𝑖), either all from left or from right, without violating outerplanarity. In
particular, each back edge (𝑣, 𝑤) is checked in loop 2–5 for left and right validity with
respect to Path(𝑟, 𝑙𝑖) (cf. the condition in Line 4) and, depending on the outcome of
the test, is added to 𝐸𝐿 and 𝐸𝑅. As an example, all the gray edges in Fig. 6.1(c) violate
at least one of the two conditions in Line 4 of Algorithm 5, while the colored edges
fulfill both of them. Notice that once a back edge (𝑣, 𝑤) ∈ 𝐹 has been added to one of
the sides of Path(𝑟, 𝑙𝑖), then no back edge (𝑣, 𝑤′) ∈ 𝐹 can be added to its other side, as
reach(𝑝(𝑣),Path(𝑟, 𝑙𝑖)) became empty, violating the reachability property of 𝑝(𝑣). Thus,
we can add either all edges from 𝐸𝐿 to the left or all edges from 𝐸𝑅 to the right side of
Path(𝑟, 𝑙𝑖). Since our goal is to maximize the number of back edges in 𝐺′, we take the set

93

6 Practical Aspects of Mining and Learning in Finite Closure Systems

with the greater cardinality (cf. Lines 6–7).
After the selection of one of the two sets, say 𝐸𝐿 (the case of 𝐸𝑅 is analogous), we

update the reachability information of the vertices on Path(𝑟, 𝑣) as follows: Since all back
edges are of length at least 2, no back edge (𝑠, 𝑡) with 𝑙𝑖 ≻ 𝑠 ≻ 𝑣 ≻ 𝑝(𝑣) ≻ 𝑡 can be added
to the right of Path(𝑟, 𝑙𝑖), as 𝑝(𝑣) became unreachable from both directions. Therefore,
↑𝑅(𝑣) has to be set to 𝑑(𝑝(𝑣)) (cf. Line 9). Furthermore, for all back edges (𝑣, 𝑤) ∈ 𝐸𝐿
and for all internal vertices 𝑥 of Path(𝑣, 𝑤), 𝑥 becomes unreachable from left (i.e., 𝐿 must
be deleted from the reachability set of 𝑥 with respect to Path(𝑟, 𝑙𝑖)). Moreover, (𝑣, 𝑤)
prohibits any left back edge in any possible path 𝑃𝑗 = Path(𝑟𝑗, 𝑙𝑗) with 𝑥 = 𝑟𝑗 (i.e., 𝜎𝐿(𝑥)
has to be set to True) (cf. Line 14) and the terminal vertex of any right back edge in 𝑃𝑗
cannot be smaller concerning the depth than 𝑑(𝑝(𝑥)) (i.e., ↑𝑅(𝑥) has to be set to 𝑑(𝑥)). In
our example in Figure 6.1(c), by adding the orange edges to ℛ we update the parameters
to the orange values (see, also, the table in Figure 6.1(c)).

We are ready to state the main result of this section.

Theorem 6.1.1. For any connected graph 𝐺, Algorithm 4 returns a spanning outerplanar
subgraph of 𝐺 in 𝑂 (|𝐸(𝐺)|) time.

Proof. The proof follows directly from Lemma 6.1.2 and Lemma 6.1.3.

In the proof of Lemma 6.1.2 concerning the correctness of Algorithm 4, we will use
the following auxiliary lemma.

Lemma 6.1.1. The set ℒ𝑙 (resp. ℛ𝑙) of back edges computed in Algorithm 4 fulfills the following
properties for all 𝑙 ≥ 0:

(i) For all (𝑣1, 𝑤1), (𝑣2, 𝑤2) in ℒ𝑙 (resp. ℛ𝑙) and 𝑦 ∈ 𝑉 (𝐺) satisfying 𝑤2 ≺ 𝑦 ≼ 𝑣1 and
𝑤2 ≺ 𝑦 ≼ 𝑣2,

𝑤1 ≺ 𝑤2 ⟹ 𝑣2 ≼ 𝑣1 (6.1)
𝑤1 = 𝑤2 ⟹ 𝑣1 ≺ 𝑣2 or 𝑣2 ≺ 𝑣1 . (6.2)

(ii) For all (𝑣𝑎, 𝑤𝑎) ∈ ℒ𝑙 (resp. ℛ𝑙) and 𝑥 ∈ 𝑉 (𝑇) with 𝑤𝑎 ≺ 𝑥 ≺ 𝑣𝑎, there is no (𝑣𝑏, 𝑤𝑏) ∈
ℛ𝑙 (resp. ℒ𝑙) with 𝑣𝑎 ≼ 𝑣𝑏 and 𝑤𝑏 ≼ 𝑤𝑎.

Proof. Weprove both claimswith induction on 𝑙 for the direction left; the proof of the other
direction is analogous. Regarding (i), the proof of the base case 𝑙 = 0 is trivial. Suppose
(i) holds for 𝑙 ≥ 0 and let (𝑣1, 𝑤1), (𝑣2, 𝑤2) ∈ ℒ𝑙+1. (Case 1) If (𝑣1, 𝑤1), (𝑣2, 𝑤2) ∈ ℒ𝑙,
then (i) holds by the induction hypothesis. (Case 2) If (𝑣1, 𝑤1), (𝑣2, 𝑤2) ∈ ℒ𝑙+1 ⧵ ℒ𝑙,
then 𝑣1 = 𝑣2 and 𝑤1 ≠ 𝑤2. Hence, (6.1) and (6.2) both hold for this case. (Case 3)
If (𝑣1, 𝑤1) ∈ ℒ𝑙+1 ⧵ ℒ𝑙 and (𝑣2, 𝑤2) ∈ ℒ𝑙, then the order of processing the vertices of 𝑇
implies

𝑣1 ⊀ 𝑣2 . (6.3)

Moreover, as (𝑣1, 𝑤1) is a left back edge, we have

↑𝐿(𝑣1) ≤ 𝑑(𝑤1) (6.4)

94

6.1 Approximating Geodesic Closures in Large Real-World Networks

(cf. the condition in Line 4 of Algorithm 5 for 𝛿 = 𝐿). Suppose

𝑤1 ≺ 𝑤2 . (6.5)

Then 𝑤1 ≺ 𝑤2 ≺ 𝑣1. Assume for contradiction that 𝑣1 and 𝑣2 are incomparable. Then
they lie on different paths in 𝑇, implying 𝑤2 ≺ 𝑦 ≺ 𝑣2 for 𝑦 in (i). Since, by condition of
this case, (𝑣2, 𝑤2) has been added to 𝑇 before (𝑣1, 𝑤1), 𝑣2 was considered before 𝑣1 in the
DFS traversal. Hence, there exists 𝑟𝑖 ≺ 𝑣1 such that

𝑤2 ≺ 𝑟𝑖 ≺ 𝑣2 . (6.6)

Thus, after (𝑣2, 𝑤2) has been added to ℒ𝑗 for some 𝑗 ≤ 𝑙, we certainly have 𝐿 ∉ reach(𝑟𝑖)
and 𝜎𝐿(𝑟𝑖) = True (cf. Lines 12 and 14 in Algorithm 5). In a later step, when processing
𝑣1, we therefore have

↑𝐿(𝑣1) ≥ 𝑑(𝑟𝑖) (6.7)

(cf. Lines 9 and 10 of Algorithm 4). By (6.5) and (6.6) we have 𝑤1 ≺ 𝑤2 ≺ 𝑟𝑖, fromwhich
𝑑(𝑤1) < 𝑑(𝑤2) < 𝑑(𝑟𝑖) ≤ ↑𝐿(𝑣1) follows by (6.7). However, this contradicts (6.4). Thus,
𝑣1 and 𝑣2 are comparable and hence, together with (6.3), implication (6.1) holds for Case
3. The proof of (6.1) for the last case (Case 4) that (𝑣1, 𝑤1) ∈ ℒ𝑙 and (𝑣2, 𝑤2) ∈ ℒ𝑙+1 ⧵ ℒ𝑙
is analogous.

Implication (6.2) can be shownwith similar arguments, so it remains to prove claim (ii)
of the lemma. The base case 𝑙 = 0 holds trivially. For the induction step, let (𝑣𝑎, 𝑤𝑎) ∈
ℒ𝑙+1 with 𝑤𝑎 ≺ 𝑥 ≺ 𝑣𝑎. Assume first (𝑣𝑎, 𝑤𝑎) ∈ ℒ𝑙 and suppose for contradiction that
there is a (𝑣𝑏, 𝑤𝑏) ∈ ℛ𝑙+1 with 𝑣𝑎 ≼ 𝑣𝑏 and 𝑤𝑏 ≼ 𝑤𝑎. By the induction hypothesis, it must
be the case that (𝑣𝑏, 𝑤𝑏) ∈ ℛ𝑙+1 ⧵ ℛ𝑙. Then

↑𝑅(𝑣𝑏) ≥ ↑𝑅(𝑣𝑎) ≥ 𝑑(𝑝(𝑣𝑎)) ≥ 𝑑(𝑥) > 𝑑(𝑤𝑏) ,

where ↑𝑅(𝑣𝑎) ≥ 𝑑(𝑝(𝑣𝑎)) holds by Line 9 of Algorithm 5. Hence (𝑣𝑏, 𝑤𝑏) does not satisfy
the condition in Line 4 in Algorithm 5 for 𝛿 = 𝑅, contradicting (𝑣𝑏, 𝑤𝑏) ∈ ℛ𝑙+1. A
contradiction for the case that (𝑣𝑎, 𝑤𝑎) ∈ ℒ𝑙+1 ⧵ ℒ𝑙 and (𝑣𝑏, 𝑤𝑏) ∈ ℛ𝑙 can be obtained
similarly by noting that we cannot have (𝑣𝑎, 𝑤𝑎) ∈ ℒ𝑙+1 ⧵ ℒ𝑙 and (𝑣𝑏, 𝑤𝑏) ∈ ℛ𝑙+1 ⧵ ℛ𝑙
(cf. Lines 15 and 16 of Algorithm 5).

Lemma 6.1.2. For all 𝑙 ≥ 0, 𝐺𝑙 = (𝑉 (𝐺), 𝐸(𝑇) ∪ ℒ𝑙 ∪ ℛ𝑙) is outerplanar after iteration 𝑙 of
loop 11–17 of Algorithm 4.

Proof. We show by induction on 𝑙 that 𝐺𝑙 can be drawn in the plane in a way that

(i) all edges (𝑣, 𝑤) ∈ ℒ𝑙 (resp. ℛ𝑙) that have been added to the DFS path 𝑃𝑖 for some 𝑖
(1 ≤ 𝑖 ≤ 𝑘) lie left (resp. right) with respect to 𝑃𝑖 and do not intersect any other
edge of 𝐺𝑙,

(ii) all vertices of 𝐺𝑙 lie on the outer face.

95

6 Practical Aspects of Mining and Learning in Finite Closure Systems

The proof of the case 𝑙 = 0 is automatic. For the induction step, suppose 𝐺𝑙 has an
embedding in the plane that satisfies (i)–(ii) and consider the sets ℒnew

𝑙+1 = ℒ𝑙+1 ⧵ ℒ𝑙
and ℛnew

𝑙+1 = ℛ𝑙+1 ⧵ ℛ𝑙. If both of them are empty, then the claim holds by the induction
hypothesis. Otherwise, exactly one of them, say ℒnew

𝑙+1 , is non-empty by Lines 15 and 16
of Algorithm 5; the proof of the case ℛnew

𝑙+1 ≠ ∅ is analogous. Let 𝑃𝑖 = Path(𝑟𝑖, 𝑙𝑖) be the
DFS path (1 ≤ 𝑖 ≤ 𝑘) and 𝑣 be a vertex of 𝑃𝑖 such that the left back edges in ℒnew

𝑙+1 have
been constructed for 𝑣 in the outer loop of Algorithm 4. Then 𝑣 ≠ 𝑟𝑖 and it is the initial
vertex of all back edges in ℒnew

𝑙+1 . Thus, each edge in ℒnew
𝑙+1 can be drawn left with respect

to 𝑃𝑖, without intersecting any other edge in ℒnew
𝑙+1 . All edges in ℛ𝑙 with an endpoint in

Path(𝑟, 𝑙𝑖) are right with respect to 𝑃𝑖. Hence, the edges in ℒnew
𝑙+1 can be drawn without

intersecting these right back edges. Suppose for contradiction that there is a new edge
(𝑣2, 𝑤2) ∈ ℒnew

𝑙+1 that cannot be drawn left with respect to 𝑃𝑖 without crossing some other
edge (𝑣1, 𝑤1) ∈ ℒ𝑙. By the induction hypothesis, (𝑣1, 𝑤1) could be drawn for some 𝑙′ ≤ 𝑙
iteration also left with respect to 𝑃𝑖, without crossing any other edge. Hence, it must
be the case that 𝑤1 ≺ 𝑤2, 𝑤2 ≺ 𝑦 ≼ 𝑣1, and 𝑤2 ≺ 𝑦 ≼ 𝑣2, where 𝑦 is the vertex with
the largest depth satisfying 𝑦 ≼ 𝑣1, 𝑣2. But then, 𝑣2 ≼ 𝑣1 by Lemma 6.1.1, contradicting
that (𝑣1, 𝑤1) has been considered before (𝑣2, 𝑤2). Thus, (𝑣2, 𝑤2) can be drawn left with
respect to 𝑃𝑖 without intersecting any edges in ℒ𝑙, completing the proof of (i).

To prove (ii), notice that if (𝑣, 𝑤) ∈ ℒ𝑙+1 destroys the outerplanarity of the graph, then
(𝑣, 𝑤′) ∈ ℒ𝑙+1 with 𝑤′ ≺ 𝑤 does the same. Thus, it suffices to consider the back edge in
ℒ𝑙+1 with the terminal vertex of the smallest depth. Let (𝑣, 𝑤∗) be this back edge. We
show that it is possible to add (𝑣, 𝑤∗) to the planar embedding so that all vertices 𝑥 lie on
the outer face and (i) stays valid. This is straightforward by induction for all vertices
𝑥 ∈ 𝑉 (𝑇) with 𝑤∗ ⊀ 𝑥, so it suffices to consider the remaining sets 𝑉1 = 𝑉 (Path(𝑤∗, 𝑣))
and 𝑉2 = {𝑥 ∈ 𝑉 (𝑇) ⧵ 𝑉1 ∶ 𝑤∗ ≺ 𝑥}.

We first prove the claim for the vertices in 𝑉1. Suppose for contradiction that there is
a vertex 𝑥 ∈ 𝑉1 that does not lie on the outer face. This can happen if and only if there
is (𝑣𝑅, 𝑤𝑅) ∈ ℛ𝑙 such that 𝑤∗ ≺ 𝑥 ≺ 𝑣 and 𝑤𝑅 ≺ 𝑥 ≺ 𝑣𝑅. However, this contradicts (ii)
of Lemma 6.1.1. Regarding the other case, assume there is an 𝑥 ∈ 𝑉2 that does not lie
on the outer face. Let 𝑥∗ ∈ 𝑉1 be the vertex with maximum depth such that 𝑥∗ ≺ 𝑥, 𝑣.
Assume there is an edge (𝑣′, 𝑤′) ∈ ℒ𝑙 with 𝑤′ ≺ 𝑥∗ ≺ 𝑣′. Since one of 𝑤′ ≺ 𝑤∗, 𝑤∗ ≺ 𝑤′,
and 𝑤′ = 𝑤∗ holds, the condition of (i) of Lemma 6.1.1 is fulfilled for 𝑥∗ = 𝑦. However,
𝑣′, 𝑣 are incomparable, implying that such an edge does not exist. Hence, we can redraw
the outerplanar subgraph consisting of all vertices 𝑦 with 𝑦 ≽ 𝑥∗ right to 𝑃𝑖 such that all
of its vertices and all other vertices of the graph lie on the outer face. Moreover, it can be
redrawn such that no edges are crossing and the redrawing fulfills (i) because no back
edge in the subgraph of all vertices 𝑦 with 𝑦 ≽ 𝑥∗ lies left with respect to 𝑃𝑖, completing
the proof of (ii).

Lemma 6.1.3. For any connected graph 𝐺, Algorithm 4 terminates in 𝑂 (|𝐸(𝐺)|) time.

Proof. Note first that 𝑇 in Line 2 can be computed in 𝑂 (|𝐸|) time. The condition in Line 9
is checked 2𝑙-times, where 𝑙 = 𝑂 (|𝑉 (𝐺)) is the number of leafs of 𝑇. Since each vertex 𝑣
of 𝑇 is considered at most once in the second inner loop (cf. Line 11) and the number of

96

6.1 Approximating Geodesic Closures in Large Real-World Networks

𝑥1
𝑥2𝑥3

𝑥4
𝑥5

𝑥6

𝑥7

𝑥3

𝑥6 𝑥7
𝑣𝐵

Figure 6.2: Left: Outerplanar graph 𝐺 and input set 𝑋 = 𝑋0 = {𝑥1, … , 𝑥7} ⊆ 𝑉 (𝐺) in
blue, Right: BB-tree ̃𝐺 constructed from 𝐺 (for the biconnected outerplanar
component on the left-hand side, see the dotted circle, a new node 𝑣𝐵 is
added). The sets 𝐶1 = {𝑣𝐵} and 𝐶2 = {𝑥3, 𝑥6, 𝑥7} are marked in blue (see
Lines 1–5 of Line 1).

edges added to 𝐹 in Line 15 is bounded by the degree of 𝑣, the total time for this inner
loop is 𝑂 (|𝐸(𝐺)|).

Finally, AddEdges is called atmost |𝑉 (𝐺)| times in Line 15. It can be checked in constant
time whether an edge in 𝐹 can be added to 𝐸𝐿 or 𝐸𝑅. If a back edge (𝑣, 𝑤) can be added,
we have to update the properties of vertices between (𝑣, 𝑤) (Line 10). This can be done
with a naive algorithm in a quadratic runtime. However, we can store the vertices that
are reachable from both left and right during the iteration over all 𝑃𝑖 in a global stack.
If an edge (𝑣, 𝑤) is added, we remove all vertices starting with the parent of 𝑣 from the
stack unless we have found 𝑤 (𝑤 will not be deleted from the stack); this is because these
vertices cannot be the endpoint of other left or right edges. The runtime of this operation
is linear in the number of elements removed from the stack. Once a vertex has been
removed from the stack, it will never be added again to it, except for the case that it is
equal to 𝑟𝑖 for some 𝑖 (1 ≤ 𝑖 ≤ 𝑘). Hence the overall runtime of this operation is at most
linear in the number of edges, implying the claimed total runtime of 𝑂 (|𝐸(𝐺)|).

6.1.2 Geodesic Closure in Outerplanar Graphs

The previous section shows that it is possible to sample almost maximal spanning out-
erplanar graphs in time linear in the number of edges of the ground graph. To achieve
our goal of developing a fast heuristic for approximating geodesic closed sets it remains
to show that it is much faster to compute geodesic closed sets in outerplanar graphs
than in arbitrary graphs. Thus, we now give the details of step (ii), i.e., we present a fast
algorithm that it is in fact independent of the input size |𝑋| solving the following problem
for outerplanar graphs:

Problem 6.1.1. Given a graph 𝐺 and 𝑋 ⊆ 𝑉 (𝐺), compute 𝛾(𝑋).

The algorithm solving Problem 6.1.1 for outerplanar graphs is given in Algorithm 6
(see, also, Figures 6.2–6.4 for a running example). We assume that 𝐺 is connected by

97

6 Practical Aspects of Mining and Learning in Finite Closure Systems

Algorithm 6: Outerplanar Graphs: Closure
Input: outerplanar graph 𝐺 and 𝑋 ⊆ 𝑉 (𝐺)
Output: 𝛾(𝑋)

1 construct the BB-tree 𝐺 for 𝐺;
2 𝑋0 ← 𝑋 ;
3 𝑌 ← set of block nodes of 𝐺;
4 𝐶1 = {𝑣𝐵 ∈ 𝑌 ∶ 𝑉 (𝐵) ∩ 𝑋0 ≠ ∅};
5 𝐶2 ← 𝑉 (𝐺) ∩ 𝑋0 ;
6 𝐶 ← 𝜏(𝐺, 𝐶1 ∪ 𝐶2), ;
7 𝑋1 ← 𝑋0 ∪ (𝐶 ∩ 𝑉 (𝐺)), 𝑖 ← 1;
8 foreach 𝑣𝐵 ∈ 𝑌 ∩ 𝐶 do
9 if |𝑉 (𝐵) ∩ 𝑋𝑖| > 1 then
10 𝑋𝑖+1 ← 𝑋𝑖 ∪ 𝛽(𝐵, 𝑉 (𝐵) ∩ 𝑋𝑖);
11 𝑖 ← 𝑖 + 1;
12 return 𝑋𝑖;

𝑥1
𝑥2𝑥3

𝑥4
𝑥5𝑣𝐵

𝑥6 𝑥7

𝑥3

Figure 6.3: Left: Output of Algorithm 7 applied to the BB-tree ̃𝐺 from Figure 6.2 (nodes
in 𝑋1 ⧵ 𝑋0 are marked in red). Right: Biconnected outerplanar graph 𝐵
corresponding to 𝑣𝐵, nodes in 𝑋1 ∩ 𝑉 (𝐵) which are not in 𝑋0 are marked in
red.

noting that all results can easily be generalized to disconnected outerplanar graphs as
well. Algorithm 6 first calculates the BB-tree ̃𝐺 for the input outerplanar graph 𝐺 and
then stores 𝑋 and the set of block nodes of ̃𝐺 in the variables 𝑋0 and 𝑌, respectively
(Lines 1–3). In Line 4, it computes the set 𝐶1 of block nodes representing such blocks of
𝐺 that have at least one vertex from 𝑋0. In a similar way, 𝐶2 contains the set of nodes of

̃𝐺 that belong to 𝑋0 (cf. Line 5) (see Figure 6.2 for an example).
The closure of 𝐶1 ∪ 𝐶2 in ̃𝐺 is calculated in 𝐶 (Line 6) and the union of 𝑋0 and the

set of vertices in 𝐶 that belong to 𝑉 (𝐺) is stored in 𝑋1 (Line 7) (see Figure 6.3 for an
example). Note that at this point of the algorithm, we have 𝑣 ∈ 𝑋1 ⊆ 𝛾𝐺(𝑋) for all
𝑣 ∈ 𝛾𝐺(𝑋) that do not belong to a biconnected component of 𝐺. Furthermore, for all
𝑣 ∈ 𝛾𝐺(𝑋) ⧵ 𝑋1, 𝑣 is on a shortest path in one of the blocks and with both endpoints in
𝑋. Accordingly, in loop 8–11, the algorithm takes all block nodes 𝑣𝐵 of ̃𝐺 that belong to

98

6.1 Approximating Geodesic Closures in Large Real-World Networks

Algorithm 7: Function 𝜏
Input: tree 𝑇 and 𝑋 ⊆ 𝑉 (𝑇)
Output: 𝛾𝑇(𝑋)

1 while ∃𝑣 ∈ 𝑉 (𝑇) ⧵ 𝑋 with 𝑑(𝑣) ≤ 1 do
2 remove 𝑣 from 𝑇;
3 return 𝑉 (𝑇);

Algorithm 8: Function GeneratorSet
Input: biconnected outerplanar graph 𝐵, 𝑋 ⊆ 𝑉 (𝐵)
Output: 𝐺𝑋 ⊆ 𝑋 such that 𝛾𝐵(𝐺𝑋) = 𝛾𝐵(𝑋)

1 𝐺𝑋 ← ∅ // 𝐺𝑋 ⊆ 𝑋: generator set for 𝛾𝐵(𝑋) ;
2 forall interior faces 𝐹 of 𝐵 do
3 𝑋′ ← 𝑉 (𝐹) ∩ 𝑋;
4 if |𝑋′| > 0 then
5 select an arbitrary vertex 𝑤 from 𝑋′;
6 add 𝑢 = argmax

𝑥∈𝑋′
𝑑(𝑥, 𝑤) to 𝐺𝑋 ;

7 add 𝑣 = argmax
𝑥∈(𝑋′⧵𝛾𝐹({𝑢,𝑤}))∪{𝑤}

𝑑(𝑥, 𝑤) to 𝐺𝑋 ;

8 if 𝑤 ∉ 𝛾𝐹({𝑢, 𝑣}) then
9 add 𝑤 to 𝐺𝑋 ;

10 return 𝐺𝑋;

the closed set 𝐶, computes the closure of the set of vertices of the corresponding block 𝐵
over 𝐵 that are known to be closed (i.e., belong to 𝑋𝑖), updates the set of already known
closed vertices in 𝑋𝑖+1, and increments the loop variable 𝑖. In the end, it returns the set
𝑋𝑖.

It remains to discuss functions 𝜏 and 𝛽 (cf. Lines 6 and 10). Regarding 𝜏 (see Algo-
rithm 7), it computes the closure of a set of nodes of a tree. The algorithm iteratively
removes all leaves of 𝑇 that are not in 𝑋 and returns the set of all nodes of 𝑇 at the end
that have not been deleted (see Figure 6.2 (right) and Figure 6.3 (left)). Hence, the proof
of the following lemma is straightforward:

Lemma 6.1.4. For any tree 𝑇 with 𝑛 nodes and for any 𝑋 ⊆ 𝑉 (𝑇), Algorithm 7 returns 𝛾𝑇(𝑋)
in 𝑂 (𝑛) time.

Regarding 𝛽 (see Algorithm 9 and Figure 6.4), which computes the closure over
biconnected outerplanar graphs, we first show that for any biconnected outerplanar
graph 𝐵 with 𝑓 = Φ(𝐵) and for any 𝑋 ⊆ 𝑉 (𝐵), there is a set 𝐺𝑋 ⊆ 𝑋 of cardinality
linear in 𝑓 such that 𝛾𝐵(𝐺𝑋) = 𝛾𝐵(𝑋). Furthermore, 𝐺𝑋 can be constructed in linear
time as follows (see, also, Algorithm 8): Initialize 𝐺𝑋 with ∅ (cf. Line 1) and process all
interior faces 𝐹 of 𝐵 one by one in an arbitrary order as follows: If 𝐹 has no vertex from
𝑋 then disregard 𝐹; o/w choose an arbitrary vertex 𝑤 from 𝑋′ = 𝑉 (𝐹) ∩ 𝑋. For that 𝑤,

99

6 Practical Aspects of Mining and Learning in Finite Closure Systems

𝑤 𝑣

𝑢

Figure 6.4: Left: Biconnected outerplanar graph 𝐵 with 𝑋 ⊆ 𝑉 (𝐵) in blue (cf. Figure 6.3
(right)), Middle: generator set 𝐺𝑋 ⊆ 𝑋 in black, Right: 𝛾(𝑋) = 𝛾(𝐺𝑋), newly
added nodes in red.

calculate the furthest vertex 𝑢 ∈ 𝑋′ and the furthest vertex 𝑣 ∈ (𝑋′ ⧵ 𝛾𝐹({𝑢, 𝑤})) ∪ {𝑤},
and add 𝑢 and 𝑣 to 𝐺𝑋 (cf. Lines 6 and 7 of Algorithm 8). Note that 𝛾𝐹({𝑢, 𝑤})) = 𝑉 (𝐹)
if 𝑑(𝑢, 𝑤) = ℓ/2, where ℓ is the (cycle) length of 𝐹; o/w it is the set of vertices of the
(unique) shortest path between 𝑢 and 𝑤. If 𝑤 does not lie on a shortest path between 𝑢
and 𝑣 (cf. Line 8), then add 𝑤 to 𝐺𝑋 as well. Note that 𝑢 and 𝑣 can be equal to 𝑤. Hence,
we add at least one and at most three vertices of 𝑋′ to 𝐺𝑋 for 𝐹.

To illustrate the above steps on our running example, consider the biconnected out-
erplanar graph 𝐵 and the set 𝑋 ⊆ 𝑉 (𝐵) marked with the color blue in Figure 6.4. A
generator set 𝐺𝑋 computed for the input set marked with blue in Figure 6.4 (left) is
given in Figure 6.4 (middle). It contains four vertices marked with black. In case of the
largest face of 𝐺, suppose we first select 𝑤 ∈ 𝑋. For 𝑤, we first add 𝑢 and then 𝑣 to 𝐺𝑋
by Algorithm 8 (see Figure 6.4 (left) for 𝑢, 𝑣, and 𝑤); 𝑤 is not added because it is on a
shortest path between 𝑢 and 𝑣. The closure 𝛾(𝑋) = 𝛾(𝐺𝑋) is given in Figure 6.4 (right).

We have the following result about Algorithm 8:

Lemma 6.1.5. Let 𝐵 be a biconnected outerplanar graph with 𝑓 = Φ(𝐵). Then for all 𝑋 ⊆
𝑉 (𝐵), Algorithm 8 computes a set 𝐺𝑋 ⊆ 𝑋 in 𝑂 (𝑛) time such that 𝛾𝐵(𝐺𝑋) = 𝛾𝐵(𝑋) and
|𝐺𝑋| = 𝑂 (𝑓).

Proof. Since 𝐺𝑋 ⊆ 𝑋, 𝛾𝐵(𝐺𝑋) ⊆ 𝛾𝐵(𝑋) follows from the monotonicity of 𝛾𝐵. We show
𝛾𝐵(𝑋) ⊆ 𝛾𝐵(𝐺𝑋) by induction on 𝑓. The base case 𝑓 = 1 is trivial if 𝐵 has at most two
vertices from𝑋. Otherwise, let𝑢, 𝑣, 𝑤 be the vertices considered byAlgorithm8 for𝐹 = 𝐵.
Since |𝑉 (𝐵) ∩ 𝑋| ≥ 2, we have 𝑢 ≠ 𝑤. If 𝑣 = 𝑤, then 𝐺𝑋 = {𝑢, 𝑣} and 𝑋 ⊆ 𝛾𝐵(𝐺𝑋),
from which the monotonicity and idempotency of 𝛾𝐵 imply 𝛾𝐵(𝑋) ⊆ 𝛾𝐵(𝐺𝑋). If 𝑣 ≠ 𝑤,
then 𝑢, 𝑣, and 𝑤 are pairwise different. Furthermore, by definition of this case, 𝑤 does
not lie on the (unique) shortest path between 𝑢 and 𝑣. However, then 𝑋 ⊆ 𝑉 (𝐵) =
⋃

𝑥,𝑦∈𝐺𝑋
𝛾𝐵({𝑥, 𝑦})) = 𝛾𝐵(𝐺𝑋), where the last equality holds by Theorem 2.2.1. from

which 𝛾𝐵(𝑋) ⊆ 𝛾𝐵(𝐺𝑋) follows, again by monotonicity and idempotency. For the
induction step, let 𝐵 be a biconnected outerplanar graph with interior faces 𝐹1, … , 𝐹𝑓+1
for some 𝑓 ≥ 1. We can assume w.l.o.g. that 𝐹 = 𝐹𝑓+1 is adjacent to exactly one interior
face. Then 𝐹1, … , 𝐹𝑓 form a biconnected outerplanar graph 𝐵′. Let 𝑋1 = 𝑋 ∩ 𝑉 (𝐵′)
(resp. 𝑋2 = 𝑋 ∩ 𝑉 (𝐹)) and 𝐺𝑋1

(resp. 𝐺𝑋2
) be the generator set constructed for 𝐵′

100

6.1 Approximating Geodesic Closures in Large Real-World Networks

Algorithm 9: Function 𝛽
Input: biconnected outerplanar graph 𝐵, 𝑋 ⊆ 𝑉 (𝐵)
Output: 𝛾𝐵(𝑋)

1 𝐺𝑋 ← GeneratorSet(𝐵, 𝑋);
2 return 𝛾𝐵(𝐺𝑋);

(resp. 𝐹) by Algorithm 8. Note that 𝐺𝑋 = 𝐺𝑋1
∪ 𝐺𝑋2

. Theorem 2.2.1 implies

𝛾𝐵(𝑋) = 𝛾𝐵(𝑋1) ∪ 𝛾𝐵(𝑋2) ∪ ⋃
𝑢∈𝑋1,𝑣∈𝑋2

𝛾𝐵({𝑢, 𝑣}) . (6.8)

We have

𝛾𝐵(𝑋1) ⊆ 𝛾𝐵′(𝐺𝑋1
) = 𝛾𝐵(𝐺𝑋1

) ⊆ 𝛾𝐵(𝐺𝑋) (6.9)
𝛾𝐵(𝑋2) ⊆ 𝛾𝐹(𝐺𝑋2

) = 𝛾𝐵(𝐺𝑋2
) ⊆ 𝛾𝐵(𝐺𝑋) (6.10)

by 𝛾𝐵(𝑋1) = 𝛾𝐵′(𝑋1), 𝛾𝐵′(𝐺𝑋1
) = 𝛾𝐵(𝐺𝑋1

) and 𝛾𝐵(𝑋2) = 𝛾𝐹(𝑋2), 𝛾𝐹(𝐺𝑋2
) = 𝛾𝐵(𝐺𝑋2

),
and by the induction hypothesis to 𝐵′ and 𝐹. Below we show that for all 𝑢 ∈ 𝑋1, 𝑣 ∈ 𝑋2,

𝛾𝐵({𝑢, 𝑣}) ⊆ ⋃
𝑥,𝑦∈𝐺𝑋

𝛾𝐵({𝑥, 𝑦}) = 𝛾𝐵(𝐺𝑋) , (6.11)

fromwhich 𝛾𝐵(𝑋) ⊆ 𝛾𝐵(𝐺𝑋) follows by (6.8)–(6.10). To prove (6.11), let 𝑢 ∈ 𝑋1, 𝑣 ∈ 𝑋2,
and let 𝐹𝑢 be the interior face of 𝐵 containing 𝑢. By construction, there are 𝑢1, 𝑢2 ∈ 𝐺𝑋1

such that 𝑢 ∈ 𝛾𝐵′({𝑢1, 𝑢2}) and 𝛾𝐵′({𝑢1, 𝑢2}) ∩ 𝐺𝑋1
= {𝑢1, 𝑢2}. Similarly, there are

𝑣1, 𝑣2 ∈ 𝐺𝑋2
with 𝑣 ∈ 𝛾𝐹({𝑣1, 𝑣2}) and 𝛾𝐹({𝑣1, 𝑣2}) ∩ 𝐺𝑋2

= {𝑣1, 𝑣2}. It holds that for
all shortest paths 𝑃𝑢,𝑣 between 𝑢 and 𝑣, there is a shortest path 𝑃𝑢′,𝑢 ⊕ 𝑃𝑢,𝑣 ⊕ 𝑃𝑣,𝑣′ that
contains 𝑃𝑢,𝑣, where ⊕ denotes the path concatenation operation and 𝑃𝑢′,𝑢 (resp. 𝑃𝑣,𝑣′)
is a shortest path from some 𝑢′ ∈ {𝑢, 𝑢1, 𝑢2} to 𝑢 (resp. from 𝑣 to some 𝑣′ ∈ {𝑣, 𝑣1, 𝑣2}).
One can easily check that 𝑉 (𝑃𝑢′,𝑢) ⊆ 𝛾𝐵({𝑢′, 𝑢}) and 𝑉 (𝑃𝑣,𝑣′) ⊆ 𝛾𝐵({𝑣, 𝑣′}) are both
subsets of 𝛾𝐵(𝐺𝑋), fromwhich (6.11) holds by 𝑉 (𝑃𝑢′,𝑣′) ⊆ 𝛾𝐵(𝐺𝑋), completing the proof
of 𝛾𝐵(𝑋) ⊆ 𝛾𝐵(𝐺𝑋).

The linear time complexity of Algorithm 8 follows from the facts that each iteration of
the loop can be carried out in 𝑂 (|𝑉 (𝐹)|) time and the sum of the sizes of the faces 𝐹 is
𝑂 (𝑛).

We are ready to present Algorithm 9 computing the closure of a set of vertices over a
biconnected outerplanar graph (see Line 10 in Algorithm 6). The input of Algorithm 9
consists of a biconnected outerplanar graph 𝐵 and a set 𝑋 ⊆ 𝑉 (𝐵). Using Algorithm 8,
it first computes a generator set 𝐺𝑋 for 𝐵 and 𝑋 and, utilizing the results in Corol-
lary 4.2.1, computes 𝛾𝐵(𝑋) = 𝛾𝐵(𝐺𝑋) in time 𝑂 (|𝑉 (𝐵)| ⋅ |𝐺𝑋|). Hence, we can deduce
the following result.

Lemma 6.1.6. Let 𝐵, 𝑓, and 𝑋 be as in Lemma 6.1.5. Then Algorithm 9 computes 𝛾𝐵(𝑋)
correctly and in 𝑂 (|𝑉 (𝐵)|𝑓) time.

101

6 Practical Aspects of Mining and Learning in Finite Closure Systems

In order to state Theorem 6.1.2, the main result of this section, we need some further
notation. For any 𝑣 ∈ 𝑉 (̃𝐺), Γ(𝑣) denotes {𝑣} if 𝑣 ∈ 𝑉 (𝐺); o/w Γ(𝑣) = 𝑉 (𝐵), where
𝐵 is the block of 𝐺 represented by 𝑣. Proposition 6.1.1 below is used in the proof of
Theorem 6.1.2. Its proof follows from the definitions.

Proposition 6.1.1. Let 𝐺 be an outerplanar graph and 𝑥 ∈ 𝑉 (𝐺).

(i) Let ̃𝐺 be the BB-tree of 𝐺 and 𝑢, 𝑣 ∈ 𝑉 (̃𝐺). If 𝑥 ∈ 𝑉 (̃𝐺), then 𝑥 is on the shortest path
in ̃𝐺 between 𝑢 and 𝑣 if and only if it is on a shortest path in 𝐺 between 𝑢′ and 𝑣′, for all
𝑢′ ∈ Γ(𝑢) and 𝑣′ ∈ Γ(𝑣).

(ii) Let 𝐵 be some block of 𝐺 and 𝑢, 𝑣 ∈ 𝑉 (𝐵). Then 𝑥 is on a shortest path in 𝐵 connecting 𝑢
and 𝑣 if and only if it is on a shortest path in 𝐺 between 𝑢 and 𝑣.

Using Lemmas 6.1.4–6.1.6, we can now show the following result:

Theorem 6.1.2. Algorithm 6 solves Problem 6.1.1 for outerplanar graphs correctly and in 𝑂 (𝑛𝑓)
time, where 𝑓 = Φ(𝐺).

Proof. Regarding the correctness, for the 𝑋𝑖s in Algorithm 6 we have 𝑋 = 𝑋0 ⊆ 𝑋1 ⊆
… ⊆ 𝑋𝑁 ⊆ 𝑉 (𝐺) (cf. Lines 2, 7 and 10), where 𝑁 is the value of 𝑖 at termination. We
show that 𝑋𝑁 = 𝛾(𝑋). This is straightforward for |𝑋| ≤ 1, so assume |𝑋| > 1. We prove
the soundness (i.e., 𝑋𝑁 ⊆ 𝛾(𝑋)) by showing with induction on 𝑖 that 𝑋𝑖 ⊆ 𝛾(𝑋) for all
𝑖. The proof of the case 𝑖 = 0 is automatic by the extensivity of 𝛾. For 𝑖 = 1, the same
argument holds if 𝑥 ∈ 𝑋0, so consider the case that 𝑥 ∈ 𝑋1 ⧵ 𝑋0. Then, by Lemma 6.1.4
concerning the correctness of 𝜏 computing the closure over trees (cf. Line 6), 𝑥 belongs
to the closure of 𝐶1 ∪ 𝐶2 in ̃𝐺. That is, there are 𝑢, 𝑣 ∈ 𝐶1 ∪ 𝐶2 ⊆ 𝑉 (̃𝐺) such that 𝑥
lies on a shortest path connecting 𝑢 and 𝑣 in ̃𝐺, from which we have 𝑥 ∈ 𝛾(𝑋) by (i)
of Proposition 6.1.1. For the induction step, suppose 𝑋𝑘 ⊆ 𝛾(𝑋) holds for 𝑘 ≥ 1 and
let 𝑥 ∈ 𝑋𝑘+1. If 𝑥 ∈ 𝑋𝑘, then 𝑥 ∈ 𝛾(𝑋) by the induction hypothesis. Otherwise, by
the definition of 𝑘, 𝑥 has been added to 𝑋𝑘+1 in Line 10. However, then, 𝑥 ∈ 𝛾(𝑋) is
immediate from (ii) of Proposition 6.1.1 by Lemma 6.1.6 concerning the correctness of
𝛽 computing the closure over biconnected outerplanar graphs, and by the induction
hypothesis, completing the proof of soundness.

For the completeness (i.e., 𝛾(𝑋) ⊆ 𝑋𝑁), let 𝑥 ∈ 𝛾(𝑋). Clearly, 𝑥 ∈ 𝑋𝑁 if 𝑥 ∈ 𝑋.
Otherwise, by Theorem 2.2.1, there are 𝑢, 𝑣 ∈ 𝑋 with 𝑢 ≠ 𝑣 such that 𝑥 ∈ 𝛾({𝑢, 𝑣}). If
𝑥 does not belong to a block in 𝐺, then 𝑥 ∈ 𝑉 (̃𝐺) and Γ(𝑢) ≠ Γ(𝑣). Let 𝑢′, 𝑣′ ∈ 𝑉 (̃𝐺)
such that 𝑢 ∈ Γ(𝑢′) and 𝑣 ∈ Γ(𝑣′). We must have that 𝑥, 𝑢′, 𝑣′ are pairwise different.
But then, by (i) of Proposition 6.1.1, 𝑥 is on a shortest path in ̃𝐺 that connects 𝑢′ and 𝑣′

and it has been added to 𝑋1, as 𝑢′, 𝑣′ ∈ 𝐶1 ∪ 𝐶2 by definition. Consider the case that
𝑥 ∈ 𝑉 (𝐵) for some block 𝐵 of 𝐺. Let 𝑃 be a shortest path in 𝐺 with endpoints 𝑢 and
𝑣 that contains 𝑥. If 𝑢, 𝑣 ∈ 𝑉 (𝐵), then the node 𝑣𝐵 ∈ 𝑉 (̃𝐺) representing 𝐵 has been
added to 𝑌 in Line 3 and processed in loop 8–11. In particular, 𝑥 is added to 𝑋𝑖+1 for
some 𝑖 ≥ 1 because 𝑢, 𝑣 ∈ 𝑉 (𝐵) ∩ 𝑋𝑖 (cf. Line 10). If at least one of 𝑢, 𝑣 is not a vertex
of 𝐵, then let 𝑢⊥, 𝑣⊥ ∈ 𝑉 (𝐵) be the vertices on 𝑃 with the smallest distance to 𝑢 and 𝑣,

102

6.1 Approximating Geodesic Closures in Large Real-World Networks

respectively. The definitions imply that 𝑢⊥, 𝑣⊥ ∈ 𝑉 (̃𝐺). Furthermore, 𝑢⊥, 𝑣⊥ ∈ 𝑋1 by (i)
of Proposition 6.1.1 and Lemma 6.1.4. We are done if 𝑥 = 𝑢⊥ or 𝑥 = 𝑣⊥. Otherwise, 𝑥 is
on a shortest path between 𝑢⊥ and 𝑣⊥ in 𝐵 and hence, as 𝑢⊥, 𝑣⊥ ∈ 𝑋1 ⊆ 𝑋𝑖, it is added to
𝑋𝑖+1 for some 𝑖 ≥ 1 in Line 10 for 𝑣𝐵, as 𝛽 is correct by Lemma 6.1.6. Hence, 𝛾(𝑋) ⊆ 𝑋𝑁.

Regarding the complexity, ̃𝐺 in Line 1 can be computed in 𝑂 (𝑛) time Horváth et al.
(2010) and, by Lemma 6.1.4, the closure operator 𝜏 over ̃𝐺 (cf. Line 6) can be calculated
also in 𝑂 (𝑛) time. Suppose 𝐺 contains 𝑘 blocks, say 𝐵1, … , 𝐵𝑘. Since by Lemma 6.1.6,
the closure operator 𝛽 over 𝐵𝑖 (cf. Line 10) can be computed in 𝑂 (𝑛𝑖𝑓𝑖) time for all 𝑖,
where 𝑛𝑖 = |𝑉 (𝐵𝑖)| and 𝑓𝑖 = Φ(𝐵𝑖), loop 8–11 can be carried out in ∑𝑖 𝑂 (𝑛𝑖𝑓𝑖) = 𝑂 (𝑛𝑓)
time, as ∑𝑖 𝑂 (𝑛𝑖) = 𝑂 (𝑛) and 𝑓𝑖 = 𝑂 (𝑓). Thus, the total time of Algorithm 6 is 𝑂 (𝑛𝑓),
as claimed.

6.1.3 Experimental Results

Finally, after the detailed elaboration of steps (i) and (ii) in the previous sections, we
experimentally evaluate the steps and the heuristic by approximating geodesic cores of
large real-world graphs. Thus, the experiments are separated into three parts. First, we
evaluate Algorithm 4 for its runtime and quality of the returned outerplanar spanning
subgraphs. We also compare its runtime against other standard algorithms generating
spanning subtrees. Second, we compare the runtime of our outerplanar closure algorithm
(Algorithm 6) to that of the naïve algorithm for outerplanar graphs (see Section 2.2.2).
Finally, using large real-world networks (Leskovec and Krevl, 2014), we empirically evalu-
ate the approximation performance of our heuristic on the core-periphery decomposition
problem (Marc and Šubelj, 2018). For the implementation1 we used the C++-library
Snap 6.0 (Leskovec and Sosič, 2016). All experiments were conducted on a machine with
AMD Ryzen 9 3900X and 64GB RAM.

Sampling spanning structures

In these experiments, we empirically evaluate the runtime and performance of Algo-
rithm 4 on graphs from the Erdős-Rényi II dataset. For each of the 100 random graphs
for a particular value of (𝑛, 𝑝), we first generate a spanning structure with different
algorithms and then compare the average generation runtime for the 100 graphs (see
Figure 6.5). The following algorithms have been considered: (O1) is Algorithm 4, (SBFS)
implemented in Snap 6.0 generates a spanning BFS-tree, and (BFS) and (DFS) are our
own implementations generating spanning BFS resp. DFS trees. We also consider (O2),
which first calls (O1) and then calculates the BB-tree and the biconnected outerplanar
components for the output outerplanar graphs of (O1). The reason for considering (O2)
is that our closure algorithm described in Section 6.1.2 also requires these additional
pieces of information.

In Figure 6.5 (left) we compare the runtime of the algorithms with respect to the edge
number of the graphs in the Erdős-Rényi II dataset. The results show that (O1) and (O2)

1The code is available at https://github.com/fseiffarth/GCoreApproximation.

103

https://github.com/fseiffarth/GCoreApproximation

6 Practical Aspects of Mining and Learning in Finite Closure Systems

0 0.2 0.4 0.6 0.8 1
⋅106

0

0.2

0.4

0.6

#Edges

Ti
m
e
pe

rS
am

pl
e
[s
]

O1 O2 BFS SBFS DFS

0 0.2 0.4 0.6 0.8 1
⋅106

0

2

4

6

⋅10−5

#Edges

Ti
m
e
pe

rE
dg

e
[s
]

DFS

Figure 6.5: Average time per sample (in sec.) of generating spanning structures with
different algorithms on the Erdös-Renyi II dataset. (left) Average time per
sample and output edge number in seconds. (right) The considered algo-
rithms: (O1) Algorithm 4, (O2) Algorithm 4 + generating the auxiliary
information for Algorithm 6, (SBFS) BFS algorithm in SNAP 6.0, (BFS) resp.
(DFS) own BFS resp. DFS implementations

are linear in the number of edges and almost as fast as (BFS) and (DFS), by noting that
(SBFS) is even slower than our algorithm generating outerplanar spanning subgraphs.
Not surprisingly, (O2) is a bit slower than (O1) but remains linear, as the additional
information provided by (O2) can be calculated in linear time. Figure 6.7 shows that this
is not a drawback in practice because the auxiliary structure generated by (O2) allows
for a much faster closure computation. For graphs with around 104 nodes and 106 edges,
(BFS) needs 0.38𝑠 per spanning tree, while (O1) resp. (O2) 0.4𝑠 resp. 0.47𝑠 per spanning
outerplanar graph. Normalizing the runtime by the number of output edges, (O1) is faster
than (BFS) and (DFS) (see Figure 6.5 (right)).

More detailed information about the generated outerplanar spanning subgraphs for
the Erdős-Rényi II dataset is provided in Table 6.1 respectively Table 6.2 for random
graphs with 𝑛 = 104 respectively 𝑝 = 0.2. The average number of edges in the output
outerplanar spanning subgraphs seems to grow nearly linearly with the edge probability.
The average number of biconnected components, as well as the average maximal size of
the components, decreases, i.e., for small edge probabilities, it seems that there are a few
big components. At the same time, there are more medium size components and no big
components for larger density.

Recall that the time complexity of our closure algorithm presented in Section 6.1.2

104

6.1 Approximating Geodesic Closures in Large Real-World Networks

Edge Prob. #Edges Sample Size Avg. #Output Edges Avg. #Components Avg. Biggest Component Avg. Face Number

0.006 299,970 100 10,922.11 (± 20.71) 638.68 (± 63.84) 828.33 (± 265.95) 79.44 (± 25.54)
0.008 399,960 100 11,077.61 (± 19.76) 595.81 (± 60.51) 677.62 (± 224.51) 76.11 (± 25.38)
0.010 499,950 100 11,214.71 (± 21.43) 585.54 (± 69.05) 591.26 (± 176.29) 74.50 (± 23.16)
0.012 599,940 100 11,342.36 (± 23.01) 580.80 (± 59.00) 508.81 (± 119.71) 70.52 (± 16.36)
0.014 699,930 100 11,454.92 (± 25.05) 584.37 (± 56.59) 478.12 (± 131.24) 71.92 (± 20.65)
0.016 799,920 100 11,561.69 (± 25.60) 591.34 (± 60.36) 454.45 (± 123.27) 71.77 (± 19.26)
0.018 899,910 100 11,659.78 (± 21.80) 590.60 (± 52.77) 389.05 (± 74.31) 65.98 (± 13.10)
0.020 999,900 100 11,755.85 (± 27.71) 590.04 (± 48.96) 370.94 (± 80.23) 65.95 (± 14.14)

Table 6.1: Output of Algorithm 4 on Erdős-Rényi II random graphs with fixed size of
𝑛 = 104.

Size #Edges Sample Size Avg. #Output Edges Avg. #Component Avg. Biggest Component Avg. Face Number

1,000 9,990 100 1,154.42 (± 8.33) 128.34 (± 17.81) 209.91 (± 71.51) 35.98 (± 12.14)
2,000 39,980 100 2,332.69 (± 11.84) 181.91 (± 25.29) 263.11 (± 81.09) 46.16 (± 14.79)
3,000 89,970 100 3,506.71 (± 13.18) 234.28 (± 30.47) 300.53 (± 99.33) 52.21 (± 16.42)
4,000 159,960 100 4,683.94 (± 15.39) 280.25 (± 31.77) 312.23 (± 77.90) 55.34 (± 13.39)
5,000 249,950 100 5,859.74 (± 18.30) 335.01 (± 36.19) 320.67 (± 86.55) 57.17 (± 15.86)
6,000 359,940 100 7,039.75 (± 20.77) 387.48 (± 43.64) 323.84 (± 89.57) 57.86 (± 16.21)
7,000 489,930 100 8,218.86 (± 20.38) 438.71 (± 42.61) 346.45 (± 86.02) 61.86 (± 14.56)
8,000 639,920 100 9,397.93 (± 23.03) 482.03 (± 47.00) 358.90 (± 74.91) 63.98 (± 13.65)
9,000 809,910 100 10,579.86 (± 24.38) 546.62 (± 52.48) 374.12 (± 92.46) 66.53 (± 16.23)

10,000 999,900 100 11,755.85 (± 27.71) 590.04 (± 48.96) 370.94 (± 80.23) 65.95 (± 14.14)

Table 6.2: Output of Algorithm 4 on Erdős-Rényi II dataset with fixed edge probability
𝑝 = 0.02.

is linear in the face number of the input outerplanar graph. Table 6.2 and Figure 6.6
indicate that in practice, the face number seems to be sublinear in the graph size for fixed
density. In our experiments, it was always less than 80. Figure 6.6 shows the number
of nodes (left), respectively the number of input edges (right) against the average face
number (colors represent edge probabilities).

Moreover, we experimentally show that in all cases, the output of Algorithm 4 is not
far from a maximal outerplanar subgraph. It was tested by greedily adding edges to the
output as long as there exists an edge whose addition does not violate outerplanarity.
Since the test needs 𝑂 (𝑚) time, for these experiments, we used the Erdős-Rényi I dataset
containing small graphs. In Table 6.3 resp. Table 6.4 we present the results for fixed size
𝑛 = 500 resp. fixed edge probability 𝑝 = 0.14. We expect a similar behavior on larger
graphs because the main factor of the input graphs is their density and not their size. For
the non-maximal outerplanar graphs, it holds that at most 2 edges on average are missing
per graph for maximality (see Table 6.3 for 𝑛 = 500 and Table 6.4 for 𝑝 = 0.14). On
the relative scale, the outerplanar subgraphs returned by our algorithm contain at least
99.71% of the edges of a maximal spanning outerplanar subgraph on average (see the last
column of Tables 6.3 and 6.4). The standard deviation of these values is always smaller
than 0.5 and less than 0.2 in most cases, implying that there are only a few outliers.

105

6 Practical Aspects of Mining and Learning in Finite Closure Systems

0.2 0.4 0.6 0.8 1
⋅104

20

40

60

80

Graph Size

A
vg

.F
ac

e
N
um

be
r

Avg. Face Number
0 0.2 0.4 0.6 0.8 1

⋅106

20

40

60

80

#Edges

A
vg

.F
ac

e
N
um

be
r

Figure 6.6: Face numbers of outerplanar subgraphs generated by Algorithm 4 for the
Erdős-Rényi II dataset. (left) Average face number against the graph size.
(right) Average face number against input edge number (colors depict edge
probabilities).

Calculating closures in outerplanar graphs

In this section, we empirically evaluate Algorithm 6 on synthetically generated data.
More precisely, we sample an outerplanar spanning subgraph 𝐺 for each graph in the
Erdős-Rényi II dataset. To compare our algorithm with the standard one based on SSSP,
for each outerplanar graph 𝐺, we construct a graph 𝐺′ with the same number of nodes
and edges, but with the difference that 𝐺′ is not necessarily outerplanar. That is, for
each 𝐺, we first generate a random spanning tree 𝑇 of 𝐺 and then construct a possibly
non-outerplanar graph 𝐺′ by adding 𝑚 − 𝑛 + 1 random edges to 𝑇. Thus, 𝐺 and 𝐺′ have
the same number of vertices and edges. Figure 6.7 (left) shows the average runtime
needed to calculate the closures on 𝐺 and 𝐺′ for a random subset of 1% of the vertices.
(C1) is the naïve closure algorithm for the outerplanar graphs 𝐺 using the result of
Corollary 4.2.1 (i.e., it calculates the shortest paths between all pairs of input vertices).
(C2) is our Algorithm 6 and (CGraph) is the naïve closure algorithm for the arbitrary
graphs 𝐺′. Recall that the complexity of (CGraph) is 𝑂 (𝑛𝑚), where 𝑚 = 𝑂 (𝑛) by
construction, it is 𝑂 (𝑛|𝑋|) for (C1), where |𝑋| = 𝑛/100, and 𝑂 (𝑛𝑓) for our algorithm
(C2), which is independent of |𝑋|. The results are in accordance with these complexities.
In particular, the closure computation on the arbitrary graphs 𝐺′ is slower by a factor up
to 300 than on the outerplanar graphs 𝐺 with (C1) and (C2) (see left of Figure 6.7). The
right part of Figure 6.7 is scaled down for (C1) and (C2). It clearly shows that (C2) (i.e.,
Algorithm 6) is much faster in practice than the naïve algorithm (C1). In particular, (C2)
seems to be the only one of the three algorithms that scales linearly with the number of
edges. This indicates that the face number 𝑓 in the time complexity 𝑂 (𝑛𝑓) is negligible in
practice.

106

6.1 Approximating Geodesic Closures in Large Real-World Networks

Edge Prob. #Edges Samples (Maximal) Avg. #Output Edges Avg. Maximal Output Edges Avg. Relative Maximality (%)

0.05 6,237 100 (32) 627.14 (± 5.85) 628.30 (± 5.90) 99.82 (± 0.17)
0.06 7,485 100 (24) 641.76 (± 6.69) 643.14 (± 6.96) 99.79 (± 0.18)
0.07 8,732 100 (25) 655.67 (± 7.58) 657.13 (± 7.74) 99.78 (± 0.19)
0.08 9,980 100 (21) 670.08 (± 7.61) 671.68 (± 7.84) 99.76 (± 0.19)
0.09 11,227 100 (17) 680.30 (± 6.29) 681.85 (± 6.43) 99.77 (± 0.16)
0.10 12,475 100 (17) 691.20 (± 8.33) 693.08 (± 8.26) 99.73 (± 0.22)
0.11 13,722 100 (24) 703.77 (± 8.47) 705.44 (± 8.63) 99.76 (± 0.20)
0.12 14,970 100 (12) 715.28 (± 8.56) 717.24 (± 8.68) 99.73 (± 0.21)
0.13 16,217 100 (20) 724.40 (± 8.47) 726.05 (± 8.75) 99.77 (± 0.18)
0.14 17,465 100 (14) 731.81 (± 8.56) 733.71 (± 8.72) 99.74 (± 0.18)

Table 6.3: Quality of the output of Algorithm 4 on Erdős-Rényi I for fixed 𝑛 = 500.

Size #Edges Samples (Maximal) Avg. Output Edges Avg. Maximal Output Edges Avg. Relative Maximality (%)

100 693 100 (69) 139.45 (± 3.34) 139.86 (± 3.43) 99.71 (± 0.48)
200 2,786 100 (41) 287.66 (± 5.29) 288.48 (± 5.37) 99.72 (± 0.31)
300 6,279 100 (37) 437.00 (± 5.58) 438.03 (± 5.66) 99.77 (± 0.25)
400 11,172 100 (26) 584.22 (± 7.75) 585.56 (± 7.77) 99.77 (± 0.19)
500 17,465 100 (14) 731.81 (± 8.56) 733.71 (± 8.72) 99.74 (± 0.18)

Table 6.4: Quality of the output of Algorithm 4 on Erdős-Rényi I for fixed 𝑝 = 0.14.

This observation is supported by Table 6.1. It reports the average face number of the
generated spanning outerplanar subgraphs for the graphs with 𝑛 = 104 vertices in
the Erdős-Rényi II dataset. Somewhat surprisingly, the average face number does not
increase with the density. Figure 6.6 shows the average face number as a function of the
number of vertices (left) and the number of edges of the input graphs (right), where
the colors represent different edge probabilities. The results indicate that in practice, the
face number seems to be sublinear in the graph size for fixed density (in our experiments,
it was always less than 80), justifying the better runtime of our closure computation
algorithm (see Figure 6.7 (right)).

Approximation of convex cores in large real-world graphs

Finally, applying the heuristic described above, we present experiments concerning the
approximation of geodesic cores in large real-world networks. We shortly recall the definition
of geodesic cores provided in Section 2.4. The geodesic core 𝒞 of a graph 𝐺 is defined by
⋂𝑖

𝑗=1 𝐶𝑗, where 𝑖 is the smallest integer satisfying ⋂𝑖
𝑗=1 𝐶𝑗 = ⋂𝑖+1

𝑗=1 𝐶𝑗 and 𝐶𝑗 = 𝛾(𝑋𝑗) is
the closure of 𝑋𝑗 ⊆ 𝑉 (𝐺) containing 𝑙 > 0 vertices selected independently and uniformly
at random. Note that this definition is not deterministic, but our and also experiments by
Marc and Šubelj (2018) show that if a core exists, then it is stable, i.e., the choice of 𝑋𝑗 and
especially 𝑙 does not affect the core if 𝑙 is sufficiently large. In particular, as a compromise
between runtime and stability with respect to random effects, we choose 𝑙 = 10. For each
of the networks in Table 6.5, the fixed point was reached after 𝑖 = 3 iterations.

We used 15 networks from (Leskovec and Krevl, 2014) in our experiments. The size (𝑛)

107

6 Practical Aspects of Mining and Learning in Finite Closure Systems

0 0.2 0.4 0.6 0.8 1 1.2
⋅104

0

5

10

15

20

25

#Edges

Ti
m
e
pe

rC
lo
su

re
[s
]

C1 C2 CGraph

0 0.2 0.4 0.6 0.8 1 1.2
⋅104

0

0.1

0.2

0.3

#Edges

Ti
m
e
pe

rC
lo
su

re
[s
]

Outerplanar Time Outerplanar New Complete Time CGraph

Figure 6.7: Closure runtimes for outerplanar graphs (C1), (C2) resp. non-outerplanar
graphs (CGraph) with the same number of nodes and edges. The generator
set is a random subset of 1% of the vertices. (C1) is the naive algorithm, (C2)
is Algorithm 6.

and order (𝑚) of some of them are more than 1,000 times larger than those in (Marc and
Šubelj, 2018). Table 6.5 contains the size of the exact cores and the runtime of computing
them. While the exact core of the 3 largest networks could not be computedwithin 50 days
using the standard algorithm to compute geodesic closed sets sketched in Section 2.2.2,
our algorithm produced the approximate cores in 5h for these large networks; in less than
40min for all other graphs.

For the approximation, for each large network, we generated 𝑠 = 100 spanning out-
erplanar subgraphs and calculated the closure of 𝑙 randomly chosen vertices on each
of these outerplanar graphs with Algorithm 6. Given the 100 closed sets in the outer-
planar subgraphs obtained this way, a vertex 𝑣 ∈ 𝐺 was regarded as closed if and only
if it was contained in at least 𝑡 out of the 𝑠 = 100 closed sets. The approximate core
𝒞 was then calculated in the same iterative way as the exact one (see Section 2.4), but
using the approximate closed sets instead of the exact ones. We compared exact and
approximate cores with each other using Jaccard similarity. The first value in the last
column of Table 6.5 denotes the best Jaccard similarity achieved via a grid search over
𝑙 ∈ {5, … , 2000} and 𝑡 ∈ {1, … , 10}. We stress that using higher values of 𝑙 has no impact
on the time complexity of our algorithm, as it depends on 𝑛 and the face number only
(cf. Section 6.1.2). The second value (in brackets) denotes the Jaccard similarity for the
approximate core obtained for 𝑙 = 5 and 𝑡 = 1 averaged over 10 runs.

108

6.1 Approximating Geodesic Closures in Large Real-World Networks

(a) (b)

25 50
0

200

400

600

(c)

(d) (e)

25 50
0

200

400

600

(f)

Figure 6.8: CA-HepThnetwork, its exact (a) core, (b) periphery, (c) degree distribution of
the core and its approximated (d) core, (e) periphery, (f) degree distribution
of the approximate core.

For 12 out of the 15 graphs, we obtained an average Jaccard similarity of around 0.8 or
more; for 9 even at least 0.9. As an example, in Figure 6.8, we show the exact core and
periphery of the CA-HepTh network (see (a) and (b)) and their approximations (see (d)
and (e)) for 𝑙 = 5 and 𝑡 = 1 (see, also, Table 6.5). We also plot the degree distribution
of the exact core (see (c)) and that of the approximate core (see (f)) obtained for these
values. One can see that the two distributions are relatively similar to each other by
noting that the Jaccard similarity obtained for 𝑙 = 5 and 𝑡 = 1 was 0.93 (see Table 6.5). A
similar behavior could be observed for the other networks as well.

109

6
Practical

A
spectsofM

ining
and

Learning
in

Finite
C
losure

System
s

Graph Size #Edges Density Size #Edges Time [s] Approx. Time [s] Jaccard similarity
𝑛 𝑚 Core Core Exact Core Approx. best (𝑙 = 5, 𝑡 = 1)

com-Orkut 3,072,441 117,185,083 2.5e-05 n.a. n.a. n.a. 2,915,420 1.8e+04 n.a.
soc-LiveJournal1 4,843,953 43,362,750 3.7e-06 n.a. n.a. n.a. 3,018,149 8.7e+03 n.a.
soc-pokec-relationships 1,632,803 22,301,964 1.7e-05 n.a. n.a. n.a. 1,390,297 6.5e+03 n.a.
com-youtube.ungraph 1,134,890 2,987,624 4.6e-06 390,825 2,169,158 8.9e+05 338,654 2.2e+03 0.82 (0.71)
com-dblp.ungraph 317,080 1,049,866 2.1e-05 90,077 438,265 7.0e+04 92,833 5.3e+02 0.92 (0.87)
com-amazon.ungraph 334,863 925,872 1.7e-05 216,109 643,075 2.2e+05 231,618 5.2e+02 0.88 (0.87)
Slashdot0902 82,168 582,533 1.7e-04 48,718 514,338 1.4e+04 45,558 1.6e+02 0.92 (0.71)
Cit-HepPh 34,401 420,828 7.1e-04 32,111 417,050 6.1e+03 32,309 9.6e+01 0.99 (0.97)
Cit-HepTh 27,400 352,059 9.4e-04 24,832 347,918 3.5e+03 25,049 7.7e+01 0.98 (0.98)
CA-AstroPh 17,903 197,031 1.2e-03 9,487 142,943 6.4e+02 9,522 3.0e+01 0.95 (0.93)
CA-CondMat 21,363 91,342 4.0e-04 8,603 49,682 4.0e+02 8,761 3.5e+01 0.94 (0.90)
CA-HepPh 11,204 117,649 1.9e-03 4,825 63,548 1.8e+02 4,804 1.8e+01 0.93 (0.91)
Wiki-Vote 7,066 100,736 4.0e-03 4,579 98,026 1.3e+02 4,452 1.5e+01 0.97 (0.75)
CA-HepTh 8,638 24,827 6.7e-04 3,605 14,161 4.6e+01 3,669 1.2e+01 0.96 (0.93)
CA-GrQc 4,158 13,428 1.6e-03 1,336 5,036 7.0e+00 1,380 6.0e+00 0.92 (0.88)

Table 6.5: Large real-world networks from Leskovec and Krevl (2014) with number of vertices (𝑛), number of edges (𝑚),
density, number of vertices and edges in the core, time to calculate the exact core in seconds (or n.a. if it was
not possible within 50 days), size of the approximated core (the result of grid search), time to calculate the
approximated core, and the Jaccard similarities of the exact and approximated cores obtained by grid search over 𝑙
(number of random nodes in the generator set) and 𝑡 (frequency threshold for considering a node to be an element
of the approximate core), and for 𝑙 = 5, 𝑡 = 1 in brackets (average over 10 runs) (values of at least 0.9 in bold). The
networks are sorted by 𝑛𝑚.

110

6.1 Approximating Geodesic Closures in Large Real-World Networks

Graph Approx. Core
(mean)

Approx. Core
(normalized std.)

Jaccard
Similarity

Wiki-Vote_component 3,453.8 3.65e-02 0.75
com-youtube.ungraph_component 287,435.0 3.17e-02 0.71
Slashdot0902_component 34,561.9 1.53e-02 0.71
CA-HepPh_component 5,071.0 7.52e-03 0.91
com-amazon.ungraph_component 230,612.7 6.79e-03 0.87
com-dblp.ungraph_component 100,934.7 5.33e-03 0.87
CA-GrQc_component 1,487.4 5.21e-03 0.88
CA-CondMat_component 9,401.1 4.91e-03 0.90
Cit-HepPh_component 31,328.6 3.70e-03 0.97
CA-AstroPh_component 9,704.1 2.56e-03 0.93
CA-HepTh_component 3,825.3 1.33e-03 0.93
Cit-HepTh_component 24,485.1 1.32e-03 0.98

Table 6.6: Comparison of the normalized standard deviation over 10 different approxi-
mate geodesic cores and the Jaccard similarity achieved. The column Approx.
Core (Mean) denotes the mean size over ten approximations of the geodesic
core. The column Approx. Core (normalized std.) denotes the corresponding stan-
dard deviation divided by the mean value. The Jaccard Similarity denotes the mean
similarity between the approximated and exact geodesic cores. The table is sorted
according to the normalized standard deviation.

Regarding the quality of the approximation of the geodesic core, it is of course difficult
to evaluate if if the exact core cannot be calculated. In fact, we could not evaluate the
quality of our approximation for the three largest graphs depicted in Table 6.5. One
possibility to evaluate the quality of our approximation without exactly computing the
geodesic core is to analyze the variance of the size of the approximated geodesic cores
considered over different approximation runs. In particular, for each of the graphs
depicted in Table 6.6, we run our heuristic 10 times and compute the standard deviation
of the sizes of the approximate cores. We then normalize the standard deviation by
dividing it by the mean size of the approximated geodesic cores. For the 12 graphs from
Table 6.5 for which we know the approximation quality, Table 6.6 shows the mean size
of the approximated cores and the normalized standard deviation over 10 runs of our
approximation algorithm (for parameters 𝑙 = 5 and 𝑡 = 1). The table, sorted by the
normalized standard deviation, shows that the Jaccard similarity between approximate
and exact cores increases with decreasing deviation. Indeed, for a normalized deviation
of more than 0.0153, we reach a Jaccard similarity of less than 0.75. For a normalized
deviation of less than 0.005, we achieve a Jaccard similarity above 0.90. We note that
this apriori analysis affects the runtime only a little, as the time consuming part is the
sampling which only has to be done once. After sampling, each run of our approximation
heuristic can be done in time linear in the size of the graph.

111

6 Practical Aspects of Mining and Learning in Finite Closure Systems

6.2 A Simple Heuristic for the Graph Tukey Depth

As a second practical application, we present an analysis of the concept of graph Tukey
depth to mining and learning with graphs. Centrality measures are crucial in data analysis,
as they typically capture the elements’ “importance” quantitatively. Of course, the mean-
ing of importance depends on the choice of the particular centrality measure. Different
types of centrality measures have been introduced for networks (see, e.g., Newman
(2018)), including degree centrality, eigenvector centrality, Katz centrality, closeness centrality,
betweenness centrality, page rank, and hubs and authorities. In Figure 6.9, we present a
graphical illustration of some of these centrality measures and the graph Tukey depth for
some small graphs for a visual comparison. Moreover, since graph Tukey depth is based
on geodesic closures, we show that besides measuring the centrality of vertices, it allows
for interesting associations to the previously discussed theory and concepts. Thus, before
turning to the algorithmic aspects of the graph Tukey depths problem (cf. Section 2.5 for
the definition), in the next section we first present some of its potential applications to
mining and learning with graphs.

6.2.1 Graph Tukey Depth: Potential Applications to Mining and Learning
with Graphs

In this section, we will raise some interesting connections of graph Tukey depth to ver-
tex separations and geodesic core-periphery decompositions. Thus, we state three essential
properties of Tukey depth. In particular, Proposition 6.2.1 clarifies Tukey depth’s role in
geodesic closed sets.

Proposition 6.2.1. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑣 ∈ 𝑉 (𝐺) with td(𝑣) = |𝑉 (𝐺)| − 𝑐, and
𝐶 ⊆ 𝑉 (𝐺) a geodesically closed vertex set with |𝐶| > 𝑐. Then 𝑣 ∈ 𝐶.

Proposition 6.2.2 (Cerdeira and Silva (2021)). Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑋 ⊆ 𝑉 (𝐺), and
𝐶 = 𝛾(𝑋) be the geodesic closure of 𝑋. Then the graph Tukey depth is a quasi-concave function,
i.e., for all 𝑐 ∈ 𝐶 we have 𝑡𝑑(𝑐) ≥ min{𝑡𝑑(𝑥) ∶ 𝑥 ∈ 𝑋} .

Proposition 6.2.3 (Cerdeira and Silva (2021)). Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑘 ∈ ℕ, and
𝑋 = {𝑣 ∈ 𝑉 (𝐺) ∶ td(𝑣) ≥ 𝑘}. Then 𝑋 is geodesically closed.

To underline the importance of these three statements, we give two examples that
show how they (can) influence machine learning and data mining methods based on
geodesic closures.

Example 1: Vertex Classification and Active Learning In Section 5.4 and (de Araújo
et al., 2019; Thiessen and Gärtner, 2021; Thiessen and Gärtner, 2022), disjoint half-
spaces and closed sets are used for binary classification in closure systems, for vertex
classification, and active and online learning in graphs using geodesic convexity. Given
the Tukey depth td(𝑣) of a vertex 𝑣, Proposition 6.2.1 immediately implies that a separating
half-space or closed set not containing 𝑣 cannot have a cardinality greater than |𝑉 (𝐺)| −

112

6.2 A Simple Heuristic for the Graph Tukey Depth

Degree Centrality Closeness Centrality Betweenness Centr. Tukey Depth

M
U
TA

G
N
C
I1

M
SR

C
_9

CO
IL

-D
EL

small large

Figure 6.9: The Degree Centrality, Closeness Centrality, Betweenness Centrality and Tukey
Depth of vertices in graphs selected from different graph datasets (Morris
et al., 2020). The centrality (resp. depth) values are normalized (i.e., mapped
to the interval [0, 1]) by their maximum values in the graph. In particular,
vertices of the smallest (resp. highest) centrality values are denoted by blue
(resp. yellow).

113

6 Practical Aspects of Mining and Learning in Finite Closure Systems

td(𝑣). Thus, for vertices of high Tukey depth, there is no large geodesic closed set not
containing them. Hence, Proposition 6.2.1 implies a nice theoretical connection between
graph Tukey depth and the maximum size of separating half-spaces and closed sets.
Using (approximate) graph Tukey depths, the predictive performance of the above
methods can possibly be affected and improved.

Example 2: Geodesic core-periphery decomposition In Section 6.1, we considered the
geodesic core-periphery decomposition of graphs (Marc and Šubelj, 2018; Šubelj et al.,
2019). In particular, they found out that many social networks consist of a dense geodesic
core “surrounded” by a sparse periphery (see Figure 2.7 for an example). While some
graphs, especially tree-like graphs, seem to have no core, others, such as graphs sampled
from random graph models (e.g., Erdős-Rényi, Barabási-Albert and Watts-Strogatz)
seem to have no periphery. Moreover, the closure of a small number of randomly chosen
graph vertices (≈ 10) always contains the geodesic core (if it exists). Furthermore, if the
vertices are sampled from the geodesic core only, then the closure of the vertices is the
geodesic core itself. If we compute the closure of, say, 10 randomly chosen vertices from
the entire network (Figure 2.7(a)), then the closure always contains the core (orange
vertices in Figure 2.7(b)). If all random vertices belong to the core (orange vertices in
Figure 2.7(a)), then their closure is the core itself. The above statements explain this
behavior. Using that the core is always contained in the closure of a small number of
randomly chosen vertices, from Proposition 6.2.2 it follows that the vertices in the core
are those with the highest Tukey depths. Moreover, the quasi-concave property of graph
Tukey depth implies that if the core is generated by a few vertices from the core, then
the core vertices must have a very close Tukey depth. Finally, using Proposition 6.2.3,
we have that the set of vertices in a graph with a Tukey depth above some threshold is
always geodesically closed; geodesic cores arise as a particular case of this property.

The above example and the three properties motivate the following deterministic defi-
nition of geodesic cores:

Definition 6.2.1. The 𝑘-geodesic core of a graph 𝐺 is defined by

𝐶𝑘 ∶= {𝑣 ∈ 𝑉 (𝐺) ∶ td(𝑣) ≥ 𝑘} .

To empirically confirm our claim that the core contains the vertices with the highest
Tukey depths, we considered the three graphs in Figure 6.10. We computed the exact
Tukey depths (top row) and their geodesic cores (middle row). The depths from small
to large are visualized by the corresponding color bar. The geodesic cores are marked in
yellow, and the periphery in blue. Moreover, we visualized all the vertex Tukey depths
as a barplot (sorted by the depth) together with the information on which of the vertices
belong to the core (yellow) and which to the periphery (blue) (bottom row).

For the Karate Club network (left), also considered in the work of Cerdeira and Silva
(2021), the geodesic core exactly matches the set of vertices of Tukey depth ≥ 19 (see
the barplot in the bottom). Hence, in this case the geodesic core defined in Section 2.4
is in fact the 𝑘-geodesic core defined above for 𝑘 = 19. Furthermore, there is not much

114

6.2 A Simple Heuristic for the Graph Tukey Depth

Karate Club Les Miserables Dolphins

Tu
ke

y
D
ep

th

small depths large depths

G
eo

d.
C
or

e
D
ep

th
D
is
tr
ib
ut

io
n

0 10 20 30
0
5

10
15
20

Vertices

Tu
ke

y
D
ep

th

0 20 40 60 80
0

20

40

Vertices

Tu
ke

y
D
ep

th

0 20 40 60
0

20

40

Vertices

Tu
ke

y
D
ep

th

Figure 6.10: Tukey depth (top) vs. geodesic core-periphery decomposition (middle) and
distribution of the Tukey depths (bottom) for the Karate Club (Zachary,
1977), Les Miserables character (Knuth, 1993), and Dolphins social net-
works (Lusseau, 2003). For the different Tukey depths we use sequential
colors. Core and periphery vertices are denoted by yellow and blue, respec-
tively. The distribution of Tukey depths shows all the depths sorted by their
value. Vertices in the core (respectively in the periphery) are marked by a
yellow bar (respectively by a blue bar).

115

6 Practical Aspects of Mining and Learning in Finite Closure Systems

fluctuation in the depths of the core vertices. In fact, all vertices of Tukey depth of at most
3 belong to the periphery, and all vertices of Tukey depth 19 or 21 to the core, by noting
that there are no vertices of Tukey depth between 4 and 18. In case of the Les Miserables
character network (middle), there is only a single vertex with a very high Tukey depth of
57, surrounded by vertices of depth less than 35. In this case, the core algorithm returns
only the vertex with the highest Tukey depth. For the Dolphin community graph (right),
the geodesic core consists of all vertices with Tukey depth greater than 2, while all vertices
in the periphery have a Tukey depth of at most 2. The three examples suggest that the
probabilistic definition of geodesic cores by Marc and Šubelj (2018) can be alternatively
described by the deterministic 𝑘-geodesic core for some number 𝑘. Moreover, we claim
that the graph Tukey depth can be used to refine core-periphery decompositions.

6.2.2 Approximating the Tukey Depth

Motivated by the negative complexity result concerning the calculation of Tukey depth,
in Section 6.2.3 below, we propose a heuristic based on Algorithm 1 that solves the MCSS
problem. It approximates the vertices’ Tukey depths with one-sided error. We show
experimentally on different types of small graphs that the results obtained by our heuristic
are fairly close to the exact ones. Furthermore, even on small graphs, our algorithm is
up to 200 times faster than the exact one (Section 6.2.4). It is important to emphasize
that we had to resort to such graphs, as it was not possible to calculate the exact Tukey
depths for larger graphs in a practically feasible time.

6.2.3 The Heuristic

Recall that the exact Tukey depth of a vertex 𝑣 is defined by td(𝑣) ∶= |𝑉 (𝐺)| − |𝐶|, where
|𝐶| is the maximum cardinality of a closed set 𝐶 not containing 𝑣. It can be computed
exactly using an integer linear program (see Cerdeira and Silva, 2021, for the details). The
computationally hard part of the problem is to find a closed set of maximum size. Our
heuristic addresses this problem by considering an inclusion maximal closed set only
instead of a maximum cardinality closed set. This relaxation, which distorts of course
the exact value of Tukey depth, allows us to apply Algorithm 1 for solving the MCSS
problem. In what follows, for any 𝑣 ∈ 𝑉 (𝐺), t̃d(𝑣) denotes the approximation of td(𝑣)
obtained with our heuristic.

Given a graph 𝐺, the rough idea to approximate the Tukey depth of a vertex 𝑣 ∈ 𝑉 (𝐺)
is to find an inclusion maximal geodesically closed set 𝐶 ⊆ 𝑉 (𝐺) with 𝑣 ∉ 𝐶. Such a set
𝐶 can be found by applying Algorithm 1 with input sets {𝑣} and {𝑣′}. Then the output
of the algorithm is a solution of the MCSS problem, i.e., it consists of two closed vertex
sets 𝐻𝑣, 𝐻𝑣′ ⊆ 𝑉 (𝐺) with 𝑣 ∈ 𝐻𝑣 and 𝑣′ ∈ 𝐻𝑣′ that are disjoint and inclusion maximal.
That is, there exist no proper closed supersets of 𝐻𝑣, 𝐻𝑣′ with the same properties. The
Tukey depth can then be approximated using the cardinalities of 𝐻𝑣 resp. 𝐻𝑣′. For a fixed
vertex 𝑣, the result depends on the particular choice of 𝑣′. To improve the approximation
quality, we therefore call theMCSS algorithm for each vertex 𝑣 several times, with different
vertices 𝑣′ ≠ 𝑣.

116

6.2 A Simple Heuristic for the Graph Tukey Depth

Algorithm 10: Approximation of Graph Tukey Depth
Input :graph 𝐺
Output :approximation t̃d(𝑣) of td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

1 t̃d(𝑣) ⟵ |𝑉 (𝐺)| for all 𝑣 ∈ 𝑉 (𝐺);
2 forall 𝑣 ∈ 𝑉 (𝐺) do
3 forall 𝑣′ ∈ Γ(𝑣) do
4 𝐻𝑣′, 𝐻𝑣 = 𝑀𝐶𝑆𝑆({𝑣′}, {𝑣});
5 forall 𝑥 ∈ 𝑉 (𝐺) do
6 if 𝑥 ∉ 𝐻𝑣′ then
7 t̃d(𝑥) = min{t̃d(𝑥), |𝑉 (𝐺)| − |𝐻𝑣′|};
8 if 𝑥 ∉ 𝐻𝑣 then
9 t̃d(𝑥) = min{t̃d(𝑥), |𝑉 (𝐺)| − |𝐻𝑣|};

10 return t̃d(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

The pseudo-code of the above heuristic is given in Algorithm 10. In Line 1 we initialize
the Tukey depth of all vertices in 𝐺 by setting them to the maximum possible value, i.e.,
to |𝑉 (𝐺)|. We repeat the procedure described above for all vertices 𝑣 ∈ 𝑉 (𝐺) and all
their neighbors 𝑣′ ∈ Γ(𝑣) (see the for-loops in Line 2 and 3). In this way we solve the
MCSS problem for all input sets {𝑣}, {𝑣′}, i.e., separate 𝑣 from all of its neighbors 𝑣′ by
maximal disjoint closed sets 𝐻𝑣, 𝐻𝑣′ (see Line 4). Note that the Tukey depth of a vertex
𝑥 is based on a closed set of maximum cardinality not containing 𝑥. Thus, if 𝑥 does not lie
in the set 𝐻𝑣 (resp. 𝐻𝑣′), then the cardinality of 𝐻𝑣 (resp. 𝐻𝑣′) is smaller than or equal to
a closed set of maximum cardinality not containing 𝑥. Hence, we can update the current
Tukey depth approximation of all vertices 𝑥 ∈ 𝑉 (𝐺) as follows: Take the minimum over
the old and the new approximation which is the cardinality of 𝑉 (𝐺) ⧵ 𝐻𝑣 if 𝑥 ∉ 𝐻𝑣 or
that of 𝑉 (𝐺) ⧵ 𝐻𝑣′ if 𝑥 ∉ 𝐻𝑣′ (see Line 7 and Line 9).

By construction, Algorithm 10 finds only maximal and not maximum closed sets, re-
sulting in a one-sided error in the estimate of Tukey depths. The result is formulated in
the proposition below.

Proposition 6.2.4. Algorithm 10 overestimates the Tukey depth, i.e., for the output t̃d(𝑣) returned
by Algorithm 10 we have t̃d(𝑣) ≥ td(𝑣), for all 𝑣 ∈ 𝑉 (𝐺).

Regarding the runtime of Algorithm 10, note that the inner part of the loop in Lines
3–9 is executed 𝑂 (𝑚) times because we iterate over all neighbors (i.e., all edges are
considered twice). The runtime of the inner loop (Lines 3–9) is dominated by the MCSS
algorithm called in Line 4, which calls the closure operator at most 𝑂 (𝑛) times (see
Theorem 5.1.1). Since the geodesic closure can be computed in time 𝒪(𝑚𝑛) (Pelayo,
2013), we have the following result for the total runtime of Algorithm 10:

Proposition 6.2.5. Algorithm 10 returns an upper bound of the Tukey depth for all vertices of 𝐺
in 𝒪(𝑚2𝑛2) time.

117

6 Practical Aspects of Mining and Learning in Finite Closure Systems

The runtime of the approximation algorithm can be improved by considering for each
vertex 𝑣 a fixed number of distinct vertices 𝑣′, or by considering a fixed subset 𝑊 ⊆ 𝑉 (𝐺),
instead of the whole vertex set 𝑉 (𝐺) in the outer loop (see Lines 2–9). It is left to
further research to analyze how these changes affect the quality of the approximation
performance.

6.2.4 Experimental Evaluation

In this section, we empirically evaluate the approximation quality and runtime of Al-
gorithm 10 on datasets containing small graphs2. Regarding the approximation quality,
we compare the results obtained by our heuristic algorithm to the exact Tukey depths
computed with the algorithm proposed by Cerdeira and Silva (2021). For the evaluation,
we consider 19 graph datasets by (Morris et al., 2020) of different types (small molecules,
small graphs from bioinformatics and computer vision, and small social networks). See
columns 2–4 of Table 6.7 for the number of graphs and their average number of vertices
and edges. The average size of the graphs ranges from 14 (PTC_MM) up to 82 (OHSU);
their average edge numbers from 14 to 200. The reason for considering small graphs only
is that the exact algorithm (Cerdeira and Silva, 2021) was unable to calculate the Tukey
depth for larger graphs within one day (see the last two columns of Table 6.7). For
practical reasons, we removed all disconnected graphs from the original datasets by
noting that our heuristic also works for disconnected graphs.

The results are presented in Table 6.7. It contains the approximation qualitiesmeasured
in different ways (columns 5–10) and the runtime of the exact (column 11), and our
heuristic algorithm (column 12). The datasets are sorted according to their absolute
approximation error (column 5 of Table 6.7), i.e., the sum of all differences between the
approximation and the exact Tukey depth over all vertices and all graphs in the dataset.

Regarding the absolute error (column 5), our approximation results are equal to the
exact Tukey depths for 5 out of the 19 datasets, while their computation was faster by a
factor of up to 100 (see PTC_MM). Our algorithm has the largest absolute error of 4155
on the COIL-DEL graphs, by noting that this dataset consists of 3900 graphs. Hence, the
average error per graph is only slightly above one. Additionally, we look at the relative
errors (column 6), i.e., the absolute error divided by the sum of all depths. We use this
measure to validate that our algorithm performs very well, by noting that the relative
errors are below 4 ⋅ 10−3 for all graph datasets. The per vertex error (column 7) is the
average error our algorithm makes per vertex, while the per graph error (column 8) is the
error it has on average per graph. Regarding the per vertex error, the worst-case is for the
COIL-DEL dataset (last row) with an average error of 0.05. For the per graph error, the
worst result was obtained for the OHSU dataset, where we overestimate the sum of all
vertex depths by 1.65 per graph on average. The results show that our approximation
algorithm performs very well, especially if considering the average results over the
datasets.

2See https://github.com/fseiffarth/AppOfTukeyDepth for the code.

118

https://github.com/fseiffarth/AppOfTukeyDepth

6.2 A Simple Heuristic for the Graph Tukey Depth

Finally, we also studied the worst-case approximations for vertices and graphs. In par-
ticular, the columns Max. Vertex Error respectively Max. Graph Error denote the maximum
error of the algorithm on single vertices respectively on single graphs. The results show
a very low error of at most 3 per vertex for 13 out of the 19 datasets. For three graph
datasets, themaximum error per vertex is at most 7, and we have a maximum error between
11 and 19 in three cases. Regarding the maximum error per graph, a similar behavior can
be observed by noting that except for OHSU and Peking_1, the maximum vertex errors
and maximum graph errors are close to each other. This implies that there are only a
few vertices with a high approximation error. It is an interesting problem to find the
structural properties of such vertices and graphs responsible for the high approximation
errors. The last two columns show the runtimes of the two algorithms. Our algorithm
(last column) is faster than the exact one by at least one order of magnitude. In summary,
the evaluation of Algorithm 10 clearly demonstrates that our heuristic performs well
in approximating the graph Tukey depth. It is faster (sometimes more than 100 times)
than the exact algorithm, even on small graph datasets. Regarding larger graphs, this
gap in runtime will increase because of the exponential runtime of the exact algorithm.
Additionally, the very small relative errors (at most 4 ⋅ 10−3), the average errors (at most
1.65 per graph), and also the worst case errors show that the algorithm can be used
effectively for further applications based on the Tukey depth (see Section 6.2.1).

119

6
Practical

A
spectsofM

ining
and

Learning
in

Finite
C
losure

System
s

Data Graph
Num-
ber

Avg.
Vertices

Avg.
Edges

Error
(abso-
lute)

Error
(rela-
tive)

Error per
Vertex

Error per
Graph

Max.
Vertex
Error

Max.
Graph
Error

Exact
Run-
time
(s)

Ap-
prox.
Run-
time
(s)

BZR 405 35.75 38.36 0 0 0 0 0 0 56.60 1.04
PTC_MM 336 13.97 14.32 0 0 0 0 0 0 21.09 0.21
COX2 467 41.22 43.45 0 0 0 0 0 0 76.10 1.27
Cuneiform 267 21.27 44.80 0 0 0 0 0 0 2.00 0.61
DHFR 756 42.43 44.54 0 0 0 0 0 0 266.33 3.19
PTC_FR 351 14.56 15.00 1 4.50e-05 1.96e-04 2.85e-03 1 1 23.81 0.25
PTC_FM 349 14.11 14.48 1 4.80e-05 2.03e-04 2.86e-03 1 1 20.64 0.22
MUTAG 188 17.93 19.79 1 6.50e-05 2.97e-04 5.32e-03 1 1 3.01 0.09
PTC_MR 344 14.29 14.69 2 9.20e-05 4.07e-04 5.81e-03 1 1 23.29 0.23
KKI 83 26.96 48.42 12 1.01e-03 5.36e-03 1.45e-01 2 4 40.45 2.43
IMDB-
BINARY

1000 19.77 96.53 19 4.37e-04 9.61e-04 1.90e-02 1 3 723.07 113.14

NCI1 3530 29.27 31.88 34 5.20e-05 3.29e-04 9.63e-03 6 8 1194.63 7.76
Peking_1 85 39.31 77.35 40 1.30e-03 1.20e-02 4.71e-01 3 10 4761.33 48.08
MSRC_21C 209 40.28 96.60 86 1.28e-03 1.02e-02 4.11e-01 12 12 51.78 3.06
MSRC_9 221 40.58 97.94 89 1.21e-03 9.92e-03 4.03e-01 7 8 49.33 2.92
OHSU 79 82.01 199.66 130 8.54e-04 2.01e-02 1.65e+00 2 13 42887.32 235.40
ENZYMES 569 31.68 61.44 307 1.68e-03 1.70e-02 5.40e-01 7 10 933.79 8.25
MSRC_21 563 77.52 198.32 877 1.39e-03 2.01e-02 1.56e+00 19 25 3679.24 58.98
COIL-DEL 3900 21.54 54.24 4155 4.05e-03 4.95e-02 1.07e+00 11 17 2242.05 43.00

Table 6.7: Graph data of different sizes selected from Morris et al. (2020). Disconnected graphs are removed from the original
datasets. The columns regarding the approximation quality denote the following. Error (absolute) denotes the
overall error on the dataset, Error (relative) denotes the relative error regarding the depths, Error per Vertex denotes
the average error per vertex, Error per Graph denotes the average error per graph, Max. Vertex Error denotes the
maximum error for a vertex and Max. Graph Error denotes the maximum error on a graph. The last two columns
show the runtimes of the exact and approximation algorithm in seconds.

120

6.3 Summary and Open Questions

6.3 Summary and Open Questions

We summarize the main results of Section 6.1 and Section 6.2 and discuss some open
questions and further research directions.

Approximating Geodesic Closures and Geodesic Cores The main goal of Section 6.1 is
to give a fast approximation of geodesic closed sets in large real-world networks. We have
proposed a three-step heuristic that can be summarized as follows. Sample spanning
subgraphs of the input graph, compute the closed sets in the samples instead of the input
graph, and use these closed sets to approximate the original closure. For the first step,
we decided to sample spanning outerplanar graphs. Our experimental results clearly
demonstrate that the presence of cyclic edges in the spanning subgraphs is essential for a
close approximation of the geodesic convex hull. One of the natural questions is whether
other graph classes beyond forests can also be considered for spanning subgraphs. Such
a graph class should fulfill at least two properties: (i) A (potentially maximal) spanning
subgraph from this class could be generated in time linear in the order of the input graph,
and (ii) for all graphs in this class, the preclosure of any set of vertices should be its
closure at the same time (cf. Theorem 2.2.1). This second condition indicates that the
graphs in the class should be 𝐾2,3-free (with respect to forbidden minor). A somewhat
related question is whether the algorithm presented in Section 6.1.1 can be modified in a
way that it returns a maximal spanning outerplanar graph, preserving at the same time
the time complexity of Algorithm 4. A positive answer to this question would provide
an algorithmic solution to the result of Djidjev (2006).

Since our primary goal is to find the best possible approximation of geodesic closed
sets and geodesic cores, it is a question if we even need maximal outerplanar subgraphs.
There may exist particular edges that are more important than others and hence should
be added to the outerplanar subgraphs. For example, is it possible to utilize the degree
distribution of the input graph in the selection of the back edges in a way that the output
outerplanar graphs give better approximation results? Or, is it possible to generate the
spanning subgraphs such that each edge of the input graph is contained in at least one
of the subgraphs?

Our empirical results concerning core approximation in large real-world networks
have been obtained for relatively small sets of generator elements and for low frequency
thresholds. The choice of these two parameters seem crucial for a close approximation
(see Table 6.5). The related question is how to select them, especially in case of large
networks. Sampling seems a naturalway, the question iswhether it is possible to utilize the
structure of the network at hand during sampling. Last but not least, it would be engaging
to systematically study other types of random as well as large real-world networks for
their core-periphery decomposition. One step towards a better understanding of the
core-periphery decomposition structure of different types of graphs is given in Section 6.2.
Instead of the probabilistic definition by Marc and Šubelj (2018) and also in Section 2.4,
we could give a deterministic definition using the graph Tukey depth.

121

6 Practical Aspects of Mining and Learning in Finite Closure Systems

Graph Tukey Depth in Mining and Learning with Graphs Graph Tukey depth is an
exciting and promising new concept for mining and learning with graphs. We have
shown that by definition, the graph Tukey depth is closely related to half-space and other
types of closed set separations, as it grasps the separability of an element. Our results
clearly indicate, that the depth of an element is an essential measure for supervised
learning on graphs (Section 5.4.2) as well as for active (Thiessen and Gärtner, 2021) and
online learning (Thiessen and Gärtner, 2022) on graphs. We show that it is possible to
relate the graph Tukey depth to the geodesic core-periphery decomposition that was
discussed in detail in Section 6.1 by mentioning that the vertices in the core are exactly
those of high graph Tukey depth. Our result shows that graph Tukey depth or more
general, the definition of Tukey depth in arbitrary finite closure systems (Section 2.5)
strongly connects the importance of elements with closed set separations. Hence, it
seems an essential tool for mining and learning methods.

The study of the relationship between graph Tukey depth and other vertex centrality
measures is an interesting question for further research (cf. Figure 6.9). For example,
while the centroid(s) in trees (Piotrowski, 1987; Piotrowski and Syslo, 1991) are precisely
the vertices with the highest Tukey depth, this is not necessarily the case for graphs
beyond trees.

Another issue is a better understanding of the semantics behind the graph Tukey depth,
especially its quasi-concaveness property (Proposition 6.2.2). For example, what are the
properties of the vertices with the highest depth (cf. the definition of Tukey-median in
ℝ𝑑)? We have empirically demonstrated that graph Tukey depth can closely be approxi-
mated in small graphs. It is an open question whether this result holds also for (very)
large graphs. To answer this question, the scalability of our approximation algorithm
should be improved on the one hand. On the other hand, one needs (possibly tight)
theoretical upper bounds on graph Tukey depths. Another interesting question is to
identify graph classes for which our heuristic always results in the exact graph Tukey
depth. While this is the case for trees, it is unclear whether it also holds, e.g., for outer-
planar graphs. We believe this question can be answered affirmatively using techniques
similar to those presented in Section 6.1.2. We have experimentally shown that there is
a connection between geodesic core-periphery decompositions and the deterministic
definition of 𝑘-geodesic cores. On the one hand, we can explain the nature of the geodesic
core-periphery decomposition by analyzing graph Tukey depth. On the other hand, the
connection enables us to use our core approximation algorithm introduced in Section 6.1
to approximate the set of vertices with the highest Tukey depth.

122

Concluding Remarks 7
In this chapter, we discuss the main results of the thesis and formulate some open
questions and problems for future works.

7.1 Discussion

One of our main research questions was to study the following problem: To what extent
is it possible to adapt linear separability from ℝ𝑑 to abstract finite closure systems. Our
primary goal was to derive a general separation method that applies to concept learning in
finite closure systems and assumes as little domain-specific knowledge as possible. In
fact, we have aimed at a domain-independent separation algorithm that only relies on a
domain dependent closure operator. In other words, our goal was to design a learning (or
separation) algorithm for finite closure systems that has access to the closure system via
the corresponding closure operator only. To achieve this goal, we have first discussed the
problem of half-space separation in finite closure systems and have shown that it does
not possess the basic properties of the well-known half-space separation problem in ℝ𝑑.
In particular, in case of finite closure systems, two disjoint closed sets are not necessarily
separable by half-spaces, i.e., the result of Kakutani (1937) for ℝ𝑑 does not hold. We
have referred to this problem by formulating the half-space separation (HSS) problem
and have shown that it is even hard to decide if there exists a separating half-space for
two disjoint closed sets. Since we were interested in practically feasible algorithms,
we have relaxed the original problem of half-space separations. In particular, we have
considered two alternative solutions. First, we have looked at specific closure systems
called Kakutani closure systems. Second, we have simplified the problem to the maximal
closed set separation (MCSS) problem.

Regarding Kakutani closure systems, we have considered the specific case of geodesic
closure systems over graphs. We have shown that 𝐾2,3 free graphs and hence, outer-
planar graphs are always Kakutani closure systems. For solving the MCSS problem,
we have proposed a simple greedy algorithm (Algorithm 1) that provides maximal
closed set separations for arbitrary disjoint closed sets. Somewhat surprisingly, this sim-
ple algorithm is optimal with respect to the number of closure operator calls. In fact,
our result demonstrates that without incorporating domain-specific knowledge, it is
not possible to perform better than this simple greedy algorithm. Thus, in a follow-up
step, we have analyzed how to improve the basic greedy algorithm by incorporating
additional knowledge. We have distinguished between domain-specific (e.g., that arises

123

7 Concluding Remarks

from the particular structure of the domain) and domain-independent knowledge (e.g.,
distance-based knowledge). The results of Section 5.2.2 show that Algorithm 1 can be
improved in terms of the number of closure operator calls by utilizing the particular
structural properties of lattices. Hence, it would be interesting to study specializations of
Algorithm 1 to other domains, particularly to special graphs and relational structures.

Incorporating domain-independent knowledge and adapting the developments of
linear separations in machine learning in ℝ𝑑, we have generalized some main ideas of
support vector machines to finite closure systems. In particular, while the perceptron
algorithm (Rosenblatt, 1958) considers arbitrary hyperplane separations, support vector
machines (Boser et al., 1992) find themaximum margin hyperplane by taking into account
the distances between elements in the underlying metric space. We have transferred this
idea to separations in finite closure systems by “enriching” the underlying ground set
with an abstract “distance” function between elements and sets by using monotone linkage
functions (Mullat, 1976). In this way, we have extended the simple greedy algorithm that
provides arbitrary maximal closed set separations to a version that finds maximum mar-
gin maximal closed set separations in finite closure systems. We have shown empirically
that this knowledge integration enhances the predictive performance compared to the
simple baseline greedy algorithm.

As a summary of our theoretical results, we regard linear separation problems in finite
closure systems as maximal closed set separation problems for the following reasons: In
general, there exists no half-space separation of disjoint closed sets. In case of Kakutani
closure systems, any solution to the maximal closed set separation problem provides a
half-space separation at the same time. Moreover, we have shown that domain-specific
knowledge can be used to improve the greedy algorithm with respect to the number
of closure operator calls and the performance of supervised learning tasks in different
finite closure systems.

Regarding the practical aspects of our results, for geodesic closure systems over graphs
we have given a straightforward heuristic that closely approximates geodesic closed sets
in large graphs. The main steps of this heuristic may be of some independent theoretical
interest. In particular, we have given a fast algorithm for finding outerplanar spanning
subgraphs that are almost maximal and developed a fast algorithm that computes the clo-
sure operator on outerplanar graphs. Besides these algorithmic results, we have applied
the heuristic to approximate geodesic cores. This approximation allows for an analysis
of geodesic core-periphery decompositions of large real-world graphs. Furthermore, we
have raised some fundamental relationships between closed set separations, geodesic
core-periphery decompositions, and graph Tukey depths. Finally, we have shown that
our greedy Algorithm 1 can be used not only as a basis for domain-specific algorithms,
but also to approximate the Tukey depth of vertices in relatively small graph databases.

7.2 Outlook

Our results presented in the thesis raise several open questions that are of theoretical
and practical interest. Throughout this work, we have assumed that the closure operator

124

7.2 Outlook

is given by an oracle that returns the closure of a set extensionally. In case of domain-
specific closure systems (e.g., lattices), closed sets (e.g., ideals and filters) can, however,
be represented intensionally (e.g., by their suprema and infima). As another example,
for closure systems over trees we have that any half-space has a succinct intensional
representation by a single node togetherwith the edge connecting it to the complementary
half-space. These and other examples motivate the study of structural properties of
closure systems allowing for some compact intensional representation of abstract half-
spaces and closed sets. In particular, wewould aim for such representations of half-spaces
and closed sets that allow us to decide if an element is contained in the set or not without
enumerating all elements of the set (cf. the case of hyperplane separations in ℝ𝑑). For
example, in case of lattices we only have to compare an element with the corresponding
supremum (respectively infimum) of the maximal closed set representation.

We have seen that maximum margin separations are not unique, in contrast to maxi-
mum margin hyperplanes in ℝ𝑑. Thus, it is an interesting question to ask for additional
properties restricting the possible number of solutions for maximum margin separations.
In this thesis, we have adapted several notions from classical machine learning in ℝ𝑑. An
advantage of separations in ℝ𝑑 is that they are representable by the support vectors. It
is an open question whether the somewhat related concept of support elements in case
of maximum margin separations in finite closure systems fulfills similar properties. Re-
garding maximum margin separations, what we are particularly interested in is a formal
description of the gain in the information we can achieve compared to arbitrary maximal
closed set separations. One way could be to measure the performance improvements
in supervised learning tasks and the efficiency of the algorithms with respect to the
number of closure operator calls. One direction for future work is to look at theoretical
guarantees on these problems. The choice of the monotone linkage function can play
an important role when considering maximum margin separations. For example, the
monotone linkage function measuring the proximity between feature vectors defined
in Section 2.3 has several promising applications. It can be applied to the problem of
analyzing maximum margin separations in closed itemset mining by measuring the
linkage between features of items and the joint features of a closed itemset.

Throughout this thesis, we have considered binary separation problems only. Clearly,
they can naturally be extended to multi-class separation or clustering problems. That is,
the binary case can be extended to the problem of finding a 𝑘-partitioning of the ground
set or 𝑘 (inclusion) maximal closed sets that are pairwise disjoint, for some 𝑘 ≥ 2 integer.
While the generalization of our results and Algorithms 1 and 3 concerning maximal
closed set separation is straightforward, it is less obvious for the 𝑘-partitioning problem,
which is also referred to as the 𝑘-Kakutani problem (cf. Section 4.2.1). We note that for
the particular case of graphs, these problems have already been studied (Artigas et al.,
2010, 2011, 2007; Buzatu and Cataranciuc, 2015, 2018).

In this thesis we have assumed that the target concepts are representable by disjoint
closed sets. In case of real-world data with noise or outliers, however, we need a less strict
problem definition. For such cases, an explicit tolerance of a certain amount of error in
the separation process can be beneficial. That is, instead of requiring a disjoint separation

125

7 Concluding Remarks

of closed sets, one should also allow overlapping closed sets with some bounded overlap
size, e.g., by restricting the number of elements present in more than one of the closed
sets returned by the algorithm. This kind of problem can be seen as an adaptation of
soft-margin support vector machines (Cortes and Vapnik, 1995) to finite closure systems.
As another alternative to handle noisy data, it would be interesting to look at (closed)
fuzzy sets (Hüllermeier, 2011; Lowen, 1980; Nguyen, 1978). Indeed, fuzzy sets are less
restrictive than closed sets with respect to containment.

There are several open questions regarding the practical aspects of approximations of
geodesic closed sets in large real-world graphs and those of the graph Tukey depth. Some
of them have been mentioned in Section 6.3; some will be discussed below. In particular,
looking at our heuristic approximating geodesic cores, it is an open question whether
we can give some theoretical guarantees for the approximation quality in advance. For
example, it is an interesting question whether there are particular graph properties that
lead to a better respectively worse approximation quality. In Section 6.2.1 we have shown
that geodesic-core periphery decompositions are closely related to the graph Tukey depth.
It seems beneficial to study the graph Tukey depth in order to understand this kind of
decompositions. Thus, it would be important to study the promising connection between
graph Tukey depth and the geodesic-core periphery decomposition. For example, Marc
and Šubelj (2018) visualize the growth of certain induced convex subgraphs in different
social networks and random graphs. We claim that this growth coincides with the growth
of the sorted vertex Tukey depths of a graph.

Looking at graph Tukey depth, we note that each graph convexity defines another
centrality measure (based on Tukey depth) for a graph. For example, for the graph
convexity relying on shortest paths of length smaller than 5, the corresponding graph
Tukey depth is only influenced by the local graph structure, instead of the global one. We
note that in this case, each vertex with distance ≥ 5 can be added to amaximum closed set
not containing 𝑣. In particular, the Tukey depth of a vertex 𝑣 relying on shortest paths of
length less than 5 only depends on the (local) ball around 𝑣 with radius 4. Hence, it would
be interesting to analyze the graph Tukey depths of one graph for different convexities
(e.g., based on shortest paths of different lengths). Regarding further applications of
Tukey depth, note that we have given a general definition that holds for arbitrary finite
closure systems. It is an interesting research question to consider the depth for closure
systems other than geodesic ones. For example, the Tukey depth could be studied in the
context of closed itemset mining and formal concept analysis. The related question could
be formulated as follows: What is the Tukey depth of an item or a formal concept and
what is the semantics behind this depth? For these and other applications, we need a
better understanding of the semantics behind the elements’ importance, provided by the
centrality measure of Tukey depth in finite closure systems. The original Tukey depth
in ℝ𝑑 provides a centrality measure that is robust against (small) perturbations of the
elements and outliers (Dai et al., 2022). It is an interesting question if this robustness
property can be generalized to Tukey depths defined over finite closure systems (e.g.,
geodesic closure systems over graphs).

126

Bibliography

Bibliography

Adaricheva, K., Nation, J. B., and Rand, R. (2013). Ordered direct implicational basis of
a finite closure system. Discrete Applied Mathematics, 161(6):707–723.

Allgeier, B. (2009). Structure and properties of maximal outerplanar graphs. PhD thesis,
University of Louisville.

Anthony, M. and Ratsaby, J. (2016). Multi-category classifiers and sample width. Journal
of Computer and System Sciences, 82(8):1223–1231.

Anthony, M. and Ratsaby, J. (2018). Large-width bounds for learning half-spaces on
distance spaces. Discretete Applied Mathematics, 243:73–89.

Anthony, M. and Ratsaby, J. (2020). Large-width machine learning algorithm. Progress
in Artificial Intelligence, 9(3):275–285.

Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., and Soares, R. (2013). On the
hull number of some graph classes. Theoretical Computer Science, 475:1–12.

Artigas, D., Dantas, S., Dourado, M. C., and Szwarcfiter, J. L. (2010). Convex covers of
graphs. Matemática Contemporânea, Sociedade Brasileira de Matemática, 39:31–38.

Artigas, D., Dantas, S., Dourado, M. C., and Szwarcfiter, J. L. (2011). Partitioning a graph
into convex sets. Discrete Mathematics, 311(17):1968–1977.

Artigas, D., Dourado, M. C., and Szwarcfiter, J. L. (2007). Convex partitions of graphs.
Electronic Notes in Discrete Mathematics, 29:147–151.

Bair, J. (1975). Separation of two convex sets in convexity spaces and in straight line
spaces. Journal of Mathematical Analysis and Applications, 49(3):696–704.

Banach, S. (1929). Sur les fonctionnelles linéaires. Studia Mathematica, 1(1):211–216.

Barwise, J. (1977). An introduction to first-order logic. In Studies in Logic and the
Foundations of Mathematics, volume 90, pages 5–46. Elsevier.

Becker, C. and Gather, U. (1999). The masking breakdown point of multivariate outlier
identification rules. Journal of the American Statistical Association, 94(447):947–955.

Bennett, K. P. and Campbell, C. (2000). Support vector machines: hype or hallelujah?
ACM SIGKDD explorations newsletter, 2(2):1–13.

127

Bibliography

Birkhoff, G. (1940). Lattice theory, volume 25. American Mathematical Soc.

Boley, M., Horváth, T., Poigné, A., and Wrobel, S. (2010). Listing closed sets of strongly
accessible set systems with applications to data mining. Theoretical Computer Science,
411(3):691–700.

Borgatti, S. and Everett, M. (1999). Models of core/periphery structures. Social Networks,
21:375–395.

Boros, E., Gurvich, V., Khachiyan, L., and Makino, K. (2003). On maximal frequent
and minimal infrequent sets in binary matrices. Annals of Mathematics and Artificial
Intelligence, 39(3):211–221.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). Training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual ACMWorkshop on Computational
Learning Theory, COLT ’92, pages 144–152, New York, NY, USA. ACM.

Bremner, D., Chen, D., Iacono, J., Langerman, S., and Morin, P. (2008). Output-
sensitive algorithms for tukey depth and related problems. Statistics and Computing,
18(3):259–266.

Bressan, M., Cesa-Bianchi, N., Lattanzi, S., and Paudice, A. (2021). Exact recovery of
clusters in finite metric spaces using oracle queries. In Conference on Learning Theory,
COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of
Machine Learning Research, pages 775–803. PMLR.

Bryant, V. W. and Webster, R. J. (1972). Convexity spaces. I. The basic properties. Journal
of Mathematical Analysis and Applications, 37(1):206–213.

Bryant, V. W. and Webster, R. J. (1973). Convexity spaces. II. Separation. Journal of
Mathematical Analysis and Applications, 43(2):321–327.

Bryant, V. W. and Webster, R. J. (1977). Convexity spaces. III. Dimension. Journal of
Mathematical Analysis and Applications, 57(2):382–392.

Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C. (2016). Recent advances
in graph partitioning. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9220 LNCS of
LNCS, pages 117–158. Springer.

Buzatu, R. and Cataranciuc, S. (2015). Convex graph covers. The Computer Science Journal
of Moldova, 23(3):251–269.

Buzatu, R. and Cataranciuc, S. (2018). On nontrivial covers and partitions of graphs by
convex sets. The Computer Science Journal of Moldova, 26(1):3–14.

Calder, J. (1971). Some elementary properties of interval convexities. Journal of the London
Mathematical Society, 2(3):422–428.

128

Bibliography

Cerdeira, J. O. and Silva, P. C. (2021). A centrality notion for graphs based on tukey
depth. Applied Mathematics and Computation, 409:126409.

Chartrand, G. and Harary, F. (1967). Planar Permutation Graphs. Annales de l’institut
Henri Poincaré (B) Probabilités et Statistiques, 3(4):433–438.

Chepoi, V. (1994). Separation of two convex sets in convexity structures. Journal of
Geometry, 50(1-2):30–51.

Codd, E. F. (1970). A relationalmodel of data for large shared data banks. Communications
of the ACM, 13(6):377–387.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Cunha, L. andProtti, F. (2018). Closure of genomic sets: applications of graph convexity to
genome rearrangement problems. Electronic Notes in Discrete Mathematics, 69:285–292.

Cunha, L. and Protti, F. (2019). Genome rearrangements onmultigenomicmodels: Appli-
cations of graph convexity problems. Journal of Computational Biology, 26(11):1214–1222.

Dai, X., Lopez-Pintado, S., and Alzheimer’s Disease Neuroimaging Initiative (2022).
Tukey’s depth for object data. Journal of the American Statistical Association, pages 1–13.

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order, Second Edition.
Cambridge University Press.

de Araújo, P. H. M., Campêlo, M. B., Corrêa, R. C., and Labbé, M. (2019). The geodesic
classification problem on graphs. In Proceedings of the tenth Latin and American Algo-
rithms, Graphs and Optimization Symposium, LAGOS 2019, Belo Horizonte, Brazil, June
2-7, 2019, volume 346 of Electronic Notes in Theoretical Computer Science, pages 65–76.
Elsevier.

de Fraysseix, H. and de Mendez, P. O. (2012). Trémaux trees and planarity. European
Journal of Combinatorics, 33(3):279–293.

Der, R. and Lee, D. (2007). Large-margin classification in banach spaces. In Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics, volume 2 of
Proceedings of Machine Learning Research, pages 91–98, San Juan, Puerto Rico. PMLR.

Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer.

Djidjev, H. N. (2006). A linear-time algorithm for finding a maximal planar subgraph.
SIAM Journal on Discrete Mathematics, 20(2):444–462.

Donoho, D. L. and Gasko, M. (1992). Breakdown Properties of Location Estimates Based
on Halfspace Depth and Projected Outlyingness. The Annals of Statistics, 20(4):1803 –
1827.

129

Bibliography

Dourado, M. C., Gimbel, J. G., Kratochvíl, J., Protti, F., and Szwarcfiter, J. L. (2009). On the
computation of the hull number of a graph. Discrete Mathematics, 309(18):5668–5674.

Dourado, M. C., Protti, F., Rautenbach, D., and Szwarcfiter, J. L. (2010). Some remarks
on the geodetic number of a graph. Discrete Mathematics, 310(4):832–837.

Dua, D. and Graff, C. (2017). UCI machine learning repository. http://archive.ics.
uci.edu/ml.

Duchet, P. (1987). Convexity in combinatorial structures. In Proceedings of the 14th Winter
School on Abstract Analysis, pages 261–293. Circolo Matematico di Palermo.

Duchet, P. (1988). Convex sets in graphs, ii. minimal path convexity. Journal of Combina-
torial Theory, Series B, 44(3):307–316.

Duchet, P. and Meyniel, H. (1983). Ensemble convexes dans les graphes i: Théorèmes
de helly et de radon pour graphes et surfaces. European Journal of Combinatorics,
4(2):127–132.

Ellis, J. W. (1952). A general set-separation theorem. Duke Mathematical Journal,
19(3):417–421.

Erdos, P., Rényi, A., et al. (1960). On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5(1):17–60.

Everett, M. G. and Seidman, S. B. (1985). The hull number of a graph. DiscreteMathematics,
57(3):217–223.

Farber, M. and Jamison, R. E. (1987). On local convexity in graphs. Discrete Mathematics,
66:231–247.

Farkas, J. (1902). Theorie der einfachen ungleichungen. Journal für die reine und angewandte
Mathematik (Crelles Journal), 1902(124):1–27.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296.

Fukumizu, K., Lanckriet, G., and Sriperumbudur, B. K. (2011). Learning in hilbert vs.
banach spaces: A measure embedding viewpoint. In Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc.

Ganter, B. and Reuter, K. (1991). Finding all closed sets: A general approach. Order,
8(3):283–290.

Ganter, B., Stumme, G., and Wille, R. (2005). Formal Concept Analysis, Foundations and
Applications, volume 3626. Springer-Verlag, Berlin, Heidelberg.

130

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

Gély, A. (2005). A generic algorithm for generating closed sets of a binary relation.
In Formal Concept Analysis, Third International Conference, ICFCA 2005, Lens, France,
February 14-18, 2005, Proceedings, volume 3403 of Lecture Notes in Computer Science,
pages 223–234. Springer.

Gilad-Bachrach, R., Navot, A., and Tishby, N. (2004). Bayes and tukey meet at the center
point. In Learning Theory, pages 549–563, Berlin, Heidelberg. Springer.

Gottlieb, L.-A., Kontorovich, A., and Krauthgamer, R. (2014). Efficient classification for
metric data. IEEE Transactions on Information Theory, 60(9):5750–5759.

Graepel, T., Herbrich, R., Bollmann-Sdorra, P., and Obermayer, K. (1999). Classification
on pairwise proximity data. In Advances in Neural Information Processing Systems 11,
pages 438–444. MIT Press.

Grätzer, G. (2011). Lattice theory: Foundation. Springer Science & Business Media.

Hahn, H. (1927). Über lineare gleichungssysteme in linearen räumen. Journal für die
reine und angewandte Mathematik, 156:214–229.

Harary, F., Loukakis, E., and Tsouros, C. (1993). The geodetic number of a graph.
Mathematical and Computer Modelling, 17(11):89–95.

Harary, F. and Nieminen, J. (1981). Convexity in graphs. Journal of Differential Geometry,
16(2):185–190.

He, Q. and Li, H.-L. (2011). Separation theorem and maximal margin classification for
fuzzy number spaces. 2011 International Conference on Machine Learning and Cybernetics,
1:278–281.

Hein, M. and Bousquet, O. (2003). Maximal margin classification for metric spaces.
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
2777(July 2004):72–86.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558.

Hornik, K., Stinchcombe, M. B., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366.

Horváth, T., Ramon, J., and Wrobel, S. (2010). Frequent subgraph mining in outerplanar
graphs. Data Mining and Knowledge Discovery, 21(3):472–508.

Hüllermeier, E. (2011). Fuzzy sets in machine learning and data mining. Applied Soft
Computing, 11(2):1493–1505.

Ignatov, D. I. (2015). Introduction to formal concept analysis and its applications in
information retrieval and related fields. In Communications in Computer and Information
Science, volume 505, pages 42–141.

131

Bibliography

Jain, B. J. and Obermayer, K. (2009). Structure spaces. Journal of Machine Learning Research,
10:2667–2714.

Jamison, R. E. (1974). A general theory of convexity. PhD thesis, University of Washington.

Johnson, D. and Preparata, F. (1978). The densest hemisphere problem. Theoretical
Computer Science, 6(1):93–107.

Kakutani, S. (1937). Ein Beweis des Satzes von M. Eidelheit über konvexe Mengen.
Proceedings of the Imperial Academy, 13(4):93–94.

Kay, D. and Womble, E. W. (1971). Axiomatic convexity theory and relationships be-
tween the carathéodory, helly, and radon numbers. Pacific Journal of Mathematics,
38(2):471–485.

Kempner, Y. and Levit, V. E. (2010). Duality between quasi-concave functions and
monotone linkage functions. Discrete Mathematics, 310(22):3211–3218.

Kempner, Y., Mirkin, B., and Muchnik, I. (1997). Monotone linkage clustering and
quasi-concave set functions. Applied Mathematics Letters, 10(4):19–24.

Kempner, Y. and Muchnik, I. (2003). Clustering on antimatroids and convex geometries.
WSEAS Transactions on Mathematics, 2(1):54–59.

Khardon, R. and Arias, M. (2006). The subsumption lattice and query learning. Journal
of Computer and System Sciences, 72(1):72–94.

Knuth, D. E. (1993). The Stanford GraphBase: A Platform for Combinatorial Computing.
Association for Computing Machinery.

Korte, B., Lovász, L., and Schrader, R. (2012). Greedoids, volume 4. Springer Science &
Business Media.

Kubiś, W. (2002). Separation properties of convexity spaces. Journal of Geometry, 74(1-
2):110–119.

Kuratowski, C. (1922). Sur l’opération a de l’analysis situs. Fundamenta Mathematicae,
3(1):182–199.

Leipert, S. (1998). Level Planarity Testing and Embedding in Linear Time. PhD thesis,
University of Cologne.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

Leskovec, J. and Sosič, R. (2016). Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1.

Levi, F. W. (1951). On helly’s theorem and the axioms of convexity. Journal of the Indian
Mathematical Society, 15:65–76.

132

http://snap.stanford.edu/data

Bibliography

Lloyd, J. W. (2012). Foundations of logic programming. Springer Science & Business Media.

Lowen, R. (1980). Convex fuzzy sets. Fuzzy sets and Systems, 3(3):291–310.

Lusseau, D. (2003). The emergent properties of a dolphin social network. Proceedings of
the Royal Society of London. Series B: Biological Sciences, 270.

Marc, T. and Šubelj, L. (2018). Convexity in complex networks. Network Science,
6(2):176–203.

Minkowski, H. (1911). Gesammelte Abhandlungen, volume 2. BG Teubner.

Minsky, M. and Papert, S. (1987). Perceptrons - an introduction to computational geometry.
MIT Press.

Monjardet, B. and Raderanirina, V. (2001). The duality between the anti-exchange closure
operators and the path independent choice operators on a finite set. Mathematical Social
Sciences, 41(2):131–150.

Moore, E. (1910). Introduction to a Form of General Analysis. Colloquium publications /
American Mathematical Society. Yale University Press.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and Neumann, M.
(2020). TUDataset: A collection of benchmark datasets for learning with graphs.
In ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020).
www.graphlearning.io.

Mozharovskyi, P. (2015). Contributions to depth-based classification and computation of the
Tukey depth. PhD thesis, University of Cologne.

Mulder, H. M. (1980). The interval function of a graph. Math. Centre Tracts 132. Centrum
Voor Wiskunde en Informatica.

Mullat, J. E. (1976). Extremal Subsystems of Monotonic Systems I. Avtomatica i Tele-
mekhanika, 5:130–139.

Newman, M. (2018). Networks. Oxford university press.

Nguyen, H. T. (1978). A note on the extension principle for fuzzy sets. Journal of
mathematical analysis and applications, 64(2):369–380.

Nienhuys-Cheng, S. and de Wolf, R., editors (1997). Foundations of Inductive Logic
Programming, volume 1228 of Lecture Notes in Computer Science. Springer.

Ore, O. (1944). Galois connexions. Transactions of the American Mathematical Society,
55(3):493–513.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46.

133

www.graphlearning.io

Bibliography

Pelayo, I. M. (2013). Geodesic Convexity in Graphs. Springer New York.

Piotrowski, W. (1987). A generalization of branch weight centroids. Applicationes Mathe-
maticae, 19(3-4):541–545.

Piotrowski, W. and Syslo, M. M. (1991). Some properties of graph centroids. Annals of
Operations Research, 33(3):227–236.

Plotkin, G. D. (1970). A Note on Inductive Generalization. Machine Intelligence 5,
5(8):101–124.

Riesz, F. (1909). Stetigkeitsbegriff und Abstrakte Mengenlehre, volume 3. Tip. della R.
Accademia dei Lincei; proprietà del cav. V. Salviucci.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088):533–536.

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1):27–64.

Seiffarth, F., Horváth, T., and Wrobel S. (2019). Maximal closed set and half-space
separations in finite closure systems. In Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20,
2019, Proceedings, Part I, volume 11906 of Lecture Notes in Computer Science, pages 21–37.
Springer.

Seiffarth, F., Horváth, T., and Wrobel S. (2020). Maximum margin separations in finite
closure systems. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I,
volume 12457 of Lecture Notes in Computer Science, pages 3–18. Springer.

Seiffarth, F., Horváth, T., and Wrobel S. (2022a). Applications of the graph tukey depth.
In Proceedings of the LWDA 2022Workshops: FGWM, KDML, FGWI-BIA, and FGIR, CEUR
Workshop Proceedings.

Seiffarth, F., Horváth, T., and Wrobel S. (2022b). A fast heuristic for computing geodesic
closures in large networks. In Discovery Science - 25th International Conference, DS 2022,
Montpellier, France, October 10-12, 2022, Proceedings, volume 13601 of Lecture Notes in
Computer Science, pages 476–490. Springer.

Stadtländer, E., Horváth, T., and Wrobel, S. (2021). Learning weakly convex sets in
metric spaces. In Machine Learning and Knowledge Discovery in Databases. Research Track -
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings,
Part II, volume 12976 of Lecture Notes in Computer Science, pages 200–216. Springer.

Stone, M. H. (1938). Topological representations of distributive lattices and brouwerian
logics. Časopis pro pěstování matematiky a fysiky, 67(1):1–25.

134

Bibliography

Šubelj, L. (2018). Convex skeletons of complex networks. Journal of The Royal Society
Interface, 15(145):20180422.

Tarski, A. (1942). Introduction to logic and to the methodology of the deductive sciences.
The Modern Schoolman, 20(1):56–56.

Thiessen, M. and Gärtner, T. (2020). Active learning on graphs with geodesically convex
classes. In KDD workshop on Mining and Learning with Graphs.

Thiessen, M. and Gärtner, T. (2021). Active learning of convex halfspaces on graphs.
Advances in Neural Information Processing Systems, 34:23413–23425.

Thiessen, M. and Gärtner, T. (2022). Online learning of convex sets on graphs. In
ECMLPKDD.

Tukey, J. W. (1942). Some notes on the separation of convex sets. Portugaliae Mathematica,
3:95–102.

Tukey, J. W. (1975). Mathematics and the picturing of data. Proceedings of the International
Congress of Mathematicians, Vancouver, 1975, 2:523–531.

van de Vel, M. (1982). Finite dimensional convex structures I: General results. Topology
and its Applications, 14(2):201–225.

van de Vel, M. (1984). Binary convexities and distributive lattices. Proceedings of the
London Mathematical Society, S3-48(1):1–33.

van de Vel, M. L. J. (1993). Theory of Convex Structures, Volume 50 (North-Holland Mathe-
matical Library). North Holland.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). Openml: networked
science in machine learning. SIGKDD Explorations, 15(2):49–60. https://doi.org/
10.1145/2641190.2641198.

Vapnik, V. and Chervonenkis, A. (1974). Theory of Pattern Recognition [in Russian].
Nauka, Moscow. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der
Zeichenerkennung, Akademie–Verlag, Berlin, 1979).

Vashist, A., Kulikowski, C. A., and Muchnik, L. (2007). Ortholog clustering on a mul-
tipartite graph. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
4(1):17–27.

von Luxburg, U. and Bousquet, O. (2004). Distance-based classification with lipschitz
functions. Journal of Machine Learning Research, 5:669–695.

Šubelj, L., Fiala, D., Ciglaric, T., and Kronegger, L. (2019). Convexity in scientific collabo-
ration networks. Journal of Informetrics, 13(1):10–31.

Ward, M. (1942). The closure operators of a lattice. Annals of Mathematics, pages 191–196.

135

https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198

Bibliography

Witten, I. H., Frank, E., and Hall, M. A. (2011). In Data Mining: Practical Machine Learning
Tools and Techniques (Third Edition), The Morgan Kaufmann Series in Data Management
Systems, pages 587–605. Morgan Kaufmann, Boston, third edition edition.

Zachary, W. W. (1977). An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452–473.

136

Proof of Proposition 4.2.2 A
Proposition. Let 𝑘, 𝑙 ∈ ℕ with 𝑘 > 𝑙 ≥ 2. For all possible choices of 𝑘 and 𝑙 there exists a
closure system that is 𝑘-Kakutani but not 𝑙-Kakutani. Moreover, for 𝑙 = 2 and 𝑘 = 3 there exist a
𝑙-Kakutani closure systems that is not 𝑘-Kakutani.

Proof. To show the first claim consider the following closure system (𝐸, 𝒞) with 𝐸 =
{𝑒1, … , 𝑒𝑘} and 𝒞 = {{𝑒1}, … {𝑒𝑘}, 𝐸}. Clearly, (𝐸, 𝒞) is 𝑘-Kakutani, as there is only one
possible choice for 𝑘 pairwise disjoint closed sets, which, by definition, partitions 𝐸. In
contrast, (𝐸, 𝒞) is not 𝑙-Kakutani because there exists no partition of 𝐸 into 𝑙 disjoint
closed sets.

For the second claim, we consider a closure system that is 2-Kakutani but not 3-
Kakutani. More precisely, let 𝐸 = {𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑥1, 𝑥2}. In order to define 𝒞 over
𝐸, we simplify the notations as follows: For {𝑎, 𝑏, 𝑐} wewrite 𝑎𝑏𝑐, and 𝐴𝑏 denotes 𝐴∪{𝑏}.
Let 𝒮 = {𝐻1, 𝐻𝑐

1, 𝐻2, 𝐻𝑐
2, 𝐻3, 𝐻𝑐

3},

𝐻1 = 𝐴𝑐1𝑥1 𝐻𝑐
1 = 𝐵𝑐2𝑥2

𝐻2 = 𝐵𝑎1𝑥1 𝐻𝑐
2 = 𝐶𝑎2𝑥2

𝐻3 = 𝐶𝑏1𝑥1 𝐻𝑐
3 = 𝐴𝑏2𝑥2

with 𝐴 = {𝑎1, 𝑎2}, 𝐵 = {𝑏1, 𝑏2}, and 𝐶 = {𝑐1, 𝑐2} and let 𝒞 be the family of all possible
intersections of the sets in 𝒮, i.e.,

𝒞 ∶= {𝐶 ∶ 𝐶 = ⋂
𝑋∈𝒰

𝑋 for some 𝒰 ⊆ 2𝒮} ∪ {𝐸} . (A.1)

Clearly, (𝐸, 𝒞) is a closure system, by definition, it is intersection closed and contains 𝐸.
We first show that (𝐸, 𝒞) is not 3-Kakutani. Using the definition of 𝒮 and 𝒞, it follows
that the elements in 𝒮 are exactly the closed sets of size four in 𝒞. Moreover, there exists
no closed set of size three, as by definition of 𝒮, the intersection of any two different
elements of 𝒮 is a set of size less than or equal to two. Considering a partition of 𝐸 into
three closed sets separating 𝐴, 𝐵 and 𝐶, the total size of these three closed sets needs to
be 8. Since a closed set cannot have size greater than 4, the cardinalities of the partitions
must be either 2, 3, 3 or 2, 2, 4. It follows from the discussion above that the first case
cannot occur. The second case is also not possible because by definition, all closed sets of
size four contain one of the three sets 𝐴, 𝐵, or 𝐶, and exactly one element from the other
two sets. Hence, (𝐸, 𝒞) is not 3-Kakutani.

In order to prove that (𝐸, 𝒞) is 2-Kakutani, we show that all pairs of closed sets are
either half-space separable or non-disjoint. By construction, the half-spaces in (𝐸, 𝒞) are

137

A Proof of Proposition 4.2.2

precisely the elements of 𝒮 and each closed set is contained in at least one half-space.
Hence, for two arbitrary closed sets 𝑋 and 𝑌, the following two cases can occur. Let
𝑋 ⊆ 𝐻𝑖 for some 𝑖 ∈ [3]; the case 𝑋 ⊆ 𝐻𝑐

𝑖 is analogous. Then either 𝑌 ∩ 𝐻𝑖 = ∅ or
|𝑌 ∩ 𝐻𝑖| > 0. Regarding the first case, we have that 𝐻𝑖, 𝐻𝑐

𝑖 is a half-space separation of
𝑋, 𝑌. For the second case it suffices to consider 𝑖 = 1 for symmetry. Hence, if suffices
to show that if |𝑌 ∩ 𝐻1| > 0, then either 𝑋 and 𝑌 are half-space separable or have a
non-empty intersection. We show this by going through all possible cases for 𝑋 and 𝑌.
Note that by construction, every closed set can be represented by a 3 × 2 binary matrix
as follows: The entries in the first column of the matrix denote whether or not 𝐻1, 𝐻2 or
𝐻3 are used to generate the closed set, i.e., whether they are contained in 𝒰 using the
definition of 𝒞 in (A.1). The entries in the second column denote whether or not 𝐻𝑐

1, 𝐻𝑐
2

or 𝐻𝑐
3 are used to generate the closed set. For example, we have

𝐴 = 𝐻1 ∩ 𝐻𝑐
3 ≡ ⎡⎢

⎣

1 0
0 0
0 1

⎤⎥
⎦

.

Thus, we can easily give a complete list of all closed sets in the closure system using
their matrix representations:

𝐻1 𝑎1𝑥1 𝑐1𝑎2 𝑐1𝑥1 𝐴 𝑥1 𝑎1 𝑐1 𝑎2

⎡⎢
⎣

1 0
0 0
0 0

⎤⎥
⎦

⎡⎢
⎣

1 0
1 0
0 0

⎤⎥
⎦

⎡⎢
⎣

1 0
0 1
0 0

⎤⎥
⎦

⎡⎢
⎣

1 0
0 0
1 0

⎤⎥
⎦

⎡⎢
⎣

1 0
0 0
0 1

⎤⎥
⎦

⎡⎢
⎣

1 0
1 0
1 0

⎤⎥
⎦

⎡⎢
⎣

1 0
1 0
0 1

⎤⎥
⎦

⎡⎢
⎣

1 0
0 1
1 0

⎤⎥
⎦

⎡⎢
⎣

1 0
0 1
0 1

⎤⎥
⎦

𝐻𝑐
1 𝐵 𝑐2𝑥2 𝑏1𝑐2 𝑏2𝑥2 𝑏1 𝑏2 𝑐2 𝑥2

⎡⎢
⎣

0 1
0 0
0 0

⎤⎥
⎦

⎡⎢
⎣

0 1
1 0
0 0

⎤⎥
⎦

⎡⎢
⎣

0 1
0 1
0 0

⎤⎥
⎦

⎡⎢
⎣

0 1
0 0
1 0

⎤⎥
⎦

⎡⎢
⎣

0 1
0 0
0 1

⎤⎥
⎦

⎡⎢
⎣

0 1
1 0
1 0

⎤⎥
⎦

⎡⎢
⎣

0 1
1 0
0 1

⎤⎥
⎦

⎡⎢
⎣

0 1
0 1
1 0

⎤⎥
⎦

⎡⎢
⎣

0 1
0 1
0 1

⎤⎥
⎦

𝐸 𝐻2 𝐻𝑐
2 𝐻3 𝐻𝑐

3 𝑏1𝑥1 𝑎1𝑏2 𝐶 𝑎2𝑥2

⎡⎢
⎣

0 0
0 0
0 0

⎤⎥
⎦

⎡⎢
⎣

0 0
1 0
0 0

⎤⎥
⎦

⎡⎢
⎣

0 0
0 1
0 0

⎤⎥
⎦

⎡⎢
⎣

0 0
0 0
1 0

⎤⎥
⎦

⎡⎢
⎣

0 0
0 0
0 1

⎤⎥
⎦

⎡⎢
⎣

0 0
1 0
1 0

⎤⎥
⎦

⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

⎡⎢
⎣

0 0
0 1
1 0

⎤⎥
⎦

⎡⎢
⎣

0 0
0 1
0 1

⎤⎥
⎦

Assuming that 𝑋 ⊆ 𝐻1, we have that 𝑋 must be one of the closed sets from the first
row denoted by the red dots; |𝑌 ∩ 𝐻1| > 0 implies that 𝑌 is one of the closed sets from
the first or third row denoted by the blue dots. Considering all possible combinations of
closed sets 𝑋 and 𝑌 Table A.1 below shows that each 𝑋 (red dots) can either be separated
from each 𝑌 (blue dots) by half-spaces (denoted by entries 1, 2, or 3 depending on the

138

𝑎1𝑥1 𝑐1𝑎2 𝑐1𝑥1 𝐴 𝑥1 𝑎1 𝑐1 𝑎2
𝑎1𝑥1 × 2 × × × × 2 2
𝑐1𝑎2 2 × × × 2 2 × ×
𝑐1𝑥1 × × × 3 × 3 × 3

𝐴 × × 3 × 3 × 3 ×
𝑥1 × 2 × 3 × 3 2 2, 3
𝑎1 × 2 3 × 3 × 2 2
𝑐1 2 × × 3 2 2 × 3
𝑎2 2 × 3 × 2, 3 2 3 ×

𝑏1𝑥1 × 2 × 3 × 3 2 2, 3
𝑎1𝑏2 × 2 3 × 3 × 3 2

𝐶 2 × × 3 2 3 × 3
𝑎2𝑥2 2 × 3 × 2, 3 2 3 ×

Table A.1: Separability of the closed sets defined in Proposition 4.2.2. The closed sets
either intersect (×) or are half-space separable regarding some half-spaces
𝐻𝑖, 𝐻𝑐

𝑖 for 𝑖 ∈ {1, 2, 3}.

half-space separation 𝐻𝑖, 𝐻𝑐
𝑖) or 𝑋 ∩ 𝑌 ≠ ∅ (denoted by the entry ×). Closed sets of

size four are omitted as they obviously fulfill the claim above. Hence, the above defined
closure system is 2-Kakutani but not 3-Kakutani.

139

	Introduction
	Contributions: Questions and Results
	Half-Space Separation in Finite Closure Systems
	Maximal Closed Set Separation in Finite Closure Systems
	Practical Aspects of Geodesic Closure Systems over Graphs

	Outline
	Previously Published Work

	Preliminaries
	Basics
	Graphs
	Lattices

	Set and Closure Systems
	Definitions
	Domain Specific Closure Systems
	Separations in Finite Closure Systems

	Monotone Linkage Functions
	Geodesic Core-Periphery Decompositions
	Tukey Depth in Finite Closure Systems
	Performance Measures
	Datasets
	Finite Point Sets
	Graphs

	Related Work
	Abstract Closure Systems
	Convexity in Graphs
	Theoretical Work on Separations

	Classical Machine Learning
	Maximum margin separations

	Mining and Learning in Finite Closure Systems
	Geodesic Core-Periphery Decompositions
	Tukey Depth

	Half-Space Separations in Finite Closure Systems
	The Half-Space Separation Problem
	Kakutani Closure Systems
	The n-Kakutani property
	Kakutani Closure Systems over Graphs

	Summary

	Maximal Closed Set Separations in Finite Closure Systems
	The Maximal Closed Set Separation Problem
	Closed Set Separations in Lattices
	Maximal Closed Set Separation in Lattices
	Kakutani Closure Systems over Lattices
	Illustrative Examples

	Maximum Margin Separations
	Maximum Margin Separations in Monotone Linkage Closure Systems
	The Maximum Margin Algorithm

	Empirical Evaluations
	Binary Classification in Finite Point Sets
	Vertex Classification in Random Graphs

	Summary and Open Questions

	Practical Aspects of Mining and Learning in Finite Closure Systems
	Approximating Geodesic Closures in Large Real-World Networks
	Generating Spanning Outerplanar Subgraph
	Geodesic Closure in Outerplanar Graphs
	Experimental Results

	A Simple Heuristic for the Graph Tukey Depth
	Graph Tukey Depth: Potential Applications to Mining and Learning with Graphs
	Approximating the Tukey Depth
	The Heuristic
	Experimental Evaluation

	Summary and Open Questions

	Concluding Remarks
	Discussion
	Outlook

	Proof of

